
Human Factors in Open Source Security

Dissertation
zur Erlangung des Doktorgrades der

Naturwissenschaften
(Dr. rer. nat.)

dem Fachbereich Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

vorgelegt von

Marcel Fourné
geboren in Eschweiler

Bochum, 2023-12-12

Email: email@marcelfourne.de
Website: https://marcelfourne.de/

First edition: 2023-12-12
Version: 2024-04-12

ii

mailto:email@marcelfourne.de
https://marcelfourne.de/

Vom Fachbereich Elektrotechnik, Informatik und Mathematik
der Universität Paderborn als Dissertation am
2023-12-12 angenommen.

Erstgutachterin: Prof. Dr. Yasemin Acar

Zweitgutachter: Prof. Dr. Sascha Fahl

Tag der mündlichen Prüfung: Freitag, 2024-01-26

Beisitzer der mündlichen Prüfung:

1. Prof. Dr. Peter Schwabe

2. Prof. Dr.-Ing. Juraj Somorovsky

3. Dr. Harald Selke

iii

Erklärung
Ich versichere, dass ich meine Dissertation

“Human Factors in Open Source Security”

selbstständig und ohne fremde Hilfe angefertigt, mich dabei keinen anderen als den
von mir ausdrücklich bezeichneten Quellen und Hilfen bedient und alle vollständig
oder sinngemäß übernommenen Zitate als solche gekennzeichnet habe. Die Disser-
tation wurde in der vorliegenden oder einer ähnlichen Form noch bei keiner anderen
in- oder ausländischen Hochschule anlässlich eines Promotionsgesuchs eingereicht
und hat noch keinen anderen Prüfungszwecken gedient.

(Ort/Datum) (Unterschrift mit Vor- und Zuname)

v

Summary
Software security research has begun to formalize attacks and defenses against com-
monly deployed software, even the most optimized cryptography [38]. Newer pro-
gramming languages make memory access violations and other programming errors
rarer, but still those problems are common in yearly vulnerability rankings1. It seems
there is a gap between what is possible in the most optimized and security-hardened
software, and what is used by most people. As mentioned previously [4], human
factors, and developers in particular, seem to be a weaker link in software security.

Most software users have to consider an important question: How to choose which
developers—and by extension their software—they trust to handle our most precious
secrets, to secure the integrity of our computing environment now that almost no-one
can live without it.

Wewill use the scientific “we” tomark our research clearly as group efforts. In order
to help developers of critical software, we set out to identify some of their biggest chal-
lenges. We did qualitative, quantitative, andmixedmethod user studies in a field that
is a lot smaller than the population of all developers. Cryptographers, open source
maintainers and developers are driven by strong opinions and are not afraid to voice
them, as long as they are not talking to complete strangers. With this dissertation, we
want to provide hard, scientific data, benefitting from our contacts and backgrounds.

The outline for this dissertation will be to first describe an important problem that
is the main topic of two of our publications: usability of cryptographic Constant Time
analysis, the tools for it, and the effects it has on the security of the bigger software
ecosystem. We will follow up with another publication which focuses more on the
general security and quality aspect of software packages in the software ecosystem
when viewed from the perspective of a software supply chain. The angle is a frame
around this dissertation with a viewpoint article about an agenda for doing more re-
search on the ecosystem that was also published, but we will separate its motivation
and recommendations into our introduction and conclusion of this dissertation.

Themain findings of this dissertation are that most developers would prefer to have
software that is secure by default and can be built deterministically, does what they
expect it to do, can be analyzed easily, and fulfills all security requirements. Alas, most
of them don’t get paid to do that and even if they are, they are lack the numbers to
fix all problems. Academic research highlights possible solutions, but its outputs are
more like proof-of-concept prototypes instead of long-timemaintainable and effective
software.

Our work finds that thinking about the work that hobbyist software developers and
1See: https://cwe.mitre.org/top25/

vii

https://cwe.mitre.org/top25/

maintainers do, and usability for these specific types of requirements is necessary for
them to keep making our most basic software dependencies work for another forty
years.

With this thesis in hand, we have identified two core groupswhomaintain software
necessary for the core of our modern infrastructure and some of their most pressing
needs. These should be adressed to improve the security and reliability of all our
infrastructure. From these, we can speculate on how to bring their benefits directly to
less knowledgeable users and make new software start from better laid security and
usability foundations.

viii

Zusammenfassung
Die Software-Sicherheitsforschung formalisiert heute sowohl Angriffe als auch Ver-
teidigungsmaßnahmen gegen die meistgenutzte Software, selbst die am stärsten opti-
mierteKryptographie [38].Neuere Programmiersprachen schützendie Entwickler:in-
nen sowie die Nutzer:innen besser vor Speicherzugriffsfehlern so wie anderen Pro-
grammierfehlern, aber trotzdem führen diese immer noch die jährlichen Ranglisten
der amweitesten verbreiteten Schwachstellen an2. Die Sicherheit der am stärksten op-
timierten Software wurde manchmal auch am weitesten gehärtet. Es scheint, dass es
eine Lücke gibt zwischen der am stärksten optimierten und geschützten Software und
der Software die von den meisten Benutzer:innen genutzt wird. Wie schon vormals
erwähnt [4], scheint der “Faktor Mensch”, und Entwickler:innen im besonderen, ein
schwächeres Glied der Softwaresicherheit zu sein.

Die meisten Software-Nutzer:innenmüssen heute über eine Frage entscheiden:Wie
wählenwir aus, welchen Entwickler:innen—und damit auch ihrer Software—wir ver-
trauenwollen,wenn es umunserewichtigstenGeheimnisse geht, umdieAbsicherung
der Integrität unserer Computer, ohne die heute kaum jemand leben kann?

Im folgenden der Dissertation wird das wissenschaftliche “wir” genutzt, um die
Forschung klar als gemeinschaftlichen Aufwand zu kennzeichnen. Unser Ziel war es
herauszufinden, welche großen Probleme Entwickler:innen für die kritischste Soft-
ware haben und wie wir ihnen helfen können. Wir haben dabei Studien durchge-
führt mit qualitativen, quantitativen, sowieMischverfahren in einem Bereich, der sehr
viel kleiner ist als der allgemeiner Softwareentwickler:innen. Kryptograf:innen, Open-
Source-Maintainer und Entwickler:innen sind oft angetrieben von starkenMeinungen
und haben keine Angst, diese auch zu äußern, sofern sie nicht von in der Community
unbekannten Menschen gefragt werden.

Im Rahmen dieser Dissertation werdenwir zuerst ein Problem beschreiben, das der
Fokus zweier unserer Publikationen ist—Benutzbarkeit von kryptografischerConstant-
Time-Analyse und entsprechenden Werkzeugen sowie den Effekten, die dies auf die
Sicherheit des größeren Software-Ökosystems als Ganzes hat. Darauf folgt eine weite-
re Publikation, die mehr darauf fokussiert ist, die allgemeine Sicherheit und Qualität
von Softwarepaketen zu steigern im ganzen Software-Ökosystem, wenn wir es unter
demBlickwinkel einer Softwarelieferkette betrachten. Diese Sichtweise bildet dasUm-
feld dieser Dissertation durch einen Artikel, der eine Agenda für mehr Erforschung
des ganzen Ökosystems fordert und ebenfalls wissenschaftlich veröffentlicht wurde.
Wir teilen den Artikel auf nach Motivation und Empfehlungen in Einleitung und ab-
schließende Zusammenfassung dieser Dissertation.
2Siehe: https://cwe.mitre.org/top25/

ix

https://cwe.mitre.org/top25/

Die hauptsächlichenErkenntnisse sind, dass diemeistenEntwickler:innen standard-
mäßig sichere Software bevorzugen, die deterministisch gebaut wird, macht, was von
ihr erwartet wird, einfach analysiert werden kann und alle Sicherheitsanforderungen
erfüllt. Die Meisten von ihnen werden jedoch nicht dafür bezahlt dies alles herzustel-
len und selbst wenn, dann ist nicht genug Personal vorhanden um alle Probleme zu
beheben. Die akademische Forschung zeigt mögliche Lösungen auf, aber ihre Ergeb-
nisse sind eher Prototypen anstatt langfristig wartbare Software, die bei den täglichen
Arbeiten hilft.

Unsere Forschungsergebnisse zeigen, dass es für gute Benutzbarkeit bei diesen An-
forderungennotwendig ist über dieArbeit vonHobby-Softwareentwickler:innennach-
zudenken und was sie benötigen, um weiterhin die grundlegende Software und alles
von ihr Abhängende für weitere vierzig Jahre funktionsfähig zu erhalten.

Mit dieser Dissertation habenwir zwei Gruppen vonMenschen identifiziert, die die
notwendige Software instandhalten für den Kern unserer modernen Infrastruktur, so-
wie ein paar ihrer dringendsten Bedürfnisse und Wünsche zur Verbesserung bei den
jeweiligen Tätigkeiten. Diese sollten angegangen werden um unser aller Infrastruk-
tur sicherer und zuverlässiger zu machen. Basierend darauf können wir spekulieren,
wie wir all die Vorteile auch an weniger technisch versierte Benutzer:innen bringen
können und neue Software von den besseren Grundlagen aus aufbauen.

x

Foreword
Without the support of my advisors Peter Schwabe, Gilles Barthe and Yasemin Acar,
the research for this dissertation would not have been possible.

I thank my family for their support in getting me to work hard and learn as much
as possible, even against opposition.

I would like to thank Sascha Fahl for feedback, hints and insight into my research
and discussions on the work for our papers and otherwise; my other coauthors Ján
Jančár, Daniel De Almeida Braga, Mohamed Sabt, Pierre-Alain Fouque, Dominik
Wermke, NoahWöhler, Jan H. Klemmer andWilliam Enck for all the hours of myriad
work they put into our papers; BasaveshAmmanaghatta Shivakumar, Kai-ChunNing,
Miguel Quaresma, Sunjay Cauligi, Tiago Filipe Azevedo Oliveira, Roberto Blanco for
discussions about all kinds of interesting topics and giving support not just through
good coffee; Vincent Bert Hwang for keeping the office in a state of open nerdery; Am-
ber Sprenkels and Karolin Varner for building an awesome support network; Thom
Wiggers formotivatingme to buildmyown thesis infrastructure; ŁukaszChmielewski
for a shared drink or two and some good food (for thought); Holger Pieta, Olaf Rühen-
beck, Jochim Rolf Selzer, Eugen Keller, Jan Benedikt Lieven, Nina Kiel, and Leonie
Paltz for their support, being good friends, and being around for all sorts of discus-
sions over days into long evenings; the RWC community and all the discussions and
encouragement validating my research and other work; Nicky Mouha for showing us
around Tokyo and getting us to the best tiny bar there, while still maintaining a good
in-depth discussion on program verification and testing.

Without all the other people, it would not have been feasible for me to finish this
dissertation. I want to thank all of you!

xi

Contents
1. Introduction 1

1.1. Software Security Landscape . 1
1.2. Why Open Source? . 2
1.3. Cryptographic Engineering differs from general Software Engineering 3
1.4. Why focus on Developers? . 4
1.5. OSS and Supply Chain Security . 4
1.6. Highly Skilled Software Developers still have usability issues 5
1.7. Thesis Statement . 5
1.8. Contributions . 6
1.9. Related and Concurrent Work . 9

2. Background 11
2.1. Software Supply Chains, Quality and Trust 11
2.2. Cryptography . 13

2.2.1. Constant Time Criterion . 13
2.2.2. Cryptographic Code Analysis . 14
2.2.3. Cryptographic Engineering . 15
2.2.4. Usable Security . 16

3. What Cryptographic Library Developers Think About Timing Attacks 19
3.1. Motivation . 19
3.2. Introduction . 20
3.3. Background & Related Work . 22

3.3.1. Attacks . 22
3.3.2. Tools included in the survey . 23
3.3.3. Libraries included in the survey 24
3.3.4. Additional Related Work . 27

3.4. Methodology . 28
3.4.1. Study Procedure . 28
3.4.2. Survey Structure . 29
3.4.3. Coding and Analysis . 30
3.4.4. Data Collection and Ethics . 30
3.4.5. Limitations . 31
3.4.6. Data cleaning & Presentation . 31

3.5. Results . 32
3.5.1. Survey Participants . 32
3.5.2. Answering Research Questions 33

xiii

Contents

3.6. Discussion . 43
3.6.1. Tool developers . 43
3.6.2. Compiler writers . 44
3.6.3. Cryptographic library developers 44
3.6.4. Standardization bodies . 45

3.7. Conclusion . 45

4. A usability evaluation of constant-time analysis tools 47
4.1. Motivation . 47
4.2. Introduction . 48
4.3. Background & Related Work . 50
4.4. Usability criteria and tool selection . 52

4.4.1. Usability criteria . 52
4.4.2. Tools . 54

4.5. Methodology . 57
4.6. Results . 63
4.7. Discussion . 68

4.7.1. Usability vs verification approaches 68
4.7.2. Recommendations . 69

4.8. Conclusion . 70

5. Reproducible Builds for Software Supply Chain Security 73
5.1. Motivation . 73
5.2. Introduction . 74
5.3. Background and Related Work . 76

5.3.1. Reproducible Builds Background Information 76
5.3.2. Research on Reproducible Builds 77
5.3.3. Research on Open Source Software Security 78
5.3.4. Interviews with Security Developers 79

5.4. Methodology . 80
5.4.1. Participant Recruitment . 80
5.4.2. Interview Procedure . 81
5.4.3. Reproducible Builds Summit Discussion 83
5.4.4. Coding and Analysis . 83
5.4.5. Ethical Considerations and Data Protection 83
5.4.6. Limitations . 84

5.5. Results . 84
5.5.1. Why and How Projects Started to Work on Reproducible Builds 85
5.5.2. Experienced Obstacles . 91
5.5.3. Helpful Factors . 92

5.6. Discussion . 94
5.7. Conclusion . 98

xiv

Contents

6. Conclusions and Future Work 99
6.1. Cryptography is a Cornerstone of Security, but not Universally Checked 99
6.2. Human Factors in Supply Chain Research 99
6.3. Outlook . 103

Appendices 105

Appendix A. What Cryptographic Library Developers Think About Timing
Attacks 107
A.1. Survey . 107

A.1.1. Background . 107
A.1.2. Library / Primitive . 107
A.1.3. Tooling . 108
A.1.4. Tool use . 109
A.1.5. Tool use: Dynamic instrumentation based 110
A.1.6. Tool use: Statistical runtime tests 111
A.1.7. Tool use: Formal analysis . 111
A.1.8. Miscellaneous . 112

A.2. Tool awareness . 113

Appendix B. A usability evaluation of constant-time analysis tools 115
B.1. Summary of known CT analysis tools 115

Appendix C. On the Importance and Challenges of Reproducible Builds for
Software Supply Chain Security 117
C.1. Codebook . 117
C.2. Questionnaire . 119
C.3. Motivational Matrix . 125

Appendix D. Publication History 127

List of Figures 129

Bibliography 131

xv

1. Introduction

Disclaimer
This thesis is based on three previous publications. Two of them were written with me as the
main author. The content of this introduction and the conclusion in Chapter 6 was expanded
and adapted from a previously peer-reviewed and published article titled “A Viewpoint on Hu-
man Factors in Software Supply Chain Security: A Research Agenda.”, for the Special Issue
on Secure Software Supply Chain of IEEE Security & Privacy magazine. This writing was
conducted as a team with my co-authors Dominik Wermke, Sascha Fahl, and Yasemin Acar;
this chapter therefore uses the academic “we”. We developed the research agenda and reviewed
the literature jointly as a team, incorporating feedback from Henrik Plate and Laurie Williams
whom we want to thank for lively discussions and valuable feedback on this paper.

I think science’s main purpose should not be to hide the truth, but to show it in
a way that is as easy to understand as the scientists can make it. As per Schneier’s
Law, “[a]nyone, from the most clueless amateur to the best cryptographer, can cre-
ate an algorithm that he himself can’t break.” [328] An alternative phrasing can be
misattributed to Albert Einstein, better attributed to Richard Feynman who said “[i]f
you can’t explain it simply, you don’t understand it well enough.” I claim we do not
understand our computers and their computations well enough.

1.1. Software Security Landscape
Attacks against software become more frequent [1]. More widely deployed software
means a single vulnerability needs to be patched in a lot more places.

Software security today is a long way from the early nineties, where the buffer over-
flow [280] was only secret knowledge. Memory safe programming languages have
grown to be more prominent [77]. The most security sensitive software is now used
f.e. in online-banking, where high values are protected against outside attackers just
listening in on any internet connection. Still, hacking occurs with destructive reper-
cussions [122]. Even modern software suffers from bug classes that were discovered
more than twenty years—the buffer overflowswere published in 1996 [280]. But aside
from these problems, higher security requirements for software and different attacks
require different defenses.

When new attacks are found, all new and existing software may be vulnerable. For
cryptography, one very public example were the Spectre [210] and Meltdown [239]
vulnerabilities in 2018, which cost processor manufacturers an estimated 18 billion

1

1. Introduction

US dollars [2]. These are only technical costs, since then every implementation of
cryptography needs to defend against Spectre-style attacks, in principle.

With this thesis, we want to look into the problems which inhibit developers from
defending their software against these known attacks with also published defenses.
We want to inspect their problems and highlight what is missing to deploy the some-
times academic defenses in more real-world software installations, to provide better
overall security for end users, some of which are the developers in question them-
selves.

Much of the software that needs to be defended against attacks is not from one
commercial entity [287], but from a group of—only sometimes paid [23] for their
efforts—volunteer developers. Hence we have to look into the environment which
begets the software used in many places in the background [287] first.

1.2. Why Open Source?
In this thesis, we assume that Free/Libre/Open Source Software (OSS) is being used
in most software projects, open and closed alike [287]. This trend increased over the
years to a high point today [179], consequentlywe need to ask ourselves how to secure
projects that are developed by different groups of developers that interact in different
ways, if at all [392].

In the sixties, after the women programmers before [185], programming became a
topic for highly educated, highly paid, and highly privileged [185] mainframe pro-
grammers with access to computing resources [185]. In the eighties to nineties this
changed to include ever more “home programmers”, hackers, and other people who
are now referred to collectively as parts of the hacker culture andOSSmovement [98].
The difference between these decades is widening access to cheaper, readily available
computing resources—Personal Computers [175]. This has led to more people being
able to develop software at home, in their spare time, for fun, personal, or sociopoliti-
cal reasons [183]. These communities started to develop their own operating systems,
which were the basis for our modern Internet, with the advent of a widely used open-
source TCP/IP implementation for the BSD operating system [232]. These commu-
nities have impact on deployed software, commercial and non-commercial alike, but
the educational, financial and privilege background can be a lot more diverse in these
communities [137], which can lead to different outcomes in security as well [390].

We can alwaysmake somethingmore secure if we don’t have to change what makes
it work [330], like its trust dynamics [392]. We assume OSS is valued for its generally
high quality and low opportunity cost [32, 51]. If we change any of the factors that
make OSS work in the first place, we might destroy what allowed it to thrive and
bring benefit to the software ecosystem [252], with some of its participants not paying
forward even if they could afford to [26]. This is not necessarily a detriment, though,
since many developers work on OSS in their own free time, as a hobby [341]. It is
these hobbyist workers that have to be seen as an integral part, since they founded the
whole ecosystem as it is today [98].

2

1.3. Cryptographic Engineering differs from general Software Engineering

Making the software ecosystemmore secure by driving up opportunity costs [336],
changing how developers interact with their development environment [269], who
they trust [114] and how they establish trust [365] has to be done very carefully [392].
As it is today, some developers know and use cryptography to secure their software
[114], andwewant to look into the quality of that cryptographic software. This applies
only to a very small subset of developers, but they are the most important ones [17].

Software packages which have a large set of dependencies [93]—direct and indi-
rect [107]—led to the view to call this a supply chain [242], like the one for other
products. This software supply chain needs to be secured as well, and is riddled with
transitive dependencies and therefore transitive trust relationships between develop-
ers who build something [107], which end users often only see the last development
party of, becoming vulnerable to dependency confusion attacks [64]. While software
releases may be signed more readily, when single commits in distributed repositories
are the main mode of interaction [101], but the prevalence of unsigned commits is not
quantified as of yet, so a lot of untrusted changes may end up in our final software we
download [331]. Even in the best case, we want our cryptography used for signing
software to be implemented securely [395]—what that means will need some more
background information, but it is non-trivial for most developers who are not well
versed on the topic [180].

Externalized trust relationships are still difficult [215], since the more removed you
are from the person whose code you want to trust, the less you know about them or
their coding practices [75]. This externalization of trust can be even harder if most
of our infrastructure is financed by industry fundamentally at odds with the interests
of software developers and users [408]. As stated by Rogaway, cryptographers are
motivated to help people anyway, since cryptography was never a politically neutral
field [317]. This notion makes cryptographic engineering akin to OSS development,
which can be done out of different motivations including moral reasons, but there are
many differences as well.

We will now look into those differences.

1.3. Cryptographic Engineering differs from general
Software Engineering

Cryptographic developers implement cryptographic algorithms, using tools specific
to cryptographic engineering. The security requirements of cryptographic code are
different and higher than most other, more general code [395]. The analysis of cryp-
tographic code can be harder due to more manual optimization being done by ex-
pert cryptographic engineers as well as many domain specific other details, like the
implementations not making secrets inadvertently public [38]. Sometimes it is desir-
able enough to formally, mathematically prove the correctness of cryptographic algo-
rithms, if at all possible. This is good practice, but proving an implementation correct
is a lot harder and proven code may not be good in general [182].

3

1. Introduction

The burden of proving, analyzing, testing, or even just reasoning about the security
of their cryptographic implementations by each individual developer in a team, may
sometimes get lost in distributed OSS projects [199].

Helping these developers write better codemore easily benefits the security of their
software implementations and of the infrastructure based on those implementations.
We will focus on these developers from now on.

1.4. Why focus on Developers?
Securing the software supply chain requires that we recognize the importance of in-
dividual developers [95, 7]. While securing dependencies and build systems is nec-
essary, recent attacks have shown that developers are a link in the chain that is com-
monly attacked successfully. Therefore, a comprehensive approach that considers the
human factor is crucial for effective software supply chain security.

OSS and cryptographic software developers are highly skilled in their own right,
but they use software like everyone else. Their understanding of problems does not
make them immune to bad usability of software, which in their fields is sometimes
from research prototypes that were not meant for public, long-time consumption and
maintenance [199].

1.5. OSS and Supply Chain Security
Human factors, and especially developers, play an important role in securing the Soft-
ware Supply Chain (SSC) [95]. SSC vulnerabilities pose significant risks to organiza-
tions, historically being exploited by threat actors who target unpatched systems with
known vulnerabilities [221]. Exploits targeting vulnerabilities like Heartbleed [128]
and more recently Log4Shell [134] have highlighted weaknesses in both commercial
and open-source software, affecting both private and government enterprises and bil-
lions of end users. More recently, attackers directly exploited the SSC structure by tar-
geting upstream dependencies and build systems to inject malicious code into down-
stream software, like in the security incident at SolarWinds.1

Several steps to address dependency andbuild chain problemshave beenproposed—
updating and using trusted dependencies, Software Bill of Materials (SBoMs), se-
curing the build process, and more industry participation [131]. However, secur-
ing these dependencies and build systems will likely not thwart all attacks: Recent,
headline-making attacks involved breaches of the SSC through one of its largest attack
surfaces—individual developers. In January 2023, CircleCI disclosed that a cyber-
criminal had used malware on a CircleCI engineer’s laptop to steal a valid, two-factor
authentication-backed SSO session, allowing the attacker to execute session cookie

1https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain
-compromises-with-sunburst-backdoor

4

https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor

1.6. Highly Skilled Software Developers still have usability issues

theft and impersonate the employee, gaining access to a subset of production sys-
tems.2 In February 2023, password manager LastPass reported that a hacker stole
corporate and customer data by infecting an employee’s personal computer with key
logger malware, giving them access to the company’s cloud storage and resulting in
the theft of source code and customer vault data.3

These incidents highlight that each individual developer participating in the SSC
may have different technology and knowledge stacks, and humans making decisions
about security and trust can put the SSC at risk [392]. We explore both how to em-
power stakeholders to secure the SSC by considering human factors and reducing de-
veloper overwhelm, and also how to decrease the attack surface of individual software
developers.

1.6. Highly Skilled Software Developers still have
usability issues

We see that highly specialized and skilled developers are needed to secure the SSC.We
also see that some of the most impactful software in use is made, at least in parts, by
volunteers, who do not have a common organizationally enforcedminimum standard
of institutional knowledge, funding, or onboarding into projects.

These developers need to be supported in theirwork, sowe can raise the security bar
for everyone who directly or indirectly depends on their software. Since bad usabil-
ity of specialized research or other special use software targeted at supporting these
developers—software users in that role—harms adoption of that supporting software,
we will look at case studies of usability issues in this thesis.

1.7. Thesis Statement
The purpose of this thesis is to explore the impact of usability problems and ways to
help developers secure not end-user facing software against attacks, but the infras-
tructure which all other software is depending on. We will view these specialized
developers as users of software themselves, and gain insights as well as offer advice
with the lens of usable security, informed by expert matter in these highly specialized
topics.

We assume that all developers in these specialized fields—cryptography and supply
chain security/build tooling—are highly motivated and highly informed about possi-
ble problems in their area, but not necessarily in all possible tools and defenses against
those problems. We want to find out how to bridge gaps between these developers
and the developers of security automation tools analysing, mitigating, or completely

2https://circleci.com/blog/jan-4-2023-incident-report/
3https://blog.lastpass.com/2023/03/security-incident-update-recommended-actions/

5

https://circleci.com/blog/jan-4-2023-incident-report/
https://blog.lastpass.com/2023/03/security-incident-update-recommended-actions/

1. Introduction

eliminating specific classes of problems not widely known in the general developer
space, which is itself a specialized field among the whole population.

Recognition: For work done in preparation of this thesis, we received a distin-
guished paper award for the paper “Committed to Trust: A Qualitative Study on Se-
curity and Trust in Open Source Software Projects” [392] (see https://www.ieee-sec
urity.org/TC/SP2022/awards.html).

1.8. Contributions
For a full list of papers, see Chapter D.

The research that contributed to this thesis has been published as conference pa-
pers. This section will provide a summary of the publications that contributed to this
thesis, where theywere published, and the contributions of each author and how they
contributed. Like other scientific work, it would not have been possible to create these
works without collaborative effort and significant contributions of co-authors. In this
list, § marks the main author, ∗ marks an author with a significant contribution, and
+ denotes a supervising author with signifcant contribution. The publications have
been mildly edited and set in context where appropriate for inclusion in this thesis.
The publications contributing to this thesis are the following:

“They’re not that hard to mitigate”: What Cryptographic Library
Developers Think About Timing Attacks
This peer-reviewed paper contributes to Chapter 3 of this thesis. We research the
current landscape of opinions and practices around cryptographic constant-time ver-
ification tools for use by cryptographic library developers
Authors: Jan Jancar§, Marcel Fourné∗, Daniel De Almeida Braga∗, Mohamed Sabt∗,
Peter Schwabe+, Gilles Barthe+, Pierre-Alain Fouque+, and Yasemin Acar+.
Published at the 43rd IEEE Symposium on Security and Privacy 2022.
Contributions to this paper: The initial ideawas developed bymyself with Jan Jancar,
Peter Schwabe, Gilles Barthe, and Yasemin Acar. All authors reviewed the literature,
conducted the study, and jointly analyzed the data and co-wrote the paper for publi-
cation.

Paper SummaryDevelopers of cryptographic software libraries care for software that
is important for the security of thewhole software ecosystem, which is itself important
for all our current industries. Small security problems in those libraries can cause large
damage. Attackers can be highly motivated and one class of attacks that is still preva-
lent are timing attacks. Analysis tools for finding such potential vulnerabilities that
can later potentially be exploited in an attack are published, however we found out by
asking 44 cryptographic software library developers that their adoption of these tools
is small. We asked about their reasons for this, as well as experiences of trying to use

6

https://www.ieee-security.org/TC/SP2022/awards.html
https://www.ieee-security.org/TC/SP2022/awards.html

1.8. Contributions

the tools, in order to compile a list of recommendations for different target audiences
of the paper.

It’s like flossing your teeth: On the Importance and Challenges of
Reproducible Builds for Software Supply Chain Security

This peer-reviewed paper contributes to Chapter 5 of this thesis. We research the
impact and current status of reproducible builds in the context of build automation
and determinism of its results for the security of the SSC.
Authors: Marcel Fourné§, DominikWermke∗,WilliamEnck+, Sascha Fahl+, andYasemin
Acar+.
Published at the 44th IEEE Symposium on Security and Privacy 2023.
This work was mentioned in the monthly report of the Reproducible-Builds.org
project at https://reproducible-builds.org/reports/2023-06/.
Contributions to this paper: I developed themain ideawith YaseminAcar, with input
fromWilliamEnck andDominikWermke. The instrumentwas developed by Yasemin
Acar andmyself. I conducted the interviews, with the help ofDominikWermke. I lead
the initial round of coding, independently verified by Dominik Wermke, followed by
joint affinity diagramming with Yasemin Acar, Dominik Wermke, and Sascha Fahl. I
lead writing the paper for publication, with support from all other authors.

Paper Summary
One old attack against software security is the Trusting Trust attack, published dur-

ing Ken Thompsons 1983 Turing award lecture [354]. Using this attack, a backdoor
can be implemented in the binaries that are compiled from unmodified source code of
programs, proliferating the backdoor across the whole software ecosystem. Finding
this backdoor is hard and only in 2006 David A. Wheeler showed a defense against
it, which requires software to be built reproducibly by default, giving bit-by-bit same
artifacts. Historically, this was simpler with trivial programs, or older programsmade
to be simple. Today, there is an effort to achieve this with more modern software, even
bootstrapping thewhole software ecosystem from an inspectable, clean state to a func-
tional SSC. The security benefits are highlighted through recent attacks on different
SSCs, but the main adopters of reproducible builds are projects in the open source
community, which also spend the most effort to bring the topic forward. We inter-
viewed 24 developers on current problems and solutions for those problems, com-
piled a list of recommendations for different target audiences of the paper and show
a positive outlook of how far the projects have already come.

7

Reproducible-Builds.org
https://reproducible-builds.org/reports/2023-06/

1. Introduction

A Viewpoint on Human Factors in Software Supply Chain Security:
A Research Agenda.
This peer-reviewed article contributes to the introduction and conclusion 6 of this the-
sis. We identify focus areas promising research problems in supply chain security and
usable security for developers and other users.
Authors: Marcel Fourné§, Dominik Wermke∗, Sascha Fahl+, and Yasemin Acar+.
Published in the Special Issue on Secure Software Supply Chain of IEEE Security &
Privacy magazine, issue 21.6.
Thisworkwasmentioned in themonthly report of the reproducible-builds.org project
at https://reproducible-builds.org/reports/2023-11/.
Contributions to this paper: All authors reviewed the literature, developed future
research directions, and finalized the paper after an initial draft by me.

Article SummaryAfter conducting the research for Chapter 5, we decided to compile
a list of open research problems in the area of software supply chain security (SSCS),
where the lens of usable security was still missing to include developers and (expert)
users as competent but under-informed practitioners in their fields. We draft different
topics for future research projects and outline the problem areas as well as expected
benefits for conducting those projects. We provide an overview of how these topics in-
tegrate into themain area of SSCS and cite reasons for beginning these projects sooner
rather than later in our current software ecosystem crisis.

“These results must be false”: A usability evaluation of
constant-time analysis tools
This peer-reviewed paper contributes to Chapter 4 of this thesis. We follow up on the
previous cryptographic constant-time analysis tool proliferation paper 1.8 by evalu-
ating quantitatively and qualitatively how much certain properties thwart use and
adoption of the tools by inexperienced, but highly qualified developers that might
start working on cryptographic software libraries.
Authors: Marcel Fourné§, Daniel De Almeida Braga∗, Jan Jancar∗, Mohamed Sabt∗,
Peter Schwabe+, Gilles Barthe+, Pierre-Alain Fouque+, and Yasemin Acar+.
Accepted for publication at the 33rd USENIX Security Symposium 2024.
Contributions to this paper: The initial ideawas developed bymyself with Jan Jancar,
Peter Schwabe, Gilles Barthe, and Yasemin Acar. We conducted the study with our
other co-authors and jointly analyzed the data and co-wrote the paper for publication.

Paper Summary
Since the work of finding out why cryptographic software library developers do not

pervasively use cryptographic constant-time analysis tools was not finished by giving
concrete, objectively and numerically evaluated reasons for abandoning those tools,

8

reproducible-builds.org
https://reproducible-builds.org/reports/2023-11/

1.9. Related and Concurrent Work

we followed up the first paper with a test setup where we recruited eligible students
of European top tier cryptographic and IT-security study programs who did not have
prior experience working on production quality cryptographic libraries, but have all
necessary skills to do so. 24 of them were given tasks of different difficulty levels
for evaluating the ease of use of different cryptographic constant-time analysis tools
chosen by us to represent the most common classes of tools being published in re-
search literature. After this, they were given one open source cryptographic library
to analyze with the same tool, and another library with a new tool, to compare po-
tential familiarization effects with different tools. Our test setup is public, to make
installation of the tools as well as reproduction of the study easier or even possible
at all. At the end, we compiled the results, gave our expert opinions on the results,
and provide recommendations based on our experimental findings for cryptographic
constant-time analysis tool developers to enhance the usability of their research tools
to be suitable for real-world adoption. We order the recommendations by the phase
of an analysis and give our expert opinions on possible effort required and additional
enhancements.

1.9. Related and Concurrent Work
The work in this dissertation supports the statements that (a) the security of the SSC
depends on human factors concerning its developers, and (b) better usability of code-
analysis tools for cryptographic software implementations benefits developers in help-
ing to find implementation errors in their code. During the time we concluded our
studies, other research groups explored several other research questions, either con-
currently or after our work.

In 2020, Torres-Arias et al. published in-toto [358], a tool to check code provenance
through auditing before publication of code artifacts. The code provenance through
cryptographic signing of commits in git repositories available over the web—or the
lack of availability to do so at the time—was researched [12] as well. The impor-
tance of bootstrapping trust for projects based on a community repository was in-
vestigated [371], noting problems for the SSC as well as currently established prac-
tices. This led to the design of a new cryptographic artifact signing system called
sigstore [267], aimed at better developer usability when a centralized authority is
used anyway, foregoing some of the older community projects that sometimes dis-
trust such solutions. By using a fully centralized signing solution under a certificate
authority, an even simpler system was published [251]. Online authentication for all
users, following developer advice, got a look as well [209].

The deployment of software in the DevSecOps process, orchestrated by a central-
ized authority, got an initial NIST standard draft in 2023 [87]. Inspecting the security
of third party dependencies using the Java ecosystem was investigated and a permis-
sionmanagerwas introduced [24], aswell the state of findingmalicious Java packages
in general [223]. This work was repeated for npm and PyPi as well [225], speculating
about and giving numbers for detection of these [224]. In contrast, the Rust ecosystem

9

1. Introduction

ismore aimed at also enabling embedded software use of its software implementation,
so its security state was looked into as well [334]. The quality of Software Bill of Mate-
rials (SBoMs), can vary, as one viewpoint article [357] speculated and promptedmore
research into. Another viewpoint article, concurrent to our own, speculates that the
area of SSCS can have limited adoption of best practices through divergent nomencla-
ture [249]. As mentioned before, an SoK paper about the state of SSCS was published
to much acclaim [221]. Earlier, as its foundation, software for exploring the risks and
potential attack surface of SSCS using OSS was presented [222], together with later
developing the taxonomy based on it [222], as groundwork for the SoK paper. Also
following the SoK, a lot of other papers emerged. These study the specifics of the se-
curity challenges in the open source SSC [391, 254], while others look into package
managers and programming language ecosystems [377, 266, 324, 168, 261], statistics-
based detection of attacks [202, 270], code review processes [195], just to name a few
of the more prominent ones.

The general state of SSCS was also investigated [278] and systematized in a second
SoK paper, identifying four stages of supply chain attacks that software is vulnerable
to.

The practice of teams developing software and their approaches to security were
compared [385] and workshops provided to enhance integration of a security cul-
ture. The cybersecurity self-efficacy of users got a literature review [55] and the gen-
eral stance of employees towards IT security was investigated [250], again with an eye
towards interventions. Expert users attitudes towards checking cryptographic signa-
tures [244] found that 52% of these expert users could be made to fall for one of four
signature spoofing attacks.

Introduced friction through security practices in organizations was a point of con-
tention for security managers working to better the state of security in their organiza-
tions [187], and awareness about the need for it found as the main problem [186].

On the practicality of bringing cryptographic research into general usage [138], new
research is slated for publication in 2024, similar to a previous study about general
benefits of usable security research not getting into final products [169].

We hope that the results in this dissertation as well as other publications help de-
velopers to implement more usable and secure by default software, so the security of
our whole SSC benefits in general, but also new research is inspired.

10

2. Background
After somemotivational framing, wewant to give a background into the topics around
which this thesis gravitates. We want to explain why cryptographic engineering is a
specialized discipline, built on a lot of prerequisite knowledge and practical experi-
ence, and why this is necessary for high-value software deployments to secure the
roots of our current software ecosystem.

This chapter provides a framing on how to read the peer-reviewed background sec-
tions as they relate to each chapter thereafter, to give a notion on how this thesis’
overarching theme connects back to the goal of securing the software we run on our
computers, which is orders of magnitude in interdependent code being deployed in
practice. We have to start with the big picture of software supply chains, andwill then
go into details on how each single part can be secured.

First we will introduce software supply chains, with notions of quality and trust
as well as security problems and defenses against them. The Trusting Trust prob-
lem will be important and underpins infrastructure changes still necessary to deploy
worldwide.

We will follow up with the shortest notion of cryptography, insofar as it is neces-
sary to talk about what we want to secure with its use and what we need to ensure
it is secured against, in the form of a still common type of side-channel attack, which
code can theoretically defend against, but in practice is not implemented ubiquitously.
Finding code parts not hardened against these attacks can be done via specialized code
analysis, which we introduce next insofar as we want to highlight why it is not used
in the development of each and every deployed cryptographic software.

The art of creating cryptographic software libraries—cryptographic engineering—
will be introduced next and set in relation to its need for usable security, to highlight
why we did our studies which comprise the main content of this thesis.

2.1. Software Supply Chains, Quality and Trust
Software that is built from different parts, each being a software project in itself, af-
fords less control over each change in those parts. One model to make this work is
so-called “blind” trust [113], where developers assume that each project will be man-
aged in a goodway, solving a problem for the developer depending that library in their
own project and being fixed promptly against security vulnerabilities, which through
updates then percolate through the whole chain of dependencies. This model also
relies on cryptographic signatures of code artifacts, but we don’t need to link every
bit of source code to each developer. Instead, we trust that the code artifacts were

11

2. Background

generated well. This model is not, however, very secure against attacks [221], due to
many developers being burdened by time-constraints and maybe not knowing about
potential security vulnerabilities. Even worse, some malicious actors can insert them-
selves and their code in this software supply chain, their code then being included
into code artifacts. That is the reason we need to look into how our software is being
made and what we actually execute on our computers. The quintessential attack is
the “Trusting Trust” attack presented by Thompson in 1984 [354], where a specifically
crafted backdoor is included in a compiler, so that every binary generated by that com-
piler includes the backdoor. Subsequently compiling the compiler source code with
a backdoored compiler binary will include the backdoor, even if it is not present in
the source code. This raises questions if our software supply chain is currently back-
doored in a similar way. In 2005, David A.Wheeler presented a scientific paper which
proposes a defense against this kind of attacks: “Diverse Double-Compiling” [393].
The notion behind this defense is that if two different compiler binaries—not neces-
sarily from different compiler projects, but one of them has to be trusted to be free
of backdoors—agree on the result of compiling source code, then we can also trust
the previously untrusted compiler binary. For this, a special criterion needs to be true
for the compilers: They must build the same source code under the same set of envi-
ronmental variables bit-by-bit identically. The effort to get this as a default is called
“Reproducible Builds” and is the topic of Chapter 5. The trust generated by being able
to check how each binary is generated in this setup gives rise to trust relationships,
where developers can be identified through cryptographic signatures of their source
code and consumers of their work can decentrally check if the resulting code artifacts
have been tamperedwith. This, however, is not current practice, as discussed in Chap-
ter 5. The full bootstrap of a software distribution using a minimal trusted computing
base is shepherded into an effort called “Bootstrappable Builds” and the GUIX dis-
tribution has achieved such a boostrap [272] from a 357-byte program, which is easy
enough to be checked by hand by multiple people.

Checking compiled binaries for potentially malicious behaviour runs into problems
with Rice’s Theorem [313] which states that for a property p of a nontrivial formal
language L, it is undecidable for a given Turing machine if the language recognized
has the property p. This is even worse in networks of computers, where performance
characteristics pose computational burdens on the analysis [142, 143]. To aleviate this,
either reductions in formal language strength to no longer be Turing complete—which
cannot be checked when looking at a binary for a general computer—or doing more
analysis on the implementation before it gets compiled into a binary file, is needed.

There are languages which even pride themselves on being hard to analyse, some
even hard to program in, like Ben Olmstead’s 1998 Malbolge [279, 327] (with Ørjan
Johansen’s dialect Malbolge Unshackled [203] proven Turing complete through im-
plementing a Brainfuck interpreter [241]), which are interesting as counterpoints to
good engineering and security practices. This is called “Turing tarpit” [286], where
everything can be programmed but it is hard to do so for anything non-trivial.

Sooner or later, to achieve supply chain security we need to check what goes into
binaries and treat them as artifacts of that process. In general, trust in computers and

12

2.2. Cryptography

the programs they execute is hard without knowing details about the programs and
whowrote them [392]. Formaking some trust relationships possible to be established,
we need cryptography, which has very specific differences from other, less security-
critical software.

We now want to give a quick overview of what we need from cryptography, and
what it needs to provide this itself.

2.2. Cryptography
Secret key cryptography—also known as symmetric key cryptography, after all com-
munication parties sharing the same secret key—has been known for a long time.
Newer systems, like AES, were chosen in public to be secure against the attacks of
the best public researchers in the hopes of avoiding crucial weaknesses in their de-
sign. Following Kerckhoffs’s principle as formulated by Bolovin “design your system
assuming that your opponents know it in detail” [45], the secrecy of a message in a
cryptographic system should not depend on details of the implementation, but only
on secret keys.

A newer and different kind of systems is asymmetric cryptography, publicly de-
scribed by Diffe and Hellman in 1976 [118]. In this class of systems, it is possible to
establish security goals without a shared secret. One of the possibilities is a shared se-
cret, established through a key exchange or using a key encapsulationmethod (KEM),
another popular one is cryptographic signatures. To show how these can be used, we
have to look at their properties, their guarantees, assumptions and how to protect
them.

Secretness of the content of secret keys and helping developers of cryptographic
software implementations is what our research has been about. Therefore, we will
look into a criterion that we will see in more parts of this thesis.

2.2.1. Constant Time Criterion
The intuitively misnamed Constant Time criterion for cryptographic algorithm im-
plementations—software and hardware, but in this thesis we will focus on software
implementations and their analysis—is a well known [199] baseline for the security
against side-channel attacks. Before going into its details, we explainwhat side-channels
and attacks against them are in the context of cryptographic implementations. A side-
channel is any kind of measurement of the physical side-effects of a computation,
for example time taken for the computation [211], energy emissions in the form of
heat [207] and electric fields [220], energy draw—absolute value(Simple Power Anal-
ysis) or differences (Differential Power Analysis) [212]—of the computational device,
access patterns to memory cells visible through caches [47, 283], even acoustic ema-
nations [153]. In this context, a side-channel is called “silent”, if no information from
its measurements can be used to break the security assumptions of a cryptographic
implementation. The most common of those assumptions is that the secret key of an

13

2. Background

algorithm is not made public through the computations done with it. A side-channel
attack is an attack on a cryptographic algorithm implementation using a non-silent
side-channel for information that makes breaking the implementation feasible, or at
least easier. Those attacks get more practical with more research effort put into them,
consequently the common byline is “attacks only get stronger” [188]. The Constant
Time criterion [211], that could better be called secret-key invariant execution, is based
on minimizing the execution timing side-channel through formally provable means:

1. Memory access must not depend on the value of bits of the secret key.

2. Branching in code must not depend on the value of bits of the secret key.

3. Operations in a CPU must not vary in execution time (cycle latency) depending
on the value of bits of the secret key.

The last of these three conditions is sometimes omitted, since it is dependent on the
exact CPU model under analysis, might only give small side-channel information or
could be harder to check for in a general way.

Memory accesses can be timed easier [72] due to caching of memory pages giving
vastly different access times dependent of the location of memory pages in either the
main RAM or a faster CPU cache. That is why no memory access may depend on a
secret value, which in practice means no memory access should be indexed by said
secret value.

Branching conditions directly dependent on secret values are a problem due to the
branch prediction unit of processors giving different execution times depending on
which branch is taken [211], but even without this, two code paths can have different
execution times and that is why the choice of branch should not depend on secret
values.

To verify if a software implementation exhibits the Constant Time criterion, we have
to look into program analysis, and its more specialized form of cryptographic code
analysis.

2.2.2. Cryptographic Code Analysis
Analysing generic binaries on modern computing architectures can lead to unsound
and incomplete results due to the Turing completeness of the platforms [157]. This
is sometimes called “Turing tarpit”, in reference to Turing-completeness of program-
ming languages, which is often seen as a benefit, so programmers don’t need to prove
termination of their non-trivial programs, like to assist an interactive theorem prover
[314]. This also makes automatic classification about properties of programs infeasi-
ble in general, due to the Halting Problem, or “Entscheidungsproblem”, as proven by
Church in 1936 [94], which gives rise to the aforementioned Rice’s Theorem.

Analysis of a program consists of either restricting to a formal language that can be
analysed [156], or taking a solid guess as to what will happen if we cannot do that,
which can be supplemented by partial information by a human engineering a proof

14

2.2. Cryptography

or automatically solvingwhich branches can be taken depending on inputs to the pro-
gram via symbolic execution [208]. Normal execution of a program and analysing its
behaviour is called dynamic analysis or program testing, and conversely analysing a
program without having to execute it is called static analysis [271], but the distinc-
tion need not be as clear if we reason about partial programs. Through abstract in-
terpretation [105, 106] we can reason about program semantics. Through symbolic
execution, we can reason about values a conditional may exhibit and restrict the tree
of possible executions a program may exhibit under them, thereby trying to restrict
the possible executions to something that can be analysed exhaustively [271]. This
can be combined with partial execution of parts of the program with concrete values,
called concolic execution [155].

In this thesis, we focus on the soundness and completeness of its analysis, as known
from mathematical logic, not which kind of analysis a program analysing program
will do. In this context, an analysis is called sound, if no program thatmay exhibit non-
CT behaviour is labelled CT by the analysis [38]. Completeness is not the opposite of
that, but the property that every finding during analysis of possible non-CT behaviour
is an actual CT-violation, not a false positive [38].

Analysing binaries sooner or later becomes infeasible due to the earlier mentioned
Rice’s theorem, which the methods mentioned earlier try to work around by using
some formof automated theoremproving, whichmay run into undecidable problems.

Cryptographic code can be easier to analyse than general program code due to
specifics of cryptographic algorithm implementations, if done in a high-level pro-
gramming language [38]: Most often, cryptographic algorithms are sure to termi-
nate, so termination analysis can easily classify this code as total functions, or at least
proofs for termination can be made [39]. Highly optimized implementations tend to
favour (straight)line-code [132], which looks similar to Static Single Assignment form
used in compiler construction for its simplicity and can be analyzed just as well [132].
Loops mostly have statically known bounds, or at least the termination conditions can
be proven to be finite. This makes cryptographic algorithm implementations easier to
prove properties about than general programs, but not necessarily easy [38].

Since we can theoretically analyze cryptographic code, we need to look into the
practice of writing it in the first place, to see what developers are doing.

2.2.3. Cryptographic Engineering

While analysis can sometimes infer the absence of some forms of side-channel attacks,
the programmer has to implement the cryptographic algorithms under specific con-
straints to shape programs amenable to resource and efficiency/speed constraints as
well as analysis and security criteria. This practice is part of cryptographic engineer-
ing. Constant time coding practice is designed to protect against the most basic of
side-channel attacks. Neither is there a formal way to achieve Constant Time code in
every programming language, nor is there a way to instruct every compiler to not use
optimizations that might destroy this security property in favor of potential execution

15

2. Background

speed gains [206].
A given cryptographic algorithm can sometimes be replaced by another one that is

free of branching behaviour [49]. If that is not possible, a conversion of the branch-
ing condition and result expression can sometimes be converted into arithmetic do-
main [329], where one result is encoded as conditional bit multiplied by value of the
first result expression and the inverse of the conditional bit multiplied by the value
of the second result expression. This transformation is no longer CT, when a com-
piler infers a multiplication by zero not needing to evaluate the result expression for
its value, so cryptographic engineering most often is a struggle against compiler en-
gineers having new ideas on how to optimize the cryptographers code against their
will [206].

Alternative tool chains for cryptographic code development exist [20, 18, 38, 132,
300, 412, 85]. They are, however, not meant for general purpose programming tasks—
targeting either typed dialects of assembly language, domain specific languages or full
on dependently typed programming languages with proof assistants—and therefore
lack broader adoption. Some provide high assurances against side-channels, for func-
tional correctness, but integrating their code into programs generated through use of
amore general purpose programming language is another effort for cryptographic en-
gineering, often achieved through glue code inC and Foreign Function Interfaces [300,
132].

In the end, it is up to the cryptographic engineers to make their code safe and ver-
ify that the resulting binaries being executed on deployed hardware for their users
are actually safe. This is where usable security can show a gap between theory and
practice.

2.2.4. Usable Security

Tying this together is the viewpoint that to achieve security for users of computers
and the programs that run on them, we need to look into how to make it easy for
cryptographic software developers to test their software against non-CT behaviour
more rigorously than we need to check, for example, a general text editor. Usable
security often looks at the usability of security software solutions to their users, but
in this thesis, every user is a developer themselves, and not even every developer is as
critically touched by CT problems as cryptography experts, who dedicate their efforts
to making sure their implementations can actually keep the promises their algorithms
pay forward.

Cryptographic software implementations are critical to the software supply chain
[233] and need to be tested not only for correctness, but also for their security of not
leaking the secret keys while operating [72], so we can build a secure software supply
chain on the primitives implemented in, for example, tools that use cryptographic sig-
natures to sign files containing source code, linking them unequivocally to the person
we trust to keep their secret key to themselves and their code in good, working order.

This is why in this thesis, we preface the two chapters on usability of tools verify-

16

2.2. Cryptography

ing CT to the chapter on supply chain security impacts of reproducible builds, which
depend on cryptographic primitives being implemented.

17

3. What Cryptographic Library
Developers Think About Timing
Attacks

Disclaimer
The contents of this chapter were previously peer-reviewed and published as part of the confer-
ence paper titled “‘They’re not that hard to mitigate’: What Cryptographic Library Developers
Think About Timing Attacks”, presented at the 2022 IEEE Symposium on Security and Pri-
vacy. This research was conducted as a teamwithmy co-authors Jan Jancar, Daniel De Almeida
Braga, Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar;
this chapter therefore uses the academic “we”. The initial idea was developed from myself with
Jan Jancar, Peter Schwabe, Gilles Barthe, and Yasemin Acar. We conducted the study with our
other co-authors and jointly analyzed the data and co-wrote the paper for publication. This
paper describes the state of cryptographic constant time verification tools up to the year 2021.
Research in Chapter 4 builds upon knowledge gained in this ecosystem.

3.1. Motivation
While some of our initial team are cryptographic engineers at heart, we all knew that
the tools to verify best practices in cryptographic engineering in any implementation
not specifically tailored to verifiability is hamstrung and largely best effort itself. We
ventured out to guess that this feeling is universal, but we had no numbers to back this
up. From one discussion round, we decided to investigate all the folk tales of crypto-
graphic engineering around constant-time programming and the resulting programs,
see what other practitioners experienced and use this as a basis for more development
of one at that time still being in development prototype of a new verification tool.

The goal of this study was to get a qualitative, scientifically citable overview of
not just sentiments of cryptographic software developers, but also an as-complete-as-
possible view of the state of the art of constant-time verification tools, where publicly
available or not. We decided to seek help of a usable security research expert and
some international colleagues.

Our team decided to give an overview of the whole problem space in as approach-
able a way as possible, to ask ourselves “why are constant-time violations not eradi-
cated, 25 years after the first scientific paper and 11 years after public release of the

19

3. What Cryptographic Library Developers Think About Timing Attacks

first tool for checking the code?”. We found different opinions among the experts,
which we will get to after first talking about the problem area as it is still, today.

3.2. Introduction
Cryptographic protocols, such as TLS (Transport Layer Security), are the backbone
of computer security, and are used at scale for securing the Internet, the Cloud, and
many other applications. Quite strikingly, the deployment of these protocols rests on
a small number of open-source libraries, developed by a rather small group of out-
standing developers. These developers have a unique set of skills that are needed for
writing efficient, correct, and secure implementations of (often sophisticated) cryp-
tographic routines; in particular, they combine an excellent knowledge of cryptogra-
phy and of computer architectures and a deep understanding of low-level program-
ming. Unfortunately, in spite of developers’ skills and experience, new and sometimes
far-reaching vulnerabilities and attacks are regularly discovered in major open-source
cryptographic libraries. One class of vulnerabilities are timing attacks, which let an at-
tacker retrieve secret material, such as cryptographic keys, “by carefully measuring the
amount of time required to perform private key operations“. Although timing attacks were
first described by Kocher in 1996 [211], they continue to plague implementations of
cryptographic libraries. There are multiple aspects that make timing attacks special in
comparison to other side-channel attacks such as power-analysis or EM attacks. First,
they can be carried out remotely, both in the sense of running code in parallel to the
victim code without the need of local access to the target computer, but also in the
sense of only interacting with a server over the network and measuring network tim-
ings [72] or over the Cloud [410]. As a consequence, unlike many other side-channel
attacks, timing attacks cannot be prevented by restricting physical access to the target
machine. Second, timing attacks do not leave traces on the victim’s machine beyond
possibly suspicious access logs, and we do not know at all to what extent they are
being carried out in the real world, for example by government agencies: victims are
not able to reliably detect that they are under attack and the attackers will never tell.

At the same time, and most importantly for this paper, we know how to systemat-
ically protect against timing attacks. The basic idea of such systematic countermea-
sures was already described by Kocher in 1996 [211]: we need to ensure that all code
takes time independent of secret data. It is important here to not just consider the to-
tal time taken by some cryptographic computation, but make sure that this property
holds for each instruction. This paradigm is known as constant-time1 cryptography
and is usually achieved by ensuring that

• there is no data flow from secrets into branch conditions;

• addresses used for memory access do not depend on secret data; and
1The term constant-time, often referred as CT, is a bit of a misnomer, as it does not refer to CPU

execution time but rather to a structural property of programs. However, it is well-established in
the cryptography community.

20

3.2. Introduction

• no secret-dependent data is used as input to variable-time arithmetic instruc-
tions (such as, e.g., DIV on most Intel processors or SMULL/UMULL on ARM
Cortex-M3).

Constant-timeness is no panacea, and the above rules may not be sufficient on some
micro-architectures or in the presence of speculative execution, but essentially all timing-
attack vulnerabilities found so far in cryptographic libraries could have been avoided
by following these rules. For this reason, the notion of constant-time has grown in
importance in standardization processes and recent cryptographic competitions. For
instance, in the context of the ongoing Post-Quantum Cryptography Standardization
project, the National Institute of Standards and Technology have stated in their Call
for Papers [275]:

“Schemes that can be made resistant to side-channel attack at minimal cost are more
desirable than those whose performance is severely hampered by any attempt to resist
side-channel attacks. We further note that optimized implementations that address side-
channel attacks (e.g., constant-time implementations) are more meaningful than those
which do not.”

Protection against side-channel attacks, including timing attacks, is also routinely in-
cluded as a requirement for Common Criteria certification as well as a part of the
newly approved FIPS 140-3 certification scheme [31].

Programming highly optimized code that is also constant-time can be very chal-
lenging. However, we know how to verify that programs are constant-time. This was
first demonstrated by Adam Langley’s ctgrind [229], developed in 2010, the first tool
to support analysis of constant-timeness. A decade later, there are now more than
30 tools for checking that code satisfies constant-timeness or is resistant against side-
channels [198, 38]. These tools differ in their goals, achievements, and status. Yet,
they collectively demonstrate that automated analysis of constant-time programs is
feasible; for instance, a 2019 review [38] lists automatic verification of constant-time
real-world code as one achievement of computer-aided cryptography, an emerging
field that develops and applies formal, machine-checkable approaches to the design,
analysis, and implementation of cryptography.

Based on this state of affairs, one would expect that timing leaks in cryptographic
software have been systematically eliminated, and timing attacks are a thing of the
past. Unfortunately, this is far from true, so in this paper we set out to answer the
question:

Why is today’s cryptographic software not free of timing-attack vulnerabilities?
More specifically, to understand how real-world cryptographic library developers

think about timing attacks and the constant-time property, as well as constant-time
verification tools, we conducted amixed-methods online surveywith 44 developers of
27 popular cryptographic libraries / primitives2. Through this survey, we track down
the origin of the persistence of timing attacks by addressing multiple sub-questions:

2We refer to both as “libraries” for readability.

21

3. What Cryptographic Library Developers Think About Timing Attacks

RQ1: (a) Are timing attacks part of threat models of libraries/primitives? (b) Do
libraries and primitives claim resistance against timing attacks?
RQ2: (a)Howdo libraries/primitives protect against timing attacks? (b)Are libraries
and primitives being verified/tested for constant-timeness? (c) How often/when is
this done?
RQ3: (a) What is the state of awareness of tools that can verify constant-timeness?
(b) What are the experiences with the tools?
RQ4: Are participants inclined to hypothetically use formal-analysis-based, dynamic
instrumentation, or runtime statistical test tools, based on tool use requirements and
guarantees?
RQ5: What would developers want from constant-time verification tools?

We find that, while all 44 participants are aware of timing attacks, not all crypto-
graphic libraries have verified/tested resistance against timing attacks. Reasons for
this include varying threat models, a lack of awareness of tooling that supports test-
ing/verification, lack of availability, as well as a perceived significant effort in using
those tools (see Figure 3.1). We expose these reasons, and provide recommendations
to tool developers, cryptographic libraries developers, compilerwriters, and standard-
ization bodies to overcome the main obstacles towards a more systematic protection
against timing attacks. We also briefly discuss how these recommendations extend
to closely related lines of research, including tools for protecting against Spectre-style
attacks [210].

3.3. Background & Related Work

3.3.1. Attacks

10
0%

 P
ar

tic
ip

an
ts

 (4
4

)

75
%

 K
no

w
 a

bo
ut

 to
ol

s
(3

3
)

25% Don't know about tools (11)

31.8% Haven't tried to use tools (14)

43
.1

%
 T

rie
d

to
us

e
to

ol
s

(1
9

)

38
.6

%
U

se
 to

ol
s

(1
7

)

4.5% Don't use tools (2)

Figure 3.1.: Leaky pipeline of developers’
knowledge anduse of tools for
testing or verifying constant-
timeness.

In 1996, Kocher introduced the concept
of timing attacks as a means to attack
cryptographic implementations “by care-
fully measuring the amount of time required
to perform private key operations“ [211].
He described successful timing attacks
against implementations of various build-
ing blocks commonly used in asymmet-
ric cryptography like modular exponenti-
ation and Montgomery reduction against
RSA and DSS. Since this seminal paper,
timing attacks have been further refined
and continued to plague implementations
of both asymmetric and symmetric cryp-
tography. Successful timing attacks are
way too numerous to list all, so we focus
on a few relevant examples.

22

3.3. Background & Related Work

In 2002, Tsunoo et al. [361, 360] were the first to present attacks exploiting cache
timing to break symmetric cryptography (MISTY1 and DES); they also mentioned a
cache-timing attack against AES. Details of cache-timing attacks against AESwere first
presented in independent concurrent work by Bernstein [47] and by Osvik, Shamir,
and Tromer [283]. In 2003, D. Brumley and Boneh showed that timing attacks can be
mounted remotely by measuring timing variations in response times of SSL servers
over the network [72]. Canvel et al. showed in 2003 how to recover passwords in
SSL/TLS channels using padding oracle attacks [80]. In 2011, B. Brumley and Tu-
veri showed that such remote attacks are still possible [71]; i.e., that the underly-
ing weaknesses in the OpenSSL library had not been suitably fixed. SSL libraries
continued to be the target of timing attacks; examples include the “Lucky 13” at-
tack by AlFardan and Paterson, which exploits timing variation in the processing of
padding in the CBC mode of operation in multiple common SSL/TLS libraries [16]
similar in principle to the paper by Canvel et al. [80]. In 2015, Albrecht and Pa-
terson presented a variant of the attack targeting Amazon’s s2n implementation of
TLS [14]. In 2016, Yarom, Genkin, and Heninger presented the “CacheBleed” attack,
which showed that the “scatter-gather” implementation technique recommended by
Intel [67] and implemented in OpenSSL as cache-timing attack countermeasure, is
insufficient to thwart attacks [402]. In the same year, Kaufmann et al. showed that
even carefully implemented C code may be translated to binaries that are vulnerable
to timing attacks [206].

We conclude this paragraph with a few attacks related to certification and stan-
dardization. Certification schemes such as Common Criteria often require certified
products to have countermeasures to a range of side-channel attacks, including tim-
ing attacks. However, certified hardware did not avoid being a target of timing attacks,
as shown by the recent Minerva group of vulnerabilities in ECDSA implementations,
including a Common Criteria certified smart card [200]. In recent years, various tim-
ing attacks were proposed against implementations of post-quantum cryptography
(PQC) including attacks against the BLISS signature scheme used in the strongSwan
IPsec implementation [70, 289, 41] and attacks against candidates in NIST’s PQC stan-
dardization effort [284, 378, 167].

Despite all these academic timing attacks, their practical exploitability is often ques-
tioned by practitioners. Security Audit companies try to catch timing vulnerabilities
in software [243]. However, they make the following statements: “Even though there is
basic awareness of timing side-channel attacks in the community, they often go unnoticed or
are flagged during code audits without a true understanding of their exploitability in practice.”

3.3.2. Tools included in the survey

Weprovide a brief overview of the tools considered in our survey. We classify tools ac-
cording to the broad approach theyuse: runtime statistical tests, dynamic-instrumentation
based, or formal-analysis based. Our approach as well as our choice of included tools
is based on an earlier paper [38], but amended with tools some authors know to be in

23

3. What Cryptographic Library Developers Think About Timing Attacks

current use.
Broadly speaking, statistical test tools [307] compute the execution time of a large

number of runs of the target program and verify whether secret data influences the
execution time. These tools are generally easy to install and run, even at scale, and
operate on executable code, ruling out the possibility of compiler-induced violations
of the constant-time policy. However, they only provide weak, informal guarantees.

In contrast, dynamic instrumentation based tools [111, 53, 381, 66, 229, 181, 386, 387,
363, 346, 396, 264, 109] instrument programs to track how information flows during
(concrete or symbolic) execution of programs. They are generally reasonably easy
to install and to use, even at scale, and can be implemented at source, intermediate,
or assembly levels, and provide formal guarantees. However, as with all tools based
on dynamic techniques, these guarantees are generally limited; for instance, dynamic
analysis of loops may be unsound, i.e., miss constant-time violations.

Finally, formal-analysis-based tools [21, 29, 125, 19, 384, 85, 316, 213, 30, 91, 42] pro-
vide strong guarantees that programs do not violate constant-timeness; in addition,
some tools are precise, in that they only reject programs that violate constant-timeness.
Their other criterion is soundness, which ensures the absence of constant-time viola-
tions. However, these tools are often implemented at source or intermediate levels,
frequently require user interaction, and are sometimes hard to install or use at scale.

Table 3.1 presents some key tools and summarizes their main characteristics. Since
our focus is not an in-depth technical comparison of the features of the tools, we de-
liberately keep descriptions simple, and only consider their target and whether they
provide some formal guarantees (No, Partial, Yes, Other). For the cognizant, “Partial
guarantees” cover tools that perform dynamic analysis, whereas “Guarantees” cover
tools that are sound and detect all constant-time violations; in particular, our classi-
fication does not reflect if tools are precise. Even for such coarse criteria, classifica-
tion is sometimes challenging so we err on the generous side. Finally, we tag tools as
“Other” if they establish another property than constant-time; comparing these prop-
erties with constant-time is often tricky, so we choose not to qualify the difference.

While the CoCo-Channel authors wrote [66]: “We also evaluate CoCo-Channel against
two recent tools for detecting side-channel vulnerabilities in Java applications, Blazer and
Themis. Neither are publicly available[...]”, their tool was not found by us either.

We do not claim our list to be comprehensive, especially in this currently active field
of research. In particular, we did not ask about Constantine [56], Pitchfork-angr [364],
Cachefix [89], and ENCoVer[36], just to name a few.

3.3.3. Libraries included in the survey

Cryptographic libraries have diverse threat models, but with their usual use in proto-
cols like TLS and connected applications often running on shared hardware, resistance
against timing attacks is an important property. In our survey, we invited developers
of all widely used TLS libraries and other smaller but popular libraries and relevant
primitives. We focused on libraries implemented in C/C++ as it is the target language

24

3.3. Background & Related Work

Tool Target Techn. Guarantees

ABPV13 [21] C Formal
Binsec/Rel [111] Binary Symbolic G#
Blazer [29] Java Formal
BPT17 [53] C Symbolic G#
CacheAudit [125] Binary Formal ■
CacheD [381] Trace Symbolic #
COCO-CHANNEL [66] Java Symbolic
ctgrind [229] Binary Dynamic G#
ct-fuzz [181] LLVM Dynamic #
ct-verif [19] LLVM Formal
CT-WASM [384] WASM Formal†
DATA [387, 386] Binary Dynamic G#
dudect [307] Binary Statistics #
FaCT [85] DSL Formal†
FlowTracker [316] LLVM Formal
haybale-pitchfork [363] LLVM Symbolic G#
KMO12 [213] Binary Formal ■
MemSan [346] LLVM Dynamic G#
MicroWalk [396] Binary Dynamic G#
SC-Eliminator [400] LLVM Formal†
SideTrail [30] LLVM Formal ■
Themis [91] Java Formal
timecop [264] Binary Dynamic G#
tis-ct [109] C Symbolic G#
VirtualCert [42] x86 Formal

Targets: LLVM - intermediate representation, DSL - domain-specific language, WASM -Web Assembly
Technique: † - also performs code transformation/synthesis
Guarantees: - sound, G# - sound with restrictions, # - no guarantee, ■ - other property

Table 3.1.: Classification of tools included in the survey.

of most tools and themost used language for cryptographic libraries. However, we in-
cluded some libraries implemented in Java, Rust and Python if some tools can analyse
them or they contain parts implemented in C.

Our choice of libraries is underpinned not only by our knowledge of them but also
by quantitative data of user and developer numbers. We included some newer prim-
itives not (yet) fulfilling this criterion to complement the answers given by the first
group. Nemec et al. [265] gave numbers for OpenSSL: “The prevalence of OpenSSL
reaches almost 85% within the current Alexa top 1M domains and more than 96% for client-
side SSH keys as used by GitHub users.” We only included libraries with an open devel-
opment model to allow us to get data for our recruiting choice.

Table 3.2 contains a list of libraries included in the survey and whether at least one
of their developers participated in our survey. The table also lists the actions that
the libraries perform in their Continuous Integration (CI) pipelines. We draw this
information from documentation and the public CI pipelines of the libraries. One
author extracted this, a second author double-checked, with disagreements discussed

25

3. What Cryptographic Library Developers Think About Timing Attacks

Library Particip. Continuous integration
Build Test Fuzz‡ CT test

OpenSSL � � � � �

LibreSSL � � � � �

BoringSSL � � � � �

BearSSL � � � � �

Botan � � � � �

Crypto++ � � � �

wolfSSL � � � � �

mbedTLS � � � � �

Amazon s2n � � � � �

MatrixSSL No public CI
GnuTLS � � � � �

NSS � � � � �

libtomcrypt � � � � �

libgcrypt � No public CI
Nettle � � � � �

Microsoft SymCrypt � � � � �

Intel IPP crypto No public CI
cryptlib � No public CI
libsecp256k1 � � � � �

NaCl � No public CI
libsodium � � � � �

monocypher � � � � �

BouncyCastle* � � � � �

OpenJDK � � � �

dalek-cryptography†
� � � �

ring†
� � � �

RustCrypto†
� � � � �

rustls† � � � � �

python-ecdsa � � � � �

micro-ecc No public CI
tiny-AES-c � � � � �

PQCrypto-SIDH � � � � �

csidh � No public CI
constant-csidh-
c-implementation � No public CI

ARMv8-CSIDH No public CI
SPHINCS+ � � � �

Total = 36 27
(75%)

27
(75%)

27
(75%)

16
(44%)

6
(17%)

* Java
† Rust
‡ Includes being fuzzed by OSS-Fuzz or cryptofuzz.

Table 3.2.: Libraries andprimitives included and the actions they perform in their pub-
lic continuous integration pipelines.

and resolved.

26

3.3. Background & Related Work

3.3.4. Additional Related Work
Having alreadydiscussed timing attacks and tools for constant-time analysis, we briefly
cover other related work.

Foundations of constant-time programming Constant-time programming is sup-
ported by rigorous foundations. These foundations typically establish that programs
are protected against passive adversaries that observe program execution. However,
Barthe et al. [42] show that constant-time programs are protected against system-level
adversaries that control the cache (in prescribed ways) and the scheduler. Recently,
these foundations have been extended to reflect micro-architectural attacks [78, 84,
166, 82]. In parallel, a large number of tools are being developed to prove that pro-
grams are speculative-constant-time, a strengthening of the constant-time property
which offers protection against Spectre [210] attacks. We expect that many of the
takeaways of our work are applicable to this novel direction of work.

High-assurance cryptography High-assurance cryptography is an emerging area
that aims to build efficient implementations that achieve functional correctness, constant-
timeness, and security. High-assurance cryptography has already achieved notable
successes [38]. The most relevant success in the context of this work is the EverCrypt
library [300, 412], which has been deployed in multiple real-world systems, notably
Mozilla Firefox and Wireguard VPN. The EverCrypt library is formally verified for
constant-timeness (and functional correctness). However, the library is conceived
as drop-in replacements for existing implementations, and despite relying on an ad-
vanced infrastructure built around the F* programming language, this work does not
explicitly target open-source cryptographic library developers as potential users of
their infrastructure. Other projects that enforce constant-time by default, such as Jas-
min [20, 18] or FaCT [85], target open source cryptographic library developers more
explicitly, but rely on domain-specific languages, whichmay hinder their broad adop-
tion. In contrast, we focus on tools that do not impose a specific programming frame-
work for developers.

Human factor research Researchers have tried to answer the question of why cryp-
tographic advances do not necessarily reach users. In a 2017 study, Acar et al. find
that bad cryptographic library usability contributes to misuse, and therefore insecure
code [5]. Krueger et al. developed and built upon awizard to create secure code snip-
pets for cryptographic use cases [217, 219]. Unlike these prior studies that investigate
users of cryptographic libraries, we study the developers of cryptographic libraries,
their threat models and decisions as they relate to timing attacks.

Haney et al. investigate the mindsets of those who develop cryptographic software,
finding that company culture and security mindsets influence each other positively,
but also that some cryptographic product developers do not adhere to software en-
gineering best practices (e.g., they write their own cryptographic code) [171]. We

27

3. What Cryptographic Library Developers Think About Timing Attacks

expand on this research by surveying open-source cryptographic library developers
with respect to their decisions and threatmodels as they relate to side-channel attacks.

In the setting of constant-time programming, Cauligi et al. [85] carry a study with
over 100 UCSD students to understand the benefits of FaCT, a domain-specific frame-
work that enforces constant-time at compile-time, with respect to constant-time pro-
gramming in C. They find that tool support for constant-time programming is helpful.
We expand on their study by surveying open-source cryptographic library developers
and considering a large set of tools.

Very recently, there have been calls to make formal verification accessible to de-
velopers: Reid et al. suggest “meeting developers where they are” and integrating
formal verification functionality in tools and workflows that developers are already
using [303]. To our knowledge, ours is the first survey that empirically assesses cryp-
tographic library developers’ experiences with formal verification tools.

3.4. Methodology
In this section, we provide details on the procedure and structure of the survey we
conducted with 44 developers of popular cryptographic libraries and primitives. We
describe the coding process for qualitative data, as well as the approach for statistical
analyses for quantitative results. We explain our data collection and ethical consider-
ations, and discuss the limitations of this work.

3.4.1. Study Procedure
We asked 201 representatives of popular cryptographic libraries or primitives to par-
ticipate in our survey. The recruited developers reside in different time zones and each
may have different time constraints. As we were mainly interested in qualitative in-
sights, based on the small number of qualifying individuals and our past experiences
with low opt-in rates when attempting to recruit high-level open source developers
into interview studies, we opted for a survey with free-text answers.

Questionnaire Development We used our research questions as the basis for our
questionnaire development, but we also let our experience with the development of
cryptographic libraries, constant-time verification tools (both as authors as well as
users), and conducting developer surveys influence the design. Our group of au-
thors consists of one human factors researcher and experts from cryptographic engi-
neering, side-channel attacks, and constant-time tool developers. The human factors
researcher introduced and facilitated the use of human factors research methodology
to answer experts’ research questions posited in this paper. In particular, the human
factor researcher explained methods when appropriate, facilitated many discussions
and helped the team to develop the survey, pilot it, gather feedback, and evaluate the
results. While iterating over the questionnaire, we also collected feedback and input
from members of the cryptographic library development community.

28

3.4. Methodology

Pre-Testing Following the principle of cognitive interviews [399], wewalked through
the survey with three participants who belonged to our targeted population, and up-
dated, expanded and clarified the survey accordingly.

Recruitment and Inclusion Criteria We created a list of themost active contributors
to libraries that implement cryptographic code, including those that implement cryp-
tographic primitives. If a library had any formal committee for making technical de-
cisions, we invited its members. The list of most active developers was extracted from
source control by taking the developers with the largest amount of commits down to
a cut-off point that was adjusted per library. Table 3.2 gives an overview of projects
for which we invited participants. All authors then identified those contributors that
belonged to their own personal or professional networks and invited those in a per-
sonalized email. All others were invited by a co-author who is active in the formal
verification and cryptography community, for whom we assumed that they would be
widely known and have the best chance of eliciting responses. All contributors were
sent an invitation with a personalized link. We did not offer participants compensa-
tion, but offered them links to all the tools we mentioned in our survey, as well as the
option to be informed about our results.

3.4.2. Survey Structure
The survey consisted of six sections (see Figure 3.2) detailed below. The full question-
naire can be found in Appendix A.1.

1. Participant background
Explores participants' background in developing
cryptographic code.

2. Library / Primitive properties and decisions
Explores properties of participants's library and their
relationship.

3. Tool awareness
Explores participants' knowledge of tools for testing and
verifying the constant-time property.

4. Tool use
Explores participants' experience with using the tools.

5. Hypothetical tool use

5a. Dynamic instrumentation

5b. Statistical runtime tests

5c. Formal analysisR
a
n
d
o
m

iz
ed

o
rd

er

Explores participants' likeliness of using the tools
in hypothetical scenarios.

6. Miscellaneous
Asks for participant feedback and general comments.

Figure 3.2.: Survey flow as
shown to partic-
ipants.

1. Participant background: We asked participants
about their background in cryptography, their years of
experience in developing cryptographic code, and their
experience as a cryptographic library / primitive devel-
oper.

2. Library properties and decisions: We asked about
participants’ role in <library>’s development, how they
are involved in design decisions for <library>. We
asked about the intended use cases for <library>, <li-
brary>’s threat model with respect to side-channel at-
tacks, whether they consider timing attacks a relevant
threat for the intended use of <library> and its threat
model, and asked for an explanation for their reason-
ing. We also askedwhether and how<library> protects
against timing attacks, and whether, how, and how of-
ten they test or verify resistance to timing attacks.

3. Tool awareness: We asked whether they were
aware of tools that can test or verify resistance to tim-
ing attacks. We then listed 25 tools from Section 3.3.2
and asked them whether they were aware of them, and

29

3. What Cryptographic Library Developers Think About Timing Attacks

how they learned about them.
4. Tool use: We asked participants about their past experience, interactions, com-

prehension, and satisfactionwith using tools to test/verify resistance to timing attacks,
including challenges with using them.

5. Hypothetical tool use: We showed participants a description of properties that
their code would have to fulfill in order to be able to use a group of tools and given a
description of the guarantees the tools would give them, asking them about usage in-
tentions and reasoning. The tools were grouped into dynamic instrumentation based,
statistical test based, and formal analysis tools.

6. Miscellaneous: Finally, we asked about any comments on (resistance to) timing
attacks, our survey, and whether they wanted us to inform them about our results.

3.4.3. Coding and Analysis
Those who engaged with participant responses came from different backgrounds,
with different views, contributing to the multi-faceted evaluation. Three researchers
familiar with constant-time verification and open-source cryptographic library devel-
opment conducted the qualitative coding process, facilitated by one researcher with
experience with human factors research with developers. We followed the process
for thematic analysis [65]. The three coders familiarized themselves with all free-text
answers, and annotated them. Based on these annotations, themes were developed,
as well as a codebook. The codebook was developed inductively based on questions,
and iteratively changed based on responses we extracted from the free-text answers;
all codeswere operationalized based on discussionswithin the team. The three coders
then coded all responses with the codebook, iterating over the codebook until they
were able to make unanimous decisions. The codebook codifies answers to free-text
questions, as well as identifying misconceptions, concerns, and wishes. In some cases
where documentation was available, and participant answers were incomplete or am-
biguous, or when participants linked to documentation, coders supplemented their
code assignment based on the documentation. Our coding process was only one step
in the quest for our goal: identifying themes and answering our research questions.
All codes were discussed, and eventually agreed upon by three coders3. In line with
contemporary human factors research, we therefore omit inter-coder agreement cal-
culations [245]. For the comparison of the likelihood of using certain tools with cer-
tain requirements in exchange for guarantees (Q5.1, Q6.1, Q7.1), we used Friedman’s
test with Durbin post-hoc tests [99] with Benjamini-Hochbergmultiple testing correc-
tions [46].

3.4.4. Data Collection and Ethics
While our survey was sent to open-source contributors without solicitation, we only
emailed them up to twice. During and after the survey, they could opt-out of par-
3Our codebook is available at https://crocs.fi.muni.cz/public/papers/usablect_sp22.

30

https://crocs.fi.muni.cz/public/papers/usablect_sp22

3.4. Methodology

ticipation. We do not link participant names to results, nor participant demograph-
ics to libraries to keep responses as confidential as possible. We also do not link
quotes to libraries or their developers, and report mostly aggregate data. Quotes are
pseudonymized. Our study protocol and consent form were approved by our insti-
tution’s data protection officer and ethics board and determined to be minimal risk.
Participant names and email addresses were stored separately from study data, and
only used for contacting participants.

3.4.5. Limitations
Like all surveys, our research suffers from multiple biases, including opt-in bias and
self-reporting bias. However, we were pleasantly surprised that for 27 out of the 36
libraries we selected, we received at least one valid response. Participants may over-
report desirable traits (like caring about side-channel attacks or protecting against
them), and underplaying negative traits (like making decisions ad-hoc). However,
their reporting generally tracked with official documents and our a priori knowledge
about the libraries. The projects represent a selection, and are not representative of
all cryptographic libraries. However, we took great care in inviting participants cor-
responding to a variety of prominent, widely used libraries as well as smaller but
popular libraries and primitives, as assessed by multiple authors who work in this
space.

3.4.6. Data cleaning & Presentation
We emailed 201 4 listed as most active contributors to 36 libraries/primitives, finding
alternate emails for those emails that bounced. 2 emailed us to tell us that they did
not think they could meaningfully contribute. In total, 71 started the survey. We
removed all 25 incomplete responses. We removed two participants because they gave
responses about a project of their own, instead of the library we asked them about.
From here, we report results only for the 44 valid participants. For statistical testing
and figures for hypothetical tool use, we report results for the 36 participantswho gave
answers for all three tool groups. We merged answers of participants talking about
using a ctgrind-like approach but without the use of ctgrind itself (as it is no longer
necessary as Valgrind can directly do this) into the ctgrind tool answers.

Participants spent an average of 32 minutes on the survey, and left rich free text
comments. We generally received positive feedback and high interest in our work,
and 35 asked to be sent our results, with 33 agreeing to be contacted for follow-up
questions. Whenever we report results at the library level, we merge qualitative an-
swers given by all participants corresponding to that library. Whenever the answers
are additive, we add them together without reporting a conflict (e.g. when one de-
veloper tests a library in one way while another one tests it a different way, we report
both). When the answers are claims of a level (e.g. resistance to timing attacks) we
4From now on, we use the symbol to denote the participants.

31

3. What Cryptographic Library Developers Think About Timing Attacks

report the highest claimed. Otherwise, whenever we encounter conflicting opinions,
we report on this conflict.

3.5. Results
In this section, we answer our research questions based on the results of our survey.
Between full awareness and low levels of protection against timing attacks, we iden-
tify reasons for (not) choosing to develop and verify constant-time code, including
a lack of (easy-to-use) tooling, trade-offs with competing tasks, understandable con-
cerns and misconceptions about current tooling. We identify that participants would
generally like the guarantees offered by tools, but fear negative experiences, code an-
notations and problems with scalability.

3.5.1. Survey Participants
Library developers

We successfully recruit experienced cryptographic library developers, including the
most active contributors and decision-makers. We ended up with 44 recruited via
direct invitation. Of our participants, 4 were the only developer in their project, 9
were project leads, 11 were core developers, 19 were maintainers, 11 were com-
mitters, 3 were contributors without commit rights. These classes are non-exclusive
self-reports. 40 said they were involved in the library decision processes, while only
4 were not involved.

Participants had strong backgrounds in cryptographic development, reporting a
median of 10 years of experience (sd = 7.75), and qualitatively reporting strong en-
gagement with various projects, for example reporting involvement in security certi-
fications: “I’ve worked on open source and closed source cryptography libraries, dealt with
various Common Criteria EAL4+ products” (P1). As for the participants’ concrete back-
ground in cryptography, 17 reported an academic background, 15 took some classes
on cryptography, 32 had on the job experience, 6 teach cryptography, for 15 cryp-
tography is (also) a hobby, 27 have industry experience in cryptography.

Libraries

We ended up with participants from 27 prominent libraries, such as OpenSSL, Bor-
ingSSL, mbedTLS or libgcrypt. Participants gave or linked to descriptions of a broad
range of use cases for cryptographic libraries. As intended platforms, 23 gave servers,
22 desktop, 14 embedded device (with OS, 32 bit), 4 mobile, and 1 micro-controller
(no OS, 8/16 bit). For targets, 7 stated TLS, 12 protocols, 2 services, 1 cloud, 2 op-
erating systems, 1 crypto-currency, and 2 corporate internal purposes. Libraries had
varying decision-making processes: 9 made decisions by discussion, 2 by voting, 3 by
consensus, and for 11, decisions were made by the project leads who had a final say.

32

3.5. Results

3.5.2. Answering Research Questions
Threat models (RQ1a)

Here, we answer the research question whether timing attacks are part of library de-
velopers’ threat models (RQ1a). We found that all participants were aware of timing at-
tacks. Generally, when a threat model is defined for a cryptographic library, it mostly
includes timing attacks. However, strict and absolute adherence to constant-time code
is most often not required. In practice, developers tend to distinguish vulnerabili-
ties that are “easy” to exploit (e.g. remote timing attacks) from the others (e.g. lo-
cally exploitable attacks). When asked specifically about the library’s threat models
with respect to side-channel attacks, 20 libraries claimed remote attackers are in their
threat model, 16 included local attackers, 1 included speculative execution attacks, 2
included physical attacks and 2 included fault attacks. Some libraries expressed that
they consider some classes of attacks in their threat model if they are easy to miti-
gate, 2 would do so for local attacks and 1 for physical attacks. The general attitude
towards side-channel attacks varied, 2 said that all side-channel attacks are outside
their threat model and 10 said that their protections against side-channel attacks are
best effort. For example, one participant said: “Best-effort constant-time implementations.
CPU additions and multiplications are assumed to be constant-time (platforms such as Cortex
M3 are not officially supported).” (P2) Another one implied a progressive widening of
their threat model regarding timing attack in their statement: “Protections against re-
mote attacks, and slow movement to address local side channels, though the surface is wide.”
(P3)

In a follow up question, 23 libraries agreed that timing attacks were considered a
relevant threat for the intended use of the library and its threat model, while this was
not true for 2 libraries. We did not get this information for 2 libraries.

Reasons for considering timing attacks as relevant for their threat model were given
as the ease of doing so (2), the threats of key-recovery in asymmetric cryptography
(3), user demands (1), fear of reputation loss (1), use in a hostile environment (6),
that attacks get smarter (1), the (rising) relevance of timing attacks (9), personal ex-
pectations (5), a connected environment (2), or the large scope of the library/of timing
attacks (3).

Reasons for not considering timing attacks as part of their threat model were stated
as this not being a goal of the library (2) or that they only consider more “practical”
attacks.

Resistance against timing attacks (RQ1b)

Here, we answer the research question whether libraries claim resistance against tim-
ing attacks (RQ1b). Many libraries do not have a systematic approach to address tim-
ing attacks; they only consider fixing “serious” vulnerabilities that could be exploited
in practice. This might result in vulnerable code that can be exploited later with better
techniques of recovering leaking information. We also encountered differing answers
of different participants regarding suitedness of random delays as a mitigation. Out

33

3. What Cryptographic Library Developers Think About Timing Attacks

of the 27 total libraries, 13 claimed resistance against timing attacks. An additional 10
claimed partial resistance, 3 claimed no resistance, and for 1, we obtained no informa-
tion.

We also asked how the development team decided to protect against timing attacks.
For 4 libraries, participants reported that one personmade this decision, for 12 it was a
team decision, for 2 it was a corporate decision (where high-level management makes
a decision or the team decided locally based on a corporate mission statement), for
14 libraries, participants reported that a priority trade-off caused their decision (e.g.,
lack of time to fully enact the decision) and 5 inherited the decision from previous
projects or developers.

For 6 it was obvious that they needed to protect against timing attacks. For example,
one participant stated: “There was no decision, not even a discussion. It was totally obvious
for everybody right from the start that protection against timing attacks is necessary.” (P4)
Another one said: “It’s just how you write cryptographic code, every other way is the wrong
approach (unless in very specific circumstances or if no constant-time algorithm is known).”
(P5) Another stated

“It became clear that these attacks transition from being an ”academic interest” to a “real
world problem” on a schedule of their own development. If something is noticed we now
tend to favor elimination on first sight without waiting for news of a practical attack.”
(P6)

Contrarily, another said:

“Basically a trade-off of criticality of the algorithm vs practicality of countermeasures.
Something very widely used (eg RSA, AES, ECDSA) is worth substantial efforts to pro-
tect. Something fairly niche (eg Camellia or SEED block ciphers) is more best-effort”
(P7)

This reasoning of waiting for attacks to justify expending the effort was also re-
ported by another participant: “For many cases there aren’t enough real world attacks to
justify spending time on preventing timing leaks.” (P8)

Timing attack protections (RQ2a)

Here, we answer the research question how developers choose to protect against tim-
ing attacks (RQ2a). Developers address timing attacks in various ways, for exam-
ple by implementing constant-time hacks (e.g. constant selecting), implementing
constant-time algorithms of cryptographic primitives, using special hardware instruc-
tions (CMOV, AES-NI), scatter-gathering for data access, blinding secret inputs, and
slicing. Many are interested and willing to invest effort into this - to various degrees,
as P9puts it: “[T]hey’re not that hard to mitigate, at least with the compilers I’m using right
now” (P9). Others are deterred by the lack of (easy-to-use) tooling.

We asked developers of the 23 libraries who considered timing attacks at least par-
tially if and how their library protects against timing attacks.

34

3.5. Results

For 2 libraries, participants reported that they use hardware features (instead of
leak-prone algorithms) that protect from timing attacks such as AES-NI. For example,
P7said: “AES uses either hardware support, Mike Hamburg’s vector permute trick, or else a
byte-sliced version.” (P7)

For 21 libraries, participants said that they use constant-time code practices, which
should in theory mean that code is constant-time by construction, but may be vulner-
able to timing attacks after compilation. For example, P2explained that: “Conditional
branches and lookups are avoided on secrets. Assembly code and common tricks are used to
prevent compiler optimizations.” (P2)

For 9 libraries, participants explained that they choose known-to-be constant-time
algorithms, butmay suffer frommiscompilation issues and end up non-constant-time.
As an example, P7said: “If I know of a ”natively” const time algorithm I use it (eg DJB’s
safegcd for gcd).” (P7)

For 7 libraries, participants said they use “blinding”, which means using random-
ization to “blind” inputs on which computation is performed, thereby destroying the
usefulness of the leak. As P7said: “If blinding is possible [...] it is used, even if the algo-
rithm is otherwise believed constant-time. ” (P7)

For 2 libraries, participants said that they protect through bitslicing, i.e., the imple-
mentation uses parallelization on parts of the secrets, hiding leaks. As one participant
described: “For instance, the constant-time portable AES implementations use bitslicing.”
(P11)

For 2 libraries, participants reported protecting by “assembly”, i.e., they have a spe-
cialized low-level implementation for protecting against compilers doing non-constant-
time transformations. One participant noted the prohibitive cost of this practice, ex-
plaining: “We do not write all constant-time code in assembly because of the cost of carrying
assembly code. It is possible that the compiler may break the constant-time property. We spot-
check that using Valgrind.” (P12)

For 1 library, timing leaks are made harder to detect by adding random delays.
Most developers focus on asymmetric crypto. Some do not consider old primitives,

such as DES, which is still used in payment systems as Triple-DES. For 5 libraries,
participants stated that they only protect a choice of modules: those libraries have
multiple implementations, of which only some might be constant-time, maybe even
insecure by default. “Legacy algorithms like RC4 and DES are out of scope. If you use
the <libraries’> ”BIGNUM” APIs to build custom constructions, it’s probably leaky, since
bignum width management is complex.” (P13) also mentions bignum libraries being
specifically hard to secure. This claim is supported by academic literature as well:
“lazy resizing of Bignumbers in OpenSSL and LibreSSL yields a highly accurate and easily
exploitable side channel”[386].

For 1 library, protection against timing attacks was reported to be still in progress,
e.g., they try to use constant-time coding practices throughout the library, but this is
still in development due to large legacy code base. “All decisions in a side project are
limited by the available resources. There’s a report about a new attack which proposes a new
counter-measure: Does someone have the time to implement it? Yes - cool, let’s do it. No - fine,
let’s put it on the ToDo list.” (P15) and “Very early on in its development these guarantees

35

3. What Cryptographic Library Developers Think About Timing Attacks

were much weaker, and in a few cases, approaches were used that turned out to be known
to be imperfect.” (P16) were two answers from participants of libraries being in very
different phases of solving this problem.

Testing of timing attack resistance (RQ2b, RQ2c)

In Software Engineering, testing code for the properties it should achieve is common-
place and generally considered best practice [50]. We therefore were interested in
the practice of testing and verification for constant-time also. Here, we answer the
research questions whether, how, and how often libraries test for/verify resistance
against timing attacks (RQ2b, RQ2c).

For 21 libraries, at least some type of testing was done, of which 14 were fully, and 7
were partially tested. 6 were not tested including the 2 libraries which claimed timing
attacks are not relevant. 24 personally tested their libraries.

Of those, 12 stated they have tested manually, and 11 stated they tested automati-
cally. Those two answers are not exclusive, since 7 libraries which test code automat-
ically have also been tested manually. For manual testing, 6 libraries analyzed (parts
of) their source code, 4 libraries analyzed (parts of) their binary, 5 did manual sta-
tistical runtime testing for leakage, and 1 ran the code and looked at execution paths,
debugging as it ran. “Originally, me, a glass of bourbon, and gdb were a good trio. But
that got old pretty quick. (The manual analysis part – not the whiskey.)” (P17) conveys the
experience quite graphically.

For those who did automated testing, 9 libraries used a Valgrind-based approach,
2 used ctgrind, 1 used Memsan, 1 used TriggerFlow, 1 used DATA, and 1 reported
automated statistical testing without specifying further.

For the participants who did at least partial testing for resistance to timing attacks,
we asked for testing frequency. For 1, the testing was only done once. For 11, par-
ticipants reported manual or occasional testing. For 4, participants reported testing
on release. For 6 libraries, participants reported that testing for resistance to timing
attacks was part of their continuous integration. For 11 libraries, we did not obtain
information on testing or testing frequency. These varying answers suggest that de-
spite a common awareness of timing attacks, cryptographic developers never came to
a consensus on the best way to address timing attacks in practice.

Tool awareness (RQ3a)

In order to effectively test, developers should be able to leverage existing tooling cre-
ated for the purpose of testing and/or verifying that source code, or compiled code,
runs in constant time. Here, we answer the research questionwhether participants are
aware of the existence of such tooling (RQ3a). We asked participants whether they
are aware of tools that can test or verify resistance against timing attacks, also showing
them a list of tools from Table 3.1. We asked them whether they had heard about any
of those tools with regards to verifying resistance against timing attacks. Table A.1
shows the results with 33 being aware of at least one tool and 11 being unaware of

36

3.5. Results

any tool. ctgrind was most popular (27 heard of it; 17 had tried to use it), followed
by ct-verif (17 heard of it; only 3 tried to use it) andMemSan (8 heard of it; 4 tried
to use it). DATA had been used by 2 , all others by no more than 1 . Individual tool
awareness and use numbers can be found in Appendix A.2.

For those tools they had heard about, we asked them where they had heard about
them. Overall, participants were recommended a tool by a colleague 33 times, heard
of a tool from its authors 20 times, read the paper of the tool 27 times, read about the
tool in a different paper or blog post 42 times and heard of it some other way 24 times.
2 were involved in a development of a tool. A general tool they are already using
can also be used for constant-time-analysis, which P18learned through our survey: “I
already use MemSan primarily for memory fault detection. Was not aware of its use for side-
channel detection but will try it in future since it is already integrated with my workflow to
some extent” (P18).

Again for the tools they were aware of, we asked which (if any) they had (tried
to) use in the context of verifying or testing resistance to timing attacks. Table A.1
displays the results, with 19 having tried to use at least one tool and 25 having never
tried any of the tools.

Tool experience and use cases (RQ3b)

Here, we answer the research question which experiences participants made with
tools (RQ3b). Aswewere anecdotally aware that toolsmay be hard to obtain, unmain-
tained, and may be closer to research artifacts than ready-to-use tooling, we were in-
terested in participants’ experiences, finding that experience varied by tool, use cases
and expectations. We therefore asked participants to describe the process of using the
tools.

12 reported that they managed to get the respective tool to work at least once, but
not necessarily repeatedly, while 3 reported that the tool they attempted to use failed
to work even once, for various reasons, including excessive use of resources, such as
effort, time, RAM, CPU cores, machines etc. One participant said of the DATA tool:
“it uses a ridiculous amount of resources” (P17).

2 reported that they had integrated the tool into CI and were using it automat-
ically. 12 reported that they used it manually, of which 6 said they use it during
development, and 6 said they use it after development, on release. A participant
said: “Periodically, and manually, used when altering / writing code to check constant-time
property.” (P12)

For those who had heard of specific tools, but had not attempted to use them, we
were also interested in their reasoning. The reasons were varied, many including a
lack of resources such as time (26) or RAM, CPU cores and machine (1). Partici-
pants also reported on bad availability (4), and maintenance (5), as well as insuffi-
cient language support (4), and other usability issues, such as problems with setting
up the tool (3), or getting it to work properly post setup (1). The difficulty or im-
possibility of fulfilling the required code changes, such as markup for secret/public
values, memory regions/aliasing, and additional header files was also a problem (re-

37

3. What Cryptographic Library Developers Think About Timing Attacks

ported by 1), as was the inability to ignore reported issues, once flagged by the tool
(8).

Some reported not needing the respective tool (22), using other tools (18), gave
reasoning that to our understanding was based on misconceptions of the respective
tool (2), or reported having been unaware of the tool’s capabilities in the context of
resistance to timing attacks (1).

One participant also said that the tool was also used to verify a security disclosure.
“Tried to use to reproduce results, verify disclosures. Tried to use it to discover new defects in
existing code.” (P14)— since the tool is later stated as in use by another member of the
same project, this confirms that the tool not only verified the initial defect, but works
as planned.

0 5 10 15 20 25 30 35

Dynamic
instrumentation

Statistical
runtime tests

Formal
analysis

4

7

8

6

6

11

5

10

12

9

8

5

12

5

Very unlikely Somewhat unlikely Neutral Somewhat likely Very likely

Figure 3.3.: Reported likeliness of tool use based on requirements and guarantees.

0% 25% 50% 75% 100%

Dynamic
instrumentation

Statistical
runtime tests

Formal
analysis

6

7

5

5

5

5

1

2

1

5

9

21

10

10

2

6

5

3

12

4

1

9

8

10

Not my decision
Not applicable to my library
I don't care about the guarantees
Would like the guarantees but too much effort

Good tradeoff of requirements and guarantees
Will try to use one of the mentioned tools after this survey
Already using one of the mentioned tools
None of the above

Figure 3.4.: Participant reasoning behind their likelihood of tool use.

Potential Tool use (RQ4)

In addition to understanding participants’ current threat models and behaviors con-
cerning constant-time code, we were also interested in what they thought about po-

38

3.5. Results

tential future use of testing/verification tools, and whether they would potentially
be willing to fulfill certain requirements in exchange for guarantees (RQ4, see Fig-
ure 3.3). Generally, they were most willing to use dynamic instrumentation tools, and
also spoke about them themost positively, whereas theymostlymentioned drawbacks
when asked about formal analysis tools.

We presented the participants with the requirements and guarantees offered by
three categories of tools: dynamic instrumentation based tools, statistical runtime
tests and formal analysis tools.5 We then asked them to rate their likeliness of us-
ing the presented group of tools on a 5-point Likert scale from “1=very unlikely” to
“5=very likely”. Figure 3.3 shows a strong preference for dynamic tools, while for-
mal analysis tools are least likely to be used. We perform statistical tests on these
ratings to establish that these differences are statistically significant. We find a sig-
nificant difference in participants’ self-reported likeliness to use tools in the differ-
ent categories (Friedman Test-Statistic=18.477, p<0.0001). Post-hoc testing showed
that participants are significantly more likely to use dynamic instrumentation based
tools like ctgrind (mean=3.53, sd=1.38) than statistical tools (mean=2.94, sd=1.31;
p=0.023, Durbin-post-hoc (DPH), Benjamini-Hochberg-corrected (BH)) and formal
analysis tools (mean=2.38, sd=0.98; p<0.0001, DPH, BH-corrected). The difference
between statistical and formal analysis tools was not significant (p=0.18, DPH, BH-
corrected). Specifically, while 21 reported being somewhat likely or very likely to use
a dynamic testing tool for resistance to timing attacks in the future, 13 reported the
same for statistical runtime test tools, and only 5 said they were somewhat likely to
use formal analysis tools.

We also asked participants to clarify their reasoning by choosing explanations (see
Figure 3.4). Results show that participants would like the guarantees formal analy-
sis tools provide, but perceive them as requiring too much effort (21) compared to
the other tools (9 statistical runtime tools, 5 dynamic instrumentation tools). More
participants think that the trade-off of effort and guarantees is acceptable for dynamic
(10) and statistical tools (10) than formal analysis tools (2). More details on par-
ticipants’ reasoning follow.

Dynamic Instrumentation Tools For dynamic instrumentation tools, some partici-
pants were happy with the limited guarantees, understanding the trade-off clearly.

“We currently use MemSan and Valgrind because they have very low maintenance since
they pretty much come with the operating system, and we could get useful results from
them with a few days’ work. We are aware of their limitations (they miss non-constant-
time parts, and of course they can only test code in the conditions where it is executed as
part of the tests).” (P19)

The approach taken by tools like ctgrind is understandable to developers, so much
so that some came up with it independently: “We independently came up with this ap-
proach and were using it [before we] knew ctgrind existed.” (P9)
5For the survey questions see the Appendix sections A.1.5,A.1.6 and A.1.7.

39

3. What Cryptographic Library Developers Think About Timing Attacks

One participant specifically commented on the effort required to create and main-
tain annotations:

“A thing this survey might be underestimating is also the cost of code annotations: it’s
not just about having someone annotating the code properly (which already is quite a lot
of effort) but there might be resistance for inclusion of such annotations in the code base
as they add a maintenance burden for the project. Maintainers should fully understand
the notation syntax and get proficient in it to spot instances where annotations need to be
updated, moved, etc.” (P20)

Statistical Tools For tools based on statistical tests of the runtime, 7 expressed that
the guarantees provided by the tools are limited. One participant explained: “I am
dubious that it would provide much value over existing mechanisms. Also, CI currently runs
on shared hosts which are timing noisy. From this noise I would expect [...] false positives
[...]” (P21) Another participant also expressed concern over the guarantees and false
positives / negatives: “The requirements seem straightforward, but a statistical test seems
likely to cause both false negatives and false positives.” (P13)

Formal Analysis Tools Participants had strong feelings about the lack of usability
of formal analysis tools: “I’m very interested in these sorts of tools, but so far it seems formal
analysis tools (at least where we’ve tried to apply it to correctness) are not really usable by
mere mortals yet. I would be happy to be proven wrong, however!” (P13)

The fact that compiler optimizations can introduce timing leaks that will not be de-
tected by tools working at the source code level was highlighted by a few participants:
“Static analysis on the source code in most programming languages is NOT sound: it misses
compiler optimizations that introduce secret-dependent flows.” (P19) and another one ex-
plaining “I’m much more worried about compilers failing to preserve constant-time code, ...”
(P13)

While 4 mentioned their expectation of a higher effort to create the necessarymarkup
for formal analysis-based tools, expectations of the scalability of these tools seem to
be in line with other categories of tools.

Additionally, we found that participants were intimidated by the theory-heavy ap-
proach by formal analysis-based tools, thinking of formal verification in general. “I
have no experience with formal verification toolchains” (P23).

More academically focused formal analysis tools also suffer from a maintenance
problem if the developers have moved on to other research: “Who knows if the toolchain
is still maintained in a year?” (P5)

In conclusion, dynamic tools are mostly criticized for requiring code annotation,
while statistics ones are viewed critically because of their poor guarantees. However,
participants were most critical towards formal analysis tools. Some doubt that such
toolswould bemaintained, or question that fact that theywould provide large support
for different platforms. While these drawbacks are real, they do concern all tools,
but participants point them out mainly for formal analysis tools. Some participants

40

3.5. Results

mention that such tools have steep learning curves, as they are not only unfriendly to
use, but they also require specific knowledge. Wenotice that developers using ct-grind
took their time to explain how it actually works (they we were never asked to), while
participants remain vague about formal analysis tools. Only one participant actually
uses such a tool, only few have tried, but not succeeded. However, many qualify such
tools as uneasy to use, inefficient, lackingwide support, unable to verify external code,
based only on the code, hard to be CI automated, adding very little confidence, and
possibly unmaintained in the future.

Misconceptions

Despite surveying an expert population of cryptographic library developers, our study
pointed out somemisconceptions and differences of opinion about constant-timeness,
timing attacks, and verification/testing tools. Those may deter from analysis tool use,
andmay contribute tomore hidden timing vulnerabilities, ultimatelymaking it harder
to solve the timing attack problem in practice.

Some participants seemed to think constant-time is easily achieved. This logic im-
plies if a project has a timing vulnerability, they have made a basic mistake. “Writing
constant-time code, contrary to writing [...] memory-safe code, is not hard, if you do it explic-
itly from start (caveat: when there’s Gaussian rejection sampling in a lattice system, it _is_
hard[...]” (P11) This ties in with code annotation not being usable when secretness
of variables changes, specifically as mentioned with rejection sampling. This miscon-
ception is based around most common use of annotations. If the annotations allow
for declassification of variables, this problem can be resolved granularly. Not all tools
allow this, though, so the misconception that this is true for all tools may have taken
root.

One participant suggested that they do not need to test code if they write constant-
time code correctly. “In that sense, the guarantees offered by these tools are not worth putting
effort into running them, at least in the case of <library>, where all code was designed to be
constant-time” (P11). This sentiment comes with several problems: on the one hand,
humans make mistakes, so testing code is a best practice in software engineering for
precisely this reason. Additionally, compiling code that does fulfill the constant-time
property may create problems, as the compiler may change the original control-flow
while adding some optimizations.

While talking about compilation units and control-flow, a partial misconception can
be found in verification scope: “a lot of code will exist outside of the boundaries of the library.
A project using <library> would be more likely to be successful.” (P20) While the library
may not know which inputs are secret , looking at an API should make it clear which
inputs can be secret, and the constant-time criterion could be tested for all of them
without knowing the actual usage patterns.

Furthermore, the different answers about random delays and statistical analysis
tools show that there is no universal consensus among the participants. A partici-
pant said: “Anything involving secret data, and in particular private-key data, has the tim-
ing dithered and with throttling of repeated attempts to make attacks of this kind difficult.”

41

3. What Cryptographic Library Developers Think About Timing Attacks

(P24) We are skeptical about this due to the results of Brumley and Tuveri [71]. If
a side channel signal is measured as a timing difference between executions, adding
a random noise distribution to these executions will reproduce a similar difference
if enough samples of the executions are obtained. This can be done in parallel from
different sources or over a long time, going around the throttling defense. A more
practical quote is from P9:“We once tried to test actual execution timings, but it wasn’t
reliable. We no longer do that. Now we use Valgrind.”

Lastly, even if cryptography is rather heavy inmathematics, some participants asso-
ciate math/formal analysis as a barrier to using tools from that research area. “[P]rov-
ing things like loop bounds is often arcane. Also, it’s knowledge that would present a barrier to
new engineers joining the team.” (P12) This is most likely a misconception, potentially
caused by unclear writing in formal analysis tools’ documentation, or scientific pub-
lications that do not separate tool use from general formal verification and theorem
proving.

Developer Concerns and Wishlist (RQ5)

In addition tomisconceptions, participants also voicedunderstandable concerns about
constant-time development, as well as wishes for verification tools that would allow
them to use these tools more effectively (RQ5). Major concerns were voiced about the
tools’ resource usage being too high (see Section 3.5.2).

In addition to these issues, P14listed concerns as: “the execution time of static and
dynamic analyzers tailored for SCA, the need for human interaction, the rate of false positives,
etc. are usually preventing a systematic adoption”. The issue with flagging false positives
and not linking false positives and negatives was addressed by another participant
also: “We noticed a couple false positive, where there *is* a path from the contents of the
buffer to timings, but we decided that doesn’t leak any meaningful secret.” (P9). They also
mentioned security concerns for tools based only on the source code. These may miss
vulnerabilities due to miscompilation, as explained by P13: “Any ”constant-time” code
is an endless arms race against the compiler”.

Interestingly, participants had many precise ideas for what could be done to im-
prove the status quo of testing/verification tools. For example, for better usability,
they ask for the ability to ignore some issues and/or some part of the code, as noted
by P14: “Also, expect a lot of ”noise” from BIGNUM behavior that is not CT and requires a
full redesign to be fixed.”

We sawmanywishes for improvements concerning annotations, asking for external
annotations. Participants also asked for easy maintenance of code annotations (see
3.5.2), and requested that tools work on complex code, as P14explained: “even for
expert users the chances of exposing something non-consttime to remote attackers are high,
especially given the complex nature of <library> under the hood.” They also asked for test
cases to be fast to set up, to avoid a “non-trivial amount of effort to set up comprehensive
tests.” (P14)

To address the issue of scale, they want to be able to use tools in CI. Otherwise,
when the code changes, the guarantees are lost. This means that error code outputs,

42

3.6. Discussion

easy CI setup and runtime are important, as explained by P19: “Static analysis tools
tend to have a high engineering overhead: getting the tool to run, deploying it to CI systems,
maintaining the installation over the years.” Similarly, participants demanded that tools
not require rewrites of their code: P2ruled out an “awesome tool”, because it “cannot
verify existing code.” Participants also required no restricted language or environment
for their code instead of “a pretty special-purpose language” (P26). Similarly, they asked
for no use of a specialized compiler; as P4stated: “Requiring a dedicated compiler sounds
like a potential problem.” Generally, they asked for integration into type system and
APIs they are already using: “which values are public and which private, we have flags
on APIs to allow the caller to specify this too” (P28), so the project already has a form of
security annotations for the users of their API, which a tool should be able to integrate
for its analysis.

They also requested long-term available source code and longtermmaintenance. As
P25stated, tools being unavailable or unmaintained makes it impossible to use them.

3.6. Discussion
Based on our findings, wemake suggestions for four groups of actors who can take ac-
tion to make cryptographic code resistant to timing attacks: tool developers, compiler
writers, cryptographic library developers, and standardization bodies.

3.6.1. Tool developers
In spite of the fact that we selected a subset of well-known tools from the wide diver-
sity of available tools, 25% of the developers who answered our survey did not know
about any of them. Some developers learned about the tools from our survey. Only
38.6% actually using any of the tools shows that their adoption is limited. This can
be partially explained by the relative youth of the tools, as most tools are less than 5
years old. However, we believe that many other factors come into play: tools may be
research prototypes that are difficult to install, not available or not maintained; they
may not be evaluated on popular cryptographic libraries, raising concerns about ap-
plicability and scalability; they may be computationally intensive, making their use
in CI unlikely; they may not be published in cryptographic engineering venues. In
addition to the specific recommendations from the previous section, we recommend
the community of tool developers to:

1. make their tools publicly available, easy to install, and well-documented. Ide-
ally, tools should be accompaniedwith tutorials targeted to cryptographic devel-
opers; making a tool easier to install by providing Linux distribution packages
lowers the barrier to adoption.

2. publish detailed evaluations on modern open-source libraries, creating or using
a common set of benchmarks; Supercop [129] is one such established bench-
mark;

43

3. What Cryptographic Library Developers Think About Timing Attacks

3. focus on efficient analysis of constant-timeness, rather than computationally ex-
pensive analysis of quantitative properties, which seem to be of lesser interest.
Ideally, tools should be fast enough to be used in CI settings;

4. make their tools work on code with inline assembly and generated binaries to
be fully usable by all developers.

5. promote their work in venues attended by cryptographic engineers, including
CHES, RWC, and HACS.

Ultimately, we recommend tool developers to follow Reid et al.’s recent advice to
“meet developers where they are” [303].

3.6.2. Compiler writers
Developers are very concerned that compilers may turn constant-time code into non-
constant-time code. To avoid this issue, developers often use (inlined) assembly for
writing primitives. This approach guarantees that the compiler will not introduce
constant-time violations butmaynegatively affect portability andmakes analysismore
complex. In order to make integration of constant-time analysis smoother in the de-
veloper workflow, we recommend compiler writers to:

1. improve mechanisms to carry additional data along the compilation pipeline
that may be needed by constant-time verification tools. This would allow cryp-
tographic library developers to tag secrets in source code and use constant-time
analysis tools at intermediate or binary levels;

2. support secret types, as used by most constant-time analyses, throughout com-
pilation, andmodify compiler passes so that they do not introduce constant-time
violations, and prove preservation of the constant-time property for their com-
pilers. This would allow cryptographic library developers to focus on just their
source code;

3. more generally, offer security developers more control over the compiler, so that
code snippets that implement a countermeasure (e.g. replacing branching state-
ments on Booleans by conditional moves) are compiled securely.

3.6.3. Cryptographic library developers
Cryptographic library developers are aware of timing attacks andmost consider them
part of their threat model. In order to eliminate timing attacks, we recommend library
developers:

1. make use of tools that check for information flow from secrets into branch con-
ditions, memory addresses, or variable-time arithmetic. Ideally the use of such
tools is integrated into regular continuous-integration testing; if this is too costly,

44

3.7. Conclusion

a systematic application of such tools for every release of the library may be a
suitable alternative;

2. eliminate all timing leaks even if it is not immediately obvious how to exploit
them. Attacks only get better and many examples of devastating timing attacks
in the past exploited known leakageswith just slightlymore sophisticated attacks
techniques;

3. state clearly which API functions inputs are considered public or secret. With a
suitable type system, such information becomes part of the input types, but as
long asmainstreamprogramming languages donot support such adistinction in
the type system, this information needs to be consistently documented. Doing so
makes it easier to use tools for automated analysis and harder for programmers
to misuse library functions due to misunderstandings about which inputs are
actually protected.

3.6.4. Standardization bodies
A recent paper [38] advocates for the importance of adopting tools in cryptographic
competitions, standardization processes, and certifications. We recommend that sub-
mitters are strongly encouraged to use automated tools for analyzing constant-timeness,
and that evaluators gradually increase their requirements as constant-time analysis
technology matures. Standardization bodies should try to avoid the use of crypto-
graphic algorithms leaking timing information. In the case of Dragonfly Password
Authenticated Scheme used inWPA3 by theWi-Fi Alliance, many timing attacks have
been discovered [372, 62] as the algorithm leaks timing information. However, many
deterministic algorithms with no leaks are known [333].

3.7. Conclusion
We have collected data from 44 developers of 27 cryptographic libraries, and analyzed
the data to gain a better understanding of the gap between the theory and practice of
constant-time programming. One main finding of our survey is that developers are
extremely aware of and generally concerned by timing attacks, but currently seldom
use analysis tools to ensure that their code is constant-time. While constant-time test-
ing may not be the most important thing on cryptographic developers’ to-do list, it
should become best practice. We think that this is only feasible by making tools more
usable, supporting developers’ currentworkflows, requiring little work overhead, and
giving easy-to-understand outputs. Based on our survey, we have identified recom-
mendations for tool developers, compiler writers, cryptographic library developers,
and standardization bodies. We hope that these different communities will take up
our recommendations and collectively contribute to the emergence of a new genera-
tion of open-source cryptographic libraries with strong mathematical guarantees. Al-
though our recommendations are stated for timing attacks, we believe that many of

45

3. What Cryptographic Library Developers Think About Timing Attacks

our recommendations remain valid in the broader setting of high-assurance cryptog-
raphy. In particular, all our findings are directly applicable to themany ongoing efforts
to protect against micro-architectural side channels, as summarized in [84]. Another
interesting topic would be a quantitative analysis of the usability of some of the bet-
ter known tools collected in this study to gain insight into the exact magnitude of the
mentioned usability problems.

In this chapter, we gave an in-depth overview of the landscape of cryptographic constant-
time verification and how cryptographic library developers interact with the tools academia
publishes for them. We highlighted structural differences between the tools and asked detail
questions about these classes and preferences in tool characteristics that the library developers
wish to use. This is embedded in operational requirements of open- and closed-source software
development projects, which give rise to additional requirements we highlight. In the end, we
give only general recommendations for different target audiences, that we will sharpen with the
study in Chapter 4.

46

4. A usability evaluation of
constant-time analysis tools

Disclaimer
The contents of this chapter were accepted for publication as part of the conference paper ti-
tled “‘These results must be false’: A usability evaluation of constant-time analysis tools” at
33rd USENIX Security Symposium 2024. This research was conducted as a team with my co-
authors Jan Jancar, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles Barthe,
Pierre-Alain Fouque, and YaseminAcar; this chapter therefore uses the academic “we”. The ini-
tial idea was developed frommyself with Jan Jancar, Peter Schwabe, Gilles Barthe, and Yasemin
Acar. We conducted the study with our other co-authors and jointly analyzed the data and co-
wrote the paper for publication. This paper describes the state of cryptographic constant time
verification tools up to the year 2023. It is an extension and logical followup to Chapter 3.

4.1. Motivation
FollowingChapter 3 and the general overviewofwhat the developers of cryptographic
software libraries think and practice regarding constant-time analysis tools and code
practice, some questionswere still unanswered. For example, since the toolswere seen
as a hindrancemore than a help, wewanted to understand how this could be changed,
sowe needed to do amixed-method studywith quantitative aswell as qualitative data
on how people fail to use these tools.

Our target audience would be the developers of cryptographic constant-time anal-
ysis tools, but we wanted to go one step further and publish our study setup, so that
other practitioners could easily port our installation scripts forward to their own test
setup, making it easier to get some of the tools running. We also decided to write and
include documentation for some simple tasks, which we use in our study anyway as
basic test of functionality and acclimatization to a tool.

Our participants in this study could not be practitioners themselves, or our results
would be tainted by prior experience with some library or constant-time analysis tool.
We decided to recruit among associated universitieswith a strong focus on IT-security,
cryptography, and cryptographic engineering. The qualifying students were best in
class in relevant courses to our study and recruiting this way took longer than antic-
ipated, but our results were still representative due to the smal population size for
cryptographic engineers in general.

47

4. A usability evaluation of constant-time analysis tools

As with the previous paper, we first dive in to why the problem space is still impor-
tant, before we get into the details of the study itself.

4.2. Introduction
Timing attacks [211] are side-channel attacks that measure program execution time to
infer information about confidential data. They are practical and can be used by (re-
mote) attackers to achieve full recovery of secrets including cryptographic keys [73].
Thismakes protection against timing attacks an important goal for developers of cryp-
tographic libraries.

In his seminal work, Kocher [211] observes that making control flow and memory
access independent of secret data can help protect programs against timing attacks.
Over the years, this guideline has become known as the constant-time discipline, and
has become a gold standard for cryptographic libraries. Unfortunately, constant-time
programming can be error-prone, especially when programming under stringent ef-
ficiency constraints, as is the case for cryptographic libraries. In 2010, Langley devel-
oped ctgrind [229], a minimal patch to Valgrind for checking that crypto software is
constant-time. Subsequently, the security community has developed a broad variety
of tools for protecting against timing attacks. Two recent works [199] and [152] pro-
vide an overview of these tools, from complementary perspectives. Jancar et al. [199]
conduct a survey about the use of constant-time analysis toolswith 44 developers of 27
widely deployed open-source cryptographic libraries. Their survey shows that these
developers do not leverage constant-time tools despite an interest in writing constant-
time code. As reasons, they identify that tools are not ready-to use and their use there-
fore requires significant time and expertise. Geimer et al. [152] presents a systematic
evaluation of five selected tools, and identifies several technical roadblocks for the us-
ability of tools. In addition, both works provide a systematic classification of around
40 tools for checking constant-time, and provide recommendations for tool developers
and users. Although both [199] and [152] provide valuable insights on these tools,
an empirical study to corroborate and deepen their findings has been lacking.

Therefore, in this work, we aim to understand which factors support and hin-
der effective use of CT tools through an empirical usability investigation that ana-
lyzes participant strategies while working with CT tools. Our investigation provides
a complementary view on the issues discussed in [199]—which predates this work—
and [152]—which was published after we completed the developer study. Our de-
veloper study is designed to provide deeper insight into usability requirements and
how they influence their interaction with CT tools, to determine the features that tools
should provide to achieve their full potential. Due to the broad range of tools, we de-
signed a usability study with six CT tools. The participants of the study are 24 ad-
vanced CS students who had knowledge in cryptography (including about CT pro-
gramming) and C programming. Our study comprises two phases: in the first phase,
participantswork through tasks escalating in difficultywhile familiarizing themselves
with a tool; in the second phase, they analyze real-world cryptographic libraries for

48

4.2. Introduction

CT-ness.
We identify usability issues that we group into seven categories that revolve around

three high-level aspects: (1) required efforts to setup and start using the tool, (2) bar-
riers andwork overhead hindering the use of CT tools, and (3) functionality the devel-
oper wants in analysis to identify and fix problems. We aim to answer the following
research questions:
RQ1: What are the pain points when trying to use CT tools?

A: Installation, setup for analytic use, and (long term) operationalization in a larger
library context are challenges for effective CT tool usage.

RQ2: How helpful are the tools at discovering and fixing problems? Which tool properties
help or hinder effective use?

A: Tools can help cut down the amount ofwork needed to analyze larger code bases
rigorously, but if a tool is too much work to install and get to work, cryptogra-
phers might just “eyeball” the analysis without the tool. Meaningful documen-
tation to get a tool working on simple examples effectively helps to overcome
this.

RQ3: How can we support potential users in using the tools?
A: Easy setup, a set of simple examples to appropriate for the markup (which

should be minimal and noninvasive to the source code), a tutorial on how to
use the tool and get clear information from the output, and good general docu-
mentation were all found to be helpful.

Based on our findings, we suggest how the usability of CT tools can be improved
to make CT analysis more accessible to developers. In summary, our contributions in
this paper are:
• We concretize the problems mentioned by experts in the Jancar et al. survey [199]

through a developer study with 24 newly trained potential crypto developers and
publish the full procedure material (see footnote 2) for replication.

• We offer a systematization of crypto developer workflow in using CT analysis tools,
common to all 49 tools we found (see Table B.1).

• We document pain points and their impact on crypto developer usage of CT analy-
sis, giving an explanation onwhy the findings of Jancar et al. [199] are still prevalent.

• We propose what to consider during development of CT analysis tools by contrast-
ing prior attempts.

Supplementary material and disclosure. We have communicated our results to the
authors of the tools included in our study andmade the artifacts available to them. We
have received four responses; all four expressed interest, one said they plan to link to
our study materials in their project. The supplementary material, including tutorials,
installation guides, and codebooks is publicly available on a dedicated web page1 and
as an artifact2.
1https://crocs-muni.github.io/ct-tools/
2https://zenodo.org/records/10688581

49

https://crocs-muni.github.io/ct-tools/
https://zenodo.org/records/10688581

4. A usability evaluation of constant-time analysis tools

4.3. Background & Related Work
We give an overview over the background and related work to this research by first
discussing impacts of timing attacks on security, then describing CT development and
CT analysis as defenses. For context, we also discuss a new generation of timing at-
tacks that exploitmicroarchitectural features of CPUs, and the related efforts to protect
against these attacks. Finally, we explain how a lack of consideration of human factors
in cryptographic development can hinder widespread effective use of cryptography.

1. Timing attacks. SinceKocher’s introduction of side-channel vulnerabilities in 1996
[211], these threats have persisted despite significant efforts to address them. Consid-
ering the vast range of side-channel attacks, we will highlight a few pivotal moments
with a focus on timing attacks. Kocher’s seminal work highlighted vulnerabilities in
asymmetric cryptographic algorithms like RSA and DSS through ”Timing Attacks”,
emphasizing the potential for exploitation based on secret-dependent operation times.
In 2002, Tsunoo et al. [361, 360] expanded timing attacks to symmetric cryptography,
noting vulnerabilities inMISTY1, DES, and suggestingAES being vulnerable to cache-
timing attacks. Independent work by Bernstein [47] and Osvik et al. [283] confirmed
these AES vulnerabilities. In 2003, Brumley and Boneh [73] revealed that these at-
tacks could be conducted remotely via network timings. Subsequent vulnerabilities
were discovered in the SSL/TLS libraries [71, 16, 80, 14] and on hardware-assisted
defenses, such as Yarom et al.’s ”CacheBleed” [402]. Kaufman et al. [206] also warned
of persistent vulnerabilities post-compilation.

Despite these vulnerabilities and an emphasis on fixing them, side channels remain
common in numerous platforms [240, 112, 63, 150, 149, 151, 176, 372, 62]. Some Com-
mon Criteria certified devices, despite their countermeasures, were found vulnera-
ble [200]. Moreover, even recent post-quantum cryptographic efforts are affected [70,
289, 356, 284, 378, 167].

2. Constant-time Analysis. In this paper, we focus on investigating usability aspects
of tools that evaluate timing leakages of (cryptographic) software. However, it is
worth pointing out that the tools we consider also differ on a technical level in at least
four different ways:

First, depending on the approach taken by different tools, they give very different
soundness guarantees. Static formal analysis can achieve full soundness with regards
to some leakage model. Slightly weaker guarantees are offered by tools performing
symbolic execution; these tools achieve soundness only up to certain upper bounds on
loop length. Tools based on dynamic analysis typically work with symbolic secret data
but concrete public data; they achieve soundness up to code coverage for the concrete
public values of the test cases. Statistical analysis performs measurements on (large
sets of) concrete public and secret data. The advantage is that this approach does
not require any leakage model, but on the downside, it also does not provide any
soundness guarantees.

50

4.3. Background & Related Work

Second, the toolswork on different levels of compilation. We distinguish toolswork-
ing on source level, on some intermediate level, or on binary level. An example for
a source-level tool would be the information-flow type system implemented by the
secret_integers crate3 in Rust. All tools we study (we will give detailed introductions
later in subsection 4.4.2) in this paperwork on either intermediate-representation (IR)
of the LLVM toolchain [297] or on binary level. Tools working on IR level are inher-
ently limited in the sense that they are unable to find any leakages introduced by the
compiler when translating from IR to binary [206, 338].

Third, the tools working on binary level differ in what architectures and extensions
they support. In order to be used on production code, they need support not just for
the core instruction sets of widely used architectures, but also for vector instructions
and dedicated crypto extensions.

Finally—and here is where technical features overlap with usability—the tools dif-
fer in terms of performance. For example, for the analysis of Langley’s “donna64”
implementation [230] of Curve25519 [48], the running time of just two of the tools we
considered ranges between 0.38 and 225 seconds. This wide range may impact Con-
tinuous Integration (CI)/Continuous Deployment (CD) and developer workflows.

Table 3.1 presents the tools we found and categorized according to prior litera-
ture [198], appending a few tools previously not included; similar tables are found
in [199, 152]. For each tool, we describe the target of analysis, the techniques used
and whether the tools claim to provide some form of formal guarantees. We opted to
err on the generous side of claimed soundness guarantees of each tool. For some tools
the claims do not easily map to the soundness categories we discussed before, so we
keep the unqualified “Other” category from the literature. As usual with this kind of
classification, the categories are not exclusive, each tool may combine approaches in
its design—we opted to continue with best-effort categorization like the established
literature.

3. Microarchitectural side-channel attacks and defenses While constant-time pro-
gramming is still an important and increasingly standard baseline defense against
software-visible side channels, research on more advanced microarchitectural attacks
in the past fewyear has shown that this programmingdiscipline is not a sufficientmea-
sure. This line of research started with the 2018 Spectre [210] and Meltdown [239]
attacks, and has since identified multiple pathways for attacks that often—but not
always—exploit speculative execution in modern CPUs. See, e.g., [214, 383, 282, 258].

The notion of constant-time can be extended to protections against more advanced
microarchitectural attacks [210], leading to notions of speculative constant-time [82]
ormore generally of securitywith respect to a hardware/software leakage contract [262,
189, 259]. Many of the techniques used for analyzing constant-timeness can be ex-
tended to reason about speculative constant-time and related notions. In fact, there
is already more than two dozen tools that analyze whether a program satisfies (some
variant of) speculative constant-time. For an overview of these tools see [83, Fig. 2];
3See https://docs.rs/secret_integers/.

51

https://docs.rs/secret_integers/

4. A usability evaluation of constant-time analysis tools

they generally suffer from similar usability issues as tools for constant-time.
Recent work [375, 374, 235] shows that aggressive optimizations used by modern

CPUs to improve performance can lead to a new class of timing attacks. Many of the
leakages are data-dependent and depend on prior execution history, making their de-
tection extremely challenging. As a consequence, there is a strong incentive to develop
analysis tools for checking the counterpart to constant-timeness; see [43, 139] for two
very recent examples.

In both cases, we believe that the insights gained from [199, 152] and our work will
provide valuable input for improving the usability of future tools in this space.

4. Human Factors in Cryptographic Development. There is a large body of work
on human factors in cryptographic development. Acar et al. establishes in a 2017
study that poor usablitity of cryptographic libraries contributes to misuse and inse-
cure code [6]. Haney et al. investigate the mindset of cryptography developers [172],
and observe that some developers do not adhere to mainstream software engineering
practices.

Krueger et al. developed awizard for secure code snippets for specific cryptographic
applications, evaluating its effectiveness and usability in a programming study [217,
219, 218].

In the specific context of constant-time tools, a study byCauligi et al. [85]was carried
out with over 100 students to understand the benefits of the FaCT tool introduced in
the paper. The tool support by FaCT is found helpful for generating new code that is
CT. In extension of this work, we include a diverse set of CT tools, documentations,
tutorials, as well as open source libraries in our study.

Unfortunately, while previous research suggests that lack of usability prevents ef-
fective use of security tools [92, 121, 158, 320, 376], and specifically for CT [199], the
question of how to improve the usability of these tools has been understudied [8].

4.4. Usability criteria and tool selection
In this section wegive a general description of our usability criteria, and explain how
they impact users. In addition, we briefly introduce the six included CT tools in our
study, organizing our presentation to inspect the previously defined criteria for each
tool.

4.4.1. Usability criteria
The main purpose of our evaluation is to assess the usability of current CT tools, and
identify features that impact effective use. To expand on Jancar et al. [199], we define
criteria revolving around three features: (1) the effort required to setup and famil-
iarize, (2) the work overhead for secret designation and target building, and (3) the
quality of output to identify and fix problems.

52

4.4. Usability criteria and tool selection

We define our criteria following how users would perform the tasks related to CT
analysis [352]: how users might interact with the tool, what information is given to
the user, and how analysis outcome is presented to the user. The categorization of
CT testing workflow steps was created from our expert team’s experience in building
CT tools and using them on real-world projects, combined with insights gained from
piloting the study. We developed the categorization after all of the study results were
gathered.
Installation. Every tool needs to be installed before use. There are two broad ways of
installing CT tools. Some come pre-built and bundled for a package manager or in a
container. Others involvemanual installation by either building from the source, or by
grabbing the available binary froma release page. For the lattermethod, the developer
will be in charge ofmanaging the necessary dependenciesmanually. CT analysis tools
mostly come as proof-of-concept artifacts. According to [184], only 3% of artifacts are
distributed in containers, while 23% are pre-built and 70% must be compiled from
source code. Therefore, we expect that the installation step of CT tools may be very
challenging for numerous tools, especially because of unmaintained dependencies,
also confirmed by Jancar et al. [199], who point out that libraries maintainers do not
consider use of hard-to-install CT tools.
Familiarization. Documentation is intended to provide a high-level overview of the
tool and offers technical details for expert users. Help materials also include tutorials
and examples. In this criterion, we focus on how quickly new users become comfort-
able running a tool on simple programs.
Building and Secret Designation. CT tools provide a means to tag secret data. This
is typically achieved via either code annotation or the creation of an external function
wrapper. Many CT tools operate on instrumented binaries or some abstract interme-
diate representation that is designed for program analysis. Very often, this implies a
custombuilding and linking process. Usability is negatively impactedwheneverman-
ual work is needed during this process. In other words, we look at how much tools
modify a project to be analyzed: both in terms of code (for secret designation) and
build workflow integration (for target generation). Little work overhead is commonly
appreciated [204].
Analysis Runtime. Once the target is built, users can actually run the tool for CT
analysis. Here, we look at two sub-criteria, the tool’s interface and its runtime. For a
command-line interface tool, users may struggle with passing the right options. Im-
portantly, tools are expected to yield results in an acceptable time frame. The longer
the runtime of the analysis, the more difficult it is to integrate the analysis into the
project workflow [204]. This problem hinders a feedback loop using CT analysis at
coding time. This can be important both in CI workflows, which may have an upper
time limit, and developer workflows, where each developer may only want to spend
a small amount of time waiting for analysis results.
CT Problem Fixing. When the analysis is finished, CT tools display some output
to direct the developer’s attention to detected issues. The purpose is to provide the

53

4. A usability evaluation of constant-time analysis tools

developer with enough information to judge whether or not they care about the issue,
and if yes, why the tool reports it. For example, it is not helpful if tools just display that
there is an issue without any detail about the origin of the leakage. In addition, it is
more productive for developers to be able to navigate and manage the list of reported
issues. Otherwise, developers must linearly search through the (potentially large) list
of results, making selective fixing more difficult.

Specialized Output Generation. To improve the experience of fixing problems, users
might require customizing the generated analysis output. We introduce two features
that we identify for CT tools. First, tools should also offer different verbosity in report
details to avoid excess of information [158]. For example, a summary mode is beneficial
in order to quickly skim the reported vulnerabilities to decide which one to inspect.
Second, within the context of a CI pipeline, a delta report can be handy in assisting
developers to determine whether a specific leakage has been correctly patched, and
that the fix has not induced other leakage.

Reliability / False Positives. Ultimately, users need to trust the tool and its analysis.
Therefore, any indication of potential false positives ormissed issues could undermine
user confidence, leading to tool abandonment. Solutions do not necessarily involve
sound or complete tools, but also support for filtering user-supplied false positive
patterns. This may help the user but can also lead to user filtering actually missing
timing leaks, either mistakenly or lazily.

4.4.2. Tools
We selected six tools for use in our study: MemSan, timecop, dudect, ctverif, Bin-
sec/Rel, and haybale-pitchfork. These tools were primarily chosen to include a rep-
resentative from each analysis type. The selection of the tools was made towards the
end of 2022, therefore more recent tools were not considered. We prioritized tools
well-recognized in the community, ideally those used by developers, gauging their
reputation through a recent survey [199]. Out of the tools, 4 (ctverif, MemSan, dudect
and timecop) are 4 out of top 5 most known tools in [199], with the top one being ct-
grind, which we replaced with the functionally equivalent and still maintained time-
cop. haybale-pitchfork and Binsec/Rel were selected as representatives of other tool
approaches. The number of tools was also constrained by participant numbers to en-
sure even distribution. At the end of the subsection we compare our choice of tools
with the five tools chosen in [152].

MemSan [346]. MemSan is designed to leverage the Clang built-in memory sanitizer
to dynamically analyze binaries for constant-time violations, thereby requiring Clang
for installation (which is available in most Linux package managers). Clang sanitiz-
ers are well documented, but there is little documentation on how to use MemSan for
CT analysis. Concerning secrets, users can declare private variables and/or memory
regions containing secrets, and declassify variables within certain code sections if re-
quired. To run the tool, developers must compile the program with Clang, using the

54

4.4. Usability criteria and tool selection

appropriate option to enable the memory sanitizer. All parts with no enabled saniti-
zation are ignored—it is easy to get this wrong. Then, the analysis is performed by
running the resulted binary. Note that only the executed code is analyzed, leading to
different conclusions when running the same binary with different inputs. Indeed,
code coverage is essential for MemSan. Upon the binary execution, errors will be dis-
played on branching or memory access indexing an annotated variable. The output
details the path between the annotated variable and the cause of leakage. The output
messages will be more related to the source code if the target is compiled in debug
mode.
timecop [264]. Similar to MemSan, timecop relies on the Valgrind memcheck mod-
ule [116] to dynamically analyze binaries for CT violations. Therefore, for installa-
tion, it solely requires Valgrind (which is available in most Linux package managers)
and an additional C header file that must be downloaded from the project page. The
timecop page also contains several tutorials and examples to smooth its first uses by
beginners. To analyze code, users need to annotate private variables in the source
code and may declassify variables within certain code sections if needed. There is no
need for changes in the compilation chain. Concerning the analysis, users can simply
run Valgrind on the binary as if they were searching for memory leaks. Valgrind will
raise warnings for CT violations just like it would for the use of uninitialized memory
in a branching or memory access. The output details the path between the annotated
variable and the cause of leakage. timecop relies on the debug information to display
the lines of code in its warnings. With its use in SUPERCOP [129], it is widely used.
dudect [307]. Installation for dudect is virtually non-existent as the tool is provided
as a simple archive containing the C header file implementing it. The dudect docu-
mentation is rather limited. The tool operates via a black-box evaluation of a function,
obviating the need for code annotation. The user, however, is required to implement
an external wrapper in charge of setting the analysis parameters and options, as well
as two functions to initialize the secret input classes and call the code to assess, re-
spectively. Then, the target program must be compiled (with no custom build) and
executed for analysis. The dudect approach is statistical, and it thus outputs values of
statistics after code analysis. The output does not underline any source leakage, but
only some probabilistic conclusion about the target CTness.
ctverif [19]. The installation of ctverif presents a significant challenge, requiring un-
documented versions of specific dependencies and manual patches across different
projects, such as SMACK and Bam-Bam-Boogieman. Aside from the paper, there is
no or little documentation available. As for secret designation, users must declare pri-
vate and public variables and/or memory regions (arrays) containing secret or public
inputs. In addition, they could declassify outputs, and assert the non-overlapping na-
ture of these regions. The tool operation is straightforward, requiring only the source
code file as input, in addition to the entry point to analyze. Thus, ctverif does not
need any custom build. However, ctverif can process a C translation unit only when
all the called functions inside are defined by other input files, otherwise it produces an
unknown error. After a run, ctverif only highlights the leakage location in the source

55

4. A usability evaluation of constant-time analysis tools

code, without a dependency chain of variables or memory locations that lead to each
leaked secret. Surprisingly, ctverif may raise some warnings even after a successful
runwithout CT violations. It is worthmentioning that ctverif, instead ofmaking some
approximate analysis, informs developers when it cannot conclude about some leak-
age, displaying inconclusive output.
Binsec/Rel [111]. Binsec/Rel comes as source code, an extension to the Binsec tool.
Some dependencies, such as an SMT solver and the OCaml package manager, shall
be installed manually, before compiling the project source available on GitHub. Bin-
sec/Rel offers a comprehensive list of supported command-line options and numerous
examples to start with. On the analyzed project, users shall employ markup declara-
tions to annotate the source code, thereby designating public and private data. The
analysis of Binsec/Rel operates over binaries. The version utilized in this study only
supports ARM 32 and x86_32 architectures, necessitating the target to be compiled
accordingly. This might require to add additional compiler flags, since in numerous
compilers, the defaultmode supports 64-bit. Upon completion of the analysis, a report
is produced including the number of CT violations and an assembler dump correlat-
ing with the violation location. The assembler dump does not point to the leaked
secret, but only to the instruction causing the leakage. Note that during our study,
Binsec/Rel received a major update that integrated the CT checking functionality into
the main tool Binsec.
haybale-pitchfork [363]. Written in Rust, haybale-pitchfork can be installed from
source using cargo, although its dependenciesmust bemanually installed beforehand
as documented on the project page, which includes multiple examples and different
documentation materials. haybale-pitchfork runs its analysis over the LLVM interme-
diate representation. Thus, users need to modify the compilation chain to produce
the corresponding LLVM bitcode of the target. Any symbol in the generated bitcode
must be correctly resolved, or haybale-pitchfork stops the analysis, while printing a
message raising “other errors”. Instead of relying on annotations to mark secrets,
users are instructed to implement an external wrapper in Rust, in order to define an
abstract signature of the target function. Here, each function parameter can be de-
clared as public or secret using the appropriate Rust type. This wrapper also contains
other configurations, such as the bitcode path to inspect. Users carry out the analysis
by compiling and executing the Rust wrapper. haybale-pitchfork provides conclusive
results, displaying the leakage origin whenever a CT issue is found, together with a
tree path to the leaked secret.
Comparison with the tools of Geimer et al. [152]. Geimer et al. [152] explores five
tools in depth: Abacus [37], Binsec/Rel, ctgrind, dudect, and MicroWalk-CI [397].
Two of these tools (Binsec/Rel and dudect) are also included in our study. As ex-
plained above, we selected timecop and MemSan over ctgrind, because the ctgrind
patches are outdated and do not work with recent versions of Valgrind and the Linux
kernel anymore. In contrast, timecop and MemSan can be seen as more usable ver-
sions of ctgrind. We did not select Microwalk-CI [397], because it was released after
we had initiated our study. We also did not select Abacus, because its focus is quan-

56

4.5. Methodology

titative information flow rather than constant-timeness. We included ctverif for its
strong correctness and coverage guarantees. We also included haybale-pitchfork, as
an instance of a tool that covers both constant-time and speculative constant-time—
however, to our knowledge, the toolwas eventually not extended to speculative constant-
time.

4.5. Methodology

In this section, we provide details on the procedure and structure of the studywe con-
ducted with (initially) 31 participants. We describe the experimental setup including
choice of libraries, surveys, and experimental infrastructure. We also describe our
coding process of qualitative data, including participant behavior and free-text re-
sponses, as well as the approach for statistical analysis of quantitative data, such as
success measures and quantitative survey items. Finally, we explain our data collec-
tion and ethical considerations, and discuss the limitations of this work.

1. Eligibility survey
Determines demographics and participant's eligibility
for the study.

2. Repair task
Identify whether code is CT and fix if not.

Exit survey

SurveySubtask 10

SurveySubtask 3

SurveySubtask 2

Tutorial

SurveySubtask 1

Example solutions

...

3. Audit task
Audit (parts of) cryptographic library code.

Tutorial

Task

Exit survey

library 1

4. Audit task
Audit (parts of) cryptographic library code.

Tutorial

Task

Exit survey

library
 2

tool 1
too

l 2

Figure 4.1.: Study flow for each
participant.

1. Recruitment andParticipants. Due to the chal-
lenges of recruiting professional developers with
security expertise, we targeted CS students for par-
ticipation. We engagedMaster’s and early PhD stu-
dents from 5 universities across 4 countries, as rec-
ommended by [350]. From the 74 students we ap-
proached with an eligibility survey, 31 began the
study. A tools assignment error led us to exclude
one participant.
Eligibility Criteria. We only consider participants
having the minimum knowledge necessary to run
CT tools. We asked them to self-report their knowl-
edge of the C programming language and the CT
paradigm. Naturally, considering our usability
criteria, we also verify that they had never used
any of the tools that are part of this study. Fi-
nally, to distinguish our work from [199], partic-
ipants needed to lack experience in working on
production-quality cryptographic code.
Compensation. Participants were compensated
with 200 euros on completion of the study in ex-
change for 16 hours of participation; this compares
to the hourly payment for student research assis-
tants in participating countries.

57

4. A usability evaluation of constant-time analysis tools

2. Study Procedure. After a short eligibility and demographics survey which pre-
ceded the study, we asked participants to assess code for vulnerability to timing at-
tacks using a CT verification tool across ten tasks that escalated in complexity, as well
as to audit (parts of) two cryptographic libraries. Assignment of participants to tools
and libraries was done by hand, following a pattern of complete coverage of all pos-
sible tool combinations.The study flow is described below as well as visualized in
Figure 4.1.

During the study, participantswere assigned ten successive repair tasks—tasks build-
ing upon tool-support specifics tested in prior tasks, which we will explain in detail—
inwhich theywere instructed to use a pre-installedCT analysis tool (tool 1) to identify
whether a given code snippet is CT regarding a well-defined secret. If the code was
not CT, participants were asked to fix it. The repair tasks represent textbook examples
of secret-dependent branching and memory access, and their CT variant. After work-
ing on the first task, participants were given a tutorial that we had written for the tool.
After the second task, we gave them the solutions to previous tasks, to be used as ex-
amples. Tasks 3 to 8 added various elements to increase difficulty, such as calls to libc
functions (memcmp), reading randomness from the operating system and particular
source code designed to trigger optimization during compilation. The goal of these
repair tasks is to assess the participants’ ability to use the tool to evaluate and fix a
rather simple code snippet.

After completing work on the ten repair tasks (or exhausting the allotted time of 8
hours), and so becoming familiar with the tool, we asked them to audit well-known
cryptographic libraries using the same tool (tool 1). In this audit task, participants
were asked to compile the library (library 1) in such away that enables them to use the
tool, and audit a much larger code base. They were pointed at potentially interesting
parts of the library, but not at specific functions. After a first library audit with a tool
they had used for the entire study up to that point, we provided themwith a new tool
(tool 2), a tutorial, and a new library (library 2) to start a second audit task. These
audit tasks aim at assessing the tools’ usability in a setting more closely resembling a
real-world use case.

For both parts of the study, we consider that a participant successfully completed a
task if they underline the CT violation using the respective CT tool, and recognize it
as such to fix it. The task structure was monolithic, simply stating that the task was
to find CT violations with the given tool. Participants had to find out the necessary
steps themselves.

After each of the repair tasks, participants were given a brief survey asking about
their results (was the code CT or not, etc.), their experience with the tool during the
task, and issues they encountered. After the last of the repair tasks, we gave par-
ticipants a longer exit survey, which included the System Usability Scale [68] and
questions regarding their overall experience with the tool. Participants were asked,
e.g., whether they trust their tool to give them correct results and what their biggest
problem was while using it. A similar survey was included after each audit task.
InstrumentDevelopment. Our groupof authors consisted of experts in cryptographic
engineering, side-channel attacks, and CT tool developers, as well as one human-

58

4.5. Methodology

factors researcher. We based the study development on our usability criteria and
related features. We also let our experience with the development of cryptographic
libraries and CT verification tools (as authors as well as users) influence the study
design. The human-factors researcher introduced and facilitated the use of human-
factors research methodology to better explore the identified usability criteria. In par-
ticular, the human-factors researcher explainedmethodswhen appropriate, facilitated
discussions and helped the team to develop the study, pilot it, gather feedback, and
evaluate the results.
Pre-Testing. Three co-authors dry-ran the study, followed by one student from the
targeted population. Using their feedback we updated, expanded, and clarified the
study.
Time Frame. Every participant had a recommended and self-enforced time limit of 8
hours to work on each part of the study (repair and audit, thus a total of 16 hours),
within a soft frame of 2 weeks. We allowed extension of the 2-week time frame. Par-
ticipants, although encouraged to fully use their time, were allowed to hand in their
results earlier.
Repair TaskDetails. The first four of our tasks demonstrate themain points of the CT
criterion: Secret-dependent branching and secret-dependent memory access. Repair
tasks 01 and 02 are non-CT and CT examples of a selection based on a secret value,
once with a branch and once with an arithmetic transformation like the one presented
by Schwabe at ShmooCon 2015 [329]. Repair tasks 03 and 04 are likewise memory
accesses depending on a secret value or boolean arithmetic for selecting a value loaded
from all addresses without depending on the secret for the load address.

Repair task 05 introduces the use of a C programming language standard library
function, memcmp, which is non-CT, to compare secret values. Tools which depend
on static binaries and cannot inspect dynamically loaded libraries—which are the ma-
jority of deployed software today—are expected to fail here and show noCT violation.
Repair task 06 includes a system call to read random numbers. System calls are on
most operating systems implemented in a way that cannot be seen from user space,
the memory area that is analyzable to most CT analysis tools. The tools can work
around this, for example by recognizing a set of known system calls and their ex-
pected behavior. This task greatly differs from previous tasks, as it does not include
secrets, but only checks for support analyzing this code. Task 07 starts to build up
problems toward a harder criterion than CT - probabilistic CT, which is a criterion
for functions that behave CT by default except for a subset of cases. Indeed, the pro-
gram reads a random number like in task 06, but in 1 out of 256 cases, it will perform
secret-dependent branching like in task 03. This may sound easy to spot manually by
most users, but statistics-based CT tools were expected to underperform on this task.
Task 08 introduces a different, and on first sight trivial problem: the same function is
called, but in two branches based on the value of a secret. This may seem to be CT, but
in practice a compiler may transform this into assembly code that does not branch on
the secret, even though in the given source code the CT criterion is violated. The intent
behind this task is to see if the abstraction level of a tool, whether it works on binaries
or instrumented source code, has a measurable impact on the success of participants.

59

4. A usability evaluation of constant-time analysis tools

Task 09 makes the compiler transform impossible by changing the branching struc-
ture, passing a secret variable as a function input. The called function just returns a
constant, which makes the whole program CT. Finally, task 10 is distinguished from
previous tasks. It is formally non-CT and can be repaired in two non-obvious ways:
users can eithermake it CT, but only probabilistically correct, or correct, but only prob-
abilistically CT. With this last task, we wanted to see how participants pick up on less
trivial code, inspired by techniques used in some cryptographic algorithms recently
standardized by NIST, such as Kyber [57, 39] and Dilithium [127].

3. Study Setup. Our tool selection is explained in subsection 4.4.2. Note that one of
the included tools (Binsec/Rel) did receive a substantial update during the study, that
we did not include as not to invalidate our study.

In order to have similar working environments, we deployed one VM for each tool,
and gave SSH access to the participants. Each participant had restricted access to their
home directory, with all necessary material (such as instructions and source code of
the task and the library) available. For each resource, a clean copy was available as
read-only in case they needed a fresh start. We decided to pre-install the tools on the
VMs. The reasoning for that choice is twofold.

First and foremost, most tools are the outcome of academic research, and served
the purpose of demonstrating new techniques and approaches, without aiming for
maintainability. Hence, some tools are not maintained, and rely on specific version
of dependencies that are outdated and deprecated. This can make the installation
particularly complex and time consuming, especially on recent systems. Second, given
that participants using the same tools were co-located on a VM, we could deploy the
tool globally to ensure a functional setup, and avoid unintentional corruption of the
tool by participants.

As an effort to make the first step easier, we implemented installation scripts for
each tool present in our study—for possible difficulties in the installation phase, see
Reynolds et al. [312]. We made them publicly available (see footnote 2), along with
the repair tasks and a small functional tutorial we provided to the participants. We
hope this can prove useful, and motivate tool developers to do the same.

To make sure the participants have something to find in the audit tasks, we needed
to include libraries that had problems with CT-ness, therefore we chose the follow-
ing: two of them—OpenSSL and GNUTLS/Nettle—were chosen because they are in
ubiquitous use in open-source software projects. The other—mbedTLS—was chosen
because it was common and is targeted more for use on embedded devices. Other li-
braries like BearSSL were not included due to fewer documented CT issues and fewer
prior audits of those libraries compared to the first two. We specifically audited the
libraries ourselves, first, to see if participants can meaningfully find code that is non-
CT in those libraries, either by looking at public documentation and then verifying
with a CT verification tool, or direct analysis. All three chosen libraries document
which parts of their code bases are not expected to be CT, so our participants could be
expected to find them.

60

4.5. Methodology

4. Coding andAnalysis. All qualitative coding and data analysis were done bymul-
tiple researchers from a set of four, each coding part done by at least two, from diverse
backgrounds and views. All of those researchers were familiar with CT verification,
open-source and cryptographic code development practices, while two researchers
had additional experience with human factors research with developers. We followed
the process for thematic analysis [65]. The four coders familiarized themselves with
the free-text answers in their part of the analysis, adding annotations and developing
themes as well as codebooks.

Codebooks were first developed deductively based on the questions on each sub-
task, then changed inductively. The codebooks were iteratively changed while ex-
tracting themes from the free-text answers. Coders discussed until agreement was
reached to make unanimous decisions; we therefore do not calculate inter-coder relia-
bility [246]. The codebooks codify experiences—good or bad—as well as misconcep-
tions, insecurities, and wishes encountered during the study’s surveys.

5. Data Collection and Ethics. Our invitations were sent to participants of themati-
cally fitting courses of five participating universities. We invited students by emailing
them individually. During and after the study they could opt-out of participation.
We only linked participants names to results for payment, not during analysis and
not by members of the research team who had prior contact to those students. We
keep the participant responses as confidential as possible and do not link quotes to
them by name, only by pseudonyms.The study protocol and consent forms (for study
participation and surveys) were approved by our lead institution’s data protection of-
ficer and ethics board, who determined that the study poses minimal risk. Identifying
data of the participants, like names, email addresses, and payment information, were
stored separately from study data, and were only used to contact the participants; we
did not retain any identifying data in excess of following laws.

6. Data cleaning & Presentation. From the 74 students we invited, 31 started our
study, of which we were able to use the results of 24 participants. We only evaluate
the results of participants who finished a meaningful part of our study and compared
results with and without familiarization with each tool on each library to offset possi-
bly bad pairings, but did not find anymeaningful differences between the two groups.
As for the 7 incomplete results, we were not meaningfully able to incorporate them in
most of the statistics—to not over represent results from simpler tasks—but we used
partial results that were complete in appropriate sections.

Participants were paid for and expected to spend two days of eight hours each
on the study, leaving rich free text comments in the surveys as well as comments in
source code of their task solutions. We received mixed feedback, from disillusioned
responses to high interest in further research on CT verification and coding practice.
Generally, the feedback to our study was positive, even when the comments about the
experience with some tasks were less so.

61

4. A usability evaluation of constant-time analysis tools

7. Familiarization. By design of our study, we set our participants up for familiar-
izationwith one tool each, thenwe ask to analyze a common real-world cryptographic
librarywith the same tool. The repair tasks during the familiarization procedurewere
optimized for familiarizationwith the tool from simple examples to simplified current
research problems.

8. Limitations. Survivorship bias[231] might taint the results, due to the study not
reporting all the results of participants which dropped out. Selection bias due to com-
paratively high requirements in recruiting for the study as well as selective perception
due to recruiting from student population who is accustomed to writing exams and
tests might both also be relevant, but are both similar to the population which might
use one of the CT tools. Participants may have reportedmore familiarity with the sub-
ject matter than they actually had, but due to our recruiting criteria, this was limited to
a minimum actually necessary for participation. Our study may also suffer from the
typical effects of fatigue in participating in a study, frustrations, and, of course, took
place during the later years of the COVID-19 pandemic. Finally, our low participant
numbers (due to the significant time investment and prerequisites) does not allow
for statistical inference; we report numbers to highlight trends and/or outstanding
observations.

Problem Fixing. When participants marked a repair task as already constant-time
they were not asked to fix the code.

Library Selection. The projects we included for the audit task represents a selection
and are not representative of all open-source cryptographic libraries. We are aware
that other libraries might lead to different usability results.

Unknown Code. Our participants were not familiar with the cryptographic libraries
used in this study. Annotating and custom-building are likely to be different when
analyzing a project the participants are familiar with. Developers might achieve dif-
ferent results if they have a rough overview of the code base. We expect completing
the repair tasks to be easier to our participants than the open-ended audit tasks.

VMs, Tutorials, and Examples. By including ready-made virtual machines with each
installed CT tool, combined with layered introduction of tasks and documentation,
not restricting online documentation and providing some as a backup ourselves, we
provided our participants with a best-case scenario to learn how to work with each of
the tools. Participants could approach the study as they saw fit, while being able to
adapt example solutions and their own prior solutions to everything after a first intro-
duction to the base cases for CT programming practice in minimal examples (tasks 01
to 04). This was a trade-off to gather more data about all CT analysis steps, not being
stuck over installation or finding documentation. Nevertheless, this means that our
participants had an easier task with the tools than users would have in real world.

62

4.6. Results

Tool (Tech., Guar.) Repair Audit 1 Audit 2

Binsec/Rel (Sy, G#) 33.5 (3.8) 38.7 (11.8) 45.6 (7.2)
ctverif (F,) 30.6 (18.4) 34.4 (8.5) 31.5 (14.8)
dudect (St, #) 53.1 (29.1) 65 (5.9) 59.4 (23.8)
haybale-pitchfork (Sy, G#) 64.4 (6.6) 52.5 (13.7) 50.6 (26.6)
MemSan (Dy, G#) 49.5 (20.3) 41.3 (22) 49.4 (20.1)
timecop (Dy, G#) 71.2 (6) 69.4 (10.3) 70.6 (24.1)

Table 4.1.: Average and standard deviation of System Usability Scale scores from exit
surveys after repair and audit tasks.
Technique: Sy—Symbolic, St—Statistics, Dy—Dynamic, F—Formal
Guarantees: —sound, G#—sound with restrictions, #—no guarantee

4.6. Results
Table 4.1 showcases the SystemUsability Scale (SUS) scores [68] for each tool on both
repair and audit tasks. The SUS is supposed to give a quick overview of a tool’s overall
usability; a score above 68 would be “above average” across software types. From the
scores presented, usability remains fairly consistent between repair and audit, with
notable exceptions for haybale-pitchfork, which had a noticeable dip during audits,
and dudect, which exhibited enhanced usability in the audit tasks. Among the tools,
timecop has the highest and most consistent score, suggesting superior usability. In
contrast, ctverif and Binsec/Rel emerge as the least usable. For the correctness of solv-
ing the repair tasks, see Table 4.2.

Familiarization Pre-processing Runtime Problem resolution Reliability No issue

16

1

1

5

3

7

3

5

5

2

4 8

7

21

2

14

5

3

17

1

4

3

2

1

9

2

10

3

16

6

3

16

21

22

Task 01

Task 02

Task 03

Task 04

Task 05

Task 06

Task 07

Task 08

Task 09

Task 10

0% 25% 50% 75% 100%

3

5

5

3

2

7

9

6

3

4

1

3

1

21

19

3

14

7

13

5

4

3

5

3

15

9

19

18

18

20

Binsec/Rel

ctverif

dudect

MemSan

pitchfork

timecop

0% 25% 50% 75% 100%

Figure 4.2.: Participant’s major issues during the repair tasks. (Left) For tools over all
tasks. (Right) For tasks over all tools.

Through thematic analysis of feedback during repair tasks, we identified common
usability issues with the tools. Feedback points, categorized according to our code-
books, often overlapped, except for the “no issue” category. The distribution, depicted
in Figure 4.2, gave insights into tool perceptions and task challenges.

In section 4.7, we delve into the diverse factors impacting usability, as organized
by the criteria introduced in Section 4.4.1, and report on participants’ confidence in
their results. Each criterion corresponds to a step in detecting/fixing CT violations,

63

4. A usability evaluation of constant-time analysis tools

and each subsequent step depends on the success of its predecessor. Those who en-
countered initial setbacks often did not report in the later stages. This was particularly
pronounced when auditing real-world software libraries.

Our findings spotlight factors affecting the tools’ usability: Clear and intuitive out-
puts stood out as extremely important, and a lack of beginner-friendly documenta-
tion emerged as a recurrent issue. Though well-structured documentation is invalu-
able during the familiarization phase, participants reported distinct challenges as they
delved deeper into the tools, but mixed with positive feedback as well. This disparity
became evident when contrasting feedback between standard textbook examples and
real-world audits, emphasizing different stages of tool assimilation.

Although the participants were equipped with the tools for the tasks, their instal-
lation and setup experiences could not be included in our data as we set up the tools
for them.

1. Familiarization. During the first task, the main issue reported was unclear and
non-user-friendly documentation, with 16 complaints (18 overall). Although the tools
had associated academic papers, participants felt these didn’t serve as effective doc-
umentation. They particularly missed step-by-step setup and results interpretation
examples. “[T]he documentation about every command doesn’t exist or I didn’t find them.
Maybe a beginner-friendly aspect of the tool would have been good for me to start.” ()

Notably, participants hadno complaints about ctverif documentation—possibly due
to its basic user interface—but most of them faced issues with its operational aspects
until they consulted our tutorial.

Despite the issues, our study also highlighted successes in the familiarization phase.
Concise, beginner-focused documentation was identified as a significant upside in
enhancing user engagement. The turnaround is likely a direct result of the tutorial we
provide upon the completion (or non-completion) of the first task.

None of the participants managed to solve the second task using ctverif, and all
expressed complaints about the output. After the tutorial and solutionwere provided,
3 out of the 4 participants were able to solve the subsequent task. This improvement
persisted through the remaining tasks and can be attributed largely to the alleviation
of difficulties in correctly interpreting the output and running the tool.

The effect was similar with Binsec/Rel. While none of the participants solved the
first task, 4 out of 5 successfully solved the second task following the tutorial.

Wenoticed that our tutorials had aparticularly strong impact on the usage of dudect,
a tool that elicited the most complaints about lack of documentation. One participant
even expressed their appreciation with the following: “Great tutorial about dudect on
the previous study page. Why it is not included in the official documentation?” ()

Overall, the tutorial was appreciated for every tool in the repair tasks, as suggested
by the following quote. “I am just really using the template provided in the tutorial” (),

During the audit task, 15 struggled to start using the tool, despite our tutorial. This
was especially true for Binsec/Rel (3), ctverif (5) and haybale-pitchfork (4). Com-
plaints mainly referred to lack of guidance in more complex tool usage, such as hook-

64

4.6. Results

ing functions, or bypassing some tool limitations. Tools with a more straightforward
functioning, such as timecop and MemSan, did not suffer from these complaints.

2. Building and Secret Designation. This crucial preprocessing step is fraught with
complexity, leading to 30 complaints from the study’s participants during the repair
task.

Central to the participants’ challenges was the task of designating the secret within
the given code snippets. The complexities arose either from the need to annotate the
code, leading to 17 complaints, or the requirement to design awrapper, which received
7 grievances in total. In particular, the annotation APIs provided by Binsec/Rel and
ctverif were deemed overly complicated. This perspective was substantiated by 7 and
9 complaints, respectively, suggesting poor usability. In contrast, MemSan and time-
cop offered more streamlined processes, simply enabling users to flag a memory re-
gion as secret. The challenge of implementing external wrappers for tools like dudect
and haybale-pitchfork was accentuated by insufficient documentation, evidenced by
4 and 3 feedback reports. A unique challenge presented by haybale-pitchfork was its
reliance on the Rust language, which impeded 3 participants. This prerequisite even
pushed one to abandon the study. Hesitance to continue, evenwhen participantswere
provided with ready-to-use tools and monetary encouragement, underscores usabil-
ity concerns for the target user base.

Interestingly, the audit tasks unveiled a new set of foundational hurdles. A seem-
ingly rudimentary step - local library installation - became a roadblock for 13 partici-
pants across all tools. While participants found the compilation of minor repair tasks
with specified options manageable, the challenge escalated when they had to adapt
intricate compilation chains to enable the tool use. In this regard, 16 participants faced
hurdles when gearing up the libraries for suitable compilation to enable analysis. The
architectural constraints of Binsec/Rel, especially the need to compile libraries for a
32-bit architecture, caused difficulties for 7 participants (given the study reliance on
an older tool version). haybale-pitchfork posed its unique challenge, with 5 partici-
pants coping to generate the necessary bitcode of the library. The tools dudect and
haybale-pitchfork added another layer of complexity by necessitating external wrap-
pers, proving problematic for 4 and 1 users. The demands of accurate code annotation
further intensified the complexities during this phase for 4 participants. This was no-
tably severe for Binsec/Rel users andMemSan, 2 reports each. Overall, 10 participants
faced significant hurdles in advancing further in the library audit, and did notmanage
to run the tool. 6 of them were blocked when using ctverif.

3.AnalysisRuntime. In the context of the repair tasks, whilemany toolswerewielded
effortlessly onmultiple tasks— indicated by the ”no issue” category in Figure 4.2—both
Binsec/Rel and ctverif manifested signs of a higher barrier, even for tasks that ap-
peared superficially straightforward. Specifically, Binsec/Rel was utilized seamlessly
on 15 occasions, whereas ctverif demonstrated hassle-free operation only 9 times. We
want to highlight the particular difficulty participants faced with Binsec/Rel during

65

4. A usability evaluation of constant-time analysis tools

the first repair task. Users were presented with a multitude of options, some of which
tangential to the main task, leading to 3 complaints.

The audit phase, characterized by the need to analyze larger code bases, brought
forth a different set of issues. The time-consuming nature of the analysis was a con-
cern, particularly for haybale-pitchfork and dudect. Analysis processes were identi-
fied as overly protracted by 1 and 2 participants respectively. This drawn-out analysis
underscored concerns over the efficiency and practicality of these tools in real-world
settings.

4. CT Problem Fixing. A preliminary glance at the success metrics in utilizing the
tools, referenced in Table 4.2, exhibited significant disparities among the tools. Some
adopted a tool-reliant strategy, while others, having initially engagedwith a tool, later
pivoted to manual code analysis. Given the easy nature of most tasks, forcing partic-
ipants to resort to manual analysis is a witness of poor usability. We recorded these
events mostly with ctverif, Binsec/Rel and dudect.

Tool Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

Binsec/Rel 0% 40% 80% 100% 80% 40% 100% 80% 80% 60%
ctverif 25% 0% 75% 75% 100% 50% 67% 67% 100% 33%
dudect 60% 100% 75% 100% 100% 50% 75% 75% 75% 50%
MemSan 60% 60% 100% 60% 100% 75% 67% 100% 100% 0%
haybale-pitchfork 80% 100% 100% 75% 75% 75% 100% 100% 100% 75%
timecop 75% 100% 100% 75% 75% 50% 25% 75% 75% 50%

Mean 50% 67% 88% 81% 88% 57% 72% 83% 88% 45%

Table 4.2.: Proportion of participantswho solved each task per assigned tool (rounded
to the nearest percent).

Participants unanimously agreed that discerning the leakage and subsequentlymit-
igating it constituted the principal challenges. These were reflected in 77 grievances.
The main subset of these, amounting to 51, expressed that after detecting the leak-
age, the repair process itself posed difficulties. These difficulties could arise from
both details of the tasks and participants’ limited familiarity with CT programming.
The documentation most consulted by participants was related to CT programming
methodologies, suggesting that the primary impediment might be their inexperience
in this domain rather than difficulties with the tools themselves. We think this inex-
perience is not an impediment to use the tools, just in fixing more advanced problems
in the code. This observation aligns with our expectations given the demographic we
recruited for the study.

Tool outputs and how to interpret them emerged as a recurring concern, in 26 doc-
umented instances. Participants grappled with either a lack of comprehensive docu-
mentation to interpret the output (15 instances) or ambiguous outputs that did not
offer a conclusive determination on the code CTness (11 instances). Here, dudect
and haybale-pitchfork stood out for their clarity and precision as seen from little com-
plaints in participant feedback. This likely results from tools concluding their analysis

66

4.6. Results

with a definitive statement about the status of the analyzed code, whereas other tools
tend to provide information about possible issues, which can be confusing for begin-
ners. Binsec/Rel and ctverif gathered criticism for occasional vagueness, with 2 and 9
mentions.

The relatively fewer complaints associated with dudect (3 instances) can likely be
attributed to its methodology and careful wording of reports.

Even though we knew of pre-existing CT violations, 12 participants reported to be
unable to detect any of them. These observations include use of haybale-pitchfork (4
participants) and Binsec/Rel, dudect, and timecop (2 participants). For bothMemSan
and ctverif it was reported once.

5. Specialized Output Generation. Participants voiced concerns with the verbosity
and confusing nature of elaborate error reports. A segment of the studypopulation—3
participants out of 24—grappled with decoding these verbose outputs during the au-
dit tasks. These participants found it challenging to distinguish actual CT violations
amid the warnings, and were overwhelmed by the volume of output. Specifically,
participant feedback highlighted ctverif as the most problematic in this regard, ac-
counting for 3 complaints. These complaints were directed toward errors preventing
its proper usage, and not CT violations. timecop had 2 mentions, while other tools,
barring haybale-pitchfork, were criticized once each.

6. Reliability / False Positives. Throughout the repair tasks, participants expressed
skepticism regarding the tools, registering 18 complaints centered on perceived re-
liability issues. Such concerns typically revolved around reports of false positives
(recorded 4 times), false negatives (4 times), mistrust in the results (2 instances),
or specific tool reasoning limitations (8 times). Among all the tools evaluated, time-
cop stood out with no reliability complaints. In stark contrast, MemSan found itself
at the receiving end of the most criticisms—amounting to 5, predominantly target-
ing perceived limitations in its analysis. Binsec/Rel follows with the same amount of
complaints, but mostly on false positive.

9 participants successfully modified task 10, which was designed to be easily de-
tectable as non-CT yet challenging to fix, in a manner where they discussed their so-
lutions statistically probable CT-ness or correctness compared to the given setting.
These successes provide a valuable insight: even when faced with complex tasks, par-
ticipants can learn and adapt to the nuances of the tools. Due to our provided doc-
umentation and the ramp-up of repair task difficulty, we allege that these findings
underline the significant role of quality documentation in the tool experience.

Upon transitioning to library audits, participants generally exhibited more restraint
in identifying false positives or negatives than in the repair tasks. They mostly ex-
pressed low confidence in their analysis, evidenced by 20 self-report on low confi-
dence. “I have very low confidence in these results that must be false due to my usage of
the tool.” () This reticence was particularly pronounced for Binsec/Rel and MemSan,
which gathered 5 and 4 reports, respectively. The participants detected few to no

67

4. A usability evaluation of constant-time analysis tools

CT violations while analyzing libraries using haybale-pitchfork. This was reported 4
times. With Binsec/Rel, dudect and timecop, only two such cases were reported, and
with MemSan and ctverif only one each. Low detection rates are usually correlated
with issues during prior steps of the analysis, whether for preparing the library for
audit or for using the tool. We conclude this by looking at inter repair task success
rates in the first part of the study.

Despite the grievances recorded, most tools, except for ctverif, proved effective in
detecting non-CT code during the audit tasks. dudect emerged as the front run-
ner, recording 6 reports of successful detection, followed by Binsec/Rel and timecop,
which facilitated 4 reports of discoveries each. Further, haybale-pitchfork accounted
for 2 instances, andMemSan contributed 1 finding. We regard these outcomes as prac-
tical successes in identifying potential CT-violating bugs in the analyzed open source
production code. We did not report these known and (upstream) documented find-
ings.

4.7. Discussion
Building on the results of our study, we discuss the usability of different tools and
make a series of recommendations based on the different stages of usage used in our
study.

4.7.1. Usability vs verification approaches
Our results provide relevant information on the usability of tools relative to the veri-
fication approach they use.

Our study suggests that users found dudect intuitive to use. On the other hand,
the underlying approach of statistical time measurement demands a strategic min-
imization of test parts when dealing with large code bases. Interestingly, the tech-
nique that lengthened dudect’s processing time might have also contributed to its
user-friendliness. The developers of dudect appeared to balance precision with early
termination options for less accurate but faster results. Consequently, our participants
found the output more intuitive. Whether participants knew they were trading accu-
racy for speed is unclear. Although it operates as a “black box”, a careful balance of
precision, speed, and clarity in dudect made it an effective tool for our participants,
as seen from their success rates—as seen in Table 4.2—and feedback.

Dynamic instrumentation tools often have a tug-of-war between technical efficiency
and user experience, posing challenges during the setup phase. MemSan also faced
significant trust issues due to perceived unreliability. timecop stood out with its blend
of efficiency and user-friendliness. haybale-pitchfork, proficient yet challenging for
some users, hinted at possible issues in the prior analysis steps.

Formal analysis tools, namely Binsec/Rel and ctverif, stand out due to their capacity
to offer strong guarantees based on rigorous semantics. While robust, the theoretical
foundation of these tools can come at a cost in terms of user experience. Specifically,

68

4.7. Discussion

ctverif presented a series of usability hurdles, from its initial installation to operational
procedures. Many participants encountered challenges despite being providedwith a
working installation and sample use cases, leading to less successful task resolutions.
In addition, our participants did not report particularly more trust in ctverif’s out-
put, despite the strong guarantees it claims. On the other hand, Binsec/Rel demon-
strated that it is possible to maintain strong analytical guarantees while ensuring a
more straightforward setup and operational process. This contrast between the two
tools underscores the significance of balancing analytical capabilities with an intuitive
user experience when time efficiency and ease of use are highly valued [199].

Our study offers a nuanced perspective on the usability-efficacy spectrum of differ-
ent analysis tools. While strong guarantees are a primary concern, the trade-offs with
usability can sometimes diminish a tool’s practical application. The findings empha-
size the need for tool developers to prioritize both rigorous analysis capabilities and a
seamless user experience, ensuring that state-of-the-art tools are not just theoretically
sound but also practically adoptable.

4.7.2. Recommendations
We combine the data from our empirical study with expert insights to curate a suite
of recommendations. Our observations indicate that the tool usage is divided into
multiple stages. Of particular concern, inhibiting complexities at early stages can deter
users from progressing.
Installation. Many tools have a large number of dependencies and require custom
building paths. As a result, installing these tools may be highly challenging in the
mid-term, even if all the tool’s dependencies are maintained. From study setup and
piloting we extract the following recommendations:
• Reduce and avoid less maintained dependencies.
• Make tools available via package managers.
A more general recommendation would be to embrace the best practices of open-
source software development, which has a long, integratedmaintenance period and is
often available as native packages in software distributions—native packages through
distributions also make for discoverable tools.
Familiarization. After installation, users may run the tool on common examples, in
this case crypto libraries, just to make sure that the tool is indeed running, and with-
out caring for the tool’s results. However, there are many obstacles to such dry runs.
This includes, for instance, the need to compile libraries using specific compilation
flags, different from the flags used to produce code, or the need to rewrite libraries
to overcome limitations in the coverage of the tool. To avoid such situations and to
ensure that tools provide adequate support for beginners, we make the following rec-
ommendations:
• Provide support for processing inline assembly and vectorized cryptographic code.
• Provide support for processing precompiled code, statically or dynamically linked.
• Provide user-friendly examples amenable to adaptations.

69

4. A usability evaluation of constant-time analysis tools

• Design intuitive tutorials catering to novices, and covering all the aspects of tool-
usage.

• Prioritize a comprehensive documentation structure, accentuating essentials before
delving into details. Make sure that the documentation avoids overly specialized
jargon.

The latter recommendations are based on the feedback from the study participants.

Secret Designation. Most constant-time tools require users to provide security an-
notations. The annotations are typically given in the code or through some external
wrapper. Moreover, many cryptographic libraries require users to declassify compu-
tations, for example to make ciphertexts public. From prior literature on different tool
designs and their problem areas, we extract the following recommendations:
• Make annotations simple and external in additional files.
• Provide mechanisms to declare internal secrets [152].
• Provide mechanisms to allow to declassify computations.

Output generation. Results of analysis tools must be semantically rich, easy to nav-
igate, and exploitable in a broader setting. Based on our interpretation of the results
of the study, and our expertise, we make the following recommendations:
• Provide output that is readily understandable by users, including origin of leakage.
• Offer the possibility to report all leakage violations at once. Deduplicate findings

in order to avoid repeating violations.
• Offer export formats for integration with bug-tracking tools.
• Have a delta mode for CI.

Analysis Runtime. For integration into users’ workflows or CI, analysis should be
possible in reasonable time—we think a few minutes are fine even for interactive use,
but hours or longer are not. From Jancar et al. [199] as well as our own study partic-
ipants’ feedback and the CPU utilization of our study setup, we make the following
recommendations:
• Use progress indicators (progress bar or logs) to ensure the user understands the

tool is not stalled.
• If applicable, leverage multiple CPU cores for large tasks.

4.8. Conclusion
We collected data from 24 participants using 6 CT analysis tools to analyze small tasks
and audit 3 open-source cryptographic libraries that are documented not to be fully
CT. Our broad conclusion is that CT analysis tools have usability shortcomings that
prevent them from being integrated into developers’ workflows. Although our analy-
sis focused on CT tools, we believe that many of our findings also apply to tools for an-
alyzing microarchitectural side-channels. We believe the community should address
these shortcomings by focusing on a handful of easy-to-use and maintained tools that
go beyond the CT leakage model and cover a broad range of leakage models.

70

4.8. Conclusion

In this chapter, we follow up on the study in Chapter 3 to give more detailed grievances
on different classes of tools and their general behaviour, as well as exemplary differences in
project maintenance and different development focus between the specific tools under study.
Our test setup is publicly available, so other researchers and other practitioners can use the
scripts to simplify getting the tools in working order, but also replicate our test setup for their
own tools of interest. We give detailed instructions and documentation for the tasks and code-
analysis of open-source cryptographic libraries with known non-constant-time code paths, so
success in evaluating the tools is as easy as possible. Still, we found grievances across the
tools from usability problems, to performance problems, and even structural inability to find
all possible constant-time vulnerabilities. We report no new vulnerabilities, but give detailed
recommendations to tool developers on the workflow and possible grievances during each step,
combined with our expert opinion advice from cryptographic engineering and code-analysis as
a framework on howmuch work each grievance would approximately take to fix when compared
with the others.

71

5. Reproducible Builds for Software
Supply Chain Security

Disclaimer

The contents of this chapter were previously peer-reviewed and published as part of the con-
ference paper titled “It’s like flossing your teeth: On the Importance and Challenges of Repro-
ducible Builds for Software Supply Chain Security”, presented at the 2023 IEEE Symposium
on Security and Privacy. This research was conducted as a team with my co-authors Dominik
Wermke, William Enck, Sascha Fahl, and Yasemin Acar; this chapter therefore uses the aca-
demic “we”. I developed the main idea with Yasemin Acar, with input from William Enck and
Dominik Wermke. The instrument was developed by Yasemin Acar and myself. I conducted
the interviews, with the help of Dominik Wermke. I lead the initial round of coding, inde-
pendently verified by Dominik Wermke, followed by joint affinity diagramming with Yasemin
Acar, DominikWermke, and Sascha Fahl. I lead writing the paper for publication, with support
from all other authors.

5.1. Motivation

Cryptographic signatures and trust between developers secured by high-quality im-
plementations of tools integrating cryptographic signatures in their workflows are
necessary, but not sufficient. Whenwe look at the software supply chain, we seemany
small projects being integrated into larger software, each with a diverse project orga-
nization, people working on it, and security practices [391]. Each of these projects
generates some form of artifacts that may be secured with cryptographic signatures
against malicious third party changes, but one question remains: What if the artifact
changes when it is regenerated by the project itself?

In theory, any backdoor attack can change things in the project and nobody would
be the wiser if any regeneration of artifacts changes the result anyway. This is why
reproducible builds are needed. We link to the first attack that necessitates thinking
about supply chain security in 1983, a scientifically published defense against it, and
show how they both tie together to form necessary requirements for a good default in
building artifacts so the software supply chain can be defended in the current setting,
where not just one company can dictate what needs to be trusted, but multiple parties
can check for themselves if they want to trust a project and its artifacts.

73

5. Reproducible Builds for Software Supply Chain Security

5.2. Introduction
“To what extent should one trust a statement that a program is free of Trojan horses? Perhaps

it is more important to trust the people who wrote the software.” (Ken Thompson)

Thompson’s 1984 Turing award lecture “Trusting Trust” demonstrated that the secu-
rity of a program is more than the logic in its source code [354]. It also includes all
of the programs used to make the source code logic executable. Thirty-six years later,
Thompson’s theoretical attack became a pressing concern for nation states across the
globe. The 2020 Solarwinds attack did not inject malicious source code into a project.
It did not trick users into installing software with an invalid signature. The Solar-
winds attack trojaned the build system, transparently injecting malicious logic into the
product binary signed with Solarwinds’ official code signing keys.

The world of software has transformed entirely since Thompson’s lecture. His sug-
gestion of “trusting the people” is orders of magnitude harder today than in 1984. To-
day’s software supply chain ecosystem is vast, with software projects often including
transitive dependencies that are tens to hundreds of layers deep. And despite much
of the software supply chain being open source, end users rarely, if ever, compile soft-
ware themselves. Thus, the build system has become an ideal target for attackers.

Reproducible Builds (often abbreviatedR-Bs) offer a foundation for defending against
attacks targeting the build system. “A build is reproducible if given the same source code,
build environment and build instructions, any party can recreate bit-by-bit identical copies of
all specified artifacts” [309]. Conceptually, R-Bs allowmultiple parties to build the same
software package, and assuming the attacker cannot simultaneously compromise the
build systems of all parties, arbitrary subversion of an individual build system can be
trivially detected. High-profile projects including Bitcoin [117] and Tor [288] use R-
Bs to assure users that distributed binary executables match their source code. Recent
literature has built upon R-Bs to enhance build provenance guarantees [358] and cre-
ate verifiable builds [273] more suitable for providing guarantees to end customers.
Finally, the US National Security Agency (NSA) identifies R-Bs as an important part
of securing the software supply chain [133, 276].

Unfortunately, most software builds are not reproducible. Over the past decade, the
Reproducible-Builds.org project has cataloged the many sources of non-determinism
that prevent R-Bs, including uncontrolled build inputs (e.g., system time, environ-
ment variables, and build location) and build non-determinism (e.g., process schedul-
ing) [227]. Despite industry [119, 311] and academic [304, 305, 306] tools to facilitate
R-Bs and extremely high rates of R-Bs in some popular Linux distributions (95.5% for
Debian on AMD64 [310] and 88.7% for Arch Linux core [308]), much of the software
industry believes R-Bs to be a long-term goal, if achievable at all [76].

The goal of this paper is to help R-Bs more quickly become a commonplace effort in
software development. We seek answers to the following research questions:
RQ1: “What are motivations for, and common themes around, adopting reproducible builds
in projects?” We are interested in our participants’ motivations around striving for
reproducible builds in their projects, specifically in the case of complex, community-

74

5.2. Introduction

or industry-driven projects, that likely necessitate a complex, interconnected system
of motivations and drivers. We are also interested if some of the motivations involve
security, and what specific threat models are applied.
RQ2: “What experiences and challenges did projects encounter in the context of reproducible
builds?” Most projects were not created with reproducibility in mind. We are inter-
ested in what experiences were made, and challenges encountered, on the way to-
wards reproducibility, both by contributors of the project as well as with outside enti-
ties such as customers or upstream dependencies. This research question aims at the
personal experiences of R-B developers.
RQ3: “What are commonly encountered obstacles and facilitators in projects’ efforts towards
reproducibility?” Some projects stall in their efforts toward reproducibility, while oth-
ers succeed. We are interested in what facilitators and obstacles our participants en-
countered during their efforts, how they approached them, and what they would rec-
ommend for other projects aiming to become reproducible. This research question
aims at external factors encountered by R-Bs developers.

By answering these questions, we hope to guide future industry and academic ef-
forts that target both the technical and human aspects of R-Bs. In this paper, we report
the results of a semi-structured interview study with 24 prominent and public mem-
bers of the R-Bs effort. All participants were experienced developers (5+ years) with
R-Bs experience, who could give deep insights into their thought and development
processes, and deeply discuss and reflect on the topic. Based on these interviews, we
offer the following key insights.

• Open Source developers are self-motivated to work on software infrastructure. They see
themselves as users as well as developers andwant to build better software even
without external requests.

• The Snowden revelations and SolarWinds incident heightened the security awareness.
While some people were interested in R-Bs before, their number grew signifi-
cantly after those two public events.

• Caching matters most to businesses. R-Bs allow for efficient caching of artifacts,
which was mentioned as the most important aspect for businesses.

While we specifically choose to interview experts with many invested years in R-Bs
for their experience and insights, we alsowant to highlight that our expert participants
are likely positively biased regarding the potential for R-Bs becoming widespread.
While this may be substantiated by growing numbers of developers on the R-Bs mail-
ing list as well as growing parts of operating systems being tested as built repro-
ducibly, our sample is still biased towards R-B enthusiasts [231].

The remainder of this paper proceeds as follows. Section 5.3 discusses background
information and related work. Section 5.4 describes our interview methodology. Sec-
tion 5.5 presents our detailed results. Section 5.6 provides discussion and a set of
recommendations. Section 5.7 concludes.

75

5. Reproducible Builds for Software Supply Chain Security

5.3. Background and Related Work
This section provides background information for reproducible builds and their rela-
tion to overall open source software supply chain security, as well as related work in
three key areas: research on reproducible builds, open-source software security, and
interview studies with software developers with a focus on software security.

Relationships between open source software projects can be characterized by their
order of incorporating software: When one project uses another project’s software, it
is often called downstream of the project originating the software. Conversely, many
project interactions are with upstream projects, which originated the software. A sin-
gle package that does not have a downstream relationship with another package, in-
stead of just redistributing it without changes, is called a leaf package. Any package
that provides some functionality used in the infrastructure of a software build and
supply tool chain can also be called an infrastructure package. To make a package
build reproducibly, all of its dependencies need to build reproducibly. If a maintainer
changes one package to do so, it is often most efficient to upstream those changes as
a patch set for incorporation by the upstream developers, so the work is shared with
all other downstream projects of that dependency.

5.3.1. Reproducible Builds Background Information

Reproducible builds are a collection of techniques and processes that aim to make the
compilation of source to resulting binary code deterministic: the same source code
should always be compiled to the bit-by-bit identical binary code. Achieving repro-
ducibility in building software is non-trivial as the software compilation process is
susceptible to multiple sources of non-determinism.

LambandZacchiroli [228] provide an overviewof common sources of non-determinism
during the build process:1

Build timestamps are commonlyused byCprogramming languageprojects andother
build tools such asmake [355] using similarmacros to the __DATE__C-preprocessor
macro. While build timestamps are useful for bug reporting, most version con-
trol systems including Git provides alternatives such as offer better solutions to
record specific software versionswithout introducing additional non-determinism
[86].

Build paths are commonly embedded using a C programming language preproces-
sor macro (e.g., __FILE__) as well as assertion macros referencing source code
locations or log messages. In most cases, a relative path to the root location of
the source code is sufficient [398] and reduces the amount of non-determinism.
Build directory name inclusion can be prevented by only including build paths

1This list is not meant to be exhaustive.

76

5.3. Background and Related Work

relative to the root directory of the source code, which will be constant. Non-
constant paths can include user-specific changes. To avoid these while main-
taining absolute build paths, a statically known directory path can be used for
all software builds. This is used in Nix, GUIX, but also Debian using the sbuild
software [322], which is the basis for the R-Bs checking tool reprotest [311].

Filesystem ordering as part of the POSIX standard does not define the order when
returning the results of a directory listing causing additional non-determinism.

Archive metadata such as the date andownership information in .zip and .tar archives
are commonly used for archival purposes but should be avoided to reduce non-
determinism.

Randomness results not only from parallelism and concurrency in the build process.
Additionally, some compilers introduce explicit randomness during the build
process to generate unique names that do not conflict with those generated for
other files such as single compilation unit [325] distinct identifiers.

Unitialized memory adds non-determinism by not always initializing memory to a
programmer-defined value and is supported by some popular low-level pro-
gramming languages including C and C++.

As part of our interview study, we aim to better understand how open source software devel-
opers identify and handle these sources of non-determinism.

The Reproducible-Builds.org project [309] aims to support developers and soft-
ware projects inmaking their build processes reproducible. They supportmainstream
Linux distributions such as Debian (currently 95.5% reproducible for AMD64) and
Arch Linux (currently 88.7% reproducible for Arch Linux core) in building their soft-
ware reproducibly.

Theproject provides several tools to helpdevelopers achieveR-Bs, including reprotest
to automate the process of building a package multiple times in diverse environments
and diffoscope [119] to help find the differences within complex binary packages and
directories. Diffoscope receives two files to be compared as input, tries to unpack
any data recursively, and displays differences found between the two input files. It is
plugin-based and as a wrapper re-uses common file format handling utilities.2
As part of our work, we aim to learn if and how developers use support tools for R-Bs.

5.3.2. Research on Reproducible Builds

Most prior research considering reproducible builds addressed technical challenges.
In 2005, Wheeler proposed diverse double compilation [394] to address Thompson’s

2All provided tools can be found at https://reproducible-builds.org/tools/.

77

Reproducible-Builds.org
https://reproducible-builds.org/tools/

5. Reproducible Builds for Software Supply Chain Security

Trusting Trust attack [393, 354], connecting software security and R-Bs. Diverse dou-
ble compilation suggests that source code is compiled by different compilers, poten-
tially mutually distrusting parties, and every additional instance giving the same re-
sulting binary file makes the Trusting Trust attack less likely. However, the software
must build reproducibly, giving the exact same binary if compiled at different points
in time, space, and for any number of recompilations. To generate a fully trustworthy
compile chain, trustworthy root binaries are needed. A popular approach to address
this issue is bootstrappable builds [298]: The core idea is to address circular build
dependencies of complex software by creating a new dependency path using more
simple prerequisite software.

Prior work suggested R-Bs as a primitive to improve software supply chain security
including distributed verification [273], transparency logs [238], supply chain work-
flow integrations [358], and “keyless” signatures using trusted third-party inspectable
logs [268].

Prior work has also considered better tool support for R-Bs. Several Linux distri-
butions such as NixOS [123] and GNU GUIX [103, 104, 102] and their corresponding
packaging tools are based upon primitives that promote reproducibility. In a series
of work, Ren et al. proposed RepLoc [304], RepTrace [305] and RepFix [306] to more
precisely locate sources of non-determinism and suggest patches. Recently, containers
have been explored specifically for reproducibility [263] and corresponding security
impact [409], as well as new build tools [197] which have been reimplemented as
open-source tools. In closed- or mixed-source environments, rebuilds can be orga-
nized in a more centralized manner [296] that also supports R-Bs.

Closest to our work, Butler et al. interviewed company experts to investigate the
value of R-Bs for companies [76]. They identified reasons for their limited adoption
of R-Bs like limited awareness and perceived challenges.

In contrast to previous research on reproducible builds, our interview study aims to shed
light on enablers and blockers for the adoption of R-Bs in the open source community.

5.3.3. Research on Open Source Software Security

Open source repositories are open to access from outsiders and the security and pri-
vacy research community has established use of this data source. From these reposi-
tories’ commits [293, 292, 13] and contributors [315], but also secondary and related
information like vulnerabilities [154, 332] and even torrents [160, 161] as an alternate
access method have been used for research in a number of papers.

Big open-source projects like FreeBSD [120], Linux [362], and Mozilla [257] have
been the focus of case studies. Topical analysis of vulnerabilities can take the cor-
pus of code and has been done by matching Common Vulnerabilities and Exposuress
(CVEs) numbers [130, 190], by using the code base for evaluation of static analysis
tools [22, 15, 407, 406], or vulnerability changes [60, 25, 351, 379]. These changes are
necessary to secure a codebase, so the patterns and development of fixes have been
investigated [340, 234, 302]. In one specific work, 337 CVE entries were linked to the

78

5.3. Background and Related Work

patches fixing them and the authors found that the developers of those fixes are of
higher experience levels [291]. The highly polished Linux Kernel implementations of
drivers have also been analyzed multiple times [115, 33].

The social aspects of repository contents researched things like toxic comments [253]
and metadata [342, 236] as well as programming languages [237] and their general
maintenance [177, 97]. Furthermore, pull requests [159, 359, 140], collaboration [110,
373, 100], and even gamification of the process [260] have been studied in related
work.

In contrast to closed-source development, the security challenges for open-source
communities are unique, valuable sources of research data and therefore well re-
searched [323, 108, 389]. Open source software repositories contain public commits
and issues that can be statistically evaluated [178], mined for emotions [295] and se-
curity tactics [321]. Programming language-specific communities were investigated,
finding the Python and JavaScript communities to not react quickly to security vulner-
abilities [27]. A large-scale analysis of hundreds of thousands code review requests
from different open-source projects identified [58] the changes of less experienced
contributors to be between 1.8 and 24 times more likely to contain security vulnera-
bilities.

Automated identification of open-source projects using vulnerability data [285, 3,
411] and toxic comments [301] were investigated. Both problemsmayweaken trust in
the public reception of these software projects, even among collaborators. There has
been work on different factors to influence [28, 339, 359] trust and quantification [74,
349] of it. Trust is influenced by open source projects’ security, which itself is highly
influenced by code quality, which has been investigated by different assessment mod-
els [164], the difference between architectural plans and implementation [319], and
later code reviews [59, 353]. The base unit of collaboration is the committer, whose
motivations [174, 173, 294, 255], barriers to entry [343, 388], and the eventual pull
requests [347] have been a focus of different works.

The onboarding [344, 345, 124, 35] and mentoring [79, 35] of new committers have
been studied as well. Socialization in the form of pre-existing relationships is an im-
portant factor and precursor [81] to joining GitHub projects. Most of such project
ecosystems have one central project connecting every part of that ecosystem via soft-
ware dependencies and connecting to other ecosystems as well [54].
In contrast to previous work on open-source software security, we focus on understanding

enablers and blockers for the adoption of reproducible builds as a critical contribution to overall
software security.

5.3.4. Interviews with Security Developers

The security and privacy research community uses interviews effectively and as a
well-established method for detailed investigations. Prior work utilized interviews
to gain detailed information about different kinds of experts, for example: Adminis-
trators [44, 40], and overall security professionals [61, 337], but also of communities

79

5. Reproducible Builds for Software Supply Chain Security

that rely on their security, from journalists [247], over editors [248], to victim service
providers [90]. Interviews can be used as a part of larger studies and give researchers
a view of data that is not readily available from technical systems: e.g., thoughts
and procedures. For Tor adoption [148] or how to work with encryption [34], ex-
amples are readily available, just like developers’ thoughts and plans about security
features [170].

In 2017, IT administratorswere asked about the usability of deployingHTTPS [216],
and programmers about the benefits and drawbacks of outright changing to a differ-
ent programming language in a study in 2022 [146]. A 2021 qualitative study was
performed about developers’ struggles with CSP [318], and in 2022 industry practi-
tioners’ mental models of adversarial machine learning were investigated [52, 256].

Open-source developers are a special case, their transparency and distributed work
being subject of dedicated study [110]. The social barrier of entry for new contributors
was studied as part of a larger study containing semi-structured interviews with 36
developers recruited from 14 projects [343]. Their challenges and strategies for over-
coming them using tasks recommended for newcomers were studied by interviewing
mentors of 10 open-source projects [35]. Recently, Wermke et al. leveraged interviews
to investigate behind-the-scene security processes in open source projects [392] and
industry projects that utilize open source components [391].

As an extension to previous interview studies with security developers, we focus on repro-
ducible builds.

5.4. Methodology
We conducted 24 in-depth, semi-structured interviews with developers, maintainers,
and contributors implementing reproducible builds for their software in the fall of
2022. During these interviews, we discussed reasons for adopting R-Bs and the pro-
cesses they encountered and used while doing this. Both the interview guide and the
codebook are provided in the Chapter C.

5.4.1. Participant Recruitment
We recruited participants by emailing 100members of the Reproducible Builds Project
website’s mailing list “rb-general” [299]. We decided on this more focused recruit-
ment approach, because based on our prior experiences we assumed that developers
from outside the mailing list would often not be familiar with the concept of R-Bs.
Some participants made additional suggestions and/or offered introductions to po-
tential interviewees with insights into reproducible builds; we followed up on all sug-
gestions.

We interviewed a total of 24 participants between August and November 2022. Ta-
ble 5.1 provides an interviewee demographics summary. All of our participants are
software developers (5+ years) with reproducible builds experience. They provided
us with insights into their thoughts on R-Bs and development processes, and could

80

5.4. Methodology

discuss and reflect on the topic. Five participants stated that they are engaging less
with R-Bs than at some point in the past, never fully joined the R-B effort, or have not
yet started actively working towards R-Bs, while still being interested, to hear their
reasons against R-Bs. The set of developers we interviewed contained two non-binary
individuals and otherwisemen, which is disappointing for diversity, but reflects those
active in the mailing list and community we targeted.

5.4.2. Interview Procedure
We conducted semi-structured interviews and topical hints to keep the interviews
flowing and otherwise let our participants structure their answers and remarks on
their own following established practices [231]. We built our interview guide around
our research questions, anddiscussed and revised itwith researchers outside our team
with reproducible builds experience. Figure 5.1 illustrates the interview structure and
we provide our final interview in the Chapter C.

To pre-test the interview guide, we conducted one mock interview. Interviews gen-
erally lasted between 30 to 60minutes. We scheduled the first batch of interviewswith
the intention of treating them as pilot-interviews, however, as no major changes were
made to the interview guide and the data we collected from them was meaningful,
we decided to include theses pilot interviews in our data set. Throughout the inter-
views, we asked for experiences and opinions and participants’ responses indicate
that they also reported their (strong) opinions in either direction of R-Bs, including
reasons against R-Bs. We specifically iterated over the (various) definition(s) for re-
producibility and discussed them with our interviewees.

We offered our interviewees to choose between a locally hosted Jitsi and Zoom for
the remote interviews and conducted six of the interviews in person at the Repro-
ducible Builds Summit 2022.3 We gave them the option to end the interview and
withdraw at any time. We started interviews with verbal consent to being audio-
recorded, the interview being transcribed by a GDPR-compliant third-party service
and the use of the interviews in a scientific publication. One or two authors conducted
and recorded the interviews.

1. Context and Definition. The interview guide opened with a section establishing
the context for participants, their projects, and their role in the projects. Questions
included how, when, and why they got in touch with their projects, their background,
and how they decided to focus on reproducible builds. In addition, we established
their definition of a reproducible build for their project and in general.

2. Reasons and Decisions. The “Reasons and Decisions” section explored the reasons
for progressing towards reproducible builds in the project and specific decisions sur-
rounding this process. Questions included internal and external drivers for pursuing
3https://reproducible-builds.org/events/venice2022/

81

https://reproducible-builds.org/events/venice2022/

5. Reproducible Builds for Software Supply Chain Security

Intro and Consent
Introduction to the interview, highlighting the context of the interview, and ob-
taining verbal consent.

1. Context and Definition
Establish project context, role of participant in the project, as well as participant’s
definition of reproducibility.

2. Reasons and Decisions
Investigate projects’ reasons for heading towards reproducible builds, establish-
ing specific threat models, as well as how these decisions were made.

3. Processes and Tools
Establish the specific process for making projects’ reproducible, including the
involved people and communications with upstream, involved tools, build pro-
cesses, and other resources, as well as the foundational strategy.

4. Obstacles, Challenges, and Facilitators
Investigate encountered obstacles and challenges in moving projects towards re-
producible builds, as well as establish facilitators that helped during the process.

5. Generalization and Lessons Learned
Establish general lessons learned, recommendations for other projects looking to
become reproducible, as well as what participants would change if they could
start over.

Outro
Debrief and collect feedback for the interview.

Figure 5.1.: Illustration of topic flow in the reproducible builds interviews. Aswe con-
ducted semi-structured interviews, participants were presented with gen-
eral questions and corresponding follow-ups in each section, butwere gen-
erally free to diverge from this flow.

reproducible builds, threatmodels and requirements, and howdecisionswere formed
and by whom.

3. Processes and Tools. The “Processes and Tools” section established utilized pro-
cesses and tools for the reproducible builds, as well as experiences with these ap-
proaches. Questions included the general process of making the project or parts of it
reproducible, the estimated time for these efforts, how the experiences with upstream
projects were, and whether additional resources like documentation or websites were
any help.

82

5.4. Methodology

4. Obstacles, Challenges, and Facilitators. The “Obstacles, Challenges, and Facilita-
tors” section investigated encountered obstacles, challenges, and positive facilitators
during the projects’ progress towards reproducible builds. Questions included obsta-
cles of different types (organizational, technical, dependencies / upstream, and com-
munities) and which particular factors were helpful for the project.

5. Generalization and Lessons Learned. The interview closedwith a “Generalization
and Lessons Learned” section, establishing general themes and lessons learned from
their reproducible builds attempts. Questions included what they would do differ-
ently if they could start over, what worked well and what did not, and what they
would recommend for other developers and projects attempting reproducible builds.

After the interview, participants often expressed their interest in our research and
in being mailed results (which we promised) and/or recommended other potential
interviewees. The authors debriefed with each other after the interviews, discussing
new insights.

5.4.3. Reproducible Builds Summit Discussion
We presented preliminary results from this study, mostly on what motivates repro-
ducible builds and how they can benefit stakeholders, to attendees at the Reproducible
Builds Summit 2022, Venice. Attendees, together with the main author, then used a
collaborative session to iterate over a matrix of motivations and benefits for repro-
ducible builds, which we (with the attendees’ consent) discuss with insights into mo-
tivations and experiences from our interviews in Section 5.6.

5.4.4. Coding and Analysis
After the 18th interview, new themes ceased to emerge and participants mostly iter-
ated themes we had heard before; therefore, we chose to stop interviewing after 24
participants, reaching theoretical saturation [147]. We analyzed our data using qual-
itative coding [231]. The main author developed a codebook based on the interview
guide and insights from conducting the interviews; the team reviewed and slightly
iterated over the codebook. The main author then coded all data with the codebook,
discussing insights with the team. The final codebook is provided in the Chapter C.

5.4.5. Ethical Considerations and Data Protection
Our study, including recruitment strategy, data collection, recording methods, and
interview guide, was approved by our Institutional Review Board (IRB).

All participants were either recommended by their own colleagues or signed up
to a public list of those generally interested in reproducible builds and reacted ac-
cordingly to our invitation emails: They generally responded positively, expressed

83

5. Reproducible Builds for Software Supply Chain Security

interest in our research, recommended others, and attempted to schedule interviews.
We offered online (and offline) meeting and recording options, including meeting
them at the Reproducible Builds Summit that an author attended, as well as using
self-hosted meeting software (Jitsi) with local recordings for improved privacy. All
participants consented to the interviews, recordings, and transcription by an exter-
nal, GDPR-compliant service. When participants flagged parts of the interview as
too sensitive to transcribe, we removed them before transcription. We de-identified
participants and interview transcripts using identifiers such as P01 and de-identified
sensitive information in the transcripts. After checking transcripts for correctness, we
deleted all audio recordings. We offered no compensation, due to our interviewees
being potentially highly paid individuals, motivated to work on R-Bs by their involve-
ment in theOpen Source/Free Software project communities; based on our prior expe-
rience with this population, they usually reject payments or attempt to re-direct them
to donations for OSS projects, which our funding source was unable to accomplish.

5.4.6. Limitations
Our work is affected by limitations common to interview studies, including limited
generalizability and biases such as recall and social desirability biases [231]. We ac-
counted for these biases by interviewing a diverse (in projects and experience) sam-
ple of those who fit our recruitment criteria. Furthermore, we only interviewed those
involved in the Reproducible Builds project; therefore, our sample represented the ex-
periences and perceptions of those who were generally highly aware of and/or work-
ing with reproducible builds. While interviewees happened to be concentrated in the
Western world and were predominantly male, this is in line with the reproducible
builds community [277]. Our sample includes various organizational contexts, from
industry-leading companies to single developers. Based on provided answers, we can
reason that our sample is broad and diverse in R-B adoption, experiences, and organi-
zational contexts, but we refrain from comparing smaller and larger companies quan-
titatively due the limited sample sizes and the more qualitative nature or our research
approach.

5.5. Results
In this section, we describe the findings from 24 semi-structured interviews with de-
velopers with experience in R-Bs for software projects. First, we illustrate our intervie-
wees’ motivation to implement R-Bs for their software projects. Second, we explore
supporting factors and obstacles for R-Bs. We de-identified participant quotes, made
minor grammatical corrections, and highlighted omissions using brackets (“[…]”).
German interview quotes were translated into English by native German speakers.

Counts in our reporting should be interpreted as the number of interviewees that
touched on the specific topic at least once during their interview. As qualitative inter-
view study, reported counts are not necessarily representative for the wider developer

84

5.5. Results

Table 5.1.: Overview of our interview participants

Alias Interview Project

Duration Codes1 Recruitment Channel Position Area Software Stack2

P01 44 minutes 40 rb-general mailing list Developer Operating systems Ocaml
P02 31 minutes 15 rb-general mailing list Developer Desktop Environments C
P03 42 minutes 29 rb-general mailing list Developer Operating systems C/C++
P04 39 minutes 27 rb-general mailing list Developer Operating systems Assembly, C, and others
P05 39 minutes 31 rb-general mailing list Developer Operating systems C, Tcl
P06 51 minutes 40 rb-general mailing list Developer Operating systems diverse
P07 45 minutes 29 rb-general mailing list Developer Operating systems C, Python
P08 58 minutes 14 rb-general mailing list Developer Graphics processing C/C++
P09 50 minutes 28 rb-general mailing list Developer Operating systems Python, a little C/C++
P10 55 minutes 36 rb-general mailing list Developer Operating systems C
P11 57 minutes 24 rb-general mailing list Developer Privacy preservation C/C++, Rust
P12 54 minutes 20 rb-general mailing list Developer Build systems, GUIs Python, C and others
P13 64 minutes 19 Personal recommendation Developer Operating systems C and others
P14 50 minutes 15 rb-general mailing list Project lead Electronic currencies diverse
P15 34 minutes 22 rb-general mailing list Advisor Privacy infrastructures -
P16 42 minutes 26 Personal recommendation CEO Build systems Python and others
P17 39 minutes 20 rb-general mailing list Developer Operating systems C/C++, Python, Scheme, and

others
PS183 45 minutes 24 RB Summit 2022, Venice Developer Embedded software C, Assembly, and others
P19 31 minutes 11 RB Summit 2022, Venice Developer Privacy preservation C/C++, Rust, and others
PS203 48 minutes 27 RB Summit 2022, Venice Developer Operating systems Scheme, C, and others
P21 49 minutes 34 RB Summit 2022, Venice Developer Operating systems diverse
PS223 46 minutes 24 RB Summit 2022, Venice Developer Operating systems diverse
PS233 58 minutes 29 RB Summit 2022, Venice Developer Build systems Java
P24 31 minutes 35 rb-general mailing list Developer Operating systems C/C++ and others
1 Total number of codes assigned to the interview after resolving conflicts.
2 Abbreviated. Common among all participants was some amount of shell script use.
3 Participant aliases: P means participant was recruited by email, PS indicates recruitment at Reproducible Builds Summit.

population, but are included to give some general idea about the distribution of codes
and to highlight especially prevalent or underrepresented themes in the interviews.

Table 5.1 provides an overview of project demographics. We conducted 18 remote
interviews and six in-person interviews at the Reproducible Builds Summit 2022. Four
of those interviewees were recruited at the summit. We mark those interviews “PS”
(vs. “P” for all other participants), as their attitude towards R-Bsmight be particularly
positive. Most (21) interviewees worked in some capacity as developers on projects
that strived to build reproducibly. All interviewees were software developers with
between 5 and more than 20 years of experience in general software development,
specifically between 2 and 12 years on R-Bs.

5.5.1. Why and How Projects Started to Work on Reproducible
Builds

In this section, we illustrate reasons for and against reproducible builds that the inter-
viewees mentioned.

Reasons for and against adopting Reproducible Builds. We identified technical
and non-technical themes related to our participants’ motivations for making their

85

5. Reproducible Builds for Software Supply Chain Security

builds reproducible, both related to security and as an intuition of how compilation
should behave according to their own mental model of software compilation.

Ten participants reported encountering a misunderstanding of the mechanics of
current software compilers: They brought up that they commonly encounter the ex-
pectation that compilers generally produce the same binary output given the same
source code without outside interference.

“I have an input and some computation, so I expect the output to be the same. [Like a
mathematical function.] And like a scientific function. It’s computations; you put some-
thing in it, and the same output should get out. Except if the function randomizes, […]
or it is broken. I think unreproducible builds are illogical. Conversely, reproducible builds
are logical.” (P21)

Their main motivation to work on reproducible builds was to bring the mechanics
of software compilation closer to their assumptions. Aside from compiler mechanics,
broken expectationswere brought up by eleven interviewees. Beside their expectation
for compilation working deterministically, they also want software to work the same
in the future. Two participants reported beneficial (better run-time performance in
some cases or security fixes) but still unexpected compiler behavior:

“It’s more like things aren’t fixed. You do a deployment one day with some source code, and
you come back a week later, and you do the deployment again. You repeat the process with
the same source code. Your source code is the same, but because you haven’t engineered
the process to be reproducible, what you actually deploy is something different. […] [T]oo
often, one, it’s not understood what’s changing and two, you don’t have control over it.”
(PS22)

Some interviewees (6) mentioned the importance of constantly maintaining a high
level of build quality to limit increased effort later in the development process. For
18 interviewees, improved software quality was the main motivator. One participant
compared the effects of improving software quality by making it build reproducibly
to dental flossing:

“At every summit you have people show up there because they want the hands-on support
to get their thing into a more reproducible status so […] I have this ongoing analogy I use
around dental flossing and the dentists tell you how important it is to the dental floss and
people do not very often floss as much as their dentist tells them to. I think Reproducibility
is falling in that same spectrum of really important things [and] people treat it like that.”
(P15)

A similar sentiment was reported for company resources:

“The only reason why we ever moved into this direction of reproducible builds, for the
company, was because it was causing us issues in losing time. People would forget to
declare dependencies and that would fail the build. People merge small changes that change
the dependency ordering when executed massively parallel. We noticed that when this
happened, it would take us half a day to fix. During this half of the day, there were about
500 people who couldn’t build anymore. That costs a lot of money and time.” (P05)

86

5.5. Results

As described earlier, many participants started working on R-Bs due to intrinsic
motivation; they began with the parts of their software projects that best fit their mo-
tivation. Once they hadworked on their chosen package, they exploredmore complex
components required for R-Bs in their software packaging work.

Themainmotivation for 16 intervieweeswasworking on infrastructure reproducibil-
ity, while sixworked on single software packages. While building infrastructure solves
more problems compared to leaf packages, individual configuration specificR-Bs prob-
lems are specific to leaf packages.4 Overall, participants reported complex, intercon-
nected motivations to implement R-Bs; some motivations are related to intuition for
how builds should behave, and some are grounded in explicit security concerns, both
for developers and software and its users. One developer mentioned working on ver-
sion pinning. Version pinning is an approach of describing the exact version of each
software dependency, as an easy, but necessary area to implement R-Bs by document-
ing a set of dependency versions that produced a working artifact. Another two inter-
viewees mentioned that they worked on difficulties with specific compiler versions,
citing specific versions of well-known compilers as problematic for R-Bs. Older ver-
sions of those compilers generated more reproducible binaries than current versions.
Finally, two participants mentioned to have worked on transitive dependencies, i.e., de-
pendencies of dependencies, which may influence reproducibility. These participants
reported having investigated if indirect dependencies broke their reproducibility and
figured out how to fix this.

Four participants mentioned interactions with upstream projects. While they had
made a version of their software that depended on upstream projects being repro-
ducible, they needed the upstream project to incorporate and maintain their changes.
One interviewee reported that they had an upstreamproject rewrite a suggested patch
from scratch, and were amazed at the commitment to R-Bs by the upstream project.
The ideal goal for all participants was full bit-by-bit reproducibility. However, projects
have considered weaker reproducibility criteria as more realistically achievable along
the way.

Two participants started with the build process by manually debugging unrepro-
ducibility introduced by it. After achieving reproducibility manually, 15 participants
continued their efforts toward R-Bs through more automation in Continuous Integra-
tion (CI) and other infrastructure.

With R-Bs, a build of the same source code version results in the exact same bi-
nary. Without R-Bs, a rebuild can change the binary of the package, which can still be
cached each time but leads to waste and incompatibilities. Ten developers, across in-
dustry and open source projects, mentioned that slow build speeds are frustrating for
developers, and can be caused by inefficient caching that is sensitive to small changes.
Building reproducibly would solve this problem.

“We recently got a new build machine which is I think 64 cores and [lots] of memory
or something like that, terabytes of this as a benchmark. How long does it take to build

4See https://github.com/bmwiedemann/theunreproduciblepackage.git for a list of known problems
that can occur in a leaf package.

87

https://github.com/bmwiedemann/theunreproduciblepackage.git

5. Reproducible Builds for Software Supply Chain Security

everything from scratch? It took about a day on that machine to build everything. […]
Fortunately, that’s not the typical dev experience because our particular system caches
build outputs.” (P11)

The caching strategy mentioned by P11 can apply if build systems cache compilation
artifacts during build-time, instead of complete artifacts. In the case of build-time ar-
tifacts to be included into full compilation artifacts, they themselves can be built in
a repeatable way that affords caching, without the whole build process necessarily
being fully reproducible. If all of those artifacts afford this building in a repeatable
way that gives bit-by-bit identical artifacts and those artifacts are combined in a way
that does not break reproducible builds, then the build system produces reproducible
builds. This is different from the notion that, if the compilation toolchain works like a
mathematical function, giving the exact same result to an unchanged input, the com-
pilation builds reproducibly, which is a harder precondition not necessary for build
reproducibility.

Reasons againstworking onReproducible Builds. Thirteen interviewees alsomen-
tioned reasons against R-Bs. They reported that, due to decreasing enthusiasm and
repetitive work, they decreased the amount of time and effort they invested in R-Bs.
This decrease in enthusiasm and effort corresponded with a perceived impractical-
ity of fully reproducible builds due to workload, missing organizational buy-in, un-
helpful communication with upstream projects, or the goal being perceived as only
theoretically achievable. Relatedly, the frustrating experience of “moving goalposts”
was described as follows: Projects that had achieved bit-by-bit R-Bs might “lose” that
status when someone found a previously unchecked source of mutation in the envi-
ronment that broke full reproducibility.

Seven participants mentioned discussions about which mutations of the build en-
vironment should be checked for fully reproducible software packages, including a
feeling of unclear goals, as noted by P01: “[Projects] also have various definitions of what
reproducibility means. It means you have some mysterious cloud, and in the end, you get the
very same binaries, the bit-wise identical binary. That is the output, but what is considered
as part of the input is not very clear.” (P01) Seven participants, again across industry
and OSS, mentioned detractors to implementing R-Bs, such as missing organizational
buy-in, as mentioned by P10: “To say, ‘Reproducibility is stupid; go away.’ That happens
very rarely. We just remember it a lot because it’s interesting. The most common interaction
with upstream is silence. They just don’t merge the patches,” (P10) or due to their unwill-
ingness to change their build process, as mentioned by P06: “[project] is an old project
and some areas are very conservative.” (P06) One interviewee compared a lack of reac-
tion to suggestions that contribute to R-Bs to a general quality problem in projects:
“[E]arly warnings that you know this and that upstream has some problems with their defini-
tion or they don’t want to accept the patch about certain epoch, specification, or something like
that.” (P07) The notion of unclear goals that change over time when a new source of
unreproducible behavior occurs, was echoed by P08:

“Because we are taking a ‘fix when we find’ approach, I don’t think we are doing anything

88

5.5. Results

to evaluate whether a package has achieved 100% reproducibility. Usually, when we fail to
register a package to Reprepro, we know there may be a reproducibility issue and will look
into it. Once we fix it, we’ll do a clean build a few times to make sure the same binaries
are produced. It sounds more like ‘we make sure it’s reproducible for now’.” (P08)

Personal reproducibility target changeswere discussed in 13 interviews. These changes
in goals include being content with repeatable builds (i.e., compiling the same source
code at different times into a functional artifact, not necessarily with the same bit-
by-bit result) instead of fully R-Bs. One participant expressed hope that the commu-
nity would value and work on the guarantees fully R-Bs provide over e.g., repeatable
builds: “It’s one of those things where if more people in the community value this, they would
get solved. Right now, they’re happy with the builds being reproducible-ish.” (P04)

Summary: Reasons for and against adoptingReproducible Builds.Intervieweesweremostly
driven by improved software quality. The unclear impact of R-Bs on the overall security of
deployed software systems, together with high effort, were reasons against R-Bs.

Reproducible Builds as a Protection Mechanism. By design, R-Bs can serve as a
protection mechanism for software projects against security and quality problems
that might be introduced—maliciously, through coercion, or through mistakes—by
software developers. Many interviewees (14) mentioned R-Bs as a security measure
against coercive attacks against developers by malicious actors:

“The time where you have a room full of Debian developers and you tell them, ‘If your
computer is compromised in a way, then you might unknowingly compromise millions of
machines’. People were like, ‘I am this kind of target.’ […] It was a way to remove some
leverage for a malicious actor to actually go at the people directly. If you would try to
kidnap my kids and say, ‘You need to plant this malware.’ I can say, ‘I can’t. It’s going to
be seen, so probably you should do it differently and give me back my kids.’ If you don’t
have reproducible build systems in place, then they have leverage because it’s going to go
unnoticed if you release a binary that doesn’t match the actual source code.” (P06)

R-Bs were also mentioned as a requirement for checking OSS, and making explicit
trust in individual maintainers redundant. Some participants (13) mentioned that
explicit trust in open source software project maintainers was not needed since open
source code can be audited by anyone, at any given time. This possibility of having
one’s work audited was discussed as an incentive for honesty, and not wanting to
be publicly seen as dishonest, which in turn was discussed as a powerful motivator
motivator to safeguard the security of open-source software projects against powerful
(non-)government agencies and private security actors. R-Bs were discussed as one
strong mechanism to facilitate public scrutiny. In turn, participants discussed that for
R-Bs to be an effective public security measure, openness is a requirement.

Eleven participants mentioned that their user base requested improved security,
including specific requests for R-Bs, based on an awareness of one or more highly
impactful, publicized security incidents, including the Snowden leaks, theHeartbleed
vulnerability, the introduction of the GDPR, or the SolarWinds incident.

89

5. Reproducible Builds for Software Supply Chain Security

“It was clearly a need. There were a lot of the NSA, Snowden revelations coming out,
and various things like that. Nothing specifically from those revelations, but the gist of a
general vibe of, oh, we can trust even less than we previously thought as a very general
idea, and the world, post-2015, is moving to a more data-conscious and privacy security.”
(P10)

Althoughmany participantsmentioned requests for reproducibility due to highly vis-
ible security incidents, they also explained that these requests originate from only
a small part of their user base—security-affine power-users—that reported concerns
and requested R-Bs as a preventative measure against software supply chain attacks.
“It is perceived as one of those very rarely visited corners and only in cases like breaches and
things like SolarWinds and attacks against suppliers.” (P07)Most of our interviewees (23)
could not name a security incident related to reproducible builds, either thwarted or
caused by it. However, one interviewee mentioned the following case:

“I had a package that was not reproducible when I checked. The difference between my
rebuilds and the reference builds that are in [binary software repository] is the passphrase
of a GPG key. During the builds, it was recorded because the command line that he used
for signing, he added it in the parameter. I don’t know why he’s recorded it into a file that
was then merged into the archive, and it is in [binary software repository].” (PS23)

In the above example, R-Bs helped to detect a secret leak and contributed to the overall
security of the project.

Summary: Reproducible Builds as a Protection Mechanism.Attacks on software supply
chains were an important driver to build software reproducibly.

Software Project Decision Structures. For both, open source and commercial soft-
ware projects, interviewees reported that decision structures had a strong impact on
R-Bs.

Although many OSS projects make important decisions by consensus, only seven
participants reported a joint decision process to start moving the project to implement
R-Bs. Some interviewees (11) reported that individual developers in their projects
had independently started work on R-Bs due to intrinsic motivation.

For commercial projects, decisions were driven by commercial product deadlines,
and decisions were generally made at the management level. Five participants re-
ported that their project startedmoving towards implementing R-Bs throughmanage-
ment decisions, heavily influenced by developers’ insistence on what they perceived
to be a contribution towards product quality.

Summary: Project Decision Process.Individual developers have an influence on R-Bs adop-
tion. They either drove R-Bs adoption by starting the process themselves or influencing
project decisions.

90

5.5. Results

5.5.2. Experienced Obstacles
In this section we report obstacles our interviewees experienced while working on
R-Bs. Obstacles include unexpectedly large efforts, unsupportive upstream projects,
and development processes that might be unusable, undefined, chaotic, or inconsis-
tent. We discuss challenges and opportunities relating to community support in Sec-
tion 5.5.3.

Lack of Good Communication. In general, eleven interviewees mentioned the rele-
vance of strong communication skills to implement R-Bs in open source software. This
communication involved heavy discussions of the concept of R-Bs, the goals achieved
by R-Bs, and the need to adopt R-Bs. A common theme related to communication was
a lack of outreach. The Reproducible Builds project’s outreach consists of maintaining
a website and mailing list, as well as paying one developer to post monthly progress
reports, as they report on reproducible-builds.org. This included building the web-
site’s infrastructure for reporting successes in R-Bs, including testing OSS projects for
reproducibility criteria themselves. However, to move beyond outreach and towards
a wide adoption of R-Bs, participants discussed the need for wider support beyond
those already involved in the R-Bs project. Participants communicated that more peo-
ple working on R-Bs would be beneficial and would move the needle on software
supply chain security. Eleven participants reported feeling not having done enough
outreach-related work themselves, having instead focused on solving individual re-
producibility changes in the code for which they felt responsible. One interviewee
discussed the issue of transferring research advances into code, a problem also seen
in prior research [199]: “I think there’s this big gap between scientific research and program-
ming. […] I think bootstrappability and reproducible builds could be an enormous boost for free
software, and inspire people to move towards free software and free software practices.” (P17)
Eight interviewees mentioned a lack of and a higher need for more helpful documen-
tation for R-B efforts in a software project. The documentation on the R-Bs central
website was also mentioned as needing more work.

Seven of our interviewees mentioned experiences of unhelpful interactions with
other developers or users who were unsupportive or had difficulties understanding
the concepts and benefits of R-Bs and the required effort. This led to delays in achiev-
ing R-Bs, including projects for which the upstream communication is still ongoing
or stuck in a bug tracker. A total of eleven developers were astonished by the amount
and importance of good communication for R-Bs. Eleven interviewees mentioned pa-
tience as a virtue in communicating with upstream projects that were less motivated
to make reproducible builds part of their project. Participants explained that “good
etiquette” in the open-source ecosystem is to proliferate bug reports upstream, ide-
ally accompanied by a patch. The goal behind this approach is to fix issues at the
source, getting rid of the burden of maintenance of the local changes. Our intervie-
wees often went beyond that: five told us that they iterated with upstream projects
and “polished” their patches until the upstream projects accepted them.

91

reproducible-builds.org

5. Reproducible Builds for Software Supply Chain Security

Summary: Lack of Good Communication.The impact of interaction with other developers
was often initially underestimated; participants discussed the importance of patience and
good communication.

Technical Obstacles. Binaries including dates or other point-of-time information
were the most common issues for reproducible builds reported by our interviewees.
Reasons our interviewees gave included debugging artifacts, and different software
version commits. eight interviewees mentioned the SOURCE_DATE_EPOCH stan-
dard [226] as an effective solution to the aboveproblems. The SOURCE_DATE_EPOCH
standard replaces random build time information with epoch.5

Five interviewees mentioned build directory name inclusion (cf. Section 5.3) that
hindered their adoption of R-Bs.

“There has been some pitch to also support build path prefix, someway, somehow, but I
don’t know how to use it. From my approach, the OCaml compiler is not relocatable at the
moment. It will be in the future eventually, but I’m not too concerned about it because I
don’t think there’s any threat model that contains the build path, and in the end, I’m fine
with recording the operating system packages, and the environment variables that led to
that binary. Then I’m conducting the builds in a container, or in jail.” (P01)

Three interviewees mentioned that compilers include randomness explicitly during
the compilation process, but also that a deterministic initial value can be supplied
(for example via gcc -frandom-seed-string): “I think we set the python seed. I think we
set the python seed with Python. Um. The sort of state I’m trying to think of the other lan-
guages that they have, other weird things like that.” (PS20) Only one interviewee men-
tioned the potential issues around Profile-Guided Optimization [290], which change
optimizations based on execution on the compiling machine. four interviewees re-
ported (embedded) cryptographic signatures as implemented in the Apple ecosys-
tem with enforced cryptographic signatures on binaries as a problem for R-Bs. Seven
interviewees mentioned an unclear definition of build reproducibility as an obstacle
to adopting R-Bs. Discussions in the community range from full, bit-by-bit R-Bs down
to repeatable builds.

Overall, most interviewees mentioned that the technical obstacles above are man-
ageable for people interested in R-Bs, but there is a long tail of problems to fully R-Bs.

Summary: Technical Obstacles.Interviewees reported a wide range of technical obstacles
including embedded timestamps, signatures, and build directories, which they assessed as
intellectually simple, but cumbersome and repetitive to solve.

5.5.3. Helpful Factors
Helpful factors most mentioned were being self-effective, which interviewees defined
as being determined, possessing the skill-set to progress R-Bs, and having good com-
munication with other developers.
5The epoch value is the UNIX system time 01 Jan 1970 00:00:00 UTC

92

5.5. Results

Self-effective Participants. 14 interviewees implementedR-Bs by themselves, through
trial and error with some software that they tried to reproduce, which they described
as the most efficient pathway to R-Bs. They described that a self-effective work envi-
ronment, including having ownership of a large part of a project, being able to imple-
ment changes themselves, and prioritizing tasks as well as work packages themselves
greatly contributed to effective work on R-Bs. We did not discover any different path
to R-Bs in our interviews. Relatedly, interviewees explained hardships in increasing
community efforts towards R-Bs, as the reserve of developers productively contribut-
ing to R-Bs. Anyone who could meaningfully contribute would need a high level of
specialized knowledge and familiarity with the project; however, working on R-Bs
might not be the most attractive work that these highly skilled open source develop-
ers might want to work towards.

Summary: Self-effective Participants.Interviewees reported that specialized knowledge
about projects, as well as the enthusiasm and ability to take broad action made their R-
Bs work possible. These circumstances seems hard to scale to volunteers from the broader
community.

Successful Community Communication. We identified factors that support R-Bs,
often centering around effective community interaction. 14 participants mentioned
positive interactions with upstream projects. These interactions included benign dis-
interest:

“Well, the first thing I do is ask them if they’re aware of the problem because there’s still a
decent percentage of even developers that aren’t fully aware of the reproducibility problem.
I think it’s solved at the package manager level. You know, they think that there’s some
sort of layer of it and it gets kind of resolved. Then from there, you know, I help them to
understand the types of things that like this scope can help them understand the ways to
ability can be compromised.” (P15)

Positive interactions also included encouraging cooperation and work on upstreamed
patches: “We got in contact with upstream and they fixed it, and now it’s working fine.”
(P19) In addition to interactingwith upstreamprojects, communicationwith compiler
authors was mentioned as helpful. Six interviewees reported positive interactions
with compiler authors regarding R-Bs. Like other upstream requests, interviewees
reported providing patches to compiler authors to address R-Bs issues, which were
later incorporated.

Summary: Successful Community Communication.Being helpful to upstream projects
helps create goodwill for R-Bs in the open source community. Upstreamprojectsmay spend
time and effort on R-Bs if they receive help from the R-Bs community for their own software
project.

Helpful Resources. Different resources that helped with R-Bs were discussed in the
interviews, but the most helpful resource for implementing R-Bs can be summarized

93

5. Reproducible Builds for Software Supply Chain Security

as “good tooling.” A total of 13 people mentioned that they found tooling particu-
larly helpful, specifically the diffoscope tool [119]. Eight interviewees mentioned that
projects shouldwork on the future seamless integration of R-Bs into the build process.
Eight interviewees mentioned additional resources they used for R-Bs, including the
R-B’s website and mailing list. Eight interviewees stated that documentation should
be expanded to make onboarding new R-Bs enthusiasts easier. In contrast, P16 stated
that existing documentation was sufficiently helpful for R-Bs, and that efforts should
increase community awareness and buy-in toward more effective support for R-Bs.

5.6. Discussion
In the previous results sections, we establish the importance of effectively dissemi-
nating the benefits of R-Bs to a broader community and that communication with
upstream projects is crucial.

Outreach

To better communicate the procedural, monetary, reputational, and general benefits
that stakeholders can gain from employing reproducible builds, we discussed pre-
liminary findings and potential benefits with participants of the Reproducible Builds
Summit 2022 in Venice with additional related material provided in the Chapter C,
and highlight key points from that discussion below.

The goal of an outreach effort is to describe benefits that a stakeholder of fully re-
producibly built software may want. The benefits can be classified as time savings,
monetary savings, reputational gains, and generally better results of the work with
the software. A non-exhaustive list of stakeholders includes non-university research
groups, universities, development corporations, security organizations (which can
themselves be in a corporation), open-source projects, end users, and governmental
organizations. For any of the potential beneficiaries of reproducible builds, multiple
benefits may apply. While any user of the software may be an end user individually,
most organizations have different needs as a whole.

Almost any software project can benefit fromcaching build results, givingdecreased
build times and better turnaround times for changes. A published reproducible build
will not change and can be reproduced exactly as-is, so no retesting is needed since all
previous tests for that build directly apply for a rebuild. Build debugging is simpler
since any singular build that fails for some users can be reproduced for finding the
bugs in it. Developers can work a lot faster and with more confidence that bugs they
introduce can be bisected and figured out, while at worst, any previous version can
be used. The open-source project can also save on hardware resources, since build
artifacts can be deduplicated effectively, meaning that only parts that changed need
to be saved again. This can also be used for updates, where only the differences be-
tween updated versions need to be transferred to each user, saving bandwidth (cost).
For their reputation, the open source project can fulfill more parts of the OpenSSF

94

5.6. Discussion

scorecard [281]. While the project does not directly gain a reputation from higher
software quality in its dependencies, however, choice of dependencies has an effect
on the reputation of the open-source project in question. Incorporating reproducibly
built dependencies may therefore indirectly increase a project’s reputation.

In general, open source projects gain faster builds and the ability aswell as a guaran-
tee that they can build their software at any point in the future. All of this applies with
one additional benefit: They learn which software components were used in building
their software. This binary introspection can be a hard task in itself, but R-Bs can give
this information almost for free using “.buildinfo”-files or a Software Bill of Materials
(SBOM), as elaborated in analogy by P21:

“I don’t grow plants, I don’t create food, I don’t write recipes, I don’t prepare meals, but
I do research on how to tell people to wash their hands. This does not make the food taste
any better, make it better in general, more healthy. Maybe it makes the food a little bit less
unhealthy or poisonous, but most times you’ll be fine eating unwashed food. We try to
change the way food is prepared. This does not influence the food at first but makes it better,
safer, more healthy in general. We want to change the way people prepare food, just like
water sewage, and treatment systems have been installed before. We want to change the
mindset. We want to remind people, that reproducible, deterministic software is possible
and reasonable..” (P21)

Answers to RQs

Our 24 semi-structured interviews with experts involved with reproducible builds
projects provided the following answers to our research questions:

RQ1: “What are motivations for, and common themes around, adopting reproducible builds in
software projects?”
Our interviewees mentioned complex, interconnected motivations in the context of
R-Bs. Some motivations are related to intuition for how builds should behave such as
being deterministic as well as motivations grounded in explicit security concerns such
as a compromised maintainer account.

RQ2: “What experiences and challenges did projects encounter in the context of reproducible
builds?”
Many interviewees mentioned positive interactions with upstream projects and other
developers, although some specifically noted that upstream communication required
patience.

RQ3: “What are encountered obstacles and facilitators in projects’ efforts towards reproducibil-
ity?”
Commonly encountered obstacles to reproducible builds include build directory name
inclusion and cryptographic signatures on the technical side, as well as patience and
good social communication on the interaction side.

95

5. Reproducible Builds for Software Supply Chain Security

Additional Insights

Some interviewees suggested that the overall awareness and buy-in for R-Bs was lack-
ing, and that even with the increase of prevalence of software supply chain attacks, R-
Bs is not yet widespread. Participants reported that in the early days of the R-Bs effort,
most work appears to have been invested into infrastructure, including the upstream-
ing patches and creation of tooling, which should in theory provide a foundation for
developers to make leaf packages build reproducibly.

Based on our participants’ answers there appears to be a still ongoing public dis-
cussion about which criteria need to be fulfilled to call a package reproducible. The
clearest criterion is bit-by-bit identical build results, which we opted to use in this pa-
per. However, even bit-by-bit identical builds is subjectivewith respect to themutators
used to evaluate packages. Currently, the most used deployment of reprotest does not
check all available mutators while testing a package for its build reproducibility.6 A
test with those or other not yet found sources of unreproducible behavior may change
some bits in the artifact and give way to a stricter definition. Definitions of R-Bs that
allow for differences in files from embedded signatures make R-Bs on Apple devices
possible. These definitions specify elements in files that may be otherwise bit-by-bit
reproducible.

Many groups do not enforce R-Bs. The Debian policy suggests rather than enforces
reproducibility, which is understandable: users want to use software even if it is not
built in a reproducible way. The OpenSSF scorecard also only cites R-Bs inside a high-
risk criterion named “non-reviewable code,” a detail that is fairly buried in the docu-
mentation.7 In the case of open source projects, missing organizational buy-in comes
in the form lack of support to mark R-Bs bug reports as blocking for a new software
release. Untested changes from R-Bs can break build systems, so projects being con-
servative about patches is understandable.

For transitive dependency problems, concrete technical documentation could be
achieved by the pervasive use of Software Bills of Materials (SBOMs) [96] to indi-
cate all software included in building an artifact, so the transitive dependencies could
be traced over a dependency graph.

Neither of President Biden’s Executive Orders for Cybersecurity [136] or Supply
Chains [135] mentions R-Bs. While this promises some eyes on the criticality of (Soft-
ware) Supply Chain Security, we are worried that neither adequate funding for the
work of mostly hobbyist open source developers nor real changes or competent help
are to come in the foreseeable future. Lack of funding and organizational buy-in for
their work was one of the major detractors mentioned in our interviews.

While we do not have insights into governmental regulation efforts, at some point
we expect to see some regulation about software, similar to regulations about manda-
tory fitness of purpose and non-toxicity for other products. As also mentioned in one
of our interviews, there are legislative efforts underway towards requiring an SBOM,
6https://reproducible.debian.net/, which now points to https://reproducible-builds.org/citests/

and is used by different OSS distributions
7https://github.com/ossf/scorecard/blob/main/docs/checks.md

96

https://reproducible.debian.net/
https://reproducible-builds.org/citests/
https://github.com/ossf/scorecard/blob/main/docs/checks.md

5.6. Discussion

which can only be reliably generated by having the depth of information as is needed
for R-Bs.

Recommendations

A significant effort by a small number of individuals has laid the groundwork for
R-Bs, fixing hard-to-find non-determinism in common build infrastructure. Despite
these efforts, a significant number of participants regretted not spending more time
on outreach. The knowledge and frameworks around R-Bs have reached a level of
maturity such that now is the time for broader consumption. In this light, we conclude
with the following recommendations.

1. We urge the industry to give their engineers leeway to work on what they deem
necessary for software quality. They were the ones hired for their expertise and
to knowwhat is necessary for this and they should be empowered to work on it.
Missing organizational buy-in by supporting their developers who may already
want to get rid of some technical debt was one of the main detractors for R-Bs.
Industry funding and engineering freedom were specifically mentioned in our
interviews as wished for items regarding buy-in.

2. The open-source community should join the R-Bs effort and make it the new
standard, so new releases are reproducible by default. Newly released unrepro-
ducible software should be permissible in distributions only if sufficient reasons
and a plan to change are provided, creating more security for their users and
themselves. Help with upstream interaction, R-Bs developers’ small numbers,
fatigue, and clarifying the status and importance of packages on the last mile to
100% R-Bs could help a lot. R-B’s goal was seen as not clearly communicated,
which led to some burnout with part of our interviewees. Better communication
and avoiding “moving goalposts” would minimize the reported loss of emo-
tional investment.

3. Not based on our interviews, but rather relatedwork on the Trusting Trust attack
and Software Supply Chain Security, we see R-Bs as a potentially greater interest
to the security research community. We hopemore buy-in from security organi-
zations and researchers could be achieved by treating unreproducible software
builds as a serious threat for software supply chain security and better support
reproducible builds. We see some similarity of the R-Bs effort and security con-
cerns, hinted at by one participant’s remark about the search for mutators that
make builds unreproducible, just like security vulnerabilities are searched for.

4. Governments should mandate some level of R-Bs as part of a general effort to
strengthen software quality. Liability for last-level commercial, for-profit enti-
ties should be a necessary precondition for being allowed to profit from software
products, just like it is commonwith physical products. This would create finan-
cial incentives for companies to provide R-Bs as a part of their software quality
and security.

97

5. Reproducible Builds for Software Supply Chain Security

5.7. Conclusion
While R-Bs offer a strong foundation for securing the software supply chain, much of
the industry believes it is out of reach. We conducted a series of 24 semi-structured
expert interviewswith participants from the Reproducible-Builds.org project with the
goal of identifying insights that could lead to R-Bs becoming more commonplace in
software development. Our findings include that the collaboration between highly
motivated developers and upstream projects over long periods of time is a key as-
pect for the success of R-Bs. We identified a range of motivations for adopting R-Bs
(RQ1), including indicators of quality, security benefits, andmore efficient caching of
artifacts. Discussions around process (RQ2) and obstacles (RQ3) confirmedmany of
the challenges discussed in this work.

The R-Bs effort to date has operated under themindset of “infrastructure before leaf
packages.” It has required active and self-guided bug hunting to root out problems
in the build infrastructure that have been long overlooked. While this approach has
brought R-Bs far with very limited resources and persons, progress was in most cases
achievedwith only limited organizational buy-in, specifically bymotivated individual
open-source developers.

When companies do care for R-Bs, it is mostly seen as a cost-saving measure and
only sometimes as a safeguard against wasting the time of highly-paid software engi-
neers. The goals of quality and robust security motivate open source developers a lot
more than corporate developers, though this may change due to the current geopolit-
ical climate. In particular, new US initiatives have made R-Bs very tacitly, but mostly
indirectly named, important to (inter-)national security. However, while the software
supply chain security is seeing generous amounts of funding, nothing yet has been
earmarked towards R-Bs.

In this chapter, we explain the influences of the Trusting Trust attack, the Diverse Double-
Compilation defense against it, and the requirements both imply for a secure software supply
chain. We interview experts from the reproducible-builds.org community and find themes
of rather simple to solve technical problems, but rather hard economies of scale and fixing the
last remaining infrastructure problems with a limited set of developers who care enough about
them. We present possible solutions for gaining more awareness of the problem space and the
solutions already partly in place inwidely known open source projects, but are almost unknown
in the wider software development community, if not derided as unnecessary. We follow up
with recommendations for different addressees who may want to invest in a secure software
supply chain and could get involved in reproducible builds to solve the problem of hidden, self-
replicating backdoors in compilation tool chains in a systematic way.

98

reproducible-builds.org

6. Conclusions and Future Work

Disclaimer
The content of this conclusion was expanded and adapted from a previously peer-reviewed and
published work. Please see the disclaimer in Chapter 1 for more details.

6.1. Cryptography is a Cornerstone of Security, but not
Universally Checked

We have shown in Chapter 3 and Chapter 4 that the constant-time criterion has big
implications on the security of cryptographic software implementations. Checking
code for this is nontrivial and the tools to do so have a range of problems.

As verified through qualitative and quantitative studies, the state of the art of pro-
gram verification of cryptographic algorithm implementations is not adopted widely
in practice. Even if some form of verification is used, developers who select a crypto-
graphic algorithm implementation for their project should look into the details about
presumptions and difficulties in adopting a specific implementation. Upstream de-
velopers, who are cryptography experts, not necessarily have time to work around
difficulties in program analysis frameworks and tools and may opt to favor a general
purpose programming language codebase with easier integration over one that is eas-
ier to secure.

The practical security of widely used cryptographic libraries lags behind the most
advanced cryptographic primitives from dedicated research groups. This may also be
due to a gap between research groups and OSS developers, who may be working in
their spare time as a hobby or who may be paid by a company to work on projects as
a part of their duties.

6.2. Human Factors in Supply Chain Research
Supply chain security (SCS) is a crucial area of concern for businesses operating in to-
day’s connected economy. However, aswithmany aspects of security, we think the hu-
man factors involved in the design, implementation, and use of SCSmeasures have not
received the attention they deserve. We believe that the usability of SCS measures for
the people who will use them, especially developers, is a critically under-investigated

99

6. Conclusions and Future Work

area of research. To address the need for more human-centered SCS approaches, we
propose multiple aspects for a high-level research agenda below.

Motivations, Challenges, and Personal Risks. Integrating external software com-
ponents into software projects presents unique challenges and risks for developers.
The development of the external components often involves different developers with
a diverse set of technology stacks, motivations, and development as well as commu-
nication cultures.

There is a responsibility that comes with relying on external build components and
processes—in principle transparent, in practice infeasible to completely vet across
fragmented ecosystems. The lack of clear hierarchies and trust relationships across
different software components can also make it easier for attackers to target and ex-
ploit vulnerabilities.

To address these challenges, we think it is necessary to research and promote sys-
tematic, usable communication across creators of different components along the soft-
ware supply chain.

Usable Tooling. Ideally, new functionality is integrated into versatile tooling that
developers are already using; it remains unlikely that tools with unique interfaces
and functionalities will be widely adopted to check for individual security properties.

To create build artifacts that can be trusted in an informed manner, not through
organizational authority, one needs to know everything included in the creation of
said artifact; see the Trusting Trust attack [354].

While we applaud [144] the work of the reproducible-builds.org project, this
should only be the baseline and software build reproducibility—bootstrappability1

and diversified checking à la David A. Wheelers “Diverse Double-Compiling” [393]
should be further security targets. Their benefit needs to be prevalent in deployed
software and not limited to academic study to gain practical advantages for every
end user. This prevalence may yet entail publishing the source code and complete
build recipes of all software that may have an effect on user security, to have them
automatically recompiled and the results checked after variation in the environment,
bootstrapping the necessary dependencies cleanly.

All of this needs to be low effort for a wide range of developers with different tech-
nology stacks. Further research is needed to explore which problems can be solved
with tooling, and how tooling can communicate with its users in a way that allows for
wide adoption.

Build Processes and CI/CD. Today’s build systems and CI/CD pipelines can inter-
act and chain with other systems and third-party services, allowing for the creation
of complex, multi-step build and distribution processes for software. But this com-
plexity also increases the risk of misuse, misconfiguration, or leakage of secrets, and
1https://bootstrappable.org/

100

reproducible-builds.org
https://bootstrappable.org/

6.2. Human Factors in Supply Chain Research

as software is increasingly being built and deployed using third-party services, these
services are becoming high-value targets for attackers seeking to infect all customers
and compromise their SSCs. This is highlighted by a recent CircleCI security incident,
where an attacker used malware on an engineer’s laptop to gain unauthorized access
to CircleCI’s production systems.

As build systems and CI/CD pipelines are becoming increasingly complex, it is es-
sential to not overlook the human factor in setting up, maintaining, and using them.
Usability plays an important role in ensuring that developers can effectively and se-
curely utilize and manage these complex systems: By establishing what makes these
usable for stakeholders, such as clear documentation, user-friendly interfaces, and
effective training materials, we as researchers can reduce the risk of misconfigura-
tions and other vulnerabilities while allowing developers to maintain productivity
and workflow efficiency.

Dependencies. Allowing developers to leverage external dependencies as building
blocks for their software (e.g. from package repositories like npm or PyPI) is an im-
portant advantage of the SSC. However, the reliance on external repositories also in-
troduces new attack surfaces, as recent typo-squatting and account-takeover attacks
have shown. In response, Pythons PyPI and Microsofts GitHub have begun requiring
two-factor authentication (2FA) for developer accounts with critical projects. While
such approaches may increase the overall security of package repositories and depen-
dencies, it is crucial to also consider their usability. I.e. if 2FA is required, but the
authentication process is too complicated or time-consuming, developers may find
ways to bypass it, which would undermine the intended security benefits. Develop-
ers need to keep track of changes in dependencies, so good communication practices
about those are necessary.

By examining the common challenges andusage patterns involved in using andpro-
viding external dependencies, researchers can identify ways to improve the adoption
of security processes, ultimately enhancing the security of the SSC.

Usable and Acceptable Authentication for Developers. Developers create our dig-
ital tools, but how do we know that the tools we have on our computer are actually
created by developers we trust? This is a problem that has been well-studied and
can be solved with cryptographic signatures. With the most common form of dig-
ital signatures in open source projects being the venerable OpenPGP signature and
Web of Trust, both for authenticating developers as well as the artifacts of their la-
bor. Some projects have sprung up thinking about how to solve this use-case in a
more user-friendly way without bringing in the possibility of impersonation by some
(trusted) third party. One of those projects favored by the industry is sigstore with
ideas from certificate infrastructures, while more security-minded software distribu-
tions have opted for simpler tools like OpenBSD’s signify.

This divide seems to be irreconcilable without investigating this area to find a uni-
versally acceptable solution to the authentication problem that includes all potential

101

6. Conclusions and Future Work

user concerns while being more user-friendly than currently (at least partially) estab-
lished practices. Having a universally accepted standard for authenticating develop-
ers and their work would heighten the level of security in SSC against impersonation,
and can only be established by research that centers the users of this mechanism.

Metrics and Frameworks. In the context of a secure SSC, metrics, and frameworks
that classify security vulnerabilities (CVE, CVSS, VEX), weaknesses (CWE), or cod-
ing practices (OpenSSF Scorecards) play an important role in communicating between
stakeholders. Adoption is a critical factor in the effectiveness of any metric or frame-
work. If these tools become widely adopted, they create a network effect, whereby
stakeholders become familiar with the metric and share a common understanding of
what constitutes secure software development practices. As more stakeholders adopt
and utilize a particular metric or framework, they build a collective understanding of
what it takes to develop secure software (according to the metric), leading to a higher
level of standardization and consistency in secure software development practices.

Designing these tools around the metrics stakeholders actually care about, and cen-
tering usability are key in making these tools effective and widely accepted; with-
out proper consideration of the human factor, these tools may not be utilized to their
fullest potential or even adopted at all. Additionally, when more stakeholders uti-
lize these tools, they can provide feedback on how to further improve their usability,
resulting in a continuous improvement cycle. By investigating and improving their
usability, researchers can increase the likelihood that stakeholders will utilize these
tools and ultimately establish a common understanding towards a more secure soft-
ware ecosystem.

Open Source vs. Closed Source Conflicts. Large companies sometimes adapt Open
/ Libre Source Software (OSS) projects, and may have internal changes to them that
they maintain, update, develop, and never contribute back into the OSS space [391].
This may also be true for dealing with vulnerabilities and incurs costs for companies
as well as the OSS ecosystem where the software originated.

However, there are legitimate reasons for forking and maintaining in a closed en-
vironment: oftentimes, the OSS community may not want to develop in the direction
that a large company requires (e.g., Google, boringSSL). A company may look at its
plate first instead of the whole upstream bowl.

There are trade-offs, due to the work required for maintaining each internal fork
a company may keep internally—each one has to be kept up to date with security
patches, inventoried, and kept onwatch for vulnerabilities and plain errors being fixed
upstream. While having an internal cache of external dependencies brings benefits
like keeping each dependency available even facing upstream disaster, they are cer-
tainly not for free and tend to break if left without care. That care may even be a full
internal fork with in-house patches, but they too need to be maintained, making mid-
term costs skyrocket. Costs to interact with OSS—one-time setup, repetitive—may be
different on each project.

102

6.3. Outlook

A deeper understanding of better cooperation possibilities may be more economi-
cal, provide more prompt reaction to security incidents, and be in the best interest of
all parties overall. Centering the needs, challenges, and decisions of stakeholders in
human factors research can help improve cooperation in this space.

“One Guy in Kansas” Some open source software is so ubiquitous in the develop-
ment and operation of IT systems that its existence is hardly noticed. Its absence, or
even just unfixedbugs, could incur large costs and other damages for big organizations
however. Surprisingly, some of that software was developed, or is maintained by very
few developers, colloquially known as “that one guy in Kansas.” This is specifically
true for many open source projects, which are often done by default as hobbies, not
contributing significantly to the income of their main developers. Research into how
to better support these small projects may have a significant impact on the security of
the SSC overall.

In conclusion, we need to consider human factors to secure the SSC, dependencies,
and build systems. Recent attacks have demonstrated that developers are working on
every link in the chain, making approaches that consider the human factor an impor-
tant step for effective SSC security.

6.3. Outlook
In this thesis we have shown the importance of quality and checking for its criteria
in high-value code that comprises some of the most critical parts for securing our
software supply chain security. This cannot be done without high quality implemen-
tations of cryptographic software libraries, which have their own implementation pit-
falls, to be checked for. To get those implementations not just deployed, but also devel-
oped, we need to lookmore into the human factorswhich hinder adoption of academic
solutions into real world code.

With that cryptography, we can implement trust relationships and assign trust to
artifacts, checked for reproducibility by different, mutually trustful—secured by cryp-
tographic signatures—entities, without any need for centralized trust to any authority.
Those trust relationships are a huge, underinvestigated part of how software is gener-
ated by humans. Getting those trust relationships into a shape implemented by simple
and usable tools that even non-expert users can benefit from still seems to be an open
problem, to be researched just as more ergonomic forms of cryptographic authentica-
tion to surpass nineties era cryptographic tools for general use in all OSS projects. We
must look into usable security to get security benefits to people who may have other
priorities before that, by finding out where additional effort is enough of a roadblock
to adoption without being necessary for the intended benefits.

While some projects are distrustful of corporate industry developments, others try
these out to see if at least some form of security and usability advancements can be
gained over not doing any artifact signing and checking at all. This area should be
researched further to find a simple and ubiquitous solution that can be held to the

103

6. Conclusions and Future Work

absolutely highest standards of verifiable trust, so a common standard for software
supply chain security can emerge from it.

104

Appendices

105

A. What Cryptographic Library
Developers Think About Timing
Attacks

A.1. Survey

A.1.1. Background
Q1.1: How many years have you been developing cryptographic code?

[Numeric field]
Q1.2: What background do you have in cryptography?

□ Academic

□ Took some classes

□ On the job experience

□ Teach it

□ Hobby

□ Industry

□ Prefer not to say

Q1.3: Can you tell us a little bit more about your background as a developer who
works on cryptographic libraries/primitives?

[Free text field]

A.1.2. Library / Primitive
Q2.1: What’s your role in the development of library? (E.g., maintainer, project lead,
core developer, commit rights, no rights, etc.)

[Free text field]
Q2.2: How are you involved in design decisions (e.g., concerning the API, coding
guidelines and style, security-relevant properties) for library?

[Free text field]
Q2.3: What are the intended use cases of library? (E.g., embedded use, servers, etc.)

[Free text field]
Q2.4: What is the threat model for library with regards to side-channel attacks? (E.g.,
local/remote attackers, etc.)

[Free text field]

107

A. What Cryptographic Library Developers Think About Timing Attacks

Q2.5: Do you consider timing attacks a relevant threat for the intended use of library
and its threat model? Please give a brief explanation for why / why not. (If the execu-
tion time of a program depends on secret data, a timing attack recovers information
about the secret by computing the inverse of this dependency. The two most noto-
rious sources for such dependencies are secret dependent control flow and secret-
dependent memory access. Timing attacks include cache attacks where the attacker
uses the cache to infer information about memory accesses of a target.)

[Free text field]
Q2.6: Does library claim resistance against timing attacks?

◦ Yes

◦ No

◦ Partially

◦ I don’t know

◦ Not yet but planning to

Q2.7: Howdid the development teamdecide to protect or not to protect against timing
attacks? (We are interested in the decision process and not the protectionmechanisms
themselves (if any).)

[Free text field]
Q2.8: [only shown if Q2.6 is ”Yes” or ”Partially”] How does library protect against
timing attacks?

[Free text field]
Q2.9: Did you personally test for or verify the resistance of library against timing at-
tacks?

◦ Yes

◦ No

◦ Partially

◦ Not yet but planning to

◦ Not me but someone did

◦ I don’t know

◦ Prefer not to say

Q2.10: [only shown if Q2.9 is ”Yes” or ”Partially”] How did you test or verify the
resistance against timing attacks? (E.g. using which tools, techniques, practices.)

[Free text field]
Q2.11: [only shown ifQ2.9 is ”Yes” or ”Partially”] How often do you test or verify the
resistance of library against timing attacks?

□ Only did it once

□ Do it occasionally

□ During releases

□ During CI

□ Don’t know

□ Prefer not to say

A.1.3. Tooling
Q3.1: Are you aware of tools that can test or verify resistance against timing attacks?

108

A.1. Survey

◦ Yes ◦ No

Q3.2: Please tell us which of these you’ve heard of with regards to verifying resistance
against timing attacks.

[List of tools from Table 3.1.]
Q3.3: How did you learn about them? (Check all that apply)

[Matrix question with subquestions being the tools the participant selected in Q3.2
and the following answer options:]

□ Recommended by colleague

□ Heard from authors

□ Read the paper

□ Referenced in a blog/different paper

□ Was involved in the development

□ Other

Q3.4: Which of these (if any) have you tried to use in the context of resistance against
timing attacks?

[Multiple choice question among the tools selected by the participant in Q3.2.]
Q3.5: Why have you not tried to use these?

[Multiple free text fields for all of the tools the participant did select inQ3.2 but not
in Q3.4.]

A.1.4. Tool use
[All of the questions in this group arematrix questionswith subquestions for all of the
tools the participant did select in Q3.2 and Q3.4, i.e. those tools that the participant
knows and tried to use.]
Q4.1: Please describe the process of using the tools.

[Free text field]
Q4.2: I was satisfied with the installation process. (Please rate your agreement with
the above statement.)

◦ I quit using the tool before I got to this point

◦ I quit using the tool because this was a problem

◦ Strongly disagree

◦ Disagree

◦ Neither agree or disagree

109

A. What Cryptographic Library Developers Think About Timing Attacks

◦ Agree

◦ Strongly agree

Q4.3: I was satisfiedwith the prerequisites that the tool needed to workwithmy code.
(Please rate your agreement with the above statement.)

[Same answer options as Q4.2]
Q4.4: In my understanding the tool is sound. (Please rate your agreement with the
above statement. A sound tool only deems secure programs secure, thus has no false
negatives.)

[Same answer options as Q4.2]
Q4.5: In my understanding the tool is complete. (Please rate your agreement with the
above statement. A complete tool only deems insecure programs insecure, thus has
no false positives.)

[Same answer options as Q4.2]
Q4.6: I understood the results the tool provided. (Please rate your agreement with
the above statement.)

[Same answer options as Q4.2]
Q4.7: I was satisfied with the documentation of the tool. (Please rate your agreement
with the above statement.)

[Same answer options as Q4.2]
Q4.8: I was satisfied with the overall usability of the tool. (Please rate your agreement
with the above statement.)

[Same answer options as Q4.2]
Q4.9: I was satisfied with the tool overall. (Please rate your agreement with the above
statement.)

[Same answer options as Q4.2]

A.1.5. Tool use: Dynamic instrumentation based
Q5.1: Use of dynamic instrumentation based tools like ctgrind, MemSan or Timecop
requires:

• Creating test harnesses.

• Annotating secret inputs in the code.

• Compiling code with a specific compiler (in the MemSan case).
and in return detects non-constant time code that was executed (e.g. branches on
secret values, or secret-dependentmemory accesses). However, it does not detect non-
constant time code that was not executed (in branches not executed due conditions on
public inputs).

Do you think you would fulfill these requirements in order to use this type of tool?
[1 = Very unlikely, 2 = Somewhat unlikely, 3 = Neutral, 4 = Somewhat likely, 5 =

Very likely]
Q5.2: Can you clarify your reasoning for the answer?

110

A.1. Survey

□ Not my decision

□ Not applicable to my library

□ Would like the guarantees but too much effort

□ Good tradeoff of requirements and guarantees

□ Already using one of the mentioned tools

□ Will try to use one of the mentioned tools after this survey

□ I don’t care about the guarantees

□ None of the above

Q5.3: Please expand on your answer if the above question didn’t suffice?
[Free text field]

A.1.6. Tool use: Statistical runtime tests
Q6.1: Use of runtime statistical test-based tools like dudect requires:

• Creating a test harness that creates a list of public inputs and a list of represen-
tatives of two classes of secret inputs for which runtime variation will be tested.

and in return provides statistical guarantees of constant-timeness obtained by running
the target code many times and performing statistical analysis of the results.

Do you think you would fulfill these requirements in order to use this type of tool?
[1 = Very unlikely, 2 = Somewhat unlikely, 3 = Neutral, 4 = Somewhat likely, 5 =

Very likely]
Q6.2: Can you clarify your reasoning for the answer?

[Same answer options as Q5.2]
Q6.3: Please expand on your answer if the above question didn’t suffice?

[Free text field]

A.1.7. Tool use: Formal analysis
Q7.1: Use of formal analysis-based tools like ct-verif requires:

• Annotation of the secret and public inputs in the source code.

• Running the analysis via a formal verification toolchain (i.e. SMACK).

• Might not handle arbitrarily large programs or might require assistance in an-
notation of loop bounds.

111

A. What Cryptographic Library Developers Think About Timing Attacks

and in return provides sound and complete guarantees (no false positives or nega-
tives) of constant-timeness (e.g. no branches on secrets or secret-dependent memory
accesses or secret inputs to certain instructions).

Do you think you would fulfill these requirements in order to use this type of tool?
[1 = Very unlikely, 2 = Somewhat unlikely, 3 = Neutral, 4 = Somewhat likely, 5 =

Very likely]
Q7.2: Can you clarify your reasoning for the answer?

[Same answer options as Q5.2]
Q7.3: Please expand on your answer if the above question didn’t suffice?

[Free text field]

A.1.8. Miscellaneous
Q8.1: Do you have any other thoughts on timing attacks that you want to share?

[Free text field]
Q8.2: Do you have any other thoughts on or experiences with those tools that you
want to share?

[Free text field]
Q8.3: Do you have any feedback on this survey, research, or someone you think we
should talk to about this research (ideally an email address we could reach)?

[Free text field]
Q8.4: Do you want to allow us to contact you for:

□ sending you a report of our results from the survey

□ asking possible follow-up questions

Q8.5: [Only shown if some of the options in Q8.4 was selected] To allow us to contact
you, please enter your preferred email address. (If at any time you want to revoke
consent to contact you and ask us to delete your email address, please email [de-
identified for submission])

[Free text field]

112

A.2. Tool awareness

A.2. Tool awareness

Tool Aware % Tried to use %

ctgrind [229] 27 61.4% 17 38.6%
ct-verif [19] 17 38.6% 3 6.8%
MemSan [346] 8 18.2% 4 9.1%
dudect [307] 8 18.2% 1 2.3%
timecop [264] 8 18.2% 1 2.3%
ct-fuzz [181] 7 15.9% 1 2.3%
CacheD [381] 6 13.6% 1 2.3%
FaCT [85] 6 13.6% 0 0.0%
CacheAudit [125] 5 11.4% 0 0.0%
FlowTracker [316] 4 9.1% 1 2.3%
SideTrail [30] 3 6.8% 0 0.0%
tis-ct [109] 3 6.8% 0 0.0%
DATA [387, 386] 2 4.5% 2 4.5%
Blazer [29] 2 4.5% 0 0.0%
BPT17 [53] 2 4.5% 0 0.0%
CT-WASM [384] 2 4.5% 0 0.0%
MicroWalk [396] 2 4.5% 0 0.0%
SC-Eliminator [400] 2 4.5% 0 0.0%
Binsec/Rel [111] 1 2.3% 0 0.0%
COCO-CHANNEL [66] 1 2.3% 0 0.0%
haybale-pitchfork [363] 1 2.3% 0 0.0%
KMO12 [213] 1 2.3% 0 0.0%
Themis [91] 1 2.3% 0 0.0%
VirtualCert [42] 1 2.3% 0 0.0%
ABPV13 [21] 0 0.0% 0 0.0%

None 11 25.0% 25 56.8%

Table A.1.: Tool awareness and use

113

B. A usability evaluation of
constant-time analysis tools

B.1. Summary of known CT analysis tools

115

B. A usability evaluation of constant-time analysis tools

Tool Target Tech. Guar. Available

Abacus [37] Binary Stat # Github
ABPV13 [21] C Fo no
ABSynthe [162] Leakage Dyn ■ Github
ANABLEPS [382] Binary Dyn # Github
Binsec/Rel [111] Binary Sym G# Github
Blazer [29] Java Fo no
BPT17 [53] C Sym irisa.fr
CacheAudit [125] Binary Fo ■ Github
CacheAudit2 [126] Binary Dyn Github
CacheD [381] Trace Sym # no
CacheFix [89] Trace Sym G# BitBucket
CacheQL [404] Binary Dyn # Github
CacheS [380] Binary Fo G# no
CANAL [348] LLVM Fo Github
Cache Templates [165] Binary Stat ■ Github
CaSym [69] LLVM Sym no
CaType [201] Binary Fo no
CHALICE [88] LLVM Sym ■ BitBucket
COCO-CHANNEL [66] Java Sym no
Constantine [56] LLVM Dyn G# Github
ctgrind [229] Binary Dyn G# Github
ct-fuzz [181] LLVM Dyn # Github
ct-verif [19] LLVM Fo Github
CT-WASM [384] WASM Fo† Github
DATA [387, 386] Binary Dy G# Github
DifFuzz [274] Java Dyn # no
dudect [307] Binary Stat # Github
ENCIDER [403] LLVM Sym G# Github
ENCoVer[36] Java Fo kth.se
FlowTracker [316] LLVM Fo ufmg.br
haybale-pitchfork [363] LLVM Sym G# Github
KMO12 [213] Binary Fo ■ no
Manifold [405] Binary Stat # Zenodo
MemSan [346] LLVM Dyn G# llvm.org
MicroWalk [396] Binary Dyn G# Github
MicroWalk-CI [397] Binary Dyn G# Github
mona-timing-[lib|report] Network Stat ■ Github & Github
PinCEC [196] Binary Dyn G# Github
Pitchfork-angr [364] Binary Sym # Github
SC-Eliminator [400] LLVM Fo† Zenodo
Shin et al. [335] Binary Stat # no
SideTrail [30] LLVM Fo ■ Github
STACCO [401] Binary Dyn # no
STAnalyzer [326] C Fo no
Themis [91] Java Fo Github
timecop [264] Binary Dyn G# blog
tis-ct [109] C Sym G# no
TLSfuzzer [205] Network Stat ■ Github
TriggerFlow [163] Binary Dyn # Gitlab
VirtualCert [42] x86 Fo edu.uy

Targets: LLVM—intermediate representation, DSL—domain-specific language, WASM—Web
Assembly, Network—network-reachable TLS implementation

Technique: Sym—Symbolic, Stat—Statistics, Dyn—Dynamic, Fo—Formal, †—also performs code
transformation/synthesis

Guarantees: —sound, G#—sound with restrictions, #—no guarantee, ■—other property

Table B.1.: Classification of CT tools.

116

https://github.com/s3team/Abacus
https://github.com/vusec/absynthe.git
https://github.com/OSUSecLab/ANABLEPS
https://github.com/binsec/binsec
http://irisa.fr/celtique/ext/esorics17/
https://github.com/cacheaudit/cacheaudit
https://github.com/cacheaudit/cacheaudit
https://bitbucket.org/sudiptac/cachefix/src/master/
https://github.com/Yuanyuan-Yuan/CacheQL
https://github.com/canalcache/canal
https://github.com/IAIK/cache_template_attacks
https://bitbucket.org/sudiptac/chalice
https://github.com/pietroborrello/constantine
https://github.com/agl/ctgrind
https://github.com/michael-emmi/ct-fuzz
https://github.com/imdea-software/verifying-constant-time
https://github.com/PLSysSec/ct-wasm
https://github.com/Fraunhofer-AISEC/DATA
https://github.com/oreparaz/dudect
https://github.com/sysrel/ENCIDER
https://people.kth.se/~musard/files/encover.html
http://cuda.dcc.ufmg.br/flowtracker/
https://github.com/PLSysSec/haybale-pitchfork
https://zenodo.org/record/5816702#.YdQMHxNByjA
https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/UzL-ITS/Microwalk
https://github.com/UzL-ITS/Microwalk
https://github.com/seecurity/mona-timing-lib
https://github.com/seecurity/mona-timing-report
https://github.com/intel/pin-based-cec
https://github.com/PLSysSec/pitchfork-angr
https://zenodo.org/record/1299357
https://github.com/aws/s2n-tls/tree/main/tests/sidetrail
https://github.com/fredfeng/Themis-taint
https://www.post-apocalyptic-crypto.org/timecop/
https://github.com/tlsfuzzer/tlsfuzzer/
https://gitlab.com/nisec/triggerflow
https://www.fing.edu.uy/inco/grupos/gsi/project/virtualcert/

C. On the Importance and Challenges
of Reproducible Builds for Software
Supply Chain Security

C.1. Codebook
1. Background

a. Professional Experience
b. Joining project

i. Interests

2. Reasons
a. (non-)technical

i. Internal and External drivers
A. Compilers work like mathematical functions
B. Broken expectations
C. Want to do/have quality
D. Want to build infrastructure
E. Wants to work on leaf packages
F. Self-guided exploration
G. Source code is out in the open, so anybody can see it
H. Build speed/caching

ii. Community requests
A. Snowden leaks/security incident/privacy protection

iii. Security for developers
b. Threats

i. Specific threats
ii. Incidents or requirements

A. Specific incident found by reproducible builds

117

C. On the Importance andChallenges of Reproducible Builds for Software SupplyChain Security

c. Project decision process
i. Started themselves independently
ii. Consensus
iii. Corporate decision/management

3. Process
a. People involved

i. Communication
ii. Detractors

b. Starting topic
i. Build process

A. CI or other build infrastructure
B. Version pinning

1. compiler version
2. transitive dependencies

ii. Upstream interaction
A. Community building

1. Documentation work
B. Communication

1. Patience necessary
2. Good communication skills more necessary than expected

C. Reproducible Builds buy-in
D. Common community requests
E. Receptive upstream
F. Receptive compiler authors
G. Patch polishing was necessary
H. Upstream rewrote patches themselves

iii. Decision criterion for reproducibility

4. Tooling
a. Helpful tools used

i. Integration into build process
b. Other resources used

5. Obstacles

118

C.2. Questionnaire

a. Technical
i. Build date included, SOURCE_DATE_EPOCH
ii. Build directory included in full, BUILD_PATH_PREFIX_MAP
iii. Compiler included randomness (symbols, ...)
iv. Profile Guided Optimization (PGO)
v. Cryptographic signatures included in binaries

6. Helpful factors
a. Self-effective participants

7. Target changes

8. Changes on starting over
a. Regret not doing more outreach

9. How specific
a. Direct port of procedures and tools

10. Misc
a. Bootstrappable Builds

C.2. Questionnaire
Intro

• Thanks: Thank you verymuch for offering your valuable time for this interview.
We are very grateful for your contribution.

• Ready: Are you ready to start the interview?
• Structure: First off, I am going to talk about the context and data handling, and

if you agree with everything, we would then start with the interview.

Context

• We: We are researchers at [anonymized for submission]

• Our research: focuses on the area “Security impact of and experiences with re-
producible builds”.

• This interview is a start/exploration of internal processes and decisions often
not visible at the technical level.

• For this interview:

119

C. On the Importance andChallenges of Reproducible Builds for Software SupplyChain Security

– We are not judging security or technological decisions of a project,
we are just interested in the underlying structures and processes.

– Projects are often very complex, if you don’t know the answer, or
cannot speak about a question for any reason, just say “next”.

– We are not just interested in structures, but also your personal
opinions and experiences.

• Questions? Any questions about the interview context so far?

Consent

• Voluntary: Your responses in this interview are entirely voluntary, and youmay
refuse to answer any or all of the questions in this interview.

• Duration: Duration of the interview depends a bit on the duration of your an-
swers,in our experience so far about X to Y minutes.

• We will de-identify you and your projects in any publication and only include
short quotes.

• We will send you a preprint before a potential publication, if you want.

• Recording: We would like to record this interview so that we can transcribe the
answers later

– The recording will be destroyed when we transcribed the inter-
view

• Questions? Any more questions about data handling or recording?

• I will now start the recording

• “The recording is now on” SWITCH ON RECORDING

• Restate consent question

Section 1 - Intro [Personal / General / Project]

1. To start, we are interested in your background and that of [project we are inter-
ested in re: reproducible builds]. Please tell us a little bit about how you got
involved?

a. Coursework?
b. Professional experience?
c. How did you get into [project]?

i. What did you find interesting about [project]?
ii. And how long have you been working on [project]?

120

C.2. Questionnaire

iii. Which programming languages are commonly used in [project]?
d. [if [project] uses more than on PL:] Specific programming lan-

guage background/experience?
i. Do you have experience with some/all of the programming languages

used in [project]?

2. Could you please elaborate a bit about your role in [project]?

a. What packages do you work on, what do they do?
b. How did you get from working generally on [project] to working

on reproducible builds?

3. Could you explain what reproducible builds mean to you?

a. In the context of project
b. In general

In the context of our research, we’ll be talking about reproducible builds
in this interview.

When we say reproducible builds, we mean that for each version of the
project, anyone can take the source artifacts and in the best case build a
package that is bit-for-bit identical at any point now or in the future.

Comparison that two packages are built from the same source should, at
the very least, be possible via human inspection.

Ideally, the comparison should be as automated as possible.

Wewant to allowdifferent parties to determine if a binary packagematches
its source code, eliminating possible backdoors during the build process.

Section 2 - Reasons, Decisions

1. [project] has[/has not yet] made progress towards reproducible builds. We’ll
be very interested in the process in a moment. Before we start on that, we are
interested in your reasons for making [project] reproducible?

a. Technical and also non-technical?
i. Internal/external drivers?
ii. Community requests (users vs. developers)?
iii. Security for developers? (by getting the software out of your sole con-

trol, making the build environment on yourmachine less of a target for
attackers)

b. What threats are you protecting against?

121

C. On the Importance andChallenges of Reproducible Builds for Software SupplyChain Security

i. Are there any specific threats?
ii. Specific incidents/requirements?

c. Whatwere the reasons againstmaking [project] or individual pack-
ages fully reproducible as of now? (not yet, or not at all)

d. How did the project decide? Who made these decisions, what
roles did they have?

Section 3 - Process, Tools

1. What [was/is/would be/will be] your process of making [project] or individual
packets reproducible?

a. When did you start?
b. Who were the people and roles involved in this effort?

i. How did they communicate with each other? (e.g., mailing lists, confer-
ences/Bug Squashing Parties, issues, calls…)

ii. Were there detractors?
c. What is your estimate of your time invested into it?

i. Did that change over time?
d. Where did you start?

i. What was the strategy for choosing which packages to work on first?

(e.g., easy leaf packages first vs. important upstream dependencies first)

1. a. i. What is your build process like?
A. Do you use some form of CI or other build infrastructure?
B. What is the level of version pinning that you do for releases?

1. Upstream compiler version subreleases?
2. Transitive dependencies?

ii. How do you interact with upstream projects used in [project]?
A. Was there active community building,
B. communication,
C. buy-in into reproducible builds,
D. any insights on successful / unsuccessful communication
E. (common) community requests [rb or upstream]?

iii. How did you decide that a package is reproducible?

(prompt: 100% reproducible artifacts vs. specific test for reproducibility; explain-
able differences in certain data fields)

122

C.2. Questionnaire

1. [for libraries] Do you (want to) use other programming languages in the library
and if so, why?

a. Can you tell us about any interactions between programming lan-
guage changes and reproducibility efforts? Did one of them im-
pact the other?

2. What is your tech setup/specific tooling or other resources to help you make
[project] reproducible?

(e.g., prompt for diffoscope)

1. a. Please tell us about the tools or libraries you built or used to help
make [project] reproducible?

i. Did you integrate any of them into the CI or packaging utilities?
A. How did that go?

b. Were there any approaches, tools, that you abandoned on your
way to make [project] reproducible?

i. Example: Binary diffing died
c. What type of tool – whether it exists or not – would you have liked

to have to help with making your builds reproducible, or checking
for reproducibility?

d. Were there any other resources you used? (e.g., documentation,
knowledge bases, websites)

Section 4 - Obstacles/Challenges, Facilitators

1. If there were any, please tell us about the obstacles involved in making [project]
reproducible?

a. Organizational (buy-in from different developers, not being able
to do systemic changes in different parts of the project)

b. Technical (hard dependencies on timestamps for identifiers etc.)
c. Dependencies (upstream not being willing to take patches, mark-

ing change requests as invalid/WorksForMe)
d. Of the differences between different programming languages and

their communities, which influenced your effort in [project]’s re-
producibility? And was that influence positive or negative? (bug
reporting, error culture towards compiler changes, community re-
sponses to questions)

2. Which factors were particularly helpful in making your progress more manage-
able?

123

C. On the Importance andChallenges of Reproducible Builds for Software SupplyChain Security

3. Did your target change due to difficulties in getting [project] to be reproducible?

(e.g. any compromises)

Section 5 - Generalization / Lessons Learned

1. “If you had to start over, what would you do differently?”
a. Would using current tools solve a lot of the problems you encoun-

tered?
b. Are there any programming language specific things youwish you

could have used?

2. What worked well, what didn’t work?
a. Can you tell us about the role of upstream patches and how they

help or hinder reproducibility?
i. How did your effort change over time while other packages worked on

their reproducibility?

3. How specific would you say your process was to your project? We are interested
inwhat can be generalized or already benefits other projects, andwhat’s specific
to yours.

a. In your personal opinion, do you think that other projects could
follow the same or similar procedures? (direct port of technical
measures or organizational structures, similarities between biggest
hurdles)

4. What would you recommend to other developers and projects?

Outro

1. Is there anything else youwould like to tell us about reproducible builds, within
or outside the scope of [project]?

2. Is there something that we did not cover during the interview but you would
like to talk about?

Debrief

• SWITCH OFF RECORDING “The recording is now off”

• Could you recommend other projects or persons we could invite for an inter-
view? They should have attempted to make their project reproducible.

• Thank the participant again for their valuable time

• Do you want to get a preprint of our paper?
– If interested: what is your preferred contact data?

∗ We will be in contact for a preprint

124

C.3. Motivational Matrix

C.3. Motivational Matrix

Time Money Reputation Results

Research
Group

University

Development
Corporation

Security
Organization

Open Source
Project

End User

Government

Caching

Minimizing
manual
retesting

Build debug

Increased
development

speed

Deduplication

Smaller
binary

differences

Scientific
Reproduction

OpenSSF
scorecard

Quality

Cheaper
Builds

Ability to
build in

the future

Introspection

Chain of
security

Figure C.1.: Motivational matrix, joint work from a discussion session with attendees
of the Reproducible Builds Summit 2022.

125

D. Publication History
Prior to working on this thesis, the following papers were published:

1. Marcel Fourné, Dominique Petersen, and Norbert Pohlmann. “Attack-test and
verification systems, steps towards verifiable anomaly detection”. In: INFORMATIK
2013 – Informatik angepasst an Mensch, Organisation und Umwelt. Gesellschaft für
Informatik eV, 2013, pp. 2213–2224. isbn: 978-3-88579-614-5

2. Marcel Fourné, Kevin Stegemann, Dominique Petersen, and Norbert Pohlmann.
“Aggregation of Network Protocol Data Near Its Source”. In: Information and Commu-
nication Technology: Second IFIP TC5/8 International Conference, ICT-EurAsia 2014,
Bali, Indonesia, April 14-17, 2014. Proceedings 2. Springer. 2014, pp. 482–491. isbn:
978-3-642-55031-7. doi: 10.1007/978-3-642-55032-4_49

In order of publication, the following peer-reviewed works were accepted for pub-
lication during the work leading up to this thesis:

3. Jan Jancar,Marcel Fourné, DanielDeAlmeidaBraga,MohamedSabt, Peter Schwabe,
Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. ““They’re not that hard
to mitigate”: What Cryptographic Library Developers Think About Timing Attacks”.
In: 2022 IEEE Symposium on Security and Privacy. San Francisco, CA, USA: IEEE
Computer Society Press, May 2022, pp. 632–649. doi: 10.1109/SP46214.2022.983
3713

4. DominikWermke, NoahWöhler, JanH.Klemmer,Marcel Fourné, YaseminAcar,
and Sascha Fahl. “Committed to Trust: A Qualitative Study on Security & Trust
in Open Source Software Projects”. In: Proceedings of the 43rd IEEE Symposium on
Security and Privacy (S&P’22). May 2022, won the distinguished paper award
(see https://www.ieee-security.org/TC/SP2022/awards.html) but is not
included in this thesis.

5. Marcel Fourné, DominikWermke,WilliamEnck, Sascha Fahl, andYaseminAcar.
“It’s like flossing your teeth: On the Importance and Challenges of Reproducible Builds
for Software Supply Chain Security”. In: 2023 IEEE Symposium on Security and Pri-
vacy (SP). 2023, pp. 1527–1544. doi: 10.1109/SP46215.2023.10179320

6. Marcel Fourné, DominikWermke, Sascha Fahl, and Yasemin Acar. “A Viewpoint
on Human Factors in Software Supply Chain Security: A Research Agenda”. In: IEEE
Security & Privacy 21.6 (2023), pp. 59–63. doi: 10.1109/MSEC.2023.3316569

127

https://doi.org/10.1007/978-3-642-55032-4_49
https://doi.org/10.1109/SP46214.2022.9833713
https://doi.org/10.1109/SP46214.2022.9833713
https://www.ieee-security.org/TC/SP2022/awards.html
https://doi.org/10.1109/SP46215.2023.10179320
https://doi.org/10.1109/MSEC.2023.3316569

D. Publication History

7. Marcel Fourné, Jan Jancar, DanielDeAlmeidaBraga,MohamedSabt, Peter Schwabe,
Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. “‘These results must be
false’: A usability evaluation of constant-time analysis tools”. In: 33th USENIX Secu-
rity Symposium (USENIX Security 2024). USENIX Association, 2024

128

List of Figures
3.1. Leaky pipeline of developers’ knowledge and use of tools for testing or

verifying constant-timeness. 22
3.2. Survey flow as shown to participants. 29
3.3. Reported likeliness of tool use based on requirements and guarantees. 38
3.4. Participant reasoning behind their likelihood of tool use. 38

4.1. Study flow for each participant. 57
4.2. Participant’s major issues during the repair tasks. (Left) For tools over

all tasks. (Right) For tasks over all tools. 63

5.1. Illustration of topic flow in the reproducible builds interviews. As we
conducted semi-structured interviews, participantswere presentedwith
general questions and corresponding follow-ups in each section, but
were generally free to diverge from this flow. 82

C.1. Motivational matrix, joint work from a discussion session with atten-
dees of the Reproducible Builds Summit 2022. 125

129

Bibliography
[1] https://www.wired.com/story/worst-hacks-breaches-2020-so-far/.
[2] https://www.statista.com/statistics/800258/worldwide-meltdown-spectre-potential-mitigat

ion-cost-by-device-type/.
[3] Ibrahim Abunadi and Mamdouh Alenezi. “Towards Cross Project Vulnerability Prediction in

Open Source Web Applications”. In: Proceedings of the The International Conference on Engineering
& MIS 2015. ICEMIS ’15. Istanbul, Turkey: Association for Computing Machinery, 2015. isbn:
9781450334181. doi: 10.1145/2832987.2833051. url: https://doi.org/10.1145/2832987.2833051.

[4] YaseminAcar.HumanFactors in Secure SoftwareDevelopment. Ed. byBernd (Prof. Dr.) Freisleben.
Philipps-Universität Marburg, 2021. url: /diss/z2021/0231/pdf/dya.pdf.

[5] YaseminAcar,Michael Backes, Sascha Fahl, SimsonGarfinkel, DoowonKim,Michelle L.Mazurek,
andChristian Stransky. “Comparing theUsability of Cryptographic APIs”. In:Proc. 38th IEEE Sym-
posium on Security and Privacy (SP’17). IEEE, 2017.

[6] Yasemin Acar, Michael Backes, Sascha Fahl, Simson L. Garfinkel, Doowon Kim, Michelle L.
Mazurek, andChristian Stransky. “Comparing the Usability of Cryptographic APIs”. In: 2017 IEEE
Symposium on Security and Privacy. San Jose, CA,USA: IEEEComputer Society Press,May 2017,
pp. 154–171. doi: 10.1109/SP.2017.52.

[7] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle LMazurek, and Christian
Stransky. “You Get Where You’re Looking For: The Impact of Information Sources on Code Security”.
In: Proc. 37th IEEE Symposium on Security and Privacy (SP’16). IEEE, 2016.

[8] Yasemin Acar, Sascha Fahl, and Michelle L. Mazurek. “You are Not Your Developer, Either: A Re-
search Agenda for Usable Security and Privacy Research Beyond End Users”. In: IEEE Cybersecurity
Development, SecDev 2016. Boston, MA, USA: IEEE, Nov. 2016, pp. 3–8. doi: 10.1109/SECDEV.2
016.013. url: https://doi.org/10.1109/SecDev.2016.013.

[9] Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, eds. ACM CCS 2017:
24th Conference on Computer and Communications Security. Dallas, TX, USA: ACM Press, Oct.
2017.

[10] Giovanni Vigna and Elaine Shi, eds. ACM CCS 2021: 28th Conference on Computer and Commu-
nications Security. Virtual Event, Republic of Korea: ACM Press, Nov. 2021.

[11] Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, eds. ACM CCS 2022: 29th Conference
on Computer and Communications Security. Los Angeles, CA, USA: ACM Press, Nov. 2022.

[12] Hammad Afzali, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos. “Towards adding
verifiability to web-based Git repositories”. In: Journal of Computer Security 28.4 (2020), pp. 405–
436.

[13] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. “What’s a Typical Commit? A Char-
acterization of Open Source Software Repositories”. In: Proceedings of the 16th IEEE International
Conference on Program Comprehension. 2008, pp. 182–191.

[14] Martin R. Albrecht and Kenneth G. Paterson. “Lucky Microseconds: A Timing Attack on Ama-
zon’s s2n Implementation of TLS”. In: Advances in Cryptology – EUROCRYPT 2016. Ed. by Marc
Fischlin and Jean-Sébastien Coron. Vol. 9665. LNCS. Springer, 2016, pp. 622–643. url: https:
//eprint.iacr.org/2015/1129.

131

https://www.wired.com/story/worst-hacks-breaches-2020-so-far/
https://www.statista.com/statistics/800258/worldwide-meltdown-spectre-potential-mitigation-cost-by-device-type/
https://www.statista.com/statistics/800258/worldwide-meltdown-spectre-potential-mitigation-cost-by-device-type/
https://doi.org/10.1145/2832987.2833051
https://doi.org/10.1145/2832987.2833051
/diss/z2021/0231/pdf/dya.pdf
https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/SECDEV.2016.013
https://doi.org/10.1109/SECDEV.2016.013
https://doi.org/10.1109/SecDev.2016.013
https://eprint.iacr.org/2015/1129
https://eprint.iacr.org/2015/1129

Bibliography

[15] Mamdouh Alenezi and Yasir Javed. “Open source web application security: A static analysis ap-
proach”. In: 2016 International Conference on Engineering & MIS (ICEMIS). 2016, pp. 1–5. doi:
10.1109/ICEMIS.2016.7745369.

[16] Nadhem J. AlFardan and Kenneth G. Paterson. “Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols”. In: 2013 IEEE Symposium on Security and Privacy. Berkeley, CA, USA: IEEE
Computer Society Press, May 2013, pp. 526–540. doi: 10.1109/SP.2013.42.

[17] Said Ali, Oscar Nierstrasz, andMohammadreza Hazhirpasand. “Profiling Cryptography Devel-
opers”. In: (2020).

[18] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vin-
cent Laporte, TiagoOliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. “Jasmin:
High-Assurance and High-Speed Cryptography”. In: ACM CCS 2017: 24th Conference on Computer
and Communications Security. Ed. by BhavaniM. Thuraisingham, David Evans, TalMalkin, and
Dongyan Xu. Dallas, TX, USA: ACM Press, Oct. 2017, pp. 1807–1823. doi: 10.1145/3133956.31
34078.

[19] José BacelarAlmeida,Manuel Barbosa, Gilles Barthe, FrançoisDupressoir, andMichael Emmi.
“Verifying Constant-Time Implementations”. In: USENIX Security 2016: 25th USENIX Security
Symposium. Ed. by Thorsten Holz and Stefan Savage. Austin, TX, USA: USENIX Association,
Aug. 2016, pp. 53–70.

[20] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos,
Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. “The Last Mile: High-Assurance and
High-Speed Cryptographic Implementations”. In: 2020 IEEE Symposium on Security and Privacy.
San Francisco, CA, USA: IEEE Computer Society Press, May 2020, pp. 965–982. doi: 10.1109
/SP40000.2020.00028.

[21] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira. “Formal verifica-
tion of side-channel countermeasures using self-composition”. In: Sci. Comput. Program. 78.7 (2013),
pp. 796–812. doi: 10.1016/j.scico.2011.10.008. url: https://doi.org/10.1016/j.scico.2011.10.008.

[22] Kemal Altinkemer, Jackie Rees, and Sanjay Sridhar. “Vulnerabilities and patches of open source
software: an empirical study”. In: Journal of Information System Security 4.2 (2008), pp. 3–25.

[23] Ron Amadeo. Linux gives up on 6-year LTS kernels, says they’re too much work. https://arstechni
ca.com/gadgets/2023/09/linux-gives-up-on-6-year-lts-thats-fine-for-pcs-bad-for-android/.
2023.

[24] Paschal C. Amusuo, Kyle A. Robinson, Santiago Torres-Arias, Laurent Simon, and James C.
Davis. Preventing Supply Chain Vulnerabilities in Java with a Fine-Grained Permission Manager.
2023. arXiv: 2310.14117 [cs.CR].

[25] P. Anbalagan and M. Vouk. “Towards a Unifying Approach in Understanding Security Problems”.
In: Proceedings 20th International Symposium on Software Reliability Engineering (ISSRE’09. 2009,
pp. 136–145.

[26] Chris Aniszczyk. 8 ways your company can support and sustain open source. https://opensource
.com/article/19/4/ways-support-sustain-open-source. 2019.

[27] GáborAntal,MártonKeleti, andPéterHegedŭns. “Exploring the SecurityAwareness of the Python
and JavaScript Open Source Communities”. In: Proceedings of the 17th International Conference on
Mining Software Repositories (MSR’20). 2020, pp. 16–20.

[28] Maria Antikainen, Timo Aaltonen, and Jaani Väisänen. “The role of trust in OSS communities
— Case Linux Kernel community”. In: Open Source Development, Adoption and Innovation. Ed. by
Joseph Feller, Brian Fitzgerald, Walt Scacchi, and Alberto Sillitti. Boston, MA: Springer US,
2007, pp. 223–228. isbn: 978-0-387-72486-7.

132

https://doi.org/10.1109/ICEMIS.2016.7745369
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1016/j.scico.2011.10.008
https://doi.org/10.1016/j.scico.2011.10.008
https://arstechnica.com/gadgets/2023/09/linux-gives-up-on-6-year-lts-thats-fine-for-pcs-bad-for-android/
https://arstechnica.com/gadgets/2023/09/linux-gives-up-on-6-year-lts-thats-fine-for-pcs-bad-for-android/
https://arxiv.org/abs/2310.14117
https://opensource.com/article/19/4/ways-support-sustain-open-source
https://opensource.com/article/19/4/ways-support-sustain-open-source

[29] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and Shiyi
Wei. “Decomposition instead of self-composition for proving the absence of timing channels”. In: Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, Barcelona, Spain, June 18-23, 2017. Ed. by Albert Cohen and Martin T. Vechev.
ACM, 2017, pp. 362–375. doi: 10.1145/3062341.3062378. url: https://doi.org/10.1145/306234
1.3062378.

[30] KonstantinosAthanasiou, ByronCook,Michael Emmi, ColmMacCárthaigh,Daniel Schwartz-
Narbonne, and Serdar Tasiran. “SideTrail: Verifying Time-Balancing of Cryptosystems”. In:Verified
Software. Theories, Tools, and Experiments - 10th International Conference, VSTTE 2018, Oxford, UK,
July 18-19, 2018, Revised Selected Papers. Ed. by Ruzica Piskac and Philipp Rümmer. Vol. 11294.
LNCS. Springer, 2018, pp. 215–228. doi: 10.1007/978-3-030-03592-1_12. url: https://doi.org/1
0.1007/978-3-030-03592-1_12.

[31] MelissaAzouaoui,DavideBellizia, IleanaBuhan,NicolasDebande, SébastienDuval, Christophe
Giraud, Éliane Jaulmes, François Koeune, Elisabeth Oswald, François-Xavier Standaert, and
Carolyn Whitnall. “A Systematic Appraisal of Side Channel Evaluation Strategies”. In: Security
Standardisation Research - 6th International Conference, SSR 2020, London, UK, November 30 -
December 1, 2020, Proceedings. Ed. by Thyla van der Merwe, Chris J. Mitchell, and Maryam
Mehrnezhad. Vol. 12529. Lecture Notes in Computer Science. Springer, 2020, pp. 46–66. doi:
10.1007/978-3-030-64357-7_3. url: https://doi.org/10.1007/978-3-030-64357-7_3.

[32] Salem S. Bahamdain. “Open Source Software (OSS) Quality Assurance: A Survey Paper”. In: Pro-
cedia Computer Science 56 (2015). The 10th International Conference on Future Networks and
Communications (FNC2015) / The 12th International Conference onMobile Systems andPer-
vasive Computing (MobiSPC 2015) Affiliated Workshops, pp. 459–464. issn: 1877-0509. doi:
https://doi.org/10.1016/j.procs.2015.07.236. url: https://www.sciencedirect.com/science/ar
ticle/pii/S1877050915017172.

[33] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-MinHu. “Effective static analysis of concurrency
use-after-free bugs in Linux device drivers”. In: Proceedings of the 2019 USENIX Annual Technical
Conference (ATC’19). 2019, pp. 255–268.

[34] Wei Bai, Moses Namara, Yichen Qian, Patrick Gage Kelley, Michelle L Mazurek, and Doowon
Kim. “An inconvenient trust: User attitudes toward security and usability tradeoffs for key-directory
encryption systems”. In:Proceedings of the 12th Symposium onUsable Privacy and Security (SOUPS’16).
2016, pp. 113–130.

[35] Sogol Balali, UmayalAnnamalai,HemaSusmita Padala, Bianca Trinkenreich,MarcoA.Gerosa,
Igor Steinmacher, and Anita Sarma. “Recommending Tasks to Newcomers in OSS Projects: How
Do Mentors Handle It?” In: Proceedings of the 16th International Symposium on Open Collaboration
(OpenSym’20). 2020.

[36] Musard Balliu, Mads Dam, and Gurvan Le Guernic. “ENCoVer: Symbolic Exploration for Infor-
mation Flow Security”. In: CSF 2012: IEEE 25th Computer Security Foundations Symposium. Ed. by
Steve Zdancewic and Véronique Cortier. Cambridge,MA, USA: IEEE Computer Society Press,
June 2012, pp. 30–44. doi: 10.1109/CSF.2012.24.

[37] Qinkun Bao, Zihao Wang, James R. Larus, and Dinghao Wu. “Abacus: A Tool for Precise Side-
Channel Analysis”. In: 43rd IEEE/ACM International Conference on Software Engineering: Compan-
ion Proceedings, ICSE Companion 2021. IEEE, 2021, pp. 238–239. doi: 10.1109/ICSE-Companion
52605.2021.00110. url: https://doi.org/10.1109/ICSE-Companion52605.2021.00110.

[38] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao,
and Bryan Parno. “SoK: Computer-Aided Cryptography”. In: 2021 IEEE Symposium on Security
and Privacy. San Francisco, CA, USA: IEEE Computer Society Press, May 2021, pp. 777–795.
doi: 10.1109/SP40001.2021.00008.

133

https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1007/978-3-030-03592-1_12
https://doi.org/10.1007/978-3-030-03592-1_12
https://doi.org/10.1007/978-3-030-03592-1_12
https://doi.org/10.1007/978-3-030-64357-7_3
https://doi.org/10.1007/978-3-030-64357-7_3
https://doi.org/https://doi.org/10.1016/j.procs.2015.07.236
https://www.sciencedirect.com/science/article/pii/S1877050915017172
https://www.sciencedirect.com/science/article/pii/S1877050915017172
https://doi.org/10.1109/CSF.2012.24
https://doi.org/10.1109/ICSE-Companion52605.2021.00110
https://doi.org/10.1109/ICSE-Companion52605.2021.00110
https://doi.org/10.1109/ICSE-Companion52605.2021.00110
https://doi.org/10.1109/SP40001.2021.00008

Bibliography

[39] Manuel Barbosa andPeter Schwabe.Kyber terminates. Cryptology ePrintArchive, Paper 2023/708.
https://eprint.iacr.org/2023/708. 2023. url: https://eprint.iacr.org/2023/708.

[40] Rob Barrett, Eser Kandogan, Paul P Maglio, Eben M Haber, Leila A Takayama, and Madhu
Prabaker. “Field studies of computer system administrators: analysis of system management tools and
practices”. In: Proceedings of the 2004 ACM conference on Computer Supported Cooperative Work.
2004, pp. 388–395.

[41] Gilles Barthe, Sonia Belaıd̈, Thomas Espitau, Pierre-Alain Fouque, Mélissa Rossi, and Mehdi
Tibouchi. “GALACTICS: Gaussian Sampling for Lattice-Based Constant- Time Implementation of
Cryptographic Signatures, Revisited”. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019. ACM, 2019, pp. 2147–2164. url: https://doi.org
/10.1145/3319535.3363223.

[42] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David Pichardie.
“System-level Non-interference for Constant-time Cryptography”. In: ACM CCS 2014: 21st Confer-
ence on Computer and Communications Security. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui
Li. Scottsdale, AZ, USA: ACM Press, Nov. 2014, pp. 1267–1279. doi: 10.1145/2660267.2660283.

[43] Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin,
Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom. Test-
ing side-channel security of cryptographic implementations against future microarchitectures. arXiv
preprint 2402.00641. https://arxiv.org/abs/2402.00641. 2024.

[44] Lujo Bauer, Lorrie Faith Cranor, Robert W Reeder, Michael K Reiter, and Kami Vaniea. “Real
life challenges in access-control management”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2009, pp. 899–908.

[45] Steven M. Bellovin. http://catless.ncl.ac.uk/Risks/25.71.html#subj19. 2009.
[46] Yoav Benjamini and Yosef Hochberg. “Controlling the false discovery rate: a practical and powerful

approach to multiple testing”. In: Journal of the Royal statistical society: series B (Methodological) 57.1
(1995), pp. 289–300.

[47] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/antiforgery/cachetiming-200
50414.pdf. 2005.

[48] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: PKC 2006: 9th Interna-
tional Conference on Theory and Practice of Public Key Cryptography. Ed. by Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin. Vol. 3958. Lecture Notes in Computer Science. New
York, NY, USA: Springer, Heidelberg, Germany, Apr. 2006, pp. 207–228. doi: 10.1007/1174585
3_14.

[49] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-Speed
High-Security Signatures”. In: Cryptographic Hardware and Embedded Systems – CHES 2011. Ed.
by Bart Preneel and Tsuyoshi Takagi. Vol. 6917. Lecture Notes in Computer Science. Nara,
Japan: Springer, Heidelberg, Germany, Sept. 2011, pp. 124–142. doi: 10.1007/978-3-642-23951-
9_9.

[50] Antonia Bertolino. “Software testing research: Achievements, challenges, dreams”. In: Future of Soft-
ware Engineering (FOSE’07). IEEE. 2007, pp. 85–103.

[51] Vieri del Bianco, Luigi Lavazza, Sandro Morasca, Davide Taibi, and Davide Tosi. “An Inves-
tigation of the Users’ Perception of OSS Quality”. In: Open Source Software: New Horizons. Ed. by
Pär Ågerfalk, Cornelia Boldyreff, Jesús M. González-Barahona, Gregory R. Madey, and John
Noll. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–28. isbn: 978-3-642-13244-5.

[52] Lukas Bieringer, Kathrin Grosse, Michael Backes, Battista Biggio, and Katharina Krombholz.
“Industrial practitioners’ mental models of adversarial machine learning”. In: Proceedings of the 18th
Symposium on Usable Privacy and Security (SOUPS’22). Aug. 2022, pp. 97–116.

134

https://eprint.iacr.org/2023/708
https://eprint.iacr.org/2023/708
https://doi.org/10.1145/3319535.3363223
https://doi.org/10.1145/3319535.3363223
https://doi.org/10.1145/2660267.2660283
https://arxiv.org/abs/2402.00641
http://catless.ncl.ac.uk/Risks/25.71.html#subj19
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9

[53] Sandrine Blazy, David Pichardie, and Alix Trieu. “Verifying Constant-Time Implementations by
Abstract Interpretation”. In: ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Part I. Ed. by Simon N. Foley, Dieter Gollmann, and Einar Snekkenes. Vol. 10492.
LectureNotes in Computer Science. Oslo, Norway: Springer, Heidelberg, Germany, Sept. 2017,
pp. 260–277. doi: 10.1007/978-3-319-66402-6_16.

[54] Kelly Blincoe, Francis Harrison, and Daniela Damian. “Ecosystems in GitHub and a Method for
Ecosystem Identification Using Reference Coupling”. In: Proceedings of the 12th Working Conference
on Mining Software Repositories (MSR’15). 2015, pp. 202–207.

[55] Nele Borgert, Jennifer Friedauer, Imke Böse, and Malte Elson. “The Study of Cybersecurity Self-
Efficacy: A Systematic Literature Review of Methodology”. In.

[56] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida. “Constan-
tine: Automatic Side-Channel Resistance Using Efficient Control and Data Flow Linearization”. In:
ACM CCS 2021: 28th Conference on Computer and Communications Security. Ed. by Giovanni Vi-
gna and Elaine Shi. Virtual Event, Republic of Korea: ACM Press, Nov. 2021, pp. 715–733. doi:
10.1145/3460120.3484583.

[57] JoppeW.Bos, LéoDucas, EikeKiltz, TancrèdeLepoint, VadimLyubashevsky, JohnM. Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS-Kyber: A CCA-Secure Module-
Lattice-Based KEM”. In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018.
IEEE, 2018, pp. 353–367. doi: 10.1109/EuroSP.2018.00032.

[58] Amiangshu Bosu, Jeffrey C Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni. “Identi-
fying the characteristics of vulnerable code changes: An empirical study”. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering. 2014, pp. 257–
268.

[59] Amiangshu Bosu and Jeffrey C. Carver. “Impact of Developer Reputation on Code Review Out-
comes in OSS Projects: An Empirical Investigation”. In: Proceedings of the 8th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM’14). 2014.

[60] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni. “When
Are OSS Developers More Likely to Introduce Vulnerable Code Changes? A Case Study”. In: Open
Source Software: Mobile Open Source Technologies. Springer Berlin Heidelberg, 2014, pp. 234–236.

[61] David Botta, RodrigoWerlinger, André Gagné, Konstantin Beznosov, Lee Iverson, Sidney Fels,
and Brian Fisher. “Towards Understanding IT Security Professionals and Their Tools”. In: Proc. 3rd
Symposium on Usable Privacy and Security (SOUPS’07). ACM, 2007.

[62] Daniel De Almeida Braga, Pierre-Alain Fouque, andMohamed Sabt. “Dragonblood is Still Leak-
ing: Practical Cache-based Side-Channel in theWild”. In:ACSAC ’20: Annual Computer Security Ap-
plications Conference. ACM, 2020, pp. 291–303. url: https://doi.org/10.1145/3427228.3427295.

[63] Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt. “PARASITE: PAssword
Recovery Attack against Srp Implementations in ThE wild”. In: CCS ’21: 2021 ACM SIGSAC Con-
ference on Computer and Communications Security. Ed. by Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi. ACM, 2021, pp. 2497–2512. doi: 10.1145/3460120.3484563.

[64] Tohar Braun and Lidor Ben Shitrit. Dependency Confusion Supply Chain Attacks: 49% of Organi-
zations Are Vulnerable. https://orca.security/resources/blog/dependency-confusion-supply-c
hain-attacks/. 2023.

[65] Virginia Braun and Victoria Clarke. “Using thematic analysis in psychology”. In: Qualitative re-
search in psychology 3.2 (2006), pp. 77–101.

135

https://doi.org/10.1007/978-3-319-66402-6_16
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1145/3427228.3427295
https://doi.org/10.1145/3460120.3484563
https://orca.security/resources/blog/dependency-confusion-supply-chain-attacks/
https://orca.security/resources/blog/dependency-confusion-supply-chain-attacks/

Bibliography

[66] Tegan Brennan, Seemanta Saha, Tevfik Bultan, and Corina S. Pasareanu. “Symbolic path cost
analysis for side-channel detection”. In: Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018.
Ed. by Frank Tip and Eric Bodden. ACM, 2018, pp. 27–37. doi: 10.1145/3213846.3213867. url:
https://doi.org/10.1145/3213846.3213867.

[67] Ernie Brickell. Technologies to Improve Platform Security. Invited talk at CHES 2011. 2011. url:
https://www.iacr.org/workshops/ches/ches2011/presentations/Invited%5C%201/CHES20
11_Invited_1.pdf.

[68] John Brooke. “SUS: A quick and dirty usability scale”. In: Usability Eval. Ind. 189 (Nov. 1995).
[69] Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut T. Kandemir. “CaSym:

Cache Aware Symbolic Execution for Side Channel Detection and Mitigation”. In: 2019 IEEE Sympo-
sium on Security and Privacy. San Francisco, CA, USA: IEEE Computer Society Press, May 2019,
pp. 505–521. doi: 10.1109/SP.2019.00022.

[70] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. “Flush, Gauss, and
Reload - A Cache Attack on the BLISS Lattice-Based Signature Scheme”. In: Cryptographic Hard-
ware and Embedded Systems – CHES 2016. Ed. by Benedikt Gierlichs and Axel Y. Poschmann.
Vol. 9813. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2016, pp. 323–345. doi: 10.1007/978-3-662-53140-2_16.

[71] Billy BobBrumley andNicola Tuveri. “Remote TimingAttacksAre Still Practical”. In:ESORICS 2011:
16th European Symposium onResearch in Computer Security. Ed. byVijayAtluri andClaudiaDíaz.
Vol. 6879. Lecture Notes in Computer Science. Leuven, Belgium: Springer, Heidelberg, Ger-
many, Sept. 2011, pp. 355–371. doi: 10.1007/978-3-642-23822-2_20.

[72] David Brumley and Dan Boneh. “Remote Timing Attacks Are Practical”. In: USENIX Security
2003: 12th USENIX Security Symposium. Washington, DC, USA: USENIX Association, Aug.
2003.

[73] David Brumley and Dan Boneh. “Remote Timing Attacks are Practical”. In: SSYM’03: Proceedings
of the 12th conference on USENIX Security Symposium - Volume 12. ACM, 2003.

[74] Sven Bugiel, Lucas VincenzoDavi, and Steffen Schulz. “Scalable trust establishment with software
reputation”. In: Proceedings of the sixth ACMworkshop on Scalable trusted computing. 2011, pp. 15–
24.

[75] David Burke, Joe Hurd, John Launchbury, and Aaron Tomb. “Trust Relationship Modeling for
Software Assurance”. In: Proceedings of the 7th International Workshop on Formal Aspects of Security
& Trust. 2010.

[76] Simon Butler, Jonas Gamalielsson, Björn Lundell, Christoffer Brax, Anders Mattsson, Tomas
Gustavsson, Jonas Feist, Bengt Kvarnström, and Erik Lönroth. “On business adoption and use of
reproducible builds for open and closed source software”. In: Software Quality Journal (Nov. 2022).

[77] Rina Diane Caballar. The Move to Memory-Safe Programming. https://spectrum.ieee.org/mem
ory-safe-programming-languages. 2023.

[78] ClaudioCanella, JoVanBulck,Michael Schwarz,Moritz Lipp, Benjamin vonBerg, PhilippOrt-
ner, FrankPiessens, Dmitry Evtyushkin, andDanielGruss. “ASystematic Evaluation of Transient
Execution Attacks and Defenses”. In: USENIX Security 2019: 28th USENIX Security Symposium.
Ed. byNadia Heninger and Patrick Traynor. Santa Clara, CA, USA: USENIXAssociation, Aug.
2019, pp. 249–266.

[79] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. “Who is
Going to Mentor Newcomers in Open Source Projects?” In: Proceedings of the 20th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE’12). 2012.

136

https://doi.org/10.1145/3213846.3213867
https://doi.org/10.1145/3213846.3213867
https://www.iacr.org/workshops/ches/ches2011/presentations/Invited%5C%201/CHES2011_Invited_1.pdf
https://www.iacr.org/workshops/ches/ches2011/presentations/Invited%5C%201/CHES2011_Invited_1.pdf
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-23822-2_20
https://spectrum.ieee.org/memory-safe-programming-languages
https://spectrum.ieee.org/memory-safe-programming-languages

[80] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. “Password Interception
in a SSL/TLSChannel”. In:Advances in Cryptology – CRYPTO 2003. Ed. byDan Boneh. Vol. 2729.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2003, pp. 583–599. doi: 10.1007/978-3-540-45146-4_34.

[81] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov. “Developer
Onboarding in GitHub: The Role of Prior Social Links and Language Experience”. In: Proceedings of
the 2015 10th JointMeeting on Foundations of Software Engineering (ESEC/FSE’15). 2015, pp. 817–
828.

[82] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M. Tullsen, Deian Stefan,
Tamara Rezk, and Gilles Barthe. “Constant-time foundations for the new spectre era”. In: Proceed-
ings of the 41st ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020. Ed. by Alastair F. Donaldson and
Emina Torlak. ACM, 2020, pp. 913–926. doi: 10.1145/3385412.3385970. url: https://doi.org/1
0.1145/3385412.3385970.

[83] SunjayCauligi, CraigDisselkoen,DanielMoghimi, Gilles Barthe, andDeian Stefan. “SoK: Prac-
tical Foundations for Software Spectre Defenses”. In: 2022 IEEE Symposium on Security and Privacy.
San Francisco, CA, USA: IEEE Computer Society Press, May 2022, pp. 666–680. doi: 10.1109
/SP46214.2022.9833707.

[84] SunjayCauligi, CraigDisselkoen,DanielMoghimi, Gilles Barthe, andDeian Stefan. “SoK: Prac-
tical Foundations for Spectre Defenses”. In: CoRR abs/2105.05801 (2021). arXiv: 2105.05801. url:
https://arxiv.org/abs/2105.05801.

[85] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John Ren-
ner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan. “FaCT: a DSL for timing-
sensitive computation”. In: Proceedings of the 40th ACMSIGPLANConference on Programming Lan-
guage Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. Ed. byKathryn
S. McKinley and Kathleen Fisher. ACM, 2019, pp. 174–189. doi: 10.1145/3314221.3314605. url:
https://doi.org/10.1145/3314221.3314605.

[86] Scott Chacon and Ben Straub. https://git-scm.com/book/en/v2/Git-Basics-Tagging. 2014.
[87] Ramaswamy Chandramouli, Frederick Kautz, and Santiago Torres Arias. Strategies for the In-

tegration of Software Supply Chain Security in DevSecOps CI/CD pipelines. Tech. rep. National
Institute of Standards and Technology, 2023.

[88] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. “Quantifying the
Information Leakage in Cache Attacks via Symbolic Execution”. In: ACM Trans. Embed. Comput.
Syst. 18.1 (Jan. 2019). issn: 1539-9087. doi: 10.1145/3288758.

[89] Sudipta Chattopadhyay and Abhik Roychoudhury. “Symbolic Verification of Cache Side-Channel
Freedom”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37.11 (2018), pp. 2812–2823.
doi: 10.1109/TCAD.2018.2858402. url: https://doi.org/10.1109/TCAD.2018.2858402.

[90] Christine Chen, Nicola Dell, and Franziska Roesner. “Computer security and privacy in the inter-
actions between victim service providers and human trafficking survivors”. In: Proceedings of the 28th
USENIX Security Symposium (Sec’19). 2019, pp. 89–104.

[91] Jia Chen, Yu Feng, and Isil Dillig. “Precise Detection of Side-Channel Vulnerabilities using Quan-
titative Cartesian Hoare Logic”. In: ACM CCS 2017: 24th Conference on Computer and Communica-
tions Security. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu.
Dallas, TX, USA: ACM Press, Oct. 2017, pp. 875–890. doi: 10.1145/3133956.3134058.

[92] Maria Christakis and Christian Bird. “What developers want and need from program analysis: an
empirical study”. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2016. Ed. by David Lo, Sven Apel, and Sarfraz Khurshid. ACM, 2016,
pp. 332–343. doi: 10.1145/2970276.2970347.

137

https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1109/SP46214.2022.9833707
https://doi.org/10.1109/SP46214.2022.9833707
https://arxiv.org/abs/2105.05801
https://arxiv.org/abs/2105.05801
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3314221.3314605
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://doi.org/10.1145/3288758
https://doi.org/10.1109/TCAD.2018.2858402
https://doi.org/10.1109/TCAD.2018.2858402
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1145/2970276.2970347

Bibliography

[93] Ching-Chi Chuang, Luís Cruz, Robbert van Dalen, VladimirMikovski, and Arie van Deursen.
“Removing dependencies from large software projects: are you really sure?” In: 2022 IEEE 22nd Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM). 2022, pp. 105–
115. doi: 10.1109/SCAM55253.2022.00017.

[94] AlonzoChurch. “Anote on the Entscheidungsproblem”. In:The Journal of Symbolic Logic 1.1 (1936),
pp. 40–41. doi: 10.2307/2269326.

[95] CISA. Securing the Software Supply Chain: Recommended Practices for Developers. https://www.c
isa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CH
AIN_DEVELOPERS.PDF. 2022.

[96] CISA. Software Bill of Materials (SBOM). https://www.cisa.gov/sbom.
[97] Jailton Coelho andMarco Tulio Valente. “WhyModernOpen Source Projects Fail”. In: Proceedings

of the 2017 11th JointMeeting on Foundations of Software Engineering. ESEC/FSE 2017. Paderborn,
Germany: Association for Computing Machinery, 2017.

[98] Gabriella Coleman. The Anthropology of Hackers. https://www.theatlantic.com/technology/ar
chive/2010/09/the-anthropology-of-hackers/63308/. 2010.

[99] William Jay Conover. Practical nonparametric statistics. Vol. 350. John Wiley & Sons, 1998.
[100] Kattiana Constantino,Mauricio Souza, Shurui Zhou, Eduardo Figueiredo, andChristian Käst-

ner. “Perceptions of open-source software developers on collaborations: An interview and survey study”.
In: Journal of Software: Evolution and Process (2021), e2393.

[101] Zara Cooper. Getting started with contributing to open source. https://stackoverflow.blog/2020
/08/03/getting-started-with-contributing-to-open-source/. 2020.

[102] Ludovic Courtès. “Code Staging in GNU Guix”. In: Proceedings of the 16th ACM SIGPLAN In-
ternational Conference on Generative Programming: Concepts and Experiences (GPCE’17). 2017,
pp. 41–48.

[103] Ludovic Courtès. “Functional Package Management with Guix”. In: European Lisp Symposium.
Madrid, Spain, June 2013. url: https://hal.inria.fr/hal-00824004.

[104] Ludovic Courtès and Ricardo Wurmus. “Reproducible and User-Controlled Software Environ-
ments in HPC with Guix”. In: 2nd International Workshop on Reproducibility in Parallel Computing
(RepPar). Vienne, Austria, Aug. 2015. url: https://hal.inria.fr/hal-01161771.

[105] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints”. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. POPL ’77. Los Angeles,
California: Association for ComputingMachinery, 1977, pp. 238–252. isbn: 9781450373500. doi:
10.1145/512950.512973. url: https://doi.org/10.1145/512950.512973.

[106] Patrick Cousot and Radhia Cousot. “Systematic Design of ProgramAnalysis Frameworks”. In: Pro-
ceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
POPL ’79. San Antonio, Texas: Association for ComputingMachinery, 1979, pp. 269–282. isbn:
9781450373579. doi: 10.1145/567752.567778. url: https://doi.org/10.1145/567752.567778.

[107] Russ Cox. Our Software Dependency Problem. https://research.swtch.com/deps. 2019.
[108] KevinCrowston,KangningWei, JamesHowison, andAndreaWiggins. “Free/LibreOpen-Source

Software Development: What We Know and What We Do Not Know”. In: ACM Comput. Surv. 44.2
(2008). issn: 0360-0300. doi: 10.1145/2089125.2089127. url: https://doi.org/10.1145/2089125
.2089127.

[109] Pascal Cuoq. tis-ct. url: http://web.archive.org/web/20200810074547/http://trust-in-soft.co
m/tis-ct/.

138

https://doi.org/10.1109/SCAM55253.2022.00017
https://doi.org/10.2307/2269326
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sbom
https://www.theatlantic.com/technology/archive/2010/09/the-anthropology-of-hackers/63308/
https://www.theatlantic.com/technology/archive/2010/09/the-anthropology-of-hackers/63308/
https://stackoverflow.blog/2020/08/03/getting-started-with-contributing-to-open-source/
https://stackoverflow.blog/2020/08/03/getting-started-with-contributing-to-open-source/
https://hal.inria.fr/hal-00824004
https://hal.inria.fr/hal-01161771
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://research.swtch.com/deps
https://doi.org/10.1145/2089125.2089127
https://doi.org/10.1145/2089125.2089127
https://doi.org/10.1145/2089125.2089127
http://web.archive.org/web/20200810074547/http://trust-in-soft.com/tis-ct/
http://web.archive.org/web/20200810074547/http://trust-in-soft.com/tis-ct/

[110] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. “Social Coding in GitHub: Trans-
parency and Collaboration in an Open Software Repository”. In: Proceedings of the ACM 2012 Con-
ference on Computer Supported Cooperative Work (CSCW’12). 2012, pp. 1277–1286.

[111] Lesly-AnnDaniel, Sébastien Bardin, and Tamara Rezk. “Binsec/Rel: Efficient Relational Symbolic
Execution for Constant-Time at Binary-Level”. In: 2020 IEEE Symposium on Security and Privacy.
San Francisco, CA, USA: IEEE Computer Society Press, May 2020, pp. 1021–1038. doi: 10.110
9/SP40000.2020.00074.

[112] Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt. “The Long and Winding
Path to Secure Implementation of GlobalPlatform SCP10”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2020.3 (2020). https://tches.iacr.org/index.php/TCHES/arti
cle/view/8588, pp. 196–218. issn: 2569-2925. doi: 10.13154/tches.v2020.i3.196-218.

[113] Heini Bergsson Debes, Thanassis Giannetsos, and Ioannis Krontiris. BLINDTRUST: Oblivious
Remote Attestation for Secure Service Function Chains. 2021. arXiv: 2107.05054 [cs.CR].

[114] Debian Developers’ Corner / How to join Debian / Step 2: Identification. https://www.debian.org
/devel/join/nm-step2.

[115] Pantazis Deligiannis, Alastair F Donaldson, and Zvonimir Rakamaric. “Fast and Precise Sym-
bolic Analysis of Concurrency Bugs in Device Drivers”. In: Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE’15). 2015, pp. 166–177.

[116] Valgrind Developers. https://valgrind.org/docs/manual/mc-manual.html.
[117] devrandom. Gitian: a secure software distribution method. https://github.com/devrandom/gitia

n-builder. 2011.
[118] WhitfieldDiffie andMartin E. Hellman. “NewDirections in Cryptography”. In: IEEE Transactions

on Information Theory 22.6 (1976), pp. 644–654. doi: 10.1109/TIT.1976.1055638.
[119] diffoscope In-depth comparison of files, archives, and directories. https://diffoscope.org/. 2014. url:

https://diffoscope.org/.
[120] Trung T Dinh-Trong and James M Bieman. “The FreeBSD project: A replication case study of open

source development”. In: IEEE Transactions on Software Engineering 31.6 (2005), pp. 481–494.
[121] Lisa Nguyen Quang Do, James R. Wright, and Karim Ali. “Why Do Software Developers Use

Static Analysis Tools? A User-Centered Study of Developer Needs and Motivations”. In: IEEE Trans.
Software Eng. 48.3 (2022), pp. 835–847. doi: 10.1109/TSE.2020.3004525.

[122] Katherine Doherty, Liz Capo McCormick, and Alexandra Harris. Cyber Attack Forces World’s
Biggest Bank to Trade via USB Stick. https://time.com/6333716/china-icbc-bank-hack-usb-stick
-trading/.

[123] EelcoDolstra, Andres Löh, andNicolas Pierron. “NixOS: A purely functional Linux distribution”.
In: Journal of Functional Programming 20.5-6 (2010), pp. 577–615.

[124] James Dominic, Jada Houser, Igor Steinmacher, Charles Ritter, and Paige Rodeghero. “Conver-
sational Bot for Newcomers Onboarding to Open Source Projects”. In: Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops (ICSEW’20). 2020, pp. 46–50.

[125] GoranDoychev, Dominik Feld, Boris Köpf, LaurentMauborgne, and Jan Reineke. “CacheAudit:
A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security 2013: 22nd USENIX
Security Symposium. Ed. by Samuel T. King.Washington, DC, USA: USENIX Association, Aug.
2013, pp. 431–446.

[126] Goran Doychev and Boris Köpf. “Rigorous analysis of software countermeasures against cache at-
tacks”. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017. Barcelona, Spain: ACM, June 2017, pp. 406–421. doi: 10.1145/3
062341.3062388.

139

https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1109/SP40000.2020.00074
https://tches.iacr.org/index.php/TCHES/article/view/8588
https://tches.iacr.org/index.php/TCHES/article/view/8588
https://doi.org/10.13154/tches.v2020.i3.196-218
https://arxiv.org/abs/2107.05054
https://www.debian.org/devel/join/nm-step2
https://www.debian.org/devel/join/nm-step2
https://valgrind.org/docs/manual/mc-manual.html
https://github.com/devrandom/gitian-builder
https://github.com/devrandom/gitian-builder
https://doi.org/10.1109/TIT.1976.1055638
https://diffoscope.org/
https://diffoscope.org/
https://doi.org/10.1109/TSE.2020.3004525
https://time.com/6333716/china-icbc-bank-hack-usb-stick-trading/
https://time.com/6333716/china-icbc-bank-hack-usb-stick-trading/
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1145/3062341.3062388

Bibliography

[127] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. “CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2018.1 (2018). https://tches.iacr
.org/index.php/TCHES/article/view/839, pp. 238–268. issn: 2569-2925. doi: 10.13154/tches.v
2018.i1.238-268.

[128] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer,
Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and J. Alex Halderman. “The
Matter of Heartbleed”. In: Proc. 2014 Internet Measurement Conference (IMC’14). ACM, 2014.

[129] eBACS: ECRYPT Benchmarking of Cryptographic Systems. accessed November 5, 2009. url: http
s://bench.cr.yp.to.

[130] Nigel Edwards and Liqun Chen. “An Historical Examination of Open Source Releases and Their
Vulnerabilities”. In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS’12). 2012, pp. 183–194.

[131] WilliamEnck and LaurieWilliams. “Top Five Challenges in Software Supply Chain Security: Obser-
vations From 30 Industry and Government Organizations”. In: IEEE Security & Privacy 20.2 (2022),
pp. 96–100. doi: 10.1109/MSEC.2022.3142338.

[132] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and AdamChlipala. “Simple High-
Level Code for Cryptographic Arithmetic - With Proofs, Without Compromises”. In: 2019 IEEE Sym-
posium on Security and Privacy. San Francisco, CA, USA: IEEE Computer Society Press, May
2019, pp. 1202–1219. doi: 10.1109/SP.2019.00005.

[133] ESF Partners, NSA, and CISA Release Software Supply Chain Guidance for Suppliers. https://ww
w.nsa.gov/Press-Room/News-Highlights/Article/Article/3204427/esf-partners-nsa-and-ci
sa-release-software-supply-chain-guidance-for-suppliers/. 2022. url: https://www.nsa.gov
/Press-Room/News-Highlights/Article/Article/3204427/esf-partners-nsa-and-cisa-release-s
oftware-supply-chain-guidance-for-suppliers/.

[134] Douglas Everson, Long Cheng, and Zhenkai Zhang. “Log4shell: Redefining the web attack sur-
face”. In: Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2022. 2022.

[135] Executive Order on America’s Supply Chains. https://www.whitehouse.gov/briefing-room/p
residential -actions/2021/02/24/executive-order-on-americas-supply-chains/. 2022. url:
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-or
der-on-americas-supply-chains/.

[136] Executive Order on Improving the Nation’s Cybersecurity. https://www.whitehouse.gov/briefin
g-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybers
ecurity/. 2021. url: https://www.whitehouse.gov/briefing-room/presidential-actions/2021
/05/12/executive-order-on-improving-the-nations-cybersecurity/.

[137] Zixuan Feng, Mariam Guizani, and Anita Sarma. The State of Diversity and Inclusion in the ASF
Community: A Pulse Check. https://news.apache.org/foundation/entry/the-state-of-diversity
-and-inclusion-in-the-asf-community-a-pulse-check. 2023.

[138] Konstantin Fischer, Ivana Trummova, Phillip Gajland, Yasemin Acar, Sascha Fahl, and Angela
Sasse. https://saschafahl.de/static/paper/cryptoadoption2024ext.pdf. 2024.

[139] Michael Flanders, ReshabhKSharma,Alexandra E.Michael, DanGrossman, andDavidKohlbren-
ner. “Avoiding Instruction-Centric Microarchitectural Timing Channels Via Binary-Code Transfor-
mations”. In: 29th ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. ACM, 2024, to appear.

[140] Denae Ford,Mahnaz Behroozi, Alexander Serebrenik, andChris Parnin. “Beyond the Code Itself:
How Programmers Really Look at Pull Requests”. In: Proceedings of the 41st International Conference
on Software Engineering: Software Engineering in Society (ICSE-SEIS’19). 2019, pp. 51–60.

140

https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://bench.cr.yp.to
https://bench.cr.yp.to
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/SP.2019.00005
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3204427/esf-partners-nsa-and-cisa-release-software-supply-chain-guidance-for-suppliers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3204427/esf-partners-nsa-and-cisa-release-software-supply-chain-guidance-for-suppliers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3204427/esf-partners-nsa-and-cisa-release-software-supply-chain-guidance-for-suppliers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3204427/esf-partners-nsa-and-cisa-release-software-supply-chain-guidance-for-suppliers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3204427/esf-partners-nsa-and-cisa-release-software-supply-chain-guidance-for-suppliers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3204427/esf-partners-nsa-and-cisa-release-software-supply-chain-guidance-for-suppliers/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://news.apache.org/foundation/entry/the-state-of-diversity-and-inclusion-in-the-asf-community-a-pulse-check
https://news.apache.org/foundation/entry/the-state-of-diversity-and-inclusion-in-the-asf-community-a-pulse-check
https://saschafahl.de/static/paper/cryptoadoption2024ext.pdf

[141] Marcel Fourné, Jan Jancar, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles
Barthe, Pierre-Alain Fouque, and Yasemin Acar. “‘These results must be false’: A usability eval-
uation of constant-time analysis tools”. In: 33th USENIX Security Symposium (USENIX Security
2024). USENIX Association, 2024.

[142] Marcel Fourné, Dominique Petersen, and Norbert Pohlmann. “Attack-test and verification sys-
tems, steps towards verifiable anomaly detection”. In: INFORMATIK 2013 – Informatik angepasst an
Mensch, Organisation und Umwelt. Gesellschaft für Informatik eV, 2013, pp. 2213–2224. isbn:
978-3-88579-614-5.

[143] Marcel Fourné, Kevin Stegemann, Dominique Petersen, and Norbert Pohlmann. “Aggregation
of Network Protocol Data Near Its Source”. In: Information and Communication Technology: Second
IFIP TC5/8 International Conference, ICT-EurAsia 2014, Bali, Indonesia, April 14-17, 2014. Proceed-
ings 2. Springer. 2014, pp. 482–491. isbn: 978-3-642-55031-7. doi: 10.1007/978-3-642-55032-4_49.

[144] Marcel Fourné, DominikWermke,WilliamEnck, Sascha Fahl, and YaseminAcar. “It’s like floss-
ing your teeth: On the Importance and Challenges of Reproducible Builds for Software Supply Chain
Security”. In: 2023 IEEE Symposium on Security and Privacy (SP). 2023, pp. 1527–1544. doi: 10.1
109/SP46215.2023.10179320.

[145] Marcel Fourné, Dominik Wermke, Sascha Fahl, and Yasemin Acar. “A Viewpoint on Human
Factors in Software Supply Chain Security: A Research Agenda”. In: IEEE Security & Privacy 21.6
(2023), pp. 59–63. doi: 10.1109/MSEC.2023.3316569.

[146] Kelsey R. Fulton, Anna Chan, Daniel Votipka, Michael Hicks, andMichelle L. Mazurek. “Ben-
efits and Drawbacks of Adopting a Secure Programming Language: Rust as a Case Study”. In: Proceed-
ings of the 17th Symposium on Usable Privacy and Security (SOUPS 2021). Aug. 2021, pp. 597–
616.

[147] Patricia I Fusch and Lawrence R Ness. “Are we there yet? Data saturation in qualitative research”.
In: (2015).

[148] KevinGallagher, Sameer Patil, andNasirMemon. “Newme: Understanding expert and non-expert
perceptions and usage of the Tor anonymity network”. In:Proceedings of the 13th Symposium onUsable
Privacy and Security (SOUPS’17). 2017, pp. 385–398.

[149] Cesar Pereida García and Billy Bob Brumley. “Constant-Time Callees with Variable-Time Callers”.
In: USENIX Security 2017: 26th USENIX Security Symposium. Ed. by Engin Kirda and Thomas
Ristenpart. Vancouver, BC, Canada: USENIX Association, Aug. 2017, pp. 83–98.

[150] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. ““Make Sure DSA Signing Exponen-
tiations Really are Constant-Time””. In: ACMCCS 2016: 23rd Conference on Computer and Commu-
nications Security. Ed. by Edgar R.Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew
C. Myers, and Shai Halevi. Vienna, Austria: ACM Press, Oct. 2016, pp. 1639–1650. doi: 10.114
5/2976749.2978420.

[151] Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Al-
daya, and Billy Bob Brumley. “Certified Side Channels”. In:USENIX Security 2020: 29th USENIX
Security Symposium. Ed. by Srdjan Capkun and Franziska Roesner. USENIX Association, Aug.
2020, pp. 2021–2038.

[152] Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel, Sébastien Bardin,
and Clémentine Maurice. “A Systematic Evaluation of Automated Tools for Side-Channel Vulnera-
bilities Detection in Cryptographic Libraries”. In: Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2023, pp. 1690–1704. doi: 10.1145/3576915.36
23112. url: https://doi.org/10.1145/3576915.3623112.

[153] Daniel Genkin, Adi Shamir, and Eran Tromer. “Acoustic Cryptanalysis”. In: Journal of Cryptology
30.2 (Apr. 2017), pp. 392–443. doi: 10.1007/s00145-015-9224-2.

141

https://doi.org/10.1007/978-3-642-55032-4_49
https://doi.org/10.1109/SP46215.2023.10179320
https://doi.org/10.1109/SP46215.2023.10179320
https://doi.org/10.1109/MSEC.2023.3316569
https://doi.org/10.1145/2976749.2978420
https://doi.org/10.1145/2976749.2978420
https://doi.org/10.1145/3576915.3623112
https://doi.org/10.1145/3576915.3623112
https://doi.org/10.1145/3576915.3623112
https://doi.org/10.1007/s00145-015-9224-2

Bibliography

[154] Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. “VulinOSS: A Dataset of Se-
curity Vulnerabilities in Open-Source Systems”. In: Proceedings of the 15th International Conference
on Mining Software Repositories. MSR ’18. Gothenburg, Sweden: Association for Computing
Machinery, 2018, pp. 18–21. isbn: 9781450357166.

[155] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed automated random test-
ing”. In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and
implementation. 2005, pp. 213–223.

[156] Kurt Gödel. Über die Vollständigkeit des Logikkalküls. ger. 1929.
[157] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme

I”. In:Monatshefte für Mathematik und Physik 38.1 (Dec. 1931), pp. 173–198. issn: 1436-5081. doi:
10.1007/BF01700692. url: https://doi.org/10.1007/BF01700692.

[158] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and Sascha Fahl. “Listen to Developers! A
Participatory Design Study on Security Warnings for Cryptographic APIs”. In: CHI ’20: Conference
on Human Factors in Computing Systems. ACM, 2020, pp. 1–13. doi: 10.1145/3313831.3376142.

[159] Georgios Gousios, Martin Pinzger, and Arie van Deursen. “An Exploratory Study of the Pull-
Based Software DevelopmentModel”. In: Proceedings of the 36th International Conference on Software
Engineering (ICSE’14). 2014, pp. 345–355.

[160] Georgios Gousios and Diomidis Spinellis. “GHTorrent: GitHub’s Data from a Firehose”. In: Pro-
ceedings of the 9th IEEE Working Conference on Mining Software Repositories (MSR’12). 2012,
pp. 12–21.

[161] GeorgiosGousios, BogdanVasilescu,Alexander Serebrenik, andAndyZaidman. “LeanGHTor-
rent: GitHub Data on Demand”. In: Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR’14). 2014, pp. 384–387.

[162] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi. “ABSynthe: Au-
tomatic Blackbox Side-channel Synthesis on Commodity Microarchitectures”. In: ISOC Network and
Distributed System Security Symposium – NDSS 2020. San Diego, CA, USA: The Internet Society,
Feb. 2020.

[163] Iaroslav Gridin, Cesar Pereida García, Nicola Tuveri, and Billy Bob Brumley. “Triggerflow:
Regression Testing by Advanced Execution Path Inspection”. In: Detection of Intrusions and Mal-
ware, and Vulnerability Assessment - 16th International Conference, DIMVA 2019. Ed. by Roberto
Perdisci, Clémentine Maurice, Giorgio Giacinto, and Magnus Almgren. Vol. 11543. LNCS.
Springer, 2019, pp. 330–350. doi: 10.1007/978-3-030-22038-9_16.

[164] Arne-KristianGroven, KirstenHaaland, RuedigerGlott, andAnna Tannenberg. “SecurityMea-
surements within the Framework of Quality AssessmentModels for Free/Libre Open Source Software”.
In: Proceedings of the 4th European Conference on Software Architecture (ECSA’10): Companion Vol-
ume. 2010, pp. 229–235.

[165] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache Template Attacks: Automating At-
tacks on Inclusive Last-Level Caches”. In: USENIX Security 2015: 24th USENIX Security Sympo-
sium. Ed. by Jaeyeon Jung and Thorsten Holz. Washington, DC, USA: USENIX Association,
Aug. 2015, pp. 897–912.

[166] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. “Spectector:
Principled Detection of Speculative Information Flows”. In: 2020 IEEE Symposium on Security and
Privacy. San Francisco, CA, USA: IEEE Computer Society Press, May 2020, pp. 1–19. doi: 10.1
109/SP40000.2020.00011.

[167] Qian Guo, Thomas Johansson, and Alexander Nilsson. “A Key-Recovery Timing Attack on Post-
quantum Primitives Using the Fujisaki-Okamoto Transformation and Its Application on FrodoKEM”.
In: Advances in Cryptology – CRYPTO 2020. Ed. by Daniele Micciancio and Thomas Ristenpart.
Vol. 12171. LNCS. Springer, 2020, pp. 359–386. url: https://eprint.iacr.org/2020/743.

142

https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/BF01700692
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1007/978-3-030-22038-9_16
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40000.2020.00011
https://eprint.iacr.org/2020/743

[168] Wenbo Guo, Zhengzi Xu, Chengwei Liu, Cheng Huang, Yong Fang, and Yang Liu. “An Em-
pirical Study of Malicious Code In PyPI Ecosystem”. In: arXiv preprint arXiv:2309.11021 (2023).

[169] Marco Gutfleisch, Jan H Klemmer, Niklas Busch, Yasemin Acar, M Angela Sasse, and Sascha
Fahl. “How does usable security (not) end up in software products? results from a qualitative interview
study”. In: 2022 IEEE Symposium on Security and Privacy (SP). IEEE. 2022, pp. 893–910.

[170] Marco Gutfleisch, Jan H. Klemmer, Niklas Busch, Yasemin Acar, M. Angela Sasse, and Sascha
Fahl. “How Does Usable Security (Not) End Up in Software Products? Results From a Qualitative
Interview Study”. In: Proc. 43rd IEEE Symposium on Security and Privacy (SP’22). IEEE, 2022. doi:
10.1109/SP46214.2022.9833756. url: https://publications.teamusec.de/2022-oakland-usec-in-
sdps/.

[171] JulieMHaney,Mary Theofanos, YaseminAcar, and Sandra Spickard Prettyman. ““Wemake it a
big deal in the company”: Security Mindsets in Organizations that Develop Cryptographic Products”.
In: Proc. 14th Symposium on Usable Privacy and Security (SOUPS’18). USENIX, 2018.

[172] Julie M. Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard Prettyman. “”We make it
a big deal in the company”: SecurityMindsets inOrganizations that Develop Cryptographic Products”.
In: Fourteenth Symposium on Usable Privacy and Security, SOUPS 2018. USENIX Association,
2018, pp. 357–373. url: https://www.usenix.org/conference/soups2018/presentation/haney
-mindsets.

[173] Christoph Hannebauer and Volker Gruhn. “Motivation of Newcomers to FLOSS Projects”. In:
Proceedings of the 12th International Symposium on Open Collaboration (OpenSym’16). 2016.

[174] Alexander Hars and Shaosong Ou. “Working for Free? Motivations for Participating in Open-
Source Projects”. In: Int. J. Electron. Commerce 6.3 (Apr. 2002), pp. 25–39. issn: 1086-4415.

[175] Greg Hartrell. Where Did Hacker Culture Come From? https://www.forbes.com/sites/quora/2
017/09/07/where-did-hacker-culture-come-from/. 2017.

[176] Sohaib ul Hassan, Iaroslav Gridin, Ignacio M. Delgado-Lozano, Cesar Pereida García, Jesús-
Javier Chi-Domínguez, Alejandro Cabrera Aldaya, and Billy Bob Brumley. “Déjà Vu: Side-
Channel Analysis of Mozilla’s NSS”. In:ACMCCS 2020: 27th Conference on Computer and Commu-
nications Security. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. Virtual
Event, USA: ACM Press, Nov. 2020, pp. 1887–1902. doi: 10.1145/3372297.3421761.

[177] Hideaki Hata, Raula Gaikovina Kula, Takashi Ishio, and Christoph Treude. “Research Artifact:
The Potential of Meta-Maintenance on GitHub”. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion). 2021, pp. 192–193. doi: 10.1
109/ICSE-Companion52605.2021.00084.

[178] Lile P.Hattori andMichele Lanza. “On the nature of commits”. In:Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software Engineering - Workshops. 2008, pp. 63–71.

[179] ØyvindHauge, ClaudiaAyala, andReidarConradi. “Adoption of open source software in software-
intensive organizations – A systematic literature review”. In: Information and Software Technology
52.11 (2010). Special Section on Best Papers PROMISE 2009, pp. 1133–1154. issn: 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2010.05.008. url: https://www.sciencedirect.com/scienc
e/article/pii/S0950584910000972.

[180] Mohammadreza Hazhirpasand, Oscar Nierstrasz, Mohammadhossein Shabani, andMoham-
mad Ghafari. “Hurdles for Developers in Cryptography”. In: CoRR abs/2108.07141 (2021). arXiv:
2108.07141. url: https://arxiv.org/abs/2108.07141.

[181] Shaobo He, Michael Emmi, and Gabriela F. Ciocarlie. “ct-fuzz: Fuzzing for Timing Leaks”. In:
13th IEEE International Conference on Software Testing, Validation and Verification, ICST 2020,
Porto, Portugal, October 24-28, 2020. IEEE, 2020, pp. 466–471. doi: 10 . 1109/ ICST46399 . 2020
.00063. url: https://doi.org/10.1109/ICST46399.2020.00063.

143

https://doi.org/10.1109/SP46214.2022.9833756
https://publications.teamusec.de/2022-oakland-usec-in-sdps/
https://publications.teamusec.de/2022-oakland-usec-in-sdps/
https://www.usenix.org/conference/soups2018/presentation/haney-mindsets
https://www.usenix.org/conference/soups2018/presentation/haney-mindsets
https://www.forbes.com/sites/quora/2017/09/07/where-did-hacker-culture-come-from/
https://www.forbes.com/sites/quora/2017/09/07/where-did-hacker-culture-come-from/
https://doi.org/10.1145/3372297.3421761
https://doi.org/10.1109/ICSE-Companion52605.2021.00084
https://doi.org/10.1109/ICSE-Companion52605.2021.00084
https://doi.org/https://doi.org/10.1016/j.infsof.2010.05.008
https://www.sciencedirect.com/science/article/pii/S0950584910000972
https://www.sciencedirect.com/science/article/pii/S0950584910000972
https://arxiv.org/abs/2108.07141
https://arxiv.org/abs/2108.07141
https://doi.org/10.1109/ICST46399.2020.00063
https://doi.org/10.1109/ICST46399.2020.00063
https://doi.org/10.1109/ICST46399.2020.00063

Bibliography

[182] CormacHerley and Paul C. van Oorschot. “SoK: Science, Security and the Elusive Goal of Security
as a Scientific Pursuit”. In: 2017 IEEE Symposium on Security and Privacy. San Jose, CA,USA: IEEE
Computer Society Press, May 2017, pp. 99–120. doi: 10.1109/SP.2017.38.

[183] Guido Hertel, Sven Niedner, and Stefanie Herrmann. “Motivation of software developers in Open
Source projects: an Internet-based survey of contributors to the Linux kernel”. In: Research Policy 32.7
(2003). Open Source Software Development, pp. 1159–1177. issn: 0048-7333. doi: https://doi
.org/10.1016/S0048-7333(03)00047-7. url: https://www.sciencedirect.com/science/article/p
ii/S0048733303000477.

[184] Robert Heumüller, Sebastian Nielebock, Jacob Krüger, and Frank Ortmeier. “Publish or perish,
but do not forget your software artifacts”. In: Empir. Softw. Eng. 25.6 (2020), pp. 4585–4616. doi:
10.1007/s10664-020-09851-6.

[185] Mar Hicks. Programmed Inequality: How Britain Discarded Women Technologists and Lost Its Edge
in Computing. MIT Press, 2017. isbn: 9780262535182.

[186] Jonas Hielscher, Uta Menges, Simon Parkin, Annette Kluge, and M Angela Sasse. ““Employees
Who Don’t Accept the Time Security Takes Are Not Aware Enough”: The CISO View of Human-
Centred Security”. In: 32stUSENIX Security Symposium (USENIXSecurity 23), Boston,MA. 2023.

[187] Jonas Hielscher, Markus Schöps, Uta Menges, Marco Gutfleisch, Mirko Helbling, and M An-
gela Sasse. “Lacking the tools and support to fix friction: results from an interview study with secu-
rity managers”. In: Nineteenth Symposium on Usable Privacy and Security (SOUPS 2023). 2023,
pp. 131–150.

[188] Viet Tung Hoang, David Miller, and Ni Trieu. “Attacks only Get Better: How to Break FF3 on
Large Domains”. In: Advances in Cryptology – EUROCRYPT 2019, Part II. Ed. by Yuval Ishai
and Vincent Rijmen. Vol. 11477. Lecture Notes in Computer Science. Darmstadt, Germany:
Springer, Heidelberg, Germany, May 2019, pp. 85–116. doi: 10.1007/978-3-030-17656-3_4.

[189] JanaHofmann, Emanuele Vannacci, Cédric Fournet, Boris Köpf, andOleksii Oleksenko. “Spec-
ulation at fault: modeling and testing microarchitectural leakage of CPU exceptions”. In: Proceedings
of the 32nd USENIX Conference on Security Symposium. SEC ’23. Anaheim, CA, USA: USENIX
Association, 2023. isbn: 978-1-939133-37-3.

[190] Allen D Householder, Jeff Chrabaszcz, Trent Novelly, David Warren, and Jonathan M Spring.
“Historical analysis of exploit availability timelines”. In: Proceedings of the 13th USENIX Workshop
on Cyber Security Experimentation and Test (CSET 20). 2020.

[191] 2017 IEEE Symposium on Security and Privacy. San Jose, CA,USA: IEEEComputer Society Press,
May 2017.

[192] 2019 IEEE Symposium on Security and Privacy. San Francisco, CA, USA: IEEE Computer Society
Press, May 2019.

[193] 2020 IEEE Symposium on Security and Privacy. San Francisco, CA, USA: IEEE Computer Society
Press, May 2020.

[194] 2022 IEEE Symposium on Security and Privacy. San Francisco, CA, USA: IEEE Computer Society
Press, May 2022.

[195] Nasif Imtiaz and Laurie Williams. “Phantom Artifacts & Code Review Coverage in Dependency
Updates”. In: arXiv preprint arXiv:2206.09422 (2022).

[196] Intel. pin-based-cec. https://github.com/intel/pin-based-cec.
[197] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. “Code Coverage at Google”.

In: Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE’19). 2019, pp. 955–963.

[198] Jan Jancar.The state of tooling for verifying constant-timeness of cryptographic implementations. 2021.
url: https://neuromancer.sk/article/26.

144

https://doi.org/10.1109/SP.2017.38
https://doi.org/https://doi.org/10.1016/S0048-7333(03)00047-7
https://doi.org/https://doi.org/10.1016/S0048-7333(03)00047-7
https://www.sciencedirect.com/science/article/pii/S0048733303000477
https://www.sciencedirect.com/science/article/pii/S0048733303000477
https://doi.org/10.1007/s10664-020-09851-6
https://doi.org/10.1007/978-3-030-17656-3_4
https://github.com/intel/pin-based-cec
https://neuromancer.sk/article/26

[199] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles
Barthe, Pierre-Alain Fouque, and Yasemin Acar. ““They’re not that hard to mitigate”: What Cryp-
tographic Library Developers Think About Timing Attacks”. In: 2022 IEEE Symposium on Security
and Privacy. San Francisco, CA, USA: IEEE Computer Society Press, May 2022, pp. 632–649.
doi: 10.1109/SP46214.2022.9833713.

[200] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sys. “Minerva: The curse of ECDSA
nonces”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2020.4 (2020).
https://tches.iacr.org/index.php/TCHES/article/view/8684, pp. 281–308. issn: 2569-2925.
doi: 10.13154/tches.v2020.i4.281-308.

[201] Ke Jiang, Yuyan Bao, Shuai Wang, Zhibo Liu, and Tianwei Zhang. “Cache Refinement Type for
Side-Channel Detection of Cryptographic Software”. In: ACM CCS 2022: 29th Conference on Com-
puter and Communications Security. Ed. byHeng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi. Los Angeles, CA, USA: ACM Press, Nov. 2022, pp. 1583–1597. doi: 10.1145/3548606.3560
672.

[202] Wenxin Jiang,Nicholas Synovic, Rohan Sethi, Aryan Indarapu,MattHyatt, Taylor R Schorlem-
mer, George K Thiruvathukal, and James C Davis. “An empirical study of artifacts and security
risks in the pre-trained model supply chain”. In: Proceedings of the 2022 ACMWorkshop on Software
Supply Chain Offensive Research and Ecosystem Defenses. 2022, pp. 105–114.

[203] Ørjan Johansen. https://esolangs.org/wiki/Malbolge_Unshackled. 2007.
[204] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bowdidge. “Why

don’t software developers use static analysis tools to find bugs?” In: 35th International Conference on
Software Engineering, ICSE 2013. IEEE, 2013, pp. 672–681. doi: 10.1109/ICSE.2013.6606613.

[205] Hubert Kario. “Everlasting ROBOT: The Marvin Attack”. In: ESORICS 2023 - 28th European Sym-
posium onResearch inComputer Security. Vol. 14346. LNCS. TheHague, TheNetherlands: Springer,
Sept. 2023, pp. 243–262. doi: 10.1007/978-3-031-51479-1_13.

[206] Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Villegas. “When Constant-
Time Source Yields Variable-Time Binary: Exploiting Curve25519-donna Built with MSVC 2015”. In:
CANS 16: 15th International Conference on Cryptology and Network Security. Ed. by Sara Foresti
and Giuseppe Persiano. Vol. 10052. Lecture Notes in Computer Science. Milan, Italy: Springer,
Heidelberg, Germany, Nov. 2016, pp. 573–582. doi: 10.1007/978-3-319-48965-0_36.

[207] Taehun Kim and Youngjoo Shin. “ThermalBleed: A Practical Thermal Side-Channel Attack”. In:
IEEE Access 10 (2022), pp. 25718–25731. doi: 10.1109/ACCESS.2022.3156596.

[208] James C King. “Symbolic execution and program testing”. In: Communications of the ACM 19.7
(1976), pp. 385–394.

[209] Jan H Klemmer, Marco Gutfleisch, Christian Stransky, Yasemin Acar, M Angela Sasse, and
Sascha Fahl. “” Make Them Change it Every Week!”: A Qualitative Exploration of Online Developer
Advice on Usable and Secure Authentication”. In: Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security. 2023, pp. 2740–2754.

[210] Paul Kocher, JannHorn, Anders Fogh, Daniel Genkin, Daniel Gruss,WernerHaas,MikeHam-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
“Spectre Attacks: Exploiting Speculative Execution”. In: 2019 IEEE Symposium on Security and Pri-
vacy. San Francisco, CA, USA: IEEE Computer Society Press, May 2019, pp. 1–19. doi: 10.1109
/SP.2019.00002.

[211] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Sys-
tems”. In: Advances in Cryptology – CRYPTO’96. Ed. by Neal Koblitz. Vol. 1109. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1996,
pp. 104–113. doi: 10.1007/3-540-68697-5_9.

145

https://doi.org/10.1109/SP46214.2022.9833713
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.1145/3548606.3560672
https://doi.org/10.1145/3548606.3560672
https://esolangs.org/wiki/Malbolge_Unshackled
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1007/978-3-031-51479-1_13
https://doi.org/10.1007/978-3-319-48965-0_36
https://doi.org/10.1109/ACCESS.2022.3156596
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/3-540-68697-5_9

Bibliography

[212] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”. In: Advances in
Cryptology – CRYPTO’99. Ed. by Michael J. Wiener. Vol. 1666. Lecture Notes in Computer Sci-
ence. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1999, pp. 388–397. doi:
10.1007/3-540-48405-1_25.

[213] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. “Automatic Quantification of Cache Side-
Channels”. In: Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley,
CA, USA, July 7-13, 2012 Proceedings. Ed. by P. Madhusudan and Sanjit A. Seshia. Vol. 7358.
LNCS. Springer, 2012, pp. 564–580. doi: 10.1007/978-3-642-31424-7_40. url: https://doi.org/1
0.1007/978-3-642-31424-7_40.

[214] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael B. Abu-
Ghazaleh. “Spectre Returns! Speculation Attacks using the Return Stack Buffer”. In: 12th USENIX
Workshop on Offensive Technologies, WOOT 2018. Baltimore, MD, USA: USENIX Association,
Aug. 2018.

[215] Frens Kroeger. “Trusting organizations: The institutionalization of trust in interorganizational re-
lationships”. In: Organization 19.6 (2012), pp. 743–763. doi: 10 .1177/1350508411420900. url:
https://doi.org/10.1177/1350508411420900.

[216] Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar R. Weippl. ““I Have
No Idea What I’m Doing” - On the Usability of Deploying HTTPS”. In: USENIX Security 2017:
26th USENIX Security Symposium. Ed. by Engin Kirda and Thomas Ristenpart. Vancouver, BC,
Canada: USENIX Association, Aug. 2017, pp. 1339–1356.

[217] StefanKrüger, SarahNadi,Michael Reif, KarimAli,MiraMezini, Eric Bodden, FlorianGöpfert,
Felix Günther, Christian Weinert, Daniel Demmler, et al. “Cognicrypt: Supporting developers in
using cryptography”. In: 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE. 2017, pp. 931–936.

[218] Stefan Krüger, Michael Reif, Anna-Katharina Wickert, Sarah Nadi, Karim Ali, Eric Bodden,
Yasemin Acar, Mira Mezini, and Sascha Fahl. “Securing Your Crypto-API Usage Through Tool
Support - A Usability Study”. In: IEEE Secure Development Conference, SecDev 2023. Atlanta, GA,
USA: IEEE, Oct. 2023, pp. 14–25. doi: 10.1109/SECDEV56634.2023.00015.

[219] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, andMiraMezini. “Crysl: An extensible
approach to validating the correct usage of cryptographic apis”. In: IEEE Transactions on Software
Engineering (2019).

[220] Markus G Kuhn and Ross J Anderson. “Soft tempest: Hidden data transmission using electromag-
netic emanations”. In: Information Hiding: Second International Workshop, IH’98 Portland, Oregon,
USA, April 14–17, 1998 Proceedings 2. Springer. 1998, pp. 124–142.

[221] P. Ladisa, H. Plate, M. Martinez, and O. Barais. “SoK: Taxonomy of Attacks on Open-Source Soft-
ware Supply Chains”. In:Proceedings of the 44th IEEESymposium on Security and Privacy (S&P’23).
May 2023, pp. 167–184.

[222] Piergiorgio Ladisa,Henrik Plate,MatiasMartinez,Olivier Barais, and SerenaElisa Ponta. “Risk
Explorer for Software Supply Chains: Understanding the Attack Surface of Open-Source Based Soft-
ware Development”. In: Proceedings of the 2022 ACMWorkshop on Software Supply Chain Offensive
Research and Ecosystem Defenses. SCORED’22. Los Angeles, CA, USA: Association for Com-
puting Machinery, 2022, pp. 35–36. isbn: 9781450398855. doi: 10.1145/3560835.3564546. url:
https://doi.org/10.1145/3560835.3564546.

[223] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, Olivier Barais, and Serena Elisa Ponta. “To-
wards the Detection of Malicious Java Packages”. In: Proceedings of the 2022 ACM Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses. SCORED’22. Los Angeles, CA,
USA: Association for Computing Machinery, 2022, pp. 63–72. isbn: 9781450398855. doi: 10.11
45/3560835.3564548. url: https://doi.org/10.1145/3560835.3564548.

146

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1177/1350508411420900
https://doi.org/10.1177/1350508411420900
https://doi.org/10.1109/SECDEV56634.2023.00015
https://doi.org/10.1145/3560835.3564546
https://doi.org/10.1145/3560835.3564546
https://doi.org/10.1145/3560835.3564548
https://doi.org/10.1145/3560835.3564548
https://doi.org/10.1145/3560835.3564548

[224] Piergiorgio Ladisa, Serena Elisa Ponta, Nicola Ronzoni, Matias Martinez, and Olivier Barais.
“On the Feasibility of Cross-Language Detection of Malicious Packages in Npm and PyPI”. In: Pro-
ceedings of the 39th Annual Computer Security Applications Conference. ACSAC ’23. , Austin, TX,
USA, Association for Computing Machinery, 2023, pp. 71–82. isbn: 9798400708862. doi: 10.11
45/3627106.3627138. url: https://doi.org/10.1145/3627106.3627138.

[225] Piergiorgio Ladisa,Merve Sahin, Serena Elisa Ponta,MarcoRosa,MatiasMartinez, andOlivier
Barais. “The Hitchhiker’s Guide to Malicious Third-Party Dependencies”. In: Proceedings of the 2023
Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses. SCORED ’23. ,
Copenhagen,Denmark,Association forComputingMachinery, 2023, pp. 65–74. isbn: 9798400702631.
doi: 10.1145/3605770.3625212. url: https://doi.org/10.1145/3605770.3625212.

[226] Chris Lamb and Ximin Luo. https://reproducible-builds.org/specs/source-date-epoch/.
2015-2017.

[227] Chris Lamb and Stefano Zacchiroli. “Reproducible Builds: Increasing the Integrity of Software Sup-
ply Chains”. In: IEEE Software 39.2 (2022), pp. 62–70.

[228] Chris Lamb and Stefano Zacchiroli. “Reproducible Builds: Increasing the Integrity of Software Sup-
ply Chains”. In: IEEE Software 39.2 (Mar. 2022), pp. 62–70.

[229] Adam Langley. ctgrind. 2010.
[230] Adam Langley. curve25519-donna. https://github.com/agl/curve25519-donna. 2008.
[231] JonathanLazar, JinjuanHeidi Feng, andHarryHochheiser.Researchmethods in human-computer

interaction. Morgan Kaufmann, 2017.
[232] BarryM. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard Kleinrock, Daniel C.

Lynch, Jon Postel, Larry G. Roberts, and StephenWolff.A Brief History of the Internet. https://w
ww.internetsociety.org/internet/history-internet/brief-history-internet/. 1997.

[233] E. Levy. “Poisoning the software supply chain”. In: IEEE Security & Privacy 1.3 (2003), pp. 70–73.
doi: 10.1109/MSECP.2003.1203227.

[234] Frank Li and Vern Paxson. “A large-scale empirical study of security patches”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS’17). 2017,
pp. 2201–2215.

[235] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. “CIPHERLEAKS:
Breaking Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel”. In: USENIX
Security 2021: 30th USENIX Security Symposium. Ed. byMichael Bailey and Rachel Greenstadt.
USENIX Association, Aug. 2021, pp. 717–732.

[236] Renee Li, Pavitthra Pandurangan, Hana Frluckaj, and Laura Dabbish. “Code of Conduct Con-
versations in Open Source Software Projects on Github”. In: Proc. ACM Hum.-Comput. Interact.
5.CSCW1 (Apr. 2021).

[237] Wen Li, NaMeng, Li Li, andHaipeng Cai. “Understanding Language Selection inMulti-Language
Software Projects on GitHub”. In: 2021 IEEE/ACM 43rd International Conference on Software En-
gineering: Companion Proceedings (ICSE-Companion). 2021, pp. 256–257.

[238] Morten Linderud. “Reproducible Builds: Break a log, good things come in trees”. In: (2019). Master
Thesis.

[239] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
“Meltdown: Reading Kernel Memory from User Space”. In: USENIX Security 2018: 27th USENIX
Security Symposium. Ed. by William Enck and Adrienne Porter Felt. Baltimore, MD, USA:
USENIX Association, Aug. 2018, pp. 973–990.

147

https://doi.org/10.1145/3627106.3627138
https://doi.org/10.1145/3627106.3627138
https://doi.org/10.1145/3627106.3627138
https://doi.org/10.1145/3605770.3625212
https://doi.org/10.1145/3605770.3625212
https://reproducible-builds.org/specs/source-date-epoch/
https://github.com/agl/curve25519-donna
https://www.internetsociety.org/internet/history-internet/brief-history-internet/
https://www.internetsociety.org/internet/history-internet/brief-history-internet/
https://doi.org/10.1109/MSECP.2003.1203227

Bibliography

[240] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. “A Survey of Microarchitectural
Side-channel Vulnerabilities, Attacks, and Defenses in Cryptography”. In: ACM Comput. Surv. 54.6
(2022), 122:1–122:37. doi: 10.1145/3456629. url: https://doi.org/10.1145/3456629.

[241] Matthias Lutter. https://lutter.cc/unshackled/brainfuck.html.
[242] Paolo Mainardi. The Rising Threat of Software Supply Chain Attacks: Managing Dependencies of

Open Source projects. https://linuxfoundation.eu/newsroom/the-rising-threat-of-software-su
pply-chain-attacks-managing-dependencies-of-open-source-projects. 2023.

[243] Daniel Mayer and Joel Sandin. Time Trial: Racing Towards Practical Remote Timing Attacks. Tech.
rep. Available at https://www.nccgroup.trust/globalassets/our-research/us/whitepapers
/TimeTrial.pdf. NCC Group, 2014.

[244] Peter Mayer, Damian Poddebniak, Konstantin Fischer, Marcus Brinkmann, Juraj Somorovsky,
Angela Sasse, Sebastian Schinzel, and Melanie Volkamer. “” I {don’t} know why I check this...”-
Investigating Expert Users’ Strategies to Detect Email Signature Spoofing Attacks”. In: Eighteenth
Symposium on Usable Privacy and Security (SOUPS 2022). 2022, pp. 77–96.

[245] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. “Reliability and Inter-Rater Reliability
in Qualitative Research: Norms and Guidelines for CSCW and HCI Practice”. In: ACM on Human-
Computer Interaction 3.CSCW, 72 (2019), pp. 1–23.

[246] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. “Reliability and Inter-rater Reliability
in Qualitative Research: Norms and Guidelines for CSCW and HCI Practice”. In: Proc. ACM Hum.
Comput. Interact. 3.CSCW (2019), 72:1–72:23. doi: 10.1145/3359174. url: https://doi.org/10.11
45/3359174.

[247] Susan E McGregor, Polina Charters, Tobin Holliday, and Franziska Roesner. “Investigating the
computer security practices and needs of journalists”. In: Proceedings of the 24th USENIX Security
Symposium (Sec’15). 2015, pp. 399–414.

[248] Susan E McGregor, Elizabeth Anne Watkins, Mahdi Nasrullah Al-Ameen, Kelly Caine, and
Franziska Roesner. “When the weakest link is strong: Secure collaboration in the case of the Panama
Papers”. In: Proceedings of the 26th USENIX Security Symposium (Sec’17). 2017, pp. 505–522.

[249] Marcela S. Melara and Santiago Torres-Arias. “A Viewpoint on Software Supply Chain Security:
Are We Getting Lost in Translation?” In: IEEE Security & Privacy 21.6 (2023), pp. 55–58. doi:
10.1109/MSEC.2023.3316568.

[250] UtaMenges, Jonas Hielscher, Annalina Buckmann, Annette Kluge, M. Angela Sasse, and Imo-
gen Verret. “Why IT Security Needs Therapy”. In: Computer Security. ESORICS 2021 International
Workshops. Ed. by Sokratis Katsikas, Costas Lambrinoudakis, Nora Cuppens, John Mylopou-
los, Christos Kalloniatis, Weizhi Meng, Steven Furnell, Frank Pallas, Jörg Pohle, M. Angela
Sasse, Habtamu Abie, Silvio Ranise, Luca Verderame, Enrico Cambiaso, Jorge Maestre Vidal,
and Marco Antonio Sotelo Monge. Cham: Springer International Publishing, 2022, pp. 335–
356. isbn: 978-3-030-95484-0.

[251] KelseyMerrill, Zachary Newman, Santiago Torres-Arias, and Karen Sollins. “Speranza: Usable,
privacy-friendly software signing”. In: arXiv preprint arXiv:2305.06463 (2023).

[252] Vishal Midha and Prashant Palvia. “Factors affecting the success of Open Source Software”. In:
Journal of Systems and Software 85.4 (2012), pp. 895–905.

[253] Courtney Miller, Sophie Cohen, Bogdan Vasilescu, and Christian Kästner. “‘Did You Miss My
Comment orWhat?’ Understanding Toxicity in Open Source Discussions”. In: Proceedings of the 44th
International Conference on Software Engineering (ICSE’22). 2022.

148

https://doi.org/10.1145/3456629
https://doi.org/10.1145/3456629
https://lutter.cc/unshackled/brainfuck.html
https://linuxfoundation.eu/newsroom/the-rising-threat-of-software-supply-chain-attacks-managing-dependencies-of-open-source-projects
https://linuxfoundation.eu/newsroom/the-rising-threat-of-software-supply-chain-attacks-managing-dependencies-of-open-source-projects
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/TimeTrial.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/TimeTrial.pdf
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1109/MSEC.2023.3316568

[254] Courtney Miller, Christian Kästner, and Bogdan Vasilescu. ““We Feel Like We’re Winging It:”
A Study on Navigating Open-Source Dependency Abandonment”. In: Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software En-
gineering. ESEC/FSE 2023. , San Francisco, CA, USA, Association for Computing Machinery,
2023, pp. 1281–1293. isbn: 9798400703270. doi: 10.1145/3611643.3616293. url: https://doi.org
/10.1145/3611643.3616293.

[255] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu. “Why Do Peo-
ple Give Up FLOSSing? A Study of Contributor Disengagement in Open Source”. In: Open Source
Systems. Springer International Publishing, 2019, pp. 116–129. isbn: 978-3-030-20883-7.

[256] JaronMink,Harjot Kaur, Juliane Schmüser, Sascha Fahl, andYaseminAcar. ““Security is not my
field, I’m a stats guy”: A Qualitative Root Cause Analysis of Barriers to Adversarial Machine Learning
Defenses in Industry”. In: Proceedings of the 32nd USENIX Security Symposium. 2023.

[257] Audris Mockus, Roy T Fielding, and James D Herbsleb. “Two case studies of open source software
development: Apache andMozilla”. In: ACM Transactions on Software Engineering andMethodology
(TOSEM) 11.3 (2002), pp. 309–346.

[258] Daniel Moghimi. “Downfall: Exploiting Speculative Data Gathering”. In: 32nd USENIX Security
Symposium, USENIX Security 2023. USENIX Association, 2023, pp. 7179–7193.

[259] GideonMohr,MarcoGuarnieri, and Jan Reineke. “SynthesizingHardware-Software Leakage Con-
tracts for RISC-V Open-Source Processors”. In: Proceedings of the 27th Design, Automation and Test
in Europe Conference and Exhibition. ACM/IEEE, 2024, to appear.

[260] Lukas Moldon, Markus Strohmaier, and Johannes Wachs. “How Gamification Affects Software
Developers: Cautionary Evidence from a Natural Experiment on GitHub”. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE’21). 2021, pp. 549–561.

[261] Marina Moore, Trishank Karthik Kuppusamy, and Justin Cappos. “Artemis: Defanging Soft-
ware Supply Chain Attacks in Multi-repository Update Systems”. In: Proceedings of the 39th Annual
Computer Security Applications Conference. 2023, pp. 83–97.

[262] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel. “Axiomatic hardware-
software contracts for security”. In: ISCA ’22: Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture. ACM, 2022, pp. 72–86.

[263] Omar S. Navarro Leija, Kelly Shiptoski, Ryan G. Scott, Baojun Wang, Nicholas Renner, Ryan
R. Newton, and Joseph Devietti. “Reproducible Containers”. In: Proceedings of the 25th ACM In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’20). 2020, pp. 167–182.

[264] Moritz Neikes. TIMECOP.
[265] Matus Nemec, Dusan Klinec, Petr Svenda, Peter Sekan, and Vashek Matyas. “Measuring Pop-

ularity of Cryptographic Libraries in Internet-Wide Scans”. In: Proceedings of the 33rd Annual Com-
puter Security Applications Conference (ACSAC 2017). ACM, 2017. doi: 10.1145/3134600.313461
2.

[266] Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and Lorenzo De Carli.
“Beyond typosquatting: an in-depth look at package confusion”. In: 32nd USENIX Security Sympo-
sium (USENIX Security 23). 2023, pp. 3439–3456.

[267] Zachary Newman, John Speed Meyers, and Santiago Torres-Arias. “Sigstore: Software Signing
for Everybody”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’22. Los Angeles, CA, USA: Association for Computing Machinery, 2022,
pp. 2353–2367. isbn: 9781450394505. doi: 10.1145/3548606.3560596. url: https://doi.org/10.11
45/3548606.3560596.

149

https://doi.org/10.1145/3611643.3616293
https://doi.org/10.1145/3611643.3616293
https://doi.org/10.1145/3611643.3616293
https://doi.org/10.1145/3134600.3134612
https://doi.org/10.1145/3134600.3134612
https://doi.org/10.1145/3548606.3560596
https://doi.org/10.1145/3548606.3560596
https://doi.org/10.1145/3548606.3560596

Bibliography

[268] Zachary Newman, John Speed Meyers, and Santiago Torres-Arias. “Sigstore: Software Signing
for Everybody”. In: ACM CCS 2022: 29th Conference on Computer and Communications Security.
Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. Los Angeles, CA, USA: ACM
Press, Nov. 2022, pp. 2353–2367. doi: 10.1145/3548606.3560596.

[269] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles Weir, and
Sascha Fahl. “A Stitch in Time: Supporting Android Developers in Writing Secure Code”. In: Proc.
24th ACM Conference on Computer and Communication Security (CCS’17). ACM, 2017.

[270] Thanh-Dat Nguyen, Yang Zhou, Xuan Bach D Le, David Lo, et al. “Adversarial Attacks on Code
Models with Discriminative Graph Patterns”. In: arXiv preprint arXiv:2308.11161 (2023).

[271] FlemmingNielson,HanneRNielson, andChrisHankin.Principles of program analysis. Springer,
2015.

[272] Janneke Nieuwenhuizen and Ludovic Courtès. https://guix.gnu.org/en/blog/2023/the-full-
source-bootstrap-building-from-source-all-the-way-down/. 2023.

[273] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser, Is-
mail Khoffi, JustinCappos, andBryan Ford. “CHAINIAC: Proactive Software-Update Transparency
via Collectively Signed Skipchains andVerified Builds”. In:USENIX Security 2017: 26thUSENIX Se-
curity Symposium. Ed. byEnginKirda andThomasRistenpart. Vancouver, BC,Canada:USENIX
Association, Aug. 2017, pp. 1271–1287.

[274] Shirin Nilizadeh, Yannic Noller, and Corina S. Păsăreanu. “DifFuzz: differential fuzzing for side-
channel analysis”. In: Proceedings of the 41st International Conference on Software Engineering. ICSE
’19. Montreal, Quebec, Canada: IEEE, 2019, pp. 176–187. doi: 10.1109/ICSE.2019.00034.

[275] NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Stan-
dardization Process. 2016. url: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cr
yptography/documents/call-for-proposals-final-dec-2016.pdf.

[276] NSA, CISA, ODNI Release Software Supply Chain Guidance for Developers. https://www.nsa.go
v/Press-Room/News-Highlights/Article/Article/3146465/nsa-cisa-odni-release-software-su
pply-chain-guidance-for-developers/. 2022. url: https://www.nsa.gov/Press-Room/News-
Highlights/Article/Article/3146465/nsa-cisa-odni-release-software-supply-chain-guidance-f
or-developers/.

[277] Anna Offenwanger, Alan John Milligan, Minsuk Chang, Julia Bullard, and Dongwook Yoon.
“Diagnosing Bias in the Gender Representation of HCI Research Participants: How It Happens and
Where We Are”. In: Proceedings of the 2021 ACM Conference on Human Factors in Computing Sys-
tems (CHI’21). 2021.

[278] ChinenyeOkafor, Taylor R Schorlemmer, SantiagoTorres-Arias, and JamesCDavis. “Sok: Anal-
ysis of software supply chain security by establishing secure design properties”. In: Proceedings of the
2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses. 2022,
pp. 15–24.

[279] Ben Olmsted. https://esolangs.org/wiki/Malbolge. 1998.
[280] Aleph One. Smashing The Stack For Fun And Profit. http://phrack.org/issues/49/14.html. 1996.
[281] OpenSSF. OpenSSF Scorecards. https://securityscorecards.dev/.
[282] Tavis Ormandy. Zenbleed. https://lock.cmpxchg8b.com/zenbleed.html. 2023.
[283] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and Countermeasures: The Case

of AES”. In: Topics in Cryptology – CT-RSA 2006. Ed. by David Pointcheval. Vol. 3860. Lecture
Notes in Computer Science. San Jose, CA, USA: Springer, Heidelberg, Germany, Feb. 2006,
pp. 1–20. doi: 10.1007/11605805_1.

150

https://doi.org/10.1145/3548606.3560596
https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/
https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/
https://doi.org/10.1109/ICSE.2019.00034
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3146465/nsa-cisa-odni-release-software-supply-chain-guidance-for-developers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3146465/nsa-cisa-odni-release-software-supply-chain-guidance-for-developers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3146465/nsa-cisa-odni-release-software-supply-chain-guidance-for-developers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3146465/nsa-cisa-odni-release-software-supply-chain-guidance-for-developers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3146465/nsa-cisa-odni-release-software-supply-chain-guidance-for-developers/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3146465/nsa-cisa-odni-release-software-supply-chain-guidance-for-developers/
https://esolangs.org/wiki/Malbolge
http://phrack.org/issues/49/14.html
https://securityscorecards.dev/
https://lock.cmpxchg8b.com/zenbleed.html
https://doi.org/10.1007/11605805_1

[284] Thales Bandiera Paiva and Routo Terada. “A Timing Attack on the HQC Encryption Scheme”. In:
SAC 2019: 26th Annual International Workshop on Selected Areas in Cryptography. Ed. by Kenneth
G. Paterson and Douglas Stebila. Vol. 11959. Lecture Notes in Computer Science. Waterloo,
ON, Canada: Springer, Heidelberg, Germany, Aug. 2019, pp. 551–573. doi: 10.1007/978-3-030
-38471-5_22.

[285] Henning Perl, Sergej Dechand,Matthew Smith, Daniel Arp, Fabian Yamaguchi, Konrad Rieck,
Sascha Fahl, and Yasemin Acar. “VCCFinder: Finding Potential Vulnerabilities in Open-Source
Projects to Assist Code Audits”. In: ACM CCS 2015: 22nd Conference on Computer and Commu-
nications Security. Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel. Denver, CO, USA:
ACM Press, Oct. 2015, pp. 426–437. doi: 10.1145/2810103.2813604.

[286] Alan J. Perlis. “Special Feature: Epigrams on Programming”. In: SIGPLAN Not. 17.9 (Sept. 1982),
pp. 7–13. issn: 0362-1340. doi: 10.1145/947955.1083808. url: https://doi.org/10.1145/947955.1
083808.

[287] Jason Perlow. A Summary of Census II: Open Source Software Application Libraries the World De-
pends On. https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-sourc
e-software-application-libraries-the-world-depends-on. 2022.

[288] Mike Perry, Seth Schoen, and Hans Steiner. Reproducible Builds Moving Beyond Single Points of
Failure for Software Distribution. https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412
271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner. 2014.

[289] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. “To BLISS-B or not to be: Attacking
strongSwan’s Implementation of Post-Quantum Signatures”. In: ACM CCS 2017: 24th Conference
on Computer and Communications Security. Ed. by Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu. Dallas, TX, USA: ACM Press, Oct. 2017, pp. 1843–1855. doi:
10.1145/3133956.3134023.

[290] Karl Pettis and Robert C. Hansen. “Profile Guided Code Positioning”. In: Proceedings of the ACM
SIGPLAN1990 Conference on Programming LanguageDesign and Implementation. PLDI ’90.White
Plains,NewYork,USA:Association forComputingMachinery, 1990, pp. 16–27. isbn: 0897913647.
doi: 10.1145/93542.93550. url: https://doi.org/10.1145/93542.93550.

[291] Valentina Piantadosi, Simone Scalabrino, and Rocco Oliveto. “Fixing of Security Vulnerabilities
in Open Source Projects: A Case Study of Apache HTTP Server and Apache Tomcat”. In: Proceedings
of the 12th IEEEConference on Software Testing, Validation and Verification (ICST’19). 2019, pp. 68–
78.

[292] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. “The Software Heritage GraphDataset:
Large-Scale Analysis of Public Software Development History”. In: Proceedings of the 17th Interna-
tional Conference on Mining Software Repositories (MSR’20). 2020, pp. 1–5.

[293] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. “The Software Heritage GraphDataset:
Public Software Development under One Roof”. In: Proceedings of the 16th International Conference
on Mining Software Repositories (MSR’19). 2019, pp. 138–142.

[294] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. “More Common Than You Think:
An In-depth Study of Casual Contributors”. In: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER’16). 2016, pp. 112–123.

[295] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. “Security and Emotion: Sentiment
Analysis of Security Discussions on GitHub”. In: Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR’14). 2014, pp. 348–351.

[296] Rachel Potvin and Josh Levenberg. “Why Google Stores Billions of Lines of Code in a Single Repos-
itory”. In: Commun. ACM 59.7 (June 2016), pp. 78–87.

[297] LLVM project. https://llvm.org/docs/LangRef.html.

151

https://doi.org/10.1007/978-3-030-38471-5_22
https://doi.org/10.1007/978-3-030-38471-5_22
https://doi.org/10.1145/2810103.2813604
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1145/947955.1083808
https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on
https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on
https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner
https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner
https://doi.org/10.1145/3133956.3134023
https://doi.org/10.1145/93542.93550
https://doi.org/10.1145/93542.93550
https://llvm.org/docs/LangRef.html

Bibliography

[298] The Bootstrappable Builds Project. https://bootstrappable.org/. 2016-2023.
[299] The Reproducible Builds Project. https://reproducible-builds.org/. 2013-2023.
[300] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina Polubelova,

Karthikeyan Bhargavan, Benjamin Beurdouche, JoonwonChoi, Antoine Delignat-Lavaud, Cé-
dric Fournet,NataliaKulatova, TahinaRamananandro,AseemRastogi,Nikhil Swamy,Christoph
M. Wintersteiger, and Santiago Zanella-Béguelin. “EverCrypt: A Fast, Verified, Cross-Platform
Cryptographic Provider”. In: 2020 IEEE Symposium on Security and Privacy. San Francisco, CA,
USA: IEEEComputer Society Press,May 2020, pp. 983–1002. doi: 10.1109/SP40000.2020.00114.

[301] NaveenRaman,MinxuanCao, Yulia Tsvetkov, ChristianKästner, andBogdanVasilescu. “Stress
and Burnout in Open Source: Toward Finding, Understanding, and Mitigating Unhealthy Interac-
tions”. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER’20). 2020, pp. 57–60.

[302] Ralf Ramsauer, Lukas Bulwahn, Daniel Lohmann, and Wolfgang Mauerer. “The Sound of Si-
lence: Mining Security Vulnerabilities from Secret Integration Channels in Open-Source Projects”. In:
Proceedings of the 2020ACMSIGSACConference onCloudComputing SecurityWorkshop. CCSW’20.
Virtual Event, USA: Association for Computing Machinery, 2020. url: https://doi.org/10.114
5/3411495.3421360.

[303] Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza Johnson, and Ben Laurie.
“Towards making formal methods normal: meeting developers where they are”. In: arXiv preprint
arXiv:2010.16345 (2020).

[304] Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang. Automated Localization for Unreproducible
Builds. 2018. doi: 10.48550/ARXIV.1803.06766. url: https://arxiv.org/abs/1803.06766.

[305] Zhilei Ren, Changlin Liu, Xusheng Xiao, He Jiang, and Tao Xie. “Root Cause Localization for
Unreproducible Builds via Causality Analysis Over System Call Tracing”. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 2019, pp. 527–538. doi: 10.11
09/ASE.2019.00056.

[306] Zhilei Ren, Shiwei Sun, Jifeng Xuan, Xiaochen Li, Zhide Zhou, andHe Jiang. “Automated Patch-
ing for Unreproducible Builds”. In: Proceedings of the 44th ACM International Conference on Software
Engineering (ICSE’22). 2022, pp. 200–211.

[307] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. “Dude, is my code constant time?” In:
Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland,
March 27-31, 2017. Ed. by David Atienza and Giorgio Di Natale. IEEE, 2017, pp. 1697–1702.
doi: 10.23919/DATE.2017.7927267. url: https://doi.org/10.23919/DATE.2017.7927267.

[308] Reproducible Arch Linux?! https://tests.reproducible-builds.org/archlinux/archlinux.html.
2023.

[309] Reproducible Builds project. https://reproducible-builds.org/docs/definition/. url: https:
//reproducible-builds.org/docs/definition/.

[310] Reproducible Debian Overview. https://tests.reproducible-builds.org/debian/reproducible.ht
ml. 2023.

[311] reprotest. https://salsa.debian.org/reproducible-builds/reprotest. 2016. url: https://salsa.de
bian.org/reproducible-builds/reprotest.

[312] Joshua Reynolds, Trevor Smith, Ken Reese, Luke Dickinson, Scott Ruoti, and Kent E. Seamons.
“A Tale of Two Studies: The Best and Worst of YubiKey Usability”. In: 2018 IEEE Symposium on
Security and Privacy. San Francisco, CA,USA: IEEEComputer Society Press,May 2018, pp. 872–
888. doi: 10.1109/SP.2018.00067.

[313] Henry Gordon Rice. “Classes of recursively enumerable sets and their decision problems”. In: Trans-
actions of the American Mathematical society 74.2 (1953), pp. 358–366.

152

https://bootstrappable.org/
https://reproducible-builds.org/
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1145/3411495.3421360
https://doi.org/10.1145/3411495.3421360
https://doi.org/10.48550/ARXIV.1803.06766
https://arxiv.org/abs/1803.06766
https://doi.org/10.1109/ASE.2019.00056
https://doi.org/10.1109/ASE.2019.00056
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.23919/DATE.2017.7927267
https://tests.reproducible-builds.org/archlinux/archlinux.html
https://reproducible-builds.org/docs/definition/
https://reproducible-builds.org/docs/definition/
https://reproducible-builds.org/docs/definition/
https://tests.reproducible-builds.org/debian/reproducible.html
https://tests.reproducible-builds.org/debian/reproducible.html
https://salsa.debian.org/reproducible-builds/reprotest
https://salsa.debian.org/reproducible-builds/reprotest
https://salsa.debian.org/reproducible-builds/reprotest
https://doi.org/10.1109/SP.2018.00067

[314] Alan JA Robinson andAndrei Voronkov.Handbook of automated reasoning. Vol. 1. Elsevier, 2001.
[315] Gregorio Robles, Laura Arjona Reina, Alexander Serebrenik, Bogdan Vasilescu, and Jesús M.

González-Barahona. “FLOSS 2013: A Survey Dataset about Free Software Contributors: Challenges
for Curating, Sharing, and Combining”. In: Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR’14). 2014, pp. 396–399.

[316] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. “Sparse representa-
tion of implicit flows with applications to side-channel detection”. In: Proceedings of the 25th Interna-
tional Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016. Ed. by
Ayal Zaks and Manuel V. Hermenegildo. ACM, 2016, pp. 110–120. doi: 10.1145/2892208.2892
230. url: https://doi.org/10.1145/2892208.2892230.

[317] Phillip Rogaway. The Moral Character of Cryptographic Work. Cryptology ePrint Archive, Report
2015/1162. https://eprint.iacr.org/2015/1162. 2015.

[318] Sebastian Roth, Lea Gröber, Michael Backes, Katharina Krombholz, and Ben Stock. “12 Angry
Developers - A Qualitative Study on Developers’ Struggles with CSP”. In: ACM CCS 2021: 28th
Conference on Computer and Communications Security. Ed. by Giovanni Vigna and Elaine Shi.
Virtual Event, Republic of Korea: ACM Press, Nov. 2021, pp. 3085–3103. doi: 10.1145/3460120
.3484780.

[319] Jungwoo Ryoo, Bryan Malone, Phillip A. Laplante, and Priya Anand. “The Use of Security Tac-
tics in Open Source Software Projects”. In: IEEE Transactions on Reliability 65.3 (2016), pp. 1195–
1204. doi: 10.1109/TR.2015.2500367.

[320] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan.
“Lessons from building static analysis tools at Google”. In: Commun. ACM 61.4 (2018), pp. 58–66.
doi: 10.1145/3188720.

[321] Joanna C. S. Santos, Anthony Peruma, Mehdi Mirakhorli, Matthias Galstery, Jairo Veloz Vi-
dal, and Adriana Sejfia. “Understanding Software Vulnerabilities Related to Architectural Security
Tactics: An Empirical Investigation of Chromium, PHP and Thunderbird”. In: Proceedings of the 2017
IEEE International Conference on Software Architecture (ICSA’17). 2017, pp. 69–78.

[322] sbuild. https://salsa.debian.org/debian/sbuild.
[323] Walt Scacchi, Joseph Feller, Brian Fitzgerald, Scott Hissam, and Karim Lakhani.Understanding

free/open source software development processes. 2006.
[324] Simone Scalco, Ranindya Paramitha, Duc-Ly Vu, and Fabio Massacci. “On the feasibility of de-

tecting injections in malicious npm packages”. In: Proceedings of the 17th International Conference on
Availability, Reliability and Security. 2022, pp. 1–8.

[325] Stephen R. Schach. Practical Software Engineering. 1992.
[326] Alexander Schaub. “Formal methods for the analysis of cache-timing leaks and key generation in

cryptographic implementations”. Theses. Institut Polytechnique de Paris, Dec. 2020.
[327] Lou Scheffer. Programming in Malbolge. http://www.lscheffer.com/malbolge.shtml. 2015.
[328] Bruce Schneier. https://www.schneier.com/crypto-gram/archives/1998/1015.html#cipherd

esign. 1998.
[329] Peter Schwabe. Eliminating Timing Side-Channels. A Tutorial. https://cryptojedi.org/peter/dat

a/shmoocon-20150118.pdf. Jan. 18, 2015.
[330] Secure development and deployment guidance. https://www.ncsc.gov.uk/collection/developers

-collection/principles/secure-your-development-environment.
[331] Alessandro Segala. How (and why) to sign Git commits. https://withblue.ink/2020/05/17/how

-and-why-to-sign-git-commits.html. 2020.

153

https://doi.org/10.1145/2892208.2892230
https://doi.org/10.1145/2892208.2892230
https://doi.org/10.1145/2892208.2892230
https://eprint.iacr.org/2015/1162
https://doi.org/10.1145/3460120.3484780
https://doi.org/10.1145/3460120.3484780
https://doi.org/10.1109/TR.2015.2500367
https://doi.org/10.1145/3188720
https://salsa.debian.org/debian/sbuild
http://www.lscheffer.com/malbolge.shtml
https://www.schneier.com/crypto-gram/archives/1998/1015.html#cipherdesign
https://www.schneier.com/crypto-gram/archives/1998/1015.html#cipherdesign
https://cryptojedi.org/peter/data/shmoocon-20150118.pdf
https://cryptojedi.org/peter/data/shmoocon-20150118.pdf
https://www.ncsc.gov.uk/collection/developers-collection/principles/secure-your-development-environment
https://www.ncsc.gov.uk/collection/developers-collection/principles/secure-your-development-environment
https://withblue.ink/2020/05/17/how-and-why-to-sign-git-commits.html
https://withblue.ink/2020/05/17/how-and-why-to-sign-git-commits.html

Bibliography

[332] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu. “A Large Scale Exploratory
Analysis of Software Vulnerability Life Cycles”. In: Proceedings of the 34th International Conference
on Software Engineering (ICSE’12). 2012, pp. 771–781.

[333] Andrew Shallue and Christiaan E. van de Woestijne. “Construction of Rational Points on Elliptic
Curves over Finite Fields”. In:Algorithmic Number Theory, 7th International Symposium, ANTS-VII.
Ed. by Florian Hess, Sebastian Pauli, andMichael E. Pohst. Vol. 4076. LNCS. SV, 2006, pp. 510–
524. url: https://doi.org/10.1007/11792086_36.

[334] Ayushi Sharma, Shashank Sharma, Santiago Torres-Arias, and Aravind Machiry. Rust for Em-
bedded Systems: Current State, Challenges and Open Problems. 2023. arXiv: 2311.05063 [cs.CR].

[335] Young-joo Shin, Hyung Chan Kim, Dokeun Kwon, Ji-Hoon Jeong, and Junbeom Hur. “Un-
veiling Hardware-based Data Prefetcher, a Hidden Source of Information Leakage”. In: ACM CCS
2018: 25th Conference on Computer and Communications Security. Ed. by David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang. Toronto, ON, Canada: ACM Press, Oct. 2018,
pp. 131–145. doi: 10.1145/3243734.3243736.

[336] Kelly Shortridge and Josiah Dykstra. “Opportunity Cost and Missed Chances in Optimizing Cy-
bersecurity: The Loss of Potential Gain from Other Alternatives When One Alternative is Chosen”. In:
Queue 21.1 (Apr. 2023), pp. 30–56. issn: 1542-7730. doi: 10.1145/3588041. url: https://doi.org
/10.1145/3588041.

[337] Mario Silic and Andrea Back. “Information Security and Open Source Dual Use Security Software:
Trust Paradox”. In: Open Source Software: Quality Verification. Ed. by Etiel Petrinja, Giancarlo
Succi, Nabil El Ioini, and Alberto Sillitti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 194–206. isbn: 978-3-642-38928-3.

[338] Laurent Simon, David Chisnall, and Ross J. Anderson. “What You Get is What You C: Con-
trolling Side Effects in Mainstream C Compilers”. In: 2018 IEEE European Symposium on Security
and Privacy, EuroS&P 2018. London, United Kingdom: IEEE, Apr. 2018, pp. 1–15. doi: 10.1109
/EUROSP.2018.00009. url: https://doi.org/10.1109/EuroSP.2018.00009.

[339] Vibha Singhal Sinha, Senthil Mani, and Saurabh Sinha. “Entering the Circle of Trust: Developer
Initiation as Committers in Open-Source Projects”. In: Proceedings of the 8th Working Conference on
Mining Software Repositories. MSR ’11.Waikiki, Honolulu,HI, USA:Association for Computing
Machinery, 2011, pp. 133–142. isbn: 9781450305747. doi: 10.1145/1985441.1985462. url: https:
//doi.org/10.1145/1985441.1985462.

[340] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. “When Do Changes Induce Fixes?”
In: SIGSOFT Softw. Eng. Notes 30.4 (May 2005), pp. 1–5. issn: 0163-5948. doi: 10.1145/1082983
.1083147. url: https://doi.org/10.1145/1082983.1083147.

[341] Inna Smirnova, Markus Reitzig, and Oliver Alexy. “What makes the right OSS contributor tick?
Treatments to motivate high-skilled developers”. In: Research Policy 51.1 (2022), p. 104368. issn:
0048-7333. doi: https://doi.org/10.1016/j.respol.2021.104368. url: https://www.sciencedirect
.com/science/article/pii/S0048733321001657.

[342] Devika Sondhi, Avyakt Gupta, Salil Purandare, Ankit Rana, Deepanshu Kaushal, and Rahul
Purandare. “Dataset to Study Indirectly Dependent Documentation in GitHub Repositories”. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). 2021, pp. 215–216. doi: 10.1109/ICSE-Companion52605.2021.00096.

[343] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. “Social Barriers
Faced by Newcomers Placing Their First Contribution in Open Source Software Projects”. In: Pro-
ceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing
(SCW’15). 2015, pp. 1379–1392.

154

https://doi.org/10.1007/11792086_36
https://arxiv.org/abs/2311.05063
https://doi.org/10.1145/3243734.3243736
https://doi.org/10.1145/3588041
https://doi.org/10.1145/3588041
https://doi.org/10.1145/3588041
https://doi.org/10.1109/EUROSP.2018.00009
https://doi.org/10.1109/EUROSP.2018.00009
https://doi.org/10.1109/EuroSP.2018.00009
https://doi.org/10.1145/1985441.1985462
https://doi.org/10.1145/1985441.1985462
https://doi.org/10.1145/1985441.1985462
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/https://doi.org/10.1016/j.respol.2021.104368
https://www.sciencedirect.com/science/article/pii/S0048733321001657
https://www.sciencedirect.com/science/article/pii/S0048733321001657
https://doi.org/10.1109/ICSE-Companion52605.2021.00096

[344] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio Gerosa. “Over-
coming Open Source Project Entry Barriers with a Portal for Newcomers”. In: Proceedings of the 38th
International Conference on Software Engineering (ICSE’16). 2016, pp. 273–284.

[345] Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. “Let Me In: Guidelines for
the Successful Onboarding of Newcomers to Open Source Projects”. In: IEEE Software 36.4 (2019),
pp. 41–49. doi: 10.1109/MS.2018.110162131.

[346] Evgeniy Stepanov and Konstantin Serebryany. “MemorySanitizer: fast detector of uninitialized
memory use in C++”. In: 2015 IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO). IEEE. 2015, pp. 46–55.

[347] Vikram N Subramanian, Ifraz Rehman, Meiyappan Nagappan, and Raula Gaikovina Kula.
“Analyzing first contributions on GitHub: what do newcomers do”. In: IEEE Software (2020).

[348] Chungha Sung, Brandon Paulsen, and Chao Wang. “CANAL: A Cache Timing Analysis Frame-
work via LLVM Transformation”. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ASE ’18. Montpellier, France: Association for Computing
Machinery, 2018, pp. 904–907. isbn: 9781450359375. doi: 10.1145/3238147.3240485.

[349] Mahbubul Syeed, Juho Lindman, and Imed Hammouda. “Measuring Perceived Trust in Open
Source Software Communities”. In:Open Source Systems: Towards Robust Practices. Ed. by Federico
Balaguer, Roberto Di Cosmo, Alejandra Garrido, Fabio Kon, Gregorio Robles, and Stefano
Zacchiroli. Cham: Springer International Publishing, 2017.

[350] Mohammad Tahaei and Kami Vaniea. “Recruiting Participants With Programming Skills: A Com-
parison of Four Crowdsourcing Platforms and a CS Student Mailing List”. In: CHI ’22: Conference on
Human Factors in Computing Systems. ACM, 2022, 590:1–590:15. doi: 10.1145/3491102.3501957.

[351] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. “Bug
characteristics in open source software”. In: Empirical software engineering 19.6 (2014), pp. 1665–
1705.

[352] Technical Committee ISO/TC 159. Subcommittee SC 4. ISO 9241-11:2018 Ergonomics of Human-
system Interaction. Usability : definitions and concepts. Part 11. International standard. ISO, 2018.

[353] Christopher Thompson and David Wagner. “A Large-Scale Study of Modern Code Review and
Security in Open Source Projects”. In: Proceedings of the 13th International Conference on Predictive
Models andData Analytics in Software Engineering. Toronto, Canada: Association for Computing
Machinery, 2017. url: https://doi.org/10.1145/3127005.3127014.

[354] Ken Thompson. “Reflections on Trusting Trust”. In: Commun. ACM 27.8 (Aug. 1984), pp. 761–
763. issn: 0001-0782. doi: 10.1145/358198.358210. url: https://doi.org/10.1145/358198.358210.

[355] T. J. Thompson. “Designer’s workbench: Providing a production environment”. In: The Bell System
Technical Journal 59.9 (1980), pp. 1811–1825. doi: 10.1002/j.1538-7305.1980.tb03063.x.

[356] Mehdi Tibouchi and Alexandre Wallet. “One Bit is All It Takes: A Devastating Timing Attack
on BLISS’s Non-Constant Time Sign Flips”. In: J. Math. Cryptol. 15.1 (2021), pp. 131–142. doi:
10.1515/jmc-2020-0079. url: https://doi.org/10.1515/jmc-2020-0079.

[357] S. Torres-Arias, D. Geer, and J. Meyers. “AViewpoint on Knowing Software: Bill of Materials Qual-
ity When You See It”. In: IEEE Security & Privacy 21.06 (Nov. 2023), pp. 50–54. issn: 1558-4046.
doi: 10.1109/MSEC.2023.3315887.

[358] Santiago Torres-Arias, Hammad Afzali, Trishank Karthik Kuppusamy, Reza Curtmola, and
Justin Cappos. “in-toto: Providing farm-to-table guarantees for bits and bytes”. In:USENIX Security
2019: 28th USENIX Security Symposium. Ed. by Nadia Heninger and Patrick Traynor. Santa
Clara, CA, USA: USENIX Association, Aug. 2019, pp. 1393–1410.

155

https://doi.org/10.1109/MS.2018.110162131
https://doi.org/10.1145/3238147.3240485
https://doi.org/10.1145/3491102.3501957
https://doi.org/10.1145/3127005.3127014
https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210
https://doi.org/10.1002/j.1538-7305.1980.tb03063.x
https://doi.org/10.1515/jmc-2020-0079
https://doi.org/10.1515/jmc-2020-0079
https://doi.org/10.1109/MSEC.2023.3315887

Bibliography

[359] Jason Tsay, Laura Dabbish, and James Herbsleb. “Influence of Social and Technical Factors for
Evaluating Contribution in GitHub”. In: Proceedings of the 36th International Conference on Software
Engineering (ICSE’14). 2014, pp. 356–366.

[360] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, andHiroshiMiyauchi. “Crypt-
analysis of DES implemented on computers with cache”. In: Cryptographic Hardware and Embedded
Systems – CHES 2003. Vol. 2779. LNCS. Springer, 2003, pp. 62–76.

[361] Yukiyasu Tsunoo, Etsuko Tsujihara, KazuhikoMinematsu, and Hiroshi Miyauchi. “Cryptanal-
ysis of Block Ciphers Implemented on Computers with Cache”. In: Proceedings of the International
Symposium on Information Theory and Its Applications, ISITA 2002. 2002, pp. 803–806.

[362] Qiang Tu et al. “Evolution in open source software: A case study”. In: Proceedings of the 2000 Inter-
national Conference on Software Maintenance. IEEE. 2000, pp. 131–142.

[363] UCSD PLSysSec. haybale-pitchfork. url: https://github.com/PLSysSec/haybale-pitchfork.
[364] UCSD PLSysSec. pitchfork-angr. url: https://github.com/PLSysSec/pitchfork-angr.
[365] Alexander Ulrich, Ralph Holz, Peter Hauck, and Georg Carle. “Investigating the OpenPGPWeb

of Trust”. In: Proc. 16th European Symposium on Research in Computer Security (ESORICS’11).
Springer, 2011.

[366] Engin Kirda and Thomas Ristenpart, eds. USENIX Security 2017: 26th USENIX Security Sym-
posium. Vancouver, BC, Canada: USENIX Association, Aug. 2017.

[367] William Enck and Adrienne Porter Felt, eds. USENIX Security 2018: 27th USENIX Security
Symposium. Baltimore, MD, USA: USENIX Association, Aug. 2018.

[368] Nadia Heninger and Patrick Traynor, eds. USENIX Security 2019: 28th USENIX Security Sym-
posium. Santa Clara, CA, USA: USENIX Association, Aug. 2019.

[369] Srdjan Capkun and Franziska Roesner, eds.USENIX Security 2020: 29th USENIX Security Sym-
posium. USENIX Association, Aug. 2020.

[370] Kevin R. B. Butler and Kurt Thomas, eds. USENIX Security 2022: 31st USENIX Security Sym-
posium. Boston, MA, USA: USENIX Association, Aug. 2022.

[371] Sangat Vaidya, Santiago Torres-Arias, Justin Cappos, and Reza Curtmola. “Bootstrapping Trust
in Community Repository Projects”. In: International Conference on Security and Privacy in Com-
munication Systems. Springer. 2022, pp. 450–469.

[372] Mathy Vanhoef and Eyal Ronen. “Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and
EAP-pwd”. In: 2020 IEEE Symposium on Security and Privacy. San Francisco, CA, USA: IEEE
Computer Society Press, May 2020, pp. 517–533. doi: 10.1109/SP40000.2020.00031.

[373] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian, Premkumar
Devanbu, andVladimir Filkov. “The Sky is Not the Limit:Multitasking across GitHub Projects”. In:
Proceedings of the 38th International Conference on Software Engineering (ICSE’16). 2016, pp. 994–
1005.

[374] JoseRodrigo SanchezVicarte,Michael Flanders, RiccardoPaccagnella, GrantGarrett-Grossman,
AdamMorrison, ChristopherW. Fletcher, andDavidKohlbrenner. “Augury:UsingDataMemory-
Dependent Prefetchers to Leak Data at Rest”. In: 2022 IEEE Symposium on Security and Privacy. San
Francisco, CA, USA: IEEE Computer Society Press, May 2022, pp. 1491–1505. doi: 10.1109/SP4
6214.2022.9833570.

[375] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline Trippel, Adam
Morrison, David Kohlbrenner, and ChristopherW. Fletcher. “Opening Pandora’s Box: A System-
atic Study of New Ways Microarchitecture Can Leak Private Data”. In: 42nd IEEE Symposium on
Security and Privacy, SP 2022. IEEE, 2021, pp. 347–360.

156

https://github.com/PLSysSec/haybale-pitchfork
https://github.com/PLSysSec/pitchfork-angr
https://doi.org/10.1109/SP40000.2020.00031
https://doi.org/10.1109/SP46214.2022.9833570
https://doi.org/10.1109/SP46214.2022.9833570

[376] Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou, Michelle L. Mazurek, and
Michael Hicks. “Understanding security mistakes developers make: Qualitative analysis from Build
It, Break It, Fix It”. In: USENIX Security 2020: 29th USENIX Security Symposium. Ed. by Srdjan
Capkun and Franziska Roesner. USENIX Association, Aug. 2020, pp. 109–126.

[377] Duc-LyVu, ZacharyNewman, and John SpeedMeyers. “Bad Snakes: Understanding and Improv-
ing Python Package Index Malware Scanning”. In: 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE. 2023, pp. 499–511.

[378] Guillaume Wafo-Tapa, Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, and Etienne Marcatel.
“A practicable timing attack against HQC and its countermeasure”. In: Advances in Mathematics of
Computation (2020). url: http://dx.doi.org/10.3934/amc.2020126.

[379] JamesWalden. “The impact of a major security event on an open source project: The case of OpenSSL”.
In: Proceedings of the 17th International Conference on Mining Software Repositories (MSR’20).
2020, pp. 409–419.

[380] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao Wu. “Identifying
Cache-Based Side Channels through Secret-Augmented Abstract Interpretation”. In: USENIX Secu-
rity 2019: 28th USENIX Security Symposium. Ed. by Nadia Heninger and Patrick Traynor. Santa
Clara, CA, USA: USENIX Association, Aug. 2019, pp. 657–674.

[381] ShuaiWang, PeiWang, Xiao Liu,DanfengZhang, andDinghaoWu. “CacheD: IdentifyingCache-
Based Timing Channels in Production Software”. In:USENIX Security 2017: 26th USENIX Security
Symposium. Ed. by Engin Kirda and Thomas Ristenpart. Vancouver, BC, Canada: USENIX As-
sociation, Aug. 2017, pp. 235–252.

[382] WubingWang, Yinqian Zhang, and Zhiqiang Lin. “Time and Order: Towards Automatically Iden-
tifying Side-Channel Vulnerabilities in Enclave Binaries”. In: 22nd International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID 2019). Chaoyang District, Beijing: USENIX As-
sociation, Sept. 2019, pp. 443–457. isbn: 978-1-939133-07-6.

[383] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham, Christopher W.
Fletcher, and David Kohlbrenner. “Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86”. In: USENIX Security 2022: 31st USENIX Security Symposium. Ed. by
Kevin R. B. Butler and Kurt Thomas. Boston, MA, USA: USENIX Association, Aug. 2022,
pp. 679–697.

[384] ConradWatt, John Renner, Natalie Popescu, Sunjay Cauligi, andDeian Stefan. “CT-wasm: type-
driven secure cryptography for the web ecosystem”. In: Proc. ACM Program. Lang. 3.POPL (2019),
77:1–77:29. doi: 10.1145/3290390. url: https://doi.org/10.1145/3290390.

[385] Charles Weir, Ingolf Becker, James Noble, Lynne Blair, M Angela Sasse, and Awais Rashid.
“Interventions for long-term software security: Creating a lightweight program of assurance techniques
for developers”. In: Software: Practice and Experience 50.3 (2020), pp. 275–298.

[386] Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer. “Big Numbers - Big
Troubles: Systematically Analyzing Nonce Leakage in (EC)DSA Implementations”. In: USENIX Se-
curity 2020: 29th USENIX Security Symposium. Ed. by Srdjan Capkun and Franziska Roesner.
USENIX Association, Aug. 2020, pp. 1767–1784.

[387] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Mangard, and Georg
Sigl. “DATA - Differential Address Trace Analysis: Finding Address-based Side-Channels in Bina-
ries”. In: USENIX Security 2018: 27th USENIX Security Symposium. Ed. by William Enck and
Adrienne Porter Felt. Baltimore, MD, USA: USENIX Association, Aug. 2018, pp. 603–620.

[388] Shao-Fang Wen. “Learning Secure Programming in Open Source Software Communities: A Socio-
Technical View”. In: Proceedings of the 6th International Conference on Information and Education
Technology. ICIET ’18. Osaka, Japan: Association for Computing Machinery, 2018.

157

http://dx.doi.org/10.3934/amc.2020126
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3290390

Bibliography

[389] Shao-Fang Wen. “Software security in open source development: A systematic literature review”. In:
2017 21st Conference of Open Innovations Association (FRUCT). 2017, pp. 364–373. doi: 10.23919
/FRUCT.2017.8250205.

[390] Shao-Fang Wen, Mazaher Kianpour, and Stewart Kowalski. “An Empirical Study of Security
Culture in Open Source Software Communities”. In: Proceedings of the 2019 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining. ASONAM ’19. Vancouver,
British Columbia, Canada: Association for Computing Machinery, 2020, pp. 863–870. isbn:
9781450368681. doi: 10.1145/3341161.3343520. url: https://doi.org/10.1145/3341161.3343520.

[391] Dominik Wermke, Jan H. Klemmer, Noah Wöhler, Juliane Schmüser, Harshini Sri Ramulu,
Yasemin Acar, and Sascha Fahl. “‘Always Contribute Back’: A Qualitative Study on Security Chal-
lenges of the Open Source Supply Chain”. In: In Proceedings of the 44th IEEE Symposium on Security
and Privacy (IEEE S&P ’23). IEEE Computer Society, May 2023. url: https://www.ieee-securi
ty.org/TC/SP2023/program-papers.html.

[392] Dominik Wermke, Noah Wöhler, Jan H. Klemmer, Marcel Fourné, Yasemin Acar, and Sascha
Fahl. “Committed to Trust: AQualitative Study on Security&Trust inOpen Source Software Projects”.
In: Proceedings of the 43rd IEEE Symposium on Security and Privacy (S&P’22). May 2022.

[393] D. A. Wheeler. “Countering Trusting Trust through Diverse Double-Compiling”. In: Proceedings of
the 21st IEEE Annual Computer Security Applications Conference (ACSAC’05). IEEE, 2005. doi:
10.1109/csac.2005.17. url: https://doi.org/10.1109/csac.2005.17.

[394] David A.Wheeler. “Fully Countering Trusting Trust through Diverse Double-Compiling”. In:CoRR
abs/1004.5534 (2010). arXiv: 1004.5534. url: http://arxiv.org/abs/1004.5534.

[395] Why Constant-Time Crypto? https://www.bearssl.org/constanttime.html. 2018.
[396] JanWichelmann,AhmadMoghimi, Thomas Eisenbarth, and Berk Sunar. “MicroWalk: A Frame-

work for Finding Side Channels in Binaries”. In: Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018. ACM, 2018,
pp. 161–173. doi: 10.1145/3274694.3274741. url: https://doi.org/10.1145/3274694.3274741.

[397] Jan Wichelmann, Florian Sieck, Anna Pätschke, and Thomas Eisenbarth. “Microwalk-CI: Prac-
tical Side-Channel Analysis for JavaScript Applications”. In: ACM CCS 2022: 29th Conference on
Computer and Communications Security. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi. Los Angeles, CA, USA: ACM Press, Nov. 2022, pp. 2915–2929. doi: 10.1145/354860
6.3560654.

[398] Dan Willemsen. https://android.googlesource.com/platform/build/soong/+/master/docs
/best_practices.md. 2016.

[399] Gordon B Willis. Cognitive interviewing: A tool for improving questionnaire design. sage publica-
tions, 2004.

[400] MengWu, ShengjianGuo, Patrick Schaumont, andChaoWang. “Eliminating timing side-channel
leaks using program repair”. In: Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018. Ed. by
Frank Tip and Eric Bodden. ACM, 2018, pp. 15–26. doi: 10.1145/3213846.3213851. url: https:
//doi.org/10.1145/3213846.3213851.

[401] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. “STACCO: Differentially An-
alyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves”. In: ACM
CCS 2017: 24th Conference on Computer and Communications Security. Ed. by Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu. Dallas, TX, USA: ACM Press, Oct.
2017, pp. 859–874. doi: 10.1145/3133956.3134016.

[402] Yuval Yarom, Daniel Genkin, and Nadia Heninger. “CacheBleed: a timing attack on OpenSSL
constant-time RSA”. In: Journal of Cryptographic Engineering 7.2 (June 2017), pp. 99–112. doi:
10.1007/s13389-017-0152-y.

158

https://doi.org/10.23919/FRUCT.2017.8250205
https://doi.org/10.23919/FRUCT.2017.8250205
https://doi.org/10.1145/3341161.3343520
https://doi.org/10.1145/3341161.3343520
https://www.ieee-security.org/TC/SP2023/program-papers.html
https://www.ieee-security.org/TC/SP2023/program-papers.html
https://doi.org/10.1109/csac.2005.17
https://doi.org/10.1109/csac.2005.17
https://arxiv.org/abs/1004.5534
http://arxiv.org/abs/1004.5534
https://www.bearssl.org/constanttime.html
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1145/3548606.3560654
https://doi.org/10.1145/3548606.3560654
https://android.googlesource.com/platform/build/soong/+/master/docs/best_practices.md
https://android.googlesource.com/platform/build/soong/+/master/docs/best_practices.md
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1007/s13389-017-0152-y

[403] Tuba Yavuz, Farhaan Fowze, Grant Hernandez, Ken Yihang Bai, Kevin R. B. Butler, and Dave
Jing Tian. “ENCIDER: Detecting Timing and Cache Side Channels in SGX Enclaves and Crypto-
graphic APIs”. In: IEEE Transactions on Dependable and Secure Computing 20.2 (2023), pp. 1577–
1595. doi: 10.1109/TDSC.2022.3160346.

[404] Yuanyuan Yuan, Zhibo Liu, and Shuai Wang. “CacheQL: Quantifying and Localizing Cache Side-
Channel Vulnerabilities in Production Software”. In: 32nd USENIX Security Symposium, USENIX
Security 2023. Anaheim, CA, USA: USENIX Association, Aug. 2023, pp. 2009–2026. url: https
://www.usenix.org/conference/usenixsecurity23/presentation/yuan-yuanyuan-cacheql.

[405] Yuanyuan Yuan, Qi Pang, and Shuai Wang. “Automated Side Channel Analysis of Media Soft-
ware with Manifold Learning”. In: USENIX Security 2022: 31st USENIX Security Symposium. Ed.
by Kevin R. B. Butler and Kurt Thomas. Boston, MA, USA: USENIX Association, Aug. 2022,
pp. 4419–4436.

[406] Mansooreh Zahedi, Muhammad Ali Babar, and Christoph Treude. “An empirical study of secu-
rity issues posted in open source projects”. In: Proceedings of the 51st Hawaii International Conference
on System Sciences (HICSS’18). 2018, pp. 5504–5513.

[407] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Massimiliano Di
Penta. “HowOpen Source ProjectsUse Static CodeAnalysis Tools inContinuous Integration Pipelines”.
In:Proceedings of the 14th IEEE International Conference onMining Software Repositories (MSR’17).
2017, pp. 334–344.

[408] Jamie Zawinski. LOL Github. https://www.jwz.org/blog/2018/06/lol-github/. 2018.
[409] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus Gonzalez-Barahona.On The Relation

Between Outdated Docker Containers, Severity Vulnerabilities and Bugs. 2018. doi: 10.48550/ARXI
V.1811.12874. url: https://arxiv.org/abs/1811.12874.

[410] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. “Cross-VM side channels
and their use to extract private keys”. In: the ACM Conference on Computer and Communications
Security, CCS’12. Ed. by Ting Yu, George Danezis, and Virgil D. Gligor. ACM, 2012, pp. 305–
316. url: https://doi.org/10.1145/2382196.2382230.

[411] Yaqin Zhou and Asankhaya Sharma. “Automated Identification of Security Issues from Commit
Messages and Bug Reports”. In: Proceedings of the 11th ACM Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE’17). 2017, pp. 914–919.

[412] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beur-
douche. “HACL*: A Verified Modern Cryptographic Library”. In: ACM CCS 2017: 24th Conference
on Computer and Communications Security. Ed. by Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu. Dallas, TX, USA: ACM Press, Oct. 2017, pp. 1789–1806. doi:
10.1145/3133956.3134043.

159

https://doi.org/10.1109/TDSC.2022.3160346
https://www.usenix.org/conference/usenixsecurity23/presentation/yuan-yuanyuan-cacheql
https://www.usenix.org/conference/usenixsecurity23/presentation/yuan-yuanyuan-cacheql
https://www.jwz.org/blog/2018/06/lol-github/
https://doi.org/10.48550/ARXIV.1811.12874
https://doi.org/10.48550/ARXIV.1811.12874
https://arxiv.org/abs/1811.12874
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/3133956.3134043

	Introduction
	Software Security Landscape
	Why Open Source?
	Cryptographic Engineering differs from general Software Engineering
	Why focus on Developers?
	OSS and Supply Chain Security
	Highly Skilled Software Developers still have usability issues
	Thesis Statement
	Contributions
	Related and Concurrent Work

	Background
	Software Supply Chains, Quality and Trust
	Cryptography
	Constant Time Criterion
	Cryptographic Code Analysis
	Cryptographic Engineering
	Usable Security

	What Cryptographic Library Developers Think About Timing Attacks
	Motivation
	Introduction
	Background & Related Work
	Attacks
	Tools included in the survey
	Libraries included in the survey
	Additional Related Work

	Methodology
	Study Procedure
	Survey Structure
	Coding and Analysis
	Data Collection and Ethics
	Limitations
	Data cleaning & Presentation

	Results
	Survey Participants
	Answering Research Questions

	Discussion
	Tool developers
	Compiler writers
	Cryptographic library developers
	Standardization bodies

	Conclusion

	A usability evaluation of constant-time analysis tools
	Motivation
	Introduction
	Background & Related Work
	Usability criteria and tool selection
	Usability criteria
	Tools

	Methodology
	Results
	Discussion
	Usability vs verification approaches
	Recommendations

	Conclusion

	Reproducible Builds for Software Supply Chain Security
	Motivation
	Introduction
	Background and Related Work
	Reproducible Builds Background Information
	Research on Reproducible Builds
	Research on Open Source Software Security
	Interviews with Security Developers

	Methodology
	Participant Recruitment
	Interview Procedure
	Reproducible Builds Summit Discussion
	Coding and Analysis
	Ethical Considerations and Data Protection
	Limitations

	Results
	Why and How Projects Started to Work on Reproducible Builds
	Experienced Obstacles
	Helpful Factors

	Discussion
	Conclusion

	Conclusions and Future Work
	Cryptography is a Cornerstone of Security, but not Universally Checked
	Human Factors in Supply Chain Research
	Outlook

	Appendices
	Appendix What Cryptographic Library Developers Think About Timing Attacks
	Survey
	Background
	Library / Primitive
	Tooling
	Tool use
	Tool use: Dynamic instrumentation based
	Tool use: Statistical runtime tests
	Tool use: Formal analysis
	Miscellaneous

	Tool awareness

	Appendix A usability evaluation of constant-time analysis tools
	Summary of known CT analysis tools

	Appendix On the Importance and Challenges of Reproducible Builds for Software Supply Chain Security
	Codebook
	Questionnaire
	Motivational Matrix

	Appendix Publication History
	List of Figures
	Bibliography

