L(PADERBORN
L\ UNIVERSITY
Faculty of Computer Science, Electrical Engineering and Mathematics

Department of Computer Science

Research Group Secure Software Engineering

Secure Use of Open-Source Software —
A Systematic Study and Techniques for Java

Andreas Peter Dann

Dissertation
Submitted in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Advisors

Prof. Dr. Eric Bodden
Prof. Dr. Ben Hermann

Paderborn, December 8, 2023

Andreas Peter Dann
Secure Use of Open-Source Software — A Systematic Study and Techniques for Java
Dissertation, December 8, 2023

Advisors: Prof. Dr. Eric Bodden and Prof. Dr. Ben Hermann

Paderborn University

Research Group Secure Software Engineering

Department of Computer Science

Faculty of Computer Science, Electrical Engineering and Mathematics
Warburger Stralse 100

33098 Paderborn

Abstract

An established practice in modern software development is the use of open-source
libraries and frameworks. Even for commercial applications, up to 75% of the appli-
cation’s codebase comes from open-source software. The inclusion of open-source
software enables developers to reuse established and well-tested functions in their
own applications, increasing development speed and reducing cost. The emergence
of popular, public open-source software repositories and dependency-management
tools for several programming languages such as Java, JavaScript, Python, and .NET
has facilitated this trend.

Using open-source software also involves the risk of including known vulnerabilities.
Developers must regularly check if vulnerabilities in used open-source software
have been published and take appropriate actions like updating or replacing the
known-vulnerable artifact. However, several studies show that developers are often
unaware of the fact that their software includes open-source software with known
vulnerabilities. Furthermore, the studies show that developers are hesitant to update
even known-vulnerable software since they are afraid that an update may introduce
unexpected regressions, breaking their application.

In this thesis, we propose methods and tools to cope with the challenges that devel-
opers face when including open-source software in their applications. We conducted
a case study on 7,024 software projects developed at SAP to investigate problems de-
velopers and tools face for detecting known vulnerabilities in included open-source
software. Our study shows that developers regularly patch or bundle open-source
software to adapt it to their needs or to ease distribution. These modifications
pose a challenge for the automatic tool-based detection of vulnerabilities in used
open-software software since vulnerability scanners fail to analyze such modified
software. To cope with this challenge, we present SootDiff, an approach that enables
the detection of open-source software despite applied modifications.

To support developers to update vulnerable or outdated open-source software with
minimal risk of breaking their application, we introduce our tool UpCy.
UpCy automatically identifies update(s) that only introduce minimal incompatibil-

ities by inspecting how the software uses the open-source artifact that should be
updated. Our evaluation shows that in 70.1% cases where a naive update leads to
incompatibilities, UpCy can effectively suggest updates with no incompatibilities.

Nevertheless, vulnerabilities in the included open-source software are an unfortu-
nate truth. A library that is considered secure today could become exploitable due
to a newly discovered vulnerability tomorrow. Thus, it is desirable to design an ap-
plication to restrict vulnerabilities in one component, like an included open-source
library, from affecting others. In this thesis, we study the Java module system and
its feature of strong encapsulation, which aims to prevent unintended access to
security-sensitive functions or data, regarding its capabilities to enable the isolation
of included third-party software. For this purpose, we conduct a case study on a
modularized version of the popular open-source web server Apache Tomcat. Our
study shows that the module system can partially prevent access to sensitive enti-
ties within a module. However, it requires a secure redesign of the application. To
support developers with a secure, modular design, we introduce ModGuard, a static
analysis to detect unintended data flows that allow the access or manipulation of
sensitive entities. Based on our study, we discuss what security measures the mod-
ule system is missing to achieve a secure integration of open-source libraries and
frameworks.

Our studies reveal weak spots in current approaches for detecting and updating
known-vulnerable open-source software. The tools SootDiff, UpCy, and ModGuard
show that automated approaches can move the secure use of open-source software
forward.

Zusammenfassung

In der modernen Softwareentwicklung ist die Einbindung von Open-Source Biblio-
theken und Frameworks gingige Praxis. So bestehen selbst kommerzielle Anwen-
dungen mittlerweile bis zu 75% aus Open-Source Software. Die Nutzung von Open-
Source Software erlaubt es EntwicklerInnen, etablierte und erprobte Funktionen
in den eigenen Anwendungen zu nutzen, so dass sie schnell und kosteneffizient
Software programmieren konnen. Verstérkt hat sich dieser Trend durch das Aufkom-
men Offentlich zuganglicher Repositorien und Tools zur Verwaltung eingebundener
Open-Source Software fiir viele Programmiersprachen, wie Java, JavaScript, Python
und .NET.

Ein Risiko bei der Integration von Open-Source Software ist die Einbindung von
Software mit bekannten Sicherheitsliicken. EntwicklerInnen miissen regelméaRig
iberpriifen, ob fiir die eingesetzte Open-Source Software Sicherheitsliicken verof-
fentlicht wurden und gegebenenfalls betroffene Bibliotheken updaten oder aus-
tauschen. Allerdings zeigen verschiedene Studien, dass ihnen haufig nicht bewusst
ist, dass sie schwachstellenbehaftete Open-Source Software einsetzen. Weiterhin
zeigen die Studien, dass EntwicklerInnen sogar zégern, schwachstellenbehaftete
Software zu updaten, da sie befiirchten dadurch Fehler in die eigene Anwendung
einzubauen.

In dieser Arbeit adressieren wir die Herausforderungen bei der sicheren Verwendung
von Open-Source Software. Hierzu fithren wir eine Fallstudie an 7.024 von SAP
entwickelten Projekten durch, in der wir analysieren, wie EntwicklerInnen Open-
Source Software in die eigene Anwendung einbinden und welche Probleme Sicher-
heitstools bei der Erkennung von bekannten Sicherheitsliicken in der eingesetzten
Open-Source Software haben. Unsere Fallstudie zeigt, dass EntwicklerInnen bei der
Integration von Open-Source Software Modifikationen vornehmen, um sie an ihre
eigenen Bediirfnisse anzupassen oder ihre Verteilung zu erleichtern. Unsere Studie
zeigt aullerdem, dass die derzeit verfiigharen Open-Source Schwachstellenscanner
Schwierigkeiten haben, schwachstellenbehaftete Open-Source Software zuverléssig
zu erkennen, wenn diese zuvor modifiziert wurden. Um diesem Problem zu begeg-
nen, stellen wir in dieser Arbeit unser Werkzeug SootDiff vor. SootDiff nutzt statische
Analysetechniken, um Open-Source Software trotz Modifikationen zuverlassig und
automatisiert (wieder-)zuerkennen.

Um das Risiko zu verringern bei einem Update der eingebundenen Open-Source
Software Inkompatibilitdten in die eigene Anwendung einzubauen, haben wir das
Werkzeug UpCy entworfen. UpCy schlidgt automatisch kompatible Updates fiir ver-
altete oder schwachstellenbehaftete Open-Source Software vor, indem es analysiert,

Vi

wie die schwachstellenbehafteten Bibliotheken genutzt werden. Unsere Evaluation
zeigt, dass UpCy in 70.1% der Falle Updates vorschlagen kann, die keine Inkompati-
bilitdten aufweisen.

Ein Problem bei der Nutzung von Open-Source Software besteht darin, dass in der
Zukunft Sicherheitsliicken in Bibliotheken und Frameworks entdeckt werden kon-
nen, die heute noch als sicher gelten. Daher sollte Software so entworfen werden,
dass Sicherheitsliicken innerhalb einer Komponente keine Auswirkung auf andere
Komponenten haben. Hierzu untersuchen wir, ob das Java Modulsystem, dessen Ziel
die Kapselung sicherheitskritischer Daten und Funktionen innerhalb eines Modules
ist, die sichere Integration von Open-Source Software ermdglichen kann. Wir unter-
suchen das Potential des Java Modulsystems in einer Fallstudie an dem Webserver
Tomcat. Die Fallstudie zeigt, dass das Modulsystem den Zugriff auf sicherheitsrele-
vante Klassen und Methoden in einem Modul teilweise verhindern kann. Allerdings
erfordert dies Anderungen an der Architektur einer Anwendung. Um EntwicklerIn-
nen beim sicheren Entwurf von Modulen zu unterstiitzen, haben wir das Werkzeug
ModGuard entwickelt. ModGuard detektiert unerwiinschte Datenfliisse, die den Zu-
griff auf oder die Manipulation von sicherheitsrelevanten Daten erlauben. Basierend
auf der Tomecat Fallstudie diskutieren wir, welche Mechanismen zusétzlich zur Mod-
ularisierung erforderlich sind, um Bibliotheken voneinander und von der restlichen
Software zu isolieren.

Unsere Fallstudien decken die Schwachen auf, die derzeitige Werkzeuge bei der
zuverldssigen Erkennung schwachstellenbehafteter Open-Source Software haben.
Die Werkzeuge SootDiff, UpCy und ModGuard zeigen, dass automatisierte Ansétze
einen Beitrag dazu leisten konnen, die sichere Nutzung von Open-Source Software
voranzutreiben.

Acknowledgments

First and foremost, I would like to thank my advisors Eric Bodden and Ben Hermann.
I had the great luck of being supervised and receiving feedback from not only one—
but two experienced and skilled researchers. Both have always been available and
approachable whenever I had questions or doubts concerning my work. This thesis
would not have been possible without their guidance, contributions, and continuous
support throughout my time at the university and afterward. My research and I
greatly benefited from their excellent scientific expertise and constructive feedback.
I also would like to thank Dr. Serena Elisa Ponta, Prof. Dr. Yasemin Acar, and Dr.
Simon Oberthiir for joining the examination committee.

During my Ph.D., I had the opportunity and pleasure to intern at SAP Security
Research in Antibes, France. In my internship, I gained an entirely new perspective
on my research. Interesting discussions with experts and the Steady team provided
me with new insights and triggered new ideas, which helped to advance my research.
I want to thank all my colleagues at SAP Security Research who made the internship
an exceptionally great experience and opportunity. In particular, I want to thank
Henrik Plate, Serena Elisa Ponta, and Antonino Sabetta for guiding my work, the
great work atmosphere, and fruitful discussions.

Further on, I want to thank my colleagues from Paderborn University and Fraun-
hofer IEM for the helpful, constructive, and friendly working environment.

Finally, I want to thank my family and partner for their incredible support and
motivation, and the many friends with whom I have had great times within the last
few years.

vii

Publications

This dissertation is an original work. However, parts of it have already been pub-
lished in conference and journal papers, of which the author of this thesis is also the
lead author. In particular, this includes the following work:

¢ Andreas Dann, Henrik Plate, Ben Hermann, Serena Elisa Ponta, and Eric Bodden.
“Identifying Challenges for OSS Vulnerability Scanners - A Study & Test Suite”.
In: IEEE Transactions on Software Engineering 48.9 (Sept. 2022), pp. 3613-3625.
DOI: 10.1109/TSE.2021.3101739
Parts of Chapter 3 are taken from this paper.

* Andreas Dann, Ben Hermann, and Eric Bodden. “SootDiff: Bytecode Comparison
Across Different Java Compilers”. In: Proceedings of the 8th ACM SIGPLAN Inter-
national Workshop on State Of the Art in Program Analysis. SOAP 2019. Phoenix,
AZ, USA: ACM, June 2019, pp. 14-19. DOI: 10.1145/3315568.3329966
The last sections of Chapter 3 are taken directly or with modifications from the

paper.

* Andreas Dann, Ben Hermann, and Eric Bodden. “UPCY: Safely Updating Outdated
Dependencies”. In: 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). ICSE ’23. Melbourne, Australia: IEEE, May 2023, pp. 233—
244. DOI1: 10.1109/1icse48619.2023.00031
Large parts of Chapter 4 are taken from this publication.

* Andreas Dann, Ben Hermann, and Fric Bodden. “ModGuard: Identifying Integrity
& Confidentiality Violations in Java Modules”. In: IEEE Transactions on Software
Engineering 47.8 (Aug. 2021), pp. 1656-1667. DOI: 10.1109/TSE.2019.2931331
Parts of Chapter 5 are taken from this paper.

The research prototypes and data sets that we created in the course of these publi-
cations and the thesis are publicly available to enable other researchers to validate
our results and to build further research upon them. Chapter Implementations and
Data gives a complete overview of the available implementations and data sets.

https://doi.org/10.1109/TSE.2021.3101739
https://doi.org/10.1145/3315568.3329966
https://doi.org/10.1109/icse48619.2023.00031
https://doi.org/10.1109/TSE.2019.2931331

Contents

1 Introduction
1.1 Research Challenges
1.2 Thesis Contributions
1.3 Generality of Contributions
1.4 Thesis Structure. i i i e

2 Background
2.1 Terminology & Dependency ManagementinJava
2.2 Dependency Management in Other Programming Languages

3 Systematic Study on the Usage of Open-Source Software and Chal-
lenges for Their Detection
3.1 Strategies for Detecting Vulnerabilities in Open-Source Software . . .
3.2 StudyDesign e e
3.2.1 ResearchQuestions v v v v,
3.2.2 Study Objects & Methodology
3.3 Use of Open-Source Softwareat SAP
3.3.1 RQ1: What Are Practices for Using Open-Source Software at

3.3.2 RQ2: What Vulnerabilities Affect the 20 Most-Used Depen-

3.3.3 RQ3: How Do Developers Include Open-Source Software? . .
3.4 Prevalence & Impact of Modified Open-Source Software
3.4.1 RQ4: How Prominent Are the Modifications Outside SAP? . .
3.4.2 RQS5: What Is the Impact of the Modifications on Vulnerability
Scanners?
3.5 StudySummary e e e e e
3.6 ThreatstoValidity
3.7 Achilles: Test Suite for Detecting Modified Open-Source Software . .
3.7.1 Diverse Real-World Applications
3.7.2 Detecting Vulnerable Open-Source Software
3.7.3 Automation and EaseofUse
3.7.4 Organization and Distribution

11
11
14

19
20
22
22
24
28

28

30
35
37
37

40
46
47
49
50
50
51
53

Xi

Xii

3.8 SootDiff: An Approach for Identifying Modified Open-Source Software 54

3.8.1 Dissimilarities Introduced by Java Compilers. 55
3.8.2 Jimple: Intermediate Bytecode Representation 58
3.8.3 Compare Modified Bytecode 59
3.844 Evaluation. e 61
3.9 RelatedWork e 63
3.9.1 Case Studies: Use of Vulnerable Open-Source Software 64
3.9.2 Test Suites: Vulnerabilities in Open-Source Software 65
3.9.3 Code Clone Detection 66
3.10 Conclusion e e e 68

An Automated Approach for Safely Updating Included Open-Source

Software 69
4.1 Safe Backward Compatible Updates 70
4.1.1 Dependency Graph Updates 70
4.1.2 Source and Binary Compatibility 71
4.1.3 Semantic Compatibility 74
4.1.4 Blossom Compatibility 74
4.2 UpCy: Identify Safe Backward Compatible Updates 75
4.2.1 Algorithm 75
4.2.2 Graph Database of the Maven Central Repository 82
4.3 Evaluation 86
4.3.1 ResearchQuestions, 86
4.3.2 Study Objects & Methodology 86
433 Results. 88
4.4 ThreatstoValidity 94
4.4.1 Finding Compatible Updates with UpCy 94
4.4.2 Evaluation. 95
4.5 RelatedWork 96
4.5.1 Studies: How Developers Update (Vulnerable) Dependencies . 96
4.5.2 Update Compatibility Analysis 97
4.5.3 Repository Dependency Graphs 97
4.6 Conclusion 98

Securely Integrating Open-Source Software with Java’s Module System 101

5.1 Java’s Security Architecture & Module System 104
5.1.1 Java 1.2 SecurityModel 104
5.1.2 The Java Platform Module System 108

5.1.3 Motivating Example of Sensitive Entities Escaping a Module . 111

5.1.4 Excursion: The OSGi Platform 112

5.2 Precisely Defining a Module’s Entry Points 113
5.2.1 Explicitly vs. Implicitly Reachable Entry Points 113
5.2.2 Logic-based Specification of the Entry-Point Model 114
5.2.3 Limitations of the Entry-Point Model 119
5.3 ModGuard: Identify Confidentiality or Integrity Violations of Modules 120
53.1 Algorithm 121
5.3.2 Limitations i 125
5.4 Evaluation i e e e 126
54.1 ResearchQuestions. 126
5.4.2 StudyObjects 127
543 Results. e 132
5.4.4 Case Study: CVE-2017-5648 in Tomcat (modules) 136

5.5 Limitations of Modules for the Secure Integration of Open-Source
Software e e e e 138
5.6 RelatedWork 142
5.6.1 Sandboxes for Native Code 142
5.6.2 Encapsulation and Isolation of OSGi Bundles 143
5.6.3 EscapeAnalysis 145
5.6.4 Information-Flow Control 146
5.7 Conclusion e e 147
6 Conclusion and Outlook 149
Implementations and Data 153
Bibliography 155
List of Figures 173
List of Tables 175
Listings 177

xiii

Introduction

Software has become ubiquitous in our everyday life. From small mobile devices
over household appliances to industrial plants - any device that requires electricity
is likely to comprise a microchip that runs software. Consequently, software has
become a main driver for a company’s innovation, and as every company becomes
a software company, software development becomes indispensable to nearly every
business in the world. The main cost of software development is human resources,
and thus developer productivity is tightly coupled with costs. Any measures that
reduce the time to develop and improve software quality are of huge economic and
social benefit [Lim94; Hei+11; SE13].

To decrease development time and increase quality, the inclusion of Open-Source
Software (OSS) is an established practice in software development, even for com-
mercial applications, as much as 75% of the code comes from OSS [Pit16; Pla23;
Hei+11; BHD12; Bav+15]. By incorporating functionalities from community-devel-
oped, well-tested, established, open-source software, software vendors can reduce
development and maintenance costs dramatically.

The use of OSS has been facilitated further by the emergence of build-automation
and dependency-management tools that make it easy for developers to include and
distribute libraries and frameworks from public software repositories into their own
software projects. Nowadays, such build-automation and dependency-management
tools as well as public repositories exist for most programming languages [DMG19].
Java has the tools Maven and Gradle and the repository Maven Central, with more
than 10.1 million open-source artifacts in 2022, Python has pip, which uses the
popular repository PyPI with more than 4.12 million artifacts, and JavaScript has
yarn and npm with the NPM registry, etc.

Despite its benefits, the use of OSS comes at a cost. Open-source software does
also contain bugs and security vulnerabilities [Kul+18]. An analysis by Synopsys
of more than 1000 commercial applications showed that 96% of the applications
include OSS, and more than 67% of the applications include vulnerable OSS with,
on average, 22 individual vulnerabilities [Pit16]. Crucially, vulnerabilities in widely-
used OSS, like Jackson [Caul7], Log4j [NVD21], Apache Commons [NVD22], or
Apache Struts [Krel8], already proved to have serious consequences.

1.1

An (in)famous example is the Log4Shell vulnerability [NVD21], which was discov-
ered in the popular library Log4j in December 2021. The vulnerability allowed an
attacker to execute arbitrary code on a vulnerable system. As a result, widely popular
services such as Steam, Apple iCloud, and Minecraft have been impacted [Yah21].
Another prominent example is the Equifax breach [For17; Krel8; NVD17a], caused
by vulnerability CVE-2017-5638 in the open-source framework Apache Struts2. The
vulnerability also allowed the execution of arbitrary code and caused the breach
of sensitive personal information of more than 130 million Americans, e.g., name,
address, and social security number [Kre18].

To prevent the exploitation of vulnerabilities in included OSS, developers must—
as soon as the vulnerability has been reported—identify the vulnerable OSS and
either migrate to a different library or update to a non-vulnerable version. However,
neither migration nor updating is trivial, as developers must ensure that they do not
introduce regressions into the existing application. Given the large percentage of
OSS in modern software, finding known-vulnerable OSS, updating them to a non-
vulnerable version, and testing if the update introduces any regressions is costly and
manually (almost) infeasible. Consequently, several studies [DH22; HG22; Pra+21;
Pas+22; Kul+18; Wan+20; Der+17; MP17; Bog+16; BKH15] show that most
developers are often unaware that they use know-vulnerable OSS or are hesitant
to update even known-vulnerable OSS, leaving software applications vulnerable for
extended periods.

Research Challenges

Complementary approaches exist to mitigate the impact and exploitation of included,
known-vulnerable open-source libraries and frameworks.

One approach to reduce the impact is to find and fix the vulnerable code in the OSS
itself. Although developers typically do not have direct control over the OSS’s source
code, they can relatively easily create their own fork and fix the vulnerable code
themselves. While this requires manual effort and security skills, forking can be an
option if the maintenance of a particular open-source artifact has been halted and
the migration to a different artifact is not possible without major effort.

Chapter 1 Introduction

Another approach to reduce the vulnerabilities’ impact is applying software diver-
sification techniques to the OSSs’ source or binary code. By using software diversi-
fication, the implementations are made more dissimilar to one another while pre-
serving their functionality to reduce the risk of sharing the same vulnerabilities or
defects [Har22].

A further approach is migrating the complete application to another OSS with the
same functionalities. Depending on the similarity of their functionality and interface,
the effort for the migration varies heavily, as parts of the application may require
major adaptions.

An established and widely-used approach, which has been well-studied in liter-
ature [DJB14; Bog+16; HG22; Bav+15; Der+17; RVV14; Pra+21; Wan+20],
is to update the vulnerable OSS to a newer version with the vulnerability fixed.
In contrast to migration, the interfaces between updates of the same library or
framework are expected to be stable, and thus the effort for adapting the project
should be smaller; although studies show that updates regularly introduce breaking
changes [DJB14; Bog+16; HG22].

Another approach is to limit the impact of vulnerabilities in OSS by executing them
in isolated environments, so-called sandboxes [STM10; Cok+15]. A sandbox limits
access to security-critical functions and data, preventing the OSS from executing
malicious or dangerous behavior.

In this thesis, we focus on the approaches: (i) finding and updating known-vulnerable
or outdated OSS, and (ii) a constructive approach for limiting the impact of known-
vulnerable OSS by a secure integration. To do so, developers are faced with the
following challenges:

Challenge 1: Identifying Vulnerable Open-Source Software To detect vulnerable
0SS in software projects, research and industry have developed several open-source
vulnerability scanners, such as the open-source tools OWASP Dependency-Check
(DepCheck) [OWA20] and Eclipse Steady [Ecl20], the free tool GitHub Security
Alerts [Git20], and commercial tools such as Snyk [Sny23], Synopsys [Syn23], or
Mend.io [Men23a]. Since vulnerabilities in OSS pose a high risk, scanners should
detect them with high precision and recall. However, developers and vendors fre-
quently fork, patch, re-compile, re-bundle, or re-package existing OSS to add new
features, fix bugs, or fix security issues. As a result, developers do not always include
the original open-source artifact from the public software repository but include the
artifact in modified form.

1.1 Research Challenges

Modifications decrease the recall of detecting vulnerabilities in used OSS. Open-
source vulnerability scanners report publicly announced vulnerabilities—like Com-
mon Vulnerabilities and Exposures (CVE)s—using a database like the National Vul-
nerability Database (NVD). The NVD typically maps a CVE to the unmodified, orig-
inal OSS artifact only. Thus, CVEs in OSS artifacts with a modified file(-name),
version, or code are not always discovered. As undetected vulnerabilities in used
(and modified) OSS present a security threat to the software, it is necessary to clar-
ify how widespread such modifications are and their effect is on the precision and
recall of vulnerability scanners. Further, tools and techniques are needed to detect
vulnerabilities in modified open-source artifacts.

Challenge 2: Updating Open-Source Software without Introducing Incompatibilities
Tools like Greenkeeper [The22], Dependabot [Git22], and Renovate [Men23b] cre-
ate automated pull requests for updating vulnerable or outdated OSS. However,
several studies [DH22; HG22; Pra+21; Pas+22; Kul+18; Wan+20; Der+17; MP17;
Bog+16] show that most developers perceive these tools as unreliable and hesitate
to integrate the automated update suggestions, as they are afraid of introducing
unexpected regressions or unintended side effects [HG22; MP17].

A study by Hejderup et al. [HG22] shows that these concerns are justified. Since
these tools rely on the project’s test coverage of the used OSS, which is oftentimes
low, they can only detect conflicting updates and breaking changes to a small ex-
tent [Bog+16; HG22; Kul+ 18]. Furthermore, these tools do not check if the updated
OSS is compatible with other libraries and frameworks in the project. Thus, there
is a high risk that incompatibilities in the update remain undiscovered until pro-
duction. Manually discovering, debugging, and resolving such incompatibilities is
cumbersome, and thus the main reason that discourages developers from updat-
ing [Bog+16; Kul+18]. To facilitate updating of vulnerable OSS, developers need
effective tools that help them to minimize the updating effort and reduce the risk of
introducing unwanted regressions and incompatibilities.

Challenge 3: Securely Integrating Open-Source Software FEven regularly updating
all included OSS to the latest version does not protect from inadvertent vulnera-
bilities. The Log4Shell [NVD21] and other vulnerabilities showed that 0-day vul-
nerabilities could occur in any OSS. Thus, it is desirable to design the application
and include OSS in such a way that restricts a vulnerability in one component from
affecting others.

Chapter 1 Introduction

1.2

A mechanism to limit the capabilities of potentially vulnerable code is to run it inside
a sandbox, isolated from the rest of the application. However, with the release of
Java 17, Java’s built-in Security Manager, a cornerstone of Java’s sandbox mecha-
nism, has been marked for removal without any replacement or alternative [Ora22;
Ora21]. Given Java’s module system, which has been introduced with Java 9, and its
strong encapsulation for confining security-sensitive entities, it is an open question
if modules can be used—at least partly—to isolate components from each other and
prevent the leaking of sensitive entities, such as encryption keys, from the applica-
tion to included OSS [Ora22; Ora21; Ora23b].

Developers need an overview of the module system’s capabilities for the construc-
tive, secure design of the application and integration of OSS. Further, developers
need tools that help them securely design the application so that security-critical
entities are properly confined and encapsulated, preventing access from integrated
potentially vulnerable OSS. Tools and concepts are needed to precisely determine
which module types can become accessible to the outside to facilitate the isolation
of modules in an application and to assess which parts of an application can become
accessible to a potentially vulnerable module.

Thesis Contributions

This thesis contributes novel techniques for mitigating the challenges developers in
the Java ecosystem face when maintaining included OSS. We present techniques
and prototype implementations for addressing the challenges described above: iden-
tifying (modified) OSS, supporting the update of OSS, and evaluating to what extent
modules can be used to limit the impact of vulnerable OSS. The contributions made
by this thesis are as follows.

Contribution 1: Study on the Use of Vulnerable Open-Source Software In the first
contribution, we identify and detect development practices that can decrease the
effectiveness of open-source vulnerability scanners to identify included, known-
vulnerable OSS (Challenge 1). Although several vulnerability scanners appeared
in the last decade, no case study exists investigating the impact of typical devel-
opment practices, like forking, patching, and re-bundling, on their precision and
recall. Through an empirical study on 7,024 Java projects developed at SAP, we

1.2 Thesis Contributions

study (i) types of modifications that developers apply on used open-source arti-
facts and (ii) the impact of these modifications on the effectiveness of vulnerability
scanners.

The study identifies four types of modifications: re-compilation, re-bundling, metadata-
removal, and re-packaging. To assess the impact of these modifications on the preci-
sion of open-source vulnerability scanners, we introduce the novel test suite Achilles
for replicating modifications on open-source artifacts and evaluate the precision of
six (open-source and commercial) scanners w.r.t. these modifications. The evalua-
tion of the scanners with our test suite shows that all scanners struggle to deal with
modified OSS.

To cope with this limitation, we present SootDiff, a tool to identify open-source
artifacts even if they have been modified. SootDiff uses static analysis and Soot’s
intermediate representation Jimple in combination with code clone detection tech-
niques to reduce dissimilarities introduced by re-compilation and re-bundling, and
thus can help to identify modifications.

Contribution 2: An Automated Approach for Updating Open-Source Software with-
out Introducing Incompatibilities In the second contribution, we present UpCy.
UpCy is a tool to help developers updating an included open-source artifact (Chal-
lenge 2) by automatically suggesting a list of update steps that introduce minimal or
no regressions. Current automated approaches such as Dependabot follow a naive
update approach and propose an update for the outdated or vulnerable open-source
artifact only but ignore compatibility with other libraries, frameworks, and the ap-
plication code. Consequently, several studies [MP17; HG22; Bog+16; BKH15] show
that developers mistrust the automatic pull requests these automated approaches
create.

To alleviate this situation, UpCy attempts to find a list of update steps with minimal
incompatibilities to other artifacts by building a complete dependency graph—a com-
plete representation of all open-source artifacts in the project and their relationships—
applying the min-(s,t)-cut algorithm to the dependency graph, and leveraging a
graph database of Maven Central to identify updates that are compatible with each
other.

We evaluate UpCy on 29,698 updates in 380 well-tested, open-source Java projects
and compare it with the naive updates applied by state-of-the-art approaches. Our
evaluation shows that UpCy can effectively find updates with fewer incompatibilities,
and even 70.1% of the generated updates have zero incompatibilities.

Chapter 1 Introduction

1.3

Contribution 3: Analysis of the Security Implications of the Java Module System and
a Static-Analysis for Modules In the third contribution, we analyze the security
implications of Java’s module system [Oral5b; Ora23b] w.r.t. its capabilities to
confine internal types and data, enabling a secure integration of OSS (Challenge
3). To do so, we present ModGuard. ModGuard is a static code analysis to check
the isolation of a module and what types and data of the module can eventually
become reachable from the outside. ModGuard is based on our formal definition of
a module’s entry points: all methods and types that can become reachable outside
their declaring module.

We evaluate ModGuard in a case study of the Apache Tomcat web server, and discuss
what developers need to do to benefit from the module system’s encapsulation
guarantees. Further, we discuss the shortcomings and limitations of the module
system for securely integrating OSS. Our discussion points out that further work is
needed to isolate included OSS and that modules can only partially limit inadvertent
vulnerabilities.

Generality of Contributions

In this thesis, we use the programming language Java and the build-automation and
dependency-management tool Maven as examples in our study and for evaluating
our tools. However, the study’s results and the developed concepts can be adapted
to other programming languages and build-automation tools.

For example, the results of our study (Contribution 1), that known-vulnerable OSS
is commonly used in commercial and open-source software projects, are equally
reported for other programming languages and dependency-management tools by
several studies [Pra+21; HVG18; PVM20; Wan+20; HG22; MNT20]. Further, the
identified challenges for detecting known-vulnerable OSS also apply to other build-
automation and dependency-management tools like npm or pip. In contrast to
Java dependencies, which are compiled to platform-independent bytecode (cf. Sec-
tion 5.1), npm and pip artifacts are distributed as source code (cf. Chapter 2). Thus,
the identification of vulnerable code has to be done on source code but not on
compiled bytecode. A study by Wyss et al. [WDD22] and a study by Latendresse
et al. [Lat+23] show that also npm packages contain modified source-code clones
of their (transitive) dependencies without any indication to the original package.
Such clones have been subject to shrinking, syntax translation, e.g., transpilation of
CommonJS to ES6, and dead code elimination using tree-shaking.

1.3 Generality of Contributions

1.4

The detection of such modified clones is incompatible with source-code clone detec-
tion techniques, which focus on the deletion and insertion of source-code statements,
and thus requires new mechanisms [WDD22]. For languages that are compiled to
platform-dependent binaries, like C and C++, the detection of code clones also has
to cope with incomparable instruction sets of different architectures and alternative
compiling configurations, as discussed in the approaches by Hu et al. [Hu+17] and
Tang et al. [Tan+23].

The concepts and algorithms behind UpCy for suggesting updates with minimal
incompatibilities (Contribution 2) can be directly applied to programming languages
and tools that use a global dependency graph and apply similar conflict resolution
mechanisms as Maven, e.g., pip permits only a single, non-conflicting version of a
dependency in a project, too. UpCy’s algorithms depend on creating a dependency
graph and call graph for a software project only; both can be constructed for most
programming languages. Even if the call graph is unsound or cannot be constructed,
the algorithms can solely work on the dependency graph, though it decreases its
precision. For dependency-management tools like npm, which maintain a complete
dependency graph per dependency and permit conflicting dependency versions,
UpCy’s algorithms must be adapted.

Our evaluation of a programming language’s module concept (Contribution 3) and
its use for limiting the impact of vulnerable OSS also applies to other module systems.
The formalized entry-point model and the module escape analysis can be transferred
to other programming languages that implement a module concept.

Thesis Structure

The remainder of this thesis is structured as follows: In Chapter 2, we introduce the
terminology and concepts necessary to understand the thesis, including the build-
automation and dependency-management tools Maven for the programming lan-
guage Java, pip for Python, npm for Node.js/JavaScript, and Conan for C/C++.

In Chapter 3, we present an in-depth case study regarding the use of open-source
software in commercial and open-source projects (Contribution 1). From this study,
we derive challenges that state-of-the-art and future tools for detecting known-
vulnerable OSS in applications must consider. Later, we discuss the shortcomings of
current tools and present SootDiff, a first approach to cope with the challenges.

Chapter 1 Introduction

In Chapter 4, we present UpCy, an approach to automatically find updates of vulner-
able or outdated OSS with minimal incompatibilities (Contribution 2). UpCy aims
to find updates that reduce the risk of introducing unexpected regression into an
application.

In Chapter 5, we present ModGuard, an analysis to detect unintended data flows
over which security-sensitive entities become accessible outside their declaring mod-
ule (Contribution 3). The analysis supports the development of modules to confine
internal types and data effectively. The analysis is based on a formal definition of a
module’s entry point that we developed. Further, we discuss the limitations of the
module system for the secure integration of OSS.

In Chapter 6, we conclude the thesis with a summary of our contributions and

present an outlook for the secure usage of OSS.

1.4 Thesis Structure

2.1

Background

In this chapter, we discuss the necessary background and terminology to understand
this thesis. Throughout this thesis, we rely on the established terminology used by
the build-automation tool Maven.

We start with introducing the build-automation and dependency-management tool
Maven and the public open-source software repository Maven Central [Son22], in
Section 2.1.

We follow with a detailed explanation of Maven’s dependency resolution mechanism
for resolving and choosing which artifacts will be included in the project. Finally,
we compare Maven and its dependency resolution mechanisms with popular build-
automation tools for other languages, pip for Python, npm for Node.js/JavaScript,
and Conan for C/C++ in Section 2.2, to clarify to what extent our concepts gener-
alize.

Terminology & Dependency Management in Java

We use the term software artifact for a software library or framework that is a
separately distributed software component that consists of a logically grouped set
of classes, functions, and resources. A dependency is a software artifact that is used
by another artifact (the dependent artifact) or project. In Java, a software artifact is
commonly distributed as a JAR file. JAR files assemble packages, compiled bytecode
classes, native code, and other resources.

Build-automation and dependency-management tools like Maven [Apa23b], Gra-
dle [Gra23], and Ant [Apa22] combine two tasks: They provide tooling to ease the
building (compilation, testing, packaging, etc.) of a project and the management
(distribution and inclusion) of Open-Source Software (OSS) artifacts as dependen-
cies from private or public artifact repositories. Maven Central Java’s the most
popular public repository, with over 10.1 million open-source artifacts and millions
of downloads per week in 2022 [Son20; Apa23b]. Java’s tools use a similar syntax
for declaring dependencies and pulling JARs from repositories; for the remainder,
we use Maven’s syntax as an example.

11

12

Listing 2.1 shows an example of a project’s configuration file pom.xml declaring a
dependency on a vulnerable version of Apache Struts2, which caused the Equifax
breach. To declare a dependency, developers specify the artifact’s unique identifier
as the triple: groupld identifying the vendor, artifactld identifying the product, and
version. This identifier triple is called GAV (groupld, artifactld, version).

1 <dependency>

2 <groupId>org.apache.struts</groupId>
3 <artifactId>struts2-core</artifactId>
4 <version>2.3.5</version>

5 <scope>compile</scope>

6 </dependency>

Listing 2.1: Example declaration of an artifact as a dependency in a project’s pom.xml for
the build-automation and dependency-management tool Maven.

By declaring a dependency’s scope, developers can also specify when a dependency
is included: during development or during runtime. Accordingly, we distinguish
between release dependencies, shipped with the application and included during run-
time, and development-only dependencies, only used during development, e.g., for
testing or code generation. Release dependencies have the scopes: compile (the ar-
tifact is required for compilation and execution), runtime (the artifact is required
during runtime only), provided (the artifact is expected to be provided by the exe-
cution environment, e.g., the Java runtime or a web server running the application)
or system (the artifact is required for compilation and during runtime, but is not
managed by Maven). Meanwhile development-only dependencies, e.g., the JUnit
testing framework, have the scope test (the artifact is only available during the
execution of test cases). Since only release dependencies are shipped with an ap-
plication, vulnerabilities in development-only dependencies are not exploitable in
production.

Based on the dependencies declared in the configuration file, the build-automation
and dependency-management tool automatically downloads, includes, and config-
ures the artifacts as project dependencies. In addition to the declared artifacts, the
build-automation tool transitively includes artifacts that the declared artifacts them-
selves depend on (and also the artifacts on which those newly introduced depen-
dencies depend on and so on ...). To resolve all dependencies, the build-automation
tool constructs the project’s dependency graph, which specifies all dependencies and
their relations, and includes the dependencies for compilation and execution.

Figure 2.1 shows an example dependency graph. In a dependency graph, nodes
represent artifacts—the root node is the project itself, and the directed edges connect
to dependent artifacts. A dependency is called a direct dependency of an artifact

Chapter 2 Background

node n if the dependency and n are connected through a path of length one.
A dependency connected through a longer path is called a transitive dependency of

the artifact node n.

Although often visualized as a tree, strictly mathematically speaking, a project’s
dependency relations form a graph: a single dependency node can have multiple
predecessors since multiple dependencies may be dependent on the same artifact,
so-called duplicates, or on conflicting versions of the same artifact, so-called conflicts.
Duplicate dependencies occur when the project or dependencies depend on the same
artifact; for instance, in Figure 2.1, w is a duplicate dependency because it is included
by t and z. Conflicting dependencies occur when the project or dependencies depend
on the same artifact but in different versions.

Legend

s: the project

u2, x: direct dependency of s

y: transitive dependency of s,

but direct dependency of x
uil, u2, ud: share the same groupld

Figure 2.1: Example of a Maven dependency graph containing a duplicate dependency.

When running a Java application, the Java Virtual Machine (JVM) locates the ap-
plication’s classes and JAR files using the classpath parameter. A Java application
using the default class loader only supports a flat, linear classpath. When loading
a class, Java’s default class loader linearly traverses the class files and JAR files on
the classpath and loads the first found class with a matching fully-qualified name,
shadowing all other instances of the class [LB98; GEDO3]. Consequently, an applica-
tion using the default Java class loader cannot load duplicate or conflicting versions
of the same class simultaneously. Since the default Java class loader picks the first
found class on the classpath, the choice of the loaded classes and libraries depends
on the ordering of the JAR files on the classpath. In the worst case, this behavior can

2.1 Terminology & Dependency Management in Java

13

2.2

14

lead to inconsistent behavior, e.g., the project was compiled with an older version
of a library placed before the new version on the classpath, but on the runtime
classpath, the newer version is placed before the older version. Note that custom
implementations of Java class loaders can support the loading of conflicting classes.
However, implementing custom class loaders is complex and considered a bad prac-
tice if not done carefully [OSG11]. An example framework implementing custom
class loaders is the OSGi platform [OSG23], which we describe in combination with
Java’s class loading mechanism in Section 5.1.

To avoid inconsistent compile-time and runtime behavior caused by a different or-
dering of JARs on the classpath, the build-automation and dependency-management
tool resolves all conflicting and duplicate dependencies in the dependency graph. To
do so, the tool transforms the dependency graph into a directed, rooted dependency
tree. To create the dependency tree and resolve ambiguous relations like circular
dependencies, duplicates, or conflicting versions, Maven automatically picks the
dependency closest to the project (the shortest path starting from the root node
in the dependency graph). All other instances of that dependency [Apa23a] are
shadowed and not included in the project’s classpath, e.g., in Figure 2.1, the edge
marked as duplicate is removed in the dependency tree. The project’s complete set
of direct and transitive dependencies in the dependency tree is called Software Bill
of Materials (SBOM).

Dependency Management in Other Programming
Languages

Build-automation and dependency-management tools exist for most languages, e.g.,
pip for Python, npm for JavaScript, NuGet for C#, etc. In the following, we introduce
pip, which works similarly to Maven, and npm, which follows a complementary
approach. We further introduce Conan for C/C++ as an example of a compiled
language.

Python and pip Pip enables developers to download and install Python artifacts,
so-called packages, from the popular open-source repository Python Package In-
dex (PyPI). In Python, software artifacts are typically distributed as wheel files. A
wheel file is a ZIP-format archive with a specially formatted file name. It bundles the
Python source code into a single archive. To include a package, developers specify
the artifact’s identifier: the artifact’s unique name and, optionally, its version in a

Chapter 2 Background

project’s Pipfile. In pip, a dependency usually does not declare an exact version
but a version range or a minimal version the project requires. Maven version 2 also
allows developers to use version ranges in pom.xml files following the Semantic Ver-
sioning Schema v.1.0 [Pre21]. The syntax is still valid in Maven version 3 [Apa23b],
but less common compared to Python.

Listing 2.2 gives an example of dependency declarations in a Pipfile. In pip, for
instance, developers can specify a package’s exact version using ==, specify a mini-
mal version using > =, or specify that any version is valid using *. In the latter cases,
pip determines the exact version during installation and conflict resolution.

1 [packages]
2 beanie = "==1.11.7"
3 matplotlib = "x"

4 flask = ">=2.3.2"

Listing 2.2: Example declaration of artifacts with version constraints as dependencies in a
Python project’s Pipfile for the tool pip.

When an artifact is installed, pip resolves the artifact’s direct and transitive depen-
dencies. To do so, pip also builds a dependency graph where nodes can depend
on the same artifact but in different versions, allowing conflicts. In the example
Listing 2.2, the project depends on the artifacts beanie and flask. Beanie again
depends on the artifact click in a version greater than or equal to 7, and flask
depends on the library click with a version greater than or equal to 8.1.3. Analog
to Maven, pip cannot install multiple versions of a dependency. To resolve conflicts,
pip builds the complete dependency graph and installs the version that conforms
to all constraints in the dependency graph. In the given example, pip installs the
dependency click in version 8.1.3. If pip cannot find a version that conforms to all
constraints, it stops the dependency resolution and asks the developers to resolve
the conflict manually [Pip23].

Node.js and npm Npm is the build-automation and dependency-management tool
for the JavaScript runtime environment Node.js. It enables developers to install and
include artifacts (npm packages) from the public npm registry. In Node.js, packages
are typically distributed as tar files, which bundle the (minified) source code into
a single archive. Dependencies are declared similar to pip, as shown in Listing 2.3.
In addition to pip’s version specifier, npm allows the specifier , which enables the
inclusion of all artifacts that do not increment the first non-zero portion of the
version, following the Semantic Versioning Schema [Pre21]. A package may also
include transitive dependencies.

2.2 Dependency Management in Other Programming Languages

15

16

1 "dependencies": {

2 "archiver": "~5.3.0",

3 "aws-sdk": ">=2.1067.0",
4 "axios": "70.21.4", }

Listing 2.3: Example declaration of artifacts with version constraints as dependencies in a
package. json for the tool npm.

In contrast to Maven and pip, Node.js allows multiple versions of the same package
to co-exist in the dependency graph. The Node.js runtime maintains a complete
dependency graph for each dependency. Thus, a Node.js project can contain multiple
conflicting and duplicate dependencies.

C/C++and Conan In contrast to languages like Java, Python, and JavaScript, depen-
dency-management tools only have a low adaption rate in C/C++ projects [MP18;
Tan+23]. In fact, no unified language-specific dependency-management tool for
C/C++ exists [Tan+23]. Although build-automation tools like CMake [Kit23] ease
the building of projects, CMake does not manage a project’s dependencies. Instead,
the dependencies for building and execution are retrieved from the default installed
libraries on the host system, or the tool requires the developers to manually dis-
tribute and include the dependencies.

The most used C/C++ dependency-management tool is Conan [JFr23] with the
public repository ConanCenter. Conan packages are typically distributed as pre-
compiled binaries, but Conan also supports compiling dependencies from source.
To do so, Conan packages also declare a conanfile.py that specifies a package’s
dependencies and build instructions. Developers specify their project’s dependen-
cies within a conanfile.txt or a conanfile.py. Listing 2.4 shows a dependency
declaration to the library z1ib in version 1.2.11, and further packages in different
versions. Like npm, Conan supports version ranges following the Semantic Version-
ing Schema [Pre21].

1 [requires]

2 zlib/1.2.11

3 fmt/[>9.1.0 <10.1.1]
4 openssl/[~3.1.4]

5 bzip2/[~1.0.6]

Listing 2.4: Example declaration of artifacts as dependencies in a conanfile.txt for the
tool Conan.

Chapter 2 Background

Like Maven, Conan does not enable conflicting dependencies to co-exist in the
dependency graph. When a dependency conflict occurs, Conan asks the developer
to resolve the conflict manually.

Comparison to Java Maven and pip use the same structure to include dependen-
cies in a project. Both use a global dependency tree with duplicate and conflicting
dependencies resolved. Although Maven, pip, and Conan apply different conflict
resolution mechanisms, both include exactly one version of each dependency in the
global dependency tree only. In contrast, npm maintains a whole dependency graph
per dependency, allowing multiple conflicting versions to co-exist in the project. Con-
sequently, concepts that rely on Maven’s or pip’s dependency graph can be directly
applied to each other but must be adapted for npm.

2.2 Dependency Management in Other Programming Languages

17

Systematic Study on the
Usage of Open-Source
Software and Challenges for
Their Detection

The use of vulnerable Open-Source Software (OSS) is a known problem in today’s
software development. Although several tools appeared in the last decade to detect
known-vulnerable dependencies, no systematic study exists investigating the impact
of typical development practices, e.g., forking, patching, and re-bundling, on the
tools’ precision and recall.

In this chapter, we explore the use of (vulnerable) OSS in commercial and open-
source projects as well as challenges for their detection. Through an empirical study
on 7,024 Java projects developed at SAP in Section 3.2, we identify that developers
use open-source artifacts from Maven Central directly or apply four different types
of modifications: re-compilation, re-bundling, metadata-removal, and re-packaging.
We study these modifications on Maven Central to validate our findings in an open-
source context in Section 3.3. Our study shows that these modifications are nonex-
clusive to projects developed at SAP but also occur in open-source projects; we found
that for a selected set of vulnerable Java classes, more than 87% are re-bundled and
56% are re-packaged on Maven Central.

In Section 3.4, we assess the impact of these modifications on six tools for detect-
ing known-vulnerable open-source dependencies: the open-source scanners OWASP
Dependency-Check (DepCheck) and Eclipse Steady, the free scanner GitHub Security
Alerts, and three commercial scanners. The results show that the scanners struggle
with the identified modifications, presenting a challenge for detecting known vul-
nerabilities in (modified) OSS. We discuss threats to the validity of our study and
shortcomings in Section 3.6.

To facilitate reproducibility and drive further development of open-source vulner-
ability scanners, we present Achilles, a novel test suite with 2,558 test cases that
allow replicating the modifications on open-source artifacts in Section 3.7.

19

3.1

20

To identify (modified) OSS, even if the contained Java classes have been re-compiled
or re-bundled, we present our tool SootDiff in Section 3.8. SootDiff uses the static
analysis framework Soot and its intermediate representation Jimple, in combination
with code clone detection techniques, to identify code clones and to reduce dissim-
ilarities introduced due to re-compilation with different Java compilers and Java
versions. Our experiments show that SootDiff successfully identifies clones in 102
of 144 cases, whereas bytecode comparison succeeds in 58 cases only. The results
show that SootDiff can help to mitigate the found challenge of identifying known
vulnerable classes in re-compiled, re-bundled, or re-packaged OSS.

We give an overview of related work in Section 3.9, and complete with a conclusion
of our study and SootDiff in Section 3.10.

Strategies for Detecting Vulnerabilities in
Open-Source Software

Most open-source vulnerability scanners check different sources and vulnerability
databases to check if a given open-source artifact is affected by a known vulner-
ability [Pas+18]. The main and most complete public source of vulnerabilities is
the National Vulnerability Database (NVD) [NIS20].! The NVD links a vulnerabil-
ity (Common Vulnerabilities and Exposures (CVE)) to a set of operating systems,
hardware, or software using the Common Platform Enumeration (CPE) standard to
list the affected artifacts. CPE is a naming schema that defines standardized meth-
ods for assigning names to IT product classes [NIS20]. A CPE in version 2.3 has
the form cpe:2.3:<part>:<vendor>:<product>:<version>:<update>:<edition>:<lang-
uage>:<sw_edition>:<target_sw>:<target_hw>:<other>, where part specifies an ap-
plication (a), operating system (o) or hardware (h), the other elements identify the
affected product(s), wildcards are allowed. Although the NVD is the most complete
public source of vulnerabilities, CPEs do not cover all artifacts of an OSS with full
accuracy. In addition, CPEs often use a different granularity and schema than dep-
endency-management tools, making the mapping from the dependency’s identifier
used by the build-automation tool like its groupld:artifactld:version (GAV) to CPEs
complex, for instance, the CPE product element may not correspond to the artifactld
in the GAV.

IFurther sources of vulnerabilities are vendor-, product-, or software-specific advisory boards and
bug trackers used to report security issues.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

For detecting known-vulnerable dependencies, vulnerability scanners build a project’s
Software Bill of Materials (SBOM) and query a vulnerability database if known vul-
nerabilities for the found artifacts exist. Usually, the tools do not only query a single
vulnerability database but a combination of public and commercial vulnerability
databases, including the NVD. Different strategies exist for matching an artifact
against the entries (and CPEs) in a vulnerability database. The most popular strate-
gies are name-based and code-based matching [PPS18; PPS20; NDM16].

Tools like DepCheck and GitHub Security Alerts apply name-based matching to iden-
tify known-vulnerable dependencies. First, these tools extract from the declared
GAVs and the artifacts’ JAR files the vendor, product, and version of each artifact.
Second, the tools try to match the found information to CPEs in the NVD or the soft-
ware identifiers in Mend.io’s vulnerability database [Git20] using fuzzy-matching.
Finally, the tools report vulnerabilities with a CPE matching the identifiers that
they crafted from the GAVs and JAR files. Name-based matching approaches suffer
from both false positive and false negatives [NM13; DBM19]. False negatives oc-
cur when the NVD is incomplete, and the set of CPEs does not contain all affected
artifacts. False positives occur when the CPEs over-approximate the affected ver-
sions or specify a complete application instead of the affected artifact [NM13]. For
instance, CVE-2018-1271 declares the complete Spring framework as vulnerable
using the CPEs cpe:2.3:a:vmware:spring_framework:4.3.0:x:x up to cpe:2.3:a:vm-
ware:spring_framework:4.3.14:x:x, whereas only the single library web-mvc with the
GAVsorg.springframework:spring-webmvc:4.3.0.RELEASE upto 4.3.14.RELEASE
is actually vulnerable [Piv20]. In this case, a name-based matching strategy will
likely report every artifact of the Spring framework as vulnerable. The effective-
ness of a name-based matching strategy entirely relies on the completeness and
correctness of the identifiers and CPEs in the database and the correctness of the
dependency’s meta-information: vendor, product, and version.

Tools like Eclipse Steady apply code-based matching [PPS20; PPS18]. Instead of
mapping the dependency’s vendor, product, and version to identifiers in a vulnera-
bility database, Eclipse Steady maps the bytecode of the classes in the dependency’s
JAR against a custom database containing the bytecode of known-vulnerable arti-
facts. To do so, Eclipse Steady computes the digest of each JAR and the fully-qualified
name (FQN) of all classes and methods the JAR contains. Eclipse Steady then uses
its custom database to check if vulnerabilities have been reported for the found
FONSs.

3.1 Strategies for Detecting Vulnerabilities in Open-Source Software

21

3.2

3.2.1

22

Code-based matching approaches require the creation of a separate database con-
taining the vulnerable software constructs of each vulnerability, e.g., classes, con-
structors, methods, and their FQN, since public databases like the NVD typically do
not contain this information. To derive the vulnerable constructs, the commits that
fix the vulnerability must be identified for each disclosed vulnerability. The effec-
tiveness of code-based approaches depends on the similarity between the identified
vulnerable bytecode stored in the database and the bytecode contained in the in-
cluded dependency, which may differ due to forking, re-compilation, re-bundling,
or re-naming of classes.

The matching approaches of commercial vulnerability scanners’ and databases are
not publicly available. They may use a combination of name-based and code-based
matching or rely on other data, e.g., file digests, timestamps, file names, or additional
attributes.

Study Design

As described in Section 3.1, research and industry have developed several open-
source vulnerability scanners, e.g., the open-source tools DepCheck and Eclipse
Steady, the free tool GitHub Security Alerts, and commercial tools such as Snyk [Sny23],
Synopsys [Syn23], or Mend.io [Men23a], which apply name-based matching, code-
based matching, or a combination of several attributes for identifying known-vulnerable
dependencies in a project.

Although previous studies [Hei+11; BHD12; Kul+18; Pit16; Pas+22] investigate to
which extent open-source or commercial applications include (vulnerable) OSS, no
study exists that examines what development practices [Bav+15; Kul+18; Hei+11;
BHD12], like forking, patching, re-compiling, or re-packaging, developers apply to
included open-source artifacts. Further, no study exists that investigates how pre-
cisely open-source vulnerability scanners can identify known-vulnerabilities in such
modified artifacts.

Research Questions

To fill this gap, we investigate in a two-folded case study (i) how developers in-
clude (vulnerable) OSS, and (ii) the prevalence and impact of modifications, such
as forking and patching, on the precision and recall of vulnerability scanners.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

In the first part, we clarify how developers use OSS in a commercial context, partic-
ularly at SAP. To do so, we investigated RQ1: What are developer practices for
using OSS at SAP? We analyzed the metrics of the SBOMs of 7,024 Java projects
developed at SAP. We checked how many dependencies a vulnerability scanner
has to analyze by computing the average number of (direct and transitive) de-
pendencies a project includes. Vulnerability scanners are especially beneficial for
detecting vulnerabilities in transitive dependencies, as developers only include di-
rect dependencies explicitly and are often unaware of all transitive dependencies
their projects include. Thus, developers likely miss vulnerable transitive dependen-
cies in manual reviews [Pas+18; Kul+18]. Further, we computed the ratio of direct
to transitive dependencies. To check how many (vulnerable) dependencies could
actually be exploited in a project, we reviewed the ratio of release dependencies
to development-only dependencies. Since only release dependencies are available
during production, only vulnerabilities in those are exploitable. To evaluate how crit-
ical vulnerability scanners are for detecting known-vulnerable OSS in a commercial
software project, we checked how extensively OSS is used. To do so, we computed
the ratio of open-source to proprietary dependencies.

We applied the following procedure to investigate the prevalence of vulnerable OSS.
We first selected a representative set of the 20 most-used dependencies at SAP and
then checked RQ2: What vulnerabilities affect the 20 most-used dependencies?
Therefore, we checked for all observed versions of the 20 most-used dependencies,
in total, 723 different open-source artifacts, which vulnerabilities affect them. This
semi-manual classification also serves as the basis for our test suite Achilles.

In our case study, we found that developers include not only unmodified artifacts
directly from public open-source repositories but also artifacts in modified form. As
already stated by Ponta et al. [PPS20; PPS18], developers fork, patch, re-compile, re-
bundle, and re-package existing open-source artifacts resulting in modified metadata
(name, vendor, version, timestamp, etc.) and bytecode [Bav+15; Kul+18; Hei+11;
BHD12]. To elaborate on this observation, we investigated RQ3: How do develop-
ers include OSS? and classified the observed modifications into four different types:
re-compilation, re-packaging, metadata-removal, e.g., removal of MANIFEST.MF files,
re-bundling multiple OSS into a single file (so-called Uber-JAR), or combinations of
those.

In the second part, we investigated the prevalence of the found modifications and
their impact on the precision and recall of vulnerability scanners. To check their
prevalence, we studied RQ4: How prominent are the modifications outside SAP?
by evaluating how often they occur on the open-source repository Maven Central.

3.2 Study Design

23

3.2.2

24

To evaluate RQ5: What is the impact of the modifications on vulnerability scan-
ners, we compared the precision and recall of six vulnerability scanners w.r.t. the
identified modifications. To do so, we chose a representative set of 16 vulnerabili-
ties from RQ1 and RQ2, applied the identified modifications, and investigated the
precision and recall of three commercial vulnerability scanners,? GitHub Security
Alerts, and the open-source scanners DepCheck and Eclipse Steady by computing
precision, recall, and F1-score in these test scenarios.

Study Objects & Methodology

Case studies are suitable means to gain an in-depth understanding of real-world
situations and processes [RH09], like development practices regarding the use of
OSS. Thus, we answer our research questions with a software industry case study at
SAP.

Studied Projects & Project Metric Extraction In our study, we investigated 7,024 dif-
ferent Java projects, covering a wide range of enterprise applications, platforms, in-
house tools, micro-services, and monoliths. Specifically, we investigated the SBOMs
of each project created by the vulnerability scanner Eclipse Steady, which uses
the build-automation tool Maven to generate the SBOMs and resolve dependen-
cies [PPS18]. The generated SBOMs contain the project’s unique identifier (GAV)
and the attributes of the used dependencies. In particular, the SBOM states for each
dependency: the GAV, the scope, if the dependency is direct or transitive, the JAR’s
filename, and the JAR’s SHA1.

The initial data set consisted of 49,752 different SBOMs generated by Eclipse Steady.
Since the SBOMs were generated during the build process, the data set included
a separate SBOM for each project version. We only included each project’s latest
SBOM to balance our data set. As a result, the filtered data set consisted of the
SBOMs of 7,024 distinct projects (projects with distinct groupld:artifactld (GA)).

To study the prevalence of the studied open-source artifacts and the found modifica-
tions in the open-source community, we investigated the artifacts hosted on Maven
Central utilizing its search index and the statistics provided by Maven Central and
MvnRepository [Mvn20].

2Due to license restrictions, we cannot disclose their names.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

Dependency Selection To answer the research questions RQ2, RQ4, and RQ5, we
investigated in semi-manual reviews what vulnerabilities affect the 20 most-used
dependencies and what Java classes contain the vulnerable code. As a result, we
investigated 723 different artifacts—all found versions of the 20 most-used depen-
dencies.

To ensure software industry relevance, we selected the sample set from the project
data set as follows: We only considered release dependencies that are available
during the build, that are dependencies with the scopes compile or runtime.

Table 3.1: The selected sample set of the 20 most-used artifacts in the 7,024 projects de-
veloped at SAP, grouped by groupld:artifactld (GA). The table shows how many
different projects use that artifact and how popular—based on its usage—the
artifact is on Maven Central.

Used by Artifact GA Popularity
#projects (groupld, artifactId) on Maven
at SAP Central [Mvn20]
3,211 commons-codec:commons-codec 18
3,026 org.slf4j:slf4j-api 1
2,899 com.fasterxml.jackson.core:jackson-annotations 23
2,854 com.fasterxml.jackson.core:jackson-core 21
2,851 com.fasterxml.jackson.core:jackson-databind 6
2,831 org.apache.httpcomponents:httpcore 57
2,781 commons-logging:commons-logging 17
2,774 org.apache.httpcomponents:httpclient 13
2,662 com.google.code.gson:gson 10
2,617 org.springframework:spring-core 28
2,574 org.springframework:spring-beans 36
2,533 org.springframework:spring-context 16
2,518 org.springframework:spring-aop -
2,503 org.springframework:spring-expression -
2,495 COMIMONS-io:commons-io 3
2,371 org.apache.commons:commons-lang3 5
2,133 org.springframework:spring-web 32
2,105 com.google.guava:guava 2
2,046 javax.validation:validation-api 44
1,895 org.springframework:spring-webmvc 48

3.2 Study Design

To validate the relevance of our sample set within the open-source community, we
checked if the selected 20 most-used artifacts are equally popular on the public
repository Maven Central. Table 3.1 shows the ranking of the selected 20 most-used
artifacts at SAP among the 100 most-used artifacts at Maven Central, based on the
statistics provided by MvnRepository [Mvn20] in column Popularity. In contrast to
our study, the MvnRepository popularity ranking includes development-only depen-
dencies, which are typically included with the scopes test, provided, or system, and
dependencies for non-Java languages, like Kotlin, Scala, and Closure. We excluded
test, mock, and non-Java dependencies from the ranking to achieve a fair compari-
son and re-computed the popularity. In total, we excluded 38 dependencies: junit,
mockito-*, easymock, scala-*, clojure, org.renjin, kotlin-*, android- .

The table shows that 18 out of the 20 most-used artifacts at SAP are within the 100
most-used artifacts on Maven Central. Only two artifacts, spring-expression and
spring-aop, are outside the 100 most-used artifacts on Maven Central. In summary,
the table shows that the artifacts’ popularity slightly differs within SAP and Maven
Central.

To study how often the sample set is used within open-source projects, we computed
the number of usages for all 723 artifacts (GAVs) on Maven Central, resulting in the
log-normal distribution in Figure 3.1. The figure shows that open-source projects
hosted on Maven Central also regularly use the artifacts in the sample set.

250 A

200 A

150 A

100 A

Number of artifacts

50 A

100 10! 102 103 104
Used by #artifacts

Figure 3.1: To understand how the open-source community also uses the selected sam-
ple, this graph reports the #usages of the 723 artifacts (GAVs) as reported by
mvnrepository.com, showing a log-normal distribution (X-axis has logarithmic
scale).

26 Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

mvnrepository.com

Vulnerable Dependency Identification As described in Section 3.1, all current ap-
proaches for matching vulnerabilities to OSS artifacts are prone to false positives
and false negatives. Moreover, the databases are incomplete w.r.t. the reported vul-
nerabilities and the set of CPEs, resulting in false negatives.

We used three vulnerability scanners to identify vulnerable dependencies to re-
duce the likelihood of false positives and false negatives: the open-source scan-
ners Eclipse Steady and DepCheck, and the commercial scanner C3. The scanners
apply different matching strategies: Eclipse Steady applies code-based matching,
whereas DepCheck uses name-based matching. For C3 there is no public informa-
tion available describing the applied matching strategy. By choosing these scanners,
our results rely on three different vulnerability databases: Eclipse Steady uses its
open-source database [Pon+19; SAP20], DepCheck uses the NVD [NIS20], and C3
uses a commercial database. Hereby, we aim to improve the validity of our results
by balancing out the shortcomings of one particular database.

To achieve soundness, we classified the scanners’ reports in semi-manual reviews
(cf. Section 3.3.2) into true and false positives. In total, we classified 2,558 scanner
reports for the 723 distinct artifacts (GAVs).

Identification of Modifications on Maven Central To assess the prevalence of mod-
ifications outside SAP in the open-source community, we checked how often the
found modifications occur on Maven Central. To do so, we first identified for each
vulnerability (identified in RQ2) what class files are vulnerable in the artifact’s JAR
file. To identify the vulnerable class files, we manually checked the source-code
commits that fixed the identified vulnerability and investigated which class files the
commits changed. Second, we computed how often the identified vulnerable classes
occur in modified form on Maven Central w.r.t. the identified modifications.

To check if the bytecode of a vulnerable class matches the found—and potentially
modified—classes on Maven Central, we compared their bytecode using the tool
SootDiff (cf. Section 3.8). SootDiff’'s comparison was specifically designed to be
resilient to changes induced by various compilation schemes, and thus allows us to
check for bytecode equivalence even if a modification has been applied to one of
the classes.

3.2 Study Design

27

3.3

3.3.1

28

Use of Open-Source Software at SAP

In this section, we answer the research questions RQ1, RQ2, and RQ3 by investigating
the development practices regarding the use of OSS in a commercial context within
our empirical study on 7,024 Java projects developed at SAP, one of the world’s
largest software development companies.

RQ1: What Are Practices for Using Open-Source Software at
SAP?

To answer RQ1, we first computed the average number of dependencies per project.
Therefore, we calculated the number of distinct dependencies’ GAVs, the arithmetic
mean, and the standard deviation [Saj+14]. We found that, on average, a project
includes 94.78 direct and transitive dependencies with distinct GAVs, with a stan-
dard deviation of 124.61. The high standard deviation shows that the number of
included dependencies—which is also the size of the SBOM—heavily varies among
projects.

Estimating the number of dependencies of a project by counting the distinct GAVs
seems simple, however, it may suffer from several issues as described by Pashchenko
et al. [Pas+18]. For instance, if a developer declares a dependency on spring-
-context, its transitive dependencies with the same groupld are counted separately.
This overweights dependencies that are released as multiple JARs, e.g., frameworks
like Spring or Struts. To overcome this issue, we count the number of distinct
grouplds per project as proposed by Pashchenko [Pas+18]. This resulted in 36.34
(sd = 35.84) direct and transitive dependencies with distinct groupld per project,
with a median of 25. The number of dependencies highly varies per project, ranging
from 0 to 228 dependencies. Unless stated otherwise, we use this grouping for the
remainder of the study.

Second, we computed the ratio of direct to transitive dependencies, shown in Fig-
ure 3.2. The figure shows that only 21% are direct dependencies, whereas 79% are
transitive.

Our investigation showed that more than 50% of the studied projects incorporate
at least one of the frameworks: Spring or Struts. Since the Spring and Struts frame-
works include many transitive dependencies with different grouplds, the amount

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

of observed transitive dependencies is high in our study—although we only count
distinct GAs. For instance, the framework spring-boot-starter:2.17 introduces 17

dependencies with different grouplds, e.g., javax.*, ch.qos.logback, org.apache. *.

Third, we investigated how many dependencies are deployed with a release. There-
fore, we computed the percentages of used scopes, shown in Figure 3.2. The figure
shows that most dependencies (58.1%) have the default scope compile, and thus are
present during compile time, testing, and runtime. 4.9% have the scope runtime, and
thus are present on the runtime classpath. 20.2% have the scope provided or system,
and thus are present at runtime only but not during compile time. 16.8% have the
scope test, and thus are development-only dependencies, not deployed in produc-
tion. The high number of dependencies with the scopes runtime, provided, or system
shows that 25.1% of the dependencies are not shipped with the application but are
pre-installed on the host system on which the application is executed, which may
differ from the build system. However, vulnerability scanners are executed on the
build system, e.g., a Jenkis, GitLab, or GitHub build server, and thus cannot identify
vulnerabilities in artifacts provided later—during runtime.

100
w —
28 v 58.1
e g* 60 79
5] = 86.09
£
= 8 40
o
X & 20.2
20
16.8
13.91 21
0 : 4.9
type resolve scope
|]proprietau"yDoss ‘ ‘DdirectDtransitive DruntimerrOVIded/
system

O test O compile

Figure 3.2: To understand to what extent and how developers include open-source artifacts,
this graph reports: the average ratio of OSS to proprietary dependencies, the ra-
tio of direct to transitive dependencies, and the scopes developers use; grouped
by groupld:artifactld (GA).

Fourth, we computed the ratio of open-source to proprietary dependencies to check
to what extent OSS is used in a commercial context. To distinguish between open-
source and proprietary dependencies, we classified each artifact hosted with the

3.3 Use of Open-Source Software at SAP

29

3.3.2

30

same GA on Maven Central as open-source and any other as proprietary. Figure 3.2
shows the results. As other repositories exist for Java, e.g., Sonatype, JCenter, or
Redhat JBoss, this ratio is only a lower bound.

On average, 86.09% of the dependencies are open-source, whereas only 13.91% are
proprietary. Moreover, open-source dependencies are ubiquitous as 95.43% of the
projects include at least one open-source artifact.

Findings from RQ1: On average, a Java project includes 36 direct and transitive
dependencies, 86% of them being open-source. Most dependencies are transitive
(79%), and are release dependencies (58.1%).

RQ2: What Vulnerabilities Affect the 20 Most-Used
Dependencies?

We investigated how many vulnerabilities affect the 20 most-used dependencies,
which we selected as described in Section 3.2.2. As vulnerabilities typically only
affect specific version range(s), we checked all versions of the artifacts we observed
in our data set. In total, we observed 723 different artifacts (GAVs) for the 20 most-
used dependencies.

We used the vulnerability scanners Eclipse Steady, DepCheck, and C3 to identify
known vulnerabilities in these artifacts. By using the scanners, which rely on dif-
ferent vulnerability databases, we aim to improve the validity of the results, as de-
scribed in Section 3.2.2. As input for those scanners, we created a separate Maven
project for each artifact with a direct dependency on that artifact, including its

optional dependencies.

Table 3.2 shows the number of findings separated per scanner for the GAs of the
artifacts, and the number of distinct reported vulnerabilities. The column Scanned
Artifacts shows the scanned artifact, which we declared as a direct dependency in
the created Maven project. The number in brackets shows how many versions of
the artifact were scanned. The column Vulnerability reported in Artifacts shows for
which artifact—the artifact itself or one of its (transitive) dependencies—the scan-
ners reported a vulnerability. Again, the number in brackets shows in how many
versions of the artifact the scanners reported vulnerabilities. The cell is highlighted
if a vulnerability in the artifact itself was reported.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

The column #Dist. Vulnerabilities gives the total number of distinct reported vul-
nerabilities, and the column #Findings gives the number of findings the scanners
reported. For instance, consider the first row in Table 3.2. We scanned the artifact
guava in 35 versions; the scanners reported vulnerabilities in 25 versions of guava.
The scanners found 1 unique vulnerability (column Dist Vulnerabilities) across all
versions: Steady reported it in 12 different versions, DepCheck in 25 versions, and
C3 in 25 versions.

The column Findings in Table 3.2 includes both true-positive and false-positive
findings. We classified all findings later in semi-manual reviews. Note that Eclipse
Steady and C3 reported vulnerabilities that are not officially listed in the NVD, and
thus do not have a CVE number, e.g., bugs or vulnerabilities disclosed in bug trackers.
Eclipse Steady and C3 report those non-official vulnerabilities since both scanners
use custom databases, whereas DepCheck only uses the NVD. Though we considered
these vulnerabilities in Table 3.2, we ignored them for creating our test suite Achilles
and for comparing the scanners in RQ5, as different scanners may name the same
issue differently or may not consider them as vulnerabilities, thereby hindering a fair
comparison. In total, the scanners reported 251 distinct vulnerabilities for 534 of
the 723 different artifacts. Since a single CVE usually affects multiple versions, e.g.,
CVE-2016-3720 affects the artifacts jackson-dataformat-xml version 2.0.0-2.7.4,
the scanners generated 2,558 distinct findings (GAV, vulnerability).

Table 3.2: To identify known vulnerabilities in our sample set of the 20 most-used depen-
dencies (723 artifacts), we used the scanners Steady, OWASP DependencyCheck
(DepCheck), and C3. The table gives an overview of the findings that the scan-
ners reported. Highlighted are cases in which the artifact itself is reported as
vulnerable.

#Findings

Scanned Artifact Vulnerability reported #Dist. Vulner-

(#versions) in Artifact/Dependency (#versions) abilities Steady =~ DepCheck C3
guava (35) guava (25) 1 12 25 25
httpclient (22) httpclient (18) 7 4 9 40
TOO 1 2 4 0 0
jackson-databind (54) groovy (1)
jackson-databind (53) 16 227 203 218
spring-aop (61) spring-core (52) 25 17 374 29
roovy-all (8) 2 30 18 24
spring-beans (61) St (
spring-core (52) 25 23 29 375

Continued on next page

3.3 Use of Open-Source Software at SAP

32

Scanned Artifact

Vulnerability reported

#Dist. Vulner-

#Findings

(#versions) in Artifact/Dependency (#versions) abilities Steady =~ DepCheck C3
bsh (2) 1 60 60 55
hibernate.validator (2) 1 0 4 0
groovy-all (10) 2 45 28 34
spring-context (60) hibernate-validator (5) 2 7 8
jruby (4) 6 1 18
jsoup (1) 1 0 2
spring-core (51) 25 28 368 26
spring-expression (46) 92 0 0
spring-core (62) commons-collections (1) 4 5 10
spring-core (53) 24 20 390 31
. . spring-core (48) 25 4 29 11
spring-expression (57)
spring-expression (10) 2 20 0
axis (1) 3 0
axis-saaj (1) 3 0
commons-fileupload (3) 6 50 49 9
commons-httpclient (1) 1 3 00
groovy-all (8) 2 18 12 17
spring-web (46) guava (1) ! ?
httpasyncclient (1) 1
httpclient (7) 5 26 5 24
jackson-databind (28) 13 396 134 134
jackson-dataformat-xml (20) 5 23 90 14
jetty-http (21) 9 116 192 74
jetty-security (15) 1 33 0 0
jetty-server (20) 6 148 0 109
jetty-servlet (19) 1 38 0 0
jetty-util (20) 4 75 0 68
netty-all (9) 2 10 15 4
okhttp (2) 1 3
org.apache.axis (1) 1 3 0 0
protobuf-java (1) 1 0 31 31
spring-core (43) 25 22 305 20
spring-expression (37) 2 74 0 0
spring-oxm (14) 4 24 0

Continued on next page

Chapter 3 Systematic Study on the Usage of Open-Source Software and

Challenges for Their Detection

#Findings

Scanned Artifact Vulnerability reported #Dist. Vulner-

(#versions) in Artifact/Dependency (#versions) abilities Steady =~ DepCheck Cc3
spring-web (44) 12 42 0 105
taglibs (1) 1 0 1 1
tomcat-embed-core (7) 8 30 15 32
undertow-core (4) 6 12 0 44
beprov-jdk14 (2) 14 180 481 37
beprov-jdk15on (1) 3 16 24 16
castor (1) 1 0 5 0
commons-beanutils (3) 2 88 45 43
commons-collections (4) 4 18 46 21
commons-compress (1) 1 33 0 33
commons-fileupload (1) 5 5
dom4j (1) 1 1
groovy-all (8) 2 17 12 15
guava (1) 1 24 25 25
itextpdf (1) 2 2 0 3

. jackson-databind (28) 13 407 139 139

spring-webmvce (45)
jackson-dataformat-xml (19) 5 21 85 13
jasperreports (8) 6 0 68
lucene-queryparser (1) 1 29 0
ognl (1) 1 43 44 44
poi (8) 7 35 107 72
poi-ooxml (3) 24 24 0 24
spring-core (38) 23 12 20 251
spring-expression (33) 2 66 0 0
spring-oxm (13) 5 12 0 19
spring-tx (1) 1 1 0 1
spring-web (40) 13 75 0 100
spring-webmvce (38) 8 28 28 99

validation-api (5) bsh (1) 1 4 0 0

The table shows that scanners reported mostly vulnerabilities for transitive de-

pendencies (the non-highlighted cells). The vulnerability scanners did not report

anything for the artifacts commons - codec, commons-io, commons-logging, commons -

-lang3, gson, httpcore, jackson-annotations, jackson-core, and s1f4j-api, which
we therefore omitted. The complete set of reported vulnerabilities and our classifi-

cation are published along with the test suite (cf. Chapter 6).

Findings from RQ2: Eclipse Steady, DepCheck, and C3 generated 2,558 findings
for 534 of 723 different artifacts with 251 CVEs. The majority of vulnerabilities
affect transitive dependencies.

3.3 Use of Open-Source Software at SAP

33

To investigate the ratio of true-positive and false-positive reported vulnerabilities,
we semi-manually classified the 2,558 findings using the following procedure:

1. We checked if the NVD [NIS20] or Eclipse Steady’s database references a
source-code commit, issue, or pull request fixing the reported vulnerability
and identified the changed vulnerable classes.

In total, we found source-code commits for 96 vulnerabilities and identified 254
vulnerable classes.

2. If we found a commit, we checked if the reported JAR file contained the
bytecode of the identified vulnerable classes.

2.1. To do so, we first determined the vulnerable methods, classes, and static
initializers using Eclipse Steady and its database [PPS18].

2.2. Second, we compared the bytecode of the vulnerable classes, methods,
and static initializer with the bytecode contained in the reported JAR
using SootDiff (cf. Section 3.8).

2.3. If the bytecode of at least one class, method, or static initializer matched
the vulnerable code, we classified the finding as true positive.

In these steps, we classified 427 reports as true positive, 793 as false positive, and
left 1338 for further investigation.

3. If we could not find a source-code commit for the vulnerability or SootDiff’s
comparison failed, we manually searched the NVD and Eclipse Steady’s database
for links to issue boards and bug trackers.

4. If we found a link to an issue or bug tracker, we checked if the description
stated the vulnerable artifacts and the affected versions.

4.1. If a description existed and exactly matched the reported artifact, we
classified the finding as true positive.

4.2. If a description existed but did not match the reported artifact or the
NVD entry referred to a different artifact, we classified the finding as
false positive.

In these steps, we classified 351 reports as true positive, 829 as false positive, and
158 as ambiguous.

34 Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.3.3

5. If we could not find a link or the description in the NVD or Steady’s database,
or the artifact identifier was ambiguous, we fell back to the CPEs in the
NVD [NIS20].

5.1. If the CPE matched the reported artifact, we classified the finding as
true positive.

5.2. If the CPE did not match, we classified the finding as false positive.

For the remaining reports, we classified 15 as true positive, 141 as false positive,
and left 2 as ambiguous.

Using this procedure, we could not classify two findings: one finding for CVE-2013-
5855 in javax.faces-api:2.2 and one for CVE-2014-7810 in el-api:1.0. We man-
ually checked the two reported JARs for these findings and found that they only
contain the vulnerable artifacts’ API (abstract classes and interfaces) but no imple-
mentation. Thus, we classified them as false positive.

In total, we classified 903 (35%) as true positive in 349 artifacts and 1,655 as false
positive of the 2,558 reports.

Findings from RQ2: We classified 903 of the 2,558 findings in reviews as true
positive, and the rest as false positive. Further, we identified in 349 (65%) of the
534 reported artifacts 100 unique CVEs, that were classified as true positive.

RQ3: How Do Developers Include Open-Source Software?

In our study, we observed four types of modification that developers applied to the
included open-source artifacts:

Unmodified JAR: Most commonly, we observed that developers include an artifact
directly from Maven Central using its plain, original GAV.

Patched JAR (type 1): We noticed that developers include OSS with a slightly
modified GAV, e.g., com.google:guava:23.0_fix3. We investigated that these type 1
artifacts occur if developers or distributors fork the source code of an OSS and patch
it. They indicate these changes by appending a suffix string like fix to the version.

3.3 Use of Open-Source Software at SAP

35

36

The JAR file does not contain the original bytecode but the (modified) re-compiled
bytecode. Due to the re-compilation, the classes’ bytecode, digests, timestamps, and
the JAR’s digest changes [PPS20; PPS18].

In our study, we observed the modifications: re-bundling, metadata-removal, and
re-packaging along with so-called Uber-JARs—sometimes also called fat-JARs. Uber-
JARs merge multiple open-source artifacts into a single JAR to ease deployment and
distribution. In the following, we elaborate on Uber-JARs and how they relate to
the observed modifications re-bundling, metadata-removal, and re-packaging.

Uber-JAR (type 2): We found projects that include dependencies with GAVs that
do not indicate which original open-source artifact from Maven Central the JAR file
contains, e.g., com.my:servicebundle:1.0. Such JAR files (re-)bundled multiple
open-source artifacts (and their transitive dependencies) into a single JAR file, a
so-called Uber-JAR. Examples are, for instance, the jar-with-dependencies files,
which can be found on Maven Central and can be easily generated with Maven’s
assembly or shade plugin. In contrast to patch modifications (type 1), the plugins
preserve the original bytecode, digests, and timestamps.

For Uber-JARs, we found two further sub-types:

Bare Uber-JAR (type 3): In rare cases, multiple artifacts are merged into an Uber-
JAR, but the original artifacts’ pom.xml files, the original folders META-INF, and the
original file timestamps are removed from the Uber-JAR. Since Maven’s shade and
assembly plugins preserve the pom.xml by default, this case is supposedly relevant
for legacy Uber-JARs built before the advent of these plugins, e.g., with Ant.

Re-packaged Uber-JAR (type 4): Re-packaged Uber-JARs are similar to normal
Uber-JARs (type 2), but contain re-packaged artifacts. When re-packing is applied
to an artifact’s JAR file, a fixed string is typically prepended to the original FQN
classes in the JAR, e.g., org.shaded. To continue to link, the references to classes,
methods, and fields are also adapted in the classes’ bytecode to the new FQNs. As a
result, the re-packaged classes’ bytecode, digests, and file timestamps are changed.
Such re-packaging can be configured with the Maven shade plugin and is usually
applied to avoid name clashes.

Findings from RQ3: We identified four types of modification that developers
apply to included OSS: patched JAR, Uber-JAR, bare Uber-JARs, and re-packaged
Uber-JARs.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.4 Prevalence & Impact of Modified Open-Source

3.4.1

Software

In this section, we answer the research questions RQ4 and RQ5 by investigating
the prevalence of the identified modifications on the public open-source repository
Maven Central and the modifications’ impact on the precision and recall of vulnera-

bility scanners.

RQ4: How Prominent Are the Modifications Outside SAP?

To check that the observed modifications are not only specific to our data set, which
is composed of Java projects developed at SAP, we computed the prevalence of the
found modifications on Maven Central. As a basis for detecting the modifications,
we used the vulnerable open-source artifacts that we identified in RQ2. In particular,
we investigated how often the vulnerable classes of the found vulnerable artifacts
are subject to modification types 1-4. To do so, we first identified which classes
are changed in the source-code commits that fix the 251 CVEs that we identified in
RQ2 (cf. Section 3.3.2). Table 3.3 shows the prevalence of type 1-4 modifications
on Maven Central. In the following, we describe our procedure for identifying the
modifications.

Table 3.3: To understand how prevalent the modifications are on Maven Central, this table
reports how often the identified 254 vulnerable classes were subject to the mod-
ifications and in how many different artifacts they occurred.

Patched JAR Uber-JAR Bare Uber-JAR Re-pack. Uber-JAR

(type 1) (type 2) (type 3) (type 4)
vuln. classes modified 143 222 222 17
found in
#artifacts with 5,919 36,609 24,500 168
different GAV*
found in
#artifacts with 360 6,723 3,882 89
different GAT

* GAV - groupld, artifactld, version
" GA- groupld, artifactld

3.4 Prevalence & Impact of Modified Open-Source Software

37

38

Detection of Patched JARs (type 1) Developers usually change code in a subset of
the classes only when forking or patching an OSS. However, releasing the patched
artifact requires the re-compilation of all classes. Consequently, in type 1 modifica-
tions, developers typically only change the code of a few classes. However, all classes
are re-compiled when releasing the JAR file, changing (potentially) the classes’ byte-
code, digests, and timestamps.

To measure how prevalent type 1 modifications are, we checked how often the vul-
nerable classes (a subset of the classes in the JAR) have been re-compiled. Suppose
we find a re-compiled version of a vulnerable class in an artifact that is not the
original artifact. In that case, we assume the artifact was created during forking and
re-compilation. Since re-compilation may change a class’ bytecode and digest, but
not the FQN, we used the following procedure to discover re-compiled classes:

1. We queried Maven Central for classes that have identical FQNs as the identified
254 vulnerable classes.

2. For the found classes, we determined how many classes have equivalent byte-
code as the vulnerable classes but a different SHA1, using SootDiff. These
classes’ bytecode changed due to using a different Java compiler or compiling
for a different Java version (cf. Section 3.8).

We found 50,702 artifacts on Maven Central that contain at least one class with
an identical FQN. For 143 (56%) of the 254 classes, we found re-compiled versions
with a different SHA1 but equivalent bytecode on Maven Central. We found such
re-compiled classes in 5,919 (11.6% of the 50,702) artifacts with 360 distinct GAs.

Our procedure fails to identify re-compilation if the source code of the vulnerable
classes has been changed significantly. In such cases, SootDiff fails to detect that the
vulnerable class and the changed class originate from the same source code. Thus,
our results are only a lower bound.

Detection of Uber-JARs (type 2) Bundling multiple open-source artifacts into an
Uber-JAR does neither change the bytecode nor the metadata, e.g., file names, FQNs,
timestamps, SHA1; the files are just copied into a new JAR file. We applied the
following steps to check the prevalence of Uber-JARs on Maven Central:

1. We queried Maven Central for classes that have identical FQN as the 254
vulnerable classes.

2. For the found classes, we checked how many classes have the same SHA1 as
the vulnerable classes.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

We found 36,609 artifacts that contained copies of the 254 vulnerable classes on
Maven Central. We identified re-bundling for 222 (87%) out of the 254 classes
across 6,723 artifacts with different GA. Further, we found that commonly classes
are re-bundled in two or three artifacts with different GAs (with quartiles Q1: 2,
Q2: 2 Q3: 3); thus, re-bundling often occurs within the same groupld and artifactId.
However, we also found at max that the class org.bouncycastle.math.ec.custom-
.sec.SecP256R1Curve was re-bundled in 27 artifacts with distinct GAs.

Detection of bare Uber-JAR (type 3) Further analysis showed that 3,882 (57%) out
of those 6,723 Uber-JARs do not contain a pom.xml in the META-INF folder, and thus
are bare.

Detection of re-packaged Uber-JAR (type 4) Uber-JARs may also re-package classes
by prepending a fixed string to the classes’ FQN to avoid name clashes between
classes bundled together from different artifacts. Since FQNs are embedded within
a class’ bytecode, the bytecode itself, timestamp, and the SHA1 change, but the file
name remains unchanged. To discover re-packaged Uber-JARs on Maven Central,
we executed the following steps:

1. We queried Maven Central for classes with the same file name (not FQN) as
the 254 vulnerable classes.

2. For the found classes, we checked how many classes have equal bytecode, in
terms of local-sensitive hash distances [OCC13], and are contained in artifacts
with different GAs.

We found 16,665 artifacts containing a class with the same file name as a vulnera-
ble class but a different FQN; for 174 of the 254 classes. To check if the bytecode
is similar to one of the vulnerable classes, we created a unified bytecode repre-
sentation using SootDiff (cf. Section 3.8) and computed its local-sensitive hash
(TLSH) [OCC13]. If the TLSH distance was lower than 20, we considered it re-
packaging. Otherwise, we assumed the class originated from another artifact. In
total, we found re-packaging for 17 classes in 89 distinct GAs.

Findings from RQ4: Re-compilation, re-bundling, and re-packaging are com-
mon in commercial and open-source projects. We found that more than 87%
of the checked classes are re-bundled, and more than 56% are re-compiled on
Maven Central. Thus, vulnerabilities reported for one OSS actually affect many
other artifacts as well.

3.4 Prevalence & Impact of Modified Open-Source Software

39

3.4.2

40

RQ5: What Is the Impact of the Modifications on Vulnerability
Scanners?

To assess the impact of the identified modifications on vulnerability scanners, we
evaluate the precision and recall of the open-source vulnerability scanners DepCheck
and Eclipse Steady, the free scanner GitHub Security Alerts, and the commercial
scanners® C1, C2, and C3 w.r.t. these modifications.

Table 3.4: Test cases for evaluating the precision and recall of vulnerability scanners. The
column on the right shows which scanners reported the vulnerability in RQ2.

Manual Classification:

Artifact Vulnerability True Positive Reported By

CVE-2012-6153 yes Steady, C3
httpclient 4.1.3 CVE-2014-3577 yes Steady, DepCheck, C3

CVE-2015-5262 no Steady, DepCheck, C3
)) CVE-2018-19362 yes Steady, DepCheck, C3
Jackson-darabind cy-2018-19361 yes Steady, DepCheck, C3

CVE-2018-19360 yes Steady, DepCheck, C3
;f’(r)‘.gi‘gfgfs"s CVE-2018-1271 yes Steady, DepCheck, C3

CVE-2018-1258 no DepCheck, C3
spring-core CVE-2018-11039 no DepCheck
5.0.5.RELEASE CVE-2018-1257 no DepCheck

CVE-2018-11040 no DepCheck
spring-expression CVE-2018-1270 yes Steady, DepCheck
5.0.4.RELEASE CVE-2018-1275 yes Steady, DepCheck
spring-web CVE-2018-15756 yes Steady, DepCheck, C3
5.0.5.RELEASE CVE-2018-11039 yes Steady, DepCheck, C3
guava 23.0 CVE-2018-10237 yes Steady, DepCheck, C3

As artifacts, we selected from the 20 most-used open-source artifacts the seven
artifacts that were themselves vulnerable in the latest version. As vulnerabilities,
we choose for each artifact the most recent reported vulnerabilities. Note that we
created the test cases based on the results of DepCheck, Eclipse Steady, and C3, as
described in Section 3.3.2.

3spring-webmvc is also affected by CVE-2018-11039. However, at time of the benchmark creation
the vulnerability was not reported by any scanner. We left it out for comparison but added it to our
test suite Achilles.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

Table 3.4 shows the test cases we used as input. Column Reported By shows which
scanners reported the vulnerability, and column Manual Classification shows if we
classified them as true or false positives in our manual review. For example, consider
the reported vulnerabilities for spring-core. We classified all vulnerabilities as
false positives. The scanners C3 and DepCheck reported spring-core as vulnerable.
However, our manual inspection showed that the vulnerabilities do not affect the
artifact spring-core but affect the artifact spring-web.

We evaluated the vulnerability scanners’ precision and recall for the four modifica-
tion types that we discovered in our study (cf. Section 3.3.3). For all types, we used
the same test cases (cf. Table 3.4) but created the following scenarios using our test
generator Achilles (cf. Section 3.7).

Unmodified JAR

* GAV: all artifacts keep their original GAV

* Metadata: the original pom.xml and MANIFEST file are kept

* JARs: the artifacts are kept as separate JAR files

* Classes: the bytecode is not modified, providing an anchor for comparing
the modifications’ impact

Patched JAR (type 1)

* GAV: all artifacts get a slightly modified GAV (appending the string fix
or patch)

* Metadata: the pom.xml and MANIFEST are kept

* JARs: the artifacts are kept as separate JAR files

* Classes: classes are re-compiled

Uber-JAR (type 2)

* GAV: single Uber-JAR with a random GAV

* Metadata: the pom.xml and MANIFEST of the original artifacts are kept

* JARs: all artifacts are merged into a single Uber-JAR

* Classes: the original bytecode and the timestamps of the original files are
untouched

Bare Uber-JAR (type 3)

* GAV: single Uber-JAR with a random GAV

* Metadata: the pom.xml and MANIFEST file are removed

* JARs: all artifacts are merged into a single Uber-JAR

* Classes: the original classes are kept, but the timestamps of the files are
updated

3.4 Prevalence & Impact of Modified Open-Source Software

41

42

Re-packaged Uber-JAR (type 4)

* GAV: single Uber-JAR with a random GAV

* Metadata: the pom.xml and MANIFEST file are kept

* JARs: all artifacts are merged into a single Uber-JAR

* Classes: the original classes are re-packaged, changing the FQNs, byte-
code, and timestamps

For each scenario, we applied the identified modifications (type 1-4) to the artifacts
to generate modified JAR file(s) and a Maven project (pom.xml). The created Maven
project has the (modified) GAV(s) as dependencies, and serves as an input for
the scanners. Next, we executed the vulnerability scanners on each project and
computed their precision, recall, and F1-score.

Table 3.5 shows the results. The table shows that the scanners’ precision and recall
heavily differ even for unmodified JARs. The commercial scanner C2 does not find
any vulnerabilities in types 1-4, and thus seems unable to deal with modifications at
all. GitHub Security Alerts does not find any vulnerabilities in types 2—-4, and detects
the same vulnerabilities for unmodified and type 1 JARs. C3 performs similarly to
GitHub Security Alerts but with higher precision and recall. Based on Table 3.5,
Security Alerts, C2, and C3 appear to rely heavily on metadata (file name, GAV,
pom.xml) to detect vulnerable artifacts, as they do not detect vulnerabilities in
types 2—4.

The results further show that almost all scanners fail to detect vulnerabilities in
type 4; DepCheck and C1 are the only scanners reporting vulnerabilities in type 4.
Eclipse Steady performs best for unmodified JARs.

The table shows that Eclipse Steady performs better for types 2 and 3 than for type 1.
Thus, re-compilation and patching decrease the precision more than lost or modified
metadata.

Note that our test cases are based on the results obtained from DepCheck, Eclipse
Steady, and C3. The fact that Eclipse Steady achieves a precision of 0.92 and a
recall of 1.0 for unmodified JARs means that all findings, except CVE-2015-5262
for httpclient:4.1.3, that we use in the case study were marked as true posi-
tives in the manual review, and there were no false negatives w.r.t. the findings
of DepCheck, and C3. However, the results show that the precision of all scanners
heavily decreases with the modifications.

We further investigated the scanners’ accuracy to detect the included artifacts in
the test cases. Therefore, we studied the generated findings of each scanner and
checked which artifacts the scanners identified.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

- - - ¢L0 T80 V90 ¢L0 ¢80 P90 %€
- - - - 840 ¢80 SL0 (4]
040 ¥9°0 840 - IS0 960 +€°0 0o ¥9°0 ¢TE0 ¥9'0 ¥9°0 ¥9°0 [29)
SISV
- - - 80 S¥'0 0S0 80 S¥'0 0S50 A1moag
<ApBAS
- 8°0 €40 9¢€0 €50 S0 1¥0 9%'0 €40 €€0 96’0 00°'T €60 asdrpy
LT°0 8T'0 LTO - LT'0 LT'O LTO 870 160 ¢CE0 L0 160 TI€0 9yddeq
14 [eoax wuworsoaid 14 [edoax uorsaid 14 [[eda1 uorsaxd T4 [eoax uworsoaid 14 [[eda1 uorswaxd
adfy adfy adfKy adfy
mﬁ.-MM_D .xovmm-um mﬂmm@n_D w;mm %w% -Hun_w m/m anowmm vl peyipotinn

*9100s 15931 23 p[oq Ul Sased 1531 3}
JO UOTDNIISUOD dYI Ul PAsN 2I9M ,, IIM PIYIBW SISUUEIS], 'SISBD 1591 31 U0 SUOIBdPIpoW —] 9dA} 10J 2102S-T puUe [[€daI ‘UoIsIda1d
SIauueds Afiqerauna oyl s1todal S[qel SIYI ‘SSOUDANDRJJD SIduueds AfIiqerauna oyl 1oedwl SUOHEIYIPOW Yl MOY PuelSISpUN OJ, :G'¢ 3jqe]

43

3.4 Prevalence & Impact of Modified Open-Source Software

Table 3.6: The table shows the artifacts that the different scanners failed detect in the scenarios in the form artifact:version. In the unmodified
scenario the scanners detect the artifacts and the versions from the test fixtures correctly (cf. Table 3.4). The scanners marked with *
were used in the construction of the test cases.

Unmodified JAR Patched JAR Uber-JAR Bare Uber-JAR Re-pack. Uber-JAR
(type 1) (type 2) (type 3) (type 4)
DepCheck* v v * jackson-databind:N/A - * jackson-databind:N/A
* SPF":N/A * SPF":N/A
Eclipse N . o . o
Steady v * spring-*:3.0.0-4.2.0,< 5.0.5 ¢ jackson-databind:2.6-2.9 * jackson-databind:2.6-2.9 -
* spring-*:3.0.0-4.2.0, < 5.0.5 ¢ spring-*:3.0.0-4.2.0, < 5.0.5

Security v v - - -
Alerts*
C1 v e spring-core as SPF':5.05 * SPFT:N/A - * SPF':5.0.0-5.0.5
c2 v - - - -
C3* v v - - -

Y all artifacts and versions correctly detected
SPFT generalized, unspecific artifact spring-framework - the scanner failed to detect the different spring artifacts but only reported spring-framework as a fallback
VA not assessed version - the scanner could not detect the artifact’s version

* the scanner reported no findings and no artifacts

Chapter 3 Systematic Study on the Usage of Open-Source Software and

44

Challenges for Their Detection

Table 3.6 shows the artifacts that the scanners reported in the different scenarios.
The table describes the cases in which the scanners reported a different than the
original artifact or failed to identify their version. The scanners correctly identified
httpclient and guava, including their versions, in all cases in which they reported
any findings. The accuracy of the remaining artifacts differs for type 1-4 modifica-
tions. For the unmodified artifacts, all scanners detected the original artifacts cor-
rectly, including their complete identifier and version. With re-compilation (type 1)
applied, the accuracy of Steady and C1 dropped: Steady widened the version range
for the spring artifacts, and C1 fell back to the more general spring-framework.
Similarly, for type 2—4, the accuracy for detecting the jackson-databind versions
and the different spring artifacts decreases for DepCheck, Steady, and C1.

Table 3.5 and Table 3.6 show that the modifications not only reduce the scanners’
accuracy to identify if an artifact is affected by a CVE but also reduce the accuracy
to detect the included artifacts.

Findings from RQ5: All scanners struggle to identify vulnerable dependencies
if the artifact’s JAR files are modified (type 1-4).

3.4 Prevalence & Impact of Modified Open-Source Software

45

3.5

46

Study Summary

Use of 0SS at SAP Our study emphasizes that using OSS is an established practice,
even in enterprise software applications. Our observations concerning the use of
0SS (RQ1I) and how many vulnerabilities affect the used OSS (RQ2) align with pre-
vious studies [Pit16; WD14; Pas+18; Pon+19; Kul+18], which studied the use of
(vulnerable) OSS in commercial and open-source applications. Further, the results
for RQ1 show that the number of dependencies heavily differs per project, ranging
from O to 228. RQ1 shows that vulnerability scanners must not only check depen-
dencies with the scope compile but must check all release dependencies as they
constitute a relevant share. Previous studies [Pas+18; Kul+18; Pit16], which point
out the importance of transitive dependencies, support this observation.

Notably, we identified a lower number of vulnerabilities (251 CVEs for 534 different
GAVs) than reported in the studies [Pit16; Kul+18], which state that each applica-
tion contains 22.5 different vulnerabilities on average and 81.5% of the applications
use outdated dependencies.

The classification of reported CVEs in true positives and false positives in RQ2 shows
that vulnerability scanners tend to produce many false positives; only 903 of 2,558
findings are true positives. While the false-positive warnings are relatively unprob-
lematic in an early development phase as updating a dependency can be done easily,
updating dependencies during the release or the operational lifetime can become
costly as it impacts the delivery schedule, may cause downtimes, or introduce unex-
pected regressions during production [PPS18; Bav+15]. Consequently, vulnerability
scanners must keep the number of false positives low.

Note that during the course of writing the thesis, we updated our manual classi-
fication of the findings and scanner results. Since the NVD description of the vul-
nerabilities has been updated with further versions of the artifacts, the absolute
numbers differ from the ones reported in the publication [Dan+22] (859 true posi-
tive vs 903). This emphasizes the need to regularly check the included OSS and the
need for scanners to detect known-vulnerable artifacts with high precision, as false
negatives leave an application vulnerable.

A significant finding of our research question on how developers include OSS (RQ3)
is the fact that developers of commercial applications include OSS in re-compiled,
re-packaged, re-bundled, or Uber-JARs form with (partially) metadata removed or
modified, e.g., different file names, or changed timestamps.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.6

Prevalence & Impact of Modified Open-Source Software Our investigation of mod-
ifications on the public open-source repository Maven Central (RQ4) shows that not
only commercial applications include modified OSS but also open-source projects.

We found that such modifications heavily decrease the precision and recall of vulner-
ability scanners (RQ5)—all scanners struggle to identify vulnerabilities in modified
OSS. Only the scanners C2 and Eclipse Steady provide reasonable results in the pres-
ence of re-compilation and lost metadata. However, bytecode modifications resulting
from re-compilation or re-packaging in combination with the loss of metadata (bare
and re-packaged Uber-JARS), e.g., file names and timestamps, are challenging for all
scanners. Nevertheless, the results of RQ3 and RQ4 show that the modifications are
prevalent at SAP and Maven Central, and thus must be addressed by vulnerability
scanners. Remarkably, our case study shows that—even the vulnerability scanners
used in constructing the test cases—fail to deal with modified JAR files.

Threats to Validity

The results of our study may be affected by errors in the data collection process
and the accuracy (immediacy) of the information in the NVD and the scanners’
vulnerability database, which are continuously updated. Thus, the exact results may
change after their creation.? In the following, we discuss the threats to validity in
detail.

Use of Open-Source Software at SAP Since we conducted our study on projects
developed at SAP, the applicability to commercial Java projects, in general, is limited
as the impact of development practices, tools, and guidelines must be considered.
Further, the studied projects already apply Eclipse Steady, which may bias our re-
sults, as the development teams may update dependencies more regularly compared
to teams who do not apply any scanners. Nevertheless, SAP is one of the world’s
leading software development companies, with a diverse product portfolio, and our
study aligns with previous open-source and software industry case studies [Pit16;
WD14; Pas+18; Pas+22; Pon+19; Kul+18]. Additionally, the 20 most-used arti-

3The initial results were created in 2019 and updated at the end of 2022 while writing this the-
sis. Since the found vulnerability descriptions in the NVD have been updated, we also updated
the manual classification, leading to a different number of true positive CVE compared to the
publication [Dan+22].

3.6 Threats to Validity

47

48

facts are also popular within the open-source community (cf. Section 3.2.2), and
the modifications also occur on Maven Central, indicating that our results are also
applicable to other—particularly to open-source—projects.

Our decision to check vulnerabilities for the 20 most-used OSS and the selection of
scanners influences the concrete number of reported findings, false positives, and
false negatives; other scanners may use more or less precise vulnerability databases
or apply other matching techniques. However, to achieve soundness in determining
if a vulnerability affects a given OSS, without relying on a single (and potentially
erroneous) vulnerability database, we semi-manually classified the 2,558 findings.

To limit the likelihood that we miss a vulnerability for a given OSS (false negatives),
we applied the scanners Steady, DepCheck, and C3 to generate an initial set of
findings. The scanners apply different matching strategies: name-based vs. code-
based, and rely on different databases: Steady’s Database [Ecl20], NVD [NIS20], and
a commercial database. Nonetheless, all scanners and databases are continuously
updated and cannot guarantee the absence of false negatives or false positives.
Thus, the absolute number of false positives differs with the chosen scanners and
databases. Crucially, our results regarding the use of vulnerable OSS and the ratio
of false positives align with the results reported by other studies [Pit16; Kul+18;
Pas+18; Pon+19] or are even less.

Prevalence & Impact of Modified Open-Source Software To check the prevalence
of the modifications in open-source projects, we checked how often the vulnerable
classes that we identified in RQ2 occur on Maven Central in modified form. This
selection may be inaccurate because we do not know how often these classes are
re-compiled or re-bundled compared to other classes, e.g., if the found classes are
more often or rarely re-bundled. Hence, our results may under- or over-approximate.
However, the results still show that such modifications are also popular on Maven
Central and must be addressed by vulnerability scanners.

A further pitfall in evaluating the scanners’ precision and recall is the fact that the
evaluated vulnerability scanners Steady, DepCheck, and C3 were also used in the
creation of our test suite Achilles. Although we semi-manually classified the 2,558
findings to ensure soundness, we cannot ensure completeness, as false negatives
(findings missed by all scanners) may occur.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.7

A bias towards Eclipse Steady may only occur in the case of unmodified JAR, as
the tests used to create the benchmark were confirmed as correct during the semi-
manual review. For modified OSS, instead, Achilles generates new JAR files with new
metadata, e.g., digest, GAV. As the newly created modified JAR files are unknown
to all scanners, they allow fair comparison.

Further, the conclusion that vulnerability scanners struggle with modifications is
independent of any particular scanner, as even the scanners used in the construction
fail—to different degrees—to deal with modified JARs. Particularly, the good result
of C1 for type 4 shows that the study does not favor the scanners that have been
used in Achilles’ creation.

Achilles: Test Suite for Detecting Modified
Open-Source Software

Our study shows that vulnerability scanners struggle to identify known vulnera-
bilities in (modified) OSS and that the scanners’ precision and recall heavily dif-
fer (cf. Section 3.4). Crucially, our study shows that modified OSS, compromising
re-compiled, re-packaged, or re-bundled classes from other open-source projects,
commonly occur on Maven Central. Thus, further research and development are
necessary to alleviate this situation and improve scanners’ detection techniques for
modified OSS.

As, to the best of our knowledge, no test suite exists to facilitate a reproducible
and comparative assessment of vulnerability scanners w.r.t. these modifications, we
developed Achilles. Achilles provides the options to include (vulnerable) OSS de-
pendencies, remove vulnerable classes, and apply the modifications: re-compilation,
re-packaging, Uber-JAR creation, and removal of metadata, e.g., file names, times-
tamps, or pom.xml files. As an input, Achilles requires a set of GAVs and a ground
truth, listing the vulnerabilities that affect the given GAVs. With Achilles, we also
provide 2,558 test cases and ground truth, which we created in our manual classifi-
cation in our case study (cf. Section 3.3).

Since benchmarks play a strategic role in computer science research and devel-
opment by providing a ground truth for evaluating algorithms and tools, we con-
structed Achilles based on the following criteria introduced by the widespread Da-
Capo benchmark [Bla+06].

3.7 Achilles: Test Suite for Detecting Modified Open-Source Software

49

3.7.1

3.7.2

50

Diverse real-world applications: The test cases should not consist of artificially
created programs. Instead, the benchmark should contain OSS and vulnerabilities
collected from real-world projects to provide a compelling focus for evaluating real-
world usage.

Detecting vulnerable OSS (precision and recall): The test cases and ground
truth should enable measuring if a vulnerability scanner successfully detects in-
cluded OSS with published vulnerabilities (recall) and to what extent a scanner
raises false warnings (precision).

Automation and ease of use: The test cases should be in a format consumable by
vulnerability scanners and enable the measurement of their accuracy.

In the following, we explain how Achilles implements these criteria, its organization,
and its use.

Diverse Real-World Applications

To closely resemble real-world applications, we directly create the test cases from the
results of our study. As test data, we choose the 2,558 findings from RQ2 for the 534
Maven artifacts and 251 distinct vulnerabilities together with our manual classifica-
tion into true and false positives (cf. Section 3.3). In result, each test case contains
the identifier (GAV) of an artifact and the list of (true positive) vulnerabilities. As we
identified that the same artifacts are also used in the open-source community, the
test cases not only replicate the settings at SAP but also in open-source projects.
Further, Achilles enables the application of the identified modifications to the arti-
facts before serving them as input to a vulnerability scanner.

Detecting Vulnerable Open-Source Software

For evaluating a vulnerability scanner’s precision and recall, each test fixture is
specified as a human-readable JSON file, stating the published vulnerability, the
(affected) GAV, a short description, the ground truth, and a timestamp specifying
when the test fixture was created. Listing 3.1 shows a test fixture for the vulnerability
CVE-2016-3720.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.7.3

1 { "comment": "https://github.com/jeremylong/DependencyCheck/issues/517 -- XML

Injection",

2 "gav": { "version": "2.4.3",

3 "artifactId": "jackson-dataformat-xml",

4 "groupId": "com.fasterxml.jackson.dataformat" },

5 "cve": "CVE-2016-3720",

6 “"details": [

7 {"contained": true,

8 "commit": "f0f19a4c924d9db9ale2830434061c8640092ccO",

9 "affectedFile": "/com/fasterxml/jackson/dataformat/xml/XmlFactory.class",
10 "gname": "com.fasterxml.jackson.dataformat.xml.XmlFactory",
11 diffr: o tLLu" 3,
12 {"contained": true,
13 "commit": "f0f19a4c924d9db9ale2830434061c8640092ccO",
14 "affectedFile": "/com/fasterxml/jackson/dataformat/xml/XmlFactory.class",
15 "gname": "com.fasterxml.jackson.dataformat.xml.XmlFactory(ObjectCodec,int,int

,XMLInputFactory,XMLOutputFactory,String)",

16 "diff": "" }1,

17 "vulnerable": true }

Listing 3.1: Example test fixture of Achilles for the artifact jackson-dataformat-xml:2.4.3
and the vulnerability CVE-2016-3720. The test fixture contains the result of the manual
classification (vulnerable), and—if available—information about the vulnerable classes and
the commit fixing the vulnerability.

Optionally, if we could identify the source-code commit fixing the vulnerability
(cf. Section 3.3.2), the test fixture also contains the commit-hash, the FQNs of the
vulnerable constructs, SootDiff’s result, and a boolean flag whether the artifact con-
tains the vulnerable bytecode.

Automation and Ease of Use

For composing a Maven project with the (un-)modified open-source artifact and
a ground truth, Achilles provides a graphical user interface. Figure 3.3 shows the
workflow for using Achilles to create test cases and for evaluating a scanner’s preci-
sion and recall. First, one must choose which test fixtures—that are the (vulnerable)
artifacts—the test Maven project should include. Next, one can choose to apply
modifications to the artifacts. Based on the selection, Achilles generates the (modi-
fied) JAR files and ground truth. Second, the generated output is used as input for a
scanner. Third, the findings reported by the scanner are compared with the ground
truth to evaluate the scanner’s precision and recall.

For generating modified JAR files, Achilles can apply different modifications, based
on the four identified modifications in our study (cf. RQ3), shown in the form of a
feature diagram in Figure 3.4:

3.7 Achilles: Test Suite for Detecting Modified Open-Source Software

51

52

Input 1. Configure Test Case(s) 2. Execute Scanner(s) 3. Evaluate Performance

L
&y Test = Select Generate Compare
Fixtures | L— Artifacts + CVEs ' (modified) JAR, | ' Ground Truth
¢ pom.xml, Vs
Ground Truth Ground | | Scanner Findings
Choose Tryth

“Modifications

¢ Y Y

Achilles Test
Case Generator
)

Generate Test Execute OSS- % Compute Scanner
“Maven Project Vulnerability L Performance
Scanner Findings

Figure 3.3: Achilles’ process steps for evaluating OSS-vulnerability scanners.

GAV To evaluate to what extent vulnerability scanners are resilient to simple changes
in the GAV or to an unknown GAV: the original GAV can be kept, can be modi-
fied by appending a version suffix (e.g., the string - fix-01), which developers
use to indicate own forks (type 1), or can be replaced by a random GAV, which
is usually the case for Uber-JARs (type 3-4).

Metadata To evaluate to what extent scanners are resilient to modified metadata:
the metadata, in particular, the pom.xml file in the META-INF folder, can be
removed, which happens if developers use legacy build-automation tools to
create Uber-JARs (type 3).

JAR To encompass the effect of Uber-JARs: all artifacts can be kept as separate JAR
files (type 1-2), or can be bundled into a single Uber-JAR (type 2-4). Optionally,
the original timestamps of the files in the JAR can be kept.

Classes To encompass re-compilation: the original class files can be copied (type 2—
3), the source code can be re-compiled using the original FQN (type 1), or the
classes can be re-packaged by prepending the string com. repackage to each

FQON (type 4).

Vulnerable Code Optionally, Achilles can remove the vulnerable classes from a JAR
file. This can be used to evaluate if vulnerability scanners apply code-based
matching successfully detect if the vulnerable code is contained in a given
JAR.

If one does not apply any modifications, Achilles uses the bold-marked settings in
Figure 3.4, producing unmodified artifact JAR files.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.7.4

Modification
O

| Original | [Modify |[Random |

| _Keep | [Remove |

D 8
[Remove | [Classes Single
T\
|__Original_|] Keep
A Re-Compile Re-Package Timestamps

Figure 3.4: Feature diagram of the options that the Achilles generator provides for re-
creating the modifications on JAR files. By default, the features in bold are
selected, generating unmodified JAR files.

As an output, Achilles generates a Maven project (pom.xml) with the (modified,
vulnerable) JAR files as dependencies and a ground truth. Finally, one can use the
generated project directly as input for a vulnerability scanner. To compute precision
and recall, the vulnerabilities affecting the included OSS are specified in the ground

truth based on the selected test fixtures.

Organization and Distribution

To allow the community to extend Achilles and provide further test cases, we dis-
tribute Achilles publicly on GitHub (cf. Chapter 6). Due to license issues, Achilles
itself does not contain the artifacts’ source- or bytecode; instead, the JAR files are
downloaded and modified on demand from the Maven Central repository.

Figure 3.5 shows the organization of the test suite. The folder generator contains
Achilles’ Java source code, and at the top-level, the repository provides an executable
JAR of the test case generator. The folder case-study contains the scenarios that
we used in Section 3.4.
/
case-study

detection
t::CVE-2017-5638_struts_2.3.5_fixture.json

generator
generator.jar

Figure 3.5: Layout of Achilles

3.7 Achilles: Test Suite for Detecting Modified Open-Source Software

3.8

54

SootDiff: An Approach for Identifying Modified
Open-Source Software

Our case study shows that modifications heavily decrease the effectiveness of vul-
nerability scanners. The modifications have in common that file attributes, such as
timestamps, file names, and artifact names, are removed or changed, and that the
bytecode of the classes is modified: If an artifact is forked and re-compiled, the byte-
code changes when a different Java compiler or different target version is used. If
an artifact is (re-)bundled into an Uber-JAR, the timestamps of the files may change.
If an artifact is re-packaged, the classes’ FQN and the references in the bytecode
change.

To detect vulnerabilities in modified dependencies, vulnerability scanners require
techniques that are resilient to bytecode modifications to either identify the original
artifact from which the bytecode originates and then check if known vulnerabilities
for the original artifact exist, or to check if the bytecode corresponds to any known-
vulnerable bytecode.

We develop the approach SootDiff to cope with bytecode modifications. SootDiff
uses the intermediate representation Jimple [VH98] of the static analysis framework
Soot [Lam+11] to create a unified bytecode representation churning out bytecode
dissimilarities, without relying on the availability of source code or unmodified
bytecode.

SootDiff integrates and enriches Soot by implementing Myers’ Diff algorithm tailored
for Jimple and additional optimization steps to reduce dissimilarities originating
from different Java compilers or versions. In contrast to Java bytecode, which uses
more than 200 different instructions, Jimple uses only 15 distinct instructions. As
a result, many different but functionally equivalent code constructs are likely to
coincide on the Jimple level. In contrast to techniques that identify artifacts using
features or metadata that are orthogonal to bytecode, e.g., method signatures or
files’ timestamps, SootDiff checks a class’ bytecode including its method bodies,
which is required to identify the included artifact’s exact version given the artifact’s
bytecode—which is in turn required to check if a known vulnerability affects the
given artifact.

To validate the feasibility of SootDiff for comparing bytecode generated by differ-
ent compilers and versions, we compare it to a naive approach directly comparing
the bytecode. Therefore, we compiled 16 Java source-code files with different Java
compilers and for different Java versions, yielding 144 different bytecode classes.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.8.1

For the generated bytecode classes, we checked how often SootDiff and a bytecode
comparison correctly identify if two bytecode classes originate from the same source
code. Our comparison shows that SootDiff successfully detects that the bytecode
classes originate from the same source code for 102 test cases. In contrast, a com-
parison based on bytecode succeeds for 58 test cases only. Thus, SootDiff can serve
as a basis for designing resilient code-based matching techniques. In the following,
we introduce SootDiff’s design and evaluate its performance.

Dissimilarities Introduced by Java Compilers

Several compilers exist for generating Java Virtual Machine (JVM)-compatible byte-
code from Java source code. The most widespread compilers are Oracle’s Javac
(the Java Development Kit (JDK)’s default compiler), the Eclipse Compiler for Java
(ECJ)#, IBM Jikes®, or the GNU Compiler® for the Java programming language (GCJ).
Since the Java language specification [Ora23d] does not state if and how a compiler
should optimize certain Java language features, optimizations are a design decision
of the compiler vendor. Consequently, the bytecode created by different compilers
is subject to different optimizations.

As an example, consider the Java source class Point2d” in Listing 3.2. The Java class
declares a method dprint(String s) with a string parameter. If the class’ private
boolean field debug is set to true, the method prepends the argument with the string
Debug: and prints it on the command line.

1 class Point2d {

2 private boolean debug;

3 public void dprint(String s){

4 if (debug)

5 System.out.println("Debug:"+s);
6
7

}

Listing 3.2: Example source class Point2d.java.

4https://www.eclipse.org/jdt/core/

5https://sourceforge.net/projects/jikes/
6https://web.archive.org/web/20@70509055923/http://gcc.gnu.org/java/

7Sample Java Classes University Illinois https://www.cs.uic.edu/~sloan/CLASSES/java/

3.8 SootDiff: An Approach for Identifying Modified Open-Source Software

55

https://www.eclipse.org/jdt/core/
https://sourceforge.net/projects/jikes/
https://web.archive.org/web/20070509055923/http://gcc.gnu.org/java/
https://www.cs.uic.edu/~sloan/CLASSES/java/

56

If the class is compiled with Javac and ECJ for the target version 1.8, both compilers
apply different modifications, shown in Listing 3.3 and Listing 3.4. Listing 3.3 shows
the (decompiled) bytecode generated by the ECJ and Javac compiler for target
version 1.8. Listing 3.4 shows the corresponding Jimple code. We will introduce

Jimple in the next section in detail.

1 class Point2d { 1 <class Point2d {
2 private boolean debug; 2 private boolean debug;
3 3
4 public void dprint(String); 4 public void dprint(String);
5 Code: 5 Code:
6 0: aload_0 6 0: aload 0
7 1: getfield #20 7 1: getfield #4
// Field debug:Z // Field debug:Z
8 4: ifeq 29 8 4: ifeq 32
9 7: getstatic #35 9 7: getstatic #8
// Field java/lang/System.out: // Field java/lang/System.out:
Ljava/io/PrintStream; Ljava/io/PrintStream;

10 10: new #41 10 10: new #9
// class java/lang/ // class java/lang/
StringBuilder StringBuilder

11 13: dup 11 13: dup

12 14: ldc #43 12 14: invokespecial #10
// String Debug: // Method java/lang/

13 16: invokespecial #45 StringBuilder."<init>":()V
// Method java/lang/ 13 17: ldc #11
StringBuilder."<init>":(Ljava/ // String Debug:
lang/String;)V 14 19: invokevirtual #12

14 19: aload_1 // Method java/lang/

15 20: invokevirtual #47 StringBuilder.append: (Ljava/
// Method java/lang/ lang/String;)Ljava/lang/
StringBuilder.append: (Ljava/ StringBuilder;
lang/String;)Ljava/lang/ 15 22: aload_1
StringBuilder; 16 23: invokevirtual #12

16 23: invokevirtual #51 // Method java/lang/

// Method java/lang/ StringBuilder.append: (Ljava/
StringBuilder.toString: ()Ljava/ lang/String;)Ljava/lang/
lang/String; StringBuilder;

17 26: invokevirtual #55 17 26: invokevirtual #13
// Method java/io/PrintStream. // Method java/lang/
println:(Ljava/lang/String;)V StringBuilder.toString: ()Ljava/

18 29: return lang/String;

18 29: invokevirtual #14
(a) Decompiled Bytecode from EGCJ and target // Method java/io/PrintStream.
version 1.8 println:(Ljava/lang/String;)V
19 32: return

(b) (Decompiled) bytecode from Javac target ver-
sion 1.8

Listing 3.3: Comparison of the (decompiled) bytecode generated with ECJ compiler and
Javac, both with target version 1.8, from the source class Point2d. java. References to the
constant pool are resolved and typeset as comments in green.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

1 class Point2d extends Object{ 1 class Point2d extends Object{

2 private boolean debug; 2 private boolean debug;

3 public void dprint(String){ 3 public void dprint(String)

4 Point2d ro; 4 { Point2d ro0;

5 java.lang.String rl, $r6; 5 java.lang.String rl, $r6;

6 boolean $z0; 6 boolean $z0;

7 java.lang.StringBuilder $r2, $r4; 7 java.lang.StringBuilder $r2, $r4,
8 java.io.PrintStream $r3; $r5

9 8 java.io.PrintStream $r3;

10 ro := @this: Point2d; 9

11 rl := @parameterQ: java.lang. 10 r@ := @this: Point2d;

String; 11 rl := @parameter0: java.lang.

12 $z0 = r0.<Point2d: boolean debug>; String;

13 12 $z0 = r@.<Point2d: boolean debug>;

14 if $z0 == 0 goto labell; 13

15 $r3 = <java.lang.System: java.io. 14 if $z0 == 0 goto labell;
PrintStream out>; 15 $r3 = <java.lang.System: java.io.

16 $r2 = new java.lang.StringBuilder; PrintStream out>:

17 specialinvoke $r2.<java.lang. 16 $r2 = new java.lang.StringBuilder;
StringBuilder: void 17 specialinvoke $r2.<java.lang.
<init>()>("Debug:") ; StringBuilder: void

18 $rd4 = virtualinvoke $r2.<java.lang <init>()>()

.StringBuilder: java.lang. 18 $r4 = virtualinvoke $r2.<java.lang
StringBuilder append(java.lang .StringBuilder: java.lang.
.String)>(rl); StringBuilder append(java.lang

19 $r5 = virtualinvoke $r5.<java.lang .String)>("Debug:");
.StringBuilder: java.lang. 19 $r5 = virtualinvoke $r4.<java.lang
String toString()>(); .StringBuilder: java.lang.

20 virtualinvoke $r3.<java.io. StringBuilder append(java.lang
PrintStream: void println(java .String)>(rl);
.lang.String)>(%$r5); 20 $r6 = virtualinvoke $r5.<java.lang

21 labell: .StringBuilder: java.lang.

22 return;} } String toString()>();

21 virtualinvoke $r3.<java.io.
(a) Jimple parsed from bytecode generated with PrintStream: void println(java
the Compiler ECJ target version 1.8 .lang.String)>($r6);

22 labell:

23 return;} }

(b) Jimple parsed from bytecode generated with
Javac target version 1.8

Listing 3.4: Comparison of the Jimple code parsed from the bytecode generated with ECJ
compiler and Javac, both with target version 1.8, from the source class Point2d. java.

3.8 SootDiff: An Approach for Identifying Modified Open-Source Software

3.8.2

58

Oracle’s Javac compiler produces slightly different bytecode than the ECJ, shown
in Listing 3.4b with the differences highlighted. The ECJ compiler inlines the con-
stant string "Debug:" directly into the StringBuilder constructor in Line 17 in
Listing 3.4a, and thus generates one variable and one invoke instruction less ($r5).
In contrast, the bytecode generated by Javac first creates an empty StringBuilder
and then appends the string "Debug:" to the StringBuilder in line 18 in List-
ing 3.4b. Thus, the bytecode generated by Javac and the bytecode generated by
ECJ for the source class Point2d. java differs, and the Javac bytecode contains an
addition invokespecial instruction for appending the string Debug: to the empty
initialized StringBuilder in Listing 3.3b.

The example shows that different Java compilers apply different optimization strate-
gies, resulting in different bytecode. However, bytecode dissimilarities occur not
only between different Java compilers, but a single compiler may also produce dif-
ferent bytecodes for the same source class. Java compilers support the option to
generate bytecode for different Java language versions. As different versions of the
Java language and JVM support different bytecode instructions, a compiler may
generate different bytecode for different versions, e.g., Java 1.8 or Java 1.5.

Thus, simply comparing the bytecode for detecting re-compiled classes is insufficient
as different Java compilers produce slightly different bytecode; even one compiler
produces different bytecode for different Java versions. Furthermore, the compar-
ison of Listing 3.4b and Listing 3.4a shows that the plain usage of Jimple also is
insufficient since even the (unoptimized) Jimple code parsed from the bytecode
generated by Javac and ECJ differs.

Jimple: Intermediate Bytecode Representation

The static analysis framework Soot [Lam+11] uses an intermediate representation
named Jimple [VH98] to represent Java source and bytecode for static code anal-
ysis. Jimple serves as an abstraction layer by drastically reducing the number of
instructions needed to represent bytecode. The Jimple intermediate representation
maps the 200 different bytecode instructions to 15 Jimple instructions. The reduced
number of instructions mitigates the dissimilarities introduced by different Java ver-
sions and compilers. SootDiff relies on Jimple to compare the bytecode generated
by different compilers and to ease the detection of code clones or for determining if
two bytecode classes originate from the same source code.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.8.3

Listing 3.3 and Listing 3.4 show the bytecode and the Jimple representation of
the Java class Point2d.java from Listing 3.2. Like bytecode, Jimple transforms
Java’s control structures, e.g., if-else, loops, to goto instructions and program labels.
For instance, the if-condition in the source code, shown in Listing 3.2 in Line 4,
is translated to the branch instruction ifeq in bytecode, shown in Listing 3.3b in
Line 8, and transformed to if $z0 == 0 in Jimple, shown in Listing 3.4b in Line 14.
The majority of lines in the bytecode, namely the Line 10-18, constructs the string
"Debug: "+s using java.lang.StringBuilder referring to methods and strings (#9-
#14) stored in the class’ constant pool.

In contrast to bytecode, the Jimple code declares all variables and types explicitly,
shown in Listing 3.4b. The bytecode instructions for constructing the string and
invoking the java.lang.StringBuilder are fully resolved in Lines 17-20. Moreovet,
the condition on the boolean variable debug ($z0) is made explicit in Line 14.

Compare Modified Bytecode

To check if two bytecode classes originate from the same source code, SootDiff uses
the Jimple representation and reduces dissimilarities, e.g., string concatenation as in
the example above. This enables SootDiff to match classes with equivalent behavior
even when they are produced with different Java compilers or for different Java
versions, e.g., when an artifact has been re-compiled.

Figure 3.6 gives an overview of SootDiff’s comparison.

Input 1. Init Analysis 2. Unify Representation 3. Compute Jimple Diff
@ Java @ Constant »| Compare Class
Bytecode 5 Propagation = Header
. A 4 5 N v g v
re-compiled, P S E %
-packaged, = .
'erﬁigiffe%‘f ‘@ to Jeilrr:ele —— 1® OQ Dead Code @ Compare Field
or different code P Elimination a Declarations
' 1 v v
= Java ‘ Unconditional Compare Method
Bytecode Branch Folder Headers
NG * _ o +
O N R R n D
£E String Builder _@ & < | Compare Method
Z (‘c;; Folder 5305 Bodies

Figure 3.6: SootDiff’s process steps for comparing the bytecode of two classes using Jimple
and optimizers to be resilient against bytecode modifications. Soot’s optimizers
are in gray.

3.8 SootDiff: An Approach for Identifying Modified Open-Source Software

59

60

Input As an input, SootDiff uses the bytecode of two or multiple classes and outputs
a set of diff chunks utilizing clone detection algorithms.

1. Producing Jimple SootDiff uses the Soot framework [Lam+11] to produce Jim-
ple from the bytecode classes. To do so, SootDiff passes the bytecode files to Soot to
transform them to Jimple.

2. Unify Representation Next, SootDiff optimizes the Jimple representation using
Soot’s internal Jimple optimizer [VH98]. In the optimization step, SootDiff applies
constant-propagation, dead-code-elimination, and unconditional-branch folder to
the Jimple code [VH98; Lam+11]. These optimization steps reduce dissimilari-
ties.

To reduce further dissimilarities, SootDiff runs additional optimizers on the Jimple
representation. At present, SootDiff contains an optimization step to reduce dis-
similarities when constructing strings in Java using the java.lang.StringBuilder
API, as shown in the Listing 3.4b in Section 3.8.1. Further steps for optimizing and
evaluating simple arithmetic expressions can be added.

For instance, an optimization step may transform an instruction of the form int val
=7+ 5 % 3 + x to int val = 22 + x by evaluating the arithmetic expression,
which is, partially done by the ECJ. Finally, SootDiff compares the optimized Jimple
representations using Myers’ Diff algorithm [Mye86] and reports the differences in
the form of diff chunks using apache.commons.DiffBuilder.

3. Computation of Jimple Diff Finally, SootDiff computes the diff chunks between
the compared classes, using Myers’ algorithm [Mye86] to compare method bodies
using java-diff-utils.® Myer’s diff algorithm is a greedy algorithm for calculating
the differences between two strings and a sequence of edits to convert one string
to the other. The algorithm recursively finds the longest common subsequence with
the smallest edit sequence for two sequences, and is, for instance, used in GNU
DiffUtils. Once this is done, the algorithm recursively compares two subsequences
preceding and following the matched sequence until no more sequences are left for
comparison.

Note that SootDiff's method body comparison is open to be used with different code
clone detection techniques.

8https ://9ithub.com/java-diff-utils/java-diff-utils

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

https://github.com/java-diff-utils/java-diff-utils

3.8.4

For comparing the signatures of classes, methods, and fields semantically, SootDiff
implements apache.commons.DiffBuilder? directly in Soot. Thus, SootDiff’s com-
parison is independent of the ordering of methods or fields in bytecode, e.g., dif-
ferent compilers may output class member declarations and method parameters in
different sequences, which would yield a difference in Myer’s algorithm.

Evaluation

In the following, we evaluate the effectiveness of SootDiff to detect if two bytecode
classes originate from the same source code. To do so, we compare SootDiff with a
simple bytecode comparison approach using GNU DiffUtils. In our evaluation, we
apply SootDiff and DiffUtils on the bytecode generated by different Java compilers
and for different Java versions. As Java source-code test classes, we use the Java
sample programs provided by the University of Illinois [Pro04], which cover most
features of the Java library classes.

To generate the test cases shown in Table 3.7, we compile the Java source code
using the compilers Javac, ECJ, and GCJ for the language versions 1.5 to 1.8. As
reference bytecode classes, we generate bytecode for Java 1.8 using Javac.

To evaluate SootDiff’s effectiveness, we compare the diff-results gained from com-
paring the different bytecode with DiffUtil directly against the diff-results produced
by SootDiff. To compare the “plain” bytecode of two classes with DiffUtils, we first
parse the generated bytecode and generate a textual representation using ASM’s
org.objectweb.asm.util.TraceClassVisitor. Afterward, we compare the textual
representations generated by the TraceClassVisitor using the established diff li-
brary com.github.difflib.DiffUtils. Thereby, we exclude the Java language ver-
sion information contained in the bytecode. To back up our results, we (re-)validate
them by running the Unix tool diff on the binary files. To generate SootDiff’s results,
we apply SootDiff on the generated bytecode classes and create diff chunks using
Myers’ diff algorithm. We report two classes as equal if SootDiff does not report any
diff chunks.

Table 3.7 shows the comparison’s results. The table highlights in green the test cases
for which the bytecode comparison fails but SootDiff produces correct results. The
table shows that the bytecode comparison succeeds for 58 out of 144 test cases
only, although we ignore the Java version information in the generated .class
files. Consequently, the generated bytecode contains more differences than the Java

“https://commons .apache.org/proper/commons- lang/apidocs/org/apache/commons/lang3/
builder/DiffBuilder.html

3.8 SootDiff: An Approach for Identifying Modified Open-Source Software

61

https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/DiffBuilder.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/DiffBuilder.html

62

version, which validates our initial assumption that different compilers produce
different bytecode for the same source code. In contrast, the table also shows that
for 102 out of 144 test cases the comparison of Jimple code succeeds; even without
any Jimple optimization steps, 66 test cases succeed.

Table 3.7: Evaluation of the efficiency of bytecode and SootDiff’s comparison on bytecode
generated by different Java compilers.

javac ecj gcj
1.5 16 1.7 1.5 16 17 18 1.5 1.6
ArrayDemo.java X/@ //@ J//@ X0 x/O X/O Xx/O X/0 X/O
DivByO.java /@ /@ J//@ X0 Xx/O X/O X/O X/O X/O
FunctionCalljava v/@ V/@ J//@ X/® X/@ X/@ X/@® X/® X/@
HelloData.java v/@ V/@ J//@ /e J/e J//e //® /@ //®
HelloWorld.java v/@ V/@ //@ /e J/e J/@ J//@ /e //®
HelloWorldException.java v/@® V/@ J//@ /e J/e J//@ //@ /e J//@®
KeyboardIntegerReaderjava X/@ //@ V/@ X0 Xx/O X/O Xx/O X/O Xx/0O
KeyboardReaderErrorjava X/@ /@ //@ X/O X/O X/O X/O X/0 X/O
KeyboardReaderjava X/@ V/@ //@® X0 Xx/O0 Xx/O X/O X/O X/O
MyFileReaderjava X/@ v/@ J//@ X0 Xx/O X/O X/O X/O X/O
MyFileWriterjava X/@ /@ //@® X0 Xx/O X/O X/O X/O X/O
Point2d.java X/@ J//@ J//@ X/® X/@ X/@ X/@® X/® X/@®
Point3d.java v/@® V/@ //@ X/® X/@ X/@ X/@® X/® X/@®
PointerTesterjava v/@ V/@ J//@ X/® X/@ X/@ X/@® X/® X/@®
PointerTester$Point2d.java X/@ v/@® //@ X/® X/@ X/@ X/@ X/® X/@
PointerTester$Point3d.java /@ V/@ //@ X/® X/@ X/@ X/@® X/® X/@

! results are in the form bytecode/Jimple

2 Comparison of bytecode: fail X/ success v/

3 Comparison of Jimple: fail O/ success ®

4 The bytecode comparison ignores the different bytecode version number in the generated . class files.

5 Highlighted in green are the cases in which SootDiff correctly detects that the bytecode originate from the same source class,
although the Bytecode differs.

% The Sample Java Source Classes are from a benchmark from Prof. Robert H. Sloan, University Illinois [Pro04]

The test case DivBy0 fails because Javac and ECJ optimize unused locals differ-
ently, as shown in Listing 3.5a-3.5c. The bytecode generated by ECJ optimizes the
assignment to the variable i in Listing 3.5a in Line 6, whereas the Javac leaves
the assignment unchanged in Line 6 in Listing 3.5b. Since the divide instruction
in the Javac bytecode may throw an ArithmeticException Soot does not remove
the assignment statement. Consequently, the optimized Jimple code differs, and
thus SootDiff’s comparison fails. As both bytecode versions would result in different
runtime behavior, this behavior is acceptable for checking if two artifacts originate
from the same source code—or more importantly, when checking for vulnerable
artifacts—share the same vulnerabilities.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.9

1 wvoid funct2(){
2 println("");
3 int i, j, k;
4 i =10;

5 j=0;

6 k=1i/j;}

(a) Java Source Code DivZero. java

1 wvoid funct2(){ 1 wvoid funct2(){

2 int i2; 2 PrintStream $r0;

3 PrintStream $ro0; 3 $r0=PrintStream.out;

4 $r0=PrintStream.out; 4 invoke $r0.<println>;

5 invoke $r0.<println>; 5 return;}

6 i2 =10 / 0;

7 return;} (c) Jimple from bytecode generated with ECJ tar-
get ver. 1.8

(b) Jimple from bytecode generated with Javac
target ver. 1.8

Listing 3.5: Comparison of compiler optimizations of Javac and ECJ from the source class
DivZero.java. Javac and ECJ optimize unused locals differently, resulting in bytecode dis-
similarities.

Further 36 test cases fail because ECJ and Javac optimize control structures differ-
ently, leading to a different organization of basic blocks and branch instructions.
For instance, the test case KeyboardReader contains a while loop that depends on
a condition of the form while z != 0. Javac transforms this condition to a condi-
tional jump of the form if z == 0 goto end of loop, whereas the ECJ generates
a conditional jump of the form if z!=0 goto loop. Currently, SootDiff does not
provide an optimization step for these differences.

Findings: SootDiff can effectively detect if two bytecode classes originate from
the same source code in 102 out of 144 cases, whereas bytecode comparison
succeeds in 58 cases only.

Related Work

In this section, we present related studies investigating the use of (vulnerable) open-
source dependencies and related test suites for detecting vulnerabilities in OSS.
Further, we discuss related work for SootDiff that aims to detect different types of
code clones (modifications).

3.9 Related Work

63

3.9.1 Case Studies: Use of Vulnerable Open-Source Software

The use of (vulnerable) OSS and its security implications have been well-studied in
literature in commercial projects [PPS18; Pas+22; WD14; Pit16; Mar+18; SE13]
and open-source projects [Kul+18; HG22; Bav+15; Bog+16; Hei+11]. Most re-
lated is the empirical study on the use of vulnerable open-source dependencies
in commercial Java applications developed at SAP by Pashchenko et al. [Pas+18;
Pas+22]. The authors applied the code-based vulnerability matching approach of
Eclipse Steady to assess the risk and the required effort for mitigating vulnerabilities
in included transitive OSS from the developers’ perspective. The authors found that
although most vulnerabilities are located in transitive dependencies, developers can
fix—in fact—80% of the vulnerable release dependencies either by fixing a bug in
a single OSS project or by updating a direct dependency [Pas+22]. The authors
conclude that although developers do not actively include transitive dependencies,
they can easily recognize and update those since most transitive dependencies orig-
inate from a framework dependency that the developers actively include and are
actually well aware of. To account for this observation, the authors provide a new
methodology (Vuln4Real) for assessing the impact of vulnerable dependencies on a
project by grouping (transitive) vulnerabilities that developers can “easily” fix into
groups based on their groupld, as we did in our study.

Further studies in the commercial context by Synopsys [Syn23], and Williams and
Dabirsiaghi [WD14] report that more than 67% of the investigated applications
include vulnerable dependencies with on average 22.5 vulnerabilities per depen-
dency [Syn23].

In the open-source context, Kula et al. [Kul+18] and Bavota et al. [Bav+15] inves-
tigate the use of (vulnerable) OSS and how developers update known-vulnerable
dependencies. Kula et al. [Kul+18] found that the majority (81.5%) of studied
projects include outdated or vulnerable OSS. Critically, both studies conclude that
most developers are reluctant to update even vulnerable dependencies since they
are either unaware that the dependencies are vulnerable, are unaware that new
versions exist, or are afraid of breaking the application, leaving the applications
vulnerable.

Lopez et al. [Lop+17] also investigate how developers include OSS. Analogous
to our observation of modified artifacts’ JARs, the authors found that source-code
clones and modified source code occur in 80% of all studied open-source projects.

64 Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

3.9.2

While these studies investigate the use of known-vulnerable OSS in commercial
or open-source contexts, the studies do not examine the prevalence of modified
OSS nor their impact on the precision and recall of vulnerability scanners. Our case
study complements existing work and shows that—on top of source-code clones—
vulnerable code clones are also introduced during the build process of downstream
projects by forking, re-bundling, and re-packaging.

Test Suites: Vulnerabilities in Open-Source Software

Most related to Achilles is the SourceClear benchmark [Sou20]. The benchmark pro-
vides test cases invoking the vulnerable code of open-source artifacts for Java, Scala,
Ruby, Python, C, C#, JavaScript, PHP, and Go. However, the benchmark does not
replicate modifications, such as re-packed class files, deleted or lost metadata. Fur-
ther, the benchmark’s ground truth does not specify the vulnerable artifact nor the
published vulnerabilities. Instead, the benchmark’s ground truth specifies the num-
ber of vulnerable, direct, and transitive dependencies, and the call chain invoking
the artifact’s vulnerable code.

Vulnerability collections and benchmarks for assessing the precision and recall of
static and dynamic application security testing tools are BugBox [Nil+13] for PHP,
the SAMATE reference data set [NIS18], SecuriBench [Liv12], and the Juliet Test-
Suite [NIS17]. The benchmarks provide test cases with known security flaws for
evaluating application security testing tools but do not provide test cases for detect-
ing known-vulnerable OSS.

Widespread benchmarks like the DaCapo [Bla+06] benchmark suite, the Qualitas
Corpus [Tem+10], or the XCorpus [Die+17] provide test corpora for evaluating
static analyses but do not provide test cases for detecting known vulnerabilities in
OSs.

Vulnerability databases like the NVD [NIS20] and ExploitDB [Off20] miss informa-
tion or are too coarse-grained to enable a comparison of vulnerability scanners:
they do not specify which classes and methods are vulnerable nor provide ground
truth, and the identifiers, e.g., CPEs, often over- or under-approximate. In contrast,
Achilles’ test cases contain a curated set of vulnerable OSS and manually crafted
ground truth.

3.9 Related Work

65

3.9.3 Code Clone Detection

66

Finding equal or similar parts within source code is a well-known problem called
code clone detection. Koschke [Kos07] distinguishes between three different types of
code clones:

Type 1 clones are an exact copy of the original code without modifications, except
for whitespaces and comments.

Type 2 clones are syntactically identical copies with only slight renaming, e.g., re-
naming variables or function identifiers.

Type 3 clones are copies with further modifications, e.g., the addition or deletion
of statements.

Bytecode Clone Detection Baker and Manber [BM98] present a clone detection
approach based on disassembled bytecode using the tools Siff, Dup, and Diff to
detect type 2-3 clones. The approach reports the clone detection results based on
untyped stack-based bytecode. In contrast, SootDiff uses Jimple to detect equal
classes and methods, which is a typed three-address code, and thus closer to source
code than bytecode. Consequently, SootDiffs results are easier to understand and
interpret from a developer’s perspective. Moreover, the comparison based on Jimple
and the application of normalization steps allows SootDiff to reduce dissimilarities
introduced by different Java compilers and Java versions.

Keivanloo et al. [KRR14] introduce the code similarity and clone detector SeByte,
which operates on Java bytecode, to detect type 1-3 code clones and even, in some
cases, semantic similarities. SeByte splits the bytecode into tokens into three di-
mensions: instructions, method calls, and types and computes for each dimension
similarity measures, such as the Jaccard similarity. SeByte combines the different
similarity measurements for each dimension to detect code clones and to enable
code clone search.

Yu et al. [Yu+19] present an approach for detecting type 1-3 clones and a subset
of semantic code clones. The proposed approach extracts two features from a given
bytecode body of a method: the instruction sequence and the method call sequence.
The approach applies the Smith-Waterman algorithm, an algorithm for detecting
similar regions of genes, on both sequences to align and match the extracted se-
quences. If the similarity of both sequences corresponds to a predefined threshold,
the approach reports a code clone.

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

Source-Code Clone Detection Several approaches for detecting clones in different
programming languages in source code exist [J H94; MLM96; Bax+98; KKI02].
The approaches apply different clone detection techniques directly on source code
to discover type 1-3 clones, e.g., string-based, token-based, abstract syntax tree
(AST-)based, metric-based, etc. [Kos07; RKC18].

While the source code of classes can be recovered successfully using decompilers,
which makes existing source-code clone detection techniques applicable to discover
modified open-source artifacts, using decompiled source code has the disadvantage
that it does not allow further normalization that the intermediate representations
Jimple offers, e.g., reduced instruction set, and thus we would generate more coarse
results.

Intermediate Representation Code Clone Detection Most related to SootDiff is the
approach jNorm created by Schott et al. [Sch+23]. JNorm builds on top of SootDiff’s
approach. JNorm parses classes’ bytecode to Jimple and applies further normaliza-
tion steps to reduce dissimilarities, as we did with our String optimizer.

Selim et al. [SFZ10] present an approach similar to SootDiff from a technical point
of view. Like SootDiff, they use Soot’s intermediate representation Jimple to detect
type 3 source-code clones. As an input, the approach solely uses Java source-code
files to produce Jimple code. They apply Java source clone detection tools on the
Jimple representation. To report detected clones to users, they map the results from
Jimple back to Java.

While the presented approach is similar to SootDiff, significant differences exist.
First, we assume that no Java sources are available, and thus we solely work on
bytecode. Second, we do not run existing code clone detection tools for source code
but tailor the comparison to Jimple. Third, SootDiff does not aim to detect type 3
clones but to detect if two bytecode classes, which may have been generated by
different Java compilers—and are only slightly modified—originate from the same
source code. Consequently, we cannot trust existing source-code clone techniques
to detect modified open-source artifacts reliably.

3.9 Related Work

67

3.10

68

Conclusion

In this chapter, we presented a case study on 7,024 Java projects developed at
SAP investigating the use of (modified) OSS and their impact on the precision and
recall of vulnerability scanners. The results of our case study show that, even in
commercial applications, the majority (86%) of the dependencies are OSS and that
most dependencies are included transitively (79%). Thus, known-vulnerable OSS
are an important issue for Java applications.

Remarkably, our case study shows that developers also include modified OSS, com-
promising re-compiled, re-packaged, or re-bundled classes from other open-source
projects, and that such modifications commonly occur on Maven Central.

Crucially, our case study on the open-source scanners: Dependency-Check, Eclipse
Steady, GitHub Security Alerts, and three commercial vulnerability scanners shows
that the observed modifications heavily decrease the scanners’ precision and recall.
In fact, our results show that all vulnerability scanners struggle to cope with modified
OSS. Consequently, known vulnerabilities in modified OSS may remain undetected,
posing a threat to the application. To replicate our results and to foster research
and development by enabling evaluation and comparison of vulnerability scanners,
we present the test suite Achilles—including 2,558 test cases and ground truth. We
conclude that matching techniques that are resilient to the loss of metadata and
bytecode modifications are needed.

As a first approach for the design of matching techniques that are resilient to byte-
code modifications, we present SootDiff. SootDiff enables the comparison of (re-
compiled) bytecode based on Soot’s intermediate representation Jimple. To compare
the generated Jimple representation, SootDiff leverages the established Myers’ diff
algorithm. Although SootDiff currently uses only a String optimization step in com-
bination with Soot’s default optimizers, e.g., dead code eliminators, the evaluation
shows that SootDiff produces promising results. SootDiff’s evaluation also shows
that additional optimization steps to reduce dissimilarities, e.g., the organization of
basic blocks and control structures, will further improve the detection of code clones.
Promising results in this direction have been generated by Schott et al. [Sch+23].

Chapter 3 Systematic Study on the Usage of Open-Source Software and
Challenges for Their Detection

An Automated Approach for
Safely Updating Included
Open-Source Software

In the previous chapter, we showed that known-vulnerable Open-Source Software
(OSS) is a problem in both commercial and open-source software projects. Although
vulnerabilities in OSS are a severe threat to an application and must be closed imme-
diately (cf. Log4Shell [NVD21]), recent research [Kul+18; Bav+15; MP17] shows
that developers hesitate to update included OSS and mistrust automated update
tools such as Dependabot, since they are afraid of introducing incompatibilities that
break their project. This mistrust is not unjustified as the tools do not ensure com-
patibility with other included OSS. In result, applications remain vulnerable, despite
a fixed version of the vulnerable OSS being available.

To alleviate this situation, we present UpCy, an automated approach that supports
developers in updating known-vulnerable or outdated OSS. We start by compre-
hensively defining the conditions a safe backward compatible update has to satisfy
in Section 4.1. We separate the conditions into programming language constraints
(source & binary compatibility), which are required to compile and execute the pro-
gram successfully, and constraints to other OSS in the project (dependency graph
compatibility).

To support developers in finding an update for vulnerable or outdated OSS with
a minimal number of incompatibilities automatically, we introduce UpCy in Sec-
tion 4.2. UpCy encodes the constraints a backward-compatible update has to fulfill
in the form of a unified dependency graph. On this unified dependency graph, UpCy
applies the min-(s,t)-cut algorithm and leverages a self-created dependency graph
of the public open-source repository Maven Central to find compatible artifacts.

We evaluate UpCy on 1,823 open-source Java projects sampled from GitHub in
Section 4.3. In our evaluation, we compare the effectiveness of UpCy with the naive
updates that state-of-the-art tools, like Dependabot, produce on 29,698 updates. Our
results show that UpCy successfully finds updates with fewer incompatibilities in
35.1% of the cases where state-of-the-art approaches fail; importantly, 99% of these

69

4.1

411

70

updates have zero incompatibilities. Further, our results show that UpCy produces
update steps comprising the update of two dependencies on average, indicating that
compatibility can be maintained with reasonable effort.

We give an overview of related work in Section 4.5, and we complete the chapter by
discussing open challenges and required adaption to other dependency-management
tools in Section 4.6.

Safe Backward Compatible Updates

When developers aim to update a dependency, they must consider any update care-
fully since their project may unexpectedly suffer from regression-inducing changes,
such as bugs or semantic changes, that break the Application Programming Inter-
face (API) contract between the application and the (updated) open-source arti-
fact [HG22].

To achieve a safe backward compatible update or at least minimize the effort for
adapting the application’s code, developers need to consider several types of incom-
patibilities between the different versions of the artifact, and how the project uses
the artifact’s API. In the following, we discuss the considerations developers must
make when updating.

Dependency Graph Updates

For a global dependency graph, like the one used by the build-automation tools
Maven and pip (cf. Chapter 2), developers have the following options for updating
a specific artifact [Hua+20], shown as ¢ in Figure 4.1:

i If the artifact is a direct dependency of the project, developers can directly add
the new version of the artifact to the build-automation tool’s configuration file,
e.g., Maven’s pom.xml.

In this case, the dependency is replaced directly with the new version.

ii If the artifact is a transitive dependency, developers have two options for
updating:

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

41.2

ii.i They can specify the updated version ¢’ of the artifact in the build-auto-
mation tool’s configuration file directly, transforming the new version to a
direct dependency. Due to Maven’s shortest-path resolution mechanisms,
the direct dependency then shadows all other (transitive) instances of
this dependency, shown in Figure 4.1b.

ii.ii They can check if any predecessor u in the dependency graph, lying on
the path from the project node to the artifact, can be updated to a newer
version that itself depends on a newer version of the artifact, shown in
Figure 4.1c. If such a predecessor u exists, developers can transform the
update v’ to a direct dependency.

In all cases, developers must assess the update’s effect on the dependency graph
since every update can introduce new (direct and transitive) dependencies that may
lead to conflicts or shadowing of existing dependencies. For instance, consider the
duplicate dependency w in Figure 4.1. Assume a developer updates the artifact ¢
to a new version t' by declaring ¢’ directly in the build-automation configuration
file, making it a direct dependency, shown in Figure 4.1b. If ¢’ itself depends on a
new version w’, then w’ will shadow the dependency w of z—whether desired or
not. As a result, such an update may introduce unintended regressions. For instance,
artifact z may fail to run successfully with the new artifact w’.

Since shadowing and the inclusion of transitive dependencies are automatically
managed by the dependency-management tool Maven without notifying developers,
introduced regressions caused by incompatible dependencies are tedious to detect
and resolve manually. With an increasing number of dependencies, duplicates, and
conflicts, the complexity of maintaining and reasoning about the compatibility be-
tween artifacts increases. However, to avoid introducing unexpected regressions,
developers must ensure that all nodes in the dependency graph that use the up-
dated artifact continue to compile, link, and execute successfully [DJB14]. A study
by Wang et al. [Wan+22] showed that this is difficult to diagnose in practice, leading
to runtime exceptions and unexpected program behavior.

Source and Binary Compatibility

To ensure an update is safe, the updated artifact’s API must be backward compatible
with the currently used version of the artifact [DJB14]. In particular, the artifact’s API
types, methods, and fields must not be subject to changes that prevent compilation,
linking, or execution of formerly valid client code.

4.1 Safe Backward Compatible Updates

71

Legend

s: the project
u2, x: direct dependency of s
y: transitive dependency of s,

but direct dependency of x
utl, u2, ud: share the same groupld
u: blossom of ut, u2, u3
green: artifact to update

updated artifacts

----» source code compatible
—» binary compatible

----------- > edge pruned in dep. tree

(a) Example of a Maven dependency graph. Dependencies whose API is directly invoked by the

project’s code must be source compatible (dashed lines), whereas dependencies whose API is
invoked by another dependency must be binary compatible.

. v ‘ A
\
\ (shadows t)
' 1
[u
' 71
Y_ conflict
\
voou
| '
Y N 'I
[t'
V'

(shadows v)

conflict w' ?onflict

w'
(shadows w)

(shadows w), v

(b) Updating the transitive dependency ¢ by trans- (c) Updating the predecessor u of the transitive
forming ¢ to a direct dependency. dependency ¢.

Figure 4.1: The options for updating the transitive dependency ¢ and resulting changes in
the dependency graph.

72 Chapter 4 An Automated Approach for Safely Updating Included Open-

Source Software

In Java, but also other compiled languages, it makes sense to distinguish between
source and binary compatibility issues [Ecl07; DJB14]. Source compatibility re-
quires that the source code of existing clients continue to compile without errors
against the revised API. Source-code incompatibilities result in compilation errors
when the project is re-compiled against the updated artifact [Ecl07]. Source-code
incompatible changes are, for instance, the removal of public methods, types, or
the addition of checked exceptions to an API method, as these exceptions must be
handled by client code. To re-compile the project successfully, source-code compat-
ibility must be fulfilled for all dependencies (transitive and direct) whose APIs are
directly invoked in the project’s source code. Typically, source-code incompatibilities
in the project code can be easily corrected as the source code is directly available
and changeable by developers.

Application Binary Interface (ABI) compatibility requires that preexisting binaries
continue to link without errors against the revised API. In Java, binary incompat-
ibilities lead to failures during linking or invocation [Oral5a]. Examples of ABI
incompatible changes are the removal of API types, methods, fields, or changes in
a method’s signature. Binary compatibility must be fulfilled if an artifact is used
by other dependencies that cannot be re-compiled, which is typically the case for
transitive dependencies. Thus, all dependencies in the dependency tree must con-
tinue to link successfully to the bytecode classes in the updated artifact. In contrast
to source-code incompatibilities, binary incompatibilities in dependencies cannot
be easily fixed as the application developers usually do not have control over the
artifact’s source code—except if they create their own fork, as we have seen in
Chapter 3.

Note that binary compatibility does not imply source compatibility nor vice versa, al-
though some compatibility issues affect both, e.g., the removal of API types [DJB14].

Within a dependency tree, an artifact must fulfill exactly one of the two compati-
bility types for each incoming edge, depending on the nature of the dependency
that the edge represents, shown in Figure 4.1. A study from Dietrich et al. [DJB14]
shows that source and binary compatibility are regularly violated between different
versions of an artifact. Although tools like SigTest [Tul22] check if the API of an arti-
fact’s new version is source-code and binary backward compatible, existing tools do
not support reasoning about the compatibility between several connected artifacts
in the dependency tree. Even more, approaches to indicate compatibility between
different versions of an open-source artifact, like Semantic Versioning [Pre21], fail,
as maintainers release new changes based on their self-interpretation of backward
compatibility, which often leads to source or binary incompatibility, shown in a study
by Bogart et al. [Bog+16].

4.1 Safe Backward Compatible Updates

73

41.3

41.4

74

Semantic Compatibility

Checking artifacts for source and binary incompatibilities is a necessary precondition
but is insufficient; semantic compatibility is also required.

Semantic compatibility requires that the semantics of the API do not change. Ar-
tifacts with semantic compatibility issues are source and binary compatible, yet
introduce incompatible runtime behavior that invalidates formerly valid assump-
tions made in client code. Examples of semantic incompatibilities are changes in a
method’s pre- and postcondition [Ecl07]: “Method preconditions are things that a
caller must arrange to be true before calling the method, and that an implementor
of the method [implementing an abstract method or overriding it], may presume to
be true” [Ecl07]. As an example of an incompatible precondition change, assume
that a method formerly accepted null values as arguments, but the updated version
throws a NullpointerException. Consequently, client code that passes null values
to the method becomes invalid.

“Method postconditions are things that an implementor must arrange to be true be-
fore returning, and that a caller presumes to be true after the method returns” [Ecl07].
As an example of an incompatible postcondition change, assume that a method re-
turns an empty list if it does not find a specific element in a given list, but the updated

method returns null to indicate that no element could be found. In effect, formerly

valid client code checking if the list is empty will fail with a NullpointerException.

A sound and precise detection of semantic incompatibility is undecidable, however,
several approaches exist that use or synthesize test cases to detect semantic compat-
ibility issues w.r.t. the way the project uses an artifact [HG22; Wan+22].

Blossom Compatibility

Our study in Chapter 3 and the study by Pashchenko et al. [Pas+18] show that
developers regularly include frameworks, and those frameworks typically consist of
a large number of (transitive) dependencies that share the same vendor (groupld in
Maven). Since these dependencies are highly interconnected and usually require the
same version to run correctly, all framework artifacts must be updated consistently
to a new version if a single artifact of the framework is updated. We refer to artifacts
with the same groupld in the dependency tree as dependency blossoms: they can
be merged into a single node like regular blossoms in graphs, shown in Figure 4.1.

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

4.2

4.2.1

To achieve safe backward compatible updates, developers must consider that all
dependencies in a blossom node have the same (or a compatible) version. Typically,
only those are guaranteed to work together by the framework authors [Pas+18].

API Compatibility Restriction Note that a safe backward compatible update does
not require source-code, binary, and semantic compatibility for the complete API.
Instead, only those API types and methods that are actually used during compile-
and runtime must be compatible.

UpCy: Identify Safe Backward Compatible Updates

As described in Section 4.1, the options for updating an artifact depend on its posi-
tion in the dependency tree: (i) a direct dependency can only be explicitly updated,
(ii) a transitive dependency can either be transformed into a direct dependency, or
any of its predecessors can be transformed into a direct dependency and updated.
To reduce the risks of introducing regressions and to keep the effort for adapting the
application’s code low, one has to choose an update option that leads to the least
amount of source, binary, semantic, dependency tree, and blossom incompatibilities,
which is manually almost impossible given the size of a typical dependency tree
with more than 94 artifacts (cf. Section 3.3).

To find compatible updates automatically, we created UpCy. Given a Maven project,
an artifact, and its target version, UpCy determines the necessary steps to update the
artifact with minimum source, binary, and blossom incompatibilities. To do so, UpCy
analyzes how the project uses the artifact by merging the project’s dependency graph
and call graph into a unified dependency graph. On this graph, UpCy leverages the
min-(s,t)-cut algorithm to identify which update option leads to the least amount,
or even no, incompatibilities. As an output, UpCy computes a list of artifacts that
developers should add as direct dependencies to their application to update the
given artifact to the target version, and the number of incompatibilities the update
introduces.

Algorithm

Figure 4.2 gives a high-level overview of UpCy, and Algorithm 1 depicts the algo-
rithm in pseudocode.

4.2 UpCy: Identify Safe Backward Compatible Updates

75

76

Input 1. Init Analysis 2. Compute Potential Updates 3. Suggest Updates
@ Maven . y Check \& Compute
Project Build Call Graph Naive Update 1] Incompatibilities
Build Dependency @ Compute @ Compute
Graph Min-(s,t)-Cuts Updates Steps
% Build Unified Query
ependency Graph Compatible Updates
@Maven
Central @
Dep. Graph

Figure 4.2: UpCy’s process steps for computing compatible updates using min-(s,t)-cut al-

gorithm and a dependency graph of the Maven Central repository.

Algorithm 1 UpCy’s algorithm for identifying safe backward compatible updates.

Input: mavenCentralGraph, project, libToUpdate, targetVersion
Output: listUpdateSteps

/* build unified dep. graph */

: depGraph <« buildDependencyGraph(project)

2: callGraph < buildCallGraphSoot(project)

9:
10:
11:

12:
13:

: unifiedDepGraph « unify(callGraph, depGraph)

/* naive Update */
updateGraph «— queryRepoGraphForUpdates(mavenCentralGraph, libToUpdate,
targetVersion)
incmpts « computelncompatibilities(unifiedDepGraph, updateGraph)
if incmpts = () then
/* the root node of the updateGraph is the updated library */
return (getRootNodes(updateGraph), incmpts)
end if
/* update based on min-(s,t)-cut */
minCuts «+ computeMinCuts(unifiedDepGraph, libToUpdate)
for minCut € minCuts do
query < mapToCypher(minCut, unifiedDepGraph)
updateGraph «+— queryRepoGraphForUpdates(mavenCentralGraph, query)
incmpts « computelncompatibilities(unifiedDepGraph, updateGraph)

/* root nodes of the updateGraph are the nodes to add as direct deps */

14: if incmpts = () then

15: return (getRootNodes(updateGraph), incmpts)

16: else

17: listUpdateSteps U (getRootNodes(updateGraph), incmpts)
18: end if

19: end for

20: return listUpdateSteps

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

Input To find compatible updates and explore the options for updating the given ar-
tifact to a specific version, all versions of that artifact and all versions of its predeces-
sors in the dependency graph must be known to UpCy. Furthermore, to check which
existing artifacts the update will shadow, the complete list of direct and transitive
dependencies the update introduces (updateGraph) must be known. Since Maven
Central does not provide information about an artifact’s dependencies, we created a
complete dependency graph of Maven Central ourselves, using the graph database
Neo4j. We describe our dependency graph of Maven Central in Section 4.2.2. Further,
UpCy requires the Maven project, the artifact libToUpdate, and the target version
targetVersion the artifact should be updated to as an input.

1. Building the Unified Dependency Graph In the first step, UpCy checks which API
calls the project and the other dependencies invoke. To do so, UpCy constructs the
unified dependency graph (unifiedDepGraph). The unified dependency graph maps
the sources and targets of method calls to the dependencies in the dependency
graph. To construct the unified dependency graph, UpCy first builds the project’s
dependency graph using the Maven dependency graph plugin [Fer22] (line 1 in Al-
gorithm 1). The plugin allows the construction of the complete dependency graph,
including duplicate, conflicting, and transitive dependencies, using the Maven de-
pendency resolution mechanisms. In contrast to the “flat” dependency tree, the
computed dependency graph contains all information about shadowed, conflicting,
and duplicate dependencies, which Maven prunes in the tree. Figure 4.3 shows an
example project’s dependency graph with the project node s, blossom U, and the
artifact to update ¢.

Next, UpCy constructs a graph containing the API usage between the artifacts and
the project. We refer to the usage of an artifact as using an artifact’s API types,
methods, and fields. Thereby, we do not distinguish between the use of direct or
transitive dependencies but consider both equally. In particular, UpCy constructs a
call graph specifying the use of API methods as they are among the most common
forms of artifact usage. UpCy statically constructs the call graph representing the
call paths between the project and its dependencies, and the call paths between
dependencies, excluding calls to the project or the Java Class Library (JCL). To
construct the call graph, UpCy uses the class hierarchy analysis of the static analysis
framework Soot [Val+10] with all project classes as entry points, similar to the
approach presented by Pashchenko et al. [Pas+18] (line 2).

4.2 UpCy: Identify Safe Backward Compatible Updates

77

78

Legend

min-cut s: the project
on directed graph u2, x: direct dependency of s
min-cut 1 y: transitive dependency of s,
+s=="min-cut 2 but direct dependency of x

ul, u2, u3: share the same groupld
U: blossom of ut, u2, u3
shared node

Figure 4.3: Example min-(s,t)-cuts computed by UpCy on the unified dependency graph for
updating t with minimal incompatibilities. Each edge represents a source or a
binary compatibility relation between the connected artifacts.

Finally, UpCy merges the constructed dependency and the constructed call graph
to create the unified dependency graph. For each found call edge in the call graph,
UpCy maps its source and target to the artifacts in the dependency graph. Edges
within an artifact (same source and target) are pruned as they do not represent
any API invocation between artifacts. Further, all call edges between two nodes are
merged into a single edge containing all API calls in the form of a set. Thus, each
edge in the unified dependency graph represents a set of API calls that must be
binary or source, and semantically compatible.

2. Naive Update Before computing updates that involve the update of multiple
artifacts, UpCy evaluates if a naive update—simply declaring the updated artifact
t' as a direct dependency, which is the approach state-of-the-art tools like Depend-
abot [Git22] apply, yields incompatibilities (lines 4-8) [HG22]. In contrast to exist-
ing approaches, UpCy automatically computes changes in the dependency tree and
resulting incompatibilities, and thus helps developers to spot regression by showing
which API calls suffer from source, binary, or potentially semantic incompatibility. To
compute which artifacts the update will shadow, UpCy queries our graph database
of Maven Central to get all direct and transitive dependencies (updateGraph) of the
update ¢, and computes incompatibilities as described in detail in Section 4.2.1.

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

3. Minimizing Incompatibilities using Min-(s,t)-Cuts If the naive update suffers from
incompatibilities, UpCy tries to identify alternative updates with fewer incompati-
bilities (lines 9-19). If applied to the project, an incompatible update requires high
maintenance by developers. Developers are forced to identify which (transitive) de-
pendencies are affected by the incompatible update and must adapt their project’s
code accordingly. If the incompatibility cascades to an API call between dependen-
cies, they also have to replace those since they usually do not have control over
the code and pom.xml of these transitive, third-party dependencies; except if they
fork and adapt the OSS dependency themselves, as we studied in Chapter 3. If they
do not have the resources to modify the third-party dependency’s code—which is
typically the case—those artifacts must be updated as well, e.g., in Figure 4.3, if the
API calls that U invokes on ¢ are binary incompatible with the updated version ¢, U
also needs to be updated.

To identify compatible updates, UpCy computes a min-(s,t)-cut on the project’s uni-
fied dependency graph. Each edge in the unified dependency graph represents a
dependency relation, originating from the dependency graph. Further, each edge
defines a use relation, originating from the call graph, the edge represents the API
calls between the connected artifacts. If we could not find API calls between the
artifacts, we still assume that a dependency relation also declares a use relation
since it is recommended practice to declare every used dependency as a direct de-
pendency [Apa23a]. Thus, the unified dependency graph is an over-approximation
and may contain edges to superfluous, unused dependencies—that are dependen-
cies that are included but whose API is not used. Consequently, each edge encodes a
compatibility requirement; the API used in the target artifact must be binary, source,
or blossom, and semantically compatible depending on the position in the depen-
dency graph. For the example graph in Figure 4.3, the edge from node u3 to ¢
specifies that u3 depends on ¢, and u3 invokes ’s API. Thus, the update ¢’ must be
binary compatible w.r.t. the API that 3 invokes.

Based on the unified dependency graph, we can derive the following conditions a
compatible update of an artifact ¢ has to fulfill:

i The artifact ¢ or a predecessor u of ¢ must be updated by adding it as a direct
dependency to the project.

ii All artifacts that are used by another artifact n» and that are shadowed when

updating ¢t may also need to be updated to avoid incompatibilities—in other
words, all artifacts that use a (conflicting or duplicate) dependency that will

4.2 UpCy: Identify Safe Backward Compatible Updates

79

80

change in the update, but are not (transitive) dependencies of ¢ may also
need to be updated, e.g., the artifact z also uses the artifact w, which will be
shadowed in the update.

iii The dependency graph can be separated into two disjoint sets of nodes: arti-
facts that are updated, and artifacts that do not need to be updated.

iv The edges connecting artifacts that are in disjoint sets represent compatibilities
that are potentially violated when updating .

To identify update steps with minimal incompatibilities between the artifacts in the
dependency tree, UpCy separates the unified dependency graph into two partitions:
one containing the project s, and the other containing the artifact ¢, with a minimal
number of edges crossing the two partitions. Finding these partitions can be opti-
mally solved using the min-(s,t)-cut algorithm [FF56]. The min-(s,t)-cut algorithm
computes for a graph and a pair of nodes (s, ¢), a cut of the graph into two separate
partitions S and 7" with given nodes s € S and ¢ € T that is minimal w.r.t. the
weight of the edges crossing the partitions. In the resulting cut, only nodes that are
connected by the edges that lie on the cut must be ensured to be compatible with
each other for an update of the artifacts in the sink partition 7'. All artifacts in the
partition 7" are compatible with each other if the root nodes are updated: an updated
artifact in 7 is either a root node, and then updated directly; or the artifact has been
automatically updated as a declared transitive dependency of a root node by the tool
Maven. Since UpCy aims to minimize the incompatibilities between nodes and each
edge in the dependency graph represents one compatibility requirement (binary
or source), we assign all edges equal weight. The root nodes of the sink partition,
which are the target of the edges on the cut, are the artifacts that developers have
to update by adding them as direct dependencies to the build-automation tool’s
configuration file.

However, simply computing the min-(s,t)-cut on the directed unified dependency
graph does not minimize incompatibilities as the cut ignores blossom, duplicate, and
conflicting dependencies. For a directed graph, like the unified dependency graph,
a min-(s,t)-cut is equivalent to the maximum flow according to the max-flow min-
cut theorem [FF56]. Thus, edges to duplicate or conflicting dependencies located
behind the updated artifact ¢, e.g., the duplicate w, are ignored as the directed edge
from z to w is not part of a flow from s to ¢, and thus not part of the min-cut.

For instance, computing the min-(s,t)-cut on the directed unified dependency graph
produces min-cuts of weight 1, as shown in Figure 4.3. The min-cut cuts the edge
between s and u2. Crucially, the min-cut computed on the directed unified depen-

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

dency graph ignores compatibilities: the min-cut ignores the blossom compatibility
for ul, u2, u3, and more importantly, the cut ignores the compatibility edge between
z and w.

To overcome this limitation, UpCy computes the min-(s,t)-cut on an adapted repre-
sentation of the unified dependency graph: nodes that belong to the same frame-
work are merged into blossom nodes, e.g., ul, 42, u3 merged to blossom U, and the
edges are undirected. Using this representation of the unified dependency graph,
UpCy computes min-cuts of weight 2 for the graph in Figure 4.3, e.g., min-cut 1 and
min-cut 2.

Given the computed min-cuts, UpCy checks if new versions of the nodes in the sink
partition 7" exist on Maven Central to update the artifact ¢ to the requested target
version by querying our dependency graph of Maven Central for an updateGraph, as
explained in detail in the next section. If our graph database returns a solution (a
non-empty updateGraph), UpCy computes all incompatibilities w.r.t. the (updated)
artifacts in the updateGraph and API calls on the edges of the unified dependency
graph. For instance, for min-cut 1, UpCy checks if the API calls between s — u2
and s — x suffer from incompatibilities if 2 and x are updated, respectively, for
min-cut 2, the calls s — u2 and = — y if u2 and y are updated. UpCy stops when it
finds a min-(s,t)-cut with zero incompatibilities, or when no further min-cuts can be
found.

Finally, UpCy outputs the list of the found update steps (listUpdateSteps) and incom-
patibilities (line 20 in Algorithm 1). Developers can then add the dependencies in
the computed update steps as direct dependencies.

4. Compute Incompatibilities When querying the Maven Central dependency graph
with Neo4’s query language Cypher, UpCy receives an updateGraph. The update-
Graph contains the new versions of the artifacts (the new versions for the root nodes
in T) and all their (transitive) dependencies. For instance, for the min-cut 1 in Fig-
ure 4.3, the update graph contains the dependency tree for the artifacts u2, ul, u3,
and z, merged into a single graph. Given the updateGraph and unifiedDepGraph,
UpCy computes which API incompatibilities occur and which existing dependencies
will be shadowed if the new artifacts are added as direct dependencies to the project
(lines 5, 13).

First, UpCy computes which artifacts the final, updated dependency tree will contain
and which will be shadowed. To do so, UpCy checks for each dependency in the
updateGraph if the dependency will have the shortest path in the final dependency

4.2 UpCy: Identify Safe Backward Compatible Updates

81

4272

82

tree, shadowing all other instances of that artifact. Second, if the dependency will
shadow an existing dependency in the final, updated dependency tree, UpCy checks
all edges in the unified dependency graph that target the former instance of that
dependency in the current existing dependency tree for incompatible API calls. To
do so, UpCy queries SigTest [Tul22] and SootDiff (cf. Section 3.8), for a list of API
types and methods that are source or binary incompatible and whose method bodies
changed—indicating potential semantic incompatibilities, and intersects them with
the API calls in the unified dependency graph.

For example, assume the naive update ¢’ of ¢ will introduce a new version w’, as
shown in Figure 4.1b. UpCy checks if the API calls that « invokes on ¢ are binary
compatible with ¢/, and if the API calls from z to w’ are compatible. To that end, UpCy
creates the list of incompatible API’s for ¢, ¢ and w, w’ using SigTest, and checks if the
reported incompatible API types also occur as API calls in the unified dependency
graph. If the dependency will not become part of the project’s dependency tree
because an older instance shadows it, UpCy reports a forward compatibility issue.

Graph Database of the Maven Central Repository

Creation and Structure UpCy aims to identify updates without regressions by find-
ing newer versions of the open-source artifacts that are compatible with each other.
To do so, UpCy searches for artifacts with certain properties, e.g., with a certain
version, or an artifact that (transitively) depends on another artifact with a certain
version. Since the Maven Central repository’s API does not provide information
about open-source artifacts and their (transitive) dependencies, we created a graph
database of Maven Central with Neo4j as our storage backend, allowing us to query
Maven Central using the query language Cypher [Neo23]. Our graph database is
essentially a large dependency graph containing the open-source artifacts as nodes,
with file name, timestamp, groupld:artifactld:version (GAV), and the dependency
relations as edges, with scope and classifier. In our database, all dependencies of
an artifact, including parent and import dependencies, are transitively resolved,
specifying the dependency’s declaration order and scope.

The created database contains information and dependencies for 8.5 million artifacts
hosted on Maven Central. Note that we failed for some artifacts to create nodes or
resolve all dependencies if the pom.xml file hosted on Maven Central contained
errors, circular dependencies, or invalid syntax.

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

Querying the Graph Database using Cypher For each found min-(s,t)-cut, UpCy
queries our graph database if new versions of the root nodes of the sink partition 7’
exist for updating the artifact ¢. In particular, UpCy asks Neo4j

i to find new versions of the root nodes of the sink partition 7" that already
depend on the target version ¢’ of the artifact to update.

ii to find versions of the returned nodes that do not introduce new incompatibilities—

the (transitive) dependencies of the new versions of the root nodes should be
compatible with each other.

iii to return the (transitive) dependencies of those updated root nodes (update-
Graph).

To avoid the introduction of new incompatibilities, UpCy queries in (ii) for versions
of the root nodes that share a duplicate or conflicting artifact with the same version,
e.g., the node w is a duplicate since the artifact is included twice: once by the
transitive dependencies starting from u2, and again by z in the sink partition of
min-cut 1. Consider the min-cuts in Figure 4.3: For min-cut 1: (i) UpCy tries to find
an update of the nodes u2 and x, where 42 depends on an updated version of ¢,
(ii) where 42 and = depend on the same version of the (transitive) dependency w,
and (iii) UpCy asks for all (transitive) dependencies of the updates of u2 and x. For
min-cut 2, (i) UpCy tries to find an update of u2 and y where u2 depends on an
updated version of ¢, (ii) u2 and y depend on the same version of the (transitive)
dependency w, and (iii) UpCy asks for the (transitive) dependencies of the updates
u2 and y.

To find update steps for a computed min-(s,t)-cut, UpCy maps the queries (i), (ii), and
(iii) to Cypher, and then queries our graph database of Maven Central for artifacts
that fulfill the generated queries. In the following, we present the Neo4j queries that
UpCy generates.

(i) Find versions of the sink’s root nodes that already depend on the updated
artifact First, UpCy tries to find the target version of the artifact ¢ in the Maven
Central graph. To do so, UpCy generates for the artifact ¢ in Figure 4.3 the Neo4;j
query shown in Listing 4.1.

1 MATCH (t:MvnArtifact)
2 WHERE t.group = "groupIdOfT" AND t.artifact = "artifactIdOfT" AND
3 t.version >= "targetVersionOfT"

Listing 4.1: Cypher Query for checking if a version greater than or equal to targetVersion
of the artifact to update exists.

4.2 UpCy: Identify Safe Backward Compatible Updates

83

84

The query finds (maTcH) all artifacts ¢ with the groupld, artifactld, and version (GAV)
groupldOfT:artifactldOfT:targetVersionOfT. To not limit the update options to the
target version only and to ease matching with the following queries (ii) and (iii),
we relax the version to be greater than or equal to the target version.

Second, UpCy tries to find new versions of the root nodes of the sink partition 7'
that depend on the updated artifact ¢’. The root nodes are the artifacts that are the
targets of the edges cut by the computed min-(s,t)-cut. UpCy generates for every
root node r a Neo4j query as shown in Listing 4.2.

1 MATCH p = ((r:MvnArtifact) -[:DEPENDS_ONx1..]1-> (t))

2 WHERE r.group = "groupIdOfR" AND r.artifact = "artifactIdOfR" AND
3 r.version >= "versionOfR"

4 RETURN p, r LIMIT 1

Listing 4.2: Cypher Query for checking if more recent versions of the artifacts that are
potential update candidates as computed by the min-(s,t)-cut (the root nodes of sink
partition 7") exist.

The query finds (match) all artifacts r, with the groupld and artifactld groupld-
OfR:artifactldOfR and a version greater than or equal to the already used version
versionOfR that have a (transitive) dependency to the updated artifact ¢, matched in
the first query. The *1.. property in the relation instructs Neo4j to search for paths
of unlimited length (direct and transitive dependencies of r). If the artifact ¢ itself is
a root node r, UpCy does not generate a query for that particular root node. Finally,
the query returns the path p from the root node r to the dependency to update ¢, as
well as the found nodes. Only one solution is selected if multiple exist (LIMIT 1).

(ii) Find compatible root nodes for duplicate or conflicting dependencies If a
sink partition 7" has more than one root node, UpCy checks if duplicate or conflicting
dependencies exist that are (transitively) included by two or more different root
nodes. For nodes included by more than one root node, UpCy tries to find compatible
root nodes that all depend on the same version. For example, in Figure 4.3, the
dependency w is transitively included by the root nodes u and z of min-cut 1. Since
an update of u and z should not introduce new incompatibilities, UpCy queries the
graph database for versions of v and z that depend on the same version of w.

To identify nodes that are shared by multiple root nodes, UpCy traverses all nodes
in the sink partition of the unified dependency graph backward to the root nodes.
If the traversal ends in two or more root nodes, we refer to these nodes as shared
dependencies—they are (transitively) included by multiple root nodes.

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

For instance, consider the nodes of min-cut 1. The backward traversal for the nodes
in the sink partition yields the following paths: U < U, U <+ t,U «+ t < v,
{u,z} «+ {U,y} < {t,z} < w, and so on. Analogously, for min-cut 2. Since the
traversal for node w ends in the root nodes {U, =}, w is a shared dependency: shared
by the root nodes U and z.

1 MATCH pl = ((u:MvnArtifact) -[:DEPENDS_ONx0..]-> (w:MvnArtifact)),
2 p2 = ((x:MvnArtifact) -[:DEPENDS_ONx0..]-> (w))

3 WHERE u.group = "groupIdOfU" AND u.artifact = "artifactIdOfu" AND
4 u.version >= "version0fU" AND

5 x.group = "groupIdOfX" AND x.artifact = "artifactIdOfU" AND
6 x.version >= "versionOfX" AND

7 w.group = "groupIdOfW" AND w.artifact = "artifactIdOfW" AND
8 w.version >= "versionOfW"

9 RETURN pl, p2, u, x, w LIMIT 1

Listing 4.3: Cypher Query for finding compatible versions of the artifacts « and =x.
Compatible artifacts depend on the same version of the shared dependency w, avoiding
the introduction of conflicts and binary incompatibilities.

For each shared dependency, UpCy creates additional queries for the root nodes that
share a dependency, shown in Listing 4.3 for min-cut 1. The query finds (maTcH) all
artifacts v and x, with their existing groupld and artifactld and a version greater
than or equal to the already used versions (versionOfU, versionOfX), that have a
(transitive) dependency to the same version of the shared artifact w, with a version
greater than or equal to versionOfW.

As newer versions of the artifacts v or may no longer depend on an instance of w,
the matching is optional, defined by the relationship property o. .. If the query finds
a match, it returns the paths pl and p2 from the artifacts (v and x) to the shared
dependency w. If multiple solutions exist in the Maven Central dependency graph,
UpCy only selects one (LIMIT 1).

(iii) Query the update graph If the queries (i) and (ii) yield results, UpCy queries
the dependency trees for the found, new root nodes (updateGraph). The update-
Graph contains the updated versions of the root nodes, as well as their (transitive)
dependencies. For querying the updateGraph, UpCy generates for each root node r
the query shown in Listing 4.4, and merges the results into a single updateGraph.
Since the root nodes r are bound in the previous queries, no WHERE clauses are
generated for the query. The merged update graph is returned to UpCy.

1 MATCH p = ((r) -[:DEPENDS_ON%0..]1-> (:MvnArtifact))
2 RETURN p

Listing 4.4: Cypher Query for getting an artifact » and all of its (transitive) dependencies
(the update-graph).

4.2 UpCy: Identify Safe Backward Compatible Updates

85

4.3

4.3.1

4.3.2

86

Evaluation

To evaluate in how many cases UpCy can effectively support developers, we compare
it to the naive update approach, state-of-the-art tools, such as Dependabot, apply.

Research Questions

As UpCy is especially beneficial in cases where naive updates fail, we aim to study
how often naive updates fail, and complex updates are required. Thus, we inves-
tigate RQ1: How often do naive updates fail due to source-code, binary or
semantic incompatibilities? Here, compile failures show source-code incompat-
ibilities, and failed tests that passed before the update show binary or semantic

incompatibilities.

As UpCy tries to minimize binary, source-code, conflicting, duplicate, and blossom
incompatibilities, we measure how often and how many of these compatibilities
a safe backward compatible update has to fulfill. With an increasing number of
compatibilities that an update has to fulfill, the complexity for developers to reason
about update compatibility increases along with the helpfulness of UpCy. Thus,
we investigate RQ2: How many compatibilities does an update have to fulfill
(source-code, binary, semantic, conflict, duplicate, and blossom)? Here, we use
the unified dependency graph to derive the number of compatibilities an update has
to fulfill, which is equivalent to the edges in the graph.

Since we are interested in comparing the effectiveness of UpCy with the naive
approach for practical applications, we measure how often UpCy can provide better
updates with fewer or no incompatibilities. Therefore, we check RQ3: In how many
cases does UpCy minimize the number of incompatibilities compared to a
naive update? To identify compatibility issues, we use the ABI and source-code
API-compatibility check of the tool SigTest [Tul22; Oral4c] and intersect the results
with the API calls in the unified dependency graph.

Study Objects & Methodology

Data Set For the evaluation, we use the data set created by Hejderup et al. [HG22]
of open-source projects sampled from GitHub that use Java as the primary language
and Maven as the build-automation tool. Hejderup et al. already used the data set
in a study to measure the effectiveness of automated update approaches. Thus, we

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

consider the data set equally well-suited for evaluating UpCy. The data set provides
a representative sample of mid-sized, well-tested, open-source projects with a sig-
nificant number of dependencies [HG22]. On average, each project assembles 668
methods, and 75% of the projects assemble around 588 or fewer declared methods.
The median of direct dependencies is 7, and for transitive dependencies 16, indicat-
ing an expansion of transitive dependencies, which is in accordance with our study
in Chapter 3 and other studies [Pas+18; WD14; Pas+22]. The downloadable data
set [HG21] assembles commits of 462 different Maven projects.

Like Hejderup, we could not build all projects but were able to build (mvn compile)
380 projects successfully. These 380 projects constitute in total 2,047 different
Maven modules. Typically, a Maven project constitutes one or more (independently)
compilable sub-projects, so-called Maven modules, each with its own set of depen-
dencies. 1,325 of these modules have OSS dependencies and a non-empty depen-
dency graph.

Seeding Updates For developers, it is crucial to update an outdated or vulnerable
dependency quickly when a new vulnerability has been discovered to eliminate
that dependency from the dependency tree. For our evaluation, we had to derive
adequate test updates to compare naive updates and UpCy’s updates. To create fair
and unbiased test updates, we randomly choose from each Maven module up to 10
dependencies and then randomly up to 10 newer versions of those dependencies to
seed test updates. Here, we only selected dependencies with the scope compile and
excluded dependencies with the scope testing, system, runtime, provided since they
usually do not specify a version and are unavailable during compile time, and thus
cannot be statically checked.

In total, we created 29,698 test updates for 5,558 different artifacts in 1,325 mod-
ules: 8,327 updates of direct dependencies, and 21,371 (71.96%) updates of tran-
sitive dependencies. On average, we generated 22 (mean, 11.3 std) updates per
module, with a positively skewed distribution. 75% of all modules in our sample
had around 32 or fewer updates. The largest project had 85 updates.

4.3 Evaluation

87

4.3.3

88

Results

RQ1: How effective are naive Updates?

State-of-the-art tools naively add the updated artifact as a direct dependency to the
build-automation tool’s configuration (pom.xml). To evaluate the effectiveness of
this approach, we first performed each update as a naive update, and then checked
for compatibility issues. To check for source-code, and binary or semantic incompat-
ibilities, we executed the Maven commands mvn compile and mvn test two times:
on the original project and after applying the naive update.

If the mvn compile command fails during the second invocation, the new artifact
introduces source-code incompatibilities, as the project’s code that invokes the up-
dated artifact’s API can no longer be compiled successfully. Because it is recom-
mended practice to include artifacts whose API is invoked as direct dependencies,
compile failures usually occur for direct dependencies only. If the mvn test com-
mand fails during the second invocation, the new artifact version introduces binary
or semantic incompatibilities as formerly valid test cases fail to link or run success-
fully with the updated artifact.

Table 4.1 shows the results. 26,966 (90%) of the 29,698 updates compiled suc-
cessfully and no tests failed. Only 2,732 updates actually result in compile (1,393)
or test failures (1,339), shown in column #failed updates. The compile and test
failures occurred in 372 (28.07%) of the 1,325 modules. The fact that only a few
naive updates resulted in errors is not surprising: The 29,698 updates only affect
5,558 different artifacts. Most seeded updates are successive version increments of
the same artifacts in the same modules. The small number of failed naive updates
shows that the likelihood is high that if the update of an artifact from version 1.1 to
version 1.1.5 is successful, updating that artifact to version 1.2 and version 1.4 will
also be successful. Consequently, only a small number of the seeded updates fail.

Table 4.1: The table reports how many updates failed during the build process caused
by source-code incompatibilities or during test execution, indicating binary or
semantic incompatibilities.

failure type #failed updates per module

mean std min median max

build or test 2,732 7.34 8.11 1 6 36
build 1,393 5.71 7.34 1 4 36
test 1,339 7.52 8.03 1 6 36

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

Nevertheless, Hejderup et al. [HG22] found that a project’s test cases typically cover
less than 60% of the calls to direct dependencies, and the test coverage drops to
21% for calls to transitive dependencies, which was the majority of updates in our
data set (71.96%). Since we used a project’s test to detect binary incompatibilities
and semantic breaking changes by executing the command mvn test, the number
of failed updates is a lower bound only.

Findings from RQ1: 28.07% of the 1,325 modules suffered from compile or test
failures when applying naive updates of state-of-the-art tools.

RQ2: How many compatibilities does an update have to fulfill (source, ABI,
blossom, semantic)?

To conduct a safe backward compatible update, developers must ensure that no
incompatibilities occur between the updated artifact, the project, and the other
artifacts in the dependency tree. To estimate how complex this reasoning is, we
computed how many binary and potential semantic incompatibilities an update
introduces on average.

To test for ABI incompatibilities between two versions of an artifact, we used Or-
acle’s SigTest tool [Tul22; Oral4c], which is specifically designed to compare the
signatures of the API types of two versions of the same artifact and identify binary
and source incompatibilities.

To get an estimate of potential semantic incompatibilities, we compared the bytecode
of the former method’s body with the new method’s bytecode using our tool Soot-
Diff [DHB19]. SootDiff’s comparison was specifically designed to be resistant to
changes induced by various compilation schemes, and thus allows us to check for
bytecode equivalence even if different Java compilers, Java versions, or source-
code changes that do not change the bytecode have been applied to one of the
classes, e.g., variable renaming. If SootDiff finds a difference, this indicates that the
method’s semantics may have changed. Nevertheless, only checking the bodies of
API methods will cause transitive changes in the preconditions to be missed. For
instance, if a public method m,,,; calls a private method m,,;,, and only m,,;, has
changed, we would miss the fact that m,,;’s API has changed if m,, is excluded
from the comparison [Foo+18]. Thus, we build the artifact’s call graph using Soot’s
class hierarchy analysis and iterate over the call chain of each API method and
check if the body of any method along the chain has changed [Foo+18]. This

4.3 Evaluation

89

90

approach yields an over-approximation: SootDiff will detect and report a difference
if a potential semantic change exists. Note that the precise detection of semantic
changes is impossible, as described in Section 4.1.

104 o
103
)
S
E 10?1
>
&
& 10!
<
[}
2 100 -
=
@©
(o}
£ 10711
[}
£
*]
-1071 -
-10°

ABI pot. semantic (changed method body)

Figure 4.4: To understand to what extent an update introduces incompatibilities, this violin
plot shows the amount of binary (left) and semantic (right) incompatibilities
(Y-axis has a logarithmic scale), showing on average 83 binary incompatibilities
and two peaks at 0 and 127 for semantic incompatibilities.

Figure 4.4 presents the results for binary and potential semantic incompatibilities
as a violin plot, using a symlog transformation with base 10 to deal with outliers.
Overall, 65.38% of all artifact updates suffer from binary incompatibilities issues. On
average, an update introduces 83 binary incompatibilities. 75% of all updates have
fewer or equal to 35 binary incompatibilities.

The distribution of potentially semantic incompatibilities (changed method bodies)
suggests two classes of artifacts. In the first class—the peak at 0, we have artifact
updates that do not introduce any changes in existing method bodies. In the second
class—the peak at 127, we have artifact updates that contain changes in more than
100 methods, indicating larger refactorings.

To compute to how many other artifacts an update has to be binary and semantically
compatible, we counted the number of incoming edges in the dependency graph.
As described in Section 4.2, all edges in the unified dependency graph represent a
use relation between two dependencies, thus an incoming edge shows that another
artifact uses the artifact’s API, and an outgoing edge shows that the artifact uses
another artifact.

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

Table 4.2: The table shows the number of compatibilities an update has to satisfy due to
blossoms, conflicting or duplicate dependencies, and binary-dependent artifacts.

artifact update mean std min median max
size of blossoms 4.19 3.92 1 2 30
#conflicts 1.71 1.73 1 1 16
#duplicates 2.53 3.12 1 1 31
#binary dependents 1.95 2.33 1 2 32

Table 4.2 shows the results. A developer has, on average, to ensure binary compati-
bility to 1.9 other artifacts in the dependency graph, and consider 1.7 conflicts and
2.5 duplicates. If an artifact is part of a blossom, the blossom contains 4 artifacts on
average. Thus, developers must not only reason about the relations between their
project and the artifact but also respect duplicate and conflicting dependencies as
they can induce inconsistent runtime behavior [Wan+22].

Findings from RQ2: When updating an artifact, on average, developers need
to maintain binary compatibility to at least 2 further artifacts, and consider
conflicts with 1.7 other instances of that library.

RQ3: How effective is UpCy compared to naive Updates?

To evaluate the effectiveness of UpCy, we executed it on 20,610 updates of transitive
dependencies; these are updates on which the naive approach and UpCy completed
(cf. Section 4.3.3), and checked in how many cases UpCy provides better updates.
To increase the performance of the Neo4j database lookups, we restricted the length
for transitive dependencies to 5 and set a timeout of 180 seconds for a query. Thus,
UpCy may miss update options in scenarios where shared nodes have a path length
greater than 5 or run exceptionally complex queries.

In total, UpCy could successfully compute for 16,884 (81.9%) of 20,610 updates if
incompatibilities exist using SigTest and SootDiff. For the remaining updates, the
computation of incompatibilities failed since either the compilation process of the
unmodified module failed, the call graph was empty, e.g., for test projects, or the
tools SigTest failed.

Table 4.3 shows the descriptive statistics for the updates that UpCy computed using
the min-(s,t)-cut approach. Note that the table shows the number of incompatible
artifacts. It does not contain the number of violated API calls.

4.3 Evaluation

91

92

Table 4.3: The table compares the efficiency of naive and UpCy update in terms of the
number of incompatibilities the update introduces.

update count mean std min median max
naive 3,821 2.17 5.38 1 1 124
UpCy 3,821 1.15 1.29 0 1 15

fewer incompatibilities 1,572 0.62 1.38 0 0 15

more incompatibilities 14 236 0.49 2 2 3
incompatibility reduction 1.01 5.29 -2 0 124
complexity of min-(s,t)-cut 1.63 0.98 0 2 10

The table shows that 3,821 of the naive updates produced incompatibilities, and
thus UpCy computed alternative updates using the min-(s,t)-cut. The mean in row
UpCy shows that UpCy’s updates have, on average, fewer incompatibilities than
naive updates. In only 14 cases, the computed min-(s,t)-cut updates had more
incompatibilities, shown in row more incompatibilities, resulting in the negative min
value in row reduction.

For 1,572 (41.1%) updates, UpCy computed a min-(s,t)-cut update with fewer in-
compatibilities. Even 1,102 (70.1%) of these updates have zero incompatibilities. In
cases where the naive update introduced incompatibilities, UpCy computed update
steps that require more than one artifact to update, which is given as min-(s,t)-cut
complexity in Table 4.3, or found a compatible update of a preceding dependency.
The high standard deviation of the naive updates shows that the number of arti-
facts to which an update introduces incompatibilities heavily varies. The standard
deviation for UpCy is lower; UpCy consistently reduces incompatibilities. While
the number of updates for which UpCy computed a min-(s,t)-cut seems low at first
glance, this is not surprising given the insights from RQ1: the majority of updates are
version increments of the same artifact, and the numbers show that the likelihood
is high that if an artifact update succeeded, further version increments, i.e., another
naive update, will succeed too.

On average, the updates computed by UpCy’s min-(s,t)-cut approach require to up-
date 1.63 (mean—in row complexity of min-(s,t)-cut) different artifacts. The biggest
min-(s,t)-cut that minimizes the incompatibilities requires an update of 10 arti-
facts.

The results show that UpCy can effectively find updates with fewer incompatibilities
than naive updates. While other tools, which only apply naive updates, yield incom-
patibilities, UpCy can successfully recommend compatible updates even if multiple

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

artifacts need to be updated. As the data set from Hejderup [HG22] exclusively
contains well-tested, open-source GitHub projects, the results show that the need to
update multiple artifacts to achieve compatibility is prevalent in practical cases.

Findings from RQ3: UpCy can effectively reduce incompatibilities for 41.1% of
the updates in which the naive update lead to source or binary incompatibili-
ties.

Example Update of Multiple Artifacts Figure 4.5 shows a simple example of the
computed min-(s,t)-cut for the dependency graph of the project mybatis-shards in
the data set, requiring the update of two dependencies to maintain compatibility.
The outdated dependency in the example is cglib:cglib:2.2.2. The dependency
should be updated to version 3.3.0. Instead of simply updating cglib to the target
version, which is the naive approach, UpCy computed the min-cut cutting the edge
between the project and the target dependency cglib:cglib, and the edge between
the project and the dependency asm:asm:3.3.1. The min-cut indicates that both
dependencies cglib and asm need to be updated—the root nodes of the sink parti-
tion. Using our Maven Central graph database, UpCy found that the target version
cglib:cglib:3.3.0 already depends on asm:7.1 and that an update for asm exists
to version 7.1 by querying for the updateGraph, which exactly returns those artifacts.
Thus, UpCy proposes to update cglib to version 3.3.0 and asm to version 7.1.

Legend

bold: the project
dashed: blossom node
green: artifact to update

org.maker-
soft:mybatis-
shards:

min-cut

) . 10rg.spring-\
cglib:cglib: :fra?ne?/vofclj(: :
22.2 ‘\blossom,"

logging:
1.1.1

Figure 4.5: Example of min-(s,t)-cut computed by UpCy in project mybatis-shards to find
compatible updates for cglib, suggesting to update the artifacts cglib and asm.

4.3 Evaluation

4.4

4.41

94

Computation Resources The computation resources for UpCy must be distinguished
into resources required for creating the Neo4j database of Maven Central, which
is only done once, and resources required for computing a list of updates, which
is done for each dependency update. To create the Neo4j database, we executed
UpCy’s crawler on a machine with 68 GB RAM and 12 vCPUs for 10 days. The final
database has a size of 22 GB.

To generate the list of compatible updates, UpCy executes two steps: computing the
min-cut, and querying Neo4j. The min-(s,t)-cut computation takes only milliseconds
on the developer’s machine. The time for querying the Maven dependency graph
depends on the machine hosting the database. In our case, queries ranged from
milliseconds to a few minutes, depending on the number of dependencies to update
and the size of the min-cut. However, the query performance can be further opti-
mized, e.g., by using indices or by splitting large queries into smaller ones. Neo4;j
can handle millions of nodes; the Maven Central graph is relatively small with 8.5
million nodes.

In our evaluation, we set a timeout limit of 180 seconds per Cypher query to prevent
long-running queries from blocking. Due to the timeout, 761 transitive updates
(21,371-20,610) across 8 Maven modules failed to complete, or no solution was
found in the graph database.

Threats to Validity

In this section, we discuss threats to the design of UpCy and our evaluation.

Finding Compatible Updates with UpCy

The biggest threat to UpCy is the correctness, completeness, and recency of the
Maven Central graph database; errors in the database cause UpCy to overlook valid,
compatible updates. Similarly, the soundness of the call graph construction impacts
UpCy’s precision. Our current implementation uses the class hierarchy analysis of
Soot, which is an over-approximation. Consequently, the unified dependency graph
contains API edges between artifacts that are not invoked actually, unnecessarily
constraining the number of compatible updates.

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

442

A further threat is that UpCy does not compute all min-(s,t)-cuts for the unified de-
pendency graph. Nagamochi et al. [NNIOO] give an algorithm that finds all minimum
cuts efficiently. The existing implementation of the algorithm [Hen+20] is written
in C++. We refrained from integrating the algorithm in Java applications ourselves.
Nevertheless, our evaluation shows that UpCy can identify improved updates even
if not all min-(s,t)-cuts are considered.

Another threat is the weight of edges for computing our min-(s,t)-cut. UpCy assigns
the weight 1 to every edge, independently of the number of API calls between the
artifacts connected by the edge. Thus, incompatibilities are minimized w.r.t. the
number of incompatible artifacts but independently of the number of API calls.
In some cases, minimizing the number of incompatible API calls might be more
beneficial and require less effort for developers when choosing an update.

Evaluation

Sampling artifacts and versions randomly for creating updates poses a threat to
our results, as we may select artifacts that are either relatively rarely or frequently
updated. To mitigate this risk, we used the sampled data set from Hejderup [HG22]
of mid-sized, well-tested, open-source projects from GitHub covering 5,558 different
artifacts in 1,325 Maven modules to choose practical, realistic projects.

A threat to RQ1 and RQ3 is the fact that some of the seeded updates ask to update
the selected artifact to the latest release. We found that for some dependent artifacts
(those preceding the chosen artifact for updating in the dependency tree), no ver-
sions have been published yet that depend on the latest release. Consequently, the
options for compatible updates were limited to direct updates of those dependencies
only.

Similarly, some generated updates ask to update to a release that has been skipped
by dependent artifacts. For instance, in our evaluation set, we seeded a test update
from org.s1f4j:s1f4j-api:1.7.21 to version 1.7.34 for a project. In the project’s
dependency tree logback-classic:1.17 was a predecessor of s1f4j-api. However,
no version of logback-classic exists that depends on s1f4j-api:1.7.34. Instead,
recent versions depend on newer releases of s1f4j-api. In such cases, UpCy could
only identify naive updates.

The biggest threat to RQ3 is the completeness of our database, as described above.
In cases where our database is incomplete, UpCy cannot identify valid update steps,
making RQ3 an under-approximation.

4.4 Threats to Validity

95

4.5

4.5.1

96

Related Work

In the following, we discuss studies investigating how developers update vulnerable
or outdated open-source dependencies and approaches for computing the compati-
bility of dependency updates.

Studies: How Developers Update (Vulnerable) Dependencies

Researchers have conducted several studies investigating practices around updating
(vulnerable) open-source dependencies [Kul+18; MP17; Bog+16; Pra+21]. The
studies show that developers typically hesitate to update dependencies since they
are afraid of introducing breaking changes and unnecessary refactoring efforts, and
thus prioritize other tasks. Kula et al. [Kul+18] found that for 81.5% of the studied
dependencies, developers did not update dependencies even though they contain
known vulnerabilities.

Mirhosseini et al. [MP17] found that automated pull requests can encourage devel-
opers to update dependencies faster. However, they also suffer from high rates of
rollbacks and missing support in continuous integration pipelines, deferring devel-
opers from automatically updating. Similarly, Bogart et al. [Bog+16] point out that
developers perceive automated pull requests as information overload, which does
not help evaluate an update’s consequences.

Bavota et al. [Bav+15] studied the evolution of dependencies for 147 Java projects
in the Apache ecosystem for a period of 14 years. The authors found that developers
do not update to all available versions of a new dependency but tend to update their
dependencies to more recent releases if the update contains substantial changes.
However, the authors also found that developers are reluctant to conduct updates
if the API changes. The authors conclude that tools that check the side effects of
an update, such as API changes that require changes in the project, might be highly
beneficial for developers.

Prana et al. [Pra+21] study the risk of vulnerabilities in used open-source depen-
dencies for 450 software projects written in Java, Python, and Ruby sampled from
GitHub. The authors found that vulnerable dependencies are a major issue in soft-
ware projects and that it takes developers 4-5 months to incorporate an update into
their application. Further, the authors suggest that this latency may be caused by
the developers’ perceived risk of breaking the application.

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

45.2

4.5.3

Update Compatibility Analysis

Dietrich et al. [DJB14] studied the effect of source code and binary compatibility
issues in the Qualitas corpus. They found that 75% of the updates introduced break-
ing changes, but only a few resulted in actual errors in the project. The authors
emphasize that their study only applies to the Qualitas corpus, which only has a few
projects with intertwined dependencies.

In a follow-up study, Dietrich et al. [Die+19] investigate if open-source developers
obey to the Semantic Versioning schema [Pre21] on over 70 million dependencies
for different build-automation tools. The authors conclude that there is no evidence
that the authors of OSS switch to semantic versioning on a large scale.

Wang et al. [Wan+22] conducted a study on whether dependency conflicts may
break a project’s semantics. The study finds that dependency updates introduce se-
mantic breaking changes in 50 of the 128 sample Java projects. To detect semantic
breaking changes between two versions, the authors present SENSOR. SENSOR ap-
plies call graph analysis to detect changed API and applies automated test generation
to uncover semantic breaking changes.

Hejderup et al. [HG22] empirically investigate if test suites, which are used by auto-
matic pull requests, are reliable in detecting breaking changes in updates. The study
finds that test suits can only cover 58% of direct and 21% of transitive dependency
calls, and thus are unreliable. The authors developed a static change impact analysis
Uppdatera to alleviate this situation. Uppdatera statically computes the difference
between two versions of an artifact based on the source codes’ abstract syntax tree
to identify methods with code changes. Using a heuristic, Uppdatera determines if
the changes break the method’s semantics. Then, Uppdatera computes the project’s
call graph and evaluates if the project invokes methods with breaking changes.

Repository Dependency Graphs

Hejderup et al. [HVG18] present a concept to create software repository call graphs
for npm, also called ecosystem call graphs. A software ecosystem call graph specifies
the methods an artifact invokes on its dependencies. The suggested ecosystem call
graphs are similar to our unified dependency graph, except they are independent of
a particular application and should scale to the whole npm repository. As ecosystem
call graphs are independent of the application, they must conduct a standalone
call graph constructing of each dependency, simulating all potential usages of the
artifact; we discuss challenges for standalone analysis in Chapter 5.

4.5 Related Work

97

4.6

98

Diising and Hermann [DH22] investigate the impact of vulnerabilities on the public
open-source artifact repositories Maven Central, NuGet, and npm. To do so, the au-
thors created a Neo4j graph database of the repositories containing the artifacts and
their dependencies. The presented approach and data model focus on the propaga-
tion of vulnerabilities through the repository. In contrast, our approach and model
of Maven Central are tailored for querying compatible updates.

Fan et al. [Fan+20] present a complementary approach to capture inconsistency
between declared dependencies (the dependency declared in the build-automation
tool’s configuration) and the actual dependency (the dependency needed during
compile time) for GNU make, which they also call unified dependency graphs. The
proposed unified dependency graphs are used to uniformly encode the dependencies
between build targets to achieve reproducible GNU make builds, and address a
different concern as our unified dependency graphs.

Conclusion

In this chapter, we presented UpCy, an approach to automatically compute updates
for vulnerable or outdated dependencies with minimal incompatibilities. Recent
research [Kul+18; Bav+15; MP17] highlights that developers hesitate to update
dependencies and mistrust automated approaches, like Dependabot, since they are
afraid of introducing incompatibilities that break their projects or lead to unwanted
side effects. UpCy can support developers in finding updates even in complex sce-
narios where a compatible update requires updating multiple dependencies. To do
so, UpCy investigates the project’s dependency graph and explores multiple update
options, whereas state-of-the-art approaches naively focus on the outdated library
only. UpCy uses the min-(s,t)-cut algorithm to identify updates with minimal incom-
patibilities, and queries a graph database of Maven Central for new dependencies.
To assess the impact of an update, UpCy determines incompatible API calls using
the static analysis framework Soot. As an output, UpCy proposes a list of dependen-
cies that developers can add as direct dependencies to eliminate a vulnerable or
outdated dependency (especially a transitive one) from their project’s dependency
graph.

As our study in Chapter 3 and recent research [PPS18; Pas+22; HVG18] show (i)
the use of vulnerable or outdated dependencies is an issue in both open-source and
commercial applications, and (ii) the use of frameworks is widespread—most of

Chapter 4 An Automated Approach for Safely Updating Included Open-
Source Software

the studied projects included a framework. In such scenarios, UpCy is especially
beneficial since frameworks usually require updating multiple dependencies, not
only a single dependency.

Further, our evaluation on a representative data set of 1,325 well-tested, open-source
Java projects sampled from GitHub shows that UpCy can effectively provide update
suggestions that produce fewer incompatibilities than current, naive approaches. In
41.1% of the cases where the naive update leads to incompatibilities, UpCy could
detect an update option with fewer incompatibilities to other libraries. Even 70.1%
of the generated updates have zero incompatibilities. Additionally, our evaluation
showed that naive updates not only failed on a few projects, but we also found failed
naive updates in 28% of the projects.

4.6 Conclusion

99

Securely Integrating
Open-Source Software with
Java’s Module System

Our study in Chapter 3 shows that vulnerabilities in included Open-Source Soft-
ware (OSS) are an unfortunate reality for commercial and open-source applications.
Even worse, our study reveals that typical development practices like forking, patch-
ing, re-compilation, or re-bundling can heavily decrease the effectiveness of vulnera-
bility scanners. As a result, scanners may not detect known-vulnerable open-source
dependencies in the project, leaving the application unknowingly exploitable. For
cases in which developers could successfully identify outdated or vulnerable open-
source dependencies, we introduced UpCy—an approach to automatically find com-
patible updates in Chapter 4. Nevertheless, another unfortunate reality is that 0-day
vulnerabilities can appear in any used OSS at any time with different consequences,
ranging from remote-code execution to denial-of-service attacks, as vulnerabilities
like Log4Shell [NVD21] or de-serialization issues in jackson [Caul7] showed. Thus,
it is desirable to defend against inadvertent vulnerabilities in used OSS by limiting

their impact.

A possibility to limit the impact of vulnerable OSS is to limit its access to the host
system, to the rest of the application, and to system classes of the Java platform
by executing the OSS in an isolated environment. In Java, the security architecture
and isolation mechanism rely on preventing the access of untrusted code to security-
sensitive system classes, private methods, and fields [HB21]. If attackers obtain
access to those fields or methods, they can turn off all security checks.

To prevent access to security-sensitive classes, methods, and fields, the Java plat-
form hides them in system classes and restricts access to them using encapsulation.
Encapsulation is a fundamental concept for wrapping classes and class members
(fields and methods) inside their package or their declaring class [Ora96]. In Java,
encapsulation is achieved by declaring access modifiers (private, protected, package
private) for classes or their members to hide them from other classes.

101

102

The Java Virtual Machine (JVM) enforces encapsulation by a set of different secu-
rity mechanisms [GED03], e.g., bytecode verifier, class loaders, and Java’s security
manager, which we introduce in Section 5.1.

However, following the general security principle of Defense in Depth [NSA12],
whose idea is the implementation of multiple security layers such that if one layer
fails or is circumvented, the other layers will still be up to protect the asset, the iso-
lation of vulnerable OSS is only one layer. Consequently, vulnerable OSS should be
guarded by further security measures such as monitoring and obfuscation [Sch11].

The Java programming language provides a built-in sandbox to enable the safe exe-
cution of untrusted third-party code isolated from the application. The sandbox aims
to defend the application and host system from malicious behavior in potentially
malicious code and inadvertent vulnerabilities [GED03; Cok+15]. Integral parts of
Java’s sandbox are (i) Java’s encapsulation mechanism to prevent access to security-
sensitive fields and methods in the Java Class Library (JCL), e.g., sun.misc.Unsafe,
which can be (ab)used to bypass visibility and access constraints or deactivate secu-
rity features, and (ii) Java’s security manager to prevent access to security-sensitive
features at runtime.

However, with the release of Java 17, Java’s security manager has been marked
as deprecated and for removal in future versions [Ora22; Ora21; Ora23b]. Rea-
sons for removing the security manager are its rare usage, complex configura-
tion, and performance overhead. These issues prevented its wide adaption and
made its maintenance uneconomical. Crucially, no replacement for the security
manager is planned. Instead, security mechanisms should rely, at least partially,
on the Java module system [Ora22; Ora21; Ora23b]. The Java module system
has been introduced with the release of Java 9. Its “primary goals are to make
implementations of the Platform more easily scalable [...], improve security and
maintainability” [Oral7b] by strongly encapsulating security-sensitive types and
fields [Oral5b], making them inaccessible outside the Java Development Kit (JDK)
and restricting access between modules. For example, security-sensitive classes such
as jdk.internal.misc.Unsafe! are now only available within the JDK. In fact, a
study by Holzinger et al. [Hol+16; HB21] on 87 Java exploits, conducted before the
introduction of the module system, found that 61% of the exploits abuse flaws in the
JCL to circumvent the encapsulation of JCL internal classes and methods to access
security-sensitive types, methods, and fields to deactivate or bypass Java’s sandbox
and security mechanisms. The module system’s strong encapsulation guarantees
may serve as “security bulkheads that restrict a vulnerability in one component from
affecting others” [Ora23b].

'The replacement for sun.misc.Unsafe in earlier versions.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

To clarify to what extent the module system can help to integrate OSS securely,
we first discuss Java’s security architecture and sandbox in Section 5.1. Next, we
present the Java module system and introduce strong encapsulation for restricting
access to internal entities. Further, we discuss the limitations of the module system
for confining sensitive data with an example in Section 5.1.3.

To benefit from modules’ strong encapsulation and to use modules as security bulk-
heads, developers must design and implement their application modules so that
an exploit executed in one module, e.g., an included OSS, only has limited access
to sensitive types and data in the application’s modules, e.g., encryption keys or
database access.

A guiding principle for the constructive secure design of applications is the Principle
of Least Privilege [SS75], which was defined in 1975. The principle states that “every
program and every user of the system should operate using the least set of privileges
necessary to complete the job” [SS75] in order to limit the damage of failures
and errors or vulnerabilities an attacker abuses. Applied to the secure, modular
development of Java applications integrating open-source artifacts, the Principle of
Least Privilege requires that every module only has access to the privileges—at the
Java language level, these are classes, types, objects, data, and functionalities—that
are necessary to complete the job.

While the module system was designed to encapsulate internal types and classes, it
cannot prevent the unintentional escaping of security-sensitive data and instances to
the outside, e.g., secret keys [Oral4b]. Detecting such escapes requires reasoning
about complex data flows between modules and which classes, methods, and fields
a module actually exposes, which is hard to do manually.

With ModGuard, we present a novel static analysis based on Doop [SB11] to allow
developers to benefit from the module system in Section 5.3. ModGuard comple-
ments the Java module system with an analysis to automatically identify what sensi-
tive entities eventually escape the declaring module, and thus become reachable to
other modules, e.g., an included OSS module. Thereby, ModGuard enables develop-
ers to leverage the module system security-wise by identifying unintended data flows
that a secure, modular design should prevent. To assure the soundiness [Liv+15] of
ModGuard, we introduce a formal specification of what we call module entry points,
i.e., the set of method implementations a module defines, and which are invokable
by other modules, either explicitly because their type is exported, or implicitly due
to an exported supertype in Section 5.2. This entry-point definition can serve as a
basis for further analyses supporting Java modules, e.g., Application Programming
Interface (API) analysis, as it precisely defines what instances can eventually become

103

5.1

5.1.1

104

reachable, and thus must be API compatible. Further, we present a micro-benchmark
suite MIC9Bench for evaluating Java module escape analysis and to facilitate their
further development.

In Section 5.4, we conduct a case study on Apache Tomcat and check how Mod-
Guard can effectively aid in identifying the escaping of sensitive entities to support
developers in migrating to a module system. The case study also shows that migrat-
ing to modules is not straightforward but requires refactoring of an application’s
architecture to confine sensitive entities successfully. Further, the case study shows
that modules cannot limit the impact of vulnerable OSS on a project completely.
Thus, we discuss further required extensions and limitations of the module system
for restring inadvertent vulnerabilities in OSS and conclude that modules can only
serve partially for isolation in Section 5.5.

We complete the chapter with related work in Section 5.6 and a summary of Java’s
module system and its limitations in Section 5.7.

Java’s Security Architecture & Module System

In the following, we present an overview of Java’s security architecture, sandbox
mechanisms, and encapsulation concept. In particular, we focus on the security
mechanisms for isolation and preventing access to internal types, methods, and
fields. Following the Principle of Least Privilege, these mechanisms are building blocks
for the secure integration of OSS. Finally, we present the module system and its novel
strong encapsulation.

Java 1.2 Security Model

The Java programming language and runtime environment were released to the
public in 1995 to provide an easy, operating system-independent programming
language with type and memory safety. With Java version 1.2, its security architec-
ture [GEDO3; Gon+97] has been introduced, which we present in the following. A
Java application is composed of a set of Java classes that are executed by the JVM
in the Java Runtime Environment (JRE). Figure 5.1 gives an overview of the JRE’s
components. Class files can be bundled into JAR files for easier deployment and
distribution, as presented in Chapter 2. Class files do not assemble actual machine
code. Instead, Java source code is compiled into bytecode, a platform-independent

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

representation of the program behavior (cf. Section 3.8.1). To execute the platform-
independent bytecode, the JRE performs a Just-In-Time (JIT) compilation on the
class files [Ora96].

Java Class Library

Application

Security- java.lang. Classes

Manager ClassLoader 4
- java.lang.* DepJe:gency
S java.io.* S
E
] A
E Y
g Java Platform Module System (= Java 9)
E 'y
s Y
= Java Virtual Machine

Bootstrap Native

Class Loader Code
Bytecode
Verifier

Figure 5.1: Overview of the components of the Java Runtime Environment.

Bytecode Verifier The first line of defense is the bytecode verifier, shown in Fig-
ure 5.1. When the JRE loads a class, the verifier checks if the class’ bytecode obeys
access restrictions, type-, and memory-safety properties [Ora96; Ler01]. In particu-
lar, the bytecode verifier checks if

* all variables are initialized before usage.

* there are no stack overflows or underflows.

* all types of the parameters of all bytecode instructions are correct.

* all class and class member access is legal, and access control is not violated.

The bytecode verifier’s checks for type correctness, stack over- and underflows, and
variable initialization guarantee type- and memory-safety [LerO1]. In particular, the
type correctness checks guarantee the correctness of the bytecode blocks to prevent
stack over- and underflows. The initialization checks prevent direct access to mem-
ory pointers and associated security weaknesses such as stack smashing [One96].
Also, all usages of arrays and strings are bound-checked, preventing writing beyond
allocated memory. The access control check ensures that the bytecode obeys the
encapsulation rules of the Java language: public types and members are available

5.1 Java’s Security Architecture & Module System 105

106

to any other class, protected types and members are only accessible to subclasses,
private types and members are accessible only from within the class, and default
types and members are accessible to all types within the same package [Ora96].

Class Loaders & Classpath The next line of defense is the Java Class Loader, which
loads the verified bytecode into the JRE [GED03; LB98]. The JRE assembles a hier-
archy of different class loaders; each with different responsibilities and capabilities.
The primary class loader is the bootstrap class loader, whose responsibility is to load
the privileged system classes of the JCL from predefined, dedicated paths. The next
class loader is the extension class loader, whose responsibility is to load classes that
do not belong to the JCL but extend the Java platform. An example is SunJCE, an
extension of different encryption and hashing routines. The application class loader
is responsible for loading the application classes and their dependencies. The ap-
plication class loader linearly searches the classpath for class files and loads them
on demand. Since the application class loader linearly traverses the classpath, a
single class loader can load exactly one—the first found—class with the given fully-
qualified name (FQN).

For loading classes, the class loaders implement a class loading delegation strategy.
When a class loader is asked to load a class, the class loader checks if the class has
already been loaded. Otherwise, the class loader loads the class itself or delegates
the request to its parent. If there is no parent, the primordial class loader is asked.
Besides this default class delegation mechanism, frameworks and applications can
define their own class loaders and delegation strategies, e.g., for loading conflicting
versions of JARs in different class loaders or for loading and unloading JARs dynami-
cally at runtime. Further, custom implementations can block access to certain classes
by not delegating a loading request to a parent class loader or blocking the load
request completely. An example of a framework implementing its own custom class
loaders and delegation strategy is the OSGi platform [OSG23], which we shortly
describe at the end of this section.

To ensure that classes are defined and loaded by the responsible loader with corre-
sponding permissions, the class loaders only load classes from predefined paths: the
boot class loader searches the bootclasspath, the extension loader searches Java’s
ext folder, and application class loaders linearly traverse the classpath. The class
loader hierarchy is relevant for restricting access to security-sensitive classes and
methods. A prominent example is the class sun.misc.Unsafe, which allows memory
manipulation [Mas+15]. Its method getUnsafe(), which returns an instance of the
class, is caller-sensitive to prevent illegal access from application classes [CGK15].

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

The method checks if its caller was loaded by the bootstrap class loader. If this is the
case, the invocation is assumed to be legitimate, and the method returns an instance
of Unsafe. If the caller was loaded from another class loader, the method throws an
exception.

Java’s Sandbox & Security Manager Further, Java code can be sandboxed by ac-
tivating Java’s built-in security manager [GED0O3; Cok+15]. When a class loader
loads a class, the loader associates it with a protection domain based on the classes’
origin, e.g., dynamically loaded from the network or a specific file. Developers can
assign permissions to a protection domain, e.g., allowing network access or file sys-
tem access, by specifying allowed or forbidden permissions for a protection domain
in policy files using Java’s policy language.

The security manager then enforces the policies. Whenever a class attempts to in-
voke a security-sensitive method, like writing to a file or gaining network access, the
method triggers a permission check through a call to SecurityManager.checkx(),
e.g., checkWrite(), checkAccess(). The security manager then determines if the
method invocation is permitted utilizing stack-based access control [BNO5; WF98].
To do so, the security manager inspects the call stack, and checks whether all calling
classes on the stack own the requested permission. If any caller does not have per-
mission to execute the requested method, the security manager blocks the method
invocation and throws an exception [Cok+15].

Class Introspection: Reflection & Dynamic-Language APl With its reflection and
dynamic-language API, e.g., MethodHandles and VarHandles, the Java language
allows to inspect and change types, methods, and fields at runtime, enabling an
application to adapt dynamically [LTX19]. For instance, reflection can be used to
access class members that are unknown during compile time. A widespread use
case is the (de-)serialization of classes implemented by serialization libraries like
jackson or protobuf. Due to its dynamic nature and flexibility, reflection is widely
used in Java applications, libraries, and frameworks [LTX19].

However, Java’s reflection and dynamic-language API have also been widely used to
break encapsulation, enabling the access and modification of private, protected, or
default types and class members. Although Java’s security manager checks if code is
allowed to make use of the reflection API, Holzinger et al. [Hol+16] show in their
study that exploits abuse reflection to circumvent Java’s security mechanisms and
access or modify security-sensitive entities regularly.

5.1 Java’s Security Architecture & Module System

107

5.1.2 The Java Platform Module System

Up to Java 9, developers only had the option to structure applications, libraries,
and frameworks into different packages and restrict the access to types and class
members using access modifiers [Oral5a; Ora96]; where public types constitute the
API and types with other modifiers are meant to be internal. As described above,
developers, libraries, and frameworks regularly violate these access constraints us-
ing reflection to inspect types’ internals, circumventing encapsulation [Sma+15;
Bod+11; HB21; LTX19].

Modules Java 9 introduces modules to the platform as first-class constructs [Oral7c],
providing new means to structure applications, libraries, frameworks, and their in-
terfaces (API); classes are separated into packages, and packages are grouped into
modules. Further, a module strongly encapsulates its internal implementation, pre-
venting access to internal types during compile time and runtime [Oral5b]. In
contrast to the previous security model, modules provide a strong encapsulation as
even reflection is not permitted to access module-internal types.?

Like non-modularized Java artifacts, Java modules are distributed as JAR files, which
assemble packages, classes, native code, and further resources. Yet, modules con-
tain a static module descriptor (module-info. java) specifying the module’s unique
name, its dependency on other modules, its exported packages, and its re-exported
module dependencies. The Java compiler and the JVM process the module descrip-
tor, causing them to check and prevent access to the internal types of a module both
at compile- and runtime. Listing 5.1 shows an excerpt of the module-descriptor of
the JDK module java.desktop. The module java.desktop requires the modules
java.prefs, java.datatransfer, and java.xml. The directive requires transitive
specifies a dependency on another module and ensures that other modules read-
ing the module also read that dependency. In this example, any module that reads
java.desktop also implicitly reads the module java.xml. Further, the module de-
scriptor specifies that the module java.desktop exports its packages java.awt and
javax.swing to dependent modules—only modules that require java.desktop can
access classes in the exported packages. In contrast to the Java 1.2 security model,
modules are not loaded from the classpath but from the new modulepath.

2Java 17 forbids any reflective access to types that are not declared as open for reflection by default
and even removes a formerly existing command-line option to enable it, enforcing strong encapsula-
tion. https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-continuing- the-
drive-to-encapsulate-the-java-runtime-internals

108 Chapter 5 Securely Integrating Open-Source Software with Java’'s Module
System

https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-continuing-the-drive-to-encapsulate-the-java-runtime-internals
https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-continuing-the-drive-to-encapsulate-the-java-runtime-internals

1 module java.desktop {

requires java.prefs;

requires transitive java.xml;

requires transitive java.datatransfer;
exports java.awt;

U1 WN

exports javax.swing; }

Listing 5.1: Example of the module-descriptor module-info of the module java.desktop
of the Java Runtime Environment 1.9.

The module system is a fundamental shift from the previous classpath concept. Up
to Java 8, every public class was visible to any other class on the classpath loaded
by the same class loader. In Java’s module system, a class contained in a module
can only access the exported types of another module that it explicitly requires.

g java.desktop g java.xml
_exports exports — — b oxp orts com.sun
java.awt | |javax.swing java.xml
I I
I requires
! requires
¢ java.datatransfer requires java.prefs
exports y
java.awt.datatransfer java.base
| | requires
) | exports o
requires - - —‘—) java.lang jdk.internal
Ll

Figure 5.2: Subset of the module graph of the JRE module java.desktop. The solid arrows
represent a requires dependency between modules. The dashed arrows show
which packages a module can access. Only exported packages can be accessed
by the dependent module. Internal packages (in gray) cannot be accessed.

The dependencies between modules specified in the module descriptors form an
acyclic module graph. Figure 5.2 shows an exemplary subset of the module graph
of the module java.desktop. The root of each module graph is the module java.base,
which contains essential Java classes. The module java.desktop can only access
classes of modules to which a require relation exists: java.datatransfer and
java.xml. Correspondingly, the module java.datatransfer cannot access any class
in the module java.xml as no require relation from java.datatransfer to java.xml
exists.

5.1 Java’s Security Architecture & Module System

109

110

In summary, a module can only access the public types in exported packages in
required modules. For instance, in Figure 5.2, only the types of the exported package
java.xml are visible to the module java.desktop, whereas types declared in the
internal packages com. sun are invisible. All types that are neither explicitly declared
public nor declared in an exported package are invisible outside their declaring
module.

The access restrictions of the module system are enforced by the JVM during runtime,
as every module and the package it declares are directly registered on top of the
JVM in the Java platform module system outside the higher level JCL, shown in
Figure 5.1. Consequently, the module system is independent of class loaders and the
security manager.

Open Modules and Packages By default, the JVM denies runtime access to internal
types via reflection or Java’s dynamic-language API [Oral5b; Oral4a]. Nevertheless,
modules can be declared as open. This grants compile-time access to exported
packages only, but runtime access throughout [Oral7c]. Likewise, packages can be
declared as open, thereby granting reflective access to all types in the package. Uses
cases are to open data classes for (de-)serialization libraries.

Modules and Layers Since the module system is independent of class loaders,
the class loading process is the same as in previous versions, and the same class
loaders still exist. Nevertheless, the amount of system classes that are loaded by
the bootstrap class loader has been reduced; essentially, only classes in the module
java.base are loaded by the bootstrap class loader.

The module system introduces the concept of module layers [Oral4b] to allow the
dynamic loading of modules at runtime. Module layers can be used for grouping
modules, respectively module graphs. A module layer is created from a module
graph and a function that maps each module to a class loader [Oral8]. A layer is
responsible for finding a class loader to load classes from the module graph. Like
class loaders, layers can be organized hierarchically. A module can read modules
from its own layer and from layers lower in the hierarchy. Thus, the module system
API allows the loading of multiple versions of a module if one organizes them in
different class loaders and layers.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.1.3 Motivating Example of Sensitive Entities Escaping a Module

Java’s module system encapsulates module-internal types and members, and thus
can be used to restrict access to sensitive members and types. However, a module
cannot prevent the escaping of sensitive instances. In particular, a module cannot
prevent instances of internal objects from escaping, e.g., an exported public factory
PubFactory in module A may instantiate and return an instance of an internal class
internalObjInst that implements an exported interface PubInter face.

Code outside of a module can invoke not only methods on object instances of
exported types but can directly invoke all methods that are declared public (static or
not), protected and static, or implement a method from an exported supertype on
object instances, disregarding whether the types are declared in exported packages
or not. The only condition is that code outside of module A must obtain access to
an object instance to invoke the method on, e.g., all methods of PubInter face that
internalObjInst implements can be invoked from any module depending on A.

Although escaping instances cannot be downcasted to the internal type, this behavior
makes it complex for developers to reason about (unintended) data leaks. It requires
reasoning about pointers and types, which is hard to discern in manual reviews.

module my.mod{ exports api; requires java.base; }

package api;
public class KeyProvider {

1

2

3

4

5 public static Key getKey() {
6 return new SecretKey();}

7

8

9

abstract class Key {
10 private byte[] key;
11 protected Key(byte[] key){this.key = key;}
12 public getKey(){return key;}
13 }
14
15 package internal;
16 public class SecretkKey extends Key {
17 private static byte[] [keyMaterial = {1,2,3,4};
18 public SecretKey() { super(keyMaterial); }
19 1}

Listing 5.2: Example of the sensitive field SecretKey.keyMaterial escaping the module-
internal package internal through the exported, overridden method getKey () of superclass
Key. In green exported types and methods, in yellow internal types. Marked in red the
sensitive field keyMaterial.

5.1 Java’'s Security Architecture & Module System 111

5.1.4

112

Listing 5.2 shows a simplified example in which access to an internal object instance
results in an unintended data leak. The module my.mod exports the package api,
making the types KeyProvider and Key visible to other modules but keeping the type
SecretKey internal. The class KeyProvider in the exported package api creates an
instance of the internal type SecretKey and returns it as the exported abstract class
Key. Although SecretKey is in the module-internal package internal and stores its
key material in the private field keyMaterial, classes outside the module my.mod
can access the stored key using the inherited method Key.getKey() of the public
exported type Key.

Since the Java module system confines types only, invoking methods of the exported
supertype Key is permitted. The problem, in this example, is the leak of the internal
keyMaterial. To detect such leaks, developers must reason about complex pointers
and type hierarchy. Even for this simple example, a developer needs to reason
that the constructor of the internal class SecretKey hands the internal, sensitive
keyMaterial to the constructor of its exported superclass Key, which assigns it to
the field key, which can be retrieved by the exported, inherited method Key.get-
Key ().

The inherited method SecretKey.getKey() is, in our terminology, an entry point
of the declaring module (in addition to the directly exported entry points Key-
Provider.getKey() and Key.getKey()). Such entry points must remain API (and
semantically) compatible as they are part of a module’s API. Manual reasoning
about these pointer relations becomes virtually impossible in real-world scenarios
with more complex pointers and types.

Excursion: The OSGi Platform

The Java module system [Oral7b] is not the first approach for introducing modules
into the Java programming language. As we describe in Section 5.6, multiple modu-
larization approaches for Java have been developed. A popular and widespread ap-
proach is the OSGi platform [OSG23] released in 2000. An OSGi module, so-called
OSGi bundles, is a JAR file enhanced with a META-INF/MANIFEST.MF file declaring:
the bundle’s name, its dependencies to other bundles, and the packages it exports.
The OSGi platform supports dynamic loading, installation, and de-installation of
bundles at runtime. To do so, the OSGi platform implements on top of the JCL a set
of custom class loaders with complex and dynamic class loader delegation strategies
to support the dynamic loading and separation into namespaces.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.2

5.2.1

The Java module system and OSGi serve different purposes: The module system
aims to support the modularization of the JDK and applications by implementing
strong encapsulation implemented as a separate platform module layer on top of
the JVM, whereas the OSGi platform aims to support the dynamic loading or de-
installation of (concurrent) application modules at runtime implemented using Java
class loaders.

Precisely Defining a Module’s Entry Points

In the following, we precisely define what constitutes a module’s entry points and
which module-internal instances can be invoked from outside the declaring module—
these are the classes that must be semantically API compatible or may lead to unin-
tended leaks, as shown in the example in Listing 5.2. This model serves as a basis for
our analysis ModGuard for identifying to which extent a module confines internal
types and data. Further, the given entry-point definition can also serve to detect in-
compatible API types and methods, as it precisely defines which types and methods
of a module can be invoked.

Explicitly vs. Implicitly Reachable Entry Points

As the KeyProvider example in Listing 5.2 shows, invocations crossing module
boundaries are not restricted to explicitly exported types. Instead, external code,
such as included OSS modules, may interact with many methods defined in the
module. We call those methods entry points. A module’s entry points constitute its
API: all methods that code outside the module can invoke. Entry points comprise
two kinds of methods: explicitly and implicitly reachable methods.

Initially, external code can only invoke explicitly reachable methods. Explicit meth-
ods are methods that are declared public (or protected) and whose declaring type
and package are exported. In Listing 5.2, the methods KeyProvider.getKey() and
Key.getKey () are explicitly reachable; their types Key and KeyProvider are public
and declared in the exported package api. The use of explicitly reachable methods
may grant access to further methods, which we call implicitly reachable.

Implicitly reachable methods are declared by internal types, inherit, implement,
or override explicitly reachable methods of exported supertypes. In the example,
SecretKey.getKey() is an implicitly reachable method: its declaring type Secret-
Key is module-internal, yet code outside the module can directly invoke the method
on the object that KeyProvider.getKey () returns.

5.2 Precisely Defining a Module’s Entry Points

113

5.2.2

114

Note that implicit reachability is different from the usual notion of indirect reacha-
bility, i.e., the ability to invoke a method indirectly through a chain of calls.

The union of all explicitly and all implicitly reachable methods constitutes an up-
per bound of a module’s entry points. This upper bound is naive since it ignores
whether objects of internal types, which declare the implicit method, actually be-
come reachable outside of the module or not. To gain a tighter bound, ModGuard
identifies which instances of internal types actually become reachable outside a
module utilizing points-to analysis in Section 5.3.

Logic-based Specification of the Entry-Point Model

We realized our entry-point definition as logic-based specification in the syntax of
declarative, Datalog-based analysis rules, extending the static analysis framework
Doop [SB11; SKB14]. Listing 5.3 shows our entry-point model. In the following, we
introduce the entry-point model’s rules in detail.

A Datalog program consists of a set of facts and rules. Facts are represented as
predicate values that are held to be true. Rules infer new facts (also called derived
relations) from the conjunction of previously established facts already known to be
true until no new facts can be extracted, separated by the left arrow symbol (+-). For
instance, the facts EXTENDS ("A", "OBJECT") and EXTENDS("B", "A") mean
that A extends the class Object and B extends the class A. The rules ISSUPER-
TYPE(X, Y) < EXTENDS(Y, X) and ISSUPERTYPE(X, Y) «+ EXTENDS (Y,
Z), 1ISSUPERTYPE (X, Z) mean that X is a supertype of Y if Y extends X, and
X is a supertype of Y if Y extends some class Z, and X is a supertype of Z.

In our Datalog entry-point model, in Listing 5.3, some relations are functions, writ-
ten as RELATION[DOMAINVARIABLE] = VALUE. The notation is equivalent
to RELATION(DOMAINVARIABLE, VALUE) but is required by Datalog, which
throws an error if a computation yields multiple values for the same domain vari-
able [SBL11].

Domain:

T set of class types

D set of module descriptors

M set of method identifier

H set of heap abstractions (e.g., allocation sites)
F set of fields

Vv set of program variables

HC set of heap contexts

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

Input Relations:

METHOD:DECLARINGTYPE[method : M] = type : T
METHOD: MODIFIER (modifier : String, method : M)
RETURNVAR(var : V, method : M)

CLASSMODIFIER (modifier : String, class : T)

SUPERTYPEOF (supertype : T, type : T)
OVERRIDESMETHOD (method : M, type : T, supertype : T)
IMPLEMENTSINTERFACE (method : M, type : T, supertype : T)

MODULEDECLTYPE(module : D, type : T)

MODULEEXPORTS (fromModule : D, package : String, toModule : D)
EXPORTEDTYPE(type : T)

MODULEFORANALYSIS(module : D)

VARPOINTSTO(var : V, ctx : C, heap : H, hctx : HC)
INSTANCEFIELDPOINTSTO (base : H, baseCtx : HC, fld : F, heap : H, ctx : HC)
STATICFIELDPOINTSTO(ctx : HC, fld : F, heap : H)

Output Relations:

EXPLICITMETHOD (class : T, method : M)

IMPLICITMETHOD (class : T, method : M)

ENTRYPOINT (method : M)

CLASSHASPOSSIBLEENTRYPOINT(class : T)
Listing 5.3: Module entry-point model: domain, input, and output relations. Doop’s [SKB14;
SB11] default rules are gray.

Listing 5.3 shows the domain (the different value sets that constitute the space of our
computation) of our entry-point model, its input relations, and output relations.

Domain To describe modules, we introduced module descriptors (D) to Doop’s do-
main, representing a module, its name, its exported packages, its internal packages,
and its (re-exported) module dependencies.

Input Relations The input relations, shown in Listing 5.3, are logically grouped:
relations representing Doop’s intermediate representation, modules, and points-to
information. The built-in relations represent the code as Datalog facts [SBL11]:
RETURNVAR represents a method’s return variable, METHOD :DECLARINGTYPE
represents its declaring type, METHOD:MODIFIER and CLASSMODIFIER repre-
sent the modifier of a method or class, and SUPERTYPEOF represents all supertypes
of a type. The added input relations IMPLEMENTSINTERFACE and OVERRIDES-
METHOD represent every method of a type that implements or overrides a method
of an exported supertype.

The input relations MODULEDECLTYPE, MODULEEXPORTS, and EXPORTED-
TYPE are module-specific: MODULEDECLTYPE represents in which unique module
a type is declared, MODULEEXPORTS specifies which module (fromModule) ex-

5.2 Precisely Defining a Module’s Entry Points 115

116

ports which package to which other module (toModule), and EXPORTEDTYPE rep-
resents every publicly exported type. The input relation MODULEFORANALYSIS
represents the module for which the entry points should be computed, as an appli-
cation typically consists of multiple modules.

VARPOINTSTO, INSTANCEFIELDPOINTS, and STATICFIELDPOINTSTO en-
code points-to information: they link a return variable var or a field fid to a heap
object heap.

Output Relations The output relations ENTRYPOINT and CLASSHASPOSSI-
BLEENTRYPOINT encode the computed entry-point model. The relations EXPLIC-
ITMETHOD and IMPLICITMETHOD represent the explicitly and implicitly reach-
able methods.

Datalog Rules: Entry-Point Model The Datalog entry-point model is shown in List-
ing 5.4. The main rules CLASSHASPOSSIBLEENTRYPOINT and ENTRYPOINT
(in duplicate) state that the set of entry points constitutes every implicitly and ex-
plicitly reachable method.

The rule EXPLICITMETHOD states that a method is explicitly reachable if it has
the modifiers public or static protected, and its declaring class is exported.

The rule IMPLICITMETHOD represents all implicit methods; overriding, imple-
menting, or inheriting a supertype’s method. To express implicit methods in Datalog,
the rule IMPLICITMETHOD is defined twice; once for overridden methods, and
once for inherited methods. Note that Datalog executes multiple definitions of the
same rule independently and merges the results.

The first definition states that every method implementing or overriding a method of
an exported supertype constitutes an implicitly reachable method. We constrain this
set by the rules ENTRYPOINT and METHODRETURNSTYPE or FIELDSTYPE; re-
quiring that an object of type class actually becomes reachable outside of the module
as the result of a return statement (METHODRETURNSTYPE) or becomes reach-
able through a static or instance field (FIELDSTYPE) of a previously established
entrypoint.

The second definition of the rule IMPLICITMETHOD states that every method
declared in an exported supertype constitutes an implicitly reachable method too.
Similar to the first definition, the rule constraints this to methods and fields of types
retType that actually become reachable through a previously established entrypoint,
encoded by METHODRETURNSTYPE(ENTRYPOINT, RETTYPE) and FIELDS-
TYPE(ENTRYPOINT, RETTYPE). Moreover, we limit implicit methods to those

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

whose declaring types retType are defined in the module itself (MODULEDECL-
TypE(_,RETTYPE), or whose declaring types are directly returned from another
entry point of the module, encoded by the conjunction METHOD:DECLARING-
TypPE and MODULEDECLTYPE.

Since both rules EXPLICITMETHOD and IMPLICITMETHOD recursively refer
to the main rule ENTRYPOINT, they are repeatedly applied to newly discovered
entry points, until no further entry points are found. Thus, both rules compute entry
points that become transitively reachable, e.g., if an internal type’s method grants
access to other internal types.

The rule METHODRETURNSTYPE determines the possible concrete runtime types
of objects flowing into method returns. The rule states that a method grants access
to a type if the return variable var points-to a heap object heap of the type.

Similarly, the rule FIELDSTYPE determines the possible concrete runtime types of
instance and static fields of objects that become reachable through an established
entry point. The rule states that a method grants access to a type (fieldType) if the
returned object’s (var) instance fields points-to a heap object value of type fieldType,
the second definition is defined analog for static fields.

CLASSHASPOSSIBLEENTRYPOINT (class),
ENTRYPOINT (method) +
EXPLICITMETHOD (class, method).

CLASSHASPOSSIBLEENTRYPOINT (class),
ENTRYPOINT(method) +
IMPLICITMETHOD (class, method).

// identify explicitly reachable methods
EXPLICITMETHOD (class, method) <
METHOD:DECLARINGTYPE][method] = class,
CLASSMODIFIER("public, class),
MODULEFORANALYSIS(module),
MODULEDECLTYPE(module, class),
EXPORTEDTYPE(class),
(METHOD:MODIFIER("public", method);
(METHOD:MODIFIER("protected", method), METHOD: MODIFIER ("static", method))).

5.2 Precisely Defining a Module’s Entry Points

117

// identify implicitly reachable methods recursively
IMPLICITMETHOD (class, method) +
METHOD:DECLARINGTYPE] [method] = class,
MODULEFORANALYSIS(module),
MODULEDECLTYPE(module, class),
METHOD: MODIFIER("public", method),
(OVERRIDESMETHOD (method, class, supertype) ;
IMPLEMENTSINTERFACE (method, class, supertype)),
EXPORTEDTYPE (supertype),
ENTRYPOINT (entrypoint),
(METHODRETURNSTYPE (entrypoint, class) ; FIELDRETURNSTYPE (entrypoint, class)).

IMPLICITMETHOD (supertype, method) <+
SUPERTYPEOF (supertype, retType),
EXPORTEDTYPE (supertype),
METHOD:DECLARINGTYPE[method] = supertype,
METHOD: MODIFIER("public", method),
CLASSMODIFIER("public", supertype),
ENTRYPOINT (entrypoint),
MODULEFORANALYSIS(module),
(MODULEDECLTYPE(module, retType);
(METHOD:DECLARINGTYPE[entrypoint] = classOfEntryPoint,
MODULEDECLTYPE(module, classOfEntryPoint)),
(METHODRETURNSTYPE (entrypoint, class) ; FIELDRETURNSTYPE (entrypoint, class)).

// identify return values and types of methods

METHODRETURNSTYPE(method, type) «
RETURNVAR (var, method),
VARPOINTSTO(, heap, , var),
VALUE:TYPE[heap] = type.

// identify instance fields and types of returned objects
FIELDSTYPE(method, fieldType) +
RETURNVAR (var, method),
VARPOINTSTO(, heap, _, var),
VALUE: TYPE[heap] = retType,
EXPORTEDTYPE(?retType),
FIELD:DECLARINGTYPE([field] = type,
FIELD:MODIFIER("public", field),
'FIELD:MODIFIER("static", field),
INSTANCEFIELDPOINTSTO(, value, field, heap,),
FIELD: TYPE[value] = fieldType.

118 Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.2.3

// identify static fields and types

FIELDSTYPE(method, fieldType) +
EXPORTEDTYPE(?type),
FIELD:DECLARINGTYPE[field] = type,
FIELD:MODIFIER("public", field),
FIELD:MODIFIER("static", field),
STATICFIELDPOINTSTO(, value, field),
FIELD: TYPE[value] = fieldType.

Listing 5.4: Datalog rules for detecting explicit and implicit entry points of a module,
constituting the module’s APL

The formal definition of module’s entry points serves as a basis for our static analysis
tool ModGuard to analyze to what extent a module confines internal types and data
by computing all potential data flows between modules in Section 5.3—that are the
methods a potentially vulnerable OSS module can invoke on the module. To do so,
ModGuard checks for all user-defined sensitive classes, methods, and fields if they
become reachable outside the module or can be manipulated through invocations
of the module’s entry points.

Limitations of the Entry-Point Model

Our entry-point model is based on the following design decisions. First, the entry
points are sound w.r.t. explicitly reachable methods: all API methods that a module
explicitly exports are captured in the model. Second, the computation of the entry
points should be scalable. Thus, the entry-point model may only contain a subset of
all implicitly reachable methods.

To be sound w.r.t. explicit methods (the explicitly declared API), our entry-point
model computes all reachable methods of the exported types and supertypes. To be
scalable, the entry-point model only computes implicit methods of module-internal
types that become reachable directly through an exported type. Thus, the entry-
point model captures the implicit methods of types that become reachable outside
the module only if they are returned from an accessible method or are referenced
by (static-) fields of an exported class.

Limiting the entry-point model to implicit methods of objects that are (directly)
returned from the module bounds the set to a reasonable size. Without these con-
straints, the size of the entry point set would explode quickly, for instance, consider
that the class Object is a supertype of every class, and thus all its public methods
would be entry points too. Consequently, all types returned by these entry points

5.2 Precisely Defining a Module’s Entry Points

119

5.3

120

would also be an entry point, e.g., the method getClass(), which returns an in-
stance of type Class, which in turn declares further public methods would be entry
points also, and so on. Our static analysis ModGuard refines this computation of
further entry points w.r.t. its goal of detecting what internal types and data become
eventually accessible from the outside.

ModGuard: Identify Confidentiality or Integrity
Violations of Modules

To complement the module system with means to identify and analyze unintended
data flows, we designed and implemented ModGuard, a novel static analysis for Java
modules that automatically identifies instances, fields, or methods that can become
accessible outside their declaring module, and thus undermine the confinement
of sensitive types or data. ModGuard enables developers to leverage the module
system security-wise by identifying unintended data flows that the modularization
should prevent. We call such unintended data flows that make an internal type or
data accessible or modifiable to the outside escapes.

To restrict inadvertent vulnerabilities in one module, e.g., an included OSS, from
affecting others, security-sensitive entities, e.g., methods or encryption keys, should
not be accessible outside their declaring module but should be well isolated [Ora21;
Ora22; SS75]. To detect if sensitive entities can become reachable outside their
module (confidentiality violation) or if sensitive entities can be manipulated (in-
tegrity violation), an analysis must foresee all ways in which other modules can
invoke the module’s functionality. Implementing a static analysis on individual mod-
ules is challenging, as the analysis must be conducted on open code, much alike
call-graph construction for libraries [Rei+16]. Using the former defined entry-point
model, ModGuard precisely models those possible invocations and data flow using
the static analysis frameworks Doop [SB11] and Soot [Lam+11]. The analysis and
our extensions to Doop and Soot are independent of the particular points-to analysis.
They can be used on top of any other points-to analyses Doop offers.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.3.1 Algorithm

Figure 5.3 gives an overview of ModGuard’s analysis steps.

To detect unintended data flows, like in the motivating example in Listing 5.2, that
lead to the escaping of sensitive types and data, ModGuard requires the list of sen-
sitive entities as user input either in the form of our Java annotation @Critical or
as a separate text file, since the information which types and data are sensitive is
domain-specific and depends on the implementation. The input relations SENSI-
TIVEMETHOD, and SENSITIVECLASS in Listing 5.5 represent the user input.

Sensitive information is often stored using primitive types or arrays, e.g., salts
and secret keys are stored in byte arrays, while passwords are stored in char ar-
rays [Krii+21]. To track such primitive-typed data in addition to regular pointers,
we use P/Taint [GS17], an extension to Doop that augments its points-to anal-
ysis with additional rules for a context-sensitive, flow-insensitive propagation of
primitive-typed data.

Input 1. Init Analysis 2. Compute Module API 3. Perform Escape Analysis
<:ASS Module - Build Module | > Compute Compute Points-To
Descriptors d Graph Entrypoints for Sensitive Entities

‘t““ Module) @ Parse _@ Perform Compute Points-To
Bytecode | to Jimple P/Taint Analysis for Reachable Objects

@Sensitive Identify Escaping
Entities Sensitive Entities

Figure 5.3: ModGuard’s process steps for identifying escapes of sensitive entities using the
Doop framework and Datalog rules. Gray steps are executed in Soot and white
steps are executed in Doop.

Input To compute the module’s entry points, ModGuard first reads the module
descriptors and bytecode. ModGuard uses Soot to transform the bytecode from all
modules into the Jimple intermediate representation [Lam+11], on which Doop
operates.

1. Building the Module Graph Next, ModGuard constructs the module graph. The
construction of the complete module graph is necessary to detect exported super-
types declared in other modules that the module under analysis implements. We
adapted Soot to parse the descriptor of the module and its (transitive) module

5.3 ModGuard: Identify Confidentiality or Integrity Violations of Modules 121

122

dependencies using requires, exports, and opens declarations. Furthermore, Mod-
Guard marks primitive-typed sensitive entities as tainted for Doop’s P/Taint analy-
sis [GS17].

2. Precise Modeling of Module’s Entry Points In contrast to a Java application,
modules do not have a single entry point (e.g., a main method). Instead, modules
compromise many entry points—the explicitly and implicitly—reachable methods,
as described in Section 5.2. ModGuard computes the set of entry points based on
the Datalog rules described in Listing 5.4. As our entry-point model only captures
implicit entry points that are directly reachable, ModGuard’s data flow analysis
completes the entry-point set. To do so, ModGuard identifies objects that escape
transitively through static or instance fields of reachable objects, arguments passed
into the module, and arguments passed to callback methods outside the module.
To compute points-to information for the arguments of implicit and explicit entry
points, ModGuard models those arguments as mock objects for Doop’s points-to
analysis, P/Taint Analysis in Figure 5.3. These mock objects simulate the allocation
side of an entry point’s arguments by code outside the module.

To identify data flows that allow code outside the module to access or modify sen-
sitive types or data, ModGuard checks if the points-to sets of sensitive entities and
the points-to sets of reachable objects intersect. If the two points-to sets intersect,
the elements in the intersection are (i) the sensitive entities that escape the module,
marking a confidentiality violation; or (ii) objects that have been passed into the
module and have been assigned to a sensitive entity, marking an integrity violation.
The input relations in Listing 5.5 represent the user-defined sensitive entities.

3. Escape Analysis To identify whether the values of sensitive fields escape or can
be manipulated, ModGuard implements an escape analysis specific to modules.

Domain Listing 5.5 shows the domain, input, and output relations of ModGuard’s
module escape analysis. The queries for identifying if sensitive fields, methods, and
classes escape a module are defined in Listing 5.6.

Input relations The input relations, shown in Listing 5.5, are logically grouped
and represent the sensitive entities, the points-to information of sensitive entities,
and the points-to information of reachable objects. The rules SENSITIVEFIELD,
SENSITIVEMETHOD, and SENSITIVECLASS represent the user-defined sensitive
entities. The input relation SENSITIVEFIELD represents the fields that should not

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

be leaked or manipulated from outside the module. The relation SENSITIVEFIELD -
POINTSTO represents the points-to information of these sensitive fields. The rules
SENSITIVEMETHOD and SENSITIVECLASS are defined analog.

The remaining input relations represent the points-to sets of objects that become
reachable outside the module. VISIBLEFIELDPOINTSTO represents the points-to
set of all fields that are either public or protected and reside in classes the module
exports. The relation RETURNVARPOINTSTO represents the points-to set of the
return variables of all reachable implicit and explicit methods. Similarly, the relations
MOCKOBJECTPOINTSTO and ARGUMENTOFCALLBACKPOINTSTO represent
the points-to set of receiver mock-objects on which an entry-point method is invoked,
of mock-objects that are passed as arguments into the module, and of arguments
that are passed to callback methods outside the module.

Output Relations The output relations ESCAPINGFIELD, ESCAPINGMETHOD,
and ESCAPINGCLASS represent an escape of the corresponding sensitive entity.

Domain:

T set of class types

D set of module descriptors

M set of method identifier

H set of heap abstractions (e.g., allocation sites)
F set of fields

Vv set of program variables

HC set of heap contexts

Input Relations:
SENSITIVEFIELD (field : F)
SENSITIVEMETHOD (method : M)
SENSITIVECLASS(class : T)

SENSITIVEFIELDPOINTSTO(f: field, heap : H, ctx : HC)
VISIBLEFIELDPOINTSTO(f: field, heap : H, ctx : HC)
RETURNVARPOINTSTO(var :V, type : T, heap : H, ctx : HC)
MOCKOBJECTPOINTSTO(type : T, heap : H)
ARGUMENTOFCALLBACKPOINTSTO(type : T, heap : H)
Output Relations:

ESCAPINGFIELD(f : field)

ESCAPINGMETHOD (type : T, m : M)
ESCAPINGCLASS(sensitiveType : T, escapingClass : T)

Listing 5.5: ModGuard Escape Analysis: domain, input, and output relations.

Datalog Rules of the Escape Analysis Listing 5.6 shows the escape analysis using
Datalog rules. For identifying escaping fields, methods, and classes, ModGuard in-
tersects the points-to set of sensitive fields and the sensitive entities’ types with the

5.3 ModGuard: Identify Confidentiality or Integrity Violations of Modules 123

124

input relations that represent the points-to set of reachable objects: the points-to set
of visible fields, return variables, and mock objects in the queries ESCAPINGFIELD,
ESCAPINGMETHOD, and ESCAPINGCLASS. If a query results in a non-empty
intersection, ModGuard reports an escape.

Each rule is defined three times in Listing 5.6: first for checking if a sensitive entity
escapes over accessible fields (SENSITIVEFIELDPOINTSTO), second to check if
it escapes as a return value of a method (RETURNVARPOINTSTO), and third to
check if it escapes over a mock object (MOCKOBJECTPOINTST0). We also defined
the rules to check if escapes occur through exported supertypes of fields and return
values. Since the rules are defined analog, we omitted them in Listing 5.6.

//check for escaping fields

ESCAPINGFIELD (field, fieldValue)+«
SENSITIVEFIELDPOINTSTO(field, fieldValue, ctx),
VISIBLEFIELDPOINTSTO (field, fieldValue, ctx).

ESCAPINGFIELD (field, fieldValue) +
SENSITIVEFIELDPOINTST O (field, fieldValue, ctx),
RETURNVARPOINTSTO(var, , fieldValue, ctx).

ESCAPINGFIELD (field, fieldValue) <+
SENSITIVEFIELDPOINTSTO (field, fieldValue,),
MOCKOBJECTPOINTSTO(, fieldValue).

//check for escaping methods

ESCAPINGMETHOD (type, method)<+—
SENSITIVEMETHOD (method),
VISIBLEFIELDPOINTSTO(field, fieldValue, ctx),
FIELD: TYPE[fieldValue] = fieldType,
METHOD:DECLARINGTYPE[fieldValue] = fieldType,
METHODINVOKABLE (method).

ESCAPINGMETHOD (type, method)<«—
SENSITIVEMETHOD (method),
RETURNVARPOINTSTO(var; type, , ctx),
METHOD:DECLARINGTYPE[method] = type,
METHODINVOKABLE (method).

ESCAPINGMETHOD (type, method)+«
SENSITIVEMETHOD (method),
MOCKOBJECTPOINTSTO(type, value),
METHOD:DECLARINGTYPE[method] = type,
METHODINVOKABLE (method).

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.3.2

//check for escaping classes

ESCcAPINGCLASS (sensitiveType, escapingType)<—
SENSITIVECLASS (sensitiveType),
VISIBLEFIELDPOINTSTO(field, fieldValue, ctx),
FIELD: TYPE[fieldValue] = fieldType,
SUPERTYPEOF (escapingType, sensitiveType).

ESCcAPINGCLASS (sensitiveType, escapingType)<—
SENSITIVECLASS (sensitiveType),
RETURNVARPOINTSTO (var, escapingType, , ctx),
SUPERTYPEOF (escapingType, sensitiveType)

ESCcAPINGCLASS (sensitiveType, escapingType)<—
SENSITIVECLASS (sensitiveType),
MOCKOBJECTPOINTSTO (escapingType, value),
SUPERTYPEOF (escapingType, sensitiveType)

Listing 5.6: ModGuard’s Datalog rules for detecting escaping fields, methods, and classes.

Analysis of the Motivating Example For the example in Listing 5.2, ModGuard’s
analysis works as follows: First, ModGuard computes the entry-point model for
the module. As defined by the rules in Section 5.2, the model contains the ex-
plicit method KeyProvider.getKey (). To represent the return value of this method,
ModGuard creates a mock object for the internal type SecretKey, representing the
returned object new SecrectKey (). Second, ModGuard’s entry-point definition de-
tects, based on the entry-point rule IMPLICITMETHOD, that the returned object’s
type SecretKey constitutes the implicit entry point getKey (), declared in the pub-
lic exported supertype Key. Third, ModGuard binds the created mock object new
SecrectKey() to the this parameter of the implicit method getKey() and creates
an additional mock object representing the returned key key, which aliases with the
sensitive field keyMaterial. Finally, ModGuard checks if the points-to sets of the
private field keyMaterial and the points-to set of the mock objects intersect in the
rule ESCAPINGFIELD. Since ModGuard bound the this parameter of the method
getKey() to the returned mock-object new SecretKey(), the points-to set of the
returned object and sensitive field intersect, and ModGuard successfully detects that
the field escapes the module.

Limitations
ModGuard shares some inherent limitations with other static analyses. For instance,

ModGuard does not identify violations resulting from using MethodHandles . Lookup,
MethodHandle, or VarHandle from Java’s dynamic-language API. Although Mod-

5.3 ModGuard: Identify Confidentiality or Integrity Violations of Modules

125

5.4

5.4.1

126

Guard can detect exposed MethodHandles.Lookup, MethodHandle, and VarHandle
instances, simply reporting their escapes results in false positives in real-world ap-
plications. While Java’s Handles allows, in principle, inspecting internal classes,
methods, and fields the returned Handle instance may only grant access to exported
types. Thus, an exposed instance of a Handle does not necessarily indicate a vio-
lation. Handling precisely Java’s invoke API requires the inspection of a Handle
using typestate analyses to identify to which entities it grants access. Consequently,
ModGuard currently under-approximates w.r.t. Java’s dynamic-language API lead-
ing to false negatives. To deal with reflection, we use Doop’s extensions to resolve
reflective calls and compute points-to information in conjunction with our rules and
queries [Sma+15].

Additionally, ModGuard fails to detect violations in native code, resulting in false
negatives, e.g., if sensitive entities are written or read from files, environment vari-
ables, network sockets, or passed to native code. Detecting violations in arbitrary
native methods requires analyses for languages such as C and C++ or native bi-
naries, which is out of scope. However, for commonly used native methods, like
System.arraycopy(), ModGuard’s analysis can be supplemented with hand-crafted
summaries (Datalog facts) that specify the impact of native methods on data flows,
as proposed by Salcianu and Rinard [SRO5].

Evaluation

ModGuard provides means for developers to benefit from Java’s module system by
detecting unintended data flows that violate the confidentiality or integrity of a mod-
ule. In the following, we evaluate ModGuard’s effectiveness for detecting escaping
sensitive entities and ModGuard’s use on applications within a case study.

Research Questions

Our evaluation is twofold. In the first part, we evaluate RQ1: How effectively
can our API entry-point model and ModGuard detect escaping internal types
and data? We analyze on a benchmark for Java modules how effectively and in
what cases our entry-point model captures (unintended) data flows violating the
confinement of sensitive entities in a given module.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.4.2

In the second part, we analyze the consequences of strong encapsulation for Java
applications by investigating RQ2: If Java applications benefit from migrating
to modules w.r.t. escapes and if ModGuard can properly identify those? Since
ModGuard aims to support developers in structuring their application to potentially
restrict vulnerabilities in an OSS module from affecting others by limiting the data
the vulnerable module can access, we conduct a case study on the widespread Java
web server Tomcat in which we analyze two modularization options. Finally, we
discuss to what extent modules can limit the impact of inadvertent vulnerabilities
in modules w.r.t. the vulnerability CVE-2017-5648, which was reported for Tomcat
in 2017.

Study Objects

MIC9Bench: A test suite for Java modules While benchmark suites exist for detect-
ing Java coding vulnerabilities [WR99], e.g., SQL injection, path traversal, cross-site
scripting, or evaluating the precision and soundness of points-to analyses [Spa+16],
there currently exists no benchmark for Java modules. Existing generic benchmark
suites for Java cannot be used to assess the effectiveness of module analyses (RQ1),
as they comprise no module declarations nor any ground truth w.r.t. the types and
data the module should confine.

Specifically for Java module analyses, we developed the test suite MIC9Bench (module,

integrity, confidentiality for Java 9) modules: integrity is violated if code outside of
a module can change the value of a sensitive field, confidentiality is violated if code
outside the module can access an internal type, method, or the value of an internal
field.

The test suite contains 22 small hand-crafted Java modules in which a sensitive
internal type or data can be accessed or modified by code outside of the module
through the module’s entry points, shown in Figure 5.4.

Sensitive Entities in Fields As Figure 5.4 shows, sensitive entities referenced by
API fields can be accessed or modified from external code. The value of these
fields is directly accessible if the declaring type is exported and the field is
public or protected.

Sensitive Entities in Method Returns A sensitive entity can be returned through
a chain of method invocations.

5.4 Evaluation

127

128

Escape through Escape through Escape through

API field method return parameter
. Object
C?i_’ ¢: ClassC() @——» mathod) > method(P par)
field access l . : l l
public i: return field access|
IntClass() ' -
----- -~ it IntClass() I IntClass()
_ v
_) cf=i _) par.f =i

Escape through Dynamic

Escape through callback Escape through exception Language Features
method() @--) method() @-—) return mt
¢ ¢ MethodHandle mt
i: IntCl i: IntClI .
callback B I IntClass() Lookup.findVirtual()
(Object o) v ¢ v
) IntClass().
callback(i) throw
Exception(Object o) sensMethod()

Figure 5.4: Scenarios leading to the escape of sensitive entities.

Sensitive Entities in Arguments Sensitive entities can be disclosed through argu-
ments that are passed as parameters into the module, i.e., if sensitive entities
are assigned to a parameter or added to a collection, accessible to code outside
the model. Similarly, the argument of a method can be assigned to a sensitive
field, changing its value.

Sensitive Entities in Callbacks Similarly, sensitive entities can escape as an argu-
ment of a callback method outside the module.

Sensitive Entities in Exceptions Sensitive entities can escape through exceptions
bypassing the normal control flow.

Sensitive Entities in Java Dynamic Features Sensitive entities can escape if they
are referenced by Java’s dynamic language constructs, which are typed and
executable references and grant access to the underlying entities (types, meth-
ods, fields). Java’s Method-, VarHandle, or MethodHandles.Lookup are typed,
directly executable references to any method, constructor, or field [Oral5a].
Since access checks for Handle instances are made at creation-time rather
than runtime, code outside the module can invoke any operation freely on an
escaping Handle object circumventing the module systems access checks.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

Sensitive Entities in Side Effects and Native Code Additionally, sensitive entities
can also escape through side effects occurring in native code, e.g., modification
of the JVM memory or reading/writing sensitive entities to the file system.

MIC9Bench also comprises test cases for the above scenarios for collections and
arrays. To evaluate which escapes ModGuard correctly detects, we execute it on the
test suite.

Organization and Distribution To allow the extension of MIC9Bench, we make
MIC9Bench publicly available on GitHub (cf. Chapter 6).

The organization of MIC9Bench is shown in Figure 5.5. Each test case is located in
a separate top-level folder. The test cases are further separated into scenarios, e.g.,
escapes through a getter method or public field.

/

| callback

| exception

| fields
getter
publicfield
primitivefield

|
L build.xml

Figure 5.5: Layout of MIC9Bench

Case Study: Tomcat Web Server To evaluate the effectiveness of ModGuard on
real-world applications and to check if applications suffer from escaping sensitive
entities (RQ2), we executed ModGuard on an established Java application with a
reasonably sized codebase. However, applications leveraging Java modules are still
scarce. In fact, we searched Maven Central for OSS declaring modules and module-
internal packages but could not find any artifact in December 2021. Only 215 dif-
ferent artifacts on Maven Central, at least, contain a module descriptor (module-
-info.class), and only 83 of those 215 include their own module-info. java file in
their source-jar. The 83 artifacts and module descriptors export all packages publicly,
rendering the analysis pointless. The remaining artifacts only include a copy of the
module-info.class of a beta version of the library org.s1f4j, which was included
in the artifact during re-bundling.

5.4 Evaluation

129

130

Thus, we choose to follow the approach of Corwin et al. [Cor+03] for modulariz-
ing existing Java applications. In their work, Corwin et al. [Cor+03] propose a new
module system for the Java platform and present a structured approach for modular-
izing the Java web server Tomcat to modules. We apply the presented approach for
our evaluation and use the well-established, widespread OSS Apache Tomcat 8.5.21
as a case study. Following the approach, we created a separate module for each
of Tomcat’s 26 JAR files, maintaining the original grouping of classes into logical

units.

For creating modules and deciding what packages are module-internal and what
packages a module exports, we applied two different modularizations to the 26 Tom-
cat modules: a naive modularization, all modules export all packages publicly, and
a strict modularization, each module only exports packages that are necessary for
compilation. To create the naive modularization, we used the tool jdeps [Oral7a].
Jdeps is the Java dependency analysis tool that statically analyzes declared depen-
dencies between classes and aggregates them at the package or JAR level. With
Java 9, jdeps has been extended to help developers to migrate to the new module
system by automatically generating module descriptors with all packages publicly
exported. To create the strict modularization, we restricted the naive modulariza-
tion as follows. We removed each package export statement for each module and
checked if Tomcat still compiles; we continued for all packages and modules until
the compilation failed, retaining exactly those package exports that Tomcat requires
to compile.

catalina.storecfg

| catalina.ant |

| [romeat.socket]\
‘)-\?’ \“

\

| catalina.ha |

“

! tomcat JI11 \

=
—
=
IO
-E!
(el
[
s
=)
e
=.

Figure 5.6: For modularizing Tomcat 8.5.21, we created a module per JAR. The figure
shows the resulting module graph. In the strict modularization (all exports
not required for compilation removed), the white modules do not export any
packages. The dashed modules have the same exports in the naive and strict
modularization.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

The resulting module graph is shown in Figure 5.6. In the strict modularization,
the modules on top of the graph (in white) catalina.ant, catalina.storeconfig,
jasper, tomcat.dbcp, and tomcat.websocket do not export any packages. Since the
modules on top of the module graph are not required by any other other module,
all their export statements were removed. Note that the Tomcat web server does
not contain any client code using the modules on top of the module graph, e.g., a
web application. The modules marked with a dashed line tomcat.api, tomcat.jni,
tomcat.juli, and tomcat.util.scan are identical in the naive and strict modular-
ization. For the remaining modules (marked in gray), we could reduce the exported
packages to the minimum necessary to compile. Note that the strict modulariza-
tion is more restrictive than a regular one, as web applications running on Tomcat
need access to the modules on top of the graph. However, by applying the strict
modularization, we do not risk exposing internal types unnecessarily, and as we aim
to investigate the effect of modules w.r.t. confining sensitive entities, a more strict
modularization only provides a lower bound for those modules.

To check if sensitive entities escape a module, ModGuard requires the sensitive
methods and fields as input. To determine the sensitive methods, we applied the
framework SuSi [RAB14] on Tomcat’s codebase. SuSi [RAB14] is an automated
machine-learning tool for identifying sources and sinks in Java and Android bina-
ries from code using syntactic features, e.g., method, class, and parameter names,
and semantic features, e.g., data flow to return statements. SuSi has been success-
fully applied and extended to detect security-sensitive entities in Java applications,
particularly the spring-framework [Pis22]. Thus, we consider it well-suited for de-
tecting sensitive entities in Tomcat for our evaluation. We used security-sensitive
methods of the JDK 9 as a training set. In particular, we trained SuSi on methods
that throw SecurityExceptions, e.g., methods accessing or modifying class loaders
or the file system. The functionality implemented by these methods is guarded by
permissions checks, triggering Java’s SecurityManager to check whether all classes
on the call stack possess the required permissions. As a result, their set of calling
classes is restricted, and these methods should not be accessible to any code, analog
to security-sensitive methods in modules. We used these methods as the training
set for SuSi to identify similar security-sensitive methods in Tomcat to which access
should be restricted too.

Based on this training set, SuSi reported 3,300 sensitive methods in 12 Tomcat
modules. We further manually added 90 classes and 25 fields as sensitive entities
whose JavaDoc comments state that they are “internal”. Note that access to these
sensitive entities does not necessarily imply the existence of security vulnerabilities,
yet it indicates privileged classes, fields, and methods whose caller may be limited.

5.4 Evaluation

131

5.4.3 Results

132

RQ1: How Effectively can ModGuard Detect Escapes?

To evaluate the effectiveness of ModGuard in different scenarios, we executed it on
the benchmark MIC9Bench and evaluated the results, shown in Table 5.1. The table
shows that ModGuard successfully detects confidentiality and integrity violations in
18 of 25 test cases.

Table 5.1: Evaluation of ModGuard on MIC9Bench for detecting escaping sensitive entities
over a module’s API and different Java language features. Integrity violations
occur if external code can change the value of a sensitive field, and confidentiality
violations occur if external code can access a sensitive entity.

Entity Escapes Scenario Detected by

through ModGuard

Integrity/Confidentiality primitive field v

Accessible Integrity/Confidentiality non-primitive field v

Field Integrity/Confidentiality field array, collection v

Getter/Setter for field v

Invokable Access to explicit method v

Method Access to implicit interface/ abstract method v

Entity added to parameter array, collection v

Parameter Static method returns internal field v

Callback Entity/Class referencing Entity as argument v

Exception Declared/Undeclared exception v

) Referenced by VarHandle/ MethodHandle X

Reflection & - - ess to privileged MethodHandles . Look X
Invoke API ccess to privileged MethodHandles.Lookup

Return field via reflection v

Side Effect Pass entity to native code X

Y true positives
X false negatives

no false positives observed

The table shows that ModGuard detects if sensitive entities leak through API fields.
Similarly, ModGuard detects if sensitive entities leak or can be manipulated through
API methods and if sensitive methods are eventually reachable from outside the
module, e.g., if packages or supertypes are erroneously exported. ModGuard also

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

detects if sensitive fields can be modified through method arguments and if sensi-
tive entities escape through arguments of exported methods, callback methods, or
exceptions. Further, the table shows that ModGuard detects if an exposed collection
or array discloses sensitive entities. To check arrays and collections, ModGuard uses
Doop’s partially 1-object-sensitive points-to analysis context-insensitive+ 4. Doop’s
object-sensitive analysis distinguishes instances of the same collection, and thus can
detect if an exposed instance contains sensitive entities. Omitting object-sensitivity
would lead to false positives, since entities added to one particular collection would
appear to be retrievable by any other instance of the collection [MRRO5].

The evaluation also shows that ModGuard fails to detect if a module exposes ref-
erences to internal types, methods, and fields in the form of Method-, VarHandle,
or MethodHandles . Lookup instances. Equally, ModGuard fails to detect if sensitive
instances escape through side effects or native code. As discussed in detail in Sec-
tion 5.3.2, dealing with side effects and native code is still an open issue for static
code analysis.

Computation Resources For each test case, ModGuard runs 22.4 minutes, and
consumes 3.4 GB RAM, including repeated analysis of the full JDK on an Intel
i7 2.60 GHz per Mic9Bench module. If ModGuard does not use Doop’s reflection
handling, its runtime is reduced to 7.4 minutes and the resource consumption to
3.1 GB RAM.

Findings from RQ1: ModGuard effectively identifies confidentiality and in-
tegrity violations of sensitive entities in a module, unless Java’s dynamic-
language API is used.

RQ2: Case Study - Can Java Applications Benefit from Migrating to
Modules?

To check to what extent Java applications suffer from escaping sensitive entities, we
executed ModGuard on the naive and strict modularization of Tomcat. Table 5.2

shows the analysis results.

5.4 Evaluation

133

134

Even in the strict modularization, thousands of sensitive entities escape the modules,
allowing code from other modules to access them (confidentiality violation) or to
modify them (integrity violation). The table shows that even in the strict modular-
ization, the number of violations is only slightly reduced or is unchanged compared
to the naive one.

In the results, the escapes reported for one module intersect with the reported
violations of other modules. Since Tomcat’s modules cross-reference types between
each other, a sensitive entity might escape through module A and also through
modules B and C. For instance, the escaping of a sensitive method of an exported
supertype in one module is reported for all dependent modules that declare escaping
subtypes. Thus, removing the export of such supertype also reduces escapes in
dependent modules. In fact, the majority of escapes occur due to sensitive types
that are declared in exported packages whose export cannot be removed without
compilation errors.

Table 5.2: The table shows the number of escaping of sensitive entities that ModGuard
identifies in the modularization of Tomcat 8.5.21.

#Violations strict / A naive modularization Runtime

Tomcat Module A
Methods Fields Classes 1o i
catalina 2,556 / —236 8§ / =21 31 / —-17 11:13
catalina.ant & 0 / - 0 / - o / -7 00:43
catalina.ha 1,081 / —391 3 / -1 15 / - 03:48
catalina.storeconfig © 0o/ =79 0 / - 0 / - 01:49
catalina.tribes 0 / - 3 / - 4 / -1 01:13
jasper © 0/ —6 0 / - 0o / - 01:30
tomcat.coyote 2,020 / —294 0o / =3 20 / —14 01:25
tomcat.dbcp © 0 / - 0o / -3 0 / - 00:44
tomcat.jni ® 1 7/ - 2/ - 0 / - 00:38
tomecat.util 78/ - 0o / - 1 7/ - 00:39
tomecat.util.scan ©® 449 / - 0o / - 0o / - 00:44
tomcat.websocket © 0o 7/ - 0o / - 0o / —6 00:46

© The modules do not export any package
© The modules export the same packages in the strict and naive modularization

Table 5.2 shows that in the strict modularization, no violations occur in the 5 mod-
ules: catalina.ant, catalina.storeconfig, jasper, tomcat.dbcp, and tomcat. -
websocket. Since these modules are at the top of the module graph (cf. Figure 5.6)
all their export packages are removed, and thus no data flows exist over which
sensitive entities can escape. The number of violations is unchanged in the 3 mod-
ules: tomcat.api, tomcat.jni, and tomcat.util.scan since their export packages

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

are identical in the naive and strict modularization. The violations for the module
tomcat.util are unchanged since the removed package exports do not contain any
sensitive entity.

Only in the modules catalina, catalina.ha, catalina.tribes and tomcat.coyote
fewer violations occur in the strict modularization, excluding modules whose exports
are removed completely or unchanged.

Although 18 export statements out of 30 are removed in the module catalina,
the number of violations is only reduced to a small extent. The removal of public
exported packages (for the modules in gray in Figure 5.6) only has a small impact
on the number of found escapes. For instance, the package org.apache.catalina. -
webresources contains 140 internal, sensitive methods, and its export was removed
in the strict modularization. However, 32 sensitive methods that are declared in
WebResource are still accessible. WebResource is contained in the package org. -
apache.catalina whose exports cannot be removed without compilation errors.
Also, the module catalina.ha does not benefit much from the stricter encapsulation
of internal types; 70% of its sensitive methods still escape and can be invoked from
code outside the module.

catalina catalina
catalina.Manager catalina.session.
StandardSession

+createEmptySession()
:StandardSession

A
catalina.ha catalina.ha catalina.ha
External .)
Code :catalina.ha.tcp. :catalina.ha.session. :catalina.ha.session
SimpleTcpCluster DeltaManager DeltaSession

getManagerTemplate()

:DeltaManager

createEmptySession()

anyMethodOfExportedSuperType()

1 1 .
1 '
1 1
1 return '
______________ g
' '
' '
' '

Figure 5.7: Example escape of the sensitive methods of DeltaSession from the mod-
ule catalina.ha in the strict modularization of Tomcat. External code
can invoke SimpleTcpCluster.getManagerTemplate() to receive an instance
of DeltaManager, which leaks the sensitive DeltaSession via the method
createEmptySession(). The gray types are module-internal, the white types
are exported; in bold is the module declaring the type.

<

: ».

1 1 Ll

' :DeltaSession U
WCmmmmm e Pt

<

5.4 Evaluation

135

5.4.4

136

Example Escape in Tomcat Module catalina.ha An instance of a data flow over
which the sensitive methods of class DeltaSession in module catalina escape
is depicted as a sequence diagram in Figure 5.7. The escape occurs in the strict
modularization, as follows: First, code outside the module acquires an instance of
DeltaManager, returned from the public method getManagerTemplate(). Second,
code outside the module invokes the implicit method createEmptySession() on
the acquired instance, which is overridden in DeltaManager from its exported su-
pertype Manager. Third, the method createEmptySession() returns an instance
of DeltaSession to the outside. Fourth, on the such acquired instance of Delta-
Session external code can invoke all overridden sensitive methods of the supertype
StandardSession (exported by the module catalina). This exposes the internal,
sensitive methods of DeltaSession in catalina.ha to the outside.

Findings from RQ2: Escaping of sensitive entities over modules’ API is indeed a
problem when modularizing real-world applications. ModGuard identifies data
flows leading to escapes, and thus helps developers to assess how successfully a
module confines sensitive entities.

In result, Table 5.2 shows that neither the naive nor the strict modularization of Tom-
cat effectively limits that sensitive entities escape through complex (unintended)
data flows. While an automatic migration using jdeps is possible without major
effort, the resulting modules do not benefit from the module system security-wise.
Although internal types are encapsulated, modularizing w.r.t. forbidden data flows
can prevent data leaks, and thus results in a security benefit. To limit violations,
it is insufficient to simply limit package exports. Even modules whose exports we
were able to reduce (catalina.ha, catalina.tribes, and tomcat.coyote), effec-
tively confine a small subset of sensitive entities only. Instead, applications must
be migrated carefully to prevent data flows leading to integrity and confidentiality
violations. For this migration, developers should be supported by appropriate tools.
Our case study shows that ModGuard can support the migration to Java modules,
as well as refactorings, by revealing integrity or confidentiality violations.

Case Study: CVE-2017-5648 in Tomcat (modules)

In 2017, the Tomcat web server suffered from a vulnerability reported as CVE-2017-
5648 [NVD17b] in the component catalina, shown in Listing 5.7. The vulnerabil-
ity enables any web application running on the server—even with Java’s Security

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

Manager activated—to retain a reference to a Request object, exposing access to
security-sensitive methods, which allow to access and to modify information belong-
ing to other web applications running on the same server. The vulnerability shows
that programming mistakes involving the unintentional escape of sensitive entities
occur in real-world applications and may significantly impact an application’s secu-
rity. Line 9 and Line 12 contain the vulnerable code. The fix is shown in Line 10 and
Line 13 [Apal5].

class Request implements HttpServletRequest{
public HttpServletRequest getRequest(){
return new RequestFacade(this); }

class RequestFacade implements HttpServletRequest {}

class FormAuthenticator extends AuthenticatorBase {

O 00N O U1 hWN =

- if(context.fireRequestInitEvent(request)){

—
= O

disp.forward(request.getRequest(), response);

—_
V]

context.fireRequestDestroyEvent(request);

—_
w

14}

Listing 5.7: Excerpt of the fix for CVE-2017-5648 in class FormAuthenticator.java in
Tomcat revision 1785776 [Apal5].

In the vulnerable version of Tomcat any Request object received by the Form-
Authenticator was dispatched directly to the web application via the context
object (cf. Line 9, Line 12), which one must assume to be attacker-controlled.

To mitigate the vulnerability, the fixed version confines the Request object in the
component catalina. Instead, a RequestFacade is passed to the web application,
wrapping the original Request object and denying access to security-sensitive meth-
ods.

Although CVE-2017-5648 was contained in a version of Tomcat that did not yet use
Java modules, it was caused by an improper confinement of an internal Request ob-
ject, which malicious code could abuse. Our case study shows that while the module
system can encapsulate the internal Request type, its encapsulation is too weak to
prevent such vulnerabilities since it only considers types: both classes Request and
RequestFacade implement the interface ServletRequest. Crucially, this interface
has to be exported to be usable by web applications. Thus, any code outside the
component catalina may invoke any method on any object of type RequestFacade,

5.4 Evaluation

137

5.5

138

but also on Request, as long as the method is defined in the interface Servlet-
Request. Unfortunately, ServietRequest defines several such methods, e.g., get-
Parameter, getLocale, etc., and because ServletRequest is exported, attackers can
invoke those methods on the unprotected Request object even if the type Request is
declared as internal.

Vulnerabilities of this kind cannot be remedied solely by relying on the encapsulation
of types, but also require reasoning about escaping instances, modules’ API, and the
data flow between modules.

CVE-2017-5648 shows that ModGuard complements the module system with an
analysis that detects if security-sensitive objects like Request escape. This is gen-
erally non-trivial, however, as ModGuard must reason about pointers while being
aware of a module’s API and boundaries in the absence of client code invoking the
module. In the example, the context object represents the untrusted web applica-
tion that runs on top of Tomcat, and outside of the component catalina. Crucially,
ModGuard and its entry-point model detect that values passed to context.fire-
RequestInitEvent(..) in Line 9 and fireRequestDestroyEvent(..) in Line 12 in
Listing 5.7 is a confidentiality violation: because the objects are passed to a context
object outside the module.

To detect such escapes, ModGuard takes into consideration that there are two in-
ternal subtypes of the exported interface ServletRequest: one which is security-
sensitive (Request) and one which is safe to be used outside the module (Request-
Facade). To do so, users must provide ModGuard with a list of sensitive entities
since the information which of these two classes is sensitive is domain specific.

Limitations of Modules for the Secure Integration of
Open-Source Software

Our case study of Apache Tomcat in Section 5.4 shows that modules can successfully
prevent access to security-sensitive types and that ModGuard can identify data flows
that leak data or allow their manipulation. The study also found that a secure
design of application modules requires significant refactoring to benefit from strong
encapsulation. However, the module system is insufficient to restrict a vulnerability
in a module from affecting others. Strong encapsulation is only part of a solution—
as also stated by the developers of the Java platform [Ora22; Ora23b; Ora21] and
the principle of Defense in Depth [NSA12]. In the following, we discuss features
and security mechanisms that are not covered by the module system.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

Fine-Grained Access Control The module system does not allow to grant only
limited permissions to modules similar to the security manager, e.g., disallowing
access to specific files or network addresses. At the root of a module graph resides the
module java.base, which is accessible by every other module and publicly exports
classes for file system operations or network access, etc. Thus, vulnerabilities that
abuse exported classes of the java.base module cannot be restricted by the module
system alone.

jndi:ldap://attacker-server.com/a:

B

! e
ety ™ 4 0185 yulnerable Application
dap & \oit.C pp
= € \
= 1attacke’ S
- \,\“p.lla ©
— ‘&‘ 2 (}0‘(\\6
L] @
Idap://attacker-server.com 5@“‘6
et

%

/ ‘(\‘\\QAV\

http://attacker-server2.com

Figure 5.8: Overview on how to exploit the Log4Shell vulnerability. Based on [Jun21].

We illustrate the issue exemplary with the Log4Shell vulnerability, published as
CVE-2021-44228 [NVD21]. The Log4Shell vulnerability allowed an attacker to ex-
ecute arbitrary code on the host system running a vulnerable Java application. An
overview of the steps for exploiting the Log4Shell vulnerability is given in Figure 5.8,
and an example exploit is given in Listing 5.8. The root cause of the vulnerability is
the fact that the Log4j library supported a feature called “lookup” that enabled the
replacement of variable-like values with dynamic strings at the time of logging, e.g.,
the string $java:version was evaluated and replaced with the Java version running
on the host, e.g., java version 1.8.0_231 [ECZ22]. Crucially, Log4j supported the
use of Java Naming and Directory Interface (JNDI) lookups, which is an API for
providing naming and directory services like Lightweight Directory Access Protocol
(LDAP) or Domain Name System (DNS), allowing to load and execute Java objects
from remote locations. If a JNDI expression is logged with Log4j, the expression is
evaluated, which results in the exploitation of the complete application.

As a prerequisite for the exploit to work, the application must log an attacker-
controlled string with the Log4;j library. First, an attacker forces the application
to log a malicious string of the form $jndi:ldap://attacker-server.com/a, with
the server attacker-server.com being controlled by the attacker. Second, the Log4;j
library evaluates the string and triggers a request via JNDI to the attacker-controlled

5.5 Limitations of Modules for the Secure Integration of Open-Source Soft-
ware

139

140

server attacker-server.com. Third, the server attacker-server.comresponds with
a Java class containing the exploit, e.g., attacker-server2.com/Exploit.class.
Fourth, JNDI downloads the class Exploit.class and executes it in the applica-
tion’s context. The exploit then allows an attacker to execute arbitrary code on the
host system.

An example exploit opening a reverse shell on the attacked host system is shown
in Listing 5.8. The exploit constructs a java.lang.ProcessBuilder object and a
java.net.Socket object to open a reverse shell /bin/sh in a separate process.

1 import java.io.IOException;
2 import java.io.InputStream;
3 import java.io.OutputStream;
4 import java.net.Socket;
5
6 public class Exploit {
7 public Exploit() throws Exception {
8 String host="%s";
9 int port=%d;
10 String cmd="/bin/sh";
11 Process p=new ProcessBuilder(cmd).redirectErrorStream(true).start();
12 Socket s=new Socket(host,port);
13 InputStream pi=p.getInputStream(), pe=p.getErrorStream(),
14 si=s.getInputStream();
15 OQutputStream po=p.getOutputStream(),so=s.getOutputStream();
16 while(!s.isClosed()) {
17 while(pi.available()>0)
18 so.write(pi.read());
19 while(pe.available()>0)
20 so.write(pe.read());
21 while(si.available()>0)
22 po.write(si.read());
23 so.flush();
24 po.flush();
25 Thread.sleep(50);
26 try {
27 p.exitValue();
28 break;
29 }
30 catch (Exception e){}
31 };
32 p.destroy();
33 s.close();
34 }
35 }

Listing 5.8: Example exploit for the Log4Shell vulnerability, opening a reverse shell. Taken
from [Git23].

The exploit illustrates the shortcomings of the module system for restricting a vul-
nerable module. First, once an attacker can open a shell on the attacked host system,
the whole system is compromised, and the attacker may be free to manipulate the

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

JVM and host, completely bypassing Java’s security architecture. Second, the classes
in the packages java.lang.x*, java.net.*, java.io.x*, allowing file system access,
network access, and process creation, are contained in the fundamental module
java.base. Critically, the base module java.base exports all security-relevant Java
classes publicly to all modules on the modulepath. The module system does not
support the encapsulation (or hiding) of a subset of packages or classes for a specific
module, e.g., an included OSS. The module system’s encapsulation is coarse-grained
compared with the security manager (cf. Section 5.1), which can deny or allow ac-
cess to the file system, specific files, or network addresses. While a module can
confine its own internal types and classes, the module system cannot effectively
limit a module’s access to sensitive classes, types, methods, and functions in other
modules. In particular, the module java.base provides too broad access to security-
sensitive functions, violating the secure design Principle of Least Privilege [SS75].
Consequently, a vulnerability like Log4shell could not be restricted using the module
system. However, if malicious code is executed in the context of the affected module,
strong encapsulation only gives access to entities that escape.

An option to deny access to security-relevant classes in the module java.base is the
use of module layers and class loaders (cf. Section 5.1), as suggested by the Java
Platform Group [Ora21]. To do so, a module is loaded into a separate layer with
a custom class loader that blocks the module from assessing specific packages and
classes using class loader isolation [Gon+97; GEDO3]. In addition, as suggested by
the Java Platform Group, potential refinements are the use of bytecode modification
libraries like ASM to remove and replace invocations to security-relevant methods
in the untrusted module during class loading.

An alternative is to apply isolation on the whole application using containers and
virtual machines, which also allows restricting the operations native code can exe-
cute.

Isolation of Native Code The Java Native Interface (JNI) enables Java code to
invoke native code written in low-level languages such as C, C++, or assembly.
To interact with the operating system for user interactions, file system, or network
access; the JCL 1.6 compromises more than 800k lines of native code written in C
and C++ [ST12]. Native code is executed in the same memory segment as the JVM
and has full access to its heap. This enables native code to freely read and write the
JVM'’s heap, ignoring any Java access control or visibility restrictions. Thus, native
code has full control and access to the JVM. Since native code is executed outside

5.5 Limitations of Modules for the Secure Integration of Open-Source Soft-
ware

141

5.6

5.6.1

142

Java’s security model without any type- and memory-safety guarantees, vulnerable
or malicious native code poses a severe threat to the host system running the Java
application.

Consequently, multiple approaches for sandboxing native code in Java exist, which
we discuss in the related work in Section 5.6. Since native code resides outside
Java’s security architecture, the module system provides no means for encapsulation

W.L.t. native code.

Related Work

In this section, we discuss related work concerning the isolation of included OSS.
We first introduce approaches for sandboxing native code for Java. Next, we present
approaches for encapsulating and isolating faults in OSGi modules (so-called OSGi
bundles). Afterward, we discuss related work for detecting (unintended) data flows
through which objects escape their intended scope, as we do in ModGuard. The
detection of escaping objects is a known problem in static code analysis. Escape
analysis has already been applied in the context of memory optimization and
synchronization—objects that do not escape their scope do not need to be synchro-
nized, and their memory allocation can be optimized. Finally, we present approaches
to enforce information flow policies, e.g., ensuring that certain data is only accessible
by a specific code segment.

Sandboxes for Native Code

Since native code is executed outside Java’s security model, any flaws or vulnerabili-
ties in native libraries grant full control over the JVM or even the host system. Thus,
several approaches for sandboxing native code [STM10; ST12; ST14; Ora23c] have

been developed.

Siefers et al. [STM10] present a sandbox called Robusta. Robusta applies Software-
Based Fault Isolation (SFI) [Wah+93] and separates native libraries into their own
memory segment, the so-called sandbox, within the JVM’s memory space. Robusta’s
sandbox relies on Google’s Native Client tool [Yee+10], which prevents native code
from reading or writing outside a specified memory address range. The authors
extend Google’s Native Client with support for dynamic linking and loading since
native libraries are dynamically loaded by the JVM. Further, to place native code

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.6.2

under the same security restrictions as Java code, Robusta intercepts JNI invocations
and queries Java’s security manager to decide if a system call should be blocked or
denied based on a predefined security policy.

Sun et. al [ST12; ST14] present Arabica [ST12] an extension of Robusta. Since
the implementation of Robusta required significant changes to the JVM, the authors
provide with Arabica a sandbox that does not require such modifications, and thus is
portable between JVMs. To do so, Arabica uses Java’s built-in Java Virtual Machine
Tool (JVMTI) interface, which allows to control the JVM’s execution at runtime,
and generates library stubs that redirect JNI calls to the real libraries in Arabica’s
sandbox. Further, the authors adapt their concepts with NativeGuard [ST14] to
Android by separating an Android app and its used native libraries into different
processes to achieve SFI.

An approach that allows an application written in a JVM-based language, like Java,
to execute untrusted code written in a sandbox on the GraalVM are polyglot sand-
boxes [Ora23c]. The GraalVM [Ora23a] was released by Oracle in 2019 as an
alternative to the JVM that allows not only the execution of bytecode languages,
like Java, Kotlin, Scala, but also the execution of JavaScript, LIVM-based languages
such as C, and other dynamic languages on a single platform. GraalVM’s polyglot
sandbox allows fine-grained access control, such as restricting the loading of na-
tive code, limiting resource consumption, forbidding file and network access, and
disallowing access to classes and interfaces, etc. The sandbox is based on so-called
GraalVM isolates [Wim19]. In contrast to Java’s security manager, isolates are not
executed in the same JVM environment, sharing the same JCL classes, but in dedi-
cated virtual machine instances. GraalVM isolates allow spanning multiple virtual
machine instances in the same process with a separate heap per isolate. This en-
sures a secure separation between two isolates: objects from one isolate cannot be
referenced by another isolate; instead, they must be copied.

Encapsulation and Isolation of OSGi Bundles

Since the Java module system was recently introduced in 2017, existing work on
module models for Java focuses on OSGi.

Parrend and Frénot [PFO7; PF09] study to what extent OSGi bundles can be isolated
from each other and investigate techniques for bypassing the OSGi’s encapsulation
mechanisms, e.g., modifying a bundle’s private data through its API or shared vari-
ables, injecting untrusted code into a bundle. The authors generalize the identified

5.6 Related Work

143

144

techniques into 25 different vulnerability patterns for the OSGi module systems.
While 8 of these patterns originate from issues in the OSGi platform and JVM
(e.g., exhaustive memory or CPU-time consumption), 17 of them originate in the
implementation of OSGi module system, e.g., allowing duplicate package imports
or erroneous bundle declarations. Similar to ModGuard, Parrend and Frénot also
investigate patterns in which cases a bundle’s internal data can be modified from
the outside through its API or shared variables. They also investigate if a bundle
may leak internal data by allowing access to methods contained in non-exported
packages.

In their following work [Par09; Goi+13], Parrend and Frénot introduce a points-to
analysis, which is similar to ModGuard. The presented analysis does not aim to
detect escaping instances but aims to detect if objects can be passed from untrusted
code into a trusted bundle, thereby risking denial of service attacks when untrusted,
malicious code is executed.

Geoffray et al. [Geo+08; Geo+09] introduce I-JVM, a JVM to isolate vulnerable or
malicious OSGi bundles from each other. For the secure execution of OSGi bundles,
the authors identify vulnerabilities in the OSGi platform and OSGi bundles. They
subdivide the found vulnerabilities into three categories: lack of bundle isolation,
lack of bundle resource accounting, and failure in bundle termination. For the first
category, the authors argue that bundles are not properly isolated in OSGi since
java.lang.Class objects, static variables, and strings are shared by all bundles in
the JVM. These shared instances can be modified by malicious bundles leading to
faults in the execution of trusted bundles, e.g., by setting a shared variable to null.
For the second category, Geoffray et al. argue that the lack of resource accounting
may lead to the exhaustion of memory and CPU-time by malicious bundles. Finally,
they argue that the lack of bundle termination may lead to situations where mali-
cious bundles cannot be properly unloaded by the OSGi platform resulting in further
abuse of memory or CPU-time. To overcome these limitations, I-JVM executes each
bundle in a separate thread containing a private copy of all static variables, strings,
and java.lang.Class objects, thereby achieving isolation.

Similarly, Gamma and Donsez [GD09; GD10] propose to load untrusted OSGi bun-
dles in separate sandboxes to achieve fault isolation. In contrast to Geoffray et
al. [Geo+09], the authors do not provide a customized JVM but rely on the process
isolation of the operating system to execute OSGi bundles in separated memory
regions. The authors implement a custom proxy-based communication protocol be-
tween the isolated bundles that checks invoked methods, arguments, and return
values flowing across bundle boundaries at runtime.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.6.3

Analogously, Huang et al. [HWHO7] introduce an own OSGi security layer to prevent
malicious bundles from performing security-sensitive operations, e.g., modifying
files or probing the API of other bundles. To prevent and detect malicious or faulty
bundles, the proposed layer continuously inspects the state of the JVM and stops
misbehaving bundles.

While the approaches isolate bundles from each other and investigate possibilities
to confine sensitive data within a bundle, they do not investigate unintended data
flows (escapes) between bundles. On the contrary, ModGuard aims to support the
encapsulation of sensitive entities within modules. To do so, ModGuard precisely
defines a module’s entry points and statically analyzes the data flow over it to detect
confidentiality and integrity violations. While ModGuard can detect confidentiality
and integrity violations, it cannot detect availability violations of a module. However,
as the module system does not support the dynamic (un-)loading of modules, it
provides no mitigation for stopping misbehaving modules.

Escape Analysis

Several approaches apply static analysis to determine whether objects escape a
dedicated scope, e.g., they check if an object instance becomes accessible outside
of a method or a thread, to improve memory allocation [GS00; VRO1; WR99] or
remove synchronization: objects that do not escape a method are bound to the
method’s lifetime, and can therefore be allocated on the stack, and objects that do
not escape a thread are bound to the thread’s lifetime, and therefore synchronization
for these objects can be erased. Similar to our analysis, the escape analyses rely on
points-to analyses but operate on a complete code base rather than on modules
where the invocations are unknown.

The most related approaches are by Whaley et al. [WR99] and its extension by Viven
et al. [VRO1]. The authors present an abstract points-to and escape analysis based on
so-called points-to escape graphs. In an escape graph, nodes represent objects, and
edges represent references between those objects. The analysis separates the code
under analysis into unanalyzed and analyzed regions and uses the escape graph to
record escape paths into unanalyzed regions [VRO1].

Using the graph, the algorithm tracks all escaping instances: if an object escapes, all
objects that the escaping object references also escape. The approaches can identify
escaping objects, and, additionally, methods, (static) fields, parameters, exceptions,
and callbacks like ModGuard.

5.6 Related Work

145

5.6.4

146

The Watson Libraries for Analysis (WALA) [IBM06] framework implements a state-
of-the-art escape analysis. The algorithm respects fields, thread constructor parame-
ters, and all objects transitively reachable from fields of escaping objects, but solely
focuses on threads.

Blanchet [Bla03] and Choi et al. [Cho+99] propose fast escape analyses for opti-
mizing memory allocation. The approach omits the computation of sophisticated
points-to information but uses integer vectors or type hierarchy analysis to repre-
sent types. These simplified type representations are insufficient in the context of
modules. Determining whether a particular entity escapes through the API depends
on the object’s type, its super-, and subtypes, which the presented approaches tune
out in the simplified representation.

Current escape analyses check if objects escape methods or threads but do not con-
sider escapes in structural contexts like modules. In addition, they analyze concrete
implementations, including callers, whereas our analysis, in the absence of such
callers, analyzes all potential usage scenarios of a module, including potentially ma-
licious ones. Consequently, the presented approaches do not require nor provide a
set of formalized entry points through which the confidentiality or integrity of the

module may be violated.

Information-Flow Control

To cope with unintended data flows, several approaches [BVR15; SM03; Enc+14;
Gif+17; Yip+09] exist for analyzing information-flow using runtime-monitoring,
static analysis, or language-based mechanisms.

Sabelfeld and Myers [SMO03] state that visibility constraints and access controls
are insufficient to protect confidential data within modules. Instead, the authors
advocate the introduction of security-type systems into programming languages to
augment the types with annotations that specify policies on the use of the data.
These security policies are enforced by compile-time type checking.

Buiras et al. [BVR15] introduce the library Hybrid LIO for the programming lan-
guage Haskell to enforce information-flow policies both statically and at runtime.
The authors extend Haskell’s type system to distinguish public and confidential data.
Based on the extended type system, the library Hybrid LIO checks statically and at
runtime if confidential data flows into public objects or methods.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

5.7

In contrast, ModGuard does not require a security-type system. Instead, ModGuard
analyzes all potential data flows through a module’s API and checks if they leak or
manipulate sensitive entities. Nevertheless, the presented security-type systems are
more powerful since they enable checking for non-interference and data flows in
distributed systems, e.g., web servers or files.

Enck et al. [Enc+14] introduce TaintDroid, a runtime monitor for Android to limit
data flow between apps. To do so, TaintDroid instruments the Android VM and taints
sensitive information on the level of variables, methods, files, and inter-application
messages. TaintDroid traces the data flow at runtime and reports violations when-
ever data flows into a method, variable, or application with a lower security level.

Yip et al. [Yip+09] propose Resin a runtime for PHP and Python to prevent data
leaks in web applications. Resin allows developers to specify application-level data
flow policies, which are then enforced at runtime. Similarly, Giffin et al. [Gif+17]
present a novel web framework for Haskell that allows the specification of data flow
policies for sensitive entities and enforces them at runtime.

ModGuard does not provide checks for enforcing data flow policies at runtime but
is exclusively a static analysis for checking the encapsulation of sensitive entities
through APIs.

Conclusion

In this chapter, we investigated to what extent developers can benefit from the
Java module system for restricting vulnerabilities in one module from affecting
others by means of strong encapsulation. To support developers in applying strong
encapsulation, we first capture in a formal definition of the module’s entry points
what types, methods, and fields may become explicitly or implicitly accessible to code
outside the module. Our entry-point model can also serve as a basis for future static
analyses for Java’s modules since it specifies which methods or types of a module
may become accessible, thereby computing the set of methods that are directly
invokable on a given module.

Based on our entry-point model, we introduce the static analysis ModGuard for
detecting the escaping of sensitive entities. We illustrate that escaping sensitive
entities occur in real-world applications and that ModGuard can identify them in
a case study of Tomcat 8.5.21. Our case study shows that using the standard tool
jdeps for naively migrating to modules does not allow developers to benefit from
the module system. Yet, it shows that simply restricting modules by strictly limiting

5.7 Conclusion

147

148

export statements only has a small effect on the number of violations. Even with
only a few exported packages, a significant number of sensitive entities can leak.
Hence, the case study shows that if developers want to benefit from modules and
limit the escaping of sensitive entities, developers must refactor the application’s
type hierarchy, as our discussion of CVE-2017-5648 shows. Nevertheless, the case
study also shows that ModGuard can support migrating to modules by identifying
problematic data flows leading to confidentiality and integrity violations of security-
relevant entities, complementing the module system.

Our discussion on the limitations of the module system for the secure integration of
OSS shows that Java modules are insufficient to isolate inadvertent vulnerabilities
in modules. Especially the Log4Shell vulnerability shows that despite its strong
encapsulation and access prevention to JDK internal types, the permissions granted
by the base module java.base are too broad, violating the Principle of Least Privilege.
The module system does not provide fine-grained access control mechanisms like the
security manager. Further, it provides no means for isolating native code. Given that
the security manager has been marked for removal with Java 17, GraalVM isolates
are a candidate for further research in isolating included OSS as they provide strong
isolation by maintaining separate memory heaps per isolate.

Chapter 5 Securely Integrating Open-Source Software with Java’s Module
System

Conclusion and Outlook

Using community-developed, well-tested Open-Source Software (OSS) provides sev-
eral benefits for software development; it increases speed and quality while de-
creasing costs. Consequently, today’s open-source and commercial applications are
shipped with several open-source libraries and frameworks. A single vulnerability in
any of those open-source artifacts poses a severe threat to the application, as mul-
tiple exploits of vulnerabilities in OSS like Log4Shell or Struts2 have shown. Thus,
developers must react quickly when a new vulnerability has been published in one
of the included open-source artifacts by updating the vulnerable artifact to a more
recent, non-vulnerable version. To do so, developers must regularly check if any of
the included open-source artifacts are affected by a published vulnerability. Since
modern build-automation and dependency-management tools transparently include
dependencies (and their dependencies), developers often need to be made aware of
all the artifacts their application includes. On top of that, developers need to conduct
any updates carefully to avoid breaking the applications. In the case of enterprise
systems that serve business-critical functions, any downtime or malfunction comes
with high costs.

These are severe challenges that developers have to cope with. Prior research shows
that developers are, in fact, unaware that an included open-source artifact was
affected by a known vulnerability or are hesitant to update an artifact as they are
afraid of breaking the application.

In this work, we have presented approaches and tools to address these issues. In
our first contribution, our study on the use of OSS at SAP, we investigate devel-
oper practices regarding the use of open-source artifacts in commercial applications.
Our study revealed challenges for detecting known-vulnerable open-source artifacts
faced by developers and automated tools. In particular, we found that developers
commonly included open-source artifacts that have been modified in some aspect by
forking, re-compilation, or re-bundling multiple artifacts into one. Further, our study
showed that current tools fail to detect known vulnerabilities if any modification
has been applied to artifacts. This poses the risk that vulnerabilities remain unde-
tected. Our results show that such modifications are not exclusive to commercial
applications but also occur in open-source projects hosted on the public open-source
repository Maven Central. To facilitate future research and allow the comparison

149

150

of tools for detecting known-vulnerable open-source artifacts, we derived the test
suite Achilles from our study. Our study and test suite aim to foster future research
to improve the detection capability of tools, especially—but not exclusively—for
modified artifacts.

With SootDiff, we present a tool to check if two classes originate from the same
artifact, even if one has been subject to modifications. SootDiff uses Soot’s interme-
diate representation Jimple and static analyses to transform the classes’ bytecode
into a unified representation, canceling out dissimilarities introduced by different
Java compilers and versions. SootDiff can be considered a first step for successfully
detecting modified open-source artifacts. To adapt it to practical environments, Soot-
Diff can be used to construct databases containing the bytecode (or the fingerprints)
of the original, unmodified open-source artifacts. Using SootDiff, local dependencies
in the application can be matched against fingerprints in the created database or
bytecode. Combined with local sensitive hashing, such as TLSH, the computation of
robust fingerprints of the bytecode generated by SootDiff can be further optimized
for database storage and resilience against modifications, e.g., re-packaging and

re-naming.

Our second contribution, UpCy, an approach for finding compatible updates auto-
matically, solves the challenges developers face when trying to update a vulnerable
open-source artifact. In contrast to state-of-the-art tools, UpCy considers all depen-
dencies an application includes and suggests—if required—an update of (multiple)
artifacts to achieve maximum compatibility with the application and other libraries
and frameworks. To do so, UpCy merges the application’s call graph with the applica-
tion’s dependency graph into a new representation—the unified dependency graph.
On this graph, UpCy applies the min-(s,t)-cut algorithm to identify update options
with minimal incompatibilities and queries our graph database of Maven Central for
concrete instances of these update options. If UpCy finds a concrete set of updates,
it reports them to developers. Then, developers can add the proposed updates as
direct dependencies to their application to eliminate the vulnerable artifact from
the dependency tree. Our empirical evaluation revealed that UpCy effectively finds
updates for artifacts with less or no incompatibilities in cases where state-of-the-art
approaches fail. However, further work is needed to evaluate the acceptance and
understandability of the generated updates from the developers’ perspective.

In our third contribution, we checked to what extent modules can be used for the
secure integration of OSS using the strong encapsulation of the Java module system.
We developed the static analysis ModGuard to allow developers to implement mod-
ules securely so that modules confine security-relevant entities. ModGuard detects

Chapter 6 Conclusion and Outlook

which internal types and data can become accessible through a module’s Application
Programming Interface (API) to outside code, like included OSS. To facilitate the
development of further module analyses, we introduced a formal module model
specified in the logic-based language Datalog. The model precisely formulates what
constitutes a module’s API and what types are meant to be internal. Our case study
on Apache Tomcat and the discussions of the limitations of the module system show
that modules are insufficient for the secure integration of OSS as they provide no
means for controlling access to host resources, e.g., file system or network, and
no isolation of native code. Nevertheless, modules successfully prevent access to
security-relevant Java Development Kit (JDK) internal classes, and thus can support
information hiding by restricting access to sensitive classes and methods.

The use of (vulnerable) OSS is not exclusive to Java but is common practice in most
programming languages, as shown in several studies [HVG18; Pit16; Mar+18].
Equally, the challenges for identifying and updating open-source artifacts are similar
in other programming languages and tools, as we discussed for npm and pip. The
developed module model and UpCy are general enough to be applied to other pro-
gramming languages. However, the adaptation of the tools and concepts to program-
ming languages that do not have a global dependency graph but allow conflicting
and duplicate dependencies should be evaluated in future work.

The secure integration of (untrusted) OSS in applications remains an open challenge.
With the deprecation of the security manager in Java, the deprecation of the security
manager and code access security in .NET, as well as the deprecation of the portable
NativeClient in Google’s Chrome web browser, other mechanisms for limiting the
impact of inadvertent vulnerabilities in OSS are required; strong encapsulation
can only serve as a basis. To enable a wide adaption, these mechanisms should
be easy to implement for developers. The constructive Principle of Least Privilege
and language-based security mechanisms can serve as guidelines to achieve this
goal. For instance, extensions to the module system that allow fine-grained export
of certain packages and classes of the module java.base to specific modules only
are potential candidates.

151

Implementations and Data

While conducting the research presented in this thesis, we have created several
data sets and prototypical implementations. We made these data and implementa-
tions available to enable other researchers to reproduce and extend our results. All
projects contain detailed documentation and instructions to validate our results.

Study on the Use of Open-Source Software and
Achilles

The Achilles test suite for evaluating the precision and recall of open-source vul-
nerability scanners presented in Chapter 3 is published at https://github.com/
secure-software-engineering/achilles-benchmark-depscanners. Achilles pro-
vides a graphical user interface for applying the modifications: re-compilation, re-
packaging, and re-bundling to open-source artifacts and enables the automatic cre-
ation of Maven projects that can serve as test cases for vulnerability scanners. Fur-
ther, the test suite comprises the manual classification of the 2,558 vulnerability
reports presented in Section 3.3. The case study and results presented in Section 3.4
are also contained in the repository.

UpCy: Updating Open-Source Dependencies

The source code of UpCy presented in Chapter 4 is available at https://github.
com/secure-software-engineering/upcy.

The Java projects used in the evaluation of UpCy and the results presented in Sec-
tion 4.3 are hosted at https://doi.org/10.5281/zenodo.7037673. The archive also
contains the complete snapshot of the Maven Central dependency graph and docker
containers to re-run the evaluation.

153

https://github.com/secure-software-engineering/achilles-benchmark-depscanners
https://github.com/secure-software-engineering/achilles-benchmark-depscanners
https://github.com/secure-software-engineering/upcy
https://github.com/secure-software-engineering/upcy
https://doi.org/10.5281/zenodo.7037673

ModGuard: Module Escape Analysis

The implementation of ModGuard presented in Chapter 5 is available at https://
github.com/secure-software-engineering/modguard. In addition to the analysis’
source code, the repository also contains the naive and strict modularization of the
Tomecat 8.5.21 and the evaluation results presented in Section 5.4.

The test suite for Java modules MIC9Bench is publicly available at https://github.
com/secure-software-engineering/mic9bench. The repository comprises 22 test
cases as well as detailed documentation to facilitate reproducibility and further
module-based static code analyses. To re-run our evaluation, the repository contains
an interactive user interface.

154 Chapter 6 Implementations and Data

https://github.com/secure-software-engineering/modguard
https://github.com/secure-software-engineering/modguard
https://github.com/secure-software-engineering/mic9bench
https://github.com/secure-software-engineering/mic9bench

Bibliography

[BM98]

[BNO5]

[BHD12]

[Bav+15]

[Bax+98]

[Bla+06]

[Bla03]

[Bod+11]

Brenda S. Baker and Udi Manber. “Deducing Similarities in Java Sources from
Bytecodes”. In: Proceedings of the Annual Conference on USENIX Annual Techni-
cal Conference. ATEC '98. New Orleans, Louisiana: USENIX Association, 1998,
pp. 15-15. DOI: 10.5555/1268256.1268271 (cit. on p. 66).

Anindya Banerjee and David A. Naumann. “Stack-based access control and
secure information flow”. In: Journal of Functional Programming 15.2 (Mar.
2005), pp. 131-177. DO1: 10.1017/50956796804005453 (cit. on p. 107).

Veronika Bauer, Lars Heinemann, and Florian Deissenboeck. “A structured ap-
proach to assess third-party library usage”. In: 2012 28th IEEE International
Conference on Software Maintenance (ICSM). IEEE, Sept. 2012, pp. 483-492.
DOI: 10.1109/ICSM.2012.6405311 (cit. on pp. 1, 22, 23).

Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. “How the Apache community upgrades dependencies:
an evolutionary study”. In: Empirical Software Engineering 20.5 (Oct. 2015),
pp- 1275-1317. DOI1: 10.1007/510664-014-9325-9 (cit. on pp. 1, 3, 22, 23, 46,
64, 69, 96, 98).

Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. “Clone Detection Using Abstract Syntax Trees”. In: Proceedings. Interna-
tional Conference on Software Maintenance. ICSM ’98. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 368-377. DOI: 10.1109/ICSM.1998.738528
(cit. on p. 67).

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, et al. “The DaCapo Bench-
marks: Java Benchmarking Development and Analysis”. In: ACM SIGPLAN No-
tices 41.10 (Oct. 2006), pp. 169-190. DO1: 10.1145/1167515.1167488 (cit. on
pp. 49, 65).

Bruno Blanchet. “Escape Analysis for Java: Theory and Practice”. In: ACM Trans-
actions on Programming Languages and Systems 25.6 (Nov. 2003), pp. 713-775.
DOI: 10.1145/945885.945886 (cit. on p. 146).

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. “Tam-
ing reflection: Aiding static analysis in the presence of reflection and custom
class loaders”. In: Proceedings of the 33rd international conference on Software
engineering - ICSE °11. ICSE "11. New York, New York, USA: ACM, May 2011,
pp. 241-250. DO1: 10.1145/1985793.1985827 (cit. on p. 108).

155

https://doi.org/10.5555/1268256.1268271
https://doi.org/10.1017/s0956796804005453
https://doi.org/10.1109/ICSM.2012.6405311
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/945885.945886
https://doi.org/10.1145/1985793.1985827

156

[BKH15]

[Bog+16]

[BVR15]

[Cho+99]

[CGK15]

[Cok+15]

[Cor+03]

[DHB19]

[DHB21]

Christopher Bogart, Christian Kistner, and James Herbsleb. “When It Breaks,
It Breaks: How Ecosystem Developers Reason about the Stability of Dependen-
cies”. In: 2015 30th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW). IEEE, Nov. 2015, pp. 86-89. DO1: 10.1109/ASEW.
2015.21 (cit. on pp. 2, 6).

Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. “How
to Break an API: Cost Negotiation and Community Values in Three Software
Ecosystems”. In: Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering. FSE 2016. Seattle, WA, USA:
Association for Computing Machinery, Nov. 2016, pp. 109-120. DO1: 10.1145/
2950290.2950325 (cit. on pp. 2-4, 6, 64, 73, 96).

Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. “HLIO: Mixing Static
and Dynamic Typing for Information-flow Control in Haskell”. In: Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming.
ICFP 2015. Vancouver, BC, Canada: ACM, Aug. 2015, pp. 289-301. DOI: 10.
1145/2784731.2784758 (cit. on p. 146).

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and
Sam Midkiff. “Escape Analysis for Java”. In: Proceedings of the 14th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and appli-
cations. OOPSLA ’'99. Denver, Colorado, USA: ACM, Oct. 1999, pp. 1-19. DOTI:
10.1145/320384.320386 (cit. on p. 146).

Cristina Cifuentes, Andrew Gross, and Nathan Kynes. “Understanding Caller-
Sensitive Method Vulnerabilities A Class of Access Control Vulnerabilities in the
Java Platform”. In: Proceedings of the 4th ACM SIGPLAN International Workshop
on State Of the Art in Program Analysis. SOAP 2015. New York, NY, USA: ACM,
June 2015, pp. 7-12. DO1: 10.1145/2771284.2771286 (cit. on p. 106).

Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, and Joshua Sun-
shine. “Evaluating the Flexibility of the Java Sandbox”. In: Proceedings of the
31st Annual Computer Security Applications Conference. New York, New York,
USA: ACM, Dec. 2015, pp. 1-10. DO1: 10.1145/2818000.2818003 (cit. on pp. 3,
102, 107).

John Corwin, David F. Bacon, David Grove, and Chet Murthy. “MJ: a rational
module system for Java and its applications”. In: ACM SIGPLAN Notices 38.11
(Oct. 2003), pp- 241-254. DOI: 10.1145/949343.949326 (cit. on p. 130).

Andreas Dann, Ben Hermann, and Eric Bodden. “SootDiff: Bytecode Comparison
Across Different Java Compilers”. In: Proceedings of the 8th ACM SIGPLAN Inter-
national Workshop on State Of the Art in Program Analysis. SOAP 2019. Phoenix,
AZ, USA: ACM, June 2019, pp. 14-19. DOI: 10.1145/3315568.3329966 (cit. on
pp. ix, 89).

Andreas Dann, Ben Hermann, and Eric Bodden. “ModGuard: Identifying In-
tegrity & Confidentiality Violations in Java Modules”. In: IEEE Transactions on
Software Engineering 47.8 (Aug. 2021), pp. 1656-1667. DO1: 10.1109/TSE.
2019.2931331 (cit. on p. ix).

Bibliography

https://doi.org/10.1109/ASEW.2015.21
https://doi.org/10.1109/ASEW.2015.21
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/2771284.2771286
https://doi.org/10.1145/2818000.2818003
https://doi.org/10.1145/949343.949326
https://doi.org/10.1145/3315568.3329966
https://doi.org/10.1109/TSE.2019.2931331
https://doi.org/10.1109/TSE.2019.2931331

[DHB23]

[Dan+22]

[DBM19]

[DMG19]

[Der+17]

[DJB14]

[Die+19]

[Die+17]

[DH22]

[Enc+14]

Andreas Dann, Ben Hermann, and Eric Bodden. “UPCY: Safely Updating Out-
dated Dependencies”. In: 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). ICSE ’23. Melbourne, Australia: IEEE, May 2023,
pp. 233-244. DOI: 10.1109/icse48619.2023.00031 (cit. on p. ix).

Andreas Dann, Henrik Plate, Ben Hermann, Serena Elisa Ponta, and Eric Bodden.
“Identifying Challenges for OSS Vulnerability Scanners - A Study & Test Suite”.
In: IEEE Transactions on Software Engineering 48.9 (Sept. 2022), pp. 3613-3625.
DOI: 10.1109/TSE.2021.3101739 (cit. on pp. ix, 46, 47).

Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci. “A Screening Test
for Disclosed Vulnerabilities in FOSS Components”. In: IEEE Transactions on
Software Engineering 45.10 (Oct. 2019), pp. 945-966. DO1: 10.1109/TSE.2018.
2816033 (cit. on p. 21).

Alexandre Decan, Tom Mens, and Philippe Grosjean. “An empirical comparison
of dependency network evolution in seven software packaging ecosystems”. In:
Empirical Software Engineering 24.1 (Feb. 2019), pp. 381-416. DO1: 10.1007/
s10664-017-9589-y (cit. on p. 1).

Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. “Keep Me
Updated: An Empirical Study of Third-Party Library Updatability on Android”.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’17. Dallas, Texas, USA: ACM, Oct. 2017, pp. 2187-200.
DOI: 10.1145/3133956.3134059 (cit. on pp. 2-4).

Jens Dietrich, Kamil Jezek, and Premek Brada. “Broken promises: An empirical
study into evolution problems in Java programs caused by library upgrades”.
In: 2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, Feb. 2014, pp. 64—
73. DOI: 10.1109/CSMR-WCRE.2014.6747226 (cit. on pp. 3, 71, 73, 97).

Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
“Dependency Versioning in the Wild”. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, May 2019, pp. 349-
359. DOI: 10.1109/MSR.2019.00061 (cit. on p. 97).

Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. “XCorpus - An exe-
cutable corpus of Java programs”. In: The Journal of Object Technology 16.4
(2017), pp- 1-24. DOI: 10.5381/j0t.2017.16.4.al (cit. on p. 65).

Johannes Diising and Ben Hermann. “Analyzing the Direct and Transitive Impact
of Vulnerabilities onto Different Artifact Repositories”. In: Digital Threats (June
2022). Just Accepted. DOI: 10.1145/3472811 (cit. on pp. 2, 4, 98).

William Enck, Peter Gilbert, Byung-Gon Chun, et al. “TaintDroid: An Information-
flow Tracking System for Realtime Privacy Monitoring on Smartphones”. In:
ACM Transactions on Computer Systems. OSDI'10 32.2 (June 2014), pp. 1-29.
DOI: 10.1145/2619091 (cit. on pp. 146, 147).

Bibliography

157

https://doi.org/10.1109/icse48619.2023.00031
https://doi.org/10.1109/TSE.2021.3101739
https://doi.org/10.1109/TSE.2018.2816033
https://doi.org/10.1109/TSE.2018.2816033
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.5381/jot.2017.16.4.a1
https://doi.org/10.1145/3472811
https://doi.org/10.1145/2619091

158

[ECZ22]

[Fan+20]

[Foo+18]

[FEF56]

[GD09]

[GD10]

[GS00]

[Geo+09]

[Geo+08]

Douglas Everson, Long Cheng, and Zhenkai Zhang. “Log4shell: Redefining the
Web Attack Surface”. In: Proceedings 2022 Workshop on Measurements, Attacks,
and Defenses for the Web. Internet Society, 2022. DOI: 10.14722/madweb.2022.
23010 (cit. on p. 139).

Gang Fan, Chengpeng Wang, Rongxin Wu, et al. “Escaping dependency hell:
Finding build dependency errors with the unified dependency graph”. In: Pro-
ceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, July 2020, pp. 463-474. DO1: 10.1145/3395363.3397388
(cit. on p. 98).

Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma. “Effi-
cient Static Checking of Library Updates”. In: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ESEC/FSE 2018. Lake Buena Vista, FL,
USA: ACM, Oct. 2018, pp. 791-96. DOI: 10.1145/3236024.3275535 (cit. on
p.- 89).

L. R. Ford and D. R. Fulkerson. “Maximal Flow Through a Network”. In: Cana-
dian Journal of Mathematics 8 (1956), pp. 399-404. DOI: 10.4153/CIM- 1956-
045-5 (cit. on p. 80).

Kiev Gama and Didier Donsez. “Towards Dynamic Component Isolation in a
Service Oriented Platform”. In: Component-Based Software Engineering. Ed. by
Grace A Lewis, Iman Poernomo, and Christine Hofmeister. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 104-120. DOI: 10.16007/978-3- 642 -
02414-6_7 (cit. on p. 144).

Kiev Gama and Didier Donsez. “A Self-healing Component Sandbox for Untrust-
worthy Third Party Code Execution”. In: Component-Based Software Engineering.
Ed. by Lars Grunske, Ralf Reussner, and Frantisek Plasil. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 130-149. DOI: 10.1007/978-3- 642 -
13238-4_8 (cit. on p. 144).

David Gay and Bjarne Steensgaard. “Fast Escape Analysis and Stack Allocation
for Object-Based Programs”. In: Compiler Construction. CC ’00. London, UK, UK:
Springer Berlin Heidelberg, 2000, pp. 82-93. DOI: 10.1007/3-540-46423-9_6
(cit. on p. 145).

Nicolas Geoffray, Gael Thomas, Gilles Muller, et al. “I-JVM: a Java Virtual Ma-
chine for component isolation in OSGi”. In: 2009 IEEE/IFIP International Con-
ference on Dependable Systems & Networks. IEEE, June 2009, pp. 544-553. DOI:
10.1109/DSN.2009.5270296 (cit. on p. 144).

Nicolas Geoffray, Gaél Thomas, Bertil Folliot, and Charles Clément. “Towards
a New Isolation Abstraction for OSGi”. In: Proceedings of the 1st Workshop on
Isolation and Integration in Embedded Systems. IIES '08. Glasgow, Scotland: ACM,
Apr. 2008, pp. 41-45. DOI: 10.1145/1435458.1435466 (cit. on p. 144).

Bibliography

https://doi.org/10.14722/madweb.2022.23010
https://doi.org/10.14722/madweb.2022.23010
https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1145/3236024.3275535
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/978-3-642-02414-6_7
https://doi.org/10.1007/978-3-642-02414-6_7
https://doi.org/10.1007/978-3-642-13238-4_8
https://doi.org/10.1007/978-3-642-13238-4_8
https://doi.org/10.1007/3-540-46423-9_6
https://doi.org/10.1109/DSN.2009.5270296
https://doi.org/10.1145/1435458.1435466

[Gif+17]

[Goi+13]

[GEDO3]

[Gon+97]

[GS17]

[Har22]

[Hei+11]

[HG22]

[HVG18]

Daniel B. Giffin, Amit Levy, Deian Stefan, et al. “Hails: Protecting Data Privacy
in Untrusted Web Applications”. In: Presented as part of the 10th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 12) 25.4-
5 (July 2017). Ed. by Toby Murray, Andrei Sabelfeld, and Lujo Bauer, pp. 427-
461. DOI: 10.3233/jcs-15801 (cit. on pp. 146, 147).

Francois Goichon, Guillaume Salagnac, Pierre Parrend, and Stéphane Frénot.
“Static Vulnerability Detection in Java Service-oriented Components”. In: Jour-
nal of Computer Virology and Hacking Techniques 9.1 (Sept. 2013), pp. 15-26.
DOI: 10.1007/511416-012-0172-1 (cit. on p. 144).

Li Gong, Gary Ellison, and Mary Dageforde. Inside Java 2 Platform Security:
Architecture, API Design, and Implementation. 2. ed., 1. print. Boston, Mass.:
Addison-Wesley Professional, 2003 (cit. on pp. 13, 102, 104, 106, 107, 141).

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. “Go-
ing beyond the Sandbox: An Overview of the New Security Architecture in the
JavaTM Development Kit 1.2”. In: Proceedings of the USENIX Symposium on In-
ternet Technologies and Systems on USENIX Symposium on Internet Technologies
and Systems. USITS’97. Monterey, California: USENIX Association, 1997, p. 10
(cit. on pp. 104, 141).

Neville Grech and Yannis Smaragdakis. “P/Taint: Unified Points-to and Taint
Analysis”. In: Proceedings of the ACM on Programming Languages 1.00PSLA
(Oct. 2017), pp. 1-28. DOI: 10.1145/3133926 (cit. on pp. 121, 122).

Nicolas Harrand. “Software Diversity for Third-Party Dependencies”. PhD thesis.
SE-10044 Stockholm, Sweden: KTH Royal Institute of Technology, School of
Electrical Engineering, Computer Science, Division of Software, and Computer
Systems, 2022 (cit. on p. 3).

Lars Heinemann, Florian Deissenboeck, Mario Gleirscher, Benjamin Hummel,
and Maximilian Irlbeck. “On the Extent and Nature of Software Reuse in Open
Source Java Projects”. In: Top Productivity through Software Reuse. Ed. by Klaus
Schmid. Vol. 6727 LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 207-222. DO1: 10.1007/978-3-642-21347-2_16 (cit. on pp. 1, 22, 23, 64).

Joseph Hejderup and Georgios Gousios. “Can we trust tests to automate de-
pendency updates? A case study of Java Projects”. In: Journal of Systems and
Software 183 (Jan. 2022), p. 111097. DOI1: 10.1016/j.jss.2021.111097 (cit.
on pp. 2-4, 6, 7, 64, 70, 74, 78, 86, 87, 89, 93, 95, 97).

Joseph Hejderup, Arie Van Deursen, and Georgios Gousios. “Software ecosystem
call graph for dependency management”. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results. ACM,
May 2018, pp. 101-104. DOI: 10.1145/3183399.3183417 (cit. on pp. 7, 97, 98,
151).

Bibliography

159

https://doi.org/10.3233/jcs-15801
https://doi.org/10.1007/s11416-012-0172-1
https://doi.org/10.1145/3133926
https://doi.org/10.1007/978-3-642-21347-2_16
https://doi.org/10.1016/j.jss.2021.111097
https://doi.org/10.1145/3183399.3183417

160

[Hen+20]

[HB21]

[Hol+16]

[Hu+17]

[HWHO07]

[Hua+20]

[J H94]

[KKIO2]

[KRR14]

[Kos07]

Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. “Find-
ing All Global Minimum Cuts in Practice”. en. In: 28th Annual European Sym-
posium on Algorithms (ESA 2020). Ed. by Fabrizio Grandoni, Grzegorz Herman,
and Peter Sanders. Vol. 173. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2020, pp. 1-20. DOI: 10.4230/LIPIcs.ESA.2020.59 (cit. on p. 95).

Philipp Holzinger and Eric Bodden. “A Systematic Hardening of Java’s Infor-
mation Hiding”. In: Proceedings of the 2021 International Symposium on Ad-
vanced Security on Software and Systems. ACM, May 2021, pp. 11-22. poTI:
10.1145/3457340.3458300 (cit. on pp. 101, 102, 108).

Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. “An In-
Depth Study of More Than Ten Years of Java Exploitation”. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. CCS
16. New York, New York, USA: ACM, Oct. 2016, pp. 779-790. DOI: 10.1145/
2976749.2978361 (cit. on pp. 102, 107).

Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. “Binary Code Clone De-
tection across Architectures and Compiling Configurations”. In: 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC). 2017, pp. 88—
98. DOI: 10.1109/ICPC.2017.22 (cit. on p. 8).

Chi-Chih Huang, Pang-Chieh Wang, and Ting-Wei Hou. “Advanced OSGi Security
Layer”. In: 21st International Conference on Advanced Information Networking
and Applications Workshops (AINAW’07). Vol. 2. IEEE, May 2007, pp. 518-523.
DOI: 10.1109/AINAW.2007.70 (cit. on p. 145).

Kaifeng Huang, Bihuan Chen, Bowen Shi, et al. “Interactive, effort-aware library
version harmonization”. In: Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, Nov. 2020, pp. 518-529. DOI: 10.1145/3368089.
3409689 (cit. on p. 70).

J. Howard Johnson. “Substring matching for clone detection and change track-
ing”. In: Proceedings International Conference on Software Maintenance ICSM-94.
IEEE Comput. Soc. Press, 1994, pp. 120-126. DOI: 10.1109/ICSM.1994.336783
(cit. on p. 67).

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. “CCFinder: a multilin-
guistic token-based code clone detection system for large scale source code”. In:
IEEE Transactions on Software Engineering 28.7 (July 2002), pp. 654-670. DO1:
10.1109/TSE.2002.1019480 (cit. on p. 67).

Iman Keivanloo, Chanchal K. Roy, and Juergen Rilling. “SeByte: Scalable clone
and similarity search for bytecode”. In: Science of Computer Programming 95
(Dec. 2014), pp. 426-444. DO1: 10.1016/j.scico0.2013.10.006 (cit. on p. 66).

Rainer Koschke. “Survey of Research on Software Clones”. en. In: Dagstuhl
Seminar Proceedings 06301 (2007). Ed. by Rainer Koschke, Ettore Merlo, and
Andrew Walenstein. DO1: 10.4230/DagSemProc.06301.13 (cit. on pp. 66, 67).

Bibliography

https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://doi.org/10.1145/3457340.3458300
https://doi.org/10.1145/2976749.2978361
https://doi.org/10.1145/2976749.2978361
https://doi.org/10.1109/ICPC.2017.22
https://doi.org/10.1109/AINAW.2007.70
https://doi.org/10.1145/3368089.3409689
https://doi.org/10.1145/3368089.3409689
https://doi.org/10.1109/ICSM.1994.336783
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1016/j.scico.2013.10.006
https://doi.org/10.4230/DagSemProc.06301.13

[Kri+21]

[Kul+18]

[Lam+11]

[Lat+23]

[LerO1]

[LTX19]

[LB98]

[Lim94]

[Liv+15]

[Lop+17]

[Mar+18]

[Mas+15]

Stefan Kriiger, Johannes Spath, Karim Ali, Eric Bodden, and Mira Mezini. “CrySLs:
An Extensible Approach to Validating the Correct Usage of Cryptographic APIs”.
In: IEEE Transactions on Software Engineering 47.11 (Nov. 2021), pp. 2382-2400.
DOI: 10.1109/TSE.2019.2948910 (cit. on p. 121).

Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. “Do Developers Update Their Library Dependencies?” In: Empirical Soft-
ware Engineering 23.1 (Feb. 2018), pp. 384-417. DO1: 10.1007/510664- 017 -
9521-5 (cit. on pp. 1, 2, 4, 22, 23, 46-48, 64, 69, 96, 98).

Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. “The Soot frame-
work for Java program analysis: a retrospective”. In: Cetus Users and Compiler
Infrastructure Workshop (CETUS 2011). Vol. 15. 35. 2011 (cit. on pp. 54, 58, 60,
120, 121).

Jasmine Latendresse, Suhaib Mujahid, Diego Elias Costa, and Emad Shihab.
“Not All Dependencies Are Equal: An Empirical Study on Production Dependen-
cies in NPM”. In: Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. ASE ’22. Rochester, MI, USA: Association for
Computing Machinery, 2023. DOI: 10.1145/3551349.3556896 (cit. on p. 7).

Xavier Leroy. “Java Bytecode Verification: An Overview”. In: Computer Aided
Verification. Ed. by Gérard Berry, Hubert Comon, and Alain Finkel. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2001, pp. 265-285. DO1: 10.1007/3-540-
44585-4_26 (cit. on p. 105).

Yue Li, Tian Tan, and Jingling Xue. “Understanding and analyzing Java reflec-
tion”. In: ACM Transactions on Software Engineering and Methodology 28.2 (Feb.
2019), pp. 1-50. DO1: 10.1145/3295739 (cit. on pp. 107, 108).

Sheng Liang and Gilad Bracha. “Dynamic Class Loading in the Java Virtual
Machine”. In: SIGPLAN Not. 33.10 (Oct. 1998), pp. 36-44. DOI1: 10. 1145/
286942 .286945 (cit. on pp. 13, 106).

W.C. Lim. “Effects of reuse on quality, productivity, and economics”. In: IEEE
Software 11.5 (Sept. 1994), pp. 23-30. DOI: 10.1109/52.311048 (cit. on p. 1).

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, et al. “In defense of
soundiness: A manifesto”. In: Communications of the ACM 58.2 (Jan. 2015),
pp. 44-46. DOI: 10.1145/2644805 (cit. on p. 103).

Cristina V. Lopes, Petr Maj, Pedro Martins, et al. “DéjaVu: a map of code du-
plicates on GitHub”. In: Proceedings of the ACM on Programming Languages
1.00PSLA (Oct. 2017), pp. 1-28. DOI: 10.1145/3133908 (cit. on p. 64).

Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro. “Docker
ecosystem - Vulnerability Analysis”. In: Computer Communications 122 (June
2018), pp. 30-43. DOI: 10.1016/].COMCOM.2018.03.011 (cit. on pp. 64, 151).

Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, et al. “Use at Your Own Risk:
The Java Unsafe API in the Wild”. In: ACM SIGPLAN Notices 50.10 (Oct. 2015),
pp. 695-710. DOI: 10.1145/2858965.2814313 (cit. on p. 106).

Bibliography

161

https://doi.org/10.1109/TSE.2019.2948910
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/3551349.3556896
https://doi.org/10.1007/3-540-44585-4_26
https://doi.org/10.1007/3-540-44585-4_26
https://doi.org/10.1145/3295739
https://doi.org/10.1145/286942.286945
https://doi.org/10.1145/286942.286945
https://doi.org/10.1109/52.311048
https://doi.org/10.1145/2644805
https://doi.org/10.1145/3133908
https://doi.org/10.1016/J.COMCOM.2018.03.011
https://doi.org/10.1145/2858965.2814313

[MLM96] Mayrand, Leblanc, and Merlo. “Experiment on the automatic detection of func-
tion clones in a software system using metrics”. In: Proceedings of International
Conference on Software Maintenance ICSM-96. IEEE, 1996, pp. 244-253. DOI:
10.1109/ICSM.1996.565012 (cit. on p. 67).

[MRRO5] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. “Parameterized Object
Sensitivity for Points-to Analysis for Java”. In: ACM Transactions on Software En-
gineering and Methodology 14.1 (Jan. 2005), pp. 1-41. DO1: 10.1145/1044834.
1044835 (cit. on p. 133).

[MP18] André Miranda and Jodo Pimentel. “On the Use of Package Managers by the
C++ Open-Source Community”. In: Proceedings of the 33rd Annual ACM Sym-
posium on Applied Computing. SAC ’18. Pau, France: Association for Computing
Machinery, 2018, pp. 1483-1491. DOI: 10.1145/3167132.3167290 (cit. on
p.- 16).

[MP17] Samim Mirhosseini and Chris Parnin. “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?” In: Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software Engineering
(Oct. 2017), pp. 84-94. DOI: 10.1109/ASE.2017.8115621 (cit. on pp. 2, 4, 6,
69, 96, 98).

[MNT20] Anders Mgller, Benjamin Barslev Nielsen, and Martin Toldam Torp. “Detecting
locations in JavaScript programs affected by breaking library changes”. In: Pro-
ceedings of the ACM on Programming Languages 4.00PSLA (Nov. 2020), pp. 1-
25. DOI1: 10.1145/3428255 (cit. on p. 7).

[Mye86] FEugene W. Myers. “AnO(ND) difference algorithm and its variations”. In: Algo-
rithmica 1.1-4 (Jan. 1986), pp. 251-266. DOI: 10.1007/BF01840446 (cit. on
p. 60).

[NNIOO] Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. “A Fast Algorithm
for Cactus Representations of Minimum Cuts”. In: Japan Journal of Industrial
and Applied Mathematics 17.2 (June 2000), pp. 245-264. DO1: 10.1007/BF03167346
(cit. on p. 95).

[NDM16] Viet Hung Nguyen, Stanislav Dashevskyi, and Fabio Massacci. “An automatic
method for assessing the versions affected by a vulnerability”. In: Empirical
Software Engineering 21.6 (Dec. 2016), pp. 2268-2297. DOI: 10.1007/510664-
015-9408-2 (cit. on p. 21).

[NM13] Viet Hung Nguyen and Fabio Massacci. “The (Un)Reliability of NVD Vulnerable
Versions Data: An Empirical Experiment on Google Chrome Vulnerabilities”.
In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer
and Communications Security. ASIA CCS ’13. Hangzhou, China: Association for
Computing Machinery, 2013, pp. 493-98. DO1: 10.1145/2484313.2484377 (cit.
on p. 21).

[Nil+13] Gary Nilson, Kent Wills, Jeffrey Stuckman, and James Purtilo. “BugBox: A Vul-
nerability Corpus for PHP Web Applications”. In: Presented as part of the 6th
Workshop on Cyber Security Experimentation and Test. Washington, D.C.: USENIX,
2013 (cit. on p. 65).

162 Bibliography

https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/3167132.3167290
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1145/3428255
https://doi.org/10.1007/BF01840446
https://doi.org/10.1007/BF03167346
https://doi.org/10.1007/s10664-015-9408-2
https://doi.org/10.1007/s10664-015-9408-2
https://doi.org/10.1145/2484313.2484377

[OCC13]

[One96]

[Oral7c]

[0SG23]

[Par09]

[PFO7]

[PFO9]

[Pas+18]

[Pas+22]

[PVM20]

[Pis22]

Jonathan Oliver, Chun Cheng, and Yanggui Chen. “TLSH — A Locality Sensitive
Hash”. In: 2013 Fourth Cybercrime and Trustworthy Computing Workshop. IEEE,
Nowv. 2013, pp. 7-13. DOI: 10.1109/CTC.2013.9 (cit. on p. 39).

Aleph One. “Smashing the stack for fun and profit”. In: Phrack magazine 7.49
(1996), pp. 14-16 (cit. on p. 105).

Oracle Corporation. The Java Language Specification Java SE 9 Edition. https:
//docs.oracle.com/javase/specs/jls/se9/j1s9.pdf. 2017 (cit. on pp. 108,
110).

OSGi Alliance. OSGi Core, Release 8. Tech. rep. https://osgi.github.io/o0sgi/
core/. Eclipse Foundation, 2023 (cit. on pp. 14, 106, 112).

Pierre Parrend. “Enhancing Automated Detection of Vulnerabilities in Java Com-
ponents”. In: 2009 International Conference on Availability, Reliability and Se-
curity. IEEE, Mar. 2009, pp. 216-223. DOI: 10.1109/ARES . 2009 .9 (cit. on
p. 144).

Pierre Parrend and Stephane Frénot. “Supporting the Secure Deployment of
OSGi Bundles”. In: 2007 IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks. IEEE, June 2007, pp. 1-6. DOI: 10.1109/
WOWMOM. 2007 .4351681 (cit. on p. 143).

Pierre Parrend and Stephane Frénot. “Security benchmarks of OSGi platforms:
toward Hardened OSGi”. In: Software: Practice and Experience 39.5 (Apr. 2009),
pp. 471-499. DO1: 10.1002/spe.906 (cit. on p. 143).

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. “Vulnerable Open Source Dependencies: Counting Those That Matter”.
In: Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. ESEM ’18. Oulu, Finland: ACM, Oct.
2018, pp. 1-10. DOTI: 10.1145/3239235.3268920 (cit. on pp. 20, 23, 28, 46-48,
64, 74, 75, 77, 87).

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. “Vuln4Real: A Methodology for Counting Actually Vulnerable De-
pendencies”. In: IEEE Transactions on Software Engineering 48.5 (May 2022),
pp. 1592-1609. DOTI: 10.1109/TSE.2020.3025443 (cit. on pp. 2, 4, 22, 47, 64,
87, 98).

Ivan Pashchenko, Duc-Ly Ly Vu, and Fabio Massacci. “A Qualitative Study of
Dependency Management and Its Security Implications”. In: Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’20. Virtual Event, USA: ACM, Oct. 2020, pp. 1513-1531. DOI1: 10.1145/
3372297.3417232 (cit. on p. 7).

Goran Piskachev. “Adapting taint analyses for detecting security vulnerabilities”.
eng. PhD thesis. Paderborn University, Warburger Strafde 100, 33098 Paderborn:
Faculty for Computer Science, Electrical Engineering and Mathematics, Depart-
ment of Computer Science, Research Group Secure Software Engineering, 2022.
DOI: 10.17619/UNIPB/1- 1665 (cit. on p. 131).

Bibliography

163

https://doi.org/10.1109/CTC.2013.9
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://osgi.github.io/osgi/core/
https://osgi.github.io/osgi/core/
https://doi.org/10.1109/ARES.2009.9
https://doi.org/10.1109/WOWMOM.2007.4351681
https://doi.org/10.1109/WOWMOM.2007.4351681
https://doi.org/10.1002/spe.906
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1109/TSE.2020.3025443
https://doi.org/10.1145/3372297.3417232
https://doi.org/10.1145/3372297.3417232
https://doi.org/10.17619/UNIPB/1-1665

164

[Pit16]

[Pla23]

[PPS18]

[PPS20]

[Pon+19]

[Pra+21]

[RVV14]

[RKC18]

[RAB14]

[Rei+16]

Mike Pittenger. The State of Open Source Security in Commercial Applications.
Tech. rep. https://info.blackducksoftware.com/rs/872-0LS-526/images/
0SSAReportFINAL . pdf. BlackDuck Software, 2016, pp. 1-5 (cit. on pp. 1, 22,
46-48, 64, 151).

Henrik Plate. State of Dependency Management 2023. Tech. rep. https://www.
endorlabs.com/state- of - dependency - management - 2023. Endor Labs, 2023
(cit. on p. 1).

Serena FElisa Ponta, Henrik Plate, and Antonino Sabetta. “Beyond Metadata:
Code-Centric and Usage-Based Analysis of Known Vulnerabilities in Open-Source
Software”. In: 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, Sept. 2018, pp. 449-460. DOI1: 10.1109/ICSME.2018.
00054 (cit. on pp. 21, 23, 24, 34, 36, 46, 64, 98).

Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. “Detection, assessment
and mitigation of vulnerabilities in open source dependencies”. In: Empirical
Software Engineering 25.5 (Sept. 2020), pp. 3175-3215. DO1: 10.1007/510664 -
020-09830- x (cit. on pp. 21, 23, 36).

Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. “A Manually-Curated Dataset of Fixes to Vulnerabilities of Open-
Source Software”. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). MSR ’19. Montreal, Quebec, Canada: IEEE, May
2019, pp. 383-387. DOI: 10.1109/MSR.2019.00064 (cit. on pp. 27, 46-48).

Gede Artha Azriadi Prana, Abhishek Sharma, Lwin Khin Shar, et al. “Out of
sight, out of mind? How vulnerable dependencies affect open-source projects”.
In: Empirical Software Engineering 26.4 (Apr. 2021). DOI: 10.1007 /510664 -
021-09959- 3 (cit. on pp. 24, 7, 96).

Steven Raemaekers, Arie Van Deursen, and Joost Visser. “Semantic versioning
versus breaking changes: A study of the maven repository”. In: Proceedings -
2014 14th IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM 2014 (Sept. 2014), pp. 215-224. DOI: 10.1109/SCAM.
2014.30 (cit. on p. 3).

Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. “A Comparison of
Code Similarity Analysers”. In: Empirical Software Engineering 23.4 (Aug. 2018),
pp. 2464-2519. DOI: 10.1007/510664-017-9564-7 (cit. on p. 67).

Siegfried Rasthofer, Steven Arzt, and Eric Bodden. “A Machine-learning Ap-
proach for Classifying and Categorizing Android Sources and Sinks”. In: Proceed-
ings 2014 Network and Distributed System Security Symposium February (2014),
pp. 23-26. DOI: 10.14722/ndss.2014.23039 (cit. on p. 131).

Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.
“Call Graph Construction for Java Libraries”. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
FSE 2016. Seattle, WA, USA: ACM, Nov. 2016, pp. 474-486. DOI: 10.1145/
2950290.2950312 (cit. on p. 120).

Bibliography

https://info.blackducksoftware.com/rs/872-OLS-526/images/OSSAReportFINAL.pdf
https://info.blackducksoftware.com/rs/872-OLS-526/images/OSSAReportFINAL.pdf
https://www.endorlabs.com/state-of-dependency-management-2023
https://www.endorlabs.com/state-of-dependency-management-2023
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1109/MSR.2019.00064
https://doi.org/10.1007/s10664-021-09959-3
https://doi.org/10.1007/s10664-021-09959-3
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1007/s10664-017-9564-7
https://doi.org/10.14722/ndss.2014.23039
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/2950290.2950312

[RHO9]

[SMO03]

[Saj+14]

[SRO5]

[SS75]

[Sch11]

[Sch+23]

[SE13]

[SFZ10]

[STM10]

[Sma+15]

Per Runeson and Martin Host. “Guidelines for conducting and reporting case
study research in software engineering”. In: Empirical Software Engineering 14.2
(Apr. 2009), pp. 131-164. DOI: 10.1007/510664-008-9102- 8 (cit. on p. 24).

Andrei Sabelfeld and Andrew C. Myers. “Language-based information-flow se-
curity”. In: IEEE Journal on Selected Areas in Communications 21.1 (Jan. 2003),
pp- 5-19. DOI: 10.1109/JSAC.2002.806121 (cit. on p. 146).

Hitesh Sajnani, Vaibhav Saini, Joel Ossher, and Cristina V. Lopes. “Is Popularity
a Measure of Quality? An Analysis of Maven Components”. In: 2014 IEEE Inter-
national Conference on Software Maintenance and Evolution. IEEE, Sept. 2014,
pp. 231-240. DOI: 10.1109/ICSME.2014.45 (cit. on p. 28).

Alexandru Sélcianu and Martin Rinard. “Purity and Side Effect Analysis for Java
Programs”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, pp. 199-215. DOI: 10.1007/978-3-540-30579-8_14 (cit. on p. 126).

Jerome H. Saltzer and Michael D. Schroeder. “The protection of information
in computer systems”. In: Proceedings of the IEEE 63.9 (1975), pp. 1278-1308.
DOI: 10.1109/PR0OC.1975.9939 (cit. on pp. 103, 120, 141).

Fred B. Schneider. Blueprint for a Science of Cybersecurity. Tech. rep. https:
//www.cs.cornell.edu/fbs/publications/SoS.blueprint.pdf. Ithaca, New
York 14853: Department of Computer Science, Cornell University, 2011 (cit. on
p. 102).

Stefan Schott, Serena Elisa Ponta, Wolfram Fischer, Jonas Klauke, and Eric Bod-
den. “Java Bytecode Normalization for Code Similarity Analysis”. submitted to
IEEE Transactions on Software Engineering. 2023 (cit. on pp. 67, 68).

Widura Schwittek and Stefan Eicker. “A Study on Third Party Component Reuse
in Java Enterprise Open Source Software”. In: Proceedings of the 16th Interna-
tional ACM Sigsoft Symposium on Component-Based Software Engineering. CBSE
’13. Vancouver, British Columbia, Canada: Association for Computing Machinery,
2013, pp. 75-80. DOI: 10.1145/2465449.2465468 (cit. on pp. 1, 64).

Gehan M.K. Selim, King Chun Foo, and Ying Zou. “Enhancing Source-Based
Clone Detection Using Intermediate Representation”. In: 2010 17th Working
Conference on Reverse Engineering. IEEE, Oct. 2010, pp. 227-236. DOI: 10.1109/
WCRE.2010.33 (cit. on p. 67).

Joseph Siefers, Gang Tan, and Greg Morrisett. “Robusta: Taming the Native
Beast of the JVM”. In: Proceedings of the 17th ACM conference on Computer and
communications security. New York, New York, USA: ACM, Oct. 2010, pp. 201-
211. DOI: 10.1145/1866307.1866331 (cit. on pp. 3, 142).

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-
boer. “More Sound Static Handling of Java Reflection”. In: Programming Lan-
guages and Systems. Ed. by Xinyu Feng and Sungwoo Park. Cham: Springer
International Publishing, 2015, pp. 485-503. DOI: 10.1007/978-3-319-26529-
2_26 (cit. on pp. 108, 126).

Bibliography

165

https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/ICSME.2014.45
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1109/PROC.1975.9939
https://www.cs.cornell.edu/fbs/publications/SoS.blueprint.pdf
https://www.cs.cornell.edu/fbs/publications/SoS.blueprint.pdf
https://doi.org/10.1145/2465449.2465468
https://doi.org/10.1109/WCRE.2010.33
https://doi.org/10.1109/WCRE.2010.33
https://doi.org/10.1145/1866307.1866331
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1007/978-3-319-26529-2_26

166

[SB11]

[SBL11]

[SKB14]

[Spé+16]

[ST12]

[ST14]

[Tan+23]

[Tem+10]

[Val+10]

Yannis Smaragdakis and Martin Bravenboer. “Using Datalog for Fast and Easy
Program Analysis”. In: Proceedings of the First International Conference on Data-
log Reloaded. Datalog’10. Oxford, UK: Springer Berlin Heidelberg, 2011, pp. 245—
251. DOI: 10.1007/978-3-642-24206-9_14 (cit. on pp. 103, 114, 115, 120).

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhotak. “Pick Your Con-
texts Well: Understanding Object-sensitivity”. In: Proceedings of the 38th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. POPL
’11. Austin, Texas, USA: ACM, Jan. 2011, pp. 17-30. DO1: 10.1145/1926385.
1926390 (cit. on pp. 114, 115).

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. “Introspective
Analysis: Context-sensitivity, Across the Board”. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI
"14. Edinburgh, United Kingdom: ACM, June 2014, pp. 485-495. DO1: 10.1145/
2594291.2594320 (cit. on pp. 114, 115).

Johannes Spéth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. “Boomerang:
Demand-Driven Flow- and Context-Sensitive Pointer Analysis for Java”. en. In:

Leibniz International Proceedings in Informatics (LIPIcs) 56 (2016). Ed. by Shri-

ram Krishnamurthi and Benjamin S. Lerner, pp. 1-26. DOI: 10.4230/LIPIcs.

ECOOP.2016.22 (cit. on p. 127).

Mengtao Sun and Gang Tan. “JVM-Portable Sandboxing of Java’s Native Li-
braries”. In: Computer Security — ESORICS 2012. Ed. by Sara Foresti, Moti
Yung, and Fabio Martinelli. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 842-858. DOI: 10.1007/978-3-642-33167-1_48 (cit. on pp. 141-143).

Mengtao Sun and Gang Tan. “NativeGuard: Protecting Android Applications
from Third-Party Native Libraries”. In: Proceedings of the 2014 ACM conference
on Security and privacy in wireless & mobile networks. ACM, July 2014, pp. 165-
176. DOI: 10.1145/2627393.2627396 (cit. on pp. 142, 143).

Wei Tang, Zhengzi Xu, Chengwei Liu, et al. “Towards Understanding Third-
Party Library Dependency in C/C++ Ecosystem”. In: Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering. ASE ’22.
Rochester, MI, USA: Association for Computing Machinery, 2023. DO1: 10.1145/
3551349.3560432 (cit. on pp. 8, 16).

Ewan Tempero, Craig Anslow, Jens Dietrich, et al. “The Qualitas Corpus: A
Curated Collection of Java Code for Empirical Studies”. In: 2010 Asia Pacific
Software Engineering Conference. IEEE, Nov. 2010, pp. 336-345. DOI: 10.1109/
APSEC.2010.46 (cit. on p. 65).

Raja Vallée-Rai, Phong Co, Etienne Gagnon, et al. “Soot: A Java Bytecode Opti-
mization Framework”. In: CASCON First Decade High Impact Papers on - CASCON
’10. CASCON ’10. Toronto, Ontario, Canada: ACM Press, 2010, pp. 214-224.
DOI: 10.1145/1925805.1925818 (cit. on p. 77).

Bibliography

https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1007/978-3-642-33167-1_48
https://doi.org/10.1145/2627393.2627396
https://doi.org/10.1145/3551349.3560432
https://doi.org/10.1145/3551349.3560432
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/1925805.1925818

[VH98]

[VRO1]

[Wah+93]

[WF98]

[Wan+20]

[Wan+22]

[WR99]

[WD14]

[WDD22]

[Yee+10]

Raja Vallée-Rai and Laurie Hendren. Jimple: Simplifying Java Bytecode for Analy-

ses and Transformations. Tech. rep. http://www.sable.mcgill.ca/publications/

techreports/sable-tr-1998-4.ps. Montreal, Canada: McGill University, 1998,
pp. 1-15 (cit. on pp. 54, 58, 60).

Frédéric Vivien and Martin Rinard. “Incrementalized Pointer and Escape Anal-
ysis”. In: Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation. PLDI ’01. Snowbird, Utah, USA: ACM, May
2001, pp. 35-46. DOI: 10.1145/378795.378804 (cit. on p. 145).

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. “Effi-
cient software-based fault isolation”. In: ACM SIGOPS Operating Systems Review
27.5 (Dec. 1993), pp. 203-216. DO1: 10.1145/173668.168635 (cit. on p. 142).

Dan S. Wallach and Edward W. Felten. “Understanding Java stack inspection”.

In: Proceedings. 1998 IEEE Symposium on Security and Privacy (Cat. No.98CB36186).

IEEE. IEEE Comput. Soc, 1998, pp. 52-63. DOI: 10.1109/SECPRI. 1998.674823
(cit. on p. 107).

Ying Wang, Bihuan Chen, Kaifeng Huang, et al. “An Empirical Study of Usages,
Updates and Risks of Third-Party Libraries in Java Projects”. In: 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
Sept. 2020, pp. 35-45. DOI: 10.1109/ICSME46990.2020.00014 (cit. on pp. 2-4,
7).

Ying Wang, Rongxin Wu, Chao Wang, et al. “Will Dependency Conflicts Affect
My Program’s Semantics?” In: IEEE Transactions on Software Engineering 48.7
(July 2022), pp. 2295-2316. DO1: 10.1109/TSE.2021.3057767 (cit. on pp. 71,
74, 91, 97).

John Whaley and Martin Rinard. “Compositional Pointer and Escape Analysis for
Java Programs”. In: Proceedings of the 14th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. OOPSLA ’99. Denver,
Colorado, USA: ACM, Oct. 1999, pp. 187-206. DOI: 10.1145/320384 . 320400
(cit. on pp. 127, 145).

Jeff Williams and Arshan Dabirsiaghi. The unfortunate reality of insecure libraries.
Tech. rep. https://cdn2. hubspot.net/hub/203759/file- 1100864196 - pdf/
docs/contrast_-_insecure_libraries_2014.pdf. Contrast Security, 2014
(cit. on pp. 46, 47, 64, 87).

Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. “What the Fork? Finding
Hidden Code Clones in Npm”. In: Proceedings of the 44th International Confer-
ence on Software Engineering. ICSE "22. Pittsburgh, Pennsylvania: Association for
Computing Machinery, 2022, pp. 2415-2426. DOI1: 10.1145/3510003.3510168
(cit. on pp. 7, 8).

Bennet Yee, David Sehr, Gregory Dardyk, et al. “Native Client: A Sandbox for
Portable, Untrusted X86 Native Code”. In: Commun. ACM 53.1 (Jan. 2010),
pp.- 91-99. DOI: 10.1145/1629175.1629203 (cit. on p. 142).

Bibliography

167

http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps
https://doi.org/10.1145/378795.378804
https://doi.org/10.1145/173668.168635
https://doi.org/10.1109/SECPRI.1998.674823
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1109/TSE.2021.3057767
https://doi.org/10.1145/320384.320400
https://cdn2.hubspot.net/hub/203759/file-1100864196-pdf/docs/contrast_-_insecure_libraries_2014.pdf
https://cdn2.hubspot.net/hub/203759/file-1100864196-pdf/docs/contrast_-_insecure_libraries_2014.pdf
https://doi.org/10.1145/3510003.3510168
https://doi.org/10.1145/1629175.1629203

[Yip+09] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. “Improving
Application Security with Data Flow Assertions”. In: Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles. SOSP ’09. Big Sky,
Montana, USA: ACM, Oct. 2009, pp. 291-304. DO1: 10.1145/1629575.1629604
(cit. on pp. 146, 147).

[Yu+19] Dongjin Yu, Jiazha Yang, Xin Chen, and Jie Chen. “Detecting Java Code Clones
Based on Bytecode Sequence Alignment”. In: IEEE Access 7 (2019), pp. 22421-
22433. DO1: 10.1109/ACCESS.2019.2898411 (cit. on p. 66).

Webpages

[Apal5] Apache Software Foundation. Tomcat tc8.0.x SVN Repository. 2015. URL: https:
//svn.apache.org/viewvc/tomcat/tc8.0.x/trunk/java/org/apache/
catalina/authenticator/FormAuthenticator.java?rl=1785776&r2=1785775&
pathrev=1785776 (visited on July 28, 2023) (cit. on p. 137).

[Apa22] Apache Software Foundation. Ant. 2022. URL: https://ant.apache.org/
(visited on June 28, 2023) (cit. on p. 11).

[Apa23a] Apache Software Foundation. Introduction to the Dependency Mechanism. 2023.
URL: https://maven.apache.org/guides/introduction/introduction-to-
dependency-mechanism.html (visited on Oct. 26, 2023) (cit. on pp. 14, 79).

[Apa23b] Apache Software Foundation. Maven. 2023. URL: https://maven.apache.org
(visited on June 8, 2023) (cit. on pp. 11, 15).

[Caul7] Adam Caudil. Exploiting the Jackson RCE: CVE-2017-7525. 2017. URL: https:
//adamcaudill.com/2017/10/04/exploiting- jackson-rce-cve-2017-7525/
(visited on June 22, 2023) (cit. on pp. 1, 101).

[Ecl07] Eclipse Foundation. Evolving Java-based APIs. 2007. URL: https : / /wiki .
eclipse.org/Evolving_Java- based_APIs (visited on May 5, 2023) (cit. on
pp. 73, 74).

[Ecl20] Eclipse Foundation. Eclipse Steady. 2020. URL: https://projects.eclipse.
org/projects/technology.steady (visited on July 22, 2023) (cit. on pp. 3,
48).

[Fer22] Stefan Ferstl. depgraph-maven-plugin. 2022. URL: https: // github . com/
ferstl/depgraph-maven-plugin (visited on Aug. 26, 2023) (cit. on p. 77).

[For17] Forbes. Equifax. Feb. 2017. URL: https://www.forbes.com/sites/thomasbrewster/
2017/09/14/equifax- hack- the- result-of-patched-vulnerability/ (vis-
ited on Feb. 20, 2023) (cit. on p. 2).

[Git23] Github Repository. A Proof-Of-Concept for the CVE-2021-44228 vulnerability.
2023. URL: https://github. com/kozmer/log4j - shell - poc (visited on
June 28, 2023) (cit. on p. 140).

168 Bibliography

https://doi.org/10.1145/1629575.1629604
https://doi.org/10.1109/ACCESS.2019.2898411
https://svn.apache.org/viewvc/tomcat/tc8.0.x/trunk/java/org/apache/catalina/authenticator/FormAuthenticator.java?r1=1785776&r2=1785775&pathrev=1785776
https://svn.apache.org/viewvc/tomcat/tc8.0.x/trunk/java/org/apache/catalina/authenticator/FormAuthenticator.java?r1=1785776&r2=1785775&pathrev=1785776
https://svn.apache.org/viewvc/tomcat/tc8.0.x/trunk/java/org/apache/catalina/authenticator/FormAuthenticator.java?r1=1785776&r2=1785775&pathrev=1785776
https://svn.apache.org/viewvc/tomcat/tc8.0.x/trunk/java/org/apache/catalina/authenticator/FormAuthenticator.java?r1=1785776&r2=1785775&pathrev=1785776
https://ant.apache.org/
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org
https://adamcaudill.com/2017/10/04/exploiting-jackson-rce-cve-2017-7525/
https://adamcaudill.com/2017/10/04/exploiting-jackson-rce-cve-2017-7525/
https://wiki.eclipse.org/Evolving_Java-based_APIs
https://wiki.eclipse.org/Evolving_Java-based_APIs
https://projects.eclipse.org/projects/technology.steady
https://projects.eclipse.org/projects/technology.steady
https://github.com/ferstl/depgraph-maven-plugin
https://github.com/ferstl/depgraph-maven-plugin
https://www.forbes.com/sites/thomasbrewster/2017/09/14/equifax-hack-the-result-of-patched-vulnerability/
https://www.forbes.com/sites/thomasbrewster/2017/09/14/equifax-hack-the-result-of-patched-vulnerability/
https://github.com/kozmer/log4j-shell-poc

[Git20]

[Git22]

[Gra23]

[HG21]

[IBMO6]

[JFr23]

[Jun21]

[Kit23]

[Kre18]

[Liv12]

[Men23a]

[Men23b]

[Mvn20]

[Neo23]

[NIS17]

[NIS18]

[NIS20]

GitHub, Inc. Security Alerts. 2020. URL: https://help.github.com/articles/
about-security-alerts-for-vulnerable-dependencies/ (visited on Feb. 20,
2023) (cit. on pp. 3, 21).

GitHub, Inc. DependaBot. 2022. URL: https://DependaBot2022.com/ (visited
on July 26, 2023) (cit. on pp. 4, 78).

Gradle, Inc. Gradle. 2023. URL: https://gradle.org/ (visited on June 8, 2023)
(cit. on p. 11).

Joseph Hejderup and Georgios Gousios. Dataset. Can We Trust Tests To Automate
Dependency Updates? A Case Study of Java Projects. 2021. URL: https://zenodo.
org/record/4479015 (visited on July 26, 2023) (cit. on p. 87).

IBM T.J. Watson Research Center. Watson Libraries for Analysis (WALA). 2006.
URL: http://wala. sourceforge.net/wiki/index . php (visited on Jan. 2,
2022) (cit. on p. 146).

JFrog Ltd. Conan, software package manager for C and C++ developers. 2023.
URL: https://conan.io/ (visited on June 28, 2023) (cit. on p. 16).

Juniper Networks, Inc. Apache Log4j Vulnerability CVE-2021-44228 Raises widespread

Concerns. 2021. URL: https://blogs.juniper.net/en-us/security/apache-
log4j-vulnerability-cve-2021-44228- raises-widespread- concerns (vis-
ited on June 28, 2023) (cit. on p. 139).

Kitware Inc. CMake. 2023. URL: https://cmake.org/ (visited on Oct. 26, 2023)
(cit. on p. 16).

Brian Krebs. Equifax Breach. 2019-03-16. 2018. URL: https://krebsonsecurity.

com/tag/equifax-breach/ (visited on Feb. 20, 2023) (cit. on pp. 1, 2).

Benjamin Livshits. SecuriBench. 2012. URL: https://suif.stanford.edu/
~livshits/securibench/ (visited on June 22, 2023) (cit. on p. 65).

Mend.io. Feb. 2023. URL: https://mend.io (visited on Apr. 20, 2023) (cit. on
pp. 3, 22).

Mend.io. Renovate. 2023. URL: https://www.mend.io/Mend.i02023b/ (visited
on Aug. 26, 2022) (cit. on p. 4).

MvnRepository. 100 Popular Projects. 2020. URL: https://mvnrepository .
com/popular (visited on Feb. 20, 2023) (cit. on pp. 24-26).

Neo4j, Inc. Cypher Query Language. 2023. URL: https://neo4j.com/developer/
cypher/ (visited on July 20, 2023) (cit. on p. 82).

NIST. Juliet Test Suite. 2017. URL: https://samate.nist.gov/SARD/testsuite.
php (visited on Feb. 20, 2020) (cit. on p. 65).

NIST. SAMATE - Software Assurance Metrics And Tool Evaluation. 2018. URL:
https://samate.nist.gov/ (visited on Feb. 20, 2023) (cit. on p. 65).

NIST. NVD. 2020. URL: https://nvd.nist.gov/ (visited on Feb. 20, 2020)
(cit. on pp. 20, 27, 34, 35, 48, 65).

Webpages

169

https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://DependaBot2022.com/
https://gradle.org/
https://zenodo.org/record/4479015
https://zenodo.org/record/4479015
http://wala.sourceforge.net/wiki/index.php
https://conan.io/
https://blogs.juniper.net/en-us/security/apache-log4j-vulnerability-cve-2021-44228-raises-widespread-concerns
https://blogs.juniper.net/en-us/security/apache-log4j-vulnerability-cve-2021-44228-raises-widespread-concerns
https://cmake.org/
https://krebsonsecurity.com/tag/equifax-breach/
https://krebsonsecurity.com/tag/equifax-breach/
https://suif.stanford.edu/~livshits/securibench/
https://suif.stanford.edu/~livshits/securibench/
https://mend.io
https://www.mend.io/Mend.io2023b/
https://mvnrepository.com/popular
https://mvnrepository.com/popular
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/
https://nvd.nist.gov/

170

[NSA12]

[NVD17a]

[NVD17b]

[NVD21]

[NVD22]

[Off20]

[Oral5a]

[Oral7a]

[Oral8]

[Ora23a]

[Ora96]

[Oral4a]

[Oral4b]

[Oral4c]

[Oral5b]

NSA. Defense in Depth: A practical strategy for achieving Information Assurance in
today’s highly networked environments. 2012. URL: https://gtldresult.icann.
org/applicationstatus/applicationdetails:downloadattachment/1318177?
t:ac=13 (cit. on pp. 102, 138).

NVD. CVE-2017-5638. Feb. 2017. URL: https://nvd.nist.gov/vuln/detail/
CVE-2017-5638 (visited on Feb. 20, 2023) (cit. on p. 2).

NVD. CVE-2017-5648. Apr. 2017. URL: https://nvd.nist.gov/vuln/detail/
CVE-2017-5648 (visited on Oct. 20, 2023) (cit. on p. 136).

NVD. CVE-2021-44228. 2021. URL: https://nvd.nist.gov/vuln/detail/CVE-
2021-44228 (visited on Apr. 18, 2023) (cit. on pp. 1, 2, 4, 69, 101, 139).

NVD. CVE-2022-33980. Feb. 2022. URL: https://nvd.nist.gov/vuln/detail/
CVE-2022-33980 (visited on May 20, 2023) (cit. on p. 1).

OffSec Services. Exploit Database. 2020. URL: https://www.exploit-db.com/
(visited on Feb. 20, 2023) (cit. on p. 65).

Oracle Cooperation. JavaSE Specification. 2015. URL: https://docs.oracle.
com/javase/specs/jls/se8/html/ (visited on Aug. 26, 2023) (cit. on pp. 73,
108, 128).

Oracle Cooperation. Java Platform, Standard Edition Tools Reference - jdeps. Sept.
2017. URL: https://docs.oracle.com/javase/9/tools/jdeps.htm (visited
on Oct. 26, 2023) (cit. on p. 130).

Oracle Cooperation. JDK 11 - JavaDoc ModuleLayer. Sept. 2018. URL: https:
//docs.oracle.com/en/java/javase/1l/docs/api/java.base/java/lang/
ModuleLayer.html (visited on Oct. 26, 2023) (cit. on p. 110).

Oracle Cooperation. GraalVM. 2023. URL: https://www.graalvm.org/ (visited
on June 28, 2023) (cit. on p. 143).

Oracle Corporation. The Java Language Environment - A White Paper. 1996. URL:
https://www.oracle.com/java/technologies/language-environment.html
(visited on June 2, 2023) (cit. on pp. 101, 105, 106, 108).

Oracle Corporation. JEP 261: Module System. 2014. URL: http://openjdk.
java.net/jeps/261 (visited on May 5, 2023) (cit. on p. 110).

Oracle Corporation. Project Jigsaw. 2014. URL: http://openjdk. java.net/
projects/jigsaw/ (visited on Nov. 2, 2022) (cit. on pp. 103, 110).

Oracle Corporation. SigTest User Guide. 2014. URL: https://docs.oracle.com/
javacomponents/sigtest-3-1/user-guide/index.html (visited on Aug. 26,
2022) (cit. on pp. 86, 89).

Oracle Corporation. JEP 260: Encapsulate Most Internal APIs. 2015. URL: http:
//openjdk.java.net/jeps/260 (visited on Nov. 2, 2017) (cit. on pp. 7, 102,
108, 110).

Bibliography

https://gtldresult.icann.org/applicationstatus/applicationdetails:downloadattachment/131817?t:ac=13
https://gtldresult.icann.org/applicationstatus/applicationdetails:downloadattachment/131817?t:ac=13
https://gtldresult.icann.org/applicationstatus/applicationdetails:downloadattachment/131817?t:ac=13
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://nvd.nist.gov/vuln/detail/CVE-2017-5648
https://nvd.nist.gov/vuln/detail/CVE-2017-5648
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2022-33980
https://nvd.nist.gov/vuln/detail/CVE-2022-33980
https://www.exploit-db.com/
https://docs.oracle.com/javase/specs/jls/se8/html/
https://docs.oracle.com/javase/specs/jls/se8/html/
https://docs.oracle.com/javase/9/tools/jdeps.htm
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ModuleLayer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ModuleLayer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ModuleLayer.html
https://www.graalvm.org/
https://www.oracle.com/java/technologies/language-environment.html
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
https://docs.oracle.com/javacomponents/sigtest-3-1/user-guide/index.html
https://docs.oracle.com/javacomponents/sigtest-3-1/user-guide/index.html
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260

[Oral7b]

[Ora21]

[Ora22]

[Ora23b]

[Ora23c]

[Ora23d]

[0SG11]

[OWA20]

[Pip23]

[Piv20]

[Pre21]

[Pro04]

[SAP20]

[Sny23]

[Son20]

Oracle Corporation. JEP 200: The Modular JDK. 2017. URL: https://openjdk.
java.net/jeps/200 (visited on Apr. 28, 2019) (cit. on pp. 102, 112).

Oracle Corporation. Security and Sandboxing Post SecurityManager. 2021. URL:
https ://inside . java/2021/04/23/security - and - sandboxing - post -
securitymanager/ (visited on June 2, 2023) (cit. on pp. 5, 102, 120, 138, 141).

Oracle Corporation. JEP 411: Deprecate the Security Manager for Removal. 2022.
URL: https://openjdk.org/jeps/411 (visited on June 2, 2023) (cit. on pp. 5,
102, 120, 138).

Oracle Corporation. JEP draft: Integrity and Strong Encapsulation. 2023. URL:
https://openjdk.org/jeps/8305968 (visited on June 2, 2023) (cit. on pp. 5,
7,102, 138).

Oracle Corporation. Polyglot Sandboxing. 2023. URL: https://www.graalvm.
org/dev/security-guide/polyglot-sandbox/ (visited on June 28, 2023) (cit.
on pp. 142, 143).

Oracle Corporation. The Java programming language Compiler Group. 2023.
URL: http://openjdk.java.net/groups/compiler/ (visited on May 2, 2023)
(cit. on p. 55).

OSGi Alliance. What You Should Know about Class Loaders. May 2011. URL:
https://blog.o0sgi.org/2011/05/what - you- should - know - about - class.
html (visited on Oct. 28, 2023) (cit. on p. 14).

OWASP. OWASP Dependency-Check. 2020. URL: https://owasp.org/www-
project-dependency-check/ (visited on June 20, 2023) (cit. on p. 3).

Pip Documentation. Dependency Resolution. 2023. URL: https://pip.pypa.
io/en/stable/topics/dependency - resolution/ (visited on July 20, 2023)
(cit. on p. 15).

Pivotal Software. CVE-2018-1271. Dec. 2020. URL: https://pivotal.io/
security/cve-2018-1271 (visited on Dec. 28, 2022) (cit. on p. 21).

Tom Preston-Werner. Semantic Versioning 2.0.0. 2021. URL: https://semver.
org/lang/de/ (visited on July 20, 2023) (cit. on pp. 15, 16, 73, 97).

Prof. Robert H. (Bob) Sloan - University Illion. Java Example Program. 2004.
URL: https://www.cs.uic.edu/~sloan/CLASSES/java/ (visited on Mar. 16,
2023) (cit. on pp. 61, 62).

SAP. Vulnerability Assessment Knowledge Base. 2020. URL: https://github.
com/SAP/project-kb (visited on June 20, 2023) (cit. on p. 27).

Snyk Limited. 2023. URL: https://snyk.io/ (visited on Apr. 28, 2023) (cit. on
pp. 3, 22).

Sonatype. Central download statistics for OSS projects. 2020. URL: https://
blog.sonatype.com/2010/12/now-available-central-download-statistics-
for-oss-projects/ (visited on Sept. 20, 2019) (cit. on p. 11).

Webpages

171

https://openjdk.java.net/jeps/200
https://openjdk.java.net/jeps/200
https://inside.java/2021/04/23/security-and-sandboxing-post-securitymanager/
https://inside.java/2021/04/23/security-and-sandboxing-post-securitymanager/
https://openjdk.org/jeps/411
https://openjdk.org/jeps/8305968
https://www.graalvm.org/dev/security-guide/polyglot-sandbox/
https://www.graalvm.org/dev/security-guide/polyglot-sandbox/
http://openjdk.java.net/groups/compiler/
https://blog.osgi.org/2011/05/what-you-should-know-about-class.html
https://blog.osgi.org/2011/05/what-you-should-know-about-class.html
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://pip.pypa.io/en/stable/topics/dependency-resolution/
https://pip.pypa.io/en/stable/topics/dependency-resolution/
https://pivotal.io/security/cve-2018-1271
https://pivotal.io/security/cve-2018-1271
https://semver.org/lang/de/
https://semver.org/lang/de/
https://www.cs.uic.edu/~sloan/CLASSES/java/
https://github.com/SAP/project-kb
https://github.com/SAP/project-kb
https://snyk.io/
https://blog.sonatype.com/2010/12/now-available-central-download-statistics-for-oss-projects/
https://blog.sonatype.com/2010/12/now-available-central-download-statistics-for-oss-projects/
https://blog.sonatype.com/2010/12/now-available-central-download-statistics-for-oss-projects/

172

[Son22]

[Sou20]

[Syn23]

[The22]

[Tul22]

[Wim19]

[Yah21]

Sonatype. Maven Central. 2022. URL: https://search.maven.org/stats
(visited on Dec. 4, 2022) (cit. on p. 11).

SourceClear. Evaluation Framework for Dependency Analysis. 2020. URL: https:
//github.com/srcclr/efda (visited on Feb. 20, 2023) (cit. on p. 65).

Synopsys. Feb. 2023. URL: https://www.synopsys.com/software-integrity/
security-testing/software-composition-analysis.html (visited on Feb. 20,
2021) (cit. on pp. 3, 22, 64).

The Neighbourhoodie Software GmbH. Greenkeeper. 2022. URL: https://
greenkeeper.io/ (visited on Aug. 26, 2022) (cit. on p. 4).

Jaroslav Tulach. SigTest GitHub Repository. 2022. URL: https://github.com/
jtulach/netbeans-apitest (visited on Aug. 26, 2022) (cit. on pp. 73, 82, 86,
89).

Christian Wimmer. Isolates and Compressed References: More Flexible and Effi-
cient Memory Management via GraalVM. Jan. 2019. URL: https://medium.
com/ graalvm/ isolates - and - compressed - references - more - flexible -
and - efficient - memory - management - for - graalvm - a@44cc50b67e (visited
on Oct. 26, 2023) (cit. on p. 143).

Yahoo. Apple iCloud, Twitter and Minecraft vulnerable to ubiquitous zero-day flaw.
2021. URL: https://techcrunch.com/2021/12/10/apple-icloud-twitter-
and-minecraft-vulnerable-to-ubiquitous-zero-day-exploit/ (visited on
June 26, 2023) (cit. on p. 2).

Bibliography

https://search.maven.org/stats
https://github.com/srcclr/efda
https://github.com/srcclr/efda
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://greenkeeper.io/
https://greenkeeper.io/
https://github.com/jtulach/netbeans-apitest
https://github.com/jtulach/netbeans-apitest
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://techcrunch.com/2021/12/10/apple-icloud-twitter-and-minecraft-vulnerable-to-ubiquitous-zero-day-exploit/
https://techcrunch.com/2021/12/10/apple-icloud-twitter-and-minecraft-vulnerable-to-ubiquitous-zero-day-exploit/

List of Figures

2.1

3.1

3.2

3.3
3.4

3.5
3.6

4.1

4.2

4.3

4.4

Example of a Maven dependency graph containing a duplicate dependency. 13

To understand how the open-source community also uses the selected
sample, this graph reports the #usages of the 723 artifacts (GAVs) as
reported by mvnrepository.com, showing a log-normal distribution (X-
axis has logarithmicscale). 26

To understand to what extent and how developers include open-source
artifacts, this graph reports: the average ratio of OSS to proprietary de-
pendencies, the ratio of direct to transitive dependencies, and the scopes
developers use; grouped by groupld:artifactld (GA). 29

Achilles’ process steps for evaluating OSS-vulnerability scanners. 52

Feature diagram of the options that the Achilles generator provides for
re-creating the modifications on JAR files. By default, the features in bold
are selected, generating unmodified JAR files. 53

Layout of Achilles 53

SootDiff’s process steps for comparing the bytecode of two classes us-
ing Jimple and optimizers to be resilient against bytecode modifications.
Soot’s optimizers are in Gray. « v v o bt e i e 59

The options for updating the transitive dependency ¢ and resulting changes
in the dependency graph., 72

UpCy’s process steps for computing compatible updates using min-(s,t)-
cut algorithm and a dependency graph of the Maven Central repository. . 76

Example min-(s,t)-cuts computed by UpCy on the unified dependency
graph for updating t with minimal incompatibilities. Each edge represents
a source or a binary compatibility relation between the connected artifacts. 78

To understand to what extent an update introduces incompatibilities,
this violin plot shows the amount of binary (left) and semantic (right)
incompatibilities (Y-axis has a logarithmic scale), showing on average
83 binary incompatibilities and two peaks at 0 and 127 for semantic
incompatibilities. e 90

173

mvnrepository.com

174

4.5

5.1

5.2

5.3

5.4
5.5
5.6

5.7

Example of min-(s,t)-cut computed by UpCy in project mybatis-shards
to find compatible updates for cglib, suggesting to update the artifacts
cglibandasm. e e e

Overview of the components of the Java Runtime Environment.
Subset of the module graph of the JRE module java.desktop. The solid
arrows represent a requires dependency between modules. The dashed
arrows show which packages a module can access. Only exported pack-
ages can be accessed by the dependent module. Internal packages (in
gray) cannotbeaccessed.
ModGuard’s process steps for identifying escapes of sensitive entities using
the Doop framework and Datalog rules. Gray steps are executed in Soot
and white steps are executed inDoop. L.
Scenarios leading to the escape of sensitive entities.
Layout of MIC9Bench
For modularizing Tomcat 8.5.21, we created a module per JAR. The figure
shows the resulting module graph. In the strict modularization (all exports
not required for compilation removed), the white modules do not export
any packages. The dashed modules have the same exports in the naive
and strict modularization.
Example escape of the sensitive methods of DeltaSession from the mod-
ule catalina.ha in the strict modularization of Tomcat. External code can
invoke SimpleTcpCluster.getManagerTemplate() to receive an instance
of DeltaManager, which leaks the sensitive DeltaSession via the method
createEmptySession(). The gray types are module-internal, the white
types are exported; in bold is the module declaring the type.

5.8 Overview on how to exploit the Log4Shell vulnerability. Based on [Jun21].139

List of Figures

List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

The selected sample set of the 20 most-used artifacts in the 7,024 projects
developed at SAP, grouped by groupld:artifactld (groupld:artifactld (GA)).
The table shows how many different projects use that artifact and how
popular—based on its usage—the artifact is on Maven Central.

To identify known vulnerabilities in our sample set of the 20 most-used de-

pendencies (723 artifacts), we used the scanners Steady, OWASP Dependency-

Check (DepCheck), and C3. The table gives an overview of the findings
that the scanners reported. Highlighted are cases in which the artifact
itself is reported as vulnerable. L.

To understand how prevalent the modifications are on Maven Central, this
table reports how often the identified 254 vulnerable classes were subject
to the modifications and in how many different artifacts they occurred.

Test cases for evaluating the precision and recall of vulnerability scanners.
The column on the right shows which scanners reported the vulnerability

To understand how the modifications impact the vulnerability scanners’
effectiveness, this table reports the vulnerability scanners’ precision, recall
and F1-score for type 1-4 modifications on the test cases. The scanners
marked with * were used in the construction of the test cases; in bold the
highest score.

The table shows the artifacts that the different scanners failed detect in
the scenarios in the form artifact:version. In the unmodified scenario
the scanners detect the artifacts and the versions from the test fixtures
correctly (cf. Table 3.4). The scanners marked with * were used in the
construction of the testcases. ittt

Evaluation of the efficiency of bytecode and SootDiff’s comparison on
bytecode generated by different Java compilers.

The table reports how many updates failed during the build process
caused by source-code incompatibilities or during test execution, indi-
cating binary or semantic incompatibilities.

37

175

176

4.2

4.3

5.1

5.2

The table shows the number of compatibilities an update has to satisfy due
to blossoms, conflicting or duplicate dependencies, and binary-dependent
artifacts.
The table compares the efficiency of naive and UpCy update in terms of
the number of incompatibilities the update introduces.

Evaluation of ModGuard on MIC9Bench for detecting escaping sensitive
entities over a module’s API and different Java language features. Integrity
violations occur if external code can change the value of a sensitive field,
and confidentiality violations occur if external code can access a sensitive
ENLILY. . . o o e
The table shows the number of escaping of sensitive entities that Mod-
Guard identifies in the modularization of Tomcat 8.5.21.

List of Tables

132

Listings

2.1

2.2

2.3

2.4

3.1

3.2
3.3

3.4

3.5

4.1

4.2

4.3

Example declaration of an artifact as a dependency in a project’s pom.xml
for the build-automation and dependency-management tool Maven. . . . 12
Example declaration of artifacts with version constraints as dependencies
in a Python project’s Pipfile for the tool pip. 15
Example declaration of artifacts with version constraints as dependencies
in a package.jsonforthetoolnpm. 16
Example declaration of artifacts as dependencies in a conanfile. txt for
thetoolConan. 16

Example test fixture of Achilles for the artifact jackson-dataformat-xml:2.4.3
and the vulnerability CVE-2016-3720. The test fixture contains the result

of the manual classification (vulnerable), and—if available—information
about the vulnerable classes and the commit fixing the vulnerability. . . . 51
Example source class Point2d.java. 55
Comparison of the (decompiled) bytecode generated with ECJ compiler

and Javac, both with target version 1.8, from the source class Point2d. java.
References to the constant pool are resolved and typeset as comments in

Comparison of the Jimple code parsed from the bytecode generated with
ECJ compiler and Javac, both with target version 1.8, from the source
class Point2d.java. it e e 57
Comparison of compiler optimizations of Javac and ECJ from the source
class DivZero.java. Javac and ECJ optimize unused locals differently,
resulting in bytecode dissimilarities. 63

Cypher Query for checking if a version greater than or equal to targetVersion

of the artifact to update exists. 83
Cypher Query for checking if more recent versions of the artifacts that are
potential update candidates as computed by the min-(s,t)-cut (the root
nodes of sink partition 7)) exist. 84
Cypher Query for finding compatible versions of the artifacts u and =.
Compatible artifacts depend on the same version of the shared depen-
dency w, avoiding the introduction of conflicts and binary incompatibilities. 85

177

178

4.4

5.1

5.2

5.3

5.4

5.5
5.6

5.7

5.8

Cypher Query for getting an artifact » and all of its (transitive) dependen-
cies (the update-graph).. e 85

Example of the module-descriptor module-info of the module java.desktop

of the Java Runtime Environment 1.9. 109
Example of the sensitive field SecretKey.keyMaterial escaping the module-
internal package internal through the exported, overridden method
getKey() of superclass Key. In green exported types and methods, in

yellow internal types. Marked in red the sensitive field keyMaterial. . . . 111
Module entry-point model: domain, input, and output relations. Doop’s [SKB14;
SB11] defaultrulesare gray. i 115
Datalog rules for detecting explicit and implicit entry points of a module,
constituting the module’s API. 119
ModGuard Escape Analysis: domain, input, and output relations. 123
ModGuard’s Datalog rules for detecting escaping fields, methods, and
classes. e e e 125
Excerpt of the fix for CVE-2017-5648 in class FormAuthenticator.java
in Tomcat revision 1785776 [Apal5]. 137
Example exploit for the Log4Shell vulnerability, opening a reverse shell.
Taken from [Git23].« o o e e e e e 140

Listings

	Titlepage
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Research Challenges
	1.2 Thesis Contributions
	1.3 Generality of Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Terminology & Dependency Management in Java
	2.2 Dependency Management in Other Programming Languages

	3 Systematic Study on the Usage of Open-Source Software and Challenges for Their Detection
	3.1 Strategies for Detecting Vulnerabilities in Open-Source Software
	3.2 Study Design
	3.2.1 Research Questions
	3.2.2 Study Objects & Methodology

	3.3 Use of Open-Source Software at SAP
	3.3.1 RQ1: What Are Practices for Using Open-Source Software at SAP?
	3.3.2 RQ2: What Vulnerabilities Affect the 20 Most-Used Dependencies?
	3.3.3 RQ3: How Do Developers Include Open-Source Software?

	3.4 Prevalence & Impact of Modified Open-Source Software
	3.4.1 RQ4: How Prominent Are the Modifications Outside SAP?
	3.4.2 RQ5: What Is the Impact of the Modifications on Vulnerability Scanners?

	3.5 Study Summary
	3.6 Threats to Validity
	3.7 Achilles: Test Suite for Detecting Modified Open-Source Software
	3.7.1 Diverse Real-World Applications
	3.7.2 Detecting Vulnerable Open-Source Software
	3.7.3 Automation and Ease of Use
	3.7.4 Organization and Distribution

	3.8 SootDiff: An Approach for Identifying Modified Open-Source Software
	3.8.1 Dissimilarities Introduced by Java Compilers
	3.8.2 Jimple: Intermediate Bytecode Representation
	3.8.3 Compare Modified Bytecode
	3.8.4 Evaluation

	3.9 Related Work
	3.9.1 Case Studies: Use of Vulnerable Open-Source Software
	3.9.2 Test Suites: Vulnerabilities in Open-Source Software
	3.9.3 Code Clone Detection

	3.10 Conclusion

	4 An Automated Approach for Safely Updating Included Open-Source Software
	4.1 Safe Backward Compatible Updates
	4.1.1 Dependency Graph Updates
	4.1.2 Source and Binary Compatibility
	4.1.3 Semantic Compatibility
	4.1.4 Blossom Compatibility

	4.2 UpCy: Identify Safe Backward Compatible Updates
	4.2.1 Algorithm
	4.2.2 Graph Database of the Maven Central Repository

	4.3 Evaluation
	4.3.1 Research Questions
	4.3.2 Study Objects & Methodology
	4.3.3 Results

	4.4 Threats to Validity
	4.4.1 Finding Compatible Updates with UpCy
	4.4.2 Evaluation

	4.5 Related Work
	4.5.1 Studies: How Developers Update (Vulnerable) Dependencies
	4.5.2 Update Compatibility Analysis
	4.5.3 Repository Dependency Graphs

	4.6 Conclusion

	5 Securely Integrating Open-Source Software with Java's Module System
	5.1 Java's Security Architecture & Module System
	5.1.1 Java 1.2 Security Model
	5.1.2 The Java Platform Module System
	5.1.3 Motivating Example of Sensitive Entities Escaping a Module
	5.1.4 Excursion: The OSGi Platform

	5.2 Precisely Defining a Module's Entry Points
	5.2.1 Explicitly vs. Implicitly Reachable Entry Points
	5.2.2 Logic-based Specification of the Entry-Point Model
	5.2.3 Limitations of the Entry-Point Model

	5.3 ModGuard: Identify Confidentiality or Integrity Violations of Modules
	5.3.1 Algorithm
	5.3.2 Limitations

	5.4 Evaluation
	5.4.1 Research Questions
	5.4.2 Study Objects
	5.4.3 Results
	5.4.4 Case Study: CVE-2017-5648 in Tomcat (modules)

	5.5 Limitations of Modules for the Secure Integration of Open-Source Software
	5.6 Related Work
	5.6.1 Sandboxes for Native Code
	5.6.2 Encapsulation and Isolation of OSGi Bundles
	5.6.3 Escape Analysis
	5.6.4 Information-Flow Control

	5.7 Conclusion

	6 Conclusion and Outlook
	Implementations and Data
	Bibliography
	List of Figures
	List of Tables
	Listings

