'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Faculty for Computer Science, Electrical Engineering and Mathematics

MODEL-BASED IDEAL TESTING OF SEQUENTIAL SYSTEMS

ONUR KILINCCEKER

Dissertation submitted in partial
fulfillment of the requirements for the degree of
Doktor-Ingenieur (Dr.-Ing.)

July 2024

EIM-E/376

EIM-E/376

"Baba means father.
Baba means nobody gets left behind or forgotten." *

Dedicated to the loving memory of Efrahim Kilingceker.

1953 — 2012

1 Original quote: "Ohana means family. Family means nobody gets left behind
or forgotten." from "Lilo & Stitch" [Film] directed by Chris Sanders and Dean
DeBlois (2002) from Walt Disney Pictures. https://www.disneyplus.com/movies/
lilo-stitch/1KQztXx3gPGi

https://www.disneyplus.com/movies/lilo-stitch/1KQztXx3gPGi
https://www.disneyplus.com/movies/lilo-stitch/1KQztXx3gPGi

SUMMARY OF THE DISSERTATION:

The crucial problem of testing as a validation technique is that it usu-
ally shows the presence of faults but not their absence. In 1975, Good-
enough and Gerhart (GG) showed that adequately structured tests
could demonstrate the absence of errors in a program. The phrase
properly entails precisely defined criteria for selecting test cases. How-
ever, GG focus on the implementation (source code) of a program
rather than its specification as a model, thus considerably limiting
the scope of their approach to program codes only.

The present approach proposes to extend GG’s concept to model-
based analysis and testing sequential systems in toto (hardware and
software), based on their formal specification, using the concepts of
holistic testing and mutation testing, enriched with knowledge and
results from the theory of finite state machines and regular expres-
sions. Holistic testing, in this context, comprises positive testing to
show that the system under test functions the way the user desires
and negative testing to show that the system under test does not do
anything the user would not desire.

On the other hand, mutation testing can be used to modify the
system under test to generate its faulty versions to model undesirable
situations to be checked against the corresponding implementation
when the mutant system under test fails. Thus, the proposed model-
based ideal testing (MBIT) enables us to show both the presence and
the absence of the faults in the scope of the specification of the system
under test.

The approach is limited to sequential systems because of the theo-
retical features of the techniques used. These techniques are demon-
strated and evaluated analytically and experimentally in various case
studies: traffic light controllers, graphical user interfaces, and sequen-
tial circuits. The results will be critically discussed concerning the
advantages and shortcomings of the proposed approach.

ZUSAMMENFASSUNG DER DISSERTATION:

Das entscheidende Problem des Testens als Validierungstechnik be-
steht darin, dass es normalerweise das Vorhandensein von Fehlern
zeigt, aber nicht deren Abwesenheit. 1975 zeigten Goodenough und
Gerhart (GG), dass angemessen strukturierte Tests die Fehlerfreiheit
eines Programms nachweisen konnen. Ihr Ansatz beinhaltet prazise
Kriterien fiir die Auswahl von Testfdllen. GG konzentrieren sich je-
doch eher auf die Implementierung (Quellcode) eines Programms
als auf seine Spezifikation als Modell, wodurch der Umfang ihres
Ansatzes erheblich auf Programmcodes beschrankt wird.

Der vorliegende Ansatz schldagt vor, das Konzept von GG auf die
modellbasierte Analyse und das Testen sequentieller Systeme in toto
(Hardware und Software) zu erweitern, basierend auf ihrer formalen
Spezifikation, unter Verwendung der Konzepte des ganzheitlichen
Testens und des Mutationstests, angereichert mit Erkenntnissen und
Ergebnissen aus der Theorie der endlichen Automaten und reguldren
Ausdriicke.

Ganzheitliches Testen umfasst in diesem Zusammenhang positives
Testen, um zu zeigen, dass das getestete System so funktioniert, wie
es der Benutzer wiinscht, und negatives Testen, um zu zeigen, das
getestete System nichts tut, was der Benutzer nicht wiinscht.

Techniken von Mutationstests werden verwendet, um den das ge-
testete System so zu modifizieren, dass seine fehlerhaften Versionen
generiert werden, um unerwiinschte Situationen zu modellieren. So-
mit ermoglicht uns das vorgeschlagene modellbasierte ideale Testen
(MBIT), sowohl das Vorhandensein als auch das Abwesenheit der
Fehler im Rahmen der Spezifikation des getesteten Systems zu zeigen.

Der Ansatz ist aufgrund der theoretischen Merkmale der verwen-
deten Techniken auf sequentielle Systeme beschréankt und wurde an-
hand verschiedener Fallstudien analytisch und experimentell demon-
striert und bewertet: Verkehrsampel, grafische Benutzerschnittstellen
und sequentielle Schaltkreise. Ihre Ergebnisse werden hinsichtlich der
Vor- und Nachteile des vorgeschlagenen Ansatzes kritisch diskutiert.

Vi

ACKNOWLEDGEMENTS

Many thanks to everybody who already helped me to prepare this
thesis!

First of all, I cannot thank enough Fevzi Belli, whom I respect im-
mensely, for enabling me to start this thesis and for her unwavering
support. I cannot repay my debt to him because of the time we spent
together, his contribution to me, and the time he spared. Also, my
dear friend and teacher, Moharram Challenger’s contributions to me
deserve my deepest gratitude. Thanks to him, I had the opportunity
to work with Erctiment, Alper, Gizem, Evrim, Burak, and many more
students. I also thank them for their contribution to our work. I also
thank Geylani Gardag and Orhan Dagdeviren from the International
Computer Institute. I would also like to thank my esteemed friend
and colleague, Dr. Sinem Getir, whom I had the opportunity to work
with at the International Computer Institute and currently working
as a postdoctoral researcher at the University of York.

I would like to thank and express my gratitude to Bekir Taner Dinger,
from Mugla University, Department of Computer Engineering, where
I spent a long period of my doctorate, and to my close friend Enis
Karaarslan, with whom we spent a lot of valuable work and time.

I also thank Tolga Ayav and Tugkan Tuglular, professors of the Com-
puter Engineering Department of [zmir Institute of Technology, where
I usually spent the summer of my doctorate. They hosted me in
their departments and supported me and their former students, Savas
Takan, Uras Tos and Ekincan Ufuktepe, whom I know thanks to them.

Lastly, thank you so much to my dear love (wife) Banucicek Kan-
demir Kilincceker for her endless and invaluable support through-
out this process. To my precious Mother (Pervin Kilincceker), whose
support and prayers I have always felt throughout the process, with
whom I spent a long time together, whether we were together or not.
The support of my dear brothers Onder Kilincceker and Osman Can
Kilincceker is vital, and I cannot pay my debt to them.

vii

-

II

IIT

CONTENTS

FOUNDATIONS AND RELATED WORK

INTRODUCTION 3
1.1 Overview of Publications 9
1.2 Structureof Thesis 12
RELATED WORK 13
2.1 Validation of Programs Written in HDL 13
2.2 Graphical User Interface Testing 16
23 HolisticTesting 20
2.4 Mutation Testing 21
25 IdealTesting 26
BACKGROUND 29
31 UsedNotions 29
3.2 Coverage Criteria 32

3.3 Finite State Machine and Regular Expression Analysis 33

APPROACHES 41
TEST GENERATION BASED ON REGULAR EXPRESSION AP-
PLIED TO HDL PROGRAMS 43
4.1 Motivation For HDL Testing 43
4.2 The Approach Based On Regular Expression 44

TEST GENERATION BASED ON CONTEXTUAL REGULAR EX-

PRESSION APPLIED GRAPHICAL USER INTERFACE TESTING 49
5.1 Motivation For Graphical User Interface Testing 49
5.2 The Approach Based on Contextual Regular Expression 51

MODEL-BASED IDEAL TESTING (MBIT) 53
6.1 Model-based Ideal Testing for HDL Programs 53
6.2 Model-based Ideal Testing for Graphical User Interface 64
CASE STUDIES, RESULTS, AND EVALUATION 69
7.1 HDL-Based Case Studies 69
7.2 Graphical User Interface Based Case Studies 76
73 Results L. 81
7.4 Evaluation 88
7.5 ToolSupport. 96

FURTHER PERSPECTIVES AND CONCLUSIONS 101

EXTENDING SEQUENTIAL SYSTEMS FOR ACHIEVING FAULT

TOLERANCE 103
8.1 Motivation For Achieving Fault Tolerance 103
8.2 Related Work On Fault Tolerance 104

8.3 System Extension to Achieving Fault Tolerance 106

ix

CONTENTS

84 CaseStudy

8.5 Results and Evaluation

8.6 Threats to Validity
9 CONCLUSIONS

9.1 TestGeneration

9.2 Model-based Ideal Testing
10 FOLLOW-ON PROJECTS

BIBLIOGRAPHY

Figure 1.1.1

Figure 2.4.1
Figure 3.1.1
Figure 3.1.2
Figure 3.1.3

Figure 3.3.1
Figure 3.3.2

Figure 3.3.3
Figure 4.2.1

Figure 5.2.1

Figure 6.1.1
Figure 6.1.2
Figure 6.1.3
Figure 6.1.4
Figure 6.2.1
Figure 6.2.2
Figure 7.1.1
Figure 7.1.2
Figure 7.1.3
Figure 7.1.4

Figure 7.1.5

Figure 7.3.1

Figure 7.3.2

Figure 7.3.3

Figure 7.3.4

LIST OF FIGURES

Overview of the Publications Related to This

Thesis Lo

Code-based and Model-based Mutation Testing
Anexample FSMM

Contextual Regular Expression

The ST Representation, Left-to-right Associa-

tive, of RE in the Example

Steps of the PQ-Analysis and the Correspond-

ing Algorithms

(a) State Transition Table and (b) Diagram for

Eforw [81]
(a) Compatibility and (b) Context Tables [81] .
General Overview For The Approach Based on
RE
General Overview For the Approach Based on
Contextual RE
Test Composition For MBIT
General Overview of MBIT For HDL
Test Preparation For HDL

Test Composition For HDL
General Overview of MBIT For GUI
Test Preparation For GUL
Block Diagram of the TLC
FSMof the TLC
FSM of the Mutant One
The Code-Based Difference of Original and Mu-
tantHDL
FSM of the Mutant Two
Fault Coverage and Test Execution Time Curve
for SD (left diagram is for positive and right
diagram is for negative testing)
Fault Coverage and Test Execution Time Curve
for TLC (left diagram is for positive and right
diagram is for negative testing)
Fault Coverage and Test Execution Time Curve
for RISC-V Processor (left diagram is for posi-
tive and right diagram is for negative testing) .
Fault Coverage and Test Suite Size Curves (left
diagram is for SD, middle diagram for TLC,
and right diagram is for RISC-V)

10
21

30

Xi

Xii

List of Figures

Figure 7.3.5

Figure 7.3.6

Figure 7.5.1
Figure 7.5.2
Figure 8.3.1

Figure 8.4.1
Figure 8.4.2
Figure 8.4.3
Figure 8.4.4

Fault Coverage and Normalized Test Execu-
tion Time Curve for Special Module (left di-
agram is for the PT and right diagram is for
the NT) 87
Fault Coverage and Normalized Test Execu-
tion Time Curve for Additional Module (left
diagram is for positive and right diagram is

for negative testing) 87
Tools Used in the Proposed MBIT Methodology 97
FPGA-based TestBench 98
The Overview of the Proposed Approach for

Achieving Fault Tolerance 107
FSM of SD with Symbols 109
Correction Area and R-D Corrections for SD [85]110
Extentions forSD 111

Correction Area and R-D Corrections for ex-
tendedSD[85] 111

Table 2.2.1
Table 2.4.1
Table 6.1.1
Table 7.1.1
Table 7.1.2
Table 7.1.3
Table 7.2.1
Table 7.2.2
Table 7.2.3
Table 7.3.1

Table 7.3.2
Table 7.3.3
Table 7.3.4
Table 7.3.5
Table 7.4.1
Table 8.5.1

Table 8.5.2

LIST OF TABLES

Comparison of GUI testing methods 17
Comparison of Mutation Testing Methods . . . 24
Test Selection Criteria 63
Encoding of Transitions 71
Results From the Negative and Positive Testing 74
Mutant Profiles 76
Symbols and Their Corresponding Events . . . 77
Mutant Semantics for MBIT 78
Mutant Profiles for GUIs 8o
Results of the Positive and Negative Testing for

SD . .. 82
Results of the Positive and Negative Testing for

TLC .. 82
Results of the Positive and Negative Testing for

RISC-V Processor 83

Results of the PT and NT for Special Module . 86
Results of the PT and NT for Additional Module 86

The Complexity of the Used Algorithms 89
Results For the Current Approach with TMR-

Method and Structural BIST 113
ITC'99 Benchmark Results 113

xiii

Listing 1
Listing 2

Listing 3
Listing 4

Listing 5
Listing 6

Listing 77
Listing 8

Xiv

LISTINGS

Algorithm 1: Indexing the T
Algorithm 2: States and transitions determina-
tion of FSM Ef°™ that accepts T'
Algorithm 3: Constructing Tfo™
Algorithm 4: States and transitions determina-
tion of FSM Eypqck that accepts Tmire L
Algorithm 5: Constructing T®ac¢k
Test sequence generation based on ST of RE
Input: S S is syntax tree of given RE Output: ti
€ T,i=1,...,n T is the resulting test suite
Pseudocode of the test generation algorithm

Pseudocode of the model generation algorithm

38
38

39
39

46
60

ATPG

CT

CRE

ERE

FPGA

FSM

GUI

GG

HDL

HT

MBIT

ACRONYMS

Automatic Test Pattern Generation
Context Table

Contextual Regular Expression
Extended Regular Expression
Field-Programmable Gate Array
Finite State Machine

Graphical User Interface
Goodenough and Gerhart
Hardware Description Language
Holistic Testing

Model-Based Ideal Testing

MBMT Model-Based Mutation Testing

MT

NT

OVM

PT

RE

SD

SE

ST

SUT

TLC

TLS

UVM

VLSI

Mutation Testing

Negative Testing

Open Verification Methodology
Positive Testing

Regular Expression

Sequence Detector

SEquential Systems

Syntax Tree

System Under Test

Traffic Light Controller

Traffic Light System

Universal Verification Methodology

Very-Large-Scale Integration

XV

Part1

FOUNDATIONS AND RELATED WORK

CHAPTER 1

INTRODUCTION

In 1970, Dijkstra stated that program testing could be used to show
the presence of bugs, but not to show their absence [1]. To find all
program bugs, an exhaustive test of all possible test cases/scenarios
is required, which is very costly (computationally and memory-wise)
and sometimes even not feasible. However, in 1975, Goodenough and
Gerhart proved a fundamental theorem showing that properly struc-
tured tests can demonstrate the presence and absence of faults in a
program [2]. This theorem focuses on satisfying two testing require-
ments, namely the reliability requirement that implies consistency of
the test results produced, while the second, validity requirement, im-
plies competence of the test results. According to this theorem, a test
method holding these requirements is called ideal test that enables to
show presence and absence of faults.

Furthermore, Goodenough and Gerhart indicate that exhaustive
testing with termination criterion could satisfy reliability and validity
requirements [2]. The main difficulties preventing the application of
the ideal test can be 1) selecting the entire domain in exhaustive test-
ing and 2) independence of the goodness of a test set from individual
programs [3]. However, Chow [4] recommended using specifications
rather than program codes to achieve the ideal test because finding a
test data selection strategy that is both valid and reliable is not solv-
able in general [2, 5] for any program. Therefore, these difficulties
can be handled using a higher-level of abstraction, such as system
specification or model, instead of the actual program.

A clear and comprehensive definition of the sequential system (SE)
is not given in the literature. This concept has different meanings ac-
cording to its application areas (for example, circuit theory [6]). The
sequential systems discussed in the thesis are similar to the sequential
circuit definition given in circuit theory [6]. However, this definition
may cause the scope of this concept to be restricted to circuits. There-
fore, to give a clear definition, the sequential system defined in this
thesis is a deterministic system that can be represented by a finite
state machine. In addition, in this system, which consists of consec-
utive events, an event can affect the results of the event that follows
it, and a transition can be made from one event to more than one
event. To this end, behavioral-level hardware description language

INTRODUCTION

(HDL) and graphical user interface (GUI) programs are considered
sequential systems within the scope of this thesis.

Nowadays, the Hardware Description Language (HDL) is one of
the widely used methods for designing digital hardware systems
(such as embedded systems). HDL design paves the way for specify-
ing the hardware using a software program. Therefore, it is possible
to utilize software-testing techniques such as the ideal test on HDL
designs.

In this thesis, an approach is proposed for validating both the pres-
ence and the absence of a set of faults in the model of a hardware
design, that is, the specification of the HDL program, using the well-
known software testing methods Holistic testing [7, 8] and Mutation
testing [9—11].

The proposed approach introduces the necessary steps to apply
the ideal testing for the (pre-silicon) validation of the HDL programs
and addresses the following common fault types in HDL [12, 13]:
single output bit stuck-at o/1, case bit stuck-at 0/1, condition stuck-
at True/False, their combinations. However, the approach does not
address conventional gate-level faults such as stuck-at and bridging.

The current approach differs from the manufacturing testing (for
example, Automatic Test Pattern Generation (ATPG)) that targets these
manufacturing faults. The similarity between the names of the fault
models may lead to misunderstanding. The single output bit stuck-at
o/1 for pre-silicon validation refers to the output bit(s) at the behav-
ioral level HDL either stuck at o or 1. The stuck-at-fault model for
manufacturing testing refers to a functional fault on a Boolean Logic
and the corresponding logic that becomes stuck-at either 1 or o.

Graphical User Interface (GUI) testing is an evaluation process for
the correctness of the GUI that is considered a sequential system in
this thesis. GUI testing is a very significant section of software engi-
neering and a crucial part of the software development life cycle. It
must be a section of the development process from the beginning of
application development. In general, the correctness and usability of
software applications are essential and may constitute a significant
reason to choose one software over another. To attract users, software
developers must consider the user experience and GUI of their appli-
cations and their correctness. Flaws or faults in GUIs will result in
dissatisfaction among the customers. Because of this, catching flaws
and hidden faults in an application GUI is critical before deploying
the software.

GUI testing is a process of testing the visual elements and their
design to limit the probable problems. Component type, size, color,
and font are just a few examples of those elements that one can test in
an application. More importantly, the business logic of an application
can be tested with GUI testing via automation. GUI testing can detect
faults in an application with the help of automation tools. Manual

INTRODUCTION

GUI testing is a prolonged and costly process. With test automation,
a significant reduction in test time and cost could be achieved.

As with other software testing methods, GUI testing approaches
have been suggested to indicate the presence of an fault. However,
functional faults are mostly caused by GUI components.

Definition 1.1. Functional fault is an event-based fault in which the system
achieves the final event without providing the expected output.

An example of the functional fault category is called the "Action"
fault in the literature [14], which is frequently encountered in these
components and can be given when a GUI user presses a button and
there is no action or a faulty action. When the user presses a save
button for saving reservations in a hotel management system, but the
button does not respond as expected and does not save the reserva-
tions, that defines no action. Instead of detecting the presence of such
faults, showing their absence will make it easier for the tester and
prevent the GUI user from experiencing such a fault. This thesis sug-
gests a method that shows both the presence and absence of the fault
in this respect (see details on Chapter 7.2 on page 77, paragraph 4).

Along with introducing a toolchain for automated GUI testing, this
thesis introduces a methodology for GUI testing by addressing func-
tional faults. It uses Holistic Testing (HT) [7, 8] and Mutation Testing
(MT) [9, 10] to achieve ideal testing of the specification (model) of a
GUI instead of its program code.

The proposed approach is called Model-based Ideal Testing (MBIT).
This methodology is rather general and can be adapted to other ap-
plication domains. In this thesis, other approaches are proposed on
applying MBIT to the validation of hardware design and GUI testing
as they are considered sequential systems. The thesis adopted the HT
because it is an integrated and complementary view that uses neg-
ative testing (NT) aside from positive testing (PT). The HT acquires
the legal (expected) test inputs using the fault-free model, which is
applied to the GUI under test for the PT.

In positive testing, the system is validated against legal (correct,
regular) inputs that are expected data generated from the original
(supposedly fault-free) model, which is the conventional way of test-
ing. In negative testing, the system is validated against illegal (faulty,
irregular) inputs that are unexpected data generated from a faulty
(mutant) model.

Conventionally, the HT offers an integrated perspective as a joint
test of expected and unexpected functions. For example, for a hotel
reservation system, it is a function that the user is expected to be able
to reverse a hotel room using the system by providing requested in-
formation successfully. An unexpected function on a hotel reservation
website could be a feature that randomly changes the selected dates
for a reservation without notifying the user. The HT integrates this
bi-directional perspective into its test methods. The present method

INTRODUCTION

applies the necessary steps for HT to a model-based testing approach.
It uses different and specific models that contain expected and unex-
pected functions. While the conventional HT uses models that use ex-
pected functions to test unexpected functions in certain studies, this
thesis uses a separate model for each unexpected function. In this
way, it is possible to obtain test suites specific to each unexpected
function. While advocating testing all certain unexpected functions
with a single set of tests, this thesis argues that different sets of tests
are required for each different function.

Mutation testing, a well-known method for test evaluation [11, 15],
is a fault-oriented validation method which uses mutants obtained
by injecting faults using mutation operators into the system and/or
its model. Tests can then detect (kill) mutants, and the effectiveness
of a given test set can be determined by the mutation score, that is,
the percentage of the killed mutants [16]. Mutation testing has been
extended to the model level, leading to model-based mutation testing
[8, 17, 18].

This thesis employs the code-based mutation test (CBMT) for as-
sessment and the model-based mutation test (MBMT) to produce
model-based mutants. In contrast to traditional MBMT, mutant mod-
els are used in this thesis for test generation. Furthermore, conven-
tional CBMT methods produce mutants at random using suitable mu-
tation operators. There are a lot of duplicate mutations that have little
to do with real faults. Furthermore, certain mutations may be iden-
tical to the system being tested. One of the most difficult aspects of
mutation testing involves excluding equivalent mutations. Although
related scenarios arise in MBMT methods, randomly generated mu-
tant models in MBMT also lead to non-determinism. As a result,
defining analogous and non-deterministic mutant models in MBMT
is a difficult task. This thesis takes a more comprehensive and novel
approach to the problems that exist in CBMT and MBMT by using
model-based mutants and code-based mutants that are unique to the
system’s faults.

Fault, error, and failure terms can cause misunderstandings. A fault
is simply a static change in the system under test, an error is an
incorrect internal state caused by some fault, and failure is an external
incorrect behavior of the system [19—21]. This thesis generally uses the
term fault as a root event and sometimes uses errors caused by these
faults.

This thesis focuses on the following research questions (HDL-RQs)
for behavioral level HDL programs:

HDL-RQ 1. Is it possible to apply the code-based ideal testing ap-
proach (proposed by Goodenough and Gerhart [2]) to model-based
testing and exemplary to HDL programs that will be viewed as hard-
ware specifications?

INTRODUCTION

e HDL-RQ 1.1 What kinds of HDL systems can be addressed?
Sequential, combinational, cyber-physical systems, embedded
systems? What are the borders?

e HDL-RQ 1.2 What kinds of HDL faults can be targeted?

¢ HDL-RQ 1.3 What are the outcomes of applying the ideal test-
ing?

HDL-RQ 2. What are the costs of applying ideal testing in terms of
time and size of test suites (a set of test sequences), and is this ap-
proach scalable?

e HDL-RQ 2.1 How does this cost affect the scalability of applying
ideal testing?

e HDL-RQ 2.2 What are the complexities of the algorithms used?

A final discussion of these research questions is included in Section
7.4.1.3, also indicating to what extent they have satisfactorily been
answered.

This thesis provides the following contributions, considering the
current state of the literature for MBIT of behavioral level HDL pro-
grams:

1. Unlike conventional usages of the HT and MT, they are adapted
to achieve a novel validation approach proposed to target the
HDL faults at the behavioral HDL design.

e The HT is adapted to provide different test suites for each
different HDL fault.

® The MT is tailored by acquiring mutants for test genera-
tion.

* A methodology is provided to test the presence and ab-
sence of real faults in the HDL designs.

2. This thesis showed formally that the proposed approach satis-
fies the requirements of the ideal testing.

3. An experimental evaluation for the current methodology is pro-
vided.

® Three HDL case studies are experimented on to evaluate
the methodology.

* Five different test generation approaches and tools are adapted
and used in the experimental study.
4. Tool support is created and made available.

* The MBIT is partially automated for HDL validation.

INTRODUCTION

¢ The toolchain including examples and details are provided
in a bundle .

The proposed method is far more general than only considering
the validation of the HDL program to show both the presence and
absence of HDL faults. The MBIT proposed by this work can be eas-
ily adaptable and applicable to any software and systems domain
that employs model-based testing. This generality of the MBIT comes
from the methods (the HT and MT) adapted to achieve ideal testing.
Also, any model-based test generation method can be easily adapted
to the current methodology as this thesis employs several of these
methods for evaluation. Finally, this thesis selects a coverage-guided
test generation method that is based on an analysis of the model of
the HDL.

For GUI testing, the experimental and theoretical studies carried
out within the scope of this study are designed to answer the research
questions (GUI-RQs) given below:

1. GUI-RQ 1. Is it practically and theoretically possible to offer an
ideal testing [2] approach for GUI testing?

¢ GUI-RQ 1.1 What types of systems can be tested in this
way?

e GUI-RQ 1.2 What types of faults can be targeted with the
proposed approach?

2. GUI-RQ 2. What is the cost of applying this approach to GUI
testing?

3. GUI-RQ 3. How is scalability affected?

Considering the experimental and theoretical studies carried out in
this work, the above-mentioned research questions are examined in
detail in Section 7.4.2.2.

In this thesis, MBIT is adapted and extended to GUI testing for
targeting GUI-related functional faults and evaluating MBIT on case
studies, including comparison with three different approaches. The
thesis uses two selection criteria for the algorithmic correctness of the
models. To this end, the thesis provides the following contributions:

1. Different than conventional usages of the HT and MT, they are
adapted to achieve the ideal test suites for GUI testing for the
presence and absence of faults.

* The HT is adapted by offering different test suites for each
different faults

* The MT is customized by acquiring mutants for test gener-
ation.

1 MBIT4HW, https://github.com/kilincceker/MBIT4HW

https://github.com/kilincceker/MBIT4HW

1.1 OVERVIEW OF PUBLICATIONS

* A methodology is provided to target functional faults for
GUI testing, including an informal proof for being MBIT.

2. An experimental evaluation of the current methodology is pre-
sented.

e Two GUI case studies are used to evaluate MBIT.

¢ Three different test generation approaches are utilized for
comparison.

3. A tool support is developed and provided
* The MBIT is partially automated for GUI testing.

¢ The toolchain, including examples and details, are provided
in a bundle .

A model represents abstracted functionalities of a system under
test. However, the correctness of the model that represents the system
needs to be addressed and assumed within its construct. Therefore,
an assumption given below needs to be presented to address this.
Otherwise, a wrong model may threaten the validity of the proposed
methodology.

Assumption 1.1. Model correctness in MBIT is a requirement to ensure
the model used for test generation complies with the system modeled.

This assumption is also addressed in Section 6.2.3, and some possi-
ble mitigation methods will be presented in Section 7.4.2.3.

1.1 OVERVIEW OF PUBLICATIONS

Various articles have been published in peer-reviewed workshops,
conferences, and journals within the scope of this thesis. Published
articles are grouped under the titles of foundations, test generation,
and model-based ideal testing (MBIT). Details and related articles
about these titles are given in Figure 1.1.1

Foundations consist of modeling, coverage criteria, and scalability
sub-categories. The modeling category includes algorithms required
for modeling sequential systems in general, transformations between
models, and complexity analysis of these algorithms. Coverage Crite-
ria are structural metrics for the utilized models, which are essential
for the next category, test generation, and enable the generated test
sequences to be produced more effectively and faster. Various publica-
tions have been made for a regular expression and contextual regular
expression models in this context. Scalability is a challenging problem
that model-based testing methods often encounter. Thus, to mitigate

2 MBIT4SW, https://kilincceker.github.io/MBIT4SW/

https://kilincceker.github.io/MBIT4SW/

10

INTRODUCTION

Silistre et al.,
UYMS 2020

E*Kilinccekeretal.,: . Silistre etal,
. _FEDSIS 2020

Foundations
i Modelling Scalability

Test 1! QRs2019
Generation !

Mercanetal., | i Kilincceker etal., |
L. Uyms 2018 _ ___ARCS2018
MBIT O, GUI HDL il
Kilincceker et al., Kilincceker et al., |
ACCESS 2018 SOSYM 2021

Figure 1.1.1: Overview of the Publications Related to This Thesis

this problem, an approach has been proposed that automatically iden-
tifies sub-models within models and thus enables more effective test
generation.

Test generation algorithms differ according to the model used and
coverage criteria to assess adequacy as a termination criterion. In this
thesis, a test generation approach is proposed for regular expression
and contextual regular expression models. This category is divided
into two groups HDL validation and GUI Testing. The test suites gen-
erated using random, and optimization algorithms for GUI Testing
were executed on GUI systems during the test execution step. The
results obtained with the help of different algorithms were compared
with the proposed method. A similar approach has been taken for the
HDL validation.

Different articles have been published for MBIT, which is the most
significant contribution to this thesis. GUI systems (web application
and mobile application) and HDL systems are presented for this cat-
egory. All of the approaches put forward in the foundations and test
generation categories for GUI and HDL systems have been used and
implemented in this category. The studies given in this category form
the basis of the thesis. Some ideas and figures have appeared previ-
ously in the following publications:

¢ O.Kilinccceker, E. Turk, F. Belli and M. Challenger, (2021). "Model-
based ideal testing of hardware description language (HDL)
programs," Software and Systems Modeling, vol. 21, pp. 1-32.

¢ O. Kilincceker, A. Silistre, F. Belli and M. Challenger, "Model-
Based Ideal Testing of GUI Programs—Approach and Case Stud-
ies," IEEE Access, 2021, vol. 9, pp. 68966-68984.

1.1 OVERVIEW OF PUBLICATIONS

* A. Silistre, O. Kilincceker, E. Belli, M. Challenger and G. Kardas,
(2022). "Grafiksel Kullanic1 Arayiizii Testi Igin Bir Ugtan Uca
Model Tabanli Yaklasim (End-to-End Model-based Testing for
Graphical User Interface),"” EMO Bilimsel Dergi, vol. 12(1), pp.

7-19.

O. Kilincceker and F. Belli, "An Approach to Extending Sequen-
tial Systems for Achieving Fault Tolerance," 2024 (under prepa-
ration).

A. Silistre, O. Kilincceker, F. Belli, M. Challenger, and G. Kar-
das, "Models in Graphical User Interface Testing: Study De-

sign," 2020 Turkish National Software Engineering Symposium
(UYMS), 2020, pp. 1-6.

A. Silistre, O. Kilincceker, E. Belli, M. Challenger, and G. Kardas,
"Community Detection in Model-based Testing to Address Scal-
ability: Study Design," 15th Conference on Computer Science
and Information Systems (FedCSIS), 2020, pp. 657-660.

O. Kilincceker and F. Belli, "Towards Uniform Modeling and
Holistic Testing of Hardware and Software," 2019 1st Interna-
tional Informatics and Software Engineering Conference (UB-
MYK), 2019, pp. 1-6.

O. Kilincceker, A. Silistre, M. Challenger and F. Belli, "Random
Test Generation from Regular Expressions for Graphical User
Interface (GUI) Testing," 2019 IEEE 19th International Confer-
ence on Software Quality, Reliability and Security Companion
(QRS-C), 2019, pp. 170-176.

O. Kilinccceker, E. Turk, M. Challenger, and E. Belli, "Regular Ex-
pression Based Test Sequence Generation for HDL Program Val-
idation," 2018 IEEE International Conference on Software Qual-
ity, Reliability and Security Companion (QRS-C), 2018, pp. 585-
592.

O. Kilincceker, E. Turk, M. Challenger, and E. Belli, "Applying

the Ideal Testing Framework to HDL Programs," ARCS Work-

shop 2018; 31st International Conference on Architecture of Com-
puting Systems, 2018, pp. 1-6.

G., Mercan, E., Akgiindiiz, O., Kilincceker, M. Challenger and
E. Belli, "Android uygulamasi testi igin ideal test 6n ¢aligmasi
(A Preliminary Study on Ideal Testing of Mobile Applications),"
2018 Turkish National Software Engineering Symposium (UYMS),

2018, pp. 36-42.

O., Kilincceker, and F., Belli, (2017). Grafiksel Kullanici Arayuz-
leri icin Duzenli Ifade Bazli Test Kapsama Kriterleri (Coverage

11

12

INTRODUCTION

Criteria For Testing Graphical User Interfaces Based On Regu-
lar Expressions). 2017 Turkish National Software Engineering
Symposium (UYMS), 2017, pp. 332-343.

1.2 STRUCTURE OF THESIS

This thesis consists of three main parts. Part I summarizes the foun-
dations, related work, and background information. Then, Part II in-
troduces and evaluates new approaches within various case studies.
Part III presents further perspectives, conclusions, and future direc-
tions. Details on these general main parts are presented below.

In Part I, Chapter 1 summarizes the motivations of the thesis, in-
cluding research questions. Then, it presents an overview of the pub-
lications within the scope of the thesis and provides information on
the thesis’s structure. Chapter 2 summarizes related work on vali-
dation of written in hardware description language, graphical user
interface testing, holistic testing, and ideal testing. In Chapter 3, the
background information is presented concerning notions used, cover-
age criteria, and analysis method on utilized models.

In Part II, namely approaches, two test generation approaches based
on regular expression and contextual regular expression are presented
in Chapter 4 and Chapter 5, respectively. Then, Chapter 6 introduces
model-based ideal testing approaches for hardware description lan-
guage and graphical user interface programs. Case studies, results
based on experimental evaluation, and tool support are summarized
in Chapter 7.

Finally, in Part III, Chapter 8 introduces an approach for fault toler-
ance of sequential systems based on extending their models. Chapter
9 concludes this thesis by presenting its important aspects. Chapter
10 finalizes this thesis with possible follow-on projects and future di-
rections.

CHAPTER 2

RELATED WORK

This chapter presents related work and background information for
this thesis. Holistic testing (HT), code-based mutation testing, model-
based mutation testing, graphical user interface testing, and ideal test-
ing are given in the following sections.

2.1 VALIDATION OF PROGRAMS WRITTEN IN HDL

The purpose of conducting functional testing of software is to find
variations or differences between the program and the specification
that may cause errors. The specification is an external and accurate de-
scription of the software program’s behavior. There are test sequences
generated from the external specification and executed in the pro-
gram that are designed to expose the errors that are caused by the
discrepancy between the program and specification.

Testing hardware, on the other side, can be done at various abstrac-
tion levels, mainly at structural level (gate level), register transfer level
(RTL) or behavioral level. At the structural level, the process of gen-
erating test sequences is called ATPG, which strictly uses a netlist
(schematic) representation of the circuit under test [22]. Manufactur-
ing defects, represented by fault models, such as stuck-at, open, bridg-
ing, and delay, can be targeted less expensively at higher levels of
abstraction, for example, at the behavioral level or at RTL.

Validation of VLSI is carried out in pre-silicon or post-silicon stages
of the development flow [23, 24]. The development starts with a spec-
ification provided by the customer and then a designer implements
a behavioral level design that is specifically used for pre-silicon vali-
dation or verification using simulation. After fixing design errors, the
designer converts the verified specification to an RTL design which
can be used for pre-silicon validation against the specification. RTL
can be also used for functional test generation. In post-silicon valida-
tion, a silicon die, a chip not packaged yet, is validated against the
specification to detect errors missed during the pre-silicon validation
stage [23].

Pre-silicon validation is an activity performed on a simulation or
emulation of a design to detect errors or bugs in that design. One
approach used to realize the design validation is to generate test se-
quences from the specification of the system and execute them on

13

14

VALIDATION OF PROGRAMS WRITTEN IN HDL

a simulation or an emulation of the design to detect design errors
or bugs. Some errors can escape from the pre-silicon validation pro-
cess, for which the post-silicon validation is performed to increase
product quality. However, detecting and fixing errors in post-silicon
validation are expensive and time-consuming. Therefore, detecting as
many errors as possible in pre-silicon validation is desirable.

Test generation or testing at the behavioral level for hardware can
be done in a similar manner to software testing and requires well-
selected fault models to target physical and manufacturing defects
[25]. Jervan et al. presented fault models and test generation at the
behavioral level [26]. Moreover, it is reported by Lajolo et al. that
‘stuck-at fault’ models at the gate and behavioral levels are correlated
with each other [27]. The study concluded that the test generation
performed at the behavioral level is faster and simpler than at the
gate level [12].

Validation of HDL programs to detect design faults has been pop-
ular since the 1990s. Stumptner and Wotawa propose a model-based
approach for the validation of HDL programs to address design faults
[28]. The method is called model-based diagnoses (MBD) and at-
tempts to identify behavioral changes in the HDL program. In MBD, a
discrepancy between the implementation waveform and the specifica-
tion waveform addresses the existence of a fault. The method parses
specifications implemented in an HDL language and compares execu-
tion results obtained from running the implementation to find differ-
ences. The MBD is also used to localize faults [29] through the verifi-
cation of HDL programs. Rather than using the waveform of the spec-
ification and implementation by Stumptner and Wotawa [28], Bloem
and Wotawa employ a state-transition diagram of the specification
and utilize a model-checker to find a counter-example that addresses
the design faults [29]. Then, they employ the MBD using the infor-
mation from the counter-example to localize the detected faults. The
thesis employs a similar model used by Bloem and Wotawa [29] for
test generation and mutant generation to address specific HDL faults.
Different from Stumptner and Wotawa [28] and Bloem and Wotawa
[29], this thesis focuses on proposing an ideal testing methodology
that addresses both the presence and absence of HDL faults at the
behavioral level.

Jervan et al. analyze existing coverage metrics at the behavioral
level with the correlation of gate-level stuck-at faults [26]. The anal-
ysis results show that the combination of bit and condition coverage
can be effectively utilized to evaluate the quality of a test set at the
behavioral level. Furthermore, the proposed method by Jervan et al.
use the Random Mutation Hill Climber (RMHC) algorithm for test
sequence generation [26].

Shin et al. propose a model-based testing approach and a coverage
criterion for programmable logic controller (PLC) programs based

VALIDATION OF PROGRAMS WRITTEN IN HDL

on its modeling language called Function Block Diagram (FBD) [30].
They use mutation testing to generate mutants of the model to mea-
sure the effectiveness of the approach and the coverage criterion. The
evaluation is carried out on six FBD models for three test criteria by
comparison with random testing. The generated test suites are exe-
cuted on the models rather than on the actual programs, for which
the authors define a future work to use model-driven development
techniques to convert the models into executable C programs.

Mens et al. present a validation and test approach for executable
state charts for which they developed Sismic, an open-source research
prototype tool [31]. They employ a semi-formal natural language to
develop executable test scripts for functional testing of specific scenar-
ios using the state charts. They also propose two run-time verification
techniques for the state charts, which are based on applying the de-
sign by contract (DbC) and specifying behavioral properties. They
conduct a controlled experiment to evaluate their approaches with
thirteen participants.

In the verification of an HDL design, there is a detailed method-
ology called Open Verification Methodology (OVM) that is "the first
truly open, interoperable, and proven verification methodology" [32]. The
Universal Verification Methodology (UVM) is a standardized HDL
verification methodology derived from the OVM. Unlike previous
methodologies from different vendors, UVM and OVM class libraries
are used to automate the verification procedures for SystemVerilog
HDL.

Adir et al. propose a unified methodology for pre and post-silicon
validation that aims to detect design faults that escape detection by
pre-silicon validation [33]. The methodology applies the coverage-
driven verification (CDV) methodology to the post-silicon validation
problem domain. They implement the methodology in a tool called
Threadmill [33], which is used for pre-and post-silicon validation of
IBM’s POWER7 processor. Kannavara presents a unified pre-silicon
validation method, including security validation [34]. The paper uses
the existing tools used in pre-silicon validation and defines the uni-
fied method, which is generally based on developing common col-
lateral between project development and validation teams. Moreover,
other methods are proposed by August [35], and Lotfy et al. [36] for
pre-silicon validation of mixed-signal circuits and a System-Verilog
behavioral model of the phase-locked loops (PLLs).

Pre-silicon validation of a VLSI circuit with an HDL program is
similar to functional testing of software. Each attempts to find dis-
crepancies between the product and specification that may be caused
by errors or bugs. To this end, this thesis exploits the methods used
in software testing for pre-silicon validation of VLSI circuit design to
address design faults for both positive and negative testing.

15

16

VALIDATION OF PROGRAMS WRITTEN IN HDL

To sum up, this thesis proposes a pre-silicon validation methodol-
ogy at the behavioral level that is supported by a toolchain to automa-
tize the approach for application of the ideal testing to the given HDL
program, targeting faults such as single output bit stuck-at 0/1, case
bit stuck-at 0/1, condition stuck-at True/False, their combinations.

2.2 GRAPHICAL USER INTERFACE TESTING

The process of testing the GUI of a software application, that is, one
that has a GUI front-end and there are available events("enter a text",
"click on a button", "select an item from a dropdown") that can be
applied on GUI widgets (for example, "text-field", "button"”, "drop-
down") to perform actions in the system, is called GUI testing. The
GUI testing process can be carried out effectively through a well-
selected model, that is, Finite State Machine (FSM) [37], Event Flow
Graph (EFG) [38, 39], Event Sequence Graph (ESG) [7]. The FSM, EFG,
and ESG are graph-based models. Optimization and traversal algo-
rithms need to be applied to them to produce test sequences.

Shehady and Siewiorek implemented a formal way to describe a
GUI called a Variable Finite State Machine (VFSM) [37]. The VFSM is
then transformed into an FSM to be used in test generation by using
a well-known W-Method, which was originally introduced by Chow
[4]. The W-Method requires a completely defined FSM, so there could
be many NULL transitions within the model. Although the VFSM
requires fewer states than the FSM, the proposed algorithm runs on
many states of the FSM.

ESG is proposed by Belli et al. [7, 42] to be used in modeling the
GUL A testing method is also proposed for use in this novel model.
The ESG describes the events at the vertexes and the relationship of
the events at the edges of the given GUI. Testing methods merge the
PT and NT to obtain a holistic viewpoint [7]. The system is tested
against illegal inputs (incorrect behavior) in the NT. In the PT, it is
tested against legal inputs (correct behavior) in compliance with user
expectations. The suggested approach is thus generic, describing all
correct and incorrect behaviors.

Memon et al. presented a test generation algorithm based on artifi-
cial intelligence-based planning using the EFG model [38]. They also
propose generating a hierarchical model from the given GUI struc-
ture. The EFG model is constructed, and then the planning algorithm
is implemented, which involves specifying a collection of operators,
an initial state, and a target state. Then, by considering GUI events
and interactions, the algorithm produces test sequences between the
initial and target states. They are also using GUI model decomposi-
tion to deal with the issue of scalability.

Memon recast the existing idea of event-based GUI testing via
model-based techniques called event-space exploration strategies (ESES)

2.2 GRAPHICAL USER INTERFACE TESTING 17
Table 2.2.1: Comparison of GUI testing methods
Model Pros Cons

Coverage Crite-
ria

[37]]| Variable
Finite State

N-switch set
cover

Covers nearly
all prede-

Results exces-
sive number

Machine fined faults of redundant
(VESM) test cases
[40]| Finite State Complete in-| N/A N/A
Machine teraction se-
(FSM) quences (CIS)
[7] | Event Se- Complete in- | Testing GUI | N/A
quence teraction se- | with the PT
Graph (ESG) quences (CIS) and NT
[38]| GUI Tasks N/A Intuitively Tasks are cho-

and easily
scalable for
larger GUIs

sen by test
designer that
may yield in-
adequate cov-
erage

[39]| Event Flow N/A Quickly gen-| N/A
Graph (EFG) erate test
cases without
scalability
problem
[41]| Event Inter- Genetic al- | Increase the | N/A
action Graph gorithm—CIT feasible cov-
(EIG) coverage erage of these

suites

*N/ A refers to "Not Available"

18

VALIDATION OF PROGRAMS WRITTEN IN HDL

[39]. He decreases the cost and effort of event-flow techniques and au-
tomates the procedure to enable extensive experiments and simplify
the model creation step.

Xie and Memon presented a new concept called Minimal Effective
Event Context (MEEC) and used this in an empirical way for fault
detection [41]. Generally, GUIs are implemented as a collective of
widgets with their event handlers and responses to event handlers.
Generating long test cases becomes expensive. The purpose of mod-
eling MEEC is to create an abstract model of GUIs and then generate
the shortest "potentially” problematic event sequences for test case
generation.

Huang et al. developed a method to repair GUI test suites, which
suffer from in-feasibility because graphs are generally used to acquire
test cases, and they are created from all possible sequences of events
[43]. There is a possibility that an event inside these kinds of test se-
quences may not be available for execution and terminate early. They
used a genetic algorithm to fix these problematic test suites and in-
crease test coverage.

Belli et al. examined current software reliability models and seeked
to obtain an experimental understanding of this issue [44]. In the
provided work, they indicate that selecting an appropriate modeling
technique for GUI testing affects the quality of the assessment process
and, hence, the software.

Banerjee et al. researched GUI testing articles and studies and matched

them with a systematic mapping technique [45]. They defined selec-
tion criteria for studies about GUI testing from the pool of 230 articles
written between 1991 and 2011. They classified studies, provided an
overview of existing approaches, and spotted areas that require more
study and research.

Belli et al. presented a study about reviewing and summarizing ex-
isting works on model-based GUI testing [46]. They also provide the
PT and NT examples from realistic GUI projects. They gave examples
from conventional and modern techniques for model-based GUI test-
ing. They also covered test-case construction and optimization of the
process.

Alegroth and Feldt provided a case study, including a comprehen-
sive qualitative study for visual GUI testing (VGT) in industrial prac-
tice [47]. The study is conducted on a well-known music streaming
application, Spotify. They attempt to answer three research questions
about problems, challenges, and limitations for adaptation of auto-
mated VGT on the company using the Sikuli [48] test automation tool
and Graphwalker [49] model-based testing tool at the industrial level.
They also explain why the VGT was abandoned in the company due
to organizational changes based on experiences. Finally, they present
an automated GUI testing solution for Spotify.

2.2 GRAPHICAL USER INTERFACE TESTING

Besides automated methods based on test automation tools, some
works utilize machine learning methods, especially deep reinforce-
ment learning [50, 51] for automatically traversing the GUIL Eskonen
et al. presented an image-based deep reinforcement learning method
for exploring GUI structure [50]. The introduced method mainly fo-
cuses on learning GUI behaviors by feeding screenshots of the GUI
to the neural network and letting the learning method explore the
GUI events. They also compare the exploration efficiency of the al-
gorithm with Q-learning and random exploration methods. However,
they do not provide an appropriate experimental evaluation of how
the method effectively catches faults. Similar to Eskonen et al. [50],
Adamo et al. present a reinforcement learning method for automated
GUI testing based on exploration [51]. They utilize a Q-learning al-
gorithm that outperforms the random exploration approach based
on experimental evaluation concerning only code coverage efficiency.
They also do not provide any information regarding fault coverage.

Table 2.2.1 presents a comparison among the studies related to GUI
testing, focusing on each approach’s advantages and disadvantages.
It also gives the models used in each study and the coverage criteria
for the study. In this table, the N-switch set cover is a generalization
of a switch cover and refers to the covering switch statement in the
software program graph, introduced by Chow [4].

In this thesis, the GUI under test is modelled as given by Silistre et
al. [52] and partially by Shehady and Siewiorek [37]. Then, the FSM
model is used for mutant generation. However, the FSM models are
converted to the RE model for test generation that is different from
Silistre et al. [52], and Shehady and Siewiorek [37]. This modeling ap-
proach is more similar to the method proposed by Belli [7] in which
the author does not offer a test generation approach in contrast to
this thesis. In the methods proposed by Memon [39] and Xie and
Memon [41], the authors used a very different modeling methodol-
ogy than the thesis by using various node types for different GUI
events. The advantages and disadvantages of these different models
for GUI testing are elaborated by Silistre et al. [52]. The main bot-
tlenecks of the exploration-based solutions proposed by Eskonen et
al. [50] and Adamo et al. [51] are unnecessary test inputs and auto-
matic exploration of GUI events without knowing the correct input(s)
of this event to trigger errors. However, the exploration-based meth-
ods are valuable for automatic extraction of the GUI model (called
GUI ripping) accompanied by static analysis methods to eliminate
low-quality and redundant test suites. Therefore, this thesis focuses
on the model-based testing approaches due to their robustness and
determinism.

19

20

VALIDATION OF PROGRAMS WRITTEN IN HDL

2.3 HOLISTIC TESTING

Belli presented a holistic strategy for modeling and testing, which
considers the behavior of the system under both desirable (legal, ex-
pected) and undesirable (illegal, unexpected) situations, forming pos-
itive testing and negative testing, respectively [7]. Belli also proposed
finite-state automata and regular expression, having equivalent ex-
pressive power and test generation capability, for modeling and test-
ing graphical user interfaces using positive testing and negative testing
[7]. The holistic strategy is then applied to graphical user interfaces by
Belli [7], web service composition by Belli et al. [53], web application
by Belli et al. [54], interactive systems by Belli et al. [55], hardware
designs by Kilincceker et al. [56], and android applications by Mer-
can et al. [57] for both modeling and testing. Kilincceker and Belli
introduced uniform modeling and testing for hardware and software
design using a holistic strategy [58].

Fraser and Wotawa introduced a test case generation method based
on the property relevance of test cases to determine property viola-
tions [59]. The proposed method uses model-checkers that employ
the Kripke structure as a model formalism to generate these test cases.
To assess adequacy, they also propose new coverage criteria for the
test generation method by using structural coverage and property rel-
evance. This thesis defines positive and negative test cases, including
their test execution results in contrast to the approach by Fraser and
Wotawa [59]. The negative test cases are used to show property vio-
lations if they pass on the system. The positive test cases, however,
are used to show property relevance if it fails on the system. The
empirical study concludes that the proposed method is encouraging
and provides several advantages, such as the effectiveness of the test
cases based on the proposed coverage criteria. However, this method
results in a large number of test cases that have a higher execution
time. This work differs from the thesis concerning the type of model
used, that is, this work uses the Kripke structure as a model, and the
current study uses the FSM and RE.

The approach introduced in this thesis assumes that positive testing
addresses the presence of faults, whereas negative testing targets the
absence of faults.

* Positive Testing: Test sequences generated from the fault-free
(original model) are applied to the faulty/mutant program.

* Negative Testing: Test sequences generated from the faulty (mu-
tant model) are applied to fault-free/original programs.

A holistic testing strategy is a major component of the approach
introduced in this thesis. The thesis refers to a supposedly fault-free
system as an original HDL program, a supposedly fault-free system

2.4 MUTATION TESTING

model as an original model, a faulty system as a mutant HDL pro-
gram, and a faulty model as a mutant model.

2.4 MUTATION TESTING

DeMillo et al. [9] and Hamlet [10] proposed the MT in their seminal
paper. The MT is a fault-oriented technique that uses a given soft-
ware program’s mutation. A mutation contains a simple fault caused
by making small changes in the original software program. A gener-
ated test data is executed on each mutant, and the results are com-
pared with the result of the original program’s test execution results.
If the result of the test data differs from the result of the original test
data, then the corresponding mutant becomes dead; otherwise, it is
still alive because the test data result does not make any difference.
Therefore, the two cases could occur. The test data does not contain
enough sensitivity to distinguish between the mutant and the corre-
sponding programs, so the mutant is live; thus, there is no test data
to detect the fault. Or it is an equivalent mutant; thus, it behaves as
equivalent to the corresponding program. A mutant is equivalent to
the corresponding program only when there exists no test case (not
just any test data) that distinguishes the two. Mutation testing can be
used to assess the effectiveness of a given test set using a testing cri-
terion, namely mutation score [60]. Depending on the programming
languages, there are several types of mutation operators for generat-
ing the mutants [16]. A test set, which is measured for effectiveness,
is then executed on the generated syntactic mutants to calculate the
mutation score. Once the result of the execution of the test set on
the mutant program differs from the result of the execution on the
original program, the mutant becomes killed. If any mutant does not
differ from the original program, those mutants stay undetected and
live. Thus, the mutation score is the ratio of the number of killed mu-
tants over the total number of mutants.

Mutation Test \

Operators Suite :
Program Killed Mutants Legend
\¥/\
{ Program
Mutation
: _[_) Score Code

Live Mutants

@1

Program
AN / Model
i Mutation
Killed Mutants
~" j Score
wl
Mutation ;}
: j Score
Model-based Mutation Testing { | Live Mutants
. _— Y,

Figure 2.4.1: Code-based and Model-based Mutation Testing

21

22

VALIDATION OF PROGRAMS WRITTEN IN HDL

Mutation testing, see Figure 2.4.1, can be applied to the software
model: Offutt [11]. This model can be an FSM [17], Event Sequence
Graph [8], or Function block diagram [30]. This thesis uses the FSM
for mutation testing. Mutation testing offers an adequate artifact to
qualify the test suite, in which test cases are executed on the mutants.

This thesis uses the mutation operators to insert, omit, or replace
transition(s)/state(s) in the FSM mutation. The combinations of those
operators are utilized to materialize faults in the model domain.

DeMillo et al. emphasized the power of the coupling effect that
states the test data that distinguish only simple faults could also be
sensitive to cover more complex faults [9]. The MT method is a pow-
erful and elegant method that is applied to both software and hard-
ware testing [56, 61]. The only consideration is the cost of this method,
which increases very quickly due to the program’s size and directly
affects the number of mutants. A comprehensive literature review in
the form of a "mini-handbook"-style road-map for the MT is given by
Papadakis et al. [62].

King and Offutt presented an MT framework with the 22 mutation
operators for the Fortran 77 version of the Mothra system, a software
testing environment [63]. The Mothra achieves the highest mutation
(adequacy) score for the set of test cases executed on mutant and orig-
inal programs. The Mothra system generates 970 mutants for a 27-line
program. These results are computationally and spatially expensive
due to the excessive number of mutants. Therefore, the Mothra han-
dles this problem by utilizing incremental compilation.

Wong and Mathur presented an empirical study to reduce unac-
ceptable computational expenses due to the number of mutants [64].
One of the proposed solutions is randomly selected from a subset of
all mutants (x). Earlier investigation shows that a random selection
of 10 to 100 of all mutants makes dramatic reductions in requiring ef-
forts while keeping the MT’s effectiveness. They increase x by 5 up to
40 to examine the cost and power of the MT. Another offered solution
is constrained mutation that requires selecting a few specific types of
mutants and neglecting the others. They state that proper selection of
a small set of mutant types significantly lessens the MT’s complexity
and still keeps nearly the same fault detection ability of the MT.

Ma et al. introduced the MuJaVa tool for the MT, including the GUI
of the Java programming language for both method and class-level
mutation with related levels of mutation operators [65]. The method-
level mutation operators change the expressions by replacing, delet-
ing, and inserting operators. The class-level mutation operators are
responsible for object-oriented attributes: inheritance, polymorphism,
and dynamic binding. The MuJava contains the mutant generator, in-
cluding an engine to detect equivalent mutants, the mutant executor,
and the mutant viewer components. However, it is reported that the
Mu]Java is still very slow for a large set of mutants.

2.4 MUTATION TESTING

Jia and Harman presented a comprehensive analysis and survey
for the MT [60]. It is also mentioned that the new trend in the MT
will be the semantic effects of mutants rather than syntactic effects.

Fabbri et al. provided an MT technique to validate state chart-based
specifications [66]. The technique uses a set of mutation operators: the
finite state machine, extended finite state machine, and state charts-
feature-based operators [66]. The set contains 37 mutation operators.
They also utilize an abstraction strategy, namely the Hierarchical In-
cremental Testing Strategy (HITS), to make the technique more feasi-
ble for conducting a modular and incremental testing activity. How-
ever, they also state that tool support becomes mandatory for testing
large-size statecharts.

Belli and Beyazit compared the event-based and state-based ap-
proaches for MBMT [67]. The event-based approach uses the event
sequence graphs (ESG), whereas the state-based approach uses the
finite state machine (FSM) [67]. The comparison criteria are mutation
operators, coverage criterion, and test generation method. The muta-
tion operators are sequence insertion, sequence omission, event inser-
tion, and event omission for the ESG model. In contrast, transition
insertion, transition omission, state insertion, and state omission are
used for the FSM model. The coverage criterion is event pair coverage
for ESG and transition coverage for FSM. However, the test generation
method for specific coverage criteria roughly requires solving a well-
known problem, namely the Chinese Postman Problem (CPP). They
report that the FSM-based test sequences comprise more redundancy
and cover 40 to 100 more failures. However, the cost becomes roughly
52 to 122 times higher. The ESG covers 29 to 50 fewer failures while it
costs roughly 30 to 55 less due to event sequences clustering. Experi-
ments conclude that the FSM-based test results are more effective for
covering more failures because of the redundancy.

Belli et al. proposed an MBMT method providing novel mutation
operators, namely omission and insertion operators, evaluated fault
detection ability of the test set acquired using the mutated model and
surveyed the literature on the MBMT [8]. They validate the effective-
ness of three examples, which are industrial and commercial systems.
Experiments show that the insertion operator is more efficient than
the omission operator because it reveals more faults.

Kilincceker et al. proposed a hybrid MT approach that combines
code-based mutation testing and MBMT to validate the hardware de-
sign [56]. They used code-based mutation for test execution. They
selected the regular expression (RE) model for test generation due to
its algebraic and declarative power. They also theoretically and exper-
imentally proved that the proposed method satisfies the conditions
of Goodenough and Gerhart’s ideal testing [2].

To summarize the available studies in the scope of code and model-
based mutation testing, this thesis presents a comparison table, Table

23

24

VALIDATION OF PROGRAMS WRITTEN IN HDL

2.4.1, in which the mutation operators and effectiveness of each ap-
proach have been elaborated.

Table 2.4.1: Comparison of Mutation Testing Methods

Method

Code and Model

Mutation Operator

Effectiveness

Code-Based Mutation

[9]
[9]
[63]
[65]

Fortran-like programs
VHDL programs
Fortran Programs

Java programs

Logical Expression replaces
10 mutation operators
22 mutation operators

40 operators

Simple change

Not Specified
Automation environment
Not Specified

Model-Based Mutation

[66]
[671
[8]

Statecharts

Event Sequence Graph (ESG)
Event Sequence Graph (ESG)

19 operators
3 operators

3 operators

Automation environment
Comparison of models
MBMT approach

Hybrid

[56]

Finite State machine (FSM)

Semantic mutants operators

MBIT approach

The Mutation testing concept has originally been applied to pro-
gram codes. During the last decade, this concept has also been ap-
plied at the design level to models, leading to model-based mutation
testing; Belli et al. [8], and Aichernig et al. [18] (See Table. 2.4.1). For a
systematic utilization, appropriate mutation operators have been sug-
gested, for example, for mutating finite-state machines Fabbri et al.
[17] and event sequence graphs Belli et al. [8].

Fraser et al. provided a survey on testing based on model-checkers
that is normally employed to find counterexamples violating checked
properties [68]. The survey also presents details on mutation-based
test generation that is first introduced by Ammann and Black [69]
based on model-checkers.

Aichernig et al. introduced an automation tool for Model-based
mutation testing (MBMT) [18]. The tool called MoMuT:UML (pro-
nounced "MoMuT for UML") automatically generates test suites from
the UML model of a system and then executes them on generated
mutants to check their conformance relation.

Fellner et al. presented a novel test generation method for model-
based mutation testing by using a model checking method [70]. They
use hyper properties to generate test cases to address strong muta-
tion analysis. Their approach utilizes a logic called HyperLTL for hy-
perproperties and offers a solution to generate test cases from non-
deterministic models. The solution provided for non-determinism is
not feasible in practice, thus, they changed the solution to the well-
known method by converting a non-deterministic model to a deter-
ministic one. The authors automate the mutant generation for Verilog
models via the utilization of some mutant operators. Normally, the
mutants are used to measure the mutation scores by executing gener-
ated test cases on these mutants. Even though the details are provided
for the mutant generation, the authors do not provide enough detail
for test execution that is automatically carried out by a model-based
mutation testing tool called MoMuT.

Fellner et al. offered a test generation approach based on a heuristic-
guided branching search algorithm for model-based mutation testing
[71]. The approach employs asynchronous parallel processing to ex-

=

2.4 MUTATION TESTING

plore non-deterministic models. They integrate the approach to the
MoMuT tool to cope with the huge state space of the models. The
algorithm can achieve over 2,300 concurrent objects. They use 10 dif-
ferent industrial scale case studies defined in UML, Event-B, and a
textual domain-specific language (DSL) modeling language. The Mo-
Mut tool can automatically convert these models to action systems.
However, the mutation score for some of the case studies is low due
to the random search algorithm utilized.

Prasetya and Klomp proposed a model-based testing approach to
cope with non-deterministic models [72]. The non-determinism in the
models causes the execution of multiple paths that lead to the impos-
sibility of the calculation of test coverage. The authors employ a prob-
abilistic approach to calculate aggregate coverage for non-deterministic
cases produced by Labelled Transition System (LTS), Markov Deci-
sion Process (MDP), and Markov Chain. They model the system un-
der test using LTS and then extended it to MDP that is a probabilistic
version of the LTS. This work provides two experiments that are a
non-deterministic model not linked to any system and a model of
the backoff mechanism of the IEEE 802.11 WLAN protocol. Their ap-
proach suffers from a combinatoric explosion of the possible combi-
nations of words for the usage of the coverage metrics proposed.

Besides using model-based testing for specific programs, there is
a special type of MBT called checking experiment or finite state ma-
chine testing that requires special assumptions on the model. The as-
sumptions need a specification (Mealy machine) required for them to
be reduced, deterministic, and completely specified. Petrenko intro-
duced an approach for this type of MBT that utilizes Mealy machines
with symbolic inputs and outputs to remove these assumptions [73].
Petrenko also addressed detecting assignment/output faults and tran-
sition faults [73].

Mutation testing of hardware generally addresses design faults, but
it is experimentally shown that they can also detect manufacturing
faults; Nguyen et al. [61], Robach et al. [74]. Mutation testing is also
used as a functional qualification system for HDL design verification;
Hampton et al. [75], Rahkonen [15]. The proposed method by Hamp-
ton et al. [75] has been implemented and is available as a commercial
tool called Certitude *. Certitude is used to measure the quality of a
verification method using mutation testing.

In this thesis, the code-based mutation testing approach is adapted
from DeMillo et al. [9], King and Offutt [63], Ma et al. [65], and Fabbri
et al. [66] to obtain code-based mutants from the original program by
using mutation operators. The authors by Fabbri et al. [66], Belli and
Beyazit [67] and Belli et al. [8] offered model-based mutation testing
that this thesis utilizes to construct model-based mutants from the

Certitude Tool, https://www.synopsys.com/verification/simulation/certitude.
html

25

https://www.synopsys.com/verification/simulation/certitude.html
https://www.synopsys.com/verification/simulation/certitude.html

26

VALIDATION OF PROGRAMS WRITTEN IN HDL

original (fault-free) model by using model mutation operators pre-
sented by Kilincceker and Belli [76] for the FSM model. It uses the
similar idea proposed by Kilincceker et al. [56] as being a hybrid ap-
proach applying code-based and model-based mutation testing meth-
ods simultaneously.

2.5 IDEAL TESTING

Goodenough and Gerhart define the ideal test based on its principal
conditions [2]. The theorem states that in the case of test data satis-
fying these conditions, namely reliability and validity, this test data
enables testing in the absence of faults. They also provided proof of
this fundamental theorem. Howden introduced a testing method for
the analysis of paths, namely P-Testing, and evaluated the ideal test in
terms of reliability condition [5]. The reliability of P-testing is checked
against different types of common faults. However, Howden stated
that P-testing is reliable or almost reliable for subset faults, not cov-
ering all faults. Bouge extended the ideal test’s current conditions by
offering additional features, namely bias and acceptability [77]. Bouge
also detailed the relationship between program testing and program
proving for bias and acceptability conditions. Langmaack presented
sufficient and readable proof for compiler verification, considering
the ideal test for verification and software testing [78]. The main in-
spiration of the thesis is based on the seminal work of Goodenough
and Gerhart [2].

To briefly describe the ideal test, the following informal definitions
given by Naik and Tripathy [3] are used. The formalization of an ideal
test starts from the definition of a program as follows:

Definition 2.1. Program (3 is a function that maps domain (D) to range (R).
B :D — R(B C DxR) with a set P of properties that are main attributes
of the program 3, such as concurrency, sequence, specific computation, pro-
gram state, timing behavior.

The domain and range, including selected attributes of a program,
can be limited to a model to eliminate irrelevant details such as timing
and concurrency. Considering these details requires utilizing a model
at higher expressive power that measures how well modeling can
convey the details and relationships inherent in a particular problem,
which is out of the scope of the thesis. This limited program can
be represented by a model for which a formal definition is given as
follows.

Definition 2.2. Let 3 be a program as defined in Definition 2.1. Model pp,
is a function that maps Dp__ to Rp, of the program {3 for a set P of specific
properties. up_ : Dp_ — Rp_, where up, C 3, Dp, € D, Rp,, TR, Py
CP

2.5 IDEAL TESTING

Model pp, as being subset of P,, represents the same behavior
as the program P,,. However, the behavior of pp is limited to its
domain Dp, to range Rp, meaning that up, contains only some
pairs of inputs and outputs. Therefore, the nonexistent pairs in Py,
also do not exist in pp, .

Definition 2.3. Let (3 be a program as defined in Definition 2.1. A test 3(t)
is a predicate, which is assigned to an execution of a program {3 resulting
successful if it is passed or unsuccessful.

The passing or failing values on a program 3 constitute a test case
that is obtained from a model executed on the program. In execution,
a test predicate is measured by checking whether the test output and
execution output match or not.

Definition 2.4. Test case (t) is a pair of input (i) and expected output (o).
t ={(i, 0)} where i € Dp,_ and o € Rp_ . For example, t1 ={ 0100, 110011}.

Definition 2.5. Let (t) be a test case as defined in Definition 2.4. The test
suite (T) is a set of test cases (t)). For example, T ={ t1,12,t3... }

Definition 2.6. Test sequence (ts) is an ordering of test cases, which starts
and ends with a specific test case. For example, ts = (t3t1tatsts tste).

The test suite may cover the entire input and output domain of
the model, as using exhaustive testing, which results in excessive test
effort. To decrease this effort in a more practical way, a test suite can
be selected from the entire domain by using some criteria. In this
way, more efficient test sequences satisfying test selection criteria are
collected to assess test adequacy.

Definition 2.7. Let (t) be a test case as defined in Definition 2.4. Test
selection criterion (o) is a rule to choose specific test cases for certain reasons,
such as fault detection. Satisfy(t, o) is a predicate to define fulfillment of t
with respect to o. Satisfy(t, o) = true iff t satisfies o, otherwise, Satisfy(t, o)
= false.

Definitions 2.1-2.7 are to support and clarify the background of
an ideal test. Test predicate ((t) is either successful or unsuccessful
depending on execution results. However, it is necessary to define
another predicate to check its acceptability, as follows:

Definition 2.8. Let 3(t) be a test as defined in Definition 2.3. OK(d) is
a predicate referring to the acceptability of the result of 3(t). OK(d) = true
iff B(t) is an acceptable output 0. OK(d) = false iff 3(t) is an unacceptable
output o.

The predicate OK(d) checks the acceptability of only a test case in
a test suite. If all test cases in a test suite T are acceptable, T becomes
successful by means of the following definition.

27

28

VALIDATION OF PROGRAMS WRITTEN IN HDL

Definition 2.9. Successful(T) is a predicate that defines the success of a set
of ts € T. T'is a successful test iff Vts € T | OK(ts). Successful (T) = true iff
V't € T| OK(t). Otherwise, T is an unsuccessful test iff V.t € T | =OK(ts).
Thus, Fail(T) = true iff vV t € T | ~OK(#).

The predicates OK(d), Successful(T), Fail(T), Satisfy(t, o) are used
to define reliable and valid criteria to achieve an ideal test.

Definition 2.10. Reliable Criterion is related to the consistency of a selected
test suite with respect to o, represented by Reliable(c). ¥V o | Reliable(o) iff
Vts € T A\ Satisfy(ts, o) | Successful(T) \/ Fail(T).

Definition 2.11. Valid Criterion is related to the ability of a test suite to
produce meaningful results, represented by Valid(c). ¥ o | Valid(c) iff 3t €
T A Satisfy(t, o) | ~OK(t) then Vt € T /\ Satisfy(t, o) | ~OK(t).

The following definition presents an ideal test concerning the relia-
bility and validity of test selection criteria.

Definition 2.12. A test () is an ideal test iff V ts € T /\ Satisfy(ts, o) |
Reliable(o) N Valid(o).

CHAPTER 3

BACKGROUND

In this chapter, the terminology used in this thesis, the coverage crite-
ria and an analysis method are presented. The notations and models
used in the thesis, including Finite State Machine (FSM), Regular Ex-
pression (RE), Extended Regular Expression (ERE), Syntax Tree (ST),
and Contextual RE (CRE) are elaborated in Section 3.1. The coverage
criteria for the defined models are presented in Section 3.2. Lastly, the
regular expression analysis method, PQ-Analysis, is also presented
with complementary algorithms and their complexity analysis.

3.1 USED NOTIONS

The FSM models behavioral level HDL and graphical user interface
programs as considered sequential systems. The following formal def-
inition is presented for the FSM notion, which will follow other no-
tions.

Definition 3.1. Finite State Machine: An FSM [79] is defined by 5-tuples
(Q, >, 6, qo, F) where the tuples are;

* Q: A finite set of states;

>_: A finite set of input symbols (alphabet);

d: A state transition function, mostly represented by a table;

* qo: An initial (starting) state is an element of Q;

F: A finite set of final states is a subset of Q.

Example 3.1. An example FSM M is given by ({so,s1}{a,b,c,d},d,{s0}{s1}),
where & = { 8(so, a) = so, d(so,b) = s1, d(s1, ¢) = s1, 8(s1, d) =so } is a
transition function. Figure 3.1.1 represents the M graphically.

The following chapters will use the RE model converted from the
FSM model to generate test suites. The formal definition of the RE
model is below.

Definition 3.2. Regular Expression: An RE [79] contains the symbols
(a,b.c, ...) connected by operators that are defined as follows;

* Sequence (usually no operator to represent), for example, “ab” refers
to "b"” follows "a”,

29

30

BACKGROUND

Figure 3.1.1: An example FSM M

" ._n

e Selection (represented by "+" operator), for example, "a+b" refers to
/’a ” Or /Ib I’/

Y %1

e [teration (mostly represented by "*” (star) operator), for example, "a
refers to "a” repeats zero or more times.. Also, "a™" refers to one or

more times.

Example 3.2. An example of a reqular expression is given below;

[(ab(c+d)*)] (1)

The example RE (in (1)) means symbol "a" is followed by symbol
"b" that is followed by zero or more iterations of symbol "c" or "d".

The ERE model will also be used to generate test suites as one
of the model-based test generation notions. The following definition

presents it formally.

Definition 3.3. Extended Regular Expression (ERE) [8o]: The regular ex-
pression given above is extended using the following range operator applied
to Kleene’s Star operator

Range - is represented by "n~m" instead of "™*" operator. For ex-
" "

ample, "a™ ™" means that "a" can occur a minimum of "n" and a
maximum of (m-n+1) times.

Example 3.3. The reqular expression given in Example 3.2 can be extended
as follows:

[(ab(c+d)'~2)] (2)

The CRE model is obtained after the regular expression analysis
that will be mentioned in Section 3.3 and will be used to generate
test suites in Section 6.1. It can be defined as follows:

Definition 3.4. Contextual Reqular Expression (CRE) [81]: It is a tabular
representation of a reqular expression and contains backward and forward
contextual information of it, which is obtained after contextual analysis (see
Section 3.3 for details) of a RE. Figure 3.1.2 shows the ERE of Example 3.3.

3.1 USED NOTIONS

®'L | symbal | ®'R L,x | symbal | R,x
——————————————— e e B s B e
| 1'[| 2'a a,t | by2 1.1 + c,3 + d,4
——————————————— L e B e e T
1'[| 2'a | 3'b by2 + C,3 + dyd]| 1,1 |
——————————————— R el Bl e T
2'a | 3'b |4'c +5'd + 68']b,2 + c,2 + d,4] c,2 [].1 4+ cC,3 + d,4
——————————————— e e B s B e
E'b + 4'c + 8'd|] 4'c |4'c + 8'd + 6']|b,2 + c,3 + d,4| d,4 |],1 + c,3 + d,4
——————————————— R el Bl e T
E'b + 4'c + 58'd|] 8'd |4'c + 5'd + &8'] [.6 | a,& | b,2
——————————————— R el Bl e T
E'b + 4'c + 5'd| '] | | [.6 | a,5

Figure 3.1.2: Contextual Regular Expression

The syntax tree will be used to represent a RE model and to gener-
ate test suites using the tree traversal algorithm, which will be intro-
duced in the following chapter.

Definition 3.5. Syntax Tree (ST): A syntax tree is basically a tree to repre-
sent a regular expression. It can be either right-to-left or left-to-right associa-
tive. Root and internal nodes store operators, and leaves store symbols of the
reqular expression. The ST representation, left-to-right associative, of RE in
Example 3.2 is shown in Figure 3.1.3.

ROOT
Concatenation

v

Concatenation

A 4
STAR
Union Null
Figure 3.1.3: The ST Representation, Left-to-right Associative, of RE in the
Example

Using the approach proposed in this study, the set of test sequences
generated from the ST model constitutes a test suite. Depending on
the selection of consecutive Kleene star operators, the length of any
test sequence can be infinite. A solution requires using the range op-
erator based on the ERE model to tackle the problem, and the range
operator can be defined using any specific values.

31

32

BACKGROUND

3.2 COVERAGE CRITERIA

There are several coverage criteria to assess the adequacy of the test.
They define how the system is tested thoroughly and whether the
generated test sequences are good enough. From a software testing
perspective, "thorough", "good enough", and "adequate" refer to the
same meaning [82]. Coverage criteria are used to achieve these qual-
ity measurements. A test set is adequate when it satisfies particular
coverage criteria.

The bit coverage defined for HDL program validation at the behav-
ioral level is used in this thesis.

Definition 3.6. Bit coverage [13]: It is satisfied if, for each bit of a variable,
signal, and port in the behavioral design, there is at least a test sequence that
exercises bit stuck-at o/1 assignments of these bits.

The alphabet and operator coverage criteria are defined for test
sequence generation based on RE in the literature [83].

Definition 3.7. Alphabet coverage [83]: It is satisfied if, for each symbol ‘a’
in the alphabet, there is at least a test sequence, including symbol ‘a’, in the
test suite. For instance, the test suite abcd satisfies this criterion for the RE
given in Example 3.2

Definition 3.8. Operator coverage [83]: It is satisfied if, for each union op-
erator, the test suite includes a test case containing the first operand and
another test case containing the second operand of the union operator.

For each Kleene’s star operator, the test suite includes a test se-
quence containing no iteration, precisely one iteration, and more than
one iteration of the operand of Kleen’s star operator. For instance, the
test suite ab, abc, abd, abcc, abcd, abdd satisfies this criterion for the
RE given in Example 3.2

Definition 3.9. Context Coverage Criterium: It is defined as the generated
test suite that includes all cases by the Context Table. This is formally;

VineT=th=ceC ()

Definition 3.10. Left Context Coverage Criterium: It includes all states of
the generated test suite by the left indexed symbols of the Context Table. This
is formally;

Vin €T = tn =c € Clfliert (4)

3.3 FINITE STATE MACHINE AND REGULAR EXPRESSION ANALYSIS

The Right Context Coverage Criterium is defined similarly to the
Left Context Coverage Criterium.

Definition 3.11. Forward Context Coverage Criterium: It includes all states
of the generated test suite by the Forward Context Table. Thus, formally,

VineT=ty=ce (5)

The Backward Context Coverage Criterium is defined similarly to
the Forward Context Coverage Criterium.

Definition 3.12. Compatibility Coverage Criterium: It is defined as the full
compliance of all cases of the produced test suite with the indices given in
the Compatibility Table. This is formally;

Vin€eT=th=uecl (6)

The coverage criteria are determined by the tables obtained as a
result of the analysis of a RE. As mentioned, state information is lost
in conversions from FSM to RE, and the indexing process recreates
the lost state information. In this context, with the coverage criteria
put forward, state coverage and transition coverage are frequently
used in the literature.

The coverage criteria can sometimes be confused with metrics for
evaluating the performance of test generation algorithms. They are
used to measure the adequacy of the test. For evaluation performance
and comparisons between test generation algorithms, the commonly
used metrics are test suite size, test generation time, test execution
time for efficiency, fault coverage, and mutation score for effective-
ness. The test suite size is about the length of the generated test set,
and the test generation time is a measurement of the total time for
test generation, similar to the test execution time. On the other hand,
the fault coverage is the ratio between the number of detected faults
and the total number of faults injected in the experiment. The muta-
tion score is the ratio between the number of killed mutants over the
total number of mutants, as mentioned in Section 2.4.

3.3 FINITE STATE MACHINE AND REGULAR EXPRESSION ANALY-
SIS

The regular expression analysis is carried out by PQ-Analysis method
and it is proposed by Eggers and Belli [81, 84] indexes the provided
RE to obtain missing state information during conversion from the
FSM. Reader can refer to Section 3.1 for definitions of RE and FSM.

33

34

BACKGROUND

Moreover, the context of the RE elements can cause ambiguity due
to the same symbol appearing in different positions, which is copied
after PQ-Analysis using indexing of the symbols. The primary pur-
pose is to extract information regarding the analyzed system’s fault
tolerance capability using indexing and context tables (CTs). In the
thesis, it is utilized to increase the ability of test sequences acquired
from CTs. The PQ-Analysis is adopted as a base of test generation ap-
proach using tables resulting from the PQ-Analysis. Test generation
from these tables results in more efficient test suites than from the
others based on different models, such as FSM, due to the usage of
redundancy provided by the PQ-Analysis.

Eggers and Belli [81, 84] propose an approach to detecting, localiz-
ing, and correcting faults based on regular expression, originally to
be deployed in compiler construction. Belli extended this approach
to a general theory of fault tolerance and its applications to sequen-
tial systems, for example, faults in system-user interactions [7] and
hardware [85]. The idea is to analyze the checking self-detection and
self-correction capabilities of a system under test. If this system does
not possess these capabilities, the approach suggests extending the
system by inserting a minimized amount of functional redundancy
[81].

The approach is syntax-based and assumes that the system under
test is strictly sequential and, thus, can be specified by a regular ex-
pression (RE). The symbols of this RE can be interpreted differently,
for example, as events, such as user inputs and system outputs. A set
of hypotheses is defined for insertion (I), replacing (R), and deletion
(D) of the symbol(s) for context-based handling of faults, for example,
"a symbol between two symbols is to be inserted/deleted /replaced
to correct a fault detected". For an unambiguous self-correction of a
fault, the pairwise, mutual exclusion of the application of hypotheses
is necessary; that is, two hypotheses, P and Q out of LLR,D are sup-
posed not simultaneously to be applied to a fault. In the course of
several master’s and Ph.D. theses on this subject, the approach has
been coined "PQ-Analysis" by the students.

This thesis uses the PQ-Analysis as the basis of the test generation
approach. Test sequences generated from the context table (see Figure
3.1.1) resulted from PQ-Analysis in the current methodology.

A given regular expression T can be expanded to generate sequences
(strings or words) of symbols that build up a regular (type 3) lan-
guage L(T). The core idea of PQ-Analysis stems from extracting the
context relations of the symbols from T, storing them in lookup tables,
and then using these tables to check whether a word belongs to the
language L(T) or not.

The approach comprises the seven steps that are depicted in Figure
3.3.1. The details of these steps are given below.

3.3 FINITE STATE MACHINE AND REGULAR EXPRESSION ANALYSIS

/ Algorithm 2 Algorithm 3 \

> Step 2 . Step 3
Determine T' Construct Tforw ;,
Algorithm 1 Step 6
Con;struct
e SPL T
asic _Ir_al exing: Step 7
Determine
Algorithm 4 Algorithm 5 Features
N Step 4 Step 5

\ Determine TMirm Construct Tpack J

Figure 3.3.1: Steps of the PQ-Analysis and the Corresponding Algorithms

* Step 1: Index the given RE T for tracing the contextual positions
of symbols leading to the indexed T".

e Step 2: Transfer T’ to an equivalent FSM Ef°™ [86, 87].

* Step 3 (forward indexing): Scan T through Ef°™, that is, input
the symbols of T to Ef°™, note (trace) the transferred states as
superscripts on T.

* Step 4: Reverse (mirror) T’ leading to T™'"™ and transfer T™""
to an equivalent FSM EPack,

e Step 5: Scan T™!'™ through EP9¢k, that is, input the symbols of
TMT to EPAck note (trace) the transferred states as subscripts
on Tmirr,

e Step 6 (backward indexing): Reverse (mirror) Tf“;;x and sub-
scribe to the indices and construct of Tg?l*cv]f (Coding) by com-
bining Tfo™ and Tpqck.

e Step 7 (coding): Simultaneously forward and backward index-
ing of T to determine its characteristic relations (tables).

To make the concept clear, the above-mentioned steps are demon-
strated in a simple example. Note that State Transition Table of Efo™
and State Transition Diagram of Ef°™ in Figure 3.3.2 and Compat-
ibility and Context Tables in Figure 3.3.3 are borrowed from Belli [81].

Example 3.4. Given the following regular expression:

T =[(ba(b+c")*(a+b)7] 7)

35

36

BACKGROUND

The related PQ-Analysis tables can be provided by following Steps
1-7.

Step 1: Index the given T:

Tl — [1 (b1a1 (bZ Jrcl)*)*(az +b3)*]] (8)

Step 2: Transfer T’ to an equivalent FSM Ef°™ Determination of cor-
responding states of an equivalent automaton, notated by

(a)i=;j (input a transfers the state i into state j) initial state = o, ([)o
=(Mo=1=0",(@1=(a?)1=22=aa?, (b)1=(b' +b3)1=3=0b" +
b3, (Di=(0N1=124=1",(@)2=(a?)2=:2=d? (b)2=(b3)2=:5= b3,
M1=(1"2=:4=1", (a)3 = ... etc. Final State = 4.

State Transition Table of Ef°™ and State Transition Diagram of
Ef°™ is given in Figure 3.3.2.

zl[|a|bf|c]]
- o1
* 1 2 4
a’ 2 2 4
b'+b?® |3 6|5
I’ 4
b 5 2|5 4
at+a? |6 2|7 4
b'+b’+b’| 7 6|7 4
! 8 217 4 ‘
(b)
(a)

Figure 3.3.2: (a) State Transition Table and (b) Diagram for Eforw [81]

Step 3: Scan T through Ef°™ - Forwards scanning the expression:

Tforw — [1 (b3+7a6(b7 + CS)*)*(a2+6 +b3+5+7)*]4 (9)

Step 4: Reverse (mirror) The "mirrored" (reverse) expression

Tmiﬂ“ :]1(a2+b3)*((c1 +b2)*a1b1)*[1 (10)

Construction of the corresponding automata Epqcx in analogy to
constructing of Efe™.
Step 5: Scan T™" through Ey,qcx backwards scanning of the expres-
sion Eback

Tmirr+forw :]1 ((12 + b3)*((c4 + b3+7)*a2+6b3+8)*[5 (11)

3.3 FINITE STATE MACHINE AND REGULAR EXPRESSION ANALYSIS

Step 6: Reverse (mirror) T HfO™ repeated reversing ("Mirroring")
of the expression, lower indexing

TmirTEfoTwHEMATT _ [(b3,gaz46(b3 47 +ca)*) (a2 +b3)*] = Tpack

(12)
Coding, that is, concurrent forward and backward scanning
Tooek = [5(b315a8 (03,7 +)) (a3 0+ 037277 (13)

Step 7: Determine the characteristic relations (tables) of T given in

this section with Figure 3.3.3.

i[jliaj|ibjlicj|i]j " s’ r S, I
1 2,3 4
i[52a23b38c44]i SN U B b aathetbety
[+a™+a +b+c a’ | a+b+] |[startbytce| a2 axtbat]s
6a23b8 3,7 62,7, 8.4
b™+b a |a"th+c4] bs as br+bg+cs
6a65b3 [b a*+b™]' |[srartbstcs| by artbat]s
7b3 al+b+b’ b’ az*‘bﬁ*‘]4 astbr+cs | by br+bs+cs
a+blec’ b’ [a®+b"+c*+]'| [s+as+brrca| bs as
b7 a*+b'+c’ ¢’ |a™b'+c*+'| agtbrics | ca| artbatbrtbytoet]:
708 [+a+a’+b +b+b+c® | 1 — |srastbates| 1
(a) (b)

Figure 3.3.3: (a) Compatibility and (b) Context Tables [81]

The context table contains two sub-tables (Figure 3.3.3-(b)). The left
side is for forward indexing, and the right side is for backward index-
ing (see Step 3 and Step 6, respectively). For each sub-table (forward
and backward), the right context of each symbol (s) is given on the
right column (function r), and the left context is on the left column
(function 1).

Another important table is the compatibility table (Figure 3.3.3-(a)).
It consists of all pairs (i, j) of a forward index i and a backward in-
dex j existing in a coded symbol s} of T{TY given in (13). This is
described by the notation C} of s)1 The latter means that states i and
j are compatible via the symbol s.

The context table will be used for test generation in Chapter 5, and
later, it will also be used together with the compatibility table for
extending the sequential system, that is, determining the redundancy
for achieving fault tolerance in Chapter 8.

Algorithms

The algorithms mentioned in Figure 3.3.1 are given below with their
pseudo-codes. Also, their computational complexity analysis is pro-
vided.

37

38

O O N O U R~ WN R

=
o

11

BACKGROUND

Listing 1: Algorithm 1: Indexing the T

Input: T, an RE
Output: T’, a basic indexed RE
T :=T
For each sym in T”: symcount [sym] = o \\symcount is symbol count
For each sym in T”
currsym = sym \\currsym is current symbol
if (symcount[currsym] = o) symcount[currsym] = 1
else symcount[currsym] = symcount [currsym)] + 1
currsym in T” := currsymsymcount(currsym)
sym := currsym
End for

Algorithm 1, shown in Listing 1, runs in [T(sym)| time, which equals
to the number of symbols in T because the "for" loop in the algorithm
processes the ‘number of the symbol’ times. Therefore, the complexity
of Algorithm 1 is linear, solely depending on the number of symbols
in the RET.

Listing 2: Algorithm 2: States and transitions determination of FSM Eforw

N

O 0N o U~ W

10
11
12
13
14

1
2
3
4
5
6
7
8

that accepts T

Input: T’, basic indexed T
Output: ST;(sym), state transition table of T’; i is a state (row) and
sym is a corresponding column in the table
currsym = MinT
1: = currsym
currstate = 1 \\currstate is current state
For each sym in T
Feurrstate(sym) = the set of sequent symbols after sym
If Feurrstate(sym) # 0
For each sym in Feurrstate
new_state = Feurrstate (Sym)
STeurrsym(sym)=new_state
End for
End if
End for

Listing 3: Algorithm 3: Constructing TfoT™W

Input: T" and STi(sym)

Output: TT°™, forward indexed T

A = sym set of ST

For each sym in T’
if sym € A for each set of i(I)

sym in Tfo™ = sym!

End if

End for

The complexity of Algorithm 2, shown in Listing 2, equals to square
power of the complexity of Algorithm 1 because the number of sym-
bols in T and T” are equal. Hence, algorithm 2 runs in quadratic time

3.3 FINITE STATE MACHINE AND REGULAR EXPRESSION ANALYSIS

in the worst-case scenario depending on the number of symbols in
RET.

Listing 4: Algorithm 4: States and transitions determination of FSM Eyqck
that accepts T™'""

1 Input: T™" , basic backward indexed T
2 Output: ST™""(sym), state transition table of T™'""; i is state (row)
and sym is corresponding column in table

In the worst case, the complexity of Algorithm 3, shown in Listing 3,
is |(|I/|.|T/ (sym)|)| where I" is the set of i for each symbol representing
the indices of the symbols. The sum of the cardinality of the set i
equals to I’ and it increases in a linear manner depending on the
indexes.

Algorithm 4, shown in Listing 4, is the same as Algorithm 2, having
the same complexity and it is | [| T (sym) (12 |

The complexity of Algorithm 5, shown in Listing 5, is where | [T
x [T™ T (sym)| | where ™™ is the family of set i for each symbol rep-
resenting the indexes of the symbols of T™". The total complexity
of the PQ-Analysis for Algorithms 1 to 5 is of quadratic order. The
context table is used to generate test sequences from the given RE for
negative and positive testing.

Listing 5: Algorithm 5: Constructing T?ack

Input: T™'™ and ST™T (sym)
Output: TPk backward indexed T
B = sym set of ST™""(sym)
For each sym in T™™
if sym € B for each set of i(I)
sym in TPack = sym!
End if
End for

X oUW N R

39

Part II

APPROACHES

CHAPTER 4

TEST GENERATION BASED ON REGULAR
EXPRESSION APPLIED TO HDL PROGRAMS

This chapter presents an approach for test generation based on an
HDL program’s regular expression (RE). The following sections present
motivation and the proposed approach for regular expression.

4.1 MOTIVATION FOR HDL TESTING

According to the well-known Moore’s Law, the number of transistors
or components on a Very Large-Scale Integration (VLSI) chip doubles
approximately every 18 months [88]. Therefore, the testing and val-
idation of hardware become increasingly critical and overwhelming.
As a result, the emergence of new methods to handle this problem
efficiently becomes a necessity.

The validation of hardware in the early stages of the design flow
not only reduces the cost, due to low complexity considering the ab-
straction level but also provides reusability of test sequences at lower
design levels. Generally, test sequences or test patterns are generated
for two purposes: testing to target design faults and structural test-
ing to address manufacturing faults. The first one can be applied at
the early stage of the design flow, that is, behavioral design, and the
generated test sequences can be reused at lower levels, for example,
register transfer level or gate level. The second one, structural testing,
is applied at the gate level and requires extensive analysis. Thus, it
demands a high cost for test pattern generation. On the other hand,
structural testing provides appropriate and effective coverage of tar-
geted manufacturing faults that are commonly stuck-at o/1. In these
faults, signals or pins are assumed to be stuck at logical '1” or "0’. It is
reported by Lajolo et al. that there is a direct correlation between de-
sign faults at the behavioral level and manufacturing faults at the gate
level [277]. Therefore, the test sequence generation approach discussed
in this study can be useful for targeting design and manufacturing
faults.

A method for test sequence generation is proposed to validate a
given HDL program (as a Finite State Machine (FSM)) and target de-
sign faults at the behavioral level. The FSM model is automatically
extracted from the HDL program by scanning the code to find the
state and transition patterns. Then, this FSM is converted into a RE,

43

44

TEST GENERATION BASED ON REGULAR EXPRESSION APPLIED
TO HDL PROGRAMS

which offers more abstraction, compactness, and conformity to alge-
braic operations based on Kleene Algebra [89]. This RE is represented
by a Syntax Tree (ST). Operators and symbols of RE are represented
in the external and internal nodes of the ST, respectively and, note
that symbols are interpreted as events in this thesis. As a result, the

procedure of the test sequence generation is carried on by traversing
this ST.

4.2 THE APPROACH BASED ON REGULAR EXPRESSION

The proposed approach includes the following steps: extraction of
FSM from the given HDL program, conversion of FSM to RE, ST
construction from RE, and traversal of ST to generate test sequences
satisfying the alphabet and operator coverage criteria. Figure 4.2.1
depicts these steps.

An HDL program is analyzed to generate an FSM in the FSM ex-
traction step. The HDL programs, which satisfy specific patterns, can
be considered. The patterns relate to implementing the HDL program
where states and transitions are defined to construct the FSM model.
The patterns represent these states, transitions, and their relations. A
relation between states represents a transition that is triggered by an
event that labels this transition. The FSM Extraction program reads
the HDL program to determine states and transitions.

In the FSM to RE conversion step, the well-known Brzozowski al-
gorithm [90] is used, which requires constructing an equation sys-
tem from the state transition table of FSM. This equation system de-
fines the transition relations of states. The system is represented by a
square matrix on which an elimination algorithm, for example, Gaus-
sian elimination algorithm, is run to generate the RE. Arden’s rule
[91] is applied to this equation system to eliminate redundant transi-
tions and shorten the system. The application of this elimination con-
tinues until one column and one row for the equation are obtained,
which represents the expected RE.

Based on the proposed approach, the FSM to RE conversion can
be done using PQ-Analysis tool *. However, this conversion may re-
sult in a longer RE. Therefore, the JFLAP tool [92] can be used to
shorten this RE as depicted in Figure 4.2.1. This approach provides a
compacted RE model to reduce the computation in the further steps.

Note that in some systems, the HDL program is not already avail-
able. So, the model extraction step of the proposed approach is not
useful in these cases. However, the hardware specification of the sys-
tem, such as state machine diagram, activity diagram, and sequence
diagram, may be available and provide the behavior model for the
system. As these specifications imply dynamics of the system, the

1 PQ-Analysis tool, https://github.com/kilincceker/MBIT4HW

https://github.com/kilincceker/MBIT4HW

4.2 THE APPROACH BASED ON REGULAR EXPRESSION

/HDL \ Legend

Veril;g

Progral

HDL Model FsM
Extractor

PQ-Analysis

RegExTestGen J—

Process

Test
Designer eneratiol

Syntax Tree
onstructiol

—

v _Compact)) - p
Systefn . RE Test Re— T
% > est
Specification ‘ JFLAP Execution Suite

Designer Test Bench (Vivado
Design Suite)

System System

\ Under Test /

Figure 4.2.1: General Overview For The Approach Based on RE

designer can create the FSM for the system using tools such as PQ-
Analysis or JFLAP [92].

As a result, the proposed approach supports both creating the FSM
from the system specification and extracting it from the given HDL
program.

For the ST construction, a tool called dk.brics.automaton 2 is used.
This tool provides an open-source implementation of an antichain
algorithm called forward subset. In this study, this tool has been ex-
tended in a way that it is to get rid of infinite sequences generated by
Kleene’s Star operator.

Based on the proposed approach, the test sequence generation from
RE requires traversing the ST. For example, the following test se-
quences can be generated from the given RE in Example 3.2 in Section
3.1 by traversing the corresponding ST.

ab, abc, abd, abce, abdd, abced, ... (14)

According to Kleene’s Star operator, the length of the test sequences
can be infinite (see (15)). This may cause the generation of infinite se-
quences, and it can be resolved by the utilization of the ERE model.
For example, the ERE given in Example 3.3 in Section 3.1 can be used
for (14). In this example, the iteration of Kleene’s star is bounded
to 1-2 by utilizing a range operator. Therefore, the following test se-
quences can be generated;

ab, abc, abd, abec, abdd, abed (15)

The algorithm given in Listing 6 defines the procedure of test se-
quence generation in this section. The input of the algorithm is the

2 dk.brics.automaton toolchain, http://www.brics.dk/automaton/

45

http://www.brics.dk/automaton/

46

TEST GENERATION BASED ON REGULAR EXPRESSION APPLIED
TO HDL PROGRAMS

ST of the RE model. The output is the resulting set of test sequences
by traversing the ST.

Listing 6: Test sequence generation based on ST of RE Input: S S is syntax

tree of given RE Output: ti € T, i=1,...,n T is the resulting test
suite

1 node = ST.root
2 Set RegExTestGeneration (SyntaxTree node) {
3 CASE (node.data) OF

4 (symbol) return {node.data}

5 (union) return RegExTestGeneration(node.left) U

6 RegExTestGeneration (node.right)

7 (Star) return RegExTestGeneration (node.left) U Epsilon
8 (Plus) return RegExTestGeneration (node.left)

9 (Concatenation) return Concatenation(

10 RegExTestGeneration(node. left),
11 RegExTestGeneration (node.right))
12 ('n~m’) {Set s = RegExTestGeneration (node.left)

13 for (i=o to n)
14 Set p = Concatenation (p, s)
15 return p}
16 EndCASE
17}

18 Set Concatenation (Set s1, Set s2){
19 Set result = empty
20 for each item1 in s1

21

22

23

for each item2 in s2
result = result U item1.item2

}

This algorithm starts with the root node of the ST and traverses
the left and right nodes based on the given procedure. The following
values can be encountered in each node during traversal of the ST;

* A Symbol: The symbol is added to the current test sequence

because it is a leaf node.

A Disjunction (Union) operator: The test sequences from the
left and right nodes of the union operator are combined and
returned as a result.

A Kleene Star operator: As is already discussed, o and 1 itera-
tions are considered for star operator to satisfy the operator and
alphabet coverage criteria. Therefore, test sequences including
empty words and the string set from the left node of the current
node are combined as the result of this operator.

A Kleene Plus operator: The same procedure of the star operator
is applied for the plus operator, excluding empty words, as it
only contains 1 iteration.

4.2 THE APPROACH BASED ON REGULAR EXPRESSION 47

¢ A Concatenation operator: This operator concatenates each string
of the left node with each string of the right node.

* A Range operator: In this operator, the lower bound of the
rage is considered to cover the criteria, and extra iterations are
avoided. Therefore, the concatenation of the operand for n times
is the result of this operator.

After executing one of the above-mentioned conditions for each
node, based on the node’s data, the traversal continues with the pre-
decessor operator node using the test sequence set already generated.

A tool called RETestGen is developed by implementing the pro-
posed test generation algorithm. The RETestGen takes the RE and
constructs the ST from which test sequences are generated. This tool
will be utilized in case studies for HDL in Section 7.1, and results in
comparison with other similar tools will be presented in Section 7.3.1.

CHAPTER 5

TEST GENERATION BASED ON CONTEXTUAL
REGULAR EXPRESSION APPLIED GRAPHICAL
USER INTERFACE TESTING

This chapter introduces a method for test generation based on the
contextual regular expression (CRE) for a GUI program. The follow-
ing sections present the motivation and the proposed approach based
on contextual regular expression.

5.1 MOTIVATION FOR GRAPHICAL USER INTERFACE TESTING

It is very important to catch unnoticed bugs and flaws in GUI and
the project before their designs go into production. GUI testing is
the process of testing the visual elements of an application, and it’s
designed to prevent the problems mentioned above before any user
can perceive them. Those elements that influence the attractiveness
can be color, font, size, etc., of the visual elements on the screen, and
business policy can be checked with the help of automated Ul testing.
Any undesirable event, such as a design flaw, that will occur during
the automated GUI testing will reveal the problems at the core of the
application. Manual GUI testing is a cumbersome process of checking
the application before it goes to the market. This process tends to be
sloppy because of the difficulties of manual testing.

New techniques and processes have emerged to improve testing as-
pects of the software development life cycle. GUI testing is no longer
considered a job to be done by a tester manually. Nowadays, software
projects are becoming larger and larger, and thus, the required labor
for testing every part of their GUI by hand increases excessively so
that it almost becomes infeasible.

Random tests are, in general, not an effective way to validate prod-
ucts. However, random testing plays a crucial role in testing activity
[93] due to its simplicity, which explains its popularity to be used as a
yardstick to compare a novel, suggested method with existing testing
techniques and to evaluate its efficiency.

An approach to random generation of test sequences for GUI test-
ing is proposed to address sequencing and functional faults in the
following section. In case of sequencing faults, GUI cannot reach the
final event, which might cause a system crash. In case of functional

49

50

TEST GENERATION BASED ON CONTEXTUAL REGULAR EXPRES-
SION APPLIED GRAPHICAL USER INTERFACE TESTING

faults, the GUI cannot provide the desired functionality even if it
reaches the final event.

Modeling the GUI by a finite state machine is suggested, and it
is automatically converted to a regular expression (RE) using a tool.
The RE has the same expressive power as the corresponding FSM as
both can be represented by a type-3 grammar, generating the same
regular language. The tester can also model the GUI directly with a
RE if he/she is familiar with working with RE.

There are several reasons why working with RE is preferred to
working with FSM. First, RE form algebra (event algebra, see [89])
allows algebraic operations that are considerably easier and more ef-
ficient to handle than graph-based operations on FSM. Secondly, a
RE model is mostly less spacious than a graph model. Last but not
least, analyzing contextual relations can be carried out more easily
and efficiently by RE than with graph models.

Therefore, a tool to make up the missing context information, such
as the position of a symbol within its neighbors that cannot directly
be determined in the original model, that is, FSM, will analyze the
RE. Reader can refer to Section 3.1 for the details of the contextual
regular expression as a result of this analysis and represented by the
context table. As a next step, the context table representing will be tra-
versed to generate the test sequences. To do this, a symbol in the table
is repeatedly selected, starting from the initial symbol, in a random
manner until reaching a special, finalizing symbol for constructing a
test sequence. The selected symbol will be excluded from the further
iterations and included in the list of covered symbols. Thus, the ap-
proach uses a symbol coverage criterion to assess the adequacy of the
test generation. Once the required symbol coverage ratio is achieved,
the test generation terminates to exclude redundant test sequences.
For example, setting symbol coverage to 100% requires covering all
of the different symbols in the table. Once a predefined coverage ra-
tio is achieved, test generation terminates and excludes redundant
test sequences that are incomplete.

The approach comprises test preparation and testing steps. In the
test preparation step, the tester models the GUI by an FSM using
the tool JFLAP and also converts the FSM into a corresponding RE.
A tool analyzes the RE to construct the context table that contains
contextual information about the symbols contained in the RE. In the
testing step, the developed tool applies to the context table to generate
test sequences.

A mutation testing technique is used to validate the approach (in
Section 7.2). This technique entails the generation of mutants of the
GUI as its faulty versions [8, 9] to model functional and sequenc-
ing faults. Mutants are obtained by applying mutation operators to
the source code of the GUI. These mutation operators form slight
changes in the code, such as manipulating an assignment. The test

5.2 THE APPROACH BASED ON CONTEXTUAL REGULAR EXPRESSION

sequences generated from the RE and its context table will then be
applied to these mutants. If they reveal a fault, the mutant is said to
be “killed”; that is, the test sequence was successful. Otherwise, a be-
havioral equivalent mutant of the GUI is needed. A test automation
tool will be used to run the tests.

5.2 THE APPROACH BASED ON CONTEXTUAL REGULAR EXPRES-
SION

The proposed approach comprises two steps: Test preparation and
testing. In the test preparation step, the GUI behavior is modeled
using an FSM using the JFLAP tool that also converts the FSM to RE
and finally analyzes the RE to construct a context table.

A random test generation approach is employed in the testing step
in this thesis. Figure 5.2.1 depicts the concept of the proposed ap-
proach.

Test Preparation

A GUI program is the input of this step. A tester models the GUI
manually to obtain an appropriate finite state machine (FSM) repre-
sentation. The tester can also draw the FSM model from GUI using
the JFLAP tool that is then utilized to convert FSM into the RE model.
RE contains missing context information that is necessary for random
test generation. Context refers to the location of a symbol in RE and
its relations with other symbols. For example, “[(xy (t+z) *)]” is a RE
(based on Definition 3.2 in Section 3.1). The right side of the symbol

“_rmn

x” is only “y” and the left side is the symbol “[”. Thus, the right
side of the “x” symbol in the context table contains the symbol “y,”
and the left side is “[”. The terms right context and left context of
a symbol are used. The context table contains all symbols of the RE
and their right and left context. The definition of the context table,
including an example, is already given in Section 3.3.

Moreover, PQ-Analysis uses indexing the RE to remove ambigui-
ties in the RE that might cause missing context-based faults. Consider
the same symbol in different locations in the RE; covering a symbol
means addressing only one symbol in one location and missing oth-

ers. Thus, PQ-Analysis uses indexing to overcome these problems.

Testing

The output of the PQ-Analysis tool [81, 94] is the input of the test-
ing step. The approach randomly traverses the context table from the
initial to the end symbol.

A symbol coverage criterion is used to assess the adequacy of the
test generation. The symbol coverage criterion is a predefined ratio to

51

TEST GENERATION BASED ON CONTEXTUAL REGULAR EXPRES-
SION APPLIED GRAPHICAL USER INTERFACE TESTING

't N=
o |0

Analysis

RE

Context Table Analysis

Table

| Tool

Testing |

Test Automation Test

PQ-RanTest |[—>\3 Suite
= Tost

Test Report Report

-/

N

Figure 5.2.1: General Overview For the Approach Based on Contextual RE

terminate test generation when it is achieved. For example, 8o cover-
age ratios refer to 80% of all the different symbols in the context table
required to be contained in the already generated test sequences for
test generation termination.

When the predefined symbol coverage ratio is achieved, the test
generation process is terminated by s. Then, the generated test se-
quences are saved together into a test suite. Finally, a test automation
tool, such as Selenium, automatically executes this test suite on the
GUL The test report from the testing step finishes the procedure.

A tool called PQRTestGen is developed by implementing the pro-
posed test generation algorithm based on contextual RE to automate
the steps defined in Figure 5.2.1. The tool takes the analysis output
and generates the test sequences using the context table from the anal-
ysis result. This tool will be utilized in case studies for GUI programs
in Section 7.2, and results in comparison with other similar tools will
be presented in Section 7.3.2.

CHAPTER 6

MODEL-BASED IDEAL TESTING (MBIT)

In this chapter, a model-based ideal testing approach (MBIT) is pro-
posed to show the presence and absence of faults in the sequential sys-
tems. These sequential systems are HDL or GUI programs in the the-
sis, and the following sections present the MBIT approach for them.

6.1 MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

This section provides the general idea on HDL programs of the pro-
posed approach and shows that it results in MBIT suites. In addition,
this section elaborates on the main steps to be undertaken.

. . Legend
- (Ct)y——>"Passed” T
(1) SUTfault-free et w D Model
Mrault-free A ~+(C3)-----> "Failed
/,(3) H:USystem
(2) (Cc1),(Cc2) .. .
Y " (C2)-—..» "Failed” | (C3),(C4) Criteria
aulty SUTfauty "Passed" Test
- roar— e T o
_, TestAcceptability__. » Show Presence and Absence

Figure 6.1.1: Test Composition For MBIT

6.1.1 Model-based Ideal Testing (MBIT) and Its Proof

The proposed approach consists of two main steps: test preparation
and test composition. These steps contain some fundamental con-
cepts and definitions, which are explained as follows:

Test Preparation

* It is assumed that a model of the HDL program is available. If
not, a model will be extracted from the reference HDL program
that is called the original (supposedly fault-free) program. Fur-

53

54

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

ther, it is assumed that the generated/provided FSM model is
deterministic.

¢ The model is mutated using mutation operators to develop faulty
models.

* Supposedly fault-free and faulty models are converted to reg-
ular expressions and to their corresponding context tables that
are used to construct all combinations of legal and illegal se-
quences of transitions. This is more powerful than transition
coverage, which can be achieved by using FSMs.

* Using a test generation method, adequate test cases for positive
and negative testing are generated.

Test Composition

The set of legal test sequences is executed on (supposedly) fault-free
design under test (HDL programs) for positive testing. (See Figure
6.1.1)

Then, the "passed" test sequences are composed into a test suite
TS¢s—¢f, called a test suite generated from a (supposedly) fault-free
model (M¢quit—free) and executed on the (supposedly) fault-free
SUT (SUTfaultffree)-

Criterion 6.1. (Cq): Vti (Mtquit—free) | SUTrautt—rfree (ti) /A OK(ty)
(Definition 2.8).

The model extracted from the original program is expected to be
correct. It is also assumed that the starting point is this supposedly
correct program as a reference that represents the (formal) specifica-
tion (normally) provided by a customer. The correctness of the model
using criterion Cj is checked by executing a generated test from the
original model (M¢qq1t—free) On the original program (SUT¢qy1t—free)-

The set of legal test sequences is executed on faulty systems for
positive testing.

Then, the “failed” test sequences are composed into a test suite
(TS¢¢—¢), called a test suite generated from a (supposedly) fault-free
model (Mtquit—free) and executed on the original SUT (SUT¢qu1ty)

Criterion 6.2. (C2): Vt; (Mtautt—free) | SUTrautty(t;) A — OK(t;) us-
ing Definition 2.8.

The set of illegal test sequences for each mutant model is executed
on faulty systems.

Then, the "failed" test sequences are composed into a test suite
(TSt_¢¢), called a test set generated from a faulty model (M¢quity)
and executed on the (supposedly) fault-free SUT (SUT¢qv1t—free)-

Criterion 6‘3' (C3): Vtm (Mfaulty) | Squault—free(tm) A\ —OK(tm)
using Definition 2.8.

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

The set of illegal test sequences for each mutant model is executed
on the (supposedly) fault-free system. (See Figure 6.1.1)

Then, the “passed” test sequences are composed into a test suite
(TS¢_¢), called a test set generated from a faulty model (M¢qyity)
and executed on faulty SUT (SUT¢qu1ty)-

Criterion 6.4. (C4): VYt (Mtquity) | SUTraquiey(ti) A\ OK(ty) using
Definition 2.8.

Definition 6.1. Model-based Ideal Test (MBIT) suite: T is an MBIT suite
iff Vt(M) € T /\ Satisfy(t, (o)) | (Reliable(c) N\ Valid(c). (See the definition
of Reliable and Valid in Section 2.5 in Definitions 2.10 and 2.11)

Test sets were composed using Cq,C;, C3,andC4 are TSy, TS, TS3,
and TS4, respectively. A test suite T equals to a set of these test sets
TZZTSff,ff, TSff,f, TSf,ff, TSf,f with respect to CIZC] P CZ, Cg, ClTldC4.

To show that these test sets constitute an ideal test, the three re-
quirements of an ideal test, namely acceptability, reliability/consis-
tency, and validity /effectiveness, are examined in three lemmas and
their proofs as follows;

(i) The test sequences generated from (supposedly) fault-free
(Mfautt—free) and faulty ((Mfquity)) models either pass or fail on
the (supposedly) fault-free system (SUT¢qy1t—free) and faulty system
(SUT¢quity) (Acceptability).

Lemma 6.1. : Vt; € TS¢r_s1, Vt]' € TSer_g, Vi € TSe_¢f, VEtm € TS¢_¢
C T = Successful(T) \/ Fail(T)?

Proof:

Vti €T | (OK(tl) A SUTfaultffree(ti)) V th €T | (_'OK(t]') A
Squaulty (tj))

Vtk eT | (OK(tk) N Squault—free(tk)) ViVt eT | (_‘OK(tm A
Squaulty(tm))

Thus, test sequences t;, tj, ti, and t,, are either Successful(T) or
Fail(T) as defined in Definition 2.9 (Section 2.5).

(ii) All test sequences satisfying corresponding selection criteria
and generated from (supposedly) fault-free and faulty models either
pass altogether or fail altogether on the faulty and (supposedly) fault-
free systems (Reliability /Consistency).

Lemma 6.2. : Vt; € TS¢r_+t, Vt] € TSee—¢, Vi € TSt_s¢,VEtm € TS¢_¢ C
D | (Satisfy(tivjvivm, C)) = Reliable (C)?

Proof:

Positive Testing:

Vti € T, Satisfy(ti, C1)="Successful(t;) thus Reliable(C7) as defined
in Definition 2.10.

Any ti belonging to T acquired from criterion Cj is Successful t;.
Thus, C; is reliable as defined in Definition 2.10.

55

56

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

Vt; €T, Satisfy(t;, C2)=-Fail(t;) thus Reliable(C) as defined in Def-
inition 2.10.

Any t; belonging to T acquired from criterion C; is Fail t;. Thus,
C; is reliable as defined in Definition 2.10.

Negative Testing:

vtk €T, Satisfy(ty, C3)=-Fail(ty) thus Reliable(C3) as defined in Def-
inition 2.10.

Any ty belonging to T acquired from criterion C3 is Fail ty. Thus,
C3 is reliable as defined in Definition 2.10.

V tm €T, Satisfy(tm, C4) = Fail(ty,) thus Reliable(C4) as defined in
Definition 2.10.

Any t; belonging to T acquired from criterion C4 is Successful t;.
Thus, C4 is reliable as defined in Definition 2.10.

(iii) There are some criteria from which the test sequences satis-
fying these criteria and generated from (supposedly) fault-free and
faulty models reveal the faults or testify their absence (Validity /Effec-
tiveness).

Lemma 6.3. : Vt; € TSff_ff,Vt]' € TS¢r—_g, Vi € TSe_s, VEtm € TSe_¢ C
D | (Satisfy(ti\/ijVm, C)) = Valid (C)?

Proof:

Cqi:Vt €T Satisfy(ti, COASUTrqurt—free (t1)=0K(t;) thus —Valid(C1)

as defined in Definition 2.11.

C2: Vt; €T | Satisfy(t;, C2)/\ SUTrquity (tj)= —OK(t;) thus Valid(C3)
as defined in Definition 2.11.

C3: Vi €T Satisfy(tk, C3) A\ SUTsquit—free (tx)= —OK(ty) thus
Valid(C3) as defined in Definition 2.11.

Cyq: V tm €T | Satisfy(tm, C4) A SUTtquity (tm)=OK(tm) thus
—Valid(C4) as defined in Definition 2.11.

Theorem 6.1. The test suite Tiqeq1, which is constructed using criteria C,
and C3z, forms an MBIT suite as defined in Definition 2.12 (Section 2.5).

Proof: It is shown in Lemma 6.1, Lemma 6.2, and Lemma 6.3 that
Tidea1 selected by using reliable and valid criteria C; and C3 consti-
tutes MBIT suites.

6.1.2 Application

As discussed in Section 6.1, the test selection criteria Cq, C5, C3, and
C4 can be used for creating ideal test suites using the (supposedly)
fault-free and faulty models of an HDL program. C; can be used to
check the acceptability of the original program. As the specification
or the model is assumed to be correct, the test sequences generated by
applying C; can be used to check if the given original program com-
plies with this model. If any of the test sequences fail, the program
does not comply with the model, and the procedure of applying the

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

ideal test is terminated. Otherwise, the test sequence is acceptable,
and the procedure can continue. To this end, the criterion C; is con-
sidered as the pre-condition of the proposed approach.

Criterion C4 can be used to check if each mutant model and cor-
responding mutant HDL program are consistent and if the test se-
quences generated from the mutant model are acceptable. For this
purpose, all of the generated test sequences from a mutant model
should be successful when it is executed on the corresponding mu-
tant HDL program. Otherwise, the mutant model and related mutant
HDL program are not consistent, and the generated test sequences
are not acceptable. The tester can either re-do the injection or termi-
nate the whole procedure. As the mutant model and its mutant HDL
program represent a fault, the accepted test sequences will be used in
this approach.

Also, according to the MBIT approach discussed in Section 6.1.1,
the C, and C3 criteria can be used to select the test sequences that
are used to check the presence and absence of the pre-defined faults.
To this end, the criterion C; selects the test sequences generated from
the original model (the result of C7) and fails on the mutant HDL
program. This test suite (which is a subset of C;) includes the test
sequences that can detect the very specific fault (represented by the
faulty HDL program) and is called a positive test suite for that fault.

/ Test Preparation \
i
'

1 \/erilo?nl

1 Progra Legend
FSM

N - -=-=» PQ-Analysis / \

L PQ-TestGen HDL
.

Lontext @
Context Test |REdUENCS
Tables eneratiol
D process

Compact

'
'
v Sys!e’nl _______
Speclﬁcatlon i RE Generator
\ Designer

ble
Test Suite

Test Composition

A System Under
Test

Test Bench (Vivado -
Design Suite) Positive
Test Suite Q
System 'ﬁ
Under Test l

Negative
Test
Suites

Figure 6.1.2: General Overview of MBIT For HDL

On the other hand, the criterion C3 selects the test sequences gener-
ated from a mutant model (the result of C4) and fails on the original
HDL program. As these test sequences represent the fault (which is
related to the mutant model), they can be used to check the absence

57

58

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

of that fault in any new HDL program. These test sequences (which
are a subset of C4) constitute a negative test suite for that fault.

To summarize the use of criteria for MBIT, it can be stated C; and
C4 are used as the pre-condition of the ideal testing and generate the
initial test sequences. Also, criteria C; and C3 are used to select the
positive and negative test suites for MBIT to check the presence and
absence of faults.

Figure 6.1.2 shows a general overview of the proposed approach,
including test preparation and test composition steps. In this figure,
the straight lines represent the path preferred in this thesis, while
dashed lines are other possible options. The curved rectangle cover-
ing the HDL program represents source code that can be input to the
FSM-Extractor tool. Regular rectangles display utilized processes and
tools within the thesis.

The test preparation step starts with the extraction of an FSM model
automatically from the HDL program by means of the FSM extractor
tool, for which more details are provided in Section 7.5. The FSM ex-
traction is useful when the HDL program is available. However, the
test engineer can obtain the FSM model manually from the system
specification. Then, the generation of the mutants of the FSM is done
using the insertion, omission, and replacement mutation operators
[58]. The resulting FSM models can be given to a RE Generator tool
to convert the models to RE. Once a compact RE has been obtained
for the FSM, the PQ-Analysis tool is used to construct a context ta-
ble with the algorithms explained in Section 3.3 for PQ-Analysis. The
proposed approach proceeds through a straight line given in Figure
6.1.2. The result of the PQ-Analysis tool is given to the PQTestGen
tool for test generation, which is the final part of the test preparation
step.

The testing step contains the execution of test sequences on the
corresponding HDL programs for positive and negative testing and
then the selection of test sequences that fail or pass. The selection step
results in ideal test suites that satisfy the requirements of the ideal test.
Therefore, the proposed methodology holds these requirements. The
details of the test preparation and test composition are defined in the
following sections.

6.1.3 Test Preparation

The test preparation step comprises model construction, mutation,
conversion, and test generation sub-steps, see Figure 6.1.3. The fol-
lowing sections give the details of these sub-steps. HDL programs
are considered as a design under test.

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

Model

CH8 /e
| [

T RS §
Model Construction and Mutation Test Generation Test Suite

. J \ J
pg

Model conversion

Figure 6.1.3: Test Preparation For HDL

Model Construction

In model construction, the FSM-Extractor tool parses the HDL pro-
gram and extracts the states and transitions from the "case" state-
ments in the code. This gives us the FSM model of the HDL program.
Also, the test engineer can create the FSM model manually using the
specification. In any case, the proposed methodology requires a be-
havioral model of the system to be prepared.

Therefore, the proposed approach is applicable for any sequential
circuit given at the behavioral level by means of a Verilog HDL pro-
gram, embedded system, and/or cyber-physical system. However,
the borders are limited to the systems that an FSM-like model can
model. An FSM model cannot model the combinational circuits and
is therefore excluded from the scope of the thesis. This partially ad-
dresses HDL-RQ1 of the thesis.

Model Mutation

The mutation operators are applied to the original FSM to acquire the
mutants. Note that applying the omission (O) and insertion (I) oper-
ators consecutively (for the state (S) and/or transition (T) replace)
can realize the replace (R) operator. Moreover, the state omission op-
erator requires the transition omission (TO) to delete the dangling
transition(s), which will be created after removing a state at one end
of the transition. This step uses mutation testing, as it is defined in
Section 2.4.

The sequence of the mutation operators must be selected carefully
because inattentive selection can result in non-determinism that can-
not be used for the proposed approach.

It is possible to obtain mutant regular expressions from the orig-
inal one using specific RE-mutation operators [95]. This thesis uses
FSM mutation operators rather than RE mutation operators. How-
ever, utilization of RE mutation operators decreases the conversion
cost because only the original FSM is converted to RE, and mutant RE
models can be obtained from the original RE model. This advantage

59

60

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

is only possible for transition mutation operators. The state mutation
operators require extensive analysis, as the states are unavailable in
the REs. Consequently, this thesis selects only FSM mutation opera-
tors for a mutant generation.

Listing 7: Pseudocode of the test generation algorithm

1 Open PQ Result File;
2 while ((read line by line PQ Result File) {

3

O 00 N o Ul h

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

32
33
34

35
36
37
38
39

if (find "Right—Context — Table:" line) {
get next line;
matrix++;
while (read next line and line is not equal null) {
if (matrix equal o (forward analysis)) {
add line to forward array}
else if (matrix equal 1 (backward analysis)) {
add line to backward array}}}}
close file
create adj matrix for forward right
for (each elementi in forward right array)
for (each element j in forward right array)
copy adjmatris_right [1][j] = forward array right[i][
jl
t[i][j] = new TestSuite();
Set all nodes to "not visited";
q = new Queue();
q.enqueue(initial node);
while (q is not equal empty) do
{
x = q.dequeue();
if (x has not been visited) {
visited [x] = true; // Visit node x
if (x is initial symbol){ //This defines initial case
for (all reachable symbols y from x){
for (each symboliin y)
t[i]lo]=x //x is openning symbol "["
tl[il[1]=y}}//y is the symbol reachable from
wpe
for (each edge (x, y)) //using all edges
t.addSymbol(y) //new symbol is added to t[i][]]
with proper index
if (y has not been visited)
q.enqueue(y);}} // Use the edge (x,y)
while(all last symbolsin t[i][j] is not equal "]"){ // t[i
1[j] is a test suite
if (last symbol in t[i][j] is "]"){
opt(t[illj-1]) = t[il[j])
elseif (t[i][j] is equal to opt[i][j—1]){
t[i][]]. addsymbols(opt(t[i][j—1]))
opt(t[i1[j-1]) = t[i1[j 1)}

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

Model Conversion

In the model conversion step, the original and mutant FSM models
provided in the previous steps can be converted to the corresponding
REs by means of different algorithms, such as state elimination [9o] or
the Brzozowski method [96]. The proposed methodology uses JFLAP
[92] for converting FSM to RE due to the fact that it produces more
compact RE models.

Test Generation

The input of the test generation step is the converted RE given in the
previous step. Then, the original and mutant REs are given to the
PQ-Analysis tool for indexing and constructing the context tables.

To generate test sequences, the PQTestGen tool uses the result of
the PQ-Analysis tool. The PQTestGen tool implements the breadth-
first search (BFS) algorithm on the context tables. Listing 7 shows the
pseudo-code of the test generation algorithm. In this pseudo-code,
lines 1-11 define the parsing of the resulting file from the PQ-Analysis
tool (including CT). Lines 12-16 show the construction of an adja-
cency matrix from the parsed file, and lines 17-33 define the DFS
algorithm used on the adjacency matrix to construct a set of test se-
quences based on the symbol coverage criterion. Finally, lines 34-39
complete the construction of test sequences.

A symbol coverage criterion terminates the DFS algorithm if the
desired coverage ratio is achieved. This criterion defines the amount
of the symbol covered by the CT. However, in this thesis, the symbol
coverage criterion is set to 100%, which leads to the covering of all
symbols of CT in the test sequences.

6.1.4 Test Composition

The test composition step contains pre-selection and test suite con-
struction sub-steps, see Figure 6.1.4, in which original and mutant
HDL programs are considered as SUT and mutant SUTs, respectively.
The following sections define the details of these sub-steps.

Pre-Selection

In the test composition step, the test sequences generated from ana-
lyzed RE models are executed on the corresponding original and mu-
tant HDL programs. To this end, four different testing scenarios are
used to do holistic testing, as it is defined in Section 2.3;

61

62

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

Legend
----------- =

SUT
=1 ([]

oo]

Test Result

Pre-selection Test Suite Construction

Figure 6.1.4: Test Composition For HDL

1. Positive Testing with original HDL program: Execution of test
sequences generated from the original model on the correspond-
ing original program.

2. Positive Testing with mutant HDL program: Execution of test
sequences generated from the original model on the correspond-
ing mutant programs.

3. Negative Testing with original HDL program: Execution of test
sequences generated from the mutant models on the correspond-
ing original program.

4. Negative Testing with mutant HDL program: Execution of test
sequences generated from the mutant models on the correspond-
ing mutant programs.

Test execution scripts are written in Verilog using Xilinx Design
Suite. These scripts execute the generated test sequences in the cor-
responding HDL program using the test bench will be defined in
Section 7.5. There are positive and negative testing steps for differen-
tiating the execution processes. In positive testing, the test sequences
generated from the original ((supposedly) fault-free) model are ex-
ecuted on the corresponding mutant designs that are derived from
mutant FSM models using code-level mutation operators. Thus, there
is a one-to-one correspondence between mutant models and mutant
(faulty) designs.

Regarding the fault coverage aspect (considering the HDL-RQ1),
the mutants generated from the FSM address the following HDL
faults: single-output bit stuck-at o/1, case bit stuck-at o/1, condition
stuck-at True/False, and their combinations.

Test Suite Construction

The test sequences resulting from the above-mentioned scenarios are
selected based on the requirements, which are called test selection cri-
teria, defined in Table 6.1.1. There are two execution steps for each of

MODEL-BASED IDEAL TESTING FOR HDL PROGRAMS

the positive and negative tests. These executions are based on the test
sequences generated from the original analyzed RE and the mutant
models. The results of these executions are either passed or failed,
from which successfully passed tests are selected when the test se-
quences from the original model are applied to the original HDL pro-
gram and the test sequences from mutant models are applied to the
mutant HDL program. Moreover, the failed tests are selected when
the test sequences from the original model are applied to the mutant
HDL and the test sequences from mutant models are applied to the
original HDL.

Table 6.1.1: Test Selection Criteria

Test Execution | Original HDL Program | Mutant HDL Program
(1) Positive Test passed! -

(2) Positive - Test failed!

(3) Negative Test failed! -

(4) Negative - Test passed!

In a similar manner, the test sequences generated from the mutant
models can be applied to the mutant HDL programs. Therefore, an ar-
bitrarily faulty design would often return a test result of failed using
any other faulty version.

This can verify the presence and absence of defined faults by the
positive and negative test suites (as part of the ideal test). This can be
considered as the main outcome of applying the ideal test procedure
(which addresses a part of HDL-RQ1).

There are three fundamental requirements of the ideal testing de-
fined in Section 2.5. The first one is regarding the results of the test
execution that can be either successful (pass) or unsuccessful (fail).
The second one is the reliability (consistent) of each test criterion for
the test generation, which is successful if the criterion is satisfied OR
if all tests that satisfy the criterion are not successful (fail). The last re-
quirement is the validity (effectiveness) of the test criterion for the test
execution to check whether the test sequences satisfying the criterion
are revealing the fault(s) or not.

For test suites given in Table 6.1.1, the test selection criteria are reli-
able because the test execution results are either successful (pass) or
unsuccessful (fail). The "failed" test sequences satisfy validity as they
reveal the fault(s). Thus, the resulting test suites satisfy the require-
ments of the ideal test.

63

64

MODEL-BASED IDEAL TESTING FOR GRAPHICAL USER INTER-
FACE

6.2 MODEL-BASED IDEAL TESTING FOR GRAPHICAL USER INTER-
FACE

In this section, test preparation and testing steps are provided in Sec-
tion 6.2.1 and 6.2.2, being two main MBIT stages, offer necessary infor-
mation supporting sub-steps. The FSM and the RE models are used
as defined by Hopcroft et al. [79] in this thesis.

In Figure 6.2.1, the general flow of the current methodology is
shown. The test preparation step contains the model and test gen-
eration sub-steps. The testing step contains test selection and test exe-
cution sub-steps. The straight lines perform the paths that are utilized
by the thesis. The dashed lines show other options can be employed.
For example, the FSM of the GUI program can be obtained from the
specification by the designer and then given to the PQ-Analysis tool.

Test Test
Generation Compaction :
i Legend

R
. K '
. . PQTestGen : Gul
% e t Te
LA 1 ompaci est

:RE RE Sequences Process

:]

'

Test Suite
System _ _ ___

Specification D-e;i;neF --

Test Suites Ideal Test Suites

0

:r"ié;ting [

Selected flow
Selenium Test Script

=

N : Opt
' ptional flow
- I| — | opteraton, N
Ideal Test : \ J
Suites H

Figure 6.2.1: General Overview of MBIT For GUI

The formal definitions and corresponding proofs for MBIT are pro-
vided in Section 6.1.1, and these explanations extend their applica-
bility to GUI programs. For a comprehensive understanding of the
sophistication involved, the reader can consult Section 6.1.1 for de-
tailed exposition and rigorous explanation of the concepts therein.

6.2.1 Test Preparation

An FSM represents the GUI under test and is then converted to a
corresponding RE by the JFLAP tool. Artificial faults are seeded into
the FSM to acquire mutants. Each mutant can contain one or more
faults.

An FSM model can be automatically generated from the GUI speci-
fication, or one of the GUI ripping methods [97, 98] automatically gen-
erates the proper model by using reverse engineering techniques. It is

MODEL-BASED IDEAL TESTING FOR GRAPHICAL USER INTER-
FACE

assumed that the specification is missing, and the model of the GUI
under test is generated manually using the JFLAP *. The pseudo-code
is provided for generating a model from a GUI of a web page in the
listing 8. The algorithm given the listing 8 starts opening the system
under test (SUT). Then, it proceeds by checking all elements of the
current page of the SUT. These elements can be "radio button", "edit
field", "text box", "combo box", or "button”. Once selecting the current
element (event), the corresponding entry is added to the model with
its input and output response. After finishing all elements on the cur-
rent page, the algorithm proceeds to the next page. This procedure
continues until all the elements for all pages of the SUT are explored.
While exploration carries on, the corresponding responses are added
to the model. Once the exploration is finished, the model generation
is also finished.

Listing 8: Pseudocode of the model generation algorithm

1 Open the SUT (GUI of a web page);
2 while (check all events of the SUT for all pages) {
3 for (each elements (events) at the currentPage){

4 if (event==radio button){

5 click=radio button;

6 Model=AddEvent(click);

7 Jelse if (event== edit field){
8 click=edit field ;

9 Model=AddEvent(click);

10 Jelse if (event== text box){

11 click=text box (addRandomText);
12 Model=AddEvent(click);

13 Jelse if (event== combo box){
14 click=text box;

15 Model=AddEvent(click);

16 Jelse if (event== button){

17 click=text box;

18 Model=AddEvent(click);

19 }

20 }

21 currentPage = nextPage;}

For example, SUT is Gmail login page *. Once the user clicks this
page, he/she has several options, such as a textbox for the user’s
email or telephone number. The user must enter his/her email ac-
count into this text box to proceed to the next step, or he/she can
create a new account by clicking the "create account" button. Let us
again suppose that the tester (the person responsible for the model
generation) enters the correct email address into the textbox. He/she
needs to add this event to the model with the email entry and the
corresponding response of the SUT to this action. This procedure is

1 An open-source modeling tool, Available online at http://www.jflap.org/
2 Gmail Login Page, Available online at https://gmail.com/

65

http://www.jflap.org/
https://gmail.com/

MODEL-BASED IDEAL TESTING FOR GRAPHICAL USER INTER-
FACE

applied to all elements of the current login page by the tester and
added to the model with corresponding responses. Finally, the tester
constructs the Gmail login page model once he/she finishes all ele-
ments of this web page. The manual construction is straightforward
and easy for this kind of login page, which is the main bottleneck of
automatic model generation approaches due to missing correct infor-
mation on user accounts. Therefore, the automatic model generation
approach requires user intervention to cope with this kind of problem.
Another advantage of manual construction is to decide the model’s
capacity by neglecting unnecessary features.

Y

> = H
PQ-Analysis

Y | N —

Y
=

Model and Mutant Generation———>

A

<«—Test Generaton———>

|

Legend
GUI Model Process

[/

Figure 6.2.2: Test Preparation For GUI

The FSM’s insertion, omission, or replacement of the state(s) or
transition(s) to acquire mutants are utilized. The following definitions
and examples are presented to elaborate on acquiring mutant FSM
models.

* The insertion operator (I0) adds an extra transition(s) or state(s)
into the FSM.
Example: I0O(so, z, s1) refers to adding an extra "z" transition
from so to s1, or IO(so, z, s2, x, s1) refers to adding an extra

n_n non

state s2 between so and s1 with "z" and "x" transitions.

* Omission operator (OP) deletes a transition(s) or state(s) from
the FSM.
Example: OP(so, x, so) refers to deleting the transition "x", or
OP(s1) refers to deleting the state s1 with corresponding transi-
tions.

* Replace operator (RO) substitutes a transition(s) or state(s) from
the FSM.
Example: RO(so, x, so, z) refers to replacing the transition "x"
with "z", or RO(s1, s2) refers to replacing the state s1 with s2.

MODEL-BASED IDEAL TESTING FOR GRAPHICAL USER INTER-
FACE

To model semantic faults, the mutants require higher-order muta-
tion; in contrast, insert a single fault in the model or code to create
first-order mutants. In this higher-order, mutation applies the muta-
tion operator more than once [99].

Once mutants are acquired, they are transformed the resulting FSM
model into the RE models using the JFLAP tool that provides a more
compact RE than the PQ-Analysis. The procedure of the FSM to RE
conversion for the PQ-Analysis tool is presented in Section 3.3, in-
cluding the pseudo-code for the conversion. The PQ-Analysis tool
generates CTs that accommodate forward and backward information.
This information is useful for generating more efficient test suites to
increase the possibility of covering the faults because covering the
only symbol without its right and left context does not guarantee the
coverage of the modeled fault(s).

The PQTestGen [56] tool is used for test generation. The CT con-
tains two different and independent tables, namely forward right and
left CT. Therefore, two sets of test sequences from the forward right
and left tables are collected. The forward right table, considering any
overlapping between the two tables, is selected.

PQTestGen [56] parses the table and then traverses, starting from
the initial symbol in a depth-first search manner in the first step. The
traversing finishes once the final symbol is reached to construct com-
plete test sequences. However, some sequences can be incomplete be-
cause of a different symbol in the final test suite by reaching coverage
criteria to assess adequacy. For those partial sequences, the algorithm
uses already complete sequences to complete them in the second step.
The algorithm utilizes a compaction procedure to eliminate redun-
dant sequences in the final step while keeping the coverage criteria
in a predefined ratio.

PQTestGen [56] initiates from the opening symbol "[" and selects
the next symbol from its forward right context. Test generation con-
tinues until the assessing coverage criterion is satisfied when all dif-
ferent symbols are in the resulting test suite. Kilincceker and Belli
define the coverage criteria depending on the CT and extensively an-
alyze their effectiveness for GUI testing [100].

6.2.2 Testing

The test execution and then test composition are the sub-steps of the
testing stage. In the test execution, the test suites are run automati-
cally on the corresponding GUI programs, and then these sequences
are collected into MBIT test suites in the test composition step.

The test suites are run on the (supposedly) fault-free (original) and
faulty (mutant) GUI programs in this step (see Figure 6.1.4). Note
that this step is similar to the test composition step in applying MBIT

67

68

MODEL-BASED IDEAL TESTING FOR GRAPHICAL USER INTER-
FACE

on HDL programs. Hence, two different testing scenarios happen as
follows;

Test selection criteria are a filtering mechanism to select satisfying
test cases. It is important to note that the coverage criteria and selec-
tion criteria are not to be mixed. Coverage criteria are termination
criteria utilized for the test generation procedure. However, test se-
lection criteria (also called test criteria) are a filtering mechanism to
accomplish the conditions of the ideal test. There is no intention or
attempt in the current methodology for code-level or function-level
coverage at the program level. The main intention of the coverage cri-
teria used in the thesis is to assess the adequacy of GUI testing at the
functional level with respect to events captured by test sequences.

Based on the test criteria, "failed" test sequences are collected into
ideal test suites with respect to the PT and NT. To test the presence
and absence of predefined faults, these test suites are utilized by us-
ing the PT and NT, respectively.

6.2.3 Model Correctness

The test generation algorithm from the model under analysis checks
the model’s correctness. Therefore, the suite generated from the model
is executed on the system modeled. The entire test suite must be
"passed" on the system modeled to satisfy model correctness. The test
generation algorithm must be deterministic to avoid different results
in each generation.

Criteria 6.1 and 6.4 (defined in Section 6.1.1) are used to satisfy
model correctness. Hence, the original model is checked by execut-
ing the test suite generated from the original model on the original
system under test concerning Criterion 6.1. Any mutant model is
checked by executing the test suite generated from the correspond-
ing mutant model on the mutant system under test. To this end, it
can be satisfied that all the models hold model correctness.

Moreover, an assumption for the model’s correctness is also made
and presented in Chapter 1 to address this concern.

CHAPTER 7

CASE STUDIES, RESULTS, AND EVALUATION

This chapter presents case studies, results, and evaluations, includ-
ing threats to the validity of the MBIT approach for HDL and GUI
programs.

7.1 HDL-BASED CASE STUDIES

This section discusses the case study, namely a simplified Traffic Light
Controller (TLC), implemented in Verilog HDL and modeled by an
FSM. As shown in Figure 7.1.1, four traffic signals and four lanes are
present. Every lane has a separate traffic light with Red, Yellow, and
Green lights. The position of the lane and the corresponding light are
specified using the input variables and previous state information.
For security reasons, jumping between specific lane positions is not
permitted to avoid a possible crash. This security mechanism is im-
plemented into the HDL program. Any faults may cause severe car
crashes.

The results on the sequence detector (SD) and the RISC-V proces-
sor ' case studies are presented. The RISC-V processor [101] case
study is called "CORE-V CV32E40P RISC-V IP" and was developed by
OpenHW Group 2. It is a 32-bit RISC-V core with a 4-stage pipeline.
It provides higher code density, performance, and energy efficiency.
The SD is a sequential HDL design to detect specific input patterns.
HDL implementation of the SD, TLC, and RISC-V processor is real-
ized by using a Xilinx Basys 3 Artix-7 FPGA development board and
the Vivado 2017.4 design suite.

7.1.1 Test Preparation for HDL Programs

The preparation step comprises four sub-steps. These steps are model
construction, model mutation, model conversion, and test generation.
Briefly, an FSM model, defined formally in Section 3.1, is constructed
from the HDL program (the construction approach is discussed in
Section 7.5). Moreover, the selected mutation operators are applied to
the FSM model to construct mutant models. Then, the original and

1 OpenHW Group CORE-V CV32E40P RISC-V, https://github.com/openhwgroup/
cv32e40p
2 OpenHW Group, https://github.com/openhwgroup/cv32e40p

69

https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p

70

CASE STUDIES, RESULTS, AND EVALUATION

=%

i
i

{}|{}
{}‘{}

- Flofe]®

Figure 7.1.1: Block Diagram of the TLC

o
v

mutant FSMs are converted to RE. Finally, these models are analyzed
to construct context tables from which test sequences are generated
for positive and negative testing in the test generation step.

Model Construction

In the model construction step, the FSM model is extracted from the
HDL of TLC automatically by means of the FSM-Extractor tool. This
FSM is modeling the behavior of TLC. Then, it is converted to an
RE, with an encoding of input/output combinations as the symbols,
given in Table 2.2.1. The FSM model of the TLC, which is called the
original model, is given in Figure 7.1.2. The FSM contains 9 states and
18 transitions.

Figure 7.1.2: FSM of the TLC

The colors of the TLC are labeled as "g" for Green, "y" for Yellow,
and "r" for Red, which are represented in the circuit by "oo1", "o10",
and "100" in binary format, respectively. Of course, this labeling with
symbols and binary numbers is simply a design choice.

Table 7.1.1 presents the symbols, which are used for different tran-

sitions in the original FSM model, encoded with "input/output” com-

7.1 HDL-BASED CASE STUDIES

Table 7.1.1: Encoding of Transitions

Symbol | Combination | Symbol Combination Symbol Combination
a grrr o / yrrr g rrrg o / rrry n XXXX b - rrgr o / rrrr
b yrrr o / rgrr i rrrg o / rrry o Xxxx b - rryr o / rrrr
c rgrr o / ryrr j XXxx b - grrr o / rrrr) XXXX b - rrrg o / rrrr
d ryrr o / rrgr k xxxx b - yrrr o / rrrr r XXxx b - rrry o / rrrr
e rrgr o / rryr 1 Xxxx b - rgrr o / rrrr S XXXX 1 / rrrr
f rryr o / rrrg m xxxx b - ryrr o / rrrr h XXXX 0 / grrr

binations. For example, the symbol "a" is encoded with "grrro/yrrr"
in which "grrro" is a 13-bit input (3 bits for each color and 1 bit for
reset signal) and "yrrr" is a 12-bit output. In this FSM, "x" represents
the "don’t care" condition. For example, in Table 2.2.1, the combina-
tion "xxxxb - grrr 0" refers to a set of all 12-bit "don’t care" followed by
1-bit "b" for the reset signal. In this combination, "-" refers to the ex-
clusion operator for "grrr 0", which means the "don’t care" condition

cannot be "grrr 0".

Model Mutation

In this step, the supposedly fault-free model is used to generate faulty
models by using mutation operators. For example, two faults are in-
jected into the FSM by a combination of insertion/omission opera-
tors to realize the model mutation. Then, the related faults are also
injected into the HDL program to realize the code-based mutation.

The first mutant, depicted in Figure 7.1.3, represents the combina-
tion of "missing state" and "transition fault" in the model. Therefore,
state q3 and corresponding transitions are omitted in the model of
this fault. In addition, an excerpt of the HDL codes of the first mu-
tant and the original TLC is given in Fig 7.1.4. The code level fault in
this figure represents stuck-at-bit fault in which bit(s) of the signals
are stuck-at either 1 or o. In order to represent the model-level faults
at the code level, a higher-level mutation is required.

The second mutant, depicted in Figure 7.1.5, represents "extra state"
and "transition fault" in the model. The state nine and corresponding
transitions are inserted into the original FSM. Extra transitions are
u, v, and y that are encoded with "ryrr o/rrgg", "rrgg o/ rrgr”, and
"Xxxxx — rrgg o/ rrrr", respectively.

Model Conversion

In this step, the FSMs (the original and mutants) are converted to
the corresponding REs. The JFLAP tool [92] is used to carry out the
conversion. As a result, the RE (16) is obtained from the original FSM
model. The same conversion steps are applied to the mutant models,
and the corresponding mutant RE models are obtained.

71

72

CASE STUDIES, RESULTS, AND EVALUATION

Figure 7.1.3: FSM of the Mutant One

=l Lights_mutant1v E3 | : [l Lights_orjv E3]

110 é] 47001 110 410010

111 H begin (1111 o begin

112 Sdisplay("The va Is tate (112 sdisplay("The value h,
113 segment = 7'L ; 1113 segment = 7'})010;

114 if (input_ligth_status == 16'h4244) (114 A if (input_ligth status == 16'h4144)
115 o begin (115 5 begin

116 (116

117 state = 4'b0100;| 1117 state = 4'b0011;

118 output_ligth_ status = 16'h4414; i|118 output_ligth status = 16'h4244;
119 // input_ligth_ status <= output_lig 1119 // input_ligth_status <= output_
120 n_lights = 3'b ; 1120 n_lights = 3'b100;

121 s_lights = 3'b01 (121 s_lights =

122 e_lights = 3'} i1122 e_lights =

123 w_lights = 3'b :1123 w_lights =

124 - end 1124 = end

Figure 7.1.4: The Code-Based Difference of Original and Mutant HDL

Figure 7.1.5: FSM of the Mutant Two

7.1 HDL-BASED CASE STUDIES

Test Generation

The test generation step starts by constructing the context table after
analyzing the RE (for example, RE in (16)) using the PQ-Analysis
tool. Then, test sequences are generated from the context table that
represents RE in (16). These procedures are applied to the original RE
and the mutant REs.

[((h(abcdefgi)*(abcdefgr + abcdefp + abcdeo + abcdn+

(16)
abcm+ abl+ ak +j) +s)*]

To exemplify the procedure, the test sequences t; in (17) and t; in
(18) are selected from the test suite generated from the context table
of RE in (16).

ty = xxx0, grrr0, yrrr0, rgrr0, ryrr0, xxxxx — rrgr0 (17)

ty = xxx0, grrr0, yrrr0, rgrr0, ryrr0, rrgr0, xxxxx — rryr0 (18)

The exemplary test sequences, t3 in (19) and t4 in (20) are gener-
ated from the first and second mutants respectively.

t3 = xxxx0, grrr0, yrrr0, rgrr0, rrgr0 (19)

tq = xxxx0, grrr0, yrrr0, rgrr0, ryrr0, rrgg0 (20)

These test sequences are members of the test suites generated from
the original and mutant context tables. These test suites are an input
of the composition step. The test suite obtained from the original
model is used in positive testing, and the test suites obtained from
the mutant models are used in negative testing for the composition
step.

7.1.2 Composition

The composition step comprises pre-selection and test suite construc-
tion sub-steps. In the pre-selection step, the test suite generated from
the original model is executed on the mutant HDL programs. In con-
trast, test suites generated from the mutant models are executed on
the original HDL program for positive and negative testing, respec-
tively. In the test suite construction step, the results of test execution
are collected and analyzed to construct the test suites that satisfy the
requirements of the ideal test, defined in Section 2.5.

73

74

CASE STUDIES, RESULTS, AND EVALUATION

Pre-Selection

The generated test sequences are executed on the corresponding HDL
programs for positive and negative testing. The test bench executes
these test sequences on the HDL programs. The results shown in Ta-
ble 7.1.2 are collected from the execution of test sequences t; in (17),
t, in (18), t3 in (19), and t4 in (20).

Table 7.1.2: Results From the Negative and Positive Testing

Test sequence | Original HDL | Mutant One | Mutant Two
t - Test failed! Test failed!
ts - Test failed! Test failed!
t3 Test failed! - -
t4 Test failed! - -

Test Suite Construction

In this step, the results collected from the test execution step are used
to test sequences that give a "fail" result (see Table 7.1.2) for positive
and negative testing. The example test sequences t; and t; generated
from the original model are executed on the mutant HDL programs.
Both failed, meaning that the mutant gave a different output than the
original HDL program. So, the mutants are killed. Therefore, the test
sequences t; and t, satisfy the criterion C, defined in the proof of
the ideal test in Section 2.5. So, they become members of the ideal test
suite, which is used to test the presence of faults modeled by corre-
sponding mutants. t; and t, imply the presence of faults since they
are generated from the original model and executed on the mutant
models. Therefore, they used to show that the fault is present in the
system since they both failed, and they pointed out that the system
they failed is faulty.

The example test sequences t3 and t4 generated from mutant one
and mutant two models failed when they were executed on the orig-
inal HDL program, meaning that the original HDL gave a different
output than the mutant programs. Therefore, test sequences t3 and
t4 satisfy the criterion C4, see Table 7.1.2. These test sequences satisfy
corresponding criteria and fulfill the requirements of the ideal test. To
this end, the test sequences t3 and t4; become a member of the ideal
test suit, which tests the absence of faults modeled by corresponding
mutants. t3 and t4; imply the absence of faults since they are gen-
erated from the mutant model and executed on the original models.
They are pointing out that the system failed and used to show the
absence of faults. This means they represent the faulty behavior of
the system in the model scope. Therefore, if they pass on any system,
it can be concluded that the corresponding fault represented by the
mutant model where t3 and t4 is absent in this system.

7.1 HDL-BASED CASE STUDIES

7.1.3 Experimental Setup For HDL Programs

Experimental studies were conducted on a Sequence Detector (SD),
a Traffic Light Controller (TLC), and a RISC-V processor [101] 3. In-
sert, replace, and delete mutation operators [58] were used to obtain
model and code-level mutants. Table 7.2.2 provides HDL code level
mutant profiles, including fault types and their quantities for TLC
and SD. 158 HDL faults (18 for SD, 82 for TLC, and 58 for RISC-V)
were studied with corresponding mutants. "Total" refers to the sum
of the respective fault type rows or case studies columns.

The experiments concerned fault coverage, mutation scores, test
suite sizes, test generation times, and test execution times for each
case study. These metrics are investigated for different model-based
test generation tools and algorithms. These tools and algorithms use
coverage criteria (defined in Section 3.2) to assess its adequacy as
a termination criterion of test generation. The symbols represent in-
put/output combinations for each case study at a specific clock time
corresponding to their sequential operating principle. These combi-
nations are stored in the transitions of each FSM model (for exam-
ple, see Table 2.2.1 for symbols and corresponding combinations for
TLC). Therefore, the tools and algorithms terminated when achieving
a specified coverage ratio.

The mutation score [102] is calculated as the ratio of the number of
mutants killed to the total number of mutants. Equivalent mutants are
subtracted from the total number of mutants to obtain more accurate
results. The equivalent mutants are models or programs that the test
suites cannot kill and exhibit the same behavior as the original model
or program (refer to Section 2.4 for more details). Fault coverage is
calculated as a percentage of detected faults different from mutation
score. While the maximum mutation score is 1, the maximum fault
coverage value is 100. If there is no equivalent mutant within the
scope of the experimental study, the fault coverage percentage can be
obtained by multiplying the mutation score by 100.

The strategy, explained in Section 6.2.3, is used to validate the orig-
inal program’s compliance with the extracted model for both original
and mutants. Based on this strategy, the test suites generated from the
original extracted model are executed on the corresponding original
program. Also, the test suites generated from the mutant models are
executed on the corresponding mutant programs. These original and
mutant models are utilized when all these test suites "passed" suc-
cessfully, meaning that the mutation scores for original and mutant
models over original and mutant programs equal one. These execu-
tion results from the experiments are excluded because they are the

OpenHW Group CORE-V CV32E40P RISC-V, https://github.com/openhwgroup/
cv32e40p

75

https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p

CASE STUDIES, RESULTS, AND EVALUATION

Table 7.1.3: Mutant Profiles

Fault Types Quantities
SD | TLC | RISC-V | Total

Output Bit Stuck-at 0/1 6 24 22 31
Case Bit Stuck-at 0/1 4 20 13 24
Condition Stuck at True/False | 4 16 10 20
Higher Order 4 15 0 19
Hard to Detect 0 6 10 6
Total 18 | 82 58 158

starting point for selecting and utilizing the original and mutant mod-
els.

7.2 GRAPHICAL USER INTERFACE BASED CASE STUDIES

ISELTA is a commercial web portal for marketing tourist services and
an online reservation system for hotel providers. It is a cooperative
work between ISIK Touristic company and the University of Pader-
born. The "Special" module provides agents the ability to promote
special advertisements, such as the New Year event. The "Additional"
module offers other advertisements rather than regular events. For
each module, the GUI of ISELTA enables agents and providers to
use different attributes for specific events to catch the interest of cus-
tomers. It is written in PHP programming languages and contains
69323 lines of code for five different modules for each provider un-
der the "Hotels" branch. Readers can log in to ISELTA using demo
information given on the website as being a provider role.

7.2.1 est Preparation

This section presents the test preparation step for only the "Special”
module case study. However, a supplementary website for the "Ad-
ditional" module* is provided, which also introduces the required
information for reproduction.

Firstly, an FSM is manually constructed from the GUI program of
"Special" for the ISELTA website. This module is called GUIs Under
Test. An omission, insertion, and replace mutation operators [76] are
performed on these FSM(s) for a mutant generation. Then, further
steps are carried on as provided in Section 6.2.1 and 6.2.2.

There are many input areas and buttons in the main GUI of the
"Special" module, and it is redundant and tedious to test each case
of the module. Therefore, the thesis restricts the scope to a relatively

4 MBIT4SW, https://kilincceker.github.io/MBIT4SW/

https://kilincceker.github.io/MBIT4SW/

7.2 GRAPHICAL USER INTERFACE BASED CASE STUDIES

small module in the application for evaluation. In this step, the FSM
model is acquired by the GUI. To do this, the tester enters the ISELTA
web page and proceeds to the "Special" module. He/She has listed
all elements (events) of this module. These elements are given in Ta-
ble 7.2.1. Then he/she applies the algorithm given in Section 6.2.2
in the listing 7. First of all, he/she tries to set required input boxes
such as "price", "title", "number" elements. While the tester provides
this information to the SUT, he/she is also added this information,
including SUT’s responses to the FSM model. When the tester satis-
fies about covering all elements and their combinations in the FSM
model, he/she finishes the model construction procedure.

In the (supposedly) fault-free FSM of the "Special" module, a sym-
bol is assigned for each event that becomes a transition label in the
FSM. All symbols represent filling an input, clicking a button, or re-
moving a text from an input. These action symbols enable the imple-
mentation of the Selenium test script. All event symbols are listed in
Table 7.2.1.

In the case study, it is intended to catch functional faults (see the
definition in Chapter 1 on page 5, paragraph 2, line 5) that directly
affect the desired operation of the system based on user interaction
with the GUL

Example 7.1. Functional Fault: Mutant one given in Table 7.1.3 is a func-
tional fault in which the system does not add a new offer due to required
empty input boxes. However, it reaches the final event called "add” event.
Once the user clicks the "add” button, he/she might receive an error message
that is triggered by the fault. This type of fault is called functional fault.

Table 7.2.1: Symbols and Their Corresponding Events

Symbol Event Symbol Event
e Click Back k Click Edit
1 Click Save \% Click Add
u Set Title X Set Number
y Set Price z Set Description
r Remove All t Remove Title
P Remove Price n Remove Number

In total, 12 different types of mutants are acquired at code and
model levels. Table 7.1.3 gives the semantics of these mutants for the
"Special" module, including mutation operators utilized for the gen-
eration of these mutants. GUIs under test enable only this number of
faults at a model level based on experimentation for a mutant genera-
tion. The FSM model of the "Special" module permits only the faults
using "Add", "Update", "Edit", and "Save" events due to the function-
alities of these events. For example, "Add" and "Add" events permit

77

78

CASE STUDIES, RESULTS, AND EVALUATION

"Add with empty input boxes" and "Update" permits "Update with
empty input boxes". Note that the number of possible mutants at the
code level can be more than the number of modeled mutants related
to the utilized mutation operators. The number of modeled mutants
is determined by the GUI under test and its model where each mu-
tant model needs to have a semantic as listed in Table 7.1.3. So, there
isn’t any correlation between the number of states or transitions in
the FSM model.

In this case study;, it is only focused on mutants that the FSM can
acquire. Hence, the mutant and test generation were carried out on
the FSM model, but the test execution and selection steps were carried
out on the code level in this study.

Table 7.2.2: Mutant Semantics for MBIT

Mutant Semantics Mutation Operator(s)

1 Add with empty input boxes OPIO

2 Update with empty input boxes OPIO

3 Add with empty Number of Packages OPRO

4 Add with empty price OPRO

5 Add with empty title OPRO

6 Update with empty title RO, OP

7 Update with empty price RO, OP

8 Update with empty number RO, OP

9 Add click does not respond OP, RO
10 Edit click does not respond Op, IP
11 Add and Edit click does not respond Op, IP
12 Save button move to initial state OP, IO, RO

In this step, the JFLAP tool is used to transform original and faulty
FSMs into REs. Then, the PQ-Analysis [81, 85] tool is applied to these
RE models to obtain CTs.

The original (supposedly fault-free) RE is provided below. The RE
in (21) is converted from the FSM model and contains symbols that
are embedded in the events provided in Table 7.1.2. The RE in (21) is
shortened to fit the page.

[(ve)*(knl(el)*exl + ...+ ky(xl+ 1) + kxl + kl)*] (21)

The PQTestGen [56] tool acquires test suites using each CT of both
original ((supposedly) fault-free) and mutant (faulty) RE models. Fi-
nally, the PQTestGen tool utilizes test compaction to obtain the final
form of the test suites by removing redundant sequences. Those se-

7.2 GRAPHICAL USER INTERFACE BASED CASE STUDIES

quences are the ones for the test execution part of the study, which
operates on Selenium > test automation.

t1 = "klktleulkl", t2 = "klknlexlkl" (22)

t3 = "yxzveuvkl’, t4 = "yuzvexvkl" (23)

For instance, test sequences are given above in (22) and (23) are ac-
quired from RE given in (21) by means of the PQTestGen tool.

7.2.2 Testing

A Selenium test script is used for test execution. The Selenium script
runs all test sequences on each original and faulty GUIs that are "Spe-
cial" and "Additional" modules of the ISELTA. Then, test scripts result
in either "Pass" or "Fail" for each test sequence. They will then group
those to analyze them and decide the required set of test cases for
constructing the MBIT suites. These suites agree with the conditions
of the ideal testing.

In this thesis, 12 different mutants for the ISELTA website’s "Spe-
cial" and "Additional" modules are obtained, and 12 different test
suites from these mutants are acquired for the NT.

Selenium is used for test automation, which enables us to execute
test sequences automatically on the web-based software and collect
the test execution results. It contains two parts, which are the Web-
Driver and the IDE. The Web-Driver provides functionality with Java
and Python programming languages for automation of the test execu-
tion. The IDE contains an easy-to-use interface, including plugins for
specific internet browsers and simple record-and-playback of inter-
actions with the browser. Too many commercial or non-commercial
web or mobile test automation tools exist, especially for test execution.
Selenium is selected due to its robustness, simplicity, and popularity
among the scientific community. Besides Selenium, Sikuli ° is also an
open-source and robust solution. Sikuli is more useful for black-box
testing when there is no access to the system’s internal components
or source code of the system under test. Sikuli uses image recogni-
tion powered by OpenCV to capture GUI events. Both Selenium and
Sikuli can run various internet browsers from different vendors. Sele-
nium is more community-driven and supported among other testers.
Selenium can be easily adapted to MBIT methodology for test execu-
tion.

5 Selenium Test Automation, https://www.selenium.dev/
6 Sikuli Test Automation, http://sikulix.com/

79

https://www.selenium.dev/
http://sikulix.com/

8o

CASE STUDIES, RESULTS, AND EVALUATION

7.2.3 Experimental Setup For Graphical User Interface Programs

The proposed approach was evaluated through the ISELTA "Special”
and "Additional" modules with respect to experimental studies. For
this evaluation, 24 mutants of the ISELTA "Special" and "Additional"
modules (see Table 7.2.3) at code and model levels were obtained. The
list of these mutants is provided in Section 7.2.1 with details. To show
the presence and absence of the faults, the evaluation is carried out
in this section. Considering the presented general methodology, test
generation is only one of the stages. However, in the evaluation step,
test generation has become a priority.

For the FSM models used within the scope of experimental studies
to comply with the definition of model correctness proposed in Sec-
tion 6.2.2, the test suites obtained from the original model within the
scope of Criterion 6.1 were also run on the original GUI system, and
it was observed that all test sequences passed the test successfully.
Similarly, each test suite generated from mutant FSM models is exe-
cuted on the corresponding mutant GUI system based on Criterion
6.4 to avoid wrong model utilization.

Test generation is optional for the current methodology. Thus, the
general methodology can be realized by changing the test generation
stage. However, an approach that provides coverage of all modeled
faults has been proposed in this study. An approach that produces
random test generation has been developed and used for this evalua-
tion. Also, an industrial-level model-based testing tool called Graph-
walker is adapted to the methodology and utilized for evaluation.
Thus, the extent to which the overall approach is effective and ap-
propriate to test for the presence and absence of faults has also been
evaluated.

In the literature, the mutation score, fault coverage, test suite size,
test generation time, and test execution time metrics are utilized to
evaluate the approaches proposed for software testing (see Section
3.2). The most important and preferred of these is fault coverage.
Other important metrics are the time for test generation, test exe-
cution, and test suite size. All of these metrics were considered to
evaluate the current methodology.

By means of Selenium, an open-source test automation tool, the
test execution process is automated.

Table 7.2.3: Mutant Profiles for GUIs

Quantities
Special Module | Additional Module | Total

Functional Fault 12 12 24

Fault Type

For example, in mutant number 3 (Add with empty Number of
Packages input box) for the Special module, in the original system,

7.3 RESULTS

the user cannot add a new form to the system if he/she does not
fill the "Number of Packages" input box. However, to create a mu-
tant and a test sequence for this mutant, the "Number of Packages"
input state from the FSM is removed in mutant number 3. Because
the "Number of Resource" input state is removed from the FSM, the
mutant test file does not contain the test sequence for adding the
"Number of Packages" action. When the test suite is executed on the
original GUI under test, the system fails in some test sequences for
adding the new special form action. This is because the original sys-
tem actually expects the "Number of Packages" input box to be filled
to save the form to the system database. These validation points in
the application lead to several failing test sequences in each mutant
because those parts from the mutant are deliberately removed. Later,
these failing sequences are used to assert the required parts of the
GUI under test.

7.3 RESULTS

The MBIT approach is proposed for HDL and GUI programs. The
results of the experimental evaluations for HDL and GUI programs
are presented in the following sections.

7.3.1 Results For HDL Programs

The results from the ideal test experiment are collected in Table 7.3.1
and Table 7.3.2 for the negative and positive testing with respect
to three methods and five techniques for SD and TLC, respectively.
The proposed method for MBIT is a context-based test generation
approach called PQTestGen utilizing context-related coverage criteria
[100]. The other approaches are regular expression-based test gener-
ation, RETestGen [103], and context-based random test generation,
PQRTestGen [104], for which users have the option to set a specific
symbol coverage ratio. Thanks to this option, the thesis sets coverage
ratio to 9o, 80, and 7o values to utilize three more techniques for ex-
perimental evaluation by using PQRTestGen [104]. It cannot provide
a practical result once the ratio is set to 100. Also, test suites were not
generated in some cases even when the coverage ratio was set to go.
These cases are not considered in the evaluation.

The reader can refer to Chapter 4 for the details of the approach
implemented in the RETestGen tool.

As seen in Table 7.3.1 and Table 7.3.2, PQTestGen has the highest
fault coverage. In addition, the mutation score of test sets produced
for positive testing with PQTestGen is 1. Therefore, it was possible to
generate an ideal test suite for all mutant models from the test suite
generated with PQTestGen for TLC and SD. For TLC, after removing
the equivalent mutants from the total set of 82 mutants, all remaining

81

82

CASE STUDIES, RESULTS, AND EVALUATION

Table 7.3.1: Results of the Positive and Negative Testing for SD

PQTestGen RETestGen PQRTestGengo | PQRTestGen8o | PQRTestGenyo
Symbol Coverage 100 100 90 8o 70
Mutation Score 1 0,94 0,94 0,78 | 0,94 0,78 0,89 0,56 0,61 0,5
Fault Coverage (%) 100 | 94 94 78 94 78 89 56 61 50
Test Suite Size (Symbols) 64 52 66 51 68 35 28 18 21 14
Test Generation Time (ms) 7 7 21509 | 20445 | 9 6 4 4 4 4
Test Execution Time (ns) 116 | 156 130 156 | 175 108 97 64 107 73

mutants were killed. It is not possible to kill equivalent mutants by
the proposed or other compared methods. The reason for the fault
coverage value not being 100 is that equivalent mutants are included
in calculating the fault coverage. The method with the best fault cov-
erage and mutation score after PQTestGen is that of RETestGen with
TLC. For the PQRTestGen method, the fault coverage and mutation
score values decrease as the symbol coverage value decreases. A very
small difference that does not confirm this hypothesis is the value ob-
tained when the symbol coverage value is set to 8o and to 7o for the
positive testing.

As part of the experimental work for TLC, the equivalent mutant
models of TLC are deliberately seeded to see how the methodology
behaves. These equivalent mutants are artificially generated from the
FSM model of the TLC, and then their code-based mutant programs
can also be obtained. Then, the mutant models and programs are
integrated into the experimental study. However, the current method-
ology is not able to detect the equivalent mutants. To have a more ac-
curate mutation score, these deliberately seeded equivalent mutants
are isolated from the calculation of the mutation score.

Table 7.3.2: Results of the Positive and Negative Testing for TLC

PQTestGen RETestGen PQRTestGengo | PQRTestGen8o | PQRTestGenyo
Symbol Coverage 100 100 90 8o 70
Mutation Score 1 0,95 0,94 0,89 | 0,83 0,89 0,80 0,83 0,82 0,79
Fault Coverage (%) 90 90 84 79 73 79 71 73 72 70
Test Suite Size (Symbols) 157 | 199 169 195 99 104 90 84 67 68
Test Generation Time (ms) | 21 19 | 23501 | 33213 | 25 9 14 7 13 4
Test Execution Time (ns) 363 | 285 478 430 | 298 238 282 222 222 197

Based on the experimental study, PQTestGen and RETestGen can
kill mutants for "hard to detect faults", which is not the case with
the other techniques. However, RETestGen takes longer time for test
generation, see Table 7.3.1 and Table 7.3.2, and is unable to kill the
mutants that PQTestGen can kill. After "hard to detect faults", the
"condition stuck at true/false faults" are the most difficult to detect
faults. The "output bit stuck at o/1 faults" are easily detected if their
corresponding output behavior is included in the test suite.

For the RISC-V processor, the PQTestGen achieves the maximal
fault coverage and mutation score for both PT and NT. RE-TestGen
also has the maximal scores (fault coverage and mutation score) for

7.3 RESULTS

Table 7.3.3: Results of the Positive and Negative Testing for RISC-V Proces-

SOor
PQTestGen RETestGen PQRTestGengo | PQRTestGen8o | PQRTestGenyo
Symbol Coverage 100 100 90 8o 70
Mutation Score 1* 1* 0,82 1* 0,74 0,89 0,67 0,83 0,58 0,79
Fault Coverage (%) 100* | 100* 82 100* 74 91 67 79 58 67

Test Suite Size (Symbols) 522 | 464 | 3405% | 3036* | 158 167 148 152 110 116

Test Generation Time (ms) 49 48 | 41928* | 26939* | 25 24 22 23 20 20
Test Execution Time (ns) 359 | 345 | 1831* | 3636% | 203 332 98 314 81 134

NT. The maximal scores are 100 for fault coverage and 1 for mutation
score. However, RE-TestGen results in more than 6 times larger test
suite and more than 100 times longer test generation time, leading to
more than 6 times longer test execution time. When the coverage cri-
terion was set to 100, PQR-TestGen could not generate the test suites
in any time interval that was set for about 1 hour. Even in 1 hour,
PQR-TestGen generates at least 500 MB of data containing mostly
redundant test cases in case of setting the coverage criterion to 100.
Therefore, the coverage criterion was set to 9o, 80, and 70 to gen-
erate different test suites for evaluation. The coverage criterion was
set to 100 for PQTestGen and RE-TestGen, directly affecting the fault
coverage and mutation scores. This explains why PQR-TestGen also
has a lower fault coverage and mutation score due to the effects of
the symbol coverage. However, PQR-TestGen utilizing a random test
generation algorithm is very effective for achieving a reasonable fault
coverage quickly.

100 100
90 —F' - 7—4 90 +
80 80
))
¥) @ o
@ 60 @ 60
> PQTestGen >
o 50 , 0 50 .
bt RETestGen o s PQTestGEN
e 40— = 40
5 N Y 5 RETestGen
3 30 PORTestGen_70. 3 30
o 20 (' 2 PQRTestGen_70
tGen 80— —
10 - 10 'V 4 PQRTestGen_80
o L4 PQRTestGen_50 o 79 PQRTestGen_90
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Test Execution Time (ns) Test Execution Time (ns)

Figure 7.3.1: Fault Coverage and Test Execution Time Curve for SD (left dia-
gram is for positive and right diagram is for negative testing)

Figure 7.3.1 and Figure 7.3.2 show cumulative distribution curves
of the methods used for fault coverage with respect to test execution
time for positive and negative testing for TLC and SD cases, respec-
tively. All of the methods achieve at least 70% fault coverage in 400
nanoseconds for TLC. PQTestGen reaches maximum fault coverage in
about 1,300 nanoseconds (positive testing) and 700 nanoseconds (neg-
ative testing). For the SD case, it is about 300 nanoseconds in positive
and negative testing.

Figure 7.3.3 shows cumulative distribution curves of the methods
used for fault coverage concerning test execution time for positive

83

CASE STUDIES, RESULTS, AND EVALUATION
100 1
90 09
o 50 08 P
o 7o [-
g g o7 o
o 60 - y
3 o e PQTeStGEN g 0,6 PQTestGen
Y w0 = RETestGen S z’z If e RETestGen
FREY) s PQRTestGen_70 ‘—; 0'3 PQRTestGen_70
[, PQRTestGen_80 id 0'2 PQRTestGen_80
10 PQRTestGen—90- ” s PQRTestGen_90
01
0
0 200 400 600 800 1000 1200 1400 1600 1800 0
0 200 400 600 800 1000 1200 1400 1600 1800
Test Execution Time (ns . "
(ns) Test Execution Time (ns)

Figure 7.3.2: Fault Coverage and Test Execution Time Curve for TLC (left di-
agram is for positive and right diagram is for negative testing)

100 g
90 I
o 50 —
o 70
I
g 60 s PQTestGeN
8 50 e RETestGen
= 40 =
g 30 PQRTestGen_80
“ 20 e PQRTestGen_90
10
0
0 1000 2000 3000 4000 5000 6000
Test Execution Time (ns)

100
90
80
70
60
50
40
30
20
10

0

Fault Coverage

.
Il

I__J

i——

—

RETestGH

e PQRTestGen_70

PQRTestGen_80

e PR TestGen_90

0

1000 2000 3000 4000 5000 6000 7000 8000 9000

Test Execution Time (ns)

Figure 7.3.3: Fault Coverage and Test Execution Time Curve for RISC-V Pro-
cessor (left diagram is for positive and right diagram is for neg-

ative testing)

100 100 100 |
%0 p— EY %0]
80 80 20
_J RETestGen |
g 70 @ 70 I @ 70
e 14 & 7. o PaRTestGen_70 -
EGO] §60 r g &0 PQRTestGen_80
H estGen_t
8 50 [———ReTestGen 850 [8 50
£ 40 =40 | e a0 —— PaRTestGen_90
F] } PQRTestGen_70 3 (- , PQRTestGen_70 2
£ 30 { £ 30 £ 30
20 { PQRTestGen_80 2 PQRTestGen_80 ot
4 | —
10 L L2 10 —— PQRTestGen 90 0 |
0 0 o U [
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 1000 2000 3000
Test Suite Size Test Suite Size Test Suite Size

Figure 7.3.4: Fault Coverage and Test Suite Size Curves (left diagram is for
SD, middle diagram for TLC, and right diagram is for RISC-V)

7.3 RESULTS

and negative testing for the RISC-V processor. PQTestGen achieves
the highest scores in about 1000 ns for both PT and NT. RE-TestGen
has the second highest fault coverage. However, it requires a longer
test execution time to achieve its current scores.

The fault coverage and test suite size relation are presented in Fig-
ure 7.3.4 for SD, TLC, and RISC-V case studies in order from left
to right only for NT. Since the test suite is fixed, this relationship is
not provided for PT. Interestingly, the PQTestGen curves for SD and
TLC are very similar and achieve the highest fault coverage for about
400 and 600 test cases for SD and TLC, respectively. The curves for
RISC-V are very separated due to the different algorithms each tool
utilizes. RE-TestGen needs a larger test suite size to reach the same
fault coverage as PQTestGen.

The results are collected from the automatized processes. The man-
ual effort is neglected from the results, which takes more than the
total time for the test generation and execution. The mutant genera-
tion requires the highest manual effort.

Based on the results, the proposed methodology with PQTestGen is
effective in showing the presence and absence of faults using positive
and negative testing in the scope of the model. Finally, the Test Suite
Analyzer was utilized to collect MBIT test suites from the results of
PQTestGen for TLC and SD.

7.3.2 Results For Graphical User Interface

Together with the mutation score, fault coverage, test suite size, test
generation time, and test execution time metrics for evaluation, Ta-
ble 7.3.4 and Table 7.3.5 are provided with a comparison of two dif-
ferent configurations of PQRTestGen, namely, PQRTestGen100 [104]
and PQRTestGen6o [104], and Graphwalker [49]. The symbol cover-
age criterion is set to 100 and 60 for the random test generation tool,
PQRTestGen1oo and PQRTestGen6o. Using its visual editor, a new
FSM model is created to adapt the Graphwalker [49]. Then, Graph-
walker is run to generate test sequences by setting symbol coverage
to 100. After running Graphwalker for about one hour, it is termi-
nated due to excessive memory usage, which resulted in an enor-
mous output file. Experimentally, the coverage value was decreased,
and decided that 9o percent coverage was the optimum value. The
RETestGen [103] tool is utilized for test generation. However, RETest-
Gen resulted in excessive-size test suites, which could not execute on
the GUI under test at acceptable times. Therefore, RETestGen from
the experimentation is neglected. To eliminate randomness on evalu-
ated metrics, each tool ran using a random test generation algorithm
10 times and selected average test suite size among others with their
corresponding metrics.

85

86

CASE STUDIES, RESULTS, AND EVALUATION

The reader can refer to Chapter 5 for the details of the approach
implemented in the PQRTestGen tool.

Table 7.3.4: Results of the PT and NT for Special Module
PQTestGen | PQRTestGen1oo | PQRTestGen6o | Grapwalker

Symbol Coverage 100 100 60 90
Mutation Score 1* | 0,92 | 0,75 0,75 0,58 0,75 0,92 | 0,92
Fault Coverage (%) 100* | 92 75 75 58 75 92 92

*

Test Suite Size (Symbols) 412 | 486 | 228 209* 193 154 767* | 594

Test Generation Time (ms) | 249 | 178 | 263 203 216 157 3870* | 3897*

Test Execution Time (s) 207 | 180 | 84 72 120 71 283% | 262*

PS: Positive Testing (left), NT: Negative Testing (right), ms:
milliseconds, s: seconds

Table 7.3.5: Results of the PT and NT for Additional Module
PQTestGen | PQRTestGen1oo | PQRTestGen6o | Graphwalker

Symbol Coverage 100 100 60 90
Mutation Score 1* 1* 0,58 0,75 0,5 0,58 0,92 0,83
Fault Coverage (%) 100* | 100* | 58 75 50 58 92 83

Test Suite Size (Symbols) 486 | 412 | 215 215 180 160 554% | 508*

Test Generation Time (ms) | 254 | 181 | 275 218 217 158 3856* | 3676

Test Execution Time (s) 104 88 47 47 40 40 133* | 132%

PS: Positive Testing (left), NT: Negative Testing (right), ms:
milliseconds, s: seconds

As provided in Table 7.3.4 and Table 7.3.5, PQTestGen attained the
highest coverage of faults. The details of the PQTestGen tool are elab-
orated in Section 7.5. Moreover, PQTestGen has the highest mutation
score for the PT, which is 1. Therefore, MBIT test suites are acquired
for Special and Additional GUI under test using PQTestGen for the
entire set of mutants. For the PQRTestGen method, the symbol cover-
age value also decreases while the fault coverage and mutation score
values decrease. However, the PQRTestGen method resulted in the
same coverage for the "Special" module in the NT.

Graphwalker resulted in a larger test suite than other techniques,
and its test generation time is about 15 times higher than others. The
reason for the larger test suite is the random test generation algorithm
utilized by Graphwalker. Graphwalker is run on the command-line
interface (CLI) and calculates test generation time using its jar file.
Execution of jar files may explain the excessive test generation time
of Graphwalker, among others. Except for Graphwalker, PQTestGen
yielded the largest test suite results among others. This is because
the test generation algorithm used by PQTestGen includes even each
repeating symbol in the coverage value as if it were a different symbol.
Thus, while some redundant symbols are included in the test suite,
this situation directly affects the fault detection capability.

7.3 RESULTS

The cumulative distribution curves for fault coverage and normal-
ized test execution time is given in Figure 7.3.5 and in Figure 7.3.6 for
the "Special" and the "Additional" modules, respectively. All the tech-
niques have at least 58 fault coverage in around 225 seconds for both
GUIs under test. In about 207 seconds (PT) and 180 seconds (NT) for
the "Special" module, PQTestGen achieves the maximum fault cover-
age. It is around 104 seconds and 88 seconds in the PT and NT, re-
spectively, for the "Additional" module. To calculate normalized test
execution times, the minimum (min) and maximum (max) values of
all test execution times for the respective GUI were found. Then, the
normalized form of the x value as (x-min) / (max-min) was calculated.
The normalization process resulting from the proportional difference
between PQTestGen and PQRTestGen test execution times is needed.
Thus, Figure 7.3.5 and Figure 7.3.6 were obtained.

} 4
4
==0==PQTestGen

®
5

o= PQRTestGen_100

PQRTestGen_60

@
o

1

| §

¢
1
9
\"
Iz

—@— GraphWalker @=ommPQTestGen

Fault Coverage
B
3

&
o

@=g==PQRTestGen_100

PQRTestGen_60

N
5
g

—8— GraphWalker

o
)

o o1 02 03 04 05 06 07 08 09 1 o o1 02 03 04 05 06 07 08 09 1
Normalized Test Execution Time Normalized Test Execution Time

Figure 7.3.5: Fault Coverage and Normalized Test Execution Time Curve for
Special Module (left diagram is for the PT and right diagram is
for the NT)

==OQ==PQTestGen =0=—=PQTestGen

80 PQRTestGen_100 80 PQRTestGen_100

PQRTestGen_60

PQRTestGen_60

—e— Graphwalker

—&— Graphwalker

Fault Coverage
Fault Coverage

[} 01 o02 03 04 05 06 07 08 09 1 [o1 02 03 04 05 06 07 08 09 1
Normalized Test Execution Time Normalized Test Execution Time

Figure 7.3.6: Fault Coverage and Normalized Test Execution Time Curve for
Additional Module (left diagram is for positive and right dia-
gram is for negative testing)

These results are collected using automatized processes. The man-
ual effort is neglected. Usually, the manual effort requires more time
than the automatized process. The highest manual effort is the mu-
tant generation.

Based on the collected results, the proposed approach efficiently
shows the presence and absence of faults in the model’s scope. Fi-
nally, using a Selenium test script, MBIT test suites are automatically
collected for the "Special” and "Additional" modules.

87

88

CASE STUDIES, RESULTS, AND EVALUATION

The Web-Driver part is integrated into the current framework. Se-
lenium is used for the test execution and selection steps performed
using the Web-Driver, which contains generic Java test scripts to exe-
cute test sequences from PQTestGen and PQRTestGen automatically.
Then, it collects the "pass” or "fail" results.

7.4 EVALUATION

The following sections present the evaluation results for the MBIT
concerning research questions for HDL and GUI programs.

7.4.1 HDL Programs

This section analyzes the results of the case studies and discusses
the aspects of the selection of test and mutant generation techniques
within the proposed methodology. Moreover, it discusses the evalu-
ation of the algorithms and procedures utilized in the methodology.
The research questions defined in Chapter 1 are examined to check
whether those questions have been answered satisfactorily. Finally,
the threats to the validity of the proposed methodology are discussed.

7.4.1.1 Test and Mutant Generation Techniques

This thesis uses the PQTestGen tool for test generation, as it is effec-
tive with respect to its fault detection ability by means of exploiting
the RE. This tool uses the context tables generated with PQ-Analysis
by analyzing the RE. The tool’s effectiveness comes from these context
tables, which enable to remove the ambiguity in the RE (see details in
Section 3.3). This improves the ability of the test sequences to detect
faults and increases the number of mutants killed. The reason is that
this thesis addresses showing the absence of HDL faults (as part of
the ideal test), and to show the absence of a fault, it should be mod-
eled in the mutants of the FSM. Therefore, it requires the application
of specific mutant operations to the original FSM. As a result, the au-
tomatic generation of mutants, which produces random mutants, is
not useful for this purpose.

7.4.1.2 Evaluation of The Proposed Methodology

The proposed approach is evaluated considering the computational
complexity of the different steps required for applying ideal testing,
including model construction, model mutation, model conversion,
test generation, pre-selection, and test suite construction. It is worth-
while to know that among these steps, the model mutation is done
manually (discussed in Section 6.1.3); the rest of the steps will auto-
matically be carried out by means of the available toolchain.

7.4 EVALUATION

According to the procedure described in Section 7.5, the model
construction step needs two iterations to extract an FSM out of an
HDL program. It is assumed that the HDL program has N states.
The first iteration of the model construction procedure is to list all
states (with the complexity of N), and the second iteration is to find
the transitions between the states, which have the complexity of N2
in case the FSM is complete. Therefore, the total complexity for the
whole procedure in the worst case is O(N+N?), which equals O(N?).

As discussed earlier, the model mutation is done manually for spe-
cific faults and is mapped to mutant HDL programs. Therefore, it
is not considered in the calculation of the computational complexity
of the proposed methodology. However, the number of mutants (let
this be M) that are provided manually for the faults is important in
the calculation for its effect on the complexity of further steps, as the
following steps will be repeated for each of the mutants.

The model conversion step can be implemented using different al-
gorithms, such as state elimination [9o] or the Brzozowski method
[96]. However, the best result can be achieved without considering
memory/space limitations with the state elimination algorithm in
polynomial time [105].

The test generation step includes 2 sub-steps, namely model analy-
sis using PQ-Analysis to create context tables and test sequence gen-
eration. The model analysis step can be done with a complexity of
O(N?). The test sequence generation is implemented based on the
context tables and using a breadth-first search algorithm, presented
in Section 6.1.3 with the algorithm in Listing 7, which results in a
complexity of O(N?).

Finally, pre-selection and test suite construction steps are applied
on all test sequences; let their number be K, each of which can have
at most N-1 test symbols, as the loops and circles of the FSM are not
considered while traversing it for test generation. So, the complexity
of the test execution will be O(KxN) in the worst case.

Table 7.4.1: The Complexity of the Used Algorithms

Automatic | Manual
Model Construction (FSM-Extractor) O(N?) N/A

Model Mutation N/A O(N) with respect to N states or O(M)
with respect to M transitions using mu-
tation operators

Model Conversion (JELAP) O(N3) N/A
Model Analysis (PQ-Analysis) O(N?) N/A
Test Execution (Test Bench) O(K*N) | N/A
Test Selection (Test Suite Analyzer) O(KxN) | N/A
Total OMNZ +M x (N3 + 2 x O(N?)+2xKxN)) = O(MxN3) + (MxKxN))

Table 7.4.1 summarizes the above-mentioned calculations. As it can
be seen in this table, the total complexity of the proposed approach
is OMMxN3+(MxKxN)) at the worst case (where M is the number
of mutants, N is the number of states and K is the total number of

89

90

CASE STUDIES, RESULTS, AND EVALUATION

test sequences from each mutant), as the model conversion, model
generation, test execution, and test composition steps are applied for
each of the M mutants.

7.4.1.3 Checking The Research Questions

This section examines the research questions according to the results
achieved throughout this thesis.

HDL-RQ 1. Is it possible to apply the code-based ideal testing ap-
proach (proposed by Goodenough and Gerhart [2]) to model-based
testing and exemplary to HDL programs that will be viewed as hard-
ware specifications?

The proposed methodology, called MBIT, satisfies the requirements
of ideal testing [2] that is supported by the theoretical evidence pro-
vided in Section 6.1.1. The experiments conducted using the case stud-
ies support the claim of satisfying the requirements of ideal testing
with the HDL program. Thus, HDL-RQ1 can clearly be answered: Yes,
it is.

e HDL-RQ 1.1 What kinds of HDL system can be addressed?
Sequential, combinational, Cyber-Physical Systems, embedded
systems? What are the borders?

In the proposed methodology, Verilog HDL is addressed, which
models a sequential circuit at the behavioral level. However, the pro-
posed methodology can be adapted to any sequential system that
can be represented by behavioral models, such as user interfaces,
for cyber-physical, interactive, and /or embedded systems. Behavioral
models cannot represent the combinational circuits due to their state-
less nature.

¢ HDL-RQ 1.2 What kinds of HDL faults can be targeted?

The fault types [13] in HDL are single output bit stuck-at 0/1, case
bit stuck-at 0/1, condition stuck-at True/False faults, and their com-
binations.

e HDL-RQ 1.3 What are the outcomes of applying the ideal test-
ing?

The proposed model-based method satisfies the reliability and va-
lidity requirements of the Fundamental Test Theory of Goodenough
and Gerhart [2]. Also, it enables testing for the presence and absence
of fault(s) in the scope of the HDL model.

HDL-RQ 2. What are the costs of applying ideal testing in terms of
time and size of test suites (a set of test sequences), and is this ap-
proach scalable?

7.4 EVALUATION

The cost of the proposed methodology is O(M x N3+(MxKxN)) for
N states, M mutants, K is the total number of test sequences from each
mutant. Test time for positive and negative testing is given in Table
7.3.1, Table 7.3.2, and Table 7.3.3 for the SD, TLC, and RISC-V case
studies, including the size of the test suite. Based on these findings,
yes, the current methodology is scalable.

e HDL-RQ 2.1 How does this cost affect the scalability of the ap-
plication of ideal testing?

The main bottleneck of the approach is the PQ-Analysis-based test
sequence generation, which requires converting the models for analy-
sis. However, the main steps are automated by means of the tool sup-
port given in Section 7.5. Moreover, future directions are discussed to
cope with the scalability problems identified in Section 7.4.2.3.

e HDL-RQ 2.2 What are the complexities of the algorithms used?

The complexity of the used algorithms in the proposed methodol-
ogy is given in Table 7.4.1.

7.4.1.4 Threats to the Validity

In this section, the possible threats to the validity of the proposed
methodology are discussed with respect to the internal, external and
construct validities.

Internal Validity

A model-based ideal testing methodology is proposed to validate
HDL design by utilizing holistic [7] and mutation testing [9, 10]. To
verify this claim, the theoretical evidence is already given in Section
6.1.1, in which the requirements for being an ideal test are proven.
Moreover, the basic idea to support the proposed approach is given
in Section 6.1.2. More importantly, the experiments are conducted on
case studies in Section 7 for evaluation, which supports theoretical ev-
idence by resulting in ideal test suites. In experimentation, randomly
chosen faults are seeded into the model to address common faults in
practice in the HDL. Then, the ideal test suites are executed on both
original and mutant models. Results show that the ideal test suites
reveal the presence of those faults by means of positive testing. To
test the absence of the faults, the ideal test suites generated from the
mutants are executed on the original HDL in negative testing. To this
end, the experimental and theoretical evidence verify that the claim
is correct, showing no threats to internal validity.

A critical question can be asked about the model used in the ap-
proach: How do you show that the model is correct? A faulty model

91

92

CASE STUDIES, RESULTS, AND EVALUATION

would lead to corrupted tests. This question can ruin all of the model-
based techniques developed over more than three decades and thus
has satisfactorily been answered: Use any support to validate the
model, for example, model checkers [106], and more importantly, in-
volve end users as early as possible to extensively assess the model,
long before you start with test generation and testing.

External Validity

To generalize the obtained results from this thesis, the proposed method
must be applied to different case studies.

The Verilog HDL is selected due to its availability for fault mod-
els and simplicity than the others [107]. However, the SystemVerilog
HDL is an industry-standard HDL, especially for verification. The
proposed methodology is also applicable and valid for the SystemVer-
ilog HDL appropriately defining and addressing design faults that
are nearly the same as Verilog HDL faults.

The number of states in the FSM model may cause a problem with
respect to scalability. The problem is already mentioned in Section
7.4.1.2, including complexity analysis that is N? in the worst-case
scenario for test sequence generation from the indexed regular ex-
pression. Experimental results related to HDL-RQ 2 show that the
problem is solved in 78 milliseconds for a case study with 10 states.
However, for larger problem sizes, the response time can be unrea-
sonable. To tackle this problem, scalability can be improved using the
available techniques in the literature [71, 108, 109].

The proposed method only applies at the behavioral level HDL
that implements a sequential circuit that an FSM can model. An
FSM model is required to be extracted from this behavioral level
HDL to proceed to further steps. The proposed method offers an au-
tomatic approach to obtaining an FSM model from well-structured
HDL. However, a tester can manually extract an FSM model from
either the specification or directly from HDL. The above-mentioned
limitations can affect the generality of the proposed method in terms
of external validity.

Moreover, a study can be addressed to adapt the current methodol-
ogy for re-configuring it at run-time so the fault can be detected and
fixed. These types of faults are called soft errors, such as single-event
upset. A similar idea proposed by Igbal et al. [110] can be used to
apply for automated testing at run-time using a model-based testing
approach.

The proposed approach addresses the following common fault types
[12, 13]: single output bit stuck-at 0/1, case bit stuck-at 0/1, condition
stuck-at True/False, their combinations at the behavioral level HDL.
However, generating tests for HDL of hardware, and its HDL signals
can take on quaternary values (0,1,X,Z), the thesis does not target

7.4 EVALUATION

stuck-open (stuck-at Z (High-Impedance state)) or stuck-short (stuck-
at X) faults for especially bus related faults because it is not possible
to model them at the behavioral level. This causes an external threat
due to its generality.

Detecting bus-related stuck-open (stuck-at Z (High-Impedance state))
or stuck-short (stuck-at X) faults at the behavioral level requires look-
ing at the bus-enabled signals in the FSM used for the representation
of behavioral level HDL. To this end, this can be extended for this the-
sis by addressing these kinds of serious bus-related faults. For this, it
can be first planned to simulate such faults to check their effects on
output signals, which are directly represented at the transitions of the
FSM. Then, this can have a direct representation at the FSM, which
can be used as mutant models. On the other hand, its representation
and definition at the behavioral level HDL code is needed to execute
positive test suites. On the other hand, the different approaches [111,
112] can be utilized for bus-related faults represented by graph mod-
els.

This thesis only handles validation activities without considering
timing issues that may lead us to another external threat. Even though
the proposed methodology targets the HDL design at the behavioral
level, the generated test suites can also be valid at the lower level
(that is, Gate level) to address the lower-level faults. Testing activities
at the lower level may require the consideration of timing behaviors
that are neglected in the current methodology.

Construct Validity

The mutants at the model and code levels are generated manually,
even though the original model, which represents supposedly fault-
free HDL code, is constructed automatically. Therefore, the mutant
developer presents a bias that might threaten the construct validity.
To mitigate this threat, the existing mutation operators [67] in the
literature are analyzed and adapted into the proposed methodology
to minimize the bias by the mutant developer for the model mutation.
Similarly, the existing fault models [26] (such as stuck-at o/1 fault)
are linked to mutations in the HDL program level while performing
mutant generation.

7.4.2 Graphical User Interface

This section discusses MBIT for GUI programs concerning testing
techniques and the selection of mutant generation based on exper-
imental and theoretical evaluation. The research questions are an-
swered, including the internal and external validity.

93

94

CASE STUDIES, RESULTS, AND EVALUATION

7.4.2.1 Test and Mutant Generation Techniques

The FSM and RE are used to acquire mutants and test suites, respec-
tively. However, alternatively, it is possible to use others, such as the
ESG or EFG, for these processes. The FSM and RE are adapted to this
thesis.

The PQTestGen tool is used in this thesis to obtain test suites due
to its effectiveness in detecting faults. The PQTestGen is an efficient
tool that uses tables to eliminate uncertainty by using the right and
left context of each symbol in the RE. This enhances the capability of
fault detection.

7.4.2.2 Checking the Research Questions

The research questions provided in Section 1 are answered concern-
ing theoretical and experimental evaluation within the thesis’s scope.

1. GUI-RQ 1. Is it practically and theoretically possible to offer an
ideal testing [2] approach for GUI testing? It is applicable based
on the theoretical evidence provided in Section 6.1.1. Also, the
experiments’ result (given in Section 7.2) is that the conditions
of being an ideal test [2] are satisfied with the GUI programs
based on the "Special” and "Additional" modules of the ISELTA.
Therefore, the answer to GUI-RQ 1. is yes.

¢ GUI-RQ 1.1 What types of systems can be tested in this
way? In this thesis, the GUI system of a computer’s se-
quential programs and a sequential slice of them, repre-
senting an application by a combination of icons, menus,
buttons, bars, boxes, and windows is addressed. However,
this thesis applies to any mobile GUI program. Other types
of computer programs, such as the GUI of game programs,
are neglected, which requires the utilization of different
abilities and methods.

¢ GUI-RQ 1.2 What types of faults can be targeted with the
proposed approach? The fault type addressed in the the-
sis is a functional fault [113] in the GUI under test that
cannot deliver desired and expected behavior/function in
case this fault occurs.

2. GUI-RQ 2. What is the cost of applying this approach to GUI
testing? The computational complexity of the proposed approach
is OM * N3 + M * K* N) for N states, M mutants, and K is the
total number of test sequences from each mutant. Table 7.3.4
and Table 7.3.5 are presented for the cost of the "Special" and
"Additional" modules of the ISELTA case studies, including the
size of the test suite. Since the proposed approach is generic,
the computational complexities are the same for both HDL and
GUI programs.

7.4 EVALUATION

3. GUI-RQ 3. How is scalability affected? The CT-based test gener-
ation is the main bottleneck of the thesis due to the transforma-
tion of the models for analysis. Nonetheless, the main steps of
using the toolchain are already automated.

7.4.2.3 Threats to the Validity

This section presents potential threats to internal, external, and con-
struct validity, including mitigation methods.

Internal Validity

Similar to internal validity for HDL programs, there exists a point
that needs to be addressed here related to model correctness. The
mitigation method presented for HDL programs in Section 7.4.1.4
also applies to GUI programs.

External Validity

In the test composition part of the proposed approach, there is the
step of running the test suites. Although these suites run automati-
cally thanks to the Selenium tool, each test run can take a few minutes,
as shown in the tables of Section 7. This time varies in proportion to
the number of states in the model. Moreover, considering that the PT
and NT are applied for each mutant, the total number of Selenium
test operations will be the mutant number times 2. This can be a few
hours, even in the small GUI form used in case studies of GUI pro-
grams. This approach will take much longer when applied in larger
models with more mutants. For this reason, the most important exter-
nal validity can be considered as this complexity problem.

To cope with complexity issues leading to state explosion problems,
one of the GUI ripping methods [97, 98] can be utilized to obtain the
model automatically. On the other hand, there is another solution
[114, 115] to cope with huge models utilizing layered modeling meth-
ods that are well-suited for the hierarchical structure of GUI systems.
These layers can be manually created by the tester or automatically
extracted from a non-layered model using a community detection al-
gorithm introduced by Silistre et al. [52] to mitigate the complexity
thread.

This thesis addresses the detection of functional faults rather than
other types of faults related to visual attributes (such as overlap or
rendering problems [116]) as they are mostly utilized in the GUI of
games. This may lead to external validity. Models functionally rep-
resent systems under test in the thesis. Testing visual attributes on
the screen is unsuitable for the thesis due to the constructed model’s

95

96

CASE STUDIES, RESULTS, AND EVALUATION

use. Testing such visual attributes requires the utilization of white
box code-based testing methods.

Construct Validity

The current methodology requires manual efforts for the model and
mutant generation. The test expert carries out the model generation
using the JFLAP tool. However, the test expert may construct the
wrong model as an original model, as it is also addressed in the in-
ternal validity. In this way, the test expert manually constructs the
wrong mutant models from the wrong original model. This is also
considered a potential threat to construct validity. To overcome this
threat, the generated test suites from an original model are executed
on the original SUT and from mutant models on the corresponding
mutant SUTs. Furthermore, it is checked that all test cases pass on
these executions to ensure that the model and the SUT are equivalent
concerning the generated test suites.

7.5 TOOL SUPPORT

The proposed methodology is supported by using a chain of dedi-
cated tools to run the testing process automatically and, thus, to re-
move the manual effort as much as possible for both GUI and HDL
systems. Note that PQ-Analysis and PQTestGen are applicable for
both systems, and the rest are specific to HDL systems. To this end,
a set of tools is used, from which some are developed in this the-
sis’s scope, and others are from the literature and merged into this
toolchain. The tools used in this thesis are shown in Figure 7.5.1.
From these tools, PQ-Analysis [81, 85], PQTestGen [56] and Test Suite
Analyzer are domain-independent tools, but Test Bench is a domain-
specific tool and in the scope of this thesis it is based on an FPGA Test
Suite. The complete tooling for HDL and GUI systems are provided
in MBIT4HW 7 and MBIT4SW 8 repositories, respectively.

Moreover, the reader can refer to Chapter 4 and 5 for the details of
the approach implemented in the RETestGen and PQRTestGen tools.
These tools are developed within the scope of this thesis and are used
in the evaluation, comparing them with the PQTestGen tool.

The sequence illustrated in Figure 7.5.1 shows the order in which
the tools are used to realize the ideal test. These tools are elaborated
underneath.

7 MBIT4HW, https://kilincceker.github.io/MBIT4HW/
8 MBIT4SW, https://kilincceker.github.io/MBIT4SW/

https://kilincceker.github.io/MBIT4HW/
https://kilincceker.github.io/MBIT4SW/

7.5 TOOL SUPPORT

FSM-Extractor PQ-Analysis PQTestGen Test Bench Test Suite Analyzer

@ OO OO E

The FSM is obtained from
Verilog Code according to

Create Context Table Create Test Cases Verilog Based FPGA | Positive and Negative

PQ Analysis Create State Diagrams Test and Simulation Tests Results Analyze

- N AN AN

Figure 7.5.1: Tools Used in the Proposed MBIT Methodology

Test Preparation

FSM-Extractor

The FSM-Extractor generates an FSM model from a given HDL pro-
gram if any model is provided. The FSM-Extractor parses the HDL
program and processes the code line by line to extract the states and
transitions of the FSM model.The tool uses some of the variables de-
fined in the HDL program to detect some specific patterns.For exam-
ple, the tool employs "btn", "state", and "outputlightstatus" variables
as the input, state, and output of the FSM model. The FSM-Extractor
tool can be adjusted to accept any user-defined variables of an HDL
program. The tool is implemented in Java programming language
and accepts an HDL program (Verilog) as an input. The output file
can be directly imported into the RE conversion tool.

PQ-Analysis

The PQ-Analysis tool ? requires the RE form of the FSM representing
the behavior model of the design. This FSM can be graphically de-
signed by using any general tool such as the JFLAP [92] with which
one can draw an FSM and generate a RE from it. The PQ-Analysis
tool accepts the RE of an FSM and generates the context tables (or
CT). PQ-Analysis comprises seven steps for which the details are pro-
vided in Section 3.3.

Test Sequence Generator (PQTestGen)

The PQTestGen generates test sequences using the output of the PQ-
Analysis tool (that is, CTs). The PQTestGen is standalone software
with a Graphical User Interface (GUI) for generating test sequences
and saving these sequences as a test suite in a file. The tool uses
a Breadth First Search (BFS) algorithm [117] to traverse all symbols

9 PQ-Analysis tool, https://github.com/kilincceker/MBIT4HW

97

https://github.com/kilincceker/MBIT4HW

CASE STUDIES, RESULTS, AND EVALUATION

and to select test sequences. The pseudocode of the algorithm imple-
mented in the PQTestGen is given in Section 6.1.3. The tool creates
test sequences by visiting all the cases, according to the previously
obtained adjacency matrix, and their children who were not visited
previously. Once the test sequences are generated, the compaction
process is initiated to remove redundant test sequences that are over-
lapping with others.

Test Composition

Test Bench

Test Bench is a domain-specific code. In the scope of this thesis, the
test bench is based on an FPGA environment. In this domain, Test
Benches are pieces of Verilog codes that are used during FPGA simu-
lations. Simulation is a critical step when designing a new hardware
system. It is necessary to be sure that the FPGA design covers the
system requirements. Furthermore, test benches are used to simulate
the designs without the need for any physical hardware. Therefore,
it is easy to test all system functions without hardware. To validate
the HDL program, the test sequences require execution on the target
system. This thesis’s target system is an FPGA-based system (a Traffic
Light Control and a Sequence Detector). The simulation environment
' is the only commercial solution used in this work. However, the free
version ™ of the tool that can be easily downloaded is used for the
simulation at no cost. The Test bench executes these test sequences
using Verilog HDL; see Figure 7.5.2 demonstrating the block diagram
of the Test Bench procedure.

F! ! Send Test Inputs g

Receive Test Outputs o
Traffic Light Controller

Test Inputs File

Test Bench

Test Output File

Figure 7.5.2: FPGA-based Test Bench

10 Xilinx Vivado, https://www.xilinx.com/products/design-tools/vivado.html
11 Vivado HL WebPACK, https://www.xilinx.com/products/design-tools/vivado/
vivado-webpack.html

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

7.5 TOOL SUPPORT

Test Suite Analyzer

The Test suite analyzer tool provides a selection mechanism to collect
test sequences that satisfy the requirements of the MBIT. As given in
Section 2.5, these requirements are reliability and validity, for which
test selection criteria are defined. The test suite analyzer collects the
test sequences that comply with these criteria, which results in MBIT
test suites.

Additional details about the framework, including a user guide and
a tutorial video along with the bundle for the toolchain, are publicly
available online .

12 MBIT4HW, https://github.com/kilincceker/MBIT4HW

99

https://github.com/kilincceker/MBIT4HW

Part II1

FURTHER PERSPECTIVES AND CONCLUSIONS

CHAPTER 8

EXTENDING SEQUENTIAL SYSTEMS FOR
ACHIEVING FAULT TOLERANCE

In this chapter, an approach for extending sequential systems is pro-
posed to achieve fault tolerance as a perspective of this thesis. In the
following sections, a motivation for fault tolerance, related work, the
proposed approach, a case study, results, and evaluations are pre-
sented.

8.1 MOTIVATION FOR ACHIEVING FAULT TOLERANCE

A growing spectrum of software systems safety- and security-critical
applications can be observed today where an extremely high degree
of reliability is required. Considerable efforts have been made to en-
sure protection against simple system faults (for example, single-bit
stuck-at faults in memory or hardware circuits) using appropriate
fault-tolerance (FT) techniques. Although such methods usually cover
a large percentage of all potential error sources, several other poten-
tial error sources remain for software parts. Generally speaking, er-
rors in the code or input data of components in a system may arise
due to:

* erroneous data from the environment of the given system; for
example, errors caused by faulty behavior of other systems or
user errors,

e undetected hardware failures,

¢ undetected design errors in the hardware/software components.

Errors in software or hardware parts can cause failures or malfunc-
tions. For example, Boeing’s use of the Maneuvering Characteristics
Augmentation System (MCAS) resulted in flights of Indonesian Lion
Air (in 2018) and Ethiopian Airlines (in 2019) crashes, which caused
346 people to lose their lives [118].

In today’s smart automotive, for instance, embedded systems can
grow to 100 million lines of code running on 70 to 100 microproces-
sors [119]. Reliability is vital for systems of this level and importance.
Otherwise, software or hardware errors encountered in these systems
may cause very serious problems. Due to these post-production er-

103

104

EXTENDING SEQUENTIAL SYSTEMS FOR ACHIEVING FAULT TOLERANCE

rors, companies recalling cars cause billions of dollars in losses to
these companies.

The aim of this section is to make the errors that can cause such
serious loss of life and money tolerable with low costs before produc-
tion. To this end, the approach offers a uniform method that can be
applied to sequential systems (SE), both software and hardware, to
self-detect and self-correct faults.

As in previous sections, also this section applies sound, formal tech-
niques of Automata Theory and Formal languages, more precisely,
regular expressions to handle faults in SE with emphasis on (i) fault
modeling to operationalize FT notions, (ii) analysis of a given SE
to determine whether it possesses the required properties to handle
faults modeled, and (iii) if not, the extension of the given system to
enable it to possess the required, desirable feature, and revalidation
of its original functionality. Note that faults in digital systems are root
events that stem from deviations between the specified requirements
and the implemented system behavior.

The method derived applies to the systems that are aimed to be pro-
tected against the considered faults, that is, functional and sequenc-
ing faults. The functional faults directly affect the desired operation
of the system, which reaches the final operation but does not pro-
vide the expected outputs, likely to cause undesirable event(s). The
sequencing faults affect the desired order of the operation in which
the system cannot reach the final operation due to a system crash
[113]. A case study presented in Section 8.4 will exemplify the ben-
efits of the strategy. The acronym FT reads either as "fault-tolerant,"
"fault tolerance," "fault tolerating," etc., depending on the context in
which it is used.

8.2 RELATED WORK ON FAULT TOLERANCE

This section provides related work and background information from
general to more specific perspectives for fault tolerance for software
and hardware sequential systems (sequential circuits).

Faults can be handled in three consecutive stages: detection, local-
ization, and correction. If a fault in an SE can be unambiguously
detected and corrected, then the system can perform the correction
itself without needing control from outside. It is then said to be self-
correcting in response to a fault of this type. The system is fault-
tolerant (FT) if it can, despite a failure caused by a fault of the con-
sidered type, continue delivering the specified services, perhaps at a
reduced level, but still to the satisfaction of the user (See Belli and
Quella [120], page 20-49 for more details).

Many approaches have been proposed to make SE robust against
errors for software: by introducing reset properties as to rollback, re-
covery lines, etc., and providing spare software mechanisms as to re-

8.2 RELATED WORK ON FAULT TOLERANCE

covery block [121], n-version programs [122], etc. Recovery can then
be accomplished if an error is detected during the run-time operation
of the system. However, inherent to these strategies is the complexity
of the utilized verification procedures as to acceptance tests, decision
algorithms that usually deploy more or less heuristic and incomplete
tests for errors [122, 123].

Several classical approaches using redundancy for hardware are
popularly used in the aircraft and automotive industry in safety-
critical applications [124]. As an example, the triple-modular redun-
dancy (TMR) structure includes three redundant units and a majority
voter selecting a unit that provides the same value as the majority of
the three units.

Another example is the standby dynamic hardware redundancy
(HWR), which uses duplex units where the unit and a spare are com-
pared and selected by a multiplexer. Strano et al. suggested a Build-
In Self-Test (BIST) diagnosis procedure of on-chip networks (NoCs)
where stuck-at faults can be tested with a hardware overhead of less
than 11% [125]. In another work, Strano et al. achieved hardware over-
head of less than 10% using Single Instruction, Multiple Data (SIMD)
accelerators used in systems on chips (S0C) [125].

Morgan et al. [126] presented a comparison between TMR with
other three FT techniques, which are quadded logic [127], state ma-
chine encoding [128], and temporal redundancy [129]. The study con-
cludes that these three techniques are more costly and provide less
reliability than the TMR for both area and single-event upsets sensi-
tivity.

Besides protecting and securing the entire system as TMR, securing
some components of the system by using formal methods has recently
become one of the preferred methods. The reason for this is the bur-
den that occurs with TMR. Choi et al. [130], similar to Augustin et
al. [131] offered selective fault tolerance for sequential circuits mod-
eled by the finite state machine. In contrast to TMR, they tolerate
faults on a subset of inputs with corresponding states in the FSM
model by using a simple heuristic algorithm. The method provides
the same degree of fault tolerance as TMR with reasonable area over-
head. El-Maleh and Al-Qahtani introduced a fault tolerance method
based on a finite state machine where a few states having a high
probability of occurrence are protected [132]. El-Maleh [132] also pro-
posed a method based on El-Maleh and Al-Qahtani [132] to optimize
area and power and to preserve the original behavior of the system.
Park and Yoo also proposed a fault tolerance method based on an
encoding technique to secure and protect a set of states having high
importance using FSM[133].

In order to increase the fault tolerance of a system, structural re-
dundancy can be employed by adding extra components that can be
activated if a fault is detected. This approach is similar to maintaining

105

106

EXTENDING SEQUENTIAL SYSTEMS FOR ACHIEVING FAULT TOLERANCE

spare part storage, where the extra components act as backups for the
system. With these extra components available, the system can con-
tinue functioning even if one or more of its primary components fail.
Structural redundancy can provide an added layer of protection to en-
sure that the system can continue to operate without significant dis-
ruptions, even in the presence of faults. This redundancy approach
can be applied to various systems, including mechanical, electrical,
and software-based systems. On the other hand, functional redun-
dancy adds extra components that are functionally similar. Those re-
dundancies can be realized in a static or dynamic manner. Static func-
tional redundancy is employed regardless of the presence or absence
of faults, so it runs continuously. Dynamic functional redundancy is
utilized on demand in the occurrence of a fault. The reader can refer
to Belli and Quella [120] on pages 46-47 for more details.

All these approaches use system redundancy to enable FT. To our
knowledge, there is no other approach considering the determination
and implementation of static functional redundancy and structural re-
dundancy on software and hardware systems. The approach employs
static redundancy to perform the specified function during the whole
time of operation.

In Section 8.5, a comparison table of selected different approaches
provides an overview of the estimated hardware overhead and time
consumption for hardware systems. As there seems to be no other
procedure using structural redundancy aiming at fault tolerance, the
comparison will be kept on hardware systems only.

83 SYSTEM EXTENSION TO ACHIEVING FAULT TOLERANCE

The proposed approach consists of three parts, as shown in Figure
8.3.1. In the first part of the approach, the given system, modeled by
FSM, is converted to RE for analyzing whether the desired property
is fulfilled or not and is designated as the second part using Brzo-
zowski’s well-defined algorithm [90, 96], especially for HS. In the final
part, after determining redundancy, if necessary, the extended SE* or
HS* is obtained using reconversion of RE*, for which the JFLAP tool
is utilized.

The first and the third parts of the proposed approach are conver-
sion and re-conversion stages from a system under test to RE and
from extended RE to an extended system. For details of the conver-
sion of FSM into RE and RE into FSM, the reader may refer to the
book of Hopcroft et al. [79] (on page 83). In the second part, the model
is analyzed and then extended if necessary. If it is determined not to
extend, the system already comprises the desired property, which
is defined as being FT in terms of being a self-detecting and self-
correcting system.

83 SYSTEM EXTENSION TO ACHIEVING FAULT TOLERANCE

Sequential System
(SE)

Legend
Extended Sequential \
System (SE*)
System

Finite State
Machine (FSM)
Regular
xpression (RE,
Process

PQ-Analysis

HOM

Desired Property
Fulfilled

Redundancy
Determination

xtended Regula
xpression (RE*

K /_/

Figure 8.3.1: The Overview of the Proposed Approach for Achieving Fault
Tolerance

Redundancy Determination for Achieving Desirable Properties

A RE is an algebraic term that is constructed and forms a string of
symbols, which are interpreted as events that represent combinations
of input and output signals. This term will be used to model and
generate a set of elementary faults that can be corrected by inserting
(I-correction), deleting (D-correction), or replacing (R-correction) sym-
bols interpreted as events.. The elementary faults affect input/output
behavior that can be modeled with FSM and RE. For the HS, these
faults can be a bit stuck-at 0/1, a case bit stuck-at true/false, or their
combinations with multiple faults at the system [134]. These faults
are also called high-level faults [135].

A collection of fault prototypes will be used to analyze RE to deter-
mine whether the modeled HS is fault-detecting or fault-correcting,
that is, if all faults of this type can be detected, localized, or corrected
unambiguously.

Detection Step [84]: The input string is indexed forward and back-
ward from left to right and right to left. If the input string is correct,
it is converted to a backward and forward-coded form (as demon-
strated in Section 3.3). During the coding of this form, the input string
cannot be accepted and indexed due to an unacceptable symbol(s).
This is where the detection step for an erroneous input occurs.

Localization Step [84]: A substring causes the machine to halt dur-
ing forward and backward indexing. This is always the substring
between the left-most acceptable symbol for back-indexing and the
right-most acceptable symbol for forward-indexing. The correction
hypothesis can be applied to this substring if necessary (refer to Sec-
tion 3.3 for more details).

Correction Step [84]: A correcting symbol is injected into a position
where it is between the left context relation of its successor and the

107

108

EXTENDING SEQUENTIAL SYSTEMS FOR ACHIEVING FAULT TOLERANCE

right context relation of its predecessor in the correction area (refer to
Section 3.3 for more details).

Simultaneously forward and backward indexing is called the cod-
ing of a regular expression. The coding is the basis of both tools
needed for error treatment. As a second, more complex tool, the re-
lations for the right context and left context rforW 1o ack, and 1forw,
lback, respectively, are used. They determine the symbols for every
st or s; that may appear, respectively, as its immediate successor or
predecessor.

With compatibility and context relation tables, the faulty event se-
quence (FES) analysis is done by forward and backward tracing the in-
dices for systematic detection and correction, respectively. FES refers
to an illegal input sequence (unexpected) to the system, whereas
event sequence (ES) is a legal and expected input sequence. The po-
sition in the sequence where a proposal might be applied is called a
"correction position", and the symbol used for the correction is called
a correcting symbol. Note that the terms (such as context table, com-
patibility table, forward/backward indexing, left/right context) are
already explained and exemplified in Section 3.3, which will be also
used in this section.

The hypotheses for the correction purpose are "insert(I)", "replace(R)",
and "delete(D)" which are used to give possible proposals.

The index n defines the number of symbols. If n equals one, only
one symbol is considered, and if n is bigger than one, more than one
symbol as being a string is considered. Given any FES, when the error
position is localized unambiguously, then the correction proposals are
given considering their independence to deduce the self-correcting
characteristic of a system that also defines self-detecting characteris-
tics. Thus, the system is FT performing correction itself. The details of
dependence or independence of proposals and ambiguous or unam-
biguous localization. Furthermore, comprehensive information can
be found in the PhD thesis by Belli [81].

To add desirable properties to SE or HS in case needed, the nec-
essary redundancy can be determined by a complete analysis of the
FESs as test sequences. Symbols are extended by embedding them
into others using well-selected symbols. The symbols that reveal am-
biguity or make proposals dependent are selected, and then the sym-
bol is extended by considering the context table to make it appropri-
ate for its position. The extension refers to embedding at least one
well-selected symbol into the appropriate left or right side of the cho-
sen symbol for an extension so that the correction can only apply to
one position [94].

These steps are already automated into the PQ-Analysis tool * that
takes a RE as input and results in context and compatibility tables
with redundancy determination if required.

1 PQ-Analysis tool, https://github.com/kilincceker/MBIT4HW

https://github.com/kilincceker/MBIT4HW

8.4 CASE STUDY

8.4 CASE STUDY
8.4.1 Systems Under Consideration

This section provides a case study for a sequential circuit that is a
sequence detector (SD) system given with HDL at the behavioral level.
The SD is implemented in HDL programming language and runs on
XC3S100E from the Spartan-3 FPGA family.

Sequence Detector

The SD, represented in Figure 8.4.1, produces outputs (given in (24)
after the slash (/)) for corresponding (primary) inputs (given in (24)
before the slash (/)) and the outputs depend not only on the inputs
but also secondary inputs or current states qo, q1, q2, q3, and q4.

Figure 8.4.1: FSM of SD with Symbols

To represent the current and next states on the diagram, the states
qo, q1, ..., and g4 are defined, and the indices of states refer to the
decimal equivalency of tree bits binary values. The corresponding in-
put and output values for the current and next states are aggregated
with the slash (/) symbol to label the transitions. Already initialized
start state (qo) and final states are also represented with correspond-
ing symbols embedding input/output signals.

For compact representation, the following settings allow concen-
trating the input (i11,13) and output (07020304050607) information
as transition events denoted by symbols instead of using binary val-
ues.

x =001/0011101;y = 010/0011111;z = 100/0001101 (24)

Applying the conversion algorithm from FSM, given in Figure 8.4.1,
to RE for SD results in the following expression:

109

110

EXTENDING SEQUENTIAL SYSTEMS FOR ACHIEVING FAULT TOLERANCE

Tsp = [(ba(b+c)*)*(a+b)7] (25)

The RE given in (25) is the same one used to explain steps of RE
analysis in Section 3.3 in Example 3.4.

8.4.2 Applying the Approach

The uniform approach includes a complete analysis of already-attained
RE and determining redundancy if needed. The stepwise PQ-Analysis
of RE is already provided in Section 3.3, and then, using the analysis
result, the redundancy determination will be given in the following
sections for SD. Note that this section explains the redundancy de-
termination part of the approach in case the desired property is not
tulfilled, as shown in Figure 8.3.1 and the redundancy determination
for SD case study has already been presented by Belli [85]. Therefore,
this thesis focuses on evaluating the SD and presenting the results
based on this evaluation in Section 8.5.

Sequence Detector (SD)

The reader can refer to for forward and backward indexing of the
Tsp in (25) and for constructing compatibility, context tables, and
their codings in Section 3.3 (Figure 3.3.1, Step 1-7).

For the SD, symbols revealing ambiguity or making the hypothesis
dependent are detected to determine extension in proposals using
the PQ-Analysis method originally introduced by Eggers and Belli
[81, 84]. To systematically construct all correction areas of varying
lengths, we need to generate all combinations of symbols that "do not
fit together," meaning they cannot be adjacent in a correct sequence.
For correction areas with a length of 1=1, this involves placing each
symbol between neighbors that are not valid left or right contexts for
that symbol. The correction area and the I-R-D correction proposals
are shown in Figure 8.4.2. Note that some of the results are taken from
Belli [85] for more detailed analysis for SD. This subsection shows
how to apply the approach to the SD. The results and evaluation will
be presented in the following Section 8.5.

ts=[L b3 b5 by a? c; a; 13

iy

Figure 8.4.2: Correction Area and R-D Corrections for SD [85]

8.4 CASE STUDY

The sequence (ts) shown in Figure 8.4.2 can be corrected in three
alternative ways (as Step 8, following the steps as explained in Section
3:3)-

e I-correction through inserting a8 between b3 and b3,

e R-correction through replacing b3 by a¢ or replacing c4 either
a3 or b3,

* D-correction through deleting c4.

The correction proposals for the SD, such as symbol a make the
hypotheses I and R dependent. The system is not R-detecting because
of the symbol a3, which is not R-correcting because of the symbol b3.
This information enables selecting the symbols ag, a%, and bg for an
extension. The location of these symbols is found using their indices
and the TfoTW. For example, inserting a8 between b3 and b3 may
cause the detection of a wrong sequence and result in a system failure.
Then, the symbols are replaced with their extensions, as represented
in Figure 8.4.3.

Tsp = [5(b33F aSvs (bd47 + c)7)"(a3* + b3™>7)]1

6

a8 3

Zsx al x a3 ~ya3 b3 —»>zb3

Tsp = [6(bi7 atrafoxs® (b3t + ca®))" (07 af + z3b8)"1§

Figure 8.4.3: Extentions for SD

Consequently, the symbols ag, a% and bg are extended using the
symbols "xax", "ya", and "zb" respectively (Figure 8.4.3), based on the
PQ-Analysis method (as Step 9).

To avoid undesirable or unnecessary redundancy, the number of
symbols for extension should be as small as possible [94]. The ex-
tended RE for SD (Figure 8.4.3) becomes self-detecting and -correcting

as the PQ-Analysis applied on T¢, (Figure 8.4.4).

x — 1 K2 b= Hh— - S i) = e b
ts* = [L bg by b1, x11 ayo x5 €4 Y7 a3 1

Figure 8.4.4: Correction Area and R-D Corrections for extended SD [85]

Due to ambiguity in SD between given symbols representing binary
patterns, the system may lead to detecting wrong patterns caused by
behavioral level bit stuck-at faults. For instance, a sequence detec-
tor integrated into a flame detector recognizes specific input patterns
gathered from sensors to warn people to avoid possible flames.

111

112

EXTENDING SEQUENTIAL SYSTEMS FOR ACHIEVING FAULT TOLERANCE

This extended RE contains redundant symbols. Therefore, this may
lead to non-functional equivalence. However, these redundant sym-
bols are guarding symbols. For example, the symbol a is replaced
with "xax" to secure the symbol "a" with the symbol "x". In this way,
the system is aware of distinguishing this symbol from other symbols
in the system. This ambiguity between the same symbols is removed
thanks to the extended version in Figure 8.4.3.

The construction of the forward and backward indexing for ex-
tended SD and its codings and context table are included in the public
repository (as Step 10) 2.

The impact of the correction proposals (Figure 8.4.4) enables the
exclusion of conflicts shown in Figure 8.4.2 (as Step 11).

The cost of redundancy can be determined two-fold (as Step 12).
One is related to the length of the TS . For length, the TS, contains
four additional symbols. This leads to 0.36 percent redundancy for
RE in Figure 8.4.3. However, the VHDL implementation costs less
redundancy (refer to Section 8.5).

The second redundancy concern is the execution time. According
to the T¢y’s manual (static) analysis, the execution time redundancy
is about 0.23 percent. For precise measuring, a dynamic analysis is re-
quired to compare the original and extended VHDL implementation.

85 RESULTS AND EVALUATION

SD and SD* were implemented in VHDL programming language and
run on XC35100E from the Spartan-3 FPGA family for both SD and
TLS. Reader can refer to the GitHub repository 3 for the implemen-
tation of both SDs. Xilinx ISE Project Navigator was used for the de-
sign, implementation, and synthesis of circuits. A comparison of the
circuits SD and SD* is given in Table 8.5.1 calculated from synthesis
reports.

To employ the TMR method for the comparison, two more copies
of the SD case studies are made, and a voter for the selection of the
majority of the outputs to achieve SD* is developed. SD* is run on
XC35100E from the Spartan-3 FPGA family using Xilinx ISE Project
Navigator to measure redundancy compared with SE. The Xilinx tool
automatically generated Lookup Tables (LUTs) using synthesis re-
ports and provided a number LUTs. The synthesis operation was also
applied to SD to measure the required redundancy for TMR with
respect to the number LUTs and time overhead.

For structural BIST, a custom LFSR (Linear Feedback Shift Regis-
ter) system is used for test generation into the system itself and then

PQ-Analysis Results for extended SD, https://github.com/kilincceker/RD4FT/
blob/main/PQ- results-SD-extended. txt

Sequence Detector VHDL implementation, https://github.com/kilincceker/
RD4FT

https://github.com/kilincceker/RD4FT/blob/main/PQ-results-SD-extended.txt
https://github.com/kilincceker/RD4FT/blob/main/PQ-results-SD-extended.txt
https://github.com/kilincceker/RD4FT
https://github.com/kilincceker/RD4FT

85 RESULTS AND EVALUATION

developed a comparator for checking the response of the systems to
obtain SD* which is synthesized using the Xilinx tool to generate a
report for number LUTs. The synthesis operation was also applied
to SD to compare with SD* with respect number of LUTs and time
overhead.

Table 8.5.1: Results For the Current Approach with TMR-Method and Struc-

tural BIST
Current approach | TMR-Method | Structural BIST
Hardware Overhead in % ~2 200 <11
Overhead time consumption in % ~4.2 73 ~0

Additionally, TMR and structural BIST are compared with the cur-
rent approach in terms of estimated hardware overhead and overhead
time consumption in Table 8.5.1.

Our approach has the lowest hardware overhead value, about 2.
While its overhead time is about 4.2, BIST’s overhead time is almost
o for both SD and TLS. Note that structural BIST provides only fault
detection but no fault correction. The TMR method needs much more
overhead than the current and structural BIST approaches.

To evaluate the current approach, ITC'99 [136] benchmarks are
used. In ITC’gg, the first ten benchmark circuits provided VHDL lan-
guage at Register Transfer Level (RTL) are experimented with using
their state diagram and RE models (Refer Corno et al. [136] for details
of models and their analysis). These benchmarks enable us to apply
the current approach to higher-level VLSI circuits.

The proposed approach is also evaluated on ITC’99 [136] bench-
marks. The results for these benchmarks based on experimental eval-
uation are shown in Table 8.5.2. The columns for Circuits, VHDL, and
Gate-Level explain details for the corresponding circuits. PI and PO
stand for primary inputs and primary outputs. LOC refers to the line
of codes. The gate-level column provides details such as the number
of gates and the number of flip-flops for the gate-level implementa-
tion of the corresponding circuits.

Table 8.5.2: ITC'99 Benchmark Results

Circuits VHDL Gate-Level PQ-Analysis Results
Name Function PI | PO | LOC | #Gates |#FF |I-D |I-C |R-D |R-C | D-D |IR | ID | IC
bo1 FSM one 2 2 110 46 5
boz2 FSM two 1 1 70 28 4
bos Resource arbiter 4| 4 141 149 30
bos | Compute min and max | 11 | 8 102 597 60

[e R e R T R R R N

[I e O e e N N a
[I e O O O e e R
[e e O O e e = N
[e e e e N S R =
[e e e T T S e
- - = - - = = - = =
[e e T O e O R =

bos Elaborate the contents | 1 | 36 332 935 34
bo6 Interrupt handler 2| 6 128 60 9
boy Count points 1 8 92 420 49
bo8 Find inclusions 9 | 4 89 167 21
bog Converter 1 1 103 159 28
bio Voting system 11| 6 167 189 17

113

114

EXTENDING SEQUENTIAL SYSTEMS FOR ACHIEVING FAULT TOLERANCE

Based on the results given in TABLE 8.5.2, the circuits except for
bo6 (Interrupt handler) are fault-tolerant for I, R, and D operators.
The self-detecting and self-correcting ability of the bo6 circuit is cor-
rupted due to insertion and replace operators” dependence shown as
o in the table. However, the bo6 circuit can be extended by structural
redundancy, which leads bo6 to self-detecting and correcting. The bo6
circuit starts with an initialization state and then goes to the instruc-
tion state 1, namely "sin¢r1", from which it can go to the initialization
state or the instruction state, namely "sint;". The "sintr1" state trig-
gers an ambiguity due to a further loop driving the system to the
initialization state. The system needs to know which "sinr1" state
is triggered by first initialization or further loop-based initialization.
By adding an idle state between the initialization state and "sintr1"
state, the system is able to overcome this ambiguity and become self-
correcting.

Outputs of circuits before and after extension are evaluated for
equivalency of input sequences. Also, the behavior of the extended
circuit is also observed for the test sequence tn. It is assessed that
both circuits produce equivalent outputs. Consequently, for opera-
tional purposes, circuits before and after extension are considered
equivalent.

8.6 THREATS TO VALIDITY

The potential internal, external, and construct threats of the approach
are presented in this section.

Internal Validity

The approach offers a uniform method for modeling, detecting, and
self-correcting faults in sequential systems by structural redundancy
determined by analysis of the system under test. It also employs an al-
gorithm to determine the redundancy to be introduced for tolerating
the faults modeled. This algorithm takes a RE model converted from a
finite state machine. Due to the fact that this approach uses two differ-
ent models and their conversions, any internal flaw in these models
or their conversions leads to wrong analysis and results. Belli and
Gueldali also proposed a test generation approach based on model
checking that can also be a solution to model correctness [137].

Time redundancy caused by additional structural and functional
properties is an essential part of fault-tolerant systems and may also
cause threats to time-critical systems. However, the proposed approach
aims to keep the time redundancy minimal, as validated by the exper-
imental evaluation compared with other approaches.

8.6 THREATS TO VALIDITY

External Validity

The size of the model for the system under test can be increased based
on the size of this system. This may lead us to a scalability problem
for the proposed approach because the current approach only applies
to small and medium-sized systems. Another solution can be to apply
community detection algorithm [109] to automatically obtain smaller
parts of the huge size model and apply the current approach to these
smaller models to cope with huge models that are well-suited for the
hierarchical control structure of sequential systems.

Construct Validity

This thesis uses the PQ-Analysis tool to analyze the model of the
system under test automatically and extract features for fault toler-
ance by defining the events for possible extensions. However, the
FSM model is manually obtained for the SE from its specifications
and codes. This may lead us to construct validity and affect the re-
sults. For the sequential systems using their Verilog codes, the FSM
models can be automatically obtained using a static analysis method
that is already automatized by a tool called Verilog2FSM [103, 104].

115

CHAPTER o9

CONCLUSIONS

This chapter presents the conclusion for proposed test generation
methods and the MBIT approach for sequential HDL and GUI pro-
grams.

9.1 TEST GENERATION

In the scope of this thesis, an approach for test sequence generation
using RE is introduced to target design faults at the behavioral level.
The proposed approach starts with extracting the FSM model from
a given HDL program. Then, the obtained FSM is converted into RE
by means of the well-known Brzozowski algorithm [96]. Afterwards,
this RE model is represented by ST from which the test sequences are
generated using a tree traversal algorithm considering pre-defined
coverage criteria on RE.

A contextual RE-based test generation approach is also proposed
for testing GUI programs. The proposed approach is used effectively
in revealing functional faults (defined in Section) 1 and used in Sec-
tion 7.2.1. Coverage-oriented random test generation enables control
of the test process by setting the desired coverage ratio based on the
contextual RE model. The context-driven test generation from the RE
model offers a new perspective on the model-based test generation
area.

Briefly, the contributions of the proposed approaches for RE and
contextual RE can be listed as follows:

1. Test sequence generation based on RE in terms of operator and
alphabet coverage criteria to target design faults at the behav-
ioral level for HDL validation.

2. Test sequence generation based on contextual RE in terms of
right and left context table coverage criteria to target functional
faults for GUI testing.

3. Developing a toolchain to support both approaches.

4. Supporting both available HDL programs and specification of
the system under development in the proposed approach within
this thesis.

117

118

CONCLUSIONS

These approaches and their tools are used in MBIT methodology
and its evaluation.

9.2 MODEL-BASED IDEAL TESTING

This section provides a conclusion for sequential HDL and GUI pro-
grams with respect to the MBIT approach.

A method called MBIT is proposed to show the presence and ab-
sence of HDL and GUI program faults when using its model. The in-
troduced methodology is called model-based ideal test (MBIT) with
respect to satisfying the reliability and validity requirements of the
Fundamental Test Theory of Goodenough and Gerhart [2]. To achieve
the ideal test, this thesis utilizes holistic [7] and mutation testing [9,
10]. Holistic testing proposes negative and positive testing to check
the desired and undesired features of the system under test, respec-
tively. Therefore, this idea is adapted to show the presence and ab-
sence of faults. Mutation testing provides the generation of an erro-
neous or faulty version of the system under test by using mutation
operators. This thesis uses mutation testing to generate mutants of
the system under test and its specification. Test sequences are gen-
erated from both the supposedly fault-free (original) model and the
mutant (fault-injected) models and executed on both the mutant pro-
grams and the original programs, respectively. Test selection collects
the results of each execution and constructs an ideal test suite that is
used for checking the presence and absence of faults. Moreover, the
theorems and their proof for MBIT methodology are also provided to
show that it satisfies the reliability and validity requirements of the
Fundamental Test Theory of Goodenough and Gerhart [2].

The proposed approach is implemented with FSMs for model mu-
tation, and later, their REs are analyzed for test generation (using
the PQ-TestGen tool). However, any model-based approach for sys-
tem behavior modeling (such as FSM [73], State Chart [31], RE [103],
ESG [8], and EFG [39]) can be adapted in the proposed methodology
for model mutation and test generation. Additionally, a tester is en-
abled to resize the domain and corresponding range of a program by
means of utilizing a model, which provides a "pay as you go" solution.
The tester can incorporate as many features as he/she wishes into the
model within the framework of his/her resources with respect to time
and money.

Briefly, the following contributions are given with respect to the
proposed methodology:

1. A novel validation methodology is proposed to address the de-
sign faults of the HDL program at the behavioral level and the
functional faults of the GUI programs.

9.2 MODEL-BASED IDEAL TESTING 119

¢ The holistic and mutation-testing approaches, well-understood
and widely used in software testing, are utilized to achieve
a model-based ideal test (MBIT) of HDL and GUI programes.

¢ The proposed methodology, with respect to the provided
formal proof, satisfies the requirements of the ideal testing
that is used to test the presence and absence of design and
functional faults in the HDL and GUI programs.

2. The experimentation of the proposed methodology is conducted
on three case studies (a sequence detector, a traffic light con-
troller, and a RISC-V processor) for HDL programs and on two
case studies, namely "Special" and "Additional" modules of the
ISELTA webpage for GUI programs.

3. A toolchain is developed to automate the testing process and
shared in the public domain * for HDL programs and in the
public domain ? for GUI programs.

The advantages of the proposed approach are:

1. The model-based ideal testing guarantees coverage of the mod-
eled faults through positive and negative testing in the scope of
a system model.

¢ The ideal testing paves the way for construction of reliable
and valid test suites.

* Thus, it is possible to show both the presence and the ab-
sence of faults, as far as they can be modeled.

2. It offers high-level test generation based on analysis of the RE
model.

3. The proposed approach for test generation is effective in terms
of fault coverage, mutation score and test generation/execution
time when compared with the other methods based on the ex-
perimental evaluation.

The proposed test generation method, called PQTestGen, is com-
pared with different algorithms and different coverage settings, such
as the RETestGen, PQRTestGen, and Graphwalker for HDL and GUI
programs. PQTestGen achieves higher fault coverage than the other
methods. Besides, PQTestGen has a higher mutation score than the
other PT methods, meaning that it can kill all mutants for the HDL
and GUI case studies. However, PQTestGen results in a more exten-
sive test suite than the other methods due to the Breadth-First Search
(BFS) algorithm (refer to Section 6.1.3 with the algorithm in Listing
7)- This large test suite size in PQTestgen also increases test execution

1 MBIT4HW, https://github.com/kilincceker/MBIT4HW
2 MBIT4SW, https://github.com/kilincceker/MBIT4SW

https://github.com/kilincceker/MBIT4HW
https://github.com/kilincceker/MBIT4SW

120 CONCLUSIONS

time. However, the test sets’ size is within acceptable limits, consider-
ing the time required for test generation and execution steps, which
finish in milliseconds.

CHAPTER 10

FOLLOW-ON PROJECTS

This chapter presents the possible future work and follow-on projects
on test generation and model-based ideal testing of HDL and GUI
programs within the scope of this thesis. These possible directions
start with proposed test-generation algorithms (for Chapters 4 and
5) and continue with model-based ideal testing (for Chapter 6).

As one of the future projects for test generation based on RE, it is
planned to cover some of the faults in the gate level, such as stuck-at-
o/1 faults. To do this, a fault simulator can be used at the gate level,
and generated test sequences from this approach can be applied to
determine the fault coverage at the gate level. Another future work is
to decrease and adjust the alphabet and operator coverage to analyze
its impact on fault coverage. In this way, the suite can be tightened;
thus, the cost of test generation and execution may be reduced.

As future work and for evaluating and improving the proposed ap-
proach for contextual RE-based test generation, further experiments
with other model-based random test generation approaches such as
AutoTest and GraphWalker are planned. Moreover, conducting more
experiments is intended using different fault models to evaluate the
effectiveness of PQRTestGen and thus improve these techniques and
tools.

For model-based ideal testing, despite testing at the behavioral
level, which is at a higher level of abstraction (resulting in much fewer
components), there is a limitation in the scalability of the model. It is
possible to encounter the problem of a state explosion if the SUT
becomes very large. To tackle this problem, future work is planned
by using model refinement [115] and/or model decomposition [138].
It is also planned to utilize the scalable mutation-based test genera-
tion methodology [71] to cope with this limitation. Finally, improving
the efficiency of the algorithms to implement different steps of the
methodology is another future work.

It is focused on enriching the concept of ideal testing by consider-
ing modern model-based testing techniques, thus introducing a novel
approach to model-based ideal testing. In doing so, it does not yet
focus on reducing the efficiency of the algorithms to implement dif-
ferent steps of the methodology, which is planned as the next step.
All procedures for the proposed methodology are already automated
except for the model and mutant generation steps that the test ex-

121

122

FOLLOW-ON PROJECTS

pert carries out. These steps require knowledge about the system un-
der test. However, it is planned to automate the model generation
step using one of the appropriate GUI ripping methods to extract
the model from the GUI program automatically. It is also planned to
automate the mutant generation step using omission, insertion, and
replacement mutation operators on the FSM models. Finally, obtain-
ing an end-to-end solution for test automation of GUI programs for
the MBIT approach is another follow-on project.

To cope with a threat for MBIT related to model-correctness, it is
planned to use model checkers [139] or, more importantly, get end-
user feedback as early as possible to assess the model long before
starting with test generation and testing itself. Also, it is intended to
employ model refinement techniques [140], or layer-centric modeling
proposed by Belli and Guler [140] to cope with scalability.

Lastly, the experimental evaluation will include different HDL pro-
gram examples (such as SystemVerilog) as another future work to
expand the MBIT approach’s availability and generality.

BIBLIOGRAPHY

[1] Edsger W Dijkstra. Chapter I: Notes on structured programming.
Academic Press Ltd., 1972.

[2] John B Goodenough and Susan L Gerhart. “Toward a theory
of test data selection.” In: IEEE Transactions on software Engi-
neering SE-1.2 (1975), pp. 156-173.

[3] Kshirasagar Naik and Priyadarshi Tripathy. Software testing

and quality assurance: theory and practice. John Wiley & Sons,
2011.

[4] Tsun S. Chow. “Testing software design modeled by finite-
state machines.” In: IEEE transactions on software engineering
SE-4.3 (1978), pp. 178-187.

[5] William E. Howden. “Reliability of the path analysis testing
strategy.” In: IEEE Transactions on Software Engineering SE-2.3
(1976), pp. 208—215.

[6] M Morris Mano. Digital logic and computer design. Pearson Ed-
ucation India, 2017.

[7]1 Fevzi Belli. “Finite state testing and analysis of graphical user
interfaces.” In: Proceedings 12th international symposium on soft-
ware reliability engineering. IEEE. 2001, pp. 34—43.

[8] Fevzi Belli, Christof] Budnik, Axel Hollmann, Tugkan Tuglu-
lar, and W Eric Wong. “Model-based mutation testing—approach
and case studies.” In: Science of Computer Programming 120
(2016), pp. 25—48.

[o] Richard A DeMillo, Richard J Lipton, and Frederick G Say-
ward. “Hints on test data selection: Help for the practicing
programmer.” In: Computer 11.4 (1978), pp. 34—41.

[10] Richard G. Hamlet. “Testing programs with the aid of a com-
piler.” In: IEEE transactions on software engineering SE-3.4 (1977),
Pp- 279—290.

[11] Jeff Offutt. “A mutation carol: Past, present and future.” In:
Information and Software Technology 53.10 (2011), pp. 1098-1107.

[12] Fabrizio Ferrandi, Franco Fummi, and Donatella Sciuto. “Im-
plicit test generation for behavioral VHDL models.” In: Pro-
ceedings International Test Conference 1998 (IEEE Cat. No. 9g8CH36270).

IEEE. 1998, pp. 587-596.

123

124 BIBLIOGRAPHY

[13] Fabrizio Ferrandi, G Ferrara, Donatella Sciuto, Alessandro Fin,
and Franco Fummi. “Functional test generation for behaviorally
sequential models.” In: Proceedings Design, Automation and Test
in Europe. Conference and Exhibition 2001. IEEE. 2001, pp. 403-
410.

[14] Valéria Lelli, Arnaud Blouin, and Benoit Baudry. “Classifying
and qualifying GUI defects.” In: 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST).
IEEE. 2015, pp. 1-10.

[15] Samuli Rahkonen. “Mutation-Based Qualification of Module
Verification Environments.” MA thesis. Tampere University of
Technology, 2016.

[16] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. “Mujava: an
automated class mutation system.” In: Software Testing, Verifi-
cation and Reliability 15.2 (2005), pp. 97-133.

[17] Sandra Camargo Pinto Ferraz Fabbri, José Carlos Maldonado,
and ME Delamaro. “Proteum/FSM: a tool to support finite
state machine validation based on mutation testing.” In: Pro-
ceedings. SCCC’99 XIX International Conference of the Chilean
Computer Science Society. IEEE. 1999, pp. 96—104.

[18] Bernhard K Aichernig, Harald Brandl, Elisabeth Jobstl, Willibald
Krenn, Rupert Schlick, and Stefan Tiran. “Killing strategies for
model-based mutation testing.” In: Software Testing, Verification
and Reliability 25.8 (2015), pp. 716-748.

[19] Algirdas Avizienis,]-C Laprie, Brian Randell, and Carl Landwehr.
“Basic concepts and taxonomy of dependable and secure com-
puting.” In: IEEE transactions on dependable and secure computing

1.1 (2004), pp. 11-33.
[20] Boris Beizer. Software testing techniques. Dreamtech Press, 2003.

[21] Paul Ammann and Jeff Offutt. Introduction to software testing.
Cambridge University Press, 2016.

[22] Michael Bushnell and Vishwani Agrawal. Essentials of electronic
testing for digital, memory and mixed-signal VLSI circuits. Vol. 17.
Springer Science & Business Media, 2004.

[23] Prabhat Mishra, Ronny Morad, Avi Ziv, and Sandip Ray. “Post-
silicon validation in the soc era: A tutorial introduction.” In:
IEEE Design & Test 34.3 (2017), pp. 68-92.

[24] William K Lam. Hardware Design Verification: Simulation and
Formal Method-Based Approaches (Prentice Hall Modern Semicon-
ductor Design Series). Prentice Hall PTR, 2005.

[25] Tomas Bengtsson and Shashi Kumar. A survey of high level test
generation: Methodologies and fault models. Ingenjorshogskolan,
Hogskolan i Jonkoping, 2004.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

BIBLIOGRAPHY

Gert Jervan, Zebo Peng, Olga Goloubeva, Matteo Sonza Re-
orda, and Massimo Violante. “High-level and hierarchical test
sequence generation.” In: Seventh IEEE International High-Level
Design Validation and Test Workshop, 2002. IEEE. 2002, pp. 169—
174.

Marcello Lajolo, Maurizio Rebaudengo, Matteo Sonza Reorda,
Massimo Violante, and Luciano Lavagno. “Behavioral-level test
vector generation for system-on-chip designs.” In: Proceedings
IEEE International High-Level Design Validation and Test Work-
shop (Cat. No. PRoo786). IEEE. 2000, pp. 21—26.

Markus Stumptner and Franz Wotawa. “A model-based tool
for finding faults in hardware designs.” In: Artificial Intelligence
in Design’96. Springer, 1996, pp. 541-559.
Roderick Bloem and Franz Wotawa. “Verification and fault lo-
calization for VHDL programs.” In: Journal of the Telematics En-
gineering Society (TIV) 2 (2002), pp. 30-33.

Donghwan Shin, Eunkyoung Jee, and Doo-Hwan Bae. “Com-
prehensive analysis of FBD test coverage criteria using mu-
tants.” In: Software & Systems Modeling 15.3 (2016), pp. 631—
645.

Tom Mens, Alexandre Decan, and Nikolaos I Spanoudakis. “A
method for testing and validating executable statechart mod-
els.” In: Software & Systems Modeling 18.2 (2019), pp. 837-863.

Mark Glasser. Open verification methodology cookbook. Springer
Science & Business Media, 2009.

Allon Adir, Shady Copty, Shimon Landa, Amir Nahir, Gil
Shurek, Avi Ziv, Charles Meissner, and John Schumann. “A
unified methodology for pre-silicon verification and post-silicon
validation.” In: 2011 Design, Automation & Test in Europe. IEEE.
2011, pp. 1-6.

Raghudeep Kannavara. “Towards a unified framework for pre-
silicon validation.” In: IISA 2013. IEEE. 2013, pp. 1-7.

Nathaniel August. “A robust and efficient pre-silicon valida-
tion environment for mixed-signal circuits on intel’s test chips.”
In: 9th International Symposium on Quality Electronic Design (isqed
2008). IEEE. 2008, pp. 423—428.

Amr Lotfy, Syed Feruz Syed Farooq, Qi S Wang, Soner Yaldiz,
Praveen Mosalikanti, and Nasser Kurd. “A system-verilog be-
havioral model for PLLs for pre-silicon validation and top-
down design methodology.” In: 2015 IEEE Custom Integrated
Circuits Conference (CICC). IEEE. 2015, pp. 1—4.

125

126

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

Richard K Shehady and Daniel P Siewiorek. “A method to
automate user interface testing using variable finite state ma-
chines.” In: Proceedings of IEEE 27th International Symposium on
Fault Tolerant Computing. IEEE. 1997, pp. 80-88.

Atif M Memon, Martha E Pollack, and Mary Lou Soffa. “Hier-
archical GUI test case generation using automated planning.”
In: IEEE transactions on software engineering 27.2 (2001), pp. 144—

155.
Atif M Memon. “An event-flow model of GUI-based applica-
tions for testing.” In: Software testing, verification and reliability
173 (2007), pp. 137-157.

Lee White and Husain Almezen. “Generating test cases for
GUI responsibilities using complete interaction sequences.” In:
Proceedings 11th International Symposium on Software Reliability
Engineering. ISSRE 2000. IEEE. 2000, pp. 110-121.

Qing Xie and Atif M Memon. “Using a pilot study to derive
a GUI model for automated testing.” In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 18.2 (2008),
Pp- 1-35.

Fevzi Belli, Christof] Budnik, and Lee White. “Event-based
modelling, analysis and testing of user interactions: approach
and case study.” In: Software Testing, Verification and Reliability
16.1 (2006), pp. 3—32.

Si Huang, Myra B Cohen, and Atif M Memon. “Repairing GUI
test suites using a genetic algorithm.” In: 2010 Third Interna-
tional Conference on Software Testing, Verification and Validation.
IEEE. 2010, pp. 245-254.

Fevzi Belli, Mutlu Beyazit, and Nevin Giiler. “Event-oriented,
model-based GUI testing and reliability assessment—Approach
and case study.” In: Advances in Computers. Vol. 85. Elsevier,
2012, pp. 277-326.

Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif Memon.
“Graphical user interface (GUI) testing: Systematic mapping
and repository.” In: Information and Software Technology 55.10
(2013), pp. 1679-1694.

Fevzi Belli, Mutlu Beyazit, Christof] Budnik, and Tugkan Tuglu-
lar. “Advances in model-based testing of graphical user in-
terfaces.” In: Advances in Computers. Vol. 107. Elsevier, 2017,
pp- 219—280.

Emil Alégroth and Robert Feldt. “On the long-term use of vi-
sual gui testing in industrial practice: a case study.” In: Empir-
ical Software Engineering 22.6 (2017), pp. 2937—2971.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

BIBLIOGRAPHY

Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. “Sikuli:
using GUI screenshots for search and automation.” In: Proceed-
ings of the 22nd annual ACM symposium on User interface software
and technology. 2009, pp. 183-192.

N Olsson and K Karl. Graphwalker: The open source model-based
testing tool. 2015.

Juha Eskonen, Julen Kahles, and Joel Reijonen. “Automating
GUI Testing with Image-Based Deep Reinforcement Learning.”
In: 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems (ACSOS). IEEE. 2020, pp. 160-167.

David Adamo, Md Khorrom Khan, Sreedevi Koppula, and
Renée Bryce. “Reinforcement learning for android gui test-
ing.” In: Proceedings of the gth ACM SIGSOFT International Work-
shop on Automating TEST Case Design, Selection, and Evaluation.
2018, pp. 2-8.

A. Silistre, O. Kilincceker, F. Belli, M. Challenger, and G. Kar-
das. “Community Detection in Model-based Testing to Ad-
dress Scalability: Study Design.” In: 2020 15th Conference on
Computer Science and Information Systems (FedCSIS). 2020, pp. 657—
660.

Fevzi Belli, Andre Takeshi Endo, Michael Linschulte, and Ade-
nilso Simao. “A holistic approach to model-based testing of
Web service compositions.” In: Software: Practice and Experience

44.2 (2014), pp-. 201—234.

Fevzi Belli and Michael Linschulte. “On negative tests of web
applications.” In: Annals of Mathematics, Computing & Teleinfor-
matics 1.5 (2008), pp. 44-56.

Fevzi Belli, Christof] Budnik, and Axel Hollmann. “Holistic
testing of interactive systems using statecharts.” In: Sicherheit
20006, Sicherheit=Schutz und Zuverlissigkeit (2006).

Onur Kilincceker, Ercument Turk, Moharram Challenger, and
Fevzi Belli. “Applying the Ideal Testing Framework to HDL
Programs.” In: ARCS Workshop 2018; 31th International Confer-
ence on Architecture of Computing Systems. VDE. 2018, pp. 1-6.

Gizem Mercan, Evrim Akgiindiiz, Onur Kilincceker, Mohar-
ram Challenger, and Fevzi Belli. “Android uygulamas: testi
i¢in ideal test 6n calismasi.” In: CEUR Workshop Proceedings.
Vol. 2201. 12. National Software Engineering Symposium. 2018.

Onur Kilincceker and Fevzi Belli. “Towards Uniform Model-
ing and Holistic Testing of Hardware and Software.” In: 2019
1st International Informatics and Software Engineering Conference
(UBMYK). IEEE. 2019, pp. 1-6.

127

128

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

BIBLIOGRAPHY

Gordon Fraser and Franz Wotawa. “Using model-checkers to
generate and analyze property relevant test-cases.” In: Software
Quality Journal 16.2 (2008), pp. 161-183.

Yue Jia and Mark Harman. “An analysis and survey of the
development of mutation testing.” In: IEEE transactions on soft-
ware engineering 37.5 (2010), pp. 649-678.

TB Nguyen and C Robach. “Mutation Testing Applied to Hard-
ware: the Mutants Generation.” In: Proceedings of the 11th IFIP
International Conference on Very Large Scale Integration. 2001, pp. 118—
123.

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le
Traon, and Mark Harman. “Mutation testing advances: an anal-
ysis and survey.” In: Advances in Computers. Vol. 112. Elsevier,

2019, pp. 275-378.
Kim N King and A Jefferson Offutt. “A fortran language sys-

tem for mutation-based software testing.” In: Software: Practice
and Experience 21.7 (1991), pp. 685-718.

W Eric Wong and Aditya P Mathur. “Reducing the cost of
mutation testing: An empirical study.” In: Journal of Systems

and Software 31.3 (1995), pp. 185-196.

Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. “MuJava: a mu-
tation system for Java.” In: Proceedings of the 28th international
conference on Software engineering. 2006, pp. 827-830.

Sandra Camargo Pinto Ferraz Fabbri, José Carlos Maldonado,
Tatiana Sugeta, and Paulo Cesar Masiero. “Mutation testing
applied to validate specifications based on statecharts.” In: Pro-
ceedings 1oth International Symposium on Software Reliability En-
gineering (Cat. No. PRoog43). IEEE. 1999, pp. 210-219.

Fevzi Belli and Mutlu Beyazit. “Event-based mutation testing
vs. state-based mutation testing-an experimental comparison.”
In: 2011 IEEE 35th Annual Computer Software and Applications
Conference. IEEE. 2011, pp. 650-655.

Gordon Fraser, Franz Wotawa, and Paul E Ammann. “Testing
with model checkers: a survey.” In: Software Testing, Verification
and Reliability 19.3 (2009), pp. 215-261.

Paul E Ammann, Paul E Black, and William Majurski. “Using
model checking to generate tests from specifications.” In: Pro-
ceedings Second International Conference on Formal Engineering
Methods (Cat. No. 98EX241). IEEE. 1998, pp. 46-54.

Andreas Fellner, Mitra Tabaei Befrouei, and Georg Weissenbacher.
“Mutation testing with hyperproperties.” In: Software and Sys-
tems Modeling (2021), pp. 1-23.

BIBLIOGRAPHY 129

[71] Andreas Fellner, Willibald Krenn, Rupert Schlick, Thorsten
Tarrach, and Georg Weissenbacher. “Model-based, mutation-
driven test-case generation via heuristic-guided branching search.”
In: ACM Transactions on Embedded Computing Systems (TECS)
18.1 (2019), pp. 1—28.

[72] ISWB Prasetya and Rick Klomp. “Test model coverage analysis
under uncertainty: extended version.” In: Software and Systems
Modeling 20.2 (2021), pp. 383—403.

[73] Alexandre Petrenko. “Toward testing from finite state machines
with symbolic inputs and outputs.” In: Software & Systems Mod-
eling 18.2 (2019), pp. 825-835.

[74] Chantal Robach and Mathieu Scholive. “Simulation-Based Fault
Injection and Testing Unsing the Mutation Technique.” In: Fault
injection techniques and tools for embedded systems reliability eval-
uation. Springer, 2003, pp. 195-215.

[75] Mark Hampton and Stephane Petithomme. “Leveraging a com-
mercial mutation analysis tool for research.” In: Testing: Aca-
demic and Industrial Conference Practice and Research Techniques-
MUTATION (TAICPART-MUTATION 2007). IEEE. 2007, pp. 203—
209.

[76] Onur Kilincceker and Fevzi Belli. “Towards Uniform Model-
ing and Holistic Testing of Hardware and Software.” In: 2019
1st International Informatics and Software Engineering Conference
(UBMYK). IEEE. 2019, pp. 1-6.

[771 Luc Bougé. “A contribution to the theory of program testing.”
In: Theoretical Computer Science 37 (1985), pp. 151-181.

[78] Hans Langmaack. “Contribution to Goodenough’s and Ger-
hart’s theory of software testing and verification: Relation be-
tween strong compiler test and compiler implementation ver-
ification.” In: Foundations of Computer Science. Springer. 1997,

Pp- 321-335.
[79] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. “In-

troduction to automata theory, languages, and computation.”
In: Acm Sigact News 32.1 (2001), pp. 60-65.

[80o] Pan Liu, Jun Ai, and Zhenning Jimmy Xu. “A study for ex-
tended regular expression-based testing.” In: 2017 IEEE/ACIS
16th International Conference on Computer and Information Science
(ICIS). IEEE. 2017, pp. 821-826.

[81] Fevzi Belli. “Extending Regular Languages for Self-Detection
and Self-Correction of Syntactical Faults (PhD Thesis in Ger-
man; Technical Univ. Berlin).” In: Bericht 119 (1978).

[82] Aditya P Mathur. Foundations of software testing, 2/e. Pearson
Education India, 2013.

130

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

BIBLIOGRAPHY

Leonardo Mariani, Mauro Pezze, and David Willmor. “Gen-
eration of integration tests for self-testing components.” In:
International Conference on Formal Techniques for Networked and
Distributed Systems. Springer. 2004, pp. 337-350.

B Eggers and Fevzi Belli. “Eine Theorie der Analyse und Kon-
struktion fehlertolerierender Systeme.” In: Fehlertolerierende Rechen-

systeme. Springer, 1984, pp. 139-149.
Fevzi Belli. “Regular Expressions for Fault Handling in Se-

quential Circuits.” In: ARCS 2015-The 28th International Con-
ference on Architecture of Computing Systems. Proceedings. VDE.

2015, pp. 1-5.
Victor Mikhaylovich Glushkov. “The abstract theory of au-
tomata.” In: Russian Mathematical Surveys 16.5 (1961), p. 1.

Robert McNaughton and Hisao Yamada. “Regular expressions
and state graphs for automata.” In: IRE transactions on Elec-
tronic Computers EC-9.1 (1960), pp. 39—47.

Robert R Schaller. “Moore’s law: past, present and future.” In:
IEEE spectrum 34.6 (1997), pp. 52-59.

Stephen Cole Kleene. Representation of events in nerve nets and fi-
nite automata. Tech. rep. RAND PROJECT AIR FORCE SANTA
MONICA CA, 1951.

Janusz A Brzozowski and Edward] McCluskey. “Signal flow
graph techniques for sequential circuit state diagrams.” In:
IEEE Transactions on Electronic Computers EC-12.2 (1963), pp. 67—

76.
Dean N Arden. “Delayed-logic and finite-state machines.” In:

2nd Annual Symposium on Switching Circuit Theory and Logical
Design (SWCT 1961). IEEE. 1961, pp. 133-151.

Susan H Rodger and Thomas W Finley. JFLAP: an interactive
formal languages and automata package. Jones & Bartlett Learn-
ing, 2006.

Tsong Yueh Chen, Hing Leung, and Ieng Kei Mak. “Adaptive
random testing.” In: Annual Asian Computing Science Confer-
ence. Springer. 2004, pp. 320-329.

Fevzi Belli and Karl-Erwin Grosspietsch. “Specification of fault-
tolerant system issues by predicate/transition nets and regular
expressions-approach and case study.” In: IEEE Transactions on
software engineering 17.6 (1991), pp. 513—526.

Alex Groce, Josie Holmes, Darko Marinov, August Shi, and
Lingming Zhang. “An extensible, regular-expression-based tool
for multi-language mutant generation.” In: Proceedings of the
goth International Conference on Software Engineering: Companion
Proceeedings. 2018, pp. 25—28.

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

BIBLIOGRAPHY

Janusz A Brzozowski. “Derivatives of regular expressions.” In:
Journal of the ACM (JACM) 11.4 (1964), pp. 481-494.

Atif Memon, Ishan Banerjee, and Adithya Nagarajan. “GUI
ripping: Reverse engineering of graphical user interfaces for

testing.” In: 10th Working Conference on Reverse Engineering, 2003.

WCRE 2003. Proceedings. Citeseer. 2003, pp. 260—269.

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramon-
tana, Salvatore De Carmine, and Atif M Memon. “Using GUI
ripping for automated testing of Android applications.” In:
2012 Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering. IEEE. 2012, pp. 258—-261.

Yue Jia and Mark Harman. “Higher order mutation testing.”
In: Information and Software Technology 51.10 (2009), pp. 1379—
1393.

Onur Kilinggeker and Fevzi Belli. “Grafiksel kullanic1 arayii-
zleri i¢in diizenli ifade bazl test kapsama kriterleri.” In: the
11th Turkish National Software Engineering Symposium. UYMS
2017. 2017, Pp- 332-343.

Michael Gautschi, Pasquale Davide Schiavone, Andreas Tra-
ber, Igor Loi, Antonio Pullini, Davide Rossi, Eric Flamand,
Frank K Giirkaynak, and Luca Benini. “Near-threshold RISC-
V core with DSP extensions for scalable IoT endpoint devices.”
In: IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 25.10 (2017), pp. 2700—2713.

A Jefferson Offutt, Gregg Rothermel, and Christian Zapf. “An
experimental evaluation of selective mutation.” In: Proceedings
of 1993 15th international conference on software engineering. IEEE.

1993, Pp. 100-107.

Onur Kilinccceker, Ercument Turk, Moharram Challenger, and
Fevzi Belli. “Regular Expression Based Test Sequence Genera-
tion for HDL Program Validation.” In: 2018 IEEE International
Conference on Software Quality, Reliability and Security Compan-
ion (QRS-C). IEEE. 2018, pp. 585-592.

Onur Kilincceker, Alper Silistre, Moharram Challenger, and
Fevzi Belli. “Random Test Generation from Regular Expres-
sions for Graphical User Interface (GUI) Testing.” In: 2019
IEEE 19th International Conference on Software Quality, Reliabil-
ity and Security Companion (QRS-C). IEEE. 2019, pp. 170-176.

Hermann Gruber, Markus Holzer, and Michael Tautschnig.
“Short regular expressions from finite automata: Empirical re-
sults.” In: Implementation and Application of Automata: 14th In-
ternational Conference, CIAA 2009, Sydney, Australia, July 14-17,
2009. Proceedings 14. Springer. 2009, pp. 188-197.

131

132

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

BIBLIOGRAPHY

Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron
Peled, and Helmut Veith. Model checking. MIT press, 2018.

Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Si-
mon Davidmann. “Verilog HDL and its ancestors and descen-
dants.” In: Proceedings of the ACM on Programming Languages
4.HOPL (2020), pp. 1—90.

Gordon Fraser and Andrea Arcuri. “Achieving scalable mutation-
based generation of whole test suites.” In: Empirical Software
Engineering 20.3 (2015), pp. 783-812.

Alper Silistre, Onur Kilincceker, Fevzi Belli, Moharram Chal-
lenger, and Geylani Kardas. “Community Detection in Model-
based Testing to Address Scalability: Study Design.” In: 2020
15th Conference on Computer Science and Information Systems (Fed-
CSIS). IEEE. 2020, pp. 657-660.

Muhammad Zohaib Igbal, Andrea Arcuri, and Lionel Briand.
“Environment modeling and simulation for automated testing
of soft real-time embedded software.” In: Software & Systems
Modeling 14.1 (2015), pp. 483-524.

Elmira Karimi, Mohamad Hashem Haghbayan, Adele Maleki,
and Mahmoud Tabandeh. “Functional fault model definition
for bus testing.” In: East-West Design Test Symposium (EWDTS
2013). 2013, Pp. 1—4.

Elmira Karimi, Mohamad Hashem Haghbayan, Adele Maleki,
and Mahmoud Tabandeh. “Graph based fault model defini-
tion for bus testing.” In: 2013 IFIP/IEEE 21st International Con-
ference on Very Large Scale Integration (VLSI-SoC). 2013, pp. 54—
55-

Fevzi Belli, Nimal Nissanke, Christof] Budnik, and Aditya
Mathur. “Test generation using event sequence graphs.” In:
University of Paderborn, Institute for Electrical Engineering and
Information Technology (2005).

Ana CR Paiva, Nikolai Tillmann, Jodo CP Faria, and Raul FAM
Vidal. “Modeling and testing hierarchical GUIs.” In: Proceed-
ings of the 12th International Workshop on Abstract State Machines.
2005.

Fevzi Belli, Nevin Giiler, and Michael Linschulte. “Layer-centric
testing.” In: FERS-Mitteilungen: Vol. 30, No. 1 (2012).

Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and
Alberto Bacchelli. “How is video game development different
from software development in open source?” In: Proceedings of
the 15th International Conference on Mining Software Repositories.

2018, pp. 392—402.
Edward F Moore. “The shortest path through a maze.” In: Proc.
Int. Symp. Switching Theory, 1959. 1959, pp. 285—292.

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

BIBLIOGRAPHY 133

Joseph Herkert, Jason Borenstein, and Keith Miller. “The Boe-
ing 737 MAX: Lessons for engineering ethics.” In: Science and
engineering ethics 26.6 (2020), pp. 2957-2974.

Robert N Charette. “This car runs on code.” In: IEEE spectrum
46.3 (2009), p. 3.

Fevzi Belli and Ferdinand Quella. Holistic View of Software and
Hardware Reuse. Springer, 2021.

Brian Randell and Jie Xu. “The evolution of the recovery block
concept.” In: Software fault tolerance 3 (1995), pp. 1—22.

L Chen and A Avizienis. N-version programming: a fault toler-
ant approach to reliability of software operation,” Digest of the 1978
Fault Tolerant Computing Symposium. 1978.

Brian Randell. “System structure for software fault tolerance.”
In: Ieee transactions on software engineering 2 (1975), pp. 220—232.

Mostafa I Abd-el barr. Design and analysis of reliable and fault-
tolerant computer systems. World Scientific, 2006.

Alessandro Strano, C Gémez, Daniele Ludovici, Michele Favalli,
Maria Engracia Gémez, and Davide Bertozzi. “Exploiting network-
on-chip structural redundancy for a cooperative and scalable
built-in self-test architecture.” In: 2011 Design, Automation &
Test in Europe. IEEE. 2011, pp. 1-6.

Keith S Morgan, Daniel L McMurtrey, Brian H Pratt, and Michael
J Wirthlin. “A comparison of TMR with alternative fault-tolerant
design techniques for FPGAs.” In: IEEE transactions on nuclear
science 54.6 (2007), pp. 2065-2072.

William H Pierce. Failure-tolerant computer design. Academic
Press, 2014.

Shailesh Niranjan and James F Frenzel. “A comparison of fault-
tolerant state machine architectures for space-borne electron-
ics.” In: IEEE Transactions on Reliability 45.1 (1996), pp. 109—-113.

Whitney] Townsend, Jacob A Abraham, and Earl E Swart-
zlander. “Quadruple time redundancy adders [error correct-
ing adder].” In: Proceedings 18th IEEE Symposium on Defect and
Fault Tolerance in VLSI Systems. IEEE. 2003, pp. 250—256.

Soyeon Choi, Jiwoon Park, and Hoyoung Yoo. “Area-Efficient
Fault Tolerant Design for Finite State Machines.” In: 2020 In-
ternational Conference on Electronics, Information, and Communi-
cation (ICEIC). IEEE. 2020, pp. 1-2.

Michael Augustin, Michael Gossel, and Rolf Kraemer. “Selec-
tive fault tolerance for finite state machines.” In: 2011 IEEE
17th International On-Line Testing Symposium. IEEE. 2011, pp. 43—

48.

134

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

BIBLIOGRAPHY

Aiman H El-Maleh and Ayed S Al-Qahtani. “A finite state ma-
chine based fault tolerance technique for sequential circuits.”
In: Microelectronics Reliability 54.3 (2014), pp- 654—661.

Jiwoon Park and Hoyoung Yoo. “Area-Efficient Differential
Fault Tolerance Encoding for Finite State Machines.” In: Elec-
tronics 9.7 (2020). ISSN: 2079-9292.

Fulvio Corno, Gianluca Cumani, Matteo Sonza Reorda, and
Giovanni Squillero. “An RT-level fault model with high gate
level correlation.” In: HLDVT. IEEE Computer Society, 2000,
pp- 3-8. ISBN: 0-7695-0786-7.

Adeboye Stephen Oyeniran, Raimund Ubar, Maksim Jenih-
hin, and Jaan Raik. “High-Level Implementation-Independent
Functional Software-Based Self-Test for RISC Processors.” In:
J. Electron. Test. 36.1 (2020), pp. 87-103.

Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero.
“RT-Level ITC'99 Benchmarks and First ATPG Results.” In:
IEEE Des. Test Comput. 17.3 (2000), pp- 44-53-

Fevzi Belli and Baris Giildali. “Software Testing via Model
Checking.” In: ISCIS. Ed. by Cevdet Aykanat, Tugrul Dayar,
and Ibrahim Korpeoglu. Vol. 3280. Lecture Notes in Computer
Science. Springer, 2004, pp. 907-916. ISBN: 3-540-23526-4.

Sergei Devadze, Elena Fomina, Margus Kruus, and Alexan-
der Sudnitson. “Web-based system for sequential machines
decomposition.” In: The IEEE Region 8 EUROCON 2003. Com-
puter as a Tool. Vol. 1. IEEE. 2003, pp. 57-61.

Eduard P Enoiu, Daniel Sundmark, Adnan Causevi¢, Robert
Feldt, and Paul Pettersson. “Mutation-based test generation
for plc embedded software using model checking.” In: IFIP In-
ternational Conference on Testing Software and Systems. Springer.
2016, pp. 155-171.

Fevzi Belli, Nevin Giiler, and Michael Linschulte. “Does "Depth"
Really Matter? On the Role of Model Refinement for Testing
and Reliability.” In: COMPSAC. IEEE Computer Society, 2011,

pp- 630-639. I1SBN: 978-0-7695-4439-7.

DECLARATION

Put your declaration here.

Paderborn, July 2024

Onur Kilincceker

	Dedication
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Foundations and Related Work
	1 Introduction
	1.1 Overview of Publications
	1.2 Structure of Thesis

	2 Related Work
	2.1 Validation of Programs Written in HDL
	2.2 Graphical User Interface Testing
	2.3 Holistic Testing
	2.4 Mutation Testing
	2.5 Ideal Testing

	3 Background
	3.1 Used Notions
	3.2 Coverage Criteria
	3.3 Finite State Machine and Regular Expression Analysis

	Approaches
	4 Test Generation Based on Regular Expression Applied to HDL Programs
	4.1 Motivation For HDL Testing
	4.2 The Approach Based On Regular Expression

	5 Test Generation Based on Contextual Regular Expression Applied Graphical User Interface Testing
	5.1 Motivation For Graphical User Interface Testing
	5.2 The Approach Based on Contextual Regular Expression

	6 Model-Based Ideal Testing (MBIT)
	6.1 Model-based Ideal Testing for HDL Programs
	6.2 Model-based Ideal Testing for Graphical User Interface

	7 Case Studies, Results, and Evaluation
	7.1 HDL-Based Case Studies
	7.2 Graphical User Interface Based Case Studies
	7.3 Results
	7.4 Evaluation
	7.5 Tool Support

	Further Perspectives and Conclusions
	8 Extending Sequential Systems for Achieving Fault Tolerance
	8.1 Motivation For Achieving Fault Tolerance
	8.2 Related Work On Fault Tolerance
	8.3 System Extension to Achieving Fault Tolerance
	8.4 Case Study
	8.5 Results and Evaluation
	8.6 Threats to Validity

	9 Conclusions
	9.1 Test Generation
	9.2 Model-based Ideal Testing

	10 Follow-on Projects
	Bibliography
	Declaration

