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Zusammenfassung
In dieser Arbeit werden neue Beiträge zur Dunkl-Theorie geleistet. Seit Ende der 1980er
Jahre entwickelte sich die Dunkl-Theorie als Verallgemeinerung radialer Analysis auf rie-
mannschen symmetrischen Räumen und wird in zwei Zweige unterteilt: die rationale und die
trigonometrische Theorie. Die rationale Theorie wurde von C.F. Dunkl eingeführt, während die
trigonometrische Theorie durch G. Heckman, E.M. Opdam und I. Cherednik entstand. Mit der
Dunkl-Theorie entstand auch eine Theorie von multivariablen speziellen Funktionen, welche
unteranderem auf Ideen von I.G. Macdonald zurückgeht. Im Zentrum der Dunkl-Theorie
stehen Wurzelsysteme, ihre Spiegelungsgruppen und dazu assoziierte Dunkl- beziehungsweise
Cherednik-Operatoren. Im eindimensionalen Fall sind die assoziierten speziellen Funktionen
Bessel-Funktionen und Gauß-hypergeometrische Funktionen. In dieser Arbeit werden zunächst
für beliebige Wurzelsysteme elliptische Dunkl-Operatoren eingeführt und untersucht, sowie
eine multitemporale Wellengleichung studiert. Im Großteil der Arbeit sind Wurzelsysteme
vom Typ A und B im Mittelpunkt. Zum Wurzelsystem vom Typ A assoziiert man eine
wichtige Klasse orthogonaler Polynome: die Jack-Polynome, welche außerdem auch kombina-
torisch betrachtet werden können. Die Einschränkung auf Wurzelsysteme vom Typ A und
B kommt von den symmetrischen Kegeln. Symmetrische Kegel sind spezielle riemannsche
symmetrische Räume mit einer besonderen Geometrie, assoziiertem Wurzelsystem vom Typ
A und Verbindungen zu Objekten zum Wurzelsystem vom Typ B. Basierend auf Ideen
und Vermutungen von I.G. Macdonald aus den 1980er Jahren werden Konzepte der radialen
Analysis symmetrischer Kegel in die Dunkl-Theorie zu Wurzelsystemen vom Typ A und B ver-
allgemeinert beziehungsweise neu eingeführt. Dies beinhaltet Laplace-Transformationsformeln
(unteranderem für Jack-Polynome), eine Hankel-Transformation sowie Zeta-Distributionen
und ihre Funktionalgleichungen. Zuletzt können diese Resultate genutzt werden, um Aussagen
in der asymptotischen harmonischen Analysis zu beweisen, welche sich insbesondere mit der
Konvergenz von sphärischen Funktionen beschäftigen, wenn der Rang des zugrundeliegenden
symmetrischen Raumes gegen unendlich geht.
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Abstract
This thesis makes new contributions to Dunkl Theory. Since the end of the 1980s, Dunkl theory
has developed as a generalization of radial analysis on Riemannian symmetric spaces and is
divided into two branches: the rational and the trigonometric theory. The rational theory
was developed by C.F. Dunkl, while the trigonometric theory goes back to G. Heckman, E.M.
Opdam and I. Cherednik. This includes a theory of multivariate special functions, which was
considered before by I.G. Macdonald. In the center of the Dunkl theory are root systems, their
reflection groups and associated Dunkl- or Cherednik operators. In the one-dimensional case,
the associated special functions are Bessel functions and Gaussian hypergeometric functions.
First in this thesis, elliptic Dunkl operators are introduced and examined for arbitrary root
systems, and a multitemporal wave equation is studied. The majority of the work focuses on
root systems of type A and B. An important class of orthogonal polynomials is associated with
the root system of type A: the Jack polynomials, which can also be viewed combinatorially.
The restriction to root systems of type A and B comes from the theory of symmetric cones.
Symmetric cones are certain Riemannian symmetric spaces with a special geometry, associated
root system of type A and connections to objects associated with a root system of type B.
Based on ideas and conjectures by I.G. Macdonald from the 1980s, concepts of radial analysis
of symmetric cones are generalized or newly introduced into the Dunkl theory for root systems
of type A and B. This includes Laplace transform identities (including identities for Jack
polynomials), a Hankel transform, as well as zeta distributions and their functional equations.
Finally, these results will be used to obtain new results in asymptotic harmonic analysis,
which deals, among other things, with the convergence of spherical functions when the rank
of the underlying symmetric space tends to infinity.
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About Dunkl theory and this thesis

History of Dunkl theory

In the late 1980s C.F. Dunkl introduced so-called “rational” Dunkl operators associated with
finite reflection groups on a Euclidean space in a series of papers [Dun88, Dun89, Dun90,
Dun91, Dun92]. These operators form a class of commuting differential-difference operators
and generalize partial derivatives as well as radial parts of invariant differential operators
on Riemannian symmetric spaces of Euclidean type. In these papers, the author built up a
framework of multivariate special functions related to root systems and a parameter family k
of the root system. If the parameters k are chosen as root space multiplicities of a Riemannian
symmetric space of Euclidean type, then the associated multivariate special functions reduce
to spherical functions. During the last years, rational Dunkl theory was further developed
by various people in the areas of special functions with reflection symmetry and harmonic
analysis related to root systems. For a general overview of rational Dunkl theory the reader is
referred to [Opd93, dJ93, Rö03a, DX14, Ank15].
Parallel to Dunkl in the 1980s, Heckman and Opdam developed the symmetric case of the
so-called “trigonometric” Dunkl theory, and in the 1990s, Opdam and Cherednik studied the
non-symmetric counterpart. We refer the reader to the articles [HO87, Hec87, Opd89, Hec90,
Hec91, HS94, Opd95, Hec97, Opd00]. Even in the trigonometric setting there are certain
operators of high relevance, called trigonometric Dunkl operators or Cherednik operators.
They form a commuting set of operators generalizing partial derivatives as well as radial
parts of invariant differential operator of Riemannian symmetric spaces of the non-compact
type. Together, rational and trigonometric Dunkl theory allow to study spherical functions
of Riemannian symmetric spaces in a uniform way (no matter whether it is of Euclidean,
non-compact or compact type). Thus, Dunkl theory allows to extend spherical functions
from a discrete set of parameters depending on the underlying root system to a continuous
set of parameters. Moreover, eigenfunctions of the Cherednik operators give rise to a family
of orthogonal trigonometric polynomials, called Jacobi polynomials or Heckman-Opdam
polynomials, which are of interest in different areas of mathematics. For instance, the root
system An−1 leads to Jack polynomials.
Special functions associated with root systems find application in the study of quantum
integrable models of Calogero-Moser-Sutherland type in one dimension and random matrix
theorey; see [For10] for a background and [AV19] for some probabilistic developments. They
have also found increasing interest in the field of integrable probability during the last years,
see for instance [BG15].
It is remarkable that Dunkl theory is covered by a more general framework due to Macdonald,
cf. [Mac00, Mac03]. He introduced a family of Weyl group invariant orthogonal polynomials
depending on two parameters (q, t), later called Macdonald polynomials, with an impressive
connection to Dunkl theory and other topics. For instance, in the case of the root systems
BCn they are Koornwinder polynomials. If the parameters are chosen to be t = qk and q
tends to 1, then one obtains the Heckman-Opdam polynomials. The Macdonald polynomials
are also related to spherical functions of Gelfand pairs (G,K) associated with Lie groups
G of p-adic type. If q = 0, then these polynomials are called generalized Hall-Littlewood
polynomials and if in addition t consists of parameters associated with an affine building,
then the Macdonald polynomials have a simple structure, they are called Macdonald spherical
functions of the affine building and are connected to vertex averaging operators on the building,
cf. [Par06a, Par06b].
Behind all of this, there is a more general algebraic background given by (double) affine Hecke
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algebras. They were introduced by Cherednik to prove several conjectures of Macdonald,
such as the constant term conjecture. Since these Hecke algebras are not topic of this thesis
we do not go into further details and refer the reader to [Che95a, Che05]. Cherednik also
introduced a non-symmetric analogue of the Macdonald polynomials such that their Weyl
group symmetrization leads to the Macdonald polynomials mentioned before, cf. [Che95b].
The following diagram visualizes the explained connections.

radial analysis
2k = root multiplicities

Double affine
Hecke algebras

Macdonald
(q, t)-polynomials

sph. funct.
of affine buildings

sph. funct. of p-adic
Lie groups

Dunkl theory
(parameter k)

rational
Dunkl theory

trigonometric
Dunkl theory

classical
Fourier analysis

comp. Riem.
sym. space

non-comp. Riem.
sym. space

Eucl. Riem.
sym. space

q=0
1
t

=q−param.
of build.

t=qk

q→1

Bruhat-Tits
building

k = 0

dual

contraction

contraction

Previous publications

We mention that up to some modifications and extensions, the content of the subsequent
chapters are submitted to journals or are already published. This concerns the following
chapters and articles:
Chapter 2:
[Bre23] D. Brennecken. Dunkl convolution and elliptic regularity for Dunkl operators.

submitted, preprint: arXiv:2308.07710, 2023.

Chapter 6:
[BR23] D. Brennecken and M. Rösler. The Dunkl-Laplace transform and Macdonald’s

hypergeometric series. Trans. Amer. Math. Soc. 376, 2419–2447, 2023.

Chapter 7:
[Bre24] D. Brennecken. Hankel transform, K-Bessel functions and zeta distributions in the

Dunkl setting. J. Math. Anal. Appl. 535, 128125, 2024.

Chapter 9:
[BR24] D. Brennecken and M. Rösler. Limits of Bessel functions for root systems as the rank

tends to infinity. submitted, preprint: arXiv:2401.02515, 2024.

Concerning the two papers with Margit Rösler, both authors are first authors with equal
rights and equal contributed parts to the development of the research questions.
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Results of the thesis

First, we start with some general results in rational and trigonometric Dunkl theory. In
particular, we shall briefly introduce a minor generalization of the trigonometric Dunkl theory
due to Heckman and Opdam. To be more precise, we have a look at situations where the root
system does not span the underlying Euclidean space. This is analogous to Lie theory, where
one passes from semisimple Lie groups to reductive Lie groups. Later, this will be important
when we generalize results from radial analysis on symmetric cones to the Dunkl setting. After
this, we have a closer look at the Cherednik kernel, i.e. the joint eigenfunction of the Cherednik
operators. We characterize the spectral parameters for which the kernel is a bounded function.
For the hypergeometric function, i.e. the Weyl group symmetrization of the Cherednik kernel,
this was answered in [NPP14] by giving a generalization of the Helgason-Johnson theorem,
which characterizes the bounded spherical functions of a non-compact Riemannian symmetric
space. As a result, we can prove a Riemann-Lebesgue lemma for the Cherednik transform.
We further take a closer look at the (rational) Dunkl convolution of distributions with non-
compact supports and generalize results from [ØS05], where it was assumed that one of the
distributions has compact support. With the results on these convolutions we are able to verify
elliptic regularity and hypoellipticity for a certain class of Dunkl operators, called elliptic, in
line with results for linear partial differential operators as in [H0̈3]. For the particular case of
the Dunkl Laplacian, these results were already proven in [MT04]. We will also apply our
results to prove a convolution identity for generalized Riesz distributions.
Furthermore, based on our knowledge about generalized convolutions, we study a (rational)
Dunkl analogue of the multitemporal wave equation on Riemannian symmetric spaces, cf.
[PS93, Hel98, HS99]. The solution of this equation can be used to describe the generalized
translation operator. This translation operator is used to define the convolution mentioned
before, generalizing the convolution of K-biinvariant functions on a Riemannian symmetric
space G/K. It is an object with a wide range of open questions and is only fully understood in
rank one. In higher rank it is still open whether this convolution is a continuous L1-operator,
which would lead to a commutative L1-convolution algebra, generalizing the commutative
convolution algebra of K-biinvariant functions on G in the setting of a symmetric space G/K.
As a consequence one would obtain Lp-boundedness of generalized translations with important
consequences in harmonic analysis associated with root systems. To establish such convolution
algebras, one has to find an integral representation for the generalized translation operator,
which is equivalent to find a (positive) product formulas for the associated special functions,
generalizing the known product formulas of spherical functions. Such results exist in rank one
[FJK73], but in higher rank only few examples and partial results have been obtained so far,
c.f. [Rö07, Rö10, RR15, Voi15].
For the main part of the thesis, it is important that Dunkl theory for the root system An−1 is
in many aspects related to radial analysis on symmetric cones. Indeed, a (simple) symmetric
cone of rank n, such as the Lorentz cone or the cone of positive definite n×n matrices over one
of the (skew) fields F = R,C, or H is a Riemannian symmetric space Ω = G/K associated to a
reductive Lie group G, with maximal compact subgroup K, whose root system is of type An−1,
see [FK94]. The spherical polynomials of Ω can be identified with Jack polynomials of index
α = 2/d as functions in the eigenvalues, where d is the Peirce dimension constant of Ω which
only takes finitely many values (except in rank two). For instance, if Ω is the cone of positive
definite matrices over F, we have d = dimR(F) ∈ {1, 2, 4}. Moreover, via the Harish-Chandra
integral formula, the K-spherical functions on the associated Euclidean Jordan algebra V can
be identified with Dunkl-type Bessel functions with multiplicity parameter k = d/2 = 1/α,
c.f. [Rö20] and also [Rö98]. Indeed, we will prove a more general result: if G is a reductive
Lie group of the Harish-Chandra class and K ⊆ G is a maximal compact subgroup, then the
associated Cartan motion group G0 of G/K gives a Riemannian symmetric space of Euclidean
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type G0/K, whose spherical function can be identified with Dunkl-type Bessel functions. The
Bessel functions govern the radial (i.e. K-biinvariant) analysis on V , such as analysis for
functions or measures which depend only on the eigenvalues of their argument. It is therefore
natural to ask which of the known results in the radial analysis on symmetric cones have
analogues in Dunkl theory, when the multiplicity k is chosen arbitrarily. The technique to
obtain such results is to replace the spherical polynomials on the cone by Jack polynomials
(symmetric and non-symmetric), and the exponential function on the cone by the Bessel
functions of type A (or even the Dunkl kernel). This program was already initiated by I.G.
Macdonald in his unpublished manuscript [Mac89] from the 1980s. Since Dunkl theory was
developed just around the same time, the author was unable to establish a link to Dunkl
theory in [Mac89]. The ideas of Macdonald found applications in [BF97, BF98] within the
study of quantum integrable models of Calorgero-Moser-Sutherland type and were also used
in [SZ07]. However, most of the results are at a formal level, and matters were not further
developed. This may be due to the fact that the analysis of the Dunkl analogue of the Laplace
transform, was not well understood for a long time. The transform was introduced in [BF98]
and is already contained implicitly in a symmetrized version in [Mac89]. The important
observation in [BF98] was that the kernel of the Laplace transform in [Mac89] indeed is a
Dunkl Bessel function of type A. But a rigorous foundation of the analysis was given only
recently in [Rö20]. This opens up interesting questions and tools to study the interface
between Dunkl theory and radial analysis on symmetric cones, which shall be studied in
this thesis. For instance, we prove Laplace transform identities for Jack polynomials, the
Cherednik kernel and hypergeometric series of Jack polynomials. These identities allow to
introduce and study generalized zeta integrals, which satisfy certain characterizing functional
equations as in the case of symmetric cones. In particular, important objects that will be
introduced are two-variable Bessel functions generalizing the Bessel function and K-Bessel
function of a symmetric cone. The study of these special functions is important to verify
properties of a generalized Hankel transform and to verify the functional equations of zeta
distributions. Our results in the type A Dunkl setting make it possible to study the asymptotic
behavior of the Bessel functions of type A and B as the number of variables tends to infinity.
This is in accordance with asymptotic harmonic analysis related to Olshanski spherical pairs,
cf. [OO97, OO98, Far08]. We generalize results for the asymptotics of the positive definite
(Olshanski-)spherical functions of the pairs (G∞,K∞) corresponding to the sequences of
Gelfand pairs

(Un(F) n Hermn(F), Un(F))n∈N,
((Upn(F)× Uqn(F)) nMpn,qn(F), Upn(F)× Uqn(F))n∈N

with pn ≥ qn → ∞, where Un(F) is the unitary group of F, Mp,q(F) are the p × q matrices
over F and Hermn(F) are the n× n hermitian matrices over F. For the latter Gelfand pairs
we obtain new results, where only partial results exist in the case F = C in [Rab08, Pic90].
Finally, we prove that the Cherednik kernel of type A is the limit of a Cherednik kernel
of type BC. This generalizes the results of [RKV13], where an analogous limit transition
was proven for the hypergeometric functions, i.e. the Weyl group symmetrizations of the
Cherednik kernels. We shall use by analytic extension results and recurrence formulas for the
Heckman-Opdam polynomials studied in [Opd95, Sah00a, Sah00b].

Structure of the thesis
First, we collect some basic facts about root systems and their reflection groups in Chapter
1. Then, we give an overview of rational Dunkl theory and known results within this field
that are necessary for this thesis. We further introduce the reader to the connection between
Dunkl theory and radial analysis on Riemannian symmetric spaces of Euclidean type. In
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Chapter 2 we examine the Dunkl convolution of distributions which do not necessarily have
compact support, and study its properties. This includes results about the support and
generalized singular support of a Dunkl convolution. Afterwards, we introduce elliptic Dunkl
operators and prove a theorem on hypoellipicity and elliptic regularity on local Sobolev spaces.
Chapter 2 is also contained in the preprint [Bre23]. Chapter 3 deals with a multitemporal
wave equation in the Dunkl setting in the spirit of [Hel98], whose solution is closely related
to the generalized translation operator. With the results from the previous chapter, we are
able to prove that the multitemporal wave equation is well-posed, i.e. for smooth initial
data there exists exactly one smooth solution. In Chapter 4 we first introduce the reader
to trigonometric Dunkl theory and extend it to the case of non-crystallographic integral
root systems, which is motivated by the connection between semisimple and reductive Lie
groups. We further explain the connection to Riemannian symmetric spaces of non-compact
type and Riemannian symmetric spaces associated with Lie groups of the Harish-Chandra
class. We prove a non-symmetric analogue of the Helgason-Johnson theorem in [NPP14] that
characterizes the spectral parameters for which the eigenfunction of the Cherednik operators
are bounded. As a consequence, we obtain a Riemann-Lebesgue lemma for the Cherednik
transform similar to the symmetric analogue contained in [NPP14].

In the second part of the thesis we deal with the generalization of radial analysis on symmetric
cones to Dunkl theory for root systems of type A and B. We start in Chapter 5 with a
motivation about the connection between radial analysis on symmetric cones and Dunkl theory.
Afterwards, we prove Laplace transform identities for Jack polynomials and the Cherednik
kernel with techniques using Knop’s and Sahi’s raising operator and analytic continuation in
Chapter 6. Furthermore, we study the convergence properties of Macdonald’s hypergeometric
series of Jack polynomials and Laplace transformation identities between these series. The
chapter also contains a binomial formula for the Cherednik kernel, convolution formulas for
generalized Riesz distributions and a Post-Widder inversion formula for the Dunkl-Laplace
transform. Most of Chapter 6 is already published in [BR23]. Chapter 7 continues the program
of the previous two chapters; it is published in [Bre24]. The chapter deals with generalizations
of the Bessel function and the K-Bessel function of a symmetric cone and their characteristic
properties. In particular, the new Bessel function is closely related to the Dunkl Bessel
function of type B, and defines the kernel of the Hankel transform. The Hankel transform and
its properties are examined in detail. The chapter ends with the introduction of zeta integrals
and a closely related analytic family of distributions. We prove several functional equations
between zeta distributions, where the most characteristic one relates the zeta distributions
with their type B Dunkl transform. Finally, we are able to characterize the positive measures
within the family of zeta distributions.

The last part of the thesis deals with different limit transitions in Dunkl theory, partially
motivated from asymptotic harmonic analysis. The background on asymptotic harmonic
analysis and Olshanski spherical pairs is contained in Chapter 8. In Chapter 9 we give a
sufficient and necessary condition for sequences of spectral parameters for which the Bessel
functions of type A and B converge if the rank of the underlying root systems tends to infinity.
As a special case, we are able to characterize the positive definite spherical functions of the
pairs (U∞(F)nHerm∞(F), U∞(F)) and ((U∞(F)×U∞(F))nM∞,∞(F), U∞(F)×U∞(F)) and
show how they can be approximated by positive definite spherical functions of the underlying
Gelfand pairs. The main part of Chapter 9 is contained in the preprint [BR24]. Finally, in
Chapter 10 we prove that the Cherednik kernel of type A is the limit of the Cherednik kernel
of type BC when some of the underlying multiplicities tend to infinity. This extends a known
result for the hypergeometric functions, i.e. the Weyl group symmetrization of the Cherednik
kernels.

11
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Appendix A is a basis for Chapter 10 and deals with known results on recurrence formulas for
Heckman-Opdam polynomials. These recurrence formulas were proven by Sahi in two papers
[Sah00a, Sah00b] by different techniques, one for reduced root systems and the other one for
the root system BCn. The appendix gives a uniformization of these two papers for arbitrary
crystallographic root systems by using the same language.

12
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General results in Dunkl theory
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chapter 1
Introduction to Dunkl theory

In this chapter, we only provide an overview of the rational Dunkl theory. We explain the
current state of research and do not provide any new results in this chapter. For the background
on rational Dunkl theory the reader is referred to [Opd93, dJ93, Rö03a, DX14, Ank15]. We
further give a brief introduction to root systems and their reflection groups, using the standard
reference [Hum90].
The structure of the chapter is as follows. We begin in Section 1 with a brief overview of root
systems and their reflection groups. In Section 2, we introduce the reader to the concepts
and known results of rational Dunkl theory. We also explain the connection of rational Dunkl
theory to radial analysis on Riemannian symmetric spaces of Euclidean type in Section 3.

1.1 Root systems and their reflection groups

Root systems and their finite reflection groups appear in various areas of mathematics, e.g. in
(algebraic) combinatorics, geometry, Lie theory, orthogonal polynomials and special functions.
Finite reflection groups are finite Coxeter groups. In general, Coxeter groups are a basis for
the study of semisimple Lie groups, p-adic groups or buildings. For this work, root systems
are a central object, so we will give a brief introduction to root systems to fix the terminology
and some notations. Since this is classical theory, we will omit exact citations and instead
refer to the standard reference [Hum90].

Basic definitions

Let (a, 〈·, ·〉) be a finite-dimensional Euclidean space with norm |x| :=
√
〈x, x〉. With a

non-zero α ∈ a we associate the orthogonal reflection sα in the hyperplane perpendicular to
α, defined by

sα : a→ a, x 7→ x− 〈x, α∨〉α,

where α∨ := 2α
〈α,α〉 .

Definition 1.1. A non-empty finite subset R ⊆ a\ {0} is called a root system if it is invariant
under the reflections sα, for all α ∈ R. Moreover, R is called

(i) reduced if Rα ∩R = {±α} for all α ∈ R.

(ii) integral if 〈α, β∨〉 ∈ Z for all α, β ∈ R.

(iii) crystallographic if it is integral and spanRR = a.

(iv) reducible if it is a disjoint union of root systems, which are orthogonal to each other.

(v) irreducible if it is not reducible.

The number rkR := dim(spanRR) is called the rank of R. The (finite) reflection group
associated with a root system R is the group of orthogonal transformations generated by the
reflections sα with α ∈ R, i.e.

W := W (R) := 〈sα, α ∈ R〉group .

14



1.1. ROOT SYSTEMS AND THEIR REFLECTION GROUPS 15

If the root system is crystallographic, then W is typically called a Weyl group.
We note that each finite group W generated by reflections is the reflection group of a root
system. The root system R is uniquely determined up to scaling of the W -orbits inside R.
Moreover, the root system is irreducible if and only if the associated reflection group is not
the direct product of non-trivial reflection groups.

Example 1.2. Up to isomorphisms of the vector space a and rescaling of the orbits, the finite
reflection groups with irreducible root systems are classified. To list them, consider the Eu-
clidean space Rn with the canonical basis (ei)i=1,...,n. The irreducible reduced crystallographic
root systems and their Weyl groups are named

An, Bn/Cn, Dn, E6, E7, E8, F4, G2,

where the index is the rank of the root system. The root systems E6, E7, E8, F4, G2 are
called exceptional and are constructed in [Hum90]. The infinite families of root systems
An, Bn, Cn, Dn are called classical and can be constructed as follows.

(An, n ≥ 1): The root system consists of the n(n+ 1) vectors

An := {±(ei − ej) | 1 ≤ i < j ≤ n+ 1} ⊆ Rn+1.

It is reduced and crystallographic in Rn+1
0 :=

{
x ∈ Rn+1 | x1 + . . .+ xn+1 = 0

}
. The

Weyl group is the symmetric group Sn+1 on n + 1 letters, acting by permuting the
coordinates. The reflection sei−ej acts by permuting the i-th and j-th component.

(Bn/Cn, n ≥ 2): These are two root systems, which coincide up to rescaling of orbits. The
root systems consist of the 2n2 vectors

Bn := {±(ei ± ej) | 1 ≤ i < j ≤ n} ∪ {±ei | 1 ≤ i ≤ n} ,
Cn := {±(ei ± ej) | 1 ≤ i < j ≤ n} ∪ {±2ei | 1 ≤ i ≤ n} .

They are reduced and crystallographic in Rn. The Weyl group is the hyperoctahedral
group Sn n Zn2 , where Zn2 acts by changing the signs of the coordinates. The reflection
sei = s2ei acts by mapping the i-th coordinate onto its negative.

(Dn, n ≥ 4): The root system consists of the 2n(n− 1) vectors

Dn := {±(ei ± ej) | 1 ≤ i < j ≤ n} .

It is reduced and crystallographic in Rn. The Weyl group is Sn n Zn−1
2 , where Zn−1

2
acts by an even number of sign changes.

The irreducible reduced non-crystallographic root systems are named H3, H4 and I2(m) of
ranks 3, 4 and 2, respectively. The root systems H3 and H4 are again called exceptional and
are constructed in [Hum90]. The infinite family I2(m) can be constructed as follows.

(I2(m), m = 5,m ≥ 7): The root system consists of the 2m-th roots of unity

I2(m) :=
{
eiπ

k
m | 0 ≤ k ≤ 2m− 1

}
⊆ C ∼= R2.

It is reduced, spanR(I2(m)) = C ∼= R2 and the finite reflection group is the dihedral
group D2m = Z2 n Zm of order 2m. In fact, the orbits of I2(m) cannot be rescaled to
obtain a crystallographic root system, except for the case m = 6, where we can obtain
the exceptional root system G2.

It is remarkable that there exists exactly one irreducible non-reduced crystallographic root
system (up to isomorphisms), called BCn. It is the union of Bn and Cn.

15



16 CHAPTER 1. INTRODUCTION TO DUNKL THEORY

(BCn, n ≥ 1): The root system consists of the 2n(n+ 1) vectors

BCn := {±(ei ± ej) | 1 ≤ i < j ≤ n} ∪ {±ei,±2ei | 1 ≤ i ≤ n} ⊆ Rn.

It is non-reduced and crystallographic in Rn. The Weyl group is Sn n Zn2 .

A2 B2

C2 BC2

I2(5) G2

Positive roots, simple roots and Weyl chambers

Let R be a root system inside the Euclidean space (a, 〈·, ·〉) with finite reflection group W .
The connected components of a\⋃α∈R α⊥ are open convex cones, called open Weyl chambers
and the closures are called closed Weyl chambers. The group W acts simply transitively on
the set of open Weyl chambers. To describe the chambers in terms of the root system, we
need the concept of positive and simple roots.

Definition 1.3. Consider two subsets R+ and Π of the root system R.

(i) Then R+ is called a system of positive roots if R is a disjoint union of R+ and R− := −R+
such that R+ and R− are separated by a hyperplane in a. The elements of R− are called
negative roots.

16



1.1. ROOT SYSTEMS AND THEIR REFLECTION GROUPS 17

(ii) Then Π is called a system of simple roots or a basis of R if Π consists of linearly
independent vectors with the following property: for an arbitrary root β = ∑

α∈Π nαα ∈
R, it holds that either all nα are non-negative integers or non-positive integers.

There is a one-to-one correspondence between the set of Weyl chambers, positive roots
and simple roots which is constructed as follow:

• If C is an open Weyl chamber, then

R+ := {α ∈ R | 〈x, α〉 > 0 for all x ∈ C}

is a system of positive roots. Conversely, if R+ is a system of positive roots, then

C := {x ∈ a | 〈x, α〉 > 0 for all α ∈ R+}

is an open Weyl chamber, called the (open) positive Weyl chamber with respect to R+.
Typically, the positive Weyl chamber is denoted by a+ or C+.

• If Π is a system of simple roots, then

R+ := {β = ∑
α∈Π nαα ∈ R | nα ∈ N0 for all α ∈ Π}

is a system of positive roots. Conversely, if R+ is a system of positive roots, the set

Π := {α ∈ R+ | α is not a sum of elements in R+}

is a system of simple roots.

Example 1.4. As an example to visualize the concepts of positive roots, simple roots and
Weyl chambers, we look at the root system A2, as subset of R2 ∼= R3

0.

Π R+

C+

Figure: positive roots, simple roots and positive Weyl chamber of A2

By fixing a system of positive roots and simple roots Π = {α1, . . . , αn}, the reflections
si := sαi are called simple reflections. They form a set S = {s1, . . . , sn}, which is a minimal
generating subset of W . Indeed, the pair (W,S) is a Coxeter system in the sense of the
subsequent definition.

Definition 1.5. A pair (W,S) consisting of a group W and a finite subset S ⊆W is called a
Coxeter system if

17



18 CHAPTER 1. INTRODUCTION TO DUNKL THEORY

(i) S generates W and the elements of S have order 2,

(ii) W is presented with generators S and the relations (st)mst = 1, s, t ∈ S, where mst is
the order of st in W and the relation does not occur if the order is infinite. This means
that W is the quotient of the free group over S by the normal subgroup generated by
the upper relations.

In this case, the group W is called a Coxeter group with generators S. Each Coxeter system
defines a length function by

`S : W → N0, `S(w) := min {` ∈ N0 | w = s1 · · · s`, si ∈ S} .

Coxeter groups have a rich structure theory and even the infinite Coxeter groups are of
high relevance, such as affine Weyl groups. For our purpose it is enough to consider finite
Coxeter groups, i.e. finite reflection groups W with simple reflections S = {s1, . . . , sn} as
before. The pair (W,S) has an important element, called the longest element w0 ∈W , which
is uniquely described by the following equivalent properties:

(i) `S(w) < `S(w0) for all w0 6= w ∈W .

(ii) `S(w0) = #R+.

(iii) w0Π = −Π and equivalently w0R+ = R−.

(iv) w0C+ = −C+.

(v) `S(w0sα) < `S(w0) for all α ∈ Π and equivalentely `S(w0w) < `S(w0) for all id 6= w ∈W .

(vi) `S(w0w) = `S(w0)− `S(w) for all w ∈W .

Since `S(w) = `S(w−1), it is immediate that w0 is an involution, i.e. w2
0 = id. For instance, if

W = Sn and S consists of the transpositions si of the i-th and (i+1)-th coordinate, then the
longest element w0 is defined by reversing the order, i.e. w0(x1, . . . , xn) = (xn, . . . , x1).

1.2 Introduction to rational Dunkl theory

Dunkl operators acting on function spaces

Consider a finite-dimensional Euclidean space (a, 〈·, ·〉) with norm |x| =
√
〈x, x〉 and extend

the inner product in a complex-bilinear way to the complexification aC := C⊗ a. Let R ⊆ a
be a reduced root system and W = W (R) the associated finite reflection group. Then W
acts on a as a group of isometries and therefore on arbitrary functions f : Ω→ C, defined on
W -invariant subsets Ω ⊆ a, by the assignment wf(x) = f(w−1x). Moreover, the set of regular
elements is

areg := a\
⋃
α∈R

α⊥ = {x ∈ a | wx 6= x for all w ∈W\{id}} .

Definition 1.6. Let k : R → C, α 7→ kα be a W -invariant function, called a multiplicity
function or multiplicity. The (rational) Dunkl operator associated with (R, k) into the direction
ξ ∈ a is the differential-difference operator

Tξ(k) := ∂ξ +
∑
α∈R+

kα 〈α, ξ〉
1− sα
〈α, ·〉

= ∂ξ + 1
2
∑
α∈R

kα 〈α, ξ〉
1− sα
〈α, ·〉

,

where ∂ξ is the usual partial derivative into the direction ξ and R+ ⊆ R is an arbitrary system
of positive roots. Sometimes we denote the Dunkl operators by Tξ, TRξ or TRξ (k), depending

18



1.2. INTRODUCTION TO RATIONAL DUNKL THEORY 19

on whether (R, k) is clear from the context or not. To be more precise, if f ∈ C1(Ω) for some
W -invariant open subset Ω ⊆ a, then

Tξ(k)f(x) = ∂ξf(x) +
∑
α∈R+

kα 〈α, ξ〉
f(x)− f(sαx)
〈α, x〉

.

We observe that ξ 7→ Tξ(k) is linear, Tξ(k) does not depend on the length of the roots and
Tξ(0) = ∂ξ are the usual directional derivatives.

Let e1, . . . , en be an orthonormal basis of a. As usual, we put for β ∈ Nn0 :

|β| := β1 + . . .+ βn,

∂i := ∂ei ,

∂β := ∂β1
1 · · · ∂

βn
n .

On a W -invariant convex subset of a, the difference operator occurring in the definition of
Tξ(k) can be represented as

f(x)− f(sαx)
〈α, x〉

= 2
〈α, α〉

∫ 1

0
(∂αf)(x− t 〈x, α∨〉α) dt. (1.1)

From the version (1.1) of the difference operator we can deduce several properties of the
Dunkl operators. In the following we summarize the main properties that are important for
our purpose. Consider an open W -invariant subset Ω ⊆ a and ξ, η ∈ a. The Dunkl operators
satisfy:

(i) The operator Tξ(k) maps Cm(Ω) into Cm−1(Ω) for m ∈ N ∪ {∞}.

(ii) Homogeneity: let P = C[a] be the space of complex valued polynomial functions on a.
Then, Tξ(k) is homogeneous of degree −1, i.e.

Tξ(k) : Pn → Pn−1,

where Pn ⊆ P is the subspace of homogeneous polynomial functions of degree n.

(iii) Commutativity: the Dunkl operators commute, i.e.

Tξ(k)Tη(k) = Tη(k)Tξ(k) on C2(Ω).

Thus, we have a well-defined unital morphism of complex algebras

P → End(C∞(Ω)), p 7→ p(T (k)), determined by 〈·, ξ〉 7→ Tξ(k).

The image of this morphism is denoted by D(k) and is called the algebra of Dunkl oper-
ators. D(0) is just the algebra of linear differential operators with constant coefficients.

(iv) Leibniz rule: if f, g ∈ C1(Ω), where at least one of them is W -invariant, then

Tξ(k)(f · g) = (Tξ(k)f) · g + f · (Tξ(k)g).

(v) Equivariance: under conjugation with w ∈W , the Dunkl operators satisfy

wTξ(k)w−1 = Twξ(k).

(vi) Support: for f ∈ C1(Ω) we have

supp(Tξ(k)f) ⊆W.supp f,

where supp f is the support of f . In particular, Cmc (Ω) is mapped by Tξ(k) into Cm−1
c (Ω).

19



20 CHAPTER 1. INTRODUCTION TO DUNKL THEORY

(vii) Let f ∈ Cm(Ω) with m ∈ N ∪ {∞} and let K ⊆ Ω be a compact convex W -invariant
subset. Equation (1.1) leads to the following: For all β ∈ Nn0 with |β| ≤ m− 1, there
exists a constant C(β, k) independent of f,Ω and K such that

||∂βTξ(k)f ||∞,K ≤ C(β, k) max
|γ|=|β|+1

||∂γf ||∞,K , (1.2)

where ‖f‖∞,K = maxx∈K |f(x)| is the usual supremum norm on K. As a consequence
the Dunkl operator Tξ(k) maps Cm(Ω) continuously into Cm−1(Ω) (equipped with the
usual locally convex topologies).

(viii) Dunkl operators act continuously on the Schwartz space S (a) as well as on the spaces
C∞(a) and C∞c (a), each equipped with their usual locally convex space topologies.

Owing to the W -equivariance of Dunkl operators, the algebra of W -invariant Dunkl
operators is explicitly given by

D(k)W =
{
p(T (k))

∣∣∣ p ∈ PW } .
Moreover, D(k)W acts on C∞(Ω)W as an algebra of differential operators. To be more precise,
for all p(T (k)) ∈ D(k)W there exists a unique linear differential operator res(p(T (k))) on areg
such that for all f ∈ C∞(a)W we have

p(T (k))f = res(p(T (k)))f. (1.3)

Example 1.7 (Dunkl-Laplacian). The Dunkl operator ∆k associated with the quadratic
polynomial p(x) = 〈x, x〉 is called the Dunkl-Laplacian and can be written as

∆kf(x) = ∆af(x) +
∑
α∈R

kα

(
∂αf(x)
〈α, x〉

− |α|
2

2 · f(x)− f(sαx)
〈α, x〉2

)
,

where ∆a is the usual Laplacian on a. In particular,

Lk := res(∆k) = ∆a +
∑
α∈R

kα
∂α
〈α, ·〉

.

Example 1.8 (Rank one). The root system is R = {±1} ⊆ R and the Dunkl operators are
described by

T1(k)f(x) = f ′(x) + k
f(x)− f(−x)

x
,

so that the Dunkl Laplacian becomes

∆kf(x) = f ′′(x) + 2kf
′(x)
x
− kf(x)− f(−x)

x2 .

In particular, Lk = res(∆k) is the Bessel operator

Lkf(x) = f ′′(x) + 2k
x
f ′(x).

We observe the following: if k = n−1
2 with n ∈ N, then Lk is the SOn(R)-radial part of the

Laplacian ∆Rn on Rn in polar coordinates, i.e. if f ∈ C2(Rn) is radial and f(x) = F (|x|),
then

∆Rnf(x) = F ′′(|x|) + n− 1
|x|

F ′(|x|) = Ln−1
2
F (|x|).

20



1.2. INTRODUCTION TO RATIONAL DUNKL THEORY 21

Dunkl intertwiner and regular multiplicities

Definition 1.9. On the polynomials P we define the generalized Fisher product

[·, ·]k : P × P → C, [p, q]k := (p(T (k))q)(0).

In the case k = 0, this reduces to the usual Fisher product [p, q]0 = (p(∂)q)(0). The pairing
[·, ·]k defines a W -invariant symmetric bilinear form such that the subspaces Pn, n ∈ N, are
mutually orthogonal. The adjoint of Tξ(k) with respect to [·, ·]k is multiplication by 〈·, ξ〉.

If k ≥ 0 is a non-negative multiplicity, the Macdonald-Identity

[p, q]k = 1
ck

∫
a
(e−∆k/2p)(x) · (e−∆k/2q)(x) · e−|x|

2/2ωk(x) dx

holds, where dx is the Lebesgue measure on a,

ωk(x) :=
∏
α∈R
|〈α, x〉|kα =

∏
α∈R+

|〈α, x〉|2kα (1.4)

is a weight function, and
ck :=

∫
a
e−|x|

2/2ωk(x) dx (1.5)

is called the Macdonald-Mehta constant.

Remark 1.10. A formula for the constant ck was conjectured by Macdonald and was proven
by Opdam in [Opd89, Opd93] for all irreducible root systems except of H3, H4. The proofs of
the remaining cases was based on a computer calculation by F. Garvan. Later, Etingof [Eti10]
found a uniform proof for all root systems, but under the consideration that the multiplicity is
constant. The constant ck has an explicit form and can be expressed as a product of gamma
functions.

Definition 1.11. Let K be the vector space of multiplicity functions k : R → C on R. A
multiplicity k ∈ K is called regular if one of the following equivalent statements hold:

(i) [·, ·]k is non-degenerate. Furthermore, (p, q) 7→ [p, q]k is an inner product on P.

(ii) ⋂ξ∈a ker(Tξ(k)|P) = C.

(iii) There exists Vk ∈ GL(P) such that

Vk1 = 1, Vk∂ξ = Tξ(k)Vk and Vk(Pn) ⊆ Pn

for all ξ ∈ a and n ∈ N0. The operator Vk is uniquely determined by these properties.

The set of regular multiplicities will be denoted by Kreg and we have

{k ∈ K | Re k ≥ 0} ⊆ Kreg.

For k ∈ Kreg, the isomorphism Vk is called Dunkl’s intertwining operator . Furthermore, Kreg
can be described explicitly, see [dJDO94]. One then sees that Kreg ⊆ K is dense, open and
K\Kreg is a countable union of algebraic sets. To be more precise,

K\Kreg =
∞⋃
n=0

(K0 − n · 1R), with K0 = {k ∈ K | [π, π]k = 0} ,

where 1R is the multiplicity with constant value 1 and π is the fundamental skew-polynomial

π(x) =
∏
α∈R+

〈α, x〉 .
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We denote the convex hull of a subset M ⊆ a by

co(M) =
{∑m

i=1
λixi

∣∣∣m ∈ N, xi ∈M, 0 < λi < 1,
∑m

i=1
λi = 1

}
.

A cornerstone in the study of Dunkl’s intertwining operator is the following positivity result
due to Rösler.

Theorem 1.12 ([Rö99]). Let k ≥ 0 be a non-negative multiplicity. Then:

(i) the operator Vk is a positivity preserving operator, i.e. if p ∈ P is non-negative, then
Vkp is non-negative as well.

(ii) For all x ∈ a there exists a (unique) probability measure µkx on a with support contained
in co(W.x) and

Vkp(x) =
∫
a
p dµkx.

Furthermore, Trimèche proved in [Tri01] the following important theorem on the extension
of Dunkl’s intertwining operator to the space of smooth functions on a.

Theorem 1.13 ([Tri01]). Let k ≥ 0 be a non-negative multiplicity. If Vk is defined on C(a)
via

Vkf(x) =
∫
a
f dµkx,

then the following holds:

(i) the intertwiner Vk maps C(a) into itself so that ‖Vkf‖∞,Br(0) ≤ ‖f‖∞,Br(0) for all closed
balls Br(0) with radius r > 0 around 0.

(ii) the intertwiner Vk is a topological automorphism of C∞(a) satisfying

Vkf(0) = f(0) and Vk∂ξ = Tξ(k)Vk

for all f ∈ C∞(a) and ξ ∈ a.

Example 1.14 (Rank one). For R = {±1} ⊆ R one verifies that Dunkl’s intertwining
operator is given, for Re k > 0, by

Vk1 = 1, Vk(x2n) =
(1

2)n
(k + 1

2)n
x2n and Vk(x2n−1) =

(1
2)n

(k + 1
2)n

x2n−1,

where (a)n = Γ(a+n)
Γ(a) = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol. In particular, we

have
Kreg = C\

{
−1

2 ,−
3
2 , . . .

}
.

The integral representation of Vk is given by

Vkp(x) =
Γ(k + 1

2)
Γ(k)
√
π

∫ 1

−1
p(tx)(1− t)k−1(1 + t)k dt.
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Eigenfunctions

Definition 1.15. For non-negative multiplicities k ≥ 0, the Dunkl kernel associated with
(R, k) with spectral parameter λ ∈ aC is defined by

Ek(λ, ·) := Vk(e〈λ,·〉)

and is the unique analytic solution of the eigenvalue problem{
Tξ(k)f = 〈λ, ξ〉 f, for all ξ ∈ a,

f(0) = 1.

In fact, by Opdam [Opd93] this eigenvalue problem has a unique analytic solution Ek(λ, ·) for
all k ∈ Kreg, which extends to an entire map on aC. Moreover, the map

Kreg × aC × aC → C, (k, λ, z) 7→ Ek(λ, z)

is holomorphic. The Bessel function Jk(λ, ·) associated with (R, k) with spectral parameter
λ ∈ aC is by definition

Jk(λ, z) := 1
#W

∑
w∈W

Ek(λ,wz)

and can be characterized as the unique W -invariant analytic solution of{
p(T (k))f = p(λ)f, for all p ∈ PW ,

f(0) = 1.

Moreover, the Bessel function is also W -invariant in the spectral parameter and holomorphic
on the same domain as the Dunkl kernel. In fact, by Opdam [Opd93, Proposition 9.6],
(K\Kreg)× aC × aC is precisely the pole set of the Dunkl kernel and the Bessel function, so
that the singular multiplicities can be characterized as the poles of these functions.

If k = 0, then the Dunkl kernel reduces to the exponential e〈λ,z〉 and the Bessel function is
some kind of generalized hyperbolic cosine. In fact, for k = 0 in rank one, the Bessel function
is exactly the hyperbolic cosine. The case of general k in rank one is discussed at the end of
this section and is the reason why Jk is called a Bessel function. The following theorem shows
that the Dunkl kernel behaves like an exponential function in several aspects.

Theorem 1.16 ([dJ93, Rö99]). The Dunkl kernel satisfies:

(i) Ek(λ, z) = Ek(z, λ) for all λ, z ∈ aC.

(ii) Ek(sλ, z) = Ek(λ, sz) for all λ, z ∈ aC and s ∈ C.

(iii) Ek(wλ,wz) = Ek(λ, z) for all λ, z ∈ aC and w ∈W .

If additionally k ≥ 0, then

(iv) Ek is positive on a× a.

(v) for all λ ∈ aC, x ∈ a and α ∈ Nn0

|( ∂
∂λ)αEk(λ, x)| ≤ |x||α|Ek(Reλ, x) ≤ |x||α|max

w∈W
e〈Reλ,wx〉.

In particular, |Ek(ix, y)| ≤ 1 for all x, y ∈ a.

The same results are still valid if Ek is replaced by the Bessel function Jk.
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Remark 1.17 (Product situation). In the cases where R is not irreducible or does not span
a, the Bessel function and Dunkl kernel factorize in the following sense.

(i) If a = a1 ⊕ a2 is an orthogonal sum and R = R1 tR2 with root systems Ri ⊆ ai, then
each multiplicity function k : R→ C is uniquely described by its restrictions k1 = k|R1

and k2 = k|R2 . The Dunkl kernel and Bessel function then factorize as

ERk (λ1 + λ2, z1 + z2) = ER1
k (λ1, z1)ER2

k2
(λ2, z2),

JRk (λ1 + λ2, z1 + z2) = JR1
k (λ1, z1)JR2

k2
(λ2, z2),

for all λi, zi ∈ (ai)C.

(ii) Assume that the Euclidean space decomposes into an orthogonal direct sum a = b⊕ c,
where b is the vector space spanned by R. Then W (R) acts trivial on c and

ERk (λ+ µ, z + ζ) = ERk (λ, z)e〈µ,ζ〉,
JRk (λ+ µ, z + ζ) = JRk (λ, z)e〈µ,ζ〉,

hold for all λ, z ∈ bC and µ, ζ ∈ cC.

Example 1.18 (rank one). Consider the root system R = {±1} ⊆ R. Then W = {±id} and
PW is generated by 1 and p(x) = x2. Hence, Jk(λ, ·) is the unique even analytic solution of

{
f ′′(x) + 2k

x f
′(x) = λ2f(x),

f(0) = 1.

For k ∈ C\
{
−1

2 ,−
3
2 , . . .

}
this solution is given by

Jk(λ, z) = j
k−1

2
(iλz)

with the spherical Bessel function

jα(z) =
∞∑
k=0

Γ(α+ 1)(−1)k
Γ(λ+ k + 1)k!

(
z

2

)2k
= Γ(α+ 1)

Γ(α+ 1
2)
√
π

∫ 1

−1
(1− t2)α−

1
2 eizt dt,

where the last equation is true under the consideration Reα > 1
2 . Especially, for k = 0, 1 one

has

J0(λ, z) = cosh(λz) and J1(λ, z) = sinh(λz)
λz

.

To compute the Dunkl kernel, recall Example 1.14. This formula for the intertwining operators
for k > 0 leads to

Ek(λ, x) =
Γ(k + 1

2)
Γ(k)
√
π

∫ 1

−1
eλzt(1− t)k−1(1 + t)k dt.

Simple manipulations on this integral show that

Ek(λ, x) = j
k−1

2
(iλz) + λz

2k + 1jk+ 1
2
(iλz).
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Dunkl transform

In the remainder of this section we may assume that the multiplicity k satisfies Re k ≥ 0. The
Dunkl transform is widely studied in [dJ93, Tri01, dJ06]. If µ = (µ1 − µ2) + i(µ3 − µ4) is a
complex Radon measure on a, i.e. the µi’s are regular Borel measures on a. We denote the
Lebesgue spaces associated with µ by

Lp(a, µ) := Lp(a, |µ|) =
4⋂
i=1

Lp(a, µi), 1 ≤ p ≤ ∞ (1.6)

where |µ| = µ1 + µ2 + µ3 + µ4. If µ has a density ω with respect to the Lebesgue measure on
a, then we identify µ with ω and write Lp(a, ω) for the associated Lebesgue spaces. The usual
Lp-norms are denoted by

‖f‖p,µ =


(∫

a
|f(x)|p d |µ| (x)

)1
p
, 1 ≤ p <∞,

inf {c > 0 | |f | ≤ c a.e. with respect to |µ|} , p =∞.

Definition 1.19. Recall the weight function ωk and the constant ck from equations (1.4) and
(1.5), respectively. The Dunkl transform of a function f ∈ L1(a, ωk) is defined by

Fkf(ξ) := f̂k(ξ) := 1
ck

∫
a
Ek(−iξ, x)f(x)ωk(x) dx, ξ ∈ a.

For k = 0 this reduces to the usual Euclidean Fourier transform.

Most of the standard theorems on the Fourier transform can be generalized to the Dunkl
transform. For our purposes in this thesis, the subsequent results are of interest.

Theorem 1.20 ([dJ93]). With ψ : a→ C we associate the multiplication operator

mψ : ϕ 7→ ψϕ.

For f, g ∈ L1(a, ωk) and ξ ∈ a the Dunkl transform satisfies:

(i) Equivariance: wFk = Fkw on L1(a, ωk) for all w ∈W .

(ii) Riemann-Lebesgue lemma: f̂k ∈ C0(a) with ||f̂k||∞ ≤ 1
ck
‖f‖1,ωk .

(iii) Parseval identity:
∫
a
f̂k(x)g(x)ωk(x) dx =

∫
a
f(x)ĝk(x)ωk(x) dx.

(iv) L1-Inversion formula: if f̂k ∈ L1(a, ωk), then f(x) = (FkFkf)(−x) a.e.

(v) If f ∈ L1(a, ωk) ∩ L2(a, ωk), then f̂k ∈ L2(a, ωk).

(vi) Injectivity: Fk is injective on L1(a, ωk).

(vii) Schwartz space automorphism: Fk is a topological automorphism of S (a).

(viii) Tempered distribution automorphism: Fk defines an automorphism of the tempered
distributions S ′(a) by the assigment Fku := u ◦ Fk for u ∈ S ′(a).

(ix) Plancherel theorem: If k ≥ 0, then Fk extends to a unitary operator of L2(a, ωk).

(x) If f ∈ S (a), then Tξ(k)Fk = Fkm−i〈ξ,·〉 and mi〈ξ,·〉Fk = FkTξ(k).
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26 CHAPTER 1. INTRODUCTION TO DUNKL THEORY

As usual, the inverse Dunkl transform is denoted by

f∨k(x) := F−1
k f(x) = Fkf(−x) = 1

ck

∫
a
Ek(ix, ξ)f(ξ)ωk(ξ) dξ.

Another cornerstone in Fourier analysis is the Paley-Wiener theorem, which has a gen-
eralization to the Dunkl setting. There are different versions of the Paley-Wiener theorem,
formulated in the subsequent theorem. Let H(aC) be the space of entire functions f : aC → C
such that for all M ∈ N0 there exist constants γM , r > 0, where r is independent of M , with

|f(ξ)| ≤ γM
(1 + |ξ|)M er·|Im ξ| for all ξ ∈ aC. (1.7)

If S ⊆ a is a W -invariant convex compact set, then HS(aC) is defined to be the space of entire
functions f : aC → C such that for all M ∈ N0 there exists a constant γM > 0 with

|f(ξ)| ≤ γM
(1 + |ξ|)M emaxy∈S〈Im ξ,y〉 for all ξ ∈ aC. (1.8)

Moreover, we define the spaces H(aC) to be the space of entire functions f : aC → C such that
there exist constants M ∈ N0 and γM , r > 0 satisfying (1.7).

Theorem 1.21 ([dJ06, AAS10]). We assume that k ≥ 0. Let S ⊆ a be a W -invariant
compact convex neighborhood of 0. Then:

(i) Fk maps C∞c (a) onto H(aC).

(ii) If R is integral or S = Br(0), then Fk maps the space of smooth functions with support
in S onto HS(aC).

(iii) Fk maps the space of compactly supported distributions onto H(aC) in the following
sense: for a compactly supported distribution u one has

〈Fku, f〉 =
∫
a
f(x)gu(x)ωk(x) dx with gu = (x 7→ 〈u,Ek(−ix, ·)〉) ∈ H(aC),

such that the map u 7→ gu is an isomorphism between the space of compactly supported
distributions and H(aC). Moreover, u has its support in Br(0) if and only if gu satisfies
(1.7).

Part (ii) is proven in [AAS10] for the crystallographic case, but due to the product situation
mentioned in Remark 1.17, it is also true for integral root systems, since in this case the
Dunkl transform is a tensor product of a (crystallographic) Dunkl transform and an Euclidean
Fourier transform. To be more precise, set b := spanRR and c = b⊥. Let F be the usual
Fourier transform on c and Fk,b be the Dunkl transform on b, so that for f ∈ L1(a, ωk):

Fkf = (F ⊗ Fb
k)f = (Fxc(Fxbk,bf(xb + xc))) = (Fxbk,b(F

xcf(xb + xc))). (1.9)

Generalized translations

In this section let k ≥ 0 be a non-negative multiplicity.

Definition 1.22. The generalized translation operator or Dunkl translation operator τkx on
S (a) is defined by

τkxf = y 7→ (Ek(ix, ·)f̂k)∨k(y).
Owing to Trimèche [Tri01], the translation operator can be extended to f ∈ C∞(a), such that
(x, y) 7→ τkxf(y) is of class C∞. To be more precise, u(x, y) := τkxf(y) is the unique smooth
solution of the system {

Tξ(k)xu = Tξ(k)yu, for all ξ ∈ a,

u(x, 0) = f(x),
(1.10)
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1.2. INTRODUCTION TO RATIONAL DUNKL THEORY 27

where the script x and y denote the relevant variable. In particular, the generalized translation
is given in terms of the intertwining operator by

τkxf(y) = V x
k V

y
k ((V −1

k f)(x+ y)). (1.11)

In particular, if k = 0, τ0
x is the classical translation operator f 7→ f(·+ x).

Many open problems related to the translation operator exist, whose solutions would lead
to a progress in Harmonic analysis related to root systems. Let us first summarize the known
results from [dJ93, Tri01, Tri02, Rö03b, AAS10, DH19]:

Theorem 1.23. For our purposes, the important properties of generalized translations are:

(i) For x ∈ a, the spaces S (a), C∞c (a) and C∞(a) are invariant under τkx .

(ii) τkx extends to an operator on L2(a, ωk) with ||τkxf ||2,ωk ≤ ‖f‖2,ωk .

(iii) τkxf(y) = τky f(x) and τk0 = id for all x, y ∈ a.

(iv) Tξ(k)τkx = τkxTξ(k) for all x, ξ ∈ a.

(v) ωk is τkx -invariant, i.e. for f ∈ S (a):
∫
a
(τkxf)(y)ωk(y) dy =

∫
a
f(y)ωk(y) dy.

(vi) If f ∈ L2(a, ωk) has support in Br(0), then τkxf has support in W.Br(−x).

(vii) For x, y ∈ a, the map f 7→ τkxf(y) is a distribution with support in B|x|+|y|(0).
If R is integral, then the support is contained in co(W.x) + co(W.y).

(viii) If f ∈ C∞(a) is radial and non-negative, i.e. f(x) = F (|x|) for smooth non-negative F ,
then τkxf(y) ≥ 0 for all x, y ∈ a.

(ix) τkx (Ek(λ, ·))(y) = Ek(λ, x)Ek(λ, y).

The situation of integral R in (vii) was proven in [AAS10] for the crystallographic case,
but it is also true in the integral case. This can be seen as follows: if R is integral, we put
b := spanRa and write c = b⊥ ≤ a for the orthogonal complement. From the characterization
of the Dunkl translation via solutions of (1.10), one obtains for x = xb + xc ∈ a with xb ∈ b
and xc ∈ c that

τkx = τk,bxc ⊗ S
c
xc (1.12)

as operator on C∞(a) = C∞(b)⊗ C∞(c), where τk,bxc is the Dunkl translation on b associated
with (R, k) and Sc

xc is the operator f 7→ f(·+ xc). Now, the integral case can be reduced to
the crystallographic case in [AAS10].

Remark 1.24. It is a big open question if part (viii) is valid for generalW -invariant functions
(after symmetrization), a fact which is actually only known in rank one. For a non-W -invariant,
non-negative function it is known that the translation can be negative. At least, it is open if
the distribution f 7→ τkxf(y) is of order 0, i.e. whether there exists a complex measure µkx,y
such that

Ek(λ, x)Ek(λ, y) =
∫
a
Ek(λ, ξ) dµkx,y.

It is still an open question whether there exists a constant C independent of x such that

‖τxf‖p,ωk ≤ C ‖f‖p,ωk , p 6= 2.

In particular, in the case p = 1 this would lead to a commutative Banach algebra (L1(a, ωk), ∗k)
with convolution defined in terms of generalized translations.
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28 CHAPTER 1. INTRODUCTION TO DUNKL THEORY

In the W -invariant case, the positivity of the operator ∑w∈W τwx on W -invariant functions is
equivalent to the existence of a positive measure µk,Wx,y such that

Jk(λ, x)Jk(λ, y) =
∫
a
Jk(λ, ξ) dµk,Wx,y . (1.13)

In the cases where k is related to a symmetric space of Euclidean type (see the next section),
this positivity result is true.

1.3 Riemannian symmetric spaces of Euclidean type
This section serves a brief summary of the connection between rational Dunkl theory and
radial analysis on Riemannian symmetric spaces, cf. [dJ06, Section 6].
Let G be a connected non-compact semisimple Lie group with finite center, maximal compact
subgroup K and corresponding Cartan decomposition g = k ⊕ p, where g and k are the
Lie algebras of G and K, respectively. We consider the associated Cartan motion group
G0 = K n p acting on the Riemannian symmetric space G0/K ∼= p of Euclidean type as group
of isometries with respect to the Cartan-Killing form. We choose a maximal abelian subspace
a ⊆ p, let Σ be the restricted roots with multiplicities (mα)α∈Σ and consider Σ as a subset of
a by means of the Killing form. Let W be the associated Weyl group, so that K-invariant
functions on G0/K ∼= p can be associated with W -invariant functions on a. Choose a reduced
root system R ⊆ Σ with Weyl group W and define the multiplicity

kα := 1
4

∑
β∈Rα∩Σ

mβ, α ∈ R.

Let D be a K-invariant differential operator on p, i.e. D = p(∂) with a K-invariant polynomial
p ∈ C[p]K on p. Then the spherical functions of the Gelfand pair (G0,K) are the K-invariant
functions on p that are eigenfunctions of all K-invariant differential operators on p. The
set of all spherical functions consists of ψλ with λ ∈ aC such that p(∂)ψλ = p(λ)ψλ and
ψλ(0) = 1. Moreover, ψλ = ψµ if and only if λ ∈ W.µ. Since K-invariant functions on p
are in bijection with W -invariant functions on a, one can assign to each p ∈ C[p]K a unique
differential operator rad(p(∂)) on areg, called the radial part, such that

(p(∂)f)|aref = rad(p(∂))(f |areg).

It turns out that rad(p(∂)) is the restriction of a Dunkl operator associated with (R, k), i.e.

rad(p(∂)) = res(p|a(T (k))),

where res was defined in equation (1.3). In particular, the spherical functions are exactly the
Bessel functions associated with (R, k), namely for all λ ∈ aC and x ∈ a

ψλ(x) = Jk(λ, x).

In particular, the (W -invariant) generalized translations for these pairs (R, k) are positivity
preserving, since the product of two Bessel functions (1.13) can be expressed via the product
formula for spherical functions.
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chapter 2
Dunkl convolution and elliptic regularity

The analysis of linear partial differential operators has a wide range and in particular the
theory of elliptic operators has a long history, see for instance [FJ98, H0̈3]. Consider a
Riemannian manifold M and a linear partial differential operator D on M . If D is an elliptic
operator, such as the Laplace-Beltrami operator, it is well known that D is hypoelliptic, i.e.

singsupp(Du) = singsuppu

for any distribution u on M , where singsupp denotes the singular support. Furthermore, for
an elliptic operator D of order m, various regularity results about the action on Sobolev
spaces are known, such as

Du ∈ Hs
loc(M) if and only if u ∈ Hs+m

loc (M),

where Hs
loc(M) is the local Sobolev space of order s on M . The aim of this chapter is to

describe and prove such results for rational Dunkl operators. To point out why one might
expect that this is true, we explain the connection between the analysis of Dunkl operators
and radial analysis on Riemannian symmetric spaces of Euclidean type.
Recall the situation from Section 1.3. Consider a connected semisimple Lie group G with finite
center, a maximal compact subgroup K and the associated Cartan decomposition g = k⊕ p.
Then, the Cartan motion group G0 := K n p gives an associated Riemannian symmetric space
of Euclidean type

M = p ∼= G0/K.

Let a ⊆ p be a maximal abelian subspace and Σ ⊆ a the set of associated restricted roots
with Weyl group W . Choose a reduced root system R ⊆ Σ and define

kα := 1
4

∑
β∈Rα∩Σ

mβ, α ∈ R.

Then, the K-radial part of a K-invariant differential operator p(∂) on M , p ∈ C[p]K , is given
by the restriction of a Dunkl operator associated with (R, k) and p|a:

rad(p(∂)) = res(p|a(T (k))).

For instance, the Laplace-Beltrami operator ∆p on p is K-invariant and the radial part can
be written as

rad(∆p) = ∆a +
∑
α∈R+

kα
∂α
〈α, ·〉

= res(〈T (k), T (k)〉),

where ∆a is the usual Laplacian on a. From this observation, one might expect that elliptic
Dunkl operators q(T ), i.e. operators q(T ) such that the highest order term of q does not
vanish on a\ {0}, also satisfy some elliptic regularity theorems. One might expect this at
least in the W -invariant case, but now for arbitrary parameters k ≥ 0 and not only for those
related to a Riemannian symmetric space of Euclidean type. This seems to be plausible, as
ellipticity only depends on the highest order term, which is independent of k. For instance,
hypoellipticity of the Dunkl Laplacian was already proven in [MT04]. Important tools are the
Dunkl transform and generalized translations, where the latter define the Dunkl convolution
∗k. Basic ideas for the results and proofs in this chapter are in line with those of classical
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30 CHAPTER 2. DUNKL CONVOLUTION AND ELLIPTIC REGULARITY

elliptic regularity such as in [FJ98, H0̈3]. However, there are two problems that need to be
circumvented. First, the missing (general) Leibniz rule for Dunkl operators, and second by
the missing knowledge about the support of generalized translations. The most important
property of the Dunkl convolution we are able to prove here states

supp(u ∗k v) ⊆ Br(0) +W.supp v,

for any distributions u, v on a such that suppu is contained in the closed ball Br(0) of radius
r. This behavior of the convolution support is based on an important result of [DH19] on the
support of generalized translations of L2-functions.
The chapter is organized as follows. We start in Section 1 with the discussion on several
properties of the Dunkl convolution, which generalizes convolutions of K-invariant functions
on p ∼= G0/K. We study the Dunkl convolution of two distributions and obtain information
about the support of a convolution. This extends [ØS05], where one of the distributions was
required to have compact support. In Section 2, we introduce a generalized singular support
singsuppku of a distribution u, which is defined as the complement of the largest open subset
on which u coincides with a function fω with f ∈ C∞(a) and ω(x) = ∏

α∈R |〈α, x〉|
kα . This

singular support is consistent with the Dunkl setting, and we examine how that singular
support behaves under convolution. In Section 3 we give a proof for hypoellipticity of elliptic
Dunkl operators, based on the results of the previous sections. To be more precise, for an
elliptic Dunkl operator p(T ) we prove that

W.singsuppk(p(T )u) = W.singsuppk u,

for all distributions u defined on an open W -invariant subset of a. In Section 4 we prove the
following elliptic regularity theorem for an elliptic Dunkl operator p(T ) of degree m, stating

p(T )u ∈ Hs
k,loc(Ω) if and only if u ∈ Hs+m

k,loc (Ω),

where Hs
k,loc(Ω) are generalized local Sobolev spaces on some W -invariant open Ω ⊆ a, as

introduced in [Tri01, MT04], cf. Section 4.
Finally, as an application we will prove later in this thesis that the Dunkl convolution of Riesz
distributions associated with the root system of type A, introduced and studied in [Rö20],
exists and that these distributions form a group under Dunkl convolution. This is in line with
classical results on Riesz distributions for symmetric cones as in [FK94].

2.1 Dunkl convolution
The Dunkl convolution is already known, and in the literature convolutions of functions and
distributions have already been studied, see for instance [ØS05]. Later in this thesis, we will
need the convolution of two distributions with non-compact support. To our knowledge, this
has not been studied so far; except for the case where one of the distributions is known to have
compact support, see for instance [ØS05]. For an open Ω ⊆ a, we denote by D′(Ω) and E ′(Ω)
the spaces of distributions on a with support contained in Ω, and compact support contained
in Ω, respectively. Both spaces are equipped with the topology of pointwise convergence. As
usual, the evaluation of a distribution u ∈ D′(Ω) in ϕ ∈ C∞c (Ω) will be denoted by the pairing

〈u, ϕ〉 := u(ϕ).

As usual, we write
Br(x) := {y ∈ a | |x− y| ≤ r}

for the closed, and
B◦r (x) := {y ∈ a | |x− y| < r}
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2.1. DUNKL CONVOLUTION 31

for the open ball around x ∈ a.
To improve readability, we write

E = Ek, ω = ωk, p(T ) = p(T (k)), V = Vk and τ = τk

for the Dunkl kernel, weight function, Dunkl operators, Dunkl intertwiner and generalized
translation. With any locally integrable function f : Ω → C we associate a distribution
ukf ∈ D′(Ω) by the assignment

〈ukf , ϕ〉 := 〈f, ϕ〉ω =
∫

Ω
f(x)ϕ(x)ω(x) dx.

This embedding of locally integrable functions into distributions is compatible with the Dunkl
setting and differs from the usual embedding, which is the reason to use a superscript k in
the notation. In fact, if Ω is W -invariant, the Dunkl operators act continuously on D′(Ω) by

〈Tξu, ϕ〉 := −〈u, Tξϕ〉,

so that the skew-symmetry of Dunkl operators in L2(a, ω), cf. [Rö03a], leads to

Tξu
k
f = ukTξf .

for all f ∈ C1(Ω). Moreover, smooth functions m ∈ C∞(Ω) act continuously on D′(Ω) by
multiplication, namely

〈m · u, ϕ〉 := 〈u,mϕ〉, so that m · ukf = ukmf .

In order to study the Dunkl convolution of distributions, we introduce the following sets in
a× a. For r > 0 we define

DW
r :=

⋃
w∈W

{(x, y) ∈ a× a | |x+ wy| ≤ r} .

This set is invariant under the canonical action ofW×W
on a× a. In fact, it is a W ×W -orbit of a diagonal of
width r in a× a.
In rank one, with R = {±1} ⊆ R, we have W = {±id}
and DW

r in R2 is visualized on the right.

DW
R

R = {±1} ⊆ R

Definition 2.1. We call two distributions u, v ∈ D′(a) W -convolvable if for each r > 0 the
intersection supp(u⊗ v) ∩DW

r is bounded, i.e. compact.
Here u⊗ v is the usual tensor product of u and v. Note that supp(u⊗ v) = suppu× supp v,
so the distributions u, v are W -convolvable in the following cases:

(i) u or v has compact support.

(ii) the supports of u and v are contained in a W -invariant closed convex cone C which is
proper, i.e. C does not contain one-dimensional subspaces.

Remark 2.2. We note the following:

(i) u, v ∈ D′(a) are W -convolvable if and only if the restriction of + : a × a → a to
(W.suppu)× (W.supp v) is a proper map.
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32 CHAPTER 2. DUNKL CONVOLUTION AND ELLIPTIC REGULARITY

(ii) Even in rank one there exist distributions u and v with non-compact support which are
W -convolvable. As an example, for R = {±1} ⊆ R and δx = (ϕ 7→ ϕ(x)), consider the
distributions

u =
∑
n∈N

δ22n and v =
∑
n∈N

δ22n+1

with supports 22N and 22N+1, respectively. Then DW
r ∩ (22N × 22N+1) is always finite, so

that u and v are W -convolvable.

(iii) A non-zero W -invariant proper closed convex cone C does not have to exist. In fact,
such a cone exists if and only if R does not span a. Later in this chapter, the case
a = Rn, R = An−1 and C = [0,∞[n will be of high relevance.

Lemma 2.3. The Dunkl translation associated with (R, k) defines a continuous linear operator

τ : C∞(a)→ C∞(a× a), τϕ(x, y) = τxϕ(y) = τyϕ(x).

Moreover, for ϕ ∈ C∞c (a) with suppϕ ⊆ Br(0) we have

supp(τϕ) ⊆ DW
r .

Proof. Since τ can be expressed in terms of Dunkl’s intertwining operator V and the
operator S defined by Sf(x, y) = f(x+ y), see (1.11), i.e.

τ = (V ⊗ V ) ◦ S ◦ V −1,

the continuity is a consequence of Theorem 1.13. For (x, y) ∈ a× a we have (x, y) ∈ DW
r if

and only if y ∈W.Br(−x), so that supp(τϕ) ⊆ DW
r holds by Theorem 1.23, proven in [DH19].

�

Definition 2.4. Assume that u, v ∈ D′(a) are W -convolvable. Choose a cut-off function
ρ ∈ C∞(a× a) with support in an ε-neighborhood of suppu× supp v and ρ ≡ 1 in a smaller
neighborhood. Note that in this case (supp ρ) ∩DW

r is still compact for all r > 0. Thus, we
can define

〈u ∗k v, ϕ〉 := 〈u⊗ v, ρ · τϕ〉 , ϕ ∈ C∞c (a), (2.1)

which does not depend on the particular choice of ρ. It is called the Dunkl convolution of u
and v.

This definition was already given in [ØS05] under that assumption that u or v has compact
support.

Theorem 2.5. Consider u1, u2, u, v ∈ D′(a), λ ∈ C and ξ ∈ a. Then:

(i) If u, v are W -convolvable, then u ∗k v ∈ D′(a) and

u ∗k v = v ∗k u.

Moreover, Tξu and v are W -convolvable, and so are u and Tξv, with

Tξ(u ∗k v) = (Tξu) ∗k v = u ∗k (Tξv).

(ii) If both u1 and u2 are W -convolvable with v, then u1 + λu2 is W -convolvable with v and

(u1 + λu2) ∗k v = (u1 ∗k v) + λ(u2 ∗k v).
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(iii) u is W -convolvable with the Dirac distribution δ0 = (ϕ 7→ ϕ(0)) and

u ∗k δ0 = δ0 ∗k u = u.

Proof. Everything is straightforward to verify, we only have to justify the formula for the
action of the Dunkl operators on a convolution. For this we choose a more explicit ρ in (2.1),
namely

ρ(x, y) := ρu(x)ρv(y), x, y ∈ a

with W -invariant ρu and ρv. Moreover, we choose ρu such that it has support in an ε-
neighborhood of suppu and ρu ≡ 1 in a smaller neighborhood. We choose ρv in a similar
fashion. By Theorem 1.23, the choice of ρ and the Leibniz formula Tξ(χf) = (∂ξχ) ·f+χ ·(Tξf)
for W -invariant χ we have

〈Tξ(u ∗k v), ϕ〉 = −〈u⊗ v, ρ · τTξϕ〉 = −〈u⊗ v, ρ · T xξ (τϕ)〉
= 〈u⊗ v, (∂xξ ρ) · (τϕ)〉 − 〈u⊗ v, T xξ (ρ · τϕ)〉
= −〈u⊗ v, T xξ (ρ · τϕ)〉 = 〈(Tξu)⊗ v, ρ · τϕ〉 = 〈(Tξu) ∗k v, ϕ〉 .

�

Definition 2.6. Similarly to the Euclidean case k = 0, we define

(f ∗k g)(x) :=
∫
a
(τyf)(−x)g(x)ω(x) dx,

for f, g ∈ C∞(a), one with compact support, or both f, g ∈ S (a). Moreover, we define

(f ∗k u)(x) := 〈u(y), (τxf)(−y)〉 ,

for f ∈ C∞(a), u ∈ D′(a), one with compact support. Here u(y) means that u acts on
functions of the y-variable.

The following properties are straightforward or can be found in [ØS05].

Lemma 2.7. The Dunkl convolution satisfies:

(i) For f, g ∈ S (a) one has f ∗k g ∈ S (a) and (f ∗k g)∧k = f̂ k · ĝ k.

(ii) For f ∈ C∞c (a), the map g 7→ f ∗k g is continuous on C∞(a) and satisfies

f ∗k g = g ∗k f,
ukf ∗k ukg = ukf∗kg.

(iii) For f ∈ C∞(a) and u ∈ D′(a), one with compact support, we have that f ∗k u ∈ C∞(a)
and

ukf∗ku = ukf ∗k u.

Proposition 2.8. Let Ω1,Ω2 ⊆ a be open W -invariant sets such that Ω1 × Ω2 ∩ DW
r is

compact for all r > 0. Then the Dunkl convolution defines a sequentially continuous operator

∗k : D′(Ω1)×D′(Ω2)→ D′(a).

Proof. This is an immediate consequence of the continuity of the tensor product and
Definition 2.1 as ρ can be chosen uniformly for all (u, v) ∈ D′(Ω1)×D′(Ω2). �
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Corollary 2.9. The distributions ukf , f ∈ C∞c (a), form a dense subspace of D′(a).

Proof. Since E ′(a) is dense in D′(a), it suffices to verify its density in E ′(a). To do so,
choose a non-negative ψ ∈ C∞c (a) with suppψ ⊆ B1(0) and ‖ψ‖L1(a,ω) = 1. For ε > 0 we put

ψε(x) := 1
εγ
ψ

(
x

ε

)
, with γ := dim a + 1

2
∑
α∈R

kα.

Then suppψε ⊆ Bε(0) and ‖ψε‖L1(a,ω) = 1. Moreover, ukψε tends to δ0 pointwise since

| 〈δ0 − ukψε , ϕ〉 | ≤
∫
a
ψε(x)|ϕ(0)− ϕ(x)|ω(x) dx ≤ ‖ϕ− ϕ(0)‖∞,Bε(0) .

For u ∈ E ′(a) we know from Lemma 2.7 that

u ∗k ψε ∈ C∞(a).

Moreover, supp(τxψε) ⊆W.Bε(−x) and u ∈ E ′(a) lead to u ∗k ψε ∈ C∞c (a) by definition of the
convolution. Finally, Lemma 2.7 and Proposition 2.8 leads to

uku∗kψε = u ∗k ukψε −→ε→0
u ∗k δ0 = u.

�

2.2 (Singular-)support of Dunkl convolutions

As already mentioned, our embedding f 7→ ukf of locally integrable functions into D′(a) differs
from the usual embedding. Thus, we shall define a specific notion of singular support adapted
to this embedding, and hence adapted to the Dunkl setting.

Definition 2.10. For u ∈ D′(a) we define the k-singular support of u as the complement of
the largest open subset of a on which u is of the form ukf for some smooth f . To be more
precise,

singsuppku :=
⋂

Ω⊆a
open

{
a\Ω | u|Ω = ukf for some f ∈ C∞(Ω)

}
.

It is obvious that
singsuppku ⊆ suppu.

Moreover, the usual singular support singsuppu = singsupp0u differs from the k-singular
support only by singular elements, namely

singsuppku ∪ asing = singsupp u ∪ asing,

where asing := ⋃
α∈R α

⊥ is the singular set in a.

Lemma 2.11. Let u, v ∈ D′(a) be W -convolvable distributions. Then:

(i) suppukf = supp f for all locally integrable f : a→ C.

(ii) For distributions u, v ∈ D′(a) with supp u ⊆ Br(0), r > 0, we have

supp(u ∗k v) ⊆ Br(0) +W.supp v.
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(iii) If R is an integral root system, then

supp(u ∗k v) ⊆ co(W.suppu) + co(W.supp v) = co(W.suppu+W.supp v).

Proof. Part (i) is immediate by definition and the fact that the zero set of ω is a finite
union of the hyperplanes.

(ii) By part (i), Lemma 2.7, Proposition 2.8 and Corollary 2.9, it suffices to prove

supp(f ∗k g) ⊆ Br(0) +W.supp g (2.2)

for f, g ∈ C∞c (a) with supp f ⊆ Br(0). From Theorem 1.23 we obtain supp τxf ⊆
W.Br(−x), so (2.2) is a consequence of the explicit formula

(f ∗k g)(y) =
∫
a
(τyf)(−x)g(x)ω(x) dx.

(iii) For abbreviation, we write A := suppu and B := supp v. Consider ϕ ∈ C∞c (a) with
suppϕ ∩ (co(W.A) + co(W.B)) = ∅. By Theorem 1.23 we have τϕ(x, y) = 0 for all
(x, y) ∈ A×B and therefore 〈u ∗k v, ϕ〉 = 0.

�

Corollary 2.12. Assume that R is integral and C ⊆ a is a proper W -invariant closed convex
cone. Then the space of distributions with support contained in C is a unital, associative and
commutative algebra over C with the Dunkl convolution as multiplication.

Proof. By Lemma 2.11 (iii) and the conditions on C, we see that supp(u ∗k v) ⊆ C for all
u, v ∈ D′(a) with support contained in C. Theorem 2.5 shows that we have a commutative
algebra over C. Moreover, on the Schwartz space S (a), the Dunkl convolution is associative.
Hence, Lemma 2.7 and Corollary 2.9 show that ∗k is associative in general. �

Theorem 2.13. Let u, v ∈ D′(a) be W -convolvable distributions. Then:

(i) If singsuppku ⊆ Br(0),

singsuppk(u ∗k v) ⊆ Br(0) +W.singsuppkv.

(ii) If R is integral,

singsuppk(u ∗k v) ⊆ co(W.singsuppk u) + co(W.singsuppkv).

Proof. We consider two cases.

(a) First, we may assume that both u and v have compact support. Choose an arbitrary
ε > 0 and cutoff functions χu, χv ∈ C∞c (a) with

suppχu ⊆ singsuppku+Bε(0), χu ≡ 1 on singsuppku,
suppχv ⊆ singsuppkv +Bε(0), χv ≡ 1 on singsuppkv.

Hence, we conclude that

supp(χuu) ⊆ singsuppku+Bε(0), (1− χu)u = ukf , f ∈ C∞c (a),
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36 CHAPTER 2. DUNKL CONVOLUTION AND ELLIPTIC REGULARITY

supp(χvv) ⊆ singsuppkv +Bε(0), (1− χv)v = ukg , g ∈ C∞c (a).

According to Lemma 2.7 we have

((1− χv)v) ∗k (χuu) = ukg ∗k (χuu) = ukg∗k(χuu),

(χvv) ∗k ((1− χu)u) = (χvv) ∗k ukf = ukf∗k(χvv),

((1− χv)v) ∗k ((1− χu)u) = ukf ∗ ukg = ukf∗kg,

and therefore we see that

singsuppk(u ∗k v) = singsuppk((χuu) ∗k (χvv))
⊆ supp((χuu) ∗k (χvv)).

Finally, we distinguish between the two situations in the theorem:

(i) In this case, we can conclude that

supp(χuu) ⊆ singsuppku+Bε(0) ⊆ Br+ε(0)

and therefore

singsuppk(u ∗k v) ⊆ Br+ε(0) +W.(singsuppkv +Bε(0))

by Theorem 2.11 (ii). Since ε > 0 was arbitrary, the claim follows.
(ii) In this case, we conclude from Theorem 2.11 (iii) that

singsuppk(u ∗k v) ⊆ co(W.Aε) + co(W.Bε)

with

Aε := singsuppku+Bε(0),
Bε := singsuppkv +Bε(0).

Since ε > 0 was arbitrary, the claim follows.

(b) For arbitrary u, v ∈ D(a) and R > 0, choose a cutoff function χ ∈ C∞c (a) with χ ≡ 1 on
B2R(0). Then, from Theorem 2.11 (ii) we obtain

u ∗k v|BR(0) = (χu) ∗k (χv)|BR(0).

Application of step (a) above to the distributions χu, χv finishes the proof, because
R > 0 was chosen arbitrarily.

�

2.3 Hypoellipticity of elliptic Dunkl operators

Let Ω ⊆ a be open. In contrast to the usual meaning, we say for u ∈ D′(Ω) and a set M of
locally integrable functions that

u ∈M iff u = ukf for some f ∈M.
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This means that for all ϕ ∈ C∞c (Ω) we have

〈u, ϕ〉 =
∫

Ω
ϕ(x)f(x)ω(x) dx for some f ∈M.

It is important to keep this in mind. In particular, u ∈ C∞(a) means that u is given (in
the usual sense) by fω with some f ∈ C∞(a). Hence, u ∈ C∞(a) does not mean that u is
a smooth function in the usual sense, since ω is in general not smooth along asing. But, as
already mentioned, our notion is adapted to the Dunkl setting with the advantage that things
are getting similar to the usual theory of elliptic differential operators.
Recall that the Dunkl transform of a tempered distribution u ∈ S ′(a) is defined by

〈ûk, f〉 := 〈Fku, f〉 := 〈u, f̂ k〉 , f ∈ S (a),

so that for f ∈ S (a) we have
Fkukf = ukFkf .

In this section we are interested in the study of Dunkl operators that are elliptic in the
following sense.

Definition 2.14. A Dunkl operator p(T ) is called elliptic of degree m ∈ N0 if p = ∑m
n=0 pn

with pn ∈ Pn and pm(x) 6= 0 for all x ∈ a\ {0}.

For k = 0, an elliptic Dunkl operator is nothing but an elliptic differential operator with
constant coefficients. For instance, the Dunkl Laplacian

∆k := 〈T, T 〉 = ∆a +
∑
α∈R

kα

(
∂α
〈α, ·〉

− |α|
2

2
1− sα
〈α, ·〉2

)
,

where ∆a is the Laplacian on a, is an elliptic Dunkl operator of degree 2.
As usual, we put

〈x〉 :=
√

1 + |x|2

as function on a.

Proposition 2.15. Consider f ∈ L1(a, ω) such that x 7→ 〈x〉` f(x) ∈ L1(a, ω) for some fixed
` ∈ N0. Then, f̂ k ∈ C`(a).

Proof. For ` = 0, this is just the Riemann-Lebesgue Lemma for the Dunkl transform, cf.
Theorem 1.20. Otherwise, it is a consequence of standard theorems on differentiable parameter
integrals and the estimate

|∂βξ Ek(−ix, ξ)| ≤ |x|
|β| ≤ 〈x〉` , for all β ∈ Nn0 , |β| ≤ `,

where the first inequality holds by Theorem 1.16. �

Let a ∈ C∞(a) be a smooth function and m ∈ R. Assume that for all β ∈ Nn0 there exists
a constant Cβ ≥ 0 with

|∂βa(x)| ≤ Cβ 〈x〉m−|β| . (2.3)

Then it is well known that the (distributional) Fourier transform of a has singular support
contained in {0}, cf. [H0̈3, Proof of Theorem 7.1.22]. The following lemma is a generalization
of this to the case of arbitrary k ≥ 0.
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Lemma 2.16. Assume that for a ∈ C∞(a) there exists some m ∈ R such that for all β ∈ Nn0
there exists a constant Cβ ≥ 0 with

|T βa(x)| ≤ Cβ 〈x〉m−|β| (2.4)

for all x ∈ a. Then we have
singsuppk(Fkuka) ⊆ {0} .

Proof. Note that uka is tempered, as a is at most of polynomial growth. For each ` ∈ N0
there exists N ∈ N such that for all β ∈ Nn0 , |β| ≥ N

x 7→ 〈x〉` · T βa(x) ∈ L1(a, ωk).

With Proposition 2.15 we thus have

Fk(T βa) ∈ C`(a),

so that as distributions
(ix)βFkuka = Fk(T βuka) ∈ C`(a).

Therefore, we conclude
(Fkuka)|a\{0} ∈ C`(a\{0}).

But ` ∈ N0 was arbitrary, so singsuppk(Fkuka) ⊆ {0}. �

Assume that a ∈ C∞(a) satisfies (2.3) and |a(x)| ≥ C |x|m for large x and some constant C.
Then the reciprocal 1

a satisfies (2.3) with −m instead of m and large x. This is an immediate
consequence of the quotient rule for partial derivatives. For Dunkl operators there is no
general Leibniz rule, thus no quotient rule. To avoid this, we will use the subsequent lemma.

Proposition 2.17. Let f = q
p ∈ C

∞(Ω) be a rational function on some W -invariant open
Ω ⊆ a and p, q ∈ P. Then, Tξ(k)f is rational on Ω for all ξ ∈ a. To be more precise, there
exist finitely many polynomials q̃i ∈ P of degree at most deg p+ deg q − 1 and wi ∈W , such
that for all x ∈ Ω

Tξf(x) =
∑
i

q̃i(x)
p(x)p(wix) .

Proof. Rewriting the difference part of the Dunkl operator, we observe the following

Tξf(x) = ∂ξq(x) · p(x)− q(x) · ∂ξp(x)
p(x)2

+
∑
α∈R+

kα 〈α, ξ〉
p(x)p(sαx)

q(x)p(sαx)− q(sαx)p(x)
〈α, x〉

.

But the polynomial q(x)p(sαx)− q(sαx)p(x) vanishes on α⊥, hence it is divisible by 〈α, x〉
and the claim holds. �

Lemma 2.18. Let p ∈ P be a polynomial of degree m ∈ N0. Then:

(i) |T βp(x)| ≤ Cβ 〈x〉m−|β| for all β ∈ Nn0 and some constant Cβ ≥ 0.

(ii) If p = ∑m
j=0 pj with pj homogeneous of degree j and pm(x) 6= 0 for all x ∈ a\{0}, then

there exists some R > 0 and q ∈ C∞(a) with pq ≡ 1 on a\BR(0). Moreover,

|T βq(x)| ≤ Cβ 〈x〉−m−|β| (2.5)

for all β ∈ Nn0 and some constant Cβ.
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Proof.

(i) This is obvious, since Tξ is homogeneous of degree −1 and

|xα| ≤ |x||α| ≤ 〈x〉|β|

for all α, β ∈ N0 with |α| ≤ |β|.

(ii) Since pm(x) is homogeneous of degree m, there exists some c > 0 with |pm(x)| ≥ c|x|m.
Therefore,

|p(x)| > c
2 |x|

m (2.6)

for all x ∈ a\BR(0) and some large R > 0. Then, choose q ∈ C∞(a) with q = 1
p

on a\BR(0). By iteration of Proposition 2.17, we can find for β ∈ Nn0 finitely many
polynomials q̃i ∈ P of degree at most

deg q̃i = (2|β| − 1) deg p− |β| = (2|β| − 1)m− |β|

and wi,j ∈W, j = 1, . . . , 2|β| satisfying

T βq(x) =
∑
i

q̃i(x)
p(wi,1x)p(wi,2x) · · · p(wi,2|β|x) ,

for all x ∈ a\BR(0). By part (i) and estimate (2.6), there exists C ′β ≥ 0 with

|T βq(x)| ≤ C ′β
〈x〉(2

|β|−1)m−|β|

〈x〉2|β|·m
= C ′β 〈x〉

−m−|β| ,

for all x ∈ a\BR(0). Finally, as q is continuous, estimate (2.5) follows.

�

The subsequent proof of the theorem on hypoellipticity follows basically classical ideas as
in [H0̈3, Theorem 7.1.22]. Recall that for any distribution u ∈ D′(a) we have δ0 ∗k u = u.

Theorem 2.19 (Hypoellipticity). Let p(T ) be an elliptic Dunkl operator and Ω ⊆ a a
W -invariant open subset. Then for all u ∈ D′(Ω)

W.singsuppku = W.singsuppk(p(T )u).

Proof. Let m be the degree of p. By Lemma 2.18, we choose q ∈ C∞(a) with p(−i·)q ≡ 1
on a\BR(0) for some large R > 0 and such that for all x ∈ a and β ∈ Nn0

|T βq(x)| ≤ Cβ 〈x〉−m−|β|

with some constant Cβ ≥ 0. Thus, Lemma 2.16 yields a tempered distribution

E := 1
ck
F−1
k ukq ∈ S ′(a)

with k-singular support contained in {0}, where ck is the Macdonald-Metha constant from
(1.5). We put

R := δ0 − p(T )E ∈ S ′(a).
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The Dunkl transform of R is

FkR = 1
ck
uk1 −Fk(p(T )E) = 1

ck
(uk1 − ukp(−i·)q) = ukf

with f ∈ C∞c (a). Therefore, R = ukF−1
k
f
and singsuppkR = ∅.

For x0 ∈ Ω\W.singsuppk(p(T )u) choose a cutoff function χ ∈ C∞c (a) such that χ ≡ 1 in
a neighborhood of W.x0. We consider χu as a compactly supported distribution on a by
extending it by 0 outside of Ω. Then

χu = δ0 ∗k (χu) = (p(T )E +R) ∗k (χu) = E ∗k (p(T )(χu)) +R ∗k (χu). (2.7)

Since singsuppkR = ∅ and singsuppkE ⊆ {0}, we can use Theorem 2.13 to obtain

singsuppk(χu) = singsuppk(E ∗k (p(T )(χu))) ⊆W.singsuppk(p(T )(χu)).

But χ ≡ 1 in a neighborhood of W.x0, so that p(T )χu = p(T )u and χu = u near W.x0 and
therefore x0 /∈ singsuppku. From this we have

singsuppku ⊆W.singsuppk(p(T )u).

Finally, it is obvious that singsuppk(p(T )u) ⊆W.singsuppku, which finishes the proof. �

2.4 Elliptic regularity of Dunkl operators

First, we give a review of Dunkl-type Sobolev spaces and their properties as studied in [MT04].

Definition 2.20. For s ∈ R the Dunkl-type Sobolev space of order s is defined by

Hs
k(a) :=

{
u ∈ S ′(a) | 〈x〉s ûk ∈ L2(a, ω)

}
.

Hence, u ∈ Hs
k(a) if and only if ûk ∈ 〈x〉−s L2(a, ω) and we identify the distribution ûk with

the function f ∈ 〈x〉−s L2(a, ω) such that ûk = ukf . Under this identification, the inner product
on Hs

k(a) is defined by

〈u, v〉Hs
k

:=
∫
a
〈x〉2s ûk(x)v̂k(x)ω(x) dx.

For our purpose, we need the following results from [MT04].

Theorem 2.21. The Sobolev spaces Hs
k(a) are Hilbert spaces, satisfying:

(i) Let s ∈ N0. Then up to identification of ukf with f ,

Hs
k(a) =

{
f ∈ L2(a, ω) | Tαf ∈ L2(a, ω) for all α ∈ Nn0 , |α| ≤ s

}
.

Moreover, an equivalent norm on Hs
k(a) is induced by the inner product

(f, g) 7→
∑
|α|≤s

∫
a
(Tαf)(x)(Tαg)(x)ω(x) dx.

(ii) Dunkl operators are continuous linear operators Tξ : Hs
k(a)→ Hs−1

k (a).

(iii) For ψ ∈ C∞c (a), u 7→ ψu is a continuous map from Hs
k(a) into itself.

(iv) E ′(a) ⊆ ⋃s∈RHs
k(a).
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(v) For p ∈ N and s ∈ R with s > p + n
2 + 1

2
∑
α∈R kα, the identification ukf 7→ f yields a

continuous embedding
Hs
k(a) ↪→ Cp(a).

However, to formulate the theorem on elliptic regularity, we need local Sobolev spaces in
the subsequent sense.
Definition 2.22. For a W -invariant open set Ω ⊆ a and s ∈ R we define

Hs
k,loc(Ω) :=

{
u ∈ D′(Ω) | ψu ∈ Hs

k(a) for all ψ ∈ C∞c (a)
}
.

Note that Hs
k(a) ⊆ Ht

k(a) for t ≤ s. Thus Hs
k,loc(Ω) ⊆ Ht

k,loc(Ω) and in particular

H0
k(a) = L2(a, ω) and H0

k,loc(Ω) = L2
loc(Ω, ω).

From [ØS05, Equation (2.13)] we have the following result.
Proposition 2.23. Let v ∈ S ′(a) and u ∈ E ′(a) be a tempered and a compactly supported
distribution, respectively. Then ûk ∈ S (a), u ∗k v ∈ S ′(a) and

(u ∗k v)∧k = ûk · v̂k,

where ûk again is identified with f ∈ S (a) such that ûk = ukf .
As an immediate corollary to this proposition, we obtain the following.

Corollary 2.24. Suppose that a ∈ C∞(a) satisfies estimate (2.4) for some m ∈ R. Then for
all v ∈ Hs

k(a) ∩ E ′(a) we have
v ∗k (Fkuka) ∈ Hs−m

k (a).
Theorem 2.25 (Elliptic regularity). Let p(T ) be an elliptic Dunkl operator of degree m. Then
for each W -invariant open Ω ⊆ a and u ∈ D′(Ω)

p(T )u ∈ Hs
k,loc(Ω) if and only if u ∈ Hs+m

k,loc (Ω).

Proof. If u ∈ Hs+m
k,loc (Ω) and ψ ∈ C∞c (Ω), choose ϕ ∈ C∞c (Ω) with ϕ|W.suppψ ≡ 1, then

ψp(T )u = ψp(T )(ϕu) ∈ Hs
k(a), as p(T )(ϕu) ∈ Hs

k(a). So we have p(T )u ∈ Hs
k,loc(Ω).

It remains to prove that p(T )u ∈ Hs
k,loc(Ω) implies u ∈ Hs+m

k,loc (Ω). Let ψ ∈ C∞c (Ω) with
suppψ ⊆ Br(0) and choose a W -invariant χ ∈ C∞c (a) such that χ ≡ 1 on a neighborhood of
Br(0). Recall the distributions E,R from the proof of Theorem 2.19. Consider ψu and χu as
elements of D′(a). We obtain similarly to Theorem 2.19, more precisely from (2.7)

ψu = ψ(χu) = ψ · (E ∗k (p(T )(χu))) + ψ · (R ∗k (χu)). (2.8)

We discuss the terms on the right-hand side separately.
(i) As in the proof of Theorem 2.19, we have R∗k(χu) ∈ C∞(a). Thus, ψ(R∗k(χu)) ∈ C∞c (a)

and in particular
ψ · (R ∗k (χu)) ∈ Ht

k(a)
for all t ∈ R.

(ii) We claim that
p(T )(χu) = χ · p(T )u+ v, (2.9)

for some v ∈ E ′(a) with v ≡ 0 in a neighborhood of Br(0). To see this, consider any
ξ ∈ a. The W -invariance of χ leads to

Tξ(χu) = χ · (Tξu) + (∂ξχ) · u.

Since χ ≡ 1 in a neighborhood of Br(0), the second summand (and all its images under
Dunkl operators) vanishes on this neighborhood. Thus, if we iterate this argument, we
obtain the stated equation (2.9).
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(iii) Decomposing p(T )(χu) according to (2.9), we see that

E ∗k (p(T )(χu)) = E ∗k (χ · p(T )u) + E ∗k v.

By Theorem 2.13 and singsuppkE ⊆ {0} we observe

singsuppk(E ∗k v) ⊆W.singsuppkv ⊆W.supp v ⊆ a\Br(0).

Therefore, by supp ψ ⊆ Br(0), we conclude ψ(E ∗k v) ∈ C∞c (a) and thus

ψ(E ∗k v) ∈ Ht
k(a)

for all t ∈ R. By assumption, χp(T )u ∈ Hs
k(a) ∩ E ′(a), so with Lemma 2.24 we have

ψ(E ∗k (χp(T )u)) + ψ(E ∗k v) ∈ Hs+m
k (a).

Putting things from (i) and (iii) together, we obtain from (2.8) that

ψu ∈ Hs+m
k (a)

for all ψ ∈ C∞c (Ω), i.e. u ∈ Hs+m
k,loc (Ω). �

From Theorem 2.25, we obtain the following corollary.

Corollary 2.26. Consider some W -invariant open Ω ⊆ a, u ∈ D′(Ω) and an elliptic Dunkl
operator p(T ). Then we have u ∈ C∞(Ω) in the following cases

(i) p(T )mu ∈ L2
loc(Ω, ω) for all m ∈ N0.

(ii) p(T )mu ∈ C(Ω) for all m ∈ N0.

(iii) u is an eigendistribution of p(T ).

Proof.

(i) We recall that H0
k,loc(Ω) = L2

loc(Ω, ω). Furthermore, we note that p(T )m is elliptic of
degree m · deg p. Therefore, by Theorem 2.19, we have that u ∈ Hm·deg p

k,loc (Ω) for all
m ∈ N, i.e.

u ∈
⋂
s∈R

Hs
k,loc(Ω) = C∞(Ω).

(ii) This is obvious, since C(Ω) ⊆ L2
loc(Ω, ω).

(iii) Assume that p(T )u = λu for λ ∈ C. But p̃(T ) := p(T )− λ is an elliptic Dunkl operator
satisfying p̃(T )u = 0. Thus, by Theorem 2.19 we conclude u ∈ C∞(Ω).

�
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chapter 3
Multitemporal wave equation

The aim of this chapter is to study the multitemporal wave equation in the rational Dunkl
setting in line with the results of the papers [PS93, Hel98, HS99, Hel08, STS76]. We prove the
uniqueness of smooth solutions if the initial data is smooth. The solution of the multitemporal
wave equation will be in close relation to the (W -invariant) generalized translation operator.
In [PS93, Hel98, HS99] the authors consider the multitemporal wave equation on a Riemannian
symmetric space X = G/K of non-compact type. Let G = NAK be the associated Iwasawa
decomposition, denote by a the Lie algebra of A inside the Lie algebra g of G. The associated
Weyl group W = W (g, a) acts naturally on a. Furthermore, let D(X) be the algebra of
G-invariant differential operators on X and denote by Γ : D(X)→ C[a]W the Harish-Chandra
isomorphism of D(X) onto the W -invariant polynomials on a. For fixed f1, . . . , f#W one
considers the following Cauchy problem for u ∈ C∞(X × a):

{
Du = Γ(D)(∂)u, for all D ∈ D(X),

(pi(∂)u)(x, 0) = fi(x), for all 1 ≤ i ≤ #W,

where p1, . . . , p#W is a basis for the space of W -harmonic polynomials on a. The equation is
called the multitemporal wave equation.
Restricting to K-biinvariant functions, the invariant differential operators D ∈ D(X) can be
replaced by their radial parts. As in the case of Riemannian symmetric spaces of Euclidean
type, these radial parts can be expressed in terms of so-called trigonometric Dunkl operators or
Cherednik operators. These operators are introduced in the next chapter. However, some tools
are missing in the trigonometric theory, so we consider a flat analogue of the multitemporal
wave equation and replace the left-hand side of the equation by W -invariant (rational) Dunkl
operators.
The organization of the chapter is the following. In Section 1 we prove the existence of
solutions of the multitemporal wave equation in the Dunkl setting and prove the uniqueness
of solutions which are compactly supported in the space variable. Then, in Section 2, we
deal with the energy inner product, which will be a helpful tool to verify the uniqueness of
smooth solutions in Section 3. We further point out the connection between solutions of the
multitemporal wave equation and the generalized translation operator.
Let R be a root system inside a Euclidean space (a, 〈·, ·〉) with a non-negative multiplicity
function k ≥ 0, associated reflection group W , and a choice of positive roots R+.
To simplify the notation, we suppress the dependence of the parameter k as in the previous
chapter.

3.1 Existence of solutions

Let P = C[a] be the space of polynomial functions on a, Pn the subspace of homogeneous
polynomials of degree n and put PW+ := ⊕∞

n=1 PWn for the subspace ofW -invariant polynomials
without constant term. A polynomial p ∈ P is called W -harmonic if q(∂)p = 0 for all q ∈ PW+ .
We denote by H the space of all W -harmonics. It is well known that (see for instance [GV88,
§5.5, p.215])

P = P · PW+ ⊕H and d := dimCH = #W.
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44 CHAPTER 3. MULTITEMPORAL WAVE EQUATION

Let 1 ≡ p1, p2, . . . , pd be a basis of H consisting of homogeneous elements with real coefficients.
For fixed functions f1, . . . fd ∈ C∞(a) we study the multitemporal wave equation{

p(T x)u = p(∂t)u, for all p ∈ PW ,
(pi(∂t)u)(x, 0) = fi(x), i = 1, . . . , d.

(MW)

We are searching for a (unique) solution u(x, t), u ∈ C∞(a× a). Here the superscript x and
subscript t denote the relevant variables and p(T ) = p(T (k)) is the Dunkl operator associated
with the polynomial p and (R, k).

Example 3.1. If a = R and R = {±1}, then the W -invariant polynomials PW are the even
polynomials and H = {µx+ λ | λ, µ ∈ C}. Hence, the multitemporal wave equation reduces
in the case k = 0 to the usual wave equation in R with the following initial data

∂xxu = ∂ttu,

u(x, 0) = f(x),
(∂tu)(x, 0) = g(x).

This system has for any initial data f, g ∈ C2(R) the unique solution u(x, t) given by
d’Alembert’s formula

u(x, t) = f(x− t) + f(x+ t)
2 + 1

2

∫ x+t

x−t
g(s) ds.

The situation for arbitrary k ≥ 0 in rank one coincides with the situation of the Dunkl type
wave equation in [ØS05].

Later, we make use of the following classical results which can be found in [GV88, §5.5]
and [Hel84, Chapter III]. A key object in the following is the fundamental skew-polynomial
associated with the root system R, namely

π(x) :=
∏
α∈R+

〈α, x〉 .

By [Hel84, Theorem 3.6] the space H of W -harmonics consists of the derivatives of π

H = {p(∂)π | p ∈ P} .

Lemma 3.2. Let R = C(a) be the space of rational functions on a, equipped with the
W -invariant, RW-valued non-degenerate RW-bilinear pairing

(f, g)W :=
∑
w∈W

wf · wg.

Consider for j = 1, . . . , d the functions qj ∈ R that are uniquely defined by the relations
(qj , pi)W = δij. Then:

(i) P = ⊕d
i=1 PW pi.

(ii) πqj ∈ PR := P ∩ R[a].

(iii) 1
πP =

{
f ∈ R | (f, g)W ∈ PW for all g ∈ P

}
.

Moreover, qj is homogeneous of degree −deg pj.

Proposition 3.3. The system (MW) has at most one smooth solution u, such that u(·, t) is
compactly supported for all t in a neighborhood of 0.
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3.1. EXISTENCE OF SOLUTIONS 45

Proof. Without loss of generality we may assume that f1 = . . . = fd = 0. Let u be a
solution of (MW) such that u(·, t) is compactly supported for all t ∈ U , where U is an open
neighborhood of 0. Put Fk for the Dunkl transform that acts on functions of the x-variable.
From standard properties of the Dunkl transform (Theorem 1.20) we conclude for p ∈ PW
and t ∈ U the following

p(∂t)Fk(u(·, t)) = Fk(p(∂t)u(·, t)) = Fk(p(T x)u(·, t)) = p(i·)Fk(u(·, t)), (3.1)

where the first equality is justified by standard theorems on differentiable parameter integrals
and the assumptions on the support of u. By Lemma 3.2, there exist for any q ∈ P unique
polynomials q′j ∈ PW such that q = ∑d

j=1 q
′
jpj . Therefore, equation (3.1) yields

q(∂t)Fk(u(·, t))(ξ) =
d∑
j=1

q′j(iξ)Fk(pj(∂t)u(·, t))(ξ).

Evaluation at t = 0 gives q(∂t)Fk(u(·, 0))(ξ) = 0. Hence, we can see that ũ(ξ, t) = Fk(u(·, t))(ξ)
solves the following initial value problem on a× U{

p(∂t)ũ(ξ, t) = p(iξ)ũ(ξ, t), p ∈ PW ,
(q(∂t)ũ)(ξ, 0) = 0, q ∈ P.

.

From this differential equation it follows that

ũ(ξ, t) =
∑
w∈W

cw(ξ)ei〈wξ,t〉

with some smooth coefficients cw, see for instance [Hel84, Chapter 3, Theorem 3.13]. With
suitable choices of q ∈ P, we use the boundary condition to conclude cw = 0 for all w ∈W ,
i.e. ũ ≡ 0 and so u ≡ 0. �

Definition 3.4. For t ∈ a and j = 1, . . . , d we consider the functions

s
(j)
t (λ) :=

∑
w∈W

qj(iwλ)ei〈wλ,t〉.

By Lemma 3.2 we have hj := πqj ∈ P. Together with π(wλ) = (−1)`(w)π(λ), where `(w)
denotes the length of w, we obtain for λ ∈ aC

s
(j)
t (λ) = 1

π(iλ)
∑
w∈W

(−1)`(w)hj(iwλ)ei〈wλ,t〉.

The sum on the right hand side is holomorphic and skew-symmetric in λ, hence divisible by
π(iλ). Therefore, s(j)

t is an entire function satisfying

|s(j)
t (λ)| ≤ C(1 + |λ|)Ne|t|·|Imλ|

for certain constants C > 0 and N ∈ N0. By the Paley-Wiener theorem for the Dunkl
transform from Theorem 1.21, there exists a tempered distribution S(j)

t ∈ S ′(a) with compact
support contained in B|t|(0) such that for all ϕ ∈ S (a)

〈FkS
(j)
t , ϕ〉 =

∫
a
ϕ(−x)s(j)

t (x)ω(x) dx.
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46 CHAPTER 3. MULTITEMPORAL WAVE EQUATION

Recall from Lemma 2.7 that f ∗k u ∈ C∞(a) for f ∈ C∞(a) and u ∈ E ′(a). Moreover,
Theorem 2.11 gives that

supp(f ∗k u) ⊆ Br(0) +W.supp f,

whenever suppu ⊆ Br(0).

Theorem 3.5. Let f1, . . . , fd ∈ C∞(a). Then

u(x, t) :=
d∑
j=1

(fj ∗k S(j)
t )(x),

defines a smooth solution of (MW) satisfying the finite speed propagation property

supp(u(·, t)) ⊆
d⋃
j=1

(B|t|(0) +W.supp fj)

In particular, if f1, . . . , fd are compactly supported, then u is the unique solution such that
u(·, t) is compactly supported for all t in a neighborhood of 0.

Proof. We first prove that t 7→ S
(j)
t is smooth in the sense that for all ϕ ∈ C∞c (a) the map

t 7→ 〈S(j)
t , ϕ〉 is smooth. In fact, for arbitrary ϕ ∈ C∞c (a)

〈S(j)
t , ϕ〉 = 〈FkS(j)

t ,Fkϕ〉 = 1
ck

∫
a
s

(j)
t (λ) · (Fkϕ)(−λ)ω(λ) dλ.

Since for all α ∈ Nn0 and any compact K ⊆ a we have

|∂αt s
(j)
t (λ)| ≤ p̃(λ)

for some polynomial p̃, standard theorems on parameter integrals and Fkϕ ∈ S (a) show that
t 7→ 〈S(j)

t , ϕ〉 is smooth. Moreover, for p ∈ PW we observe

〈p(∂t)S(j)
t , ϕ〉 = 1

ck

∫
a
p(iλ)s(j)

t (λ) · (Fkϕ)(−λ)ω(λ) dλ

= 1
ck

∫
a
s

(j)
t (λ) · (Fkp(−T )ϕ)(−λ)ω(λ) dλ

= 〈FkS(j)
t ,Fk(p(−T )ϕ)〉 = 〈S(j)

t , p(−T )ϕ〉 = 〈p(T )S(j)
t , ϕ〉 .

From the properties of the Dunkl convolution in Theorem 2.5 we obtain p(T x)u = p(∂t)u. It
remains to prove that u satisfies the correct boundary conditions. To this end, we observe for
` = 1, . . . , d that

〈p`(∂t)S(j)
t , ϕ〉 = 1

ck

∫
a

∑
w∈W

qj(iwλ)p`(iwλ)ei〈wλ,t〉(Fkϕ)(−λ)ω(λ) dλ.

Evaluation at t = 0 and the definition of the qj show that

〈p`(∂t)S(j)
t , ϕ〉

∣∣
t=0 = δ`j

ck

∫
a
Fkϕ(−λ)ω(λ) dλ = δkj · ϕ(0),

i.e. p`(∂t)S(j)
t

∣∣
t=0 = δkj · δ0. Hence, (p`(∂t)u)(x, 0) = f`(x) holds by Theorem 2.5 and the

definition of u. �
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3.2. THE ENERGY INNER PRODUCT 47

3.2 The energy inner product

Definition 3.6. To p ∈ P we associate the d× d matrix Lp with entries in PW defined via
Lemma 3.2 by

ppj =
d∑
i=1

(Lp)ijpi, i.e. (Lp)ij = (qi, ppj)W .

Moreover, let Lp be the d× d matrix with entries in the algebra of Dunkl operators defined
by (Lp)ij = (Lp)ij(T ), i.e. the Dunkl operator associated with (Lp)ij .

Lemma 3.7. The system (MW) is equivalent to the system{
(Lxp)Tµ = p(∂t)µ, for all p ∈ P
µ(x, 0) = F (x) := (f1(x), . . . , fd(x))

(VMW)

for F ∈ C∞(a,Cn) and solution µ ∈ C∞(a×a,Cd). Here the superscript T means transposition.
More precisely, if u is a solution of (MW), then µ = (p1(∂t)u, . . . , pd(∂t)u)T is a solution of
(VMW). Conversely, if µ is a solution of (VMW), then u = µ1 is a solution of (MW).

Proof. First, consider a solution µ of (VMW) and put u = µ1. By p1 ≡ 1 we obtain
(Lp`)i1 = δi`, i.e. (Lp`)i1 = δi` · id. Thus, we see that

p`(∂t)u(x, 0) = ((p`(∂t)µ)(x, 0))1 = (((Lxp`)
Tµ)(x, 0))1 =

n∑
i=1

((Lxp`)i1µi)(x, 0) = f`(x).

Moreover, from Lemma 3.2 for p ∈ PW we have Lp = p1d, i.e. Lp = p(T )1d, so that

p(T x)u = ((p(T x)1d)µ)1 = ((Lxp)Tµ)1 = (p(∂t)µ)1 = p(∂t)u,

which means that u is a solution of (MW).
Conversely, let u be a solution of (MW) and put µ = (p1(∂t)u, . . . , pd(∂t)u). Then, µ(x, 0) =
F (x) and finally

(p(∂t)µ)j = (ppj)(∂t)u =
d∑
i=1

((Lp)ijpi)(∂t)u =
d∑
i=1

(Lxp)ij(pi(∂t)u) = ((Lxp)Tµ)j ,

i.e. µ is a solution of (VMW). �

Definition 3.8. Define A to be the d× d matrix with entries

Aij = (πqj , (πqi)(−·))W = (−1)deg π+deg piπ2(qj , qi)W , (3.2)

so that Aij ∈ PW by Lemma 3.2. Define A to be the associated matrix of Dunkl operators,
i.e. Aij = Aij(T ). For fixed t ∈ a and u, v ∈ C∞(a × a), where either u(·, t) or v(·, t) has
compact support, we consider the bilinear form

E(u, v; t) :=
∫
a
(µTAxν)(x, t)ω(x) dx

with µ = (p1(∂t)u, . . . , pd(∂t)u)T and ν = (p1(∂t)v, . . . , pd(∂t)v)T . Equation (3.2) and the
skew-symmetry of Dunkl operators show that the adjoint of Aij in L2(a, ω) is Aji. In particular,
E is a symmetric bilinear form. We call E(·, ·; t) the Energy inner product at time t .
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48 CHAPTER 3. MULTITEMPORAL WAVE EQUATION

Example 3.9. Consider the rank one example, i.e. a = R, R = {±1} and W = {±id}.
Choose p1(x) = 1 and p2(x) = x as homogeneous basis for the W -harmonic polynomials.
Then q1(x) = 1

2 and q2(x) = 1
2x leads to

A = 1
2

(
−x2 0

0 1

)
and A = 1

2

(
−∆k 0

0 1

)
,

where ∆2
k = T1(k)2 is the Dunkl-Laplacian. Consider u ∈ C∞(R × R) such that u(·, t) has

compact support for all t ∈ a. Then

E(u, u; t) = 1
2

∫
R

(
∂tu(x, t) · ∂tu(x, t) + u(x, t)∆x

ku(x, t)
)
ωk(x) dx

= 1
2

∫
R

(
∂tu(x, t) · ∂tu(x, t)− u(x, t)∆x

ku(x, t)
)
ωk(x) dx

= 1
2

∫
R

(
|T1(k)xu(x, t)|2 + |∂tu(x, t)|2

)
ωk(x) dx.

This coincides with the total energy of u at time t defined in [ØS05, p.13] for solutions of
the wave equation of Dunkl operators. In particular, if k = 0 this reduces to the usual total
energy

1
2

∫
R
|∂xu(x, t)|2 + |∂tu(x, t)|2 dx.

The subsequent theorem can be seen as an analogue of the energy conservation theorem
for solutions of the classical wave equation.

Lemma 3.10. Let u, v ∈ C∞(a× a) be solutions of (MW). If v(·, t) has compact support for
all t ∈ a, then t 7→ E(u, v; t) is constant.

Proof. Let µ and ν be the solutions of (VMW) associated with u and v, respectively. We
divide the proof into two steps.

(i) Consider the d× d matrix B with entries Bij := (πqi, πqj)W and let J be the diagonal
matrix with entries Jii = (−1)di , where di = deg pi = −deg qi. If B is the matrix of
Dunkl operators associated with B, then

(−1)deg πJB = A and (−1)deg πJB = A. (3.3)

The entries of B are W -invariant, so that

(qm,
d∑
i=1

Bi`pi)W =
d∑
i=1

Bi`(qm, pi)W = Bmk = (qm, π2q`)W .

Hence, ∑d
i=1Bi`pi = π2q`. The matrix Lp has W -invariant entries as well, so

(pk,
d∑
i=1

(Lp)jiqi)W =
d∑
i=1

(Lp)ji(pk, qi)W = (Lp)jk = (qj , ppk)W = (pk, pqj)W .

Thus, we obtain ∑d
i=1(Lp)jiqi = pqj . We claim that this implies that LpB is symmetric.

In fact, with the symmetry of B we observe that

d∑
j=1

(LpB)ijpj =
d∑

j,`=1
(Lp)i`B`jpj = π2

d∑
`=1

(Lp)i`q` = π2pqi
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3.2. THE ENERGY INNER PRODUCT 49

and similarly with the definition of Lp we get

d∑
j=1

(LpB)jipj =
d∑

j,`=1
(Lp)j`B`ipj =

d∑
`=1

B`ip` = π2pqi.

Finally, LpB has entries in PW , so Lemma 3.2 (i) implies that (LpB)ij = (LpB)ji.
From the symmetry of LpB and B we obtain

LpB = BLTp and LpB = BLTp . (3.4)

(ii) Now we prove that t 7→ E(u, v; t) is constant. Consider the polynomials p = ξ∗ = 〈ξ, ·〉
with ξ ∈ a. The assumption that µ, ν are solutions of (VMW), together with equations
(3.3) and (3.4), now imply

p(∂t)E(u, v; t)

=
∫
a

[
((Lxp)Tµ)TAxν + µTAx(Lxp)T ν

]
ω dx

= (−1)deg π
∫
a

[
((Lxp)Tµ)TJBxν + µTJLxpBxν

]
ω dx

= (−1)deg π
d∑

i,j=1

∫
a

[
(−1)dj (Lxp)ijµi(Bxν)j + (−1)diµi(Lxp)ij(Bxν)j

]
ω dx,

where the interchange of order of differentation and integration is justified, by v and
consequently ν being compactly supported in the x variable. Hence, to verify that
p(∂t)E(u, v; t) vanishes, it suffices to prove∫

a

[
(Lxp)ijµi · (Bxν)j + (−1)di−djµi(Lxp)ij(Bxν)j

]
ω dx = 0.

Since p is homogeneous of degree 1 and ppj = ∑d
i=1(Lp)ijpi holds by definition, we have

that (Lp)ij is homogeneous of degree 1 + dj − di. Finally, the skew-symmetry of Dunkl
operators leads to∫

a

[
(Lxp)ijµi · (Bxν)j + (−1)di−djµi(Lxp)ij(Bxν)j

]
ω dx

=
∫
a

[
(Lxp)ijµi · (Bxν)j − (Lxp)ijµi · (Bxν)j

]
ω dx = 0.

�

Definition 3.11. For F,G ∈ C∞c (a,Cd) we define

E(F,G) :=
∫
a
F (x)TAG(x)ω(x) dx,

which coincides with E(u, v, 0), where u and v are the solutions from Theorem 3.5 with initial
data (pi(∂t)u)(x, 0) = Fi(x) and (pi(∂t)v)(x, 0) = Gi(x), respectively. In particular, E is a
hermitian bilinear form. Moreover, for w ∈W and λ ∈ a we define

uw(x, t;λ) := ei〈λ,t〉E(iwλ, x),

where E is the Dunkl kernel associated with (R, k). It is obvious, that uw(·, ·;λ) is a solution
of (MW) with certain initial data. Let µw(·, ·;λ) be the associated solution of (VMW), i.e.

µwj (x, t;λ) = pj(iλ)ei〈λ,t〉E(iwλ, x).
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50 CHAPTER 3. MULTITEMPORAL WAVE EQUATION

We write O(aC) for the space of entire functions on aC . Define

Ew : C∞c (a,Cd)→ O(aC), F 7→ EwF (λ) :=
∫
a
F (x)TAxµw(x, 0;λ)ω(x) dx.

Note that EwF in fact defines an entire function by standard theorems on holomorphic
parameter integrals.

Lemma 3.12. For all w ∈W , λ ∈ aC and F = (f1, . . . , fd) ∈ C∞c (a,Cd)

EwF (λ) = π(λ)2
d∑
`=1

q`(iλ)(Fkf`)(wλ). (3.5)

Furthermore, EWF |a is bounded.

Proof. By Lemma 3.2, we have πqj ∈ PR. Therefore, the Paley-Wiener theorem 1.21 shows
that the right hand side of (3.5) is an entire function. Thus, it suffices to verify the identity
(3.5) for λ ∈ a. Since pj has real coefficients, we have

µwj (x, 0;λ) = pj(−iλ)E(−iwλ, x).

Thus, we are able to rewrite EwF as follows:

EwF (λ) = 1
ck

d∑
`,j=1

A`j(−iwλ)pj(−iλ)
∫
a
f`(x)E(−iwλ, x)ω(x) dx

=
d∑

`,j=1
(Fkf`)(wλ)A`j(−iwλ)pj(−iλ).

With the W -invariance of A`j and deg pj = −deg qj we have

d∑
j=1

A`j(−iwλ)pj(−iλ) =
d∑
j=1

A`j(−iλ)pj(−iλ)

=
d∑
j=1

∑
w∈W

(πqj)(−iwλ) · (πq`)(iwλ) · pj(−iλ)

=
∑
w∈W

(πq`)(iwλ)
d∑
j=1

(πqj)(−iwλ) · pj(−iλ)

= (−1)deg π ∑
w∈W

(πq`)(iwλ)
d∑
j=1

(πqj)(iwλ) · pj(iλ)

= (−1)deg π
d∑
j=1

pj(iλ) · (πq`, πqj)W (iλ)

= (−1)deg π(π2q`)(iλ) = π2(λ)q`(iλ),

where the last equality follows immediately by pairing both sides with the qm via the form
(·, ·)W . �

Definition 3.13. On C∞c (a,Cd) we define for t ∈ a the linear map

U(t) : C∞c (a,Cd)→ C∞c (a,Cd), F 7→ µF (·, t),

50



3.2. THE ENERGY INNER PRODUCT 51

where µF is the unique solution (VMW) with µF (x, 0) = F (x), such that µF (·, t) is compactly
supported for all t ∈ a. Note that if µF (x, t) solves (VMW) with initial data F , then
νF (x, t) := µF (x, s+ t) solves (VMW) with initial data µF (x, s). One verifies

U(t)U(s) = U(t+ s),

i.e. U is a linear transformation group of C∞c (a,Cd).

Remark 3.14. In particular, for every t0 ∈ a and F ∈ C∞c (a,Cd) there exists a unique
function µt0F := µU(t0)−1F ∈ C∞(a× a), such that µt0F (·, t) is compactly supported for all t ∈ a

and µt0F solves the system {
(Lxp)Tµ = p(∂t)µ, p ∈ P,
µ(x, t0) = F (x), i = 1, . . . , d.

(3.6)

Theorem 3.15. Consider the measure d$(λ) := d ω(λ)
π(λ)2 dλ. The map Ew defines for all

w ∈W a linear operator
Ew : C∞c (a,Cd)→ L2(a, $)

with dense image. Furthermore, Ew has the following properties:

(i) E(F, F ) = 1
d

∑
w∈W ‖EwF‖

2
2,$ for all F ∈ C∞c (a,Cd).

(ii) If Uw(t0) is the multiplication operator defined by the function x 7→ ei〈wx,t0〉, then on
C∞c (a,Cd) we have

EwU(t0) = Uw(t0)Ew.

(iii) When restricted to C∞c (a,Cd)W , the operator Ew is injective and for arbitrary
F = (f1, . . . , fd) ∈ C∞c (a,Cd)W we have

fj(x) = Fk
(
pj(i·)
d π2 E

wF

)
(−x). (3.7)

Moreover, E is an inner product on C∞c (a,Cd)W .

(iv) The closure of C∞c (a,Cd)W with respect to the inner product E is isometrically isomor-
phic to L2(a, $), so that Ew extends to a unitary map between these two spaces.

(v) Moreover, we have an injective map

E = (Ew)w∈W : C∞c (a,Cd)→
d⊕
i=1

L2(a, $).

such that E(F, F ) = 1
d

∑
w∈W ‖EwF‖

2
2,$ and for all F = (f1, . . . , fd) ∈ C∞c (a,Cd)

fj(x) =
∑
w∈W

Fk
(
pj(i·)
π2 E

wF

)
(−w−1x).

(vi) E is an inner product on C∞c (a,Cd).

Proof. First we prove that Ew has a dense image. Since X := C∞c (a,C) ∩L2(a, $) is dense
in L2(a, $), it suffices to prove that g ∈ X vanishes if∫

a
(EwF )(λ)g(λ) ω(λ)dλ

π(λ)2 = 0
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holds for all F ∈ C∞c (a,Cd). In this case, we use Lemma 3.12 and put F = (f, 0, . . . , 0) with
arbitrary f ∈ C∞c (a) to obtain ∫

a
(Fkf)(wλ)g(λ) ω(λ)dλ = 0.

Finally, the Plancherel theorem for the Dunkl transform gives g ≡ 0.

(i) From Lemma 3.12 we have

1
d

∑
w∈W

(EwF )(λ)(EwF )(λ) = π(λ)4
d∑

`,j=1
q`(iλ)qj(−iλ)(Fkf`)(wλ)(Fkfj)(wλ).

Since the measure $ is W -invariant, we obtain from the Plancherel Theorem 1.19 for
the Dunkl transform

‖EwF‖22,$ =
∑
w∈W

d∑
`,j=1

∫
a
π(λ)2(Fkf`)(λ)(Fkfj)(λ) · q`(iwλ)qj(−iwλ)ω(λ) dλ

=
d∑

`,j=1

∫
a
(Fkf`)(λ)(Fkfj)(λ) ·A`j(iλ)ω(λ) dλ

=
d∑

`,j=1

∫
a
(Fkf`)(λ)(FkA`jfj)(λ)ω(λ) dλ

=
d∑

`,j=1

∫
a
f`(λ)A`jfj(λ)ω(λ) dλ = E(F, F ).

(ii) This is straightforward to verify.

(iii) The proof for (3.7) is the same as for (v) below. In particular, Ew is injective on
C∞c (a,Cd)W and from E(F, F ) = ‖EwF‖22,$ we obtain that the hermitian form E is
indeed an inner product on C∞c (a,Cd)W .

(iv) This is an immediate conclusion from part (iii).

(v) The formula for E(F, F ) follows from part (i). We note that

Fk
(
pj(i·)
π2 E

wF

)
(−w−1x) = 1

ck

∫
a
pj(iλ)(EwF )(λ)E(iλ, w−1x) ω(λ)

π(λ)2 dλ

= 1
ck

∫
a
pj(iw−1λ)(EwF )(w−1λ)E(iλ, x) ω(λ)

π(λ)2 dλ

=
d∑
`=1

pj(w−1T )q`(w−1T )f`(x).

Hence, summation over w ∈W yields the stated formula, since∑
w∈W

wpj · wq` = δj`.

(vi) We already noticed that E is a hermitian form. By part (v) E is positive definite, hence
an inner product.

�
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3.3 Uniqueness of smooth solutions
Lemma 3.16. Recall the operator A from Definition 3.8. Consider the Hilbert space
L2(a,Cd;ω) equipped with the inner product

〈F,G〉L2 =
∫
a
〈F (x), G(x)〉ω(x) dx,

where 〈·, ·〉 is usual inner product on Cd. Then the subspace

X =
{
AF | F ∈ C∞c (a,Cd)

}
is dense in L2(a,Cd;ω).

Proof. Obviously X is a subspace of C∞c (a,Cd), so we only have to verify the density inside
C∞c (a,Cd). By Theorem 3.15 E is an inner product on C∞c (a,Cd). Therefore E(G,F ) =
〈G,AF 〉L2 vanishes for all F ∈ C∞c (a,Cd) if and only if G ≡ 0, i.e. X is dense in C∞c (a,Cd).
�

Theorem 3.17. For smooth initial data f1, . . . , fd the systems (MW) and (VMW) have
unique solutions u ∈ C∞(a× a) and µ ∈ C∞(a× a,Cd). In particular, the unique solution of
(MW) is given by the formula in Theorem 3.5.

Proof. By Lemma 3.7 it suffices to prove the theorem for (VMW). Consider a solution µ of
(VMW) with initial condition µ(·, 0) = 0. For arbitrary F ∈ C∞c (a) and t0 ∈ a choose µt0F as
stated in Remark 3.14 and consider u = µ1 and v = (µt0F )1. By Lemma 3.10 we can see that

〈µ(·, t0),AF 〉L2 = E(u, v; t0) = E(u, v, 0) = 0.

By the density property of Lemma 3.16, we have 〈µ(·, t0), F 〉L2 = 0 for all F ∈ L2(a,Cd;ω)
which are compactly supported. Thus, µ(·, t0) = 0 which means µ ≡ 0. �

Corollary 3.18. Consider for the system (MW) some initial data F = (f1, . . . , fd) ∈
C∞(a,Cd) and the unique solution u = u(x, t) ∈ C∞(a× a). Then

(i) u is W -invariant in t if and only if f2 = . . . = fd ≡ 0.

(ii) u is W -invariant in x if and only if F is W -invariant.

Proof.

(i) Obviously, the equation p(T x)u(x, t) = (p(∂t)u)(x, t) for p ∈ PW is W -invariant in
t, i.e. u(x, t) is a solution of (MW) if and only if u(x,wt) solves it for w ∈ W . If
f2 = . . . = fd ≡ 0, then Theorem 3.17 and Theorem 3.5 show that u is W -invariant in t.
We claim that if ϕ is W -invariant, then (pi(∂)ϕ)(0) = 0 for i > 1. By density of analytic
functions in C∞(a) is suffices to check this for analytic ϕ. Since ϕ is W -invariant it
can be expanded as ϕ = ∑∞

n=0 ϕn with W -invariant polynomials ϕn of homogeneous
degree n. Then, by symmetry of the Fisher inner product and the definition of harmonic
polynomials we have (ϕn(∂)pi)(0) = 0 for n > 0. Since pi has no constant term for
i > 0, we also have (ϕ0(∂)pi)(0) = 0 and therefore

(pi(∂)ϕ)(0) =
∞∑
i=0

(pi(∂)ϕn)(0) =
∞∑
n=0

(ϕn(∂)pi)(0) = 0.

If u is a solution of (MW), W -invariant in t, then fi(x) = (pi(∂t)u)(x, 0) = 0, i > 1.

53



54 CHAPTER 3. MULTITEMPORAL WAVE EQUATION

(ii) Obviously, for p ∈ PW the equation p(T x)u(x, t) = p(∂t)u(x, t) is W -invariant in x, i.e.
u(x, t) is a solution if and only if u(wx, t) is a solution for w ∈ W . Furthermore, the
condition fi(x) = pi(∂t)u(x, 0) isW -invariant in the sense that fi(wx) = (pi(∂t)u)(wx, 0).
Hence, the uniqueness of the smooth solution finishes the proof of this part.

�

Corollary 3.19. Let f be a W -invariant smooth function on a and let u be the solution of
(MW) for Cauchy data F = (f, 0, . . . , 0). Consider the W -invariant translation operator

τWt f(x) = 1
d

∑
w∈W

τtf(wx) = 1
d

∑
w∈W

τwtf(x).

Then, we have for Dunkl’s intertwining operator V t = V t
k acting on functions in the t-variable

V tu(x, t) = τWt f(x) = τWx f(t).

Proof. Put v(x, t) := (V t)−1τWt f . The translation operator satisfies for all p ∈ P

p(T t)τtf(x) = p(T x)τtf(x),

so it is immediate that for all p ∈ PW we have

p(T t)τWt f(x) = p(T x)τWt f(x).

Hence, by the intertwining relations of V t, we have for all p ∈ PW

p(T x)v(x, t) = p(∂t)v(x, t).

Furthermore, by τ0 = id and V f(0) = f(0) we see v(x, 0) = f(x). The W -equivariance of V
and the definition of τWt show that the function v is W -invariant in t, hence (pi(∂t)v)(x, 0) = 0
for i = 2, . . . , d. Finally, v and u are solutions of (MW) with same initial data, i.e. u = v by
Theorem 3.17. �

Corollary 3.20. For f ∈ C∞(a) put fi := pi(∂)f for all i = 1, . . . , d. Then, the solution u
of (MW) satisfies

V tu(x, t) = τtf(x) = τxf(t).

Proof. With the relations Tξτt = τtTξ and TξV = V ∂ξ it is straightforward to see that

u(x, t) := ((V t)−1τtf)(x) = V x((V −1f)(x+ t))

solves (MW) with data fi = pi(∂)f . By uniqueness of smooth solution from Theorem 3.17
the assertion holds. �

Remark 3.21. One could also study the system{
p(T (k)x)ũ = p(T (k′)t)ũ, p ∈ PW

(pi(T (k′)t)ũ)(x, 0) = fi(x), i = 1, . . . d
,

where k, k′ are multiplicity functions on R, so that k′ = 0 is the case studied before. Since
the distribution f 7→ Vkf(x) has compact support and Vk : C∞(a)→ C∞(a) is a topological
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isomorphism, one has Tξ(k)xV t
k′ ũ = V t

k′Tξ(k)xũ for ũ ∈ C∞(a × a). Hence, this system has
a unique solution, which is given by ũ = V t

k′u. Here, u is the solution of the multitemporal
wave equation (MW) as studied before with Cauchy data F = (f1, . . . , fd). In particular, the
unique solution can be expressed as

ũ(x, t) =
d∑
j=1

(fj ∗k S(j)
t (k′))(x),

where the compactly supported distribution S(j)
t (k′) are defined by

[Fk(S(j)
t (k′))](λ) =

∑
w∈W

qj(−iwλ)Ek′(−iwλ, t)

via the Paley-Wiener theorem for the Dunkl transform. Moreover, in the case k = k′ we can
characterize the W -invariant translation operator τW (with respect to the multiplicity k) as
follows: for f ∈ C∞(a)W the function ũ(x, t) = τWt f(x) is the unique smooth solution of the
system 

p(T (k)x)ũ = p(T (k)t)ũ, p ∈ PW .
pi(T (k)t)ũ(x, 0) = 0, i = 2, . . . d,
ũ(x, 0) = f(x).

Corollary 3.22. For f ∈ C∞(a) the function u(x, t) = τxf(t) = τtf(x) is the unique smooth
solution of {

p(T (k)x)u = p(T (k)t)u, for all p ∈ P,
(pi(T (k)t)u)(x, 0) = (pi(T (k))f)(x), for all i = 1, . . . , d.

Furthermore, for f ∈ C∞(a)W we can characterize u(x, t) = τWx f(t) = τWt f(x) as the unique
smooth solution of 

p(T (k)x)u = p(T (k)t)u, for all p ∈ PW ,
(pi(T (k)t)u)(x, 0) = 0, for all i = 2, . . . , d,
u(x, 0) = f(x)

or as the unique W -invariant smooth solution of{
p(T (k)x)u = p(T (k)t)u, for all p ∈ PW ,
u(x, 0) = f(x).
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chapter 4
Results in trigonometric Dunkl theory

For the background on trigonometric Dunkl theory, the reader is referred to various articles
by Heckman and Opdam like [HO87, Hec87, Opd89, Hec90, Hec91, HS94, Opd95, Hec97,
Opd00].
The organization of the chapter is the following. In Section 1 we introduce the reader to
trigonometric Dunkl theory for crystallographic root systems. Afterwards, in Section 2, we
extend the concepts of trigonometric Dunkl theory to integral root systems in a natural way.
The connection to Riemannian symmetric spaces of non-compact type is explained in Section
3, while in Section 4 the connection to Riemannian symmetric spaces associated with reductive
Lie groups is explained. Finally, we will prove the generalization of the Helgason-Johnson
theorem for the Cherednik kernel in Section 5.

4.1 Introduction to trigonometric Dunkl theory

Trigonometric polynomials and Cherednik operators

As before, consider a finite-dimensional Euclidean space (a, 〈·, ·〉) with norm |x| =
√
〈x, x〉

and extend the inner product complex-bilinear to the complexification aC. Let R ⊆ a be
a crystallographic root system, not necessarily reduced, and let W = W (R) be the Weyl
group. Fix a system of positive roots R+ ⊆ R, negative roots R− = −R+ and a corresponding
positive open Weyl chamber a+. The simple roots associated with R+ will be denoted by
α1, . . . , αn and the corresponding simple reflections are si := sαi . We will write

Q := Zα1 ⊕ . . .⊕ Zαn = spanZR

for the root lattice. Inside Q, we fix the cone

Q+ := N0α1 ⊕ . . .⊕ N0αn = spanN0R.

The weight lattice P is defined as the dual lattice of the lattice spanned by the coroots, namely

P :=
{
λ ∈ a | 〈λ, α∨〉 ∈ Z for all α ∈ R

}
= Zω1 ⊕ . . .⊕ Zωn,

where ω1, . . . , ωn are the so-called fundamental weights, defined by the condition 〈ωi, α∨j 〉 = δij .
According to the integrality condition on R we have R ⊆ Q ⊆ P . The dominant weights are
defined as the cone

P+ := P ∩ a+ = N0ω1 ⊕ . . .⊕ N0ωn.

Definition 4.1. We introduce on P+ the partial order

λ ≤ µ iff µ− λ ∈ Q+,

called the dominance order on P+. This order can be extended to P by the assignment

λ E µ iff
{
λ+ ≤ µ+, if λ+ 6= µ+,

µ ≤ λ, if λ+ = µ+,

where λ+ and µ+ are the unique dominant weights in the W -orbit of λ and µ, respectively.

56



4.1. INTRODUCTION TO TRIGONOMETRIC DUNKL THEORY 57

The weights P index a basis of the space of trigonometric polynomials, which is by definition
the algebra

T := spanC{eλ | λ ∈ P} for eλ := e〈λ,·〉.

The algebra T is isomorphic to the group algebra C[P ] = C[ω1, . . . , ωn] via the isomorphism
induced by λ 7→ eλ. Under this isomorphism, the usual W -action on T , as an algebra of
functions, coincides with the canonical W -action on P , namely weλ = ewλ.

Definition 4.2. The Cherednik operator/trigonometric Dunkl operator associated with (R+, k)
into direction ξ ∈ a is defined by

Dξ(R+, k) := Dξ(k) := Dξ := ∂ξ − 〈ρ(k), ξ〉+
∑
α∈R+

kα 〈α, ξ〉
1− sα

1− e−α ,

where ρ(k) is the Weyl vector

ρ(k) := ρ := 1
2
∑
α∈R+

kαα.

Let Ω ⊆ a be a W -invariant open subset. We summarize the main properties of Cherednik
operators that are relevant in this thesis, which can be found in [Opd95, Hec97, Opd00].

(i) Dξ(k) maps Cm(Ω) into Cm−1(Ω) and acts continuously on the spaces C∞(Ω) and
C∞c (Ω), equipped with their usual locally convex topologies.

(ii) Commutativity: Dξ(k)Dη(k) = Dη(k)Dξ(k)

(iii) Support: for f ∈ C1(Ω)
supp(Dξ(k)f) ⊆W.supp f.

(iv) Leibniz rule: If f, g ∈ C1(Ω), one of them W -invariant, then

Dξ(k)(fg) = (Dξ(k)f)g + f(Dξ(k)g) + 〈ρ(k), ξ〉 fg.

Since the Cherednik operators commute, we associate with p ∈ P = C[a] an operator
p(D(k)) in an obvious manner. A main difference between the rational and the trigonometric
Dunkl theory is that Cherednik operators are not W -equivariant, namely wDξ(k)w−1 6=
Dwξ(k). However, to any W -invariant polynomial p ∈ PW there exists a unique linear partial
differential operator res(p(D(k)) on areg such that

p(D(k))f = res(p(D(k)))f (4.1)

for all f ∈ C∞(Ω)W . Moreover, p 7→ res(p(D(k))) defines a morphism of algebras. The
operators res(p(D(k)), p ∈ PW , generalize the radial part of invariant differential operators
on Riemannian symmetric spaces of non-compact type, which will be explained in the end of
this chapter.

Cherednik operators on trigonometric polynomials

On T , the Cherednik operators has an upper triangular action. To be more precise, Dξ(k)
acts on monomials eλ by

Dξ(k)eλ = 〈λ̃, ξ〉 eλ +
∑
µ/λ

cµλe
µ,

where λ̃ is given by

λ̃ = λ− ρ(k) +
∑
α∈R+
〈α,λ〉>0

kαα = λ+ 1
2
∑
α∈R+

kαε(〈α, λ〉)α, (4.2)
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with the non-symmetric sign

ε(t) =
{

1, t > 0,
−1, t ≤ 0.

The map λ 7→ λ̃ is injective on a, since a = ⊔
w∈W Cw with

Cw :=
{
λ ∈ a

∣∣∣〈α,λ〉>0 for α∈R+∩wR+
〈α,λ〉≤0 for α∈R+∩wR−

}
and for λ ∈ Cw one has λ̃ = λ+ wρ(k) = w(λ+ + ρ(k)) ∈ Cw.

Definition 4.3. For k ≥ 0, we define on T the W -invariant inner product

〈f, g〉k :=
∫
T
f(t)g(t)δk(t) dt,

where dt is the normalized Haar measure on the torus

T :=
{
i
∑n

j=1
xjα

∨
j

∣∣∣∣ 0 ≤ xj < 2π
}
∼= ia/2πiQ∨

and δk is the W -invariant weight function

δk =
∏
α∈R+

∣∣∣eα/2 − e−α/2∣∣∣2kα =
∏
α∈R+

∣∣∣2 sinh
(
〈α,·〉

2

)∣∣∣2kα .
For k ≥ 0, the Cherednik operators are symmetric with respect to 〈·, ·〉k on T , i.e. for all

f, g ∈ T
〈Dξ(k)f, g〉k = 〈f,Dξ(k)g〉k .

The symmetry and the upper triangular action of Cherednik operators on T lead to the
following theorem.

Theorem 4.4 ([Opd95, Sah00a, Sah00b]). The algebra T has for k ≥ 0 a unique basis
(Eλ(k; ·))λ∈P of polynomials, called non-symmetric Heckman-Opdam polynomials, such that

(i) Eλ(k; ·) = eλ +∑
µ/λ cµλe

µ with cµλ ∈ C.

(ii) Eλ(k; ·) is an eigenfunction of all Cherednik operators Dξ(k), ξ ∈ a.

The second condition can be replaced by the orthogonality condition

(ii’) 〈Eλ(k; ·), eµ〉k = 0 for all µ / λ.

Furthermore, Dξ(k)Eλ(k; ·) = 〈λ̃, ξ〉Eλ(k ·) and the coefficients cµλ are non-negative rational
functions of k, cf. Theorem A.6 in the Appendix A.

There is a symmetric analog of this theorem. For this, we define for λ ∈ P+ the monomial
symmetric function

mλ :=
∑

µ∈W.λ
eµ.

Then the following theorem holds.

Theorem 4.5 ([HO87, HS94, Opd95]). The algebra T W has for k ≥ 0 a unique basis
(Pλ(k; ·))λ∈P+ of polynomials, called (symmetric) Heckman-Opdam polynomials/Jacobi poly-
nomials, such that

(i) Pλ(k; ·) = mλ +∑
µ<λ cµλmµ with cµλ ∈ C.
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(ii) Pλ(k; ·) is an eigenfunction of the Heckman-Opdam Laplacian

L(k) :=
n∑
i=1

Dei(k)2

where e1, . . . , en is an orthonormal basis of a.

The second condition can be replaced by either one of following conditions

(ii’) 〈Pλ(k; ·),mµ〉k = 0 for all µ < λ.

(ii”) Pλ(k; ·) is an eigenfunction of all Cherednik operators p(D(k)) with p ∈ PW .

Furthermore, p(D(k))Pλ(k; ·) = p(λ + ρ(k))Pλ(k; ·) for all p ∈ PW , the coefficients cµλ are
non-negative rational functions of k and for all µ ∈W.λ we have

Pλ(k; z) := #Wλ

#W
∑
w∈W

Eµ(k;wz).

Eigenfunctions of the Cherednik operators

Fix a non-negative multiplicity k ≥ 0. As in the rational Dunkl setting, we can consider for
λ ∈ aC the joint eigenvalue problem{

Dξ(k)f = 〈λ, ξ〉 f, for all ξ ∈ a,

f(0) = 1.

Owing to the work of Opdam [Opd95], this eigenvalue problem has a unique analytic solution

Gk(λ, ·) : a→ C,

which is called the Cherednik kernel associated with (R+, k).
Furthermore, the symmetric analogue of the Cherednik kernel is the (Heckman-Opdam)
hypergeometric function associated with (R, k) and is defined by

Fk(λ, x) := 1
#W

∑
w∈W

Gk(λ,wx).

The hypergeometric function Fk(λ, ·) is the unique W -invariant analytic solution of the joint
eigenvalue problem {

p(D(k))f = p(λ)f, for all p ∈ PW ,
f(0) = 1.

In particular, the hypergeometric function Fk(λ, x) is W -invariant in the parameter λ.
In the rational Dunkl setting, the existence of the Dunkl kernel was proven first and the Bessel
function was defined in terms of the Dunkl kernel. In contrast to this, the existence of the
hypergeometric function as a the solution of the joint eigenvalue problem was studied as first,
cf. [Hec87, HO87, HS94]. Later, Opdam [Opd95] constructed the Cherednik kernel by

Gk(λ, ·) = D(λ, k)Fk(λ, ·),

where D(λ, k) is a certain linear differential operator.
We note that Gk depends on the choice of positive roots R+ and k, while Fk only depends on R
and k. Furthermore, due to their defining property, the Cherednik kernel and hypergeometric
functions extend the Heckman-Opdam polynomials in the sense of the subsequent lemma.
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Lemma 4.6 ([HS94, Opd95]). Let k ≥ 0. Then

(i) Gk(λ′, ·) is a trigonometric polynomial if and only if λ′ = λ̃ for some λ ∈ P . In this
case we have

Gk(λ̃, x) = Eλ(k;x)
Eλ(k; 0) .

(ii) Fk(λ′, ·) is a trigonometric polynomial if and only if wλ′ = λ̃ = λ + ρ(k) for some
λ ∈ P+, w ∈W . In this case we have

Fk(λ̃, x) = Fk(λ+ ρ, x) = Pλ(k;x)
Pλ(k; 0) .

In the end of the Section 4.3 we will explain that the hypergeometric function generalizes
the spherical functions on certain Riemannian symmetric space of non-compact type.

Remark 4.7. According to [KO08, Theorem 13.15] (see also [HO21, Corollary 8.6.5]) the
hypergeometric function extends to an holomorphic function

Kreg × aC × (a + iΩ)→ C, (k, λ, z) 7→ Fk(λ, z),

where the tubular neighborhood a + iΩ ⊆ aC is given by

Ω := {x ∈ a | |〈α, x〉| < π for all α ∈ R} .

The proof of [Opd95, Theorem 3.15] shows that the same is true for the Cherednik kernel.

Example 4.8 (Rank one). Consider the rank one situation, namely a = R, R = BC1 =
{±1,±2}, R+ = {1, 2} and W = {±id}. Let the multiplicity k be given by the values k1
on ±1 and k2 on ±2. Since the W -invariant polynomials are generated by the polynomial
x2, consider the eigenvalue equation for the Heckman-Opdam Laplacian L(k) = D1(R+, k)2.
Namely, we are looking for an even analytic function f satisfying for λ ∈ C

L(k)f(x) = f ′′(x) + (k1 coth(x2 ) + k2 coth(x))f ′(x)− (k1+2k2
2 )2f(x) = λ2f(x).

The change of variables y = 1
2 −

1
4(ex − e−x) = 1

2(1− cosh(x)) = − sinh2(x2 ) and F (y) = f(x)
leads to a hypergeometric system

y(1− y)F ′′(y) + (c− (1 + a+ b)y)F ′(y)− abF (y) = 0, (4.3)

where

a = λ+ ρ(k) = λ+ k1 + 2k2
2 , b = −λ+ ρ(k) = −λ+ k1 + 2k2

2 , c = 1
2 + k1 + k2.

The system (4.3) has a unique holomorphic solution near 0, the Gauss-hypergeometric function
2F1

(
a,b
c ; y

)
. So the hypergeometric function associated with (BC1, k) is given by

Fk(λ, z) = 2F1

(
λ+ k1+2k2

2 ,−λ+ k1+2k2
2

1
2 +k1+k2

;− sinh2( z2)
)
.

In [Opd95, page 90] it is proven that the Cherednik kernel is then given by

Gk(λ, z) = Fk(λ, z) + sinh(z)
k1 + 2k2 − 2λ

dFk
dz

(λ, z).

In particular, the symmetric Heckman-Opdam polynomial with parameter n ∈ P+ = N0 is
given by

Pn(k; z) = Fk(n+ ρ(k), z) = 2F1
(
n+k1+2k2,−n

1
2 +k1+k2

;− sinh2( z2)
)

which is the Jacobi polynomial of degree n (up to a change of variables and normalization).
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4.2 Trigonometric Dunkl theory for integral root systems
In their original work for trigonometric Dunkl theory, Heckman and Opdam only considered
the case where the root system spans the Euclidean space. It is quite natural to omit this
property, as this is also related to the concept in Lie theory of passing from a semisimple Lie
group to a reductive Lie group. In particular, this extension is important for the upcoming
results in this thesis, motivated by radial analysis on symmetric cones which are symmetric
spaces induced by a reductive Lie group. We introduce trigonometric Dunkl theory for
integral root systems inline with the theory of Heckman and Opdam including results for
the corresponding Cherednik kernel and hypergeometric function. Afterwards, we will show
how our extension of trigonometric Dunkl theory to integral root systems is connected to
radial analysis on Riemannian symmetric spaces associated with reductive Lie groups of the
Harish-Chandra class.
Let R be an integral root system inside the Euclidean space (a, 〈·, ·〉) with Weyl group W . We
fix a system of positive roots R+ ⊆ R and a regular multiplicity k. Put

a = s⊕ c with s := spanRR and c := s⊥.

Then R is a crystallographic root system inside s and W acts trivially on c. Denote by πs
and πc the orthogonal projections onto s and c, respectively.

Definition 4.9. As in the crystallographic case, we define the Cherednik operator associated
with (R+, k) into direction ξ ∈ a by

Dξ(k) := Dξ(R+, k) := ∂ξ − 〈ρ(k), ξ〉+
∑
α∈R+

kα 〈α, ξ〉
1− sα

1− e−α

with ρ(k) = 1
2
∑
α∈R+ kαα as before. In particular, Dξ(k) = ∂ξ for all ξ ∈ c.

With the same proofs as in the crystallographic case one can verify the following. The
Cherednik operators are continuous operators C1(Ω) → C0(Ω) for any W -invariant open
Ω ⊆ a. Furthermore, the Cherednik operators also act continuously on the spaces C∞(a)
and C∞c (a) satisfying supp(Dξ(k)f) ⊆W.supp f for all f ∈ C∞(a). This can be seen by the
decomposition

1− sα
1− e−α = 〈α, ·〉

1− e−α ·
1− sα
〈α, ·〉

,

where the first factor is a multiplication operator with a smooth function and the latter
satisfies the assertions as known from the rational Dunkl setting.

Proposition 4.10. For all ξ ∈ a and f, g ∈ C1(a) we have:

(i) Dξ(k)(f ◦ πs) = (Dπsξf) ◦ πs.

(ii) Dξ(k)(f ◦ πc) = ((∂πcξ − 〈ρ(k), ξ〉)f) ◦ πc.

(iii) If g is W -invariant, Dξ(k)(f · g) = (Dξ(k)f) · g + f · ∂ξg

Proof.
(i) Note that πs is a W -equivariant orthogonal projection, R ⊆ s and ρ(k) ∈ s. So we have

Dξ(f ◦ πs)(x) = (∂ξ − 〈ρ(k), ξ〉)(f ◦ πs)(x) +
∑
α∈R+

kα 〈α, ξ〉
f(πsx)− f(πssαx)

1− e−〈α,x〉

= (∂πs(ξ) − 〈ρ(k), πs(ξ)〉)f(πsx) +
∑
α∈R+

kα 〈α, πsξ〉
f(πsx)− f(sαπsx)

1− e−〈α,πsx〉

= Dπs(ξ)f(πsx).
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(ii) Since W acts trivially on c we have πcsα = sαπc = πc. Hence, part (ii) is immediate by
∂ξ(f ◦ πc) = ∂πc(ξ)f ◦ πc as the reflection part of the Cherednik operator vanishes.

(iii) This is a straightforward computation.

�

Lemma 4.11. The Cherednik operators commute, i.e. Dξ(k)Dη(k) = Dη(k)Dξ(k) as opera-
tors C2(Ω)→ C0(Ω) for all ξ, η ∈ a and W -invariant open Ω ⊆ a.

Proof. For simplicity assume that Ω = a. Since both (ξ, η) 7→ DξDη and (ξ, η) 7→ DηDξ

are bilinear, it suffices to consider the following cases:

(i) For ξ, η ∈ c we have Dξ(k) = ∂ξ and Dη(k) = ∂η, so this is obvious.

(ii) Consider ξ ∈ c, η ∈ s, i.e. Dξ(k) = ∂ξ. Then, for all α ∈ R+ we obtain from 〈α, ξ〉 = 0

∂ξ
1− sα

1− e−α =
(
∂ξ

1
1− e−α

)
(1− sα) + 1

1− e−α∂ξ(1− sα)

= ∂ξ − sα∂sαξ
1− e−α = ∂ξ − sα∂ξ

1− e−α = 1− sα
1− e−α∂ξ

This leads to Dξ(k)Dη(k) = Dη(k)Dξ(k).

(iii) Consider ξ, η ∈ s. The Cherednik operators have unique decompositions

DξDη =
∑
w∈W

Dw,ξ,ηw, DξDη =
∑
w∈W

Dw,η,ξw, (4.4)

where Dw,ξ,η and Dw,η,ξ are unique differential operators on a with coefficients in the
algebra R generated by the functions 1

1−e−α with α ∈ R. By assumption η, ξ ∈ s, so
these differential operators can be expressed as

Dw,ξ,η =
∑
α

c(w)
α ∂αs , Dw,η,ξ =

∑
α

d(w)
α ∂αs , (4.5)

with c(w)
i , d

(w)
i ∈ R, where ∂αs are partial derivatives on s.

According to Proposition 4.10 (i) we can restrict Dξ(k)Dη(k) and Dη(k)Dξ(k) to C2(s).
Since R is crystallographic in s, we have from the classical trigonometric Dunkl theory
that Dη(k)Dξ(k) = Dξ(k)Dη(k) on C2(s). From this we conclude that Dw,ξ,η = Dw,η,ξ

on C2(s) for all w ∈ W , i.e. c
(w)
i = d

(w)
i on s. Finally, c(w)

i , d
(w)
i ∈ R are constant

along the sets x + c for all x ∈ s, so they coincide on a. Hence, by (4.4) and (4.5)
Dξ(k)Dη(k) = Dη(k)Dξ(k) globally on C2(a).

�

Theorem 4.12. For λ ∈ aC the eigenvalue problem{
Dξ(k)f = 〈λ, ξ〉 f, for all ξ ∈ a,

f(0) = 1

has a unique analytic solution f = Gk(λ, ·). This solution extends to a holomorphic function

Kreg × aC × (a + iΩ)→ C, (k, λ, z)→ Gk(λ, z)
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with Ω = 〈x ∈ a | |〈α, x〉| < π for all α ∈ R〉. This function will also be called the Cherednik
kernel associated with (R+, k) and it can be expressed as

Gk(λ, z) = e〈πcλ,πcz〉Gs
k(πsλ, πsz), (4.6)

where Gs
k is the classical Cherednik kernel associated with (R+, k) on s.

Proof. Using Proposition 4.10, it is straightforward to see that Gk defined by (4.6) solves
the eigenvalue equation.
Let f be another solution of the eigenvalue problem in a neighborhood of 0. Then by
Proposition 4.10, we have for η ∈ s

Dη(f ◦ πs) = Dηf ◦ πs = 〈λ, η〉 f ◦ πs = 〈πsλ, η〉 f ◦ πs,

i.e. f(πsx) = Gs
k(πsλ, πsx) by the uniqueness property of the Cherednik kernel on s.

Again by Proposition 4.10, we have for ξ ∈ c

Dξ(e−〈πcλ,πc(·)〉f) = (∂ξe−〈πcλ,πc(·)〉) · f + e−〈πcλ,πc(·)〉∂ξf

= (〈πcλ, ξ〉 − 〈λ, ξ〉)e−〈πc(λ),πc(·)〉f

= 0.

Hence, e−〈πcλ,πc(·)〉f is constant in each point into direction c. Thus, we obtain

e−〈πcλ,πcx〉f(x) = e−〈πcλ,πcπsx〉f(πsx) = Gs
k(πsλ, πsx).

�

Definition 4.13. We define the hypergeometric function associated with (R, k) as

Fk(λ, z) = 1
#W

∑
w∈W

Gk(λ,wz).

Thus, the hypergeometric function can be expressed as

Fk(λ, z) = e〈πcλ,πcz〉F s
k(πsλ, πsz),

with the classical hypergeometric function F s
k associated with (R, k) on s. Hence, Fk is also

W -invariant in λ.

Theorem 4.14. The function Fk(λ, ·) is the unique W -invariant analytic solution of{
p(D(k))Fk(λ, ·) = p(λ)Fk(λ, ·), for all p ∈ C[a]W ,

Fk(λ, 0) = 1.

Proof. This can be shown similarly to the proof for the Cherednik kernel. The only crucial
part is that for ξ ∈ c the polynomial 〈·, ξ〉 ∈ C[a]W isW -invariant with 〈D(k), ξ〉 = Dξ(k) = ∂ξ.

�

Proposition 4.15. Let (Dξ(R+, k))ξ∈a be the Cherednik operators associated with (R+, k).
Put w0 := w0(R+) for the longest element of W with respect to the choice of R+. Furthermore,
we denote by Gk(R+, λ, z) the Cherednik kernel associated with (R+, k). Then:

(i) wDξ(R+, k)w−1 = Dwξ(wR+, k) for all w ∈W .

63



64 CHAPTER 4. RESULTS IN TRIGONOMETRIC DUNKL THEORY

(ii) Dξ(R+, k)f− = −(Dξ(−R+, k)f)−, where f−(x) = f(−x).

(iii) Gk(R+, λ, z) = Gk(wR+, wλ,wz) for all w ∈W .
Moreover, the hypergeometric function Fk does not depend on the choice of R+.

(iv) Gk(R+, λ,−z) = Gk(R+,−w0λ,w0z).

(v) Fk(λ,−z) = Fk(−λ, z).

Proof.

(i) Let ρ(R+, k) be the Weyl vector related to R+. Then we have

w(∂ξ − 〈ρ(R+, k), ξ〉)w−1 = ∂wξ − 〈wρ(R+, k), wξ〉 = ∂wξ − 〈ρ(wR+, k), wξ〉 .

Furthermore,

w

 ∑
α∈R+

kα 〈α, ξ〉
1− sα

1− e−α

w−1 =
∑
α∈R+

kwα 〈wα,wξ〉
1− swα

1− e−wα

=
∑

β∈wR+

kβ 〈β,wξ〉
1− sβ

1− e−β .

Hence, we see that wDξ(R+, k)w−1 = Dwξ(wR+, k).

(ii) We have (∂ξ − 〈ρ(R+, k), ξ〉)f− = −(∂ξ − 〈ρ(−R+, k), ξ〉 f)−. Thus, kα = k−α leads to

∑
α∈R+

kα 〈α, ξ〉
f− − sαf−

1− e−α =
∑
α∈R+

kα 〈α, ξ〉
(
f − sαf
1− eα

)−

= −

 ∑
β∈−R+

kβ 〈β, ξ〉
1− sβ

1− e−β f

− .
Therefore, the assertion Dξ(R+, k)f− = −(Dξ(−R+, k)f)− follows.

(iii) This is immediate from the eigenvalue equation defining the Cherednik kernel, because
the eigenvalue equation Dξ(R+, k)f = 〈λ, ξ〉 f is equivalent to

Dwξ(wR+, k)(wf) = wDξ(R+, k)f = 〈λ, ξ〉 (wf) = 〈wλ,wξ〉 (wf),

i.e. Gk(R+, λ, w
−1z) = Gk(wR+, wλ, z). Let Fk(R+, λ, z) := ∑

w∈W Gk(R+, λ, wz), so
that we have for all w ∈W

Fk(R+, λ, z) = Fk(wR+, wλ, z).

SinceW acts transitively on the set of positive subsystems R+ ⊆ R and Fk isW -invariant
in the λ-variable, we obtain that Fk does not depend on the choice of positive roots.

(iv) From part (ii) we observe that

Dξ(−R+, k)Gk(R+, λ, ·)− = −〈λ, ξ〉Gk(R+, λ, ·)−

which means Gk(R+, λ,−z) = Gk(−R+,−λ, z) by the defining eigenvalue equation of
the Cherednik kernel. The longest element w0 ∈W is characterized by w0R+ = −R+,
so part (iii) leads to

Gk(R+, λ,−z) = Gk(−R+,−λ, z) = Gk(w0R+,−λ, z) = Gk(R+,−w0λ,w0z).
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(v) This is immediate from the invariance properties of Fk.

�

Proposition 4.16. For k ≥ 0, λ ∈ Cn and x ∈ Rn the Cherednik kernel satisfies

0 ≤ |Gk(λ, x)| ≤ Gk(Reλ, x) ≤
√

#Wemaxw∈W 〈Reλ,wx〉.

The same is true if Gk is replaced by Fk.

Proof. Owing to [Opd95, Proposition 6.1] and [Sch08] the kernel Gs
k satisfies

0 ≤ |Gs
k(πsλ, πsx)| = Gs

k(Re(πsλ), πsx) ≤
√

#Wemaxw∈W 〈Re(πsλ),wπsx〉. (4.7)

Since W acts trivially on c∣∣∣e〈πcλ,πcx〉∣∣∣ = e〈Re(πcλ),πcx〉 = emaxw∈W 〈Re(πcλ),wπcx〉. (4.8)

Therefore, the assertion follows from (4.7), (4.8) and the definition of Gk in (4.6). �

The following estimate is a generalization of an estimate of the Cherednik kernel as stated
in [RKV13, Theorem 3.3].

Theorem 4.17. Assume that k ≥ 0. Then for all λ, µ ∈ aC and x ∈ a:

|Gk(λ+ µ, x)| ≤ Gk(Reµ, x) · emaxw∈W 〈Reλ,wx〉.

Moreover, since Gk(−ρ(k), ·) ≡ 1, one has for all λ ∈ aC, x ∈ a

|Gk(λ− ρ(k), x)| ≤ emaxw∈W 〈Reλ,wx〉.

The same is true if Gk is replaced by Fk.

Proof. An inspection of the proof in [RKV13] shows that it can be carried out in the exact
same way with a+ replaced by an arbitrary closed Weyl chamber C. Let C ⊆ a be such a
closed Weyl chamber and put

S := {λ ∈ aC | Reλ ∈ C} .

For x ∈ a let xC be the unique element in C ∩W.x. Then 〈wReλ, x〉 ≤ 〈Reλ, xC〉 holds for
all w ∈W and λ ∈ S. For w ∈W,x ∈ a and µ ∈ C we define

f(λ) := e−〈λ,xC〉
Gk(wλ+ µ, x)
Gk(µ, x) ,

so that f : aC → C is holomorphic. According to Proposition 4.16 the following estimate holds

|Gk(λ, x)| ≤ Gk(Reλ, x) ≤
√

#Wemaxw∈W 〈Reλ,wx〉.

Hence, we can conclude that

|f(λ)| ≤
√

#W e〈µ,xC〉

Gk(µ, x) for all λ ∈ S

|f(iλ)| ≤ 1 for all λ ∈ a.
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Proceed as in [RKV13] to conclude with the Phragmén-Lindelöf principle that |f(λ)| ≤ 1 for
all λ ∈ S. Therefore, we have for all w ∈W,µ ∈ C and λ ∈ S

|Gk(wλ+ µ, x)| ≤ Gk(µ, x) · e〈Reλ,xC〉 = Gk(µ, x) · emaxw∈W 〈wReλ,x〉.

Since the Weyl chamber C was arbitrary, the assertion follows for λ ∈ aC and µ ∈ a. Finally,
the inequality |Gk(µ+ λ, x)| ≤ Gk(Reµ+ Reλ, x) for all µ, λ ∈ aC finishes the proof. �

Theorem 4.18. Assume that k ≥ 0. Then for any two polynomials p, q ∈ P there exists a
constant C > 0 such that for all λ ∈ aC and x ∈ a∣∣∣p( ∂

∂λ)q( ∂
∂x)Gk(λ, x)

∣∣∣ ≤ C(1 + |x|)deg(p)(1 + |λ|)deg(q)Fk(0, x)emaxw∈W 〈wRe(λ),x〉.

The same is true for the hypergeometric function Fk.

Proof. This can be proven as Proposition 4.16: Decompose the Cherednik kernel into a
product of an exponential and a Cherednik kernel of a crystallographic root system. After
that, use the results of [Sch08, Theorem 3.4], where the claimed inequality is proven for the
crystallographic Cherednik kernel. �

Remark 4.19 (Product situation). In the cases where R is not irreducible, the Cherednik
kernel and hypergeometric function decompose as follows. Assume that a = a1 ⊕ a2 is an
orthogonal sum and R = R1 t R2 with integral root systems Ri ⊆ ai, and positive roots
Ri,+ ⊆ Ri and R+ = R1,+ t R2,+. Moreover, choose a regular multiplicity k ≥ 0 on R and
consider the restrictions k1 = k|R1 and k2 = k|R2 . Then we have

Gk(R+, λ1 + λ2, x1 + x2) = Gk1(R1,+, λ1, x1)Gk2(R2,+, λ2, x2),
Fk(R, λ1 + λ2, x1 + x2) = Fk1(R1, λ1, x1)Fk2(R2, λ2, x2),

for all λi ∈ (ai)C and xi ∈ ai.

4.3 Riemannian symmetric spaces of non-compact type

Consider a Riemannian symmetric space X = G/K of non-compact type, where G is a
semisimple connected Lie group with finite center and K ≤ G a maximal compact subgroup.
Then the following connection is well known, cf. [Hec97, Remark 2.3] or [HS94]:
Let g and k be the Lie algebras of G and K, respectively. Consider an Iwasawa decomposition
g = k⊕ a⊕ n, the associated restricted roots Σ = ∆(g, a) and a positive system of roots Σ+.
Then define the rescaled root system R = 2Σ with multiplicity function k2α = dim gα

2 , where
gα is the root space associated with α ∈ Σ. For simplicity we consider the roots as a subset of
a and not as a subspace of the dual a∗.

Remark 4.20 (Invariant differential operators and spherical functions). Let D(G/K) be
the algebra of G-invariant differential operators on G/K and consider the Harish-Chandra
isomorphism, cf. [GV88, Theorem 2.6.7],

γ : D(G/K)→ C[a]W .

Consider for D ∈ D(G/K) the K-radial part of D which is defined as the unique differential
operator rad(D) on areg such that for all K-biinvariant f ∈ C∞(K\G/K) ∼= C∞(a)W

Df = rad(D)f.
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In [HS94, Hec97] the authors prove the following:

{rad(D) | D ∈ D(G/K)} = {res(p(D(R+, k))) | p ∈ C[a]W },

i.e. the restrictions of W -invariant Cherednik operators (see (4.1)) are precisely the K-radial
parts of invariant differential operators of G/K. To be more precise, for p ∈ C[a]W we have

rad(γ−1(p)) = res(p(D(R+, k))). (4.9)

For instance, by [Hel84, Chapter II, Section 5], the radial part of the Laplace-Beltrami ∆ on
G/K is given by

rad(∆) = ∆a +
∑
α∈Σ+

dim(gα) coth(〈α, ·〉)∂α

and its image under the Harish-Chandra isomorphism is

γ(∆)(x) = 〈x, x〉 − 〈ρ, ρ〉 , ρ = 1
2
∑
α∈Σ+

dim(gα)α.

In fact, one can verify that the restriction of the Cherednik operator associated with γ(∆) is
given by

res(γ(∆)(D(R+, k))) = ∆a +
∑
α∈R+

kα coth
(
〈α,·〉

2

)
∂α.

The spherical functions ϕλ of the Gelfand pair (G,K) are parametrized by λ ∈ aC and can be
described as the unique K-biinvariant smooth functions such that{

Dϕλ = γ(D)(λ)ϕλ, for all D ∈ D(G/K),
ϕλ(e) = 1.

By (4.9), the spherical functions of (G,K), considered as functions in C∞(a)W ∼= C∞(K\G/K),
are given by the hypergeometric function Fk(R; ·, ·) associated with (R, k) via

ϕλ(x) = Fk(R;λ, x). (4.10)

4.4 Riemannian symmetric spaces of reductive groups

The aim of this section to verify that the identification (4.10) of hypergeometric functions and
spherical functions on a Riemannian symmetric space G/K of non-compact type is still true
if G is replaced by a suitable reductive Lie group, i.e. a group of the Harish-Chandra class,
and Fk is the hypergeometric function for integral root systems as introduced in the Section
4.2 before. This extension will be important in what follows, because later in this thesis we
consider the case where X = G/K is a symmetric cone. We further identify the spherical
functions of the associated Riemannian symmetric space G0/K of Euclidean type, where G0
is the Cartan motion group of G, as Dunkl type Bessel functions in line with Section 1.3. For
the background on Lie groups of the Harish-Chandra class, their structure theory, and their
spherical functions we refer the reader to [GV88].

Definition 4.21. A (real) Lie group G lies in the Harish-Chandra class (write G ∈ H) if it
satisfies the following four conditions:

(i) G has a reductive Lie algebra g, i.e. g decomposes as a direct Lie algebra sum

g = c⊕ s,

with c abelian and s semisimple. In particular, one can conclude that c = z(g) is the
center of g and s = [g, g] is the derived Lie algebra.
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(ii) G has finitely many connected components.

(iii) Ad(G) ⊆ AdC(GC), where GC = 〈exp gC〉group, where Ad and AdC are the adjoint
representations of G and GC respectively.

(iv) S := 〈exp s〉group ⊆ G has finite center.

Proposition 4.22.

(i) If G is a connected Lie group, then G ∈ H if and only if G satisfy the properties (i)+(iv).

(ii) If G is a connected semisimple Lie group, then G ∈ H if and only if G has finite center.

(iii) G, G̃ ∈ H ⇒ G× G̃ ∈ H.

Proof. We prove part (i), since (ii) is an immediate consequence. Since both G and GC are
connected if G is connected, we have

Ad(G) = 〈eadg〉group , AdC(GC) = 〈eadCgC〉group

for ad(X)(Y ) = [X,Y ]. Since g ⊂ gC and adC|g = ad hold, part (i) is proven. Part (iii) is
obvious, because for a direct product we have (G × G̃)C = GC × G̃C and g ⊕ g̃ is the Lie
algebra of G× G̃. �

The following theorem is about symmetric cones and is one of the reasons why we take a
more general look on the Harish-Chandra class. For a background on symmetric cones see for
instance [FK94].

Lemma 4.23. Let Ω be a symmetric cone within an Euclidean Jordan algebra V with unit
e ∈ Ω. In particular, Ω = G/K, where G is the connected component of id inside the
automorphism group of Ω and K is the (connected) stabilizer of e in G. Then, K ⊆ G is
maximal compact and G ∈ H lies in the Harish-Chandra class.

Proof. Without loss of generality, we may assume that Ω is irreducible by Proposition
4.22. Otherwise we can decompose the Jordan algebra and the symmetric cone via V =
V1 ⊕ V2, Ω = Ω1 + Ω2 which leads to

Aut(Ω) ∼= Aut(Ω1)×Aut(Ω2),

i.e. G = G1 × G2. If Ω is irreducible, it is known from the classification of irreducible
symmetric cones that Ω is one of the following symmetric cones

V Ω g k

Symn(R) Posn(R) sln(R)⊕ R son(R)
Hermn(C) Posn(C) sln(C)⊕ R sun(C)
Hermn(H) Posn(H) sln(H)⊕ R sun(H)
Herm3(O) Pos3(O) e6(−26) ⊕ R f4
R× Rn−1 Lorn o(1, n− 1)⊕ R o(n− 1)

A case by case observation shows that in all cases we have G ∈ H. �

Let G ∈ H be a connected Lie group with exponential map exp. The Lie algebra
decomposes into g = c ⊕ s, where c is the center of g and s = [g, g] is semisimple. By
connectedness, G decomposes into

G = C · S with C = exp c and S = 〈exp s〉group .
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Let K ⊆ G be a maximal compact subgroup which is connected because of the connectedness
of G. From this, one has that K ∩ S ⊆ S is a (connected) maximal compact subgroup. In
particular, if g = k⊕ p is a Cartan decomposition of g, then s = (k ∩ s)⊕ (p ∩ s) is a Cartan
decomposition of s. Moreover, there exists a non-degenerate bilinear form B on gC such that:

(i) B is negative definite on k and positive definite on p.

(ii) k ⊥B p.

(iii) B is invariant under Ad(G), ad g and the associated Cartan involution θ.

(iv) B is real on g× g.

(v) c ⊥B s.

Then
〈X,Y 〉 := −B(X, θY ) (4.11)

defines an inner product on g invariant under Ad(K), θ and with the same orthgonality
properties as for B.
The construction of B is the following: on s× s it is given by the Cartan-Killing form and on
c one could choose any non-degenerate form which is negative definite on k ∩ c and positive
definite on p ∩ c.

Proposition 4.24. Choose a maximal abelian subspace a ⊆ p and the canonical maximal
abelian subspace (a ∩ s) ⊆ (p ∩ s). Let Σ ⊆ a ∩ s be the roots of s with respect to a ∩ s and let
s = s0 ⊕

⊕
α∈Σ sα be the root space decomposition, i.e.

sα = {X ∈ s | 〈α,H〉X = [H,X] for all H ∈ a ∩ s} .

Then we have:

(i) The roots of g with respect to a are precisely Σ.

(ii) If g = g0 ⊕
⊕
α∈Σ gα is the root space decomposition of g with respect to a, then

gα =
{
sα, α ∈ Σ,
c⊕ s0, α = 0.

.

Proof. We first observe that for X = X1 + X2 ∈ g with X1 ∈ c and X2 ∈ s we have for
H = H1 +H2 ∈ a with H1 ∈ (a ∩ c) and H2 ∈ (a ∩ s) that [H,X] = [H2, X2]. From this we
deduce that

g0 = c⊕ s0. (4.12)

Assume that α ∈ Σ ⊆ a ∩ s. Let X ∈ sα, i.e. 〈α,H〉X = [H,X] for all H ∈ a ∩ s. Since c is
the center of g and orthogonal to s, we observe that indeed for all H ∈ a

〈α,H〉X = [H,X] for all H ∈ a,

which means X ∈ gα. Therefore we have proven

sα ⊆ gα, α ∈ Σ. (4.13)

Let Σ′ ⊆ a be the roots of g with respect to a, so (4.13) implies that Σ ⊆ Σ′. Finally, from
the root space decomposition

g0 ⊕
⊕
α∈Σ′

gα = g = c⊕ s = (c⊕ s0)⊕
⊕
α∈Σ

sα
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we obtain with (4.12) and (4.13) that Σ = Σ′ and gα = sα for α ∈ Σ. �

Let g = k ⊕ a ⊕ n and G = KAN be Iwasawa decompositions. To be more precise, we
choose a system of positive roots Σ+ ⊆ Σ and put n = ⊕

α∈Σ+ gα, A = exp a and N = exp n.
From Proposition 4.24 we observe that in this case

s = (k ∩ s)⊕ (a ∩ s)⊕ n and S = (K ∩ S)(A ∩ S)N

are Iwasawa decompositions for s and S, respectively. We denote by HG : G→ a the Iwasawa
projection defined in terms of the Iwasawa decomposition by HG(kan) = log a, where log
is the inverse of the diffeomorphism exp : a→ A. For S we define in the same manner the
Iwasawa projection HS : S → (a ∩ s). Moreover, let W be the Weyl group associated with
the roots Σ. From s ⊥ c and Σ ⊆ a ∩ s, we obtain that W acts trivially on a ∩ c.
With our choice of 〈·, ·〉 on c it is well known that the spherical functions of the Gelfand pair
(G,K) are given by

ϕGλ (g) =
∫
K
e−〈λ+ρ,HG(g−1k)〉 dk, λ ∈ aC, g ∈ G (4.14)

with ρ = 1
2
∑
α∈Σ+ dim(gα)α and ϕλ = ψµ if and only if λ ∈ W.µ, cf. [GV88, Proposition

3.2.1]. Moreover, ϕλ is the unique K-biinvariant smooth function on G with

Dϕλ = γ(D)(λ)ϕλ, ϕλ(e) = 1

for all G-invariant differential operators D ∈ D(G/K) and the Harish-Chandra isomorphism
γ : D(G/K)→ C[a]W . The spherical functions of the Gelfand pair (S,K ∩ S) are similarly
given by

ϕSλ(s) =
∫
K∩S

e−〈λ+ρ,HS(s−1k)〉 dk, λ ∈ (a ∩ s)C, s ∈ G.

Lemma 4.25. Let πs and πc be the orthogonal projections of a onto s and c, respectively. We
extend the projections canonically to the complexifications of the spaces. Then the spherical
functions of (G,K) and (S,K ∩ S), considered as W -invariant functions on a and a ∩ s,
respectively, are related by

ϕGλ (x) = e〈πcλ,πcx〉ϕSπsλ(πsx)

for all λ ∈ aC and x ∈ a.

Proof. For x = x1 + x2 ∈ a with x1 ∈ a ∩ c and x2 ∈ a ∩ s we have

expx = exp(x1) exp(x2) = a1a2

with a1 = expx1 ∈ A ∩ C and a2 = expx2 ∈ A ∩ S. The assertion holds by the following:

(i) From a1 ∈ A ∩ C we obtain HG(a−1k) = log a−1
1 +HG(a−1

2 k) = HG(a−1
2 )− x1. Thus,

with ρ ∈ s ⊥ c we have

ϕGλ (x) = e〈λ+ρ,x1〉ϕGλ (x2) = e〈πcλ,x1〉ϕGλ (x2) = e〈πcλ,πcx〉ϕGλ (x2).

(ii) Since k = (k ∩ c)⊕ (k ∩ s), the connectedness of K shows that K = (K ∩ C) · (K ∩ S).
Hence, the quotient space K/(K ∩ S) can be identified with a subset of K ∩ C and by
Weyl’s integration formula there exists a unique probability measure dc on K/(K ∩ S)
such that for all a ∈ A ∩ S∫

K
e−〈λ+ρ,HG(a−1k)〉 dk =

∫
K/(K∩S)

∫
K∩S

e−〈λ+ρ,HG(a−1cs)〉 ds dc. (4.15)
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But for c ∈ K ∩C, a ∈ A∩S and s ∈ K ∩S we observe that HG(a−1cs) = HG(x−1s) =
HS(x−1s). Therefore, by equation (4.15) and ρ ∈ s ⊥ c we have for x = log a ∈ a ∩ s

ϕGλ (x) =
∫
K∩S

e−〈λ+ρ,HS(a−1k)〉 ds =
∫
K∩S

e−〈πsλ+ρ,HS(a−1k)〉 ds = ϕSπsλ(x).

�

The following theorem shows that the generalized hypergeometric function for integral root
systems, as introduced in Definition (4.13), generalizes the spherical functions of Riemannian
symmetric spaces related to Gelfand pairs of reductive Lie groups from the Harish-Chandra
class.

Theorem 4.26. The spherical functions of (G,K) are related to the hypergeometric function
Fk(R; ·, ·) from Definition 4.13 associated with R = 2Σ ⊆ a and k2α = dim gα

2 = dim sα
2 by the

following formula for all λ ∈ aC, x ∈ a

ϕGλ (x) = Fk(R;λ, x).

Proof. By the relation between the spherical functions of Riemannian symmetric spaces of
non-compact type and the hypergeometric functions of crystallographic root systems from
Remark 4.20, the assertion is an immediate consequence of Lemma 4.25 and the Definition
4.13 of the hypergeometric function. �

Theorem 4.27. Let G0 := K n p and S0 := (K ∩ S) n (p ∩ s) be the Cartan motion groups
associated with (G,K) and (S,K ∩S), where K and K ∩S act on p and (p∩ s) by the adjoint
representation, respectively. Then:

(i) The spherical functions of (S0,K ∩ S), considered as W -invariant functions on a ∩ s,
are

ψS0
λ (x) =

∫
K∩S

e〈λ,kx〉 dk, λ ∈ (a ∩ s)C,

such that for any K-invariant differential operator p(∂) on p ∩ s with p ∈ C[p ∩ s]K∩S
we have p(∂)ψS0

λ = p(λ)ψS0
λ .

(ii) The spherical functions of (G0,K), considered as W -invariant function on a, are

ψG0
λ (x) =

∫
K
e〈λ,kx〉 dk. λ ∈ aC

with p(∂)ψG0
λ = p(λ)ψG0

λ for all p ∈ C[p]K . Furthermore, if x ∈ a and λ ∈ aC we have

ψG0
λ (x) = e〈πcλ,πcx〉ψS0

πsλ
(πsx).

(iii) Let (R, k) be as in Theorem 4.26 and Jk(R; ·, ·) the associated Bessel function. Then,

ψG0
λ (x) = Jk(R;λ, x).

for all λ ∈ aC and x ∈ a.

Proof.

(i) This can be found in [Hel84, Proposition 4.8].
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(ii) The integral representation of the spherical functions has the same proof as in the case
where G is semisimple. Consider x = xc + xs with xc ∈ a ∩ c and xs ∈ a ∩ s. Then, as
for all k ∈ K we have kxc = xc and s ⊥ c, we observe

ψG0
λ (x) = e〈λ,xc〉ψG0

λ (xs) = e〈πcλ,πcx〉ψG0
λ (πsx).

Finally, for x ∈ a ∩ s and c ∈ K/(K ∩ S) ⊆ K ∩ C we have cx = x, as C is contained
in the kernel of the adjoint representation. Thus, as in the proof of Theorem 4.10 we
obtain with s ⊥ c

ψG0
λ (x) =

∫
K/(K∩S)

∫
K∩S

e〈λ,kcx〉 dk dc =
∫
K∩S

e〈πsλ,kx〉 dk = ψS0
πsλ

(x).

(iii) This is obtained from part (ii), the product decomposition of the Bessel function in
Remark 1.17 and Section 1.3.

�

Remark 4.28. Lemma 4.25, Theorem 4.10 and Theorem 4.27 are still true if G ∈ H is not
connected. As a maximal compact subgroup K ⊆ G meets every connected component of G,
cf. [GV88, Proposition 2.1.7], the spherical functions of (G,K) and (Ge,Ke) (the connected
components of the unit e) can be identified.

4.5 Generalization of the Helgason-Johnson theorem

The classical Helgason-Johnson theorem states the following, cf. [HJ69]. Let G ∈ H be a
Lie group of the Harish-Chandra class and K ⊆ G a maximal compact subgroup. Then the
spherical function ϕλ from (4.14) is bounded if and only if λ ∈ co(W.ρ) + ia. In [NPP14,
Theorem 4.2] the authors extend the Helgason-Johnson theorem to the hypergeometric
functions Fk associated with a crystallographic root system R inside a Euclidean space a with
multiplicity function k ≥ 0. To become more precise, they prove that Fk(λ, ·) is a bounded
function on a if and only if λ ∈ co(W.ρ(k)) + ia. In this section we will generalize the results
to the Cherednik kernel of an integral root system in an obvious manner. This will have as a
consequence a Riemann-Lebesgue lemma for the Cherednik transform.
To do so, we fix a Euclidean space (a, 〈·, ·〉) with an integral root system R ⊆ a, positive roots
R+ ⊆ R, Weyl group W = W (R) and a non-negative mulitplicity k ≥ 0 on R.

Lemma 4.29. Let R be irreducible and crystallographic. Choose inside R+ simple roots
α1, . . . , αn ∈ R+ and put s1, . . . , sn for the associated reflections. Put ki = kαi + 2k2αi with
k2α = 0 in the case that α /∈ R. Let β be the unique highest short root. Then the Cherednik
kernel associated with (R+, k) satisfies:

(i) For all λ ∈ aC with 〈β∨, λ〉 6= 1, i.e. sβλ 6= λ− β, we have(
1 + kβ

1− 〈β∨, λ〉

)
Gk(β + sβλ, ·) =

(
e〈β,·〉sβ + kβ

1− 〈β∨, λ〉

)
Gk(λ, ·).

(ii) For all λ ∈ aC with 〈α∨i , λ〉 6= 0, i.e. siλ 6= λ, we have(
1 + ki
〈α∨i , λ〉

)
Gk(siλ, ·) =

(
si + ki

〈α∨i , λ〉

)
Gk(λ, ·).
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(iii) Choose λ ∈ a− = −a+ and w = si1 · · · sim ∈ W in a reduced expression. If we put
λ(j) := sij+1 · · · simλ, then 〈α∨ij , λ(j)〉 < 0 and we have for all j = 0, . . . ,m− 1, x ∈ a

Gk(λ(j−1), x) ≤
(

1−
kij

〈α∨ij , λ(j)〉

)
Gk(λ(j), sijx).

In particular, for all λ ∈ a− and w ∈W there is a constant C = C(λ,w, k) such that

Gk(wλ, x) ≤ C ·Gk(λ,w−1x). (4.16)

Proof. By the same arguments as in Lemma A.3 of the appendix, the Cherednik operators
for integral roots systems satisfy the same intertwining relation. Moreover, the assertions
(i) and (ii) for the Cherednik kernel can be proven, up to a constant factor, working as in
Theorem A.4 for the Heckman-Opdam polynomials. The constant factor is then computed by
evaluation at 0.
So it remains to prove part (iii). Consider λ ∈ a− and w ∈W with reduced expression w =
si1 · · · sim in terms of the simple reflections s1, . . . , sn. Set λ(j) = w′λ with w′ := sij+1 · · · sm.
Since the expression is reduced, the lengths of w′ and sijw′ arem−j andm−j+1, respectively.
By a standard argument as in [Hum90, Chapter 5] we conclude that w′−1αij ∈ R+ is a
positive root, i.e. 0 > 〈w′−1αij , λ〉 = 〈αij , λ(j)〉 and 0 < 〈αij , λ(j−1)〉 = −〈αij , λ(j)〉. Since the
Cherednik kernel is positive, we obtain from part (ii) for all x ∈ a

Gk(λ(j−1), x) ≤ Gk(λ(j−1), x) +
kij

〈α∨ij , λ(j−1)〉
Gk(λ(j−1), sijx)

=
(

1 +
kij

〈α∨ij , λ(j−1)〉

)
Gk(sijλ(j−1), sijx) =

(
1−

kij
〈α∨ij , λ(j)〉

)
Gk(λ(j), sijx).

Hence, by induction, the estimate (4.16) is true with the constant

C :=
n∏
j=1

(
1−

kij
〈α∨ij , λ(j)〉

)
.

�

For x ∈ a we abbreviate
C(x) := co(W.x),

where co(W.x) is the convex hull of the orbit W.x.
We are now in a position to prove the following generalization of the Helgason-Johnson
theorem for the Cherednik kernel of an integral root system.

Theorem 4.30. Assume that R is an integral root system.

(i) The Cherednik kernel Gk(λ, ·) is bounded as function on a if and only if λ ∈ C(ρ(k))+ ia.

(ii) There exists Ck > 0 such that |Gk(λ, x)| ≤ Ck for all λ ∈ C(ρ(k)) + ia and x ∈ a .

(iii) For λ ∈ aC, µ ∈ C(ρ(k)) + ia and x ∈ a we have

|Gk(λ+ µ, x)| ≤ Ck emaxw∈W 〈Reλ,wx〉.

Proof. Part (iii) is an immediate consequence of part (ii) and Theorem 4.17. Therefore,
it remains to prove parts (i) and (ii). By Remark 4.19 and (4.6) we assume without loss of
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generality that R is irreducible and crystallographic.
First of all, if Gk(λ, ·) is bounded, then Fk(λ, ·) is bounded as well. Thus, by [NPP14, Theorem
4.2] we have λ ∈ C(ρ(k)) + ia.
Conversely, assume that λ ∈ Ω := C(ρ(k)) + ia and fix x ∈ a. Since λ 7→ Gk(λ, x) is
holomorphic and |Gk(λ, x)| ≤ Gk(Reλ, x), we conclude

max
λ∈Ω
|Gk(λ, x)| = max

λ∈∂C(ρ(k))
Gk(λ, x).

Consider µ1, µ2 ∈ ∂C(ρ(k)), the line segment [µ1, µ2] ⊆ a joining µ1 and µ2, as well as
LC = {zµ1 + (1− z)µ2 | z ∈ C}. Then, the function λ 7→ |Gk(λ, x)|, restricted to Ω ∩{
λ ∈ LC | Reλ ∈ [µ1, µ2]

}
, attains its maximum at the real points on the boundary, namely

at µ1 and µ2. Since the extreme points of C(ρ(k)) are precisely W.ρ(k), we see that

max
λ∈Ω
|Gk(λ, x)| = max

λ∈W.ρ(k)
Gk(λ, x). (4.17)

By Theorem 4.29 (iii) and −ρ(k) ∈ a−, there exists a constant C(w, k) > 0, independent of x
and λ, such that for all w ∈W we have

|Gk(−wρ(k), x)| ≤ C(w, k) ·Gk(−ρ(k), wx) = C(w, k). (4.18)

Finally, putting (4.17) and (4.18) together, we deduce that for all λ ∈ Ω and x ∈ a we have

|Gk(λ, x)| ≤ Ck := max
w∈W

C(w, k).

�

As a consequence of this theorem, we will give decay results for the Cherednik transform
which generalizes the spherical Fourier transform on Riemannian symmetric spaces of non-
compact type.

Definition 4.31. The Cherednik transform of a suitable function f : a→ C is defined by

Hkf(λ) :=
∫
a
f(x)Gk(iλ,−x)δk(x) dx, λ ∈ a

with the weight function
δk(x) :=

∏
α∈R+

∣∣∣2 sinh 〈α,x〉2

∣∣∣2kα .
Notice that due to Proposition 4.15 we could replace in the definition of Hk the kernel
Gk(iλ,−x) by Gk(−iw0λ,w0x), where w0 is the longest element of W with respect to R+.
The inverse Cherednik transform is defined by

Ikf(x) :=
∫
a
f(λ)Gk(iλ, x)ν(iλ) dλ,

with the weight function

ν(λ) = c ·
∏
α∈R+

Γ(〈λ, α∨〉+ kα + 1
2kα/2)Γ(−〈λ, α∨〉+ kα + 1

2kα/2 + 1)
Γ(〈λ, α∨〉+ 1

2kα/2)Γ(−〈λ, α∨〉+ 1
2kα/2 + 1)

,

where c is a suitable normalization constant and kα/2 = 0 for α/2 /∈ R.
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Remark 4.32. Recall Theorem 4.26, i.e. the relation between the hypergeometric function
and spherical functions of a Riemannian symmetric space G/K associated with a Lie group
G ∈ H of the Harish-Chandra class. Consider f ∈ C∞c (a)W and the associated unique
K-biinvariant function F ∈ C∞c (G) with F (ex) = f(x) for all x ∈ a. Then, the Cherednik
transform of f can be rewritten

Hkf(λ) =
∫
a
f(x)Fk(iλ,−x)δk(x) dx =

∫
a
f(x)ϕGiλ(ex)δk(x) dx =

∫
G
F (g)ϕGiλ(g) dg, (4.19)

where the last equality can be found in [GV88, Proposition 2.4.6]. The last integral in (4.19)
is the Harish-Chandra transform on G/K, i.e. the spherical Fourier transform associated with
(G,K).

The following Theorem can be found in [Opd93, Sch08] for crystallographic roots systems
and is easily extended to integral root systems.

Theorem 4.33. Consider the Paley-Wiener space H(aC) as defined in (1.7). Furthermore,
define a weighted Schwartz space

C(a) := {f ∈ C∞(a) | σn,α(f) <∞ for all n ∈ N0, α ∈ Nn0} ,

here the seminorms σn,α are defined by

σn,α(f) := sup
x∈a

(1 + |x|)ne−〈ρ(k),x+〉∣∣∂αf(x)
∣∣,

where x+ is the unique element in W.x∩ a+. The space C(a) becomes a Fréchet space with the
topology induced by the seminorms (σn,α)n∈N0,α∈Nn0 . Then the following assertions hold:

(i) Hk : C∞c (a) → H(aC) is a topological isomorphism with inverse Ik. Here the spaces
C∞c (a) and H(aC) have their natural Fréchet space topologies.

(ii) Hk : C(a)→ S (a) is a topological isomorphism with inverse Ik.

We can now prove the non-symmetric generalization of [NPP14, Corollary 5.1].

Theorem 4.34. Let Ck be the constant from Corollary 4.30. Then the following generalized
Riemann-Lebesgue lemma holds for f ∈ L1(a, δk):

(i) ‖Hkf‖∞,a+iC(ρ(k)) ≤ Ck ‖f‖1,δk .

(ii) The Cherednik transform Hkf is continuous on a + iC(ρ(k)) with

lim
|λ|→∞

Imλ∈C(ρ(k))

Hkf(λ) = 0. (4.20)

(iii) If R is crystallographic, then the interior of C(ρ) ⊆ a is non-empty and the Cherednik
transform Hkf is holomorphic in the interior of a + iC(ρ(k)).

Proof. Part (i) is an immediate consequence of Theorem 4.30. Let f ∈ L1(a, δk). The
continuity (and holomorphicity in the crystallographic case) of Hkf is obtained from Theorem
4.30 and standard theorems on continuous and holomorphic parameter integrals. The decay
(4.20) of Hkf follows for f ∈ C∞c (a) from Theorem 4.33. For general f ∈ L1(a, δk) we obtain
(4.20) by part (i) by dominated convergence and the fact that C∞c (a) ⊆ L1(a, δk) is a dense
subspace. �
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Part II

Dunkl theory in line with radial
analysis on symmetric cones
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chapter 5
Radial analysis on symmetric cones and Dunkl theory

In his unpublished manuscript [Mac89] from the 1980ies, Macdonald introduced hypergeometric
series in terms of Jack polynomials, which include the hypergeometric functions on symmetric
cones as special cases. In this context, he also introduced a generalization of the Laplace
transform for radial functions on symmetric cones, but many statements in [Mac89] remained
at a formal level. Radial analysis on symmetric cones is closely related to Dunkl theory for root
systems of type A, and also Macdonald’s concepts have a natural interpretation within Dunkl
theory, because the 0F0-hypergeometric function, which replaces the exponential kernel in the
Macdonald’s Laplace transform, is just a Dunkl-Bessel function of type A. The connection of
the concepts in [Mac89] to Dunkl theory was already observed by Baker and Forrester in their
seminal papers [BF97, BF98] related to the study of Calogero-Moser-Sutherland models.
This chapter is intended to give a brief overview about the connection between radial analysis
on symmetric cones and Dunkl theory. For a general background on symmetric cones the
reader is referred to [FK94].
For this chapter we fix an irreducible symmetric cone Ω inside a simple Euclidean Jordan
algebra V with unit e ∈ V and inner product (·|·), cf. the proof of Lemma 4.23 for a
classification. Then, Ω is identified with the symmetric space G/K, where G is the connected
component of id inside the automorphism group of Ω and K is the stabilizer of e inside G. In
particular, G is a Lie group of the Harish-Chandra class and K ⊆ G is a maximal compact
subgroup.
Let m be the dimension of V , n the rank and d the Pierce-dimension constant. According
to the classification of simple Euclidean Jordan algebras and symmetric cones we have the
following possibilities:

V Ω g k m n d

Symn(R) Posn(R) sln(R)⊕ R son(R) n(n+1)
2 n 1

Hermn(C) Posn(C) sln(C)⊕ R sun(C) n2 n 2
Hermn(H) Posn(H) sln(H)⊕ R sun(H) n(2n− 1) n 4
Herm3(O) Pos3(O) e6(−26) ⊕ R f4 27 3 8
R× Rn−1 Lorn o(1, n− 1)⊕ R o(n− 1) n 2 n− 2

Let c1, . . . , cn ∈ V be a fixed Jordan frame. Let k ⊆ g ⊆ End(V ) be the Lie algebras of
K and G, respectively. Then, the map X 7→ −X∗, where X∗ is the adjoint of X ∈ g,
is the Cartan involution on g associated with k. Let g = k ⊕ p be the associated Cartan
decomposition. A maximal abelian subspace of p is given by a = spanR {L(ci) | i = 1, . . . , n},
where L(ci) : V → V, x 7→ cix. The associated root system Σ is of type An−1. Moreover,
for any element x ∈ V there exists an element k ∈ K and unique (up to permutation)
λ1, . . . , λn ∈ R, called spectral values, with

x = k
n∑
i=1

λici.

Furthermore, x ∈ Ω if and only if λ1, . . . , λn > 0. The Jordan determinant and Jordan trace
of x ∈ V are defined by

det(x) = λ1 · · ·λn and tr(x) = λ1 + . . .+ λn. (5.1)
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It is known that there exists a constant c > 0, such that the inner product of V is given by
(x|y) = ctr(xy). By the right choice of c, we have an isometric isomorphim

Rn → spanR {c1, . . . , cn} , ei 7→ ci,

where e1, . . . , en is the canonical basis of Rn and Rn is equipped with the inner product
〈x, y〉 = ∑n

i=1 xiyi. Inside Rn, we consider the root system

An−1 = {±(ei − ej) | 1 ≤ i < j ≤ n}

with root multiplicity k = d
2 .

The first important observation is the following integration formula from [FK94, Theorem
VI.2.3].

Theorem 5.1. There exist a constant c0 > 0 such that for all integrable f : V → C we have∫
V
f(x) dx = c0

∫
K

∫
C+

f
(
k
∑n

i=1
ξici

)∏
i<j

|ξi − ξj |d dξ dk

= c0
n!

∫
K
f
(
k
∑n

i=1
ξici

)
ωAd/2(ξ) dξ dk

with C+ = {ξ ∈ Rn | ξ1 < . . . < ξn} and the weight function ωAk (x) = ∏
α∈An−1 |〈α, x〉|

k.

The spherical functions of the Gelfand pair (G,K) can be constructed as K-invariant
functions on V as follows. Let V (k) ⊆ V be the eigenspace of the multiplication operator
x 7→ (c1 + . . .+ ck)x associated with the eigenvalue 1. It turns out that V (k) is a Euclidean
Jordan algebra and denote by det(k) the associated Jordan determinant. If Pk : V → V k,
k = 1, . . . , n are the orthogonal projections, put ∆k(x) := det(k)(Pkx). Then, the generalized
power function is defined for s = (s1, . . . , sn) ∈ Cn by

∆s : V → C, ∆s(x) := ∆1(x)s1−s2 · · ·∆n−1(x)sn−1−sn∆n(x)sn (5.2)

and it holds
∆s+(t,...,t)(x) = det(x)t∆s(x). (5.3)

The spherical functions of the Gelfand pair (G,K) are characterized by the following
theorem.

Lemma 5.2 ([FK94, Theorem XIV.3.1]). The spherical functions of (G,K) are indexed by
λ ∈ Cn as K-invariant functions on V by

ϕΩ
λ (x) :=

∫
K

∆λ+ρ(kx) dk.

with ρ = d
4 (1− n, 3− n, . . . , n− 1) = k

2
∑
i<j(ej − ei) ∈ Rn. Moreover, ϕλ = ϕµ if and only if

λ = σµ for some σ ∈ Sn.

Theorem 5.3. Let FAk and JAk be the hypergeometric function and Bessel function associated
with (An−1, k) on Rn, respectively. For x ∈ V we denote by specx ∈ Rn the spectral values of
x in decreasing order. Then,

(i)
∫
K
e(kx|y) dk = JAk (specx, spec y) for all x, y ∈ V .

(ii) ϕΩ
λ (a1c1 + . . .+ ancn) = FAk (λ, (ln a1, . . . , ln an)) for all a1, . . . , an > 0.

(iii) ϕΩ
λ (x) = Fk(λ, log specx) for all x ∈ Ω, where log y = (ln y1, . . . , ln yn) for y ∈ Rn.
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Proof. Part (i) follows from Theorem 4.27, see also [Rö20, Remark 3.2]. Part (iii) is a
consequence of part (ii). For part (ii) we observe the following. The group G decomposes into
reversed Iwasawa decomposition G = NAK, cf. [FK94, Theorem VI.3.6] with

A =
{
P (a) | a =

∑n

i=1
aici, ai > 0

}
, P (x) = (y 7→ 2x(xy)− x2y).

The generalized power functions satisfies by [FK94, Proposition VI.3.10] for n ∈ N and k ∈ K

∆s(nP (a)ke) = ∆s(P (a)e) = a2s1
1 · · · a2sn

n = e〈s,(ln a
2
1,...,ln a2

n)〉.

The Iwasawa projection HG : G→ a ∼= Rn is given with [FK94, Proposition II.3.4] by

HG(kP (a)n) = HG(eL(∑n

i=1 ln(a2
i )·ci))) = (ln a2

1, . . . , ln a2
n)

and satisfies

∆s(k(a2
1c1 + . . .+ a2

ncn)) = ∆s(kP (a)e) = e−〈s,H
G(P (a)−1k−1)〉,

which leads immediately with Theorem 4.26 to

ϕΩ
λ (a2

1c1 + . . .+ a2
ncn) =

∫
K
e−〈λ+ρ,HG(P (a)−1k)〉 dk = FAk (λ, (ln a2

1, . . . , ln a2
n)).

�

Proposition 5.4. The spherical function ϕΩ
λ is a polynomial on V if and only if λ = σ(m−ρ)

with m = (m1, . . . ,mn) ∈ Zn, σ ∈ Sn and m1 ≥ . . . ≥ mn ≥ 0. The functions

ΦΩ
m := ϕΩ

m−ρ

are called the spherical polynomials of Ω.

One of the most important integral identities that will be generalized in this part of the
thesis is the following from [FK94, Proposition VII.1.2]:

Theorem 5.5. For y ∈ Ω and s = (s1, . . . , sn) ∈ Cn with Re sj > (j−1)d2 for all j = 1, . . . , n∫
Ω
e−(x|y)∆s(x) det(x)−

m
n dx = ΓΩ(s)∆s(y−1),

with the Gamma function ΓΩ(s) = (2π)
m−n

2
∏n
j=1 Γ(sj − (j − 1)d2) of the cone. In particular,

the identity is still true if ∆s is replaced by the spherical functions ϕΩ
λ .
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chapter 6
Laplace transform of hypergeometric functions

6.1 Introduction
The Laplace transform is an important tool in various areas of harmonic analysis and forms a
cornerstone in the analysis on symmetric cones, see [FK94]. In particular, there are important
Laplace transform identities between pFq-hypergeometric functions on a symmetric cone,
which are given as expansions with respect to the associated spherical polynomials, c.f. [FK94,
Chap.XV]. For cones of positive definite matrices, such hypergeometric series trace back
to ideas of Bochner and were studied in detail by Herz [Her55], where they were actually
defined recursively by means of the Laplace transform. For important further developments
see for instance [Con63, GR87, Kan93]. Multivariable hypergeometric series have found many
applications in multivariate statistics [Mui82], but also in number theory and mathematical
physics.
Consider a symmetric cone Ω = G/K inside a simple Euclidean Jordan algebra V of dimension
m, rank n and with Peirce constant d which takes only specific integer values. Let F ∈ L1

loc(Ω)
be K-invariant, that is of the form F (x) = f(spec(x)), where spec(x) ∈ Rn+ with R+ =]0,∞[
denotes the set of eigenvalues of x in decreasing order. Then for y ∈ Ω, the Laplace transform

LF (y) =
∫

Ω
e−(x|y)F (x) dx

depends only on η = spec(y) ∈ Rn+ and can be written by Theorems 5.1 and 5.3 as

LF (y) = const ·
∫
Rn+
JAd/2(−ξ, η)f(ξ)ωAd/2(ξ) dξ. (6.1)

An important observation by Macdonald in [Mac89] was that for k = d
2

JAk (z, w) =
∑
λ∈Λn+

1
|λ|!

Cαλ (z)Cαλ (w)
Cαλ (1, . . . , 1) = 0F

α
0 (z, w), α = 1

k
∈ ]0,∞]. (6.2)

Here Λn+ denotes the set of partitions with at most n parts and the Cαλ are the (symmetric)
Jack polynomials of index α in C-normalization as in Lemma 6.16 below. See e.g. [Rö20]
for some details. On the other hand, it is well-known (c.f. [BF98] and Remark 6.21) that
for arbitrary k ≥ 0, the equation (6.2) holds. Macdonald [Mac89] considered the Laplace
transform (6.1) with the Bessel function e(z, w) = 0F

α
0 (z, w) for arbitrary indices α > 0.

Many of his calculations were of a formal nature and rested on the following “Conjecture (C)”
about the Laplace transform of Jack polynomials: For arbitrary k ≥ 0, let

µ0 := k(n− 1) and ∆(z) :=
n∏
j=1

zj for z ∈ Cn

and write Cλ(z) := C
1/k
λ (z) for abbreviation. Then for all λ ∈ Λn+, y ∈ Rn+ and all µ ∈ C with

Reµ > µ0 ,∫
Rn+
JAk (−y, x)Cλ(x)∆(x)µ−µ0−1ωAk (x) dx = Γn(λ+ µ)Cλ

( 1
y

)
∆(y)−µ. (6.3)
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Here Γn(λ) = Γn(λ; k) is Macdonald’s multivariate gamma function defined in formula (6.7)
below. In [Rö20], there is a rigorous treatment of the Dunkl-Laplace transform

Lf(z) :=
∫
Rn+
EAk (−z, x)f(x)ωk(x) dx

where compared to Macdonald’s version, the Bessel function is replaced by the Dunkl kernel
Ek of type An−1 and multiplicity k. This transform was already considered by Baker and
Forrester [BF98] and later used in [SZ07], but convergence issues had remained open for a
long time. The convergence issues and analytic aspects were studied then in [Rö20]. Formula
(6.3) generalizes a Laplace transform identity for spherical polynomials on the symmetric cone
Ω, which is in turn a consequence of the following important Laplace transform identity for
the generalized power functions ∆s, s = (s1, . . . , sn) ∈ Cn with Re sj > d

2(j − 1) (see [FK94,
Chapter VII]) ∫

Ω
e−(y|x)∆s(x) det(x)−m/n dx = ΓΩ(s)∆s(y−1) for all y ∈ Ω, (6.4)

where ΓΩ is the Gindikin gamma function associated with Ω. Taking K-means in (6.4), one
gets the same Laplace transform identity for the spherical functions of Ω as∫

Ω
e−(y|x)ϕΩ

λ (x) det(x)−m/n dx = ΓΩ(λ)ϕΩ
λ (y−1). (6.5)

For parameters λ ∈ Λn+, the spherical function ϕΩ
λ−ρ are just the spherical polynomials of Ω

and are related to the Jack polynomials by

ϕΩ
λ−ρ(x) = C

2/d
λ (spec(x))

C
2/d
λ (1, . . . , 1)

.

Rewriting (6.5) by means of identity (6.2), one gets formula (6.3) for the particular multiplicity
k = d/2. It is well-known that the spherical functions of Ω can be expressed in terms of
Heckman-Opdam hypergeometric functions of type An−1 and with multiplicity k = d/2, see
Theorem 5.3. In the present chapter, we shall establish a generalization of formula (6.5) to
the Dunkl setting of type An−1 with arbitrary multiplicity k ≥ 0. Namely, we obtain in
Corollary 6.15 the following Laplace transform identity for Heckman-Opdam hypergeometric
functions of type An−1 and, more generally, for the associated Opdam-Cherednik kernel
Gk(λ, x) = G

A+
k (λ, (ln x1, . . . , ln xn)) with positive roots A+

n−1 = {ej − ei | 1 ≤ i < j ≤ n}:
For λ ∈ Cn with Reλi ≥ µ0 and z ∈ Cn with Re zi > 0,∫

Rn+
Ek(−z, x)Gk(λ, x) ∆(x)−µ0−1ωk(x) dx = Γn(λ+ ρ)Gk(λ, 1

z ). (6.6)

The first step towards the proof of (6.6) will be a rigorous proof of Macdonald’s Conjecture (C).
More generally, we shall prove Dunkl-Laplace transform identities for the non-symmetric Jack
polynomials in the sense of [Opd95, KS97], from which (6.3) then follows by symmetrization.
These non-symmetric identities were already stated in [BF98], but the proof given there
in terms of Laguerre expansions is involved and not fully carried out. The proof we are
presenting here is completely different and very natural; it is based on a reformulation via
Dunkl operators and is carried out by induction, using the raising operator of Knop and Sahi
[KS97] for the non-symmetric Jack polynomials. The statement for the Cherednik kernel is
then obtained via analytic continuation with respect to the spectral variable, and for the
hypergeometric function it follows by symmetrization.
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Based on the Laplace transform identities for Jack polynomials, we then study hypergeometric
series in terms of Jack polynomials of the form

pFq(µ; ν; z, w) :=
∑
λ∈Λn+

[µ1]λ · · · [µp]λ
[ν1]λ · · · [νq]λ

Cλ(z)Cλ(w)
|λ|!Cλ(1) (µ ∈ Cp, ν ∈ Cq)

as well as their non-symmetric analogues, and we establish Laplace transform identities between
them. This generalizes known results on symmetric cones and settles several conjectural
Laplace transform formulas in [Mac89]. As a further application, we finally prove a Post-
Widder inversion theorem for the Dunkl-Laplace transform, which complements a result by
Faraut and Gindikin in [FG90] for the Laplace transform on symmetric cones.
The organization of this chapter is as follows: Section 2 provides the necessary background
on the type A Dunkl-Laplace transform. In Section 3, we collect results on the symmetric
and non-symmetric Jack polynomials which will be relevant in the sequel, and we prove the
Dunkl-Laplace transform identities for Jack polynomials. In Section 4 the Laplace transform
identities for Jack polynomials are extended to the Opdam-Cherednik kernel and to the
hypergeometric function. Section 5 is devoted to the study of Jack-hypergeometric series. In
Section 6 we are able to prove that the Dunkl type Riesz distributions from [Rö20] is a group
under Dunkl convolution. Finally Section 7 contains a binomial formula for the Cherednik
kernel and hypergeometric function, and Section 8 contains the Post-Widder inversion formula
in the Dunkl setting.

6.2 The type A Dunkl setting

We consider the root system An−1 = {±(ei − ej) | 1 ≤ i < j ≤ n} in the Euclidean space
Rn with inner product 〈x, y〉 = ∑n

i=1 xiyi and norm |x| =
√
〈x, x〉, where the ei denote the

standard basis vectors. The inner product 〈·, ·〉 is extended to Cn in a C-bilinear way. The
reflection group generated by An−1 is the symmetric group Sn on n elements, permuting the
coordinates in Rn. To avoid notational overload, we shall always suppress in our notations
the dependence on the fixed multiplicity parameter k ≥ 0 on the root system An−1. The
Dunkl kernel and Bessel function on Rn associated with (An−1, k) are denoted by EA and JA,
respectively. Furthermore, the Dunkl weight function is denoted by

ωA(x) =
∏
i 6=j
|xi − xj |k .

Furthermore, we fix the following notations for µ ∈ C, z ∈ Cn and η ∈ Nn0 :

Rn+ :=]0,∞[n

µ := (µ, . . . , µ)
∆(z) := z1 · · · zn
µ0 := k(n− 1),

Γn(λ) :=
n∏
j=1

Γ(1 + jk)Γ(λj − k(j − 1))
Γ(1 + k) ,

Γn(µ) := Γn(µ),

[µ]η :=
n∏
j=1

(µ− k(j − 1))ηj =
Γn(µ+ η)

Γn(µ) .

(6.7)

The function Γn is Macdonald’s gamma function and [µ]η is a generalized Pochhammer symbol.
Furthermore, we write P for the polynomial functions on Rn and Pm for the subspace of
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elements that are homogeneous of degree m.
As already mentioned, Dunkl analysis associated with the root system An−1 generalizes the
radial analysis on symmetric cones, which just corresponds to the multiplicity values k = d/2,
where d is the Peirce constant of the cone. According to equation (6.1), we consider the
Dunkl-Laplace transform in the sense of the following definition, first considered in [BF98].

Definition 6.1. For f ∈ L1
loc(Rn+) we define the Dunkl-Laplace transform by

Lf(z) :=
∫
Rn+
f(x)EA(−z, x)ω(x) dx,

if the integral converges for z ∈ Cn.

For x ∈ Rn+ and z ∈ Cn with Re z ≥ a for some a ∈ Rn (which is understood component-
wise), the type A Dunkl kernel satisfies the exponential bound

|EA(−z, x)| ≤ exp
(
−‖x‖1 · min

1≤i≤n
ai
)
, (6.8)

see [Rö20]. Here ‖x‖1 = ∑n
i=1 |xi|. This estimate, which seems to be exclusive in type A,

guarantees good convergence properties of the Laplace integral. In the following, we write for
x ∈ Rn and a ∈ R

x > a iff xi > a for all i = 1, . . . , n.
We recall the following Lemma from [Rö20].

Lemma 6.2. Suppose that f : Rn+ → C is measurable and exponentially bounded according to
|f(x)| ≤ Ces‖x‖1 with some constants C > 0 and s ∈ R. Then Lf(z) exists and is holomorphic
on {z ∈ Cn | Re z > s} . Moreover, for each polynomial p ∈ P

p(−T )(Lf) = L(fp)

as functions on {Re z > s} .

Let us turn to the trigonometric setting. We fix the positive roots

A+
n−1 = {ej − ei | i < j} ,

and the associated (trigonometric) Cherednik operators

Dξ := Dξ(A+
n−1, k) := ∂ξ − 〈ρ(R+), ξ〉+ k

∑
α∈A+

n−1

〈α, ξ〉 1− sα
1− e−〈 ·,α〉

,

with ξ ∈ Rn and the Weyl vector

ρ := ρ(R+) := ρ(R+, k) := k

2
∑

α∈A+
n−1

α = −k2 (n− 1, n− 3, . . . ,−n+ 1). (6.9)

Let G(λ, z) = Gk(A+
n−1, λ, z) be the Cherednik kernel on Rn associated with (A+

n−1, k), see
Theorem 4.12. Similar, we denote by F the hypergeometric functions on Rn associated with
(An−1, k). According to Theorem 4.12, G and F are holomorphic on the domain Cn×(Rn+iΩ)
with

Ω = {x ∈ Rn | |xi − xj | < π for all i < j} .

On H := {z ∈ Cn | Re z > 0} we define the biholomorphic logarithm

log : H → (Rn + iΩ′), (z1, . . . , zn) 7→ (ln z1, . . . , ln zn).

with Ω′ := {x ∈ Rn | 2 |xi| < π for all i = 1, . . . , n} ⊆ Ω. In view of Theorem 5.3 we make the
following definition.
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Definition 6.3. We define the rational Cherednik kernel G and hypergeometric Function F
as the holomorphic functions with domain Cn ×H and

G(λ, z) = G(λ, log z), F(λ, z) = F (λ, log z).

In particular, in the case where the multiplicity is given by k = d
2 , where d is the Pierce

dimension constant of a symmetric cone Ω of rank n, the functions (F(λ, ·))λ∈Cn are precisely
the spherical functions of the cone Ω, see Theorem 5.3.

Note that the longest element of Sn with respect to A+
n−1 is given by

Cn → Cn, λ 7→ λR = (λn, . . . , λ1).

From the results of Section 4.2 and Theorem 4.30 we obtain the following lemma.

Lemma 6.4. For z ∈ H, λ, λ′ ∈ Cn, µ ∈ C and x ∈ Rn+ we have

(i) ∆(z)µ G(λ, z) = G(λ+ µ, z).

(ii) G(λ, 1
z ) = G(−λR, zR) and F(λ, 1

z ) = F(−λ, z), where 1
z is understood componentwise.

(iii) |G(λ+ λ′, x)| ≤ G(Reλ′, x) ·maxσ∈Sn xRe(σλ).

(iv) There exists C = Ck > 0 such that for all λ̃ ∈ co(Sn.ρ) + iRn

G(λ+ λ̃, x) ≤ C ·max
σ∈Sn

xRe(σλ).

Parts (i),(iii) and (iv) are still true if G is replaced by F .

6.3 Jack polynomials and Macdonald’s conjecture

We first recall some well-known facts about Jack polynomials from [KS97, For10, Sta89] and
show how they are connected to the rational Cherednik kernel and hypergeometric function
introduced before. Let Λn+ = {λ ∈ Nn0 | λ1 ≥ . . . ≥ λn} denote the set of partitions of length
at most n. The dominance order on Λn+ is given by

µ ≤D λ iff |λ| = |µ| and
r∑
j=1

µj ≤
r∑
j=1

λj for all r = 1, . . . , n ,

where |λ| = λ1 + . . .+ λn. The dominance order is extended from Λn+ to Nn0 , the compositions
of length at most n, as follows: For each composition η ∈ Nn0 denote by η+ ∈ Λn+ the unique
element in the Sn-orbit of η. Then the extended dominance order on Nn0 is defined by

κ � η iff
{
κ+ ≤D η+, κ+ 6= η+,

wη ≤ wκ, κ+ = η+,

where wη ∈ Sn is the shortest element with wηη+ = η, and ≤ refers to the Bruhat order on
Sn. Consider the rational Cherednik operators

Dj = Dj(k) := xjTj + k(1− n) + k
∑
i>j

sij , j = 1, . . . , n

where the Tj := Tej (k) are the type A Dunkl operators with multiplicity k, xj denotes the
multiplication operator (xjf)(y) := yjf(y) and sij denotes the reflection in the root ei − ej ,
which acts by interchanging xi and xj . We remark that our notion differs by a factor k from
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that in [For10]. This facilitates the handling of the case k = 0. The operators Dj are closely
related to the usual Cherednik operators Dj := Dej (A+

n−1, k). Indeed, consider f ∈ C1(U)
for some open U ⊆ Rn and define g : exp−1(U) ⊆ Rn → C by g(x) := f(ex), where ex is
understood componentwise. Then a short calculation gives(

Dj − k(n−1)
2

)
g(x) = (Djf)(ex). (6.10)

The operators Dj are upper triangular with respect to � on the polynomials P. More precisely,

Djxη = ηjx
η +

∑
κ≺η

dκηx
κ

with some dκη ∈ R and

ηj = ηj − k# {i < j | ηi ≥ ηj} − k# {i > j | ηi > ηj} . (6.11)

Definition 6.5. The non-symmetric Jack polynomials of index α = 1/k with k ∈ [0,∞) can
be characterized as the unique basis

(
Eη = Eαη

)
η∈Nn0

of P satisfying

(i) Eη(x) = xη +∑
κ≺η cκηx

κ with cκη ∈ C,

(ii) DjEη = ηjEη for all j = 1, . . . , n.

By definition, Eη is homogeneous of degree |η|, and for k = 0 we have E∞η (x) = xη.
Following [For10, Equation (12.100)], the symmetric Jack polynomials (Pλ = Pαλ )λ∈Λn+ are
defined by

Pλ(x) = aλ,η ·
∑
σ∈Sn

Eη(σx)

for arbitrary η ∈ Nn0 with η+ = λ and aλ,η > 0 such that the coefficient of xλ equals 1.

Remark 6.6. Property (ii) in Definition 6.5 and identity (6.10) show that the polynomials
Eη are related to the (rational) Cherednik kernel via

Eη(x)
Eη(1) = G(η + k(n−1)

2 1, log x) = G(η + k(n−1)
2 1, x), η = (η1, . . . , ηn). (6.12)

Symmetrization in (6.12) yields a relation between the (extended) hypergeometric function
F = Fk and the symmetric Jack polynomials: If λ ∈ Λn+, then

λ+ k

2 (n− 1) · 1 = λ− ρ (6.13)

and therefore we have
Pλ(x)
Pλ(1) = F (λ− ρ, log x) = F(λ− ρ, x). (6.14)

In particular, we have for η ∈ Nn0

1
n!

∑
σ∈Sn

Eη(σx)
Eη(1) = Pη+(x)

Pη(1) . (6.15)

The Jack polynomials Pλ satisfy a binomial formula

Pλ(1 + x)
Pλ(1) =

∑
µ⊆λ

(
λ

µ

)
Pµ(x)
Pµ(1) , (6.16)

where µ ⊆ λ for λ, µ ∈ Λn+ means µi ≤ ηi for all i, and
(λ
µ

)
=
(λ
µ

)
k
≥ 0 is a generalized binomial

coefficient, the non-negativity is proven in [Sah11].
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The following Proposition describes how Jack polynomials are related to Heckman-Opdam
polynomials.

Proposition 6.7. Denote by

Rn0 := {x ∈ Rn | x1 + . . .+ xn = 0}

the subspace of Rn spanned by the root system An−1. With respect to the positive roots
A+
n−1 = {ej − ei | 1 ≤ i < j ≤ n} the dominant weights are

P+ = {λ ∈ Rn0 | λj − λi ∈ N0 for all i < j}

inside the weight lattice

P = {λ ∈ Rn0 | λj − λi ∈ Z for all i < j} .

Let π : Rn → Rn0 be the orthogonal projection π(x) = x− 〈x,1〉n 1. Then we have:

(i) π(Nn0 ) = P . Furthermore, if σ0 ∈ Sn is the longest element, i.e. σ0x = (xn, . . . , x1),
then π(Λn+) = σ0P+ = −P+

(ii) The non-symmetric Heckman-Opdam polynomials (Eλ(k; ·))λ∈P are given by the non-
symmetric Jack polynomials for x ∈ Rn0 and η ∈ Nn0 via

Eπ(η)(k;x) = E1/k
η (ex).

(iii) The symmetric Heckman-Opdam polynomials (Pλ(k; ·))λ∈P+ are given by the symmetric
Jack polynomials for x ∈ Rn0 and λ ∈ Λn+ via

Pπ(σ0λ)(k;x) = P
1/k
λ (ex).

In particular, if k = d/2, where d is the Peirce dimension constant of a symmetric cone Ω,
the spherical polynomials (ΦΩ

λ )λ∈Λn+ of Ω are precisely the symmetric Jack polynomials, i.e.
ΦΩ
λ (x) = P

2/d
λ (specx).

Proof.

(i) The relation π(Nn0 ) ⊆ P and π(Λn+) ⊆ σ0P+ are straightforward computations. If µ ∈ P ,
then there exist ν1, . . . , νn−1 ∈ Z with

µ = (µ1, µ1 + ν1, . . . , µ1 + νn−1).

Hence, we can choose c ∈ Nn0 large enough such that η := µ + c1 ∈ Nn0 , i.e. π(η) = µ.
Obviously, if µ ∈ P+, i.e. 0 ≤ ν1 ≤ . . . ≤ νn−1, then σ0µ ∈ (−P+) = σ0P+ and
π(σ0η) = µ.

(ii) Recall for λ ∈ Rn
λ̃ = λ+ k

2
∑

α∈A+
n−1

ε(〈α, λ〉)α

from (4.2) with ε(t) = 1 if t > 0 and ε(t) = −1 if t ≤ 0. Obviously, we have π̃(λ) = π(λ̃)
and for η ∈ Nn0

η̃j = ηj + k
2
∑
i<`

ε(η` − ηi)(e` − ei)j

86



6.3. JACK POLYNOMIALS AND MACDONALD’S CONJECTURE 87

= ηj + k
2

(
# {i < j | ηj > ηi} −# {i < j | ηj ≤ ηi}

+ # {i > j | ηj ≥ ηi} −# {i > j | ηi > ηj}
)

= ηj + k
2 (n− 1)− k# {i < j | ηi ≥ ηj} − k# {i > j | ηi > ηj}

= ηj + k
2 (n− 1).

Therefore, Remark 6.6 and Theorem 4.4 lead to

Eπ(η)(k;x)
Eπ(η)(k; 0) = G(π̃(η), x) = G(η̃, ex) = G(η + k

2 (n− 1)1, ex) = E
1/k
η (ex)
E

1/k
η (1)

, x ∈ Rn0 ,

showing that there exists a constant c 6= 0 with Eπ(η)(k;x) = cE
1/k
η (ex). In the expansion

of Eπ(η)(k;x) in terms of eµ, µ ∈ P , the coefficient of eπ(η) equals 1. Thus, it suffices
to show that the coefficient of eπ(η) in E1/k

η (ex) also equals 1. Consider the monomial
expansion of the homogeneous polynomial E1/k

η , i.e.

E1/k
η (ex) = (ex)η +

∑
µ∈Nn0 \{η}
|µ|6=|η|

cµη(ex)µ = e〈πη,x〉 +
∑

µ∈Nn0 \{η}
|µ|6=|η|

cµηe
〈πµ,x〉

The projection π is injective on the set {µ ∈ Nn0 | |µ| = |η|} which leads to the coefficient
1 of e〈πη,x〉 in E1/k

η (ex).

(iii) Let λ ∈ Λn+. Then σ0ρ = −ρ gives

Pπ(σ0λ)(k;x)
Pπ(σ0λ)(k;0)

= F (π(σ0λ) + ρ, x) = F (πλ− ρ, x) = F(λ− ρ, ex) = P
1/k
λ (ex)
P

1/k
λ (1)

.

Arguing as in part (ii) leads to Pπ(σ0λ)(k;x) = P
1/k
λ (ex) for all x ∈ Rn0 .

�

In the following lemma, we collect some further useful properties of the non-symmetric
Jack polynomials Eη = E

1/k
η which can be found in [For10, KS97, Sah98] for k > 0 and are

obvious for k = 0. Here we consider the Jack polynomials as functions on Cn.
Lemma 6.8. The non-symmetric Jack polynomials (Eη)η∈Nn0 satisfy:

(i) For all p ∈ N0,
∆(z)pEη(z) = Eη+p(z).

By this property, the non-symmetric Jack polynomials uniquely extend to indices η ∈ Zn.

(ii) Let z ∈ Cn with zi 6= 0 for all i = 1, . . . , n. Then

Eη
(

1
z

)
= E−ηR(zR).

(iii) Let Φ be the so-called raising operator acting on functions f : Cn → C by

Φf(z) = znf(zn, z1, . . . , zn−1)

and on Nn0 by
Φη = (η2, . . . , ηn, η1 + 1).

Then the non-symmetric Jack polynomials satisfy

ΦEη = EΦη.

According to part (i) this identity extends to all η ∈ Zn.
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(iv) The coefficients cηκ in the monomial expansion of Eη, η ∈ Nn
0 , are non-negative.

Obviously, part (i),(ii) and (iv) are still correct for symmetric Jack polynomials.

The results in (i) and (ii) can also be deduced from the corresponding formulas of the
rational Cherednik kernel in Lemma 6.4. In the following we need polynomial bounds on the
values of the Jack polynomials in 1.

Lemma 6.9. There exists a polynomial Q ∈ P such that for all η ∈ Nn0 and λ ∈ Λn+,

0 ≤ Eη(1) ≤ Q(η), 0 ≤ Pλ(1) ≤ Q(λ).

Proof. By [For10, Prop. 12.3.2],

Eη(1) =
∏

(i,j)∈η

j + kn− k`′(η, i, j)
ηi − j + 1 + k`(η, i, j) + k

with the leg length and coleg length `(η, i, j), `′(η, i, j) ∈ {0, . . . , n}. Therefore

Eη(1) ≤
n∏
i=1

ηi∏
j=1

j + kn

ηi − j + 1 =
n∏
i=1

Γ(ηi + kn+ 1)
Γ(kn+ 1)Γ(ηi + 1) ,

which is polynomially bounded in η by Stirling’s formula. Similarly (c.f. [For10, Prop. 12.6.2]),

Pλ(1) =
∏

(i,j)∈λ

j − 1 + kn− kl′(λ, i, j)
λi − j + kl(η, i, j) + k

≤
n∏
i=1

λi∏
j=1

j − 1 + kn

λi − j + k

which is also polynomially bounded in λ. �

To formulate the main results of this section, recall from (6.7) Macdonald’s gamma function
Γn(µ) and the generalized Pochhammer symbol [µ]λ for µ ∈ C and λ ∈ Λn

+. Note that Γn
differs by the factor dn(k) from the notion in [Rö20, Mac89], but is in accordance with the
notion for the gamma function on symmetric cones. We shall obtain the master theorem as
a consequence of the following result, which involves the type A Dunkl operators T = T (k)
with multiplicity k.

Theorem 6.10. Consider the non-symmetric Jack polynomials (Eη)η∈Nn0 and the symmetric
Jack polynomials (Pλ)λ∈Λn+ of index 1/k. Then for all µ ∈ C and all x ∈ Rn with xi 6= 0 for
all i = 1, . . . , n:

(i) Eη(T )∆−µ(x) = (−1)|η| [µ]η+Eη( 1
x)∆(x)−µ;

(ii) Pλ(T )∆−µ(x) = (−1)|λ| [µ]λ Pλ( 1
x)∆(x)−µ.

For the proof, we need the following lemma.

Lemma 6.11. The set Nn0 can be recursively constructed from 0 ∈ Nn0 by a chain of the
following operations:

(i) apply the raising operator Φ to η ∈ Nn0 ,

(ii) apply a simple permutation si = (i, i+ 1) to η ∈ Nn0 with ηi < ηi+1.
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Proof. This is easily verified by induction on the weight |η|. Indeed, assume that all elements
of weight at most r are already constructed and take η ∈ Nn0 with |η| = r + 1. Consider the
maximal index j = 1, . . . , n with ηj 6= 0 and ηk = 0 for j < k ≤ n. Then

η = (η1, . . . , ηj , 0, . . . , 0) = sj · · · sn−1(η1, . . . , ηj−1, 0, . . . , 0, ηj) = sj · · · sn−1Φη̂

with η̂ = (ηj − 1, η1, . . . , ηj−1, 0, . . . , 0), which is already constructed by induction hypothesis.
�

Proof of Theorem 6.10. Part (ii) is obtained from (i) by symmetrization. Part (i) is
clear for η = 0, since E0 = 1. In view of the above observation, it therefore suffices to consider
the following two cases:
Case 1. Assume formula (i) is correct for some η ∈ Nn0 with ηi < ηi+1, and consider Esiη.
According to [For10, Proposition 12.2.1] there exists a constant dηi ∈ R such that

Esiη = dηiEη + siEη.

The Dunkl operators are Sn-equivariant, i.e. σTξσ−1 = Tσξ, σ ∈ Sn. Hence the symmetry of
∆(x) leads to

(siEη)(T )∆(x)−µ = (siEη(T )(si∆)−µ)(x) = Eη(T )∆−µ(six)
= (−1)|η| [µ]η+Eη

( 1
six

)
∆(six)−µ

= (−1)|η| [µ]η+(siEη)
(

1
x

)
∆(x)−µ

As |siη| = |η| and (siη)+ = η+, the formula follows for siη by linear combination.
Case 2. Assume that formula (i) is correct for some η ∈ Nn0 , and consider Φη. Using the
identity ΦEη = EΦη from Lemma 6.8 and the product rule for the Dunkl operators, we
calculate

EΦη(T )∆(x)−µ = TnEη(Tn, T1, . . . , Tn−1)∆(x)−µ

= Tn
(
(−1)|η| [µ]η+Eη( 1

xn
, 1
x1
, . . . , 1

xn−1
)∆(x)−µ

)
= (−1)|η|[µ]η+

(
(Tn ∆(x)−µ)Eη( 1

xn
, 1
x1
, . . . , 1

xn−1
)

+ ∆(x)−µ(TnEη( 1
xn
, 1
x1
, . . . , 1

xn−1
))
)
. (6.17)

As Tn acts on symmetric functions as the partial derivative ∂
∂xn

, we have

Tn∆(x)−µ = −µx−1
n ∆(x)−µ .

Parts (i) and (ii) of Proposition 6.8 show that

Eη( 1
xn
, 1
x1
, . . . , 1

xn−1
) = ∆−p(x)Eη∗(xn−1, . . . , x1, xn)

with η∗ = −ηR + p, where p ∈ N is so large that −ηR + p ∈ Nn0 . Note further that
1
xn
Eη( 1

xn
, 1
x1
, . . . , 1

xn−1
) = EΦη( 1

x). Thus formula (6.17) reduces to

EΦη(T )∆(x)−µ

= (−1)|η|[µ]η+∆(x)−µ
(
− µEΦη( 1

x) + Tn(∆−p(x)Eη∗(xn−1, . . . , x1, xn))
)
. (6.18)
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Again by the product rule for Tn and the fact that Tn commutes with s1, . . . , sn−2, we further
obtain

Tn(∆−p(x)Eη∗(xn−1, . . . , x1, xn))
= −p∆(x)−pEη∗(xn−1, . . . , x1, xn) + ∆(x)−p(TnEη∗(xn−1, . . . , x1, xn))
= −px−1

n ∆(x)−pEη∗(xn−1, . . . , x1, xn) + ∆(x)−p(TnEη∗)(xn−1, . . . , x1, xn)

= x−1
n ∆(x)−p

(
− pEη∗(xn−1, . . . , x1, xn) + (xnTnEη∗)(xn−1, . . . , x1, xn)

)
.

As xnTn = Dn + k(n− 1), we have

xnTnEη∗(xn−1, . . . , x1, xn) = (η∗n + k(n− 1))Eη∗(xn−1, . . . , x1, xn)

with η∗n = η∗n − k# {` < n | η∗` ≥ η∗n}, so that

Tn(∆−p(x)Eη∗(xn−1, . . . , x1, xn))
=
(
−p+ (η∗n + k(n− 1))

)
∆(x)−p 1

xn
Eη∗(xn−1, . . . , x1, xn)

=
(
−p+ (η∗n + k(n− 1))

) 1
xn
Eη( 1

xn
, 1
x1
, . . . , 1

xn−1
)

=
(
−p+ (η∗n + k(n− 1))

)
EΦη( 1

x).

Thus equation (6.18) reduces to

EΦη(T )∆(x)−µ = (−1)|η|[µ]η+(−µ− p+ η∗n + k(n− 1))EΦη( 1
x)∆(x)−µ. (6.19)

Let 1 ≤ j ≤ n be minimal such that the j-th entry in η+ is equal to η1, i.e.

j − 1 = # {` > 1 | η1 < η`} . (6.20)

At position j in (Φη)+ is η1 + 1. Thus, by definition of j we have

η∗n = (ηR + p)n − k#
{
` < n | −ηR` + p ≥ −ηRn + p

}
= p+ η1 − k# {` < n | ηn−`+1 ≤ η1}
= p+ η1 − k# {` > 1 | η` ≤ η1}
= p+ η1 − k(n− j).

So finally, since j is the position of η1 + 1 = (Φη)n in (Φη)+ we have that (Φη)+ is exactly η+
plus an 1 at position j. Therefore

(−1)|η|[µ]η+(−µ− p+ η∗n + k(n− 1))
= (−1)|η|[µ]η+(−µ+ η1 − k(n− j) + k(n− 1))
= (−1)|η|+1[µ]η+(µ− k(j − 1) + (η1 + 1)− 1)
= (−1)|Φη|[µ](Φη)+ .

Plugging this into (6.19) we obtain the assertion. �

Theorem 6.12. Let (Eη)η∈Nn0 and (Pλ)λ∈Λn+ be the non-symmetric and symmetric Jack
polynomials of index 1/k , k ≥ 0. Then for all µ ∈ C with Reµ > µ0 and z ∈ Cn with
Re z > 0,

(i)
∫
Rn+
EA(−z, x)Eη(x)∆(x)µ−µ0−1ωA(x) dx = Γn(η+ + µ)Eη(1

z )∆(z)−µ;
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(ii)
∫
Rn+
JA(−z, x)Pλ(x)∆(x)µ−µ0−1ωA(x) dx = Γn(λ+ µ)Pλ(1

z )∆(z)−µ.

Part (ii) is just Macdonald’s [Mac89] Conjecture (C), and part (i) corresponds to formula
[BF98, Formula (4.38)] (there is a misprint: the Laguerre polynomial E(L)

η has to be replaced
by Eη).

Proof. The integrals converge by Lemma 6.2. According to [Rö20],

∆(z)−µ = 1
Γn(µ)L

(
∆µ−µ0−1)(z),

and for each polynomial p ∈ P, by Lemma 6.2,

p(−T )∆−µ(z) = 1
Γn(µ)L

(
p∆µ−µ0−1)(z).

Now part (i) is immediate from Theorem 6.10 (i) and part (ii) follows by symmetrization. �

6.4 Laplace transform of the Cherednik kernel
In this section we shall extend the statements of Theorem 6.12 to the rational Cherednik kernel
G and the hypergeometric function F . The extension of Theorem 6.12 will be carried out by
analytic extension with respect to the spectral parameter, which is based on the following
generalization of the classical Carlson theorem [Tit39, p.186].

Lemma 6.13. Let U ⊆ Cn be an open neighborhood of {Re z ≥ 0} ⊆ Cn and let f : U → C
be holomorphic. Put ‖z‖1 := ∑n

i=1 |zi|. If f satisfies

f(z) = O(ec‖z‖1) for some c < π and f |Λn+ ≡ 0, (6.21)

then f ≡ 0.

Proof. We proceed by induction on n. The case n = 1 is Carlson’s classical theorem. To
achieve step n− 1→ n, consider for fixed λ ∈ Λn+ the holomorphic function

fλ : U ′ → C, ξ 7→ f(ξ + λ1, λ2, . . . , λn)

where U ′ ⊆ C is a suitable neighborhood of {Re ξ + λ1 ≥ 0} ⊆ C. Then fλ|N0 ≡ 0 and

fλ(ξ) = O(ec|ξ|)

with c as in (6.21). Therefore fλ vanishes identically by the classical Carlson theorem. From
this we conclude that for fixed ξ ∈ C with Re ξ ≥ 0, the function

gξ : Ũ → C, w 7→ f(ξ, w)

vanishes on Λn−1
+ for some suitable neighborhood Ũ ⊆ Cn−1 of {Rew ≥ 0}. Moreover

gξ(w) = O(ec‖(ξ,w)‖1) = O(ec‖w‖1),

and by the induction hypothesis we obtain that gξ vanishes identically. As ξ was arbitrary,
we obtain f ≡ 0. �

We are now in the position to prove the following generalization of Theorem 6.12.
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Theorem 6.14. Recall that H = {z ∈ Cn | Re z > 0}. Let µ ∈ C with Reµ > µ0 = k(n− 1).
Then for all z ∈ H and λ ∈ H + co(Sn.ρ)

(i)
∫
Rn+
EA(−z, x)G(λ, x) ∆(x)µ−µ0−1ωA(x) dx = Γn(λ+ ρ+ µ)G(λ, 1

z ) ∆(z)−µ.

(ii)
∫
Rn+
JA(−z, x)F(λ, x) ∆(x)µ−µ0−1ωA(x) dx = Γn(λ+ ρ+ µ)F(λ, 1

z ) ∆(z)−µ.

In view of Lemma 6.4, the above Theorem can be equivalently reformulated as the following
generalization of the Laplace transform identities for spherical functions on a symmetric cones
as stated in Theorem 5.5.

Corollary 6.15. Suppose that λ ∈ µ0 +H + co(Sn.ρ). Then, for all z ∈ H :

(i)
∫
Rn+
EA(−z, x)G(λ, x) ∆(x)−µ0−1ωA(x) dx = Γn(λ+ ρ)G(λ, 1

z );

(ii)
∫
Rn+
JA(−z, x)F(λ, x) ∆(x)−µ0−1ωA(x) dx = Γn(λ+ ρ)F(λ, 1

z ).

Proof of Theorem 6.14. It suffices to check part (i). By Carlson’s theorem, we shall
prove that

1
Γn(λ+ ρ+ µ)

∫
Rn+
EA(−z, x)G(λ, x) ∆(x)µ−µ0−1ωA(x) dx = G(λ, 1

z ) ∆(z)−µ. (6.22)

Note first that (6.22) holds for all λ ∈ Λn+ − ρ by Theorem 6.12 and equations (6.12), (6.13).
The right hand side of (6.22) is holomorphic in (λ, z, µ) on Cn ×H × C. Moreover, the left
hand side exists and is continuous on (H + co(Sn.ρ))×H × {Reµ > µ0} and holomorphic on
the interior. Indeed, (λ, µ) 7→ Γn(λ+ ρ+ µ) is holomorphic on (H + co(Sn.ρ))× {Reµ > µ0}
and continuous on the closure. Furthermore, suppose that Re z ≥ s for some s > 0. Then, by
estimate (6.8), ∣∣∣EA(−z, x)

∣∣∣ ≤ EA(−Re z, x) ≤ e−〈s,x〉.

Together with Lemma 6.4 we obtain for x ∈ Rn+, λ ∈ H and λ′ ∈ co(Sn.ρ).∣∣EA(−z, x)G(λ+ λ′, x)∆(x)µ−µ0−1∣∣ ≤ C · e−〈s,x〉∆(x)Reµ−µ0−1 max
σ∈Sn

xRe(σλ).

Hence the integral on the left hand side of formula (6.22) exists and is (by standard arguments)
continuous and holomorphic as stated. It therefore suffices to check (6.22) for z ∈ Rn
with z > 1, µ ∈ R with µ > µ0 and λ ∈ H. We want to apply Carlson’s Theorem 6.13
with respect to λ. As z > 1, the right hand side of (6.22) is bounded in λ according to
Lemma 6.4, and it remains to control the growth of the left hand side. For λ ∈ H, define
η(λ) := (dReλ1)e, . . . , dReλn)e)+ ∈ Λn+ . Then for arbitrary x ∈ Rn+,

max
σ∈Sn

xσ(Reλ) ≤ max
σ∈Sn

(1 + x)σ(Reλ) ≤ Pη(λ)(1 + x),

because the coefficients of the Jack polynomial Pη(λ) in its monomial expansion are nonnegative
with coefficient 1 for xση(λ), σ ∈ Sn. Now recall the binomial formula (6.16) for the Jack
polynomials as well as the identity∫

Rn+
e−〈1,x〉Pκ(x)∆(x)µ−µ0−1ω(x) dx = Γn(κ+ µ)Pκ(1)
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from [Mac89, (6.18)] (c.f. also [Rö20, Lemma 5.1]). We may therefore estimate∫
Rn+

∣∣EA(−z, x)G(λ, x) ∆(x)µ−µ0−1∣∣ωA(x) dx

≤
∫
Rn+
e−〈1,x〉 Pη(λ)(1 + x) ∆(x)µ−µ0−1ωA(x) dx

=
∑

κ⊆η(λ)

(
η(λ)
κ

)∫
Rn+
e−〈1,x〉Pκ(x) ∆(x)µ−µ0−1ωA(x) dx

=
∑

κ⊆η(λ)

(
η(λ)
κ

)
Pκ(1)Γn(κ+ µ).

By monotonicity of the classical gamma function,

Γn(κ+ µ) ≤ Γn(η(λ) + µ) ≤ Γn((Reλ)+ + 1 + µ).

Moreover, by Remark 6.9,

∑
κ⊆η(λ)

(
η(λ)
κ

)
Pκ(1) = Pη(λ)(2) = 2|η(λ)|Pη(λ)(1) ≤ 2‖λ‖1 ·Q(λ)

with some polynomial Q ∈ P. Therefore

Iz,µ(λ) :=
∣∣∣∣∣ 1
Γn(λ+ ρ+ µ)

∫
Rn+
E(−z, x)G(λ, x) ∆(x)µ−µ0−1ω(x) dx

∣∣∣∣∣
≤ Q(λ) ·

Γn((Reλ)+ + 1 + µ)∣∣∣Γn(λ+ ρ+ µ)
∣∣∣ · 2‖λ‖1 .

Then we make the following decomposition

Γn((Reλ)+ + 1 + µ)∣∣∣Γn(λ+ ρ+ µ)
∣∣∣ =

n∏
j=1

Γ
(
((Reλ)+)j + µ+ 1− k(j − 1)

)∣∣Γ(λj + µ+ ρ(k)j − k(j − 1)
)∣∣ = F1(λ) · F2(λ)

with the functions

F1(λ) =
n∏
j=1

Γ
(
(Re(λ)+)j + µ+ 1− k(j − 1)

)
Γ
(
Re(λ)j) + µ+ 1− k

2 (n− 1)
) ,

F2(λ) =
n∏
j=1

∣∣∣λj + µ− k
2 (n− 1)

∣∣∣ · Γ(Reλj + µ+ 1− k
2 (n− 1)

)∣∣∣Γ(λj + µ+ 1− k
2 (n− 1)

)∣∣∣ .

By Stirling’s formula, F1(λ) is polynomially bounded, i.e. F1(λ) = O(eε‖λ‖1) for arbitrary
ε > 0. For F2, we employ the estimate ([NIS10, Formula 5.6.7])

Γ(x)
|Γ(x+ iy)| ≤

√
cosh(πy) = O(e

π
2 |y|), x > 1

2 , y ∈ R,

which leads to
F2(λ) = O(e(ε+π

2 )‖λ‖1)

with arbitrary ε > 0. Putting things together, we obtain that Iz,µ(λ) satisfies the growth
condition of Carlson’s Theorem 6.13, which finishes the proof. �
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6.5 Macdonald’s hypergeometric series and Laplace transform
identities

In the setting of symmetric cones, the Laplace transform establishes important identities
between hypergeometric series. Analogous formulas were formally stated by Macdonald
[Mac89] for general Jack-hypergeometric series, as consequences of his conjecture (C). With
Theorem 6.12 at hand, we shall make these identities precise, and extend them to hypergeo-
metric expansions in terms of non-symmetric Jack polynomials. We start with an appropriate
normalization of the symmetric and non-symmetric Jack polynomials.

Lemma 6.16. Consider the non-symmetric and symmetric Jack polynomials (Eη)η∈Nn0 and
(Pλ)λ∈Λn+ of index 1/k, respectively. Then:

(i) There exist cη > 0 for all η ∈ Nn0 such that the renormalized Jack polynomials Cλ := cλPλ
and Lη := cηEη satisfy for all m ∈ N0∑

λ∈Λn+
|λ|=m

Cλ(z) =
∑
η∈Nn0
|η|=m

Lη(z) = (z1 + . . .+ zn)m.

(ii) Cλ =
∑

η∈Sn.λ
Lη for all λ ∈ Λn+.

(iii) cλ ≤
|λ|!
λ! for all λ ∈ Λn+ with λ! = λ1! · · ·λn!.

Proof. We may assume that k > 0. Part (i) for the symmetric Jack polynomials is
well-known (see e.g. [For10, (12.135)]), with

cλ = |λ|!
k|λ|d′λ

.

Here the constants d′η for η ∈ Nn0 are given by

d′η =
∏

(i,j)∈η

(1
k

(ηi − j + 1) + `(η, i, j)
)
> 0,

with the leg length `(η, i, j) = # {` > i | j ≤ η` ≤ ηi} + # {` < i | j ≤ η` + 1 ≤ ηi}. In par-
ticular, for each partition λ ∈ Λn+ we have

cλ = |λ|!∏
(i,j)∈λ

((λi − j + 1) + k`(λ, i, j)) ≤
|λ|!∏

1≤j≤λi
(λi − j + 1) = |λ|!

λ! ,

which is part (iii). From [For10, Proposition 12.6.1] it is further known that

Pλ = d′λ
∑

η∈Sn.λ

1
d′η
Eη. (6.23)

Hence, we put

cη := cη+

d′η+

d′η
= |η|!
k|η| d′η
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for η ∈ Nn0 , and part (i) for the non-symmetric Jack polynomials follows. Finally, part (ii) is
immediate from the definition of cη and relation (6.23). �

Recall from Definition 1.9 the generalized Fisher inner product on the space PR = R[Rn]
of real polynomials on Rn defined by

[p, q] = (p(T )q)(0).

Polynomials with different homogeneous degree are orthogonal with respect to this pairing,
and [Tξp, q] = [p, 〈·, ξ〉 q]. This property and the invariance under the action of Sn show that
the Cherednik operators Dj are symmetric with respect to the Dunkl pairing. In particular,
the non-symmetric Jack polynomials (Eη)η∈Nn0 form an orthogonal basis of PR with respect
to [·, ·]. More precisely, their renormalizations Lη = cηEη satisfy

[Lη, Lκ] = |η|!Lη(1) · δη,κ (6.24)

which is obtained by combining Lemma 6.16 and [BF98, Formula (2.4)].

Lemma 6.17. The Dunkl kernel of type An−1 with multiplicity k ≥ 0 satisfies

EA(z, w) =
∑
η∈Nn0

Lη(z)Lη(w)
|η|!Lη(1) .

The series converges locally uniformly on Cn × Cn.

Proof. This is immediate from [Rö98, Lemma 3.1] together with identity (6.24). Alterna-
tively, the stated expansion follows from [For10, Propos. 13.3.4]. �

Definition 6.18. Consider the Jack polynomials (Lη)η∈Nn0 and (Cλ)λ∈Λn+ of index α = 1
k ,

respectively (normalized as above). Following [Mac89], [Kan93] and [BF98], we define for
indices µ ∈ Cp and ν ∈ Cq with p, q ∈ N0 the non-symmetric hypergeometric series

pKq(µ; ν; z, w) :=
∑
η∈Nn0

[µ1]η+ · · · [µp]η+

[ν1]η+ · · · [νq]η+

Lη(z)Lη(w)
|η|!Lη(1)

as well as the symmetric hypergeometric series

pFq(µ; ν; z, w) :=
∑
λ∈Λn+

[µ1]λ · · · [µp]λ
[ν1]λ · · · [νq]λ

Cλ(z)Cλ(w)
|λ|!Cλ(1) .

More common in the literature are hypergeometric series in one variable which are obtained
as functions in z with w = 1. For abbreviation, we write for λ ∈ Λn+

[µ]λ := [µ1]λ · · · [µp]λ; [ν]λ := [ν1]λ · · · [νq]λ.

Note that for p = 0 or q = 0, an empty product with value 1 occurs. For those values of k
for which the Cλ = C

1/k
λ are the spherical polynomials of a symmetric cone, the convergence

properties of pFq-hypergeometric series in one variable are well-known, see [FK94, GR87]. For
general k > 0, partial results on the domain of convergence of pFq were obtained in [Kan93].
For some values of p and q, the non-symmetric series pKq were considered in [BF98]. But to
our knowledge, their convergence properties have not been studied so far.

Lemma 6.19. The non-symmetric and symmetric hypergeometric functions are related by

1
n!

∑
σ∈Sn

pKq(µ; ν;σz,w) = pFq(µ; ν; z, w).
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Proof. By identity (6.15) and Lemma 6.16 we have

1
n!

∑
σ∈Sn

pKq(µ; ν;σz,w) =
∑
η∈Nn0

[µ]η+

[ν]η+

1
|η|!Lη(w)Cη+(z)

Cη+(1)

=
∑
λ∈Λn+

[µ]λ
[ν]λ

1
|λ|!

( ∑
η∈Sn.λ

Lη(w)
) Cλ(z)
Cλ(1) = pFq(µ; ν;w,w).

�

Theorem 6.20. Let µ ∈ Cp and ν ∈ Cq with νi /∈ {0, k, . . . , k(n− 1)}−N0 for all i = 1, . . . , n
(i.e. [ν]λ 6= 0 for all λ ∈ Λn+).

(i) If p ≤ q, the series pKq(µ; ν; ·, ·) and pFq(µ; ν; ·, ·) are entire functions.

(ii) If p = q + 1, the series pKq(µ; ν; ·, ·) and pFq(µ; ν; ·, ·) are holomorphic on the domain
{(z, w) ∈ Cn × Cn : ‖z‖∞ ‖w‖∞ < 1}.

Moreover, the hypergeometric series are holomorphic in the parameters (µ, ν) on the domain

{(µ, ν) ∈ Cp × Cq | νi /∈ {0, k, . . . , k(n− 1)} − N0 for all i = 1, . . . , n} .

Proof. It suffices to verify the statements for pKq. From Lemma 6.8 we have |Lη(z)| ≤
Lη(|z|) ≤ Lη(1) ‖z‖|η|∞ and therefore

S(µ, ν; z, w) :=
∑
η∈Nn0

∣∣∣∣∣ [µ]η+

[ν]η+

∣∣∣∣∣ ·
∣∣∣∣∣Lη(z)Lη(w)
|η|!Lη(1)

∣∣∣∣∣ ≤ ∑
η∈Nn0

∣∣∣∣∣ [µ]η+

[ν]η+

∣∣∣∣∣ · ‖z‖
|η|
∞‖w‖|η|∞
|η|! Lη(1)

=
∑
λ∈Λn+

∣∣∣∣ [µ]λ
[ν]λ

∣∣∣∣ · ‖z‖|λ|∞ ‖w‖|λ|∞|λ|! Cλ(1),

where for the last identity, Lemma 6.16 was used. From Lemmata 6.9 and 6.16 we know that

Cλ(1) = cλPλ(1) ≤ |λ|!
λ! Q(λ) (6.25)

with some polynomial Q ∈ P. Therefore, we can find to each ε > 1 a constant Cε > 0 such
that Q(λ) ≤ Cε ε|λ|. This gives

S(µ, ν; z, w) ≤ Cε
∑
λ∈Λn+

∣∣∣∣ [µ]λ
[ν]λ

∣∣∣∣ ·
(
ε‖z‖∞‖w‖∞

)|λ|
λ! . (6.26)

To prove part (i), consider the case p ≤ q. In this case, the quotient

[µ]λ
[ν]λ

=
∏p
i=1[µi]λ∏q
i=1[νi]λ

is of polynomial growth in λ. To see this, write

[µ]λ
[ν]λ

=
p∏
i=1

n∏
j=1

Γ(νi − k(j − 1))
Γ(µi − k(j − 1))

Γ(µi + λj − k(j − 1))
Γ(νi + λj − k(j − 1)) .
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By Stirling’s formula we have, locally uniformly in µ and ν,

Γ(µi + λj − k(j − 1))
Γ(νi + λj − k(j − 1)) ∼ (νi + λj − k(j − 1))νi−µi for λj →∞.

Moreover, |[νi]λ| ≥ 1 for large λ. Thus, for each ε > 1 there are constant D > 0 and a compact
neighborhood K ⊆ Cp × Cq of (µ, ν), such that∣∣∣∣ [µ]λ

[ν]λ

∣∣∣∣ ≤ Dε|λ| for all (µ, ν) ∈ K.

Hence, for each ε > 1, we find a constant Cε > 0 such that

S(µ, ν; z, w) ≤ Cε
∑
λ∈Λn+

(
ε‖z‖∞‖w‖∞

)|λ|
λ! ≤ Cε

∑
λ∈Nn0

(
ε‖z‖∞‖w‖∞

)|λ|
λ!

≤ Cε e
nε‖z‖∞‖w‖∞ .

Therefore the pKq-series is converges locally uniformly on Cn ×Cn and also locally uniformly
on the stated domain of parameters µ and ν, which proves part (i). For part (ii), observe that
for p = q + 1, we have

[µ]λ
[ν]λ

=
∏q
i=1[µi]λ∏q
i=1[νi]λ

· [µp]λ .

As in part (i), the first factor is of polynomial growth. Moreover,

[µp]λ
λ! =

n∏
j=1

Γ(µp − k(j − 1) + λj)
Γ(λj + 1)Γ(µp − k(j − 1)) ,

which is of polynomial growth as well. Starting from estimate (6.26), we therefore obtain that
for each ε > 1, there is a constant Cε > 0 with

S(µ, ν; z, w) ≤ Cε
∑
λ∈Λn+

(
ε‖z‖∞‖w‖∞

)|λ| ≤ Cε 1
(1− ε‖z‖∞‖w‖∞)n .

This yields the claim. �

Note that part (ii) of this theorem improves, in the case w = 1, the results of [Kan93].

Remark 6.21. For p = q = 0, one gets the Dunkl kernel and Bessel function of type An−1,
respectively. Indeed, Lemma 6.17 just says that

EA(z, w) = 0K0(z, w),

and symmetrization yields
JA(z, w) = 0F0(z, w),

which was already noted in [BF98].

Remark 6.22. The proof of Theorem 6.20 shows that for p ≤ q and arbitrary ε > 1 there is
a constant Cε > 0 such that∣∣

pKq(µ; ν; z, w)
∣∣ ≤ S(µ, ν; z, w) ≤ Cε enε‖z‖∞‖w‖∞ . (6.27)

Taking a closer look at the above proof, we see that for p < q this estimate can be improved.
Indeed, consider the quotient

[µ]λ
[ν]λ

=
p∏
j=1

[µj ]λ
[νj ]λ

·
q∏

j=p+1

1
[νj ]λ

.
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By Stirling’s formula, the first factor is of polynomial growth, and thus of order O(ε1|λ|) for
arbitrary ε1 > 1, while the second factor is of order O(ε−|λ|2 ) for arbitrary ε2 > 1. Under the
assumption p < q we therefore obtain the estimate∣∣

pKq(µ; ν; z, w)
∣∣ ≤ S(µ, ν; z, w) ≤ Cε eε‖z‖∞‖w‖∞ . (6.28)

for arbitrary ε > 0, with some constant Cε > 0.

The domain of convergence of the hypergeometric series pKq and pFq and their growth
estimates (6.27), (6.28) are important to obtain from the Laplace transform identities for
Jack polynomials in Theorem 6.12 similar Laplace transform identities for the hypergeometric
series.

Theorem 6.23. Let µ ∈ Cp, ν ∈ Cq with νi /∈ {0, k, . . . , k(n− 1)} − N0 for all i = 1, . . . , n
and let µ′ ∈ C with Reµ′ > µ0.

(i) If p < q, then for all z, w ∈ Cn with Re z > 0,∫
Rn+
EA(−z, x) pKq(µ; ν;w, x)∆(x)µ′−µ0−1ωA(x) dx

= Γn(µ′)∆(z)−µ′ p+1Kq((µ′, µ); ν;w, 1
z ).

(ii) If p = q, then part (i) is valid under the condition ‖w‖∞ ·
∥∥∥ 1

Re z

∥∥∥
∞
< 1

n .

Moreover, both parts remain valid if pKq is replaced by pFq.

Proof. To prove part (i), expand pKq into its defining series. Then (i) is immediate from
the Laplace transform identity of Theorem 6.12 by interchanging the order of summation and
integration. We have to justify this interchange. Choose ε > 0 such that ‖w‖∞ ·‖1/Re z‖∞ < 1

ε .
Under these conditions the estimates (6.8), (6.27) and (6.28) show that∣∣∣EA(−x, z)

∣∣∣S(µ, ν;w, x) ≤ Cε e−dε‖x‖∞

with dε = mini=1...n Re zi − ε‖w‖∞ > 0. Hence, we can apply the dominated convergence
theorem to justify the interchange of summation and integration, so that part (i) is proven
since ε > 0 was chosen arbitrarily. Part (2) is obtained in the same way, by choosing ε > 1
such that ‖w‖∞ · ‖1/Re z‖∞ < 1

nε . By symmetrization we get the same identities for pFq. �

We continue with an integral representation which was already observed in [Mac89, p.39]
for the symmetric case, i.e. for 1F0, but only at a formal level and without any statement on
convergence.

Corollary 6.24. Let µ ∈ C with Reµ > µ0. Then the hypergeometric series 1K0(µ;−z, w)
has an analytic continuation to D := {Re z > 0} × {Rew > 0} which is given by

1K0(µ;−z, w) = ∆(z)−µ
Γn(µ)

∫
Rn+
EA(−1

z , x)EA(−w, x)∆(x)µ−µ0−1ωA(x) dx.

By symmetrization, the same formula is valid if one replaces 1K0 by 1F0 and the Dunkl kernel
by the Bessel function.

Proof. Recall that EA(z, w) = 0K0(z, w). Then, by Theorem 6.23, the stated integral
formula holds on a suitable open subset of D. Moreover, estimate (6.8) for the Dunkl kernel
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shows that the integral exists and defines a holomorphic function on D by standard theorems
on holomorphic parameter integrals. Hence, analytic continuation finishes the proof. �

The following proposition is a generalization of the Euler integral for hypergeometric
functions on symmetric cones (cf. [FK94, Proposition XV.1.4]) and can be found as a formal
statement in [Mac89, formula (6.21)]. It will be obtained from Kadell’s [Kad97] formula,∫

[0,1]n

Pλ(x)
Pλ(1) ∆(x)µ−µ0−1∆(1− x)ν−µ0−1ωA(x) dx = Γn(µ) Γn(ν)

Γn(µ+ ν)
[µ]λ

[µ+ ν]λ
(6.29)

for all λ ∈ Λn
+ and µ, ν ∈ C with Reµ,Re ν > µ0. Furthermore, in [BF98] they generalized

(6.29) to the case of non-symmetric Jack polynomials, see also [For10, Formulae (4.4),(12.57)],
i.e. ∫

[0,1]n

Eη(x)
Eη(1) ∆(x)µ−µ0−1∆(1− x)ν−µ0−1ωA(x) dx = Γn(µ) Γn(ν)

Γn(µ+ ν)
[µ]η+

[µ+ ν]η+
, (6.30)

which would also be a consequence of (6.29) together with 1
n!
∑
σ∈Sn

Eη(σx)
Eη(1) = Pη+ (x)

Pη+ (1) .

Proposition 6.25. Consider p ≤ q+ 1 and µ′, ν ′ ∈ C with Reµ′, Re(ν ′−µ′) > µ0. Moreover,
let µ ∈ Cp and ν ∈ Cq with νi /∈ {0, k, . . . , k(n− 1)} − N0 for all i = 1, . . . , n. Then, for
arbitrary w ∈ Cn with the additional condition ‖w‖∞ < 1 in the case p = q + 1, one has∫

[0,1]n
pKq(µ; ν;w, x)∆(x)µ′−µ0−1∆(1− x)ν′−µ′−µ0−1ω(x) dx

= Γn(µ) Γn(ν − µ)
Γn(ν) p+1Kq+1((µ′, µ); (ν ′, ν);w, 1).

The same is true for the symmetric hypergeometric series.

Proof. This is immediate from Kadell’s integral (6.30) after expanding pKq into its defining
series and changing the order of integration and summation. The latter is justified since the
series pKq(µ; ν;w; ·) is absolutely bounded on [0, 1]n by the estimates in the proof of Theorem
6.20 for w ∈ Cn and ‖w‖∞ < 1 if p = q + 1. �

In Kadell’s integral (6.30) we have

Γn(µ) Γn(ν)
Γn(µ+ ν)

[µ]η+

[µ+ ν]η+
=

Γn(ν)Γn(η+ + µ)
Γn(η+ + µ+ ν) .

Using Carlson’s Theorem one can deduce the following generalization of (6.30).

Theorem 6.26. For all λ ∈ H + co(Sn.ρ) and µ, ν ∈ C with Reµ, Re ν > µ0 we have∫
[0,1]n

G(λ, x)∆(x)µ−µ0−1∆(1− x)ν−µ0−1ωA(x) dx =
Γn(ν)Γn(λ+ ρ+ µ)
Γn(λ+ ρ+ µ+ ν) .

The same is true for the hypergeometric function.

Proof. By Lemma 6.4 and standard theorems on parameter integrals, both side of the
equation are continuous as function in (λ, µ, ν) with domain (H + co(Sn.ρ)) ×H ×H and
holomorphic in the interior. Furthermore, by Kadell’s integral (6.30), the equation is true for
λ ∈ Λn

+ − ρ. By Carlson’s Theorem 6.13, it suffices to check the growth conditions of both
sides of the equation to obtain the assertion.
The right hand side is polynomially bounded in λ by Stirling’s formula. The left hand side
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is bounded as function of λ. Indeed, Lemma 6.4 shows that (x 7→ G(λ, x))λ∈H+co(Sn.ρ) is a
uniformly bounded family of functions on [0, 1]n. Finally, the conditions of Carlson’s Theorem
6.13 are satisfied and the assertions holds. �

The following theorem generalizes Proposition XV.1.2. of [FK94] for hypergeometric series
on symmetric cones.

Theorem 6.27. The Jack polynomials and the hypergeometric series have the following
properties under the action of the Dunkl operator ∆(T ) associated with the polynomial ∆.

(i) ∆(T )Eη = cηEη−1 with some constant cη ∈ R. Moreover, cη = 0 if ηi = 0 for some
i ∈ {1, . . . , n}.

(ii) η 7→ cη is Sn-invariant.

(iii) ∆(T )Lη = dηLη−1 and ∆(T )Cλ = dλCλ−1, where

dη =


|η|!
|η − 1|! , if ηi 6= 0 for all i = 1, . . . , n,

0, otherwise.
.

(iv) If p ≤ q + 1, then for all w ∈ Cn,

∆(T ) pKq(µ; ν;w, ·) =
[µ]1
[ν]1

∆(w) pKq(µ+ 1, ν + 1;w, ·).

The same is true if pKq is replaced by pFq.

Proof.

(i) From the properties of the Dunkl pairing together with Lemma 6.8 (i) we can conclude
that for compositions η, κ ∈ Nn0 ,

[∆(T )Eη, Eκ] = [Eη,∆Eκ] = [Eη, Eκ+1] =
{

0, if η 6= κ+ 1 ;
[Eη, Eη] > 0, if η = κ+ 1 .

Hence, ∆(T )Eη must be a scalar multiple of Eη−1 if ηi ≥ 1 for all i = 1, . . . , n and
vanishes otherwise.

(ii) Denote again by ηi the eigenvalue of Eη under the Cherednik operator Di . It suffices to
show that cη = csiη if ηi < ηi+1. From [For10, Proposition 12.2.1], we then obtain

Esiη = dηiEη + siEη (6.31)

with the constant
dηi = k

ηi+1 − ηi
.

It is immediate that η + 1 = η + 1 and therefore dη+1
i = dηi . Applying ∆(T ) to equation

(6.31), using dη+1
i = dηi and the Sn-equivariance of the Dunkl operators, we obtain from

part (i) that csiη = cη .

(iii) As Lη is a renormalization of Eη, there is a constant dη such that ∆(T )Lη = dηLη−1,

and dη = 0 if ηi = 0 for some i. Since η 7→ |η|!
|η−1|! is Sn-invariant and Cλ = ∑

η∈Snλ Lη ,
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it suffices to verify the stated value of dη with |η| ≥ n. Recall that Ti acts as ∂i on
symmetric polynomials. We therefore conclude that for m ∈ N0 with m ≥ n,

m · · · (m− n+ 1)
∑
η∈Nn0 :
|η|=m−n

Lη(x) = m · · · (m− n+ 1)(x1 + . . .+ xn)m−n

= ∆(T )(x1 + . . .+ xn)m =
∑
η∈Nn0 :
|η|=m

∆(T )Lη =
∑
η∈Nn0 :
|η|=m

dηLη−1.

Equating the coefficients proves the stated formula for dη.

(iv) This is an immediate consequence of part (iii) by expanding the hypergeometric series.
One has to perform an index shift η 7→ η + 1 after applying ∆(T ) and the identity of
part (iii) together with

Lη(w)
Lη(1) = ∆(w)

Lη−1(w)
Lη−1(w)

and [θ]η+ = [θ + 1]η+−1[θ]1.

�

6.6 Convolution of type A Riesz distributions

The Riesz distribution Rµ ∈ S ′(Rn) for µ > µ0 := k(n − 1), associated with (An−1, k), is
defined as the positive tempered distribution

〈Rµ, f〉 := 1
Γn(µ)

∫
Rn+
f(x)∆(x)µ−µ0−1ωA(x) dx.

The following results were proven in [Rö20] and generalize results about Riesz distributions
on a symmetric cones:

(i) µ 7→ Rµ extends to a (weakly) holomorphic map C→ S ′(Rn).

(ii) ∆(T )Rµ = Rµ−1.

(iii) ∆ ·Rµ = ∏n
j=1(µ− k(j − 1)) ·Rµ+1.

(iv) suppRµ ⊆ Rn+.

(v) R0 = δ0.

(vi) Rµ is a positive measure if and only if µ is contained in the generalized Wallach set

Wk := {0, k, . . . , k(n− 1)}∪ ]k(n− 1),∞[.

Riesz distributions on a symmetric cone form a group of tempered distributions under
convolution, which is still an open question for Dunkl type Riesz distributions. Indeed, it
remained open so far whether two Riesz distributions can be convolved. We shall prove the
following theorem based on the results of Chapter 2.

Theorem 6.28. For µ, ν ∈ C, the Riesz distributions Rµ, Rν are Sn-convolvable and

Rµ ∗k Rν = Rµ+ν .
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Definition 6.29. For s ∈ R we define Ms(Rn+) as the space of complex Radon measures µ
on Rn+ such that x 7→ e−〈s,x〉 is integrable with respect to the total variation |µ|. We define
the Dunkl-Laplace transform on Ms(Rn+) by

Lµ(z) :=
∫
Rn+
EA(−z, x) dµ(x), z ∈ Cn, Re z > s,

where Re z > s is understood componentwise. We recall that by (6.8) the Dunkl kernel
satisfies for z ∈ Cn with Re z > s

|EA(−x, z)| ≤ e−〈s,x〉, x ∈ Rn+.

Therefore, Lµ is a holomorphic function on {Re z > s}.

Furthermore, in [Rö20], a Dunkl-Laplace transform for tempered distributions u with
support contained in Rn+ was defined by

Lu(z) := 〈u, ẼA(−z, ·)〉 , Re z > 0,

where ẼA(−z, ·) ∈ S(Rn) and ẼA(−z, x) = EA(−z, x) for x ∈ Rn+. In fact, Lu is holomorphic,
does not depend on the extension ẼA of the Dunkl kernel and satisfies

L(e−〈s,·〉u)(z) = Lu(s+ z), s > 0. (6.32)

In particular, if µ is a tempered distribution of order 0, i.e. a complex Radon measure, with
support contained in Rn+, then the two notions of Laplace transform of µ coincide. Moreover,
the Dunkl-Laplace transform is injective in the following sense. If Lu(s+ iy) = 0 for some
s > 0 and all y ∈ Rn, then u = 0.

Lemma 6.30. Let µ, ν ∈Ms(Rn+). Then we have:

(i) µ ∗k ν exists and e−〈s,·〉(µ ∗k ν) ∈ S ′(Rn) with support contained in Rn+.

(ii) As holomorphic functions on {Re z > 0} we have for z ∈ Cn, Re z > 0

L(e−〈s,·〉(µ ∗k ν))(z) = Lµ(s+ z) · Lν(s+ z).

Proof.
(i) Since the Dunkl transform is continuous on the Schwartz space, and
|EA(ix, y)| ≤ 1 for x, y ∈ Rn, we have by definition of the generalized translation τx

|τxf(y)| ≤ 1
ck
||f̂k||1,ωA ≤ C̃|| 〈·〉

Ñ f̂k||∞ ≤ C|| 〈·〉N ∂αf ||∞, (6.33)

for some constants C, C̃ > 0, N, Ñ ,N ′ ∈ N, all independent of f and x, y. Moreover,
since R1 = A⊥n−1, we use (1.12) to see that

τx(e−〈s,·〉f)(y) = e−〈s,x+y〉 · τxf(y)

holds for all s ∈ R, f ∈ C∞(Rn) and x, y ∈ Rn. Since Rn+ is a proper Sn-invariant closed
convex cone, Corollary 2.12 shows that µ, ν are Sn-convolvable with supp(µ ∗k ν) ⊆ Rn+.
Finally, we observe that

〈e−〈s,·〉(µ ∗k ν), ϕ〉 = 〈µ⊗ ν, τ(e−〈s,·〉ϕ)〉

=
∫
Rn+

∫
Rn+
e−〈s,x+y〉(τxf)(y) dµ(x)dν(y),

so that e−〈s,·〉(µ ∗k ν) ∈ S ′(Rn) holds by estimate (6.33).
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(ii) This is an immediate consequence of (τxE(−z, ·))(y) = E(−z, x)E(−z, y) together with
equation (6.32).

�

Proof of Theorem 7.1. By Theorem 2.5 and ∆(T )Rµ = Rµ−1, we may assume without
loss of generality, that Reµ,Re ν > µ0. In this case, Rµ, Rν ∈Ms(Rn+) for all s > 0. But, due
to [Rö20, Theorem 5.9] we have

LRα = ∆−α.

Together with Lemma 6.30, this leads to

L(e−〈s,·〉(Rµ ∗k Rν))(z) = ∆(s+ z)µ∆(s+ z)ν = ∆(s+ z)µ+ν = L(e−〈s,·〉Rµ+ν)(z),

for all s > 0 and z ∈ Cn with Re z > 0. Finally, the injectivity of the Dunkl-Laplace transform
finishes the proof. �

6.7 The binomial formula for the Cherednik kernel

As already mentioned, the Jack polynomials satisfy a generalized binomial formula. By virtue
of Carlson’s theorem 6.13, we are able to generalize this binomial formula to the Cherednik
kernel by analytic continuation.

Definition 6.31 ([Sah98] and [For10, Section 12.5]). Consider the non-symmetric Jack
polynomials (Eη)η∈Nn0 of index α = 1

k , k ≥ 0 with corresponding eigenvalue η under the
Cherednik operators from (6.11) and write Ẽη = Eη

Eη(1) . There exists a unique polynomial
E∗κ, κ ∈ Nn0 of degree |κ|, called a non-symmetric interpolation Jack polynomial of index 1

k ,
such that

(i) E∗κ(η) = 0 if κ 6= η ∈ Nn0 with |η| ≤ |κ|.

(ii) E∗κ(κ) 6= 0.

(iii) the coefficient of xκ in E∗κ is 1.

The first condition can be replace by the condition κ 6⊆ η, i.e. there exists an index i with
κi > ηi.

Theorem 6.32 ([Sah98, Corollary 1.9]). The non-symmetric Jacks polynomials satisfy the
following binomial formula

Ẽη(1 + z) =
∑
κ⊆η

(
η

κ

)
k

Ẽκ(z) =
∑
κ∈Nn0

(
η

κ

)
k

Ẽκ(z) (6.34)

with the generalized binomial coefficients(
η

κ

)
k

= E∗κ(η)
E∗κ(κ) .

If k = 0, then (6.34) reduces to the usual binomial formula (1 + x)η = ∑
κ∈Nn0

(η
κ

)
xκ.
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Definition 6.33. Consider the (rational) Cherednik kernel G from Definition 6.3 with respect
to k ≥ 0, holomorphic on the domain Cn × {Re z > 0}. Since G(λ, ·) is holomorphic on the
polydisc U = {z ∈ Cn | ‖1− z‖∞ < 1} it has an convergent series expansion on U of the form

G(λ, 1 + z) =
∑
κ∈Nn0

aκ(λ)Ẽη(z),

with some coefficient functions aη : Cn → C.
An immediate consequence of combining Sahi’s binomial formula for the non-symmetric

Jack polynomials (Theorem 6.32) and equation (6.12) is the following proposition.
Proposition 6.34. For all partitions η ∈ Λn+ we have

aκ(η − ρ) =
E∗κ(η − ρ+ k

2 (1− n) · 1)
E∗κ(κ) = E∗κ(η)

E∗κ(κ)
with ρ = ρ(k) as in (6.9).
Theorem 6.35. The coefficient functions aκ : Cn → C are given as

(i) aκ(λ) = 1
k|κ|d′κ

· Eκ(T )G(λ, x)
∣∣∣
x=1

, where d′κ is defined in the proof of Lemma 6.16.

(ii) aκ(λ) =
E∗κ(λ+ k

2 (1− n) · 1)
E∗κ(κ)

(iii) The Cherednik kernel satisfies for z ∈ Cn, ‖z‖∞ < 1 the binomial formula

G(λ, 1 + z) =
∑
κ∈Nn0

[
λ
κ

]
k

Ẽκ(z).

where the generalized binomial coefficients are given by[
λ
κ

]
k

:=
E∗κ(λ+ k

2 (1− n) · 1)
E∗κ(κ) .

(iv) The hypergeometric function F satisfies for z ∈ Cn, ‖z‖∞ < 1 the binomial formula

F(λ, 1 + z) =
∑
κ∈Λn+

[
λ
κ

]Sn
k

P̃κ(z) for all z ∈ Cn, ‖z‖∞ < 1,

where the generalized symmetric binomial coefficients are given by[
λ
κ

]Sn
k

:=
∑
σ∈Sn

[
λ
σκ

]
k

and P̃κ are the symmetric Jack polynomials of index α = 1
k normalized to 1 in 1. For

λ = µ−ρ, µ ∈ Λn+ this is the known binomial formula of the symmetric Jack polynomials.
In particular,[

λ
κ

]Sn
k

=
∑
σ∈Sn

E∗σκ(λ+ k
2 (1− n) · 1)

E∗σκ(σκ) =
P ∗κ (λ+ k

2 (1− n) · 1)
P ∗κ (µ) ,

where P ∗κ are the symmetric interpolation Jack polynomials, cf. [For10, Section 12.7].
In particular, the invariance of F leads to an invariance of

(λ, κ) 7→
[
λ
κ

]Sn
in both arguments λ and κ.
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Proof.
(i) From [BF98, Formula (2.4), Proposition 3.18] we have

Eκ(T )Ẽµ(x)
∣∣∣
x=0

= k|κ|d′κ.

Moreover, the Dunkl operators Ti satisfy for any C1 function f and g(x) = f(1 + x) the
formula Tig(x) = (Tif)(1 + x). Hence, we have

Eκ(T )G(λ, 1 + x)
∣∣∣
x=0

= Eκ(T )G(λ, x)
∣∣∣
x=1

,

i.e. the stated formula holds.

(ii)+(iii) Let K ⊆ Rn be a compact, convex and Sn-invariant subset. Then, by (1.2) (vii) there
exists a constant C (independent of K) such that for all f ∈ C1(Rn)

‖∂γTjf‖∞,K ≤ C max
|α|≤|γ|+1

‖∂αx f‖∞,K ,

where the index x in ∂αx means the derivative with respect to x. Choosing K = {1},
part (i) gives

|aκ(λ)| ≤ C max
|α|≤|κ|+1

∣∣∂αxG(λ, x)|x=1
∣∣ .

Hence, ifG is the Cherednik kernel associated withAn−1 ⊆ Rn, then G(λ, x) = G(λ, log x)
and the change of variables y = log x, i.e. ∂

∂xi
= 1

xi
∂
∂yi

, lead to

∂γxG(λ, x) =
∑
|α|≤|γ|

pα( 1
x)∂αyG(λ, y)

∣∣∣
y=log x

,

where pα are polynomials independent of λ. Evaluation at x = 1 gives∣∣∣∂γxG(λ, x)
∣∣∣
x=1

∣∣∣ ≤ ∑
|α|≤|γ|

|pα(1)|
∣∣∣∂αyG(λ, y)

∣∣∣
y=0

∣∣∣,
which is polynomially bounded in λ by Theorem 4.18. Thus, aκ(λ) is polynomial

bounded in λ as well. Finally, λ 7→
[
λ
κ

]
k

is a polynomial and coincides with aκ(λ) on

Λn
+ − ρ by Proposition 6.34. Therefore, analytic continuation with Carlson’s theorem

6.13 gives aκ(λ) =
[
λ
κ

]
k

for all λ ∈ Cn.

(iv) The binomial formula follows from the identities

F(λ, x) = 1
n!

∑
σ∈Sn

G(λ, σx) and P̃λ(x) = 1
n!

∑
σ∈Sn

Ẽλ(σx).

Finally, the binomial formula for the symmetric Jack polynomials can be found in [For10,
Formula 12.177]).

�

As a corollary from the previous Theorem and [For10, Proposition 12.5.3] we obtain the
following evaluation formula.
Corollary 6.36. For arbitrary κ, η ∈ Nn0 we have

Eκ(T )Eη(1) = E∗κ(η + k
2 (1− n) · 1).

This is a generalization of ∂κxη
∣∣∣
x=1

= η1!···ηn!
(η1−κ1)!···(ηn−κn)! , occurring for k = 0.
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6.8 A Post-Widder inversion formula for the Dunkl-Laplace
transform

As shown in [Rö20], the Dunkl-Laplace transform

Lf(z) =
∫
Rn+
f(x)EA(−z, x)ωA(x) dx

satisfies the following Cauchy inversion theorem: Let f ∈ L1
loc(Rn+) such that Lf(s) exists

for some s ∈ R (then Lf(z) also exists for all z ∈ Cn with Re z = s ). Assume further that
y 7→ Lf(s+ iy) ∈ L1(Rn, ω). Then f has a continuous representative f0, and

(−i)n
c2
k

∫
Re z=s

Lf(z)EA(x, z)ωA(z) dz =
{
f0(x), x ∈ Rn+,
0, otherwise,

with the constant ck =
∫
Rn e

−|x|2/2ω(x) dx. For the classical Laplace transform

Lf(z) =
∫ ∞

0
f(x)e−zx dx, f ∈ L1

loc(R+),

a further well-known inversion theorem is the Post-Widder inversion(see e.g. [WAN01]):
Assume that f ∈ L1

loc(R+) has a finite abscissa of convergence and is continuous in ξ ∈ R+.
Then

f(ξ) = lim
ν→∞

(−1)ν
ν!

(ν
ξ

)ν+1
(Lf)(ν)

(ν
ξ

)
.

In this section, we prove a Post-Widder inversion formula for the Dunkl-Laplace transform,
which is the counterpart to a result of Faraut and Gindikin [FG90] in the setting of symmetric
cones.

Theorem 6.37 (Post-Widder inversion formula for L). Let f : Rn+ → C be measurable and
bounded, and suppose that f is continuous at ξ ∈ Rn+ . Then

f(ξ) = lim
ν→∞

(−1)nν
Γn(ν + µ0 + 1)∆

(ν
ξ

)ν+µ0+1(
∆(T )ν(Lf)

)(ν
ξ

)
.

The idea of the proof for this theorem is similar to [FG90]. A fundamental ingredient
is Levy’s continuity theorem for the Dunkl transform. Let us recall this for the reader’s
convenience. Denote by M+

b (Rn) the space of positive bounded Borel measures on Rn. The
Dunkl transform of µ ∈M+

b (Rn) (associated with An−1 and multiplicity k) is given by

µ̂(ξ) = µ̂ k(ξ) =
∫
Rn
EA(−iξ, x) dµ(x), ξ ∈ Rn.

Note that µ̂ ∈ Cb(Rn), since |E(−iξ, x)| ≤ 1 for all ξ, x ∈ Rn. The Dunkl transform is injective
on M+

b (Rn), see [RV98]. The following is the essential part of Levy’s continuity theorem for
the Dunkl transform.

Lemma 6.38 ([RV98]). Let (µν)ν∈N ⊆ M+
b (Rn) such that the sequence (µ̂ν)ν∈N converges

pointwise to a function ϕ : Rn → C which is continuous at 0. Then there exists a unique
µ ∈M+

b (Rn) with µ̂ν = ϕ, and (µν)ν∈N converges to µ weakly.

Proof of Theorem 6.37. We consider on Rn+ the functions

hν(x) := EA
(
−ν
ξ , x

)
∆(x)ν , ν ∈ N.
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By estimate (6.8), the Laplace transform

Lhν(z) =
∫
Rn+
EA(−z, x)EA

(
−ν
ξ , x

)
∆(x)νω(x) dx

exists for all z ∈ Cn with Re z ≥ 0. For such z, put ν(z) := maxid‖z‖∞ ξie ∈ N. Then, for
ν > ν(z), we calculate

Lhν(z) =
∫
Rn+

( ∑
η∈Nn0

Lη(−z)Lη(x)
|η|!Lη(1)

)
EA
(
−ν
ξ , x

)
∆(x)νωA(x) dx

=
∑
η∈Nn0

Lη(−z)
|η|!Lη(1)

∫
Rn+
Lη(x)EA

(
−ν
ξ , x

)
∆(x)νωA(x) dx

=
∑
η∈Nn0

Lη(−z)
|η|!Lη(1) Γn(η+ + ν + µ0 + 1)Lη

( ξ
ν

)
∆
(
ν
ξ

)−ν−µ0−1
.

Here the interchange of the sum and the integral is justified by the dominated convergence
theorem, because |Lη(−z)| ≤ Lη(‖z‖∞ · 1) and therefore

EA
(
−ν
ξ , x

) ∑
η∈Nn0

|Lη(−z)Lη(x)|
|η|!Lη(1) ≤ E

(
−ν
ξ , x

)
E(‖z‖∞ · 1, x)

= E
(
−ν
ξ + ‖z‖∞ · 1, x

)
.

This decays exponentially on Rn+, since −ν/ξ + ‖z‖∞ · 1 < 0 by our assumption on ν. Thus
for ν ≥ ν(z),

fν(z) :=
∆
(
ν
ξ

)ν+µ0+1

Γn(ν + µ0 + 1) Lhν(z) =
∑
η∈Nn0

cν(η) · Lη(−z)Lη(ξ)
|η|!Lη(1) (6.35)

with the coefficients

cν(η) = [ν + µ0 + 1]η+

ν|η|
=

n∏
j=1

(
1 + 1 + k(n− j)

ν

)
λj
, λ = η+ .

They satisfy
lim
ν→∞

cν(η) = 1 for fixed η,

and it follows that

lim
ν→∞

fν(z) =
∑
η∈Nn0

Lη(−z)Lη(ξ)
|η|!Lη(1) = EA(−z, ξ). (6.36)

We still have to justify that the limit ν → ∞ may be taken inside the sum in (6.35). For
this, note that ν 7→ cν(η) is monotonically decreasing. Hence for ν ≥ ν(z), the series on the
right-hand side of (6.35) is dominated by the convergent series

∑
η∈Nn0

cν(z)(η) Lη(‖z‖∞ · 1)Lη(ξ)
|η|!Lη(1) = fν(z)(−‖z‖∞ · 1) <∞,

which justifies the above limit. We now consider the measures

dmν(x) :=
∆
(
ν
ξ

)ν+µ0+1

Γn(ν + µ0 + 1) · 1R
n
+

(x)EA
(
−ν
ξ , x

)
∆(x)νωA(x) dx ∈M+

b (Rn).
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Owing to Theorem 6.12,mν is actually a probability measure on Rn. Formula (6.36), considered
for arguments z ∈ iRn, shows that the Dunkl transforms satisfy

m̂ν → δ̂ξ pointwise on Rn,

where δξ denotes the point measure in ξ. Levy’s continuity theorem (Lemma 6.38) now implies
that mν → δξ weakly. Thanks to the Portemanteau theorem ([Kle14]) we even get

lim
ν→∞

∫
Rn
g dmν =

∫
Rn
g dδξ = g

(
ξ
)

for all measurable bounded functions g : Rn → C which are continuous at ξ. Now suppose
f : Rn+ → C is measurable, bounded and continuous at ξ. Extend f by zero to Rn. Then

∆
(
ν
ξ

)ν+µ0+1

Γn(ν + µ0 + 1)

∫
Rn+
f(x)EA

(
−ν
ξ , x

)
∆(x)νωA(x) dx =

∫
Rn
f dmν → f(ξ).

But in view of to Lemma 6.2 the integral on the left-hand side can be written as

L(∆νf)
(
ν
ξ

)
=
(
∆(−T )

)ν(Lf)
(
ν
ξ

)
,

which finishes the proof. �
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chapter 7
Bessel functions, Hankel transform and Zeta integrals

7.1 Introduction

In [Mac89], Macdonald introduced a generalization of the Hankel transform for radial functions
on symmetric cones, but many statements remained at a formal level. Radial analysis on
symmetric cones is closely related to Dunkl theory for root systems of type A, as mentioned
in Chapter 5, and many of Macdonald’s concepts have a natural interpretation within Dunkl
theory. An important ingredient to study the Hankel transform is the analysis of the generalized
Laplace transform and hypergeometric functions as done in [Rö20] and the previous chapter.
In this chapter we introduce several types of Bessel functions in the framework of Dunkl theory
for root systems of type A serving as analogues of Bessel functions on a symmetric cones.
For the setting of general symmetric cones, the Bessel functions and K-Bessel functions of a
symmetric cone were first considered in [Her55] for matrix cones, see [Cle88, Dib90, FK94].
A key object in the present chapter is a two-variable hypergeometric series of Jack polynomials
Cλ (of n variables and arbitrary index α) which we call a Bessel kernel (see Section 3)

Jν(w, z) := 0F1(ν;w,−z) =
∑
λ∈Λn+

(−1)|λ|
[ν]λ

Cλ(w)Cλ(z)
|λ|!Cλ(1) , ν ∈ C,

generalizing the Bessel functions of symmetric cones. For this Bessel kernel we prove integral
representations and recurrence formulas in the parameter ν, generalizing these on a symmetric
cone. The proof involves the Laplace transform identities for Jack polynomials and hyper-
geometric series of Jack polynomials as analyzed in the previous chapter. A fundamental
observation in this context is that Jν can be identified with a Bessel function from Dunkl
theory associated with a root system of type B, cf. [Rö07]. We further define a non-symmetric
counterpart of the Bessel kernel, denoted by Eν , which is also closely related to the type B
Dunkl kernel. This is the point where type B Dunkl theory comes in.
In the analysis on symmetric cones, Bessel functions are important objects used to define the
kernel of the Hankel transform. As a generalization, we study a Dunkl-type Hankel transform
which is, for Schwartz functions f0 on Rn, defined in terms of the kernel Eν (see Section 6) by

Hνf0(y) := 1
Γn(ν)

∫
Rn+

Eν(−x, y)f0(x)∆(x)ν−µ0−1ωA(x) dx,

where ∆(x) = x1 · · ·xn, Γn is Macdonald’s gamma function and

ωA(x) =
∏
i<j

|xi − xj |2k .

This transform was already introduced on a formal level in [BF98] and earlier in [Mac89]
in a symmetrized version. We discuss basic analytic properties of the Dunkl type Hankel
transform and generalize results of the Hankel transform on symmetric cones. Owing to the
relation between Eν and the type B Dunkl kernel, the transform Hν is related to the Dunkl
transform FB of type B (where the multiplicity depends on the parameter ν) via

FBf(y) = 2−nνHνf0(y2

4 ), (7.1)
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where f is defined by f(x) = f0(x2) and x2 is understood componentwise. A special case is
already known for spaces of rectangular matrices, or more generally for symmetric cones, where
the Hankel transform is related to Euclidean Fourier transform, cf. [Her55, FK94, Rub06].
When doing radial analysis on symmetric cones, a useful tool are the K-Bessel functions.
Similar as before, K-Bessel functions on a symmetric cone can also be interpreted within the
type A Dunkl theory. This suggest to define generalized K-Bessel functions (see Section 5) by
the formula

Kν(w, z) :=
∫
Rn+
EA(−x,w)EA(− 1

x , z)∆(x)ν−µ0−1ωA(x) dx,

where EA is the type A Dunkl kernel. In fact, after symmetrization over the action of the
symmetric group and a particular choice of a type A multiplicity parameter, Kν coincides
with a symmetrized version of the K-Bessel function of a symmetric cone, as studied in
[Cle88, Dib90, FK94]. The generalized K-Bessel function Kν is defined for all ν ∈ C, w, z ∈ Cn
with Rew, Re z > 0 and satisfies

Kν(w, z) = K−ν(z, w) and |Kν(w, z)| ≤ KRe ν(Rew,Re z).

The type A Dunkl operator ∆(TA) acts on K-Bessel functions by shifting the parameter ν,
see Section 5. We shall obtain important growth conditions on Kν . For K-Bessel functions on
a symmetric cone it is known that they are eigenfunctions of a system of Bessel operators,
cf. [FK94, p. 358]. Similarly, we obtain in the present chapter that the Dunkl-type K-Bessel
function is (up to squared variables) an eigenfunction of Zn2 -invariant type B Dunkl operators
which play the role of Bessel operators on symmetric cones.
An important application of K-Bessel functions is the investigation of zeta integrals. On a
symmetric cone, zeta integrals depend on a representation of the underlying Jordan algebra,
see [FK94, Chapter XVI] and [Cle02]. An important special case is that of matrix cones,
where zeta distributions are related to Wishart distributions, see [Mui82, FK94, Rub06]. To
motivate our results, let us describe a typical example, studied in [Rub06]: Consider the cone
Ω = Posn(R) of real n× n positive definite matrices inside the Jordan algebra V = Symn(R)
of real symmetric matrices. The map Φ(x)ξ := xξ defines a self adjoint representation of V on
the Euclidean space E = Rn×m with associated quadratic representation Q : E → V, ξ 7→ ξξT .
For α ∈ C with Reα > d

2(n− 1)− m
2n , the zeta integral of index α is defined for a Schwartz

function f ∈ S (E), E = Rn×m by

Z(f ;α) =
∫
E
f(ξ) det(Q(ξ))α dξ, (7.2)

cf. [FK94, Chapter XVI]. The zeta integral can be meromorphically extended in the parameter
α to the whole complex plane such that the following characteristic functional equation holds

Z(f̂ ;α− m
2n)

ΓΩ(α) = π
n
2 4nα Z(f ;−α)

ΓΩ(m2n − α) .

Here ΓΩ is the Gindikin gamma function of Ω and f̂ denotes the Fourier transform of f .
For a general symmetric cone Ω, the zeta distribution

ζα(f) := Z(f ;α)
ΓΩ(α)

gives rise to an analytic family C → S ′(E), α 7→ ζα of tempered distributions. Moreover,
ζα is closely related to Riesz distributions on the symmetric cone. Riesz distributions were
generalized to the Dunkl setting in [Rö20]. In the present chapter, we shall investigate zeta
integrals in this setting. The generalized Hankel transform and the K-Bessel function will
play the same essential role as in the setting of symmetric cones and their properties will
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further reveal that type B Dunkl theory is involved. Our family of tempered distributions is
defined by analytic continuation of the following generalized zeta integrals (see Section 7)

〈ζα, f〉 := 1
Γn(α)

∫
Rn
f(x)∆(x2)α−νωB(x) dx,

for α ∈ C with large real part. The analytic extension in the parameter α to the whole
complex plane C is done by the functional equation

∆(TB)2ζα = 4nb(α− ν)ζα−1,

here b is a certain polynomial. This equation is an immediate consequence of a Bernstein
identity for type B Dunkl operators. In addition, these zeta distributions satisfy a characteristic
property relating them to their Dunkl transform

ζα = 2n(2α−ν)FBζν−α.

Finally, the results on Riesz distributions in [Rö20] make it possible to explicitly determine
those zeta distributions which are positive measures. The corresponding parameters α ∈ C
are contained in a generalized Wallach set.
The chapter is organized as follows: Section 2 deals with a review on some standard facts on
radial analysis on symmetric cones, in particular with special functions, and its connection
with Dunkl theory related to root systems of type A and B. In Section 3, we collect results
on the Bessel kernel and the Bessel functions. These will be employed in Section 4, where
the generalized Hankel transform (of type A) and its connection to type B Dunkl theory is
studied. Finally, in Section 5 we introduce zeta integrals and study the associated family of
tempered distributions.

Fixed notations

We equip the n-dimensional Euclidean space Rn with the usual inner product 〈x, y〉 = ∑n
i=1 xiyi

and extend it naturally to a C-bilinear form on Cn. In Rn we consider the root systems
R ∈ {A,B} with

A := An−1 = {±(ei − ej) | 1 ≤ i < j ≤ n} ,
B := Bn = {±ei | 1 ≤ i ≤ n} ∪ {±(ei ± ej) | 1 ≤ i < j ≤ n} ,

where (ei)1≤i≤n is the canonical basis of Rn. The corresponding Weyl groups are

WA := Sn, WB := Sn n Zn2 ,

where the symmetric group Sn acts by permutations of coordinates and Zn2 acts by sign
changes of coordinates. We consider multiplicity functions of the specific form

κA = k, κB = (k, k′), (7.3)

where k is the value on ±(ei ± ej) and k′ is the value on ei. If ReκR ≥ 0, we consider

[p, q]R := (p(TR)q)(0), (7.4)

the generalized Fisher product from Definition 1.9. The Dunkl kernel and Bessel function on
Rn associated with (R, kR) are denoted by ER and JR, respectively. Recall from Definition
6.3 the (rational) Cherednik kernel and hypergeometric functions G and F associated with
(An−1, k), respectively. The Dunkl type weight function is denoted by

ωR(x) = ωRκR(x) =
∏
α∈R
|〈x, α〉|κR(α) . (7.5)
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By the choice of multiplicities (7.3), the weight functions associated with the root systems A
and B are related to each other by the equation

ωB(x) = ∆(x2)k′ωA(x2), (7.6)

where x2 is understood componentwise and

∆(x) := x1 · · ·xn. (7.7)

The Dunkl transform associated with (R, kR) is denoted by FR and the associated Macdonald-
Mehta constant is denoted by

cR :=
∫
Rn
e−|x|

2/2ωR(x) dx. (7.8)

Throughout the chapter we will always assume that k ≥ 0. Recall the (type A) Dunkl-Laplace
transform of a locally integrable function f ∈ L1

loc(Rn+) is defined on the cone Rn+ =]0,∞[n by

Lf(z) :=
∫
Rn+
EA(−x, z)f(x)ωA(x) dx, z ∈ Cn (7.9)

provided the integral exists. For our purpose, the following results on the Dunkl-Laplace
transform are of relevance.

Theorem 7.1. Consider f ∈ L1
loc(Rn+). Then:

(i) If Lf(a) exists for a ∈ Rn, then Lf exists and defines a holmorphic function on the
halfspace Hn(a) := {z ∈ Cn | Re z > a}, where Re z > a is defined componentwise.
Moreover, for any polynomial p ∈ C[Rn],

p(−TA)Lf(z) = L(pf)(z), z ∈ Hn(a).

(ii) If |f(x)| ≤ e−s‖x‖1 for some s ∈ R, then Lf exists on Hn(s).

(iii) If Lf(s) exists for some s ∈ R and y 7→ Lf(s + iy) ∈ L1(Rn, ωA(x)dx), then f has a
continuous representative f0 such that

(−i)n
c2
A

∫
Re z=s

Lf(z)EA(x, z)ωA(z) dz =
{
f0(x) if x > 0,
0 otherwise.

The integral is understood as an n-fold line integral.

7.2 The connection to radial analysis on symmetric cones
This section is intended to review some of the standard facts on radial analysis on symmetric
cones as in [FK94]. We will touch only a few aspects of the theory and restrict our attention
to the special functions associated with a symmetric cone. The aim is to motivate how special
functions of symmetric cones can be interpreted as functions in the Dunkl setting of type
A. To become more precise, let Ω = G/K be an irreducible symmetric cone with associated
Euclidean Jordan algebra V of dimension m, rank n and with Peirce dimension constant
d. In the remainder of this section we require that k = d

2 . Let (Zλ)λ∈Λn+ be the spherical
polynomials of Ω, normalized such that for all p ∈ N0

(trx)p =
∑
λ∈Λn+
|λ|=p

Zλ(x),
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where tr is the Jordan trace. Denote by specx ∈ Rn the spectrum of x ∈ V . The normalized
Jack polynomials (Cλ)λ∈Λn+ of index α = 1

k coincide with the spherical polynomials, cf.
Proposition 5.4, i.e.

Zλ(x) = Cλ(specx). (7.10)

More general, by Theorem 5.3, the spherical functions (ϕΩ
λ )λ∈Cn are given by the hypergeo-

metric function F
ϕΩ
λ (x) = F(λ− ρ, spec, x)

with ρ given as in 6.9.

Hypergeometric series

Recall the generalized Pochhammer symbols from (6.7), as well as their dependence on the
parameter k. A hypergeometric series associated with Ω is defined for parameter µ ∈ Cp, ν ∈ Cq
by the series

pF
Ω
q (µ; ν;x) :=

∑
λ∈Λn+

[µ]λ
[ν]λ|λ|!

Zλ(x), (7.11)

whenever the series converges. There is no canonical terminology of a two-variable hypergeo-
metric series. To get an idea, let P be the quadratic representation of V and consider for a
moment the function

pF
Ω
q (µ; ν;x, y) := pF

Ω
q (µ; ν;P (

√
x)y).

Remark 7.2. By [FK94, Corollary XI.3.2] and (7.10), the K-mean of the two-variable pF
Ω
q

coincides with the hypergeometric series of Jack polynomials introduced in Definition 6.18, i.e.∫
K
pF

Ω
q (µ; ν;x, ky) dk =

∑
λ∈Λn+

[µ]λ
[ν]λ |λ|!

∫
K
Zλ(P (

√
x)ky) dk

=
∑
λ∈Λn+

[µ]λ
[ν]λ

Zλ(x)Zλ(y)
|λ|!Zλ(e) = pFq(µ; ν; specx, spec y).

By definition K stabilizes the unit element e ∈ V so that the one-variable hypergeometric
series from Definition 6.18 and (7.11) are related by

pF
Ω
q (µ; ν;x) = pFq(µ; ν; specx, 1).

Bessel function and Hankel transform

One of the classical special functions associated with Ω are the (J -)Bessel functions. The
Bessel function of index ν ∈ C \ ({k, . . . , k(n− 1)} − N0) associated with Ω is defined as the
following entire function on the complexification VC of V :

J Ω
ν (z) := 0F

Ω
1 (ν;−z) = 0F1(ν;−spec z). (7.12)

The Bessel function J Ω
ν defines the kernel of the Hankel transform on Ω by

HΩ
ν f(x) := 1

ΓΩ(ν)

∫
Ω
J Ω
ν (P (

√
x)y)f(y) det(y)ν−

m
n dy,

where det is the Jordan determinant.
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Remark 7.3. In view of [FK94, Theorem VI.2.3] and Remark 7.2, the Hankel transform of a
K-invariant function f : V → C, f(u) = f0(specu) can be rewritten as

HΩ
ν f(x) = const ·

∫
Rn
f0(ξ)0F1(ξ, specx)∆(ξ)ν−µ0−1ωA(ξ) dξ. (7.13)

Therefore, it is natural to ask which results on Bessel functions and the Hankel transform can
be generalized to the type A Dunkl setting. It is not our purpose to discuss all associated
results, but we will briefly sketch the main theorem that will be generalized to the Dunkl
setting.

Consider a self-adjoint representation φ : V → EndE of V on some real Euclidean space
E of dimension N and let Q : E → V be the associated quadratic representation. Note that
the image of Q is contained in Ω, see [FK94, Chapter XVI].

Theorem 7.4. The Fourier transform of an integrable radial function f : E → C, i.e.
f(ξ) = F (Q(ξ)), is given by the Hankel transform of F with index ν = N

2n , namely

f̂(η) =
∫
E
e−i〈ξ,η〉Ef(ξ)dξ = const · HΩ

ν F (Q(η)
4 )

In [Her55, Mui82, Rub06] the following special case is studied in depth: V = Symn(R) is
the space of real symmetric matrices, Ω = Posn(R) is the cone of positive definite matrices,
E = Rn×m is equipped with the Hilbert-Schmidt inner product, the representation is φ(x)ξ =
xξ, and the associated quadratic form is given by Q(ξ) = ξξT . Motivated by this, we will
generalize Theorem 7.4 to the Dunkl setting. The key observation is that a 0F1 hypergeometric
series coincides with a type B Dunkl-Bessel function (cf. [Rö07, Proposition 4.5]), i.e.

0F1(ν; x2

2 ,
y2

2 ) = JBκ (x, y),

where the multiplicity κ depends on k and ν. This is how type B Dunkl theory is involved.
The Fourier transform in Theorem 7.4 is then replaced by an arbitrary Dunkl transform of
type B, Q is replaced by x 7→ x2 = (x2

1, . . . , x
2
n) and the parameter ν related to the type B

multiplicity.

K-Bessel functions

The K-Bessel function of Ω with index s ∈ C (in variables x, y ∈ Ω) is defined by

KΩ
s (x, y) :=

∫
Ω
e−(x,u−1)−(y,u)∆s(u) det(u)−

m
n du, (7.14)

where (x, y) is the inner product on V , given by the trace. The K-Bessel functions for arbitrary
symmetric cones were first considered in [Cle88] and further studied in [Dun90]. In [FK94,
Chapter XVI] the following properties of Ks are proven.

Theorem 7.5. The integral Ks(x, y) converges for all x, y ∈ Ω and s ∈ Cn. Furthermore

(i) Ks(x, y) is an entire function of s.

(ii) Ks(y, x) = K−s∗(m0x,m0y), where s∗ = (sn, . . . , s1) and m0 ∈ K is an involution on V ,
defined in [FK94, page 127].

These and additional growth properties of the K-Bessel functions are an important tool to
verify functional equations for zeta integrals in the setting of symmetric cones.
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Remark 7.6. The formula (4.10), as well as the integration formula [FK94, Theorem VI.2.3]
show that averaging K in both variables over K gives∫
K×K

KΩ
s (kx,k′y) d(k, k′)

= const ·
∫
Rn+
JA(−specx, 1

ξ )JA(−spec y, ξ)F(s− ρ, ξ)∆(ξ)−µ0−1ωA(ξ) dξ

= const ·
∫
Rn+
JA(−specx, ξ)JA(−spec y, 1

ξ )F(−sR − ρ, ξ)∆(ξ)−µ0−1ωA(ξ) dξ,

where the last equality follows from a change of variable and properties of the hypergeometric
function as stated in Section 5. If the parameter is given by s = ν = (ν, . . . , ν) with ν ∈ C,
then∫

K
KΩ
ν (kx, y) dk = const ·

∫
Rn+
JA(−specx, 1

ξ
)JA(−spec y, ξ)∆(ξ)ν−µ0−1ωA(ξ) dξ. (7.15)

This relation between the K-Bessel functions on a symmetric cone and the type A Dunkl
theory is the starting point to define K-Bessel functions in the more general type A Dunkl
theory for arbitrary parameters k. In particular, we expect that most of the results on the
K-Bessel function on a symmetric cone will have an analogue in the Dunkl setting.

7.3 Bessel kernel and K-Bessel function

In this section, we return to the Dunkl setting. We define a Bessel kernel for the root system
An−1, playing the role of the two-variable Bessel functions on a symmetric cone. Furthermore,
we introduce Dunkl-type K-Bessel functions for the root system An−1. The section provides a
detailed exposition of this generalized Bessel functions and we investigate their properties
in line with know results in the radial analysis on symmetric cones. For instance, we give
recurrence relations, integral representations as well as growth estimates.

Definition 7.7. For ν ∈ C\({0, k, . . . , k(n− 1)}−N0) we define the type A (non-)symmetric
Bessel kernels as

Eν(w, z) := 0K1(ν;w,−z) =
∑
η∈Nn0

(−1)|η|
[ν]η+

Lη(w)Lη(z)
|η|!Lη(1) ,

Jν(w, z) := 0F1(ν;w,−z) =
∑
λ∈Λn+

(−1)|λ|
[ν]λ

Cλ(w)Cλ(z)
|λ|!Cλ(1) ,

which are, by Theorem 6.20, entire functions in the variables w, z, and holomorphic in the
parameter ν on the domain C\({0, k, . . . , k(n− 1)} − N0). In particular, the Bessel kernels
are related by taking Sn-means

1
n!

∑
σ∈Sn

Eν(w, σz) = Jν(w, z).

Notice that by equation (7.12) the kernel Jν generalizes the Bessel function of a symmetric
cone.

From now on, consider a fixed parameter ν ∈ C. The type A multiplicity is

κA = k ≥ 0,
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and the type B multiplicity is

κB = (k, k′) with k′ = ν − µ0 − 1
2 , where µ0 := k(n− 1). (7.16)

Hence, we have a one-to-one correspondence between the pairs (κA, ν) and the type B
multiplicities κB . The following proposition justifies the term "Bessel-kernel" for the functions
Jν and Eν .

Proposition 7.8. The type B Dunkl kernel and Bessel function with multiplicity κB satisfy

0K1(ν; w2

2 ,
z2

2 ) = 1
2n

∑
τ∈Zn2

EB(w, τz) and 0F1(ν; w2

2 ,
z2

2 ) = JB(w, z).

In particular,

Eν(w2

2 ,
z2

2 ) = 1
2n

∑
τ∈Zn2

EB(iw, τz) and Jν(w2

2 ,
z2

2 ) = JB(iw, z).

We remark that the statement of Proposition 7.8 for the type B Bessel function was
already observed in [Rö07, Proposition 4.5].

Proof. The proof is similar to [Rö07] for the Bessel function. Using [BF98, Proposition
4.18], we obtain the following formula for the Dunkl pairing [·, ·]B of non-symmetric Jack
polynomials Eη

Eη((TBx )2)Eµ(x2)
∣∣∣
x=0

= [Eη(x2), Eµ(x2)]B =

4|η|[ν]η+k
|η| d′ηeη

dη
, if η = µ,

0, otherwise,

with certain constants dη, d′η, eη, satisfying
eη
dη

= Eη(1), cf. [For10, Formula (12.3.3)]. Therefore,
by definition of the renormalization Lη of the non-symmetric Jack polynomials (Lemma 6.16),

[Lη(x2), Lµ(x2)]B = 4|η| |η|! [ν]η+Lη(1) · δηµ, (7.17)

where δµη is the Kronecker delta. Since (Lη)η∈Nn0 is a homogeneous basis for C[Rn], we have
an expression

1
2n

∑
τ∈Zn2

EB(w, τz) =
∑
µ∈Nn0

aµ(w)Lµ(z2),

with certain coefficients aµ(w) ∈ C. Finally, the Zn2 -invariance of Lµ(x2), the eigenvalue
equation for the Dunkl kernel and (7.17) show that

Lη(w2) = 1
2n

∑
τ∈Zn2

Lη((τw)2)EB(τw, z)
∣∣∣
z=0

= 1
2n

∑
τ∈Zn2

Lη((TBz )2)EB(τw, z)
∣∣∣
z=0

=
∑
µ∈Nn0

aµ(w)[Lη(z2), Lµ(z2)]B = aη(w)4|η| |η|! [ν]η+Lη(1).

�

Lemma 7.9. Let w, z ∈ Cn with Re z > 0 and Re ν > µ0. Then∫
Rn+
EA(−x, z)Eν(w, x)∆(x)ν−µ0−1ωA(x) dx = Γn(ν)EA(w,−1

z )∆(z)−ν .

The same is true if both EA and Eν are replaced by JA and Jν , respectively.
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Proof. This is immediate from Remark 6.21 and Theorem 6.23, as

1K1(ν; ν;w, z) = 0K0(w, z) = EA(w, z).

�

Theorem 7.10 (Integral representation). Let Re ν > 2µ0 + 1, w ∈ Cn and x ∈ Rn+. Then for
all s ∈ R+, we have

Eν(w, x)∆(x)ν−µ0−1 = Γn(ν)
c2
A i

n

∫
Re(ζ)=s

EA(x, ζ)EA(w,−1
ζ )∆(ζ)−νωA(ζ) dζ.

The same is true if both EA and Eν are replaced by JA and Jν , respectively.

Proof. By the Cauchy-type inversion formula of the Dunkl-Laplace transform (Theorem
7.1 (iii)), it suffices to prove that the right hand side of Lemma 7.9 is integrable as a function
of z over s+ iRn for s > 0 with respect to the measure ωA(x)dx. The map z 7→ 1

z is bounded
on s+ iRn and so is z 7→ EA(w,−1

z ). Thus, we only have to verify the integrability condition
for ∆(z)−ν . Since ωA(x) = |D(x)|2k with D(x) = ∏

i<j(xi − xj) of degree (n− 1) in xi, the
function

y 7→ ∆(s+ y2)−
1
2 Re νωA(y)

is integrable over Rn if and only if Re ν > 2µ0 + 1, since
√
s+ y2

i ∼ |yi| for large |yi|. Hence,
the claim follows for Re ν > 2µ0 + 1. �

Corollary 7.11 (Recurrence formulas). For w, z ∈ Cn and ν ∈ C with Re ν > µ0 we have

(i) ∆(TAz )Eν(w, z) = (−1)n
[ν]1

∆(w)Eν+1(w, z).

(ii) If in addition Re z > 0, then

∆(TAz )
(
Eν(w, z)∆(z)ν−µ0−1

)
= [ν − 1]1 Eν−1(w, z)∆(z)ν−µ0−2.

The results are still true if Eν is replaced by Jν .

Proof.

(i) Denoting f−(x) = f(−x), we have TAξ f− = −(TAξ f)−. Hence, part (i) is a consequence
of Remark 6.21 and Theorem 6.27.

(ii) By analyticity in ν and z, we can assume that Re ν > 2µ0 + 2 and z = x ∈ Rn+. By
changing the order of differentation and integration, the integral representation of Eν in
Theorem 7.10 shows that

∆(TAx )
(
Eν(w, x)∆(x)ν−µ0−1)
= Γn(ν)

c2
A i

n

∫
Re(ζ)=s

∆(ζ)EA(x, ζ)EA(w,−1
ζ )∆(ζ)−νωA(ζ) dζ

= [ν − 1]1
Γn(ν − 1)
c2
A i

n

∫
Re(ζ)=s

∆(ζ)EA(x, ζ)EA(w,−1
ζ )∆(ζ)−(ν−1)ωA(ζ) dζ

= [ν − 1]1Eν−1(w, x)∆(x)ν−µ0−2.
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It remains to justify the change of order of differentation and integration. By [Rö03a,
Proposition 2.6] we have ∣∣∣∂xξEA(x, s+ iy)

∣∣∣ ≤ (s+ |y|)e〈x,s〉

which is locally bounded in x. By similar computations as in Theorem 7.10, the condition
Re ν > 2µ0 + 2 shows that the function

y 7→ ∂xξE
A(x, s+ iy)∆(s+ iy)ν−µ0−1ωA(y)

is dominated on Rn by

y 7→ e〈x,s〉(s+ |y|)∆(s+ iy)ν−µ0−1ωA(y)

which is locally bounded in x and integrable over Rn. This justifies the change of order
of differentation and integration.

�

We now come to the definition of the Dunkl-type K-Bessel function which shares important
properties with the K-Bessel functions on symmetric cones.

Definition 7.12. The Dunkl-type K-Bessel function of index ν ∈ C is defined by

Kν(w, z) :=
∫
Rn+
EA(−x,w)EA(− 1

x , z)∆(x)ν−µ0−1ωA(x) dx.

Its convergence and further properties of the integral will be investigated in the following
theorem.

By taking Sn-means we obtain

1
n!2

∑
σ,τ∈Sn

Kν(σw, τz) =
∫
Rn+
JA(−x,w)JA(− 1

x , z)∆(x)ν−µ0−1ωA(x) dx

which generalizes the averaging property of the K-Bessel function of a symmetric cone as
noted in Remark 7.6, equation (7.15).

By a change of variables, the following Lemma is immediate.

Lemma 7.13. On Rn+, the Sn-invariant measure

∆(x)−µ0−1ωA(x)dx (7.18)

is invariant under the transformation x 7→ 1
x as well as under x 7→ sx for s > 0.

This invariance will be highly relevant in the subsequent results. The measure (7.18) has
to be understood as the Dunkl analogue of the invariant measure of a symmetric cone. In
fact, if k is related to a symmetric cone Ω = G/K, then the measure (7.18) is the K-radial
part of the G-invariant measure on Ω, cf. [FK94, Theorem VI.2.3].
The subsequent theorem generalizes the results for the K-Bessel functions on a symmetric
cone, such as in Theorem 7.5 or [FK94, Chapter XVI, Section 3].

Theorem 7.14. The Dunkl-type K-Bessel function Kν exists for all ν ∈ C and w, z ∈ Cn
with Rew,Re z > 0. Moreover, K is holomorphic in ν, w, z and has the following properties:

(i) Kν(σw, σz) = Kν(w, z) for all σ ∈ Sn.
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(ii) Kν(w, z) = K−ν(z, w) and |Kν(w, z)| ≤ KRe ν(Rew,Re z).

(iii) If ν ∈ R and x, y ∈ Rn+, then

0 < Kν(x, y) ≤
{

Γn(ν)∆(x)−ν if ν > µ0

Γn(−ν)∆(y)ν if ν < −µ0

and ν 7→ Kν(x, y) is convex.

(iv) If ν ∈ R, |ν| ≤ µ0 and x, y ∈ Rn+, then for all ε > 0,

0 < Kν(x, y) ≤ Γn(µ0 + 1)∆(x)−µ0−1 + Γn(µ0 + ε)∆(y)−µ0−ε.

(v) Recurrence formulas:

∆(TA)Kν(w, ·) = (−1)nKν−1(w, ·),
∆(TA)Kν(·, z) = (−1)nKν+1(·, z).

(vi) If Re ν < −µ0, then
lim
ε→0

ε−nνKν(w, εz) = Γn(−ν)∆(z)ν .

If Re ν > µ0, then
lim
ε→0

εnνKν(εw, z) = Γn(ν)∆(w)−ν .

The proof is similar to the one in the case of symmetric cones as in [FK94, Chapter XVI,
Section 3]. See also [Rub06] for the cone of real positive definite symmetric matrices.

Proof. Let Re ν > µ0 and w, z ∈ Cn with Rew,Re z > 0. According to the estimates (6.8),∣∣∣EA(−x,w)EA(− 1
x , z)

∣∣∣ ≤ EA(−x,Rew).

Hence, the Laplace transform identities in Theorem 6.12 lead to∫
Rn+

∣∣∣EA(−x,w)EA(− 1
x , z)∆(x)ν−µ0−1

∣∣∣ωA(x) dx

≤
∫
Rn+
EA(−x,Rew)∆(x)Re ν−µ0−1ωA(x) dx = Γn(Re ν)∆(Rew)−Re ν .

In particular, Kν(w, z) exists and is holomorphic in (w, z, ν) ∈ {Rew > 0} × {Re z > 0} ×
{Re ν > µ0} by standard theorems on holomorphic parameter integrals. Moreover, the stated
estimate in (iii) is true in the case Re ν > µ0.
Consider the case Re ν < −µ0. By the change of variables ξ 7→ 1

ξ in the defining integral
for Kν(w, z) and Lemma 7.13 we have Kν(w, z) = K−ν(z, w). Thus, Kν(w, z) exists and is
holomorphic in (w, z, ν) ∈ {Rew > 0} × {Re z > 0} × {Re ν < −µ0}. Thereby, the estimate
in (iii) for Re ν < −µ0 is true as well. Finally, for x ∈ Rn+, ν 7→ ∆(x)Re ν−µ0−1 is convex on R,
so that Kν(w, z) exists and is holomorphic in (w, z, ν) ∈ {Rew > 0} × {Re z > 0} ×C, where
ν 7→ Kν(x, y) is convex on R for fixed x, y ∈ Rn+. It remains to prove the properties (i), (ii)
and (iv)-(vi).

(i) Since EA(σw, σz) = EA(w, z), this follows by a change of variables.

(ii) By Lemma 7.13, this is done by the change of variables x 7→ 1
x . The estimate is an

immediate consequence of equation (6.8).
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(iv) To prove the stated estimate, consider an arbitrary ε > 0 and split the defining integral
for Kν according to

Rn+ = {∆(ξ) < 1} t {∆(ξ) > 1} t {∆(ξ) = 1} ,

where the last set has measure zero and need not to be discussed.

(a) Since EA(−1
ξ , y) ≤ 1 for ξ, y ∈ Rn+ and ∆(ξ)ν−µ0−1 < 1 for ∆(ξ) > 1, we obtain∫
∆(ξ)>1

EA(−ξ, x)EA(−1
ξ , y)∆(ξ)ν−µ0−1ωA(ξ) dξ

≤
∫
Rn+
EA(−ξ, x)ωA(ξ) dξ = Γn(µ0 + 1)∆(x)−µ0−1,

where again Theorem 6.12 was used.
(b) As ∆(ξ)−ν−µ0−1 < ∆(ξ)ε−1 for ∆(ξ) > 1 and ε > 0, we obtain∫

∆(ξ)<1
EA(−ξ, x)EA(−1

ξ , y)∆(ξ)ν−µ0−1ωA(ξ) dξ

=
∫

∆(ξ)>1
EA(−1

ξ , x)EA(−ξ, y)∆(ξ)−ν−µ0−1ωA(ξ) dξ

≤
∫
Rn+
EA(−ξ, x)∆(ξ)ε−1ωA(ξ) dξ = Γn(µ0 + ε)∆(x)−µ0−ε.

(v) This is a consequence of the eigenvalue equation for EA.

(vi) It suffices to check the second limit, the first one can then be deduced from (ii). Recall
from (6.8), that

∣∣∣EA(− ε
x , z)

∣∣∣ ≤ 1 for Re z > 0. By the change of variables x 7→ x
ε ,

dominated convergence and Theorem 6.12, we just have

εnνKν(εw, z) = εnν
∫
Rn+
EA(−x, εw)EA(− 1

x , z)∆(x)ν−µ0−1ωA(x) dx

=
∫
Rn+
EA(−x,w)EA(− ε

x , z)∆(x)ν−µ0−1ωA(x) dx,

and as ε tends to 0, the last integral converges to∫
Rn+
EA(−x,w)∆(x)ν−µ0−1ωA(x) dx = Γn(ν)∆(w)−ν .

�

Proposition 7.15. For w ∈ Cn with Rew > 0 put fw(x) = K
ν−µ0−1

2
(x2, w). Then fw

satisfies the eigenvalue equation
1
4(TBi )2fw = wifw for all i = 1, . . . , n,

where the type B multiplicity of the Dunkl operator on the left side is given as in (7.16) by
the value k on ±ei ± ej and k′ = ν − µ0 − 1

2 on ±ei.

This is a generalization of the Bessel system on a symmetric cone which is solved by the
K-Bessel function. See for instance [FK94, Page 358] and [Dib90] for the one-variable case,
i.e. w = 1, or [Mö13] for some further eigenvalue equations of the K-Bessel function.

Proof. To improve readability we put ν ′ = ν + 1
2 . The proof will be done by direct

computation and is divided into several steps:
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(i) First, consider a C2-function f(x) = f0(x2). Then, as noticed in [BF98],

1
4(TBi )2f(x)=x2

i ((TAi )2f0)(x2) + (ν ′ − µ0)(TAi f0)(x2) + k
∑
j 6=i

(TAi f0)(sijx2).

Hence,

1
4(TBi,x)2EA(−x2, ξ)=

(
x2
i ξ

2
i − (ν ′ − µ0)ξi

)
EA(−x2, ξ)− k

∑
j 6=i

ξiE
A(−x2, sijξ).

(ii) By a change of variables and EA(σx, σy) = EA(x, y) for σ ∈ Sn, we have∫
Rn+

∑
j 6=i

ξiE
A(−x2, sijξ)EA(−1

ξ , w)∆(ξ)ν′−2(µ0+1)ωk(ξ) dξ

=
∫
Rn+
EA(−x2, ξ)

∑
j 6=i

ξjE
A(− 1

sijξ
, w)

∆(ξ)ν′−2(µ0+1)ωk(ξ) dξ.

(iii) For abbreviation put g(ξ) = EA(ξ, w), so that

TAi,ξ(ξ2
i g(−1

ξ )) = ∂g

∂ξi
(−1

ξ ) + 2ξig(−1
ξ ) + k

∑
j 6=i

ξ2
i g(−1

ξ )− ξ2
j g(− 1

sijξ
)

ξi − ξj

= (TAi g)(−1
ξ ) + 2ξig(− 1

ξi
) + k

∑
j 6=i

(
ξ2
i g(−1

ξ )− ξ2
j g(− 1

sijξ
)

ξi − ξj

−
g(−1

ξ )− g(−sij 1
ξ )

1
ξj
− 1

ξi

)
= (wi + 2ξi)g(−1

ξ ) + k
∑
j 6=i

ξig(−1
ξ ) + ξjg(− 1

sijξ
)

= (wi + (2 + µ0)ξi)g(−1
ξ ) + k

∑
j 6=i

ξjg(− 1
sijξ

).

Moreover, since TAi acts on Sn-invariant functions as a partial derivative,

TAi,ξ∆(ξ)ν′−2(µ0+1) = (ν ′ − 2(µ0 + 1))∆(ξ)ν′−2(µ0+1)

ξi
.

Therefore,

TAi,ξ

(
ξ2
iE

A(−1
ξ , w)∆(ξ)ν′−2(µ0+1)

)
=
[ (
wi + (ν ′ − µ0)ξi

)
EA(−1

ξ , w) + k
∑
j 6=i

ξjE
A(− 1

sijξ
, w)

]
∆(ξ)ν′−2(µ0+1).

Thus, we conclude that∫
Rn+
x2
i ξ

2
iE

A(−x2, ξ)EA(−1
ξ , w)∆(ξ)ν′−2(µ0+1)ωA(ξ) dξ

= −
∫
Rn+
ξ2
i T

A
i,ξE

A(−x2, ξ)EA(−1
ξ , w)∆(ξ)ν′−2(µ0+1)ωA(ξ) dξ (7.19)

=
∫
Rn+
EA(−x2, ξ)TAi,ξ

(
ξ2
iE

A(−1
ξ , w)∆(ξ)ν′−2(µ0+1)

)
ωA(ξ) dξ
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=
∫
Rn+

(
wi + (ν ′ − µ0)ξi

)
EA(−x2, ξ)EA(−1

ξ , w)∆(ξ)ν′−2(µ0+1)ωA(ξ) dξ

+
∫
Rn+
EA(−x2, ξ) · k

∑
j 6=i

ξjE
A(− 1

sijξ
, w)∆(ξ)ν′−2(µ0+1)ωA(ξ) dξ.

Here, equation (7.19) is justified by the skew symmetry of the Dunkl operators on
L2(Rn, ωA(x)dx) which is based on integration by parts. So it suffices to show that
there occur no boundary terms if we integrate by parts which can be seen as follows:
As EA(−1

ξ , w) −→ 0 for ξ → ∂Rn+ and as EA(−x2, ξ) −→ 0 exponetially for ξ → ∞
(estimate 6.8), the boundary terms vanish on ∂Rn+ and in ∞.

(iv) Putting the things from (1),(2) and (3) together, we obtain

1
4(TBi,x)2Kν′−µ0−1(x2, w) =

∫
Rn+

1
4(TBi,x)2EA(−x2, ξ)EA(−1

ξ , w)∆(ξ)ν′−2(µ0+1)ω(ξ) dξ

= wiKν′−µ0−1(x2, w).

�

Up to a change of variables, we are able to compute the Cherednik transform (Definition
4.31) of the K-Bessel function as in the case of symmetric cones in [FK94, Proposition XVI.3.3],
where the Cherednik transform is given by the spherical Fourier transform. Recall the rational
version of the type A Cherednik kernel G from Definition 6.3.

Theorem 7.16. Consider ν ∈ C and λ = λ̃ + λ′ with λ′ ∈ iRn + co(Sn.ρ), satisfying the
conditions

Re λ̃ < −µ0, Re λ̃ < Re ν − µ0.

Then we have

Γn(ρ− λ)Γn(ρ− λ+ ν)G(λ, z) =
∫
Rn+
G(λ, 1

x)Kν(z, x)∆(x)−µ0−1ωA(x) dx

=
∫
Rn
G(λ,−x)Kν(z, ex)δk(x) dx,

where δk(x) = ∏
i 6=j |2 sinh xi−xj

2 |k.

Proof. The second equality is a consequence of the change of variables x 7→ ex, so it
remains to proof the first part. By the estimates from Lemma 6.4 for the Cherednik kernel and
Theorem 7.14 (more precisely by the proof of parts (iii) and (iv)) for the K-Bessel function,
we observe that

(ξ, x) 7→ G(λ, 1
x)EA(x,−ξ)EA(−z, 1

ξ )∆(x)−µ0−1∆(ξ)ν−µ0−1

is integrable over Rn+×Rn+ with respect to ωA(x)ωA(ξ)dxdξ. Hence, we use Fubini’s Theorem,
Remark 7.13 and Corollary 6.15 (note that G(λ, 1

x) = G(−λR, x) and λ 7→ Γn(ρ + λ) is
Sn-invariant) to obtain∫

Rn+
G(λ, 1

x)Kν(z, x)∆(x)−µ0−1ωA(x) dx

=
∫
Rn+

∫
Rn+
G(λ, 1

x)EA(x,−ξ)EA(−z, 1
ξ )∆(x)−µ0−1∆(ξ)ν−µ0−1ωA(ξ)ωA(x) dx dξ
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= Γn(ρ− λ)
∫
Rn+
G(−λR, 1

ξR
)EA(−z, 1

ξ )∆(ξ)ν−µ0−1ωA(ξ) dξ

= Γn(ρ− λ)
∫
Rn+
G(−λR, ξR)EA(−z, ξ)∆(ξ)−ν−µ0−1ωA(ξ) dξ

= Γn(ρ− λ)Γn(ρ− λ+ ν)G(−λR, 1
xR

)
= Γn(ρ− λ)Γn(ρ− λ+ ν)G(−λR, 1

xR
).

�

We may also study K-Bessel functions with a multivariate index, similar to their analogues
on symmetric cones.

Definition 7.17. For arbitrary λ ∈ Cn we define the K-Bessel function

Kλ(w, z) =
∫
Rn+
EA(−x,w)EA(− 1

x , z)G(λ− ρ, x)∆(x)−µ0−1ωA(x) dx.

The convergence of the integral will be discussed in the next theorem and is in accordance
with the previous case λ = ν with ν ∈ C.

Theorem 7.18. The map (λ,w, z) 7→ Kλ(w, z) is holomorphic on the domain
Cn × {Rew > 0} × {Re z > 0} and satisfies:

(i) Kλ(w, z) = K−λR(zR, wR) and |Kλ(w, z)| ≤ KReλ(Rew,Re z).

(ii) If λ ∈ Rn and x, y ∈ Rn+, then

0 < Kλ(x, y) ≤
{

Γn(λ)G(λ− ρ, 1
x), if λ > µ0,

Γn(−λR)G(−λR − ρ, 1
xR

), if λ < µ0.

=
{

Γn(λ)G(−λR − ρ, xR), if λ > µ0,

Γn(−λR)G(λ− ρ, x), if λ < µ0.
.

Moreover ν 7→ Kλ+ν is a convex function R→ R+.

(iii) Recurrence formulas:

∆(TA)Kλ(w, ·) = (−1)nKλ−1(w, ·),
∆(TA)Kλ(·, z) = (−1)nKλ+1(·, z).

Proof. The existence and analyticity of Kν(w, z) can be checked for Reλ > µ0 and
Reλ < −µ0 exactly as in Theorem 7.14, using the stated properties of the Cherednik kernel
in Lemma 6.4. The existence and analyticity in the case −µ0 ≤ Reλ ≤ µ0 can be deduced by
a convexity property as in Theorem 7.14 which will be proven below.

(i) This is a immediate consequence of Lemma 6.4.

(ii) Suppose that λ > µ0. Similar to the proof of Theorem 7.14 we obtain by Lemma 6.4
that

0 < Kλ(x, y) ≤
∫
Rn+
EA(−ξ, x)G(λ− ρ, x)∆(x)−µ0−1ωA(x) dx

= Γn(λ)G(λ− ρ, 1
x) = Γn(λ)G(−λR − ρ, xR).
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By part (i), the case λ < −µ0 reduces to the case λ > µ0. Moreover, in view of Lemma
6.4 we have

G(λ+ ν − ρ(k), x) = G(λ− ρ(k), x)∆(x)ν ,
so that the convexity in ν is verified just as in Theorem 7.14. Together with part (i),
this shows that the integral exists for all λ ∈ Cn and has the stated analyticity property.

(iii) This is the same argument as in the proof of Theorem 7.14.

�

7.4 The Hankel transform and its connection to type B Dunkl
theory

The Hankel transform for the root system An−1 was already introduced in [BF98] and earlier
in [Mac89] in a symmetrized version, both at a rather formal level. In this section, we will
discuss its analytic aspects and its connection to the type B Dunkl transform. We proceed in
a way similar to the one in [Rub06], where the case of the symmetric cone Ω = Posn(R) is
treated. For arbitrary symmetric cones see also [FK94, Chapter XVI, Section 2]. Some of our
results are inspired by computations in [Mac89] performed in the case of symmetric functions.
As in Remark 7.3 we define the following generalized Hankel transform.
Definition 7.19. For ν ∈ C with Re ν > µ0, the Hankel transform is defined by

Hνf(w) := 1
Γn(ν)

∫
Rn+
f(x)Eν(x,w)∆(x)ν−µ0−1ωA(x) dx, w ∈ Cn,

whenever the integral exists for measurable f : Rn+ → C.
Lemma 7.20. Consider ν ∈ C with Re ν > µ0 and put ez(x) := EA(x,−z) for z ∈ Cn with
Re z > 0. Then:
(i) ez ∈ L2

ν(Rn+) := L2(Rn+,∆(x)ν−µ0−1ωA(x)dx) for ν ∈ R with ν > µ0.

(ii) For z ∈ Cn with Re z > 0,

Hν(EA(·,−z)) = ∆(z)−νEA(·,−1
z ).

In particular, Hν is involutive on U := spanC

{
EA(·,−z) | Re z > 0

}
.

(iii) For ν ∈ R, ν > µ0 equip L2
ν(Rn+) with the canonical inner product

〈f, g〉L2
ν(Rn+) :=

∫
Rn+
f(x)g(x)∆(x)ν−µ0−1ωA(x) dx.

Then U ⊆ L2
ν(Rn+) is dense. More precisely, the space spanned by the ez with z = s+ iy

and fixed s > 0 is already dense in L2
ν(Rn+).

Proof. Part (i) is a consequence of the estimates (6.8). Part (ii) is a reformulation of
Lemma 7.9. Thus, it remains to prove part (iii). Fix some s > 0 and assume that f ∈ L2

ν(Rn+)
satisfies 〈ez, f〉L2

ν(Rn+) = 0 for all z = s+ iy, y ∈ Rn. Recall the Dunkl-Laplace transform from
(7.9). Then

0 = 〈es+iy, f〉L2
ν(Rn+) = L(f∆ν−µ0−1)(s+ iy).

By injectivity of the Dunkl-Laplace transform (Theorem 7.1 (iii)) we have f∆ν−µ0−1 = 0, i.e.
f = 0. �
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Theorem 7.21. For ν ∈ R with ν > µ0, the Hankel transform Hν extends uniquely to an
involutive isometric isomorphism of L2

ν(Rn+).

Proof. By Lemma 7.20 it suffices to show that Hν is unitary on the space generated by the
functions ez(x) = EA(x,−z) with Re z > 0. By Corollary 6.24, 1K0 has an analytic extension
satisfying for w, z ∈ Cn with Re z > 0

Γn(ν)∆(z)−ν1K0(ν;w,−1
z ) =

∫
Rn+
EA(−x, z)EA(−x,w)∆(x)ν−µ0−1ωA(x) dx.

As ew = ew on Rn
〈ez, ew〉L2

ν(Rn+) = Γn(ν)∆(z)−ν1K0(ν;w,−1
z ).

Thus, by part (i) of Lemma 7.20 we conclude that

〈Hνez,Hνew〉L2
ν(Rn+) = ∆(z)−ν∆(w)−ν 〈e1/z, e1/w〉L2

ν(Rn+)

= Γn(ν)∆(w)−ν1K0(ν; 1
w ,−z)

= Γn(ν)∆(w)−ν1K0(ν; 1
w ,−z)

= 〈ew, ez〉L2
ν(Rn+) = 〈ez, ew〉L2

ν(Rn+) .

�

The Hankel transform Hνf of a function f ∈ L2
ν(Rn+) can also be uniquely characterized

in terms of the Dunkl-Laplace transform with the following lemma.

Lemma 7.22. Consider f ∈ L2
ν(Rn+), so in particular L(f∆ν−µ0−1)(z) exists for all z ∈ Cn

with Re z > 0. Moreover, assume that g : Rn+ → C is measurable and s > 0, such that
L(g∆ν−µ0−1)(s) exists. Then:

(i) For all z ∈ Cn with Re z > 0

L((Hνf)∆ν−µ0−1)(z) = ∆(z)−νL(f∆ν−µ0−1)(1
z ).

(ii) If L(g∆ν−µ0−1)(z) = ∆(z)−νL(f∆ν−µ0−1)(1
z ) for all z ∈ C with Re z > s, then g ∈

L2
ν(Rn+), L(g∆ν−µ0−1)(z) exists for all Re z > 0 and g = Hνf .

Proof. For g = Hνf we have by Lemma 7.20 and Theorem 7.21

L(g∆ν−µ0−1)(z) = 〈ez, g〉L2
ν(Rn+) = 〈Hνez, f〉L2

ν(Rn+)

= ∆(z)−ν 〈e1/z, f〉L2
ν(Rn+) = ∆(z)−νL(f∆ν−µ0−1)(1

z )

which proves (i). From the assumption in part (ii) we conclude for all z ∈ Cn with Re z > s

L(g∆ν−µ0−1)(z) = L((Hνf)∆ν−µ0−1)(z).

Hence, injectivity of L leads to the statements in part (ii). �

To facilitate readability, we will write Lp(Ω, h(x)dx) := Lp(Ω, |h(x)|dx) for measurable
h : Ω→ C, where Ω ⊆ Rn is a Borel set.
Recall the correspondence between the pairs of type A multiplicities κA = k together with a
parameter ν ∈ C, and type B multiplicities κB from (7.16), namely

(κA, ν) = (k, ν)←→ κB = (k, k′) with k′ = ν − µ0 − 1
2 , µ0 = k(n− 1).
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Furthermore, assume that Re ν > µ0 + 1
2 , i.e. ReκB ≥ 0, so that FB is an automorphism of

S (Rn), injective on L1(Rn, ωB(x)dx), and extends to an unitary map of L2(Rn, ωB(x)dx) in
the case κB ≥ 0.
The following integral decomposition has to be seen as a Dunkl analogue of the formula
[FK94, Proposition XVI.2.1], where we replaced the integration over the Stiefel manifold by
summation over the Zn2 -action. This integral decomposition is quite simple, but plays the
same important role as the corresponding integration formula on symmetric cones.

Proposition 7.23 (Integral decomposition). Consider f ∈ L1(Rn, ωB(x)dx). Then∫
Rn
f(x)ωB(x) dx = 1

2n
∑
τ∈Zn2

∫
Rn+
f(τx

1
2 )∆(x)ν−µ0−1ωA(x) dx,

where x
1
2 has to be understood componentwise. In particular, if f is Zn2 -invariant∫

Rn
f(x)ωB(x) dx =

∫
Rn+
f(x

1
2 )∆(x)ν−µ0−1ωA(x) dx, (7.20)

Proof. Since ωB is Zn2 -invariant, we have with (7.6) that∫
Rn
f(x)ωB(x) dx =

∑
τ∈Zn2

∫
Rn+
f(τx)∆(x2)k′ωA(x2) dx.

Hence, the change of variables x↔ x
1
2 and ν − µ0 − 1 = k′ − 1

2 gives the stated formula. �

The Hankel transform and the type B Dunkl transform are closely related. The connection
is given in the following theorem and generalizes the formula (7.13) in the setting of symmetric
cones.

Theorem 7.24. Recall the Dunkl transform FB and the constant cB from (7.8). Then
cB = 2nνΓn(ν) and if f ∈ L1(Rn, ωB(x)dx) is Zn2 -invariant, then the measurable function
f0 : Rn+ → C defined by f(x) = f0(x2) satisfies

FBf(ξ) = 2−nνHνf0( ξ2

4 ), ξ ∈ Rn. (7.21)

Proof. The computation of cB can be deduced from Theorem 6.12 and Proposition 7.23

cB =
∫
Rn
e−
|x|2
2 ωB(x) dx =

∫
Rn+
e−

1
2 〈x,1〉∆(x)ν−µ0−1ωA(x) dx

= 2nν
∫
Rn+
EA(−x, 1)∆(x)ν−µ0−1ωA(x) dx = 2nνΓn(ν).

Moreover, the integral formula (7.20) of Proposition 7.23 and Proposition 7.8 show that

FBf(ξ) = 1
cB

∫
Rn+
f0(x)Eν(x, ξ2

4 )∆(x)ν−µ0−1ωA(x) dx,

so (7.21) is proven. �

The following lemma is a Dunkl analogue of [Rub06, Theorem 3.1]. More precisely, on the
space Rn×m of rectangular matrices the author in [Rub06] describes the action of the so-called
Cayley-Laplacian det(∂T∂) on radial functions, i.e. functions of the form f(x) = f0(xxT ). We
replace the Cayley-Laplacian by the type B Dunkl operator ∆(TB)2 and describe its action
on Zn2 -invariant functions f .
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Theorem 7.25. Let f ∈ C∞(Rn) be a Zn2 -invariant function.

(i) There exists a smooth function f0 ∈ C∞(Rn) with f(x) = f0(x2).

(ii) The Dunkl operator ∆(TB)2 acts according to

∆(TB)2f(x) = Lνf0(x2), (7.22)

where the operator on the right hand side is defined by

Lν := 4n∆(x)1+µ0−ν∆(TA)∆(x)ν−µ0∆(TA).

Here the powers of ∆(x) are understood as multiplication operator.

Proof.

(i) This was done by Whitney [Whi43] for univariate functions, and the multivariate case
is easily reduced to this case.

(ii) By continuity it suffices to check (7.22) on Rn \ {∆(x) = 0}. Since

supp(TRξ f) ⊆WR.supp f for R ∈ {A,B}

we can assume without loss of generality that f ∈ C∞c (Rn) and supp f ∩{∆(x) = 0} = ∅,
i.e. that f0 ∈ C∞c (Rn+). Since the Dunkl transform FB is injective, we can prove identity
(7.22) under the action of FB. The identities from Theorem 1.20 and Theorem 7.24
show that

FB(∆(TB)2f)(ξ) = ∆(iξ)2FBf(ξ)

= (−1)n2−nν
Γn(ν) ∆(ξ)2

∫
Rn+

Eν( ξ2

4 , x)f0(x)∆(x)ν−µ0−1ωA(x) dx. (7.23)

The recurrence formulas of Corollary 7.11 give

(−1)n∆(ξ)2Eν( ξ2

4 , x)∆(x)ν−µ0−1 = (−4)n∆( ξ2

4 )Eν( ξ2

4 , x)∆(x)ν−µ0−1

= 4n∆(TAx )
(
∆(x)ν−µ0∆(TAx )Eν( ξ2

4 , x)
)
. (7.24)

Put g(x) = Lνf0(x2). Then we obtain by plugging (7.24) into (7.23) and from the skew
symmetry of the Dunkl operators on C∞c (Rn) ⊆ L2(Rn, ωA(x)dx) (cf. [dJ93]) that

FB(∆(TB)2f)(ξ) = (−1)n2−nν
Γn(ν) ∆(ξ)2

∫
Rn+

Eν( ξ2

4 , x)f0(x)∆(x)ν−µ0−1ωA(x) dx

= 4n2−nν
Γn(ν)

∫
Rn+

(
∆(TAx )

(
∆(x)ν−µ0−1∆(TAx )Eν( ξ2

4 , x)
))
f0(x)ωA(x) dx

= 4n2−nν
Γn(ν)

∫
Rn+

Eν( ξ2

4 , x)(∆(TAx )(∆(x)ν−µ0−1∆(TAx )f0))(x)ωA(x) dx

= 2−nν
Γn(ν)

∫
Rn+

Eν( ξ2

4 , x)(Lνf0)(x)∆(x)ν−µ0−1ωA(x) dx

= 2−nνHν(Lνf0)( ξ2

4 ) = FBg(ξ),

where in the last line again Theorem 7.24 was used.

�
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Example 7.26 (Type B Bernstein identity). Owing to [Rö20, Lemma 5.4] or equivalently
by Theorem 6.12 for η = 1 one has the following type A Bernstein identity:

∆(TA)∆(x)µ = b(µ)∆(x)µ−1, µ ∈ C,

where b(µ) = ∏n
j=1(µ+ k(j − 1)). If we choose f(x) = ∆(x2)µ in Theorem 7.25, we obtain

from this type A Bernstein identity that

∆(TB)2∆(x2)µ = 4n[∆(ξ)1+µ0−ν∆(TA)∆(ξ)ν−µ0∆(TA)∆(ξ)µ]ξ=x2

= 4nb(µ)[∆(ξ)1+µ0−ν∆(TA)∆(ξ)ν+µ−µ0−1]ξ=x2

= 4nb(µ)b(ν + µ− µ0 − 1)∆(x)µ−1

=: B(µ)∆(x2)µ−1.

Thus, we have
∆(TB)2∆(x2)µ = B(µ)∆(x2)µ−1, (7.25)

where B is the polynomial B(µ) = 4n∏n
j=1(µ+ k(j − 1))(µ− 1

2 + k′ + k(j − 1)).
This Bernstein identity was independently proven in [Liu16, Proposition 3.1.2] by direct
computation.

7.5 Zeta integrals and zeta distributions in the type B Dunkl
setting

Recall the situation from the introduction, namely for Ω = Posn(R), V = Symn(R), E = Rn×n
and Q(ξ) = ξξT , ξ ∈ Rn×n. For α ∈ C with Reα > 1

2(n− 1)− 1
2 , the zeta integral of index α

is defined for a Schwartz function f ∈ S (E) by

Z(f ;α) =
∫
Rn×n

f(ξ) det(Q(ξ))α dξ, (7.26)

cf. [FK94, Chapter XVI]. Put m = dimR(Symn(R)). Assume that f is radial, i.e. f(ξ) =
F (Q(ξ)) and additionally that f is invariant under the orthogonal group K which acts on E
by right multiplication. Then K is the Stiefel-manifold of E and the integral formula [FK94,
Proposition XVI.2.1] shows that the zeta integral (7.26) can be rewritten as

Z(f ;α) = π
n
2

ΓΩ(n2 )

∫
Ω
F (u) det(u)α+n

2−
m
n du

= const · π
n
2

ΓΩ(n2 )

∫
Rn+
F (diag(x1, . . . , xn))∆(x)α+n

2−
m
n

∏
i<j

|xi − xj | dx

= const · π
n
2

ΓΩ(n2 )

∫
Rn
F0(x)∆(x2)α+n

2−
m
n

+ 1
2ωA(x2) dx

where F0(x) = F (diag(x2
1, . . . , x

2
n)). This motivates the subsequent definition of the zeta

integral in the Dunkl setting of type A. In view of Proposition 7.23, this can also be interpreted
within type B Dunkl theory. To become more precise, consider as before κA = k ≥ 0, ν ∈ C
with Re ν > µ0 + 1

2 and κB = (k, k′) with k′ = ν − µ0 − 1
2 .

Definition 7.27. We define the zeta integral of index α, Reα > µ0 of a Schwartz function
f ∈ S (Rn) by

Z(f ;α) :=
∫
Rn
f(x)∆(x2)α−νωB(x) dx =

∫
Rn
f(x)∆(x2)α−µ0−1ωA(x2) dx.

Obviously, the integral converges absolutely and depends holomorphically on α. Moreover,
Z(·, α) is WB-invariant, i.e. Z(τf, α) = Z(f, α) for all τ ∈WB.
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The following example will show which kind of functional equation we can expect for zeta
integrals in the Dunkl setting and how it can be extended meromorphically in the parameter
α ∈ C.
Example 7.28. Consider the Gauss function

g(x) := e−|x|
2

= EA(−1, x2).

If α ∈ C with Reα > µ0, then Theorem 6.12 and Proposition 7.23 show that

Z(g;α) =
∫
Rn+
EA(−1, x)∆(x)α−µ0−1ωA(x) dx = Γn(α).

Therefore, the zeta integral of g can be meromorphically extended in the parameter α ∈ C.
Moreover, the type B Dunkl transform of g can be computed by Lemma 7.9 and Theorem
7.24 as

FBg(x) = 2−nνg(x2 ) = 2−nνEA(−1, x2

4 ).
Similar, for Reα < Re ν − µ0 we get

Z(FBg; ν − α) = 2−nν
∫
Rn+
EA(−1, x4 )∆(x)ν−α−µ0−1ωA(x) dx

= 2n(ν−2α)
∫
Rn+
e−〈x,1〉∆(x)ν−α−µ0−1ωA(x) dx

= 2n(ν−2α)Γn(ν − α)

which can be extended meromorphically in α ∈ C. We therefore obtain

Z(g, α)
Γn(α) = 2n(2α−ν)Z(FBg, ν − α)

Γn(ν − α) = 1. (7.27)

We see that both sides of this equation are entire functions in α and that we have found a
functional equation between zeta integrals of g and FBg. We shall see that both the functional
equation and the analytic extension are true for arbitrary Schwartz functions.
Proposition 7.29. Consider a Zn2 -invariant Schwartz function f ∈ S (Rn). Then there
exists a Schwartz function f0 ∈ S (Rn) such that f(x) = f0(x2).

Proof. Since f |Rn+ extends to a Schwartz function, we can use [Ste19, Theorem 1.1, η = 0]
to obtain for arbitrary α, β ∈ Nn0 that

sup
x∈Rn+

∣∣∣∣xα ( 1
x
∂
∂x

)β
f(x)

∣∣∣∣ <∞,
where

(
1
x
∂
∂x

)β
=
(

1
x1

∂
∂x1

)β1 · · ·
(

1
xn

∂
∂xn

)βn
. As stated in Theorem 7.25 (i), we can find a

smooth function g ∈ C∞(Rn) with f(x) = g(x2). Consider the change of variables ti = x2
i , i.e.

1
xi

∂
∂xi

= 2 ∂
∂ti

. The function g then satisfies

sup
t∈Rn+

∣∣∣∣tα ( ∂∂t)βg(t)
∣∣∣∣ = 1

2|β|
sup
x∈Rn+

∣∣∣∣x2α
[(

1
x
∂
∂x

)β
f

]
(x)
∣∣∣∣ <∞.

An application of [JP16, Theorem 4.2] shows that the function g|Rn+ is the restriction of a
Schwartz function f0 ∈ S (Rn). In particular, f(x) = f0(x2). �

Our zeta integrals have a close connection to the Riesz distributions in the Dunkl setting
of type A, defined for α ∈ C, Reα > µ0 by

〈Rα, f〉 := 1
Γn(α)

∫
Rn+
f(x)∆(x)α−µ0−1ωA(x) dx, f ∈ S (Rn).
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These Riesz distributions were introduced and studied in [Rö20]. They extend to a (weakly)
holomorphic map C→ S ′(Rn), α 7→ Rα.

Lemma 7.30. Let f ∈ S (Rn). Then the function

α 7→ 〈ζα, f〉 := Z(f ;α)
Γn(α)

extends to an entire function on C. If f ∈ S (Rn) is Zn2 -invariant with f(x) = f0(x2) and
f0 ∈ S (Rn), then this extension is given in terms of the Riesz distributions Rα via

〈ζα, f〉 = 〈Rα, f0〉 .

We call ζα a Dunkl-type zeta distribution of index α ∈ C. That ζα is in fact a tempered
distribution will be proven below in Theorem 7.31.

Proof. By Zn2 -invariance of the zeta integrals, we may asssume that f is a Zn2 -invariant
function, otherwise we can consider its Zn2 -mean. By Theorem 7.29 we can find f0 ∈ S (Rn)
such that f(x) = f0(x2). For α ∈ C with Reα > µ0, Proposition 7.23 shows that

〈ζα, f〉 = 〈Rα, f0〉 .

Hence, that statement follows from the analytic extension property for the Dunkl-type Riesz
distributions Rα, α ∈ C. �

Recall that the Dunkl operators TRξ and the Dunkl transform FR act continuously on the
space of Schwartz functions S (Rn), equipped with the usual locally convex topology. Hence,
by duality we consider the usual actions on the space of tempered distributions S ′(Rn) via

〈TRξ u, ·〉 = 〈u,−TRξ ·〉 and 〈FRu, ·〉 = 〈u,FR·〉

for u ∈ S ′(Rn).

Theorem 7.31. The functionals ζα with α ∈ C have the following properties:

(i) ζα ∈ S ′(Rn) and ζα is WB-invariant.

(ii) If Reα > µ0, then ζα is a positive measure with support Rn.

(iii) ∆(TB)2ζα = 4nb(α− ν)ζα−1 with b(µ) =
n∏
j=1

(z + k(j − 1)).

(iv) ∆(x2)ζα = b(α− µ0)ζα+1.

Proof. Part (ii) is obvious. If Reα > µ0 + 1, then the skew symmetry of Dunkl operators
and the Bernstein identity (7.25) of Example 7.26 show that

Z(∆(TB)2f ;α) = B(α− ν)Z(f ;α− 1).

In particular,
〈ζα,∆(TB)2f〉 = Γn(α− 1)

Γn(α) B(α− ν) 〈ζα−1, f〉 .

By definition, B(α− ν) = 4nb(α− ν)b(α− µ0 − 1) and moreover

b(α− µ0 − 1) =
n∏
j=1

(α− 1− k(j − 1)) = Γn(α)
Γn(α− 1) .
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Hence,
〈ζα,∆(TB)2f〉 = 4nb(α− ν) 〈ζα−1, f〉 ,

so that analytic extension according to Lemma 7.30 shows that ζα−1 is a tempered distribution
provided ζα is so and b(α− ν) 6= 0. The set

M = {α ∈ C | b(α+ k − ν) 6= 0 for all k ∈ Z}

is dense in C and for all α ∈ M we have ζα ∈ S ′(Rn). But, the map α 7→ 〈ζα, f〉 is
holomorphic for all f ∈ S (Rn) and as a dual of a Fréchet space, S ′(Rn) is closed under
pointwise limits. Hence all ζα are tempered. Thus, we have proven parts (i) and (iii). Part
(iv) is immediate for Reα > µ0 from

b(α− µ0) = Γn(α+ 1)
Γn(α) ,

and follows by analytic extension in general. �

In line with Example 7.28 we next obtain a general functional equation for our zeta
distributions. The idea of the proof is the same as for the analogous results in [FK94, Rub06].
The K-Bessel functions and their asymptotic properties will play an essential role.

Theorem 7.32. For all α ∈ C, the zeta distributions ζα satisfy the functional equation

ζα = 2n(2α−ν)FBζν−α. (7.28)

Moreover, in view of Theorem 7.24,

〈Rα, f〉 = 4n(α−ν) 〈Rν−α,Hνg〉 , f ∈ S (Rn), g(x) = f(x4 ).

For the proof of identity (7.28), we start with two lemmata which are needed to outsource
some technicalities.

Lemma 7.33. Consider g ∈ S (Rn) and α ∈ C.

(i) Assume that Reα > µ0. Then for arbitrary ε > 0, the following integrals exist and
coincide ∫

Rn+

∫
Rn
g(x)EA(−1

s , x
2 + ε)∆(s)−α−µ0−1ωB(x)ωA(s) dx ds

= Γn(α)
∫
Rn
g(x)∆(x2 + ε)−αωB(x) dx.

(ii) For Reα < Re ν − µ0 and ε > 0, the following integral and limit exists

lim
ε→0

∫
Rn
g(x)∆(x2 + ε)−αωB(x) dx = Z(g, ν − α).

Furthermore, the integral on the left hand side exists for arbitrary α ∈ C and defines an
entire function in α.

Proof.

(i) Assume that we can interchange the order of integration. By Theorem 6.12 and the
condition Reα > µ0, we obtain∫

Rn+

∫
Rn
|g(x)|EA(−1

s , x
2 + ε)∆(s)−Reα−µ0−1|ωB(x)|ωA(s) dx ds
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=
∫
Rn
|g(x)|

∫
Rn+
EA(−s, x2 + ε)∆(s)Reα−µ0−1ωA(s) ds |ωB(x)| dx

= Γn(Reα)
∫
Rn
|g(x)|∆(x2 + ε)−Reα|ωB(x)| dx <∞.

The interchange of order of integration is justified by the fact that g is a Schwartz
function and x 7→ ∆(x2 + ε)−αωB(x) is continuous and of at most polynomial growth
on Rn.

(ii) Since x 7→ ∆(x2 + ε)−αωB(x) is of at most polynomial growth, the integral exists for all
α ∈ C. For Reα < Re ν − µ0 and 0 < ε < 1

∣∣∣∆(x2 + ε)−α
∣∣∣ ≤ {∆(x2)−Reα if Reα > 0

∆(x2 + 1)−Reα if Reα ≤ 0
.

Therefore, the claimed limit follows by dominated convergence. Finally, analyticity
follows by standard theorems on holomorphic parameter integrals.

�

Lemma 7.34. Choose m ∈ N0 such that µ0 − m < Re ν − µ0. Consider g ∈ S (Rn),
g̃(x) = g(x)∆(x)m and let α ∈ C with Reα > µ0 −m.

(i) For arbitrary ε > 0 the following integrals exist and coincide∫
Rn+

∫
Rn
g(x)EA(−s, x2

4 )EA(−1
s , ε)∆(s)ν−α−µ0−1ωB(x)ωA(s)∆(x)m dx ds

= εn(ν−α)
∫
Rn
g(x)Kα−ν(1, εx2

4 )∆(x)mωB(x) dx,

where Kα−ν is the K-Bessel function according to Definition 7.12.

(ii) The following limit exists

lim
ε→0

εn(ν−α)
∫
Rn
g̃(x)Kα−ν(1, εx2

4 )ωB(x) dx = Γn(ν − α)
4nα Z(g, α− ν +m).

Moreover, the integral on the left hand side is holomorphic in α on the domain
{Reα > µ0 −m}.

Proof.

(i) It suffices to justify that we can change the order of integration. Everything else follows
from the definition of the K-Bessel function and its properties (Theorem 7.14). The
change of variables s 7→ εs and Kν−α(w, z) = Kα−ν(z, w) lead to∫

Rn+

∫
Rn
|g(x)|EA(−s, x2

4 )EA(−1
s , ε)∆(s)Re(ν−α)−µ0−1∆(x)m|ωB(x)|ωA(s) dx ds

= εnRe(ν−α)
∫
Rn
|g(x)| KRe(ν−α)(εx

2

4 , 1)|ωB(x)| dx. (7.29)

To see that the integral (7.29) is finite, we observe that by Theorem 7.14 (iii)

∆(x2)mKRe(α−ν)(1, εx
2

4 )
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≤ C(α)


1 if Reα > Re ν + µ0

1 + ∆(x2)−µ0−ε′ if Re ν − µ0 ≤ Reα ≤ Re ν + µ0

and arbitrary 0 < ε′ < 1
εn(Reα−Re ν)∆(x2)Reα−ν if Reα < Re ν − µ0

,

with some constant C(α). Hence, under the conditions Reα > µ0 −m and µ0 −m <
Re ν − µ0, the function

x 7→ ∆(x2)mKRe(α−ν)(1, εx
2

4 )
is of polynomial growth (choose 0 < ε′ < m− 2µ0 −Re ν in the second case). Therefore
the integral (7.29) is finite.

(ii) The same estimates as in part (i), dominated converges, and the asymptotics of Theorem
7.14 (vi) lead to the stated limit.

�

Now we are in a position to prove Theorem 7.32.

Proof of Theorem 7.32. The left hand side of the functional equation (7.28) is given by a
positive measure if Reα > µ0, while the right hand side is a positive measure if Reα < Re ν−µ0.
So there are possibly no indices α for which both sides are positive measures. To bypass
this problem, we replace the argument f ∈ S (Rn) by f̃ := ∆2m(∆(TB)2mf) ∈ S (Rn) with
m ∈ N0 large enough so that µ0 −m < Re ν − µ0.
(i) Pick α ∈ C with Reα > µ0. For s ∈ Rn+ put es(x) = EA(−s, x2). The type B Dunkl

transform of e1/s is computed by Lemma 7.20 and Theorem 7.24 (ii) as

FBe1/s(x) = 2−nνes(x2 )∆(s)ν .

The Plancherel theorem (cf. [dJ93]) for the Dunkl transform therefore leads to∫
Rn

(FB f̃)(x)e1/s(x)ωB(x) dx = 2−nν∆(s)ν
∫
Rn
f̃(x) · es(x2 )ωB(x) dx. (7.30)

Multiplying equation (7.30) with ∆(s)−α−µ0−1EA(−1
s , ε), ε > 0 and integrating over

Rn+ gives ∫
Rn+

∫
Rn

(FB f̃)(x)EA(−1
s , x

2 + ε)∆(s)−α−µ0−1ωB(x)ωA(s) dx ds

= 2−nν
∫
Rn+

∫
Rn
f̃(x)EA(−s, x2

4 )EA(−1
s , ε)∆(s)ν−α−µ0−1ωB(x)ωA(s) dx ds.

(7.31)

By parts (i) of Lemmata 7.33 and 7.34, equation (7.31) reduces to∫
Rn
FB f̃(x)∆(x2 + ε)−αωB(x) dx = 2−nνεn(ν−α)

Γn(α)

∫
Rn
f̃(x)Kα−ν(1, εx2

4 )ωB(x) dx.

(7.32)

In view of Lemma 7.33 (ii), the left hand side of (7.32) exists for all α ∈ C and is
holomorphic in α. For Reα > µ0 −m the right hand side of (7.32) exists and depends
holomorphically on α by Lemma 7.34 (ii), because

f̃(x)Kα−ν(1, εx2

4 ) = ∆(TB)2mf(x) ·∆(x2)mKα−ν(1, εx2

4 )

and ∆(TB)2mf ∈ S (Rn). Hence, equality (7.32) is true for all Reα > µ0 −m.
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(ii) Assume that α ∈ C is contained in the strip µ0 − m < Reα < Re ν − µ0 which is
non-empty by our choice of m. Then, on the one hand, by Lemma 7.33 and Theorem
7.31 there exists a polynomial p (independent of f) with∫

Rn
FB f̃(x)∆(x2 + ε)−αωB(x) dx −→

ε→0

∫
Rn
FB f̃(x)∆(x2)−αωB(x) dx

= Z(FB f̃ ; ν − α)
= Γn(ν − α) 〈ζα,FB f̃〉
= Γn(ν − α) 〈ζα,∆(TB)2m(∆2mf)〉
= Γn(ν − α) p(α) 〈ζα, f〉 .

On the other hand, Lemma 7.34 and Theorem 7.31 show that there exists a polynomial
q (independent of f) with

2−nνεn(ν−α)

Γn(α)

∫
Rn
f̃(x)Kα−ν(1, εx2

4 )ωB(x) dx

−→
ε→0

Γn(ν − α)
Γ(α)2n(ν+2α

∫
Rn

(∆(TB)2mf)(x) ·∆(x2)α−ν+mωB(x) dx

= Γn(ν − α)
Γn(α)2n(ν+2α)Z(∆(TB)2mf ;α− ν +m)

= Γn(ν − α)
Γn(α)Γn(α− ν +m)2n(ν+2α) 〈ζα−ν+m,∆(TB)2mf〉

= Γn(ν − α)
Γn(α)Γn(α− ν +m) q(α) 〈ζα, f〉 .

Therefore, we have found a meromorphic function ρ on C such that

ζα = ρ(α)FBζν−α.

Finally, by equation (7.27) of Example 7.28, we see that ρ(α) = 2n(2α−ν).

�

7.6 Regularity of the zeta distributions

As for Riesz distributions in [Rö20], one may ask which of the zeta distributions are regular
and which are positive measures. The case of zeta distributions reduces to the case of Riesz
distributions, where the question was answered in [Rö20]. It turns out that the set of indices
α ∈ C for which ζα is a positive measure only depends on the multiplicity parameter k of
κB = (k, k′).

Lemma 7.35. Consider α ∈ C.

(i) ζα is a positive or complex measure if and only if Rα is a positive or complex measure,
respectively.

(ii) If ζα is a complex measure, then Reα > µ0 or α is contained in the finite set

[0,∞[ ∩ ({0, k, . . . , k(n− 1)} − N0).

(iii) ζα is a positive measure if and only if α is contained in the generalized Wallach set

Wk = {0, k, . . . , k(n− 1)}∪ ]k(n− 1),∞[.
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Proof. If we can show part (i), then the other parts are immediate from [Rö20, Theorem
5.15]. Assume that Rα is a measure µ. Then suppµ ⊆ Rn+ (cf. [Rö20]). Let f ∈ S (Rn) and
choose f0 ∈ S (Rn) so that

1
2n

∑
τ∈Zn2

f(τx) = f0(x2).

Thus, the WB-invariance of ζα gives

〈ζα, f〉 = 〈Rα, f0〉 =
∫
Rn+
f0(x) dµ(x) = 1

2n
∑
τ∈Zn2

∫
Rn+
f(τ
√
x) dµ(x),

i.e. ζα is a measure. Conversely, if ζα is a measure µ, then for f ∈ S (Rn)

〈Rα, f〉 = 〈ζα, f(x2)〉 =
∫
Rn
f(x2) dµ(x),

i.e. Rα is a measure. �

To conclude the study of zeta distributions, we shall explicitly compute ζα for α ∈
{0, k, . . . , k(n− 1)}, the discrete part of the generalized Wallach set. On the continuous part
of the generalized Wallach set, ζα is given by the measure

1
Γn(α)∆(x2)α−νωB(x) dx = 1

Γn(α)∆(x2)αωA(x2) dx.

In the following, WB acts on S ′(Rn) by 〈wu, f〉 = 〈u,w−1f〉 for u ∈ S ′(Rn), f ∈ S (Rn) and
w ∈WB.

Theorem 7.36. The zeta distribution on the discrete part of the Wallach set are given as

(i) ζ0 = δ0.

(ii) For r = 1, . . . , n− 1, ζkr is a positive measure, namely

ζkr = 1
n!

∑
σ∈Sn

(ζ(r)
kn ⊗ δ

(n−r)
0 )σ,

where ζ(r)
kn is the zeta distribution of index kn on Rr and δ(n−r)

0 is the Dirac measure in
0 ∈ Rn−r. Moreover, the support of ζkr is the stratum

∂rRn :=
{
x ∈ Rn | xij = 0 for a sequence 1 ≤ i1 < . . . < ir ≤ n

}
.

Proof.

(i) By Theorem 7.32 and Theorem 7.24 (i) we obtain

〈ζ0, f〉 = 2−nν 〈ζν ,FBf〉 = 1
2nνΓn(ν)

∫
Rn
FBf(x)ωB(x) dx

= FBFBf(0) = f(0) = 〈δ0, f〉 .

(ii) It suffices to verify the stated formula for WB-invariant f ∈ S (Rn). Hence there is an
Sn-invariant f0 ∈ S (Rn) with f(x) = f0(x2). By [Rö20, Theorem 5.11] we have

Rkr = 1
n!

∑
σ∈Sn

(R(r)
kn ⊗ δ

(n−r)
0 )σ,
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where R(r)
kn is the Dunkl-type Riesz distribution on Rr. Therefore

〈ζkr, f〉 = 〈Rkr, f0〉 = 1
n!

∑
σ∈Sn

〈(R(r)
kr ⊗ δ

(n−r)
0 )σ, f0〉

= 〈R(r)
kr , f0(·, 0n−r)〉 = 〈ζ(r)

kr , f(·, 0n−r)〉

= 1
n!

∑
σ∈Sn

〈(ζ(r)
kr ⊗ δ

(n−r)
0 )σ, f〉 .

Since r < n, the index kn is contained in the continuous part of the Wallach set
associated with the zeta distributions ζ(r)

α on Rr. Thus, ζ(r)
kn has support Rr, by Theorem

7.31 (ii). In particular, the support of ζkr is⋃
σ∈Sn

σ(Rr × {0}n−r) = ∂rRn.

�
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Part III

Limit transitions and Olshanski
pairs
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chapter 8
Olshanski spherical pairs

We give a brief summary about Olshanski spherical pairs in analogy to Gelfand pairs.
References for this short chapter are [Ols90, OV96, Far08]. An Olshanski spherical pair is
the inductive limit of an increasing sequence of Gelfand pairs. This chapter is intended to
give a brief overview on the main objects and questions. One of the main question is the
following. Which of the spherical functions of an Olshanski spherical pair can be approximated
by spherical functions of the underlying Gelfand pairs.

Definition 8.1. A Gelfand pair (G,K) consists of a locally compact group G and a compact
subgroup K ⊆ G such that one of the following equivalent assertions holds:

(i) The convolution algebra (Cc(G), ∗) is commutative.

(ii) The convolution algebra (L1(G), ∗) is commutative.

(iii) For any irreducible unitary representation (π,H) of G on a Hilbert space H, the space
of K-fixed vectors HK = {v ∈ H | π(k)v = v for all k ∈ K} is at most one dimensional.

If (G,K) is a Gelfand pair, it is known that G is an unimodular group.

Definition 8.2. Let (G,K) be a Gelfand pair. Let ϕ : G→ C be a non-zero K-biinvariant
continuous function, i.e. ϕ(kgk′) = ϕ(g) for all g ∈ G and k, k′ ∈ K. Then, ϕ is called
spherical if it satisfies one of the following equivalent statements

(i) ϕ(g)ϕ(h) =
∫
K
ϕ(gkh) dk for all g, h ∈ G. Here dk is the normalized Haar measure on

K, that means
∫
K

1 dk = 1.

(ii) f 7→
∫
G
f(g)ϕ(g−1) dg is a character of the convolution algebra (Cc(G), ∗).

(iii) ϕ(e) = 1 and for all K-biinvariant f ∈ Cc(G) there exists λf ∈ C with f ∗ ϕ = λfϕ.

Remark 8.3. A continuous function ϕ : G→ C is called positive definite if for any choice of
g1, . . . , gn ∈ C and c1, . . . , cn ∈ C

n∑
i,j=1

cicjϕ(gig−1
j ) ≥ 0.

To any such ϕ, there exists a unitary representation (π,H) of G and a cyclic vector ξ ∈ H,
that means spanC {π(g)ξ | g ∈ G} ⊆ H is dense, with

ϕ(g) = 〈π(g)ξ, ξ〉 . (8.1)

The triple (π,H, ξ) is uniquely determined up to unitary equivalence and is called the Gelfand-
Naimark-Siegel representation associated with ϕ, short GNS-representation. Conversely, if
(π,H) is a representation of G and ξ ∈ H, then (8.1) defines a positive definite function.

The positive definite spherical functions can be characterized by the subsequent theorem.
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Lemma 8.4. Let (G,K) be a Gelfand pair, P (K\G/K) the set of K-biinvariant positive
definite functions ϕ on G and P1(K\G/K) = {ϕ ∈ P (K\G/K) | ϕ(e) = 1}. Then, for ϕ ∈
P1(K\G/K) the following assertions are equivalent:

(i) ϕ is spherical.

(ii) ϕ is extremal in P1(K\G/K), i.e. there does not exists ϕ1, ϕ2 ∈ P1(K\G/K) and
λ ∈]0, 1[ with ϕ = λϕ1 + (1− λ)ϕ2.

(iii) ϕ is extremal in P1(G) = {ϕ : G→ C | ϕ positive definite, ϕ(e) = 1}.

(iv) the Gelfand-Naimark-Siegel representation associated with ϕ is irreducible.

Hence, the set of positive definite spherical functions is in bijection with the set of equivalence
classes of irreducible unitary representations (π,H) with dimCHK = 1. Such representations
are called spherical.

We now come to the definition of an Olshanski spherical pair and the associated spherical
functions.

Definition 8.5. Let (Gn,Kn)n∈N be a increasing sequence of Gelfand pairs, i.e. Gn ⊆ Gn+1
is a closed subgroup, Kn ⊆ Kn+1 and Kn = Gn ∩Kn+1 for all n ∈ N. We put G := ⋃

n∈NGn
and K := ⋃

n∈NKn and equip G with the inductive limit topology, i.e. U ⊆ G is open if
and only if U ∩Gn ⊆ Gn is open for all n ∈ N. Then we call the pair (G,K) an Olshanski
(spherical) pair .

We note that in general the group G is not locally compact.

Definition 8.6. Consider an Olshanski spherical pair (G,K) = limn→∞(Gn,Kn). A non-zero
K-biinvariant continuous function ϕ : G→ C is called spherical if for all g, h ∈ G

ϕ(g)ϕ(h) = lim
n→∞

∫
Kn

ϕ(gkh) dnk,

where dnk is the normalized Haar measure on Kn.

Similar to Gelfand pairs, we have the following characterizing theorem for spherical
functions of an Olshanski spherical pair.

Theorem 8.7. Let (G,K) be an Olshanski pair. Then for ϕ ∈ P1(K\G/K) the following
assertions are equivalent:

(i) ϕ is spherical.

(ii) ϕ is extremal in P1(K\G/K).

(iii) ϕ is extremal in P1(G).

(iv) the Gelfand-Naimark-Siegel representation associated with ϕ is irreducible.

Furthermore, for any irreducible unitary representation (π,H) it holds that HK is at most
one dimensional. Hence, the set of positive definite spherical functions is in bijection with
the set of equivalence classes of irreducible unitary representations (π,H) with dimCHK = 1.
Such representations are called spherical.

In general, we can not expect that every spherical function of an Olshanski pair is a limit of
spherical functions of the underlying Gelfand pairs. But this will be true if we consider positive
definite spherical functions. Let ex(K) denote the extremal points of a convex compact set K
of a topological vector space.

139



140 CHAPTER 8. OLSHANSKI SPHERICAL PAIRS

Theorem 8.8. Assume that (G,K) is an Olshanski spherical pair of an increasing family
of Gelfand pairs (Gn,Kn)n∈N such that Gn is second-countable for all n ∈ N. Then, for
ϕ ∈ P1(K\G/K) the following is equivalent:

(i) ϕ is spherical.

(ii) there exist a sequence of spherical ϕn ∈ P1(Kn\Gn/Kn), n ∈ N with ϕn −−−→
n→∞

ϕ locally
uniformly.

Proof. In [Ols90, Theorem 22.10] they proved for the spaces

P1(Gn) = {ϕ ∈ C(Gn) | positive definite, ϕ(e) = 1} ,

and similar P1(G) the following: ϕ ∈ ex(P1(G)) if and only if there exists a sequence
ϕn ∈ ex(P1(Gn)) with ϕn −−−→

n→∞
ϕ locally uniformly. But an observation of the proof

shows that this statement is still true if P1(G) and P1(Gn) are replaced by P1(K\G/K) and
P1(Kn\Gn/Kn), respectively. This is done by replacing all vector spaces of functions occurring
in the proof of [Ols90, Theorem 22.10] by their analogues of K-biinvariant and Kn-biinvariant
functions, respectively. Finally, this is exactly the assertion of Theorem 8.8. �

Proposition 8.9. Assume that (Gn,Kn) and (G′n,K ′n) are increasing families of Gelfand
pairs with associated Olshanski pairs (G,K) and (G′,K ′), respectively. If for any n ∈ N there
exists `,m ∈ N with the property

Gn ⊆ G′`, G′n ⊆ Gm as closed subgroups (8.2)

then (G,K) = (G′,K ′) as topological spaces.

Proof. It is immediate that (G,K) and (G′,K ′) consist of the same sets. Let τ be the
topology of G and τ ′ the topology of G′.
By definition of the inductive limit topology we have the following. If A ⊆ G = G′ is closed
with respect to τ , then by definition A ∩ Gn ⊆ Gn is closed for all n ∈ N. Consider some
fixed n ∈ N. Then there exists m ∈ N such that G′n ⊆ Gm is a closed subset. Therefore,
A∩G′n = (A∩G′n)∩Gm ⊆ G′n∩Gm = G′n is a closed subset of G′n. Since n ∈ N was arbitrary,
we have that A is closed with respect to τ ′, i.e. τ ⊆ τ ′. The proof for the converse subset
relation is the same. �
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chapter 9
Bessel Functions as the rank tends to infinity

The asymptotic analysis of multivariate special functions has a long tradition in infinite
dimensional harmonic analysis, tracing back to the work of Olshanski, Vershik, and Kerov,
see [VK82, Ols90, OV96]. Of particular interest in this context are the behaviour of spherical
representations and the limits of spherical functions of increasing families of Gelfand pairs as
specific dimensions tend to infinity. Bessel functions associated with root systems generalize the
spherical functions of Riemannian symmetric spaces of Euclidean type, which occur for special
values of the multiplicity parameters. There are two classes of particular interest, including
applications to β-ensembles in random matrix theory, namely those of type An−1 and type Bn.
We refer to [For10] for a general background and to [BGCG22] for some recent developments.
In the cases of type A and B, the Bessel functions can be expressed as hypergeometric series
involving Jack polynomials, c.f. Remark 6.21 and Proposition 7.8. Bessel functions of type
An−1 have a continuous multiplicity parameter k ≥ 0 and include as special cases the spherical
functions of the motion groups Un(F) n Hermn(F) over F = R,C or H, where the unitary
group Un(F) acts by conjugation on the space Hermn(F) of Hermitian matrices over F. These
cases correspond to k = d

2 with d = dimRF ∈ {1, 2, 4} . Bessel functions of type Bq have
non-negative multiplicity parameters of the form κ = (k′, k), with k the multiplicity on the
roots ±(ei ± ej) and k′ that on the roots ±ei. They generalize the spherical functions of the
motion groups (Up(F)× Uq(F)) nMp,q(F), with p ≥ q, where Mp,q(F) are the p× q matrices
with entries in F. Here the multiplicities are k = d

2 , k
′ = d

2 (p− q+ 1)− 1
2 . In [RV13], the limits

of the spherical functions of these motion groups as p → ∞ and the associated Olshanski
spherical pairs were studied, where the rank q remained fixed. In the present chapter, we shall
study Bessel functions of type An−1 and type Bn with arbitrary positive multiplicities as the
rank tends to infinity, in the spirit of the work of Okounkov and Olshanski [OO98, OO06]about
Jack polynomials (type A) and multivariate Jacobi polynomials (type BC). See also [Cue18]
for a more recent extension of their results. We obtain explicit asymptotic results for Bessel
functions of type A and type B with arbitrary positive multiplicities as the rank goes to infinity.
In the type A case, our results coincide with these in [AN21], given with a different proof
from the geometric settings 2k = 1, 2, 4 in [OV96] and [Bou07] for the limits of the spherical
functions of the Gelfand pairs (Un(F) n Hermn(F), Un(F)) as n→∞. In contrast to [Bou07],
whose results in the geometric cases are also weaker than ours (c.f. Remark 9.7) and different
from [AN21], we follow the direct approach of [OV96] for F = C via spherical expansions of the
involved Bessel functions, which are replaced by hypergeometric expansions in terms of Jack
polynomials in our general setting. To become more precise, we consider the Bessel functions
JAn−1(iλ(n), (x, 0, . . . , 0)) with fixed multiplicity k > 0 and x ∈ Rr for sequences of spectral
parameters λ(n) ∈ Rn as n→∞. Following [OV96, OO98], we characterize those sequences
(λ(n))n∈N for which the associated sequence of Bessel functions converges (locally uniformly),
in terms of specific real parameters α = (αi)i∈N, β, γ with γ ≥ 0. These parameters describe
the growth of the so-called Vershik-Kerov sequence (λ(n)) as n→∞. In Theorem 9.6, the
main result of Section 2, we obtain that for x ∈ R(∞) = ⋃∞

n=1 Rn,

lim
n→∞

JAn−1(iλ(n), x) =
∞∏
j=1

eiβxj−
γ

2kx
2
j

∞∏
l=1

e−iα`xj(
1− iα`xj

k

)k ,
where the convergence is locally uniform in a tubular neighborhood of Rr in Cr for each
r ∈ N. In the group cases k = d

2 , the limiting functions are products of Polya functions (in
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the sense of [Far08]). They coincide with the positive definite Olshanski spherical functions of
the spherical pairs (U∞(F) n Herm∞(F), U∞(F)) which were already determined by Pickrell
[Pic91]; see also [OV96], where they occur in the characterization of the ergodic measures of
Herm∞(F) with respect to the action of U∞(F). In the type B case, we consider Bessel functions
JBn(κn, iλ(n), (x, 0, . . . , 0)) for n→∞, where the multiplicity is of the form κn = (k′n, k), i.e.
the first multiplicity parameter may also vary with n. This is motivated by the geometric
cases. Again we characterize the sequences (λ(n))n∈N for which the associated Bessel functions
converge locally uniformly on a tubular neighbordhood of Rr in Cr as n → ∞, and we
determine the possible limits, which are now given by the functions

ϕ(α,β)(x) =
∞∏
j=1

e−
β
4 x

2
j

∞∏
`=1

e
α`
4 x

2
j(

1 + α`
4kx

2
j

)k , x ∈ R(∞),

with real parameters β ≥ 0 and α` ≥ 0 with ∑n
`=1 α` ≤ β. It turns out that for k = d

2 with
d = 1, 2, 4, these can be identified with the positive definite Olshanski spherical functions
of spherical pairs (G∞,K∞), which are obtained as inductive limits of the motion groups
(Up(F)× Uq(F)) nMp,q(F) as both dimension parameters p and q tend to infinity. In the case
F = C, the set of spherical functions were determined in [Pic90].
The organization of this chapter is as follows: The type A case is treated in Section 2. While
in this case our results generalize known results in the geometric cases, our results for type B,
which are developed in Section 3, seem to be new even in the geometric cases.

9.1 Introduction

For a reduced root system R ⊂ Rn we fix a multiplicity function k and the Dunkl kernel
E = Ek associated with (R, k). Recall, for each λ ∈ Cn, there exists a compactly supported
probability measure µλ on Rn such that for all x ∈ Rn

E(λ, x) =
∫
Rn
e〈ξ,x〉 dµλ(ξ). (9.1)

In particular, E(λ, ·) is positive-definite on the additive group Rn if and only if λ ∈ iRn. The
Bessel function associated with (R, k) is denoted by

J(λ, z) = 1
#W

∑
w∈W

E(λ,wz).

And as in the case of the Dunkl kernel, J(λ, ·) is positive-definite if and only if λ ∈ iRn. We
shall be concerned with the root systems

An−1 = {±(ei − ej) | 1 ≤ i < j ≤ n} ⊂ Rn,
Bn = {±(ei ± ej) | 1 ≤ i < j ≤ n} ∪ {±ei | 1 ≤ i ≤ n} ⊂ Rn,

where (ei)1≤i≤n denotes the standard basis of Rn. In both cases, the Bessel functions can be
written as hypergeometric series in terms of Jack polynomials, cf. Remark 6.21 and Proposition
7.8. For An−1, the multiplicity function is given by a single parameter k ≥ 0. We write Λn

+
for the set of partitions κ = (κ1, κ2, . . . ) of length `(κ) ≤ n and denote by C(n)

κ , κ ∈ Λn
+ the

symmetric Jack polynomials in n variables of index α = 1
k in C-normalization as in Proposition

6.16, namely ∑
|κ|=m

C(n)
κ (z) = (z1 + . . .+ zn)m, m ∈ N0.
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The Jack polynomials are stable with respect to the number of variables, i.e. for κ ∈ Λr+ with
r < n we have

C(r)
κ (z1, . . . , zr) =

{
C

(n)
κ′ (z1, . . . , zr, 0n−r) if κ′ = (κ, 0, ...),

0 otherwise.
(9.2)

with the notation aj := (a, . . . , a) ∈ Cj for a ∈ C. See [Sta89, Prop. 2.5] together with [Kan93,
formula(16)]. Therefore the Jack polynomials C(n)

κ uniquely extend to continuous functions
Cκ on C(∞) = ⋃∞

n=1 Cn, equipped with the inductive limit topology. We shall often consider
elements from C(∞) as sequences x = (xn)n∈N in C with xn 6= 0 for at most finitely many
n ∈ N, for R(∞) accordingly.

9.2 The type A case

The following theorem justifies why we consider type A Bessel functions if the rank tends to
infinity.

Theorem 9.1. The spherical functions of the Gelfand pairs

(Gn,Kn) = (Un(F) n Hermn(F), Un(F))

are given as Un(F)-invariant functions on Hermn(F) by

ϕλ(X) =
∫
Un(F)

etr(kXk−1·diag(λ)) dk, λ ∈ Rn,

where diag(λ) is the diagonal matrix with entries λ1, . . . , λn. Then:

ϕλ(X) = J
An−1
dimR(F)/2(λ, specX),

where specX ∈ Rn are the spectral values of X in an arbitrary order.

Proof. This is a consequence of Theorem 4.27 as (Gn,Kn) is the Gelfand pair associated
with the Cartan motion group of the Lie group G = GLn(F) of the Harish-Chandra class
with root system of type An−1 and root space dimension dimR F. One has only to observe
that in this case p = Hermn(F), (X,Y ) 7→ tr(XY ∗) is the inner product as stated in (4.11),
λ 7→ diag(λ) is an isometric isomorphism Rn → a and X 7→ specX induces an identification
K\G0/K = p/K ∼= Rn/Sn. �

The embedding

Mn,n(F) ↪→Mn+1,n+1(F), A 7→
(
A 0
0 0

)
of n× n matrices into (n+ 1)× (n+ 1) matrices induces an Olshanski spherical pair

(G∞,K∞) = lim
n→∞

(Gn,Kn) = lim
n→∞

(Un(F) n Hermn(F), Un(F)). (9.3)

The positive definite spherical functions of (G∞,K∞) were completely determined by Pickrell
[Pic91, Section 5], see also [OV96] for F = C, and [Far08, Section 3]. As functions on
Herm∞(F), they are given for d = dimR F by

ϕ(X) =
∞∏
j=1

eiβxj−
γ
d
x2
j

∞∏
`=1

e−iα`xj

(1− i2
dα`xj)d/2

,
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where β, γ ∈ R, γ ≥ 0, α` ∈ R with ∑∞`=1 α
2
` <∞, and (x1, x2, . . . ) ∈ R(∞) are the eigenvalues

of X ordered by size and counted according to their multiplicity. The product is invariant
under rearrangements of the α`. For F = C it is also noted in [OV96] that the set of positive
definite spherical functions is bijectively parametrized by the set{

(α, β, γ) | β ∈ R, γ ≥ 0, α = {α1, α2, . . .} a multiset with α` ∈ R and
∑

`
α2
` <∞

}
.

In [OV96], explicit approximations of the positive definite spherical functions by positive
definite spherical functions of the pairs (Gn,Kn) with n→∞ by use of spherical expansions
were obtained in the case F = C. In [Bou07], this was generalized by completely different
methods to F = R,H. In the present section, we shall obtain the result of Pickrell and
explicit approximations of Olshanski spherical functions as particular cases of a more general
asymptotic result for Bessel functions of type An−1 with an arbitrary multiplicity parameter
k > 0, as already proven in [AN21], but with a very natural proof in line with the geometric
cases k = 1

2 , 1, 2.
Let us first turn to the spectral parameters to be considered for n→∞. Instead of working

with multisets, it will be convenient for us to work with sequences (or finite tuples) with a
prescribed order of their components. We introduce the following order on R:

x� y iff either |x| < |y| or |x| = |y| and x ≤ y.

For instance, the sequence (3,−3, 2, 1,−1,−1, 0, 0, . . .) is decreasing w.r.t. � .

Definition 9.2. Consider λ(n) ∈ Rn such that its entries are decreasing with respect to �.
We regard (λ(n))n∈N as a sequence in R(∞) = ⋃∞

n=1 Rn and call it a Vershik-Kerov sequence
(VK-sequence for short), if the following limits exist:

αi := lim
n→∞

λ(n)i
n

, i ∈ N,

β := lim
n→∞

p1(λ(n))
n

,

δ := lim
n→∞

p2(λ(n))
n2 ,

where
pm(x) :=

∞∑
i=1

xmi for m ∈ N, p0 ≡ 1

are the power sum symmetric functions on R(∞). They generate the algebra of symmetric
functions on R(∞), i.e. the symmetric polynomial functions in arbitrary many variables.

The definition of a VK-sequence is equivalent to the Olshanski-Vershik condition of [AN21,
Definition 2.2], which are slightly weaker than the conditions of [OO98].

Lemma 9.3. Let (λ(n))n∈N be a VK-sequence with associated parameters (αi)i∈N, β, δ as
above. Then we have

(i) The sequence α = (αi)i∈N is square-summable with

γ := δ −
∞∑
i=1

α2
i ≥ 0.

(ii) If in addition λ(n)i ≥ 0 for all i, n ∈ N, then γ = 0.

Definition 9.4. Suppose that (λ(n))n∈N is a VK-sequence. Then the triple ω = (α, β, γ)
with α = (αi)i∈N are called the VK-parameters of the sequence (λ(n))n∈N. Note that the
entries of α are also ordered with respect to � .
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Proof of Lemma 9.3.

(i) For fixed N ∈ N and all n ≥ N one has

N∑
i=1

α2
i ≤

N∑
i=1

(
α2
i −

λ(n)2
i

n2

)
+

n∑
i=1

λ(n)2
i

n2 .

By definition of α and δ the right-hand side tends to δ as n→∞. This proves part (i).

(ii) By the ordering of the entries of λ(n), we obtain for N ∈ N and n ≥ N that

p2(λ(n))
n2 =

N−1∑
i=1

(
λ(n)i
n

)2
+

n∑
i=N

(
λ(n)i
n

)2

≤
N−1∑
i=1

(
λ(n)i
n

)2
+ λ(n)N

n

n∑
i=1

λ(n)i
n

, .

Taking the limit n→∞ on both sides, we obtain that

δ ≤
N−1∑
i=1

α2
i + αNβ.

As limN→∞ αN = 0, this implies that δ ≤∑∞i=1 α
2
i and therefore γ = 0.

�

We shall throughout fix a strictly positive multiplicity k > 0 on An−1 and suppress it in our
notation. For sequences (λ(n))n∈N of spectral parameters λ(n) ∈ Rn with growing dimension
n, we are interested in the convergence behaviour of the Bessel functions JAn−1(iλ(n), ·) as
n→∞. For this, we consider JAn−1(λ, ·) as a function on Cr for all r ≤ n by

JAn−1(λ, z) := JAn−1

(
λ, (z, 0n−r)

)
, z ∈ Cr. (9.4)

For later use, we record the following representation.

Proposition 9.5. For λ ∈ Cn and z ∈ Cr with r ≤ n,

JAn−1(λ, z) =
∑
κ∈Λr+

Cκ(λ)[kr]κ
[kn]κ|κ|!

Pκ(z),

with the renormalized Jack polynomials

Pκ(z) = Cκ(z)
Cκ(1r)

and the generalized Pochhammer symbol

[µ]κ =
`(κ)∏
j=1

(µ− k(j − 1))κj .
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Proof. Consider the expansion of JAn−1 as Jack hypergeometric function from Remark
6.21, namely for x ∈ Rn

JAn−1(λ, x) = 0F0(λ, x) =
∑
κ∈Λn+

Cκ(λ)Cκ(x)
Cκ(1n) |κ|!

From [Kan93, formula (17)] it is known that for all κ ∈ Λr+,

Cκ(1r)
Cκ(1n) = [kr]κ

[kn]κ
.

Together with the stability property (9.2), the assertion follows. �

We shall prove the following theorem.

Theorem 9.6. Let (λ(n))n∈N be a sequence of spectral parameters λ(n) ∈ Rn such that
each λ(n) is decreasing with respect to � . Then for fixed multiplicity k > 0, the following
statements are equivalent.

(i) (λ(n))n∈N is a Vershik-Kerov sequence.

(ii) The sequence of Bessel functions
(
JAn−1(iλ(n), ·)

)
n∈N converges locally uniformly on

compact subsets of R(∞), i.e. the convergence is locally uniform on each of the spaces
Rr, r ∈ N.

(iii) The sequence of Bessel functions
(
JAn−1(iλ(n), ·)

)
n∈N converges pointwise on R against

a function which is continuous in 0.

(iv) For each fixed multi-index of length r, the corresponding coefficients in the Taylor of
expansion of JAn−1(iλ(n), ·) around 0 ∈ Rr converge as n→∞.

(v) For all symmetric functions f : R(∞) → C, the limit

lim
n→∞

f(λ(n))
ndegf

exists.

Moreover, in this case one has

lim
n→∞

JAn−1(iλ(n), z) =
∞∏
j=1

eiβzj−
γ

2k z
2
j

∞∏
`=1

e−iα`zj(
1− iα`zj

k

)k , (9.5)

locally uniformly in
z ∈ Sωr,k :=

{
z ∈ Cr

∣∣∣∣‖Im z‖∞ <
k

r |α1|

}
(9.6)

for all r ∈ N, where (α, β, γ) are the VK-parameters of the VK-sequence (λ(n))n∈N, and the
product on the right side extends analytically to Rr for each r ∈ N.

Remark 9.7. In the geometric case k = 1, i.e. for Hermitian matrices over C, this result
essentially goes back to [OV96], while in [Bou07], where also F = R and H are considered,
only the limit (9.5) is established, by completely different methods and under the additional
condition γ = 0.
The equivalence of (i) and (iii) including the complex domain of convergence was independently
proven in [AN21]. But, the authors used a different, probabilistic approach. We feel that the
method used here is very natural, which is also suggested by [AN21, Remark 1.15].
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Our proof of Theorem 9.6 is inspired by the methods of [OV96], [OO98] and [Far08, Chapter
3]. We start with the following observation, which is already done in [AN21, Proposition 2.3],
but for the sake of completeness we give it again, with a clearer proof.

Theorem 9.8. Assume that (λ(n))n∈N is a VK-sequence with parameters ω = (α, β, γ). Then

lim
n→∞

pm(λ(n))
nm

= p̃m(ω) :=


1, m = 0,
β, m = 1,
δ = γ +∑∞

i=1 α
2
i , m = 2,∑∞

i=1 α
m
i , m ≥ 3,

where the series in the last case is absolutely convergent. In particular, for each symmetric
function f on R(∞), the limit

f̃(ω) := lim
n→∞

f(λ(n))
ndegf

exists.

Proof. We only have to consider the case m ≥ 3. In view of the ordering of λ(n) we have
for arbitrary N ∈ N that

∞∑
i=N

∣∣∣λ(n)i
n

∣∣∣m ≤ ∣∣∣λ(n)N
n

∣∣∣m−2
· p2(λ(n))

n2 . (9.7)

The expression on the right side converges to αm−2
N δ as n→∞. As α is square-summable by

Lemma 9.3, this implies that for each ε > 0, there exists an index N ∈ N such that for all
n ∈ N,

∞∑
i=N
|αi|m +

∞∑
i=N

∣∣∣λ(n)i
n

∣∣∣m < ε. (9.8)

Estimate (9.8) further leads to

∣∣∣pm(λ(n))
nm

− pm(α)
∣∣∣ ≤ ∞∑

i=N
|αi|m +

∞∑
i=N

∣∣∣λ(n)i
n

∣∣∣m +
N−1∑
i=1

∣∣∣λ(n)mi
nm

− αmi
∣∣∣

≤ ε+
N−1∑
i=1

∣∣∣λ(n)mi
nm

− αmi
∣∣∣.

By the definition of a VK-sequence, the last sum tends to zero as n → ∞. As ε > 0 was
arbitrary, this finishes the proof. �

We next consider for λ ∈ C(∞) the complex function

Φ(λ; z) :=
∞∏
j=1

1
(1− λjz)k

,

where ζ 7→ ζk denotes the principal holomorphic branch of the power function on C\]−∞, 0].
For fixed λ, the product is finite and Φ(λ; ·) is holomorphic in a neighborhood of 0 in C.
According to formula (2.9) of [OO98],

Φ(λ; z) =
∞∑
j=0

gj(λ)zj (9.9)

with
gj(λ) =

∑
i1≤...≤ij

(k)m1(k)m2 · · ·
m1!m2! · · · · λi1 · · ·λij , (9.10)
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where m` := #{r ∈ N : ir = l} denotes the multiplicity of the number l in the tuple
(i1, . . . , ij) and (k)m = k(k + 1) · · · (k +m− 1) is the Pochhammer symbol. Moreover, from
[OO98, formula (2.8)] and the connection between the C- and P -normalizations of the Jack
polynomials according to formula (12.135) of [For10], one calculates that

gj(λ) = (k)j
j! · C(j)(λ). (9.11)

(For partitions κ = (j) with just one part, the Jack polynomials C(j) and P(j) coincide).

Lemma 9.9. Suppose ω = (α, β, γ) are the VK-parameters of a Vershik-Kerov sequence.
Then the following hold.

(i) The infinite product

Ψ(ω; z) := ekβz+
kγ
2 z

2
∞∏
`=1

e−kα`z

(1− α`z)k

is holomorphic in S := C\
( ]
−∞,− 1

|α1|
]
∪
[ 1
|α1| ,∞

[ )
.

If in addition α` ≥ 0 for all l ∈ N, then Ψ(ω; ·) is holomorphic in S̃ := C\
[ 1
α1
,∞
[
.

(ii) ω is uniquely determined by Ψ(ω; ·).

Proof.

(i) A power series expansion around z = 0 shows that for |α`z| ≤ δ < 1,∣∣∣∣∣1− e−kα`z

(1− α`z)k

∣∣∣∣∣ ≤ Cδ|α`z|2
with some constant Cδ > 0. Recall that α is decreasing with respect to � and square-
summable. Hence for fixed n ∈ N, the product

∞∏
`=n

e−kα`z

(1− α`z)k

defines a holomorphic function in the open disc
{
z ∈ C

∣∣∣|z| < 1
|αn|

}
. Moreover,

n−1∏
`=1

e−kα`z

(1− α`z)k

is holomorphic in S and even in S̃ if α` ≥ 0 for all ` ∈ N. As liml→∞ α` = 0, it
follows that ψ(ω; ·) is holomorphic in S or even in S̃. Unless α is identical zero (which is
equivalent to α1 = 0), Ψ(ω; ·) has a singularity in z = 1

α1
.

(ii) If ψ(ω; ·) is entire, then α1 = 0. Otherwise limz→1/α1 |Ψ(ω; z)| =∞. Thus α1 is uniquely
determined by Ψ(ω; ·). Multiplying successively by (1 − α1z)k, . . . , we further obtain
that α2, α3, . . . are uniquely determined by Ψ(ω; ·) as well. It is then obvious that also
β and γ are uniquely determined by Ψ(ω; ·).

�
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Remark 9.10. A closer observation of the proof of Lemma 9.9 shows that Ψ(ω; ·) is even
holomorphic on the domain

C\(]−∞, α∗−] ∪ [α∗+,∞[),

where

α∗− := 1
max {α` | ` ∈ N, α` < 0} ∈ [−∞, 0[,

α∗+ := 1
min {α` | ` ∈ N, α` > 0} ∈ ]0,∞].

Proposition 9.11.

(i) For λ ∈ C(∞) with decreasing absolute values and z ∈ C with |z| < 1
|λ1| ,

Φ(λ; z) = exp
(
k
∞∑
m=1

pm(λ)z
m

m

)
. (9.12)

(ii) Moreover, if (λ(n))n∈N is a VK-sequence with parameters ω = (α, β, γ), then

lim
n→∞

Φ
(λ(n)

n
; z
)

= Ψ(ω; z),

where the convergence is locally uniform in z in {z ∈ C | |z| < 1/ |α1|}.

Proof.

(i) The left hand side of (9.12) is obviously holomorphic on the domain {z ∈ C : |z| < 1/|λ1|}.
By |pλ(λ)| ≤ r · |λ1|m, the right hand side is holomorphic on the same domain. Since
both sides of (9.12) have value 1 in z = 0, it suffices to verify that they have the same
logarithmic derivative. Let ln be the principle holomorphic branch of the logarithm in
C\]−∞, 0]. Then for |z| small enough,

d
dz ln Φ(λ; z) =

∞∑
j=0

kλj
1− λjz

= k
∞∑
m=0

pm+1(λ)zm.

This is exactly the logarithmic derivative of the right-hand side in (9.12).

(ii) For the second assertion, recall from (9.7) that for m ≥ 2 we may estimate
∣∣∣pm(λ(n))

nm

∣∣∣ ≤ ∣∣∣λ(n)1
n

∣∣∣m−2
· p2(λ(n))

n2

Since the right-hand side converges to |α1|m−2δ for n→∞, the sequence on the left-hand
side is uniformly bounded in n. Hence, for all ε > 0, the series

hn(z) =
∞∑
m=1

pm
(λ(n)

n

)zm
m

converges for |z| < 1
|α1| − ε, and the dominated convergence theorem shows that (hn)n∈N

converges for n→∞ to ∑∞m=0 p̃m(ω) zmm locally uniformly in
{
z ∈ C | |z| < 1

|α1| − ε
}
.

Thus
lim
n→∞

Φ
(λ(n)

n
; z
)

= exp
(
k
∞∑
m=0

p̃m(ω)z
m

m

)
(9.13)
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locally uniformly in the disc
{
z ∈ C | |z| < 1

|α1|

}
. Now consider Ψ(ω; ·), which is holo-

morphic in a neighborhood of 0. Taking the logarithmic derivative as in the proof of
[Far08, Prop. 3.12] and recalling Theorem 9.8, we obtain

d
dz ln Ψ(ω; z) = k

(
β + γz −

∞∑
`=1

(
α` −

α`
1− α`z

))
= k

∞∑
m=0

p̃m+1(ω)zm.

The right-hand side in equation (9.13) has the same logarithmic derivative. Since
Φ
(λ(n)

n ; 0
)

= 1 = Ψ(ω; 0), this proves the stated limit.

�

We now consider the asymptotic behaviour of the Bessel functions JAn−1 as n→∞.
For z ∈ C(∞), we put

Ψ̂(ω; z) :=
∞∏
j=1

Ψ(ω; zj),

which is actually a finite product.

Theorem 9.12. Assume that (λ(n))n∈N is a VK-sequence with parameters ω = (α, β, γ)
and recall Sr,k ⊆ Cr from (9.6). Then for z ∈ Sωr,k, the Bessel functions of type An−1 with
multiplicity k > 0 satisfy

lim
n→∞

JAn−1(iλ(n), z) = Ψ̂
(
ω; iz

k

)
=
∞∏
j=1

eiβzj−
γ

2kx
2
j

∞∏
`=1

e−iα`zj(
1− iα`

k zj
)k

locally uniformly in z ∈ Sωr,k for all r ∈ N.

Proof. First, we do a rank one reduction as in [AN21, Proposition 6.8]. Recall that there
exists a probability measure µn = µλ(n) such that for all z ∈ Cr and n ≥ r

JAn−1(iλ(n), z) =
∫
Rn
ei〈ξ,z〉 dµn(ξ).

Therefore, the Hölder inequality and Theorem 1.16 (v) lead to∣∣JAn−1(iλ(n), z)
∣∣ ≤ JAn−1(λ(n),−Im z)

=
∫
Rn
e−〈ξ,Im z〉 dµn(ξ)

≤
r∏
j=1

(∫
Rn
e−rξj ·Imzj dµn(ξ)

)1
r

=
r∏
j=1

JAn−1(λ(n),−rIm zj)
1
r .

We now divide the prove into two steps.

(i) We claim that the family (JAn−1(iλ(n), ·))n∈N is uniformly bounded on compact subsets
of Sωr,k. By our rank one reduction, it suffices to prove that (JAn−1(λ(n), ·))n∈N is locally
uniformly bounded on I :=

{
x ∈ R | |x| < k

|α1|

}
.

In rank one, the Jack polynomials Pκ, κ ∈ N0 are the monomials, so that Proposition
9.5 becomes for x ∈ I

JAn−1(λ(n), x) ≤
∞∑
κ=0

Cκ(λ(n))(k)κ
(kn)κκ! xκ
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≤
∞∑
κ=0

|Cκ(λ(n))| (kr)κ
(kn)κκ! |x|κ

≤
∞∑
κ=0

∣∣∣Cκ (λ(n)
n

)∣∣∣ (kr)κ
κ!

( |x|
k

)κ
=
∞∑
κ=0
|ακ(λ(n))|

( |x|
k

)κ
, (∗)

where the coefficients ακ(λ(n)) ∈ C are given by (9.9) through

Φ(λ(n)
n , zk ) =

∞∑
κ=0

ακ(λ(n))
(
z

k

)κ
−−−→
n→∞

Ψ(ω, zk ),

where the convergence is locally uniform on
{
z ∈ C | |z| < k

|α1|

}
by Proposition 9.11. By

the Cauchy inequalities for holomorphic functions, the family of series in (∗) is locally
uniformly bounded in x ∈ I as

|aκ(λ(n))| ≤
sup|z|=r

∣∣∣Φ(λ(n)
n , z)

∣∣∣
rκ

holds for all r < k
|α1| .

(ii) Fix r ∈ N. By part (i), the sequence ϕn := JAn−1(iλ(n), ·) is uniformly bounded on
compact subsets of Sωr,k. Therefore, by Montel’s theorem we can find a subsequence
converging locally uniformly on Sωr,k to a holomorphic function ϕ. In particular, in a
small neighborhood of 0 we can expand ϕ as follows

ϕ(z) =
∑
κ∈Λr+

aκPκ(z)

for some coefficients aκ ∈ C. By the uniform convergence, the coefficients of the ϕn with
respect to the expansion in terms of the Jack polynomials converge to those of ϕ, that
means

lim
n→∞

i|κ|Cκ(λ(n))[kr]κ
[kn]κ |κ|!

= aκ.

But, as [kn]κ ∼ (kn)|κ| for n→∞, we obtain with Theorem 9.8

aκ = i|κ|C̃κ(ω)[kr]κ
k|κ| |κ|!

.

The Cauchy identity for Jack polynomials, see for instance [Sta89, Prop. 2.1], states for
λ ∈ C(∞) and z ∈ Cr with |zj | small enough that

∑
κ∈Λr+

Cκ(λ(n)
n )[kr]κ
|κ|! Pκ( izk ) =

∏
j,`

1
(1− iλ(n)`

n
zj
k )k

=
r∏
j=1

Φ(λ(n)
n ; izjk ) −−−→

n→∞
Ψ̂(ω, izk ),

where the convergence is a consequence of Proposition 9.11. Therefore, as we have
lim
n→∞

Cκ(λ(n)
n ) = C̃κ(ω), we conclude that

ϕ(z) = Ψ̂(ω; izk )

for all z ∈ Sωr,k. Finally, using again Montel’s theorem we have ϕn(z)→ ϕ(z) = Ψ̂(ω; izk )
locally uniformly in z ∈ Sωr,k for n→∞.

�
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Remark 9.13. If the VK-sequence (λ(n))n∈N is non-negative, then (9.5) is true locally
uniformly in the domain

Sωk :=
{
z ∈ C(∞) | ‖Im z‖∞ < k

|α1|

}
.

Note that λ(n) ≥ 0 implies that Cκ(λ(n)) ≥ 0 due to the non-negative coefficients of Cκ in
the monomial expansion. We observe that for κ ∈ Λr+ we have

[kn]κ ≥ (k(n− r + 1))|κ|

and therefore with Proposition 9.5 we obtain similar to the proof of Theorem 9.12, but without
rank one reduction

∣∣JAn−1(iλ(n), z)
∣∣ ≤ ∑

κ∈Λr+

Cκ
(
λ(n))
n−r+1

)
[kr]κ

|κ|!
∣∣∣P̃κ ( Im z

k

)∣∣∣
≤
∑
κ∈Λr+

Cκ
(
λ(n))
n−r+1

)
[kr]κ

|κ|! P̃κ
(

(|Im z1|,...,|Im zr|)
k

)

= Φ
(

λ(n)
n− r + 1 ,

(|Im z1|,...,|Im zr|)
k

)
−−−→
n→∞

Ψ̂
(
ω, (|Im z1|,...,|Im zr|)

k

)
.

locally uniformly in z ∈ Sωk ∩ Cr. Proceeding as in the proof of Theorem 9.12 proves the
assertion that (9.5) is true as locally uniform limit on Sωk .

Remark 9.14. The proof shows that for z ∈ Cr with |z| < 1
|α1| ,

Ψ̂(ω; z) =
∑
κ∈Λr+

[kr]κ
|κ|! C̃κ(ω)Pκ(z).

Lemma 9.15. Consider a sequence (λ(n))n∈N such that each λ(n) ∈ Rn is decreasing with
respect to� . Suppose that the sequence of Bessel functions JAn−1(iλ(n), ·) converges pointwise
on R to a function which is continuous at 0. Then (λ(n))n∈N is a VK-sequence.

Proof. Put ϕn(x) := JAn−1(iλ(n), x), x ∈ R and ϕ(x) := limn→∞ ϕn(x). In view of
representation (9.1), there exist compactly supported probability measures µn on R such that

ϕn(x) =
∫
R
eixξ dµn(ξ)

for all x ∈ R. By Lévy’s continuity theorem, there exists a probability measure µ on R such
that µn → µ weakly and for all x ∈ R

ϕ(x) =
∫
R
eixξ dµ(ξ).

In particular, the family of measures {µn | n ∈ N} is tight. Recall the functions gj(λ) from
(9.10). By Proposition 9.5 and formula (9.11) we have

ϕn(x) =
∞∑
j=0

C(j)(λ(n)) · (k)j
(kn)j · j!

(ix)j =
∞∑
j=0

gj(λ(n))
(kn)j

(ix)j .

Hence the moments of the measures µn are given by∫
R
ξj dµn(ξ) = j! gj(λ(n))

(kn)j
.
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We now employ Lemma 5.2 of [OO98]. From the definition of the functions gj one can find a
constant C > 0 such that g4(λ) ≤ Cg2(λ)2 for all λ ∈ R(∞), which shows that the quotient∫

R
ξ4 dµn(ξ)(∫

R
ξ2 dµn(ξ)

)2

is bounded as a function of n ∈ N. Hence we conclude from Lemma 5.1. of [OO98] that the
sequence

(∫
R
ξ2 dµn(ξ)

)
n∈N

is bounded, which in turn implies that the sequence
(g2(λ(n))

n2
)
n∈N

is bounded. As 2g2 = k2p2
1 + kp2, the sequences( |p1(λ(n))|

n

)
n∈N

and
(
p2(λ(n))

n2

)
n∈N

(9.14)

are bounded as well. Standard compactness arguments and a diagonalization argument
imply that (λ(n))n∈N has a subsequence which is Vershik-Kerov. Finally, consider two such
subsequences (λ`(n))n∈N with VK-parameters ω`, l = 1, 2. Then by Theorem 9.12 and our
assumptions,

ϕ(x) = lim
n→∞

JAn−1(iλ`(n), x) = Ψ
(
ω`;

ix

k

)
for all x ∈ R. Hence Ψ(ω1; ·) = Ψ(ω2; ·), and Proposition 9.9 implies that ω1 = ω2. It follows
that the full sequence (λ(n))n∈N is Vershik-Kerov. �

Putting things together, we are now able to finalize the proof of Theorem 9.6.

Proof of Theorem 9.6. The implication (i) ⇒ (ii) is contained in Theorem 9.12. The
implications (iii),(ii)⇒ (i) are just Lemma 9.15, while (ii) ⇒(iii) is obvious. Further, Theorem
9.8 proves the implication (i)⇒ (v). The equivalence of statements (iv) and (v) is obvious from
the expansion of Proposition 9.5, because the Jack polynomials span the algebra of symmetric
functions. It thus remains to prove the implication (v)⇒ (i). For this, suppose that (λ(n))n∈N
is a sequence with each λ(n) ∈ Rn decreasing with respect to�, and such that limn→∞

f(λ(n))
ndegf

exists for all symmetric functions f. Then in particular, the sequences
(p1(λ(n))

n

)
and

(p2(λ(n))
n2

)
are bounded. Again by a compactness argument, (λ(n)) has a subsequence which is Vershik-
Kerov. Suppose (λ`(n)), l = 1, 2 are two such subsequences with VK-parameters ω` . Then
by Theorem 9.12, the sequences

(
JAn−1(iλ1(n), . )

)
and

(
JAn−1(iλ2(n), . )

)
converge locally

uniformly on Rr to the same limit, because for each κ ∈ Λr+, the limit

lim
n→∞

Cκ(λ`(n))
n|κ|

= lim
n→∞

Cκ(λ(n))
n|κ|

is independent of l. Arguing further as in the proof of Lemma 9.15, we obtain that ω1 = ω2
and that (λ(n)) is a VK-sequence.This finishes the proof of the theorem. �

We shall now parametrize the possible limit functions in Theorem 9.12. We put

Ω :=
{

(α, β, γ)
∣∣∣β ∈ R, γ ≥ 0, α = (αi)i∈N with αi ∈ R, αi+1 � αi ,

∑∞
i=1

α2
i <∞

}
.

Note that for (α, β, γ) ∈ Ω, either all entries of α are non-zero, or all entries up to finitely
many are zero.

Proposition 9.16. For any element ω = (α, β, γ) ∈ Ω there exists a VK-sequence (λ(n))n∈N
with VK-parameters ω.

Proof. We divide the proof into several steps.
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(i) Assume that α = 0. Then for arbitrary ε > 0, there exists a sequence x = (xi)i∈N in R
such that

|xi| ≤ ε for all i ∈ N,
∞∑
i=1

xi = β and
∞∑
i=1

x2
i = γ. (9.15)

To see this, choose N ∈ N such that
( 6γ
π2N

)1/2 ≤ ε and start with the alternating
sequence

x′i :=
( 6γ
π2N

)1/2 · (−1)i
k + 1 if k < i

N
≤ k + 1, k ∈ N0.

It satisfies the first and the third condition of (9.15), and by the Riemann rearrangement
theorem, there exists a rearrangement (xi)i∈N of (x′i)i∈N satisfying the second condition
as well. For each m ∈ N we can therefore find a real sequence x(m) = (x(m)

i ) and an
index nm ∈ N with nm →∞ for m→∞, such that for all n ≥ nm ,

∣∣x(m)
i

∣∣ ≤ 1
m

for all i ∈ N, |
n∑
i=1

x
(m)
i − β| ≤ 1

m
, |

n∑
i=1

(
x

(m)
i

)2 − γ| ≤ 1
m
.

We may also assume that nm+1 > nm for all m. Rearranging the entries of each tuple
(x(m)

1 , . . . , x
(m)
nm ) according to �, we thus obtain a sequence (λ(nm)′)m∈N where each

λ(nm)′ ∈ Rnm is decreasing with respect to � and satisfies

lim
m→∞

λ(nm)′i = 0 for all i ∈ N,

lim
m→∞

nm∑
i=1

λ(nm)′i = β,

lim
m→∞

nm∑
i=1

(
λ(nm)′i

)2 = γ.

Finally, put λ(nm) := nmλ(nm)′ and λ(n) := (nλ(nm)′, 0, . . . , 0) ∈ Rn for nm < n <
nm+1. Then (λ(n))n≥n1 is a VK-sequence with parameters (α = 0, β, γ).

(ii) Assume that α has finitely many non-zero entries and let m ∈ N be maximal such
that αm 6= 0. Let (λ(n)′)n∈N be a VK-sequence with parameters (0, β′, γ), where
β′ = β −

∑m
i=1 αi. For n > m, put

λ(n) := (nα1, . . . , nαm, λ(n)′1, . . . , λ(n)′n−m).

For n large enough, say n ≥ n0, the entries of λ(n) are decreasing with respect to � ,

because limn→∞
λ(n)′i
n = 0. Then (λ(n))n≥n0 is Vershik-Kerov with parameters (α, β, γ).

(iii) Assume that all entries of α are non-zero. For m ∈ N, put ω(m) := (α(m), β, γ),
where α(m) = (α1, . . . , αm, 0, . . . ). According to part (ii), there exists a VK-sequence
(λ(m)(n))n∈N with VK-parameters ω(m). By a diagonalization argument we obtain a
sequence λ(nm) := λ(m)(nm) with nm+1 > nm satisfying

lim
m→∞

λ(nm)i = αi for all i ∈ N,

lim
m→∞

nm∑
i=1

λ(nm)i = β,

lim
m→∞

nm∑
i=1

(
λ(nm)i

)2 = δ = γ +
∞∑
i=1

α2
i .

Finally, for n ∈ N with nm ≤ n < nm+1 put λ(n) :=
(
n
nm
λ(nm), 0, . . . , 0

)
∈ Rn. Then

(λ(n))n≥n1 is Vershik-Kerov with VK-parameters (α, β, γ).
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�

Together with Lemma 9.9, this result shows that the possible limits (for n → ∞) of
the Bessel functions JAn−1(iλ(n), x) with x ∈ Rr and λ(n) ∈ Rn are exactly all the infinite
products Ψ̂

(
ω; ixk

)
, of Theorem 9.12, which are in bijective correspondence with the parameters

ω ∈ Ω.
Let us finally come back to the Olshanski spherical pair (G∞,K∞) as in (9.3). From our

results, we obtain the following result of Pickrell [Pic91] mentioned at the beginning of this
section.

Corollary 9.17. The set of positive definite spherical functions of the Olshanski spherical
pair (G∞,K∞) = (U∞(F) n Herm∞(F), U∞(F)), considered as U∞(F)-invariant functions on
Herm∞(F), is uniquely parametrized by the set Ω via

ϕω(X) =
∞∏
j=1

eiβxj−
γ
d
x2
j

∞∏
`=1

e−iα`xj

(1− i2
dα`xj)d/2

, ω = (α, β, γ) ∈ Ω,

where x = (x1, x2, . . .) are the eigenvalues of X.
Moreover, a sequence of positive definite spherical functions (ϕiλ(n))n∈N, λ(n) ∈ Rn, of the
Gelfand pairs (Gn,Kn) = (Un(F) n Hermn(F), Un(F)) from Theorem 9.1 converge locally
uniformly on (G∞,K∞) if and only if (λ(n))n∈N is (up to permutations) a VK-sequence. And
if ω are the VK-parameters, then lim

n→∞
ϕλ(n) = ϕω.

Proof. Let ϕ : G∞ → C be a positive definite spherical functions of (G∞,K∞). By
Theorem 9.1 and Theorem 8.8 there exists a sequence of positive definite spherical functions
ϕn := ϕλ(n) : Gn → C of (Gn,Kn), n ∈ N and λ(n) ∈ Rn, which converges locally uniformly
to ϕ. By Theorem 9.1 any such ϕn is given by a positive Bessel function on Rn associated
with (An−1, dimR F/2)

ϕn(X) = JAn−1(iλ(n), x),
where x = (x1, . . . , xn) are the eigenvalues of X. Without loss of generality assume that λ(n)
is decreasing with respect to �. By Theorem 9.6 (λ(n))n∈N has to be a VK-sequence and if
ω are the VK-parameters of the sequence, then we conclude that ϕ = ϕω.
Conversely, starting with an arbitrary ω ∈ Ω we choose corresponding VK-sequence (λ(n))n∈N
by Lemma 9.16. Then, ϕn(X) = JAk (iλ(n), x) are positive definite spherical functions of
(Gn,Kn) converging locally uniformly to ϕω. By Theorem 8.8, ϕω is a positive definite
spherical functions of (G∞,K∞). The injectivity of the map ω 7→ ϕω is a consequence Lemma
9.9. �

9.3 The type B case

Consider the action Up(F) × Uq(F) on Mp,q(F), the space of p × q matrices with entries in
F, defined by (U, V ).M = UMV −1. The following theorem justifies why we consider type B
Bessel functions if the rank tends to infinity.

Theorem 9.18. Let p, q ∈ N with p ≥ q. The spherical functions of the Gelfand pairs

(Gp,Kq) = ((Up(F)× Uq(F)) nMp,q(F), Up(F)× Uq(F))

are given as (Up(F)× Uq(F))-invariant functions on Mp,q(F) by

ϕλ(X) = J
Bq
(k′,k)(λ, singX), λ ∈ Rq
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where singX = spec(
√
X∗X) ∈ Rq are the singular values of X in an arbitrary order and the

multiplicity is k′ = k(p− q + 1)− 1
2 on ±ei and k = dimR F

2 on ±ei ± ej.

Proof. We refer the reader to [Rö07]. It could also be verified by hand with Theorem
4.27, as the pair (Gp,Kq) is the Cartan motion group associated the semisimple indefinite
group G = U(p, q,F) ∈ H of signature (p, q) and K = Up(F)× Uq(F), embedded into G via

(U, V ) 7→
(
U 0
0 V

)
. �

The embedding

Mp,q(F) ↪→Mp+1,q+1(F), A 7→
(
A 0
0 0

)
of p× q matrices into (p+ 1)× (q + 1) matrices induces for any sequences pn ≥ qn −−−→

n→∞
∞

an Olshanski spherical pair

(G∞,K∞) = lim
n→∞

(Gn,Kn) = lim
n→∞

((Upn(F)×Uqn(F))nMpn,qn(F), Upn(F)×Uqn(F)). (9.16)

which is independent among the possible sequences pn ≥ qn −−−→
n→∞

∞ by Proposition 8.9. For
simplicity we consider qn = n in the following.
Because of Theorem 9.18 we will consider first the type B Bessel functions. As n → ∞,
we shall consider them with the multiplicities κn := (k′n, k) with value k > 0 on the roots
±(ei ± ej) and k′n ≥ 0 on the roots ±ei. From Theorem 9.18 its is clear why the multiplicity
parameter kn is allowed to vary with n. With νn := k′n + k(n− 1) + 1

2 we have

JBn(κn;λ, z) =
∑
κ∈Λ+

n

1
4|κ|[νn]κ

Cκ(λ2)Cκ(z2)
|κ|!Cκ(1n) , (9.17)

where the Jack polynomials are of index 1/k by Proposition 7.8. Recall the stability property
(9.2) of the Jack polynomials. Adopting the notation from (9.4), we therefore have for λ ∈ Cn
and z ∈ Cr with r ≤ n the representation

JBn(κn;λ, z) := JBn(κn;λ, (z, 0n−r) =
∑
κ∈Λ+

r

Cκ(λ2)[kr]κ
4|κ|[kn]κ[νn]κ|κ|!

Pκ(z2). (9.18)

Note that for λ ∈ Rn, JBn(κn;λ, ·) is positive definite on Rr for each r ≤ n.

Remark 9.19. We note that the restriction onto non-negative multiplicity κn is essential as
in this case we can characterize by the integral representation (9.1) the spectral parameters
for which the Bessel function is positive definite. So we cannot omit the restriction k′n ≥ 0,
i.e. νn ≥ k(n− 1) + 1

2 . But, equation (9.17) is still true on a larger set of multiplicities. As
the right hand side of (9.17) is holomorphic in the parameter νn, and so in k′n (cf. Theorem
6.20), the equation is true for all regular multiplicities κn = (k′n, k) with k ≥ 0. Note that
the Bessel function is holomorphic in κn on the set of regular multiplicities, which can be
characterized as exactly the pole set of the Bessel function, cf. [Opd93, Proposition 9.6].
Hence, (9.17) is true for all κn = (k′n, k) such that k ≥ 0 and k′n is not of the form −kj− 1

2−m,
j ∈ {0, . . . , n− 1},m ∈ N, i.e. νn /∈ {0, k, . . . , k(n− 1)} − N0, which means [νn]κ 6= 0 for all
κ ∈ Λ+

n .

The following counterpart of Theorem 9.6 will be the main result of this section.

Theorem 9.20. Let (λ(n))n∈N be a sequence of spectral parameters λ(n) ∈ Rn non-negative
and decreasing. Then the following statements are equivalent.

156



9.3. THE TYPE B CASE 157

(i)
(λ(n)2

νn

)
n∈N is a Vershik-Kerov sequence.

(ii) The sequence of Bessel functions
(
JBn(κn; iλ(n), . )

)
n∈N converges locally uniformly on

each of the spaces Rr, r ∈ N.

(iii) The sequence of Bessel functions
(
JBn(κn; iλ(n), . )

)
n∈N converges pointwise on R against

a function continuous in 0.

(iv) For each fixed multi-index of length r, the corresponding coefficients in the Taylor of
expansion of JBn(κn; iλ(n), . ) around 0 ∈ Rr converge as n→∞.

(v) For all symmetric functions f : R(∞) → C, the limit

lim
n→∞

f(λ(n)2)
(nνn)degf

exists.

In this case, let ω = (α, β, γ) be the VK-parameters of the sequence
(λ(n)2

νn

)
. Then γ = 0, α` ≥ 0

for all l, and

lim
n→∞

JBn(κn; iλ(n), z) = Ψ̂
(
ω;− z

2

4k
)

=
∞∏
j=1

e−
βz2
j

4

∞∏
`=1

e
α`z

2
j

4(
1 + α`z

2
j

4k
)k ,

locally uniformly in z ∈
{
z ∈ C(∞) | ‖Im z‖ < 2

√
k
α1

}
.

Remark 9.21.

(i) It is a consequence of Lemma 9.3 that the VK-parameter γ is 0 in the present situation.

(ii) We do not have any restriction to the asymptotic behavior of νn (or k′n), which grows
by the restriction k′n ≥ 0 at least linearly. Only the characterization of the spectral
parameters, for which the set of Bessel function converges, depends on νn. However,
the set of limits we are able to obtain by such a limit transition is independent of the
asymptotic behavior of νn.

(iii) Assume that there exists C ≥ 0 with limn→∞
k′n
Cn = 1 (with the convention 0

0 = 1 here).
Then νn ∼ (C + k)n for n→∞. In particular,

(λ(n)2

νn

)
n∈N is Vershik-Kerov with VK

parameters (α, β, 0) if and only if
(λ(n)2

n

)
n∈N is Vershik-Kerov with VK parameters(

(C + k)α, (C + k)β, 0
)
.

For the proof of Theorem 9.20, we start with the following.

Lemma 9.22. Let (λ(n))n∈N with λ(n) ∈ Rn non-negative and decreasing such that
(λ(n)2

νn

)
is a Vershik-Kerov sequence with VK-parameters ω = (α, β, 0). Then for

z ∈ Sωk,+ :=
{
z ∈ C(∞)

∣∣∣∣∣‖Im z‖∞ < 2
√
k

α1

}

we have
lim
n→∞

JBn(κn; iλ(n), z) = Ψ̂
(
ω;− z

2

4k
)
.

The convergence is uniform on compact subsets of Sωk,+.
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Proof. For r ∈ N and z ∈ Sωk,+ ∩ Cr, consider

ϕn(z) := JBn(κn; iλ(n), z) =
∑
κ∈Λ+

r

Cκ(λ(n)2)[kr]κ
[kn]κ[νn]κ|κ|!4|κ|

Pκ(−z2). (9.19)

As in Remark 9.13 we observe with λ(n) ≥ 0 that

|ϕn(z)| ≤
∑
κ∈Λ+

r

Cκ
(

λ(n)2

(n−r+1)(νn−r+1)

)
[kr]κ

|κ|! Pκ
(

(Im zj)2

4k

)
=

r∏
j=1

Φ
(

λ(n)2

(n−r+1)(νn−r+1) ,
(Im z)2

4k

)
,

where the upper bound converges locally uniformly on Sωk,+ to Ψ̂(ω, (Im z)2

4k ). Therefore,
(ϕn)n∈N is a family of holomorphic functions that are uniformly bounded on compact subsets
of Sωk,+. Arguing with a Montel argument as in Theorem 9.12 shows that on Sωk,+ we have

lim
n→∞

ϕn(z) = Ψ̂(ω,− z2

4k )

locally uniformly in z ∈ Sωk,+, as with [kn]κ[νn]κ ∼ (knνn)|k| for n→∞ we have

lim
n→∞

Cκ(λ(n)2)
[kn]κ[νn]κ

= C̃κ(ω)
k|κ|

.

�

Lemma 9.23. Consider a sequence (λ(n))n∈N with λ(n) ∈ Rn non-negative and decreasing.
Assume that the sequence of Bessel functions JBn(iλ(n), ·) converges pointwise on R to a
function which is continuous at 0. Then the sequence

(λ(n)2

νn

)
is Vershik-Kerov.

Proof. The proof is similar to that of Lemma 9.15. For x ∈ R, put

ϕn(x) := JBn(κn; iλ(n), x) =
∫
R
eixξ dµn(ξ)

with certain compactly supported probability measures µn on R. By the symmetry properties of
JBn , the measure µn is even, hence its odd moments vanish. Let further ϕ(x) := limn→∞ ϕn(x).
Again by Lévy’s continuity theorem, there exists a probability measure µ on R such that
µn → µ weakly and

ϕ(x) =
∫
R
eixξ dµ(ξ) for all x ∈ R.

Further, the family {µn : n ∈ N} is tight. From (9.18) and formula (9.11) we deduce that

ϕn(x) =
∞∑
j=0

gj
(
λ(n)2)

4j(νn)j(kn)j
(−x)2j .

This shows that the even moments of µn are given by∫
R
ξ2j dµn(ξ) = (2j)! gj(λ(n)2)

4j(kn)j(νn)j
.

As in the proof of Lemma 9.15, we deduce that the quotient∫
R
ξ8 dµn(ξ)(∫

R
ξ4 dµn(ξ)

)2
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is bounded in n ∈ N. Now we conclude from [OO98, Lemma 5.2] (employing the Lemma for
the image measure of µn under ξ 7→ ξ2) that the sequence

(∫
R
ξ4 dµn(ξ)

)
is bounded. As

(νn)2 ∼ ν2
n and (kn)2 ∼ (kn)2 for n→∞, it follows that the sequence

(
g2
(λ(n)2

nνn

))
n∈N

is bounded as well. Continuing as in the proof of Lemma 9.15 we obtain that
(λ(n)2

νn

)
is a

Vershik-Kerov sequence. �

Proof of Theorem 9.20. From Theorem 9.6 it is clear that the statements (i) and (v)
are equivalent. The equivalence of (iv) and (v) follows from expansion (9.19) and the fact that
the Jack polynomials span the algebra of symmetric functions. By Lemma 9.23, statement
(iii) implies (i). Finally, Lemma 9.22 shows that statement (i) implies statement (ii). �

We finally want to determine the set of all parameters ω = (α, β, 0) which occur as
VK-parameters of a non-negative Vershik-Kerov sequence as in Theorem 9.20. Recall that in
the non-negative case, the parameter γ is automatically zero by Lemma 9.3.

Proposition 9.24. The set Ω+ of all pairs (α, β) for which there exists a non-negative
VK-sequence with parameters (α, β, 0) is given by

Ω+ =
{

(α, β) | β ≥ 0, α = (αi)i∈N with αi ∈ R, α1 ≥ α2 ≥ . . . ≥ 0,
∑∞

i=1
αi ≤ β

}
.

Proof.

(i) If (α, β, 0) are the VK-parameters of a VK-sequence (λ(n)) with λ(n)i ≥ 0 for all i, then
obviously β ≥ 0 and α1 ≥ α2 ≥ . . . ≥ 0. Moreover, for fixed N ∈ N and n ≥ N we have

N∑
i=1

αi ≤
N∑
i=1

(
αi −

λ(n)i
n

)
+

n∑
i=1

λ(n)i
n

.

As n→∞, the first sum tends to 0 and the second sum tends to β. This proves that∑∞
i=1 αi ≤ β.

(ii) Conversely, let (α, β) ∈ Ω+. In order to construct an associated non-negative VK-
sequence, we proceed in two steps.

(a) Assume that α has at most finitely many non-zero entries. If α 6= 0, let m ∈ N be
maximal such that αi 6= 0 for i ≤ m. If α = 0, let m := 0. Put

β′ := β −
m∑
i=1

αi ≥ 0.

For n > m, define λ(n) ∈ Rn by

λ(n)i :=
{
nαi if i ≤ m
nβ′

n−m if m < i ≤ n.

Note that the entries of λ(n) are non-negative and decreasing for n large enough,
say n ≥ n0. It is now straightforward to verify that (λ(n))n≥n0 is a VK-sequence
with parameters (α, β, 0).
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(b) Assume that all entries of α are strictly positive. Then a diagonalization argument
as in the proof of Proposition 9.16 shows that there exists a VK-sequence with
parameters (α, β, 0).

�

Corollary 9.25. The set of positive definite spherical functions of the Olshanski spherical
pair (G∞,K∞), considered as functions on U∞(F)× U∞(F)-invariant functions on M∞,∞(F)
is given by the functions

ϕ(α,β)(X) =
∞∏
j=1

e−
β
4 x

2
j

∞∏
`=1

e
α`
4 x

2
j(

1 + α`
2dx

2
j

)d/2 , (α, β) ∈ Ω+,

where d = dimR F and x = (x1, x2, . . .) are the singular values of X.
Let (pn, n) be an increasing sequence with pn ≥ n. Then, a sequence of positive definite
spherical functions (ϕiλ(n))n∈N, λ(n) ∈ Rn, of the Gelfand pairs (Gn,Kn) = ((Upn(F) ×
Un(F))nMpn,n(F), Upn(F)×Un(F)) from Theorem 9.18 converge locally uniformly on (G∞,K∞)
if and only if (λ(n)2

kpn
)n∈N is (up to permutations) a VK-sequence. And if ω = (α, β, 0) are the

VK-parameters, then lim
n→∞

ϕiλ(n) = ϕ(α,β).

Proof. The proof is the same as that of Corollary 9.17 and uses Theorem 9.18 and Theorem
9.20. �

Remark 9.26. We mention that for F = C, the first part of this corollary is in accordance
with results of [Bou19], where for the semigroup Herm+

∞(C) of infinite dimensional positive
definite matrices over C, the positive definite Olshanski spherical functions of (U∞(C) n
Herm+

∞(C), U∞(C)) were determined by semigroup methods and a reduction to the type A
case.
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chapter 10
Limit transition between root systems of type BC and A

In [RKV13] the authors described a limit transition from the type BC hypergeometric function
to the type A hypergeometric function. The limit is taken by the condition that certain
BC-multiplicities tend to infinity. The proof is done first for the symmetric Heckman-Opdam
polynomials and is then extended to the hypergeometric functions using Montel’s theorem
and analytic continuation via Carlson’s theorem. The polynomial case is done by considering
the defining eigenvalue equation of the Heckman-Opdam polynomials. The aim of this chapter
is to generalize the results from [RKV13] to the non-symmetric setting. The non-symmetric
polynomials setting has a big effort: the Heckman-Opdam polynomials can be constructed
recursively by recurrence relations going back to Sahi in the papers [Sah00a, Sah00b] and
earlier by Opdam in [Opd95].
The chapter is organized as follows. In the first section, we introduce the reader to the
recurrence formulas for Heckman-Opdam polynomials by Sahi. Afterwards, in Section 2, we
use these recurrence formulas to prove a limit transition between non-symmetric Heckman-
Opdam polynomials of type BCn and An−1, the latter can be identified with Jack polynomials.
Finally, by analytic continuation, we extend this limit transition to the Cherednik kernels of
type BCn and An−1 in Section 3.

10.1 Sahi’s recurrence formulas

We introduce the reader to the recurrence relations of the non-symmetric Heckman-Opdam
polynomials proven in [Sah00a]. They were verified under the assumption that the root system
is reduced, but the results for the Heckman-Opdam polynomials in [Sah00a] remain true for
non-reduced root system without any bigger change. The BC setting was also done in the
paper [Sah00b] in the more general BC-Koornwinder setting. In the Appendix A we have
verified the recurrence formulas of [Sah00b] for non-reduced root systems in the language of
the paper [Sah00a].
Let R ⊆ Rn be an irreducible crystallographic root system with Weyl group W , weight lattice
P , positive roots R+ ⊆ R with simple roots α1, . . . , αn and corresponding simple reflections
s1, . . . , sn. Let β ∈ R be the unique highest short root and define the corresponding affine
reflection

s0 := β + sβ,

which is the reflection in the hyperplane {x ∈ Rn | 〈β∨, x〉 = 1}. The dual affine Weyl group
is defined by

W∨,aff := 〈s0, . . . , sn〉group = W nQ

and acts transitively on the weight lattice P . Therefore, the action of W∨,aff on P induces an
action on the trigonometric polynomials T := spanC {eµ | µ ∈ P}. Note, that this action on
T coincides on W ⊆W∨,aff with the usual action wf(x) = f(w−1x) on functions f : a→ C.
But the actions are not equal on the whole dual affine Weyl group W∨,aff. Indeed, s0 acts on
trigonometric polynomials f via s0f(x) = e〈β,x〉f(sβx).
The key tool in this chapter is the following theorem.

Theorem 10.1 ([Sah00a, Sah00b] or Appendix A). Let k = (kα)α∈R ≥ 0 be a non-negative
multiplicity function and (Eµ(k; ·))µ∈P the non-symmetric Heckman-Opdam polynomials asso-
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162 CHAPTER 10. LIMIT TRANSITIONS

ciated with (R+, k). Recall from equation (4.2) the eigenvalue vector µ̃ of Eµ(k; ·) under the
Cherednik operators. Then the following statements hold:

(i) For all µ ∈ P with siµ 6= µ we have s̃iµ 6= µ̃ and there exists di(k;µ) ∈ R with

di(k;µ)Esiµ(k; ·) = (si + ci(k;µ))Eµ(k; ·),

where

ci(k;µ) =


kβ

1− 〈β∨, µ̃〉 , i = 0,

kαi + 2k2αi
〈α∨i , µ̃〉

, i = 1, . . . , n,
with k2α = 0 if 2α /∈ R.

(ii) Let O := {µ ∈ P | 〈α∨, µ〉 ∈ {0, 1} for all α ∈ R+} be the minuscle weights. Then for
all µ ∈ P there exists a unique element wµ = si1 · · · sim ∈W∨,aff (reduced expression) of
minimal length with µ := wµµ ∈ O. Then for µ(j) = sij−1 · · · si1µ we have

Eµ(k; ·) =
{
eµ, µ ∈ O,
(sim + cim(k;µ(m))) · · · (si1 + ci1(k;µ(1)))eµ, otherwise.

Furthermore cij (k;µ(j)) ≥ 0 for all j = 1, . . . ,m.

To fix notations, we consider in the following the unique irreducible non-reduced crystallo-
graphic root system in Rn defined by

BCn := {ei, 2ei | 1 ≤ i ≤ n} ∪ {±(ei ± ej) | 1 ≤ i < j ≤ n} ⊆ Rn

with Weyl groupWB = Zn2 nSn. We fix a non-negative multiplicity κ = (k1, k2, k3) ≥ 0, where
k1 is the value on the ei, k2 is the value on 2ei and k3 is the value on ±(ei± ej). Furthermore,
we consider the positive roots

BC+
n = {ei, 2ei | 1 ≤ i ≤ n} ∪ {ei ± ej | 1 ≤ i < j ≤ n}

with simple roots α1, . . . , αn defined by

αi =
{
ei − ei+1, 1 ≤ i ≤ n− 1,
en, i = n.

The weights and dominant weights are then given by

PBC = Zn and PBC+ = Λn+ = {λ ∈ Zn | λ1 ≥ . . . ≥ λn ≥ 0} ,

respectively. The positive Weyl chamber is

CBC+ := {λ ∈ Rn | λ1 > . . . > λn > 0}

and the Weyl vector is

ρBC(κ) = 1
2

n∑
i=1

(k1 + 2k2 + 2k3(n− i))ei.

The highest short root of BCn is β := e1 and we write

s0 := β + sβ = x 7→ (1− x1, x2, . . . , xn),
si := sei−ei+1 = x 7→ (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn), for 1 ≤ i < n,

sn := sen = x 7→ (x1, . . . , xn−1,−xn).
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We denote the space of trigonometric polynomials of type BCn by T BC. The dual affine Weyl
group W∨,affB = 〈s0, . . . , sn〉group acts on T BC by the induced action on PBC , namely weλ :=
ewλ. Therefore, the action of WB on T BC is the usual one and s0f(x) = ex1f(−x1, x2, . . . , xn)
for f ∈ T BC , x ∈ Rn.
The type BC recurrence relation for Heckman-Opdam polynomials are summarized in the
following Corollary.

Corollary 10.2. Let (EBC
µ (κ; ·))µ∈PBC be the non-symmetric Heckman-Opdam polynomials

associated with (BC+
n , κ). Then we have

(i) The minuscle weights are O = {0}.

(ii) For µ ∈ PBC = Zn with siµ 6= µ for some 0 ≤ i ≤ n, there exists di = di(κ;µ) with
diE

BC
siµ(κ; ·) = (si + ci(κ;µ))EBC

µ (κ; ·) and

ci(κ;µ) =



k1
1− 2µ̃1

, i = 0,
k3

µ̃i−µ̃i+1
, 1 ≤ i < n,

k1+2k2
2µ̃n

, i = n.

Hence, PBC = Zn can be recursively constructed from 0 by the operations s0, . . . , sn and
therefore, the Heckman-Opdam polynomials can be constructed recursively from EBC

0 (κ; ·) ≡ 1.

Proof. O = {0} is obvious as for µ ∈ O and i = 1, . . . , n we have 2µi = 〈e∨i , µ〉 ∈ {0, 1}.
The remaining things are exactly Theorem 10.1. �

Theorem 10.3. Let E be the partial order on PBC = Zn defined in Definition 4.1 and µ ∈ Zn.
Then there exists a trigonometric polynomial

EBC
µ (∞; k3; ·) = eµ +

∑
λ/µ

cλµ(k3)eµ ∈ T BC

such that for fixed k3 ≥ 0:

(i) lim
k1+k2→∞
k1/k2→∞

EBC
µ (κ; ·) = EBC

µ (∞; k3; ·) locally uniformly on Cn, including the case k2 = 0

with the convention k1/k2 =∞.

(ii) If wµ = si1 · · · sim ∈W
∨,aff
B is reduced and of minimal length with wµµ = 0, then

EBC
µ (∞; k3; ·) =

{
1, µ = 0,
(sim + cm) · · · (si1 + c1) · 1, µ 6= 0,

(10.1)

where c` = ci`(∞; k3;µ(`)) ≥ 0 is defined via

c`(∞; k3;x) = lim
k1+k2→∞
k1/k2→∞

c`(κ;x) for all 0 ≤ ` ≤ n, x ∈ Rn

with c`(κ;x) as in Corollary 10.2. In particular, EBC
µ (∞, ·) is non-zero.

(iii) Let ε(t) = −1 if t ≤ 0 and ε(t) = 1 if t > 0. The limits ci = ci(∞; k3;x) satisfy for
i = 0, n

ci =
{
−ε(x1), i = 0,
ε(xn), i = n.
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For 1 ≤ i < n we have ci = 0 if ε(xi) 6= ε(xi+1) and

ci = k3

xi−xi+1+k3
2

(∑
j>i

ε(xi±xj)+
∑
j<i

δ(xj ,xi)−
∑

j>i+1
ε(xi+1±xj)−

∑
j<i+1

δ(xj ,xi+1)
) ,

otherwise with δ(xj , xi) = ε(xj + xi)− ε(xj − xi).

Proof.

• First of all, we can compute the limit cj(∞; k3;x) = lim
k1+k2→∞
k1/k2→∞

cj(κ;x).

– As x̃1 = x1 + 1
2

(
(k1 + 2k2)ε(x1) + k3

∑
i>1

ε(x1 ± xi)
)

we obtain

1− 2x̃1
k1

−−−−−−→
k1+k2→∞
k1/k2→∞

−ε(x1).

Thus, by ε(x1) ∈ {±1}, we conclude lim
k1+k2, k1/k2→∞

c1(κ;x) = −ε(x1).

– Similar computations show that

cn(κ;x) = k1 + 2k2
2x̃n

−−−−−−→
k1+k2→∞
k1/k2→∞

ε(xn).

– If x satisfies ε(xi) 6= ε(xi+1) for 1 ≤ i < n, i.e. ε(xi+1) = −ε(xi), then

ci(∞; k3;x) = k3
x̃i − x̃i+1

= k3
xi − xi+1 + (k1 + 2k2)ε(xi) + d(k3, µ) −−−−−−→k1+k2→∞

k1/k2→∞

0,

where d(k3, x) ∈ R is independent of k1, k2. If conversely ε(xi) = ε(xi+1), then

ci(κ;x) = k3
x̃i − x̃i+1

= k3
xi − xi+1 + d(k3, x) = ci(∞, k3;x)

is independent of k1, k2 and d(k3, x) is given by

d(k3, x) = k3
2

∑
j>i

ε(xi ± xj) +
∑
j<i

δ(xj , xi)−
∑
j>i+1

ε(xi+1 ± xj)−
∑
j<i+1

δ(xj , xi+1)

 .
• Let µ ∈ Zn and wµ = si1 · · · sim given in a reduced expression. From the first part of

the proof and Corollary 10.2 the limit

EBC
µ (∞; k3; ·) := lim

k1+k2, k1/k2→∞

{
1, µ = 0,
(sim + cim(κ;µ(m))) · · · (si1 + ci1(κ;µ(1))) · 1, µ 6= 0,

= lim
k1+k2, k1/k2→∞

EBC
µ (κ; ·)

exists as locally uniform limit and gives formula (10.1). In particular, EBC
µ (∞; k3; ·) lies

in T BC and is of the form eµ + ∑
λEµ

cλµ(k3)eµ as EBC
µ (κ; ·) is of the form.

�
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Corollary 10.4. For µ ∈ Zn with siµ 6= µ, there exists di := di(k3;µ) ∈ R with

diE
BC
siµ(∞; k3; ·) = (si + ci)EBC

µ (∞; k3; ·),

with ci = ci(k3;µ).

Proof. From Theorem 10.2 we have a constant di(κ;µ) ∈ R with

di(κ;µ)EBC
siµ(κ; ·) = (si + ci(κ;µ))EBC

µ (κ; ·),

i.e. di(κ;µ) = (si+ci(κ;µ))EBC
µ (κ;0)

EBC
siµ

(κ;0) . Hence, the claim holds by Theorem 10.3 with

di = lim
k1+k2→∞
k1/k2→∞

di(κ;µ) =
(si + ci)EBC

µ (∞; k3; 0)
EBC
siµ(∞; k3; 0) .

�

We further recall the recurrence relations for Jack polynomials which can be found in
[For10, Proposition 12.2.1, Proposition 12.2.3].

Proposition 10.5. Consider the non-symmetric Jack polynomials (EJack
µ (k; ·))µ∈Nn0 of index

α = 1
k ∈]0,∞]

(i) EJack
Φµ (k; ·) = ΦEJack

µ (k; ·) with the raising operator Φ defined on µ ∈ Nn0 and functions
f : Rn → R by

Φµ = (µ2, . . . , µn, µ1 + 1),
Φf(x) = xnf(xn, x1, . . . , xn−1).

(ii) EJack
siµ (k; ·) = (si + k

µi+1−µi
)EJack

µ (k; ·) for µi < µi+1 and i = 1, . . . , n− 1 with

µi = µi − k# {j < i | µj ≥ µi} − k# {j > i | µj > µi} .

10.2 Limit transition in the polynomial case

Remark 10.6. Recall from Definition 4.1 the ordering E on PBC = Zn defined by

µ E λ iff
{
λ ≤ µ, λ+ = µ+,

µ+ ≤ λ+, λ+ 6= µ+,

where the λ+ is the unique element in WB.λ ∩ CBC+ and ≤ is the dominance order defined by

λ ≤ µ iff µ− λ ∈ Q+ = spanN0(BC+
n ) =

{
a1e1 +

n∑
i=2

(ai − ai+1)ei
∣∣∣∣∣ ai ∈ N

}

i.e.
p∑
i=1

λi ≤
p∑
i=1

µi for all p = 1, . . . , n

Proposition 10.7. Let µ, λ ∈ Zn with λ / µ.

(i) If µi+1 < µi, then siλ 6= µ for all i = 1, . . . , n− 1.

(ii) If µn ≥ 0, then snλ 6= µ.
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(iii) If µ1 ≤ 0, then s0λ 6= µ.

Proof.

(i) Assume that siλ = µ. Then λ / µ is equivalent to µi < λi and µi + µi+1 ≤ λi + λi+1.
But µi = λi+1 and µi+1 = λi, which is a contradiction to µi > µi+1.

(ii) Assume that snλ = µ. Then λ / µ is equivalent to µn < λn. But µn = −λn, so µn ≥ 0
leads to a contradiction.

(iii) Assume that s0λ = µ. Then λi = µi for 1 < i ≤ n and 1 − λ1 = µ1. In particular,
µ+ 6= λ+ and therefore λ / µ is equivalent to λ+ < µ+. By µ1 ≤ 0, there exists a
permutation σ ∈ Sn with

µ+ = σ(−µ1, |µ2| , . . . , |µn|) and λ+ = µ+ + ei, i := σ(1).

Therefore, λ+ < µ+ means that (µ+)i+1 = (λ+)i < (µ+)i. Hence 1 < 0, a contradiction.

�

Definition 10.8. The following operator on Zn plays an important role in the following

Φ̃ = sn · · · s0 = η 7→ (η2, . . . , ηn, η1 − 1).

This operator is related to the raising operator Φ by the equation Φ̃(−η) = −Φη. Hence,
the operator Φ̃ will be important to characterize the limit of the BCn Heckman-Opdam
polynomials as Jack polynomials.

Lemma 10.9. The limits (EBC
µ (∞; k3; ·))µ∈Zn satisfy the following recurrence relations.

(i) If µ ∈ −Nn0 , then

EBC
Φ̃µ (∞; k3; ·) = (sn + 1)sn−1 · · · s1(s0 + 1)EBC

µ (∞; k3; ·).

(ii) If µ = −η ∈ −Nn0 with µi+1 < µi, then

EBC
siµ(∞; k3; ·) = (si + k3

ηi+1−ηi
)EBC

µ (∞; k3; ·)

with η as in Proposition 10.5 for k = k3.

(iii) Let 1 ≤ i1 < .... < i` ≤ n be the indices with µij > 0 and define

µ∗ = (s0 · · · si`−1) · · · (s0 · · · si1−1)µ ∈ −Nn0 .

Then we have

EBC
µ (∞; k3; ·) = [si1−1 · · · s1(s0 + 1)] · · · [si`−1 · · · s1(s0 + 1)]EBC

µ∗ (∞; k3; ·),

with convention sj · · · s1(s0 + 1) = 1 if j = 0.

Proof. The most important argument in this proof is based on the triangular form

EBC
µ (∞; k3; ·) = eµ +

∑
λ/µ

cλµe
λ,

from Theorem 10.2.
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(i) We will divide this part into several steps.

• Since µ1 ≤ 0, we can conclude that ε(µ1) = −1 and therefore due to Corollary 10.4

d0E
BC
s0µ(∞, k3; ·) = (s0 + 1)EBC

µ (∞, k3; ·) (10.2)

for some constant d0. According to Proposition 10.7 (part (iii), since µ1 ≤ 0) we
can compare the coefficients of es0µ: the left hand side of (10.2) has coefficient d0
and the right hand side 1, i.e. d0 = 1.

• Consider i = 1, . . . , n− 1. Then µ∗ := si−1 . . . s0µ is given by

µ∗ = (µ2, . . . , µi−1, 1− µ1, µi+1, . . . , µn).

Thus, ε(µ∗i ) = 1 = −ε(µ∗i+1). Proceeding by induction over i = 1, . . . , n − 1 this
leads by Corollary 10.4 to

diE
BC
siµ∗(∞, k3; ·) = siE

BC
µ∗ (∞, k3; ·) (10.3)

for some constant di. According to Proposition 10.7 (part (i), since µ∗i+1 ≤ 0 < µ∗i )
we can compare the coefficients of esiµ∗ : the left hand side of (10.3) has coefficient
di and the right hand side 1, i.e. di = 1.

• Let µ∗ = sn−1 · · · s0µ = snΦµ, then µ∗n = 1− µ1, i.e. ε(µ∗n) = 1. Hence, Corollary
10.4 gives

dnE
BC
Φ̃µ (∞, k3; ·) = (sn + 1)EBC

µ∗ (∞, k3; ·) (10.4)

for some constant dn. According to Proposition 10.7 (part (ii), since µ∗n ≥ 0) we
can compare the coefficients of esnµ∗ : the left hand side of (10.4) has coefficient dn
and the right hand side 1, i.e. dn = 1.

The assertion follows by combining these three steps.

(ii) Consider µ = −η ∈ −Nn0 satisfying µi > µi+1, i.e. ηi < ηi+1.

• We claim that

ηi+1 − ηi = µi − µi+1 + k3
2

(∑
j>i

ε(µi ± µj) +
∑
j<i

δ(µj , µi)

−
∑
j>i+1

ε(µi+1 ± µj)−
∑
j<i+1

δ(µj , µi+1)
)
.

(10.5)

According to µ = −η ∈ Nn0 and ηi < ηi+1 we have by explicit combinatorical
computations∑

j>i

ε(µi ± µj) +
∑
j<i

δ(µj , µi)−
∑
j>i+1

ε(µi+1 ± µj)−
∑
j<i+1

δ(µj , µi+1)

= −(n− i) + # {j > i | µi > µj} −# {j > i | µi ≤ µj}
− (i− 1) + # {j < i | µj ≤ µi} −# {j < i | µj > µi}
+ (n− (i+ 1))−# {j > i+ 1 | µi+1 > µj} −# {j > i+ 1 | µi+1 ≤ µj}
+ i+ # {j < i+ 1 | µj ≤ µi+1} −# {j < i+ 1 | µj > µi+1}

= # {j > i | ηj > ηi}+ # {j < i | ηj ≥ ηi}
−# {j > i+ 1 | ηj > ηi+1} −# {j < i+ 1 | ηj ≥ ηi+1}
−# {j > i | ηj ≤ ηi}+ # {j > i+ 1 | ηj ≤ ηi+1}
−# {j < i | ηj < ηi}+ # {j < i+ 1 | ηj < ηi+1}
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= 2 ·
(
# {j > i | ηj > ηi}+ # {j < i | ηj ≥ ηi}

−# {j > i+ 1 | ηj > ηi+1} −# {j < i+ 1 | ηj ≥ ηi+1}
)
.

From here it is immediate that equation (10.5) is true.
• By Corollary 10.4 and (10.5) there exists a constant di with

diE
BC
siµ(∞, k3; ·) = (si + k3

ηi+1−ηi
)EBC

µ (∞, k3; ·). (10.6)

According to Proposition 10.7 (part (ii), since µi+1 < µi) we can compare the
coefficients of esiµ: the left hand side of (10.6) has coefficient di and the right hand
side 1, i.e. di = 1.

(iii) Assume that µ ∈ Zn has exactly ` positive entries, namely for 1 ≤ i1 < . . . < i` ≤ n
with µij > 0. We defined

µ′ := s0 · · · si1−1µ = (1− µi1 , µ2, . . . , µi1−1, µi1+1, . . . , µn).

In particular, µ′j ≤ 0 for 1 ≤ j < i2. By the proof of part (i) (to become more precise,
the first two steps of the proof of part (i)) we have

EBC
µ (∞; k3; ·) = EBC

si1−1···s0µ′(∞; k3; ·) = si1−1 · · · s1(s0 + 1)EBC
µ′ (∞; k3; ·).

Since µ′ has precisely `− 1 we can proceed by induction to obtain the claimed formula.

�

Theorem 10.10. For x ∈ Rn and f : R → R define f(x) := (f(x1), . . . , f(xn)) ∈ Rn
componentwise. The limits (EBC

µ (∞; k3; ·))µ∈Nn0 are explicitly given by

(i) If η ∈ Nn0 , then EBC
−η (∞; k3;x) = 4|η|EJackη (k3; cosh2(x2 )).

(ii) If µ ∈ Zn \ Nn0 and 1 ≤ i1 < . . . < i` ≤ n are the indices with µij > 0. Then for

µ∗ = (s0 · · · si`−1) · · · (s0 · · · si1−1)µ = (1− µi` , . . . , 1− µi1 , µ′) ∈ −Nn0 ,

where µ′ ∈ Nn−`0 is the vector µ with deleted entries µij it holds

EBC
µ (∞; k3; ·) = (exi1 + 1) · · · (exi` + 1)EBC

µ∗ (∞; k3;xi` , . . . , xi1 , x′)
= 4|µ|−`(exi1 + 1) · · · (exi` + 1)EJack

−µ∗ (k3; cosh2(xi`2 , . . . ,
xi1
2 ,

x′

2 )),

where x′ ∈ Rn−` is the vector with deleted entries xij . Moreover, EBC
µ is Z2-invariant

in the variables xj with j 6= i1, . . . , i`.

(iii) In the situation of part (ii) it holds

1
2n

∑
τ∈Zn

EBC
µ (∞; k3; τx) = 4|µ|−

`
2
∏̀
j=1

cosh2(xij2 ) · EJack
−µ∗ (k3; cosh2(σµx2 )),

with σµ = (s1 · · · si`−1) · · · (s1 · · · si1−1), i.e. σµx = (xi` , . . . , xi1 , x′). This formula also
makes sense by part (i) if µ ∈ −Nn0 with µ∗ = µ and σµ = 1.
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(iv) For µ ∈ Zn it holds for 1 ≤ i1 < . . . < i` ≤ n the indices with µij > 0

1
2n

∑
τ∈Zn

EBC
µ (∞; k3; τx) = 4|µ|−

`
2EJack
−µ∗∗(k3;σ∗µ cosh2(x2 )),

where µ∗∗ = (µ′,−µi` , . . . ,−µi1), and σ∗µ = (si1 · · · sn−1) · · · (si` · · · sn−1), i.e. σ∗µx =
(x′, xi` , . . . , xi1), where x′ and µ′ are choosen as before, as the vectors with deleted entries
of index ij.

Proof.

(i) By Proposition 10.5 the family fη(x) := 4|η|EJack
η (k3; cosh2(x2 )), η ∈ Nn0 is uniquely

determined by

f0(x) = 1
fΦη(x) = 4 cosh2(xn2 )fη(xn, x1, . . . , xn−1)
fsiη(x) = (si + k3

ηi+1−ηi
)fη(x), if ηi < ηi+1.

Hence we want to prove that gη := EBC
−η (∞; k3; ·), η ∈ Nn0 satisfy the same equations.

For η = 0 the equations are immediate. Assume that the equations hold for η ∈ Nn0 , in
particular gη is Zn2 invariant.

• s0 acts on T BC by s0f(x) = ex1f(−x1, x2, . . . , xn) and therefore by the induction
hypothesis and Lemma 10.9

gΦη(x) = EBC
−Φη(∞; k3;x) = EBC

Φ̃(−η)(∞; k3;x)

= (sn + 1)sn−1 · · · s1(s0 + 1)EBC−η (∞; k3;x)
= (sn + 1)sn−1 · · · s1 (ex1gη(−x1, x2, . . . , xn) + gη(x1, . . . , xn))
= (sn + 1)sn−1 · · · s1(ex1 + 1)gη(x)
= (sn + 1)(exn + 1)gη(xn, x1, . . . , xn−1)
= (e−xn + 1)gη(−xn, x1, . . . , xn−1) + (exn + 1)gη(xn, x1, . . . , xn−1)
= 4 cosh2(xn2 )gη(xn, x1, . . . , xn−1).

• If ηi < ηi+1, then (−η)i+1 < (−η)i and therefore by the induction hypothesis and
Lemma 10.9

gsiη(x) = EBC
si(−η)(∞; k3; ·) = (si + k3

ηi+1+ηi
)EBC
−η (∞; k3;x)

= (si + k3
ηi+1+ηi

)gη(x).

Thus we conclude gη = fη for all η ∈ Nn0 .

(ii) This is immediate from Lemma 10.9.

(iii) Since EBC
µ∗ (∞; k3; ·) is Zn2 -invariant, this formula is immediate from parts (i)+(ii) together

with |µ∗| = |µ| − ` and

1
2n
∑
τ∈Zn2

(e(τx)i1 + 1) · · · (e(τx)i` + 1) = 1
2` (e

xi1 + e−xi1 + 2) · · · (exin + e−xin + 2)

= 2` cosh2(xi12 ) · · · cosh2(xi`2 ).
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(iv) This can be inductively constructed from part (iii), since the Jack polynomials satisfy

EJack
Φη (k3; y) = ΦEJack

η (k3; y),
i.e. EJack

(η2,...,ηn,η1+1)(k3; y) = ynE
Jack
η (k3; yn, y1, . . . , yn−1).

�

The following result was already proven in [RKV13, Theorem 4.2], but we give an inde-
pendent proof, based on the results for the non-symmetric setting.

Theorem 10.11. Let (P Jack
λ (k3; ·))λ∈Λn+ be the symmetric Jack polynomials of index α = 1

k3
.

Then for fixed k3 ≥ 0 and κ = (k1, k2, k3) ≥ 0 the symmetric Heckman-Opdam polynomials
(PBC

λ (κ; ·))λ∈Λn+ satisfy the asymptotic

PBC
λ (κ; z) −−−−−−→

k1+k2→∞
k1/k2→∞

4|λ|P Jack
λ (k3; cosh2( z2)),

locally uniformly in z ∈ Cn.

Proof. Consider the renormalizations

P̃BC
λ (κ; ·) := PBC

λ (κ; ·)
PBC
λ (κ; 0)

, P̃ Jack
λ (k3; ·) := P Jack

λ (k3; ·)
P Jack
λ (k3; 1)

.

(i) For the type BCn Cherednik kernel GBC
κ and hypergeometric Function FBC

κ one has for
λ ∈ PBC+ = Λn+ that −̃λ = −λ− ρBC(κ) and therefore

GBC
κ (−λ− ρBC(κ), ·) =

EBC
−λ (κ; ·)

EBC
−λ (κ, 0)

.

The longest element in WB is w0 = −id and therefore the WB-invariance of the FBC
κ in

both arguments leads to

PBC
λ (κ; ·)

PBC
λ (κ; 0)

= FBC
κ (λ+ ρBC(κ), ·) = FBC

κ (−λ− ρBC(κ), ·)

= 1
2nn!

∑
w∈WB

GBC
κ (−λ− ρBC(κ), w·) = 1

2nn!
∑

w∈WB

EBC
−λ (κ;w·)
EBC
−λ (κ, 0)

.

The Jack polynomials also satisfy by equation (6.15)

P Jack
λ (k3; ·)

P Jack
λ (k3; 1)

= 1
n!

∑
σ∈Sn

EJack
λ (k3;σ·)
EJack
λ (k3; 1)

.

Since the map Rn → Rn, x 7→ cosh2(x2 ) is WB-equivariant we obtain from Theorem
10.10 that locally uniformly

P̃BC
λ (κ;x) = 1

2nn!
∑

w∈WB

EBC
−λ (κ;wx)
EBC
−λ (κ, 0)

−−−−−−→
k1+k2→∞
k1/k2→∞

4|λ|P̃ Jack
λ (k3; cosh2(x2 )).
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(ii) To prove the limit transition for the non-renormalized polynomials, it suffices to check
the limit

PBC
λ (κ; 0) −−−−−−→

k1+k2→∞
k1/k2→∞

4|λ|P Jack
λ (k3; 1).

Owing to Heckman, the value PBC
λ (κ; 0) can be expressed in terms of a generalized

Harish-Chandra c-function, namely

PBC
λ (κ; 0) =

∏
α∈BC+

n

Γ
(
〈ρBC(κ), α∨〉+ kα/2

2
)
Γ
(
〈λ+ ρBC(κ), α∨〉+ kα/2+2kα

2
)

Γ
(
〈ρBC(κ), α∨〉+ kα/2+2kα

2
)
Γ
(
〈λ+ ρBC(κ), α∨〉+ kα/2

2
) ,

see for instance [HO87, HS94]. Denote by dα the quotient behind the product sign
for fixed α ∈ BC+

n . We will study the asymptotic of the values dα in a case by case
situation under the asymptotic equality

Γ(z + w)
Γ(z) ≈ zw for z →∞, Re(z) > 0.

α = ei: We have e∨i = 2ei and ρBC(κ) = 1
2
∑n
i=1(k1 + 2k2 + 2(n− i)k3)ei, so for large

k1 + k2 and k1/k2:

dα = Γ(k1 + 2k2 + 2(n− i)k3)Γ(2λi + 2k1 + 2k2 + 2(n− i)k3)
Γ(2λi + k1 + 2k2 + 2(n− i)k3)Γ(2k1 + 2k2 + 2(n− i)k3)

≈
(2k1 + 2k2 + 2(n− i)k3
k1 + 2k2 + 2(n− i)k3

)2λi
−−−−−−→
k1+k2→∞
k1/k2→∞

4λi .

α = 2ei: We have (2ei)∨ = ei, so for large k1 + k2 and k1/k2:

dα = Γ(k1 + k2 + (n− i)k3)Γ(2λi + k1 + 2k2 + (n− i)k3)
Γ(2λi + k1 + k2 + (n− i)k3)Γ(k1 + 2k2 + (n− i)k3)

≈
(
k1 + 2k2 + (n− i)k3
k1 + k2 + (n− i)k3

)2λi
−−−−−−→
k1+k2→∞
k1/k2→∞

1.

α = ei + ej: We have (ei + ej)∨ = ei + ej , so for large k1 + k2 and k1/k2:

dα = Γ(k1 + 2k2 + ((n− i) + (n− j))k3)
Γ(λi + λj + k1 + 2k2 + ((n− i) + (n− j))k3)

× Γ(λi + λj + k1 + 2k2 + (1 + (n− i) + (n− j))k3)
Γ(k1 + 2k2 + (1 + (n− i) + (n− j))k3)

≈
(
k1 + 2k2 + k3 + (1 + (n− i) + (n− j))k3

k1 + 2k2 + ((n− i) + (n− j))k3

)λi+λj
−−−−−−→
k1+k2→∞
k1/k2→∞

1.

α = ei − ej: We have (ei − ej)∨ = ei − ej , so for large k1 + k2 and k1/k2:

dα = Γ(((n− i)− (n− j))k3)Γ(λi − λj −+(1 + (n− i)− (n− j))k3)
Γ(λi − λj + ((n− i)− (n− j))k3)Γ((1 + (n− i)− (n− j))k3

= Γ((j − i)k3)Γ(λi − λk + k3 + (j − i)k3)
Γ(λi − λk + (j − i)k3)Γ(k3 + (j − i)k3) .
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Therefore, together with the Pochhammer symbol (z)α = Γ(z+α)
Γ(z) we have proven that

PBC
λ (κ, 0) −−−−−−→

k1+k2→∞
k1/k2→∞

4|λ|
∏
i<j

Γ((j − i)k3)Γ(λi − λj + k3 + (j − i)k3)
Γ(λi − λk + (j − i)k3)Γ(k3 + (j − i)k3)

= 4|λ|
∏
i<j

(λi − λj + (j − i)k3)k3 ·
∏

1≤j≤n

Γ(k3)
Γ(jk3)

= 4|λ|P Jack
λ (k3; 1),

the last equality can be found for instance in [OO98, Formula (6.4)]

�

10.3 Limit transition of the Cherednik kernels

Let GBC
κ be the Cherednik kernel associated with (BC+

n , κ). Furthermore, let Gk3 be the
rational (type A) Cherednik kernel defined in Definition 6.3 by

Gk3(λ, x) =
n∏
i=1

x
〈λ,1〉/n
i ·GA

k3(π(λ), π(log x)), for all x > 0.

where GA
k3

is the Cherednik kernel of type An−1 on Rn0 with respect to the positive system
A+
n−1 = {ej − ei | i < j} ⊆ Rn0 , π : Rn → Rn0 is the orthogonal projection and log is the inverse

of exp : Rn → Rn+.

Theorem 10.12. For all x ∈ Rn and λ ∈ Cn

GBC
κ (−λ− ρBC(κ), x) −−−−−−→

k1+k2→∞
k1/k2→∞

Gk3(λ− ρA(k3), cosh2(x2 )),

locally uniformly in λ.

Proof.

(i) Define for fixed x ∈ Rn the entire function

fκ(λ) := GBC
κ (−λ− ρBC(κ), x).

Then, {fκ | κ ≥ 0} is a locally uniformly bounded family of entire functions due to
Theorem 4.17. In fact, they are bounded by

|fκ(λ)| ≤ e
max
w∈WB

〈−Reλ,wx〉
.

Hence, by Montel’s Theorem each sequence

κn = (k(n)
1 , k

(n)
2 , k3) ≥ 0 with k(n)

1 + k
(n)
2 , k

(n)
1 /k

(n)
2 −−−→

n→∞
∞,

has a subsequence (κnj )j∈N ⊆ (κn)n∈N, such that there is some entire function f with

fκnj −−−→j→∞
f locally uniformly on Cn.
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(ii) Consider on S = {λ ∈ Cn | Reλ1 < ... < Reλn < 0} = −CBC+ + iRn, where CBC+ is the
positive Weyl chamber, the holomorphic functions

h := e−〈λ,x+〉f, g := e−〈λ,x+〉Gk3(λ− ρA(k3), cosh2(x2 )),

where x+ is the unique element in the WB-orbit contained in CBC+ . Owing to the
geometry of the root system it holds for all λ ∈ S

max
w∈WB

〈Reλ, x〉 = max
w∈WB

〈−Reλ,wx〉 = 〈Reλ, x〉 .

Hence, h is absolutely bounded by 1 on S. By Theorem 4.17 we also have for λ ∈ Cn∣∣∣Gk3(λ− ρA(k3), cosh2(x2 ))
∣∣∣

= e〈Reλ,1〉〈log(cosh2(x2 )),1〉/n
∣∣∣GAk3(π(λ)− ρA(k3), π(log(cosh2(x2 )))

∣∣∣
≤ e〈Reλ,1〉〈log(cosh2(x2 )),1〉/nemaxσ∈Sn 〈π(Reλ),σπ(log(cosh2(x2 )))〉

= e
max
σ∈Sn

〈Reλ,σ log(cosh2(x2 ))〉

Since cosh2(·/2) is Zn2 -invariant we conclude that (log(cosh2(x2 )))+ = log(cosh2(x+
2 )).

Therefore with cosh2(t/2) ≤ et for t ≥ 0 we have

|g(λ)| ≤ e−〈Reλ,x+〉e
max
σ∈Sn

〈Reλ,σ log(cosh2(x2 ))〉

=
n∏
i=1

(
e−(x+)i cosh2( (x+)i

2 )
)Reλi ≤ 1.

(iii) From part (ii) of the proof, we obtain that g and h are holomorphic on S, such that
|g − h| ≤ 2 on S. Moreover, since for λ ∈ Λn

+ ⊆ S it holds −̃λ = −λ − ρBC(κ), we
obtain with Theorem 10.10 and Remark 6.6 that

h(λ) = lim
j→∞

e−〈λ,x+〉GBC
κnj

(−λ− ρBC(κnj ), x) = e−〈λ,x+〉E
BC
−λ (κnj ;x)

EBC
−λ (κnj ; 0)

= e−〈λ,x+〉E
Jack
λ (k3; cosh2(x2 ))
EJack
λ (k3; 1)

= e−〈λ,x+〉Gk3(λ− ρA(k3), cosh2(x2 )) = g(λ).

Hence, g − h is vanishes on Λn
+, is absolutely bounded by 2 on S and we can write

S = {∑n
i=1 ziωi | Re zi ≥ 0}, where ωi ∈ Λn+ = PBC+ are the fundamental weights. Thus,

by Carlson’s Theorem we have g ≡ h on S, i.e.

lim
j→∞

Gκnj (λ− ρ
BC(κnj ), x) = f(λ) = g(λ) = Gk3(λ− ρA(k3), cosh2(x2 )), λ ∈ S.

Finally, by the identity theorem, the limit is valid on Cn.

(iv) The same argumentation as above shows, that whenever (κnj )j∈N ⊆ (κn)n∈N is any
subsequence, such that fκnj −−−→j→∞

f̃ locally uniformly for some entire function, then

it has to be f̃ = Gk3(· − ρA(k3), cosh2(x2 )). Thus fκn −−−→n→∞
Gk3(· − ρA(k3), cosh2(x2 ))

locally uniformly.

�
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Remark 10.13. Let FA
k3

be the type A hypergeometric function on Rn0 associated with
(A+

n−1, k3) and Fk3 the rational hypergeometric function on Rn as defined in Definition 6.3.
Averaging in Theorem 10.12 gives

FBC
κ (λ, x) −−−−−−→

k1+k2→∞
k1/k2→∞

∏
1≤i≤n

(cosh2(x2 ))
〈λ,1〉

2 · FA
k3(λ− ρA(k3), π(log(cosh2(x2 ))))

= Fk3(λ− ρA(k3), cosh2(x2 )).

The different sign in the ρ-shift, compared to [RKV13, Theorem 5.1] comes from the different
choice of positive subsystems in An−1, i.e. −ρA(k3) here is precisely the term +ρA(k3) in
[RKV13]. This results was already proven in [RKV13, Theorem 5.1], but here we have received
it from the non-symmetric setting.

Remark 10.14. A limit transition for the Bn root system can be easily obtained from the
type BCn case. Choose for the root system Bn = BCn\{2ei | i = 1, . . . , n} ⊆ Rn with positive
subsystem

B+
n = BC+

n ∩Bn = {ei | 1 ≤ i ≤ n} ∪ {ei ± ej | 1 ≤ i < j ≤ n} .

Then, both root system have the same Weyl group, simple roots, weight lattice and dominant
weights. Denote by κ′ = (k1, k3) ≥ 0 a multiplicity function on Bn, where k1 is the value on
ei and k3 is the value on ei ± ej . Then the Cherednik operators DB

ξ (κ′) and DBC
ξ (κ) for the

given positive subsystems, ξ ∈ Rn, are related by

DB
ξ (k1, k3) = DBC

ξ (k1, 0, k3),

and also ρB(k1, k3) = ρBC(k1, 0, k3) . Hence, the non-symmetric and symmetric Heckman-
Opdam polynomials, as well as the Cherednik kernels and hypergeometric functions are related
by

EB
µ (k1, k3; z) = EBC

µ (k1, 0, k3; z), µ ∈ Zn, k1, k3 ≥ 0, z ∈ Cn;
PB
λ (k1, k3; z) = PBC

λ (k1, 0, k3; z), λ ∈ Λn+, k1, k3 ≥ 0, z ∈ Cn;
GB

(k1,k3)(λ;x) = GBC
(k1,0,k3)(λ, x), λ ∈ Cn, k1, k3 ≥ 0, x ∈ Rn;

FB
(k1,k3)(λ;x) = FBC

(k1,0,k3)(λ, x), λ ∈ Cn, k1, k3 ≥ 0, x ∈ Rn.

Hence, all proven limit transitions are also correct for the root system Bn instead of BCn in
the upper sense, one has only to consider k2 = 0.
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chapter A
Recurrence relations for Heckman-Opdam polynomials

This chapter was intended to verify the results of [Sah00a] for the case of (non-)reduced
irreducible crystallographic root system. Since the only non-reduced irreducible crystallo-
graphic root systems are these of type BCn, we only translate the results of [Sah00b, Section
6] in the language of the paper [Sah00a]. To become more precise, we present a uniformized
proof for the results of [Sah00a] for all irreducible crystallographic root system.
Let R be a (not necessarily reduced) irreducible crystallographic root system in a Euclidean
space (a, 〈·, ·〉). Fix a system of positive roots R+ ⊆ R with associated simple roots α1, . . . , αn
and a multiplicity function k = (kα)α∈R. Moreover, let W be the Weyl group of R, P the
weight lattice with dominant weights P+ and si = sαi the associated simple reflection. Since
R is irreducible, their exists a unique highest short root denoted by β. We define the map

s0 := x 7→ β + sβx

which is the affine reflection in the hyperplane {〈β∨, x〉 = 1}. The dual affine Weyl group
is the group W∨,aff = W n Q generated by s0, . . . , sn. The orbit space W∨,aff\P has the
following set of representatives

O :=
{
λ ∈ P | 〈α∨, λ〉 ∈ {0, 1} for all α ∈ R+

}
,

called the minuscle weights, cf. [Hum90].

Proposition A.1. The highest short root β satisfies:

(i) β ∈ P+.

(ii) If β 6= α ∈ R+, then 〈α∨, β〉 ∈ {0, 1}.

Proof.

(i) For α ∈ R+ we have that sαβ = β − 〈α∨, β〉α is a root of the same length as β. But β
is the highest short root, so 〈α∨, β〉 ∈ N0.

(ii) By part (i) we have β ∈ P+, i.e. 〈α∨, β〉 ∈ N0. Since β is a short root, we have
〈β, β〉 ≤ 〈α, α〉 and therefore by the Cauchy-Schwartz inequality

〈α∨, β〉 = 2 〈α, β〉
〈α, α〉

≤ 2 〈α, β〉√
〈α, α〉 〈β, β〉

≤ 2. (A.1)

Since α 6= β, one of the following cases occur:

(a) α = 2β, i.e. 〈α∨, β〉 = 〈(2β)∨, β〉 = 1.
(b) α /∈ Rβ, then the last inequality in (A.1) is strict, i.e. 〈α∨, β〉 ∈ {0, 1}.

�

Lemma A.2. For i = 0, 1, 2 put Ri := {α ∈ R+ | 〈α∨, β〉 = i}.
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(i) R+ = R0 tR1 tR2 and Ri = {α ∈ R | 〈α∨, β〉 = i}.

(ii) The map

α 7→ α′ :=
{
sβα, α ∈ R0,

−sβα, α ∈ R1 ∪R2

acts trivially on R0 ∪R2 and permutes R1.

(iii) If λ ∈ P with sjλ 6= λ for some j = 0, . . . , n, then sj λ̃ = s̃jλ with

λ̃ = λ+ 1
2
∑
α∈R+

kαε(〈α∨, λ〉)α,

where ε(t) = −1 for t ≤ 0 and ε(t) = 1 for t > 0.

Proof.

(i) This is immediate from Proposition A.1.

(ii) The assertion is clear for R0 and R2. Let α ∈ R1. Then

〈α′∨, β〉 = 〈α∨,−sββ〉 = 〈α∨, β〉 = 1. (A.2)

By part (i) we have α′ ∈ R1. Finally, the injectivity of sβ shows that α 7→ α′ permutes
R1.

(iii) We consider the cases j > 0 and j = 0.

j > 0: Write
λ̃ = λ+ 1

2
∑
α∈R+
〈α∨,λ〉>0

kαα−
1
2

∑
α∈R+
〈α∨,λ〉<0

kαα−
1
2

∑
α∈R+
〈α∨,λ〉=0

kαα.

Note that sjR+ = (R+ \ {αj , 2αj}) ∪ {−αj ,−2αj} if 2αj ∈ R or sjR+ = (R+ \
{αj})∪{−αj} if 2αj /∈ R. Furthermore, by sjλ 6= λ we have 〈α∨j , λ〉 6= 0. Together
with

〈α∨, λ〉 = 0 iff 〈(sjα)∨, sjλ〉 = 0

we conclude that
sj

∑
α∈R+
〈α∨,λ〉=0

kαα =
∑
α∈R+

〈α∨,sjλ〉=0

kαα.

Moreover, sj is an bijection between the following two sets{
αj , 2αj 6= α ∈ R+ | 〈α∨, λ〉 > 0

}
↔
{
αj , 2αj 6= α ∈ R+ | 〈α∨, sjλ〉 > 0

}
and therefore

sj
∑

αj 6=α∈R+
〈α∨,λ〉>0

kαα =
∑

αj 6=α∈R+
〈α∨,sjλ〉>0

kαα

and similar
sj

∑
αj 6=α∈R+
〈α∨,λ〉<0

kαα =
∑

αj 6=α∈R+
〈α∨,sjλ〉<0

kαα.

Finally, 〈(sjαj)∨, λ〉 = −〈α∨j , λ〉 and sj(kαjαj) = −kαjαj show in sum

sj λ̃ = s̃jλ.
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j = 0: By definition kα = kα′ and together with part (ii) we obtain

s0λ̃ = β + sβλ+ 1
2
∑
α∈R1

kαε(〈α∨, λ〉)α−
1
2

∑
α∈R1∪R2

kαε(〈α∨, λ〉)α.

Hence, to show s0λ̃ = µ̃ with µ = s0λ it suffices to show that

ε(〈α∨, µ〉) =
{
ε(〈α∨, λ〉), α ∈ R0,

−ε(〈α∨, λ〉), α ∈ R1 ∪R2.

If α ∈ R0, i.e. 〈α∨, β〉 = 0, then

〈α∨, µ〉 = 〈α∨, β〉+ 〈α∨, s0λ〉 = 〈α, λ〉 , i.e. ε(〈α∨, µ〉) = ε(〈α∨, λ〉).

If α ∈ R1, i.e. 〈α∨, β〉 = 1 then by part (ii)

〈α∨, µ〉 = 〈α∨, β〉+ 〈α∨, sβλ〉 = 1− 〈α′∨, β〉 = 1− 〈α∨, λ〉 . (A.3)

The inner products in (A.3) are all integers, i.e. ε(〈α∨, µ〉) = −ε(〈α∨, λ〉).
Finally, for α ∈ R2, i.e. α = α′ = β, we have

〈β∨, µ〉 = 2− 〈β∨, λ〉 .

Since s0λ 6= λ implies that 〈β∨, λ〉 6= 1, we see that either 〈β∨, λ〉 ≥ 2 or 〈β∨, λ〉 ≤ 0.
In both cases ε(〈β∨, λ〉) = −ε(〈β∨, µ〉) holds.

�

Lemma A.3. Let (Dξ)ξ∈a be the Cherednik operators associated with (R+, k), i.e.

Dξ = ∂ξ − 〈ρ, ξ〉+
∑
α∈R+

kα 〈α, ξ〉
1− sα

1− e−〈α,·〉

with ρ = 1
2
∑

α∈R+

kαα. Since W∨,aff acts on P , it induces an action on the complex unital

algebra of trigonometric polynomials

T = spanC

{
eλ | λ ∈ P

}
, eλ = x 7→ e〈λ,x〉.

Then the Cherednik operators satisfy the intertwining relation

(i) For j = 1, . . . , n: sjDξ −Dsjξsj = −(kαj + 2k2αj ) 〈ξ, αj〉, with k2α = 0 if 2α /∈ R

(ii) s0(Dsβξ + 〈ξ, β〉)−Dξs0 = −kβ 〈ξ, β〉.

(iii) The assertions in (i) and (ii) are still valid if Dξ is considered as an operator C1(a)→
C(a) under the assumption that s0 acts on arbitrary function f : a → C by s0f(x) =
eβf(sβx).

Proof.
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(i) First, since sj is a simple reflection, we have that

sj(R+ \ {αj , 2αj}) = R+ \ {αj , 2αj} .

Put k2αj = 0 if 2αj /∈ R. From the relations sj∂ξ = ∂sjξsj , 〈α, ξ〉 = 〈sjα, sjξ〉 and
sj

1−sα
1−e−α = 1−ssjα

1−e−sjα
sj we have that

sjDξ −Dsjξsj = (〈ρ, ξ〉 − 〈ρ, sjξ〉)sj

+ kαj 〈αj , ξ〉
( 1

1− e−αj + 1
1− eαj

)
(1− sj)sj

+ 2k2αj 〈αj , ξ〉
( 1

1− e−2αj + 1
1− e2αj

)
(1− sj)sj

= −(kαj + 2k2αj ) 〈αj , ξ〉 sj + (kαj + 2k2αj ) 〈αj , ξ〉 (1− sj)sj
= −(kαj + 2kαj ) 〈αj , ξ〉 .

(ii)+(iii) First, we put ∇α = 1−sα
1−e−α , so that

Dξs0 = ∂ξs0 − 〈ρ, ξ〉 s0 +
∑
α∈R+

kα 〈α, ξ〉∇αs0

and
Dsβξ = ∂sβξ − 〈ρ, sβξ〉+

∑
α∈R+

kα 〈α, sβξ〉∇α.

Since sβ∇α = ∇sβαsβ and s0f = eβ · sβf we have

s0(Dsβξ + 〈β, ξ〉) = eβ

∂sβξ − 〈ρ, sβξ〉+ 〈ξ, β〉+
∑
α∈R+

kα 〈α, sβξ〉∇sβα

 sβ. (A.4)

Moreover, straightforward computations show

(a) ∂ξs0 = ∂ξ(eβ · sβ) = eβ(〈β, ξ〉+ ∂sβξ)sβ.
(b) Since we have

ρ = 1
2

 ∑
α∈R0

kαα+
∑

α∈R1∪R2

kαα


we can use Lemma A.2 to obtain

sβρ = 1
2

 ∑
α∈R0

kαα−
∑

α∈R1∪R2

kαα

 = ρ−
∑

α∈R1∪R2

kαα.

(c) For α ∈ R0 it holds
eβ 〈α, sβξ〉∇sβαsβ = 〈α, ξ〉∇αs0.

(d) For α ∈ R2, i.e. α = β it holds

eβ 〈β, sβξ〉∇sββsβ = 〈β, ξ〉 (∇β − 1)s0 − 〈β, ξ〉 .

(e) For α ∈ R1 it holds for α′ = −sβα ∈ R1 by Lemma A.2 that

eβ 〈α, sβξ〉∇sβαsβ = −eβ 〈α′, ξ〉∇−α′sβ = 〈α′, ξ〉 (∇α′ − 1)s0.
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Using these formulas, we obtain in (A.4) term by term

s0Ds0ξ = ∂ξs0 − 〈β, ξ〉 s0 − 〈ρ, ξ〉 s0 + 〈β, ξ〉 s0 +
∑

α∈R1∪R2

kα 〈α, ξ〉 s0

+
∑
α∈R+

kα 〈α, ξ〉∇αs0 − kβ 〈β, ξ〉 −
∑

α∈R1∪R2

kα 〈α, ξ〉 s0

= Dξs0 − kβ 〈β, ξ〉 ,

hence the assertion holds.

�

Theorem A.4. Let (Eλ)λ∈P be the non-symmetric Heckman-Opdam polynomials associated
with (R+, k). Define ki = kαi + 2k2αi for i = 1, . . . , n and k0 = kβ. Then:

(i) Eλ = eλ for all λ ∈ O.

(ii) cEsiλ =
(
si + ki

〈α∨i ,λ̃〉

)
Eλ for some constant c ∈ R if siλ 6= λ with i = 1, . . . , n.

(iii) cEs0λ =
(
s0 + k0

1−〈β∨,λ̃〉

)
Eλ for some constant c ∈ R if s0λ 6= λ.

Proof.

(i) For λ ∈ O and α ∈ R+ we have

eλ − sαeλ

1− e−α = eλ
1− e−〈α∨,λ〉α

1− e−α =
{
eλ, 〈α∨, λ〉 = 1,
0, 〈α∨, λ〉 = 0.

Moreover, from the identity λ̃ = λ− ρ+ ∑
α∈R+:〈α∨,λ〉=1

kαα, we obtain for all ξ ∈ a that

Dξe
λ = 〈λ̃, ξ〉 eλ. Finally, both eλ and Eλ have leading coefficient 1 with respect to the

ordering E on P , i.e. part (i) holds by the definition of Eλ.

(ii) Consider i = 1, . . . , n. Let F :=
(
si + ki

〈α∨i ,λ̃〉

)
Eλ. Then Lemma A.3 shows that

DξF =
(
siDsiξ − ki 〈ξ, αi〉+ ki

〈α∨i ,λ̃〉

)
Eλ.

The eigenvalue equation for Eλ leads to

DξF =
(
〈siξ, λ̃〉 si + ki

〈ξ,λ̃〉
〈α∨i ,λ̃〉

− ki 〈αi, ξ〉
)
Eλ.

Thus, with (ξ, λ̃)− 〈ξ, αi〉 〈λ̃, α∨i 〉 = 〈siξ, λ̃〉 = 〈ξ, siλ̃〉 and Lemma A.2

DξF = 〈ξ, siλ̃〉F = 〈ξ, s̃iλ〉F,

i.e. F is a scalar multiple of Esiλ.
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(iii) For i = 0 we use Lemma A.3 for F :=
(
si + ki

〈α∨i ,λ̃〉

)
Eλ and the eigenvalue equation for

Eλ to obtain that

DξF =
(
s0(Dsβξ + 〈ξ, β〉) + k0 〈ξ, β〉+ k0

1−〈β∨,λ̃〉

)
Eλ

=
(
〈s0ξ, λ̃〉 s0 + k0

〈ξ,λ̃〉
1−〈β∨,λ̃〉

+ k0 〈ξ, β〉
)
Eλ.

Finally, with 〈ξ, λ̃〉 − 〈β∨, λ̃〉 〈ξ, β〉+ 〈ξ, β〉 = 〈ξ, s0λ̃〉 and Lemma A.2 we have

DξF = 〈ξ, s0λ̃〉F = 〈ξ, s̃0λ〉F,

i.e. F is a scalar multiple of Es0λ.

�

Corollary A.5. Let λ ∈ P . Then choose wλ ∈W∨,aff of minimal length with λ = wλλ ∈ O
and reduced expression wλ = si1 · · · sim, 0 ≤ ij ≤ n. Put λ(j) = sij−1 · · · si1λ. Then

Eλ = (sim + cm) · · · (si1 + c1)eλ,

with

cj =


kij

〈α∨ij ,λ̃(j)〉
, ij = 1, . . . , n,

k0
1−〈β∨,λ̃(j)〉

, ij = 0.

Proof. The minimality of wλ shows that sijλ(j) 6= λ(j). Hence, by Theorem A.4, the stated
equation holds up to a scalar multiple. But due to the minimality of wλ we have wλ 6= λ for
all subexpressions w of w−1

λ . So both sides of the claimed formula have coefficient 1 for the
term eλ, i.e. the assertion holds. �

Theorem A.6. The numbers cj in Corollary A.5 are positive and rational in k. In particular,
the coefficients in the monomial expansion Eλ = ∑

µEλ cµλEµ are non-negative.

Proof. This is the same proof as in [Sah00a] without any adaption in the case of a
non-reduced root system. �
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N0 set of non-negative integers 12
N set of positive integers 12
Z ring of integers 12
Q field of rational numbers 12
R field of real numbers 12
C field of complex numbers 12
H skew-field of quaternions 12
spanSM set of finite linear combinations of M with scalars from S 12⊔
,t disjoint union/coproduct 12

#M cardinality of the set M 12
Zm the quotient Z/mZ 12
Cm(Ω) complex valuedm-times continuously differentiable functions

on Ω, m ∈ N ∪ {∞}
12
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Cm(Ω) complex valuedm-times continuously differentiable functions

on Ω with compact support, m ∈ N ∪ {∞}
12

C0(Ω) complex valued continuous functions on Ω vanishing at in-
finity

12

(a, 〈·, ·〉) Euclidean space 14
|·| , ‖·‖ Norm of an Euclidean space 14
sα Reflection in hyperplane perpendicular to α 14
α∨ vector 2α

〈α,α〉 14
rkR rank of the root system R 14
W,W (R) Reflection group/Weyl group generated by the roots R 14
An, Bn, Cn, Dn, ... Classification of root systems/finite reflection groups 15
Rn0 set of vectors x ∈ Rn with x1 + . . .+ xn = 0 15
R+ system of positive roots 16
R− system of negative roots 16
Π system of simple roots 17
a+, C+ positive Weyl chamber 17
si simple reflection of a reflection group 17
aC complexification C⊗ a of the real vector space a 18
wf group translation of a function f by the element w 18
k, kα multiplicity function, i.e. W -invariant function on a root

system
18

Tξ, Tξ(k), TRξ (rational) Dunkl operators of a root system R and multiplic-
ity k

18

|β| weight β1 + . . .+ βn of a multiindex β ∈ Nn0 19
∂i,

∂
∂xi

partial derivatives 19
∂β differential operator ∂β1

1 · · · ∂βnn 19
P,C[a] complex polynomial functions on a 19
Pn polynomial functions homogeneous of degree n 19
p(T (k)) Dunkl operator associated with the polynomial p 19
D(k) complex unital algebra of Dunkl operators 19
supp support of a distribution/function/support 19
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|| · ||∞, || · ||∞,K supremums norm (on K) 20
S (a) Schwartz space on the Euclidean space a 20
res(p(T (k))) W -radial part of a W -invariant Dunkl operator p(T (k)) 20
∆k Dunkl-Laplacian 20
Lk W -radial part of the Dunkl-Laplacian 20
[·, ·]k generalized Fisher product 21
ωk Dunkl type weight function 21
ck Macdonald-Mehta constant 21
K space of multiplicity functions 21
Kreg set of regular multiplicity functions 21
Vk Dunkl’s intertwining operator 21
π(x) = ∏

α 〈α, x〉 fundamental skew polynomial 21
co(M) convex hull of the set M 22
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