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Abstract

The following thesis explores extensions of density functional theory (DFT). For
that purpose one of the objectives of this work is on implementing the meta-GGA
functional SCAN developed by Perdew et al. into the CP-PAW framework using the
projector augmented wave (PAW) formalism. With this, we aim to enhance the
accuracy and utility of DFT in predicting the properties of complex systems.

Furthermore, this thesis includes application studies on the Carbon Suboxide (C3O2)
monomer and the growth of nanoscale Cu(In,Ge)Se (CIGS) thin-films. In the
structural analysis of C3O2 we employ both the local hybrid functional PBE0r by
Blöchl et al. and an approach that combines reduced density-matrix functional
theory (RDMFT) with the adaptive cluster approximation (ACA) by Schade et al.
These two methodologies provide insights into the electronic structure and bonding
behaviour of C3O2, establishing the effectiveness of incorporating DFT and RDMFT
for such analyses.

Finally, as an integral part of high-efficiency photovoltaic systems, the second appli-
cation study focuses on the mechanisms of nanostructure growth of CIGS thin-films.
Utilizing tight-bonding molecular dynamics (TBMD), we study the first stages of
CIGS growth on the Molybdenum (Mo) back contact, aiming to provide helpful data
for the efficiency and scalability enhancement of these systems.

Overall, this work contributes to the theoretical tools available for the study of
intricate molecular and nanostructure materials, giving new insights and a look into
potential practical applications in material science and photovoltaics.
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1Introduction

The research on molecular and nanostructure materials within the scope of density
functional theory (DFT) has had significant advancements, necessitated by the need
to understand and predict the properties of complex systems. The present work adds
to this area of research through the implementation of Perdew et al.’s[SRP15a] meta-
generalized gradient approximation (meta-GGA) functional SCAN within the CP-PAW
code base using the projector augmented wave (PAW) formalism. Complementary to
the theoretical foundation and computational implementation we present practical
applications, investigating the nature of carbon suboxide C3O2 and the growth of
nanostructure materials in Cu(In1−xGax)Se2 (CIGS) thin films.

Ever since its first synthesis in 1874 by Brodie[Bro74] and except for its initial identifi-
cation as a semiconducting material and its other properties in the early and mid 20th
century[SB08; DW06; YCD90; SHY78; CPP86; Smi+63] Carbonsuboxide (C3O2)
barely garnered any interest in the field of chemistry. However, the rising interest in
solar-cells and solar-to-chemical energy conversion in the last two decades shed a
spotlight on the suboxide, in particular due to its extended π-conjugated systems and
its direct band-gap within the visible light spectrum[Ban+21]. The demonstration
of photocatalytic water splitting over carbon nitride further accelerated the interest
towards carbonaceous materials[Wan+09]. Unlike other polymeric semiconductors,
such as carbon nitride, the suboxide, which in its polymeric form is a planar 2D
structure of adjacent infinite C3O2 monomers, has the structural advantage of good
processability. Additionally, due to the solubility of C3O2 it can be coated onto
different substrates and can be used for a range of applications, e.g. OLEDs[Xu+21],
organic field-effect transistors (OFET)[Car+21] and many others[Liu+20; MS20].
Antonietti et al.[Odz+22] developed a liquid phase dehydration method that, unlike
previous methods, which only work at high temperatures (HT), synthesises the
suboxide at lower temperatures (LT), down to even 0°C. These low-temperature
methods, unlike HT methods, allow for greater control over the chemical structure
of the molecule in particular for tuning of the band-gap for photocatalytic/-voltaic
applications. To further the possibility of fine-tuning the chemical properties of the
suboxide, an understanding of the assembly of the building blocks of the polymer is
of key importance. Thus, this thesis offers a theoretical study of the C3O2 monomer,
analyzing its structural and chemical properties within the framework of DFT - where
we propose the use of Crystal Orbital Overlap Populations (COOP) and Density of
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States (DOS) - to see whether it can open up the door to a whole new class of LT 2D
carbonaceous materials.

In parallel, we study the mechanisms involved in the growth of nanostructure
materials, notably in the context of CIGS thin films. The latter are essential compo-
nents[Liu+22; Yos+17] in the development of high-efficiency photovoltaic systems.
Understanding the growth process of these thin films at the nanoscale can substan-
tially improve their performance and scalability. To achieve even higher efficiencies,
the limiting factors, e.g. the charge carrier recombination at various junctions (in-
terfaces), have to be addressed. One such interface is the CIGS/Mo back contact,
which is the first interface forming during the three-stage growth process of the CIGS
absorber.

In addition, sodium from soda-lime glass diffuses into the CIGS absorber layer
through this interface that is also the location for the formation of secondary phases
of unknown composition [AH17]. To understand the atomic and electronic prop-
erties of the interfaces in thin-film solar cells, early growth dynamics have to be
investigated. A suitable method to study these crystal growth is a tight-binding
molecular dynamics (TBMD) [GBS17] approach. TBMD methods have been used to
study nucleation and growth of 2D materials like graphene, silicine, and transition
metal dichalcogenides [ABD06; KK04]. These methods are more accurate than
kinetic Monte Carlo (kMC) simulations since there is no need to provide rates of the
elementary processes a priori. This approach comes in mid-way between ab-initio
MD and kMC techniques in terms of computational cost and system sizes that can
be studied. Within TBMD, finite temperature dynamics of the atoms are computed
by Newton’s equations of motion, while interatomic forces are calculated using the
tight-binding (TB) approach. Using TBMD, the dynamics of a large system can
be studied for hundreds of picoseconds, mimicking the experimental conditions as
closely as possible.

In this work, we address the underlying kinetics of the growth of thin-films employ-
ing a TBMD method. We have performed static and dynamical computations to
understand the early stages of growth of CIGS absorber layer on MoSe2 substrate.
The primary focus of this thesis is on the first stage of the 3-stage growth process of
CIGS in which an In2Se3 layer is formed on the MoSe2 substrate. The results of the
present study provide new insights into the early stages of growth of CIGS thin-films
which could be of interest to research groups active in the field of designing photo-
voltaic systems. The understanding of these early stages of growth mechanisms can
be applied to other thin-film growth processes as well.

The main objectives of this thesis are to first implement and validate the SCAN
functional within the PAW formalism in the CP-PAW code base and ,secondly, to
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offer a structural analysis of C3O2 and the growth dynamics of CIGS thin films.
By achieving the latter two we hope to augment the theoretical tools available for
investigating complicated molecular and nanostructure materials and contribute
with new insights into possible practical applications.

The structure of the thesis is as follows. First, we set the foundations by elaborating
on the theories and techniques involved in DFT in Sec. 2. This is followed by an
extensive overview of the PAW method in Sec. 3. In Sec. 5 we give an introduction
to Reduced Density-Matrix Functional Theory (RDMFT) in accompaniment of a
theoretical overview of the Adaptive Cluster Approximation (ACA) to allow for a
high-level study of the C3O2 monomer. The theoretical backbone of this thesis will
be followed by a study of C3O2 on the DFT and RDMFT+ACA level respectively in
Sec. 4 and a study on the growth of nanostructure materials in Sec. 6. We finish
with conclusory remarks in Sec. 7. Unless otherwise stated we will be using atomic
units.
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2
Density Functional Theory

In Density Functional Theory (DFT) we seek to replace the arduous N-electron wave
function |Ψ(x1, ..., xn)⟩ with its Schrödinger equation by a single three-dimensional
density ρ(r). Any property of a system can then be treated as a unique functional of
that density, in particular the ground state density ρgs(r). The object of this chapter
is to outline density functional theory as a technique for many-particle systems and
we structure it as follows: we give the existence proofs by Hohenberg and Kohn for
functionals of the ground state densities as mentioned above in Sec. 2.1. In Sec. 2.2
we elaborate on the Kohn-Sham (KS) method, that replaces the interacting system
with a complementary non-interacting system, as well as on exchange-correlation
functionals, that play the role of retaining all the many-particle effects of the original
system in the non-interacting KS approach. Finally, Sec. 2.3 deals with the Levy
constrained-search formulation, a way for finding the wave function associated with
the ground state.

2.1 Hohenberg-Kohn Theorems

Though the historic foundation can be found with Thomas and Fermi, who then
sought to prove that the kinetic and potential energy can be put into direct relation to
the electron probability density ρ, or rather to ρ(r), the electron density at point r for
a system of N electrons[AF11], it wasn’t until Hohenberg-Kohn, that the assumptions
and approximatinos set by Thomas-Fermi were rigorously proven and DFT became
an exact theory. These assumptions being that the electron density determines all
properties of a system and that the total energy is uniquely determined by ρ using
the Variation Principle. Note that in the original formulation the densities had to
be v-representable. Only later did Levy [Lev79b] extend this to be valid for the
weaker condition of N-representability. For the full proof refer to the original paper
of Hohenberg-Kohn[HK64] or, for example, the works of Atkins and Friedman[AF11]
or Parr and Yang[PW94].
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Prior to the introduction of DFT, in particular the proofs given by HK, the two ingre-
dients needed to solve the Hamiltonian for an electronic system of form[PW94]

Ĥ =
N∑
i

(−1
2∇2

i ) +
N∑
i

v(ri) +
N∑
i<j

1
rij

(2.1)

were the total number of electrons N and the external potential v(r) as these fix
the Hamiltonian given in Eqn. 2.1. The idea of the first HK theorem then was to
prove that both N and v(r) (within an additive constant) can be determined by
ρ, thus proving that the wave function and in fact all properties of a system given
by Eqn. 2.1 can be determined by the latter. The first theorem of HK states that
the external potential of an interacting system with Hamiltonian of form (2.1) is
uniquely determined by its ground state density. To prove this, consider two external
potentials vext and v′

ext, differing from each other by more than a constant but
leading to the same ground state density ρgs. Each external potential determines
uniquely different Hamiltonians Ĥ and Ĥ ′ with their respective ground state wave
functions |Ψgs⟩ and |Ψ′

gs⟩. Assuming a non-degenerate ground state [HK64] we have
for the system of Hamiltonian Ĥ

Egs = ⟨Ψgs|Ĥ|Ψgs⟩ < ⟨Ψ′
gs|Ĥ|Ψ′

gs⟩ = ⟨Ψ′
gs|Ĥ ′|Ψ′

gs⟩ + ⟨Ψ′
gs|Ĥ − Ĥ ′|Ψ′

gs⟩

= E′
gs +

∫
dr[vext − v′

ext]ρgs. (2.2)

However, analogously, for Ĥ ′ we also have that

E′
gs = ⟨Ψ′

gs|Ĥ ′|Ψ′
gs⟩ < ⟨Ψgs|Ĥ ′|Ψgs⟩ = ⟨Ψgs|Ĥ|Ψgs⟩ − ⟨Ψgs|Ĥ − Ĥ ′|Ψgs⟩

= Egs −
∫

dr[vext − v′
ext]ρgs. (2.3)

Adding Eqns. 2.2 and 2.3 we have the contradiction

Egs + E′
gs < Egs + E′

gs, (2.4)

The second theorem of HK postulates the existence of a universal energy functional
E[ρ][AF11; Mar04; HK64]

E[ρ] = EHK[ρ] +
∫
ρ(r)v(r)dr = T [ρ] + Vee[ρ] +

∫
ρ(r)v(r)dr, (2.5)

whose minimum is the ground state energy of a system with external potential vext.
In Eqn. 2.5 T [ρ] is the kinetic energy

T [ρ] =
∑
i

fi ⟨Ψi(x1, ..., xn)| − 1
2∇2|Ψi(x1, ..., xn)⟩ , (2.6)
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Vee the total electron-electron repulsion energy

Vee =
∫ ∫

ρ(r)ρ(r′)
|r − r′|

drdr′, (2.7)

and EHK is defined independently of v(r) and thus is a universal functional of ρ
[PW94]. Universality refers to the fact that EHK is the same for both a single atom
or a large molecule. While the HK theorem shows that any property of a molecule
can be computed using the gs electron density ρgs, to actually find ρgs one applies
the HK variational theorem that states that an energy functional Egs[ρ′] with the
corresponding trial density ρ′ cannot be less than the true gs energy E0[ρ][AF11]. To
arrive at the gs electron density ρgs then, we can apply the variational theorem for
an arbitrary wave function and determine the corresponding energy using

ρ(r) =
∑
n

fn ⟨Ψn|r⟩ ⟨r|Ψn⟩ (2.8)

or in terms of a single Slater determinant constructed from N orbitals ϕn as

ρ(r) =
∑
n

fn|ϕn|2, (2.9)

where fn is the occupation of the state. The variation of the above trial density then
must satisfy the stationary principle[AF11; PW94]

δ{E[ρ] − µ

∫
ρ(r)dr}|∫ ρ(r)dr−N=0 = 0, (2.10)

where we constrained the density to the number of electrons N in the system and
the Lagrange multiplier µ is the chemical potential, also called the Fermi energy in
the zero-temperature limit. ρgs thus must satisfy the Euler-Lagrange equation

µ = δE[ρ]
δρ(r) = v(r) + δEHK[ρ]

δρ(r) , (2.11)

which presents the basis of the density-functional theory. It is to note here that the
HK theorems were dealing with systems at temperature T=0. For the theorems
of HK to carry over to systems of non-zero temperatures we have to construct the
density associated with the thermal ensemble. This was done by Mermin [Mer65] in
1965. Given a system of N electrons and density matrices ρ(N), Mermin constructed
a grand potential as a functional of the latter given by [Mer65; Mar04]

Ω[ρ(N)] = Tr ρ(N)[(Ĥ − µN̂) + 1
β

ln ρ(N)]. (2.12)

He found the minimum to be the equilibrium grand potential

Ω = Ω[ρ(N)
0 ] = − 1

β
ln Tr exp(−β(Ĥ − µN̂)), (2.13)

2.1 Hohenberg-Kohn Theorems 7



Fig. 2.1.: A schematic overview of the HK and KS theorems showing that a non-interacting
system can be constructed that shares the same ground state density ρgs as the
interacting system and, thus, the non-interacting KS representation of the full
many-body problem can determine all properties of the latter. HKi and HKni
indicate the application of the HK theorems for the interacting and non-interacting
systems, respectively, and the |ϕ⟩ refer to the wave functions of the non-interacting
system (in Sec. 2.2, however, still denoted as |Ψ⟩).

where ρ(N)
0 is the grand canonical density matrix

ρ
(N)
0 = exp(−β(Ĥ − µN̂))

Tr exp(−β(Ĥ − µN̂))
. (2.14)

While the extensions of the HK theorems by Mermin are more compelling in the sense
that they also allow for example for the formulation of the entropy as a functional
of the equilibrium density, the Mermin functional has not been widely used - in
particular due to the added difficulty and complexity when it comes to constructing
approximate functionals of the entropy[Mar04].

2.2 From Kohn-Sham to Exchange-Correlation
Functionals

Although the theorems established by Hohenberg and Kohn provide an exact the-
oretical structure, the complexity of many-body interactions compels the need for
approximations for practical applications. It was Kohn and Sham (KS) [KS65] that
developed an approximate approach to DFT that retains exactness for systems with
slowly varying or high densities. The proposition for the KS method is to reframe
the complexity of the many-body problem of interacting electrons into a system
of noninteracting particles, see Fig. 2.1. The main idea being that it is feasible to
reproduce the exact gs density ρgs of the original interacting many-electron system
using a noninteracting system whilst keeping the same external potential. Note here
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that the noninteracting character of the method stems from the KS expression of the
kinetic energy functional [PW94]

Ts[ρ] =
∑
i

⟨ψi| − 1
2∇2|ψi⟩ , (2.15)

in which any interaction is ignored by setting fi = 1, see Eqn. 2.6, for N orbitals
ψi and fi = 0 for the rest. The total energy in the KS system is defined as [PW94;
AF11]

E[ρ] = Ts[ρ] +
∫
vext(r)ρ(r)dr + 1

2

∫ ∫
ρ(r)ρ(r′)
|r − r′|

drdr′ + EXC[ρ], (2.16)

where EXC[ρ] is the exchange-correlation energy. It contains the difference between
T , the kinetic energy of the original interacting system, and Ts, as well as the non-
classical part of Vee[Pau94]. The Euler equation in Eqn. 2.11 can now be written
as

µ = δE[ρ]
δρ(r) = vext(r) +

∫
ρ(r′)

|r − r′|
dr′ + δEXC[ρ]

δρ(r)︸ ︷︷ ︸
vexc

+δTs[ρ]
δρ(r)

= veff(r) + δTs[ρ]
δρ(r) . (2.17)

To obtain the density ρ(r) for a given veff(r), that satisfies Eqn. 2.17 we need to
solve the N one-electron equations

[−1
2∇2 + veff(r)]ψi = ϵiψi, (2.18)

where

Ĥni = −1
2∇2 + veff(r) (2.19)

is the Hamiltonian of the non-interacting system. Because veff depends on ρ(r), the
above equations must be solved self-consistently, i.e. to start with an initial guess for
ρ(r) to construct veff with Eqn. 2.17 and then find a new ρ(r) using Eqn. 2.18 and

ρ(r) =
∑
i

⟨ψi|r⟩ ⟨r|ψi⟩ . (2.20)

Because the complexity of the electron-electron interactions of an N-electron system
are contained in the exchange-correlation functional EXC[ρ], the latter forms a crucial
component of the KS scheme. For practical calculations, the density functional has
to be approximated, and thus the task becomes to find the EXC[ρ] functional and its
corresponding exchange-correlation potential vexc(r). The main source for errors

2.2 From Kohn-Sham to Exchange-Correlation Functionals 9



arising in DFT comes to be from the attempts to approximate EXC[ρ]1. To account for
exchange and correlation contributions separately, EXC[ρ] can be separated into

EXC[ρ] = EX[ρ] + EC[ρ]. (2.21)

The origin of the exchange energy in Eqn. 2.21 is the Pauli exclusion principle[Pau94;
httb]. In particular, because in Quantum Mechanics we don’t know the exact position
of electrons, when it comes to calculating the energy of an orbital, what we actually
compute is the average of the energy taken over all possible positions of the electron
with the corresponding configuration weighting. The exchange energy EX[ρ] is
then simply the difference between that particular average energy accounting for
the exclusion principle and one in which it is ignored. The exchange energy for
electrons is thus always negative, because the (average) energy conforming to the
Pauli principle is the energetically preferred state[Pau94].

On the other hand, given the Hartree-Fock (HF) energy EHF within a complete basis
{ϕ}, the correlation energy is defined as the difference between the exact energy E
and EHF [PW94]

EC = E − EHF (2.22)

Given Eqn. 2.22 the correlation energy can be construed as the shortcomings of the
HF approach[HG11; htta]. These shortcomings are conventionally referred to as
static and dynamic correlation. The latter refers to the fact that the HF approach
does not account for the instantaneous interactions of the electrons with each other,
but rather treats each electron as if it’s interacting with the average created by the
remaining N-1 electrons. The static correlation comes to be because the choice of
a single Slater determinant for the representation of the wave function in the HF
approach is a lacking representation. Static correlation is then the difference between
the single Slater determinant and a linear combination of Slater determinants
that would otherwise be necessary to give a good description of a many-electron
state[HG11; htta]. Because both correlation effects stem from the same interaction
it is near impossible to keep them separate, and are rather additively referred to as
EC, see Eqn. 2.21.

The research on finding new and better approximations of the exchange-correlation
functional is very active. In the following we will mention a few classes of these
approximations.

1Due to the approximate nature of EXC[ρ] it cannot be regarded as an upper bond for the true energy.

10 Chapter 2 Density Functional Theory



In the Local Density Approximation (LDA) we assume that the exchange-correlation
energy per particle ϵXC(ρ(r)) is only dependent on the local density. Thus, we can
express the exchange-correlation energy as

ELDA
XC [ρ] =

∫
ρ(r)ϵXC(ρ(r))dr. (2.23)

Note in Eqn. 2.23 that we also assume the electron distribution of the system to
be homogeneous. To account for inhomogeneities in ρ(r) we go into Generalized
Gradient Approximation (GGA) functionals that, in addition to the local density, also
consider its gradient ∇ρ(r)

EGGA
XC [ρ,∇ρ] =

∫
f(ρ(r),∇ρ(r))dr. (2.24)

The most widely used PBE [PBE96] functional falls into this category of functionals.
Meta-GGA functionals improve on that further by incorporating the kinetic energy
density

τ =
∑
i

ni|∇ϕi|2, (2.25)

where ϕi and ni are the orbitals and their occupation numbers, respectively. Thus,
we have

Emeta−GGA
XC [ρ,∇ρ, τ ] =

∫
f(ρ(r),∇ρ(r), τ(r))dr. (2.26)

An example of such a meta-GGA functional is the SCAN functional by Perdew et al.
[SRP15b], which satisfies all known exact meta-GGA constraints.

Another class of exchange-correlation functionals are called Hybrid Functionals.
They incorporate a part of exact exchange from Hartree-Fock theory with a DFT
functional

Ehybrid
XC [ρ] = αEHF

X [ρ] + (1 − α)EDFT
X [ρ], (2.27)

where α is a mixing parameter. See Sec. 4.4 for more details and examples.

The proper choice of the exchange-correlation functional critically affects the ac-
curacy of DFT calculations. Although LDA and GGA functionals strike a good
balance between accuracy and computational efficiency, higher level functionals
like meta-GGA and hybrids offer improved accuracy for numerous systems. With
the development and implementation of these functionals, as has been done for the
SCAN functional into the CP-PAW code in this work, advances to the application of
DFT to various complex systems can be made.

2.2 From Kohn-Sham to Exchange-Correlation Functionals 11



2.3 The Levy constrained-search formulation

Having shown the existence of the one-to-one mapping between the ground-state
electron density ρgs and the ground-state wave function |Ψgs⟩, in this section we
want to highlight the constrained search formulation by Levy [Lev79a; Lev82; Mar04;
PW94] to determine |Ψgs⟩ from a given ground-state density. Let Si be the subset of
the full N-electron Hilbert Space, where we have

{|Ψ⟩ ∈ Si| |Ψ⟩ → ρi}, (2.28)

i.e. the subset of all wave functions integrating to a density ρi, see Fig. 2.2. Because
there is an infinite number of antisymmetric wave functions in Eqn. 2.28 that give
the same density, we have that |Ψρgs⟩ is not necessarily equal to |Ψgs⟩, |Ψρgs⟩ being
any wave function whose quadrature is the ground-state density ρgs. Thus, given
the minimum-energy principle for the ground-state of an N-electron system we have
that [PW94; Mar04]

Egs = ⟨Ψgs|T̂ + V̂ee +
N∑
i

v(ri)|Ψgs⟩ ≤ ⟨Ψρgs |T̂ + V̂ee +
N∑
i

v(ri)|Ψρgs⟩ (2.29)

Because the potential energy caused by vext(r) is a functional of ρ, see Sec. 2.1, we
can rewrite the above equation as

⟨Ψgs|T̂ + V̂ee|Ψgs⟩ +
∫
vext(r)ρgsdr ≤ ⟨Ψρgs |T̂ + V̂ee|Ψρgs⟩ +

∫
vext(r)ρgsdr.

(2.30)

Thus, we have that

⟨Ψgs|T̂ + V̂ee|Ψgs⟩ ≤ ⟨Ψρgs |T̂ + V̂ee|Ψρgs⟩ , (2.31)

and we can identify the ground state |Ψgs⟩ of any set such as in Eqn. 2.28 as the one
that minimizes the right-hand side of Eqn. 2.31. Note here that at the minimum of
the total energy of the system in a given external potential vext(r) the Levy functional
must equal the HK functional

EHK[ρgs] = ⟨Ψgs|T̂ + V̂ee|Ψgs⟩

= min
Ψ→ρgs

⟨Ψ|T̂ + V̂ee|Ψ⟩ (2.32)

since the density of the minimum is v-representable, i.e. can be generated by the
given external potential. Eqn. 2.32 searches over all wave functions of the N-
electron Hilbert Space that integrate into a desired ρgs and thus finds the minimum
of ⟨T̂ + V̂ee⟩. This defines Levy’s constrained-search for EHK[ρgs]. This is different
than the "constrained" formulation in HK, which only exerted a normalization
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Fig. 2.2.: Partition of the full N-electron Hilbert Space in the Levy Constrained Search
Formulation. Each colored area depicts the set of all Ψ that integrate to a
particular ρi. The search for the minimum in Eqn. 2.32 for a ρi is constrained to
the associated set Si with this ρi and all its wave functions, i.e. {Ψ ∈ Si|Ψ → ρi}.
The minimum is established by only one such point in each subset (black dot).

constraint, see Eqn. 2.10, but still searched the entirety of the N-electron Hilbert
Space. Additionally, unlike in HK, the Levy constrained search lifts the requirement
of v-representable densities and allows the densities to be searched over instead
to fulfil only the weaker constraint of N-representability, i.e. any density that is
non-negative, normalizes to the total number of electrons N and is square-integrable
(continuous)[PW94; Lev79a].

2.3 The Levy constrained-search formulation 13





3Projector Augmented Wave
Method

Following the introduction on DFT in the previous chapter and the difficulties it
encounters, in particular when dealing with singularities at the positions of the
atomic nuclei in the KS equations, we turn our attention to a method that addresses
these issues - the Projector Augmented Wave (PAW) method [Blö94a]. The main
premise of the PAW method is to generalize both the pseudo-potential (PP) and the
linear augmented plane-wave (LAPW) methods. To solve the Kohn-Sham equations
and the above mentioned problem that the potential has singularities at the atomic
nuclei, there are different ways to deal with this. One option is to apply the PP
approximation to get rid of the singularities and make descriptions of the Kohn-
Sham states with simple basis sets possible. Alternatively, a sophisticated basis set
can be utilized to get a representation on the basis of a potential including the
singularities.

In addition to bridging the gap between the PP and LAPW methods, the PAW method
also provides the full wave function (WF) because it is an all-electron (AE) method
and this wave function is not accessible in pure PP methods. Furthermore, the PAW
method enables energy-conserving molecular dynamics (MD) simulations which are
done using the original fictitious Lagrangian approach by Car-Parrinello[CP85a].

As the present work is not concerned with MD simulations, interested readers may
refer to the original paper by Bloechl [Blö94a] for further details.

The wave function of real compounds has distinct signatures in different regions of
space. It is smooth in the bonding region and oscillating near the nucleus due to the
strong attractions by the nucleus. The difficulty for electronic structure methods is
to do well in both regions. In augmented wave methods the idea is to split the wave
function into parts: (i) some partial wave expansion within an atom centered sphere
and (ii) envelope functions expanded in either plane-waves or some other convenient
basis set. Values and derivatives are matched at interfaces of the atom-centered and
bonding regions.
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Consider the Hilbert space of all wave functions orthogonal to the core states

|Ψc⟩ ⊥ |Ψn⟩ ∈ H. (3.1)

The physically relevant wave functions in this particular Hilbert Space exhibit strong
oscillations, which make a numerical treatment very difficult. The objective is to
transform these wave functions into so-called pseudo (PS) wave functions that live
in a PS Hilbert space, i.e.

|Ψ̃n⟩ ∈ HPS . (3.2)

This will be a linear transformation of the physically relevant AE wave functions
into computationally convenient PS wave functions. By AE wave functions we are
referring to a full one-electron wave function, not a many-electron wave function.

To follow the original notation of the paper, we refer to the density as n(r), as
opposed to ρ(r), as has been done in the rest of this thesis.

3.1 Transformation

Given an explicit expression of the linear transformation T from |Ψ̃⟩ to |Ψ⟩

|Ψ⟩ = T |Ψ̃⟩ , (3.3)

the relevant physical observables can be obtained as

⟨A⟩ = ⟨Ψ̃|A |Ψ⟩ (3.4)

after the transformation or simply as

⟨A⟩ = ⟨Ψ̃| Ã |Ψ̃⟩ = ⟨Ψ̃| T †AT |Ψ̃⟩ (3.5)

in HPS . Similarly, the total energy can be evaluated as a functional of the PS wave
function and the ground state PS wave function can be obtained using the derivative
of the energy with respect to the PS wave function, i.e.

∂E[T |Ψ̃⟩]
∂ ⟨Ψ̃|

= ϵT †T |Ψ̃⟩ . (3.6)

The objective is to select a linear transformation that will exploit the characteristics
of particular atom types. As such only transformations that differ from identity by
some local sum centered around atoms are considered, i.e.

T = 1 +
∑
R

T̂R, (3.7)
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where T̂R only acts within some augmentation region ΩR and is otherwise 0. This
indicates that AE and PS wave functions are identical outside the augmentation
regions, because outside, the transformation is equivalent to the identity, see Eqn.
3.7.

The present question then is: How do we define these local T̂R? This is done by
having a set of initial, smooth functions |ϕ̃i⟩, so-called PS partial waves (PW), and
specifying T̂R in such a way that a specific target AE partial wave |ϕi⟩ is attained:

|ϕi⟩ = (1 + T̂R) |ϕ̃i⟩ . (3.8)

In his original paper Blöchl refers to the solutions of the Schrödinger equation of
each particular isolated atom as a good and natural choice for the AE WFs. Note
here, that the index i in Eqn. 3.8 is a onverted index that refers to the atomic site R,
the angular momentum quantum numbers L = (l,m) and an additional label n that
differentiates partial waves on the same site and with the same angular momentum,
thus

i = (R,L = (l,m), n). (3.9)

The PS PWs |ϕ̃i⟩ of Eqn. 3.8 must fulfill two conditions: (i) they must be identical to
the AE PWs outside the augmentation region

|ϕi⟩ = |ϕ̃i⟩ ,if |ϕ̃i⟩ ̸∈ ΩR (3.10)

and (ii) they should form a complete set {|ϕ̃i⟩} within the augmentation region.
Within ΩR every PS wave function can be expanded into PS partial waves

|Ψ̃⟩ =
∑
i

|ϕ̃i⟩ ci. (3.11)

Using Eqn. 3.8 we have
|Ψ⟩ = T |Ψ̃⟩ =

∑
i

|ϕi⟩ ci (3.12)

where the coefficients ci in Eqns. 3.11 and 3.12 are identical within ΩR. Appending
a zero term to Eqn. 3.12 we can rewrite the equation as

|Ψ⟩ = |Ψ̃⟩ −
∑
i

|ϕ̃i⟩ ci +
∑
i

|ϕi⟩ ci. (3.13)

Given the requirement of the transformation T to be linear, the coefficients must be
linear functionals of the PS WFs. This is analogous to stating that the coefficients
are scalar products

ci = ⟨p̃i|Ψ̃⟩ (3.14)
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Fig. 3.1.: Simplified macro overview of the transformation process in the PAW method.
ΩR,R′ is referring to the augmentation region of each site.

of the PS WFs, where ⟨p̃i| are fixed functions, called projector functions. It follows
from Eqn. 3.14 that there is exactly one projector function for each PS PW. Using
Eqn. 3.14 in 3.11 gives us

|Ψ̃⟩ =
∑
i

|ϕ̃i⟩ ⟨p̃i|Ψ̃⟩ . (3.15)

⟨p̃i| must fulfill ∑
i

|ϕ̃i⟩ ⟨p̃i| = 1, (3.16)

so that the one-center expansion

|Ψ̃⟩ =
∑
i

|ϕ̃i⟩ ⟨p̃|Ψ̃⟩ (3.17)

is equal to the PS WF itself. It follows from this that

⟨p̃i|ϕ̃j⟩ = δi,j , (3.18)

with δi,j as the Kronecker-Delta. This is easily seen by multiplying Eqn. 3.16 with
|ϕ̃j⟩.

Lastly, using Eqns. 3.3, 3.8, 3.11 and 3.14 the one-electron wave function can be
expressed as

|Ψ⟩ = T |Ψ̃⟩ = |Ψ̃⟩ +
∑
i

|ϕi⟩ ci −
∑
i

|ϕ̃i⟩ ci (3.19)

= |Ψ̃⟩ +
∑
i

|ϕi⟩ ⟨p̃i|Ψ̃⟩ −
∑
i

|ϕ̃i⟩ ⟨p̃i|Ψ̃⟩ (3.20)

= |Ψ̃⟩ +
∑
i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i|Ψ̃⟩ , (3.21)

see Fig. 3.1 for a graphical representation of the transformation. This results in an
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expression of the transformation of the following form:

T = 1 +
∑
i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i| . (3.22)

Based on Eqn. 3.22 the issue of the operators can be addressed next.

3.2 Operators

The aim is to obtain observable quantities as the expectation values of the PS WFs.
Similarly to Eqn. 3.21 in which a representation of the wave function in the PS
Hilbert space has been defined, a pseudo representation of the operators is given in
the following. The expectation value of any operator A can be expressed as

⟨A⟩ =
∑
n

fn ⟨Ψn|A|Ψn⟩ . (3.23)

Using Eqn. 3.21 the same can be expressed in the PS Hilbert space as

⟨A⟩ =
∑
n

fn ⟨Ψ̃n| T †AT︸ ︷︷ ︸
Ã

|Ψ̃n⟩ , (3.24)

which directly gives a representation of the PS operator Ã as

Ã = T †AT = A+
∑
i,j

|p̃i⟩ (⟨ϕi|A|ϕj⟩ − ⟨ϕ̃i|A|ϕ̃j⟩) ⟨p̃j | , (3.25)

with ∑
i

|ϕ̃i⟩ ⟨p̃i| = 1 (3.26)

inside ΩR and
|ϕ̃i⟩ = |ϕi⟩ (3.27)

outside ΩR. Eqn. 3.25 contains three parts: (i) the first part contains an operator
that directly acts on the PS wave function and is evaluated in either real or reciprocal
space and (ii-iii) the last two parts contain the projectors and the expectation value
of the operator either between the AE or PS partial waves.

In addition to the general form of the PS operator Ã, another degree of freedom can
be utilized by extending Eqn. 3.25 with a zero-term

⟨B −
∑
i,j

|p̃i⟩ ⟨ϕ̃i|B|ϕ̃j⟩ ⟨p̃j |⟩ = 0, (3.28)

where B is an arbitrary operator localized in the augmentation region. Eqn. 3.28 can
be utilized in situations where the operator A cannot be easily evaluated in a plane-
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Fig. 3.2.: Construction of a localized operator B (dashed) in the case of the Coulomb
Potential (red) and a new potential (green) that is identical to the Coulomb
potential but smooth and continuous within the augmentation region.

wave expansion. One such example is the Coulomb potential with its singularity
near the nucleus. In this case a new potential can be constructed that is identical
to the true potential but is smooth and continuous inside the augmentation region,
see Fig. 3.2. The difference between the new potential and true potential will
be localized within ΩR and can act as the operator B in Eqn. 3.28. Adding a
potential with characteristics of the potential B to Eqn. 3.25 essentially cancels the
singularity and results in an expression less sensitive to the truncation of the number
of plane-waves.

Using the pseudo operator representation of Eqn. 3.25 all observables can be
computed. In the case of the charge density n(r), which is the expectation value
of the real-space projection operator |r⟩ ⟨r| for any point r, we get an expression of
n(r) as

n(r) =
∑
n

fn ⟨Ψ̃n|r⟩ ⟨r|Ψ̃n⟩ = ñ(r) + n1(r) − ñ1(r), (3.29)

where ñ(r) is the contribution from the pseudo WF and n1(r) and ñ1(r) are the
contributions from the expectation values with the AE and PS partial waves, re-
spectively. It is important to remember that all of the charge density contributions
also contain contributions from the core states

∑
n ⟨ϕcn|r⟩ ⟨r|ϕcn⟩,

∑
n ⟨ϕ̃cn|r⟩ ⟨r|ϕ̃cn⟩

and
∑
n ⟨Ψ̃c

n|r⟩ ⟨r|Ψ̃c
n⟩. In practice, however, instead of getting the contribution from

each core state a PS core density is constructed.
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3.3 Total Energy

Similar to other expectation values, see Eqn. 3.29, the expression for the total energy
can be split into smooth parts and one-center contributions. Thus, we have

E =
∑
n

fn ⟨Ψn| − 1
2∇2|Ψn⟩ + 1

2

∫
dr
∫

dr′ (n+ nz)(n+ nz)
|r − r′|

+
∫

drnϵxc(n)

= Ẽ + E1 − Ẽ1, (3.30)

where Ẽ is the smooth part evaluated on regular grids in either Fourier or real-space
and two one-center contributions evaluated on radial grids in an angular momentum
representation. nz is denoting the point charge density of the nucleus and ϵxc the
energy per electron from exchange and correlation. Using atomic units the total
energy contributions are given as

Ẽ =
∑
n

fn ⟨Ψ̃n| − 1
2∇2|Ψ̃n⟩ + 1

2

∫
dr
∫

dr′ (ñ+ n̂)(ñ+ n̂)
|r − r′|

+
∫

drñv̄ +
∫

drñϵxc(ñ) (3.31)

E1 =
∑
n,i,j

fn ⟨Ψ̃n|p̃i⟩ ⟨ϕi| − 1
2∇2|ϕj⟩ ⟨p̃j |Ψ̃n⟩

+ 1
2

∫
dr
∫

dr′ (n1 + nz)(n1 + nz)
|r − r′|

+
∫

drn1ϵxc(n1) (3.32)

Ẽ1 =
∑
n,i,j

fn ⟨Ψ̃n|p̃i⟩ ⟨ϕ̃i| − 1
2∇2|ϕ̃j⟩ ⟨p̃j |Ψ̃n⟩

+ 1
2

∫
dr
∫

dr′ (ñ1 + nz)(ñ1 + nz)
|r − r′|

+
∫

drñ1v̄ +
∫

drñ1ϵxc(ñ1). (3.33)

In Eqns. 3.31 and 3.33 v̄ is an arbitrary potential localized within ΩR. Additionally,
we have that ñ = ñ1 in ΩR, so that the contribution of v̄ to the total energy
vanishes. It only contributes if the partial wave expansion is not complete to minimize
truncation errors. n̂ is a compensation charge density and it is expressed as a sum
of generalized Gaussians and chosen such that it is localized in the augmentation
region.

All the expressions derived so far have been exact - at least in the frozen core
approximation. But to go from an exact formalism to a practical implementation
requires the use of some approximations. Since the formalism requires certain
completeness conditions of basis sets Blöchl introduced two approximations: (i) a
plane-wave cutoff EPW defined as the maximum of G2/2 and (ii) truncating the sum
of partial waves and projector functions to a finite number. Typical values for the
above approximations are (i) 30Ry for the cutoff energy and (ii) one or two partial
waves per site and angular momentum and a maximum angular momentum of

3.3 Total Energy 21



maybe l = 1 or l = 2. These approximations result in a new total energy functional
E′ and values are chosen in such a way that the new functional is sufficiently close
to the exact functional E.

3.4 Notes on a practical implementation

To evaluate the exchange and correlation energy in Eqns. 3.32 and 3.33 Blöchl em-
ploys a technique from full-potential LMTO calculations, in which the corresponding
energy density is expanded in the charge density with respect to its spherical part
n1
R,l=0:

∫
drn1

Rϵxc(n1
R) =

∫
drn1

R,l=0ϵxc(n1
R,l=0)

+ 1
2
∑
L,l ̸=0

∫
dr
∂µxc(n1

R,l=0
∂n1

R

(n1
R,L)2

+ O((n1
R,L)3), (3.34)

where µxc = dnϵxc(n)
dn . n1

R,L denotes the angular momentum components of the
one-center charge density. One-center contributions from the PS charge density are
treated analogously to Eqn. 3.34. The Taylor expansion in Eqn. 3.34 introduces the
necessity to define second and third order derivatives of the exchange and correlation
energy. This has been done for the implementation of the SCAN functional [SRP15b]
of Perdew et al. into the CP-PAW code base using the PAW formalism and the
respective derivatives can be found in the Appendix.
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4Structural Analysis of C3O2 using
the local hybrid functional PBE0r

Previously, we examined the Projector Augmented Wave method, investigating its
effectiveness in dealing with the singularities at the atomic nuclei within the KS
method. By closing the gap between pseudo-potential and LAPW methods, the PAW
formalism has become an essential tool in computational chemistry. Expanding on
this premise, we now transition to a detailed structural analysis of the C3O2 monomer,
utilizing the local hybrid functional PBE0r within the CP-PAW framework. Here, we
aim to explore the complexities of C3O2, making use of advanced computational
techniques to provide insights into the characteristics of its electronic structure
and bonding. Carbon suboxide, a molecule of considerable historical and chemical
interest, presents particular challenges and opportunities for computational studies.
It establishes itself as a suitable candidate for applications in organic electronics and
photovoltaics due to its extended π-conjugated systems and its proclivity to form
polymers. Thus, understanding its structure and electronic properties is pivotal in
optimizing its performance in these applications. To enable such an analysis, we
utilize the Carr-Parrinello approach [CP85b], integrating the PAW method with the
PBE0r functional.

4.1 Car-Parrinello Lagrangian

Within the Carr-Parrinello method, introduced by Carr and Parrinello in 1985, we
can concurrently evolve the electronic and ionic degrees of freedom, thus supplying a
dynamic view on the structural attributes of both, molecules and materials. The Carr-
Parrinello Lagrangian is a fundamental ingredient in molecular dynamics simulations,
allowing for the simultaneous solution of the classical equations of motion for nuclei
and the KS equations for electrons. This dual evolution is expressed by the following
Lagrangian

LCP = 1
2

Nn∑
I

MIṘ
2
I +

Ne∑
i

⟨ϕ̇i(t)|mψ| ˙ϕi(t)⟩

−EKS[ϕi, RI ] (4.1)
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where EKS is the Kohn-Sham energy of the system and mψ is the fictitious mass of
the wave function. mψ is not a mass in the same sense that me is, i.e. mψ is not
simply used instead of the electron mass. For one, they have different dimensions
as is evident from eqn. (4.1), [µ]=energy·time2. Effectively though, µ takes on the
same role as the mass, which is to say it controls the acceleration of the degrees of
freedom of the KS wave functions[Mar04; Gio].

4.2 Wave Function Dynamics

As hinted at above, to solve the electronic problem and achieve the electronic ground
state we use Car-Parrinello Molecular Dynamics[CP85b], i.e. propagating the orbitals
as if they are particles and finding their minimum instead of repeatedly solving the
electronic problem.

The total energy can be expressed as

Etot =
∑
n

fn ⟨ ˙̃Ψn|mΨ | ˙̃Ψn⟩ + EDFT

−
∑
n,m

(
⟨Ψ̃|n Õ |Ψ̃⟩m − δn,m

)
Λm,n, (4.2)

with Ψ̃ as the pseudo wave functions of the PAW method, Λn,m as the Lagrange
parameters for the wave function orthonormality constraint and

EDFT =
∑
n

⟨Ψn| − 1
2∆2 |Ψn⟩

+ 1
2

∫
dr

∫
dr′ (n(r) + nZ(r))(n(r′) + nZ(r′))

|r − r′|

+
∫
drn(r)ϵxc(nσ(r),∆nσ(r)), (4.3)

where nZ(r) = −
∑
R ZRδ(r − R) is the density of the nuclei point charges. The

minimization of (4.2) is performed with a Car-Parrinello-like constrained minimiza-
tion to ensure the orthonormality of the wave functions, i.e. ⟨ψn|ψm⟩ = δn,m and∑
i fi = N , the constraint for the number of particles, have to be fulfilled. The

equation of motion for the wave functions is

mΨ | ¨̃Ψn⟩ = −H̃ |Ψ̃n⟩ +
∑
m

Õ |Ψ̃m⟩ Λm,n −mΨ | ˙̃Ψn⟩ fΨ,

(4.4)

which is solved by discretizing the time coordinate and choosing the Lagrange
multipliers in every propagation such that the constraints are fulfilled in the next
iteration. For small values of the kinetic energy of the wave functions the fictitious
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mass mΨ is close to the Born-Oppenheimer surface and thus Eqn. (4.4) describes
the classical motion of the nuclei.

4.3 Damped Nuclear Dynamics

Leveraging the Carr-Parrinello approach of the previous section, we can now discuss
the Damped Nuclear Dynamics (DND) approach. In the latter, we can extend the
Carr-Parrinello method to include damping mechanisms that help in the optimization
of nuclear configurations. This section presents an introduction to the DND approach
- an important tool for reaching ground state configurations by quenching excess
kinetic energy from the system. The DND method introduces frictional forces to
dissipate kinetic energy, and thus pushing the system towards a stable, low-energy
configuration, i.e. either a local or global minimum. This technique ensures that the
system relaxes efficiently to its ground state, which is especially useful in simulations
that seek the equilibrium structure of a molecule or material. We can express the
equation of motion (EOM) for damped dynamics as

mẍ = F (x) −mαẋ, (4.5)

where m is the mass, F (x) is the force acting on the nuclei and α is the friction
coefficient. ẋ and ẍ are the velocity and acceleration, respectively. The damping term
−mαẋ defines the frictional force which is proportional to the velocity. A common
algorithm used to discretize the EOM of Eqn. 4.5 is given by Verlet[Ver67]. The
simplicity and numerical stability of the Verlet algorithm makes it especially suited
for molecular dynamics simulations. Setting a = α∆t

2 the EOM can be written as

x(t+ ∆t) = 2
1+ax(t) − 1−a

1+ax(t− ∆t)

+ 1
mF (x) ∆t2

1+a (4.6)

In the absence of damping (a = 0), this simplifies to the original Verlet algorithm

x(t+ ∆t) = 2x(t) − x(t− ∆t) + 1
m
F (x)∆t2, (4.7)

whose dynamics over long time scales is energy conserving and independent of the
step size due to time inversion symmetry. For steepest descent dynamics, which are
analogous to infinite damping (a = 1), we have for the equation of motion

x(t+ ∆t) = x(t) − 1
m
F (x)∆t2

2 , (4.8)

where ∆t2
2m is the mixing parameter. While Eqn. (4.8) describes dynamics with infinite

friction, the motion does not come to rest in this limit because the time step is scaled
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inversely proportional[Blö20]. By using friction dynamics in the structural analysis
of molecules, such as C3O2, we need to repeatedly damp the nuclear motion until the
system reaches its energetically preferred state. This enables an accurate description
of structural parameters and potential energy surfaces. We can utilize DND to refine
structures obtained from any prior MD simulations. This is particularly useful for
hybrid functionals, such as PBE0r, that blend in a fraction of exact exchange from
Hartree-Fock theory with the PBE exchange-correlation functional, largely due to the
efficiency and accuracy provided by DND. Hence, we have a powerful framework
for the structural analysis and optimization of molecular systems, comprising of the
integration of damped nuclear dynamics with the Carr-Parrinello method and local
hybrid functionals.

4.4 Local hybrid functional PBE0r

The Kohn-Sham (KS) method - based on the density functional theory in the local-
spin-density approximation (LSDA) - gives insight into the physical and chemical
properties[GAE03] of many materials. To achieve a reduction in the computational
complexity and load in solving the KS equations or minimising the DFT energy
an efficient representation of the KS wave functions must be used. This is done
employing the projector augmented wave formalism[Blö94b]. Additionally, while
KS DFT is in theory exact, approximations of the exchange-correlation functional
EXC need to be used.

In this work in particular calculations were done with the local hybrid functional
PBE0r by Blöchl et. al. [Sot+17] that is based on the PBE0 [AB99] functional.
The PBE0r tries to alleviate the difficulties of conventional density functionals with
strongly correlated transition metal oxides in an efficient manner. It borrows ideas
from range-separated hybrid functionals and from the LDA+U [Kuo+17] method.
Like other hybrid functionals ([AB99; HSE03; HSE06; Kru+06] it combines local
DF approximation of the exchange-correlation functional with an exact contribution
from the Hartree-Fock (HF) approximation EHF

x . The original PBE0 on which PBE0r
leans on does this by replacing 25% of the exchange contribution from the PBE
functional with exact HF exchange [AB99; EBB20]

EPBE0
XC = EPBE

XC + 0.25(EHF
X − EPBE

X ). (4.9)

While the inclusion of the HF exchange is followed by an increase in computational
cost, this has been remedied by replacing the Coulomb interaction in the exchange by
a screened interaction. For the HSE06 functional[HSE03; HSE06; Kru+06], another
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functional derived from the PBE0 functional, this is done using a screened Coulomb
interaction separated into short and long range of the form

1
r

= 1 − erf(ωr)
r︸ ︷︷ ︸

short range

+ erf(ωr)
r︸ ︷︷ ︸

long range

, (4.10)

where ω is the screening parameter determining the separation range. A fitting to
experimental properties [Kru+06] resulted in an empirical value of ω = 0.11a0,
where a0 is the Bohr radius. Effectively, this means that the HF exchange is only
calculated for the short range and not the long range, reducing the computational
cost considerably.

In the hybrid functionals, the average of the exchange hole as function of the
interaction strength is interpolated between the exchange hole at zero interaction
and the exchange correlation hole at full interaction. The interaction-strength
average with this interpolation can be represented as an average of the exchange
energy and the exchange correlation energy.

Screening is strong at large distances, while it is small in the core region of the
atom, where the kinetic energy is large. This can be described by a range-separated
hybrid functional, which limits the Fock term to short distances. This principle is one
reason for using only the onsite interaction in the Hubbard model. While functionals
such as HSE use a distance criterion, see Eqn. 4.10, for the saparation of weakly vs
strongly screened regions, the LDA+U method limits the interaction to a subset of
orbitals for each atom.

In the PBE0r functional we decompose the Kohn-Sham wave functions |ψn⟩ into
atom-centered orbitals |χR,α⟩ and we restrict the admixture of explicit exchange to
the onsite terms.

|ψn⟩ =
∑
R,α

|χR,α⟩⟨π̃R,α|ψ̃n⟩ (4.11)

The projector functions ⟨πR,α| for the local orbitals are constructed as superpositions
of the partial-wave projector functions ⟨p̃R,i|.

The exchange term [BWP11a; BPP13a] being

EX =
∑
R

∑
α,β,γ,δ

Θδ,βΘγ,αWR,α,β,γ,δ

·
∑

σ,σ′∈{↑,↓}

∫
d3r

∫
d3r′ e

2χ∗
R,α(r⃗, σ)χ∗

R,β(r⃗′, σ′)χR,δ(r⃗, σ)χR,γ(r⃗′, σ′)
4πϵ0|r⃗ − r⃗′|

.

(4.12)
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In the latter, a fraction of the PBE exchange energy EPBE
x is replaced by the explicit

non-local HF exchange energy EHF
x , i.e.:

EPBE0r = EPBE +
∑
n

ax,n(EHF
x,n − EPBE

x,n ) (4.13)

The Kohn-Sham wave functions in the PBE0r are mapped onto local tight-binding
orbitals (LTBO) and the off-site terms are excluded from the exchange correction.
This restriction on the exchange correction enables a sort of range separation bearing
similarities to the long-range screening of the interaction in the GW approximation.
This exclusion of off-site terms is appropriate for materials such as transition metal
oxides which have strongly localized d orbitals whereas it is not suitable for the
description of systems containing strong covalent bonds[Sot+17]. The admixture
ax,n[PEB96; Sot+17] is a freely adjustable parameter in PBE0r and can be set
to fit experimentally observed spectral features. The mixing parameter can be
chosen individually for each atom and thus, essentially, describes a local dielectric
constant[EBB20].

While traditional GGA or other hybrid functionals face challenges when dealing
with systems that show strong electronic localization, PBE0r has been proven to be
effective dealing with the latter. Recent benchmark studies on materials like Li-Mn
oxides show PBE0r to do well in predicting electronic and structural properties that
agree well with experimental values, while keeping the computational effort similar
to that of GGA functionals [EBB20].

4.5 How to analyse bonds

Going from an overview on Damped Nuclear Dynamics and PBE0r, we now consider
techniques involved in analysing chemical bonding in molecular systems. Under-
standing the properties and strength of the bonds is critical in also understanding
structural and electronic properties of molecules, such as e.g. C3O2, which we have
been investigating. An essential indicator for bonding is the band structure energy,
defined as

EB =
∑
n

fnϵn (4.14)
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where ϵn are the orbital energies and fn the corresponding occupations. Eqn. 4.14
can also be written in terms of the density of states (DOS)[Pet18]

EB =
∫ ∞

−∞
dϵf(ϵ− µ)ϵ

∑
n

δ(ϵ− ϵn) (4.15)

=
∫ ∞

−∞
dϵD(ϵ)ϵf(ϵ− µ), (4.16)

where f(ϵ− µ) refers to the fermi-distribution. At temperature T=0K the chemical
potential µ is the Fermi Energy of the system and lies between the highest occupied
and lowest unoccupied state. The density of states provides a detailed local and
energy-resolved perspective on the binding properties of materials.

Using projector functions, the wave functions can be decomposed into local orbitals1

χi [Blö94b]

|ψn⟩ =
∑
i

|χi⟩ ⟨pi|ψn⟩ (4.17)

For this to hold the basis functions must form a complete set and be mutually or-
thonormal with the projector functions. Assuming the wave functions are normalized
and using Eqn. (4.17), the total DOS D(ϵ) can be expressed by a local basis set

D(ϵ) =
∑
n

δ(ϵ− ϵn) ⟨ψn|ψn⟩

=
∑
i,j

∑
n

δ(ϵ− ϵn) ⟨ψn|pi⟩ ⟨χi|χj⟩ ⟨pj |ψn⟩

=
∑
i,j

Dj,i(ϵ) ⟨χi|χj⟩ (4.18)

The diagonal elements Dj,j ⟨χj |χj⟩ are called the projected density of states[Pet18].
The off-diagonal elements, or the hopping terms, are the Crystal Orbital Overlap
Populations [HH83]. The COOPs give an additional layer of information by providing
insight into the bonding information. Positive values indicate a charge accumulation
in the bond, bonding states, while negative values indicate antibonding states. The
sum of the overlap population over all states is a measure for the strength of the
bond. However, COOPs are basis set dependent quantities and thus in general are
no absolute bonding indicators.

1Which can be non-orthogonal.
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Strictly speaking the COOPs do not contribute to the total energy of the system.
Multiplying Eqn. (4.18) by the energy we have

D(ϵ)ϵ =
∑
n

δ(ϵ− ϵn)ϵ ⟨ψn|ψn⟩

=
∑
n

δ(ϵ− ϵn)ϵ ⟨ψn| Ĥ |ψn⟩

=
∑
i,j

∑
n

δ(ϵ− ϵn) ⟨ψn|pi⟩

· ⟨χi| Ĥ |χj⟩ ⟨pj |ψn⟩

= Dj,i(ϵ) ⟨χi| Ĥ |χj⟩ (4.19)

where the last term in (4.19) is the Crystal Orbital Hamilton Population(COHP)[DB93].
Eqn. (4.19) contains information about bonding, nonbonding and antibonding en-
ergy regions within a specified energy range, while integrating the COHP reveals the
contributions of an atom or bond to the distribution of one-particle energies[DB93].
The sign convention is opposite to that of the COOPs, i.e. bonding states are negative
off-site terms and antibonding states are positive.

The local decomposition of the DOS in Eqn. 4.18 not only accounts for the contribu-
tion of individual atomic orbitals to the entire electronic structure, but, as mentioned
above, also gives insights into the nature of the chemical bonding. In the case of
C3O2 for example, we can analyse the bonding between the carbon and its associated
oxygen by simply checking the projected DOS and assessing the contributions from
different atomic orbitals. The COOP and COHP methods are especially useful in
this regard. As indicated above, these methods allow us to quantify interactions
between specifics pairs of atoms, i.e. to what degree these interactions are bonding,
antibonding and non-bonding. This can provide a deeper look into the electronic
structure and stability of the molecule.

Using these analytical techniques alongside the structural and electronic properties
we acquire from DFT and post-DFT calculations, we get a more complete under-
standing of the bonding characteristics in complex molecular structures. In addition
to improving and complementing theoretical models, this approach can also guide
experimental research to synthesize materials with desired properties.

4.6 Results and Discussion

Building on the previous discussion of the theoretical framework and methodologies
employed in this study, we now transition to the results section, which merges
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Fig. 4.1.: Structural overview of the C3O2 monomer with angle α(C-C-C).

the computational details and findings from the use of the local hybrid functional
PBE0r.

The Car-Parrinello PAW code was utilized to perform the PBE0r calculations. Here,
the augmentation of the PAW method included the physically relevant valence elec-
trons of Carbon and Oxygen, i.e. the 2s and 2p orbitals of C and O, respectively. The
construction of the auxiliary partial waves was done by setting the matching radii (in
terms of the covalent radii) to 0.75 for all orbitals. The auxiliary wave functions were
constructed as nodeless partial waves[BF12]. The tight-binding orbitals included
the 2s and 2p orbitals of Carbon and Oxygen, respectively. Calculations are done
in a 15Å×15Å×15Å unit cell, the plane wave cutoff value for the wave functions is
set to 30Ry and the contribution of the non-local HF exchange energy is set to 10%.
Finally, the number of projector functions and partial waves was set to 5 for each
atom type.

The structure of C3O2 can be seen in Fig. 4.1, while Fig. 4.2 shows the single point
energies of both PBE and PBE0r at different angles α(C-C-C). While PBE results
indicate a clear linear structure for C3O2, PBE0r results have an energetic minium at
around 170◦, indicating that the molecule has a slight bent around its center Carbon
atom. As discussed in sec. 4.5 the off-site terms of the overlap matrix give insight
into the electron correlation and chemical bonding properties of materials and as
such also to the physics and chemistry that lead to the bent structure.

Fig. 4.3 shows the total DOS as well as the projected DOS of the individual orbitals
for Oxygen and Carbon. While the mixed state at -30eV has contributions from the
Carbon s and p orbitals, it exhibits a predominant Oxygen s character. The state at
-22eV can be identified as a bonding state between the s orbital of the center Carbon
atom with the s and p orbitals of the two neighbouring Carbon atoms. Analogously,
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Fig. 4.2.: Results from static calculations using PBE, the hybrid functional PBE0r and results
from the RDMFT+ACA approach. Unlike PBE, both PBE0r and RDMFT+ACA
indicate a bent structure of the C3O2 molecule at around 170°. See Sec. 5.5 for a
discussion of the RDMFT+ACA results.

the state at -18eV is the mixed antibonding state between the p orbitals of the center
Carbon with the s and p orbitals of its neighbours. The orbital character in both
states is dominated by the contribution from the central Carbon, i.e. the states at
-22eV and -18eV are of primarily s and p character, respectively. The final state
before the Fermi Energy starting at [-13eV,-11eV] is a bonding state between the p
orbitals of both Oxygen and the two outer Carbons.

The projected DOS of both atom types approximately shows an energetic separation
of the s and p orbitals at lower energies, while this is not the case for states above
≈-13eV and close to the Fermi Energy.

The valence state at the Fermi level, see Fig. 4.3, contains contributions of p orbitals
of both Oxygen and Carbon. The contribution from the central Carbon to the
valence state is significantly higher than that of its neighbours and is similar to
that of the Oxygen. The partial charge on the center Carbon was calculated to
be -0.23e. According to the Valence Shell Electron Pair Repulsion (VSEPR)[GN57]
theory, this partial charge will exhibit a repulsive force on the neighbouring atoms of
the center Carbon, which explains the slight bend observed in the PBE0r results. This
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Fig. 4.3.: First row: Total DOS including projected DOS of oxygen s, p and carbon s, p
orbitals (due to negligible contribution of d orbitals to the total DOS these were
not included in the DOS calculations). Second and Third Row: Projected DOS of
oxygen and carbon, respectively. Fourth Row: Bonding (orange) and antibonding
(red) states. Fifth and Sixth Row: COOP for the p contribution of the O − C and
C −C bond, respectively. Note: inner here refers to contributions from the center
Carbon atom and outer to the two neighbouring Carbon atoms.

observation aligns with prior experimental and theoretical studies[Tor+95; VJP91;
JJ86; Kop00; HKS14; DMR76; Bun80; MS99].
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5
Reduced Density Matrix
Functional Theory

In the field of quantum chemistry, electronic structure calculations are largely done
using either wave function or density functional theory (DFT)-based methods. Al-
though the former offers high accuracy, due to the unfavourable scaling of the
computational cost it is usually limited to small systems. And while the latter
achieves a good compromise between cost and accuracy, most of the approximations
in that field have their own set of problems arising from the use of a strictly local
object - the electron density[PG15]. Replacing DFT with the less investigated density-
matrix functional theory (RDMFT)[Gil75] for the description of strong electronic
correlations offers two advantages[Sch19]: (i) While the density-matrix functional
has no contributions from the kinetic energy and only contains contributions from
the interaction and the entropy, the kinetic energy is known exactly in terms of the
one-electron reduced density-matrix (1RDM). (ii) The strong correlation effects can
be directly derived from the fractional occupations of the above mentioned and
readily available 1RDM of the physical system.

5.1 Formalism

Consider the probability distribution

ΨN (xN )Ψ∗
N (xN ), (5.1)

where

xN = x1x2 · · · xN (5.2)

and

xi = (ri, si) , i ∈ {1...N}. (5.3)
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The above distribution is associated with a solution of the Schrödinger equation
with Hamiltonian of form 2.1. Eqn. 5.1 is a special case of the more general form
[PW94]

ρ(N)(x′N , xN ) = ΨN (x′N )Ψ∗
N (xN ), (5.4)

ρ(N)(x′N , xN ) being an element of a matrix, the density matrix. For Eqn. 5.1 we
have x′

i = xi, i.e. a diagonal element of the density matrix. Eqn. 5.1 is referred to as
the N th order density matrix . Given a binomial coefficient

(N
p

)
we can then define

the reduced density matrix of order p by [PW94]

ρ(p)(x′p, xp) =
(
N

p

)∫
· · ·
∫
ρ(N)(x′

1x
′
2 · ·x′

pxp+1 · ·xN , x1x2 · ·xN )dxp+1 · ·dxN

(5.5)

In this chapter we are interested in the one-particle case

ρ(1)(x′
1, x1) = N

∫
· ·
∫

Ψ(x′
1x2 · ·xN )Ψ∗(x1x2 · ·xN )dx2 · ·dxN , (5.6)

in particular the spinless one particle reduced density matrix (1-RDM)

ρ(1)(r′
1, r1) =

∫
ρ(1)(r′

1s1, r1s1)ds1. (5.7)

With having established a formulation for the basic variable of RDMFT in Eqn. 5.7,
we can now work on an expression for the energy in the RDMFT representation. To
simplify the notation and reduce clutter let

ρ
(1)
α,β = ρ(1)(α, β) (5.8)

The primary focal point for an interacting N-particle system is the grand poten-
tial[SKB17]

ΩT,µ(ĥ+ Ŵ ) = −kBT ln[Tr{exp(− 1
kBT

(ĥ+ Ŵ − µN̂)}], (5.9)

where T is the temperature, kB the Boltzmann constant, µ the chemical potential
and N̂ the total particle number operator. Given the density-matrix functional
FWβ [ρ(1)] with respect to the one-particle reduced density-matrix ρ(1) we can apply
the Legendre-Fenchel transformation [Leg87; Fen49] to represent the grand potential
within RDMFT as

Ωβ,µ[h] = min
ρ(1):0≤ρ(1)≤1

{Tr[ρ(1)(h− µ1)] + FWβ [ρ(1)]} (5.10)
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The minimization is performed over all ensemble-representable 1-RDMs ρ(1), i.e. the
ρ(1) have the form1

ρ
(1)
α,α′ =

∑
i

Pi ⟨Ψi|ĉ†
α′ ĉα|Ψi⟩ , (5.11)

where Pi is the probability of finding the system in state |Ψi⟩, and ĉ†
α′ and ĉα are

the creation and annihilation operators, respectively. Similarly, we can write the
Helmholtz potential as

Hβ,N [h] = min
ρ(1):0≤ρ(1)≤1,Tr[ρ(1)]=N

{Tr[ρ(1)h]

+FWβ [ρ(1)]}. (5.12)

Thus, the ground-state energy is

EN [h] = min
ρ(1):0≤ρ(1)≤1,Tr[ρ(1)]=N

{Tr[ρ(1)h]

+FW [ρ(1)]}. (5.13)

with FW [ρ(1)] as the zero-temperature density-matrix functional in the limit β → ∞.
Setting the chemical potential to zero we can express the density-matrix functional
as the Legendre-Fenchel transformation of the grand potential, i.e.

FWβ [ρ(1)] = max
h

[
Ωβ,µ=0[h] − Tr[ρ(1)h]

]
(5.14)

The h refer to the matrix elements of the one-particle Hamiltonian. The matrix
elements of the one-particle Hamiltonian and the one-particle reduced density-
matrix are conjugate quantities and we have the relations[Sch19]

∂Ωβ,µ[h]
∂hα,β

= ρ
(1)
β,α (5.15)

∂FWβ [ρ(1)]

∂ρ
(1)
α,β

= −hβ,α (5.16)

It has been shown[Lev79b; Val80] that the density-matrix functional can be obtained
from a constrained minimization over an ensemble of orthonormal fermionic many-
particle wave functions |Ψi⟩ and ensemble probabilities Pi with 0 ≤ Pi ≤ 1 and

∑
i Pi

= 1 with a given 1-RDM ρ(1) according to Eqn. 5.11 as

FWβ [ρ(1)] = min
{Pi,|Ψi⟩}→ρ(1)

[∑
i

Pi ⟨Ψi|W |Ψi⟩

+ 1
β

∑
i

Pi lnPi
]

(5.17)

1Eqn. 5.11 is the ensemble generalization of Eqn. 5.7.
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Oftentimes the density-matrix functional is decomposed into four contributions[Hel06;
BPP13b; BCG15]: the Hartree energy FWH [ρ(1)], Fock energy FWx [ρ(1)], an entropy
contribution of a non-interacting system F 0

β [ρ(1)] and correlation energy FWc,β[ρ(1)]
as

FWβ [ρ(1)] = FWH [ρ(1)] + FWx [ρ(1)] + F 0
β [ρ(1)] + FWc,β[ρ(1)]

FWH [ρ(1)] = 1
2
∑

α,β,γ,δ

Uα,β,δ,γρ
(1)
β,αρ

(1)
γ,β, (5.18)

FWx [ρ(1)] = −1
2
∑

α,β,γ,δ

Uα,β,δ,γρ
(1)
γ,αρ

(1)
δ,β, (5.19)

F 0
β [ρ(1)] = 1

β
Tr[ρ(1) ln ρ(1) − (1 − ρ(1)) ln(1 − ρ(1))]. (5.20)

The correlation energy FWc,β[ρ(1)] contains both interaction and entropy contributions
and has to be approximated[SKB17]. The RDMFT energy minimization of (5.13)
can be rewritten in a DFT-like expression as

EN [h] = min
{fi},{|ϕi⟩}:0≤fi≤1,µ,Λi,j

stat{ERDMFT({fi}, {|ϕi⟩})

− µ(
∑
i

fi −N) −
∑
i,j

Λi,j(⟨ϕi⟩ϕj − δi,j)} (5.21)

with

ERDMFT({fi}, {|ϕi⟩}) = Tr[ρ(1)({fi}, {|ϕi⟩})h]

+ FWβ [ρ(1)({fi}, {|ϕi⟩})]. (5.22)

For a list of properties of the RDMF refer to [Sch19].

5.2 General DF+RDMF approach

The following sections describe an approach to combine density functions and
reduced density-matrix functionals in a hybrid theory geared towards the description
of strong local electronic correlations in solids. We begin this by defining the general
starting point for an approach that contains DFs and RDMFs. The premise is to
define the interaction Hamiltonian

W = 1
2
∑

α,β,γ,δ

Uα,β,γ,δ ĉ
†
αĉ

†
β ĉδ ĉγ (5.23)

that is given in a one-particle basis |χα⟩ as a decomposition into two terms

W = WDF +WRDMF. (5.24)
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The density-matrix functional FWβ [ρ(1)] is then approximated as

FW [ρ(1)] ≈ FWDF [ρ(1)] + FWRDMF [ρ(1)]. (5.25)

The first and second term are then later evaluated by an approximate density-
functional and a density-matrix functional, respectively, i.e.

FW [ρ(1)] ≈ FWDF
DF [ρ(1)] + FWRDMF

RDMF [ρ(1)]. (5.26)

A similar starting point can be reached by extending the original density-matrix
functional with a zero-term

FW [ρ(1)] = FW [ρ(1)] + (FW ′ [ρ(1)] − FW
′ [ρ(1)]). (5.27)

The first and last density-matrix functional can be approximated with a density
functional

FW [ρ(1)] ≈ FWDF [ρ(1)] + (FW ′ [ρ(1)] − FW
′

DF [ρ(1)]︸ ︷︷ ︸
correction

) (5.28)

to have a hybrid expression of the original density-matrix functional whose last term
obtains the form of a correction contribution. The local hybrid functional PBE0r as
described in Sec. 4.4 can be used as an additional approximation for Eqn. 5.28,
because it approximates the RDMF part in the above correction by a scaled Fock
Energy[SKB17]. The first hybrid expression in (5.26) is identical to (5.28) for the
choice W ′ = WRDMF if the approximate density functional FWDF [ρ(1)] is linear in the
interaction, i.e.

FWDF[ρ(1)] = FWDF
DF [ρ(1)] + FWRDMF

DF [ρ(1)]. (5.29)

This is for instance the case if it is evaluated for a fixed hole function. The rest
of the chapter is derived with (5.28) as the chosen starting point[Sch19]. Due to
the availability of exact results, the qualitative analysis of the above decomposition
in the DF+RDMF scheme has been done on Hubbard chains[BWP11b; Sch19]
and among other things has been proven to properly deal with static and spin
correlations[SKB17].

5.3 Real-Space-Decomposition DF+RDMF
approach

In a hybrid theory approach Blöchl et al. [BWP11c] proposed combining DFT and
RDMFT adapted towards the description of the local physics in materials with strong
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electronic correlations. Let χ = {χα} denote the complete one-particle basis set.
Bloechl et al. chose the interaction W ′ as the interaction of a subset C = {χα} ⊂ χ

of one-particle states as

W ′ = 1
2

∑
α,β,γ,δ∈C

Uα,β,γ,δc
†
αc

†
ηcδcγ (5.30)

Uα,β,γ,δ =
∫
d4x⃗

∫
d4x⃗′ e2

4πϵ0|r⃗ − r⃗′|
·χ∗
α(x⃗)χ∗

β(x⃗′)χγ(x⃗)χδ(x⃗) (5.31)

In their original publication the local one-particle states in C have been chosen
such that the corresponding interaction W ′ contains the strongly interacting states
responsible for the strong electronic correlations. It is easy to see that in the limit of
C = χ - a complete one-particle basis set - W ′ becomes the full interaction W.

However, the above orbital-based approach has an inconsistency of the double-
counting that is remedied by the following real-space modification. As mentioned,
we start from Eqn. (5.28) as in the original approach but propose to redefine the
interaction W ′. It will now be defined as the decomposition of the full Coulomb
interaction w(r⃗, r⃗′) in real-space, i.e.

w(r⃗, r⃗′) = e2

4πϵ0|r⃗ − r⃗′|
(5.32)

= (1 − λ(r⃗, r⃗′))w(r⃗, r⃗′) + λ(r⃗, r⃗′)w(r⃗, r⃗′) (5.33)

⇒ w′(r⃗, r⃗′) = λ(r⃗, r⃗′)w(r⃗, r⃗′) (5.34)

and thus

W ′ = 1
2

∫
d4x⃗1

∫
d4x⃗2

∫
d4x⃗3

∫
d4x⃗4w

′(x⃗1, x⃗2)

·δ(x⃗1 − x⃗4)δ(x⃗2 − x⃗3). (5.35)

Here, λ(r⃗, r⃗′) is some function with 0 ≤ λ(r⃗, r⃗′) ≤ 1 and sets the decomposition of
the interaction. The choice of the interaction function will be discussed in Sec. 5.5.
The key advantage of the real-space definition of the interaction is that the density
functional FW

′
DF [ρ(1)] can be evaluated without having to introduce an approximate

model interaction as was done in the original publication[BWP11c]. This change of
definition allows evaluating the correction term

FW
′ [ρ(1)] − FW

′
DF [ρ(1)] (5.36)

in a consistent way by using the exact same interaction for the density-matrix
functional and the density functional. Additionally, and in contrast to Blöchl et
al., the density-matrix functionals FDF are evaluated without the kinetic energy
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contribution from the exchange-correlation functional[Sch19]. The hole function is
used at full interaction strength (λ = 1) and we have

FW [ρ(1)] = 1
2

∫
d3r⃗n(r⃗)

∫
d3r⃗′(hλ=1(r⃗′, r⃗) + n(r⃗))w(r⃗, r⃗′)

= UXC + EH[n] (5.37)

Schade [Sch19] defined the local density functional FW
′

DF [ρ(1)] for the interaction W ′

as

FW
′

DF [ρ(1)] = 1
2

∫
d3r⃗n(r⃗)

∫
d3r⃗′

·hλ(r⃗,r⃗′)(r⃗′, r⃗)λ(r⃗, r⃗′)w(r⃗, r⃗′) (5.38)

Because of the hole function’s dependence on the interaction decomposition function
λ(r⃗, r⃗′) Eqn. (5.38) is the hole function of a system with interaction λ(r⃗, r⃗′)w(r⃗, r⃗′).
This is given rise by Schade’s assumption of a local dependency of (5.38) on the
local strength λ(r⃗, r⃗′) of the interaction. Finally, although the minimization problem
in the real-space-decomposition based DF+RDMF scheme

E[h] = min
ρ(1):0≤ρ(1)≤1,Tr ρ(1)=N

{Tr[ρ(1)h] + UXC[n] + EH[n]

+(FW ′ [ρ(1)] − FW
′

DF [ρ(1)]} (5.39)

is identical to the one proposed by Bloechl et al., the functionals are defined dif-
ferently. Similar to them however Schade proposes a local approximation for the
real-space decomposition based DF+RDMF approach. To this end the decomposition
function λ(r⃗, r⃗′) is defined as a sum of localized contributions λR as

λ(r⃗, r⃗′) =
∑
R
λR(r⃗, r⃗′), (5.40)

where every local contribution λR is localized in the vicinity of the position R⃗R.
Given the above local approximation a decomposition of the interaction W ′ into
local terms WR is obtained, where the latter are defined as

WR = 1
2

∫
d4x⃗1

∫
d4x⃗2

∫
d4x⃗3

∫
d4x⃗4

·w(x⃗1, x⃗2)λR(r⃗1, r⃗2)δ(x⃗1 − x⃗4)δ(x⃗2 − x⃗3). (5.41)

The minimization in Eqn. (5.39) thus becomes

E[h] = min
ρ(1):0≤ρ(1)≤1,Tr ρ(1)=N

{Tr[ρ(1)h] + UXC[n] + EH[n]

+
∑
R

(FWR [ρ(1)] − FWR
DF [ρ(1)]}, (5.42)
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where the density functional FWR
DF is evaluated with the interaction w(r⃗, r⃗′)λR(r⃗, r⃗′)

as

FWR
DF [ρ(1)] = 1

2

∫
d3r⃗n(r⃗)

∫
d3r⃗′(hλR(r⃗,r⃗′)(r⃗, r⃗′) + n(r⃗′))

·λ(r⃗, r⃗′)w(r⃗, r⃗′) (5.43)

Possible choices for λR include

λsym,R(r⃗, r⃗′) = f(|r⃗ − R⃗|)f(|r⃗′ − R⃗|) (5.44)

for the symmetric choice and

λnon−sym,R(r⃗, r⃗′) = f(|r⃗ − R⃗|) (5.45)

for the non-symmetric choice. Other expressions are also possible and can be chosen
in a way to best fit the physical situation.

5.4 Adaptive Cluster Approximation

The computational complexity and effort in evaluating the necessary density-matrix
functionals FW

′ [ρ(1)] approach that of the exact functional. Using the local approx-
imation of the density-matrix functional and calculating FW

′ [ρ(1)] as one would
calculate the exact functional will grant no reduction to computational time[Sch19].
Instead we require a way to reduce the number of non-interacting one-particle
states in FW

′ [ρ(1)]. The main idea of the ACA is to apply a unitary rotation on
the one-particle basis before performing a cluster approximation, i.e. neglecting
some one-particle states. This unitary transformation is constructed in such a way
that the following neglect of orbitals affects the density-matrix functional only min-
imally. The ACA can be seen as a generalization of Töws and Pastor’s two-step
approximation[TP11; TP12] .

Let |χα⟩ be an Nχ-dimensional one-particle basis and ρ(1) ∈ CNχ×Nχ the correspond-
ing one-particle reduced density-matrix. Additionally, assuming that the interaction
is limited to the first Nimp one-particle orbitals, we have2

Wloc = 1
2

∑
α,β,γ δ≤Nimp

Uα,β,γ δc
†
αc

†
βcδcγ . (5.46)

2This can always be achieved by reordering the one-particle basis.
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Nimp and the remaining Nbath = Nχ − Nimp are called the interacting one-particle
states and bath-states, respectively. In the simplest case of a block-diagonal one-
particle reduced density matrix

ρ(1) =

ρ(1)
imp,imp 0

0 ρ
(1)
bath,bath

 (5.47)

with ρ(1)
imp,imp ∈ CNimp×Nimp and ρ(1)

bath,bath ∈ CNbath×Nbath , the density-matrix functional
can be shown to have the separation property[Sch19]

FWloc [ρ(1)] = F
Wloc
imp,imp + F 0

bath,bath. (5.48)

From the above equation it follows that the density-matrix functional FWloc [ρ(1)] with
a complexity of O(2Nχ) can be evaluated by calculating the functional FWloc

imp,imp with
a computational complexity of O(2Nimp) and a non-interacting functional F 0

bath,bath,
which is given by[Sch19]

F 0
β [ρ(1)] = 1

β
Tr[ρ(1) ln ρ(1) − (1 − ρ(1)) ln(1 − ρ(1))]. (5.49)

For a general one-particle reduced density-matrix

ρ(1) =

 ρ
(1)
imp,imp ρ

(1)
imp,bath

(ρ(1)
imp,bath)† ρ

(1)
bath,bath

 (5.50)

a unitary transformation of the form

U =
(
1 0
0 Ubath,bath

)
(5.51)

with Ubath,bath ∈ CNbath×Nbath , that only acts on the bath-states and hence does not
spread out the localized interaction over all one-particle states, can be constructed.
The density-matrix functional is independent of the unitary transform, i.e.

FW [ρ(1)] = FW [U †ρ(1)U ]. (5.52)

The idea of the unitary transformation is to transform the general one-particle re-
duced density matrix of Eqn. 5.50 into a band-like shape onto which the separation
property 5.48 can be applied.
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The unitary transform is constructed such that the transformed one-particle reduced
density-matrix obtains the banded form

ρ̃(1) = U †ρ(1)U = (5.53)
ρ

(1)
imp,imp ρ̃

(1)
imp,bath1

0 . . .

(ρ̃(1)
imp,bath1

)† ρ̃
(1)
bath1,bath1

ρ̃
(1)
bath1,bath2

0
0 (ρ̃(1)

bath1,bath2
)† ρ̃

(1)
bath2,bath2

ρ̃
(1)
bath2,bath3

... 0 (ρ̃(1)
bath2,bath3

)† ρ̃
(1)
bath3,bath3


(5.54)

The transformation of the one-particle basis introduces no approximation. Further,
Eqns. 5.51-5.54 have shown that a unitary transformation, that limits the dimension
of the off-diagonal matrices ρ̃(1)

imp,bath1
and ρ̃(1)

bathi,bathi+1
to at most Nimp ×Nimp, exists.

Thus, the transformed one-particle reduced density matrix has a bandwidth of at
most 2Nimp − 1. See Appendix of [Sch19] for the detailed proof.

Due to the banded form of the density matrix, neglecting one of the off-diagonal
matrices ρ̃(1)

bathi,bathi+1
results in a block-diagonal one-particle reduced density-matrix.

If we neglect the coupling between the first level and second level effective bath, i.e.
ρ̃

(1)
bath1,bath2

, we obtain

ρ̃(1) ≈ ρ̃
(1)
M=1 = (5.55)

ρ
(1)
imp,imp ρ̃

(1)
imp,bath1

0 . . .

(ρ̃(1)
imp,bath1

)† ρ̃
(1)
bath1,bath1

0 0
0 0 ρ̃

(1)
bath2,bath2

ρ̃
(1)
bath2,bath3

... 0 (ρ̃(1)
bath2,bath3

)† ρ̃
(1)
bath3,bath3

 .
(5.56)

Eqn. 5.56 represents the adaptive cluster approximation at the first level, i.e. with
one effective bath level (ACA(M=1))

FW
′ [ρ(1)] ≈ FW

′
ACA(M=1)[ρ(1)] = FW

′ [ρ(1)
M=1] (5.57)

and we can use the separation property Eqn. 5.48 on a block matrix such as Eqn.
5.56 to obtain a density-matrix functional of the i-bath level and the non-interacting
functional of the remainder. Numerical evidence suggests that the difference of the
exact density-matrix functional and the ACA(M)-approximation

|FW [ρ(1)] − FWACA(M)[ρ(1)]| (5.58)

is a monotonically decreasing function of M. Properties and convergence tests of the
ACA on different bath levels can be found in [Sch19].
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5.5 Application to C3O2

Previously, using the local hybrid functional PBE0r, we found that the energetically
preferred state of the C3O2 monomer is taken when the structure is in a bent configu-
ration with a main angle α of about 170°. Because the RDMFT+ACA method offers a
more accurate description of strong electronic correlations due to its inherent use of
fractional occupations of the 1RDM, we aim to apply the former in a complementary
manner to confirm the results, ensuring that our findings are reproducible and
reliable.

Similarly to locally approximating the interaction W in Sec. 5.1 we can apply a
local approximation on the decomposition function λ(r⃗, r⃗′) and define it as a sum of
localized contributions λR in the form

λ(r⃗, r⃗′) =
∑
R

λR(r⃗, r⃗′). (5.59)

Every local contribution λR is supposed to be localized in the vicinity of the position
R⃗R. Given the symmetry of the molecule Eqn. 5.59 can be written as

λsym,R⃗(r⃗, r⃗′) = f(|r⃗ − R⃗|)f(|r⃗′ − R⃗|) (5.60)

and select the positions of the center carbon atom as the centers R⃗. We choose the
function f(r) as a sum of five Gaussians

f(r) = e−1.5609r2 + 564.35 · (e−1.5606r2 − e−1.6503r2)

+3729.03 · (e−1.6641r2 − e−1.65083r2), (5.61)

approximating a smoothened step function.

With this choice, we obtain a decomposition of the interaction W ′ into local terms
WR that are defined as

WR = 1
2

∫
d4x⃗1

∫
d4x⃗2

∫
d4x⃗3

∫
d4x⃗4w(x⃗1, x⃗2)

·λR(r⃗, r⃗′)δ(x⃗1 − x⃗4)δ(x⃗2 − x⃗3). (5.62)
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Fig. 5.1.: The function f(r) given by Eqn. 5.61. The center carbon of C3O2 is located at
the origin. The vertical arrows indicate the distances to the neighbouring carbon
atoms and oxygen atoms at r = 2.37a0 (brown dashed line) and r = 4.55a0 (violet
dashed line), respectively.

Due to the shape of C3O2 - i.e. of a molecule consisting of a chain of 5 atoms - the
density-matrix functional of the full interaction is divided into the sum of interactions
around the individual atoms, i.e.

FW [ρ(1)] ≈ F
WC1
DFT [ρ(1)] + F

WC2
DFT [ρ(1)]

+FWC3
CI [ρ(1)]

+FWO1
DFT [ρ(1)] + F

WO2
DFT [ρ(1)]. (5.63)

To determine the minimum bath level for sufficiently accurate results static calcula-
tions at all bath levels with varying number of determinants were done, see Fig. 5.2.
The results indicate that a bath level of 2 gives sufficiently accurate results (within
0.3kcal/mol). The density-matrix functionals of the interactions around C1,C3,O1 and
O2 are evaluated by an approximate density-functional and the interaction of the re-
maining center carbon atom C3 with a density-matrix functional on an ACA(1) level.
As shown in Fig. 4.2, the single-point energies of C3O2 at different angles α(C-C-C)
indicate a minimum around 170°, in good agreement with the PBE0r results. This
reinforces the conclusion that the C3O2 molecule has a slight bend around its cen-
tral Carbon atom, validating the observations made with the PBE0r functional and
highlighting the consistency between the different computational approaches. All
in all, both PBE0r and RDMFT+ACA calculations indicate a bent structure for the

46 Chapter 5 Reduced Density Matrix Functional Theory



2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
28

2
30

2
32

2
34

2
36

2
38

2
40

# of determinants used

-0.1

0.0

0.1

0.2

0.3

0.4

E
-E

A
C

A
(4

)(m
a
x
d

e
ts

) 
[e

V
]

ACA(4)

ACA(2)

ACA(3)

2
12

2
14

2
15

2
16

0.149

0.15

0.151

0.152

0.153

ACA(1)

Fig. 5.2.: Energy convergence on different ACA levels. With an estimated error of less than
0.3kcal/mol the ACA(2) results of the level of the second bath give sufficiently
accurate results. Inset: ACA(1) results.

C3O2 molecule, with an angle of roughly 170° around the central Carbon atom. The
computational moethods used provide a comprehensive understanding of the molec-
ular characteristics, contributing relevant insights into the structural and electronic
properties of C3O2.
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6Nanostructure Growth
Mechanisms in CIGS Thin Films

Having discussed the structural and electronic properties of C3O2 in the previous
chapters, we now look at CIGS thin films as a means of studying nanostructure
growth. Understanding the early stages of growth of such thin films is crucial for
improving the performance and scalability of the latter for various applications,
e.g. for high-efficiency photovoltaic systems. In this chapter, we employ TBMD
simulations, in particular the eXtended Tight-Binding method developed by Grimme
et al.[BEG19; GBS17], to investigate the initial stages of CIGS thin-film growth
on a MoSe2 substrate. By examining the mechanics of single atom adsorption,
diffusion paths and energy barriers, we seek to provide insights into the kinetic and
thermodynamic processes that govern the formation of these nanostructures. The
understanding of these early stages of growth mechanisms can be applied to other
thin-film growth processes as well.

First, we review the methods and computational details of the static and MD calcula-
tions in Sec. 6.1. And lastly, we discuss our results in Sec. 6.2, where we elaborate
on the above mentioned processes.

6.1 Methods and Computational Details

The total energy calculations are performed using the Vienna Ab-Initio Simulation
Package (VASP) [KH93; KH94b; Kre96; Kre+96; KH94a; KJ99]. The exchange and
correlation interactions are described within the generalized gradient approximation
(GGA) using the optB86b-vdW [KBM09] functional. The plane-wave (PW) basis
set cut-off energy is set to 400eV and convergence criteria for the forces and the
relaxation are set to 0.01eV/Å and 10−4eV, respectively. Table 6.1 lists the lattice
parameters obtained by various exchange-correlation functionals, indicating that
optB86b-vdW predicts the lattice parameters very close to the experimental ones.

The k-points are generated using the Monkhorst-Pack scheme [MP76] in a 4×4×4
and a 4×4×1 mesh on a Γ-centered grid for the single and multi layer systems,
respectively. The climbing image nudged elastic band method (CI-NEB) [HUJ00]
is used to gain an insight into the diffusion dynamics of In and Se adatoms on
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the MoSe2(0001) surface. The multilayered system consists of a 4 layered 3×3
MoSe2 supercell whose 2 bottom layers are fixed to simulate the bulk. To avoid any
interactions between periodic images of the system, an optimized vacuum gap of
13Å along the z-direction is employed.

The TBMD calculations are done with the xTB method as implemented in the CP2K
[Küh+20] software package. In order to model the growth of In2Se3 films on MoSe2

(0001) using a TBMD method, a 2-layered 8×8 MoSe2 supercell with dimensions
26.62×26.62×40Å3 is chosen. A vacuum gap of 27Å is chosen along the z-direction
to ensure that (1) there is no interactions between adsorbants and their periodic
images and (2) the growth film has sufficient space to form.

All processes that can appear on a growing crystal surface are considered. These
include atom depositions, surface diffusion, evaporation, bulk diffusion, defect
depositions and more, see Fig. 6.1. Starting from a clean MoSe2 surface, In and
Se atoms are deposited at randomly chosen surface sites after regular intervals. In
our growth model, deposition flux and ratio of In and Se atoms can be controlled.
Here we consider systems with In:Se ratios of 1:1 and 2:3. After each deposition, the
system is allowed to equilibrate for about 5ps. The substrate temperature is 300K.

6.2 Results and Discussion

6.2.1 Mechanics of Single Atom Adsorptions

The (0001) surface of MoSe2[Mir+16] is energetically most favorable and is thus
used as the substrate for all given growth simulations. The (0001) MoSe2 surface
is terminated with an Se layer, therefore it exhibits an inert surface character, i.e.
it’s highly non-reactive like e.g. pure Si or mica [Gao+20]. The adsorption of
single atoms on the clean MoSe2 surfaces and MoSe2 surfaces with Se or Na atoms
present above the top-most layer were considered, see Fig. 6.2 a) and b). Table
6.2 shows a summary of adsorption energies for single adatoms on different MoSe2

Tab. 6.1.: Bulk lattice parameters obtained from different XC functionals used in our study
and their deviation from experimental values, a=3.299Å, and c=12.938Å

Functional ∆ a ∆ c
BEEF-VdW +1.24% +8.76%
DFT-D3-BJ -0.73% -1.58%
SCAN -1.18% +19.15%
rVV10+SCAN -0.27% +1.92%
optB86b-VdW -0.06% +0.88%
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Fig. 6.1.: Schematic picture of the processes taking place on the substrate - among them
adsorption, desorption, diffusion on the surface and cluster/island formation.

surfaces. Adsorption of In and Se is endothermic on a clean substrate, while Na is
adsorbing exothermically on the surface. It’s assumed to be due to the differences
in electronegativity of the adatoms - the greatest difference being between Se1 and
Na.

Since both Na and Se are readily available, due to the diffusion of Na from the lime
glass and the Se vapor in the chamber, adsorption calculations of In and Se were

1The MoSe2 surface is terminated into an Se layer and thus only the difference to Se is relevant.

Eads in eV
Inads on clean MoSe2 +3.07
Inads on Na/MoSe2 +2.91
Inads on 3Na/MoSe2 +2.08
Inads on 2Na/MoSe2 +2.07
Inads on Se/MoSe2 +1.81
Seads on clean MoSe2 +1.56
Seads on Na/MoSe2 +0.9
Seads on In/MoSe2 +0.28
Naads on clean MoSe2 -0.29
Inads on 2Se/MoSe2 -0.38
Seads on 2Na/MoSe2 -2.0

Tab. 6.2.: Adsorption energies of atoms on clean MoSe2 and on an MoSe2 surface with
previously adsorbed atoms.
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Fig. 6.2.: a) Se facilitates an exothermic adsorption of In on-top of the MoSe2 surface, while
b) the availability of Na enables an exothermic adsorption for Se. Mo: purple, Se:
green, In: pink, Na: yellow. Yellow shaded areas refer to charge accumulation,
while blue shaded areas refer to the opposite.

undertaken with either Na and Se already being on the surface. The presence of two
Se or Na atoms on the MoSe2 surface facilitates an electrostatic interaction with In
and Se, respectively, and thus allows for an exothermic adsorption with adsorption
energies of Ea=-0.38eV in case of In and -2.0eV for Se. Fig. 6.3 shows the Density of
States (DOS) and band structure (BS) of a clean MoSe2 surface. The band structure
exhibits a metallic behavior and the only contributions are coming from the d- and
p-orbitals of Mo and Se, respectively.

Fig. 6.4 and A.1 (see Appendix) show BS and DOS corresponding to the systems
shown in Fig. 6.2. The adsorption of In onto the MoSe2 surface does not create any
new bands in the BS of the system (see Fig. 6.4 (top) and corresponds to the electron
density figure which does not show any perturbation of the electronic structure,
indicating a physiosorption. Having Se atoms present on the surface prior to In
adsorption introduces new bands close and below the Fermi energy coming from the
p orbitals of the Se atoms, see Fig. 6.4 mid and bottom. Indium can interact with
these newly formed valence electrons and enable a purely electrostatic adsorption of
the former.

The situation with Se and Na on the other hand is more interesting. Here, the
addition of Na prior to Se adsorption brings the bands from the Se p-orbitals closer
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Fig. 6.3.: Band structure and DOS for clean MoSe2. Parentheses refer to the respective
orbitals of the atoms.

towards the Fermi level and makes them available as valence electrons. These can
now form bonds with the Na, enabling an exothermic adsorption of Se.

6.2.2 Diffusion Paths & Energy Barriers

To understand the energetics and dynamics of isolated atoms and clusters of the
constituent elements, ab-initio total energy calculations for isolated In and Se adsor-
bants as well as various molecular formations of InxSey on MoSe2 are performed.
In and Se adatoms are most stable when they are directly on-top of the surface Mo
and Se sites, respectively. Adsorption calculations of (In, Se) on the other hand
indicate the energetic minimum to be over a hollow region with a bond length of
2.768 ± 0.001Å , see Fig. 6.5. Diffusion paths and barriers for In and Se on MoSe2

are obtained using the NEB method. Fig. 6.6 shows that the diffusion path is taken
along a hollow region for both In and Se diffusions, while In protrudes more strongly
into the hollow region than Se. The energy barrier of the In diffusion between two
adjacent Mo sites is Ea = 0.11eV, while the energy barrier of Se for a diffusion
between adjacent Se sites is Ea = 1.08eV. Due to its large energy barrier the latter is
not observed in the MD simulations (see Sec. 6.2.3 for more details).
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6.2.3 Kinetic Thermodynamics

Adatom diffusion on a surface is described as a chain of thermally activated uncorre-
lated events, called a Markovian chain[Gag17; AE10], a random walk on a substrate
if you will. Using Arrhenius Law

D = D0 · exp (−Ea/kBT ), (6.1)

where D is the diffusion rate and D0 a pre-exponential factor, we can - given a
diffusion rateD - estimateD0 by providing energy barriers from the NEB calculations.
An adatom spends most of its time at specific surface sites and only occasionally
takes random hops between adjacent adsorption sites. In addition to Eq. 6.1 the level
of diffusivity of an adatom hopping between surface sites can be expressed using the
Einstein’s equation expressed in the continuous time random walk formalism

D = MSD(τ)/(2dτα), (6.2)

where MSD(τ) refers to the adatom’s mean square displacement with lag time τ . d
refers to the dimensionality of the diffusion path which in case of a surface diffusion
is 2. α defines the dominant diffusion type to account for possible non-linearities of
MSD(τ) vs τ . α = 1 (linear) indicates normal diffusion (random walk), while α < 1
and 1 < α < 2 correspond to subdiffusive and superdiffusive regimes, respectively.
Finally, α ≥ 2 corresponds to ballistic diffusion [Ger+20]. Using Eqn. 6.1 the energy
barrier Ea of any observed diffusion can be computed as

Ea = −kBT ln(D/D0), (6.3)

where D can be calculated using Eqn. 6.2. Unlike Se, which with its rather large
energy barrier of Ea=1.08eV was not observed in any of the MD simulations, the
easily observed diffusion path of In with Ea=0.11eV can be used to get an estimate
for the pre-exponential factor D0. The latter can be taken to be constant - a valid
assumption for solids [YKR07]. Fig. 6.7 shows a selected In adatom diffusion on
MoSe2 vs lag time τ for its MSD and diffusion coefficient for up to 4ps of lag time.
The linear variation of MSD(τ) vs τ indicates that the given system is in the diffusive
regime (α = 1) [Gio19]. Since the process of In diffusion is in the diffusive regime,
diffusion barriers can be obtained using Eq. 6.2.2 Using Eq. 6.1 this results in
D0 ≈ 64 · 103Å2/ns. Thus, the energy barrier of any process, given only its diffusion
coefficient in the diffusive regime, can be derived. Other diffusions, such as e.g. InSe
dimers, can be observed. The energy barriers extracted for various such dimers fall
in the range of 0.124-0.138eV±kBT , which is in good agreement with previously
done adaptive kinetic Monte Carlo (aKMC) calculations for InSe on MoSe2[Mir21].

2The diffusion coefficients for different lag times are obtained using Toni Giorgino’s VMD plu-
gin[Gio19] which utilizes Eqns. 6.1 and 6.2.
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The diffusion barriers for other observed clusters and their respective dominant type
of motion can be gleaned from Table 6.3. The general assumption that clusters of
two or more atoms diffuse slower than the isolated atom does not hold true here
as any of these systems have a lower energy barrier than isolated Se at 1.08eV. The
addition of rotation as an aiding mechanism for diffusion in dimers/clusters of two
or more atoms is likely to be a large contributor for the energy barrier decrease.

6.2.4 Film growth dynamics for different ratios of In:Se

This section deals with InxSey growth on MoSe2 for deposition ratios of In:Se of 1:1
and 2:3. Fig. 6.8 shows the deposition process of In and Se on the MoSe2 (0001)
surface given a 1:1 deposition rate. In the low coverage range the atoms are evenly
distributed on the surface, which gradually transitions into a layer formation (Sesub-
In-Se) at higher coverages. Once the initial two layers are consolidated (0.47-0.7ML),
a new In layer starts forming at even higher coverage. These observations indicate a
sequential layering of Se-In-Se which is further confirmed by the layers observed
in the depth profile of the system at 1ML coverage in Fig. 6.9. This confirms
experimentally observed layer formations in In2Se3 powder and poly-crystalline
samples[Küp+18], respectively. The dynamics in the case of a 2:3 deposition
rate of In:Se is similar to the one above at low coverages, i.e. initial depositions
correspond to In and Se adsorbing on their individual stable sites. Due to additional
Se available to the system, any excess Se interact with each other to form Se dimers
and trimers on-top of the In layer. This excess Se seems to initiate the formation of
a second In layer before the first In layer fully covers the MoSe2 surface. However,
at higher coverages, see Fig. A.2 (e) in the Appendix, a strong admixture between
the adatoms and the surface MoSe2 layer is observed. This leads to better adhesive
effects between adatoms and MoSe2, but possibly changes the phase of the (In, Se)
compound. Another effect of the excess Se during deposition can be observed in
scaled island size distribution (ISD) plots of both systems, see Fig. 6.10. In the case

Tab. 6.3.: Selected clusters and islands in our simulations at 300K, their average diffusion
barrier and the exhibited type of motion: rotational (r) and translational (t).
(Lower index ’In’ indicates clusters/islands on the grown In layer)

Cluster/Island Diffusion Barrier Eα Type of motion
Se2 Eα=0.16 eV r,t
Se3 Eα=0.20 eV r
(Se2)In Eα=0.20 eV r,t
(Se3)In Eα=0.17 eV r,t
InSe Eα=0.22 eV t
In2Se Eα=0.17 eV r
In3Se2 Eα=0.21 eV r
(InSe)In Eα=0.13 eV r
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of the 1:1 deposition rate, it shows that the initially wide spread size of clusters
becomes smaller with increasing coverage and thus, the deviation from the average
sized cluster becomes very small. For the ratio of 2:3, however, the simultaneous
layer formation described before doesn’t allow for many larger clusters initially but
instead forms many smaller clusters which are closer to the size of the average
cluster. In general, though, it appears that the ISD follows the generalized scaling
behavior, resembling an exponential function and observed previously in monolayer
nucleation experiments [Zhe+08].

6.2.5 Discussion

The validity of our assumption of a constant diffusion factor for solids we set in Sec.
6.2.3 hinges on the question whether the process/transition under consideration is
in the diffusive regime, i.e. whether MSD(τ) vs τ is linear in τ and whether the
system had sufficient time to equilibrate. We confirmed the former when we made
the initial statement while the latter can be seen by plotting the bond length vs
simulation time. One such plot is shown in Fig. 6.11 for the bond-length and angles
of In-Se in coordinated clusters. It can be seen that there is no large deviation in
the bond-length after about 2ps (except due to vibrational effects). Thus, energy
barriers for variously sized clusters or islands can be determined while growing the
film. Such kind of estimates are important and useful. On one hand, the barriers
for such clusters or small islands are needed as input parameters for large-scale
Monte-Carlo simulations. On the other hand, it is not straightforward to calculate
these barriers by ab-initio calculations.

A layer-by-layer growth of (In, Se) compound on MoSe2 surface is observed, i.e.
the growing film of (In, Se) first fully covers the substrate surface before forming
an additional layer. This growth dynamics has been observed recently by Gao et
al. [Gao+20], growing In2Se3 nanoplates on different substrates. They observed
that the growth on inert substrates (no dangling bonds on the substrate surface),
such as mica or MoSe2 in this case which has become inert due to the cleavage of
the crystal along the van der Waals gap [MPM12; CR93], leads to the formation of
horizontal nanoplates while growing them on reactive surfaces such as SiO/Si leads
to the formation of vertical nanoplates.
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Fig. 6.4.: Band structure and DOS for In, InSe and InSe2 adsorbants. Parentheses refer to
the respective orbitals of the atoms.
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(a) Top view of In and Se adsorption

(b) Side view

Fig. 6.5.: Top (a) and side (b) views of MoSe2 layer showing adsorbed In+Se pair.
Mo, Se, and In atoms are represented as cyan, yellow and pink colored
spheres, respectively.
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(a)

(b)

Fig. 6.6.: Diffusion paths of In (a) and Se (b) adatom on MoSe2 surface. The diffusion paths
are shown using diffused spheres connecting initial and final configurations. The
energy barriers for In and Se are 0.11eV and 1.08eV, respectively. Mo, Se, and In
atoms are represented as cyan, yellow and pink colored spheres, respectively.
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Fig. 6.7.: Left: MSD of In adatom diffusion on MoSe2 surface. Right: Corresponding
diffusion coefficient for Mo to Mo transition (for one particular trajectory has an
average diffusion coefficient of D≈914Å2/ns).

(a) Clean surface (b) 0.08ML coverage

(c) 0.24ML coverage (d) 0.47ML coverage

(e) 0.7ML coverage (f) 1ML coverage

Fig. 6.8.: Cross-sections of growing (In,Se) film on MoSe2. Indium and selenium grow in a
layer-by-layer fashion on MoSe2 substrate under the given simulation conditions.
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7Conclusion

A notable part of the Thesis has been dedicated to the theoretical and practical
implementation components of the PAW method - as a method designed to resolve
issues arising from singularities from the potential at atomic nuclei sites when solving
the Kohn-Sham equations and a formalism that bridges the gap between PP and
LAPW methods while still giving access to the full one-electron wave function. The
implementation of the SCAN functional by Perdew et al. within the original PAW
framework of Blöchl in the CP-PAW code base while adhering to the necessity of
second and third order derivatives as originally presented in [Blö94b], see Eqn. 3.34,
provided insight to the inner workings of CP-PAW.

A detailed study of the C3O2 molecule was used to demonstrate an application of
the methodologies presented within this Thesis. We have shown that the carbon
suboxide in the gas phase minimizes into a bent geometry. This result conforms
with calculations with higher-level methods but was achieved on a computationally
much less demanding scope. We have shown that results from the use of a novel
approach such as the real-space decomposed DF+RDMF approach and its reduction
in computational effort by neglect of one-particle states are in accordance with
results on the level of the local hybrid functionals. The bent structure goes contrary
to our intuitive understanding of even such an apparently simple molecule. Not only
does this suggest that C3O2 might exhibit the same properties as g − C3N4 does, e.g.
for instance the possibility to synthesize C3O2 into a graphene-like substance, but it
also opens up the possibility to gain new insight from other "ordinary" molecules
and compounds from old chemistry that may have been overlooked due to our now
seemingly faulty chemical intuition.

Furthermore, we looked into the growth mechanisms involved in the growth of
CIGS thin films, as the latter has established itself as an essential component in
the manufacturing of high-efficiency photovoltaic systems. Ab-initio based total
energy calculations for adsorption of In and Se adatoms on an inert MoSe2 substrate
surface were performed. Diffusion paths and barriers of these adsorbates have been
estimated using the NEB method. Utilizing the knowledge regarding the behavior of
In and Se adsorption from first-principles calculations, we have established a tight-
binding molecular dynamics based model for growth of (In, Se) film on MoSe2. Many
experimental growth parameters like temperature and deposition fluxes of incoming
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atoms can be controlled in this model. At sufficient surface coverage, alternate layers
of In-Se can be observed on the substrate surface. Formation of alternate In-Se layers
indicates the formation of a crystalline phase of (In, Se) in the simulations. Further,
it has been identified that diffusion of In adatoms on MoSe2 surface falls under the
diffusive regime. Altogether , we are now able to pick any atom or molecule in our
system and partition them into individual processes they take on the surface and
extract an energy barrier for all of them. This is important because doing NEB is
exponentially difficult and, instead, with this approach the barriers are estimated
from tight binding methods and this is useful for other methods, e.g. various Monte
Carlo methods, which require these values as inputs.

By incorporating these computational approaches, we want to establish the im-
portance of combining advanced theoretical methods with practical applications
in Materials Science. We hope with this work to not only advance our insights
into specific materials like C3O2 and CIGS, but also improve the theoretical tools
available for a wider array of applications in molecular and nanostructure materials
research.

Future research resulting from this thesis could investigate an extension of the
RDMFT+ACA approach to a wider range of materials, such as those undergoing
phase transitions or those displaying topological properties. Also, continued improve-
ment and fine-tuning of the SCAN meta-GGA functional or other newly emerging
functionals within the CPPAW framework could open new possibilities in the analysis
of material properties, adding to the development of new materials with customiz-
able mechanical and electronic properties.
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ASupplementary Figures

Fig. A.1.: Band structure and DOS for Se, SeNa and SeNa2 adsorbants.
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(a) Clean surface (b) 0.24ML coverage

(c) 0.47ML coverage (d) 0.7ML coverage

(e) 0.8ML coverage

Fig. A.2.: Crosssections of growing (In,Se) film on MoSe2. Indium and selenium grow in a
layer-by-layer fashion on MoSe2 substrate under the given simulation conditions.
Case: 2:3.
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BImplementation of the SCAN
functional

We want to calculate

Exc[n↑, n↓] =
∫
d3rnϵxc(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓) (B.1)

We can separate Exc into Ex and Ec. For the SCAN functional the exchange energy is
identical (except for a linear scaling) in both the restricted and unrestricted case.
Thus, I will start with translation of the exchange part. Constants, not otherwise
defined, can be found listed and tabled in the corresponding reference papers.

B.1 Exchange Energy for spin restricted and
unrestricted scan

The exchange energy can be calculated as (see eqn. (3) of ref. [SRP15a])

Ex[n] =
∫
d3rnϵunifx (n)Fx(s, α) (B.2)

where n is simply the electron density1 and

ϵunifx = −(3/4π)(3π2n)1/3 (B.3)

Fx = {h1
x(s, α) + fx(α)[h0

x − h1
x(s, α)]}gx(s) (B.4)

h1
x = 1 + k1 − k1/(1 + x/k1) = k1 + x+ k1x

k1 + x
(B.5)

x = µaks
2[1 + (b4s

2/µak) exp(−|b4|s2/µak)]

+ {b1s
2 + b2(1 − α) exp[−b3(1 − α)2]}2 (B.6)

α was nicely defined in the TPSS [Tao+03] paper as

α = (τ − τw)/τunif = (5p/3)(z−1 − 1) ≥ 0 (B.7)

τw = |∇n|2/8n (B.8)

τunif = (3/10)(3π2)2/3n5/3 (B.9)

1which is given as an input along the with ∇n and τ
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where p = |∇n|2/[4(3π2)2/3n8/3] = s2 and z = τw/τ ≤ 1. I’m going to use p instead
of s2 in eqn. B.6. For future purposes it is a good idea to have the derivations in
regards to n,∇n and τ on the ready. Thus:

∂np = −8/3 · |∇n|2/[4(3π2)2/3n11/3] = − 8p
3n (B.10)

∂∇np = 2 · p/∇n (B.11)

! Exchange part which is the same for both restricted
! and unrestricted scan (except a linear scaling, see Oliver and Perdew

1979)

subroutine scan_x()
implicit none !for the integer and real parameter differentiaion
********************
*INPUTS, OUTPUTS, and DECLARATIONS*
********************

p = ngr*ngr/(4.0d0*pi23*n**(8.0d0/3.0d0))
dp_dn = -8.0d0/3.0d0*p/n
dp_dngr = 2.0d0*p/ngr

While we are at it we can also do the derivatives for z and α:

∂nz = ∂n
|∇n|2

8nτ = − |∇|2

8τn2 = −z/n (B.12)

∂∇nz = 2 · z/∇n (B.13)

∂τz = −z/τ (B.14)

and

∂nα = 5/3 · (−p∂nz/z2 + ∂np · (1/z − 1)) (B.15)

∂∇nα = α

p
∂∇np− 5p

3z2∂∇nz (B.16)

∂τα = 1/τunif (B.17)

This translates to:

tau_unif = 0.3d0*(3.0d0*pi**2)**(2.0d0/3.0d0)*n**(5.0d0/3.0d0)
tau_w = ngr*ngr/(8.0d0*n)

z = tau_w/tau
dz_dn = -z/n
dz_dngr = 2.0d0*z*/ngr
dz_dtau = -z/tau
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alpha = (5.0d0*p/3.0d0)(1.0d0/z-1.0d0)
dalpha_dn = (5.0d0/3.0d0)*(-p*dz_dn/(z**2)+dp_dn*(1.0d0/z-1.0d0))
dalpha_dngr = (alpha/p)*dp_dngr - (5.0d0*p/(3.0d0*z**2))*dz_dngr
dalpha_dtau = 1.0d0/tau_unif

Analogously, x,h1
x,fx and gx from eqn. B.4

∂px = µak + b4p exp(−b4p/µak)[2 − pb4/µak]

+ 2b1 · (b1p+ b2(1 − α) exp[−b3(1 − α)2])

∂αx = 2b2 exp[−b3(1 − α)2]

· (b1p+ b2(1 − α) exp[−b3(1 − α)2])

· (2b3(1 − α)2 − 1)

∂xh
1
x = k2

1/(k1 + x)2

∂ph
1
x = ∂xh

1
x∂px

∂αh
1
x = ∂xh

1
x∂αx

∂αfx = −c1x exp[−c1xα/(1 − α)] + dxc2x exp[c2x/(1 − α)]
(1 − α)2

∂pgx = −a1 exp(−a1/p
1/4)

4p5/4

Using the above derivatives we can now set on to get the derivatives of the enhance-
ment factor Fx:

∂pFx = ∂ph
1
x(1 − fx)gx + (h1

x + fx(h0
x − h1

x))∂pgx
∂αFx = (∂αh1

x + ∂αfx · (h0
x − h1

x) − fx∂αh
1
x)gx

∂nFx = ∂αFx∂nα+ ∂pFx∂np

∂∇nFx = = ∂αFx∂∇α+ ∂pFx∂∇np

∂τFx = ∂αFx∂τα

B.2 Correlation Energy for restricted spin

In the restricted case we have

ζ = n↑ − n↓
n↑ + n↓

= 0 (B.18)

and the exchange scaling

ϕ(ζ) = [(1 + ζ)2/3 + (1 − ζ)2/3]/2 = 1 (B.19)
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which simplifies some of the derivatives. The correlation energy density is defined
as (see SI of [SRP15a])

ϵc = ϵ1c + fc(α)(ϵ0c − ϵ1c) (B.20)

where

fc(α) = exp[−c1cα/(1 − α)]θ(1 − α)

− dc exp[c2c/(1 − α)]θ(α− 1)]

and θ is the step function. ϵ1c is defined as

ϵ1c = ϵLSDA1
c +H1, (B.21)

where

H1 = γϕ3 ln[1 + w1(1 − g(At2))]

∂rsH1 = γ(∂rsw1(1 − g(At2) + g(At2)w1(t2∂rsA+ ∂rst
2))

(1 + 4At2)

∂pH1 = γg(At2)w1A∂pt
2

(1 + 4At2)(1 + w1(1 − g(At)))
t = (3π2/16)1/3s/(ϕr1/2

s )

= (3π2/16)1/3p1/2/(ϕrs1/2)

∂rst
2 = −t2/rs

∂pt
2 = t2/(prs)

w1 = exp[−ϵLSDA1
c /(γϕ3)] − 1

∂rsw1 = − exp[−ϵLSDA1
c /γ] · ∂rsϵ

LSDA1
c

A = β(rs)/(γw1)

∂rsA = ∂rsβ/(γw1) −A/w1∂rsw1

β = 0.066725(1 + 0.1rs)/(1 + 0.1778rs)

∂rsβ = −0.0052/(1 + +0.1778rs)2

g(At2) = 1/(1 + 4At2)1/4

Let’s start with the necessary derivatives for ϵ1c :

∂rsϵ
1
c = ϵrsϵ

LSDA1
c + ∂rsH1 (B.22)

∂pϵ
1
c = ∂pH1 (B.23)

Next up is the ϵ0c in eqn. B.21

ϵ0c = (ϵLDA0
c +H0)Gc(ζ) (B.24)

74 Chapter B Implementation of the SCAN functional



where Gc(ζ) = {1−2.3631[dx(ζ)−1]}(1−ζ12) and dx(ζ) = [(1+ζ)4/3 +(1−ζ)4/3]/2,
which is 1 in case of the restricted spin variant.

ϵLDA0
c here is defined as

ϵLDA0
c = −b1c/(1 + b2cr

1/2
s + b3crs) (B.25)

∂rsϵ
LDA0
c =

b1c(1/2 + b2c/
√
rs + b3c)

(1 + b2c
√
rs + b3crs)2 (B.26)

In analogy to H1, we have

H0 = b1c ln[1 + w0(1 − g∞(ζ = 0, s))] (B.27)

∂rsH0 = b1c∂rsw0(1 − g∞)/(1 + w0(1 − g∞)) (B.28)

∂pH0 = −b1cw0∂pg∞/(1 + w0(1 − g∞)) (B.29)

w0 = exp[−ϵLDA0
c /b1c] − 1 (B.30)

∂rsw0 = −∂rsϵ
LDA0
c exp(−ϵLDA0

c /b1c)/b1c (B.31)

g∞ = lim
rs→∞

g(At2) = 1/(1 + 4χinfp)1/4 (B.32)

χ∞(ζ) = (3π2/16)2/3β(rs → ∞)ϕ/[cx(ζ) − f0] (B.33)

where cx(ζ) = −(3/4π)(9π/4)1/3dx(ζ) and f0=0.9. At ζ=0 we have χ∞=0.128026

The derivatives for ϵ0c are then

∂rsϵ
0
c = ∂rsϵ

LDA0
c + ∂rsH0 (B.34)

∂pϵ
0
c = ∂pH0 (B.35)

Now we have all the ingredients to define ϵc in the code. Additionally I did the
derivatives for Ec and Ex to get the potentials. The derivatives can be found in the
code.

The correlation part for the unrestricted spin can be found in the code.

B.3 Second and Third Derivatives
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B.3.1 Exchange part

Let

Ex[n] =
∫
d3rnϵunifx (n)Fx(p, α) =

∫
d3rAx(n, p, α) (B.36)

We have for p:

p = |∇n|2/[4(3π2)2/3n8/3] = s2 (B.37)

∂np = −8/3 · |∇n|2/[4(3π2)2/3n11/3] = − 8p
3n (B.38)

∂2
np = 88p

9n2 (B.39)

∂3
np = −1232p

27n3 (B.40)

∂∇np = 2 · p/∇n (B.41)

∂2
∇np = 1/[2(3π2)2/3n8/3] (B.42)

∂3
∇np = 0 (B.43)

For z = τw/τ :

∂nz = −z/n (B.44)

∂2
nz = z

2n2 (B.45)

∂3
nz = −3|∇n|2/(τ4n4) (B.46)

∂∇nz = ∇n
4nτ (B.47)

∂2
∇nz = 1

4nτ (B.48)

∂3
∇nz = 0 (B.49)

∂τz = −τw

τ2 (B.50)

∂2
τ z = 2z

τ2 (B.51)

∂3
τ z = −6z

τ3 (B.52)

For rs = (4π/3)−1/3/n1/3:

∂nrs = −(4π/3)−1/3

3n4/3 (B.53)

∂2
nrs = 4(4π/3)−1/3

9n7/3 (B.54)

∂3
nrs = −28(4π/3)1/3

27n10/3 (B.55)
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For β = 0.066725(1 + 0.1rs)/(1 + 0.1778rs):

∂rsβ = −0.0052/(1 + 0.1778rs)2 (B.56)

∂2
rs
β = 0.00185 + 0.00033rs

(1 + 0.1778rs)4 (B.57)

∂3
rs
β = 0.00033(1 + 0.1778rs)4 − 0.7112(0.00185 + 0.00033rs)

(1 + 0.1778rs)8

· 1
(1 + 0.1778rs)5 (B.58)

ζ = n↑−n↓
n and for ϕ = [(1 + ζ)2/3 + (1 − ζ)2/3]/2 we have:

∂ζϕ = 1/3[(1 + ζ)−1/3 − (1 − ζ)−1/3] (B.59)

∂2
ζϕ = −1/9[(1 + ζ)−4/3 − (1 − ζ)−4/3] (B.60)

∂3
ζϕ = 4/27[(1 + ζ)−7/3 − (1 − ζ)−7/3] (B.61)

For ds(ζ) = [(1 + ζ)5/3 + (1 − ζ)5/3]/2:

∂ζds = 5/6[(1 + ζ)2/3 − (1 − ζ)2/3] (B.62)

∂2
ζds = 10/18[(1 + ζ)−1/3 + (1 − ζ)−1/3] (B.63)

∂3
ζds = −5/27[(1 + ζ)−4/3 − (1 − ζ)−4/3] (B.64)
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For α = (τ − τw)/τunif = (5p/3)(z−1 − 1) we have:

∂nα = 5/3[−p(∂nz)/z2 + ∂np · (1/z − 1)] (B.65)

∂2
nα = 5/3[−∂np∂nz/z2 − p∂2

nz/z
2 + 2p(∂nz)2/z3

+∂2
np(1/z − 1) − ∂np∂nz/z

2] (B.66)

∂3
nα = 5/3[−∂2

np∂nz/z
2 − ∂np∂

2
nz/z

2 + 2∂np(∂nz)2/z3 − ∂np∂
2
nz/z

2 − p∂3
nz/z

2

+2p∂2
nz∂nz/z

3 + 2∂np(∂nz)2/z3 + 4p∂nz∂2
nz/z

3 − 6p(∂nz)3/z4)

+∂3
np(1/z − 1 + ∂2

np∂nz/z
2 − ∂2

np∂nz/z
2

−∂np∂2
nz/z

2 + 2∂np(∂nz)2/z3] (B.67)

∂∇nα = α∂∇np

p
− 5p

3z2∂∇nz (B.68)

∂2
∇nα = ∂∇nα∂∇np

p
− α(∂∇np)2

p2 + α∂2
∇np

p
− 5∂∇np∂∇nz

3z2

+10p(∂∇nz)2

3z3 − 5p∂2
∇nz

3z2 (B.69)

∂3
∇nα = ∂2

∇nα∂∇np

p
− ∂∇nα(∂∇np)2

p2 + ∂∇nα∂
2
∇np

p
− ∂∇nα(∂∇np)2

p2 − 2α∂∇np∂
2
∇np

p2

+∂∇nα∂
2
∇np

p
− α∂∇np∂

2
∇np

p2 − 5∂2
∇np∂∇nz

3z2 + 10∂∇np(∂∇nz)2

3z3 − 5∂∇np∂
2
∇nz

3z2

+10∂∇np(∂∇nz)2

3z3 + 20p∂∇nz∂
2
∇nz

3z3 − 30p(∂∇nz)3

3z4 − 5∂∇np∂
2
∇nz

3z2

+10p∂∇nz∂
2
∇nz

3z3 (B.70)

∂τα = 1/τunif (B.71)

∂2
τα = 0 (B.72)

∂3
τα = 0 (B.73)

78 Chapter B Implementation of the SCAN functional



For x = µakp[1 + (b4p/µak) exp(−|b4|p/µak)] + {b1p + b2(1 − α) exp[−b3(1 − α)2]}2

we have:

∂px = µak + b4p exp(−b4p/µak)[2 − pb4/µak] + 2b1(b1p+ b2(1 − α)

· exp(−b3(1 − α)2)) (B.74)

∂2
px = b4 exp(−b4p/µak)[2 − pb4/µak] − b2

4
µak

exp(−b4p/µak)

·[3 − pb4/µak] + 2b2
1 (B.75)

∂3
px = − 2b2

4
µak

exp(−b4p/µak)[3 − pb4/µak] + b3
4p

µ2
ak

exp(−b4p/µak)[5 − pb4/µak]

− b2
4

µak
exp(−b4p/µak) (B.76)

∂αx = 2b2 exp(−b3(1 − α)2) · (b1p+ b2(1 − α) exp(−b3(1 − α)2))

·(2b3(1 − α)2 − 1) (B.77)

∂2
αx = 4b2b3 exp(−b3(1 − α)2)(b1p+ b2(1 − α) exp(−b3(1 − α)2))

·(2b3(1 − α)3 − 3(1 − α))

+2b2 exp(−b3(1 − α)2)(b2 exp(−b3(1 − α)2)[2b3(1 − α)2 − 1])

·(2b3(1 − α)2 − 1) (B.78)

∂3
αx = 8b2b

2
3(1 − α) exp(−b3(1 − α)2)(b1p+ b2(1 − α) exp(−b3(1 − α)2))

·(2b3(1 − α)3 − 3(1 − α))

+4b2b3 exp(−b3(1 − α)2)(b2 exp(−b3(1 − α)2)[2b3(1 − α)2 − 1])

·(2b3(1 − α)3 − 3(1 − α))

+4b2b3 exp(−b3(1 − α)2)(b1p+ b2(1 − α) exp(−b3(1 − α)2))

·(−6b3(1 − α)2 + 3)

+4b2b3(1 − α) exp(−b3(1 − α)2)(b2 exp(−b3(1 − α)2)[2b3(1 − α)2 − 1])

·(2b3(1 − α)2 − 1)

+2b2 exp(−b3(1 − α)2)(b2b3 exp(−b3(1 − α)2)[4b3(1 − α)3 − 6(1 − α)])

·(2b3(1 − α)2 − 1)

+2b2 exp(−b3(1 − α)2)(b2 exp(−b3(1 − α)2)[2b3(1 − α)2 − 1])

(−4b3(1 − α)) (B.79)
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For h1
x = 1 + k1 − k1/(1 + x/k1) = k1+x+k1x

k1+x :

∂xh
1
x = k2

1/(k1 + x2) (B.80)

∂2
xh

1
x = − 2k2

1x

(k1 + x2)2 (B.81)

∂3
xh

1
x = 6k2

1x
4 + 4k3

1x
2 − 2k4

1
(k1 + x2)4 (B.82)

∂ph
1
x = ∂xh

1
x∂px (B.83)

∂2
ph

1
x = ∂2

xh
1
x(∂px)2 + ∂xh

1
x∂

2
px (B.84)

∂3
ph

1
x = ∂3

xh
1
x(∂px)3 + 3∂2

xh
1
x∂px∂

2
px+ ∂xh

1
x∂

3
px (B.85)

∂αh
1
x = ∂xh

1
x∂αx (B.86)

∂2
αh

1
x = ∂2

xh
1
x(∂αx)2 + ∂xh

1
x∂

2
αx (B.87)

∂3
αh

1
x = ∂3

xh
1
x(∂αx)3 + 3∂2

xh
1
x∂αx∂

2
αx+ ∂xh

1
x∂

3
αx (B.88)

For fx(α) = exp(−c1xα/(1 − α))Θ(1 − α) − dx exp[c2x/(1 − α))Θ(α− 1) we have:

∂αfx =

− c1x exp(−c1xα/(1−α))
(1−α)2 if α < 1

−dxc2x exp(c2x/(1−α)
(1−α)2 if α > 1

(B.89)

∂2
αfx =


c1x exp(−c1xα/(1−α))(c1x−2(1−α))

(1−α)4 if α < 1
dxc2x exp(c2x/(1−α))(−c2x−2(1−α))

(1−α)4 if α > 1
(B.90)

∂3
αfx =


c1x exp(−c1xα/(1−α))(−c2

1x/(1−α)2+6c1x/(1−α)−6)
(1−α)4 if α < 1

dxc2x exp(c2x/(1−α))(−c2
2x/(1−α)2−6c2x/(1−α)−6)

(1−α)4 if α > 1
(B.91)

For gx(p) = 1 − exp(−a1/p
1/4):

∂pgx = −a1 exp(−a1/p
1/4)

4p5/4 (B.92)

∂2
pgx = a1 exp(−a1/p

1/4)(−a1 + 5p1/4)
16p10/4 (B.93)

∂3
pgx = a1 exp(−a1/p

1/4)(−4a2
1p

5/4 + 60a1p
3/2 + 20p7/4 − 200p3/8)

256p5 (B.94)

For ϵunifx = −(3/4π)(3π2n)1/3:

∂nϵ
unif
x = −1/4(3/π)1/3n−2/3 (B.95)

∂2
nϵ
unif
x = 1/6(3/π)1/3n−5/3 (B.96)

∂3
nϵ
unif
x = −5/18(3/π)1/3n−8/3 (B.97)
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For Fx = {h1
x(p, α) + fx(α)[h0

x − h1
x(p, α)]}gx(p):

∂pFx = ∂ph
1
x(1 − fx)gx + (h1

x + fx(h0
x − h1

x))∂pgx (B.98)

∂2
pFx = ∂2

ph
1
x(1 − fx)gx + ∂pgx[∂ph1

x(2 − 2fx)]

+(h1
x + fx(h0

x − h1
x))∂2

pgx (B.99)

∂3
pFx = ∂3

ph
1
x(1 − fx)gx + ∂2

ph
1
x(1 − fx)∂pgx + ∂2

pgx[∂ph1
x(2 − fx) − fx∂ph

1
x]

+∂pgx[∂2
ph

1
x(2 − 2fx)] + (∂ph1

x − fx∂ph
1
x)∂2

pgx

+(h1
x + fx(h0

x − h1
x))∂3

pgx (B.100)

∂αFx = (∂αh1
x + ∂αfx(h0

x − h1
x) − fx∂αh

1
x)gx (B.101)

∂2
αFx = [∂2

αh
1
x(1 − fx) + ∂2

αfx(h0
x − h1

x) − 2∂αfx∂αh1
x]gx (B.102)

∂3
αFx = [∂3

αh
1
x(1 − fx) + ∂3

αfx(h0
x − h1

x) − 3∂2
αfx∂αh

1
x − 3∂αfx∂2

αh
1
x]gx(B.103)

∂nFx = ∂αFx∂nα+ ∂pFx∂np (B.104)

∂2
nFx = ∂2

αFx(∂nα)2 + ∂αFx∂
2
nα+ ∂2

pFx(∂np)2 + ∂pFx∂
2
np (B.105)

∂3
nFx = ∂3

αFx(∂nα)3 + ∂2
nα(2∂2

αFx∂nα+ ∂2
αFx) + ∂αFx∂

3
nα

+∂3
pFx(∂np)2∂np+ ∂2

np(2∂2
pFx∂np+ ∂2

pFx) + ∂pFx∂
3
np (B.106)

∂∇nFx = ∂αFx∂∇nα+ ∂pFx∂∇np (B.107)

∂2
∇nFx = ∂2

αFx(∂∇nα)2 + ∂αFx∂
2
∇nα+ ∂2

pFx(∂∇np)2 + ∂pFx∂
2
∇np (B.108)

∂3
∇nFx = ∂3

αFx(∂∇nα)3 + 3∂2
∇nα∂

2
αFx∂∇nα+ ∂αFx∂

3
∇nα

+∂3
pFx(∂∇np)3 + 3∂2

∇np∂
2
pFx∂∇np+ ∂pFx∂

3
∇np (B.109)

∂τFx = ∂αFx∂τα (B.110)

∂2
τFx = ∂2

αFx(∂τα)2 (B.111)

∂3
τFx = ∂3

αFx(∂τα)3 (B.112)

Now, finally, we can deal with the second and third derivatives of Ax:

∂nAx = nϵunifx ∂nFx + 4/3ϵunifx Fx (B.113)

∂2
nAx = ϵunifx (8/3∂nFx + n∂2

nFx) + 4/3∂nϵunifx Fx (B.114)

∂3
nAx = ∂nϵ

unif
x (8/3∂nFx + n∂2

nFx) + ϵunifx (11/3∂2
nFx + n∂3

nFx)

+4/3∂2
nϵ
unif
x Fx + 4/3∂nϵunifx ∂nFx (B.115)

∂∇nAx = nϵunifx ∂∇nFx (B.116)

∂2
∇nAx = nϵunifx ∂2

∇nFx (B.117)

∂3
∇nAx = nϵunifx ∂3

∇nFx (B.118)

∂τAx = nϵunifx ∂τFx (B.119)

∂2
τAx = nϵunifx ∂2

τFx (B.120)

∂3
τAx = nϵunifx ∂3

τFx (B.121)

(B.122)
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B.3.2 Derivatives necessary for the correlation and
TSPIN=.TRUE. part

For w1 = exp(−ϵLSDA1
c /(γϕ3)) − 1 we have:

∂rsw1 = − exp(−ϵLSDA1
c /(γϕ3))∂rsϵ

LSDA1
c

γϕ3 (B.123)

∂2
rs
w1 = exp(−ϵLSDA1

c /(γϕ3))(∂rsϵ
LSDA1
c )2

γ2ϕ6

− exp(−ϵLSDA1
c /(γϕ3))

∂2
rs
ϵLSDA1
c

γϕ3 (B.124)

∂3
rs
w1 = exp(−ϵLSDA1

c /(γϕ3))(∂rsϵ
LSDA1
c )3

γ3ϕ9

+3 exp(−ϵLSDA1
c /(γϕ3))

∂rsϵ
LSDA1
c ∂2

rs
ϵLSDA1
c

γ2ϕ6

− exp(−ϵLSDA1
c /(γϕ3))

∂3
rs
ϵLSDA1
c

γϕ3 (B.125)

∂ζw1 = (3ϵLSDA1
c /(γϕ4)∂ζϕ− ∂ζϵ

LSDA1
c

γϕ3 ) exp(−ϵLSDA1
c /(γϕ3)) (B.126)

∂2
ζw1 = (3∂ζϵLSDA1

c ∂ζϕ

γϕ4 − 12ϵLSDA1
c (∂ζϕ)2

γϕ5 −
3ϵLSDA1
c ∂2

ζϕ

γϕ4

+3∂ζϕ∂ζϵLSDA1
c

γϕ4 −
∂2
ζ ϵ
LSDA1
c

γϕ3 ) exp(−ϵLSDA1
c /(γϕ3)) (B.127)

∂3
ζw1 = [

(3∂2
ζ ϵ
LSDA1
c ∂ζϕ+ 3∂ζϵLSDA1

c ∂2
ζϕ)γϕ4 − 12∂ζϵLSDA1

c (∂ζϕ)2ϕ3γ

γ2ϕ8

−
(12∂ζϵLSDA1

c (∂ζϕ)2 + 24ϵLSDA1
c ∂ζϕ∂

2
ζϕ)γϕ5 − 60ϵLSDA1

c (∂ζϕ)2∂ζϕγϕ
4

γ2ϕ10

−
(3∂ζϵLSDA1

c ∂2
ζϕ+ 3ϵLSDA1

c ∂3
ζϕ)γϕ4 − 12ϵLSDA1

c ∂2
ζϕ∂ζϕγϕ

3

γ2ϕ8

+
(3∂2

ζϕ∂ζϵ
LSDA1
c + 3∂ζϕ∂2

ζ ϵ
LSDA1
c )γϕ4 − 12(∂ζϕ)2∂ζϵ

LSDA1
c γϕ3

γ2ϕ8

−
γϕ3∂3

ζ ϵ
LSDA1
c − 3∂2

ζ ϵ
LSDA1
c γϕ2∂ζϕ

γ2ϕ6 ] exp(−ϵLSDA1
c /(γϕ3))

+[
3∂ζϵLSDA1

c ∂ζϕ− 3ϵLSDA1
c ∂2

ζϕ+ 3∂ζϕ∂ζϵLSDA1
c

γϕ4

−12ϵLSDA1
c (∂ζϕ)2

γϕ5 −
∂2
ζ ϵ
LSDA1
c

γϕ3 ]∂ζw1

+[
(3∂ζϵLSDA1

c ∂ζϕ+ 3ϵLSDA1
c ∂2

ζϕ)γϕ4 − 12ϵLSDA1
c (∂ζϕ)2γϕ3

γ2ϕ8

−
∂2
ζ ϵ
LSDA1
c γϕ3 − 3∂ζϵLSDA1

c ∂ζϕγϕ
2

γ2ϕ6 ]∂ζw1

+[3ϵ
LSDA1
c ∂ζϕ

γϕ4 − ∂ζϵ
LSDA1
c

γϕ3 ]∂2
ζw1 (B.128)

82 Chapter B Implementation of the SCAN functional



For A = β(rs)/(γw1) we have:

∂rsA = ∂rsβ

γw1
− A∂rsw1

w1
(B.129)

∂2
rs
A =

∂2
rs
β

γw1
− ∂rsβ∂rsw1

γw2
1

− ∂rsA∂rsw1
w1

−
A∂2

rs
w1

w1
+ A(∂rsw1)2

w2
1

(B.130)

∂3
rs
A =

∂3
rs
β

γw1
− 2

∂2
rs
β∂rsw1

γw2
1

−
∂rsβ∂

2
rs
w1γw

2
1 − 2∂rsβ(∂rsw1)2γw1

γ2w4
1

−
(∂2
rs
A∂rsw1 + 2∂rsA∂

2
rs
w1)w1 − ∂rsA(∂rsw1)2 −A∂2

rs
w1∂rsw1

w2
1

+
(∂rsA(∂rsw1)2 + 2A∂rsw1∂

2
rs
w1)w2

1 − 2A(∂rsw1)2w1∂rsw1

w4
1

(B.131)

∂ζA = −A∂ζw1
w1

(B.132)

∂2
ζA = −

∂ζA∂ζw1 +A∂2
ζw1

w1
+ A(∂ζw1)2

w2
1

(B.133)

∂3
ζA = −

(∂2
ζA∂ζw1 + 2∂ζA∂2

ζw1 +A∂3
ζw1)w1 − (∂ζA∂ζw1 +A∂2

ζw1)∂ζw1

w2
1

+
w1(∂ζA(∂ζw1)2 + 2A∂ζw1∂

2
ζw1 − 2A(∂ζw1)3w1)

w4
1

(B.134)

For t2 = (3π2/16)2/3p/(ϕ2rs) we have:

∂rst
2 = − t2

rs
(B.135)

∂2
rs
t2 = −∂rst

2rs − t2

r2
s

(B.136)

∂3
rs
t2 = −

∂2
rs
t2r2

s − 2∂rst
2r2
s + t2rs

r4
s

(B.137)

∂pt
2 = (3π2/16)2/3/(ϕ2rs) (B.138)

∂2
pt

2 = 0 (B.139)

∂2
pt

2 = 0 (B.140)

∂ζt
2 = −2t2∂ζϕ

ϕ
(B.141)

∂2
ζ t

2 = −
2∂ζt2∂ζϕ+ 2t2∂2

ζϕ

ϕ
+ 2t2(∂ζϕ)2

ϕ2 (B.142)

∂3
ζ t

2 = −
(2∂2

ζ t
2∂ζϕ+ 4∂ζt2∂2

ζϕ+ 2t2∂3
ζϕ)ϕ− (2∂ζt2∂ζϕ+ 2t2∂2

ζϕ)∂ζϕ
ϕ2

+
(2∂ζt2(∂ζϕ)2 + 4t2∂ζϕ∂2

ζϕ)ϕ2 − 4t2(∂ζϕ)3

ϕ4 (B.143)
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For g(At2) = (1 + 4At2)−1/4 we have:

∂rsg = −(1 + 4At2)−5/4(∂rsAt
2 +A∂rst

2) (B.144)

∂2
rs
g = 5(1 + 4At2)−9/4(∂rsAt

2 +A∂rst
2)2 − (1 + 4At2)−5/4

·(∂2
rs
At2 + 2∂rsA∂rst

2 +A∂2
rs
t2) (B.145)

∂3
rs
g = −45(1 + 4At2)−13/4(∂rsAt

2 +A∂rst
2)3

+10(1 + 4At2)−9/4(∂rsAt
2 +A∂rst

2)(∂2
rs
At2 + 2∂rsA∂rst

2 +A∂2
rs
t2)

+5(1 + 4At2)−9/4(∂rsAt
2 +A∂rst

2)(∂2
rs
At2 + 2∂rsA∂rst

2 +A∂2
rs
t2)

−(1 + 4At2)−5/4(∂3
rs
At2 + 3∂2

rs
A∂rst

2 + 3∂rsA∂
2
rs
t2 +A∂3

rs
t2) (B.146)

∂ζg = −(1 + 4At2)−5/4(∂ζAt2 +A∂ζt
2) (B.147)

∂2
ζ g = 5(1 + 4At2)−9/4(∂ζAt2 +A∂ζt

2)2 − (1 + 4At2)−5/4

·(∂2
ζAt

2 + 2∂ζA∂ζt2 +A∂2
ζ t

2) (B.148)

∂3
ζ g = −45(1 + 4At2)−13/4(∂ζAt2 +A∂ζt

2)3

+10(1 + 4At2)−9/4(∂ζAt2 +A∂ζt
2)(∂2

ζAt
2 + 2∂ζA∂ζt2 +A∂2

ζ t
2)

+5(1 + 4At2)−9/4(∂ζAt2 +A∂ζt
2)(∂2

ζAt
2 + 2∂ζA∂ζt2 +A∂2

ζ t
2)

−(1 + 4At2)−5/4(∂3
ζAt

2 + 3∂2
ζA∂ζt

2 + 3∂ζA∂2
ζ t

2 +A∂3
ζ t

2) (B.149)

∂pg = −(1 + 4At2)−5/4A∂pt
2 (B.150)

∂2
pg = 5(1 + 4At2)−9/4(A∂pt2)2 (B.151)

∂3
pg = −45(1 + 4At2)−13/4(A∂pt2)3 (B.152)

84 Chapter B Implementation of the SCAN functional



For H1 = γϕ3 ln[1 + w1(1 − g)] we have:

∂rsH1 = γϕ3(∂rsw1(1 − g) − w1∂rsg)
1 + w1(1 − g) (B.153)

∂2
rs
H1 = γϕ3[

∂2
rs
w1(1 − g) − 2∂rsw1∂rsg − w1∂

2
rs
g

1 + w1(1 − g)

−(∂rsw1(1 − g) − w1∂rsg)2

(1 + w1(1 − g))2 ] (B.154)

∂3
rs
H1 = γϕ3[

∂3
rs
w1(1 − g) − 3∂2

rs
w1∂rsg − 3∂rsw1∂

2
rs
g − w1∂

3
rs
g

1 + w1(1 − g)

−
(3∂2

rs
w1(1 − g) − 6∂rsw1∂rsg − 3w1∂

2
rs
g)(∂rsw1(1 − g) − w1∂rsg)

(1 + w1(1 − g))2

−2(∂rsw1(1 − g) − w1∂rsg)3

(1 + w1(1 − g))4 ] (B.155)

∂ζH1 = γϕ3∂ζw1(1 − g) − w1∂ζg

1 + w1(1 − g) + 3γϕ2∂ζϕ ln(1 + w1(1 − g)) (B.156)

∂2
ζH1 = 3γϕ2∂ζϕ

∂ζw1(1 − g) − w1∂ζg

1 + w1(1 − g)

+γϕ3[
∂2
ζw1(1 − g) − 2∂ζw1∂ζg − w1∂

2
ζ g

1 + w1(1 − g) − (∂ζw1(1 − g) − w1∂ζg)2

(1 + w1(1 − g))2 ]

+3γϕ[2(∂ζϕ)2 ln(1 + w1(1 − g)) + ϕ∂2
ζϕ ln(1 + w1(1 − g))

+ϕ∂ζϕ
∂ζw1(1 − g) − w1∂ζg

1 + w1(1 − g) ] (B.157)

∂3
ζH1 = 3γϕ2∂2

ζϕ
∂ζw1(1 − g) − w1∂ζg

1 + w1(1 − g) + 6γϕ(∂ζg)2∂ζw1(1 − g) − w1∂ζg

1 + w1(1 − g)

+[
∂2
ζw1(1 − g) − 2∂ζw1∂ζg − w1∂

2
ζ g

1 + w1(1 − g) − (∂ζw1(1 − g) − w1∂ζg)2

(1 + w1(1 − g))2 ]

·6γϕ2∂ζϕ

+γϕ3[
∂3
ζw1(1 − g) − 3∂2

ζw1∂ζg − 3∂ζw1∂
2
ζ g − w1∂

3
ζ g

1 + w1(1 − g)

−
(3∂2

ζw1(1 − g) − 6∂ζw1∂ζg − 3w1∂
2
ζ g)(∂ζw1(1 − g) − w1∂ζg)

(1 + w1(1 − g))2

−2(∂ζw1(1 − g) − w1∂ζg)3

(1 + w1(1 − g))4 ] + 3γ∂ζϕ[2(∂ζϕ)2 ln(1 + w1(1 − g))

+ϕ∂2
ζϕ ln(1 + w1(1 − g)) + ϕ∂ζϕ

∂ζw1(1 − g) − w1∂ζg

1 + w1(1 − g) ]

+3γϕ[5∂ζϕ∂2
ζϕ ln(1 + w1(1 − g)) + 3(∂ζϕ)2∂ζw1(1 − g) − w1∂ζg

1 + w1(1 − g)

+ϕ∂3
ζϕ ln(1 + w1(1 − g)) + 2ϕ∂2

ζϕ
∂ζw1(1 − g) − w1∂ζg

1 + w1(1 − g)

+ϕ∂ζϕ{
∂2
ζw1(1 − g) − 2∂ζw1∂ζg − w1∂

2
ζ g

1 + w1(1 − g)

−(∂ζw1(1 − g) − w1∂ζg)2

(1 + w1(1 − g))2 }] (B.158)
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∂pH1 = −γϕ3 w1∂pg

1 + w1(1 − g) (B.159)

∂2
pH1 = −γϕ3w1

∂2
pg(1 + w1(1 − g)) + w1(∂pg)2

(1 + w1(1 − g))2 (B.160)

∂3
pH1 = −γϕ3w1[

∂3
pg(1 + w1(1 − g)) + ∂2

pg∂pgw1

(1 + w1(1 − g))2

+
2w1∂pg(∂2

pg(1 + w1(1 − g)) + w1(∂pg)2)
(1 + w1(1 − g))3 ] (B.161)

For ϵ1c = ϵLSDA1
c +H1 we have:

∂rsϵ
1
c = ∂rsϵ

LSDA1
c + ∂rsH1 (B.162)

∂2
rs
ϵ1c = ∂2

rs
ϵLSDA1
c + ∂2

rs
H1 (B.163)

∂3
rs
ϵ1c = ∂3

rs
ϵLSDA1
c + ∂rs32H1 (B.164)

∂pϵ
1
c = ∂pH1 (B.165)

∂2
pϵ

1
c = ∂2

pH1 (B.166)

∂3
pϵ

1
c = ∂3

pH1 (B.167)

∂ζϵ
1
c = ∂ζϵ

LSDA1
c + ∂ζH1 (B.168)

∂2
ζ ϵ

1
c = ∂2

ζ ϵ
LSDA1
c + ∂2

ζH1 (B.169)

∂3
ζ ϵ

1
c = ∂3

ζ ϵ
LSDA1
c + ∂3

ζH1 (B.170)

For ϵLDA0
c = −b1c/(1 + b2cr

1/2
s + b3crs) we have:

∂rsϵ
LDA0
c = −

b1c(1
2b2cr

−1/2
s + b3c)

(1 + b2cr
1/2
s + b3crs)2

(B.171)

∂2
rs
ϵLDA0
c = b1cr

−3/2
s

4(1 + b2cr
1/2
s + b3crs)2

+ 2
b1c(1

2b2cr
−1/2
s + b3c)

(1 + b2cr
1/2
s + b3crs)3

(B.172)

∂3
rs
ϵLDA0
c = −

b1c(1 + b2cr
1/2
s + b3crs)(3/2r−5/2

s + 2r−3/2
s (1

2b2cr
−1/2
s + b3c))

4(1 + b2cr
1/2
s + b3crs)4

+2
b1c(1 + b2cr

1/2
s + b3crs)2(−1

2b2cr
−3/2
s (1 + b2cr

1/2
s + b3crs) − 3(1

2b2cr
−1/2
s + b3c)3)

(1 + b2cr
1/2
s + b3crs)6

(B.173)

For dx(ζ) = [(1 + ζ)4/3 + (1 − ζ)4/3]/2 we have:

∂ζdx = 2
3[(1 + ζ)1/3 − (1 − ζ)1/3] (B.174)

∂2
ζdx = 2

9[(1 + ζ)−2/3 + (1 − ζ)−2/3] (B.175)

∂3
ζdx = − 4

27[(1 + ζ)−5/3 − (1 − ζ)−5/3] (B.176)
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For Gc(ζ) = {1 − 2.3631[dx(ζ) − 1]}(1 − ζ12) we have:

∂ζGc = −2.3631∂ζdx(1 − ζ12) − 12ζ11{1 − 2.3631[dx − 1]} (B.177)

∂2
ζGc = −2.3631∂2

ζdx(1 − ζ12) + 56.7144∂ζdxζ11

−132ζ10{1 − 2.3631[dx − 1]} (B.178)

∂3
ζGc = −2.3631∂3

ζdx(1 − ζ12) + 85.0716∂2
ζdxζ

11 + 935.7876∂ζdxζ10

−1320ζ9{1 − 2.3631[dx − 1]} (B.179)

For ζ = n↑−n↓
n↑+n↓

= n↑−n↓
n we have:

∂n↑ζ = 2n↓
n2 (B.180)

∂2
n↑
ζ = −4n↓

n3 (B.181)

∂3
n↑
ζ = 12n↓

n4 (B.182)

∂n↓ζ = −2n↑
n2 (B.183)

∂2
n↓
ζ = 4n↑

n3 (B.184)

∂3
n↓
ζ = −12n↑

n4 (B.185)

For g∞ = (1 + 4χ∞p)−1/4 we have:

∂pg∞ = −χ∞(1 + 4χ∞p)−5/4 (B.186)

∂2
pg∞ = 5χ2

∞(1 + 4χ∞p)−9/4 (B.187)

∂3
pg∞ = −45χ3

∞(1 + 4χ∞p)−13/4 (B.188)

For w0 = exp(−ϵLDA0
c /b1c) − 1 we have:

∂rsw0 = − exp(−ϵLDA0
c /b1c)

∂rsϵ
LDA0
c

b1c
(B.189)

∂2
rs
w0 = exp(−ϵLDA0

c /b1c)
(∂rsϵ

LDA0
c )2

b1c2
− exp(−ϵLDA0

c /b1c)
∂2
rs
ϵLDA0
c

b1c
(B.190)

∂3
rs
w0 = exp(−ϵLDA0

c /b1c)
(∂rsϵ

LDA0
c )3

b3
1c

+ 3 exp(−ϵLDA0
c /b1c)

∂rsϵ
LDA0
c ∂2

rs
ϵLDA0
c

b2
1c

− exp(−ϵLDA0
c /b1c)

∂3
rs
ϵLDA0
c

b1c
(B.191)

(B.192)
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For H0 = b1c ln(1 + w0(1 − g∞)) we have:

∂rsH0 = b1c∂rsw0(1 − g∞)
1 + w0(1 − g∞) (B.193)

∂2
rs
H0 =

b1c∂
2
rs
w0(1 − g∞)(1 + w0(1 − g∞)) − b1c(∂rsw0(1 − g∞))2

(1 + w0(1 − g∞))2 (B.194)

∂3
rs
H0 =

b1c∂
3
rs
w0(1 − g∞)(1 + w0(1 − g∞)) − b1c∂

2
rs
w0∂rsw0(1 − g∞)2

(1 + w0(1 − g∞))2

−
[b1c∂

2
rs
w0(1 − g∞)(1 + w0(1 − g∞)) − b1c(∂rsw0(1 − g∞))2]

(1 + w0(1 − g∞))3

· 2∂rsw0(1 − g∞)
(1 + w0(1 − g∞))3 (B.195)

∂pH0 = − b1cw0∂pg∞
1 + w0(1 − g∞) (B.196)

∂2
pH0 = −

b1cw0∂
2
pg∞

1 + w0(1 − g∞) − b1c(w0∂pg∞)2

(1 + w0(1 − g∞))2 (B.197)

∂3
pH0 = −

b1cw0∂
3
pg∞(1 + w0(1 − g∞)) + b1cw

2
0∂

2
pg∞∂pg∞

(1 + w0(1 − g∞))2

−
2b1cw

2
0∂pg∞∂

2
pg∞(1 + w0(1 − g∞))2 + 2b1c(w0∂pg∞)3

(1 + w0(1 − g∞))4

· 1
(1 + w0(1 − g∞))3 (B.198)

For α = 5
3p(z

−1 − 1) 1
ds(ζ) we have:

∂n↑α = 5
3(−pz−2∂nz + ∂np(z−1 − 1))/ds − α

ds
∂ζds∂n↑ζ (B.199)

∂2
n↑
α =

−10∂npz−2∂nz + 10pz−3(∂nz)2 − 5pz−2∂2
nz + 5∂2

np(z−1 − 1) − 3∂n↑α∂ζds∂n↑ζ

3ds

−
3α∂2

ζds(∂n↑ζ)2 − 3α∂ζds∂2
n↑
ζ

3ds

+
(5pz−2∂nz + 5∂np(z−1 − 1))∂ζds∂n↑ζ + 3α(∂ζds∂n↑ζ)2

3d2
s

(B.200)

Let

a↑ = −10∂npz−2∂nz + 10pz−3(∂nz)2 − 5pz−2∂2
nz + 5∂2

np(z−1 − 1) − 3∂n↑α∂ζds∂n↑ζ

−3α∂2
ζds(∂n↑ζ)

2 − 3α∂ζds∂2
n↑
ζ (B.201)

b↑ = (5pz−2∂nz + 5∂np(z−1 − 1))∂ζds∂n↑ζ + 3α(∂ζds∂n↑ζ)
2 (B.202)
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then we have for ∂3
n↑
α:

∂3
n↑
α = −15∂2

npz
−2∂nz + 30∂npz−3(∂nz)2 − 15∂npz−2∂2

nz − 30pz−4(∂nz)3

3ds

+30pz−3∂nz∂
2
nz − 5pz−2∂3

nz + 5∂3
np(z−1 − 1)

3ds

+
−3∂2

n↑
α∂ζds∂n↑ζ − 6∂n↑α∂

2
ζds(∂n↑ζ)2 − 3α∂3

ζds(∂n↑ζ)3

3ds

−
9α∂2

ζds∂n↑ζ∂
2
n↑
ζ − 3α∂ζds∂3

n↑
ζ

3ds

−
(a↑) · 3∂ζds∂n↑ζ

9d2
s

+
(−10pz−2(∂nz)2 + 5pz−2∂2

nz + 5∂2
np(z−1 − 1))∂ζds∂n↑ζ

3d2
s

+
(5pz−2∂nz + 5∂np(z−1 − 1))(∂2

ζds(∂n↑ζ)2 + ∂ζds∂
2
n↑
ζ)

3d2
s

+
3∂n↑α(∂ζds∂n↑ζ)2 + 6α∂ζds∂n↑ζ(∂2

ζds(∂n↑ζ)2 + ∂ζds∂
2
n↑
ζ)

3d2
s

−
(b↑) · 2∂ζds∂n↑ζ

3d3
s

(B.203)

This is done analogously for n↓ and will not be shown here. The derivatives of α with
respect to ∇n↑,↓ and τ↑,↓ are the same as for ∇n and τ , respectively. See above.

For

fc(α) = exp[−c1cα/(1 − α)]θ(1 − α)

−dc exp[c2c/(1 − α)]θ(α− 1)] (B.204)

the derivatives with respect to α are the same as for fx (see above) by substituting
c1x → c1c and dx → dc. With respect to the other variables we have:
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∂n↑fc = ∂αfc∂n↑α (B.205)

∂2
n↑
fc = ∂2

αfc(∂n↑α)2 + ∂αfc∂
2
n↑
α (B.206)

∂3
n↑
fc = ∂3

αfc(∂n↑α)3 + 3∂2
αfc∂n↑α∂

2
n↑
α+ ∂αfc∂

3
n↑
α (B.207)

∂n↓fc = ∂αfc∂n↓α (B.208)

∂2
n↓
fc = ∂2

αfc(∂n↓α)2 + ∂αfc∂
2
n↓
α (B.209)

∂3
n↓
fc = ∂3

αfc(∂n↓α)3 + 3∂2
αfc∂n↓α∂

2
n↓
α+ ∂αfc∂

3
n↓
α (B.210)

∂∇nfc = ∂αfc∂∇nα (B.211)

∂2
∇nfc = ∂2

αfc(∂∇nα)2 + ∂αfc∂
2
∇nα (B.212)

∂3
∇nfc = ∂3

αfc(∂∇nα)3 + 3∂2
αfc∂∇nα∂

2
∇nα+ ∂αfc∂

3
∇nα (B.213)

∂τ↑fc = ∂αfc∂τ↑α (B.214)

∂2
τ↑
fc = ∂2

αfc(∂τ↑α)2 + ∂αfc∂
2
τ↑
α (B.215)

∂3
τ↑
fc = ∂3

αfc(∂τ↑α)3 + 3∂2
αfc∂τ↑α∂

2
τ↑
α+ ∂αfc∂

3
τ↑
α (B.216)

∂τ↓fc = ∂αfc∂τ↓α (B.217)

∂2
τ↓
fc = ∂2

αfc(∂τ↓α)2 + ∂αfc∂
2
τ↓
α (B.218)

∂3
τ↓
fc = ∂3

αfc(∂τ↓α)3 + 3∂2
αfc∂τ↓α∂

2
τ↓
α+ ∂αfc∂

3
τ↓
α (B.219)

(B.220)

For ϵ1c = ϵLSDA1
c +H1 we have:

∂n↑ϵ
1
c = ∂rsϵ

1
c∂nrs + ∂ζϵ

1
c∂n↑ζ + ∂pϵ

1
c∂np (B.221)

∂2
n↑
ϵ1c = ∂2

rs
ϵ1c(∂nrs)2 + ∂rsϵ

1
c∂

2
nrs + ∂2

ζ ϵ
1
c(∂n↑ζ)

2 + ∂ζϵ
1
c∂

2
n↑
ζ

+∂2
pϵ

1
c(∂np)2 + ∂pϵ

1
c∂

2
np (B.222)

∂3
n↑
ϵ1c = ∂3

rs
ϵ1c(∂nrs)3 + 3∂2

rs
ϵ1c∂nrs∂

2
nrs + ∂rsϵ

1
c∂

3
nrs + ∂3

ζ ϵ
1
c(∂n↑ζ)

3 + 3∂2
ζ ϵ

1
c∂

2
n↑
ζ∂n↑ζ

+∂ζϵ1c∂3
n↑
ζ + ∂3

pϵ
1
c(∂np)3 + 3∂2

pϵ
1
c∂

2
np∂np+ ∂pϵ

1
c∂

3
np (B.223)

∂n↓ϵ
1
c = ∂rsϵ

1
c∂nrs + ∂ζϵ

1
c∂n↓ζ + ∂pϵ

1
c∂np (B.224)

∂2
n↓
ϵ1c = ∂2

rs
ϵ1c(∂nrs)2 + ∂rsϵ

1
c∂

2
nrs + ∂2

ζ ϵ
1
c(∂n↓ζ)

2 + ∂ζϵ
1
c∂

2
n↓
ζ

+∂2
pϵ

1
c(∂np)2 + ∂pϵ

1
c∂

2
np (B.225)

∂3
n↓
ϵ1c = ∂3

rs
ϵ1c(∂nrs)3 + 3∂2

rs
ϵ1c∂nrs∂

2
nrs + ∂rsϵ

1
c∂

3
nrs + ∂3

ζ ϵ
1
c(∂n↓ζ)

3 + 3∂2
ζ ϵ

1
c∂

2
n↓
ζ∂n↓ζ

+∂ζϵ1c∂3
n↓
ζ + ∂3

pϵ
1
c(∂np)3 + 3∂2

pϵ
1
c∂

2
np∂np+ ∂pϵ

1
c∂

3
np (B.226)

∂∇nϵ
1
c = ∂pϵ

1
c∂∇np (B.227)

∂2
∇nϵ

1
c = ∂2

pϵ
1
c(∂∇np)2 + ∂pϵ

1
c∂

2
∇np (B.228)

∂3
∇nϵ

1
c = ∂3

pϵ
1
c(∂∇np)3 + 3∂2

pϵ
1
c∂∇np∂

2
∇np+ ∂pϵ

1
c∂

3
∇np (B.229)
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For ϵ0c = (ϵLDA0
c +H0)Gc(ζ) we have:

∂rsϵ
0
c = (∂rsϵ

LDA0
c + ∂rsH0)Gc (B.230)

∂2
rs
ϵ0c = (∂2

rs
ϵLDA0
c + ∂2

rs
H0)Gc (B.231)

∂3
rs
ϵ0c = (∂3

rs
ϵLDA0
c + ∂3

rs
H0)Gc (B.232)

∂pϵ
0
c = ∂pH0Gc (B.233)

∂2
pϵ

0
c = ∂2

pH0Gc (B.234)

∂3
pϵ

0
c = ∂3

pH0Gc (B.235)

∂ζϵ
0
c = (ϵLDA0

c +H0)∂ζGc (B.236)

∂2
ζ ϵ

0
c = (ϵLDA0

c +H0)∂2
ζGc (B.237)

∂3
ζ ϵ

0
c = (ϵLDA0

c +H0)∂3
ζGc (B.238)

(B.239)

The derivatives of ϵ0c with respect to n↑,↓ and ∇n are analogous to the derivatives of
ϵ1c and will thus not be shown.

For ϵc = ϵ1c + fc(α)(ϵ0c − ϵ1c) we have:

∂n↑ϵc = ∂n↑ϵ
1
c + ∂n↑fc(ϵ

0
c − ϵ1c) + fc(∂n↑ϵ

0
c − ∂n↑ϵ

1
c) (B.240)

∂2
n↑
ϵc = ∂2

n↑
ϵ1c + ∂2

n↑
fc(ϵ0c − ϵ1c) + 2∂n↑fc(∂n↑ϵ

0
c − ∂n↑ϵ

1
c)

+fc(∂2
n↑
ϵ0c − ∂2

n↑
ϵ1c) (B.241)

∂3
n↑
ϵc = ∂3

n↑
ϵ1c + ∂3

n↑
fc(ϵ0c − ϵ1c) + 3∂2

n↑
fc(∂n↑ϵ

0
c − ∂n↑ϵ

1
c)

+3∂n↑fc(∂
2
n↑
ϵ0c − ∂2

n↑
ϵ1c) + fc(∂3

n↑
ϵ0c − ∂3

n↑
ϵ1c) (B.242)

∂n↓ϵc = ∂n↓ϵ
1
c + ∂n↓fc(ϵ

0
c − ϵ1c) + fc(∂n↓ϵ

0
c − ∂n↓ϵ

1
c) (B.243)

∂2
n↓
ϵc = ∂2

n↓
ϵ1c + ∂2

n↓
fc(ϵ0c − ϵ1c) + 2∂n↓fc(∂n↓ϵ

0
c − ∂n↓ϵ

1
c)

+fc(∂2
n↓
ϵ0c − ∂2

n↓
ϵ1c) (B.244)

∂3
n↓
ϵc = ∂3

n↓
ϵ1c + ∂3

n↓
fc(ϵ0c − ϵ1c) + 3∂2

n↓
fc(∂n↓ϵ

0
c − ∂n↓ϵ

1
c)

+3∂n↓fc(∂
2
n↓
ϵ0c − ∂2

n↓
ϵ1c) + fc(∂3

n↓
ϵ0c − ∂3

n↓
ϵ1c) (B.245)

∂∇nϵc = ∂∇nϵ
1
c + ∂∇nfc(ϵ0c − ϵ1c) + fc(∂∇nϵ

0
c − ∂∇nϵ

1
c) (B.246)

∂2
∇nϵc = ∂2

∇nϵ
1
c + ∂2

∇nfc(ϵ0c − ϵ1c) + 2∂∇nfc(∂∇nϵ
0
c − ∂∇nϵ

1
c)

+fc(∂2
∇nϵ

0
c − ∂2

∇nϵ
1
c) (B.247)

∂3
∇nϵc = ∂3

∇nϵ
1
c + ∂3

∇nfc(ϵ0c − ϵ1c) + 3∂2
∇nfc(∂∇nϵ

0
c − ∂∇nϵ

1
c)

+3∂∇nfc(∂2
∇nϵ

0
c − ∂2

∇nϵ
1
c) + fc(∂3

∇nϵ
0
c − ∂3

∇nϵ
1
c) (B.248)

We have

Ec[n↑, n↓] =
∫
d3rnϵc(rs, ζ, p, α) (B.249)
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Let Ac = nϵc(rs, β, p, α). Then we have:

∂n↑Ac = n∂n↑ϵc + ϵc (B.250)

∂2
n↑
Ac = 2∂n↑ϵc + n∂2

n↑
ϵc (B.251)

∂3
n↑
Ac = 3∂2

n↑
ϵc + n∂3

n↑
ϵc (B.252)

∂n↓Ac = n∂n↓ϵc + ϵc (B.253)

∂2
n↓
Ac = 2∂n↓ϵc + n∂2

n↓
ϵc (B.254)

∂3
n↓
Ac = 3∂2

n↓
ϵc + n∂3

n↓
ϵc (B.255)

∂∇nAc = n∂∇nϵc (B.256)

∂2
∇nAc = n∂2

∇nϵc (B.257)

∂3
∇nAc = n∂3

∇nϵc (B.258)

∂τ↑Ac = n∂τ↑fc(ϵ
0
c − ϵ1c) (B.259)

∂2
τ↑
Ac = n∂2

τ↑
fc(ϵ0c − ϵ1c) (B.260)

∂3
τ↑
Ac = n∂3

τ↑
fc(ϵ0c − ϵ1c) (B.261)

∂τ↓Ac = n∂τ↓fc(ϵ
0
c − ϵ1c) (B.262)

∂2
τ↓
Ac = n∂2

τ↓
fc(ϵ0c − ϵ1c) (B.263)

∂3
τ↓
Ac = n∂3

τ↓
fc(ϵ0c − ϵ1c) (B.264)

(B.265)

B.4 Transformations

General Chain Rule in case of first, second and third derivative for two variables: So,
for g(t) = f(x(t), y(t)) we have:
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g′(t) = ∂f

∂x
· ∂x
∂t

+ ∂f

∂y
· ∂y
∂t

(B.266)

g′′(t) = ∂f

∂x
· ∂

2x

∂t2
+ ∂f

∂y
· ∂

2y

∂t2
+
(
dx

dt

)2 ∂2f

∂x2

+ dx

dt

dy

dt

(
∂2f

∂y∂x
+ ∂2f

∂x∂y

)
+
(
dy

dt

)2 ∂2f

∂y2 (B.267)

g′′′(t) = ∂f

∂x

d3x

dt3
+ 3∂

2f

∂x2
d2x

dt2
dx

dt
+ 2 ∂2f

∂y∂x

d2x

dt2
dy

dt
+
(
dx

dt

)2(dx
dt

∂3f

∂x3 + dy

dt

∂3f

∂y∂x2

)

+ dx

dt

d2y

dt2
∂2f

∂y∂x
+ dx

dt

dy

dt

(
dx

dt

∂3f

∂y∂x2 + dy

dt

∂3f

∂y2∂x

)

+ ∂f

∂y

d3y

dt3
+ 3∂

2f

∂y2
d2y

dt2
dy

dt
+ 2 ∂2f

∂x∂y

d2y

dt2
dx

dt
+
(
dy

dt

)2(dy
dt

∂3f

∂y3 + dx

dt

∂3f

∂x∂y2

)

+ dy

dt

d2x

dt2
∂2f

∂x∂y
+ dy

dt

dx

dt

(
dy

dt

∂3f

∂x∂y2 + dx

dt

∂3f

∂x2∂y

)
(B.268)

With the above three equations we can transform all the derivatives w.r.t. n↑, n↓, τ↑, τ↓,∇nt
to derivatives w.r.t. nt, ns, τt, τs and (∇nt)2.

First of all, we can use nt, ns, τt, τs and (∇nt)2 to express the other variables as:

n↑ = 1
2(nt + ns) (B.269)

n↓ = 1
2(nt − ns) (B.270)

τ↑ = 1
2(τt + τs) (B.271)

τ↓ = 1
2(τt − τs) (B.272)

∇nt =
√

(∇nt)2 (B.273)

Since we already have the first three derivatives of Axc w.r.t. n↑, n↓, τ↑, τ↓,∇nt, we
get the transformed derivatives of the first order as:

∂Axc
∂nt

= 1
2
∂Axc
∂n↑

+ 1
2
∂Axc
∂n↓

(B.274)

∂Axc
∂ns

= 1
2
∂Axc
∂n↑

− 1
2
∂Axc
∂n↓

(B.275)

∂Axc
∂τt

= 1
2
∂Axc
∂τ↑

+ 1
2
∂Axc
∂τ↓

(B.276)

∂Axc
∂τs

= 1
2
∂Axc
∂τ↑

− 1
2
∂Axc
∂τ↓

(B.277)

∂Axc
∂(∇nt)2 = ∂Axc

∂∇nt
1

2∇nt
(B.278)
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Since Axc doesn’t depend on (∇ns)2 and (∇nt)(∇ns) the derivatives with respect to
these are zero and are thus not necessary here.2

For the transformations of the second order (excluding the offsite-terms) we have:

∂2Axc
∂n2

t

= 1
4
∂2Axc
∂n2

↑
+ 1

4
∂2Axc
∂n2

↓
(B.279)

∂2Axc
∂n2

s

= 1
4
∂2Axc
∂n2

↑
+ 1

4
∂2Axc
∂n2

↓
(B.280)

∂2Axc
∂τ2

t

= 1
4
∂2Axc
∂τ2

↑
+ 1

4
∂2Axc
∂τ2

↓
(B.281)

∂2Axc
∂τ2

s

= 1
4
∂2Axc
∂τ2

↑
+ 1

4
∂2Axc
∂τ2

↓
(B.282)

∂2Axc

∂(∇nt)22 = 1
4(∇nt)2

∂2Axc
∂∇n2

t

− 1
4(∇nt)3

∂Axc
∂∇nt

(B.283)

Finally, the transformations of the third order (excluding the offsite-terms):

∂3Axc
∂n3

t

= 1
8
∂3Axc
∂n3

↑
+ 1

8
∂3Axc
∂n3

↓
(B.284)

∂3Axc
∂n3

s

= 1
8
∂3Axc
∂n3

↑
− 1

8
∂3Axc
∂n3

↓
(B.285)

∂3Axc
∂τ3

t

= 1
8
∂3Axc
∂τ3

↑
+ 1

8
∂3Axc
∂τ3

↓
(B.286)

∂3Axc
∂τ3

s

= 1
8
∂3Axc
∂τ3

↑
− 1

8
∂3Axc
∂τ3

↓
(B.287)

∂3Axc

∂(∇nt)23 = ∂Axc
∂∇nt

3
8(∇nt)5 − ∂2Axc

∂∇n2
t

3
8(∇nt)4 + 1

8(∇nt)3
∂3Axc
∂∇n3

t

(B.288)

2I’m saying Axc does not depend on these because I couldn’t find any instance of either (∇ns)2(or
even ∇ns) and (∇nt)(∇ns) appearing in any of the equations of the paper or the supplementary
material.
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B.4.1 Mixed Terms for the transformations

The first derivative of each transformation doesn’t contain any mixed terms. For the
derivatives of the second and third derivatives I need the following mixed terms:

∂2Axc
∂n2

t

: → ∂2Axc
∂n↑∂n↓

,
∂2Axc
∂n↓∂n↑

∂2Axc
∂n2

s

: → ∂2Axc
∂n↑∂n↓

,
∂2Axc
∂n↓∂n↑

same as above, but sign diff. for mixed terms

∂2Axc
∂τ2

t

: → ∂2Axc
∂τ↑∂τ↓

,
∂2Axc
∂τ↓∂τ↑

∂2Axc
∂τ2

s

: → ∂2Axc
∂τ↑∂τ↓

,
∂2Axc
∂τ↓∂τ↑

same as above, but sign diff. for mixed terms

∂2Axc

∂(∇nt)22 : doesn’t have any mixed terms to be calculated

The main ingredient of the mixed terms seems to be ζ. Thus, we have

∂n↑ζ = 2n↓
n2
t

(B.289)

∂n↓ζ = −2n↑
n2
t

(B.290)

∂n↓∂n↑ζ = 2ns
n3
t

(B.291)

∂n↑∂n↓ζ = −2ns
n3
t

(B.292)

∂n↑∂
2
n↓
ζ = −8n↑ + 4n↓

n4
t

(B.293)

∂n↓∂
2
n↑
ζ = 4n↑ − 8n↓

n4
t

(B.294)

According to the recipe of switching in the correct ζ derivatives into the exist-
ing derivatives, we have the following derivatives being affected by the changes:
α(including a↑, b↑)), fc, ϵ1c , ϵ

0
c , ϵc, Ac.

Thus, we have now:

∂n↓∂n↑α = −10∂npz−2∂nz + 10pz−3(∂nz)2 − 5pz−2∂2
nz + 5∂2

np(z−1 − 1)
3ds

−
3∂n↓α∂ζds∂n↑ζ − 3α∂2

ζds∂n↓ζ∂n↑ζ − 3α∂ζds∂n↓∂n↑ζ

3ds

+
(5pz−2∂nz + 5∂np(z−1 − 1))∂ζds∂n↓ζ + 3α(∂ζds)2∂n↑ζ∂n↓ζ

3d2
s
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∂n↑∂n↓α = −10∂npz−2∂nz + 10pz−3(∂nz)2 − 5pz−2∂2
nz + 5∂2

np(z−1 − 1)
3ds

−
3∂n↑α∂ζds∂n↓ζ − 3α∂2

ζds∂n↑ζ∂n↓ζ − 3α∂ζds∂n↑∂n↓ζ

3ds

+
(5pz−2∂nz + 5∂np(z−1 − 1))∂ζds∂n↑ζ + 3α(∂ζds)2∂n↓ζ∂n↑ζ

3d2
s

Let

a↑ = −10∂npz−2∂nz + 10pz−3(∂nz)2 − 5pz−2∂2
nz + 5∂2

np(z−1 − 1)

−3∂n↑α∂ζds∂n↑ζ − 3α∂2
ζds(∂n↑ζ)

2 − 3α∂ζds∂2
n↑
ζ (B.295)

b↑ = (5pz−2∂nz + 5∂np(z−1 − 1))∂ζds∂n↑ζ + 3α(∂ζds∂n↑ζ)
2 (B.296)

and

a↓ = −10∂npz−2∂nz + 10pz−3(∂nz)2 − 5pz−2∂2
nz + 5∂2

np(z−1 − 1)

−3∂n↓α∂ζds∂n↓ζ − 3α∂2
ζds(∂n↓ζ)

2 − 3α∂ζds∂2
n↓
ζ (B.297)

b↓ = (5pz−2∂nz + 5∂np(z−1 − 1))∂ζds∂n↓ζ + 3α(∂ζds∂n↓ζ)
2 (B.298)

∂n↓∂
2
n↑
α = −15∂2

npz
−2∂nz + 30∂npz−3(∂nz)2 − 15∂npz−2∂2

nz − 30pz−4(∂nz)3

3ds

+30pz−3∂nz∂
2
nz − 5pz−2∂3

nz + 5∂3
np(z−1 − 1)

3ds

+
−3∂n↓∂n↑α∂ζds∂n↑ζ − 3∂n↑α∂

2
ζds∂n↓ζ∂n↑ζ − 3∂n↑α∂ζds∂n↓∂n↑ζ

3ds

+
−3∂n↓α∂

2
ζds(∂n↑ζ)2 − 3α∂3

ζds(∂n↑ζ)2∂n↓ζ − 6α∂2
ζds∂n↑ζ∂n↓∂n↑ζ

3ds

+
−3∂n↓α∂ζds∂

2
n↑
ζ − 3α∂2

ζds∂n↓ζ∂
2
n↑
ζ − 3α∂ζds∂n↓∂

2
n↑
ζ

3ds

−
(a↑) · 3∂ζds∂n↓ζ

9d2
s

+
(−10pz−2(∂nz)2 + 5pz−2∂2

nz + 5∂2
np(z−1 − 1))∂ζds∂n↑ζ

3d2
s

+
(5pz−2∂nz + 5∂np(z−1 − 1))(∂2

ζds∂n↓ζ∂n↑ζ + ∂ζds∂n↓∂n↑ζ)
3d2

s

+
3∂n↓α(∂ζds∂n↑ζ)2 + 6α∂ζds∂n↑ζ · (∂2

ζds∂n↓ζ∂n↑ζ + ∂ζds∂n↓∂n↑ζ)
3d2

s

−
(b↑) · 2∂ζds∂n↓ζ

3d3
s

(B.299)
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∂n↑∂
2
n↓
α = −15∂2

npz
−2∂nz + 30∂npz−3(∂nz)2 − 15∂npz−2∂2

nz − 30pz−4(∂nz)3

3ds

+30pz−3∂nz∂
2
nz − 5pz−2∂3

nz + 5∂3
np(z−1 − 1)

3ds

+
−3∂n↑∂n↓α∂ζds∂n↓ζ − 3∂n↓α∂

2
ζds∂n↑ζ∂n↓ζ − 3∂n↓α∂ζds∂n↑∂n↓ζ

3ds

+
−3∂n↑α∂

2
ζds(∂n↓ζ)2 − 3α∂3

ζds(∂n↓ζ)2∂n↑ζ − 6α∂2
ζds∂n↓ζ∂n↑∂n↓ζ

3ds

+
−3∂n↑α∂ζds∂

2
n↓
ζ − 3α∂2

ζds∂n↑ζ∂
2
n↓
ζ − 3α∂ζds∂n↑∂

2
n↓
ζ

3ds

−
(a↓) · 3∂ζds∂n↑ζ

9d2
s

+
(−10pz−2(∂nz)2 + 5pz−2∂2

nz + 5∂2
np(z−1 − 1))∂ζds∂n↓ζ

3d2
s

+
(5pz−2∂nz + 5∂np(z−1 − 1))(∂2

ζds∂n↑ζ∂n↓ζ + ∂ζds∂n↑∂n↓ζ)
3d2

s

+
3∂n↑α(∂ζds∂n↓ζ)2 + 6α∂ζds∂n↓ζ · (∂2

ζds∂n↑ζ∂n↓ζ + ∂ζds∂n↑∂n↓ζ)
3d2

s

−
(b↓) · 2∂ζds∂n↑ζ

3d3
s

(B.300)

In case of τ↑ and τ↓ it is done analogously. (They are mostly zero.)

For fc we have:

∂n↓∂n↑fc = ∂2
αfc∂n↓α∂n↑α+ ∂αfc∂n↓∂n↑α (B.301)

∂n↑∂n↓fc = ∂2
αfc∂n↑α∂n↓α+ ∂αfc∂n↑∂n↓α (B.302)

∂n↓∂
2
n↑
fc = ∂3

αfc∂n↓α(∂n↑α)2 + 2∂2
αfc∂n↑α∂n↓∂n↑α

+∂2
αfc∂n↓α∂

2
n↑
α+ ∂αfc∂n↓∂

2
n↑
α (B.303)

∂n↑∂
2
n↓
fc = ∂3

αfc∂n↑α(∂n↓α)2 + 2∂2
αfc∂n↓α∂n↑∂n↓α

+∂2
αfc∂n↑α∂

2
n↓
α+ ∂αfc∂n↑∂

2
n↓
α (B.304)
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In case of τ↑ and τ↓ it is done analogously.
For ϵ1c we have:

∂n↓∂n↑ϵ
1
c = ∂2

rs
ϵ1c(∂nrs)2 + ∂rsϵ

1
c∂

2
nrs + ∂2

ζ ϵ
1
c∂n↓ζ∂n↑ζ + ∂ζϵ

1
c∂n↓∂n↑ζ

+∂2
pϵ

1
c(∂np)2 + ∂pϵ

1
c∂

2
np (B.305)

∂n↑∂n↓ϵ
1
c = ∂2

rs
ϵ1c(∂nrs)2 + ∂rsϵ

1
c∂

2
nrs + ∂2

ζ ϵ
1
c∂n↑ζ∂n↓ζ + ∂ζϵ

1
c∂n↑∂n↓ζ

+∂2
pϵ

1
c(∂np)2 + ∂pϵ

1
c∂

2
np (B.306)

∂n↓∂
2
n↑
ϵ1c = ∂3

rs
ϵ1c(∂nrs)3 + 3∂2

rs
ϵ1c∂nrs∂

2
nrs + ∂rsϵ

1
c∂

3
nrs

+∂3
ζ ϵ

1
c∂n↓ζ(∂n↑ζ)

2 + 2∂2
ζ ϵ

1
c∂n↑ζ∂n↓∂n↑ζ

+∂2
ζ ϵ

1
c∂n↓ζ∂

2
n↑
ζ + ∂ζϵ

1
c∂n↓∂

2
n↑
ζ

+∂3
pϵ

1
c(∂np)3 + 3∂2

pϵ
1
c∂

2
np∂np+ ∂pϵ

1
c∂

3
np (B.307)

∂n↑∂
2
n↓
ϵ1c = ∂3

rs
ϵ1c(∂nrs)3 + 3∂2

rs
ϵ1c∂nrs∂

2
nrs + ∂rsϵ

1
c∂

3
nrs

+∂3
ζ ϵ

1
c∂n↑ζ(∂n↓ζ)

2 + 2∂2
ζ ϵ

1
c∂n↓ζ∂n↑∂n↓ζ

+∂2
ζ ϵ

1
c∂n↑ζ∂

2
n↓
ζ + ∂ζϵ

1
c∂n↑∂

2
n↓
ζ

+∂3
pϵ

1
c(∂np)3 + 3∂2

pϵ
1
c∂

2
np∂np+ ∂pϵ

1
c∂

3
np (B.308)

For ϵ0c we have:

∂n↓∂n↑ϵ
0
c = ∂2

rs
ϵ0c(∂nrs)2 + ∂rsϵ

0
c∂

2
nrs + ∂2

ζ ϵ
0
c∂n↓ζ∂n↑ζ + ∂ζϵ

0
c∂n↓∂n↑ζ

+∂2
pϵ

0
c(∂np)2 + ∂pϵ

0
c∂

2
np (B.309)

∂n↑∂n↓ϵ
0
c = ∂2

rs
ϵ0c(∂nrs)2 + ∂rsϵ

0
c∂

2
nrs + ∂2

ζ ϵ
0
c∂n↑ζ∂n↓ζ + ∂ζϵ

0
c∂n↑∂n↓ζ

+∂2
pϵ

0
c(∂np)2 + ∂pϵ

0
c∂

2
np (B.310)

∂n↓∂
2
n↑
ϵ0c = ∂3

rs
ϵ0c(∂nrs)3 + 3∂2

rs
ϵ0c∂nrs∂

2
nrs + ∂rsϵ

0
c∂

3
nrs

+∂3
ζ ϵ

0
c∂n↓ζ(∂n↑ζ)

2 + 2∂2
ζ ϵ

0
c∂n↑ζ∂n↓∂n↑ζ

+∂2
ζ ϵ

0
c∂n↓ζ∂

2
n↑
ζ + ∂ζϵ

0
c∂n↓∂

2
n↑
ζ

+∂3
pϵ

0
c(∂np)3 + 3∂2

pϵ
0
c∂

2
np∂np+ ∂pϵ

0
c∂

3
np (B.311)

∂n↑∂
2
n↓
ϵ0c = ∂3

rs
ϵ0c(∂nrs)3 + 3∂2

rs
ϵ0c∂nrs∂

2
nrs + ∂rsϵ

0
c∂

3
nrs

+∂3
ζ ϵ

0
c∂n↑ζ(∂n↓ζ)

2 + 2∂2
ζ ϵ

0
c∂n↓ζ∂n↑∂n↓ζ

+∂2
ζ ϵ

0
c∂n↑ζ∂

2
n↓
ζ + ∂ζϵ

0
c∂n↑∂

2
n↓
ζ

+∂3
pϵ

0
c(∂np)3 + 3∂2

pϵ
0
c∂

2
np∂np+ ∂pϵ

0
c∂

3
np (B.312)
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ϵ1c and ϵ0c don’t have a τ↑,↓ dependence.

For ϵc we have:

∂n↓∂n↑ϵc = ∂n↓∂n↑ϵ
1
c + ∂n↓∂n↑fc(ϵ

0
c − ϵ1c) + ∂n↑fc(∂n↓ϵ

0
c − ∂n↓ϵ

1
c)

+∂n↓fc(∂n↑ϵ
0
c − ∂n↑ϵ

1
c) + fc(∂n↓∂n↑ϵ

0
c − ∂n↓∂n↑ϵ

1
c) (B.313)

∂n↑∂n↓ϵc = ∂n↑∂n↓ϵ
1
c + ∂n↑∂n↓fc(ϵ

0
c − ϵ1c) + ∂n↓fc(∂n↑ϵ

0
c − ∂n↑ϵ

1
c)

+∂n↑fc(∂n↓ϵ
0
c − ∂n↓ϵ

1
c) + fc(∂n↑∂n↓ϵ

0
c − ∂n↑∂n↓ϵ

1
c) (B.314)

∂n↓∂
2
n↑
ϵc = ∂n↓∂

2
n↑
ϵ1c + ∂n↓∂

2
n↑
fc(ϵ0c − ϵ1c) + ∂2

n↑
fc(∂n↓ϵ

0
c − ∂n↓ϵ

1
c)

+2∂n↓∂n↑fc(∂n↑ϵ
0
c − ∂n↑ϵ

1
c) + 2∂n↑fc(∂n↓∂n↑ϵ

0
c − ∂n↓∂n↑ϵ

1
c)

+∂n↓fc(∂
2
n↑
ϵ0c − ∂2

n↑
ϵ1c) + fc(∂n↓∂

2
n↑
ϵ0c − ∂n↓∂

2
n↑
ϵ1c) (B.315)

∂n↑∂
2
n↓
ϵc = ∂n↑∂

2
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For Ac we have:

∂n↓∂n↑Ac = ∂n↑ϵc + n∂n↓∂n↑ϵc + ∂n↓ϵc (B.317)

∂n↑∂n↓Ac = ∂n↓ϵc + n∂n↑∂n↓ϵc + ∂n↑ϵc (B.318)
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∂τ↓∂τ↑Ac = n∂τ↓∂τ↑fc(ϵ
0
c − ϵ1c) (B.321)

∂τ↑∂τ↓Ac = n∂τ↑∂τ↓fc(ϵ
0
c − ϵ1c) (B.322)

∂τ↓∂
2
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2
τ↑
fc(ϵ0c − ϵ1c) (B.323)

∂τ↑∂
2
τ↓
Ac = n∂τ↑∂

2
τ↓
fc(ϵ0c − ϵ1c) (B.324)

B.5 Notes

ϵlsda1
c I defined wrongly in the Code. In the code I used EC of PW92 instead of the

actual correlation energy of the uniform electron gas. Additionally, I didn’t have the
derivatives with respect to rs, in which case I set them randomly. Here I want to
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derive those terms using the simple correlation energy of the uniform gas given by
Chachiyo in 2016[Cha16]:

ϵlsda1
c = a ln(1 + b

rs
+ c

r2
s

) (B.325)

∂rsϵ
lsda1
c = − ab(rs + 2)

rs(r2
s + brs + b) (B.326)

∂2
rs
ϵlsda1
c = ab(2r3

s + (b+ 6)r2
s + 4brs + 2b)

r2
s(r2

s + brs + b)2 (B.327)

∂3
rs
ϵlsda1
c = −2ab(3r2

s + (3b+ 12)r4
s + (b2 + 15b)r3

s)
r3
s(r2

s + brs + b)3

+(6b2 + 6b)r2
s + 6b2rs + 2b2

r3
s(r2

s + brs + b)3 (B.328)

where we have:

a = ln 2 − 1
4π2 (B.329)

and

b = 27.4203609

If the tipping point between the low-density and high-density limits in (B.325)
appears at rs=1, exactly at the Bohr Radius, then b=c.
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