
E N A B L I N G R E C O N F I G U R A B L E H A R D WA R E A C C E L E R AT I O N F O R
R O S - B A S E D R O B O T I C S A P P L I C AT I O N S

DISSERTATION

A thesis submitted to the
faculty for computer science , electrical engineering and

mathematics

of
paderborn university

in partial fulfillment of the requirements
for the degree of Dr. rer. nat.

by

C H R I S T I A N L I E N E N

Paderborn, Germany
Date of submission: December 2023

supervisors:
Prof. Dr. Marco Platzner

reviewers:
Prof. Dr. Marco Platzner
Prof. Dr. Erdal Kayacan

oral examination committee:
Prof. Dr. Marco Platzner
Prof. Dr.-Ing. Roman Dumitrescu
Prof. Dr. Erdal Kayacan
Prof. Dr. Stefan Sauer
Dr. Tobias Kenter

date of submission:
December 2023

Christian Lienen: Enabling Reconfigurable Hardware Acceleration for ROS-based
Robotics Applications, Dr. rer. nat., © December 2023

A C K N O W L E D G M E N T S

This dissertation would not have been possible without the support of many
people. I want to mention a few particularly noteworthy supporters at this
point. First, my biggest gratitude goes to Prof. Dr. Marco Platzner, without
whom I would not have been able to persuade myself to do this project.
With his trust, patience, and professional advice, he creates an outstanding
working environment that is second to none. In this context, I would also
like to thank the other reviewer, namely Prof. Dr. Erdal Kayacan, for the
time and effort in reviewing and evaluating this thesis. I would also like
to thank Prof. Dr.-Ing. Roman Dumitrescu, Prof. Dr. Stefan Sauer and Dr.
Tobias Kenter for their involvement in the oral examination committee.

Furthermore, I would like to thank all members of the computer en-
gineering group at the University of Paderborn, who provided me with
professional, administrative, and personal support. Special thanks go to
my roommate Tim Hansmeier and Linus Witschen, who brightened up the
coffee breaks with their humor and creativity. Additional thanks also go to
all students who have made a valuable contribution through their bachelor’s
or master’s project or their participation in the AutonomROS project group.
I would like to mention my student research assistants, who have made an
important contribution to this work.

From my personal environment, I would first of all like to thank my
second half, Helena, who encouraged me to do this project and who had to
endure my ups and downs during this project and accompanied me on my
conference visits.

Finally, I would like to thank my parents and siblings, who have supported
me unconditionally throughout my life and made this path possible for me.
Thank you very much for your support in all situations!

iii

A B S T R A C T

The Robot Operating System (ROS) has recently become the de-facto stan-
dard for developing robotics applications comprising a design paradigm
based on decomposition, communication infrastructure, and libraries. For
the execution of these robotic applications, modern computing platforms
comprise a set of heterogeneous computing platforms, e.g., multi-core CPUs,
embedded GPUs, and FPGAs. Due to custom hardware architectures, FPGAs
promise faster and more energy-efficient computation for many applica-
tions than related computing platforms such as multi-core CPUs and GPUs.
Modern reconfigurable system-on-chip architectures combine a multi-core
CPU with reconfigurable logic, resulting in a tighter composition of hard-
ware and software and supporting more advanced functionality, such as
dynamic partial reconfiguration. Therefore, an important research aspect is
the standardized integration of reconfigurable hardware accelerators into ex-
isting ROS-based software applications since the complete redevelopment of
projects is inefficient and usually not feasible due to their complexity. Other
research aspects besides the standardized integration are, e.g., the support
for dynamic partial reconfiguration for increased hardware utilization or the
reduction of memory transfer overheads into the reconfigurable logic.

This thesis presents ReconROS, a novel approach for integrating recon-
figurable hardware accelerators into robotics applications. The contribution
of this thesis comprises the ReconROS framework, the ReconROS executor,
and fpgaDDS. The ReconROS framework combines ReconOS and ROS 2,
enabling robotics developers to implement ROS 2 nodes entirely in hard-
ware. Due to its consistent programming model for hardware and software
and full virtual memory access, developers can easily migrate nodes from
software to hardware and vice versa. The ReconROS executor extends the
concept of event-driven programming using callbacks to hardware. For
that, it introduces hardware callbacks executed after a specific event. The
ReconROS executor includes infrastructure for dynamic partial reconfigu-
ration in hardware and the scheduling and placement of callbacks. As the
third contribution, this thesis proposes fpgaDDS, an intra-FPGA data dis-
tribution layer for hardware-mapped ROS 2 nodes. All three contributions
achieve speedups in execution time and improved jitter compared to their
pure-software counterparts. Lastly, this thesis presents three more extensive
application examples benefiting from ReconROS and hardware acceleration.

v

vi

Z U S A M M E N FA S S U N G

Das Robot Operating System (ROS) hat sich in letzter Zeit zum de-facto-
Standard für die Entwicklung von Software im Bereich Robotik entwickelt
und beinhaltet ein Designparadigma basierend auf Dekomposition, einer
Infrastruktur zur Kommunikation und Bibliotheken. Für die Ausführung
von Robotik Anwendungen bestehen moderne Computerplattformen aus
einer Reihe heterogener Plattformen wie z.B. Multi-Core-CPUs, eingebettete
GPUs und FPGAs. Durch angepasste Hardwarearchitekturen verspricht
die Nutzung von FPGAs eine schnellere und energieeffizientere Berech-
nung als verwandte Plattformen wie Multi-Core-CPUs und GPUs. Moderne
System-on-Chip Architekturen kombinieren eine Multi-Core CPU mit rekon-
figurierbarer Logik, was in einer dichteren Komposition von Hardware und
Software und die Unterstützung von partieller Rekonfiguration resultiert.
Ein wichtiger Aspekt ist daher die standardisierte Integration von Hardwa-
rebeschleunigern in bestehende ROS-basierte Softwareanwendungen, da die
komplette Neuentwicklung von Anwendungen ineffizient und aufgrund
ihrer Komplexität meist nicht realisierbar ist. Weitere Herausforderungen
neben der standardisierten Integration sind die Nutzung einer effizienteren
Ressourcennutzung durch dynamische partielle Rekonfiguration und die
Verringerung des Overheads durch Datentransfers zwischen Hardware und
Software.

In dieser Arbeit wird ReconROS vorgestellt, ein neuartiger Ansatz zur
Integration rekonfigurierbarer Hardware in Robotik Anwendungen, der
das ReconROS-Framework, den ReconROS Executor und fpgaDDS umfasst.
Das ReconROS Framework kombiniert ReconOS und ROS 2 und ermög-
licht es Robotik-Entwicklern, ROS 2-Knoten vollständig in Hardware zu
implementieren. Dank des konsistenten Programmiermodells für Hardware
und Software und des vollständigen Zugriffs auf den virtuellen Speicher
können Entwickler ROS 2 Nodes leicht von Software auf Hardware und
umgekehrt migrieren. Der ReconROS Executor erweitert das Konzept der
ereignisgesteuerten Programmierung mit Callbacks auf die Hardware. Zu
diesem Zweck wurden Hardware Callbacks eingeführt, die nach einem be-
stimmten Ereignis ausgeführt werden. Der ReconROS Executor umfasst eine
Infrastruktur für die dynamische partielle Rekonfiguration in der Hardware
und die Platzierung, Planung und Platzierung von Callbacks. Als dritten
Beitrag schlägt diese Arbeit fpgaDDS vor, eine Intra-FPGA-Datenverteilung
für Hardware-gemappte ROS 2-Knoten. Alle drei Teilbeiträge erzielen Ge-
schwindigkeitsvorteile bei mitteleren Ausführungszeit und eine Reduktion
des Jitters im Vergleich zu ihren reinen Software-Pendants. Schließlich wer-
den in dieser Arbeit drei ausführlichere Anwendungsbeispiele vorgestellt,
die von ReconROS und Hardwarebeschleunigung profitieren.

vii

AU T H O R ’ S P U B L I C AT I O N S

[1] Lennart Clausing, Zakarya Guetattfi, Paul Kaufmann, Christian
Lienen, and Marco Platzner. “On Guaranteeing Schedulability of Pe-
riodic Real-time Hardware Tasks under ReconOS64.” In: Proceedings
of the 19th International Symposium on Applied Reconfigurable Computing
(ARC). 2023. doi: 10.1007/978-3-031-42921-7_17.

[2] Christian Lienen, Mathis Brede, Daniel Karger, Kevin Koch, Dal-
isha Logan, Janet Mazur, Alexander Philipp Nowosad, Alexander
Schnelle, Mohness Waizy, and Marco Platzner. “AutonomROS: A
ReconROS-based Autonomonous Driving Unit.” In: 2023 Seventh
IEEE International Conference on Robotic Computing (IRC) (Accepted for
Publication). 2023.

[3] Christian Lienen, Sorel Horst Middeke, and Marco Platzner. “FP-
GADDS: An Intra-FPGA Data Distribution Service for ROS 2 Robotics
Applications.” In: 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2023, pages 6261–6266. doi: 10.1109/
IROS55552.2023.10341921.

[4] Christian Lienen, Alexander Philipp Nowosad, and Marco Platzner.
“Mapping and Optimizing Communication in ROS 2-based Appli-
cations on Configurable System-on-Chip Platforms.” In: Proceedings
of the 9th International Conference on Robotics and Artificial Intelligence
(ICRAI) (Accepted for Publication). 2023.

[5] Christian Lienen and Marco Platzner. “Design of Distributed Recon-
figurable Robotics Systems with ReconROS.” In: ACM Transactions on
Reconfigurable Technology and Systems 15.3 (2022). issn: 1936-7406. doi:
10.1145/3494571.

[6] Christian Lienen and Marco Platzner. “Event-Driven Programming
of FPGA-accelerated ROS 2 Robotics Applications.” In: 2022 25th
Euromicro Conference on Digital System Design (DSD). 2022, pages 615–
623. doi: 10.1109/DSD57027.2022.00088.

[7] Christian Lienen and Marco Platzner. “Task Mapping for Hardware-
Accelerated Robotics Applications using ReconROS.” In: 2022 Sixth
IEEE International Conference on Robotic Computing (IRC). 2022, pages 148–
155. doi: 10.1109/IRC55401.2022.00033.

[8] Christian Lienen, Marco Platzner, and Bernhard Rinner. “ReconROS:
Flexible Hardware Acceleration for ROS2 Applications.” In: 2020
International Conference on Field-Programmable Technology (ICFPT). 2020,
pages 268–276. doi: 10.1109/ICFPT51103.2020.00046.

ix

https://doi.org/10.1007/978-3-031-42921-7_17
https://doi.org/10.1109/IROS55552.2023.10341921
https://doi.org/10.1109/IROS55552.2023.10341921
https://doi.org/10.1145/3494571
https://doi.org/10.1109/DSD57027.2022.00088
https://doi.org/10.1109/IRC55401.2022.00033
https://doi.org/10.1109/ICFPT51103.2020.00046

C O N T E N T S

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Thesis Organization . 4

2 Background and Related Work 7

2.1 ReconOS: Operating System for Reconfigurable Computing . 7

2.1.1 ReconOS Architecture 10

2.1.2 ReconOS Tooflow . 11

2.1.3 ReconOS Project . 12

2.2 The Robot Operating System 13

2.2.1 Communication Interfaces 15

2.2.2 Client Library Stack . 17

2.2.3 User-Level Scheduling 18

2.3 Related Approaches for ROS-FPGA Integration 20

2.3.1 Application-Specific Approaches 20

2.3.2 General Approaches . 21

3 Design and Implementation of ReconROS 27

3.1 Design Considerations . 28

3.2 ReconROS Architecture . 30

3.3 ReconROS Design Flow . 35

3.4 Programming Model . 37

3.4.1 Static Execution Example 39

3.4.2 Dynamic Execution Example 42

3.5 Experimental Evaluation . 47

3.5.1 Hardware-Mapped Node Overheads 47

3.5.2 Reconfiguration Overheads 50

3.6 Chapter Conclusion . 51

4 Task Mapping and Parallelism in ReconROS 53

4.1 Static Task Mapping . 54

4.2 Dynamic Task Mapping . 55

4.2.1 Scheduling . 56

4.2.2 Replacement . 58

4.3 Exploitation of Parallelism . 60

4.4 Experimental Evaluation . 61

4.4.1 Static Task Mapping . 61

4.4.2 Dynamic Task Mapping Example 65

4.4.3 Hardware Callback Replacement 70

4.5 Chapter Conclusion . 71

5 Communication Optimization in ReconROS 73

5.1 ReconROS Shared-Memory Communication 74

5.2 Intra-FPGA Communication Architecture 75

5.2.1 ReconROS DDS Adapter 78

xi

xii contents

5.2.2 Execution Modes . 78

5.3 Gateways for Hardware-Mapped Topics 79

5.3.1 Gateway Architecture 81

5.3.2 Gateway Design Flow 83

5.3.3 Performance Measurements 84

5.4 Communication Mapping Methodology 86

5.5 Evaluation . 89

5.6 Chapter Conclusion . 90

6 ReconROS Case Studies 91

6.1 Ball on Plate Demonstrator . 91

6.1.1 Architecture . 92

6.1.2 Evaluation . 93

6.2 Turtlebot 3 Autorace . 96

6.2.1 Architecture . 96

6.2.2 Evaluation . 98

6.3 AutonomROS . 102

6.3.1 Architecture . 102

6.3.2 Evaluation . 106

6.4 Chapter Conclusion . 109

7 Conclusion and Future Work 111

Bibliography 115

L I S T O F F I G U R E S

Figure 2.1 ReconOS architecture comprising two hardware threads
and three software threads. 10

Figure 2.2 ReconOS build flow. Components in blue are (partly)
generated by the preprocessing toolchain of ReconOS.
Adapted from [1, 21]. 11

Figure 2.3 Example robot operating system (ROS) 2 computation
graph (a) comprising two nodes publishing to the
topic A and two nodes subscribing data from the
topic. The ROS 2 data layer graph (b) shows the
physical structure comprising two sensors, two actors,
and a computing platform. Adapted from [64]. 14

Figure 2.4 Example ROS 2 network comprising the three commu-
nication paradigms supported by ROS: Topic-based
(green), service-based (blue), and action-based (red).
Adapted from [61] . 16

Figure 2.5 ROS 2 client library stack. Adapted from [61]. 17

Figure 2.6 ROS 2 standard executor scheduling algorithm. Adapted
from [17]. 19

Figure 2.7 The ROS-FPGA architecture enables the implemen-
tation of ROS nodes without a processing system.
Adapted from [87]. 24

Figure 3.1 Different schemes for integrating ROS 2 node with
hardware accelerators. Adapted from [50]. 28

Figure 3.2 ReconROS architecture with two hardware-mapped
ROS 2 nodes (threads) and several software-mapped
ROS 2 nodes (threads). Adapted from [53]. 32

Figure 3.3 Sequence of events when a ROS 2 hardware-mapped
node (HMN) calls the ROS_SUBSCRIBER_TAKE function
from the ReconROS API. Adapted from [53]. 33

Figure 3.4 Hardware architecture for the ReconROS executor.
Architectural changes or components that are now
used are marked red. Adapted from [51] and [53]. . . 34

Figure 3.5 ReconROS design flow. Adapted from [50]. 36

Figure 3.6 Example ROS 2 application including two ReconROS
hardware nodes. Adapted from [50]. 39

Figure 3.7 ROS computational graph example for demonstrat-
ing programming for dynamic execution. Adapted
from [51]. 43

Figure 3.8 ReconROS ping-pong application for overhead esti-
mation. Taken from [53]. 48

xiii

xiv list of figures

Figure 4.1 Static task mapping of ROS 2 nodes to central process-
ing unit (CPU) cores (in purple) and reconfigurable
hardware slots (in green) using ReconROS. Taken
from [52]. 54

Figure 4.2 Dynamic task mapping of ROS 2 callbacks to CPU

cores (in purple) and reconfigurable hardware slots
(in green) using ReconROS with an executor and
reconfigurable slot assignment/replacement strategy
(in red). Taken from [52]. 55

Figure 4.3 Sequence diagram for a hardware worker thread.
Taken from [51]. 57

Figure 4.4 Sequence diagram for a hardware worker thread in-
cluding an optimized replacement strategy. 59

Figure 4.5 Exploiting data parallelism for a ROS 2 node in Re-
conROS. Adapted from [52]. 61

Figure 4.6 ReconROS ping-pong application including five ex-
ample ROS 2 nodes either in hardware or software.
Adapted from [53]. 62

Figure 4.7 Experimental setup for a ROS 2 application with a
standard ROS 2 executor (a), and our ReconROS ex-
ecutor (b). Taken from [51] 67

Figure 4.8 Relative frequencies of the roundtrip times for the
ROS 2 standard executor and two ReconROS executor
configurations; the dashed lines show the average
roundtrip time for the specific ROS 2 node. Taken
from [51]. 69

Figure 5.1 Extensions of the ReconROS API in the ReconROS
communication stack comprising operations for zero-
copy data transfers between nodes (red). Adapted
from [47]. 75

Figure 5.2 Extensions of the ReconROS communication stack
include fpgaDDS and the corresponding ReconROS
data distribution service (DDS) adapter. The zero-copy
extensions as part of the ReconROS API (cf. Sec-
tion 5.1) are not emphasized in this figure. Adapted
from [48]. 76

Figure 5.3 Schematic example for a computation graph with
two hardware-mapped topics A and B (a) and the
resulting instance of the communication architecture
(b). Adapted from [48]. 77

Figure 5.4 Execution modes for the HMN 2 from the computa-
tion graph (a) with communication (tcom) and execu-
tion (texec) phases: (b) sequential execution and (c)
dataflow execution. Adapted from [48]. 79

list of figures xv

Figure 5.5 Example Application comprising nodes mapped to
hardware and software and its communication. Taken
from [49]. 80

Figure 5.6 The architecture of the gateway. Taken from [49]. . . . 81

Figure 5.7 Runtime behavior of the gateway core. Adapted
from [49]. 82

Figure 5.8 Toolflow for the automatic generation of gateways.
Taken from [49]. 83

Figure 5.9 Test setup comprising one publishing node (HW or
SW), 2, 4, or 8 subscribing HMNs, and one subscribing
software-mapped node (SMN). Subfigure (a) shows
a test scenario with communication via a software-
mapped topic, and (b) shows a test scenario leverag-
ing our proposed gateway. Taken from [49]. 84

Figure 5.10 Measured maximum transfer times for hardware-
to-hardware (left column) and hardware-to-software
(right column) communication and the resulting speedups.
Taken from [49]. 85

Figure 5.11 Measured maximum transfer times for software-to-
hardware (left column) and software-to-software (right
column) communication and the resulting speedups.
Taken from [49]. 86

Figure 5.12 Step-wise example for node and communication map-
ping. Taken from [49] 87

Figure 6.1 Mechatronics model based on three ball-on-plate sta-
tions with Stewart platforms. Adapted from [50]. . . 93

Figure 6.2 ROS 2 application with node and communication ob-
jects for the mechatronics model shown in Figure 6.1.
Adapted from [50]. 94

Figure 6.3 Relative frequencies of measured processing times for
the three control paths (Touch→Control→Inverse→Servo)
and three different node mappings (DM = Dead-
line Missed [%]). Taken from [50]. 95

Figure 6.4 Computation graph for the autonomous vehicle ex-
ample. Taken from [49]. 97

Figure 6.5 Overview of the hardware-in-the-loop (HiL) simula-
tion environment for the application. Taken from [52]. 98

Figure 6.6 Simulated Gazebo environment based on a modified
version of the official Turtlebot Autorace 2020 chal-
lenge. In addition to the environment, the housing
of the Turtlebot 3 was simplified to achieve a better
simulation performance. 99

Figure 6.7 Architecture graph for the autonomous vehicle ex-
ample using fpgaDDS without ORB-SLAM3. Taken
from [48]. 99

xvi list of figures

Figure 6.8 Architecture graph for the autonomous vehicle ex-
ample including ORB-SLAM3 using fpgaDDS and
gateways. Taken from [49]. 101

Figure 6.9 Architecture of the AutonomROS autonomous driv-
ing unit. Hardware-accelerated components are high-
lighted in blue color. Taken from [47]. 103

Figure 6.10 Model car platform. Taken from [47]. 107

L I S T O F TA B L E S

Table 3.1 Comparison of approaches for integrating hardware
accelerators with ROS. Extended from [50]. 31

Table 3.2 Runtimes and speedups for the echo ping-pong ap-
plication. Taken from [53]. 49

Table 3.3 Runtimes for the raw copy ROS 2 nodes in software
and hardware. Taken from [53]. 49

Table 3.4 Runtimes for the overall copy ping-pong application
and corresponding speedups. Taken from [53]. 50

Table 3.5 Reconfiguration slots with resources (Z7100 slices
look-up tables (LUTs), digital signal processors (DSPs),
and block memorys (BRAMs)), bitstream size and re-
configuration time. Taken from [51]. 50

Table 4.1 Resource usage and utilization (in % of the Xilinx
XCZU7EV-2FFVC1156) for the implemented Recon-
ROS nodes. Resource figures are reported for configurable
logic blocks (CLBs), DSPs, and BRAMs. 63

Table 4.2 Raw runtimes of software and hardware ROS 2 nodes
and corresponding speedups. 64

Table 4.3 Roundtrip runtimes of software and hardware ROS 2

nodes and corresponding speedups. 64

Table 4.4 Execution times for five ROS 2 callbacks in hardware
(texec−HW) and software (texec−SW), and the resulting
speedup. Taken from [51]. 66

Table 4.5 Average execution times and speedups compared to
the ROS 2 executor reference implementation (first
column). 68

Table 4.6 Evaluation of different hardware callback replace-
ment strategies. Taken from [52]. 71

Table 5.1 Communication times and speedup for CycloneDDS
and fpgaDDS for different message sizes. 89

Table 6.1 Runtimes for the raw ROS 2 nodes of the mechatronics
example in software and hardware. Taken from [50]. 94

Table 6.2 Resource usage and utilization (in % of the Xilinx
Zynq 7020) for the three involved field programmable
gate array (FPGA) boards. Resource figures are re-
ported for slice LUTs, DSP, and BRAM. Taken from [50]. 96

Table 6.3 Resource utilization of the hardware implementations
(% of the used XCZU7EV-2FFVC1156) 100

Table 6.4 Execution times and speedups for node chain α of
Figure 6.7 and different implementation variants. . . 101

xvii

xviii list of tables

Table 6.5 Performance measurements for the hardware-accelerated
components of AutonomROS. The table shows min/-
max values collected in multiple measurements. Taken
from [47]. 108

L I S T I N G S

Listing 3.1 Example high-level synthesis (HLS) implementation
of a simple hardware callback. 39

Listing 3.2 Configuration file (ROS 2-related part) for the Recon-
ROS application shown in Figure 3.6. Taken from [50]. 40

Listing 3.3 C/C++ code (partial) for the HLS implementation of
the "Sobel" ROS 2 node. Taken from [50]. 41

Listing 3.4 C/C++ code (partial) for the HLS implementation of
the "DIP" ROS 2 node. Taken from [50]. 42

Listing 3.5 Configuration file (Partial reconfiguration / ROS 2

related part) for the ReconROS application shown in
Figure 3.7. Taken from [51]. 44

Listing 3.6 C/C++ code (partial) for the HLS implementation
of the subscriber callback for the /filter ROS 2 node.
Taken from [51]. 45

Listing 3.7 C/C++ code (partial) for the HLS implementation of
the subscriber callback for the /parking ROS 2 node. . . 46

Listing 3.8 C/C++ code (partial) main thread of the ReconROS
application. Taken from [51]. 47

Listing 5.1 build.cfg definition of a gateway connecting a software-
mapped topic (SMT) with a hardware-mapped topic
(HMT) of type Image. 83

xix

A C R O N Y M S

ASIC Application-Specific Integrated Circuit

BRAM Block Memory

CLB Configurable Logic Block

CPU Central Processing Unit

DDS Data Distribution Service

DMA Direct Memory Access

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HLS High-Level Synthesis

HiL Hardware-in-the-Loop

HMN Hardware-Mapped Node

HMT Hardware-Mapped Topic

HWC Hardware Callback

ICAP Internal Configuration Access Port

LFU Least Frequently Used

LRU Least Recently Used

LUT Look-up Table

LoC Lines of Code

MEMIF Memory Interface

MMCM Mixed-mode Clock Manager

MMU Memory Management Unit

MPSoC Multi-Processor System-on-Chip

OSFSM Operating System Finite State Machine

OSIF Operating System Interface

OSRF Open Source Robotic Foundation

PCAP Processor Configuration Access Port

PWM Pulse-Width Modulation

QoS Quality-of-Service

rcl ROS Client Library

rclcpp ROS Client Library for C++

rclpy ROS Client Library for Python

xx

acronyms xxi

RDK ReconOS Development Kit

RMW ROS Middleware

ROS Robot Operating System

RPC Remote Procedure Call

RS Reconfigurable Slot

SLAM Simultaneous Localization and Mapping

SMN Software-Mapped Node

SMT Software-Mapped Topic

SoC System-on-Chip

SWC Software Callback

URAM UltraRAM

VDMA Video Direct Memory Access

VHDL Very High Speed Integrated Circuits Hardware Description
Language

1
I N T R O D U C T I O N

In recent years, robots, and in particular mobile robots, have become ubiq-
uitous in our daily lives. Example application fields for mobile robots can
be found as autonomous vacuum cleaner robots at home, as drones for
tasks such as finding fawns in agriculture [40], as (partially) autonomous
cars in road traffic [134], or even for explorations on foreign planets in our
solar system [127]. A common trend for mobile robots is to increase the
degree of autonomy [100]. An increased degree of autonomy is usually
achieved by observing the robot’s environment more precisely using more
sensors and the resulting information to make better decisions, such as
using machine learning-based algorithms [6, 24]. Another example is the
generation of the robots’ pose or complete maps of the environment from
standard camera images [105]. Cameras are widely used on mobile robots,
and advanced computer vision algorithms such as visual simultaneous
localization and mapping (SLAM) represent a crucial component for pose
estimation [126]. The aim of all of these efforts is to provide a foundation to
act more autonomously or intelligent.

On the one side, the increased degree of autonomy results in higher
computational workloads for the mobile robot processing platform due to
more significant amounts of data and advanced algorithms [54]. On the other
side, the performance of data computation in mobile robots is crucial since
large amounts of data must be processed in real-time [133]. The demand
for more processor power is in direct competition with mission time since
the processor is usually powered by the same battery, even if the power
consumption of the motors of a drone, for example, is orders of magnitude
higher. Although modern central processing units (CPUs) have become more
potent due to multi-core architectures and vector processing extensions,
there is the need for heterogeneous compute platforms [19]. The need is
due to the insufficient computing power of CPUs on the one hand and the
insufficient energy efficiency of CPUs compared to accelerators on the other
hand.

Candidates that are already in use are (embedded) general-purpose
graphics processing units (GPUs) [84, 86, 103], application-specific integrated
circuits (ASICs) [70, 110], and field programmable gate arrays (FPGAs) [4, 55,
56, 71, 72]. While ASICs are only economically reasonable for (very) large
quantities due to their high fixed costs, gpGPUs and FPGAs have become
more common in the last years. Modern FPGA-based system-on-chips (SoCs)

1

2 introduction

platforms often combine programmable logic and dedicated ARM cores,
enabling close cooperation in processing through high-performance memory
interfaces. With a high degree of parallelism on one side and the ability
to adapt the processing unit to the task, FPGAs promise a fast and energy-
efficient execution. Several examples in literature report improvements due
to the usage of FPGAs compared to GPUs in terms of computation power
and energy efficiency, e.g., gradients for robotic dynamics [85] for vision
kernels [93], for morphological image processing functions [14], for feature
detection and description algorithms [119] and convolutional neural network
inference [75, 120].

However, despite the demonstrated advantages of FPGAs, their prolifer-
ation into the robotics domain is still hampered by several reasons. The
design complexity is the main barrier for software developers to include
FPGAs in their robotics architecture. On the one hand, FPGA design and soft-
ware/hardware co-design are arguably more challenging than embedded
software development. Robotics engineers and application developers are
typically not trained in FPGA designs or hardware/software co-design. On
the other hand, designing an adapted accelerator in a hardware description
language is more challenging than programming the same functionality in
software in a high-level language. As a result, Podlubne and Goehringer [88]
show in a literature analysis that while the research interest in GPUs in
robotics is increasing, the relative interest in FPGAs in robotics is decreasing.

One of the approaches to reduce the design complexity of FPGA designs
is high-level synthesis (HLS). HLS tools enable the usage of standard C/C++
for describing behavior and (semi-)automatically take such descriptions to
FPGA hardware. HLS tools increase productivity and are thus highly use-
ful, but a consistent programming model for implementing software and
hardware functions in robotics is still lacking. Porting a robotics application
from software to hardware or accelerating parts of the application in hard-
ware requires the creation of suitable interfaces between software and FPGA

hardware and often leads to a re-development of substantial parts of the
application. However, modern robotics applications are based on complex
architectures involving large software packages and thousands of lines of
code (LoC). That makes the integration of hardware acceleration even more
challenging since the re-development of the overall application is only a
valid option for some applications. Therefore, the compatibility of hardware
accelerators with standard concepts has to be guaranteed.

In recent years, the robot operating system (ROS) has become the de-facto
standard for developing robotics applications. ROS provides an architecture
paradigm, a communication infrastructure, and tools for visualization and
debugging. The architecture of ROS-based applications relies on so-called
nodes, each responsible for a subfunction of the overall application. These
nodes can communicate using n : m topic-based publish-subscribe or 1 : 1
communication schemes. The resulting decomposed architecture is usually
represented by a computation graph comprising nodes and edges represent-
ing communication.

1.1 thesis contributions 3

In summary, although FPGAs has excellent potential for robotics applica-
tions, a comprehensive approach to integrating reconfigurable hardware into
modern robotics architectures is still lacking. Therefore, the main goal of this
thesis is to establish the use of reconfigurable hardware in a standardized
form for ROS-based robotic applications. For the standardized integration,
this thesis explores a new approach that supports a more extensive set of
features compared to related approaches (cf. Section 3.1), allowing better
utilization of the capabilities of modern SoCs architectures.

1.1 thesis contributions

The overall contribution of this thesis is to present a novel approach for the
computation of subparts of the computation graph or even the complete
computation graph using reconfigurable hardware. This effort results in the
ReconROS open-source framework, which is publically available1. Recon-
ROS allows but is not limited to shifting nodes or graphs completely to
reconfigurable hardware by providing a consistent programming model for
hardware and software-implemented nodes while being compatible with
ROS.

The contributions can be divided into three three parts:

• First, based on a combination of ROS 2 and ReconOS, the ReconROS
framework allows robotics developers to utilize hardware accelera-
tion for ROS applications as hardware-accelerated ROS nodes or as ROS

nodes mapped completely to hardware as so-called hardware-mapped
nodes (HMNs). The latter option provides a consistent programming
model for ROS applications, independently of mapping ROS nodes to
software or hardware. ReconROS supports all ROS 2 communication
paradigms and preserves the main advantages of ReconOS, such as full
memory access for hardware threads or operating system-like synchro-
nization mechanisms for hardware/software co-designed applications.

• Second, the ReconROS executor allows ROS 2 developers to easily ex-
change hardware accelerators during runtime without the need for cus-
tom scheduling and dispatching implementations. It, therefore, makes
dynamic partial reconfiguration useable for a broad (non-hardware)
community. As a result, it allows for a better utilization of the available
resources due to time-sharing. The concept of the ReconROS executor
generalizes the common ROS concept of event-driving programming
using callbacks by introducing hardware callbacks. Hardware callbacks
are partial FPGA designs loaded during runtime after a particular event
(e.g., a new message is received).

• Third, the lean data distribution service fpgaDDS aims to reduce
communication overheads between HMNs due to the mapping of com-
munication of topics to hardware. fpgaDDS relies on a customized

1 https://github.com/Lien182/ReconROS/

https://github.com/Lien182/ReconROS/

4 introduction

and statically generated streaming-based communication architecture
enabling intra-FPGA communication between HMNs. In order to pre-
serve the programming model, extensions in the tool flow enable
ROS 2 message and topic-based communication through dedicated
streaming networks based on automatically generated macros. The
gateways concept extends the application area for fpgaDDS. Gateways
synchronize hardware-mapped and standard ROS 2 topics to minimize
communication between the software and hardware domains.

Furthermore, this provides three more advanced example applications
that successfully leverage the contributions of this thesis.

1.2 thesis organization

The remainder of this thesis is organized as follows:

• Chapter 2 provides an overview of the background and related work.
The overview includes ReconOS and ROS since this thesis relies heavily
on both frameworks. Furthermore, the chapter reports on related ap-
proaches for integrating hardware accelerators into the robot operating
system.

• Chapter 3 presents the design and implementation of ReconROS. The
chapter starts with design considerations for integrating reconfigurable
hardware into ROS-based applications before it presents the architec-
ture, design flow, and framework’s programming model. Finally, the
chapter reports overheads due to hardware acceleration and dynamic
partial reconfiguration during runtime.

• Chapter 4 deals with mapping ROS 2 nodes to reconfigurable hardware
using the architecture presented in the previous chapter. The mapping
includes static mapping, where nodes remain in the execution unit
during runtime, and dynamic mapping, where nodes are mapped to
execution units dynamically during runtime. For dynamic mapping,
the chapter presents the scheduling and replacement strategies used
by the ReconROS executor.

• Chapter 5 describes fpgaDDS and its extensions by gateways for the
optimization of robotics applications on the computation graph level.
Additionally, the chapter presents an approach for optimizing the
communication between nodes.

• Chapter 6 reports on three example architectures realized with Re-
conROS. The set of applications comprises a distributed ball-on-plate
architecture, an autonomous driving example able to drive along a
street lane and handle traffic lights during the drive, and a more ad-
vanced hardware-software co-design for autonomous driving with
navigation.

1.2 thesis organization 5

• Chapter 7 concludes the thesis and provides an outlook for future
work.

2
B A C K G R O U N D A N D R E L AT E D W O R K

After the introduction and motivation of the content of this thesis, this
chapter provides background related to ReconROS. Since ReconROS started
as a combination of ReconOS and ROS 2, both approaches are introduced in
the following sections.

ReconROS is not the first approach aiming to integrate reconfigurable
hardware into ROS-based applications in a standardized way. There are
approaches in the literature presented before and after the introduction of
ReconROS. Therefore, we provide an overview of related approaches for
integrating reconfigurable hardware acceleration into ROS applications. In
Chapter 3, we are going to compare these approaches with ReconROS.

2.1 reconos : operating system for reconfigurable computing

Several decades ago, reconfigurable hardware evolved from pure glue-logic
devices connecting various integrated circuits and interfaces to powerful
computing platforms [114]. This development was made possible mainly by
advancements in manufacturing, which resulted in more available resources
in a given area and lower costs per chip. Additionally, FPGAs are equipped
with advanced dedicated functional elements, e.g., digital signal processors
(DSPs) or block memory (BRAM) functional units. Later, FPGAs are combined
with (multi-core) processors to SoC architectures with high-performance
interfaces between the processing system and programmable logic. These
powerful architectures are opening up more and more fields of application.
However, the design methods used until then could not keep up with the
growing availability of resources.

Therefore, there was a demand for more efficient design processes to
increase efficiency during development. Eckart et al. [25] mention two ap-
proaches for more efficient development and short design iterations: First,
there is the value of high-level synthesis, which allows high-level program-
ming languages such as ANSI C/C++ to be used to develop hardware.
The introduction is comparable to the transition of high-level languages
for software development instead of assembler in the past [23]. The high-
level synthesis relies on a complex toolchain comprising the compilation of
the developers’ specification into a formal model followed by the allocation
of hardware resources of the FPGA, operations scheduling, the binding of

7

8 background and related work

operations, variables and bus transfers and the generation of the register-
transfer-logic [23].

As the second approach, several works in literature deal with the stan-
dardization of communication and synchronization between subcomponents.
In order to communicate and synchronize with other system components,
hardware blocks often use application-specific implementations, resulting in
increased development expense and lower interoperability.

Traditionally, regular operating systems already provide well-established
mechanisms for execution abstraction, communication, and synchronization.
For the abstraction of the execution, modern operating systems concepts
distinguish between processes and threads in that processes run on their
own virtual hardware provided by the operating system [25]. The thread
is a lightweight version of the process, allowing the exploit of thread-level
parallelism by running multiple parallel tasks on one shared virtual hard-
ware. For the synchronization between these execution units, the operating
system provides several objects, e.g., mutexes, semaphores, conditional vari-
ables, and standardized APIs. Operating systems support objects similar to
queues for realizing communication between two or more execution units.
In order to provide standardized handling and access, many operating sys-
tems follow the POSIX standard, aiming to provide interoperability between
several operating system types. For the execution modeling, the POSIX stan-
dard specifies POSIX threads (pthreads), providing a platform-independent
interface for multi-threading.

Following these well-known standardized mechanisms, several works
have been done that integrate reconfigurable hardware into the operating
system to translate the concepts in the area of reconfigurable hardware.
Some important examples are HThreads [3], R3TOS [41], SPREAD [124], or
FUSE [39]. For a more complete overview of related approaches, the reader
might consider the survey in. [25].

HThreads [3], the hybrid thread programming model for heterogeneous
processing units, is an approach for a hardware-software co/designed oper-
ating system developed at the University of Kansas. It aims to generalize
operating systems abstractions for hardware and software and reduce over-
heads in terms of execution time and jitter by implementing operating
systems functions entirely in hardware. The interface between applications
and functions is realized through a memory-mapped interface and, therefore,
accessible for hardware and software threads.

Another approach is SPREAD [124], providing a streaming-based recon-
figurable architecture both in hardware and software. It allows for map-
ping streaming-based applications to software and reconfigurable hardware
threads. Hardware threads use a standardized hardware thread interface
(HWI) comprising an input and output port. Hardware threads can use both
ports to connect either to the main memory or to build a streaming channel
to another hardware thread. Therefore, SPREAD can chain hardware threads
leveraging these point-to-point streaming channels. The communication be-
tween software threads or mixed software and hardware threads uses queue

2.1 reconos : operating system for reconfigurable computing 9

communication based on the shared main memory. From the application’s
point of view, SPREAD uses the pthread model to abstract hardware threads.

Ismail et al. introduced FUSE [39], an approach for hardware accelera-
tor abstraction aiming to achieve transparency for the applications devel-
oper and operating systems support for integrating hardware accelerators.
Therefore, FUSE comprises reconfigurable hardware accelerators in the pro-
grammable logic, a kernel driver per accelerator instance in the Linux kernel
space, and a userspace library providing a programming interface to the
software applications. Due to its multi-layered structure, it decouples the
hardware acceleration from the software application and enables operat-
ing system support to integrate hardware accelerators. The communication
between hardware accelerators and the software application is done via
shared-memory communication without the support of virtual memory by
the hardware accelerator.

The main objective of R3TOS [41] is to provide a reliable operating system
tolerating faults in the silicon without additional design costs. For the execu-
tion of hardware tasks, R3TOS provides a 2D grid in the reconfigurable logic
for placing hardware tasks. During runtime, R3TOS schedules hardware
tasks and places them into the grid. The operating system achieves reliability
and detects faulty logic by spatial diverse execution of replicated hardware
tasks. In the case of detecting faulty logic, the operating system considers
affected areas for later scheduling and placement decisions.

ReconOS [99], another approach for an operating system for reconfig-
urable computing, was first presented in 2007 in [57]. The main idea behind
ReconOS is the usage of standard operating system-related principles for ab-
straction, communication, and synchronization for reconfigurable hardware.

For the transfer of the runtime abstraction concept into the domain of
reconfigurable hardware, the design methodology of ReconOS extends
the concept of pthreads across the hardware-software boundary and thus
enables a heterogeneous multithreaded programming model. As a result, the
ReconOS application can comprise a set of software and so-called hardware
threads, each processing on a fraction of the overall application. Similar to
multi-threading purely in software, all threads of the ReconOS application
share one common virtual address space.

Additionally, ReconOS also follows standard OS concepts for communica-
tion and synchronization. The application designer can use synchronization
primitives, e.g., mutexes and semaphores, for both hardware and software
threads using a consistent programming interface. The same holds for queue-
based communication via mailboxes.

Combined with a high-level synthesis design approach for hardware
threads, the unified usage of synchronization and communication and the
shared virtual address space allow for faster design space exploration. For
example, algorithms previously developed in a high-level programming lan-
guage in software can be migrated to a hardware thread through high-level
synthesis. Therefore, in contrast to the previously mentioned approaches,

10 background and related work

ReconOS generalizes the programming concept of pthreads to hardware
threads, including, e.g., system calls and the shared virtual address space.

2.1.1 ReconOS Architecture

An example of ReconOS system architecture with two hardware threads
and three software threads is shown in Figure 2.1. ReconOS hardware
threads are accommodated in so-called reconfigurable slots (RSs), which are
areas in the reconfigurable fabric providing access to the operating system
interface (OSIF) and a memory interface (MEMIF). In order to map hardware
threads to reconfigurable slots, ReconOS supports two options: First, the
application designer can statically assign hardware threads to reconfigurable
slots during design time. In that case, the application designer must define no
explicit areas in the reconfigurable fabric. Second, the application designer
can define areas in the reconfigurable fabric that can accommodate hardware
threads during runtime. For this option, ReconOS makes use of dynamic
partial reconfiguration.

Processing System Programmable Logic

De
le

ga
te

Th
re

ad
 1

De
le

ga
te

Th
re

ad
 0

O
SI

F

Reconfigurable Slot 1

Reconfigurable Slot 0 Memory
Subsystem

MMU

Burst
Generator

Memory
Controller

Linux

Main Memory Ethernet Further Peripherals

Arbiter

Software
ThreadSoftware

ThreadSoftware
Thread

O
SI

F

M
EM

IF
M

EM
IF

ReconOS

Hardware
Thread 1

Hardware
Thread 0

O
SF

SM
O

SF
SM

Figure 2.1: ReconOS architecture comprising two hardware threads and three soft-
ware threads.

For each hardware thread, ReconOS generates an additional software
thread, the delegate thread. The delegate thread represents the correspond-
ing hardware thread and executes operating system-related functions on
behalf of the hardware thread. Therefore, the concept of delegate threads
allows the usage of standard operating system primitives by the hardware
thread. If, for example, a hardware thread wants to use a synchronization
object (e.g., a mutex), it sends a command and an identifier of the mutex
instance to the delegate thread, which interacts with the mutex using a stan-
dardized interface. After that, the delegate thread responds to the hardware

2.1 reconos : operating system for reconfigurable computing 11

thread. From the hardware thread perspective, the communication is done
via the OSIF interface, which is controlled by the operating system finite
state machine (OSFSM) as part of the hardware thread. The ReconOS Linux
Driver handles the interface between the delegated thread and the OSIF on
the processing system side. From the application programmer’s point of
view, the delegate thread is hidden [1].

The shared virtual address space is provided by the memory subsystem
comprising an arbiter for the distribution of transfer time, the memory
management unit (MMU) for the translation of the virtual address space
to the physical, and the burst generator for more efficient interface utiliza-
tion. Based on the memory translation, hardware threads can access other
memory-mapped components and peripherals of the system.

2.1.2 ReconOS Tooflow

The ReconOS framework comes with the ReconOS development kit (RDK), a
Python-based templating system, and a preprocessing toolflow. The overall
build flow of ReconOS is sketched in Figure 2.2.

C/C++

Software Threads

System
Config

System Specification

Compile &
Link

System
Libraries

ReconOS
C/C++

Runtime Library

Application
Executable

High-Level
Synthesis

(Xilinx Vitis HLS)

Hardware
Generation

(Xilinx Vivado)

Pre-
Processing

(RDK)

Templates

ReconOS
VHDL Runtime

Library

Bitstreams

Sources Build Process Build Products

IP-
Cores

C/C++

VHDL
Verilog

Hardware Threads

C/C++

VHDL
Verilog

System Components

ReconOS
HLS

Runtime Library

Figure 2.2: ReconOS build flow. Components in blue are (partly) generated by the
preprocessing toolchain of ReconOS. Adapted from [1, 21].

A ReconOS project comprises sources for software threads written in
C/C++, sources for hardware threads written in a hardware description
language (very high speed integrated circuits hardware description lan-
guage (VHDL) or Verilog), or sources in C/C++ for high-level synthesis.
Furthermore, the application’s designer can extend the project by additional
system components in terms of IP cores for the hardware design. General

12 background and related work

information about the project is gathered in the ReconOS-specific system
configuration file.

The RDK uses the system configuration as an input file to obtain infor-
mation about the project. The file comprises information about the used
target FPGA platform, the synthesis toolchain, and several implementation-
specific elements, e.g., reconfigurable slots, hardware and software threads,
synchronization, and communication primitives. The RDK generates runtime
libraries for HLS, VHDL, and C/C++ software sources using this information.

The first step of the hardware generation process is the synthesis of high-
level hardware specifications into the register-transfer-level using Xilinx Vitis
HLS. This step is repeated for each hardware thread designed in C/C++. Af-
ter that, the high-level synthesis results are used together with the remaining
hardware threads written in VHDL extended by the VHDL runtime libraries
and eventually further IP-cores to generate the final bitstream. In the case
of using dynamic partial reconfiguration, this process generates the partial
bistreams as well.

Regarding software, the ReconOS runtime library for software and the
software sources are compiled into an application executable for the target
platform.

2.1.3 ReconOS Project

The ReconOS project was started at Paderborn University in 2006 and
has since been continuously expanded and migrated to various CPU and
operating system platforms [2].

The first 32-bit version of ReconOS using the eCos operating system [136]
and running on PowerPC CPUs was presented by Lübbers and Platzner [57]
in 2007. For the second version, FIFO interconnects between hardware
threads, and the support of Linux and its virtual address space concept
extend ReconOS. In 2013, ReconOS reached its third version. In combina-
tion with a minor update to 3.1, ReconOS supports the Xilinx Microblaze
and Xilinx Zynq CPU platform and implements a more lightweight and
modular design. In the fourth version, ReconOS supports the Xilinx Vi-
vado toolflow and more advanced clock supply functionality for individual
hardware threads. Additionally, two master projects migrated ReconOS to
freeRTOS [30] running on ARM and to Zephyr [135] running on RISC-V [95]
softcore platforms.

The most recent work extends ReconOS to support modern multi-processor
system-on-chips (MPSoCs), including 64-bit ARM architectures [21]. The main
novelties of ReconOS64 are the following:

• The bit width of both interfaces for hardware threads (OSIF and MEMIF)
is increased from 32 bits to 64 bits. This expansion leads to modifica-
tions in all involved IP blocks and library functions.

• The memory translation unit was adjusted to the address space of the
ARMv8 architecture. The modifications enable mapping the lower 39

2.2 the robot operating system 13

bits of the virtual address space to a 48-bit physical address space and
a page size of 4 KB.

• So-called reconfigurable slot groups extend the dynamic hardware
thread management, which are sets of slots of the same size. Hardware
threads can be assigned to one or more of these groups. The tool flow
of ReconOS will then automatically generate a partial bitstream for
each reconfigurable slot.

• ReconOS64 supports a finely adjustable clock supply for hardware
threads. The clock supply IP-core leverages a mixed-mode clock man-
ager (MMCM) tile with a static multiplier and a variable divider and
can supply each reconfigurable slot group with a separate clock signal.

The evaluation of ReconOS64 implementation compared to the stan-
dard ReconOS implementation for 32-bit systems shows performance im-
provements for operating system calls and memory accesses for hardware
threads [21].

2.2 the robot operating system

The Robot Operating System (ROS) [98] is an open-source framework for
robotics applications on top of an operating system that was initially devel-
oped by Willow Garage and is now coordinated by the open source robotic
foundation (OSRF). ROS comprises a design philosophy, a middleware, several
packages including robotics-related algorithms, and development tools [61].
Due to its usage in countless open-source projects, ROS has become the
de-facto standard for developing robotics applications in the last few years.
Furthermore, ROS is also used in commercial products due to its numerous
advantages [59].

The first version of ROS (in the following ROS 1) was introduced in 2009 [94].
The development started in 2007 at Standford University and, after some
time, went over to the robotics lab Willow Garage, from where it was trans-
ferred to the OSRF in 2013. ROS 1 is still a widely-used software, although it
has several weaknesses and limitations [61]. Examples of these weaknesses
are limitations in security and reliability, especially in lossy network envi-
ronments, a single point of failure due to a central name server (roscore),
and limitations regarding multi-threading, which prevents an efficient distri-
bution of components to multi-core machines. These and other factors have
led companies to build workarounds that undermine the standardization
and interoperability of ROS [61]. Therefore, the OSRF (and the community)
decided to design a new version (ROS 2) of the robot operating system to
tackle the previously mentioned issues. Since this thesis is based on ROS 2,
the remainder of this section will focus on ROS 2.

Following the design philosophy of ROS, the overall robotics application
is decomposed into subcomponents, so-called nodes. The concept of nodes
enables application programmers to split their applications into functionally
independent subcomponents and promises code reusability and modularity

14 background and related work

for their robot application in general. During runtime, ROS nodes run in
their independent context and share data with other nodes using several
communication paradigms [61].

Node 1

Node 2

Node 3

Node 4

Node

A

Topic

a)

Sensor 1

Sensor 2

Actor 1

Actor 2

Physical
Device

Communication
Interface

b)

Compute
PlatformCAN Ethernet

Figure 2.3: Example ROS 2 computation graph (a) comprising two nodes publishing
to the topic A and two nodes subscribing data from the topic. The ROS

2 data layer graph (b) shows the physical structure comprising two
sensors, two actors, and a computing platform. Adapted from [64].

The resulting decomposed robotics application is represented as a so-
called computation graph. An exemplary computation graph is shown in
Figure 2.3(a). The computation graph is not formally specified, so several dif-
ferent versions exist. However, in most versions, the ROS nodes are connected
via edges, representing communication between involved nodes.

Another ROS-related abstraction is the so-called ROS data layer graph
shown in Figure 2.3(b). Mayoral-Vilches and Corradi [64] mention the ROS

data layer graph in their work, as it represents physical groupings and
connections implementation of the behavior modeled by the computation
graph. Therefore, it represents the system from the hardware point of view.
Examples of the nodes in this graph are sensors, computing platforms,
actors, and edge interfaces such as Ethernet or CAN.

2.2 the robot operating system 15

Supported operating systems for ROS 2 are Linux, MacOS, and Windows.
However, work has also been done to run ROS 2 on other operating systems,
especially to enable low-power embedded systems. An example of such
effort is microROS [9], which enables using ROS-related concepts, such as
nodes, publishers, and subscribers, onto deeply integrated systems. However,
microROS still requires a second platform running standard ROS 2, including
an agent acting as a gateway for the embedded platform to communicate
with other ROS nodes in the network. The connection between the embedded
target platform and the agent can be Ethernet, Bluetooth, or a Serial interface.
mROS [112] goes a step further and runs the complete ROS stack on the
embedded device. Hence, an embedded device running mROS can interact
with other ROS nodes in the network without the need for a dedicated agent
platform. mROS is available both for ROS 1 [112] and ROS 2 [139]. ROS-
lite [5] is a development framework for embedded multi-core architectures
targeting network-on-chip (NoC) communication between cores. ROS-lite is
based on the eMCOS real-time operating system for many-core processors.
It leverages its message infrastructure for exchanging ROS-like messages
between ROS nodes running on separate cores. RT-ROS [125] divides the
execution platform into a non-real-time Linux environment and a real-time
capable environment running Nuttx.

2.2.1 Communication Interfaces

For the communication between nodes, ROS offers different interface types.
The set of available communication interfaces comprises (i) a many-to-many
publish/subscribe model, which allows to broadcast messages to multiple
subscribers but is one-way, (ii) services that follow a client-server model
where the server provides data only if requested by the client, basically
mimicking a remote procedure call (RPC), and (iii) actions, which make use
of services but here the client can receive regular feedback about the server’s
progress. An example of three nodes leveraging all types of communication
is shown in Figure 2.4.

The most common paradigm is the publish-subscribe communication
that allows asynchronous data exchange via messages published to topics.
Using this communication type, ROS nodes can run with varying rates and
execution times independently from other nodes. In the example, node C
publishes a message to the topic that nodes A and B subscribe to.

For a synchronous communication similar to a RPC, nodes B and C perform
a ROS service communication. In this example, node C is in the role of the
service server, whereas node B makes use of the offered service as the service
client. Service-based communication is performed in two phases: first, the
client sends a request to the server, which is, eventually, after the processing
phase, responded by the server.

A unique asynchronous communication pattern is the ROS action that
is performed between node A (as action server) and node C (as action
client). This communication paradigm comprises three subelements: goal,

16 background and related work

Node A Node B

Node C

Topic

Message

Subscription Subscription

Action
Service

Goal

Feedback

Result

Action
Server

Action
Client

Service
Server

Publisher

Request

Response

Service
Client

Figure 2.4: Example ROS 2 network comprising the three communication paradigms
supported by ROS: Topic-based (green), service-based (blue), and action-
based (red). Adapted from [61]

feedback, and result, whereas goal and feedback include request-response
communication between server and client and feedback from server to client
only. The action-based interaction between two nodes starts with the goal
request from the action client. After that, the action server may accept or
refuse this request. If accepted, the server eventually starts sending feedback.
After receiving an acknowledgment that the server has accepted the goal,
the client can send a further request to the server to get the task result. This
request is then, possibly after a specific time, answered by the server with
a response. Furthermore, the client has the option of canceling the action
during processing. Due to its multi-phase structure, ROS 2 actions are well
suited for long-running tasks, e.g., navigation or manipulation tasks [61].
Technically, ROS 2 actions are implemented based on ROS 2 publish-subscribe
communication via a feedback topic and ROS 2 service communication for
goal and result.

All three ROS interfaces rely on semantically specified data formats (mes-
sages) that are either pre-defined as part of the ROS installation or custom-
designed by the applications developer. These ROS 2 data formats are multi-
layered combinations of built-in data types such as integers, floats, and
strings. For the specification of interfaces, ROS relies on an interface defini-
tion language (IDL). Based on the IDL specification, the tool flow generates
the source code required for communication and usage in the user applica-
tion. Since a fixed length for arrays of datatypes or strings is not mandatory,
or the length of a message might vary during runtime, the ROS middle-
ware (RMW) supports dynamic memory allocation for messages.

2.2 the robot operating system 17

2.2.2 Client Library Stack

One significant improvement of ROS 2 is the exchangeable communication in-
frastructure, which results in higher scalability, reliability, and durability [62]
and performance compared to ROS 1. However, in order to support different
data distribution service (DDS) implementations, the use of abstraction levels
became necessary. The resulting ROS 2 stack is shown in Figure 2.5.

User Application

rclcpp (C++ API)
+ Executor with std::thread
+ Intra-Process Comms
+ Type Adaption

rclpy (Python API)
+ Executor with Thread
+ Intra-Process Comms
+ Type Adaption

rcljava (Java API)
+ Executor with java.lang.Thread
+ Intra-Process Comms
+ Type Adaption

+ Actions
+ Parameters
+ Names

+ Time
+ Console Logging
+ Node Lifecycle

rmw (C API)

+ Pub/Sub with QoS + Services with QoS + Discovery + Graph Events

rcl (C API / optional C++ Implementation)

or or or

Cyclone DDS
Adapter

Fast DDS
Adapter

Iceorys DDS
Adapter

Cyclone DDS Fast DDS Iceoryx

Figure 2.5: ROS 2 client library stack. Adapted from [61].

Starting from the bottom of the stack, ROS 2 supports several different
DDS implementations. The DDS is an industry-standard for decentralized
communication and is available from different vendors. These implementa-
tions differ, for example, in terms of range (intra-network vs. intra-platform
communication) or real-time capability. A prominent example of an intra-
network DDS is FastDDS [137] by eprosima. Iceoryx [138] is an example of
an intra-platform DDS that uses shared memory for data exchange. Further,
there are also mixed forms that optimize communication depending on
the destination. For instance, CycloneDDS [26] combines intra-network and
intra-platform communication and employs Iceoryx internally.

The ROS middleware (RMW) includes an individual adapter for each of
these DDS implementations abstracting implementation-specific properties.
Based on that, the layer provides essential communication, including publish-
subscribe and service communication with quality-of-service parameters.
Additionally, it cares about the discovery of other nodes and can detect and
handle changes (events) in the computation graph.

18 background and related work

The ROS client library (rcl) is located on top of the RMW and builds more
advanced functionality, e.g., ROS 2 actions, the handling of parameters for
ROS nodes, or console logging.

For the design of the user application, ROS 2 offers the usage of C++,
Java, or Python. Each high-level language provides a user-level scheduler
(alias Executor), intra-process communication via shared pointers, and type
adaption, comprising extensions for easier conversation of ROS interfaces to
common data types. Intra-process communication is leveraged by the ROS 2

concept of node composition [60]. Node composition allows the gathering
of nodes manually or dynamically into a process to enable a sparing usage
of resources and zero-copy communication between nodes in the shared
process.

In recent work, Ichnowski et al. [38] accelerate ROS-based applications by
shifting compute-intensive workloads into a public cloud environment. In
their approach, FogROS 2, the authors establish a virtual private network
connection between the robot and a public cloud to enable DDS-based com-
munication between local nodes running on the robot’s compute platform
and nodes running in the public cloud. Although there are significant com-
munication overheads, the authors achieve speedups up to 45× due to cloud
offloading compared to local execution on the robot’s compute platform.

The communication of ROS nodes and different DDSs have frequently been
the subject of research. Much work deals with the analysis of the communi-
cation performance, e.g., in terms of latency [43], real-time performance [90,
91], or for different quality-of-service (QoS) parameter setups different QoS

parameters [29, 62, 115]. Other work proposes tools for the analysis of
communication in ROS 2 applications [8] or the dynamic binding of DDS

implementations [68] according to implementation-specific properties.

2.2.3 User-Level Scheduling

Generally, the applications developer has two options for implementing the
ROS 2 nodes. First, the developer can realize a particular node by implement-
ing a while(1)-loop and use, e.g., blocking or non-blocking subscription for
data receiving or publishing to send data to other nodes. In such a case, the
node must regularly poll the communication layer for available messages.
This ROS node can then execute as a Linux thread or even as a separate
Linux process, and the underlying Linux scheduler distributes the nodes to
the cores of the CPU.

However, the second and more common model under ROS 2 is the event-
driven model, where nodes register callbacks that are executed when specific
events occur. The behavior description of ROS nodes is therefore divided into
one or more callbacks. There are four categories of callbacks: Callbacks exe-
cuted by any node when a (periodic) timer event occurs, callbacks executed
by a subscriber on a received message, callbacks executed by a ROS 2 service
server on a received service request, and callbacks executed by a ROS 2 ser-
vice client on a received service response. ROS actions do not need a separate

2.2 the robot operating system 19

callback class because they are technically based on publish-subscribe and
service communication.

ROS provides a so-called executor function that interacts with the under-
lying communication layer and timer infrastructure to catch events and
execute callbacks in a run-to-completion mode utilizing one or more worker
threads. That is, callbacks are not preempted. By default, ROS 2 offers stan-
dard single-threaded and multithreaded executors for C++, Java, and Python
applications that implement the scheduling algorithm sketched in Figure 2.6.
The algorithm comprises two nested loops. In the outer loop, the executor
interacts with the underlying communication layer to collect all ready sub-
scriber, server, and client callbacks into a readySet. The readySet is a copy of
all callbacks registered at the executor that are ready to execute callbacks at
this point. In the inner loop, the executor checks for timer-triggered callbacks
and executes them if such are available. Then, subscriber, server, and client
callbacks are considered in that order, and if such a callback is ready, it is
executed and removed from the readySet. If no more callbacks are ready, the
outer loop’s next iteration is started after a configurable waiting time.

The scheduling algorithm has no explicit assignment of priorities for
callbacks. The ROS 2 executor implicitly implements priorities in the sense
that timer-triggered callbacks get high priority, and the other callbacks lower
priorities since they are first collected in the outer loop and then executed
in the inner loop in the order shown in Figure 2.6. Within one callback
category, requests are ordered by the sequence of their initial registration at
the executor.

No

Yes

Yes

No

Yes

No

Yes

Collect ready non-timer
callbacks

Ready server callbacks?

Ready timer callbacks?

Ready client callbacks?

Ready subscriber callbacks?

Execute callback

Wait

start

No

Figure 2.6: ROS 2 standard executor scheduling algorithm. Adapted from [17].

20 background and related work

In recent years, much research has been done in analyzing the ROS execu-
tor in terms of schedulability and real-time behavior. The real-time behavior
of the ROS 2 executor was studied in [17]. The authors analyzed the re-
sponse time of ROS 2 applications. They provided a scheduling model, a
worst-case response time analysis, and general insights into the real-time
behavior of ROS 2. Based on that work, other publications deal with more
precise response time analyses for more realistic results [12, 113] or im-
proved scheduling strategies for better real-time performance [20, 104, 111].
Additionally, there has been work done to either automatically analyze the
scheduling and latency performance in ROS 2 [7, 10, 44, 83] or automatically
reduce the latency and jitter of ROS 2 applications by using an automatic
latency manager [11].

Recently, alternative concepts to the standard ROS 2 executor were also
researched. For example, in [106], an executor for micro ROS platforms [106]
equipped with embedded microcontrollers was presented. This executor is
fully coded in C, supports domain-specific requirements, and improves the
analysis of real-time aspects. In another work [132], the microROS executor
was used to replace the standard executor of ROS 2, aiming to improve the
real-time performance of the overall application. Ghiglino and Sarabia [32]
presented an improved implementation of the ROS 2 executor based on
a lock-free ring buffer. The implementation outperforms standard ROS 2

executor implementations, especially for large callback sets.

2.3 related approaches for ros-fpga integration

Integrating reconfigurable logic into the ROS ecosystem is still an open
topic of research [123]. Several approaches have been presented in recent
years that integrate reconfigurable hardware accelerators into a ROS-based
software architecture. Similar to the survey paper in [88], this section distin-
guishes the literature into two categories: application-specific integrations
of reconfigurable hardware into ROS-based applications work and general
approaches that aim to ease the integration for any application.

2.3.1 Application-Specific Approaches

Several examples exist in the literature from the research area of application-
specific integrations. In order to use hardware acceleration for faster com-
putation, all of the presented works either use reconfigurable hardware for
image capturing and preprocessing and the generation of control signals for
a motor, or they offload compute-intensive parts of ROS nodes to hardware
leveraging a remote-procedure-call sequence. Examples are presented in [36,
67, 73, 74].

Hasegawa et al. [36] describe their autonomous driving architecture based
on ROS 1 and running on a Zynq 7020 SoC. Most components, e.g., Lane Dec-
tion, Obstacle Detection, Traffic Signal Detection, and Path Planning, run on
the progressing system, whereas image capturing, including preprocessing

2.3 related approaches for ros-fpga integration 21

and a pulse-width modulation (PWM) signal generation, is realized in the
programmable logic. A similar application architecture is described in [73],
which implements image capturing and preprocessing in hardware.

The ZytleBot [67, 74] implementation goes a step further and does not
only implement preprocessing and actor control signals in hardware but also
compute intensive parts of ROS nodes. In order to achieve faster execution
and better real-time performance of the overall application, the traffic signal
detection based on a support-vector machine was implemented in hardware.
The authors report a speedup of over 270× for the hardware implementation
compared to the software.

The usage of reconfigurable hardware in the context of drones is pre-
sented in [76]. Their proposed framework, MPSoC4Drones, helps applica-
tion developers generate Ubuntu-based operating system images supporting
memory-mapped FPGA components and the drone flight controller PX4.

2.3.2 General Approaches

Despite the previously presented application-specific acceleration of sub-
functions in ROS-based applications, several more general approaches are
reported in literature.

A general platform for experimental robots is reported in [108]. In order to
create a robotics prototyping platform, they divide the dual-core Zynq-7000

platform into three sections: first, there is the reconfigurable logic responsible
for sensor preprocessing and the generation of robot output signals. Second,
one core of the dual-core ARM processor processes control algorithms with
hard real-time constraints on bare metal. Third, the other core processes
Linux and ROS and therefore provides an interface for other ROS nodes. A
distributed network of FPGAs can extend the signal conditioning part using
TosNet, which provides memory access across multiple nodes by memory
mirroring.

Yamashina et al. [131] proposed so-called ROS-compliant FPGA compo-
nents to meet three requirements. First, ROS-compliant FPGA components
must be able to communicate with any other ROS node in the network via
publish-subscribe communication. Second, the functionality implemented
in hardware must be equivalent to the software implementation, and third,
the message and interface type of the component must be equivalent to the
software implementation. The proposed architecture to meet these require-
ments comprises a ROS node that is implemented in software and accesses
the hardware component, i.e., the accelerator, via a software wrapper. Com-
munication within the ROS network is wholly handled in software, and
whenever acceleration is needed, only the payload of the ROS message is
transmitted to the hardware component. Semantically, the communication
between the ROS software wrapper and the hardware accelerator is a RPC,
realized in Xillinux [129]. In a case study, the authors apply their concept
of an image labeling problem and achieve a speedup of 1.7× compared to
pure software implementation running on the CPU.

22 background and related work

Based on works about ROS-compliant FPGA components, the authors out-
line high development costs due to the custom interfacing of hardware
acceleration kernels for each individual application. Therefore, in [80, 130],
the automated design tool cReComp (creator for the reconfigurable compo-
nent) is presented to help generate ROS-compliant FPGA components and
thus reduce development costs. For the implementation of a ROS-compliant
FPGA component with cReComp, the developer has to modify a configura-
tion file and create user logic for the hardware accelerator. The configuration
file contains information about the interface between the processing sys-
tem and the programmable logic. cReComp generates the software and
hardware parts for this interface. An evaluation by a group of test develop-
ers confirmed higher design productivity compared to manually designed
interfaces.

ROS-compliant FPGA components and cReComp were taken up in another
work [79] for an architecture exploration of ROS networks. For the architec-
ture exploration, the authors propose hardware/software partitioning on
the ROS node level, which is convenient due to the loose connection of ROS

nodes via topics. In order to partition ROS nodes, a single ROS node can
be replaced by a ROS subnetwork, proving equivalent functionality. In the
next step, ROS-compliant FPGA nodes and cReComp support the application
developer to implement compute-intensive ROS nodes in hardware. Finally,
the authors propose collecting reusable components into a library to improve
design efficiency for future projects.

ROS-compliant FPGA components potentially suffer from high communi-
cation latencies between ROS nodes, especially implementations with lower
computation times [78]. Therefore, in follow-up work, Sugata et al. [109]
aims to reduce these times by implementing the ROS publish/subscribe
messaging in hardware. The authors motivate their work by demonstrating
the communication overheads of a hardware-accelerated image processing
example, in that the communication occupies 85 percent of the total applica-
tion latency comprising message receiving, processing, and sending. In ROS

1, the communication is divided into two phases: the connection establish
phase based on the XMLRPC-protocol, which involves the ROS master as
well as the publisher and subscriber nodes, and the data transmission phase
based on the TCPROS protocol, in that data is directly send from the publish-
ing node to the subscribing nodes. In the presented approach, the authors
aim to accelerate only the data transmission phase since it copes with more
significant amounts of data and is repeated for each data transmission, in
contrast to the connection-established phase. In order to process the data
transmission phase in hardware, the implementation relies on a hardware
TCP/IP stack (SiTCP [118]). The evaluation on an example application shows
reduced communication time between nodes by 50 percent.

Ohkawa et al. [77] extend this work by using HLS for accelerator imple-
mentation and ROS protocol interpretation to increase productivity. Their
approach takes the ROS message definition, the ROS node configuration, and
behavioral code written in C/C++ for the accelerator and generates the FPGA

2.3 related approaches for ros-fpga integration 23

design. The infrastructure of the generated design includes several compo-
nents: the hardwired TCP/IP stacks for the data communication phase, a
data conversion between ROS messages and the application, an interface
between the data conversion and the application, and, finally, the application
itself. In order to evaluate the improvements in design efficiency, the authors
compare the lines of code for their HLS-based approach (127 lines) and an
implementation in a hardware-description language (860 lines) and observe
a reduction of 85 percent.

Eisoldt et al. [27, 28] presented ReconfROS, an integration approach follow-
ing a remote-procedure-call pattern via shared memory. ReconfROS targets
system-on-chip architectures, providing a processing system executing ROS

and its nodes and a programmable logic accommodating hardware accelera-
tion kernels. The communication between the ROS nodes in the processing
system and the hardware acceleration kernels is done via shared-memory
regions. For larger amounts of data, ReconfROS equips acceleration kernels
with dedicated memory interfaces for data access without CPU utilization.
In order to execute a particular algorithm in hardware, the corresponding
ROS node has to provide data in a shared-memory region, start the kernel
via memory-mapped registers, and then wait for its execution. The authors
evaluate their approach for a path detection algorithm and achieve lower
runtimes and higher energy efficiency due to hardware acceleration.

Forest, a framework for generating hardware accelerated ROS 2 nodes from
high-level synthesis designs, was presented in [45]. The architecture of a
ROS 2 node accelerated by Forest is similar to the ROS-compliant FPGA nodes
introduced in [131] except for the usage of software drivers and hardware
infrastructure from the Xilinx PYNQ open-source project [82]. The toolflow
of Forest is based on a configuration file that includes information about
the input and output variables of the accelerator and its locations. This
information, in combination with the sources of the acceleration kernels, is
used to generate a ROS 2 interface package and a ROS 2 package, including
the accelerated ROS 2 node. The tool flow can also generate corresponding
listener and talker ROS 2 nodes for communication and processing testing.

While [77, 109] migrate almost a complete ROS node to hardware, Pod-
lubne and Göhringer [87] go one step further and propose a methodology
for full-hardware implementation of several ROS nodes. The architecture
template for the proposed methodology is presented in Figure 2.7 and
comprises four parts: ROS application nodes that use publish/subscribe
communication, one converter block per node, the communication interface
comprising arbitration, ROS protocol generation and TCP/IP interface, and a
high-level management unit (so-called Manager). Each node is companioned
by a node-specific converter core, which provides a standardized interface
to the communication components of the architecture as an AXI interface.
The interface between node and converter is a one-to-one equivalence of
the corresponding ROS message in a parallized form, which means one
signal per ROS message item. For communication with other ROS nodes
outside of the FPGA, the protocol generator forms ROS compatible messages

24 background and related work

Node

Node
Standard IP

to
AXIS Frame

Standard IP
to

AXIS Frame

 AXIS
 MUX

Protocol
Generator

TCP/IP
Interface

ROS
Master

Other
ROS

nodes

Manager

S0_AXIS

M0_AXIS

S0_AXIS

M0_AXIS
S0_AXIS
M0_AXIS
SN_AXIS
MN_AXIS

ROS-FPGA Publisher/Subscriber
Application to ROS Converter: Fixed in PL

Communication Interface: PS or PL
Manager: PL, Microblaze, RISC-V, ARM

Control
Data

Figure 2.7: The ROS-FPGA architecture enables the implementation of ROS nodes
without a processing system. Adapted from [87].

from the AXIS data. It sends it through the TCP/IP interface. However,
communication is also possible in the other direction. In this case, data
from other ROS nodes arrive at the TCP/IP interface block, which is then
forwarded to the corresponding subscriber nodes via the protocol generator.
Conceptually, the application-to-ROS converter must reside in hardware,
but the communication interface and the manager could also be mapped to
the processing system of the FPGA platform. However, the main feature of
this methodology is the option to fully implement one or more ROS nodes in
hardware and map them to reconfigurable logic without needing a processor.
Following this methodology, any application implemented in reconfigurable
hardware can be made ROS-compatible.

In a follow-up work [89], the authors examine in particular the automated
generation of interfaces between ROS node and converter based on ROS

messages. In particular, this work aims to automatically generate the infras-
tructure around the actual ROS nodes. The authors follow a model-based
approach, where the message definition is first converted into an intermedi-
ate model, which is later transformed into a hardware description language
using a template system. Thus, the approach supports not only ROS 1, but
also ROS 2 and other middlewares.

The industry has also included the integration of reconfigurable hard-
ware in ROS-based robotics architectures in its product portfolio. Mayoral-
Vilches [64] points out costs due to the general-purpose nature of common
compute platforms such as CPUs and GPUs. Examples are the need for addi-
tional hardware due to fixed architectures, time inefficiencies that make it
hard to meet real-time deadlines, and higher power consumption. Therefore,
Xilinx introduced the KRIA robotics stack (KRS) [63, 64], a set of libraries
and utilities for FPGA-based hardware acceleration. In order to follow a
roboticist-centric approach for hardware acceleration, the KRIA toolflow
builds on modified standard ROS 2 build tools. Therefore, Xilinx Vitis, respon-
sible for the build of acceleration kernels, and XRT [128] (Xilinx Runtime
library), responsible for the runtime communication between ROS 2 node

2.3 related approaches for ros-fpga integration 25

and acceleration kernel, are hidden from the application developer. From the
architecture point of view, KRIA follows the concept of acceleration kernels
invoked from standard ROS 2 software nodes.

Such as Kria, RobotCore [65] aims to use standard ROS 2 tools for building
hardware-accelerated applications. Therefore, they propose a technology-
agnostic approach, which abstracts the ROS build system from vendor-
specific tools. These extensions are contributed to ROS 2 ecosystem and
maintained by the ROS 2 Hardware Acceleration Working Group [97]. Ad-
ditionally, the authors propose a benchmarking infrastructure based on
the Linux Tracing Toolkit next generation (LTTng) aiming to provide a
lean standardized approach for ROS 2 applications. The authors target the
communication overhead between hardware accelerated ROS nodes as a
third contribution. Therefore, they implemented two approaches: (i) a kernel
fusion approach that merges two subsequent acceleration kernels and (ii)
direct communication via intra-FPGA streaming between two subsequent
nodes. The evaluation shows a speedup of (i) 27 percent or (ii) 24 percent, re-
spectively. However, due to the resulting transformations on the applications
computation graph, the methodology breaks with the design philosophy of
ROS.

3
D E S I G N A N D I M P L E M E N TAT I O N O F R E C O N R O S

This chapter presents the design and implementation of ReconROS, an
open-source framework for standardized robotic computing on FPGAs. Re-
conROS combines ROS 2 and ReconOS (in 32-bit and 64-bit) and is available
for SoC architectures from Xilinx with both 32-bit and 64-bit architectures.
ReconROS allows robotics developers to utilize hardware acceleration for
ROS applications either as hardware-accelerated ROS nodes or as ROS nodes
mapped completely to hardware. The latter option provides a consistent
programming model for ROS applications, independently of the mapping
of ROS nodes to software or hardware. In order to enable resource time-
sharing during runtime, the ReconROS executor leverages dynamic partial
reconfiguration with a reconfigurable slot model following standard ROS 2

programming paradigms. As a result, (i) robotics application developers can
exploit exchangeable hardware acceleration from their known programming
environment and event-driven programming model, and (ii) the limited
hardware resources are operated efficiently.

The chapter starts with design considerations in Section 3.1. This chap-
ter depicts different approaches for integrating reconfigurable hardware
into ROS-based applications and compares the ReconROS framework with
approaches from related work. The architecture of ReconROS, including
extensions for the ReconROS executor, is the subject of Section 3.2 fol-
lowed by explanations about the proposed design tool flow in Section 3.3.
The programming model of ReconROS and example applications realized
with ReconROS for a more extensive demonstration are the contents of
Section 3.4. Lastly, Section 3.5 reports about results to quantify overheads
of hardware threads in general and the dynamic reconfiguration process
during runtime.

The architecture of ReconROS was previously presented at the Interna-
tional Conference on Field Programmable Technology (FPT) [53] and in a
journal publication in the ACM Transactions of Reconfigurable Technology
and Systems (TRETS) [50]. Architecture extensions for leveraging dynamic
partial reconfiguration were presented in a separate conference paper on
the Euromicro Conference Series on Digital System Design (DSD) [51]. This
chapter mainly follows the descriptions from the TRETS journal [50] and
DSD conference [51] publication. The automatic generation of C macros
for ROS message transfer between hardware and software was built on the
master’s project of Sorel Horst Middeke [66].

27

28 design and implementation of reconros

3.1 design considerations

The goal of the ReconROS framework is to provide developers of ROS 2-
based robotics applications with a flexible means to utilize programmable
logic for hardware acceleration. On the level of ROS 2 applications, several
schemes for such integration are sketched in Figure 3.1. Figure 3.1(a) shows
a scheme where some parts of a ROS 2 node, typically runtime-consuming
functions, are mapped to one or several accelerators in programmable
logic. The semantics of the communication between the ROS 2 node and the
accelerators is that of a RPC. The node communication still relies on standard
ROS 2 communication paradigms. In Figure 3.1(b), a hardware accelerator is
shared between several ROS 2 nodes. Communication semantics is still RPC,
but the implementation is more involved since proper arbitration between
the accesses of the ROS 2 nodes is required. The third scheme shown in
Figure 3.1(c) is the most advanced and allows the mapping of complete ROS

2 nodes to hardware. Essentially, the hardware accelerator is turned into a
ROS 2 node. In this scheme, all ROS 2 nodes can communicate via the ROS 2

communication mechanisms, independently of their mapping to software or
hardware. Semantically, this is the most intriguing scheme since it provides
a consistent programming model across hardware and software where all
ROS 2 nodes use exactly the same ROS 2 functions.

ROS 2
Node

Hardware
Accelerator

Hardware
accelerator

ROS 2
Node

Hardware
Accelerator

ROS 2
Node

ROS 2
Node

ROS 2
Node

ROS 2
Node

ROS 2
Node

Hardware
Accelerator

ROS 2
Node

ROS 2
Node

ROS 2
Node

ROS 2
Node

Peripheral
Core

ROS 2
Node

Peripheral
Core

ROS 2
Node

a) b) c)

d) e) f)

Software Hardware Software Hardware Software Hardware

Software Hardware Software Hardware Software Hardware

ROS 2
Node

Pub/
Sub

Pub/
Sub

Pub/
Sub

Pub/
Sub

Pub/
Sub

Pub/
Sub

Intra-
FPGA

RPC

RPC

RPC

RPC

RPC

ROS 2
Node

Pub/
Sub

Hardware
Accelerator

Figure 3.1: Different schemes for integrating ROS 2 node with hardware accelerators.
Adapted from [50].

Often, developers decide to attach interfaces to sensors and actuators
directly to the reconfigurable hardware and provide peripheral cores in
hardware to access them rather than putting them under operating sys-
tem control on the host CPU. Figure 3.1(d) and Figure 3.1(e) sketch such
schemes with dashed lines. While these schemes are popular for maximizing

3.1 design considerations 29

performance in concrete robotics applications, there are also two possible
pitfalls:

First, flexibility is reduced since other ROS 2 nodes cannot access directly
connected peripherals, and much less so when the ROS 2 nodes are mapped
to different compute nodes in a distributed system. Second, many sensors
and actuators come with standardized interfaces and corresponding drivers,
e.g., USB, for which the use of an existing, software-accessible peripheral
of the computing platform is much more productive than implementing
suitable interfaces and protocol stacks in hardware.

Along the same line, the scheme shown in Figure 3.1(f) directly connects
several ROS 2 nodes mapped to hardware via intra-FPGA communication
without relying on ROS 2 communication mechanisms. This increases perfor-
mance, especially for large amounts of data, but again lacks flexibility since
the mapping of the ROS 2 nodes is severely constrained.

ReconROS integrates the ROS 2 middleware with the ReconOS/Linux ar-
chitecture and programming model for hardware/software multithreading
on platform FPGAs and can realize all schemes shown in Figure 3.1(a)-(f)
and their combinations. On the one hand, ReconOS enables us to develop
applications as a set of software and hardware threads under the shared
memory model. On the other hand, ROS 2 allows for declaring several ROS

2 nodes within one Linux process. Therefore, in the schemes shown in
Figure 3.1(a)(b)(d), each hardware accelerator is encapsulated by a ReconOS
hardware thread. In contrast to most of the related work, ReconROS hard-
ware accelerators can communicate with the ROS 2 software nodes not only
by passing data in an RPC manner but it can also use shared memory
communication in the Linux virtual address space, which is more efficient
when larger data structures have to be passed and more intuitive from the
applications designers point of view. In such a case, pointers to arbitrarily
large ROS 2 messages are passed, and the accelerators themselves retrieve the
relevant message payload from shared memory. Furthermore, since ReconOS
hardware threads can execute standard operating system synchronization
primitives, the required arbitration for the scheme in Figure 3.1(b) is straight-
forward to realize. In the more advanced schemes shown in Figure 3.1(c)(e),
ReconOS hardware threads implement complete ROS 2 nodes and allow
them to access operating system functions and also ROS 2 communication
primitives, using the whole set of standard and even custom-defined ROS

messages. Due to the usage of fpgaDDS, an extension of ReconROS for
intra-FPGA communication aiming to preserve the programming model of
ROS, ReconROS enables direct communication between hardware-mapped
ROS 2 nodes following the scheme of Figure 3.1(f). fpgaDDS is subject in
Chapter 5.

Table 3.1 compares ReconROS with related approaches. In contrast to
all other approaches except for Forest [45] and KRIA [63–65], ReconROS
leverages the more future-oriented ROS 2 version which promises improved
scalability and real-time properties. Hardware acceleration of a ROS node
primarily implies partitioning the node and implementing it as hardware/-

30 design and implementation of reconros

software co-design. This is followed by all approaches except FPGA-ROS [87],
which maps nodes exclusively to hardware. Mapping several ROS nodes to
hardware is possible in ReconfROS [27], KRIA [63–65], and ReconROS. Full
memory access for hardware accelerators and arbitrarily long ROS messages
are featured by ReconfROS [27] and ReconROS. A consistent hardware/-
software programming model and the native support of dynamic partial
reconfiguration are unique features of ReconROS. However, although dy-
namic partial reconfiguration could generally be used to exchange hardware
accelerators in the various approaches, the approaches lack infrastructure
for dynamic reconfiguration with less CPU utilization and (software) imple-
mentations for scheduling and placement of the accelerators that hide the
complexity from the user.

Regarding the support of all available ROS 2 communication paradigms,
all approaches relying on an RPC paradigm could easily support ROS ser-
vices and actions besides publish-subscribe communication, as they have
to change the software ROS node only. However, since all other approaches
do not explicitly mention the support of other communication paradigms
except for publish-subscribe communication, they are listed in brackets.
Intra-FPGA communication between multiple nodes mapping ROS 2 top-
ics with multiple-publisher-subscriber to hardware is a unique feature of
ReconROS. However, Robotcore [65] supports intra-FPGA communication
between hardware acceleration kernels, whereby the approach of ReconROS
is more comprehensive due to its ability to connect more than two nodes,
providing a consistent programming model for this communication type
compared to standard ROS communication and automatic infrastructure
generation.

3.2 reconros architecture

ReconROS inherits most of its hardware architecture from the underly-
ing ReconOS [1, 58]. Figure 3.2 shows an example architecture with two
hardware threads implementing ROS 2 hardware-mapped nodes (HMNs)
and several software threads implementing ROS 2 hardware-mapped nodes
(SMNs). The hardware threads are mapped to reconfigurable slots. They
are connected to the Linux operating system kernel running on the CPU

via the OSIF and to shared memory via the MEMIF. A so-called OSFSM is
attached to each hardware thread to serialize the thread’s operating system
interactions. On the CPU, the communication with the OSIF is handled by a
ReconROS driver and by lightweight delegate threads that serve the operat-
ing system calls for the hardware threads. The memory subsystem enables
the hardware threads to access the whole address space of the ReconROS
application, including shared memory and memory-mapped peripherals.
ReconOS supports virtual memory and therefore includes a MMU in its
memory subsystem.

To realize ReconROS, we needed to develop two components, the Re-
conROS stack and the ReconROS API for software and hardware threads.

3.2 reconros architecture 31

C
ha

ra
ct

er
is

ti
c

R
O

S-
co

m
pl

ia
nt

FP
G

A
co

m
po

ne
nt

s
[7

7
,1

0
9
,1

3
0
,1

3
1
]

FP
G

A
-R

O
S

[8
7
]

R
O

S-
En

ab
le

d
H

W
Fr

am
ew

or
k

fo
r

R
ob

ot
ic

s
[1

0
8
]

R
ec

on
fR

O
S

[2
7
]

Fo
re

st
[4

5
]

K
ri

a/
R

ob
ot

C
or

e
[6

3
–6

5
]

R
e
c

o
n

R
O

S
(t

hi
s

th
es

is
)

R
O

S
ve

rs
io

n
1

1
1

1
2

2
2

Su
pp

or
t

of
ha

rd
w

ar
e/

so
ft

w
ar

e
co

-d
es

ig
ne

d
R

O
S

no
de

s
✓

✗
✓

✓
✓

✓
✓

M
ul

ti
pl

e
R

O
S

no
de

s
pe

r
FP

G
A

✗
✓

✗
✗

✗
✓

✓

C
on

si
st

en
t

ha
rd

w
ar

e/
so

ft
w

ar
e

pr
og

ra
m

m
in

g
m

od
el

✗
✗

✗
✗

✗
✗

✓

M
em

or
y

ac
ce

ss
fo

r
ha

rd
w

ar
e

ac
ce

le
ra

to
rs

✗
✗

✗
✓

✗
✗

✓

Su
pp

or
t

of
ar

bi
tr

ar
ily

lo
ng

R
O

S
m

es
sa

ge
s

✗
✗

✗
✓

✗
✓

✓

Su
pp

or
t

of
R

O
S

se
rv

ic
es

an
d

ac
ti

on
s

(✓
)

✗
(✓

)
(✓

)
(✓

)
(✓

)
✓

D
yn

am
ic

pa
rt

ia
l

re
co

nfi
gu

ra
ti

on
✗

✗
✗

✗
✗

✗
✓

In
tr

a-
FP

G
A

co
m

m
un

ic
at

io
n

✗
✗

✗
✗

✗
(✓

)
✓

Ta
bl

e
3
.1

:C
om

pa
ri

so
n

of
ap

pr
oa

ch
es

fo
r

in
te

gr
at

in
g

ha
rd

w
ar

e
ac

ce
le

ra
to

rs
w

it
h

R
O

S.
Ex

te
nd

ed
fr

om
[5

0
].

32 design and implementation of reconros

Processing System Programmable Logic

De
le

ga
te

Th
re

ad
 1

De
le

ga
te

Th
re

ad
 0

O
SI

F

Slot 1

Slot 0 Memory
Subsystem

MMU

Burst
Generator

Hardware
Thread 1

Memory
Controller

Linux

ReconROS
Stack

Main Memory Ethernet Further Peripherals

O
SF

SM

Re
co

nR
O

S
AP

I

Hardware
Thread 0

O
SF

SM

Re
co

nR
O

S
AP

I

ROS 2 ReconOS

Arbiter

Software
Thread

ReconROS
API

Software
Thread

ReconROS
API

Software
Thread

ReconROS
API

O
SI

F

M
EM

IF
M

EM
IF

Figure 3.2: ReconROS architecture with two hardware-mapped ROS 2 nodes
(threads) and several software-mapped ROS 2 nodes (threads). Adapted
from [53].

The ReconROS stack extends the existing set of ReconOS objects, such as
semaphores or mailboxes, with new objects related to ROS, e.g., rosnode,
rossub, rospub, and rosmsg. These objects relate to ROS 2 nodes, ROS 2 pub-
lishers, ROS 2 subscribers, and ROS 2 messages, and can be created when
configuring a ROS 2 application. Additionally, the ReconROS stack was
extended by further ROS-related objects for ROS service and action-based
communication.

The ReconROS API abstracts the standard ROS 2 API and allows Re-
conOS threads to access the objects of the ReconROS stack. As Figure 3.2
indicates, the ReconROS API is available for both software and hardware
threads. For example, it includes the three functions ROS_SUBSCRIBER_TAKE

for blocked message subscribing, ROS_SUBSCRIBER_TRY_TAKE for unblocked
message subscribing, and ROS_PUBLISHER_PUBLISH for message publishing.
Other functions as part of the ReconROS API allow, e.g., the usage of ROS
2 services and actions. Software threads can access the ReconROS API and
the standard ROS 2 API to utilize a richer set of functions. For hardware
threads, the exemplary set of three functions implemented in the ReconROS
API is sufficient to implement ROS 2 HMNs that receive data, process it, and
send it back using publish-subscribe communication. However, due to the
flexibility of the underlying ReconOS system, any ROS 2 function can be
made available for hardware threads.

In contrast to related work, our ROS 2 HMNs can access shared memory,
thus implementing a more efficient ROS message handling. When hardware
threads access functions of the ReconROS API for subscribing or publishing
to topics, the OSIF and the delegate thread mechanism are used to pass
pointers between the ReconROS stack in software and the hardware threads

3.2 reconros architecture 33

to allow them to access the ROS message data structures in memory through
their MEMIFs. Compared to message communication via the OSIF, which
corresponds roughly to the mechanism used in related work, this design
decision brings about two advantages: First, the MEMIF provides higher
data rates due to the AXI high-performance interface of the processing
system. Second, the data can be transmitted without using the processing
system, which leads to more potential for parallel execution of software and
hardware threads.

Delegate
Thread

OSIF

Linux

ReconROS
Stack

ROS 2ReconOS

M
EM

IF

Hardware
Node (HMN)

OSFSM

ReconROS API

Main Memory

ROS Message
Object

1 5

2 4

6

3

Read Message
from Main Memory

Write Message
into Main Memory

Return Message
Pointer

Call ROS 2
Function rcl_take

Call ReconROS API
ROS_SUBSCRIBER_TAKE

Return Message
Pointer

Figure 3.3: Sequence of events when a ROS 2 hardware-mapped node (HMN) calls
the ROS_SUBSCRIBER_TAKE function from the ReconROS API. Adapted
from [53].

Figure 3.3 exemplifies the sequence of events when a hardware ROS 2

node initiates a ROS_SUBSCRIBER_TAKE operation from the ReconROS API
1 . The function call of the hardware thread includes the command for this

API function and a reference to the subscriber. The command is transmitted
by the OSFSM and unblocks the corresponding delegate thread on the CPU.
The delegate then executes the ROS 2 subscriber take function rcl_take on
behalf of the hardware thread 2 . When a message for the subscribed topic
becomes available, the ReconROS stack stores it in main memory 3 and
unblocked the delegate thread 4 , which in turn sends the message pointer
via the OSIF back to the hardware thread 1 . Subsequently, the hardware
thread can read the message via its MEMIF 6 . Publishing a message from a
hardware thread works analogously: First, the hardware threads store the
message in the main memory. Then, it sends a ROS_publish command and
the message pointer via the OSIF to its delegate thread, which executes the
command.

34 design and implementation of reconros

Regarding realizing ROS 2 nodes using reconfigurable hardware, we have
considered static designs only so far. As a result, ROS 2 HMNs have to
be statically placed in reconfigurable logic, where they remain until the
application terminates. From the application designer’s perspective, the
HMNs usually run in while(1)-loops that start with blocking reads for new
input data, process the data, and write the output.

In order to support a more advanced operating mode, the ReconROS
executor extends ReconROS by supporting dynamic partial reconfiguration
during runtime. Figure 3.4 highlights the resulting hardware architectural
changes.

According to the underlying ReconOS architecture, the programmable
logic part of a platform FPGA contains a set of n reconfigurable slots that can
accommodate hardware threads during runtime. The number and sizes of
these reconfigurable slots are application-specific and, therefore, configured
during the design process. Each such reconfigurable slot is connected to an
OSIF for communication with the host operating system Linux running on
the processor cores and to a MEMIF for accessing shared external memory.

Processing System Programmable Logic

O
SI

F

Reconfigurable Slot #n-1

Reconfigurable Slot 0

Hardware
Thread 0

Main Memory Ethernet Further Peripherals

Hardware
Thread n-1

O
SF

SM

Re
co

nR
O

S
AP

I

O
SF

SM

Re
co

nR
O

S
AP

I

O
SI

F

M
EM

IF
M

EM
IF

ICAP

DMA

Memory
Controller

ZyCAPProcessor

Core
#0

Core
#m-1

Global ARM
Timer

…

…

Memory
Subsystem

MMU

Burst
Generator

Arbiter

Figure 3.4: Hardware architecture for the ReconROS executor. Architectural
changes or components that are now used are marked red. Adapted
from [51] and [53].

Hardware threads are loaded into reconfigurable slots on demand dur-
ing runtime with a partial reconfiguration process utilizing the ZyCAP
implementation [121]. ZyCAP comprises an internal configuration access
port (ICAP) interface and a direct memory access (DMA) block on the hard-
ware side and a Linux kernel driver and user libraries on the software side.
Library functions are available to load reconfigurable slots by setting up
DMA transfers from external memory to the ICAP interface.

We have chosen ZyCAP over using the processor configuration access
port (PCAP) or the ICAP directly for two reasons: First, ZyCAP nominally

3.3 reconros design flow 35

features 3× higher performance for writing bitstreams, i.e., 382 MByte/s
for the ZyCAP compared to 128 MBytes/s for PCAP [121]. Second, ZyCAP
includes a DMA controller that lowers CPU load for partial reconfiguration
and, in turn, frees the CPU for executing other components of the robotics
application. In the hardware architecture, the ZyCAP block is connected to
the processing system (PS) via a high-performance port (HPx) to transfer
the bitstream and to an AXI-Lite interface for the configuration of DMA

transactions. From the existing ZyCAP project, we have simplified the
user library functions to the three primary functions ZyCAP_Init() for the
initialization, ZyCAP_Write_Bitstream() for blocking write of the bitstream
into the ICAP, and ZyCAP_DeInit() for de-initialization, and integrated them
into the ReconROS library. Additionally, we have adapted the ZyCAP Linux
kernel driver to more recent Linux kernels.

3.3 reconros design flow

The design flow for a ReconROS application adapts the original ReconOS
design flow [1] and is sketched in Figure 3.5. The flow starts with the
specification of a ReconROS project comprising a project configuration file,
the sources for software and hardware threads that represent the ROS 2

nodes, and the definition of message types used for the application.
The configuration file specifies the used ROS 2 objects with their depen-

dencies, the ReconOS architecture including, in particular, the number of
reconfigurable slots and the mapping of hardware threads to reconfigurable
slots, and the settings for the build tool flow.

The basic element of each ReconROS application is the rosnode object,
which represents a ROS 2 node in the network. A rosnode object can be ex-
tended by one or more communication objects, which can be a subscriber
(rossub) or publisher (rospub) objects for specific topics in case of publish/-
subscribe communication, service (rossrvs / rossrvc) objects for client-server
communications, and action (rosacts / rosactc) objects for ROS 2 actions.

In addition, each of these extensions, i.e., publisher, subscriber, service,
and action, requires a reference to an instance of a ROS message rosmsg of a
specific type. Declarations of rosmsg objects include the communication type,
a group, and the message type. For example, a specific message declaration
could specify ’Image’ as the message type, ’sensor_msgs’ as a group, and
publish/subscribe as the communication type.

Threads for ROS 2 software-mapped nodes (SMNs) can be developed in
C/C++, and threads for ROS 2 HMNs in C/C++ for use with high-level
synthesis or, alternatively, in VHDL or Verilog. Importantly, we provide the
same ReconROS API for software and hardware threads, which greatly
simplifies the creation of hardware-accelerated versions of software threads.

Based on the configuration file and the sources, the RDK creates the
ReconROS binaries for the specific project.

The RDK command export_msg extracts information from the message
package definition and creates a Colcon project [22], which is then compiled

36 design and implementation of reconros

ReconRO
S Project

ReconRO
S Developm

ent Kit (rdk)
ReconRO

S Binaries

Project
C

onfiguration

Softw
are

Sources

M
essage

Package
Definition

H
ardw

are
Sources

export_sw

export_m
sg

export_hw

Xilinx
Vitis HLS

Softw
are

Project

C
olcon

Project

H
ardw

are
Project

Docker w
ith Q

EM
U-based

Em
ulation

Ubuntu Root Filesystem

RO
S 2

G
CC

Additional
Dependencies

Xilinx
Vivado

ARM

Binaries

M
essage

Package

FPG
A

Bitstream
(s)

Includes

U
ses

build_sw

build_m
sg

build_hw

Figure
3.

5:R
econR

O
S

design
flow

.A
dapted

from
[
5

0].

3.4 programming model 37

to the message package by the command build_msg. Colcon is a ROS 2

build tool, and the message package comprises message-related data and
scripts that are used by the ROS 2 runtime. The RDK command export_sw

creates the software project based on the sources for software threads and
configuration data. The software project also includes the ReconOS delegate
threads, all necessary initialization functions for the ReconOS primitives,
and the ROS 2 middleware dependencies. Moreover, the software project
includes header definitions for the messages, which are part of the compiled
message package. Since we target Xilinx platform FPGAs of the Zynq-7000

and Zynq UltraScale+ series, which contain ARM Cortex cores, the RDK

command build_sw creates binaries for the ARM architecture.
Both commands, build_sw and build_msg employ an ARM docker con-

tainer (32-bit or 64-bit, depending on the target platform) emulated with
QEMU [92] to build the binaries. Compared to a standard cross-compilation
toolchain for the embedded ARM cores, our setup greatly simplifies the ROS

2 build step with all its dependencies since the package manager within
the container can be used. Finally, the RDK command export_hw creates
the hardware project based on the sources for hardware threads and con-
figuration data. The hardware project contains the complete ReconROS
architecture with its OSIFs, MEMIFs, and supporting modules. The command
calls Xilinx Vivado HLS for high-level synthesis and thus also requires the
message header definitions. The FPGA bitstream is then created by the RDK

command build_hw.

3.4 programming model

One of the main features of ReconROS is the consistent programming
model across the hardware/software boundary. Since robotics designers
are usually more experienced in software than hardware designing, the
consistent programming model has become an essential aspect of the design
of ReconROS.

The translation of the programming model in the hardware context is
mainly done by extending ReconOS by ROS-related primitives in the Recon-
ROS stack and supplying the ReconROS API for hardware and software
source code. The other key component of this concept is the usage of high-
level synthesis for hardware generation. Besides limitations such as dynamic
memory allocation or pointer conversation for complex data structures,
functional descriptions can be moved between HMNs and SMNs. However,
it is worth mentioning that this does not result in performance-optimized
designs. Hardware descriptions in high-level languages benefit from hints
provided by additional source code annotations (pragmas), indicating room
for performance optimization, e.g., by leveraging parallelism.

For the handling of messages in C/C++ code, ROS uses complex structs,
which are shipped during the ROS 2 installation process by default. The
Colcon tool flow (cf. Section 3.3) generates customized headers for custom
message definitions. In general, high-level synthesis tools can include these

38 design and implementation of reconros

message headers in the tool flow and can handle read and write operations
from and to single members of these structures. This allows for providing
the semantic structure of messages both in software and hardware sources.
However, as already indicated, the high-level synthesis tools have limitations
regarding pointer operations, whereby the ease of transferring messages
from the main memory to the FPGA and back suffers.

In order to still allow easy transfer of complete messages from the main
memory to the FPGA, ReconROS automatically generates C macros for
this purpose. To generate these macros, we extract the structure of the
messages from their origin message definition files. The resulting structure
comprises the member’s name, e.g., width for an image datatype, and its
type, e.g., int32. For a nested message with multiple levels, we substitute
non-primitives with their set of members until non-primitive datatypes no
longer occur. The resulting list is used to generate macros that read the
members of the message member by member from the main memory or
write them member-by-member into the main memory. The target message
types are synthesized from the ReconROS project configuration file.

In the static form, ReconROS-based ROS 2 nodes are started in the appli-
cations startup phase and keep active until the application terminates. Re-
garding the programming model, ROS threads ran in while(1)-loops. Within
the loop body, the thread blocks until new input data arrives, processes
the input data, and outputs the results afterward. However, this processing
schema can handle standard ROS-related tasks. This programming model
is designed to keep the corresponding thread active runtime, making it
unsuitable for event-based programming.

However, the programming model supported by the ReconROS executor
is modified compared to the static programming model for ReconROS. The
programming model for the executor generalizes the concept of callbacks for
event-driven programming and introduces hardware callbacks. Following
this concept, hardware callbacks are ReconROS threads assigned to specific
events during initialization and invoked after the event happens. The result
of the event, e.g., a received message in case of a subscription of a topic, is
then accessible directly by the callback.

Listing 3.1 outlines an example callback after the message receiving
running with the ReconROS executor. The message’s origin can be, e.g.,
a subscription or a service request. The message is already available in
the main memory when the callback is invoked. The ReconROS macro
THREAD_GETINITDATA() returns the pointer to the message. This information
can be used to process the message and eventually output results using
different communication paradigms. The last statement THREAD_EXIT() sig-
nals the executor the end of the callback and allows for other threads to be
executed.

3.4 programming model 39

Listing 3.1: Example HLS implementation of a simple hardware callback.

1 CALLBACK_ENTRY() {

// Callbacks initial data contains a pointer to the message

pMsg = THREAD_GETINITDATA();

// Compute on the received message

..

6 // Callback returns with THREAD_EXIT macro

THREAD_EXIT();

}

3.4.1 Static Execution Example

As an example, we elaborate on a ROS 2 application comprising four nodes,
which is shown in Figure 3.6. Node 1 captures images from a camera and
publishes them to the topic /image_raw. Node 2, the digital image processing
node (DIP), subscribes to this topic, offloads the image processing to Node
3, the Sobel filter node (Sobel), and publishes the filtered images to the
topic /image_filtered. Node 4 reads and displays the filtered images. The data
exchange between the Sobel and DIP nodes is done with a ROS 2 service
called sobel_service. The ReconROS application comprises Nodes 2 and 3,
where both are to be mapped to reconfigurable hardware and run on either
a single or two FPGA platforms. Nodes 1 and 4 are assumed to exist or
are being compiled with appropriate ROS 2 design flows to other target
architectures, e.g., desktop PCs.

Node 1:
Camera

Node 4:
Viewer

Node 2:
DIP

Node 2:
Sobel

request

response

Srv: /sobel_service

/image_raw

/image_filtered

ReconROS application

Figure 3.6: Example ROS 2 application including two ReconROS hardware nodes.
Adapted from [50].

40 design and implementation of reconros

Listing 3.2: Configuration file (ROS 2-related part) for the ReconROS application
shown in Figure 3.6. Taken from [50].

[ResourceGroup(at)ResourceGroupSobel]

2 node_3 = rosnode, "Sobel"
filter_service_msg = rossrvmsg, application_msgs, srv, SobelSrv

filter_server = rossrvs, node_3, filter_service_msg, " sobelservice ",
10000

[ResourceGroup(at)ResourceGroupDIP]

7 node_2 = rosnode, "DIP"
filter_service_msg = rossrvmsg, application_msgs, srv, SobelSrv

filter_client = rossrvc, node_2, filter_service_msg, " sobelservice ",
10000

image_msg = rosmsg, sensor_msgs, msg, Image

sub = rossub, node_2, image_msg, "/image_raw", 10000

12 pub = rospub, node_2, image_msg, "/image_filtered"

Listing 3.5 shows the ROS 2-related part of the configuration file for the
Nodes 2 and 3. The information for the ROS 2 nodes is organized into so-
called resource groups. Lines 1–4 specify node 3, beginning with defining a
rosnode object named "Sobel" in line 2. In line 3, a message object of type
ROS 2 service message is defined with further references to a ROS 2 message
package and the communication as well as service types. Line 4 declares a
ROS 2 server object for a ROS 2 service, connects it to the ROS 2 node node_3
and the message object filter_service_msg, assigns the name "sobelservice"
to it, and sets the polling time for checking for new service requests to
10000 µs.

Lines 6–12 specify node 2, including the rosnode object named "DIP",
the same message object as used by node 2, and a client object for a ROS 2

service. Additionally, node 2 is extended with the message object image_msg
of a ROS 2 built-in message type and corresponding subscriber and publisher
objects for the topics /image_raw and /image_filtered.

Listing 3.3 presents C/C++ code for the HLS-implementation of the "Sobel"
ROS 2 node. Using the ReconROS API, the processing loop starts in line 3

with a blocking read for a new service request. When a request becomes
available, the function ROS_SERVICESERVER_TAKE returns a pointer to the
service request data structure. With the help of the OFFSETOF macro, line
4 determines another pointer to the address of the request’s payload. The
macro MEM_READ is employed first to read the address of the image in line
7 and then to read the image into a ram structure within the FPGA in
line 8. After a Sobel filter function is executed on the image in line 10,
the result is written back to the main memory via the MEM_WRITE macro.
Finally, the node sends the filtered data back to the node requesting the filter
service (ROS_SERVICESERVER_SEND_RESPONSE). This code example shows the
steps required to create a ReconROS application and focuses on simplicity
rather than optimized performance. For example, overlapping processing

3.4 programming model 41

with memory transfers using a line buffer approach would be a natural
optimization.

Listing 3.3: C/C++ code (partial) for the HLS implementation of the "Sobel" ROS 2

node. Taken from [50].

1 while(1) {

// Wait for service request and get pointer to payload

3 pMsg = ROS_SERVICESERVER_TAKE(resourcedip_srv,

resourcedip_filter_srv_req);

pMsg += OFFSETOF(application_msgs__srv__SobelSrv_Request, img.data.

data);

// Get a pointer to the image in main memory and copy it to FPGA-

internal memory

MEM_READ(pMsg, pPayloadService, sizeof(int));

8 MEM_READ(pPayloadService[0], ram, IMAGE_SIZE * 4);

//Apply the filter to the image

SobelFilter(ram);

13 // Write filtered image back to main memory and send service

response

MEM_WRITE(ram, pPayloadService[0], IMAGE_SIZE * 4);

ROS_SERVICESERVER_SEND_RESPONSE(resourcedip_srv,

resourcedip_filter_srv_res);

}

Listing 3.4 displays a similar procedure for the "DIP" node, which is
expanded with three communication objects, a subscriber object for the topic
/image_raw, a client object for the service/sobel_service, and a publisher object
for the topic /image_filtered.

42 design and implementation of reconros

Listing 3.4: C/C++ code (partial) for the HLS implementation of the "DIP" ROS 2

node. Taken from [50].

while(1) {

// Wait for the published image and get the pointer to the payload

via OFFSETOF

pMsg = ROS_SUBSCRIBER_TAKE(resourcesobel_subdata,

resourcesobel_image_msg);

4 pMsg += OFFSETOF(sensor_msgs__msg__Image, data.data);

// Get a pointer to the image in main memory and copy it to FPGA-

internal memory

MEM_READ(pMsg, pPayloadPubSub, sizeof(int));

MEM_READ(pPayloadPubSub[0], ram, IMAGE_SIZE * 4);

9

// Request filter service, pServiceRequest is set up during

initialization

MEM_WRITE(ram, pServiceRequest[0], IMAGE_SIZE * 4);

ROS_SERVICECLIENT_SEND_REQUEST(resourcesobel_srv,

resourcesobel_filter_srv_req);

14 // Wait for service response and get the pointer to the payload

pMsg = ROS_SERVICECLIENT_TAKE(resourcesobel_srv,

resourcesobel_filter_srv_res);

pMsg += OFFSETOF(application_msgs__srv__SobelSrv_Response, img.data.

data);

// Get a pointer to the payload and copy it to FPGA-internal memory

19 MEM_READ(pMsg, pPayloadService, sizeof(int));

MEM_READ(pPayloadService[0], ram, IMAGE_SIZE * 4);

// Write filtered image back to memory and publish it

MEM_WRITE(ram, pPayloadPubSub[0], IMAGE_SIZE * 4);

24 ROS_PUBLISHER_PUBLISH(resourcesobel_pubdata, resourcesobel_image_msg

);

}

3.4.2 Dynamic Execution Example

Figure 3.7 outlines an example of a computation graph using publish-
subscribe communication. The architecture is inspired by the auto race
challenge for the Turtlebot 3 robot [116], in which a robot has to deal
with different challenges along a predefined racetrack. The proposed ROS

architecture can follow a street line, park the robot on a marked parking
lot, or navigate the robot in a (illuminated) tunnel. The ROS node /camera
captures images from the robot camera and publishes them to the topic
/image. The ROS 2 image processing package /image_proc subscribes to this
topic and publishes the rectified images to the topic /image_rectified_color.

3.4 programming model 43

The /state_ctrl node implements a robotic state machine comprising three
states for a lane following mode, a tunnel navigation mode, and a parking
mode. Depending on its actual state, the /state_ctrl node forwards the input
image data to one of the three nodes /lane_following, /tunnel_navigation,
/parking. Each node subscribes to a separate image topic and derives proper
driving commands for the /ctrl topic. After task completion, the /state_ctrl
node receives feedback data subscribing to the corresponding /*_done topic.

/camera /image_proc
/image

/image_rectified_color

/lane_following /tunnel_nav /parking

/state_ctrl

/actor

/lane_img

/tunnel_img

/lane_done

/tunnel_done

/parking_img

/parking_done

/ctrl

Figure 3.7: ROS computational graph example for demonstrating programming for
dynamic execution. Adapted from [51].

As an example application for the ReconROS executor, we elaborate on
the ROS 2 application from Figure 3.7. The ReconROS application from
this design example handles the three nodes /lane_detection, /tunnel_nav
and /inv_parking. The remaining nodes are assumed to be developed and
compiled with ROS 2 design flows and to be eventually mapped to other
computing platforms.

All three considered ROS 2 nodes comprise subscriber functionality for
getting input data. According to the event-based programming approach,
callbacks are invoked after the arrival of messages. In this example, the three
callbacks are implemented in hardware and designed for execution in a
reconfigurable slot. In case the reconfigurable fabric can not accommodate
all three implementations simultaneously due to resource limitations, dy-
namic partial reconfiguration must be used to configure and execute some
implementations sequentially. Since all three nodes are running exclusively
until their task is completed, the overhead for the hardware reconfiguration
is paid for only once per state change in /state_ctrl. The process of recon-

44 design and implementation of reconros

figuration itself is invoked by the /state_ctrl node by publishing data to the
corresponding input topic of one of the three considered nodes.

Listing 3.5: Configuration file (Partial reconfiguration / ROS 2 related part) for the
ReconROS application shown in Figure 3.7. Taken from [51].

[HwSlot(at)ReconfSlot(0:0)]

Id = 0

Reconfigurable = true

Region0 = SLICE_X0Y150SLICE_X103Y199, DSP48_X0Y60DSP48_X7Y79,

RAMB18_X0Y60RAMB18_X5Y79, RAMB36_X0Y30RAMB36_X5Y39

5

[ResourceGroup(at)RGLaneFollowing]

node = rosnode, "/lane_following"
imag_msg = rosmsg, sensor_msgs, msg, Image

done_msg = rosmsg, std_msgs, msg, Uint8

10 ctrl_msg = rosmsg, TurtleBot, msg, Control

sub_imag = rossub, node, img_msg, "/lane_img"
pub_done = rospub, node, done_msg, "/lane_done"
pub_ctrl = rospub, node, ctrl_msg, "/ctr l "

15 [ResourceGroup(at)RGTunnelNav]

node = rosnode, "/tunnel_nav"
imag_msg = rosmsg, sensor_msgs, msg, Image

done_msg = rosmsg, std_msgs, msg, Uint8

ctrl_msg = rosmsg, TurtleBot, msg, Control

20 sub_imag = rossub, node, img_msg, "/tunnel_img"
pub_done = rospub, node, done_msg, "/tunnel_done"
pub_ctrl = rospub, node, ctrl_msg, "/ctr l "

[ResourceGroup(at)RGParking]

25 node = rosnode, "/parking"
imag_msg = rosmsg, sensor_msgs, msg, Image

done_msg = rosmsg, std_msgs, msg, Uint8

ctrl_msg = rosmsg, TurtleBot, msg, Control

sub_imag = rossub, node, img_msg, "/parking_img"
30 pub_done = rospub, node, done_msg,"/parking_done"

pub_ctrl = rospub, node, ctrl_msg, "/ctr l "

Listing 3.5 shows the ROS 2 related part of the ReconROS configuration
file for the overall ReconROS design project. The file starts with a block
for the specification of the reconfigurable slot, which will accommodate
the hardware callbacks. Lists of contiguous resources do the specification
for each type (configurable logic block (CLB), or look-up table (LUT) slices
respectively, DSP, BRAM18, BRAM36). These lists can be derived by drawing
pblocks using the FPGA design tool flow Xilinx Vivado and by reading the
resulting constraints. Templates with predefined regions are available to
help users with limited knowledge in this field. The information for the
ROS 2 nodes is organized into so-called resource groups. Lines 6–13 specify
the /lane_following node, beginning with defining a rosnode object named
"/lane_following" in line 7. In lines 8–10, the message objects used by the

3.4 programming model 45

node are defined with further references to a ROS 2 message package (e.g.,
sensor_msgs) and the communication (msg) as well as message types (e.g.,
image). Lines 11 – 13 declare primitives for the subscription of input data
from topic /lane_img and the publication of control and feedback data to
topic /lane_done and /ctrl.

Lines 15–22 specify the /tunnel_nav node and lines 24 – 31 the /parking
node, including the rosnode object, message declarations, and the attachment
of publisher and subscriber to the rosnode.

Listing 3.6: C/C++ code (partial) for the HLS implementation of the subscriber
callback for the /filter ROS 2 node. Taken from [51].

1 // Initial data contains a pointer to the message

pMsg = THREAD_GETINITDATA();

4 // Calculate the offset in the message structure via OFFSETOF

pMsg += OFFSETOF(sensor_msgs__msg__Image,

data.data);

// Get a pointer to the image in memory and

9 // copy it to FPGA-internal BRAM

MEM_READ(pMsg, pPayloadImage, sizeof(int));

MEM_READ(pPayloadImage[0], ram,

IMAGE_SIZE * 4);

14 // Process on new data

// done and ctrl are pre-allocated arrays

done[0] = lane_following(ram, ctrl);

// Write results to main memory

19 MEM_WRITE(ctrl, pCtrl, sizeof(int));

MEM_WRITE(done, pDone, sizeof(int));

// Publish results from main memory

ROS_PUBLISHER_PUBLISH(rglanefollowing_pub_ctrl,

24 rglanefollowing_ctrl_msg);

ROS_PUBLISHER_PUBLISH(rglanefollowing_pub_done,

rglanefollowing_done_msg);

29 // Callback termination

THREAD_EXIT();

In Listing 3.6, C/C++ code for the HLS implementation of the subscriber
callback of the /lane_following node is presented. The presented code is not
performance-optimized. The callback starts with accessing the initial data
of the callback, which provides a pointer to the message object in the main
memory. At this point, the message is already in the memory and ready
for access. The position of the image data is calculated using the OFFSETOF

macro in line 3. Using the resulting pointer, the first use of MEM_READ macro
reads the address of the image, and then, with the second use of the macro,

46 design and implementation of reconros

the callback reads the image into the ram memory within in FPGA. After the
execution of the lane following function on its actual input data, the callback
writes resulting control data and the feedback data to main memory via the
MEM_WRITE macro. After that, the callback publishes the filtered image
using the node-related publisher.

The other two nodes considered in this design example are implemented
equally, except for the processing function and the names of publisher and
message instances. Again, the data received from the subscriber is loaded
into the internal memory of the FPGA and processed. The results are written
back to the main memory before publishing to the output topics.

Listing 3.7 displays a similar procedure for the /parking node, which
basically relies on the same procedure as described in Listing 3.6. Similar to
the previous procedure, data is read into the FPGA, processed, and written
back. However, instead of accessing ROS message items individually, the
automatically generated message read macro MEM_READ_ROS_MESSAGE_* has
been used. This message transfer macro was generated for the image message
type from the sensor_msgs ROS 2 package (cf. Section 3.4).

Listing 3.7: C/C++ code (partial) for the HLS implementation of the subscriber
callback for the /parking ROS 2 node.

// Initial data contains a pointer to the message

pMsg = THREAD_GETINITDATA();

// Copy the complete message into BRAM

5 MEM_READ_ROS_MESSAGE_sensor_msgs_msg_Image(pMsg, ImageMsg);

// Process on new data

// done and ctrl are pre-allocated arrays

done[0] = parking(ImageMsg->data.data, ctrl);

10

// Write results to main memory

MEM_WRITE(ctrl, pCtrl, sizeof(int));

MEM_WRITE(done, pDone, sizeof(int));

15 // Publish results from main memory

ROS_PUBLISHER_PUBLISH(rgparking_pub_ctrl,

rgparking_ctrl_msg);

ROS_PUBLISHER_PUBLISH(rgparking_pub_done,

20 rgparking_done_msg);

// Callback termination

THREAD_EXIT();

The last needed user-created file for this example application is the main.c
file, in which the ReconROS executor is instantiated and configured. List-
ing 3.8 shows the needed steps. In line 2, the ReconROS executor is ini-
tialized for execution without software workers but with one hardware
worker using the ReconROS_Executor_Init function. The fourth argument

3.5 experimental evaluation 47

for calling that function is the path to the partial bitstreams in the local file
system. In lines 3–5, the hardware callbacks are registered at the executor.
The list of arguments comprises the executor instance, the ROS 2 node name,
the ResourceMask, the ReconROS primitive type, the callback-creating Re-
conROS primitive instance, and the ReconROS target message primitive.
The last line of the code spins the executor and blocks until the application
is terminated. The programming interface of the ReconROS executor is
oriented on existing solutions such as the standard ROS client library for
C++ (rclcpp) or the rcl executor.

Listing 3.8: C/C++ code (partial) main thread of the ReconROS application. Taken
from [51].

// Initialize the ReconROS executor without SW workers and one HW

worker

2 ReconROS_Executor_Init(&reconros_executor, 0, 1,

"/mnt/bitstreams/");

ReconROS_Executor_Add_HW_Callback(&reconros_executor,

"/lane_following", 1, ReconROS_SUB,

7 rglanefollowing_sub_imag, rglanefollowing_img_msg);

ReconROS_Executor_Add_HW_Callback(&reconros_executor,

"/tunnel_nav", 1, ReconROS_SUB,

rgtunnelnav_sub_imag, rgtunnelnav_img_msg);

12

ReconROS_Executor_Add_HW_Callback(&reconros_executor,

"/parking", 1, ReconROS_SUB,

rgparking_sub_imag, rgparking_img_msg);

17 // Run the executor

ReconROS_Executor_Spin(&reconros_executor);

3.5 experimental evaluation

This section first evaluates the ReconROS architecture. The chapter starts
evaluating the overhead for nodes being suspended due to the migration to
hardware and continues to analyze the achieved performance for reconfig-
uring slots during runtime.

3.5.1 Hardware-Mapped Node Overheads

To characterize runtime overheads when mapping ROS 2 nodes to hardware
instead of software and contrasting them to communication times within a
ROS 2 network, we have implemented a ping-pong ReconROS application
with two ROS 2 nodes distributed onto a desktop PC and a Mini-ITX 7Z100

board containing a Xilinx Zynq-7100 platform FPGA, connected via Gigabit
Ethernet (GbE) as shown in Figure 3.8. The platform FPGA runs Ubuntu

48 design and implementation of reconros

PC

Main Memory

Zynq

Software (PS) Hardware (PL)

Main Memory

ROS 2
Node

Software (PS)

ROS 2
Node

T: /send

T: /recv

GbE

a)

PC

Main Memory

Zynq

Software (PS) Hardware (PL)

Main Memory

ROS 2
Node

Software (PS)

ROS 2
Node

T: /send

T: /recv

GbE

b)

tpp—SW traw—SW

tpp—HW traw—HW

Figure 3.8: ReconROS ping-pong application for overhead estimation. Taken
from [53].

18.04 and ReconROS based on ROS 2 dashing. All ROS 2 nodes use the same
C/C++ source for software and hardware implementations. Software imple-
mentations have been compiled with optimizations level O3, and hardware
implementations have been created with HLS without any optimizations. All
reported runtimes are the result of averaging over 1000 executions.

The first experiment determines the basic overhead for mapping a ROS 2

node to hardware. It consists of an echo application, where the ROS 2 node
on the PC publishes messages to the topic /send and the ROS 2 node on
the Zynq subscribes to this topic, receives messages in local memory and
publishes them to the topic /recv. Table 3.2 presents the runtimes for the echo
tasks in software and hardware, tpp−echo−SW and tpp−echo−HW , measured as
tpp = tend − tstart on the PC as indicated in Figure 3.8, and the resulting
speedup Spp−echo.

The echo SMN performs no operations except calling subscribe/publish
functions. In order to implement the same behavior, the echo HMN needs
ReconOS signaling to communicate between the underlying hardware thread
and the software-bound delegate thread. Since only pointers to messages
and identifiers for the topics and the message are passed, the echo nodes
exhibit a runtime independent of the message size. As Table 3.2 shows, for
the minimal message size of 4 Byte, there is a measurable slowdown due
to the ReconOS signaling, but for larger message sizes, this overhead is

3.5 experimental evaluation 49

Message
size

tpp−echo−SW
[ms]

tpp−echo−HW
[ms]

Spp−echo

4 Byte 0.81 1.2 0.68×
8 KiB 10.65 10.48 1.02×
1 MiB 52.21 52.16 1.01×
6 MiB 363.91 363.30 1.00×
10 MiB 630.37 624.02 1.01×

Table 3.2: Runtimes and speedups for the echo ping-pong application. Taken
from [53].

completely hidden behind the communication times. It has to be noted that
mapping a ROS 2 node to hardware reduces the load on the CPU, and this can
become a source for additional speedups for the overall ROS 2 applications.
Such an effect, albeit very small, can be observed in the echo experiment,
where some speedups are slightly more significant than others.

The second experiment is a copy application that evaluates the memory
read/write performance of ROS 2 HMNs. The difference to the echo appli-
cation is that the Zynq-bound ROS 2 nodes create a copy of the message
in local memory before publishing to topic T:/recv. Table 3.3 presents the
runtimes for the raw copy tasks in software and hardware, traw−copy−SW and
traw−copy−HW , and the resulting raw speedup Sraw−copy, as well as the run-
times for the overall copy ping-pong application, tpp−copy−SW , tpp−copy−HW ,
and the resulting speedup Spp−copy for different message sizes.

Message
size

traw−copy−SW
[ms]

traw−copy−HW
[ms]

Sraw−copy

4 Byte 0.01 0.01 1.00×
8 KiB 0.03 0.13 0.23×
1 MiB 3.59 12.81 0.28×
6 MiB 18.91 76.35 0.25×
10 MiB 31.54 127.19 0.25×

Table 3.3: Runtimes for the raw copy ROS 2 nodes in software and hardware. Taken
from [53].

Since the underlying ReconOS implementation has a lower memory band-
width than Zynq’s ARM processor subsystem, we observe a slowdown for
the raw ROS 2 hardware copy node, distinct for larger message sizes and
saturates at about 0.25. Thus, copying a message of 10 MiB is about 4×
slower in hardware than in software. While improving ReconOS’ memory
subsystem would obviously improve the situation, Table 3.4 also shows that
for the overall copy ping-pong application where we have to take commu-

50 design and implementation of reconros

Message
size

tpp−copy−SW
[ms]

tpp−copy−HW
[ms]

Spp−copy

4 Byte 1.69 1.71 0.99×
8 KiB 11.39 10.78 1.06×
1 MiB 58.71 66.25 0.89×
6 MiB 381.44 438.03 0.87×
10 MiB 643.47 735.30 0.86×

Table 3.4: Runtimes for the overall copy ping-pong application and corresponding
speedups. Taken from [53].

nication into account, the slowdown is less pronounced and saturates at
around 0.86. Again, due to the effects of the underlying software stacks of
Linux, ROS 2, and ReconOS, and the possible parallel execution of hardware
and software threads, the speedups are not consistently decreasing, and for
8 KiB the speedup is even more considerable than one.

Related work [109] has also reported on measured communication times
between a ROS node on a PC and a ROS node on an ARM/Zynq connected
with Gigabit Ethernet. For one-way communication, the authors determined
approximately 60ms for a 1 MiB message and approximately 275ms for a 6

MiB message. Comparing with the corresponding data points of Table 3.2,
which are for two-way communication, we see that ReconROS achieves
higher performance, albeit on a different ROS version.

3.5.2 Reconfiguration Overheads

For quantizing the reconfiguration time, we have created a ReconROS setup
with four reconfigurable slots, RS #0, . . . , RS #3. Table 3.5 shows the number
of available resources per reconfigurable slot, the resulting bitstream size S,
and the measured reconfiguration times trc for the four reconfigurable slots.

Reconfigurable
slot

Slice
LUTs

DSPs
BRAMs

(36 / 18)
S

[Byte]
trc

[ms]

RS #0 20800 160 60 / 120 2838976 24.0

RS #1 20800 160 60 / 120 2838976 24.0

RS #2 41600 320 240 / 120 5285728 38.4

RS #3 40800 280 200 / 100 4883328 36.9

Table 3.5: Reconfiguration slots with resources (Z7100 slices LUTs, DSPs, and BRAMs),
bitstream size and reconfiguration time. Taken from [51].

Using linear regression on the measured reconfiguration times and a
reconfiguration time model that includes a constant offset part to f f set and

3.6 chapter conclusion 51

a bitstream size dependent part S/B, where B denotes the transfer band-
width, i.e., trc = S/B + to f f set, our measurements result in to f f set = 6.8ms
and B ≈ 160MByte/s. The achieved bandwidth is much lower than the
results reported in [121]. The authors of [121] apparently used a bare-metal
implementation of the ZyCAP driver without an operating system. Our
current implementation suffers from copying the bitstream between the user
and kernel space. An improved implementation of the Linux driver with
a zero-copy approach, e.g., based on get_user_pages, would increase the
performance.

The reconfiguration times reported in Table 3.5 are directly dependent
on the size of the reconfigurable slot and the corresponding bitstream size.
However, they are basically independent of the hardware callback’s func-
tionality. The reconfiguration time adds to the execution time of a hardware
callback only if the targeted reconfigurable slot is not yet configured with
the required bitstream.

The results of the measurements indicate that hardware callbacks are best
suited for longer-running periodic tasks with frequencies up to a few tens of
hertz or sporadic tasks. However, performance improvements in the Linux
driver would increase the applicability of hardware callbacks.

3.6 chapter conclusion

In this chapter, we have shown the architecture and implementation of the
ReconROS framework. The design considerations compare our approach
with related approaches from the literature and demonstrate the advantages
of ReconROS compared to other approaches. The architecture of Recon-
ROS enables the implementation of complete ROS 2 nodes in hardware.
Regarding the programming model, ReconROS supports static and dynamic
execution using event-driving programming. The consistent programming
model allows non-hardware experts to develop HMNs on the one hand and
enables easy migration of nodes from hardware to software and vice versa
on the other. Further advantages for developing HMNs result from the fea-
tures that ReconROS has inherited from ReconOS, such as virtual memory
access.

The evaluation in this chapter quantifies HMN overheads for implementing
ROS 2 nodes in hardware and overheads due to dynamic partial reconfigu-
ration. Both overhead types have to be considered during the application’s
design time. However, the next Chapter 4 shows that despite the overheads,
significant speedups can be achieved through hardware acceleration.

4
TA S K M A P P I N G A N D PA R A L L E L I S M I N R E C O N R O S

In the last chapter, we have presented the architecture, design flow, and
programming model of the ReconROS framework, including extensions for
the ReconROS executor on the hardware level.

In this chapter, we are going a step further and present approaches to
map ROS applications on the node level, either to reconfigurable hardware
or software. Node-level in this context means that the mapping of nodes is
considered individually per node and not in combination with other nodes
or the communication between nodes. The ReconROS framework supports
two different modes of task mapping: static and dynamic task mapping.

As described in the following, static task mapping excels in runtime per-
formance since it does not require any hardware reconfiguration during
runtime. Typical use cases for static mapping are thus tasks such as im-
age pre-filtering of camera data or sensor reading, tasks that receive huge
amounts of raw data and come with high demands on processing through-
put and latency since they are placed in lower levels of a robot’s processing
pipeline. These requirements may prevent utilizing dynamic partial recon-
figuration because of the reconfiguration time overheads involved. While
static mapping is natively supported by ReconROS and thus represents
the default operating mode, dynamic placement requires the addition of
the ReconROS executor, which handles scheduling and mapping during
runtime. Dynamic task mapping involves reconfiguration time overhead
but provides more flexibility in managing the reconfigurable resource, as
hardware tasks are only configured when needed.

This chapter is divided into four parts: The first, Section 4.1 describes the
static mapping of tasks using ReconROS. The second, Section 4.2 presents
the dynamic mapping of tasks during runtime and includes the scheduling
and placement strategies of the ReconROS executor. In the following, Sec-
tion 4.3 outlines the exploitation of parallelism using ReconROS. Finally,
the last Section 4.4 reports about experiments for both mapping strategies.

This chapter mainly follows the IEEE International Conference on Robotic
Computing (IRC) conference publication. Additionally, parts of the static
mapping have already been presented in the FPT conference publication [53],
and some parts of the dynamic mapping follow the DSD conference publi-
cation [51].

53

54 task mapping and parallelism in reconros

4.1 static task mapping

The primary task mapping approach is the static task mapping scheme
in ReconROS resulting in software-mapped nodes (SMNs) and hardware-
mapped nodes (HMNs). Figure 4.1 shows an overview of the mapping. Each
of the n nodes in the ROS 2 programming model is implemented by one
thread in ReconROS, either a software thread (SWT) or a hardware thread
(HWT). Since ReconROS software threads are standard POSIX threads, they
are managed by the operating system’s scheduler and assigned to one of the
processor’s c CPU cores. However, the software threads can also be pinned
to specific cores using operating system services for thread distribution.
For example, Linux provides an interface that allows setting the affinity for
threads to specific cores and running threads exclusively on selected CPU

cores.

CPU
Core
#c-1

ROS 2
Programming
Model

Runtime /
Architecture CPU

Core
#0

RS
#0

…

ReconROS
Software /
Hardware
Threading

SWT
#0

HWT
#n-2

OS Scheduler

RS
#r-1…

SWT
#1

HWT
#n-1

Node
#0

Node
#1

Node
#n-2

Node
#n-1

Figure 4.1: Static task mapping of ROS 2 nodes to CPU cores (in purple) and recon-
figurable hardware slots (in green) using ReconROS. Taken from [52].

ReconROS hardware threads are assigned to one of the r RSs by the
vendor’s toolchain during design time. In the static mapping approach,
there is actually no need to define reconfigurable slots as rectangular areas
with physically constrained borders in the logic fabric. One can leave the
logic placement on the overall FPGA to the vendor tools, which results in
two advantages: First, no user-constrained placement increases resource
utilization since there is no internal fragmentation, i.e., no unused areas
in the reconfigurable slots in case the hardware thread does not need all
resources available in the reconfigurable slot. Second, free placement leads
to faster designs since, due to the larger optimization space, vendor tools
typically find placements with improved timing.

4.2 dynamic task mapping 55

4.2 dynamic task mapping

The dynamic task mapping scheme in ReconROS is enabled by the Re-
conROS executor. In a previous Section 3.2 of this thesis, the hardware
extensions on the ReconROS architecture for enabling dynamic partial re-
configuration during runtime have already been introduced. However, for
the complete description of the executor, the questions of the scheduling
(which function should be executed next?) and replacement (where should
it be executed?) need to be answered.

…

CPU
core
#0

CPU
core
#n-1

RS
#0

RS
#m-1……

HWC
#0

SWC
#0

HWC
#1

SWC
#1

HWC
#k-1

SWC
#k-1

OS Scheduler

Worker
Thread

Worker
Thread

ROS 2
Programming
Model

Callback
#0

Callback
#1

Callback
#k-1

Runtime /
Architecture

ReconROS
Software /
Hardware
Threading

HWC
#0

HWC
#1

 ReconROS Executor Assignment /
Replacement

Figure 4.2: Dynamic task mapping of ROS 2 callbacks to CPU cores (in purple)
and reconfigurable hardware slots (in green) using ReconROS with an
executor and reconfigurable slot assignment/replacement strategy (in
red). Taken from [52].

Figure 4.2 shows an overview of the mapping. Using programming lan-
guage interfaces in C++ or Python, a ROS 2 node is decomposed into a set of
callbacks. Following the ROS 2 event-based programming approach, specific
events, e.g., receiving a new message, lead to the execution of callbacks.

Implementing these callbacks results in ReconROS software callbacks
(SWCs) and hardware callbacks (HWCs), which are essentially ReconROS
threads. In Figure 4.2, each ROS 2 callback is implemented as a software and
a hardware callback. Implementing both in hardware and software allows
for advanced task mapping where the scheduler can potentially decide

56 task mapping and parallelism in reconros

whether to execute an invocation of a callback in software or hardware at
runtime.

SWCs and HWCs are registered at the ReconROS executor during applica-
tion startup. The scheduling algorithm of the executor selects the callback to
be executed next and assigns it to an available resource, i.e., a CPU core or a
reconfigurable slot. Technically, the executor uses software worker threads
that – when assigned – execute the callback function. Using worker threads
instead of separate threads leads to lower runtime overheads for callback
execution than separate thread creation for each invocation callback. The
scheduler of the underlying operating system handles the worker threads
and assigns them to the available CPU cores.

In contrast to software callbacks, which are quickly assigned to CPU cores,
the start of hardware callbacks is more involved. After a reconfigurable slot
has been selected for a hardware callback, the ReconROS executor initiates
writing the partial configuration bitstream to the FPGA using the DMA con-
troller and the interface (cmp. Section 3.2). This process takes considerably
more time, in the order of ms, than loading a software callback onto a CPU

core. Moreover, the exact time needed for reconfiguration depends on the
size of the reconfigurable slot.

4.2.1 Scheduling

The main steps in designing the ReconROS executor are providing timers
and creating a scheduling or dispatching algorithm, respectively, that utilizes
all available processor cores and reconfigurable slots for callbacks.

In the ROS 2 stack, timers are part of the high-level libraries rclcpp (C++) or
ROS client library for Python (rclpy) (Python) and use the operating system
to measure wall clock time. Since ReconROS builds on rcl, the underlying
standard framework for ROS primitives, we have added a corresponding
timer primitive. Our implementation uses the ARM Cortex-A9 global timer
(cf. Figure 3.4) as its primary time reference, and a low-overhead function
ros_timer_is_ready() to check whether a time interval has expired.

Developing a generalized executor concept algorithm is more challenging
than executor design for standard software-based applications. In contrast
to the standard ROS 2 executor (cf. Section 2.2.3) that dispatches ready-to-
execute callbacks to several identical software worker threads, typically one
per available processor core, the ReconROS executor can either execute
callbacks in software or hardware and, if executed in hardware, in specified
reconfigurable slots. Therefore, our executor implementation is structured
into an executor main thread, one software worker thread per processor
core, and one hardware worker thread per reconfigurable slot. The main
thread maintains four callback lists that include all callbacks registered at the
executor, i.e., one for timers, one for subscribers, one for service servers, and
the last one for service clients. Each callback list entry comprises a unique
identifier, a pointer to the received message in case of non-timer callbacks,
and a ResourceMask containing a field for software and each reconfigurable

4.2 dynamic task mapping 57

slot. If the execution mode is software, the corresponding field includes a
function pointer to the callback code. If the execution mode is hardware,
the corresponding fields contain pointers to callback bitstreams for the
reconfigurable slots.

The overall m software and n hardware worker threads are started during
the initialization of the executor. Each of these threads implements the inner
loop of Figure 2.6. Figure 4.3 displays the functionality of the hardware
worker thread for reconfigurable slot x. The thread accesses the callback lists
in the order of timers, subscribers, service servers, and service clients and
searches for ready callbacks with a matching entry x in the ResourceMask.
If such an entry is found (is not zero), the thread checks whether the
corresponding bitstream is already loaded in the reconfigurable slot x. If
so, the callback is started; otherwise, partial reconfiguration is performed
to load the callback bitstream. The worker thread waits until the callback is
finished and runs into the next loop iteration.

Hardware worker Callback lists

GetCallback(ResourceId=x, Position)

CB=GetTimer(ResourceId)

[CB = 0]
CB=GetSubscriber(ResourceId, Position)

[CB = 0]
CB=GetServiceSrv(ResourceId, Position)

[CB = 0]
CB=GetServiceClt(ResourceId, Position)CB

[CB != 0]
ZyCAP_Write_Bitstream()

[CB != 0]
ReconROS Start & Join
HW thread

[CB != 0] ReleaseCallback()

Figure 4.3: Sequence diagram for a hardware worker thread. Taken from [51].

The standard ROS 2 executor shown in Figure 2.6 collects ready non-timer
callbacks before entering the inner loop. The gathering ensures that all call-
backs collected up to a specific time will be executed before new non-timer
callbacks are considered. Very frequently appearing subscriber callbacks,

58 task mapping and parallelism in reconros

for example, can thus not lead to starving callbacks for service servers
and clients. Since our ReconROS executor uses more independent worker
threads, we resort to a different mechanism to avoid starvation. Each worker
thread maintains an OffsetVector that holds for each non-timer callback list an
entry Position that identifies the callback last served. Whenever the worker
thread checks the list for the next ready callback, it starts the search from
Position+1. After serving the callback, Position is incremented. Position is
initialized with the length of the list and wrapped around to zero when the
end of the callback list is reached. Software worker threads are identical,
except that they start callback functions in software.

The ReconROS executor tries to mimic the behavior of the ROS 2 standard
executor and requires the designer to specify the size of the reconfigurable
slots and, for each hardware callback, the possible reconfigurable slots
to which the callback can be mapped. Obviously, different and improved
ReconROS executor designs are conceivable. For example, for callbacks that
can be run in software and hardware, the executor could decide which mode
to choose at runtime. Moreover, involved resource management problems
arise if the reconfigurable slots are of different sizes and hardware callbacks
are available for different reconfigurable slots. Such improved executor
scenarios are left to future work.

4.2.2 Replacement

In the standard implementation of the ReconROS executor, the assignment
of hardware callbacks to reconfigurable slots is relatively simple. Each re-
configurable slot has a worker thread attached, trying to catch the following
incoming callback invocation when the reconfigurable slot is idling. Due to
this assignment strategy, a reconfigurable slot may be reconfigured with a
hardware callback, although this callback would still have been available
from a previous execution in another reconfigurable slot.

In order to improve this situation, we propose and have implemented an
optimized assignment/replacement (called placer) module in the ReconROS
executor.

In order to avoid unnecessary reconfiguration processes, the executor con-
siders all reconfigurable slots currently idle upon receiving a new callback
invocation. During runtime, the placer takes care of a map of status infor-
mation about all reconfigurable slots. This information includes the callback
ID for each slot placed last and the current state (running or waiting).

The placer provides options for interaction with this map: first, a hardware
worker thread can ask for a new callback to execute. In this case, the placer
checks the map only for the requested reconfigurable slot. If the request for a
new callback fails, the hardware worker thread can ask the placer to update
the map. In this case, the placer invokes the callback list and asks for a new
ready-to-execute callback following the standard scheduling procedure (cf.
Section 4.2.1). If successful, the placer inserts the received callback into the
map according to the following procedure:

4.2 dynamic task mapping 59

Hardware worker Callback lists

GetCallback
(ResourceId=x, Position)

CB=GetTimer(ResourceId)

[CB = 0]
CB=GetSubscriber
 (ResourceId, Position)

[CB = 0]
CB=GetServiceSrv
 (ResourceId, Position)

[CB = 0]
CB=GetServiceClt
 (ResourceId, Position)

CB

[CB != 0 and CB != lastCB]
ZyCAP_Write_Bitstream()

[CB != 0]
ReconROS Start & Join
HW thread
lastCB = CB

[CB != 0] ReleaseCallback()

Placer

GetCallback
(ResourceId=x, Position)

CB=GetCallbackfromMap
 (ResourceId=x, Position)

[CB = 0]
CB=GetCallbackfromMap
 (ResourceId=x, Position)

[CB = 0]
UpdateCallbackMap

Figure 4.4: Sequence diagram for a hardware worker thread including an optimized
replacement strategy.

1. The module first checks whether the configuration for the new callback
already exists in one of the available reconfigurable slots. If so, the
hardware callback is assigned to this slot.

2. If the callback is not already configured, the module checks whether
one of the reconfigurable slots is empty. If such a slot exists, the
hardware callback is assigned.

3. If all reconfigurable slots are configured with hardware callbacks, one
has to be selected for replacement. For this, we have implemented two

60 task mapping and parallelism in reconros

techniques: least recently used (LRU), where we replace the hardware
callback that has not been used for the longest time, and least fre-
quently used (LFU), where we replace the hardware callback that has
been used least often. These options can be enabled in the executor.

After finishing the map update, the current hardware worker thread tries
to receive a new callback for its reconfigurable slot by asking the placer
again. Once the executor assigns a callback to the current reconfigurable
slot, the worker thread checks whether a reconfiguration is mandatory.
Then, the reconfiguration process is started, and the callback is started upon
completion. Figure 4.4 shows the resulting sequence diagram.

4.3 exploitation of parallelism

ReconROS helps improve the performance of ROS 2 applications by exploit-
ing parallelism on two levels. First, ROS 2 nodes mapped to hardware threads
or hardware callbacks, respectively, achieve for many functions higher perfor-
mance than their software counterparts due to massive low-level parallelism
at the bit-level offered by FPGA technology. Additionally, FPGA implementa-
tions can benefit from customized operators, number formats, data paths,
and memory architectures.

Second, running several hardware threads/callbacks in parallel exploits
task-level parallelism and parallel to the software threads/callbacks on the
CPU cores.

In addition, we have extended ReconROS to allow us to use thread-
level parallelism for exploiting data parallelism for ROS 2 nodes using
publish/subscribe communication. To this end, we start several identical
ReconROS software and/or hardware threads (or callbacks) for a ROS 2

node. Since all these threads belong to the same ROS 2 node, incoming
messages will be sequentially assigned to the threads. Our extensions in
the ReconROS primitives for publish/subscribe communication ensure that
also the publish phases occur in the correct order. During an interaction
with the communication primitive, the calling thread provides its thread
identifier between 0...nthreads − 1. This thread identifier is then compared
with a counter, and publishing threads are blocked until the counter value
matches the thread identifier. Then, the counter is incremented.

Figure 4.5 displays an exemplary schedule, where a data-parallel ROS 2

node is implemented by three software threads and one hardware thread,
all functionally identical. Messages are received in the take phase. In the
example, hardware thread 3 has a shorter computation phase than the soft-
ware threads and has to be blocked before going into its publish phase since
software thread two must be allowed to publish its results first.

Through our extension to ReconROS, mapping a ROS 2 node to several
data-parallel tasks does not require any modifications to the thread’s code.
This form of parallelism is of interest, especially for stateless ROS 2 nodes, i.e.,
without data dependencies between iterations. Examples of such functions
are image filtering or feature-detection tasks. On the other hand, ROS 2

4.4 experimental evaluation 61

ComputationTake

Computation

Take

Take

Computation

Computation

Publish

Publish

Publish

Publish

Thread 1
(SW)

Thread 2
(SW)

Thread 3
(HW)

Thread 4
(SW) Take

t

ComputationTake

 ComTake

Take

New
Message

Figure 4.5: Exploiting data parallelism for a ROS 2 node in ReconROS. Adapted
from [52].

nodes that need to maintain state between iterations, such as navigation
functions that must keep track of state across the iterative computations, are
not well-suited for this computing pattern.

4.4 experimental evaluation

This section reports experiments demonstrating and evaluating task map-
ping using ReconROS and the ReconROS executor.

First, we start with an experiment showing several exemplary ROS 2 nodes
mapped statically to hardware. After that, the evaluation of the dynamic task
mapping approach elaborates on a comparison of the proposed ReconROS
executor with the standard ROS 2 multi-threaded executor in an example
comprising five callbacks. Finally, we detail an experiment evaluating the
different replacement strategies of the ReconROS executor for dynamically
mapped hardware tasks.

4.4.1 Static Task Mapping

In this section, the described example application with different characteris-
tics in terms of memory accesses and computation aims to demonstrate the
potential of hardware acceleration using ReconROS.

All hardware threads and callbacks have been implemented in C++ and
synthesized with the high-level synthesis tools of Xilinx Vitis 2021.2. The
computing platform is a ZCU104 evaluation board comprising an UltraScale+
MPSoC running Ubuntu Linux 20.04, ReconROS, and ROS 2 galactic. The
ReconROS infrastructure and the HMNs are clocked at 150 MHz. Moreover,
a desktop PC with an Intel Core i5-8000 CPU running Ubuntu Linux 20.04

and ROS 2 galactic is connected to the FPGA evaluation board via Gigabit
Ethernet.

For the demonstration of ReconROS, we have implemented the following
application comprising four nodes running on the platform and one node

62 task mapping and parallelism in reconros

PC

Main Memory

Zynq
Software (PS) Hardware (PL)

Main Memory

Gamma
Corr.

Software (PS)

ROS 2
Node

T: /send

T: /recv

GbE

a)

PC

Main Memory

Zynq
Software (PS)

Main Memory

Software (PS)

ROS 2
Node

T: /send

T: /recv

GbE

b)

Thres-
holding

Fast
Feature

Harris
Corner

Hardware (PL)

Gamma
Corr.

Thres-
holding

Fast
Feature

Harris
Corner

tpp—SW

tpp—HW traw—HW

traw—SW

Figure 4.6: ReconROS ping-pong application including five example ROS 2 nodes
either in hardware or software. Adapted from [53].

running on the desktop PC shown in Figure 4.6. All hardware implemen-
tations rely on the open-source Xilinx Vitis Image processing library [122],
whereas all four software implementations rely on the OpenCV frame-
work [81].

gamma correction : This node applies a gamma correction on an RGB
color image with 640 × 480 pixels and outputs an RGB color image with the
same dimensions. The gamma correction is a non-linear operation aimed at
adjusting an image’s brightness values to the eye’s non-linear perception [33].
The implementation, both for hardware and software, follows an approach
based on look-up tables that are pre-computed for faster computation during
runtime. The look-up table comprises 256 values for each channel, which
results in 768 values in sum.

color thresholding : This node applies a color space transforma-
tion on an input image followed by a thresholding operation. The color
transformation maps the incoming RGB image with 640 × 480 pixels into

4.4 experimental evaluation 63

the HSV color space. The HSV color space comprises one number each for
hue, saturation, and value [33]. After conversation, a thresholding operation
selects all pixels in a range between two constants by setting pixels from
inside the range to 255 on all three channels. In contrast, pixels outside the
range are set to 0 on all three channels.

fast feature detection : The FAST feature detection implemented in
this node example is a more advanced image processing operation. The FAST
algorithm was presented in 2006 [101] aiming to increase the computational
efficiency of feature detection. Due to its computational efficiency, it is widely
used, e.g., in the famous ORB-SLAM2 [69] implementation. FAST detects
features of an image by inspecting pixels on a cycle with a fixed radius
around a current pixel of interest. This node uses FAST to compute features
on a 640 × 480 grayscale image. The resulting detected feature pixels are
inserted into an empty (black) 640 × 480 image as white pixels.

harris corner detection : In terms of computation, the most expen-
sive demonstrator node for this evaluation is the Harris corner detection
algorithm. The Harris corner detection algorithm is another feature detec-
tion algorithm first presented in 1988 [35]. The first step of the algorithm
is the computation of the gradients of the grayscale input image in x and
y-direction using a Sobel filter [33]. The resulting gradients Gx and Gy are
cross-multiplied and squared to G2

x, G2
y, and Gxy for each input pixel. The sec-

ond step of the algorithm applies an average filter on G2
x, G2

y, and Gxy to ⟨G2
x⟩,

⟨G2
y⟩, and ⟨Gxy⟩ [34]. In the final step, the resulting gradients are used to com-

pute a score for each pixel by R = (⟨G2
x⟩ · ⟨G2

y⟩ − ⟨Gxy⟩2)− k · (⟨G2
x⟩+ ⟨G2

y⟩)2.
A pixel is now detected as a corner if R > kthreshold. For the implementation
in this experiment, k is fixed to 0.04 and kthreshold to 566. Similar to the FAST
feature detection, the Harris corner detection implementation outputs an
empty 640 × 480 grayscale image with detected features inserted.

ReconROS node CLB DSP BRAM

Gamma correction 2116 (0.92%) 0 (0.00%) 6.0 (1.92%)

Color Thresholding 2637 (1.14%) 3 (0.17%) 8 (2.56%)

FAST feature detection 5217 (2.26%) 0 (0.00%) 6.5 (2.08%)

Harris corner detection 7235 (3.14) 11 (0.17%) 24.0 (7.69%)

Table 4.1: Resource usage and utilization (in % of the Xilinx XCZU7EV-2FFVC1156)
for the implemented ReconROS nodes. Resource figures are reported for
CLBs, DSPs, and BRAMs.

Table 4.1 displays resource usage and FPGA utilization for the four nodes,
and Table 4.2 the raw runtimes for the Zynq-bound ROS 2 nodes, which
are either mapped to the ARM core (traw−SW) or to reconfigurable logic
(traw−HW) and the resulting raw speedup Sraw. Table 4.3 shows the runtimes

64 task mapping and parallelism in reconros

between nodes running on PC and Zynq measured in the ping-pong fashion
shown in Figure 4.6.

Besides the gamma correction node, all three other nodes achieve a
speedup larger than one. In general, the speedup achieved increases with the
complexity of the node. On the one hand, in the case of gamma correction,
where the channel value of a specific pixel only has to be replaced by another
value from the LUT, hardware acceleration leads to a speedup smaller than
one since the memory transfer between reconfigurable logic and processing
system predominates. On the other hand, the implementation of Harris
corner detection shows a speedup of more than 17×, which can be achieved
by processing the data in a pipeline.

Another observation from the experiments is the fact that the raw compu-
tation time of the four examples depends highly on the input and output
data size since we have measured more or less only two different execution
times (7.5 ms for 900 kB in/out and 5.4 ms for 300 kB in/out). Again, this is
due to the pipeline structure of the hardware accelerators.

The communication overheads of ROS 2, especially the network transfer
between the FPGA evaluation board and the desktop PC, blur the speedups
for all four nodes.

ReconROS
node

Message Size
In/Out

traw−SW
[ms]

traw−HW
[ms]

Sraw

Gamma correction 900/900 KiB 3.91 7.54 0.52×
Color Thresholding 900/900 KiB 7.95 7.52 1.06×
FAST feature detection 300/300 KiB 13.87 5.40 2.56×
Harris corner detection 300/300 KiB 95.35 5.40 17.64×

Table 4.2: Raw runtimes of software and hardware ROS 2 nodes and corresponding
speedups.

ReconROS
node

Message Size
In/Out

tpp−SW
[ms]

tpp−HW
[ms]

Spp

Gamma correction 900/900 KiB 4.00 3.64 0.90×
Color Thresholding 900/900 KiB 40.36 31.74 1.27×
FAST feature detection 300/300 KiB 22.37 14.06 1.59×
Harris corner detection 300/300 KiB 112.89 13.94 8.09×

Table 4.3: Roundtrip runtimes of software and hardware ROS 2 nodes and corre-
sponding speedups.

To summarize the set of experiments detailed in this section: We have
shown that while there is an overhead for mapping a ROS 2 node to hardware,
the impact on an overall ROS 2 application depends on many factors such

4.4 experimental evaluation 65

as i) the raw speedup of the ROS 2 HMN, ii) the message size, iii) the overall
application’s topology and involved communication patterns and times, and
iv) the ratio between node computation times and communication times.
The memory access performance for ROS 2 HMNs is lower than for their
software counterparts, which provides optimization potential for future
work. Additional speedups can be realized through the parallel execution of
hardware and software threads.

Finally, all hardware and software versions of the ReconROS nodes are
semantically identical. Creating the different versions requires a change
in the ReconROS configuration file before running the functions of the
ReconROS development kit only. This flexibility in generating variants of
ROS 2 hardware-accelerated nodes is one of the main features of ReconROS.

4.4.2 Dynamic Task Mapping Example

So far, we have statically mapped ROS 2 nodes to the reconfigurable hard-
ware in the evaluation. Although this can avoid overheads due to dynamic
reconfiguration, it may also result in poorer utilization of resources since
these are reserved by the respective ROS node during the entire runtime.

However, ReconROS offers the possibility to map ROS 2 nodes dynami-
cally to the hardware in the form of callbacks through its executor. These
callbacks can be mapped to hardware or software. Therefore, as a first part
of evaluating the ReconROS executor, we have measured the runtimes for
five ROS 2 nodes, more precisely, their callbacks. All callback functions have
been coded in C/C++ and synthesized with Xilinx Vivado HLS to a Zynq
Z7100 on a MiniITX FPGA board. The hardware callbacks run at 120 MHz,
the ReconROS infrastructure at 100 MHz, and the ARM Cortex-A9 at 666

MHz.

sobel filter : This callback implements a Sobel image filter [33] oper-
ating on three channels (RGB) of dimension 640 × 480. The filter applies
two filter kernels on each image channel and calculates the dot product’s
absolute value as an approximation for the geometric mean. The ROS 2 input
and output messages are of the type Image from the ROS 2 sensor message
package.

number sorting : This callback provides a ROS 2 service, which sorts
an array of 32-bit unsigned integers based on the odd-even transposition
sort algorithm [42]. The algorithm is based on a comparator network that
employs n stages with n comparisons each to sort n numbers. The ROS 2 node
on the PC generates random numbers and publishes messages comprising
2048 numbers as an array.

mnist classifier : This callback classifies handwritten digits from the
MNIST dataset using a neural network. The classifier is implemented using
ROS 2 publish/subscribe communication. It subscribes for input images of

66 task mapping and parallelism in reconros

size 28 × 28 and publishes the estimated digit as an unsigned integer. The
classifier consists of three convolution, pooling, and fully connected layers.
The achieved accuracy is about 97%.

inverse kinematics : This callback computes control signals for driving
a servo motor that sets a joint angle based on the desired position and
orientation of a robotic manipulation platform. The application is part of
a more extensive mechatronic system for controlling the movements of
a Stewart platform [107] with six degrees of freedom. The computation
involves coordinate transformations and an iterative implementation of the
arctan() function. The ROS 2 input message is an unsigned 32-bit integer
packed with two fixed-point numbers in Q8.6 format that represent the
desired rotation angles of the platform around the x-axis and the y-axis. The
ROS 2 output messages is also a 32-bit unsigned integer containing a 10-bit
unsigned integer, the pulse width coded control signal for the motor.

hash calculation : The hash calculation callback is implemented to
demonstrate a callback triggered by a periodic timer. The algorithm reads a
1920× 1080 image with 24-bit color depth from main memory and calculates
its SHA256 hash value at each run. Afterward, the hash value is published
as an unsigned integer array with eight elements to a ROS 2 topic.

ROS 2 callback
texec−HW

[ms]
texec−SW

[ms]
Speedup

Sobel filter 16.50 42.00 2.5×
Number sorting 0.85 41.00 48.2×
MNIST classifier 11.90 16.50 1.4×
Inverse kinematics 0.35 1.50 4.3×
Hash calculation 81.00 94.00 1.2×

Table 4.4: Execution times for five ROS 2 callbacks in hardware (texec−HW) and
software (texec−SW), and the resulting speedup. Taken from [51].

Table 4.4 shows the execution times for the callbacks, comprising the
execution time for the callback function in software and the time between
starting and completing the callback in hardware, respectively. The reconfig-
uration times are not included in this measurement. Speedups are achieved
for all five callbacks, with the hash calculation resulting in the lowest and
the number sorting resulting in the highest speedup. The wide range of
speedups achieved is due to different task characteristics, e.g., data depen-
dencies for computations and the amount of data for input and output,
and varying degrees of optimization for the five designs, e.g., for memory
transmission and handling and parallelism in the execution pipeline. While
all implementations leave room for further improvements, the results do
motivate the use of hardware callbacks. How the speedup achieved for a

4.4 experimental evaluation 67

single callback propagates to the overall robotics system, e.g., a complex
robotics application for an autonomous robot, is highly application-specific.
Therefore, we consider isolated measurements of single callbacks in this
thesis.

In the following experiment, we compare the performance of a ROS 2

application based on the three callbacks in software using the standard
ROS 2 executor with two different hardware/software mappings using our
ReconROS executor.

Zynq-Z7100 MiniITX BoardDesktop PC

Hardware WorkerSoftware Worker

ReconROS Executor Application

Inverse
Server
Node

4 Topics

5 Topics Core
#0

Core
#1

RS
#0

RS
#1

RS
#2

RS
#3

b)

Zynq-Z7100 MiniITX BoardDesktop PC

Software Worker

Gigabit
Ethernet

ROS 2 Multi-Threaded Executor Application

4 Topics

5 Topics Core
#0

Core
#1

a)

Hash
Server
Node

Sobel
Server
Node

MNIST
Server
Node

Sort
Server
Node

MNIST
Client
Node

Gigabit
Ethernet

Inverse
Server
Node

Hash
Server
Node

Sobel
Server
Node

MNIST
Server
Node

Sort
Server
NodeSobel

Client
Node

Inverse
Client
Node

Sort
Client
Node

Hash
Client
Node

ROS 2 Benchmark
Application

ROS 2 Benchmark
Application

MNIST
Client
Node

Sobel
Client
Node

Inverse
Client
Node

Sort
Client
Node

Hash
Client
Node

Figure 4.7: Experimental setup for a ROS 2 application with a standard ROS 2 execu-
tor (a), and our ReconROS executor (b). Taken from [51]

The ROS 2 setup is illustrated in Figures 4.7(a) and (b). On the desktop PC,
there are five ROS 2 client nodes programmed in C++ and compiled against
the ROS 2 rclcpp library. These client nodes, i.e., the Sort client, Inverse client,
Sobel client, and MNIST client nodes, comprise a publisher and a subscriber.
Starting with an initial published message, the client’s subscriber waits for a

68 task mapping and parallelism in reconros

response from the corresponding server node on the FPGA. After receiving a
new message for the topic, the clients immediately publish a new message
for their server counterpart. The resulting roundtrip times are logged during
the experiment. The Hash client node forms a particular case. Since the hash
server node only publishes messages, the client on the desktop PC receives
the messages and reports the times between consecutive messages. During
this experiment, the ReconROS executor runs without a dedicated placer in
its most simple form (cf. Section 4.2.2).

Figure 4.7(a) sketches an all-software mapping, where a multi-threaded
standard ROS 2 executor with two software worker threads on the FPGA

dispatches the callbacks from the server nodes to two processor cores. Fig-
ure 4.7(b) displays the setup with the ReconROS executor and an additional
four hardware worker threads that dispatch callbacks to four reconfigurable
slots. We have evaluated two mappings under the ReconROS executor, a
mixed software/hardware mapping where the four callbacks with the high-
est speedups according to Section 4.4, i.e., Number sorting, Inverse kinematics,
Sobel filter, and MNIST classifier, are executed in hardware and the Hash cal-
culation callback is executed in software. The all-hardware mapping finally
runs all callbacks in hardware.

A detailed listing of the average roundtrip time and the resulting aver-
age speedups for both ReconROS setups in Table 4.5 shows significant
speedups for the Inverse kinematics and Number sorting nodes and roughly
equal roundtrip times for the Sobel filter and Mnist classifier nodes.

ROS 2 standard
executor all-SW

ReconROS
SW/HW

ReconROS
all-HW

Inverse
27.4 ms
(1.00×)

3.97 ms
(6.90×)

4.41 ms
(6.21×)

Mnist
36.67 ms
(1.00×)

36.69 ms
(1.00×)

37.77 ms
(0.97×)

Sobel
184.56 ms

(1.00×)
157.86 ms

(1.17×)
179.70 ms

(1.03×)

Sort
67.1 ms
(1.00×)

3.20 ms
(20.97×)

3.69 ms
(18.18×)

Hash 249.64 ms 249.87 ms 249.87 ms

Table 4.5: Average execution times and speedups compared to the ROS 2 executor
reference implementation (first column).

Figure 4.8 analyzes the resulting roundtrip times for the three mappings.
The figure plots the relative frequency over the roundtrip time for each of
the five ROS 2 nodes and the three mappings. The dashed lines denote the
averages. Going from the all-software over the software/hardware to the
all-hardware mapping, the speedups based on the averaged roundtrip times
are 6.21 and 6.29 for Inverse kinematics, 0.97 and 1.00 for the MNIST classifier,
1.03 and 1.15 for the Sobel filter, 18.18 and 20.97 for Number sorting, and 1.00
for the Hash calculation. Overall, we make the following observations:

4.4 experimental evaluation 69

St
an

da
rd

 R
OS

 2
Ex

ec
ut

or

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

In
ve

rs
e

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

M
ni

st

0
m

s
20

0.
0

m
s

40
0

m
s

0
%

5
%

10
 %

So
be

l

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

So
rt

0
m

s
20

0.
0

m
s

40
0

m
s

0
%

5
%

10
 %

Pe
rio

di
c

Re
co

nR
OS

 E
xe

cu
to

r
 H

W
 a

nd
 S

W

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

0
m

s
20

0.
0

m
s

40
0

m
s

0
%

5
%

10
 %

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

0
m

s
20

0.
0

m
s

40
0

m
s

0
%

5
%

10
 %

Re
co

nR
OS

 E
xe

cu
to

r
 H

W

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

0
m

s
20

0.
0

m
s

40
0

m
s

0
%

5
%

10
 %

0
m

s
10

0.
0

m
s

20
0

m
s

0
%

5
%

10
 %

0
m

s
20

0.
0

m
s

40
0

m
s

0
%

5
%

10
 %

Fi
gu

re
4
.8

:R
el

at
iv

e
fr

eq
ue

nc
ie

s
of

th
e

ro
un

d
tr

ip
ti

m
es

fo
r

th
e

R
O

S
2

st
an

d
ar

d
ex

ec
ut

or
an

d
tw

o
R

e
c

o
n

R
O

S
ex

ec
ut

or
co

nfi
gu

ra
ti

on
s;

th
e

d
as

he
d

lin
es

sh
ow

th
e

av
er

ag
e

ro
un

dt
ri

p
ti

m
e

fo
r

th
e

sp
ec

ifi
c

R
O

S
2

no
de

.T
ak

en
fr

om
[5

1
].

70 task mapping and parallelism in reconros

• The speedups for the individual ROS 2 nodes within the overall applica-
tion follow the trends for the callbacks measured in isolation, shown in
Table 4.4, although generally lower due to the communication between
desktop PC and FPGA board, the ROS 2 communication layers, and the
executors. For Number sorting, Inverse kinematics, and to some extent
the Sobel filter, distinct speedups are realized.

• The hash calculation is triggered with a 250 ms period. The distribution
of roundtrip times shows entries with less and more than 250 ms since
the ROS 2 client on the desktop PC measures times between arriving
messages from this callback. Some messages are delayed, reducing the
time for the following message.

4.4.3 Hardware Callback Replacement

Following Section 4.2.2, the ReconROS executor has been extended by
a more advanced placement strategy aiming to reduce reconfiguration
overheads.

The following evaluation investigates the replacement strategies for hard-
ware callbacks in the ReconOS executor on a slightly different setup than
previous experiments (cf. Section 4.4.2). The same set of callbacks comprising
a Sobel image filter, an MNIST classifier, an inverse kinematics algorithm,
and a number sorting node has been used for the experiment.

All hardware threads and callbacks have been implemented in C++ and
synthesized with the high-level synthesis tools of Xilinx Vitis 2021.2. The
computing platform is a ZCU104 evaluation board comprising an UltraScale+
MPSoC running Ubuntu Linux 18.04, ReconROS, and ROS 2 dashing. The
ReconROS infrastructure is clocked at 100 MHz, and the hardware threads
and callbacks are at 120 MHz. Moreover, a desktop PC with an Intel Core
i5-8000 CPU running Ubuntu Linux 18.04 and ROS 2 dashing is connected to
the FPGA evaluation board via Gigabit Ethernet.

The desktop PC executes a set of client nodes that periodically send
messages and request services and thus create message events to be handled
by the ReconROS executor on the platform FPGA. For example, the inverse
kinematics client sends data every 30 ms, the MNIST client every 50 ms,
and the Sobel client sends images every 100 ms. The sort client requests the
number sorting every 250 ms.

The platform FPGA executes the ReconROS executor with its set of hard-
ware callbacks on two reconfigurable slots using the replacement strategy
without placer, LRU and LFU, and measuring the number of replacements.
Table 4.6 lists the number of replacements per callback execution. The mea-
surements show that our previous implementation led to replacement in
some 60% of all callback executions. LRU and LFU perform much better, with
a slight advantage for LFU with 42% replacements. This emphasized improve-
ment even for only two reconfigurable slots, underlining the importance
of the replacement strategy and motivating research for more advanced
techniques such as speculative reconfiguration.

4.5 chapter conclusion 71

Replacement strategy
Replacements

per callback execution

Without
Placer

0.61

LRU 0.44

LFU 0.42

Table 4.6: Evaluation of different hardware callback replacement strategies. Taken
from [52].

Overall, the required number of reconfigurations for the presented demon-
strator application is decreased by 30 percent. This shows not only the
benefits of using improved callback displacement algorithms and verifies
the correct functionality of the implementation, but it also motivates the
research for even more advanced techniques, e.g., by leveraging speculative
reconfiguration.

4.5 chapter conclusion

This chapter deals with the task mapping and exploitation of parallelism
in ReconROS. ReconROS provides flexibility by supporting static task
mapping and dynamic task mapping. For the dynamic mapping of tasks,
the ReconROS executor takes care of the scheduling and placement of tasks
during runtime without the need for custom application-specific solutions
for scheduling and placement. Regarding the exploitation of parallelism,
ReconROS supports two levels of parallelism: low-level parallelism and
task-level parallelism.

The evaluation for the mapping of tasks with ReconROS shows speedups
in runtime for most of the statically mapped tasks. It can be observed
that computationally expensive tasks benefit more from an acceleration in
hardware, as the transfer to the reconfigurable hardware compensates for the
speedups during the calculation. This fact motivates the following Chapter 5

aiming to reduce communication overheads for HMNs. In the evaluation and
validation of the dynamic mapping, a speedup can be shown compared to
the standard ROS 2 executor. Finally, the comparison of different placement
strategies shows improvements in average reconfigurations needed for the
LRU and LFU placement.

5
C O M M U N I C AT I O N O P T I M I Z AT I O N I N R E C O N R O S

In the previous two chapters, we could already present speedups due to
hardware acceleration on the node level. In several cases, ROS 2 nodes
mapped to hardware benefit from high parallelism in the reconfigurable
hardware. However, the evaluation shows that speedups can suffer from
data transfers between the hardware and software domains. Since, until now,
hardware acceleration has been applied node-wise, input and output data
have to be transferred for each HMN separately, even if the output data of a
HMN is needed by a subsequent HMN.

In order to unlock more potential for hardware acceleration, this chapter
deals with the mapping of ROS 2 computation graphs or subgraphs to the
reconfigurable fabric aiming to reduce communication overheads between
nodes. The mapping of complete subgraphs into the hardware domain al-
lows to leverage intra-FPGA communication, promising higher bandwidths
and lower latencies compared to communication between the hardware and
software domains. This holds because all HMNs share one hardware/soft-
ware communication interface. As already mentioned during the related
work survey in the background chapter (cf. Chapter 2.3), ReconROS was
not the first framework allowing intra FPGA communication. However, as
described in the following chapter, our approach is more comprehensive
than previous work. In contrast to related work, our approach allows, e.g.,
an arbitrary number of publishers and subscribers per topic, the automatic
generation of the hardware infrastructure by our toolflow, and the usage of
the standard semantic for communication of ROS 2.

Before introducing intra-FPGA communication, Section 5.1 introduces
extensions on ReconROS to support a zero-copy communication scheme
offered by standard ROS 2 communication. Then, we first present fpgaDDS in
Section 5.2, a static intra-FPGA communication middleware aiming to reduce
communication overheads between HMNs. In the standard version, fpgaDDS
was limited to ROS 2 topics connected to nodes mapped to hardware only.
Since, for this case, the insertion of single SMN could result in fallback to
standard ROS 2 communication with a significant performance loss, we
have introduced so-called gateways in Section 5.3. Figure 5.5 provides an
example of such a fallback situation. Gateways synchronize data between
a standard ROS 2 topic and a hardware-mapped topic and allow the use of
hardware-mapped topics for a broader range of applications. In order to
map computation graphs to hardware, Section 5.4 presents a methodology

73

74 communication optimization in reconros

leveraging fpgaDDS and gateways. Section 5.5 evaluates fpgaDDS in a multi-
subscriber scenario. For a further evaluation based on real-world examples,
the reader is referred to the ReconROS case studies in Section 6.2 and
Section 6.3.

This chapter mainly follows the conference publication presented at the
International Conference on Intelligent Robots and Systems (IROS) about
fpgaDDS [48] and communication optimization in general presented at the
International Conference on Robotics and Artificial Intelligence (ICRAI) [49].
The content of Section 5.1 follows the publication about AutonomROS [47]
(cf. Section 6.3).

5.1 reconros shared-memory communication

A critical improvement of ROS 2 over ROS 1 was the introduction of an
exchangeable communication layer based on well-established data distribu-
tion services (DDS). Due to a communication abstraction layer, the robotic
developer can select between various available DDS implementations with
different properties.

Several DDS implementations, e.g., fastRTPS [137], rely on standard socket
communication for their default mechanism. Sockets are the most flexible
option and enable both intra-platform and inter-platform communication.
When intra-platform or even inter-process communication is required, a
loopback adapter transfers data to the same or other processes. However,
this flexibility is paid for with lowered performance since the loopback mech-
anism results in overheads due to several data copy operations involved.

In order to mitigate such copy overheads, the Iceoryx [138] communi-
cation middleware for ROS 2 was introduced. Iceoryx is an intra-process
communication middleware enabling zero-copy data transmission between
processes on the same platform. The disadvantage of Iceoryx, however,
is that it comes with significant limitations, e.g., there is no support for
ROS 2 services and actions. Since many larger software packages for ROS

2, e.g., Navigation 2, rely on these communication paradigms, the field of
application for Iceoryx would be limited. Fortunately, Iceoryx is also part
of the CycloneDDS [26] middleware that allows for simultaneously using
socket-based and shared-memory-based communication. When selecting
shared memory for communication, the topic has to adhere to the following
constraints: (i) the message has a fixed length, (ii) a suitable QoS configu-
ration is selected, (iii) the topic has at most 127 subscriptions, and (iv) a
publisher has at most eight loaned messages simultaneously.

Since Iceoryx requires a slightly different programming model than stan-
dard ROS 2 communication, we had to extend ReconROS to support the
zero-copy communication scheme of Iceoryx. When using Iceoryx, a pub-
lishing node must first request a memory chunk from the middleware for
communication with other nodes. The publishing node can write its message
into the received memory chunk and execute the corresponding publishing
function call if successful. Similar to standard ROS 2 subscribers, the sub-

5.2 intra-fpga communication architecture 75

scribing node can block for a new message. However, after receiving it, the
subscriber returns the message to the middleware to enable the re-usage of
the message chunk.

ROS Middleware (rmw)

Cyclone DDS with
Iceoryx-support

ROS Client Library (rcl)

SW
Node

ReconROS API

SW
Node

HW
Node

HW
Node

Shared-Memory
Extensions

DDS Adapter

ReconROS
Application

ReconROS
Communication
Stack

Figure 5.1: Extensions of the ReconROS API in the ReconROS communication
stack comprising operations for zero-copy data transfers between nodes
(red). Adapted from [47].

Figure 5.1 shows the resulting extensions in the ReconROS API. Overall,
we have extended ReconROS by four function calls:

• ROS_BORROW requests a memory chunk from Iceoryx.

• ROS_PUBLISH_LOANED publishes the message after the message has been
written to the message chunk.

• ROS_SUBSCRIBE_TAKE_LOANED tries to read a message.

• ROS_SUBSCRIBE_RETURN_LOANED returns the read message to Iceoryx to
re-use the memory chunk.

5.2 intra-fpga communication architecture

The ReconROS framework uses ROS 2 standard communication middle-
wares for data transport between nodes, including HMNs. Although this
excels in flexibility, as HMNs can communicate with arbitrary SMNs and
HMNs, the overall application performance may be suboptimal due to the
HMNs’ mechanism of calling ROS functions via their delegate threads and
due to competing memory accesses of all HMNs.

For this reason, we have introduced fpgaDDS, a novel and lean intra-
FPGA DDS for ReconROS applications. fpgaDDS maps ROS communication
between HMNs to the reconfigurable fabric and thus avoids many memory
accesses while maintaining the ROS programming model for standard ROS 2

publish-subscribe communication, i.e., no changes to the ROS nodes are re-
quired. Figure 5.2 sketches how fpgaDDS and the corresponding ReconROS
DDS adapter integrate into the ROS 2 communication stack.

76 communication optimization in reconros

The new intra-FPGA DDS has two benefits: First, mapping the data trans-
port between communicating HMNs to the reconfigurable fabric saves many
memory accesses and thus improves application performance. Second, mov-
ing nodes and communication from software to parallel executing hardware
further reduces application execution time and jitter, which helps achieve
predictable real-time behavior under ROS 2.

ROS Middleware (rmw)

DDS Adapter 1
DDS 1

fpgaDDS
(HMNs only)

DDS Adapter n
DDS n…

ROS Client Library (rcl)

SW
Node

 ReconROS API ReconROS DDS
Adapter (HMNs only)

…

SW
Node

HW
Node

HW
Node

ReconROS
Application

ReconROS
Communication
Stack

Figure 5.2: Extensions of the ReconROS communication stack include fpgaDDS and
the corresponding ReconROS DDS adapter. The zero-copy extensions as
part of the ReconROS API (cf. Section 5.1) are not emphasized in this
figure. Adapted from [48].

The publish-subscribe communication principle of ROS 2 inspires the
structural design of the fpgaDDS communication architecture. The fpgaDDS-
extended ReconROS build flow generates an application-specific static
AXI-streaming (AXIS) network for each ROS topic separately. Such AXIS-
based hardware-mapped topics (HMTs) are lean, resulting in relatively simple
communication protocols executed during runtime and high-performance
implementations due to the total available bandwidth per HMT.

Figure 5.3 shows an fpgaDDS example comprising six ReconROS HMNs

connected to two HMTs, A and B, by AXIS. In the figure, a directed connection
from a HMN to a HMT represents a publisher and a connection from a HMT

to a HMN is a subscription.
The internal design of a HMT depends on the required number of publish-

ers and subscribers. In the simplest case, where the HMT receives data from
one publisher and provides that data to one subscriber, the HMT includes a
simple AXIS connection from input to output. If there are more publishers
for an HMT, the inputs are gathered by an AXI interconnect IP block that
arbitrates the input messages. The AXI interconnect is configured to imple-
ment an arbitration based on complete messages, ensuring consistency in
the sense that complete messages are always forwarded. If there are more
HMT subscribers, an AXI Broadcast IP block broadcasts the message to all
subscribers. AXI interconnect and broadcast IP blocks can be concatenated
to realize HMTs with arbitrary numbers of publishers and subscribers.

Figure 5.3 also indicates a FIFO buffer for the subscription of topic A by
HMN 4. Such FIFO buffers are optional components for subscribers of HMTs.

5.2 intra-fpga communication architecture 77

B

A

Node 1

Node 2

Node 4

Node 3

Node 5

Node 6

AXIS FIFOHMN

B

A

HMT

Node 1

Node 2

Node 4

Node 3

Node 5

Node 6

AXIS FIFOIP-Core

AXI
Interconnect

AXI
Interconnect

AXI
Broadcaster

a)

b)

Figure 5.3: Schematic example for a computation graph with two hardware-mapped
topics A and B (a) and the resulting instance of the communication
architecture (b). Adapted from [48].

By adding FIFO buffers, the data processing of the subscriber nodes can be
decoupled from the topic. This behavior can be helpful for asynchronous
communication, for example, where the subscriber reads the data from the
topic at a different time.

In ROS 2, DDS layers allow developers to specify various Quality-of-Service
(QoS) parameters [96]. fpgaDDS, with its AXIS streaming architecture, real-
izes, by default, publish-subscribe communication with the QoS parameters
Keep All and Reliable, where no messages are discarded. The number of
stored messages depends on the size of the FIFO, and if the FIFO runs full,
transmission blocks. In addition, due to its static DDS structure, fpgaDDS
provides infinite Lifespan Duration and infinite Lease Duration.

78 communication optimization in reconros

The communication architecture for the fpgaDDS is synthesized based
on the ReconROS project configuration file during design time. First, all
subscribers and publishers with a hardware property attribute are identified
and grouped for their topics. Then, for each HMT, the ReconROS build
flow extends the HMNs by input (subscription) and output (publishing)
ports, inserts the HMT AXIS infrastructure, and connects the ports and
the infrastructure accordingly. The overall procedure corresponds to the
discovery procedure in standard DDS implementations.

5.2.1 ReconROS DDS Adapter

The ReconROS DDS adapter aims to close the gap between the programming
model for streaming networks at the fpgaDDS layer and the publish/sub-
scribe communication mechanism in ReconROS. As a result, the program-
mer can use similar blocking and non-blocking functions for interaction
with software-mapped and hardware-mapped topics.

In order to maintain compatibility between standard message structures
provided by ROS 2 and the message structures used in our streaming fp-
gaDDS communication architecture, which is generated by a high-level
synthesis tool flow, we need to serialize message objects on the transmitter
side and de-serialize them on the receiver side.

Due to the multi-layer architecture of ROS 2 and the support of several dif-
ferent communication middlewares, the ROS 2 framework already provides
functionality for ROS message serialization in software, even for complex
nested message types. However, these functions can not be directly used for
hardware generation since Vivado HLS provides limited support for pointer
arithmetic, casting, and recursion.

Therefore, we extract the structure of messages, i.e., their components and
data types, from the message definition file and replace all non-primitives
with their sub-components. This also allows for resolving multi-level nested
messages. The resulting list of primitives and arrays is then transformed
into a C macro for message publishing and subscribing. During hardware
synthesis, these macros are in-lined and generate hardware to write and
read data sequentially to and from AXI streaming interfaces in blocking and
non-blocking versions.

5.2.2 Execution Modes

Communicating HMNs can be operated in two execution modes with fp-
gaDDS. The first mode is the same as when using a software-based DDS and
operates the receive, compute, and send phases sequentially. Figure 5.4(b)
shows an example of a chain of three nodes with publish-subscribe commu-
nication.

With fpgaDDS, we can additionally leverage the dataflow option of the
high-level synthesis tool to create an implementation where the phases
are overlapped as much as possible, constrained only by the data flow.

5.3 gateways for hardware-mapped topics 79

c)

b)
!

!

Compute

Node 1

Node 2

Node 3

Node 1

Node 2

Node 3

!!"# !!"# !!"# !!"# !!"!#

!!"!#

!!"!#

!!"!#

!!"!#
 !!"!#

Compute
Recv

Send

Compute
Recv

Send

Compute
Recv

Send

Recv

Send

Compute
Recv

Send

Compute
Recv

Send

Node 1 A Node 2 B Node 3

a)

Figure 5.4: Execution modes for the HMN 2 from the computation graph (a) with
communication (tcom) and execution (texec) phases: (b) sequential execu-
tion and (c) dataflow execution. Adapted from [48].

This operation mode is exemplified in Figure 5.4 (c) and can substantially
improve overall execution time. This mode is useful for sets of nodes that
operate on data in a streaming manner, which is typical, for example, for
many low-level image processing tasks.

5.3 gateways for hardware-mapped topics

In the previous section, we have introduced fpgaDDS, which allows for
completely mapping communication between HMNs to hardware. In this

80 communication optimization in reconros

section, we will extend the scope of fpgaDDS to ROS 2 topics, which are not
exclusively connected to HMNs.

Main Memory

Node
1

Node
6

Node
3

Node
5

Node
4

CPUs Reconfigurable Logic

Node
1

Node
3

Node
6

Node
2

System-on-Chip (SoC)

A C

Node
4

Node
2

Node
5B

A C

B

b)

a)

Figure 5.5: Example Application comprising nodes mapped to hardware and soft-
ware and its communication. Taken from [49].

For a motivation, Figure 5.5 shows an example application as an ROS

computation graph (a) and a resulting mapping (b) to a SoC architecture
comprising a processing system and a reconfigurable fabric. ROS 2 nodes
1, 2, and 6 are mapped to software, and nodes 3, 4, and 5 are mapped to
hardware. The standard mapping of topics is to software, which means
the buffers holding messages are realized in the main memory external to
the SoC. Efficient DDS implementations such as Iceoryx [138] are available
to improve communication performance for shared memory architectures.
However, communication to HMNs can challenge the memory interface of the
configurable logic. For example, in the mapping of Figure 5.5(b), messages

5.3 gateways for hardware-mapped topics 81

from topic A, to which nodes 3 and 4 subscribe, are transferred two times to
the configurable logic, reducing application performance. fpgaDDS maps
topics completely to hardware if all nodes publishing to and subscribing
from that topic are also mapped to hardware. Topic B in Figure 5.5(b)
exemplifies this case. However, one has to fall back to the standard mapping
of topics to software or main memory, respectively, when at least one node
publishing to and subscribing from a topic is mapped to software.

As a result, we design a gateway to close the gap between software-
mapped topics (SMTs) and HMTs. All hardware-mapped ROS 2 nodes that
have to communicate with SMNs share one MEMIF to the main memory and,
thus, the memory bandwidth. Gateways aim to reduce the number of data
transfers per message in such cases to one.

5.3.1 Gateway Architecture

Figure 5.6 sketches the architecture of the gateway. A gateway comprises
three main components: a software-mapped topic, a hardware-mapped topic,
and the gateway core. Internally, the gateway core is implemented similarly
to a node mapped to hardware and establishes publish-subscribe channels
to both the software-mapped and hardware-mapped topics. Other hardware-
mapped ROS 2 nodes publishing or subscribing to the topic connect to the
gateway’s HMT, and other software-mapped ROS 2 nodes to its SMT. Since
the gateway core synchronizes the SMT and the HMT, only one data transfer
to or from the main memory, i.e., between the software and hardware do-
mains, is required per message, significantly reducing the required memory
bandwidth.

SMT

Gateway Core

Publishers
(Software Nodes)

Subscribers
(Software Nodes)

Publish

Subscribe

Publish

Subscribe

Hardware Software / Main memory

OS
IF

 +
 M

EM
IF

HMT

Publishers
(Hardware Nodes)

Subscribers
(Hardware Nodes)

Figure 5.6: The architecture of the gateway. Taken from [49].

The finite state machine in Figure 5.7 presents the runtime behavior of
the gateway core: At startup, the gateway core receives the location of the
output message for its SMT from its delegate thread and sends a request to it
for a new SMT message. Upon that, the delegate thread blocks and waits for

82 communication optimization in reconros

new messages. After receiving a new message, it responds to the gateway
core through the OSIF. The gateway core polls both its OSIF for a response
from its delegate thread and its HMT for a new message from a HMN. The
message is transferred to the HMT in the first case. In the second case, the
gateway core transfers the message to the main memory and then cancels
the message request to the delegate thread before it publishes the data to the
SMT. Since a new message on the SMT could potentially be received between
request and cancel, the cancel process may respond with a pointer to a new
message. This message is transferred to the HMT before the gateway starts a
new request to its delegate. To avoid loops in the gateway core, for example,
by messages that are received from an SMT, republished in the HMT, and
then are received again by the gateway’s subscriber on the HMT side, our
gateway core implementation includes message filters in both its subscribers
on the SMT and HMT sides. These filters check and discard messages for their
publisher IDs if their source and destination identifiers match.

Start
Get SMT
Output

Message
Location

Start SMT
Message
Request

Check
SMT for

new
message

Transfer
Message
from Main
Memory to

HMT

New SMT
Message available

Check
HMT for

new
message

No SMT Message
available

Transfer
Message

from HMT to
Main

Memory

No HMT Message
available

New HMT
Message available

Cancel and
Check SMT

Message
Request +
Publish to

SMT

New SMT
 Message available

No SMT
Message available

Figure 5.7: Runtime behavior of the gateway core. Adapted from [49].

5.3 gateways for hardware-mapped topics 83

5.3.2 Gateway Design Flow

Gateways are inserted into the ReconROS project using the configuration
file. An example is shown in Listing 5.1. The first line of the example
instantiates a gateway named Gateway1 of type ROSGateway. This gateway
is placed into slot 0 of GatewaySlots and connects the "hwtopicname" and
"swtopicname" topics. The message type is Image from the sensor message
package of ROS 2.

Listing 5.1: build.cfg definition of a gateway connecting a SMT with a HMT of type
Image.

1 [ROSGateway@Gateway1]

Slot = GatewaySlots(0)

HMT = "hwtopicname"
SMT = "swtopicname"
MsgType = sensor_msgs/Image

After instantiation in the configuration file, an extension of the Recon-
ROS tool flow creates the implementation of the gateway. The procedure
is sketched in Figure 5.8. First, the tool flow extension extracts information
about the gateway from the ReconROS configuration file (cf. Listing 5.1).
Next, it generates memory transfer functions from the hardware-mapped
topic into the main memory and vice versa. Since this step requires infor-
mation about the structure of the messages, the tool flow consults the ROS

message definition files here. Second, the resulting functions are inserted
into a gateway high-level synthesis template project. This HLS project is then
handled by the ReconROS tool flow similar to standard ReconROS HMNs

(cf. [50]). Besides the hardware generation procedure, this also includes the
start of a separate delegate at runtime.

ReconROS Toolflow Extension

build.cfg

Extract
Topic Names,

Message
Types, Slots

Generate
Memory
Transfer

Functions

ROS
Message
Definition

Files

HLS
Project

HLS
Synthesis IP Core

Gateway
Template

HLS
Project

Figure 5.8: Toolflow for the automatic generation of gateways. Taken from [49].

84 communication optimization in reconros

5.3.3 Performance Measurements

After describing the architecture and functionality of the gateway, in this
section, we evaluate the gateway performance through a synthetic setup.
The measurements aim to characterize situations where a gateway should
be preferred over an SMT and, thus, develop recommendations for the
communication mapping step.

All ROS 2 HMNs and the gateways used for performance measurements
have been implemented in C/C++ and synthesized to a hardware description
language (HDL) format with the high-level synthesis tool Vivado Vitis 2021.2.
The HDL codes and the ReconROS infrastructure were then synthesized
to an FPGA bitstream. All SMNs, including the software part of ReconROS,
have been compiled using gcc. We have leveraged the ZCU104 evaluation
board comprising an UltraScale+ MPSoC FPGA running Ubuntu Linux 20.04,
ReconROS, and ROS 2 galactic for the measurements.

2, 4, or 8
Nodes

(b)

ttrans,SW

HW or SW

HW
Node

HW
Node

SW
Node

Publisher
Node

HW
Node

HW
Node

SW
Node

2,4, or 8
Nodes

(a)

ttrans,HW0

ttrans,HWn-1

ttrans,SW

HW or SW

Publisher
Node

ttrans,HW0

ttrans,HWn-1

A A

Figure 5.9: Test setup comprising one publishing node (HW or SW), 2, 4, or 8
subscribing HMNs, and one subscribing SMN. Subfigure (a) shows a test
scenario with communication via a software-mapped topic, and (b)
shows a test scenario leveraging our proposed gateway. Taken from [49].

Figure 5.9 sketches the experimental setup. In Figure 5.9 (a), a publishing
node that is either a software-mapped or a HMN generates messages with
random data and publishes it to a topic A. The message type is Image
from the sensor message package of ROS 2 with image data of 10 kB, 100 kB,
1 MB, and 10 MB. A set of receiving nodes subscribe to topic A and copy
the received message into their local memory. The subscribing node set
comprises one SMN and 2, 4, or 8 HMNs. Figure 5.9(b) shows the same
setup but with a gateway A instead of an SMT A. The 12 experiments were
repeated 500 times, and the mean values of the measured transmission times
are reported.

Figure 5.10 shows the results for the hardware publisher node. The left
column of the figure reports the maximum transmission times to any of
the subscribing HMNs: ttrans,HW = max0≤i<n{ttrans,HWi}. The results show

5.3 gateways for hardware-mapped topics 85

3
no

de
s

 (2
 h

w
+

1
sw

)
5

no
de

s
 (4

 h
w

+
1

sw
)

9
no

de
s

 (8
 h

w
+

1
sw

)

Hardware to Hardware Hardware to Software

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

0.56 0.56

0.71

0.74

SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

3.36
2.85

2.78

2.66

SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

0.46 0.60

0.74

0.82

SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

4.53
3.54

4.34

4.42
SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

0.57 0.43
0.82

0.95

SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

1.94

5.31

7.38

7.95SMT Gateway

Figure 5.10: Measured maximum transfer times for hardware-to-hardware (left
column) and hardware-to-software (right column) communication and
the resulting speedups. Taken from [49].

significant speedups for the gateway compared to an SMT as soon as we have
more than one hardware-mapped subscribing node. The range of speedups
depends on the message size and, for the example of 8 HMNs, ranges from
1.94× for small messages to 7.95× for larger messages.

The right column of Figure 5.10 presents the transmission times for the
publishing HMN to the subscribing SMN. Due to its internal design, the
gateway introduces overhead for the hardware-to-software transmission.
This overhead is significant for smaller message sizes and results in larger
transmission times up to a factor of approximately 2. However, the overhead
reduces for larger message sizes and increasing HMNs, and the speedup
approaches 1×.

Figure 5.11 shows the results for the software publisher node. Again, the
left column of the figure displays the maximum transmission times to any of
the subscribing HMNs. The gateway overhead leads to speedups below 1×
for smaller message sizes. Still, we achieve speedups up to 3.79× for larger
message sizes, below those achieved for the hardware publisher node.

86 communication optimization in reconros

3
no

de
s

 (2
 h

w
+

1
sw

)
5

no
de

s
 (4

 h
w

+
1

sw
)

9
no

de
s

 (8
 h

w
+

1
sw

)

Software to Hardware Software to Software
10kB 100kB 1MB 10MB

10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

1.19 1.07
1.28

1.52

SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

0.40
0.62

0.99

1.10
SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

1.06 1.04
1.45

1.76

SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

0.58
1.07

1.77

1.97SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1
Ru

nt
im

e
(m

s)

1.06 1.11
1.64

2.05

SMT Gateway

10kB 100kB 1MB 10MB
10 4

10 3

10 2

10 1

Ru
nt

im
e

(m
s)

0.60
1.60

3.97

3.76SMT Gateway

Figure 5.11: Measured maximum transfer times for software-to-hardware (left col-
umn) and software-to-software (right column) communication and the
resulting speedups. Taken from [49].

The right column of Figure 5.11 presents the transmission times for the
publishing SMN to the subscribing SMN. Here, we achieve speedups for the
gateway for all measured message sizes and numbers of HMNs. The range of
speedups for software-to-software communication is from 1.06× to 2.05×.

In conclusion, publish-subscribe communication with larger message sizes
and multiple involved hardware-mapped subscriber nodes significantly
benefits from gateways since the required memory bandwidth on the MEMIF

is minimized in such situations. The benefits become less significant for
smaller message sizes and fewer HMNs.

5.4 communication mapping methodology

A ROS computation graph can be formally expressed as directed graph
G = (V , E), where the set of graph nodes V comprises both ROS nodes and
ROS topics, i.e., V = (N , T), and the set of graph edges E splits into edges
indicating a publish function and edges denoting a subscribe function, i.e.,
E = (Epub, Esub) with Epub = {(x, y) | x ∈ N , y ∈ T } and Esub = {(x, y) | x ∈

5.4 communication mapping methodology 87

1

2

8

7

3

9

5

4

10

11

A

B

D

C

E

6
1

2

8

7

3

9

5

4

10

11

A

B

D

C

E

6

a) Example computation graph b) Example computation graph after node mapping

1

2

8

7

3

9

5

4

10

11

A

D

C

6

c) Example computation graph after communication mapping
 with SMT and HMT

1

2

8

7

3

9

5

4

10

11D

6

d) Example computation graph after communication mapping
 with SMT, HMT, and gateways

E

Hardware-mapped
ROS node

Software-mapped
ROS node

B B

SMT GatewayHMT

C

E

A

Hardware-mapped
Subgraph

Figure 5.12: Step-wise example for node and communication mapping. Taken
from [49]

T , y ∈ N}. Additionally, we define for each topic t ∈ T the set of publishing
and subscribing ROS nodes as E t

pub = {(x, y) ∈ Epub | y = t} and E t
sub =

{(x, y) ∈ Esub | x = t}.
In our design flow, mapping a ROS application to a configurable SoC

comprises two subsequent steps: (i) node mapping and (ii) communication
mapping. Figure 5.12 presents these steps on an exemplary computation
graph.

Starting from the original computation graph in Figure 5.12(a), the node
mapping step assigns each node n ∈ N to either a hardware or a software
implementation. We denote the set of nodes mapped to hardware as NHW
and the set of nodes mapped to software as NSW and, obviously, the node
mapping must satisfy N = NHW ∪ NSW . We currently envision that the
developer decides whether to map a specific node to software or hardware.
This decision will depend on, e.g., whether an accelerated or energy-efficient

88 communication optimization in reconros

implementation is desirable and available for the node and whether there
is logic capacity left in the FPGA. Figure 5.12(b) shows the result of an
exemplary node mapping phase, where NHW = {1, 2, 3, 4, 5, 7, 10, 11} and
NSW = {6, 8, 9}.

The second step is communication mapping, where we assign each topic
t ∈ T an implementation in software, hardware, or as a gateway. We denote
the set of topics mapped to software as TSW , the set of topics mapped
to hardware as THW , and the set of topics mapped to a gateway as TGW .
Obviously, the communication mapping must satisfy T = TSW ∪THW ∪TGW .

The default mapping for topics is to the software since software-mapped
topics are the most flexible and can connect any number of software and
HMNs. However, if all topics of our running example were actually mapped
to software, there are overall ten edges to and from HMNs, three of them are
in Epub, and seven are in Esub. Each of these edges will lead to data transfer
buffered in the SoC’s main memory to or from the configurable logic. When
all HMNs execute in parallel, which is a desired scenario and the motivation
for hardware acceleration, all these transfers will have to share the available
memory bandwidth of ReconROS’ MEMIF.

Therefore, we optimize the communication mapping by identifying three
cases. First, we search for topics in the node-mapped computation graph
for which all the publishers and subscribers are mapped to software. For
such topics, the standard software implementation is selected. Formally, we
check for each topic t ∈ T the following condition: (∀(x, t) ∈ E t

pub : x ∈
NSW) ∧ (∀(t, y) ∈ E t

sub : y ∈ NSW). In our example, the condition only holds
for topic D.

Second, we identify topics in the node-mapped computation graph for
which all the publishers and subscribers are mapped to hardware. Such
topics will then be mapped to hardware, realized with dedicated hardware
components of the fpgaDDS layer [48]. Hardware-mapped topics provide
much higher communication bandwidth and reduced latency than software-
mapped topics. Formally, we check for each topic t ∈ T the following
condition: (∀(x, t) ∈ E t

pub : x ∈ NHW) ∧ (∀(t, y) ∈ E t
sub : y ∈ NHW). In our

example, the condition only holds for topic B.
The remaining topics, for which neither of the above conditions holds,

connect software and HMNs. Figure 5.12(c) shows the resulting computation
graph if software realizes such topics. The resulting communication map-
ping is TSW = {A, C, D, E} and THW = {B}. The figure further indicates
subgraphs that are mapped to hardware with dashed lines, and it can be
seen that the number of edges crossing the software-hardware boundary is
reduced from 10 to eight, two of them are in Epub, and six are in Esub.

However, inspecting the topics A, C, and E reveals that they connect to
more than one HMN of subscribers. Thus, according to the characteriza-
tion discussed in Section 5.3.3, it is beneficial, at least for larger message
sizes, to implement these topics as gateways. Figure 5.12(d) shows the re-
sulting computation graph mapping with TSW = {D}, THW = {B}, and
TGW = {A, C, E}. Again, the figure indicates subgraphs that are mapped to

5.5 evaluation 89

hardware with dashed lines, and the number of edges crossing the software-
hardware boundary is finally reduced to 3, one from gateway A to the SMN

8, one from gateway C to the SMN 6, and the last one from the SMN 9 to the
gateway E.

5.5 evaluation

This section reports on experiments with fpgaDDS. First, we describe the
experimental setup, followed by experiments with HMNs to demonstrate the
benefit of using fpgaDDS. Finally, we present measurements on a real-world
application of autonomous driving.

All HMNs have been implemented in C++ and synthesized to hardware
with the high-level synthesis tool Xilinx Vitis 2021.2. The computing platform
is a ZCU104 evaluation board comprising an UltraScale+ MPSoC FPGA run-
ning Ubuntu Linux 18.04, ReconROS, and ROS 2 dashing. The ReconROS
infrastructure and the HMNs run at 100 MHz. For the autonomous driving
example, we additionally use a desktop PC with an Intel Core i5-8000 CPU

running Ubuntu Linux 18.04 and ROS 2 dashing, connected to the FPGA

evaluation board via Gigabit Ethernet.
In the experiment, we have implemented two HMNs connected by a topic

and measured the time it took from the start of sending to the end of
receiving. Data transfers have been repeated 1000 times, and the average
values are reported. Table 5.1 presents the resulting transfer times tavg and
their standard deviation σ for HMNs using the software-mapped CycloneDDS
and the hardware-mapped fpgaDDS for different message sizes. The table
also lists the speedups achieved by fpgaDDS. The speedups show that the
overhead for using CycloneDDS dominates for small data sizes. However,
the speedup converges close to 2× for more extensive data sizes because
data has to be transferred twice over the MEMIF compared to one needed
transmission via the HMT. However, the measurements for CycloneDDS
represent the most optimistic case. With higher utilization of the MEMIF, the
transmission time increases as the nodes share MEMIFs bandwidth.

Message Size
CycloneDDS
tavg (σ) [ms]

fpgaDDS
tavg (σ) [ms]

Speedup

3 kB 0.06 (0.11) <0.01 (<0.01) 17.21×
12 kB 0.07 (0.06) 0.02 (<0.01) 4.71×
50 kB 0.19 (0.08) 0.06 (<0.01) 3.11×
196 kB 0.63 (0.04) 0.24 (<0.01) 2.54×
786 kB 2.34 (0.03) 0.98 (<0.01) 2.38×

3146 kB 9.24 (0.04) 3.93 (<0.01) 2.35×

Table 5.1: Communication times and speedup for CycloneDDS and fpgaDDS for
different message sizes.

90 communication optimization in reconros

Increasing the number of publishers and subscribers increases the transfer
time for CycloneDDS. For fpgaDDS, the transfer time only increases with
more publishers since the HMT arbitrates the incoming messages. However,
adding more subscribers in fpgaDDS does not influence the transfer time.

5.6 chapter conclusion

This chapter presents approaches for the optimization of communication
between nodes. Firstly, the extensions for the support of zero-copy trans-
missions reduce communication overhead. For the validation of these exten-
sions, we refer to the evaluation of the AutonomROS project in Chapter 6

(cf. Table 6.5), in which significant performance improvements are achieved
through the use of zero-copy communication. Secondly, fpgaDDS and its
gateway extension reduce communication overheads between HMNs and,
therefore, relax the interface between hardware and software while preserv-
ing the programming model of ROS 2. Besides the evaluation in this chapter,
the Turtlebot design example (cf. Section 6.2) demonstrates the advantages
of fpgaDDS and gateways in a more extensive application and validates
them for real-world scenarios. The formal representation of our communica-
tion mapping methodology 5.5 can be used for automatic mapping in our
framework in future work.

6
R E C O N R O S C A S E S T U D I E S

This chapter reports on different example applications realized using Re-
conROS.

The chapter starts with a Ball-on-plate demonstrator application in Sec-
tion 6.1, which was first mentioned in the master project of Christoph
Rueting [102]. In the follow-up master’s thesis [46], we have used parts
of the implementation and extended the physical setup by two additional
platforms. The author also extended the hardware-software codesign by
a Kalman filter in hardware and software and video input, output, and
processing. Finally, the implementation was redesigned using ReconROS
and used in the ReconROS TRETS publication [50]. The application demon-
strates ReconROS applicability for distributed systems across multiple SoCs.

The second demonstrator application in Section 6.2 of this chapter presents
an example of an autonomous driving architecture. The driving architecture
can follow a street lane and handle traffic lights during the drive so that it
can stop for red traffic lights and start when the light becomes green again.
The architecture was first mentioned in the IRC publication [52]. Further
extensions and adaptations followed for publication at the IROS [48] and
ICRAI [49] conference, for which hardware-mapped topics were used in the
first step, and the architecture was then expanded to include a gateway and
an ORB-SLAM component. The Turtlebot architecture presents a real-world
use-case scenario benefiting from the communication optimizations such as
fpgaDDS and gateways described in Chapter 5.

Finally, this chapter closes with Section 6.3 about AutonomROS. The
AutonomROS architecture was designed during a student project group at
Paderborn University. The architecture based on the powerful open-source
ROS 2 package Navigation 2 shows ReconROS-based hardware application
in combination with standard ROS 2 packages. The descriptions in this
section follow the publication accepted for publication at the IRC 2023 [47].
This application shows the compatibility of ReconROS with standard ROS
2 packages such as Nav2 and the advantages of zero-copy communication
(cf. Section 5.1) together with hardware acceleration.

6.1 ball on plate demonstrator

To showcase the suitability of ReconROS for distributed hardware-accelerated
ROS 2 applications, we present the mechatronics model [46] shown in Fig-

91

92 reconros case studies

ure 6.1, that we have physically implemented. Recently, there have been ap-
proaches for including reconfigurable hardware into distributed embedded
systems, e.g., ReCoNets [37], LMGS [13] or RSS [18], but these approaches
are not compatible with existing and widely-used software abstractions for
creating distributed robotics systems.

The model comprises three ball-on-plate stations that can balance a me-
chanical platform such that a ball thrown onto the platform does not fall off.
To this end, we employ a Stewart platform [107] that allows the system to
move an object in six degrees of freedom, including linear translations in
x, y, and z direction but also three rotations (pitch, roll, and yaw). Stewart
platforms perfectly suit high-dynamic mechatronics applications such as
flight simulators or telescopes. In our setup, we drive six servo motors by
pulse-width modulated signals to adjust corresponding angles between the
motor axes and the legs connecting to the platform, resulting in the desired
movement. To capture the position (x, y) of the ball on the platform, we use
a resistive touchscreen mounted on the surface of the platform.

Additionally, each ball-on-plate station has a monitor, and a camera
captures all stations.

The computing infrastructure includes three ZedBoards, as outlined in
Figure 6.1. Each ZedBoard has a Xilinx Zynq-7020 platform FPGA and runs
Ubuntu 18.04 and ReconROS based on ROS 2 dashing. The servo actuators
and touchscreen sensors are connected to ZedBoard-Main, the camera is
connected to ZedBoard-1, and the monitor inputs on the three ball-on-plate
stations are driven by a ZedBoard each. All compute platforms are connected
to an Ethernet network.

6.1.1 Architecture

The overall ROS 2 application splits into two parts: the control of the ball-on-
plate stations and a video processing chain. Figure 6.2 shows all involved
ROS 2 nodes with their communication objects. The control loop for a ball-
on-plate station comprises the four ROS 2 nodes Touch, Control, Inverse, and
Servo. The Touch node starts a new control cycle by reading the actual
position of the ball on the platform. This information is scaled and sent to
the Control node that implements a PID controller and a Kalman filter to
determine the desired rotations for the platform concerning the x and y axes.
The subsequent Inverse node applies inverse kinematics transformations to
determine the required angle for each of the six servo motors. Finally, the
Servo node converts the angles into pulse width modulated signals to drive
the motors.

The video processing chain includes ROS 2 nodes for video input, HDMI
in, processing, Filter, and video output, HDMI out. The HDMI interface
implementation includes mechanisms for transporting image data from and
to the main memory without processor interaction by using AXI video direct
memory access (VDMA).

6.1 ball on plate demonstrator 93

All ROS 2 nodes use publish/subscribe mechanisms to communicate with
topics shown in Figure 6.2.

ZedBoard-2ZedBoard-1ZedBoard-Main

Servo
x6

Touch
Sensor Display

AXI GP0 IF

Servo
x6

Touch
Sensor Display

Servo
x6

Touch
Sensor Display

Ball-on-Plate 1

HDMI
out

Ball-on-Plate 2 Ball-on-Plate 3

Software Hardware

Touch
1

Touch
2

Touch
3

Inverse
2

Servo
1

Servo
2

Servo
3

HDMI
out

HardwareSoftware HardwareSoftware

GbE

Inverse
1

Control
1

Control
2

HDMI
in

HDMI
out

Control
3

Inverse
3

Filter

HDMI
out

HDMI
in

HDMI
out

HDMI
in

HDMI
out

HDMI
in

Figure 6.1: Mechatronics model based on three ball-on-plate stations with Stewart
platforms. Adapted from [50].

6.1.2 Evaluation

We have realized all ROS 2 nodes in software and hardware. Table 6.1 lists
the raw node runtimes. The hardware implementations of the inverse kine-
matics and the filter nodes can exploit low-level parallelism and achieve
speedups. All other nodes are either more control-flow intensive, exhibit
little computation, or are bound by the memory bandwidth and are thus
better mapped to software.

Given that both software and hardware implementations for the ROS 2

nodes are available, developers can efficiently distribute the nodes across
the boards in the network, change the mapping of nodes in the project
configuration files, and rebuild the system. One specific example of such a
mapping of nodes is indicated in Figure 6.1. With this mapping, the sampling
time of the Touch node and, thus, the control loop could be set to 20 ms,
which results in relatively smooth movements of the Stewart platforms.
Table 6.2 lists the resources required for this specific mapping, including the
actual HMNs, the necessary ReconROS infrastructure, and the components
needed for the HDMI input and output interfaces.

The implemented system is not a hard real-time system with a guaranteed
sampling period of 20 ms. Creating a hard real-time system would require

94 reconros case studies

Touch
1

Control
1

Inverse
1

Servo
1

T: ball_position_1

T: rotation_1

T: angle_1

Touch
2

Control
2

Inverse
2

Servo
2

T: ball_position_2

T: rotation_2

T: angle_2

Touch
3

Control
3

Inverse
3

Servo
3

T: ball_position_3

T: rotation_3

T: angle_3

HDMI
In

T: img_raw

Filter

HDMI
Out 1

HDMI
Out 2

HDMI
Out 3

T: img_filtered

Figure 6.2: ROS 2 application with node and communication objects for the mecha-
tronics model shown in Figure 6.1. Adapted from [50].

ROS 2 node
traw−node−SW

[ms]
traw−node−HW

[ms]
Sraw−node

Servo 0.001 < 0.001 ≈1×
Control 0.017 0.030 0.57×
Inverse 1.430 0.196 7.30×
Touch 0.001 < 0.001 ≈1×

HDMI In 5.160 18.460 0.28×
HDMI Out 4.590 18.400 0.25×
Filter 37.530 22.280 1.68×

Table 6.1: Runtimes for the raw ROS 2 nodes of the mechatronics example in software
and hardware. Taken from [50].

modifying ReconROS and the underlying ROS 2 and Linux layers and
substituting Ethernet communication with a real-time version, which is not
part of this thesis.

Moreover, this example also does not address the optimization of the
mapping of nodes between hardware and software and across the FPGA

board. However, to demonstrate the trade-offs involved, we have created
three mappings of the mechatronics application and measured the process-
ing times of the three control loops for 300 sampling periods. Figure 6.3
displays the relative frequencies for the resulting processing times for all
three control loops, i.e., for the three Stewart platforms (columns 1-3) and
three different ROS 2 mappings (rows 1-3). The figure shows the processing
time frequencies from 0 to 20 ms and provides the percentage of missed
deadlines, where the deadline has been set to 20 ms.

6.1 ball on plate demonstrator 95

HW
-S

W

 d
ist

rib
ut

ed

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(0

.0
0%

 D
M

)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

Ba
ll-

on
-p

la
te

-0

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(0

.2
5%

 D
M

)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

Ba
ll-

on
-p

la
te

-1

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(8

.1
5%

 D
M

)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

Ba
ll-

on
-p

la
te

-2

SW

 d
ist

rib
ut

ed

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(2

.6
6%

 D
M

)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(1

4.
63

%
 D

M
)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(0

.8
0%

 D
M

)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

Al
l S

W

 Z
ed

bo
ar

d
M

ai
n

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(4

5.
95

%
 D

M
)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(7

6.
01

%
 D

M
)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

0
10

20
Co

nt
ro

l l
oo

p
pr

oc
es

sin
g

 ti
m

e
[m

s]
(8

9.
19

%
 D

M
)

0.
0%

10
.0

%

20
.0

%

Rel. Frequency

Fi
gu

re
6
.3

:R
el

at
iv

e
fr

eq
ue

nc
ie

s
of

m
ea

su
re

d
pr

oc
es

si
ng

ti
m

es
fo

r
th

e
th

re
e

co
nt

ro
lp

at
hs

(T
ou

ch
→

C
on

tr
ol
→

In
ve

rs
e→

Se
rv

o)
an

d
th

re
e

di
ff

er
en

t
no

de
m

ap
pi

ng
s

(D
M

=
D

ea
dl

in
e

M
is

se
d

[%
])

.T
ak

en
fr

om
[5

0
].

96 reconros case studies

Board FPGA Slice LUTs DSP BRAM

Zedboard Main Zynq-7020 13467 (25.31%) 0 (0.00%) 3 (2.14%)

Zedboard 1 Zynq-7020 13235 (24.88%) 77 (35.00%) 3 (2.14%)

Zedboard 2 Zynq-7020 13031 (24.49%) 77 (35.00%) 3 (2.14%)

Table 6.2: Resource usage and utilization (in % of the Xilinx Zynq 7020) for the
three involved FPGA boards. Resource figures are reported for slice LUTs,
DSP, and BRAM. Taken from [50].

The first row uses the mapping from Figure 6.1, which distributes the
nodes over all three FPGA boards, software, and hardware. This mapping
reaches all deadlines for platform 1, misses 0.25% of the deadlines for
platform 2, and 8.15% for platform 3. The second row shows the same
distribution of nodes across the three FPGA boards but maps all nodes to
software. In this case, the fraction of missed deadlines is relatively low on
platforms 1 and 3, and a value of 14.63% somewhat higher on platform 2.
Finally, the mapping of row 3 places all nodes in software on Zedboard-Main
with the result that most of the deadlines are missed. The Stewart platforms
for mappings 1 and 2 move relatively smoothly, but for mapping 3, the
platforms show very jerky movements, making the application unusable.

6.2 turtlebot 3 autorace

In this application example, we elaborate on an architecture for an au-
tonomous driving application. The Turtlebot auto race challenge inspires
this application, which follows a street lane and handles traffic lights during
the drive. The application was used in an example application in several
publications [48, 49, 52] and was extended step-wise. The first version of
the application was presented in the IRC publication [52] to demonstrate
a use case of the ReconROS executor for a real-world scenario. In this
implementation, the ReconROS executor changed between two states of
the robot: driving or waiting for a green traffic light. Then, the application
was redesigned for the usage of fpgaDDS to optimize the computational
performance of the application. Since fpgaDDS supports static-mapped
hardware nodes only, the ReconROS executor was removed. In its final
implementation, the application was extended by the popular ORB-SLAM 3

algorithm [16] to demonstrate the benefits of gateways for hardware-mapped
topics.

6.2.1 Architecture

The target robot is the Turtlebot 3 platform, comprising a 0.3-megapixel
color camera (640x480 pixels) for lane and traffic light detection.

6.2 turtlebot 3 autorace 97

Compen-
sation

Gaussian
Blur Polyfit

Green
Traffic Light
Detection

Red Traffic
Light

Detection

Lane
Control

Camera Image

Robot Control

Lane
Planner

E

F

ROS TopicROS Node

D

CB

A

ORB-
SLAM2 Trajectory

Figure 6.4: Computation graph for the autonomous vehicle example. Taken
from [49].

Figure 6.4-a displays the computational graph for the application. The
only input of the computation graph is the camera image of the robot. The
Image Compensation node calculates a histogram of the input image and
uses it to remove outlier pixels. The resulting image is then published to
Topic A. The Gaussian Blur node subscribes to the image data, applies a
low-pass filter, and forwards the result to the image projection node through
Topic B. The Image Projection node applies a warp transformation for an
orthogonal view of the lane, then resizes the image to 1000x600 pixels. Lane
Planner computes color space conversation to the HSV color space. The node
generates a mask for yellow and white pixels from the transformed image
by checking pixel-wise for specific ranges. After combining both masks, the
perspective of the combined mask is transformed into a bird’s view. The
resulting image is published on the Topic C. The Polyfit node subscribes to
that topic and generates an approximation of the lane out of it, solving a
least-squares problem. Second, we have extended the computation graph
compared to former versions by a node implementing the popular ORB-
SLAM 3 algorithm [16] for creating a map of the environment. Without
using gateways for hardware-mapped topics, the subscription of the output
of the Image Compensation node would result in falling back to standard ROS

2 communication for the Topic A and, therefore, potentially slow down the
application due to memory transfer overheads.

98 reconros case studies

In addition to the Gaussian Blur node, the Red Traffic Light Detection and
the Green Traffic Light nodes subscribe to Topic A. Both nodes transform the
image into the HSV colorspace and then detect a red or green traffic light. If
a red traffic light is detected, the node publishes a stop command to Topic
E, which leads to a stop of the robot by the lane control node. Additionally,
that command activates green traffic light detection. When a green light is
detected, the node publishes a start command to Topic F, which activates the
lane control node again.

6.2.2 Evaluation

We have implemented and evaluated the application example in a hardware-
in-the-loop (HiL) environment. We have used Gazebo under Ubuntu 20.04

for the application evaluation with ROS 2 galactic running on a desktop PC
connected via Gigabit Ethernet to a ZCU104 evaluation board. The setup for
this experiment is shown in Figure 6.5.

Hardware
(ZCU104 Board)

Autonomous
Vehicle Example

HiL Simulator
(Desktop PC)

Gazebo
Race Track
Simulation

Mission
Control
Node

Gigabit
Ethernet

Camera Image

Robot Control Robot Position
Data

Simulation Control

ROS 2 Topic Gazebo
Software

ROS 2
ApplicationROS 2 Service

Figure 6.5: Overview of the HiL simulation environment for the application. Taken
from [52].

The implementation of the control algorithm of the robot was partly
inspired by the official Turtlebot Autorace 2020 ROS package [117], but has
been entirely rewritten in C++. The desktop PC with Intel Core i5-8000 CPU

performs the task of a HiL simulator and runs Gazebo [31], an open-source
simulator for 3D robotics applications, to simulate the vehicle’s environment
on a racetrack. Similar to the desktop PC, the evaluation board runs Ubuntu
20.04 with ROS 2 galactic and ReconROS. The ZCU104 FPGA board acts as
the robotic control board and executes the applications shown in Figure 6.4.

The simulator provides several interfaces for interacting with the robot
and the robot’s environment for modifying and controlling during runtime.
However, we have changed the standard simulated environment of the robot
to an urban environment by adding buildings. The resulting environment

6.2 turtlebot 3 autorace 99

Figure 6.6: Simulated Gazebo environment based on a modified version of the
official Turtlebot Autorace 2020 challenge. In addition to the environ-
ment, the housing of the Turtlebot 3 was simplified to achieve a better
simulation performance.

is shown in Figure 6.6. The buildings on the sides of the roads allow the
ORB-SLAM3 algorithm to detect remarkable key points for creating a map.

The Image Compensation node of Figure 6.4 subscribes to camera image
data from the Gazebo simulation, and the Lane Control node publishes robot
control data through gigabit ethernet to the simulator. A Python-based
mission control node subscribes to the robot’s actual position data and
derives simulation control commands for simulation control.

Compen-
sation

Gaussian
Blur Polyfit

Camera Image

Robot Control

Lane
Planner

HMTHW-mapped
Node

Lane
Control

Green
Light

Detection

Red Light
Detection !

B C

D
E

F

FIFO

A

Figure 6.7: Architecture graph for the autonomous vehicle example using fpgaDDS
without ORB-SLAM3. Taken from [48].

100 reconros case studies

For the demonstration of the performance of fpgaDDS, we have imple-
mented the computation graph without the ORB-SLAM node. Since the
ORB-SLAM3 node is too complex for a redevelopment in hardware, it will
be removed for the first step of the demonstration. Therefore, we have im-
plemented the ROS 2 application of Figure 6.4 in three different versions: (i)
Software, where nodes run on the CPU based on CycloneDDS for commu-
nication, (ii) hardware, where all nodes are implemented using high-level
synthesis but still use CycloneDDS for communication, and (iii) hardware,
where the nodes use our fpgaDDS. The architecture graph for the third
version is sketched in Figure 6.7. In addition, the subscribers of HMT Topic
E and F are equipped with buffers to enable asynchronous communication
via these HMTs.

The software implementation does not use any reconfigurable logic re-
sources. Table 6.3 summarizes the resource utilization of the reconfigurable
fabric for the hardware implementations. The table lists the resource types
lookup-tables (CLBs), dedicated memory blocks (BRAM, UltraRAM (URAM)),
and arithmetic function blocks (DSP). The central insight from Table 6.3 is
that fpgaDDS does not require more logic resources than the version with
CycloneDDS. The higher logic consumption is because the AXIS-based com-
munication architecture requires relatively few logic resources. CycloneDDS,
on the other hand, demands substantially more CLBs for implementing
in-node buffers.

Implementation CLBs BRAM URAM DSPs

Hardware
(CycloneDDS)

134252

(58%)
250.5
(80%)

95

(99%)
230

(13%)
Hardware
(fpgaDDS)

44939

(20%)
255.0
(82%)

91

(95%)
230

(13%)

Table 6.3: Resource utilization of the hardware implementations (% of the used
XCZU7EV-2FFVC1156)

To evaluate the performance of the different communication middlewares,
we have measured the execution times of the node chain α indicated as a red
dashed line in Figure 6.7. The node chain starts with the image compensation
node and ends with the lane control node. We have selected this chain of
nodes since it subsumes most nodes regularly executed in the lane-following
mode of the vehicle and feeds the topics periodically with message data.
In contrast, topics E and F receive data only in the event of detected red or
green traffic lights.

We have determined the execution of time node chain α by calculating
the difference between the publishing time of the lane control node and the
subscription time of the image compensation node. Again, we repeat the
experiments 1000 times and report on the average and the standard deviation
in Table 6.4. Additionally, the table presents the speedups achieved over a
pure software implementation. For example, implementing the ROS nodes in

6.2 turtlebot 3 autorace 101

hardware but keeping the software-based CycloneDDS results in a speedup
of 2.48×. Mapping also communication to hardware with fpgaDDS gives
a speedup of 13.34×. Furthermore, with fpgaDDS, the standard deviation,
which relates to jitter, reduces by two orders of magnitude.

Implementation tavg (σ) [ms] Speedup

Software
(CycloneDDS)

274.44 (14.96) 1.00×

Hardware
(CycloneDDS)

110.72 (07.73) 2.48×

Hardware
(fpgaDDS)

20.58 (00.13) 13.34×

Table 6.4: Execution times and speedups for node chain α of Figure 6.7 and different
implementation variants.

In the following, we will consider the architecture from Figure 6.4, includ-
ing the ORB-SLAM 3 node. Without gateways, communication on topic A
would now lead to a fallback to standard ROS 2 communication, since now
not only HMNs interact with the topic.

Compen-
sation

Gaussian
Blur Polyfit

Green
Traffic Light
Detection

Red Traffic
Light

Detection

Lane
Control

Camera Image

Robot Control

Lane
Planner

E

F

ROS TopicROS Node

D

CB

A

Compen-
sation

Gaussian
Blur Polyfit

Camera Image

Robot Control

Lane
Planner

HMT
HW-mapped

Node

(a) Application Computation Graph

(b) Computation Graph after Task and Graph Mapping

Lane
Control

Green
Light

Detection

Red Light
Detection !

ORB-
SLAM2 Trajectory

ORB-
SLAM Trajectory

SW-mapped
Node SMT

B C

D
E

F

A

Gateway FIFO

Figure 6.8: Architecture graph for the autonomous vehicle example including ORB-
SLAM3 using fpgaDDS and gateways. Taken from [49].

For the mentioned showcase, we have implemented the computation
graph in two versions: The first version uses a hardware-mapped topic
gateway to map topic A into the hardware domain. We use standard ROS 2

communication for the second version. For both versions, we have measured

102 reconros case studies

the execution time of the node chain α (red dotted line in Figure 6.8). For the
implementation using standard ROS 2 communication for topic A, the mean
execution time for the node chain is 28.264 ms with a standard deviation of
3.21 ms. For the implementation leveraging the proposed gateway, we have
measured a mean execution time of 20.270 ms and a standard deviation of
0.239 ms. In summary, we achieved an average speedup of 1.4× and a one-
order of magnitude reduced standard deviation and, therefore, validated
the concept of gateways in a real-world example scenario.

6.3 autonomros

This section presents AutonomROS, an autonomous driving unit based
on ReconROS. AutonomROS serves as a blueprint for a more extensive
ReconROS-based application combining state-of-the-art open-source ROS

2 packages, custom-developed ROS 2 SMNs, and ROS 2 nodes completely
mapped to hardware (HMNs). On the one hand, AutonomROS uses zero-
copy communication based on Iceoryx (cf. Section 5.1) for ReconROS, which
improves the performance of shared-memory inter-process communication
between HMNs and SMNs. On the other hand, AutonomROS demonstrates
hardware acceleration for the functions of point cloud computation, obstacle
detection, and adoption lane following. We show that AutonomROS is
infeasible on the selected system-on-chip without hardware acceleration. We
show the suitability of ReconROS for developing larger robotics applications
comprising existing software packages, ROS 2 SMNs, and nodes accelerated
in hardware.

6.3.1 Architecture

Figure 6.9 shows the top-level overview of the architecture of the Autonom-
ROS autonomous driving unit. Besides its indented functionality, the archi-
tecture also aims to demonstrate that our ReconROS framework for creating
robotics applications enables efficient hardware acceleration while maintain-
ing the programming abstractions of ROS 2 and the ability to integrate larger
ROS 2 software packages.

AutonomROS comprises seven main components: The Obstacle Detection
component and its preprocessing component Point Cloud Generation detect
obstacles in front of the car, and the Lane detection analyzes lanes. The Navi-
gation Stack subsequently uses this information, which sets commands for
steering control and the desired speed. The Localization component fuses
different external sensors, e.g., inertial measurement units or wheel encoders,
that provide information about the actual movement and the current posi-
tion based on a static map. The Vehicle Communication component handles
communication with the infrastructure around the car, e.g., a traffic light
controller. It uses information about the vehicle’s actual position from the
Localization component to determine if the car is approaching an intersection.
An entrance request is sent if the vehicle wants to enter an intersection.

6.3 autonomros 103

Autonomous Driving Unit

Traffic Light
Information

Traffic Light
Request

Motion
Information

Vehicle
Communication

Traffic Light
Information

Traffic Light
Request

« delegate » « delegate »

Cruise
control

Navigation
Stack

Lane
Detection

Localization

Motion
Information

« delegate »

Localization
Information

Intersection
Information

Current
Speed

Steering
Control

Command

Desired
Speed

Color
Information

Color
Information

Lane
Information

Point Cloud
Generation

Obstacle
Detection

Depth
Information

Depth
Information

« delegate »

Point
Cloud

Obstacle
Information

Steering
Control

Command

Engine
Control

Command

« delegate »

Engine
Control

Command

« delegate »

« delegate »

ROS 2 or
ReconROS
(software)

ReconROS
(hardware)

Standard
ROS 2 package
(software)

Figure 6.9: Architecture of the AutonomROS autonomous driving unit. Hardware-
accelerated components are highlighted in blue color. Taken from [47].

Eventually, the vehicle is allowed to enter the intersection. This permission is
provided to the Navigation Stack component. The Cruise Control component
controls the car’s speed in a control loop leveraging a PID controller. The
reference value of the control loop is the desired speed from the Navigation
Stack. The difference between this reference value and the actual speed
from the Localization component serves as the measured error for the PID

104 reconros case studies

controller. The output of the controller is forwarded to the engine of the
vehicle.

Three of the components, Point Cloud Generation, Obstacle Detection, Lane
Detection, show high computational demands with significant amounts of
data processed and are thus suitable for hardware acceleration. We discuss
these components in more detail during this chapter. These components are
developed in C/C++ and can either be compiled using GCC for software
execution or synthesized with Xilinx Vitis HLS for hardware execution.
Except for the communication with the traffic light, all communication
is realized using standard ROS 2 publish-subscribe communication. The
communication between the car and traffic lights relies on MQTT (Message
Queuing Telemetry Transport).

Three more components, Localization, Vehicle Communication, and Cruise
Control, are custom-designed for AutonomROS and implemented as ROS 2

software nodes. Finally, the component Navigation Stack is based on Nav2,
an open-source ROS 2 package.

The Point Cloud Generation component receives depth information from
an external sensor, e.g., a 3D camera, and calculates a point cloud from the
depth and corresponding color images. The Obstacle Detection component
uses the resulting point cloud to detect obstacles in front of the car. Calculat-
ing a 3D point cloud involves analyzing and processing a depth image to
generate a comprehensive representation of a physical object or environment
in 3D. For point cloud computation, the first step is to merge the depth and
the color image. Since pixels in the depth image are independent, this task
can be easily parallelized and is ideally suited for hardware acceleration
with ReconROS.

Our hardware implementation of the component initially receives the
camera’s projection matrix P as shown in Equation 6.1. This matrix is needed
to transform pixels from the depth image into the 3D world. It comprises the
focal lengths (f x, f y), the principal point (cx, cy), and information about the
relative position of the second camera to the first (Tx, Ty) [15]. The camera’s
wrapper node publishes the matrix as a ROS 2 CameraInfo message. We need
to gather this matrix only once before the actual runtime loop starts because
the matrix does not change as long as the camera is not switched.

P =

 f x 0 cx Tx

0 f y cy Ty

0 0 1 0

 (6.1)

In the runtime loop, we transform all pixels of an incoming image with
their coordinates x, y, and depth w to their 3D world coordinates X, Y,
and Z. To this end, we first determine intermediate variables u = x · w and
v = y · w and then apply Equations 6.2 - 6.4, which are taken from the
description of the CameraInfo message of ROS [15].

6.3 autonomros 105

X =
u − cx · w − Tx

f x
(6.2)

Y =
v − cy · w − Ty

f y
(6.3)

Z = w (6.4)

Obstacle detection is typically done by computing a cost map layer based
on the generated point cloud. Within the Navigation 2 package, a so-called
Voxel Layer constitutes the default cost map layer. However, the Voxel Layer
sequentially iterates over every point in the point cloud, which is slow. Thus,
we have decided to replace the Voxel Layer by (i) processing the obstacle
detection in hardware and (ii) handling the resulting data in the Navigation
2 package by a customized cost map layer.

The process of converting the point cloud into an obstacle grid is split into
the following four steps: First, we transform the image from the camera’s
coordinate system into the car’s base coordinate system based on a fixed
transformation matrix. Second, we select all points in a predefined volume
in front of the car and consider only the points in this "obstacle box" in the
following steps. Since points higher than the car and points far away from
the front or the sides of the vehicle need not be considered, this selection
helps save on computations. Third, we project the points within the obstacle
box to the ground, i.e., to the xy-plane. Finally, we discretize the obstacle box
to a grid and assign to each grid cell the number of points of the original
point cloud that map to the cell. The discretization reduces the required
memory for representing obstacles from 4.7 MB for the point cloud to 234
Byte for the grid. In addition, the discretization reduces noise from the
camera’s depth sensor, which could result in false-positive detections of
obstacles.

Most of the involved processing is performed pixel-parallel. The final grid
is published to a ROS 2 topic to make it usable for the custom cost map layer
in the Navigation 2 package that runs in the software.

The Lane Detection component includes multiple computationally expen-
sive image processing steps, e.g., the perspective and color thresholding
transformation. Our component implementation involves several steps and
relies on the open-source Vitis Image processing library [122].

The first step transforms the incoming image from the RGB to the HSV
color space. The transformation supports processing different color values in-
dependent of the environment’s saturation or lighting. The next step applies
color thresholding to identify the image’s white and yellow areas. Threshold-
ing for both colors is processed in parallel, resulting in one grayscale image
representing yellow and white pixels in the original image. The following
step performs a warp transformation to the grayscale image based on a fixed
transformation matrix to get a bird’s view of the represented scene. After
warp transformation, a decision is taken considering the number of pixels
for each of the two colors, whether to follow the street’s white or yellow
lane. Subsequent processing focuses on the selected color.

106 reconros case studies

Then, we perform a polynomial least-squares regression on the lane to
eliminate interfering falsely detected pixels and establish an equation for the
lane marking. Based on the N pixels with coordinates (xn, yn) that represent
the lane and k as the polynomial order to fit, we compute the desired
polynomial coefficients a⃗ = [a0 . . . ak]

T by solving the equations system as
shown in Equation 6.5.


N . . . ∑N

k=0 xk
n

...
. . .

...

∑N
n=0 xk

n . . . ∑N
k=0 x2k

n

 · a⃗ =

 ∑N
n=0 yn

...

∑N
n=0 ynxk

n

 (6.5)

For implementing the Lane Detection component, we have determined that
the second-order polynomial shown in Equation 6.6 is suitable.

fl(x) = a2 · x2 + a1 · x + a0 (6.6)

To estimate the final trajectory, the resulting polynomial has to be shifted
to the middle of the image and transformed into the car’s base coordinate
system.

For more efficient computation of the final trajectory, we use 30 equally-
distributed points along the height of the image (xi = i · 480/30, i = 0..29)
and compute 30 function values yi = fl(xi) (Equation 6.6).

Using the resulting 30 coordinates (yi, xi), the equation system 6.5 is
solved again for a target polynomial function ft(x) (Equation 6.7).

ft(x) = a3 · x3 + a2 · x2 + a1 · x + a0 (6.7)

6.3.2 Evaluation

In this section, we first report on the evaluation setup, including a real-
world model car used for driving experiments to test the functionality of
the AutonomROS driving unit. Then, we present architecture exploration
experiments to evaluate the performance of different DDS versions and the
hardware acceleration.

We execute AutonomROS on a Zynq UltraScale+ MPSoC ZCU104 evalua-
tion board. The board contains a system-on-chip architecture with a quad-
core ARM Cortex-A53, a dual-core Cortex-R5 real-time processor, a Mali-400

MP2 embedded graphics processing unit, and programmable logic (PL). We
used the quad-core CPU and the programmable logic for our evaluations.
The board runs Ubuntu 20.04 with ROS 2 galactic and ReconROS.

We have mounted the evaluation board on a model car platform shown
in Figure 6.10. The model car platform is based on a modified commer-
cial remote-controlled car in which the control and sensor systems have
been replaced. The actuators for the steering and the drive were preserved.

6.3 autonomros 107

Figure 6.10: Model car platform. Taken from [47].

Regarding sensors, the platform includes two cameras, one for color in-
formation and one 3D camera providing depth and color information, an
inertial measurement unit (IMU) for measuring acceleration data, and a
wheel encoder for gaining speed data. Regarding actuators, the platform
exhibits interfaces to drive the engine and the car’s steering. Further, the
evaluation board is equipped with a wireless LAN interface for data ex-
change with other vehicles and the infrastructure, e.g., the traffic lights
controller. We have set up a 5m × 5m grid of streets with two intersections
to mimic real-world environmental test conditions. Additionally, we have
set up a central infrastructure server that acts as a traffic lights controller
and handles requests for crossing intersections. We have built two model
cars to evaluate the AutonomROS functionality involving multiple vehicles.

Table 6.5 summarizes the results of the performance measurements for the
hardware-accelerated components Point Cloud Generation, Obstacle Detection,
and Lane Detection. For these processing components, the test setup includes
two ROS 2 nodes, one node publishing camera data, and one node including
the actual processing. The table lists different architecture configurations,
the total CPU load in % of four cores, the achieved frames per second (FPS),
and the turnaround time. The turnaround time represents the node’s raw
computation time, which, in contrast to the FPS metric, is not limited by the
input signal rate.

point cloud generation Two are two main observations: First, using
the zero-copy Iceoryx middleware is highly beneficial, as expected, for both
software and hardware mappings of the component. The CPU load and
the achieved FPS are improved by roughly 2×, and the turnaround time
decreased by 7.5× compared to standard ROS 2 communication. Adding

108 reconros case studies

Component Architecture configuration CPUa FPS
Turnaround

time (ms)

Point Cloud
Generation
@640x480

depth image

ReconROS SW
without Iceoryx

180–220 9–12 83–111

ReconROS HW
without Iceoryx

180–210 13–14 71–76

ReconROS SW
with Iceoryx

90–110 29–30 11–15

ReconROS HW
with Iceoryx

64–78 29–30 17–18

Obstacle
Detection

ReconROS SW
with Iceoryx

50–60 29–30 15–17

ReconROS HW
with Iceoryx

4–8 29–30 9–11

Lane
Detection

ROS 2 SW
with Iceoryx

170–190 29–30 27–31

ReconROS HW
with Iceoryx

24–38 29–30 9–18

aCPU load in % of 4 cores

Table 6.5: Performance measurements for the hardware-accelerated components of
AutonomROS. The table shows min/max values collected in multiple
measurements. Taken from [47].

hardware acceleration without a zero-copy communication middleware gives
a minimal advantage. Second, using Iceoryx and hardware acceleration fur-
ther reduces the CPU load, while the achieved FPS is bound by the camera’s
maximum frame rate of around 30 frames per second. The turnaround
time is slightly higher because of overheads for data transmission into the
programmable logic.

obstacle detection Here, we compare the software and hardware
configurations with Iceoryx. Both configurations achieve the maximum FPS.
For the HMN, the CPU utilization of the component decreases significantly
by a factor of 12.5×, and the turnaround time is about 1.6× lower compared
to the implementation in software.

lane detection We compare a ROS 2 software implementation with a
ReconROS hardware implementation. Compared to ReconROS SW imple-
mentation, this node relies on a standard ROS 2 C++ implementation, includ-
ing the ROS executor enabling the event-driven programming model. Again,
hardware acceleration significantly reduces the CPU load and turnaround
times.

The main conclusion of the measurements reported in Table 6.5 is that
for intra-platform communication, using a zero-copy communication mid-
dleware such as Iceoryx is of utmost importance to maintain performance.

6.4 chapter conclusion 109

Moreover, adequate hardware acceleration relies on such a middleware.
The reported measurements are only for two ROS 2 nodes. Mapping the
overall AutonomROS unit of Figure 6.9 entirely to software would exceed
the maximum CPU utilization of 400 %. Thus, running the presented Au-
tonomROS on the chosen system-on-chip platform is only possible with
hardware acceleration.

6.4 chapter conclusion

In this chapter, we have presented three advanced application examples
that make use of ReconROS. The ball-on-plate application uses a control
algorithm to demonstrate the ability to implement distributed applications,
which can be used beyond the robotics domain. ReconROS, therefore,
represents an alternative to distributed FPGA applications such as [13, 18, 37].
Our implementation for the Turtlebot 3 platform realizes a real-world use
case for ReconROS in combination with fpgaDDS and gateways. It shows
that intra-FPGA communication can significantly accelerate the overall
application. Finally, AutonomROS validates the compatibility of ReconROS
to accelerated selected functionality in combination with state-of-the-art ROS
2 packages such as Nav2 and shows the benefits of zero-copy communication
in hardware-accelerated applications.

7
C O N C L U S I O N A N D F U T U R E W O R K

Robotic computing on reconfigurable logic has become a research subject
in recent years. Using reconfigurable hardware in robotics applications
promises a faster and more energy-efficient computation for several applica-
tions compared to related computing platforms such as multi-core CPUs and
GPUs. However, the standardized integration of hardware accelerators into
ROS-based software applications and the preservation of the common ROS

programming model is essential to this research area and for developers’
acceptance. Therefore, this thesis presents ReconROS, a novel approach for
integrating reconfigurable hardware into ROS-based robotics applications.
The overall contribution comprises three main components:

• A new approach to integrating reconfigurable hardware into ROS-
based applications was introduced with the ReconROS framework, a
combination of ROS 2 and ReconOS. ReconROS enables the mapping of
ROS 2 nodes either to software running on a (multi-core) CPU or entirely
in the reconfigurable hardware. Compared to previously presented
approaches, ReconROS firstly allows the implementation of ROS 2

nodes entirely in hardware and offers several advantages, such as a
consistent programming model and more extensive support for ROS 2

communication paradigms such as services and actions. Additionally,
the framework benefits from features inherited from ReconOS, such as
hardware access to the virtual address area.

• While the ReconROS framework leverages static mapping to hardware,
the concept of the ReconROS executor proposes hardware callbacks
as a generalization of callbacks for event-driven programming and
therefore enables the dynamic mapping of ROS 2 nodes to hardware.
Hardware callbacks provide (sub-)functionality of ROS 2 nodes and are
loaded into a reconfigurable slot after a specific event happens during
runtime. Following this approach, the ReconROS executor acts as a
scheduler and placer by collecting ready-to-execute callbacks to deter-
mine a schedule and assigning the callbacks to a reconfigurable slot.
The executor abstracts scheduling and placement for the developer,
making this technology accessible to more users.

• Due to the CPU-centric architecture of ROS, all hardware acceleration
approaches for ROS suffer from limited data transmission bandwidths
between the main memory and the accelerator. In order to tackle

111

112 conclusion and future work

this bottleneck, this thesis proposes fpgaDDS, an intra-FPGA data
distribution service enabling the mapping of ROS 2 topics entirely to
hardware. Due to the generation of a dedicated streaming network per
ROS 2 topic in the FPGA, the communication bottleneck is reduced or
entirely removed. As an extension, gateways increase the application
area for hardware-mapped topics to ROS 2 topics with interacting
nodes in hardware and software. The ROS programming model is also
preserved here, such as using standardized message descriptions for
communication.

For all three components, improvements in the form of runtime reduc-
tions were measured and presented in this thesis. Furthermore, three case
studies demonstrate the applicability of this thesis and archive performance
improvements using one or more proposed components.

However, ReconROS’ broad approach to integrating reconfigurable hard-
ware into ROS-based robotics architectures opens up additional research
areas that can be explored in future work. The following list suggests some
possible research directions:

• In this thesis, a methodology was presented that maps a ROS computa-
tion to the reconfigurable hardware. However, this approach already
requires a ready mapping of ROS 2 nodes to software or hardware.
This mapping problem could be solved autonomously in future work
by solving ROS 2 nodes according to known methods such as exact
ILP (integer linear programming) or even heuristic approaches. The
user could give needed information about the nodes, or the tool flow
determines the information automatically.

• Due to the consistent programming model provided by ReconROS,
robotics developers can easily migrate ROS 2 nodes from hardware to
software and vice versa. Dynamic task migration could exploit this
property during runtime in future work.

• As shown in this thesis, reconfiguration overheads in a range of tens
of milliseconds prevent the usage of hardware callbacks for several
applications, e.g., control systems with cycle times in the same time
range. In order to open up these areas of application, scheduling
and placement would have to be much more sophisticated. Therefore,
future work could take up work on improvements on the ReconROS
executor to further reduce the reconfiguration overheads, e.g., by
(speculative) pre-loading of hardware callbacks in the reconfigurable
slots.

• fpgaDDS supports the mapping of ROS 2 topics with a fixed setting
of quality-of-service parameters to hardware. However, since ROS 2

supports additional communication paradigms and a much larger set
of QoS settings, future work could investigate how fpgaDDS could be
extended for support of ROS 2 services and actions and additional QoS

parameters.

conclusion and future work 113

• In this thesis, the ReconROS Executor and fpgaDDS have been pre-
sented as two separate contributions without intersection. Therefore,
the combination, i.e., the use of hardware-mapped topics for hardware
callbacks, would be a valuable extension of the presented approaches,
enabling efficient usage of resources with simultaneous efficient com-
munication.

B I B L I O G R A P H Y

[1] A. Agne, M. Happe, A. Keller, E. Lübbers, B. Plattner, M. Platzner,
and C. Plessl. “ReconOS: An Operating System Approach for Recon-
figurable Computing.” In: IEEE Micro 34.1 (2014), pages 60–71. doi:
10.1109/MM.2013.110.

[2] Andreas Agne, Marco Platzner, Christian Plessl, Markus Happe, and
Enno Lübbers. “ReconOS.” In: FPGAs for Software Programmers. Edited
by Dirk Koch, Frank Hannig, and Daniel Ziener. Cham: Springer
International Publishing, 2016, pages 227–244. isbn: 978-3-319-26408-
0. doi: 10.1007/978-3-319-26408-0_13.

[3] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and
R. Sass. “hthreads: a hardware/software co-designed multithreaded
RTOS kernel.” In: 2005 IEEE Conference on Emerging Technologies and
Factory Automation. Volume 2. 2005, 8 pp.–338. doi: 10.1109/ETFA.
2005.1612697.

[4] Bahar Asgari, Ramyad Hadidi, Nima Shoghi Ghaleshahi, and Hye-
soon Kim. “PISCES: Power-Aware Implementation of SLAM by Cus-
tomizing Efficient Sparse Algebra.” In: 2020 57th ACM/IEEE De-
sign Automation Conference (DAC). 2020, pages 1–6. doi: 10.1109/
DAC18072.2020.9218550.

[5] Takuya Azumi, Yuya Maruyama, and Shinpei Kato. “ROS-lite: ROS
Framework for NoC-Based Embedded Many-Core Platform.” In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2020, pages 4375–4382. doi: 10.1109/IROS45743.2020.
9340977.

[6] Mrinal R. Bachute and Javed M. Subhedar. “Autonomous Driving
Architectures: Insights of Machine Learning and Deep Learning Algo-
rithms.” In: Machine Learning with Applications 6 (2021), page 100164.
issn: 2666-8270. doi: 10.1016/j.mlwa.2021.100164.

[7] Sinan Barut, Marco Boneberger, Pouya Mohammadi, and Jochen J.
Steil. “Benchmarking Real-Time Capabilities of ROS 2 and OROCOS
for Robotics Applications.” In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). 2021, pages 708–714. doi: 10.1109/
ICRA48506.2021.9561026.

[8] Christophe Bédard, Pierre-Yves Lajoie, Giovanni Beltrame, and Michel
Dagenais. “Message Flow Analysis with Complex Causal Links for
Distributed ROS 2 Systems.” In: Robot. Auton. Syst. 161.C (2023). issn:
0921-8890. doi: 10.1016/j.robot.2022.104361.

115

https://doi.org/10.1109/MM.2013.110
https://doi.org/10.1007/978-3-319-26408-0_13
https://doi.org/10.1109/ETFA.2005.1612697
https://doi.org/10.1109/ETFA.2005.1612697
https://doi.org/10.1109/DAC18072.2020.9218550
https://doi.org/10.1109/DAC18072.2020.9218550
https://doi.org/10.1109/IROS45743.2020.9340977
https://doi.org/10.1109/IROS45743.2020.9340977
https://doi.org/10.1016/j.mlwa.2021.100164
https://doi.org/10.1109/ICRA48506.2021.9561026
https://doi.org/10.1109/ICRA48506.2021.9561026
https://doi.org/10.1016/j.robot.2022.104361

116 bibliography

[9] Kaiwalya Belsare et al. “Micro-ROS.” In: Robot Operating System
(ROS): The Complete Reference (Volume 7). Edited by Anis Koubaa.
Cham: Springer International Publishing, 2023, pages 3–55. isbn:
978-3-031-09062-2. doi: 10.1007/978-3-031-09062-2.

[10] Tobias Betz, Maximilian Schmeller, Andreas Korb, and Johannes Betz.
“Latency Measurement for Autonomous Driving Software Using
Data Flow Extraction.” In: 2023 IEEE Intelligent Vehicles Symposium
(IV). 2023, pages 1–8. doi: 10.1109/IV55152.2023.10186686.

[11] Tobias Blass, Arne Hamann, Ralph Lange, Dirk Ziegenbein, and
Björn B. Brandenburg. “Automatic Latency Management for ROS
2: Benefits, Challenges, and Open Problems.” In: 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium (RTAS).
2021, pages 264–277. doi: 10.1109/RTAS52030.2021.00029.

[12] Tobias Blaß, Daniel Casini, Sergey Bozhko, and Björn B. Brandenburg.
“A ROS 2 Response-Time Analysis Exploiting Starvation Freedom
and Execution-Time Variance.” In: 2021 IEEE Real-Time Systems Sym-
posium (RTSS). 2021, pages 41–53. doi: 10.1109/RTSS52674.2021.
00016.

[13] Christophe Bobda, Kevin Cheng, Felix Mühlbauer, Klaus Drechsler,
Jan Schulte, Dominik Murr, and Camel Tanougast. “Enabling self-
organization in embedded systems with reconfigurable hardware.”
In: International Journal of Reconfigurable Computing (2009). doi: 10.
1155/2009/161458.

[14] Christian Brugger, Lorenzo Dal’Aqua, Javier Alejandro Varela, Chris-
tian De Schryver, Mohammadsadegh Sadri, Norbert Wehn, Martin
Klein, and Michael Siegrist. “A quantitative cross-architecture study
of morphological image processing on CPUs, GPUs, and FPGAs.” In:
2015 IEEE Symposium on Computer Applications Industrial Electronics
(ISCAIE). 2015, pages 201–206. doi: 10.1109/ISCAIE.2015.7298356.

[15] CameraInfo Message Specification. http://docs.ros.org/en/melodic/
api/sensor_msgs/html/msg/CameraInfo.html. Accessed: 2023-11-
16.

[16] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.
M. Montiel, and Juan D. Tardós. “ORB-SLAM3: An Accurate Open-
Source Library for Visual, Visual–Inertial, and Multimap SLAM.”
In: IEEE Transactions on Robotics 37.6 (2021), pages 1874–1890. doi:
10.1109/TRO.2021.3075644.

[17] Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B. Branden-
burg. “Response-Time Analysis of ROS 2 Processing Chains Under
Reservation-Based Scheduling.” In: 31st Euromicro Conference on Real-
Time Systems (ECRTS 2019). Edited by Sophie Quinton. Volume 133.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019,

https://doi.org/10.1007/978-3-031-09062-2
https://doi.org/10.1109/IV55152.2023.10186686
https://doi.org/10.1109/RTAS52030.2021.00029
https://doi.org/10.1109/RTSS52674.2021.00016
https://doi.org/10.1109/RTSS52674.2021.00016
https://doi.org/10.1155/2009/161458
https://doi.org/10.1155/2009/161458
https://doi.org/10.1109/ISCAIE.2015.7298356
http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html
http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/CameraInfo.html
https://doi.org/10.1109/TRO.2021.3075644

bibliography 117

6:1–6:23. isbn: 978-3-95977-110-8. doi: 10.4230/LIPIcs.ECRTS.2019.
6.

[18] Kevin Cheng, Ali Akbar Zarezadeh, Felix Muhlbauer, Camel Tanougast,
and Christophe Bobda. “Auto-reconfiguration on self-organized intel-
ligent platform.” In: 2010 NASA/ESA Conference on Adaptive Hardware
and Systems. 2010, pages 309–316. doi: 10.1109/AHS.2010.5546243.

[19] Hiroyuki Chishiro, Kazutoshi Suito, Tsutomu Ito, Seiya Maeda, Takuya
Azumi, Kenji Funaoka, and Shinpei Kato. “Towards Heterogeneous
Computing Platforms for Autonomous Driving.” In: 2019 IEEE In-
ternational Conference on Embedded Software and Systems (ICESS). 2019,
pages 1–8. doi: 10.1109/ICESS.2019.8782446.

[20] Hyunjong Choi, Yecheng Xiang, and Hyoseung Kim. “PiCAS: New
Design of Priority-Driven Chain-Aware Scheduling for ROS2.” In:
2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2021, pages 251–263. doi: 10.1109/RTAS52030.
2021.00028.

[21] Lennart Clausing and Marco Platzner. “ReconOS64: A Hardware
Operating System for Modern Platform FPGAs with 64-Bit Support.”
In: 2022 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). 2022, pages 120–127. doi: 10.1109/
IPDPSW55747.2022.00029.

[22] Colcon Project Website. https://colcon.readthedocs.io/en/released/.
Accessed: 2023-11-16.

[23] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres
Takach. “An Introduction to High-Level Synthesis.” In: IEEE Design &
Test of Computers 26.4 (2009), pages 8–17. doi: 10.1109/MDT.2009.69.

[24] Ürün Dogan, Johann Edelbrunner, and Ioannis Iossifidis. “Autonomous
driving: A comparison of machine learning techniques by means of
the prediction of lane change behavior.” In: 2011 IEEE International
Conference on Robotics and Biomimetics. 2011, pages 1837–1843. doi:
10.1109/ROBIO.2011.6181557.

[25] Marcel Eckert, Dominik Meyer, Jan Haase, Bernd Klauer, et al. “Op-
erating system concepts for reconfigurable computing: review and
survey.” In: International Journal of Reconfigurable Computing 2016

(2016). doi: doi.org/10.1155/2016/2478907.

[26] Eclipse Cyclone DDS. https://github.com/eclipse-cyclonedds/
cyclonedds. Accessed: 2023-02-28.

[27] Marc Eisoldt, Marcel Flottmann, Julian Gaal, Steffen Hinderink, Juri
Vana, Marco Tassemeier, Marc Rothmann, Thomas Wiemann, and
Mario Porrmann. “ReconfROS: An approach for accelerating ROS
nodes on reconfigurable SoCs.” In: Microprocessors and Microsystems
94 (2022), page 104655. issn: 0141-9331. doi: 10.1016/j.micpro.2022.
104655.

https://doi.org/10.4230/LIPIcs.ECRTS.2019.6
https://doi.org/10.4230/LIPIcs.ECRTS.2019.6
https://doi.org/10.1109/AHS.2010.5546243
https://doi.org/10.1109/ICESS.2019.8782446
https://doi.org/10.1109/RTAS52030.2021.00028
https://doi.org/10.1109/RTAS52030.2021.00028
https://doi.org/10.1109/IPDPSW55747.2022.00029
https://doi.org/10.1109/IPDPSW55747.2022.00029
https://colcon.readthedocs.io/en/released/
https://doi.org/10.1109/MDT.2009.69
https://doi.org/10.1109/ROBIO.2011.6181557
https://doi.org/doi.org/10.1155/2016/2478907
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://doi.org/10.1016/j.micpro.2022.104655
https://doi.org/10.1016/j.micpro.2022.104655

118 bibliography

[28] Marc Eisoldt, Steffen Hinderink, Marco Tassemeier, Marcel Flottmann,
Juri Vana, Thomas Wiemann, Julian Gaal, Marc Rothmann, and Mario
Porrmann. “ReconfROS: Running ROS on Reconfigurable SoCs.” In:
Proc. 2021 Drone Systems Engineering and Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools Proceedings. DroneSE and RAPIDO
’21. Budapest, Hungary: Association for Computing Machinery, 2021,
16–21. isbn: 9781450389525. doi: 10.1145/3444950.3444959.

[29] J. Fernandez, B. Allen, P. Thulasiraman, and B. Bingham. “Perfor-
mance Study of the Robot Operating System 2 with QoS and Cy-
ber Security Settings.” In: 2020 IEEE International Systems Conference
(SysCon). 2020, pages 1–6. doi: 10.1109/SysCon47679.2020.9275872.

[30] FreeRTOS Website. https://www.freertos.org/index.html. Ac-
cessed: 2023-11-16.

[31] Gazebo Project Website. https://gazebosim.org/home. Accessed:
2023-11-16.

[32] Pablo Ghiglino and Guillermo Sarabia. “The ring-buffer ROS2 ex-
ecutor: a novel approach for real-time ROS2 Space applications.” In:
2023 IEEE Space Computing Conference (SCC). 2023, pages 80–85. doi:
10.1109/SCC57168.2023.00021.

[33] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Pearson, 2018.
isbn: 9780133356724.

[34] Harris Corner Detection. https://de.mathworks.com/help/visionhdl/
ug/corner-detection.html. Accessed: 2023-09-04.

[35] Chris Harris, Mike Stephens, et al. “A combined corner and edge
detector.” In: Alvey vision conference. Volume 15. 50. Citeseer. 1988,
pages 10–5244. doi: 10.5244/C.2.23.

[36] Kento Hasegawa, Kazunari Takasaki, Makoto Nishizawa, Ryota Ishikawa,
Kazushi Kawamura, and Nozomu Togawa. “Implementation of a
ROS-Based Autonomous Vehicle on an FPGA Board.” In: 2019 In-
ternational Conference on Field-Programmable Technology (ICFPT). 2019,
pages 457–460. doi: 10.1109/ICFPT47387.2019.00092.

[37] C. Haubelt, D. Koch, and J. Teich. “ReCoNet: modeling and imple-
mentation of fault tolerant distributed reconfigurable hardware.” In:
Proc. 16th Symposium on Integrated Circuits and Systems Design, 2003.
SBCCI 2003. 2003, pages 343–348. doi: 10.1109/SBCCI.2003.1232851.

[38] Jeffrey Ichnowski et al. “FogROS2: An Adaptive Platform for Cloud
and Fog Robotics Using ROS 2.” In: 2023 IEEE International Conference
on Robotics and Automation (ICRA). 2023, pages 5493–5500. doi: 10.
1109/ICRA48891.2023.10161307.

[39] Aws Ismail and Lesley Shannon. “FUSE: Front-End User Framework
for O/S Abstraction of Hardware Accelerators.” In: 2011 IEEE 19th
Annual International Symposium on Field-Programmable Custom Comput-
ing Machines. 2011, pages 170–177. doi: 10.1109/FCCM.2011.48.

https://doi.org/10.1145/3444950.3444959
https://doi.org/10.1109/SysCon47679.2020.9275872
https://www.freertos.org/index.html
https://gazebosim.org/home
https://doi.org/10.1109/SCC57168.2023.00021
https://de.mathworks.com/help/visionhdl/ug/corner-detection.html
https://de.mathworks.com/help/visionhdl/ug/corner-detection.html
https://doi.org/10.5244/C.2.23
https://doi.org/10.1109/ICFPT47387.2019.00092
https://doi.org/10.1109/SBCCI.2003.1232851
https://doi.org/10.1109/ICRA48891.2023.10161307
https://doi.org/10.1109/ICRA48891.2023.10161307
https://doi.org/10.1109/FCCM.2011.48

bibliography 119

[40] Martin Israel, Manuel Mende, and Stefan Keim. “UAVRC, a generic
MAV flight assistance software.” In: The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 40

(2015), pages 287–291. doi: 10.5194/isprsarchives-XL-1-W4-287-
2015.

[41] Xabier Iturbe, Khaled Benkrid, Ahmet T. Erdogan, Tughrul Arslan,
Mikel Azkarate, Imanol Martinez, and Antonio Perez. “R3TOS: A re-
liable reconfigurable real-time operating system.” In: 2010 NASA/ESA
Conference on Adaptive Hardware and Systems. 2010, pages 99–104. doi:
10.1109/AHS.2010.5546274.

[42] D.E. Knuth. The Art of Computer Programming: Volume 3: Sorting and
Searching. Pearson Education, 1998. isbn: 9780321635785.

[43] Tobias Kronauer, Joshwa Pohlmann, Maximilian Matthé, Till Sme-
jkal, and Gerhard Fettweis. “Latency Analysis of ROS2 Multi-Node
Systems.” In: 2021 IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems (MFI). 2021, pages 1–7. doi:
10.1109/MFI52462.2021.9591166.

[44] Takahisa Kuboichi, Atsushi Hasegawa, Bo Peng, Keita Miura, Kenji
Funaoka, Shinpei Kato, and Takuya Azumi. “CARET: Chain-Aware
ROS 2 Evaluation Tool.” In: 2022 IEEE 20th International Conference
on Embedded and Ubiquitous Computing (EUC). 2022, pages 1–8. doi:
10.1109/EUC57774.2022.00010.

[45] Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, and Takeshi
Ohkawa. “Automated Integration of High-Level Synthesis FPGA
Modules with ROS2 Systems.” In: 2020 International Conference on
Field-Programmable Technology (ICFPT). 2020, pages 292–293. doi:
ICFPT51103.2020.00052.

[46] Christian Lienen. “Implementing a Real-time System on a Platform
FPGA operated with ReconOS.” Master’s thesis. September 2019.

[47] Christian Lienen, Mathis Brede, Daniel Karger, Kevin Koch, Dal-
isha Logan, Janet Mazur, Alexander Philipp Nowosad, Alexander
Schnelle, Mohness Waizy, and Marco Platzner. AutonomROS: A
ReconROS-based Autonomonous Driving Unit. 2023.

[48] Christian Lienen, Sorel Horst Middeke, and Marco Platzner. “FP-
GADDS: An Intra-FPGA Data Distribution Service for ROS 2 Robotics
Applications.” In: 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2023, pages 6261–6266. doi: 10.1109/
IROS55552.2023.10341921.

[49] Christian Lienen, Alexander Philipp Nowosad, and Marco Platzner.
“Mapping and Optimizing Communication in ROS 2-based Appli-
cations on Configurable System-on-Chip Platforms.” In: Proceedings
of the 9th International Conference on Robotics and Artificial Intelligence
(ICRAI) (Accepted for Publication). 2023.

https://doi.org/10.5194/isprsarchives-XL-1-W4-287-2015
https://doi.org/10.5194/isprsarchives-XL-1-W4-287-2015
https://doi.org/10.1109/AHS.2010.5546274
https://doi.org/10.1109/MFI52462.2021.9591166
https://doi.org/10.1109/EUC57774.2022.00010
https://doi.org/ICFPT51103.2020.00052
https://doi.org/10.1109/IROS55552.2023.10341921
https://doi.org/10.1109/IROS55552.2023.10341921

120 bibliography

[50] Christian Lienen and Marco Platzner. “Design of Distributed Recon-
figurable Robotics Systems with ReconROS.” In: ACM Transactions on
Reconfigurable Technology and Systems 15.3 (2022). issn: 1936-7406. doi:
10.1145/3494571.

[51] Christian Lienen and Marco Platzner. “Event-Driven Programming
of FPGA-accelerated ROS 2 Robotics Applications.” In: 2022 25th
Euromicro Conference on Digital System Design (DSD). 2022, pages 615–
623. doi: 10.1109/DSD57027.2022.00088.

[52] Christian Lienen and Marco Platzner. “Task Mapping for Hardware-
Accelerated Robotics Applications using ReconROS.” In: 2022 Sixth
IEEE International Conference on Robotic Computing (IRC). 2022, pages 148–
155. doi: 10.1109/IRC55401.2022.00033.

[53] Christian Lienen, Marco Platzner, and Bernhard Rinner. “ReconROS:
Flexible Hardware Acceleration for ROS2 Applications.” In: 2020
International Conference on Field-Programmable Technology (ICFPT). 2020,
pages 268–276. doi: 10.1109/ICFPT51103.2020.00046.

[54] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong
Shi. “Edge Computing for Autonomous Driving: Opportunities and
Challenges.” In: Proceedings of the IEEE 107.8 (2019), pages 1697–1716.
doi: 10.1109/JPROC.2019.2915983.

[55] Weizhuang Liu, Bo Yu, Yiming Gan, Qiang Liu, Jie Tang, Shaoshan
Liu, and Yuhao Zhu. “Archytas: A Framework for Synthesizing
and Dynamically Optimizing Accelerators for Robotic Localization.”
In: MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO ’21. 2021, 479–493. isbn: 9781450385572.
doi: 10.1145/3466752.3480077.

[56] Yanqi Liu, Can Eren Derman, Giuseppe Calderoni, and R. Iris Bahar.
“Hardware Acceleration of Robot Scene Perception Algorithms.”
In: Proceedings of the 39th International Conference on Computer-Aided
Design. ICCAD ’20. 2020. isbn: 9781450380263. doi: 10.1145/3400302.
3415766.

[57] Enno Lübbers and Marco Platzner. “ReconOS: An RTOS Supporting
Hard-and Software Threads.” In: 2007 International Conference on
Field Programmable Logic and Applications. 2007, pages 441–446. doi:
10.1109/FPL.2007.4380686.

[58] Enno Lübbers and Marco Platzner. “ReconOS: Multithreaded Pro-
gramming for Reconfigurable Computers.” In: ACM Transactions
on Embedded Computing Systems 9.1 (2009), 8:1–8:33. doi: 10.1145/
1596532.1596540.

[59] Steve Macenski, Tom Moore, David V. Lu, Alexey Merzlyakov, and
Michael Ferguson. “From the desks of ROS maintainers: A survey
of modern & capable mobile robotics algorithms in the robot op-
erating system 2.” In: Robotics and Autonomous Systems 168 (2023),
page 104493. issn: 0921-8890. doi: 10.1016/j.robot.2023.104493.

https://doi.org/10.1145/3494571
https://doi.org/10.1109/DSD57027.2022.00088
https://doi.org/10.1109/IRC55401.2022.00033
https://doi.org/10.1109/ICFPT51103.2020.00046
https://doi.org/10.1109/JPROC.2019.2915983
https://doi.org/10.1145/3466752.3480077
https://doi.org/10.1145/3400302.3415766
https://doi.org/10.1145/3400302.3415766
https://doi.org/10.1109/FPL.2007.4380686
https://doi.org/10.1145/1596532.1596540
https://doi.org/10.1145/1596532.1596540
https://doi.org/10.1016/j.robot.2023.104493

bibliography 121

[60] Steve Macenski, Alberto Soragna, Michael Carroll, and Zhenpeng
Ge. “Impact of ROS 2 Node Composition in Robotic Systems.” In:
IEEE Robotics and Automation Letters 8.7 (2023), pages 3996–4003. doi:
10.1109/LRA.2023.3279614.

[61] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and
William Woodall. “Robot Operating System 2: Design, architecture,
and uses in the wild.” In: Science Robotics 7.66 (2022). doi: 10.1126/
scirobotics.abm6074.

[62] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the
Performance of ROS2.” In: Proceedings of the 13th International Con-
ference on Embedded Software. EMSOFT ’16. Pittsburgh, Pennsylvania:
Association for Computing Machinery, 2016. isbn: 9781450344852.
doi: 10.1145/2968478.2968502.

[63] Víctor Mayoral-Vilches. Kria Robotics Stack. https://www.xilinx.
com/applications/industrial/robotics/wp540-kria-robotics-

stack.html. Accessed: 2022-01-13. 2021.

[64] Víctor Mayoral-Vilches and Giulio Corradi. “Adaptive Computing in
Robotics, Leveraging ROS 2 to Enable Software-Defined Hardware
for FPGAs.” In: arXiv preprint arXiv:2109.03276 (2021). doi: 10.48550/
arXiv.2109.03276.

[65] Víctor Mayoral-Vilches, Sabrina M. Neuman, Brian Plancher, and
Vijay Janapa Reddi. “RobotCore: An Open Architecture for Hardware
Acceleration in ROS 2.” In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2022, pages 9692–9699. doi:
10.1109/IROS47612.2022.9982082.

[66] Sorel Horst Middeke. “Design and Realization of Optimized Intra-
FPGA ROS 2 Communication.” Master’s thesis. Paderborn University,
December 2022.

[67] Ryota Miyagi, Naofumi Takagi, Sho Kinoshista, Masashi Oda, and
Hideki Takase. “Zytlebot : FPGA integrated ros-based autonomous
mobile robot.” In: 2021 International Conference on Field-Programmable
Technology (ICFPT). 2021, pages 1–4. doi: 10.1109/ICFPT52863.2021.
9609883.

[68] Ren Morita and Katsuya Matsubara. “Dynamic Binding a Proper
DDS Implementation for Optimizing Inter-Node Communication
in ROS2.” In: 2018 IEEE 24th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA). 2018,
pages 246–247. doi: 10.1109/RTCSA.2018.00043.

[69] Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM2: an Open-Source
SLAM System for Monocular, Stereo and RGB-D Cameras.” In: IEEE
Transactions on Robotics 33.5 (2017), pages 1255–1262. doi: 10.1109/
TRO.2017.2705103.

https://doi.org/10.1109/LRA.2023.3279614
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1145/2968478.2968502
https://www.xilinx.com/applications/industrial/robotics/wp540-kria-robotics-stack.html
https://www.xilinx.com/applications/industrial/robotics/wp540-kria-robotics-stack.html
https://www.xilinx.com/applications/industrial/robotics/wp540-kria-robotics-stack.html
https://doi.org/10.48550/arXiv.2109.03276
https://doi.org/10.48550/arXiv.2109.03276
https://doi.org/10.1109/IROS47612.2022.9982082
https://doi.org/10.1109/ICFPT52863.2021.9609883
https://doi.org/10.1109/ICFPT52863.2021.9609883
https://doi.org/10.1109/RTCSA.2018.00043
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2017.2705103

122 bibliography

[70] Sean Murray, Will Floyd-Jones, George Konidaris, and Daniel J. Sorin.
“A Programmable Architecture for Robot Motion Planning Accelera-
tion.” In: 2019 IEEE 30th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). Volume 2160-052X. 2019,
pages 185–188. doi: 10.1109/ASAP.2019.000-4.

[71] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J Sorin, and George
Dimitri Konidaris. “Robot Motion Planning on a Chip.” In: Robotics:
Science and Systems. Volume 6. 2016. doi: 10.15607/rss.2016.xii.
004.

[72] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and
Daniel J. Sorin. “The microarchitecture of a real-time robot motion
planning accelerator.” In: 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 2016, pages 1–12. doi: 10.
1109/MICRO.2016.7783748.

[73] Yasuhiro Nitta, Sou Tamura, and Hideki Takase. “A Study on Intro-
ducing FPGA to ROS Based Autonomous Driving System.” In: 2018
International Conference on Field-Programmable Technology (FPT). 2018,
pages 421–424. doi: 10.1109/FPT.2018.00090.

[74] Yasuhiro Nitta, Sou Tamura, Hidetoshi Yugen, and Hideki Takase.
“ZytleBot: FPGA Integrated Development Platform for ROS Based
Autonomous Mobile Robot.” In: 2019 International Conference on Field-
Programmable Technology (ICFPT). 2019, pages 445–448. doi: 10.1109/
ICFPT47387.2019.00089.

[75] Eriko Nurvitadhi, Jaewoong Sim, David Sheffield, Asit Mishra, Sri-
vatsan Krishnan, and Debbie Marr. “Accelerating recurrent neural
networks in analytics servers: Comparison of FPGA, CPU, GPU, and
ASIC.” In: 2016 26th International Conference on Field Programmable
Logic and Applications (FPL). 2016, pages 1–4. doi: 10.1109/FPL.2016.
7577314.

[76] Frederik Falk Nyboe, Nicolaj Haarhøj Malle, and Emad Ebeid. “MP-
SoC4Drones: An Open Framework for ROS2, PX4, and FPGA Integra-
tion.” In: 2022 International Conference on Unmanned Aircraft Systems
(ICUAS). 2022, pages 1246–1255. doi: 10.1109/ICUAS54217.2022.
9836055.

[77] T. Ohkawa, Y. Sugata, H. Watanabe, N. Ogura, K. Ootsu, and T.
Yokota. “High Level Synthesis of ROS Protocol Interpretation and
Communication Circuit for FPGA.” In: 2019 IEEE/ACM 2nd Interna-
tional Workshop on Robotics Software Engineering (RoSE). 2019, pages 33–
36. doi: 10.1109/RoSE.2019.00014.

[78] Takeshi Ohkawa, Kazushi Yamashina, Hitomi Kimura, Kanemitsu
Ootsu, and Takashi Yokota. “FPGA components for integrating FP-
GAs into robot systems.” In: IEICE TRANSACTIONS on Information
and Systems 101.2 (2018), pages 363–375. doi: 10.1587/transinf.
2017RCP0011.

https://doi.org/10.1109/ASAP.2019.000-4
https://doi.org/10.15607/rss.2016.xii.004
https://doi.org/10.15607/rss.2016.xii.004
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1109/MICRO.2016.7783748
https://doi.org/10.1109/FPT.2018.00090
https://doi.org/10.1109/ICFPT47387.2019.00089
https://doi.org/10.1109/ICFPT47387.2019.00089
https://doi.org/10.1109/FPL.2016.7577314
https://doi.org/10.1109/FPL.2016.7577314
https://doi.org/10.1109/ICUAS54217.2022.9836055
https://doi.org/10.1109/ICUAS54217.2022.9836055
https://doi.org/10.1109/RoSE.2019.00014
https://doi.org/10.1587/transinf.2017RCP0011
https://doi.org/10.1587/transinf.2017RCP0011

bibliography 123

[79] Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu
Ootsu, and Takashi Yokota. “Architecture Exploration of Intelligent
Robot System Using ROS-Compliant FPGA Component.” In: Proceed-
ings of the 27th International Symposium on Rapid System Prototyping:
Shortening the Path from Specification to Prototype. RSP ’16. Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2016, 72–78.
isbn: 9781450345354. doi: 10.1145/2990299.2990312.

[80] Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu
Ootsu, and Takashi Yokota. “Automatic generation tool of FPGA com-
ponents for robots.” In: IEICE transactions on Information and Systems
102.5 (2019), pages 1012–1019. doi: 10.1587/transinf.2018RCP0004.

[81] OpenCV Project Website. https://opencv.org/. Accessed: 2023-11-16.

[82] PYNQ Project Repository. https://github.com/Xilinx/PYNQ. Ac-
cessed: 2023-11-16.

[83] Bo Peng, Atsushi Hasegawa, and Takuya Azumi. “Scheduling Per-
formance Evaluation Framework for ROS 2 Applications.” In: 2022
IEEE 24th Int Conf on High Performance Computing & Communications;
8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City;
8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems &
Application (HPCC/DSS/SmartCity/DependSys). 2022, pages 2031–2038.
doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00302.

[84] Brian Plancher and Scott Kuindersma. “A performance analysis of
parallel differential dynamic programming on a gpu.” In: Algorithmic
Foundations of Robotics XIII: Proceedings of the 13th Workshop on the
Algorithmic Foundations of Robotics 13. Springer. 2020, pages 656–672.
doi: 10.1007/978-3-030-44051-0_38.

[85] Brian Plancher, Sabrina M. Neuman, Thomas Bourgeat, Scott Kuin-
dersma, Srinivas Devadas, and Vijay Janapa Reddi. “Accelerating
Robot Dynamics Gradients on a CPU, GPU, and FPGA.” In: IEEE
Robotics and Automation Letters 6.2 (2021), pages 2335–2342. doi: 10.
1109/LRA.2021.3057845.

[86] Brian Plancher, Sabrina M. Neuman, Radhika Ghosal, Scott Kuin-
dersma, and Vijay Janapa Reddi. “GRiD: GPU-Accelerated Rigid
Body Dynamics with Analytical Gradients.” In: 2022 International
Conference on Robotics and Automation (ICRA). 2022, pages 6253–6260.
doi: 10.1109/ICRA46639.2022.9812384.

[87] A. Podlubne and D. Göhringer. “FPGA-ROS: Methodology to Aug-
ment the Robot Operating System with FPGA Designs.” In: 2019
International Conference on ReConFigurable Computing and FPGAs (Re-
ConFig). 2019. doi: 10.1109/ReConFig48160.2019.8994719.

[88] Ariel Podlubne and Diana Göhringer. “A Survey on Adaptive Com-
puting in Robotics: Modelling, Methods and Applications.” In: IEEE
Access 11 (2023), pages 53830–53849. doi: 10.1109/ACCESS.2023.
3281190.

https://doi.org/10.1145/2990299.2990312
https://doi.org/10.1587/transinf.2018RCP0004
https://opencv.org/
https://github.com/Xilinx/PYNQ
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00302
https://doi.org/10.1007/978-3-030-44051-0_38
https://doi.org/10.1109/LRA.2021.3057845
https://doi.org/10.1109/LRA.2021.3057845
https://doi.org/10.1109/ICRA46639.2022.9812384
https://doi.org/10.1109/ReConFig48160.2019.8994719
https://doi.org/10.1109/ACCESS.2023.3281190
https://doi.org/10.1109/ACCESS.2023.3281190

124 bibliography

[89] Ariel Podlubne, Johannes Mey, René Schöne, Uwe Aßmann, and
Diana Göhringer. “Model-Based Approach for Automatic Generation
of Hardware Architectures for Robotics.” In: IEEE Access 9 (2021),
pages 140921–140937. doi: 10.1109/ACCESS.2021.3119061.

[90] L. Puck, P. Keller, T. Schnell, C. Plasberg, A. Tanev, G. Heppner, A.
Roennau, and R. Dillmann. “Distributed and Synchronized Setup
towards Real-Time Robotic Control using ROS2 on Linux.” In: 2020
IEEE 16th International Conference on Automation Science and Engineer-
ing (CASE). 2020, pages 1287–1293. doi: 10.1109/CASE48305.2020.
9217010.

[91] L. Puck, P. Keller, T. Schnell, C. Plasberg, A. Tanev, G. Heppner, A.
Roennau, and R. Dillmann. “Performance Evaluation of Real-Time
ROS2 Robotic Control in a Time-Synchronized Distributed Network.”
In: 2021 IEEE 17th International Conference on Automation Science and
Engineering (CASE). 2021, pages 1670–1676. doi: 10.1109/CASE49439.
2021.9551447.

[92] QEMU Project Website. https://www.qemu.org/. Accessed: 2023-11-
16.

[93] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zam-
breno, and Phillip H. Jones. “Comparing Energy Efficiency of CPU,
GPU and FPGA Implementations for Vision Kernels.” In: 2019 IEEE
International Conference on Embedded Software and Systems (ICESS).
2019, pages 1–8. doi: 10.1109/ICESS.2019.8782524.

[94] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. “ROS: an open-
source Robot Operating System.” In: ICRA workshop on open source
software. Volume 3. 3.2. Kobe, Japan. 2009, page 5.

[95] RISC-V Website. https://riscv.org/. Accessed: 2023-11-16.

[96] ROS 2 Quality-of-Service Settings Documentation. https://docs.ros.
org / en / rolling / Concepts / Intermediate / About - Quality - of -

Service-Settings.html. Accessed: 2023-11-16.

[97] ROS Hardware Acceleration Working Group. https://github.com/ros-
acceleration. Accessed: 2023-11-16.

[98] ROS Project Website. https://www.ros.org. Accessed: 2023-11-16.

[99] ReconOS Project Website. http://www.reconos.de/. Accessed: 2023-
11-16.

[100] Christina Rödel, Susanne Stadler, Alexander Meschtscherjakov, and
Manfred Tscheligi. “Towards Autonomous Cars: The Effect of Auton-
omy Levels on Acceptance and User Experience.” In: Proceedings of the
6th International Conference on Automotive User Interfaces and Interactive
Vehicular Applications. AutomotiveUI ’14. Seattle, WA, USA: Associa-
tion for Computing Machinery, 2014, 1–8. isbn: 9781450332125. doi:
10.1145/2667317.2667330.

https://doi.org/10.1109/ACCESS.2021.3119061
https://doi.org/10.1109/CASE48305.2020.9217010
https://doi.org/10.1109/CASE48305.2020.9217010
https://doi.org/10.1109/CASE49439.2021.9551447
https://doi.org/10.1109/CASE49439.2021.9551447
https://www.qemu.org/
https://doi.org/10.1109/ICESS.2019.8782524
https://riscv.org/
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://github.com/ros-acceleration
https://github.com/ros-acceleration
https://www.ros.org
http://www.reconos.de/
https://doi.org/10.1145/2667317.2667330

bibliography 125

[101] Edward Rosten and Tom Drummond. “Machine Learning for High-
Speed Corner Detection.” In: Proceedings of European Conference on
Computer Vision. Edited by Aleš Leonardis, Horst Bischof, and Axel
Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pages 430–
443. isbn: 978-3-540-33833-8. doi: 10.1007/11744023_34.

[102] Christoph Rüthing. “Self-Adaptation in Programmable Automation
Controllers based on Hybrid Multi-Cores.” Master’s thesis. Pader-
born University, August 2015.

[103] Jacob Sacks, Divya Mahajan, Richard C. Lawson, Behnam Khaleghi,
and Hadi Esmaeilzadeh. “RoboX: An End-to-End Solution to Ac-
celerate Autonomous Control in Robotics.” In: 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). 2018,
pages 479–490. doi: 10.1109/ISCA.2018.00047.

[104] Yukihiro Saito, Futoshi Sato, Takuya Azumi, Shinpei Kato, and
Nobuhiko Nishio. “ROSCH:Real-Time Scheduling Framework for
ROS.” In: 2018 IEEE 24th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). 2018, pages 52–58.
doi: 10.1109/RTCSA.2018.00015.

[105] Ashutosh Singandhupe and Hung Manh La. “A Review of SLAM
Techniques and Security in Autonomous Driving.” In: 2019 Third IEEE
International Conference on Robotic Computing (IRC). 2019, pages 602–
607. doi: 10.1109/IRC.2019.00122.

[106] Jan Staschulat, Ingo Lütkebohle, and Ralph Lange. “The rclc Executor:
Domain-specific deterministic scheduling mechanisms for ROS appli-
cations on microcontrollers: work-in-progress.” In: 2020 International
Conference on Embedded Software (EMSOFT). 2020, pages 18–19. doi:
10.1109/EMSOFT51651.2020.9244014.

[107] D. Stewart. “A Platform with Six Degrees of Freedom.” In: Proceed-
ings of the Institution of Mechanical Engineers. Volume 180. 1. 1965,
pages 371–386. doi: 10.1243/PIME_PROC_1965_180_029_02.

[108] B. Strohmer, A. BØgild, A. S. SØrensen, and L. B. Larsen. “ROS-
Enabled Hardware Framework for Experimental Robotics.” In: 2019
International Conference on ReConFigurable Computing and FPGAs (Re-
ConFig). 2019. doi: 10.1109/ReConFig48160.2019.8994770.

[109] Yuhei Sugata, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota.
“Acceleration of Publish/Subscribe Messaging in ROS-Compliant
FPGA Component.” In: Proceedings of the 8th International Sympo-
sium on Highly Efficient Accelerators and Reconfigurable Technologies
(HEART2017). Bochum, Germany: ACM, 2017. isbn: 9781450353168.
doi: 10.1145/3120895.3120904.

[110] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman,
and Vivienne Sze. “Navion: A 2-mW Fully Integrated Real-Time
Visual-Inertial Odometry Accelerator for Autonomous Navigation

https://doi.org/10.1007/11744023_34
https://doi.org/10.1109/ISCA.2018.00047
https://doi.org/10.1109/RTCSA.2018.00015
https://doi.org/10.1109/IRC.2019.00122
https://doi.org/10.1109/EMSOFT51651.2020.9244014
https://doi.org/10.1243/PIME_PROC_1965_180_029_02
https://doi.org/10.1109/ReConFig48160.2019.8994770
https://doi.org/10.1145/3120895.3120904

126 bibliography

of Nano Drones.” In: IEEE Journal of Solid-State Circuits 54.4 (2019),
pages 1106–1119. doi: 10.1109/JSSC.2018.2886342.

[111] Yuhei Suzuki, Takuya Azumi, Shinpei Kato, and Nobuhiko Nishio.
“Real-Time ROS Extension on Transparent CPU/GPU Coordination
Mechanism.” In: 2018 IEEE 21st International Symposium on Real-Time
Distributed Computing (ISORC). 2018, pages 184–192. doi: 10.1109/
ISORC.2018.00035.

[112] Hideki Takase, Tomoya Mori, Kazuyoshi Takagi, and Naofumi Takagi.
“MROS: A Lightweight Runtime Environment for Robot Software
Components onto Embedded Devices.” In: Proceedings of the 10th In-
ternational Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies. HEART ’19. Nagasaki, Japan: Association for Comput-
ing Machinery, 2019. isbn: 9781450372558. doi: 10.1145/3337801.
3337815.

[113] Yue Tang, Zhiwei Feng, Nan Guan, Xu Jiang, Mingsong Lv, Qingxu
Deng, and Wang Yi. “Response Time Analysis and Priority Assign-
ment of Processing Chains on ROS2 Executors.” In: 2020 IEEE Real-
Time Systems Symposium (RTSS). 2020, pages 231–243. doi: 10.1109/
RTSS49844.2020.00030.

[114] Russell Tessier, Kenneth Pocek, and André DeHon. “Reconfigurable
Computing Architectures.” In: Proceedings of the IEEE 103.3 (2015),
pages 332–354. doi: 10.1109/JPROC.2014.2386883.

[115] P. Thulasiraman, Z. Chen, B. Allen, and B. Bingham. “Evaluation of
the Robot Operating System 2 in Lossy Unmanned Networks.” In:
2020 IEEE International Systems Conference (SysCon). 2020, pages 1–8.
doi: 10.1109/SysCon47679.2020.9275849.

[116] Turtlebot 3 Autonomous Driving Challenge. https://emanual.robotis.
com / docs / en / platform / turtlebot3 / autonomous _ driving/. Ac-
cessed: 2023-11-16.

[117] Turtlebot 3 Autorace 2020 Challenge. https://github.com/ROBOTIS-
GIT/turtlebot3_autorace_2020. Accessed: 2023-11-16.

[118] Tomohisa Uchida. “Hardware-Based TCP Processor for Gigabit Ether-
net.” In: IEEE Transactions on Nuclear Science 55.3 (2008), pages 1631–
1637. doi: 10.1109/NSSMIC.2007.4436337.

[119] Onur Ulusel, Christopher Picardo, Christopher B. Harris, Sherief
Reda, and R. Iris Bahar. “Hardware acceleration of feature detection
and description algorithms on low-power embedded platforms.” In:
Proceedings 2016 26th International Conference on Field Programmable
Logic and Applications (FPL). 2016, pages 1–9. doi: 10.1109/FPL.2016.
7577310.

[120] Stylianos I. Venieris and Christos-Savvas Bouganis. “fpgaConvNet:
Mapping Regular and Irregular Convolutional Neural Networks on
FPGAs.” In: IEEE Transactions on Neural Networks and Learning Systems
30.2 (2019), pages 326–342. doi: 10.1109/TNNLS.2018.2844093.

https://doi.org/10.1109/JSSC.2018.2886342
https://doi.org/10.1109/ISORC.2018.00035
https://doi.org/10.1109/ISORC.2018.00035
https://doi.org/10.1145/3337801.3337815
https://doi.org/10.1145/3337801.3337815
https://doi.org/10.1109/RTSS49844.2020.00030
https://doi.org/10.1109/RTSS49844.2020.00030
https://doi.org/10.1109/JPROC.2014.2386883
https://doi.org/10.1109/SysCon47679.2020.9275849
https://emanual.robotis.com/docs/en/platform/turtlebot3/autonomous_driving/
https://emanual.robotis.com/docs/en/platform/turtlebot3/autonomous_driving/
https://github.com/ROBOTIS-GIT/turtlebot3_autorace_2020
https://github.com/ROBOTIS-GIT/turtlebot3_autorace_2020
https://doi.org/10.1109/NSSMIC.2007.4436337
https://doi.org/10.1109/FPL.2016.7577310
https://doi.org/10.1109/FPL.2016.7577310
https://doi.org/10.1109/TNNLS.2018.2844093

bibliography 127

[121] Kizheppatt Vipin and Suhaib A Fahmy. “ZyCAP: Efficient partial
reconfiguration management on the Xilinx Zynq.” In: IEEE Embedded
Systems Letters 6.3 (2014), pages 41–44. doi: 10.1109/LES.2014.
2314390.

[122] Vitis HLS Library. https://github.com/Xilinx/Vitis_Libraries.
git. Accessed: 2023-11-16.

[123] Zishen Wan, Ashwin Lele, Bo Yu, Shaoshan Liu, Yu Wang, Vijay
Janapa Reddi, Cong Hao, and Arijit Raychowdhury. “Robotic Com-
puting on FPGAs: Current Progress, Research Challenges, and Op-
portunities.” In: 2022 IEEE 4th International Conference on Artificial
Intelligence Circuits and Systems (AICAS). 2022, pages 291–295. doi:
10.1109/AICAS54282.2022.9869951.

[124] Ying Wang, Xuegong Zhou, Lingli Wang, Jian Yan, Wayne Luk,
Chenglian Peng, and Jiarong Tong. “SPREAD: A Streaming-Based
Partially Reconfigurable Architecture and Programming Model.” In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21.12

(2013), pages 2179–2192. doi: 10.1109/TVLSI.2012.2231101.

[125] Hongxing Wei, Zhenzhou Shao, Zhen Huang, Renhai Chen, Yong
Guan, Jindong Tan, and Zili Shao. “RT-ROS: A real-time ROS ar-
chitecture on multi-core processors.” In: Future Generation Computer
Systems 56 (2016), pages 171–178. issn: 0167-739X. doi: 10.1016/j.
future.2015.05.008.

[126] Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. “Monocular-
SLAM-based navigation for autonomous micro helicopters in GPS-
denied environments.” In: Journal of Field Robotics 28.6 (2011), pages 854–
874. doi: 10.1002/rob.20412.

[127] Richard Welch, Daniel Limonadi, and Robert Manning. “Systems
engineering the Curiosity Rover: A retrospective.” In: 2013 8th Inter-
national Conference on System of Systems Engineering. 2013, pages 70–75.
doi: 10.1109/SYSoSE.2013.6575245.

[128] XRT Project Repository. https://github.com/Xilinx/XRT. Accessed:
2023-11-16.

[129] Xillinux Project Website. https://xillybus.com/xillinux. Accessed:
2023-11-16.

[130] Kazushi Yamashina, Hitomi Kimura, Takeshi Ohkawa, Kanemitsu
Ootsu, and Takashi Yokota. “CReComp: Automated Design Tool
for ROS-Compliant FPGA Component.” In: IEEE 10th International
Symposium on Embedded Multicore/Many-Core Systems-on-Chip, MCSoC
2016. IEEE, 2016, pages 138–145. isbn: 9781509035304. doi: 10.1109/
MCSoC.2016.47.

[131] Kazushi Yamashina, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi
Yokota. Proposal of ROS-compliant FPGA Component for Low-Power
Robotic Systems. 2015. doi: 10.48550/arXiv.1508.07123. arXiv: 1508.
07123 [cs.AR].

https://doi.org/10.1109/LES.2014.2314390
https://doi.org/10.1109/LES.2014.2314390
https://github.com/Xilinx/Vitis_Libraries.git
https://github.com/Xilinx/Vitis_Libraries.git
https://doi.org/10.1109/AICAS54282.2022.9869951
https://doi.org/10.1109/TVLSI.2012.2231101
https://doi.org/10.1016/j.future.2015.05.008
https://doi.org/10.1016/j.future.2015.05.008
https://doi.org/10.1002/rob.20412
https://doi.org/10.1109/SYSoSE.2013.6575245
https://github.com/Xilinx/XRT
https://xillybus.com/xillinux
https://doi.org/10.1109/MCSoC.2016.47
https://doi.org/10.1109/MCSoC.2016.47
https://doi.org/10.48550/arXiv.1508.07123
https://arxiv.org/abs/1508.07123
https://arxiv.org/abs/1508.07123

128 bibliography

[132] Yuqing Yang and Takuya Azumi. “Exploring Real-Time Executor on
ROS 2.” In: 2020 IEEE International Conference on Embedded Software
and Systems (ICESS). 2020, pages 1–8. doi: 10.1109/ICESS49830.2020.
9301530.

[133] Evşen Yanmaz, Saeed Yahyanejad, Bernhard Rinner, Hermann Hell-
wagner, and Christian Bettstetter. “Drone networks: Communications,
coordination, and sensing.” In: Ad Hoc Networks 68 (2018), pages 1–15.
doi: 10.1016/j.adhoc.2017.09.001.

[134] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya
Takeda. “A Survey of Autonomous Driving: Common Practices and
Emerging Technologies.” In: IEEE Access 8 (2020), pages 58443–58469.
doi: 10.1109/ACCESS.2020.2983149.

[135] Zephyr Project Website. https://zephyrproject.org/. Accessed: 2023-
11-16.

[136] eCOS Project Website. http://ecos.sourceware.org/. Accessed:
2023-11-16.

[137] eProsima Fast DDS. https://github.com/eProsima/Fast-DDS. Ac-
cessed: 2023-02-28.

[138] iceoryx - true zero-copy inter-process-communication. https://github.
com/eclipse-iceoryx/iceoryx. Accessed: 2023-02-28.

[139] mros2 Project Repository. https://github.com/mROS- base/mros2.
Accessed: 2023-11-16.

https://doi.org/10.1109/ICESS49830.2020.9301530
https://doi.org/10.1109/ICESS49830.2020.9301530
https://doi.org/10.1016/j.adhoc.2017.09.001
https://doi.org/10.1109/ACCESS.2020.2983149
https://zephyrproject.org/
http://ecos.sourceware.org/
https://github.com/eProsima/Fast-DDS
https://github.com/eclipse-iceoryx/iceoryx
https://github.com/eclipse-iceoryx/iceoryx
https://github.com/mROS-base/mros2

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired by
Robert Bringhurst’s seminal book on typography “The Elements of Typographic
Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/

	Acknowledgments
	Abstract
	Zusammenfassung
	Publications
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Organization

	2 Background and Related Work
	2.1 ReconOS: Operating System for Reconfigurable Computing
	2.1.1 ReconOS Architecture
	2.1.2 ReconOS Tooflow
	2.1.3 ReconOS Project

	2.2 The Robot Operating System
	2.2.1 Communication Interfaces
	2.2.2 Client Library Stack
	2.2.3 User-Level Scheduling

	2.3 Related Approaches for ROS-FPGA Integration
	2.3.1 Application-Specific Approaches
	2.3.2 General Approaches

	3 Design and Implementation of ReconROS
	3.1 Design Considerations
	3.2 ReconROS Architecture
	3.3 ReconROS Design Flow
	3.4 Programming Model
	3.4.1 Static Execution Example
	3.4.2 Dynamic Execution Example

	3.5 Experimental Evaluation
	3.5.1 Hardware-Mapped Node Overheads
	3.5.2 Reconfiguration Overheads

	3.6 Chapter Conclusion

	4 Task Mapping and Parallelism in ReconROS
	4.1 Static Task Mapping
	4.2 Dynamic Task Mapping
	4.2.1 Scheduling
	4.2.2 Replacement

	4.3 Exploitation of Parallelism
	4.4 Experimental Evaluation
	4.4.1 Static Task Mapping
	4.4.2 Dynamic Task Mapping Example
	4.4.3 Hardware Callback Replacement

	4.5 Chapter Conclusion

	5 Communication Optimization in ReconROS
	5.1 ReconROS Shared-Memory Communication
	5.2 Intra-FPGA Communication Architecture
	5.2.1 ReconROS DDS Adapter
	5.2.2 Execution Modes

	5.3 Gateways for Hardware-Mapped Topics
	5.3.1 Gateway Architecture
	5.3.2 Gateway Design Flow
	5.3.3 Performance Measurements

	5.4 Communication Mapping Methodology
	5.5 Evaluation
	5.6 Chapter Conclusion

	6 ReconROS Case Studies
	6.1 Ball on Plate Demonstrator
	6.1.1 Architecture
	6.1.2 Evaluation

	6.2 Turtlebot 3 Autorace
	6.2.1 Architecture
	6.2.2 Evaluation

	6.3 AutonomROS
	6.3.1 Architecture
	6.3.2 Evaluation

	6.4 Chapter Conclusion

	7 Conclusion and Future Work
	 Bibliography
	Colophon

