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Abstract

The design of integrated photonic devices with specific radiation characteristics is a multi-
faceted problem. The ability to control the propagation of electromagnetic waves and their free-
space radiation is a crucial task. This work employs full-wave numerical simulations to design
and optimize various antennas and wave-guiding structures in the optical regime to achieve this.

The findings can be categorized into two parts. In the first part, the focus is on efficient radiation
emission in specific directions. This is achieved by examining dielectric antennas and their
phased array configurations. The antennas are made from low-loss materials such as hafnium
dioxide, silicon, and tantalum pentoxide. These structures consist of a reflector and a director
deposited on a glass substrate. An emitter, acting as an internal excitation source, is positioned
in the feed gap between them. Antennas with rectangular-, tip-, and horn-shaped directors are
explored, which control the shape of radiation patterns and guide light selectively. Additionally,
optical phased arrays (OPAs) provide increased gain and directivity, small beamwidth, and more
control over the main lobe direction. Large-scale 2-D silicon-based OPAs are realized for three
different radiating elements that target distinctive objectives for their radiation characteristics.
The OPA utilizes these antennas with balanced power and aligned phases to produce versatile
radiation patterns and steer the beam into desired directions in the far-field.

In the second part, suppressing unwanted radiation in dielectric integrated optical waveguide
channels is considered. For this purpose, the propagation of electromagnetic waves through
lithium niobate rib waveguide structures on silicon dioxide platforms is investigated. We design
and optimize integrated optical devices such as directional couplers, waveguide bends, and
multi-mode interference couplers. The analysis provides an in-depth understanding required
for fabricating platforms suitable for quantum optics applications.





Zusammenfassung

Der Entwurf integrierter photonischer Bauelemente mit spezifischen Strahlungseigenschaften
ist ein vielschichtiges Problem. Die Fähigkeit, die Ausbreitung und die Abstrahlung von elek-
tromagnetischen Wellen im freien Raum zu kontrollieren, ist ein entscheidendes Kriterium. In
dieser Arbeit werden numerische Feldsimulationen eingesetzt, um verschiedene Antennen und
wellenleitende Strukturen im optischen Bereich zu entwerfen und zu optimieren.

Die Ergebnisse lassen sich in zwei Teile gliedern. Im ersten Teil der Untersuchung liegt der
Schwerpunkt auf der effizienten Abstrahlung in ausgewählte Richtungen. Dazu werden di-
elektrische Antennen und deren Phased-Array-Konfigurationen untersucht. Die Antennen wer-
den aus verlustarmen Materialien wie Hafniumdioxid, Silizium und Tantalpentoxid hergestellt.
Diese bestehen aus einem Reflektor und einem Direktor, die auf einem Glassubstrat aufge-
bracht sind. Ein Emitter, der als interne Anregungsquelle dient, befindet sich im Spalt zwischen
den beiden. Dabei werden Antennen mit rechteckigen, stab- und hornförmigen Direktoren er-
forscht, die die Form der Strahlungsdiagramme kontrollieren und das Licht selektiv führen.
Darüber hinaus bieten optische Phased Arrays (OPAs) eine höhere Verstärkung und Richtwir-
kung, eine geringe Strahlweite und eine verbesserte Kontrolle über die Richtung der Haupt-
keule. Große 2D-OPAs auf Siliziumbasis werden für drei verschiedene Strahlelemente konstru-
iert, die hinsichtlich ihrer Strahlungseigenschaften unterschiedliche Anforderungen erfüllen.
Der OPA nutzt diese Antennen mit ausbalancierter Leistung und angepasster Phase, um unter-
schiedliche Strahlungsdiagramme zu erzeugen und den Strahl im Fernfeld in die gewünschten
Richtungen zu lenken.

Im zweiten Teil wird die Unterdrückung unerwünschter Strahlung in integrierten dielektri-
schen Lichtwellenleiterkanälen betrachtet. Dazu wird die Ausbreitung von elektromagnetischen
Wellen durch Lithiumniobat-Rippenwellenleiterstrukturen auf Siliziumdioxid-Plattformen un-
tersucht. Dabei werden integrierte optische Bauelemente wie Richtungskoppler, Wellenleiter-
krümmer und Multimode-Interferenzkoppler entworfen und optimiert. Die Analyse liefert ein
tiefgreifendes Verständnis für die Herstellung von Plattformen, die für quantenoptische Anwen-
dungen geeignet sind.
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Chapter 1

Introduction

Radiation is defined as the emission of energy into space or a medium of interest. This energy
can be carried through particles or waves like electromagnetic or acoustic waves [1]. Con-
trolling the propagation of radiated fields is of key interest in the field of optics [2]. Broadly,
radiation can be classified as desired or undesired, tailored to the needs of a specific applica-
tion. For example, wireless point-to-point communication requires highly directed emission
between the transmitter and receiver without much loss [3]. On the other hand, a wireline
communication system demands complete suppression of radiation outside the wire to transfer
data efficiently [4]. Therefore, radiation control is essential in many real-time communica-
tion systems [5]. The former example employs devices like antennas, while the latter utilizes
wave-guiding structures [6]. Studying electromagnetic propagation helps characterize and un-
derstand the limitations of these optical systems and facilitates radiation control through these
devices [7]. In this work, we focus on dielectric media in which the material’s refractive index
influences wave propagation. However, the manipulation of light in the optical regime is limited
by the narrow range of refractive indices available for these materials. An appropriate combi-
nation of materials and design methodologies produces topologies that can efficiently control
wave propagation. This thesis considers different devices that are employed for this purpose.

First, we look into applications where the emission of radiation is desired. Transmitting anten-
nas are devices that couple localized power into free propagating radiation in their surrounding
medium [8, 9]. The reciprocal equivalent of such a system is the receiving antenna [10, 11].
In general, antennas emit radiation in the form of spherical waves that spread into free space.
Sufficiently far away from these radiation sources, the energy is intercepted as approximate
plane waves. This work primarily focuses on transmitting antennas in the optical regime. Typ-
ically, such antennas have been demonstrated using plasmonic or dielectric structures. Metal-
lic nanoantennas, operating on the basis of surface plasmons, possess small size and resonant
properties. However, these structures are accompanied by high ohmic losses due to absorption
[12–17], making dielectric structures more attractive as they have low dissipative losses [18],
reasonable bandwidths [19], and highly directional radiation patterns with near-unity radiation
efficiency [20]. Especially, high-index dielectric antennas made of silicon, hafnium dioxide,
germanium, or gallium phosphide have garnered significant attention [21–24]. Simultaneously,
several hybrid metal-dielectric antennas have also shown promising results [25–27]. Ref. [28]
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1. Introduction

gives a broad overview of this developing area of research, along with its potential applica-
tions. In this thesis, we present broadband optical traveling-wave antennas made from low-loss
dielectric materials. The antenna design considers two main objectives for its optimization:
improving the antenna’s directive nature and controlling the radiation pattern of such antennas.
The optimized antennas exhibit ultra-high directivity, resulting from the interplay between the
guided and leaky modes supported by the director. We successfully compare our numerical
results to experimental measurements of the antennas that are fabricated using electron beam
lithography. The results are in good agreement with one another. Our all-dielectric approach
has led to the development of a new class of antennas that are highly suitable for application in
the areas of optical communication and sensing with reduced cross-talk.

The use of multiple antennas aids in further improving the directive nature and overall gain of
the system [29]. In the optical regime, they are called optical phased arrays, where manipulation
of amplitude and phase of each antenna element is used for radiation control with the help of
constructive and destructive interference [30]. Such systems tailor complex far-field radiation
patterns and precisely control the radiation direction via beam steering [31]. Conventionally,
the number of elements and the spacing between them control the shape of the emission pattern,
angular resolution, beamwidth, and the periodicity of the grating lobes. Several array configura-
tions implement 1-D OPAs that compactly assemble long and narrow radiators [32–34]. Unless
these OPAs employ a highly precise tunable laser, such systems can steer the beam only in
one direction [35]. On the other hand, beam steering in two directions can be achieved in 2-D
OPAs with phase tuning at the operational wavelength. However, due to the large footprint of
the radiating elements, this feature comes at the cost of a limited field of view (FOV), i.e., the
grating-lobe-free region for beam steering [31,36,37]. This issue of limited beam steering range
can be partially mitigated using a sparse array configuration [38] or can be circumvented by em-
ploying circularly symmetric array configurations, essentially producing a visible region with
no grating lobes [39]. We numerically demonstrate large-scale 2-D silicon-based OPAs that are
balanced in power and aligned in phase to produce suitable radiation patterns and steer the beam
into desired directions in the far-field. Specifically, asymmetric horn antennas and circular grat-
ing antennas are investigated for increasing the upward radiating efficiency and the efficiency
in the FOV, respectively. We also realize a circular OPA to address the limited beam steering
range issue. These OPAs are anticipated to be attractive candidates for various applications like
light detection and ranging (LiDAR), free-space communication, optical trapping, holographic
and augmented-reality displays, optogenetic stimulation, and optic switches [40–47].

In contrast to the above, in the second part of this thesis, we consider areas that need effi-
cient power transmission. These require field confinement in a guiding structure, suppressing
radiation into the surrounding medium. For example, waveguides play a pivotal role in sig-
nal transmission, in particular, dielectric waveguides with a higher refractive index core than
the surrounding cladding region. These structures guide electromagnetic waves being con-
fined to the core region, by virtue of total internal reflection. Although silicon photonics has a
well-established platform for integrated optics, lithium niobate (LN) has become a promising
candidate due to its outstanding electro-optic properties and second-order nonlinear suscepti-
bility [48–50]. LN-based integrated quantum photonics systems [51] have been adapted for
two-photon absorption [52, 53] or non-linear interaction of waves to generate entangled pho-
tons [54–57]. In this work, X-cut lithium niobate on insulator (LNOI) rib waveguides are
considered to design and optimize different optical components such as directional couplers,
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1. Introduction

waveguide bends, and multi-mode interference couplers that are excited by TE polarization.
These components are fundamental elements needed on an integrated LN platform capable of
light confinement at sub-wavelength scales [58]. These platforms offer dense integration of
optical and electrical components for applications in microwave photonics and optical commu-
nication [59–62].

Structure of this thesis
The following content of this thesis is divided into six chapters. The theoretical background
needed for this work is described in Chapter 2, capturing the fundamentals of antennas, antenna
arrays, and optical waveguides. Starting with the Maxwell equations, we derive the relevant
far-fields to characterize an antenna. Additionally, we look into different antenna types and
array configurations, providing an overview of their principle of operation.

Chapter 3 briefly overviews the numerical methods and optimization techniques used in this
work. In particular, we outline the finite integration technique utilized in CST Microwave Studio
[63]. This tool is primarily employed in this work for electromagnetic simulations. Since a large
portion of the work depends on optimization, we briefly look at the global and local optimizers
used in the context of this work.

The results of this thesis can be broadly classified into three parts. Firstly, in Chapter 4, we
introduce optical antennas that are rigorously investigated and optimized for 780 nm (emission
wavelength of CdSeTe colloidal quantum dots). The proposed antennas are highly directive,
a characteristic that strongly depends on the antenna geometry and material. Furthermore,
we perform sensitivity analyses of these antennas, highlighting their robustness to fabrication
imperfections.

Secondly, Chapter 5 focuses on optical phased arrays operating at the telecom wavelength of
1550 nm (C-band). The chapter describes radiating elements optimized to target objectives
such as high upward efficiency and improved power efficiency in the FOV. We numerically
demonstrate the integration of the optimized radiating elements in two distinct phased array
systems and highlight their key advantages.

Finally, in Chapter 6, LNOI rib waveguides are investigated to design and optimize optical
components. These waveguides combine the benefits of silicon and LN utilized in integrated
quantum photonics. In particular, we characterize the optical properties of directional couplers,
waveguide bends, and multi-mode interference couplers with the X-cut crystal orientation and
excited with TE polarization.

Lastly, Chapter 7 summarizes this thesis and gives a brief outlook on closely related topics for
future work.

The work done during the course of this thesis is conducted in cooperation with my colleagues
in the Theoretical Electrical Engineering group at Paderborn University. The results presented
in Chapter 4 were a collaboration with colleagues from the Department of Nanophotonics at
Universität Bonn. The work on Chapter 6 was done in cooperation with colleagues from the
System and Circuit Technology and Integrated Quantum Optics departments at Paderborn Uni-
versity.

3



4



Chapter 2

Theoretical background

This chapter delves into the essential concepts necessary for the theoretical background of this
work. We start by discussing the Maxwell equations in Section 2.1, which serve as the founda-
tion for electromagnetic simulations. In Section 2.2, we introduce antenna theory, summarizing
the necessary quantities required for the characterization of classical antennas. Section 2.3 pro-
vides a brief overview of the operating principles of various linear antennas, while Section 2.4
looks into traveling-wave antennas that are the focus of Chapter 4 of this thesis. Finally, Sec-
tion 2.5 explores the fundamentals and various configurations of antenna arrays, which lay the
foundation for Chapter 5 of this thesis. The mathematical formulation of this chapter is based
on [29, 64, 65], where more detailed information can be obtained.

2.1 Maxwell’s equations
James Clerk Maxwell formulated the fundamental set of coupled partial differential equations
called the Maxwell equations [66]. In combination with the Lorentz force and Newton’s sec-
ond law, these equations lay the foundation of classical electromagnetism, which describes the
interaction of electromagnetic fields in the presence of charged particles [1]. The macroscopic
Maxwell equations in the time domain are

∇×E(r, t) = − ∂

∂t
B(r, t), (2.1)

∇×H(r, t) = ∂

∂t
D(r, t) + J(r, t), (2.2)

∇ ·D(r, t) = ρ(r, t), (2.3)

∇ ·B(r, t) = 0, (2.4)

where E is the electric field, H is the magnetic field, D is the electric flux density, B is the
magnetic flux density, J is the current density and ρ is the charge density, defined at a point r
in space at time t. These fields are related using the constitutive equations

D(r, t) = ε0E(r, t) + P (r, t), (2.5)

B(r, t) = µ0H(r, t) + M(r, t), (2.6)

5



2. Theoretical background

where ε0 is the permittivity and µ0 is the permeability in vacuum. Here, P and M are the po-
larization and magnetization, respectively, which describe the density of electric and magnetic
dipole moments as

P (r, t) = ε0χeE(r, t) and M(r, t) = µ0χmH(r, t), (2.7)

where χe and χm are the electric and magnetic susceptibility, respectively. For a linear,
isotropic, homogeneous material, the constitutive equations can be rewritten as,

D(r, t) = εE(r, t) = ε0εrE(r, t), (2.8)

B(r, t) = µH(r, t) = µ0µrH(r, t), (2.9)

where ε and µ are the absolute permittivity and permeability, respectively, εr = 1 + χe is the
relative permittivity, and µr = 1 + χm is the relative permeability.

However, the linear proportionality D ∝ E and B ∝ H can only be approximated when εr
and µr are real-valued and independent of frequency, which as per the Kramer-Kronig relation
is valid only for a narrow range of frequencies.

One can obtain the stationary fields utilizing the harmonic time dependence of the electromag-
netic fields, i.e., ∼ ejωt as(

E
H

)
(r, t) = Re

{(
E
H

)
(r)ejωt

}
, (2.10)

where ω is the angular frequency and E(r) and H(r) are the electric and magnetic fields in
the frequency domain, respectively. The Maxwell equations in the frequency domain can be
expressed as

∇×E(r) = −jωB(r), (2.11)

∇×H(r) = jωD(r) + J(r), (2.12)

∇ ·D(r) = ρ(r), (2.13)

∇ ·B(r) = 0. (2.14)

One can also arrive at the wave equation for a linear, isotropic, non-magnetic material with no
free charges, i.e., µr = 1 and ρ = 0, by taking the curl of Eq. (2.11) and inserting Eq. (2.12),

∇× (∇×E(r))− k2E(r) = −jωµJ(r). (2.15)

The wave vector k pointing in the direction of propagation can be defined as,

|k| =: k = ω

c0

√
εr(ω) = ω

c0
n(ω) = k0n(ω), (2.16)

where k0 is the vacuum wave number, c0 is the speed of light in vacuum, and n is the refractive
index of the medium. This equation that relates the wave number to the frequency is called the
dispersion relation.

Similarly, the wave equation using the magnetic field can be obtained by taking the curl of
Eq. (2.12) and inserting Eq. (2.11)

εr∇× ( 1
εr
∇×H(r))− k2H(r) = 0. (2.17)

6



2. Theoretical background

2.2 Antennas for light
Traditionally, antennas are defined as a medium for transmitting or receiving radio waves [29].
Scaling down from the radio wave and microwave regime, the optical analog of such antennas
is defined as a device that behaves like a converter between freely propagating optical radiation
and localized energy [67]. One of the first antennas was constructed by Heinrich Hertz while
he was verifying the electromagnetic theory proposed by Maxwell [68]. This was followed by
a multitude of innovations giving rise to different types of antennas utilized for a wide range of
applications [10, 28].

2.2.1 Antenna theory

Antenna theory is based on the Maxwell equations introduced in the section above. It is first
important to understand how current and charge distribution can result in the radiation of elec-
tromagnetic waves. The following discussion is based on Ref. [64], where a more detailed
insight can be found. For an antenna, say a wire antenna, with a current distribution localized
in a defined space, electromagnetic fields are produced that propagate large distances from the
location of the source. The radiation can be described more conveniently by utilizing elec-
tric (Φ) and magnetic (A) potentials in place of E and B fields. Considering Gauss’s law for
magnetism in Eq. (2.4), the divergence-free magnetic flux B implies the existence of a vector
potential A, such that

B(r, t) = ∇×A(r, t). (2.18)

Substituting Eq. (2.18) in Faraday’s law (Eq. (2.1)),

∇×E(r, t) = −∇× ∂

∂t
A(r, t) ⇒ ∇×

(
E(r, t) + ∂

∂t
A(r, t)

)
= 0. (2.19)

The curl-less quantity
(

E + ∂

∂t
A

)
can be represented as the gradient of a scalar potential Φ

as

E(r, t) = −∇Φ(r, t)− ∂

∂t
A(r, t). (2.20)

However, these potentials above are not uniquely defined, as they can always be varied by
adding some constants. Therefore, using the following gauge transformation with a scalar func-
tion ψ, A and Φ can be transformed, keeping E and B invariant. This is called the gauge
invariance of Maxwell’s equations. The transformed potentials can be described by

A′(r, t) = A(r, t) +∇ψ(r, t), (2.21)

Φ′(r, t) = Φ(r, t)− ∂

∂t
ψ(r, t). (2.22)

However, in electromagnetism, for radiation problems, the Lorentz gauge is customarily used,
which is defined by

∇ ·A(r, t) + 1
c2
∂

∂t
Φ(r, t) = 0, (2.23)

7



2. Theoretical background

where c = 1√
µε is the speed of light. Plugging Eq. (2.20) into Gauss’s (Eq. (2.3)) and Ampere’s

(Eq. (2.2)) law, one arrives at

∇2Φ(r, t) + ∂

∂t

(
∇ ·A(r, t)

)
= −ρ(r, t)

ε
, (2.24)(

∇2 − 1
c2
∂2

∂t2

)
A(r, t)−∇

(
∇ ·A(r, t) + 1

c2
∂

∂t
Φ(r, t)

)
= −µJ(r, t), (2.25)

respectively. In conjunction with the Lorentz condition (Eq. (2.23)), Maxwell’s equations in the
potential form can also be expressed as equivalent wave equations.

1
c2
∂2

∂t2
Φ(r, t)−∇2Φ(r, t) = ρ(r, t)

ε
(2.26)

1
c2
∂2

∂t2
A(r, t)−∇2A(r, t) = µJ(r, t) (2.27)

Here, ε and µ are constant in space (homogeneous media). It can be seen that ρ and J are the
sources for the potentials Φ and A, respectively. Therefore, when these source densities are
known, the explicit causal solutions to these wave equations are the retarded potentials, which
are defined as

Φ(r, t) = 1
4πε

∫
V

ρ(r′, tr)
| r − r′ |

d3r′, (2.28)

A(r, t) = µ

4π

∫
V

J(r′, tr)
| r − r′ |

d3r′, (2.29)

where tr = t − | r − r′ |
c

is the retarded time, r is the observation point in space, r′ is the
point in the zone of source density, t is the time, and the integration is performed over a localized
volume V where ρ and J are non-zero.

Since we are generally interested in single frequencies, one can derive the phasor part of these
retarded potentials by performing a Fourier transform on the potentials described above.

Φ(r) = 1
4πε

∫
V

ρ(r′)
R

e−jkRd3r′ (2.30)

A(r) = µ

4π

∫
V

J(r′)
R

e−jkRd3r′ (2.31)

Here, R =| r − r′ | and free-space wavenumber k = ω

c
= 2π

λ
, where λ is the wavelength. To

calculate the fields far away from the source in the region referred to as the Fraunhofer zone,
i.e., r � r′ and r � λ, the following far-field approximations are made using Taylor series
expansion:

i)
1

| r− r′ | '
1
| r |

= 1
r
,

ii) | r− r′ |' r − er · r′.

8



2. Theoretical background

The far-field approximations of the retarded potentials can now be defined as

Φ(r) = e−jkr

4πεr

∫
V
ρ(r′)ejk·r′

d3r′, (2.32)

A(r) = µe−jkr

4πr

∫
V

J(r′)ejk·r′
d3r′, (2.33)

with the wavenumber vector k = ker. The angular dependence stems from the integral factors,
which are essential in understanding the directional properties of the radiated fields. These
integral factors are separated from the radial dependence and can be expressed using the charge
form-factor Q(k) and radiation vector F (k) as

Q(k) =
∫
V
ρ(r′)ejk·r′

d3r′, (2.34)

F (k) =
∫
V

J(r′)ejk·r′
d3r′. (2.35)

These integrals are the spatial Fourier transformation of the charge and current densities, which
depend on k and er, defined using angular coordinates θ (polar angle), and ϕ (azimuthal angle).
Therefore, the angular dependence can be written using Q(θ, ϕ) and F (θ, ϕ) and the radiation
potentials can be defined as

Φ(r) = e−jkr

4πεr Q(θ, ϕ), (2.36)

A(r) = µe−jkr

4πr F (θ, ϕ). (2.37)

The E and H fields can now be calculated using Eq. (2.20) and Eq. (2.18), respectively, in

conjunction with the Lorentz condition (Eq. (2.23)). The Fourier transformation replaces
∂

∂t
with jω. Therefore,

E(r) = −∇Φ(r)− jωA(r) = 1
jωµε

(
∇(∇ ·A(r)) + k2A(r)

)
,

H(r) = 1
µ
∇×A(r).

(2.38)

However, using Eq. (2.27) in frequency domain, the E field from above can also be written as

E(r) = 1
jωµε

(
∇×

(
∇×A(r)

)
− µJ(r)

)
, (2.39)

and in the source-free region, Eq. (2.39) can be expressed as

E(r) = 1
jωµε

∇×
(
∇×A(r)

)
. (2.40)

9



2. Theoretical background

Computing∇×A ignoring all terms that drop faster than 1/r, the far-fields can be defined as

E(r) = −jkη e
−jkr

4πr (er × F (r))× er, (2.41)

H(r) = −jk e
−jkr

4πr (er × F (r)), (2.42)

where η = |E|
|H|

=
√
µ/ε is the wave impedance. Furthermore, the radiation vector can be

decomposed in its radial and transversal components as

F (r) = er(er · F (r)) + (er × F (r))× er = erFr + F⊥(r). (2.43)

Resolving this in a spherical coordinate system reveals that only the angular components con-
tribute to the transversal part of F . Therefore, the fields can be represented using only the
transversal components

E(r) = −jkη e
−jkr

4πr F⊥(r), (2.44)

H(r) = −jk e
−jkr

4πr (er × F⊥(r)). (2.45)

2.2.2 Characteristics of an antenna
To characterize the performance of an antenna, it is necessary to comprehend the meaning of
certain essential parameters. These are outlined below.

Radiation pattern
A radiation pattern or antenna pattern is a graphical representation of the antenna’s radiation
properties as a function of the spatial coordinates [69]. These radiation properties comprise
the radiation intensity, power flux density, directivity, field strength, phase, or polarization [29].
Since these patterns are mostly determined in the far-field, they are represented using the direc-
tional coordinates, e.g., the spherical coordinate system for a sphere of radius r, polar angle θ,
and azimuthal angle ϕ.

z

x

z

y

θ

φ x

y

θ

φ

(a) (b)

Figure 2.1: Types of radiation patterns in spherical coordinates. The three-dimensional radia-
tion pattern of (a) a directional antenna and (b) an omnidirectional antenna.
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2. Theoretical background

Furthermore, there are different types of patterns. A pattern representing an isotropic radiator
with equal radiation in all directions is called an isotropic pattern. Hypothetically, it represents
a lossless antenna, which is used as the reference for defining the directionality of any antenna
under investigation. However, such an antenna cannot be physically realized. On the other hand,
a directional pattern has more radiation in some directions than the other directions. Therefore,
they represent antennas that efficiently receive and radiate electromagnetic waves in a specific
direction (see Figure 2.1a). A particular case for such an antenna is the omnidirectional an-
tenna, as shown in the Figure 2.1b, representing the radiation pattern of a dipole emitter in a
homogeneous environment. The pattern shows non-directionality in one plane (θ = 90◦) and
directionality in the orthogonal plane (ϕ = 0◦).

Radiation lobes

Radiation patterns are characterized by regions called radiation lobes, which are areas in the
radiation pattern bounded by weak radiation intensity [29]. There are two types of radiation
lobes: major and minor lobes. The major lobe points towards the maximum radiation, while
the minor lobe is any lobe apart from the major lobe. When the minor lobe is in the same
hemisphere as the major lobe, it is called a side lobe, and if there is more than one major lobe in
the radiation pattern, they are called grating lobes. The side and grating lobes are undesired in
a radiation pattern, representing radiation in unwanted directions. The ratio of power density in
the side lobe to that of the major lobe is called the side lobe level (SLL). When the minor lobe
is in the opposite hemisphere of the major lobe, it is called the back lobe. Furthermore, there
are two common measurements used to determine the width of the main lobe, namely,

• Half-power beamwidth (HPBW): measures the angular spread of the beam between two
points located at half the power of the peak of the main lobe,

• First-null beamwidth (FNBW): measures the angular spread of the beam between the first

Side lobe

Major lobe

Back lobe

Minor lobes

Radiation intensity

HPBW

FNBW_

+
_

+
_

+ +

_

0-π θπ

Figure 2.2: Characterization of different radiation lobes and beamwidths.
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2. Theoretical background

nulls of the pattern, i.e., the nulls of the main lobe.

Figure 2.2 displays an antenna pattern highlighting the above-described beamwidths and differ-
ent lobes.

Directive gain and directivity

The term directive gain refers to the ratio of radiation intensity in a specific direction to the radi-
ation intensity averaged over all directions. If the specific direction is the direction of maximum
radiation (θmax, ϕmax), then the maximum directive gain is referred to as the directivity of an
antenna. Mathematically, the radiation intensity U can be defined as the power that radiates
from the antenna per unit solid angle [29].

U = r2Pden, (2.46)

where r is the distance in the far-field and Pden is the power density given by the time-averaged
Poynting vector,

Pden(r) = 1
2< (E(r)×H∗(r)) . (2.47)

Integration of the radiation intensity over the complete solid angle of 4π gives the total radiated
power,

Prad =
∫ 2π

0

∫ π

0
U(θ, ϕ) sin θdθdϕ. (2.48)

Further, dividing Eq. (2.48) by 4π gives the average radiation intensity, equivalent to the radia-
tion intensity of an isotropic source U0. Finally, the directive gain D can be defined as

D(θ, ϕ) = U(θ, ϕ)
U0

= 4πU(θ, ϕ)
Prad

, (2.49)

and the dimensionless quantity, directivity Dmax can be defined for the maximum radiation
intensity Umax as

Dmax = D = Umax
U0

. (2.50)

This quantity can be used in measuring an antenna’s ability to direct power in a given direction,
thus highlighting its directional properties.

Front-to-back ratio

The front-to-back ratio is an important quantity that is instrumental in quantifying the di-
rectional performance of an antenna. It is defined as the ratio of maximum directive gain
along the main lobe in the forward direction (θfmax, ϕfmax) to that in the opposite direction
(θbmax,ϕfmax + 180◦),

F/B =
D(θfmax, ϕfmax)

D(θbmax, ϕfmax + 180◦) . (2.51)
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2. Theoretical background

Antenna gain and radiation efficiency

The antenna’s gain can be defined as the ratio of the radiation intensity in a given direction
to the input power of the antenna that would radiate isotropically [29]. Mathematically, for a
lossless isotropic source, this can be written as

G(θ, ϕ) = 4πU(θ, ϕ)
Pin

. (2.52)

However, it is customary to consider the losses of an antenna when calculating the gain G. This
can be constituted by taking into account the radiation efficiency of the antenna ηrad, which
accounts for the conduction and dielectric losses. Therefore, the total radiated power can be
expressed using these losses as

Prad = ηradPin, (2.53)

where ηrad is the ratio of radiated power to the input power of the system, and it can also be
used to relate the directivity and gain of the antenna by substituting Eq. (2.53) in Eq. (2.52)

G(θ, ϕ) = ηrad

[
4πU(θ, ϕ)
Prad

]
= ηradD(θ, ϕ). (2.54)

All of the definitions from above are used frequently in the scope of this work.

2.3 Linear antennas
As it has already been established in Eqs. (2.44)–(2.45), the transversal component F⊥ of the
radiation vector F is used for determining the radiation pattern of an antenna. The radiation
vector, in turn, is defined using the current density J . To understand their working principle, we
consider a linear antenna that consists of an infinitesimally thin wire of length l with a uniform
current distribution I(z) along l aligned to the z-axis, centered at the origin. An illustration of
such an antenna can be seen in Figure 2.3.

l/2

-l/2x

y

z

Figure 2.3: Schematic representation of a linear antenna of length l with current distribution
along the z-axis.
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The antenna possesses a current density of the form

J(r) =
{
I(z)δ(x)δ(y)ez for − l/2 ≤ z ≤ l/2,
0 elsewhere.

(2.55)

Depending on the current distributions, different antennas can be defined. For example:

I(z) = Ilδ(z) Hertzian dipole,

I(z) = I sin(k(l/2− |z|)) Linear dipole.

These antenna types are discussed in the following subsections.

2.3.1 Hertzian dipole

One of the simplest linear antennas is the Hertzian dipole, also known as the ideal dipole.
Looking at Eq. (2.55), it is clear that the radiation vector in Eq. (2.37) would have only a z-
component and for a current distribution of I(z) = Ilδ(z) for a l � λ and can be defined as

F (r) = Fzez = ez

∫
Ilδ(x′)δ(y′)δ(z′)e−j(kxx′+kyy′+kzz′)dx′dy′dz′. (2.56)

Resolving the wave vector k in a Cartesian coordinate system, the following components can
be obtained:

kx = k cosϕ sinθ ky = k sinϕ sinθ kz = k cosθ. (2.57)

From above, it becomes clear that Fz only depends on θ. Therefore, using kz from Eq. (2.57),
while solving the integrals for x′ and y′ trivially and for z′ over l, Fz from Eq. (2.56) can be
written as

Fz(θ) =
∫ l/2

−l/2
Ilδ(z′)e−jkz′cosθdz′ = Il. (2.58)

Substituting Eq. (2.58) in Eq. (2.44), the electric far-field can be expressed using the transversal
component of the radiation vector as

E(r, θ, ϕ) = −jωµ4π
e−jkr

r

∫ l/2

−l/2
Ilδ(z′)ez⊥e−jkz

′cosθdz′. (2.59)

The transversal part of the radiation vector can be obtained by resolving ez in the spherical
coordinate system.

Fr = F (r) · er = Fzez · er = Fz cos θ (2.60)

Fθ = F (r) · eθ = Fzez · eθ = −Fz sin θ (2.61)

Fϕ = F (r) · eϕ = Fzez · eϕ = 0 (2.62)
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Therefore, the transversal component of the radiation vector only has a θ-component. Substi-
tuting that in Eq. (2.59), the final electric and magnetic far-fields can be obtained

E(r, θ, ϕ) = −jωµ4π
e−jkr

r
eθFθ = j

Il

4πrηk sin(θ)e−jkreθ, (2.63)

H(r, θ, ϕ) = −jωµ4πη
e−jkr

r
eϕFθ = j

Il

4πrk sin(θ)e−jkreϕ. (2.64)

Furthermore, it can be deduced from Eqs. (2.63)–(2.64) that the fields are omnidirectional, as
they do not depend on the azimuthal angle ϕ (see Figure 2.4b). The radiation intensity can be
calculated as

U(θ) = ηk2

32π2 | Il |
2 sin2θ. (2.65)

Similarly, the directive gain can be obtained using Eq. (2.49)

D(θ) = 4πU(θ)
ηk2 | Il |2

12π

= 3
2 sin2θ, (2.66)

where θ = 90◦ is the direction of maximum propagation, and no propagation takes place along
the antenna element itself, i.e., θ = 0◦ (see Figure 2.4a). Such structures are commonly utilized
as a point source, as they can mimic the behavior of quantum dots that are used in experiments
for the purpose of excitation.

(a) (b) φθ

Hertzian dipole
Linear dipole (l = λ/2)

330°

300°

270°

240°

210°

180°

150°

120°

90°

60°

30°

0°

330°

300°

270°

240°

210°

180°

150°

120°

90°

60°

30°

0°

0.5 11.5 0.51 1.5

Figure 2.4: Radiation pattern of the Hertzian and linear dipoles as a function of the (a) polar
angle θ and (b) azimuthal angle ϕ. The dipole antenna exhibits slightly higher directivity com-
pared to the Hertzian dipole.

2.3.2 Linear dipole
Another commonly used linear antenna is the linear dipole with a sinusoidal current distribu-
tion of I(z) = I sin(k(l/2 − |z|)), as shown in Figure 2.5. This antenna can be viewed as a
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l/2

-l/2

I(z)

Iin

l/2

-l/2

I(z)
(a) (b)

l = λ/2

l = 2λ
l = 3λ/2
l = λ

Figure 2.5: (a) Schematic representation of a dipole antenna. (b) Current distribution along the
dipole antenna as a function of antenna length.

stack of multiple Hertzian dipoles along the z-axis. Therefore, following a similar workflow as
Section 2.3.1, one can obtain the electric and magnetic far-fields by integrating the electric field
of the Hertzian dipole over the length of the linear dipole as

E(r, θ, ϕ) = j
I

2πrηke
−jkrf(θ)eθ, (2.67)

H(r, θ, ϕ) = j
I

2πrke
−jkrf(θ)eϕ, (2.68)

where f(θ) =
cos
(
k
l

2cos(θ)
)
− cos

(
k
l

2

)
sin(θ) is the angular-dependent radiation pattern. The

radiation pattern for such an antenna with a length of λ/2 is illustrated in Figure 2.4 along with
the radiation pattern of a Hertzian dipole.

2.4 Traveling-wave antennas
The linear dipoles discussed above have a sinusoidal current distribution along the length of
the antenna (for l > 0.1λ) but with a constant phase distribution. For long open-ended linear
antennas, the current distribution is characterized by two waves of equal amplitude traveling
with a 180◦ phase shift, which is induced by the reflection at the open end. Such antennas are
called standing-wave or resonant antennas [29]. However, terminating the end of the antenna
with a suitable impedance, such that the effect of reflection is minimized or eliminated, the
current and voltage take the form of traveling waves in the same direction. These antennas are
known as traveling-wave or non-resonant antennas [70]. Several structures can be classified as
traveling-wave antennas. Starting from the concept of a slot on an infinite conducting plane and
extending the analysis to apertures of any desired geometry, one can devise radiating elements
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in the form of waveguide-fed slot radiators, open waveguide radiators, horn antennas, and so on.
Thus, traveling-wave antennas offer a wide range of radiating elements suitable for applications
such as good broadband operation, free space impedance matching, and improved gain [29].
Typically, these antennas can be broadly classified as slow wave or fast wave antennas depend-
ing on their phase velocity vp = ω/k, where ω is wave angular frequency and k is the wave
number. Structures with vp/c < 1 are termed as slow wave antennas, and the fast wave antenna
possesses a phase velocity of vp > c [71]. The work in this thesis mainly focuses on the latter,
also commonly known as leaky-wave antennas.

A leaky-wave antenna mainly comprises a waveguide with a leaking mechanism, such as a
hollow metallic waveguide with a slit. The radiation from such an antenna results from the
waves leaking over the length of the non-resonant guiding structure [72]. In the optical regime,
dielectrics are preferred over metals due to the high ohmic losses that metals exhibit [12]. Since
waveguides are the most vital component of leaky-wave antennas, it is necessary to recapitulate
the working principle of a dielectric waveguide. Typically, it consists of a core surrounded by a
cladding possessing a refractive index lower than that of the core. The total internal reflection
of light causes its confinement in the core, resulting in wave propagation along the length of the
core [73].

Consider a waveguide with a finite cross section in the xy-plane. The waveguide is assumed
to be constant along the direction of propagation (z-axis), i.e., ∂zεr = 0. The fields can be
represented as(

E
H

)
(x, y, z, ω) =

(
Ep

Hp

)
(x, y)ej(ωt−kzz), (2.69)

where (Ep,Hp)T is the mode profile as a function of the transverse coordinates, and kz is the
propagation constant. For regions where J = 0 and εr is constant, the wave equations can be
defined using Eq. (2.69) in Eq. (2.15) and Eq. (2.17)[

∂2

∂x2 + ∂2

∂y2 + (k2
0εr − k2

z)
]

Ep = 0,[
∂2

∂x2 + ∂2

∂y2 + (k2
0εr − k2

z)
]

Hp = 0,
(2.70)

which are a set of partial differential equations that can be solved with appropriate interface and
boundary conditions, making it an eigenvalue problem such as

T(kz)V = 0. (2.71)

T is the system matrix that depends upon kz and V denotes the vectorial profile or field. Solu-
tions to this eigenvalue problem (2.71) are the modes this structure can support.

Using (2.69), one can obtain the transverse components, namely, Ex, Ey, Hx, and Hy utilizing
the longitudinal electric and magnetic field components, i.e., Ez and Hz . Therefore, only 2-D
partial differential equations must be solved for Ez and Hz .

∆TEz + (k2
0εr − k2

z)Ez = 0
∆THz + (k2

0εr − k2
z)Hz = 0

(2.72)
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Other field components are directly derived by rewriting Maxwell’s equations as

Ex = −j
k2

0εr − k2
z

(kz∂xEz + ωµ0∂yHz),

Ey = −j
k2

0εr − k2
z

(kz∂yEz − ωµ0∂xHz),

Hx = −j
k2

0εr − k2
z

(kz∂xHz − ωε0εr∂yEz),

Hy = −j
k2

0εr − k2
z

(kz∂yHz + ωε0εr∂xEz).

(2.73)

Different types of modes can now be classified with respect to the longitudinal field components
[74]:

• Hz = 0, Ez 6= 0: Transverse magnetic (TM) modes, where the magnetic field compo-
nents are orthogonal to the direction of propagation.

• Ez = 0, Hz 6= 0: Transverse electric (TE) modes, where the electric field components
are orthogonal to the direction of propagation.

• Ez = Hz = 0: Transverse electromagnetic (TEM) modes, where the electric and mag-
netic field components are orthogonal to the direction of propagation, which is only pos-
sible when k2

0εr − k2
z = 0.

• Hz 6= 0, Ez 6= 0: Hybrid modes, where all the six field components are non-zero.
Furthermore, depending on whether the electric or magnetic field component is dominant,
they can be further classified as TM-like (HE) or TE-like (EH) modes.

Now, consider the dielectric waveguide represented in Figure 2.6 with the refractive index n1
and surrounded by a homogeneous medium (ns = n2). The Helmholtz equation is expressed for

x

y

n1

n2

ns

h
w

Figure 2.6: Schematic representation of a dielectric waveguide with refractive indices n1, n2,
ns, height h, width w, and direction of wave propagation along the z-axis.
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both regions as

(Core)
[
∂2

∂x2 + ∂2

∂y2 + (n2
1k

2
0 − k2

z)
]

Ψ = 0,

(Cladding)
[
∂2

∂x2 + ∂2

∂y2 + (n2
2k

2
0 − k2

z)
]

Ψ = 0,
(2.74)

where Ψ(x, y, z, ω) = Ψ(x, y)ej(ωt−kzz) is the solution to the problem described above. Such
a dielectric waveguide supports a discrete finite set of modes that are distinguished by their
polarization and propagation constant. Typically, a mode is expected to decay outside the core
exponentially. Therefore, for the cladding expression, n2

2k
2
0 − k2

z should be negative, implying
that the mode propagation constant kz should be larger than the cladding wavenumber n2k0. On
the other hand, for the mode to be guided, the propagation constant should satisfy the condition
n2k0 < kz < n1k0.

To understand the leaking mechanism of a leaky-wave antenna, consider a substrate with refrac-
tive index ns 6= n2. The substrate in contact with the waveguide serves as a channel for leakage.
This implies that when kz < nsk0, the leaking wave couples to a radiating mode in the sub-
strate, which behaves as the antenna aperture of the leaky-wave antenna [75]. This is analogous
to a slit introduced in a metallic waveguide. In both these cases, the propagation of waveguide
modes is significantly influenced. With respect to the surface normal of the waveguide, the
direction of the main lobe θML for such a system can be determined from

| sin(θML) |≈ kz/ks, (2.75)

where ks = nsk0 is the wavenumber of the substrate to which the antenna radiates. Further-
more, the radiation pattern depends on the modes excited in the waveguide (TE/TM/Hybrid).
The waveguiding structure’s radiation losses and finite length can account for the side lobes in
the pattern.

2.4.1 Diffraction gratings
A set of periodic or aperiodic reflecting or transmitting elements characterized by the modula-
tion of refractive index in the spatial domain are called diffraction gratings [76]. A monochro-
matic wave incident on such an arrangement undergoes diffraction, resulting in a finite set of
diffracted waves that travel in discrete directions. Consider a reflection-type grating with a pitch
d presented in Figure 2.7a, where a monochromatic wave with a wavelength of λ is incident on
the grating at an angle α and is diffracted along a set of discrete angles βm, where m is referred
to as the diffraction order. Consequently, the wave diffracted from each groove along a specific
direction is in phase with the diffracted waves generated from other grooves along the same
direction, i.e., the waves constructively interfere.

Looking at Figure 2.7b, one can derive the differential path length between adjacent grooves
as d sinα + d sin β for β < 0. For the crests and troughs of the waves to coincide, i.e., for
constructive interference to occur, the differential path length has to be an integral multiple of
the wavelength λ. This condition is known as the grating equation and is given by

mλ = d sinα+ d sin β. (2.76)
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Figure 2.7: Schematic representation of (a) the working principle in diffraction gratings and (b)
the geometrical path difference between light from adjacent grooves.

Clearly, the right-hand side of this expression cannot exceed the value of 2d. Hence, the number
of diffraction orders can be determined by the maximum integer value of m that satisfies the
condition

|mλ/d| < 2. (2.77)

Notably, waveguide-fed grating couplers and antennas rely on diffraction gratings to radiate the
incident power along a desired direction. In such applications (given α = 90◦), it is some-
times desired to have near vertical emission, i.e., β0 = 0◦. Using the grating equation, it can
be concluded that the second-order diffraction would reflect energy into the feeding waveg-
uide (∵ β2 = 90◦), which is an unwanted effect and results in loss of power. Therefore, most
systems aiming for high efficiency employ gratings with a detuned grating pitch such that the
emission angle is nearly broadside with no second-order diffraction. A possible way to circum-
vent the process of detuning is to use a varied grating pitch, i.e., a set of distinct grating pitches
{d1, d2, ..., dn} that result in a constructive interference pattern along the broadside direction.

2.5 Antenna arrays
By using single linear antenna elements, we can regulate the radiation pattern in the θ-direction.
However, to have control in the azimuthal plane, multiple antenna elements can be utilized in
what is referred to as an antenna array [29]. These arrays can be arranged uniformly (linear
or planar) or non-uniformly, and depending on the desired radiation characteristics, can be de-
signed or synthesized in the appropriate configuration. Further details on this will be discussed
in the following subsections.

2.5.1 Linear antenna arrays
The first array topology under investigation is a uniform linear array. A linear array is defined
by a set of radiating elements placed along a line or a plane. The term uniform is introduced
when the distance between each antenna is constant, commonly referred to as the pitch or inter-
element spacing d. The analysis of uniform linear arrays begins with studying the influence of
an antenna with a known radiation pattern placed near an identical antenna with an excitation
of equal magnitude but with a phase shift. The results of this analysis are extended to an array
topology with N such elements along a line, followed by a configuration with N ×M elements
in a plane.
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2.5.1.1 Two-element array

Let us first consider an array with two elements, specifically linear dipole antennas, as described
in Section 2.3.2. The antennas are placed along the x-axis with a separation of d between them.
The antennas are driven by current I∠0 and I∠α, where α is the phase shift provided to the
second antenna. The far-field of the array is evaluated at a point P , located at a distance r, as
shown in the Figure 2.8.

r

r1

x

y

z

I2=I∠α

P(r,θ,φ)

θ

φ

d

xy-projection plane

I1=I∠0

Figure 2.8: Schematic representation of an array with two dipole antennas along the x-axis.

In the far-field r ‖ r1, implying that r1 ≈ r − d sin θ cosϕ. The electric far-field from antenna
1 can be defined as

E1(P ) = jη
I∠0
2πr f(θ)e−jkreθ, (2.78)

where f(θ) is the angular-dependent radiation pattern of a linear dipole described before in
Section 2.3.2. Similarly, for the second antenna, the electric far-field can be defined as

E2(P ) = jη
I∠α
2πr1

f(θ)e−jkr1eθ. (2.79)

We can assume r1 ≈ r, with negligible error in the denominators. Therefore, the sum of the
individual fields gives the total field with respect to both antennas at point P .

E(P ) = E1(P ) + E2(P ) = jη
I

2πrf(θ)
(
e−jkr + e−jkr1ejα

)
eθ (2.80)

E(P ) = jη
I

2πrf(θ)
(
e−jkr + e−jk(r−dsinθcosϕ)ejα

)
eθ (2.81)

E(P ) = jη
I

2πrf(θ)e−jkr(1 + ejkdsinθcosϕejα)eθ (2.82)
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2. Theoretical background

From the Eqs. (2.80)–(2.82), it is clear that the total field of the array is equivalent to the product
of the field from a single antenna and a scalar factor known as the array factor, which is a
function of θ and ϕ

E(P ) = jη
I

2πrf(θ)e−jkrAF (θ, ϕ)eθ, (2.83)

with

AF (θ, ϕ) = (1 + ejkdsinθcosϕejα). (2.84)

This is also referred to as the principle of pattern multiplication, whose general representation
is illustrated in Figure 2.9.
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Figure 2.9: Illustration of the principle of pattern multiplication. The product of the patterns
from a single antenna and the array factor produces the radiation pattern of the antenna array.

2.5.1.2 1-D arrays

The previous section shows how the array factor looks for a two-element array from Eq. (2.84).
In the equation, the first element is the contribution of the element placed at the origin of the
coordinate system, and the second term appears due to the second antenna placed at a distance
d from the origin. The same can be deduced for a three- and four-element array, and the corre-
sponding array factors can be expressed as

AF (θ, ϕ) = (1 + ejkdsinθcosϕ+jα + ejk2dsinθcosϕ+j2α), (2.85)

AF (θ, ϕ) = (1 + ejkdsinθcosϕ+jα + ejk2dsinθcosϕ+j2α + ejk3dsinθcosϕ+j3α). (2.86)

Now consider an array of (N +1)-elements placed along the x-axis and separated by a distance
d with a progressive phase shift of ndα, where n represents the index of each array element.
Figure 2.10 illustrates such a configuration, whose array factor can be expressed as

AF (θ, ϕ) =
N∑
n=0

ejndα+jkndcosψ, (2.87)

where cosψ = sinθcosϕ. This expression can be evaluated as a standard geometric series

AF (θ, ϕ) = 1− ej(N+1)(α+kcosψ)d

1− ej(α+kcosψ)d , (2.88)
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Figure 2.10: Schematic representation of a 1-D array of dipole antennas along the x-axis.

that can be deduced to

AF (θ, ϕ) = ejN(α+kcosψ) d2

(
e−j(N+1)(α+kcosψ) d2 − ej(N+1)(α+kcosψ) d2

e−j(α+kcosψ) d2 − ej(α+kcosψ) d2

)
. (2.89)

Therefore, the array factor can finally be written as

AF (θ, ϕ) = ejN(α+kcosψ) d2

(
sin
(
(N + 1)(α+ kcosψ)d2

)
sin
(
(α+ kcosψ)d2

) )
. (2.90)

Defining u = kdcosψ and u0 = αd, we can express Eq. (2.90) as,

| AF (u) |=

∣∣∣∣∣∣∣∣
sin
(

(N + 1)
(
u+ u0

2

))
sin
(
u+ u0

2

)
∣∣∣∣∣∣∣∣ . (2.91)

To see the effect of the array factor AF (u) on the final radiation pattern, we explore the influ-
ence of the number of elements constituting the array, the array’s inter-element spacing (pitch),
and the phase distribution along the array elements. For this analysis, we consider a linear array
along the x-axis.

Figure 2.11 shows the influence of the number of elements in an array for an inter-element
spacing of λ/2. As the number of elements in the array increases, the resulting main lobe is

23



2. Theoretical background

-π π0

N=8
N=16
N=32
N=128

|A
F(
u
)|

0

1

u(rad)

Figure 2.11: Illustration of the influence of the number of elements (N ) constituting the array
with an inter-element spacing of λ/2.

substantially narrowed with a higher number of side lobes. However, the side lobe level remains
relatively constant for array configurations with elements N ≥ 8 [29].

Figure 2.12 details the influence of the pitch on the far-field radiation pattern for an 8-element
array along the x-axis. As it can be seen, when d = λ/4, the resultant radiation pattern illus-
trates a single broad main lobe in addition to two side lobes. Increasing the pitch to λ/2 narrows
the main lobe with more side lobes. Interestingly, for inter-element spacing greater than λ/2, in
addition to the main lobe narrowing and increased number of side lobes, the radiation patterns
exhibit distinctive lobes with the same magnitude as the main lobe. These lobes are referred to
as the grating lobes. This becomes evident from Figure 2.12c and d, which reveal two and four
grating lobes for d = λ and d = 2λ, respectively.

Note that no phase distribution was considered for the radiating elements to analyze the effect
of pitch size and the number of elements in the array. However, considering the effect of having
a progressive phase distribution among the array elements results in steering the main lobe to
a desired direction [77]. Figure 2.13 demonstrates the principle of beam steering for the array
with eight elements placed along the x-axis for which θ = 90◦. Figure 2.13a shows the radiation
pattern for an array with d = λ/2 when no phase distribution is provided. Intuitively, the main
lobe is along ϕ = 90◦. Furthermore, Figure 2.13b and c demonstrate the steering of the beam
by +30◦ or −30◦ from the previous case of ϕ = 90◦, on providing the appropriate progressive
phase shift. This concept is discussed further in Chapter 5.

Furthermore, for generalization, we can define the array factor independent of the array axis
and coordinate system by considering a complex excitation of the form wn = |wn|ejφn [65].
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Figure 2.12: Illustration of the influence of inter-element spacing for a linear dipole array of 8
elements. |AF(u)| and far-field radiation patterns for an array with a pitch of (a) d = λ/4, (b)
d = λ/2, (c) d = λ, and (d) d = 2λ.

Therefore, for an (N + 1)-element uniform array, the array factor can be defined as

AF (θ, ϕ) =
N∑
n=0

wne
jker·rn , (2.92)
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Figure 2.13: Demonstration of beam steering for a linear dipole array of 8 elements with an
inter-element spacing of λ/2. |AF(u)| and far-field radiation patterns of the beam (a) not
steered, (b) steered by +30◦, and (c) steered by −30◦.

where er is the unit vector in the direction of the point of interest, and rn is the position vector
for the nth element of the array. For our 1-D array along the x-axis, |wn| = 1, φn = ndα,
rn = ndex and er · rn = nd cosψ = nd sin θ cosϕ.

2.5.1.3 2-D arrays

Consider a two-dimensional uniform array in the xz-plane with (M + 1)-elements along the z-
axis and (N+1)-elements along the x-axis, as shown in Figure 2.14. This system can be viewed
as (M+1) independent linear arrays, each having (N+1) elements. From the previous section,
we know the general form of the array factor for a uniform linear antenna array composed of
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Figure 2.14: Schematic representation of a 2-D array of dipole antennas placed in the xz-plane.

(N + 1) elements (Eq. (2.92)). Hence, the principle of pattern multiplication can be applied to
the (M + 1) linear arrays resulting in a generalized array factor of the form

AF (θ, ϕ) =
M∑
m=0

N∑
n=0

wm,ne
jker·rnejker·rm . (2.93)

In our problem, all elements are excited with a current of the same magnitude I0, but with a
progressive phase shift of integer multiples of α and β along the x-axis and z-axis, respectively.
Additionally, er · rn = nd cosψ = nd sin θ cosϕ, with n ∈ {0, 1, 2, ...N} for the (N + 1)-
element array along the x-axis, and er · rm = md cos θ, with m ∈ {0, 1, 2, ...M} for the
(M + 1)-element array along the z-axis. The resulting expression for the magnitude of the
array factor is

|AF (θ, ϕ)| =

∣∣∣∣∣∣∣∣
sin
(

(N + 1)(α+ k sin θ cosϕ)d2

)
sin
(

(α+ k sin θ cosϕ)d2

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sin
(

(M + 1)(β + k cos θ)d2

)
sin
(

(β + k cos θ)d2

)
∣∣∣∣∣∣∣∣ .

(2.94)
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Defining u = kd sin θ cosϕ, u0 = αd, v = kd cos θ and v0 = βd, we have

|AF (u, v)| =

∣∣∣∣∣∣∣∣
sin
(

(N + 1)
(
u+u0

2
))

sin
(
u+u0

2

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sin
(

(M + 1)
(
v+v0

2
))

sin
(
v+v0

2

)
∣∣∣∣∣∣∣∣ . (2.95)

When α = β = 0, the radiation is perpendicular to the plane of the array (broadside). Choosing
suitable values of α and β allows one to steer the beam in any desired direction or generate
complex far-field patterns. Such an array is called a phased or scanning array.

2.5.2 Circular antenna arrays

Consider a plane wave (Huygens source) impinging on a circular aperture [39], as shown in Fig-
ure 2.15a. For uniform apertures, the tangential fields over the aperture also known as the aper-
ture electric and magnetic fields (Ea,Ha) are assumed to be constant. The two-dimensional
Fourier transform of the aperture electric field is given by

f(θ, ϕ) =
∫
A

Ea(r′)ejk·r
′
dS′ = Ea

∫
A
ejk·r

′
dS′ = Af(θ, ϕ)Ea, (2.96)

where A is the area of the aperture and f(θ, ϕ) = 1
A

∫
A e

jk·r′
dS′ is the radiation pattern of the

aperture and is determined by its geometry.

When working with a circular aperture of radius R, the radiation pattern of the aperture can be
determined using the cylindrical coordinate system. It is important to note that for evaluating the
integral, we can assume ϕ = 0, as f(θ, ϕ) is independent of ϕ due to the rotational symmetry
in the cylindrical coordinates. Hence,

f(θ) = 1
πR2

∫ ρ′=R

ρ′=0

∫ ϕ′=2π

ϕ′=0
ejkρ

′ sin θ cosϕ′
ρ′ dϕ′ dρ′. (2.97)

(a) (b) (c)
2R 2R 2R

δ λ/2

Figure 2.15: Illustration of a plane wave impinging on a (a) circular aperture, (b) ring aperture,
and (c) discretized ring aperture.
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We know that the zeroth-order Bessel function of the first kind can be defined by

J0(kρ′ sin θ) = 1
2π

∫ ϕ′=2π

ϕ′=0
ejkρ

′ sin θ cosϕ′
dϕ′. (2.98)

Substituting Eq. (2.98) in Eq. (2.97), we get

f(θ) = 2
R2

∫ ρ′=R

ρ′=0
J0(kρ′ sin θ)ρ′ dρ′,

f(θ) = 2
R2

RJ1(kR sin θ)
k sin θ = 2J1(kR sin θ)

kR sin θ .

(2.99)

Thus, the resulting pattern is a first-order Bessel function analogous to the sinc function, also
known as the Airy pattern. The solid blue color line in Figure 2.16 represents f(θ, ϕ) derived
for the circular aperture within the visible region of −π

2 ≤ θ ≤
π
2 . Clearly, the radiation pattern

has no grating lobes and an appreciably low side lobe level. Based on these observations, one
can derive the radiation pattern of a thin annular ring of thickness δ shown in Figure 2.15b
as [39]

|fring(θ)| = |fR(θ)− fR−δ(θ)| = 2J0(kR sin θ), (2.100)

where fR(θ) and fR−δ(θ) are the radiation patterns of the circular apertures of radii R and
R − δ, respectively. The radiation pattern of such an annular ring is given by the red colored
line in Figure 2.16. The side lobe level increases, but this configuration still offers the advantage
of no grating lobes in the visible region. Interestingly, a discretized version of such an annular
ring aperture realized using point source radiating elements produces a similar radiation profile.
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Figure 2.16: Radiation intensity as a function of polar angles for different circular apertures.

29



2. Theoretical background

Such a setup has each radiating element separated by an arc length offset of λ/2, as proposed
in Figure 2.15c. Therefore, placing radiators in a circular configuration to form an antenna
array produces a single main beam and eliminates the presence of grating lobes in the far-field
region. Before further investigating such arrays, let us derive the array factor for such an array
configuration.
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1

n
rn
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φ

θ

Figure 2.17: Schematic representation of a circular array with one ring of radiating elements.

Consider an N -element circular configuration of antennas in the xy-plane, as shown in Fig-
ure 2.17. The array consists of elements with a uniform angular spacing of ∆ϕ = 2π/N in a
ring of radius R [29]. The unit vector in the Cartesian coordinate system takes the form

er = sin θ cosϕex + sin θ sinϕey + cos θez. (2.101)

For the xy-plane, θ = 90◦. Hence, the position vector of the nth-element of the array is given
by

rn = R cosϕnex +R sinϕney, (2.102)

with ϕn = 2πn/N = n∆ϕ, where n = 1, 2, ...N . To write the array factor of such an N -
element circular array, we first calculate the differential distance drn as follows

drn = (er · rn)er = R cosψner. (2.103)

Here,

er · rn = (sin θ cosϕex + sin θ sinϕey + cos θez) · (R cosϕnex +R sinϕney)
= R sin θ(cosϕ cosϕn + sinϕ sinϕn)
= R sin θ cos(ϕ− ϕn).

(2.104)
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Therefore,

drn = R sin θ cos(ϕ− ϕn)er, where n = 1, 2, ...N. (2.105)

Thus, the array factor takes the form

AF (θ, ϕ) =
N∑
n=1

wne
jkR[sin θ cos(ϕ−ϕn)]. (2.106)
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Figure 2.18: Schematic representation of a circular array with multiple rings of radiating ele-
ments.

Similarly, consider M concentric circular arrays with Nm elements in each ring, separated by a
uniform arc length spacing, as shown in Figure 2.18. For m ∈ {1, 2, ...M}, the general form of
the array factor can be defined as

AF (θ, ϕ) =
M∑
m=1

Nm∑
n=1

wm,ne
jkRm[sin θ cos(ϕ−ϕm,n)−sin θ0 cos(ϕ0−ϕm,n)], (2.107)

where wm,n and ϕm,n = 2πn/Nm are the electric field intensity and angular position of the
nth-element of the mth-ring, respectively, Rm is the radius of the mth-ring, and (θ0, ϕ0) rep-
resents the direction of the main lobe. For more details about such configurations, we refer the
readers to Refs. [78, 79]. Overall, the concepts discussed in this chapter lay the foundation for
understanding the results explained in this thesis.
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Chapter 3

Numerical methods and optimization

Numerical modeling of various wave fields, from elastodynamics, acoustics, electromagnetics,
etc., is used in different science disciplines, ranging from communications to medical diagno-
sis [80]. When it comes to classical electrodynamics, as discussed in Chapter 2, Maxwell’s
equations, in combination with the constitutive material equations, are used to derive the char-
acteristics of electric and magnetic fields with suitable boundary conditions (BCs). Analytically,
these equations can be explicitly solved for simple geometries. However, this becomes impossi-
ble for complex systems, making it imperative to solve these problems numerically. Numerical
solutions to these problems can avoid the fabrication of several samples with experiments that
produce geometries comprehending the simulated results. This helps to design sophisticated
technologies with low cost and time.

Several popular techniques are already available that efficiently compute electromagnetic fields
for practical applications, like the finite element method (FEM), finite difference time domain
method (FDTD), boundary element method (BEM), finite integration technique (FIT), etc.
The numerical results of this thesis are mainly produced using CST Microwave Studio [63],
a commercial software package implementing the FIT, which Thomas Weiland first proposed
in 1977 [81]. This makes it imperative for us to understand the underlying concepts to better
analyze our results. This also helps identify computation-generated artifacts coming from the
model under investigation and rectify them.

In this chapter, Section 3.1 discusses the fundamentals of the finite integration technique based
on Refs. [82, 83]. Within FIT, we show the discretization of Maxwell’s equations employed by
this method, followed by the discretization of the constitutive material equations. We briefly
look at the type of BCs utilized in this work. Furthermore, we explore the integration of transient
fields and the numerical stability of FIT. In Section 3.2, we introduce the optimization theory,
where we describe the problem to be optimized and the algorithms employed for this task during
the course of this work.

3.1 Finite integration technique
Thomas Weiland utilizes the integral form of the Maxwell equations in the FIT, which are
transformed into a system of linear algebraic equations called the Maxwell Grid Equations.
Generally, based on the problem at hand, integration in the time domain needs to be performed,
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or an eigenvalue problem for a linear system needs to be evaluated. Furthermore, the discrete
solutions obtained from the method provide the analytical characteristics of the continuous
solutions [84].

3.1.1 Discretization of Maxwell’s equations

The complete set of Maxwell’s equations can mathematically describe all macroscopic elec-
tromagnetic phenomena. The FIT uses the integral form of the Maxwell equations, which one
can derive from the differential form, i.e., Eqs. (2.1)–(2.4)), using the Gauss’s law and Stokes’
theorem [1]. Therefore, for stationary matter, Maxwell’s integral equations are∮

∂A
E(r, t) · dl = − d

dt

∫
A

B(r, t) · dA, (3.1)∮
∂A

H(r, t) · dl = d

dt

∫
A

D(r, t) · dA +
∫
A

J(r, t) · dA, (3.2)∮
∂V

D(r, t) · dA =
∫
V
ρ(r, t)dV, (3.3)∮

∂V
B(r, t) · dA = 0. (3.4)

The FIT is based on the discrete reformulation of these integral equations Eqs. (3.1)–(3.4),
making them suitable for simulating electromagnetic problems of complex structures on com-
puters [83]. As the technique can be seen as the generalization of the FDTD method [85],
similar to the Yee-Cube [86], in general, discretization of the Maxwell equations is done over
an orthogonal grid doublet (G,G̃). Figure 3.1a illustrates the primary grid G and the dual grid
G̃ is defined by taking the foci of all cells from the primary grid as the grid points for the mesh
cells in the dual grid (see Figure 3.1b). Therefore, G̃ is shifted in all directions by half the edge
length of G. To begin with the discretization, the electromagnetic field problem needs to be
limited to a bounded region in space, i.e., Ω ∈ R3, comprising the region of interest. This is
followed by the decomposition of Ω into a finite number of simplicial cells Vi, which yields the
primary computational grid G.

(a) (b)

Ai 

Grid G (Ω) Grid G
~

Vi 

Figure 3.1: Schematic representation of the (a) primary grid G and (b) dual grid G̃ (in orange)
for Vi simplicial cells.
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Every edge of the cell Vi possesses a direction, such that a directed graph can describe the union
of these edges. Similarly, the facets of all polygons in the grid also possess a direction based on
the right-hand rule. Assuming Ω has a brick shape, using the Cartesian coordinate system, G
can be defined as

G := {Vi,j,k ∈R3 | Vi,j,k := [xi, xi+1]× [yj , yj+1]× [zk, zk+1],
i = 1, ...., I − 1, j = 1, ...., J − 1, k = 1, ....,K − 1},

(3.5)

where the coordinates i, j and k are used for numbering the nodes (xi, yj , zk) along the x-, y-
and z- axis, respectively. In total, Mp number of mesh points exist for Mc mesh cells, which
are defined as

Mp := I · J ·K,
Mc := (I − 1) · (J − 1) · (K − 1).

(3.6)

It is important to note here that the FIT is not limited to Cartesian meshes but can also support
other variants of meshes, both structured and unstructured [87, 88]. Now, if we consider only
one cell volume Vi ofG, as shown in Figure 3.2a, the integral form of Faraday’s law in Eq. (3.1)
for the facet Az(i, j, k) (as highlighted by the dark gray region) can be written as

_e x(i, j, k) + _e y(i+ 1, j, k)− _e x(i, j + 1, k)− _e y(i, j, k) = − d

dt

__
b z(i, j, k), (3.7)

where _e x(i, j, k) =
∫ (xi+1,yj ,zk)

(xi,yj ,zk) E · dl is the electric voltage along one edge of Az(i, j, k) and
__
b z(i, j, k) =

∫
Az(i,j,k) B · dA is the magnetic flux through the facet Az(i, j, k). This approach

can be applied to every facet of G, and the spatial discretization of the finite cell grid can be
achieved.

Furthermore, _e (i, j, k) and
__
b (i, j, k) over the complete grid G are lexicographically ordered

and assembled in column vectors such that the degrees of freedom occur in the x-, y- and

by(i, j+1, k)

bx(i+1, j, k)

bx(i, j, k)

by(i, j, k)

(a) (b)
ex (i, j+1, k)

ey (i+1, j, k)
ey (i, j, k)

ex (i, j, k)

bz (i, j, k)
bz (i, j, k)

bz (i, j, k+1)V(i,j,k) 
x

y

z

Figure 3.2: Illustration of the (a) magnetic flux
__
b through the facet Az(i, j, k) and the electric

grid voltages _e along the edges, and (b) six magnetic facet fluxes for the cell Vi,j,k in G.
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z-direction, respectively.

_e := ( _e x,n | _e y,n | _e z,n ) ᵀ
n= 1,....,Mp

∈ R3Mp

__
b := (

__
b x,n |

__
b y,n |

__
b z,n ) ᵀ

n= 1,....,Mp
∈ R3Mp

(3.8)

Eq. (3.7) can then be written collectively in the matrix form for the whole grid G as

 · · · · · · · · ·
1 · · · 1 · · · −1 · · · −1

· · · · · · · · ·


︸ ︷︷ ︸

C :=



_en1
...

_en2
...

_en3
...

_en4


︸ ︷︷ ︸

_e

= − d

dt


...
__
b n
...


︸ ︷︷ ︸

__
b

, (3.9)

where C ∈ R3Mp×3Mp is the discrete curl operator, which has the topological information of
the orientation of the cell edges and their incidence relationships in G. Therefore, the matrix
coefficients of C are Ci,j ∈ {−1, 0, 1}. Similarly, to derive the discrete divergence operator,
Gauss’s law for magnetism from Eq. (3.4) can be reformulated, for the cell Vi represented in
Figure 3.2b as

−
__
b x(i, j, k) +

__
b x(i+ 1, j, k)−

__
b y(i, j, k) +

__
b y(i, j + 1, k)

−
__
b z(i, j, k) +

__
b z(i, j, k + 1) = 0.

(3.10)

As it can be seen, Eq. (3.10) is an exact representation of Eq. (3.4) for the volume under con-
sideration, and extending this again to the whole grid G, we get

 · · · · · ·
. −1 1 −1 1 −1 1 .

· · · · · ·


︸ ︷︷ ︸

S :=



...
__
b n1
__
b n2
__
b n3
__
b n4
__
b n5
__
b n6

...


︸ ︷︷ ︸

__
b

= 0, (3.11)

where S ∈ RMp×3Mp is the discrete divergence matrix, which also holds the topological infor-
mation like C.

To discretize Eqs. (3.2)–(3.3), the dual grid G̃ is considered, where the magnetic field and
dielectric flux are assigned in the same way as the electric grid voltage and magnetic facet flux
from G. Therefore, Ampere’s law (Eq. (3.2)) can be discretized for a facet Ãz(i, j, k) of a cell
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dy(i, j+1, k)
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z

~

Figure 3.3: (a) A cell Ṽi,j,k highlighting the dielectric flux
__
d through the facet Ãz(i, j, k) and

the magnetic grid voltages
_
h along the edges of the cell. (b) Illustration of the six electric facet

fluxes for the cell Ṽi,j,k in G̃.

Ṽ (i, j, k) from the dual grid by adding the magnetic grid voltages to get the displacement and
conductive currents from the facet under consideration shown in Figure 3.3a.

_
hx(i, j, k) + _

hy(i+ 1, j, k)− _
hx(i, j + 1, k)− _

hy(i, j, k)

= d

dt

__
d z(i, j, k) +

__
j z(i, j, k)

(3.12)

Similarly, Gauss’s law (Eq. (3.3)) can be discretized for the cell of the grid G̃ shown in Fig-
ure 3.3b as

−
__
dx(i, j, k) +

__
dx(i+ 1, j, k)−

__
dy(i, j, k) +

__
dy(i, j + 1, k)

−
__
d z(i, j, k) +

__
d z(i, j, k + 1) = q(i, j, k).

(3.13)

Analogous to Eq. (3.9) and Eq. (3.11), these two new discretizations also result in dual discrete
curl and divergence operators C̃ and S̃, respectively. Finally, for the grid pair {G, G̃}, the
Maxwell grid equations can be summarized as

C_e = − d

dt

__
b, (3.14)

C̃
_
h = d

dt

__
d +

__
j , (3.15)

S̃
__
d = q, (3.16)

S
__
b = 0. (3.17)

3.1.2 Discretization of material equations

Typically, the FIT assumes that each discretized object is made of a piecewise linear, isotropic,
and homogeneous material. This produces subdomains as large as the elementary volumes
possessing constant material parameters (ε, µ, κ), which is accomplished using the staircase
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approximation. To solve a problem, the grid equations discussed above require incorporating
the material equations in a similar discrete form (Eqs. (2.8)–(2.9)). Figure 3.4 illustrates the
primary area Ax(i, j, k) intersecting with the grid flux

__
b x(i, j, k) and the intersection of the

dual edge L̃x(i, j, k) with the grid voltage
_
hx(i, j, k). For an inhomogeneous material, the

point of intersection lies at the interface of the two materials with permeabilities µ1 and µ2,
where the normal component of the magnetic flux density Bn is continuous at the interface.
This is approximated as

__
b x(i, j, k) =

∫∫
Ax(i,j,k)

B · dA =
∫∫

Ax(i,j,k)
Bn(y, z)dydz ≈ BnAx(i, j, k). (3.18)

Lx(i, j, k)

Ax(i, j, k)

~

Bn . ex.

μ1

μ2
x

y

z

Figure 3.4: Primary surface Ax(i, j, k) and dual edge L̃x(i, j, k) used for the discretization of
permeability.

When L̃x(i, j, k)(1) and L̃x(i, j, k)(2) are the dual edges for the material media with permeabil-
ities µ1 and µ2, respectively,

_
hx(i, j, k) can be expressed as

_
hx(i, j, k) =

∫
L̃x(i,j,k)

H · dl =
∫
L̃x(i,j,k)(1)

Bn(x)/µ1 dx+
∫
L̃x(i,j,k)(2)

Bn(x)/µ2 dx

≈ Bn(L̃x(i, j, k)(1))/µ1 +Bn(L̃x(i, j, k)(2))/µ2

= Bn

(
L̃x(i, j, k)(1)/µ1 + L̃x(i, j, k)(2))/µ2

)
= Bnµ−1(i, j, k)L̃x(i, j, k),

(3.19)

where the inverse permeability is averaged along the dual edge for a local effective material
parameter, i.e., µ−1(i, j, k). Therefore, we can obtain

__
b x as

__
b x(i, j, k) ≈ Ax(i, j, k)

L̃x(i, j, k)µ−1(i, j, k)︸ ︷︷ ︸
Mµ(i,j,k) :=

_
hx(i, j, k), (3.20)

where Mµ(i, j, k) is one entry of the diagonal magnetic material matrix Mµ.

38



3. Numerical methods and optimization

Similarly, Figure 3.5 helps visualize the discretization of the permittivity, where the electric flux
density Dn is sub-dividing the dual area into four parts of different materials. With this,

__
dx can

be approximated as

__
dx(i, j, k) =

∫∫
Ãx(i,j,k)

D · dA =
∫∫

Ãx(i,j,k)
Dn(y, z)dydz

=
∫∫

Ãx(i,j,k)(1)
ε1En(y, z)dydz +

∫∫
Ãx(i,j,k)(2)

ε2En(y, z)dydz

+
∫∫

Ãx(i,j,k)(3)
ε3En(y, z)dydz +

∫∫
Ãx(i,j,k)(4)

ε4En(y, z)dydz

≈ En
(
ε1Ãx(i, j, k)(1) + ε2Ãx(i, j, k)(2) + ε3Ãx(i, j, k)(3)

+ ε4Ãx(i, j, k)(4)
)

= Enε̄(i, j, k)Ãx(i, j, k),

(3.21)

where ε̄ is the mean permittivity. We know that the electric grid voltage is expressed as

_e x(i, j, k) =
∫
Lx(i,j,k)

E · dl =
∫
Lx(i,j,k)

En(x)dx ≈ EnLx(i, j, k). (3.22)

Therefore, the electric grid flux can be expressed using the electric grid voltages as

__
dx(i, j, k) ≈ ε̄(i, j, k)Ãx(i, j, k)

Lx(i, j, k)︸ ︷︷ ︸
Mε(i,j,k) :=

_e x(i, j, k), (3.23)

ε1

ε4

Lx(i, j, k)

En .ex

~Ax(i, j, k)

ε2

ε3

ε1

ε4

ε2

ε3

En .ex

~Ax(i, j, k)

Lx(i, j, k)

x

y

z

(a) (b)

x

y

z

Figure 3.5: Discretization of the permittivity using a dual surface Ãx(i, j, k) and primary edge
Lx(i, j, k).
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where Mε(i, j, k) is one entry of the diagonal permittivity matrix M ε.

The discrete relationship between the grid current
__
j x and electric voltage _e x is obtained in a

similar manner by utilizing the conductivity κ in place of ε

__
j x(i, j, k) ≈ κ̄(i, j, k)Ãx(i, j, k)

Lx(i, j, k)︸ ︷︷ ︸
Mκ(i,j,k) :=

_e x(i, j, k), (3.24)

where Mκ(i, j, k) is one entry of the diagonal conductivity matrix Mκ. Therefore, the discrete
material equations can be collectively expressed as

__
d = M ε

_e, (3.25)
__
b = Mµ

_
h, (3.26)

__
j = Mκ

_e. (3.27)

Furthermore, the material tensors for anisotropic materials can also be expressed in the diagonal
form. This will be briefly discussed in Chapter 6.

3.1.3 Boundary conditions

Generally, a computer can deal with calculations of finite problems. This implies that the
Maxwell equations must be solved over a finite domain. Therefore, for every problem, defining
a relevant boundary condition (BC) for the realistic representation and simulation of the system
under investigation becomes customary. Several BCs are available, for example, electric BC,
magnetic BC, and periodic BC, but the most widely used BC in this work is the open BC. This
BC implements a perfectly matched layer (PML) and extends the geometry in contact to virtual
infinity using the PML. Electromagnetic waves can enter this boundary at a broad range of an-
gles and frequencies, with almost no back reflections. The open BC is used to simulate all the
optical antennas discussed in this work to characterize their optical properties in the far-field.
More details on the PML implemented in FIT are discussed in [89, 90].

3.1.4 Integration of time

The discretized Maxwell’s equations are still continuous in time, making it necessary to dis-
cretize the time dependence of the fields. This can be done using several methods. For high-
frequency problems, where the wavelength of operation and dimensions of the structure of
investigation are in the same range, the leapfrog scheme is efficiently employed for the FIT
equations, analogous to the FDTD technique [85]. The leapfrog method employs a staggered
grid for the discretization in time and the central difference scheme for the time derivatives
appearing in Maxwell’s equations.

To develop the leapfrog update equations, we begin by defining the central difference approxi-
mation of a time derivative as

f ′(t0 + (m+ 1/2)∆t) = f(t0 + (m+ 1)∆t)− f(t0 +m∆t)
∆t +O(∆t2),

⇒ f ′(m+1/2) = f (m+1) − f (m)

∆t +O(∆t2),
(3.28)
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where m is the time-step index and ∆t is the step size. The state variables for the FIT method
are defined by

_
h
m = _

h(t0 +m ·∆t) and _em+1/2 = _e(t0 + (m+ 1/2) ·∆t). (3.29)

Using the central difference approximation, we have

d

dt

_
h
m+1/2 ≈

_
h
m+1 − _

h
m

∆t and
d

dt
_em+1 ≈

_em+3/2 − _em+1/2

∆t . (3.30)

Substituting these differential quantities in the discretized curl equations (Eqs. (3.14)–(3.15)),
we get

C_em+1/2 = −Mµ
d

dt

_
h
m+1/2 ≈ −Mµ

_
h
m+1 − _

h
m

∆t ,

C̃
_
h
m+1 = M ε

d

dt
_em+1 +

__
j
m+1

≈M ε

_em+3/2 − _em+1/2

∆t +
__
j
m+1

.

(3.31)

Therefore, the explicit recursive update equations obtained using the step size and the central
difference approximated derivatives are

_
h
m+1 = _

h
m −∆t ·M−1

µ C_em+1/2,

_em+3/2 = _em+1/2 + ∆t ·M−1
ε (C̃_

h
m+1 −

__
j
m+1

).
(3.32)

Figure 3.6 provides a graphical representation of this update scheme.

hm hm+1 hm+2em+1/2 em+3/2

tm tm+1/2 tm+1 tm+3/2 tm+2

t

⌢ ⌢ ⌢ ⌢ ⌢

Figure 3.6: Schematic representation of the update scheme utilized by the leapfrog algorithm.

3.1.5 Numerical stability
Numerical stability is a key aspect of any time domain solver and depends on several problem-
specific factors such as the boundary conditions, types of materials (lossy/dispersive), etc. Us-
ing the FDTD-based Courant stability criterion, one can define the maximum time step size in
relation to the mesh size as [83]

∆t ≤ ∆tmax ≈ mini

{
εiµi ·

(
1

∆x2
i

+ 1
∆y2

i

+ 1
∆z2

i

)−1
}1/2

. (3.33)
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For uniform, homogeneous grids, ∆x = ∆y = ∆z = δ, we get

∆t ≤ 1
c

δ√
3
. (3.34)

For the FIT approach, one can discuss stability independent of the discretization in time. For
this purpose, we consider linear inhomogeneous differential equations of a lossless system
(Mκ = 0). This is summarized using the discretized curl equations as

d

dt

[_
h
_e

]
=
[

0 −M−1
µ C

M−1
ε C̃ 0

] [_
h
_e

]
+
[

0
−M−1

ε

__
j

]
. (3.35)

With the aid of positive definite and symmetric matrices M
1/2
µ and M

1/2
ε , we transform the

system to define a new state x and inhomogeneous term b as

x =
[_
h
′

_e′

]
=
[

M
1/2
µ

_
h

M
1/2
ε

_e

]
and b =

[
0

−M
−1/2
ε

__
j

]
. (3.36)

The resulting state space takes the form

d

dt
x = Ax + b, (3.37)

where A is the system matrix with the following state equations

d

dt

_
h
′ = M1/2

µ

d

dt

_
h = M1/2

µ · (−M−1
µ C_e) = −M−1/2

µ CM−1/2
ε

_e′,

d

dt
_e′ = M1/2

ε

d

dt
_e = M1/2

ε M−1
ε C̃

_
h−M1/2

ε M−1
ε

__
j = M−1/2

ε C̃M−1/2
µ

_
h
′ −M−1/2

ε

__
j .

(3.38)

The corresponding system matrix A retains a skew-symmetric nature and is given by

A =
[

0 −M
−1/2
µ CM

−1/2
ε

M
−1/2
ε C̃M

−1/2
µ 0

]
=
[

0 A12
−Aᵀ

12 0

]
. (3.39)

Using the characteristic equation det(A−λA,iI) = 0, we find purely imaginary eigenvalues of
the form λA,i = ±jωi with real-valued frequencies ωi. These eigenvalues will result in a pair
of conjugate eigenvectors associated with undamped oscillating electromagnetic fields. This is
plausible due to the absence of Mκ for lossless systems. Thus, we have established a concept
for stability without considering time discretization, also viewed as spatial stability.

If the above state space description is discretized with a time step ∆t using the approximate cen-
tral difference scheme, we obtain a discrete-time state-space equation that includes the leapfrog
scheme as follows [91]

[
_
h
′m+1

_e′m+3/2

]
=
[

I ∆tA12
−∆tAᵀ

12 I + ∆t2Aᵀ
12A12

]
︸ ︷︷ ︸

Ad(∆t)

[ _
h
′m

_e′m+1/2

]
+
[

0
−∆tM−1/2

ε

__
j
m+1

]
, (3.40)
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where Ad(∆t) is the discrete-time system matrix. For this system, to ensure stability and
satisfy energy conservation in the lossless system, all eigenvalues of the system must lie on
the unit circle, i.e., |λAd,i(∆t)| = 1. If the system is spatially stable (with λA,i = ±jωi), the
eigenvalues of the discrete-time system take the form [83]

λAd,i(∆t) = 2− (∆tωi)2

2 ±
√

(2− (∆tωi)2)2

4 − 1. (3.41)

Hence, the final stability condition that produces a more generalized Courant stability criterion
is given by

|λAd,i(∆t)| = 1⇒ ∆t ≤ 2
maxi|ωi|

∀i. (3.42)

Thus, an exact stability criterion defining the upper limit of the time step is obtained and can be
extended to other methods, such as FDTD, when using a Cartesian grid.

3.2 Optimization theory
One of the definitions for optimization is “the process of finding the most effective or favorable
value or condition” [92]. Today, most engineers prefer optimizing their designs’ performance,
as this would provide a better functioning system and a better understanding of the underly-
ing physics. This section will give a short overview of the mathematical formulation of our
optimization problem and the different optimization algorithms used in the scope of this work.

3.2.1 Mathematical formulation

The optimization process begins by first identifying an objective function that can quantitatively
measure the performance of our system under investigation. This objective, in turn, depends on
some system characteristics or variables, which may be constrained or unconstrained, and this
process aims to find values for these variables that will optimize the objective. Once all the
above-mentioned details are obtained, the modeling of the problem is complete, and one needs
to recognize what kind of optimization algorithm fits best to their problem. This is a crucial
factor that decides if the chosen algorithm can arrive at a solution quickly or slowly and, indeed,
arrive at a solution for the given problem at all.

If we were to define this process mathematically, optimization targets minimizing or maximiz-
ing an objective function based on the constraints we define for the variables. Consider the
following notations:

• x is the n-variables vector,

• gi and hj represent the constraint functions (scalar functions of x),

• f is the objective we want to optimize as a function (scalar) of x.

The optimization problem can be defined as

min
x∈Rn

f(x) subject to
gi(x) = 0, i ∈ E
hj(x) ≤ 0, j ∈ I, (3.43)
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where E and I are sets defining the indices for the equality and inequality constraints, respec-
tively.

Similarly, maximization problems work identically, but we minimize the function −f(x) in-
stead. However, it is important to classify the problem based on the number of variables, the
nature of the objective function, and the constraints applied to the variables. If all the constraints
and the objective function are linear in nature with respect to x, such a problem is called a lin-
ear programming problem. However, if either of the constraints or the objective function is
non-linear, the problem can be termed a non-linear programming problem. Depending on the
constraints, a problem can be further distinguished as a constrained or an unconstrained one.
When E = I = ∅, we call it an unconstrained problem. For a constrained problem, these sets are
not empty. However, in some cases, they can be reformulated as an unconstrained problem by
introducing the constraints as penalties in the objective function [93].

In this work, we consider constrained optimization problems. Generally, these constraints could
be linear by defining simple bounds like ai ≤ xi ≤ bi for i = {1, .., n}, or non-linear by de-
scribing complex relationships between the variables, or even convex. When a point x satisfies
the bound, equality, and inequality constraints, it is considered a feasible point, and a set of all
such points is referred to as a feasible region, Ω. This can be represented as

Ω = {x | gi(x) = 0, i ∈ E ; hj(x) ≤ 0, j ∈ I}, (3.44)

and the optimization problem can be defined as

min
x∈Ω

f(x), where f : Ω ⊂ Rn → R. (3.45)

3.2.2 Algorithms used for optimization

There are two approaches to an optimization problem, i.e., finding a local solution or a global
solution. Within local optimization, a local minimum is a point where the objective function is
less than or equal to all the nearby feasible points (neighborhood N ). Therefore, x∗ is a local
solution if,

f(x∗) ≤ f(x) ∀x ∈ N ∩ Ω.

Similarly, a point x∗ is defined as a global solution if,

f(x∗) ≤ f(x) ∀x ∈ Ω.

The framework of this thesis focuses on local and global optimizations, which are explained
in the following subsections of this chapter. Generally, an optimization problem, especially a
non-linear one, could possess multiple local minima. The minimum chosen depends upon the
algorithm used to solve the problem and the initial point provided to it. Hence, finding a global
minimum can be challenging at times. One can only be sure if the point located is a true global
solution by providing some unique information about the objective function f . The algorithms
utilized in the scope of this work aim to find the global optimum without any special information
about the objective function. These algorithms are introduced in the following sections.
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3.2.2.1 Particle swarm algorithm

Swarm intelligence has been defined as the collective foraging behavior of living beings [94].
All agents of a swarm communicate with one another to find their food using the fastest path
and time. In 1995, Kennedy and Eberhart developed a stochastic optimization method, the
particle swarm optimization (PSO), inspired by the nature of socially organized populations
like fish schools, bird flocks, and animal herds [95]. Based on these social behavior simulation
models, the algorithm uses a stochastically moving population of search points in the defined
search space. The memory retains the so-called experience, which is the best position of every
point. This experience is then used to influence the movement of the population towards global
solutions by communicating it to the entire population. The convergence of the optimization
algorithm is strongly influenced by the type of social networking used for communication.

To mathematically formulate this, let Ω ⊂ Rn define the feasible search space of the optimiza-
tion problem, and the objective can be defined as f : Ω → Y ⊆ R [96]. According to the
nomenclature used in particle physics and social science models, the population can be referred
to as a swarm, and each individual from the swarm is known as a particle. Therefore, we can
define the swarm as a set of N particles or candidate solutions

S = {s1, s2, . . . , sN}, (3.46)

where each candidate solution is taken as a vector of real numbers,

sj = (sj1, sj2, . . . , sjn)ᵀ ∈ Ω, j = 1, 2, . . . , N, (3.47)

and N is defined by the user at the start of the optimization. Each particle holds a unique
objective value, fj = f(xj) ∈ Y , assuming that the objective function is available for each
point in Ω. Within this search space Ω, the particles move iteratively by changing their position
based on the velocity,

vj = (vj1, vj2, . . . , vjn)ᵀ, j = 1, 2, . . . , N. (3.48)

To enable particles to traverse the search space freely, their velocities are iteratively modified
based on the memory of their best positions visited so far. This memory can be defined as,

Ps = {p1,p2, . . . ,pN}, (3.49)

where the best position from each particle could be represented as,

pj = (pj1, pj2, . . . , pjn)ᵀ ∈ Ω, j = 1, 2, . . . , N. (3.50)

For an iteration counter t, the current position and velocity for the j-th particle can be expressed
as sj(t) and vj(t), respectively. The best position could be defined as

pj(t) = arg min
sj(t)

f (sj(t)) , (3.51)

for a minimization problem. The algorithm estimates the global minimum using this informa-
tion or experience as described in Eq. (3.50). Therefore, if * is the identifier pointing to the best
position found so far, it can be defined as

p∗(t) = arg min
pj(t)

f
(
pj(t)

)
. (3.52)
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Figure 3.7: Illustration of the update mechanism utilized by the particle swarm optimizer.

Based on the social behavior simulations, the algorithm communicates this important informa-
tion to the swarm. The following update equations then define the PSO

vjl(t+ 1) = vjl(t) + c1γ1
(
pjl(t)− sjl(t)

)
+ c2γ2 (p∗(t)− sjl(t)) , (3.53)

sjl(t+ 1) = sjl(t) + vjl(t+ 1), (3.54)

where j = 1, 2, . . . N and l = 1, 2, . . . , n. Furthermore, γ1 and γ2 are the uniformly distributed
random variables between [0, 1], t is the counter for the iteration, and c1 and c2 are the weighting
factors also known as the cognitive and social parameters, respectively. Figure 3.7 illustrates
the update scheme for the PSO. In Eq. (3.53), vjl provides an inertial movement of the particle
depending on the previous position shift, which prevents the algorithm from being stuck around
a local optimum. Hence, this term enables a global search, exploring different regions of Ω. On
the other hand, the last two terms on the right-hand side of Eq. (3.53) facilitate a local search
from each particle in the vicinity of pjl and p∗, which is the particle’s own best position and
the swarm’s best position, respectively [97, 98]. Thus, PSO serves as a powerful optimization
method for global maximization and minimization problems.

3.2.2.2 Trust region method

Trust region optimization (TRO) is highly efficient in solving non-linear optimization problems.
The method begins by defining a region around the current best solution, where a model func-
tion mk, usually a quadratic one, is trusted to adequately represent the objective function f .
Simultaneously, a step is chosen to approximate the minimizer for this model function, which
can be obtained by solving the following subproblem

min
p∈Rn

mk(p) = fk + gᵀ
kp + 1

2pᵀBkp s.t.‖p‖ ≤ ∆k, (3.55)
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where Bk is the hessian approximation, fk is the objective function at the current iteration (k)
and gk is its gradient, the radius of the trust region ∆k > 0, and p∗k is the minimizer for the
model function defined in Eq. (3.55). The size of the trust region is updated in every iteration
depending on the effectiveness of the chosen step, which can be decided based on the following
equation

ρk = f(xk)− f(xk + pk)
mk(0)−mk(pk)

. (3.56)

It is the ratio of the actual reduction in the original objective function f to the predicted reduc-
tion in f that is estimated by the model function. The values of ρk provide three possibilities
for the size of the trust region:

1. If ρk ≈ 1, it depicts a good agreement between mk and f , implying that mk is a good
representative of f . Therefore, the size of the trust region can be increased, i.e., increasing
∆k in the following iteration.

2. If ρk is positive but much smaller than 1, then we do not change the radius of the trust
region.

3. If ρk is negative or close to zero, it implies that the mk is an inadequate representative of
f . This is only possible when f(xk + pk) is greater than f(xk), as the denominator of
Eq. (3.56) is always non-negative [93]. Therefore, the size of the trust region is reduced
by using a smaller ∆k.

A convergence can be reached with each trust region that relies on the improvement from the
previous iterations. Hence, this method aids in robust local optimization of a desired objective
function.

Therefore, PSO in conjunction with the TRO, constitutes a hybrid optimization routine that is
widely employed in the optimization of various optical structures in this thesis. This routine
first establishes a global optimum with the particle swarm optimizer and then runs the local
trust region optimizer to avoid being stuck with a local optimum.
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Chapter 4

Highly directive antennas1

Over the last 20 years, optical antennas have become increasingly important for practical ap-
plications [11]. Among these, directional optical antennas have received significant attention
from the photonics community because they can radiate electromagnetic energy in desired di-
rections. Leaky-wave antennas, which allow power leakage along a non-resonant guiding struc-
ture through leaky modes, have shown excellent performance [102–115]. Additionally, highly
directive emissions can also be achieved through the propagation of guided modes along these
structures [99–101]. The interplay between leaky and guided modes in optical nanoantennas can
lead to highly directive emissions, making them a promising technology for on-chip commu-
nication and sensing. Their ability to govern the directivity and angular distribution of optical
radiation over a broad frequency range proves the potential of these antennas for robust wireless
communication [116].

To achieve desirable functionality in nanoantennas, it is crucial to carefully design and optimize
their structure geometry, size, and material. These factors significantly affect the electromag-
netic response and functionality, allowing control over the number of modes excited, frequency,
and angular radiation patterns. Different methods and strategies have been extensively used for
this purpose, including classical gradient descent and swarm intelligence, genetic and evolu-
tionary optimization strategies, inverse design and deep learning approaches, or their combina-
tions [117–123].

In this chapter, we present antennas that are investigated with the goal of having a highly di-
rective nature with the aid of guided modes. Section 4.1 discusses the characteristics of the
excitation source utilized for this purpose, followed by a parametric study of different antenna
design parameters to understand their influence on achieving directional emission. Further-
more, in Section 4.2, we explore different antenna designs and optimize them for improved
performances. Three different antennas are explored together with the analysis of their optical
characteristics.

1Section 4.1 is based on our publication [99] and Section 4.2 is based on publications [100,101] of the candidate.
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4.1 From leaky-wave to guided-wave antennas
To start our studies, we use a simple dielectric traveling-wave antenna made up of a reflector
and a director which is deposited on a glass substrate with a refractive index of n = 1.52.
The antenna is made of hafnium dioxide (HfO2), which has a high refractive index (n = 1.9)
and very low absorption loss at a wavelength of 780 nm. This wavelength is significant as it
is the emission wavelength of the quantum dots employed in the experimental setup. Both
the director and reflector are rectangular shaped, and their schematic representation is shown
in Figure 4.1 with respect to the Cartesian coordinates. The antenna is modeled using seven
design parameters highlighted in the schematic. These parameters include the antenna height
(H), director length (DL), director width (DW ), reflector length (RL), reflector width (RW ),
and distance of the field source from the director (DD) and the reflector (RD). The structure is
oriented in the xy-plane with x-axis as its direction of wave propagation, also called the antenna
axis (θ = 90◦), and the positive z-axis, also known as the optical axis (θ = 0◦), is normal to
the substrate, pointing towards it. Between the reflector and the director is a feed gap, where
the excitation source is placed. Before we can address our results, it is imperative for us to
comprehensively analyze the features of the light source we require for our studies. For this
purpose, full-wave numerical simulations are performed in the time domain utilizing the finite
integration technique (FIT) employed in CST Microwave Studio [63].

HfO2

DL

Glass

H

RL

RW

x

y

z

θ

φ

RD DD

H

DW

Figure 4.1: Schematic representation of the antenna under investigation highlighting its design
parameters [100].

4.1.1 Analysis of the excitation source
In our studies, an Hertzian dipole (discussed in Section 2.3.1) with an emission wavelength of
780 nm is employed as the internal light source that is depicted by the solid red dot in Figure 4.1.
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It can efficiently mimic the behavior of a quantum dot generally used in an experimental setup.
To understand the coupling characteristics of a dipole emitter, we analyze the influence of the
dipole orientation and its position displacement on the antenna’s directive nature. The dipole
emitter excites leaky and guided modes that direct the propagation towards the glass substrate.
This is illustrated by the arrow in the red background of Figure 4.1. For this study, the reflector
is chosen to have a length and width of 180 nm and 785 nm, respectively. Similarly, the director
has a length and width of 2200 nm and 600 nm, respectively. The antenna has a height of
140 nm, and the reflector and director are separated by a feed gap of 260 nm, where the dipole
is located. In the feed gap, the dipole is centrally placed along the symmetry plane of the
antenna, 40 nm behind the director and 220 nm ahead of the reflector. This is an optimal position
estimated by conducting a parameter sweep for various dipole positions. Furthermore, the
emitter is placed 10 nm above the substrate, as the CdSeTe colloidal quantum dots used in the
experiments normally have a diameter of 20 nm [100].

4.1.1.1 Effect of different dipole polarizations

Understanding how a dipole of different polarizations couples to the antenna is essential to
approximate the random orientation of the quantum dots in the experimental setup. For this
study, the dipole is centrally placed at the optimum position defined above. We then analyze
the effect of having x-, y- and z-oriented dipoles. Figure 4.2 illustrates the calculated angular
directive gain distributions of all three aforementioned orientations. As it can be seen, the
strongest coupling is demonstrated by the highest intensity produced by the y-oriented dipole
with its main lobe at θ = 66◦ and ϕ = 0◦. On the other hand, the z-oriented dipole provides a
weaker intensity, while the x-oriented dipole produces no appreciable far-field intensity. This
implies that the y-oriented dipole offers the most relevant information needed for characterizing
the emission of our antenna. Therefore, all the following work in this chapter uses a y-oriented
dipole, which is also the TE polarization case.
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Figure 4.2: Calculated angular linear directive gain distributions for an (a) x-, (b) y-, and (c)
z-polarized dipole coupled to the HfO2 antenna.

4.1.1.2 Effect of dipole displacement

In an experimental setup, a few hundred quantum dots are usually placed in the feed gap area
between the director and the reflector. It is instructive to study the impact of dipole displacement
from its optimum position and observe how it affects the far-field emission pattern. Let us first
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Figure 4.3: Calculated angular linear directive gain distributions for a dipole displaced along
the x-axis. The direction of displacement is highlighted by the black dotted arrow and the
distance of the dipole from the director is (a) 120 nm, (b) 160 nm, and (c) 200 nm. The red
arrow represents the orientation of the dipole.

focus on the scenario where the y-oriented dipole is moved along the x-axis while keeping its y-
position constant. In Figure 4.3, we can see the far-field emission pattern for the dipole located
at 120 nm, 160 nm, and 200 nm from the director. As the distance between the dipole and the
director grows, the main lobe intensity drops, with increased back reflection, as compared to
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Figure 4.4: Calculated angular linear directive gain distributions for a dipole displaced along the
y-axis by (a) −100 nm, (b) +100 nm, (c) −200 nm, and (d) +200 nm. The dipole displacement
is highlighted by the black dotted arrow and the red arrow represents the orientation of the
dipole.
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Figure 4.2b (optimum case). This happens because the coupling efficiency of the dipole to the
director decreases as the distance between them increases. As a result, the far-field emission
pattern starts to resemble the radiation pattern of an uncoupled dipole.

Next, we study the influence of dipole displacement along the y-axis, keeping its x-position
constant, which is 40 nm from the director. Figure 4.4 shows the angular emission patterns for
the dipole that is displaced by−100 nm, +100 nm,−200 nm, and +200 nm, from the symmetry
plane of the antenna, i.e., the optimal position with respect to the y-axis. We observe that all the
configurations illustrate a change in the azimuthal position of the main lobe. Along the y-axis,
displacing the dipole to −100 nm and −200 nm, the main lobe is shifted by ∆ϕ = +5◦ and
∆ϕ = +10◦, respectively. Similarly, for a displacement of +100 nm and +200 nm, ∆ϕ = −5◦
and ∆ϕ = −10◦, respectively. However, once again, the dipole coupling strength to the director
reduces when the dipole moves farther away from its optimal central position, as demonstrated
by the ±200 nm offsets.

4.1.2 Analysis of the antenna geometry and material
In the next step, we want to understand the influence of the antenna geometry and material on
its emission characteristics. For this purpose, we begin by analyzing the director’s width and
length and then we study antenna materials of different refractive indices. The numerical results
are also validated with the experimental measurements.

4.1.2.1 Director width variation

For this analysis, we maintain the same reflector as for the case of the dipole study above, i.e.,
a length and width of RL = 180 nm and RW = 785 nm, respectively. The antenna has a
height of H = 140 nm, and the dipole is positioned 40 nm behind the director and 220 nm in
front of the reflector. Furthermore, the director is chosen to have a length of DL = 2200 nm,
and its width is varied. Before we analyze the results, we must perform an eigenmode study to
identify the guided modes supported by such a structure for varying widths. This is done using
COMSOL Multiphysics that employs the FEM [124], which considers a 2-D cross-section of
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Figure 4.5: Calculated effective mode index Neff as a function of the director width for the
HfO2 ridge waveguide. The antenna has a height of H = 140 nm.

53



4. Highly directive antennas

the waveguide-like director possessing a transitional invariance along its propagation length.
As a result, the effective mode indices (Neff) of the guided modes as a function of the DW are
shown in Figure 4.5. This plot shows that the first guided mode TE0,0 is only excited when the
width is DW = 850 nm or larger, and for smaller widths, only leaky modes are supported. The
second guided mode TE0,1 is only supported with structures of width DW = 1800 nm and
above, and similarly, the higher-order modes are excited.
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Figure 4.6: Calculated angular linear directive gain distributions of the HfO2 antennas for a
director width of (a) DW = 600 nm, (b) DW = 1200 nm, and (c) DW = 1800 nm.

To see the effect of the aforementioned modes, we consider antennas with a DW = 600 nm,
DW = 1200 nm, and DW = 1800 nm, as demonstrated in Figure 4.6. In the first case, the
structure behaves like a leaky-wave antenna since no guided mode is supported for a director
width of 600 nm (as suggested by Figure 4.5). Therefore, the main lobe primarily results from
the leaky-wave emission along the director [110], exhibiting a linear directivity of D = 29.2
along θ = 66◦ and ϕ = 0◦. The second structure with a width of 1200 nm supports the first
guided mode TE0,0 and the leaky modes. Unlike the previous configuration, the guided TE0,0
mode causes the majority of the emission to come from the director’s end facet. At an angle of
θ = 69◦ and ϕ = 0◦, a directivity of D = 28 is observed. Finally, for the third configuration
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Figure 4.7: Measured angular far-field intensity distributions of the HfO2 antennas for a direc-
tor width of a) DW = 600 nm, b) DW = 1200 nm, and c) DW = 1800 nm. The experimental
numerical aperture is represented by the white circles at θNA = 72◦. The experimental intensi-
ties are normalized to their respective maxima [99].
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with 1800 nm, the second guided mode TE0,1 also becomes relevant together with the TE0,0
and leaky modes, thus resulting in a multi-mode emission. This is also highlighted by the three
hot spots of the emission pattern in the direction of the director (see Figure 4.6c). The main
lobe points at θ = 49◦ and ϕ = 0◦ with a directivity of D = 21.3. Therefore, increasing DW
illustrates a transition from a leaky- to a single- and then to a multi-mode waveguide antenna
with decreasing directivity.

To verify the numerical results from above, these antennas were fabricated employing a two-step
electron-beam lithography process by our collaborating experimentalists 2. Figure 4.7 shows the
measured angular directive gain emission patterns for DW = 600 nm, DW = 1200 nm, and
DW = 1800 nm. The experimental data is in good agreement with the main trends predicted
by the numerical results. For DW = 600 nm, the emission pattern features its main lobe at
approximately θ = 65◦ and ϕ = 2◦. This shift in the azimuthal position can be explained by the
dipole being displaced from its optimal central position in the experimental setup. Additionally,
a ring-like feature at θ = 41.5◦ is observed, which can be attributed to the emission coming
from the uncoupled quantum dots that mainly radiate at the critical angle between the air-glass
interface [110]. ForDW = 1200 nm, the main lobe shifts to a polar angle of approximately 69◦,
similar to the numerical results. Lastly, in good agreement with simulations, DW = 1800 nm
demonstrates a multi-peak emission with its main lobe at≈ 49◦. Therefore, it can be concluded
that the prediction done by the numerical calculations is plausible.

4.1.2.2 Director length variation

Next, we study the director length’s influence on the antenna’s emission properties. To study
the effect of having a guided mode in the structure, we consider a director cross-section that
supports a single guided mode, i.e., a height of 180 nm and a width of 600 nm. The director
length is then varied from 1400 nm to 3000 nm, implying that only the propagation length for
the mode is varied, but the number of modes remains constant. Similar to the previous section,
the reflector’s dimensions, and the dipole’s position remain the same.
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Figure 4.8: Calculated angular linear directive gain distributions of the HfO2 antenna for a
director length of a) DL = 1400 nm, b) DL = 2200 nm, and c) DL = 3000 nm.

2The antennas were fabricated and measured by colleagues from the department of Prof. Dr. Thomas Zentgraf
at Paderborn University and Prof. Dr. Stefan Linden at Bonn University.
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As it can be seen in Figure 4.8, with the increment of director length, the polar angle of the
main lobe also increases from 63◦ to 69◦, and finally to 72◦. We already know, that the emission
angle of an antenna is primarily influenced by the end facet diffraction and interference along
the propagation direction. When the director is shorter, both these phenomena strongly affect
the main lobe direction. But as the length of the director increases, the leakage radiation along
the director becomes less relevant, as the leaky modes excited by the dipole quickly radiate
into the substrate. Therefore, the end facet diffraction resulting from the propagation of the
guided mode mainly characterizes the antenna emission pattern. In this regime, the direction of
the main lobe remains almost constant with a maximum angle of θmax = 80◦. This has been
determined through numerical simulations for the director lengths up to 10000 nm (not shown
here). Furthermore, the directivity increases with the director length, ranging from 20.9 to 25.4
and finally to 28.8 (see Figure 4.8). This also becomes evident from the increasing intensity of
the main lobe. Along the ϕ = 0◦ direction, the emission patterns show more side lobes with
increasing director lengths. This can be attributed to the power that couples to the substrate’s
radiating modes. In this context, the director behaves as a finite-sized aperture, where the
interference of the leakage radiation from different parts of the aperture results in the pattern of
side lobes.
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Figure 4.9: Calculated electric field distribution (|E|) of the HfO2 antenna in the xz-plane at
y = 0 for a director length of a) DL = 1400 nm, b) DL = 2200 nm, and c) DL = 3000 nm.

To gain a better understanding of these antenna configurations, it’s helpful to examine their near-
field distribution. In Figure 4.9, we see that the shorter directors have higher leakage radiation,
which decreases as the director length increases. This is because the number of guided modes
stays the same, but the influence of the leaky modes decreases. Furthermore, the corresponding
measured angular far-field intensity distributions are shown in Figure 4.10. In comparison to the
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Figure 4.10: Measured far-field intensity distributions of the HfO2 antenna for a director length
of a) DL = 1400 nm, b) DL = 2200 nm, and c) DL = 3000 nm with a TE analyzer setting.
The white circle at θNA = 72◦ in each pattern marks the numerical aperture of the experimental
setup. These intensities are normalized to their respective maxima [99].
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numerical calculation, these measurements do not show an evident increase in the polar angle of
the main lobe as expected for the longer directors. This effect may occur because the objective
lens has a finite collection angle, which implies that the main lobe of the longest antenna is not
fully captured during the experiment. However, we still observe a series of side lobes along
with the main lobe like the numerical results.

4.1.2.3 Material variation

As seen in Section 4.1.2.1, Neff of the director plays a significant role in characterizing the
emission of the antenna. To further investigate this point, we consider antennas made of three
different materials, namely, hafnium dioxide (HfO2), indium tin oxide (ITO), and titanium
dioxide (TiO2). However, all directors possess approximately the same real part of Neff , i.e.,
NHfO2

eff = 1.51 + 0.04i of the leaky HfO2 antenna’s director that had a width, height and length
of 600 nm, 140 nm, and 2200 nm, respectively (discussed in Section 4.1.2.1). To accomplish
ITO and TiO2 directors of approximately the same effective mode index, suitable dimensions
are found by fitting their corresponding electric field distribution inside the director as done in
Ref. [125]. Calculations reveal that the ITO-director of width, height, and length of 900 nm,
110 nm, and 2200 nm, respectively, possesses an effective index of N ITO

eff = 1.51 + 0.06i. Sim-
ilarly, the TiO2-director with the dimensions for width, height, and length of 800 nm, 40 nm,
and 2200 nm, respectively, has an effective index of NTiO2

eff = 1.50 + 0.05i. Therefore, these
dimensions were chosen for the directors, and the reflectors were kept the same as the HfO2 an-

D
ire

ctiv
e
 G

a
in

(c)

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

(b)

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

(a)

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

0

5

10

15

20

30

25

4

8

12

16

20

0 0

2

4

6

10

12

14

8

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

T
he

or
y

ITOTiO2HfO2

E
xp

er
im

en
t

N
o
rm

a
lize

d
 In

te
n
sity

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

0.4

0.5

0.6

0.7

0.8

1

0.9

0.4

0.5

0.6

0.7

0.8

1

0.9

0.3

0.5

0.6

0.7

0.8

1

0.9

0.2

0.4

(f)(e)(d)

Figure 4.11: Calculated angular linear directive gain distributions of the a) HfO2, b) TiO2,
and c) ITO antenna for TE polarization of the dipole. Measured angular far-field intensity
distributions of the d) HfO2, e) TiO2, and f) ITO antenna obtained with the TE analyzer setting.
These intensities are normalized to their respective maxima and the white circles at θNA = 72◦
indicate the numerical aperture of the experimental setup [99].
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4. Highly directive antennas

tenna, but their heights were maintained to be the same as their respective directors. Figure 4.11
shows the calculated and measured angular directive gain distributions for these antennas.

As seen in the theoretical calculations (Figure 4.11(a-c)), all three cases illustrate a pronounced
main lobe at θ = 66◦ and ϕ = 0◦. This implies that the main lobe angle for such anten-
nas primarily results from the real part of Neff [3]. On the other hand, the imaginary part of
Neff deals with attenuation, and, therefore, affects the antenna’s directivity. The HfO2 antenna,
which has the lowest imaginary part of Neff , has the largest directivity DHfO2 = 29.2, fol-
lowed by the TiO2 antenna with DTiO2 = 19.4, and the ITO antenna with DITO = 13.6.
Interestingly, the difference in directivity is in good correspondence to the ratio of the power
decay factor, exp (−2Im(Neff)2πL/λ) of the mode at the end facet after propagating a director
length L (DL for our structure), which is approximately 24% for HfO2-, 17% for TiO2- and
12% for ITO-antenna. These results are corroborated with the experimental angular directive
gain distributions shown in Figure 4.11(d-f). Similar to the numerical results, the experiments
demonstrate a pronounced main lobe at θ ≈ 66◦. Furthermore, the uncoupled quantum dots
demonstrate a ring-like feature in the emission pattern. This effect is more evident in the ITO-
and TiO2-antennas, implying that the antennas deposited by electron-beam evaporation (HfO2)
have superior quality in comparison to the structures fabricated by the sputtering process (ITO
and TiO2).

These numerical calculations and experimental measurements demonstrate that the effective
refractive index of the director primarily determines the emission properties of such antennas.
Therefore, we will investigate various antenna geometries and materials to achieve improved
directive characteristics.

4.2 Optimization of the optical waveguide antennas
This section explores different antenna geometries suitable for producing highly directive ra-
diation patterns. As discussed before, our antennas consist of a director and a reflector. We
investigate different director types like rectangular-, horn-, and tip-shaped, while the reflector is
always maintained to be rectangular. The same source is utilized, emitting at 780 nm with the
strongest coupling to the antenna modes achieved using TE polarization. Apart from HfO2, we
also investigate other materials like silicon (Si) and tantalum pentoxide (Ta2O5) that can aid in
achieving this goal.

CST Microwave Studio is utilized for performing full-wave numerical simulations in the time
domain utilizing the FIT [63]. The work uses a hybrid optimization routine that employs PSO
and TRO (refer Section 3.2.2). We optimize the directivity D of the antenna to produce highly
directive structures. This cost function is given by

D = maxD(θ, ϕ) = 4πU(θ, ϕ)∫ 2π
0
∫ π

0 U(θ, ϕ) sin θdθdϕ
, (4.1)

where U(θ, ϕ) is the angular radiation intensity, θ is the polar angle, and ϕ is the azimuthal
angle. The PSO employs a swarm with 30 particles to maximize the goal function, exploring
the search space over 85 iterations. However, the iterative algorithm normally converged after
∼1000 evaluations. Furthermore, we extend the accuracy of the attained solution by feeding it
to the local optimization routine (TRO), which also converged within ∼900 evaluations to the
same results.
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4. Highly directive antennas

4.2.1 Optimization of rectangular antennas
In the first case, we optimize the same rectangular antenna, whose schematic representation is
shown in Figure 4.1. We begin by identifying the seven geometric parameters that influence the
optimization. These include the director length (DL), director width (DW ), reflector length
(RL), reflector width (RW ), antenna height (H), distance of the field source from the director
(DD) and the reflector (RD) (as defined in Section 4.1). These parameters are also highlighted
in the schematic. These antennas are first investigated with HfO2, followed by Si, and finally,
Ta2O5 whose refractive indices are provided in Table 4.1.

Material Refractive index (n)
HfO2 1.9
Si 3.7+0.007i
Ta2O5 2.0978+0.0012487i

Table 4.1: List of refractive indices of different materials used in this investigation.

4.2.1.1 HfO2 antennas

We begin with the directivity enhancement of the HfO2 antennas. The optimization process
produces a structure with design parameters summarized in the Table 4.2. Compared to the
leaky-wave structure presented in Refs. [99, 110], the optimized antenna has a larger footprint.

Antenna Elements Length (nm) Width (nm) Height (nm) Separation (nm)
Director DL = 3290 DW = 2000 H = 250 DD = 10
Reflector RL = 330 RW = 3280 H = 250 RD = 160

Table 4.2: Design parameters of the optimized HfO2 rectangular antenna obtained using a com-
bination of PSO and TRO.

The calculated angular directive gain distribution of the optimized antenna is depicted in Fig-
ure 4.12. The tightly focused main lobe is directed into the substrate at an angle of θ = 41◦ and

14

28

42

56

67.7

0

60°

30°

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

D
ire

ctiv
e
 G

a
in

Figure 4.12: Calculated angular linear directive gain distribution of the optimized HfO2 rectan-
gular antenna exhibiting an in-plane directivity of D = 67.7 at θ = 41◦ and ϕ = 0◦.
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4. Highly directive antennas

ϕ = 0◦. A significantly improved linear directivity of 67.7 (18.3 dB) is demonstrated, in con-
trast to the 29.2 (14.65 dB) directed at θ = 66◦ by its leaky-wave counterpart [99]. This implies
that the traveling guided modes govern the radiation characteristics of the optimized antenna.
However, the emission pattern also possesses a weaker emission spot at θ ≈ 68◦, most likely
produced by the leaky modes. Thus, the highly directive nature of the structure is attributed to
the contribution of both its leaky and guided modes.

To analyze the cause of the directive nature, we perform an eigenmode analysis to identify
the guided modes supported by the director. The analysis reveals that the dipole excites seven
guided modes in the waveguide-like director together with the leaky modes. These include three
TE, two TM, and two hybrid modes with mode profiles, as shown in Figure 4.13c, highlighting
the percentage of the input optical power they carry. The mode overlap integral with the aid of
transverse components of the near-field calculates the power coupled to each orthogonal mode.
Among the seven modes, TE0,0 and TE0,2 modes are strongly excited, with 27% and 14% of the
input power coupled to them, respectively. This implies that these modes significantly influence
the electromagnetic fields, thus governing the radiation pattern and improving the directivity.
Other modes in the director are weakly excited with almost no power coupled to them, and the
remaining power is found in the leaky modes, which also contributes to the radiation efficiency
of the antenna. Furthermore, considering zero material losses in the antenna, the structure also
exhibits a near-unity radiation efficiency that is highly desirable.

TE 0,0

≈ 27 %

TE 0,1

≈ 0 %

TM 0,0

≈ 0 %

TE 0,2

≈ 14 %

TM 0,1
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E

Figure 4.13: Calculated absolute electric field |E| (linear scale) of the optimized HfO2 rect-
angular antenna in the (a) xz-plane at y = 0 and (b) xy-plane at z = 0, as produced by a
y-oriented dipole emitter. (c) The absolute electric field intensity distribution of the first seven
guided modes excited by dipole emitter in the optimized director featuring the amount of power
coupled to them.
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4. Highly directive antennas

In Figure 4.13a and b, we can observe the electric near-field distribution along the structure. The
antenna exhibits guided propagation along the director’s length, with consecutive multi-mode
interference effects. The strongest local electric field enhancement appears near the dipole,
where the power couples into the modes of the director. The field weakens in the middle of the
director due to destructive interference of the modes. It then strengthens again at the end facet
of the director, attributing to the constructive interference of the modes. This demonstrates
a constant interplay between the leaky and guided modes, resulting in the constructive and
destructive interference of the electromagnetic fields.

We also perform a sensitivity analysis for each design parameter with respect to its directivity,
thus giving an overview of the robustness of the optimized antenna. Figure 4.14 demonstrates
directivity (blue curve) and the polar angle of the main lobe (gray curve) as a function of each
design parameter. The optimum of each parameter is represented with the red dot, which to-
gether produces the directivity of 67.7 (18.3 dB). The directivity can be changed significantly
by adjusting just a few design parameters. Figure 4.14a displays the directivity with the varia-
tion of the main lobe angle as a function of DL. The state of interference fringes formed by the
dominant guided modes at the end facets of their corresponding directors constantly influences
each configuration shown for this parameter. AsDL increases, the influence of the leaky modes
decreases, but the number of guided modes supported by the director remains the same. How-
ever, increasing DW and H leads to an increase in the number of guided modes excited by the
dipole source. As seen in Figure 4.14b and c, both of these parameters have prominent resonant
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Figure 4.14: Results of the sensitivity analysis conducted on the seven considered parameters of
the optimized HfO2 rectangular antenna: (a) the director length (DL), (b) director width (DW ),
(c) antenna height (H), (d) distance of the field source from the director (DD) and the reflector
(RD), (e) reflector length (RL), and (f) reflector width (RW ). The red point and dashed line in
each plot represent the optimized value of the respective parameter, as given in Table 4.2. The
gray curves highlight the main lobe angle θ for the respective parameter configuration, and the
red arrows depict the point from which the highlighted guided mode is supported.
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peaks of directivity, which can be explained as a result of the specific state of interference from
the increased number of guided modes. Strikingly, the emission angle is majorly influenced by
the height of the antenna until the TE0,2 mode is excited, beyond which the impact is negligible.
Similar behavior is also observed in the case of DW . Interestingly, the optimum always occurs
after the TE0,2 mode is excited, as pointed out by the red arrows. This also displays the sig-
nificance of the TE0,0 and TE0,2 modes in achieving the optimum. In contrast, the variation of
the directivity is relatively smooth for increasing dipole source distances from the director and
reflector (see Figure 4.14d). Notably, the directivity reduces for growing separation between
the dipole source and the director. This can be associated with the decrement in the near-field
coupling. On the other hand, the directivity is not substantially affected by variation of the
reflector dimensions, as shown in Figure 4.14e and f. However, a Fabry-Pérot behavior is seen
in the longer reflectors, and the reflector dimensions or the dipole position have no influence on
the main lobe emission angle.

4.2.1.2 Si antennas

The rich linear and non-linear optical properties of silicon have resulted in its extensive use for
photonic devices in the last decade [31,126,127]. Therefore, in this section, we study antennas
made of Si on SiO2 substrate. The large refractive index contrast between Si and SiO2 can
enhance the antenna’s propagation characteristics, essential in achieving better directivity. The
antenna has the same design parameters as in Figure 4.1. Using the same cost function, the
hybrid optimization routine with PSO and TRO converges to the design parameters provided in
Table 4.3.

Antenna Elements Length (nm) Width (nm) Height (nm) Separation (nm)
Director DL = 7840 DW = 1545 H = 29 DD = 10
Reflector RL = 380 RW = 720 H = 29 RD = 130

Table 4.3: Design parameters of the optimized Si rectangular antenna obtained using a combi-
nation of PSO and TRO.

This optimized structure preserves the superior directive nature of the HfO2 rectangular antenna
with a pronounced main lobe and slightly higher side lobe level (see Figure 4.15a). The structure
exhibits a linear directivity of 74.8 (18.74 dB), which is higher than that from the HfO2 antenna
and has its main lobe directed at θ = 66◦ and ϕ = 0◦. However, the director height is much
smaller than the HfO2 analog. This can be associated with the large refractive index contrast,
which requires a smaller height to support modes with almost the same Neff as the guided
modes excited in the HfO2 director [99]. The point source excites four guided modes, all being
TE modes, and their mode profiles are shown in Figure 4.15b. Again, most of the power is
coupled to the TE0,0 (27%) and TE0,2 mode (7%), showing their significance in achieving this
highly directive pattern.

In Figure 4.15c, one sees the less-confined guided propagation of the modes in the director,
which is mainly due to the small antenna height. However, the recurring constructive and
destructive interference of these modes through the director is visible in Figure 4.15d. Notably,
despite the material losses in Si, the antenna still illustrates a high radiation efficiency of almost
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Figure 4.15: (a) Calculated angular linear directive gain distribution of the optimized Si rectan-
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near-field intensity distribution of the four guided TE modes propagating in the director with
the percentage of input power carried by them. (c,d) Calculated near-field distribution |E| of
the optimized antenna in the (c) xz-plane at y = 0 and (d) xy-plane z = 0.
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Figure 4.16: Sensitivity analysis of the seven considered parameters of the optimized Si rect-
angular antenna. The gray curves highlight the main lobe angle θ for the respective parameter
configuration and the optimized values are marked with the red point and dashed line.

63
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94%. Furthermore, the sensitivity analysis performed on the Si antenna has similar results like
its HfO2 counterpart. Figure 4.16 illustrates the results of the sensitivity analysis for each design
parameter.

4.2.1.3 Ta2O5 antennas

As the next step, we validate the results obtained from the HfO2 and Si antennas. For this
purpose, the antennas were fabricated using a two-step electron beam lithography3. However,
due to experimental difficulties, it was easier to fabricate the antennas using Ta2O5 rather than
the other two materials as Ta2O5 could be more easily evaporated. Furthermore, Ta2O5 ap-
proximately has the same refractive index as HfO2 and hence would illustrate similar optical
properties like HfO2 for validating our results. Additionally, at 780 nm, Ta2O5 possesses low
losses making it a suitable material for our studies.

We perform the numerical optimization for the antenna composed of Ta2O5, again targeting
improved directivity as the cost function for the hybrid optimization routine. The results for the
design parameters from the optimization are presented in the Table 4.4.

Antenna Elements Length (nm) Width (nm) Height (nm) Separation (nm)
Director DL = 5710 DW = 2730 H = 100 DD = 20
Reflector RL = 395 RW = 860 H = 100 RD = 170

Table 4.4: Design parameters of the optimized Ta2O5 rectangular antenna obtained using a
combination of PSO and TRO.

The scanning electron micrograph (SEM) of this fabricated optimized antenna is shown in Fig-
ure 4.17. The red box between the director and reflector represents the region where hundreds
of QDs are deposited to serve as the excitation source.

2 μm

Figure 4.17: Scanning electron micrograph
of the optimized Ta2O5 rectangular antenna.
The red square marks the region where the
QDs are deposited [101].

The eigenmode analysis reveals that the director supports three guided TE modes apart from
the leaky modes. The guided propagation of these modes can be visualized in the near-field
distribution of the optimized antenna shown in Figure 4.18a. The mode profiles featuring the
percentage of input power carried by them are shown in Figure 4.18b. As predicted before,
among the guided modes, the TE0,0 and TE0,2 modes carry the highest proportion of the input
power, signifying their crucial role in governing the directional characteristics.

3The antennas were fabricated and measured by colleagues from the department of Prof. Dr. Thomas Zentgraf
at Paderborn University and Prof. Dr. Stefan Linden at Bonn University.

64



4. Highly directive antennas

(a)

0

0.0175

0.035
V/m

E

1000nm

TE 0,2

≈ 19.2 % ≈ 0 % ≈ 15.7%

TE 0,0 TE 0,1

500nm

(b)

E

Figure 4.18: (a) Calculated near-field distribution (|E|) of the optimized Ta2O5 rectangular
antenna at z = 50 nm in the xy-plane. (b) Calculated electric field intensity distribution of the
first three guided modes supported in the director with the percentage of input power carried by
them.

The interference of these modes, mainly arising from the end facet of the director, results in
a linear directivity of 63.1 (18 dB) with a main lobe angle of θ = 69◦ and ϕ = 0◦. This
is demonstrated by the calculated and measured angular directive gain distributions shown in
Figure 4.19. Both the radiation patterns are in good qualitative agreement with one another,
although some discrepancies are visible in the higher polar angles. This mainly comes from
the fact that the numerical aperture of the experiment limits the highest collection angle to
θNA = 79◦. Furthermore, the main lobe slightly deviates from the antenna axis (ϕ = 0), which
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Figure 4.19: (a) Calculated angular linear directive gain distributions of the optimized Ta2O5
rectangular antenna exhibiting an in-plane directivity of D = 63.1 at θ = 69◦. (b) Measured
far-field intensity distribution normalized to the theoretical maximum [101].
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stems from the displacement of the cloud of quantum dots from the optimal position along the
y-axis (as discussed in Section 4.1.1.2). Finally, the ring-like feature at θ = 41.5◦ comes from
the uncoupled QDs that radiate power into the substrate at all azimuthal angles.

4.2.2 Optimization of horn antennas

To further improve the directivity, we explore different antenna geometries. One such geometry
is that of a horn antenna. Conventionally, they are simple to construct and are non-resonant
antennas with broadband operating capabilities. By varying the tapered design characteristics of
the flared section, one can obtain excellent directional attributes for a wide range of frequencies
[100]. Thus, the investigation of a dielectric equivalent of the horn antenna is sought in the
following section.

4.2.2.1 HfO2 and Si antennas

This section examines the characteristics of HfO2 and Si horn antennas. These antennas have a
rectangular reflector and a director that resembles an H-plane sectoral horn [29]. We utilize the
same optimization setup and design parameters as for rectangular antennas, but we consider two
more parameters to describe the flare section of the antenna: the horn length (HL) and the horn
width (HW ) at the flared end of the director. Figure 4.20 provides a schematic representation
of the antenna highlighting its design parameters. Again the hybrid optimization routine is
employed with the objective to maximize the directivity.

Glass

DL

DW

RW

RL

H

HL

HW

HfO2
/ Si

x

y

z

θ

φ

Figure 4.20: Schematic representation of the horn antenna, defined by nine design parameters:
director length (DL), director width (DW ), antenna height (H), horn length (HL), horn width
(HW ), reflector length (RL), reflector width (RW ), and distance of the field source from the
director (DD) and the reflector (RD). The red color depicts the power coupled to the guided
and leaky modes that propagate through the director and radiate into the substrate.
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The optimized values of the design parameters of the HfO2 and Si horn antennas are presented
in Table 4.5.

Design parameters HfO2 ( nm) Si ( nm)
Horn length (HL) 5300 5920
Horn width (HW) 4085 4290
Director length (DL) 3500 4980
Director width (DW) 1935 1940
Antenna height (H) 255 40
Reflector length (RL) 595 890
Reflector width (RW) 3535 780
Director distance (DD) 30 10
Reflector distance (RD) 185 145

Table 4.5: Design parameters of the optimized HfO2 and Si horn antennas obtained using a
combination of PSO and TRO.

The optimized horn antennas are larger than their rectangular-shaped counterparts but boast
a more concentrated emission pattern with higher directivity. This becomes evident from the
angular linear directive gain distribution with a tightly focused pin-like main lobe at θ = 41◦
and θ = 49◦, possessing a directivity of 114 (20.56 dB) and 157 (21.95 dB) for the HfO2 and
Si horn antennas, respectively (Figure 4.21).
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Figure 4.21: Calculated angular linear directive gain distribution of the optimized (a) HfO2 and
(b) Si horn antennas exhibiting an in-plane directivity of D = 114 at θ = 41◦ and D = 157 at
θ = 49◦, respectively.

However, both structures possess slightly greater side lobe levels. This issue can be tackled
with small variations in the horn section of the antenna, which strongly controls the radiation
pattern. This feature is demonstrated in Figure 4.22, where the side lobe level (SLL) is plotted
as a function of the HL and HW for the HfO2 (blue curve) and Si (gray curve) antenna. The
red dots in each plot represent the optimum configuration of both antennas. As it can be seen in
Figure 4.22a, the SLL varies strongly with slight variations in HL for both antennas. However,
changes inHW have a minimal influence on the SLL in the HfO2 antenna but a more substantial
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Figure 4.22: Side lobe level of the optimized HfO2 (blue curves) and Si (gray curves) horn
antenna as a function of its: (a) horn length and (b) horn width. Each plot features a red point
and a dashed line that indicates the optimized value for that respective parameter.

effect in the Si antenna.

Notably, despite the different dimensions of the antennas, both the structures possess the same
flare angle of≈ 11◦, implicating its vital importance in governing the radiation properties. Fur-
thermore, the eigenmode analysis of the HfO2 director indicates the presence of three TE and
three TM modes in the rectangular section of the director. The Si antenna supports seven TE
modes, but no TM modes due to its smaller height coming from a significant refractive index
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Figure 4.23: The electric field intensity distribution of the guided modes supported in the rect-
angular section of the optimized (a) HfO2 and (b) Si director of the horn antenna. Each mode
profile also highlights the percentage of input power carried by them.
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contrast. These mode profiles from the rectangular section of both the antenna directors are
illustrated in Figure 4.23, highlighting the amount of power coupled to them. Again, only the
TE0,0 and TE0,2 modes carry most of the power in both the antennas and govern the radiation
patterns. Interestingly, the Si antenna also supports the TE0,4 and TE0,6 modes, which have
approximately 13% and 14% of the optical power coupled to them, respectively. The combina-
tion of these modes leads to the Si antenna’s high directivity of 157 (21.95 dB). Furthermore,
the flared section of both the directors supports other higher-order guided modes in addition to
the ones excited in the rectangular section. But these higher-order modes carry negligible input
power in them.

Figure 4.24 represents the simulated electric near-field distribution of both the antennas, high-
lighting how these modes interact with each other along the director. The fields emerging from
both the horn antennas showcase similar radial patterns. Additionally, negligible back reflec-
tions to the flare section are observed, indicating the property of good impedance matching of
these structures, which is an important feature of the horn antennas. It is noteworthy that the
HfO2 antenna has almost perfect radiation efficiency, while the Si antenna only has a radiation
efficiency of 52% due to its extinction coefficient and larger antenna size.
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Figure 4.24: Calculated near-field distributions (|E|) of the (a) HfO2 and (b) Si optimized horn
antennas at z = 0 in the xy-plane.

4.2.2.2 Ta2O5 antennas

To validate our numerical results from the horn antenna, we start with the optimization of a
Ta2O5 horn antenna targeting similar attractive functionalities demonstrated by its HfO2 and Si
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counterparts. Using the same numerical setup and optimization routine, the optimized values
of the nine design parameters from the optimization are provided in Table 4.6.

Design parameters (nm)
HL = 6400
HW = 4600
DL = 2855
DW = 1750

H = 210
RL = 770

RW = 2610
DD = 25
RD = 190

Table 4.6: Design parameters of the optimized Ta2O5 horn antenna obtained using a combina-
tion of PSO and TRO.

Figure 4.25 depicts the SEM of the fabricated horn antenna with the optimized parameters from
above. To get an insight into the optical properties of the structure, we look at the electric
near-field distribution shown in Figure 4.26a, which evidently showcases the interference of
the modes excited in the director. The radial patterns emanating from the horn section of this
antenna are comparable to those seen in the HfO2 horn antenna. Additionally, it demonstrates
outstanding impedance matching with minimal back reflections. The mode analysis reveals that
the rectangular part of the director supports four TE and three TM modes, with the majority of
the optical power being coupled to the TE0,0 (26%) and TE0,2 (19%) modes, like the other horn
antennas considered above. Figure 4.26b showcases the mode profiles and the corresponding
coupled power they carry. Furthermore, other higher-order modes are only minimally excited
in the horn section of the director.

2 μm

2 μm

Figure 4.25: SEM of the Ta2O5 horn antenna.
The red square represents the area where the
QDs are deposited [101].

The antenna has a better linear directivity of 119 (20.75 dB) when compared to its rectangular
counterpart. This is decisively proven by the ensuing directive gain distribution represented in
Figure 4.27a. The needle-like main lobe has an in-plane propagation along θ = 41◦ and ϕ = 0◦,
in addition to a higher SLL, which also becomes visible in the far-field pattern represented by
a series of concentrated spots along ϕ = 0◦. It is interesting to note that the optimized antenna
exhibits far-field emission properties that are quantitatively similar to its HfO2 counterpart,
demonstrated in Figure 4.21a. These properties include directivity, main lobe angle, and side
lobe level, as reported in Ref. [100]. Furthermore, the flare angle is ≈ 12◦, almost the same as
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Figure 4.26: (a) The calculated near-field distributions (|E|) of the optimized Ta2O5 horn an-
tenna at z = 50 nm in the xy-plane. (c) Calculated electric field intensity distribution of the
first seven guided modes supported by the director with the percentage of input power carried
by them.

in the optimized HfO2 antenna.

The experimentally measured far-field intensity distribution is depicted in Figure 4.27b. The
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Figure 4.27: (a) Calculated angular linear directive gain distribution of the optimized Ta2O5
horn antenna exhibiting an in-plane directivity of D = 119 at θ = 41◦. (b) Measured far-field
intensity distribution normalized to the theoretical maximum [101].
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numerical results are consistent with the experimental findings, particularly in terms of the
main lobe direction. Nevertheless, the main lobe and side lobes are not clearly separated in
the polar direction due to the QDs’ distribution around the optimal position, which results in a
broadened emission pattern. The broadening effect is more noticeable here in comparison to
the rectangular antenna due to the larger number of side lobes that are relatively smaller in size.
Additionally, the final angular resolution of the optical setup and the QDs’ emission wavelength
distribution significantly affect the outcome.

4.2.3 Optimization of tip antennas

We utilize the inspiration from Yagi-Uda antennas and investigate the impact of changing the ra-
diating end of the rectangular antenna [128–131], which is already optimized in Section 4.2.1.3.
Our approach involves incorporating supplementary directors, which typically results in an im-
provement of the in-plane directivity of Yagi-Uda antennas. However, after adding a specific
number of directors, the improvement in directivity is only marginal, while the structural size
increases. For this reason, we decided to include five identical director components to the opti-
mized rectangle antenna, whose parameters are mentioned in Table 4.4. Keeping the rectangular
antenna constant, only the new additional structure is optimized with the same hybrid optimiza-
tion routine with three new parameters defining it: the length (ADL), width (ADW ), and the
distance between the elements constructing this additional element (S). To simplify the fabrica-
tion process, all five additional directors were designed with the same height as the fundamental
antenna section. Interestingly, the optimization results in a structure with all its additional di-
rectors attached to one another, i.e., S = 0. Thus, creating one tip element having a length
ADL = 4200 nm and width ADW = 400 nm. This tip element is attached to the fundamental
rectangular antenna’s director, as shown in the schematic representation in Figure 4.28a along
with the SEM of the fabricated antenna in Figure 4.28b.

ADL

H

RW RL

DW

ADW
DL

SiO2

Ta2O5

x

yz
θ

φ

(b)

2 μm

(a)

Figure 4.28: Schematic representation of the optimized Ta2O5 tip antenna, defined by the fol-
lowing design parameters: the director length (DL) and width (DW ), additional tip director
length (ADL) and width (ADW ), reflector length (RL) and width (RW ), antenna height (H),
and distance of the field source from the director (DD) and the reflector (RD). (b) SEM of the
optimized tip antenna where the red box points to the area where the QDs are deposited [101].
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Design parameters (nm)
ADL = 4200
ADW = 400

Table 4.7: Design parameters of the optimized Ta2O5 tip antenna obtained using a combination
of PSO and TRO.

From the simulated electric near-field distribution and the mode profiles of the excited modes,
we can gain insight into the radiation properties of the antenna. Our analysis indicates that
out of the three guided modes, the dipole emitter successfully couples to the TE0,0 and TE0,2
modes in the fundamental region of the antenna (refer to Figure 4.29b). These modes account
for approximately 20% and 16% of the input optical power being coupled to them, respectively.
However, the tip element of the antenna only supports leaky modes, which can also be observed
in the evanescent propagation along the antenna’s tip (Figure 4.29a). Therefore, the improved
directivity of the tip antenna is based on the interplay between the guided and leaky modes.

(b)

(a)

0
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TE 0,0 TE 0,1
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Figure 4.29: (a) The calculated near-field distribution (|E|) of the optimized Ta2O5 tip antenna
at z = 50 nm in the xy-plane. (b) Calculated electric field intensity distribution of the first three
guided modes supported by the director together with the quantity of power coupled to them.

Figure 4.30a depicts the calculated far-field emission pattern of the optimized tip antenna that is
significantly better than the fundamental rectangular antenna. It has a linear directivity of almost
96.5 (19.85 dB) and a lower SLL in the radiation pattern. The tip antenna also radiates with a
similar main lobe angle of approximately θ = 70◦. The experimentally measured far-field
results demonstrate excellent agreement with the simulated results, as seen in Figure 4.30b, in
terms of directionality and SLL. The azimuthal angle of the main lobe is slightly shifted, similar
to the rectangular antenna, due to the QDs being displaced from the optimal position.

Finally, by adding two more identical tip elements at the end of the primary rectangular sec-
tion, the directivity of the tip antenna can be increased to the magnitude of the horn antenna
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Figure 4.30: (a) Calculated angular linear directive gain distributions of the optimized Ta2O5
tip antenna exhibiting an in-plane directivity of D = 96.5 at θ = 70◦. (b) Measured far-field
intensity distribution normalized to the theoretical maximum [101].

(discussed in Section 4.2.2.2). These two elements are added at the points where the other two
hot spots are visible in the near-field plot of Figure 4.29a, i.e., on either side of the central hot
spot. The near-field distribution of such an antenna can be seen in Figure 4.31. Our calculations
demonstrate that such a fork-like structure consists of three channels for directed propagation
and boasts a linear directivity of 110.

0

0.0175

0.035
V/m

E

1000nm

Figure 4.31: The calculated near-field distribution (|E|) of the fork-like antenna at z = 50 nm
in the xy-plane.

From the above analysis, it becomes clear that the tip element strongly influences the antenna’s
emission characteristics. For this purpose, we further perform a parametric study on the addi-
tional tip section to analyze the impact of each design parameter on its directive nature. Fig-
ure 4.32 displays the directivity (blue curves) and main lobe angle (gray curves) for varying
tip length, tip width, and antenna height. The optimized value for these geometric parame-
ters is highlighted using the red dots. On the one hand, it can be seen in Figure 4.32a that as
the tip length increases, the directivity also increases and illustrates a smooth convergence to
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Figure 4.32: Sensitivity analysis for the design parameters defining the tip element of the op-
timized Ta2O5 tip antenna: (a) the additional director length (ADL) and (b) width (ADW ),
and (c) antenna height (H). In each plot, the red spot and dashed line indicate the optimized
value of the corresponding parameter that results in a linear directivity of 96.5. The gray curves
illustrate how the main lobe polar angle θ changes for each parameter configuration.

the optimum. On the other hand, resonant behavior is demonstrated by the tip width and the
antenna height, which mainly comes from the variation in the number of modes supported by
each of these configurations (see Figure 4.32b and c, respectively). Interestingly, the tip length
and width do not influence the main lobe angle. However, it is actively governed by the antenna
height, which is again attributed to the increasing number of modes excited by different antenna
height configurations. With the increasing height, a smooth transition from a leaky-wave to a
guided-wave structure takes place. This illustrates the possibility of tailoring the directivity and
main lobe angle by manipulating the tip element and the antenna height.

4.2.4 Comparative study of all the investigated antennas
This section summarizes the vital radiation characteristics of all the antennas investigated in
this work. For completeness, antennas made of Ta2O5 are compared here, as the tip antenna
was realized only using Ta2O5. Figure 4.33a compares the forward directive gain for all an-
tennas, where the blue, red, and green curves represent the rectangular, horn, and tip antenna,
respectively. The gain is plotted as a function of the polar angle θ at ϕ = 0. The gray curve rep-
resents the same for a configuration without the antenna, consisting of only the dipole emitter
on the substrate. It is evident that both the rectangular and tip antennas have their main lobes
pointing in nearly the same direction, specifically at angles of θ = 69◦ and 70◦, respectively
(represented by the black dashed lines). This is plausible, as both antennas possess the same
height, i.e., 100 nm, and the antenna height has the strongest influence in controlling the main
lobe direction (see Figure 4.32c). This also becomes evident with the horn antenna’s main lobe
pointing at θ = 41◦ that comes from its significantly different height of 210 nm. Notably, all
antennas display an in-plane directivity, as shown in the Figure 4.33b, where the main lobes
from all the three antennas are aligned at ϕ = 0◦ for their respective polar angles θ. Addi-
tionally, the rectangular and tip antennas showcase a near-unity radiation efficiency, but due to
the increased volume (height and width) of the material with an extinction coefficient, the horn
antenna exhibits a radiation efficiency of 90%.

We compared the forward directivity of the antennas at different wavelengths in Figure 4.34 to
observe their behavior across a broad spectrum. We noticed that all the antennas maintain a lin-
ear directivity of over 50 for a wide range of frequencies, approximately ∼ 350 to ∼ 430 THz,
indicating a broadband nature. In the plot, the black dashed line indicates the frequency of
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Figure 4.33: Calculated directive gain of the rectangular (blue curve), horn (red curve), and
tip (green curve) antennas made of Ta2O5. The gray curve represents a dipole on the substrate
without any antenna. The gain is plotted as a function of (a) polar angle θ at ϕ = 0◦, with black
dashed lines indicating the directions of the main lobe emission, and (b) azimuthal angle ϕ at
each antenna’s respective main lobe angle θ.

operation for our studies. While one may assume that the horn antenna would have the best
performance in terms of bandwidth, the tip antenna exhibits a much broader bandwidth than the
other two antennas. This can be attributed to the combined contribution of leaky and guided
modes.

Frequency (THz)

Fo
rw

a
rd

 D
ir

e
ct

iv
it

y

300 400 500 600
0

25

50

75

100

125

Tip
Horn

Rectangle

Figure 4.34: Forward directivity of the optimized Ta2O5 antennas as a function of frequency,
showcasing their broadband nature. The black dashed line marks the frequency utilized in our
study.

Furthermore, the Table 4.8 briefly overviews some additional radiation characteristics of these
antennas and summarizes the important features from the comparison study. These characteris-
tics include the directivity, front-to-back ratio (F/B), main lobe angle, angular width of the main
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lobe, and side lobe level. In particular, the tip antenna presents the best front-to-back ratio and
the lowest side lobe level. It also has a broad bandwidth and high directivity, making it the top
choice for many applications.

Antenna type Directivity F/B Main lobe Angular width (-3 dB) SLL
Without antenna 7 / 8.45 dB 0 dB 42° 21° -9.8 dB

Rectangular 63.1 / 18 dB 9.14 dB 69° 8.8° -3.4 dB
Horn 119 / 20.75 dB 11.3 dB 41° 1.8° -2.1 dB
Tip 96.5 / 19.85 dB 11.57 dB 70° 8.5° -5.8 dB

Table 4.8: Tabulated summary of the radiation characteristics of the optimized Ta2O5 antennas
encompassing directivity, front-to-back ratio (F/B), main lobe angle, angular width at −3 dB,
and side lobe level.

Overall, we can establish a design rule for the antennas described in this chapter under three
aspects. Firstly, the in-coupling, which requires efficient coupling to the dominant TE modes in
the waveguide-like director. Secondly, propagation of the field, which results from the beating
of modes propagating through the director. Lastly, the out-coupling of the radiation, which
is ensured by impedance matching at that interface. By adjusting the geometrical parameters
of the antenna, these features can be addressed. This serves as a general guide for designing
highly directive antennas of different dielectric materials in the optical regime. Furthermore,
we believe that the directional capabilities of these antennas can be significantly enhanced with
an array configuration. This topic will be explored in the following chapter.
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Chapter 5

Optical phased arrays1

Antennas are vital components in integrated photonic systems, such as optical phased arrays
(OPAs). These systems are commonly realized with silicon photonics, which is highly com-
patible with the complementary metal-oxide-semiconductor (CMOS) process, furnishing cost-
effective commercial systems with high yields [132]. OPAs facilitate the dynamic control and
manipulation of free-space light with a compact form factor in a non-mechanical manner. This
is highly advantageous for incorporating a large number of antennas that facilitate the genera-
tion of desired far-field radiation patterns [31]. This chapter primarily focuses on planar OPAs
that can be actively used for a wide range of applications, namely, light detection and rang-
ing (LiDAR) [44–47], 3-D holography for augmented-reality displays [43], free-space optical
communications [40, 41], optical switches [42], etc.

The investigation of 2-D OPAs has been the subject of many prior studies. In such OPAs,
an ideal λ/2 spacing between the array elements is infeasible due to the inherently large size
of the radiating elements. This results in undesirable grating lobes in uniform planar OPAs,
which in turn limits the operational beam steering range (FOV) [36]. For example, Ref. [133]
demonstrates an 8 × 8 transceiver array with an inter-element spacing of 33µm. Apart from
the large area the array occupies, it also has a drastically constrained FOV. This is majorly
improved in Refs. [31,43], which demonstrate large-scale OPAS of 64×64 and 128×128 array
configurations, having an inter-element spacing of 9µm. These systems exhibit a significantly
large gain and the possibility of synthesizing desired complex far-field patterns. However, the
9µm pitch still limits the grating-lobe-free beam steering range to ∼ 6.8◦. On the other hand,
Refs. [38, 134] produce smaller OPAs with a reduced pitch of 5.6µm, which improves the
array FOV. They also demonstrate the realization of a sparse OPA, where the radiating elements
occupy an N × N grid in a non-uniform manner. Such an implementation displays relatively
high gain, low SLL, and an increased number of resolvable spots. Furthermore, Ref. [39]
demonstrates the complete elimination of grating lobes by using an annular ring aperture-based
OPA, where the radiating elements are arranged in circles of increasing radii. These arrays
possess a beam steering range that is no longer limited by the unit cell size but rather the
individual radiator’s 3- dB beamwidth.

In this chapter, Section 5.1 discusses the common architectures used in planar arrays. In Sec-
1This chapter is based on the publications [36, 37] of the candidate.
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tion 5.2, we explore different radiating elements that are optimized to be employed in OPAs.
Finally, in Section 5.3, we numerically demonstrate the characteristics of a large-scale rectangu-
lar array configuration utilizing the optimized radiating elements. Furthermore, we also briefly
investigate the performance of circular arrays with these radiators.

5.1 Architecture of the optical phased arrays
An integrated OPA mainly comprises three main components. This includes, firstly, a network
to efficiently distribute the optical power to every antenna of the array, generated from one
coherent source. Secondly, a system for phase and amplitude modulation for each antenna.
Finally, radiating elements, i.e., optical antennas that couple electromagnetic radiation to free
space. This section briefly discusses the most common ways these three components are imple-
mented.

(a) (b)

Figure 5.1: Common implementations of the light distribution techniques used in integrated
OPAs. Schematic illustration of a (a) splitter tree and (b) cascaded configuration.

Power distribution is commonly done in two ways: 1) using a tree of multiple 1 × 2 splitters,
like Y-splitters or multi-mode interference (MMI) splitters, or 2) using a cascaded system with a
series of evanescent couplers that derive the pertinent power from a bus waveguide [135–137].
The representation of both these methods is illustrated in Figure 5.1a and b. While the 1-D
arrays could use any of the above networks, 2-D arrays, on the other hand, generally need at
least a one-dimensional cascaded power distribution to keep a small antenna pitch.

(a) (b)Phase Amplitude

Figure 5.2: Common implementations of the phase tuning section used in integrated OPAs.
(a) Individual modulators for phase tuning in each unit cell. (b) Phase shifters incorporated in
the bus waveguides of the cascaded network.

Next, an efficient phase-tuning mechanism is needed for each antenna. Again, this is commonly
implemented in two ways: directly incorporating the phase shifter with a tunability of 2π in each
unit cell or using in-line phase shifters integrated into the bus waveguide of the cascaded power
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distribution network. Schematics of both the implementations are shown in Figure 5.2a and b.
Both methods provide independent control of these phase shifters, which proves instrumental in
generating arbitrary radiation patterns. Furthermore, together with the phase shifters, additional
amplitude modulators can also be implemented to control the amount of power reaching each
antenna. These modulators do not necessarily need to be present after the power distribution
system. Instead, the power distribution system can also be configured to deliver variable optical
power to each antenna [138, 139].

(a) (b)

Figure 5.3: Common radiating elements used in integrated OPAs. Schematic illustration of
(a) waveguide grating antennas and (b) desired compact optical antennas that can be employed
in 1-D and 2-D OPAs, respectively.

Unlike the above two components, the third component, i.e., the optical antennas, is the most
relevant to us, as these are the components we analyze in this thesis. Typically, the antennas em-
ployed are mostly grating-based structures. The 1-D phased arrays can employ long waveguide
grating antennas, as illustrated in Figure 5.3a. However, 2-D phased arrays need to maintain a
small pitch, which requires a more compact emitter (see Figure 5.3b). In the upcoming section,
we visit different antenna types that can be employed in a 2-D phased array configuration.

5.2 Radiating elements for the optical phased arrays
Conventionally, non-plasmonic implementations of OPAs use well-established grating couplers
as their basis for designing optical nanoantennas. Although highly efficient, conventional grat-
ing couplers are large, making them difficult to be directly integrated into OPAs. The most
common way to address this issue is to scale down grating couplers to fit into the size con-
straints of an OPA unit cell. However, these scaled versions of the original device are less
efficient and, even with optimization, can rarely produce desirable radiation efficiencies, con-
siderable FOV, and well-focused radiation lobes [134]. Hence, designing and optimizing the
radiating elements to address these issues is essential for having OPAs with improved radiation
characteristics.

In an OPA configuration, the antennas are expected to possess a far-field emission pattern radi-
ating upwards. Typically, this can be achieved by utilizing gratings, partial etches, or reflectors
with a high refractive index contrast as a part of the radiating element. Such structures intro-
duce a strong up-down asymmetry [134]. This section explores radiating elements optimized
to target challenges like high upward radiation efficiency and improved intensity distribution
in the FOV while maintaining a small main lobe angle. All the antennas are designed for an
operational wavelength of 1.55µm for efficient optical communication with low losses. These
antennas are composed of Si (n = 3.48) surrounded by an environment of SiO2 (n = 1.45) to

81



5. Optical phased arrays

be employed in a 2-D phased array configuration, as proposed in Ref. [31]. The large refractive
index contrast between the two materials facilitates a stronger light-matter interaction. The an-
tennas have a height of h1 = 220 nm and are fed by a waveguide with a width of w = 400 nm.
The results of this chapter are obtained utilizing full-wave numerical simulations performed in
the frequency domain, employing the finite element method of CST Microwave Studio. Let us
look at the different objectives for which the radiating elements were optimized.

5.2.1 Optimizing the upward radiation efficiency

This subsection addresses the challenge of radiating most of the received optical input power in
the upward direction. The antennas are optimized to have high upward radiation efficiency that
in the far-field can be defined as

ηup =
∫ 2π

0
∫ π/2

0 Prad(θ, ϕ)dθdϕ
Pin

, (5.1)

where Prad is the power radiating in the defined computation domain, Pin is the input optical
power, θ is the polar angle, and ϕ is the azimuthal angle. Additionally, the optimization is
constrained to find structures with broadside emission. Thus, the main lobe angle is limited to
|θmax| = 10◦. Furthermore, the optimization is performed keeping the technical specifications
of the unit cell in mind to fit the optimized radiating element exactly in the same compact foot-
print of 9µm × 9µm, as the original design in Ref. [31]. Full-wave numerical simulations are
performed in conjunction with a hybrid optimization routine that includes particle swarm opti-
mization followed by the trust region method to ensure the likelihood of finding an approximate
global optimum (described in Section 3.2.2). The PSO is implemented with a swarm size of 50
particles for 35 iterations, and the TRO considers 1000 evaluations. We propose two structures
for the objective discussed above in the following part.

5.2.1.1 Asymmetric horn antenna

Section 4.2.2 already presented the key advantages of employing asymmetric dielectric horn
antennas as the radiating elements with high directivity. Therefore, we explore the possibility
of integrating this knowledge in the domain of optical phased antenna arrays operating in the
C-band (1530-1565 nm) of communication. Here, we introduce a horn antenna with a small
flare section, followed by four uniformly thick partial etches along the direction of propagation.
Each grating is of a unique lengthGLx that is separated by a unique offsetOLx. The schematic
of the antenna highlighting all the design parameters used in the optimization is illustrated in
Figure 5.4. Eleven parameters are used in the optimization, namely, flare length (FL), grating
lengths (GL1 − GL4), offset lengths (OL1 − OL4), etch depth (h2) defining the height of
partial etching, and horn width (HW ). The antenna is chosen to have only four gratings after
analyzing the influence of the number of gratings employed in the antenna system, similar to
the additional director study in Section 4.2.3. It is noted that there is no significant influence
after four gratings and further addition of such gratings results in minimal increment in the
performance that comes at the cost of increased antenna size. This is undesirable when aiming
for a compact footprint for the antenna.
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Figure 5.4: Schematic representation of the optimized asymmetric horn antenna viewed from
two perspectives. (a) The top view highlights the horn width (HW ), and (b) the side view
highlights the etch depth (h2) and the different parameters constituting the horn length, namely,
flare length (FL), offset lengths (OLx), and grating lengths (GLx).

Design parameters Dimensions (nm)
Flare length (FL) 300
Grating length (GL1) 280
Grating length (GL2) 200
Grating length (GL3) 430
Grating length (GL4) 135
Offset length (OL1) 540
Offset length (OL2) 440
Offset length (OL3) 530
Offset length (OL4) 210
Etch depth (h2) 160
Horn width (HW) 2600

Table 5.1: Design parameters of the optimized asymmetric horn antenna obtained using a com-
bination of PSO and TRO.

Using the constraints mentioned above, we begin with PSO, where the optimizer converged to
its global optimum approximately after 20 iterations. This is followed by a TRO to avoid being
stuck with a local optimum. The final optimum values of the design parameters are reported
in Table 5.1 for which the antenna has a footprint of 3.06µm × 2.6µm. The near-field power
distribution demonstrates that the structures can efficiently diffract more power to the upper
hemisphere, as shown in Figure 5.5a. This results from utilizing the partial etch along the
length of the horn section. This optimized structure exhibits a linear directivity of 16.5 with the
main lobe directed at θ = 1◦, possessing a SLL of −6.8 dB. This is illustrated in the angular
linear directive gain distribution in Figure 5.5b.

To take a closer look at the antenna’s performance, we analyze the optical response of the
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Figure 5.5: a) The calculated near-field power distribution (linear scale) of the optimized asym-
metric horn antenna in the xz-plane at y = 0 nm. (b) Calculated angular linear directive gain
distribution of the antenna exhibiting a directivity of D = 16.5 at θ = 1◦ and ϕ = 0◦.
(c) Calculated optical radiation efficiencies of the optimized asymmetric horn antenna. The
blue, red, and black curves represent the upward, downward, and reflected radiation efficiency,
respectively.

optimized structure over a range of wavelengths. As seen in Figure 5.5c, the antenna main-
tains a good upward radiation efficiency of over 50% for the entire range of 1.45 − 1.65µm
(blue curve), boasting an efficiency of 64% at the design wavelength of 1.55µm. Furthermore,
the structure presents a downward radiation efficiency of 33% and a reflection efficiency of
3% at 1.55µm. Although the downward efficiency is not actively fluctuating over the entire
range (red curve), the reflection efficiency is tremendously low between 1.55 − 1.6µm (black
curve). Overall, the antenna showcases a desirable broadband nature for the entire range of
wavelengths.

To further improve the upward radiation efficiency, we investigate the use of a high refractive
index reflector in conjunction with the antenna. For this purpose, we consider a reflector made
of Si with a thickness of Href that is placed at a distance Zref below the antenna and is Xref

longer from the end of the horn antenna, as shown in the Figure 5.6. In addition to the eleven
parameters of the fundamental antenna, these three new design parameters are utilized in the
same hybrid optimization process, and their optimized values are summarized in Table 5.2.
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Figure 5.6: Schematic representation of the optimized asymmetric horn antenna with the reflec-
tor. The side view highlights the reflector height (Href ) and its offsets from the antenna along
the x- and z-axis, namely, Xref and Zref .

Design parameters Dimensions (nm)
Flare length (FL) 280
Grating length (GL1) 150
Grating length (GL2) 380
Grating length (GL3) 430
Grating length (GL4) 400
Offset length (OL1) 370
Offset length (OL2) 340
Offset length (OL3) 350
Offset length (OL4) 260
Etch depth (h2) 140
Horn width (HW) 2600
Reflector thickness (Href ) 350
z-offset (Zref ) 200
x-offset (Xref ) 300

Table 5.2: Design parameters of the optimized asymmetric horn antenna with the reflector
obtained using a combination of PSO and TRO.

With the aid of the reflector, the optimized structure exhibits a much higher upward radiation
efficiency with a nearly comparable footprint of 3.26µm × 2.6µm. These characteristics are
highlighted in the near-field power distribution, demonstrating the upward radiation strength-
ening (see Figure 5.7a). In the far-field, the antenna has a directivity of 26.5 with the main lobe
along θ = 4◦, as shown in Figure 5.7b. The antenna has a SLL of −5.2 dB. The improved
directivity is manifested in the narrower main lobe compared to the fundamental antenna. Fur-
thermore, Figure 5.7c demonstrates the broadband behavior of this antenna, where the red, blue,
and black curves represent the downward, upward, and reflection radiation efficiency, respec-
tively. Like the primary antenna, the new structure also maintains high performance over the
entire wavelength range, with peak upward radiation efficiency of 83% at the design wavelength
(1.55µm). Implicitly, the antenna produces a lower downward radiation efficiency of 16%, and
less than 1% of the optical power is reflected back to the feeding waveguide. However, such
reflectors come at the cost of increased fabrication complexity due to the need for multi-layer
silicon photonics processing. Therefore, we consider an alternate design approach that can
produce a comparable performance but with reduced fabrication efforts.
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Figure 5.7: a) The calculated near-field power distribution (linear scale) of the optimized asym-
metric horn antenna with the reflector in the xz-plane at y = 0 nm. (b) Calculated angular
linear directive gain distribution of the antenna exhibiting a directivity of D = 26.5 at θ = 4◦
and ϕ = 0◦. (c) Calculated optical radiation efficiencies of the optimized asymmetric horn
antenna with the reflector. The blue, red, and black curves represent the upward, downward,
and reflected radiation efficiency, respectively.

5.2.1.2 Blazed grating antenna

To improve the up-down asymmetry, we consider blazed gratings in the following antenna.
Such gratings are realized using L-shaped and U-shaped gratings that exhibit high diffraction
efficiency. As dielectric horn antennas possess highly directive fields [99–101] and blazed
gratings are suitable for near-vertical high radiation efficiency [140–143], we propose a com-
pact blazed grating horn antenna, which is again optimized for an operational wavelength of
1.55µm. The proposed antenna is a horn antenna composed of four gratings, where the first
grating is a partially etched U-shaped trapezoidal grating, and the other three are L-shaped. As
shown in the Figure 5.8, along the direction of propagation (x-axis), the different lengths are
categorized as grating lengths (GLx), offset lengths (OLx), segment lengths (SLx), and flare
length (FL). Along with the horn width (HW ), thirteen parameters are optimized, and the
optimized values are shown in Table 5.3. The optimized structure has a compact footprint of
3.5µm × 2µm, where the height of the antenna is maintained at h1 = 220 nm with a partial
etch height of h2 = 110 nm, and the width of the feeding waveguide is w = 400 nm.
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Figure 5.8: Schematic representation of the optimized blazed grating antenna, highlighting the
parameters used in the optimization. The parameters in blue represent constant dimensions used
in the numerical setup.

Design parameters Dimensions (nm)
Flare length (FL) 390
Grating length (GL1) 250
Grating length (GL2) 220
Grating length (GL3) 270
Grating length (GL4) 190
Segment length (SL1) 240
Segment length (SL2) 480
Segment length (SL3) 380
Segment length (SL4) 280
Offset length (OL1) 210
Offset length (OL2) 230
Offset length (OL3) 400
Horn width (HW) 2000

Table 5.3: Design parameters of the optimized blazed grating antenna obtained using a combi-
nation of PSO and TRO.

Figure 5.9a shows the near-field power distribution in the xz-plane at y =0. Along the length
of the radiator, constructive interference is observed in the upper hemisphere due to the multi-
layer up-down asymmetries. Simultaneously, the lower hemisphere is dominated by destructive
interference. The calculated angular far-field distribution in Figure 5.9b demonstrates a lin-
ear directivity of 22 centered at θ = 8◦, possessing a low SLL of −9.7 dB. As a function of
the wavelength, the radiation efficiency emitting up and down is shown in Figure 5.9c. The
upward radiation is higher for the shorter wavelengths and reduces rapidly for the longer wave-
lengths. This results in increased reflection to the waveguide, remarkably maintaining a low
downward radiation efficiency for the full wavelength range. Thus, highlighting the efficiency
of the antenna design in breaking the up-down symmetry while simultaneously preventing the
increment of downward radiation. However, a sub-wavelength grating (SWG) design approach
can lower the reflection efficiency over a wide range of wavelengths [142]. The antenna per-
forms best at the design wavelength, exhibiting a high upward radiation efficiency of almost
78% and downward radiation efficiency of approximately 22%. This can be partly attributed
to the U-shaped grating’s partial etch, which creates a phase difference between the upward
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Figure 5.9: (a) Calculated near-field distribution of the power flow of the optimized blazed grat-
ing antenna in the xz-plane at y = 0. (b) Calculated angular linear directive gain distribution of
the optimized antenna exhibiting a directivity of D = 22 at θ = 8◦ and ϕ = 0◦. (c) Calculated
optical radiation efficiencies of the optimized blazed grating antenna as a function of the wave-
length.

and downward propagating radiation [31]. Furthermore, the aperiodic L-shaped trapezoidal
diffraction gratings bolster the up-down asymmetry along the structure’s length, reinforcing the
constructive interference in the upward direction and destructive interference in the downward
direction. This, in turn, reduces the in-plane propagation. The antenna has almost no power
reflected back into the waveguide, thus making it highly efficient and desirable for OPAs.

5.2.2 Optimizing the field-of-view radiation efficiency

In this part, we target the improvement of radiation efficiency in the FOV to illuminate the
whole FOV uniformly. For this purpose, the hybrid optimization routine optimizes the amount
of power the radiating element directs into the OPA’s FOV. The goal function is defined as

ηFOV =
∫ 2π

0
∫ FOV/2

0 Prad(θ, ϕ)dθdϕ
Pin

, (5.2)

where Prad is the power radiating in the defined computation domain, Pin is the input optical
power, θ is the polar angle, and ϕ is the azimuthal angle. Using Bragg’s law [144], for a
9µm× 9µm unit cell, the FOV can be approximated using
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−sin−1
(
λ

2d

)
< ∆FOV < sin−1

(
λ

2d

)
, (5.3)

which is approximately 6.8◦ × 6.8◦ along the θx- and θy-axis, respectively, d is the size of the
unit cell, and λ is the wavelength in the medium of propagation.

5.2.2.1 Circular grating antenna

To get a broader perspective, we look into antennas with circular gratings in this section, as
we have already explored the benefits of using trapezoidal gratings. For this purpose, we use
the circular grating antenna suggested in Ref. [31]. However, similar to the horn antenna in
Section 5.2.1.1, we investigate two versions of the circular grating antenna, i.e., the antenna
itself and the same antenna combined with a reflector. The fundamental antenna comprises
an initial waveguide that feeds the optical power into the horn section consisting of a partial
etch followed by five circular gratings with a variable pitch. The antenna is composed of Si
and surrounded by a SiO2 cladding. The schematic illustration of this antenna is shown in
Figure 5.10, highlighting the twelve optimization parameters used. These design parameters
are, namely, the angle (α), horn radii (R1 − R3), spacings (S1 − S4), and grating widths
(W1 −W4). The parameters highlighted in blue represent the fixed parameters which are the
excitation waveguide width w = 400 nm, the full height of the antenna h1 = 220 nm, and
the depth of the partial etch h2 = 110 nm. The optimization is carried out keeping the design
specification of the unit cell in mind, and the resultant optimized value of the design parameters
are shown in Table 5.4. The optimized structure has a compact footprint of 3.27µm× 5.2µm.
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Figure 5.10: Schematic representation of the optimized circular grating antenna, highlighting
the parameters used in the optimization. The parameters marked in blue represent the fixed
constants used in the numerical setup.
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Design parameters Dimensions
Angle (α) 40◦

Horn radius 1 (R1) 585 nm
Horn radius 2 (R2) 940 nm
Horn radius 3 (R3) 280 nm
Grating width 1 (W1) 290 nm
Grating width 2 (W2) 260 nm
Grating width 3 (W3) 320 nm
Grating width 4 (W4) 190 nm
Spacing 1 (S1) 450 nm
Spacing 2 (S2) 600 nm
Spacing 3 (S3) 760 nm
Spacing 4 (S4) 530 nm

Table 5.4: Design parameters of the optimized circular grating antenna obtained using a com-
bination of PSO and TRO.

Using a partial etch as seen in the schematic, an up-down asymmetry is introduced in the an-
tenna to achieve higher upward radiation in comparison to the downward radiation with the aid
of constructive-destructive interference [125, 145]. This also becomes apparent with the near-
field power distribution of the antenna in Figure 5.11a, which highlights the power radiating
upwards. At 1.55µm, the antenna exhibits an upward efficiency of 51%, downward efficiency
of 39%, and reflection efficiency of 10% back to the waveguide. Interestingly, almost 3.2% of
the input optical power is radiated into the FOV, which is five times more than that from the
reference antenna in Ref. [31]. Furthermore, the optimized structure exhibits a linear directiv-
ity of 54 with a perfect vertical emission at an angle of θ = 0◦ and ϕ = 0◦, as shown in the
calculated linear directive gain distribution in Figure 5.11b. The structure possesses a low SLL
of −9.8 dB.
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Figure 5.11: (a) Calculated near-field distribution of the power flow for the optimized circular
grating antenna in the xz-plane at y = 0. (b) Calculated angular linear directive gain distribution
of the optimized antenna exhibiting a directivity of D = 54 at θ = 0◦ and ϕ = 0◦.

In the next step, aiming for higher upward efficiency, we add a reflector to the primary an-
tenna. In contrast to the Section 5.2.1.1, this antenna system performs better when using a
Bragg reflector consisting of two silicon mirrors, as opposed to the single-layer reflector that
was previously used. These two mirrors having a thickness of λSi/4 are separated by a dis-
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Figure 5.12: Schematic representation of the optimized circular grating antenna with the Bragg
reflector, highlighting the parameter reflector distance (D) used in optimization.

tance of λSiO2/4, where λSi and λSiO2 represent the wavelengths in Si and SiO2, respectively.
Figure 5.12 shows the schematic of this structure highlighting one new optimization parameter,
the reflector distance D. This new parameter along with the twelve design parameters of the
fundamental structure shown in Figure 5.10 are optimized. The optimized values are provided
in Table 5.5 and the optimized antenna has a size of 3.3µm × 5.2µm, similar to the footprint
of the optimized fundamental structure.

Design parameters Dimensions
Angle (α) 60◦

Horn radius 1 (R1) 580 nm
Horn radius 2 (R2) 450 nm
Horn radius 3 (R3) 280 nm
Grating width 1 (W1) 120 nm
Grating width 2 (W2) 830 nm
Grating width 3 (W3) 395 nm
Grating width 4 (W4) 420 nm
Spacing 1 (S1) 475 nm
Spacing 2 (S2) 640 nm
Spacing 3 (S3) 600 nm
Spacing 4 (S4) 430 nm
Reflector distance (D) 1042 nm

Table 5.5: Design parameters of the optimized circular grating antenna with the Bragg reflector
obtained using a combination of PSO and TRO.

The optimized antenna demonstrates a much better performance, which is also visible in the
near-field power distribution (see Figure 5.13a). As it can be seen, more power is radiated in
the upward direction, which can directly be attributed to the use of the Bragg reflector. This
configuration exhibits an improved upward efficiency of 88%, a downward efficiency of 11%,
and a reflection efficiency of 1%. In particular, 6.8% of the input optical power is directed into
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Figure 5.13: (a) Calculated near-field distribution of the power flow of the optimized circular
grating antenna with the Bragg reflector in the xz-plane at y = 0. (b) Calculated angular linear
directive gain distribution of the antenna exhibiting a directivity of D = 84 at θ = 1◦ and
ϕ = 0◦.

the FOV, which is essentially two times more than that of the fundamental structure and ten
times more than the reference antenna. The calculated linear directive gain distribution also
demonstrates an enhanced linear directivity of 84 with its main lobe along θ = 1◦ and ϕ = 0◦
(see Figure 5.13b). This structure demonstrates a low SLL of −9.7 dB, which is comparable to
the fundamental antenna.

To compare the performance of both the circular grating antennas with respect to the optimiza-
tion goal function, Figure 5.14 plots the radiation efficiencies in the FOV for both the antennas
as a function of the wavelength. The red and blue curves represent the antenna with and without
the Bragg reflector, respectively. Additionally, the black curve illustrates the radiation efficiency
in the FOV for the reference antenna from Ref. [31]. Compared to the reference antenna, our
optimized antennas are more efficient in the FOV. In particular, at the design wavelength, the
fundamental antenna concentrates almost five times more power in the FOV, and this improve-
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Figure 5.14: Calculated radiation efficiency in the FOV for both the optimized antennas along
with the antenna presented in Ref. [31].
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Figure 5.15: Calculated optical radiation efficiencies of the optimized circular grating antenna
(a) without and (b) with the Bragg reflector.

ment becomes tenfold with the use of the Bragg reflector.

Interestingly, both the optimized antennas exhibit an enhanced optical response over a broad
range of frequencies. Figure 5.15a and b, plot the calculated radiation efficiencies of both the
circular gratings antennas investigated in this section as a function of the wavelength. The
blue, red, and black curves represent the upward, downward, and reflected radiation efficiency,
respectively. Remarkably, both antennas maintain high upward efficiency for a broad range of
wavelengths, making them both broadband antennas. Especially, the reflector produces not just
an increased upward efficiency but also a significantly reduced reflection efficiency, as depicted
by the black curve in Figure 5.15b.

5.3 Optical phased array configurations
In this section, we utilize the radiating elements discussed previously in phased array systems,
the theory of which has been introduced in Section 2.5. The electromagnetic far-field radiation
of an OPA can be obtained using the far-field of a single antenna, i.e.,

Earray(θ, ϕ) = Eantenna(θ, ϕ)AF (θ, ϕ), (5.4)

where Earray(θ, ϕ) is the far-field of the OPA, Eantenna(θ, ϕ) is the far-field of a single an-
tenna, AF (θ, ϕ) is the scalar function representing the array factor, θ is the polar, and ϕ is the
azimuthal angle. All the radiating elements presented so far in the chapter are suitable to be em-
ployed in 2-D phased array configurations. For simplicity, all the phased array implementations
will use the same antenna element, namely, the blazed grating antenna from Section 5.2.1.2.

5.3.1 Planar arrays
A planar phased array configuration has the antennas arranged in a matrix, as discussed in
Section 2.5.1.3. In this case, each antenna is accompanied by a phase shifter and one can
control the beam direction along two axes, namely, the θx- and θy-axis. However, this comes
at the cost of having a large number of phase shifters in the system. In this section, we use the
9µm × 9µm unit cell, as in Ref. [31] that shows the large-scale implementation of a 64 × 64
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Figure 5.16: Schematic representation of the 9µm× 9µm unit cell, highlighting the three main
components constituting the unit cell, namely, DC, PS, and the antenna. The dark gray region
represents the unit cell element optimized and analyzed in this work. The parameters FPx and
FPy represent the footprint of the antenna along the x- and y-axis, respectively.

array of such unit cells, with the possibility of controlling the phase input to each antenna
element. The schematic representation of such a unit cell comprising the DC, PS, and dielectric
antenna is illustrated in Figure 5.16. For such a M ×N array of unit cells, the array factor can
be defined using a Fourier transform (F) as

AF (θ, ϕ) =
M∑
m=1

N∑
n=1

wmn · ej2π(xm·u+yn·v) = F(wmn), (5.5)

where wmn = |wmn|ejφmn is the near-field from a single unit cell with an amplitude |wmn|
and phase φmn, (xm, yn) are the coordinates of each antenna constituting the array, and the
positions (u, v) in the far-field are defined as

(u, v) =
(

sin θ cosϕ
λ

,
sin θ sinϕ

λ

)
, (5.6)

with λ as the wavelength in the medium of propagation. These phased array systems can be
efficiently utilized for pattern synthesis and beam steering. From Eq. (5.5), it becomes evident
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that if one is aware of the desired far-field array factor AF (θ, ϕ), then the near-field emission
wmn can be obtained by performing a simple inverse Fourier transform of this target AF (θ, ϕ).
The directional couplers and phase shifters can then attain the required near-field amplitude
and distribute the necessary optical phase input to each antenna, respectively. However, as the
section’s name suggests, we demonstrate an OPA in which the far-field pattern is controlled
only by the phase, and not the amplitude. For this reason, phased array optics and holography
generally employ iterative computational methods like the Gerchberg-Saxton (GS) algorithm
for arbitrary pattern generations [146]. Figure 5.17 illustrates the block diagram of a modified
GS algorithm that is utilized in this work for generating desired patterns with uniform near-field
emission [147].
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Figure 5.17: Illustration of the modified GS algorithm for the generation of a desired far-field
pattern.

The algorithm begins by taking the inverse Fourier transform of the target far-field, which con-
stitutes the desired amplitude |AFtarget| and an input phase distribution chosen by the user.
Typically, the input phase distribution is either a random phase distribution or a uniform dis-
tribution of zeroes over the entire image [148]. Only the phase is retained from the resulting
near-field emission, and the amplitude is set to unity. The Fourier transform of this near-field
then yields the output array factor for that iteration. On similar lines, for the kth iteration, the
approximated array factor AF k is formed using the target amplitude |AFtarget| and the phase
distribution φk−1 from the (k − 1)th iteration, which is inverse Fourier transformed. The sub-
sequent phase φk obtained from the near-field emission updates the output array factor AF k

through the Fourier transform. This method is repeated until the final output array factor |AF k|
converges to target array factor |AFtarget|. The algorithm aims to minimize the error in the
iteratively computed far-field pattern versus its known target counterpart.

To demonstrate the application of the GS algorithm, let us consider the image with the initials of
the Paderborn University “UPB” for the phased array synthesis. We first consider an ideal λ/2
inter-element spacing between each radiating element. For a 64 × 64 blazed-grating-antenna
array with such an ideal spacing, the GS algorithm provides a phase distribution, as shown in
Figure 5.18a, which produces the desired far-field pattern, as shown in Figure 5.18b with a
uniform amplitude distribution. The image used for the pattern generation can be seen next to
the far-field pattern. Nonetheless, we know that Ref. [31] uses an inter-element spacing of 9µm.
Such a large size of the unit cell produces grating lobes that are visible in the far-field pattern.
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Figure 5.18: Phase and far-field distribution for generating the “UPB” initials by a 64 × 64
array with an inter-element spacing of (a) λ/2 and (b) 9µm. The image used for the pattern
generation is shown on the bottom right of the far-field patterns.

As per Eq. (2.77), such a unit cell would exhibit 16 interference orders in each direction, in
addition to the main lobe. This phenomenon is also illustrated in the far-field pattern, which has
16 repetitions of “UPB” in each direction (Figure 5.18d).

Figure 5.19 illustrates a few more examples for pattern generation with an inter-element spacing
of 9µm in a 64 × 64 array configuration. For this purpose, the initials of the Department of
Theoretical Electrical Engineering “TET” and the Paderborn University logo are considered,
and their corresponding phase distribution and resultant far-field patterns can be seen in the left
and right columns, respectively. The original images used for the process are displayed next to
their respective far-field patterns.

Another possible application for these phased arrays is electronic beam steering, which can be
done by controlling the phase distribution of the individual antennas. As mentioned earlier, a
uniform input amplitude is maintained for all the radiating elements. To emphasize the visu-
alization of the beam steering results, we consider an 8 × 8 array and analyze the results over
a small region of the far-field, i.e., θ ≤ 20◦. Fewer grating lobes are visible over a smaller
region, and the phase inputs for the 8 × 8 array can be viewed easily compared to a 64 × 64
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Figure 5.19: Phase and far-field distribution for a 64×64 array with unit cells sized 9µm×9µm
to generate (a) the initials of the group Theoretical Electrical Engineering “TET” and (b) the
Paderborn University logo. The images used for the pattern generation can be seen on the right
of the far-field patterns.

array. With beam steering, the beam can be steered vertically, horizontally, or in any other di-
rection. Additionally, the beam can be split into multiple beams while simultaneously steering
it. Figure 5.20 shows the phase distribution and the corresponding far-field radiation pattern
that illustrates the beam steering effect. For reference, Figure 5.20a shows the calculated an-
gular far-field distribution for a zero phase distribution over all antennas with uniform input
amplitude. All the far-field radiation patterns are normalized to this reference case. The beam
can be steered vertically with a row-wise alternating phase distribution of zero and π to the
array elements, as shown in Figure 5.20b. Such a phase shift causes the beam to move along
the θx-axis, analogous to a 1-D beam steering case. The center of the beam is shifted by ap-
proximately 3.4◦, which is almost half of the angular separation between the main lobe and the
first grating lobe. A column-wise alternating phase distribution of zero and π is provided to the
array elements to steer the beam horizontally. This phase shift causes the beam to move along
the θy-direction, as seen in Figure 5.20c. The beam can also be steered diagonally by using
an alternating phase distribution of zero and π along both the row and column array elements,
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Figure 5.20: Demonstration of beam steering and beamforming with an 8× 8 array configura-
tion employing the blazed grating antenna. (a) Phase distribution and simulated linear far-field
radiation pattern of a uniform phased array (zero phase distribution). (b-f) Phase distribution
and the simulated linear far-field radiation pattern for the main lobe to be (b) shifted vertically,
(c) shifted horizontally, (d) shifted diagonally, (e) split into two beams vertically, and (f) split
into four beams horizontally.
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essentially remaining constant along a diagonal and forming a symmetric phase matrix repre-
sented in Figure 5.20d, along with the far-field pattern demonstrating the diagonally steered
beam. Furthermore, using a row-wise alternating phase distribution of zero and 90◦ causes the
beam to split into two beams along the vertical direction, as shown in Figure 5.20e. Similarly,
using a column-wise distribution as shown in Figure 5.20f splits the beam into four beams along
the horizontal direction. The four beams nearly span over 7◦ from one end to the other.

It is evident from above that such large unit cells drastically limit the grating-lobe-free region
over which the beam can be steered. Therefore, one way to circumvent this issue is to arrange
the array elements in a circular fashion, where the unit cell size is no longer relevant. The
following subsection briefly looks into these configurations.

5.3.2 Circular arrays
In Section 2.5.2, we already introduced the concept of a discretized annular aperture and an
approximate realization of such an aperture using radiating elements. Such a configuration can
also be extended to multiple concentric rings, thus creating a polar coordinate analog for the
transition from linear to planar arrays. Note that the discussion in Section 2.5.2 focused on
point source radiators having a radial offset of λ/2, with the outer radius of the aperture being
λ. This subsection shows how our optimized radiating elements, specifically the blazed grating
antenna from Section 5.2.1.2, can be utilized within such array configurations.

For the waveguide-fed phased array antennas presented so far, the dimensions of the antennas
are always larger than λ, and there exists a minimum inter-element spacing to ensure depre-
ciation in interference effects. Additionally, planar routing constraints also need to be met.
Ref. [39] proposes a multi-annular-ring OPA considering the aforementioned constraints for
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Figure 5.21: Arrangement of the antennas in a multi-annular-ring aperture optical phased array.
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implementation in a standard photonics processing environment. The array comprises five con-
centric circular arrays with Nm = mN1 number of elements in the m-th ring, where N1 is
the number of elements in the first ring. Similarly, the m-th ring has a radius of Rm = mR1,
where R1 is the radius of the first ring. For the implementation, N1 is chosen to be 17 and
R1 = 40µm. The relative positions of the radiating elements are as shown in Figure 5.21. The
array configuration consists of 17, 34, 51, 68, and 85 elements in circles of radii 40, 80, 120,
160, and 200µm, respectively. Although this realization deviates from the theoretically derived
ideal array configuration described in Section 2.5.2, the following advantages are noted as the
size of the array increases [39]:

• the half-power beamwidth (HPBW) decreases,

• the main beam’s power is constant relative to the power in the side lobes,

• energy distribution in the side lobes is more uniform, i.e., reduced peak side lobe levels.

When the array is uniformly excited with no phase inputs, the resulting angular far-field radi-
ation pattern is shown in Figure 5.22. As seen in the Figure 5.22a, no grating lobes exist in
the entire visible region. To highlight the main beam, we take a look at the far-field within
a smaller range of polar angles, i.e., 0◦ ≤ |θ| ≤ 10◦, as illustrated in Figure 5.22b. The
array configuration demonstrates a directivity of 35 dB, and the main beam is very narrow
(0.1◦ × 0.1◦), maintaining a zeroth-order Bessel-like intensity distribution for an angular range
of 2◦, as demonstrated in [39]. Such a narrow beam is highly desirable in applications like
LiDAR [44]. The logarithmic scale is used for the far-field patterns for better visualization.
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Figure 5.22: Simulated angular far-field radiation pattern for a circular array implemented with
the blazed grating antenna for (a) |θ| ≤90◦ and (b) |θ| ≤10◦ in the logarithmic scale. A uniform
amplitude with no phase inputs is provided to the antennas.

To make a comparison of this array configuration (255 elements) with its rectangular array
equivalent, we simulate a 16 × 16 planar array (256 elements), where the unit cell has a size
of 9µm × 9µm. The peak SLL for the circular array is −14 dB, which is lower compared
to −13.1 dB from its planar array equivalent (see Figure 5.23). Additionally, this rectangular
configuration exhibits undesirable grating lobes, which is clearly visible in Figure 5.23b that
represents the far-field radiation pattern of this array over a smaller range of |θ| ≤10◦. Similar
to the planar arrays, such radially configured antenna distributions can also steer the beam in

100



5. Optical phased arrays

-5

5

15

25

35

D
ire

ctiv
e
 G

a
in

 (d
B

)

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

30°

60°

-5

5

15

25

35

D
ire

ctiv
e
 G

a
in

 (d
B

)

(b)(a)

Figure 5.23: Simulated far-field radiation pattern for a 16 × 16 rectangular array implemented
with the blazed grating antenna for (a) |θ| ≤90◦ and (b) |θ| ≤10◦. A uniform amplitude with
no phase inputs is provided to the antennas.

a desired direction. Keeping a uniform amplitude distribution for all elements and varying the
phase input, the beam can be steered along horizontal, vertical, and arbitrary directions with
Figure 5.22 as a reference. In Figure 5.24, we demonstrate beam steering along the horizontal
direction. Figure 5.24a and b illustrate the beam steered to θ = +10◦ and θ = −10◦, respec-
tively. This horizontal axis is referred to as the θy-axis. For both the cases of θ = ±10◦, the
main beam is steered along the desired direction and the directivity of the far-field emission
drops from 35.3 dB to 33.7 dB. However, all plots maintain a constant color scale to visualize
these effects better. As with beam steering in any array configuration devoid of adaptive beam-
forming, the SLL increases to −8.2 dB. If the beam is steered further toward the FOV limits of
the radiator (HPBW), the side lobes become more pronounced, thus making the main beam and
side lobes less distinguishable.
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Figure 5.24: Simulated angular far-field radiation pattern for a circular array implemented with
the blazed grating antenna steered to (a) θ = +10◦ and (b) θ = −10◦ along the θy-axis.

Similarly, the main beam can be steered to θ = +10◦ and θ = −10◦ along the vertical axis,
which we call the θx-axis. This is demonstrated in the far-field distributions presented in Fig-
ure 5.25. When the beam is steered to +10◦, the directivity is almost 36.1 dB. However, steering

101



5. Optical phased arrays

-5

5

15

25

35

D
ire

ctiv
e
 G

a
in

 (d
B

)

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

30°

60°

-5

5

15

25

35

D
ire

ctiv
e
 G

a
in

 (d
B

)

(b)(a)

30°

60°

120°

150°
210°

240°

300°

330°

θ φ

90°

180°

270°

30°

60°

Figure 5.25: Simulated angular far-field radiation pattern for a circular array implemented with
the blazed grating antenna steered to (a) θ = +10◦ and (b) θ = −10◦ along the θx-axis.

the beam to −10◦, the directivity drops to 27.3 dB. This can be attributed to the far-field radi-
ation pattern of the antenna, which has a lower power distribution in this region and its main
lobe is directed along θ = 8◦.

Furthermore, the far-field main lobe can be steered diagonally. Figure 5.26a and b demon-
strate the beam steered to approximately (θ, ϕ) = (+14◦, 315◦) and (θ, ϕ) = (−14◦, 135◦),
respectively. Like the two cases considered along the vertical axis, these cases also possess a
directivity of approximately 36 dB and 27.1 dB for the diagonally up and down steering, respec-
tively.
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Figure 5.26: Simulated angular far-field radiation pattern for a circular array implemented with
the blazed grating antenna steered diagonally (a) up and (b) down.

Overall, we explore different radiating elements that are optimized for unique objectives. We
numerically demonstrate the realization of large-scale arrays utilizing the antennas presented
in this chapter. Furthermore, we provide a detailed overview of how planar and circular arrays
furnish platforms for implementing various optical systems that can benefit from the many
advantages of phased arrays.
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Chapter 6

LNOI waveguide structures

A lithium niobate (LN) crystal was first fabricated in 1928 [149], and its ferroelectric features
were brought to light in 1949 [150]. Along the crystallographic Z-axis, the optical proper-
ties of such a crystal are rotationally symmetric, and the other two crystallographic X- and
Y -axis are perpendicular to the Z-axis, forming an angle of 120◦. Remarkable optical char-
acteristics like high second-order optical non-linearity, strong electro-optic effect, large optical
transparency window, and low material losses have made LN one of the most intensively re-
searched materials for photonic applications [151]. Therefore, LN is a promising candidate for
optical telecommunication devices.

Many areas of physics, be it classical or quantum, are commanded by non-linear processes
which facilitate the complex manipulation of light [152–156]. Furthermore, realization of such
processes in integrated waveguiding structures is essential in drawing quantum concepts into
daily life [157]. The lack of crystal symmetry furnishes LN with several non-linear proper-
ties such as photoelasticity, piezoelectric effect, and, more importantly, ferroelectricity, which
proves instrumental in periodically poling LN substrates needed for applications like frequency
conversion, generation of photon pairs, parametric down-conversion, etc. [158–160]. Addition-
ally, non-linear integrated waveguides are more advantageous than the bulk non-linear crystals,
as they can be easily interfaced with fiber communication systems and attain strong field con-
finement over larger distances [57].

The evolution of the lithium-niobate-on-insulator (LNOI) technology in recent years has opened
up new possibilities for integrated photonics with the implementation of tightly confined LN
waveguides [161], with a high refractive index contrast between the waveguide core and the
cladding region. These are realized by etching waveguide ribs in thin films with a high-
refractive index bonded to a substrate with a lower refractive index. Such a configuration
exhibits strong modal confinement, such that low bending radii and compact devices can be
realized, thus making it an ideal platform for optical chip fabrication. LNOI-based waveguides
combine the large second-order non-linear susceptibility of bulk LN with the design benefits of
silicon photonics on the same platform to realize devices for various classical and quantum ap-
plications. Some of these applications are electro-optic and acousto-optic modulators, quantum
photonic devices, and passive and active integrated photonic devices [162,163]. Refs. [161,164]
give a good overview of the advances in this field, describing the novel systems developed with
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this technology.

In this chapter, we present different LNOI rib waveguide optical components that are analyzed
and optimized consisting of an anisotropic LN core layer over a SiO2 substrate. These waveg-
uides were investigated for the X-cut configuration for the TE polarization. Section 6.1 briefly
reviews the anisotropy of LN. Then, in Section 6.2, we explore optical components: direc-
tional couplers, waveguide bends, and multi-mode interference couplers built using the LNOI
rib waveguides.

6.1 Wave propagation in anisotropic media
In an isotropic medium, the electric dipole moment per unit volume is always parallel to the
electric field. A scalar susceptibility, independent of the direction of the electric field, relates
these quantities. However, this is not the case in anisotropic media, except for certain directions.
Since an anisotropic crystal consists of a regular periodic array of atoms or molecules with
a certain symmetry, the magnitude and direction of the induced polarization depend on the
direction of the applied field [2]. For an anisotropic medium,

D(r) = ε0E(r) + P(r),
P(r) = ε0χ̂(r)E(r),

(6.1)

where χ̂ comprises nine components χi,j that together constitute the electric susceptibility ten-
sor. The magnitude of these coefficients is determined by the orientation of the anisotropic
crystal with respect to the x-, y-, and z-axes. These can be chosen such that the off-diagonal
elements of the susceptibility tensor are zero, thus defining the principal dielectric axis of the
crystal. Then we can rewrite P(r) from Eq. (6.1) with respect to the Cartesian coordinate
system as

Px = ε0χ11Ex,

Py = ε0χ22Ey,

Pz = ε0χ33Ez,

(6.2)

where the elements of the dielectric permittivity tensor can be related to that of the susceptibility
tensor,

εij = ε0(1 + χij). (6.3)

For the principal coordinate system, the dielectric tensor can be defined as

ε̂(r) =

εx 0 0
0 εy 0
0 0 εz

 = ε0

n2
x 0 0

0 n2
y 0

0 0 n2
z

 . (6.4)

From the above discussion, if we consider a plane wave propagating through such a medium,
it is evident that the polarization state can vary as it propagates through the crystal. As the
phase velocity depends on the propagation direction and polarization state, two eigenwaves
with eigen phase velocities and polarization directions exist for a given propagation direction.
Wave with a polarization parallel to one of these directions has an invariant polarization state
while propagating through the anisotropic medium. Such materials exhibit optical rotation,
conical refraction, and double refraction [2]. Furthermore, anisotropic materials with non-linear
responses are widely employed for phase-matched second-harmonic generation [165].
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Figure 6.1: Schematic representation of the cross-section of a LNOI rib waveguide with a width
w, etch depth h, film-height τ , and a side-wall angle of θ. Beneath the LN waveguide is the SiO2
layer, serving as a buffer layer between the substrate and the waveguide. The coordinate system
for the LN rib waveguide is also highlighted on the left, where the extra-ordinary refractive
index (ne) is along x-axis, and the ordinary refractive index (no) is along the y- and z-axis.

6.2 Investigated optical components
Optical components are indispensable parts of a photonic integrated circuit (PIC). Especially
couplers like polarization splitters [166], multiplexers [167], and wavelength filters with bent
couplers [168] are necessary for the enhanced functionality of PICs for optical communication.
The work in this thesis focuses on optical components based on LNOI rib waveguides, whose
schematic representation is illustrated in Figure 6.1.

In particular, we only investigate the X-cut LN. The coordinate system used in the investigation
is highlighted in the figure. The optical axis of the anisotropic LN crystal is along the x-
direction, and the structure is assumed to be uniform along the direction of propagation, which
in this case is the y-axis. The waveguide is defined by its width w, film-height τ , etch depth
h, and a sidewall angle θ. At the wavelength of operation of 775 nm, the refractive indices
of bulk LN and SiO2 used in the investigation are presented in the Table 6.1. These values
were provided by the experimentalists of the Integrated Quantum Optics group at Paderborn
University.

Material Refractive index
SiO2 (nSiO2 ) 1.45

LN (ne) 2.1783
LN (no) 2.2584

Table 6.1: Values of the refractive indices for bulk LN and SiO2 used at the operational wave-
length of 775 nm. The X-cut LN employs ne along the x-axis and no along the other two axes.

Furthermore, based on the constraints provided by the experimentalists for the fabrication, we
concentrate our analysis on thin film LN with a thickness of τ = 600 nm for two specific
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Figure 6.2: Effective mode indices of the guided modes supported in LNOI rib waveguides with
a film thickness of τ = 600 nm and a side-wall angle of θ = 70◦. The waveguide width (w)
ranges from 100− 2000 nm and etch depths (h) between 100− 500 nm at an operational wave-
length of 775 nm. The red and blue dots in the plots represent the TM-like and TE-like modes,
respectively. The green dashed line indicates the configuration chosen for further investigations
and is referred to as Structure 1.

side-wall angles, i.e., θ = 70◦ and θ = 60◦.

We perform an eigenmode analysis for varying waveguide widths and etch depths to identify
the different modes these configurations support. This is done with the finite element method
utilizing the mode analysis solver employed in COMSOL Multiphysics [124]. For τ = 600 nm
and θ = 70◦, limiting our search to the first eight guided modes, Figure 6.2 shows the effective
indices (Neff) of the guided modes as a function of the w for different h. The blue and red
dots represent the TE-like and TM-like modes, respectively. The black dashed line represents
the Neff of the fundamental mode supported in the slab waveguide configuration on either side
of the rib. This value signifies the lower limit for the Neff a guided mode can have in the rib
waveguide. Furthermore, the modal analysis exhibits two essential features. On the one hand,
we can see the hybridization of modes. At these points, the TE and TM modes are so close to
each other that they possess field components of the same order. On the other hand, we can
also see the cross-over of modes, where the curves representing the TE and TM modes cross
each other. This phenomenon is commonly observed in bent anisotropic waveguides, where the
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Figure 6.3: Mode profiles of the guided modes supported by the Structure 1 rib waveguide at
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TE0,0, and (c) TM0,1 modes along with their Ex, Ey, and Ez field components.

crystal orientation changes along the direction of propagation.

Although one expects the TE mode to be the fundamental mode, the figure shows that the
TM mode is the fundamental mode. This can be attributed to the higher refractive index no
being aligned to the vertical axis (z-axis), which has a more substantial influence on the TM
modes, unlike the TE modes, which are affected by ne that is aligned along the horizontal
axis. Thus, the anisotropy plays a vital role in determining the fundamental mode. Therefore,
the shallow depths only support TM modes, while the TE modes become apparent as the etch
depth increases. Intuitively, the waveguides become multi-modal at larger widths and etch
depths, supporting several higher-order TE and TM modes. The green line highlights the exact
configuration that we choose for further analysis (w = 500 nm, h = 300 nm), as suggested by
the experimentalists. We refer to this configuration as Structure 1, which shows the presence of
two TM and one TE mode, and the fundamental mode is the TM mode.
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Figure 6.4: Effective mode indices of the guided modes supported in LNOI rib waveguides with
a film thickness of τ = 600 nm and a side-wall angle of θ = 60◦. The waveguide width (w)
ranges from 100− 2000 nm and etch depths (h) between 100− 500 nm at an operational wave-
length of 775 nm. The red and blue dots in the plots represent the TM-like and TE-like modes,
respectively. The green dashed line indicates the configuration chosen for further investigations
and is referred to as Structure 2.

Figure 6.3 shows the calculated electric field intensity distribution of the three guided modes
supported in Structure 1, highlighting their respective effective mode index. Figure 6.3a (first
column from left) represents the absolute electric field distribution of the TM0,0 mode, followed
by the illustration of its three electrical field components. The mode shows a strong vertical field
component (Ez), making it a TM-like mode. Figure 6.3b (middle column) represents the TE0,0
mode, which has a strong horizontal field component (Ex). Finally, Figure 6.3c (first column
from the right) represents the TM0,1 mode with a strong vertical component. All the mode
profiles are normalized to the maximum of the fundamental mode, the TM0,0 mode.

Similarly, the eigenmode analysis for waveguide configurations with τ = 600 nm and θ = 60◦
are shown in Figure 6.4. A similar trend is observed in the eigenmode analysis conducted for
θ = 70◦, where the smaller etch depths mainly support the TM modes, and the TE modes
become apparent for larger widths and etch depths. The green line indicates the second geom-
etry configuration used in the further investigations, referred to as Structure 2. In particular,
the structure supports one TE and one TM mode, where the fundamental mode is again the
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Figure 6.5: Mode profiles of the guided modes supported by the Structure 2 rib waveguide at a
wavelength of 775 nm. The absolute electric field intensity distribution of the (a) TM0,0 and (b)
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TM mode. Figure 6.5a and b show the calculated electric field intensity distribution of the two
guided modes supported in Structure 2, namely, TM0,0 and TE0,0, along with their respective
effective mode index. Again, the TM mode shows a strong vertical component, and the TE
mode has a strong horizontal component. The plots are normalized to the maximum of the
fundamental TM mode. The design parameters for the two rib waveguide geometries used in
further investigations are summarized in the Table 6.2.

Structure 1 Structure 2
w = 500 nm w = 200 nm
h = 300 nm h = 350 nm
θ = 70◦ θ = 60◦

Table 6.2: Parameters of the two rib waveguide geometries.
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Figure 6.6: The effective mode index (Neff) as a function of the vacuum wavelength for guided
modes supported in (a) Structure 1 and (b) Structure 2 rib waveguides. The black dashed line
indicates the wavelength used for further simulations.

Furthermore, Figure 6.6a and b show the effective indicesNeff of the guided modes as a function
of the wavelength for Structure 1 and Structure 2, respectively. The black dashed line marks the
wavelength of investigation, i.e., 775 nm. As can be seen, both structures support guided modes
with an effective index that reduces with the increase in the operational wavelength.

Waveguides provide the fundamental infrastructure for integrated optics. Based on desired
applications, it is possible to realize more complex systems with these components. In this
thesis, three optical components are investigated that are built using the geometry parameters
discussed above (Structure 1 and Structure 2). The following sections display our work on
directional couplers, waveguide bends, and multi-mode interference couplers, vital components
in integrated optics.

Coupling 
  region

Bends G

Lc

Bends

G

LiNbO3

(a) (b)

Figure 6.7: (a) Schematic representation of the top view of a directional coupler with a gap G
between the parallel waveguides in the coupling region. (b) Illustration of the coupling region
to highlight the gap G.
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6.2.1 Directional couplers

In integrated optics, one of the vital components is the directional coupler (DC), which is ca-
pable of coupling light between adjacent waveguides. As discussed in Chapter 5, DCs have
been widely employed in the distribution and splitting of optical signals due to their ease of
design, and structural simplicity. Further, DCs can also be utilized for building more advanced
structures like resonators, polarization splitters, interferometers, multiplexers, wavelength fil-
ters, etc. [166–169]. The following section briefly overviews the features of such devices.

Typically, a DC comprises two identical waveguides placed next to each other, as shown in
Figure 6.7a. Initially, these waveguides are well separated, followed by the bending of these
waveguides to bring them close together, where the coupling can take place [170]. Then again,
the waveguides are separated using the bends. In the coupling region, the evanescent field
from the first waveguide overlaps with the second waveguide core, and this coupling is strongly
dependent on the gap G between them. The coupled mode theory explains this effect, which
considers the coupling as a perturbation caused by the adjacent waveguide [171, 172].

If both waveguides are treated as a single system, the wave equations reveal that such a sys-
tem comprises two system modes: symmetric and anti-symmetric. Consider a system with
two identical Structure 1 rib waveguides that are separated by a gap G (like Figure 6.7b).
We choose G = 1µm, as it is the smallest gap that the experimentalists could fabricate. On
launching one of the waveguides with the TE0,0 mode results in an excitation of the symmetric
and anti-symmetric mode of the composite system, with effective indices Neff,s = 2.0661 and
Neff,a = 2.0656, respectively. These mode profiles are illustrated in Figure 6.8a. The different
effective mode indices indicate that both these modes have different propagation constants and
propagate at different velocities. Therefore, for such a system, the coupling length Lc at which
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Neff =2.0656 

Anti-symmetric
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Neff =2.0261 Neff =2.0247 
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Figure 6.8: Symmetric (left column) and anti-symmetric (right column) mode profiles for the
DC constructed with (a) Structure 1 and (b) Structure 2 rib waveguides, respectively. The mode
profiles are represented with the Ex-component, which is the dominant TE-component of the
field.
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the complete power is transferred from one waveguide to the other can be given by

Lc = λ

2 · |Neff,s −Neff,a|
, (6.5)

where λ is the wavelength of operation. For a pair of straight waveguides, the incoupled power
sinusoidally oscillates between the two waveguides with a period of Lc, which for this system
is approximately 775µm.

Similarly, considering a gap of G = 1µm between two Structure 2 rib waveguides, we obtain
a coupling length of approximately 276µm. Figure 6.8b illustrates the symmetric and anti-
symmetric mode excited by the TE0,0 mode launched in one of the waveguides. It is evident
from Eq. (6.5) that having a larger difference in the effective indices of the two system modes
results in shorter Lc. Therefore, this system with Structure 2 rib waveguides possesses a shorter
Lc.

6.2.2 Waveguide bends
Another important component in the integrated photonic circuitry is the waveguide bends.
These bends can generally result in losses [173]. Nevertheless, they are the fundamental build-
ing blocks in integrated optics. Therefore, a precise analysis of their optical properties and
bending losses becomes necessary. In this section, we look into different bend configurations
with respect to Structure 1 and Structure 2 rib waveguides.

6.2.2.1 90◦-bends

We begin with investigating 90◦ bends, equivalent to a quarter of a circle, as demonstrated in
Figure 6.9a. Typically, the structures can support both TE- and TM-polarization, but we use the
TE0,0 mode for exciting the bend (as for the DCs) and observe how the mode propagates through
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Figure 6.9: A 90◦-bent LN rib waveguide on a SiO2 substrate. (a) Top view and (b) 3-D
schematic of the waveguide regularly bent around the z-axis with a radius of curvature r for
wave propagation along the θ-direction. The waveguide is excited with the TE0,0 mode, and the
wave propagation faces a permittivity tensor with off-diagonal elements along the bend.
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the bend. The waveguide is uniformly bent around the z-axis with a radius of curvature r. Its
3-D schematic representation is illustrated in Figure 6.9b. We are interested in waves that prop-
agate in the θ-direction at an angle θ with a mode profile that is confined along the ρ-direction,
i.e., the radial direction. Due to the anisotropy, the mode propagating through the waveguide in
the θ-direction is dealing with a permittivity tensor consisting of off-diagonal elements, unlike
the crystal-axis-aligned straight waveguides, which face a diagonal permittivity. Furthermore,

0

0.5

1

0

0.5

1

0

0.5

1

V/m

(a)

(b)

(c)

r = 10 μm

r = 30 μm

r = 50 μm

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Loss
Reflection
TE-TE
TE-TM

r (μm)

P
/P

in

(d)

2 μm

5 μm

10 μm

EEρ Eθ Ez

EEρ Eθ Ez

EEρ Eθ Ez

Figure 6.10: Absolute electric fields in the xy-plane at z = 250 nm for the 90◦-bent Structure 1
rib waveguides with a curvature radius of (a) r = 10µm, (b) r = 30µm, and (c) r = 50µm.
The waveguides are excited with the TE0,0 mode. The radial componentEρ, angular component
Eθ, vertical component Ez , and the full absolute electric field |E| are represented column-wise
for each radius, starting from the left side. The fields are normalized to their respective full
absolute electric field. (d) Power efficiency for the 90◦-bent Structure 1 rib waveguide as a
function of the bend radius.
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the change in crystal orientation results in a mode cross-over between the fundamental TE-
and TM-mode at the output waveguide with respect to the input waveguide. As per the disper-
sion relation, the incoming waveguide orientation supports a TM-polarized fundamental mode,
while the fundamental mode of the outgoing waveguide orientation is TE-polarized.

It is important to get a clear picture of how the modes propagate through these bends and
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Figure 6.11: Absolute electric fields in the xy-plane at z = 200 nm for the 90◦-bent Structure 2
rib waveguides with a curvature radius of (a) r = 10µm, (b) r = 30µm, and (c) r = 50µm.
The waveguides are excited with the TE0,0 mode. The radial componentEρ, angular component
Eθ, vertical component Ez , and full absolute electric field |E| are represented column-wise for
each radius, starting from the left side. The fields are normalized to their respective full absolute
electric field. (d) Power efficiency for the 90◦-bent Structure 2 rib waveguide as a function of
the bend radius.
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decay with respect to the radial arguments or what influence different bend radii have on their
propagation. Intuitively, one expects the waveguides with smaller radii to exhibit higher losses
than the larger radii due to the sharper bends in the smaller structures. Therefore, the loss mainly
comes from the waveguide’s power radiating as it bends along the curvature. Additionally, a
part of the input optical power is also coupled to the other polarization due to the bending, i.e.,
the TM polarization, resulting in a polarization conversion that is estimated at the output end
of the waveguide. We first investigate the bends with respect to the Structure 1 rib waveguides.
Starting from the left column, Figure 6.10a shows the absolute radial-, angular- and vertical-
components of the electric field for a bent Structure 1 rib waveguide of radius r = 10µm.
These fields are normalized to the absolute electric field of the same structure shown in the
fourth column. The radial component demonstrates the strongest field, which can be attributed
to the TE0,0 mode coupled to this waveguide, having a strong horizontal component. On the
other hand, from the vertical component of the field Ez , it becomes evident that a part of the
TE polarization couples to the TM polarization along the propagation direction, demonstrating
the effect of polarization conversion.

Similarly, Figure 6.10b and c illustrate the fields for the larger radii, i.e., r = 30µm and
r = 50µm. As seen in the fourth column, more power is transmitted to the end of the waveg-
uide bend as the radius increases. This is manifested in the brighter red part of the field confined
within the waveguide and the lesser white part of the fields radiating away from the bend. Fig-
ure 6.10d shows the power efficiencies for such Structure 1 rib waveguides for a bend radius
ranging from 10−100µm. The amount of power carried forward by the TE mode is depicted by
the black curve, and the green curve represents the amount of power coupled from the TE mode
to the TM mode. The red curve shows the reflection efficiency, and the blue curve depicts the
bending losses given by the power leaving the waveguide core region. As the radius increases,
the bending losses decrease and are less than 1% at r = 100µm. Meanwhile, polarization
conversion drops but remains as high as 3% at r = 100µm.

Furthermore, we do a similar investigation with Structure 2 rib waveguides. These waveguides
also demonstrate a similar response, as shown in Figure 6.11. However, the smaller radii, for
example, r = 10µm, exhibit lower losses than the Structure 1 waveguides, as more power is
coupled to the TE polarization.

6.2.2.2 S-bends

In the next step, we look into other bend configurations. We investigate the more sophisticated
S-bends, as shown in Figure 6.12. These bends have a cosine dependence and are defined
using two parameters, L and P , which are the horizontal and vertical separation between the
incoming and outgoing waveguide. Such structures can be used for establishing a connection
between waveguides at position (L,P ). The x-position of the waveguide core center for such a
bend can be defined as

p(y) = P cos
( π

2Ly
)2
, (6.6)

where y ranges between 0−L. Such a configuration presents the same crystal orientation at the
incoming and outgoing waveguide. Therefore, the modes at the input and output are identical.
Again, this evaluation is done for both, Structure 1 and Structure 2 waveguide bends. The TE0,0
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Figure 6.12: An S-bent LN rib waveguide on a SiO2 substrate. (a) Top view and (b) 3-D
schematic of the structure, where the input and output of the waveguide are horizontally and
vertically separated by a distance of L and P , respectively. The waveguide is excited by the
TE0,0 mode, as demonstrated on the input side.
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Figure 6.13: Power efficiency for the S-bent (a,c) Structure 1 and (b,d) Structure 2 rib waveg-
uide, as a function of the horizontal separation L for different values of the vertical separation
P . The waveguides are excited with the TE0,0 mode, and the amount of power carried forward
by the same TE mode (upper row) and coupled to the TM0,0 mode (lower row) is depicted.
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mode is launched at the input, and we analyze the amount of power carried forward by the same
TE mode and the amount of power coupled to the TM0,0 mode.

Figure 6.13a and b represent the power carried by the TE0,0 mode as a function of L ranging
from 20− 100µm for P ranging from 30− 100µm for Structure 1 and Structure 2 rib waveg-
uides, respectively. As can be seen, different combinations of these two parameters provide
more than 90% transmissions with the TE mode. Furthermore, Figure 6.13c and d represent
the polarization conversion in Structure 1 and Structure 2 rib waveguides, respectively. The
smaller configurations of the Structure 1 S-bent waveguides present a conversion of under 1%.
On the other hand, the larger configurations of Structure 2 S-bent waveguides exhibit very low
polarization conversion, along with some smaller configurations, for example, a combination
of L = 30µm and P = 30µm has less than 1% of power coupled to the TM mode. Therefore,
these bends can prove beneficial when integrated into photonic circuitry. Furthermore, one can
also investigate other bend configurations based on their requirements.

6.2.3 Multi-mode interference couplers

Other popular structures are the MMI-based devices as they are easy to fabricate and incorpo-
rate in intricate PICs like Mach-Zehnder modulators and switches, ring lasers, phase diversity
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Figure 6.14: Schematic representation of the 3-D multi-mode interference coupler constructed
with LN rib waveguides on a SiO2 substrate. The incoming and outgoing waveguides are iden-
tical, and the central coupler has a length and width of lMMI and wMMI, respectively. The
outgoing waveguides are separated by a distance of offset. The system is excited by the TE0,0
mode, as demonstrated at the incoming waveguide.

117



6. LNOI waveguide structures

networks, coherent receivers, etc. [174]. An MMI coupler is a device consisting of incom-
ing and outgoing waveguides for coupling the light in and out of the coupler between these
waveguides. Essentially, the MMI coupler is a broad optical waveguide. As such, it spreads the
in-coupled light over many guided modes and exploits the particularities of their interference
pattern [175–177]. This optical power is then split or combined at the output desirably. In this
work, we look at 1× 2 MMI couplers, which should ideally achieve an equal 50-50 power split
at the output. This implies that the power would enter through one path with wave propagation
along y-axis and leave through two paths [178], as represented by the schematic in Figure 6.14.
When an MMI coupler is excited, the incident wave is decomposed into the eigenmodes, each
possessing a unique propagation constant, allowing them to propagate independently with dif-
ferent velocities. This results in an interference pattern that changes along the MMI coupler
length. Therefore, a suitable combination of the length lMMI and width wMMI of the coupling
segment needs to be determined that leads to a splitting ratio close to 50-50, keeping in mind
the complex nature of light affected by the optical losses, reflection, and interference from the
multiple modes.

We begin with the optimization of an MMI coupler with identical incoming and outgoing Struc-
ture 1 rib waveguides. The incoming waveguide is launched with a TE0,0 mode, which connects
to the broader coupler waveguide of length lMMI and width wMMI. The entire structure has the
etch depth of h = 300 nm on the LN thin film. The outgoing waveguides are separated by a dis-
tance of offset, measured between the two waveguides as shown in the schematic (Figure 6.14).
In total, three design parameters were optimized, namely, lMMI, wMMI, and offset, using the
hybrid optimization routine of PSO and TRO (as discussed in Section 3.2.2). The objective of
the optimization routine is to achieve 50% power flow in one of the outgoing waveguides, in
our case W2, by targeting the S2,1 parameter. Assuming that the offset is sufficiently large such
that the waves in the outgoing waveguides do not interact, due to the symmetry in the system,
achieving 50% power in waveguide W2 would automatically result in the remaining 50% of the
optical power to be transmitted to waveguide W3. Similarly, the MMI coupler is also optimized
with the Structure 2 rib waveguides, where the entire structure has an etch depth of h = 350 nm
on the LN thin film. The design parameters of both the optimized MMI couplers are presented
in Table 6.3.

Design parameters Structure 1 Structure 2
lMMI 23µm 26.8µm
wMMI 3.6µm 3.88µm
offset 1.49µm 1.94µm

Table 6.3: Optimized values of the design parameters for the MMI coupler with Structure 1 and
Structure 2 rib waveguides.

Figure 6.15a shows the absolute electric field of the optimized MMI coupler with Structure 1
rib waveguides in the xy-plane at z = 250 nm from the bottom of the thin film. The structure
exhibits a transmission of 42% in both the outgoing waveguides, with almost no reflection back
to the incoming waveguide. The remaining power is lost to the non-guided scattered waves,
mainly at the interface between the broad coupling waveguide and the outgoing waveguides.
However, one can mitigate this issue using adiabatic tapering waveguides, which can achieve
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Figure 6.15: Absolute electric fields in the xy-plane for the MMI coupler with incoming and
outgoing rib waveguides of (a) Structure 1 at z = 250 nm and (b) Structure 2 at z = 200 nm.
The waveguides are excited with the TE0,0 mode.

better impedance matching at this interface and have a higher transmission in both outgoing
waveguides. Figure 6.15b demonstrates the absolute electric field for the optimized MMI cou-
pler with Structure 2 rib waveguides in the xy-plane at z = 200 nm from the bottom of the thin
film. This configuration achieves approximately 40% power transmission in both the outgo-
ing waveguides with almost no reflection to the incoming waveguide. However, the scattering
losses are slightly higher than in the previous configuration, which can be attributed to the
narrow geometry of the rib waveguides.

Overall, we present an overview of specific LNOI waveguides and certain optical components
based on them as parts of integrated photonic circuits. It should be noted that we only consider
systems withX-cut and y-propagating configurations. Other structures may exist that have even
better performance. Furthermore, we systematically explore and compare different waveguide
bends with respect to their power loss and polarization conversion. Lastly, we optimize and
analyze MMI couplers based on these LNOI waveguides.
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Chapter 7

Summary

This work explores the design and optimization of various antenna types to have efficient control
over their radiation patterns. We begin with the target of directivity enhancement for nanoanten-
nas in the optical regime, specifically in the near-infrared range (780 nm). This is followed by
analyzing the use of nanoantennas in phased array systems. Again, different antenna geometries
are proposed and optimized to tailor radiation characteristics in efficient optical phased array
systems, particularly for the telecom wavelength (1.55µm). Furthermore, the thesis analyzes
various optical components for LNOI-based integrated optical circuits. In particular, we inves-
tigate anisotropic crystal geometries suitable for integrated quantum photonic applications at a
wavelength of 775 nm. The results obtained in this work can be discussed in three subsequent
parts:

Highly directive antennas:

We investigate highly directional dielectric traveling-wave antennas composed of two dielectric
building blocks, i.e., the reflector and director, with dipole emitters as the internal light source.
We analyze the design parameters constituting the antenna geometry and their influence on the
complex interplay between the leaky and guided modes supported in the waveguide-like direc-
tor. This allows us to characterize the directive nature of these optical waveguide antennas.
The experimental and numerical calculations show that the emission properties of the antennas
are mainly affected by the effective mode index of the director. This opens up opportunities to
explore different director types and materials for constructing these antennas. It is also estab-
lished that the strongest coupling is achieved with the TE-polarization of the dipole (y-oriented
dipole). Together these results give us room to improve the antennas’ directivity by using dif-
ferent optimization algorithms.

We successfully optimize the directivity of three traveling-wave antennas for broadband use.
The three antennas investigated are rectangular-, tip-, and horn-antenna, placed over a glass
substrate with dipole emitters used as the internal excitation source. Numerically, we investi-
gate these antennas composed of HfO2, Si, and Ta2O5 while experimentally, they are validated
using Ta2O5. Our antennas demonstrate highly directional characteristics, especially the horn
antennas are more directive than the other two types, exhibiting linear directivity as high as 157
(21.95 dB). However, this comes at the cost of a larger footprint and higher side lobe levels.
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7. Summary

The directionality is primarily due to two dominant TE modes that couple strongly to the dipole
emitter in addition to the leaky modes. These guided modes dominate the far-field emission
pattern and govern the direction of the main lobe emission. Therefore, the antennas offer an
opportunity to tailor the directivity and main lobe angle of the far-field radiation pattern. On
the other hand, these antennas are not only ultra-directional but also highly efficient and have
a wide operating frequency range, especially the tip antenna. A comprehensive analysis of the
antennas’ modes, radiation patterns, parametric influences, and bandwidths highlights their ro-
bust nature to fabrication imperfections, as indicated by the sensitivity analysis of the design
parameters. The numerical simulations are in good agreement with the experimental results
obtained from the fabricated samples. Although these antennas have a larger footprint, their
feasibility for sample production indicates that they can be efficiently used in practical appli-
cations such as integrated optical devices, on-chip communication, beam shaping, and wireless
communication. Finally, we anticipate that the directional properties of these antennas can be
further enhanced by utilizing them in an array design.

Optical phased arrays:

The efficient operation of an optical phased array demands a radiation element characterized
by high performance and a compact footprint. Therefore, we look into three distinct Si anten-
nas designed and optimized to target different cost functions. The first objective of interest is
increasing the total emitted power in the upward direction. For this purpose, we consider two
types of asymmetric dielectric horn antennas. The first geometry introduces a vertical asym-
metry in the form of two-level gratings with unique grating pitches, where the variable pitch
provides more control variables in the optimization process for improving the upward radia-
tion with a near-broadside emission profile. The second geometry introduces a heterogeneous
grating configuration consisting of a U-shaped grating in combination with L-shaped gratings,
resulting in a compact horn-shaped blazed grating antenna. Both these optimized antennas are
capable of high upward efficiency of the magnitude of 63% and 78% with the radiation directed
along 1◦ and 8◦, respectively. The second objective of interest is to direct more power into the
field of view of size 6.8◦ × 6.8◦. For this purpose, a circular grating antenna with a variable
grating pitch in conjunction with a partial etch is considered. The optimized antenna demon-
strates an upward efficiency of 51% and can concentrate 3.2% of the optical power into the field
of view.

Furthermore, exploiting the benefits of multi-layer silicon photonics, we investigate the design
and optimization of reflector geometries to further improve the upward efficiency and power in
the field of view. Using a single reflector, the asymmetric horn antenna can efficiently radiate
almost 83% of the input optical power upward, maintaining a near-broadside emission along 4◦.
On the other hand, using a two-layer Bragg reflector with the circular grating antenna improves
the upward radiation efficiency to approximately 88% with 6.8% of the optical power being
directed into the field of view. We demonstrate that the proposed antennas are suitable for large-
scale 2-D OPAs capable of pattern synthesis, beam steering, and beamforming. Additionally,
these antennas are employed in architectures that increase the grating-lobe-free beam steering
range using the large HPBW of the radiating element. We anticipate that our robust, optimized
antennas can be easily fabricated and utilized to enhance the performance of OPAs in different
applications such as LiDARs, holography, imaging, optogenetic stimulation, augmented-reality
displays, and various communication systems.
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7. Summary

LNOI waveguide structures:

Finally, we systematically investigate different optical components based on LNOI rib waveg-
uides that can be essentially utilized in integrated quantum photonic circuits. We focus on X-cut
LNOI waveguides with an anisotropic LN core layer over a silicon dioxide substrate, and this
system is excited with the TE mode. We begin with a broad eigenmode analysis for different
heights and widths of the rib waveguide. Based on the results, the experimentalists chose two
geometries for further investigation. Waveguides with these two geometries are applied for de-
signing directional couplers, waveguide bends, and multi-mode interference couplers, whose
optical properties are then individually characterized. For the directional couplers, the sym-
metric and anti-symmetric modes are characterized to estimate the coupling length at which
a complete power transfer between the two rib waveguides can be attained. Another critical
aspect that is investigated is the bends in such waveguides. Two types of bends are studied,
namely, the 90◦-bends and S-bends, and the losses introduced due to their bent curvature are
analyzed. In general, sharper bends result in higher losses of the input optical power. Fur-
thermore, bends in these LNOI rib waveguides also result in polarization conversion, even for
structures with a bend radius as high as 100µm. The parametric study conducted on these
bends helps identify different design configurations to mitigate these issues of high bending
losses or polarization conversion in such structures. Lastly, we optimize and characterize the
1 × 2 multi-mode interference couplers, practical devices in integrated optics. The optimized
multi-mode interference couplers demonstrate symmetrical power transmission of up to 42% in
both outgoing waveguides. Devices of these types are considered for application in the field of
integrated photonic quantum systems.
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