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Abstract

At the advent of 2024, artificial intelligence (AI)-driven language and robotic systems are revo-

lutionizing various domains and are expected to push the boundaries of human capabilities. The

successes are based on advanced algorithms, but most importantly, on a growing consumption

of computing resources. Training models with limited resources is therefore as important for

reducing training time as it is for pushing the size of large AI models to new limits. This requires

understanding the stability and convergence of learning algorithms, the most efficient use of par-

allel computing infrastructure, and how to adapt to errors caused by asynchronous, lightweight

implementations. To advance our understanding of these problems, the present thesis studies

distributed stochastic approximation (SA) algorithms. Such algorithms are defined by a cou-

pled system of iterations that are adapted asynchronously by updates computed by a potentially

large number of parallel computing resources. The framework jointly covers both asynchronous

training of AI models as well as multi-agent learning in physically decentralized systems. The

property that classifies these two scenarios as theoretically equivalent is that a set of variables is

updated as a function of old versions of itself. In other words, the resulting iterations are affected

by Age-of-Information (AoI).

Part I of this thesis studies the stability and convergence of distributed SA algorithms affected by

AoI. The main result is a generalization of Borkar and Meyn’s SA stability theorem to distributed

SA algorithms, previously known only for bounded AoI processes. Beyond distributed SA, this

result enables a novel stability theorem for SA algorithms with heavy ball momentum. As

an application of the established distributed BMT, the thesis studies asynchronous stochastic

gradient descent, for which an AoI-dependent convergence rate estimate is presented. Finally,

a special distributed SA setting for Markov games is considered. First, a novel deep multi-

agent actor-critic (AC) reinforcement learning algorithm is proposed, which is suitable for online

learning based on communicated data. Second, the algorithm’s convergence is obtained under

mild communication assumptions. Furthermore, conditions on the AoI of data sampled from

the environment (the controlled Markov process) are characterized to ensure convergence of the

resulting state Markov process to a stationary distribution.

The fundamental property for the distributed SA analyses in Part I is the existence of random



variables with certain moment bounds that stochastically dominate the respective AoI processes.

Part II of this thesis thus studies different AoI models to characterize the existence of AoI dom-

inating random variables and, in general, AoI distributions. First, core growth properties that

define AoI as a stochastic process are defined, and different source processes to describe AoI

in different scenarios are identified. In particular, it is shown how strongly mixing event pro-

cesses give rise to AoI processes. This versatile model can represent various AoI processes, e.g.,

AoI induced by point processes with dependent service times or AoI processes due to interfer-

ence in wireless networks. Finally, an in-depth weak convergence analysis of AoI arising from

asynchronous computing modeled as a parallel point process is discussed.
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Notation, Definitions & Background

Notation

• The natural numbers and the natural numbers with zero are denoted by N and N0, respec-

tively. The whole numbers are denoted by Z.

• The d-dimensional real coordinate space is denoted by Rd for all d ∈ N.

• If not otherwise stated, ∥·∥ denotes some norm on a real coordinate space.

• Throughout, we reserve n to denote discrete time and we refer with n ≥ m to some

n ∈ {n ∈ N0 : n ≥ m} for every m ∈ N0.

• Throughout, lowercase letters x will be used for deterministic objects or realizations of

random objects, uppercase letters X will be used for random objects, and aside from the

aforementioned number systems, calligraphic uppercase letters X refer to sets.

• The set of continuous functions from Rd to Rd is denoted by C(Rd).

• A sequence of real vectors x0, x1, . . . , xn, . . . in Rd for some d ∈ N, is denoted by {xn}n≥0

and will be abbreviated by {xn}.
• Small o and big O notation: Consider two real-valued sequences xn, yn. Then, xn ∈ o(yn)

if lim sup
n→∞

xn
yn

= 0 and xn ∈ O(yn) if lim sup
n→∞

xn
yn
<∞.

• Floor and ceiling function: For some x ∈ R, the floor function is defined as ⌊x⌋ := max{n ∈
Z : n ≤ x} and the ceiling function is defined as ⌈x⌉ := min{n ∈ Z : n ≥ x}.

Real Analysis and Dynamical Systems

For background on real analysis, we refer to  Rudin ( 1987 ). For a sharp background on ordinary

differential equations (ODEs), we refer to  V. Borkar  ( 2022 , App. B). Here, we recall some

terminology.

Definition 0.0.1 (Lipschitz continuous). A map h : Rn → Rm is called Lipschitz continuous, if

∥h(x)− h(y)∥ ≤ ∥x− y∥ for every x, y ∈ Rn.

Definition 0.0.2 (Locally Lipschitz continuous). A map h : Rn → Rm is called locally Lipschitz

continuous if it is Lipschitz continuous when restricted to a compact set.
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Definition 0.0.3 (Invariant set). For an ODE ẋ(t) = h(x(t)) in Rd, a set X ⊂ Rd is called

invariant, if x(0) ∈ X implies that x(t) ∈ X for all t ∈ R.

Definition 0.0.4 (Equilibrium). For an ODE ẋ(t) = h(x(t)) in Rd, a point x∗ ∈ Rd is called

an equilibrium point, if h(x∗) = 0.

Definition 0.0.5 (Global asymptotic stability). An equilibrium point x∗ ∈ Rd of an ODE is

called globally asymptotically stable if all trajectories of the ODE converge to x∗.

Probability Theory

We will use measure theoretic probability theory ( Pollard 2002 ) and renewal theory ( Cox and

Isham 1980  ) tools throughout this work. For every considered setting, we always assume an

underlying sufficiently rich probability space (Ω,F ,P) by Kolmogorov’s Existence Theorem

( Billingsley 2008 , p. 482). All events are to be understood as elements of F , and all random

variables are measurable functions from Ω to another measurable space; all random variables

in this work are either real- or integer-valued. We use {statement} as a short notation for

{ω ∈ Ω : statement is true}, e.g. for a random variable X, {X = c} denotes {ω ∈ Ω : X = c}.
For a sequence of events {A(n)}, lim supA(n) := {A(n) i.o.} is the set of outcomes ω ∈ Ω that

occur infinitely often in {A(n)}. With a slight “abuse” of notation, we interchangeably refer

with A ∈ F to the event A itself and to its corresponding indicator function 1A. The abuse

of notation follows the de Finetti notation ( De Finetti 1970 ) as popularized by David Pollard.

For a real-valued random variable X, its expected value is defined as the Lebesgue integral,

E [X] :=
∫
ΩXdP.

Definition 0.0.6 (First order stochastic dominance). A random variable X is said to be (first

order) stochastically dominated by a random variable X, denoted by X ≤st X, if

P (X > m) ≤ P
(
X > m

)

for all m ≥ 0.

Definition 0.0.7 (Almost sure convergence). A sequence of random variables X(n) is said to

converge almost surely (a.s.) to a random variable X, if P
(
lim
n→∞

X(n) = X
)
= 1.

Definition 0.0.8 (Weak convergence). A sequence of real-valued random variables X(n) is said

to converge weakly (in distribution) to a random variable X if lim
n→∞

P (X(n) ≤ x) = P (X ≤ x)
for all x ∈ R where P (X ≤ x) is continuous.

We denote that X(n) converges to X weakly by X(n) ⇒ X. Further, X ∼ Y denotes that X

and Y are equal in distribution.

2
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Definition 0.0.9 (Martingale & martingale difference sequence). Let {Fn} be an increasing

family of sub σ-algebras of F , then a sequence of real-valued random variables {X(n)} is said to

be martingale, if it is integrable with

1) Xn is Fn-measurable for all n.

2) E [Xn+1 | Fn] = Xn a.s. for all n.

In this case, the sequence Mn := Xn −Xn−1 is called a martingale difference sequence.

Renewal Theory

An ordinary (or zero delayed) renewal process on the real line is defined by a sequence of inde-

pendent identically distributed (i.i.d.) interarrival times {W (n)}, such that

S(0) := 0, S(n) := S(n− 1) +W (n), n ≥ 1, (1)

are the time steps where renewals occur ( Cox 1962 ). Let F be the distribution function of the

interarrival times, i.e., F (x) = P (W (n) ≤ x) for all x ≥ 0. The distribution function of S(n)

is given by the n-fold convolution of F : P (S(n) ≤ x) =: Fn∗(x). In this thesis, we consider

F (0) = 0, i.e., renewal processes without multiple simultaneous occurrences.

Definition 0.0.10 (Renewal process). The renewal process associated with i.i.d. interarrival

times {W (n)} is

N(t) := max{n : S(n) ≤ t}. (2)

The renewal process is called lattice (more precisely, 1-lattice) if W (n) ∈ N for all n ≥ 1.

A renewal process is called stationary if it has stationary increments. This property holds

asymptotically for every renewal process. Further, a renewal process can be started in stationary

mode by setting a different initial interarrival time.

Definition 0.0.11 (Modified renewal process). Let N(t) be a renewal process with interarrival

distribution F and µ := E [W (n)] < ∞, then the associated modified renewal process Ñ(t) is

defined by replacing the first interarrival time W (1) of N(t) by W̃ (1) with distribution function

G(x) := P
(
W̃ (1) ≤ x

)
=

1

µ

∫ x

0
(1− F (y))dy. (3)

As defined in Definition  0.0.11 , a modified renewal process is stationary increments ( Serfozo

2009 , Thm. 76).

Definition 0.0.12 (Backward recurrence time). Let N(t) be a renewal process, then

B(t) := t− S(N(t))

is called the backward recurrence time at time t, which is the time since the last renewal before

time t.

3
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Chapter 1

Introduction

The fields of artificial intelligence (AI), computing and optimization have made significant

progress in recent years. Lately, large language models (LLMs) have revolutionized the nat-

ural language AI world since the seminal work of  Vaswani et al. ( 2017 ). The seeds of artificial

general intelligence are arguably visible (  Bubeck et al. 2023  ), and robotic AI-driven autonomous

systems, augmented with generative AI technologies such as LLM (  Tagliabue et al. 2023 ), will

revolutionize various domains in the coming decades by solving complex problems in a resilient

manner ( Kunze et al. 2018 ). Multi-agent robotic systems will further push the boundaries of

human capabilities, by leveraging autonomy and cooperation skills, towards smarter systems

that will learn and interact with their environment, collaborate with humans, plan their future

actions, and execute tasks with immense precision ( Salzman and Stern 2020 ). In this way, to-

day’s society is frequently confronted with new “groundbreaking” AI models based on advances

in algorithms and computing. These advances are directly owing to the growing consumption of

data, computing, and energy resources.

With the rising consumption of data and resources, it is important to emphasize that growth can

also be achieved through efficient utilization of data and a deeper understanding of current AI

paradigms. This means, understanding the optimization of parameterized, large-scale distributed

AI models, i.e., understand the training of AI models. Also, how to make the most efficient

use of computational resources, identifying sources of errors and limitations in highly parallelized

training methods, etc. It is consequently imperative that we understand how model training by

asynchronous and multi-agent methods is affected by training errors and how to compensate for

them. Broadly speaking, these are the motivations and topics of the presented thesis. One

important type of training error considered herein is due to information delays that arise from

poor communication and asynchronous computation. Such errors affect the performance of

parallelized training algorithms in single and multi-agent learning. The information delays arise

from asynchronous computing, communication, or other information-sharing effects. The core
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contribution herein is an in-depth study of information delays and an analysis of a broad class of

discrete-time distributed algorithms under the coupled stochastic approximation (SA) framework.

The theoretical results to be developed in this framework are based on powerful tools from applied

mathematics. The first core tool is a dynamical systems perspective on discrete-time iterative

SA algorithms ( Michel Benaïm 1996 ). Discrete-time algorithms are studied by relating them

to their continuous-time counterparts. In particular, discrete-time algorithms can be shown to

closely track solutions of continuous-time dynamical systems. Then, dynamical systems theories,

e.g., viability theory ( Aubin and Cellina 2012 ) – the study of dynamical systems with viable

constraints, are used to draw conclusions about the dynamical system’s behavior, thence the

actual algorithm. The standard form of an algorithm xn operating in Rd studied herein is given

by the recursion

xn+1 = xn + a(n) [h(xn) + en +Mn+1] , (1.1)

with a positive stepsize a(n), mean algorithm drift h(·), information delay error process en and

sampling noise process Mn+1. Based on this algorithm form, the second core tool employed is

modeling noise, errors, and especially information delays as stochastic processes, i.e., sequences

of random variables ( Durrett 2019 ). Various tools from applied probability will then be used to

characterize sufficient conditions for SA algorithm analysis. In particular, martingale convergence

theory is used to study sampling noise ( Pollard 2002 ), and strong mixing theory is used to describe

the temporal dependence of events that give rise to information delays ( Bradley 2005 ).

The prototypical distributed algorithm that yields the standard form ( 1.1 ) is a D agent (D ∈ N)

discrete-time system with D coupled, possibly asynchronous stochastic iterations given by:

xin+1 = xin + a(n)gi
(
x1n−τi1(n)

, . . . , xin−τii(n)
, . . . xDn−τiD(n); ξ

i
n−∆i(n)

)
, n ≥ 0, i ∈ D, (1.2)

with xi0 an initial vector that is often randomly chosen, and where

• xn := (x1n, . . . x
D
n ) in Rd := Rd1 × . . .× RdD , n ≥ 0.

• xin ∈ Rdi is the real-dimensional value of the iteration on system i at discrete time step n.

• {ξin} is a sequence of random observations used to update the iteration on system i.

• gi (·) is the local drift function of iteration i that describes how iteration i changes from

one time step to the next one.

• {a(n)} is a sequence of positive numbers, referred to as the stepsize sequence, i.e., a(n)

weights the local drift functions to update the iterations at step n.

• τij(n) denotes the random information delay called Age-of-Information (AoI) that occurs

as system i uses the value of system j from the old time step n− τij(n) to evaluate its local

drift at time n.

• ∆i(n) denotes the random information delay called Data Age-of-Information (DataAoI)

that occurs as systen i uses the sample from its observation process from the old time step

n−∆i(n) to evaluate its local drift at time n.
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CONTENTS

Distributed iterations, such as ( 1.2 ), are fundamental to multi-agent reinforcement learning

(MARL) ( Lowe et al. 2017 ), distributed asynchronous computing (  Zhou et al. 2022  ), distributed

control and estimation ( P. Bianchi, Fort, and Hachem 2013 ), and distributed optimization algo-

rithms (  Ramaswamy, Redder, and Daniel E Quevedo 2021a ).

Example 1.0.1 (Distributed Asynchronous Stochastic Gradient Descent (DASGD)). It is an

important example of ( 1.2 ). The goal of DASGD is to find a local minimum of the stochastic opti-

mization problem minx∈Rd F (x) with objective F (x) :=
∫
Ξ f(x; ξ)dP(ξ) for some random function

f : Rd × Ξ→ R. Here, f(x; ξ) is the observed objective function at a sample ξ ∈ Ξ. In machine

learning applications, the sample space Ξ represents a dataset. If we take the example of LLM ap-

plications, f(x; ξ) will be a loss function, x will be a neural network (NN) parameter vector, and ξ

will be the datapoint being processed. When training such models using the distributed computing

paradigm, gradients have to be calculated for subspaces Rd1 × . . .×RdD of the whole optimization

space to ensure feasible training. Multiple asynchronous machines will work on each subspace to

accelerate the training ( B. Yang et al. 2021 ). The local objective (drift) function in ( 1.2 ) is then

simply the sample component gradient: gi(x; ξ) := ∇xif(x; ξ). Moreover, the mean drift in ( 1.1 )

is then given by the expected concatenated sample gradients h(x) := Eξ

[(
g1(x; ξ), . . . , gD(x; ξ)

)]
.

Further, the AoI random variables τij(n) naturally arise since each component may be updated

multiple times when a single machine computes a sample component gradient. Finally, DataAoI

can occur if the training data is communicated to the learning system from sensors or is only

made available after some time.

In this thesis, we 

1
 study coupled iterations such as ( 1.2 ) that describe how individual agents/

subsystems update local parameters based on information about the other iterations and locally

available data. The information may arrive with a potentially large delay – Age of Information

(AoI). This AoI can occur due to various phenomena. Two sources of AoI are asynchronous

parameter updates on distributed computing infrastructure as in Example  1.0.1 and communi-

cation between physically distributed systems. DataAoI occurs in distributed, communication-

limited/resource-constrained scenarios (e.g., sensor networks), where obtaining up-to-date infor-

mation is costly, thus systems have to use/reuse outdated data for local updates. We analyze

the impact of errors due to such delays within the context of a general class of iterative methods

called stochastic approximation algorithms (  M. Benaïm 2006  ). This class originates from semi-

nal works on root-finding iterations and dynamic programming from  Robbins and Monro ( 1951 ),

 Kiefer and Wolfowitz ( 1952 ), and  Bellman ( 1957 ). For the last seven decades, SA has been of

1Whether or not to use the pronoun “we” in a Ph.D. thesis is a common topic of debate. In my opinion, it’s a

stylistic choice, and I prefer to write and read English in a more active voice. I will therefore use “we” because I

don’t like the use of “I” and because I like the idea of an engaging conversation between the writer and the reading

audience. I apologize if the frequent use of “we” irritates you (the reader); you may substitute “I” for “we”, which

would be technically correct, albeit “we” acknowledges the valuable guidance of my advisors throughout my work.
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1.1. MOTIVATION

renewed interest due to various applications in signal processing, economics, game theory, ma-

chine learning, and optimization ( Harold, Kushner, and G. Yin 1997 ;  Benveniste, Métivier, and

Priouret 2012 ;  Bravo 2016 ;  Lei et al. 2020 ;  S.. Bhatnagar, Prasad, and Prashanth 2013 ;  Uryasev

and Pardalos 2013 ;  Ghadimi and Lan 2012 ).

For SA iterations, three questions are of fundamental interest ( V. Borkar 2022 ): 1) Is the SA

algorithm numerically stable, i.e., is supn≥0∥xn∥ < ∞ almost surely, or, equivalently, is every

iteration bounded by a sample path-dependent compact set? 2) Does the iteration converge,

and are the limit points elements of an invariant set of the drift function g(·)? 3) At what rate

does the iteration converge? A non-zero rate of convergence estimate implies that the iteration

converges, which in turn implies that the iteration is almost surely stable. Hence, one will

typically establish an iteration’s stability, followed by a convergence and a rate of convergence

analysis. Broadly speaking, this thesis studies distributed SA algorithms and the AoI processes

affecting them. It presents verifiable sufficient conditions that ensure iterations are stable and

convergent.

To answer such questions for distributed iterations, we study properties and conditions for the

random AoI and random DataAoI sequences τij(n) and ∆i(n) in ( 1.2 ). We will collectively refer

to these sequences as AoI processes and will soon make precise what we mean by an AoI process.

Fundamentally, we ask: How “large” can AoI be while still ensuring stability and convergence

of distributed iterations? How does AoI affect the choice of stepsize sequences (learning rates)

and the convergence rate? Even more fundamentally, we ask: What is AoI? Specifically, how

can we define AoI as a stochastic process? What verifiable assumptions can be imposed on AoI

processes, and what properties useful for SA analysis can be derived?

We answer the aforementioned questions over the course of this thesis. In Section  1.4 , we will

assign substantiated versions of these questions to chapters that address their respective answers

in the thesis. Finally, the structure overview Figure  1.7 on page  27 will highlight the topics

and connections between the chapters. We will now further motivate the thesis and present the

concrete iterations and problems to be covered.

1.1 Motivation

Distributed SA provides a generic, yet effective, mathematical framework to study both asyn-

chronous optimization and distributed multi-agent learning. Such a study is imperative to

accelerate distributed learning via distributed optimization that uses asynchronous heteroge-

nous computing resources. The framework can be applied to study empirical risk minimization

(ERM) problems involving deep neural networks ( Montanari and Saeed 2022 ) - the most com-

mon statistical learning paradigm in machine learning. It also applies to sequential data-driven
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decision-making, control, and reinforcement-learning (RL) problems in stochastic environments

( S. Meyn 2022 ). In the case of ERM, a parameterized model - deep neural network - is trained to

minimize an empirical objective function using a given data set. By contrast, in the sequential

decision making case, the data used to train the model is usually generated online by the model

itself. This is done by trying out model decisions for various scenarios over time. For both

applications, asynchronous implementations and parallel computing resources can significantly

accelerate learning.

1.1.1 Acceleration with asynchronous computing

Accelerating machine-learning algorithms via distributed computing (DC) has become a critical

technique to quickly train huge AI models such as large language models, using massive amounts

of data ( Huang et al. 2019 ;  Narayanan et al. 2019 ;  Chowdhery et al. 2022 ). Acceleration is

achieved by scheduling multiple workers (computing nodes/processors) to update a machine-

learning model asynchronously ( Dean et al. 2012 ;  Ben-Nun and Hoefler 2019 ). For example, in

parameter-server systems, workers sequentially read the parameters of a model and a minibatch

from a data set to then asynchronously compute optimization steps (e.g., stochastic gradients)

to update the model. Asynchronicity here refers to workers that compute and apply updates

independently without waiting for other workers; e.g., worker 1 may have computed updates on

five minibatches while worker 2 is still working on its first minibatch. In other words, updates

are applied without any bounds on the order of operation. Such lightweight methods with small

coordination overhead and asynchronous operation have been shown to reduce memory usage

while drastically increasing processor utilization to train deep learning and large language trans-

former models ( S. Zhang et al. 2013 ;  Guan et al. 2019 ;  B. Yang et al. 2021  ). Lightweight methods

will become even more useful in envisioned volunteer computing networks where users only offer

a small fraction of their computing resources to other users, resulting in highly heterogeneous

computing infrastructure ( Anderson 2020 ).

Accelerated learning through lightweight asynchronous computing methods comes at the cost of

parameter update errors that arise when updates are computed based on outdated information

( Zhou et al. 2022 ). The prototypical DC scenario that yields this interaction is illustrated in

Figure  1.1 for an ASGD implementation (described in Example  1.0.1 ), where multiple machines

update a single component. It can be expressed in the general form ( 1.2 ) using a single AoI

sequence τ(n). The ASGD iteration then reads

xn+1 = xn − a(n)∇xf(xn−τ(n); ξn), (1.3)

which corresponds to the “master iteration” in Figure  1.1 . The AoI τ(n) from the perspective

of the master iteration ( 1.3 ) arises when multiple systems compute updates that are applied
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Scheduler

Iteration
Master

SGD Job
(x, ξ)

∇xf(x; ξ)

µ1

µk

Figure 1.1: DC system running ASGD concurrently with other jobs. Workers are represented as queues with

service rate µk, local scheduling policies, e.g., first-come-first-serve, and potential priority policies. The queues

sequentially receive SGD jobs from an SGD master iteration (left blue arrows). The jobs are queued, and once

completed, the SGD update steps are returned to the master iteration (right blue arrows). In addition, other jobs

are assigned to the queues by the scheduler.

without synchronization. More generally, distributed asynchronous iterations such as DASGD

can be written in the form ( 1.2 ) affected by AoI, which will be discussed in-depth in Chapter  2 .

It has been noticed that the presence of AoI reduces the performance of the methods when

inappropriate hyperparameters - typically stepsizes - are chosen ( Lian et al. 2015 ). To avoid this

problem, precise information about AoI is essential to optimize and predict the performance of

asynchronous iterative methods. This makes it pertinent to characterize how processing times

and asynchronous computing on DC systems give rise to AoI to design effective methods that

maximize resource utilization while guaranteeing performance.

The stochastic nature of the processing times of asynchronous parameter updates in parallel DC

infrastructure is due to real-world system aspects like queuing, priorities, preemption, heavy-

tailed traffic, and advanced workload managers ( Georgiou 2010  ;  Clavier et al. 2020 ;  Tirmazi et al.

2020 ). Notably, these aspects can result in unbounded heavy-tailed stochastic processing times.

Specifically, the random variables associated with the processing times may have unbounded first

moments. For example, this has been observed in the case of asynchronous algorithms run on

public clouds ( Samsi et al. 2021  ). This happens because the ASGD machine-learning method is

run as a low-priority sequential job concurrently with other jobs on a cloud server that allocates

a potentially time-varying set of workers to the method, as illustrated with the scheduler in

Figure  1.1 .

Various questions are of prime interest for asynchronous parallel computing scenarios like ASGD.

Foremost, how should we choose the stepsize of asynchronous methods executed on parallel com-

puting infrastructure? The typical information to answer such questions includes the number
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of available computing resources, the deployed job scheduling policies, and the processing time

data of similar sequential computing jobs as well as data from typical concurrent jobs run on a

cluster. Such processing time distribution information may be historical or from recently fished

jobs on the computing infrastructure. In addition, advanced information like the dependency of

jobs sequentially scheduled to workers, the time-dependent workload of a cluster, etc., can be

tracked with modern workload managers like slurm ( Georgiou 2010 ). With such sets of informa-

tion, predicting AoI properties to be expected for ASGD training prior to runtime is challenging.

Fundamentally, the discrete-time, discrete-valued AoI sequences affecting an asynchronous al-

gorithm must be derived in closed form from the continuous-time processing times of jobs. In

addition, it is unclear how to describe and account for dependencies in the processing time of

jobs, which often occur because users submit similar jobs. Prior to this work, there were no tools

to attempt such challenges. To resolve this gap in the literature, we will present, on the one hand,

new results for the stability and convergence of distributed SA affected by AoI. On the other

hand, we present fundamental models and characteristics for AoI processes that yield verifiable

conditions to apply the developed stability and convergence theory to distributed asynchronous

computing methods based on processing time and infrastructure information.

1.1.2 Distributed multi-agent learning and optimization

Besides asynchronous computing, a motivation for the present work is learning and optimization

of physically distributed multi-agent systems (MAS). These MAS occur, for example, in robotics

( Salzman and Stern 2020 ) and edge-computing networks ( Sofla et al. 2022 ). For such applications,

AoI can arise due to asynchronous computing resources and delayed communication between

physically distributed systems. Delay in communication is often due to resource limitations, for

instance, energy constraints in remote battery-powered wireless sensor networks ( He et al. 2020 ).

In the most extreme scenario, systems must withhold the exchange of information for as long as

possible to minimize their energy consumption or to satisfy privacy restrictions as in federated

learning ( C. Zhang et al. 2021 ). The natural question is, what is the least frequency with which

information sharing is permitted so that distributed systems can still effectively and optimally

solve multi-agent learning problems in a decentralized manner?

In multi-agent learning algorithms, agents often exchange parameterizations of local models.

Since communication is required in physically distributed systems, the algorithms must account

for AoI. Additionally, AoI may arise as the agents receive delayed observations from faraway

sensors or even from other agents. In Equation ( 1.2 ), we referred to this AoI as DataAoI since it

captures the age of the observations. For DASGD, described in Example  1.0.1 , DataAoI is usually

not a concern as data is typically assumed to be independent and identically distributed (i.i.d.).

However, for MARL, data is Markovian; hence, DataAoI has an impact. When the observations
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1.2. STOCHASTIC APPROXIMATION ALGORITHMS

depend on the decision of a multi-agent learning algorithm, it is unclear how much DataAoI

can be tolerated such that the algorithm still converges. In other words, when the learning

agents gather experience from old samples along their training trajectory, does the accumulated

experience represent “well” how the agents currently act in the environment? If not, the learned

policies could be biased toward an agent’s old behavior, which is usually undesirable.

We will now introduce details on the core setting considered in this work to state the problems

and the acquired solutions. Further, we begin the discussion of AoI as a stochastic process.

1.2 Stochastic approximation algorithms

Traditional SA is centralized in nature, implemented as a single iteration to, e.g., find the roots

of a map h : Rd → Rd. The iteration starts from an initialization x0 ∈ R and then follows an

incremental update rule

xn+1 = xn + a(n)
[
h(xn) +Mn+1

]
, for n ≥ 0, (1.4)

where {a(n)} is a positive stepsize sequence, and Mn is a martingale difference sequence (Defi-

nition  0.0.9 ) due to the use of samples. Further, the drift h usually represents the mean drift of

an underlying sampling-based iteration, e.g., ( 1.2 ) without AoI and i.i.d. samples is of the form

( 1.4 ) with h(x) := Eξ [g(x; ξ)].

Depending on how h is defined, iteration ( 1.4 ) becomes a fixed point finding method - pertinent

to dynamic programming and reinforcement learning (  D. P. Bertsekas and J. N. Tsitsiklis 1996 ).

The drift h can also be defined such that various gradient-based optimization algorithms ( S..

Bhatnagar, Prasad, and Prashanth 2013 ) are described using ( 1.4 ). Hence, ( 1.4 ) is a very generic

iteration that serves as a powerful analytic framework. The theory of SA was placed in a

rigorous mathematical dynamical systems framework in the seminal work of  Michel Benaïm 

( 1996 ), which in turn is based on the breakthrough work of  Ljung ( 1977 ). Ljung first established

that SA algorithms could be asymptotically associated with solutions to deterministic ordinary

differential equations (ODEs) under reasonable assumptions. This constitutes the dynamical

systems perspective, via the ODE method, of stochastic approximation algorithms. In this work,

we take the dynamical systems perspective to study component-wise distributed versions of ( 1.4 ).

The notation used throughout follows the modern treatment of SA from a dynamical systems

perspective by  V. Borkar ( 2022 ).

The main idea of the dynamical systems perspective is to study properties such as stability

and convergence of ( 1.4 ) via solutions of the associated ODE ẋ(t) = h(x(t)). The standard

procedure is first to establish the stability of ( 1.4 ) followed by a convergence characterization.

There are various schemes to establish the stability of SA algorithms; see  M. Benaïm ( 2006 ),
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 Harold, Kushner, and G. Yin ( 1997 ),  V. Borkar ( 2022 , Chapter 4) and the reference therein.

One of the most attractive schemes is the stability through scaling approach proposed by  V. S.

Borkar and S. P. Meyn ( 2000 ), which is now known as the Borkar-Meyn Theorem (BMT). This

scheme is attractive as its assumptions can be verified solely using the algorithm drift h.

The BMT establishes the stability of ( 1.4 ) by studying a family of ODEs with scaled dynamics

hc(x) := h(cx)
c for c ∈ [1,∞] under the following condition, which implies that the limiting

dynamics of hc(x) as c→∞ is eventually attracting towards the origin.

Condition 1 (BMT stability condition). The functions hc(x) → h∞(x) converge uniformly on

compact sets as c → ∞ for some h∞ ∈ C(Rd). Furthermore, the ODE ẋ(t) = h∞(x(t)) has the

origin as its globally asymptotically stable equilibrium (Definition  0.0.5 ).

 V. S. Borkar and S. P. Meyn  ( 2000 ) established that under the BMT Condition  1 and additional

standard assumptions (to be discussed later on), a rescaled, interpolated version of the iteration

xn will be asymptotically close to solutions of the limiting ODE ẋ(t) = h∞(x(t)). Then, if

xn were unstable, xn would potentially have to make arbitrarily large jumps in finite time,

as ẋ(t) = h∞(x(t)) is asymptotically stable. This contradicts the classical discrete version of

Gronwall’s inequality, and the BMT follows. In Chapter  2 , we present a more detailed description

of the BMT proof.

Based on the idea of the BMT, several generalizations have been proposed.  Shalabh Bhatnagar 

( 2011 ) proposed a generalization to asynchronous SA,  Lakshminarayanan and Shalabh Bhatnagar 

( 2017 ) generalized the idea to two-timescale SA iterations, and finally  Ramaswamy and Shalabh

Bhatnagar ( 2017 ) presented an important generalization to SA with set-valued dynamics. The

generalization of  Shalabh Bhatnagar  ( 2011 ) was proposed for bounded delays, which poses a

significant restriction. We will see in Chapter  7 that for a natural asynchronous computing model,

the resulting AoI will generally have unbounded support due to stochastic processing/service

times. In other words, the hitherto presented literature lacks a distributed version of the BMT for

unbounded information delays representative of asynchronous computing and distributed learning

settings.

1.2.1 Distributed asynchronous stochastic approximation algorithms

Centralized implementations, such as standard SA iteration ( 1.4 ), can suffer from computational

bottlenecks or can be infeasible due to the decentralized nature of a problem. Therefore, dis-

tributed asynchronous stochastic approximation (SA) algorithms were developed, where multiple

systems/nodes/agents interact to find a function’s roots ( D. Bertsekas and J. Tsitsiklis 2015 ).

Such distributed asynchronous parallel implementations of SA algorithms were first considered

for stochastic gradient-based methods ( J. Tsitsiklis, D. Bertsekas, and Athans 1986 ). Distributed

13



1.2. STOCHASTIC APPROXIMATION ALGORITHMS

SA refers to iterations executed via computer networks, which are thus affected by communi-

cation delays. Asynchronous SA traditionally refers to iterations that run with different clocks,

such that at every time step, only some iterations are updated ( V. S. Borkar 1998  ). More re-

cently, asynchronous SA refers to algorithms where many computing systems update one or many

components of a single global set of variables. This is the definition relevant to this thesis. In

such scenarios, AoI arises as discussed Section  1.1 and exemplified with (  1.3 ), even for a sin-

gle global variable updated by many systems. We conclude that the dominant feature in these

asynchronous computing, distributed learning, and distributed optimization algorithms is that

a set of variables is updated as a function of old versions of itself, which we described by AoI

random variables. The natural distributed SA version of ( 1.4 ) that can represent many of these

algorithms can be stated as follows.

Starting from some x0 := (x10, . . . x
D
0 ) in Rd := Rd1 × . . . × RdD , each component i is updated

with the recursion

xin+1 = xin + a(n)
[
hi(x1n−τi1(n)

, . . . , xDn−τiD(n)) +M i
n+1

]
, for n ≥ 1, (1.5)

where hi : Rd → Rdi are local drift functions; τij(n) denote AoI random variable as in ( 1.2 ); M i
n

are local Martingale noise sequences; {a(n)} is the positive stepsize sequence.

When all xin are almost surely stable and h is Lipschitz continuous (Definition  0.0.1 ), then showing

the convergence of ( 1.5 ) can be done by a simple reduction of the iteration ( 1.5 ) to a version of

the standard SA iteration (  1.4 ). Specifically, ( 1.5 ) can be written as

xn+1 = xn + a(n)
[
h(xn) + en +Mn+1

]
(1.6)

with an error term

en ∈ O


∑

i,j

n−1∑

k=n−τij(n)

a(k)


 a.s. (1.7)

Then, after recalling the notion of stochastic dominance from Definition  0.0.6 , consider the

following AoI condition:

Condition 2. (Previous AoI condition) All τij(n) are stochastically dominated by a random

variable τ , denoted by τij(n) ≤st τ for all n ≥ 0, with E [τp] for some p > 1.

Under Condition  2 , if a(n) ∈ O
(
n
− 1

q

)
for some q ∈ [1, 2), with q ≤ p, it follows from the Borel-

Cantelli Lemma that en ∈ o(1). The convergence of ( 1.6 ) then follows along the lines of the

convergence proof for ( 1.4 ) under standard assumptions using that en vanishes asymptotically

( V. Borkar 2022 , Section 2.2 & 6.3).

The strongest assumption for the outlined convergence is that xn is stable. Without stability,

( 1.7 ) holds a priori only if the drift function h(x) is bounded, a serious restriction. In addition,
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even for bounded drift, the stability result of  Shalabh Bhatnagar ( 2011 ) only holds for bounded

AoI. Still, even when stability is assumed or guaranteed, the bounded p-th moment requirement

in Condition  2 is another restriction, as illustrated by the following example.

Example 1.2.1. Consider a synchronized distributed learning scenario where D agents execute

iteration ( 1.5 ). Suppose the agents exchange their iteration values sequentially in a peer-to-

peer manner (or in accordance to a strongly connected directed communication graph with an

appropriate forwarding mechanism). The number of steps required for information exchange

between a pair of agents can be well represented by a lattice renewal process (Definition  0.0.10 )

(or a more general point process on R). Then, the resulting AoI will be given by the corresponding

backward recurrence times of the renewal processes (Definition  0.0.12 ). Finally, one can show

(see, e.g.,  Serfozo ( 2009 )) that the resulting AoI will satisfy Condition  2 for p > 1 if and only if

the renewal process interarrival times have bounded (p+ 1)-th moment.

We conclude from Example  1.2.1 that heavy-tailed interarrival time distributions with infinite

variances, which in turn implies infinite first moments for the AoI process, are not analyzed by

the available SA literature with respect to both stability and convergence. Such scenarios occur

in parallel computing due to job resource requirements that are heavy-tailed ( Tirmazi et al. 2020 ;

 Samsi et al. 2021 ), in communication due to heavy-tailed interference as, e.g., in large internet-

of-things systems ( Clavier et al. 2020 ), and in general due to the nature of bursts occurring in

systems affected by human dynamics ( Barabasi 2005 ).

Based on the discussion so far, the following are some of the key research questions answered in

this thesis:

(Q1) What version of the Borkar-Meyn stability theorem holds for distributed SA algorithms

with AoI’s that have infinite first moments?

(Q2) To answer (Q1), we must first answer: is p > 1 in Condition  2 necessary for stability and

convergence, or can we obtain a similar condition for the p ∈ (0, 1] case? What will be

the trade-off here? How are the various algorithm parameters affected, e.g., how should we

restrict the learning rate? and how is the convergence rate affected?

(Q3) What properties must DataAoI possess, so that, in distributed multi-agent learning, the

learned policies are not biased towards the agent’s old behavior?

(Q4) How can we ensure the existence of stochastically dominating random variables? Can we do

better and characterize the exact AoI distribution in different asynchronous computing and

distributed learning settings? How to guarantee Condition  2 for some desired p ∈ (0,∞)?

To answer these questions, especially  (Q4) , we need to first view AoI as an appropriate stochastic

process.
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1.3. AGE OF INFORMATION (AOI)

1.3 Age of Information (AoI)

In the previous section, we discussed that AoI causes drift errors, potentially jeopardising stability

and convergence. Further, we saw in Example  1.2.1 that AoI may arise due to subsequent

communication which can be well represented by renewal processes. In general, there are many

sources of AoI. We are interested in the underlying fundamental structure and properties that

unify many of these sources. In the end, we want to derive conditions a) that are practically

verifiable in a real setting, and b) that suffice for stability and convergence of distributed SA

iterations.

Historically, AoI has been popularly used in point process theory to study the age distribution

of populations as individuals/systems live and die ( Feller 1941 ;  Doob 1948  ;  Cox and Isham

1980 ). In information theory and computer networking, AoI has recently become popular as a

representative metric for the freshness of data, where AoI has been studied for various queuing

and scheduling models ( Yin Sun et al. 2019 ). For a point process, AoI describes the time

since the last point occurred. In other words, the AoI is simply the backward recurrence time

(Definition  0.0.12 ) of the point process modeling the communication.

If we consider AoI within the context of wireless communication, one might expect it to be “small”

and bounded, especially in the current 5G/6G era ( Viswanathan and Mogensen 2020 ). However,

the communication delay can still add up for high-dimensional data (e.g., when transmitting

neural network parameters). Further, the communication network may only provide limited

access due to interference in dense environments ( Clavier et al. 2020 ), and the successive wireless

network access can be highly correlated ( Boban, Gong, and W. Xu 2016 ). In summary, we observe

that a network model that captures dependent communication and network access is necessary

to describe AoI processes in representative real-world scenarios. Instead, most studies of AoI in

networking focus on i.i.d. interarrival times (  Yates et al. 2021 ), and the only available studies

of point process with dependent interarrival times do not enable a way to quantify dependency

( Kombrink 2018 ).

Communication is just one possible source for AoI. Generally, information access may be well-

represented by a sequence of events representing whether or not new information arrives. A

crucial component should be that the sequences of events may be dependent. These observations

about the presence of dependency in communication, which is not well covered in the literature,

motivated the study of AoI processes as a function of event processes with dependency decay.

1.3.1 AoI processes driven by event processes with dependency decay

As many effects give rise to AoI, we seek to describe them with a fundamental model for the

information exchange between two nodes, e.g., a source and a monitor. We describe information
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Figure 1.2: A source sends status updates through a channel to a monitor. At time n+1 an update is successfully

received, and the AoI process τ(n) is reset to one if the event A(n) has occurred.
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Figure 1.3: Illustration of a sample path for the fundamental AoI process ( 1.8 ). Green dots and red dots mark

the occurrence and non-occurence of an event in the preceding interval, respectively.

exchange by a sequence of events A(n) representing successful status updates from the source

received at the monitor (Figure  1.2 ). We refer to a slot n as the interval from discrete time step

n to n+ 1. An update sent at time step n is received either at time step n+ 1 (more precisely,

at the start of time slot n + 1) or not at all. At first, this model is a limitation to general AoI

sequences, but we will see in a second how it can be used to describe more general AoI.

Based on the event sequence A(n), we will now describe a fundamental AoI process that we

denote by τ(n). Intuitively, τ(n) grows at a unit rate and resets to one at the occurrence of

events. If an update sent at time step n is received at time step n + 1, then we say the event

A(n) has occurred. The event A(n) is thus associated with the n-th time slot. Hence, whenever

an event A(n) occurs, τ(n+ 1) = 1. The resulting fundamental AoI process τ(n) is

τ(n+ 1) :=




1, A(n) has occurred,

τ(n) + 1, otherwise,
(1.8)

with τ(0) := 0. This simple AoI model thus considers status updates that require a single time

slot for communication. The AoI process ( 1.8 ) can be seen as a special random walk on the

positive real line that restarts whenever an event occurs. From this perspective, the AoI process

can represent various hill-climbing phenomena where a process grows over time and then resets

at certain events. This has, for example, been used in physics to study Doppler laser cooling,
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where atoms rise from a ground level in the presence of a light field ( Montero and Villarroel

2016 ). We, therefore, expect general interest in the study of  1.8 beyond information delays.

In previous studies, such as (  Montero and Villarroel 2016 ), event processes are assumed as i.i.d.

Bernoulli process. Instead, we will consider τ(n) when A(n) merely admits dependency decay

over time. Loosely speaking, this means that the occurrence of events A(n) and A(m) becomes

less dependent as |n−m| → ∞. In wireless communication, A(n) may represent the joint event

that information is sent and that the used communication channel is in a good state.

For the AoI model ( 1.8 ), a pertinent question is which AoI processes can be represented by it and

whether all AoI processes have a sawtooth-like sample path as in Figure  1.3 . For example, con-

sider point processes without multiple occurrences (such as renewal processes in Example  1.2.1 ),

represented by a sequence of interarrival times W (n), n ≥ 1, such that W (n) is the number of

timeslots between the n− 1-th and the n-th status update.

Example 1.3.1. Consider a lattice point process, such that W (n) ∈ N. An example sample path

is shown in Figure  1.4 . The resulting AoI process can be stated using the event sequence

A(n) :=
{∑

i≤k

W (k) = n for some k
}
. (1.9)

The resulting AoI process is

τr(n) :=




W (k(n)), A(n),

τr(n− 1) + 1, A(n)c,
(1.10)

with k(n) := sup{k ∈ N :
∑
i≤k

W (i) ≤ n}. Observe that whenever A(n) = 1, the AoI process is set

to W (k(n)), the time required for the information exchange.

From Figure  1.3 and Figure  1.4 , we can see that the fundamental AoI process ( 1.8 ) cannot

represent ( 1.10 ) as the backward recurrence time of the point process does not reset to 1, but to

the time required for the information exchange. However, it turns out that

τr(n) = τ(n− τ(n)) + τ(n)− 1, (1.11)

where τ(n) is the fundamental AoI process defined using ( 1.9 ). In other words, the fundamental

AoI process can be used to describe the AoI arising from point processes represented by a

sequence of interarrival times. In this way, the fundamental AoI process serves as a basis for

describing more complex AoI processes, e.g., the AoI arising from asynchronous computing.

More importantly, the analysis of Equation ( 1.8 ) presented herein will consider event sequences

A(n) that merely admit dependency decay over time described by strong mixing notion. With

this, the fundamental AoI process can be used to describe AoI due to interference in wireless

communication and AoI in asynchronous computing with correlated jobs.
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Figure 1.4: Illustration of a sample path for an AoI process described by interarrival times.

1.3.2 How AoI arises from asynchronous computing

For AoI caused by asynchronous parameter server updates, the most common examples are

ASGD and its variants ( Netrapalli 2019 ). These methods fall into a general class of asynchronous

distributed parameter server implementations (see Algorithm  2 and Algorithm  3 in Section  7.2.1 ).

Asynchronous methods typically start by initializing parameters, e.g., a machine learning model.

Workers then read the model parameters and a sample from a data set to compute an update

step for the parameters (typically for a subspace of the parameter space ( Raina, Madhavan, and

Ng 2009  ;  Guan et al. 2019 )). The update steps are then returned to the parameter server, which

applies the parameter update. While a worker computes and sends an update step, other workers

may have updated the parameters several times.

In Section  1.1.1 , we explained how such asynchronous implementations lead to accelerated op-

timization at the cost of received updates that have already aged when applied. In fact, the

difference between the current parameter iteration index and the index to which the computed

update step corresponds is precisely the current AoI. 

2
 For example, suppose a worker uses the

parameter xm from step m to calculate an update step, but this update arrives at the server at

iteration index n (for some n ≥ m) and is used to update xn. The resulting AoI of this update

is thus τ(n) = n − m. Let m(n) be the index from which an update step applied at index n

was computed. Then, {τ(n)} (with τ(n) := n −m(n)) is the resulting sequence of AoI random

2Alternatively, one can describe separate AoI sequences for each system computing updates for a parameter

iteration; the separate AoI sequences simply count the number of updates made, while one system computes an

update. Then, when one system applies an update, the AoI associated with the parameter update is just the

corresponding separate AoI of the system. This decomposition into AoI sequences associated with individual

systems is useful for analysis; see Chapter  7 .
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Master
Iteration

Worker 1

Worker 2

AoI

time

τ(0) = 0 τ(1) = 0

W1(0) W1(1)

W2(0)

W1(2)

x0 x1 x2 x3

x3 = x2 − γ(2)∇xf(x0; ξ)

(x0, ξ) ∇xf(x0; ξ)

τ(2) = 2 τ(3) = 1

W2(1)

Figure 1.5: Illustration of AoI arising for ASGD with two workers. Wk(n) is the n-th time to compute an update

step by worker k. Dashed lines: exchange of SGD jobs. Solid lines: exchange of stochastic gradients. f(x; ξ)

denotes the loss function for a data sample ξ as in Example  1.0.1 .

variables for an asynchronous parameter server iteration. An illustration for an AoI sequence

generated by ASGD with two workers is presented in Figure  1.5 .

The introduced definition of AoI in asynchronous computing can now be naturally extended

to asynchronous computing with component-wise parameter updates on subspaces. This leads

to the definition of AoI sequences τij(n) as used in  1.2 . A natural model for the updates of

processors on each component is to use point processes or renewal processes represented by a

sequence of processing times as in Figure  1.5 . A crucial factor for this model is that events are

not aggregated compared to the study of parallel renewal processes in neural biology ( Cox and

Smith 1954  ;  Shanechi et al. 2012 ), which are therefore not applicable. What is important here

is the number of events (parameter updates) that occur from other renewal processes while one

renewal process is waiting for its next event to happen. Because of this property, one can suspect

that the AoI caused by asynchronous computing is not dependent on the backward recurrence

times of the point processes but merely on the length of each computing interval. To verify

this, one has to analyze the distributional limit of the AoI caused by parallel point processes,

specifically, the discrete number of updates by other workers in continuous time while one worker

computes an update.

In summary, we saw in this section that event processes ( 1.8 ) appear to be representative models

for AoI processes but have not been studied for dependent communication. Further, we explained

how AoI arises in asynchronous computing due to updates made by other workers while one

worker is computing an update step, which parallel point processes may well represent. From

the discussion so far on AoI described by event sequences and asynchronous computing, the

following questions arise:
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(Q5) What fundamental structure (e.g., saw-tooth-like sample paths) do AoI sequences possess

that can be used to define AoI processes in general?

(Q6) What growth properties do AoI sequences have as a function of given moment bounds?

(Q7) How can we describe the dependency in event sequences and interarrival time sequences

of point processes? Further, what properties of AoI processes can be concluded from a

dependency model?

(Q8) What is the distributional limit of AoI caused by asynchronous computing modeled as

parallel point processes? In other words, what is the connection between computing events

in continuous time and the effect on discrete algorithms?

1.4 Contributions and thesis structure

We will now summarize the contributions to the problems and questions raised in Section  1.2 and

Section  1.3 . We will then conclude the introduction with an outline of the thesis, the recurring

chapter structure, and the structural overview figure that illustrates the connections between the

chapters.

1.4.1 Main results

Distributed BMT under unbounded information delays

In ( Redder, Ramaswamy, and Karl 2023  ), we developed the anticipated distributed Borkar-Meyn

theorem. We studied iteration ( 1.5 ) without assuming stability and without assuming a bounded

drift function. Compared to the BMT, this analysis requires crucial changes and an altered line

of argument to handle the SA errors caused by AoI. As one can expect from ( 1.7 ), it is required

that the SA stepsize accumulated over intervals with AoI length τij(n) converges to zero almost

surely. This condition, which can be stated as

n−1∑

k=n−τij(n)

a(k)→ 0 a.s., (1.12)

is the key sufficient condition to prove the distributed BMT and to guarantee almost sure conver-

gence of the distributed SA iteration. The condition relates asymptotic AoI growth and the SA

stepsize decay. The distributed BMT Theorem  2.1 then states that ( 1.5 ) is stable almost surely

under the assumptions of the traditional BMT and ( 1.12 ). The key insight enabling the dis-

tributed BMT is a careful analysis of the SA errors caused by AoI and the observation that these

errors satisfy recursive inequalities in quadratic mean and norm. To evaluate these inequalities,
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we propose a new Gronwall-type inequality (Lemma  2.3 ) to bound iterations that satisfy linear

recurrence inequalities with a time-varying lower limit. This inequality may be of independent

interest. In summary, this answers the first part of  (Q1) , which is presented in Chapter  2 , but

leaves it open to satisfy ( 1.12 ) based on AoI properties. Furthermore, it enables an answer to

the first part of  (Q2) .

As an application of the developed stability theory for distributed stochastic approximations, we

consider ASGD. Based on the established distributed BMT theorem, we derive conditions for

stability and convergence. Further, we analyze the AoI-dependent, almost-sure convergence rate

for ASGD, which provides an answer to the second part of  (Q2) , presented in Chapter  3 .

BMT for SA with momentum

As an important byproduct of the distributed BMT, we observed that the principles used to

prove the distributed BMT can be used to prove the BMT for SA with momentum. Consider

the following SA iteration with Polyak’s heavy ball momentum:

xn+1 = xn + a(n)mk,

mk = βmk−1 + (1− β)g(xk),
(1.13)

where m−1 = 0, β ∈ [0, 1) and g(xk) := h(xk) +Mk+1 with drift h and Martingale noise Mk+1

as before. This iteration has been extensively studied for stochastic gradient descent (SGD)

with momentum, but generally only for specific SA iterations or linear SA iterations, whereby a

momentum parameter βn ↗ 1 has been chosen.

We observed that ( 1.13 ) can be studied by splitting the moving average of past drift terms into

“new” and “old” drift terms. Specifically, ( 1.13 ) can be written in moving-average form as xn+1 =

xn+a(n)(1−β)
[∑n

i=1 β
n−ig(xi)

]
. Then, define a deterministic AoI sequence τ(n) := ⌈ n∑n

k=0 a(k)
⌉

and split the moving average as follows:

xn+1 = xn + a(n)(1− β)




n∑

i=n−τ(n)

βn−ig(xi)


+ a(n)(1− β)



n−τ(n)−1∑

i=1

βn−ig(xi)


 . (1.14)

Under standard assumptions for the drift h and the martingale difference noise Mn+1, we will

show that the second summation, which averages “old” drifts, is in o(1). Now observe the sim-

ilarity between the first summation in ( 1.14 ) and ( 1.12 ). Because of this structural similarity,

iteration ( 1.14 ) can be studied as an iteration affected by AoI along the lines of the distributed

BMT. Specifically, we will conclude that the BMT also holds for heavy-ball stochastic approxima-

tions ( 1.13 ) and we can therefore provide sufficient conditions for stability of SAs with heavy-ball

momentum (Theorem  2.14 ). This is a new result for general heavy-ball SA iteration fixed mo-

mentum parameter and an application of  (Q1) , which is presented at the end of Chapter  2 .
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Convergence of distributed actor-critic MARL with aged data

As a specialized distributed SA setting, we studied the convergence of deep multi-agent rein-

forcement learning over communication networks ( Redder, Ramaswamy, and Karl 2022c ;  Redder,

Ramaswamy, and Karl 2022a ). The considered setting is a D agent Markov game, illustrated in

Figure  1.6 .

Agent i

Environmentlocal action ain

local state sin+1

global state sn

global state sn+1

p(sn+1 | sn, an)

local reward ri(sn, an)

Figure 1.6: Agent interaction with Markov game over discrete time n.

The goal is to learn distributed policies in a decentralized manner using information that is solely

communicated between the agents over a communication network, inducing AoI and DataAoI.

For this setting, we present 3DPG, an online, fully distributed, multi-agent, actor-critic learning

algorithm for networked MAS with continuous decision spaces. Notably, we formulate AoI as-

sumptions that formalize how old information used by the 3DPG agents can be: The DataAoI

should not be asymptotically “too large” relative to the used stepsize sequence to guarantee that

the obtained multi-agent, actor-critic policy induces that the agent’s accumulated experiences

constitute stationary distributions over the state Markov process. This property is formally

proved as part of the convergence analysis in Chapter  4 and thus provides an answer to  (Q3) for

the distributed multi-agent learning setting.

To study the convergence of 3DPG, we use recent asymptotic analyses of Deep Q-Learning

under mild assumptions (  Ramaswamy and Hullermeier 2021 ), but assuming stability. We show

that 3DPG converges to a local stationary point of a Markov game, which, for a special case,

implies that the agents converge to a local Nash equilibrium of the Markov Game for policies

parameterized by a linear combination of non-linear features. To verify the AoI conditions in the

so-far announced results, we developed fundamental results on AoI as a stochastic process.

AoI modeling and deterministic growth bounds

The sawtooth-like nature of AoI sequences in Figures  1.3 and  1.4 may suggest that all AoI

processes have a unit growth property, i.e., that τ(n + 1) ≤ τ(n) + 1. However, AoI, due

to asynchronous computing as introduced in Section  1.3.2 , can clearly grow arbitrarily from n

to n + 1 if a single worker is particularly slow. Therefore, AoI sequences with a unit-growth
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property will fall into the soon-to-be defined class of simple AoI processes; see Definition  5.1.1 in

Chapter  5 . AoI processes are then defined as processes taking values of one of many simple AoI

processes, which was already briefly outlined in Footnote  2 . At every time step n, an AoI process

will satisfy τ(n) = τk(n) for some simple AoI processes τk(n) for k ∈ K, where K represents a

set of simple AoI processes. The idea behind this definition is that information may flow over

multiple paths from a source to a monitor. In the asynchronous computing setting, the paths

are the (potentially time-varying) set of workers that compute updates, which age as the workers

compute them.

Based on the structural definition of an AoI process, we will infer a fundamental growth property,

versions of which were discussed in ( Redder, Ramaswamy, and Karl 2022a ;  Redder, Ramaswamy,

and Karl 2023 ). Let τ(n) be an AoI process with simple AoI process family K, such that each

τk(n) is stochastically dominated by a random variable τk with E
[
τpkk
]
< ∞ for some pk > 0,

then for all ε > 0

P
(
τ(n) > εn

1
max{1,p} i.o.

)
= 0, (1.15)

with p := mink{pk}. This property enables that if an AoI process has dominating random

variables with any moment bounds pk > 0, then a(n) ∈ O
(
1
n

)
will be sufficient to guarantee

that the key property ( 1.12 ) holds, thus enabling the established core stability and convergence

theorems. These results answer the second part of  (Q1) as well as  (Q2) ,  (Q5) , and  (Q6) , and are

presented in Chapter  5 

AoI arising from strongly mixing event processes

It is now left to characterize when such moment bounds to guarantee ( 1.15 ) are satisfied.

The deterministic growth bound ( 1.15 ) given AoI dominating random variables with some bounded

moment provides the first tool for verifiable stability and convergence conditions. Next, we are

interested in the existence of dominating random variables with prescribed moment bounds. The

fundamental AoI process ( 1.8 ) provides the first tool. We describe the event sequences A(n) us-

ing the notion of strong mixing. In (  Redder, Ramaswamy, and Karl 2022b ), we showed that a

dominating variable with bounded p-th moment exists for a fundamental AoI process whenever

A(n) is strongly mixing with mixing rate α(A,n) such that
∑

n≥0 n
p−1α(A,n) <∞. In addition,

we show that the fundamental AoI process is itself strongly mixing with almost the same rate

as A(n), which enables a strong law for AoI processes – a result of independent interest. These

results answer  (Q7) and provide the first set of verifiable AoI conditions to answer  (Q4) and the

second part  (Q1) . The results are presented in Chapter  6 .
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AoI arising from asynchronous computing modeled as parallel point processes

We study the AoI arising from asynchronous computing. We model the processing time of parallel

workers as parallel point processes. The resulting AoI sequence will then be an AoI process as

introduced above, with the simple AoI processes of the k-th worker in continuous time given by

∑

j ̸=k

(Nj(t)−Nj(t−Bk(t))) , (1.16)

where Nj(t) is the point process associated with the j-th worker and Bk(t) the backward re-

currence time (Definition  0.0.12 ) of the k-th worker. In other words, ( 1.16 ) simply counts the

number of updates from other workers, from the last update of worker k until time t. Here,

the main contribution is the weak convergence analysis of the resulting AoI process and the

development of sharp moment bounds, which lead to dominating random variables for the AoI

process. The results were developed in ( Redder 2023 ) for renewal processes and, in general, ap-

ply to point processes that asymptotically converge to stationary increments. Finally, we discuss

that the aforementioned event processes may also replace the point process in this asynchronous

computing model. With these results, we answer  (Q8) and provide the second set of verifiable

AoI conditions to answer  (Q4) and the second part  (Q1) . The results are presented in Chapter  7 

Decentralized learning in mobile wireless networks

Finally, we discuss how the developed theory applies to learning and optimization when nodes

communicate over wireless networks with interference. Apparently, the state of a network channel

at successive time steps can be highly dependent. For example, one can consider that the channel

state is good if the signal-to-interference-plus-noise ratio (SINR) of a received signal is above a

certain threshold, thus guaranteeing successful communication ( Tse and Viswanath 2005 ). The

representative model studies the SINR between every pair of agents in a MAS combined with

a class of AoI-aware medium access control policies. The core result is that under “sufficiently

recurring” Markovian mobile dynamics and carefully chosen medium access policies, the SINR

between every pair of agents will be strongly mixing. Hence, the new results on the existence of

AoI dominating random variables and AoI growth bounds apply, which thus guarantees stability

and convergence for decentralized learning and optimization methods. This application thus

combines most of the developed results and provides verifiable conditions to ensure properties of

distributed iterations. Regarding the raised questions, this chapter provides a specialized answer

to  (Q4) and  (Q7) . The results are presented in Chapter  8 .
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1.4.2 Thesis structure

The thesis is split into two main parts. Part I, corresponding to chapters Chapters  2 to  4 focuses

on distributed SA iterations. In Chapter  2 , we study the stability of distributed SA iterations

and present the distributed BMT and the BMT for SA with momentum. From this, we conclude

in Chapter  3 stability and convergence statements for DASGD and prove the AoI-dependent,

almost-sure convergence rate. Afterward, we present 3DPG, a distributed multi-agent algorithm

for Markov Games in Chapter  4 .

Part II, corresponding to Chapters  5 to  9 then presents the established results on AoI. Chapter  5 

discusses modeling stochastic information delays and deterministic AoI growth bounds. Next, the

AoI arising from strongly mixing event processes is discussed in Chapter  6 . Then, AoI processes

arising from distributed computing modeled as parallel point processes are studied in Chapter  7 .

Finally, AoI-dependent network scheduling policies that preserve mixing properties of SINR in

mobile wireless communication are presented in Chapter  8 .

In addition, Chapter  9 provides a number of supporting numerical experiments. The code for

all experiments is available on  https://github.com/aredder/ . Apart from the numerical ex-

periment chapter, all other chapters have the following structure: After a brief introduction of

the problem and required background, the system model and assumptions are presented, and

the main results of the chapter are derived as theorems and lemmas. Afterward, each chapter

contains a section with discussion and related work. Finally, every chapter closes with a chapter-

specific appendix containing all proofs of the chapter omitted in the chapter’s main text for

better readability. Overall, the thesis concludes with discussions, future work, and an appendix

on analysis ( A.1 ) and probability (  A.2 ) for easy reference.

Structure overview

Below, we present a graphical structural overview of the connections between the chapters.

Additionally, we present Table  1.1 to quickly access the chapters relevant to the raised questions

in the introduction.
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 (Q1)  (Q2)  (Q3)  (Q4)  (Q5)  (Q6)  (Q7)  (Q8) 

Chapter  2 ✓

Chapter  3 ✓

Chapter  4 ✓

Chapter  5 ✓ ✓ ✓ ✓

Chapter  6 ✓ ✓ ✓

Chapter  7 ✓ ✓ ✓

Chapter  8 ✓ ✓

Table 1.1: Assignment of chapters that address parts of the raised questions.
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Part I: Distributed Asynchronous

Stochastic Approximation Algorithms





Chapter 2

Stability of Distributed Asynchronous

Stochastic Approximations

In this chapter, we derive sufficient conditions for the stability and convergence of distributed

SAs (  1.5 ) in the presence of large unbounded stochastic AoI. We generalize the Borkar-Meyn

stability theorem from centralized SAs to distributed SAs. Further, we prove the BMT for SA

with heavy ball momentum. The results are based on ( Redder, Ramaswamy, and Karl 2023 ).

Using AoI properties to be derived in Part II, we can then conclude with assumptions showing

that iteration ( 1.5 ) with drift h(·) is stable and converges almost surely to a compact connected

invariant set of the ODE ẋ(t) = h(x(t)) provided merely that there exists an arbitrary p > 0,

such that supn≥0 E
[
τpij(n)

]
< ∞. As mentioned before, prior to this contribution, this was

only known if either ( 1.5 ) is assumed to be stable almost surely and in addition that the above

condition holds for at least some p > 1 ( V. Borkar 2022  , Section 6), or if the AoI variables τij(n)

are bounded (  Shalabh Bhatnagar 2011  ).

2.1 Assumption, main statements and preliminaries

Recall that we consider the following iteration:

xin+1 = xin + a(n)
[
hi(x1n−τi1(n)

, . . . , xDn−τiD(n)) +M i
n+1

]
, n ≥ 0, (1 ≤ i ≤ D), (2.1)

with xn := (x1n, . . . x
D
n ) in Rd := Rd1 × . . .×RdD , where Rd is equipped with some norm ∥·∥, and

each Rdi is equipped with the induced norm on the coordinate subspace. As before, τij(n) is

the AoI random variable that incurs since iteration i uses the iteration value of iteration j from

time n − τij(n) to evaluate its local drift hi : Rd → Rdi at time n. Further, M i
n+1 is the local

Martingale difference noise sequence, and a(n) is the stepsize used by every iteration.
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Define the local errors due to AoI at step n as

ein := hi(x1n−τi1(n)
, . . . , xDn−τiD(n))− hi(x1n, . . . , xDn ). (2.2)

When ein ∈ o(1) almost surely, then by inspection, we expect that under suitable assumptions

on a(n), h and M i
n+1 iteration ( 2.1 ) will track solutions to the dynamical system

ẋ(t) = h(x(t)). (2.3)

The standard regularity assumption to ensure that the ODE ( 2.3 ) is well-posed ( V. Borkar 2022 ,

App. B) is that h is Lipschitz continuous:

Assumption 2.1.1. hi : Rd → Rdi is the i-th component of a Lipschitz-continuous map h :

Rd → Rd with Lipschitz constant L > 0.

The Lipschitz condition plays a crucial role in establishing the stability and convergence of ( 2.1 )

in the presence of the errors ein. In addition, we assume that rescaled versions of the ODE ( 2.3 )

converge to an ODE with a globally asymptotically stable equilibrium.

Assumption 2.1.2. The functions hc(x) := h(cx)
c , c ≥ 1, x ∈ Rd, satisfy hc(x) → h∞(x)

pointwise as c → ∞ for some h∞ ∈ C(Rd). Furthermore, the ODE ẋ(t) = h∞(x(t)) has the

origin as its globally asymptotically stable equilibrium.

This is the BMT stability condition recalled from Condition  1 in Chapter  1 . As mentioned

before, the main contribution is extending the BMT to a distributed setting with unbounded

stochastic delays. Inspired by the proof of the distributed BMT, we will also present a weaker

version of Assumption  2.1.2 in Section  2.2.4 that also applies to the traditional BMT.

We make the following assumption for the additive noise terms M i
n+1.

Assumption 2.1.3. M i
n+1 ∈ Rdi is the i-th component of a martingale difference noise process

{Mn} with respect to the filtration Fn := σ (x0,M1, . . .Mn, τij(0), . . . τij(n), 1 ≤ i, j ≤ D) , n ≥ 0 :

1) {Mn+1}n≥1 is a square integrable sequence.

2) E
[
∥M i

n+1∥2 | Fn

]
≤ K2

(
1 + ∥(x1n−τi1(n)

, . . . , xDn−τiD(n))∥2
)

for some K > 0.

Assumption  2.1.3 bounds the conditional second moment of the martingale noise component at

time n ≥ 0 based on the associated iteration values in (  2.1 ); a weaker version will be discussed

in Section  2.2.4 . Finally, we state the assumptions for the stepsize sequence a(n) and the AoI

sequences τij(n). As mentioned in the introduction, the AoI sequences can be the consequence

of various transport phenomena resulting in the effective use of aged information xjn−τij(n)
when

evaluating the recursion ( 2.1 ).

Assumption 2.1.4. The stepsize a(n) is not summable but square summable, i.e.,
∑

n≥0 a(n) =

∞ and
∑

n≥0 a(n)
2 <∞.
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Assumption 2.1.5. For all i, j, the stepsize a(n) and the AoI sequences τij(n) guarantee that

n−1∑

k=n−τij(n)

a(k)→ 0 a.s..

Assumption  2.1.5 , which corresponds to the announced key property ( 1.12 ) for the stability and

convergence of distributed, describes the trade-off between the stepsize sequence and the AoI

sequences. A faster stepsize decay allows the AoI sequences to be larger asymptotically. The

details of the stability proof will show the importance of this assumption in conjunction with

Lipschitz continuity for the stability of distributed SAs. Notably, it turns out that the almost

sure convergence in Assumption  2.1.5 reaches deeper into the stability analysis than one might

initially expect since the convergence is almost uniformly.

Theorem 2.1 (Distributed Borkar-Meyn Theorem). Under Assumption  2.1.1 - 2.1.5 , iteration

( 2.1 ) is stable almost surely, i.e., supn∥xn∥ <∞ a.s..

Corollary 2.2. Under Assumption  2.1.1 - 2.1.5 iteration ( 2.1 ) converges almost surely to a po-

tential sample path-dependent compact connected internally chain transitive invariant set of the

ODE ( 2.3 ).

For the terminology used to state Corollary  2.2 , see  V. Borkar ( 2022 , Sec. 2.1). We do not

explain it here, as it is unnecessary for the stability analysis. The most important consequence

of Corollary  2.2 is that when the only invariant sets (Definition  0.0.3 ) are isolated equilibrium

points (Definition  0.0.4 ), then xn converges almost surely to a potential sample path-dependent

equilibrium point ( V. Borkar 2022 , Sec. 2.2).

2.1.1 Traditional Borkar-Meyn theorem

The proof of Theorem  2.1 is inspired by the traditional BMT but requires crucial changes to

handle the a priori non-vanishing additive drift error ein due to AoI. To better understand the

required changes, we first sketch the proof of the traditional BMT, i.e., we consider iteration xn
in (  2.1 ) with τij(n) = 0 for all n ≥ 0.

As the first step, the BMT proof creates a piecewise linear interpolated trajectory x(t) from the

iteration xn. Then, the time axis [0,∞) is seperated into concatenated time intervals [Tm, Tm+1]

of length approximately T > 0. Finally, a rescaled trajectory x̂(t) is created by dividing x(t)

over each [Tm, Tm+1] by ∥x(Tm)∥, i.e., each x(Tm) is scaled to the unit ball. The second step is

to show that the rescaled trajectory x̂(t) is stable almost surely. Then a stochastic approxima-

tion argument shows that x̂(t) tracks solutions to scaled ODEs with drift hc(·), c ∈ [1,∞], from

Assumption  2.1.2 . The final step is to verify the stability by contradiction. Assuming that xn is

unstable, a subsequence of scaling factors ∥x(Tm)∥ diverging to infinity will exist. A stochastic
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approximation argument then leads to corresponding rescaled segments of x̂(t) that asymptoti-

cally track the limiting ODE from Assumption  2.1.2 with drift h∞(·). Since this limiting ODE

is globally asymptotically stable to the origin, the aforementioned rescaled segments eventually

drift toward a neighborhood of the origin. This leads to a contradiction since ∥x(Tm)∥ diverges

to infinity. We will now begin with preliminaries for the proof of the distributed BMT.

2.1.2 Recursive structure of stochastic approximation errors caused by AoI

Rewrite the main iteration (  2.1 ) as

xn+1 = xn + a(n) [h(xn) + en +Mn+1] , (2.4)

for n ≥ 0, with additive drift error en = (e1n, . . . , e
D
n ) composed of local drift errors ein as defined

in ( 2.2 ). We shall impose the natural condition that iteration ( 2.1 ) (thence ( 2.4 )) starts from a

prescribed x0 with (E
[
∥x0∥2

]
)
1
2 <∞. Assumption  2.1.1 then implies the linear growth of h(·):

∥h(x)∥ ≤ K(1 + ∥x∥) (2.5)

for all x ∈ Rd for some K > 0 depending on x0. To simplify the presentation, we assume

without loss of generality that the same constant K holds for both ( 2.5 ) and the inequality in

Assumption  2.1.3 .

Using the Lipschitz-continuity of h (Assumption  2.1.1 ), the norm of the local drift errors satisfy

∥ein∥ ≤ L
D∑

j=1

∥xjn − xjn−τij(n)
∥. (2.6)

Next, using a telescoping sum and the triangular inequality, it follows that

∥xjn − xjn−τij(n)
∥ ≤

n−1∑

k=n−τij(n)

∥xjk+1 − x
j
k∥ (2.7)

=
n−1∑

k=n−τij(n)

a(k)
(
∥hj(x1k−τj1(k)

, . . . , xDk−τjD(k)) +M j
k∥
)
, (2.8)

where the second step uses iteration ( 2.1 ). Note that whenever τij(n) = 0, the sums on the

right-hand side are empty and thus equal to zero. From the last inequality, one can imagine that
∑n−1

k=n−τij(n)
a(k) → 0 a.s. (Assumption  2.1.5 ) is a sufficient condition to prove the stability of

( 2.1 ). This is immediate from the BMT provided that 1. the drift h is bounded almost surely

and 2. the noise Mn+1 is bounded almost surely. We do not make these assumptions.

Using the linear growth of h, (  2.5 ), we conclude that

∥xjn − xjn−τij(n)
∥ ≤ K

n−1∑

k=n−τij(n)

a(k)

(
1 + ∥xk∥+

D∑

l=1

∥xlk − xlk−τjl(k)
∥
)

+ ∥
n−1∑

k=n−τij(n)

a(k)M j
k∥.

(2.9)
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In the following, we will motivate some key steps from inequality ( 2.9 ).

2.1.3 Creation of rescaled trajectories

As the first step, along the lines of the traditional BMT, we create a piecewise linear interpolated

trajectory x(t) and a rescaled trajectory x̂(t) from xk. Divide the time axis [0,∞) using the

stepsize a(n) as follows. Define time instants

t(0) := 0, t(n) :=
n−1∑

i=1

a(i), for all n ≥ 1. (2.10)

Now define an interpolated trajectory x(t), by setting x(t(n)) := xn, n ≥ 0 and define x(t) for

all other points t ∈ [0,∞) by linear interpolation. Fix T > 0, then split the time axis into

approximately T -length intervals with initial time steps

T0 = 0, Tm+1 := min{t(n) : t(n) ≥ Tm + T}. (2.11)

In contrast to the traditional BMT, we now require a different, larger, rescaling sequence to

create x̂(t). From a physical, dynamical systems perspective, we have to scale the iteration more

in the presence of AoI, since otherwise older iteration values that are not sufficiently scaled lead

to scaled drift errors that cause x̂(t) to be unstable. Technically, this can be seen from inequality

( 2.9 ). If we were to use the rescaling sequence ∥x(Tm)∥ as for the BMT, then ( 2.9 ) shows that a

bound for the local drift error en (thence for xn) depends on xk with k ∈ {n− 1, . . . n− τij(n)}.
The problem is that these xk will be associated with different T -length intervals [Tm, Tm+1] than

xn, whenever the AoI τij(n) is large. Thus scaling both sides of ( 2.9 ) with the scaling factor

associated with xn does not lead to variables on the right-hand side of ( 2.9 ) that can be bounded

by the rescaled trajectory x̂(t).

To solve the problem of the original scaling sequence, we propose that the interpolated trajectory

is scaled over every T -length interval by the larger scaling sequence

s(m) := max{sup
l≤m
∥x(Tl)∥, 1},m ≥ 0. (2.12)

Remark 2.1.1. From a dynamical systems perspective, the traditional BMT studies a projected

version of xn, where after every T -length interval in continuous time, the iteration is projected to

the unit sphere. Instead, we study a projected version of xn, where after every T -length interval

in continuous time, the iteration is projected to a point on the unit ball. This is done by adapting

the scaling value to project the iteration: whenever the projected iteration would be outside the

unit ball with the previous scaling value, the value is increased such that the projected iteration

is on the unit sphere.
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The crucial point of constructing s(m) is that s(m) is monotonically increasing. The rescaled

version of x(t) is then defined as

x̂(t) :=
x(t)

s(m)
, t ∈ [Tm, Tm+1), (2.13)

In addition, define the rescaled drift error sequence and the rescaled martingale noise sequence

as follows by

ên :=
en
s(m)

and M̂n+1 :=
Mn+1

s(m)
, (2.14)

respectively, for n ∈ [Tm, Tm+1),m ≥ 0. Finally, define the accumulated rescaled noise sequence

by

ζ̂n :=
n−1∑

k=1

a(k)M̂k+1. (2.15)

The second step is to show that x̂(t) is stable almost surely, for which we proceed as follows:

1) We prove L2 bounds for x̂(t). Specifically, we show that supt E
[
∥x̂(t)∥2 | Ez

]
< ∞ for an

increasing sequence of events Ez (Lemma  2.5 ).

2) We show that ζ̂n ( 2.15 ) is convergent almost surely (Lemma  2.6 ).

3) We show that supt≥0∥x̂(t)∥ < ∞ a.s. and as a corollary that the rescaled error vanishes,

i.e. ∥ên∥ → 0 a.s. (Lemma  2.8 and Corollary  2.9 , respectively).

While straightforward in the BMT, these steps are much more involved in the presence of

the stochastic drift errors ein due to AoI. Equation ( 2.9 ) indicates that we need to bound

E
[∑n−1

k=n−τij(n)
a(k)∥xlk − xlk−τjl(k)

∥2
]

to show that x̂(t) is bounded in L2. However, this is

an expected value of a random number of random variables. To circumvent this, we will use that
∑n−1

k=n−τij(n)
a(k) converges almost uniformly. We can, therefore, work with deterministic upper

bounds ∆(n) for every τij(n) on an increasing sequence of probability subspaces. It will then

follow that

E




n−1∑

k=n−τij(n)

a(k)∥xlk − xlk−τjl(k)
∥2

 ≤

n−1∑

k=n−∆(n)

a(k)E
[
∥xlk − xlk−τjl(k)

∥2
]
, (2.16)

and we will show that the required L2 bound holds on an increasing sequence of probability

subspaces.

Finally, ( 2.9 ) also shows that a bound for ∥xjn − xjn−τij(n)
∥ depends on all ∥xlk − xlk−τjl(n)

∥ for

all 1 ≤ l ≤ D and k ∈ {n − 1, . . . n − τij(n)}. Here, the critical observation is that if we

sum up both sides of ( 2.9 ) over all 1 ≤ i, j ≤ D then a recursive inequality in the variable
∑D

i,j=1∥x
j
n − xjn−τij(n)

∥ arises. Indeed, this recursive structure arises in L2 and in norm, i.e., in

steps 1 and 3 mentioned above, to show that x̂(t) is stable. To evaluate these recursive structures,

we present a new Gronwall-type inequality.
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2.1.4 A discrete Gronwall-type inequality for varying lower time-horizons

We present the Gronwall-type inequality in greater generality than necessary for the analysis

since it may be of independent interest.

Lemma 2.3. Let {yn}, {an}, {bn}, {cn}, {∆n} be non-negative sequences, with {bn} bounded

and {cn} monotonically increasing and L > 0 be scalar, such that for all n ≥ 0,

yn ≤ bncn + L

n−1∑

k=n−∆n

akyk, (2.17)

N := inf{N ∈ N : L
n−1∑

k=n−∆n

ak ≤
eLt(N) − 1

eLt(N)
for all n ≥ N} <∞. (2.18)

where t(0) := 0, t(n) :=
∑n−1

i=0 a(i) for n ≥ 1. Then

yn ≤ cn


bn + (sup

k≥0
bk)Le

Lt(N)




n−1∑

k=n−∆n

ak




 . (2.19)

The nature of Lemma  2.3 is that
∑n−1

k=n−∆n
ak leads to weighted averaging of the yk sequence,

such that asymptotically the right-hand side of ( 2.17 ) is neglectable, when
∑n−1

k=n−∆n
ak → 0.

We will now apply Lemma  2.3 in the following subsections to show that x̂(t) is stable.

2.2 Distributed Borkar-Meyn Theorem

We will now present the core steps to prove the distributed BMT.

2.2.1 Recursive L2 structure and L2 Bounds

It will become useful to have a function m(n) that selects for each discrete time n ≥ 0 the

corresponding interval [Tm(n), Tm(n)+1) in continuous time. In other words, m(n) is the largest

interval index m, such that Tm ≤
∑n−1

i=0 a(i).

Recall the filtration Fn defined in Assumption  2.1.3 . We have that σ(x1, . . . , xn) ⊂ Fn and by

construction of the time intervals in ( 2.11 ), we have that m(n) ≤ n. It follows that s(m(n)) ∈ Fn,
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with the scaling sequence s(·) as defined in (  2.12 ). Assumption  2.1.3 therefore leads to

E
[
∥M̂ i

n+1∥2 | Fn

]
= E

[∥M i
n+1∥2

s(m(n))2
| Fn

]
(2.20)

=
E
[
∥M i

n+1∥2 | Fn

]

s(m(n))2
(2.21)

≤
K2
(
1 + ∥(x1n−τi1(n)

, . . . , xDn−τiD(n))∥2
)

s(m(n))2
(2.22)

≤
K2
(
1 + ∥xn∥2 +

∑D
j=1∥x

j
n − xjn−τij(n)

∥2
)

s(m(n))2
(2.23)

≤ K2


1 + ∥x̂(t(n)∥2 +

D∑

j=1


∥x

j
n − xjn−τij(n)

∥
s(m(n))




2
 (2.24)

By taking the expected value and the square root of the last inequality, we arrive at

E
[
∥M̂ i

n+1∥2
] 1

2 ≤ K


1 + E

[
∥x̂(t(n)∥2

] 1
2 +

D∑

j=1

E




∥x

j
n − xjn−τij(n)

∥
s(m(n))




2


1
2


 (2.25)

for all n ≥ 0, where we used that the square root of a sum is bounded by the sum of the square

roots of its terms. In addition, using ( 2.6 ), we can bound the rescaled additive drift errors in L2:

E
[
∥êin∥2

] 1
2 ≤ L

D∑

j=1

E




∥x

j
n − xjn−τij(n)

∥
s(m(n)




2


1
2

. (2.26)

Next, divide both sides of the rewritten main iteration ( 2.4 ) by s(m(n)), take the norm on both

sides, and use the linear growth of the iteration drift ( 2.5 ). Then,

∥x̂(t(n+ 1))∥ ≤ ∥x̂(t(n))∥(1 + a(n)K) + a(n)(1 + ∥ên∥+ ∥M̂n+1∥). (2.27)

Finally, take E
[
(·)2
] 1
2 on both sides above and use ( 2.25 ) and ( 2.26 ) componentwise to arrive at

the following recursive L2 bound for ∥x̂(t(n))∥:

E
[
∥x̂(t(n+ 1))∥2

] 1
2 ≤ E

[
∥x̂(t(n))∥2

] 1
2 (1 + a(n)K1)

+ a(n)


K1 +K2

D∑

i,j=1

E




∥x

j
n − xjn−τij(n)

∥
s(m(n))




2


1
2


 .

(2.28)

with K1 := K(D + 1) and K2 := L+K.

To continue, we have to consider the local errors xjn − xjn−τij(n)
. Equation ( 2.9 ) leads to

∥xjn − xjn−τij(n)
∥ ≤ K

n−1∑

k=n−τij(n)

a(k)

(
1 + ∥xk∥+

D∑

l=1

∥xlk − xlk−τjl(k)
∥
)

+

n−1∑

k=n−τij(n)

a(k)∥M j
k∥.

(2.29)
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To move forward, we must take the expected value of ( 2.29 ). This requires that we take the

expected value of a random number of random variables, which is generally difficult without

restrictive assumptions (see, e.g., Wald’s Lemma in  Durrett ( 2019 , Chap. 2)). We observed

that we could circumvent this difficulty using almost uniform convergence implied by Egorovs’s

Theorem (see  A.2 ).

Definition 2.2.1 (Almost uniform convergence). Let Xn, X be random variables on a probability

space (Ω,F ,P). Then Xn is said to converge to X almost uniformly if, for every ε > 0, there

exists an exceptional set A ∈ F with P (A) < ε such that Xn converges uniformly to X on the

complement E = Ω \A.

By Assumption  2.1.5 ,
∑n−1

k=n−τij(n)
a(k) converges almost surely and thus Egorov’s theorem im-

plies that
∑n−1

k=n−τij(n)
a(k) converges almost uniformly. Consequently, we can work with deter-

ministic upper bounds for all τij(n) on an increasing sequence of probability subspaces. This

is sufficient since the objective is to show that the accumulated rescaled noise sequence ζ̂n is

convergent almost surely.

Let (Ω,F ,P) be the underlying probability space, i.e., (Ω,F ,P) is the common probability space

on which the stochastic processes {xn}n≥0, {Mn+1}n≥0 and all {τij(n)}n≥0 are defined. Fix a

sequence {εz}z≥0 ⊂ (0, 1) with εz → 0. The almost uniform convergence of
∑n−1

k=n−τij(n)
a(k) thus

implies that there are E0, E1, . . . , Ez, . . . ∈ F with P (Ez) ≥ 1−εz, such that
∑n−1

k=n−τij(n)
a(k)→

0 uniformly on each Ez. We may assume that E0 ⊂ E1 ⊂ E2 . . . as uniform convergence

on finite unions follows from the uniform convergence on the individual sets. It now follows

that it is sufficient for the convergence of the accumulated noise iteration ζ̂n to show that

supt E
[
∥x̂(t)∥2 | Ez

]
< ∞ for every z ≥ 0, which is discussed in Remark  2.2.1 below. In-

deed, we may now also assume without loss of generality that all
∑n−1

k=n−τij(n)
a(k) → 0 uni-

formly on Ω. However, we prefer to keep the conditioning to avoid confusion. Therefore, define

Ez [·] := E [· | Ez] for all z ≥ 0.

Remark 2.2.1. Recall that we need to show that P
(
ζ̂n converges

)
= 1. Suppose that we can show

that P
(
ζ̂n converges | Ez

)
= 1 for all z ≥ 0. Then, by the construction of the sets Ez, we have

P
(
Ez ∩ {ζ̂n converges}

)
= P (Ez) ≥ 1 − εz. Using continuity from below, as Ez are increasing

and εz → 0 as z →∞, it follows that P
(
ζ̂n converges

)
= P

(⋃
z≥0Ez ∩ {ζ̂n converges}

)
= 1.

Remark 2.2.2. All previous L2 bounds from this subsection also hold for Ez [·]. In particular,

inequality ( 2.25 ) holds with K replaced by K√
P(Ez)

, since

Ez

[
∥M̂ i

n+1∥2 | Fn

]
≤

E
[
∥M̂ i

n+1∥2 | Fn

]

P (Ez)
. (2.30)

Then using ( 2.24 ) and taking Ez [·] we arrive at the required inequality.
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2.2. DISTRIBUTED BORKAR-MEYN THEOREM

We will now use the deterministic sequences

∆z(n) := sup
ω∈Ez

{τij(n)(ω) | 1 ≤ i, j ≤ D}. (2.31)

By construction of the events Ez, it follows that
∑n−1

k=n−∆z(n)
a(k)→ 0 as n→∞ uniformly on

Ez. Further, τij(n) ≤ ∆z(n) on Ez for all 1 ≤ i, j ≤ D and all n ≥ 0. Hence, Equation ( 2.29 )

implies

∥xjn − xjn−τij(n)
∥ ≤ K

n−1∑

k=n−∆z(n)

a(k)

(
1 + ∥xk∥+

D∑

l=1

∥xlk − xlk−τjl(k)
∥
)

+
n−1∑

k=n−∆z(n)

a(k)∥M j
k∥

(2.32)

on Ez. Next, divide the above inequality by s(m(n)) and use that s(m(n)) is by construction

monotonically increasing. It follows that

∥xjn − xjn−τij(n)
∥

s(m(n))
≤ K

n−1∑

k=n−∆z(n)

a(k)

(
1 + ∥x̂(t(k))∥+

D∑

l=1

∥xlk − xlk−τjl(k)
∥

s(m(k))

)

+

n−1∑

k=n−∆z(n)

a(k)∥M̂ j
k∥.

(2.33)

Since ∆z(n) is deterministic, we can evaluate Ez

[
(·)2
] 1
2 on both sides of ( 2.33 ) and apply the

version of ( 2.25 ) for Ez [·]. Then, with K ′ :=
(
K + K√

P(Ez)

)
, we arrive at

Ez




∥x

j
n − xjn−τij(n)

∥
s(m(n))




2


1
2

≤ K ′
n−1∑

k=n−∆z(n)

a(k)(1 + Ez

[
∥x̂(t(k))∥2

] 1
2 )

+K ′
n−1∑

k=n−∆z(n)

a(k)




D∑

l=1

Ez



(∥xlk − xlk−τjl(k)

∥
s(m(k))

)2



1
2


 .

(2.34)

Finally, a summation over all 1 ≤ i, j ≤ D leads to

D∑

i,j=1

Ez




∥x

j
n − xjn−τij(n)

∥
s(m(n))




2


1
2

≤ K ′D2
n−1∑

k=n−∆z(n)

a(k)
(
1 + Ez

[
∥x̂(t(k))∥2

] 1
2

)

+K ′D
n−1∑

k=n−∆z(n)

a(k)

D∑

i,j=1

Ez




∥x

j
k − x

j
k−τij(k)

∥
s(m(k))




2


1
2

.

(2.35)

This is the announced recursive inequality of the AoI error in L2. To evaluate this inequality,

we use Lemma  2.3 , the proposed Gronwall-type inequality for varying lower time horizons. The

main observation is that the sum
∑n−1

k=n−∆z(n)
a(k) leads to weighted averaging, such that the

left hand of ( 2.35 ) can be bounded as a function of Ez

[
∥x̂(t(k))∥2

] 1
2 , k ≤ n− 1. With this, we

can finally conclude the announced L2 bounds for ∥x̂(t)∥.
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Lemma 2.4. There is a constant K3 > 0, such that

D∑

i,j=1

Ez




∥x

j
n − xjn−τij(n)

∥
s(m(n))




2


1
2

≤ K3

(
1 + sup

k≤n−1
Ez

[
∥x̂(t(k))∥2

] 1
2

)


n−1∑

k=n−∆z(n)

a(k)




(2.36)

The combination of Lemma  2.4 and (  2.28 ) then leads to the required conditional L2 bound.

Lemma 2.5. supt≥0 Ez

[
∥x̂(t)∥2

]
<∞

2.2.2 Stability of the recalled trajectory

With the established L2 bound for the recalled trajectory, we are now ready to prove its stability.

First, we use Lemma  2.5 and the Martingale convergence theorem to show the convergence of

the accumulated rescaled noise iteration.

Convergence of the accumulated rescaled martingale noise

By the reasoning in Remark  2.2.1 , it is enough to show that P
(
ζ̂n converges | Ez

)
= 1 for

all z ≥ 0, which follows from Lemma  2.5 and the convergence theorem for square-integrable

martingales (see  A.2 ).

Lemma 2.6. ζ̂n converges almost surely.

We will also need a corollary to Lemma  2.6 that shows that the martingale noise accumulated

over intervals with AoI length and scaled by the sequence s(m(n)) converges to zero almost

surely.

Corollary 2.7. 1
s(m(n))

∑n−1
k=n−τij(n)

a(k)M j
k+1 → 0 a.s.

Stability of the rescaled trajectory

We are now ready to show that x̂(t) is stable. First, the convergence of the accumulated rescaled

martingale noise (Lemma  2.6 ) implies that it is bounded almost surely, i.e., supn≥0∥ζ̂n∥ <
∞ almost surely. Using Corollary  2.7 and ( 2.9 ), we then arrive at recursive structure for
∑D

i,j=1

∥xj
n−xj

n−τij(n)
∥

s(m(n)) , which we again evaluate using Lemma  2.3 to obtain that

∥ên∥ ∈ O



(
1 + sup

k≤n−1
∥x̂(t(k))∥

)


n−1∑

k=n−τ(n)

a(k)




 . (2.37)

Recall now the functions hc(x), c ∈ [1,∞], defined in Assumption  2.1.2 . It is not difficult to

verify that:
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2.2. DISTRIBUTED BORKAR-MEYN THEOREM

1) hc, h∞ are Lipschitz-continuous with the same Lipschitz constant L > 0 as h.

2) ∥hc(x)∥ ≤ K(1 + ∥x∥) for every c ∈ [1,∞].

The recalled iteration then satisfies

x̂(t(n+ 1)) = x̂(t(n)) + a(n)
[
hs(m)(x̂(t(n))) + ên + M̂n+1

]
. (2.38)

Iterating ( 2.38 ) and using (  2.37 ) and Assumption  2.1.5 , we can conclude the stability of the

rescaled trajectory, which in turn by ( 2.37 ) implies that the rescaled error vanishes.

Lemma 2.8. sup
t≥0
∥x̂(t)∥ <∞ a.s.

Corollary 2.9. ∥ên∥ → 0 a.s.

2.2.3 Distributed BMT proof

It is left to show that xn is stable using that x̂(t) is stable and that h∞(·) from Assumption  2.1.2 

is the drift of an asymptotically stable ODE. The line of argument is new compared to the tradi-

tional BMT and was necessary since we defined the scaling sequence as monotonically increasing.

Indeed, the line of argument in the traditional BMT does not apply to monotonically increasing

scaling sequences. However, as we saw in the previous subsections, the monotonically increasing

scaling sequence is required to scale the drift errors due to AoI. We will now present the details

to complete the proof. There are two initial steps along the lines of the traditional BMT.

First, we conclude that the rescaled trajectory x̂(t) is a noisy approximation of solutions to ODEs

with drift hs(m)(·). For any m ≥ 0, let xm(t), t ∈ [Tm, Tm+1], be the unique solution to

ẋ(t) = hs(m)(x(t)) (2.39)

with initial condition xm(Tm) = x̂(Tm). Recall that the rescaled iteration can be written as given

in ( 2.75 ). Lemma  2.6 and Corollary  2.9 imply that the rescaled iteration x̂(t(n)) has the form of

a standard stochastic approximation iteration as in ( 1.6 ) with convergent accumulated noise ζ̂n
and vanishing error ên. Further, Lemma  2.8 shows that the rescaled iteration remains bounded

almost surely. A stochastic approximation argument; see, e.g., ( V. Borkar 2022  , Chapter 2,

Lemma 1), then shows that x̂(t) is a noisy approximation of solutions to the ODEs ( 2.39 ).

Lemma 2.10. lim
m→∞

sup
t∈[Tm,Tm+1]

∥x̂(t)− xm(t)∥ = 0 a.s.

Second, recall that Assumption  2.1.2 ensures the existence of a function h∞(x), such that hc(x)→
h∞(x) as c→∞. By the Lipschitz continuity of h, the Arzelà–Ascoli theorem (see  A.1 ) implies

that hc converges uniformly on compact subsets of Rd (compactly). Further, h∞ has the origin as

its unique globally asymptotically stable equilibrium. Therefore, solutions to ẋ(t) = h∞(x) will
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eventually reach a neighborhood of the origin after some T > 0. Since the functions hc inherit

the Lipschitz-continuity from h, the scaled ODEs have unique solutions for every initialization.

For every c ∈ [1,∞], let ϕc(t, x) denote the unique solution of the ODE ẋ(t) = hc(x(t)) with

x(0) = x. The compact convergence of hc → h∞ now guarantees that for large c and initialization

on the unit ball, the solutions ϕc(t, x) will reach a neighborhood of the origin after T > 0. This

is stated as the following lemma; for details, we refer to ( V. Borkar 2022 , Chap. 3, Cor. 4.1) or

the original BMT paper.

Lemma 2.11. There exist c0 ≥ 1 and T > 0 such that for all initial conditions x on the closed

unit ball, ∥ϕc(x, t)∥ < 1
2 for t ∈ [T, T + 1] and c > c0.

Proof. In ( V. S. Borkar and S. P. Meyn 2000 , Lemma 4.4) the statement is shown for every

ε > 0, i.e. with ε in place of 1
2 .

We are now ready to prove the distributed BMT. As mentioned before, the line of argument

differs from the traditional BMT since the scaling sequence s(m) does not scale the initial points

of every T -length interval to the unit sphere. In the traditional BMT setting, one shows that
∥x(Tm+1)∥
∥x(Tm)∥ < ε ∈ (0, 1) for m sufficiently large. Using the same reasoning, here we only obtain

∥x(Tm+1)∥
∥x(Tm)∥ = lim

t↗Tm+1

∥x̂(t)∥ s(m)

∥x(Tm)∥ < ε
s(m)

∥x(Tm)∥ , (2.40)

for m sufficiently large. Technically, s(m)
∥x(Tm)∥ can be arbitrarily large, as ∥x(Tm)∥ may we small,

while s(m) is unbounded when assuming instability. Hence, one can not choose ε, such that

the right-hand side ( 2.40 ) is less than 1, whenever ∥x(Tm)∥ > c0 with c0 from Lemma  2.11 . In

contrast, s(m)
∥x(Tm)∥ = 1 for the traditional BMT, and one concludes that ∥x(Tm)∥ falls back at

an exponential rate to the ball of radius c0, which leads to a contradiction with the assumed

instability. This line of argument is not applicable here, and we have developed a fundamentally

new one to prove Theorem  2.1 .

Proof of Theorem  2.1 . Fix T > 0 from Lemma  2.11 and for this T create the approximate T -

length intervals [Tm, Tm+1] for all m ≥ 0 as described in ( 2.10 ). Then fix a sample point where

Lemma  2.6 and Lemma  2.10 hold. Recall the scaling sequence s(m) = max{supl≤m∥x(Tl)∥, 1}
and suppose that supm≥0∥x(Tm)∥ < ∞ does not hold. Then, by construction, s(m) ↗ ∞
monotonically.

We will now consider those time intervals where the scaling sequence equals the norm of the

trajectory at the beginning of the T -length intervals, i.e., those m where s(m) = ∥x(Tm)∥. That

is, we consider those time steps where ∥x̂(Tm)∥ = 1. This yields a subsequence of interval indices

{m̃(k)}k≥0 ⊂ {m}m≥0, such that ∥x̂(Tm̃(k))∥ = 1 for all k ≥ 0, and s(l) = x(Tm̃(k)) for all

l ∈ {m̃(k), . . . , m̃(k + 1)− 1}.

43



2.2. DISTRIBUTED BORKAR-MEYN THEOREM

Recall now that xm(t), t ∈ [Tm, Tm+1], are the unique solutions to ẋ(t) = hs(m)(x(t)) with initial

condition xm(Tm) = x̂(Tm) = x(Tm)
s(m) . Since s(m)↗∞, there is some k′, such that s(m̃(k)) > c0

with c0 from Lemma  2.11 for all k ≥ k′. Most importantly, for any k ≥ k′ we now consider the

last interval, m̃(k+1)−1, from the set of intervals {m̃(k), . . . , m̃(k+1)−1} where s(m̃(k)) is used

as the scaling factor. By the monotone scaling sequence, xm̃(k+1)−1(Tm̃(k+1)−1) is on the closed

unit ball and thus Lemma  2.11 shows that ∥xm̃(k+1)−1(Tm̃(k+1))∥ < 1
2 . Further, Lemma  2.10 

shows that there is some k′′, such that

sup
t∈[Tm̃(k+1)−1,Tm̃(k+1)]

∥x̂(t)− xm̃(k+1)−1(t)∥ < 1

2
, k ≥ k′′. (2.41)

The ratio of successive scaling factors, therefore, satisfies

s(m̃(k + 1))

s(m̃(k))
=
x(Tm̃(k+1))

x(Tm̃(k))
= lim

t↗Tm̃(k+1)

∥x̂(t)∥ (2.42)

≤ lim
t↗Tm̃(k+1)

∥xm̃(k+1)−1(t)∥+ lim
t↗Tm̃(k+1)

∥x̂(t)− xm̃(k+1)−1(t)∥ (2.43)

<
1

2
+

1

2
= 1 (2.44)

for all k > max(k′, k′′), i.e., s(m̃(k + 1)) < s(m̃(k)). This is the required contradiction since

s(m) was constructed as monotonically increasing. Hence, supm≥0 s(m) <∞ almost surely and

the theorem follows from Lemma  2.8 .

The crucial point of the new line of argument for Theorem  2.1 is that it completely removes the

use of Gronwalls inequality. We derive the required contradiction by “simply” showing that the

adaptive monotone scaling sequence would have to eventually decrease if xn is unstable.

For the remainder of this section, we now move beyond the results presented in ( Redder, Ra-

maswamy, and Karl 2023 ) and discuss some interesting observations and extensions based on

the proof of Theorem  2.1 . First, observe that to obtain the contradiction for Theorem  2.1 , it

is sufficient that the limes superior of the right-hand side in ( 2.43 ) is strictly less than one. It

appears that one can use this observation to conclude that the BMT holds, provided merely that

the origin is stable and not necessarily asymptotically stable. We discuss this in the following

remark

Remark 2.2.3. Observe that a weaker version of Lemma  2.11 is sufficient for the conclusion in

Theorem  2.1 . It is enough that there exist c0 ≥ 1 and T > 0 and a sequence ε(c) > 0, such that

for all initial conditions x on the closed unit ball,

∥ϕc(x, t)∥ < 1 + ε(c), t ∈ [T, T + 1] (2.45)

for and c > c0, with ε(c)→ 0 as c→∞. With Lemma  2.10 and ( 2.43 ) it then follows that

lim sup
k→∞

s(m̃(k + 1))

s(m̃(k))
< 1, (2.46)

44



contradicting monotonicity, which would imply that lim inf
k→∞

s(m̃(k+1))
s(m̃(k)) ≥ 1, and thus implying that

supm≥0 s(m) <∞ almost surely.

From the proof of Lemma  2.11 , one can now see that to verify ( 2.45 ) it is sufficient that there is

arbitrary neighborhood U of the origin and a T > 0, such that every solution of ẋ(t) = h∞(x(t))

with initialization on U stays inside the open unit Ball for t > T . This is clearly guaranteed if the

origin is stable, i.e., if, for some initial value close to the origin, a solution will eventually stay

close to the origin. In other words, it is not necessary that the origin is locally asymptotically

stable. With this generalization, the BMT now includes drifts of the form

h(x) =

(
x2

−x1

)
(2.47)

with x = (x1, x2). The ODE ( 2.47 ) is the well-known example of an ODE that is stable, but

not asymptotically stable ( Bhatia and Szegö 2006 ), where trajectories are circles centered at the

origin.

Remark  2.2.3 sketches that asymptotic stability in Assumption  2.1.2 can be replaced merely by

stability. Importantly, this new version includes sublinear drifts where h(x) is hölder continuous,

i.e. ∥h(x) − h(y)∥ ≤ L∥x − y∥α for some α ∈ [0, 1). In this case, h∞(x) = 0 for all x ∈ Rd and

ẋ(t) = 0 is clearly not asymptotically stable to the origin but merely stable.

We will now discuss some further extensions while sticking to the asymptotic stability setup.

2.2.4 Further extensions

A weaker version of Assumption  2.1.2 

The new line of argument in Theorem  2.1 reveals how to further weaken assumption of the

original BMT: the original BMT requires that h(cx)
c converges pointwise to some limit h∞(x) as

c → ∞, where h∞ is asymptotically stable to the origin. We show that it is merely required

that a scaling sequence cn ↗∞ exists such that lim
n→∞

h(cnx)
cn

is asymptotically stable to the origin

(Theorem  2.12 ). Previously, the limit needed to exist for any scaling sequence drifting to infinity.

We can now propose a weaker version of Assumption  2.1.2 that also applies to the traditional

BMT setting.

Assumption 2.2.1. The functions hc(x) := h(cx)
c , c ≥ 1, x ∈ Rd, satisfy that there exists a

sequence cn ↗∞, such that hcn(x)→ h∞(x) compactly as n→∞ for some h∞ ∈ C(Rd), where

the ODE

ẋ(t) = h∞(x(t)) (2.48)

has the origin as a asymptotically stable equilibrium.
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2.2. DISTRIBUTED BORKAR-MEYN THEOREM

Notice that by the Lipschitz condition of h, a sequence cn always exists such that hcn(x) converges

compactly. Assumption  2.1.2 , on the other hand, requires that any scaling sequence approaches

a suitable limiting function. The essence of the generalization is that we use a monotone scaling

sequence designed using cn.

Theorem 2.12. Consider Theorem  2.1 , with Assumption  2.2.1 instead of Assumption  2.1.2 ,

then sup
n≥0
∥xn∥ <∞ a.s..

We conjecture that the ideas behind Assumption  2.2.1 can also be applied to other generalizations

of the BMT, e.g., for set-valued recursive inclusions.

Remark 2.2.4. In their BMT paper,  V. S. Borkar and S. P. Meyn ( 2000 ) mention that when

hc(x) does not converge pointwise, then one can omit the fluid model as long as one can show

the statement of Lemma  2.11 . In Remark  2.2.3 , we saw that the essence for stability is ( 2.45 ).

Further, in the proof of Theorem  2.12 , one sees how one can keep the fluid model by working with

a subsequence cn. Since a convergent subsequence can always be extracted, Corollary  2.13 below

clarifies that the convergence of hc is immaterial for the stability of h; it only matters that hc is

“eventually” attracting towards the origin.

Remark 2.2.5. A generalization of the traditional BMT was proposed by  Ramaswamy and Sha-

labh Bhatnagar  ( 2017 ) using a version of the BMT for set-valued recursive inclusions. For every

x ∈ Rd, define h∞(x) := co{lim supc→∞{hc(x)}}, where co denotes the convex closure. The

stability condition given by  Ramaswamy and Shalabh Bhatnagar ( 2017 ) is that the differential

inclusion ẋ(t) ∈ h∞(x(t)) has an attracting set. While Assumption  2.1.2 implies both this condi-

tion and Assumption  2.2.1 , it appears that neither of the two implies the other; Assumption  2.2.1 

relies on one single convergent subsequence, while the set-valued condition relies on all convergent

subsequences.

We can now give a simple stability condition based on Theorem  2.12 , which we apply in Chap-

ter  3 . Notice that by Rademacher’s theorem, h(x) is differentiable almost everywhere. Thus,

the Jacobian matrix Dh(x) exists for almost every x ∈ Rd. Denote the largest eigenvalue of a

matrix by λmax (·).

Corollary 2.13. Suppose that Assumption  2.1.1 ,  2.1.3 - 2.1.5 hold and in addition that

lim sup
∥x∥→∞

λmax (Dh(x)) < 0, (2.49)

then, sup
n≥0
∥xn∥ <∞ a.s.

With the insights form Remark  2.2.3 , ( 2.49 ) can be weakened “≤” instead of “<”.
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A weaker version of Assumption  2.1.3 

We simplified the presentation of the previous sections using Assumption  2.1.3 . A more general

version that is also useful is to replace Assumption  2.1.3 by

E
[
∥M i

n+1∥2 | Fn

]
≤ K2

(
1 + sup

0≤kij≤τij(n)
∥(x1n−ki1

, . . . , xDn−kiD
)∥2
)

for some K > 0. (2.50)

The presented analysis of distributed SA will hold with minor modifications with ( 2.50 ) in place

of the second part of Assumption  2.1.3 . Notably, ( 2.25 ) will be replaced by

E
[
∥M̂ i

n+1∥2
] 1

2 ≤ K


1 + E

[
∥x̂(t(n)∥2

] 1
2 +

D∑

j=1

E


 sup
0≤kij≤τij(n)

(
∥xjn − xjn−kij

∥
s(m(n))

)2



1
2


 (2.51)

and the recursive inequality in L2 will arise for
∑D

i,j=1 E

[
sup0≤kij≤τij(n)

(∥xj
n−xj

n−kij
∥

s(m(n))

)2
] 1

2

.

2.3 Stability of stochastic approximations with momentum

This section shows how the tools and techniques used to prove the distributed BMT can be

applied to SA with momentum. For easy reference, we recall the SA iteration with Polyak’s

heavy ball momentum from ( 1.13 ):

xn+1 = xn + a(n)mk

mk = βmk−1 + (1− β)g(xk)
(2.52)

where m−1 = 0, momentum parameter β ∈ [0, 1) and g(xk) := h(xk) +Mk+1 with drift h and

Martingale noise Mk+1 as before.

Theorem 2.14 (BMT for SA with heavy-ball momentum). Under Assumption  2.1.1 - 2.1.3 for

the stochastic heavy-ball iteration ( 2.52 ) (i.e., with τij(n) = 0 for all n ≥ 0) and a(n) ∈ O(nq),
q ∈ (1/2, 1], it follows that ( 2.52 ) is stable almost surely.

Corollary 2.15. Under the assumptions of Theorem  2.14 , the stochastic heavy-ball iteration

( 2.52 ) converges almost surely to a potential sample path-dependent compact connected internally

chain transitive invariant set of the ODE ( 2.3 ).

As mentioned in the introduction, the proof idea for Theorem  2.14 is to rewrite the moving

average of the past drift terms using a determinism AoI sequence:

xn+1 = xn + a(n)(1− β)




n∑

i=n−τ(n)

βn−ig(xi)


+ a(n)(1− β)



n−τ(n)−1∑

i=0

βn−ig(xi)


 , (2.53)
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with deterministic AoI sequence τ(n) := ⌈ n∑n
k=0 a(n)

⌉. Further, define c(n) :=
∑n

i=n−τ(n) β
n−i and

define the tail error δn := 1
c(n)

∑n−τ(n)−1
i=1 βn−ig(xi). It is now not difficult to show that

sup
n≥0

c(n) = lim
n→∞

c(n) =
1

1− β and sup
n≥0

1

c(n)
≤ 1. (2.54)

The first important step is to show that the tail error vanishes almost surely.

Lemma 2.16. ∥δn∥ ∈ o(1).

Proof sketch. For a(n) ∈ O(nq), q ∈ (1/2, 1]), Gronwalls inequality (see  A.1 ) shows that E
[
∥xn∥2

] 1
2 ∈

O
(
exp (n1−p)

)
. Further, by construction τ(n) ≥ cnq for some c > 0. It then follows that

E
[
∥δn∥2

] 1
2 ∈ O

(
n−cnq∑

k=0

βn−k exp (k1−q)

)
(2.55)

∈ O
(
βcn

q√
n exp (

√
n)
)
∈ o(1), (2.56)

where the last step uses that q > 1
2 . In the same way, using the martingale convergence theorem,

we can show that ∥δn∥ ∈ o(1).

Next, write ( 2.53 ) as

xn+1 = xn + ã(n)
[
h(xn) + M̃n+1 + en + δn

]
. (2.57)

with ã(n) := a(n)(1− β)c(n) and

en :=
1

c(n)

n−1∑

i=n−τ(n)

βn−i (h(xi)− h(xn)) , M̃n+1 :=
1

c(n)




n∑

i=n−τ(n)

βn−iMi+1


 . (2.58)

Notice the similarity to Equation ( 2.4 ) with the addition of the error δn. Equation ( 2.57 ) can

now be analyzed with the tools and techniques presented in Section  2.2 . Specifically, ( 2.57 )

is a SA iteration with martingale difference noise M̃n+1, an error en due to the deterministic

AoI sequence and the additional error δn ∈ o(1). Theorem  2.14 is now almost an immediate

consequence of the steps used to prove Theorem  2.1 . However, small changes are necessary,

outlined in the appendix below.

2.4 Discussion and related work

Theorem  2.1 and Theorem  2.14 fill gaps in the existing literature, which are: 1) A stability the-

orem for distributed stochastic approximations with unbounded drift and unbounded stochastic

AoI 2) A convergence theorem for distributed stochastic approximations where information delays

have only an arbitrary moment bound 3) Stability theorem for general stochastic approximation
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iterations with heavy-ball momentum and a fixed momentum parameter. In particular, the core

assumption that makes the distributed BMT possible is Assumption  2.1.5 . Further, point 2)

will be completed based on the properties of AoI and the existence of AoI-dominated random

variables with some moment bound established in Part II how to verify Assumption  2.1.5 . Fi-

nally, we believe that through the ideas surrounding Remark  2.2.3 , we identified a significant

potential to weaken the traditional local asymptotic stability assumption in the BMT to merely

local stability. We will now review and discuss related work on distributed SA and SA with

momentum.

If not otherwise stated, all of the following works consider decaying stepsizes that are not

summable but square summable. One of the earliest works on asynchronous distributed SA

dates back to  D. Bertsekas ( 1982 ), who presented an abstract dynamic programming approach

in the presence of bounded communication delays.  John N Tsitsiklis ( 1994 ) then proposed the

first asynchronous distributed SA algorithm for potentially unbounded delay, with assumptions

tailored towards Q-learning. The first asynchronous distributed SA of the form ( 1.5 ), which from

today’s point of view is in the standard form of an SA iteration, was considered by  V. S. Borkar 

( 1998 ). Here, almost sure convergence is shown assuming stability and that the delays satisfy, for

some p > 0, supn≥0 E
[
τpij(n) | τij(k), k ≤ n− 1

]
< ∞ a.s. This assumption is quite restrictive

compared to the unconditional version assumed herein, as the following example shows.

Example 2.4.1. Consider the fundamental AoI process ( 1.8 ) introduced in Chapter  1 and sup-

pose the events A(n) are i.i.d. Bernoulli(1/2). Then for any p > 0,

sup
n≥0

E [τp(n) | τ(k), k ≤ n− 1] =
1

2
+

1

2
sup
n≥0

τp(n− 1) =∞ (2.59)

The last inequality follows since, for every sample path, there is a non-zero probability that τ(n)

reaches any desired level.

Example  2.4.1 shows that  V. S. Borkar ( 1998 ) condition practically requires a delay moment

bound independent of the delay at the previous time step. Up until the works presented herein,

the literature then required supn≥0 E
[
τpij(n)

]
< ∞ for some p > 1 for almost sure convergence

to an equilibrium while assuming stability (  V. Borkar 2022 , Chapter 6).

As mentioned before,  Shalabh Bhatnagar ( 2011 ) gave a stability theorem for general asyn-

chronous SAs with bounded delays. Specifically, a version of the BMT was shown to hold

under bounded delays and slightly stronger martingale noise assumptions than typical. We do

not require any of those restrictions. The key insights that enable this progress are the disclosure

of the crucial interplay between the algorithm AoI and algorithm stepsize and the recursive struc-

ture of the SA drift errors caused by AoI. But, it should be noted that the analysis presented by

 Shalabh Bhatnagar ( 2011 ), or the more recent version by  Yu, Wan, and R. S. Sutton 2023 , also

consider asynchronous updates due to clocks with different speeds. This can be included in the
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framework under the assumptions presented therein. Finally, in ( Ramaswamy, Shalabh Bhatna-

gar, and Daniel E Quevedo 2020 ), a stability and convergence theory for asynchronous SA with

biases was developed that also incorporates delays when the p > 1 moments are bounded. The

crucial stability condition is that the distance to an associated projective scheme is bounded al-

most surely, which holds for approximate value iteration without delays. However, this condition

does not naturally hold for asynchronous gradient-based optimization or momentum-SA methods

studied herein. Further, the boundedness condition has to be verified, considering delays, which

will practically require bounded delays, bounded drift or another condition to be applicable.

Beyond general stochastic approximation iterations, several works have been on distributed

gradient-based methods with delays. We review the relevant literature in the next chapter,

which focuses on distributed SGD. We will now close this chapter with related work on SA

with momentum. Momentum methods have been extensively studied for gradient-based schemes

since the seminal works by  Polyak ( 1964 ) and  Y. E. Nesterov ( 1983 ). During the last decade,

momentum-based methods have received attention due to their success in machine learning

( Sutskever et al. 2013 ;  Wilson et al. 2017 ). Notably, momentum has been shown to improve the

rate of convergence and has also been shown to help in the avoidance of saddle points ( Jin et al.

2017 ).

One of the most studied momentum schemes is SGD with Polyaks heavy-ball momentum, known

as the stochastic heavy ball (SHB) method. SHB was studied extensively in the last years ( Gadat,

Panloup, and Saadane 2018 ;  Y. Liu, Gao, and W. Yin 2020 ;  Sebbouh, Gower, and Defazio 2021 ;

 Jun Liu and Yuan 2022 ). Notably,  Barakat and P. Bianchi  ( 2021 ) recently presented a detailed

analysis of momentum-based gradient schemes using a dynamical systems approach.  Jun Liu

and Yuan  ( 2022 ) proved for the first time that SHB’s last iterate converges almost surely to a

stationary point of non-convex objective functions. The assumptions are typical for a stochastic

approximation analysis ( V. Borkar 2022 , Sec. 2). The natural question is, therefore, whether

general stochastic approximations with heavy ball momentum converge to an equilibrium. We

gave an answer to this question with Corollary  2.15 , which establishes the convergence of the

scheme to an invariant set under the BMT condition. In other words, when the drift function

of the SA momentum scheme has only isolated equilibria and the conditions of Corollary  2.15 

hold, then ( 1.13 ) converges to an equilibrium.

Stochastic approximation iterations with momentum have also recently seen more attention due

to their use in reinforcement learning.  Devraj, Bušić, and S. Meyn ( 2019 ) presented a matrix

momentum SA method with optimal asymptotic covariance for a class of linear stochastic ap-

proximations.  Mou et al. ( 2020 ) studied Polyak-Ruppert averages for linear SA with heavy-ball

momentum. A specific one-dimensional SA estimator with heavy-ball momentum was studied

for estimating change rates of web pages by  Avrachenkov, Patil, and Thoppe ( 2022 ). Finally,
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 Deb and Shalabh Bhatnagar  ( 2022 ) and  Deb and Shalabh Bhatnagar  ( 2021 ) presented a BMT

style theorem for multi-time scale stochastic approximations. The authors then analyze linear

temporal difference learning with heavy-ball momentum, which can be viewed as a multi-time

scale stochastic approximation. Notably, the above analyses of linear SA with heavy-ball mo-

mentum use time-varying momentum parameter βn ↗ 1. Instead, we are not restricted to linear

SA and allow an arbitrary fixed momentum parameter. Furthermore, the analysis herein can

also be extended to momentum parameters βn ↗ 1, which will be essential to study with moving

average form a version of Nesterov acceleration applied to SA  Su, Boyd, and Candes 2016 .

2.5 Proofs of Chapter 2

Proof of Lemma  2.3 . Define B := supn≥0 bn. Let n ≥ 0, then for all m ≤ n, ym ≤ cnB +

L
∑m−1

k=0 akyk, as cn is monotonically increasing. The discrete Gronwall inequality thus implies

that

yn ≤ cnBeLt(n). (2.60)

Now consider N <∞ as defined by condition ( 2.18 ) in Lemma  2.3 . Then,

yN+1 ≤ cN+1bN+1 + L
N∑

k=N+1−∆N+1

akyk (2.61)

≤ cN+1bN+1 + cNBe
Lt(N)L

N∑

k=N+1−∆N+1

ak (2.62)

≤ cN+1bN+1 + cNB(eLt(N) − 1) (2.63)

≤ cN+1Be
Lt(N), (2.64)

where the second inequality uses ( 2.60 ) and that both cn and t(n) are increasing; the third

inequality applies the definition of N ; and the last inequality again uses that cn is increasing and

that bN+1 ≤ B. It now follows by induction that

yn ≤ cnBeLt(N) (2.65)

for all n ≥ 0. By using this inequality in ( 2.17 ), we obtain

yn ≤ bncn + L

n−1∑

k=n−∆k

akyk, (2.66)

≤ bncn + L
n−1∑

k=n−∆k

akckBe
Lt(N) (2.67)

≤ cn


bn +BLeLt(N)




n−1∑

k=n−∆n

ak




 . (2.68)
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Proof of Lemma  2.4 . Equation ( 2.35 ) leads to

D∑

i,j=1

Ez




∥x

j
n − xjn−τij(n)

∥
s(m(n))




2


1
2

≤ 2KD2




n−1∑

k=n−∆z(n)

a(k)



(
1 + sup

k≤n−1
Ez

[
∥x̂(t(k))∥2

] 1
2

)

+ 2KD
n−1∑

k=n−∆z(n)

a(k)
D∑

i,j=1

Ez




∥x

j
k − x

j
k−τij(k)

∥
s(m(n))




2


1
2

.

(2.69)

Define yn :=
D∑

i,j=1
Ez



(

∥xj
n−xj

n−τij(n)
∥

s(m(n))

)2



1
2

, cn :=

(
1 + sup

k≤n−1
Ez

[
∥x̂(t(k))∥2

] 1
2

)
, L := 2KD,

bn := 2KD2

(
n−1∑

k=n−∆z(n)

a(k)

)
as well as an := a(n) and ∆n := ∆z(n) as evident. The lemma

now follows from Lemma  2.3 .

Recall that we used m(n) to map from a discrete time-step n to the corresponding interval

[Tm(n), Tm(n)+1) in continuous time. Hence, m(n) is clearly not one-to-one. However, having

an “inverse” of m(n) will now become useful, i.e., a map n(m) that sends the m-th interval to

the discrete time-step n corresponding to Tm. Specifically, Tm = t(n(m)) =
∑n(m)−1

i=0 a(i) for a

unique strictly increasing sequence n(m)↗∞.

Proof of Lemma  2.5 . Fix m ≥ 0 and n(m) ≤ n < n(m + 1). Insert Lemma  2.4 into ( 2.28 ) for

Ez [·], then

Ez

[
∥x̂(t(n+ 1))∥2

] 1
2 ≤ Ez

[
∥x̂(t(n))∥2

] 1
2 (1 + a(n)K1)

+ a(n)


K1 +K2K3

(
1 + sup

k≤n−1
Ez

[
∥x̂(t(k))∥2

] 1
2

)


n−1∑

k=n−∆z(n)

a(k)




 .

(2.70)

Since
∑n(m+1)−1

n=n(m) a(n) ≤ T + 1 and ∥x̂(t(n(m)))∥ ≤ 1, a simple recursion shows that

Ez

[
∥x̂(t(n+ 1))∥2

] 1
2 ≤ exp(K1(T + 1))(1 +K1(T + 1))

+ exp(K1(T + 1))K2K3

(
1 + sup

k≤n−1
Ez

[
∥x̂(t(k))∥2

] 1
2

)


n∑

k=n(m)

a(k)




k−1∑

l=k−∆z(k)

a(l)




 ,

(2.71)

where we used that 1+ a(n)K1 ≤ exp(a(n)K1). As Ez

[
∥x̂(t(0))∥2

] 1
2 <∞, it follows from (  2.71 )

that Ez

[
∥x̂(t(n))∥2

] 1
2 <∞ for every fixed n ≥ 0. Further, it follows from Assumption  2.1.5 and

∑n(m+1)−1
n=n(m) a(n) ≤ T + 1 that

∑n
k=n(m) a(k)

(∑k−1
l=k−∆z(k)

a(l)
)
∈ o(1). The lemma statement is
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now immediate from these two conclusions, ( 2.71 ) and the following simple property that can

be shown by induction: Let {zn}, {bn} be a non-negative sequences in Rd, such that zn+1 ≤
C(1 + bn supk≤n zk) with bn ∈ o(1), then supn≥0 zn <∞.

Proof of Lemma  2.6 . By Remark  2.2.1 , it is enough to show that P
(
ζ̂n converges | Ez

)
= 1 for

all z ≥ 0. By the convergence theorem for square-integrable martingales (see  A.2 ) it is enough

to show that
∑

n≥0 Ez

[
∥a(n)M̂n+1∥2 | Fn

]
< ∞ a.s. for the filtration Fn defined in Assump-

tion  2.1.3 . By contradiction, it is enough to show that Ez

[∑
n≥0 a(n)

2Ez

[
∥M̂n+1∥2 | Fn

]]
<∞.

Using ( 2.25 ) for Ez [·], we have that

Ez


∑

n≥0

a(n)2Ez

[
∥M̂n+1∥2 | Fn

]

 =

∑

n≥0

a(n)2Ez

[
∥M̂n+1∥2

]
(2.72)

≤
∑

n≥0

a(n)2
K2

P (Ez)


D

(
1 + Ez

[
∥x̂(t(n))2∥

] 1
2

)
+

D∑

i,j=1

Ez




∥x

j
n − xjn−τij(n)

∥
s(m(n))




2


1
2




2

,

(2.73)

Lemma  2.4 , Lemma  2.5 and the square summability of a(n) (Assumption  2.1.4 ) therefore imply

that (  2.73 ) is finite and the statement follows. Notice that the equality follows by the tower

property, since Ez ∈ Fn ∩ Ez as Fn is a σ-algebra for all n ≥ 0.

Proof of Corollary  2.7 . We have that

1

s(m(n))

n∑

k=0

a(k)M j
k+1 =

1

s(m(n))

n∑

k=0

s(m(k))a(k)M̂ j
k+1. (2.74)

Now for every sample point, there are two scenarios:

1) s(m(n)) is bounded, then
∑n

k=0 s(m(k))a(k)M̂ j
k+1 converges by Abel’s test for infinite

series.

2) s(m(n)) is unbounded, then 1
s(m(n))

∑n
k=0 s(m(k))a(k)M̂ j

k+1 → 0 by Kronecker’s lemma

for infinite series.

It follows that 1
s(m(n))

∑n
k=0 a(k)M

j
k+1 converges almost surely. As all n−τij(n)→∞ a.s. implied

by Assumption  2.1.5 , the corollary follows.

Proof of Lemma  2.8 . Fix an interval m > 0 and n(m) ≤ n < n(m + 1). Then the rescaled

iteration satisfies

x̂(t(n+ 1)) = x̂(t(n)) + a(n)
[
hs(m)(x̂(t(n))) + ên + M̂n+1

]
, (2.75)
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using the functions hc(·) from Assumption  2.1.2 . Moreover,

∥ên∥ ≤ L
D∑

i,j=1

∥xjn − xjn−τij(n)
∥

s(m)
. (2.76)

To simplify the presentation, define a point-wise upper bound for all τij(n), i.e., define τ(n) :=

max{τij(n) | 1 ≤ i, j ≤ D}. Notice that τ(n) is a stochastic bound in contrast to the deterministic

bounds used in Lemma  2.5 . As the number of iterations is finite (D < ∞), it follows from

Assumption  2.1.5 that
∑n−1

k=n−τ(n) a(k) → 0 almost surely. Starting from ( 2.9 ), we now obtain

that
D∑

i,j=1

∥xjn − xjn−τij(n)
∥

s(m(n))
≤ KD2




n−1∑

k=n−τ(n)

a(k)


 (1 + sup

k≤n−1
∥x̂(t(k))∥)

+
D∑

i,j=1

∥ 1

s(m(n))

n−1∑

k=n−τij(n)

a(k)M j
k+1∥,

+KD

n−1∑

k=n−τ(n)

a(k)

D∑

i,j=1

∥xjk − x
j
k−τij(k)

∥
s(m(k))

,

(2.77)

where we again used the monotonicity of s(m(n)). Please notice the similarity to ( 2.35 ) and the

recursive structure arising in ( 2.77 ). Also, notice that the third term in ( 2.77 ) converges to zero

by Corollary  2.7 . As before we use Lemma  2.3 to conclude that there is a constant K4 > 0, such

that
D∑

i,j=1

∥xjn − xjn−τij(n)
∥

s(m(n))
≤ K4

(
1 + sup

k≤n−1
∥x̂(t(k))∥

)


n−1∑

k=n−τ(n)

a(k)


 (2.78)

Iterating the rescaled iteration ( 2.75 ) now yields, for 0 < k ≤ n(m+ 1)− n(m),

x̂(t(n(m) + k)) = x̂(t(n(m))) +

k−1∑

i=0

a(n(m) + i)hs(m)(x̂(t(n(m) + i)))

+

k−1∑

i=0

a(n(m) + i)ên(m)+i +
(
ζ̂n(m)+k − ζ̂n(m)

)
,

(2.79)

with ∥hs(m)(x̂(t(n(m) + i)))∥ ≤ K (1 + ∥x̂(t(n(m) + i))∥) . The convergence of the accumulated

rescaled martingale noise (Lemma  2.6 ) now implies that supn≥0∥ζ̂n∥ < ∞ a.s.. Hence, there is

sample path dependent constant B > 0 such that supn≥0∥ζ̂n∥ ≤ B. With
∑

0≤i<n(m+1)−n(m)

a(n(m) + i) ≤ T + 1

and ∥x̂(t(n(m)))∥ ≤ 1, it follows that

∥x̂(t(n(m) + k))∥ ≤ 1 +K(T + 1) +K

k−1∑

i=0

a(n(m) + i)∥x̂(t(n(m) + i))∥

+

k−1∑

i=0

a(n(m) + i)∥ên(m)+i∥+ 2B

(2.80)
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The traditional discrete Gronwall inequality (see  A.1 ) now shows that

∥x̂(t(n(m) + k))∥ ≤
(
1 +K(T + 1) + 2B +

k−1∑

i=0

a(n(m) + i)∥ên(m)+i∥
)
exp(K(T + 1)) (2.81)

for 0 < k ≤ n(m+ 1)− n(m). By combining ( 2.76 ), (  2.78 ) and ( 2.81 ) we arrive at

∥x̂(t(n(m) + k))∥ ≤ (1 +K(T + 1) + 2B) exp(K(T + 1))

+ exp(K(T + 1))LK4

(
1 + sup

k≤n(m)+k−1
∥xk∥

)


k−1∑

i=0

a(n(m) + i)




n(m)+i−1∑

k=n(m)+i−τ(n(m)+i)

a(k)






(2.82)

The stability of x̂(t) now follows analogously to the conclusion in Lemma  2.5 .

Proof of Corollary  2.9 . Combine ( 2.76 ) and ( 2.78 ), then apply Assumption  2.1.5 and Lemma  2.8 .

Proof of Corollary  2.2 . Under Assumption  2.1.1 -  2.1.5 it follows from Theorem  2.1 that xn is

almost surely stable. Using Lemma  2.10 it then follows that xn+1 = xn+a(n)[h(xn)+en+Mn+1]

with en ∈ o(1). The convergence now follows from the SA literature; e.g., ( V. Borkar 2022 , Sec.

2.2).

Proof of Theorem  2.12 . Lemma  2.11 also holds for the sequence cn with the limit h∞, i.e., there

exist c0 > 0 and T > 0 such that for all initial conditions x on the closed unit ball, ∥ϕcn(x, t)∥ < 1
2

for t ∈ [T, T +1] and cn > c0. Now fix this T > 0 and follow the construction of the approximate

T -length intervals as described at the beginning of Section  2.2 . We will now define a new scaling

sequence s(m) to replace the scaling sequence in ( 2.12 ). Specifically,

s(m) := max{ inf
n≥0
{cn | sup

l≤m
∥x(Tl)∥ ≤ cn}, 1}. (2.83)

Observe that s(m) is again by construction monotonically increasing with the property that

s(m) ≥ ∥x(Tm)∥. It follows that the analysis presented in Section  2.2 holds for this new scaling

sequence. It follows that the line of argument in Theorem  2.1 holds for the new scaling sequence

with minor modifications, which we present for completeness.

Fix a sample point where the analogs of Lemma  2.6 and Lemma  2.10 hold for the new T > 0

and the new scaling sequence. Now suppose that supm≥0∥x(Tm)∥ < ∞ does not hold, then

supl≤m∥x(Tl)∥ ↗ ∞. Observe that s(m) is, in essence, a subsequence of cn, where some elements

get repeated. By construction, s(m) thus inherits the convergence properties from {cn} and

hs(m)(x) → h∞(x) uniformly on compact sets. As before, let xm(t), t ∈ [Tm, Tm+1], be the

unique solution to the ODE ẋ(t) = hs(m)(x(t)) with initial condition xm(Tm) = x̂(Tm). The new
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Lemma  2.11 thus shows there exists some M > 0 such that for all initial conditions on the closed

unit ball, ∥xm(t)∥ < 1
2 for t ∈ [T, T + 1] and m > M .

Next, we again consider those timesteps where s(m) increases, i.e., let {m̃(k)}k≥1 ⊂ {m}m≥1,

be those timesteps where s(m̃(k)) > s(m̃(k)− 1). In other words,

s(l) = s(m̃(k)) (2.84)

for all l ∈ {m̃(k), . . . , m̃(k + 1) − 1}. Consider now the first m̃(k), such that m̃(k) > M

and supt∈[Tm,Tm+1]∥x̂(t) − xm(t)∥ < 1
2 for m > m̃(k) by the new Lemma  2.10 . As before, the

contradiction arises when we consider the last interval where s(m̃(k)) is used as a scaling factor.

We have that

x(Tm̃(k+1))

s(m̃(k))
= lim

t↗Tm̃(k+1)

∥x̂(t)∥ ≤ lim
t↗Tm̃(k+1)

∥xm̃(k+1)−1(t)∥+ lim
t↗Tm̃(k+1)

∥x̂(t)− xm̃(k+1)−1(t)∥ < 1

(2.85)

This is a contradiction since Tm̃(k+1) is by construction a timestep where s(m) strictly increases,

hence x(Tm(k+1)) > s(m(k)). We conclude that supm≥0 s(m) < ∞ almost surely, and the

theorem follows as before from Lemma  2.8 .

Proof of Corollary  2.13 . We will verify Assumption  2.2.1 . Pick any sequence cm ≥ 1 with

cm ↗ ∞. The Lipschitz continuity of h(x) yields that {hcm(x) : m ≥ 0} is an equicontinuous,

pointwise bounded family of continuous functions. The Arzelà-Ascoli theorem (see  A.1 ) thus

shows that the family is relatively compact in the subspace consisting of continuous functions,

equipped with the topology of compact convergence. In other words, there is a subsequencem(n),

such that hcm(n)
(x) converges to some limit h∞(x) uniformly on compact sets. Define cn := cm(n).

It is left to show that ẋ(t) = h∞(x(t)) has the origin as its unique globally asymptotically stable

equilibrium.

Condition ( 2.49 ) implies that there is some radius r > 0 and some ε > 0, such that λmax (Dh(x)) <

ε whenever ∥x∥ > r. Fix x ∈ Rd and some arbitrary y ∈ Rd with ∥y∥ > r. Now apply the gradient

theorem for Lipschitz continuous functions (see  A.1 ) to every coordinate of h, then

h(cnx)

cn
− h(y)

cn
=

(∫ 1

0
Dh(y + t(cnx− y))dt

)
(cnx− y)

cn
. (2.86)

Thus, h∞(x) = lim
n→∞

(∫ 1
0 Dh(y + t(cnx− y))dt

)
x with λmax (Dh(y + t(cnx− y))) < ε for all t, n.

Using basic calculus and linear algebra, we conclude that for every x ∈ Rd, h∞(x) = A∞(x)x

for some matrix A∞(x) ∈ Rd×d with λmax (A∞(x)) < ε. Thus ẋ(t) = h∞(x(t)) is globally

asymptotically stable to the origin by LaSalle’s invariance principle; see, e.g., ( V. Borkar 2022 ,

Appendix B).
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Proof of Lemma  2.16 . We shall only discuss a proof for q = 1 to simplify the presentation. Recall

that the heavy ball iteration is

xn+1 = xn + a(n)(1− β)
[

n∑

i=0

βn−ig(xi)

]
, (2.87)

with g(xn) := h(xn) +Mn+1. Then using Gronwalls inequality (see  A.1 ), the linear growth of h,

E
[
∥Mn+1∥2

]
≤ K2(1 + E

[
∥xn∥2

]
), and Assumption  2.1.4 it follows that

E
[
∥xn∥2

]
≤ Cn2 (2.88)

for some constant C > 0. With this, it follows from the martingale convergence theorem (see

 A.2 ) that
∑

n≥0 a(n)
Mn+1

n converges almost surely. A second use of Gronwalls inequality then

shows that ∥xn∥ ∈ O(n). Finally, we conclude that

∥δn∥ ∈ O




n−τ(n)−1∑

i=0

βn−i(1 + i) + ∥
n−τ(n)−1∑

i=0

βn−iMi+1∥




With τ(n)↗∞, the lemma follows after a small calculation.

Proof of Theorem  2.14 . First, observe that M̃n+1 is also a zero-mean martingale difference se-

quence with respect to Fn := σ(x0,M1, . . . ,Mn), n ≥ 0 . Using the Lipschitz continuity of h, it

follows that

∥en∥ ≤ L
n−1∑

i=n−τ(n)

βn−i∥xn − xi∥. (2.89)

Analogously to Section  2.2 , we can now derive recursive inequalities in L2 and in norm. We will

illustrate this for the L2 case. Define ẽn :=
∑n−1

i=n−τ(n) β
n−i∥xn − xi∥.

Using a telescoping sum, ( 2.57 ) and ∥h(x)∥ ≤ K(1 + ∥x∥ we have for n ≥ i that

∥xn − xi∥ ≤
n−1∑

j=i

ã(j)K(1 + ∥xj∥) + ∥
n−1∑

j=i

ã(j)M̃j+1∥+
n−1∑

j=i

ã(j)Lẽj +
n−1∑

j=i

ã(j)∥δj∥. (2.90)

Since E
[
∥Mn+1∥2

] 1
2 ≤ K(1 + E

[
∥xn∥2

] 1
2 ), the new martingale noise sequence satisfies

E
[
∥M̃n+1∥2

] 1
2 ≤ 1

c(n)

n∑

i=n−τ(n)

βn−iE
[
∥M̃i+1∥2

] 1
2 (2.91)

≤ K

1− β


1 + E

[
∥xn∥2

] 1
2 +

j−1∑

i=j−τ(j)

βj−iE
[
∥xj − xi∥2

] 1
2


 , (2.92)

where we used ( 2.54 ). Now define the L2 error sequence ẽL2
n :=

∑n−1
i=n−τ(n) β

n−iE
[
∥xn − xi∥2

] 1
2 ,

where by ( 2.92 ) each term satisfies

E
[
∥xn − xi∥2

] 1
2 ≤

n−1∑

j=i

ã(j)K1(1 + E
[
∥xj∥2

] 1
2 ) +

n−1∑

j=i

ã(j)K2ẽ
L2
j +

n−1∑

j=i

ã(j)E
[
∥δj∥2

] 1
2 . (2.93)
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2.5. PROOFS OF CHAPTER 2

for some constants K1,K2 > 0. Thus, using ( 2.54 ), we have that

ẽL2
n ≤

K1

1− β (1 + sup
j≤n−1

E
[
∥xj∥2

] 1
2 )




n−1∑

j=n−τ(n)

ã(j)




+
K2

1− β




n−1∑

j=n−τ(n)

ã(j)ẽL2
j


+

1

1− β




n−1∑

j=n−τ(n)

ã(j)E
[
∥δj∥2

] 1
2


 . (2.94)

The similarity to the recursive inequality ( 2.35 ) should be clear. The same inequality will hold

when the sequences are scaled by the monotone scaling sequence used in Section  2.2 . Notably,

we do not need to use Egorov’s Theorem here since the AoI sequence is deterministic. We can

thus apply the new Gronwall-type inequality Lemma  2.3 . As E
[
∥ẽn∥2

] 1
2 ≤ ẽL2

n , evaluating the

recursion for ẽL2
n leads to the required L2 bound for ẽn. Furthermore, from ( 2.90 ), we also arrive

at a recursive inequality for ẽn itself. The stability analysis in Section  2.2 then goes through using

the L2 bound and the norm bound for ẽn along exactly the same line of argument. The tail error

δn only adds neglectable terms in the analysis. We omit the details to avoid redundancies.

Proof of Corollary  2.15 . Theorem  2.14 shows that there is sample path dependent radius R > 0,

such that xn ∈ BR(0) for all n ≥ 0. It thus follows that ẽn ≤ 2B
1−β . Further, using the martingale

convergence theorem yields that
∑n

j=1 ã(j)M̃j+1 converges almost surely. Assumption  2.1.5 then

implies that
∑n−1

j=i ã(j)→ 0 for all n− τ(n) ≤ i ≤ n− 1. It then follows that the right-hand side

of ( 2.90 ) converges to zero almost surely and thus ( 2.89 ) shows that ∥en∥ → 0 almost surely.

Equation ( 2.57 ) is, therefore, again a standard SA iteration with vanishing additive error, and

the corollary follows.
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Chapter 3

Distributed Asynchronous Stochastic

Gradient Descent Methods

As a first application of the theory developed in Chapter  2 , we consider DASGD applied to a

decentralized optimization problem as sketched in Example  1.0.1 . As mentioned in the introduc-

tion, the most common examples of this class of problems are ERM problems over deep neural

networks.

Consider the unconstrained stochastic optimization problem min
x∈Rd

F (x) with objective

F (x) :=

∫

Ξ
f(x; ξ)dP(ξ) (3.1)

for some random function f : Rd × Ξ→ R.

Suppose the global optimization variable x = (x1, . . . , xD) ∈ Rd, with d :=
∑D

i=1 di, is the

concatenation of local variables xi, where a set of workers controls each local variable. To solve

the problem, systems calculate sample partial derivatives∇xif(·, ξ) to adapt their associated local

variable. We assume that the systems do not know the distribution of ξ, but for the computation

of every sample partial derivative, use a local i.i.d. realization ξin of ξ. Further, suppose the

systems work asynchronously and are potentially physically distributed. Together, asynchronous

computing and communication will then induce AoI sequences τij(n) for the component iterations

of the updated global variable. The complete algorithm is presented in Algorithm  1 . Each local

variable is then effectively updated by the following asynchronous distributed SGD iteration

starting from some initial value xi0 ∈ Rdi :

xin+1 = xin − a(n)∇xif(x
1
n−τ1i(n)

, . . . , xin−τii(n)
, . . . , xDn−τDi(n)

; ξin). (3.2)

We will now formulate conditions to apply the theory developed in Chapter  2 .



3.1. ASSUMPTIONS AND MAIN STATEMENTS

Algorithm 1 Asychronous Distributed SGD Algorithm with D components

1: Initialize the master iteration with x0 ∈ Rd and a stepsize a(n) > 0 for all n ≥ 0.

2: for the entire duration do

3: for each worker associated with component i do

4: Receive an SGD job (master iterate and a data sample).

5: Wait for the completion of other jobs in the worker queue.

6: Compute stochastic gradient.

7: Send computed gradient to the master of component i.

8: for the master of component i do

9: Receive stochastic gradient ∇xif(x′, ξ′) from some worker.

10: Update iterate: xi ← xi − a(ni)∇xif(x′, ξ′).

11: Request current iterate from other masters.

12: Send the worker a job (sample iterate x′ and a new data sample ξ′).

13: ni ← ni + 1.

3.1 Assumptions and main statements

Denote the Hessian matrix of f with respect to x by Hxf(x; ξ). Further, ∥Hxf(x; ξ)∥ denotes

the induced matrix norm on Rd and λmin(·) denotes the smallest eigenvalue of some matrix.

Assumption 3.1.1.

1) f(x; ξ) is twice differentiable in x for P-almost all ξ,

2) supx∥E [Hxf(x; ξ)]∥ := L <∞,

3) E
[
∥∇xf(x; ξ)∥2

]
≤ K(1 + ∥x∥2) for all x ∈ Rd for some K > 0.

4) lim inf
∥x∥→∞

λmin (E [Hxf(x; ξ)]) > 0,

Theorem 3.1. Under Assumption  2.1.4 ,  2.1.5 and  3.1.1 the DSGD iterations ( 3.2 ) converge

almost surely to a limit point x∞, such that ∇xF (x∞) = 0, i.e. a stationary point of ( 3.1 ).

For Assumption  3.1.1 , we have that each of the following two conditions in addition to Assump-

tion  3.1.1 .1 and  3.1.1 .2 imply Assumption  3.1.1 .3:

1) ξ has finite support, i.e., |Ξ| <∞, which is typically for machine learning applications.

2) ∥∇xf(x; ξ)∥ ≤ |g(ξ)|(1 + ∥x∥) for some measurable function g : Ξ → R, such that

E
[
g(ξ)2

]
<∞.

Observe that Assumption  3.1.1 .3 allows that the gradient ∇xF (x) is unbounded. Such objectives

are not covered by the unconstrained optimization setting considered in ( Zhou et al. 2022 ).

Assumption  3.1.1 .4 is the stability condition to apply the theory developed in Chapter  2 . Useful

conditions that imply Assumption  3.1.1 .4 are:
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1) F (x) = G(x) + κ∥x∥2 for any L2 regularization coefficient κ > 0, where G(x) satisfies

Assumption  3.1.1 and that G(x) ∈ o(∥x∥2).
2) F (x) = G(x) + L∥x∥2, where G(x) satisfies Assumption  3.1.1 with L > 0 and G(x) is

coercive, i.e., G(x)→∞ as ∥x∥ → ∞

Remark 3.1.1. With the insights from Remark  2.2.3 , we can further weaken Assumption  3.1.1 .4

and merely require that lim inf
∥x∥→∞

λmin (E [Hxf(x; ξ)]) ≥ 0. This asymptotic positive-semi definite-

ness condition of the expected Hessian holds whenever F (x) is coercive, which can be shown using

the mean value theorem for vector-valued functions (  McLeod 1965 ).

An important class of problems that becomes available for distributed SGD under large delays

are quadratic objectives:

Example 3.1.1. Consider

f(x; ξ) = x⊤A(ξ)x+ b(ξ)⊤x, (3.3)

where E [A(ξ)] ∈ Rd×d is a positive definite matrix with E
[
∥A(ξ)∥2

]
< ∞ and E

[
∥b(ξ)∥2

]
<

∞. Assumption  3.1.1 holds for ( 3.3 ) and Theorem  3.1 thus shows ( 3.2 ) converges to the global

minimum of F (x) = x⊤E [A(ξ)]x+ E [b(ξ)]⊤ x.

Remark 3.1.2. Assumption  3.1.1 .3, implies that ∇xf(x; ξ) is uniformly integrable for every open

neighborhood of some x ∈ Rd. It thus follows from Lebesgue’s dominated convergence theorem

that the sample gradients are unbiased ( Barakat and P. Bianchi 2021 ), i.e., E [∇xf(x; ξ)] =

∇xE [f(x; ξ)] = ∇xF (x) with objective F from ( 3.1 ).

3.2 Analysis

We apply the theory developed in Chapter  2 . Define h(x) := −∇xF (x) and hc(x) := −∇xF (cx)
c .

Further, by Assumption  3.1.1 .1 and local approximation of the Hessian using gradients, Assump-

tion  3.1.1 .3 also implies that Hxf(x; ξ) is uniformly integrable for open neighborhoods, such that

E [Hxf(x; ξ)] = HxF (x). Assumption  3.1.1 now implies three simple auxiliary Lemmas.

Lemma 3.2. F (x) is coercive.

Proof. The Lemma follows from Assumption  3.1.1 .4 by applying the mean value theorem for

vector-valued functions, ( McLeod 1965 ), two times for F (x) and ∇xF (x) to obtain a quadratic

form for h(x).

Lemma 3.3. h(x) is Lipschitz-continuous, with Lipschitz constant L > 0 from Assumption  3.1.1 .2.

Proof. The lemma follows directly from Assumption  3.1.1 .2 and the mean value theorem.
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3.2. ANALYSIS

Lemma 3.4. lim sup
∥x∥→∞

λmax (Dh(x)) < 0

Proof. The lemma follows directly from Assumption  3.1.1 .4.

Proof of Theorem  3.1 . Rewrite the SGD iterations as

xin+1 = xin + a(n)[h(x1n−τi1(n)
, . . . , xDn−τiD(n)) +M i

n+1],

withM i
n+1 := ∇xF (x

1
n−τi1(n)

, . . . , xDn−τi1(n)
)−∇xif(x

1
n−τi1(n)

, . . . , xDn−τi1(n)
, ξin). Lemma  3.3 shows

that h(x) Lipschitz continuous and thus satisfies Assumption  2.1.1 . Next, since ξin are i.i.d.,

Assumption  3.1.1 (c) yields that Assumption  2.1.3 holds for Mn+1. Finally, Lemma  3.4 shows

that the condition in Corollary  2.13 holds. Hence, Corollary  2.13 shows that xn is stable almost

surely and converges almost surely to a potential sample path-dependent compact connected

internally chain transitive invariant set of the ODE ẋ(t) = h(x(t)). By Lemma  3.2 , F is coercive

and thus a Lyapunov function for ẋ(t) = h(x(t)), hence the only possible invariant set is the set

of critical points of F , which is non-empty as F is coercive.

3.2.1 Rate of convergence

Next, we are interested in the almost sure rate of convergence of DASGD as a function of AoI

moment bounds. To analyze the rate of convergence of DASGD, we use a slightly stronger version

of Assumption  3.1.1 .2.

Assumption 3.2.1.

1) f(x; ξ) is twice continuously differentiable in x for P-almost all ξ, further ∇xf(x; ξ) and

Hxf(x; ξ) are continuous in ξ.

2) supx∥Hxf(x; ξ)∥ := L <∞.

3) The sample space Ξ is compact.

4) lim inf
∥x∥→∞

λmin (E [Hxf(x; ξ)]) > 0.

Objective functions parameterized by neural networks with Gaussian error linear units (GELUs)

are the prime examples that satisfy Assumption  3.2.1 .1 ( Hendrycks and Gimpel 2016 ). Thus,

Assumption  3.2.1 .1 is no restriction. For more discussion on GELUs, we refer to Chapter  4 .

Further, for most applications, datasets are given and preprocessed, guaranteeing that the sample

space Ξ is compact or even finite.

From Assumption  3.2.1 it follows that Assumption  3.1.1 holds and moreover that

sup
x,ξ
∥Hxf(x; ξ)∥ <∞, (3.4)
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hence

∥∇xf(x; ξ)−∇xf(y; ξ)∥ ≤ L′∥x− y∥ for all x, y ∈ Rd and ξ ∈ Ξ (3.5)

for some L′ > 0. This point-wise Lipschitz inequality enables a straightforward rate of conver-

gence analyses of ( 3.2 ) using the obtained stability from ( 2 ) and telescoping, which is a classical

tool in gradient and stochastic gradient descent analysis ( Goodfellow, Bengio, and Courville

2016 ).

Theorem 3.5. Under Assumption  2.1.4 ,  2.1.5 ,  3.2.1 the DASGD iterations ( 3.2 ) converge al-

most surely to the set of stationary points with almost sure rate:

min
k=0,...,n

∥∇xF (xk)∥22 ∈ O




1 +
∑
i,j

n∑
k=0

a(k)
k−1∑

m=k−τij(k)

a(m)

n∑
k=0

a(k)



. (3.6)

Theorem  3.5 shows that the almost sure rate is determined by the convergence rate of
n−1∑

k=n−τij(n)

a(k),

which was the key sufficient condition for the distributed BMT developed in Chapter  2 . In other

words, its convergence determines both stability and the convergence rate. We are now interested

in optimizing the convergence rate by suitable AoI-dependent stepsize choice.

3.2.2 A rate optimal stepsize rule from AoI moment bounds

Based on ( 3.6 ), we now present a rate optimal stepsize rule. The theorem is stated at this point

of the thesis due to its close connection to Theorem  3.5 . However, the proof will be discussed in

Chapter  5 , after we establish a better understanding
n−1∑

k=n−τij(n)

a(k). We state the theorem by

using stochastic dominance as defined in Definition  0.0.6 .

Theorem 3.6. Consider the setting of Theorem  3.5 , such that all τij(n) are stochastically dom-

inated by random variable τ with E [τp] <∞, p > 0. Further, apply the stepsize rule:

a(n) =
c

(n+ 1)q
with q := min

{1
2

(
1 +

1

p

)
, 1
}

and c > 0 for p > 1. (3.7)

If p > 1, then

min
k=0,...,n

∥∇xF (xk)∥22 ∈ O(n−
1
2
( p−1

p
)
), (3.8)

else:

min
k=0,...,n

∥∇xF (xk)∥22 ∈ o(1). (3.9)

Remark 3.2.1. For p ∈ (0, 1], we can pick a(n) = c
(n+1) log(n+2) to obtain at least a slow

convergence rate in O
(

1
log(log(n))

)
. Practically, we observed that it is better to use a(n) = c

(n+1)
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3.3. NUMERICAL VERIFICATION

for p ∈ (0, 1], though it theoretically only guarantees min
k=0,...,n

∥∇xF (xk)∥22 ∈ o(1). We expect that

it is possible to select a better stepsize for p ∈ (0, 1] to obtain a rate better than O
(

1
log(log(n))

)
,

but worse than O
(

1
log(n)

)
, since we at least have to choose a(n) ∈ O

(
1
n

)
to ensure stability.

Theorem  3.6 provides a strong characterization that with probability one, all trajectories of

DASGD ( 3.2 ) converge to a stationary point. Further, the stepsize is chosen for p > 1 to

optimize the convergence rate. In an asynchronous computing setting, the “slowest” system will

then give rise to the convergence rate as it leads to the smallest p to obtain a moment bound.

In general, more heavy-tailed traffic slows down the convergence rate, and for less heavy-tailed

traffic, we have that as p → ∞ the rate approaches the almost sure rate of SGD ( Jun Liu

and Yuan 2022 ). Next, numerical experiments are present that verify the stepsize recipe from

Theorem  3.6 .

3.3 Numerical verification

We simulate a distributed computing scenario to verify the stepsize rule proposed in Theorem  3.6 .

Specifically, we consider K = 100 systems with heterogenous processing times that follow a

Pareto distribution with exponents in p ∈ [2, 6], implying that the p-th moment of the processing

times is bounded ( Cinlar and ðCınlar 2011 ). One system is chosen with p = 2, while all other

systems get a Pareto exponent chosen uniformly at random from [2, 6].

For the optimization problem, we consider an approximation problem where a quadratic function

g : R2 → R should be approximated on the subset [0, 1]2 ⊂ R2 by a linear map

Lx : R2 → R, z 7→
[
x1, x2

] [z1

z2

]
+ x3, (3.10)

with parameter vector x = (x1, x2, x3) ∈ R3. The function g is given as a black box, and only

input-output tuples (z, g(z)) can be sampled. Using Algorithm  1 , we are looking for the linear

map that minimizes

F (x) := Ez(Lx(z)− g(z))2, (3.11)

where z are sampled uniformly from [0, 1]2. For the computing systems, we let three-fourths of the

systems update (x1, x2) and the other one-fourth update x3. This adds additional inhomogeneity

and emulates a non-uniform assignment of workers to subspaces of an optimization problem.

For the simulation, we focus on the polynomial the stepsizes a(n) = 1
(n+1)q and compare:

1) The largest possible (slowest decaying) stepsize to guarantee stability and convergence, i.e.,

qmax = 1
2 + δ according to Theorem  3.1 , for some arbitrary small δ > 0.
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2) The smallest possible (fastest decaying) stepsize, i.e., qmin = 1, such that Assumption  2.1.4 

still holds.

3) The proposed optimal stepsize rule from Theorem  3.6 , i.e. qopt =
1
2

(
1 + 1

p

)
= 3

4 .

The simulation then runs Algorithm  1 for all three cases. It is easy to see that the assumptions

of Theorem  3.6 are satisfied, which therefore predicts that qopt should guarantee the fastest

convergence of ∥∇xF (xn)∥ to zero. As F (x) is convex, the limit is the global minimum and,

thus, the optimal linear approximation.

Figure  3.1 and Figure  3.2 show the resulting comparison of the three runs. During simulation,

∥∇xF (xn)∥ is evaluated by numerical integration. Figure  3.1 plots the rolling average with

window length 1000 to better capture the convergence rate. Figure  3.2 plots the raw data. We

see that qopt indeed provides the best asymptotic convergence rate. On the other hand, qmax

can at least provide a good approximation in finite time, but the initial rapid progress with

qmax stagnates after 10000 steps, where it has not yet decayed sufficiently to compensate for the

effect of the AoI. This lack of compensation to counter AoI is especially visible in Figure  3.2 ,

which shows the high variance of the optimization run with qmax. Still, the effect of the AoI is

also clearly visible for qopt, for which we can observe better AoI compensation even in a close

neighborhood to the optimal value. The aforementioned properties can be expected to be even

more severe when Algorithm  1 is applied to large-scale non-convex machine learning problems run

on parallel computing infrastructure. In such cases, choosing the right stepsize will be essential

to accelerate the training. Theorem  3.6 thus provides important guidelines for stepsize selection.

Combined with the results to be presented Chapter  7 on predicting AoI from processing time

data, we have therefore established a fundamental framework to connect processing time data

with convergence rate prediction - the core answer to the second part of  (Q2) .

3.4 Discussion and related work

Various distributed and asynchronous implementations of SGD have been proposed throughout

the last two decades. The initial rise of deep learning came with GPUs, which made training

modestly-sized neural networks practical ( Raina, Madhavan, and Ng 2009 ). The GPU acts

as thousands of smaller CPUs working in parallel on a subspace of the optimization problem.

However, this approach is limited to training models that fit into GPU memory. The same idea

has been used to divide the optimization space among multiple computing nodes, known as model

parallelism ( Krizhevsky, Hinton, et al. 2009  ). Conventionally, model parallel synchronous SGD

training has been implemented as a synchronous algorithm, where all coordinate gradients are

collected from all systems to apply a complete sample gradient. When waiting for other systems

is omitted and processing does continue, we arrive at DASGD with a single system for each
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3.4. DISCUSSION AND RELATED WORK
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Figure 3.1: Comparison of three stepsize schedules for the proposed linear approximation problem. The graphs

show the rolling average with a window of length 1000.
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Figure 3.2: Comparison of three stepsize schedules for the proposed linear approximation problem. The graphs

show the raw data of Figure  3.1 .
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subspace. This is also known as the inconsistent write/read model ( Ji Liu and Wright 2015 ).

In ( Dean et al. 2012 ), the authors proposed downpour SGD, which implements a version of

the aforementioned synchronous SGD several times in parallel to update a single model asyn-

chronously. This is known as data parallelism. In the same work, practically less-than-ideal

speedups have been reported for constant stepsizes due to varying processing times across dif-

ferent systems, leading to many systems waiting for the slowest system in a synchronous SGD

run to finish a given phase of computation ( Dean et al. 2012 ). When the waiting in downpour

SGD is omitted, we arrive at the full DASGD algorithm. It is shown in ( Lian et al. 2015 ) that

even when the AoI is bounded, ASGD with constant stepsize a > 0 can only be guaranteed to

converge to a neighborhood of a stationary point with radius in O(a2T 2), where T > 0 is the

AoI bound. Here, the neighborhood is a function of the objectives’ smoothness and a bound

on the sampling variance. This information is not available without estimation during runtime

for typical deep-learning problems. In other words, the stepsize can not be chosen to guarantee

a small neighborhood. More importantly, the distance to a stationary point may become sig-

nificant when the number of systems increases since T typically is in the order of the number

of systems. We conclude that constant stepsizes are unsuitable for scaling DASGD to a large,

potentially varying number of systems without overheads for synchronization.

In the decreasing stepsize regime, two recent developments for DASGD with large, unbounded

AoI exist.  Zhou et al. ( 2022 ) show that fast decaying stepsizes have to be chosen to counter

large unbounded deterministic delays. The assumption of deterministic delays is crucial in this

analysis, which only covers data parallelism. As we saw, we instead concluded the results from

Theorem  2.1 on distributed stochastic approximation algorithms under stochastic AoI. The con-

nection between processing time distributions and AoI will be further discussed once we establish

the AoI in distributed computing modeled as parallel point processes in Chapter  7 .

Distributed SGD with bounded information delays was first considered in ( J. Tsitsiklis, D. Bert-

sekas, and Athans 1986 ). Here, it was sketched for the first time that delays may be allowed

to grow sublinearly relative to a global clock when a sufficiently rapid decaying stepsize is cho-

sen. Finite time error bounds for asynchronous SGD algorithms under convex stochastic objec-

tives, constant stepsizes, and bounded delays were proposed in ( Agarwal and Duchi 2011 ) and

( Feyzmahdavian, Aytekin, and Johansson 2016  ). Finite time bounds for the mean square vari-

ation of the mean gradient of SGD under a time-varying stepsize were proposed in ( Lian et al.

2015 ) for general non-convex objectives and bounded delays. Almost sure convergence of SGD to

stationary points under merely locally Lipschitz continuous gradients with noise-dependent Lip-

schitz constants was proven in (  Ramaswamy, Redder, and Daniel E Quevedo 2021a ). However,

stability and the delay conditions proposed in ( V. Borkar 2022 , Chapter 6) were assumed. Vari-

ous finite-time, mean-square-error bounds for ASGD algorithms have been proposed throughout
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the last decades for bounded delays  Agarwal and Duchi 2011 ;  Feyzmahdavian, Aytekin, and Jo-

hansson 2016  ;  Lian et al. 2015 . We refer to  Mishchenko et al. 2022 ;  Anastasiia Koloskova, Stich,

and Jaggi 2022  for the most advanced mean-square-error bounds for delay-adaptive ASGD ver-

sions that assume AoI in the order of the number of workers. Instead, this chapter focuses on

almost sure asymptotic convergence rate estimates for the complete DASGD version.

Regarding delays, the closest to the present chapter is ( Zhou et al. 2022 ). The delays considered

therein are potentially large and unbounded but are assumed to be deterministic. We claim

that it is more representative to work with stochastic delays, which complicates the analysis

significantly, as we saw in Chapter  2 . The algorithm considered in (  Zhou et al. 2022 ) is SGD,

where multiple nodes compute updates for a single global variable. The authors focus on two

scenarios: general non-convex objectives and variational coherent objectives. The authors use

projected asynchronous SGD in the second scenario to ensure stability and a potential compact

convex constraint. Then, an elegant analysis based on energy functions is used to ensure global

almost sure convergence. The second scenario is not the scope of this work, and we instead

compare it to the first scenario, which considers asynchronous SGD without projections for an

unconstrained non-convex optimization problem with objective F (x) := Eξ[f(x; ξ)]. The paper

shows that lim
n→∞

E
[
∥∇xF (xn)∥2

]
= 0, i.e., the gradient converges in mean square, where here the

expectation is with respect to xn. We provide conditions showing ∥∇xF (xn)∥ → 0 a.s. at an AoI-

dependent almost rate. This provides a strong characterization for every individual trajectory

of the algorithm and shows that practically every instantiation of the algorithm converges to

a critical point. Furthermore, the presented analysis holds under weaker assumptions. Both

analyses require that Eξ[∇xf(x; ξ)] is Lipschitz continuous. The analysis in ( Zhou et al. 2022 )

requires that supx∈Rd Eξ[∥∇xf(x; ξ)∥2] < ∞. We only require that Eξ[∥∇xf(x; ξ)∥2] ≤ K(1 +

∥x∥2) for all x ∈ Rd for some K > 0 and we thus even allow the objective gradient ∇xF (x) to

be unbounded. In addition, using the insights from remark  2.2.3 , we merely require that F (x)

is coercive to apply the established distributed BMT.

In summary, the analysis covers for the first time the stability of DASGD for a wide class of

objectives in the presence of large unbounded stochastic delays without bounded first moment.

Further, with Theorem  3.6 , we provide an AoI-dependent convergence rate that was verified

by numerical examples in the previous section. Hence, this provides the core answer on the

convergence rate raised in  (Q2) . In Table  3.1 below, we summarize the progress in the literature

on the asymptotic convergence analysis of DASGD. We concentrate on the most relevant previous

works with unbounded delays. As mentioned before, there is a wide literature on delay-adaptive

ASGD methods on a single variable iteration with bounded AoI, which we do not consider here.
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Stability a.s. Unb. AoI AoI p ∈ [0, 1] Unb. drift Distributed Rate

[1] ✗ ✓ ✓ ✗ (p > 1) ✓ ✓ ✗

[2] ✓ ✗ ✓ ✗ (determ.) ✗ ✗ ✗

[3] ✓ ✗ ✓ ✗ (p > 2) ✓ ✗ ✓

This ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: Asymptotic convergence results for ASGD and DASGD. [1] – ( Ramaswamy, Redder, and Daniel E

Quevedo 2021a ), [2] –  Zhou et al. 2022 , [3] –  X. Zhang, Jia Liu, and Zhu 2020 .

3.5 Proofs of Chapter 3

Proof of Theorem  3.5 . The proof is instructive since we already know that xn is stable and

convergent almost surely from Theorem  3.1 . The proof, in essence, uses a standard telescoping

sum approach. To streamline the presentation, we concentrate on the single coordinate iteration:

xn+1 = xn − a(n)∇xf(xn−τ(n); ξn). (3.12)

First, recall the effect of the AoI process. The errors due AoI that arise at each step in ( 3.2 ) are:

∥∇xf(xn−τ(n); ξn)−∇xf(xn; ξn)∥ ≤ L′∥xn−τ(n) − xn∥ ≤ L′
n−1∑

k=n−τ(n)

∥xk+1 − xk∥ (3.13)

≤ L′
n−1∑

k=n−τ(n)

a(k)∥∇xf(xk−τ(k); ξk)∥, (3.14)

with L′ from ( 3.5 ). Using Assumption  3.2.1 and the stability of xn from Theorem  3.1 it follows

that

∥∇xf(xn−τ(n); ξn)−∇xf(xn; ξn)∥ ≤ O




n−1∑

k=n−τ(n)

a(k)


 . (3.15)

Next, with the Lipschitz continuity of ∇xF (x) it follows that

F (xn+1) ≤ F (xn) + ⟨∇xF (xn), xn+1 − xn⟩+
L

2
∥xn+1 − xn∥2, (3.16)

where ⟨·, ·⟩ is the dot product and for this proof ∥·∥ is the Euclidean norm. See ( Y. Nesterov

2003 , Lemma 1.2.3) for a proof of ( 3.16 ).

Next, add to zeros and write ( 3.12 ) as

xn+1 − xn = a(n)∇xf(xn−τ(n); ξn) = a(n) (∇xF (xn) + en +Mn+1) , (3.17)

with en := ∇xf(xn−τ(n); ξn) − ∇xf(xn; ξn) and Mn+1 := ∇xf(xn; ξn) − ∇xF (xn). As before,

Mn+1 is the zero mean Martingale difference sequence as ξn are i.i.d., and en is the error due to
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AoI at the n-th master iteration step. Then, using ∥a+ b+ c∥2 ≤ 4(∥a∥22 + ∥b∥2 + ∥c∥2), ( 3.16 )

yields that

F (xn+1) ≤ F (xn)− a(n)∥∇xF (xn)∥2 − a(n)⟨∇xF (xn), en⟩ − a(n)⟨∇xF (xn),Mn+1⟩
+ a(n)22L

(
∥∇xF (xn)∥2 + ∥en∥2 + ∥Mn+1∥2

) (3.18)

Rearranging the inequality and using the stability of xn, we arrive at

a(n)∥∇xF (xn)∥2 ≤ F (xn)− F (xn+1)− a(n)⟨∇xF (xn), en⟩ − a(n)⟨∇xF (xn),Mn+1⟩
+ a(n)22LC

(3.19)

for a sample path-dependent constant C > 0. Finally, sum the expressions over n = 0, . . . , t and

evaluate the telescoping sum, then

t∑

n=0

a(n)∥∇xF (xn)∥2 ≤ F (x0)− F (xt+1)−
t∑

n=0

a(n)⟨∇xF (xn), en⟩

−
t∑

n=0

a(n)⟨∇xF (xn),Mn+1⟩+
t∑

n=0

a(n)22LC.

(3.20)

The second summation on the right-hand side converges almost surely as t → ∞ by the mar-

tingale convergence theorem (see  A.2 ). Finally, use that
∑∞

n=0 a(n)
2 <∞, Cauchy-Schwarz and

again the stability of xn to conclude that

t∑

n=0

a(n)∥∇xF (xn)∥2 ≤ C ′
(
1 +

t∑

n=0

a(n)∥en∥
)

(3.21)

for a sample path-dependent constants C ′ > 0. Thence,

min
n=0,...,t

∥∇xF (xn)∥2 ≤ C ′
(

1∑t
n=0 a(n)

+

∑t
n=0 a(n)∥en∥∑t

n=0 a(n)

)
(3.22)

The first term in Equation ( 3.22 ) is in line with the known almost sure rate of convergence

estimates for SGD (  Jun Liu and Yuan 2022 , Theorem 1). The second term represents the

reduction in the convergence rate due to AoI. As described in the paragraph prior to Theorem  3.5 ,

the stability of xn yields that ∥en∥ ∈ O
(∑n−1

m=n−τ(n) a(m)
)
. Hence, ( 3.6 ) as stated in the theorem

follows.
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Chapter 4

Distributed Asynchronous

Reinforcement Learning

Multi-agent actor-critic algorithms (MAAC) are an important and popular class of Deep RL

algorithms for intelligent decision-making in MAS ( Arulkumaran et al. 2017 ). Popular MAAC

algorithms, like the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm by

 Lowe et al. ( 2017 ), assume instant access to global data (agent policies, their action sequences,

and their global state information) to train coordinated decentralized policies. This training

paradigm is called centralized training with decentralized execution. This central perspective can

be justified when the training involves an accurate simulator of an environment. In other sce-

narios, observations and decisions are inherently local and prone to communication errors and

delays. Thus, algorithms that rely on a centralized paradigm are unsuitable for truly distributed

online multi-agent learning problems. For such scenarios, we propose the Distributed Deep De-

terministic Policy Gradient (3DPG) algorithm, a flexible, fully distributed algorithm for Markov

Games that only uses local, potentially old communicated information. The 3DPG algorithm and

its asymptotic convergence analysis were presented in ( Redder, Ramaswamy, and Karl 2022a ).

Preliminary analysis and experiments were presented in ( Redder, Ramaswamy, and Karl 2022c )

and (  Redder, Ramaswamy, and Karl 2022d  ), respectively.

3DPG is a naturally distributed extension of the single agent DDPG algorithm from  Lillicrap

et al. ( 2016 ). It enables coordinated but fully distributed online multi-agent learning. 3DPG

learns coordinated policies using global data agents collected during training communicated over

a network. Agents then use local data to make decisions. In other words, individual actions

are not globally coordinated, but the average behavior is coordinated. 3DPG only requires that

the agents exchange information (local states, actions, and policies) imperfectly: information

might be lost or significantly delayed, causing data to have a random age once it arrives, which

is described herein by AoI random variables. We analyze 3DPGs convergence under particularly



4.1. MARKOV GAMES

weak AoI assumptions for the MAS. As in the previous two chapters, the modest assumptions

allow for potentially unbounded AoI with an arbitrary moment bound and make no deterministic

requirements regarding data availability. Besides modest AoI assumptions, we require some

additional conditions to ensure convergence.

Despite their popularity and usefulness in many practical scenarios, the conditions under which

AC and MAAC algorithms converge are not well studied – we address this gap and discuss

practically verifiable and sufficient conditions for DDPG, 3DPG, and MADDPG to converge

asymptotically. The result is based on recent progress in understanding the convergence be-

havior of Deep Q-Learning (  Ramaswamy and Hullermeier 2021 ). Such convergence guarantees

and analyses are generally difficult, even for traditional single-agent DeepRL algorithms. In

the single-agent case, RL algorithms with linear function approximations are well-studied, but

algorithms that use non-linear function approximators like DNNs are poorly understood. At

best, convergence is only characterized under strict assumptions that are difficult to verify in

practice, e.g.,  L. Wang et al. ( 2019 ) assume that the state transition kernel of the Markov de-

cision process is regular; this questions the practical usefulness of such analysis. The behavior

of multi-agent DeepRL algorithms is even more challenging since the various agents’ training

processes are intertwined. Analyses with linear function approximation are therefore common

( K. Zhang et al. 2018 ;  Kumar, Koppel, and Ribeiro 2019  ). It is thus pertinent, both from a

theoretical and a practical standpoint, to analyze, under practical assumptions, the asymptotic

properties of multi-agent DeepRL algorithms with non-linear function approximation. In addi-

tion to these challenges, the analysis of 3DPG takes into account that agents communicate local

data, resulting in DataAoI as introduced in Chapter  1 . The considered modest AoI assumption

determines how old the DataAoI can be, such that the 3DPG agents can converge jointly to a

global policy of the state Markov process of the environment, which we define as a Markov game.

4.1 Markov games

In MAS, the global state of the environment is typically the concatenation of the agents’ local

states, while the global state is usually unobservable by any agent. The global state transitions

to a new state after each agent has taken its local action. After the global state transition, the

agents receive local reward signals. The structure of the local reward signals depends on the

nature of the interaction between the agents: do they cooperate or compete?

As before, we use superscripts i for the agent index in the MAS. We assume that the MAS under

consideration can be modeled as aD agent Markov game (  Littman 1994 ), which is a decentralized

Markov decision process with factored state-action spaces and agent-specific rewards. The high-

level interaction of the D agents with their environment was already sketched in Figure  1.6 .
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Formally, a Markov game is defined as the 4-tuple
(
S,A, p, {ri | 1 ≤ i ≤ D}

)
, with the following

components.

S =
∏D

i=1 Si is the global state space, with Si := Rki the local state space of agent i.

A =
∏D

i=1Ai is the global action space, where an action a = (a1, . . . , aD) ∈ A denotes the

joint action as a concatenation of local actions ai ∈ Ai ⊆ Rdi , di > 0.

p is the Markov transition kernel, i.e. p(· | s, a) is the distribution of the successor state of

state s after action a is executed.

ri is the local scalar reward function associated with agent i. Specifically, ri(s, a) is the local

reward that agent i observes when the system is in state s and the global action a is taken.

In many cooperative Markov games, the local reward functions coincide, i.e., ri ≡ r for 1 ≤ i ≤ D.

Such models are called factored decentralized MDPs ( Bernstein et al. 2002 ). We consider the

more general Markov game model. As a consequence, the analysis covers a wide variety of

scenarios, including cooperative and competitive ones.

Consider a D agent Markov game as defined in above. The D agents interact with the environ-

ment at discrete time steps n ≥ 0. At every time step n, agent i observes a local state sin ∈ Si,
based upon which it must take a local (continuous) action ain ∈ Ai ⊆ Rdi , for which it receives a

reward rin. Suppose that the local behavior of agent i is defined by a local deep neural network

(DNN) policy πi(si;ϕi), parameterized by a vector ϕi. Define the associated global policy as

π := (π1, . . . , πD). (4.1)

For each ri, the return starting from time step 1 is defined by Ri :=
∑∞

n=1 γ
n−1ri(sn, an) with

discount factor 0 < γ < 1. Given a global policy π, the associated action-value function Qi of

agent i is given by Qi(s, a) := Eπ

[
Ri | s1 = s, a1 = a

]
. For each local reward function ri, the

associated optimal policy is characterized by the optimal action-value function Qi
∗(s, a), which

is defined as a solution to Bellman’s equation (  D. P. Bertsekas and J. N. Tsitsiklis 1996 , Section

5.6):

Qi
∗(s, a) = Es′,ri

[
ri(s, a) + γmax

a′∈A
Qi

∗(s
′, a′) | s, a

]
(4.2)

The problem is to find local policy parametrizations ϕi∗ for each local policy πi(si;ϕi), such that

for every agent i:

πi(si;ϕi∗) ≈ argmax
ai∈A

Qi
∗(s, a)

∣∣
πj ̸=i ∀s ∈ S. (4.3)

In other words, all local policies should act optimally conditioned on the local policies obtained by

all other agents. To achieve this, we propose 3DPG, a fully decentralized actor-critic algorithm.
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4.2. THE 3DPG ALGORITHM

4.2 The 3DPG algorithm

To get a first idea, let us view 3DPG as a multi-agent version of DDPG ( Lillicrap et al. 2016 ), the

most popular AC DeepRL algorithm. DDPG involves two DNNs: an actor (policy) network and

a critic (Q-function) network. The actor-network is trained to approximate the optimal policy,

and the critic network is trained to approximate the optimal Q-function. More specifically, the

critic network is trained to minimize a variant of the squared Bellman error, while the actor-

network is trained to pick actions that maximize the approximation of the optimal Q-function,

as found by the critic. Notably, both the critic and actor networks are trained simultaneously.

In 3DPG, each agent only has access to a locally observable state (a part of the global state), can

exchange information with other agents imperfectly, and takes actions that affect both its local

state and states observable by other agents as described by the Markov game. To pick actions,

each agent uses a local actor/policy. To train its local policy, each agent uses a local critic/Q-

function approximation. The local policies are functions of the local agent states, constituting the

global (multi-agent) system state. We assume that all agent clocks are discrete and synchronized.

After all agents pick an action, they obtain local rewards at every discrete time step. Each agent

then uses a local copy of DDPG (as explained above) to train a local actor while simultaneously

training a local critic with respect to the global decision-making problem associated with its local

reward structure.

π2
(
· ;φ2

n−τ21(n)

) Q1
(
· , · ; θ1n

)

πD
(
· ;φD

n−τD1(n)

)

π1
(
· ;φ1

n

)
s1

s2

sD

Local Critic

s

Approximate Global
Policy at Agent 1

Backpropagation

Q1
(
s, a; θ1n

)

Local
Actor

Global state sample

Gradient Flow

Figure 4.1: Illustration of the 3DPG architecture at agent 1. The local critic is evaluated for action a =

π(s;ϕτ1(n)) of the local approximation of the global policy. See Section  4.2.1 for details.

To perform the actor training step, the agents use local policies from other agents transferred

via a potentially imperfect communication network that, e.g., causes delays. The training step

at each agent may be viewed as calculating a local policy gradient using the best approximation

of the current global policy. The resulting 3DPG architecture at agent 1 of a D agent system

is illustrated in Figure  4.1 . In addition to the old policies of other agents, all local actor and
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critic training steps use data (states, actions) of other agents transferred via the communication

network. This gives a quasi-centralized view based on information with potentially significant

AoI to facilitate online training and execution of 3DPG.

Similar to the distributed SA iterations discussed in Chapter  2 , we will conclude with results

of Chapter  5 that 3DPG converges even when the AoI associated with the used information of

other agents during training merely has an arbitrary moment bound. The convergence in the

presence of such potentially significantly outdated information (the local states, actions, and

policies from other agents) is achieved by using diminishing step-size sequences, ensuring that

after some time, the change of the agents’ local policies does not grow significantly larger than

the step sizes. The asymptotic properties of 3DPG are:

1) All local critics converge to a set of DNN weights such that the local Bellman error gradients

are zero on average with respect to limiting distributions over the global state-action space.

2) All local actors converge to a set of DNN weights such that the local policy gradients

(taking into account the final policies of all other agents) are also zero with respect to the

same limiting distributions.

The aforementioned limiting distributions are shaped by the agents’ accumulated local experi-

ences. More specifically, the global data tuples received by agents through communication form

local limiting distributions such that all critics and actors converge jointly in expectation to sta-

tionary points with respect to these limiting distributions over the global state-action space. In

that regard, no agent can improve its performance locally with respect to its limited distribution

of the training process and the limited policies of the other agents. Under suitable assumptions,

this implies that 3DPG agents converge to a local Nash equilibrium of Markov games. Notably,

this is achieved although every agent may have a different local reward structure, i.e., irrespective

of whether they cooperate or compete.

4.2.1 Algorithm description

Multi-agent actor-critic learning

To implement 3DPG for a Markov game, each agent i initializes a local DNN approximator

Qi(s, a; θi) for its local critic, where θi represents the associated vector of network weights. The

local critic is trained using the Deep Q-Learning algorithm, ( Mnih, Kavukcuoglu, Silver, et al.

2015 ), to find θi∗ such that Qi(s, a; θi∗) ≈ Qi
∗(s, a) for all state-action pairs (s, a). Each agent

further initilizes a local policy πi(si;ϕi) parameterized by ϕi. The goal is to jointly train the

local critics and actors so that ( 4.3 ) holds. This is challenging due to the potential conflicting

rewards of the agents.

Consider that at some time step n, the local critic and actor parametrizations are θin and ϕin.
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4.2. THE 3DPG ALGORITHM

Further, suppose agent i gets access to a global data tuple

tim := (sm, am, r
i(sm, am), sm+1) (4.4)

from some transition from time m to m + 1 with m ≪ n. The availability of at least some

global tuples must be ensured by coordinated communication between the agents. This will be

discussed further in the following subsections. Now, if agent i had access to the parametrizations

of the other agents, then it could calculate a local critic gradient

∇θi l
i(θin, ϕn, t

i
m)

:= ∇θiQ
i(sm, am; θin)

(
ri(sm, am) + γQi(sm+1, π(sm+1;ϕn); θ

i
n)−Qi(sm, am; θin)

)
.

(4.5)

Equation (  4.5 ) is a sample gradient of the local squared Bellman error of Qi for the observed

global tuple tm, which follows from the associated error in Bellmans equation ( 4.2 ).

Now, there are two possible ways to formulate a “natural” distributed version of the policy

gradient in the DDPG algorithm The first one is the local policy gradient

∇ϕigiMADDPG(θ
i
n, ϕ

i
n, sm, a

j ̸=i
m ) := ∇ϕiπi(sim;ϕin)∇aiQ

i(sm, a
1
m, . . . , π

i(sim;ϕin), . . . , a
D
m; θin),

(4.6)

which is used in the MADDPG algorithm presented by ( Lowe et al. 2017 ). The second one is

∇ϕigi3DPG(θ
i
n, ϕn, sm) := ∇ϕiπi(sim;ϕin)∇aiQ

i(sm, π(sm;ϕn)); θ
i
n), (4.7)

which will be used in the 3DPG algorithm. The MADDPG local policy gradient uses the actions

aj ̸=i
m from the other agents from the global tuple tim, while the local policy gradients in 3DPG

use the policies ϕj ̸=i
n from the other agents. In the following, we use ∇ϕigi for ( 4.7 ) to simplify

the notation.

Remark 4.2.1. The subtle difference between ( 4.6 ) and ( 4.7 ) will be analyzed in Section  4.4.3 .

Based on the asymptotic convergence analysis of MADDPG and 3DPG we will argue that a multi-

agent actor-critic algorithm based on ( 4.7 ) has a higher probability of obtaining a better policy

faster compared to a multi-agent actor-critic algorithm based on ( 4.6 ). This is because ( 4.7 ) takes

precisely into account how other agents would behave in certain sampled states. Equation ( 4.6 ),

on the other hand, also considers the sampled actions that may arise from randomly explored

actions. The numerical experiments in Chapter  9 support this theoretical prediction.

Remark 4.2.2. The local policy gradient ( 4.7 ) seems to have a more direct motivation from the

deterministic policy gradient theorem (DPGT) ( Silver et al. 2014 ) in comparison to ( 4.6 ). The

DDPG algorithm was inspired by taking samples from the DPGT. Similarly, the gradient ( 4.7 )

can be motivated by inserting the global product policy ( 4.1 ) into the DPGT. Thus Equation ( 4.7 )

is, in essence, the policy gradient from the DDPG algorithm ( Lillicrap et al. 2016 ), where the
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policy is defined in product form ( 4.1 ). Finally, it must be noted that the sample gradients used

in DDPG, MADDPG, and 3DPG are not true sample gradients from the deterministic policy

gradient ( Nota and Thomas 2019 ).

The idea behind 3DPG is to approximate ( 4.5 ) and ( 4.7 ) using old information from other agents

to train Qi and πi locally. To implement this, the agents require:

1) Local access to global data tuples tim,

2) Local access to the global policy π(s;ϕm),

for m≪ n “frequently" (the precise network assumptions are presented in section  4.2.2 ). Recall

that in MADDPG, the above information is required for all agents at every time step. These are

reasonable assumptions for simulated environments or under the paradigm of centralized training

with decentralized execution but not for online, fully distributed learning.

Approximate global policy induced by local AoI

Using communication, we now decentralize the implementation of ( 4.5 ) and ( 4.7 ); we use commu-

nicated but potentially aged local policies to approximate the true global policy ϕn. We suggest

a communication paradigm where agents cooperatively forward local data to other agents, such

that local policies and local data (states and actions) can flow via the network to all other agents.

To guarantee this, the agents must use a flooding protocol, e.g., ( Lim and Kim 2001 ), to forward

old policies ϕin between the agents as well as a coordinated communication protocol to ensure

that at least some global tuples ( 4.4 ) reach each agent “frequently”. For the coordinated com-

munication protocol, one could use broadcast protocol coupled with a central coordinator or a

distributed snapshot protocol ( Chandy and Lamport 1985  ), which would cost more communica-

tion resources. For now, suppose that the agents run suitable protocols of this kind.

Consider now that each agent runs a local algorithm to train its policy, generating a sequence

ϕin of associated policy parametrizations. Equipped with the ability to transfer data via the

available network, the agents exchange the local parametrization ϕin as well as local tuples tin :=

(sin, a
i
n, s

i
n+1) using the communication network that possibly delays or loses data for extended

periods. Hence, agent i has only access to ϕjn−τij(n)
for every agent j ̸= i at every time step

n. Here, ϕjn−τij(n)
denotes the latest available policy parametrization from agent j at agent i

at time n and, as in the previous section, we refer to τij(n) as the associated AoI process as a

consequence of the potentially uncertain and delaying communication. For every agent i, we can

then define a global policy parametrization associated with the aged information at time n by

ϕτ i(n) := (ϕ1n−τi1(n)
, . . . , ϕDn−τD1(n)

). (4.8)

This global policy will serve as an approximation to the true global policy ϕn.

77



4.2. THE 3DPG ALGORITHM

The 3DPG algorithm

The previous paragraph explained how a D agent multi-agent system has to use an available

network to exchange their local policy parametrizations ϕin and their local tuples (sin, a
i
n, s

i
n+1).

We can now state the 3DPG iterations.

Suppose that every agent i maintains a local replay memory Ri
n. At every time step n, the

memory can contain up to N old global transitions tim. At time step n, agent i samples a

random minibatch of M < N transitions from its replay memory. Agent i then updates its critic

and critic using step-size sequences α(n) and β(n), respectively:

θin+1 = θin + α(n)
1

M

∑

m

∇θi l
i(θin, ϕτ i(n), t

i
m)

ϕin+1 = ϕin + β(n)
1

M

∑

m

∇ϕigi(θim, ϕτ i(n), sm)

(4.9)

Notice that for a single sample, the gradients used in ( 4.9 ) are the gradients ( 4.5 ) and ( 4.7 )

where the global policy ϕn has been replaced by the local approximation of the global policy

ϕτ i(n) induced by the aged parametrization ( 4.8 ). The resulting training architecture was al-

ready presented in Figure  4.1 ; the figure shows the backpropagated gradient flow for 3DPG

during training. The detailed training algorithm will be presented in Algorithm  5 alongside

the numerical experiments in Chapter  9 . We will now present the assumptions to prove the

convergence of MAAC iteration ( 5 ). We begin with the required network/AoI assumptions.

4.2.2 Assumptions

Network assumptions

The communication network needs to ensure two things. First, it must ensure that every agent i

receives the policy parametrizations ϕjn for all j ̸= i “sufficiently” often. Second, it needs to

ensure that the available samples in the replay memories Ri
n are not too old. To capture the

age of the samples in the replay memories, define the DataAoI random variable ∆i(n) as the

age of the oldest sample in the replay memory Ri
n of agent i at time n ≥ 0. With the DataAoI

random variables, the 3DPG iterations ( 4.9 ) can now be expressed in the form of the introductory

iteration ( 1.2 ), with AoI τij(n) and ∆i(n).

Assumption 4.2.1.

(a) Policy communication assumptions:

For all i, j, the actor-critic stepsize α(n), β(n) and the AoI sequences τij(n) guarantee that
∑n−1

k=n−τij(n)
α(k)→ 0 a.s. and

∑n−1
k=n−τij(n)

β(k)→ 0 a.s.

(b) For all i, j, the actor-critic stepsize α(n), β(n) and the AoI sequences τij(n) guarantee that
∑n−1

k=n−∆i(n) α(k)→ 0 a.s. and
∑n−1

k=n−∆i(n) β(k)→ 0 a.s.
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As before, Assumption  4.2.1 requires a trade-off between the tail distribution decay of the AoI

variables τij(n) and ∆i(n) and the choice of the AC stepsize sequences. We will see in the next

chapter that this can be ensured with a dominating random variable with an arbitrary moment.

As in Chapter  2 , Assumption  4.2.1 ensures that the use of the approximate global policies ϕτ i(n)
instead of the true global policy ϕn in (  4.9 ) does not cause gradient errors asymptotically. Finally,

Assumption  4.2.1 (b) is used in Lemma  4.9 to show that the agents’ experiences converge to a

stationary distribution. Specifically, Assumption  4.2.1 (b) ensures that the agents receive enough

global tuples asymptotically to “track” the Markov game state distribution, which will answer

 (Q3) for the presented MARL setting. This is the first time that these assumptions are considered

for data availability in multi-agent learning.

Remark 4.2.3. Assumption  4.2.1 (b) does not specify when exactly the global samples become

available to each agent and the received data tuples do not have to be from the same time steps

m for every agent.

Algorithm and Markov game assumptions

In addition to the network assumptions, we require the following assumptions:

Assumption 4.2.2.

(a) The critic step size sequence α(n) is positive, monotonically decreasing and satisfies: α(n) ∈
O (n−q) for q ∈ (12 , 1].

(b) The actor step size sequence β(n) satisfies:
∑

n≥0 (α(n)− β(n)) <∞

Assumption 4.2.3.

(a) supn≥0∥θn∥ <∞ a.s. and supn≥0∥ϕn∥ <∞ a.s.

(b) supn≥0∥sn∥ <∞ a.s. and the action space A is compact.

Assumption 4.2.4. The state transition kernel p(· | s, a) is continuous.

Assumption 4.2.5. The actor policies πi, and the critics Qi are fully connected feedforward

neural networks with twice continuously differentiable activation functions such as Gaussian Error

Linear Units (GELUs).

Assumption 4.2.6. The reward functions ri : S ×A → R are continuous.

Assumption Assumption  4.2.3 (a) is the strongest assumption as it requires almost sure stability

of the algorithm. Practically, we are, therefore, characterizing 3DPG limit points if 3DPG is

observed to be stable. We will further discuss the stability assumption in the chapter-specific

conclusions and related work Section  4.5 . However, the results can also be combined with recent
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4.2. THE 3DPG ALGORITHM

results on clipped gradient-based algorithms ( Ramaswamy, Shalabh Bhatnagar, and Saxena

2023 ), which will enable us to remove the algorithm stability assumption.

The compactness of the action space in Assumption  4.2.3 (b) will usually be satisfied in many

applications, e.g., in robotics. The Assumption  4.2.3 (a) can be relaxed to an arbitrary real

dimensional space without a sample path-dependent boundedness condition; see ( Ramaswamy

and Hullermeier 2021 ).

In Assumption  4.2.1 (b), we require that the critic and actor step-size sequences are chosen such

the critics and actors asymptotically run on the same time scale, i.e., updated in the same order

of magnitude. An example step size sequence is presented in Figure  4.2 . A necessary but not

0 2000 4000 6000 8000 10000
n

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200 (n) = 10
n + 1000 + 10000

(n + 1000)2

(n) = 10
n + 1000

Figure 4.2: Illustration of step size sequences that satisfy Assumption  4.2.1 

sufficient condition for Assumption  4.2.1 (b) is that β(n)
α(n) → 1. This is not a traditional assumption

for actor-critc algorithms ( V. S. Borkar and Konda 1997 ). The traditional actor-critic analysis

assumes β(n)
α(n) → 0, which implies that the critic runs on a faster time scale. Instead, we will

present a proof based on a single-timescale analysis of ( 4.9 ) with respect to the timescale of

the critic iterations. In practice, we may still want the critic to converge faster, so we would

initially choose α(n) larger than β(n). Assumption  4.2.1 (b) requires that afterward, the iterations

asymptotically take steps of asymptotically the same size. The more difficult analysis using a

two-timescale step-size schedule is still an open question, which requires the study of set-valued

dynamics.

Remark 4.2.4. It should be noted that although a two-timescale analysis with a critic on a faster

time-scale has a long tradition and an intuitive motivation, a convergence analysis of critic-actor
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learning for tabular settings has also presently been proposed by  Shalabh Bhatnagar, V. S. Borkar,

and Guin ( 2023 ). Here, the actor is the one running on the faster time-scale. A single time-scale

analysis, as discussed herein, can thus be seen as a merge of the aforementioned two perspectives.

In Assumption  4.2.5 , we require twice continuous differentiable activations used by the policy

and actor networks. GELUs are well-known examples that satisfy this property ( Hendrycks and

Gimpel 2016 ). Additionally, GELUs are a well-known neural network activation function with

similar high performance across different tasks compared to other well-known activations like

ELUs or LeakyReLUs ( Ramachandran, Zoph, and Le 2017 ). We now present the convergence

theorem.

4.3 Convergence theorem and Nash equilibria

Theorem 4.1. Under Assumption  4.2.1 - 4.2.6 , the 3DPG iterations ( 4.9 ) converge to limits θi∞
and ϕi∞ almost surely, such that

∇θi

(∫

S×A
li(θi∞, ϕ∞, s, a)µ

i
∞(ds, da)

)
= 0, (4.10)

∇ϕi

(∫

S
gi(θi∞, ϕ∞, s)µ

i
∞(ds,A)

)
= 0, (4.11)

where µi∞ is a limiting distribution of a continuous time measure process (defined in Section  4.4.2 )

that captures the experience of agent i sampled from its local experience replay Ri
n during training.

Further, all µi∞ are stationary distributions of the state Markov process:

µi∞(dy ×A) =
∫

S
p(dy | x, π(x;ϕ∞))µi∞(dx×A). (4.12)

Theorem  4.1 shows that the critic iterations of 3DPG converge to stationary points of the average

local squared Bellmann errors. Further, the actor iterations converge to stationary points of the

average local deterministic policy gradients. For both limits, the averaging is with respect to

the stationary distributions of the state Markov process that captures the experienced samples

of the agents.

The next vital question is whether the stationary points guaranteed by Theorem  4.1 are local

minima for the critics and local maxima for the actors, but not saddle points. This is generally

a challenging problem in non-convex optimization, but we shall discuss briefly how to tackle it.

First, since stochastic gradient descent schemes tend to avoid unstable equilibria, ( Mertikopoulos

et al. 2020 ;  Vlaski and Sayed 2021 ;  Ge et al. 2015  ), we can expect that the aforementioned

stationary points are local minima/maxima with high probability. We plan to make this more

precise in the future using avoidance of traps analysis ( V. Borkar 2022 , Ch. 4), which requires

assumptions on the noise effecting the 3DPG iteration to ensure that unstable equilibria are
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4.3. CONVERGENCE THEOREM AND NASH EQUILIBRIA

avoited. With this, we could conclude that 3DPG converges to the local solution of the objective

( 4.3 ) with high probability.

The previous paragraph highlights that we can generally expect 3DPG to converge to local

minima under suitable noise conditions. In this case, it is immediately from the policy gradient

update of the actors that the limit is a local approximate Nash equilibrium. To formulate such

a statement, denote the final local policies by πi∞(si) := πi(si;ϕi∞). For any open set U with

0 ∈ U in the parameter space of πi∞(si), define the open neighborhood Πi
∞(U) := {πi( · ;ϕi) :

ϕi ∈ ϕi∞ + U} in the space of policies.

Corollary 4.2. Suppose that the stationary point of the local policies are local maxima, then

there are open sets U i with 0 ∈ U i, such that
∫

S
Qi(s, π1∞(s), . . . , πi∞(s), . . . , πD∞(s); θi∞)µi∞(s,A) (4.13)

≥
∫

S
Qi(s, π1∞(s), . . . , πi(s), . . . , πD∞(s); θi∞)µi∞(s,A)

for all πi ∈ Πi
∞(U i).

Proof. Follows by assumption, as πi∞(s) would be a local maximum of
∫

S
Qi(s, π1∞(s), . . . , π, ·, . . . , πD∞(s); θi∞)µi∞(s,A)

in the space of policies π with the same DNN model as πi∞(s).

The statement of Corollary  4.2 describes that for a given local reward structure, the agents

converge to an equilibrium where they have no desire to change their policies by a small amount

given their local experience and the final policies of the other agents. In other words, ( 4.13 )

formalized that agents converge to a local Nash equilibrium, ( Prasad, LA, and Shalabh Bhatnagar

2015 ), with respect to their locally approximated action-value functions. Specifically, the local

policies converge to a local Nash equilibrium with respect to the local expected action-value

functions
∫
S Q

i(s, · ; θi∞)µi∞(s,A) based on the experience gathered by each agent represented

by the local limiting distributions µi∞. In game theoretic terms, these are the payoff (or utility)

functions with respect to which the agents converge to a local Nash equilibrium.

The significance of corollary  4.2 is that the agents converge to a local approximate Nash equilib-

rium without assuming that the samples used in training are from a known stationary distribution

of the state Markov process. Instead, it is shown that the experience of the agents gives rise to

stationary distributions of the state Markov process. This is important, as deep MARL algo-

rithms are typically employed in complex environments with multiple stationary distributions.

Finally, we close this section with a promising set of assumptions that can guarantee convergence

to a global approximate Nash equilibrium.
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Assumption 4.3.1. Assume that

1) the local policies are parameterized by a linear combination of non-linear features.

2) the local critics are parameterized, such that each −Qi(s, a; θi) is an input-convex neural

network in the i-th action input ( Amos, L. Xu, and Kolter 2017 ) with softplus activation

function ( Goodfellow, Bengio, and Courville 2016 ).

Corollary 4.3. Suppose that Assumption  4.3.1 holds and that the limiting critic weights are

non-negative (i.e., the coordinates of θi are non-negative), then
∫

S
Qi(s, π1∞(s), . . . , πi∞(s), . . . , πD∞(s); θi∞)µi∞(s,A) (4.14)

≥
∫

S
Qi(s, π1∞(s), . . . , πi(s), . . . , πD∞(s); θi∞)µi∞(s,A)

for all policies πi with the same parameter space as πi∞

Proof. Under Assumption  4.3.1 ,  Amos, L. Xu, and Kolter ( 2017 , Prop. 1) show that −Qi(s, a; θi)

is input convex in the i-th action coordinate since −Qi(s, a; θi) has strictly monotone activa-

tions and the limiting weights are by assumption non-negative. Combined with the linearity

of the policy, it follows that −Qi(s, π1∞(s), . . . , πi(si;ϕi∞), . . . , πD∞(s); θi∞) is a convex function

in ϕi∞. As expectations preserve convexity, ϕi∞ is guaranteed to be the global maximum of
∫
S Q

i(s, π1∞(s), . . . , πi(s), . . . , πD∞(s); θi∞)µi∞(s,A) over the space of space of linear policies pa-

rameterized by the given set of non-linear features. This concludes the proof.

Corollary  4.3 presents a verifiable set of assumptions to ensure that 3DPG policies converge to

global approximate Nash equilibrium w.r.t. to approximated local critics. The only required

assumption aside from implementing the architecture from  Amos, L. Xu, and Kolter ( 2017 ) with

softplus activation function is that the final neural network weights are non-negative. This can be

ensured with high probability using sufficient weight regularization. However, in the future, we

plan to ensure this property systematically with a constraint optimization approach compatible

with the analysis to be presented in the next sections.

4.4 Analysis

4.4.1 Preliminaries and Age-of-Information analysis

In the following two sections, we prove Theorem  4.1 . All technical proofs are presented in

Appendix  4.6 . The proof builds on the analysis of single-agent deep Q-learning presented in

( Ramaswamy and Hullermeier 2021  ). Several changes are necessary to move to the online MAAC

learning setting considered herein. To simplify the presentation, we will assume that the state
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space S is compact. All results can be generalized to d-dimensional real spaces under the almost

sure boundedness condition in Assumption  4.2.3 (b), for which we refer to techniques presented

in ( Ramaswamy and Hullermeier 2021  , Section IV.A.2). After we reduce 3DPG to an iteration

without AoI, we will present at its core a convergence proof for the DDPG algorithm ( Lillicrap

et al. 2016 ), using a single timescale analysis. We now begin with preliminary reductions and

the analysis of the AoI processes τij(n).

Reduction to mini-batches of size 1

First, we make a simplifying reduction. We consider that the agents have ready access to the

global tuples (sn, an, r
i(sn, an), sn+1) during runtime and that merely the local policies ϕin are

communicated via the communication network. Further, we merely consider that the agents

use the global tuple from time n to update its critic and actor network. We therefore simplify

iteration ( 4.9 ) to:

θin+1 = θin + α(n)∇θi l(θ
i
n, ϕτ i(n), t

i
n),

ϕin+1 = ϕn + β(n)∇ϕig(θin, ϕτ i(n), sn).
(4.15)

In Section  4.4.2 , we will extend the analysis to the full setting presented in Section  4.2 .

Reduction to zero AoI

As the second step, we define the gradient errors that occur since we use the aged global

policies ϕτ i(n) instead of the true global policy: eθ
i

n := ∇θi l(θ
i
n, ϕn, tn) − ∇θi l(θ

i
n, ϕτ i(n), tn),

eϕ
i

n := ∇ϕig(θin, ϕn, sn)−∇ϕig(θin, ϕτ i(n), sn). Hence, ( 4.15 ) can be written as

θin+1 = θin + α(n)
(
∇θi l(θ

i
n, ϕn, tn) + eθ

i

n

)
,

ϕin+1 = ϕn + β(n)
(
∇ϕig(θin, ϕn, sn) + eϕ

i

n

)
.

(4.16)

Reduction to marginalized critic gradient

As the third step, we rewrite the critic iterations in ( 4.16 ) further by integrating over the successor

state sn+1 in tn given state sn. The resulting new loss gradient is ∇θi l̂
i(θi, ϕ, s, a) :=

(
ri(s, a) + γ

∫
Qi(s′, π(s′;ϕ); θi)p(ds′ | s, ϕ)−Qi(s, a; θi)

)
∇θiQ

i(s, a; θi), (4.17)

With a slight abuse of notation, we use p(ds | sn, ϕn) instead of p(ds | sn, ϕn(sn)) to highlight

the dependency of the action an on the policy ϕn and potential additional random noise for

exploration. Define the induced error from using ∇θi l̂
i instead of ∇θi l

i as ψi
n := ∇θi l̂

i − ∇θi l
i,
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then

θin+1 = θin + α(n)
(
∇θi l̂

i(θin, ϕn, sn, an) + ψi
n + eθ

i

n

)
,

ϕin+1 = ϕn + β(n)
(
∇ϕig(θin, ϕn, sn) + eϕ

i

n

)
.

(4.18)

eθ
i

n , eϕ
i

n and ψi
n vanish asymptotically

In summary, we have rewritten ( 4.15 ) using: 1. The errors eθin and eϕ
i

n induced by not considering

the AoI random variables τij(n), and 2. The errors ψi
n induced by marginalizing out the successor

states sn+1. Using that the activation functions of the actors and critics are twice continuously

differentiable, it now follows that the loss gradients ∇ϕigi, ∇θi l
i and ∇θi l̂

i are locally Lipschitz.

Lemma 4.4. (i) ∇θi l
i(θin, ϕn, tn) and ∇θi l̂

i(θin, ϕn, sn, an) are continuous and locally Lipschitz

continuous in the θi and ϕ-coordinate.

(ii) ∇ϕig(θin, ϕn, sn, an) is locally Lipschitz continuous in every coordinate.

We can now show that the errors eθin and eϕ
i

n due to AoI vanish asymptotically.

Lemma 4.5. lim
n→∞

∥eθin ∥ = 0 and lim
n→∞

∥eϕi

n ∥ = 0.

The next lemma shows that the accumulated errors due to the marginalization of the successor

states in ( 4.18 ) are convergent almost surely. It therefore follows that ψi
n vanishes.

Lemma 4.6. Ψi
n :=

∑n−1
m=0 α(m)ψi

n is a zero-mean square integrable martingale. Hence, Ψi
n

converges almost surely.

It now follows from Lemma  4.5 and Lemma  4.6 that we can study the convergence of ( 4.18 )

without the additional error terms eθin , eϕ
i

n and ψi
n. This is because the error terms will contribute

additional asymptotically negligible errors in the following proof of Lemma  4.7 . With a slide

abuse of notation, we now redefine the critic loss gradients ∇θi l
i as the marginalized critic loss

gradient ∇θi l̂
i.

4.4.2 Convergence analysis

To analyze the asymptotic behavior of (  4.18 ), we again follow the ODE approach from SA ( V.

Borkar 2022 ), i.e., we construct a continuous-time trajectory with the same limiting behavior as

( 4.18 ). First, we divide the time axis using α(n) as follows: t0 := 0 and tn :=
∑n−1

m=0 α(m) for n ≥
1. Now define

θ
i
(tn) := θin, n ≥ 0 and ϕi(tn) := ϕin, n ≥ 0. (4.19)

Let Rpiθ and Rpiϕ be the parameter spaces of the θin’s and ϕin’s, respectively. Then define θi ∈
C([0,∞),Rpiθ) and ϕi ∈ C([0,∞),Rpiϕ) by linear interpolation of all θi(tn) and ϕi(tn), respectively.
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To analyze the training process, we formulate a measure process that captures the encountered

state-action pairs when using the global policy π(sn;ϕn). Therefore, define

µ(t) = δ(sn,an), t ∈ [tn, tn+1] (4.20)

where δ(x,a) denotes the Dirac measure. This defines a process of probability measures on S ×A.

For every probability measure ν on S ×A, define

∇̃li(θi, ϕ, ν) :=
∫
∇θi l

i(θi, ϕ, s, a)ν(ds, da),

∇̃gi(θi, ϕ, ν) :=
∫
∇ϕigi(θi, ϕ, s)ν(ds,A).

(4.21)

Note that in ∇ϕigi we used ν(ds,A), since the actor update in ( 4.18 ) is only state-dependent.

It follows from Lemma  4.4 that all ∇̃li and ∇̃gi are continuous in all coordinates and locally

Lipschitz in both the θi- and ϕ-coordinate.

We can now define the associated continuous time trajectories in C([0,∞),Rpiθ) and C([0,∞),Rpiϕ)

that capture the training process starting from time tn for n ≥ 0:

θin(t) := θ
i
(tn) +

∫ t

0
∇̃li(θin(x), ϕn(x), µn(x))dx,

ϕin(t) := ϕ
i
(tn) +

∫ t

0
∇̃gi(θin(x), ϕn(x), µn(x))dx.

(4.22)

where µn(t) := µ(tn + t). The combination of the continuous-time trajectories in ( 4.22 ) results

in the aforementioned single trajectory with the same limiting behavior as ( 4.18 ). Per definition,

the trajectories define solutions to the following families of non-autonomous ordinary differential

equations (ODEs):

{θ̇in(t) = ∇̃li(θin(t), ϕn(t), µn(t))}n≥0,

{ϕ̇in(t) = ∇̃gi(θin(t), ϕn(t), µn(t))}n≥0.
(4.23)

By construction, we obtain that the limiting behavior of (  4.18 ) is captured by the limits of

the sequences {θi([tn,∞))}n≥0 and {ϕi([tn,∞))}n≥0 defined by (  4.19 ). Further, the sequences

defined in ( 4.22 ) can be analyzed as solutions to the ODEs in ( 4.23 ). If ( 4.19 ) and ( 4.22 ) behave

asymptotically identical, then the limiting behavior of (  4.18 ) is thus captured by the solutions

to the ODEs in ( 4.23 ). This is formalized by the following important technical Lemma  4.7 .

This lemma is the key component that enables a single-timescale analysis of DDPG-style actor-

critic algorithms. To prove Lemma  4.7 , we use that the step size sequences are related by
∑

n≥0 (α(n)− β(n)) <∞ from Assumption  4.2.1 (b). This is essential since we just constructed

the continuous trajectories with respect to the timescale induced by α(n). The assumption, in

essence, requires that the critic and actor update asymptotically run on the same time scale.
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Lemma 4.7. For every T > 0, we have

lim
n→∞

sup
t∈[0,T ]

∥θi(tn + t)− θin(t)∥ = 0, (4.24)

lim
n→∞

sup
t∈[0,T ]

∥ϕi(tn + t)− ϕin(t)∥ = 0. (4.25)

Lemma  4.7 shows that we can analyze the limits of (  4.18 ) as the limits of the continuous-time

trajectories defined in ( 4.19 ) in conjunction with the measure process (  4.20 ). By construction,

the trajectories θin(t) and ϕin(t) are equicontinuous. Moreover, they are point-wise bounded from

Assumption  4.2.3 (a). It now follows from the Arzela-Ascoli theorem, see  A.1 , that the families

of trajectories

{θin([0,∞))}∞n=0, {ϕin([0,∞))}∞n=0 (4.26)

are sequentially compact in C([0,∞),Rpiθ) and C([0,∞),Rpiϕ), respectively. Further, it can be

shown that the space of measurable functions from [0,∞) to the space of probability measures

on S ×A is compact metrizable ( V. S. Borkar 2006 ). It now follows that the product space of all

trajectories θin(t) and ϕin(t) together with the aforementioned space of measurable functions is

sequentially compact. Hence, there is a common subsequence such that all considered sequences

converge simultaneously, i.e. we obtain (with a slight abuse of notation) that θin → θi∞ in

C([0,∞),Rpiθ), ϕin → ϕi∞ in C([0,∞),Rpiϕ) and µn → µ∞ in the space of measurable functions.

Analogously to ( Ramaswamy and Hullermeier 2021 , Lemma 4), we can show that µn(t) also

converges in distribution to µ∞(t) in P(S ×A), t almost everywhere.

The following lemma now shows that the limits θi∞, ϕi∞ and µ∞ are solutions to the limits of

the families of non-autonomous ordinary differential equations ( 4.23 ).

Lemma 4.8. a) θi∞ is a solution to θ̇i(t) = ∇̃li(θi(t), ϕ1∞(t), . . . , ϕD∞(t), µ∞(t))

b) ϕi∞ is a solution to ϕ̇i(t) = ∇̃gi(θi∞(t), ϕ1∞(t), . . . , ϕi(t), . . . , ϕD∞(t), µ∞(t))

We can now study the limit of 3DPG as a solution to the aforementioned non-autonomous ODEs.

Specifically, append the ODEs to form a new ODE in the appended parameter space. The rest of

the analysis follows the line of argument in (  Ramaswamy and Hullermeier 2021 , Thm. 1), so we

only state the main conclusion. Let (θ1, . . . , θD, ϕ1, . . . , ϕD) be a solution to the appended ODE,

then the solution converges to an equilibrium of the appended ODE, i.e. ∇̃li(θi, ϕ, µi∞) = 0

and ∇̃gi(θi, ϕ, µi∞) = 0 for all i, where lim
t→∞

µi∞(t)
d
= µi∞. Lemma  4.7 and Lemma  4.8 show

that the joint of the sequences θi(tn(k)) and θ
i
(tn(k)) are solutions to the appended ODE for

{n(k)}k≥0 ⊂ {n}n≥0. The last two statements thus show that the limits of θi(tn(k)) and θi(tn(k)),

let us call them θ
i
∞ and ϕ

i
∞, are equilibrium points of the ODE’s in Lemma  4.8 . These limits

determine the long-term behavior of 3DPG.

Finally, the first part of Theorem  4.1 now follows (for the particular case of experience replay with

size 1 and global information access without communication) using Assumption  4.2.3 and the

87



4.4. ANALYSIS

dominated convergence theorem to swap the order of differentiation and integration in ∇̃li and

∇̃gi. It is left to show Theorem  4.1 for 3DPG with experience replays and only local information

access and to show that the limiting distributions µi∞(s,A) are stationary with respect to the

state Markov process. Both are the subject of the next section.

Extension to experience replays

Experience replay buffers play an important role in stabilizing RL algorithms in practice ( Mnih,

Kavukcuoglu, Silver, et al. 2015 ). The fundamental idea is to learn from past experiences to

reduce an RL algorithm’s bias towards an agent’s interactions with its environment. For 3DPG,

this means that at time n, an agent does not use the transition tin to calculate the loss gradients,

but it uses a random minibatch of past transitions tim from old time steps m ≤ n. Consequently,

the training algorithm is not overly biased towards agents’ interaction with the environment,

reducing learning variance and thereby improving stability.

In the previous section, we analyzed 3DPG for centralized training where the global transitions

tin are locally available for every agent i. Additionally, we only used an experience replay of size

one. To accommodate the use of experience replays in Section  4.4.1 , the probability measure

µ(t) needs to be redefined. In (  4.9 ), each agent i samples M < N global tuples independently

from its (local) random experience replay Ri
n at every iteration n. The sampling processes of

the agents will, in general, be different. Further, we will experience Ri
n ̸= Rj

n, since the agents

communicate the global tuples in a potentially delaying manner.

We now define a new measure process µi(t) for each agent. For t ∈ [tn, tn+1), define

µi(t) :=
1

M

M∑

j=1

δ(sm(n,j,i),am(n,j,i)). (4.27)

Hence, µi(t) is the probability measure on S × A that places a mass of 1/M on each pair

(sm(n,j,i), am(n,j,i)) for 1 ≤ j ≤M , where each m(n, j, i) denotes one of the time indices sampled

by agent i at time n from its memory Ri
n. Notice that in the presence of communication and

AoI, each experience replay is a random sequence of sets. If we use the redefined measures in

( 4.21 ) we get for every t = tn that

∇̃li(θi(t), ϕ(t), µi(t)) = 1

M

M∑

j=1

∇θi l
i(θin, ϕn, sm(n,j,i), am(n,j,i)),

∇̃gi(θi(t), ϕ(t), µi(t)) = 1

M

M∑

j=1

∇ϕigi(θin, ϕn, sm(n,j,i)).

(4.28)

The analysis presented in Section  4.4.1 is also true for the new measure processes, where now

every agent has its own measure process. This shows the first part of Theorem  4.1 . It is left
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to characterize the properties of the limiting measure processes µi∞, which are the limits of the

convergent subsequence extracted from µin(t) := µi(tn + t).

Lemma 4.9. For all t ∈ [0,∞) and for all agents i

µi∞(t, dy ×A) =
∫

S
p(dy | x, ϕ∞(t))µi∞(t, dx×A), (4.29)

i.e., the limiting marginals constitute stationary distributions over the state Markov process.

To prove this lemma, we use Assumption  4.2.1 (b), which describes the required trade-off be-

tween DataAoI growth of experience in the local replace memories Ri and the chosen stepsize

sequences. Lemma  4.9 shows that the accumulated experiences of the agents constitute station-

ary distributions of the state-Markov process, provided that the DataAoI is not too large relative

to the used stepsize. This is the announced answer to  (Q3) . We will now discuss further insides

from the analysis for multi-agent actor-critic learning from old policies.

4.4.3 Cooperative training of MAS based on old actions vs. old policies

This section discusses the difference between 3DPG and MADDPG for the centralized training

scenario with global information access.

The MADDPG policy gradient iteration

An MADDPG agent i updates its policy using the gradient

1

M

∑

m

∇ϕigiMADDPG(θ
i
n, ϕ

i
n, sm, a

j ̸=i
m ) (4.30)

for 1 ≤ m ≤M sampled transitions, with ∇ϕigiMADDPG as defined in ( 4.6 ). Please again observe

the difference compared to the second iteration in the 3DPG algorithm ( 4.9 ). In MADDPG,

old actions ajm for all j ̸= i are used from the samples of the experience replay. In contrast,

the true current policy aj = π
ϕj
n
(sjm) is used in the 3DPG policy gradient iteration (assuming

the centralized setting). MADDPG still uses the policies of other agents in the critic iteration.

Hence, the availability of the policies from other agents is required in any way.

Let us try to understand the subtle difference between 3DPG and MADDPG intuitively. From the

perspective of some agent i, the MADDPG policy gradient iteration appends the product action

space of other agents
∏

j ̸=iAj to the global state space S. Thus, averaging over the behavior

of other agents occurs during training. For illustration, suppose agent i samples transitions

{tm}Mm=1, and lets suppose all local states are equal, i.e. sim = si. Then ( 4.30 ) gives ∇ϕiπi(s
i;ϕin)

times (
1

M

∑

m

∇aiQ
i(si, a1m, . . . , πi(s

i;ϕi), . . . , aDm)

)
(4.31)
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as the sample policy gradient. The expression averages over sampled actions of the other agents.

These actions will sometimes include random actions due to exploration. 

1
 This indicates that

agents would learn policies that also act well for random behavior of other agents. This seems

to be undesirable for cooperative learning. We will now make the above heuristic precise using

Theorem  4.1 and its variant for MADDPG.

The MADDPG limit vs. the 3DPG limit

First, we discuss the analog of Theorem  4.1 for MADDPG Specifically, consider ( 4.9 ) with

∇ϕigiMADDPG as defined in (  4.6 ) instead of ∇ϕigi3DPG as defined in ( 4.7 ).

To analyze MADDPG with experience replays, we use the same measure processes ( 4.27 ) as in

the Section  4.4.2 . However, we need to redefine the average policy gradient in ( 4.21 ) to

∇̃giMADDPG(θ
i, ϕi, ν) :=

∫
∇ϕigiMADDPG(θ

i, ϕin, s, a
j ̸=i)

ν(ds, da1, . . . ,Ai, . . . , daD).

(4.32)

The analysis from Sections  4.4.1 and  4.4.2 can now be emulated for this gradient with the measure

processes µi(t). Due to the new average policy gradient the conclusion of the convergence theorem

are now fundamentally different. MADDPG converges to limits θiMA and ϕiMA, such that

∇̃giMA(θ
i
MA, ϕ

i
MA, µ

i
MA) = 0, (4.33)

Here, µiMA are the local limiting distribution of the sampled experience at agent i under MAD-

DPG. Recall that the 3DPG limit satisfies:

∇̃gi3DPG(θ
i
∞, ϕ∞, µ

i
∞) = 0 (4.34)

In ( 4.33 ), the behavior of the other agents is solely present in the limiting measures µiMA. When

exploration is stopped after some time, then the asymptotic properties of MADDPG and 3DPG

are the same. However, when the exploration probability is not decayed to zero asymptotically,

the limiting measures µiMA are also shaped by random actions. This formalizes the heuristic

from the previous subsection: the presence of exploration can deteriorate the policies found

by MADDPG agents. The agents would adapt their policies to random actions that are not

representative of the other agents. This is clearly an undesirable property. 3DPG fares better in

this regard as it does not have this negative property! 3DPG allows a high exploration probability

asymptotically without negatively affecting the found policies. This claim is underpinned by a

numerical experiment in Chapter  9 .

1In most DeepRL algorithms, the probability of selecting a random action is decayed to a small value over

time. However, it is usually kept positive to also allow some asymptotic exploration.
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Remark 4.4.1. In practice, the aforementioned negative property of MADDPG due to random

actions is exacerbated because training is stopped after a finite time, possibly prematurely. During

training, the other agents may have initially behaved in a certain way, which was then well

represented in the replay memory of an agent. During later stages of learning, the other agents

may “quickly" converge to a different policy. Since the agent uses outdated samples to calculate

local gradients, the policy evolution is significantly biased towards the old behavior of the other

agents. This is particularly undesirable in cooperative problems. Again, 3DPG circumvents such

scenarios by using the latest available agent policies. MADDPG can overcome these issues by

stopping exploration after some time and by using decaying learning rates.

The moving target problem in MARL

Multi-agent RL algorithms are affected by non-stationarity due to the change of other agents’

behavior from one agent’s perspective (the so-called moving target problem)  Canese et al. 2021  .

Here, 3DPG is no exception. The authors of ( Lowe et al. 2017 ) discuss that using the local policy

gradients ∇ϕigiMADDPG based on old actions of other agents removes the non-stationarity from

the perspective of each agent. We believe that this is not wholly true. MADDPG smooths out

the non-stationarity, as the behavior of other agents is observed via the sampled actions from the

experience replays. But this does not remove the non-stationarity. Intuitively, it takes longer for

the behavior of an agent to manifest in the replay memory (in the form of samples) compared

to directly using the behavior of an agent using its policy as in 3DPG.

Since 3DPG uses the policies of other agents, we expect that 3DPG will have more variance due

to the changing behavior of other agents. However, since the 3DPG agents use more accurate

information from the other agents’ policies and are not affected by exploration as described in

the previous section, we expect a faster convergence rate than MADDPG. Both predictions are

supported by the experiment presented in Chapter  9 . Finally, notice that the moving target

problem has no impact on Corollary  4.2 . The 3DPG agents converge asymptotically to a local

Nash equilibrium with high probability.

4.5 Discussion and related work

We presented and analyzed 3DPG, a multi-agent reinforcement learning algorithm for decen-

tralized, online learning in networked systems. We showed that the analysis can be modified to

understand the popular MADDPG algorithm ( Lowe et al. 2017 ). The analysis (and numerical

examples in Chapter  9 ) show that 3DPG should be preferred when a multi-agent decision-making

problem requires coordinated decisions or a high degree of exploration. More precisely, policy

gradient training steps in multi-agent learning should preferably be based on past policies of other
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agents since policy gradients evaluated with respect to random actions of other agents do not

represent actual agent behavior and can thus negatively impact the policies found. For 3DPG, we

showed that for 3DPG, the effect of unrepresentative behavior from old policies and potentially

random actions does not affect the limiting policies found by 3DPG. Instead, for MADDPG,

we showed that the presence of randomly explored actions can have a negative impact on the

training result of MADDPG.

Beyond convergence characteristics, we presented the first set of data availability assumptions

Assumption  4.2.1 for distributed online actor-critic learning in network systems. The assumptions

describe how old locally available global data tuples can be so that 3DPG converges. More

specifically, combined with the results to be presented in Chapter  5 , arbitrary moment bounds

for the AoI and DataAoI random variables will be sufficient under rapidly decaying stepsizes

to guarantee convergence of 3DPG and convergence of the resulting state-Markov process. In

addition, the numerical experiments in Chapter  9 will show that 3DPG is highly robust to using

old information, making it attractive for distributed online multi-agent learning. An interesting

direction for further investigation is to study the trade-off between using network resources for

policy communication vs. using network resources for data communication.

Discussion of stability assumptions

Ideally, when one is dealing with a specific algorithm, it should be guaranteed or proven –

rather than assumed up-front – that the algorithm iterations are stable. Assuming stability is,

nonetheless, a typical first step toward understanding the convergence behavior of optimization

algorithms. Especially in deep RL, the stability of algorithms like Deep Q-Learning or DDPG

is not well understood. Most notably, there is a significant gap between the assumptions made

in theory and assumptions verifiable in practice. Let us review results on the convergence of

MAAC learning, since there are not that many. In ( K. Zhang et al. 2018 ), the authors use linear

function approximation and assume that the MA learning problem can be described by finite

state ergodic Markov process. They further assume the existence of a projection operator with

knowledge of a compact set that includes a local minima of the objective. ( Kumar, Koppel, and

Ribeiro 2019 ) provides a very interesting rate of convergence results for AC methods. However,

they assume that samples (sn, an, rn, sn+1) are drawn from a known stationary distribution

of the state Markov process. Instead, we show that the AC iterates converge such that the

agents’ experience give rise to stationary distributions of the state Markov process. In addition,

knowledge of the bias of the policy gradient and the bias of the critic estimates is required in

( Kumar, Koppel, and Ribeiro 2019 ), while the critic should again be a linear combination of

features. That work also assumes that the policy gradient is Lipschitz continuous, which would

require Assumption  4.2.3 (a) since most DNNs are only locally Lipschitz. Finally, recent work

92



by  Y. Zhang et al. ( 2023 ) focuses on graph-based MARL settings with finite state and action

spaces.

The assumptions made in the above works will be very hard to verify for most data-driven

applications in practice. Even worse, we fear that guaranteeing stability for practical data-

driven RL problems may always require assumptions that are not easily verifiable in practice.

However, a practitioner may not even be highly interested in stability. Usually, practitioners

will design their DNN parameterizations and their hyperparameter configurations using their

experience, such that they roughly observe stable behavior. Afterward, practitioners want to

know what limit they can expect from their algorithm. This is where this work comes into play.

In contrast to the assumptions made in the literature, the proposed assumptions, except As-

sumption  4.2.3 (a), are very weak, easily verifiable in practice, and represent well how users apply

DQN, DDPG, and its variants in practice. For this setting, this work answers where one can

expect the 3DPG iterations ( 4.9 ) to converge asymptotically. Specifically, the analysis compre-

hensively characterizes the found limit using limiting distributions of the state-action process.

These limiting distributions are shown to be stationary distributions of the state Markov process

and are shaped by the experience of the agents.

Other related work

One algorithm that at first appears highly related (but only by its name) is the Distributed Dis-

tributional Deterministic Policy Gradients (D4PG) ( Barth-Maron et al. 2018 ). This algorithm,

however, is an algorithm for single-agent learning, and it uses parallel DDPG iterations with

distributional critics.

4.6 Proofs of Chapter 4

Proof of Lemma  4.4 . By Assumption  4.2.5 the neural network activations are twice-continuous

differentiability (C2), hence πi(s;ϕi) and Qi(s, a; θi) are C2 in their input coordinates. Addition-

ally, it follows from (  Ramaswamy and Hullermeier 2021 , Lemma 9) that πi(si;ϕi) and Qi(s, a; θi)

are C2 in their parameter coordinates ϕi and θi, respectively, for every fixed s ∈ S and a ∈ A.

Note that composition, product and sums of C2 functions are C2. Moreover C2 functions have

local Lipschitz gradients. This is because the gradient is C1, and C1 functions are locally Lip-

schitz (  Conway 2019 ). This immediately shows that ∇θi l
i(θin, ϕn, sn, an, sn+1) and g(θin, ϕn, sn)

have the required properties.

For ∇θi l̂
i(θin, ϕn, sn, an), fix parameter vectors ϕ and θi as well as s ∈ S and a ∈ A. Since,

π(s;ϕ) and Qi(s, a; θi) are C2 in every coordinate, there is some R > 0 and continuous functions
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LQi(y, θi, ϕ) and Lπ(y, ϕ), such that ∀ ϕ1, ϕ2 ∈ BR(ϕ), we have
∣∣∣
∫
Qi(y, π(y;ϕ1); θ

i)p(dy | s, a)−
∫
Qi(y, π(y;ϕ2); θ

i)p(dy | s, a)
∣∣∣

≤
∫
LQi(y, θi)∥π(y;ϕ1)− π(y;ϕ2)∥2p(dy | s, a)

≤ ∥ϕ1 − ϕ2∥2
∫
LQi(y, θi, ϕ)Lπ(y, ϕ)p(dy | s, a)

≤ L(ϕ)∥ϕ1 − ϕ2∥2

(4.35)

for some L(ϕ) > 0. The last inequality follows from the stability of the critic iteration Assump-

tion  4.2.3 (a) and the compactness of the state space Assumption  4.2.3 (b). Hence, ∇θi l̂
i(θi, ϕ, s, a)

is locally Lipschitz as a product and sum of locally Lipschitz functions. It is left to show that

∇θi l̂
i(θi, ϕ, s, a) is continuous in the s and a coordinate. This directly follows from the con-

vergence in distribution by continuity of p(dy | s, a) and ri(s, a), Assumption  4.2.4 and As-

sumption  4.2.6 respectively, and since Qi(s, π(s;ϕ); θi) is a bounded continuous function by

Assumption  4.2.3 .

Proof of Lemma  4.5 . From Lemma  4.4 , we have that ∇l̂i is locally Lipschitz. It follows from

Assumption  4.2.3 (a) that ∇l̂i is Lipschitz continuous with constant L when restricted to a sample

path-dependent compact set. Using the triangular inequality, the established Lipschitz continuity

of ∇l̂i and Assumption  4.2.3 (a), it follows as in Chapter  2 that

∥eθin ∥ ≤ L
∑

j ̸=i

n−1∑

m=n−τij(n)

∥ϕjm+1 − ϕjm∥

≤ C
∑

j ̸=i

n−1∑

m=n−τij(n)

β(m),

(4.36)

for a sample path-dependent constant C > 0, which thus implies that lim
n→∞

∥eθin ∥ = 0 by Assump-

tion  4.2.1 . The proof for eϕ
i

n follows analogously.

Proof of Lemma  4.6 . The proof is similar to the corresponding proof in ( Ramaswamy and Huller-

meier 2021  ) for deep q-learning, with some small changes due to the actor policies. We have

that

ψi
n = γ

(
Qi(sn+1, π(sn+1;ϕn); θ

i
n)−∫

Qi(s, π(s;ϕn); θ
i
n)p(ds | sn, an, ϕn)

)
∇θiQ

i(sn, an; θ
i
n).

(4.37)

Define the filtration Fn−1 := σ(sm, am, θm, ϕm | m ≤ n) for n ≥ 1. It then follows that

{Ψn} is a zero-mean martingale. It follows from Assumption  4.2.3 and the C2 condition in

Assumption  4.2.5 that supn≥0∥ψi
n∥ ≤ K < ∞ for a sample path dependent constant K. It

then follows from the martingale convergence theorem (see  A.2 ) that Ψi
n converges, since

∑n
m=0 α

2(m)∥ψi
m∥2 <∞ almost surely by Assumption  4.2.1 (a).
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Proof of Lemma  4.7 . Fix T > 0. We define [t] for t ≥ 0 as [t] := tsup{n|tn≤t}. Fix t ∈ [0, T ], then

[tn + t] = tn+k for some k ≥ 0. Recall, that ϕi(t) is defined by linear interpolation with respect

to α(n), see ( 4.19 ). Hence, ϕi(tn + t)− ϕi(tn+k) is equal to

tn + t− tn+k

α(n+ k)

(
ϕ
i
(tn+k+1)− ϕi(tn+k)

)
. (4.38)

The stability of the algorithm and the compactness of the state-action space, i.e. Assump-

tion  4.2.3 , show that ∇ϕigi is bounded and hence ∥ϕi(tn+k+1) − ϕi(tn+k)∥ ∈ O(β(n + k)). It

follows that

sup
t∈[0,T ]

∥ϕi(tn + t)− ϕi([tn + t])∥ ∈ O(α(n)), (4.39)

since α(n) is monotonic and β(n)
α(n) → 1. Similarly, we can show that

sup
t∈[0,T ]

∥ϕin(t)− ϕin([tn + t]− tn)∥ ∈ O(α(n)) (4.40)

To show ( 4.25 ), we now need to show that

sup
t∈[0,T ]

∥ϕi([tn + t])− ϕin([tn + t]− tn)∥ → 0. (4.41)

From ( 4.22 ) it follows that

∥ϕi(tn+k)− ϕin(tn+k − tn)∥ ≤ ∥ϕi(tn+k)− ϕi(tn)

−
∫ tn+k−tn

0
∇̃gi(θin(x), ϕn(x), µn(x))dx∥.

(4.42)

Using a telescoping series, ϕi(tn+k)− ϕin(tn+k − tn) equals

n+k−1∑

m=n

β(m)∇ϕigi(θim, ϕm, sm)

=
n+k−1∑

m=n

∫ tm+1

tm

β(m)

α(m)
∇̃gi(θi([x]), ϕ([x]), µn(x− tn))dx

(4.43)

The last step follows from α(m) = tm+1 − tm and using that ϕim = ϕ
i
(tm) = ϕ

i
([t]) for all

t ∈ [tm, tm+1). Now rewrite the second term in ( 4.42 ):

∫ tn+k−tn

0
∇̃gi(θin(x), ϕn(x), µn(x))dx =

n+k−1∑

m=n

∫ tm+1

tm

∇̃gi(θin(x− tn), ϕn(x− tn), µn(x− tn))dx
(4.44)
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We now evaluate the difference of the terms under the integrals in ( 4.43 ) and ( 4.44 ).

∥β(m)

α(m)
∇̃gi(θi([x]), ϕ([x]), µn(x− tn))− ∇̃gi(θin(x− tn), ϕn(x− tn), µn(x− tn))∥

≤ C|β(m)

α(m)
− 1|+∥∇̃gi(θi([x]), ϕ([x]), µn(x− tn))− ∇̃gi(θin(x− tn), ϕn(x− tn), µn(x− tn))∥

≤ C|β(m)

α(m)
− 1|+L

(
∥θi([x])− θin([x]− tn)∥+ ∥ϕ([x])− ϕn([x]− tn)∥

+ ∥θin(x− tn)− θin([x]− tn)∥+ ∥ϕn(x− tn)− ϕn([x]− tn)∥
)

(4.45)

for some sample path dependent constant C < ∞ using the stability from Assumption  4.2.3 .

The last step adds zeros and uses the Lippschitz continuity of ∇̃gi. The combination of (  4.42 ),

( 4.43 ), (  4.44 ) and ( 4.45 ) thus gives:

∥ϕi(tn+k)− ϕin(tn+k − tn)∥

≤
n+k−1∑

m=n

α(m)O
(∣∣∣β(m)

α(m)
− 1
∣∣∣
)
+ L

n+k−1∑

m=n

O
(
a(m)2

)

+ L
n+k−1∑

m=n

a(m)
(
∥θi(tm)− θin(tm − tn)∥+

i∑
∥ϕi(tm)− ϕin(tm − tn)∥

)
(4.46)

The first term in the above expression converges to zero as n→∞, since
∑n+k−1

m=n α(m) ≤ T by

construction and since
∑

n≥0 (α(n)− β(n)) < ∞ from Assumption  4.2.1 (b). The second term

converges to zero since α(n) is square summable Assumption  4.2.1 (a).

Inequality ( 4.46 ) can now be derived analogously for ∥θi(tn+k) − θin(tn+k − tn)∥. We can now

sum up all L.H.S. and R.H.S. for all i in (  4.46 ), and for all θi:

xn :=

D∑

i=1

∥ϕi(tn+k)− ϕin(tn+k − tn)∥

+
D∑

i=1

∥θi(tn+k)− θin(tn+k − tn)∥

≤ o(1) + 2L

n+k−1∑

m=n

a(m)
∑

i

∥θi(tm)− θin(tm − tn)∥

+ 2LD

n+k−1∑

m=n

a(m)
∑

i

∥ϕi(tm)− ϕin(tm − tn)∥,

(4.47)

where D is the number of agents. We now apply the discrete version of Gronwall inequality ( V.

Borkar 2022 ) to xn. It follows that xn ≤ o(1)e2LD
∑n+k−1

m=n a(m). By construction
∑n+k−1

m=n a(m) ≤
T for all n ≥ 0, thus xn → 0, which proves the lemma.
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Proof of Lemma  4.8 . Consider the sequence θin. The proof for the other parameter sequences is

identical. Fix T > 0. We need to show that

sup
t∈[0,T ]

∥θin(t)− θi∞(0)−
∫ t

0
∇̃li(θin(x), ϕ∞(x), µ∞(x))dx∥ (4.48)

converges to zero. Using ( 4.22 ), the norm in ( 4.48 ) is upper-bounded by

∥θin(0)− θi∞(0)∥+ ∥
∫ t

0
∇̃li(θin(x), ϕn(x), µn(x))− ∇̃li(θi∞(x), ϕ∞(x), µ∞(x))dx∥. (4.49)

We can now expand the second term by successively adding zeros for each policy of each agent

j ̸= i. We can then use Lemma  4.4 to bound the resulting expansion from above by a term in

O



∫ t

0
∥θin(x)− θi∞(x)∥+

∑

j ̸=i

∥ϕjn(x)− ϕj∞(x)∥dx


 , (4.50)

Additionally, we are left with one term of the form

∥
∫ t

0
∇̃li(θi∞(x), ϕ∞(x), µn(x))− ∇̃li(θi∞(x), ϕ∞(x), µ∞(x))dx∥. (4.51)

Due to the compact convergence of every parameter sequences (Arzela-Ascoli theorem) every

parameter sequence will converge uniformly over [0, T ]. This shows that ( 4.50 ) converges to

zero. Finally, ( 4.51 ) converges to zero as µn → µ∞ in distribution and since θi∞(t), ϕ∞(t) are

bounded almost surely by Assumption  4.2.3 (a) and Lemma  4.7 .

Proof of Lemma  4.9 . Without loss of generality, assume a batch-size M = 1. The cases M > 1

will only require additional bookkeeping. Recall that the samples used in the 3DPG iterations

( 4.9 ) are potentially old and from random time-steps, such that Assumption  4.2.1 (b) holds. 

2
 Fix

some agent i. In the following, we will drop the agent index i. Since M = 1, the agent uses a

global transition tkn with random time index kn for its 3DPG training step at time n.

Pick f ∈ Cb(S), the convergence determining class for distributions on S. We analyze
∫ tn+1

tn

[
f (s)−

∫

S
f(y)p (dy | s, ϕn)

]
µ(z, ds,A)dz

= α(n)

[
f (skn)−

∫

S
f(y)p (dy | skn , ϕn)

]
(4.52)

as n→∞. The error terms ( 4.52 ) consider the deviation between states sampled from µ(t) and

the associated expected transition under the policy that uses the sample during training. This

is the perspective of an experimenter that observes the Markov game and the 3DPG algorithm

during runtime.
2Notably, Assumption  4.2.1 (b) in conjunction with the Borel-Cantelli lemma guarantee that infinitely many

global transitions reach each agent.
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Now accumulate the aforementioned deviations for all time steps where a sample tn would be

used during training and evaluate the deviation under the policy at time n. This information

is of course not required for the algorithm and solely a quantity for the analysis. In summary,

consider

γ(n)

[
f (sn+1)−

∫

S
f(y)p (dy | sn, ϕn)

]
(4.53)

at time n, where

γ(n) :=
∑

i∈{i≥0|ki=n}
α(i). (4.54)

for every n ≥ 0 with
∑

i∈∅ = 0. Recall that α(n) ∈ O(n−
1
q ) with q ∈ [1, 2), then

n∑

k=0

γ(k) ≤ O
(

2n∑

k=0

α(k)

)
≤ O

(∫ 2n

1
x
− 1

q dx

)
(4.55)

since at time n a sample from the replay memory can be at most n time steps old. It then follows

that 1
n

∑n
k=0 γ(k) ∈ O

(
n
− 1

q

)
, which in turn implies that γ(k) ∈ O

(
n
− 1

q

)
and thus that γ(m)

is square summable.

To analyze ( 4.53 ), we now consider the sequence

ξn :=

n−1∑

m=0

γ(m)

[
f (sm+1)−

∫

S
f(y)p (dy | sm, ϕm)

]
(4.56)

and the filtration

Fn−1 := σ⟨sm, am, ϕm, γ(m− 1) | m ≤ n− 1⟩. (4.57)

Then ξn is a Martingale with respect to Fn−1  

3
 . Since f is bounded and γ(m) is square summable,

the quadratic variation process associated with the Martingale ξn is convergent. It then follows

from the martingale convergence theorem (see  A.2 ) that ξn converges almost surely.

Recall that we denote the DataAoI by ∆(n), which is the age of the oldest sample in the replay

memory. In other words,

kn ∈ [n−∆(n)], for all n ≥ 0. (4.58)

Since ξn converges and
∑n−1

k=n−∆(n) α(k) → 0 a.s. by Assumption  4.2.1 (b), it follows that for

every t > 0
δ(n,t)∑

m=n−∆(n)

γ(m)

[
f (sm+1)−

∫

S
f(y)p (dy | sm, ϕm)

]
(4.59)

converges to zero a.s., where

δ(n, t) := min{m ≥ n | tm ≥ tn + t}.
3Technically, this assumes that a transition does not impact when previous transitions become available for

training, i.e., independence of the Markov game and the communication process.
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Next, spread out and rearrange the aggregated samples in ( 4.59 ). Specifically, use ( 4.58 ) and

separate the samples as the following three terms, whose sum converges to zero a.s.:

δ(n,t)∑

m=n

α(m)

[
f (skm+1)−

∫

S
f(y)p (dy | skm , ϕkm)

]

+O




n∑

m=n−∆(n)

α(m)


+O




δ(n,t)+∆(δ(n,t))∑

m=δ(n,t)

α(m)




(4.60)

The rearrangement is mathematically valid since (  4.59 ) is a finite sum for each n. By Assump-

tion  4.2.1 , it follows that the second and third terms converge to zero almost surely. Hence, we

conclude that
δ(n,t)∑

m=n

α(m)

[
f (skm+1)−

∫

S
f(y)p (dy | skm , ϕkm)

]
(4.61)

converges to zero a.s.

Equation ( 4.61 ) now also holds, if we replace ϕkm by ϕm since the resulting error terms when

taking the difference between (  4.61 ) and the version with ϕm converges to zero. To see this,

note that
∑δ(n,t)−1

m=n α(m) ∈ O(t) by construction. Further, all individual error terms in the

aforementioned difference converge to zero using weak convergence by continuity of (s, ϕ) 7→ p(· |
s, ϕ) and since ∥ϕkm − ϕm∥ → 0 a.s. Finally, α(n) is eventually decreasing, hence

δ(n,t)∑

m=n

[α(m)− α(m+ 1)] f(skm+1)→ 0 a.s. (4.62)

In summary, we have thus shown that

δ(n,t)∑

m=n

α(m)

[
f (skm)−

∫

S
f(y)p (dy | skm , ϕm)

]
(4.63)

converges to zero a.s. With ( 4.52 ) and ( 4.63 ) it then follows that
∫ tn+t

tn

∫

S

[
f (s)− h(z, s)

]
µ(z, ds,A)dz → 0 a.s. (4.64)

where h(z, s) :=
∫
S f(y)p

(
dy | s, ϕ(z)

)
. The lemma now follows from ( 4.64 ). We refer to

( Ramaswamy and Hullermeier 2021 , Lemma 6) for details on this final step.
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Part II: Age of Information Processes





Chapter 5

Stochastic Information Delays

AoI sequences, such as τij(n) in iteration ( 1.2 ), (  2.1 ) or ( 4.9 ), are usually not equipped with

a certain process structure. It is common to assume that AoI sequences are either bounded

( Agarwal and Duchi 2011 ) or bounded by deterministic sequences (  Zhou et al. 2022  ). Instead,

we view τij(n) as a discrete-time stochastic process that describes what information is used to

update an iteration. In single-path communication scenarios between two systems, it is evident

that AoI sequences satisfy the unit growth property τij(n + 1) ≤ τij(n) + 1; an iteration can

at most be updated ones per unit time step. On the other hand, in asynchronous computing

scenarios with a single component as in Example  1.0.1 , the AoI increment τij(n+ 1)− τij(n) is

usually in the order of the number of computing nodes assigned to update parts of a parameter

space. This chapter uses AoI sequences with bounded increments as one characterizing property

to define Age of Information Processes, which answers  (Q5) .

5.1 AoI processes: A definition

We will now define simple AoI processes and AoI processes based on the observations that 1)

information exchange between two systems has AoI with unit or bounded increments and 2) AoI

in asynchronous computing can be represented by a process taking values of many such processes.

For simple AoI processes, we allow the discrete-valued process to have bounded increments.

Definition 5.1.1. A simple Age of Information Process is a discrete-time stochastic process

{τ(n)}n≥0 on the non-negative integers associated with another stochastic process {Xn}:

1) xn−τ(n) is the sample used by another system/iteration/agent at time n,

2) supn≥0 τ(n+ 1)− τ(n) <∞ a.s.

We will now state the definition of what we call an AoI process.



5.2. DETERMINISTIC GROWTH PROPERTIES FROM AOI MOMENT BOUNDS

Definition 5.1.2. An Age of Information Process is a discrete-time stochastic process τ(n)

associated with potentially time-varying family K(n) ⊂ N of simple AoI processes {τk(n)}, such

that

τ(n) :=
∑

k∈K(n)

1{I(n)=k}τk(n) (5.1)

for some integer-valued random process I(n).

In Definition  5.1.2 , the integer-valued random process I(n) selects which of the simple AoI

processes is “active” at step n. Further, the set K(n) represents which of the simple AoI processes

can potentially be active at step n. For asynchronous computing, this means that scheduling

and rescheduling of workers can be represented by Definition  5.1.2 .

5.2 Deterministic growth properties from AoI moment bounds

With AoI processes defined, we can now study the connection between AoI moment bounds and

deterministic almost sure AoI growth bounds. Specifically, we provide tools to extract determin-

istic growth bounds from moment bounds. Such deterministic growth bounds will then be used

to verify the AoI-stepsize condition such as ( 1.12 ) for stability and convergence of distributed

SA algorithms. The first result is a deterministic growth bound for simple AoI processes.

Lemma 5.1. Let τ(n) be a simple AoI process. Suppose there exists a random variable τ with

τ(n) ≤st τ for all n ≥ 0 with E [τp] for some p ∈ (0,∞), then for all ε > 0,

P
(
τ(n) > εn

1
max{1,p} i.o.

)
= 0. (5.2)

Proof sketch. For p > 1, the lemma follows from the first Borel-Cantelli Lemma (see  A.2 ) and

stochastic dominance ( V. Borkar 2022 , Sec. 6). For p ∈ (0, 1], first, use the Borel-Cantelli Lemma

and the stochastic dominance property to conclude that τ(n) has a subsequence that does not

exceed any fraction of n after some time. Then, use the bounded increment property to show

that τ(n) does not exceed any fraction of n plus a term in the order of n1−p after some time. A

simple argument based on the limit superior then completes the proof.

Using basic properties of the limit supremum and assuming that the number of possible active

simple AoI processes at every point in time is finite, we conclude with the corresponding growth

bound for AoI processes. This growth bound is the core answer to  (Q6) .

Lemma 5.2. Let τ(n) be an AoI process with time-varying family K(n), such that for each τk(n)

there exist some pk > 0 with P
(
τk(n) > εn

1
max{1,pk} i.o.

)
= 0 for all ε > 0. If supn≥0|K(n)| <∞

and p := infk pk > 0, then

P
(
τ(n) > εn

1
max{1,p} i.o.

)
= 0.
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5.3 Convergence of accumulated stepsizes over AoI horizons

The next result formulates the trade-off between a moment bound for an AoI process and the

decay of an algorithm stepsize sequence a(n). A faster uniform tail decay of the AoI distributions

allows slower decaying stepsize and, hence, potentially faster convergence. In particular, if the

statement of Lemma  5.2 holds with p > 1, then stepsizes that decay slower than 1
n+1 become

available to satisfy Assumption  2.1.5 and Assumption  4.2.1 , in Chapter  2 and Chapter  4 , respec-

tively. Notably, the standard stepsize a(n) = c
n+1 , n ≥ 0, c > 0, turns out to be sufficient for

stability and convergence of the distributed SA iterations discussed herein under an arbitrary AoI

process moment bound and most notably for p ∈ (0, 1].

Lemma 5.3. Consider an AoI process such that Lemma  5.2 holds for some p > 0. If the stepsize

a(n) ∈ O
(
n
− 1

max{1,p}
)
, then

n−1∑

k=n−τ(n)

a(k)→ 0 a.s. (5.3)

Proof. Consider p ∈ (0, 1] and without loss of generality pick a(n) = 1
n+1 . Since a(n) is

monotonically decreasing it follows that

n−1∑

k=n−τ(n)

a(k) ≤ 1

n− τ(n) +
∫ n−1

n−τ(n)

1

t+ 1
dt =

1

n− τ(n) + 1
+ log

(
n

n− τ(n) + 1

)
. (5.4)

Then the lemma follows by continuity of the logarithm provided that

n− τ(n) + 1

n
→ 1 a.s. ⇐⇒ τ(n)

n
→ 0 a.s.. (5.5)

To show this, we state a lemma that is often used to prove the strong law of large numbers.

Lemma 5.4 (( K. L. Chung 2001  , Lemma 4.2.2.)). Let X1, X2, . . . be real-valued random variables.

Suppose for each ε > 0, P (|Xn| ≥ ε i.o.) = 0. Then Xn converges to 0 almost surely.

By assumption there is a random variable τ with τ(n) ≤st τ and E [τp] < ∞ with p ∈ (0, 1].

Lemma  5.2 thus shows that P
(
τ(n)n−1 > ε i.o.

)
= 0 for every ε > 0. Hence, the statement

follows from Lemma  5.4 . The case p > 1 follows the same line of argument.

With Lemma  5.2 , we have now established verifiable conditions for Theorem  2.1 , Theorem  3.1 

and Theorem  4.1 , providing further details on the answer of  (Q1) and  (Q2) . The verifiable

conditions require the existence of dominating random variables with some arbitrary moment

bound. The next chapter will show that the existence is guaranteed for AoI processes driven by

strongly mixing event processes. Afterward, Chapter  7 will derive dominating random variables

with prescribed moment bounds for asynchronous computing scenarios modeled as parallel point

processes.
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5.3. CONVERGENCE OF ACCUMULATED STEPSIZES OVER AOI HORIZONS

We will now close this chapter with the proof of Theorem  3.6 from Chapter  3 . Recall that we

established the almost sure rate of convergence of DASGD in Theorem  3.1 as

O




1 +
∑
i,j

n∑
k=0

a(k)
k−1∑

m=k−τij(k)

a(m)

n∑
k=0

a(k)



. (5.6)

To make this rate of convergence estimate more precise, we need a rate of convergence estimate

for
∑n−1

k=n−τ(n) a(k). We will do this given that τij(n) are stochastically dominated by random

variable τ with E [τp] <∞ for some p > 1.

Proof of Theorem  3.6 . Let a(n) ∈ O (n−q) for some q ∈ (1/2, 1) and consider a dominating

random variable with τ with E [τp] <∞ for some p > 1. Then

n−1∑

k=n−τij(n)

a(k) ∈ O
(
(n− 1)1−q − (n− τij(n))1−q

)
∈ O

(
τij(n)n

−q
)
∈ O

(
n

1
p
−q
)

(5.7)

The second inclusion can be seen from a Taylor expansion at n =∞. The third inclusion follows

as P
(
τij(n) > n

1
p i.o.

)
= 0, which follows from E [τp] < ∞ and the Borel-Cantelli lemma. The

Theorem now follows from a minimization of ( 5.6 ) over q using ( 5.7 ).

Remark 5.3.1 (Sufficient condition to apply Lemma  5.3 ). The existence of a dominating random

variable with bounded p-th moment is guaranteed if τij(n) are bounded in Lp′ for some p′ > p,

i.e., if supn≥0 E
[
τp

′

ij (n)
]
< ∞. A proof of this implication can be found in ( Leskelä and Vihola

2013 , Proposition 3). We will directly establish the existence of dominating random variables for

asynchronous computing and mobile wireless communication in Chapters  7 and  8 , respectively.

Remark 5.3.2 (Comment on stochastic dominance). It is always possible to construct a random

variable that stochastically dominates a finite set of random variables, provided that stochasti-

cally dominating random variables are given for each random variable of the finite set. Hence,

assuming a single dominating random variable for all AoI processes in Lemma  5.3 is without any

loss in generality.

Remark 5.3.3 (Importance of p ∈ (0, 1] in Lemma  5.2 and Lemma  5.3 ). As mentioned in the

introduction, it is new to the literature that an arbitrary moment bound for the AoI sequences is

sufficient for the stability and convergence of SAs. This is important, most notably due to the

newly explored territory with moment bounds for p ∈ (0, 1]. Such scenarios especially occur in

asynchronous parallel computing due to job resource requirements that are heavy-tailed ( Tirmazi

et al. 2020  ;  Samsi et al. 2021 ). In Chapter  7 , we will characterize how the cases p ∈ (0, 1] arise

due to asynchronous computing.
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5.4 Proofs of Chapter 5

Proof of Lemma  5.1 . Fix, ε ∈ (0, 1). Using the stochastic dominance property, it follows that
∑

n≥0

P
(
τ(n

1
p ) > εn

1
p

)
≤
∑

n≥0

P
(
τ > εn

1
p

)
=
∑

n≥0

P
(

1

εp
τp > n

)
≤ 1 +

1

εp
E [τp] . (5.8)

The last inequality can be found in ( K. L. Chung 2001 , Theorem 3.2.1). Since, E [τp] < ∞ it

follows from the first Borel-Cantelli lemma that τ(n
1
p ) ≤ εn

1
p for all n ≥ N(ε) with a sample

path dependent constant N(ε) ≥ 0. In other words,

τ(n) ≤ εn, for n = k
1
p with k ≥ N(ε). (5.9)

Next, consider two subsequent integers n′ and n′′ that satisfy (  5.9 ). Specifically, let k ≥ N(ε)

and fix n′ = k
1
p and n′′ = (k + 1)

1
p . By the almost sure bounded increments, it follows that the

AoI of the time steps between n′ and n′′ satisfy

τ(n′ + i) ≤ τ(n′) + C1i ≤ εn′ + C1i (5.10)

for a sample path dependent constant C1 ≥ 1 and for every i ∈ {0, . . . , n′′ − n′}. Further,

i ≤ C2k
1
p
−1 for a constant C2 > 0 that only depends on p.

To see that C2 does not depend on p, consider k > 1 and use Newton’s generalized binomial

theorem ( Graham et al. 1989 , p. 162). Then,

|(k + 1)
1
p − k

1
p | = |

∞∑

s=0

(1
p

s

)
k

1
p
−s − k

1
p | = k

1
p |
( ∞∑

s=0

(1
p

s

)
k−s − 1

)
| (5.11)

= k
1
p |
( ∞∑

s=1

(1
p

s

)
k−s

)
| ≤ k

1
p

( ∞∑

s=1

|
(1

p

s

)
|k−s

)
(5.12)

≤ sup
s≥1
|
(1

p

s

)
|k

1
p

∞∑

s=1

k−s = sup
s≥1
|
(1

p

s

)
|k

1
p (k − 1)−1 (5.13)

with
(1

p

s

)
=

1
p

(
1
p − 1

)(
1
p − 2

)
. . .
(
1
p − s+ 1

)

s!
. (5.14)

Notice that sup
s≥1
|
( 1

p
s

)
| is bounded, since |

( 1
p
s

)
| ≤ 1 for s ≥ 1

p . We could now define C := 3 sup
s≥1
|
( 1

p
s

)
|,

since (k − 1)−1 < 3k−1 for all integers k > 1.

Next, with k = (n′)p, it follows that

τ(n′ + i) ≤ εn′ + C1C2(n
′)1−p (5.15)

Since this holds for all pairs n′, n′′ with i ∈ {0, . . . , n′′−n′}, it follows that τ(n) ≤ εn+C1C2n
1−p

for all n ≥ N(ε)
1
p . We have therefore shown that

P
(
τ(n) > εn+ C1C2n

1−p i.o.
)
= 0. (5.16)
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for every ε ∈ (0, 1). Now fix ε′ ∈ (0, 1) and let ε = 1
2ε

′. Then C1C2n
1−p ≤ εn for all n ≥ N for

some N ∈ N. Hence, {τ(n) > εn+ C1C2n
1−p} ⊃ {τ(n) > 2εn} for n ≥ N . By definition of the

limit superior, it then follows from ( 5.16 ) that

P
(
τ(n) > ε′n i.o.

)
≤ P

(
τ(n) > εn+ (1− ε)Cn1−p i.o.

)
= 0. (5.17)

Proof of Lemma  5.2 . Fix ε > 0. From the definition of the limit supremum, we have that

P
(
τ(n) > εn

1
max{1,p} i.o.

)
= lim

m→∞
P


 ⋃

n≥m

{τ(n) > εn
1

max{1,p} }


 (5.18)

≤ lim
m→∞

P


 ⋃

n≥m

⋃

k∈K(n)

{τk(n) > εn
1

max{1,p} }


 (5.19)

≤ lim
m→∞

P


 ⋃

k∈K(n)

⋃

n≥m

{τk(n) > εn
1

max{1,pk} }


 (5.20)

≤
∑

k∈K(n)

lim
m→∞

P


 ⋃

n≥m

{τk(n) > εn
1

max{1,pk} }


 (5.21)

=
∑

k∈K(n)

P
(
τk(n) > εn

1
max{1,pk} i.o.

)
= 0. (5.22)

The second inequality uses the definition of AoI processes; the third inequality uses that p ≤ pk
for all k and swaps the order of the unions; the fourth inequality uses the union bound for

probabilities and that supnK(n) <∞.
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Chapter 6

AoI arising from strongly mixing event

processes

In the last chapter, we saw how the existence of AoI dominating random variables enables the

stability and convergence results from Chapters  2 to  4 . To verify the existence of AoI dominating

random variables, this chapter studies the fundamental AoI processes ( 1.8 ), which we recall here

for easy reference:

τ(n+ 1) :=




1, A(n),

τ(n) + 1, A(n)c,
(6.1)

with τ(1) := 1. The fundamental AoI process measures the freshness of status updates from a

source available at a monitor. An example sample path was illustrated in Figure  1.3 . We will

characterize properties for τ(n) based on assumptions on the associated event sequence A(n).

The results are based on ( Redder, Ramaswamy, and Karl 2022b ).

6.1 Main statements

We study the abstract AoI process ( 6.1 ) in the fundamental setting where the event sequence

A(n) merely possesses a dependency decay property. The process dependency decays over time,

described by the α-mixing notion, which will be formally stated in the next section. Due to this

abstract view, the developed results can be applied to AoI processes that arise in communication

or computing or as a consequence of other phenomena that delay information transport. The

results relate the so-called α-mixing rate of the event sequence A(n) to properties of the AoI

process τ(n). The α-mixing determines how the dependency of A(n) and A(m) decays as |n −
m| → ∞. Based on this rate, we calculate moment bounds for the AoI process τ(n) as a function

of the α-mixing rate. Further, we show that τ(n) is itself α-mixing, which leads to a strong law

of large numbers (SLLN) for τ(n) under sufficiently rapid α-mixing of the event sequence A(n).



6.1. MAIN STATEMENTS

The first result is a set of sufficient conditions guaranteeing that the average p-th moment of the

AoI process ( 6.1 ) is finite. We will use α(A,n) to denote the α-mixing coefficients of the indicator

process 1A(n). Theorem  6.1 shows that sufficiently fast decay of α(A,n) guarantees that all AoI

random variables τ(n) are stochastically dominated by a single random variable that has certain

finite moments depending on the decay rate of α(A,n).

Theorem 6.1. Suppose there are κ ≥ 0 and ε ∈ (0, 1) such that P
(⋃n+κ

k=n A(k)
)
≥ ε for all

n ≥ 0. If
∑

m≥0m
p−1α(A,m) < ∞ for some p > 0, then there is a random variable τ with

τ(n) ≤st τ for all n ≥ 0 and E [τp] <∞.

The p-th moment of the dominating random variable τ is calculated in the proof of Theorem  6.1 

as a function of ε, κ and the mixing coefficients α(A,n). Theorem  6.1 is the core answer to

 (Q7) and describes how fast the dependency of events has to decay to guarantee AoI dominating

random variables with prescribed moment bounds.

Notice that Theorem  6.1 does not require thatA(n) is a stationary process. Hence, 1
N

∑N−1
n=0 τ

p(n)

might not converge. However, by stochastic dominance, we have a bound for the limiting average

moments of the AoI process:

Corollary 6.2. If Theorem  6.1 holds for some p > 0, then

lim sup
N→∞

E

[
1

N

N−1∑

n=0

τp(n)

]
≤ E [τp] . (6.2)

Secondly, we study the mixing rate of the AoI process ( 6.1 ) itself. Here, the main result bounds

the mixing rate of ( 6.1 ) by a combination of the mixing coefficient α(A,n) and the tail decay of

the dominating random variable from Theorem  6.1 .

Theorem 6.3. Suppose the assumptions of Theorem  6.1 are satisfied, then the AoI process τ(n)

is α-mixing with coefficients α(τ, n), such that

α(τ, n) ≤ min
0≤m≤n

{α(A,n−m) + P (τ > m)} (6.3)

with τ from Theorem  6.1 .

We also show that the mixing rate of α(τ, n) is almost as fast as the mixing rate of α(A,n).

Specifically, we show that
∞∑

n=0

np−1α(A,n) <∞ =⇒
∞∑

n=0

nq−1α(τ, n) ∀q < p. (6.4)

Using ( 6.3 ), we conclude Section  6.3.2 with a SLLN for the AoI process ( 6.1 ) under sufficiently

rapid α-mixing of the event sequence A(n). Specifically, under the conditions of Theorem  6.1 for

some p > 1, we obtain the SLLN

1

N

N−1∑

n=0

(τ(n)− E [τ(n)])
a.s.−→ 0. (6.5)
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6.2 Strong mixing and assumptions

Let (Ω,F ,P) be the underlying probability space and let A and B be two sub-σ-algebras of F .

The following is the arguably most natural measure of dependency between A and B

α(A,B) := sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)|. (6.6)

Consider a (not necessarily stationary) stochastic process X = {X(n)}n≥0. For 0 ≤ l ≤ m ≤ ∞,

define the sub-σ-algebra generated from X(l) up to X(m) by

Fm
l := σ (X(n) | l ≤ n ≤ m) , (6.7)

Informally, the σ-algebra generated by a stochastic process from a time interval describes the

information that can be extracted from the associated process realizations (  Durrett 2019 ). With

these σ-algebras, we can now define α-mixing, which is a notion of asymptotic independence.

We refer to  Bradley ( 2005 ) for a survey about α-mixing and other mixing notions.

Definition 6.2.1. The α-mixing coefficients of the process X are

α(X,n) := sup
l≥0

α(F l
0,F∞

l+n), n ≥ 0. (6.8)

The process X is called α-mixing (or just strongly mixing) if α(X,n)→ 0 as n→∞.

We are now ready to formalize the assumptions for ( 6.1 ).

Recall that successful status updates from the source node are received at the monitor whenever

an event A(n) occurs. Hence, whenever an event A(n) occurs, the monitor receives a fresh update

during time slot n, thus τ(n+ 1) = 1. We refer to A(n) as the event process of the AoI process

τ(n). We make the following assumptions for the event process A(n):

Assumption 6.2.1. There is some ε ∈ [0, 1), such that

P (A(n)) ≥ 1− ε, ∀n ≥ 0.

Assumption 6.2.2. The event process A(n) is α-mixing (Definition  6.2.1 ) with coefficients

α(A,n).

Assumption  6.2.1 requires that at every time step, the monitor receives an update from the source

with non-zero probability. A slightly weaker assumption that is also sufficient for the results is

that there is some κ ≥ 0 and some ε ∈ [0, 1), such that P
(⋃n+κ

k=n A(k)
)
≥ 1 − ε, ∀n ≥ 0. The

weaker version thus requires that for every time interval of the form [n, n + κ], the probability

that the monitor receives an update from the source is greater than zero. This weaker assumption

is, in fact, necessary for the existence of a random variable τ such that τ(n) ≤st τ for all n ≥ 0;

without it, there exists a subsequence {nk} such that P
(

lim
k→∞

τ(nk) =∞
)

= 1. For simplicity,

we will present the proofs of Section  6.3.1 and Section  6.3.2 for κ = 0, though all proofs can be

easily extended to κ > 0.
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6.3 Moment bounds, mixing rates, and strong law

In this section, we analyze the moments of the AoI process ( 6.1 ). As the event process A(n)

may generally be non-stationary, we use stochastic dominance to construct uniformly dominating

random variables for the AoI process τ(n). This immediately leads to bounds for the limiting

average moments of the AoI process. Furthermore, a dominating random variable leads to bounds

for the asymptotic growth of the AoI process by the results presented in Chapter  5 .

6.3.1 AoI moment bounds under α-Mixing communication

To construct uniformly dominating random variables, we derive an upper bound to the com-

plementary cumulative distribution functions (CCDF) P (τ(n) > m) uniformly over all n ≥ 0.

Then, we will construct a function u : N0 → [0, 1] such that P (τ(n) > m) ≤ u(m) for all m ≥ 0

independent of n ≥ 0 with lim
m→∞

u(m) = 0. We can now use this bound to define the CCDF of

a new random variable. Such a bound can then be used to define a non-negative integer-valued

random variable τ by setting

P (τ > m) := u(m), ∀m ≥ 0. (6.9)

This uniquely defines τ and by construction τ stochastically dominates all τ(n) for all n ≥ 0.

Moreover, if
∑∞

m=0((m+1)p−mp)u(m) <∞ for some p > 0, then it follows from Proposition  6.4 

that E [τp] <∞.

Proposition 6.4 (( Chakraborti, Jardim, and Epprecht 2018 )). Suppose X is a non-negative

integer-valued random variable, then for every p > 0:

E [Xp] =

∞∑

m=0

((m+ 1)p −mp)P (X > m) . (6.10)

Violation probability under α-mixing communication

By construction of the AoI process (  6.1 ), we have that

P (τ(n) > m) = P

(
n−1⋂

l=n−m

Ac(l)

)
, (6.11)

where Ac(n) denotes the complement of the event A(n). Observe that if the events A(n) were

independent, then the probability on the right-hand side above could directly be written as the

product of the individual probabilities. However, we merely consider that A(n) is α-mixing,

Assumption  6.2.2 . To use this temporal dependency decay, we separate events in ( 6.11 ) by

intervals of a certain length.
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n−m n1 n2 n3

am bm am ambm

n4 = n

ambm

Figure 6.1: Illustration of the time slicing in ( 6.12 ).

Let {am} and {bm} be two non-decreasing sequences of non-negative integers with am ≤ m and

bm ≤ m. Now fix n ≥ m ≥ 0 and define time indices

n1 := n−m+ am, nk := nk−1 + am + bm (6.12)

as long as nk ≤ n. The created time indices are illustrated in Figure  6.1 .

Let L(m) be the number of constructed time indices. Notice that removing events from the

intersection in ( 6.11 ) leads to an upper bound. Thus

P (τ(n) > m) = P

(
n−1⋂

l=n−m

Ac(l)

)
(6.13)

≤ P




L(m)⋂

k=1




nk−1⋂

l=nk−am

Ac(l)




 (6.14)

= P




L(m)⋂

k=1

{τ(nk) > am}


 . (6.15)

Notice that by construction of the time indices nk, the events {τ(nk) > am} in ( 6.15 ) are

separated by bm steps. The following lemma uses this separation to formulate a bound for the

joint event in ( 6.15 ) using the marginals P (τ(nk) > am) and the mixing coefficients α(A,n) of

A(n).

Lemma 6.5. For n ≥ m ≥ 0,

P(τ(n) > m) ≤
L(m)∏

k=1

P (τ(ns) > am)α(A, bm)




L(m)−1∑

k=1

(
k−1∏

s=1

P (τ(ns) > am)

)
 , (6.16)

where ns is defined in ( 6.12 ).

With Assumption  6.2.1 , a preliminary bound for the violation probability follows:

Corollary 6.6. Let n ≥ m ≥ 0, then P (τ(n) > m) ≤ p(m, δ) with

p(m, δ) := εLδ(m) + α(A, ⌈mδ⌉)




Lδ(m)−1∑

k=1

εk−1


 (6.17)

for every δ ∈ (0, 1) with Lδ(m) :=
⌊

m
1+⌈mδ⌉

⌋
.
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Proof. For δ ∈ (0, 1) choose am = 0 and bm = ⌈mδ⌉ for all m ≥ 0 in Lemma  6.5 and use that

P (τ(n) > 0) ≤ ε for all n ≥ 0 by Assumption  6.2.1 .

Notice that Lemma  6.5 and Corollary  6.6 hold without Assumption  6.2.2 since the mixing co-

efficients are defined for all stochastic processes. Under Assumption  6.2.2 it now follows that

α(A,n) → 0 as n → ∞. Hence, the right-hand side in ( 6.17 ) decays to zero as m → ∞, since

lim
m→∞

⌈mδ⌉ =∞ and lim
m→∞

Lδ(m) =∞ for every δ ∈ (0, 1). The recipe described at the beginning

of this section thus immediately shows that a random variable exists that jointly stochastically

dominates τ(n) for all n ≥ 0. Moreover, for every q < p with p from Assumption  6.2.2 , we can

choose δ sufficiently close to one such that p(m, δ) decays sufficiently fast such that
∞∑

m=0

((m+ 1)q −mq)p(m, δ) <∞ (6.18)

Thus for every q < p, we can find a random variable τ with τ(n) ≤st τ for all n ≥ 0 and

E [τ q] <∞.

Proof of Theorem  6.1 

The previous paragraph shows Theorem  6.1 for all q < p. For q = p the situation is different and

the bound in Corollary  6.6 is insufficient to complete Theorem  6.1 . This is because bm in ( 6.16 )

has to be chosen such that lim inf bm
m > 0, to guarantee that

∑∞
m=0((m+1)p−mp)α(A, bm) <∞.

In this case, L(m) <∞ and thus am has to increase to infinity to guarantee that the first term in

( 6.16 ) decays to zero. The central observation is that sequences am and bm, as used to construct

the time indices in ( 6.12 ), have to be chosen to jointly drift to infinity. To do this, we use the

bound from Corollary  6.6 in Lemma  6.5 to improve the bound on the violation probability.

Lemma 6.7. Let n ≥ m ≥ 0,

P(τ(n) > m) ≤ p(⌈λm⌉, δ)Lλ(m) (6.19)

+ α(A, ⌈λm⌉)




Lλ(m)−1∑

k=1

(
k−1∏

s=1

p(⌈λm⌉, δ)
)
 =: u(m, δ, λ)

for every (δ, λ) ∈ (0, 1)2 with Lλ(m) := ⌊ m
2⌈λm⌉⌋ and p(m, δ) as defined in Corollary  6.6 .

We are now ready to prove Theorem  6.1 .

Proof of Theorem  6.1 . Fix (δ, λ) ∈ (0, 1)2 and observe that u(m, δ, λ) is by construction decreas-

ing in m. Now define a non-negative integer-valued random variable τ by describing its CCDF

as follows:

P (τ > m) := u(m, δ, λ), m ≥ 0. (6.20)
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By Lemma  6.7 , τ stochastically dominates all τ(n) for n ≥ 0. To prove Theorem  6.1 , we have to

show that there exist (δ, λ) ∈ (0, 1)2, such that
∑∞

m=0((m+ 1)p −mp)u(m, δ, λ) <∞, which we

complete in the appendix.

6.3.2 Mixing rates and strong law for AoI processes

Section  6.3.1 shows that if A(n) is α-mixing with
∑∞

n=0 n
p−1α(A,n) <∞, then

P (τ(n) > m) ≤ P (τ > m) ∈ o(m−p) (6.21)

for a random variable τ . This uniform tail decay of the distributions of each τ(n) indicates that

the dependency of τ(n) on A(m) decays as |n − m| → ∞. This, in turn, indicates that the

dependency of τ(n) on τ(m) also decays. Theorem  6.3 affirms this indication and that τ(n) is

itself α-mixing.

Proof of Theorem  6.3 

For 0 ≤ l ≤ m ≤ ∞, define the σ-algebra generated from τ(l) up to τ(m) by

Fm
l (τ) := σ (τ(n) | l ≤ n ≤ m) . (6.22)

Similarly, define the σ-algebra generated from A(l) up to A(m) by

Fm
l (A) := σ (A(n) | l ≤ n ≤ m) . (6.23)

The α-mixing coefficients of τ(n) are

α(τ, n) := sup
l≥0
{sup
A,B
|P (A ∩B)− P (A)P (B)|}, (6.24)

where the supremum is taken over A ∈ F l
0(τ), B ∈ F∞

l+n(τ).

The idea of Theorem  6.3 , is to condition events A∩B and B in ( 6.24 ) on events {τ(l+n) ≤ m}
and {τ(l + n) > m} for 0 ≤ m ≤ n. Then, we use the key property that an event B as above

conditioned on {τ(l+ n) ≤ m} is already an element of F∞
n+l−m(A), which thus allows us to use

that A(n) is α-mixing.

Let us develop some intuition as to why for B ∈ F∞
l+n(τ) it holds that

B ∩ {τ(l + n) ≤ m} ∈ F∞
l+n−m(A). (6.25)

Observe that information B̃ ∈ σ(τ(n+ l)) = Fn+l
n+l (τ) is of the form

B̃ = τ(n+ l)−1(C),
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where C is a subset of {1, . . . , n+ l}. By definition, we have

{τ(n+ l) ≤ m} = τ(n+ 1)−1({1, . . . ,m}). (6.26)

Using the construction of the AoI process (  6.1 ) it is then not difficult to see that B̃ ∩{τ(n+ l) ≤
m} ∈ F∞

l+n−m(A). A monotone class argument now completes the reasoning. A formal proof of

property ( 6.25 ) is given in the chapter appendix. We are now ready to prove Theorem  6.3 .

Proof of Theorem  6.3 . Let l,m, n ≥ 0, A ∈ F l
0(τ) and B ∈ F∞

l+n(τ). Further, let τ be a domi-

nating random variable as given by Theorem  6.1 . By the law of total probability, we have that

|P (A ∩B)− P (A)P (B)| is equal to

|P (A ∩B ∩ {τ(l + n) ≤ m}) + P (A ∩B ∩ {τ(l + n) > m})
−
(
P (A)P (B ∩ {τ(l + n) ≤ m}) + P (A)P (B ∩ {τ(l + n) > m})

)
| (6.27)

≤ |P (A ∩B ∩ {τ(l + n) ≤ m})− P (A)P (B ∩ {τ(l + n) ≤ m})|
+ P (τ(l + n) > m)

(
|P (A ∩B | {τ(l + n) > m})− P (A)P (B | {τ(l + n) > m})|

)
(6.28)

≤ |P (A ∩B ∩ {τ(l + n) ≤ m})− P (A)P (B ∩ {τ(l + n) ≤ m})|+ P (τ > m) (6.29)

The first inequality uses conditional probability and triangular inequality; the second inequality

uses that τ(n) ≤st τ for all n ≥ 0 and that

|P (A ∩B | {τ(l + n) > m})− P (A)P (B | {τ(l + n) > m})| ≤ 1. (6.30)

By construction of the AoI process, we have that F l
0(τ) ⊂ F l

0(A) for all l ≥ 0. Thus A ∈ F l
0(A).

By ( 6.25 ), we have that B ∩ {τ(l + n) ≤ m} ∈ F∞
l+n−m(A). Since A(n) is α-mixing it follows

that

|P (A ∩B ∩ {τ(l + n) ≤ m})− P (A)P (B ∩ {τ(l + n) ≤ m})| ≤ α(A,n−M) (6.31)

Thus for all n ≥ 0, we found that

α(τ, n) ≤ α(A,n−m) + P (τ > m) (6.32)

for all 0 ≤ m ≤ n. To see that α(τ, n)→ 0 as n→∞ choose, e.g., m(n) = ⌈n2 ⌉. Minimizing over

m in ( 6.32 ) yields the statement of Theorem  6.3 .

Mixing rate of τ(n)

The next natural question is to analyze the convergence rate of α(τ, n). For this, let q < p and

let δ ∈ (0, 1). Then
∞∑

n=0

nq−1α(τ, n) ≤
∞∑

n=0

nq−1α(A, ⌈nδ⌉) +
∞∑

n=0

nq−1P
(
τ > n− ⌈nδ⌉

)
. (6.33)
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By Assumption  6.2.2 , we have that
∑∞

n=0 n
p−1α(A,n) and we can show using q < p that the

first summation is finite for some δ ∈ (0, 1). We also claim that the second summation is finite

for every δ ∈ (0, 1). This follows from ( 6.21 ) and the observation that
∑∞

n=0 n
q−1−p < ∞ for

q < p. Here, we used that lim
n→∞

np

(n−⌈nδ⌉)p = 1 for every δ ∈ (0, 1). We have, therefore, shown that

∞∑

n=0

np−1α(A,n) <∞ =⇒
∞∑

n=0

nq−1α(τ, n) ∀q < p. (6.34)

Thus, τ(n) has almost the same mixing rate as A(n).

As a corollary to Theorem  6.3 and the mixing rate in ( 6.34 ), we can now formulate a SLLN for

τ(n). The SLLN is based on an SLLN for strongly mixing stochastic processes that we state here

paraphrased to suit the purpose:

Theorem 6.8 ( ( McLeish 1975 , Thm. 2.10) ). Suppose {Xn}n≥0 is a zero mean α-mixing

sequence of random variable with
∑∞

n=0 α(X,n)
1
q <∞ for some q > 1. If there is 1 < r < q and

r
r−1 < s ≤ 2r

r−1 such that
∞∑

n=0

n−
r−1
r

sE
[
|Xn|

r−1
r

s
]
<∞, (6.35)

then 1
N

∑N−1
n=0 Xn → 0 a.s.

Using the moment bound in Theorem  6.1 and the mixing rate in Theorem  6.3 , we can carefully

choose r, s in Theorem  6.8 to conclude with the following SLLN for τ(n).

Corollary 6.9. Suppose the assumptions of Theorem  6.1 hold for some p > 1, then

1

N

N−1∑

n=0

(τ(n)− E [τ(n)])
a.s.−→ 0. (6.36)

If in addition A(n) is stationary, then

1

N

N−1∑

n=0

τ(n)
a.s.−→ lim

n→∞
E [τ(n)] ≤ E [τ ] (6.37)

6.4 Discussion and related work

AoI has been studied for various queuing and scheduling models ( Yin Sun et al. 2019 ) that re-

quire i.i.d. service and waiting times as in renewal theory. The most common analyses rely on the

saw-tooth nature of AoI processes (see Figure  1.3 ) in combination with certain stationarity and

ergodicity assumptions for the waiting and service time processes ( Yates et al. 2021 ). In wire-

less communication settings, AoI has been considered in edge-based network models where the

success of communication via individual edges has been considered as i.i.d. across time ( Farazi, 
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Klein, and Brown 2020 ). Generally, we observed that i.i.d. assumptions are prominent for ar-

rival/service times and communication success. In the former case, this is due to the tractability

of sums of independent random variables using laws of large numbers. In the latter case, it is

due to the tractability of products of independent random variables. However, interarrival times

can be highly dependent as arrivals tend to form clumps ( D. Daley and Rolski 1992 ). Simi-

larly, communication over wireless fading channels can be highly correlated ( G. Bianchi 2000  ;

 Boban, Gong, and W. Xu 2016 ;  W. Liu and Shi 2019 ). Independence assumptions are, therefore,

particularly unrealistic for communication systems. In contrast, a fundamental property of com-

munication systems is that events that occur “close” in some domains (space, time, frequency, or

code) are highly dependent. Still, the dependency decreases as the events get more “separated”.

In general, many real-world systems possess potentially “long-range” dependencies that decay as

the events get more separated in time ( Samorodnitsky et al. 2016  ).

The lack of literature that considered non-independent service times motivated the consideration

of the fundamental AoI process (  6.1 ) as a function of an event process A(n) with dependencies

described by a suitably probabilistic mixing notion. Previously, a version of the AoI process

( 6.1 ) has only been studied under the assumption that the event process A(n) is an independent

stochastic process ( Montero and Villarroel 2016 ). This work takes the perspective of the AoI

process ( 6.1 ) as a random walk with restarts, called Sisyphus random walk, due to its analogy

with climbing and falling down a hill indefinitely. The work analyzes ( 6.1 ) as a countable-state

Markov process. Hence, before the results presented herein, the AoI process ( 6.1 ) was not studied

when A(n) is a general (not necessarily stationary) stochastic process with time dependencies.

The presented analysis of the abstract AoI process ( 6.1 ) under merely α-mixing communication

is a gateway to study more complex AoI processes with dependent communication. For exam-

ple, renewal processes with non-independent interarrivals or real-world AoI processes where the

mixing rate of the communication process has been estimated from data. The required α-mixing

assumption, Assumption  6.2.2 , requires that the dependency of events A(n) and A(m) decays

as |m − n| → ∞. There are many examples where A(n) will be α-mixing. In general, A(n)

will be α-mixing if it can be written as a Borel-measurable function of another α-mixing pro-

cess ( Bradley 2005 , Thm. 5.2). Here, an important class of examples are scenarios where the

communication events A(n) are a Borel-measurable function of a geometrically ergodic Markov

process ( Davydov 1974  ;  Bradley 2005 ), which has been a common tool to approximate wireless

fading channels ( H. S. Wang and Moayeri 1995 ;  G. Bianchi 2000 ;  Boban, Gong, and W. Xu

2016 ). We studied this class in ( Redder, Ramaswamy, and Karl 2022e ), where an event process

that represents successful communication via a geometrically ergodic wireless fading channel was

shown to be α-mixing even when AoI-aware medium access control protocols are used to decide

when to communicate. The results will be discussed in Chapter  8 .
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Another line of applications comes from point process theory.  Berbee  ( 1987 , Theorem 6.1) shows

that the event process resulting from a lattice renewal process with i.i.d. interarrival times is

α-mixing if the waiting time distribution has a finite moment greater than one.  Pham and Tran 

( 1985 ) determined the α-mixing rate of linear processes and ARMA processes. Notably, general

point processes with temporally dependent interarrivals, where a probabilistic mixing notion

describes the dependency, have not been considered so far. The presented results offer a path to

analyze AoI in such settings even when new information is received at a monitor after general

dependent interarrival times. To apply the results, we need to use relation ( 1.11 ) between the

backward recurrence time of a point process and the associated fundamental AoI process, which

shows that

τr(n) = τ(n− τ(n)) + τ(n)− 1 (6.38)

holds, where τr(n) is the backward recurrence time and τ(n) is the fundamental AoI process

defined by ( 6.1 ) with A(n) the event process tracking the occurrence of points. Property ( 6.38 )

is proven below in the chapter appendix. To complete the application, we need to compute the

α-mixing rate of the event sequence when the sequence of dependent interarrival times is itself α-

mixing. As of recently, the α-mixing rates of renewal sequences were only known (asymptotically)

when the associated interarrival times are i.i.d.  Berbee  ( 1987 , Theorem 6.1).

Another interesting line of work will be identifying scenarios where modeling the process that

gives rise to AoI is difficult. For such scenarios, we envision that α-mixing rates of the event

process A(n) can be directly estimated from data using the estimator of  Khaleghi and Lugosi  

( 2023 ). Then, the results presented in this chapter enable conclusions about the average AoI

using Theorem  6.3 .

6.5 Proofs of Chapter 6

Proof of Lemma  6.5 . We expand the right-hand side of (  6.15 ) using Assumption  6.2.2 . Consider

the following σ-algebras:

Fs
l := σ (A(n) | l ≤ n ≤ s) , l ≥ 0, s ≥ 0. (6.39)

Each event {τ(nk) > am} in ( 6.15 ) is generated by the events A(n) with n ∈ {nk − am, . . . , nk −
1, nk − 1}. By construction of the above sub-σ-algebras, we have that

{τ(nk) > am} ∈ Fnk−1
nk−am . (6.40)

Recall that by the construction of the time indices ( 6.12 ), the events {τ(nk) > am} are separated

by bm steps. We thus have that

{τ(nL(m)) > am} ∈ F∞
nL(m)−am (6.41)
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and
L(m)−1⋂

k=1

{τ(nk) > lm} ∈ F
nL(m)−1−1

0 , (6.42)

where L(m) is the number of constructed time indices. Due to the aforementioned separation,

we have

nL(m) − am − (nL(m)−1 − 1) = bm + 1 ≥ bm. (6.43)

By Assumption  6.2.2 {A(n)}n≥0 is α-mixing with coefficient α(A,n). It then follows from ( 6.41 )

and (  6.42 ) and the construction of the time indices nk that

P (τ(n) > m) ≤ P
(
τ(nL(m)) > am

)
P




L(m)−1⋂

k=1

{τ(nk) > am}


+ α(A, bm). (6.44)

The lemma then follows by applying the described procedure successively.

Proof of Lemma  6.7 . For λ ∈ (0, 1) choose am = bm = ⌈λm⌉ for all m ≥ 0 in Lemma  6.5 . Then,

( 6.17 ) shows that for every δ ∈ (0, 1) and every n ≥ 0, we have the bound

P (τ(n) > am) ≤ p(⌈λm⌉, δ). (6.45)

Proof of Theorem  6.1 . Fix (δ, λ) ∈ (0, 1)2 and observe that u(m, δ, λ) is by construction decreas-

ing in m. Now define a non-negative integer-valued random variable τ by describing its CCDF

as follows:

P (τ > m) := u(m, δ, λ), m ≥ 0. (6.46)

By Lemma  6.7 , τ stochastically dominates all τ(n) for n ≥ 0. To prove Theorem  6.1 , we have to

show that there exist (δ, λ) ∈ (0, 1)2, such that
∑∞

m=0((m+ 1)p −mp)u(m, δ, λ) <∞.

We start by showing that
∞∑

m=0

((m+ 1)p −mp)α(A, ⌈λm⌉) <∞ (6.47)

for all λ ∈ (0, 1). We claim that
∞∑

m=1

((m+ 1)p −mp)α(⌈λm⌉) ≤ 2p

λp

∞∑

m=1

mp−1α(m) (6.48)

This claim follows from the observations that for x ∈ R≥0 and m ≥ 1, ((m+1)x−mx) ≤ 2xmx−1,

and that |{n ≥ 0 : ⌈λn⌉ = m}| ≤ 1
λ . Hence, by Assumption  6.2.2 we have that ( 6.47 ) holds for

all λ ∈ (0, 1). Further, Lλ(m) ≤ 1
λ . To complete the proof it is therefore left to show that

∞∑

m=0

((m+ 1)p −mp)p(⌈λm⌉, δ)Lλ(m) <∞ (6.49)
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for some (δ, λ) ∈ (0, 1)2. Since (m + 1)p −mp ≤ 2pmp−1 for m ≥ 1, its enough to show that
∑∞

m=1m
p−1p(⌈λm⌉, δ)Lλ(m) < ∞. Using the summability property of α(A,n) from Assump-

tion  6.2.2 , we can show that

p(⌈λm⌉, δ)Lλ(m) ∈ O
((

ε(m
1−δ) +m−µδ

) 1
λ

)
(6.50)

for µ := p, if p ≤ 1 and µ := p − 1, if p > 1. 

1
 Asymptotically, m−µδ will dominate ε(m

1−δ) for

any δ ∈ (0, 1). It is thus enough to show that
∑∞

m=1m
p−1m−µ δ

λ <∞, which holds for δµ > λp.

This completes the proof.

Proof of missing property. We verify that for B ∈ F∞
l+n(τ), we have that

B ∩ {τ(l + n) ≤M} ∈ F∞
l+n−M (A), (6.51)

as used in Section  6.3.2 .

First consider B ∈ σ(τ(n+ l)). Every AoI random variable is a measurable map τ(n+ l) : Ω→
2{1,...,n+l}. Thus B is of the form B = τ(n+ l)−1(C) for some C ∈ 2{1,...,n+l}, i.e. C is a subset

of {1, . . . , n+ l}. Second, for any 0 ≤ m ≤ n+ l, we have

{τ(n+ l) ≤ m} = τ(n+ 1)−1({1, . . . ,m}). (6.52)

Therefore, using properties of the preimage of intersections, we have that

B ∩ {τ(n+ l) ≤ m} = τ(n+ l)−1 (C ∩ {1, . . . ,m}) (6.53)

=
⋃

c∈C∩{1,...M}
τ(n+ l)−1({c}). (6.54)

By construction of the AoI process, we have that

τ(n+ l)−1(c) = A(n+ l − c) ∩
c−1⋂

k=1

Ac(n+ l − c+ k). (6.55)

Since F(A)∞l+n−m is a σ-algebra, we thus conclude from ( 6.54 ) and ( 6.55 ) that

B ∩ {τ(n+ l) ≤ m} ∈ F(A)∞l+n−m. (6.56)

Next we consider elements of the join σ-algebra F(τ)∞n+l. It can be expressed as

F(τ)∞n+l = σ

( ∞⋃

k=n+l

σ(τ(k))

)
. (6.57)

For all B ∈ ⋃∞
k=n+l σ(τ(k)), the previous paragraph shows that

B ∩ {τ(n+ l) ≤ m} ∈ F(A)∞l+n−m, (6.58)
1The distinction is necessary, since mp−1α(A,n) is not necessarily monotone for p > 1.
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using the stability of σ-algebras under countable unions. A generating-class argument now

completes the proof: Let G := {B ∈ F(τ)∞n+l : B satisfies ( 6.56 )}. Clearly, Ω ∈ G and countable

unions of elements from G are in G. Finally, let B ∈ G. Then

Bc ∪ {τ(n+ l) > m} ∈ F(A)∞l+n−m, (6.59)

since B ∩ {τ(n+ l) ≤ m} ∈ F(A)∞l+n−m and F(A)∞l+n−m is a σ-algebra. Finally,

Bc∩{τ(n+ l) ≤ m} = (Bc ∪ {τ(n+ l) > m})
∩ {τ(n+ l) ≤ m} ∈ F(τ)∞n+l−m, (6.60)

again, since {τ(n + l) ≤ m} ∈ F(τ)∞n+l−m and F(A)∞l+n−m is a σ-algebra. We have therefore

shown that G is itself a σ-algebra, hence G = F(τ)∞n+l−m.

Proof of Corollary  6.9 . Suppose that A(n) is α-mixing with
∑∞

n=0 n
p−1α(A,n) < ∞ for some

p > 1. Theorem  6.3 shows that τ(n) is α-mixing with
∑∞

n=0 n
q−1α(τ, n) < ∞ for every q < p.

Let 1 < q < p. To apply Theorem  6.8 to τ(n), we first have to show that

∞∑

n=0

α(τ, n)
1
q =

∞∑

n=0

α(τ, n)
1
q
−1
α(τ, n) <∞ (6.61)

Since
∑∞

n=0 n
q−1α(τ, n) <∞ and α(τ, n) is monotone, we especially have that α(τ, n) ∈ o(n−1)

and hence α(τ, n)
1
q
−1 ∈ o(n

1− 1
q ). Finally ( 6.61 ) follows, since 1 − 1

q ≤ q − 1 for q ≥ 0 and
∑∞

n=0m
q−1α(τ, n) <∞ by Assumption  6.2.2 .

To complete the proof, recall that Theorem  6.1 showed that E [τ(n)p] ≤ E [τp] < ∞. It is now

easy to see that we can choose r, s in Theorem  6.8 , such that 1 < r−1
r s < p and thus ( 6.35 ) holds.

Theorem  6.8 therefore shows that 1
N

∑N−1
n=0 (τ(n)− E [τ(n)])

a.s.−→ 0. If A(n) is strictly stationary,

then E [τ(n)] is monotonically increasing and the additional statement follows.

Proof of Equation ( 1.11 ). We drop the node indices for this proof. Fix some n ≥ 0. First, if

A(n) = 1, then τr(n) =Wk(n). Further, τ(n) = 1 and thus τ(n−τ(n)) = τ(n−1) = 1+(Wk(n)−
1) =Wk(n), since τ̃(n−1) is reset to 1 at the next time step. Hence, τ(n−τ(n))+τ(n)−1 =Wk(n)

holds as desired. Second, if A(n) = 0, then τr(n) = n−∑k(n)−1
i=1 Wi, as the age is the time that

was spent waiting since the last renewal plus the associated last transmission time. Further,

τ(n) = n−∑k(n)
i=1 Wi + 1 and thus

τ(n− τ(n)) = τ(

k(n)∑

i=1

Wi − 1) =Wk(n), (6.62)

since
∑k(n)

i=1 Wi is a renewal time step. Again, τ(n− τ(n)) + τ(n)− 1 =Wk(n) holds as desired.
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Chapter 7

AoI from asynchronous computing

modeled as parallel renewal processes

In the last chapter, we saw how event processes give rise to AoI processes. Such AoI processes are

fundamental to describing the AoI between a single source and a single monitor. We now consider

the asynchronous computing setting described in Section  1.3.2 . Specifically, this chapter studies

AoI arising from asynchronous computing modeled as parallel point processes. In addition, we

will explain how the results of the previous chapter can be used inside this distributed computing

model. The results are based on ( Redder 2023 ) and provide the core answer to  (Q8) on the

distribution of AoI caused by asynchronous computing. Furthermore, the results guarantee the

existence of dominating random variables with precise moment bounds to apply the results of

Chapter  5 and answer  (Q4) .

7.1 Asychronous computing models

We consider two asynchronous parameter server systems, where workers sequentially read the

parameters of a model and a minibatch from a data set and then asynchronously compute

optimization steps to update the model. As explained in Section  1.2 and Section  1.3.2 , this

leads to increased resource utilization at the cost of parameter update/staleness errors due to

AoI, which mitigate the performance of iterative methods when inappropriate hyperparameters

are chosen. Because of this, we study how processing times and asynchronous computing on

distributed computing (DC) systems give rise to AoI to design methods that maximize resource

utilization while guaranteeing performance. Specifically, we propose to model a DC system with

parallel workers by parallel renewal processes describing the workers’ processing times. For this

model, we derive exact asymptotic AoI distributions and AoI moment bounds affecting a class of

asynchronous parameter server algorithms. The results then enable the allocation of computing
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resources for asynchronous methods based on processing time data readily available from DC

system traces ( Samsi et al. 2021 ), which we will be exemplified in Section  7.5 . Finally, we will

discuss that the results naturally generalize to arbitrary point processes with weakly convergent

increments.

7.1.1 AoI caused by asynchronous parameter updates

We now recall the AoI caused by asynchronous methods executed on parallel computing infras-

tructure. These methods fall into a general class of asynchronous parameter server iterations

(APSI) and coordinate-wise parameter server iterations (cAPSI), formally stated as Algorithm  2 

and Algorithm  3 in Section  7.2.1 , respectively. In Section  1.3.2 , we explained how update steps

that are returned to a single parameter server (an APSI) have already aged when applied due

to the updates of other workers. Precisely, the resulting API is τ(n) = n−m(n), where m(n) is

the index to which an update step applied at index n corresponds. Then τ(n) := n−m(n) and

we refer to {τ(n)} as the sequence of AoI random variables for an APSI. An illustration for an

AoI sequence generated by ASGD with two workers was presented in Figure  1.5 .

The cAPSI model represents asynchronous learning methods where individual workers update

parts of a large neural network model independently ( Guan et al. 2019 ). Most importantly, as

AI and deep learning models grow, complete update steps can not be computed anymore on

single chips, so coordinate-wise updates become necessary ( B. Yang et al. 2021  ). The cAPSI

model captures this. cAPSI generally encompasses physically distributed asynchronous learning

and optimization scenarios, e.g., as multi-agent reinforcement learning discussed in Chapter  4 .

In addition, the cAPSI model can arise due to inconsistent read-and-write problems in APSI

( Lian et al. 2015 ). Finally, both APSI and cAPSI apply to classical distributed and federated

learning scenarios ( C. Zhang et al. 2021 ) since APSI and cAPSI will not differentiate between

the actual information sent to the parameter servers. For federated learning, the AoI will then

be associated with the update information from one worker/client and its local data set.

For cAPSI, the parameter space is divided into subspaces, e.g., Rd = Rd1 × . . . × RdD , such

that
∑

i di = d, where d would be the parameter space dimension for APSI. All D coordinates

of cAPSI are then updated independently such that D2 AoI sequences τij(n), 1 ≤ i, j,≤ D,

arise. These AoI sequences are defined analogously to the APSI AoI sequences. cAPSI with a

single coordinate thus reduces to APSI, but it is simpler and illustrative to first study APSI. For

APSI and cAPSI, the updates’ processing times will be modeled as parallel renewal processes.

As mentioned before, the crucial factor is that events are not pooled, but instead, the object of

interest is the number of events (parameter updates) that occur from other renewal processes

while one renewal process is waiting for its next event to occur.
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7.1.2 Illustrative results

For APSI and cAPSI, we develop closed-form expressions for the limiting AoI distribution from

the processing time distributions of the DC system workers, see Theorem  7.2 and Theorem  7.11 ,

respectively. For the limiting mean AoI, we have the following illustrative results:

• Corollary  7.5 : For APSI with K workers and heterogeneous but independent processing

times, the AoI satisfies:

lim
n→∞

E [τ(n)] = K − 1. (7.1)

• Corollary  7.12 : For cAPSI with Ki workers on each coordinate (and heterogeneous but

independent processing times), the AoI sequences satisfy:

lim
n→∞

E [τij(n)] =

∑Ki
k=1

1
µik∑Kj

k=1
1

µjk

×




Kj i ̸= j,

Kj − 1 i = j,
(7.2)

where µik is the mean processing time of the k-th worker on the i-th coordinate.

Corollary  7.5 shows that independent of the actual processing time distributions, the limiting

mean AoI is given byK−1. This result reinforces recent observations made for ASGD, which uses

that “most” AoI affecting the iteration are actually in O(K) ( Mishchenko et al. 2022 ;  Anastasiia

Koloskova, Stich, and Jaggi 2022 ). The result becomes less surprising with a simple example.

Consider K = 2 workers with constant processing times, where worker 1 does 106 updates while

worker 2 only computes a single update. Then, for the initial 106 updates, the AoI is zero, while

for the update by worker 2, the AoI is 106, and lim
n→∞

E [τ(n)] = (106−1)×0+1×1+1×106

106+1
= 1 =

K− 1. In other words, the straggler has no effect. Slow workers will affect the overall processing

time, but from the perspective of information delay affecting ASGD, the actual processing time

distributions do not affect the mean AoI asymptotically; only the number of workers matters.

This is a crucial property for the design of asynchronous optimization algorithms. In view of

Chapter  3 , ASGD with a single asynchronous update iteration will, therefore, always have AoI

with bounded first moment independent of the processing times. However, as we will see in

Section  7.3 , the processing time distributions affect higher-order AoI moments.

For cAPSI, the situation is different. For coordinate-wise updates with K1 = K2 = 1 with

the workers from the APSI example, the limiting AoI mean satisfies lim
n→∞

E [τ12(n)] = 106 and

lim
n→∞

E [τ21(n)] =
1

106
. This scenario is artificial but highlights that worker scheduling is essen-

tial for cAPSI. More precisely, equation ( 7.2 ) shows that a newly added “fast” worker on one

coordinate will increase the associated mean AoI for all coordinates and will thus negatively

affect the whole cAPSI iteration. As mentioned before, the cAPSI model especially applies to

asynchronous learning methods where individual workers update parts of a large neural network

model independently. Based on AoI moment bounds like ( 7.2 ), we can then design resource allo-
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cation problems to optimize AoI properties affecting asynchronous methods and thus maximize

their convergence rate. This is exemplified in Section  7.5 .

7.2 System Models

We abstract the DC system model by stochastic processing times completed at time instances of

renewal processes as defined in Definition  0.0.10 . By assuming that renewal processes describe

the processing times, we can precisely characterize the discrete AoI affecting parameter iteration

due to asynchronous computing. Notably, the processing times may include the time to send a

job, the waiting time of the job in the worker queue, the computing time for the job, potential

additional waiting time due to preemption, the time to send the update back, the time to apply

the computed update, etc.

The following example illustrates how stochastic processing times naturally arise for sequential

tasks that compete with other jobs for service time on a DC system.

Example 7.2.1. Consider the setting illustrated in Figure  1.1 : A stream of jobs arrives at a DC

system, and a scheduler assigns jobs to the workers. Scheduled jobs are added to the workers’

queue and are processed according to a local scheduling policy, e.g., FCFS, generalized processor

sharing, etc. In addition, a highly parallelized iterative algorithm sequentially adds parameter

update jobs to the queues of the workers. In other words, the algorithm competes with the arriving

(competing) jobs for service time on the processors. In this sense, the iterative algorithm runs

concurrently with other jobs on the DC system. Due to the non-trivial effect of priorities and

scheduling, the parameter updates will experience stochastic processing times that can be modeled

as renewal processes or point processes

The next two subsections complete the description of the APSI and cAPSI implementations and

their associated AoI processes.

7.2.1 AoI for asynchronous parameter server iterations (APSI)

For APSI, we assume that the DC system is modeled as K parallel renewal process:

Assumption 7.2.1. For each worker k, the processing times for the completion of parameter

update jobs are given by an i.i.d. sequence of non-negative real numbers {Wk(n)} with µk :=

E [Wk(n)] <∞.

In the following, we use Wk to denote a random variable with Wk ∼ Wk(n), n ≥ 1. APSI

considers a single parameter iteration maintained by a server. The generic APSI is presented in

Algorithm  2 .
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Algorithm 2 Generic Asynchronous Parameter Server Iteration (APSI)

1: Initialize the parameter iteration x0 ∈ Rd.

2: for the entire duration do

3: for each worker do

4: Receive parameter update job.

5: Complete other jobs in the queue.

6: Compute the parameter update.

7: Send the update to the iteration.

8: for the parameter iteration do

9: Receive an update step from a worker.

10: Update the parameter iteration.

11: Sent a new job to the worker.

The index n is the counter of the parameter iteration. Using this index, we define AoI random

variables associated with each worker. For every worker k ∈ {1, . . . ,K}, let xmk(n) be the

parameter-iterate in the most recent update job assigned to worker k while the master iterate

is at step n. Then define the worker AoI sequence τk(n) := n −mk(n). In other words, τk(n)

tracks the AoI of the update to be computed by worker k. Consequently, τ(n) = τk(n) if

worker k contributes the update step to update the parameter iteration from xn to xn+1. The

key observation is that the AoI sequence τ(n) always takes values of the worker AoI sequences

τk(n), in other words Definition  5.1.2 applies. We now derive expressions for all τk(n).

Define for n ≥ 1 the sum of the first n processing times of worker k as

Sk(n) :=

n∑

i=1

Wk(i). (7.3)

Each Sk(n) is thus the n-th renewal time of the k-th worker. Further, define for each t ≥ 0 and

worker k the number of renewals until time t:

Nk(t) := max{n : Sk(n) ≤ t}. (7.4)

For any time t ≥ 0 and any worker k, the worker AoI in continuous time can now be stated as

τ̃k(t) :=
∑

j ̸=k

(Nj(t)−Nj(Sk(Nk(t))) , (7.5)

=
∑

j ̸=k

(Nj(t)−Nj(t−Bk(t))) , (7.6)

with Bk(t) := t − Sk(Nk(t)), i.e., Bk(t) is the backward recurrence time (Definition  0.0.12 ) at

time t. Next, consider for every n ≥ 0 the associated continuous time t(n), where the n-th

parameter update occurred. Formerly, this time can be defined as

t(n) := max
n1+...+nK=n

Sk(nk). (7.7)
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Notice that each sample path has a unique tuple (n1, . . . , nK), such as n1 + . . .+ nK = n. The

connection between the discrete-time worker AoI τk(n) and the continuous-time worker AoI τk(t)

is thus given by

τk(n) = τ̃k(t(n)−), (7.8)

where τ̃k(t(n)−) := lim
t↗t(n)

τ̃k(t) denotes the left limit. The left limit of τ̃k(t) makes precise that

τk(n) takes the value of the continuous time worker AoI sequence at the instance when the worker

completes its update. We can now state the AoI sequence of APSI as follows:

τ(n) =

K∑

k=1

1{t(n)=Sk(Nk(t(n)))}τ̃k(t(n)−). (7.9)

Recall that 1E denotes the indicator function of an event E ∈ F . The expression formalizes the

observation above that τ(n) always takes values of one of the worker AoI sequences τk(n). By

construction, ( 7.9 ) fits the definition of an AoI process presented in Chapter  5 .

7.2.2 AoI for coordinate-wise APSI

The further distributed iteration cAPSI considers D ∈ N coupled, parallel parameter iterations

maintained by one or many servers. Let Ki be the number of workers that compute update

for coordinate iteration i ∈ {1, . . . , D}. As for APSI, we assume renewal processes describe the

workers’ processing times.

Assumption 7.2.2. For the k-th worker on coordinate i ∈ {1, . . . , D}, the processing times

for the completion of parameter update jobs are given by an i.i.d. sequence of non-negative real

numbers {Wik(n)}n≥1 with µik := E [Wik(n)] <∞.

The generic cAPSI is presented in Algorithm  2 . The main difference in Algorithm  3 compared

to Algorithm  2 is the presence of multiple iterations updated asynchronously. Further, there

is an operation to collect the current parameters from the other iterations. This step could

alternatively be executed by the workers.

The random variables ( 7.3 )-( 7.9 ) defined in Section  7.2.1 can now be defined analogously for

cAPSI. For each pair (i, j), 1 ≤ i, j ≤ D, the AoI sequences is thus given by

τij(n) =

Kj∑

k=1

1{tj(n)=Sjk(Njk(tj(n)))}τ̃ijk(tj(n)−), (7.10)

Recall that τij(n) is the age of the iteration value from iteration i used to update the n-th step

of iteration j. In other words, for τij(n), n is always the iteration counter associated with the

iteration of the second lower index j. In (  7.10 ), the worker AoI sequences are

τ̃ijk(t) :=

Ki∑

l=1

(Nil(t)−Nil(t−Bjk(t)) . (7.11)

128



Further, tj(n) := max
n1+...+nKj

=n
Sjk(nk) is the point in continuous time, where the n-th update of

coordinate j occurs.

Algorithm 3 Generic coordinate-wise Asynchronous Parameter Server Iteration (cAPSI)
1: Initialize the parameter iterations.

2: for the entire duration do

3: for each worker do

4: Receive parameter update job.

5: Complete other jobs in the queue.

6: Compute the parameter update.

7: Send the update to the associated iteration.

8: for each parameter iteration do

9: Receive an update step from a worker.

10: Update the parameter iteration.

11: Collect current parameters from the other iterations.

12: Sent a new job to the worker.

7.3 Main Results

The following two subsections present the main results for the APSI AoI sequence ( 7.9 ) and the

cAPSI AoI sequences ( 7.10 ).

7.3.1 AoI weak limit analysis for APSI

We begin with the results for the APSI AoI sequence ( 7.9 ). The first lemma presents the asymp-

totic probability with which a worker performs an update. To state the lemma, define the events

Ek(n) :={n-th update by worker k} = {t(n) = Sk(Nk(t(n)))} (7.12)

Lemma 7.1. lim
n→∞

P (Ek(n)) =
1
µk∑
j

1
µj

=: ak.

The first main theorem derives the limiting AoI distribution for each worker AoI sequence τ̃k(t)

conditioned on the event that worker k applies an update to the parameter server at time t. These

time steps define the parameter server sequence AoI ( 7.9 ). Thus in combination with Lemma  7.1 ,

we obtain the limiting distribution for τ(n) as the mixture distribution of the limiting conditional

worker AoI sequences.
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Theorem 7.2. τ(n) converges weakly to a random variable τ with a mixture distribution of
∑

j ̸=k Ñj(Wk) with weights ak from Lemma  7.1 , where

Ñj(h) ∼ lim
t→∞

(Nj(t)−Nj(t− h)) (7.13)

is the stationary renewal process associated with Nj(t) (Definition  0.0.11 ).

Proof. The first step is to show that conditioned on the event sequence

{t(n) = Sk(Nk(t(n)))},

the worker AoI sequence τ̃k(t(n)) converges weakly to
∑

j ̸=k Ñj(Wk). This step uses the weak

convergence from Blackwell’s renewal theorem (see  A.2 ) and the independence of the worker

renewal processes. We provide the details in the chapter appendix.

To complete the proof, we combine the conditional week convergence with Lemma  7.1 . Let f be

a bounded, continuous real-valued function, then

E [f(τ(n))] =

K∑

k=1

E [f (τk(t(n))) | t(n) = Sk(Nk(t(n)))]P (t(n) = Sk(Nk(t(n))))

→
K∑

k=1

akE


f


∑

j ̸=k

Ñj(Wk)




 = E [f(τ)] , (7.14)

for a random variable τ as stated in the Theorem. The first equality follows by the law of total

expectation. The limit follows by the conditional weak convergence from the first part of the

theorem, Portmanteaus Theorem (see  A.2 ) and Lemma  7.1 . Finally, the last equality follows from

elementary properties of mixture densities; see, e.g., ( Frühwirth-Schnatter 2006 , Sec. 1.2.4).

Based on Theorem  7.2 , we derive several moment properties. Naturally, we require sufficient

uniform integrability to obtain moment convergence from weak convergence.

Lemma 7.3. Suppose that E
[
W qk

k

]
< ∞ for qk > 1. Then, τ(n)q is uniformly integrable with

q := mink qk.

We now derive the limiting mean AoI. As announced, the limiting mean AoI is proportional to

the number of workers and independent of the service time distributions. We utilize a well-known

theorem for renewal processes with stationary increments, which also holds more generally for

point processes with stationary increments.

Theorem 7.4 (( Serfozo 2009 , Prop. 75)). If N is stationary point process and E [N(1)] < ∞,

then E [N(t)] = tE [N(1)] , t ≥ 0.
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Corollary 7.5.

lim
n→∞

E [τ(n)] =
K∑

k=1

ak


∑

j ̸=k

µk
µj


 = K − 1.

Proof. By Theorem  7.2 , Lemma  7.3 and linearity of expectation, we have that

lim
n→∞

E [τ(n)] =
K∑

k=1

ak


∑

j ̸=k

E
[
Ñj(Wk)

]

 . (7.15)

Then apply Theorem  7.4 , the stationarity of Ñj and its independence of Wk to conclude that

lim
n→∞

E [τ(n)] =

K∑

k=1

ak


∑

j ̸=k

µk
µj


 (7.16)

=
1

∑D
k=1

1
µk

K∑

k=1


∑

j ̸=k

1

µj


 (7.17)

= K − 1 (7.18)

Next, we derive a general moment bound for which we first prove an auxiliary lemma that uses

the subadditivity of each Ñj in p-norm.

Lemma 7.6. Consider the p-norms

∥Ñj(Wk)∥p := E
[
Ñj(Wk)

p
] 1

p (7.19)

then,

∥Ñj(Wk)∥p ≤ ∥⌈Wk⌉∥p∥Ñj(1)∥p. (7.20)

where ⌈·⌉ denotes the ceiling function.

Proposition 7.7. Suppose that E
[
W qk

k

]
< ∞ for qk > 1. Then for all 1 < p ≤ mink qk,

lim
n→∞

E [τ(n)p] = E [τp] with

E [τp] ≤
K∑

k=1

akE [(Wk + 1)p]


∑

j ̸=k

∥Ñj(1)∥p




p

.

Proof. Let 1 < p ≤ mink qk, then by the continuous mapping theorem, ( Billingsley 2013 , Thm.

2.7), τ(n)p converges weakly to τp with τ from Theorem  7.2 . As τ(n)p is uniformly integrable,

Lemma  7.3 , ( Billingsley 2013 , Thm. 3.5) shows that lim
n→∞

E [τ(n)p] = E [τp]. Therefore, as τ has

mixture distribution,

lim
n→∞

E [τ(n)p] =

K∑

k=1

akE




∑

j ̸=k

Ñj(Wk)




p
 . (7.21)

The statement follows from ( 7.21 ), Lemma  7.6 , and Minkowski’s inequality.

131



7.3. MAIN RESULTS

Remark 7.3.1. For Proposition  7.7 , note that workers may have a different largest bounded

moment due to their heterogeneity. Recall that a bounded (non-central) moment implies the

boundedness of all smaller (non-central) moments in probability spaces.

Remark 7.3.2. The terms ∥Ñj(1)∥p in Proposition  7.7 are the Lp norms of the number of

renewals of the associated modified renewal process in the unit interval. For a given processing

time distribution (or an empirically determined distribution), these terms may be readily computed

numerically using

P
(
Ñj(t) > m

)
= Gj ∗ Fm∗

j (t) , (7.22)

with G as in Definition  0.0.11 ; see e.g. (  Taga 1963  ). Further, one can also establish bounds for

∥Ñj(1)∥p using Chernoff bounds or the Azuma–Hoeffding inequality.

Since we used Minkowski’s inequality and subadditivity, the moment bounds in Proposition  7.7 

are loose. Complementary to Proposition  7.7 , we derive a sharp upper bound for the second

moment. The core part of this bound is first to establish an exact expression for the limiting

second moment using conditional variances:

Definition 7.3.1. For random variables X and Y , the conditional variance of X given Y is

defined as Var (X | Y ) := E
[
(X − E [X | Y ])2 | Y

]
.

Proposition 7.8. Suppose that E
[
W 2

k

]
<∞ for all k, then

lim
n→∞

E
[
τ(n)2

]
=

K∑

k=1

ak

(∑

j ̸=k

E
[
V ar

(
Ñj(Wk) |Wk

)]
+ E

[
W 2

k

]

∑

j ̸=k

1

µj




2)

Proposition  7.8 leads to exact expressions for the asymptotic second moment provided that the

convolutions of the processing time distributions in ( 7.22 ) have tractable closed-forms. The

simplest example arises for Poisson point processes.

Corollary 7.9. Suppose the DC system is composed of workers with exponentially distributed

processing times with E [Wk(n)] = µk, then for all n ≥ 0,

E
[
τ(n)2

]
=

K∑

k=1

ak


∑

j ̸=k

µk
µj




1 + 2


∑

j ̸=k

µk
µj






= K − 1 + 2
K∑

k=1

ak


∑

j ̸=k

µk
µj




2

If the processing times are also identically distributed, then for all n ≥ 0,

E
[
τ(n)2

]
= (K − 1) (1 + 2(K − 1))
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Remark 7.3.3. Proposition  7.8 exemplifies that, different from the first moment, higher-order

moments of AoI due to APSI depend on the actual processing time distribution. Further, for

Poisson processing times, Corollary  7.9 shows that the second moment is quadratic in the number

of workers.

For applications, only empirically approximated processing time distributions will be available,

and common processing time distributions like the Pareto distribution do not have tractable

closed-form convolutions. The announced sharp general bound for the second moment circum-

vents these issues. The bound follows from Proposition  7.8 and an inequality for the variance of

stationary renewal processes.

Corollary 7.10.

lim
n→∞

E
[
τ(n)2

]
≤

K∑

k=1

ak

(∑

j ̸=k

1

4



E
[
W 2

j

]

µ2j




2

+
V ar(Wj)µk

µ3j
+ E

[
W 2

k

]

∑

j ̸=k

1

µj




2)

Proof. For a stationary renewal process N(t) with interarrival distribution W ,  Daryl J Daley 

( 1978 , Eq. 1.15) showed that

Var (N(t)) ≤ Var (W )

E [W ]3
t+

1

4

(
E
[
W 2
]

E [W ]2

)2

. (7.23)

The statement follows from Proposition  7.8 and the linearity in ( 7.23 ).

Corollary  7.10 is sharp as Proposition  7.8 is errorless, and Daley’s inequality holds with equality

for deterministic renewal processes. Further, we will verify in Section  7.4 that Corollary  7.10 

generally offers a small relative error for an arbitrary number of workers. Most notably, the rela-

tive error decreases as the number of workers K increases. This can be seen from Corollary  7.10 ;

the third term is quadratic in the number of workers and will thus dominate the other two terms

that are only linear in the number of workers.

Remark 7.3.4. The asymptotic results in Theorem  7.2 , Corollaries  7.5 and  7.10 and Proposi-

tion  7.7 hold for all n ≥ 0 when modified renewal processes (Definition  0.0.11 ) are considered

instead of ordinary renewal processes. In other words, when a DC system in equilibrium mode is

observed that has already run for a long time.

Remark 7.3.5. We conjecture that a generalization of Proposition  7.8 to all higher-order integer

moments is possible using higher-order cumulants and their relation to non-central moments.

Please observe that the essence of Proposition  7.8 is to combine that the limit of τ(n) has mixture

density and that the variance of conditionally independent random variables is the sum of their

conditional variances. Thus, the key point will be to apply a generalization of the law of total

variance for cumulants ( Brillinger 1969  ).
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7.3. MAIN RESULTS

7.3.2 AoI weak limit analysis for cAPSI

The analysis of Algorithm  3 works along the lines of the previous subsection with some additional

bookkeeping due to multiple parameter iterations. Recall that the key difference in the cAPSI

AoI sequences τij(n) ( 7.10 ) compared to the APSI AoI sequence ( 7.9 ) is that the number of

renewals, while one worker computes an update, are from the workers on the other coordinates

if i ̸= j. As introduced in Section  7.2.2 , a lower index jk denotes the k-th worker on the j-th

coordinate. Analogously to Lemma  7.1 it now follows that

lim
n→∞

P (Ejk(n)) =

1
µjk∑Kj

l=1
1
µjl

=: ajk. (7.24)

with

Ejk(n) := {n-th update of coordinate j by the k-th worker on coordinate j} (7.25)

Theorem 7.11. τij(n) converges weakly to a random variable τij with a mixture distribution of

•
∑

l ̸=k Ñil(Wjk) with weights ajk if i = j,

•
∑Ki

l=1 Ñil(Wjk) with weights ajk if i ̸= j,

with the stationary renewal process associated with Nil(t):

Ñil(h) ∼ lim
t→∞

(Nil(t)−Nil(t− h)) .

Proof. Analogous to Theorem  7.2 .

Corollary 7.12.

lim
n→∞

E [τij(n)] =

∑Ki
k=1

1
µik∑Kj

k=1
1

µjk

×




Kj i ̸= j,

Kj − 1 i = j,
(7.26)

Proof. The case i = j follows by Corollary  7.5 . Similarly for i ̸= j, we have by Theorem  7.11 

and Theorem  7.4 that

lim
n→∞

E [τij(n)] =

Kj∑

k=1

ajk

(
Ki∑

l=1

µjk
µil

)
(7.27)

=
1

∑Kj

k=1
1

µjk

Kj∑

k=1

(
Ki∑

l=1

1

µil

)
(7.28)

Analogous statements to Proposition  7.7 , Proposition  7.8 , and Corollary  7.9 can now also be

derived based on Theorem  7.11 .
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7.4 Numerical Verification

We now verify the core theoretical statements presented in this chapter by numerical simulations.

We begin verifying Corollaries  7.5 and  7.12 . We simulate Algorithm  3 with three coordinates

with K1 = 50, K2 = 35 and K3 = 20 workers. The processing times of workers in each

class are sampled from Pareto distributions with Pareto exponent α1 = 2.1, α2 = 2.8 and

α3 = 3.5. Figures  7.1 to  7.3 show the resulting cumulative averages of the AoI sequences τij(n).

The cumulative averages converge to the asymptotic means of the AoI sequences by the SLLN

for fundamental AoI processes Corollary  6.9  

1
 . In addition, the figures display the predicted

asymptotic mean from Corollary  7.12 . We see that the cumulative averages converge to their

predicted values, which verifies Corollaries  7.5 and  7.12 . Notice that in Figures  7.1 to  7.3 , n is

used as the index/counter for updating the corresponding coordinate. During the same runtime,

coordinate one was updated most frequently, while coordinate three was updated least frequently.

On the flip side, coordinate three has the lowest average AoI, while coordinate one has the largest

average AoI. This highlights the challenge and trade-off in scheduling heterogeneous workers to

update different coordinates of a model asynchronously. With Corollaries  7.5 and  7.12 , the

average AoI affecting jobs with asynchronous execution on parallel computing infrastructure can

now be predicted exactly. The only required information is the mean processing time for a

sequential job added to a specific worker, which will be readily available from infrastructure data

( Samsi et al. 2021 ).

Second, we evaluate the quality of Corollary  7.10 . Here, we consider APSI with homogenous

workers with exponentially distributed processing times. In other words, parameter updates are

completed at instances of Poisson point processes. Corollary  7.9 thus yields the exact second

moment, and we can calculate the exact relative error between the bound in Corollary  7.10 and

the actual value. We do this for varying Poisson rates λ and number of workers K, which leads

to Figure  7.4 . We can see that the relative error increases as λ decreases, in other words, when

the workers get “slower”. On the other hand, the relative error decreases as we increase the

number of workers. This is a very attractive property, which we also expect for the anticipated

generalization of Corollary  7.10 from higher-order cumulants.

1The SLLN extends from the fundamental AoI processes to AoI processes generated from point process. Here,

the required mixing rate follows from  Berbee  ( 1987 , Theorem 6.1) and a suitable approximation of the Pareto

processing times by a Zeta distribution; the discrete analog
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7.4. NUMERICAL VERIFICATION
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Figure 7.1: Cumulative average of the AoI sequences τi1(n), 1 ≤ i ≤ 3 and the associated asymptotic mean AoI

as predicted by Corollary  7.12 .
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Figure 7.2: Cumulative average of the AoI sequences τi2(n), 1 ≤ i ≤ 3 and the associated asymptotic mean AoI

as predicted by Corollary  7.12 .
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Figure 7.3: Cumulative average of the AoI sequences τi3(n), 1 ≤ i ≤ 3 and the associated asymptotic mean AoI

as predicted by Corollary  7.12 .
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Figure 7.4: Relative error of the second moment bound in Corollary  7.10 for homogeneous workers with expo-

nentially distributed processing times with rate λ
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7.5. APPLICATIONS

7.5 Applications

This section discusses conclusions from the results presented in the previous section. The main

applications are to predict the convergence rate of methods and allocate computing resources.

With this, we complete the answers on  (Q8) on connections between computing events in con-

tinuous time and the effect on discrete algorithms.

7.5.1 Gradient descend methods

The prime examples of APSI are variants of ASGD. Until lately, finite time analyses of ASGD

algorithms relied on the assumption of bounded AoI; see, e.g., the references in ( Mishchenko

et al. 2022 , Sec. 1.1). This assumption was drastically weakened with delay-adaptive ASGD

methods. These methods guarantee finite time convergence error estimates as a function of the

first and/or second AoI moment; see (  Cohen et al. 2021 ;  Anastasiia Koloskova, Stich, and Jaggi

2022 ;  Aviv et al. 2021 ).

The first inside for a distributed computing scenario, as considered herein, is that the convergence

rates in ( Mishchenko et al. 2022 , Thm 3.3) and ( Anastasiia Koloskova, Stich, and Jaggi 2022 ,

Cor. 9) are asymptotically identical up to a constant factor. The first result gives a convergence

rate in O
(
K
n + σ√

n

)
, where σ2 is a bound on the expected squared stochastic gradient error.

The second result gives a convergence rate in O
(
τn
n + σ√

n

)
with τn = 1

n

∑n
t=1 τ(n). It was

mentioned in ( Anastasiia Koloskova, Stich, and Jaggi 2022 ) that it was previously unclear how

to compare these two results. By Corollary  7.5 and the obtained SLLN for AoI sequences, the

rates are identical to a constant factor when workers complete ASGD updates after processing

times modeled as parallel renewal processes.

In ( Aviv et al. 2021 ), a powerful convergence rate estimate was proposed for a class of strongly

convex objectives on bounded domains. The authors in ( Anastasiia Koloskova, Stich, and Jaggi

2022 ) are, however, unclear about the result’s strength as the estimate is a function of the delay

second moment, which “can frequently degrade with the maximum delay”. We shed new light

on this. ( Aviv et al. 2021 , Thm. 4.3.) gives a converges rate estimate for the n-th step with a

multiplicative factor
√
σ2n + τn2, where σ2n is the average AoI variance until step n. If the workers’

processing times have finite second moments, then by Lemma  7.3 and the SLL, this quantity will

converge to lim
n→∞

√
E [τ(n)2]. It thus follows from the second moment bound characterization,

Proposition  7.8 and Corollary  7.10 , that
√
σ2n + τn2 is asymptotically equal to K up to constant

factor plus an additional term in the order of
√
K. For example, if all workers have identically

distributed processing time distributions, then
√
σ2n + τn2 ∈ Θ

(√
E [W 2]

E [W ]
(K − 1)

)
; (7.29)
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a similar factor can be obtained for heterogeneous workers. For given processing time data, the

convergence rate for the delay-adaptive method in ( Aviv et al. 2021 ) can therefore be assessed

precisely. However, for workers with large processing time variance, the rate can be weak and

will be inconclusive for fat-tailed processing time distributions with unbounded variance.

7.5.2 Resource allocation for parallel SGD iterations

We now use the AoI theory to design a DC system resource allocation problem based on the

convergence result from ( Aviv et al. 2021 ) for constraint convex optimization.

Suppose a DC system workload manager receives jobs in the form of datasets Di, pre-trained con-

tinuous feature extractors ϕi(x) ∈ Rdi and compact, convex constraint sets Θi for i ∈ {1, . . . , D}
and some D ∈ N. The task is to solve the D constraint quadratic optimization problems:

min
θ

E(x,y)∼Di

[
∥ϕi(x)T θi − y∥22

]
︸ ︷︷ ︸

:=Fi(θi)

,

s.t. θi ∈ Θi ⊂ Rdi ,

(7.30)

where for simplicity we assume y ∈ R. In other words, the task is to find constraint linear regres-

sion models. Such tasks frequently arise in cloud computing scenarios where users submit a large

dataset and a pre-trained model (e.g., neural network image feature extractor ( Hinterstoisser

et al. 2018  )) and are looking for the best linear fit for their data. Suppose further that the DC

system operator manages K heterogeneous workers. The goal is to schedule D asynchronous

SGD algorithms as sequential tasks to the workers, such that all iterations achieve O(ε) ac-

curacy in the least possible time. In other words, we want to minimize the average expected

O(ε)-makespan. For illustration, consider no online rescheduling and that D ≤ K.

Assumption 7.5.1. Each Ai := E
[
ϕi(x)ϕi(x)

T
]

is positive semi-definite matrix with matrix

norm Li := ∥Ai∥ <∞.

Define, Gi := 2 max
θi∈Θi

∥Aiθi − E [yϕi(x)]∥ and Hi = 2λmin(Ai), where λmin denotes the smallest.

Then Fi is Hi-strongly convex and Li-smooth with ∥∇θiFi(θi)∥ ≤ Gi. Further, assume a variance

bound for the sample gradient: E
[
∥∇θiFi(θi)−∇θifi(θi, x, y)∥2

]
≤ σ2 ∇θifi(θi, x, y). Note

that a finite subset of the data sets can be used to approximate these constants and check

Assumption  7.5.1 quickly.

The assumptions of ( Aviv et al. 2021  , Algorithm 4 and Thm. 4.3) are satisfied, and their

asynchronous adaptive SGD algorithm returns a candidate solution θ′i(n) after n steps with an

estimate

E
[
θ′i(n)− θ∗i

]
∈ O

(
G2

i + σ2i
Hin2

+
σ2i
Hin

+
L2
i (G

2
i + σ2i )

H3
i n

2

(
σ2n + τn

2
)
)
. (7.31)
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7.5. APPLICATIONS

It is left to assess σ2n + τn
2 based on the parallel renewal process DC system model.

DC system workload managers like SLURM provide databases that track and log the processing

time of specific job types on specific workers ( Samsi et al. 2021  ). It is, therefore, realistic that an

advanced/intelligent DC system manager can predict the rate at which certain jobs can be pro-

cessed on specific workers, given the currently experienced system workload and local scheduling

policies, e.g., generalized processor sharing. These rates can then be used as exponential approx-

imations for the processing times of SGD jobs. In other words, let 1
µik

be the predicted rate for

an update step of the i-th problem by worker k.

Based on Corollary  7.9 , the estimate for the convergence rate in ( 7.31 ) is therefore in

O
(
G2

i + σ2i
Hin2

+
σ2i
Hin

+
L2
i (G

2
i + σ2i )

H3
i n

2
E
[
τ2i
]

︸ ︷︷ ︸
:=gi(n,Ki)

)
, (7.32)

with

E
[
τ2i
]
= (|Ki| − 1) + 2

∑
k∈Ki

µik

(
∑

j∈Ki\{k}
1

µjk

)2

∑
k∈Ki

1
µik

,

where Ki is the set of workers allocated to SGD iteration i.

Now let ε > 0, then given ( 7.32 ) there exist a smallest ni, such that gi(ni,Ki) ≤ ε. Further,

let BD denote the set of all partitions of {1, . . . , D}. A combinatorial optimization problem to

schedule workers for the SGD iterations to solve all ( 7.30 ) and to minimize the average expected

O(ε)-makespan based on the given problem data and worker rate predictions can now be stated

as:

min
(K1,...,KD)∈BD

1

D

∑

i

min
ni

E [tKi(ni)] ,

subject to gi(ni,Ki) ≤ ε,
(7.33)

with the makespans tKi(ni) for workers in Ki as defined ( 7.7 ).

Problem ( 7.33 ) presents a general structure for DC resource allocation problems: A runtime-

related criterion (e.g., average makespan, maximum makespan, makespan variance, etc.) should

be minimized subject to the fact that the executed algorithms satisfy a particular quality criterion

(e.g., the expected distance to the optimal point), which depends on the AoI induced by allocated

asynchronous resources. In this way, various problems like (  7.33 ) can be formulated for non-

convex and federated learning scenarios, e.g., based on ( Anastasiia Koloskova, Stich, and Jaggi

2022 , Thm. 11).
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7.6 Discussion and related work

In this chapter, we derived the limiting distribution and moment bounds for AoI resulting from

asynchronous parameter server updates modeled as parallel renewal processes. Based on the

moment predictions, one can assess the performance of asynchronous algorithms and design

resource allocation problems for asynchronous algorithms running on DC systems, as illustrated

in the previous section. In the future, we intend to find practical approximations for such resource

allocation problems for general non-convex optimization algorithms. One challenge that arises

is the makespan expression itself, which is the maximum over random variables. For example, in

problem ( 7.33 ), the makespan is the maximum over independent Erlang random variables due

to the Poisson rate approximation. In this case, the expected makespan can be approximated by

numerical integration, and extreme value theory will be helpful to approximate the maximum

( Haan and Ferreira 2006 ;  Gasull, López-Salcedo, and Utzet 2015 ).

As presented herein, DC systems modeled as parallel renewal processes have previously not been

considered as a model for asynchronous parallel computing. In that sense, the established results

are fundamental and new to the literature. In the queuing theory literature, multi-server queuing

and computing have a long history since the seminal work of Erlang on M/D/K queues; see

 Kingman ( 2009 ) fresh look at Erlang’s work. Since then, M/G/K queues with FCFC scheduling

have been used as representative models for DC systems ( Khazaei, J. Misic, and V. B. Misic

2011 ). The literature on M/G/K queues with FCFC scheduling offers good approximations for

the mean waiting time and thus for the mean sojourn time ( Gupta and Osogami 2011 ). However,

the information delay that we call AoI is a metric that follows from the asynchronous computing

of processors in a DC system. The AoI is thus a non-trivial function of the sojourn time, the

job scheduler, and various other factors. The foundational contribution is to study AoI as a

function of the processing times associated with jobs sequentially added to a DC system. This

allows for a precise study of the AoI distribution. With this result, models for DC system queues,

( Khazaei, J. Misic, and V. B. Misic 2011 ;  Bandi, Trichakis, and Vayanos 2019 ), can be used to

predict processing time properties for sequential tasks. The processing time properties can then

be coupled with the results herein to characterize AoI properties, which in turn can then be used

as design criteria for resource scheduling in DC systems.

Finally, recall that we derived the results of this chapter for the parallel renewal process, de-

scribed by i.i.d. sequences of processing times. This was useful for deriving statistical properties

for AoI from the core results of this section. Note, that the core theorems, Theorem  7.2 and

Theorem  7.11 , can generally hold for parallel point process. For Theorem  7.2 , the only condition

for this conclusion is that conditioned on the event sequence {t(n) = Sk(Nk(t(n)))}, the worker

AoI sequence τ̃k(t(n)) converges weakly to some limit. This will hold for parallel point processes

with asymptotically stationary ( Cox and Isham 1980 ).
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7.7 Proofs for Chapter 7

Proof of Lemma  7.1 . We present a proof for K = 2 workers. For Ek(n), we have that

P (E1(n)) = P (A2(t(n− 1))−A1(t(n− 1)) > 0) , (7.34)

which is the probability that the forward recurrence time (Definition  0.0.12 ) of worker 1 at the

n− 1-th update is less than the forward recurrence time of worker 2.

Next, write the distribution of A2(t(n− 1))−A1(t(n− 1)) using the convolution formula for the

difference of independent random variables.

P (E1(n) | E1(n− 1)) =

∫ ∞

0

∫ y

0
fW1(x)fA2(t(n−1))(y)dxdy (7.35)

=

∫ ∞

0
P (W1 ≤ y) fA2(t(n−1))(y)dxdy (7.36)

→ 1

µ2

∫ ∞

0
P (W1 ≤ y)P (W2 > y) dxdy (7.37)

= 1− 1

µ2
E [min(W1,W2)] , (7.38)

with µmin12
:= E [min(W1,W2)]. In the same way, we can show that

lim
n→∞

P (E1(n) | E2(n− 1)) =
µmin12

µ1
. (7.39)

Using the law of total probability, it follows that

lim
n→∞

P (E1(n)) =
µmin12

µ1
lim
n→∞

P (E2(n)) +

(
1− µmin12

µ2

)
lim
n→∞

P (E1(n)) . (7.40)

Equivalently,

0 =
1

µ1
lim
n→∞

P (E2(n))−
1

µ2
lim
n→∞

P (E1(n)) , (7.41)

as µmin12 > 0. The statement now follows by solving the system of equations ( 7.41 ) and

lim
n→∞

P (E1(n)) + lim
n→∞

P (E2(n)) = 1. (7.42)

The cases K > 2 follow the same principles, leading to K equations, respectively.

Proof. details for Theorem  7.2 . Let f be a bounded continuous function. Recall the definition of

the worker AoI in continuous time ( 7.5 ) and observe that the event {t(n) = Sk(Nk(t(n))} (that

the n-th update is made by worker k), implies that the backward recurrence time Bk(t(n)) =

Wk(Nk(t(n))). It follows that

E [f (τ̃k(t(n)−)) | t(n) = Sk(Nk(t(n))] = E


f


∑

j ̸=k

Kj,k,n


 | t(n) = Sk(Nk(t(n))


 (7.43)
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with

Kj,k,n := Nj(t(n))−Nj

(
t(n)−Wk(Nk(t(n)))

)
(7.44)

Now write the aforementioned event as the following disjoint union

{t(n) = Sk(Nk(t(n))} =
⊔

m≥0

{t(n) = Sk(m)}, (7.45)

For each event on the right-hand side of ( 7.45 ), we now have for every n ≥ 0 that

E


f


∑

j ̸=k

Kj,k,n


 | t(n) = Sk(m)


 = E


f


∑

j ̸=k

Nj(Sk(m))−Nj(Sk(m− 1))






→ E


f


∑

j ̸=k

Ñj(Wk)




 , as m→∞.

(7.46)

The convergence follows from Blackwell’s renewal theorem using that the renewal processes are

independent, the law of total expectation, and a truncation of the resulting summation as f is

bounded.

Finally, we conclude from ( 7.43 ) and ( 7.45 ) that

E [f (τ̃k(t(n)−)) | t(n) = Sk(Nk(t(n))] =
∑

m≥0

an,mE


f


∑

j ̸=k

Kj,k,n


 | t(n) = Sk(m)


 , (7.47)

with coefficients

an,m :=
P (t(n) = Sk(m))

P (t(n) = Sk(Nk(t(n)))
> 0

and
∑

m an,m = 1. Further, as t(n)→∞ a.s., as Sk(m) <∞ a.s., and since the denominator of

the coefficients converges by Lemma  7.1 , we see that an,m → 0 for every m ∈ N as n→∞. The

theorem statement, consequently, follows from ( 7.46 ) and ( 7.47 ).

Proof of Lemma  7.3 . By Theorem  7.2 , the independence of the parallel renewal processes and

the definition of τ(n), it is enough to show that (Nj(t) − Nj(t −Wk))
q is uniformly integrable

for E
[
W q

k

]
<∞. To see this, we can use the distributional subadditivity of each Nj(t) + 1, see

( Iksanov 2016 , Eq. (3)), which shoes that

P (Nj(t)− (Nj(t− h) > x) ≤ P (Nj(h) + 1 > x) . (7.48)

Hence,

P (Nj(t)− (Nj(t−Wj) > x) ≤
∑

h

P (Nj(h) + 1 > x)P (Wk = h) (7.49)

and it follows that Nj(t)−(Nj(t−Wk) is uniformly stochastically dominated by random variable

with bounded q-th moment as E
[
W q

k

]
<∞. Using this uniform stochastic domination property,

the required uniform integrability follows.
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Proof of Lemma  7.6 . Inspired by the proof of Theorem  7.4 , we show that ∥Ñj(w)∥p is a subad-

ditive function:

∥Ñj(u+ v)∥p = ∥Ñj(u) + Ñj(u+ v)− Ñj(u)∥p
≤ ∥Ñj(u)∥p + ∥Ñj(u+ v)− Ñj(u)∥p
= ∥Ñj(u)∥p + ∥Ñj(v)∥p (7.50)

The inequality follows by Minkowski’s inequality and the second equality by stationarity. Hence,

∥Ñj(nw)∥p ≤ n∥Ñj(w)∥p for n ∈ N. Elementary properties of subaddtive functions, see e.g.

( Kuczma 2009 ), thus yield that ∥Ñj(w)∥p ≤ n∥Ñj(w/n)∥p. As, ∥Ñj(w)∥p is increasing it follows

that

∥Ñj(w)∥p ≤ ⌈w⌉∥Ñj(w/⌈w⌉)∥p ≤ ⌈w⌉∥Ñj(1)∥p, (7.51)

where ⌈·⌉ denotes the ceiling function. Using the law of total probability and the independence

of Ñj and Wk it follows that

∥Ñj(Wk)∥p ≤ ∥Wk + 1∥p∥Ñj(1)∥p. (7.52)

Proof of Proposition  7.8 . Starting from (  7.21 ), using the well-known identity for the variance of

random variables, we obtain

lim
n→∞

E
[
τ(n)2

]
=

K∑

k=1

ak

(
Var


∑

j ̸=k

Ñj(Wk)


+ E


∑

j ̸=k

Ñj(Wk)



2)

(7.53)

Then, the law of total variance (see  A.2 ) shows that

Var


∑

j ̸=k

Ñj(Wk)


 = E


Var


∑

j ̸=k

Ñj(Wk) |Wk




+ Var


E


∑

j ̸=k

Ñj(Wk) |Wk




 . (7.54)

As Ñj(Wk) are conditionally independent given Wk it follows that

Var


∑

j ̸=k

Ñj(Wk)


 =

∑

j ̸=k

E
[
Var

(
Ñj(Wk) |Wk

)]
+ Var (Wk)

∑

j ̸=k

(
1

µj

)2

, (7.55)

For the second term, we again used the stationary of Ñj , the independence of Ñj and Wk, as

well as the identity Var (cX) = c2 = Var (X) for a random variable X. The proposition now

follows by combining ( 7.53 ) and ( 7.55 ).
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Chapter 8

AoI in wireless networks

In this last chapter on AoI, we study conditions to verify the existence of AoI dominating random

variables in (mobile) wireless networks. Based on these conditions, stability and convergence

guarantees for the distributed SA and optimization algorithms, as studied in Chapters  2 to  4 ,

become available when implemented over wireless networks. The core examples of such scenarios

are mobile computing systems consisting of robots and drones equipped with sensor units. In

these scenarios, iterative decentralized algorithms are attractive as they facilitate online learning

adapted to the uncertainty in a sensor data stream. Further, information exchanged via a

wireless network facilitates cooperation among physically distributed agents. Wireless networks

are popular because they are easy to set up, cheap, and flexible. However, they are not reliable.

As discussed before, uncertain communication may lead to large AoI, which in turn may affect

algorithm performance. To predict algorithm performance, it is thus important to assess AoI

based on representative wireless network communication. A representative wireless network

should include the correlation between communications that are close to each other in some

domain (e.g., time, frequency, or space) and the use of Medium Access Control (MAC) protocols

( Tse and Viswanath 2005 ).

This chapter discusses a novel network model based on the signal-to-interference-plus-noise ratio

(SINR) associated with agent-to-agent communication that encompasses many wireless network

configurations. Moreover, we present a novel MAC protocol that accounts for “local” AoI-aware

MAC decisions. By local, we mean that the decisions are made at the agent level, depending on

observable AoI. The SINR model encompasses deterministic path-loss models, uncertain compo-

nents like shadowing, fading, interference by other agents, and additional noise and interference

from external users. These components may be time-varying and influence each other. We allow

these components to vary with an underlying local network-state process. Such processes can,

for example, be used to model agent mobility. Suppose we assume that the local network-state

processes are geometrically ergodic Markov processes. In that case, in conjunction with the MAC
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protocol, the network guarantees that the SINR for agent-to-agent communication is such that

the various dependencies decay over time. Thus adding to the answers on  (Q7) presented in

Chapter  6 . This result was presented in ( Redder, Ramaswamy, and Karl 2022e ). With the de-

rived SINR dependency decay, we then bound the asymptotic growth of AoI variables associated

with the communication based on the results in Chapter  6 on AoI with dependent communication

and the growth bounds developed in Chapter  5 . The asymptotic growth of the AoI variables

then implies the stability and convergence of distributed stochastic gradient descent schemes

implemented over wireless networks using the results presented in Chapter  3 , which provides

another dimension to answer of  (Q4) .

To the author’s knowledge, this is the first time that freshness of data is directly derived using

a practical wireless communication model within the distributed optimization setting. Previous

analyses assume unrealistic models, e.g., i.i.d. communication, ( Anastasia Koloskova et al. 2020 ;

 Ramaswamy, Redder, and Daniel E. Quevedo 2021b ). We extend the theory of distributed opti-

mization to allow for practical wireless communication models. Through this analysis, we believe

that we have created a useful framework for practitioners and theoreticians.

8.1 Network model

Denote a set of agents by V := {1, . . . , D}. As before, we use “i, j” to index the agents, and

we are interested in the communication necessary for a distributed gradient-based solution to an

optimization or learning problem as in Chapters  2 to  4 . Hence, consider a scenario wherein agents

are geographically distributed and do not know the other agents’ current optimization variables.

In particular, at time n, agent i does not know the optimization variables xjn for j ̸= i. Instead,

the agents use a wireless network to exchange updates to their local variables. Therefore, as in

( 4.8 ) in Chapter  4 , only delayed versions of the other agent variables are available, i.e., agent i

has access to the delayed version

Xi
n :=

(
x1n−τi1(n)

, . . . , xin, . . . , x
D
n−τiD(n)

)
(8.1)

of the true current global variable xn at any time step n. Here, we refer to Xi
n as the local

belief vector of agent i at time n. The local belief vector then gets updated whenever an agent

accesses the wireless network and successfully transmits information about the optimization to

other agents. How the agents access the network is described by a MAC protocol.

Generally speaking, MAC protocols are necessary for wireless communication systems to avoid

unnecessary data losses via controlled medium access. We use a time-slotted broadcast commu-

nication strategy to exchange the belief vectors Xi
n ( 8.1 ). At every step, each agent i uses a MAC

protocol to decide whether it broadcasts Xi
n in time slot n. This decision is represented by pi,

which equals 1 when the decision is to send and 0 otherwise. The MAC protocol to be presented
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herein, in conjunction with a suitable network, should facilitate the flow of xin (local variable)

from agent i to every other agent. It does so by facilitating the flow of the belief vectors Xi
n

containing the local variables xin, which, with suitable assumptions, will ensure that eventually,

all agents i receive updates of xjn from all agents j.

Suitable assumptions for a network model should consider that wireless transmissions by agents

occurring close in some domain will affect each other. In other words, a representative network

model for multi-agent wireless communication should take into account the interference due to

the network usage of other agents. Physically, an agent can receive data from another agent using

a wireless channel if the received SINR of the observed signal is above a certain threshold.  Iyer,

Rosenberg, and Karnik ( 2009 ) argued that the SINR is thus a realistic and representative model

for the success of wireless communication in the presence of interference. Below, we present a

SINR model that can be used to model various practical wireless communication phenomena.

8.1.1 SINR-based network model

We associate with each agent i a stationary (network) state process {Ψi
n}n≥0. These processes

represent the local network environment at each agent. For each agent i, we have

Ψi
n ∈ Y i, ∀n ≥ 0, (8.2)

with state space Y i. For example, Ψi
n may represent the physical position of agent i in R2 at

time n. The following is the channel gain associated with the wireless channel from node i to j

during time slot n:

gijn := Gij
n (Ψ

i
n,Ψ

j
n), (8.3)

where Gij
n : Y i ×Yj → R≥0 are i.i.d. sequences of Borel measurable functions (Borel functions),

which include continuous and indicator functions of the state processes. Further, we define local

noise processes

νin := Gi
n(Ψ

i
n), (8.4)

where again Gi
n : Y i → R≥0 are i.i.d. sequences of Borel functions. We then use an additive

model for the wireless channel from agent i to j during time slot n

SINRij
n :=

ping
ij
n∑

k ̸=i p
k
ng

kj
n + νjn

, (8.5)

with transmission schedule pin ∈ {0, 1}. Transmission scheduling is via an AoI-aware MAC

protocol, discussed in Section  8.1.3 .

The SINR model, ( 8.5 ), generalizes the traditional SINR model ( Tse and Viswanath 2005 ). It

includes popular models such as the following:
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Example 8.1.1. Let Y i = R2. Define

SINRij
n :=

pinh
ij
n ∥Ψi

n −Ψj
n∥−γ

∑
k ̸=i p

k
nh

kj
n ∥Ψk

n −Ψj
n∥−γ + ν

, (8.6)

with path-loss coefficient γ, where each hijn is an i.i.d. fading process and ν is constant background

noise.

It also includes more general models with:

1) General Borel measurable deterministic path-loss.

2) Slow (shadow) fading and fast fading.

3) Additional external noise or interference.

Notably, all these components can depend on each other via the local state processes Ψi
n and

any additional i.i.d. process. Below, we illustrate that ( 8.5 ) can model state-dependent Rayleigh

fading.

Example 8.1.2. Suppose we would like to model state-dependent Rayleigh fading hijn for SINRij
n

in Example  8.1.1 . To do so, we can generate independent standard normally distributed samples

un, vn and transform them linearly using a measurable function g of the network states:

ũn := ung(Ψ
i
n,Ψ

i
n), ṽn := vng(Ψ

i
n,Ψ

i
n) (8.7)

Then, hijn :=
√

(ũn)2 + (ṽn)2 will result in state-dependent Rayleigh fading, where the scale pa-

rameter of the Rayleigh distribution density depends on the network states.

8.1.2 Network Assumptions

We assume a constant SINR threshold β such that, whenever agent i decides to send some data

(pin = 1) and

SINRij
n ≥ β, (8.8)

the data from node i is successfully received at agent j during time slot n. The threshold depends

on each node pair’s modulation, coding, and path characteristics. Extending the analysis to node-

pair-specific thresholds is simple, so assuming only one SINR threshold does not lose generality.

The SINR will most importantly depend on the agents’ physical position, the transmitter’s

transmission power, and the transmission power of other currently transmitting agents. The

physical position will determine the channel gain between the receiver and all transmitting agents,

e.g., due to multi-path propagation, shadowing, etc. For a simpler presentation, we will not

consider additional communication latencies, e.g., latency due to coding, etc. Taking those into

account would be possible without too many technical difficulties.
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We use Aij
n to represent the event sequence corresponding to ( 8.8 ), i.e. we define

Aij
n := {SINRij

n ≥ β} (8.9)

Communication errors are due to interference when SINRij
n < β. The threshold β is derived from

the Shannon bound via the available bandwidth B and the data rate R required to exchange

xn during a time slot, i.e., β > 2R/B − 1 (plus some additional safety margins, if desired).

The extension to node-pair-specific margins is, again, a mere technicality. Hence, if Aij
n occurs,

agent i can successfully transmit its entire local belief vector Xi
n (comprising the most recent

information from all agents available at agent i, including their local time stamps) from ( 8.1 )

to agent j during time slot n. Theoretically, arbitrary bit rates will merely require a lot of

bookkeeping and will not change the results qualitatively.

We need a connectivity assumption enabling that eventually, all agents i receive updates of xjn
from all agents j. We assume the following with regard to the wireless network for the analysis:

Assumption 8.1.1 (A1). There is a strongly connected directed graph (V,E), i.e., a graph with

a path between each ordered pair of vertices of the graph, such that for all (i, j) ∈ E, we have

P
(
gijn·m > βνjn·m

)
> 0, for all n ≥ 0 for some m ∈ N. (8.10)

Assumption 8.1.2 (A2). The network state process Ψ := (Ψ1, . . . ,ΨD) forms a geometrically

ergodic Markov chain (Definition  8.1.1 ).

Definition 8.1.1 (( S. P. Meyn and Tweedie 2012 , Ch. 15)). A stationary Markov chain with

transition kernel P is said to be Geometrically Ergodic if Pn convergences in total variation at

a geometric rate to a unique stationary distribution.

8.1.3 AoI-aware medium access control protocols

Assumption  8.1.1 and Assumption  8.1.2 enable the design of broadcast schedules {pin}n≥0 to

guarantee that belief vectors can flow between every pair of agents. A simple schedule that

suffices is a centralized round-robin schedule. Since a single agent transmits in a given time slot,

Assumption  8.1.1 would guarantee that the transmission is successful with non-zero probability

over a finite horizon. The recurrence of the network state process due to Assumption  8.1.2 then

guarantees that this event occurs infinitely often.

We are interested in a more sophisticated schedule that takes decisions locally at the agent level

based on the observed AoI processes. In other words, we would like to design an AoI-aware MAC

protocol (ideally fully distributed) to facilitate fast convergence of the optimization algorithm at

hand – in this case, a DSGD iteration as in Chapter  3 . While this seems obvious from a practical

perspective, for a theoretical analysis, it adds complications. It turns out that it is particularly
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Algorithm 4 MAC protocol at agent i ∈ V
1: Fix M1 ≥M2 ∈ N and a small δ ∈ (0, 1).

2: for the entire duration do

3: for M1 steps do

4: Sample pin from the AoI-aware policy Πi
n

5: for one time step do

6: With probability δ pick pin = 0.

7: Elif τ̃ji(n) > M1 for any j ∈ N (i), let pin = 1 .

8: for M2 steps do

9: Pick pin independent or deterministic.

difficult to analyze transmission schedules that are arbitrary functions of the AoI processes τij(n).

This is because the scheduling decisions {pin}n≥0 will depend recursively on previous scheduling

decisions, which makes it difficult to analyze the SINR-driven event processes (  8.9 ).

To overcome this, we present a MAC protocol (Algorithm  4 ) that periodically switches between an

AoI-aware and an AoI-unaware component. The AoI-aware component itself does not distinguish

the AoI when its value is “large”. In this sense, the AoI-aware component is only quasi-cognizant.

This slight compromise helps with the analysis while remaining practical.

Let M1 represent the number of time steps used by the AoI-aware schedule, and let M2 represent

the number of steps used by the AoI-unaware schedule. The MAC protocol framework is stated

as Algorithm  4 . The algorithm uses the AoI associated with direct communication for agent

pairs (i, j) ∈ E with E from Assumption  8.1.1 . For this, we assume that a sender receives an

acknowledgment after successful transmission, i.e., if pin = 1, then agent i receives feedback if

Aij
n occurred for any j ̸= i. For agent i ∈ V define N (i) the set of neighbors in (V,E). Then for

any j ∈ N (i), define τ̃ji(n) as the AoI associated with direct communication from i to j.

Let us now look at the AoI-aware component of Algorithm  4 . For each agent i ∈ V , define local

AoI averages:

qi(n) :=
1

(D − 1)

∑

j ̸=i

min{τij(n),M2} − 1 (8.11)

ri(n) :=
1

|N (i)|
∑

j∈N (i)

min{τ̃ji(n),M2} − 1 (8.12)

Using a softmax function, we now define local time-varying stochastic AoI-aware policies Πi
n by

defining its density:

Πi
n(1) :=

1

1 + e
1

ri(n)
− 1

qi(n)

(8.13)

Observe that if pin ∼ Πi
n, then P

(
pin = 1 | qi(n) = 0

)
= 1, i.e., if agent i has the best possible
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status updates from all other agents, it will broadcast its own belief vector. By construction, the

policy has the following properties:

• Agent i has a higher chance of transmitting at time n if it previously had less success in

transmitting its local believe vector (hence, τ̃ji(n) would be “large”).

• Agent i has a lower chance of transmitting if it’s own AoI processes τij(n) take larger

values. Hence, agent i would be more likely to remain silent if it had not received updates

from other agents, as this may have been caused by its interference at other agents.

The time-varying AoI-aware policies Πi
n are the essential component for the analysis. The key

property is the following: For m > M2 the AoI-aware decisions do not distinguish events of the

form {τij(n) > m} from the event {τij(n) > M2}. Specifically, the AoI-aware schedules are Borel

functions of the indicator functions 1{τij(n)>m} for m = 0, . . . ,M2. To see that Πi
n satisfies this

property, observe that min{τij(n),M2} can be represented as:

M2−1∑

k=1

k1{τij(n)>k−1}1{τij(n)≤k} +M21{τij(n)>M2} (8.14)

In Lemma  8.3 , we will use that Πi
n is a Borel function 1{τij(n)>m} for m = 0, . . . ,M2 to show

that the dependency of events Aij
n and Aij

m decays as |n−m| → ∞.

Finally, we look at the backup scheduling step, which completes the description of Algorithm  4 .

For a pair of agents (i, j) ∈ E, if agent j has not received an update from agent i during the

AoI-aware phase, then this step ensures that with some probability, agent i will broadcast its

belief vector. The backup step is a technical component that simplifies the proof of Lemma  8.2 

in the next section. For the presented AoI-aware policies Πi
n, a version of Lemma  8.2 can already

be shown without it. This leads to the main result of this chapter – Theorem  8.1 .

8.2 AoI moment bounds under Markov dynamics and AoI aware

scheduling

Theorem 8.1. Suppose every agent i ∈ V uses Algorithm  4 to select its broadcast decisions pin.

Suppose the network can be represented by the SINR model ( 8.5 ), such that Assumption  8.1.1 and

Assumption  8.1.2 hold. Then for any p > there exists a random variable τ , such that τij(n) ≤st τ

for all n, with E [τp] <∞.

To simplify the proof of Theorem  8.1 , we consider without loss of generality Assumption  8.1.1 with

m = 1 for all i, j. We need the following lemmas to prove Theorem  8.1 . Define M :=M1+M2+1

with M1 and M2 as in Algorithm  4 .
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8.2. AOI MOMENT BOUNDS UNDER MARKOV DYNAMICS AND AOI AWARE

SCHEDULING

Lemma 8.2. For every (i, j) ∈ E, there is for some ε > 0:

P

(
n+M⋃

k=n

Ak
ij

)
≥ ε, ∀n ≥ 0. (8.15)

8.2.1 Strong mixing preservation property

We now step into the theory of dependency decay. For this, recall the background on α-mixing

presented in Section  6.2 . By Assumption  8.1.2 , the network state process Ψ converges to its

steady state distribution at a geometric rate. It follows from ( Bradley 2005 , Thm. 3.7) that Ψ is

α-mixing with exponential decay. The next lemma shows that this mixing property is preserved

under the MAC protocol Algorithm  4 .

Lemma 8.3. Aij
n is α-mixing with exponential decay.

8.2.2 Moment bound

We are now ready to prove Theorem  8.1 , which is practically a corollary to Theorem  6.1 developed

in Chapter  6 .

Fix a pair of agents (i, j) ∈ E, with E from Assumption  8.1.1 . By Lemma  8.2 , Theorem  6.1 

applies with Aij
n in place of An and κ =M , where by Lemma  8.3 , α(Aij , n) decays exponentially.

It thus follows from Lemma Theorem  6.1 and the exponential decay that for every p > 0, there

is a dominating random variable for each pair of agents that can communicate directly described

by the directed graph (V,E) from Assumption  8.1.1 . In addition, it is simple to see that the

existence of a dominating random variable with some moment bound is a transitive property of

multi-hop networks. It thus follows from the strong connectivity of (V,E) and a simple induction

argument that for every p > 0 there is a single dominating random variable τ such that τ i,j ≤st τ

for every (i, j) ∈ V 2, and E [τp] < ∞. Thus yielding the statement of Theorem  8.1 . The core

property for this strong result is the geometric ergodicity assumption, which yields exponentially

fast mixing.

Discussion on Assumption  8.1.1 and Assumption  8.1.2 

Since assumptions Assumption  8.1.1 and Assumption  8.1.2 are key to the analysis, we discuss

their practicality here. Assumption  8.1.1 requires that the wireless network guarantees that

at a given agent pair can communicate with non-zero probability, when all other agents are

silent. This assumption is weak and easy to ensure since it only requires that the communication

is successful in the absence of interference. It is harder for the network to ensure successful

communication in the presence of interference.
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Given the SINR model ( 8.5 ), Assumption Assumption  8.1.1 is necessary to show Theorem  8.1 If

Assumption  8.1.1 does not hold, then there is a pair of agents (i, j) ∈ V 2 such that for every path

(i1, . . . , iK), K ≥ 2, with i1 = i and ik = j, there is pair (ik, ik+1), such that ( 8.10 ) does not hold,

i.e. P
(
g
ikik+1
n > βν

ik+1
n

)
= 0 for all n ≥ 0. Consequently, agent j will never receive information

from agent i. This can be deduced using the stationarity of the network state process Ψ.

While necessary, Assumption  8.1.1 alone is not sufficient to guarantee  8.1 . A trivial example

where Assumption  8.1.1 is true would be to flip a fair coin once, at time 0. If heads, then all

agents successfully communicate, all the time, with probability one. If tails, then there is no com-

munication at all. Thus P (τij(n) = n ∀n ≥ 1) = 1
2 . In this example, lim

|n−m|→∞
|P
(
Aij

n ∩Aij
m

)
−

P
(
Aij

n

)
P
(
Aij

m

)
| ≠ 0. Hence, the corresponding Ψ is not α-mixing. This necessitates Assump-

tion  8.1.2 .

Assumption Assumption  8.1.2 requires that the network state process Ψ in ( 8.5 ) is a geomet-

rically ergodic Markov chain. It follows from ( Bradley 2005 , Thm. 3.7) that Ψ is α-mixing.

In conjunction with Algorithm  4 , it was therefore possible to show that 1
Aij

n
is indeed also α-

mixing (Lemma  8.3 ). Geometrically ergodic Markov chains are an important process class for

wireless communication. For example, finite-state Markov chains have been used to approximate

wireless fading channels: ( G. Bianchi 2000  ;  Lin et al. 2015 ). Notably, irreducible, aperiodic fi-

nite state Markov chains converge to their stationary distribution at a geometric rate. However,

Assumption  8.1.2 also accommodates infinite state space models that can represent mobile agents.

Example 8.2.1. Suppose each local state process Ψi
n ∈ Rm, m ≥ 1, has linear dynamics Ψi

n+1 =

AiΨi
n+w

i
n, with i.i.d. Gaussian noise wi

n for a stable matrix Ai ∈ Rm×m, then Assumption  8.1.2 

holds.

8.3 Discussion and related work

Within the literature of distributed optimization, the following two types of network models are

popular. First, networks with guaranteed periodic communication, e.g., ( Scutari and Ying Sun

2019 ) and second, networks where the success of agent-to-agent communication is independent

across agent pairs and over time, e.g., ( Anastasia Koloskova et al. 2020 ). Neither of these models

includes several practical components of wireless communication networks, e.g., the correlation

between communications that are close to each other in some domain (e.g., time, frequency, or

space) or the use of Medium Access Control (MAC) protocols.

The essence of the geometrically ergodic Markov chain assumption, Assumption  8.1.2 , is to

represent such correlations in a network process with a sufficient dependency decay, described by

α-mixing. One can, therefore, simply replace the geometrically ergodic Markov chain model with

an arbitrary α-mixing process. It is easy to see that the typical assumptions from the distributed
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optimization literature (guaranteed periodic communication and communication described by

independent events) directly imply α-mixing.

This chapter has discussed that a geometrically ergodic Markov chain can guarantee the required

mixing properties to apply the results of Chapter  6 . As an alternative to the Markov model in

Assumption  8.1.2 , we suggest verifying the required mixing condition by modeling the network

state process as a function of a Poisson Point Process (PPP). PPP’s are popular in stochastic

geometry ( Haenggi 2012 ) and it was recently shown by ( Ramesan and Baccelli 2021 ) that under

a mobility model for a PPP, the PPP is α-mixing. A future direction is to formulate a suitable

mobility model for a PPP to guarantee α-mixing with a required decay rate. Again, another

important direction is to verify α-mixing directly from data.  Khaleghi and Lugosi ( 2023 ) also

presented a hypothesis test to decide (using a single sample path of a stochastic process) whether

the weighted sum of α-mixing coefficients of a process is finite. With this, we can verify α-

mixing with a required decay rate for a network process. We envision an initialization phase for

distributed interactions executed over a wireless network, where agents transmit pilot signals,

and each agent locally observes its network state. Using the results from  Khaleghi and Lugosi 

( 2023 ), each agent can decide with high confidence whether its network state process is α-mixing

with a specific rate after enough samples have been obtained. In combination with conditions

for Assumption  8.1.1 , the agents can then collaboratively decide whether they can solve an

optimization problem in a distributed manner in a given communication environment and how

to adapt their optimization stepsize.

This work thus connects a network model that is representative of practical wireless communica-

tion with an abstract optimization framework for a rich class of distributed stochastic optimiza-

tion problems. The strength of the result is that it enables a class of AoI-aware MAC protocols

for transmission scheduling. In the future, we seek to optimize the convergence behavior of

distributed algorithms at runtime by adaptive network MAC protocols.

8.4 Proofs of Chapter 8

Lemma 8.4. ( Bradley 2005 , Thm. 5.2) Suppose X and Y are independent α-mixing processes.

Define a process Z by Zn := Fn(Xn, Yn), where Fn are Borel functions. Then, Z is α-mixing

with α(Z, n) ≤ α(X,n) + α(Y, n).

Proof of Lemma  8.2 . Fix (i, j) ∈ E. Consider a backup scheduling step at some time step l, i.e.,

a time-step after the AoI-aware schedule in Algorithm  4 . Recall the AoI variables associated

with direct communication τ̃ji as defined in Section  8.1.3 . If τ̃ji(l) > M1, then with probability

(1 − δ) agent i picks pil = 1, while all other agents stay silent with probability δ. Hence, by
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Assumption  8.1.1 and the law of total probability, we have

P
(
Aij

l | τji(l) > M1

)
≥ (1− δ)δD−1P

(
gijl > βνjl

)
> 0.

On the other hand,

P




l−1⋃

k=l−M1

Ak
ij | τ̃ji(l) ≤M1


 = 1.

The lemma now follows by the law of total probability and the stationarity of gijn and νjn from

Assumption  8.1.2 .

Proof of Lemma  8.3 . We have 1
Aij

n
= 1(β,∞)(SINRij

n ) from ( 8.8 ). By Lemma  8.4 , it is thus

enough to show that SINRij
n is α-mixing with exponential decay. Consider now the AoI-aware

schedule in Algorithm  4 . The AoI-aware schedule can be stated as

pin = 1[0,∞)

(
Πi

n − uin
)
,

with uin i.i.d. uniform random variables on [0, 1]. The representation (  8.14 ) shows that pin is a

Borel function of uin and the indicator functions 1{τij(n)>m} with m ≤M2.

The events up to {τij(n) > M2} are generated by the events Akl
n for all k, l ∈ V with m ∈

[n −M2, n − 1]. It therefore follows that all 1{τij(n)>m} with m ≤ M2 are Borel functions of

SINRm
kl for m ∈ [n−M2, n− 1]. It thus follows from the SINR model ( 8.5 ) that the schedule pin

is a Borel function of Ψm and pim for m ∈ [n−M2, n− 1], and additional i.i.d. processes (uin and

time-dependent i.i.d. Borel functions in the SINR model ( 8.5 )).

Consider a time step n = sM for some s ∈ N, i.e., the first step after the AoI-unaware schedule.

From the last paragraph, it follows that pin depends on pim for m ∈ [n − M2, n − 1], these

are the AoI-unaware scheduling steps, which are either independent or deterministic and hence

especially α-mixing with exponential decay. Moving forward in time, we can now see that ∀n with

sM ≤ n < (s+1)M we have that pin is a Borel function of Ψm for m ∈ [sM −M2, n−1] and the

decisions pim in the AoI-unaware subintervals ofm ∈ [sM−M2, n]. Notably, (ΨsM−M2 , . . . ,Ψn−1)

is also α-mixing with exponential decay, with s ∈ N such that sM ≤ n < (s+ 1)M . Then, each

SINRij
n is a Borel function of independent α-mixing processes with exponential decay and i.i.d.

processes. Lemma  8.4 therefore shows that SINRij
n is α-mixing with exponential decay.
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Chapter 9

Numerical Experiments

This chapter presents experiments supporting the theoretical findings on multi-agent deep rein-

forcement learning in Chapter  4 . We study the empirical convergence behavior of the proposed

3DPG algorithm in two environments and evaluate its robustness to AoI. These experiments

were conducted as part of ( Redder, Ramaswamy, and Karl 2022a ;  Redder, Ramaswamy, and

Karl 2022d ). As with the previous numerical examples, code and simulation data are available

on  https://github.com/aredder .

The 3DPG AC-iteration was presented in ( 4.9 ); Algorithm  5 presents the complete algorithm,

including communication. Recall that each agent has a local policy parameterized by ϕi and a

local critic parameterized by θi. For the experiments, we also use target networks for the local

policies and critics and an Ornstein–Uhlenbeck processes N i for exploration; both are described

in (  Lillicrap et al. 2016 ).

9.1 Multi-agent policy gradient for particle control

As the first experiment, we compare 3DPG, as presented in Chapter  4 , and MADDPG, as

presented in ( Lowe et al. 2017 ), for a centralized training setting with global information access.

Recall that 3DPG implements policy gradient updates based on the local policies of other agents,

whereas MADDPG was proposed with policy gradient updates based on the local actions of other

agents; from the analysis in Section  4.4.3 we expect the use of local policies to be superior at the

cost of potential higher training variance.

In the second experiment, we evaluate 3DPG with communication, where local states, actions,

and policies must be communicated. Recall that both 3DPG and MADDPG apply to Markov

game settings as discussed in Chapter  4 . But, 3DPG considers that all information is inherently

local and thus has to be communicated. In this way, 3DPG is applicable to true online learning.

https://github.com/aredder


9.1. MULTI-AGENT POLICY GRADIENT FOR PARTICLE CONTROL

Algorithm 5 3DPG Algorithm at agent i

1: Randomly initialize critic and actor weights θi0, ϕi0.

2: Randomly initialize actor weights ϕj0 for all j ̸= i.

3: for the entire duration do

4: Receive current local state sin.

5: Execute local action ain = µi(sin;ϕ
i
n) +N i

n.

6: Observe local rewar rin+1 and local state sin+1.

7: Allocate local data (sin, a
i
n, s

i
n+1) and current local policy ϕni for transmission to other

agents.

8: Run communication protocols.

9: Store completely received global tuples tim in the local replay memory Ri
n.

10: Sample M transitions from the local replay memory Ri
n.

11: Apply iteration ( 4.9 ) using the sampled transitions.

9.1.1 Environment and simulation details

For the experiments, we consider a simplified version of the simple spread multi-particle coordi-

nation problem in ( Lowe et al. 2017 ): Agents and landmarks are represented by point masses in

[−1, 1]2. Moreover, agents can move around by choosing a displacement from the set [−0.1, 0.1]2.
Agents can observe their relative distance to the landmarks and other agents. The actual simple

spread environment considers that agents and landmarks take room in space, and the agents are

penalized for collisions. The described simplified setting serves the purpose of comparing the

convergence properties of 3DPG and MADDPG.

Both MADDPG and 3DPG use the following algorithm configurations, chosen based on a rough

hyperparameter sweep for both algorithms.

• Discount factor α = 0.9; replay memory size 20000; minibatch size 128; two-layer GELU

neural networks for each local policy with 64 and 8 neurons and tanh output layer; two-layer

GELU neural networks for each local critic with 1024 and 64 neurons.

• Critic and actor stepsizes are chosen as

α(n) =
e−6

n
1000 + 1

and β(n) =
e−6

n
1000 + 1

+
e−6

( n
1000 + 1)2

respectively.

• The critic and policy networks are updated with the ADAM optimizer ( Kingma and Ba

2015 ) using Tensorflow 2.
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Experiment 1

In the first experiment, we validate the findings on using local policies vs. local actions in

policy gradient updates in 3DPG and MADDPG, respectively. For the comparison, we add

an additional coordination layer to the introduced version of the simple spread multi-particle

environment (SMPE). In the SSMPE, particles (the agents) move in the plane to cover a number

of landmarks, and the landmarks are episodically reset to new positions. At every time step, the

agents get a global reward

exp (−average closest distance to the landmarks) ∈ (0, 1). (9.1)

We did not observe any significant difference between 3DPG and MADDPG in this particular

scenario. This is because in SSMPE, the agents’ actions do not require any form of coordination,

and the global reward at every time step is only a function of the global state.

We now add a “coordination layer” task to the environment. We consider two agents that move

around in the plane to minimize their average distance to three landmarks as before. However,

the agents only get rewarded if they orientate in the same direction. Specifically, the previous

global reward gets weighted by

exp (−angle between the orientation of the two agents). (9.2)

Consequently, the two agents only get the previous reward ( 9.1 ) when they orientate in the same

direction. The optimal policy is, therefore, to spread in an optimal way to cover the 3 landmarks,

while this position should be approached from a desired angle “agreed between the agents” to

maximize the reward. The new reward structure, therefore, requires that the agents make more

coordinated decisions. Due to the random actions taken during training, it will be difficult for

the MADDPG agents to agree on a policy since the optimal path for an agent to the optimal

location now depends significantly more on the path taken by the other agent.

We trained both 3DPG and MADDPG with global data access and global access to all agents’

policies, i.e., for the centralized training setting without communication and AoI. We trained the

agents for 10 seeds over 1500 epochs, where each epoch had a horizon of 25 steps. Figure  9.1 shows

the resulting average reward per epoch. The simulations support the theoretical predictions from

Chapter  4 : For problems that require coordinated actions, 3DPG obtains better policies faster than

MADDPG at the cost of higher training variance. The simulations thus reinforce the following

practical suggestion: Using other agents’ policies during training instead of agents’ actions yields

better policy improvement when a multi-agent decision-making problem requires coordinated

actions. As most problems of practical interest will require coordination, we believe that using

other agents’ policies (potentially old versions) should be generally preferred for multi-agent

actor-critic learning.
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Figure 9.1: Comparison of 3DPG and MADDPG with centralized training.

Experiment 2

In the second experiment, we show that 3DPG with communication is robust to large AoI and

that 3DPG may even benefit from using older policies of other agents similar to how target

networks improve training in single-agent RL ( Lillicrap et al. 2016 ).

We again consider the two agents and three landmarks problem from Experiment 1. In addition,

we consider that each of the two agents uses an independent communication channel for com-

munication. Specifically, each agent has a fixed communication budget of 15000 bits/timeslot to

communicate with the other agent whenever their channel access is successful. We emulate lossy

communication by varying the access probability

λ ∈ {e−1, e−2, e−3, e−4} ≈ {0.3679, 0.1353, 0.0498, 0.0183}

of a simple Bernoulli access channel ( Tse and Viswanath 2005 ). Further, we use the same

hyper-parameter configurations as in Experiment 1. For the assumed communication budget,

this implies that the agents require at least 3 successive successful communication events to

exchange a parameter vector ϕin, while alternative at least 33 local tuples (sin, a
i
n, s

i
n+1) could

be exchanged during the same time. We let each agent cycle between communicating a policy

update and communicating 33 local tuples. In that sense, we give “equal weight” to policy and

data communication. As a Bernoulli channel is strongly mixing with an arbitrary fast rate,

it follows from Theorem  6.3 that a dominating random variable with arbitrary moment bound

exists for the AoI and DataAoI random variables affecting 3DPG and Assumption  4.2.1 holds.
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For experiment 2, we trained the agents for 10 seeds over 2000 epochs, where each epoch had

again a horizon of 25 steps. We display the average reward per epoch in Figure  9.2 . We see

that 3DPG with even λ = e−4 can learn decent policies compared to centralized 3DPG, albeit

at a slower convergence rate. Notably, the λ = e−4 run achieves this with AoIs frequently over

500 time steps (20 epochs) as shown in Figure  9.3 . In addition, 3DPG with λ = e−4 has only

access to 1/3 of the global data tuples that 3DPG uses with centralized training. This shows that

3DPG is highly robust to AoI and low data availability. Finally, an interesting observation is that

3DPG training runs with λ = e−1, e−2 or e−3 consistently performed similar or even better than

3DPG with centralized training. For λ = e−1, we consistently observed better initial training

progress, which indicates that 3DPG may benefit from using older policies of other agents in a

similar manner as target networks stabilize training.
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Figure 9.2: Average reward per epoch of 3DPG with variance over seeds.

9.2 Multi-agent learning for cyber-physical systems

The last experiment is based on ( Redder, Ramaswamy, and Karl 2022d ). The paper studied

a cyber-physical two-agent flow control problem and applied 3DPG with communication over

a wireless network. Flow control is an important problem in chemical industries, data center

cooling, and water treatment plants. In the two-agent example, each agent must control one

flow control valve. Specifically, we consider the water filter in Figure  9.4 , which will be modeled

as a continuous time system. In Figure  9.4 , agent 1 has to control the inflow to the water filter

from a main water line using valve a1. Agent 2 has to control the outflow of the water filter
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Figure 9.3: Comparison of 3DPG with communication; λ is the communication success probability.

using valve a2. We consider that time is slotted into small intervals of constant length ∆. The

discrete time steps are indexed by n ∈ N. As in the previous chapter, we refer to a time slot n

as the time interval from time step n− 1 to n. For this subsection, we will use upper indices n

to denote the discrete time index.

We consider that the valves can be positioned continuously from close to open for both agents.

Therefore, at every time step n the agents have to pick actions an1 , an2 ∈ [0, 1] for the associated

time slot n. For every time slot n, we denote the sampled flow in the main line by sn1 ∈ S1 ⊂ R≥0

and the sampled water level in the water filter by sn2 ∈ S2 ⊂ R≥0. The problem is complicated

since the agents have no information about the dynamics of the main water line and the water

filter. Agent 1 can only observe state sn1 , but not state sn2 , and vise versa for agent 2. Additionally,

the agents have no information about the policy of the other agent, i.e., the agents initially have

no information about the strategy of the other agent to control its valve. However, we assume that

the agents can use a wireless network to exchange information, enabling the use of Algorithm  5 .

Given sn1 and an1 for some time step n, we assume a continuous function f(sn1 , an1 ) that determines

the inflow to the filter during time slot n. Equivalently, we can assume that agent 1 can measure

the inflow to the filter. Other than that, we make no additional assumptions. The agents have

no information about the filter’s dynamics or flow in the main water line.
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Figure 9.4: Illustration of the two-agent water filter flow control problem.

Partial Observability Issues

Algorithm  5 formulates a decentralized multi-agent solution based on locally observed states. The

training procedure, however, can use delayed global information that has been communicated

over a network. The solution, therefore, falls under the paradigm of decentralized training with

communicated central data but decentralized execution. Depending on how the local state spaces

are defined, agents may or may not be able to find good solutions for a problem. In general, the

local policies should only use local states, such that inference is decentralized.

Now, consider the flow control problem. If agent 1 can only observe the state s1 and never state

s2, it can only learn to take conservative actions since it has no information about the current

amount of water in the water filter. We expect better solutions if both agents can observe the

whole state space s = (s1, s2). A system theoretic solution to this would now be to use a suitable

local estimator and replace sn2 by an estimate ŝn2 at agent 1 to execute a local policy that is a

function of the global state space. Alternatively, one could directly replace sn2 with its delayed

counterpart and use a recurrent architecture µ1 and µ2 ( Hausknecht and Stone 2015 ). Since

the objective with this example is to illustrate the effect of lossy communication on the learning

algorithm and not the effect on the inference quality, we assume here for illustration that both

agents can observe s1 and s2. Below, we formulate the MDP for the two-agent flow control

problem, where both agents observe s = (s1, s2). Moreover, the agents, therefore, only need to

communicate their local actions an1 and an2 , as well as their policy parametrizations ϕn1 and ϕn2 .
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Figure 9.5: Plot of the second component, r2(s2), of the reward function.

An MDP for Two-Agent Flow Control

We consider the following high-level objective for the two-agent flow control problem:

(i) Maximize the through flow of the filter.

(ii) Avoid under- and overflows, i.e. 0 < sn2 < 1 for all n ≥ 0.

(iii) Try to keep a reserve of sn2 ≈ 1/2 as good as possible for all n ≥ 0.

The state space for both agents is defined as S1,2 := S1 × S2. The action spaces are defined as

A1 := [0, 1] and A2 := [0, 1], respectively. To achieve the formulated objective, we consider a

continuous reward function r(s1, s2, a1) = f(s1, a1)c+ r2(s2), with

r2(s2) = exp

(
(2s2 − 1)2

(s2 − 1)s2

)
, (9.3)

and some constant c > 0 that may be used to weight the importance of (i) over (ii) and (iii).

Recall that f is the function that determines the inflow to the water filter. The inflow can be

measured by agent 1 and will be communicated to agent 2 alongside s1 and a1, which is only

required for training and not for inference. Figure  9.5 shows the second component of the reward

function. We choose this function to satisfy points (ii) and (iii) of the objective. Clearly, various

other shapes for the reward function are possible ( Eschmann 2021 ).

Network Model

We merely consider two Bernoulli processes to emulate a delaying communication network as

in the previous experiment. We assume that P (An
i ) = λ at every time step n for both agent 1

and 2. We then choose λ ∈ {1, 1/2, 1/4, 1/8, 1/16, 1/32}. Practically, this corresponds to a suitable

choice of a power schedule for given i.i.d. interference-noise processes. Generalizations to the

more representative network model of the previous chapter are directly available but do not add
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additional value here to the present simulation. However, to make the communication model

more realistic, we assume a narrowband wireless channel with B = 10Mhz and a typical choice

β = 7 for the SINR threshold. Then, we can obtain an effective bitrate of 19Mbit/s. Now,

suppose we code every real number using 64 bits. Then, observe that each policy contains 4544

real-valued parameters, and since we merely require the exchange of the actions ai, we only need

to exchange one real number to obtain a sample (si, ai). Therefore, we require at least 16 time

slots of successful communication to transmit a single policy update, while in each time slot we

can transmit more than 300 samples. As in the previous experiments, we give roughly equal

bandwidth usage to the parameter- and sample transmissions. Specifically, each agent transmits

a single update to its parameter vector followed by the transmission of up to 300 · 16 samples or

until its backlog is empty.

9.2.1 Simulation

We can now present the numerical evaluation of Algorithm  5 for the water flow control MDP of

Section  9.2 . The goal is to illustrate the convergence of 3DPG to control policies with meaningful

physical behavior while the two agents communicate over a lossy communication network.

System model and algorithm details

For the simulation of the water filter system, we consider the following differential equation

A
ds2(t)

dt
−Ks1(t)a1(t) + L(ρgs2(t))a2(t) = 0 (9.4)

as a model for the water filter. Here A is the area of the water filter, ρ is the density of water,

g is the acceleration of mass, and K and L are constants. The factor ρgs2(t) is the so-called

differential pressure at time t ( Rossiter 2021 ). The second term is a bilinear model for the inflow

of the system. The third term is a bilinear model for the outflow of the filter. The constant

L includes the filter’s resistance and the outflow pipe’s resistance. This is only an approximate

model for “small" changes of the flow. However, it serves the purpose of the evaluation. For the

simulation, we solve ( 9.4 ) numerically for time slots n of length ∆ = 1s. For the constants in

( 9.4 ), we use K = 0.1, which corresponds to a maximum inflow of 10% of the main flow, and

L = 10−5, which models the high resistance of the water filter. Finally, we use c = 0.1 to give

high weight to balancing the water filter around s2 = 1/2.

For Algorithm 3DPG, we use the following set of parameters: Both agents approximate a local

Q-function by a two-layer neural network with 256 and 128 GELUs as activations. Two-layer

neural networks are then used to represent both agent policies, where each layer has 64 GELUs

and a tanh output layer. We use discount factor γ = 0.95 and a training batch size of 128.
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Training and evaluation

We train the agents over 500 epochs with length T = 100 and use the following learning stepsize

schedules

α(n) =
e−8

n
1000 + 1

, β(n) =
e−8

n
1000 + 1

+
e−7 − e−8

(
n

1000 + 1
)2 . (9.5)

As before these, learning rates satisfy the stepsize assumptions proposed for 3DPG in Chapter  4 .
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Figure 9.6: Average reward after each training epoch.

Figure  9.6 shows the average reward at the end of each training epoch evaluated without ex-

ploration noise on a new trajectory of length T = 1000 for every λ. Observe that for all λ

the algorithm converges to a policy of similar average reward compared Algorithm  5 without

communication and global information access. Moreover, as λ decreases, the convergence rate

also decreases. As already observed in the previous experiments, for small values of λ the effect

of lossy communication is minor.

After training, we evaluated the final policies on a new trajectory. For illustration, we show the

results for λ = 1/16. In Figure  9.7 , we show the inflow to the water filter, the water level in

the filter, and the reward per step. In the water level plot, we see that the agents learned to

quickly balance the water level around the desired height sn2 = 1/2. The inflow is upper bounded

by the maximal possible inflow for an1 = 1. The reward per step is upper bounded by 1 plus the

aforementioned upper bound. However, the maximal possible inflow and, therefore, the maximal

possible reward per step may not be obtainable since opening the inflow valve fully may increase

the desired water level height even when the outflow valve is fully opened. We can observe this

166



0.0

0.1

Inflow per step
fn

sn
1K1

0.0

0.5

1.0
Water level per step

sn
2

0 200 400 600 800 1000
n

1.0

1.1

Reward per step
rn

rn
ub
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between time steps n = 50 to n = 400. To see this, consider the associated actions during the

trajectory in Figure  9.8 . We see that when the inflow is to large in [50, 400], agent 1 has to reduce

the inflow to the system, while agent 2 has to fully open the outflow. In this time interval, the

inflow part of the reward becomes significant, and therefore, the agents learned to maximize the

inflow.

We can also observe that for the second half of the trajectory, the algorithm could potentially

improve with longer training. Here, the agents mainly balance the water level at the desired

height since the inflow is relatively small and since we chose the weighting factor c = 0.1.

However, opening the inflow valve more can still lead to a slightly larger reward per step. In

summary, we have seen that agents can learn non-trivial policies for an unknown environment

in the presence of lossy communication.
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Chapter 10

Conclusions and Future Directions

This thesis investigated stability and convergence conditions for distributed asynchronous stochas-

tic approximation and deep reinforcement learning algorithms. The proposed verifiable condi-

tions guarantee that errors due to information delays vanish asymptotically when appropriate

stepsizes are chosen. Further, the results enable accelerated learning and optimization on highly

heterogeneous (volunteer) computing infrastructure ( Anderson 2020 ;  Tirmazi et al. 2020 ). For

example, based on the results in Chapters  2 ,  3 and  7 , we can design resource scheduling problems

to optimize the assignment of heterogeneous workers to subspaces of optimization and learning

problems. Beyond computing scenarios, the results enable truly online multi-agent learning

based on communicated information in resource-constrained scenarios that only allow minimal

communication between learning systems. Here, the combination of Chapters  4 and  8 enables

verifiable conditions for mobile agents that communicate over a resource-constrained wireless

network prone to potentially heavy-tailed interference ( Clavier et al. 2020 ). We will now discuss

future directions.

In Chapter  2 , we generalized the BMT to distributed SA algorithms.  Ramaswamy and Shalabh

Bhatnagar ( 2017 ) generalized the original BMT to set-valued SA algorithms, which have many

applications to approximation algorithms with errors or biases. Currently, no stability and

convergence theory exists for set-valued SA algorithms with information delays. A potential

Lipschitz continuity condition for a set-valued map H : Rn → {subsets of Rm} may read as

follows: There exists some L > 0, such that

H(x) ⊂ H(y) +BL∥x−y∥(0). (10.1)

Based on a Lipschitz condition of this form, we expect to develop a BMT for set-valued SA with

delays. In addition, it is also left to combine the distributed BMT with asynchronous SA ( V. S.

Borkar 1998 ). In other words, one can combine the methods used to prove the distributed BMT

with the asynchronous version from  Shalabh Bhatnagar  ( 2011 ) or the more recent version from

 Yu, Wan, and R. S. Sutton ( 2023 ).
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Beyond distributed optimization, we applied the BMT techniques to heavy-ball momentum SA.

It will be interesting whether we can generally apply the tools to SA algorithms that approxi-

mate second-order dynamical systems, i.e., SA algorithms that asymptotically track solutions to

second-order ODEs of the form
d2x

dt2
+A(t)

dx

dt
= B(t)h(x) (10.2)

for some drift/vector field h(x) and a some matrix-valued processes A(t), B(t). A stability

theory for SAs that track ODEs with dynamics ( 10.2 ) will be useful to study newly designed

ODE-inspired algorithms (  S. Meyn 2022 ).

In Chapter  3 , we proved a simple asymptotic, almost sure convergence rate estimate for the

DASGD algorithm. However, the obtained convergence rate estimate is only available for p >

1, where p is some AoI moment bound. Some additional analysis is needed to complete the

picture. Furthermore, it will be interesting to study DASGD in combination with adaptive

stepsize schemes recently proposed for ASGD with AoI in the order of the number of workers

( Mishchenko et al. 2022 ;  Anastasiia Koloskova, Stich, and Jaggi 2022 ).

In Chapter  4 , we studied multi-agent actor-critic reinforcement learning prone to aged commu-

nicated samples used during training. the results showed that under weak assumptions, the

accumulated experience of the multi-agent system still guarantees that the state-Markov process

converges to a stationary distribution. An interesting question is whether we can design data

scheduling methods for multi-agent systems to enhance the convergence rate of the state-Markov

process. In other words, how to design an online method that schedules a limited amount of

communication resources to agents of the MAS to enhance the convergence rate of the global

state-Markov process. Finally, it will be interesting to study the deep MARL framework studied

in Chapter  4 with clipped gradient dynamics ( Ramaswamy, Shalabh Bhatnagar, and Saxena

2023 ) as a two-timescale algorithm with set-valued dynamics.

In Chapter  6 , we derived moment bounds for AoI processes based on strongly mixing event

processes that describe when new information arrives from a source at a monitor. The natural

question is whether one can generalize these results to AoI and event processes in continuous

time ( Brandes, Curato, and Stelzer 2023 ). Strong mixing naturally generalizes to continuous

time, but the splitting techniques used in Chapter  6 require changes and some new ideas for the

continuous-time setting.

In Chapter  7 , we showed how parallel point and renewal processes naturally describe asyn-

chronous computing scenarios. Furthermore, we derived closed-form expressions for the limiting

AoI. A key assumption for this statement is the independence of the point processes that describe

the processing of individual systems. But if dependent jobs are scheduled to the systems, this

assumption does not generally hold. It will be a challenge to extend the results to dependent

parallel point processes. However, techniques from  De la Pena and Giné ( 2012 ) on decoupling
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and conditional independent sequence can be a starting point. With this, we can incorporate

information on the dependence of jobs arriving at a computing infrastructure into the framework.

Finally, in Chapter  8 , we proposed a class of AoI-dependent network scheduling protocols that

preserve the strong mixing of the underlying event process that defines an AoI process driven

by Markovian dynamics. The limitations of the protocol class are that one needs to implement

short time windows with an AoI-independent policy. We believe that one can completely remove

the limitations at the cost of a slower mixing rate of the resulting event process with network

scheduling.
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Chapter A

Appendix

A.1 Analysis and dynamical systems

Theorem (Discrete Gronwall Inequality ( V. Borkar 2022 , Appendix B)). Let xn, an non-

negative (respectively positive) sequences and C,L > 0 scalars such that for all n, xn+1 ≤
C + L

∑n
m=0 amxm, then xn+1 ≤ C exp(L

∑n
m=0 am).

Theorem (General Arzelà–Ascoli Theorem ( Munkres 2000 , Theorem 47.1)). Let fn be a sequence

of functions fn : Rd → Rk. If the collection {fn} is pointwise bounded and equicontinuous, then

the sequence fn has a subsequence that converges to a continuous function in the topology of

compact convergence.

Theorem (Rademachers Theorem ( Evans 2018 , Sec. 3.1)). Let f : Rn → Rm be a Lipschitz-

Continuous function, then f is differentiable almost everywhere, i.e. the points x ∈ Rn where f

is non-differentiable form a set of Lebesque measure zero.

Theorem (Gradient Theorem for Lipschitz-Continuous Functions). Let f : Rn → R be a

Lipschitz-continuous function and γ : [0, 1]→ Rn a continuously differentiable path, then

∫ 1

0
∇xf(γ(t))

d

dt
γ(t)dx = f(γ(1))− f(γ(0)).

Proof. Since [0, 1] is compact, f ◦ γ is Lipschitz-Continuous, hence absolutely continuous as

well as continuously differentiable almost everywhere on [0, 1]. The absolute continuity and

the fundamental theorem of calculus yield that
∫ 1
0

d
dtf(γ(t))dt = f(γ(1)) − f(γ(0)). Using the

multivariate chain rule and that f ◦ γ is continuously differentiable almost everywhere, the

statement follows.



A.2. PROBABILITY THEORY

A.2 Probability theory

Theorem (Law of total probability). Let (Ω,F ,P) be probability space. Let A0, A1, A2, . . . be

elements of F that form a countably infinite partition of Ω. Then for every E ∈ F ,

P (E) =
∑

k

P (E ∩Ak) . (A.1)

Theorem. For a non-negative random variable X, its expected value can be expressed as

E [X] =

∫ ∞

0
P (X > x) dx. (A.2)

Proposition A.1 (Law of total variance, ( Ross 2014  , Prop. 3.1)).

Var (X) = E [Var (X | Y )] + Var (E [X | Y ]) .

Theorem (First Borel-Cantelli Lemma ( K. L. Chung 2001 , Theorem 4.2.1)). Let (Ω,F ,P) be

probability space. Let A0, A1, . . . be elements of F , such that
∑∞

n=0 P (Ai) <∞, then P (Ak i.o.) =

P (lim supAk) = 0.

Theorem (Portmanteau Theorem ( Billingsley 2013 , Section 2)). X(n)⇒ X if and only if

lim
n→∞

E [f(X(n))] = E [f(X)] (A.3)

for all bounded, continuous real functions f .

Theorem (Egorovs Theorem ( Rudin 1987 , p. 73)). Let Xn, X be random variables. Then

Xn → X almost surely if and only if Xn → X almost uniformly.

Theorem (Martingale Convergence Theorem ( V. Borkar 2022 , Appendix C)). Let {(Xn,Fn)}
be a martingale, if E

[
∥Xn∥2

]
< ∞ for all n ≥ 0, then Xn converges almost surely on the set

∑
n≥0 E

[
∥Xn+1 −Xn∥2 | Fn

]
<∞.

Theorem (Portmanteau Theorem ( Billingsley 2013 , Section 2)). X(n)⇒ X if and only if

lim
n→∞

E [f(X(n))] = E [f(X)] (A.4)

for all bounded, continuous real functions f .

Theorem (Blackwell’s Theorem, ( Serfozo 2009 , Sec. 2.18 and references therein)). Let N(t) be

a renewal process with µ := E [W (n)] <∞. Then, for every fixed t′ ≥ 0,

N(t)−N(t− t′)⇒ Ñ(t′), (A.5)

as t→∞, where Ñ(t′) is the (stationary) modified renewal process associated with N(t). Further,

E [N(t)]− E
[
N(t− t′)

]
→ t′

µ
. (A.6)

Usually, only ( A.6 ) is referred to as Blackwell’s Renewal Theorem, but it is an integral part of its

proof to establish the weak convergence of N(t)−N(t− t′) to its associated modified stationary

renewal process, e.g., using coupling techniques.
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