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Abstract

At the advent of 2024, artificial intelligence (AI)-driven language and robotic systems are revo-
lutionizing various domains and are expected to push the boundaries of human capabilities. The
successes are based on advanced algorithms, but most importantly, on a growing consumption
of computing resources. Training models with limited resources is therefore as important for
reducing training time as it is for pushing the size of large Al models to new limits. This requires
understanding the stability and convergence of learning algorithms, the most efficient use of par-
allel computing infrastructure, and how to adapt to errors caused by asynchronous, lightweight
implementations. To advance our understanding of these problems, the present thesis studies
distributed stochastic approximation (SA) algorithms. Such algorithms are defined by a cou-
pled system of iterations that are adapted asynchronously by updates computed by a potentially
large number of parallel computing resources. The framework jointly covers both asynchronous
training of Al models as well as multi-agent learning in physically decentralized systems. The
property that classifies these two scenarios as theoretically equivalent is that a set of variables is
updated as a function of old versions of itself. In other words, the resulting iterations are affected

by Age-of-Information (Aol).

Part I of this thesis studies the stability and convergence of distributed SA algorithms affected by
Aol. The main result is a generalization of Borkar and Meyn’s SA stability theorem to distributed
SA algorithms, previously known only for bounded Aol processes. Beyond distributed SA, this
result enables a novel stability theorem for SA algorithms with heavy ball momentum. As
an application of the established distributed BMT, the thesis studies asynchronous stochastic
gradient descent, for which an Aol-dependent convergence rate estimate is presented. Finally,
a special distributed SA setting for Markov games is considered. First, a novel deep multi-
agent actor-critic (AC) reinforcement learning algorithm is proposed, which is suitable for online
learning based on communicated data. Second, the algorithm’s convergence is obtained under
mild communication assumptions. Furthermore, conditions on the Aol of data sampled from
the environment (the controlled Markov process) are characterized to ensure convergence of the

resulting state Markov process to a stationary distribution.

The fundamental property for the distributed SA analyses in Part I is the existence of random



variables with certain moment bounds that stochastically dominate the respective Aol processes.

Part II of this thesis thus studies different Aol models to characterize the existence of Aol dom-

inating random variables and, in general, Aol distributions. First, core growth properties that

define Aol as a stochastic process are defined, and different source processes to describe Aol

in different scenarios are identified. In particular, it is shown how strongly mixing event pro-

cesses give rise to Aol processes. This versatile model can represent various Aol processes, e.g.,

Aol induced by point processes with dependent service times or Aol processes due to interfer-

ence in wireless networks. Finally, an in-depth weak convergence analysis of Aol arising from

asynchronous computing modeled as a parallel point process is discussed.
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Notation, Definitions & Background

Notation

e The natural numbers and the natural numbers with zero are denoted by N and Ny, respec-
tively. The whole numbers are denoted by Z.

e The d-dimensional real coordinate space is denoted by R? for all d € N.

e If not otherwise stated, ||-|| denotes some norm on a real coordinate space.

e Throughout, we reserve n to denote discrete time and we refer with n > m to some
n € {n € Ny : n > m} for every m € N.

e Throughout, lowercase letters x will be used for deterministic objects or realizations of
random objects, uppercase letters X will be used for random objects, and aside from the
aforementioned number systems, calligraphic uppercase letters X refer to sets.

e The set of continuous functions from R¢ to R? is denoted by C(R?).

e A sequence of real vectors xg, 1, ..., Tn,... in RY for some d € N, is denoted by {z,}n>0
and will be abbreviated by {z,}.

e Small 0 and big O notation: Consider two real-valued sequences y,, y,. Then, x,, € o(y,)

if limsup £2 = 0 and z,, € O(y,) if limsup & < co.
n—oo I" n—oo "

e Floor and ceiling function: For some = € R, the floor function is defined as |z := max{n €

Z :n < x} and the ceiling function is defined as [z] := min{n € Z : n > x}.

Real Analysis and Dynamical Systems

For background on real analysis, we refer to Rudin (1987). For a sharp background on ordinary
differential equations (ODEs), we refer to V. Borkar (2022, App. B). Here, we recall some

terminology.

Definition 0.0.1 (Lipschitz continuous). A map h : R™ — R™ is called Lipschitz continuous, if
[h(z) = h(y)|| < [lz =yl for every x,y € R™.

Definition 0.0.2 (Locally Lipschitz continuous). A map h : R™ — R™ is called locally Lipschitz

continuous if it is Lipschitz continuous when restricted to a compact set.
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Definition 0.0.3 (Invariant set). For an ODE i(t) = h(z(t)) in R?, a set X C R? is called
invariant, if ©(0) € X implies that x(t) € X for allt € R.

Definition 0.0.4 (Equilibrium). For an ODE i(t) = h(z(t)) in R, a point x* € R is called

an equilibrium point, if h(z*) = 0.

Definition 0.0.5 (Global asymptotic stability). An equilibrium point x* € R? of an ODE is
called globally asymptotically stable if all trajectories of the ODE converge to x*.

Probability Theory

We will use measure theoretic probability theory (Pollard 2002) and renewal theory (Cox and
Isham 1980) tools throughout this work. For every considered setting, we always assume an
underlying sufficiently rich probability space (€2, F,P) by Kolmogorov’s Existence Theorem
(Billingsley 2008, p. 482). All events are to be understood as elements of F, and all random
variables are measurable functions from €2 to another measurable space; all random variables
in this work are either real- or integer-valued. We use {statement} as a short notation for
{w € Q : statement is true}, e.g. for a random variable X, {X = ¢} denotes {w € 2 : X = c}.
For a sequence of events {A(n)}, limsup A(n) = {A(n) i.0.} is the set of outcomes w € €2 that
occur infinitely often in {A(n)}. With a slight “abuse” of notation, we interchangeably refer
with A € F to the event A itself and to its corresponding indicator function 1,4. The abuse
of notation follows the de Finetti notation (D¢ Finetti 1970) as popularized by David Pollard.
For a real-valued random variable X, its expected value is defined as the Lebesgue integral,
E[X] = [, XdP.

Definition 0.0.6 (First order stochastic dominance). A random variable X is said to be (first

order) stochastically dominated by a random variable X, denoted by X <4 X, if
P(X >m) <P (X >m)
for allm > 0.

Definition 0.0.7 (Almost sure convergence). A sequence of random variables X (n) is said to

converge almost surely (a.s.) to a random variable X , if P ( ILm X(n)= X) =1.

Definition 0.0.8 (Weak convergence). A sequence of real-valued random variables X (n) is said
to converge weakly (in distribution) to a random variable X if li_>m P(X(n)<z)=P(X <z
n—oo

for all x € R where P(X < z) is continuous.

We denote that X (n) converges to X weakly by X(n) = X. Further, X ~ Y denotes that X

and Y are equal in distribution.
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Definition 0.0.9 (Martingale & martingale difference sequence). Let {F,} be an increasing
family of sub o-algebras of F, then a sequence of real-valued random variables {X (n)} is said to

be martingale, if it is integrable with

1) X, is Fp-measurable for all n.

2) E[Xpi1 | Fn] = Xn a.s. for all n.

In this case, the sequence M, = X, — X,,_1 is called a martingale difference sequence.

Renewal Theory

An ordinary (or zero delayed) renewal process on the real line is defined by a sequence of inde-
pendent identically distributed (i.i.d.) interarrival times {W(n)}, such that
S(0):=0, S(n)=S(n—1)+W(n),n>1, (1)

are the time steps where renewals occur (Cox 1962). Let F' be the distribution function of the
interarrival times, i.e., F(z) = P(W(n) < x) for all x > 0. The distribution function of S(n)
is given by the n-fold convolution of F: P(S(n) <x) = F™(x). In this thesis, we consider

F(0) =0, i.e., renewal processes without multiple simultaneous occurrences.

Definition 0.0.10 (Renewal process). The renewal process associated with i.i.d. interarrival
times {W(n)} is
N(t) == max{n : S(n) < t}. (2)

The renewal process is called lattice (more precisely, 1-lattice) if W(n) € N for all n > 1.
A renewal process is called stationary if it has stationary increments. This property holds

asymptotically for every renewal process. Further, a renewal process can be started in stationary

mode by setting a different initial interarrival time.

Definition 0.0.11 (Modified renewal process). Let N(t) be a renewal process with interarrival
distribution F and p = E[W(n)] < oo, then the associated modified renewal process N(t) is
defined by replacing the first interarrival time W (1) of N(t) by W (1) with distribution function

- 1 [=
Gla) =2 (W) <a) = [ (1= Py 3)
As defined in Definition 0.0.11, a modified renewal process is stationary increments (Serfozo
2009, Thm. 76).
Definition 0.0.12 (Backward recurrence time). Let N(t) be a renewal process, then
B(t) =t — S(N(t))

1s called the backward recurrence time at time t, which is the time since the last renewal before

time t.
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Chapter 1

Introduction

The fields of artificial intelligence (AI), computing and optimization have made significant
progress in recent years. Lately, large language models (LLMs) have revolutionized the nat-
ural language AI world since the seminal work of Vaswani et al. (2017). The seeds of artificial
general intelligence are arguably visible (Bubeck et al. 2023), and robotic Al-driven autonomous
systems, augmented with generative Al technologies such as LLM (Tagliabue ct al. 2023), will
revolutionize various domains in the coming decades by solving complex problems in a resilient
manner (Kunze et al. 2018). Multi-agent robotic systems will further push the boundaries of
human capabilities, by leveraging autonomy and cooperation skills, towards smarter systems
that will learn and interact with their environment, collaborate with humans, plan their future
actions, and execute tasks with immense precision (Salzman and Stern 2020). In this way, to-
day’s society is frequently confronted with new “groundbreaking” Al models based on advances
in algorithms and computing. These advances are directly owing to the growing consumption of

data, computing, and energy resources.

With the rising consumption of data and resources, it is important to emphasize that growth can
also be achieved through efficient utilization of data and a deeper understanding of current Al
paradigms. This means, understanding the optimization of parameterized, large-scale distributed
Al models, i.e., understand the training of AI models. Also, how to make the most efficient
use of computational resources, identifying sources of errors and limitations in highly parallelized
training methods, etc. It is consequently imperative that we understand how model training by
asynchronous and multi-agent methods is affected by training errors and how to compensate for
them. Broadly speaking, these are the motivations and topics of the presented thesis. One
important type of training error considered herein is due to information delays that arise from
poor communication and asynchronous computation. Such errors affect the performance of
parallelized training algorithms in single and multi-agent learning. The information delays arise

from asynchronous computing, communication, or other information-sharing effects. The core
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contribution herein is an in-depth study of information delays and an analysis of a broad class of

discrete-time distributed algorithms under the coupled stochastic approximation (SA) framework.

The theoretical results to be developed in this framework are based on powerful tools from applied
mathematics. The first core tool is a dynamical systems perspective on discrete-time iterative
SA algorithms (Michel Benaim 1996). Discrete-time algorithms are studied by relating them
to their continuous-time counterparts. In particular, discrete-time algorithms can be shown to
closely track solutions of continuous-time dynamical systems. Then, dynamical systems theories,
e.g., viability theory (Aubin and Cellina 2012) — the study of dynamical systems with viable
constraints, are used to draw conclusions about the dynamical system’s behavior, thence the
actual algorithm. The standard form of an algorithm z,, operating in R¢ studied herein is given
by the recursion

Tny1 = Tpn + a(n) [A(xy) + en + Mpt1], (1.1)

with a positive stepsize a(n), mean algorithm drift A(-), information delay error process e, and
sampling noise process M, ;1. Based on this algorithm form, the second core tool employed is
modeling noise, errors, and especially information delays as stochastic processes, i.e., sequences
of random variables (Durrett 2019). Various tools from applied probability will then be used to
characterize sufficient conditions for SA algorithm analysis. In particular, martingale convergence
theory is used to study sampling noise (Pollard 2002), and strong mixing theory is used to describe

the temporal dependence of events that give rise to information delays (Bradley 2005).

The prototypical distributed algorithm that yields the standard form (1.1) is a D agent (D € N)

discrete-time system with D coupled, possibly asynchronous stochastic iterations given by:

, A o A D A .
':U:’L—f—l = .’L‘z.b + a(n)gz (xn_Til(n)7 . 71’;_7,721_(71), e .'L'n_TiD(n); :jlfAz(n)) s n > O, 1€ D, (12)
with z{ an initial vector that is often randomly chosen, and where

ez, = (xL,...2D)in R :=R% x ... x R n>0.

e 1/, € R% is the real-dimensional value of the iteration on system i at discrete time step n.

e {¢} is a sequence of random observations used to update the iteration on system 4.

e ¢’ () is the local drift function of iteration i that describes how iteration i changes from
one time step to the next one.

e {a(n)} is a sequence of positive numbers, referred to as the stepsize sequence, i.e., a(n)
weights the local drift functions to update the iterations at step n.

e 7;;(n) denotes the random information delay called Age-of-Information (Aol) that occurs
as system 4 uses the value of system j from the old time step n —7;;(n) to evaluate its local
drift at time n.

e A’(n) denotes the random information delay called Data Age-of-Information (DataAol)
that occurs as systen ¢ uses the sample from its observation process from the old time step

n — A(n) to evaluate its local drift at time n.
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Distributed iterations, such as (1.2), are fundamental to multi-agent reinforcement learning
(MARL) (Lowe et al. 2017), distributed asynchronous computing (Zhou et al. 2022), distributed
control and estimation (P. Bianchi, Fort, and Hachem 2013), and distributed optimization algo-

rithms (Ramaswamy, Redder, and Daniel E Quevedo 2021a).

Example 1.0.1 (Distributed Asynchronous Stochastic Gradient Descent (DASGD)). It is an
important ezample of (1.2). The goal of DASGD is to find a local minimum of the stochastic opti-
mization problem min,cga F'(x) with objective F(x) == [ f(x;&)dP(E) for some random function
f:RYx = = R. Here, f(x;€) is the observed objective function at a sample & € =. In machine
learning applications, the sample space Z represents a dataset. If we take the example of LLM ap-
plications, f(x;€) will be a loss function, x will be a neural network (NN) parameter vector, and &
will be the datapoint being processed. When training such models using the distributed computing
paradigm, gradients have to be calculated for subspaces R4 x ... x R of the whole optimization
space to ensure feasible training. Multiple asynchronous machines will work on each subspace to
accelerate the training (B. Yang et al. 2021). The local objective (drift) function in (1.2) is then
simply the sample component gradient: g'(x; &) = Vi f(x;€). Moreover, the mean drift in (1.1)
is then given by the expected concatenated sample gradients h(x) = E¢ [(gl(:v; €),...,q" (x; f))]
Further, the Aol random wvariables 1;;(n) naturally arise since each component may be updated
multiple times when a single machine computes a sample component gradient. Finally, DataAol
can occur if the training data is communicated to the learning system from sensors or is only

made available after some time.

In this thesis, we! study coupled iterations such as (1.2) that describe how individual agents/
subsystems update local parameters based on information about the other iterations and locally
available data. The information may arrive with a potentially large delay — Age of Information
(Aol). This Aol can occur due to various phenomena. Two sources of Aol are asynchronous
parameter updates on distributed computing infrastructure as in Example 1.0.1 and communi-
cation between physically distributed systems. DataAol occurs in distributed, communication-
limited /resource-constrained scenarios (e.g., sensor networks), where obtaining up-to-date infor-
mation is costly, thus systems have to use/reuse outdated data for local updates. We analyze
the impact of errors due to such delays within the context of a general class of iterative methods
called stochastic approximation algorithms (M. Benaim 2006). This class originates from semi-
nal works on root-finding iterations and dynamic programming from Robbins and Monro (1951),

Kiefer and Wolfowitz (1952), and Bellman (1957). For the last seven decades, SA has been of

Whether or not to use the pronoun “we” in a Ph.D. thesis is a common topic of debate. In my opinion, it’s a
stylistic choice, and I prefer to write and read English in a more active voice. I will therefore use “we” because |
don’t like the use of “I” and because I like the idea of an engaging conversation between the writer and the reading
audience. I apologize if the frequent use of “we” irritates you (the reader); you may substitute “I” for “we”, which

would be technically correct, albeit “we” acknowledges the valuable guidance of my advisors throughout my work.



1.1. MOTIVATION

renewed interest due to various applications in signal processing, economics, game theory, ma-
chine learning, and optimization (Harold, Kushner, and G. Yin 1997; Benveniste, Métivier, and
Priouret 2012; Bravo 2016; Lei et al. 2020; S.. Bhatnagar, Prasad, and Prashanth 2013; Uryasev
and Pardalos 2013; Ghadimi and Lan 2012).

For SA iterations, three questions are of fundamental interest (V. Borkar 2022): 1) Is the SA
algorithm numerically stable, i.e., is sup,,>o||7x|| < oo almost surely, or, equivalently, is every
iteration bounded by a sample path-dependent compact set? 2) Does the iteration converge,
and are the limit points elements of an invariant set of the drift function g(-)? 3) At what rate
does the iteration converge? A non-zero rate of convergence estimate implies that the iteration
converges, which in turn implies that the iteration is almost surely stable. Hence, one will
typically establish an iteration’s stability, followed by a convergence and a rate of convergence
analysis. Broadly speaking, this thesis studies distributed SA algorithms and the Aol processes
affecting them. It presents verifiable sufficient conditions that ensure iterations are stable and

convergent.

To answer such questions for distributed iterations, we study properties and conditions for the
random Aol and random DataAol sequences 7;;(n) and A¥(n) in (1.2). We will collectively refer
to these sequences as Aol processes and will soon make precise what we mean by an Aol process.
Fundamentally, we ask: How “large” can Aol be while still ensuring stability and convergence
of distributed iterations? How does Aol affect the choice of stepsize sequences (learning rates)
and the convergence rate? Even more fundamentally, we ask: What is Aol? Specifically, how
can we define Aol as a stochastic process? What verifiable assumptions can be imposed on Aol

processes, and what properties useful for SA analysis can be derived?

We answer the aforementioned questions over the course of this thesis. In Section 1.4, we will
assign substantiated versions of these questions to chapters that address their respective answers
in the thesis. Finally, the structure overview Figure 1.7 on page 27 will highlight the topics
and connections between the chapters. We will now further motivate the thesis and present the

concrete iterations and problems to be covered.

1.1 Motivation

Distributed SA provides a generic, yet effective, mathematical framework to study both asyn-
chronous optimization and distributed multi-agent learning. Such a study is imperative to
accelerate distributed learning via distributed optimization that uses asynchronous heteroge-
nous computing resources. The framework can be applied to study empirical risk minimization
(ERM) problems involving deep neural networks (Montanari and Saeed 2022) - the most com-

mon statistical learning paradigm in machine learning. It also applies to sequential data-driven



decision-making, control, and reinforcement-learning (RL) problems in stochastic environments
(S. Meyn 2022). In the case of ERM, a parameterized model - deep neural network - is trained to
minimize an empirical objective function using a given data set. By contrast, in the sequential
decision making case, the data used to train the model is usually generated online by the model
itself. This is done by trying out model decisions for various scenarios over time. For both
applications, asynchronous implementations and parallel computing resources can significantly

accelerate learning.

1.1.1 Acceleration with asynchronous computing

Accelerating machine-learning algorithms via distributed computing (DC) has become a critical
technique to quickly train huge AI models such as large language models, using massive amounts
of data (Huang et al. 2019; Narayanan et al. 2019; Chowdhery et al. 2022). Acceleration is
achieved by scheduling multiple workers (computing nodes/processors) to update a machine-
learning model asynchronously (Dean et al. 2012; Ben-Nun and Hoefler 2019). For example, in
parameter-server systems, workers sequentially read the parameters of a model and a minibatch
from a data set to then asynchronously compute optimization steps (e.g., stochastic gradients)
to update the model. Asynchronicity here refers to workers that compute and apply updates
independently without waiting for other workers; e.g., worker 1 may have computed updates on
five minibatches while worker 2 is still working on its first minibatch. In other words, updates
are applied without any bounds on the order of operation. Such lightweight methods with small
coordination overhead and asynchronous operation have been shown to reduce memory usage
while drastically increasing processor utilization to train deep learning and large language trans-
former models (S. Zhang et al. 2013; Guan et al. 2019; B. Yang et al. 2021). Lightweight methods
will become even more useful in envisioned volunteer computing networks where users only offer
a small fraction of their computing resources to other users, resulting in highly heterogeneous

computing infrastructure (Anderson 2020).

Accelerated learning through lightweight asynchronous computing methods comes at the cost of
parameter update errors that arise when updates are computed based on outdated information
(Zhou et al. 2022). The prototypical DC scenario that yields this interaction is illustrated in
Figure 1.1 for an ASGD implementation (described in Example 1.0.1), where multiple machines
update a single component. It can be expressed in the general form (1.2) using a single Aol

sequence 7(n). The ASGD iteration then reads

Tpt+l = Tn — a(n)vxf(xn—ﬂr(nﬁ &n)s (1.3)

which corresponds to the “master iteration” in Figure 1.1. The Aol 7(n) from the perspective

of the master iteration (1.3) arises when multiple systems compute updates that are applied
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Figure 1.1: DC system running ASGD concurrently with other jobs. Workers are represented as queues with
service rate pyi, local scheduling policies, e.g., first-come-first-serve, and potential priority policies. The queues
sequentially receive SGD jobs from an SGD master iteration (left blue arrows). The jobs are queued, and once
completed, the SGD update steps are returned to the master iteration (right blue arrows). In addition, other jobs

are assigned to the queues by the scheduler.

without synchronization. More generally, distributed asynchronous iterations such as DASGD
can be written in the form (1.2) affected by Aol, which will be discussed in-depth in Chapter 2.
It has been noticed that the presence of Aol reduces the performance of the methods when
inappropriate hyperparameters - typically stepsizes - are chosen (Lian et al. 2015). To avoid this
problem, precise information about Aol is essential to optimize and predict the performance of
asynchronous iterative methods. This makes it pertinent to characterize how processing times
and asynchronous computing on DC systems give rise to Aol to design effective methods that

maximize resource utilization while guaranteeing performance.

The stochastic nature of the processing times of asynchronous parameter updates in parallel DC
infrastructure is due to real-world system aspects like queuing, priorities, preemption, heavy-
tailed traffic, and advanced workload managers (Georgiou 2010; Clavier et al. 2020; Tirmazi et al.
2020). Notably, these aspects can result in unbounded heavy-tailed stochastic processing times.
Specifically, the random variables associated with the processing times may have unbounded first
moments. For example, this has been observed in the case of asynchronous algorithms run on
public clouds (Samsi et al. 2021). This happens because the ASGD machine-learning method is
run as a low-priority sequential job concurrently with other jobs on a cloud server that allocates
a potentially time-varying set of workers to the method, as illustrated with the scheduler in

Figure 1.1.

Various questions are of prime interest for asynchronous parallel computing scenarios like ASGD.
Foremost, how should we choose the stepsize of asynchronous methods executed on parallel com-

puting infrastructure? The typical information to answer such questions includes the number
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of available computing resources, the deployed job scheduling policies, and the processing time
data of similar sequential computing jobs as well as data from typical concurrent jobs run on a
cluster. Such processing time distribution information may be historical or from recently fished
jobs on the computing infrastructure. In addition, advanced information like the dependency of
jobs sequentially scheduled to workers, the time-dependent workload of a cluster, etc., can be
tracked with modern workload managers like slurm (Georgiou 2010). With such sets of informa-
tion, predicting Aol properties to be expected for ASGD training prior to runtime is challenging.
Fundamentally, the discrete-time, discrete-valued Aol sequences affecting an asynchronous al-
gorithm must be derived in closed form from the continuous-time processing times of jobs. In
addition, it is unclear how to describe and account for dependencies in the processing time of
jobs, which often occur because users submit similar jobs. Prior to this work, there were no tools
to attempt such challenges. To resolve this gap in the literature, we will present, on the one hand,
new results for the stability and convergence of distributed SA affected by Aol. On the other
hand, we present fundamental models and characteristics for Aol processes that yield verifiable
conditions to apply the developed stability and convergence theory to distributed asynchronous

computing methods based on processing time and infrastructure information.

1.1.2 Distributed multi-agent learning and optimization

Besides asynchronous computing, a motivation for the present work is learning and optimization
of physically distributed multi-agent systems (MAS). These MAS occur, for example, in robotics
(Salzman and Stern 2020) and edge-computing networks (Sofla et al. 2022). For such applications,
Aol can arise due to asynchronous computing resources and delayed communication between
physically distributed systems. Delay in communication is often due to resource limitations, for
instance, energy constraints in remote battery-powered wireless sensor networks (He et al. 2020).
In the most extreme scenario, systems must withhold the exchange of information for as long as
possible to minimize their energy consumption or to satisfy privacy restrictions as in federated
learning (C. Zhang ct al. 2021). The natural question is, what is the least frequency with which
information sharing is permitted so that distributed systems can still effectively and optimally

solve multi-agent learning problems in a decentralized manner?

In multi-agent learning algorithms, agents often exchange parameterizations of local models.
Since communication is required in physically distributed systems, the algorithms must account
for Aol. Additionally, Aol may arise as the agents receive delayed observations from faraway
sensors or even from other agents. In Equation (1.2), we referred to this Aol as DataAol since it
captures the age of the observations. For DASGD, described in Example 1.0.1, DataAol is usually
not a concern as data is typically assumed to be independent and identically distributed (i.i.d.).

However, for MARL, data is Markovian; hence, DataAol has an impact. When the observations

11



1.2. STOCHASTIC APPROXIMATION ALGORITHMS

depend on the decision of a multi-agent learning algorithm, it is unclear how much DataAol
can be tolerated such that the algorithm still converges. In other words, when the learning
agents gather experience from old samples along their training trajectory, does the accumulated
experience represent “well” how the agents currently act in the environment? If not, the learned

policies could be biased toward an agent’s old behavior, which is usually undesirable.

We will now introduce details on the core setting considered in this work to state the problems

and the acquired solutions. Further, we begin the discussion of Aol as a stochastic process.

1.2 Stochastic approximation algorithms

Traditional SA is centralized in nature, implemented as a single iteration to, e.g., find the roots
of a map h : R? — R? The iteration starts from an initialization zo € R and then follows an

incremental update rule
Tnt1 = Ty + a(n) [(zn) + Mps1], forn >0, (1.4)

where {a(n)} is a positive stepsize sequence, and M, is a martingale difference sequence (Defi-
nition 0.0.9) due to the use of samples. Further, the drift 4 usually represents the mean drift of
an underlying sampling-based iteration, e.g., (1.2) without Aol and i.i.d. samples is of the form

(1.4) with h(z) == E¢ [g(;§)].

Depending on how h is defined, iteration (1.4) becomes a fixed point finding method - pertinent
to dynamic programming and reinforcement learning (D. P. Bertsekas and J. N. Tsitsiklis 1996).
The drift h can also be defined such that various gradient-based optimization algorithms (S..
Bhatnagar, Prasad, and Prashanth 2013) are described using (1.4). Hence, (1.4) is a very generic
iteration that serves as a powerful analytic framework. The theory of SA was placed in a
rigorous mathematical dynamical systems framework in the seminal work of Michel Benaim
(1996), which in turn is based on the breakthrough work of Ljung (1977). Ljung first established
that SA algorithms could be asymptotically associated with solutions to deterministic ordinary
differential equations (ODEs) under reasonable assumptions. This constitutes the dynamical
systems perspective, via the ODE method, of stochastic approximation algorithms. In this work,
we take the dynamical systems perspective to study component-wise distributed versions of (1.4).
The notation used throughout follows the modern treatment of SA from a dynamical systems

perspective by V. Borkar (2022).

The main idea of the dynamical systems perspective is to study properties such as stability
and convergence of (1.4) via solutions of the associated ODE #(t) = h(z(t)). The standard
procedure is first to establish the stability of (1.4) followed by a convergence characterization.

There are various schemes to establish the stability of SA algorithms; see M. Benaim (2006),
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Harold, Kushner, and G. Yin (1997), V. Borkar (2022, Chapter 4) and the reference therein.
One of the most attractive schemes is the stability through scaling approach proposed by V. S.
Borkar and S. P. Meyn (2000), which is now known as the Borkar-Meyn Theorem (BMT). This

scheme is attractive as its assumptions can be verified solely using the algorithm drift h.

The BMT establishes the stability of (1.4) by studying a family of ODEs with scaled dynamics
he(z) = @ for ¢ € [1,00] under the following condition, which implies that the limiting

dynamics of h.(z) as ¢ — 0o is eventually attracting towards the origin.

Condition 1 (BMT stability condition). The functions h.(x) — hoo(x) converge uniformly on
compact sets as ¢ — oo for some hoo € C(R?). Furthermore, the ODE i(t) = hoo(2(t)) has the
origin as its globally asymptotically stable equilibrium (Definition 0.0.5).

V. S. Borkar and S. P. Meyn (2000) established that under the BMT Condition 1 and additional
standard assumptions (to be discussed later on), a rescaled, interpolated version of the iteration
z, will be asymptotically close to solutions of the limiting ODE #(t) = hoo(x(t)). Then, if
xn were unstable, x, would potentially have to make arbitrarily large jumps in finite time,
as (t) = hoo(z(t)) is asymptotically stable. This contradicts the classical discrete version of
Gronwall’s inequality, and the BMT follows. In Chapter 2, we present a more detailed description
of the BMT proof.

Based on the idea of the BMT, several generalizations have been proposed. Shalabh Bhatnagar
(2011) proposed a generalization to asynchronous SA, Lakshminarayanan and Shalabh Bhatnagar
(2017) generalized the idea to two-timescale SA iterations, and finally Ramaswamy and Shalabh
Bhatnagar (2017) presented an important generalization to SA with set-valued dynamics. The
generalization of Shalabh Bhatnagar (2011) was proposed for bounded delays, which poses a
significant restriction. We will see in Chapter 7 that for a natural asynchronous computing model,
the resulting Aol will generally have unbounded support due to stochastic processing/service
times. In other words, the hitherto presented literature lacks a distributed version of the BMT for
unbounded information delays representative of asynchronous computing and distributed learning

settings.

1.2.1 Distributed asynchronous stochastic approximation algorithms

Centralized implementations, such as standard SA iteration (1.4), can suffer from computational
bottlenecks or can be infeasible due to the decentralized nature of a problem. Therefore, dis-
tributed asynchronous stochastic approximation (SA) algorithms were developed, where multiple
systems/nodes/agents interact to find a function’s roots (D. Bertsekas and J. Tsitsiklis 2015).
Such distributed asynchronous parallel implementations of SA algorithms were first considered

for stochastic gradient-based methods (J. Tsitsiklis. D. Bertsekas, and Athans 1986). Distributed
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1.2. STOCHASTIC APPROXIMATION ALGORITHMS

SA refers to iterations executed via computer networks, which are thus affected by communi-
cation delays. Asynchronous SA traditionally refers to iterations that run with different clocks,
such that at every time step, only some iterations are updated (V. S. Borkar 1998). More re-
cently, asynchronous SA refers to algorithms where many computing systems update one or many
components of a single global set of variables. This is the definition relevant to this thesis. In
such scenarios, Aol arises as discussed Section 1.1 and exemplified with (1.3), even for a sin-
gle global variable updated by many systems. We conclude that the dominant feature in these
asynchronous computing, distributed learning, and distributed optimization algorithms is that
a set of variables is updated as a function of old versions of itself, which we described by Aol
random variables. The natural distributed SA version of (1.4) that can represent many of these

algorithms can be stated as follows.

Starting from some xg = (m(l), . ..xOD) in R? .= R% x ... x R each component i is updated

with the recursion

zh 1 =zl +a(n) [hi(ml e ’xﬁ)—np(n)) + Mfl_H}, forn > 1, (1.5)

n—mi1(n)’

where A : R? — R% are local drift functions; 7;;(n) denote Aol random variable as in (1.2); M}

are local Martingale noise sequences; {a(n)} is the positive stepsize sequence.

When all ) are almost surely stable and h is Lipschitz continuous (Definition 0.0.1), then showing
the convergence of (1.5) can be done by a simple reduction of the iteration (1.5) to a version of

the standard SA iteration (1.4). Specifically, (1.5) can be written as
Tpt1 = Tpn + a(n) [h(:cn) + e, + Mn+1] (1.6)

with an error term
n—1
O[> > ak)] as (1.7)
i,j k:n—ﬂ-]-(n)
Then, after recalling the notion of stochastic dominance from Definition 0.0.6, consider the

following Aol condition:

Condition 2. (Previous Aol condition) All 7;5(n) are stochastically dominated by a random

variable T, denoted by 1i;(n) <y T for all n > 0, with E[7P] for some p > 1.

Under Condition 2, if a(n) € O (nié) for some ¢ € [1,2), with ¢ < p, it follows from the Borel-
Cantelli Lemma that e, € o(1). The convergence of (1.6) then follows along the lines of the

convergence proof for (1.4) under standard assumptions using that e, vanishes asymptotically
(V. Borkar 2022, Section 2.2 & 6.3).

The strongest assumption for the outlined convergence is that x,, is stable. Without stability,

(1.7) holds a priori only if the drift function h(x) is bounded, a serious restriction. In addition,
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even for bounded drift, the stability result of Shalabh Bhatnagar (2011) only holds for bounded
Aol. Still, even when stability is assumed or guaranteed, the bounded p-th moment requirement

in Condition 2 is another restriction, as illustrated by the following example.

Example 1.2.1. Consider a synchronized distributed learning scenario where D agents execute
iteration (1.5). Suppose the agents exchange their iteration values sequentially in a peer-to-
peer manner (or in accordance to a strongly connected directed communication graph with an
appropriate forwarding mechanism). The number of steps required for information exchange
between a pair of agents can be well represented by a lattice renewal process (Definition 0.0.10)
(or a more general point process on R ). Then, the resulting Aol will be given by the corresponding
backward recurrence times of the renewal processes (Definition 0.0.12). Finally, one can show
(see, e.g., Serfozo (2009)) that the resulting Aol will satisfy Condition 2 for p > 1 if and only if

the renewal process interarrival times have bounded (p 4+ 1)-th moment.

We conclude from Example 1.2.1 that heavy-tailed interarrival time distributions with infinite
variances, which in turn implies infinite first moments for the Aol process, are not analyzed by
the available SA literature with respect to both stability and convergence. Such scenarios occur
in parallel computing due to job resource requirements that are heavy-tailed (Tirmazi et al. 2020;
Samsi et al. 2021), in communication due to heavy-tailed interference as, e.g., in large internet-
of-things systems (Clavier et al. 2020), and in general due to the nature of bursts occurring in

systems affected by human dynamics (Barabasi 2005).

Based on the discussion so far, the following are some of the key research questions answered in

this thesis:

(Q1) What version of the Borkar-Meyn stability theorem holds for distributed SA algorithms

with Aol’s that have infinite first moments?

(Q2) To answer (Q1), we must first answer: is p > 1 in Condition 2 necessary for stability and
convergence, or can we obtain a similar condition for the p € (0,1] case? What will be
the trade-off here? How are the various algorithm parameters affected, e.g., how should we

restrict the learning rate? and how is the convergence rate affected?

(Q3) What properties must DataAol possess, so that, in distributed multi-agent learning, the

learned policies are not biased towards the agent’s old behavior?

(Q4) How can we ensure the existence of stochastically dominating random variables? Can we do
better and characterize the exact Aol distribution in different asynchronous computing and

distributed learning settings? How to guarantee Condition 2 for some desired p € (0, 00)?

To answer these questions, especially (Q4), we need to first view Aol as an appropriate stochastic

process.
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1.3. AGE OF INFORMATION (AOI)

1.3 Age of Information (Aol)

In the previous section, we discussed that Aol causes drift errors, potentially jeopardising stability
and convergence. Further, we saw in Example 1.2.1 that Aol may arise due to subsequent
communication which can be well represented by renewal processes. In general, there are many
sources of Aol. We are interested in the underlying fundamental structure and properties that
unify many of these sources. In the end, we want to derive conditions a) that are practically
verifiable in a real setting, and b) that suffice for stability and convergence of distributed SA

iterations.

Historically, Aol has been popularly used in point process theory to study the age distribution
of populations as individuals/systems live and die (Feller 1941; Doob 1948; Cox and Isham
1980). In information theory and computer networking, Aol has recently become popular as a
representative metric for the freshness of data, where Aol has been studied for various queuing
and scheduling models (Yin Sun et al. 2019). For a point process, Aol describes the time
since the last point occurred. In other words, the Aol is simply the backward recurrence time

(Definition 0.0.12) of the point process modeling the communication.

If we consider Aol within the context of wireless communication, one might expect it to be “small”
and bounded, especially in the current 5G/6G era (Viswanathan and Mogensen 2020). However,
the communication delay can still add up for high-dimensional data (e.g., when transmitting
neural network parameters). Further, the communication network may only provide limited
access due to interference in dense environments (Clavier et al. 2020), and the successive wireless
network access can be highly correlated (Boban, Gong, and W. Xu 2016). In summary, we observe
that a network model that captures dependent communication and network access is necessary
to describe Aol processes in representative real-world scenarios. Instead, most studies of Aol in
networking focus on i.i.d. interarrival times (Yates et al. 2021), and the only available studies

of point process with dependent interarrival times do not enable a way to quantify dependency
(Kombrink 2018).

Communication is just one possible source for Aol. Generally, information access may be well-
represented by a sequence of events representing whether or not new information arrives. A
crucial component should be that the sequences of events may be dependent. These observations
about the presence of dependency in communication, which is not well covered in the literature,

motivated the study of Aol processes as a function of event processes with dependency decay.

1.3.1 Aol processes driven by event processes with dependency decay

As many effects give rise to Aol, we seek to describe them with a fundamental model for the

information exchange between two nodes, e.g., a source and a monitor. We describe information
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Figure 1.2: A source sends status updates through a channel to a monitor. At time n+1 an update is successfully

received, and the Aol process 7(n) is reset to one if the event A(n) has occurred.

7(n)

Figure 1.3: Illustration of a sample path for the fundamental Aol process (1.8). Green dots and red dots mark

the occurrence and non-occurence of an event in the preceding interval, respectively.

exchange by a sequence of events A(n) representing successful status updates from the source
received at the monitor (Figure 1.2). We refer to a slot n as the interval from discrete time step
n to n+ 1. An update sent at time step n is received either at time step n + 1 (more precisely,
at the start of time slot n 4 1) or not at all. At first, this model is a limitation to general Aol

sequences, but we will see in a second how it can be used to describe more general Aol.

Based on the event sequence A(n), we will now describe a fundamental Aol process that we
denote by 7(n). Intuitively, 7(n) grows at a unit rate and resets to one at the occurrence of
events. If an update sent at time step n is received at time step n + 1, then we say the event
A(n) has occurred. The event A(n) is thus associated with the n-th time slot. Hence, whenever

an event A(n) occurs, 7(n + 1) = 1. The resulting fundamental Aol process 7(n) is

1, A(n) has occurred,
T(n+1) = (1.8)
T(n) + 1, otherwise,

with 7(0) := 0. This simple Aol model thus considers status updates that require a single time
slot for communication. The Aol process (1.8) can be seen as a special random walk on the
positive real line that restarts whenever an event occurs. From this perspective, the Aol process

can represent various hill-climbing phenomena where a process grows over time and then resets

at certain events. This has, for example, been used in physics to study Doppler laser cooling,
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1.3. AGE OF INFORMATION (AOI)

where atoms rise from a ground level in the presence of a light field (Montero and Villarroel

2016). We, therefore, expect general interest in the study of 1.8 beyond information delays.

In previous studies, such as (Montero and Villarroel 2016), event processes are assumed as i.i.d.
Bernoulli process. Instead, we will consider 7(n) when A(n) merely admits dependency decay
over time. Loosely speaking, this means that the occurrence of events A(n) and A(m) becomes
less dependent as |[n —m| — oo. In wireless communication, A(n) may represent the joint event

that information is sent and that the used communication channel is in a good state.

For the Aol model (1.8), a pertinent question is which Aol processes can be represented by it and
whether all Aol processes have a sawtooth-like sample path as in Figure 1.3. For example, con-
sider point processes without multiple occurrences (such as renewal processes in Example 1.2.1),
represented by a sequence of interarrival times W(n), n > 1, such that W(n) is the number of

timeslots between the n — 1-th and the n-th status update.

Example 1.3.1. Consider a lattice point process, such that W (n) € N. An example sample path

18 shown in Figure 1.4. The resulting Aol process can be stated using the event sequence

A(n) = { Z W (k) =n for some k} (1.9)

i<k
The resulting Aol process is
W (k(n)), A(n),

Tr(n) = (1.10)
(n—1)+1, A(n)S,

with k(n) == sup{k € N: Y W(i) < n}. Observe that whenever A(n) =1, the Aol process is set
i<k
to W(k(n)), the time required for the information exchange.

From Figure 1.3 and Figure 1.4, we can see that the fundamental Aol process (1.8) cannot
represent (1.10) as the backward recurrence time of the point process does not reset to 1, but to

the time required for the information exchange. However, it turns out that
7 (n) =7(n—7(n)) +7(n) -1, (1.11)

where 7(n) is the fundamental Aol process defined using (1.9). In other words, the fundamental
Aol process can be used to describe the Aol arising from point processes represented by a
sequence of interarrival times. In this way, the fundamental Aol process serves as a basis for
describing more complex Aol processes, e.g., the Aol arising from asynchronous computing.
More importantly, the analysis of Equation (1.8) presented herein will consider event sequences
A(n) that merely admit dependency decay over time described by strong mixing notion. With
this, the fundamental Aol process can be used to describe Aol due to interference in wireless

communication and Aol in asynchronous computing with correlated jobs.
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Figure 1.4: Illustration of a sample path for an Aol process described by interarrival times.

1.3.2 How Aol arises from asynchronous computing

For Aol caused by asynchronous parameter server updates, the most common examples are
ASGD and its variants (Netrapalli 2019). These methods fall into a general class of asynchronous
distributed parameter server implementations (see Algorithm 2 and Algorithm 3 in Section 7.2.1).
Asynchronous methods typically start by initializing parameters, e.g., a machine learning model.
Workers then read the model parameters and a sample from a data set to compute an update
step for the parameters (typically for a subspace of the parameter space (Raina, Madhavan, and
Ng 2009; Guan et al. 2019)). The update steps are then returned to the parameter server, which
applies the parameter update. While a worker computes and sends an update step, other workers

may have updated the parameters several times.

In Section 1.1.1, we explained how such asynchronous implementations lead to accelerated op-
timization at the cost of received updates that have already aged when applied. In fact, the
difference between the current parameter iteration index and the index to which the computed
update step corresponds is precisely the current Aol.2 For example, suppose a worker uses the
parameter x,, from step m to calculate an update step, but this update arrives at the server at
iteration index n (for some n > m) and is used to update x,. The resulting Aol of this update
is thus 7(n) = n — m. Let m(n) be the index from which an update step applied at index n

was computed. Then, {7(n)} (with 7(n) := n —m(n)) is the resulting sequence of Aol random

2 Alternatively, one can describe separate Aol sequences for each system computing updates for a parameter
iteration; the separate Aol sequences simply count the number of updates made, while one system computes an
update. Then, when one system applies an update, the Aol associated with the parameter update is just the
corresponding separate Aol of the system. This decomposition into Aol sequences associated with individual

systems is useful for analysis; see Chapter 7.
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Figure 1.5: Illustration of Aol arising for ASGD with two workers. W (n) is the n-th time to compute an update
step by worker k. Dashed lines: exchange of SGD jobs. Solid lines: exchange of stochastic gradients. f(z;¢&)

denotes the loss function for a data sample £ as in Example 1.0.1.

variables for an asynchronous parameter server iteration. An illustration for an Aol sequence

generated by ASGD with two workers is presented in Figure 1.5.

The introduced definition of Aol in asynchronous computing can now be naturally extended
to asynchronous computing with component-wise parameter updates on subspaces. This leads
to the definition of Aol sequences 7;;(n) as used in 1.2. A natural model for the updates of
processors on each component is to use point processes or renewal processes represented by a
sequence of processing times as in Figure 1.5. A crucial factor for this model is that events are
not aggregated compared to the study of parallel renewal processes in neural biology (Cox and
Smith 1954; Shanechi et al. 2012), which are therefore not applicable. What is important here
is the number of events (parameter updates) that occur from other renewal processes while one
renewal process is waiting for its next event to happen. Because of this property, one can suspect
that the Aol caused by asynchronous computing is not dependent on the backward recurrence
times of the point processes but merely on the length of each computing interval. To verify
this, one has to analyze the distributional limit of the Aol caused by parallel point processes,
specifically, the discrete number of updates by other workers in continuous time while one worker

computes an update.

In summary, we saw in this section that event processes (1.8) appear to be representative models
for Aol processes but have not been studied for dependent communication. Further, we explained
how Aol arises in asynchronous computing due to updates made by other workers while one
worker is computing an update step, which parallel point processes may well represent. From
the discussion so far on Aol described by event sequences and asynchronous computing, the

following questions arise:
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(Q5) What fundamental structure (e.g., saw-tooth-like sample paths) do Aol sequences possess

that can be used to define Aol processes in general?
(Q6) What growth properties do Aol sequences have as a function of given moment bounds?

(Q7) How can we describe the dependency in event sequences and interarrival time sequences
of point processes? Further, what properties of Aol processes can be concluded from a

dependency model?

(Q8) What is the distributional limit of Aol caused by asynchronous computing modeled as
parallel point processes? In other words, what is the connection between computing events

in continuous time and the effect on discrete algorithms?

1.4 Contributions and thesis structure

We will now summarize the contributions to the problems and questions raised in Section 1.2 and
Section 1.3. We will then conclude the introduction with an outline of the thesis, the recurring
chapter structure, and the structural overview figure that illustrates the connections between the

chapters.

1.4.1 Main results
Distributed BMT under unbounded information delays

In (Redder, Ramaswamy, and Karl 2023), we developed the anticipated distributed Borkar-Meyn
theorem. We studied iteration (1.5) without assuming stability and without assuming a bounded
drift function. Compared to the BMT, this analysis requires crucial changes and an altered line
of argument to handle the SA errors caused by Aol. As one can expect from (1.7), it is required
that the SA stepsize accumulated over intervals with Aol length 7;;(n) converges to zero almost

surely. This condition, which can be stated as

n—1

Z a(k) — 0 a.s., (1.12)

k=n—ri;(n)
is the key sufficient condition to prove the distributed BMT and to guarantee almost sure conver-
gence of the distributed SA iteration. The condition relates asymptotic Aol growth and the SA
stepsize decay. The distributed BMT Theorem 2.1 then states that (1.5) is stable almost surely
under the assumptions of the traditional BMT and (1.12). The key insight enabling the dis-
tributed BMT is a careful analysis of the SA errors caused by Aol and the observation that these

errors satisfy recursive inequalities in quadratic mean and norm. To evaluate these inequalities,
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we propose a new Gronwall-type inequality (Lemma 2.3) to bound iterations that satisfy linear
recurrence inequalities with a time-varying lower limit. This inequality may be of independent
interest. In summary, this answers the first part of (Q1), which is presented in Chapter 2, but
leaves it open to satisfy (1.12) based on Aol properties. Furthermore, it enables an answer to

the first part of (Q2).

As an application of the developed stability theory for distributed stochastic approximations, we
consider ASGD. Based on the established distributed BMT theorem, we derive conditions for
stability and convergence. Further, we analyze the Aol-dependent, almost-sure convergence rate

for ASGD, which provides an answer to the second part of (Q2), presented in Chapter 3.

BMT for SA with momentum

As an important byproduct of the distributed BMT, we observed that the principles used to
prove the distributed BMT can be used to prove the BMT for SA with momentum. Consider

the following SA iteration with Polyak’s heavy ball momentum:

Tnt1 = Tp + a(n)my,

my = fmg_1 + (1 — B)g(wr),

(1.13)

where m_; = 0, 8 € [0,1) and g(zx) = h(xg) + Mi41 with drift A and Martingale noise M1
as before. This iteration has been extensively studied for stochastic gradient descent (SGD)
with momentum, but generally only for specific SA iterations or linear SA iterations, whereby a

momentum parameter 3, 1 has been chosen.

We observed that (1.13) can be studied by splitting the moving average of past drift terms into
“new” and “old” drift terms. Specifically, (1.13) can be written in moving-average form as 41 =
an+a(n)(1—B) [Xr; 8" "g(xi)] . Then, define a deterministic Aol sequence 7(n) = [m]
and split the moving average as follows:

n n—7(n)—1
Topr =zp+a(n)(1=8) | D B"gl@)| +am)(1=8)| >, B*glx)|. (1.14)
i=n—7(n) =1

Under standard assumptions for the drift A and the martingale difference noise M, 1, we will
show that the second summation, which averages “old” drifts, is in o(1). Now observe the sim-
ilarity between the first summation in (1.14) and (1.12). Because of this structural similarity,
iteration (1.14) can be studied as an iteration affected by Aol along the lines of the distributed
BMT. Specifically, we will conclude that the BMT also holds for heavy-ball stochastic approxima-
tions (1.13) and we can therefore provide sufficient conditions for stability of SAs with heavy-ball
momentum (Theorem 2.14). This is a new result for general heavy-ball SA iteration fixed mo-

mentum parameter and an application of (Q1), which is presented at the end of Chapter 2.
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Convergence of distributed actor-critic MARL with aged data

As a specialized distributed SA setting, we studied the convergence of deep multi-agent rein-
forcement learning over communication networks (Redder, Ramaswamy. and Karl 2022¢; Redder,

Ramaswamy. and Karl 2022a). The considered setting is a D agent Markov game, illustrated in

Figure 1.6.
local action a}, Frvironmont
. X globzﬂ‘state Sn
Agent i lp(5n+1 | Sn, an)
~ , global state s,
~ ~ —~ '

N ——————

local state s,
local reward 7' (s, an)

Figure 1.6: Agent interaction with Markov game over discrete time n.

The goal is to learn distributed policies in a decentralized manner using information that is solely
communicated between the agents over a communication network, inducing Aol and DataAol.
For this setting, we present 3DPG, an online, fully distributed, multi-agent, actor-critic learning
algorithm for networked MAS with continuous decision spaces. Notably, we formulate Aol as-
sumptions that formalize how old information used by the 3DPG agents can be: The DataAol
should not be asymptotically “too large” relative to the used stepsize sequence to guarantee that
the obtained multi-agent, actor-critic policy induces that the agent’s accumulated experiences
constitute stationary distributions over the state Markov process. This property is formally
proved as part of the convergence analysis in Chapter 4 and thus provides an answer to (Q3) for

the distributed multi-agent learning setting.

To study the convergence of 3DPG, we use recent asymptotic analyses of Deep Q-Learning
under mild assumptions (Ramaswamy and Hullermeier 2021), but assuming stability. We show
that 3DPG converges to a local stationary point of a Markov game, which, for a special case,
implies that the agents converge to a local Nash equilibrium of the Markov Game for policies
parameterized by a linear combination of non-linear features. To verify the Aol conditions in the

so-far announced results, we developed fundamental results on Aol as a stochastic process.

Aol modeling and deterministic growth bounds

The sawtooth-like nature of Aol sequences in Figures 1.3 and 1.4 may suggest that all Aol
processes have a unit growth property, i.e., that 7(n + 1) < 7(n) + 1. However, Aol, due
to asynchronous computing as introduced in Section 1.3.2, can clearly grow arbitrarily from n

to n + 1 if a single worker is particularly slow. Therefore, Aol sequences with a unit-growth
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property will fall into the soon-to-be defined class of simple Aol processes; see Definition 5.1.1 in
Chapter 5. Aol processes are then defined as processes taking values of one of many simple Aol
processes, which was already briefly outlined in Footnote 2. At every time step n, an Aol process
will satisfy 7(n) = 7¢(n) for some simple Aol processes 7i(n) for k € IC, where K represents a
set of simple Aol processes. The idea behind this definition is that information may flow over
multiple paths from a source to a monitor. In the asynchronous computing setting, the paths
are the (potentially time-varying) set of workers that compute updates, which age as the workers

compute them.

Based on the structural definition of an Aol process, we will infer a fundamental growth property,
versions of which were discussed in (Redder, Ramaswamy, and Karl 2022a; Redder, Ramaswamy,
and Karl 2023). Let 7(n) be an Aol process with simple Aol process family K, such that each
7k(n) is stochastically dominated by a random variable 75 with E [?z’“] < oo for some pg > 0,

then for all e > 0

P (7(n) > enm iy i0.) =0, (1.15)

with p := ming{pr}. This property enables that if an Aol process has dominating random
variables with any moment bounds px > 0, then a(n) € O (%) will be sufficient to guarantee
that the key property (1.12) holds, thus enabling the established core stability and convergence
theorems. These results answer the second part of (Q1) as well as (Q2), (Q5), and (Q6), and are

presented in Chapter 5

Aol arising from strongly mixing event processes

It is now left to characterize when such moment bounds to guarantee (1.15) are satisfied.

The deterministic growth bound (1.15) given Aol dominating random variables with some bounded
moment provides the first tool for verifiable stability and convergence conditions. Next, we are
interested in the existence of dominating random variables with prescribed moment bounds. The
fundamental Aol process (1.8) provides the first tool. We describe the event sequences A(n) us-
ing the notion of strong mixing. In (Redder, Ramaswamy, and Karl 2022b), we showed that a
dominating variable with bounded p-th moment exists for a fundamental Aol process whenever
A(n) is strongly mixing with mixing rate a(A4, n) such that Y, 7P a(A,n) < co. In addition,
we show that the fundamental Aol process is itself strongly mixing with almost the same rate
as A(n), which enables a strong law for Aol processes — a result of independent interest. These
results answer (Q7) and provide the first set of verifiable Aol conditions to answer ((Q4) and the

second part (Q1). The results are presented in Chapter 6.
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Aol arising from asynchronous computing modeled as parallel point processes

We study the Aol arising from asynchronous computing. We model the processing time of parallel
workers as parallel point processes. The resulting Aol sequence will then be an Aol process as

introduced above, with the simple Aol processes of the k-th worker in continuous time given by

> (Nj() = Nj(t = Bi()). (1.16)
i#k

where Nj(t) is the point process associated with the j-th worker and Bj(t) the backward re-
currence time (Definition 0.0.12) of the k-th worker. In other words, (1.16) simply counts the
number of updates from other workers, from the last update of worker k until time t. Here,
the main contribution is the weak convergence analysis of the resulting Aol process and the
development of sharp moment bounds, which lead to dominating random variables for the Aol
process. The results were developed in (Redder 2023) for renewal processes and, in general, ap-
ply to point processes that asymptotically converge to stationary increments. Finally, we discuss
that the aforementioned event processes may also replace the point process in this asynchronous
computing model. With these results, we answer (Q8) and provide the second set of verifiable

Aol conditions to answer (Q4) and the second part (Q1). The results are presented in Chapter 7

Decentralized learning in mobile wireless networks

Finally, we discuss how the developed theory applies to learning and optimization when nodes
communicate over wireless networks with interference. Apparently, the state of a network channel
at successive time steps can be highly dependent. For example, one can consider that the channel
state is good if the signal-to-interference-plus-noise ratio (SINR) of a received signal is above a
certain threshold, thus guaranteeing successful communication (Tse and Viswanath 2005). The
representative model studies the SINR between every pair of agents in a MAS combined with
a class of Aol-aware medium access control policies. The core result is that under “sufficiently
recurring” Markovian mobile dynamics and carefully chosen medium access policies, the SINR
between every pair of agents will be strongly mixing. Hence, the new results on the existence of
Aol dominating random variables and Aol growth bounds apply, which thus guarantees stability
and convergence for decentralized learning and optimization methods. This application thus
combines most of the developed results and provides verifiable conditions to ensure properties of
distributed iterations. Regarding the raised questions, this chapter provides a specialized answer

to (Q4) and (Q7). The results are presented in Chapter 8.
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1.4.2 Thesis structure

The thesis is split into two main parts. Part I, corresponding to chapters Chapters 2 to 4 focuses
on distributed SA iterations. In Chapter 2, we study the stability of distributed SA iterations
and present the distributed BMT and the BMT for SA with momentum. From this, we conclude
in Chapter 3 stability and convergence statements for DASGD and prove the Aol-dependent,
almost-sure convergence rate. Afterward, we present 3DPG, a distributed multi-agent algorithm

for Markov Games in Chapter 4.

Part II, corresponding to Chapters 5 to 9 then presents the established results on Aol. Chapter 5
discusses modeling stochastic information delays and deterministic Aol growth bounds. Next, the
Aol arising from strongly mixing event processes is discussed in Chapter 6. Then, Aol processes
arising from distributed computing modeled as parallel point processes are studied in Chapter 7.
Finally, Aol-dependent network scheduling policies that preserve mixing properties of SINR in

mobile wireless communication are presented in Chapter 8.

In addition, Chapter 9 provides a number of supporting numerical experiments. The code for
all experiments is available on https://github.com/aredder/. Apart from the numerical ex-
periment chapter, all other chapters have the following structure: After a brief introduction of
the problem and required background, the system model and assumptions are presented, and
the main results of the chapter are derived as theorems and lemmas. Afterward, each chapter
contains a section with discussion and related work. Finally, every chapter closes with a chapter-
specific appendix containing all proofs of the chapter omitted in the chapter’s main text for
better readability. Overall, the thesis concludes with discussions, future work, and an appendix

on analysis (A.1) and probability (A.2) for easy reference.

Structure overview

Below, we present a graphical structural overview of the connections between the chapters.

Additionally, we present Table 1.1 to quickly access the chapters relevant to the raised questions

in the introduction.
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(Q1) | (Q2) | (Q3) | (Q4) | (Q5) | (Q6) | (Q7) | (Q8)
Chapter 2 v
Chapter 3 v
Chapter 4 v
Chapter 5 v v v v
Chapter 6 v v v
Chapter 7 v v v
Chapter 8 v v

Table 1.1:

Assignment of chapters that address par

ts of the raised questions.
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Part I: Distributed Asynchronous
Stochastic Approximation Algorithms






Chapter 2

Stability of Distributed Asynchronous

Stochastic Approximations

In this chapter, we derive sufficient conditions for the stability and convergence of distributed
SAs (1.5) in the presence of large unbounded stochastic Aol. We generalize the Borkar-Meyn
stability theorem from centralized SAs to distributed SAs. Further, we prove the BMT for SA
with heavy ball momentum. The results are based on (Redder, Ramaswamy, and Karl 2023).
Using Aol properties to be derived in Part II, we can then conclude with assumptions showing
that iteration (1.5) with drift A(-) is stable and converges almost surely to a compact connected
invariant set of the ODE #(t) = h(x(t)) provided merely that there exists an arbitrary p > 0,
such that sup, >, E [TZ(TL)} < 00. As mentioned before, prior to this contribution, this was
only known if either (1.5) is assumed to be stable almost surely and in addition that the above
condition holds for at least some p > 1 (V. Borkar 2022, Section 6), or if the Aol variables 7;;(n)
are bounded (Shalabh Bhatnagar 2011).

2.1 Assumption, main statements and preliminaries

Recall that we consider the following iteration:

2y =2l +a(n) [hi(x}Hﬂ(n), D ) M;;H} . n>0, (1<i<D), (2.1)

1

ni -

with z,, == (z},...2P) in R ;= R% x ... x R, where R? is equipped with some norm ||-||, and
cach R% is equipped with the induced norm on the coordinate subspace. As before, 7ij(n) is
the Aol random variable that incurs since iteration ¢ uses the iteration value of iteration j from
time n — 7;;(n) to evaluate its local drift A" : R? — R% at time n. Further, M, is the local

Martingale difference noise sequence, and a(n) is the stepsize used by every iteration.



2.1. ASSUMPTION, MAIN STATEMENTS AND PRELIMINARIES

Define the local errors due to Aol at step n as

el = hi(x} P ) —hi(xl, ..., zD). (2.2)

n—7i1(n)’ - n—7;p(n) n

When ¢!, € o(1) almost surely, then by inspection, we expect that under suitable assumptions

on a(n), h and M}, iteration (2.1) will track solutions to the dynamical system

i(t) = h(z(t)). (2.3)

The standard regularity assumption to ensure that the ODE (2.3) is well-posed (V. Borkar 2022,
App. B) is that h is Lipschitz continuous:

Assumption 2.1.1. A% : R¢ — R% s the i-th component of a Lipschitz-continuous map h :
R?% — RY with Lipschitz constant L > 0.

The Lipschitz condition plays a crucial role in establishing the stability and convergence of (2.1)
in the presence of the errors ef. In addition, we assume that rescaled versions of the ODE (2.3)
converge to an ODE with a globally asymptotically stable equilibrium.

Me) o > 1, @ € RY, satisfy he(z) = hoo()

pointwise as ¢ — oo for some hoo € C(R?). Furthermore, the ODE &(t) = hoo(x(t)) has the

Assumption 2.1.2. The functions h.(x) =

origin as its globally asymptotically stable equilibrium.

This is the BMT stability condition recalled from Condition 1 in Chapter 1. As mentioned
before, the main contribution is extending the BMT to a distributed setting with unbounded
stochastic delays. Inspired by the proof of the distributed BMT, we will also present a weaker
version of Assumption 2.1.2 in Section 2.2.4 that also applies to the traditional BMT.

We make the following assumption for the additive noise terms M ;.

Assumption 2.1.3. M}‘LH € R% is the i-th component of a martingale difference noise process

{M,,} with respect to the filtration F,, := o (xo, Mu, ... My, 7i5(0),...7(n),1 <i,j < D),n>0:

1) {Mp41}n>1 is a square integrable sequence.
2) B (IMyp | | 7] < K2 (14 (a} D ) for some K 0.

n—ri1(n)’ " n—T7;p(n)

Assumption 2.1.3 bounds the conditional second moment of the martingale noise component at
time n > 0 based on the associated iteration values in (2.1); a weaker version will be discussed
in Section 2.2.4. Finally, we state the assumptions for the stepsize sequence a(n) and the Aol
sequences 7;;(n). As mentioned in the introduction, the Aol sequences can be the consequence
of various transport phenomena resulting in the effective use of aged information 1:7]1 iy () when

evaluating the recursion (2.1).

Assumption 2.1.4. The stepsize a(n) is not summable but square summable, i.e., Y ~,a(n) =

0o and ), 5 a(n)? < oco.
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Assumption 2.1.5. For all i, j, the stepsize a(n) and the Aol sequences T;5(n) guarantee that

n—1

Z a(k) = 0 a.s..

k=n—m;;(n)

Assumption 2.1.5, which corresponds to the announced key property (1.12) for the stability and
convergence of distributed, describes the trade-off between the stepsize sequence and the Aol
sequences. A faster stepsize decay allows the Aol sequences to be larger asymptotically. The
details of the stability proof will show the importance of this assumption in conjunction with
Lipschitz continuity for the stability of distributed SAs. Notably, it turns out that the almost
sure convergence in Assumption 2.1.5 reaches deeper into the stability analysis than one might

initially expect since the convergence is almost uniformly.

Theorem 2.1 (Distributed Borkar-Meyn Theorem). Under Assumption 2.1.1-2.1.5, iteration

(2.1) is stable almost surely, i.e., sup, ||zn| < oo a.s..

Corollary 2.2. Under Assumption 2.1.1-2.1.5 iteration (2.1) converges almost surely to a po-

tential sample path-dependent compact connected internally chain transitive invariant set of the

ODE (2.3).

For the terminology used to state Corollary 2.2, see V. Borkar (2022, Sec. 2.1). We do not
explain it here, as it is unnecessary for the stability analysis. The most important consequence
of Corollary 2.2 is that when the only invariant sets (Definition 0.0.3) are isolated equilibrium
points (Definition 0.0.4), then x,, converges almost surely to a potential sample path-dependent

equilibrium point (V. Borkar 2022, Sec. 2.2).

2.1.1 Traditional Borkar-Meyn theorem

The proof of Theorem 2.1 is inspired by the traditional BMT but requires crucial changes to
handle the a priori non-vanishing additive drift error e!, due to Aol. To better understand the
required changes, we first sketch the proof of the traditional BMT, i.e., we consider iteration x,

in (2.1) with 7;;(n) = 0 for all n > 0.

As the first step, the BMT proof creates a piecewise linear interpolated trajectory Z(¢) from the
iteration x,. Then, the time axis [0, co0) is seperated into concatenated time intervals [Ty, Trnt1]
of length approximately 7" > 0. Finally, a rescaled trajectory &(t) is created by dividing x(t)
over each [Tp,, Trnt1] by ||z(Th)|, i-e., each x(T),) is scaled to the unit ball. The second step is
to show that the rescaled trajectory Z(t) is stable almost surely. Then a stochastic approxima-
tion argument shows that Z(¢) tracks solutions to scaled ODEs with drift h.(-), ¢ € [1, o0], from
Assumption 2.1.2. The final step is to verify the stability by contradiction. Assuming that x,, is

unstable, a subsequence of scaling factors ||x(7},)|| diverging to infinity will exist. A stochastic
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2.1. ASSUMPTION, MAIN STATEMENTS AND PRELIMINARIES

approximation argument then leads to corresponding rescaled segments of Z(¢) that asymptoti-
cally track the limiting ODE from Assumption 2.1.2 with drift ho(+). Since this limiting ODE
is globally asymptotically stable to the origin, the aforementioned rescaled segments eventually
drift toward a neighborhood of the origin. This leads to a contradiction since ||z(T,)|| diverges

to infinity. We will now begin with preliminaries for the proof of the distributed BMT.

2.1.2 Recursive structure of stochastic approximation errors caused by Aol

Rewrite the main iteration (2.1) as

Tnt1 = T +a(n) [h(xy) + e + Mpt1], (2.4)
for n > 0, with additive drift error e, = (el,...,e?) composed of local drift errors €, as defined

n (2.2). We shall impose the natural condition that iteration (2.1) (thence (2.4)) starts from a
prescribed xg with (E [||x0||2])% < 00. Assumption 2.1.1 then implies the linear growth of h(-):

1A ()] < K1+ [|=]]) (2.5)

for all x € R? for some K > 0 depending on xy. To simplify the presentation, we assume
without loss of generality that the same constant K holds for both (2.5) and the inequality in
Assumption 2.1.3.

Using the Lipschitz-continuity of A (Assumption 2.1.1), the norm of the local drift errors satisfy

D
leill < 23 led —ad ol (2.6)
j=1
Next, using a telescoping sum and the triangular inequality, it follows that
. n_l . .
laf — 2l S S Nl il (2.7)
k=n—T;;(n)
n—1 ' )
= > ak) <||h](3711Hj1(k)7 TR ) T M,ill) : (2.8)

k:n—Tij(TL)
where the second step uses iteration (2.1). Note that whenever 7;;(n) = 0, the sums on the

right-hand side are empty and thus equal to zero. From the last inequality, one can imagine that

n—1
k=n—1;;

(2.1). This is immediate from the BMT provided that 1. the drift A is bounded almost surely

(n) a(k) — 0 a.s. (Assumption 2.1.5) is a sufficient condition to prove the stability of

and 2. the noise M, 41 is bounded almost surely. We do not make these assumptions.

Using the linear growth of h, (2.5), we conclude that

n—1 D
ool <K S aG (1 el + Sl - xz_Tj,<k)\)
)

k=n—T;;(n =1 (29)

n—1

+> atk)Mll.

k=n—m;;(n)
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In the following, we will motivate some key steps from inequality (2.9).

2.1.3 Creation of rescaled trajectories

As the first step, along the lines of the traditional BMT, we create a piecewise linear interpolated
trajectory Z(t) and a rescaled trajectory #(t) from zj. Divide the time axis [0,00) using the

stepsize a(n) as follows. Define time instants
t(0) =0, t(n):=> a(i), foralln>1. (2.10)

Now define an interpolated trajectory Z(t), by setting Z(¢(n)) = xn, n > 0 and define Z(¢) for
all other points ¢ € [0,00) by linear interpolation. Fix 7' > 0, then split the time axis into

approximately T-length intervals with initial time steps

To =0, Tpt1 =min{t(n):t(n)>T,+T}. (2.11)

In contrast to the traditional BMT, we now require a different, larger, rescaling sequence to
create &(t). From a physical, dynamical systems perspective, we have to scale the iteration more
in the presence of Aol, since otherwise older iteration values that are not sufficiently scaled lead
to scaled drift errors that cause Z(t) to be unstable. Technically, this can be seen from inequality
(2.9). If we were to use the rescaling sequence ||z(T},,)|| as for the BMT, then (2.9) shows that a
bound for the local drift error e,, (thence for x,) depends on zj, with k € {n —1,...n —7;(n)}.
The problem is that these x; will be associated with different T-length intervals [T}, T),+1] than
xpn, whenever the Aol 7;;(n) is large. Thus scaling both sides of (2.9) with the scaling factor
associated with x,, does not lead to variables on the right-hand side of (2.9) that can be bounded

by the rescaled trajectory Z(t).

To solve the problem of the original scaling sequence, we propose that the interpolated trajectory

is scaled over every T-length interval by the larger scaling sequence
s(m) = max{sup||z(1})[|, 1}, m > 0. (2.12)
I<m

Remark 2.1.1. From a dynamical systems perspective, the traditional BMT studies a projected
version of x,, where after every T-length interval in continuous time, the iteration is projected to
the unit sphere. Instead, we study a projected version of x,, where after every T-length interval
i continuous time, the iteration is projected to a point on the unit ball. This is done by adapting
the scaling value to project the iteration: whenever the projected iteration would be outside the
unit ball with the previous scaling value, the value is increased such that the projected iteration

is on the unit sphere.
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The crucial point of constructing s(m) is that s(m) is monotonically increasing. The rescaled

version of Z(t) is then defined as

B(t) = t € [T, Tog1), (2.13)

In addition, define the rescaled drift error sequence and the rescaled martingale noise sequence

as follows by
Mn+1

A € ”
én = 3(7:1) and M, 41 = (2.14)
respectively, for n € [T, Tint1), m > 0. Finally, define the accumulated rescaled noise sequence

by

n= > a(k)Mgy. (2.15)

The second step is to show that Z(¢) is stable almost surely, for which we proceed as follows:

1) We prove Ly bounds for &(t). Specifically, we show that sup, E [||Z(¢)||* | E.] < oo for an
increasing sequence of events E, (Lemma 2.5).

2) We show that ¢, (2.15) is convergent almost surely (Lemma 2.6).

3) We show that sup;s([|#(t)|| < oo a.s. and as a corollary that the rescaled error vanishes,

ie. ||é,]] = 0 a.s. (Lemma 2.8 and Corollary 2.9, respectively).

While straightforward in the BMT, these steps are much more involved in the presence of
the stochastic drift errors el due to Aol. Equation (2.9) indicates that we need to bound
]E[ nol (n)a(k:)H:Ei{ —:U%Cim(k)ﬂﬂ to show that #(t) is bounded in Ls. However, this is

k=n—;;
an expected value of a random number of random variables. To circumvent this, we will use that
ZZ;:FTU(”) a(k) converges almost uniformly. We can, therefore, work with deterministic upper

bounds A(n) for every 7;;(n) on an increasing sequence of probability subspaces. It will then

follow that

n—1 n—1
B Z( )a<k>||xlkw2_m(k>||2 < 2%( )a(k)E [k = 2 1] (2.16)
=n—T;(n =n—A(n

and we will show that the required Lo bound holds on an increasing sequence of probability
subspaces.

l

Finally, (2.9) also shows that a bound for ||z, — 27 (n)|| depends on all |z} — xk#jl(n)H for

n—Tij
all 1 <1 < Dand k € {n—1,...n—7j(n)}. Here, the critical observation is that if we
sum up both sides of (2.9) over all 1 < 4,5 < D then a recursive inequality in the variable
ijleaﬁ% - xi r (n)H arises. Indeed, this recursive structure arises in Ly and in norm, i.e., in
steps 1 and 3 mentioned above, to show that Z(t) is stable. To evaluate these recursive structures,

we present a new Gronwall-type inequality.
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2.1.4 A discrete Gronwall-type inequality for varying lower time-horizons

We present the Gronwall-type inequality in greater generality than necessary for the analysis

since it may be of independent interest.

Lemma 2.3. Let {y,}, {an}, {bn}, {cn}, {An} be non-negative sequences, with {b,} bounded

and {¢,} monotonically increasing and L > 0 be scalar, such that for all n > 0,

n—1

Yn < bpcp + L Z ALYk, (217)
k=n—A,
n—l eLt(N) _
N :=inf{NeN:L Z akSWforallnzN}<oo. (2.18)

k=n—Ap
where t(0) = 0,t(n) = 3" a(i) for n > 1. Then

Yn < cp | bn + (sup bk)LeLt(N) Z ay, . (2.19)
k>0

The nature of Lemma 2.3 is that ZZ;}@_ A, Gk leads to weighted averaging of the yj sequence,
such that asymptotically the right-hand side of (2.17) is neglectable, when ZZ;;_ A, @k = 0.

We will now apply Lemma 2.3 in the following subsections to show that Z(t) is stable.

2.2 Distributed Borkar-Meyn Theorem

We will now present the core steps to prove the distributed BMT.

2.2.1 Recursive L, structure and L, Bounds

It will become useful to have a function m(n) that selects for each discrete time n > 0 the
corresponding interval [T, (), Tin(n)+1) in continuous time. In other words, m(n) is the largest

interval index m, such that T, < Z?gol a(i).

Recall the filtration F,, defined in Assumption 2.1.3. We have that o(x1,...,2,) C F, and by

construction of the time intervals in (2.11), we have that m(n) < n. It follows that s(m(n)) € F,,
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2.2. DISTRIBUTED BORKAR-MEYN THEOREM

with the scaling sequence s(-) as defined in (2.12). Assumption 2.1.3 therefore leads to

2 || n+1H2
F | F, 2.20
E [Ig,al? | 7] =& |12 | (2:20)
E [| M l? | o]
2.21
sm(n))? 221
K2<1+H(nT1( oI
< 3 (2.22)
s(m(n))
K2 (14 oall + S0 leh — 2l o)
< (2.23)
s(m(n))?

2 2 Z’L 755 (n) ” i

< K21+ ||2(t(n)]] +Z ))’ (2.24)
By taking the expected value and the square root of the last inequality, we arrive at
1
. 2 3
T ot =2 ol

<K|1+E 7y nTis 2.25
B 10150 < & | 1+ B [l FE N ) (2:25)

for all n > 0, where we used that the square root of a sum is bounded by the sum of the square

roots of its terms. In addition, using (2.6), we can bound the rescaled additive drift errors in Lo:

o !
|x7, — 2’

5 D n—ij(n) I 2
E [||é] Z () : (2.26)

-

Next, divide both sides of the rewritten main iteration (2.4) by s(m(n)), take the norm on both
sides, and use the linear growth of the iteration drift (2.5). Then,
|2(t(n + 1) < [2(¢m)I(L + a(n)K) + a(n)(L + [[éall + || M ])- (2.27)

1
Finally, take IE [(-)]2 on both sides above and use (2.25) and (2.26) componentwise to arrive at

the following recursive Lo bound for ||Z(t(n))||:

E [J(t(n+ 1)]2)? <E [[a(tm)]?]? (0 +a(n)Ky)

N|=

D Wr—xf u (2.28)
+a(n) Ky + Ko ZE n n—Ti;(n)
ij=1 m(n))
with K1 == K(D+1) and Ky .= L+ K.
To continue, we have to consider the local errors @, — __ . Equation (2.9) leads to
n—rij(n)

n—1 D n—1
27, = 25, I < K > a(k) <1 + llzkll + Dl — xi_m(k)H) + > k)M
(n)

k=n—m;;(n =1 k=n—7;;(n)
(2.29)
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To move forward, we must take the expected value of (2.29). This requires that we take the
expected value of a random number of random variables, which is generally difficult without
restrictive assumptions (see, e.g., Wald’s Lemma in Durrett (2019, Chap. 2)). We observed
that we could circumvent this difficulty using almost uniform convergence implied by Egorovs’s
Theorem (see A.2).

Definition 2.2.1 (Almost uniform convergence). Let X,,, X be random variables on a probability
space (2, F,P). Then X, is said to converge to X almost uniformly if, for every e > 0, there
exists an exceptional set A € F with P(A) < e such that X, converges uniformly to X on the
complement E = Q '\ A.

By Assumptlon 2.1.5, Zk — )a(k) converges almost surely and thus Egorov’s theorem im-
plies that Zk — a(k) converges almost uniformly. Consequently, we can work with deter-
ministic upper bounds for all 7;;(n) on an increasing sequence of probability subspaces. This
is sufficient since the objective is to show that the accumulated rescaled noise sequence én is

convergent almost surely.

Let (©2, F,P) be the underlying probability space, i.e., (€2, F,P) is the common probability space
on which the stochastic processes {zp}n>0, {Mn+1}tn>0 and all {7;;(n)}n>0 are defined. Fix a
sequence {e,},>0 C (0,1) with e, — 0. The almost uniform convergence of Zk ni—7i; (n) a(k) thus
implies that there are Fy, E1, ..., E,,... € F with P(E,) > 1—¢,, such that Zk:n—m(n) a(k) —
0 uniformly on each F,. We may assume that Fy C E; C FEs... as uniform convergence
on finite unions follows from the uniform convergence on the individual sets. It now follows
that it is sufficient for the convergence of the accumulated noise iteration @L to show that
sup, E [||2(t)||? | E.] < oo for every z > 0, which is discussed in Remark 2.2.1 below. In-
deed, we may now also assume without loss of generality that all Zk —n—7i;(n) a(k) — 0 uni-
formly on 2. However, we prefer to keep the conditioning to avoid confusion. Therefore, define
E.[]=E[ | E,] for all z > 0.

Remark 2.2.1. Recall that we need to show that P <én com}erges) = 1. Suppose that we can show
that P (én converges | EZ) =1 for all z > 0. Then, by the construction of the sets E,, we have
P (Ez N {fn com;erges}) =P(E,) > 1—¢,. Using continuity from below, as E, are increasing
and e, — 0 as z — o0, it follows that P (@L converges) =P (Uzzo E.N {@L converges}) =1.

Remark 2.2.2. All previous Ly bounds from this subsection also hold for E, [-]. In particular,
inequality (2.25) holds with K replaced by \/%, since

2
L2 7] < al szr)m]

(2.30)
Then using (2.24) and taking E, || we arrive at the required inequality.
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2.2. DISTRIBUTED BORKAR-MEYN THEOREM

We will now use the deterministic sequences

A;(n) = sup {mj(n)(w) | 1 <i,j < D}. (2.31)

wek,
By construction of the events E, it follows that ZZ;i_AZ(n) a(k) — 0 as n — oo uniformly on
E.. Further, 7;(n) < A;(n) on E; for all 1 <4,j < D and all n > 0. Hence, Equation (2.29)

implies

D n—1
e~ <K 2 a(k) <1+|xk|r+2|x2—x2_m(k)u>+ a(k) | M)
) k

=1 =n—A;(n)
(2.32)

on E,. Next, divide the above inequality by s(m(n)) and use that s(m(n)) is by construction

monotonically increasing. It follows that

loh =l ol D lzk — ol
v <K a(k) [ 1+ [|2(tk)] + 2
o (2.33)
+ a(k)||ML]|.
k=n—A.(n)

NI

Since A.(n) is deterministic, we can evaluate E. [(-)?]* on both sides of (2.33) and apply the

version of (2.25) for E, []. Then, with K’ := <K + K), we arrive at

P(E.)
1
X . 279 2
E, G <K’ a(k)(1+E. [[|&(t(k)]*]?)
L (2.34)
K/ n—1 D |:Ek H
+EK Y Z m(k))
Finally, a summation over all 1 <4,j < D leads to
1
, . 24 3
f: B oL A N R "Zl (k) (1+E- [Ia((k) 7]
3 < a z x
i,j=1 s(m(n)) k=n—A_(n)
3
. n—1 D ||xk - ‘rk Tij H
+K'D Y alk) Y E. )
k=n—A.(n) iy=1
(2.35)

This is the announced recursive inequality of the Aol error in Lo. To evaluate this inequality,

we use Lemma 2.3, the proposed Gronwall-type inequality for varying lower time horizons. The

main observation is that the sum ZZ;L As(n) a(k) leads to weighted averaging, such that the
1

left hand of (2.35) can be bounded as a function of E, [||2(¢(k))||?] 2, k < n — 1. With this, we

can finally conclude the announced Lo bounds for ||z (t)||.
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Lemma 2.4. There is a constant K3 > 0, such that
2 3

D Izt =, o . ne1
Z B s(m(n)l)] < K (1 + sup E; [[|2(t(k))|] 2) Z a(k)
k

i,7=1 k<n—1 =n—A;(n)

The combination of Lemma 2.4 and (2.28) then leads to the required conditional Ly bound.

Lemma 2.5. sup;sg E. [[|£(2)[*] < oo

2.2.2 Stability of the recalled trajectory

With the established Ly bound for the recalled trajectory, we are now ready to prove its stability.
First, we use Lemma 2.5 and the Martingale convergence theorem to show the convergence of

the accumulated rescaled noise iteration.

Convergence of the accumulated rescaled martingale noise

By the reasoning in Remark 2.2.1, it is enough to show that P (fn converges | Ez> = 1 for
all z > 0, which follows from Lemma 2.5 and the convergence theorem for square-integrable

martingales (see A.2).

Lemma 2.6. én converges almost surely.

We will also need a corollary to Lemma 2.6 that shows that the martingale noise accumulated
over intervals with Aol length and scaled by the sequence s(m(n)) converges to zero almost

surely.

Corollary 2.7. Zk S (k:)M/,zJrl — 0 a.s.

Stability of the rescaled trajectory

We are now ready to show that &(t) is stable. First, the convergence of the accumulated rescaled
martingale noise (Lemma 2.6) implies that it is bounded almost surely, i.e., supn20||én|| <

oo almost surely. Using Corollary 2.7 and (2.9), we then arrive at recursive structure for

lzh—a? . ol
ijzl Wﬁ(), which we again evaluate using Lemma 2.3 to obtain that

n—1
lén]l € O <1+ sup ch(t(k))!> > ak)]]- (2.37)
k<n—1 k=n—7(n)

Recall now the functions h.(x), ¢ € [1,00], defined in Assumption 2.1.2. It is not difficult to
verify that:
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2.2. DISTRIBUTED BORKAR-MEYN THEOREM

1) he, hoo are Lipschitz-continuous with the same Lipschitz constant L > 0 as h.

2) ||he(z)]| < K(1+ ||z|]) for every ¢ € [1,00].

The recalled iteration then satisfies
B(t(n+ 1)) = 2(t()) + a(n) |Aym) (E(E(n))) + én + Mn+1] . (2.38)

Iterating (2.38) and using (2.37) and Assumption 2.1.5, we can conclude the stability of the
rescaled trajectory, which in turn by (2.37) implies that the rescaled error vanishes.

Lemma 2.8. supl|z(t)| < oo a.s.
>0

Corollary 2.9. ||é,|| — 0 a.s.

2.2.3 Distributed BMT proof

It is left to show that z,, is stable using that & (¢) is stable and that hso () from Assumption 2.1.2
is the drift of an asymptotically stable ODE. The line of argument is new compared to the tradi-
tional BMT and was necessary since we defined the scaling sequence as monotonically increasing.
Indeed, the line of argument in the traditional BMT does not apply to monotonically increasing
scaling sequences. However, as we saw in the previous subsections, the monotonically increasing
scaling sequence is required to scale the drift errors due to Aol. We will now present the details

to complete the proof. There are two initial steps along the lines of the traditional BMT.

First, we conclude that the rescaled trajectory &(t) is a noisy approximation of solutions to ODEs

with drift hgy,(-). For any m > 0, let 2™ (t), t € [T, Tint1], be the unique solution to

& (t) = hy(m) (x(t)) (2.39)

with initial condition ™ (T,) = #(T,,). Recall that the rescaled iteration can be written as given
in (2.75). Lemma 2.6 and Corollary 2.9 imply that the rescaled iteration Z(¢(n)) has the form of
a standard stochastic approximation iteration as in (1.6) with convergent accumulated noise fn
and vanishing error é,,. Further, Lemma 2.8 shows that the rescaled iteration remains bounded
almost surely. A stochastic approximation argument; see, e.g., (V. Borkar 2022, Chapter 2,
Lemma 1), then shows that Z(¢) is a noisy approximation of solutions to the ODEs (2.39).
Lemma 2.10. lim sup  ||z(t) — 2™ (t)]| =0 a.s.
M0 [T, Trnt 1]

Second, recall that Assumption 2.1.2 ensures the existence of a function he (), such that h.(z) —
heo(z) as ¢ — co. By the Lipschitz continuity of h, the Arzela—Ascoli theorem (see A.1) implies
that h. converges uniformly on compact subsets of R? (compactly). Further, ho, has the origin as

its unique globally asymptotically stable equilibrium. Therefore, solutions to @(t) = heo(z) will
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eventually reach a neighborhood of the origin after some 7" > 0. Since the functions h. inherit
the Lipschitz-continuity from h, the scaled ODEs have unique solutions for every initialization.
For every ¢ € [1,00], let ¢.(t,z) denote the unique solution of the ODE #(t) = h.(x(t)) with
x(0) = x. The compact convergence of h, — ho, now guarantees that for large ¢ and initialization
on the unit ball, the solutions ¢.(¢, ) will reach a neighborhood of the origin after T' > 0. This
is stated as the following lemma; for details, we refer to (V. Borkar 2022, Chap. 3, Cor. 4.1) or
the original BMT paper.

Lemma 2.11. There exist co > 1 and T > 0 such that for all initial conditions x on the closed

unit ball, ||¢c(z,t)|| < 5 fort € [T,T +1] and ¢ > co.

Proof. In (V. S. Borkar and S. P. Mcyn 2000, Lemma 4.4) the statement is shown for every
e > 0, i.e. with ¢ in place of % O

We are now ready to prove the distributed BMT. As mentioned before, the line of argument
differs from the traditional BMT since the scaling sequence s(m) does not scale the initial points
of every T-length interval to the unit sphere. In the traditional BMT setting, one shows that

W < e € (0,1) for m sufficiently large. Using the same reasoning, here we only obtain
s(m) s(m)

[
@l — A EONZE ST < el

(2.40)

for m sufficiently large. Technically, can be arbitrarily large, as ||z(71),)|| may we small,

_s(m)
(Tl
while s(m) is unbounded when assuming instability. Hence, one can not choose ¢, such that
the right-hand side (2.40) is less than 1, whenever |Z(7},)|| > ¢o with ¢ from Lemma 2.11. In
contrast, Hm(%?)\\ 1 for the traditional BMT, and one concludes that ||Z(7,)| falls back at
an exponential rate to the ball of radius ¢g, which leads to a contradiction with the assumed
instability. This line of argument is not applicable here, and we have developed a fundamentally

new one to prove Theorem 2.1.

Proof of Theorem 2.1. Fix T > 0 from Lemma 2.11 and for this 7" create the approximate T-
length intervals [T}, Tm1] for all m > 0 as described in (2.10). Then fix a sample point where
Lemma 2.6 and Lemma 2.10 hold. Recall the scaling sequence s(m) = max{sup;,,||Z(T1)|, 1}
and suppose that sup,,~ol|[Z(Tm)|| < oo does not hold. Then, by construction, s(m) oo

monotonically.

We will now consider those time intervals where the scaling sequence equals the norm of the
trajectory at the beginning of the T-length intervals, i.e., those m where s(m) = ||Z(T,)|. That
is, we consider those time steps where ||Z(7},,)|| = 1. This yields a subsequence of interval indices
{m(k)}r=0 C {m}m>0, such that [|(Tsu))|| = 1 for all & > 0, and s(I) = Z(Tj k) for all
le{m(k),...,m(k+1)—1}.
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2.2. DISTRIBUTED BORKAR-MEYN THEOREM

Recall now that 2™(t), t € [T}, Tiny1], are the unique solutions to @(t) = hy(y)(x(t)) with initial

condition ™(T},,) = &(Ty,) = i((:fn"s). Since s(m) oo, there is some k', such that s(m(k)) > co

with ¢y from Lemma 2.11 for all k > k'. Most importantly, for any k > k' we now consider the
last interval, m(k+1)—1, from the set of intervals {m(k),...,m(k+1)—1} where s(m(k)) is used

as the scaling factor. By the monotone scaling sequence, wm(kﬂ)*l(Tm(kH)_l) is on the closed
unit ball and thus Lemma 2.11 shows that [|z™*+1)- Y Tamsn)ll < 3. Further, Lemma 2.10

shows that there is some k", such that
. 1
sup |2(t) — 2™F1 @) < 2, k> K (2.41)
t€[Trkt+1) -1, Tk +1)) 2

The ratio of successive scaling factors, therefore, satisfies

stk + 1)) H(Tapen)

= =— lim  |2(t 2.42
s(m(k)) (Tr) t/MHJ(N! (2.42)
< lim 2™+ dim (@) — 2D 2.43
_M%MJI @)l M%Mﬂ() L) (2.43)

1 1
Tyl 2.44
<5+ (2.44)

for all k& > max(k', k"), i.e., s(m(k + 1)) < s(m(k)). This is the required contradiction since
s(m) was constructed as monotonically increasing. Hence, sup,,~q s(m) < oo almost surely and

the theorem follows from Lemma 2.8. O

The crucial point of the new line of argument for Theorem 2.1 is that it completely removes the
use of Gronwalls inequality. We derive the required contradiction by “simply” showing that the

adaptive monotone scaling sequence would have to eventually decrease if x,, is unstable.

For the remainder of this section, we now move beyond the results presented in (Redder, Ra-
maswamny, and Karl 2023) and discuss some interesting observations and extensions based on
the proof of Theorem 2.1. First, observe that to obtain the contradiction for Theorem 2.1, it
is sufficient that the limes superior of the right-hand side in (2.43) is strictly less than one. It
appears that one can use this observation to conclude that the BMT holds, provided merely that
the origin is stable and not necessarily asymptotically stable. We discuss this in the following

remark

Remark 2.2.3. Observe that a weaker version of Lemma 2.11 s sufficient for the conclusion in
Theorem 2.1. It is enough that there exist co > 1 and T > 0 and a sequence €(c) > 0, such that

for all initial conditions x on the closed unit ball,
|pc(z,t)|| < 1+e(c), te|l,T+1] (2.45)

for and ¢ > co, with €(c) — 0 as ¢ — co. With Lemma 2.10 and (2.43) it then follows that

lim sup s(mlk+1)) <1

mIp = R (2.46)
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contradicting monotonicity, which would imply that lign inf % > 1, and thus implying that
— 00

SUp,, >0 s(m) < 0o almost surely.

From the proof of Lemma 2.11, one can now see that to verify (2.45) it is sufficient that there is
arbitrary neighborhood U of the origin and a T > 0, such that every solution of &(t) = heo(x(t))
with initialization on U stays inside the open unit Ball fort > T. This is clearly guaranteed if the
origin is stable, i.e., if, for some initial value close to the origin, a solution will eventually stay
close to the origin. In other words, it is not necessary that the origin is locally asymptotically

stable. With this generalization, the BMT now includes drifts of the form

hz) = ( xi) (2.47)

with x = (x',2%). The ODE (2.47) is the well-known example of an ODE that is stable, but
not asymptotically stable (Bhatia and Szegé 2006), where trajectories are circles centered at the

oTigin.

Remark 2.2.3 sketches that asymptotic stability in Assumption 2.1.2 can be replaced merely by
stability. Importantly, this new version includes sublinear drifts where h(z) is holder continuous,
ie. ||h(z) — h(y)|| < L||z —y||* for some a € [0,1). In this case, hoo(x) = 0 for all z € R? and
#(t) = 0 is clearly not asymptotically stable to the origin but merely stable.

We will now discuss some further extensions while sticking to the asymptotic stability setup.

2.2.4 Further extensions
A weaker version of Assumption 2.1.2

The new line of argument in Theorem 2.1 reveals how to further weaken assumption of the

original BMT: the original BMT requires that @ converges pointwise to some limit ho () as

¢ — o0, where hy, is asymptotically stable to the origin. We show that it is merely required
h(enx)

Cn

that a scaling sequence ¢, /" oo exists such that lim
n—o0

(Theorem 2.12). Previously, the limit needed to exist for any scaling sequence drifting to infinity.

is asymptotically stable to the origin

We can now propose a weaker version of Assumption 2.1.2 that also applies to the traditional
BMT setting.

Assumption 2.2.1. The functions h.(z) = h(iz),

c > 1, x € RY, satisfy that there exists a

sequence ¢, /00, such that he, (z) — hoo(z) compactly as n — co for some hy € C(RY), where
the ODE
#(t) = hoo(2(1)) (2.43)

has the origin as a asymptotically stable equiltbrium.
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2.2. DISTRIBUTED BORKAR-MEYN THEOREM

Notice that by the Lipschitz condition of h, a sequence ¢,, always exists such that h., () converges
compactly. Assumption 2.1.2, on the other hand, requires that any scaling sequence approaches
a suitable limiting function. The essence of the generalization is that we use a monotone scaling

sequence designed using c,,.

Theorem 2.12. Consider Theorem 2.1, with Assumption 2.2.1 instead of Assumption 2.1.2,

then sup||zy| < oo a.s..
n>0

We conjecture that the ideas behind Assumption 2.2.1 can also be applied to other generalizations

of the BMT, e.g., for set-valued recursive inclusions.

Remark 2.2.4. In their BMT paper, V. S. Borkar and S. P. Meyn (2000) mention that when
he(x) does not converge pointwise, then one can omit the fluid model as long as one can show

the statement of Lemma 2.11. In Remark 2.2.3, we saw that the essence for stability is (2.45).

Further, in the proof of Theorem 2.12, one sees how one can keep the fluid model by working with
a subsequence c,. Since a convergent subsequence can always be extracted, Corollary 2.13 below
clarifies that the convergence of he is immaterial for the stability of h; it only matters that h, is

“eventually” attracting towards the origin.

Remark 2.2.5. A generalization of the traditional BMT was proposed by Ramaswamy and Sha-
labh Bhatnagar (2017) using a version of the BMT for set-valued recursive inclusions. For every
z € RY, define hoo(z) = co{limsup, ,. {he(x)}}, where € denotes the convex closure. The
stability condition given by Ramaswamy and Shalabh Bhatnagar (2017) is that the differential
inclusion &(t) € hoo(x(t)) has an attracting set. While Assumption 2.1.2 implies both this condi-
tion and Assumption 2.2.1, it appears that neither of the two implies the other; Assumption 2.2.1
relies on one single convergent subsequence, while the set-valued condition relies on all convergent

subsequences.

We can now give a simple stability condition based on Theorem 2.12, which we apply in Chap-
ter 3. Notice that by Rademacher’s theorem, h(x) is differentiable almost everywhere. Thus,
the Jacobian matrix Dh(x) exists for almost every € R% Denote the largest eigenvalue of a

matrix by Amax (+)-

Corollary 2.13. Suppose that Assumption 2.1.1, 2.1.3-2.1.5 hold and in addition that

lim sup Amax (Dh(z)) <0, (2.49)

[lf| o0

then, sup||zy| < oo a.s.
n>0

With the insights form Remark 2.2.3, (2.49) can be weakened “<” instead of “<”.
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A weaker version of Assumption 2.1.3

We simplified the presentation of the previous sections using Assumption 2.1.3. A more general

version that is also useful is to replace Assumption 2.1.3 by

E[|M) 4| | F] < K? (1 +  sup \|(:U711,ki1, . .,x,?km)HQ) for some K > 0. (2.50)
0<ki;<7ij(n)

The presented analysis of distributed SA will hold with minor modifications with (2.50) in place
of the second part of Assumption 2.1.3. Notably, (2.25) will be replaced by

V)
=

i 2]2 N 2% D |"r%_$i—kiju
E (|02 <K [1+E[la¢mIP]* + > E|  sup e (2.51)

j=1 0<ki; <7ij(n)

E

and the recursive inequality in Lo will arise for ZD

1
o o7
et 1\ | *

ij=1 SUP0<k;;<rij(n) \ ~ s(m(n)) '

2.3 Stability of stochastic approximations with momentum

This section shows how the tools and techniques used to prove the distributed BMT can be
applied to SA with momentum. For easy reference, we recall the SA iteration with Polyak’s

heavy ball momentum from (1.13):

Tnt1 = Tp + a(n)my

my = Bmg_1 + (1= B)g(xx)

(2.52)

where m_; = 0, momentum parameter 8 € [0,1) and g(xy) = h(zg) + My41 with drift A and

Martingale noise My as before.

Theorem 2.14 (BMT for SA with heavy-ball momentum). Under Assumption 2.1.1-2.1.3 for
the stochastic heavy-ball iteration (2.52) (i.e., with 7;5(n) =0 for alln > 0) and a(n) € O(n?),
q € (1/2,1], it follows that (2.52) is stable almost surely.

Corollary 2.15. Under the assumptions of Theorem 2.14, the stochastic heavy-ball iteration
(2.52) converges almost surely to a potential sample path-dependent compact connected internally

chain transitive invariant set of the ODE (2.3).

As mentioned in the introduction, the proof idea for Theorem 2.14 is to rewrite the moving

average of the past drift terms using a determinism Aol sequence:

n n—7(n)—1
Tnp1 =2n+an)(1—B) | > B 7g)| +am)(1-8)| Y B gx)|. (2.53)
t=n—7(n) =0
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with deterministic Aol sequence 7(n) := [<=+"—— |. Further, define c¢(n) := > " (n) A"~ and

ZZ:O a(n) i=n—T1(n

define the tail error 6, == —~ Z:-L:_f(n)_l B g(x;). Tt is now not difficult to show that

— ¢(n)

1
supc(n) = lim ¢(n) = and sup —— < 1. 2.54
nZI()) ( ) n—00 ( ) 1—5 nz%) C(?’L) - ( )

The first important step is to show that the tail error vanishes almost surely.

Lemma 2.16. ||0,] € o(1).

N

Proof sketch. For a(n) € O(n1), q € (1/2,1]), Gronwalls inequality (see A.1) shows that E [||z,||?]
O (exp (n'7P)). Further, by construction 7(n) > cn? for some ¢ > 0. It then follows that

E[16.]%] € O ( ij gt exp(kl—%) (2.55)

k=0

€ O (" nexp (vi) € of1), (2.56)

where the last step uses that ¢ > % In the same way, using the martingale convergence theorem,

we can show that ||0,] € o(1). O
Next, write (2.53) as
Tpg1 = 2p +a(n) |h(zn) + M1 + e, + 54 : (2.57)

with a(n) = a(n)(1 — B)c(n) and

n—1 n
en ;:C(ln) S 5 () — b))y M ::c(z) S FTIMe | (259)

i=n—7(n) i=n—7(n)

Notice the similarity to Equation (2.4) with the addition of the error §,,. Equation (2.57) can
now be analyzed with the tools and techniques presented in Section 2.2. Specifically, (2.57)
is a SA iteration with martingale difference noise Mn+1, an error e, due to the deterministic
Aol sequence and the additional error d,, € o(1). Theorem 2.14 is now almost an immediate
consequence of the steps used to prove Theorem 2.1. However, small changes are necessary,

outlined in the appendix below.

2.4 Discussion and related work

Theorem 2.1 and Theorem 2.14 fill gaps in the existing literature, which are: 1) A stability the-
orem for distributed stochastic approximations with unbounded drift and unbounded stochastic
Aol 2) A convergence theorem for distributed stochastic approximations where information delays

have only an arbitrary moment bound 3) Stability theorem for general stochastic approximation
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iterations with heavy-ball momentum and a fixed momentum parameter. In particular, the core
assumption that makes the distributed BMT possible is Assumption 2.1.5. Further, point 2)
will be completed based on the properties of Aol and the existence of Aol-dominated random
variables with some moment bound established in Part II how to verify Assumption 2.1.5. Fi-
nally, we believe that through the ideas surrounding Remark 2.2.3, we identified a significant
potential to weaken the traditional local asymptotic stability assumption in the BMT to merely
local stability. We will now review and discuss related work on distributed SA and SA with

momentum.

If not otherwise stated, all of the following works consider decaying stepsizes that are not
summable but square summable. One of the earliest works on asynchronous distributed SA
dates back to D. Bertsekas (1982), who presented an abstract dynamic programming approach
in the presence of bounded communication delays. John N Tsitsiklis (1994) then proposed the
first asynchronous distributed SA algorithm for potentially unbounded delay, with assumptions
tailored towards Q-learning. The first asynchronous distributed SA of the form (1.5), which from
today’s point of view is in the standard form of an SA iteration, was considered by V. S. Borkar
(1998). Here, almost sure convergence is shown assuming stability and that the delays satisfy, for
some p > 0, sup,,>oE Tg(n) | ij(k),k <n—1| < oo a.s. This assumption is quite restrictive

compared to the unconditional version assumed herein, as the following example shows.

Example 2.4.1. Consider the fundamental Aol process (1.8) introduced in Chapter 1 and sup-
pose the events A(n) are i.i.d. Bernoulli(1/2). Then for any p > 0,
1 1
supE [7P(n) | 7(k),k <n—1]= -4 —supm”(n—1) = o0 (2.59)
n>0 2 2 n>0
The last inequality follows since, for every sample path, there is a non-zero probability that T(n)

reaches any desired level.

Example 2.4.1 shows that V. S. Borkar (1998) condition practically requires a delay moment
bound independent of the delay at the previous time step. Up until the works presented herein,
the literature then required sup,,>oE {Tg(n)} < oo for some p > 1 for almost sure convergence

to an equilibrium while assuming stability (V. Borkar 2022, Chapter 6).

As mentioned before, Shalabh Bhatnagar (2011) gave a stability theorem for general asyn-
chronous SAs with bounded delays. Specifically, a version of the BMT was shown to hold
under bounded delays and slightly stronger martingale noise assumptions than typical. We do
not require any of those restrictions. The key insights that enable this progress are the disclosure
of the crucial interplay between the algorithm Aol and algorithm stepsize and the recursive struc-
ture of the SA drift errors caused by Aol. But, it should be noted that the analysis presented by
Shalabh Bhatnagar (2011), or the more recent version by Yu, Wan, and R. S. Sutton 2023, also

consider asynchronous updates due to clocks with different speeds. This can be included in the
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framework under the assumptions presented therein. Finally, in (Ramaswamy, Shalabh Bhatna-
gar, and Daniel E Quevedo 2020), a stability and convergence theory for asynchronous SA with
biases was developed that also incorporates delays when the p > 1 moments are bounded. The
crucial stability condition is that the distance to an associated projective scheme is bounded al-
most surely, which holds for approximate value iteration without delays. However, this condition
does not naturally hold for asynchronous gradient-based optimization or momentum-SA methods
studied herein. Further, the boundedness condition has to be verified, considering delays, which

will practically require bounded delays, bounded drift or another condition to be applicable.

Beyond general stochastic approximation iterations, several works have been on distributed
gradient-based methods with delays. We review the relevant literature in the next chapter,
which focuses on distributed SGD. We will now close this chapter with related work on SA
with momentum. Momentum methods have been extensively studied for gradient-based schemes
since the seminal works by Polyak (1964) and Y. E. Nesterov (1983). During the last decade,
momentum-based methods have received attention due to their success in machine learning
(Sutskever et al. 2013; Wilson et al. 2017). Notably, momentum has been shown to improve the
rate of convergence and has also been shown to help in the avoidance of saddle points (Jin et al.
2017).

One of the most studied momentum schemes is SGD with Polyaks heavy-ball momentum, known
as the stochastic heavy ball (SHB) method. SHB was studied extensively in the last years (Gadat,
Panloup, and Saadane 2018; Y. Liu, Gao, and W. Yin 2020; Sebbouh, Gower, and Defazio 2021;
Jun Liu and Yuan 2022). Notably, Barakat and P. Bianchi (2021) recently presented a detailed
analysis of momentum-based gradient schemes using a dynamical systems approach. Jun Liu
and Yuan (2022) proved for the first time that SHB’s last iterate converges almost surely to a
stationary point of non-convex objective functions. The assumptions are typical for a stochastic
approximation analysis (V. Borkar 2022, Sec. 2). The natural question is, therefore, whether
general stochastic approximations with heavy ball momentum converge to an equilibrium. We
gave an answer to this question with Corollary 2.15, which establishes the convergence of the
scheme to an invariant set under the BMT condition. In other words, when the drift function
of the SA momentum scheme has only isolated equilibria and the conditions of Corollary 2.15

hold, then (1.13) converges to an equilibrium.

Stochastic approximation iterations with momentum have also recently seen more attention due
to their use in reinforcement learning. Devraj, Busi¢. and S. Mcyn (2019) presented a matrix
momentum SA method with optimal asymptotic covariance for a class of linear stochastic ap-
proximations. Mou et al. (2020) studied Polyak-Ruppert averages for linear SA with heavy-ball
momentum. A specific one-dimensional SA estimator with heavy-ball momentum was studied

for estimating change rates of web pages by Avrachenkov, Patil, and Thoppe (2022). Finally,

50



Deb and Shalabh Bhatnagar (2022) and Deb and Shalabh Bhatnagar (2021) presented a BMT
style theorem for multi-time scale stochastic approximations. The authors then analyze linear
temporal difference learning with heavy-ball momentum, which can be viewed as a multi-time
scale stochastic approximation. Notably, the above analyses of linear SA with heavy-ball mo-
mentum use time-varying momentum parameter 5, ' 1. Instead, we are not restricted to linear
SA and allow an arbitrary fixed momentum parameter. Furthermore, the analysis herein can
also be extended to momentum parameters 3, ' 1, which will be essential to study with moving

average form a version of Nesterov acceleration applied to SA Su, Boyd, and Candes 2016.

2.5 Proofs of Chapter 2

Proof of Lemma 2.3. Define B = sup,>qb,. Let n > 0, then for all m < n, y,, < c,B +
L 221:—01 apYk, as ¢p is monotonically increasing. The discrete Gronwall inequality thus implies
that

Yn < coBelM. (2.60)

Now consider N < oo as defined by condition (2.18) in Lemma 2.3. Then,

N
Yn+1 < cN41bvg1 + L Z akYk (2.61)
k:N+1—AN+1
N
< CN+1bN+1 + CNBeLt(N)L Z ag (2.62)
k:N+17AN+1
< enpibyr +en B — 1) (2.63)
< ey Beft ), (2.64)

where the second inequality uses (2.60) and that both ¢, and ¢(n) are increasing; the third
inequality applies the definition of IV; and the last inequality again uses that ¢, is increasing and

that byy1 < B. It now follows by induction that
Yn < cpBeH ) (2.65)

for all n > 0. By using this inequality in (2.17), we obtain

n—1
Yn < bncn +L Z kY, (266)
k=n—Ay
n—1
Sbpen+L Y apepBe) (2.67)
k=n—Ag
n—1
<cn [bn+BLEMN ST ap ] | (2.68)
k=n—An,
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Proof of Lemma 2.4. Equation (2.35) leads to

1

D Hxﬁ;—xﬁﬂ‘j(n)” 293 2 n—1 -
E, & <2KD a(k 1+ sup E, |||[z(t(k 2

2 ) Y ] {1+ s B [l

b k=n—A.(n)

1

« D (B A

+2kD Z a(k) Z = s(m(n)l)]( )
k=n—A;(n) i,j=1

(2.69)

. ) 2
D loh—a? ol 1
Define y, = > E, (W) , Cp = <1+ sup E, [|§:(t(k;))]|2]2), L == 2KD,

ij=1 k<n—1
n—1
b, = 2K D? > a(k‘)) as well as a,, = a(n) and A,, = A,(n) as evident. The lemma
k=n—A.(n)
now follows from Lemma 2.3. O

Recall that we used m(n) to map from a discrete time-step n to the corresponding interval

[T(n)s Tin(n)+1) in continuous time. Hence, m(n) is clearly not one-to-one. However, having

an “inverse” of m(n) will now become useful, i.e., a map n(m) that sends the m-th interval to
n(m)—1

the discrete time-step n corresponding to Tp,. Specifically, T, = t(n(m)) = > .=y’ a(i) for a

unique strictly increasing sequence n(m)  oo.

Proof of Lemma 2.5. Fix m > 0 and n(m) < n < n(m + 1). Insert Lemma 2.4 into (2.28) for
E, [-], then

E. [Ilz(tn + 1)I2)7 < E. [|3¢@)IP)* (1 +a(n)K)

k<n—1

1 n—1
+a(n) | Ky + KoK <1+ sup E. [||a:~<t<k:>>||2}2> S alk)

Since ZZ(:WZLEL))A a(n) <T+1 and ||Z(t(n(m)))] < 1, a simple recursion shows that
1
E- [[l2(t(n + 1)*]* < exp(K1(T + 1) (1 + Ky (T +1))

1 n —1
+ exp(K1 (T + 1)) K2 K3 (1 + sup E. [[|2(t(k))|] 2) a(k) Z a(l) | |
ksn—1 k=n(m) I=k—A (k)

(2.71)

1
where we used that 14 a(n)K; < exp(a(n)K1). As E; [[|2(£(0))[?]> < oo, it follows from (2.71)
1
that E; [[|2(t(n))[|?]2 < oo for every fixed n > 0. Further, it follows from Assumption 2.1.5 and
Zn(erl)fl a(n) < T +1 that Zzzn(m) a(k) < f;li—Az(k) a(l)) € o(1). The lemma statement is

n=n(m)
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now immediate from these two conclusions, (2.71) and the following simple property that can
be shown by induction: Let {z,},{b,} be a non-negative sequences in R?, such that z,,; <

C(1 + by supy<,, zx) With b, € o(1), then sup,,>q 2, < 0o.

O

Proof of Lemma 2.6. By Remark 2.2.1, it is enough to show that P <én converges | EZ> =1 for
all z > 0. By the convergence theorem for square-integrable martingales (see A.2) it is enough
to show that - - E, [Ha(n)Mn+1H2 | fn} < o0 a.s. for the filtration F,, defined in Assump-
tion 2.1.3. By contradiction, it is enough to show that E, [ano a(n)’E, [HMnH 12 | an < 0.
Using (2.25) for E, [-], we have that

E. | an)E. (|80 | Fa] | = Y a(n)’E. |80 (2.72)
n>0 n>0
o om 1\ 2
<Y a0 | b (1LeE. eyt + S | (12 D]
_TLEO P(EZ) ’ ij=1 : s(m(n)) ’
(2.73)

Lemma 2.4, Lemma 2.5 and the square summability of a(n) (Assumption 2.1.4) therefore imply
that (2.73) is finite and the statement follows. Notice that the equality follows by the tower
property, since F, € F, N E, as F, is a g-algebra for all n > 0. O

Proof of Corollary 2.7. We have that

n

1 .

L s(m(k))a(k) M. (2.74)

Sty 2 “IME =

= m(n) =
Now for every sample point, there are two scenarios:
1) s(m(n)) is bounded, then ZZ,:Os(Tn(k))u(k)]\%z+1 converges by Abel’s test for infinite
series.
2) s(m(n)) is unbounded, then m ZZ:Os(m(k))a,(k)Z\ZIZ+1 — 0 by Kronecker’s lemma
for infinite series.

It follows that m > ro a(k‘)Mé’_’_1 converges almost surely. As all n—7;;(n) — oo a.s. implied

by Assumption 2.1.5, the corollary follows. O

Proof of Lemma 2.8. Fix an interval m > 0 and n(m) < n < n(m + 1). Then the rescaled

iteration satisfies

#(t(n +1))

E(t(n)) + a(n) |hym) (2(E(n))) + én + Mn+1] ; (2.75)
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using the functions h.(-) from Assumption 2.1.2. Moreover,

n Tij(n H
lén] <LZ () (2.76)

1,j=1

To simplify the presentation, define a point-wise upper bound for all 7;;(n), i.e., define 7(n) =
max{7;j(n) | 1 <1i,j < D}. Notice that 7(n) is a stochastic bound in contrast to the deterministic
bounds used in Lemma 2.5. As the number of iterations is finite (D < o0), it follows from
Assumption 2.1.5 that Zk n—(n) a(k) — 0 almost surely. Starting from (2.9), we now obtain
that

Z < KD a(k 14+ sup ||z(t(k
> ) X ) mp laE)D

n—1

+ZH L ek 277)

,] 1 k= TL—T,L'J'(TL)
nl D] — =] |
—7i5 (k)
+ KD a(k) S,
DD P CIC)

where we again used the monotonicity of s(m(n)). Please notice the similarity to (2.35) and the
recursive structure arising in (2.77). Also, notice that the third term in (2.77) converges to zero
by Corollary 2.7. As before we use Lemma 2.3 to conclude that there is a constant K4 > 0, such

that

||.Tn—.1‘il i (n || n—1
Z um! g <1+ sup Hﬁc(t(k))H) S ak) (2.78)

i,j=1 S(m<n)) k<n—1 k=n—7(n)

Iterating the rescaled iteration (2.75) now yields, for 0 < k < n(m + 1) — n(m),

#(t(n(m) + k) = £(t(n(m)) + 3" a(n(m) + i)hugu Et(n(m) + 1))
1=0

- (2.79)
+ Z a(n(m) +14)épm)+i (Cn (m) CAH(W)) ’
=0

with [[hg(m) (Z(E(n(m) +14)))|| < K (1+ [|2(t(n(m) +1))||) . The convergence of the accumulated
rescaled martingale noise (Lemma 2.6) now implies that Supnonan < o0 a.s.. Hence, there is
sample path dependent constant B > 0 such that supnzo\\én\\ < B. With
Z a(n(m)+i) <T+1
0<i<n(m+1)—n(m)
and ||Z(t(n(m)))|| < 1, it follows that

k—1
12(t(n(m) + k)| <1+ K(T+ 1)+ K Y a(n(m) +i)|[2(t(n(m) +1))]
=0 (2.80)

+ ) aln(m) +i)llenmm)+ill + 2B

i

kol
—_

Il
o

o4



The traditional discrete Gronwall inequality (see A.1) now shows that

[Z(t(n(m) + k)| < (1 +K(T+1)+2B+ Z )+ )€ m) +¢||> exp(K(T +1)) (2.81)

for 0 < k <n(m+1) —n(m). By combining (2.76), (2.78) and (2.81) we arrive at

[Z(t(n(m) + k)| < (1 + K(T' +1) + 2B) exp(K(T + 1))

k—1 n(m)+i—1
+exp(K(T + 1)) LK, (1 +  sup \:ck\) > aln( > a(k)
k<n(m)+k—1 i=0 ke=n(m)+i—7(n(m)+i)
(2.82)
The stability of Z(¢) now follows analogously to the conclusion in Lemma 2.5. O

Proof of Corollary 2.9. Combine (2.76) and (2.78), then apply Assumption 2.1.5 and Lemma 2.8.
O

Proof of Corollary 2.2. Under Assumption 2.1.1 - 2.1.5 it follows from Theorem 2.1 that z,, is
almost surely stable. Using Lemma 2.10 it then follows that z,, 11 = zp,+a(n)[h(x,) +en+ Myi1]
with e, € o(1). The convergence now follows from the SA literature; e.g., (V. Borkar 2022, Sec.
2.2). O

Proof of Theorem 2.12. Lemma 2.11 also holds for the sequence ¢, with the limit A, i.e., there
exist ¢o > 0 and 7' > 0 such that for all initial conditions z on the closed unit ball, || ¢, (z,t)| < 3
for t € [T, T+ 1] and ¢,, > ¢o. Now fix this 7' > 0 and follow the construction of the approximate
T-length intervals as described at the beginning of Section 2.2. We will now define a new scaling

sequence s(m) to replace the scaling sequence in (2.12). Specifically,
s(m) = max{inf {¢, | sup||Z(T7)|| < ¢n},1}. (2.83)
n>0 <m

Observe that s(m) is again by construction monotonically increasing with the property that
s(m) > ||Z(T),)||- It follows that the analysis presented in Section 2.2 holds for this new scaling
sequence. It follows that the line of argument in Theorem 2.1 holds for the new scaling sequence

with minor modifications, which we present for completeness.

Fix a sample point where the analogs of Lemma 2.6 and Lemma 2.10 hold for the new 7" > 0
and the new scaling sequence. Now suppose that sup,,~¢l|Z(T)| < oo does not hold, then
sup; <, [|7(17)|| ,/* co. Observe that s(m) is, in essence, a subsequence of c,,, where some elements
get repeated. By construction, s(m) thus inherits the convergence properties from {c,} and
hsm)(x) = hoo(x) uniformly on compact sets. As before, let 2™(t), t € [T, Tmy1], be the
unique solution to the ODE #(t) = hy(,,(x(t)) with initial condition 2™ (T,) = Z(T}n). The new
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Lemma 2.11 thus shows there exists some M > 0 such that for all initial conditions on the closed

unit ball, |z™(¢)|| < 5 for t € [T, T + 1] and m > M.

Next, we again consider those timesteps where s(m) increases, i.e., let {m(k)}r>1 C {m}m>1,

be those timesteps where s(m(k)) > s(m(k) — 1). In other words,
s(l) = s(m(k)) (2.84)

for all I € {m(k),...,m(k + 1) — 1}. Consider now the first m(k), such that m(k) > M
and supse(p,,, 7, 12(t) — 2™ ()] < % for m > m(k) by the new Lemma 2.10. As before, the
contradiction arises when we consider the last interval where s(m(k)) is used as a scaling factor.
We have that

Z(Tik+1)) i - ~ )
P = lim 2@ < lim o 2D+ lim |2() — 2™FTD )] < 1
s(m(k)) t/Tm(k+l)” 0l < t/Tm(k+1)|| ol t/‘Tm(,H_l)H (t) @l

(2.85)

This is a contradiction since Ty, (411 is by construction a timestep where s(m) strictly increases,
hence T(T5,(k41)) > s(m(k)). We conclude that sup,,~qs(m) < oo almost surely, and the

theorem follows as before from Lemma 2.8. O

Proof of Corollary 2.13. We will verify Assumption 2.2.1. Pick any sequence ¢, > 1 with

¢m /" 00. The Lipschitz continuity of h(zx) yields that {h.,, (z) : m > 0} is an equicontinuous,
pointwise bounded family of continuous functions. The Arzela-Ascoli theorem (see A.1) thus
shows that the family is relatively compact in the subspace consisting of continuous functions,
equipped with the topology of compact convergence. In other words, there is a subsequence m(n),

such that h (w) converges to some limit i () uniformly on compact sets. Define c,, == ¢y, ().

Cm(n)

It is left to show that 4(t) = hoo(x(t)) has the origin as its unique globally asymptotically stable
equilibrium.
Condition (2.49) implies that there is some radius 7 > 0 and some € > 0, such that Apax (Dh(z)) <

¢ whenever |z|| > r. Fix 2 € R? and some arbitrary y € R? with ||y|| > r. Now apply the gradient

theorem for Lipschitz continuous functions (see A.1) to every coordinate of h, then

1 _
h(CnfL‘) _ h(y) _ (/0 Dh(y—I—t(cn:E _ y))dt) M (2.86)

Cn Cn Cn

Thus, heo(x) = nh_{glo (fol Dh(y + t(cpx — y))dt) x with Apax (Dh(y + t(cpz — y))) < € for all ¢, n.
Using basic calculus and linear algebra, we conclude that for every z € R, hoo(z) = A (x)x
for some matrix A (z) € R with A\pax (Aso(x)) < &. Thus () = heo(z(t)) is globally
asymptotically stable to the origin by LaSalle’s invariance principle; see, e.g., (V. Borkar 2022,
Appendix B). O
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Proof of Lemma 2.16. We shall only discuss a proof for ¢ = 1 to simplify the presentation. Recall
that the heavy ball iteration is

Tpy1 = Tn +a(n)(1 - B) [Z ﬁn_ig(fﬂi)] ; (2.87)

=0
with g(xy,) == h(xy) + Mp+1. Then using Gronwalls inequality (see A.1), the linear growth of h,
E [[[Mn41]?] < K*(1 +E [||z]?]), and Assumption 2.1.4 it follows that

E [||zn?] < Cn? (2.88)

for some constant C' > 0. With this, it follows from the martingale convergence theorem (see
A.2) that 3 o a(n)% converges almost surely. A second use of Gronwalls inequality then

shows that ||z,| € O(n). Finally, we conclude that

n—7(n)—1 n—7(n)—1

lBale O > B A+ D B Ml
=0 =0
With 7(n) oo, the lemma follows after a small calculation. O

Proof of Theorem 2.14. First, observe that Mn+1 is also a zero-mean martingale difference se-
quence with respect to F, = o(xg, M1,...,M,),n > 0 . Using the Lipschitz continuity of h, it
follows that
n—1
leall <L D" B Hlan — mill. (2.89)
i=n—7(n)
Analogously to Section 2.2, we can now derive recursive inequalities in Lo and in norm. We will

illustrate this for the Ly case. Define €, = Zl ner(n) B W n — 2]

Using a telescoping sum, (2.57) and [|h(x)| < K(1 + ||z|| we have for n > i that
- n—1
fon — 24l < Z DK+ ) + 13 60 +Z j)Le; + Z Mol (290)

1 1
Since E [||Mp41]?]2 < K(1+E [||lzn?]?), the new martingale noise sequence satisfies

- 1 1 n . - 1
2|2 — 2] 2
E IVl < o5 30 8 I ] (2.91)
i=n—7(n)
j—1
K 217 4 j—i 213
<15 [ LHEleal]? + > BTE [l —wil)? ) (2.92)
i=j—7(j)
1
where we used (2.54). Now define the Ly error sequence €2 = Z?:_ﬂ} ) B E [lzn — 2i]?] %,

where by (2.92) each term satisfies

1 n—1 n—1 1

E [lon —ail®]® <) a()Ki(L+E [la)]2) + ) al KzeL“rZ E[o;17)2 . (2.93)

J=t J=t
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2.5. PROOFS OF CHAPTER 2

for some constants K1, Ko > 0. Thus, using (2.54), we have that

n—1
K 1
éfzz < : (14 sup E [”%”2] 2) Z a(j)
1-5 j<n—1 Pt
K2 n—1 1 ne1l .
o X a0 | v | X a0E[s)): (2.9
j=n—7(n) j=n—7(n)

The similarity to the recursive inequality (2.35) should be clear. The same inequality will hold
when the sequences are scaled by the monotone scaling sequence used in Section 2.2. Notably,
we do not need to use Egorov’s Theorem here since the Aol sequence is deterministic. We can
thus apply the new Gronwall-type inequality Lemma 2.3. As E [HénH?]% < &2 evaluating the
recursion for €22 leads to the required L bound for é,. Furthermore, from (2.90), we also arrive
at a recursive inequality for €, itself. The stability analysis in Section 2.2 then goes through using
the Ly bound and the norm bound for €, along exactly the same line of argument. The tail error

0, only adds neglectable terms in the analysis. We omit the details to avoid redundancies. [

Proof of Corollary 2.15. Theorem 2.14 shows that there is sample path dependent radius R > 0,
such that z,, € Br(0) for all n > 0. It thus follows that é, < %. Further, using the martingale
convergence theorem yields that » %, a(j)M;11 converges almost surely. Assumption 2.1.5 then
implies that Z?:_il a(j) — 0 for all n —7(n) <i <n—1. It then follows that the right-hand side
of (2.90) converges to zero almost surely and thus (2.89) shows that |le,|| — 0 almost surely.
Equation (2.57) is, therefore, again a standard SA iteration with vanishing additive error, and

the corollary follows. O
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Chapter 3

Distributed Asynchronous Stochastic
Gradient Descent Methods

As a first application of the theory developed in Chapter 2, we consider DASGD applied to a
decentralized optimization problem as sketched in Example 1.0.1. As mentioned in the introduc-
tion, the most common examples of this class of problems are ERM problems over deep neural

networks.

Consider the unconstrained stochastic optimization problem mil}i F(z) with objective
z€eR

F(z) = [ f(z;§)dP(§) (3.1)

m\

for some random function f:R? x Z — R.

Suppose the global optimization variable z = (z1,...,2p) € R%, with d = Zil d;, is the
concatenation of local variables x;, where a set of workers controls each local variable. To solve
the problem, systems calculate sample partial derivatives V, f(+, £) to adapt their associated local
variable. We assume that the systems do not know the distribution of £, but for the computation
of every sample partial derivative, use a local i.i.d. realization & of . Further, suppose the
systems work asynchronously and are potentially physically distributed. Together, asynchronous
computing and communication will then induce Aol sequences 7;;(n) for the component iterations
of the updated global variable. The complete algorithm is presented in Algorithm 1. Each local
variable is then effectively updated by the following asynchronous distributed SGD iteration

starting from some initial value :cé € R%:

x:’b-’-l = .%‘Zn — a(n)vxif(l‘}l_ﬁi(n), e 7xil—7'ii(n)’ e ,x,,?_TD’L_(n); 6;1) (32)

We will now formulate conditions to apply the theory developed in Chapter 2.



3.1. ASSUMPTIONS AND MAIN STATEMENTS

Algorithm 1 Asychronous Distributed SGD Algorithm with D components

1: Initialize the master iteration with zg € R? and a stepsize a(n) > 0 for all n > 0.

2: for the entire duration do

3: for each worker associated with component i do

4: Receive an SGD job (master iterate and a data sample).
5: Wait for the completion of other jobs in the worker queue.
6: Compute stochastic gradient.

7 Send computed gradient to the master of component i.

8: for the master of component i do

9: Receive stochastic gradient V. f(2/,¢’) from some worker.
10: Update iterate: a' < z° — a(n®)V,: f(2', ).

11: Request current iterate from other masters.

12: Send the worker a job (sample iterate ' and a new data sample ¢£’).
13: nt+n'+ 1.

3.1 Assumptions and main statements

Denote the Hessian matrix of f with respect to x by H, f(z;&). Further, |H,f(x;&)|| denotes

the induced matrix norm on R? and Amin(+) denotes the smallest eigenvalue of some matrix.

Assumption 3.1.1.

1) f(x;&) is twice differentiable in x for P-almost all €,

2) sup,||E[Hy f(z;§)]]| == L < oo,

3) E[|IVaf(z; O] < K1+ ||z]|?) for all z € R? for some K > 0.
4) lim inf )\min (E [fo(m, 5)}) >0,

[l]| o0
Theorem 3.1. Under Assumption 2.1.4, 2.1.5 and 3.1.1 the DSGD iterations (3.2) converge

almost surely to a limit point T, such that V,F(xs) =0, i.e. a stationary point of (3.1).

For Assumption 3.1.1, we have that each of the following two conditions in addition to Assump-

tion 3.1.1.1 and 3.1.1.2 imply Assumption 3.1.1.3:

1) ¢ has finite support, i.e., |Z| < oo, which is typically for machine learning applications.

2) |Vaf(x; Ol < 191 + ||z||) for some measurable function g : = — R, such that
E [g(f)Q] < 0.

Observe that Assumption 3.1.1.3 allows that the gradient V,F(z) is unbounded. Such objectives
are not covered by the unconstrained optimization setting considered in (Zhou et al. 2022).
Assumption 3.1.1.4 is the stability condition to apply the theory developed in Chapter 2. Useful

conditions that imply Assumption 3.1.1.4 are:
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1) F(z) = G(z) + ||z||? for any Ly regularization coefficient x > 0, where G(x) satisfies
Assumption 3.1.1 and that G(z) € o(||x[|?).
2) F(x) = G(zx) + L||z||?, where G(z) satisfies Assumption 3.1.1 with L > 0 and G(z) is

coercive, i.e., G(x) — oo as ||z|| — o0

Remark 3.1.1. With the insights from Remark 2.2.3, we can further weaken Assumption 3.1.1.4
and merely require that ‘l‘ln? inf Apin (E [Hy f(2;€)]) > 0. This asymptotic positive-semi definite-
Z||—00

ness condition of the expected Hessian holds whenever F(x) is coercive, which can be shown using

the mean value theorem for vector-valued functions (McLeod 1965).

An important class of problems that becomes available for distributed SGD under large delays

are quadratic objectives:

Example 3.1.1. Consider
f@;6) = xT Az +b(¢) ", (3.3)

where E[A(£)] € R¥? is a positive definite matriz with E [||A(§)|*] < oo and E [||b(&)?] <
00. Assumption 3.1.1 holds for (3.3) and Theorem 3.1 thus shows (3.2) converges to the global
minimum of F(z) =z TE[A(E)]z + E[b(¢)]" 2.

Remark 3.1.2. Assumption 3.1.1.3, implies that V , f (x; £) is uniformly integrable for every open
neighborhood of some x € R®. It thus follows from Lebesque’s dominated convergence theorem
that the sample gradients are unbiased (Barakat and P. Bianchi 2021), i.e., E[V,f(z;€)] =
VE[f(z;€)] = Vo F(x) with objective F' from (3.1).

3.2 Analysis

We apply the theory developed in Chapter 2. Define h(z) == —V,F(x) and h.(z) = —VoFlez)

C

Further, by Assumption 3.1.1.1 and local approximation of the Hessian using gradients, Assump-
tion 3.1.1.3 also implies that H, f(z; ) is uniformly integrable for open neighborhoods, such that
E[H,f(z;¢)] = HyF(z). Assumption 3.1.1 now implies three simple auxiliary Lemmas.

Lemma 3.2. F(x) is coercive.

Proof. The Lemma follows from Assumption 3.1.1.4 by applying the mean value theorem for
vector-valued functions, (McLeod 1965), two times for F'(z) and V,F(z) to obtain a quadratic
form for h(x). O

Lemma 3.3. h(x) is Lipschitz-continuous, with Lipschitz constant L > 0 from Assumption 3.1.1.2.

Proof. The lemma follows directly from Assumption 3.1.1.2 and the mean value theorem. O
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3.2. ANALYSIS

Lemma 3.4. limsup Ayax (Dh(z)) <0

[[]| o0

Proof. The lemma follows directly from Assumption 3.1.1.4. OJ

Proof of Theorem 3.1. Rewrite the SGD iterations as

i1 = T, +a(n) [h(ff}l_m(n)» S ) + M),

n—7;p(n)

with M}, = V,F(x!

n—7i1(n)? "

. ,xrl?_m(n))fvxif(q:}]_m(n), e ,xf_m(n),gg). Lemma 3.3 shows
that h(xz) Lipschitz continuous and thus satisfies Assumption 2.1.1. Next, since £, are i.i.d.,
Assumption 3.1.1(c) yields that Assumption 2.1.3 holds for M,,;;. Finally, Lemma 3.4 shows
that the condition in Corollary 2.13 holds. Hence, Corollary 2.13 shows that z,, is stable almost
surely and converges almost surely to a potential sample path-dependent compact connected
internally chain transitive invariant set of the ODE #(t) = h(x(t)). By Lemma 3.2, F' is coercive
and thus a Lyapunov function for @(¢) = h(x(t)), hence the only possible invariant set is the set

of critical points of F', which is non-empty as F' is coercive. O

3.2.1 Rate of convergence

Next, we are interested in the almost sure rate of convergence of DASGD as a function of Aol
moment bounds. To analyze the rate of convergence of DASGD, we use a slightly stronger version

of Assumption 3.1.1.2.

Assumption 3.2.1.

1) f(x;€) is twice continuously differentiable in x for P-almost all &, further YV, f(x;€) and
H, f(x;€) are continuous in &.

2) sup,|Hy f(z;€)]| == L < oo.

3) The sample space Z is compact.

4) timinf A (B [Ho f (@:6)) > 0.

]| —

Objective functions parameterized by neural networks with Gaussian error linear units (GELUs)
are the prime examples that satisfy Assumption 3.2.1.1 (Hendrycks and Gimpel 2016). Thus,
Assumption 3.2.1.1 is no restriction. For more discussion on GELUs, we refer to Chapter 4.
Further, for most applications, datasets are given and preprocessed, guaranteeing that the sample

space Z is compact or even finite.

From Assumption 3.2.1 it follows that Assumption 3.1.1 holds and moreover that

sup|[Hy f (2 €)|| < oo, (3.4)

I’E
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hence

IVaf(2:€) = Vaf (y; )l < L'llz —y]| for all 2,y € R and { € = (3.5)

for some L’ > 0. This point-wise Lipschitz inequality enables a straightforward rate of conver-
gence analyses of (3.2) using the obtained stability from (2) and telescoping, which is a classical
tool in gradient and stochastic gradient descent analysis (Goodfellow, Bengio, and Courville

2016).

Theorem 3.5. Under Assumption 2.1.4, 2.1.5, 3.2.1 the DASGD iterations (3.2) converge al-

most surely to the set of stationary points with almost sure rate:

n k—1
1+ Zkzoa(k‘) kz . a(m)
min [|V.F(z)[2 € O W ke ®) (3.6)
e > a(k)

n—1
Theorem 3.5 shows that the almost sure rate is determined by the convergence rateof > a(k),
k:n—nj (TL)

which was the key sufficient condition for the distributed BMT developed in Chapter 2. In other
words, its convergence determines both stability and the convergence rate. We are now interested

in optimizing the convergence rate by suitable Aol-dependent stepsize choice.

3.2.2 A rate optimal stepsize rule from Aol moment bounds

Based on (3.6), we now present a rate optimal stepsize rule. The theorem is stated at this point

of the thesis due to its close connection to Theorem 3.5. However, the proof will be discussed in
n—1
Chapter 5, after we establish a better understanding Y. a(k). We state the theorem by
k:TL—Ti]' ('I’L)
using stochastic dominance as defined in Definition 0.0.6.

Theorem 3.6. Consider the setting of Theorem 3.5, such that all T;;(n) are stochastically dom-
inated by random variable T with E[TP] < co, p > 0. Further, apply the stepsize rule:

1 1
a(n) = ﬁ with q == min{§ <1 + p> ,1} and ¢ > 0 forp > 1. (3.7)
If p > 1, then
min [V, Py} € 0 25)), (3.8)
else:
min [V P ()3 € of1) (3.9

Remark 3.2.1. For p € (0,1], we can pick a(n) = to obtain at least a slow

(&
(n+1) log(n+2)
L ) Practically, we observed that it is better to use a(n)

convergence rate in O (m

- (nj—l)
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3.3. NUMERICAL VERIFICATION

for p € (0,1], though it theoretically only guarantees i n&in |VoF(xk)|3 € o(1). We expect that
=0,...,n

it is possible to select a better stepsize for p € (0,1] to obtain a rate better than O (m),

but worse than O (m), since we at least have to choose a(n) € O (%) to ensure stability.
Theorem 3.6 provides a strong characterization that with probability one, all trajectories of
DASGD (3.2) converge to a stationary point. Further, the stepsize is chosen for p > 1 to
optimize the convergence rate. In an asynchronous computing setting, the “slowest” system will
then give rise to the convergence rate as it leads to the smallest p to obtain a moment bound.
In general, more heavy-tailed traffic slows down the convergence rate, and for less heavy-tailed
traffic, we have that as p — oo the rate approaches the almost sure rate of SGD (Jun Liu
and Yuan 2022). Next, numerical experiments are present that verify the stepsize recipe from

Theorem 3.6.

3.3 Numerical verification

We simulate a distributed computing scenario to verify the stepsize rule proposed in Theorem 3.6.
Specifically, we consider K = 100 systems with heterogenous processing times that follow a
Pareto distribution with exponents in p € [2, 6], implying that the p-th moment of the processing
times is bounded (Cinlar and dCimlar 2011). One system is chosen with p = 2, while all other

systems get a Pareto exponent chosen uniformly at random from [2, 6].

For the optimization problem, we consider an approximation problem where a quadratic function

g : R? — R should be approximated on the subset [0,1]?> C R? by a linear map

Zl

22

L. RS R, 20 [xl,;ﬁ] + a3, (3.10)

with parameter vector x = (2,22 2%) € R3. The function g is given as a black box, and only

input-output tuples (z,¢(z)) can be sampled. Using Algorithm 1, we are looking for the linear

map that minimizes

F(z) = E.(Ls(2) — 9(2))°, (3.11)

where 2z are sampled uniformly from [0, 1]2. For the computing systems, we let three-fourths of the
systems update (2!, 2?) and the other one-fourth update 3. This adds additional inhomogeneity
and emulates a non-uniform assignment of workers to subspaces of an optimization problem.

For the simulation, we focus on the polynomial the stepsizes a(n) = m and compare:

1) The largest possible (slowest decaying) stepsize to guarantee stability and convergence, i.e.,

Amaz = % + § according to Theorem 3.1, for some arbitrary small § > 0.
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2) The smallest possible (fastest decaying) stepsize, i.e., gmin = 1, such that Assumption 2.1.4
still holds.
3) The proposed optimal stepsize rule from Theorem 3.6, i.e. gopt = % (1 + %) = %.

The simulation then runs Algorithm 1 for all three cases. It is easy to see that the assumptions
of Theorem 3.6 are satisfied, which therefore predicts that gopy should guarantee the fastest
convergence of |VoF(zy)| to zero. As F(x) is convex, the limit is the global minimum and,

thus, the optimal linear approximation.

Figure 3.1 and Figure 3.2 show the resulting comparison of the three runs. During simulation,
IVoF (xy)| is evaluated by numerical integration. Figure 3.1 plots the rolling average with
window length 1000 to better capture the convergence rate. Figure 3.2 plots the raw data. We
see that gopt indeed provides the best asymptotic convergence rate. On the other hand, gmax
can at least provide a good approximation in finite time, but the initial rapid progress with
gmax Stagnates after 10000 steps, where it has not yet decayed sufficiently to compensate for the
effect of the Aol. This lack of compensation to counter Aol is especially visible in Figure 3.2,
which shows the high variance of the optimization run with guax. Still, the effect of the Aol is
also clearly visible for gopt, for which we can observe better Aol compensation even in a close
neighborhood to the optimal value. The aforementioned properties can be expected to be even
more severe when Algorithm 1 is applied to large-scale non-convex machine learning problems run
on parallel computing infrastructure. In such cases, choosing the right stepsize will be essential
to accelerate the training. Theorem 3.6 thus provides important guidelines for stepsize selection.
Combined with the results to be presented Chapter 7 on predicting Aol from processing time
data, we have therefore established a fundamental framework to connect processing time data

with convergence rate prediction - the core answer to the second part of (Q2).

3.4 Discussion and related work

Various distributed and asynchronous implementations of SGD have been proposed throughout
the last two decades. The initial rise of deep learning came with GPUs, which made training
modestly-sized neural networks practical (Raina, Madhavan, and Ng 2009). The GPU acts
as thousands of smaller CPUs working in parallel on a subspace of the optimization problem.
However, this approach is limited to training models that fit into GPU memory. The same idea
has been used to divide the optimization space among multiple computing nodes, known as model
parallelism (Krizhevsky, Hinton, et al. 2009). Conventionally, model parallel synchronous SGD
training has been implemented as a synchronous algorithm, where all coordinate gradients are
collected from all systems to apply a complete sample gradient. When waiting for other systems

is omitted and processing does continue, we arrive at DASGD with a single system for each
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Figure 3.1: Comparison of three stepsize schedules for the proposed linear approximation problem. The graphs

show the rolling average with a window of length 1000.
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Figure 3.2: Comparison of three stepsize schedules for the proposed linear approximation problem. The graphs

show the raw data of Figure 3.1.
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subspace. This is also known as the inconsistent write/read model (Ji Liu and Wright 2015).

In (Dean et al. 2012), the authors proposed downpour SGD, which implements a version of
the aforementioned synchronous SGD several times in parallel to update a single model asyn-
chronously. This is known as data parallelism. In the same work, practically less-than-ideal
speedups have been reported for constant stepsizes due to varying processing times across dif-
ferent systems, leading to many systems waiting for the slowest system in a synchronous SGD
run to finish a given phase of computation (Dean et al. 2012). When the waiting in downpour
SGD is omitted, we arrive at the full DASGD algorithm. It is shown in (Lian et al. 2015) that
even when the Aol is bounded, ASGD with constant stepsize a > 0 can only be guaranteed to
converge to a neighborhood of a stationary point with radius in O(a?>7?), where T' > 0 is the
Aol bound. Here, the neighborhood is a function of the objectives’ smoothness and a bound
on the sampling variance. This information is not available without estimation during runtime
for typical deep-learning problems. In other words, the stepsize can not be chosen to guarantee
a small neighborhood. More importantly, the distance to a stationary point may become sig-
nificant when the number of systems increases since 1" typically is in the order of the number
of systems. We conclude that constant stepsizes are unsuitable for scaling DASGD to a large,

potentially varying number of systems without overheads for synchronization.

In the decreasing stepsize regime, two recent developments for DASGD with large, unbounded
Aol exist. Zhou et al. (2022) show that fast decaying stepsizes have to be chosen to counter
large unbounded deterministic delays. The assumption of deterministic delays is crucial in this
analysis, which only covers data parallelism. As we saw, we instead concluded the results from
Theorem 2.1 on distributed stochastic approximation algorithms under stochastic Aol. The con-
nection between processing time distributions and Aol will be further discussed once we establish

the Aol in distributed computing modeled as parallel point processes in Chapter 7.

Distributed SGD with bounded information delays was first considered in (J. Tsitsiklis, D. Bert-
sekas, and Athans 1986). Here, it was sketched for the first time that delays may be allowed
to grow sublinearly relative to a global clock when a sufficiently rapid decaying stepsize is cho-
sen. Finite time error bounds for asynchronous SGD algorithms under convex stochastic objec-
tives, constant stepsizes, and bounded delays were proposed in (Agarwal and Duchi 2011) and
(Feyzmahdavian, Aytekin, and Johansson 2016). Finite time bounds for the mean square vari-
ation of the mean gradient of SGD under a time-varying stepsize were proposed in (Lian et al.
2015) for general non-convex objectives and bounded delays. Almost sure convergence of SGD to
stationary points under merely locally Lipschitz continuous gradients with noise-dependent Lip-
schitz constants was proven in (Ramaswamy, Redder, and Daniel E Quevedo 2021a). However,
stability and the delay conditions proposed in (V. Borkar 2022, Chapter 6) were assumed. Vari-

ous finite-time, mean-square-error bounds for ASGD algorithms have been proposed throughout
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the last decades for bounded delays Agarwal and Duchi 2011; Feyzmahdavian, Aytekin, and Jo-
hansson 2016; Lian et al. 2015. We refer to Mishchenko et al. 2022; Anastasiia Koloskova, Stich,
and Jaggi 2022 for the most advanced mean-square-error bounds for delay-adaptive ASGD ver-
sions that assume Aol in the order of the number of workers. Instead, this chapter focuses on

almost sure asymptotic convergence rate estimates for the complete DASGD version.

Regarding delays, the closest to the present chapter is (Zhou et al. 2022). The delays considered
therein are potentially large and unbounded but are assumed to be deterministic. We claim
that it is more representative to work with stochastic delays, which complicates the analysis
significantly, as we saw in Chapter 2. The algorithm considered in (Zhou et al. 2022) is SGD,
where multiple nodes compute updates for a single global variable. The authors focus on two
scenarios: general non-convex objectives and variational coherent objectives. The authors use
projected asynchronous SGD in the second scenario to ensure stability and a potential compact
convex constraint. Then, an elegant analysis based on energy functions is used to ensure global
almost sure convergence. The second scenario is not the scope of this work, and we instead
compare it to the first scenario, which considers asynchronous SGD without projections for an
unconstrained non-convex optimization problem with objective F(x) = E¢[f(z;£)]. The paper
shows that li_>m E [[|[VoF(zn)|?] =0, i.e., the gradient converges in mean square, where here the
expectationnis O\:/ith respect to x,,. We provide conditions showing ||V, F'(z,)|| — 0 a.s. at an Aol-
dependent almost rate. This provides a strong characterization for every individual trajectory
of the algorithm and shows that practically every instantiation of the algorithm converges to
a critical point. Furthermore, the presented analysis holds under weaker assumptions. Both
analyses require that E¢[V, f(x;&)] is Lipschitz continuous. The analysis in (Zhou ct al. 2022)
requires that sup,cpa Ee[||[ Vi f(2;€)]/?] < co. We only require that E¢[||V,f(z;€)|]?] < K(1+
|lz||?) for all z € R? for some K > 0 and we thus even allow the objective gradient V,F(zx) to
be unbounded. In addition, using the insights from remark 2.2.3, we merely require that F'(x)

is coercive to apply the established distributed BMT.

In summary, the analysis covers for the first time the stability of DASGD for a wide class of
objectives in the presence of large unbounded stochastic delays without bounded first moment.
Further, with Theorem 3.6, we provide an Aol-dependent convergence rate that was verified
by numerical examples in the previous section. Hence, this provides the core answer on the
convergence rate raised in (Q2). In Table 3.1 below, we summarize the progress in the literature
on the asymptotic convergence analysis of DASGD. We concentrate on the most relevant previous
works with unbounded delays. As mentioned before, there is a wide literature on delay-adaptive

ASGD methods on a single variable iteration with bounded Aol, which we do not consider here.
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Stability | a.s. | Unb. Aol | Aol p € [0,1] | Unb. drift | Distributed | Rate
1] X v v X(p>1) v v X
2] v X v X (determ.) X X X
3] v X v X(p>2) v X v
This v v v v v v v

Table 3.1: Asymptotic convergence results for ASGD and DASGD. [1] — (Ramaswamy, Redder, and Danicl E
Quevedo 2021a), [2] — Zhou et al. 2022, [3] — X. Zhang, Jia Liu, and Zhu 2020.

3.5 Proofs of Chapter 3

Proof of Theorem 3.5. The proof is instructive since we already know that x, is stable and
convergent almost surely from Theorem 3.1. The proof, in essence, uses a standard telescoping

sum approach. To streamline the presentation, we concentrate on the single coordinate iteration:
Tp+1l = Tn — a(n)vxf(xn—fr(nﬁ &n)- (3.12)

First, recall the effect of the Aol process. The errors due Aol that arise at each step in (3.2) are:

n—1
IV f (@n sy én) = Vaf @ni&a)| < Lllon e —aall L' 3 g —all - (3.13)
k=n—(n)
n—1
<Y alB)IVa @orqoi &)l (3.14)
k=n—1(n)

with L' from (3.5). Using Assumption 3.2.1 and the stability of x,, from Theorem 3.1 it follows
that

n—1
Hvxf(xn—ﬂ—(n)Q fn) - v:cf(xna fn)H <0 Z a(k) : (3'15)
k=n—7(n)
Next, with the Lipschitz continuity of V,F(x) it follows that
L
F(znt1) < F(xn) + (Vo F(2n), Tng1 — an) + §H$n+1 — 2%, (3.16)

where (-,-) is the dot product and for this proof ||-|| is the Euclidean norm. See (Y. Nesterov
2003, Lemma 1.2.3) for a proof of (3.16).

Next, add to zeros and write (3.12) as
Tpt1 — T = a(N) Ve f(Tp_r(n); §n) = a(n) (Vo F(zn) + en + Myi1), (3.17)

with e, == Vo f(Tn_rmn);&n) — Vaf(wn;€n) and Myiq = Vi f(2n;6) — Vo F(3,). As before,

M, 11 is the zero mean Martingale difference sequence as &, are i.i.d., and e, is the error due to
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Aol at the n-th master iteration step. Then, using ||a + b+ c||? < 4(||al|3 + ||b]|*> + ||c[|?), (3.16)
yields that

F(zn41) < Fzn) — a(n)Her(xn)H2 — a(n)(VaF(2n), en) — a(n)(VaF (zn), Mpi1)

) ) ) ) (3.18)
+a(n)?2L (Vo F(za) |l + lleall® + [|Mn11]%)
Rearranging the inequality and using the stability of z,,, we arrive at
a(n)HVIF(xn)\P < F(zn) — F(znt1) — a(n)(VeF(zn), en) — a(n)(Va F(2n), Mny1) (3.19)
+ a(n)*2LC
for a sample path-dependent constant C' > 0. Finally, sum the expressions over n = 0,...,¢ and
evaluate the telescoping sum, then
t t
Y a)|[VeF (@) [* < F(zo) = Flan) = Y a(n){VoF (), en)
n=0 n=0
. . (3.20)
=Y " a(n)(VaF (zn), Mps1) + Y a(n)*2LC.
n=0 n=0

The second summation on the right-hand side converges almost surely as t — oo by the mar-
tingale convergence theorem (see A.2). Finally, use that Y o ; a(n)? < oo, Cauchy-Schwarz and

again the stability of z,, to conclude that

> a)|VaF(za)|* < €' (1 + a(n)HenH> (3.21)

for a sample path-dependent constants C’ > 0. Thence,

min [V F () < C (Zt ot Z’%B“Zik"‘) (322)
n=0 n=0

The first term in Equation (3.22) is in line with the known almost sure rate of convergence

estimates for SGD (Jun Liu and Yuan 2022, Theorem 1). The second term represents the

reduction in the convergence rate due to Aol. As described in the paragraph prior to Theorem 3.5,

the stability of z,, yields that ||e,| € O (Zn_l ) a(m)) . Hence, (3.6) as stated in the theorem

m=n—r(n

follows. O
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Chapter 4

Distributed Asynchronous

Reinforcement Learning

Multi-agent actor-critic algorithms (MAAC) are an important and popular class of Deep RL
algorithms for intelligent decision-making in MAS (Arulkumaran et al. 2017). Popular MAAC
algorithms, like the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm by
Lowe et al. (2017), assume instant access to global data (agent policies, their action sequences,
and their global state information) to train coordinated decentralized policies. This training
paradigm is called centralized training with decentralized execution. This central perspective can
be justified when the training involves an accurate simulator of an environment. In other sce-
narios, observations and decisions are inherently local and prone to communication errors and
delays. Thus, algorithms that rely on a centralized paradigm are unsuitable for truly distributed
online multi-agent learning problems. For such scenarios, we propose the Distributed Deep De-
terministic Policy Gradient (3DPG) algorithm, a flexible, fully distributed algorithm for Markov
Games that only uses local, potentially old communicated information. The 3DPG algorithm and
its asymptotic convergence analysis were presented in (Redder, Ramaswamy, and Karl 2022a).
Preliminary analysis and experiments were presented in (Redder, Ramaswamy, and Karl 2022c¢)

and (Redder, Ramaswamy, and Karl 2022d), respectively.

3DPG is a naturally distributed extension of the single agent DDPG algorithm from Lillicrap
et al. (2016). It enables coordinated but fully distributed online multi-agent learning. 3DPG
learns coordinated policies using global data agents collected during training communicated over
a network. Agents then use local data to make decisions. In other words, individual actions
are not globally coordinated, but the average behavior is coordinated. 3DPG only requires that
the agents exchange information (local states, actions, and policies) imperfectly: information
might be lost or significantly delayed, causing data to have a random age once it arrives, which

is described herein by Aol random variables. We analyze 3DPGs convergence under particularly



4.1. MARKOV GAMES

weak Aol assumptions for the MAS. As in the previous two chapters, the modest assumptions
allow for potentially unbounded Aol with an arbitrary moment bound and make no deterministic
requirements regarding data availability. Besides modest Aol assumptions, we require some

additional conditions to ensure convergence.

Despite their popularity and usefulness in many practical scenarios, the conditions under which
AC and MAAC algorithms converge are not well studied — we address this gap and discuss
practically verifiable and sufficient conditions for DDPG, 3DPG, and MADDPG to converge
asymptotically. The result is based on recent progress in understanding the convergence be-
havior of Deep Q-Learning (Ramaswamy and Hullermeier 2021). Such convergence guarantees
and analyses are generally difficult, even for traditional single-agent DeepRL algorithms. In
the single-agent case, RL algorithms with linear function approximations are well-studied, but
algorithms that use non-linear function approximators like DNNs are poorly understood. At
best, convergence is only characterized under strict assumptions that are difficult to verify in
practice, e.g., L. Wang et al. (2019) assume that the state transition kernel of the Markov de-
cision process is regular; this questions the practical usefulness of such analysis. The behavior
of multi-agent DeepRL algorithms is even more challenging since the various agents’ training
processes are intertwined. Analyses with linear function approximation are therefore common
(K. Zhang et al. 2018; Kumar, Koppel, and Ribeiro 2019). It is thus pertinent, both from a
theoretical and a practical standpoint, to analyze, under practical assumptions, the asymptotic
properties of multi-agent DeepRL algorithms with non-linear function approximation. In addi-
tion to these challenges, the analysis of 3DPG takes into account that agents communicate local
data, resulting in DataAol as introduced in Chapter 1. The considered modest Aol assumption
determines how old the DataAol can be, such that the 3DPG agents can converge jointly to a

global policy of the state Markov process of the environment, which we define as a Markov game.

4.1 Markov games

In MAS, the global state of the environment is typically the concatenation of the agents’ local
states, while the global state is usually unobservable by any agent. The global state transitions
to a new state after each agent has taken its local action. After the global state transition, the
agents receive local reward signals. The structure of the local reward signals depends on the

nature of the interaction between the agents: do they cooperate or compete?

As before, we use superscripts ¢ for the agent index in the MAS. We assume that the MAS under
consideration can be modeled as a D agent Markov game (Littman 1994), which is a decentralized
Markov decision process with factored state-action spaces and agent-specific rewards. The high-

level interaction of the D agents with their environment was already sketched in Figure 1.6.
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Formally, a Markov game is defined as the 4-tuple (S, Ap, {ri|1<i< D}) , with the following

components.

S = Hizl S’ is the global state space, with 8% == R the local state space of agent i.

A = Hizl A' is the global action space, where an action a = (a',...,a”) € A denotes the
joint action as a concatenation of local actions a' € A" C Rdi, d' > 0.

p is the Markov transition kernel, i.e. p(- | s,a) is the distribution of the successor state of
state s after action a is executed.

' is the local scalar reward function associated with agent i. Specifically, 7(s, a) is the local

reward that agent ¢ observes when the system is in state s and the global action a is taken.

In many cooperative Markov games, the local reward functions coincide, i.e., 7 = rfor 1 < i < D.
Such models are called factored decentralized MDPs (Bernstein et al. 2002). We consider the
more general Markov game model. As a consequence, the analysis covers a wide variety of

scenarios, including cooperative and competitive ones.

Consider a D agent Markov game as defined in above. The D agents interact with the environ-
ment at discrete time steps n > 0. At every time step n, agent i observes a local state s% € S°,
based upon which it must take a local (continuous) action a’, € A* C RY| for which it receives a
reward 7/ . Suppose that the local behavior of agent i is defined by a local deep neural network

(DNN) policy 7(s’; ¢?), parameterized by a vector ¢’. Define the associated global policy as
7= (r,...,7P). (4.1)

For each 7, the return starting from time step 1 is defined by R’ = > (s, ay) with
discount factor 0 < v < 1. Given a global policy 7, the associated action-value function @’ of
agent i is given by Q'(s,a) = E, [Ri | s1=s,a1 = a]. For each local reward function 7?, the
associated optimal policy is characterized by the optimal action-value function Q% (s, a), which
is defined as a solution to Bellman’s equation (D. P. Bertsekas and J. N. Tsitsiklis 1996, Section
5.6):

Ql(s,a) =Ey i |r'(s,a) + v max QL(s',d) | s,a (4.2)
’ a'e
The problem is to find local policy parametrizations ¢ for each local policy 7¢(s’; ¢'), such that

for every agent i:

(st Pl) = argmjx Qi(s,a)‘ﬂ#i Vs € S. (4.3)
a'e

In other words, all local policies should act optimally conditioned on the local policies obtained by

all other agents. To achieve this, we propose 3DPG, a fully decentralized actor-critic algorithm.
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4.2. THE 3DPG ALGORITHM

4.2 The 3DPG algorithm

To get a first idea, let us view 3DPG as a multi-agent version of DDPG (Lillicrap et al. 2016), the
most popular AC DeepRL algorithm. DDPG involves two DNNs: an actor (policy) network and
a critic (Q-function) network. The actor-network is trained to approximate the optimal policy,
and the critic network is trained to approximate the optimal Q-function. More specifically, the
critic network is trained to minimize a variant of the squared Bellman error, while the actor-
network is trained to pick actions that maximize the approximation of the optimal Q-function,

as found by the critic. Notably, both the critic and actor networks are trained simultaneously.

In 3DPG, each agent only has access to a locally observable state (a part of the global state), can
exchange information with other agents imperfectly, and takes actions that affect both its local
state and states observable by other agents as described by the Markov game. To pick actions,
each agent uses a local actor/policy. To train its local policy, each agent uses a local critic/Q-
function approximation. The local policies are functions of the local agent states, constituting the
global (multi-agent) system state. We assume that all agent clocks are discrete and synchronized.
After all agents pick an action, they obtain local rewards at every discrete time step. Each agent
then uses a local copy of DDPG (as explained above) to train a local actor while simultaneously
training a local critic with respect to the global decision-making problem associated with its local

reward structure.

_ -~ Global state sample

7
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‘r \ / Gradient Flow
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Figure 4.1: Illustration of the 3DPG architecture at agent 1. The local critic is evaluated for action a =

7(8; $r1(n)) of the local approximation of the global policy. See Section 4.2.1 for details.

To perform the actor training step, the agents use local policies from other agents transferred
via a potentially imperfect communication network that, e.g., causes delays. The training step
at each agent may be viewed as calculating a local policy gradient using the best approximation
of the current global policy. The resulting 3DPG architecture at agent 1 of a D agent system

is illustrated in Figure 4.1. In addition to the old policies of other agents, all local actor and
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critic training steps use data (states, actions) of other agents transferred via the communication
network. This gives a quasi-centralized view based on information with potentially significant

Aol to facilitate online training and execution of 3DPG.

Similar to the distributed SA iterations discussed in Chapter 2, we will conclude with results
of Chapter 5 that 3DPG converges even when the Aol associated with the used information of
other agents during training merely has an arbitrary moment bound. The convergence in the
presence of such potentially significantly outdated information (the local states, actions, and
policies from other agents) is achieved by using diminishing step-size sequences, ensuring that
after some time, the change of the agents’ local policies does not grow significantly larger than

the step sizes. The asymptotic properties of 3DPG are:

1) Alllocal critics converge to a set of DNN weights such that the local Bellman error gradients
are zero on average with respect to limiting distributions over the global state-action space.
2) All local actors converge to a set of DNN weights such that the local policy gradients
(taking into account the final policies of all other agents) are also zero with respect to the

same limiting distributions.

The aforementioned limiting distributions are shaped by the agents’ accumulated local experi-
ences. More specifically, the global data tuples received by agents through communication form
local limiting distributions such that all critics and actors converge jointly in expectation to sta-
tionary points with respect to these limiting distributions over the global state-action space. In
that regard, no agent can improve its performance locally with respect to its limited distribution
of the training process and the limited policies of the other agents. Under suitable assumptions,
this implies that 3DPG agents converge to a local Nash equilibrium of Markov games. Notably,
this is achieved although every agent may have a different local reward structure, i.e., irrespective

of whether they cooperate or compete.

4.2.1 Algorithm description
Multi-agent actor-critic learning

To implement 3DPG for a Markov game, each agent 4 initializes a local DNN approximator
Q' (s, a; 0%) for its local critic, where 6 represents the associated vector of network weights. The
local critic is trained using the Deep Q-Learning algorithm, (Mnih, Kavukcuoglu, Silver, et al.
2015), to find #¢ such that Q(s,a;0.) ~ Qi(s,a) for all state-action pairs (s,a). Each agent
further initilizes a local policy 7'(s’; ¢') parameterized by ¢’. The goal is to jointly train the
local critics and actors so that (4.3) holds. This is challenging due to the potential conflicting

rewards of the agents.

Consider that at some time step n, the local critic and actor parametrizations are 6% and ¢¢.
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4.2. THE 3DPG ALGORITHM

Further, suppose agent 7 gets access to a global data tuple
tin = (Sm, am, Ti(sma am); Sm+1) (4.4)

from some transition from time m to m + 1 with m < n. The availability of at least some
global tuples must be ensured by coordinated communication between the agents. This will be
discussed further in the following subsections. Now, if agent ¢ had access to the parametrizations

of the other agents, then it could calculate a local critic gradient

Vil (0L, dn,th,)

. ) , , . . , (4.5)
= Vi Q" (8m; am; 0y,) (rl(smv am) + Q" (Sm+1, T(Smi1; @n); 05,) — Q" (Sm, Am; 92))

Equation (4.5) is a sample gradient of the local squared Bellman error of @ for the observed

global tuple t¢,,, which follows from the associated error in Bellmans equation (4.2).

Now, there are two possible ways to formulate a ‘“natural” distributed version of the policy

gradient in the DDPG algorithm The first one is the local policy gradient

vdﬂ'gf\/IADDPG(G:’w (biw Sm,) a%ffz) = vdﬂ'ﬂ-i(sjn; (bil)vaiQi(Sm’ a11nv s 771-1'(5371; qﬁz)? R av?z; 911)7

(4.6)

which is used in the MADDPG algorithm presented by (Lowe et al. 2017). The second one is

v¢ig§DPG<9;7 ®n,s Sm) = V¢,mri(sfn; ¢%)VcﬂQi(sma W(Sm; ¢n))7 9;)7 (47)

which will be used in the 3DPG algorithm. The MADDPG local policy gradient uses the actions

aﬁz ¢

m»

from the other agents from the global tuple ¢. , while the local policy gradients in 3DPG
use the policies ¢>£7“ from the other agents. In the following, we use V¢¢gi for (4.7) to simplify

the notation.

Remark 4.2.1. The subtle difference between (4.6) and (4.7) will be analyzed in Section 4.4.3.
Based on the asymptotic convergence analysis of MADDPG and 3DPG we will argue that a multi-
agent actor-critic algorithm based on (4.7) has a higher probability of obtaining a better policy
faster compared to a multi-agent actor-critic algorithm based on (4.6). This is because (4.7) takes
precisely into account how other agents would behave in certain sampled states. Equation (4.6),
on the other hand, also considers the sampled actions that may arise from randomly explored

actions. The numerical experiments in Chapter 9 support this theoretical prediction.

Remark 4.2.2. The local policy gradient (4.7) seems to have a more direct motivation from the
deterministic policy gradient theorem (DPGT) (Silver et al. 2014) in comparison to (4.6). The
DDPG algorithm was inspired by taking samples from the DPGT. Similarly, the gradient (4.7)
can be motivated by inserting the global product policy (4.1) into the DPGT. Thus Equation (4.7)
is, in essence, the policy gradient from the DDPG algorithm (Lillicrap et al. 2016), where the
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policy is defined in product form (4.1). Finally, it must be noted that the sample gradients used
i DDPG, MADDPG, and 3DPG are not true sample gradients from the deterministic policy
gradient (Nota and Thomas 2019).

The idea behind 3DPG is to approximate (4.5) and (4.7) using old information from other agents

to train @' and 7 locally. To implement this, the agents require:

1) Local access to global data tuples ti_,
2) Local access to the global policy 7(s; ¢p,),

for m < n “frequently" (the precise network assumptions are presented in section 4.2.2). Recall
that in MADDPG, the above information is required for all agents at every time step. These are
reasonable assumptions for simulated environments or under the paradigm of centralized training

with decentralized execution but not for online, fully distributed learning.

Approximate global policy induced by local Aol

Using communication, we now decentralize the implementation of (4.5) and (4.7); we use commu-
nicated but potentially aged local policies to approximate the true global policy ¢,. We suggest
a communication paradigm where agents cooperatively forward local data to other agents, such
that local policies and local data (states and actions) can flow via the network to all other agents.
To guarantee this, the agents must use a flooding protocol, e.g., (Lim and Kin 2001), to forward
old policies ¢, between the agents as well as a coordinated communication protocol to ensure
that at least some global tuples (4.4) reach each agent “frequently”. For the coordinated com-
munication protocol, one could use broadcast protocol coupled with a central coordinator or a
distributed snapshot protocol (Chandy and Lamport 1985), which would cost more communica-

tion resources. For now, suppose that the agents run suitable protocols of this kind.

Consider now that each agent runs a local algorithm to train its policy, generating a sequence
¢! of associated policy parametrizations. Equipped with the ability to transfer data via the
available network, the agents exchange the local parametrization ¢!, as well as local tuples t¢, :=
(st al, sz +1) using the communication network that possibly delays or loses data for extended

periods. Hence, agent ¢+ has only access to qﬁj

ni—ri3(n) for every agent j # ¢ at every time step

n. Here, qﬁfl —ris(n) denotes the latest available policy parametrization from agent j at agent ¢
at time n and, as in the previous section, we refer to 7;;(n) as the associated Aol process as a
consequence of the potentially uncertain and delaying communication. For every agent i, we can

then define a global policy parametrization associated with the aged information at time n by

. D
(le(n) = ( n—ri1(n)r ¢”—TD1(W«))' (48)

This global policy will serve as an approximation to the true global policy ¢,,.
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4.2. THE 3DPG ALGORITHM

The 3DPG algorithm

The previous paragraph explained how a D agent multi-agent system has to use an available
network to exchange their local policy parametrizations ¢, and their local tuples (s, a?,, s, 41)-

We can now state the 3DPG iterations.

Suppose that every agent i maintains a local replay memory R%. At every time step n, the
memory can contain up to N old global transitions t/ . At time step n, agent i samples a
random minibatch of M < N transitions from its replay memory. Agent i then updates its critic

and critic using step-size sequences «(n) and [3(n), respectively:

Z:‘H—l - 0 +O( ZVQle na¢7’(n )
(4.9)
n+1 ¢Z + ﬁ Z v¢l ms ¢Ti(n)7 Sm)

Notice that for a single sample, the gradients used in (4.9) are the gradients (4.5) and (4.7)
where the global policy ¢, has been replaced by the local approximation of the global policy
¢ri(n) induced by the aged parametrization (4.8). The resulting training architecture was al-
ready presented in Figure 4.1; the figure shows the backpropagated gradient flow for 3DPG
during training. The detailed training algorithm will be presented in Algorithm 5 alongside
the numerical experiments in Chapter 9. We will now present the assumptions to prove the

convergence of MAAC iteration (5). We begin with the required network /Aol assumptions.

4.2.2 Assumptions
Network assumptions

The communication network needs to ensure two things. First, it must ensure that every agent ¢
receives the policy parametrizations qﬁ% for all j # 4 “sufficiently” often. Second, it needs to
ensure that the available samples in the replay memories R?, are not too old. To capture the
age of the samples in the replay memories, define the DataAol random variable A*(n) as the
age of the oldest sample in the replay memory R, of agent i at time n > 0. With the DataAol
random variables, the 3DPG iterations (4.9) can now be expressed in the form of the introductory
iteration (1.2), with Aol 7;;(n) and A(n).
Assumption 4.2.1.

(a) Policy communication assumptions:

For alli, j, the actor-critic stepsize a(n), f(n) and the Aol sequences T;;(n) guarantee that
nl yo(k) = 0 a.s. andenT ) B(k) =0 a.s.
)
(

k=n—T;;(n
(b) For alli,j, the actor-critic stepsize a( ) (n and the Aol sequences T;(n) guarantee that
Z:rlz—Ai(n) a(k) =0 a.s. and Zk i) B k) = 0 a.s.
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As before, Assumption 4.2.1 requires a trade-off between the tail distribution decay of the Aol
variables 7;;(n) and A’(n) and the choice of the AC stepsize sequences. We will see in the next
chapter that this can be ensured with a dominating random variable with an arbitrary moment.
As in Chapter 2, Assumption 4.2.1 ensures that the use of the approximate global policies ¢i(,)
instead of the true global policy ¢, in (4.9) does not cause gradient errors asymptotically. Finally,
Assumption 4.2.1(b) is used in Lemma 4.9 to show that the agents’ experiences converge to a
stationary distribution. Specifically, Assumption 4.2.1(b) ensures that the agents receive enough
global tuples asymptotically to “track” the Markov game state distribution, which will answer
(Q3) for the presented MARL setting. This is the first time that these assumptions are considered

for data availability in multi-agent learning.

Remark 4.2.3. Assumption 4.2.1(b) does not specify when ezxactly the global samples become
available to each agent and the received data tuples do not have to be from the same time steps

m for every agent.

Algorithm and Markov game assumptions

In addition to the network assumptions, we require the following assumptions:

Assumption 4.2.2.

(a) The critic step size sequence c(n) is positive, monotonically decreasing and satisfies: a(n) €
O(n™9) forqe (%, 1].
(b) The actor step size sequence B(n) satisfies:
2 nzo (a(n) = B(n)) < oo
Assumption 4.2.3.

(a) sup,>o|lfn|| < 0o a.s. and sup,,>¢ll¢nl| < oo a.s.

(b) sup,>ollsnl| < 00 a.s. and the action space A is compact.
Assumption 4.2.4. The state transition kernel p(- | s,a) is continuous.

Assumption 4.2.5. The actor policies 7, and the critics Q' are fully connected feedforward
neural networks with twice continuously differentiable activation functions such as Gaussian Error

Linear Units (GELUs).

Assumption 4.2.6. The reward functions ' : S x A — R are continuous.

Assumption Assumption 4.2.3(a) is the strongest assumption as it requires almost sure stability
of the algorithm. Practically, we are, therefore, characterizing 3DPG limit points if 3DPG is
observed to be stable. We will further discuss the stability assumption in the chapter-specific

conclusions and related work Section 4.5. However, the results can also be combined with recent
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4.2. THE 3DPG ALGORITHM

results on clipped gradient-based algorithms (Ramaswamy, Shalabh Bhatnagar, and Saxena

2023), which will enable us to remove the algorithm stability assumption.

The compactness of the action space in Assumption 4.2.3(b) will usually be satisfied in many
applications, e.g., in robotics. The Assumption 4.2.3(a) can be relaxed to an arbitrary real

dimensional space without a sample path-dependent boundedness condition; see (Ramaswamy

and Hullermeier 2021).

In Assumption 4.2.1(b), we require that the critic and actor step-size sequences are chosen such
the critics and actors asymptotically run on the same time scale, i.e., updated in the same order

of magnitude. An example step size sequence is presented in Figure 4.2. A necessary but not
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Figure 4.2: Illustration of step size sequences that satisfy Assumption 4.2.1

sufficient condition for Assumption 4.2.1(b) is that % — 1. This is not a traditional assumption

for actor-critc algorithms (V. S. Borkar and Konda 1997). The traditional actor-critic analysis
assumes % — 0, which implies that the critic runs on a faster time scale. Instead, we will
present a proof based on a single-timescale analysis of (4.9) with respect to the timescale of
the critic iterations. In practice, we may still want the critic to converge faster, so we would
initially choose a(n) larger than (n). Assumption 4.2.1(b) requires that afterward, the iterations
asymptotically take steps of asymptotically the same size. The more difficult analysis using a

two-timescale step-size schedule is still an open question, which requires the study of set-valued

dynamics.

Remark 4.2.4. [t should be noted that although a two-timescale analysis with a critic on a faster

time-scale has a long tradition and an intuitive motivation, a convergence analysis of critic-actor
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learning for tabular settings has also presently been proposed by Shalabh Bhatnagar, V. S. Borkar,
and Guin (2023). Here, the actor is the one running on the faster time-scale. A single time-scale

analysis, as discussed herein, can thus be seen as a merge of the aforementioned two perspectives.

In Assumption 4.2.5, we require twice continuous differentiable activations used by the policy
and actor networks. GELUs are well-known examples that satisfy this property (Hendrycks and
Gimpel 2016). Additionally, GELUs are a well-known neural network activation function with
similar high performance across different tasks compared to other well-known activations like
ELUs or LeakyReLUs (Ramachandran, Zoph, and Le 2017). We now present the convergence

theorem.

4.3 Convergence theorem and Nash equilibria

Theorem 4.1. Under Assumption 4.2.1-4.2.6, the 3DPG iterations (4.9) converge to limits 07

and ¢ almost surely, such that
Vo ([ 10 s il d)) 0 (4.10)
SxA
Vo ([0t (5. )) =0, (.11
S

where pt_ is a limiting distribution of a continuous time measure process (defined in Section 4.4.2)
that captures the experience of agent i sampled from its local experience replay R:, during training.

Further, all il are stationary distributions of the state Markov process:
o (dy x A) = /S P(dy | 2, 7(x; boo) i (d X A). (4.12)

Theorem 4.1 shows that the critic iterations of 3DPG converge to stationary points of the average
local squared Bellmann errors. Further, the actor iterations converge to stationary points of the
average local deterministic policy gradients. For both limits, the averaging is with respect to
the stationary distributions of the state Markov process that captures the experienced samples

of the agents.

The next vital question is whether the stationary points guaranteed by Theorem 4.1 are local
minima for the critics and local maxima for the actors, but not saddle points. This is generally
a challenging problem in non-convex optimization, but we shall discuss briefly how to tackle it.
First, since stochastic gradient descent schemes tend to avoid unstable equilibria, (Mertikopoulos
et al. 2020; Vlaski and Sayed 2021; Ge et al. 2015), we can expect that the aforementioned
stationary points are local minima/maxima with high probability. We plan to make this more
precise in the future using avoidance of traps analysis (V. Borkar 2022, Ch. 4), which requires

assumptions on the noise effecting the 3DPG iteration to ensure that unstable equilibria are
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4.3. CONVERGENCE THEOREM AND NASH EQUILIBRIA

avoited. With this, we could conclude that 3DPG converges to the local solution of the objective
(4.3) with high probability.

The previous paragraph highlights that we can generally expect 3DPG to converge to local
minima under suitable noise conditions. In this case, it is immediately from the policy gradient
update of the actors that the limit is a local approximate Nash equilibrium. To formulate such
a statement, denote the final local policies by 7 (s?) := 7(s; ¢%,). For any open set U with
0 € U in the parameter space of 7 (s%), define the open neighborhood IT'_ (i) = {7*( - ;¢°) :
@' € ¢, + U} in the space of policies.

Corollary 4.2. Suppose that the stationary point of the local policies are local maxima, then
there are open sets U* with 0 € U*, such that

(@), ), TR ()0 s, A) (4.13)

> [ Qi(s, i (s),...,7(s),...,m2(s); 0 ) ui (s, A)
for all 7 € TIL (UY).
Proof. Follows by assumption, as 7¢_(s) would be a local maximum of
AQi(s,w;(s),...,w,.,...,wg(s);e;)ﬂgo(s,A)

in the space of policies 7 with the same DNN model as 7¢_(s). O

The statement of Corollary 4.2 describes that for a given local reward structure, the agents
converge to an equilibrium where they have no desire to change their policies by a small amount
given their local experience and the final policies of the other agents. In other words, (4.13)
formalized that agents converge to a local Nash equilibrium, (Prasad, LA, and Shalabh Bhatnagar
2015), with respect to their locally approximated action-value functions. Specifically, the local
policies converge to a local Nash equilibrium with respect to the local expected action-value
functions [¢ Q"(s,- ;605 )i (s, A) based on the experience gathered by each agent represented
by the local limiting distributions z{_. In game theoretic terms, these are the payoff (or utility)

functions with respect to which the agents converge to a local Nash equilibrium.

The significance of corollary 4.2 is that the agents converge to a local approximate Nash equilib-
rium without assuming that the samples used in training are from a known stationary distribution
of the state Markov process. Instead, it is shown that the experience of the agents gives rise to
stationary distributions of the state Markov process. This is important, as deep MARL algo-

rithms are typically employed in complex environments with multiple stationary distributions.

Finally, we close this section with a promising set of assumptions that can guarantee convergence

to a global approximate Nash equilibrium.
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Assumption 4.3.1. Assume that

1) the local policies are parameterized by a linear combination of non-linear features.

2) the local critics are parameterized, such that each —Q'(s,a;0%) is an input-conver neural
network in the i-th action input (Amos, L. Xu, and Kolter 2017) with softplus activation
function (Goodfellow, Bengio, and Courville 2016).

Corollary 4.3. Suppose that Assumption 4.3.1 holds and that the limiting critic weights are

non-negative (i.e., the coordinates of 6 are non-negative), then
Qi(s, i (s),..., 7w (s),..., 72 (s); 0 )l (s, A) (4.14)

> [ Qs m(8)s o T (5), - TR (8); 05 )ik (5, A)
for all policies T with the same parameter space as '

Proof. Under Assumption 4.3.1, Amos, L. Xu, and Kolter (2017, Prop. 1) show that —Q%(s, a; 6%)
is input convex in the i-th action coordinate since —Q%(s,a;6") has strictly monotone activa-
tions and the limiting weights are by assumption non-negative. Combined with the linearity
of the policy, it follows that —Q%(s, 7l (s),..., 7 (s} ¢l ), ..., m2(s);0. ) is a convex function
in ¢°,. As expectations preserve convexity, ¢ is guaranteed to be the global maximum of
Js Q' (s, 7l (s),. .., m(s),..., w2 (s); 0L )l (s,.A) over the space of space of linear policies pa-

rameterized by the given set of non-linear features. This concludes the proof. O

Corollary 4.3 presents a verifiable set of assumptions to ensure that 3DPG policies converge to
global approximate Nash equilibrium w.r.t. to approximated local critics. The only required
assumption aside from implementing the architecture from Amos, L. Xu, and Kolter (2017) with
softplus activation function is that the final neural network weights are non-negative. This can be
ensured with high probability using sufficient weight regularization. However, in the future, we
plan to ensure this property systematically with a constraint optimization approach compatible

with the analysis to be presented in the next sections.

4.4 Analysis

4.4.1 Preliminaries and Age-of-Information analysis

In the following two sections, we prove Theorem 4.1. All technical proofs are presented in
Appendix 4.6. The proof builds on the analysis of single-agent deep Q-learning presented in
(Ramaswamy and Hullermeier 2021). Several changes are necessary to move to the online MAAC

learning setting considered herein. To simplify the presentation, we will assume that the state
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space S is compact. All results can be generalized to d-dimensional real spaces under the almost
sure boundedness condition in Assumption 4.2.3(b), for which we refer to techniques presented
in (Ramaswamy and Hullermeier 2021, Section IV.A.2). After we reduce 3DPG to an iteration
without Aol, we will present at its core a convergence proof for the DDPG algorithm (Lillicrap
ct al. 2016), using a single timescale analysis. We now begin with preliminary reductions and

the analysis of the Aol processes 7;;(n).

Reduction to mini-batches of size 1

First, we make a simplifying reduction. We consider that the agents have ready access to the
global tuples (sy, an, *(8n, an), $nt1) during runtime and that merely the local policies ¢, are
communicated via the communication network. Further, we merely consider that the agents
use the global tuple from time n to update its critic and actor network. We therefore simplify

iteration (4.9) to:

01 =0, +a(n) Vel (0L, drign, th),
1 (n)Vgil( rim) ) (4.15)
gb:z—f—l = ¢n + ﬁ(n)vqblg(gim ¢Ti(n)7 Sn)-

In Section 4.4.2, we will extend the analysis to the full setting presented in Section 4.2.

Reduction to zero Aol

As the second step, we define the gradient errors that occur since we use the aged global

policies ¢ i(,y instead of the true global policy: el = Vil (0%, pnytn) — Vgil(%,(bﬂ(n),tn),

n

el = Vi g(05, ns 8n) — Vig(05,, dri(n), sn). Hence, (4.15) can be written as

i1 = O+ a(n) (Vg (B, dnstn) + € )

: ) i (4.16)
:1+1 = ¢n + B(n) (vzzﬁig(e:u Gn.s Sn) + 62 ) :

Reduction to marginalized critic gradient

As the third step, we rewrite the critic iterations in (4.16) further by integrating over the successor

state sp41 in ¢, given state s,. The resulting new loss gradient is Vi Zi(Hi, 0, 8,a) =
(Fsa) + [ QU n(s 0300 | 5.0) ~ @'(s.0:6)) VuQi(ssaid), (417

With a slight abuse of notation, we use p(ds | sn, ¢y) instead of p(ds | sn, dn(sn)) to highlight
the dependency of the action a, on the policy ¢, and potential additional random noise for

exploration. Define the induced error from using VQiZi instead of Vit as 1! = Vgifi — Vil
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then
;L;L—‘rl = 9711 + a(n) (VGZZl(H:w ¢na Sny an) + ¢'7;L + 670:) )

. ) ; (4.18)
:1+1 = ¢n + ﬁ(n) (vqbig(e:u ®ns Sn) + 6;‘3 ) :

efj, e and Y! vanish asymptotically

In summary, we have rewritten (4.15) using: 1. The errors efj and ef induced by not considering
the Aol random variables 7;;(n), and 2. The errors ! induced by marginalizing out the successor
states sp+1. Using that the activation functions of the actors and critics are twice continuously
differentiable, it now follows that the loss gradients V 4 g', Vgil' and Vi [" are locally Lipschitz.

Lemma 4.4. (i) Vgil' (0, n,tn) and Vil (0, ¢, 5, an) are continuous and locally Lipschitz
continuous in the 6° and ¢-coordinate.

(i1) V 4ig(0}, dn, $ns an) is locally Lipschitz continuous in every coordinate.

We can now show that the errors ef; and e due to Aol vanish asymptotically.
Lemma 4.5. lim ||¢? || = 0 and lim | || = 0.
n—oo n—oo

The next lemma shows that the accumulated errors due to the marginalization of the successor

states in (4.18) are convergent almost surely. It therefore follows that 1! vanishes.

Lemma 4.6. V! := Z:Ln_:lo a(m)y! is a zero-mean square integrable martingale. Hence, ¥,

converges almost surely.

It now follows from Lemma 4.5 and Lemma 4.6 that we can study the convergence of (4.18)

91‘

o ef and ﬂ);z This is because the error terms will contribute

without the additional error terms e
additional asymptotically negligible errors in the following proof of Lemma 4.7. With a slide
abuse of notation, we now redefine the critic loss gradients Vy:l* as the marginalized critic loss

gradient Vi It

4.4.2 Convergence analysis

To analyze the asymptotic behavior of (4.18), we again follow the ODE approach from SA (V.

Borkar 2022), i.e., we construct a continuous-time trajectory with the same limiting behavior as

n—1
m=0

(4.18). First, we divide the time axis using a(n) as follows: ¢y := 0 and ¢, =)
1. Now define

a(m) for n >

0 (tn) = 0% ,n >0 and @' () == ¢i,n > 0. (4.19)

Let RPb and RP® be the parameter spaces of the 62’s and ¢! ’s, respectively. Then define 7 c
C([0, 00),RP%) and ¢' € C([0, 00), RP%) by linear interpolation of all 8" (t,,) and ¢' (£,), respectively.
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To analyze the training process, we formulate a measure process that captures the encountered

state-action pairs when using the global policy 7(s,; ¢,,). Therefore, define

:u(t) = 5(sn,an)7t S [tnatn+1} (4.20)

where 0, 4) denotes the Dirac measure. This defines a process of probability measures on S x A.

For every probability measure v on S x A, define

VIO, ¢, v) = /veizi(ai, ¢, 5,a)v(ds,da),
- . (4.21)
V' (68", p,v) = /Vd)igl(ﬁl,qb, s)v(ds, A).

Note that in Vig* we used v(ds, A), since the actor update in (4.18) is only state-dependent.
It follows from Lemma 4.4 that all VI’ and Vg’ are continuous in all coordinates and locally

Lipschitz in both the #’- and ¢-coordinate.

We can now define the associated continuous time trajectories in C([0, 00), R?6) and C([0, 0), Rp;)

that capture the training process starting from time ¢, for n > 0:

0i(t) =B (t) + /0 16 (), bu(2). in()) o,
(4.22)

G () = B (tn) + /0 Vg (0,(2), ), pin(2))

where p,(t) == p(t, +t). The combination of the continuous-time trajectories in (4.22) results
in the aforementioned single trajectory with the same limiting behavior as (4.18). Per definition,
the trajectories define solutions to the following families of non-autonomous ordinary differential

equations (ODEs):

{0,,(8) = VI'(05,(8), 6 (1), pn (£)) Yo,

. N (4.23)
{0 (t) = Vg'(0,(1), dn(t), tn(t)) tn>0-

By construction, we obtain that the limiting behavior of (4.18) is captured by the limits of
the sequences {gi([tn,oo))}nzo and {ai([tn,oo))}nzo defined by (4.19). Further, the sequences
defined in (4.22) can be analyzed as solutions to the ODEs in (4.23). If (4.19) and (4.22) behave
asymptotically identical, then the limiting behavior of (4.18) is thus captured by the solutions
to the ODEs in (4.23). This is formalized by the following important technical Lemma 4.7.
This lemma is the key component that enables a single-timescale analysis of DDPG-style actor-
critic algorithms. To prove Lemma 4.7, we use that the step size sequences are related by
Ym0 (@(n) = B(n)) < oo from Assumption 4.2.1(b). This is essential since we just constructed
the continuous trajectories with respect to the timescale induced by a(n). The assumption, in

essence, requires that the critic and actor update asymptotically run on the same time scale.
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Lemma 4.7. For every T > 0, we have

lim sup |0 (t, +1) — 0% (2)]| =0, (4.24)
N0 (0,7

lim  sup [|8'(ta + ) — &}, (1)] = 0. (4.25)
=00 410,77

Lemma 4.7 shows that we can analyze the limits of (4.18) as the limits of the continuous-time
trajectories defined in (4.19) in conjunction with the measure process (4.20). By construction,
the trajectories 07 () and ¢! (t) are equicontinuous. Moreover, they are point-wise bounded from
Assumption 4.2.3(a). It now follows from the Arzela-Ascoli theorem, see A.1, that the families
of trajectories

{0,([0,00))}0%0,  {¢n(10,00) 1720 (4.26)
are sequentially compact in C([0, oo),Rpé) and C([0, c0), R? fﬁ), respectively. Further, it can be
shown that the space of measurable functions from [0, c0) to the space of probability measures
on S X A is compact metrizable (V. S. Borkar 2006). It now follows that the product space of all
trajectories 07 (t) and @' (t) together with the aforementioned space of measurable functions is
sequentially compact. Hence, there is a common subsequence such that all considered sequences
converge simultaneously, i.e. we obtain (with a slight abuse of notation) that i — 6. in
C([0,00),RPb), ¢i — ¢t in C(]0, oo),]Rpfzﬁ) and [, — oo in the space of measurable functions.
Analogously to (Ramaswamy and Hullermeier 2021, Lemma 4), we can show that p,(t) also

converges in distribution to ps(t) in P(S x A), ¢ almost everywhere.

The following lemma now shows that the limits 62, ¢  and .. are solutions to the limits of

the families of non-autonomous ordinary differential equations (4.23).
Lemma 4.8. a) 0% is a solution to 6°(t) = VI*(0(t), o5 (1), ..., d2 (1), teo(t))
b) ¢k is a solution to §'(t) = Vg' (65, (1), Oho(t), .., &' (2), -, OR (L), poo(t))

We can now study the limit of 3DPG as a solution to the aforementioned non-autonomous ODEs.
Specifically, append the ODEs to form a new ODE in the appended parameter space. The rest of
the analysis follows the line of argument in (Ramaswamy and Hullermeier 2021, Thm. 1), so we
only state the main conclusion. Let (0%,...,07, ¢!, ..., #”) be a solution to the appended ODE,
then the solution converges to an equilibrium of the appended ODE, ie. VI{(#,¢,7.,) = 0
and Vg¢'(#", ¢,7it,) = 0 for all i, where tliglo pi () 4 fit,. Lemma 4.7 and Lemma 4.8 show
that the joint of the sequences @i(tn(k)) and Ei(tn(k)) are solutions to the appended ODE for
{n(k)}r>0 C {n}n>0. The last two statements thus show that the limits of?i(tn(k)) and ?(tn(k)),
let us call them gzoo and 520, are equilibrium points of the ODE’s in Lemma 4.8. These limits

determine the long-term behavior of 3DPG.

Finally, the first part of Theorem 4.1 now follows (for the particular case of experience replay with

size 1 and global information access without communication) using Assumption 4.2.3 and the
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dominated convergence theorem to swap the order of differentiation and integration in VI¢ and
Vgt Tt is left to show Theorem 4.1 for 3SDPG with experience replays and only local information
access and to show that the limiting distributions z’_(s,.4) are stationary with respect to the

state Markov process. Both are the subject of the next section.

Extension to experience replays

Experience replay buffers play an important role in stabilizing RL algorithms in practice (Mnih,
Kavukecuoglu, Silver, et al. 2015). The fundamental idea is to learn from past experiences to
reduce an RL algorithm’s bias towards an agent’s interactions with its environment. For 3DPG,
this means that at time n, an agent does not use the transition #/, to calculate the loss gradients,
but it uses a random minibatch of past transitions ¢, from old time steps m < n. Consequently,
the training algorithm is not overly biased towards agents’ interaction with the environment,

reducing learning variance and thereby improving stability.

In the previous section, we analyzed 3DPG for centralized training where the global transitions
t! are locally available for every agent i. Additionally, we only used an experience replay of size
one. To accommodate the use of experience replays in Section 4.4.1, the probability measure
w(t) needs to be redefined. In (4.9), each agent i samples M < N global tuples independently
from its (local) random experience replay R, at every iteration n. The sampling processes of
the agents will, in general, be different. Further, we will experience R, # R%, since the agents

communicate the global tuples in a potentially delaying manner.

We now define a new measure process p(t) for each agent. For t € [t,, t,11), define

M
, 1
’U/l(t) = M Zd(sm(n,j,i)vam(n,j,i)). (427)
i=1

Hence, u'(t) is the probability measure on S x A that places a mass of 1/ on each pair
(Sm(n,j,i)> @m(n,j,i)) for 1 < j < M, where each m(n, j,i) denotes one of the time indices sampled
by agent i at time n from its memory R!. Notice that in the presence of communication and
Aol, each experience replay is a random sequence of sets. If we use the redefined measures in

(4.21) we get for every t = ¢, that

M
o A 1 o
Vlz(ez (t)7 ¢(t)7 iU“Z (t)) = M Z Vei 11(9%’ ®n,s Sm(n,j,i)> am(n,j,i))a
o, (4.28)
_ A 1 o
Vg (0'(8), 6(t), 1 (1) = 37 D Veid' O bns Sm(ni)-
j=1

The analysis presented in Section 4.4.1 is also true for the new measure processes, where now

every agent has its own measure process. This shows the first part of Theorem 4.1. It is left
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to characterize the properties of the limiting measure processes ', which are the limits of the

convergent subsequence extracted from pf, (t) == p'(t, +t).

Lemma 4.9. For allt € [0,00) and for all agents i

i (b dy x A) = /S P(dy | 2, ool (2, dx X A), (4.20)

1.e., the limiting marginals constitute stationary distributions over the state Markov process.

To prove this lemma, we use Assumption 4.2.1(b), which describes the required trade-off be-
tween DataAol growth of experience in the local replace memories R’ and the chosen stepsize
sequences. Lemma 4.9 shows that the accumulated experiences of the agents constitute station-
ary distributions of the state-Markov process, provided that the DataAol is not too large relative
to the used stepsize. This is the announced answer to (Q3). We will now discuss further insides

from the analysis for multi-agent actor-critic learning from old policies.

4.4.3 Cooperative training of MAS based on old actions vs. old policies

This section discusses the difference between 3DPG and MADDPG for the centralized training

scenario with global information access.

The MADDPG policy gradient iteration

An MADDPG agent ¢ updates its policy using the gradient
1 4 S .
i > Veidhiaporc (O S sms @) (4.30)
m

for 1 < m < M sampled transitions, with V Guapppe as defined in (4.6). Please again observe
the difference compared to the second iteration in the 3DPG algorithm (4.9). In MADDPG,
old actions af}b for all j # i are used from the samples of the experience replay. In contrast,
the true current policy a; = 7 & (sﬁn) is used in the 3DPG policy gradient iteration (assuming
the centralized setting). MADDPG still uses the policies of other agents in the critic iteration.

Hence, the availability of the policies from other agents is required in any way.

Let us try to understand the subtle difference between 3DPG and MADDPG intuitively. From the
perspective of some agent ¢, the MADDPG policy gradient iteration appends the product action
space of other agents H#i A; to the global state space S. Thus, averaging over the behavior
of other agents occurs during training. For illustration, suppose agent ¢ samples transitions
{tm}}_,, and lets suppose all local states are equal, i.e. s, = s'. Then (4.30) gives V gim;(s'; ¢},

times

(;4 SOV Qi(shal, . mi(sh ), . ,a}g)> (4.31)
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as the sample policy gradient. The expression averages over sampled actions of the other agents.
These actions will sometimes include random actions due to exploration.! This indicates that
agents would learn policies that also act well for random behavior of other agents. This seems
to be undesirable for cooperative learning. We will now make the above heuristic precise using
Theorem 4.1 and its variant for MADDPG.

The MADDPG limit vs. the 3DPG limit
First, we discuss the analog of Theorem 4.1 for MADDPG Specifically, consider (4.9) with
Vgigiapppe as defined in (4.6) instead of V 4igippe as defined in (4.7).

To analyze MADDPG with experience replays, we use the same measure processes (4.27) as in

the Section 4.4.2. However, we need to redefine the average policy gradient in (4.21) to

Vduapprc (¥, ¢, v) = /Vqsigli\/[ADng(Qi,gbiL,s,a#i)

I/(dS,d(Ll,...,Ai,...,dCLD).

(4.32)

The analysis from Sections 4.4.1 and 4.4.2 can now be emulated for this gradient with the measure
processes /(). Due to the new average policy gradient the conclusion of the convergence theorem

are now fundamentally different. MADDPG converges to limits Gf\/[ A and qﬁi\/[ A such that
@g{\/IA(G%\/[Aa Qb%\/[A, IU%VIA) =0, (433)

Here, :“%\/I A are the local limiting distribution of the sampled experience at agent ¢ under MAD-

DPG. Recall that the 3DPG limit satisfies:
S i /)
V350pG (Ooo, Poos ioe) = 0 (4.34)

In (4.33), the behavior of the other agents is solely present in the limiting measures ,ufv[ A- When
exploration is stopped after some time, then the asymptotic properties of MADDPG and 3DPG
are the same. However, when the exploration probability is not decayed to zero asymptotically,
the limiting measures ,u’M 4 are also shaped by random actions. This formalizes the heuristic
from the previous subsection: the presence of exploration can deteriorate the policies found
by MADDPG agents. The agents would adapt their policies to random actions that are not
representative of the other agents. This is clearly an undesirable property. 3DPG fares better in
this regard as it does not have this negative property! 8DPG allows a high exploration probability
asymptotically without negatively affecting the found policies. This claim is underpinned by a

numerical experiment in Chapter 9.

In most DeepRL algorithms, the probability of selecting a random action is decayed to a small value over

time. However, it is usually kept positive to also allow some asymptotic exploration.
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Remark 4.4.1. In practice, the aforementioned negative property of MADDPG due to random
actions is exacerbated because training is stopped after a finite time, possibly prematurely. During
training, the other agents may have initially behaved in a certain way, which was then well
represented in the replay memory of an agent. During later stages of learning, the other agents
may “quickly” converge to a different policy. Since the agent uses outdated samples to calculate
local gradients, the policy evolution is significantly biased towards the old behavior of the other
agents. This is particularly undesirable in cooperative problems. Again, 3DPG circumvents such
scenarios by using the latest available agent policies. MADDPG can overcome these issues by

stopping exploration after some time and by using decaying learning rates.

The moving target problem in MARL

Multi-agent RL algorithms are affected by non-stationarity due to the change of other agents’
behavior from one agent’s perspective (the so-called moving target problem) Canese et al. 2021.
Here, 3DPG is no exception. The authors of (Lowe et al. 2017) discuss that using the local policy
gradients V gf'v[ Apppg based on old actions of other agents removes the non-stationarity from
the perspective of each agent. We believe that this is not wholly true. MADDPG smooths out
the non-stationarity, as the behavior of other agents is observed via the sampled actions from the
experience replays. But this does not remove the non-stationarity. Intuitively, it takes longer for
the behavior of an agent to manifest in the replay memory (in the form of samples) compared

to directly using the behavior of an agent using its policy as in 3DPG.

Since 3DPG uses the policies of other agents, we expect that 3DPG will have more variance due
to the changing behavior of other agents. However, since the 3DPG agents use more accurate
information from the other agents’ policies and are not affected by exploration as described in
the previous section, we expect a faster convergence rate than MADDPG. Both predictions are
supported by the experiment presented in Chapter 9. Finally, notice that the moving target
problem has no impact on Corollary 4.2. The 3DPG agents converge asymptotically to a local
Nash equilibrium with high probability.

4.5 Discussion and related work

We presented and analyzed 3DPG, a multi-agent reinforcement learning algorithm for decen-
tralized, online learning in networked systems. We showed that the analysis can be modified to
understand the popular MADDPG algorithm (Lowe et al. 2017). The analysis (and numerical
examples in Chapter 9) show that 3DPG should be preferred when a multi-agent decision-making
problem requires coordinated decisions or a high degree of exploration. More precisely, policy

gradient training steps in multi-agent learning should preferably be based on past policies of other
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agents since policy gradients evaluated with respect to random actions of other agents do not
represent actual agent behavior and can thus negatively impact the policies found. For 3DPG, we
showed that for 3DPG, the effect of unrepresentative behavior from old policies and potentially
random actions does not affect the limiting policies found by 3DPG. Instead, for MADDPG,
we showed that the presence of randomly explored actions can have a negative impact on the
training result of MADDPG.

Beyond convergence characteristics, we presented the first set of data availability assumptions
Assumption 4.2.1 for distributed online actor-critic learning in network systems. The assumptions
describe how old locally available global data tuples can be so that 3DPG converges. More
specifically, combined with the results to be presented in Chapter 5, arbitrary moment bounds
for the Aol and DataAol random variables will be sufficient under rapidly decaying stepsizes
to guarantee convergence of 3DPG and convergence of the resulting state-Markov process. In
addition, the numerical experiments in Chapter 9 will show that 3DPG is highly robust to using
old information, making it attractive for distributed online multi-agent learning. An interesting
direction for further investigation is to study the trade-off between using network resources for

policy communication vs. using network resources for data communication.

Discussion of stability assumptions

Ideally, when one is dealing with a specific algorithm, it should be guaranteed or proven —
rather than assumed up-front — that the algorithm iterations are stable. Assuming stability is,
nonetheless; a typical first step toward understanding the convergence behavior of optimization
algorithms. Especially in deep RL, the stability of algorithms like Deep Q-Learning or DDPG
is not well understood. Most notably, there is a significant gap between the assumptions made
in theory and assumptions verifiable in practice. Let us review results on the convergence of
MAAC learning, since there are not that many. In (K. Zhang et al. 2018), the authors use linear
function approximation and assume that the MA learning problem can be described by finite
state ergodic Markov process. They further assume the existence of a projection operator with
knowledge of a compact set that includes a local minima of the objective. (Kumar, Koppel, and
Ribeiro 2019) provides a very interesting rate of convergence results for AC methods. However,
they assume that samples (sp,an, 7, Snt+1) are drawn from a known stationary distribution
of the state Markov process. Instead, we show that the AC iterates converge such that the
agents’ experience give rise to stationary distributions of the state Markov process. In addition,
knowledge of the bias of the policy gradient and the bias of the critic estimates is required in
(Kumar, Koppel, and Ribeiro 2019), while the critic should again be a linear combination of
features. That work also assumes that the policy gradient is Lipschitz continuous, which would

require Assumption 4.2.3(a) since most DNNs are only locally Lipschitz. Finally, recent work
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by Y. Zhang et al. (2023) focuses on graph-based MARL settings with finite state and action

spaces.

The assumptions made in the above works will be very hard to verify for most data-driven
applications in practice. Even worse, we fear that guaranteeing stability for practical data-
driven RL problems may always require assumptions that are not easily verifiable in practice.
However, a practitioner may not even be highly interested in stability. Usually, practitioners
will design their DNN parameterizations and their hyperparameter configurations using their
experience, such that they roughly observe stable behavior. Afterward, practitioners want to

know what limit they can expect from their algorithm. This is where this work comes into play.

In contrast to the assumptions made in the literature, the proposed assumptions, except As-
sumption 4.2.3(a), are very weak, easily verifiable in practice, and represent well how users apply
DQN, DDPG, and its variants in practice. For this setting, this work answers where one can
expect the 3DPG iterations (4.9) to converge asymptotically. Specifically, the analysis compre-
hensively characterizes the found limit using limiting distributions of the state-action process.
These limiting distributions are shown to be stationary distributions of the state Markov process

and are shaped by the experience of the agents.

Other related work

One algorithm that at first appears highly related (but only by its name) is the Distributed Dis-
tributional Deterministic Policy Gradients (D4PG) (Barth-Maron et al. 2018). This algorithm,
however, is an algorithm for single-agent learning, and it uses parallel DDPG iterations with

distributional critics.

4.6 Proofs of Chapter 4

Proof of Lemma 4.4. By Assumption 4.2.5 the neural network activations are twice-continuous
differentiability (C?), hence 7'(s; ¢*) and Q*(s, a; 0°) are C? in their input coordinates. Addition-
ally, it follows from (Ramaswamy and Hullermeier 2021, Lemma 9) that 7%(s’; ¢¢) and Q' (s, a; 6°)
are C? in their parameter coordinates ¢* and #°, respectively, for every fixed s € S and a € A.
Note that composition, product and sums of C? functions are C2. Moreover C? functions have
local Lipschitz gradients. This is because the gradient is C', and C' functions are locally Lip-
schitz (Conway 2019). This immediately shows that Vgilt (6%, dn, Sn, an, Snt1) and g(0%, dn, sn)

have the required properties.

For Vgil%(%,(bn,sn,an), fix parameter vectors ¢ and 6% as well as s € S and a € A. Since,

7(s;¢) and Q'(s, a; %) are C? in every coordinate, there is some R > 0 and continuous functions
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Loi(y, 0%, ) and Ly (y, ¢), such that ¥ ¢, ¢y € Br(¢), we have
| [ @t o0y | 5.0) ~ [ QU wlséa);6p(ay | 5.0)
< [ Lai(w )llntys 6n) (o 00) |2p(dy | 5.0)
< lén — dalla [ Loi(4.6'.6)Law. Op(dy | 5.0)

< L(9)l[¢1 — o212
for some L(¢) > 0. The last inequality follows from the stability of the critic iteration Assump—

(4.35)

tion 4.2.3(a) and the compactness of the state space Assumption 4.2.3(b). Hence, Vyil*(6%, ¢, s, a)
is locally Lipschitz as a product and sum of locally Lipschitz functions. It is left to show that
ng ‘(6%, ¢,5,a) is continuous in the s and a coordinate. This directly follows from the con-
vergence in distribution by continuity of p(dy | s,a) and r(s,a), Assumption 4.2.4 and As-
sumption 4.2.6 respectively, and since Q(s,7(s;¢);6") is a bounded continuous function by

Assumption 4.2.3. O

Proof of Lemma 4.5. From Lemma 4.4, we have that Vi is locally Lipschitz. It follows from
Assumption 4.2.3(a) that VI’ is Lipschitz continuous with constant L when restricted to a sample
path-dependent compact set. Using the triangular inequality, the established Lipschitz continuity
of Vi* and Assumption 4.2.3(a), it follows as in Chapter 2 that

n—1
0 j j
e <L) > N6l — bl

J#i m=n—1;;(n)

1 (4.36)
<C> Y Bm),
J7#i m=n—1;(n)
for a sample path-dependent constant C' > 0, which thus implies that hm He | = 0 by Assump-
tion 4.2.1. The proof for eg follows analogously. O

Proof of Lemma 4.6. The proof is similar to the corresponding proof in (Ramaswamy and Huller-
meicr 2021) for deep g-learning, with some small changes due to the actor policies. We have

that
7(@ (5n+1a (SnJrl; ¢n)7 9:1,)_

/ Q! (5, (53 60); 0)p(ds | 500, 60) ) Vs Q' (50, 00 ).

Define the filtration F,—1 = 0(Sm,am,0m,dm | m < n) for n > 1. It then follows that

(4.37)

{¥,} is a zero-mean martingale. It follows from Assumption 4.2.3 and the C? condition in
Assumption 4.2.5 that sup,solv;]| < K < oo for a sample path dependent constant K. It
then follows from the martingale convergence theorem (see A.2 ) that W! converges, since

S _oa®(m)||[¢l, || < oo almost surely by Assumption 4.2.1(a). O
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Proof of Lemma 4.7. Fix T > 0. We define [t ] for t > 0 as [t] = tyupinpt, <ty Fix t € [0,77], then
[t +t] = t,4x for some k > 0. Recall, that ¢’ ( ) is defined by linear interpolation with respect
to a(n), see (4.19). Hence, ¢’ (tn +t)—¢ (tn+k) is equal to

bn +1— Ttk

a(n + k) (mtwﬂ) - ﬁ(tnm) : (4.38)

The stability of the algorithm and the compactness of the state-action space, i.e. Assump-
tion 4.2.3, show that V4ig" is bounded and hence 16" (tninr1) — @ (tnir)|| € OB(n + k). Tt
follows that

sup |6 (b + 1) — &' ([tn + )] € O(a(n)), (4.39)
te€[0,7)

since a(n) is monotonic and E g — 1. Similarly, we can show that

sup [|¢,(t) — ¢y, ([tn + 1] — ta)l| € O(a(n)) (4.40)

te[0,7)

To show (4.25), we now need to show that

sup (|8 ([t + 1)) — 6L ([tn + 1] — ta)]| = 0. (4.41)
t€[0,T]

From (4.22) it follows that

16" (tnk) — &tk — ta)ll < 16 (bnir) — & (t2)

toik—tn (4.42)
- [ V0 @). 0@, ()]
Using a telescoping series, Ei(tmrk) — &% (tpak — tn) equals
n+k—1 o
Z BM)V gig" (O, by Sm)
n+k 1 (4.43)

/tm+1 ") G (@ (1), D) on (& — )

m

The last step follows from a(m) = t,41 — t;, and using that ¢! = al(tm) = g([t]) for all

t € [tm,tm+1). Now rewrite the second term in (4.42):

/ ntk~ln @g'(ﬁi (z ) ¢n(x), Nn(ﬁf))da: _

n+k—1

Z /mJrl Y ) ¢n( ),,Ltn(m—tn))da:

(4.44)
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We now evaluate the difference of the terms under the integrals in (4.43) and (4.44).

||m@g%e"([ﬂ)@(u}),un(m 1)) = TGO — 1), Dl — )l — )]
< am AV (), B i — 1)) — VGO (@ — ) bl — ) — )]
< CI2 LI e]) = Fulle] — )l + [3(e]) = (i~ 1)

164w = tn) = Bh([2] — ta)l| + én(x — tn) = dulle] — ta)]])
(4.45)

for some sample path dependent constant C' < oo using the stability from Assumption 4.2.3.
The last step adds zeros and uses the Lippschitz continuity of @gi. The combination of (4.42),
(4.43), (4.44) and (4.45) thus gives:

1 (bk) — & (tnsre — tn)|

nt+k—1 ntk—1
< mZ::n a(m) <)5m —1’) mZ::n O (a(m)?) (4.46)
n+k—1

+L Y al M) (18 (tm) = Bt = ta) | + D116 (bm) = B (ton — ta)])

The first term in the above expression converges to zero as n — 0o, since E"+k ! a(m) <T by
construction and since ), -, (a(n) — 8(n)) < oo from Assumption 4.2.1(b). The second term

converges to zero since a(n) is square summable Assumption 4.2.1(a).

Inequality (4.46) can now be derived analogously for ||§i(tn+k) — 0% (tpar — tn)|. We can now
sum up all L.H.S. and R.H.S. for all i in (4.46), and for all ¢':

D A
tn = 316 (i) — hltnin — b))

=1
+ZH9 (tntr) — 04 (tngr — tn) |
ntk—1 » A (4.47)
D420 Y a(m)) [0 (tm) = 0, (tm — ta)|
n+k—1

F2LD 37 a(m) Y6 (tm) — Gt — 1)l

where D is the number of agents. We now apply the discrete version of Gronwall inequality (V.
Borkar 2022) to . It follows that x, < o(1)e?tP St talm), By construction ZnJrk La(m) <

T for all n > 0, thus z,, — 0, which proves the lemma.

O
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Proof of Lemma 4.8. Consider the sequence . The proof for the other parameter sequences is

identical. Fix T' > 0. We need to show that

sup [16;,(t) — 05,(0) — / VI(OL (@), poo (@), pioo(@))dz]| (4.48)
t€[0,T] 0

converges to zero. Using (4.22), the norm in (4.48) is upper-bounded by

167,(0) — 62, (0)| + !/0 VI (0;,(x), 6n(2), f1n(2)) = VI'(05(2), G (@), poo())dz]|.  (4.49)

We can now expand the second term by successively adding zeros for each policy of each agent

j # i. We can then use Lemma 4.4 to bound the resulting expansion from above by a term in

0 / 167, () — 0% ()| + Y Il (x) — ¢l (@)l|dz | (4.50)
0 J#i

Additionally, we are left with one term of the form

II/O VI (05 (@), b0 (@), pin(@)) = VI (05 (2), Poc (@), proc (@) d]. (4.51)

Due to the compact convergence of every parameter sequences (Arzela-Ascoli theorem) every
parameter sequence will converge uniformly over [0,7]. This shows that (4.50) converges to
zero. Finally, (4.51) converges to zero as pi, — fiso in distribution and since 0%_(t), ¢oo(t) are

bounded almost surely by Assumption 4.2.3(a) and Lemma 4.7. OJ

Proof of Lemma 4.9. Without loss of generality, assume a batch-size M = 1. The cases M > 1
will only require additional bookkeeping. Recall that the samples used in the 3DPG iterations
(4.9) are potentially old and from random time-steps, such that Assumption 4.2.1(b) holds.? Fix
some agent i. In the following, we will drop the agent index i. Since M = 1, the agent uses a

global transition ¢;, with random time index k,, for its 3DPG training step at time n.

Pick f € Cy(S), the convergence determining class for distributions on S. We analyze

/tu [f (s) — /5 f(y)p (dy | s,qﬁn)} pi(z, ds, A)dz
= a(n) [f (Sky) —/Sf(y)p (dy | Skn7¢n):| (452)

as n — 0o. The error terms (4.52) consider the deviation between states sampled from p(t) and
the associated expected transition under the policy that uses the sample during training. This
is the perspective of an experimenter that observes the Markov game and the 3DPG algorithm

during runtime.

ZNotably, Assumption 4.2.1(b) in conjunction with the Borel-Cantelli lemma guarantee that infinitely many

global transitions reach each agent.
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Now accumulate the aforementioned deviations for all time steps where a sample ¢, would be
used during training and evaluate the deviation under the policy at time n. This information
is of course not required for the algorithm and solely a quantity for the analysis. In summary,

consider
0 [ ) = [ a5, (453)

at time n, where

y(n) = Z a(i). (4.54)

ie{i>0lki=n}

for every n > 0 with ),y = 0. Recall that a(n) € O(nié) with ¢ € [1,2), then

ki:ov(k) <0 (ga(m> <0 </12”x—édx> (4.55)

since at time n a sample from the replay memory can be at most n time steps old. It then follows
1 1
that >0 (k) € O (niE), which in turn implies that (k) € O (niE) and thus that v(m)

is square summable.

To analyze (4.53), we now consider the sequence

n—1
6= 3 () [f (smit) = [ Sy ] 5, %)} (4.56)

and the filtration
Fo—1:=0(Sm, @m, Om,y(m —1) | m <n—1). (4.57)

Then &, is a Martingale with respect to F,,_1°. Since f is bounded and (m) is square summable,
the quadratic variation process associated with the Martingale &, is convergent. It then follows

from the martingale convergence theorem (see A.2) that &, converges almost surely.

Recall that we denote the DataAol by A(n), which is the age of the oldest sample in the replay
memory. In other words,

kn € [n — A(n)], for all n > 0. (4.58)

Since &, converges and ZZ;}FA(TL) a(k) — 0 a.s. by Assumption 4.2.1(b), it follows that for

every t > 0
d(n,t)

S m) [f (smet) = [0 a5 ) (4.59)

m=n—A(n)

converges to zero a.s., where

d(n,t) == min{m >n | t,, > t, +t}.

3Technically, this assumes that a transition does not impact when previous transitions become available for

training, i.e., independence of the Markov game and the communication process.
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Next, spread out and rearrange the aggregated samples in (4.59). Specifically, use (4.58) and

separate the samples as the following three terms, whose sum converges to zero a.s.:

5(n,t)

> alm )| = [y 1,00,
n d(n,t)+A(5(n,t)) (460)
+0 Z a(m) | +0O Z a(m)
m=n—A(n) m=4(n,t)

The rearrangement is mathematically valid since (4.59) is a finite sum for each n. By Assump-
tion 4.2.1, it follows that the second and third terms converge to zero almost surely. Hence, we

conclude that
d(n,t)

> alim) [ (sne) = [ Sy s, ,)] (461)

m=n
converges to zero a.s.
Equation (4.61) now also holds, if we replace ¢, by ¢, since the resulting error terms when
taking the difference between (4.61) and the version with ¢,, converges to zero. To see this,
note that Z%z’fl)*l a(m) € O(t) by construction. Further, all individual error terms in the
aforementioned difference converge to zero using weak convergence by continuity of (s, ¢) — p(- |
s, ¢) and since ||@k,, — ¢m|| — 0 a.s. Finally, a(n) is eventually decreasing, hence

d(n,t)
> fa(m) — a(m+1)] f(sk,+1) = 0 as. (4.62)

m=n
In summary, we have thus shown that

d(n,t)

> alm [ Skm) /f p(dy | sk, dm) (4.63)

m=n

converges to zero a.s. With (4.52) and (4.63) it then follows that
tntt
/ / [f (s) — h(z, s)],u(z, ds, A)dz — 0 a.s. (4.64)
tn S

where h(z,s) = [sf(y)p(dy|s,é(z)). The lemma now follows from (4.64). We refer to

(Ramaswamy and Hullermeier 2021, Lemma 6) for details on this final step. O

99



4.6. PROOFS OF CHAPTER 4

100



Part II: Age of Information Processes






Chapter 5
Stochastic Information Delays

Aol sequences, such as 7;j(n) in iteration (1.2), (2.1) or (4.9), are usually not equipped with
a certain process structure. It is common to assume that Aol sequences are either bounded
(Agarwal and Duchi 2011) or bounded by deterministic sequences (Zhou et al. 2022). Instead,
we view 7;;(n) as a discrete-time stochastic process that describes what information is used to
update an iteration. In single-path communication scenarios between two systems, it is evident
that Aol sequences satisfy the unit growth property 7;;(n + 1) < 7;;(n) + 1; an iteration can
at most be updated ones per unit time step. On the other hand, in asynchronous computing
scenarios with a single component as in Example 1.0.1, the Aol increment 7;(n + 1) — 7(n) is
usually in the order of the number of computing nodes assigned to update parts of a parameter
space. This chapter uses Aol sequences with bounded increments as one characterizing property

to define Age of Information Processes, which answers (Q5).

5.1 Aol processes: A definition

We will now define simple Aol processes and Aol processes based on the observations that 1)
information exchange between two systems has Aol with unit or bounded increments and 2) Aol
in asynchronous computing can be represented by a process taking values of many such processes.

For simple Aol processes, we allow the discrete-valued process to have bounded increments.

Definition 5.1.1. A simple Age of Information Process is a discrete-time stochastic process

{T(n)}n>0 on the non-negative integers associated with another stochastic process {Xp}:

1) ®p_r(n) is the sample used by another system /iteration/agent at time n,

2) sup,>o7(n+1) — 7(n) < o0 a.s.

We will now state the definition of what we call an Aol process.



5.2. DETERMINISTIC GROWTH PROPERTIES FROM AOI MOMENT BOUNDS

Definition 5.1.2. An Age of Information Process is a discrete-time stochastic process T(n)
associated with potentially time-varying family KC(n) C N of simple Aol processes {1r(n)}, such
that

T(n) = > Lzm—k7r(n) (5.1)

keK(n)

for some integer-valued random process I(n).

In Definition 5.1.2, the integer-valued random process I(n) selects which of the simple Aol
processes is “active” at step n. Further, the set C(n) represents which of the simple Aol processes
can potentially be active at step n. For asynchronous computing, this means that scheduling

and rescheduling of workers can be represented by Definition 5.1.2.

5.2 Deterministic growth properties from Aol moment bounds

With Aol processes defined, we can now study the connection between Aol moment bounds and
deterministic almost sure Aol growth bounds. Specifically, we provide tools to extract determin-
istic growth bounds from moment bounds. Such deterministic growth bounds will then be used
to verify the Aol-stepsize condition such as (1.12) for stability and convergence of distributed

SA algorithms. The first result is a deterministic growth bound for simple Aol processes.

Lemma 5.1. Let 7(n) be a simple Aol process. Suppose there exists a random variable T with

T(n) < T for all n > 0 with E [7P] for some p € (0,00), then for all e > 0,

1
P (T(TL) > enma(Ts] i.0.> ~0. (5.2)

Proof sketch. For p > 1, the lemma follows from the first Borel-Cantelli Lemma (see A.2) and
stochastic dominance (V. Borkar 2022, Sec. 6). For p € (0, 1], first, use the Borel-Cantelli Lemma
and the stochastic dominance property to conclude that 7(n) has a subsequence that does not
exceed any fraction of n after some time. Then, use the bounded increment property to show
that 7(n) does not exceed any fraction of n plus a term in the order of n'~? after some time. A

simple argument based on the limit superior then completes the proof. O

Using basic properties of the limit supremum and assuming that the number of possible active
simple Aol processes at every point in time is finite, we conclude with the corresponding growth

bound for Aol processes. This growth bound is the core answer to (Q6).

Lemma 5.2. Let 7(n) be an Aol process with time-varying family KC(n), such that for each Ti,(n)
there exist some py > 0 with P (Tk(n) > enm i.o.) =0 for alle > 0. If sup,~o|K(n)| < oo
and p = infg pp > 0, then

P (T(n) > enmasie i.o,> = 0.
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5.3 Convergence of accumulated stepsizes over Aol horizons

The next result formulates the trade-off between a moment bound for an Aol process and the

decay of an algorithm stepsize sequence a(n). A faster uniform tail decay of the Aol distributions

allows slower decaying stepsize and, hence, potentially faster convergence. In particular, if the

statement of Lemma 5.2 holds with p > 1, then stepsizes that decay slower than n%rl become

available to satisfy Assumption 2.1.5 and Assumption 4.2.1, in Chapter 2 and Chapter 4, respec-
c

tively. Notably, the standard stepsize a(n) = a1: =0, ¢ >0, turns out to be sufficient for

stability and convergence of the distributed SA iterations discussed herein under an arbitrary Aol

process moment bound and most notably for p € (0,1].

Lemma 5.3. Consider an Aol process such that Lemma 5.2 holds for some p > 0. If the stepsize
1
a(n) € O (n_ max“y“), then

n—1
> ak) =0 as. (5.3)
k=n—7(n)
Proof. Consider p € (0,1] and without loss of generality pick a(n) = n%rl . Since a(n) is
monotonically decreasing it follows that
n—1 n—1
1 1 1 n
k)< —— dt = 1 —_ . A4
k_z_:()a()_nT(n)—i_/nT(n)thl nT(n)+1+Og<nT(n)+1> (54)
Then the lemma follows by continuity of the logarithm provided that
- 1
nT(:)—i_ —1las — T(nn) — 0 a.s.. (5.5)

To show this, we state a lemma that is often used to prove the strong law of large numbers.

Lemma 5.4 ((K. L. Chung 2001, Lemma 4.2.2.)). Let X1, Xo, ... be real-valued random variables.
Suppose for each € > 0, P (|X,| > € i.0.) = 0. Then X,, converges to 0 almost surely.

By assumption there is a random variable 7 with 7(n) < 7 and E [7P] < oo with p € (0, 1].
Lemma 5.2 thus shows that P (7(n)n~! > e i0.) = 0 for every ¢ > 0. Hence, the statement

follows from Lemma 5.4. The case p > 1 follows the same line of argument. O

With Lemma 5.2, we have now established verifiable conditions for Theorem 2.1, Theorem 3.1
and Theorem 4.1, providing further details on the answer of (Q1) and (Q2). The verifiable
conditions require the existence of dominating random variables with some arbitrary moment
bound. The next chapter will show that the existence is guaranteed for Aol processes driven by
strongly mixing event processes. Afterward, Chapter 7 will derive dominating random variables
with prescribed moment bounds for asynchronous computing scenarios modeled as parallel point

processes.
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5.3. CONVERGENCE OF ACCUMULATED STEPSIZES OVER AOI HORIZONS

We will now close this chapter with the proof of Theorem 3.6 from Chapter 3. Recall that we

established the almost sure rate of convergence of DASGD in Theorem 3.1 as

n k—1
LAY Yak) S alm)
1,7 k=0 m=k—1;; (k)

@ (5.6)

To make this rate of convergence estimate more precise, we need a rate of convergence estimate
for ZZ;}% ) a(k). We will do this given that 7;;(n) are stochastically dominated by random

variable 7 with E [7P] < oo for some p > 1.

Proof of Theorem 5.6. Let a(n) € O(n9) for some ¢ € (1/2,1) and consider a dominating
random variable with 7 with E [7] < oo for some p > 1. Then

n—1

Y ak) €O ((n—1)""7 — (n—7;j(n))79) € O (mj(n)n7) € O (n%—q) (5.7)
k=n—T;;(n)

The second inclusion can be seen from a Taylor expansion at n = co. The third inclusion follows

as P (rij(n) > nr i.o.) = 0, which follows from E [7?] < co and the Borel-Cantelli lemma. The

Theorem now follows from a minimization of (5.6) over ¢ using (5.7). O

Remark 5.3.1 (Sufficient condition to apply Lemma 5.3). The existence of a dominating random
variable with bounded p-th moment is guaranteed if 7;5(n) are bounded in L¥ for some p/ > p,
i.e., if sup,>o E [Tg (n)] < 00. A proof of this implication can be found in (Leskeld and Vihola
2013, Proposition 3). We will directly establish the existence of dominating random variables for

asynchronous computing and mobile wireless communication in Chapters 7 and 8, respectively.

Remark 5.3.2 (Comment on stochastic dominance). It is always possible to construct a random
variable that stochastically dominates a finite set of random variables, provided that stochasti-
cally dominating random variables are given for each random wvariable of the finite set. Hence,
assuming a single dominating random variable for all Aol processes in Lemma 5.3 is without any

loss in generality.

Remark 5.3.3 (Importance of p € (0, 1] in Lemma 5.2 and Lemma 5.3). As mentioned in the
introduction, it is new to the literature that an arbitrary moment bound for the Aol sequences is
sufficient for the stability and convergence of SAs. This is important, most notably due to the
newly explored territory with moment bounds for p € (0,1]. Such scenarios especially occur in
asynchronous parallel computing due to job resource requirements that are heavy-tailed (Tirmazi
et al. 2020; Samsi et al. 2021). In Chapter 7, we will characterize how the cases p € (0, 1] arise

due to asynchronous computing.
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5.4 Proofs of Chapter 5

Proof of Lemma 5.1. Fix, € € (0,1). Using the stochastic dominance property, it follows that

_ 1 1_ 1
ZIF’( >5nP)SZP(T>5nP>:ZP<€pr>n>§1+€pE[Tp]. (5.8)
n>0 n>0 n>0

The last inequality can be found in (K. L. Chung 2001, Theorem 3.2.1). Since, E [7P] < oo it
follows from the first Borel-Cantelli lemma that T(?’L%) < en for all n > N(e) with a sample

path dependent constant N(g) > 0. In other words,
7(n) < en, for n = kv with k > N(e). (5.9)

Next, consider two subsequent integers n’ and n” that satisfy (5.9). Specifically, let & > N(¢)
1 1
and fix n’ = k» and n” = (k + 1)». By the almost sure bounded increments, it follows that the

Aol of the time steps between n’ and n” satisfy
T(n' +1i) <7(n) + Cri <en’ + Chi (5.10)

for a sample path dependent constant C7; > 1 and for every i € {0,...,n” — n'}. Further,
1
i < Cokv» ! for a constant Cy > 0 that only depends on p.

To see that C does not depend on p, consider £ > 1 and use Newton’s generalized binomial

theorem (Graham et al. 1989, p. 162). Then,

>’f*l’s—k’;| =k;|<§ (117>i<:5—1>| (5.11)
SO BEe) e

< sup| @) Zk 5 = sup| <8> ko (k — 1) (5.13)

s>1

»

=
?}\A
+
—_
S—
=
|
ol
=
Il
i[]e
VN
w B~

with

@:;(;_ )(;_2)...(;_s+1)' 51

Notice that sup\(é)\ is bounded, since ]( )| <1fors> 1 . We could now define C' = 35up|(§)\,
s>1 s>1

since (k — 1):1 < 3k~! for all integers k > 1.

Next, with k& = (n/)P, it follows that
T(TL/ +1) < en’ + Clcz(nl)lfp (5.15)

Since this holds for all pairs n’, n” with i € {0,...,n"” —n'}, it follows that 7(n) < en+C1Con! =P
foralln > N (5)% We have therefore shown that

P (7(n) > en+ C1Con' P i.0.) = 0. (5.16)
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5.4. PROOFS OF CHAPTER 5

for every € € (0,1). Now fix &’ € (0,1) and let e = 1&’. Then C1Con! P < en for all n > N for
some N € N. Hence, {7(n) > en + C1Con'"P} D {r(n) > 2en} for n > N. By definition of the
limit superior, it then follows from (5.16) that

P(r(n) >¢enio.) <P(r(n) >en+ (1 - £)Cn'~? io.)=0. (5.17)

O

Proof of Lemma 5.2. Fix € > 0. From the definition of the limit supremum, we have that

1
P(T(n) > enma(Ts] i.o.) — 1im P [ [ J{r(n) > enmtian} (5.18)
m—0oQ
n>m
1
< | max{1,p}
< lim P U U {mn) > enmtiary (5.19)
n>m kek(n)
1
< 1 max{1,py }
< lim P U U {mn) > enm=tmnr} (5.20)
ke (n) n>m

< Y dim P | {mn) > enm=0mT ) (5.21)
keK(n) n>m
1
-y P(Tk(n) > enmeLg? i.o.> =0 (5.22)
keK(n)

The second inequality uses the definition of Aol processes; the third inequality uses that p < pg
for all £ and swaps the order of the unions; the fourth inequality uses the union bound for

probabilities and that sup,, K(n) < oo. O
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Chapter 6

Aol arising from strongly mixing event

processes

In the last chapter, we saw how the existence of Aol dominating random variables enables the
stability and convergence results from Chapters 2 to 4. To verify the existence of Aol dominating
random variables, this chapter studies the fundamental Aol processes (1.8), which we recall here

for easy reference:
1, A(n),
T(n+1):= (6.1)
Tm)+1,  A(n),
with 7(1) := 1. The fundamental Aol process measures the freshness of status updates from a
source available at a monitor. An example sample path was illustrated in Figure 1.3. We will

characterize properties for 7(n) based on assumptions on the associated event sequence A(n).

The results are based on (Redder, Ramaswamy, and Karl 2022b).

6.1 Main statements

We study the abstract Aol process (6.1) in the fundamental setting where the event sequence
A(n) merely possesses a dependency decay property. The process dependency decays over time,
described by the a-mixing notion, which will be formally stated in the next section. Due to this
abstract view, the developed results can be applied to Aol processes that arise in communication
or computing or as a consequence of other phenomena that delay information transport. The
results relate the so-called a-mixing rate of the event sequence A(n) to properties of the Aol
process 7(n). The a-mixing determines how the dependency of A(n) and A(m) decays as |n —
m| — oo. Based on this rate, we calculate moment bounds for the Aol process 7(n) as a function
of the a-mixing rate. Further, we show that 7(n) is itself a-mixing, which leads to a strong law

of large numbers (SLLN) for 7(n) under sufficiently rapid a-mixing of the event sequence A(n).



6.1. MAIN STATEMENTS

The first result is a set of sufficient conditions guaranteeing that the average p-th moment of the
Aol process (6.1) is finite. We will use a(A4, n) to denote the a-mixing coefficients of the indicator
process 1 4(,). Theorem 6.1 shows that sufficiently fast decay of a(A,n) guarantees that all Aol
random variables 7(n) are stochastically dominated by a single random variable that has certain

finite moments depending on the decay rate of a(A4,n).

Theorem 6.1. Suppose there are k > 0 and ¢ € (0,1) such that P (U}ZF A(k)) > € for all
n>0. If Zmzo mP~la(A,m) < oo for some p > 0, then there is a random variable T with

T(n) < T for alln >0 and E [7P] < oo.

The p-th moment of the dominating random variable 7 is calculated in the proof of Theorem 6.1
as a function of €,k and the mixing coefficients a(A,n). Theorem 6.1 is the core answer to
(Q7) and describes how fast the dependency of events has to decay to guarantee Aol dominating
random variables with prescribed moment bounds.

Notice that Theorem 6.1 does not require that A(n) is a stationary process. Hence, +- Zg:_ol TP (n)

might not converge. However, by stochastic dominance, we have a bound for the limiting average

moments of the Aol process:

Corollary 6.2. If Theorem 6.1 holds for some p > 0, then
N-1

1 p
NZT(H)

n=0

limsup E <E[7]. (6.2)

N—oo

Secondly, we study the mixing rate of the Aol process (6.1) itself. Here, the main result bounds
the mixing rate of (6.1) by a combination of the mixing coefficient a(A,n) and the tail decay of

the dominating random variable from Theorem 6.1.

Theorem 6.3. Suppose the assumptions of Theorem 6.1 are satisfied, then the Aol process T(n)

is a-mizing with coefficients a(t,n), such that
a(r,n) < min {a(A,n—m)+P (7T >m)} (6.3)
0<m<n

with T from Theorem 6.1.

We also show that the mixing rate of a(7,n) is almost as fast as the mixing rate of a(A,n).

Specifically, we show that

o0 oo
an_la(A, n) < oo = an_la(T, n) Vq<p. (6.4)
n=0 n=0
Using (6.3), we conclude Section 6.3.2 with a SLLN for the Aol process (6.1) under sufficiently
rapid a-mixing of the event sequence A(n). Specifically, under the conditions of Theorem 6.1 for

some p > 1, we obtain the SLLN

1 N—-1
~ > (r(n) = E[r(n)]) 2> 0. (6.5)
n=0
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6.2 Strong mixing and assumptions

Let (2, F,P) be the underlying probability space and let A and B be two sub-o-algebras of F.
The following is the arguably most natural measure of dependency between A and B
a(A,B)= sup |[P(ANB)—-P(A)P(B). (6.6)
AcA,BeB
Consider a (not necessarily stationary) stochastic process X = {X(n)},>0. For 0 <1 <m < oo,

define the sub-o-algebra generated from X (1) up to X (m) by
Flr=0(XMn)|l<n<m), (6.7)

Informally, the o-algebra generated by a stochastic process from a time interval describes the
information that can be extracted from the associated process realizations (Durrett 2019). With
these o-algebras, we can now define a-mizring, which is a notion of asymptotic independence.

We refer to Bradley (2005) for a survey about a-mixing and other mixing notions.
Definition 6.2.1. The a-mizing coefficients of the process X are

a(X,n) = sup a(F}, FX,), n>0. (6.8)
1>0

The process X is called c-mixing (or just strongly mizing) if a«(X,n) — 0 as n — oo.

We are now ready to formalize the assumptions for (6.1).

Recall that successful status updates from the source node are received at the monitor whenever
an event A(n) occurs. Hence, whenever an event A(n) occurs, the monitor receives a fresh update
during time slot n, thus 7(n 4+ 1) = 1. We refer to A(n) as the event process of the Aol process

7(n). We make the following assumptions for the event process A(n):
Assumption 6.2.1. There is some € € [0,1), such that
P(A(n))>1—¢, Vn>0.

Assumption 6.2.2. The event process A(n) is a-mizing (Definition 6.2.1) with coefficients
a(A,n).

Assumption 6.2.1 requires that at every time step, the monitor receives an update from the source
with non-zero probability. A slightly weaker assumption that is also sufficient for the results is
that there is some x > 0 and some ¢ € [0,1), such that P (UpZ A(k)) > 1—¢, Vn > 0. The
weaker version thus requires that for every time interval of the form [n,n + k], the probability
that the monitor receives an update from the source is greater than zero. This weaker assumption
is, in fact, necessary for the existence of a random variable 7 such that 7(n) <y 7 for all n > 0;
without it, there exists a subsequence {ny} such that P klg{)lo 7(ng) = oo | = 1. For simplicity,
we will present the proofs of Section 6.3.1 and Section 6.3.2 for k = 0, though all proofs can be

easily extended to x > 0.
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6.3. MOMENT BOUNDS, MIXING RATES, AND STRONG LAW

6.3 Moment bounds, mixing rates, and strong law

In this section, we analyze the moments of the Aol process (6.1). As the event process A(n)
may generally be non-stationary, we use stochastic dominance to construct uniformly dominating
random variables for the Aol process 7(n). This immediately leads to bounds for the limiting
average moments of the Aol process. Furthermore, a dominating random variable leads to bounds

for the asymptotic growth of the Aol process by the results presented in Chapter 5.

6.3.1 Aol moment bounds under a-Mixing communication

To construct uniformly dominating random variables, we derive an upper bound to the com-
plementary cumulative distribution functions (CCDF) P (7(n) > m) uniformly over all n > 0.
Then, we will construct a function u : Ny — [0, 1] such that P (7(n) > m) < u(m) for all m >0
independent of n > 0 with lim w(m) = 0. We can now use this bound to define the CCDF of
a new random variable. Sugfl—;oobound can then be used to define a non-negative integer-valued

random variable 7 by setting
P (7 >m) :=u(m), VYm >0. (6.9)

This uniquely defines 7 and by construction 7 stochastically dominates all 7(n) for all n > 0.
Moreover, if Y~ ((m+1)? —mP)u(m) < oo for some p > 0, then it follows from Proposition 6.4

that E [7P] < oo.

Proposition 6.4 ((Chakraborti, Jardim, and Epprecht 2018)). Suppose X is a non-negative

integer-valued random variable, then for every p > 0:

E[XP) = ((m+1) —m")P(X >m). (6.10)

m=0

Violation probability under a-mixing communication

By construction of the Aol process (6.1), we have that

n—1

P(r(n) >m)="P ( N Ac(l)> : (6.11)
I=n—m

where A¢(n) denotes the complement of the event A(n). Observe that if the events A(n) were

independent, then the probability on the right-hand side above could directly be written as the

product of the individual probabilities. However, we merely consider that A(n) is a-mixing,

Assumption 6.2.2. To use this temporal dependency decay, we separate events in (6.11) by

intervals of a certain length.
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Figure 6.1: Illustration of the time slicing in (6.12).

Let {a,,} and {b,,} be two non-decreasing sequences of non-negative integers with a,, < m and

by, < m. Now fix n > m > 0 and define time indices
nyi=n—m+ an, Ng = Ng—_1 + Gm + b, (6.12)

as long as ng < n. The created time indices are illustrated in Figure 6.1.

Let L(m) be the number of constructed time indices. Notice that removing events from the

intersection in (6.11) leads to an upper bound. Thus

n—1
P(r(n) >m)="P ( N Ac(l)> (6.13)

<P( ARV (6.14)

k=1 l=ng—am
L(m)

=P | () {r(m) > am} |- (6.15)
k=1

Notice that by construction of the time indices ny, the events {7(nx) > a,} in (6.15) are
separated by b, steps. The following lemma uses this separation to formulate a bound for the
joint event in (6.15) using the marginals P (7(ny) > an,) and the mixing coefficients a(A4, n) of
A(n).
Lemma 6.5. Forn>m >0,

L(m) L(m)—1 /k—1

( P(7(ns) > am)> , (6.16)
k=1 k=1 s=1

where ng is defined in (6.12).

With Assumption 6.2.1, a preliminary bound for the violation probability follows:

Corollary 6.6. Let n > m > 0, then P(7(n) > m) < p(m,d) with
Ls(m)—1

p(m, 8) = =™ L o (A, [m?]) gkt (6.17)
k=1

for every & € (0,1) with Ls(m) = | s |
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Proof. For 6 € (0,1) choose a,, = 0 and b,, = [m?] for all m > 0 in Lemma 6.5 and use that
P(7(n) > 0) <¢ for all n > 0 by Assumption 6.2.1. O

Notice that Lemma 6.5 and Corollary 6.6 hold without Assumption 6.2.2 since the mixing co-
efficients are defined for all stochastic processes. Under Assumption 6.2.2 it now follows that
a(A,n) — 0 as n — oco. Hence, the right-hand side in (6.17) decays to zero as m — oo, since
lim [m’] = oo and lim Ls(m) = oo for every § € (0,1). The recipe described at the beginning
m—0o0 m—0o0

of this section thus immediately shows that a random variable exists that jointly stochastically
dominates 7(n) for all n > 0. Moreover, for every ¢ < p with p from Assumption 6.2.2, we can

choose ¢ sufficiently close to one such that p(m, ) decays sufficiently fast such that

o0

> ((m+ 1) = m9)p(m, 6) < o0 (6.18)

m=0
Thus for every ¢ < p, we can find a random variable 7 with 7(n) <g 7 for all n > 0 and

E [79] < o0.

Proof of Theorem 6.1

The previous paragraph shows Theorem 6.1 for all ¢ < p. For ¢ = p the situation is different and
the bound in Corollary 6.6 is insufficient to complete Theorem 6.1. This is because by, in (6.16)
has to be chosen such that lim inf bﬁm > 0, to guarantee that Y > ((m+1)P —mP)a(A, by,) < co.
In this case, L(m) < oo and thus a,, has to increase to infinity to guarantee that the first term in
(6.16) decays to zero. The central observation is that sequences a,, and b,,, as used to construct
the time indices in (6.12), have to be chosen to jointly drift to infinity. To do this, we use the

bound from Corollary 6.6 in Lemma 6.5 to improve the bound on the violation probability.

Lemma 6.7. Letn >m >0,

P(r(n) >m) < p([Am],8)r ™) (6.19)
Lx(m)—1 /k—1
+ a(A, [Am]) Z < p( Dmﬂ,&)) =:u(m,d, \)
k=1 s=1

for every (6,)\) € (0,1)? with Ly(m) == LQ[TMJ and p(m,d) as defined in Corollary 6.6.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Fix (3, \) € (0,1)? and observe that u(m, d, \) is by construction decreas-
ing in m. Now define a non-negative integer-valued random variable 7 by describing its CCDF

as follows:

P(7 > m) :=u(m,0,\), m >0. (6.20)
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By Lemma 6.7, T stochastically dominates all 7(n) for n > 0. To prove Theorem 6.1, we have to
show that there exist (J,A) € (0,1)2, such that > °°_((m + 1) — mP)u(m,d,\) < oo, which we
complete in the appendix. O

6.3.2 Mixing rates and strong law for Aol processes
Section 6.3.1 shows that if A(n) is a-mixing with > o0 n?~'a(A4,n) < co, then
P(r(n) >m) <P(T>m) € o(mP) (6.21)

for a random variable 7. This uniform tail decay of the distributions of each 7(n) indicates that
the dependency of 7(n) on A(m) decays as |[n — m| — oco. This, in turn, indicates that the
dependency of 7(n) on 7(m) also decays. Theorem 6.3 affirms this indication and that 7(n) is

itself a-mixing.

Proof of Theorem 6.3
For 0 <1 < m < oo, define the o-algebra generated from 7(I) up to 7(m) by

F'(r)=0c(t(n) |l <n<m). (6.22)
Similarly, define the o-algebra generated from A(l) up to A(m) by

F'(A) =0 (An) |l <n<m). (6.23)
The a-mixing coefficients of 7(n) are

a(r,n) == sup{sup|P (AN B) —P(A)P(B)|}, (6.24)
>0 A,B

where the supremum is taken over A € Fi(7), B € Fipn (7).

The idea of Theorem 6.3, is to condition events AN B and B in (6.24) on events {7(l+n) < m}
and {7(l 4+ n) > m} for 0 < m < n. Then, we use the key property that an event B as above

(o0}

conditioned on {7(l +n) < m} is already an element of 735,

(A), which thus allows us to use

that A(n) is a-mixing.

Let us develop some intuition as to why for B € F¥ (7) it holds that
Bn{r(l+n) <m} e Fy,_,.(A). (6.25)

Observe that information B € o(r(n +1)) = .FZLLLZ(T) is of the form

B=r1(n+1)71(0),
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where C'is a subset of {1,...,n+[}. By definition, we have
{rln+1) <m}=71(n+1)"{1,...,m}). (6.26)

Using the construction of the Aol process (6.1) it is then not difficult to see that BN {r(n+1) <
m} € F¥,_m(A). A monotone class argument now completes the reasoning. A formal proof of

property (6.25) is given in the chapter appendix. We are now ready to prove Theorem 6.3.

Proof of Theorem 6.3. Let I,m,n >0, A € Fi(7) and B € 2on (7). Further, let 7 be a domi-

nating random variable as given by Theorem 6.1. By the law of total probability, we have that
IP(ANB) —P(A)P(B)| is equal to

P(ANBN{r(l+n)<m})+PANBN{r(l+n)>m})
— (PAPBN{rl+n) <m})+PA)PBN{rl+n)>m}))| (6.27)
<IPANBN{r(l+n) <m})—PA)PBN{r(l+n) <m})|
+P(r(l+n)>m) (|P(AmB | {r(l+n) >m}) —PA)PB| {r(+n) > m})|) (6.28)
<IP(ANBN{r(l+n) <m}) —PA)PBN{r(+n) <m})|+PF>m) (6.29)

The first inequality uses conditional probability and triangular inequality; the second inequality

uses that 7(n) <g 7 for all n > 0 and that

P(ANB|{r(l+n)>m})—PA)PB|{r(l+n) >m})| <1. (6.30)

By construction of the Aol process, we have that F(7) C F}(A) for all [ > 0. Thus A € F5(A).
By (6.25), we have that BN {7(l +n) < m} € F¥, . (A). Since A(n) is a-mixing it follows
that

P(ANBN{r(l4+n)<m})—PAPBN{r(l+n) <m})| <a(d,n— M) (6.31)
Thus for all n > 0, we found that
a(t,n) < a(A,n—m)+P(T>m) (6.32)
for all 0 < m < n. To see that a(r,n) — 0 as n — oo choose, e.g., m(n) = [§]. Minimizing over
m in (6.32) yields the statement of Theorem 6.3. O
Mixing rate of 7(n)

The next natural question is to analyze the convergence rate of (7, n). For this, let ¢ < p and
let 6 € (0,1). Then

Z nita(r,n) < Z nita(A, [n°]) + Z ni=1p (? >n— [n‘ﬁ) . (6.33)
n=0 n=0

n=0
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By Assumption 6.2.2, we have that > o0 jnP~'a(A4,n) and we can show using ¢ < p that the
first summation is finite for some ¢ € (0,1). We also claim that the second summation is finite
for every 6 € (0,1). This follows from (6.21) and the observation that > oo ,n? 7P < oo for
P

q < p. Here, we used that lim —"5— =1 for every d € (0,1). We have, therefore, shown that
n—oo (n—[n°])?

an_la(A, n) <oo = an_la(r, n) Vq<p. (6.34)

n=0 n=0
Thus, 7(n) has almost the same mixing rate as A(n).
As a corollary to Theorem 6.3 and the mixing rate in (6.34), we can now formulate a SLLN for

7(n). The SLLN is based on an SLLN for strongly mixing stochastic processes that we state here

paraphrased to suit the purpose:

Theorem 6.8 ( (McLeish 1975, Thm. 2.10) ). Suppose {X,}n>0 is a zero mean a-mizing
1
sequence of random variable with "> ya(X,n)s < co for some q > 1. If there is 1 <r < q and

T3 <s< 7,2%1 such that

oo
S TR [|Xn|TZIS} < 0, (6.35)
n=0

then % ZnN;()l Xn — 0 a.s.

Using the moment bound in Theorem 6.1 and the mixing rate in Theorem 6.3, we can carefully

choose r, s in Theorem 6.8 to conclude with the following SLLN for 7(n).

Corollary 6.9. Suppose the assumptions of Theorem 6.1 hold for some p > 1, then

N-1
1 a.s.
~ > (r(n) —E[r(n)]) =5 0. (6.36)
n=0
If in addition A(n) is stationary, then

1 N-1
% 3 rn) = Tim Efr(n)] < E[7] (6.37)
n=0

6.4 Discussion and related work

Aol has been studied for various queuing and scheduling models (Yin Sun et al. 2019) that re-
quire i.i.d. service and waiting times as in renewal theory. The most common analyses rely on the
saw-tooth nature of Aol processes (see Figure 1.3) in combination with certain stationarity and
ergodicity assumptions for the waiting and service time processes (Yates et al. 2021). In wire-
less communication settings, Aol has been considered in edge-based network models where the

success of communication via individual edges has been considered as i.i.d. across time (Farazi,
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Klein, and Brown 2020). Generally, we observed that i.i.d. assumptions are prominent for ar-
rival /service times and communication success. In the former case, this is due to the tractability
of sums of independent random variables using laws of large numbers. In the latter case, it is
due to the tractability of products of independent random variables. However, interarrival times
can be highly dependent as arrivals tend to form clumps (D. Daley and Rolski 1992). Simi-
larly, communication over wireless fading channels can be highly correlated (G. Bianchi 2000;
Boban. Gong, and W. Xu 2016; W. Liu and Shi 2019). Independence assumptions are, therefore,
particularly unrealistic for communication systems. In contrast, a fundamental property of com-
munication systems is that events that occur “close” in some domains (space, time, frequency, or
code) are highly dependent. Still, the dependency decreases as the events get more “separated”.
In general, many real-world systems possess potentially “long-range” dependencies that decay as

the events get more separated in time (Samorodnitsky et al. 2016).

The lack of literature that considered non-independent service times motivated the consideration
of the fundamental Aol process (6.1) as a function of an event process A(n) with dependencies
described by a suitably probabilistic mixing notion. Previously, a version of the Aol process
(6.1) has only been studied under the assumption that the event process A(n) is an independent
stochastic process (Montero and Villarroel 2016). This work takes the perspective of the Aol
process (6.1) as a random walk with restarts, called Sisyphus random walk, due to its analogy
with climbing and falling down a hill indefinitely. The work analyzes (6.1) as a countable-state
Markov process. Hence, before the results presented herein, the Aol process (6.1) was not studied

when A(n) is a general (not necessarily stationary) stochastic process with time dependencies.

The presented analysis of the abstract Aol process (6.1) under merely a-mixing communication
is a gateway to study more complex Aol processes with dependent communication. For exam-
ple, renewal processes with non-independent interarrivals or real-world Aol processes where the
mixing rate of the communication process has been estimated from data. The required a-mixing
assumption, Assumption 6.2.2; requires that the dependency of events A(n) and A(m) decays
as |m — n| — oo. There are many examples where A(n) will be a-mixing. In general, A(n)
will be a-mixing if it can be written as a Borel-measurable function of another a-mixing pro-
cess (Bradley 2005, Thm. 5.2). Here, an important class of examples are scenarios where the
communication events A(n) are a Borel-measurable function of a geometrically ergodic Markov
process (Davydov 1974; Bradley 2005), which has been a common tool to approximate wireless
fading channels (H. S. Wang and Moayeri 1995; G. Bianchi 2000; Boban, Gong, and W. Xu
2016). We studied this class in (Redder, Ramaswamy, and Karl 2022¢), where an event process
that represents successful communication via a geometrically ergodic wireless fading channel was
shown to be a-mixing even when Aol-aware medium access control protocols are used to decide

when to communicate. The results will be discussed in Chapter 8.
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Another line of applications comes from point process theory. Berbee (1987, Theorem 6.1) shows
that the event process resulting from a lattice renewal process with i.i.d. interarrival times is
a-mixing if the waiting time distribution has a finite moment greater than one. Pham and Tran
(1985) determined the a-mixing rate of linear processes and ARMA processes. Notably, general
point processes with temporally dependent interarrivals, where a probabilistic mixing notion
describes the dependency, have not been considered so far. The presented results offer a path to
analyze Aol in such settings even when new information is received at a monitor after general
dependent interarrival times. To apply the results, we need to use relation (1.11) between the
backward recurrence time of a point process and the associated fundamental Aol process, which
shows that

(n) =71(n—71(n)) +7(n) —1 (6.38)

holds, where 7,(n) is the backward recurrence time and 7(n) is the fundamental Aol process
defined by (6.1) with A(n) the event process tracking the occurrence of points. Property (6.38)
is proven below in the chapter appendix. To complete the application, we need to compute the
a-mixing rate of the event sequence when the sequence of dependent interarrival times is itself a-
mixing. As of recently, the a-mixing rates of renewal sequences were only known (asymptotically)

when the associated interarrival times are i.i.d. Berbee (1987, Theorem 6.1).

Another interesting line of work will be identifying scenarios where modeling the process that
gives rise to Aol is difficult. For such scenarios, we envision that a-mixing rates of the event
process A(n) can be directly estimated from data using the estimator of Khaleghi and Lugosi
(2023). Then, the results presented in this chapter enable conclusions about the average Aol

using Theorem 6.3.

6.5 Proofs of Chapter 6

Proof of Lemma 6.5. We expand the right-hand side of (6.15) using Assumption 6.2.2. Consider

the following o-algebras:
Fi=0(An)|l<n<s), 1>0,s>0. (6.39)

Each event {7(ny) > ann} in (6.15) is generated by the events A(n) with n € {ng —am,...,nk —

1,n, — 1}. By construction of the above sub-o-algebras, we have that

{T(ng) > am} € F+7} (6.40)

Ng—am”

Recall that by the construction of the time indices (6.12), the events {7(n) > an,} are separated
by b,, steps. We thus have that

{T(nL(m)) > am} e F°

nL(m) —Qm

(6.41)
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and
L(m)—1

-1
(N {r(n) > lm} € FgHW 71 (6.42)
k=1
where L(m) is the number of constructed time indices. Due to the aforementioned separation,

we have

Npim) — m — (nL(m)—l - 1) =bpy +12> by, (643)

By Assumption 6.2.2 {A(n)}n>0 is a-mixing with coefficient a(A,n). It then follows from (6.41)

and (6.42) and the construction of the time indices nj that

L(m)—-1
P(r(n) >m) <P (r(npemy) > am) P | (] {7() > am} | + a(A,by). (6.44)
k=1
The lemma then follows by applying the described procedure successively. O

Proof of Lemma 6.7. For A € (0,1) choose a,, = by, = [Am] for all m > 0 in Lemma 6.5. Then,
(6.17) shows that for every § € (0,1) and every n > 0, we have the bound

P(1(n) > am) < p([Am],0). (6.45)

O

Proof of Theorem 6.1. Fix (6, ) € (0,1)? and observe that u(m, d, \) is by construction decreas-
ing in m. Now define a non-negative integer-valued random variable 7 by describing its CCDF

as follows:
P (7 > m) :=u(m,5,\), m=>0. (6.46)

By Lemma 6.7, T stochastically dominates all 7(n) for n > 0. To prove Theorem 6.1, we have to
show that there exist (6, A) € (0,1)?, such that > oc_((m + 1)? — mP)u(m, s, \) < oo

We start by showing that

o0

> ((m+1)P = mP)a(A, [Am]) < oo (6.47)

m=0

for all A € (0,1). We claim that
3 1)P (A 2 S Lo 48

This claim follows from the observations that for x € R>g and m > 1, ((m+1)%—m?®) < 2*m®~1,
and that [{n > 0: [An] = m}| < 1. Hence, by Assumption 6.2.2 we have that (6.47) holds for
all A € (0,1). Further, Ly(m) < ;. To complete the proof it is therefore left to show that

3 ((m + 1)P — mP)p([Am], 6)2 (") < (6.49)

m=0
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for some (6,\) € (0,1)2. Since (m + 1)? — mP < 2PmP~! for m > 1, its enough to show that
S mPip([Am], 8)I2 (M) < co. Using the summability property of a(A,n) from Assump-

tion 6.2.2, we can show that
1
p([Am],8)(™ e © ((g(ml“*) + m_“é) ) (6.50)

for p:=p, if p<1and p:=p—1,if p> 1.1 Asymptotically, m " will dominate (m') for
any ¢ € (0,1). It is thus enough to show that > >~ mP~ImHR < 00, which holds for du > Ap.
This completes the proof. O

Proof of missing property. We verify that for B € 77 (1), we have that
BO{r(+n) < M} € Fif,_y(A), (6.51)

as used in Section 6.3.2.

First consider B € o(7(n +1)). Every Aol random variable is a measurable map 7(n +1) :  —
2Lt} Thus B is of the form B = 7(n +1)~1(C) for some C € 2{-n+ e, C is a subset
of {1,...,n+1}. Second, for any 0 < m < n + [, we have

{rn+1) <my=71(n+1)"1{1,...,m}). (6.52)

Therefore, using properties of the preimage of intersections, we have that

Bn{r(n+1)<m}=7(n+0)"1(Cn{l,...,m}) (6.53)
= U r+dD'{e). (6.54)
ceCn{1,...M}

By construction of the Aol process, we have that

c—1
T+ 07 e)=Aln+1-c)n [ AMn+1—c+k). (6.55)
k=1
Since F(A){Y,,_,, is a o-algebra, we thus conclude from (6.54) and (6.55) that
Bn{r(n+1) <m} e FA)nm- (6.56)

o0

moq- It can be expressed as

Next we consider elements of the join o-algebra F(7)
F(r)%, = a< U a(T(/.g))> . (6.57)
k=n+l

For all B € J;2,,.; o(7(k)), the previous paragraph shows that

Bn{r(n+1) <m} e F(A)X (6.58)

l+n—m>

The distinction is necessary, since mpfloz(A7 n) is not necessarily monotone for p > 1.
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using the stability of o-algebras under countable unions. A generating-class argument now
completes the proof: Let G = {B € F(7)°, : B satisfies (6.56)}. Clearly, Q2 € G and countable

unions of elements from G are in G. Finally, let B € G. Then
BeU{r(n+1) >m} € F(A)_ms (6.59)
since BN {1(n+1) <m} e F(A)X and F(A)® is a o-algebra. Finally,

l+n—m l+n—m

Bn{r(n+1) <m}=(B°U{r(n+1) >m})

N{r(n+1) <m} € F(T)pri—m> (6.60)
again, since {7(n +1) < m} € F(7);%,_,, and F(A)7Y, _  is a o-algebra. We have therefore
shown that G is itself a o-algebra, hence G = F (T);’L‘jrl_m. O

Proof of Corollary 6.9. Suppose that A(n) is a-mixing with Y o2 jnP~la(A,n) < oo for some
p > 1. Theorem 6.3 shows that 7(n) is a-mixing with > oo ;n?!a(r,n) < oo for every ¢ < p.
Let 1 < ¢ < p. To apply Theorem 6.8 to 7(n), we first have to show that

Za(T, n)% = Za(T, n)é_la(T, n) < 0o (6.61)
n=0 n=0

Since >_o° ;nd la(r,n) < co and a(7,n) is monotone, we especially have that a(r,n) € o(n™1)
and hence «(r, n)%_1 € o(nl_é). Finally (6.61) follows, since 1 — % < qg—1for ¢ > 0 and
>0 omi~la(r,n) < oo by Assumption 6.2.2.

To complete the proof, recall that Theorem 6.1 showed that E [7(n)P] < E[7P] < co. It is now
easy to see that we can choose r, s in Theorem 6.8, such that 1 < TT;IS < p and thus (6.35) holds.
Theorem 6.8 therefore shows that - 27127:—01 (7(n) —E[r(n)]) 22 0. If A(n) is strictly stationary,

then E [7(n)] is monotonically increasing and the additional statement follows. O

Proof of Equation (1.11). We drop the node indices for this proof. Fix some n > 0. First, if
A(n) = 1, then 7(n) = Wj,). Further, 7(n) = 1 and thus 7(n—7(n)) = 7(n—1) = 1+ (W) —
1) = Wi(n), since 7(n—1) is reset to 1 at the next time step. Hence, 7(n—7(n))+7(n)—1 = Wy,
holds as desired. Second, if A(n) = 0, then 7,.(n) =n — Efg)_l Wi, as the age is the time that
was spent waiting since the last renewal plus the associated last transmission time. Further,
7(n)=n— ng) W; + 1 and thus

k(n)
T(n—7(n)) =71(>_ Wi — 1) = Wi, (6.62)
=1

since Zfﬁi) Wi is a renewal time step. Again, 7(n — 7(n)) + 7(n) — 1 = Wy, holds as desired.

O
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Chapter 7

Aol from asynchronous computing

modeled as parallel renewal processes

In the last chapter, we saw how event processes give rise to Aol processes. Such Aol processes are
fundamental to describing the Aol between a single source and a single monitor. We now consider
the asynchronous computing setting described in Section 1.3.2. Specifically, this chapter studies
Aol arising from asynchronous computing modeled as parallel point processes. In addition, we
will explain how the results of the previous chapter can be used inside this distributed computing
model. The results are based on (Redder 2023) and provide the core answer to (Q8) on the
distribution of Aol caused by asynchronous computing. Furthermore, the results guarantee the
existence of dominating random variables with precise moment bounds to apply the results of

Chapter 5 and answer (Q4).

7.1 Asychronous computing models

We consider two asynchronous parameter server systems, where workers sequentially read the
parameters of a model and a minibatch from a data set and then asynchronously compute
optimization steps to update the model. As explained in Section 1.2 and Section 1.3.2, this
leads to increased resource utilization at the cost of parameter update/staleness errors due to
Aol, which mitigate the performance of iterative methods when inappropriate hyperparameters
are chosen. Because of this, we study how processing times and asynchronous computing on
distributed computing (DC) systems give rise to Aol to design methods that maximize resource
utilization while guaranteeing performance. Specifically, we propose to model a DC system with
parallel workers by parallel renewal processes describing the workers’ processing times. For this
model, we derive exact asymptotic Aol distributions and Aol moment bounds affecting a class of

asynchronous parameter server algorithms. The results then enable the allocation of computing
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resources for asynchronous methods based on processing time data readily available from DC
system traces (Samsi et al. 2021), which we will be exemplified in Section 7.5. Finally, we will
discuss that the results naturally generalize to arbitrary point processes with weakly convergent

increments.

7.1.1 Aol caused by asynchronous parameter updates

We now recall the Aol caused by asynchronous methods executed on parallel computing infras-
tructure. These methods fall into a general class of asynchronous parameter server iterations
(APSI) and coordinate-wise parameter server iterations (cAPSI), formally stated as Algorithm 2
and Algorithm 3 in Section 7.2.1, respectively. In Section 1.3.2, we explained how update steps
that are returned to a single parameter server (an APSI) have already aged when applied due
to the updates of other workers. Precisely, the resulting API is 7(n) = n — m(n), where m(n) is
the index to which an update step applied at index n corresponds. Then 7(n) :==n — m(n) and
we refer to {7(n)} as the sequence of Aol random variables for an APSI. An illustration for an

Aol sequence generated by ASGD with two workers was presented in Figure 1.5.

The cAPSI model represents asynchronous learning methods where individual workers update
parts of a large neural network model independently (Guan et al. 2019). Most importantly, as
Al and deep learning models grow, complete update steps can not be computed anymore on
single chips, so coordinate-wise updates become necessary (B. Yang et al. 2021). The cAPSI
model captures this. cAPSI generally encompasses physically distributed asynchronous learning
and optimization scenarios, e.g., as multi-agent reinforcement learning discussed in Chapter 4.
In addition, the cAPSI model can arise due to inconsistent read-and-write problems in APSI
(Lian et al. 2015). Finally, both APSI and cAPSI apply to classical distributed and federated
learning scenarios (C. Zhang et al. 2021) since APSI and cAPSI will not differentiate between
the actual information sent to the parameter servers. For federated learning, the Aol will then

be associated with the update information from one worker/client and its local data set.

For cAPSI, the parameter space is divided into subspaces, e.g., R* = R% x ... x R% such
that ). d; = d, where d would be the parameter space dimension for APSI. All D coordinates
of cAPSI are then updated independently such that D? Aol sequences 7ij(n), 1 < 4,5, < D,
arise. These Aol sequences are defined analogously to the APSI Aol sequences. cAPSI with a
single coordinate thus reduces to APSI, but it is simpler and illustrative to first study APSI. For
APSI and cAPSI, the updates’ processing times will be modeled as parallel renewal processes.
As mentioned before, the crucial factor is that events are not pooled, but instead, the object of
interest is the number of events (parameter updates) that occur from other renewal processes

while one renewal process is waiting for its next event to occur.
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7.1.2 Illustrative results

For APSI and cAPSI, we develop closed-form expressions for the limiting Aol distribution from
the processing time distributions of the DC system workers, see Theorem 7.2 and Theorem 7.11,

respectively. For the limiting mean Aol, we have the following illustrative results:

e Corollary 7.5: For APSI with K workers and heterogeneous but independent processing
times, the Aol satisfies:

lim E[r(n)] =K — 1. (7.1)

n—oo

e Corollary 7.12: For cAPSI with K; workers on each coordinate (and heterogeneous but

independent processing times), the Aol sequences satisfy:

Jim Blrj(n)] = S5 % - (7.2)
2k21 iy Kj—1 1=7,

where i, is the mean processing time of the k-th worker on the i-th coordinate.

Corollary 7.5 shows that independent of the actual processing time distributions, the limiting
mean Aol is given by K —1. This result reinforces recent observations made for ASGD, which uses
that “most” Aol affecting the iteration are actually in O(K) (Mishchenko et al. 2022; Anastasiia
Koloskova, Stich, and Jaggi 2022). The result becomes less surprising with a simple example.
Consider K = 2 workers with constant processing times, where worker 1 does 10% updates while

worker 2 only computes a single update. Then, for the initial 10° updates, the Aol is zero, while

(105—1)x0+1x1+1x10% 1 =
106+1 -t

K — 1. In other words, the straggler has no effect. Slow workers will affect the overall processing

for the update by worker 2, the Aol is 105, and li_}In E[r(n)] =

time, but from the perspective of information delay affecting ASGD, the actual processing time
distributions do not affect the mean Aol asymptotically; only the number of workers matters.
This is a crucial property for the design of asynchronous optimization algorithms. In view of
Chapter 3, ASGD with a single asynchronous update iteration will, therefore, always have Aol
with bounded first moment independent of the processing times. However, as we will see in

Section 7.3, the processing time distributions affect higher-order Aol moments.

For cAPSI, the situation is different. For coordinate-wise updates with K7 = Ko = 1 with

the workers from the APSI example, the limiting Aol mean satisfies lim E [r2(n)] = 10° and
n—oo

H_)m E [r21(n)] = ﬁ. This scenario is artificial but highlights that worker scheduling is essen-

n o0

tial for cAPSI. More precisely, equation (7.2) shows that a newly added “fast” worker on one
coordinate will increase the associated mean Aol for all coordinates and will thus negatively
affect the whole cAPSI iteration. As mentioned before, the cAPSI model especially applies to
asynchronous learning methods where individual workers update parts of a large neural network

model independently. Based on Aol moment bounds like (7.2), we can then design resource allo-
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cation problems to optimize Aol properties affecting asynchronous methods and thus maximize

their convergence rate. This is exemplified in Section 7.5.

7.2 System Models

We abstract the DC system model by stochastic processing times completed at time instances of
renewal processes as defined in Definition 0.0.10. By assuming that renewal processes describe
the processing times, we can precisely characterize the discrete Aol affecting parameter iteration
due to asynchronous computing. Notably, the processing times may include the time to send a
job, the waiting time of the job in the worker queue, the computing time for the job, potential
additional waiting time due to preemption, the time to send the update back, the time to apply
the computed update, etc.

The following example illustrates how stochastic processing times naturally arise for sequential

tasks that compete with other jobs for service time on a DC system.

Example 7.2.1. Consider the setting illustrated in Figure 1.1: A stream of jobs arrives at a DC
system, and a scheduler assigns jobs to the workers. Scheduled jobs are added to the workers’
queue and are processed according to a local scheduling policy, e.g., FCFS, generalized processor
sharing, etc. In addition, a highly parallelized iterative algorithm sequentially adds parameter
update jobs to the queues of the workers. In other words, the algorithm competes with the arriving
(competing) jobs for service time on the processors. In this sense, the iterative algorithm runs
concurrently with other jobs on the DC system. Due to the non-trivial effect of priorities and
scheduling, the parameter updates will experience stochastic processing times that can be modeled

as renewal processes or point processes

The next two subsections complete the description of the APSI and cAPSI implementations and

their associated Aol processes.

7.2.1 Aol for asynchronous parameter server iterations (APSI)

For APSI, we assume that the DC system is modeled as K parallel renewal process:

Assumption 7.2.1. For each worker k, the processing times for the completion of parameter
update jobs are given by an i.i.d. sequence of non-negative real numbers {Wy(n)} with py =
E [Wi(n)] < oo.

In the following, we use Wy to denote a random variable with Wy ~ Wy(n),n > 1. APSI
considers a single parameter iteration maintained by a server. The generic APSI is presented in

Algorithm 2.

126



Algorithm 2 Generic Asynchronous Parameter Server Iteration (APSI)

1: Initialize the parameter iteration zy € R%,

2: for the entire duration do

3: for each worker do

4: Receive parameter update job.

5: Complete other jobs in the queue.

6: Compute the parameter update.

7 Send the update to the iteration.

8: for the parameter iteration do

9: Receive an update step from a worker.
10: Update the parameter iteration.

11: Sent a new job to the worker.

The index n is the counter of the parameter iteration. Using this index, we define Aol random
variables associated with each worker. For every worker k£ € {1,..., K}, let z,, () be the
parameter-iterate in the most recent update job assigned to worker k while the master iterate
is at step n. Then define the worker Aol sequence 7i(n) := n — my(n). In other words, 74 (n)
tracks the Aol of the update to be computed by worker k. Consequently, 7(n) = 7x(n) if
worker k contributes the update step to update the parameter iteration from xz, to z,4+1. The
key observation is that the Aol sequence 7(n) always takes values of the worker Aol sequences

Tk(n), in other words Definition 5.1.2 applies. We now derive expressions for all 7 (n).

Define for n > 1 the sum of the first n processing times of worker k as
n
Sp(n) =Y Wil(i). (7.3)
i=1

Each Si(n) is thus the n-th renewal time of the k-th worker. Further, define for each ¢ > 0 and
worker k the number of renewals until time ¢:
Ni(t) == max{n : Sg(n) < t}. (7.4)
For any time ¢ > 0 and any worker k, the worker Aol in continuous time can now be stated as
Flt) =Y (N;(t) = Nj(Sk(Nk(t))) (7.5)
i#k
=Y (N;(t) = Nj(t = Bu(1)), (7.6)
i#k
with By(t) == t — Sip(Ng(t)), i.e., Bi(t) is the backward recurrence time (Definition 0.0.12) at
time ¢. Next, consider for every n > 0 the associated continuous time #(n), where the n-th

parameter update occurred. Formerly, this time can be defined as

t(n) = max  Sk(ng). (7.7)

ni+...+ng=n
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Notice that each sample path has a unique tuple (ni,...,ng), such as ny + ... +nx = n. The
connection between the discrete-time worker Aol 7(n) and the continuous-time worker Aol 74 (t)
is thus given by

k(n) = Tk(t(n)-), (7.8)

where 7 (t(n)_) = ;r?)?k(t) denotes the left limit. The left limit of 7%(¢) makes precise that
t,/t(n

Tr(n) takes the value of the continuous time worker Aol sequence at the instance when the worker

completes its update. We can now state the Aol sequence of APSI as follows:

K

7(n) = Z L{t(n) =S (Ni (¢(n)))} T (E(0) - ). (7.9)
=1

Recall that 1 denotes the indicator function of an event E € F. The expression formalizes the
observation above that 7(n) always takes values of one of the worker Aol sequences 74(n). By

construction, (7.9) fits the definition of an Aol process presented in Chapter 5.

7.2.2 Aol for coordinate-wise APSI

The further distributed iteration cAPSI considers D € N coupled, parallel parameter iterations
maintained by one or many servers. Let K; be the number of workers that compute update
for coordinate iteration i € {1,...,D}. As for APSI, we assume renewal processes describe the

workers’ processing times.

Assumption 7.2.2. For the k-th worker on coordinate i € {1,...,D}, the processing times
for the completion of parameter update jobs are given by an i.i.d. sequence of non-negative real

numbers {Wii(n)}n>1 with pi, = E [Wir(n)] < co.

The generic cAPSI is presented in Algorithm 2. The main difference in Algorithm 3 compared
to Algorithm 2 is the presence of multiple iterations updated asynchronously. Further, there
is an operation to collect the current parameters from the other iterations. This step could

alternatively be executed by the workers.

The random variables (7.3)-(7.9) defined in Section 7.2.1 can now be defined analogously for
cAPSI. For each pair (7,7), 1 <1i,j < D, the Aol sequences is thus given by

K;
Tii (1) = D Lty ()= (N3 15 () Figh (£ (7)), (7.10)
k=1

Recall that 7;;(n) is the age of the iteration value from iteration i used to update the n-th step
of iteration j. In other words, for 7;;(n), n is always the iteration counter associated with the

iteration of the second lower index j. In (7.10), the worker Aol sequences are

K;
Fir(t) = > (Nu(t) — Nu(t — Bjx(t)). (7.11)
=1
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Further, t;(n) = | max Sjk(ng) is the point in continuous time, where the n-th update of
ni+..4ng,;=n

coordinate j occurs.

Algorithm 3 Generic coordinate-wise Asynchronous Parameter Server Iteration (cAPSI)

1: Initialize the parameter iterations.

2: for the entire duration do

3: for each worker do

4: Receive parameter update job.

Complete other jobs in the queue.

6: Compute the parameter update.

7 Send the update to the associated iteration.

8: for each parameter iteration do

9: Receive an update step from a worker.

10: Update the parameter iteration.

11: Collect current parameters from the other iterations.
12: Sent a new job to the worker.

7.3 Main Results

The following two subsections present the main results for the APSI Aol sequence (7.9) and the
cAPSI Aol sequences (7.10).

7.3.1 Aol weak limit analysis for APSI

We begin with the results for the APSI Aol sequence (7.9). The first lemma presents the asymp-

totic probability with which a worker performs an update. To state the lemma, define the events

Ex(n) :={n-th update by worker k} = {t(n) = Sp(Nk(t(n)))} (7.12)

Lemma 7.1. lim P(Eg(n)) = &5 = ag.

n—00 Zj ny

The first main theorem derives the limiting Aol distribution for each worker Aol sequence 7y (t)
conditioned on the event that worker k applies an update to the parameter server at time ¢. These
time steps define the parameter server sequence Aol (7.9). Thus in combination with Lemma 7.1,
we obtain the limiting distribution for 7(n) as the mixture distribution of the limiting conditional

worker Aol sequences.
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Theorem 7.2. 7(n) converges weakly to a random variable T with a mizture distribution of

> itk N;(Wy) with weights ay from Lemma 7.1, where

N;(h) ~ lim (N;(t) — N;(t — h)) (7.13)

t—o00

is the stationary renewal process associated with N;(t) (Definition 0.0.11).

Proof. The first step is to show that conditioned on the event sequence

{t(n) = Sk(Ne(t(n)))},

the worker Aol sequence 7j(t(n)) converges weakly to >, ., N;(W4). This step uses the wealk
convergence from Blackwell’s renewal theorem (see A.2) and the independence of the worker

renewal processes. We provide the details in the chapter appendix.

To complete the proof, we combine the conditional week convergence with Lemma 7.1. Let f be

a bounded, continuous real-valued function, then
K
E[f(r(n)] = D E[f (ms(t(n))) | t(n) = Sp(Nk(t(n)))] P (¢(n) = Sk(Ny(t(n))))
k=1

K
= G | (D N;W) || =E[f(0)], (7.14)
k=1 j#k
for a random variable 7 as stated in the Theorem. The first equality follows by the law of total
expectation. The limit follows by the conditional weak convergence from the first part of the
theorem, Portmanteaus Theorem (see A.2) and Lemma 7.1. Finally, the last equality follows from

elementary properties of mixture densities; see, e.g., (Frithwirth-Schnatter 2006, Sec. 1.2.4).

O

Based on Theorem 7.2, we derive several moment properties. Naturally, we require sufficient

uniform integrability to obtain moment convergence from weak convergence.

Lemma 7.3. Suppose that E [Wg’“] < oo for qp > 1. Then, 7(n)? is uniformly integrable with

q = ming q.

We now derive the limiting mean Aol. As announced, the limiting mean Aol is proportional to
the number of workers and independent of the service time distributions. We utilize a well-known
theorem for renewal processes with stationary increments, which also holds more generally for

point processes with stationary increments.

Theorem 7.4 ((Serfozo 2009, Prop. 75)). If N is stationary point process and E[N(1)] < oo,
then B[N ()] = tE[N(1)] , ¢ > 0.
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Corollary 7.5.

nh_}rgoE [T(n)] = Z Z Pe) — K 1.

k=1 J;ﬁk
Proof. By Theorem 7.2, Lemma 7.3 and linearity of expectation, we have that
nh_}IgOIE Zak ZE { ] . (7.15)
k=1 j#k

Then apply Theorem 7.4, the stationarity of Nj and its independence of Wy, to conclude that

lim E[r(n)] = Zak Z ol (7.16)

n—00
k=1 j;ék

K

1 1
=——— Zf (7.17)

E:k 1 k=1 \ 7k M9
—K-1 (7.18)

O

Next, we derive a general moment bound for which we first prove an auxiliary lemma that uses

the subadditivity of each N ;j in p-norm.

Lemma 7.6. Consider the p-norms

RS

|85 (Willp = E [N; (W] (7.19)

then,

IN; (Wil < ITWT [ 1V (1) - (7.20)
where [-] denotes the ceiling function.
Proposition 7.7. Suppose that E [qu’“} < oo for qp > 1. Then for all 1 < p < ming qg,
71113;@]]3 [T(n)P] = E [7P] with

p

K
E[r?] <> arE (Wi + VP [ >IN D)l
k=1 j#k

Proof. Let 1 < p < ming g, then by the continuous mapping theorem, (Billingsley 2013, Thm.

2.7), 7(n)P converges weakly to 7P with 7 from Theorem 7.2. As 7(n)P is uniformly integrable,

Lemma 7.3, (Billingsley 2013, Thm. 3.5) shows that lim E [7(n)P] = E [7P]. Therefore, as 7 has
n—oo

mixture distribution,

P
lim E[r( ZakE S ON;We) | |- (7.21)

J#k
The statement follows from (7.21), Lemma 7.6, and Minkowski’s inequality. O
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7.3. MAIN RESULTS

Remark 7.3.1. For Proposition 7.7, note that workers may have a different largest bounded
moment due to their heterogeneity. Recall that a bounded (non-central) moment implies the

boundedness of all smaller (non-central) moments in probability spaces.

Remark 7.3.2. The terms ||N;(1)||, in Proposition 7.7 are the LP norms of the number of
renewals of the associated modified renewal process in the unit interval. For a given processing
time distribution (or an empirically determined distribution), these terms may be readily computed
numerically using

P (Nj(t) > m) = G F (1), (7.22)

with G as in Definition 0.0.11; see e.g. (Taga 1963). Further, one can also establish bounds for
|N;(1)||, using Chernoff bounds or the Azuma-Hoeffding inequality.

Since we used Minkowski’s inequality and subadditivity, the moment bounds in Proposition 7.7
are loose. Complementary to Proposition 7.7, we derive a sharp upper bound for the second
moment. The core part of this bound is first to establish an exact expression for the limiting

second moment using conditional variances:

Definition 7.3.1. For random wvariables X and Y, the conditional variance of X given Y is
defined as Var(X |Y) =E [(X ~E[X|Y)])?| Y} .
Proposition 7.8. Suppose that E [W,f] < oo for all k, then

2

nh_)rgloE [T(n) Z <ZE [VGT( (W) | Wk)} +E [ng] Zi )

k=1 j£k o

Proposition 7.8 leads to exact expressions for the asymptotic second moment provided that the
convolutions of the processing time distributions in (7.22) have tractable closed-forms. The

simplest example arises for Poisson point processes.

Corollary 7.9. Suppose the DC system is composed of workers with exponentially distributed
processing times with E [Wy(n)] = ug, then for alln >0,

E [7(n)?] Z Z’“"“ 142 Z“’“

k=1 ik F J#k
2
eyl o
k=1 i

If the processing times are also identically distributed, then for all n >0,
E[r(n)?] = (K —1) (1 +2(K —1))
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Remark 7.3.3. Proposition 7.8 exemplifies that, different from the first moment, higher-order
moments of Aol due to APSI depend on the actual processing time distribution. Further, for
Poisson processing times, Corollary 7.9 shows that the second moment is quadratic in the number

of workers.

For applications, only empirically approximated processing time distributions will be available,
and common processing time distributions like the Pareto distribution do not have tractable
closed-form convolutions. The announced sharp general bound for the second moment circum-
vents these issues. The bound follows from Proposition 7.8 and an inequality for the variance of

stationary renewal processes.

Corollary 7.10.

2

2
K E |W? A
Tim E [r(n)?] SZak(Zi ) vartme g e (321 )

2 3 :
k=1 j#k Hj Hj ik P

Proof. For a stationary renewal process N(t) with interarrival distribution W, Daryl J Daley
(1978, Eq. 1.15) showed that

2
Var (W), 1 [(E[W?]
Var (N(t)) £ ———=t+ — . 7.23
(V@) < L 4(E[W]2 (7.29
The statement follows from Proposition 7.8 and the linearity in (7.23). O

Corollary 7.10 is sharp as Proposition 7.8 is errorless, and Daley’s inequality holds with equality
for deterministic renewal processes. Further, we will verify in Section 7.4 that Corollary 7.10
generally offers a small relative error for an arbitrary number of workers. Most notably, the rela-
tive error decreases as the number of workers K increases. This can be seen from Corollary 7.10;
the third term is quadratic in the number of workers and will thus dominate the other two terms

that are only linear in the number of workers.

Remark 7.3.4. The asymptotic results in Theorem 7.2, Corollaries 7.5 and 7.10 and Proposi-
tion 7.7 hold for all n > 0 when modified renewal processes (Definition 0.0.11) are considered
instead of ordinary renewal processes. In other words, when a DC system in equilibrium mode is

observed that has already run for a long time.

Remark 7.3.5. We conjecture that a generalization of Proposition 7.8 to all higher-order integer
moments is possible using higher-order cumulants and their relation to non-central moments.
Please observe that the essence of Proposition 7.8 is to combine that the limit of T(n) has mizture
density and that the variance of conditionally independent random variables is the sum of their
conditional variances. Thus, the key point will be to apply a generalization of the law of total

variance for cumulants (Brillinger 1969).
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7.3. MAIN RESULTS

7.3.2 Aol weak limit analysis for cAPSI

The analysis of Algorithm 3 works along the lines of the previous subsection with some additional
bookkeeping due to multiple parameter iterations. Recall that the key difference in the cAPSI
Aol sequences 7;j(n) (7.10) compared to the APSI Aol sequence (7.9) is that the number of
renewals, while one worker computes an update, are from the workers on the other coordinates
if i # j. As introduced in Section 7.2.2, a lower index jk denotes the k-th worker on the j-th

coordinate. Analogously to Lemma 7.1 it now follows that

1

— Hik — .
nh_)n;OIP’(E k(n)) = ZKj = G- (7.24)
=1 pj
with
Eji(n) = {n-th update of coordinate j by the k-th worker on coordinate j} (7.25)

Theorem 7.11. 7;(n) converges weakly to a random variable T;; with a mizture distribution of

© > ik Zl( Wii) with weights a;y, if i = j,
. Zl 1 Na(Wjk) with weights aji, if i # j,

with the stationary renewal process associated with Ny (t):

Na(h) ~ lim (Nu(t) = Na(t = h).

Proof. Analogous to Theorem 7.2. O

Corollary 7.12.

Jim Blrj(n)] = S5 % o (7.26)
2k2t ur Kj—1 i=yj,

Proof. The case i = j follows by Corollary 7.5. Similarly for i # j, we have by Theorem 7.11
and Theorem 7.4 that

nh_)m E [155(n Za]k <Z Zj:) (7.27)
K; K;
= % > (Z 1) (7.28)

Dkt iy k=1 \i=1 Hl

O

Analogous statements to Proposition 7.7, Proposition 7.8, and Corollary 7.9 can now also be

derived based on Theorem 7.11.
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7.4 Numerical Verification

We now verify the core theoretical statements presented in this chapter by numerical simulations.

We begin verifying Corollaries 7.5 and 7.12. We simulate Algorithm 3 with three coordinates
with K1 = 50, Ko = 35 and K3 = 20 workers. The processing times of workers in each
class are sampled from Pareto distributions with Pareto exponent a; = 2.1, ag = 2.8 and
a3 = 3.5. Figures 7.1 to 7.3 show the resulting cumulative averages of the Aol sequences 7;;(n).
The cumulative averages converge to the asymptotic means of the Aol sequences by the SLLN
for fundamental Aol processes Corollary 6.9!. In addition, the figures display the predicted
asymptotic mean from Corollary 7.12. We see that the cumulative averages converge to their
predicted values, which verifies Corollaries 7.5 and 7.12. Notice that in Figures 7.1 to 7.3, n is
used as the index/counter for updating the corresponding coordinate. During the same runtime,
coordinate one was updated most frequently, while coordinate three was updated least frequently.
On the flip side, coordinate three has the lowest average Aol, while coordinate one has the largest
average Aol. This highlights the challenge and trade-off in scheduling heterogeneous workers to
update different coordinates of a model asynchronously. With Corollaries 7.5 and 7.12, the
average Aol affecting jobs with asynchronous execution on parallel computing infrastructure can
now be predicted exactly. The only required information is the mean processing time for a
sequential job added to a specific worker, which will be readily available from infrastructure data

(Samsi et al. 2021).

Second, we evaluate the quality of Corollary 7.10. Here, we consider APSI with homogenous
workers with exponentially distributed processing times. In other words, parameter updates are
completed at instances of Poisson point processes. Corollary 7.9 thus yields the exact second
moment, and we can calculate the exact relative error between the bound in Corollary 7.10 and
the actual value. We do this for varying Poisson rates A and number of workers K, which leads
to Figure 7.4. We can see that the relative error increases as A decreases, in other words, when
the workers get “slower”. On the other hand, the relative error decreases as we increase the
number of workers. This is a very attractive property, which we also expect for the anticipated

generalization of Corollary 7.10 from higher-order cumulants.

!The SLLN extends from the fundamental Aol processes to Aol processes generated from point process. Here,
the required mixing rate follows from Berbee (1987, Theorem 6.1) and a suitable approximation of the Pareto

processing times by a Zeta distribution; the discrete analog
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7.4. NUMERICAL VERIFICATION
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Figure 7.1: Cumulative average of the Aol sequences 7;1(n), 1 <4 < 3 and the associated asymptotic mean Aol

as predicted by Corollary 7.12.
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Figure 7.2: Cumulative average of the Aol sequences 7;2(n), 1 < ¢ < 3 and the associated asymptotic mean Aol

as predicted by Corollary 7.12.
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Figure 7.3: Cumulative average of the Aol sequences 7;3(n), 1 <4 < 3 and the associated asymptotic mean Aol

as predicted by Corollary 7.12.
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Figure 7.4: Relative error of the second moment bound in Corollary 7.10 for homogeneous workers with expo-

nentially distributed processing times with rate A
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7.5. APPLICATIONS

7.5 Applications

This section discusses conclusions from the results presented in the previous section. The main
applications are to predict the convergence rate of methods and allocate computing resources.
With this, we complete the answers on (Q8) on connections between computing events in con-

tinuous time and the effect on discrete algorithms.

7.5.1 Gradient descend methods

The prime examples of APSI are variants of ASGD. Until lately, finite time analyses of ASGD
algorithms relied on the assumption of bounded Aol; see, e.g., the references in (Mishchenko
et al. 2022, Sec. 1.1). This assumption was drastically weakened with delay-adaptive ASGD
methods. These methods guarantee finite time convergence error estimates as a function of the
first and/or second Aol moment; see (Cohen et al. 2021; Anastasiia Koloskova, Stich, and Jaggi

2022; Aviv et al. 2021).

The first inside for a distributed computing scenario, as considered herein, is that the convergence
rates in (Mishchenko et al. 2022, Thm 3.3) and (Anastasiia Koloskova, Stich, and Jaggi 2022,
Cor. 9) are asymptotically identical up to a constant factor. The first result gives a convergence

rate in O (% + ﬁ), where 2 is a bound on the expected squared stochastic gradient error.

The second result gives a convergence rate in O (% + ﬁ) with 7, = 3% 7(n). It was

mentioned in (Anastasiia Koloskova, Stich, and Jaggi 2022) that it was previously unclear how
to compare these two results. By Corollary 7.5 and the obtained SLLN for Aol sequences, the
rates are identical to a constant factor when workers complete ASGD updates after processing

times modeled as parallel renewal processes.

In (Aviv et al. 2021), a powerful convergence rate estimate was proposed for a class of strongly
convex objectives on bounded domains. The authors in (Anastasiia Koloskova, Stich, and Jaggi
2022) are, however, unclear about the result’s strength as the estimate is a function of the delay
second moment, which “can frequently degrade with the maximum delay”. We shed new light
on this. (Aviv et al. 2021, Thm. 4.3.) gives a converges rate estimate for the n-th step with a
multiplicative factor \/(7%4—7?,12 , where 02 is the average Aol variance until step n. If the workers’
processing times have finite second moments, then by Lemma 7.3 and the SLL, this quantity will
converge to nlgglo E [7(n)?]. Tt thus follows from the second moment bound characterization,
Proposition 7.8 and Corollary 7.10, that \/a,%—i—i?n2 is asymptotically equal to K up to constant
factor plus an additional term in the order of /K. For example, if all workers have identically

distributed processing time distributions, then
/ E W2
2 47,2 K-1)]; 7.2
oL +T €9< E W] ( )), (7.29)
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a similar factor can be obtained for heterogeneous workers. For given processing time data, the
convergence rate for the delay-adaptive method in (Aviv et al. 2021) can therefore be assessed
precisely. However, for workers with large processing time variance, the rate can be weak and

will be inconclusive for fat-tailed processing time distributions with unbounded variance.

7.5.2 Resource allocation for parallel SGD iterations

We now use the Aol theory to design a DC system resource allocation problem based on the

convergence result from (Aviv et al. 2021) for constraint convex optimization.

Suppose a DC system workload manager receives jobs in the form of datasets D;, pre-trained con-
tinuous feature extractors ¢;(z) € R% and compact, convex constraint sets ©; for i € {1,...,D}

and some D € N. The task is to solve the D constraint quadratic optimization problems:
min - B y)p, [[li ()" 6; — yll3],
s.t. QZ € 6@ C Rdi,

where for simplicity we assume y € R. In other words, the task is to find constraint linear regres-
sion models. Such tasks frequently arise in cloud computing scenarios where users submit a large
dataset and a pre-trained model (e.g., neural network image feature extractor (Hinterstoisser
et al. 2018)) and are looking for the best linear fit for their data. Suppose further that the DC
system operator manages K heterogeneous workers. The goal is to schedule D asynchronous
SGD algorithms as sequential tasks to the workers, such that all iterations achieve O(e) ac-
curacy in the least possible time. In other words, we want to minimize the average expected

O(e)-makespan. For illustration, consider no online rescheduling and that D < K.

Assumption 7.5.1. Each A; = E [¢;(2)¢i(z)"] is positive semi-definite matriz with matriz

norm L; = || A;]] < oo.

Define, G; = 2516%%\]14,»01- — E[y¢i(2)]|| and H; = 2Amin(A;), where Apin denotes the smallest.
Then F; is H;-strongly convex and L;-smooth with ||V, F;(6;)|| < G;. Further, assume a variance
bound for the sample gradient: E [||Vg,F;(6;) — Vo, fi(6:, 2, y)||?] < o? Ve, fi(6s,2,y). Note
that a finite subset of the data sets can be used to approximate these constants and check
Assumption 7.5.1 quickly.

The assumptions of (Aviv et al. 2021, Algorithm 4 and Thm. 4.3) are satisfied, and their

asynchronous adaptive SGD algorithm returns a candidate solution ¢}(n) after n steps with an

estimate

G? + U? o2 L?(G? + a?)

)

E [0j(n) — 67] € O( Hn? " Hn | Hn? (o0 +70%) ) (7.31)
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7.5. APPLICATIONS

It is left to assess 02 + 7,2 based on the parallel renewal process DC system model.

DC system workload managers like SLURM provide databases that track and log the processing
time of specific job types on specific workers (Samsi et al. 2021). It is, therefore, realistic that an
advanced /intelligent DC system manager can predict the rate at which certain jobs can be pro-
cessed on specific workers, given the currently experienced system workload and local scheduling
policies, e.g., generalized processor sharing. These rates can then be used as exponential approx-
imations for the processing times of SGD jobs. In other words, let ui be the predicted rate for
an update step of the i-th problem by worker k.

Based on Corollary 7.9, the estimate for the convergence rate in (7.31) is therefore in

G?+o0? o2  LXG?+0?)
O L t L et iR [2 7.32
( H;n? JerjL Hi?’n2 [TZ] ’ ( )
=g; (n,IC;)
with
2
er; j€KCq
E[r2] = (|Ki| — 1) +2 AL ,
zkE’Ci ﬂ

where IC; is the set of workers allocated to SGD iteration 3.

Now let € > 0, then given (7.32) there exist a smallest n;, such that g;(n;, ;) < e. Further,
let Bp denote the set of all partitions of {1,...,D}. A combinatorial optimization problem to
schedule workers for the SGD iterations to solve all (7.30) and to minimize the average expected
O(e)-makespan based on the given problem data and worker rate predictions can now be stated

as:

1
min — min E [tx, (n;)],
(K1,...,Kp)eBp D ; i [ ICZ( )] (733)

subject to gi(ni, K;) < e,

with the makespans tx, (n;) for workers in K; as defined (7.7).

Problem (7.33) presents a general structure for DC resource allocation problems: A runtime-
related criterion (e.g., average makespan, maximum makespan, makespan variance, etc.) should
be minimized subject to the fact that the executed algorithms satisfy a particular quality criterion
(e.g., the expected distance to the optimal point), which depends on the Aol induced by allocated
asynchronous resources. In this way, various problems like (7.33) can be formulated for non-
convex and federated learning scenarios, e.g., based on (Anastasiia Koloskova, Stich, and Jaggi

2022, Thm. 11).
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7.6 Discussion and related work

In this chapter, we derived the limiting distribution and moment bounds for Aol resulting from
asynchronous parameter server updates modeled as parallel renewal processes. Based on the
moment predictions, one can assess the performance of asynchronous algorithms and design
resource allocation problems for asynchronous algorithms running on DC systems, as illustrated
in the previous section. In the future, we intend to find practical approximations for such resource
allocation problems for general non-convex optimization algorithms. One challenge that arises
is the makespan expression itself, which is the maximum over random variables. For example, in
problem (7.33), the makespan is the maximum over independent Erlang random variables due
to the Poisson rate approximation. In this case, the expected makespan can be approximated by
numerical integration, and extreme value theory will be helpful to approximate the maximum

(Haan and Ferreira 2006; Gasull, Lopez-Salcedo. and Utzet 2015).

As presented herein, DC systems modeled as parallel renewal processes have previously not been
considered as a model for asynchronous parallel computing. In that sense, the established results
are fundamental and new to the literature. In the queuing theory literature, multi-server queuing
and computing have a long history since the seminal work of Erlang on M/D/K queues; see
Kingman (2009) fresh look at Erlang’s work. Since then, M/G/K queues with FCFC scheduling
have been used as representative models for DC systems (Khazaei, J. Misic, and V. B. Misic
2011). The literature on M/G/K queues with FCFC scheduling offers good approximations for
the mean waiting time and thus for the mean sojourn time (Gupta and Osogami 2011). However,
the information delay that we call Aol is a metric that follows from the asynchronous computing
of processors in a DC system. The Aol is thus a non-trivial function of the sojourn time, the
job scheduler, and various other factors. The foundational contribution is to study Aol as a
function of the processing times associated with jobs sequentially added to a DC system. This
allows for a precise study of the Aol distribution. With this result, models for DC system queues,
(Khazaei, J. Misic, and V. B. Misic 2011; Bandi, Trichakis, and Vayanos 2019), can be used to
predict processing time properties for sequential tasks. The processing time properties can then
be coupled with the results herein to characterize Aol properties, which in turn can then be used

as design criteria for resource scheduling in DC systems.

Finally, recall that we derived the results of this chapter for the parallel renewal process, de-
scribed by i.i.d. sequences of processing times. This was useful for deriving statistical properties
for Aol from the core results of this section. Note, that the core theorems, Theorem 7.2 and
Theorem 7.11, can generally hold for parallel point process. For Theorem 7.2, the only condition
for this conclusion is that conditioned on the event sequence {t(n) = Sx(Ng(t(n)))}, the worker
Aol sequence Ty (t(n)) converges weakly to some limit. This will hold for parallel point processes

with asymptotically stationary (Cox and Isham 1980).
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7.7. PROOFS FOR CHAPTER 7

7.7 Proofs for Chapter 7

Proof of Lemma 7.1. We present a proof for K = 2 workers. For Fi(n), we have that
P(E1(n)) =P (Az(t(n — 1)) — A1(t(n — 1)) > 0), (7.34)

which is the probability that the forward recurrence time (Definition 0.0.12) of worker 1 at the

n — 1-th update is less than the forward recurrence time of worker 2.

Next, write the distribution of Ag(t(n — 1)) — A1 (t(n — 1)) using the convolution formula for the

difference of independent random variables.

P(Em) | Brn=1) = [ [ @) fasiomry )y (7.35)
= /OOOP(Wl <) fas(n—1)) (y)dzdy (7.36)
— ;/OOOP(Wl <y)P(Wy > y) dzdy (7.37)
— 1 — LB fmin(wy, wa)] (7.38)
12

with fmin,, = E [min(Wi, W3)]. In the same way, we can show that

lim P (Ey(n) | Ba(n— 1)) = Hminz (7.39)

n—oo '[,Ll

Using the law of total probability, it follows that

. _ Hminip . _ Hmingg :
nh_)ngOIP’ (Ei(n)) = T nh_}n;OIP’(Eg(n)) + (1 T > nh_}n;OIP’ (E1(n)). (7.40)
Equivalently,
1. Lo
0= " Jim P (Fy(n)) — " Jim P (Ey(n)), (7.41)

as fminy, > 0. The statement now follows by solving the system of equations (7.41) and

lim P(E;(n))+ lim P(E2(n)) = 1. (7.42)
n—oo n—0o0
The cases K > 2 follow the same principles, leading to K equations, respectively. O

Proof. details for Theorem 7.2. Let f be a bounded continuous function. Recall the definition of
the worker Aol in continuous time (7.5) and observe that the event {¢t(n) = Sk(Ng(t(n))} (that
the n-th update is made by worker k), implies that the backward recurrence time By (t(n)) =
Wi (Ng(t(n))). It follows that

E[f (F(t(n)-)) | t(n) = Se(Ne(t()] = E | f | D Kjkn | | H(n) = Sp(Ni(t(n)) (7.43)
J7#k
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with
K = Nj(#(n) = Nj ((n) = Wi(Ni(t () ) (7.44)

Now write the aforementioned event as the following disjoint union

{t(n) = Se(Ni(t(n)} = | |[{t(n) = S(m)}, (7.45)

m>0

For each event on the right-hand side of (7.45), we now have for every n > 0 that

D Kjkn | | t(n) = Se(m) | =E | f | Y N;(Sk(m)) = Nj(Sk(m — 1))
J#k J#k (7.46)
ZN](Wk‘) , as m — 00.
J#k
The convergence follows from Blackwell’s renewal theorem using that the renewal processes are

independent, the law of total expectation, and a truncation of the resulting summation as f is

bounded.

Finally, we conclude from (7.43) and (7.45) that

E[f (7(t(n)-) | H(n) = S (Ne(t(n)] = D anmE | f | D Kjpn | [(n) = Sp(m) |, (7.47)

m>0 J#k

with coefficients

P (t(n) = Sk(m))

On,m = >0

P (t(n) = Sk(Nk(t(n)))

and ) anm,m = 1. Further, as t(n) — oo a.s., as Si(m) < oo a.s., and since the denominator of

the coefficients converges by Lemma 7.1, we see that a, ,, — 0 for every m € N as n — oo. The

theorem statement, consequently, follows from (7.46) and (7.47). O

Proof of Lemma 7.3. By Theorem 7.2, the independence of the parallel renewal processes and
the definition of 7(n), it is enough to show that (N;(t) — N;(t — Wy))? is uniformly integrable
for E [W}!] < co. To see this, we can use the distributional subadditivity of each N;(t) + 1, see
(Iksanov 2016, Eq. (3)), which shoes that

P (N;(t) — (Nj(t —h) > x) <P (Nj(h) + 1> z). (7.48)
Hence,
P (N, (t) — (N;(t — <> P(Nj(h) + 1> )P (W, = h) (7.49)
h

and it follows that N;(t) — (N;(t— W) is uniformly stochastically dominated by random variable
with bounded g-th moment as E [ng] < oo. Using this uniform stochastic domination property,

the required uniform integrability follows. O
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7.7. PROOFS FOR CHAPTER 7

Proof of Lemma 7.6. Inspired by the proof of Theorem 7.4, we show that ||N;(w)]|, is a subad-

ditive function:
1N (u A+ 0)llp = [|Nj(w) + Nj(u+ v) = Nj(w)]lp

< NG (@) llp + N5+ v) = Nj(w)l
1V () llp + 1 (0) I (7.50)

The inequality follows by Minkowski’s inequality and the second equality by stationarity. Hence,
|N;(nw)|l, < n||N;j(w)|, for n € N. Elementary properties of subaddtive functions, see e.g.
(Kuczma 2009), thus yield that | Nj(w)l|, < n||Nj(w/n)|p. As, || N;(w)]|, is increasing it follows
that

1N; (@)l < [w]|N; (w/rw)) lp < [w][|N; (1), (7.51)
where [-] denotes the ceiling function. Using the law of total probability and the independence
of Nj and Wy, it follows that

IN; (Wi)llp < Wi + Ll | N5 (1)lp- (7.52)

O

Proof of Proposition 7.8. Starting from (7.21), using the well-known identity for the variance of

random variables, we obtain

2
K
i 2] V. V.
Jim B [7(n)?] = a (Var SON;(We) | +E | D N;(We) ) (7.53)
k=1 7k 7k
Then, the law of total variance (see A.2) shows that
Var [ Y N;j(Wy) | =E |Var | Y N;(We) | Wi | | + Var [E [ Y N;(We) [ We| |- (7.54)

7k itk 7k
As N;(W}) are conditionally independent given Wy, it follows that
. . 1\ 2
Var [ SN | =Y E [var (Nj(Wk) | Wk)} + Var (W) Y () , (7.55)
J#k J#k peTN

For the second term, we again used the stationary of Nj, the independence of Nj and Wy, as
well as the identity Var (cX) = ¢ = Var (X) for a random variable X. The proposition now
follows by combining (7.53) and (7.55). O
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Chapter 8

Aol 1n wireless networks

In this last chapter on Aol, we study conditions to verify the existence of Aol dominating random
variables in (mobile) wireless networks. Based on these conditions, stability and convergence
guarantees for the distributed SA and optimization algorithms, as studied in Chapters 2 to 4,
become available when implemented over wireless networks. The core examples of such scenarios
are mobile computing systems consisting of robots and drones equipped with sensor units. In
these scenarios, iterative decentralized algorithms are attractive as they facilitate online learning
adapted to the uncertainty in a sensor data stream. Further, information exchanged via a
wireless network facilitates cooperation among physically distributed agents. Wireless networks
are popular because they are easy to set up, cheap, and flexible. However, they are not reliable.
As discussed before, uncertain communication may lead to large Aol, which in turn may affect
algorithm performance. To predict algorithm performance, it is thus important to assess Aol
based on representative wireless network communication. A representative wireless network
should include the correlation between communications that are close to each other in some
domain (e.g., time, frequency, or space) and the use of Medium Access Control (MAC) protocols

(Tse and Viswanath 2005).

This chapter discusses a novel network model based on the signal-to-interference-plus-noise ratio
(SINR) associated with agent-to-agent communication that encompasses many wireless network
configurations. Moreover, we present a novel MAC protocol that accounts for “local” Aol-aware
MAC decisions. By local, we mean that the decisions are made at the agent level, depending on
observable Aol. The SINR model encompasses deterministic path-loss models, uncertain compo-
nents like shadowing, fading, interference by other agents, and additional noise and interference
from external users. These components may be time-varying and influence each other. We allow
these components to vary with an underlying local network-state process. Such processes can,
for example, be used to model agent mobility. Suppose we assume that the local network-state

processes are geometrically ergodic Markov processes. In that case, in conjunction with the MAC
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protocol, the network guarantees that the SINR for agent-to-agent communication is such that
the various dependencies decay over time. Thus adding to the answers on (Q7) presented in
Chapter 6. This result was presented in (Redder, Ramaswamy, and Karl 2022¢). With the de-
rived SINR dependency decay, we then bound the asymptotic growth of Aol variables associated
with the communication based on the results in Chapter 6 on Aol with dependent communication
and the growth bounds developed in Chapter 5. The asymptotic growth of the Aol variables
then implies the stability and convergence of distributed stochastic gradient descent schemes
implemented over wireless networks using the results presented in Chapter 3, which provides

another dimension to answer of (Q4).

To the author’s knowledge, this is the first time that freshness of data is directly derived using
a practical wireless communication model within the distributed optimization setting. Previous
analyses assume unrealistic models, e.g., i.i.d. communication, (Anastasia Koloskova et al. 2020;
Ramaswamy, Redder, and Daniel E. Quevedo 2021b). We extend the theory of distributed opti-
mization to allow for practical wireless communication models. Through this analysis, we believe

that we have created a useful framework for practitioners and theoreticians.

8.1 Network model

Denote a set of agents by V = {1,...,D}. As before, we use “i,j” to index the agents, and
we are interested in the communication necessary for a distributed gradient-based solution to an
optimization or learning problem as in Chapters 2 to 4. Hence, consider a scenario wherein agents
are geographically distributed and do not know the other agents’ current optimization variables.
In particular, at time n, agent ¢+ does not know the optimization variables 3, for j # i. Instead,
the agents use a wireless network to exchange updates to their local variables. Therefore, as in
(4.8) in Chapter 4, only delayed versions of the other agent variables are available, i.e., agent 4

has access to the delayed version

X! = <x1 b2l ) (8.1)

n—ri1(n)? o »¥n—1;p(n)

of the true current global variable x, at any time step n. Here, we refer to X! as the local
belief vector of agent i at time n. The local belief vector then gets updated whenever an agent
accesses the wireless network and successfully transmits information about the optimization to

other agents. How the agents access the network is described by a MAC protocol.

Generally speaking, MAC protocols are necessary for wireless communication systems to avoid
unnecessary data losses via controlled medium access. We use a time-slotted broadcast commu-
nication strategy to exchange the belief vectors X! (8.1). At every step, each agent i uses a MAC
protocol to decide whether it broadcasts X! in time slot n. This decision is represented by p’,

which equals 1 when the decision is to send and 0 otherwise. The MAC protocol to be presented
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herein, in conjunction with a suitable network, should facilitate the flow of x! (local variable)
from agent i to every other agent. It does so by facilitating the flow of the belief vectors X
containing the local variables z?,, which, with suitable assumptions, will ensure that eventually,

all agents 4 receive updates of 7, from all agents j.

Suitable assumptions for a network model should consider that wireless transmissions by agents
occurring close in some domain will affect each other. In other words, a representative network
model for multi-agent wireless communication should take into account the interference due to
the network usage of other agents. Physically, an agent can receive data from another agent using
a wireless channel if the received SINR, of the observed signal is above a certain threshold. Iyer,
Rosenberg, and Karnik (2009) argued that the SINR is thus a realistic and representative model
for the success of wireless communication in the presence of interference. Below, we present a

SINR model that can be used to model various practical wireless communication phenomena.

8.1.1 SINR-based network model

We associate with each agent i a stationary (network) state process {W? },,>0. These processes

represent the local network environment at each agent. For each agent ¢, we have
vieY, Vn>0, (8.2)

with state space J'. For example, ¥ may represent the physical position of agent i in R? at
time n. The following is the channel gain associated with the wireless channel from node i to j

during time slot n:

g =G (W, V), (8.3)

where szj Y x VI R>g are i.i.d. sequences of Borel measurable functions (Borel functions),
which include continuous and indicator functions of the state processes. Further, we define local

noise processes

vy = G (W), (8.4)

where again G?, : V' — R>¢ are i.i.d. sequences of Borel functions. We then use an additive

model for the wireless channel from agent ¢ to j during time slot n

SINRY = Do (8.5)
> kziPhgn’ +vn

with transmission schedule pi, € {0,1}. Transmission scheduling is via an Aol-aware MAC

protocol, discussed in Section 8.1.3.

The SINR model, (8.5), generalizes the traditional SINR model (Tse and Viswanath 2005). It

includes popular models such as the following:
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8.1. NETWORK MODEL

Example 8.1.1. Let ' = R2. Define

Pl W — W
Sz PR | WE — W=7 v
k#i'n n

SINR" = (8.6)
with path-loss coefficient v, where each hY s an i.i.d. fading process and v is constant background

notse.

It also includes more general models with:

1) General Borel measurable deterministic path-loss.
2) Slow (shadow) fading and fast fading.

3) Additional external noise or interference.

Notably, all these components can depend on each other via the local state processes W and
any additional i.i.d. process. Below, we illustrate that (8.5) can model state-dependent Rayleigh

fading.

Example 8.1.2. Suppose we would like to model state-dependent Rayleigh fading hi for SINRif
i Bxample 8.1.1. To do so, we can generate independent standard normally distributed samples

Up, Up and transform them linearly using a measurable function g of the network states:
U = ung(Vh, W), 0 = v, g(W, UL) (8.7)

Then, h¥ = (Un)? + (0n)? will result in state-dependent Rayleigh fading, where the scale pa-

rameter of the Rayleigh distribution density depends on the network states.

8.1.2 Network Assumptions

We assume a constant SINR threshold 8 such that, whenever agent i decides to send some data
(py, = 1) and
SINRY > 3, (8.8)

the data from node 7 is successfully received at agent j during time slot n. The threshold depends
on each node pair’s modulation, coding, and path characteristics. Extending the analysis to node-
pair-specific thresholds is simple, so assuming only one SINR threshold does not lose generality.
The SINR will most importantly depend on the agents’ physical position, the transmitter’s
transmission power, and the transmission power of other currently transmitting agents. The
physical position will determine the channel gain between the receiver and all transmitting agents,
e.g., due to multi-path propagation, shadowing, etc. For a simpler presentation, we will not
consider additional communication latencies, e.g., latency due to coding, etc. Taking those into

account would be possible without too many technical difficulties.
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We use A% to represent the event sequence corresponding to (8.8), i.e. we define
Al = {SINRY > B} (8.9)

Communication errors are due to interference when SINRY < . The threshold 3 is derived from
the Shannon bound via the available bandwidth B and the data rate R required to exchange
Zpn during a time slot, ie., § > oft/B _ 1 (plus some additional safety margins, if desired).
The extension to node-pair-specific margins is, again, a mere technicality. Hence, if A occurs,
agent i can successfully transmit its entire local belief vector X! (comprising the most recent
information from all agents available at agent 7, including their local time stamps) from (8.1)
to agent j during time slot n. Theoretically, arbitrary bit rates will merely require a lot of

bookkeeping and will not change the results qualitatively.

We need a connectivity assumption enabling that eventually, all agents i receive updates of 2,

from all agents j. We assume the following with regard to the wireless network for the analysis:

Assumption 8.1.1 (A1). There is a strongly connected directed graph (V, E), i.e., a graph with
a path between each ordered pair of vertices of the graph, such that for all (i,7) € E, we have

P (g4, > Bvl,.) >0, foralln>0 for somem € N. (8.10)

Assumption 8.1.2 (A2). The network state process W := (¥y,...,Up) forms a geometrically
ergodic Markov chain (Definition 8.1.1).

Definition 8.1.1 ((S. P. Meyn and Tweedie 2012, Ch. 15)). A stationary Markov chain with
transition kernel P is said to be Geometrically Ergodic if P, convergences in total variation at

a geometric rate to a unique stationary distribution.

8.1.3 Aol-aware medium access control protocols

Assumption 8.1.1 and Assumption 8.1.2 enable the design of broadcast schedules {pf,},>0 to
guarantee that belief vectors can flow between every pair of agents. A simple schedule that
suffices is a centralized round-robin schedule. Since a single agent transmits in a given time slot,
Assumption 8.1.1 would guarantee that the transmission is successful with non-zero probability
over a finite horizon. The recurrence of the network state process due to Assumption 8.1.2 then

guarantees that this event occurs infinitely often.

We are interested in a more sophisticated schedule that takes decisions locally at the agent level
based on the observed Aol processes. In other words, we would like to design an Aol-aware MAC
protocol (ideally fully distributed) to facilitate fast convergence of the optimization algorithm at
hand — in this case, a DSGD iteration as in Chapter 3. While this seems obvious from a practical

perspective, for a theoretical analysis, it adds complications. It turns out that it is particularly
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8.1. NETWORK MODEL

Algorithm 4 MAC protocol at agent ¢ € V
1: Fix My > My € N and a small 6 € (0,1).

2: for the entire duration do

3: for M steps do

4: Sample p, from the Aol-aware policy IT¢

5: for one time step do

6: With probability § pick pf, = 0.

7: Elif 7j;(n) > M for any j € N(i), let pl, =1 .

8: for M> steps do

9: Pick p! independent or deterministic.

difficult to analyze transmission schedules that are arbitrary functions of the Aol processes 7;;(n).
This is because the scheduling decisions {p? },,>0 will depend recursively on previous scheduling

decisions, which makes it difficult to analyze the SINR-driven event processes (8.9).

To overcome this, we present a MAC protocol (Algorithm 4) that periodically switches between an
Aol-aware and an Aol-unaware component. The Aol-aware component itself does not distinguish
the Aol when its value is “large”. In this sense, the Aol-aware component is only quasi-cognizant.

This slight compromise helps with the analysis while remaining practical.

Let M; represent the number of time steps used by the Aol-aware schedule, and let Ms represent
the number of steps used by the Aol-unaware schedule. The MAC protocol framework is stated
as Algorithm 4. The algorithm uses the Aol associated with direct communication for agent
pairs (i,j) € E with E from Assumption 8.1.1. For this, we assume that a sender receives an
acknowledgment after successful transmission, i.e., if p, = 1, then agent i receives feedback if
AY occurred for any j # i. For agent i € V define A () the set of neighbors in (V, E'). Then for

any j € N (i), define 7;;(n) as the Aol associated with direct communication from i to j.

Let us now look at the Aol-aware component of Algorithm 4. For each agent ¢ € V', define local

Aol averages:

iy L o B
q'(n) = ) ];i min{r;;(n), Ma} — 1 (8.11)
‘(n) = ; E min{7;;(n), Ma} —
r ( ) : ’./\/’(2)| et { ]l( )7 2} 1 (812)

Using a softmax function, we now define local time-varying stochastic Aol-aware policies IT¢, by

defining its density:

(1) = —— (8.13)

1+er’n) dn)

Observe that if p!, ~ IT¢, then P (p}l =1]|q¢'(n) = 0) =1, i.e., if agent ¢ has the best possible
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status updates from all other agents, it will broadcast its own belief vector. By construction, the

policy has the following properties:

e Agent ¢ has a higher chance of transmitting at time n if it previously had less success in
transmitting its local believe vector (hence, 7j(n) would be “large”).

e Agent i has a lower chance of transmitting if it’s own Aol processes 7;;(n) take larger
values. Hence, agent ¢ would be more likely to remain silent if it had not received updates

from other agents, as this may have been caused by its interference at other agents.

The time-varying Aol-aware policies II}, are the essential component for the analysis. The key
property is the following: For m > My the Aol-aware decisions do not distinguish events of the
form {1;;(n) > m} from the event {7;;(n) > Ms}. Specifically, the Aol-aware schedules are Borel
functions of the indicator functions 1y, (n)>my for m =0,..., My. To see that I}, satisfies this

property, observe that min{r;;(n), M2} can be represented as:

My—1
> Flr k-1 Uy iy + Mol (n)>010) (8.14)
k=1

In Lemma 8.3, we will use that II%, is a Borel function Liri(n)>m} for m = 0,..., My to show

that the dependency of events A% and A% decays as In —m| — oo.

Finally, we look at the backup scheduling step, which completes the description of Algorithm 4.
For a pair of agents (i,j) € F, if agent j has not received an update from agent i during the
Aol-aware phase, then this step ensures that with some probability, agent ¢ will broadcast its
belief vector. The backup step is a technical component that simplifies the proof of Lemma 8.2
in the next section. For the presented Aol-aware policies I, a version of Lemma 8.2 can already

be shown without it. This leads to the main result of this chapter — Theorem 8.1.

8.2 Aol moment bounds under Markov dynamics and Aol aware

scheduling

Theorem 8.1. Suppose every agent i € V uses Algorithm 4 to select its broadcast decisions pt,.
Suppose the network can be represented by the SINR model (8.5), such that Assumption 8.1.1 and
Assumption 8.1.2 hold. Then for any p > there exists a random variable T, such that 1;;(n) <g T

for all n, with E[7P] < oco.
To simplify the proof of Theorem 8.1, we consider without loss of generality Assumption 8.1.1 with

m = 1 for all 4, j. We need the following lemmas to prove Theorem 8.1. Define M = M1+ Ms+1
with M; and Ms as in Algorithm 4.
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8.2. AOI MOMENT BOUNDS UNDER MARKOV DYNAMICS AND AOI AWARE
SCHEDULING

Lemma 8.2. For every (i,j) € E, there is for some ¢ > 0:

n—+M
P ( U Aﬁg) >e, Yn>0. (8.15)
k=n

8.2.1 Strong mixing preservation property

We now step into the theory of dependency decay. For this, recall the background on a-mixing
presented in Section 6.2. By Assumption 8.1.2, the network state process ¥ converges to its
steady state distribution at a geometric rate. It follows from (Bradley 2005, Thm. 3.7) that WU is
a-mixing with exponential decay. The next lemma shows that this mixing property is preserved

under the MAC protocol Algorithm 4.

Lemma 8.3. AY is a-mizing with exponential decay.

8.2.2 Moment bound

We are now ready to prove Theorem 8.1, which is practically a corollary to Theorem 6.1 developed

in Chapter 6.

Fix a pair of agents (i,7) € F, with E from Assumption 8.1.1. By Lemma 8.2, Theorem 6.1
applies with AY in place of A,, and k = M, where by Lemma 8.3, a(A;;,n) decays exponentially.
It thus follows from Lemma Theorem 6.1 and the exponential decay that for every p > 0, there
is a dominating random variable for each pair of agents that can communicate directly described
by the directed graph (V, E) from Assumption 8.1.1. In addition, it is simple to see that the
existence of a dominating random variable with some moment bound is a transitive property of
multi-hop networks. It thus follows from the strong connectivity of (V, E) and a simple induction
argument that for every p > 0 there is a single dominating random variable 7 such that 7; ; <s 7
for every (i,7) € V2, and E[7?] < co. Thus yielding the statement of Theorem 8.1. The core
property for this strong result is the geometric ergodicity assumption, which yields exponentially

fast mixing.

Discussion on Assumption 8.1.1 and Assumption 8.1.2

Since assumptions Assumption 8.1.1 and Assumption 8.1.2 are key to the analysis, we discuss
their practicality here. Assumption 8.1.1 requires that the wireless network guarantees that
at a given agent pair can communicate with non-zero probability, when all other agents are
silent. This assumption is weak and easy to ensure since it only requires that the communication
is successful in the absence of interference. It is harder for the network to ensure successful

communication in the presence of interference.
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Given the SINR model (8.5), Assumption Assumption 8.1.1 is necessary to show Theorem 8.1 If
Assumption 8.1.1 does not hold, then there is a pair of agents (i, j) € V2 such that for every path
(i1,...,ix), K > 2, with iy = i and iy, = j, there is pair (i, ix11), such that (8.10) does not hold,
ie. P (gifik“ > 61/31“1) = 0 for all n > 0. Consequently, agent j will never receive information

from agent ¢. This can be deduced using the stationarity of the network state process V.

While necessary, Assumption 8.1.1 alone is not sufficient to guarantee 8.1. A trivial example
where Assumption 8.1.1 is true would be to flip a fair coin once, at time 0. If heads, then all
agents successfully communicate, all the time, with probability one. If tails, then there is no com-

munication at all. Thus P (7;;(n) =n Vn >1) = . In this example, lim |P (AZJ N A%) —

|[n—m|—o0
P (A%) P (Af%)| # 0. Hence, the corresponding ¥ is not a-mixing. This necessitates Assump-
tion 8.1.2.

Assumption Assumption 8.1.2 requires that the network state process ¥ in (8.5) is a geomet-
rically ergodic Markov chain. It follows from (Bradley 2005, Thm. 3.7) that ¥ is a-mixing.
In conjunction with Algorithm 4, it was therefore possible to show that 1 Al is indeed also a-
mixing (Lemma 8.3). Geometrically ergodic Markov chains are an importaﬁt process class for
wireless communication. For example, finite-state Markov chains have been used to approximate
wireless fading channels: (G. Bianchi 2000; Lin et al. 2015). Notably, irreducible, aperiodic fi-
nite state Markov chains converge to their stationary distribution at a geometric rate. Howewver,

Assumption 8.1.2 also accommodates infinite state space models that can represent mobile agents.

Example 8.2.1. Suppose each local state process Ui, € R™, m > 1, has linear dynamics \IJ;H =
AW+l with i.i.d. Gaussian noise wt for a stable matriz A* € R™*™  then Assumption 8.1.2

holds.

8.3 Discussion and related work

Within the literature of distributed optimization, the following two types of network models are
popular. First, networks with guaranteed periodic communication, e.g., (Scutari and Ying Sun
2019) and second, networks where the success of agent-to-agent communication is independent
across agent pairs and over time, e.g., (Anastasia Koloskova et al. 2020). Neither of these models
includes several practical components of wireless communication networks, e.g., the correlation
between communications that are close to each other in some domain (e.g., time, frequency, or

space) or the use of Medium Access Control (MAC) protocols.

The essence of the geometrically ergodic Markov chain assumption, Assumption 8.1.2, is to
represent such correlations in a network process with a sufficient dependency decay, described by
a-mixing. One can, therefore, simply replace the geometrically ergodic Markov chain model with

an arbitrary a-mixing process. It is easy to see that the typical assumptions from the distributed
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optimization literature (guaranteed periodic communication and communication described by

independent events) directly imply a-mixing.

This chapter has discussed that a geometrically ergodic Markov chain can guarantee the required
mixing properties to apply the results of Chapter 6. As an alternative to the Markov model in
Assumption 8.1.2, we suggest verifying the required mixing condition by modeling the network
state process as a function of a Poisson Point Process (PPP). PPP’s are popular in stochastic
geometry (Haenggi 2012) and it was recently shown by (Ramesan and Baccelli 2021) that under
a mobility model for a PPP, the PPP is a-mixing. A future direction is to formulate a suitable
mobility model for a PPP to guarantee a-mixing with a required decay rate. Again, another
important direction is to verify a-mixing directly from data. Khaleghi and Lugosi (2023) also
presented a hypothesis test to decide (using a single sample path of a stochastic process) whether
the weighted sum of a-mixing coefficients of a process is finite. With this, we can verify a-
mixing with a required decay rate for a network process. We envision an initialization phase for
distributed interactions executed over a wireless network, where agents transmit pilot signals,
and each agent locally observes its network state. Using the results from Khaleghi and Lugosi
(2023), each agent can decide with high confidence whether its network state process is a-mixing
with a specific rate after enough samples have been obtained. In combination with conditions
for Assumption 8.1.1, the agents can then collaboratively decide whether they can solve an
optimization problem in a distributed manner in a given communication environment and how

to adapt their optimization stepsize.

This work thus connects a network model that is representative of practical wireless communica-
tion with an abstract optimization framework for a rich class of distributed stochastic optimiza-
tion problems. The strength of the result is that it enables a class of Aol-aware MAC protocols
for transmission scheduling. In the future, we seek to optimize the convergence behavior of

distributed algorithms at runtime by adaptive network MAC protocols.

8.4 Proofs of Chapter 8

Lemma 8.4. (Bradley 2005, Thm. 5.2) Suppose X andY are independent a-mizing processes.
Define a process Z by Z, = F,(X,,Y,), where F,, are Borel functions. Then, Z is a-mizing
with a(Z,n) < a(X,n) + a(Y,n).

Proof of Lemma 8.2. Fix (i,j) € E. Consider a backup scheduling step at some time step /, i.e.,
a time-step after the Aol-aware schedule in Algorithm 4. Recall the Aol variables associated
with direct communication 7j; as defined in Section 8.1.3. If 7;;(I) > Mj, then with probability
(1 — 0) agent i picks pj = 1, while all other agents stay silent with probability §. Hence, by
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Assumption 8.1.1 and the law of total probability, we have
P (A;'f | 7:(0) > M1> > (1 - 8)6P1P (g;'ﬂ' > 51/;) > 0.
On the other hand,

-1
Pl U 45150 <M| =1
k=l—M;y
The lemma now follows by the law of total probability and the stationarity of gflj and v, from

Assumption 8.1.2. O

Proof of Lemma 8.3. We have 1 ,i; = l(gvm)(SINjo) from (8.8). By Lemma 8.4, it is thus
enough to show that SINRY is a-mixing with exponential decay. Consider now the Aol-aware

schedule in Algorithm 4. The Aol-aware schedule can be stated as
Pl = Ljo,00) (I, — u}y) ,

with «!, i.i.d. uniform random variables on [0,1]. The representation (8.14) shows that p¢ is a

Borel function of 4, and the indicator functions Lir, (n)y>m} with m < My,

The events up to {7;;(n) > My} are generated by the events AX! for all k,1 € V with m €
[n — Mo, n — 1]. It therefore follows that all Lir i (n)>m) With m < My are Borel functions of
SINR}} for m € [n — Ma,n — 1]. It thus follows from the SINR model (8.5) that the schedule p!,
is a Borel function of U™ and p?, for m € [n — My, n — 1], and additional i.i.d. processes (u’, and

time-dependent i.i.d. Borel functions in the SINR model (8.5)).

Consider a time step n = sM for some s € N, i.e., the first step after the Aol-unaware schedule.
From the last paragraph, it follows that p’ depends on pi for m € [n — My, n — 1], these
are the Aol-unaware scheduling steps, which are either independent or deterministic and hence
especially a-mixing with exponential decay. Moving forward in time, we can now see that Vn with
sM < n < (s+1)M we have that pi, is a Borel function of U™ for m € [sM — Ma,n — 1] and the
decisions p! in the Aol-unaware subintervals of m € [sM — M, n]. Notably, (sM=M2  gn-1)
is also a-mixing with exponential decay, with s € N such that sM <n < (s + 1)M. Then, each
SINR% is a Borel function of independent a-mixing processes with exponential decay and i.i.d.

processes. Lemma 8.4 therefore shows that SINRﬁlj is a-mixing with exponential decay. O
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Chapter 9

Numerical Experiments

This chapter presents experiments supporting the theoretical findings on multi-agent deep rein-
forcement learning in Chapter 4. We study the empirical convergence behavior of the proposed
3DPG algorithm in two environments and evaluate its robustness to Aol. These experiments
were conducted as part of (Redder, Ramaswamy, and Karl 2022a; Redder, Ramaswamy, and
Karl 2022d). As with the previous numerical examples, code and simulation data are available

on https://github.com/aredder.

The 3DPG AC-iteration was presented in (4.9); Algorithm 5 presents the complete algorithm,
including communication. Recall that each agent has a local policy parameterized by ¢’ and a
local critic parameterized by 6. For the experiments, we also use target networks for the local
policies and critics and an Ornstein-Uhlenbeck processes N/ for exploration; both are described

in (Lillicrap et al. 2016).

9.1 Multi-agent policy gradient for particle control

As the first experiment, we compare 3DPG, as presented in Chapter 4, and MADDPG, as
presented in (Lowe et al. 2017), for a centralized training setting with global information access.
Recall that 3DPG implements policy gradient updates based on the local policies of other agents,
whereas MADDPG was proposed with policy gradient updates based on the local actions of other
agents; from the analysis in Section 4.4.3 we expect the use of local policies to be superior at the

cost of potential higher training variance.

In the second experiment, we evaluate 3DPG with communication, where local states, actions,
and policies must be communicated. Recall that both 3DPG and MADDPG apply to Markov
game settings as discussed in Chapter 4. But, 3DPG considers that all information is inherently

local and thus has to be communicated. In this way, 3DPG is applicable to true online learning.


https://github.com/aredder

9.1. MULTI-AGENT POLICY GRADIENT FOR PARTICLE CONTROL

Algorithm 5 3DPG Algorithm at agent ¢

1: Randomly initialize critic and actor weights 06, gi)%).
2: Randomly initialize actor weights qb{) for all j # i.

3. for the entire duration do

4: Receive current local state s?,.

5: Execute local action a’, = p'(s%; ¢t) + N

6: Observe local rewar 7, and local state s, ;.

7 Allocate local data (s, al, s, +1) and current local policy ¢; for transmission to other
agents.

8: Run communication protocols.

9: Store completely received global tuples ¢! in the local replay memory RY,.

10: Sample M transitions from the local replay memory R?.

11: Apply iteration (4.9) using the sampled transitions.

9.1.1 Environment and simulation details

For the experiments, we consider a simplified version of the simple spread multi-particle coordi-
nation problem in (Lowe et al. 2017): Agents and landmarks are represented by point masses in
[—1,1]2. Moreover, agents can move around by choosing a displacement from the set [—0.1,0.1]2.
Agents can observe their relative distance to the landmarks and other agents. The actual simple
spread environment considers that agents and landmarks take room in space, and the agents are
penalized for collisions. The described simplified setting serves the purpose of comparing the

convergence properties of SDPG and MADDPG.

Both MADDPG and 3DPG use the following algorithm configurations, chosen based on a rough

hyperparameter sweep for both algorithms.

e Discount factor o = 0.9; replay memory size 20000; minibatch size 128; two-layer GELU
neural networks for each local policy with 64 and 8 neurons and tanh output layer; two-layer
GELU neural networks for each local critic with 1024 and 64 neurons.

e Critic and actor stepsizes are chosen as

—6 —6 —6

e e
——— and f(n)= +
1000 + 1 wos + 1 (o5 +1)2

a(n) =

respectively.
e The critic and policy networks are updated with the ADAM optimizer (Kingma and Ba

2015) using Tensorflow 2.
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Experiment 1

In the first experiment, we validate the findings on using local policies vs. local actions in
policy gradient updates in 3DPG and MADDPG, respectively. For the comparison, we add
an additional coordination layer to the introduced version of the simple spread multi-particle
environment (SMPE). In the SSMPE, particles (the agents) move in the plane to cover a number
of landmarks, and the landmarks are episodically reset to new positions. At every time step, the

agents get a global reward
exp (—average closest distance to the landmarks) € (0,1). (9.1)

We did not observe any significant difference between 3DPG and MADDPG in this particular
scenario. This is because in SSMPE, the agents’ actions do not require any form of coordination,

and the global reward at every time step is only a function of the global state.

We now add a “coordination layer” task to the environment. We consider two agents that move
around in the plane to minimize their average distance to three landmarks as before. However,
the agents only get rewarded if they orientate in the same direction. Specifically, the previous

global reward gets weighted by
exp (—angle between the orientation of the two agents). (9.2)

Consequently, the two agents only get the previous reward (9.1) when they orientate in the same
direction. The optimal policy is, therefore, to spread in an optimal way to cover the 3 landmarks,
while this position should be approached from a desired angle “agreed between the agents” to
maximize the reward. The new reward structure, therefore, requires that the agents make more
coordinated decisions. Due to the random actions taken during training, it will be difficult for
the MADDPG agents to agree on a policy since the optimal path for an agent to the optimal

location now depends significantly more on the path taken by the other agent.

We trained both 3DPG and MADDPG with global data access and global access to all agents’
policies, i.e., for the centralized training setting without communication and Aol. We trained the
agents for 10 seeds over 1500 epochs, where each epoch had a horizon of 25 steps. Figure 9.1 shows
the resulting average reward per epoch. The simulations support the theoretical predictions from
Chapter 4: For problems that require coordinated actions, 3DPG obtains better policies faster than
MADDPG at the cost of higher training variance. The simulations thus reinforce the following
practical suggestion: Using other agents’ policies during training instead of agents’ actions yields
better policy improvement when a multi-agent decision-making problem requires coordinated
actions. As most problems of practical interest will require coordination, we believe that using
other agents’ policies (potentially old versions) should be generally preferred for multi-agent

actor-critic learning.

159
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Figure 9.1: Comparison of 3DPG and MADDPG with centralized training.

Experiment 2

In the second experiment, we show that 3DPG with communication is robust to large Aol and
that 3DPG may even benefit from using older policies of other agents similar to how target

networks improve training in single-agent RL (Lillicrap et al. 2016).

We again consider the two agents and three landmarks problem from Experiment 1. In addition,
we consider that each of the two agents uses an independent communication channel for com-
munication. Specifically, each agent has a fixed communication budget of 15000 bits/timeslot to
communicate with the other agent whenever their channel access is successful. We emulate lossy

communication by varying the access probability
Ae{ehe 2 e e} = {0.3679,0.1353,0.0498, 0.0183}

of a simple Bernoulli access channel (Tse and Viswanath 2005). Further, we use the same
hyper-parameter configurations as in Experiment 1. For the assumed communication budget,
this implies that the agents require at least 3 successive successful communication events to
exchange a parameter vector ¢!, while alternative at least 33 local tuples (s, a’,, sz 4+1) could
be exchanged during the same time. We let each agent cycle between communicating a policy
update and communicating 33 local tuples. In that sense, we give “equal weight” to policy and
data communication. As a Bernoulli channel is strongly mixing with an arbitrary fast rate,
it follows from Theorem 6.3 that a dominating random variable with arbitrary moment bound

exists for the Aol and DataAol random variables affecting 3DPG and Assumption 4.2.1 holds.

160



For experiment 2, we trained the agents for 10 seeds over 2000 epochs, where each epoch had
again a horizon of 25 steps. We display the average reward per epoch in Figure 9.2. We see
that 3DPG with even A\ = e can learn decent policies compared to centralized 3DPG, albeit

4 run achieves this with Aols frequently over

at a slower convergence rate. Notably, the A\ = e~
500 time steps (20 epochs) as shown in Figure 9.3. In addition, 3DPG with A = e~* has only
access to 1/3 of the global data tuples that 3DPG uses with centralized training. This shows that
3DPG is highly robust to Aol and low data availability. Finally, an interesting observation is that

3DPG training runs with A = e™!,e=2 or 73

consistently performed similar or even better than
3DPG with centralized training. For A = e™!, we consistently observed better initial training
progress, which indicates that 3DPG may benefit from using older policies of other agents in a

similar manner as target networks stabilize training.

0.4
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0.2

average reward per epoch

3DPG: centralized
3DPG: A=e7!
3DPG: A =e ™2
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Figure 9.2: Average reward per epoch of 3DPG with variance over seeds.

9.2 Multi-agent learning for cyber-physical systems

The last experiment is based on (Redder, Ramaswamy, and Karl 2022d). The paper studied
a cyber-physical two-agent flow control problem and applied 3DPG with communication over
a wireless network. Flow control is an important problem in chemical industries, data center
cooling, and water treatment plants. In the two-agent example, each agent must control one
flow control valve. Specifically, we consider the water filter in Figure 9.4, which will be modeled
as a continuous time system. In Figure 9.4, agent 1 has to control the inflow to the water filter

from a main water line using valve a;. Agent 2 has to control the outflow of the water filter
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Figure 9.3: Comparison of 3DPG with communication; A is the communication success probability.

using valve as. We consider that time is slotted into small intervals of constant length A. The
discrete time steps are indexed by n € N. As in the previous chapter, we refer to a time slot n
as the time interval from time step n — 1 to n. For this subsection, we will use upper indices n

to denote the discrete time index.

We consider that the valves can be positioned continuously from close to open for both agents.
Therefore, at every time step n the agents have to pick actions af',a € [0,1] for the associated
time slot n. For every time slot n, we denote the sampled flow in the main line by s7 € S1 C Rx>g
and the sampled water level in the water filter by s € Sy C R>g. The problem is complicated
since the agents have no information about the dynamics of the main water line and the water
filter. Agent 1 can only observe state s, but not state s5, and vise versa for agent 2. Additionally,
the agents have no information about the policy of the other agent, i.e., the agents initially have
no information about the strategy of the other agent to control its valve. However, we assume that

the agents can use a wireless network to exchange information, enabling the use of Algorithm 5.

Given s7 and a} for some time step n, we assume a continuous function f(sy,af) that determines
the inflow to the filter during time slot n. Equivalently, we can assume that agent 1 can measure
the inflow to the filter. Other than that, we make no additional assumptions. The agents have

no information about the filter’s dynamics or flow in the main water line.
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)

Figure 9.4: Illustration of the two-agent water filter flow control problem.

Partial Observability Issues

Algorithm 5 formulates a decentralized multi-agent solution based on locally observed states. The
training procedure, however, can use delayed global information that has been communicated
over a network. The solution, therefore, falls under the paradigm of decentralized training with
communicated central data but decentralized execution. Depending on how the local state spaces
are defined, agents may or may not be able to find good solutions for a problem. In general, the

local policies should only use local states, such that inference is decentralized.

Now, consider the flow control problem. If agent 1 can only observe the state s; and never state
s9, it can only learn to take conservative actions since it has no information about the current
amount of water in the water filter. We expect better solutions if both agents can observe the
whole state space s = (s1, $2). A system theoretic solution to this would now be to use a suitable
local estimator and replace sj by an estimate 55 at agent 1 to execute a local policy that is a
function of the global state space. Alternatively, one could directly replace sy with its delayed
counterpart and use a recurrent architecture pu; and po (Hausknecht and Stone 2015). Since
the objective with this example is to illustrate the effect of lossy communication on the learning
algorithm and not the effect on the inference quality, we assume here for illustration that both
agents can observe s; and s;. Below, we formulate the MDP for the two-agent flow control
problem, where both agents observe s = (s1, s2). Moreover, the agents, therefore, only need to

communicate their local actions a and af, as well as their policy parametrizations ¢} and ¢%.
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Figure 9.5: Plot of the second component, r2(s2), of the reward function.

An MDP for Two-Agent Flow Control

We consider the following high-level objective for the two-agent flow control problem:

(i) Maximize the through flow of the filter.
(ii) Avoid under- and overflows, i.e. 0 < s§ < 1 for all n > 0.

(iii) Try to keep a reserve of s ~ 1/2 as good as possible for all n > 0.

The state space for both agents is defined as S12 := 51 x S2. The action spaces are defined as
Ay = [0,1] and A = [0, 1], respectively. To achieve the formulated objective, we consider a

continuous reward function r(s1, s2,a1) = f(s1,a1)c + ra(s2), with

So — 2
r2(s2) = exp (H) , (9.3)

and some constant ¢ > 0 that may be used to weight the importance of (i) over (ii) and (iii).
Recall that f is the function that determines the inflow to the water filter. The inflow can be
measured by agent 1 and will be communicated to agent 2 alongside s; and a;, which is only
required for training and not for inference. Figure 9.5 shows the second component of the reward
function. We choose this function to satisfy points (ii) and (iii) of the objective. Clearly, various

other shapes for the reward function are possible (Eschmann 2021).

Network Model

We merely consider two Bernoulli processes to emulate a delaying communication network as
in the previous experiment. We assume that P (A) = X at every time step n for both agent 1
and 2. We then choose A € {1,1/2,1/4,1/8,1/16,1/32}. Practically, this corresponds to a suitable
choice of a power schedule for given i.i.d. interference-noise processes. Generalizations to the

more representative network model of the previous chapter are directly available but do not add
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additional value here to the present simulation. However, to make the communication model
more realistic, we assume a narrowband wireless channel with B = 10M hz and a typical choice
B = T for the SINR threshold. Then, we can obtain an effective bitrate of 19Mbit/s. Now,
suppose we code every real number using 64 bits. Then, observe that each policy contains 4544
real-valued parameters, and since we merely require the exchange of the actions a;, we only need
to exchange one real number to obtain a sample (s;, a;). Therefore, we require at least 16 time
slots of successful communication to transmit a single policy update, while in each time slot we
can transmit more than 300 samples. As in the previous experiments, we give roughly equal
bandwidth usage to the parameter- and sample transmissions. Specifically, each agent transmits
a single update to its parameter vector followed by the transmission of up to 300 - 16 samples or

until its backlog is empty.

9.2.1 Simulation

We can now present the numerical evaluation of Algorithm 5 for the water flow control MDP of
Section 9.2. The goal is to illustrate the convergence of 3DPG to control policies with meaningful

physical behavior while the two agents communicate over a lossy communication network.

System model and algorithm details

For the simulation of the water filter system, we consider the following differential equation

d32 (t)

A
dt

— Ksy(t)ai(t) + L(pgsa(t))az(t) =0 (9.4)

as a model for the water filter. Here A is the area of the water filter, p is the density of water,
g is the acceleration of mass, and K and L are constants. The factor pgss(t) is the so-called
differential pressure at time ¢ (Rossiter 2021). The second term is a bilinear model for the inflow
of the system. The third term is a bilinear model for the outflow of the filter. The constant
L includes the filter’s resistance and the outflow pipe’s resistance. This is only an approximate
model for “small" changes of the flow. However, it serves the purpose of the evaluation. For the
simulation, we solve (9.4) numerically for time slots n of length A = 1s. For the constants in
(9.4), we use K = 0.1, which corresponds to a maximum inflow of 10% of the main flow, and
L = 107°, which models the high resistance of the water filter. Finally, we use ¢ = 0.1 to give

high weight to balancing the water filter around so = 1/2.

For Algorithm 3DPG, we use the following set of parameters: Both agents approximate a local
Q-function by a two-layer neural network with 256 and 128 GELUs as activations. Two-layer
neural networks are then used to represent both agent policies, where each layer has 64 GELUs

and a tanh output layer. We use discount factor v = 0.95 and a training batch size of 128.
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Training and evaluation

We train the agents over 500 epochs with length 7' = 100 and use the following learning stepsize

schedules

678

n Y
1000 +1

(&
+ .
w0 1 (g + 1)

As before these, learning rates satisfy the stepsize assumptions proposed for 3DPG in Chapter 4.

a(n) = Bn) = (9.5)
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Figure 9.6: Average reward after each training epoch.

Figure 9.6 shows the average reward at the end of each training epoch evaluated without ex-
ploration noise on a new trajectory of length 7' = 1000 for every A. Observe that for all A
the algorithm converges to a policy of similar average reward compared Algorithm 5 without
communication and global information access. Moreover, as A decreases, the convergence rate
also decreases. As already observed in the previous experiments, for small values of A the effect

of lossy communication is minor.

After training, we evaluated the final policies on a new trajectory. For illustration, we show the
results for A = 1/16. In Figure 9.7, we show the inflow to the water filter, the water level in
the filter, and the reward per step. In the water level plot, we see that the agents learned to
quickly balance the water level around the desired height s = /2. The inflow is upper bounded
by the maximal possible inflow for a] = 1. The reward per step is upper bounded by 1 plus the
aforementioned upper bound. However, the maximal possible inflow and, therefore, the maximal
possible reward per step may not be obtainable since opening the inflow valve fully may increase

the desired water level height even when the outflow valve is fully opened. We can observe this
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Figure 9.7: Main flow, inflow, water level, and reward per step during one trajectory after training. In the top
plot, the red graph represents the maximum possible inflow. In the bottom plot, the red graph is the maximum

possible reward per step.
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Figure 9.8: Actions associated with the simulated trajectory after training.
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between time steps n = 50 to n = 400. To see this, consider the associated actions during the
trajectory in Figure 9.8. We see that when the inflow is to large in [50,400], agent 1 has to reduce
the inflow to the system, while agent 2 has to fully open the outflow. In this time interval, the
inflow part of the reward becomes significant, and therefore, the agents learned to maximize the

inflow.

We can also observe that for the second half of the trajectory, the algorithm could potentially
improve with longer training. Here, the agents mainly balance the water level at the desired
height since the inflow is relatively small and since we chose the weighting factor ¢ = 0.1.
However, opening the inflow valve more can still lead to a slightly larger reward per step. In
summary, we have seen that agents can learn non-trivial policies for an unknown environment

in the presence of lossy communication.
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Chapter 10

Conclusions and Future Directions

This thesis investigated stability and convergence conditions for distributed asynchronous stochas-
tic approximation and deep reinforcement learning algorithms. The proposed verifiable condi-
tions guarantee that errors due to information delays vanish asymptotically when appropriate
stepsizes are chosen. Further, the results enable accelerated learning and optimization on highly
heterogeneous (volunteer) computing infrastructure (Anderson 2020; Tirmazi ct al. 2020). For
example, based on the results in Chapters 2, 3 and 7, we can design resource scheduling problems
to optimize the assignment of heterogeneous workers to subspaces of optimization and learning
problems. Beyond computing scenarios, the results enable truly online multi-agent learning
based on communicated information in resource-constrained scenarios that only allow minimal
communication between learning systems. Here, the combination of Chapters 4 and 8 enables
verifiable conditions for mobile agents that communicate over a resource-constrained wireless
network prone to potentially heavy-tailed interference (Clavier et al. 2020). We will now discuss

future directions.

In Chapter 2, we generalized the BMT to distributed SA algorithms. Ramaswamy and Shalabh
Bhatnagar (2017) generalized the original BMT to set-valued SA algorithms, which have many
applications to approximation algorithms with errors or biases. Currently, no stability and
convergence theory exists for set-valued SA algorithms with information delays. A potential
Lipschitz continuity condition for a set-valued map H : R™ — {subsets of R™} may read as

follows: There exists some L > 0, such that

H(x) C H(y) + BLHx—yH(O)- (10.1)
Based on a Lipschitz condition of this form, we expect to develop a BMT for set-valued SA with
delays. In addition, it is also left to combine the distributed BMT with asynchronous SA (V. S.
Borkar 1998). In other words, one can combine the methods used to prove the distributed BMT

with the asynchronous version from Shalabh Bhatnagar (2011) or the more recent version from

Yu, Wan, and R. S. Sutton (2023).
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Beyond distributed optimization, we applied the BMT techniques to heavy-ball momentum SA.
It will be interesting whether we can generally apply the tools to SA algorithms that approxi-
mate second-order dynamical systems, i.e., SA algorithms that asymptotically track solutions to
second-order ODEs of the form

d*x dx

— 4+ A(t)— = B(t)h 10.2
AW = Bhh() (10.2)
for some drift/vector field h(x) and a some matrix-valued processes A(t), B(t). A stability
theory for SAs that track ODEs with dynamics (10.2) will be useful to study newly designed

ODE-inspired algorithms (S. Meyn 2022).

In Chapter 3, we proved a simple asymptotic, almost sure convergence rate estimate for the
DASGD algorithm. However, the obtained convergence rate estimate is only available for p >
1, where p is some Aol moment bound. Some additional analysis is needed to complete the
picture. Furthermore, it will be interesting to study DASGD in combination with adaptive
stepsize schemes recently proposed for ASGD with Aol in the order of the number of workers

(Mishchenko et al. 2022; Anastasiia Koloskova, Stich, and Jaggi 2022).

In Chapter 4, we studied multi-agent actor-critic reinforcement learning prone to aged commu-
nicated samples used during training. the results showed that under weak assumptions, the
accumulated experience of the multi-agent system still guarantees that the state-Markov process
converges to a stationary distribution. An interesting question is whether we can design data
scheduling methods for multi-agent systems to enhance the convergence rate of the state-Markov
process. In other words, how to design an online method that schedules a limited amount of
communication resources to agents of the MAS to enhance the convergence rate of the global
state-Markov process. Finally, it will be interesting to study the deep MARL framework studied
in Chapter 4 with clipped gradient dynamics (Ramaswamy, Shalabh Bhatnagar, and Saxena

2023) as a two-timescale algorithm with set-valued dynamics.

In Chapter 6, we derived moment bounds for Aol processes based on strongly mixing event
processes that describe when new information arrives from a source at a monitor. The natural
question is whether one can generalize these results to Aol and event processes in continuous
time (Brandes, Curato, and Stelzer 2023). Strong mixing naturally generalizes to continuous
time, but the splitting techniques used in Chapter 6 require changes and some new ideas for the

continuous-time setting.

In Chapter 7, we showed how parallel point and renewal processes naturally describe asyn-
chronous computing scenarios. Furthermore, we derived closed-form expressions for the limiting
Aol. A key assumption for this statement is the independence of the point processes that describe
the processing of individual systems. But if dependent jobs are scheduled to the systems, this
assumption does not generally hold. It will be a challenge to extend the results to dependent

parallel point processes. However, techniques from De la Pena and Giné (2012) on decoupling
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and conditional independent sequence can be a starting point. With this, we can incorporate

information on the dependence of jobs arriving at a computing infrastructure into the framework.

Finally, in Chapter 8, we proposed a class of Aol-dependent network scheduling protocols that
preserve the strong mixing of the underlying event process that defines an Aol process driven
by Markovian dynamics. The limitations of the protocol class are that one needs to implement
short time windows with an Aol-independent policy. We believe that one can completely remove
the limitations at the cost of a slower mixing rate of the resulting event process with network

scheduling.
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Chapter A

Appendix

A.1 Analysis and dynamical systems

Theorem (Discrete Gronwall Inequality (V. Borkar 2022, Appendix B)). Let x,, a, non-
negative (respectively positive) sequences and C,L > 0 scalars such that for all n, xp11 <

CH+LY " o amTm, then zpi1 < Cexp(LY 1 am).

Theorem (General Arzela—Ascoli Theorem (Munkres 2000, Theorem 47.1)). Let f,, be a sequence
of functions f, : RT — RF. If the collection {f,} is pointwise bounded and equicontinuous, then
the sequence f, has a subsequence that converges to a continuous function in the topology of

compact convergence.

Theorem (Rademachers Theorem (Evans 2018, Sec. 3.1)). Let f : R — R™ be a Lipschitz-
Continuous function, then f is differentiable almost everywhere, i.e. the points x € R™ where f

1s non-differentiable form a set of Lebesque measure zero.

Theorem (Gradient Theorem for Lipschitz-Continuous Functions). Let f : R®™ — R be a

Lipschitz-continuous function and v : [0,1] — R™ a continuously differentiable path, then

1
| vas g = 16m) - 160

Proof. Since [0,1] is compact, f o~ is Lipschitz-Continuous, hence absolutely continuous as
well as continuously differentiable almost everywhere on [0,1]. The absolute continuity and
the fundamental theorem of calculus yield that fol 4 f(y(t)dt = f(v(1)) — f(7(0)). Using the
multivariate chain rule and that f o« is continuously differentiable almost everywhere, the

statement follows. O



A.2. PROBABILITY THEORY

A.2 Probability theory

Theorem (Law of total probability). Let (2, F,P) be probability space. Let Ay, Ay, Aa,... be
elements of F that form a countably infinite partition of Q). Then for every E € F,

P(E) =) P(ENA). (A1)
k

Theorem. For a non-negative random variable X, its expected value can be expressed as
E[X]:/OOOIP’(X>:U) dr. (A.2)
Proposition A.1 (Law of total variance, (Ross 2014, Prop. 3.1)).
Var(X) =E[Var(X | Y)]+ Var(E[X | Y]).

Theorem (First Borel-Cantelli Lemma (K. L. Chung 2001, Theorem 4.2.1)). Let (Q, F,P) be
probability space. Let Ay, Ay, ... be elements of F, such that )2 (P (A;) < oo, then P (A, i.0.) =
P (limsup Ag) = 0.

Theorem (Portmanteau Theorem (Billingsley 2013, Section 2)). X (n) = X if and only if

lim E[f(X(n))] = E[f(X)] (A.3)

n—oo

for all bounded, continuous real functions f.

Theorem (Egorovs Theorem (Rudin 1987, p. 73)). Let X,,X be random wvariables. Then

X, — X almost surely if and only if X,, = X almost uniformly.

Theorem (Martingale Convergence Theorem (V. Borkar 2022, Appendix C)). Let {(X,, Fn)}
be a martingale, if E [HXHHQ] < oo for all n > 0, then X,, converges almost surely on the set

ZnZOE [HXn—i-l - Xn”2 | fn] < 0.
Theorem (Portmanteau Theorem (Billingsley 2013, Section 2)). X(n) = X if and only if

lim E[f(X(n))] = E[f(X)] (A4)

n—oo

for all bounded, continuous real functions f.

Theorem (Blackwell’s Theorem, (Serfozo 2009, Sec. 2.18 and references therein)). Let N(t) be
a renewal process with == E[W(n)] < co. Then, for every fized t' > 0,
N(t) — N(t—t') = N(t), (A.5)

ast — oo, where N(t') is the (stationary) modified renewal process associated with N(t). Further,

/

E[N(t)] —E [N(t — )] - Z (A.6)

Usually, only (A.6) is referred to as Blackwell’s Renewal Theorem, but it is an integral part of its
proof to establish the weak convergence of N(t) — N (¢t —t') to its associated modified stationary

renewal process, e.g., using coupling techniques.
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