
Faculty for Computer Science, Electrical Engineering and Mathematics
Department of Computer Science
Research Group Secure Software Engineering

Specification and Verification of Security Protocols
and their Utilization in Scenario-based

Requirements Engineering

PhD Thesis
Submitted in partial fulfillment

of the requirements for the degree of
“Doktor der Naturwissenschaften (Dr. rer. nat.)”

by
THORSTEN KOCH

Supervised by:
Prof. Dr. Eric Bodden

Paderborn, September, 2024

Abstract

The widespread usage of software-intensive systems significantly increases the risk of cyber-
attacks. Software-intensive systems must integrate security measures like security protocols to
cope with this risk.

The correct specification and application of security protocols are tedious and error-prone. When
specifying security protocols, security engineers use symbolic model checking to verify the secu-
rity of the protocols. However, using more than one symbolic model checker is recommended for
a thorough and confident analysis. Thus, security engineers need help transforming a security pro-
tocol into the input language of different symbolic model checkers to avoid the time-consuming
and error-prone remodeling of the same security protocol. In addition, current requirements-
engineering approaches address either functional or security-related requirements. Hence, re-
quirements engineers need help to assess whether the applied security measures are sufficient to
secure the system and whether the measures lead to conflicts with other functional requirements.

To cope with these challenges, we propose a systematic model-based approach for specifying
and verifying security protocols in the symbolic model and utilizing them in a scenario-based re-
quirements engineering methodology. Based on a UML-compliant modeling language, security
engineers can specify security protocols and automatically analyze them using various symbolic
model checkers. In addition, requirements engineers can systematically integrate the verified secu-
rity protocols into requirements specifications. Furthermore, they can specify misuse cases against
the system under development and validate whether it is sufficiently secure to mitigate them.

We conduct case studies for all our contributions based on realistic examples and show that our
contributions are applicable in practice.

iii

Zusammenfassung

Der weitverbreitete Einsatz von software-intensiven Systemen erhöht das Risiko von Cyberangrif-
fen. Um dieses Risiko zu reduzieren, müssen daher verschiedene absichernde Maßnahmen wie
Sicherheitsprotokolle in die Systeme integriert werden.

Die korrekte Spezifikation und Anwendung dieser Protokolle ist jedoch mühsam und fehleran-
fällig. Bei der Spezifikation verwenden Sicherheitsexperten verschiedene symbolische Model-
Checker. Allerdings reicht ein einzelner symbolischer Model-Checker nicht aus, um die Sicherheit
vollständig zu verifizieren. Daher benötigen Sicherheitsexperten Hilfe bei der Übersetzung eines
Sicherheitsprotokolls in die Eingabesprache verschiedener symbolischer Model-Checker, um die
zeitaufwändige und fehleranfällige Modellierung desselben Sicherheitsprotokolls zu vermeiden.
Darüber hinaus adressieren die heutigen Ansätze zum Requirements Engineering entweder funk-
tionale oder sicherheits-bezogene Anforderungen. Anforderungsmanagern fällt es daher schwer
zu beurteilen, ob die spezifizierten Maßnahmen ausreichen das System abzusichern oder ob sie zu
Konflikten mit anderen funktionalen Anforderungen führen.

In dieser Arbeit wird ein modellbasierter Ansatz zur Spezifikation und Verifikation von Sicher-
heitsprotokollen sowie deren Verwendung im szenario-basierten Requirements Engineering
vorgestellt. Auf Basis einer UML-konformen Modellierungssprache können Sicherheitspro-
tokolle spezifiziert und automatisch in die Eingabesprache verschiedener symbolischer Model-
Checker überführt werden. Zudem können die spezifizierten Protokolle systematisch in eine
Anforderungsspezifikation integriert werden.

Die Evaluierung anhand von Fallstudien auf Basis realistischer Beispiele zeigt, dass die Beiträge
dieser Arbeit in der Praxis anwendbar sind.

v

Danksagung

Ich möchte all den Menschen danken, die mich auf meinem Weg zur Promotion begleitet, ermutigt
und unterstützt haben.

Zunächst gilt mein Dank meinem Doktorvater Eric Bodden für die Möglichkeit diese Arbeit zu
schreiben. Eric Bodden gab mir wertvolles Feedback und war immer erreichbar, wenn ich Unter-
stützung brauchte. Ich danke Eric Bodden und Tibor Jager für die Erstellung ihrer Gutachten und
den weiteren Mitgliedern meiner Prüfungskommission Matthias Meyer, Stefan Sauer und Juraj
Somorovsky für ihre Bereitschaft an meiner Verteidigung teilzunehmen.

Ich möchte mich auch bei all meinen ehemaligen und aktuellen Kollegen am Fraunhofer IEM
und in der Fachgruppe Secure Software Engineering bedanken. Hervorheben möchte ich Faruk
Pasic für die gemeinsame Zeit im Büro, die angenehme Arbeitsatmosphäre und die anregenden
Gespräche. Ich möchte auch Jörg Holtmann, Markus Fockel und David Schmelter für die vielen
Diskussionen und den wissenschaftlichen Austausch im Rahmen der RE-Expertengruppe zu Be-
ginn meiner Zeit am Fraunhofer IEM danken. Für das Lösen von organisatorischen und technis-
chen Herausforderungen bedanke ich mich bei der Verwaltung und der IT am Fraunhofer IEM und
in der Fachgruppe, insbesondere bei Vera Meyer und Nicole Graskamp.

Ich danke meinen Co-Autoren Jörg Holtmann, Stefan Dziwok, Sascha Trippel und Eric Bodden
für die gute Zusammenarbeit und den wissenschaftlichen Austausch bei den für diese Arbeit rele-
vanten Publikationen. Außerdem danke ich allen, die Teile dieser Arbeit oder Teile meiner Veröf-
fentlichungen Korrektur gelesen haben.

Weiter danke ich Bahar Jazayeri, Lucas Briese, Richard Hochhalter, Alexander Kaiser und Sascha
Trippel, die mich durch ihre Abschlussarbeit oder ihre SHK-Tätigkeit bei dieser Arbeit unterstützt
haben.

Schließlich möchte ich mich bei meiner Familie bedanken. Meine Eltern und mein Bruder haben
mich immer auf meinem Weg unterstützt. Ich möchte meiner Frau Ricarda dafür danken, dass sie
in den letzten Jahren alle Höhen und Tiefen mit mir geteilt hat.

vii

Contents

Abstract iii

Zusammenfassung v

Danksagung vii

1 Introduction 1
1.1 Problem Description . 2

1.1.1 Specification and Analysis of Security Protocols 2
1.1.2 Specification and Analysis of Functional and Security Requirements . . . 4

1.2 Contributions . 5
1.3 Thesis Structure . 7

2 Foundations 9
2.1 Modal Sequence Diagrams (MSDs) . 9

2.1.1 Structure of MSD Specifications . 9
2.1.2 Semantics of MSD Specifications . 11
2.1.3 Analysis Techniques for MSD Specifications 13
2.1.4 The Modal Profile . 13

2.2 Specification and Analysis of Security Protocols 14
2.2.1 Alice & Bob Notation . 14
2.2.2 Analyzing Security Protocols in the Symbolic Model 14
2.2.3 PROVERIF . 16
2.2.4 TAMARIN . 19

3 Specification of Security MSDs 23
3.1 Contributions . 24
3.2 Requirements on the SECURITY MODELING PROFILE 24

3.2.1 Analyzing Exemplary Security Protocols 25
3.2.2 Analyzing the Results . 29

3.3 Exemplary Application of the SECURITY MODELING PROFILE 32
3.3.1 Modeling the Andrew Secure RPC Security Protocol 32
3.3.2 Modeling the Needham-Schroeder Public Key Security Protocol 34

ix

Contents

3.3.3 Summarizing the Exemplary Application of the SECURITY MODELING

PROFILE . 36
3.4 The SECURITY MODELING PROFILE in Detail 38

3.4.1 Subprofile SecurityModelingProfile::ProtocolModeling 38
3.4.2 Subprofile SecurityModelingProfile::CryptographicKeyModeling 41
3.4.3 Subprofile SecurityModelingProfile::SecureElementModeling 42
3.4.4 Metamodel SecurityModelingProfile::SecurityAssignment 44
3.4.5 Metamodel SecurityModelingProfile::SecurityCondition 45

3.5 Extension of the Runtime Semantics to Support the SECURITY MODELING PROFILE 46
3.5.1 Runtime Semantics: Minimal Event . 46
3.5.2 Runtime Semantics: Message Unification 47

3.6 Implementation . 48
3.6.1 Security ScenarioTools (Software Architecture) 48
3.6.2 Security ScenarioTools (User Interface) 49

3.7 Evaluation . 50
3.7.1 Case Study Context . 50
3.7.2 Setting the Hypotheses . 51
3.7.3 Validating the Hypotheses . 51
3.7.4 Analyzing the Results . 52
3.7.5 Threats to Validity . 53

3.8 Related Work . 54
3.9 Summary . 55

4 Verification of Security MSDs 57
4.1 Contributions . 57
4.2 Overview of the Model-Checking Approach for Verifying Security Protocols . . 58
4.3 Translation from MSDs to the VerificationModel 60

4.3.1 Overview of the Metamodel Verification 60
4.3.2 Translate an MSD Specification to the SecurityProtocolModel 64
4.3.3 Translate an MSD Specification to the QueryModel 72

4.4 Translation from the VerificationModel to PROVERIF input models 77
4.4.1 Overview of the Capabilities of PROVERIF in relation to the SECURITY

MODELING PROFILE . 77
4.4.2 Translate the SecurityProtocolModel to PROVERIF 79
4.4.3 Translate the QueryModel to PROVERIF 88

4.5 Translation from the VerificationModel to TAMARIN input models 91
4.5.1 Overview of the Capabilities of TAMARIN in relation to the SECURITY

MODELING PROFILE . 91
4.5.2 Translate the SecurityProtocolModel to TAMARIN 93
4.5.3 Translate the QueryModel to TAMARIN 102

4.6 Back-Translation from Security Model Checkers to MSDs 105
4.6.1 Overview of the Metamodel Result . 105
4.6.2 Translate the Analysis Results to the SECURITY MODELING PROFILE . . 105

4.7 Implementation . 109
4.7.1 Security ScenarioTools (Software Architecture) 109
4.7.2 Security ScenarioTools (User Interface) 111

x

Contents

4.8 Evaluation . 112
4.8.1 Case Study Context . 112
4.8.2 Setting the Hypotheses . 112
4.8.3 Validating the Hypotheses . 114
4.8.4 Analyzing the Results . 116
4.8.5 Threats to Validity . 119

4.9 Related Work . 120
4.9.1 Model-based approaches for the automated verification of security protocols120
4.9.2 Text-based approaches for the automated verification of security protocols 121

4.10 Summary . 122

5 Incorporation of Functional and Security MSDs 123
5.1 Contributions . 124
5.2 Exemplary Application of the MISUSE CASE MODELING PROFILE and the SE-

CURITY PROTOCOL TEMPLATE PROFILE . 124
5.3 Specification of Misuse Cases . 128

5.3.1 The MISUSE CASE MODELING PROFILE in Detail 128
5.3.2 Extension of the Runtime Semantics to Support the MISUSE CASE MOD-

ELING PROFILE . 130
5.4 Integrating Security Protocols into Scenario-based Requirements Specifications . 131

5.4.1 The SECURITY PROTOCOL TEMPLATE PROFILE in Detail 132
5.4.2 Extension of the Runtime Semantics to Support the SECURITY PROTO-

COL TEMPLATE PROFILE . 133
5.5 Implementation . 134

5.5.1 Security ScenarioTools (Software Architecture) 134
5.5.2 Security ScenarioTools (User-Interface) 135

5.6 Evaluation . 135
5.6.1 Case Study Context . 136
5.6.2 Setting the Hypotheses . 136
5.6.3 Validating the Hypotheses . 137
5.6.4 Analyzing the Results . 138
5.6.5 Threats to Validity . 139

5.7 Related Work . 140
5.7.1 Approaches for the Identification and Analysis of Misuse Cases 140
5.7.2 Approaches for the Specification of Security Mechanisms 140

5.8 Summary . 141

6 Conclusion 143
6.1 Summary . 143
6.2 Future Work . 144

Bibliography 147
Own Publications . 147
Supervised Thesis . 149
Foreign Publications . 149
Tool Suites and Tool Frameworks . 160

xi

Contents

List of Figures 163

List of Tables 167

List of Listings 169

List of Algorithms 171

A Supplementing Materials for the Specification of Security MSDs 173
A.1 Analyzing the Usage of Cryptographic Primitives in Security Protocols 173
A.2 Analyzing the Usage of Algebraic Operations in Security Protocols 176
A.3 Analyzing the Usage of Data Types in Security Protocols 179

B Supplementing Materials for the Verification of Security MSDs 183
B.1 Supplementing Materials for the Translation from MSDs to the VerificationModel 183

B.1.1 Overview of the Package Verification::Protocol::Primitives 183
B.1.2 Overview of the Package Verification::Protocol::Types 184

B.2 Supplementing Materials for the Translation from the SecurityProtocolModel to
PROVERIF . 186
B.2.1 Definition of the Protocol Preamble in PROVERIF 186

B.3 Supplementing Materials for the Translation from the Security Protocol Model to
TAMARIN . 188
B.3.1 Definition of the Protocol Preamble in TAMARIN 188

C Own Publication Contributions 191

xii

1

Introduction

In recent years, software-intensive systems (e.g., embedded [HS07], mechatronic [Aus96; VDI04],
or cyber-physical systems [Poo10; SW07]) have become prevalent in our daily lives and are widely
used in private and business environments.

However, the widespread usage of software-intensive systems also significantly increases the risk
of cyber-attacks. Thus, security has become one of the most crucial technology risks for the
world’s population [Wor23]. While attacks in the private environment primarily pursue collecting
personal information, attacks on business systems vary from spying on sensitive data to obtaining
secret product and production knowledge to manipulate and disrupt operations. In particular, at-
tacks on technical systems (vehicles, plants, or medical devices) pose a high risk since malfunc-
tions caused by security incidents can lead to life-threatening accidents [Com19; Bun21]. For ex-
ample, security researchers conducted an attack on the Jeep Cherokee and were able to remotely
control the vehicle and manipulate the brakes and the motor control [MV15].

A closer look at software-intensive systems reveals that the message-based communication be-
tween and within these systems is often vulnerable to cyber-attacks. To counter this risk, security
protocols [Sch96] can be used to ensure security within communication networks [Bla01]. Se-
curity protocols rely on executing security-related functions and apply cryptographic operations
like encryption or digital signatures. Thus, security protocols must be correctly designed and
specified. However, this is a tedious and error-prone task due to complex security requirements
and their dependencies on the attacker model [Bla01; DT19]. Consequently, many flaws in se-
curity protocols were only discovered after years of productive usage [Low96b; JV96; ABD+15;
CKM20; BST21]. For example, although TLS is widely used in practice, flaws have been found
repeatedly [MS13; BLF+14; BBD+17; BBK17].

Security protocols must be adequately integrated into the subsequent application. If the proto-
col is integrated incorrectly or parts of the message-based communication remain unprotected, at-
tacks can still be successful. Furthermore, it must be ensured that the security requirements do
not conflict with other requirements and do not lead to an inconsistent requirements specification.
For example, integrating a security protocol usually leads to more messages exchanged between
the communication participants. Moreover, the message delay increases since executing crypto-
graphic operations requires additional time. Both examples can lead to an unintended timing be-
havior of the final system and, thus, can cause several malfunctions, particularly in safety-critical
systems.

Consequently, security must be addressed from the beginning and continuously in the develop-
ment process when developing software-intensive systems. In particular, security engineers need

1

Chapter 1. Introduction

a systematic approach that supports the specification and analysis of security protocols. Further-
more, requirements engineers need a systematic approach to reuse existing security protocols and
apply them in subsequent applications. The resulting requirements specification provides an intu-
itive representation of all relevant requirements through the combined consideration of functional
and security requirements on message-based communication. Moreover, analysis techniques can
be executed to find inconsistencies in the specification. Thus, the quality of requirements on
software-intensive systems’ communication behavior improves, and the risk of security flaws dur-
ing productive usage is reduced.

1.1 Problem Description

In this section, we sketch challenges that apply in the specification and analysis of security pro-
tocols (cf. Section 1.1.1) and in the specification and analysis of functional and security require-
ments (cf. Section 1.1.2). All problems are currently insufficiently solved by related approaches.

1.1.1 Specification and Analysis of Security Protocols

During the specification and analysis of security protocols, security engineers typically apply ap-
proaches from the computer-aided cryptography [BBB+19] area like computational and symbolic
model checking to verify whether a security protocol fulfills certain security properties such as se-
crecy and authentication. The symbolic model is relatively simple and assumes that cryptography
is perfect, i.e. an adversary cannot break the algorithm [DY83]. The simplicity of the symbolic
model enables the application of automated tools like PROVERIF [Bla01], TAMARIN [Mei13]. In
contrast, the computational model is more powerful than the symbolic model and treats crypto-
graphic primitives as probabilistic algorithms on bitstrings and adversaries as probabilistic Turn-
ing machines [BBB+19]. These assumptions make it much more difficult to build tools automated
tools. Thus, computational model checkers like CryptoVerif [Bla23] and EasyCrypt [BGH+11]
need guidance from the user to complete their proofs. However, many practical attacks have been
found in both models and thus the analysis based on the symbolic model has been proven to be of
great value [LZK20].

The challenges outlined in this section apply to both computational and symbolic model checking.
However, in the remainder of this thesis, we focus only on symbolic model checkers and leave the
consideration of computational model checkers for future work.

When applying symbolic model checking to verify the security of a protocol, PROVERIF [Bla01]
and TAMARIN [Mei13] are typically used by security engineers. Both tools have been used to
analyze different real-world protocols [BBB+19]. However, each model checker has different
capabilities and restrictions. For instance, PROVERIF aims to provide a fully automatic analysis
that always terminates and does not need any interaction with the user. Thus, PROVERIF makes
some strong assumptions to fulfill this aim [Bla01]. In contrast, TAMARIN is less restrictive but
relies on the user’s guidance to proceed with the analysis in some cases [Mei13]. Although the
mentioned model checkers are sound under their assumptions, i.e., if they do not find an attack
during an analysis, then none exists [Bla01; Mei13], and most of the restrictions do not apply for
real-world security protocols [KNT19], a thorough and confident analysis of security protocols

2

1.1. Problem Description

typically requires multiple model checkers with different analysis capabilities to ensure that no
(critical) security flaws remain undetected.

While specifying and analyzing security protocols using these two model checkers, we identified
three challenges that lead to inefficient development and critical security flaws if they are insuffi-
ciently handled:

1. “[Both model checkers] have their own textual modeling and query languages, which are
fundamentally different. Moreover, each [. . .] input language requires the security engi-
neer to have deep knowledge and experience. However, as stated above, [to improve the
confidence of the analysis], the security engineer [should] use multiple model checkers for
a thorough analysis. [Therefore, the security engineer] has to re-model the security proto-
col, including its queries in other languages repeated times. This is time-consuming and
error-prone. Moreover, in our experience, the model checkers’ textual input languages are
generally rather hard to comprehend, which adds a burden to the engineer” [*KDH+20].

2. “Choosing the set of queries that the model checker must verify is highly important, as the
query results ultimately decide whether the protocol is accepted as secure. If important
queries are missing or are specified incorrectly, existing flaws remain undetected in the
security protocol. This may lead to critical security flaws. In existing models, the knowledge
to choose and specify this set of queries is typically hidden, distributed over several papers
and websites, or within the brains of experts. Therefore, it is not easily accessible for a
common security engineer” [*KDH+20].

3. Comprehensible analysis results are another essential part of the verification of security pro-
tocols. Usually, model checkers summarize all properties that have been analyzed and pro-
vide a counterexample for the properties that the security protocol does not fulfill. However,
these counterexamples are primarily specified in a language similar to the model checker’s
internal representation and, thus, hard to understand for the security engineer. Furthermore,
there is no guidance for the security engineer that highlights the problematic parts of the
security protocol. Hence, the security engineer must manually map the counterexample to
the specified security protocol.

Related work only marginally addresses these challenges. “FANG ET AL. [FLH+16] propose an
extension to Unified Modeling Language (UML) Interactions [Obj17b] to enable the specification
of security protocols. Furthermore, they provide an automatic transition to PROVERIF to analyze
the specified protocols. However, their modeling and query language is very PROVERIF-specific.
Other model checkers are not supported, and their support would require significant changes to the
modeling language. Moreover, the security engineer receives no support for choosing a suitable
set of queries” [*KDH+20]. Furthermore, they do not provide a translation of the analysis back to
the modeling approach. Hence, the security engineer must use the modeling tool for the specifica-
tion and PROVERIF for the analysis of security protocols. Furthermore, the security engineer must
investigate the analysis results and map them manually to the origin input. Consequently, the se-
curity engineer still has to perform time-consuming and error-prone tasks and learn the PROVERIF

modeling and query language.

“AMEUR-BOULIFA ET AL. [ALA19] present a modeling approach based on the Systems Mod-
eling Language (SysML) [Obj17a] to enable the specification of security and safety aspects us-

3

Chapter 1. Introduction

ing SysML State Machines, including security protocols and their queries. For the security anal-
ysis, they translate their models to PROVERIF and generate queries concerning the confidential-
ity of the protocol. However, they only support PROVERIF as the single model checker for secu-
rity protocols. In addition, they do not generate all sufficient queries concerning the authenticity
of the protocol. Finally, scenario-based models are more appropriate than state-based models for
the specification of requirements on message-based interactions in terms of efficient comprehen-
sibility [LT15]. Particularly, scenario-based notations have an intuitive representation [HRD10]
and improve the comprehension of interaction requirements for people experienced in model-
ing [AGI+13]” [*KDH+20].

To summarize this section, the mentioned approaches enable the specification and verification of
security protocols. However, they support only one model checker to analyze security protocols
and do not allow a thorough analysis. Consequently, to solve the three challenges, we have to con-
ceive a systematic approach for the specification of security protocols and an automatic transfor-
mation approach to different model checkers to enable a thorough analysis.

1.1.2 Specification and Analysis of Functional and Security Requirements

Today’s software-intensive systems’ growing functionality and complexity require rigorous devel-
opment processes. This is especially true for the requirements engineering phase since the detec-
tion and fixing of defects in subsequent development phases cause costly iterations [Poh10]. Dur-
ing the requirements engineering phase, the requirements engineer must consider functional and
security requirements.

In the functional requirements engineering of software-intensive systems, models are considered
beneficial for documenting functional requirements [STP12] as they increase the understand-
ing [NT09] and enable automatic analysis techniques. In particular, scenario-based approaches
are well suited for documenting requirements on the message-based communication behavior. In
a scenario-based approach, requirements engineers use scenarios to describe sequences of events
the system has to accomplish [HRD10]. The resulting requirements specification provides an in-
tuitive representation of the system’s behavior [HRD10] and is easy to understand for people with
modeling experience [AGI+13].

GREENYER [Gre11] developed a requirements engineering approach based on Modal Sequence
Diagrams (MSDs) [HM08], a recent Live Sequence Charts (LSC) [Har00; Har01] variant compli-
ant to the Unified Modeling Language (UML) [Obj17b]. Furthermore, GREENYER applied and ex-
tended two complementary automatic analysis techniques, enabling the early detection of require-
ments defects. Based on this MSD dialect, we defined a scenario-based requirements engineering
methodology for the specification and analysis of requirements on the message-based communi-
cation behavior of software-intensive systems [*HFK+16b]. We implemented tool support for the
specification and analysis of MSDs as a set of plugins for Eclipse as part of the SCENARIOTOOLS-
MSD tool suite. However, although security is a major concern in developing software-intensive
systems, our scenario-based requirements engineering methodology and related approaches only
address functional and safety requirements.

In the security requirements engineering of software-intensive systems, many approaches exist that
enable to specify security requirements. Instead of describing what the system should do, many ap-
proaches utilize misuse cases [SO05] or abuse cases [PX05] as negative scenarios to specify what

4

1.2. Contributions

is not allowed to happen during the system’s execution. Furthermore, several other approaches
worked on eliciting and specifying security requirements, for example, security use cases [Fir03;
Fir07]; UMLsec [Jür02; Jür05], a framework for security requirements engineering [HLM+08];
SQUARE [MS05]; security requirements methods based on i* framework [LYM03]; Secure Tro-
pos [GMZ06]. Moreover, WHITTLE ET AL. [WWH08] developed an approach to formalize use
and misuse cases using extended interaction overview diagrams (EIODs). Based on the EIOD
specification, they provided an analysis technique that executes misuse cases against scenario-
based specifications to investigate whether an attack is successful.

However, none of the mentioned approaches provide sufficient analysis techniques to validate
whether the specified security requirements are fulfilled and whether a potential attacker can exe-
cute the specified attack. In addition, they do not provide any integration into existing functional
requirements engineering methodologies or development processes. Therefore, a requirements en-
gineer would have to model large parts of the system twice to analyze both types of requirements.
This is an error-prone and time-consuming task. Furthermore, interactions between the two types
might only become apparent late in the development.

To summarize this section, the idea of scenarios is beneficial for eliciting and documenting func-
tional and security requirements. However, the mentioned approaches either focus on functional or
security requirements. No approach systematically covers both aspects. Consequently, we have to
conceive a scenario-based requirements engineering approach for secure software-intensive sys-
tems that enables the specification and analysis of functional and security requirements and their
interplay.

1.2 Contributions

The goal of this thesis is a systematic approach for the specification and verification of security
protocols and their utilization in a scenario-based requirements engineering methodology. There-
fore, we propose a modeling approach that enables the specification of security protocols (C1).
Based on our modeling approach, we present a model-checking approach to automatically trans-
fer a specified security protocol to the input model of various symbolic model checkers and ana-
lyze whether the security protocol is secure in the symbolic model (C2). Finally, we introduce an
approach to incorporate security requirements into scenario-based functional requirements speci-
fications (C3).

This section presents the three contributions in further detail. We implemented all concepts as
extensions to the tool suite SCENARIOTOOLS-MSD and evaluated the concepts through different
case studies.

C1 We propose the SECURITY MODELING PROFILE, a new UML-compliant profile based on
Modal Sequence Diagrams [*HFK+16b] that provides a set of widely used security primitives.
Security engineers can use the SECURITY MODELING PROFILE for the scenario-based specifica-
tion of security protocols. Furthermore, requirements engineers can use the SECURITY MODEL-
ING PROFILE to integrate security measures into the requirements specification of their applica-
tion to ensure the security of the message-based communication. The proposed profile is compre-
hensive for engineers familiar with the UML and basic security concepts. Moreover, the profile
defines certain constraints on the final model and, thus, avoids specification errors. In addition, we

5

Chapter 1. Introduction

extend the validation technique Play-out [HM03] to enable the simulation of the specified security
protocols and the security-enhanced requirements specification.

C2 We present VICE (VIsual Cryptography vErifier), a model-checking approach for verifying
security protocols addressing the three challenges mentioned in Section 1.1.1. Figure 1.1 depicts
an overview of VICE’s workflow. The security engineer manually specifies a security protocol
by means of the SECURITY MODELING PROFILE. Then, the security engineer applies the auto-
matic workflow for the security model checking. This encompasses an automatic and systematic
technique for the transition from the SECURITY MODELING PROFILE to the two symbolic model
checkers PROVERIF and TAMARIN (cf. 2.1 Automatic Translation of Security Protocols). Fur-
thermore, VICE encapsulates the knowledge formerly hidden within models, documents, and ex-
perts to specify and choose the necessary set of queries the model checker shall verify to decide
whether the protocol is secure concerning secrecy and authentication. This is realized by an auto-
matic generation of all necessary queries (cf. 2.2 Automatic Generation of Analysis Queries). After
the termination of the symbolic model checkers PROVERIF and TAMARIN, VICE translates the
analysis results back to the level of the SECURITY MODELING PROFILE (cf. 2.3 Visualization
of Analysis Results). Thereby, we preserve the security engineers from the manual and awkward
understanding of the analysis results. Finally, if the analysis shows that the security protocol is
secure, the security engineer can store it in a data store.

S
e
c
u

ri
ty

 E
n
g

in
e
e

r

Specify

Security Protocol

Inspect

Analysis Results

 Automatic Generation

of Analysis Queries

2.2

 Automatic Translation

of Security Protocols

2.1

 Automatic Translation

of Security Protocols

2.1

 Visualization of

Analysis Results

2.3

(model-checker independent)

Apply security

model checking
(model-checker specific)

(model-checker independent)

Legend

Start

Event

Start

Event
Control FlowControl Flow

End

Event

End

Event
Manual

Step

Manual

Step

Manual

Step

Automated

Step

Automated

Step

Automated

Step

Store

security protocol

security

protocols

DatastoreDatastoreGatewayGateway ContributionContribution

Figure 1.1: Overview of VICE’s workflow

C3 We propose an extension to our requirements engineering methodology based on Modal Se-
quence Diagrams [*HFK+16b] to incorporate security requirements into scenario-based func-
tional requirements specifications. Figure 1.2 depicts an overview of the extended requirements
engineering methodology. As in the original methodology, the requirements engineer specifies
functional requirements on the communication behavior by creating an MSD specification. There-
fore, he/she specifies the structural basis for the MSD specification (cf. Specify Structure). After-
ward, he/she creates use cases to structure the MSD specification (cf. Specify Use Cases). Each
use case encapsulates requirements on the message-based communication behavior of the system

6

1.3. Thesis Structure

under development and encompasses a set of MSDs specifying the actual requirements on the
communication behavior (cf. Specify Scenarios).

As an extension to this workflow, we introduce the two steps Specify Misuse Cases and Add Se-
curity Measures. To realize the step Specify Misuse Cases, we present the MISUSE CASE MODEL-
ING PROFILE enabling the specification of misuse cases. A misuse case describes behavior that
is either maliciously exploited by attackers or accidentally triggered through incorrect use (cf.
3.1 Specification of Misuse Cases). To mitigate the specified misuse cases, the requirements engi-
neer must add security measures to the scenarios. Therefore, he/she can either use cryptographic
primitives of the SECURITY MODELING PROFILE or reuse existing and verified security proto-
cols stored in a data store. To enable the reuse of security protocols, we introduce the SECURITY

PROTOCOL TEMPLATE PROFILE, a technique to systematically reference security protocols de-
fined as UML Interactions through our SECURITY MODELING PROFILE within other MSDs (cf.
3.2 Template-based Utilization of Security Protocols). Finally, we extend the Play-out algorithm
to support our extensions and enable requirements engineers to find inconsistencies in the require-
ments specification early in the development (cf. 3.3 Enhancement of the Play-out Algorithm).

R
e

q
u

ir
e
m

e
n

ts
 E

n
g
in

e
e
r

 Specify

Structure

Specify

Use Cases

Specify

Misuse Cases

Specify

Scenarios

Validate

Specification
Play-out algorithm

Specification

of Misuse Cases

3.1

Enhancement of the

Play-out Algorithm

3.3

Template-based Utilization

of Security Protocols

3.2

Add

Security

Measures

Security

Protocols

Legend

Start

Event

Start

Event
Control FlowControl Flow

End

Event

End

Event
Manual

Step

Manual

Step

Manual

Step

Automated

Step

Automated

Step

Automated

Step
DatastoreDatastoreGatewayGateway ContributionContribution

Figure 1.2: Overview of security extensions to our requirements engineering methodology based
on Modal Sequence Diagrams [*HFK+16b]

1.3 Thesis Structure

This thesis is structured as follows. Chapter 2 introduces the foundations of this thesis. Chapter 3
presents our SECURITY MODELING PROFILE for the specification of security protocols. After-
ward, Chapter 4 introduces VICE our model-checking approach for the analysis of security by
means of the two symbolic model checkers PROVERIF and TAMARIN. Chapter 5 explains our ap-
proach for the incorporation of functional and security requirements by means of MSDs. Finally,
Chapter 6 concludes the thesis with a summary and an outlook on future work.

7

2

Foundations

This chapter introduces the foundations necessary to understand the concepts of this thesis. Sec-
tion 2.1 introduces foundations on Modal Sequence Diagrams, and Section 2.2 introduces founda-
tions on the specification and analysis of security protocols.

2.1 Modal Sequence Diagrams (MSDs)

This section presents foundations on Modal Sequence Diagrams (MSDs), a formal, model- and
scenario-based behavior specification language based on UML sequence diagrams [HM08]. We
follow the definition of the MSD requirements language from the technical report by HOLTMANN

ET AL. [*HFK+16b]. The presented concepts have been implemented in the tool suite SCENARI-
OTOOLSMSD [ST-MSD].

Section 2.1.1 introduces the overall structure of an MSD specification. Afterward, Section 2.1.2
presents the MSD semantics. Then, Section 2.1.3 describes the Play-out algorithm, an automatic
validation technique for MSDs. Finally, Section 2.1.4 introduces the Modal profile.

2.1.1 Structure of MSD Specifications

An MSD specification is structured by means of MSD use cases. Each use case encapsulates
requirements on the message-based communication behavior of the system under development in
a self-contained situation. An MSD use case encompasses the participants involved in the situation
and a set of MSDs specifying the actual requirements on the communication behavior.

Figure 2.1 depicts an excerpt of an MSD specification for the Emergency Braking & Evasion As-
sistance System (EBEAS). The EBEAS is an advanced driver assistance system that reduces the
risk of rear-end collisions in case of obstacles in front of a vehicle. Therefore, the EBEAS com-
bines autonomous braking and emergency steering systems with vehicle-to-vehicle communica-
tion technology [*HFK+16b].

The excerpt describes a self-contained situation in which the vehicle leading detects an obstacle
in front and has to perform an emerging brake. The vehicle leading checks if the last point to
brake has already been exceeded. If this is not the case, it informs the vehicle ego about the
upcoming emergency brake. Then, the vehicle ego checks if it can perform an emergency brake
and communicates with the vehicle rear to further coordinate the actions to the dangerous situation.

9

Chapter 2. Foundations

EmergencyBraking

EmergencyBraking

class [Package] EmergencyBraking::Typesclass [Package] EmergencyBraking::Types

+ obstacle()
+ emcyBrakeWarning()
+ standstill()
+ isEmcyBrakePossible(
 isEmcyBrakePossible: Boolean)
+ emcyBrakeRequest()

Vehicle

+ obstacle()
+ emcyBrakeWarning()
+ standstill()
+ isEmcyBrakePossible(
 isEmcyBrakePossible: Boolean)
+ emcyBrakeRequest()

Vehicle

+ emcyBraking()

Environment

+ emcyBraking()

Environment

«Environment»
env: Environment
«Environment»

env: Environment leading: Vehicleleading: Vehicle ego: Vehicleego: Vehicle

type

msd EmcyBrakeTriggeringmsd EmcyBrakeTriggering

obstacle()

emcyBraking()

standstill()

«Environment»

env: Environment

«Environment»

env: Environment
ego: Vehicleego: Vehicleleading: Vehicleleading: Vehicle

represents

signature

NOT lastPointToBrakeExceeded

msd EgoEmcyBrakeRequestmsd EgoEmcyBrakeRequest

leading: Vehicleleading: Vehicle rear: Vehiclerear: Vehicleego: Vehicleego: Vehicle

emcyBrakeWarning()

isEmcyBrake

Possible(true)

emcyBrakeRequest()

rear: Vehiclerear: Vehicle

emcyBrakeWarning()

Figure 2.1: MSD Specification Excerpt

10

2.1. Modal Sequence Diagrams (MSDs)

UML classes provide reusable types for all MSD use cases. These types are used to define the
structure of the system under development and its environment. Moreover, the UML classes define
operations used as message signatures and define which messages can be received by a participant
in an actual MSD. For example, the class diagram in Figure 2.1 depicts the two classes Environment
and Vehicle. The class Environment encompasses the operation emcyBraking().

Based on the UML classes, a UML collaboration (dashed ellipse in Figure 2.1) specifies the roles
participating in a particular MSD use case. The roles are typed by the UML classes and used
as lifelines in an MSD. For example, the UML collaboration in Figure 2.1 encompasses the role
ego: Vehicle which has an abstract syntax link type to the class Vehicle. We distinguish between
environment and system objects. Environment objects are annotated with the stereotype «Environ-
ment» (e.g., Environment in Figure 2.1).

Based on the UML classes and the collaboration, a set of MSDs specifies the requirements on the
communication behavior between the roles involved in the MSD use case. An MSD encompasses
lifelines and messages. Lifelines correspond to a role defined by the containing collaboration,
i.e., depicted by the abstract syntax link represents. Messages are associated with a sending and a
receiving lifeline and an operation signature. For example, as depicted in Figure 2.1, the message
emcyBrakeWarning() is associated with the equally named operation of the class Vehicle by means
of the abstract syntax link signature. MSD messages sent from environment objects are called
environment messages, whereas messages sent from system objects are called system messages.

The operations associated with the messages can have parameters of certain types. For example,
the operation associated with the message isEmcyBrakePossible() encompasses the Boolean param-
eter isEmcyBrakePossible. The argument for the parameters can be concrete literal values like in
conventional UML or refer to variables. For example, the parameter isEmcyBrakePossible is speci-
fied to carry the literal value “true” as an argument.

Assignments enable storing temporally valid intermediate values. They are represented by rect-
angles covering one or multiple lifelines. An assignment contains an expression of the form
<var> = <expr>, where <var> is the name of a typed diagram variable declared for the time
the MSD is active, and <expr> is a value expression specifying a literal or an expression speci-
fied by means of the Object Constraint Language (OCL) [Obj14]. The diagram variables can be
referenced by message arguments and conditions.

To specify conditional behavior, MSDs can contain conditions represented as hexagons covering
one or more lifelines. Conditions contain OCL expressions that evaluate to a Boolean value, typi-
cally involving one diagram variable. For example, the MSD in Figure 2.1 encompasses a condi-
tion covering the lifeline leading: Vehicle. This condition contains the expression NOT lastPointTo-
BrakeExceeded.

2.1.2 Semantics of MSD Specifications

Intuitively, an MSD progresses as message events occur in a real system at runtime or in an object
system during the simulative validation by means of the Play-out algorithm [HM03].

Each message in an MSD has a temperature and an execution kind, represented by its color and
line style. The temperature of a message represents its modality and can be hot (red color) or
cold (blue color). The semantics of a hot message is that other messages specified by the MSD

11

Chapter 2. Foundations

are not allowed to occur. For example, the MSD messages emcyBrakeWarning(), emcyBraking(),
and emcyBrakeRequest() are hot, whereas the others are cold. The execution kind of a message
can either be executed (solid line) or monitored (dashed line). Executed messages must be sent
eventually when the execution of the MSD reaches them. Monitored messages never need to
occur, i.e., their occurrence is optional. For example, the MSD messages obstacle(), standstill(),
emcyBrakeWarning(), and isEmcyBrakePossible() are monitored, whereas the others are executed.

A message event is unifiable with an MSD message if and only if the event name equals the
message name and the sending and receiving lifelines of the message are bound to the sending
and receiving objects. In the case of a parameterized message, the message event is unifiable
if, additionally, the message event specifies for each parameter either “the same literal value, a
variable bound to the same value, or an unbound variable” [Gre11]. “When a message event
occurs in the object system that is unifiable with the first message in an MSD, an active MSD is
created. Such a first message in an MSD is also called a minimal message and is always cold
and monitored. As further message events occur that can be unified with the subsequent MSD
messages, the active MSD progresses. This progress is captured by the cut, which marks for every
lifeline the locations of the MSD messages that are unifiable with the message events. If the cut
reaches the end of an active MSD, the active MSD is terminated” [Hol19].

Each condition in an MSD has a temperature. A cold condition is colored blue, and a hot condition
is colored red, respectively. If the cut is in front of a condition, the expression is evaluated imme-
diately. If the expression evaluates to true, the cut progresses beyond the condition. If the expres-
sion evaluates to false, the subsequent message event sequence is not expected to occur anymore
(the MSD “terminates”). An assignment in an MSD does not have a temperature or an execution
kind. Thus, if the cut is in front of an assignment, the expression is executed immediately, and the
cut progresses beyond the assignment. “Executing an assignment [defining a diagram variable] or
progressing beyond a condition has no effect that is visible within the object system. [. . .] There-
fore, executing an assignment and progressing beyond a condition is also called a hidden event.
By contrast, the sending of a message in the object system is visible in the object system and is
therefore also called a visible event” [Gre11].

A violation occurs in an MSD if a message event occurs that is unifiable with a specified mes-
sage but not enabled in this MSD or if a condition evaluates to false. If a violation occurs, the
active MSD is terminated. We define different types of violations based on the execution kind and
temperature of the cut:

• If a violation occurs in a cold cut (i.e., all enabled messages are cold), it is a cold violation,
which represents a legal trace and does not violate the requirements.

• If a violation occurs in a hot cut (i.e., at least one enabled message is hot), it is a hot violation,
which violates the requirements.

• If a violation occurs in an executed cut (i.e., at least one enabled message is executed), it is
a liveness violation, which violates the requirements.

12

2.1. Modal Sequence Diagrams (MSDs)

2.1.3 Analysis Techniques for MSD Specifications

The Play-out algorithm [HM03] enables the validation of an MSD specification. While simulating
selected execution paths of the system under development, the Play-out algorithm finds defects
concerning the consistency and correctness of the requirements specification.

At the beginning, the algorithm waits for environment events to occur. If an environmental event
occurs, MSDs whose initial event is unifiable with the environment event are activated. Next, the
Play-out algorithm chooses and executes one of the enabled system events non-deterministically.
The process repeats until no active MSDs with executed cuts are left. The system then waits for
the following environment event. In case of a hot violation, the algorithm terminates.

2.1.4 The Modal Profile

The language for an MSD specification is specified by means of the UML language [UML] and
the Modal profile [Gre11; ST-MSD]. The Modal profile is realized as a UML profile. A UML
profile is an extension mechanism for specifying domain-specific modeling languages based on
UML metaclasses. A UML profile encompasses several stereotypes defining the domain-specific
language constructs and extending UML metaclasses. A stereotype may encompass several prop-
erties stored as tagged values.

Figure 2.2 depicts the Modal profile, which introduces MSD-specific language constructs, such
as the temperature and execution kind of MSD messages. Moreover, the Modal profile provides
modeling constructs for temporal variables and references to them.

«profile» Modal«profile» Modal

LegendLegend

Existing, reused

Metaclass/Stereotype

Existing, reused

Metaclass/Stereotype

Stereotype

of the Modal Profile

Stereotype

of the Modal Profile

Legend

Existing, reused

Metaclass/Stereotype

Stereotype

of the Modal Profile

«Metaclass»

UML::CombinedFragment

«Metaclass»

UML::CombinedFragment

«Stereotype»

Assignment

«Stereotype»

Assignment

temperature: TemperatureKind

«Stereotype»

Condition

temperature: TemperatureKind

«Stereotype»

Condition

«Metaclass»

UML::Interaction

«Metaclass»

UML::Interaction

«Stereotype»

EnvironmentAssumption

«Stereotype»

EnvironmentAssumption

«Metaclass»

UML::Message

«Metaclass»

UML::Message

execution: ExecutionKind

temperature: TemperatureKind

«Stereotype»

ModalMessage

execution: ExecutionKind

temperature: TemperatureKind

«Stereotype»

ModalMessage

«Metaclass»

UML::Property

«Metaclass»

UML::Property

partKind: PartKind

«Stereotype»

SpecificationPart

partKind: PartKind

«Stereotype»

SpecificationPart

Cold

Hot

«Enumeration»

TemperatureKind

Cold

Hot

«Enumeration»

TemperatureKind

Monitored

Executed

«Enumeration»

ExecutionKind

Monitored

Executed

«Enumeration»

ExecutionKind

System

Environment

«Enumeration»

PartKind

System

Environment

«Enumeration»

PartKind

Figure 2.2: The Modal Profile

13

Chapter 2. Foundations

2.2 Specification and Analysis of Security Protocols

This section introduces basic concepts for the specification and analysis of security protocols. Sec-
tion 2.2.1 introduces the Alice & Bob notation. Afterward, Section 2.2.2 discusses the foundations
for analyzing security protocols in the symbolic model. Finally, Section 2.2.3 and Section 2.2.4
present the two symbolic model checkers PROVERIF and TAMARIN, respectively.

2.2.1 Alice & Bob Notation

The Alice & Bob notation provides an intuitive way to describe security protocols in a textual
manner. As in message-based notations (e.g., Message Sequence Charts [Tel96], Live Sequence
Charts (LSC) [Har00; Har01]), the Alice & Bob notation describes the communication between
entities as a sequence of messages. However, the description is often incomplete and only de-
scribes actions taken in a complete protocol run between the participants [CVB06].

We use the Needham-Schroeder Public Key protocol [NS78] to illustrate the Alice & Bob notation.
The goal of this security protocol is the mutual authentication of the two participants Alice and
Bob using asymmetric encryption and a trusted third party called Sue. Listing 2.1 depicts the
Alice & Bob notation for the Needham-Schroeder Public Key. We slightly modified the Alice
& Bob notation syntax defined by MÖDERSHEIM [Möd09] and CALEIRO [CVB06] to improve
the readability. A security protocol defined in the Alice & Bob notation encompasses three parts
Types, Knowledge, and Actions explained in the following.

The first part of an Alice & Bob notation defines the Types used throughout the security protocol,
e.g., participants, data types or functions. For example, the Needham-Schroeder Public Key secu-
rity protocol encompasses the three participants Alice, Bob, and Sue (cf. lines 3–4). Furthermore,
the security protocol encompasses nonces (cf. lines 5–6) and cryptographic key pairs consisting
of a private and a public key (cf. lines 7–12).

The second part of an Alice & Bob notation defines each participant’s initial knowledge before the
execution. For example, in the Needham-Schroeder Public Key security protocol, the participant
Alice knows her cryptographic key pair and Sue’s identifier and public key (cf. line 14).

The third part of Alice & Bob notation defines the communication between participants. Every
message exchange has the form A → B: M, meaning that participant A sends the message M
to participant B. The message’s receiver must be the next sender [CVB06]. For example, in the
Needham-Schroeder Public Key security protocol, Alice sends a message to Sue encompassing her
identifier and Bob’s identifier (cf. line 18).

2.2.2 Analyzing Security Protocols in the Symbolic Model

The symbolic model, also called the Dolev-Yao model [DY83], is a simple model in which the
adversary is a specific, non-deterministic state machine and cryptographic primitives are symbolic
functions. In particular, the symbolic model assumes that cryptography is perfect that is, an ad-
versary cannot break the algorithm, e.g., he/she cannot learn anything from an encrypted message
except if he/she has the corresponding key [Bla01; CDL06]. In addition, the symbolic model as-
sumes that the adversary controls the network, e.g., he/she can discard/delay messages or send
additional messages over the network [Bla12].

14

2.2. Specification and Analysis of Security Protocols

1 Protocol : Needham - Schroder Public Key
2 Types:
3 Participant :
4 Alice , Bob , Sue
5 Nonce:
6 Na , Nb
7 PrivateKey :
8 KSa , KSb , KSs
9 PublicKey :

10 KPa , KPb , KPs
11 KeyPair :
12 (KSa , KPa), (KSb , KPb), (KSs , KPs)
13 Knowledge :
14 Alice: Alice , Sue , (KSa , KPa), KPs
15 Bob: Bob , Sue , (KSb , KPb), KPs
16 Sue: Alice , Bob , (KSs , KPs), KPa , KPb
17 Actions :
18 1. Alice → Sue: Alice , Bob
19 2. Sue → Alice: {KPb , Bob}KSs
20 3. Alice → Bob: {Na , Alice}KPb
21 4. Bob → Sue: Bob , Alice
22 5. Sue → Bob: {KPa , Alice}KSs
23 6. Bob → Alice: {Na , Nb , Bob}KPa
24 7. Alice → Bob: {Nb}KPb

Listing 2.1: Alice & Bob notation of the Needham-Schroder Public Key security protocol

Security Properties

Security protocols try to achieve various security properties. These properties can be categorized
into two groups: trace properties and equivalence properties. Trace properties can be defined “on
each execution trace (each run) of the protocol. The protocol satisfies such a property when it holds
for all traces in the symbolic model [. . .]. For example, the fact that some states are unreachable
is a trace property. Equivalence or indistinguishability properties mean that the adversary cannot
distinguish two processes. For instance, one of these processes can be the protocol under study,
and the other one can be its specification. Then, the equivalence means that the protocol satisfies
its specification” [Bla12].

In the following, we explain the two security properties secrecy and authentication.

Secrecy Secrecy means that the adversary cannot obtain any information from the data ex-
changed between the participants. In the symbolic model, secrecy can be formalized in two ways:

1. Syntactic secrecy means that the adversary cannot compute the exact data under considera-
tion. However, this does not prevent the adversary from knowing parts of this data. More-
over, this notion cannot be used to express the secrecy of a term chosen from a (small)
set of constants [Bla12]. In the symbolic model, syntactic secrecy is formalized by trace
properties.

2. Strong secrecy means that the adversary cannot detect a change in the value of the secret
information. This notion of secrecy is much stronger than syntactic secrecy. However, it

15

Chapter 2. Foundations

is not a trace property but an equivalence property and, thus, more difficult to verify using
automated tools [Bla12].

Authentication “Authentication means that, if a participant A runs the protocol apparently with
a participant B, then B runs the protocol apparently with A, and conversely” [Bla12].

In the symbolic model, authentication is formalized by correspondence properties [WL93; Low97]
of the form: “if A executes a certain event e1 (for instance, A terminates the protocol with B), then
B has executed a certain event e2 (for instance, B started a session of the protocol with A)” [Bla12].

LOWE [Low97] defined a hierarchy of authentication properties for the symbolic model to relate
the different definitions of authentication to each other. In the following, we informally describe
these properties for the two participants A and B:

Aliveness: “A security protocol guarantees aliveness to a [participant] A with another [participant]
B if, whenever A completes a run of the protocol, apparently with B, then B has previously
been running the protocol” [Low97].

Weak Agreement: “A security protocol guarantees weak agreement to a [participant] A with an-
other [participant] B if, A completes a run of the protocol, apparently with B, then B has
previously run the protocol, apparently with A” [Low97].

Non-injective Agreement: “A security protocol guarantees non-injective agreement to a [partic-
ipant] A with another [participant] B if, A completes a run of the protocol, apparently with B
and some data values v⃗, then Bob has previously been running the protocol, apparently with
A and v⃗ ” [Low97].

Injective Agreement: “A security protocol guarantees injective agreement to a [participant] A
with another [participant] B if, A completes a run of the protocol, apparently with B and
some data values v⃗, then Bob has previously been running the protocol, apparently with A
and v⃗. In addition, each run of A has to correspond to a unique run of B” [Low97].

2.2.3 PROVERIF

PROVERIF is a model checker for the verification of security protocols presented by BLANCHET

ET AL. [Bla01; Bla16] that can prove security properties such as secrecy and authentication in the
symbolic model.

PROVERIF takes as input a plain text model of a security protocol specified by means of the applied
pi calculus [AF01; ABF16]. This model is automatically translated into an internal presentation
to execute the analysis and to verify if the desired security properties hold. If they do not hold,
PROVERIF tries to construct a counterexample encompassing a trace that falsifies the security
properties.

Structure of a PROVERIF model

We explain the three different parts of a PROVERIF input model using the Needham-Schroeder
Public Key security protocol [Low96b].

16

2.2. Specification and Analysis of Security Protocols

The first part of a PROVERIF input model defines terms, e.g., functions and types, used within
the security protocol. Functions, denoted by the keywords fun and reduc, specify cryptographic
primitives. Since all cryptographic primitives are treated as black boxes, functions only specify
the signature, not the behavior.

For example, Listing 2.2 depicts the types and functions necessary to define asymmetric encryption
and decryption. Lines 1–2 define the two types privateKey and publicKey. The function genPubKey
takes a privateKey as input and returns the publicKey (cf. line 4). The function fun aEnc specifies
asymmetric encryption and takes as input an argument of type bitstring and an argument of type
publicKey and returns a bitstring (cf. line 6). The function reduc aDec specifies the asymmetric
decryption, i.e., aDec(aEnc(m, genPubKey(sk)), sk) is reduced to m (cf. lines 7–8).

1 type privateKey .
2 type publicKey .
3

4 fun genPubKey (privateKey): publicKey .
5

6 fun aEnc(bitstring , publicKey): bitstring .
7 reduc forall m: bitstring , k: privateKey ;
8 aDec(aEnc(m, genPubKey (k)), k) = m.

Listing 2.2: Exemplary PROVERIF input model defining functions and types for asymmetric
encryption

Variables describe communication channels (e.g., free c: channel in line 1 of Listing 2.3) or other
terms shared by the participants (e.g., free A: host in line 4 of Listing 2.3). Variables are typed
either by means of predefined types (e.g., channel in line 1 of Listing 2.3) or by means of user-
defined types (e.g., host in line 3–4 of Listing 2.3). Functions and variables are, by default, public,
and thus accessible by the attacker. If this is not intended, they can be declared as private (cf. line
7 of Listing 2.3).

1 free c: channel .
2 type host.
3

4 free A: host.
5 free B: host.
6

7 free secret : bitstring [private].

Listing 2.3: Exemplary PROVERIF input model defining channels and variables

The second part of a PROVERIF input model defines the behavior of participants by so-called sub-
processes (denoted by the keyword let). A sub-process may encompass input parameters. An input
parameter has a name and is typed. For example, the process depicted in Listing 2.4 encompasses
the two input parameters aPrivateKey: privateKey and aPublicKey: publicKey. The behavior de-
scribed within a sub-process encompasses the declaration of variables (e.g., new nonce: bitstring in
line 13), the sending and receiving of messages over a communication channel (e.g., out(c, (A, B));
in line 5 and in(c, msg: bitstring); in line 7) as well as the conditional execution of a sub-process.

17

Chapter 2. Foundations

1 let processA (
2 aPrivateKey : privateKey , aPublicKey : publicKey
3)=
4 out(c, (A, B));
5

6 in(c, message : bitstring);
7

8 let(bPublicKey : publicKey , =B)
9 = aDec(message , aPrivateKey) in

10

11 new nonce: bitstring ;
12 out(c, aEnc ((A, B), bPublicKey));
13 .

Listing 2.4: Exemplary PROVERIF input model defining a sub-process

Finally, the third part of a PROVERIF input model defines the main process, denoted by the key-
word process. The main process is the entry point of the security protocol. It can reference any
sub-process by calling the name of the sub-process. Listing 2.5 depicts an excerpt of the main
process of the Needham-Schroeder Public Key protocol. In lines 9–11, two sub-processes are in-
stantiated to be run in parallel (denoted by |) in an unbounded number of sessions (denoted by
!).

1 process
2 new aPrivateKey : privateKey ;
3 let aPublicKey = genPubKey (aPrivateKey) in
4

5 new bPrivateKey : privateKey ;
6 let bPublicKey = genPubKey (bPrivateKey) in
7

8 (
9 (! processA (aPrivateKey , aPublicKey))

10 |
11 (! processB (bPrivateKey , bPublicKey))
12)

Listing 2.5: Exemplary PROVERIF input model defining a main process

Security properties

This section introduces the specification of secrecy and authentication queries.

Secrecy PROVERIF can prove reachability properties, and thus allows the investigation of which
terms are kept secret and which are available to an attacker during the execution of a security
protocol. To analyze the secrecy of a term M, a query of the form query attack(M) is included in
the PROVERIF input model [Bla16].

18

2.2. Specification and Analysis of Security Protocols

Authentication PROVERIF can prove authentication properties based on correspondence asser-
tions. As mentioned in Section 2.2.2, a correspondence assertion captures the relationship between
events that occur in the execution of the security protocol. It can be expressed as “if an event e1
has been executed, then the event e2 has been previously executed” [Bla16, p. 19].

In PROVERIF, sub-processes and the main process can be annotated with events to mark important
steps in the execution of the security protocol. These events must be related to each other using
a query of the form query: event e1() ==> event e2() [Bla16]. Listing 2.6 depicts an exemplary
authentication query. Lines 1–2 declare the events used in the query. In PROVERIF, the events
may contain several parameters. Line 4 specifies the query defining the correspondence assertion.
Finally, line 12 annotates the sub-process A with the event e1().

1 event e1(host , host).
2 event e2(host , host).
3

4 query x: host , y: host; event(e1(x,y)) ==> event(e2(y,x)).
5

6 free host A.
7 free host B.
8

9 let processA (
10 aPrivateKey : privateKey , aPublicKey : publicKey
11)=
12 event e1(A,B);
13 .

Listing 2.6: Exemplary PROVERIF input model defining an authentication query

2.2.4 TAMARIN

TAMARIN is a model checker for the verification of security protocols presented by BASIN ET

AL. [BCD+17; Tamarin] that can prove security properties such as secrecy and authentication in
the symbolic model.

TAMARIN takes as input a plain text model of a security protocol, specifying the actions taken by
participants (typically called agents in TAMARIN) running the protocol and the desired security
properties. This model is then automatically translated into an internal presentation to execute
the analysis and to verify whether the desired security properties hold. TAMARIN provides two
ways of constructing proofs. TAMARIN has a fully automated mode. “If the tool’s automated
proof search terminates, it returns either a proof of correctness (for an unbounded number of role
instances and fresh values) or a counterexample, representing an attack that violates the stated
property. However, since the correctness of security protocols is an undecidable problem, the tool
may not terminate on a given verification problem. Hence, users may need to resort to TAMARIN’s
interactive mode to explore the proof states, inspect attack graphs, and seamlessly combine manual
proof guidance with automated proof search” [Tamarin].

19

Chapter 2. Foundations

Structure of a TAMARIN model

We explain the different parts of a TAMARIN input model using the Needham-Schroeder Pub-
lic Key security protocol [Low96b]. The TAMARIN input model starts with the keyword theory
followed by the name of the theory, e.g., Needham-Schroeder-Public-Key for the running example
depicted in Listing 2.7.

TAMARIN provides a set of built-in functions encompassing the most common functions needed
to model security protocols, e.g., encryption. The first part of a TAMARIN input model imports the
built-in functions the security protocol uses. For example, in Listing 2.7, the built-in functions for
digital signatures and asymmetric encryption are used (cf. builtins: digital-signature, asymmetric-
encryption). In particular, the built-ins for the asymmetric encryption define a binary function aenc
denoting the asymmetric encryption, a binary function adec denoting the asymmetric encryption,
and a unary function pk denoting the public key corresponding to a private key. “Moreover, the
built-in also specifies that the decryption of a ciphertext using the correct private key returns the
initial plain text, i.e., adec(aenc(m, pk(sk)), sk) is reduced to m” [Tamarin].

1 theory Needham -Schroeder -Public -Key
2 begin
3 builtins : asymmetric -encryption , signing
4 end

Listing 2.7: Exemplary TAMARIN input model defining a theory and importing build-ins

TAMARIN uses multiset rewriting rules to specify the behavior of the participants of a security
protocol. These rules operate on the system’s state which is expressed as a multiset of facts. As
depicted in Listing 2.8, a rewriting rule has a name and encompasses three parts: the left-hand
side, the labeling of the transition, and the right-hand side. Labels are used to define certain facts
about the state. “A rule can be applied to a state if it can be instantiated such that the left-hand side
is contained in the current state. If this is the case, the left-hand side facts are removed from the
state and replaced by the right-hand side” [Tamarin].

1 rule Name:
2 let m = aenc(∼ni)pkR in
3 [
4 Fr(∼ni), !Pk($R , pkR),
5]
6 --[]->
7 [
8 Out(m), State($I , $R , m)
9]

Listing 2.8: Exemplary TAMARIN input model defining a multiset rewriting rule

The left-hand side of the rule, depicted in Listing 2.8, defines that a fresh value n is generated (cf.
Fr(∼n)). The fact Fr() can only occur on the left-hand side of the rewriting rule and generates a
fresh random value. The ∼ indicates the freshness of a value. Moreover, the left-hand side of the
rule specifies the public key pkR for the agent R (cf. !Pk($R, pkR)). The ! denotes that the fact Pk
is persistent, i.e., the fact is never removed from the state.

20

2.2. Specification and Analysis of Security Protocols

The right-hand side of the rule defines that the message m is sent to the untrusted network (cf.
Out(m)). In line 2, the message m has been defined by a let binding as the ciphertext of the
asymmetric encryption of n with key pkR. In general, a let-binding can be used to specify local
terms within the context of a rule. Finally, the right-hand side of the rule defines the state fact
State($I, $R, m) to indicate the progress of a protocol. A state fact is used on the left-hand side to
model a precondition that must hold for the rule to fire and on the right-hand side to express the
postcondition after the rule has fired.

Security properties

TAMARIN uses trace properties to specify security properties. A trace property is given as a
guarded first-order logic formula over action facts and timepoints. In the following, we present
the basic concepts for verifying secrecy and authentication.

Secrecy In TAMARIN, the action fact Secret(x) is used to indicate that the message x is supposed
to be secret. Additionally, the action fact Honest(B) is used to indicate that the agent B is assumed
to be honest, i.e., the keys of the agent B have not been compromised. Based on these two action
facts, we can specify a trace property to verify the secrecy as shown in Listing 2.9. “The lemma
states that whenever a secret action fact Secret(x) occurs at timepoint i, the adversary does not
know x or an agent claimed to be honest at timepoint i has been compromised at a timepoint
r” [Tamarin].

1 lemma secrecy :
2 "All x #i. Secret (x) @i ==>
3 not (Ex #j. K(x)@j) | (Ex B #r. Reveal (B)@r & Honest (B)@i)"

Listing 2.9: Exemplary TAMARIN input model defining a secrecy lemma

Authentication TAMARIN can prove authentication properties based on correspondence asser-
tions. As mentioned in Section 2.2.2, a correspondence assertion captures the relationship be-
tween events that occur in the execution of the security protocol. So, “if an agent A believes that
a message m was sent by an agent B, then m was indeed sent by B. To specify A’s belief, [. . .] an
appropriate rule in A’s role specification [is labeled] with Authentic(b, m)” [Tamarin]. In addition,
the action fact Send(b, m) is used in an appropriate rule in B’s role specification to indicate that
B has sent the message m. Based on these two action facts, we can specify a trace property to
verify the authentication as shown in Listing 2.10. The lemma states that whenever an action fact
Authentic(b, m) occurs at timepoint j, an action fact Send(b, m) occurred before.

1 lemma authentication :
2 "All b m #j. Authentic (b,m) @j ==> Ex #i. Send(b,m) @i &i<j"

Listing 2.10: Exemplary TAMARIN input model defining an authentication lemma

21

3

Specification of Security MSDs

This chapter introduces our UML-compliant modeling language called SECURITY MODELING

PROFILE as an extension to Modal Sequence Diagrams (MSDs). In particular, the modeling lan-
guage provides a set of symbolic cryptographic primitives like (a)symmetric encryption, digital
signatures, and cryptographic hash functions. Additionally, the modeling language provides ele-
ments to specify the conditional behavior of a security protocol. Thereby, our SECURITY MODEL-
ING PROFILE enables security engineers to specify security protocols intuitively by applying sce-
narios for message-based interactions. Moreover, requirements engineers can use the SECURITY

MODELING PROFILE to specify and simulatively validate security requirements on the communi-
cation behavior of software-intensive systems. Existing modeling languages enabling the specifi-
cation of security aspects focus either on high-level security requirements but not on security pro-
tocols [Jür02; LBD02], need to be more appropriate for the intuitive specification of requirements
on the message-based communication [ALA19], or lack generalization [FLH+16].

This chapter is structured as follows: We provide a list of our contributions in Section 3.1. Af-
terward, we collect and explain the requirements on the SECURITY MODELING PROFILE in Sec-
tion 3.2. Subsequently, we apply the profile in Section 3.3 and present the concepts of our SECU-
RITY MODELING PROFILE in Section 3.4. Next, we present necessary extensions to the runtime
semantics of MSDs to handle the concepts of our SECURITY MODELING PROFILE in Section 3.5.
Then, we provide information about the implementation in Section 3.6 and evaluate the SECU-
RITY MODELING PROFILE by means of a case study in Section 3.7. We investigate related work
in Section 3.8. Finally, we summarize this chapter in Section 3.9.

We published contents of this chapter in two papers ([*KDH+20; *Koc18]). In addition, parts of
this chapter have been contributed by the master’s thesis of JAZAYERI [+Jaz15] and the bachelor’s
theses of KAISER [+Kai20] and TRIPPEL [+Tri21]. JAZAYERI investigated the feasibility of spec-
ifying security protocols by means of MSDs but did not formalize modeling elements in a mod-
eling language. KAISER collected an initial list of requirements on the SECURITY MODELING

PROFILE and made some initial contributions toward the modeling language. TRIPPEL developed
an initial concept for the extension of the Play-out algorithm to handle the modeling elements of
the SECURITY MODELING PROFILE correctly.

23

Chapter 3. Specification of Security MSDs

3.1 Contributions

The contributions of this chapter can be summarized as follows:

• We conduct a literature study and collect the description of 54 security protocols from
academia and industry. For each security protocol, we analyzed which building blocks are
used to specify it.

• We derive 19 requirements based on the identified building blocks that our modeling lan-
guage should satisfy.

• We define a UML profile called SECURITY MODELING PROFILE, which extends UML In-
teractions and Modal Sequence Diagrams for specifying security protocols. This profile en-
ables the utilization of symbolic cryptographic primitives (e.g., symmetric and asymmetric
encryption or digital signature) on messages and the specification of conditional behavior.
Thus, the SECURITY MODELING PROFILE fulfills the 19 requirements.

• We extend the Play-out algorithm to enable the simulation of security protocols specified by
means of the newly created SECURITY MODELING PROFILE.

• We implement a prototype based on SCENARIOTOOLS MSD and show in an evaluation that
the SECURITY MODELING PROFILE is applicable in practice.

3.2 Requirements on the SECURITY MODELING PROFILE

In this section, we identify typical building blocks used to specify security protocols and derive
requirements that our SECURITY MODELING PROFILE shall satisfy. Unfortunately, none of the
existing related works (e.g., [CDL06; Bla01; MSC+13; SLF+14; FLH+16; ALA19; LLA+16])
provided a list of typical building blocks suited for annotating message-based communication with
security-related aspects. Hence, we conduct a literature study to answer the research question
Which typical building blocks are used to specify security protocols?.

We collect the description of 54 security protocols to answer our research question. The pri-
mary resource for our study is the Security Protocol Open Repository (SPORE) [CJ02], encom-
passing the description of 49 security protocols. Apart from SPORE, we used additional sources
for our study. For example, we investigated the evaluation examples of the two model checkers
PROVERIF [Bla01; Bla16] and TAMARIN [Mei13; DHR+18]. Finally, we searched for commonly
used security protocols (e.g., IPSec [SS11], Kerberos [BM90; NT94; Low00], TLS [Res18]) and
added them to our data collection. The complete list of security protocols is presented in Ap-
pendix A.

The selected protocols have in common that they have a fixed number of participants. Furthermore,
the selected security protocols rely on unicast-based communication, i.e., a sender only sends a
message to exactly one recipient. This is not a limitation for the elicitation of requirements, as the
cryptographic primitives used are independent of the underlying communication model.

24

3.2. Requirements on the SECURITY MODELING PROFILE

For each security protocol from our data collection, we investigate the following questions:

• Which building blocks are used to specify the structure of the security protocol?

– Who are the participants of the security protocol?

– Which kinds of participants exist?

– Which properties do participants possess?

– Which properties do participants know?

• Which building blocks are used to specify the behavior of the security protocol?

– Which cryptographic primitives are used during the execution?

– Which variables are created and modified during the execution?

– Which conditions are used during the execution?

Next, Section 3.2.1 shows how we analyzed the 54 security protocols using two examples. Sec-
tion 3.2.2 presents the analysis results and concludes with a summary of the requirements that the
SECURITY MODELING PROFILE has to satisfy.

3.2.1 Analyzing Exemplary Security Protocols

In this section, we sketch the analysis of security protocols using the two security protocols Andrew
Secure RPC and Needham-Schroeder Public Key as examples. The two security protocols use
different cryptographic primitives and vary in the number of participants. Thus, they represent
different types of security protocols and are well-suited to be used as running examples in this
chapter. For both security protocols, we structure the analysis using the questions mentioned at
the end of the last section.

Andrew Secure RPC

The security protocol Andrew Secure RPC [Sat89] aims to exchange a new symmetric encryption
key between the two participants Alice and Bob. The communication between Alice and Bob is
symmetrically encrypted using a pre-shared key. Different versions of the security protocol exist.
Listing 3.1 depicts the original version of the Andrew Secure RPC [Sat89] protocol, which is
vulnerable to replay attacks.

The security protocol Andrew Secure RPC encompasses the two participants Alice and Bob (cf. line
4). Both participants own the symmetric encryption key Kab (cf. lines 12–13). At the beginning of
the execution, Alice creates a nonce Na, symmetrically encrypts it with the key Kab, and sends the
ciphertext with its identifier Alice to Bob (cf. line 15). Next, Bob decrypts the message, increments
the received nonce Na by 1, and creates a new nonce Nb. Bob symmetrically encrypts both nonces
with Kab and sends this message to Alice (cf. line 16). Alice decrypts the message and validates that
the received nonce succ(Na) equals the incremented nonce Na. If this is the case, the execution of
the security protocol continues, and Alice increments the nonce Nb by 1, symmetrically encrypts
it with Kab, and sends this message to Bob (cf. line 17). Finally, Bob decrypts the message and

25

Chapter 3. Specification of Security MSDs

1 Protocol : Andrew Secure RPC
2 Types:
3 Participant :
4 Alice , Bob
5 SymmetricKey :
6 Kab , K’ab
7 Nonce:
8 Na , Nb , N’b
9 Function :

10 succ: Nonce → Nonce
11 Knowledge :
12 Alice: Alice , Bob , Kab
13 Bob: Bob , Kab
14 Actions :
15 1. Alice → Bob: Alice , {Na}Kab
16 2. Bob → Alice: {succ(Na), Nb}Kab
17 3. Alice → Bob: {succ(Nb)}Kab
18 4. Bob → Alice: {K’ab , N’b}Kab

Listing 3.1: Alice & Bob notation of the Andrew Secure RPC security protocol

validates that the received nonce equals the incremented nonce Nb. If this is the case, Bob creates a
new symmetric encryption key K’ab and a new nonce N’b. Both are symmetrically encrypted with
Kab and sent to Alice (cf. line 18). At the end of the security protocol, Alice and Bob can use the
new symmetric encryption key K’ab for further communication.

As shown in Listing 3.1, the Andrew Secure RPC security protocol relies on different building
blocks. First, the security protocol uses symmetric encryption. This includes symmetric encryp-
tion keys that are exchanged before the execution and created during the execution of the proto-
col. Symmetric encryption is applied to some or all parameters of a message. Second, the Andrew
Secure RPC security protocol relies on cryptographic nonces that are created, modified, and ex-
changed during the execution of the protocol. Finally, the comparison of nonces is used to describe
the conditional behavior of the protocol.

Based on the analysis of the security protocol Andrew Secure RPC, we elicit the following require-
ments on the SECURITY MODELING PROFILE:

The SECURITY MODELING PROFILE must . . .

• . . . enable the specification of participants that exchange messages to execute the protocol.

• . . . enable the identification and reference of a participant with an identifier.

• . . . enable the specification of symmetric encryption keys for each participant.

• . . . enable the specification of symmetrically encrypted messages and parameters.

• . . . enable the creation of symmetric encryption keys during the execution of the security
protocol.

• . . . enable the creation of nonces during the execution of the security protocol.

26

3.2. Requirements on the SECURITY MODELING PROFILE

• . . . enable the modification of nonces (e.g., increment) during the execution of the security
protocol.

• . . . enable the comparison of nonces (e.g., equality) during the execution of the security
protocol.

Needham-Schroeder Public Key

The goal of the security protocol Needham-Schroeder Public Key [NS78] is the mutual authenti-
cation of the two participants Alice and Bob using asymmetric encryption and a trusted third party
called Sue. Different versions of the security protocol exist. Listing 3.2 depicts Lowe’s version of
the protocol [Low95].

1 Protocol : Needham - Schroder Public Key
2 Types:
3 Participant :
4 Alice , Bob , Sue
5 Nonce:
6 Na , Nb
7 PrivateKey :
8 KSa , KSb , KSs
9 PublicKey :

10 KPa , KPb , KPs
11 KeyPair :
12 (KSa , KPa), (KSb , KPb), (KSs , KPs)
13 Knowledge :
14 Alice: Alice , Sue , (KSa , KPa), KPs
15 Bob: Bob , Sue , (KSb , KPb), KPs
16 Sue: Alice , Bob , (KSs , KPs), KPa , KPb
17 Actions :
18 1. Alice → Sue: Alice , Bob
19 2. Sue → Alice: {KPb , Bob}KSs
20 3. Alice → Bob: {Na , Alice}KPb
21 4. Bob → Sue: Bob , Alice
22 5. Sue → Bob: {KPa , Alice}KSs
23 6. Bob → Alice: {Na , Nb , Bob}KPa
24 7. Alice → Bob: {Nb}KPb

Listing 3.2: Alice & Bob notation of the Needham-Schroder Public Key security protocol

The security protocol Needham-Schroeder Public Key encompasses the two participants Alice and
Bob, and the trusted third party Sue (cf. line 4). All participants possess a cryptographic key pair
KPx and KSx, where KSx denotes the private key of participant x and KPx the corresponding public
key (cf. lines 7–12). Moreover, Alice and Bob know the public key KPs of Sue (cf. lines 14–15)
and Sue knows the public keys KPa of Alice and KPb of Bob (cf. line 16). At the beginning of
the execution, Alice sends a message to Sue containing the two identifiers Alice and Bob (cf. line
18). Next, Sue looks up the key for the identifier Bob and sends a message to Alice containing
the identifier Bob and his public key KPb. The message is secured by a digital signature created
with the private key KSs (cf. line 19). Alice validates the signature with the public key KPs. If
the validation is successful, the execution continues and Alice creates a nonce Na, encrypts the
nonce and its identifier with the public key KPb, and sends the message to Bob (cf. line 20). Bob

27

Chapter 3. Specification of Security MSDs

decrypts the message and requests the public key for the identifier Alice from Sue by sending a
message containing the two identifiers Bob and Alice (cf. line 21). Next, Sue looks up the key for
the identifier Alice and sends a message to Bob containing the identifier Alice and her public key
PKa. As before, the message is secured by a digital signature created with the private key KSs
(cf. line 22). After successfully validating the signature, Bob creates a message encompassing the
nonces Na, a newly generated nonce Nb and his identifier Bob. The message is encrypted with the
received public key KPa and sent to Alice (cf. line 23). Finally, Alice checks whether the received
nonce Na equals the nonce previously sent to Bob. If this is the case, Alice sends the nonce Nb
encrypted with KPb back to Bob (cf. line 24). At the end of the security protocol, Alice and Bob
are mutually authenticated.

As shown in Listing 3.2, the Needham-Schroeder Public Key security protocol relies on different
building blocks. First, the security protocol uses asymmetric encryption and digital signatures.
This includes corresponding cryptographic key pairs that are exchanged before the execution of
the protocol. Asymmetric encryption and digital signatures are applied to some or all parameters of
a message. Second, the Needham-Schroeder Public Key security protocol relies on cryptographic
nonces that are created, modified, and exchanged during the execution of the protocol. Finally, the
comparison of nonces is used to describe the conditional behavior of the protocol.

Based on the analysis of the security protocol Needham-Schroeder Public Key, we elicit the fol-
lowing requirements on the SECURITY MODELING PROFILE:

The SECURITY MODELING PROFILE must . . .

• . . . enable the specification of participants that exchange messages to execute the protocol.

• . . . enable the identification and reference of a participant with an identifier.

• . . . enable the distinction between participants of the protocol and specialized participants
like trusted third parties.

• . . . enable the specification of properties like cryptographic keys owned by each participant.

• . . . enable the specification of properties like cryptographic keys known to individual partic-
ipants.

• . . . provide an element to search the known properties for a specific element.

• . . . enable the specification of asymmetric encrypted parameters and messages.

• . . . enable the specification of digitally signed parameters and messages.

• . . . enable the creation of nonces during the execution of the security protocol.

• . . . enable the comparison of nonces (e.g., equality) during the execution of the security
protocol.

28

3.2. Requirements on the SECURITY MODELING PROFILE

3.2.2 Analyzing the Results

We analyzed 54 security protocols to identify typical building blocks. First, we present the analy-
sis results grouped into five categories: participants, data types, cryptographic primitives, assign-
ments, and conditions. Second, based on the analysis results, we derive 19 requirements that the
SECURITY MODELING PROFILE shall satisfy. Appendix A provides supplementing materials for
the analysis.

Participants

Participants execute a security protocol to achieve the purpose intended by the security protocol.
Therefore, they might possess and know some properties before executing the protocol. Typically,
these properties relate to cryptographic keys. In addition, the participants exchange messages with
each other. Most security protocols encompass only two participants. The participant sending the
first message is called the initiator, while the other is called the responder. However, some secu-
rity protocols contain more than these two participants. For example, in the Needham-Schroeder
Public Key security protocol, the third participant acts as a trusted third party providing some core
security functionalities. Moreover, some security protocols include more than one responder.

To fully support the identified building blocks, the SECURITY MODELING PROFILE should satisfy
the following requirements:

The SECURITY MODELING PROFILE must . . .

(Req-1) . . . enable the specification of participants that exchange messages to execute the pro-
tocol.

(Req-2) . . . enable the identification and reference of a participant with an identifier.

(Req-3) . . . enable the distinction between participants of the protocol and more specialized
participants like trusted third parties.

(Req-4) . . . enable the specification of properties like cryptographic keys owned by each par-
ticipant.

(Req-5) . . . enable the specification of properties like cryptographic keys known to individual
participants.

Data Types

We identified twelve data types (cf. Table A.3). Six of these data types refer to cryptographic keys
used in the cryptographic operations (a)symmetric encryption, digital signatures, and hash-based
message authentication codes. Moreover, in the execution of a security protocol, the participants
create random numbers or nonces. In addition, they use timestamps to share information about the
current time or the lifetime of certain information. Finally, the participants may exchange arbitrary
data.

However, Strings and Numbers usually represent most of the mentioned data types. Thus, our
profile does not need to provide new data types; instead, it can use the existing primitive data types

29

Chapter 3. Specification of Security MSDs

but must provide operations that initialize variables with the specialized form of these primitive
data types.

To fully support the identified building blocks, the SECURITY MODELING PROFILE should satisfy
the following requirements:

The SECURITY MODELING PROFILE must . . .

(Req-6) . . . enable the creation of cryptographic keys used in the cryptographic operations
(a)symmetric encryption, digital signatures, and hash-based message authentication
codes.

(Req-7) . . . enable the creation of random numbers and nonces.

(Req-8) . . . enable the creation of timestamps.

Cryptographic Primitives

In a security protocol, participants exchange information by sending/receiving messages. The
messages contain one or more parameters and are either transmitted in plain text or protected by
cryptographic primitives. As shown in Table A.1, five different cryptographic primitives are used
to secure the communication: asymmetric encryption, symmetric encryption, digital signatures,
message authentication codes (MACs), and hashing.

When using cryptographic primitives to protect the communication, several cases must be con-
sidered: First, all parameters of the message are protected by the same number of cryptographic
primitives (e.g., encryption, or encryption and digital signature) and the receiver of the message
has the appropriate keys for all used primitives. Second, some parameters of the message are pro-
tected by none, one, or more cryptographic primitives (e.g., some are sent in plain text, while oth-
ers are encrypted) and the receiver of the message has the appropriate keys for all used primitives.
Finally, some parameters of the message are protected by an arbitrary number of cryptographic
primitives and the receiver does not have the appropriate keys.

To fully support the identified building blocks, the SECURITY MODELING PROFILE should satisfy
the following requirements:

The SECURITY MODELING PROFILE must . . .

(Req-9) . . . enable the specification of parameters and messages secured by (a)symmetric en-
cryption.

(Req-10) . . . enable the specification of parameters and messages secured by a digital signa-
ture.

(Req-11) . . . enable the specification of parameters and messages secured by a hash-based mes-
sage authentication code.

(Req-12) . . . enable the specification of hashed parameters and messages.

30

3.2. Requirements on the SECURITY MODELING PROFILE

Assignments

In the description of security protocols, assignments are usually not represented. Instead, they are
implicitly assumed. When executing security protocols, assignments are used to initialize new
variables or modify existing variables. Variables can have any of the previously mentioned data
types. In addition, many operations can be used in assignments (cf. Table A.2), for example,
mathematical operations (addition, subtraction, multiplication, and modular exponentiation). Of-
ten, addition and subtraction only increase or decrease the value by one. Moreover, as explained
in the previous paragraph, in some security protocols, cryptographic primitives are applied to vari-
ables and the receiver does not have the appropriate keys. Thus, these parts of the message must
be created outside the message by means of assignments.

To fully support the identified building blocks, the SECURITY MODELING PROFILE should satisfy
the following requirements:

The SECURITY MODELING PROFILE must . . .

(Req-13) . . . provide an operation to create an instance of a datatype and to assign this instance
to a variable.

(Req-14) . . . enable the modification of data types (e.g., increment nonces) during the execu-
tion of the security protocol.

(Req-15) . . . enable the specification of variables secured by (a)symmetric encryption.

(Req-16) . . . enable the specification of variables secured by a digital signature.

(Req-17) . . . enable the specification of variables secured by a hash-based message authentica-
tion code.

(Req-18) . . . enable the specification of hashed variables.

Conditions

Similar to assignments, conditions are not represented in the description of the security protocol.
However, when executing security protocols, conditions define conditional behavior. For example,
in the Needham-Schroeder Public Key security protocol, there is an implicit condition validating
whether the received nonce is the same as the one previously sent (cf. line 23 Listing 3.2). If
the validation evaluates to true, the execution continues; otherwise, the run of the protocol is
terminated. Mostly, the comparison operator “=” is used in security protocols. However, there are
also rare cases where other operators are used.

To fully support the identified building blocks, the SECURITY MODELING PROFILE should satisfy
the following requirement:

(Req-19) The SECURITY MODELING PROFILE must enable the specification of conditions
with the common set of comparison operators.

31

Chapter 3. Specification of Security MSDs

3.3 Exemplary Application of the SECURITY MODELING PROFILE

In this section, we apply the SECURITY MODELING PROFILE to model the security protocols An-
drew Secure RPC (cf. Section 3.3.1) and Needham-Schroeder Public Key (cf. Section 3.3.2). Af-
terward, in Section 3.3.3, we summarize the application of the SECURITY MODELING PROFILE.

3.3.1 Modeling the Andrew Secure RPC Security Protocol

Figure 3.1 depicts the UML classes for the security protocol Andrew Secure RPC. As explained in
Section 3.2.1, the purpose of the security protocol is to exchange a new symmetric encryption key
between the two participants Alice and Bob.

class [Package] Andrew Secure RPC::Typesclass [Package] Andrew Secure RPC::Types

+ hello(
 ownId: String,
 n1: String)
+ response(n4: String)

- «EncSymmetricKey» Kab: String

Bob

+ hello(
 ownId: String,
 n1: String)
+ response(n4: String)

- «EncSymmetricKey» Kab: String

Bob

+ challenge(
 n2: String,
 n3: String)
+ finalize(
 nKey: String,
 n5: String)

- «EncSymmetricKey» Kab: String

Alice

+ challenge(
 n2: String,
 n3: String)
+ finalize(
 nKey: String,
 n5: String)

- «EncSymmetricKey» Kab: String

Alice

Figure 3.1: UML class diagram for the Andrew Secure RPC security protocol

We define the two classes Alice and Bob. Each class encompasses operations that are used as
message signatures as part of the actual MSD. For example, the class Alice encompasses the two
operations challenge(nn: String, n3: String) and finalize(newKey: String, n5: String). Moreover, each
class contains a property Kab of type String. We apply the stereotype «EncSymmetricKey» to the
property Kab, indicating that the property can be used as a symmetric encryption key.

Based on the classes, the UML collaboration, depicted in Figure 3.2, specifies the two roles al-
ice: Alice and bob: Bob typed by the UML classes Alice and Bob that participate in the Andrew
Secure RPC security protocol. In addition, we use the dependency with the applied stereotype
«sharesKeysWith» to specify that the two keys Kab of alice: Alice and bob: Bob are considered to be
the same.

Figure 3.3 depicts the MSD for the Andrew Secure RPC security protocol. The MSD encom-
passes the two lifelines alice: Alice and bob: Bob representing the roles defined in the UML collab-
oration. At the beginning of the protocol, participant alice: Alice creates a new nonce Na. In the
MSD, the nonce creation is specified by the security assignment Na = createNonce(). Security as-
signments are an extension of assignments (cf. Section 2.1.1) and provide means to create and
modify security-related data types like cryptographic keys or nonces. Visually, security assign-
ments contain a small lock at the upper right corner of the rectangle. Moreover, as assignments,
they have the form <var> = <expr>, where <var> is the name of a diagram or lifeline variable,
and <expr> can be any expression evaluating to a value of the type of <var>. Next, alice: Alice
sends the message hello() to bob: Bob. The message contains the two parameters ownId with value
“alice” and n1 with value Na. Moreover, the parameter n1 is symmetrically encrypted with Kab.

32

3.3. Exemplary Application of the SECURITY MODELING PROFILE

ownKey = [bob.Kab]

foreignKey = [alice.Kab]

Andrew Secure RPC Participants

Andrew Secure RPC Participants

alice: Alicealice: Alice bob: Bobbob: Bob

«sharesKeysWith»«sharesKeysWith»

«sharesKeysWith»«sharesKeysWith»
ownEncKey = [bob.Kab]

foreignEncKey = [alice.Kab]

ownEncKey = [alice.Kab]

foreignEncKey = [bob.Kab]

Figure 3.2: UML collaboration diagram for the Andrew Secure RPC security protocol

In the MSD, the symmetric encryption of the parameter is specified by the stereotype «Symmet-
ricEncrypted» applied to the parameter. The cryptographic key needed to perform the parameter
encryption is specified by the property symmetricKey of the stereotype «SymmetricEncrypted». In
our example, we assign Kab to the property. After receiving the message, bob: Bob increments
the received nonce by one (cf. succNa = inc(n1)). inc(param) is a unary operation that increments
param by one. Next, bob: Bob creates a nonce Nb. Then, bob: Bob sends the message challenge to
alice: Alice. This message contains the two parameters n2 with value succNa and n3 with value Nb.
Moreover, the message is symmetrically encrypted, specified by the applied stereotype «Symmet-
ricEncrypted». After receiving the message, alice: Alice validates whether the received nonce n2 is
equal to the incremented nonce Na. In the MSD, the condition is specified by the security condi-
tion inc(Na) = n2. A security condition contains an expression that evaluates to a Boolean value.
To visually distinguish security conditions from non-security conditions, they contain a lock at
the upper right corner of the hexagon. Then, alice: Alice increments the received nonce n3 by one
(cf. succNb = inc(n3)) and sends it to bob: Bob. After receiving the message, bob: Bob validates the
correctness of the received nonce (cf. inc(Nb = n4)). Then, bob: Bob creates a new symmetric en-
cryption key (cf. key = createSymmetricKey()) and a nonce N’b (cf. N’b = createNonce()). Finally,
bob: Bob sends the symmetrically encrypted message finalize to alice: Alice containing the newly
created symmetric encryption key key and nonce N’b.

33

Chapter 3. Specification of Security MSDs

msd «SecurityProtocol» Andrew Secure RPCmsd «SecurityProtocol» Andrew Secure RPC

hello(ownId = „alice“, n1 = Na)

challenge(n2 = succNa, n3 = Nb)

«SymmetricEncrypted»

symmetricKey = alice.Kab

«SymmetricEncrypted»

symmetricKey = alice.Kab

alice: Alicealice: Alice bob: Bobbob: Bob

«SymmetricEncrypted»

symmetricKey = bob.Kab

«SymmetricEncrypted»

symmetricKey = bob.Kab

Na = createNonce()

inc(Na) = n2

succNa = inc(n1)

Nb = createNonce()

succNb = inc(n3)

response(n4 = succNb)

«SymmetricEncrypted»

symmetricKey = alice.Kab

«SymmetricEncrypted»

symmetricKey = alice.Kab
inc(Nb) = n4

key =

createEncSymKey()

N‘b = createNonce()

finalize(newKey = key, n5 = N‘b)

«SymmetricEncrypted»

symmetricKey = bob.Kab

«SymmetricEncrypted»

symmetricKey = bob.Kab

Figure 3.3: MSD for the Andrew Secure RPC security protocol

3.3.2 Modeling the Needham-Schroeder Public Key Security Protocol

Figure 3.4 depicts the UML classes for the Needham-Schroeder Public Key security protocol. As
explained in Section 3.2.1, the purpose of the security protocol is the mutual authentication of the
two participants Alice and Bob using asymmetric encryption and a trusted third party.

We define three classes Alice, Bob, and Sue. We annotate the class Sue with the stereotype «Trust-
edThirdParty». Moreover, each class encompasses operations used as message signatures as part
of the actual MSD and a cryptographic key pair. Alice and Bob use their key pair for asymmet-
ric encryption. Thus, both classes possess a property sKeyX of type String annotated with the
stereotype «EncPrivateKey» to specify private asymmetric encryption keys (cf. sKeyA and sKeyB
in Figure 3.4) and a property pKeyX of type String annotated with the stereotype «EncPublicKey»
to specify public asymmetric encryption keys (cf. pKeyA and pKeyB in Figure 3.4). The associa-
tion keyPair models the relationship between a key pair’s private and public key. Sue uses her key
pair for digital signatures. Thus, the class Sue contains a property sKeyS and pKeyS of type String
annotated with the stereotypes «SigPrivateKey» and «SigPublicKey», respectively. The relationship
between the two keys is specified by an association with the applied stereotype «keyPair».

34

3.3. Exemplary Application of the SECURITY MODELING PROFILE

class [Package] Needham-Schroeder::Typesclass [Package] Needham-Schroeder::Types

+ sendPublicKey(
 pKey: EncPublicKey,
 requestedId: String)
+ challenge(
 n2: String,
 n3: String,

 ownId: String)

- «EncPrivateKey»

sKeyA: String

+ «EncPublicKey»

pKeyA: String

Alice

+ sendPublicKey(
 pKey: EncPublicKey,
 requestedId: String)
+ challenge(
 n2: String,
 n3: String,

 ownId: String)

- «EncPrivateKey»

sKeyA: String

+ «EncPublicKey»

pKeyA: String

Alice

+ requestPublicKey(
 ownId: String,
 requestedId: String)

- «SigPrivateKey»

sKeyS: String

+ «SigPublicKey»

pKeyS: String

Sue

+ requestPublicKey(
 ownId: String,
 requestedId: String)

- «SigPrivateKey»

sKeyS: String

+ «SigPublicKey»

pKeyS: String

Sue

+ sendPublicKey(
 pKey: EncPublicKey,
 requestedId: String)
+ hello(
 n1: String,
 ownId: String)
+ response(n4: String)

- «EncPrivateKey»

sKeyB: String

+ «EncPublicKey»

pKeyB: String

Bob

+ sendPublicKey(
 pKey: EncPublicKey,
 requestedId: String)
+ hello(
 n1: String,
 ownId: String)
+ response(n4: String)

- «EncPrivateKey»

sKeyB: String

+ «EncPublicKey»

pKeyB: String

Bob

The properties sKeyX and pKeyX of class X are related to each other using the association keyPair to

indicate that they form a key pair.

The properties sKeyX and pKeyX of class X are related to each other using the association keyPair to

indicate that they form a key pair.

keyPairkeyPair keyPairkeyPair keyPairkeyPair

Figure 3.4: UML class diagram for the Needham-Schroeder Public Key security protocol

Based on the classes, the UML collaboration, depicted in Figure 3.5, specifies the three roles al-
ice: Alice, bob: Bob, and sue: Sue typed by the UML classes Alice, Bob, and Sue. Moreover, the UML
collaboration encompasses dependencies annotated with the stereotype «knownsKeysOf» to spec-
ify initial knowledge of a particular role. For example, the trusted third party sue: Sue knows the
public keys of alice: Alice and bob: Bob. Thus, there is a dependency from sue: Sue to alice: Alice and
bob: Bob, respectively. Furthermore, the stereotype «knownsKeysOf» contains the list knowsPub-
licKeys encompassing the public key of alice: Alice and bob: Bob, respectively.

Needham-Schroeder Participants

Needham-Schroeder Participants

alice: Alicealice: Alice
«TrustedThirdParty»

sue: Sue

«TrustedThirdParty»

sue: Sue
bob: Bobbob: Bob

«knowsKeyOf»

sigPubKeys = [sue.pKeyS]

«knowsKeyOf»

sigPubKeys = [sue.pKeyS]

«knowsKeyOf»

sigPubKeys = [sue.pKeyS]

«knowsKeyOf»

sigPubKeys = [sue.pKeyS]

«knowsKeyOf»

encPubKeys = [alice.pKeyA]

«knowsKeyOf»

encPubKeys = [alice.pKeyA]

«knowsKeyOf»

encPubKeys = [bob.pKeyB]

«knowsKeyOf»

encPubKeys = [bob.pKeyB]

Figure 3.5: UML collaboration diagram for the Needham-Schroeder Public Key security protocol

Figure 3.6 depicts the MSD for the Needham-Schroeder Public Key security protocol. The MSD
encompasses the lifelines alice: Alice, bob: Bob, and sue: Sue representing the roles defined in the
UML collaboration. At the beginning of the protocol, the participant alice: Alice requests the pub-
lic encryption key of bob: Bob. Therefore, it sends the message requestPublicKey to sue: Sue con-
taining the two parameters ownId with value “alice” and requestedId with value “bob”. After receiv-
ing the message, sue: Sue looks up the public key for the requestedId and assigns the value to the
diagram variable pkB. In the MSD, the security assignment pkB = lookUpPublicKey(requestedId) is
used to specify the search for the public key based on the «knownsKeysOf» dependencies defined in

35

Chapter 3. Specification of Security MSDs

the UML collaboration. Next, sue: Sue sends the public key together with the requestedId back to
alice: Alice (cf. message sendPublicKey(pKey = pkB, requestedId = “bob”)). The message is secured
by a digital signature created with the private signature key of sue: Sue. In the MSD, the digital
signature is specified by the stereotype «DigitalSigned» applied to the message. After receiving
the message, alice: Alice creates a nonce Na and sends this nonce together with its own identifier
to bob: Bob (cf. message helloBob(n1 = Na, ownId = “alice”)). The message is asymmetrically en-
crypted using the public key received from sue: Sue. Next, bob: Bob requests the public key for the
received identifier from sue: Sue. After receiving the public key, bob: Bob creates a nonce Nb and
sends an asymmetrically encrypted message containing the new created nonce Nb, the previously
received nonce n1 and the identifier bob (cf. message helloAlice(n2 = Na, n3 = n1, ownId = “bob”) an-
notated with the stereotype «AsymmetricEncrypted»). Next, alice: Alice checks whether the received
nonce equals the one previously sent to bob: Bob (cf. Na =n3). If that is the case, it sends back
the received nonce. Finally, bob: Bob checks whether the received nonce equals the one previously
sent to alice: Alice (cf. Nb =n4).

3.3.3 Summarizing the Exemplary Application of the SECURITY MODELING
PROFILE

The exemplary application of the SECURITY MODELING PROFILE has shown that the profile is
sufficient to specify security protocols such as the Andrew Secure RPC security protocol or the
Needham Schroeder Public Key security protocol by means of MSDs. Moreover, we can derive
two modeling rules based on the two exemplary applications. First, the participants in a security
protocol only exchange a few messages. Thus, it is sufficient to model the complete message
exchange by only one MSD. Second, the created MSDs contain only cold messages and cold
conditions. It is reasonable to use only cold messages and cold conditions since a violation in
a protocol run should only lead to a termination of the current run and not to an inconsistent
specification.

The two exemplary applications also showed two minor restrictions. First, we modeled all par-
ticipants as system objects. However, without an environment object sending messages, the se-
curity protocol cannot be simulated by means of the Play-out algorithm. To solve this issue, we
could define a modeling rule that the initiator of a security protocol, i.e., the participant sending
the first message, is always an environment object. Second, in the Andrew Secure RPC security
protocol, the first event is not a message but a security assignment creating a random nonce. This
contradicts the definition of the first event in an MSD as described in Section 2.1. We discuss two
opportunities to solve this issue in Section 3.5.

36

3.3. Exemplary Application of the SECURITY MODELING PROFILE

msd «SecurityProtocol» Needham-Schroeder Key Exchange & Authentificationmsd «SecurityProtocol» Needham-Schroeder Key Exchange & Authentification

sendPublicKey(
 pKey = pkB,
 requestedId = “bob“)

requestPublicKey(
 ownId = “alice“,
 requestedId = “bob“)

hello(
 n1 = Na,
 ownId = “alice“)

«DigitalSigned»

privateKey = sue.sKeyS

«DigitalSigned»

privateKey = sue.sKeyS

alice: Alicealice: Alice
«TrustedThirdParty»

sue: Sue

«TrustedThirdParty»

sue: Sue
bob: Bobbob: Bob

pkB = lookUpPubKey(„bob“)

«AsymmetricEncrypted»

publicKey = pkB (=bob.pKeyB)

«AsymmetricEncrypted»

publicKey = pkB (=bob.pKeyB)

requestPublicKey(
 ownId = “bob“,
 requestedId = “alice“)

sendPublicKey(
 pKey = pkA,
 requestedId = “alice“)

«DigitalSigned»

privateKey = sue.sKeyS

«DigitalSigned»

privateKey = sue.sKeyS

Nb = createNonce()

challenge(
 n2 = Nb,
 n3 = n1,
 ownId = “bob“)

«AsymmetricEncrypted»

publicKey = pkA (=alice.pKeyA)

«AsymmetricEncrypted»

publicKey = pkA (=alice.pKeyA)
Na = n3

Nb = n4

response(n4 = n2)

«AsymmetricEncrypted»

publicKey = pkB

«AsymmetricEncrypted»

publicKey = pkB

Na = createNonce()

pkA = lookUpPubKey(„alice“)

Figure 3.6: MSD for the Needham-Schroeder Public Key security protocol

37

Chapter 3. Specification of Security MSDs

3.4 The SECURITY MODELING PROFILE in Detail

This section introduces our SECURITY MODELING PROFILE implementing the requirements de-
scribed in Section 3.2. Figure 3.7 depicts an overview of the SECURITY MODELING PROFILE.
It references the UML metamodel and imports the Modal profile for the specification of vari-
ables and references to these variables or parameter values. We divide the SECURITY MOD-
ELING PROFILE into three subprofiles: SecurityModelingProfile::ProtocolModeling, SecurityModel-
ingProfile::CryptographicKeyModeling, and SecurityModelingProfile::SecureElementModeling. In addi-
tion, we define a domain-specific language for the specification of security assignments and se-
curity conditions, respectively. Subsequently, we describe the subprofiles and the domain-specific
languages.

pkg Security Modeling Profile Structurepkg Security Modeling Profile Structure

«profile»

Security

Modeling Profile

«profile»

Security

Modeling Profile

«profile»

Protocol

Modeling

«profile»

Protocol

Modeling

«profile»

CryptographicKey

Modeling

«profile»

CryptographicKey

Modeling

«metamodel»

UML

«metamodel»

UML

«profile»

Modal

«profile»

Modal

«reference»«reference»

«reference»«reference»

«import»«import»

«profile»

SecureElement

Modeling

«profile»

SecureElement

Modeling

«metamodel»

SecurityAssignment

Expression

«metamodel»

SecurityAssignment

Expression

«metamodel»

SecurityCondition

Expression

«metamodel»

SecurityCondition

Expression

Legend

Existing, reused

Profile/Metamodel

Newly implemented

Profile/Metamodel

Legend

Existing, reused

Profile/Metamodel

Newly implemented

Profile/Metamodel

Figure 3.7: Overview of the SECURITY MODELING PROFILE subprofiles

3.4.1 Subprofile SecurityModelingProfile::ProtocolModeling

The subprofile SecurityModelingProfile::ProtocolModeling is depicted in Figure 3.8 and provides
means to specify security protocols. As mentioned in Section 2.1, an MSD specification is struc-

38

3.4. The SECURITY MODELING PROFILE in Detail

tured by means of MSD use cases where each use case encapsulates requirements on the commu-
nication behavior of the system under development.

The SECURITY MODELING PROFILE follows the structure of a pure MSD specification. However,
we define the following modeling rules to enable the intuitive specification of security protocols
and their simulative validation by means of the Play-out algorithm:

• An MSD specification for a security protocol describes one use case and shall contain only
one MSD.

• An MSD specification for a security protocol describes the security protocol from one or
more responders’ perspectives. Consequently, the protocol initiator is considered part of the
environment, and the responders are considered part of the system under development.

• An MSD specification for a security protocol only contains cold messages and conditions.
Moreover, messages sent from environment elements are monitored, and messages sent
from system elements are executed [+Jaz15].

The stereotype SecurityProtocol extending the metaclass UML::Interaction enables to distinguish
between a security protocol MSD and a requirements/assumption MSD. The constraint C1 ensures
that only one stereotype is applied to the UML::Interaction.

To realize (Req-1) and (Req-2), no specific modeling elements must be created for the SECURITY

MODELING PROFILE. The participants of a security protocol do not differ from participants in re-
quirements/assumption MSDs. Both kinds may contain properties and send and receive messages
with no, one or more parameters. Thus, security engineers can use the role of an MSD specifica-
tion to specify the participants of a security protocol (cf. (Req-1)). Moreover, security engineers
can refer to a participant by using the name of the role specified by means of the collaboration (cf.
(Req-2)). For example, in the Needham-Schroeder Public Key security protocol depicted in Fig-
ure 3.6, the first message requestPublicKey(ownId = “alice”, requestedId = “bob”) refers to the roles
alice and bob using their name.

However, as shown in our study (cf. Section 3.2), some security protocols encompass specialized
participants like trusted third parties. To realize (Req-3), the subprofile provides the stereotype
TrustedThirdParty extending the metaclass UML::Property. The stereotype TrustedThirdParty dis-
tinguishes a trusted third party from other participants. A participant annotated with the stereotype
TrustedThirdparty is part of the environment. The constraint C2 ensures this.

As described by (Req-4), the participants of a security protocol may possess properties like cryp-
tographic keys. To realize this requirement, no specific modeling elements must be created for the
SECURITY MODELING PROFILE. Security engineers can use the properties of the UML::Class to
specify properties and annotate these properties with stereotypes from the subprofile SecurityMod-
elingProfile::CryptographicKeyModeling. For example, in the Needham-Schroeder Public Key secu-
rity protocol depicted in Figure 3.4, each class encompasses two properties used as a cryptographic
key pair.

Moreover, the participants of a security protocol may have initial knowledge (e.g., knowing the
properties of another participant) or share symmetric keys with other participants. For exam-
ple, in the Needham-Schroeder Public Key security protocol, the trusted third party knows the
public keys of the other participants before the execution of the protocol. To realize (Req-5),

39

Chapter 3. Specification of Security MSDs

«profile» SecurityModelingProfile::ProtocolModeling«profile» SecurityModelingProfile::ProtocolModeling

«Metaclass»

UML::CombinedFragment

«Metaclass»

UML::CombinedFragment

«Stereotype»

Modal::Assignment

«Stereotype»

Modal::Assignment

«Stereotype»

Modal::Condition

«Stereotype»

Modal::Condition

«Metaclass»

UML::Interaction

«Metaclass»

UML::Interaction

«Stereotype»

SecurityProtocol

«Stereotype»

SecurityProtocol

«Metaclass»

UML::Message

«Metaclass»

UML::Message

«Stereotype»

SecuredElement

«Stereotype»

SecuredElement

«Metaclass»

UML::Property

«Metaclass»

UML::Property

«Stereotype»

CryptographicKey

«Stereotype»

CryptographicKey

«Metaclass»

UML::ValueSpecification

«Metaclass»

UML::ValueSpecification

- expression: String

«Stereotype»

SecurityCondition

- expression: String

«Stereotype»

SecurityCondition

- expression: String

«Stereotype»

SecurityAssignment

- expression: String

«Stereotype»

SecurityAssignment

«Metaclass»

UML::Dependency

«Metaclass»

UML::Dependency

- pubEncKeys: EncPublicKey[0..*]

- pubSigKeys: SigPublicKey[0..*]

«Stereotype»

knowsKeysOf

- pubEncKeys: EncPublicKey[0..*]

- pubSigKeys: SigPublicKey[0..*]

«Stereotype»

knowsKeysOf

«Stereotype»

EnvironmentAssumption

«Stereotype»

EnvironmentAssumption

{C1: An UML::Interaction can

either be an SecurityProtocol or

an EnvironmentAssumption}

{C1: An UML::Interaction can

either be an SecurityProtocol or

an EnvironmentAssumption}

«Stereotype»

Modal::SpecificationPart

«Stereotype»

Modal::SpecificationPart

«Stereotype»

TrustedThirdParty

«Stereotype»

TrustedThirdParty

{C2: A TrustedThirdParty is part of

the „environment“}

{C2: A TrustedThirdParty is part of

the „environment“}

«Stereotype»

Modal::ModalMessage

«Stereotype»

Modal::ModalMessage

Existing, reused

Metaclass/Stereotype

Existing, reused

Metaclass/Stereotype

Existing, reused Stereotype

of the Modal Profile

Newly implemented

Stereotype

Newly implemented

Stereotype

Newly implemented

Constraint

Newly implemented

Constraint

Legend

- ownEncKey:

EncSymmetricKey[0..1]

- foreignEncKey:

EncSymmetricKey[0..1]

- ownHmacKey:

HMACSymmetricKey[0..1]

- foreignHmacKey:

HMACSymmetricKey[0..1]

«Stereotype»

sharesKeysWith

- ownEncKey:

EncSymmetricKey[0..1]

- foreignEncKey:

EncSymmetricKey[0..1]

- ownHmacKey:

HMACSymmetricKey[0..1]

- foreignHmacKey:

HMACSymmetricKey[0..1]

«Stereotype»

sharesKeysWith

Figure 3.8: The subprofile SecurityModelingProfile::ProtocolModeling

40

3.4. The SECURITY MODELING PROFILE in Detail

the subprofile provides the stereotype knowsKeysOf and sharesKeysWith extending the metaclass
UML::Dependency. Both stereotypes shall be used in a UML::Collaboration. The source of the
stereotype knowsKeysOf specifies the role with the initial knowledge, while the target specifies the
role that owns the knowledge/property. Our literature study showed that initial knowledge primar-
ily encompasses the participants’ public keys. Thus, the stereotype knowsKeysOf encompasses a
list of public keys used for encryption and a list of public keys used for digital signatures, respec-
tively. The stereotype sharesKeysWith relates the symmetric keys of participants with each other.
Thus, the stereotype sharesKeysWith encompasses a property for the key of the source role (cf.
ownEncKey and ownHmacKey) and a property for the key of the target role (cf. foreignEncKey and
foreignHmacKey).

3.4.2 Subprofile SecurityModelingProfile::CryptographicKeyModeling

The subprofile SecurityModelingProfile::CryptographicKeyModeling is depicted in Figure 3.9 and pro-
vides means to specify cryptographic keys used in cryptographic primitives to secure the commu-
nication. Thereby, the subprofile realizes (Req-6).

The subprofile provides the abstract stereotype CryptographicKey extending the UML metaclass
UML::Property and six stereotypes extending the CryptographicKey. The constraint C3 ensures
that the stereotypes are only applied to a UML::Property owned by a UML::Class and constraint
C4 that only one cryptographic key stereotype is applied to a UML::Property. Thereby, only
UML::Properties of a UML::Class can be used as cryptographic keys.

Next, we provide an overview of the stereotypes extending the abstract stereotype Cryptograph-
icKey.

• The stereotype EncSymmetricKey provides means to specify a cryptographic key used for
symmetric encryption. In symmetric encryption, several communication partners use the
same key to encrypt and decrypt the communication. The stereotype sharesKeysWith (cf.
Figure 3.8) relates the symmetric keys of participants with each other.

• The stereotype HMACSymmetricKey provides means to specify a cryptographic key used to
create a hashed message-authentication code (HMAC). As for the stereotype EncSymmet-
ricKey, the stereotype sharesKeysWith (cf. Figure 3.8) relates symmetric keys of participants
with each other.

• The two stereotypes EncPrivateKey and EncPublicKey define a key pair used for asymmet-
ric encryption. The EncPublicKey specifies the public key used for the encryption, while
the EncPrivateKey specifies the private key used for the decryption. The UML association
keyPair is used to relate the two parts of the key pair.

• The two stereotypes SigPrivateKey and SigPublicKey define a key pair used to create and
validate a digital signature. The SigPrivateKey specifies the private key used for creation,
while the SigPublicKey specifies the public key used to validate the signature. The UML
association keyPair is used to relate the two parts of the key pair.

41

Chapter 3. Specification of Security MSDs

«profile» SecurityModelingProfile:CryptographicKeyModeling«profile» SecurityModelingProfile:CryptographicKeyModeling

«Stereotype»

CryptographicKey

«Stereotype»

CryptographicKey

«Stereotype»

EncPrivateKey

«Stereotype»

EncPrivateKey

«Stereotype»

EncPublicKey

«Stereotype»

EncPublicKey

«Stereotype»

SigPublicKey

«Stereotype»

SigPublicKey

«Stereotype»

EncSymmetricKey

«Stereotype»

EncSymmetricKey

«Stereotype»

HMACSymmetricKey

«Stereotype»

HMACSymmetricKey

cPrivateKey

cPublicKey

keyPair

cPrivateKey

cPublicKey

keyPair

LegendLegend

Existing, reused

Metaclass/Stereotype

Existing, reused

Metaclass/Stereotype

Existing, reused Stereotype

of the Modal Profile

Existing, reused Stereotype

of the Modal Profile

Newly implemented

Stereotype

Newly implemented

Stereotype

Newly implemented

Constraint

Newly implemented

Constraint

Legend

Existing, reused

Metaclass/Stereotype

Existing, reused Stereotype

of the Modal Profile

Newly implemented

Stereotype

Newly implemented

Constraint

«Metaclass»

UML::Property

«Metaclass»

UML::Property

{C4: Only one stereotype of

kind CryptographicKey can be

applied to a UML::Property or a

UML::Parameter}

{C4: Only one stereotype of

kind CryptographicKey can be

applied to a UML::Property or a

UML::Parameter}

{C3: A stereotype of kind

CryptographicKey can only be

applied to a UML::Property

owned by a UML::Class}

{C3: A stereotype of kind

CryptographicKey can only be

applied to a UML::Property

owned by a UML::Class}

«Stereotype»

SigPrivateKey

«Stereotype»

SigPrivateKey

cPrivateKey

cPublicKey

keyPair

cPrivateKey

cPublicKey

keyPair

{C5: The owner of the

EncPublicKey must be the same

as the owner of the

EncPrivateKey}

{C5: The owner of the

EncPublicKey must be the same

as the owner of the

EncPrivateKey}

{C6: The owner of the

SigPublicKey must be the same

as the owner of the

SigPrivateKey}

{C6: The owner of the

SigPublicKey must be the same

as the owner of the

SigPrivateKey}

«Metaclass»

UML::Parameter

«Metaclass»

UML::Parameter

Figure 3.9: The subprofile SecurityModelingProfile::CryptographicKey

3.4.3 Subprofile SecurityModelingProfile::SecureElementModeling

The subprofile SecurityModelingProfile::SecureElementModeling is depicted in Figure 3.10 and pro-
vides means to annotate messages and message arguments specified in an MSD with cryptographic
primitives. Thereby, the subprofile realizes (Req-9)–(Req-12).

The subprofile provides the abstract stereotype SecuredElement extending the two metaclasses
UML::Message and UML::ValueSpecification and five stereotypes extending the abstract stereotype.

Next, we provide an overview of the stereotypes extending the abstract stereotype SecuredElement.

• The stereotype SymmetricEncrypted describes that a message or an argument is sym-
metrically encrypted. Therefore, the stereotype encompasses the tagged value symmet-
ricKey: EncSymmetricKey specifying the key used for the encryption and decryption.

• The stereotype HMAC describes that a hash-based message authentication code is added to
a message and covers all or only part of the message’s arguments. Therefore, the stereotype

42

3.4. The SECURITY MODELING PROFILE in Detail

LegendLegend

Existing, reused

Metaclass/Stereotype

Existing, reused

Metaclass/Stereotype

Existing, reused Stereotype

of the Modal Profile

Existing, reused Stereotype

of the Modal Profile

Newly implemented

Stereotype

Newly implemented

Stereotype

Newly implemented

Constraint

Newly implemented

Constraint

Legend

Existing, reused

Metaclass/Stereotype

Existing, reused Stereotype

of the Modal Profile

Newly implemented

Stereotype

Newly implemented

Constraint

«profile» SecurityModelingProfile:SecureElementModeling«profile» SecurityModelingProfile:SecureElementModeling

«Stereotype»

SecureElement

«Stereotype»

SecureElement

- publicKey: EncPublicKey

«Stereotype»

AsymmetricEncrypted

- publicKey: EncPublicKey

«Stereotype»

AsymmetricEncrypted

«Stereotype»

Hashed

«Stereotype»

Hashed

«Metaclass»

UML::Message

«Metaclass»

UML::Message
«Metaclass»

UML::ValueSpecification

«Metaclass»

UML::ValueSpecification

- symmetricKey: EncSymmetricKey

«Stereotype»

SymmetricEncrypted

- symmetricKey: EncSymmetricKey

«Stereotype»

SymmetricEncrypted

- privateKey: SigPrivateKey

«Stereotype»

DigitalSigned

- privateKey: SigPrivateKey

«Stereotype»

DigitalSigned

- symmetricKey: HMACSymmetricKey

«Stereotype»

HMAC

- symmetricKey: HMACSymmetricKey

«Stereotype»

HMAC

Figure 3.10: The subprofile SecurityModelingProfile::SecureElementModeling

encompasses the tagged value symmetricKey: HMACSymmetricKey specifying the key used
for creating and validating the hash-based message authentication code. This HMAC is
added to the message and sent to the receiver.

• The stereotype AsymmetricEncrypted describes that a message or an argument is asymmetri-
cally encrypted. The stereotype encompasses the tagged value publicKey: EncPublicKey. The
tagged value publicKey specifies the EncPublicKey that is used for the encryption of the mes-
sage. The privateKey specifying the EncPrivateKey used for the decryption can be resolved
via the association keyPair.

• The stereotype DigitalSigned describes that a message or an argument is digitally signed.
This signature is added to the message and sent to the receiver of the message. The stereo-
type encompasses the tagged value privateKey: SigPrivateKey. The tagged value privateKey
specifies the SigPrivateKey that is used for the creation of the digital signature. The publicKey
specifying the SigPublicKey used for the validation of the signature can be resolved via the
association keyPair.

• The stereotype Hashed describes that a message or an argument of a message is cryptograph-
ically hashed. This hash value is added to the message and sent to the receiver.

43

Chapter 3. Specification of Security MSDs

3.4.4 Metamodel SecurityModelingProfile::SecurityAssignment

The metamodel SecurityModelingProfile::SecurityAssignment provides means to create and manipu-
late protocol variables and thereby realizes (Req-6)–(Req-8) and (Req-13)–(Req-18). The stereo-
type SecurityAssignment specializes the stereotype Modal::Assignment. To visually distinguish Se-
curityAssignments from non-security Modal::Assignments, we add a lock in the upper right corner
of the rectangle.

As a Modal::Assignment, a SecurityAssignment has the form <var> = <expression>, where <var>
can be any diagram or lifeline variable and <expression> can be any security assignment ex-
pression evaluating to a value of the type of <var>. For example, in the MSD describing the
Needham-Schroeder Public Key security protocol, we use security assignments to generate ran-
dom nonces (e.g., Na = createNonce() in Figure 3.6) or to look up known keys (e.g., pkB = lookUp-
PubKey(“bob”) in Figure 3.6).

The domain-specific language to specify an expression is depicted in Listing 3.3 and provides
means to textually describe operations for creating and modifying protocol variables.

1 SecurityAssignment = Identifier ’=’ Expression
2

3 Expression = AssignmentExpression | ArithmeticExpression |
CryptographicExpression

4

5 AssignmentExpression = ’createNonce ()’
6 | ’createPrime ()’
7 | ’createTimestamp ()’
8 | ’createEncSymmetricKey ()’
9 | ’createHMACSymmetricKey ()’

10 | ’lookUpPublicKey (’ Identifier ’)’
11

12 ArithmeticExpression = ArithmeticExpression ArithmeticOp
ArithmeticExpression

13 | ’inc(’ ArithmeticExpression ’)’
14 | ’dec(’ ArithmeticExpression ’)’
15 | ’exp(’ ArithmeticExpression , ArithmeticExpression ’)’
16 | ’mod(’ ArithmeticExpression , ArithmeticExpression ’)’
17 | Literal
18

19 ArithmeticOp = "+", "-", "*", "/"
20

21 CryptographicExpression =
22 sEnc ((Literal (, Literal)*), [SymmetricEncKey])
23 | sDec ((Literal (, Literal)*), [SymmetricEncKey])
24 | aEnc ((Literal (, Literal)*), [PublicEncKey])
25 | aDec ((Literal (, Literal)*), [PrivateEncKey])
26 | cHMAC ((Literal (, Literal)*), [SymmetricEncKey])
27 | vHMAC ((Literal (, Literal)*), [SymmetricEncKey])
28 | ’xor(’ Literal , Literal ’)’
29

30 Literal = Identifier | INT | DOUBLE | STRING

Listing 3.3: Domain-Specific Language to express Security Assignments

44

3.4. The SECURITY MODELING PROFILE in Detail

The description of the grammar is as follows: A SecurityAssignment has the form Identifier =
Expression. The Identifier can refer to any diagram or lifeline variable. If it refers to a lifeline
variable, the fully qualified name of this variable must be used. The Expression may resolve to an
AssignmentExpression, an ArithmeticExpression or a CryptographicExpression. The AssignmentExpres-
sion provides rules to assign a new value of data type String or Integer to the variable (createX(),
where X refers to a particular data type). For example, the term createNonce() creates a random
string suitable for cryptographic applications (e.g., created with a secure random function). More-
over, the AssignmentExpression provides a rule to look up a public key for a specific lifeline. The
ArithmeticExpression provides some mathematical and logical operations. First, the mathematical
operations encompass expressions to express the increment and decrement of a variable by one.
Second, the mathematical operations encompass expressions to express modular exponentiation.
The CryptographicExpression provides cryptographic primitives like encryption. Finally, the Literal
may refer to a literal for the primitive data types Integer, Double, and STRING, or to an identifier.

3.4.5 Metamodel SecurityModelingProfile::SecurityCondition

The metamodel SecurityModelingProfile::SecurityCondition provides means to compare protocol
variables and, thus, describes the conditional behavior of the protocol. Thereby, the metamodel
realizes (Req-19). The stereotype SecurityCondition specializes the stereotype Modal::Condition.
To visually distinguish SecurityConditions from non-security Modal::Conditions, we add a lock in
the upper right corner of the hexagon.

A SecurityCondition contains an expression that evaluates to a Boolean value. Thus, the semantics
of a SecurityCondition equals the semantics of a Modal::Condition. If the expression evaluates to
true, the MSD progresses otherwise a violation occurs. For example, in the MSD describing the
Needham-Schroeder Public Key security protocol, we use security conditions to compare whether
the received nonce is the same as the one previously sent (e.g., Na = n3 in Figure 3.6).

The domain-specific language is depicted in Listing 3.4 and provides means to textually describe
the SecurityCondition.

1 SecurityCondition = ArithmeticExpression Op ArithmeticExpression
2

3 Op = ">" | ">=" | ’=’ | "<=" | "<"
4

5 ArithmeticExpression = ArithmeticExpression ArithmeticOp
ArithmeticExpression

6 | ’inc(’ ArithmeticExpression ’)’
7 | ’dec(’ ArithmeticExpression ’)’
8 | ’exp(’ ArithmeticExpression , ArithmeticExpression ’)’
9 | ’mod(’ ArithmeticExpression , ArithmeticExpression ’)’

10 | Literal
11

12 ArithmeticOp = "+" | "-" | "*" "/"
13

14 Literal = INT | DOUBLE | STRING

Listing 3.4: Domain-Specific Language to express Security Conditions

45

Chapter 3. Specification of Security MSDs

The description of the grammar is as follows: A SecurityCondition has the form ArithmeticExpression
Op ArithmeticExpression. The Op refers to the valid comparison operators. The left-hand side and
the right-hand side of the condition refer to an ArithmeticExpression. The rules for the expression
are the same as for the ArithmeticExpression discussed in the previous section.

3.5 Extension of the Runtime Semantics to Support the SECURITY
MODELING PROFILE

This section introduces extensions to the semantics of MSDs (cf. Section 2.1.2) necessary to define
the behavior of security protocols specified by means of the SECURITY MODELING PROFILE. To
visualize the concepts of the extensions, we use an excerpt of the MSD for the Andrew Secure
RPC security protocol enriched with information about the cuts used to keep track of the MSD
process (cf. Figure 3.11).

msd «SecurityProtocol» Example to illustrate the runtime extensionsmsd «SecurityProtocol» Example to illustrate the runtime extensions

hello(ownId = „alice“, n1 = Na)

«SymmetricEncrypted»

symmetricKey = alice.Kab

«SymmetricEncrypted»

symmetricKey = alice.Kab

alice: Alicealice: Alice bob: Bobbob: Bob

Na = createNonce()

c0

c1

c2

Figure 3.11: Exemplary MSD to illustrate the Runtime Extensions

3.5.1 Runtime Semantics: Minimal Event

As explained in Section 2.1.2, the minimal event in an MSD is a cold and monitored message,
meaning that there are no preceding events (e.g., assignments or conditions). However, as shown
for the Andrew Secure RPC security protocol, in some security protocols, the participants create
random values before they send the first message.

There exist several possible solutions to enable this behavior. Intuitively, the security engineer
could add a role to the MSD specification that sends a trigger message to the initiator of the
security protocol. This message would be the first in the MSD and could be the minimal event of
the actual MSD. However, this would cause some side effects if a requirements engineer wants to
reuse an existing specification in the requirements specification of an application.

Instead of adding a trigger message, we decide to relax the rule for the minimal event as follows:
In an MSD annotated with the stereotype «SecurityProtocol», the minimal event is still a cold and
monitored message but an arbitrary number of security assignments defining diagram variables

46

3.5. Extension of the Runtime Semantics to Support the SECURITY MODELING PROFILE

may occur before the minimal event on the sending lifeline. Thereby, we provide an intuitive
solution for the desired behavior without adding additional roles to the specification. Moreover,
our solution does not cause any changes to the object system since an MSD specification for a
security protocol contains only one MSD (cf. Section 3.4.1) and the definition of diagram variables
is considered as hidden events [Gre11].

The MSD in Figure 3.11 shows this situation, the message hello() sent from alice: Alice to bob: Bob
is the minimal event and thus the cut c1 is directly before that message. To take the relaxed rule
for the minimal event into account, we change the procedure to create an active MSD as follows:
If a message event occurs that is message unifiable with the minimal event, an active MSD is
created. Then, it is checked whether security assignments defining diagram variables exist before
the minimal event on the sending lifeline. If this is the case, the diagram variables are created.
Afterward, it is checked whether the message event is also parameter unifiable with the minimal
event. If this is the case, the MSD remains active and the cut progresses, otherwise, the MSD is
terminated. We split the unification process into two parts since the minimal event might refer
to the diagram variables created by the security assignments. Without splitting the unification
process into two parts, the message event and the minimal event might not be parameter unifiable,
since the minimal event might refer to diagram variables that do not yet exist. After the creation
of the active MSD, the cut c2 is enabled and the MSD progresses as described in Section 2.1.2.

3.5.2 Runtime Semantics: Message Unification

As mentioned in Section 3.4, cryptographic primitives can be applied to messages and parameters.
This requires an extension to the definition of unification since messages and message events that
have different applied cryptographic primitives would not be unifiable using the original definition.
Initially, the definition of unification covered the sending and receiving of a message, its signature,
and its parameters in the case of a parameterized message [Gre11].

Accordingly, a message and a message event are message unifiable if the following four conditions
are fulfilled [Gre11]:

1. The message and the message event both reference the same operation.

2. The sending lifeline of the message must be able to represent the sending object of the
message event.

3. The receiving lifeline of the message must be able to represent the receiving object of the
message event.

4. The order, number, and types of the parameters of the message and the message event must
be compatible.

To account for cryptographic primitives, TRIPPEL [+Tri21] added two conditions to the definition
of message unification resulting in the following definition:

5. The order, number, and kind of stereotypes applied to parameters of the message and the
message event must be equal if the parameters are at the same position.

47

Chapter 3. Specification of Security MSDs

6. The properties of stereotypes that are applied to parameters must be equal for the message
and the message event.

For a message and a message event to be parameter unifiable, GREENYER [Gre11] extended the
definition of message unification with the following two conditions:

1. The message and the message event must be message unifiable.

2. The values of the parameters of the message event must be compatible with the parameters
specified for the message.

To account for cryptographic primitives, TRIPPEL [+Tri21] added two conditions to the definition
of parameter unification resulting in the following definition:

3. The receiving lifeline of the message must be able to represent the receiving object of the
message event.

4. The order, number, and types of the parameters of the message and the message event must
be compatible.

However, the extension of TRIPPEL [+Tri21] does not take into account whether a sending or a
receiving object possesses or knows the key that is used within a cryptographic primitive. Thus, we
extend the last condition of each definition as follows: If a stereotype from the SECURITY MOD-
ELING PROFILE is applied to a message or a parameter and this stereotype refers to a cryptographic
key, both the sending and receiving object must either possess or know this key. If this is the case,
the cut progresses, otherwise a violation occurs.

3.6 Implementation

This section presents an overview of our prototypical implementation to support and evaluate the
concepts described throughout this chapter. The implementation is integrated into the Eclipse-
based SCENARIOTOOLS MSD tool suite [ST-MSD]. In particular, we present the architecture of
our implementation in Section 3.6.1 and the user interface in Section 3.6.2.

3.6.1 Security ScenarioTools (Software Architecture)

Figure 3.12 depicts the software architecture that realizes the concepts described in this chapter.
The architecture visualization encompasses the components and UML profiles newly implemented
in the course of this thesis, the existing frameworks, tool suites, and UML profiles, as well as the
dependencies between these components. The overall implementation is based on the Eclipse
Modeling Framework (EMF) [EMF] and Eclipse Papyrus [Papyrus].

The newly implemented tool suite SECURITY SCENARIOTOOLS MSD provides the Security Mod-
eling Profile and the Security Runtime. The Security Modeling Profile extends the UML metamodel
as part of the component UML2 and the Modal profile as part of the SCENARIOTOOLS MSD tool
suite. Moreover, the domain-specific languages for the specification of security assignments and
security conditions are realized by means of Xtext [Xtext]. The component Security Runtime ex-
tends the component SCENARIOTOOLS MSD runtime to simulate the security MSD specifications
as described in Section 3.5.

48

3.6. Implementation

Legend

Newly implemented

Component / Profile

Newly implemented

Component / Profile
Existing, Reused Framework /

Tool Suite / Profile

Newly implemented

Component / Profile
Existing, Reused Framework /

Tool Suite / Profile

Legend

Newly implemented

Component / Profile
Existing, Reused Framework /

Tool Suite / Profile

pkg [Package] Implementation of the Security Modeling Profilepkg [Package] Implementation of the Security Modeling Profile

EMFEMF

PapyrusPapyrus

SCENARIOTOOLS

MSD

SCENARIOTOOLS

MSD

UML2UML2

SECURITY SCENARIOTOOLS MSDSECURITY SCENARIOTOOLS MSD

Security

Modeling Profile

Security

Modeling Profile

Security

Runtime

Security

Runtime

XtextXtext

Figure 3.12: Coarse-grained architecture of the implementation and the reused components

3.6.2 Security ScenarioTools (User Interface)

The user interface of the SECURITY SCENARIOTOOLS MSD tool suite provides a modeling and
a simulation perspective. Subsequently, we describe both perspectives.

Security ScenarioTools MSD Modeling Perspective

The user can use the Papyrus modeling editors to specify the different parts of the MSD spec-
ification. Figure 3.13 depicts an excerpt of the modeling perspective showing the MSD for
the Needham-Schroeder Public Key security protocol. The modeling editor provides a palette
on the right side of the editor such that the user can drag the different model elements and
drop them on the drawing plate. We have extended the visualization of messages such that
it includes information about the applied cryptographic primitives. For example, the message
sendPublicKey(publicKey: EncPublicKey, requestedId: Host) is digitally signed using the private sig-
nature key sKeyS. As shown in the bottom of Figure 3.13, the stereotypes of a message can be
configured using the properties view.

Security ScenarioTools MSD Simulation Perspective

The simulation perspective provides information necessary for the simulation of an MSD specifi-
cation. In particular, the simulation perspective provides a set of enabled messages and the user

49

Chapter 3. Specification of Security MSDs

Figure 3.13: Screenshot of the SECURITY SCENARIOTOOLS MSD modeling perspective

can select the message that should be sent next. As shown in Figure 3.14, we extended the existing
view such that the concepts provided by the SECURITY MODELING PROFILE are also shown to
the user. In Figure 3.14, the simulation perspective shows five messages to the user. For the mes-
sage hello(), the simulation perspective also shows that the message is asymmetrically encrypted
with the public key owned by Bob.

Figure 3.14: Screenshot of the SECURITY SCENARIOTOOLS MSD simulation perspective

3.7 Evaluation

In this section, we conduct a case study based on the guidelines by KITCHENHAM ET AL. [KPP95]
and RUNESON ET AL. [RH09; Run12] for evaluating our modeling approach. Our case study
investigates the SECURITY MODELING PROFILE’s applicability in practice.

3.7.1 Case Study Context

We examine the following evaluation questions:

EQ1 Does the SECURITY MODELING PROFILE enable the specification of real-world se-
curity protocols?

50

3.7. Evaluation

EQ2 Does the extension to the runtime semantics enable the simulation of real-world se-
curity protocols specified by means of the SECURITY MODELING PROFILE?

To answer the questions, we select 14 security protocols from our data collection. As stated in
Section 3.2, our data collection encompasses 54 security protocols from academia and practice.
The security protocols that we selected for our case study use different cryptographic primitives
and, thus, present a broad range of possible security protocols. Moreover, we ensure that the
selected security protocols cover all building blocks that we identified as well as the defined 19
requirements the SECURITY MODELING PROFILE shall satisfy.

3.7.2 Setting the Hypotheses

We define the following hypotheses for this case study.

H1 The different security protocols can be specified using the SECURITY MODELING

PROFILE as presented in Section 3.4. For evaluating H1, we model 14 different security
protocols from our data collection. We rate H1 as fulfilled if the security protocols can be
specified using solely the SECURITY MODELING PROFILE presented in Section 3.4.

H2 The different security protocols can be simulated by means of the Play-out algorithm
following the extensions to the runtime semantics defined in Section 3.5. We rate H2 as
fulfilled if the 14 modeled security protocols are correctly simulated by means of the Play-
out algorithm.

3.7.3 Validating the Hypotheses

In the following, we validate each hypothesis separately using the prototypical implementation of
our approach described in Section 3.6.

Validating Hypotheses H1

To validate H1, we created an MSD specification for each of the 14 selected security protocols.
During the modeling process, we checked whether the SECURITY MODELING PROFILE is expres-
sive enough to specify the security protocol or whether any language constructs were missing. Af-
terward, we executed the Papyrus validate function on each MSD specification to check for syn-
tactical problems and unfulfilled OCL constraints. Papyrus returns that no problem exists in any
MSD specification.

However, we noticed two problems while using Papyrus. First, moving UML::CombinedFragments
in the diagram crashed the editor. The reason for this was a known issue in Papyrus that we
could fix. Second, in some cases, the message ordering was corrupted after we closed and opened
the editor. The corrupted models could not be repaired via Papyrus; instead, we had to edit the
XML file storing the model or re-model the MSD specification. To check whether this issue was
caused by our SECURITY MODELING PROFILE, we modeled various sequence diagrams without
our profile and could reproduce the behavior of Papyrus without finding the root cause.

51

Chapter 3. Specification of Security MSDs

Validating Hypotheses H2

To validate H2, we simulated all 14 MSD specifications by means of the Play-out algorithm. We
executed the algorithm step by step and checked in each step whether the simulation state was cor-
rect. The correct simulation includes unifying messages and arguments that have been annotated
with cryptographic primitives and the handling of security assignments and conditions according
to the runtime semantics as defined in Section 3.5. For the 14 modeled security protocols, we were
able to find a trace through the MSD that does not cause any violation. Moreover, we modified
some MSD specifications to provoke violations in the simulation, e.g., changing the key used to
encrypt a message to a key that the receiver does not know. In these cases, we could not find a
trace through the MSD that does not cause any violation. We repeated the simulation several times
to check whether the simulation behavior was deterministic and did not find any deviations in the
different simulation runs.

3.7.4 Analyzing the Results

Table 3.1 depicts the results of the case study. We are able to model all security protocols com-
pletely by means of our SECURITY MODELING PROFILE, and each MSD specification used only
modeling elements introduced in Section 3.4. Moreover, we are able to simulate the MSD speci-
fications by means of the Play-out algorithm.

To conclude the case study, we state that our SECURITY MODELING PROFILE provides means to
specify security protocols in a scenario-based manner and is applicable in practice.

Table 3.1: Results of the case study

No. Security Protocol H1 H2

The SECURITY MODELING PROFILE
enables the modeling of realistic

security protocols

The runtime extensions enable the
simulative validation of realistic

security protocols

1 Andrew Secure RPC [Sat89;
BAN90]

2 Andrew Secure RPC
(BAN) [BAN90; Low96a]

3 Bull’s Authentication
Protocol [BO97; RS98]

4 CH07 [vR09]

5 CCITT-X.509-Protocol [IM90]

6 Denning-Sacco Shared
Key [DS81; Low00]

7 Diffie Helman [DH76]

8 Gong’s Mutual Authentication
Protocol [Gon89]

9 Kao Chow’s Authentication
Protocol [KC95]

52

3.7. Evaluation

No. Security Protocol H1 H2

The SECURITY MODELING PROFILE
enables the modeling of realistic

security protocols

The runtime extensions enable the
simulative validation of realistic

security protocols

10 Kerberos [BM90; NT94;
Low00]

11 Needham-Schroeder Public
Key [Low95]

12 Needham-Schroeder
Symmetric Key [Low95]

13 Wide Mouthed Frog [BAN90;
Low00]

14 Woo and Lam Mutual
Authentication [WL94]

Legend: fulfilled, G partially fulfilled, # not fulfilled

3.7.5 Threats to Validity

The threats to validity in our case study are as follows:

Construct Validity

The case study was designed and conducted by the same researcher who developed the approach.
Since the researcher might have a bias toward the developed approach, the case study would
be more significant if security experts had modeled the security protocols. To mitigate this, we
conducted a literature review to collect requirements on the SECURITY MODELING PROFILE and
discussed our modeling approach with security experts from academia. Moreover, we discussed
the case study design and its research questions with other researchers.

In addition, the case study results have yet to be evaluated by security experts from academia or
industry. To mitigate this, the cases were selected from literature providing an informal description
of message sequences between the different participants. Thus, we were able to compare our
results with the literature.

External Validity

We only considered 14 different security protocols and, thus, cannot generalize the fulfillment of
the hypothesis for all possible security protocols. Nevertheless, the selected security protocols rep-
resent typical examples; thus, we do not expect large deviations from other examples. Moreover,
during the selection of the cases, we ensured that we selected security protocols that use different
building blocks (e.g., encryption, hashing, etc.) in different combinations. Although we cannot

53

Chapter 3. Specification of Security MSDs

guarantee that our selected cases are representative, we cover at least a broad range of security
protocols.

Reliability

The case study was conducted based on the prototype implementation that might not be available
in the future. To mitigate this, the implemented concepts are defined in Section 3.4 and can be
newly implemented.

Moreover, the case study information and the resulting models might not be available in the future.
To mitigate this, we discussed the exemplary application of our SECURITY MODELING PROFILE

for two examples in detail in Section 3.3.

Finally, to analyze the results of our case study, we manually reviewed all results which is depen-
dent on the reviewer’s expertise. To mitigate this, we defined OCL rules (cf. Section 3.4) that can
be automatically checked to ease the modeling of the security protocols.

3.8 Related Work

In this section, we investigate related work on approaches that enable the model-based specifica-
tion of security protocols or security annotation on message-based communication.

FANG ET AL. [SLF+14; FLH+16] propose a modeling and analysis approach for security pro-
tocols. They introduce a UML profile to enable the modeling of security protocols by means of
UML Interactions. Compared to our profile, their profile does not model the general concepts
of security protocols but remains very close to the input language of the security model checker
PROVERIF they use to verify the specified security protocols.

AMEUR-BOULIFA ET AL. [ALA19; LLA+16] present a modeling approach based on SysML to
enable the specification of security aspects for embedded systems. They enhance SysML block
and state machine diagrams to capture security features like secrecy and authentication. In contrast
to their approach, we conceived a modeling approach based on sequence charts since they are more
appropriate for the specification of requirements on message-based interactions [LT15].

LOBDDERSTED ET AL. [LBD02] present SecureUML, a UML-based modeling language for
model-driven security. The approach enables the design and analysis of secure, distributed sys-
tems by adding mechanisms to model role-based access control. Furthermore, they provide an
automatic generation of access control infrastructures based on the specified models. In contrast,
we focus on modeling security protocols and not only on access controls.

UMLSec [Jür02] is a model-driven approach encompassing a UML profile for expressing secu-
rity concepts, such as encryption mechanisms and attack scenarios. It provides a modeling frame-
work to define the security properties of software components and their composition within a
UML framework. Similar to UMLSec, MOEBIUS ET AL. [MSG+09] provide the model-driven
approach SecureMDD to enable the development of security-critical applications. However, both
approaches focus either on high-level security requirements or on application-specific security re-
quirements and not, as in our approach, on basic security properties like secrecy and authentica-
tion.

54

3.9. Summary

3.9 Summary

This chapter presents our SECURITY MODELING PROFILE, a UML-compliant modeling lan-
guage extending UML Interactions and Modal Sequence Diagrams. The SECURITY MODELING

PROFILE provides a set of cryptographic primitives like (a)symmetric encryption, digital signa-
tures, and cryptographic hash functions. These cryptographic primitives can be applied to mes-
sages and their arguments. Furthermore, the SECURITY MODELING PROFILE provides modeling
elements to specify the conditional behavior of a security protocol. Moreover, we extended the
runtime semantics of MSDs to enable the simulative validation of MSD specifications including
modeling elements of the newly created SECURITY MODELING PROFILE.

We have developed the SECURITY MODELING PROFILE based on 19 requirements. The require-
ments describe typical building blocks used to specify the structure and the behavior of security
protocols. We conducted a literature study investigating 54 security protocols to derive these re-
quirements,

We implemented a prototype based on SCENARIOTOOLS MSD and evaluated the applicability in
practice of our SECURITY MODELING PROFILE by means of 14 security protocols. Our evalua-
tion results indicate that the SECURITY MODELING PROFILE provides an intuitive way to spec-
ify security-related aspects for message-based interactions. Thus, security engineers can use our
SECURITY MODELING PROFILE to specify security protocols. Moreover, requirements engineers
can use the profile and already compiled security protocols to specify and simulatively validate
security requirements on the communication behavior of software-intensive systems.

55

4

Verification of Security MSDs

This chapter introduces VICE (VIsual Cryptography vErifier), a model-checking approach for au-
tomatically verifying security protocols in the symbolic model. VICE provides a model transfor-
mation concept to transform a security protocol into the input language of various symbolic model
checkers. In addition, VICE automatically derives an initial set of analysis queries that the model
checker shall verify to decide whether the protocol is secure concerning secrecy and authentica-
tion. Moreover, VICE translates the results of a model checker back to the security protocol. We
illustrate this using the SECURITY MODELING PROFILE as described in Chapter 3 and the two
symbolic model checkers PROVERIF and TAMARIN. Existing verification approaches only sup-
port one model checker [FLH+16; ALA19] and either only partially support the automatic deriva-
tion of analysis queries [ALA19] or do not assist in deriving analysis queries [FLH+16; MA22]. In
addition, they do not process the analysis results and leave it to the security engineer to understand
the analysis results [FLH+16; MA22].

This chapter is structured as follows: We provide a list of our contributions in Section 4.1. After-
ward, we present an overview of our model-checking approach for verifying security protocols in
Section 4.2. Subsequently, we explain the main activities of VICE. First, we present the forward
translation from a security-enhanced MSD specification to the VerificationModel in Section 4.3.
Second, we explain the translation from the VerificationModel to the input language of PROVERIF

and TAMARIN in Section 4.4 and Section 4.5. Fourth, we explain the back-translation of the anal-
ysis results in Section 4.6. Afterward, we provide information about the implementation in Sec-
tion 4.7 and evaluate VICE by means of a case study in Section 4.8. We investigate related work
in Section 4.9. Finally, we summarize this chapter in Section 4.10.

We published contents of this chapter in one paper ([*KDH+20]). Furthermore, parts of this chap-
ter have been contributed by the master’s thesis of GOPALAKRISHNAN [+Gop21]. GOPALAKR-
ISHNAN developed an initial concept for the forward translation from SECURITY MODELING

PROFILE to the security model checker TAMARIN.

4.1 Contributions

The contributions of this chapter can be summarized as follows:

• We present our model-checking approach for the automatic verification of security proto-
cols in the symbolic model called VICE (VIsual Cryptography vErifier). Thereby, we en-

57

Chapter 4. Verification of Security MSDs

able security engineers without deep knowledge of the two model checkers PROVERIF and
TAMARIN to verify security protocols.

– VICE provides a generic model transformation concept to transform security proto-
cols specified by means of the SECURITY MODELING PROFILE into the input lan-
guage of the two model checkers PROVERIF and TAMARIN.

– For each model checker, VICE automatically derives a set of analysis queries to verify
whether the security protocol is secure concerning secrecy and authentication.

– For each model checker, VICE processes the analysis results and provides an overview
to the security engineer.

• We investigate the hierarchy of authentication specification [Low97] and provide a rule set
to automatically utilize the authentication specifications in the derivation of analysis queries
that verify the authentication of the security protocol.

• We implement a prototype based on SCENARIOTOOLS MSD and show in an evaluation that
VICE is applicable in practice.

4.2 Overview of the Model-Checking Approach for Verifying Secu-
rity Protocols

This section presents an overview of our model-checking approach for the verification of security
protocols in the symbolic model. As depicted in Figure 4.1, VICE encompasses eight process
steps. Two of them are manually executed by security engineers and the other six are fully auto-
mated by means of model transformation techniques to help the security engineer to verify a spec-
ified security protocol without deep knowledge of the model checker. Thus, the specification of
the security protocol and the inspection of the analysis results are independent of the used model
checker. In the following, we introduce each step of the model-checking approach. Moreover, we
provide further details about the automated steps in the subsequent sections.

In the first step, Specify Security Protocol, the security engineer manually specifies a security pro-
tocol by means of the SECURITY MODELING PROFILE as described in Chapter 3.

In the second step, Translate Security Protocol, VICE creates an intermediate model, the so-called
SecurityProtocolModel. The SecurityProtocolModel provides a lightweight representation of a secu-
rity protocol independent of the modeling language used in the previous step. Therefore, VICE
extracts information from the specified security protocol, e.g., participants of the protocol, ex-
changed messages, and cryptographic primitives, and transforms them into the corresponding el-
ements in the SecurityProtocolModel. In addition, VICE creates trace links to relate the source
model’s elements (e.g., the UML specification) with the target model’s elements.

In the third step, Derive Analysis Queries, VICE derives a QueryModel. In particular, VICE ana-
lyzes the security protocol and creates queries to verify the secrecy and queries to verify the au-
thentication. For the creation of secrecy queries, it investigates the properties of the participants
and the security assignments occurring during the execution of the security protocol. For the cre-
ation of authentication queries, VICE utilizes a rule set based on the hierarchy of authentication

58

4.2. Overview of the Model-Checking Approach for Verifying Security Protocols
M

o
d

e
l
C

h
e

c
k
e
r

D
e
p

e
n

d
e
n

t
M

o
d

e
l
C

h
e

c
k
e
r

In
d
e

p
e
n

d
e

n
t Specify

Security

Protocol

 Translate

Security

Protocol

Derive

Analysis

Queries

Security

Protocol

Security

Protocol

Security

ProtocolModel

Security

ProtocolModel

Security

ProtocolModel

QueryModel

Generate

Verification

Input

Execute

Model

Checker

Parse

Analysis

Results

Inspect

Analysis

Results

Backward

TranslationVerificationModel

Verification

Input

Verification

Input

Verification

Result

Verification

Result

Result

Model

Result

Model

Legend

Automated

Step

Automated

Step

Start

Event

Start

Event

Work Product

[textual]

Work Product

[textual]

Logical

Group

Data FlowData Flow

Control FlowControl Flow

[enriched]

Result

Model

1 2 83

4 5 6

7

(cf. Section 4.3.2) (cf. Section 4.3.3)

(cf. Section 4.6)

(cf. Section 4.4 & 4.5)

Analysis Results contain unfulfilled properties

End

Event

End

Event

Work Product

[model]

Work Product

[model]

Work Product

[model]
Manual

Step

Manual

Step

Manual

Step

Gateway

Figure 4.1: Overview of the model-checking approach for verifying security protocols

specifications specified by LOWE [Low97]. Since we analyze the security protocol in the sym-
bolic model and assume an attacker that controls the complete channel (cf. Section 2.2), the set
of queries is sufficient to comprehensively verify the protocol. The SecurityProtocolModel and the
QueryModel together form the VerificationModel.

In the fourth step, Generate Verification Input, VICE uses the VerificationModel and generates the in-
put for the used model checker. Since most existing model checkers operate on a textual input lan-
guage, this step is realized by a model-to-text transformation. The generated input depends on the
used model checker and encompasses the description of the security protocol and the queries the
model checker shall analyze. VICE supports the input generation for PROVERIF and TAMARIN.

59

Chapter 4. Verification of Security MSDs

In the fifth step, Execute Model Checker, VICE executes the model checker with the generated
input. The security engineer can choose whether both model checkers should be executed or only
one of them. Although TAMARIN provides an automated and an interactive mode, VICE only uses
the automated mode. After the termination of the model checker, VICE retrieves the verification
results. For most model checkers, the verification results are textual and contain a statement for
each query whether this query is fulfilled or not. In case it is not fulfilled, the verification results
may contain a counterexample.

Thus, in the sixth step, Parse Analysis Results, VICE processes the verification results and trans-
forms them into a ResultModel. The ResultModel stores the results for each query and contains
references to the VerificationModel.

In the seventh step, Backward Translation, VICE translates the analysis results back to the level of
the input language used by the security engineer. During the translation, VICE resolves all trace
links created in the first step to identify the source elements in the security protocol. In particular,
VICE identifies the elements to which the queries refer. Moreover, it identifies the elements of the
counterexample (e.g., participants and messages) and resolves them. Based on the resolved trace
elements, VICE creates a sequence diagram showing the counterexample.

Finally, in the eighth step, Inspect Analysis Results, the analysis results are shown to the security
engineer such that he/she can inspect them and correct the security protocol if necessary.

4.3 Translation from MSDs to the VerificationModel

In the second step, Translate Security Protocol (cf. Figure 4.1 on page 59), VICE translates a
security protocol specified by means of the SECURITY MODELING PROFILE (cf. Chapter 3) to
the VerificationModel. This section introduces the VerificationModel and describes the functional
principle of the model transformation from a security protocol to the VerificationModel.

4.3.1 Overview of the Metamodel Verification

Figure 4.2 depicts the package diagram of the metamodel Verification. We divide the metamodel
into the packages Protocol and Query. The package Protocol provides means to specify the struc-
ture and the behavior of a security protocol. It is further subdivided into the package Primitives,
Expressions, and Types. The package Query provides means to specify queries for analyzing the se-
crecy of protocol variables and authentication properties. Subsequently, we present the details of
the packages Protocol and Queries and refer to Appendix B.1 for information about the two pack-
ages Primitives and Types. We omit the description of the package Expressions since it is identical
to the metamodels described by the two grammars in Section 3.4.4 and Section 3.4.5.

60

4.3. Translation from MSDs to the VerificationModel

pkg Verification Structurepkg Verification Structure

«metamodel»

Query

«metamodel»

Query

«metamodel»

Protocol

«metamodel»

Protocol

«metamodel»

Primitives

«metamodel»

Primitives

«metamodel»

Expressions

«metamodel»

Expressions

«metamodel»

Types

«metamodel»

Types

«metamodel»

Verification

«metamodel»

Verification

Figure 4.2: UML package diagram of the Verification metamodel

Figure 4.3 depicts the class diagram of the Verification metamodel. The class VerificationModel
encompasses the two properties protocolModel of type SecurityProtocolModel and queryModel of
type QueryModel. The class SecurityProtocolModel encapsulates information about the structure and
behavior of the security protocol. The class QueryModel encompasses queries the model checker
shall verify.

«metamodel» Verification«metamodel» Verification

Verification::Protocol::

SecurityProtocolModel

Verification::Protocol::

SecurityProtocolModel

Verification::Query::

QueryModel

Verification::Query::

QueryModel

protocol

Model[1..1]

protocol

Model[1..1]

query

Model[1..1]

query

Model[1..1]

protocol

Model

query

Model

protocol

Model

query

Model

VerificationModelVerificationModel

Figure 4.3: UML class diagram of the Verification metamodel

Overview of the Package Verification::Protocol

The class diagram of the package Verification::Protocol is depicted in Figure 4.4 and encompasses
all classes necessary to specify the structure and behavior of a security protocol. A SecurityPro-
tocolModel consists of exactly one SecurityProtocol. A SecurityProtocol encompasses at least two
Participants but can encompass any number of Participants. The property isTrustedThirdParty of
the Participant enables the distinction between participants and trusted third parties. Moreover, a
Participant encompasses Properties and Events.

The class Property represents the knowledge that a Participant has before the actual execution of
the security protocol.

61

Chapter 4. Verification of Security MSDs

The class Event describes an event that occurs during the execution of a security protocol. Thus,
a set of events for a given Participant describes the participant’s behavior, and the set of all Events
describes the behavior of the security protocol. Each Event has a predecessor and a successor
to specify the behavior of the complete security protocol. We distinguish three kinds of Events:
MessageEvent, SecurityAssignment, and SecurityCondition.

• The class MessageEvent describes the sending or receiving of a message. Therefore, it con-
tains a type that can be either MessageIn for receiving messages or MessageOut for sending
messages. Furthermore, a MessageEvent may contain arguments. Like a Property, an argu-
ment has a type and an actual value. SecurityPrimitives may secure MessageEvents and Argu-
ments. We distinguish five primitives: symmetric encryption, asymmetric encryption, hash-
based message authentication code, digital signature, and hashing. For each primitive, the
SecurityProtocolModel contains corresponding classes and each class contains references to
cryptographic keys if necessary.

• The class SecurityAssignment describes the creation of a new variable or the modification
of an existing variable during the execution of the security protocol. Therefore, the Secu-
rityAssignment contains the two properties variable of type Variable and expression of type
Expression.

• The class SecurityCondition describes the conditional behavior of a security protocol. There-
fore, the SecurityCondition contains the property op of type ComparisionOp and the left-hand
side and right-hand side expression (cf. the two associations lhs and rhs of type Expression).
If the SecurityCondition evaluates to true during the execution of the security protocol, the
execution progresses. Otherwise, the current run of the protocol terminates.

62

4.3. Translation from MSDs to the VerificationModel

«metamodel» Verification::Protocol«metamodel» Verification::Protocol

SecurityProtocol

Model

SecurityProtocol

Model
SecurityProtocolSecurityProtocol

- name: String

- type: Verification::

Protocol::Types::Type

Property

- name: String

- type: Verification::

Protocol::Types::Type

Property

EventEvent

procotol

[1..1]

procotol

[1..1] participants

[2..*]

participants

[2..*]

properties

[0..*]

properties

[0..*]

Security

Assignment

Security

Assignment

Security

Condition

Security

Condition

succ

[0..1]

pred [0..1]

succ

[0..1]

pred [0..1]

- name: String

- type: Verification::

Protocol::Types::Type

Argument

- name: String

- type: Verification::

Protocol::Types::Type

Argument

arguments

[0..*]

arguments

[0..*]

primitives[0..*]primitives[0..*]

- name: String

- type: MessageType

MessageEvent

- name: String

- type: MessageType

MessageEvent

Verification::Protocol::

Primitives::Security

Primitve

Verification::Protocol::

Primitives::Security

Primitve

lhs

[1..1]

lhs

[1..1]

exp[1..1]exp[1..1]

var[1..1]var[1..1]

- trustedThirdParty:

EBoolean

Participant

- trustedThirdParty:

EBoolean

Participant

rhs

[1..1]

rhs

[1..1]

Verification::Protocol::

Expressions::

Expression

Verification::Protocol::

Expressions::

Expression - name: String

- type: Verification::

Protocol::Types::Type

Variable

- name: String

- type: Verification::

Protocol::Types::Type

Variable

Equals

NotEquals

GreaterThan

LessThan

ComparisonOp

Equals

NotEquals

GreaterThan

LessThan

ComparisonOp

op

[1..1]

op

[1..1]

Figure 4.4: UML class diagram of the package Verification::Protocol

Overview of the Package Verification::Query

Figure 4.5 depicts the class diagram of the package Verification::Query. VICE supports the anal-
ysis of secrecy and authentication queries. Thus, the metamodel encompasses the two classes
SecrecyQuery and AuthenticationQuery. Both classes extend the abstract class Query.

A SecrecyQuery either relates to a participant’s property or a variable created by a security assign-
ment. Thus, the two classes PropertyQuery and VariableQuery extend the SecrecyQuery. Each class
has a property secretElement of type Property for the PropertyQuery and Variable for the Variable-
Query, respectively.

As explained in Section 2.2, the analysis of whether participant A is authenticated to participant B
is based on the correspondence assertion of two events. The class AuthenticationQuery is used to
model the correspondence assertion and encompasses six properties. The property authenticate of
type Participant describes the participant that wants to be authenticated and the property authen-
ticationService of type Participant describes the participant that authenticates, respectively. Addi-
tionally, the two properties prevEvent and postEvent refer to an Event and form the correspondence
assertion postEvent => prevEvent. Furthermore, the events in a correspondence assertion can refer

63

Chapter 4. Verification of Security MSDs

to an arbitrary number of arguments. Thus, the class encompasses a list of arguments. Finally,
the class encompasses the property authenticationType of type EAuthenticationSpecification. The
enum EAuthenticationSpecification models the hierarchy of authentication specification as defined
by LOWE [Low97].

«metamodel» Verification::Query«metamodel» Verification::Query

enabled: Boolean

Query

enabled: Boolean

Query

SecrecyQuerySecrecyQuery

- type: EAuthenticationSpecification

- authenticate: Verification::Protocol::Participant

- authService: Verification::Protocol::Participant

- prevEvent: Verification::Protocol::Event

- postEvent: Verification::Protocol::Event

- arguments: List<Verification::Protocol::Arguments>

AuthenticationQuery

- type: EAuthenticationSpecification

- authenticate: Verification::Protocol::Participant

- authService: Verification::Protocol::Participant

- prevEvent: Verification::Protocol::Event

- postEvent: Verification::Protocol::Event

- arguments: List<Verification::Protocol::Arguments>

AuthenticationQuery

Aliveness

WeakAgreement

NonInjectiveAgreement

InjectiveAgreement

EAuthenticationSpecification

Aliveness

WeakAgreement

NonInjectiveAgreement

InjectiveAgreement

EAuthenticationSpecification

- secretElement: Verification::

Protocol::Variable

VariableQuery

- secretElement: Verification::

Protocol::Variable

VariableQuery

- secretElement: Verification::

Protocol::Property

PropertyQuery

- secretElement: Verification::

Protocol::Property

PropertyQuery

QueryModelQueryModel
queries

[0..*]

queries

[0..*]

Figure 4.5: UML class diagram of the package Verification::Query

4.3.2 Translate an MSD Specification to the SecurityProtocolModel

This section presents the functional principle of the model-to-model transformation from security
protocols specified by means of our SECURITY MODELING PROFILE to the SecurityProtocolModel.
Algorithm 4.1 depicts an overview of the model-to-model transformation encompassing five main
steps.

At the beginning, the transformation algorithm checks if the input model is valid, i.e., the stereo-
type SecurityProtocol is applied to the MSD (cf. 1 Derive security protocol). If the input is not
valid, the algorithm terminates, otherwise it creates a new SecurityProtocol element. Then, the
transformation algorithm iterates over all lifelines and derives the participants and their properties
(cf. 2 Derive Structure), their initial knowledge (cf. 3 Derive Initial Knowledge), and their be-
havior (cf. 4 Derive Behavior). Finally, the transformation algorithm iterates over all fragments
contained in the interaction and preserves their ordering also in the newly created SecurityProtocol
(cf. 5 Preserve ordering of InteractionFragments).

1 Derive Security Protocol

As described in Chapter 3, an MSD specification for a security protocol encompasses exactly
one MSD. Thus, we consider an MSD specification relevant for our transformation if it contains

64

4.3. Translation from MSDs to the VerificationModel

Algorithm 4.1 Translation from an MSD Specification to the SecurityProtocolModel
Input: MSDSpecification
Output: SecurityProtocolModel

1: ▷ 1 Derive Security Protocol
2: if MSDSpecification.interaction[0].getAppliedStereotype("SecurityProtocol") ̸= null then
3: securityProtocol = createSecurityProtocol()
4: ▷ 2 Derive Structure
5: for each lifeline ∈ MSDSpecification.interaction[0].lifelines do
6: participant = createParticipant(lifeline.represents)
7: securityProtocol.participants += participant
8: ▷ 3 Derive Initial Knowledge
9: deriveInitialKnowledge(participant, lifeline.represents)

10: ▷ 4 Derive Behavior
11: for each fragment ∈ lifeline.fragments do
12: if fragment is Message then
13: participant.events += createMessageEvent(fragment)
14: else if fragment is CombinedFragment then
15: if fragment.getAppliedStereotype("SecurityAssignment") ̸= null then
16: participant.events += createSecurityAssignment(fragment)
17: else if fragment.getAppliedStereotype("SecurityCondition") ̸= null then
18: participant.events += createSecurityCondition(fragment)
19: end if
20: end if
21: end for
22: for each fragment ∈ MSDSpecification.interaction[0].fragments do
23: ▷ 5 Preserve ordering of InteractionFragments
24: preserveOrderingOfFragments(fragment)
25: end for
26: end for
27: end if

exactly one MSD and the stereotype «Security Protocol» is applied to this MSD. If this is the case,
the transformation algorithm creates a new SecurityProtocol element.

2 Derive Structure of the Security Protocol

In the second step, the transformation algorithm creates the structure of the security protocol.
Therefore, it iterates over each lifeline in the MSD and resolves the abstract syntax link represents
to identify the role representing the lifeline. The transformation algorithm creates a new Participant
with the name of the role. For example, in Figure 4.6, the lifeline participantA: ParticipantA is
represented by the role participantA: ParticipantA. Thus, the transformation algorithm creates a
new Participant with the name participantA.

Afterward, the transformation algorithm resolves the abstract syntax link type to identify the class
typing the lifeline. If the stereotype TrustedThirdParty is applied to the class, the transformation

65

Chapter 4. Verification of Security MSDs

algorithm sets the property isTrustedThirdPary of the newly created Participant to true. Next, the
transformation algorithm iterates over the class’s properties and transforms them into correspond-
ing properties for the newly created participant. For example, in Figure 4.6, the class Partici-
pantA encompasses the two properties prop1 and prop2, where the stereotype EncPublicKey is ap-
plied to prop1 and EncPrivateKey to prop2, respectively. Therefore, the transformation algorithm
resolves the stereotype and creates the two properties prop1 of type EncPublicKey and prop2 of type
EncPrivateKey. Additionally, the transformation algorithm creates the correspondence association
between the two keys to express the cryptographic key pair.

MSD Specification SecurityProtocolModel

class class

+ op2 (
 par: Parameter
)

ParticipantB

+ op2 (
 par: Parameter
)

ParticipantB

type

participantB:

ParticipantB

participantB:

ParticipantB

participantB:
ParticipantB
participantB:
ParticipantB

represents

Collaboration

«knownKeys»«knownKeys»

«knownKeys»«knownKeys»

encPubKeys = [prop2]

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

participantA:
ParticipantA
participantA:
ParticipantA

participantA:

ParticipantA

participantA:

ParticipantA

represents

type

Protocol:

SecurityProtocol

Protocol:

SecurityProtocol

participantA:

Participant

participantA:

Participant

propertiesproperties

cPrivateKey

cPublicKey

cPrivateKey

cPublicKey

prop1:

EncPrivateKey

prop1:

EncPrivateKey

prop2:

EncPublicKey

prop2:

EncPublicKey

participantsparticipants

msd «SecurityProtocol» Protocolmsd «SecurityProtocol» Protocol

Figure 4.6: Illustration of Transformation Step 2: Derive Structure of the Security Protocol

3 Derive Initial Knowledge

In the third step, the transformation algorithm derives the initial knowledge of each participant.
Therefore, it iterates over each lifeline in the MSD and resolves the abstract syntax link represents
to identify the role represented by the lifeline. Then, the transformation algorithm checks whether
this role is the source of a dependency with applied stereotype «knownKeys» or «sharesKeysWith».
If this is the case, the transformation algorithm identifies each cryptographic key referenced by
the stereotype and its corresponding model element in the target model. Finally, the transforma-
tion algorithm adds this element to the list of known keys of the participant corresponding to the
currently investigated lifeline.

For example, in Figure 4.7, the role participantB: ParticipantB knows the public key of partici-
pantA: ParticipantA (cf. dependency with applied stereotype «knownKeys»). The property prop2

66

4.3. Translation from MSDs to the VerificationModel

that is referenced by the dependency has been transformed to the element prop2: EncPublicKey,
and, thus, the transformation algorithm adds this element to the list of known keys of partici-
pantB: Participant (cf. association knownKeys between the two elements prop2: EncPublicKey and
participantB: Participant).

participantA:
ParticipantA
participantA:
ParticipantA

msd «SecurityProtocol» Protocolmsd «SecurityProtocol» Protocol

MSD Specification SecurityProtocolModel

class class

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op2 (
 par: Parameter
)

ParticipantB

+ op2 (
 par: Parameter
)

ParticipantB

type type

participantA:

ParticipantA

participantA:

ParticipantA

Protocol:

SecurityProtocol

Protocol:

SecurityProtocol

participantsparticipants

participantA:

Participant

participantA:

Participant

represents

Collaboration

participantB:
ParticipantB
participantB:
ParticipantB

«knownKeys»«knownKeys»

represents

«knownKeys»«knownKeys»

encPubKeys = [prop2]

participantB:

ParticipantB

participantB:

ParticipantB

participantB:

Participant

participantB:

Participant

cPrivateKey

cPublicKey

cPrivateKey

cPublicKey

prop1:

EncPrivateKey

prop1:

EncPrivateKey

prop2:

EncPublicKey

prop2:

EncPublicKey

propertiesproperties

knownKeysknownKeys

Figure 4.7: Illustration of Transformation Step 3: Derive Initial Knowledge

4 Derive Behavior

In the fourth step, the transformation algorithm creates the behavior of the security protocol.
Therefore, it iterates over each lifeline in the MSD and derives a list of UML::InteractionFragments
covering the lifeline. The transformation algorithm processes each fragment individually. We
distinguish three kinds of fragments and describe their translation subsequently.

Translate a Message If the fragment that occurs on the lifeline is a UML::MessageOccurrence-
Specification (UML::MOS), the transformation algorithm creates a new MessageEvent with the same
name and sets its type to MessageIn for a receiving UML::MOS and to MessageOut for a sending
UML::MOS. Additionally, the transformation algorithm resolves the abstract syntax link signature
to identify the operation and to retrieve the message parameters. Based on the message parameters,
the transformation algorithm identifies the concrete message arguments and their actual values.
Then, it creates the corresponding arguments for the newly created MessageEvent and relates the
element in the target model that corresponds to the actual value with the newly created argument.
Finally, the transformation algorithm checks whether the message or one of its arguments has

67

Chapter 4. Verification of Security MSDs

applied security primitives. If this is the case, the transformation creates corresponding elements
and relates the elements in the target model that correspond to the cryptographic keys with the
primitives if necessary.

For example, in Figure 4.8, the MSD encompasses the messages msg1() and msg2(). The message
msg1() is sent from participantA: ParticipantA to participantB: ParticipantB and contains the argu-
ment arg. During the transformation of participantA: ParticipantA, the transformation algorithm cre-
ates two elements msg1: MessageEvent, arg: Argument and adds the element msg1: MessageEvent to
participantA: Participant’s list of events. The message msg2() is sent from participantA: ParticipantA
to participantB: ParticipantB and encompasses the asymmetrically encrypted argument arg. Dur-
ing the transformation of participantA: ParticipantA, the transformation algorithm creates two el-
ements msg2: MessageEvent, arg: Argument and adds the element msg2: MessageEvent to partici-
pantA: Participant’s list of events. Additionally, the transformation algorithm creates a new Asym-
metricEncryption element, adds it to arg’s list of primitives, and sets the properties for the crypto-
graphic keys.

participantA:
ParticipantA
participantA:
ParticipantA

msd «SecurityProtocol» Protocolmsd «SecurityProtocol» Protocol

MSD Specification SecurityProtocolModel

class class

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op2 (
 par: Parameter
)

ParticipantB

+ op2 (
 par: Parameter
)

ParticipantB

type type

participantB:

ParticipantB

participantB:

ParticipantB

participantB:
ParticipantB
participantB:
ParticipantB

Protocol:

SecurityProtocol

Protocol:

SecurityProtocol

participantsparticipants

participantA:

Participant

participantA:

Participant

represents represents

Collaboration

«knownKeys»«knownKeys»

«knownKeys»«knownKeys»

encPubKeys = [prop2]

participantA:

ParticipantA

participantA:

ParticipantA

signature

propertiesproperties

cPrivateKey

cPublicKey

cPrivateKey

cPublicKey

prop1:

EncPrivateKey

prop1:

EncPrivateKey

prop2:

EncPublicKey

prop2:

EncPublicKey

signature

«AsymmetricEncryption»

privateKey: prop1

publicKey: prop2

«AsymmetricEncryption»

privateKey: prop1

publicKey: prop2msg1(arg)

msg2(arg)

type: MessageOut

msg1:

MessageEvent

type: MessageOut

msg1:

MessageEvent

type: <Type>

arg: Argument

type: <Type>

arg: Argument

argumentsarguments

type: <Type>

arg: Argument

type: <Type>

arg: Argument

argumentsarguments

primitivesprimitives

privateKey: prop1

publicKey: prop2

aenc:

AsymmetricEncryption

privateKey: prop1

publicKey: prop2

aenc:

AsymmetricEncryption

eventsevents

type: MessageIn

msg2:

MessageEvent

type: MessageIn

msg2:

MessageEvent

Figure 4.8: Illustration of Transformation Step 4: Derive Behavior — Translation of a Message

Translate a Security Assignment If the fragment that occurs on the lifeline is a UML::Combined-
Fragment with applied stereotype «SecurityAssignment», the transformation algorithm retrieves the
expression describing the SecurityAssignment. As explained in Section 3.4.4, a SecurityAssignment

68

4.3. Translation from MSDs to the VerificationModel

has the form <var> = <expression>. The transformation algorithm creates a new Variable with the
same name. Afterward, it transforms the expression. For the specification of expressions, we
use the same metamodel as described in Section 3.4.4. Thus, transforming an expression from a
security protocol to the SecurityProtocolModel is a one-to-one transformation.

For example, in Figure 4.9, the MSD encompasses the SecurityAssignment var = createNonce().
The transformation algorithm creates a new SecurityAssignment, a Variable with name var, and a
new NonceGeneration expression, and relates the newly created elements to each other. Addi-
tionally, the transformation algorithm adds the element assignment: SecurityAssignment to partici-
pantA: Participant’s list of events.

participantA:
ParticipantA
participantA:
ParticipantA

MSD Specification SecurityProtocolModel

class class

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op2 (
 par: Parameter
)

ParticipantB

+ op2 (
 par: Parameter
)

ParticipantB

type type

msd «SecurityProtocol» Protocolmsd «SecurityProtocol» Protocol

participantB:

ParticipantB

participantB:

ParticipantB

participantB:
ParticipantB
participantB:
ParticipantB

Protocol:

SecurityProtocol

Protocol:

SecurityProtocol

participantsparticipants

participantA:

Participant

participantA:

Participant

represents represents

Collaboration

«knownKeys»«knownKeys»

«knownKeys»«knownKeys»

encPubKeys = [prop2]

participantA:

ParticipantA

participantA:

ParticipantA

var = createNonce()

eventsevents

expr: NonceGeneration

assignment:

SecurityAssignment

expr: NonceGeneration

assignment:

SecurityAssignment

variablevariable

type: Nonce

var: Variable

type: Nonce

var: Variable

Figure 4.9: Illustration of Transformation Step 4: Derive Behavior — Translation of a Security
Assignment

Translate a Security Condition If the fragment that occurs on the lifeline is a UML::Combined-
Fragment with applied stereotype «SecurityCondition», the transformation algorithm retrieves the
expression describing the SecurityCondition. As explained in Section 3.4.5, a SecurityCondition
has the form <expression> <op> <expression>. For the specification of expressions, we use the
same metamodel as described in Section 3.4.5. Thus, transforming an expression from a security
protocol to the SecurityProtocolModel is a one-to-one transformation.

For example, in Figure 4.10, the MSD encompasses the SecurityCondition var1 = inc(var2). The
transformation algorithm creates a new SecurityCondition. The left-hand side of the condition is
transformed to a Reference that refers to var1. Moreover, the right-hand side is transformed to a

69

Chapter 4. Verification of Security MSDs

IncreaseExp with a Reference that refers to var2. Additionally, the transformation algorithm adds the
element condition: SecurityCondition to participantA: Participant’s list of events.

participantA:
ParticipantA
participantA:
ParticipantA

MSD Specification SecurityProtocolModel

class class

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op2 (
 par: Parameter
)

ParticipantB

+ op2 (
 par: Parameter
)

ParticipantB

type type

msd «SecurityProtocol» Protocolmsd «SecurityProtocol» Protocol

participantB:

ParticipantB

participantB:

ParticipantB

participantB:
ParticipantB
participantB:
ParticipantB

Protocol:

SecurityProtocol

Protocol:

SecurityProtocol

participantsparticipants

participantA:

Participant

participantA:

Participant

represents represents

Collaboration

«knownKeys»«knownKeys»

«knownKeys»«knownKeys»

encPubKeys = [prop2]

participantA:

ParticipantA

participantA:

ParticipantA

var1 = inc(var2)

eventsevents

op: „=“

condition:

SecurityCondition

op: „=“

condition:

SecurityCondition

lhslhs

type: Nonce

var1: Variable

type: Nonce

var1: Variable

rhsrhs

ref: Referenceref: Reference

type: Nonce

var2: Variable

type: Nonce

var2: Variable

inc: IncreaseExpinc: IncreaseExp

valuevalue

exprexpr

ref: Referenceref: Reference

valuevalue

Figure 4.10: Illustration of Transformation Step 4: Derive Behavior — Translation of a Security
Condition

5 Preserve ordering of InteractionFragments

The previous transformation steps have transformed the behavior of the individual participants.
However, the overall behavior of the security protocol is still missing, i.e. the order in which the
participants communicate with each other. Therefore, in the last step of the transformation, the
transformation algorithm preserves the order of the UML::InteractionFragments contained in the
MSD by transferring the order to the Events of the SecurityProtocolModel. Therefore, the trans-
formation algorithm retrieves all UML::InteractionFragments contained in the MSD. Next, for each
fragment in the list, the transformation algorithm identifies the corresponding Event in the target
model and sets the preceding event prevEvent.

Figure 4.11 depicts the resulting SecurityProtocolModel after the transformation has finished all five
steps for the abstract example used throughout the section.

70

4.3. Translation from MSDs to the VerificationModel

M
S

D
 S

p
e
c
if
ic

a
ti
o
n

S
e
c
u
ri
ty

P
ro

to
c
o
lM

o
d
e
l

c
la

s
s

c
la

s
s

+
 o

p
1
 (

 p

a
r:

 P
a
ra

m
e
te

r
)-
 «

E
n

c
P

ri
v
a

te
K

e
y
»

p
ro

p
1
:

S
tr

in
g

+
 «

E
n

c
P

u
b

lic
K

e
y
»

p
ro

p
2
:

S
tr

in
g

P
a
rt

ic
ip

a
n

tA

+
 o

p
1
 (

 p

a
r:

 P
a
ra

m
e
te

r
)-
 «

E
n

c
P

ri
v
a

te
K

e
y
»

p
ro

p
1
:

S
tr

in
g

+
 «

E
n

c
P

u
b

lic
K

e
y
»

p
ro

p
2
:

S
tr

in
g

P
a
rt

ic
ip

a
n

tA

+
 o

p
2
 (

 p

a
r:

 P
a
ra

m
e
te

r
)

P
a
rt

ic
ip

a
n

tB

+
 o

p
2
 (

 p

a
r:

 P
a
ra

m
e
te

r
)

P
a
rt

ic
ip

a
n

tB

ty
p

e
ty

p
e

p
a
rt

ic
ip

a
n

tB
:

P
a

rt
ic

ip
a
n

tB

p
a
rt

ic
ip

a
n

tB
:

P
a

rt
ic

ip
a
n

tB

p
a
rt

ic
ip

a
n

tA
:

P
a

rt
ic

ip
a
n

tA

p
a
rt

ic
ip

a
n

tA
:

P
a

rt
ic

ip
a
n

tA

v
a

r
=

 <
e

x
p

r>

<
lh

s
>

 <
o

p
>

 <
rh

s
>

p
a
rt

ic
ip

a
n

tB
:

P
a

rt
ic

ip
a
n

tB
p

a
rt

ic
ip

a
n

tB
:

P
a

rt
ic

ip
a
n

tB
p

a
rt

ic
ip

a
n

tA
:

P
a

rt
ic

ip
a
n

tA
p

a
rt

ic
ip

a
n

tA
:

P
a

rt
ic

ip
a
n

tA

P
ro

to
c
o

l:

S
e
c
u

ri
ty

P
ro

to
c
o

l

P
ro

to
c
o

l:

S
e
c
u

ri
ty

P
ro

to
c
o

l

p
a

rt
ic

ip
a

n
ts

p
a

rt
ic

ip
a

n
ts

p
ro

p
e

rt
ie

s
p

ro
p

e
rt

ie
s

p
a
rt

ic
ip

a
n

tA
:

P
a
rt

ic
ip

a
n

t

p
a
rt

ic
ip

a
n

tA
:

P
a
rt

ic
ip

a
n

t

e
v
e

n
ts

e
v
e

n
ts

lh
s
:
<

E
x
p
re

s
s
io

n
>

o
p
:

<
o

p
>

rh
s
:
<

E
x
p
re

s
s
io

n
>

c
o

n
d

it
io

n
:

S
e
c
u

ri
ty

C
o

n
d
it
io

n

lh
s
:
<

E
x
p
re

s
s
io

n
>

o
p
:

<
o

p
>

rh
s
:
<

E
x
p
re

s
s
io

n
>

c
o

n
d

it
io

n
:

S
e
c
u

ri
ty

C
o

n
d
it
io

n

ty
p
e

:
M

e
s
s
a
g

e
In

m
s
g

2
:

M
e

s
s
a

g
e

E
v
e

n
t

ty
p
e

:
M

e
s
s
a
g

e
In

m
s
g

2
:

M
e

s
s
a

g
e

E
v
e

n
t

ty
p
e

:
<

T
y
p

e
>

a
rg

:
A

rg
u
m

e
n

t

ty
p
e

:
<

T
y
p

e
>

a
rg

:
A

rg
u
m

e
n

t

a
rg

u
m

e
n

ts
a

rg
u

m
e

n
ts

e
x
p
r:

 <
E

x
p

re
s
s
io

n
>

a
s
s
ig

n
m

e
n

t:

S
e
c
u

ri
ty

A
s
s
ig

n
m

e
n

t

e
x
p
r:

 <
E

x
p

re
s
s
io

n
>

a
s
s
ig

n
m

e
n

t:

S
e
c
u

ri
ty

A
s
s
ig

n
m

e
n

t

ty
p
e

:
<

T
y
p

e
>

v
a

r:
 V

a
ri
a

b
le

ty
p
e

:
<

T
y
p

e
>

v
a

r:
 V

a
ri
a

b
le

ty
p
e

:
M

e
s
s
a
g

e
O

u
t

m
s
g

1
:

M
e

s
s
a

g
e

E
v
e

n
t

ty
p
e

:
M

e
s
s
a
g

e
O

u
t

m
s
g

1
:

M
e

s
s
a

g
e

E
v
e

n
t

ty
p
e

:
<

T
y
p

e
>

a
rg

:
A

rg
u
m

e
n

t

ty
p
e

:
<

T
y
p

e
>

a
rg

:
A

rg
u
m

e
n

t

a
rg

u
m

e
n

ts
a

rg
u

m
e

n
ts

m
s
g

1
(a

rg
)

re
p
re

s
e

n
ts

re
p
re

s
e

n
ts

p
a
rt

ic
ip

a
n

tB
:

P
a
rt

ic
ip

a
n

t

p
a
rt

ic
ip

a
n

tB
:

P
a
rt

ic
ip

a
n

t ty
p
e

:
M

e
s
s
a
g

e
O

u
t

m
s
g

2
:

M
e
s
s
a

g
e
E

v
e

n
t

ty
p
e

:
M

e
s
s
a
g

e
O

u
t

m
s
g

2
:

M
e
s
s
a

g
e
E

v
e

n
t

ty
p
e

:
<

T
y
p

e
>

a
rg

:
A

rg
u
m

e
n

t

ty
p
e

:
<

T
y
p

e
>

a
rg

:
A

rg
u
m

e
n

t

a
rg

u
m

e
n

ts
a

rg
u

m
e

n
ts

ty
p
e

:
M

e
s
s
a
g

e
In

m
s
g

1
:

M
e

s
s
a

g
e

E
v
e

n
t

ty
p
e

:
M

e
s
s
a
g

e
In

m
s
g

1
:

M
e

s
s
a

g
e

E
v
e

n
t

ty
p
e

:
<

T
y
p

e
>

a
rg

:
A

rg
u
m

e
n

t

ty
p
e

:
<

T
y
p

e
>

a
rg

:
A

rg
u
m

e
n

t

a
rg

u
m

e
n

ts
a

rg
u

m
e

n
ts

v
a

ri
a

b
le

v
a

ri
a

b
le

C
o

ll
a
b

o
ra

ti
o

n

«
k
n

o
w

n
K

e
y
s
»

«
k
n

o
w

n
K

e
y
s
»

«
k
n

o
w

n
K

e
y
s
»

«
k
n

o
w

n
K

e
y
s
»

e
n

c
P

u
b

K
e

y
s
 =

 [
p
ro

p
2
]

s
ig

n
a
tu

re

c
P

ri
v
a

te
K

e
y

c
P

u
b

lic
K

e
y

c
P

ri
v
a

te
K

e
y

c
P

u
b

lic
K

e
y

p
ro

p
2
:

E
n
c
P

ri
v
a
te

K
e

y

p
ro

p
2
:

E
n
c
P

ri
v
a
te

K
e

y

k
n

o
w

n
K

e
y
s

k
n

o
w

n
K

e
y
s

p
ro

p
2
:

E
n
c
P

u
b
lic

K
e

y

p
ro

p
2
:

E
n
c
P

u
b
lic

K
e

y

s
ig

n
a
tu

re

p
ri

m
it
iv

e
s

p
ri

m
it
iv

e
s

p
ri
v
a

te
K

e
y
:

p
ro

p
1

p
u
b

lic
K

e
y
:
p

ro
p

2

a
e
n

c
:

A
s
y
m

m
e

tr
ic

E
n

c
ry

p
ti
o

n

p
ri
v
a

te
K

e
y
:

p
ro

p
1

p
u
b

lic
K

e
y
:
p

ro
p

2

a
e
n

c
:

A
s
y
m

m
e

tr
ic

E
n

c
ry

p
ti
o

n

p
ri

m
it
iv

e
s

p
ri

m
it
iv

e
s

p
ri
v
a

te
K

e
y
:

p
ro

p
1

p
u
b

lic
K

e
y
:
p

ro
p

2

a
e
n

c
:

A
s
y
m

m
e

tr
ic

E
n

c
ry

p
ti
o

n

p
ri
v
a

te
K

e
y
:

p
ro

p
1

p
u
b

lic
K

e
y
:
p

ro
p

2

a
e
n

c
:

A
s
y
m

m
e

tr
ic

E
n

c
ry

p
ti
o

n

p
re

d
E

v
e
n
t

p
re

d
E

v
e
n
t

p
re

d
E

v
e
n
t p

re
d
E

v
e
n
t

p
re

d
E

v
e
n
t

s
u
c
c
E

v
e
n
t

s
u
c
c
E

v
e
n
t

s
u
c
c
E

v
e
n
t

m
s

d
 «

S
e

c
u

ri
ty

P
ro

to
c
o
l»

 P
ro

to
c
o

l
m

s
d

 «
S

e
c
u

ri
ty

P
ro

to
c
o
l»

 P
ro

to
c
o

l

«
A

s
y
m

m
e
tr

ic
E

n
c
ry

p
ti
o

n
»

p
ri

v
a

te
K

e
y
:

p
ro

p
1

p
u

b
lic

K
e

y
:

p
ro

p
2

«
A

s
y
m

m
e
tr

ic
E

n
c
ry

p
ti
o

n
»

p
ri

v
a

te
K

e
y
:

p
ro

p
1

p
u

b
lic

K
e

y
:

p
ro

p
2

m
s
g

2
(a

rg
)

Figure 4.11: Illustration of Transformation Step 5: Preserve ordering of InteractionFragments

71

Chapter 4. Verification of Security MSDs

4.3.3 Translate an MSD Specification to the QueryModel

This section presents the automatic derivation of analysis queries based on the security protocol
defined by means of the SECURITY MODELING PROFILE. Subsequently, we present the approach
for deriving secrecy queries and authentication queries.

Derive Secrecy Queries

The derivation of secrecy queries encompasses two parts: In the first part, the transformation
algorithm creates SecrecyQueries for all private properties contained in the UML classes of the
MSD specification. Therefore, the transformation algorithm iterates over each lifeline in the MSD
and resolves the abstract syntax links represents and type to identify the UML class typing the
lifeline. Next, the transformation algorithm iterates over the list of properties and for each private
property it uses the previously created trace link to identify the corresponding Property in the
SecurityProtocolModel. Finally, the transformation algorithm creates a new PropertyQuery and sets
its secretElement to the identified Property.

For example, in Figure 4.12, the lifeline participantA: ParticipantA is typed by the UML class
ParticipantA. This class encompasses the private property prop1: Property with applied stereotype
«EncPrivateKey». In the transformation algorithm from an MSD specification to the SecurityProto-
colModel, the transformation algorithm transforms the property to the element prop1: EncPrivateKey.
Thus, for the query derivation, the secretElement of the newly created PropertyQuery is set to the
element prop1: EncPrivateKey.

In the second part, the transformation algorithm creates SecrecyQueries for all diagram variables
created by means of UML::CombinedFragments with the applied stereotype «SecurityAssignment»
during the execution of the protocol. For example, in Figure 4.12, the MSD encompasses the Se-
curityAssignment <var> = <expr>. As in the previous part, the transformation algorithm uses the
previously created trace link to identify the Variable that corresponds to the var of the SecurityAs-
signment. Moreover, it creates a new VariableQuery and sets its secretElement to this var.

72

4.3. Translation from MSDs to the VerificationModel

participantA:
ParticipantA
participantA:
ParticipantA

msd «SecurityProtocol» Protocolmsd «SecurityProtocol» Protocol

variablevariable

MSD Specification

class class

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op2 (
 par: Parameter
)

ParticipantB

+ op2 (
 par: Parameter
)

ParticipantB

type type

participantB:

ParticipantB

participantB:

ParticipantB

participantA:

ParticipantA

participantA:

ParticipantA

msg2(arg2)

participantB:
ParticipantB
participantB:
ParticipantB

msg1(arg1)

represents represents

Collaboration

«knownKeys»«knownKeys»

«knownKeys»«knownKeys»

encPubKeys = [prop2]

signature

signature

VerificationModel

Protocol:

SecurityProtocol

Protocol:

SecurityProtocol

participantsparticipants

participantA:

Participant

participantA:

Participant

propertiesproperties

cPrivateKey

cPublicKey

cPrivateKey

cPublicKey

prop2:

EncPublicKey

prop2:

EncPublicKey

var = <expr>

- «EncPrivateKey»

prop1: String

ParticipantA

- «EncPrivateKey»

prop1: String

ParticipantA

QueryModelQueryModel

expr: <Expression>

assignment:

SecurityAssignment

expr: <Expression>

assignment:

SecurityAssignment

eventsevents

VariableQueryVariableQuery

secret

Element

secret

Element

queriesqueries

PropertyQueryPropertyQuery

SecurityProtocolModelSecurityProtocolModel

prop1:

EncPrivateKey

prop1:

EncPrivateKey

type: <Type>

var: Variable

type: <Type>

var: Variable

secret

Element

secret

Element

QueryModelQueryModel

Figure 4.12: Derivation of secrecy queries

Derive Authentication Queries

As explained in Section 2.2.2, the analysis of authentication properties for a security protocol is
based on correspondence assertions [Low97]. Correspondence assertions have the form e1 ==>
e2 and capture the relationship between events that mark important steps in the execution of the
security protocol.

The placement of events to annotate the important steps in the execution of the security protocol
requires a deeper understanding of the security protocol. However, we apply some rules to sys-
tematically place the events in the description of the security protocol’s execution. In particular,
BLANCHET ET AL. [Bla01] explain that “the event e1 that occurs before the arrow ==> can be
placed at the end of the protocol, while the event e2 that occurs after the arrow ==> must be
followed by at least one output message. Otherwise, the whole protocol can be executed without
executing the latter event, so the correspondence certainly does not hold” [Bla01]. Moreover, they
explain that “moving an event [e1] that occurs before the arrow ==> toward the beginning of the
protocol strengthens the correspondence property [. . .]. Moving an event [e2] that occurs after the
arrow ==> toward the end of the protocol also strengthens the correspondence property” [Bla01].

73

Chapter 4. Verification of Security MSDs

For example, Figure 4.13 sketches a generic protocol between the participants ParticipantA and
ParticipantB. To prove the authentication of ParticipantB to ParticipantA, the security protocol has
to fulfill the correspondence assertion event e1 ==> event e2. Applying the rule described above,
the event e1 is placed at the end of the execution of ParticipantB and the event e2 is placed before
ParticipantA sends the message msgn to ParticipantB.

msgn-1

msgn

e1

e2

ParticipantAParticipantA ParticipantBParticipantBParticipantA ParticipantB

Figure 4.13: Generic security protocol showing the necessary events for authentication of Partici-
pantA to ParticipantB

Moreover, to prove the authentication of ParticipantA to ParticipantB, the security protocol has to
fulfill the correspondence assertion event e3 ==> event e4. Again, we apply the rules described
above and place the event e3 at the end of the execution of ParticipantA and the event e4 before the
message msgn-1 is sent from ParticipantB to ParticipantA. In contrast to the previous placement, we
could also strengthen the correspondence assertion by moving the event e3 toward the beginning of
the protocol, e.g., before the message msgn (cf. Figure 4.14). However, for the sake of simplicity,
in our approach, the event that occurs before the arrow is called termX for a participant X and is
always placed at the end of the execution of this participant.

msgn-1

msgn

e3

e4

ParticipantAParticipantA ParticipantBParticipantBParticipantA ParticipantB

Figure 4.14: Generic security protocol showing the necessary events for authentication of Partici-
pantB to ParticipantA

According to BLANCHET ET AL. [Bla01], “adding arguments to the events strengthens the cor-
respondence property.” Figure 4.15 extends the generic example shown in Figure 4.13 and adds
arguments to the messages. Each message msgk may contain arbitrary many arguments arg1

k, . . . ,
argm

k . Thus, the resulting correspondence assertion to analyze the authentication of the ParticipantA
to the ParticipantB is as follows:

event e3(arg1
1, . . . , argn−1

m , . . . , argn−1
1 , . . . , argn−1

m) ==>

event e4(arg1
1, . . . , argn−1

m , . . . , argn−1
1 , . . . , argn−1

m)

74

4.3. Translation from MSDs to the VerificationModel

msgn-1(arg1
n-1

,…,argm
n-1

)

msgn(arg1
n
,…,argm

n
)

e3

e4

ParticipantAParticipantA ParticipantBParticipantBParticipantA ParticipantB

msg1(arg1
1
,…,argm

1
)

...

Figure 4.15: Generic security protocol showing messages with arguments and events for authenti-
cation

As described in Section 2.2.2, LOWE [Low97] defined a hierarchy of authentication specifica-
tions. We use this hierarchy and the rules to place events described above to systematically derive
AuthenticationQueries based on the MSD specification.

Aliveness: “A security protocol guarantees aliveness to a [participant] A with another [participant]
B if, whenever A completes a run of the protocol, apparently with B, then B has previously
been running the protocol” [Low97].

To prove this definition of authentication, the security protocol has to fulfill the correspon-
dence assertion termA ==> startB. The event termA is placed at the end of the execution
of A. Moreover, the event startB is placed before the first message is sent or received by B.

Weak Agreement: “A security protocol guarantees weak agreement to a [participant] A with an-
other [participant] B if, A completes a run of the protocol, apparently with B, then B has
previously run the protocol, apparently with A” [Low97].

To prove this definition of authentication, the security protocol has to fulfill the correspon-
dence assertion termA ==> runningB. The event termA is placed at the end of the ex-
ecution of A and the event runningB is placed before the last message is sent from B to
A.

Non-injective Agreement: “A security protocol guarantees non-injective agreement to a [partic-
ipant] A with another [participant] B if, A completes a run of the protocol, apparently with B
and some data values v⃗, then Bob has previously been running the protocol, apparently with
A and v⃗ ” [Low97].

To prove this definition of authentication, the security protocol has to fulfill the correspon-
dence assertion termA(⃗v) ==> runningB(⃗v). The event termA is placed at the end of the
execution of A and the event runningB is placed before the last message that is sent from
B to A. Moreover, the data values v⃗ are set to the arguments of the last message that is sent
from B to A.

Injective Agreement: “A security protocol guarantees injective agreement to a [participant] A
with another [participant] B if, A completes a run of the protocol, apparently with B and

75

Chapter 4. Verification of Security MSDs

some data values v⃗, then Bob has previously been running the protocol, apparently with A
and v⃗. In addition, each run of A has to correspond to a unique run of B” [Low97].

To prove this definition of authentication, the security protocol has to fulfill the correspon-
dence assertion termA(⃗v) ==> runningB(⃗v) as before. The formalization of the uniqueness
of a run is dependent on the security model checker.

Figure 4.16 illustrates the creation of an AuthenticationQuery. The protocol encompasses the two
participants ParticipantA and ParticipantB. For the authentication of ParticipantA to ParticipantB, the
transformation algorithm creates a new AuthenticationQuery and sets the property authenticator to
participantA and the property authentication service to participantB. Depending on the selected defi-
nition of authentication, the transformation algorithm sets the properties postEvent, prevEvent, and
arguments. For example, in Figure 4.16, the definition injective agreement is selected. Thus, the
transformation algorithm sets the property postEvent to the last event that occurs in participantA’s
event list (cf. condition: SecurityCondition) and the property prevEvent to the last MessageEvent that
is sent from participantB to participantA (cf. msg2: MessageEvent). Finally, the transformation algo-
rithm adds the arguments of the last message that is sent from participantB to participantA to the
property arguments of the AuthenticationQuery.

76

4.4. Translation from the VerificationModel to PROVERIF input models

participantB:

ParticipantB

participantB:

ParticipantB

participantA:

ParticipantA

participantA:

ParticipantA

<var> = <expr>

<lhs> <op> <rhs>

msg2(arg2)

type: MessageOut

msg2:

MessageEvent

type: MessageOut

msg2:

MessageEvent

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

+ op1 (
 par: Parameter
)

- «EncPrivateKey»

prop1: String

+ «EncPublicKey»

prop2: String

ParticipantA

MSD Specification

class class

+ op2(
 par: Parameter
)

ParticipantB

+ op2(
 par: Parameter
)

ParticipantB

type type

participantB:
ParticipantB
participantB:
ParticipantB

participantA:
ParticipantA
participantA:
ParticipantA

represents represents

Collaboration

«knownKeys»«knownKeys»

«knownKeys»«knownKeys»

encPubKeys = [prop2]

VerificationModel

Protocol:

SecurityProtocol

Protocol:

SecurityProtocol

eventsevents

QueryModelQueryModel

SecurityProtocolModelSecurityProtocolModel

postEventpostEvent

msg1(arg1)

eventsevents

participantsparticipants

participantA:

Participant

participantA:

Participant
participantB:

Participant

participantB:

Participant

authenticatorauthenticator

QueryModelQueryModel

prevEventprevEvent

authentication

service

authentication

service

event

termA

event

runningB

condition:

SecurityCondition

condition:

SecurityCondition

msg1:

MessageEvent

msg1:

MessageEvent

arg1: Argumentarg1: Argument

argumentsarguments

arg2: Argumentarg2: Argument

msd «SecurityProtocol» Protocolmsd «SecurityProtocol» Protocol

type: InjectiveAgreement

query:

AuthenticationQuery

type: InjectiveAgreement

query:

AuthenticationQuery

Figure 4.16: Overview of the derivation of authentication queries based on the SecurityProto-
colModel

4.4 Translation from the VerificationModel to PROVERIF input
models

In the fourth step, Generate Verification Input (cf. Figure 4.1 on page 59), VICE uses the Verifica-
tionModel and generates the input for the used symbolic model checker. This section describes the
details of the input generation for PROVERIF. First, we recap the capabilities of PROVERIF and
discuss whether all elements of the SECURITY MODELING PROFILE are supported. Second, we
present the model-to-text transformation to derive the input for PROVERIF.

4.4.1 Overview of the Capabilities of PROVERIF in relation to the SECURITY
MODELING PROFILE

Table 4.1 provides an overview of the SECURITY MODELING PROFILE’s features and whether
PROVERIF is able to analyze security protocols that contain these features. As presented in Sec-
tion 2.2.3, PROVERIF is a tool for the automated analysis of security protocols within the sym-

77

Chapter 4. Verification of Security MSDs

bolic model. In the following, we briefly describe how we realize the features of the SECURITY

MODELING PROFILE by means of PROVERIF language constructs.

In PROVERIF, we can define sub-processes that represent participants of the security protocol.
These sub-processes may encompass input parameters. We use the concept of input parameters
to model properties that a participant owns or knows. Moreover, to identify and reference partici-
pants, PROVERIF models use the type host and specify a variable of type host for each participant
of the security protocol. Hence, we conclude that PROVERIF supports all features of the category
Protocol Modeling.

PROVERIF does not provide any built-in types or functions for cryptographic primitives and arith-
metic expressions. Instead, PROVERIF enables the user to specify the types and functions nec-
essary for the analysis of the security protocol. Hence, we conclude that PROVERIF supports all
features of the category Cryptographic Primitives, Data types, Expressions. However, we have to
keep in mind that PROVERIF treats these functions as black boxes and may miss attacks on the
protocol that rely on the algebraic properties of the cryptographic primitives or arithmetic expres-
sions (e.g., associativity, commutativity, and inverse). Moreover, PROVERIF does not support the
consideration of time, so it is not possible to compare timestamps with each other or the current
time.

PROVERIF enables the declaration of variables by means of the new operator and the modification
of existing variables by means of the let operator. Moreover, PROVERIF only supports the equals
comparison operator. Hence, we conclude that PROVERIF supports all features of the category
Assignments but only partially supports the category Conditions. So, to overcome this restriction
and avoid syntax errors in PROVERIF, we have to inform the security engineer if he/she uses other
comparison operators.

Table 4.1: Overview of the Capabilities of PROVERIF in relation to the SECURITY MODELING

PROFILE

Category Feature of the SECURITY MODELING
PROFILE

Feature is supported
by PROVERIF

Protocol Modeling Participants exchange messages to execute
the protocol

✓

Participants can be identified and
referenced

✓

Participants own properties like
cryptographic keys

✓

Participants know properties of other
participants

✓

Cryptographic Primitives Asymmetric Encryption ✓

Digital Signature ✓

HMAC ✓

Hashing ✓

Assignments Create a new variable ✓

78

4.4. Translation from the VerificationModel to PROVERIF input models

Category Feature of the SECURITY MODELING
PROFILE

Feature is supported
by PROVERIF

Modify an existing variable ✓

Conditions Conditions with the common comparison
operators

✗

Data types Cryptographic Keys ✓

Nonce ✓

Number ✓

Prime ✓

Timestamp ✓

Expressions Arithmetic Expressions ✓

Cryptographic Expression ✓

4.4.2 Translate the SecurityProtocolModel to PROVERIF

This section presents the functional principle of the model-to-text transformation from the Securi-
tyProtocolModel to PROVERIF input models. Algorithm 4.2 depicts an overview of the model-to-
text transformation encompassing four main steps.

At the beginning, the transformation algorithm generates a preamble encompassing all definitions
necessary to specify the security protocol (cf. 1 Generate Protocol Preamble). Then, the transfor-
mation algorithm generates structural information (cf. 2 Generate Protocol Structure). Afterward,
the transformation algorithm generates a sub-process for each participant describing the behavior
of the participant (cf. 3 Generate Protocol Behavior). Finally, the transformation generates the
PROVERIF main process (cf. 4 Generate Main Process).

Algorithm 4.2 Translation from a SecurityProtocolModel to PROVERIF

Input: SecurityProtocolModel
Output: PROVERIF Input Model

1: ▷ 1 Generate Protocol Preamble
2: generateProtocolPreamble()
3: ▷ 2 Generate Protocol Structure
4: generateChannelDescription()
5: for each participant ∈ SecurityProtocolModel.participants do
6: generateHostDescription(participant)
7: ▷ 3 Generate Protocol Behavior
8: generateBehaviorForParticipant(participant)
9: end for

10: ▷ 4 Generate Main Process
11: generateMainProcess(participant)

79

Chapter 4. Verification of Security MSDs

1 Generate Protocol Preamble

In the first step, the transformation algorithm generates a preamble for the PROVERIF input model.
As explained in Section 2.2.3, PROVERIF does not contain any built-in types, so security engineers
create the preamble on their own. The PROVERIF preamble contains all declarations of types
and functions that are necessary for modeling the security protocol. Hence, we create a static
preamble that encompasses all declarations of types and functions that are required to support the
SECURITY MODELING PROFILE, but not necessarily used by the security protocol to transform.
The complete preamble is shown in Appendix B.2.

2 Generate Protocol Structure

In the second step, the transformation algorithm generates structural information about the secu-
rity protocol. Therefore, the transformation algorithm creates a free variable of type host for all
Participants contained in the SecurityProtocolModel. Furthermore, it creates a free channel for the
communication.

For example, in Figure 4.17, the SecurityProtocolModel encompasses the two participants partici-
pantA and participantB. Thus, the transformation algorithm creates the free channel (cf. line 1) and
a host for participantA (cf. line 3) and participantB (cf. line 4).

SecurityProtocolModel PROVERIF Input Model

Protocol:

SecurityProtocol

Protocol:

SecurityProtocol

participantA:

Participant

participantA:

Participant

participantB:

Participant

participantB:

Participant

participants

 1| free c: channel.
 2|
 3| free participantA: host.
 4| free participantB: host.

Figure 4.17: Illustration of Transformation Step 2: Generate Protocol Structure (PROVERIF)

3 Generate Protocol Behavior

In the third step, the transformation algorithm generates a PROVERIF process for each Participant
contained in the SecurityProtocolModel. The PROVERIF process for a Participant contains all prop-
erties and the set of known keys as input. Moreover, the process encompasses all events that occur
in the execution of the Participant.

For example, in Figure 4.18, the SecurityProtocolModel encompasses the participant ParticipantA.
The participantA has two properties prop1: EncPrivateKey and prop2: EncPublicKey, and knows the
key prop3: EncPublicKey of participantB. As output, the transformation algorithm creates a sub-
process for participantA (cf. line 1) followed by the input parameter. The transformation algo-
rithm adds the two input parameter prop1: ePrivateKey, prop2: ePublicKey for the properties and
prop3: ePublicKey for the known key (cf. lines 2–4) to the sub-process for participantA.

80

4.4. Translation from the VerificationModel to PROVERIF input models

SecurityProtocolModel PROVERIF Input Model

participantA:

Participant

participantA:

Participant

cPrivateKey

cPublicKey

cPrivateKey

cPublicKey

prop1:

EncPrivateKey

prop1:

EncPrivateKey

prop2:

EncPublicKey

prop2:

EncPublicKey

prop3:

EncPublicKey

prop3:

EncPublicKey

propertiesproperties

known

Keys

known

Keys

 1| let processParticipantA(
 2| prop1: ePrivateKey,
 3| prop2: ePublicKey,
 4| prop3: ePublicKey
 5|) =
 6|
 7| // description of the behavior
 8|
 9| .

Figure 4.18: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Creation of a sub-process for one Participant

As mentioned in Section 2.2.3, the behavior described within a sub-process encompasses the send-
ing and receiving of messages over a communication channel, the declaration of variables and the
conditional execution of a sub-process. Therefore, the transformation algorithm iterates over the
ordered set of events for each participant and transforms them into the corresponding constructs
in PROVERIF as explained in the following:

Translate a MessageEvent As mentioned in Section 2.2.3, in PROVERIF, a message is rep-
resented by means of a bitstring that is transmitted via a channel. The sender uses the pro-
cess macro out(channel, bitstring) to send a message and the receiver uses the process macro
in(channel, bitstring) to receive it. Subsequently, we describe the transformation of a MessageEvent
with type MessageOut and a MessageEvent with type MessageIn.

Translate a MessageEvent with type MessageOut The transformation of a Message-
Event with type MessageOut encompasses several steps. First, the transformation algorithm
handles the Arguments of the MessageEvent. Therefore, the transformation algorithm re-
trieves the list of arguments and for each of them, it creates a new variable with the name
vX_arg, where v is used as a prefix, X is a consecutive number, and arg is the name of the
argument. The variables are numbered consecutively such that the same argument name
or the repeated occurrence of a MessageEvent does not result in a PROVERIF warning due
to a variable being rebounded. In addition, the transformation algorithm assigns the actual
value of the Argument to the newly created variable (cf. let vX_arg1 = val1 in in Figure 4.19).
Thereby, it is possible to reuse values in the resulting security protocol in PROVERIF.

Second, the transformation algorithm checks if security primitives are applied to the argu-
ments of the message or to the complete message. The transformation of security primitives
applied to arguments or messages follows the same functional principle. Thus, we only
present the transformation rules for security primitives applied to messages in this section
and distinguish the following three cases:

No applied security primitive The transformation algorithm creates a new variable
msg representing the bitstring of the MessageEvent and assigns the set of all argument

81

Chapter 4. Verification of Security MSDs

variables to this variable. If the MessageEvent contains more than one Argument, the
variables are concatenated and assigned to the variable representing the message (cf.
let msg = (v1_arg1 , v2_arg2) in in Figure 4.19). Otherwise, the variable representing
the argument is directly assigned to the newly created variable (cf. let msg = v1_arg in
in Figure 4.20). Finally, the transformation algorithm generates an out(channel, msg)
construct, where c is the channel used for the communication between the participants
and msg is the bitstring to be transmitted.

SecurityProtocolModel PROVERIF Input Model

type: MessageOut

msg:

MessageEvent

type: MessageOut

msg:

MessageEvent

type: bitstring

value: val2

arg2: Argument

type: bitstring

value: val2

arg2: Argument

type: bitstring

value: val1

arg1: Argument

type: bitstring

value: val1

arg1: Argument

argumentsarguments

 1| let v0_arg1 = val1 in
 2| let v1_arg2 = val2 in
 3|
 4| let msg = (v0_arg1, v1_arg2) in
 5|
 6| out(c, msg)

Figure 4.19: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an outgoing MessageEvent without applied security primitive

One applied security primitive The transformation algorithm creates a new vari-
able msg representing the bitstring of the MessageEvent and assigns the set of all ar-
gument variables to this variable. Next, it resolves the constructor that belongs to
the security primitive (e.g., aenc for the security primitive AsymmetricEncryption) and
applies the constructor using the variable msg and the key referenced by the primi-
tive as input (cf. let msgsecured = aenc(msg, pubKeyA) in in Figure 4.20). Finally, the
transformation algorithm generates an out(channel, msgsecured) construct, where c is
the channel used for the communication between the participants and msgsecured is the
bitstring to be transmitted.

82

4.4. Translation from the VerificationModel to PROVERIF input models

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

primitivesprimitives

SecurityProtocolModel PROVERIF Input Model

type: MessageOut

msg:

MessageEvent

type: MessageOut

msg:

MessageEvent
 1| let v0_arg = val in
 2|
 3| let msg = (v0_arg) in
 4|
 5| let msg1tmp = aenc(
 6| msg, pubKeyR
 7|) in
 8|
 9| let msgsecured = msg

1
tmp

10|
11| out(c, msgsecured)

Figure 4.20: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an outgoing MessageEvent with one applied security primitive

More than one applied security primitive The transformation algorithm creates a
new variable msg representing the bitstring of the MessageEvent and assigns the set
of all argument variables to this variable. Next, the transformation algorithm iterates
over the ordered set of security primitives. As described in the previous case, the
transformation algorithm resolves the PROVERIF constructor that belongs to the se-
curity primitive. However, in case of more than one applied security primitive, the
transformation algorithm uses temporal variables to store the result of the transforma-
tion of one security primitive (cf. let msg1

tmp = sign(msg, privKeyS) in in Figure 4.21).
This variable is then used as the input for the transformation of the next primitive (cf.
let msg2

tmp = aenc(msg1
tmp, pubKeyR) in in Figure 4.21). After transforming all security

primitives, the result is stored in the variable msgsecured. Finally, the transformation
algorithm generates an out(channel, msgsecured) construct, where c is the channel used
for the communication between the participants and msgsecured is the bitstring to be
transmitted.

Translate a MessageEvent with type MessageIn The transformation of a MessageEvent
with type MessageIn encompasses several steps. First, the bitstring of the message is received
by means of the PROVERIF process macro in(channel, msg: bitstring). Second, the transfor-
mation algorithm checks whether security primitives are applied to the MessageEvent. Third,
the received bitstring is disassembled into its Arguments. Subsequently, we present three dif-
ferent cases for the transformation of security primitives.

No applied security primitive The transformation algorithm stores the received bit-
string in the variable msg (cf. in(c, msg: bitstring) in Figure 4.22). Then, the transfor-
mation algorithm resolves the arguments of the MessageEvent. Therefore, it checks
the number of arguments the MessageEvent contains. If the MessageEvent contains
only one argument, the transformation algorithm creates a new variable for the argu-
ment and assigns the received message msg to this variable. If the MessageEvent con-
tains more than one argument, the transformation algorithm creates one variable for
each argument (cf. let (v0_arg1, v1_arg2) = msg in in Figure 4.22). As for the trans-

83

Chapter 4. Verification of Security MSDs

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

primitivesprimitives

primitivesprimitives

SecurityProtocolModel PROVERIF Input Model

type: MessageOut

msg:

MessageEvent

type: MessageOut

msg:

MessageEvent
 1| let v0_arg = val in
 2|
 3| let msg = (v0_arg) in
 4|
 5| let msg1tmp = sign(
 6| msg, privKeyS
 7|) in
 8|
 9| let msg2tmp = aenc(
10| msg1tmp, pubKeyR
11|) in
12|
13| let msgsecured = msg

2
tmp in

14|
15| out(c, msgsecured)

Figure 4.21: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an outgoing MessageEvent with more than one applied security primitives

formation of a MessageEvent with type MessageOut, we use the prefix v and a consec-
utive number X to enable that the same argument name or the repeated occurrence
of a MessageEvent does not result in a PROVERIF warning due to the variable being
rebounded.

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

SecurityProtocolModel PROVERIF Input Model

type: MessageIn

msg:

MessageEvent

type: MessageIn

msg:

MessageEvent
 1| in(c, msg: bitstring);
 2|
 3| let(
 4| v0_arg1, v1_arg2: bitstring
 5|) = msg in

type: bitstring

value: val2

arg2: Argument

type: bitstring

value: val2

arg2: Argument

type: bitstring

value: val1

arg1: Argument

type: bitstring

value: val1

arg1: Argument

Figure 4.22: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an incoming MessageEvent without applied security primitive

One applied security primitive The transformation algorithm stores the received
bitstring in the variable msgsecured (cf. in(c, msgsecured: bitstring) in Figure 4.23).
Next, the transformation algorithm resolves the destructor that corresponds to the
security primitive (e.g., adec for the security primitive AsymmetricEncryption) using
the message variable msgsecured and the key referenced by the primitive as input.
The result is then assigned to the variable(s) representing the argument(s) (cf. let

84

4.4. Translation from the VerificationModel to PROVERIF input models

msg = adec(msgsecured, privKeyR) in in Figure 4.23). Afterward, the transformation
algorithm resolves the arguments of the MessageEvent as described before.

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

primitivesprimitives

SecurityProtocolModel PROVERIF Input Model

type: MessageIn

msg:

MessageEvent

type: MessageIn

msg:

MessageEvent
 1| in(c, msgsecured: bitstring);
 2|
 3| let(
 4| msg: bitstring
 5|) = aDec(msgsecured, privKeyR) in
 6|
 7| let(
 8| v0_arg: bitstring
 9|) = msg in

Figure 4.23: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an incoming MessageEvent with one applied security primitive

More than one applied security primitive The transformation algorithm stores the
received bitstring in the variable msgsecured (cf. in(c, msgsecured: bitstring) in Fig-
ure 4.24). Next, the transformation algorithm iterates over the ordered set of security
primitives but in inverse order. For each security primitive, it resolves the destructor
that corresponds to the security primitive and stores the result in a temporal variable.
For example, as depicted in Figure 4.24, the result of the validation of the signature
is stored in the variable msg1

tmp. This variable is then used as the input for the trans-
formation of the next primitive. After transforming all security primitives, the result
is stored in the variable msg. Afterward, the transformation algorithm resolves the
arguments of the MessageEvent as described before.

Translate a SecurityAssignment As described in Section 3.4.4, a SecurityAssignment is used
to create a new variable or modify an existing variable. In both cases, the SecurityAssignment
encompasses a Variable and an Expression. If the SecurityAssignment describes the creation of a
variable, the transformation algorithm creates a new variable of the form new vX_var: <type>,
where v is used as a prefix, X is a consecutive number, <var> is the name of the variable, and
<type> is the type of the variable. Otherwise, the transformation algorithm creates a new variable
of the form let vX_var = <expression> in, where <expression> is the transformed Expression.

For example, in Figure 4.25, the SecurityProtocolModel encompasses two SecurityAssignments. The
first SecurityAssignment creates a new variable of type Nonce. The second SecurityAssignment in-
creases the variable var2 by one and assigns it to the variable var3. As output, the transforma-
tion algorithm creates the corresponding PROVERIF constructs: new v1_var1: Nonce for the first
SecurityAssignment and let v3_var3 = inc(v2_var2) in for the second SecurityAssignment.

85

Chapter 4. Verification of Security MSDs

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

primitivesprimitives

primitivesprimitives

SecurityProtocolModel PROVERIF Input Model

type: MessageIn

msg:

MessageEvent

type: MessageIn

msg:

MessageEvent
 1| in(c, msgsecured: bitstring);
 2|
 3| let(
 4| msg1tmp: bitstring
 5|) = aDec(msgsecured, privKeyR) in
 6|
 7| let(
 8| msg2tmp: bitstring
 9|) = checkSign(
10| msgsecured, pubKeyS
11|) in
12|
13| let(msg: bitstring) = msg2tmp in
14|
15| let(
16| v0_arg: bitstring
17|) = msg in

Figure 4.24: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an incoming MessageEvent with more than one applied security primitive

 1| new v1_var1: Nonce;
 2|
 3| let v3_var3 = inc(v2_var2) in

SecurityProtocolModel PROVERIF Input Model

variablevariable

expr: NonceGeneration

assignment1:

SecurityAssignment

expr: NonceGeneration

assignment1:

SecurityAssignment

type: Nonce

var1: Variable

type: Nonce

var1: Variable

variablevariable

type: Nonce

var3: Variable

type: Nonce

var3: Variable

exprexpr

ref: Referenceref: Reference

type: Nonce

var2: Variable

type: Nonce

var2: Variable

inc: IncreaseExpinc: IncreaseExp

valuevalue

exprexpr

assignment2:

SecurityAssignment

assignment2:

SecurityAssignment

Figure 4.25: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of a SecurityAssignment

Translate a SecurityCondition As described in Section 3.4.5, a SecurityCondition is used to
describe the conditional behavior of a security protocol. If it evaluates to true, the security protocol
proceeds, otherwise the run of the security protocol terminates. In PROVERIF, a condition has

86

4.4. Translation from the VerificationModel to PROVERIF input models

the form if <Expression> then <P> else <Q>, where P and Q are sub-processes. However, if
no process is executed in the else part, the else part can be omitted. Hence, the transformation
algorithm only generates the if <Expression> then <P> part of the condition.

As shown in Figure 4.26, a SecurityCondition encompasses a ComparisonOp, a left-hand side and
a right-hand side of type Expression. However, PROVERIF only supports the ComparisonOp = “=”,
so SecurityConditions with other operators would result in an error. In the example, the left-hand
side refers to a variable var1 and the right-hand side to an IncreaseExp increasing the variable
var2. As output, the transformation algorithm creates the corresponding PROVERIF construct: if
v1_var1 = inc(v2_var2) then.

 1| if var2 = inc(var1) then

SecurityProtocolModel PROVERIF Input Model

lhslhs rhsrhs

ref: Referenceref: Reference

type: Nonce

var1: Variable

type: Nonce

var1: Variable

condition:

SecurityCondition

condition:

SecurityCondition

ref: Referenceref: Reference

type: Nonce

var2: Variable

type: Nonce

var2: Variable

inc: IncreaseExpinc: IncreaseExp

valuevalue

valuevalue exprexpr

Figure 4.26: Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of a SecurityCondition

4 Generate Main Process

Finally, in the last step, the transformation algorithm generates the main process. Therefore, it
creates free variables for all cryptographic keys used in the security protocols. Furthermore, it
creates references to the sub-processes describing the behavior of the protocol participants. For
example, in Figure 4.27, the SecurityProtocolModel encompasses the two participants participantA
and participantB. participantB possesses an asymmetric encryption key pair. Moreover, participantA
knows the public key of participantB. As output, the transformation algorithm creates a new process
with the PROVERIF macro process (cf. line 1). In addition, the transformation algorithm creates
the properties for each participant. In the example, it creates the private key skB: ePrivateKey (cf.
line 2). The private key is used as input for the function genPublicKey to generate the public key
(cf. line 3). Afterward, the public key is sent over the channel such that all participants are aware
of them (cf. line 5). Finally, the transformation algorithm calls the sub-process for each participant
with the corresponding input variables (cf. lines 7-12).

87

Chapter 4. Verification of Security MSDs

ProtocolName:

SecurityProtocol

ProtocolName:

SecurityProtocol

participantA:

Participant

participantA:

Participant

participantB:

Participant

participantB:

Participant

participants

SecurityProtocolModel PROVERIF Input Model

skB:

EncPrivateKey

skB:

EncPrivateKey

pkB:

EncPublicKey

pkB:

EncPublicKey

p
ro

p
e
rt

ie
s

p
ro

p
e
rt

ie
s

knownKeysknownKeys

 1| process
 2| new skB : ePrivateKey;
 3| let pkB = genEncPubKey(skB) in
 4|
 5| out(channel, pkB);
 6|
 7| (!processParticipantA(pkB);)
 8| |
 9| (!processParticipantB(
10| skB, pkB
11|);
12|)

Figure 4.27: Illustration of Transformation Step 4: Generate Main Process (PROVERIF)

4.4.3 Translate the QueryModel to PROVERIF

This section describes the generation of queries to enable the analysis of the security properties
secrecy and authentication.

Translate a SecrecyQuery

The transformation algorithm adds secrecy queries and secrecy assumptions to the PROVERIF

input model to enable the automated analysis of whether protocol variables are kept secret. As
explained in Section 4.3.1, we distinguish PropertyQueries and VariableQueries.

PropertyQueries refer to a Property of a Participant. According to our transformation rules described
before, the transformation algorithm creates the properties of a participant during the generation
of the main process. Variables representing these properties are globally visible in the PROVERIF

model. Thus, it is sufficient to add a secrecy assumption to the input model. For example, in
Figure 4.28, the private asymmetric encryption key skA of the participantA should be kept secret.
Thus, the transformation algorithm creates a new secrecy assumption not attacker(new skA). to the
input model.

VariableQueries refer to a Variable declared in a PROVERIF sub-process representing a participant of
the security protocol. The variable is only visible within this sub-process. Thus, it is not sufficient
to only add the query to the input model. Instead, there are two possibilities for a security engineer
to define a secrecy query. In the first possibility, the security engineer can introduce a dummy
variable for each secret element. In this case, the dummy variable is symmetrically encrypted
with the secret element and sent over the public channel at the end of the sub-process. If attackers
can determine the content of the dummy variable, they can determine the key and compromise
the secrecy of the secret element. In the second possibility, the security engineer can define the
variable outside the sub-process as a global variable. In this case, the transformation algorithm
could generate a secrecy assumption for the variable as described for the PropertyQueries.

88

4.4. Translation from the VerificationModel to PROVERIF input models

participantA:

Participant

participantA:

Participant

VerificationModel PROVERIF Input Model

skA: EncPrivateKeyskA: EncPrivateKey

pq: PropertyQuerypq: PropertyQuery

secretElementsecretElement

SecurityProtocolModelSecurityProtocolModel

QueryModelQueryModel

 1| not attacker(new skA).
 2|
 3| process
 4| new skA : ePrivateKey;

Figure 4.28: Translating a PropertyQuery to PROVERIF

In our transformation algorithm, we use the first possibility. Thus, as shown in Figure 4.29, to
create a secrecy query referencing a variable v0_var, the transformation algorithm creates a new
free and private variable secret_v0_var of type bitstring (cf. free secret_v0_var: bitstring [private].).
Moreover, it extends the description of the sub-process by the PROVERIF macro out(c, sencrypt(
secret_v0_var, v0_var)); indicating that the publicly visible variable is symmetrically encrypted
with the variable that should be kept secret. Thus, if the attacker is able to learn secret_v0_var, this
means that he/she was also able to learn v0_var during the execution of the protocol.

VerificationModel PROVERIF Input Model

pq: Variable Querypq: Variable Query

expr: <Expression>

assignment:

SecurityAssignment

expr: <Expression>

assignment:

SecurityAssignment

type: <Type>

var: Variable

type: <Type>

var: Variable

variablevariable

secretElementsecretElement

SecurityProtocolModelSecurityProtocolModel

QueryModelQueryModel

 1| free secret_v0_var:
 2| bitstring [private].
 2|
 3| query attacker(
 4| secret_v0_var
 5|).
 6|
 7| let processParticipantA(…)=
 8|
 9|
10| out(c, sencrypt(
11| secret_v0_var, v0_var)
12|)
13| .

Figure 4.29: Translating a VariableQuery to PROVERIF

89

Chapter 4. Verification of Security MSDs

Translate an AuthenticationQuery

The transformation algorithm adds correspondence assertions to the PROVERIF input model to
enable the automated analysis of authentication properties. Listing 4.1 depicts the formalization
of the hierarchy of authentication specifications in PROVERIF.

1 (* aliveness *):
2 event create (host).
3 event commit (host , host).
4

5 query a: host , b: host;
6 event(commit (a,b)) ==> event(create (b)).
7

8 (* weak agreement *)
9 event running (host , host).

10 event commit (host , host).
11

12 query a: host , b: host;
13 event(commit (a,b)) ==> event(running (b,a)).
14

15 (* non - injective agreement *)
16 event commit (host , host , bitstring);
17 event running (host , host , bitstring);
18

19 query a: host , b: host , x: bitstring ;
20 event(commit (a,b,x)) ==> event(running (b,a,x)).
21

22 (* injective agreement *)
23 event commit (host , host , bitstring);
24 event running (host , host , bitstring);
25

26 query a: host , b: host , x: bitstring ;
27 event(commit (a,b,x)) ==> inj -event(running (b,a,x)).
28

Listing 4.1: Overview of Authentication Queries in PROVERIF

The transformation algorithm creates authentication queries as shown in Figure 4.30 and explained
as follows: The transformation algorithm creates the events (cf. lines 1–2) including arguments
for non-injective and injective authentication queries. Next, it adds the query to define the corre-
spondence assertions (cf. lines 4–9) following the template depicted in Listing 4.1. For the three
non-injective level of the authentication hierarchy, we use the PROVERIF macro event after the
arrow, and for the injective agreement, we use the macro inj-event, indicating the 1:1-relationship
between the two events commit and running.

Moreover, the transformation algorithm annotates the occurrence of events in the description of
the behavior. Therefore, it adds the event commit at the end of the sub-process for participantA
(cf. line 13) and the event running before the message described by the property prevEvent of the
AuthenticationQuery is sent. In the case of non-injective and injective authentication queries, the
arguments are included in the event definition.

90

4.5. Translation from the VerificationModel to TAMARIN input models

VerificationModel PROVERIF Input Model

type: MessageOut

msg2:

MessageEvent

type: MessageOut

msg2:

MessageEvent

eventsevents

SecurityProtocolModelSecurityProtocolModel

postEventpostEvent

eventsevents

participantA:

Participant

participantA:

Participant
participantB:

Participant

participantB:

Participant

authenticatorauthenticator

QueryModelQueryModel

prevEventprevEvent

authentication

service

authentication

service

condition:

SecurityCondition

condition:

SecurityCondition

type: Injective Agreement

query:

AuthenticationQuery

type: Injective Agreement

query:

AuthenticationQuery

 1| event commit(host, host, bitstring).
 2| event running(host, host, bitstring).
 3|
 4| query a: host, b: host, x: bitstring;
 5| event(commit(a,b,x)) ==>
 6| inj-event(running(b,a,x)).
 7|
 8| let processParticipantA(…)=
 9|
10| event commit(ParticipantA,
11| ParticipantB, v0_arg);
12| .
13|
14| let processParticipantB(…)=
15|
16| event running(ParticipantB,
11| ParticipantA, v0_arg);
17|
18| out(c, msg2);
19| .

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

Figure 4.30: Translating an AuthenticationQuery to PROVERIF

4.5 Translation from the VerificationModel to TAMARIN input
models

In the fourth step, Generate Verification Input (cf. Figure 4.1 on page 59), VICE uses the Verifi-
cationModel and generates the input for the used symbolic model checker. This section describes
the details of the input generation for TAMARIN. First, we recap the capabilities of TAMARIN and
discuss whether all elements of the SECURITY MODELING PROFILE are supported. Second, we
present the model-to-text transformation to derive the input for TAMARIN.

4.5.1 Overview of the Capabilities of TAMARIN in relation to the SECURITY MOD-
ELING PROFILE

Table 4.2 provides an overview of the SECURITY MODELING PROFILE’s features and whether
TAMARIN is able to analyze security protocols that contain these features. As presented in Sec-
tion 2.2.4, TAMARIN is a tool for automated analysis of security protocols within the symbolic
model. In the following, we briefly describe how we realize the features of the SECURITY MOD-
ELING PROFILE using TAMARIN language constructs.

TAMARIN uses multiset rewriting rules to model the behavior of the security protocols. We can
use action facts on the left-hand side of a rewriting rule to specify properties a participant may have
or know. For example, as depicted in Listing 2.8, the public key of a participant R can be specified
as !Pk($R, pkR). Moreover, we can use a public variable (denoted by $) to identify and reference

91

Chapter 4. Verification of Security MSDs

participants. Thus, although TAMARIN does not provide language constructs to explicitly model
the behavior of a participant, we can conclude that TAMARIN supports all features of the category
Protocol Modeling.

TAMARIN provides built-in types and functions for cryptographic primitives and arithmetic ex-
pressions. The built-ins support the features of the categories Cryptographic Primitives and Data
types completely. Additionally, TAMARIN supports the declaration of custom functions. Hence,
we conclude that TAMARIN also supports all features of the category Expressions. However, as
PROVERIF, TAMARIN does not support the consideration of time, so it is not possible to compare
timestamps with each other or the current time.

TAMARIN enables the declaration of variables by means of the Fr operator and the modification of
existing variables by means of the let-expressions. Furthermore, TAMARIN supports several com-
mon restrictions that can be used to model the conditional behavior of the security protocol. Hence,
we conclude that TAMARIN supports all features of the categories Assignments and Conditions.

Table 4.2: Overview of the Capabilities of TAMARIN in relation to the SECURITY MODELING

PROFILE

Category Feature of the SECURITY MODELING
PROFILE

Feature is supported
by TAMARIN

Protocol Modeling Participants exchange messages to execute
the protocol

✓

Participants can be identified and
referenced

✓

Participants own properties like
cryptographic keys

✓

Participants know properties of other
participants

✓

Cryptographic Primitives Asymmetric Encryption ✓

Digital Signature ✓

HMAC ✓

Hashing ✓

Assignments Create a new variable ✓

Modify an existing variable ✓

Conditions Conditions with the common comparison
operators

✓

Data types Cryptographic Keys ✓

Nonce ✓

Number ✓

Prime ✓

Timestamp ✓

92

4.5. Translation from the VerificationModel to TAMARIN input models

Category Feature of the SECURITY MODELING
PROFILE

Feature is supported
by TAMARIN

Expressions Arithmetic Expressions ✓

Cryptographic Expression ✓

4.5.2 Translate the SecurityProtocolModel to TAMARIN

This section presents the functional principle of the model-to-text transformation from the Securi-
tyProtocolModel to TAMARIN input models. Algorithm 4.3 depicts an overview of the model-to-
text transformation encompassing three main steps.

Algorithm 4.3 Translation from a SecurityProtocolModel to TAMARIN

Input: SecurityProtocolModel
Output: TAMARIN Input Model

1: ▷ 1 Generate Protocol Preamble
2: generateProtocolPreamble()
3: ▷ 2 Generate Protocol Structure
4: for each participant ∈ SecurityProtocolModel.participants do
5: createInitRules(participant)
6: end for
7: for each event ∈ SecurityProtocolModel.events do
8: ▷ 3 Generate Protocol Behavior
9: generateBehaviorForParticipant(participant)

10: end for

At the beginning, the transformation algorithm generates a preamble encompassing all definitions
necessary to specify the security protocol (cf. 1 Generate Protocol Preamble). Then, the trans-
formation algorithm generates structural information (cf. 2 Generate Protocol Structure). After-
ward, the transformation algorithm iterates over all events contained in the SecurityProtocolModel
and creates corresponding rewriting rules (cf. 3 Generate Protocol Behavior). “A rewrite rule
[. . .] has a name and three parts, each of which is a sequence of facts: one for the left-hand side,
one labeling the transition [. . .], and one for the rule’s right-hand side” [Tamarin]. TAMARIN uses
state facts “that indicate that a certain process is at a specific point in its execution” [Tamarin]
to capture the progress of a security protocol. A state fact is used on the left-hand side of a rule
to model a precondition that must hold for the rule to fire and on the right-hand side to express
the postcondition after the rule has fired. A state fact has the following form in our transforma-
tion algorithm State($Sender, $Receiver,∼tid, <T1,. . . , Tn>), where ∼tid is a unique thread identi-
fier, $Sender is the sender of the current message, $Receiver is the receiver of the current message
event, and <T1,. . . , Tn> is a set of arguments and variables that have been exchanged or created
during the previous message exchange. Listing 4.2 depicts the generic rule template that we use
throughout our transformation approach.

93

Chapter 4. Verification of Security MSDs

1 rule <<event.owner >>_<<event.name >>:
2 let
3 (* Let - binding expressions are used to specify local macros , for

instance , to assign newly created values to variable names or to
handle cryptographic primitives *)

4 in
5 [
6 (* The left -hand side of the rewriting rule may encompass a state

fact to model the precondition of a rule , the receiving of an
incoming message , and the creation of fresh values . *)

7]--[
8 (* The labeling part of the rewriting rule may encompass restrictions

to model the conditional behavior of the security protocol , and
facts that mark important assumptions of the security protocol ’s
behavior . These facts can be used in lemmas to prove the security
properties (e.g., secrecy and authentication) of the security
protocol . *)

9]->[
10 (* The right -hand side of the rewriting rule may encompass the

sending of an outgoing message and a state fact to model the
postcondition of the rule. *)

11]

Listing 4.2: TAMARIN Template used for the Transformation Approach

1 Generate Protocol Preamble

In the first step, the transformation algorithm generates a preamble for the TAMARIN input model.
As explained in Section 2.2.4, TAMARIN provides a set of built-in types that can be used to model
a security protocol. Hence, the transformation algorithm creates a static preamble that imports all
built-in types that are used by the security protocol. Moreover, in TAMARIN, the security engineer
can use restrictions to model the conditional behavior of the security protocol. There is a set of
recommended common restrictions (e.g., unique, equality). Our transformation approach adds the
restrictions to the preamble that correspond to the expression of security conditions. The complete
preamble is shown in Appendix B.3.

2 Generate Protocol Structure

In the second step, the transformation algorithm generates structural information about the secu-
rity protocol. Therefore, the transformation algorithm creates an initialization rule for all Partici-
pants contained in the SecurityProtocolModel. Within these initialization rules, the transformation
algorithm creates persistent action facts for owned and known keys of the Participants.

For example, in Figure 4.31, the SecurityProtocolModel encompasses the participant participantA.
The participantA has two properties prop1: EncPrivateKey and prop2: EncPublicKey, and knows the
public key prop3: EncPublicKey. Thus, the transformation algorithm creates the persistent action
facts !Ltk($ParticipantA, prop1), !PK($ParticipantA, prop2), and !PK($ParticipantB, prop3) as part of
the left-hand side of the initialization rule.

94

4.5. Translation from the VerificationModel to TAMARIN input models

SecurityProtocolModel TAMARIN Input Model

 1| rule PartA_init:
 2| let
 3|
 4| in
 5| [
 6| !Ltk($ParticipantA, prop1),
 7| !PK($ParticipantA, prop2),
 8| !PK($ParticipantB, prop3)
 9|]--[
10|]->[
11|]

participantA:

Participant

participantA:

Participant

cPrivateKey

cPublicKey

cPrivateKey

cPublicKey

prop1:

EncPrivateKey

prop1:

EncPrivateKey

prop2:

EncPublicKey

prop2:

EncPublicKey

prop3:

EncPublicKey

prop3:

EncPublicKey

propertiesproperties

known

Keys

known

Keys

Figure 4.31: Illustration of Transformation Step 2: Generate Protocol Structure (TAMARIN)

2 Generate Protocol Behavior

In the third step, the transformation algorithm generates the security protocol’s behavior. As stated
in Chapter 3, a security protocol in our SecurityProtocolModel encompasses at least two participants
whereas each participant encompasses a set of events to model its behavior. Even though it would
be possible to model an incoming and an outgoing message in one rewriting rule in TAMARIN, we
decided for the sake of simplicity and readability to model each message event separately in one
rewriting rule and relate the rules with additional state facts. Moreover, since there are no dedicated
rewriting rules that handle only security conditions or security assignments, the transformation
algorithm collects these events while iterating over the list of events of a participant and transforms
them when transforming the next message event. Subsequently, we explain the transformation of
each event type separately.

Translate a MessageEvent As mentioned in Section 2.2.4, in TAMARIN, a message is trans-
mitted via a channel. The sender uses the action fact Out(msg) to send a message and the receiver
uses the action fact In(msg) to receive a message.

Translate a MessageEvent with type MessageOut The transformation of a Message-
Event with type MessageOut encompasses several steps. First, the transformation algorithm
handles the Arguments of the MessageEvent. Therefore, the transformation algorithm re-
trieves a list of arguments and for each argument, it creates a new variable and assigns
the actual value to the variable (cf. arg = val in Figure 4.32 – Figure 4.34) as part of the
let-expression.

Second, the transformation algorithm checks if security primitives are applied to the argu-
ments of the message or the complete message. The transformation of security primitives
applied to arguments or messages follows the same functional principle. Thus, we only
present the transformation rules for security primitives applied to messages in this section
and distinguish the following three cases:

No applied security primitive The transformation algorithm creates a new variable
msg representing the MessageEvent as part of the let-expression and assigns the set of

95

Chapter 4. Verification of Security MSDs

all argument variables to this variable. If the MessageEvent contains more than one Ar-
gument, the variables are concatenated and assigned to the variable representing the
message (e.g., msg = <arg1, argn>). Otherwise, the variable representing the argu-
ment is directly assigned to the newly created variable (cf. msg = arg in Figure 4.32).
Finally, the transformation algorithm generates an Out(msg) construct as part of the
right-hand side of the rewriting rule.

type: MessageOut

msg:

MessageEvent

type: MessageOut

msg:

MessageEvent

SecurityProtocolModel TAMARIN Input Model

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

 1| let
 2| arg = val
 3| msg = arg
 4| in
 5| [
 6|]--[
 7|]->[
 8| Out(msg)
 9|]

Figure 4.32: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an outgoing MessageEvent without applied security primitive

One applied security primitive The transformation algorithm creates a new vari-
able msg representing the MessageEvent as part of the let-expression and assigns the
set of all argument variables to this variable. Next, it resolves the constructor that be-
longs to the primitive (e.g., aenc for the security primitive AsymmetricEncryption) and
applies the constructor using the variable msg and the key referenced by the primitive
as input (cf., msgsecured = aenc(msg, pubKeyR) in Figure 4.33). Finally, the transfor-
mation algorithm generates an Out(msgsecured) construct as part of the right-hand side
of the rewriting rule.

SecurityProtocolModel TAMARIN Input Model

 1| let
 2| arg = val
 3| msg = arg
 4| msgsecured = aenc(
 5| msg, pubKeyR
 6|)
 7| in
 8| [
 9|]--[
10|]->[
11| Out(msgsecured)
12|]

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

type: MessageOut

msg:

 MessageEvent

type: MessageOut

msg:

 MessageEvent

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

primitivesprimitives

Figure 4.33: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an outgoing MessageEvent with one applied security primitive

96

4.5. Translation from the VerificationModel to TAMARIN input models

More than one applied security primitive The transformation algorithm creates a
new variable msg representing the MessageEvent as part of the let-expression and as-
signs the set of all argument variables to this variable. Next, the transformation algo-
rithm iterates over the ordered set of security primitives. As described in the previous
case, the transformation algorithm resolves the TAMARIN constructor that belongs to
the security primitive. However, in case of more than one applied security primitive,
the transformation algorithm uses temporal variables to store the result of the trans-
formation of one security primitive (cf. msg1

tmp = sign(msg, privKeyS) in Figure 4.34).
This variable is then used as the input for the transformation of the next security prim-
itive (cf. msg2

tmp = aenc(msg1
tmp, pubKeyR) in Figure 4.34). After transforming all se-

curity primitives, the result is stored in the variable msgsecured. Finally, the transfor-
mation algorithm generates an Out(msgsecured) construct as part of the right-hand side
of the rewriting rule.

SecurityProtocolModel TAMARIN Input Model

 1| let
 2| arg = val
 3| msg = arg
 4| msg1tmp = sign(
 5| msg, privKeyS
 6|)
 7| msg2tmp = aenc(
 8| msg1tmp, pubKeyR
 9|)
10| msgsecured = msg

2
tmp

11| in
12| [
13|]--[
14|]->[
15| Out(msgsecured)
16|]

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

type: MessageOut

msg:

 MessageEvent

type: MessageOut

msg:

 MessageEvent

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

primitivesprimitives

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature
primitivesprimitives

Figure 4.34: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an outgoing MessageEvent with more than one applied security primitive

Translate a MessageEvent with type MessageIn The transformation of a MessageEvent
with type MessageIn encompasses several steps. The transformation steps are similar to the
transformation steps presented for a MessageEvent with type MessageOut.

First, the message is received by means of the TAMARIN action fact In(msg). Second,
the transformation algorithm checks whether security primitives are applied to the Mes-
sageEvent. We distinguish three cases explained subsequently.

No applied security primitive: The transformation algorithm stores the received
message in the variable msg (cf. In(msg) in Figure 4.35). Next, the transformation
algorithm resolves the arguments of the MessageEvent. We distinguish three different
cases based on the number of Arguments:

97

Chapter 4. Verification of Security MSDs

One Argument If the MessageEvent contains one argument, the transforma-
tion algorithm creates a new variable for the argument and assigns the received
message msg to this variable (cf. arg = msg in Figure 4.35).

SecurityProtocolModel TAMARIN Input Model

 1| let
 2| arg = msg
 3| in
 4| [
 5| In(msg)
 6|]--[
 7|]->[
 8|]

type: MessageIn

msg:

MessageEvent

type: MessageIn

msg:

MessageEvent

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

Figure 4.35: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with one Argument

Two Arguments If the MessageEvent contains two arguments, the transforma-
tion algorithm creates a new variable for each argument and assigns the first
part of the received message to the first argument variable (cf. arg1 = fst(msg)
in Figure 4.36) and the second part of the received message to the second ar-
gument variable (cf. arg2 = snd(msg) in Figure 4.36).

SecurityProtocolModel TAMARIN Input Model

 1| let
 2| arg1 = fnd(msg)
 3| arg2 = snd(msg)
 4| in
 5| [
 6| In(msg)
 7|]--[
 8|]->[
 9|]

type: MessageIn

msg:

MessageEvent

type: MessageIn

msg:

MessageEvent

type: bitstring

value: val1

arg1: Argument

type: bitstring

value: val1

arg1: Argument

type: bitstring

value: val2

arg2: Argument

type: bitstring

value: val2

arg2: Argument

argumentsarguments

Figure 4.36: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with two Arguments

More than two Arguments If the MessageEvent contains more than two argu-
ments, the transformation algorithm disassembles the first part of the message
to the argument (cf. arg1 = fst(msg) in Figure 4.37) and the second part (= con-
taining all other arguments) to a temporal variable (cf. msg1

arg = snd(msg) in
Figure 4.37). Next, the first part of the temporal variable is assigned to the
next argument and the remainder to a new temporal variable. This procedure
is repeated until all arguments of the message are assigned.

98

4.5. Translation from the VerificationModel to TAMARIN input models

SecurityProtocolModel TAMARIN Input Model

 1| let
 2| arg1 = fnd(msg)
 3| msg1tmp = snd(msg)
 4| arg2 = fnd(msg

1
tmp)

 5| arg3 = snd(msg
1
tmp)

 6| in
 7| [
 8| In(msg)
 9|]--[
10|]->[
11|]

type: MessageIn

msg:

MessageEvent

type: MessageIn

msg:

MessageEvent

type: bitstring

value: val1

arg1: Argument

type: bitstring

value: val1

arg1: Argument

type: bitstring

value: val2

arg2: Argument

type: bitstring

value: val2

arg2: Argument

type: bitstring

value: val3

arg3: Argument

type: bitstring

value: val3

arg3: Argument

argumentsarguments

Figure 4.37: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with more than two Argument

One applied security primitive The transformation algorithm stores the received
bitstring in the variable msgsecured (cf. In(msgsecured) in Figure 4.38). Next, the trans-
formation algorithm resolves the destructor that corresponds to the security primitive
(e.g., adec for asymmetric encryption) using the message variable msgsecured and the
key referenced by the primitive as input. The result is then assigned to the variable(s)
representing the argument(s) (cf. msg = adec(msgsecured, privKeyR) in Figure 4.38).
Finally, the transformation algorithm resolves the arguments of the MessageEvent as
described before.

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

type: MessageIn

msg:

MessageEvent

type: MessageIn

msg:

MessageEvent

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

primitivesprimitives

SecurityProtocolModel TAMARIN Input Model

 1| let
 2| msg = adec(
 3| msgsecured, privKeyR
 4|)
 5| arg = msg
 6| in
 7| [
 8| In(msgsecured)
 9|]--[
10|]->[
11|]

Figure 4.38: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with one applied security primitive

99

Chapter 4. Verification of Security MSDs

More than one applied security primitive The transformation algorithm stores the
received bitstring in the variable msgsecured (cf. In(msgsecured: bitstring) in Figure 4.39).
Next, the transformation algorithm iterates over the ordered set of security primitives
but in inverse order. For each security primitive, it resolves the destructor that cor-
responds to the security primitive and stores the result in a temporal variable. As
depicted in Figure 4.39, the result of the validation of the signature is stored in the
variable msg1

tmp. This variable is then used as input for the transformation of the next
primitive. After transforming all security primitives, the result is stored in the vari-
able msg. Finally, the transformation algorithm resolves the arguments of the Mes-
sageEvent as described before.

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature

type: MessageIn

msg:

MessageEvent

type: MessageIn

msg:

MessageEvent

type: bitstring

value: val

arg: Argument

type: bitstring

value: val

arg: Argument

argumentsarguments

primitivesprimitives

primitivesprimitives

privateKey: privKeyR

publicKey: pubKeyR

aenc:

AsymmetricEncryption

privateKey: privKeyS

publicKey: pubKeyS

ds: DigitalSignature

type: MessageIn

msg:

MessageEvent

type: bitstring

value: val

arg: Argument

arguments

primitives

primitives

SecurityProtocolModel TAMARIN Input Model

 1| let
 2| msg1tmp = adec(
 3| msgsecured, privKeyR
 4|)
 5| msg2tmp = getMessage(
 6| msg1tmp, pubKeyS
 7|)
 8| msg = msg2tmp
 9| arg = msg
10| in
11| [
12| In(msgsecured)
13|]--[
14|]->[
15|]

Figure 4.39: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with more than one applied security primitives

Translate a SecurityAssignment As described in Section 3.4.4, a SecurityAssignment is used
to create a new variable or modify an existing variable. In both cases, the SecurityAssignment
encompasses a Variable and an Expression.

If the SecurityAssignment describes the creation of a new variable, the transformation algorithm
creates a new statement as part of the left-hand side of the rewriting rule. The statement has the
form Fr(∼var), where Fr is a built-in action in TAMARIN to create fresh values, and var is the
name of the variable. Otherwise, the transformation algorithm creates a new variable of the form
var = expression, where expression is the transformed Expression.

For example, in Figure 4.40, the SecurityProtocolModel encompasses two SecurityAssignments. The
first SecurityAssignment creates a new variable of type Nonce. The second SecurityAssignment in-
creases the variable var2 by one and assigns it to the variable var3. As output, the transformation
algorithm creates the corresponding TAMARIN constructs: Fr(∼var) for the first SecurityAssignment
and var2 = inc(var1) for the second SecurityAssignment.

100

4.5. Translation from the VerificationModel to TAMARIN input models

 1| let
 2| var3 = inc(var2)
 3| in
 4| [
 5| Fr(~var1)
 6|]--[
 7|]->[
 8|]

SecurityProtocolModel TAMARIN Input Model

variablevariable

expr: NonceGeneration

assignment1:

SecurityAssignment

expr: NonceGeneration

assignment1:

SecurityAssignment

type: Nonce

var1: Variable

type: Nonce

var1: Variable

variablevariable

type: Nonce

var3: Variable

type: Nonce

var3: Variable

exprexpr

ref: Referenceref: Reference

type: Nonce

var2: Variable

type: Nonce

var2: Variable

inc: IncreaseExpinc: IncreaseExp

valuevalue

exprexpr

assignment2:

SecurityAssignment

assignment2:

SecurityAssignment

Figure 4.40: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of a SecurityAssignment

Translate a SecurityCondition As described in Section 3.4.5, a SecurityCondition is used to
describe the conditional behavior of a security protocol. If it evaluates to true, the security protocol
proceeds, otherwise the run of the security protocol is terminated. In TAMARIN, restrictions can
be used to model the conditional behavior. The restrictions are placed in the labeling part of the
rewriting rule.

As shown in Figure 4.41, a SecurityCondition encompasses a ComparisonOp, a left-hand side and a
right-hand side Expression. In the example, the left-hand side refers to a variable var1 and the right-
hand side to an IncreaseExp increasing the variable var2. As output, the transformation algorithm
creates the corresponding TAMARIN restriction: equal(var1 = inc(var2)).

101

Chapter 4. Verification of Security MSDs

 1| let
 2|
 3| in
 4| [
 5|
 6|]--[
 7| equal(var2, inc(var1))
 8|]->[
 9|]

SecurityProtocolModel TAMARIN Input Model

lhslhs rhsrhs

ref: Referenceref: Reference

type: Nonce

var1: Variable

type: Nonce

var1: Variable

condition:

SecurityCondition

condition:

SecurityCondition

ref: Referenceref: Reference

type: Nonce

var2: Variable

type: Nonce

var2: Variable

inc: IncreaseExpinc: IncreaseExp

valuevalue

valuevalue exprexpr

Figure 4.41: Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of a SecurityCondition

4.5.3 Translate the QueryModel to TAMARIN

This section describes the generation of queries to enable the analysis of the security properties
secrecy and authentication in TAMARIN.

Translate a SecrecyQuery

The transformation algorithm adds secrecy lemmas to the TAMARIN input model to enable the
automated analysis of whether protocol variables are kept secret. As explained in Section 4.3.1,
we distinguish two kinds of SecrecyQueries. However, due to the modeling approach of TAMARIN,
both kinds are translated identically.

To model a secrecy query in TAMARIN, the transformation algorithm creates a secrecy lemma as
depicted in Listing 4.3 and an action fact Secrect(x) indicating that x is supposed to be secret. “The
lemma states that whenever a secret action fact Secret(x) occurs at timepoint i, the adversary does
not know x or an agent claimed to be honest at timepoint i has been compromised at a timepoint
r [Tamarin].

1 lemma secrecy :
2 "All x #i. Secret (x) @i ==>
3 not (Ex #j. K(x) @j) | (Ex B #r. Reveal (B)@r & Honest (B)@i)"

Listing 4.3: Secrecy Lemma in TAMARIN

For example, in Figure 4.42, the QueryModel contains two SecrecyQueries one referring to a prop-
erty and one referring to a variable created by a security assignment. In the case of a Property-
Query, the transformation algorithm adds the action fact to the initialization rule for the participant
owing the property. In the case of a VariableQuery, the transformation algorithm adds the action
fact to the rewriting rule in which the variable is created. Moreover, for each SecrecyQuery, the
transformation algorithm adds a dedicated secrecy lemma to the input model. The distinction in

102

4.5. Translation from the VerificationModel to TAMARIN input models

separate secrecy lemmas makes it easier for a security engineer to understand which queries are
fulfilled and which are not.

VerificationModel TAMARIN Input Model

 1| let
 2|
 3| in
 4| [
 5| Fr(~var)
 6|]--[
 7| Secret_Var(var)
 8|]->[
 9|]
10|
11|
12|
13| Lemma secrecy_Var:
14| "All x #i.
15| Secret_Var(x) @i ==>
16| (not (Ex #j. K(x)@j)) |
17| (Ex B #r. Reveal(B) @r)
18| "

pq: Variable Querypq: Variable Query

expr: <Expression>

assignment:

SecurityAssignment

expr: <Expression>

assignment:

SecurityAssignment

type: <Type>

var: Variable

type: <Type>

var: Variable

variablevariable

secretElementsecretElement

SecurityProtocolModelSecurityProtocolModel

QueryModelQueryModel

Figure 4.42: Generating a Secrecy Query in TAMARIN

Translate an AuthenticationQuery

The transformation algorithm adds correspondence assertions to the TAMARIN input model to en-
able the automated analysis of authentication properties. Therefore, the transformation algorithm
adds a lemma corresponding to the definition of authentication selected in the AuthenticationQuery.
Listing 4.4 depicts the formalization of the hierarchy of authentication specifications in TAMARIN.

Afterward, the transformation algorithm adds action facts in the description of the behavior to an-
notate the occurrence of the two events Commit(A, B) and Create(B, id) for the definition aliveness
and Commit(A, B) and Running(B, A) for the three other definitions. The action fact Commit(A, B)
is placed at the end of A’s behavior. The action fact Create(B, id) is placed in the initialization
rule of B. The event Running() is placed before the last message is sent from A to B. In the case
of a non-injective and injective authentication query, the transformation algorithm also adds the
arguments to the action fact.

For example, in Figure 4.43, the QueryModel contains one AuthenticationQuery. The transformation
algorithm adds the lemma describing the injective agreement to the input model. Then, the trans-
formation algorithm adds the action fact Commit($ParticipantA, $ParticipantB, arg2) to the rule cor-
responding to the postEvent of the AuthenticationQuery. Finally, the transformation algorithm adds
the action fact Running($ParticipantA, $ParticipantB, arg2) to the rule corresponding to the prevEvent
of the AuthenticationQuery.

103

Chapter 4. Verification of Security MSDs

1 lemma aliveness :
2 "All a b t #i. Commit (a,b,t)@i ==>
3 (Ex id #j. Create (b,id) @ j) |
4 (Ex C #r. Reveal (C) @ r & Honest (C) @ i)"
5

6 lemma weak_agreement :
7 " All a b t1 #i. Commit (a,b,t1) @i ==>
8 (Ex t2 #j. Running (b,a,t2) @j) |
9 (Ex C #r. Reveal (C) @ r & Honest (C) @ i)"

10

11 lemma noninjective_agreement :
12 " All a b t #i. Commit (a,b,t) @i ==>
13 (Ex #j. Running (b,a,t) @j) |
14 (Ex C #r. Reveal (C) @ r & Honest (C) @ i)"
15

16 lemma injective_agreement :
17 " All A B t #i. Commit (A,B,t) @i ==>
18 (Ex #j. Running (B,A,t) @j & j < i &
19 not (Ex A2 B2 #i2. Commit (A2 ,B2 ,t) @i2 & not (#i2 = #i))
20) | (Ex C #r. Reveal (C)@r & Honest (C) @i)"

Listing 4.4: Overview of Authentication Lemma in TAMARIN based on [Tamarin]

VerificationModel TAMARIN Input Model

 1| rule ParticipantA_msg1:
 2| let
 3| in
 4| []--[
 5| Commit($ParticipantA,
 6| $ParticipantB, arg2)
 7|]->[]
 8|
 9| rule ParticipantB_msg2:
10| let
11| in
12| []--[
13| Running($ParticipantB,
14| $ParticipantA, arg2)
15|]->[]
16|
17| lemma injective_agreement:
18| "All A B t #i
19| …
20| "

type: MessageOut

msg2:

MessageEvent

type: MessageOut

msg2:

MessageEvent

eventsevents

SecurityProtocolModelSecurityProtocolModel

postEventpostEvent

eventsevents

participantA:

Participant

participantA:

Participant
participantB:

Participant

participantB:

Participant

authenticatorauthenticator

QueryModelQueryModel

prevEventprevEvent

authentication

service

authentication

service

arg2: Argumentarg2: Argument

type: Injective Agreement

query:

AuthenticationQuery

type: Injective Agreement

query:

AuthenticationQuery

type: MessageIn

msg1:

MessageEvent

type: MessageIn

msg1:

MessageEvent

Figure 4.43: Generating an Authentication Query in TAMARIN

104

4.6. Back-Translation from Security Model Checkers to MSDs

4.6 Back-Translation from Security Model Checkers to MSDs

In the seventh step, Backward Translation (cf. Figure 4.1 on page 59), VICE translates the analysis
results of a security model checker back to the level of the input language used to specify the
security protocol. The backward translation helps security engineers to understand the results
without deep knowledge of the used security model checkers. Section 4.6.1 presents the Result
metamodel. Section 4.6.2 describes the functional principle of the transformation from the analysis
results to the SECURITY MODELING PROFILE.

4.6.1 Overview of the Metamodel Result

Figure 4.44 depicts the class diagram of the Result metamodel. The class ResultModel refers to a
VerificationModel and encompasses a set of QueryResults. A QueryResult refers to a Query contained
in the QueryModel of the VerificationModel. Moreover, the QueryResult has the property result of
type Boolean.

If a query cannot be fulfilled, the model checker usually provides a counterexample describing
a trace that shows a possible attack. In the ResultModel, a QueryResult may encompass a Trace.
This Trace consists of a set of TraceParticipants and a set of TraceMessages. A TraceParticipant
refers to a Participant of the VerificationModel or to the Attacker. The TraceMessage has a sender
and a receiver of type TraceParticipant. Moreover, the TraceMessage refers to a MessageEvent of the
VerificationModel.

«metamodel» Verification::Result«metamodel» Verification::Result

- verificationModel:

Verification::VerificationM

odel

ResultModel

- verificationModel:

Verification::VerificationM

odel

ResultModel

TraceTrace

- participant: Verification::

Protocol::Participant

TraceParticipant

- participant: Verification::

Protocol::Participant

TraceParticipant

- event: Verification::

Protocol::MessageEvent

TraceMessage

- event: Verification::

Protocol::MessageEvent

TraceMessage

trace

[0..1]

trace

[0..1]

results

[0..*]

results

[0..*]

participants

[2..*]

participants

[2..*]

messages

[0..*]

messages

[0..*]

sender[1..1]sender[1..1]

receiver[1..1]receiver[1..1]

- query: Verification::

Query::Query

- result: Boolean

QueryResult

- query: Verification::

Query::Query

- result: Boolean

QueryResult

succ

[0..1]

pred

[0..1]

succ

[0..1]

pred

[0..1]

- verificationModel:

Verification::VerificationM

odel

ResultModel

Trace

- participant: Verification::

Protocol::Participant

TraceParticipant

- event: Verification::

Protocol::MessageEvent

TraceMessage

trace

[0..1]

results

[0..*]

participants

[2..*]

messages

[0..*]

sender[1..1]

receiver[1..1]

- query: Verification::

Query::Query

- result: Boolean

QueryResult

succ

[0..1]

pred

[0..1]

Figure 4.44: UML class diagram of the Result metamodel

4.6.2 Translate the Analysis Results to the SECURITY MODELING PROFILE

This section presents the functional principle of the transformation from the analysis results of
a model checker to the SECURITY MODELING PROFILE. Algorithm 4.4 depicts an overview of

105

Chapter 4. Verification of Security MSDs

the transformation encompassing three main steps. The step 1 Parsing the Analysis Results to
the ResultModel depends on the used model checker and the other two steps 2 Translating the
ResultModel to the SECURITY MODELING PROFILE and 3 Generating a graphical representation
for the ResultModel are independent of the used model checker.

Algorithm 4.4 Translation from the Analysis Results to the SECURITY MODELING PROFILE

Input: VerificationModel, AnalysisResults
1: ▷ 1 Parsing the Analysis Results to the ResultModel
2: resultModel = createResultModel()
3: for each entry in AnalysisResults do
4: queryResult = parseResult(entry)
5: if queryResult.getResult = false then
6: queryResult.trace = parseTrace(entry)
7: end if
8: resultModel.getQueryResults().add(queryResult)
9: end for

10: ▷ 2 Translating the ResultModel to the SECURITY MODELING PROFILE
11: backward-translation(resultModel, VerificationModel)
12: ▷ 3 Generating a graphical representation for the ResultModel
13: generate-diagram(resultModel, VerificationModel)

At the beginning, the transformation algorithm creates a ResultModel and parses the textual anal-
ysis results of each model checker individually. The analysis results are two-folded: First, the
analysis results contain a summary of all analyzed queries and whether the queries are fulfilled
or not. Second, for each analyzed query that is not fulfilled, the analysis results contain a coun-
terexample, i.e., a successful attack on the security protocol. Hence, the transformation algorithm
creates a new QueryResult for each query and sets its properties. For each counterexample, the
algorithm identifies the corresponding QueryResult and creates a new Trace for this query. In the
second step, the transformation algorithm translates the ResultModel back to the level of the SE-
CURITY MODELING PROFILE. The translation includes two tasks: First, the transformation al-
gorithm translates the verification results back to the SECURITY MODELING PROFILE, i.e., the
properties and assignments referring to a SecrecyQuery or the participants referring to an Authen-
ticationQuery. Second, if a counterexample exists, the transformation algorithm translates it back
to the SECURITY MODELING PROFILE as well. For both tasks, the transformation algorithm ex-
ploits the traceability links that were automatically generated by QVTo during the forward transla-
tion. Thus, the transformation algorithm executes the QVTo operation invresolve to get the source
element for a given model element in the target model. Based on this information, the transforma-
tion algorithm shows the results of the analysis to the user and in the case of a counterexample,
it builds a new sequence diagram representing the counterexample on the level of the SECURITY

MODELING PROFILE.

In the following sections, we present the processing of the analysis results for PROVERIF and
TAMARIN, respectively.

106

4.6. Back-Translation from Security Model Checkers to MSDs

1 Translating the PROVERIF Analysis Results to the ResultModel

In PROVERIF, the summary of the analysis results starts with the keyword Verification summary
and consists of multiple lines. As depicted in Listing 4.5, each line describes the results of a query
and has the form ‘Query’ <Query> ‘is’ <Query Result>, where <Query> is the String describing
the query and <Query Result> is a String that can have the different values true, false, or cannot
be proven. For example, the summary depicted in Listing 4.5 encompasses two query results. The
first query result refers to a SecrecyQuery and proves that the property prop1 is kept secret. The
second query result refers to an AuthenticationQuery and shows that A is not authenticated to B.

1 Verification summary :
2 Query not attacker (prop1) is true.
3 Query event(commit (x)) ==> inj -event(running (x)) is false.

Listing 4.5: Exemplary summary of an analysis in PROVERIF

Figure 4.45 illustrates the translation of a PROVERIF summary to the ResultModel. The transforma-
tion algorithm creates a QueryResult for each line in the summary. Moreover, it parses the <Query
Result> and sets the property result of the QueryResult to true if the <Query Result> is true and
false otherwise. Afterward, the transformation algorithm resolves the Query that corresponds to
the line in the summary. Therefore, it iterates over the set of Queries contained in the QueryModel
and checks whether the PROVERIF representation of the Query matches <Query>. If this is the
case, the transformation algorithm sets the property query of the QueryResult to that Query.

Queries:

QueryModel

Queries:

QueryModel

query1:

PropertyQuery

query1:

PropertyQuery

PROVERIF Input ModelPROVERIF Input Model PROVERIF Analysis ResultsPROVERIF Analysis Results

......

queriesqueries

Query ModelQuery Model

Verification summary:

Query not attacker(prop1) is true.

Query ...

not attacker(new prop1).

...

Result ModelResult Model

Result:

ResultModel

Result:

ResultModel

queryResultsqueryResults

result: true

queryResult1:

QueryResult

result: true

queryResult1:

QueryResult

result: ...

… :

QueryResult

result: ...

… :

QueryResult

Result:

ResultModel

queryResults

result: true

queryResult1:

QueryResult

result: ...

… :

QueryResult

query

Figure 4.45: Translating a PROVERIF summary to the ResultModel

If the <Query Result> is false, the analysis results encompass a counterexample. Figure 4.46 de-
picts a graphical representation of a PROVERIF counterexample. Each counterexample consists of
an Honest Process and an Attacker. The Honest Process corresponds to the PROVERIF main pro-
cess and may create some sub-processes. For example, in Figure 4.46, the Honest Process creates
the two sub-processes Alice and Bob. The creation of a sub-process is represented by a rectangle

107

Chapter 4. Verification of Security MSDs

labeled with Beginning of process X , where X is the name of the process. Messages that are ex-
changed between the different processes are depicted by arrows. The arrows are labeled with a
description of the message. For example, the first message in Figure 4.46 is labeled with (Par-
ticipantA, ParticipantB) indicating that ParticipantA sends its identifier and ParticipantB’s identifier
to the public channel. Moreover, the counterexample contains information about the creation of
nonces or the modification of existing variables.

Honest

Process

Honest

Process
AttackerAttacker

pk(skA)

Beginning of process

ParticipantA

Beginning of process

ParticipantA

Beginning of process

ParticipantB

Beginning of process

ParticipantB

pk(skA)

new skBnew skB

new skAnew skA

Honest

Process
Attacker

pk(skA)

Beginning of process

ParticipantA

Beginning of process

ParticipantB

pk(skA)

new skB

new skA

Figure 4.46: Exemplary counterexample in PROVERIF

The transformation algorithm processes the counterexample as follows: At the beginning, the
transformation algorithm creates a TraceParticipant for each sub-process of the counterexample.
Then, it identifies the corresponding Participant contained in the VerificationModel based on the
name and sets the property participant of the newly created TraceProperty accordingly. Next, the
algorithm processes each process lifeline individually. The algorithm only processes message
events and omits the processing of other information. For each message event that occurs on a
lifeline (i.e., the start or the end of an arrow), the algorithm creates a TraceMessage and identifies
the communication partner. Based on the communication partner and the message events that
already occurred on the lifeline, the algorithm identifies the corresponding MessageEvent contained
in the VerificationModel and sets the property event of the newly created TraceMessage accordingly.

108

4.7. Implementation

1 Translating the TAMARIN Analysis Results to the ResultModel

In TAMARIN, the analysis results encompass a summary of all analyzed queries and whether
they are fulfilled or not. The summary starts with the keyword Section Summary: and consists of
multiple lines. Each line describes the result of a particular query and has the form <Lemma>
([all-traces | exists-trace]): <Query Result>, where <Lemma> is the name of the analyzed lemma
and <Query Result> is a String that can have the different values falsified or verified.

1 Section summary :
2 lemma secrecy_prop1 (all - traces): verified
3 lemma authentication_injective_agreement_A_B (all - traces): falsified

Listing 4.6: Exemplary summary of an analysis in TAMARIN

The transformation algorithm processes the TAMARIN summary similar to the PROVERIF sum-
mary. The transformation algorithm creates a QueryResult for each line in the summary. Moreover,
it parses the <Query Result> and sets the property result of the QueryResult to true if the <Query
Result> is verified and false otherwise. Afterward, the transformation algorithm resolves the Query
that corresponds to the line in the summary. Therefore, it iterates over the set of Queries contained
in the QueryModel and checks whether the TAMARIN representation of the Query matches the
<Query>. If this is the case, the transformation algorithm sets the property query of the QueryRe-
sult to that Query.

4.7 Implementation

This section presents an overview of our prototypical implementation to support and evaluate the
concepts described throughout this chapter. The implementation is integrated into the Eclipse-
based SCENARIOTOOLS MSD [ST-MSD]. In particular, we present the architecture of our imple-
mentation in Section 4.7.1 and the user interface in Section 4.7.2.

4.7.1 Security ScenarioTools (Software Architecture)

Figure 4.47 depicts the software architecture of our prototypical implementation as an extension
to the tool suite SECURITY SCENARIOTOOLS MSDS as described in Section 3.6. The entire
implementation is based on the Eclipse Modeling Framework (EMF) [EMF], Eclipse Xtext [Xtext]
and Eclipse QVT Operational (QVT-O) [QVTo]. In addition, our prototype encompasses the two
security model checkers PROVERIF [Proverif] and TAMARIN [Tamarin].

The model checker independent part of VICE’s forwards translation (cf. Steps 1–3 in Figure 4.1
on page 59) encompasses the metamodel for the VerificationModel and the model transformation
from the SECURITY MODELING PROFILE to the VerificationModel. The metamodel is based on
EMF and implemented by means of the component org.scenariotools.security.verification. The model
transformation is implemented using QVT-O. Moreover, the package contains some Java black-
box libraries for QVT-O providing functionality to handle the evaluation of textual expressions
describing security assignments and security conditions.

109

Chapter 4. Verification of Security MSDs

Legend

Newly implemented

Component / Profile

Newly implemented

Component / Profile
Existing, Reused Framework /

Tool Suite / Profile

Newly implemented

Component / Profile
Existing, Reused Framework /

Tool Suite / Profile

pkg [Package] Implementation of Vicepkg [Package] Implementation of Vice

EMFEMF

PapyrusPapyrus

SCENARIOTOOLS

MSD

SCENARIOTOOLS

MSD

UML2UML2

SECURITY SCENARIOTOOLS MSDSECURITY SCENARIOTOOLS MSD

org.scenariotools.

security.verification

org.scenariotools.

security.verification

org.scenariotools.

security.backward-translation

org.scenariotools.

security.backward-translation

QVT-OQVT-OXtextXtext

TamarinTamarinProVerifProVerif

org.scenariotools.

security.verification.proverif

org.scenariotools.

security.verification.proverif

org.scenariotools.

security.verification.tamarin

org.scenariotools.

security.verification.tamarin

Figure 4.47: Coarse-grained architecture of the implementation and the reused components

The model checker dependent part of VICE’s forward translation (cf. Steps 4–5 in Figure 4.1
on page 59) encompasses the model-to-text transformation to PROVERIF and TAMARIN, and the
execution of the two model checkers. The model-to-text transformations are implemented by the
components org.scenariotools.security.verification.proverif and org.scenariotools.security.verification.-
tamarin using Xtend [Xtend].

The model checker dependent parsing of the analysis results (cf. Step 6 in Figure 4.1 on page 59)
encompasses the metamodel for the ResultModel and the parsing of the PROVERIF and TAMARIN

analysis results. The parsing process is implemented by the components org.scenariotools.security.-
verification.proverif and org.scenariotools.security.verification.tamarin. For both model checkers, the
implementation encompasses the parsing of the summary. However, we have only partially imple-
mented the parsing of the counterexample in PROVERIF and not at all in TAMARIN.

The backward translation of VICE (cf. Step 7 in Figure 4.1 on page 59) encompasses the back-
ward translation of the ResultModel and the generation of a graphical representation of the Re-

110

4.7. Implementation

sultModel. The backward translation is implemented by the component org.scenariotools.security.-
verification.back-translation using QVT-O to resolve the elements of the VerificationModel and
GraphViz to generate the sequence diagram representing the ResultModel.

4.7.2 Security ScenarioTools (User Interface)

SECURITY SCENARIOTOOLS MSDS provides an intuitive wizard to guide the security engineer
through the configuration of VICE. The wizard requires the user to specify the UML model con-
taining the security protocol. Then, SECURITY SCENARIOTOOLS MSDS generates the Verifica-
tionModel and provides an overview of all queries that have been generated. As shown in Fig-
ure 4.48 for the Needham Schroeder Public Key security protocol, the overview separates the
queries into SecrecyQueries and AuthenticationQueries. For each query, the wizard provides a de-
scription providing information about the property that shall be verified and enables the security
engineer to enable/disable the analysis of queries. For example, the first secrecy query relates to
the variable Na that is created during the execution of the protocol (cf. Figure 3.6 on page 37). In
case of AuthenticationQueries, the wizards enables the user to select the desired level of LOWE’s
authentication hierarchy (e.g., Aliveness). For example, the first authentication query relates to the
authentication of Alice to Bob using the level Aliveness of the LOWE’s authentication hierarchy. Fi-
nally, the security engineer can configure which security model checker should be used for the
analysis. By default, both model checkers are used.

Figure 4.48: Overview of the Query Selection View

111

Chapter 4. Verification of Security MSDs

After these configuration steps, the wizard starts the analysis. If both model checkers are executed
in the automated mode, VICE provides the analysis results to the security engineer. The result
view provides an overview of whether the query is fulfilled or not fulfilled.

4.8 Evaluation

We conduct a case study based on the guidelines by KITCHENHAM ET AL. [KPP95] and RUNE-
SON ET AL. [RH09; Run12] for evaluating VICE. Our case study investigates VICE’s applicabil-
ity in practice.

4.8.1 Case Study Context

We examine the three evaluation questions:

EQ1 Does VICE generate syntactically and semantically correct PROVERIF and TAMARIN

input models?

EQ2 Does VICE’s automatic derivation of analysis queries lead to correct queries for the
security analysis of PROVERIF and TAMARIN?

EQ3 Does VICE correctly translate all analysis results (e.g., fulfillment of each query)
from PROVERIF and TAMARIN back to ScenarioTools?

To answer the questions, we use the same 14 security protocols from our data collection that
have been modeled successfully in the evaluation of our SECURITY MODELING PROFILE (cf.
Section 3.7). The selected security protocols use different cryptographic primitives and partially
rely on a trusted third party. Moreover, for some security protocols flaws have been found using
symbolic model checking (e.g., the Needham Schroeder Public Key security protocol). For our
case study, we use the flawed and the corrected version of the security protocols if existing. Thus,
the selected security protocols present a broad range of possible security protocols, including
correct and flawed ones.

4.8.2 Setting the Hypotheses

We define the following hypotheses for this case study. Hypotheses H1.1 and H1.2 refer to evalu-
ation question EQ1; hypotheses H2.1 and H2.2 refer to evaluation question EQ2, and hypotheses
H3.1–H5.2 refer to evaluation question EQ3.

H1.1 The different security protocols can be transformed into syntactically and semanti-
cally correct PROVERIF models. For evaluating H1.1, we generate the input models for
the MSD specifications created for the evaluation of our SECURITY MODELING PROFILE

in Section 3.7 and analyze them in PROVERIF. We consider H1.1 as fulfilled if all input
models can be opened and analyzed in PROVERIF.

112

4.8. Evaluation

H1.2 The different security protocols can be transformed into syntactically and semanti-
cally correct TAMARIN models. For evaluating H1.2, we generate the input models for
the MSD specifications created for the evaluation of our SECURITY MODELING PROFILE

in Section 3.7 and analyze them in TAMARIN. We consider H1.2 as fulfilled if all input
models can be opened and analyzed in TAMARIN.

H2.1 The automatic derivation of analysis queries and their translation to PROVERIF is cor-
rect and complete. For evaluating H2.1, we manually investigate the generated PROVERIF

inputs models and check whether the generated queries are correctly specified. We consider
H2.1 as fulfilled if the VICE generates the queries as explained in Section 4.4.3.

H2.2 The automatic derivation of analysis queries and their translation to TAMARIN is cor-
rect and complete. For evaluating H2.2, we manually investigate the generated TAMARIN

inputs models and check whether the generated queries are correctly specified. We consider
H2.2 as fulfilled if the VICE generates the queries as explained in Section 4.5.3.

H3.1 The security analysis of the specified security protocols is correct, i.e., PROVERIF

finds the same attacks as if the security protocol were modeled manually by a security
expert in the symbolic model. As mentioned above, security experts have performed a
security analysis and published the results in various papers. We consider H3.1 as fulfilled
if we yield the same results.

H3.2 The security analysis of the specified security protocols is correct, i.e., TAMARIN

finds the same attacks as if the security protocol were modeled manually by a security
expert in the symbolic model. As mentioned above, security experts have performed a
security analysis and published the results in various papers. We consider H3.2 as fulfilled
if we yield the same results.

H4.1 The overview of the PROVERIF analysis results is correct and complete. For evalu-
ating H4.1, we manually investigate the results of the PROVERIF analysis and compare it
with the summary shown to the user. We consider H4.1 as fulfilled if VICE’s processes the
analysis results correctly and shows them to the user.

H4.2 The overview of the TAMARIN analysis results is correct and complete. For evalu-
ating H4.2, we manually investigate the results of the TAMARIN analysis and compare it
with the summary shown to the user. We consider H4.2 as fulfilled if VICE’s processes the
analysis results correctly and shows them to the user.

H5.1 The backward translation of PROVERIF’s counterexamples is correct and complete.
For evaluating H5.1, we manually investigate the counterexample produced by PROVERIF

and compare it with the counterexample shown to the user. We consider H5.1 as fulfilled if
VICE’s processes the counterexamples correctly and shows them to the user.

H5.2 The backward translation of PROVERIF’s counterexamples is correct and complete.
For evaluating H5.1, we manually investigate the counterexample produced by PROVERIF

and compare it with the counterexample shown to the user. We consider H5.1 as fulfilled if
VICE’s processes the counterexamples correctly and shows them to the user.

113

Chapter 4. Verification of Security MSDs

4.8.3 Validating the Hypotheses

In the following, we validate each hypothesis separately using the prototypical implementation of
VICE described in Section 4.7. Moreover, we use the MSD specifications that we created during
the evaluation of our SECURITY MODELING PROFILE (cf. Section 3.7) as input for the transfor-
mation approach to generate the corresponding input models for PROVERIF and TAMARIN.

Validating Hypotheses H1.1 and H1.2

To validate H1.1 and H1.2, we executed the forward translation of VICE (cf. Steps 1–3 in Fig-
ure 4.1 on page 59) for all 14 security protocols. We disabled the derivation of analysis queries to
concentrate on the generation of the security protocols. As a result, we got a VerificationModel, a
PROVERIF file, and a TAMARIN file for each security protocol.

We repeated the forward translation five times for all 14 security protocols to investigate whether
the forward translation produced deterministic results. The only difference in the VerificationModel
and the text files is the order of elements in unordered sets, e.g., the ordering of participants in the
security protocol. However, this difference does not influence the semantics. Thus, we conclude
that the forward translation produces deterministic results.

Next, we checked whether the generated PROVERIF and TAMARIN files are syntactically correct.
To do this, we opened each file with the corresponding model checker and used the internal func-
tionality to report any syntax errors. The tools did not report any syntax errors. However, in the
first versions of the translation to TAMARIN, some well-formedness checks failed. The reason for
this was that we used a static preamble containing all possible restrictions to model the conditional
behavior. After we switched to a dynamic preamble that only contained the parts that were used
in the security protocol, no well-formedness check failed. Thus, we conclude that the forward
translation produces syntactically correct PROVERIF and TAMARIN files.

Afterward, we opened the generated PROVERIF and TAMARIN files and manually searched for
deviations between the original MSD specifications of the 14 security protocols and the resulting
PROVERIF and TAMARIN input models. We did not find any deviations.

Moreover, we checked whether the generated PROVERIF and TAMARIN models are executable.
For PROVERIF, we manually added a variable executedX and a secrecy query of the form query
attacker(executedX) for each participant X to the PROVERIF model. The variable executedX is sent
to the public channel after the last event occurred in the behavior of the participant X. If the attacker
knows all variables executedX, the model is executable. Based on these queries, we conclude that
all PROVERIF models are executable.

For TAMARIN, we manually added an executability lemma to the TAMARIN model. Therefore, we
have annotated the first rule for each participant X with the action fact StartParticipantX() and the
last message of the participant with the action fact EndParticipantX(). In addition, we have added
a lemma to the TAMARIN model that holds if a trace exists that includes all annotated action facts
and without an adversary that reveals one of the participants’ secret keys. Based on these lemmas,
we conclude that all TAMARIN models are executable.

114

4.8. Evaluation

Validating Hypotheses H2.1 and H2.2

To validate H2.1 and H2.2, we executed the forward translation of VICE (cf. Steps 1–3 in Fig-
ure 4.1 on page 59) for all 14 security protocols. For each security protocol, we generated secrecy
queries and all kinds of authentication queries (aliveness, weak agreement, non-injective agree-
ment, and injective agreement). As a result, we got for each security protocol five VerificationMod-
els, five PROVERIF files and five TAMARIN files.

As for validating H1.1 and H1.2, we checked whether the forward translation produces determinis-
tic and syntactically correct PROVERIF and TAMARIN files and whether the models are executable.
Our checks showed that all models are syntactically correct and executable.

Validating Hypotheses H3.1 and H3.2

To validate H3.1 and H3.2, we executed the forward translation of VICE (cf. Steps 1–3 in Fig-
ure 4.1 on page 59) for all 14 security protocols and analyzed the resulting files with PROVERIF

and TAMARIN. For the authentication queries, we checked whether the results are consistent, i.e.,
if a security protocol fulfills injective agreement, it has to fulfill the other authentication specifi-
cations as well. Moreover, we compared the results with known results from the literature. If a
security flaw has been reported for the security protocol that can be found in the symbolic model,
VICE finds that flaw as well. In addition, if we apply the suggested corrections for the flaw, VICE
states that the security protocol is correct.

Validating Hypotheses H4.1 and H4.2

To validate H4.1 and H4.2, we executed VICE for all 14 security protocols. For each execution,
we investigate the textual results provided by PROVERIF and TAMARIN and compare them with
the results provided by VICE. We did not find any deviation.

Validating Hypotheses H5.1 and H5.2

As explained in Section 4.6, we only developed a concept for parsing the counterexample in
PROVERIF that has only partially been implemented. Therefore, we can only validate parts of
the two hypotheses.

We executed VICE for all 14 security protocols. For each counterexample produced by PROVERIF,
we manually created the trace for the query following the concept described in Section 4.6. After-
ward, we executed the backward translation and investigated the resulting sequence diagram. We
checked if the sequence diagram only uses names that are used in the security protocol specified
by means of the SECURITY MODELING PROFILE. Moreover, we checked for deviations in the
message ordering of the sequence diagram and the counterexample. In both cases, we did not find
any deviation.

115

Chapter 4. Verification of Security MSDs

4.8.4 Analyzing the Results

Table 4.3 summarizes the results of the case study for the PROVERIF-related hypotheses and Ta-
ble 4.4 for the TAMARIN-related hypotheses. For all selected security protocols, our transforma-
tion approach is able to transform the modeled MSD specification to syntactically and semanti-
cally correct input models in PROVERIF and TAMARIN. We were able to open and analyze each
input model in the corresponding model checker. Thus, we conclude that H1 and H2 are fulfilled.

Moreover, the queries generated during the transformation are correct and complete. The analysis
results yield the expected results. Moreover, the result view presents a correct summary of the
results at the level of the SECURITY MODELING PROFILE. Thus, we conclude that H3 and H4 are
fulfilled.

However, the processing of counterexamples is only partially supported. While VICE is able to
translate a given Trace correctly to the level of the SECURITY MODELING PROFILE and to create
a correct graphical representation of the trace, the parsing of the counterexample for both model
checkers does not work. Thus, we conclude that H5 is only partially fulfilled.

Concluding the case study, the fulfilled hypotheses indicate that our proposed model-checking
approach for automatically verifying security protocols is applicable in practice. However, the
correct handling of counterexamples should be improved in future work.

116

4.8.
E

valuation
Table 4.3: Results of the case study for the PROVERIF-related hypotheses

No. Security Protocol H1.1 H2.1 H3.1 H4.1 H5.1

VICE generates correct
input models for

PROVERIF

VICE correctly translates
the derived analysis

queries to PROVERIF

VICE yields the expected
analysis results

VICE provides a correct
summary of the analysis

results to the user

VICE parses the
counterexamples correctly
and shows them to the user

1 Andrew Secure RPC [Sat89;
BAN90; Low96a]

 G

2 Andrew Secure RPC
(BAN) [Sat89; BAN90;
Low96a]

 G

3 Bull’s Authentication Protocol
[BO97; RS98]

 G

4 CH07 [vR09] G

5 CCITT-X.509-Protocol [IM90] G

6 Denning-Sacco Shared
Key [DS81; Low00]

 G

7 Diffie Helman [DH76] G

8 Gong’s Mutual Authentication
Protocol [Gon89]

 G

9 Kao Chow’s Authentication
Protocol [KC95]

 G

10 Kerberos [BM90; NT94;
Low00]

 G

11 Needham-Schroeder Public
Key [Low96b]

 G

12 Needham-Schroeder
Symmetric Key [Low96b]

 G

13 Wide Mouthed Frog [BAN90;
Low00]

 G

14 Woo and Lam Mutual
Authentication [WL94]

 G

Legend: fulfilled, G partially fulfilled, # not fulfilled

117

C
hapter4.

V
erification

ofSecurity
M

SD
s

Table 4.4: Results of the case study for the TAMARIN-related hypotheses

No. Security Protocol H1.1 H2.1 H3.1 H4.1 H5.1

VICE generates correct
input models for

TAMARIN

VICE correctly translates
the derived analysis
queries to TAMARIN

VICE yields the expected
analysis results

VICE provides a correct
summary of the analysis

results to the user

VICE parses the
counterexamples correctly
and shows them to the user

1 Andrew Secure RPC [Sat89;
BAN90; Low96a]

 G

2 Andrew Secure RPC
(BAN) [Sat89; BAN90;
Low96a]

 G

3 Bull’s Authentication Protocol
[BO97; RS98]

 G

4 CH07 [vR09] G

5 CCITT-X.509-Protocol [IM90] G

6 Denning-Sacco Shared
Key [DS81; Low00]

 G

7 Diffie Helman [DH76] G

8 Gong’s Mutual Authentication
Protocol [Gon89]

 G

9 Kao Chow’s Authentication
Protocol [KC95]

 G

10 Kerberos [BM90; NT94;
Low00]

 G

11 Needham-Schroeder Public
Key [Low96b]

 G

12 Needham-Schroeder
Symmetric Key [Low96b]

 G

13 Wide Mouthed Frog [BAN90;
Low00]

 G

14 Woo and Lam Mutual
Authentication [WL94]

 G

Legend: fulfilled, G partially fulfilled, # not fulfilled

118

4.8. Evaluation

4.8.5 Threats to Validity

The threats to validity in our case study are as follows:

Construct Validity

The case study was designed and conducted by the same researcher who developed the approach.
Since the researcher might have a bias toward the developed approach, the case study would be
more significant if security experts had modeled the security protocols, executed the transforma-
tion approach, and reviewed the results. To mitigate this, we discussed our approach for the au-
tomatic verification of security protocols with security experts from academia. Moreover, we dis-
cussed the case study design and its research questions with other researchers.

In addition, case study results have yet to be evaluated by security experts from academia or
industry. To mitigate this, the cases are well known, and their description was taken from literature
providing a summary of possible attacks. Thus, we were able to compare our results with the ones
from the literature.

External Validity

We only considered 14 different security protocols and, thus, cannot generalize the fulfillment of
the hypotheses for all possible security protocols. Nevertheless, the selected security protocols
represent typical examples including different cryptographic primitives. Furthermore, some of the
security protocols are correct, while others contain flaws that can be found using symbolic model
checking. Thus, we do not expect large deviations from other examples. Moreover, during the
selection of the cases, we took care that we select security protocols that use different building
blocks (e.g., encryption, hashing, etc.) in different combinations. Although we cannot guarantee
that our selected cases are representative, we cover at least a broad range of security protocols.

Reliability

The case study was conducted based on the prototype implementation that might not be available
in the future. To mitigate this, the implemented concepts are defined throughout this chapter and
can be newly implemented.

To analyze the results of our case study, we manually check the input models for PROVERIF and
TAMARIN encompassing the description of the protocol behavior as well as the queries to verify.
The researcher may have made a mistake while checking the input models. To mitigate this, we
checked the input models using the internal validation functionality of the two model checkers
and executed the corresponding analysis. Thereby, we can ensure that the generated input model
is syntactically correct. Moreover, by comparing the results with the results from the literature, we
could also judge whether the input model is semantically correct.

119

Chapter 4. Verification of Security MSDs

4.9 Related Work

Several approaches exist that focus on the specification of security protocols and their analysis
using security model checkers like PROVERIF or TAMARIN. The modeling language of these ap-
proaches is either textual or graphical. However, in most approaches, only one model checker is
supported and the modeling language is very close to the input language of the targeted model
checker. Hence, the integration of further model checkers requires changes to the modeling lan-
guage. In contrast, our SECURITY MODELING PROFILE has been designed to model the general
concepts of security protocols independent of the targeted model checkers.

Furthermore, in most approaches, the security engineer has to manually specify the queries to an-
alyze security properties. This requires a deep knowledge of the used model checker. In our ap-
proach, we automatically derive the analysis queries from our SECURITY MODELING PROFILE

and thus significantly reduce the effort for the modeling and analysis of security protocols. Fur-
thermore, we provide a basic back-translation from the model checker to the modeling tool. Thus,
we additionally facilitate the analysis of security protocols.

In the following, we discuss related work in two categories: First, we present in Section 4.9.1
approaches that use a model-based specification language to specify security protocols and in
Section 4.9.2 approaches that use a text-based specification language to specify security protocols.
All approaches have in common that they translate the specified security protocol to a security
model checker to analyze it.

4.9.1 Model-based approaches for the automated verification of security protocols

“FANG ET AL. [SLF+14; FLH+16] propose a modeling and analysis approach for security pro-
tocols. They introduce a UML profile to enable the modeling of security protocols by means of
UML Interactions. In addition, they describe a translation from their UML profile to PROVERIF

to verify the properties of the specified security protocol. [...] Compared to our profile, their pro-
file does not model the general concepts of security protocols but remains very close to the input
language of PROVERIF. As a consequence, the security engineer has still to learn the input lan-
guage of PROVERIF. Furthermore, they do not provide any support for choosing a sufficient set of
analysis queries” [*KDH+20].

“AMEUR-BOULIFA ET AL. [ALA19; LLA+16] present a modeling approach based on SysML to
enable the specification of security aspects for embedded systems. They enhance SysML block
and state machine diagrams to capture security features like secrecy and authentication. Further-
more, they provide a model-to-text transformation to enable the formal verification of the security
concepts by means of PROVERIF. While they enable the automatic derivation of secrecy queries,
the security engineer has to manually define authentication queries. In contrast to their approach,
we conceived a modeling approach based on sequence charts since they are more appropriate for
the specification of requirements on message-based interactions [LT15]. In addition, we support
the security engineer in choosing a sufficient set of analysis queries (secrecy and authentication).
Thus, the security engineer no longer has to learn the query language. Furthermore, she/he cannot
make mistakes when defining queries or forget important queries” [*KDH+20].

RAIMONDO ET AL. [RBM+22] propose a modeling and analysis approach for security proto-
cols based on UML Interactions and TAMARIN. The authors focus on the security analysis of

120

4.9. Related Work

blockchain-based protocols. They describe a translation from their UML modeling language to
the Alice & Bob specification. The Alice & Bob specification is then automatically translated to
TAMARIN to verify the security of the protocol. Compared to our profile, their modeling language
does not model the general concepts of security protocols but focuses on blockchain-based proto-
cols and hides basic security primitives from the security engineer. Moreover, their approach does
not support the generation of analysis queries. Instead, the security engineer has to add the queries
as goals to the Alice & Bob specification or to the TAMARIN input model. Hence, the security
engineer has still to learn more than one specification language.

MÉRÉ ET AL. [MJP+22] present their experiences on the formal verification of UML models in
an industrial context. Amongst others, they informally introduce a modeling language to specify
security protocols by means of UML Interaction. Furthermore, they present a translation from their
UML Interaction to VerifPal, a model checker for the verification of security protocols presented
by KOBEISSI ET AL. [NGM19]. Compared to our profile, their informally defined modeling
language does not model the general concepts of security protocols but focuses on the modeling
of blockchain-related aspects. In addition, they do not provide any support for choosing a sufficient
set of analysis queries.

4.9.2 Text-based approaches for the automated verification of security protocols

KOBEISSI ET AL. [NGM19] propose a modeling analysis approach for security protocols aim-
ing to work better for real-world practitioners. Therefore, they introduce a textual language for
modeling protocols that is supposed to be easier to write and understand than the languages em-
ployed by existing tools. Based on that textual language, they have developed a formal verification
approach to analyze the security protocols concerning confidentiality and authentication. More-
over, they provide a translation to PROVERIF and Coq for further analysis. As in our modeling
approach, they restrict the user to a predefined set of primitives. In contrast to our approach, they
use a textual input language while we use a graphical modeling language. Both approaches have
in common that they model the security protocol in a notion of sequence diagrams.

BUGLIESI ET AL. [BCM+16] present the textual modeling language AnBx, a formal protocol spec-
ification language based on the Alice & Bob notation. They define formal semantics for the lan-
guage based on the AVISPA intermediate format to enable the analysis of the protocol. Moreover,
the AnBx modeling language enables security engineers to specify security properties. Their ap-
proach includes a transformation from AnBx to PROVERIF [GM17]. In contrast to their approach,
we automatically derive an initial set of queries for verifying the security protocol. Thereby, we
enable security engineers without deep knowledge to verify security protocol. However, enabling
custom queries makes the AnBx approach more flexible and points to future work for our ap-
proach.

METERE AND ARNABOLDI [MA22] present the text-based approach METACP, an automated tool
to simplify the design and the analysis of security protocols. METACP enables security engineers
to specify security protocols in a graphical interface using an Alice & Bob-based notation. More-
over, METACP provides different plugins to analyze the security protocol by means of PROVERIF

or TAMARIN. However, in contrast to our approach, METACP does neither support the automatic
derivation of analysis queries nor their manual specification. Thus, security engineers would have
to change the text file manually to add analysis queries.

121

Chapter 4. Verification of Security MSDs

KELLER [Kel14] proposes an automatic translation from security protocols specified by means
of the Alice & Bob notation to TAMARIN input models. Compared to [MA22], KELLER enables
the automatic generation of analysis queries based on a goals section as part of the Alice & Bob
notation. In contrast to our approach, they use a textual input language while we use a graphical
modeling language. Both approaches have in common that they model the security protocol in a
notion of sequence diagrams and that security engineers do not need to specify analysis queries
directly in the security model checker’s input language.

NAKABAYASHI AND OKANA [NO21] present a verification method of key-exchange protocols
using TAMARIN. Their approach verifies whether a security protocol satisfies main security prop-
erties like confidentiality and authentication. To simplify the specification process, they defined a
template for the security model encompassing basic lemmas used for the analysis in TAMARIN.
The security protocol is specified by a specification language similar to the rewriting rules of
TAMARIN. In an automated step, the security protocol specification is combined with the security
model template to retrieve the TAMARIN input model. Compared to our approach, the security
engineer has still to learn the TAMARIN language, which is generally hard to comprehend.

4.10 Summary

This chapter presents VICE (VIsual Cryptography vErifier), a model-checking approach for au-
tomatically verifying security protocols concerning secrecy and authentication. VICE encom-
passes an automatic and systematic technique for the transition from our SECURITY MODELING

PROFILE to the two security model checkers PROVERIF and TAMARIN.

For this purpose, VICE encompasses two steps manually executed by a security engineer and six
fully automated steps using model transformation techniques. The model transformation tech-
niques translate the security protocols into the input language of the symbolic model checker. In
particular, the model transformation generates the flow of the security protocols and all relevant
queries for verifying secrecy and authentication properties. Moreover, VICE automatically exe-
cutes the symbolic model checker and provides the analysis results to the user.

We implemented a prototype based on SCENARIOTOOLS MSD and evaluated the applicability
in practice of VICE by means of 14 security protocols. We evaluate whether the transformation
derives correct inputs for the two symbolic model checkers PROVERIF and TAMARIN. Moreover,
we evaluate whether the model checkers yield the expected analysis results. Our evaluation results
indicate that VICE provides an intuitive way to apply model checking for verifying security pro-
tocols. In particular, security engineers do not need deep knowledge of the used model checker
since VICE completely encapsulates this knowledge.

122

5

Incorporation of Functional and Security MSDs

This chapter presents an extension to our scenario-based requirements engineering methodol-
ogy [*HFK+16b] incorporating functional and security requirements. In particular, we introduce
the MISUSE CASE MODELING PROFILE, which enables the specification of misuse cases [SO05]
against the system under development. Moreover, we introduce the SECURITY PROTOCOL

TEMPLATE PROFILE, which enables the systematic reuse of security protocols within scenario-
based requirements specifications. Finally, by extending the Play-out algorithm, we enable re-
quirements engineers to determine whether the specified security requirements are sufficient to
mitigate the misuse cases. Existing security requirements engineering approaches (e.g., [SO05;
PX05; HLM+08; FC03; MG07]) focus on the informal specification of misuse cases and the
derivation of appropriate security requirements to mitigate these misuse cases. However, they do
not provide an integrated analysis of functional and security-related aspects or sufficient analysis
techniques to validate whether the security requirements can mitigate the specified misuse case.

This chapter is structured as follows: We provide a list of our contributions in Section 5.1.
Then, we apply the two profiles MISUSE CASE MODELING PROFILE and SECURITY PROTOCOL

TEMPLATE PROFILE in Section 5.2. Subsequently, we present concepts of the MISUSE CASE

MODELING PROFILE and SECURITY PROTOCOL TEMPLATE PROFILE in Section 5.3 and Sec-
tion 5.4. Afterward, we provide information about the implementation in Section 5.5 and eval-
uate both approaches by means of a case study in Section 5.6. We investigate related work in
Section 5.7. Finally, we summarize this chapter in Section 5.8.

We published contents of this chapter in two papers ([*Koc18] and [*KTD+22]). In addition,
parts of this chapter have been contributed by the bachelor theses of HOCHHALTER [+Hoc20] and
TRIPPEL [+Tri21], as well as in the master thesis of JAZAYERI [+Jaz15]. HOCHHALTER made
some initial contributions towards the specification of misuse and mitigation scenarios within the
MSD specification. TRIPPEL provided an initial concept for the integration of security protocols
within functional MSDs. JAZAYERI developed an initial concept for the specification of security
properties by means of MSDs and their automated analysis.

123

Chapter 5. Incorporation of Functional and Security MSDs

5.1 Contributions

The contributions of this chapter can be summarized as follows:

• We define a UML profile called the MISUSE CASE MODELING PROFILE extending UML
Interactions and Modal Sequence Diagrams for specifying misuse cases.

• We define a UML profile called the SECURITY PROTOCOL TEMPLATE PROFILE extending
the SECURITY MODELING PROFILE to reuse security protocols systematically in require-
ment MSDs. This extension encompasses specifying parameterizable templates for security
protocols and referencing these templates in scenario-based requirements specifications.

• We extend the Play-out algorithm to enable the simulation of scenario-based requirements
specification specified by means of the two newly created profiles.

• We implement a prototype based on SCENARIOTOOLS MSD and show in an evaluation that
our approach is applicable in practice.

5.2 Exemplary Application of the MISUSE CASE MODELING
PROFILE and the SECURITY PROTOCOL TEMPLATE PROFILE

In this section, we apply the two profiles MISUSE CASE MODELING PROFILE and SECU-
RITY PROTOCOL TEMPLATE PROFILE to the Emergency Braking & Evasion Assistance Sys-
tem (EBEAS). Subsequently, we specify misuse cases against the EBEAS and security measures
to mitigate these misuse cases.

The MSD specification, introduced in Section 2.1.1, specifies requirements on the communication
behavior of the EBEAS. The situation is as follows: If the leading: Vehicle detects an obstacle in
front, it has to perform an emergency brake and inform the ego: Vehicle about the emergency brake.
Then ego: Vehicle checks if it can perform an emergency brake and communicates with the vehicle
rear: Vehicle to further coordinate the actions to the dangerous situation. If the situation analysis
shows that a crash is unavoidable, the involved vehicles will activate their pre-crash systems.

A couple of possible attacks against the use case defined by the MSD specification exist. For ex-
ample, an attacker could spoof the leading: Vehicle to send an emergency brake warning. Moreover,
an attacker could initiate a man-in-the-middle attack between ego: Vehicle and rear: Vehicle.

Subsequently, we specify the man-in-the-middle attack as a misuse case using the MISUSE CASE

MODELING PROFILE. Figure 5.1 depicts the UML classes for the misuse case. We reuse the
classes Environment and Vehicle as defined in Section 2.1.1. Furthermore, the class diagram en-
compasses a class for the attacker annotated with the stereotype «Attacker». The attacker does not
have any properties or operations.

124

5.2. Exemplary Application of the MISUSE CASE MODELING PROFILE and the SECURITY PROTOCOL
TEMPLATE PROFILE

class [Package] Man-in-the-Middle-Attack::Typesclass [Package] Man-in-the-Middle-Attack::Types

+ obstacle()
+ emcyBrakeWarning()
+ standstill()

Vehicle

+ obstacle()
+ emcyBrakeWarning()
+ standstill()

Vehicle

+ emcyBraking()

Environment

+ emcyBraking()

Environment AttackerAttacker

Figure 5.1: UML class diagram for the Man-in-the-Middle-Attack

Based on the classes, the UML collaboration, depicted in Figure 5.2, specifies the roles partici-
pating in the misuse case. As for the use case, the UML collaboration encompasses the four roles
leading: Vehicle, ego: Vehicle, rear: Vehicle, and env: Environment. Furthermore, the UML collabora-
tion contains the role att: Attacker. att: Attacker spoofs leading: Vehicle and ego: Vehicle to pursue
the man-in-the-middle attack (cf. dependency «spoofs» in Figure 5.2).

«Misuse Case»

Man-in-the-Middle Attack

«Misuse Case»

Man-in-the-Middle Attack

«Environment»
env: Environment
«Environment»

env: Environment

leading: Vehicleleading: Vehicle

ego: Vehicleego: Vehicle

rear: Vehiclerear: Vehicle
«Attacker»
att: Attacker
«Attacker»
att: Attacker«spoofs»«spoofs»

«spoofs»«spoofs»

Figure 5.2: UML collaboration diagram for the Man-in-the-Middle-Attack

Figure 5.3 depicts the MSD describing the man-in-the-middle attack. The MSD encompasses the
three lifelines ego: Vehicle, att: Attacker, and rear: Vehicle representing the roles defined in the UML
collaboration. At the beginning of the attack, ego: Vehicle allegedly sends the message emcyBrake-
Warning() to rear: Vehicle. However, this message is intercepted by att: Attacker. Then, att: Attacker
forwards this message to rear: Vehicle and thus presents itself as a legitimate vehicle. ego: Vehicle
checks whether it is possible to brake safely. Since this is not the case, ego: Vehicle sends the mes-
sage emcyBrakeResponse(false) to att: Attacker. att: Attacker changes the parameter from “false” to
“true” and forwards the message to ego: Vehicle. Due to the changed parameter, a rear-end collision
occurs in the further process without an activated pre-crash system.

To mitigate the misuse case, a requirements engineer must integrate security measures into the
scenario-based requirements specification. For this, they can use the cryptographic primitives of
the SECURITY MODELING PROFILE or they can use existing and verified security protocols to
establish secure communication.

For example, the requirements engineer could specify the requirement that all messages sent by
the vehicles must be secured by a digital signature. Thus, as depicted in Figure 5.4a, the require-
ments engineer adds a cryptographic key pair to the properties of the class Vehicle. Moreover, as
depicted in Figure 5.4b, he/she uses the dependency with the applied stereotype «knownKeys» to

125

Chapter 5. Incorporation of Functional and Security MSDs

msd «Attack Scenario» Man-in-the-Middle Attackmsd «Attack Scenario» Man-in-the-Middle Attack

emcyBrakeWarning()

emcyBrakeWarning()

emcyBrakeResponse(true)

ego: Vehicleego: Vehicle rear: Vehiclerear: Vehicle
«Attacker»

att: Attacker

«Attacker»

att: Attacker

emcyBrakeResponse(val)

isEmcyBrake

Possible(val)

Figure 5.3: MSD for the Man-in-the-Middle-Attack

define that the vehicles know the public keys of each other. The requirements engineer adds the
stereotype «DigitalSigned» to the messages and sets the properties of the stereotype accordingly (cf.
Figure 5.4c). Finally, the requirements engineer creates nonces and adds these nonces as parame-
ters to the exchanged messages to prevent replay attacks. For example, the nonce Nego is added to
the message emcyBrakeWarning().

Although signing the messages would be sufficient to mitigate the man-in-the-middle attack, one
problem remains. To validate the signature, the vehicles must know each other’s public keys.
However, storing all potential public keys on the vehicles upfront is unrealistic. Instead, the public
keys could be stored at a trusted third party and sent to the vehicles on demand using a standardized
protocol.

For example, the requirements engineer could decide to use a slightly modified variant of the
Needham-Schroeder Public Key security protocol. In the modified version, the trusted third party
stores both a public key for encryption and a public key for validating the signature. On request,
the trusted third party sends both public keys to the requester.

To integrate the Needham-Schroeder Public Key security protocol into the scenario-based require-
ments engineering specification, the requirements engineer uses a UML::InteractionUse and applies
the stereotype «SecurityProtocolReference». As depicted in Figure 5.5, the «SecurityProtocolRef-
erence» references the MSD defining the Needham-Schroeder Public Key security protocol and
adapts the security protocol to the application context. Therefore, the ego: Vehicle has to substi-
tute the role alice: Alice and the role rear: Vehicle has to substitute the role bob: Bob. This is real-
ized by the roleMap, where a roleParameter of the security protocol is substituted by a roleArgu-
ment (cf. alice: Alice is substituted by ego: Vehicle in Figure 5.5). Furthermore, the propertyMap en-
ables the substitution of properties used in the security protocols. After the execution of the proto-
col, the two roles know each other’s public key and can use it to secure their communication (cf.
emcyBrakeWarning with applied stereotype «DigitalSigned» in Figure 5.4c).

126

5.2. Exemplary Application of the MISUSE CASE MODELING PROFILE and the SECURITY PROTOCOL
TEMPLATE PROFILE

class [Package] EmergencyBraking::Typesclass [Package] EmergencyBraking::Types

+ obstacle()
+ emcyBrakeWarning()
+ standstill()

- «SigPrivateKey»

 privKeyVe: String

+ «SigPublicKey»

 pubKeyVe: String

Vehicle

+ obstacle()
+ emcyBrakeWarning()
+ standstill()

- «SigPrivateKey»

 privKeyVe: String

+ «SigPublicKey»

 pubKeyVe: String

Vehicle

+ emcyBraking()

Environment

+ emcyBraking()

Environment AttackerAttacker

(a) UML class diagram

EmergencyBraking

EmergencyBraking

«Environment»
env: Environment
«Environment»

env: Environment

leading: Vehicleleading: Vehicle

ego: Vehicleego: Vehicle

rear: Vehiclerear: Vehicle

«knownKeys»«knownKeys»
sigPubKeys =

[rear.pubKeyVe]

«knownKeys»«knownKeys»
sigPubKeys =

[ego.pubKeyVe]

«knownKeys»«knownKeys»
sigPubKeys =

[leading.pubKeyVe]

«knownKeys»«knownKeys»
sigPubKeys =

[rear.pubKeyVe]

(b) UML collaboration diagram

msd EgoEmcyBrakeRequestmsd EgoEmcyBrakeRequest

emcyBrakeWarning(Nego)

emcyBrakeResponse(Nrear ,val)

ego: Vehicleego: Vehicle rear: Vehiclerear: Vehicle

«DigitalSigned»

privateKey: ego.privKeyVe

«DigitalSigned»

privateKey: ego.privKeyVe
isEmcyBrake

Possible(val)

Nego =

createNonce()

Nrear =

createNonce()

«DigitalSigned»

privateKey: rear.privKeyVe

«DigitalSigned»

privateKey: rear.privKeyVe

leading: Vehicleleading: Vehicle

emcyBrakeWarning()

(c) MSD specification

Figure 5.4: Exemplarily application of the SECURITY MODELING PROFILE to mitigate the man-
in-the-middle attack

127

Chapter 5. Incorporation of Functional and Security MSDs

msd EgoEmcyBrakeRequestmsd EgoEmcyBrakeRequest

emcyBrakeWarning(Na)

ego: Vehicleego: Vehicle rear: Vehiclerear: Vehicle

«DigitalSignature»

privateKey: ego.privKeyVe

publicKey: ego.pubKeyVe

«DigitalSignature»

privateKey: ego.privKeyVe

publicKey: ego.pubKeyVe

Nego =

createNonce()

emcyBrakeWarning()

leading: Vehicleleading: Vehicle

ref Needham-Schroeder PublicKeyref Needham-Schroeder PublicKey

«SecurityProtocolReference»
roleMap = {

 roleParameter = alice: Alice,

 roleArgument = ego: Vehicle

 propertyMap = {

 [propertyParameter = privKeyA,

 propertyArgument = ego.privKeyVe],

 […],

 }

}

«SecurityProtocolReference»
roleMap = {

 roleParameter = alice: Alice,

 roleArgument = ego: Vehicle

 propertyMap = {

 [propertyParameter = privKeyA,

 propertyArgument = ego.privKeyVe],

 […],

 }

}

Figure 5.5: Exemplarily application of the SECURITY PROTOCOL TEMPLATE PROFILE

5.3 Specification of Misuse Cases

This section introduces the MISUSE CASE MODELING PROFILE for integrating misuse cases into
scenario-based requirements specifications. First, we present our modeling approach to specify
misuse cases based on MSDs. Second, we describe the adaptation of the Play-out algorithm to
enable the simulative validation of the resulting scenario-based requirements specification.

5.3.1 The MISUSE CASE MODELING PROFILE in Detail

SINDRE AND OPDAHL [SO05] introduce misuse cases as an extension of UML use cases to de-
termine and communicate security requirements. Misusers intentionally or inadvertently initiate a
misuse case and threaten at least one use case. The misuse case defines the sequence of actions
that the misusers perform to interact with the system under development to exploit or harm the use
case.

The MISUSE CASE MODELING PROFILE provides means to specify misuse cases against the sys-
tem under development. The MISUSE CASE MODELING PROFILE is depicted in Figure 5.6 and
is based on the Modal profile and the metamodel presented by SINDRE AND OPDAHL [SO05].

As mentioned in Section 2.1.1, an MSD specification is structured by means of MSD use cases
where each use case encapsulates requirements on the communication behavior of the sys-
tem under development. We introduce the stereotype Misuse Case extending the metaclass
UML::Collaboration to distinguish between an MSD misuse case and an MSD use case. Fur-
thermore, we introduce the stereotype threatens extending the metaclass UML::Dependency to

128

5.3. Specification of Misuse Cases

«profile» SecurityModelingProfile::MisuseCaseModeling«profile» SecurityModelingProfile::MisuseCaseModeling

«Metaclass»

UML::Interaction

«Metaclass»

UML::Interaction

«Stereotype»

SecurityProtocol

«Stereotype»

SecurityProtocol

«Metaclass»

UML::Dependency

«Metaclass»

UML::Dependency

«Stereotype»

EnvironmentAssumption

«Stereotype»

EnvironmentAssumption

{C1: An UML::Interaction can

either be an Requirement MSD,

SecurityProtocol or an

EnvironmentAssumption}

{C1: An UML::Interaction can

either be an Requirement MSD,

SecurityProtocol or an

EnvironmentAssumption}

- pubEncKeys: EncPublicKey[0..*]

- pubSigKeys: SigPublicKey[0..*]

- privEncKeys: EncPrivateKey[0..*]

- privSigKeys: SigPrivateKey[0..*]

- sEncKeys: EncSymmetricKey[0..*]

- sHmacKeys:

HMACSymmetricKey[0..*]

«Stereotype»

revealsKeysOf

- pubEncKeys: EncPublicKey[0..*]

- pubSigKeys: SigPublicKey[0..*]

- privEncKeys: EncPrivateKey[0..*]

- privSigKeys: SigPrivateKey[0..*]

- sEncKeys: EncSymmetricKey[0..*]

- sHmacKeys:

HMACSymmetricKey[0..*]

«Stereotype»

revealsKeysOf

Existing, reused

Metaclass/Stereotype

Existing, reused

Metaclass/Stereotype

Existing, reused Stereotype

of the Modal Profile

Existing, reused Stereotype

of the Modal Profile

Newly implemented

Stereotype

Newly implemented

Stereotype

Newly implemented

Constraint

Newly implemented

Constraint

Existing, reused

Metaclass/Stereotype

Existing, reused Stereotype

of the Modal Profile

Newly implemented

Stereotype

Newly implemented

Constraint

Legend

«Stereotype»

Attack Scenario

«Stereotype»

Attack Scenario

«Metaclass»

UML::Collaboration

«Metaclass»

UML::Collaboration

«Stereotype»

Misuse Case

«Stereotype»

Misuse Case

«Metaclass»

UML::Property

«Metaclass»

UML::Property

«Stereotype»

Modal::SpecificationPart

«Stereotype»

Modal::SpecificationPart

«Stereotype»

Attacker

«Stereotype»

Attacker

{C2: An Attacker is part of the

„environment“}

{C2: An Attacker is part of the

„environment“}

«Stereotype»

threatens

«Stereotype»

threatens

«Stereotype»

spoofs

«Stereotype»

spoofs

Figure 5.6: The MISUSE CASE MODELING PROFILE in Detail

specify that an MSD misuse case threatens an MSD use case. Moreover, an MSD misuse case
only contains Attack Scenarios. An Attack Scenario describes the interaction between an attacker
and the system under development based on MSDs. The stereotype Attack Scenario extending
the metaclass UML::Interaction enables to distinguish between an Attack Scenario and a security
protocol or a requirements/assumption MSD. We define the constraint C1 to ensure that only one
stereotype is applied to the UML::Interaction.

129

Chapter 5. Incorporation of Functional and Security MSDs

The participants of a misuse case do not differ from participants in requirements/assumption
MSDs. The participants may possess properties and send and receive messages with no, one
or more parameters. A misuse case also includes an attacker, specified by the stereotype Attacker.
An attacker is part of the environment and aims to harm the system. As participants, an attacker
may have properties and send and receive messages. Moreover, an attacker may spoof one or
more participants within an attack scenario. Thus, we introduce the stereotype spoofs extending
the metaclass UML::Dependency to specify that an attacker spoofs a participant.

An attacker may have initial knowledge, e.g., knowing other participants’ public and/or pri-
vate keys. To realize this, the MISUSE CASE MODELING PROFILE provides the stereotype re-
vealedKeysOf extending the metaclass UML::Dependency. The stereotype shall be used only in a
UML::Collaboration with annotated stereotype Misuse Case. The source is always an attacker (e.g.,
role with annotated stereotype Attacker), while the target specifies the role that owns the knowl-
edge/property that the attacker reveals. Thus, the stereotype revealedKeysOf encompasses lists for
cryptographic keys defined in the SECURITY MODELING PROFILE (cf. Section 3.4.2).

5.3.2 Extension of the Runtime Semantics to Support the MISUSE CASE MODEL-
ING PROFILE

In this section, we introduce extensions to the semantics of MSDs (cf. Section 2.1.2 and Sec-
tion 3.5) necessary to define the behavior of misuse cases specified by means of the MISUSE

CASE MODELING PROFILE. Thereby, we enable the simulative validation of misuse cases using
the Play-out algorithm.

As defined in Section 5.3.1, an attacker is part of the environment, i.e., not controlled by the system
under development. Thus, as environment objects, an attacker can send messages at any time if the
message does not cause any violation in an active MSD. Moreover, an attacker may spoof other
roles in the attacked MSD use case. The handling of spoofed roles requires an extension to the
definition of unification.

Originally, a message event is unifiable with a message in an MSD if the event name equals the
message name and if the sending and receiving lifelines of the message are bound to the sending
and receiving objects. If an attacker spoofs a role, a message is attack unifiable if the event name
equals the message name and if either the sending or receiving lifelines of the message are bound
to the sending or receiving objects, respectively. Moreover, the spoofed role is marked as attacked.

As explained in Section 3.4, a message event may be secured by means of cryptographic prim-
itives. A message event with applied cryptographic primitives is attack unifiable regardless of
whether the attacker knows the correct cryptographic keys. However, if the attacker knows the
correct cryptographic key (i.e., the dependency revealedKeysOf contains the corresponding key),
the attacker can change the message during the execution of the attack scenario.

If the cut is in front of the first message of an attack scenario, the requirements engineer can decide
whether he/she wants to take the execution path of the requirements MSDs or the attack scenario.
If he/she decides to take the execution path of the attack scenario, the attack scenario becomes
active. As in the case of requirements MSDs, an attack scenario progresses if message events
occur that are unifiable with messages in the attack scenario.

Intuitively, an attack scenario is successful if it progresses without causing any violation in the
remaining MSD specification. Moreover, the successful execution of an attack scenario must

130

5.4. Integrating Security Protocols into Scenario-based Requirements Specifications

not cause a liveness violation in an affected MSD. A requirement MSD is affected by an attack
scenario if it contains roles marked as attacked. A successful attack scenario causes a security
violation. As a hot violation, a security violation violates the requirements and causes the Play-
out algorithm to terminate.

5.4 Integrating Security Protocols into Scenario-based Require-
ments Specifications

Requirements engineers can use existing and verified security protocols to establish a secure com-
munication channel. Although security protocols remain the same regardless of the application
in which they are used, they cannot be modeled just once using MSDs and then used in arbitrary
applications. The reason for this is that the MSD specification of a security protocol and the MSD
specification describing the functional requirements on the communication behavior do not rely on
the same model elements (cf. Figure 5.7). Both are independent models with different types used
to create the specification. Thus, it is not easily possible for requirements engineers to use a secu-
rity protocol within the scenario-based requirements specification. Hence, requirements engineers
need a systematic approach for integrating security protocols into scenario-based requirements
specifications.

Specification describing a Security Protocol Scenario-based Requirements Specification

classclass

msd msd

AliceAlice BobBob

alice: Alicealice: Alice bob: Bobbob: Bob

alice: Alicealice: Alice bob: Bobbob: Bob

represents

typetype

represents

class

msd

Alice Bob

alice: Alice bob: Bob

alice: Alice bob: Bob

represents

typetype

represents

classclass

msd msd

VehicleVehicle

ego:

Vehicle

ego:

Vehicle

rear:

Vehicle

rear:

Vehicle

ego:

Vehicle

ego:

Vehicle

rear:

Vehicle

rear:

Vehicle

represents

type

represents

class

msd

Vehicle

ego:

Vehicle

rear:

Vehicle

ego:

Vehicle

rear:

Vehicle

represents

type

represents

takes

role of

takes

role of

Specification describing a Security Protocol Scenario-based Requirements Specification

class

msd

Alice Bob

alice: Alice bob: Bob

alice: Alice bob: Bob

represents

typetype

represents

class

msd

Vehicle

ego:

Vehicle

rear:

Vehicle

ego:

Vehicle

rear:

Vehicle

represents

type

represents

takes

role of

takes

role of

Figure 5.7: Illustration of the problem of integrating a security protocol into the scenario-based
requirements specification of an application

Intuitively, one possible idea to relate the classes of the two MSD specifications would be to use
the concept of UML inheritance. For that, the UML classes used as types for the scenario-based
requirements specification would extend the UML classes used as types for the security protocol
specification. Thus, the scenario-based requirements specification types inherit the operations and
properties, which enable their representative roles to participate in the security protocol [+Jaz15].

131

Chapter 5. Incorporation of Functional and Security MSDs

However, this solution has several drawbacks. “First, [...] multiple roles in a scenario-based
requirements specification can be typed by the same class. Thus, it would be unclear which role of
the scenario-based requirements specification takes which role in the security protocol. Second,
if a role of the scenario-based requirements specification executes the same security protocol with
different participants, the same properties of a type must be used in different contexts and, thus,
would be overwritten” [*KTD+22]. Next, we present a template-based modeling approach to
adapt a security protocol to the application context of a scenario-based requirements specification
to address these drawbacks.

5.4.1 The SECURITY PROTOCOL TEMPLATE PROFILE in Detail

In this section, we introduce our SECURITY PROTOCOL TEMPLATE PROFILE, which implements
a template-based modeling approach to integrate security protocols specified by the SECURITY

MODELING PROFILE in a scenario-based requirements specification based on MSDs. The SECU-
RITY PROTOCOL TEMPLATE PROFILE is depicted in Figure 5.8 and provides two main concepts.

First, security engineers need modeling elements to annotate those parts of the security protocols
that must be adapted to the application context. Typically, this includes the participants of the
security protocols and their properties (e.g., cryptographic keys). Our SECURITY PROTOCOL

TEMPLATE PROFILE introduces the concept of template parameters annotating elements that the
scenario-based requirements specification may substitute. The stereotype RoleTemplate can be
applied to the lifelines of the MSD, and the stereotype PropertyTemplate can be applied to the
properties of the UML classes.

«profile» SecurityModelingProfile::SecurityProtocolTemplateProfile«profile» SecurityModelingProfile::SecurityProtocolTemplateProfile

Existing, reused

Metaclass/Stereotype

Existing, reused

Metaclass/Stereotype

Existing, reused Stereotype

of the Modal Profile

Existing, reused Stereotype

of the Modal Profile

Newly implemented

Stereotype

Newly implemented

Stereotype

Newly implemented

Constraint

Newly implemented

Constraint

Legend

«Metaclass»

UML::Property

«Metaclass»

UML::Property

«Stereotype»

PropertyTemplate

«Stereotype»

PropertyTemplate

«Metaclass»

UML::Lifeline

«Metaclass»

UML::Lifeline

«Stereotype»

RoleTemplate

«Stereotype»

RoleTemplate

«Metaclass»

UML::InteractionUse

«Metaclass»

UML::InteractionUse

roleMap: RoleMapEntry[*]

«Stereotype»

SecurityProtocol

Reference

roleMap: RoleMapEntry[*]

«Stereotype»

SecurityProtocol

Reference

- propertyParameter:

PropertyTemplate

- propertyArgument: Property

«DataType»

PropertyMapEntry

- propertyParameter:

PropertyTemplate

- propertyArgument: Property

«DataType»

PropertyMapEntry

- roleParameter: RoleTemplate

- roleArgument: Lifeline

- propertyMap: PropertyMapEntry[*]

«DataType»

RoleMapEntry

- roleParameter: RoleTemplate

- roleArgument: Lifeline

- propertyMap: PropertyMapEntry[*]

«DataType»

RoleMapEntry

Figure 5.8: The SECURITY PROTOCOL TEMPLATE PROFILE in Detail

132

5.4. Integrating Security Protocols into Scenario-based Requirements Specifications

Second, requirements engineers need modeling elements to reference a security protocol and sub-
stitute the elements annotated as template parameters. A UML::InteractionUse enables the reuse
of existing interactions. However, a UML::InteractionUse does not allow to specify structural
substitutions. Thus, we introduce the stereotype SecurityProtocolReference, which extends the
UML::InteractionUse. The stereotype SecurityProtocolReference inherits the property refersTo of type
UML::Interaction. This property is used to specify the interaction that defines the behavior of the
security protocol.

“In addition to the inherited properties, the stereotype SecurityProtocolReference encompasses a
RoleMap. The RoleMap is a list of type RoleMapEntry mapping the roles from the security protocol
template to roles in the referencing MSD. The list has at least two elements, the initiator and the re-
sponder of the security protocol. The concrete mapping is specified in the data type RoleMapEntry.
For this, the data type has two properties: roleParameter and roleArgument. While the roleParameter
corresponds to a role in the security protocol, the roleArgument captures the role of the application
context. Apart from the two properties used to define the role mapping, the RoleMapEntry encom-
passes a property called PropertyMap. It maps properties from the security protocol template to
properties in the referencing security protocol” [*KTD+22].

5.4.2 Extension of the Runtime Semantics to Support the SECURITY PROTOCOL
TEMPLATE PROFILE

We adapt the Play-out algorithm to support the modeling approach for integrating security pro-
tocols in scenario-based requirements specifications presented in the previous section. The adap-
tation is restricted to evaluating the SecurityProtocolReference and resolving its defined properties.
Apart from that, the algorithm behaves as described in Section 3.5.

Figure 5.9 depicts the resulting MSD after the Play-out algorithm resolved the SecurityProtocol-
Reference defined in the MSD depicted in Figure 5.7.

“If the cut of an active MSD is immediately before the SecurityProtocolReference, it is directly eval-
uated. Therefore, the Play-out algorithm resolves the substitutions specified by the SecurityProto-
colReference and adds the messages defined by the referenced security protocol to the referencing
MSD. The substitution process encompasses two steps” [*KTD+22].

First, the Play-out algorithm evaluates the role mapping and substitutes the roles accordingly. For
example, in Figure 5.7, the role ego: Vehicle substitutes the alice: Alice and the role rear: Vehicle
substitutes the bob: Bob. Furthermore, the role trustedServer: TrustedThirdParty is added to the
resulting specification since it is not part of any mapping. “Note that it is not relevant whether
the lifelines of the security protocol template are part of the environment or the system. Instead,
the specification kind is taken from the referencing lifelines. As a result of the substitution, the
roles of the requirements specification can now send and receive the messages of the security
protocol” [*KTD+22].

Second, the Play-out algorithm evaluates the property mapping specified for each role mapping.
The Play-out algorithm searches for all references to a property in the security protocol specifi-
cation and replaces them with the new reference. This applies to message parameters and to the
references in the stereotypes of the SECURITY MODELING PROFILE. After completing the two
steps, the Play-out algorithm continues as described in Section 3.5.

133

Chapter 5. Incorporation of Functional and Security MSDs

msd EmergencyBraking With Security Protocolmsd EmergencyBraking With Security Protocol

leading: Vehicleleading: Vehicle rear: Vehiclerear: Vehicleego: Vehicleego: Vehicle
trustedServer:

TrustedThirdParty

trustedServer:

TrustedThirdParty

sendPublicKey (
 pubKey = rear.pubKeyVe,
 reqId = “rear“)

«DigitalSigned»

privateKey = trustedServer.sigPrivateKey

«DigitalSigned»

privateKey = trustedServer.sigPrivateKey

«DigitalSigned»

privateKey = ego.sigPrivKeyVe

«DigitalSigned»

privateKey = ego.sigPrivKeyVe

emcyBrakeWarning()

requestPublicKey (

 ownId = “ego“,

 reqId = “rear“)

emcyBrakeWarning(Nego)

Nego =

createNonce()

ref Needham-Schroeder PublicKeyref Needham-Schroeder PublicKey

Figure 5.9: Resulting MSD after the handling of the SecurityProtocolReference

5.5 Implementation

This section presents an overview of our prototypical implementation to support and evaluate the
concepts described throughout this chapter. The implementation is integrated into the Eclipse-
based SCENARIOTOOLS MSD tool suite [ST-MSD]. In particular, we present the architecture of
our implementation in Section 5.5.1 and the user interface in Section 5.5.2.

5.5.1 Security ScenarioTools (Software Architecture)

Figure 5.10 depicts the software architecture of our prototypical implementation. The entire imple-
mentation is based on the Eclipse Modeling Framework (EMF) [EMF] and Eclipse Papyrus [Pa-
pyrus].

The extended tool suite SECURITY SCENARIOTOOLS MSD provides the MISUSE CASE MOD-
ELING PROFILE and SECURITY PROTOCOL TEMPLATE PROFILE as well as the corresponding
runtimes. Both profiles extend the UML metamodel as part of the component UML2 and the
Modal profile as part of the SCENARIOTOOLS MSD tool suite. The components Misuse Case
Runtime and Security Template Runtime implement the runtime extensions necessary to simulate
the misuse cases and the template-based MSD specifications, respectively.

134

5.6. Evaluation

Legend

Newly implemented

Component / Profile

Newly implemented

Component / Profile
Existing, Reused Framework /

Tool Suite / Profile

Newly implemented

Component / Profile
Existing, Reused Framework /

Tool Suite / Profile

Legend

Newly implemented

Component / Profile
Existing, Reused Framework /

Tool Suite / Profile

pkg [Package] Implementation of the Security ScenarioTools MSDpkg [Package] Implementation of the Security ScenarioTools MSD

EMFEMF

PapyrusPapyrus

SCENARIOTOOLS

MSD

SCENARIOTOOLS

MSD

UML2UML2

SECURITY SCENARIOTOOLS MSDSECURITY SCENARIOTOOLS MSD

Security

ModelingProfile

Security

ModelingProfile

Security

Runtime

Security

Runtime

XtextXtext

MisuseCase

Runtime

MisuseCase

Runtime

SecurityProtocol

TemplateRuntime

SecurityProtocol

TemplateRuntime

MisuseCase

ModelingProfile

MisuseCase

ModelingProfile

SecurityProtocol

TemplateProfile

SecurityProtocol

TemplateProfile

Figure 5.10: Detailed overview of the Software Architecture

5.5.2 Security ScenarioTools (User-Interface)

The user interface of the SECURITY SCENARIOTOOLS MSD tool suite provides a modeling and
a simulation perspective. The modeling and simulation perspectives are similar to the ones de-
scribed in Section 3.6.2. The modeling perspective is based on the Papyrus modeling editors and
is used to specify the different parts of the MSD specification. The simulation perspective pro-
vides information necessary for the simulation of an MSD specification. In particular, the simula-
tion perspective provides a set of enabled messages and the user can select the message that should
be sent next.

5.6 Evaluation

In this section, we conduct a case study based on the guidelines by KITCHENHAM ET AL. [KPP95]
and RUNESON ET AL. [RH09; Run12] for evaluating our approach. In our case study, we in-
vestigate the applicability in practice of our MISUSE CASE MODELING PROFILE and SECURITY

PROTOCOL TEMPLATE PROFILE.

135

Chapter 5. Incorporation of Functional and Security MSDs

5.6.1 Case Study Context

We examine five evaluation questions (EQ):

EQ1 Does the MISUSE CASE MODELING PROFILE enable the specification of misuse
cases for real-world scenario-based requirements specifications?

EQ2 Does the extension to the runtime semantics enable the simulation of misuse cases
against the system under consideration?

EQ3 Does the SECURITY PROTOCOL TEMPLATE PROFILE enable the specification of se-
curity protocol templates for real-world security protocols?

EQ4 Does the SECURITY PROTOCOL TEMPLATE PROFILE enable the use of security pro-
tocol templates in a scenario-based requirements specification?

EQ5 Does the extension to the runtime semantics enable the simulation of scenario-based
requirements specifications that include security protocol templates?

For this purpose, we specify two use cases from the automotive domain and reuse the 14 security
protocols that have been successfully modeled in the evaluation of the SECURITY MODELING

PROFILE (cf. Section 3.7). The first case is the Emergency Braking & Evasion Assistance System
(EBEAS). The EBEAS is an advanced driver assistance system that is supposed to reduce the risk
of rear-end collisions in case of obstacles in front of a vehicle. Therefore, the EBEAS combines
autonomous braking systems and autonomous emergency steering systems with vehicle-to-vehicle
communication technology.

The second case describes an over-the-air update scenario. By means of an over-the-air update,
OEMs can install a software update without bringing a vehicle into the repair shop. For this, the
OEM or a supplier initiates the software update. Then, this update is forwarded to the vehicle
using mobile networks like GSM, UMTS, or LTE. Once a vehicle receives the update, it stores the
update until there is an opportunity for the safe execution of the installation.

To answer the questions, we use the scenario-based requirements specification of the two use
cases as a basis. We specify different misuse cases against the two use cases. Moreover, we
integrate 14 different security protocols into each use case. The selected security protocols use
different cryptographic primitives and partially rely on a trusted third party. Thus, they present a
broad range of possible security protocols and, thereby, cover all elements of our template-based
approach.

5.6.2 Setting the Hypotheses

We define the following hypotheses for this case study.

H1 The MISUSE CASE MODELING PROFILE enables the specification of misuse cases
against scenario-based requirements specifications. We rate H1 as fulfilled if each misuse
case can be specified using solely the approach presented in Section 5.3.

136

5.6. Evaluation

H2 The specified misuse cases can be evaluated correctly according to the runtime seman-
tics defined in Section 5.3. This includes the validation of two different kinds of MSD spec-
ifications. First, the use case does not include any security measures. Second, the use case
includes security measures to secure the communication between the involved rules. We
rate H2 as fulfilled if the misuse cases are correctly analyzed during the simulative valida-
tion by means of the extended Play-out algorithm.

H3 All security protocols can be specified as security protocol templates using our SECU-
RITY PROTOCOL TEMPLATE PROFILE as presented in Section 5.4.1. We rate H3 as ful-
filled if each security protocol can be specified as a security protocol template using solely
the approach presented in Section 5.4.1.

H4 All security protocol templates can be referenced in a scenario-based requirements
specification. Therefore, all parameters specified by the template must be substituted by
model elements of the scenario-based requirements specification using our approach pre-
sented in Section 5.4.1. We consider H4 as fulfilled if all security protocol templates can
be correctly used in the two scenario-based requirements specifications using our approach
presented in Section 5.4.1.

H5 The references to all security protocol templates can be evaluated correctly according
to the runtime semantics defined in Section 5.4.2. We rate H5 as fulfilled if the contents
of the security protocol templates are correctly inserted into the referencing scenario-based
requirements specifications during the simulative validation by means of the extended Play-
out algorithm.

5.6.3 Validating the Hypotheses

In the following, we validate each hypothesis separately using the prototypical implementation of
our approach described in Section 5.5.

Validating Hypothesis H1

To validate H1, we created an MSD specification for the EBEAS and the over-the-air update sce-
nario. Moreover, we specified five misuse cases against each use case. All misuse cases have
in common that the attacker is actively interacting with the system under consideration. During
the modeling process, we checked whether the MISUSE CASE MODELING PROFILE is expressive
enough to specify misuse cases or whether any language constructs are missing. Afterward, we ex-
ecuted the Papyrus validate function on each MSD specification to check for syntactical problems
and unfulfilled OCL constraints. Papyrus returns that no problem exists in any MSD specification.

Validating Hypothesis H2

To validate H2, we simulated the MSD specifications for the EBEAS and the over-the-air update
scenario. We executed the algorithm step by step and checked in each step whether the simulation
state was correct. The correct simulation includes the creation of attack scenarios if we decide to
take the execution path of an attacker and the correct unification of messages in the attack scenarios

137

Chapter 5. Incorporation of Functional and Security MSDs

according to the runtime semantics defined in Section 5.3.2. We repeated the simulation several
times to check whether the simulation behavior was deterministic and did not find any deviations
in the different simulation runs.

Validating Hypothesis H3

To validate H3, we modified the MSD specification for the 14 security protocols used to evaluate
the SECURITY MODELING PROFILE. For each MSD specification, we added the stereotype «Ro-
leTemplate» to each lifeline; except for lifelines that represent a trusted third party. Additionally,
we added the stereotype «PropertyTemplate» to each property of the classes typing the annotated
lifelines. As before, we used the Papyrus validate function on each MSD specification to check
for syntactical problems and unfulfilled OCL constraints and Papyrus did not report any.

Validating Hypothesis H4

To validate H4, we used the MSD specification for the EBEAS and the over-the-air update sce-
nario. We added a UML::InteractionUse to the MSD specifications and imported all 14 security
protocols separately. If necessary, we added additional properties for the cryptographic keys to
the classes of the EBEAS and the over-the-air update scenario. Afterward, we applied the stereo-
type «SecurityProtocolReference» to the UML::InteractionUse and specified the Role2RoleMap ac-
cordingly. As before, we used the Papyrus validate function on each MSD specification to check
for syntactical problems and unfulfilled OCL constraints and Papyrus did not report any.

Validating Hypothesis H5

To validate H5, we simulated the MSD specifications for the EBEAS and the over-the-air update
scenario, including the security protocols and the misuse cases created before. We executed the
algorithm step by step and checked in each step whether the simulation state was correct. The
correct simulation includes inserting the security protocol template in the active MSD. Moreover,
all messages must be in the correct order and the properties must be substituted and referenced
correctly where necessary. Finally, we also used the execution path of attack scenarios to check
whether the integrated security protocols correctly mitigate these. As before, we repeated the
simulation several times to check whether the simulation behavior was deterministic and did not
find any deviations in the different simulation runs.

5.6.4 Analyzing the Results

By using the MISUSE CASE MODELING PROFILE, we can specify and validate misuse cases
against the EBEAS and the over-the-air update scenario. However, the specified misuse cases only
consider active attackers. The MISUSE CASE MODELING PROFILE does not support the specifi-
cation of passive attackers, e.g., attackers that only eavesdrop on the communication between two
participants. Future work may investigate the possibility of creating a domain-specific language to

138

5.6. Evaluation

model eavesdropping attacks. Additionally, future work may investigate the possibility of specify-
ing security properties for the MSD specification and generate misuse cases based on these prop-
erties. This would reduce the manual effort for a requirements engineer. Due to the mentioned
restrictions, we consider H1 only as partially fulfilled and H2 as fulfilled.

Moreover, by using the SECURITY PROTOCOL TEMPLATE PROFILE, we can model all relevant
information for specifying the 14 security protocols as security protocol templates and reference
them in the MSD specifications of the two cases. Thus, we consider H3 and H4 as fulfilled. Fi-
nally, we executed the MSD specifications that reference the security protocol template using our
extended Play-out algorithm. During the execution, the SecurityProtocolReference was evaluated.
Subsequently, we observed that for each security protocol and simulation run the contents of the
security protocol template are inserted correctly into the active MSD. Additionally, all messages
were in the correct order and were sent between the lifelines specified as arguments to their orig-
inal sending and receiving lifelines. Furthermore, the properties were correctly substituted and
referenced where necessary. Thus, we consider H5 as fulfilled.

To conclude the case study, the (partially) fulfilled hypotheses indicate that our approach is appli-
cable in practice.

5.6.5 Threats to Validity

The threats to validity in our case study are as follows:

Construct Validity

The case study was designed and conducted by the same researcher who developed the approach.
Since the researcher might have a bias toward the developed approach, the case study would
be more significant if security experts had modeled the security protocols. To mitigate this, we
discussed the case study design and its research questions with other researchers.

External Validity

For the evaluation of H1–H2, we only considered two use cases and a small set of misuse cases
against these use cases. Thus, we cannot generalize the fulfillment of the hypotheses for all possi-
ble combinations of use and misuse cases. Nevertheless, the specified misuse cases present typical
examples; at least for active attackers; thus, we do not expect large deviations from other misuse
cases.

For the evaluation of H3–H5, we only considered two application scenarios and 14 different secu-
rity protocols. Thus, we cannot generalize the fulfillment of the hypotheses for all possible com-
binations of application scenarios. Nevertheless, the selected application scenarios and security
protocols represent typical examples; thus, we do not expect large deviations from other examples.

139

Chapter 5. Incorporation of Functional and Security MSDs

Reliability

The case study was conducted based on the prototype implementation that might not be available
in the future. To mitigate this, the implemented concepts are defined throughout this chapter and
can be newly implemented.

Moreover, the case study information and the resulting models might not be available in the future.
To mitigate this threat, we discussed the exemplary application of our MISUSE CASE MODELING

PROFILE and our SECURITY PROTOCOL TEMPLATE PROFILE in detail in Section 5.2.

5.7 Related Work

This section discusses related work in two categories: First, in Section 5.7.1, we present ap-
proaches to identify and analyze misuse cases against the system under development. Second, in
Section 5.7.2, we present approaches that consider the specification of security mechanisms and
their reuse in developing the system under development.

5.7.1 Approaches for the Identification and Analysis of Misuse Cases

“Many approaches exist that specify misuse cases [SO05] or abuse cases [PX05] as negative sce-
narios to specify what is not allowed to happen during the execution of the system. Furthermore,
several other approaches worked on the elicitation and specification of security requirements, for
example, security use cases [Fir03; Fir07]; UMLsec [Jür02; Jür05], a framework for security re-
quirements engineering [HLM+08]; SQUARE [MS05]; security requirements methods based on
i* framework [LYM03]; Secure Tropos [GMZ06]” [*Koc18].

However, all mentioned approaches mainly work on eliciting and documenting threats and secu-
rity requirements. “They do not provide any integration into existing functional requirements en-
gineering methodologies or development processes. In addition, they do not provide sufficient
analysis techniques to validate whether the specified security requirements are fulfilled and that a
potential attacker is not able to execute the specified attack” [*Koc18].

WHITTLE ET AL. [WWH08] develop an approach to formalize misuse cases by means of extended
interaction overview diagrams (EIODs) and execute these misuse cases against scenario specifica-
tions of the system under development to validate whether it is sufficiently secure to mitigate them.
They want to overcome the issues with informal and non-analyzable misuse cases. However, their
approach specifying functional aspects does not contain any notation of modality or time. Thus,
we adapted their approach in the context of scenario-based requirements specifications based on
MSDs.

5.7.2 Approaches for the Specification of Security Mechanisms

“Several approaches consider the specification of security mechanisms and their reuse in an ap-
plication’s requirements and design phase. For example, MOUHEB ET AL. [MTL+09] propose
an aspect-oriented modeling approach to integrate security mechanisms (e.g., security protocols
like TLS) into software design models (e.g., UML Interactions). Therefore, the authors present a

140

5.8. Summary

UML profile to specify security mechanisms. This profile introduces a transparent and automatic
approach that weaves the security mechanism into the design models. The approach is similar to
ours since the authors present an approach to reuse security mechanisms that people with limited
security knowledge can use. However, while the authors only consider the behavior of a security
mechanism, we also consider structural properties. Therefore, we can better adapt the security
mechanisms to the application context. Furthermore, we provide a simulative validation of the
resulting specification” [*Koc18].

“RAY ET AL. [RLF+04] present an approach to incorporate role-based access control (RBAC)
policies into the design of applications. The RBAC policies are defined independently of the
application that has to implement the policies. To bridge the gap between the policy definition and
the application design, RAY ET AL. specify policies by means of UML diagram templates. These
UML diagram templates can be used to integrate application-specific policies into the design of
the application. The approach is similar to our approach since the authors present an approach to
reuse security mechanisms. Furthermore, both approaches enable the validation of the resulting
specifications. However, in contrast to our approach, RAY ET AL. consider role-based access
control and only consider the specification and analysis of structural models like UML class and
object diagrams” [*Koc18].

“Moreover, many approaches consider the modeling of system and software security using UML
and SysML. For example, JÜRJENS [Jür02] propose UMLSec as a model-driven approach for
integrating security-related information in UML specifications. UMLSec encompasses a UML
profile for expressing security mechanisms, including secure information flow, confidentiality,
and access control” [*Koc18].

“LOBBERSTEDT ET AL. [LBD02] present SecureUML, a UML-based modeling language for
model-driven security. The approach enables the design and analysis of secure, distributed sys-
tems by adding mechanisms to model role-based access control. Furthermore, they provide an
automatic generation of access control infrastructures based on the specified models” [*Koc18].

“ROUDIER AND APVRILLE [RA15] present SysML-Sec, a modeling approach based on SysML
that enables the specification of security aspects for embedded systems. They enhance SysML
block and state machine diagrams to capture security-related features. In contrast to the other two
approaches, SysML-Sec also covers safety-related features” [*Koc18].

“However, all these approaches mainly focus on extending the UML/SysML notations to reflect
security concerns better. In contrast, our approach addresses the systematic reuse of existing secu-
rity mechanisms. Therefore, our approach separates the specification and application of security
mechanisms and allows engineers with limited knowledge to rely on these mechanisms to secure
their applications” [*Koc18].

5.8 Summary

This chapter presents an extension to our scenario-based requirements engineering methodol-
ogy [*HFK+16b] incorporating functional and security requirements. In particular, we intro-
duce the MISUSE CASE MODELING PROFILE to specify misuse cases against a scenario-based
requirements specification and the SECURITY PROTOCOL TEMPLATE PROFILE to reuse security
protocols specified by the SECURITY MODELING PROFILE systematically. Moreover, we extend

141

Chapter 5. Incorporation of Functional and Security MSDs

the runtime semantics of MSD to enable the correct interpretation of the new modeling elements
in the Play-out algorithm. Thereby, requirements engineers can validate whether the specified
misuse cases are successful or whether the specified security measures (e.g., usage of primitives
or integration of security protocols) are sufficient to mitigate the misuse cases. Our evaluation
shows that the MISUSE CASE MODELING PROFILE and the SECURITY PROTOCOL TEMPLATE

PROFILE are applicable in practice.

142

6

Conclusion

This chapter summarizes the challenges and contributions of this thesis in Section 6.1 and points
to directions for future work in Section 6.2.

6.1 Summary

The widespread usage of software-intensive systems significantly increases the risk of cyber-
attacks. Thus, security has become one of the most crucial technology risks for the world’s popu-
lation [Wor23]. However, specifying and applying state-of-the-art security measures like security
protocols requires deep knowledge of the used concepts and tools. In particular, security engineers
use several symbolic model checkers like PROVERIF and TAMARIN to verify whether a security
protocol is secure concerning secrecy and authentication. However, since both model checkers
have their own textual modeling and query languages, they must learn both languages and repeat-
edly model a security protocol, including its queries in several languages. Moreover, in develop-
ing a software-intensive system, requirements engineers model the message-based communica-
tion between and within software-intensive systems. However, current requirements engineering
approaches concentrate on functional or security requirements. Thereby, requirements engineers
do not identify conflicts introduced by further security measures, e.g., unintended timing behavior
of the system due to an exhausting message exchange caused by the security protocol.

The contributions of this thesis enable security and requirements engineers to apply security tech-
niques without deep knowledge of the underlying concepts and tools. We successfully imple-
mented all concepts as extensions to the tool suite SCENARIOTOOLS MSD and showed in case
studies based on realistic examples that all concepts are applicable in practice.

As our first contribution, we provide the UML-compliant SECURITY MODELING PROFILE for
the scenario-based specification of security protocols. On the one hand, the SECURITY MODEL-
ING PROFILE enables security engineers to model security protocols in a scenario-based way. On
the other hand, the SECURITY MODELING PROFILE enables requirements engineers to specify
requirements on the message-based communication for their application by using cryptographic
primitives. Moreover, the SECURITY MODELING PROFILE provides several constraints to avoid
specification errors by the security engineers or the requirements engineers.

As our second contribution, we present VICE (VIsual Cryptography vErifier), a model-checking
approach for automatically verifying security protocols in the symbolic model. VICE reduces
the knowledge necessary to apply model checking for security protocols. In particular, VICE

143

Chapter 6. Conclusion

provides a model transformation concept to transform a security protocol into the input language
of the two symbolic model checkers PROVERIF and TAMARIN. Moreover, VICE automatically
derives an initial set of analysis queries that the model checker shall verify to decide whether the
protocol is secure concerning secrecy and authentication. Furthermore, VICE provides the results
of the analysis to the security engineer.

As our third contribution, we present a scenario-based approach for specifying and validating
functional and security requirements. In particular, we extend our scenario-based requirements
engineering methodology [*HFK+16b] with techniques from the misuse-case specification. We
enable requirements engineers to model conceivable attacks and validate whether the system un-
der development resists the attack. Moreover, to integrate mitigations in the specification of the
system under development, we provide a template-based approach to reuse security protocols and
configure them to the context of the system under development. By extending existing analy-
sis techniques for MSDs, we enable the requirements engineer to determine in the early phase
of the development whether the modeled security requirements are sufficient to avoid threats and
whether the security requirements negatively influence the system’s functional behavior.

In combination, our three contributions address the increasing risk of cyber-attacks against
software-intensive systems. In particular, our contributions help security engineers with little
knowledge of security modeling checking to apply state-of-the-art security model checkers like
PROVERIF and TAMARIN to verify security protocols. Furthermore, our contributions help re-
quirements engineers with little knowledge of security to use security measures (e.g., crypto-
graphic primitives and/or security protocols) to secure their system under development.

6.2 Future Work

The contributions of this thesis provide several aspects that may be the topic of future research.
All contributions require evaluations using security engineers and requirements engineers from
various domains, e.g., automotive, avionics, and automation. In the following, we specify six
aspects for future research:

Extend VICE to support computational model checkers
Within our thesis, we only considered model checkers in the symbolic but not in the compu-
tational model. However, when applying state-of-the-art computational model checkers like
CryptoVerif [Bla23] and EasyCrypt [BGH+11], the same challenges occur as for the sym-
bolic model checkers (cf. Section 1.1.1). Thus, future work may extend VICE to support
the input and query generation for computational model checkers.

Enable security engineers to specify security protocols using an Alice & Bob notation
VICE provides a generic model transformation concept to transform security protocols into
the modeling language of various symbolic model checkers. Within our thesis, we use the
SECURITY MODELING PROFILE to specify security protocols in a scenario-based manner.
Future work may provide a textual language to specify security protocols based on the
Alice & Bob notation. Thereby, our model-checking approach would become applicable
to security engineers unfamiliar with UML. While the transformation concepts into the
various model checkers are independent of the used specification language, future work

144

6.2. Future Work

needs to develop a transformation from the AnB specification language to our Verification-
Model. Moreover, future work may provide a transformation from the AnB specification
language to the SECURITY MODELING PROFILE to enable requirements engineers to reuse
the security protocol to secure their system under development.

Enable security engineers to specify custom analysis queries
VICE automatically derives a set of queries to verify whether the security protocol is secure
regarding secrecy and authentication. However, in the current approach, security engineers
can only adjust the derived analysis queries to their needs or add additional queries to the
input model if they change the input file. Future work may provide a domain-specific lan-
guage for the specification of custom queries and their transformation into security model
checkers. In addition, future work may evaluate the applicability of providing suggestions
to strengthen the generated queries.

Enable security engineers to adjust the attack model used for the security analysis
VICE automatically generates input for PROVERIF and TAMARIN to enable the analysis
of a security protocol in the symbolic model based on the DOLEV-YAO model [DY83].
However, for analyzing real-world security protocols like TLS, it is often necessary to relax
the strong assumption of the Dolev-Yao model. Therefore, future work may provide a
domain-specific language for specifying assumptions for the attacker’s capabilities and their
transformation into security model checkers.

Enable security engineers to generate source code for a verified security protocol
Several approaches enable security engineers to generate source code for a specified security
protocol. For example, AnBx is a tool for generating a Java-based implementation for secu-
rity protocols specified in an AnB-based language [BCM+16]. Moreover, MetaCP automat-
ically generates a C-based implementation for a security protocol [MA22]. Contrary to the
two mentioned approaches, ProScript provides an approach for implementing secure mes-
saging protocols based on JavaScript and permits the automated extraction of protocol mod-
els directly from the implementation to be analyzed amongst others in PROVERIF [KBB17].
Future work may evaluate the applicability of such approaches in the context of VICE and
add the most fitting approach.

Enable requirements engineers to select a security protocol from a library
We provide a template-based approach to reuse security protocols in the scenario-based re-
quirements specification of software-intensive systems. Future work may provide a cata-
log containing a set of verified security protocols. The catalog could provide several fil-
tering opportunities, for example, by name or by the properties the security protocols pro-
vide. Moreover, the catalog-based approach could also improve the application of the se-
curity protocol by guiding the requirements engineer through the process of adjusting the
template to the context of the system under development.

145

Chapter 6. Conclusion

Enable requirements engineers to generate misuse cases
We provide a specification and analysis approach for misuse cases. However, applying this
approach can take time depending on the system under development. Future work may
provide a domain-specific language to specify properties the system under development
has to provide. Based on these properties, various misuse cases could be automatically
generated.

146

Bibliography

The bibliography is structured into four parts: my own publications, the theses I supervised, for-
eign literature, and tool suites and tool frameworks.

Own Publications

In this section, I do not only list publications that contribute to my PhD thesis but all publications
that I wrote during my time of a Research Associate. The publication key of all my publications
have the prefix * to identify them easily within this thesis. Details about my contributions to the
papers listed under by own publications are given in Appendix C.

[*ABD+19] K. ALTEMEIER, M. BECKER, S. DZIWOK, T. KOCH AND S. MERSCHJOHANN.
“Was fehlt (bisher) um Apps sicher zu entwickeln? — Prozesse, Werkzeuge und
Schulungen für sichere Apps by Design”. In: Projektmanagement und Vorge-
hensmodelle 2019 (PVM 2019). Ed. by M. MIKUSZ. Gesellschaft für Informatik.
Lecture Notes in Informatics (LNI), Oct. 2019.

[*FHK+18a] M. FOCKEL, J. HOLTMANN, T. KOCH AND D. SCHMELTER. “Formal, Model-
and Scenario-based Requirement Patterns”. In: Proceedings of the 6th Interna-
tional Conference on Model-Driven Engineering and Software Development. Jan.
2018.

[*FHK+18b] M. FOCKEL, J. HOLTMANN, T. KOCH AND D. SCHMELTER. Model-based Re-
quirement Pattern Catalog. Tech. rep. tr-ri-17-354. Paderborn, Germany: Software
Engineering Department, Fraunhofer IEM, Oct. 2018.

[*HFK+16a] J. HOLTMANN, M. FOCKEL, T. KOCH AND D. SCHMELTER. “Requirements En-
gineering - Zusatzaufgabe oder Kernkompetenz?” In: OBJEKTspektrum RE/2016
(2016).

[*HFK+16b] J. HOLTMANN, M. FOCKEL, T. KOCH, D. SCHMELTER, C. BRENNER, R.
BERNIJAZOV AND M. SANDER. The MechatronicUML Requirements Engineer-
ing Method: Process and Language. Tech. rep. tr-ri-16-351. Software Engineer-
ing Department, Fraunhofer IEM / Software Engineering Group, Heinz Nixdorf
Institute, 2016.

147

Bibliography

[*KDH+20] T. KOCH, S. DZIWOK, J. HOLTMANN AND E. BODDEN. “Scenario-Based Spec-
ification of Security Protocols and Transformation to Security Model Check-
ers”. In: Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems. MODELS ’20. Virtual
Event, Canada: Association for Computing Machinery, 2020, pp. 343–353. ISBN:
9781450370196. DOI: 10.1145/3365438.3410946. URL: https://doi.org/
10.1145/3365438.3410946.

[*KHD14] T. KOCH, J. HOLTMANN AND J. DEANTONI. “Generating EAST-ADL Event
Chains from Scenario-Based Requirements Specifications”. In: Proceedings
of the 8th European Conference on Software Architecture (ECSA 2014). Ed. by
P. AVGERIOU AND U. ZDUN. Vol. 8627. Lecture Notes in Computer Science
(LNCS). Springer, Aug. 2014, pp. 146–153.

[*KHL17] T. KOCH, J. HOLTMANN AND T. LINDEMANN. “Flexible Specification of STEP
Application Protocol Extensions and Automatic Derivation of Tool Capabilities”.
In: Proceedings of the 5th International Conference on Model-Driven Engineer-
ing and Software Development. Feb. 2017.

[*KHL18] T. KOCH, J. HOLTMANN AND T. LINDEMANN. “Model-Driven STEP Applica-
tion Protocol Extensions Combined with Feature Modeling Considering Geomet-
rical Information”. In: Model-Driven Engineering and Software Development.
Ed. by S. PIRES Luís Ferreiraand Hammoudi AND B. SELIC. Springer Interna-
tional Publishing, 2018, pp. 173–197. ISBN: 978-3-319-94764-8.

[*KHS+16] T. KOCH, J. HOLTMANN, D. SCHUBERT AND T. LINDEMANN. “Towards
Feature-based Product Line Engineering of Technical Systems”. In: 3rd In-
ternational Conference on System-Integrated Intelligence: New Challenges for
Product and Production Engineering. Ed. by B. DENKENA, K.-D. THOBEN AND

A. TRÄCHTLER. Elsevier, Aug. 2016, p. 00.

[*KMM+20] T. KOCH, M. MEYER, F.-B. MASUD AND H. RUNSCHKE. “Softwareentwick-
lung wie am Fließband”. In: Proceedings of the Software Engineering 2020. Lec-
ture Notes in Informatics (LNI). Gesellschaft fuer Informatik, Feb. 2020, pp. 209–
214.

[*Koc18] T. KOCH. “Towards Scenario-based Security Requirements Engineering for
Cyber-Physical Systems”. In: International Workshop on Security for and by
Model-Driven Engineering (SecureMDE 2018). June 2018.

[*KTD+22] T. KOCH, S. TRIPPEL, S. DZIWOK AND E. BODDEN. “Integrating Security Pro-
tocols in Scenario-based Requirements Specifications”. In: Proceedings of the
10th International Conference on Model-Driven Engineering and Software De-
velopment. Jan. 2022.

[*MHK+15] J. MEYER, J. HOLTMANN, T. KOCH AND M. MEYER. “Generierung von
AUTOSAR-Modellen aus UML-Spezifikationen”. In: 10. Paderborner Workshop
Entwurf mechatronischer Systeme. Ed. by J. GAUSEMEIER, R. DUMITRESCU,
F.-J. RAMMIG, W. SCHÄFER AND A. TRÄCHTLER. Vol. 343. Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Paderborn. Heinz Nixdorf Institut, Apr. 2015,
pp. 159–172.

148

https://doi.org/10.1145/3365438.3410946
https://doi.org/10.1145/3365438.3410946
https://doi.org/10.1145/3365438.3410946

Supervised Thesis

Supervised Thesis

[+Gop21] S. GOPALAKRISHNAN. “Security Protocol Verification by means of Tamarin”.
Masters’s Thesis. Universität Paderborn, June 2021.

[+Hal16] J. HALTERMANN. “Steuerbarkeit und Verfolgbarkeit von Änderungen an Produk-
ten im Umfeld von ALM- und PLM-Systemen”. Bachelor’s Thesis. Universität
Paderborn, Aug. 2016.

[+Hei15] M. HEINZMANN. “Integriertes Anforderungsmanagement im Product-Lifecycle-
Management”. Bachelor’s Thesis. Universität Paderborn, June 2015.

[+Hoc20] R. HOCHHALTER. “Szenariobasierte Modellierung von Angriffsmodellen auf Ba-
sis von Modal Sequence Diagrammen”. Bachelor’s Thesis. Universität Paderborn,
June 2020.

[+Jaz15] B. M. JAZAYERI. “Early Prediction of Security Properties for Mechatronic Sys-
tems”. Master’s Thesis. Universität Paderborn, Jan. 2015.

[+Kai20] A. KAISER. “Spezifikation von Anforderungen an sichere Kommunikationspro-
tokolle”. Bachelor’s Thesis. Universität Paderborn, Sept. 2020.

[+Tri21] S. TRIPPEL. “Incorporating Security Protocols in Scenario-based Functional Re-
quirements Specifications”. Bachelor’s Thesis. Universität Paderborn, June 2021.

Foreign Publications

[ABD+15] D. ADRIAN, K. BHARGAVAN, Z. DURUMERIC, P. GAUDRY, M. GREEN, J. A.
HALDERMAN, N. HENINGER, D. SPRINGALL, E. THOMÉ, L. VALENTA, B.
VANDERSLOOT, E. WUSTROW, S. ZANELLA-BÉGUELIN AND P. ZIMMER-
MANN. “Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice”. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’15. Denver, Colorado, USA: Association for Computing
Machinery, 2015, pp. 5–17. ISBN: 9781450338325. DOI: 10.1145/2810103.
2813707. URL: https://doi.org/10.1145/2810103.2813707.

[ABF16] M. ABADI, B. BLANCHET AND C. FOURNET. The Applied Pi Calculus: Mobile
Values, New Names, and Secure Communication. 2016. URL: http://arxiv.
org/pdf/1609.03003v2.

[AF01] M. ABADI AND C. FOURNET. “Mobile values, new names, and secure commu-
nication”. In: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL ’01. Ed. by C. HANKIN AND D.
SCHMIDT. New York, New York, USA: ACM Press, 2001, pp. 104–115. ISBN:
1581133367. DOI: 10.1145/360204.360213.

[AGI+13] S. ABRAHAO, C. GRAVINO, E. INSFRAN, G. SCANNIELLO AND G. TORTORA.
“Assessing the Effectiveness of Sequence Diagrams in the Comprehension of
Functional Requirements: Results from a Family of Five Experiments”. In: IEEE
Transactions on Software Engineering 39.3 (2013), pp. 327–342. ISSN: 0098-
5589. DOI: 10.1109/TSE.2012.27.

149

https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
http://arxiv.org/pdf/1609.03003v2
http://arxiv.org/pdf/1609.03003v2
https://doi.org/10.1145/360204.360213
https://doi.org/10.1109/TSE.2012.27

Bibliography

[ALA19] R. AMEUR-BOULIFA, F. LUGOU AND L. APVRILLE. “SysML Model Transfor-
mation for Safety and Security Analysis”. In: Lecture Notes in Computer Sci-
ence (2019). Ed. by B. HAMID, B. GALLINA, A. SHABTAI, Y. ELOVICI AND J.
GARCIA-ALFARO, pp. 35–49. DOI: 10.1007/978-3-030-16874-2_3.

[AN96] M. ABADI AND R. NEEDHAM. “Prudent engineering practice for cryptographic
protocols”. In: IEEE Transactions on Software Engineering 22.1 (1996), pp. 6–
15. ISSN: 0098-5589. DOI: 10.1109/32.481513.

[Aus96] D. M. AUSLANDER. “What is Mechatronics?” In: IEEE/ASME Transactions
on Mechatronics 1.1 (1996), pp. 5–9. ISSN: 1083-4435. DOI: 10.1109/3516.
491404.

[BAN90] M. BURROWS, M. ABADI AND R. NEEDHAM. “A logic of authentication”. In:
ACM Transactions on Computer Systems (TOCS) 8.1 (1990), pp. 18–36. ISSN:
0734-2071. DOI: 10.1145/77648.77649.

[BBB+19] M. BARBOSA, G. BARTHE, K. BHARGAVAN, B. BLANCHET, C. CREMERS, K.
LIAO AND B. PARNO. SoK: Computer-Aided Cryptography. Cryptology ePrint
Archive, Paper 2019/1393. 2019. URL: https://eprint.iacr.org/2019/
1393.

[BBD+17] B. BEURDOUCHE, K. BHARGAVAN, A. DELIGNAT-LAVAUD, C. FOURNET, M.
KOHLWEISS, A. PIRONTI, P.-Y. STRUB AND J. K. ZINZINDOHOUE. “A messy
state of the union: taming the composite state machines of TLS”. In: Commun.
ACM 60.2 (2017), pp. 99–107. ISSN: 0001-0782. DOI: 10.1145/3023357. URL:
https://doi.org/10.1145/3023357.

[BBK17] K. BHARGAVAN, B. BLANCHET AND N. KOBEISSI. “Verified Models and Ref-
erence Implementations for the TLS 1.3 Standard Candidate”. In: 2017 IEEE
Symposium on Security and Privacy (SP). 2017, pp. 483–502. DOI: 10.1109/SP.
2017.26.

[BCD+17] D. BASIN, C. CREMERS, J. DREIER AND R. SASSE. “Symbolically Analyzing
Security Protocols Using Tamarin”. In: ACM SIGLOG News 4.4 (2017), pp. 19–
30. DOI: 10.1145/3157831.3157835. URL: https://doi.org/10.1145/
3157831.3157835.

[BCM+16] M. BUGLIESI, S. CALZAVARA, S. MÖDERSHEIM AND P. MODESTI. “Security
Protocol Specification and Verification with AnBx”. In: Journal of Information
Security and Applications (2016).

[BGH+11] G. BARTHE, B. GRÉGOIRE, S. HERAUD AND S. Z. BÉGUELIN. “Computer-
Aided Security Proofs for the Working Cryptographer”. In: Advances in Cryp-
tology – CRYPTO 2011. Ed. by P. ROGAWAY. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 71–90. ISBN: 978-3-642-22792-9.

[Bla01] B. BLANCHET. “An efficient cryptographic protocol verifier based on prolog
rules”. In: Computer Security Foundations Workshop, 2001. Proceedings. 14th
IEEE. 2001, pp. 82–96. ISBN: 0-7695-1147-3. DOI: 10 . 1109 / CSFW . 2001 .
930138.

150

https://doi.org/10.1007/978-3-030-16874-2_3
https://doi.org/10.1109/32.481513
https://doi.org/10.1109/3516.491404
https://doi.org/10.1109/3516.491404
https://doi.org/10.1145/77648.77649
https://eprint.iacr.org/2019/1393
https://eprint.iacr.org/2019/1393
https://doi.org/10.1145/3023357
https://doi.org/10.1145/3023357
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1145/3157831.3157835
https://doi.org/10.1145/3157831.3157835
https://doi.org/10.1145/3157831.3157835
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1109/CSFW.2001.930138

Foreign Publications

[Bla12] B. BLANCHET. “Security Protocol Verification: Symbolic and Computational
Models”. In: Principles of Security and Trust. Ed. by P. DEGANO AND J. D.
GUTTMAN. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3–29. ISBN:
978-3-642-28641-4.

[Bla16] B. BLANCHET. “Modeling and Verifying Security Protocols with the Applied Pi
Calculus and ProVerif”. In: Foundations and Trends® in Privacy and Security
1.1-2 (2016), pp. 1–135. ISSN: 2474-1558. DOI: 10.1561/3300000004.

[Bla23] B. BLANCHET. CryptoVerif: a Computationally-Sound Security Protocol Verifier
(Initial Version with Communications on Channels). 2023. arXiv: 2310.14658
[cs.CR]. URL: https://arxiv.org/abs/2310.14658.

[BLF+14] K. BHARGAVAN, A. D. LAVAUD, C. FOURNET, A. PIRONTI AND P. Y. STRUB.
“Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over
TLS”. In: 2014 IEEE Symposium on Security and Privacy. 2014, pp. 98–113.
DOI: 10.1109/SP.2014.14.

[BM90] S. M. BELLOVIN AND M. MERRITT. “Limitations of the Kerberos authentication
system”. In: ACM SIGCOMM Computer Communication Review 20.5 (1990),
pp. 119–132. ISSN: 0146-4833. DOI: 10.1145/381906.381946.

[BO97] J. BULL AND D. J. OTWAY. The authentication protocol. Ed. by DEFENCE RE-
SEARCH AGENCY. Technical Report DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-
04/03. 1997.

[BST21] D. BASIN, R. SASSE AND J. TORO-POZO. “Card Brand Mixup Attack: Bypass-
ing the PIN in non-Visa Cards by Using Them for Visa Transactions”. In: 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 179–194. ISBN: 978-1-939133-24-3. URL: https://www.usenix.
org/conference/usenixsecurity21/presentation/basin.

[Bun21] BUNDESAMT FÜR SICHERHEIT IN DER INFORMATIONSTECHNIK. “Die Lage der
IT-Sicherheit in Deutschland 2020”. In: (2021).

[CDL06] V. CORTIER, S. DELAUNE AND P. LAFOURCADE. “A Survey of Algebraic Prop-
erties Used in Cryptographic Protocols”. In: (2006). DOI: 10.5555/1239376.
1239377.

[CH98] D. CARREL AND D. HARKINS. The Internet Key Exchange (IKE). RFC 2409.
Nov. 1998. DOI: 10.17487/RFC2409. URL: https://www.rfc-editor.org/
info/rfc2409.

[CJ02] J. CLARK AND J. JACOB. Security Protocols Open Repository. 2002. URL: http:
//www.lsv.fr/Software/spore/index.html.

[CJ95] J. CLARK AND J. JACOB. “On the security of recent protocols”. In: Informa-
tion Processing Letters 56.3 (1995), pp. 151–155. ISSN: 0020-0190. DOI: https:
/ / doi . org / 10 . 1016 / 0020 - 0190(95) 00136 - Z. URL: https : / / www .
sciencedirect.com/science/article/pii/002001909500136Z.

[CJ97] J. A. CLARK AND J. L. JACOB. A survey of authentication protocol literature:
Version 1.0. Report. 1997. URL: https : / / eprints . whiterose . ac . uk /
72494/.

151

https://doi.org/10.1561/3300000004
https://arxiv.org/abs/2310.14658
https://arxiv.org/abs/2310.14658
https://arxiv.org/abs/2310.14658
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1145/381906.381946
https://www.usenix.org/conference/usenixsecurity21/presentation/basin
https://www.usenix.org/conference/usenixsecurity21/presentation/basin
https://doi.org/10.5555/1239376.1239377
https://doi.org/10.5555/1239376.1239377
https://doi.org/10.17487/RFC2409
https://www.rfc-editor.org/info/rfc2409
https://www.rfc-editor.org/info/rfc2409
http://www.lsv.fr/Software/spore/index.html
http://www.lsv.fr/Software/spore/index.html
https://doi.org/https://doi.org/10.1016/0020-0190(95)00136-Z
https://doi.org/https://doi.org/10.1016/0020-0190(95)00136-Z
https://www.sciencedirect.com/science/article/pii/002001909500136Z
https://www.sciencedirect.com/science/article/pii/002001909500136Z
https://eprints.whiterose.ac.uk/72494/
https://eprints.whiterose.ac.uk/72494/

Bibliography

[CKM20] C. CREMERS, B. KIESL AND N. MEDINGER. “A Formal Analysis of IEEE
802.11’s WPA2: Countering the Kracks Caused by Cracking the Counters”. In:
29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020, pp. 1–17. ISBN: 978-1-939133-17-5. URL: https://www.usenix.
org/conference/usenixsecurity20/presentation/cremers.

[Com19] COMPETENCE CENTER INDUSTRIAL SECURITY. “Industrial Security im Maschi-
nen- und Anlagenbau: Ergebnisse der VDMA-Studie und Handlungsempfehlun-
gen”. In: (2019).

[CVB06] C. CALEIRO, L. VIGANÒ AND D. BASIN. “On the semantics of Alice & Bob
specifications of security protocols”. In: Theoretical Computer Science 367.1
(2006), pp. 88–122. ISSN: 0304-3975. DOI: https://doi.org/10.1016/j.
tcs.2006.08.041. URL: https://www.sciencedirect.com/science/
article/pii/S0304397506005755.

[DH76] W. DIFFIE AND M. HELLMAN. “New directions in cryptography”. In: IEEE
Transactions on Information Theory 22.6 (1976), pp. 644–654. ISSN: 0018-9448.
DOI: 10.1109/TIT.1976.1055638.

[DHR+18] J. DREIER, L. HIRSCHI, S. RADOMIROVIC AND R. SASSE. “Automated Un-
bounded Verification of Stateful Cryptographic Protocols with Exclusive OR”. In:
IEEE 31th Computer Security Foundations Symposium. Piscataway, NJ: IEEE,
2018, pp. 359–373. ISBN: 978-1-5386-6680-7. DOI: 10.1109/CSF.2018.00033.

[DS81] D. E. DENNING AND G. M. SACCO. “Timestamps in key distribution protocols”.
In: Communications of the ACM 24.8 (1981), pp. 533–536. ISSN: 00010782. DOI:
10.1145/358722.358740.

[DT19] L. DI LI AND A. TIU. “Combining ProVerif and Automated Theorem Provers for
Security Protocol Verification”. In: Automated Deduction – CADE 27. Ed. by P.
FONTAINE. Lecture Notes in Artificial Intelligence. Cham: Springer International
Publishing, 2019, pp. 354–365. ISBN: 978-3-030-29436-6.

[DY83] D. DOLEV AND A. YAO. “On the security of public key protocols”. In: IEEE
Transactions on Information Theory 29.2 (1983), pp. 198–208. ISSN: 0018-9448.
DOI: 10.1109/TIT.1983.1056650.

[FC03] D. G. FIRESMITH AND F. CONSULTING. “Engineering Security Requirements”.
In: Journal of Object Technology 2 (2003), pp. 53–68.

[Fir03] D. FIRESMITH. “Security Use Cases”. In: The Journal of Object Technology 2.3
(2003), p. 53. DOI: 10.5381/jot.2003.2.3.c6. URL: http://www.jot.fm/
issues/issue_2003_05/column6.pdf.

[Fir07] D. G. FIRESMITH. “Engineering Safety and Security Related Requirements for
Software Intensive Systems”. In: 29th International Conference on Software En-
gineering. Los Alamitos, Calif. [u.a.]: IEEE Computer Society, 2007, p. 169. ISBN:
0-7695-2892-9. DOI: 10.1109/ICSECOMPANION.2007.35.

[FLH+16] K. FANG, X. LI, J. HAO AND Z. FENG. “Formal Modeling and Verification
of Security Protocols on Cloud Computing Systems Based on UML 2.3”. In:
IEEE TrustCom/BigDataSE/ISPA 2016. Piscataway, NJ: IEEE, 2016, pp. 852–859.
ISBN: 978-1-5090-3205-1. DOI: 10.1109/TrustCom.2016.0148.

152

https://www.usenix.org/conference/usenixsecurity20/presentation/cremers
https://www.usenix.org/conference/usenixsecurity20/presentation/cremers
https://doi.org/https://doi.org/10.1016/j.tcs.2006.08.041
https://doi.org/https://doi.org/10.1016/j.tcs.2006.08.041
https://www.sciencedirect.com/science/article/pii/S0304397506005755
https://www.sciencedirect.com/science/article/pii/S0304397506005755
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/CSF.2018.00033
https://doi.org/10.1145/358722.358740
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.5381/jot.2003.2.3.c6
http://www.jot.fm/issues/issue_2003_05/column6.pdf
http://www.jot.fm/issues/issue_2003_05/column6.pdf
https://doi.org/10.1109/ICSECOMPANION.2007.35
https://doi.org/10.1109/TrustCom.2016.0148

Foreign Publications

[GJM99] J. A. GARAY, M. JAKOBSSON AND P. MACKENZIE. “Abuse-Free Optimistic
Contract Signing”. In: Advances in Cryptology — CRYPTO’ 99. Ed. by G.
GOOS, J. HARTMANIS, J. VAN LEEUWEN AND M. WIENER. Vol. 1666. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 449–466. ISBN: 978-3-540-66347-8. DOI: 10.1007/3-540-48405-1_29.

[GM17] R. GARCIA AND P. MODESTI. “An IDE for the Design, Verification and Imple-
mentation of Security Protocols”. In: 2017 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). 2017, pp. 157–163. DOI:
10.1109/ISSREW.2017.69.

[GMZ06] P. GIORGINI, H. MOURATIDIS AND N. ZANNONE. “Modelling security and trust
with secure tropos”. In: Integrating Security and Software Engineering: Advances
and Future Vision (2006), pp. 160–189.

[Gon89] L. GONG. “Using one-way functions for authentication”. In: ACM SIGCOMM
Computer Communication Review 19.5 (1989), pp. 8–11. ISSN: 0146-4833. DOI:
10.1145/74681.74682.

[Gre11] J. GREENYER. “Scenario-based Design of Mechatronic Systems”. PhD thesis.
University of Paderborn, 2011. URL: http : / / dups . ub . uni - paderborn .
de/hs/urn/urn:nbn:de:hbz:466:2-7690.

[GV03] T. GENET AND V. VIET TRIEM TONG. “Verification of Copy-Protection Cryp-
tographic Protocol using Approximations of Term Rewriting Systems”. In: (Apr.
2003).

[Har00] D. HAREL. “From Play-In Scenarios to Code: An Achievable Dream”. In: Fun-
damental Approaches to Software Engineering. Ed. by G. GOOS, J. HARTMA-
NIS, J. VAN LEEUWEN AND T. MAIBAUM. Vol. 1783. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 22–34.
ISBN: 978-3-540-67261-6. DOI: 10.1007/3-540-46428-X_3.

[Har01] D. HAREL. “From play-in scenarios to code: an achievable dream”. In: Computer
34.5 (2001), pp. 53–60. ISSN: 00189162. DOI: 10.1109/2.895118.

[HC95] T. HWANG AND Y.-H. CHEN. “On the security of SPLICE/AS — The authentica-
tion system in WIDE Internet”. In: Information Processing Letters 53.2 (1995),
pp. 97–101. ISSN: 00200190. DOI: 10.1016/0020-0190(94)00175-X.

[HLL+95] T. HWANG, N.-Y. LEE, C.-M. LI, M.-Y. KO AND Y.-H. CHEN. “Two Attacks
on Neuman-Stubblebine Authentication Protocols”. In: Information Processing
Letters 53.2 (1995), pp. 103–107. ISSN: 00200190.

[HLM+08] C. B. HALEY, R. LANEY, J. D. MOFFETT AND B. NUSEIBEH. “Security Re-
quirements Engineering: A Framework for Representation and Analysis”. In:
IEEE Transactions on Software Engineering 34.1 (2008), pp. 133–153. ISSN:
0098-5589. DOI: 10.1109/TSE.2007.70754.

[HM03] D. HAREL AND R. MARELLY. Come, Let’s Play: Scenario-Based Programming
Using LSC’s and the Play-Engine. Secaucus, NJ, USA: Springer-Verlag New
York, Inc, 2003. ISBN: 3540007873.

153

https://doi.org/10.1007/3-540-48405-1_29
https://doi.org/10.1109/ISSREW.2017.69
https://doi.org/10.1145/74681.74682
http://dups.ub.uni-paderborn.de/hs/urn/urn:nbn:de:hbz:466:2-7690
http://dups.ub.uni-paderborn.de/hs/urn/urn:nbn:de:hbz:466:2-7690
https://doi.org/10.1007/3-540-46428-X_3
https://doi.org/10.1109/2.895118
https://doi.org/10.1016/0020-0190(94)00175-X
https://doi.org/10.1109/TSE.2007.70754

Bibliography

[HM08] D. HAREL AND S. MAOZ. “Assert and negate revisited: Modal semantics for
UML sequence diagrams”. In: Software & Systems Modeling 7.2 (2008), pp. 237–
252. ISSN: 1619-1366. DOI: 10 . 1007 / s10270 - 007 - 0054 - z. URL: http :
//dx.doi.org/10.1007/s10270-007-0054-z.

[Hol19] J. HOLTMANN. “Improvement of software requirements quality based on systems
engineering”. In: (2019). DOI: 10.17619/UNIPB/1-730.

[HRD10] J. HASSINE, J. RILLING AND R. DSSOULI. “An Evaluation of Timed Scenario
Notations”. In: J. Syst. Softw. 83.2 (2010), pp. 326–350. ISSN: 0164-1212. DOI:
10.1016/j.jss.2009.09.014. URL: http://dx.doi.org/10.1016/j.
jss.2009.09.014.

[HS07] T. A. HENZINGER AND J. SIFAKIS. “The Discipline of Embedded Systems De-
sign”. In: Computer 40.10 (2007), pp. 32–40. ISSN: 00189162. DOI: 10.1109/
MC.2007.364.

[IEE99] IEEE. “IEEE Standard for Information Technology- Telecommunications and In-
formation Exchange Between Systems-Local and Metropolitan Area Networks-
Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications”. In: IEEE Std 802.11-1999 (1999).

[IM90] C. I’ANSON AND C. MITCHELL. “Security defects in CCITT recommendation
X.509”. In: ACM SIGCOMM Computer Communication Review 20.2 (1990),
pp. 30–34. ISSN: 0146-4833. DOI: 10.1145/378570.378623.

[Jür02] J. JÜRJENS. “UMLsec: Extending UML for Secure Systems Development”. In:
The unified modeling language: Model engineering, concepts, and tools ; pro-
ceedings. Ed. by J.-M. JÉZÉQUEL. Vol. 2460. Lecture Notes in Computer Sci-
ence. Berlin [u.a.]: Springer, 2002, pp. 412–425. ISBN: 978-3-540-44254-7. DOI:
10.1007/3-540-45800-X_32.

[Jür05] J. JÜRJENS. Secure Systems Development with UML. Berlin/Heidelberg: Springer-
Verlag, 2005. ISBN: 3-540-00701-6. DOI: 10.1007/b137706.

[JV96] M. JUST AND S. VAUDENAY. “Authenticated multi-party key agreement”. In:
Advances in Cryptology — ASIACRYPT ’96. Ed. by K. KIM AND T. MAT-
SUMOTO. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 36–49. ISBN:
978-3-540-70707-3.

[KBB17] N. KOBEISSI, K. BHARGAVAN AND B. BLANCHET. “Automated Verification for
Secure Messaging Protocols and Their Implementations: A Symbolic and Com-
putational Approach”. In: 2017 IEEE European Symposium on Security and Pri-
vacy (EuroS&P). 2017, pp. 435–450. DOI: 10.1109/EuroSP.2017.38.

[KC95] I.-L. KAO AND R. CHOW. “An efficient and secure authentication protocol us-
ing uncertified keys”. In: ACM SIGOPS Operating Systems Review 29.3 (1995),
pp. 14–21. ISSN: 0163-5980. DOI: 10.1145/206826.206832.

[Kel14] M. KELLER. “Converting Alice&Bob Protocol Specifications to Tamarin”. Bach-
elor’s Thesis. ETH Zürich, Aug. 2014.

[KHN+14] C. KAUFMAN, P. E. HOFFMAN, Y. NIR, P. ERONEN AND T. KIVINEN. Internet
Key Exchange Protocol Version 2 (IKEv2). RFC 7296. Oct. 2014. DOI: 10.17487/
RFC7296. URL: https://www.rfc-editor.org/info/rfc7296.

154

https://doi.org/10.1007/s10270-007-0054-z
http://dx.doi.org/10.1007/s10270-007-0054-z
http://dx.doi.org/10.1007/s10270-007-0054-z
https://doi.org/10.17619/UNIPB/1-730
https://doi.org/10.1016/j.jss.2009.09.014
http://dx.doi.org/10.1016/j.jss.2009.09.014
http://dx.doi.org/10.1016/j.jss.2009.09.014
https://doi.org/10.1109/MC.2007.364
https://doi.org/10.1109/MC.2007.364
https://doi.org/10.1145/378570.378623
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/b137706
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1145/206826.206832
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC7296
https://www.rfc-editor.org/info/rfc7296

Foreign Publications

[KNT19] N. KOBEISSI, G. NICOLAS AND M. TIWARI. Verifpal: Cryptographic Protocol
Analysis for the Real World. 2019.

[KPP95] B. KITCHENHAM, L. PICKARD AND S. L. PFLEEGER. “Case studies for method
and tool evaluation”. In: IEEE Software 12.4 (1995), pp. 52–62. ISSN: 07407459.
DOI: 10.1109/52.391832.

[KSL92] A. KEHNE, J. SCHÖNWÄLDER AND H. LANGENDÖRFER. “A nonce-based pro-
tocol for multiple authentications”. In: SIGOPS Oper. Syst. Rev. 26.4 (1992),
pp. 84–89. ISSN: 0163-5980. DOI: 10.1145/142854.142872. URL: https:
//doi.org/10.1145/142854.142872.

[LBD02] T. LODDERSTEDT, D. BASIN AND J. DOSER. “SecureUML: A UML-Based
Modeling Language for Model-Driven Security”. In: UML 2002 The Unified
Modeling Language. Ed. by J.-M. JÉZÉQUEL, S. COOK AND H. HUSSMANN.
SpringerLink Bücher. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg,
2002, pp. 426–441. ISBN: 978-3-540-45800-5.

[LLA+16] F. LUGOU, L. W. LI, L. APVRILLE AND R. AMEUR-BOULIFA. “SysML Models
and Model Transformation for Security”. In: (2016), pp. 331–338. DOI: 10.5220/
0005748703310338.

[Low00] G. LOWE. “A Family of Attacks upon Authentication Protocols”. In: 5 (2000).

[Low95] G. LOWE. “An attack on the Needham-Schroeder public-key authentication pro-
tocol”. In: Information Processing Letters 56.3 (1995), pp. 131–133. ISSN:
00200190. DOI: 10.1016/0020-0190(95)00144-2.

[Low96a] G. LOWE. “Some new attacks upon security protocols”. In: Proceedings 9th
IEEE Computer Security Foundations Workshop. IEEE Comput. Soc. Press, 1996,
pp. 162–169. ISBN: 0-8186-7522-5. DOI: 10.1109/CSFW.1996.503701.

[Low96b] G. LOWE. “Breaking and fixing the Needham-Schroeder Public-Key Protocol us-
ing FDR”. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems. Ed. by G. GOOS, J. HARTMANIS, J. LEEUWEN, T. MARGARIA AND B.
STEFFEN. Vol. 1055. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 147–166. ISBN: 978-3-540-61042-7. DOI:
10.1007/3-540-61042-1_43.

[Low97] G. LOWE. “A hierarchy of authentication specifications”. In: Computer Secu-
rity Foundations Workshop X. Los Alamitos: IEEE Computer Society Press, 1997,
pp. 31–43. ISBN: 0-8186-7990-5. DOI: 10.1109/CSFW.1997.596782.

[Low98] G. LOWE. “Towards a completeness result for model checking of security proto-
cols”. In: Proceedings. 11th IEEE Computer Security Foundations Workshop
(Cat. No.98TB100238). IEEE Comput. Soc, 1998, pp. 96–105. ISBN: 0-8186-
8488-7. DOI: 10.1109/CSFW.1998.683159.

[LT15] G. LIEBEL AND M. TICHY. “Comparing Comprehensibility of Modelling Lan-
guages for Specifying Behavioural Requirements”. In: HuFaMo@MoDELS.
2015.

155

https://doi.org/10.1109/52.391832
https://doi.org/10.1145/142854.142872
https://doi.org/10.1145/142854.142872
https://doi.org/10.1145/142854.142872
https://doi.org/10.5220/0005748703310338
https://doi.org/10.5220/0005748703310338
https://doi.org/10.1016/0020-0190(95)00144-2
https://doi.org/10.1109/CSFW.1996.503701
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1109/CSFW.1998.683159

Bibliography

[LYM03] L. LIU, E. YU AND J. MYLOPOULOS. “Security and privacy requirements anal-
ysis within a social setting”. In: Journal of Lightwave Technology. IEEE Com-
put. Soc, 2003, pp. 151–161. ISBN: 0-7695-1980-6. DOI: 10.1109/ICRE.2003.
1232746.

[LZK20] T. LAUSER, D. ZELLE AND C. KRAUSS. “Security Analysis of Automotive Pro-
tocols”. In: Proceedings of the 4th ACM Computer Science in Cars Symposium.
CSCS ’20. Feldkirchen, Germany: Association for Computing Machinery, 2020.
ISBN: 9781450376211. DOI: 10.1145/3385958.3430482. URL: https://doi.
org/10.1145/3385958.3430482.

[MA22] R. METERE AND L. ARNABOLDI. “Automating cryptographic protocol language
generation from structured specifications”. In: Proceedings of the IEEE/ACM
10th International Conference on Formal Methods in Software Engineering. Ed.
by S. GNESI, N. PLAT, A. HARTMANNS AND I. SCHAEFER. New York, NY,
USA: ACM, 2022, pp. 91–101. ISBN: 9781450392877. DOI: 10.1145/3524482.
3527654.

[Mei13] S. MEIER. “Advancing automated security protocol verification”. PhD thesis.
ETH Zurich, 2013. DOI: 10.3929/ETHZ-A-009790675.

[MG07] H. MOURATIDIS AND P. GIORGINI. “SECURE TROPOS: A SECURITY-
ORIENTED EXTENSION OF THE TROPOS METHODOLOGY”. In: In-
ternational Journal of Software Engineering and Knowledge Engineering 17.02
(2007), pp. 285–309. ISSN: 0218-1940. DOI: 10.1142/S0218194007003240.

[MJP+22] M. MÉRÉ, F. JOUAULT, L. PALLARDY AND R. PERDRIAU. “Feedback on the
formal verification of UML models in an industrial context”. In: Proceedings of
the 25th International Conference on Model Driven Engineering Languages and
Systems. Ed. by E. SYRIANI AND H. SAHRAOUI. New York, NY, USA: ACM,
2022, pp. 121–131. ISBN: 9781450394666. DOI: 10.1145/3550355.3552454.

[Möd09] S. MÖDERSHEIM. “Algebraic Properties in Alice and Bob Notation”. In: 2009
International Conference on Availability, Reliability and Security. 2009, pp. 433–
440. DOI: 10.1109/ARES.2009.95.

[MS05] N. R. MEAD AND T. STEHNEY. “Security quality requirements engineering
(SQUARE) methodology”. In: ACM SIGSOFT Software Engineering Notes 30.4
(2005), pp. 1–7. ISSN: 0163-5948. DOI: 10.1145/1082983.1083214.

[MS13] C. MEYER AND J. SCHWENK. Lessons Learned From Previous SSL/TLS Attacks
- A Brief Chronology Of Attacks And Weaknesses. 2013.

[MSC+13] S. MEIER, B. SCHMIDT, C. CREMERS AND D. BASIN. “The TAMARIN Prover
for the Symbolic Analysis of Security Protocols”. In: Computer Aided Verifi-
cation. Ed. by D. HUTCHISON, T. KANADE, J. KITTLER, J. M. KLEINBERG,
F. MATTERN, J. C. MITCHELL, M. NAOR, O. NIERSTRASZ, C. PANDU RAN-
GAN, B. STEFFEN, M. SUDAN, D. TERZOPOULOS, D. TYGAR, M. Y. VARDI,
G. WEIKUM, N. SHARYGINA AND H. VEITH. Vol. 8044. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 696–701.
ISBN: 978-3-642-39798-1. DOI: 10.1007/978-3-642-39799-8_48.

156

https://doi.org/10.1109/ICRE.2003.1232746
https://doi.org/10.1109/ICRE.2003.1232746
https://doi.org/10.1145/3385958.3430482
https://doi.org/10.1145/3385958.3430482
https://doi.org/10.1145/3385958.3430482
https://doi.org/10.1145/3524482.3527654
https://doi.org/10.1145/3524482.3527654
https://doi.org/10.3929/ETHZ-A-009790675
https://doi.org/10.1142/S0218194007003240
https://doi.org/10.1145/3550355.3552454
https://doi.org/10.1109/ARES.2009.95
https://doi.org/10.1145/1082983.1083214
https://doi.org/10.1007/978-3-642-39799-8_48

Foreign Publications

[MSG+09] N. MOEBIUS, K. STENZEL, H. GRANDY AND W. REIF. “SecureMDD: A Model-
Driven Development Method for Secure Smart Card Applications”. In: Inter-
national Conference on Availability, Reliability and Security, 2009. Piscataway,
NJ: IEEE, 2009, pp. 841–846. ISBN: 978-1-4244-3572-2. DOI: 10.1109/ARES.
2009.22.

[MTL+09] D. MOUHEB, C. TALHI, V. LIMA, M. DEBBABI, L. WANG AND M. POURZANDI.
“Weaving security aspects into UML 2.0 design models”. In: Proceedings of the
13th workshop on Aspect-oriented modeling - AOM ’09. Ed. by O. ALDAWUD,
W. CAZZOLA, T. COTTENIER, J. GRAY, J. KIENZLE AND D. STEIN. New York,
New York, USA: ACM Press, 2009, p. 7. ISBN: 9781605584515.

[MV15] C. MILLER AND C. VALASEK. “Remote Exploitation of an Unaltered Passenger
Vehicle”. In: Black Hat USA (2015).

[NGM19] K. NADIM, N. GEORGIO AND T. MUKESH. Verifpal: Cryptographic Protocol
Analysis for the Real World. 2019. URL: https://eprint.iacr.org/2019/
971.

[NO21] M. NAKABAYASHI AND Y. OKANO. “Verification Method of Key-Exchange Pro-
tocols With a Small Amount of Input Using Tamarin Prover”. In: Proceedings
of the 2021 International Symposium on Advanced Security on Software and Sys-
tems. ASSS ’21. Virtual Event, Hong Kong: Association for Computing Machin-
ery, 2021, pp. 43–50. ISBN: 9781450384032. DOI: 10.1145/3457340.3458301.
URL: https://doi.org/10.1145/3457340.3458301.

[NS78] R. M. NEEDHAM AND M. D. SCHROEDER. “Using encryption for authentication
in large networks of computers”. In: Communications of the ACM 21.12 (1978),
pp. 993–999. ISSN: 00010782. DOI: 10.1145/359657.359659.

[NS87] R. M. NEEDHAM AND M. D. SCHROEDER. “Authentication revisited”. In:
SIGOPS Oper. Syst. Rev. 21.1 (1987), p. 7. ISSN: 0163-5980. DOI: 10.1145/
24592.24593. URL: https://doi.org/10.1145/24592.24593.

[NS93] B. C. NEUMAN AND S. G. STUBBLEBINE. “A note on the use of timestamps as
nonces”. In: ACM SIGOPS Operating Systems Review 27.2 (1993), pp. 10–14.
ISSN: 0163-5980. DOI: 10.1145/155848.155852.

[NT09] J. NICOLÁS AND A. TOVAL. “On the generation of requirements specifications
from software engineering models: A systematic literature review”. In: Informa-
tion and Software Technology 51.9 (2009), pp. 1291–1307. ISSN: 09505849. DOI:
10.1016/j.infsof.2009.04.001.

[NT94] B. C. NEUMAN AND T. TS’O. “Kerberos: an authentication service for computer
networks”. In: IEEE Communications Magazine 32.9 (1994), pp. 33–38. ISSN:
0163-6804. DOI: 10.1109/35.312841.

[Obj17a] OBJECT MANAGEMENT GROUP. OMG Systems Modeling Language (OMG
SysML). 2017. URL: http://www.omg.org/spec/SysML/1.5/.

[Obj17b] OBJECT MANAGEMENT GROUP. OMG Unified Modeling Language (OMG
UML) – Version 2.5.1. 2017. URL: http://www.omg.org/spec/SysML/1.4/.

157

https://doi.org/10.1109/ARES.2009.22
https://doi.org/10.1109/ARES.2009.22
https://eprint.iacr.org/2019/971
https://eprint.iacr.org/2019/971
https://doi.org/10.1145/3457340.3458301
https://doi.org/10.1145/3457340.3458301
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/24592.24593
https://doi.org/10.1145/24592.24593
https://doi.org/10.1145/24592.24593
https://doi.org/10.1145/155848.155852
https://doi.org/10.1016/j.infsof.2009.04.001
https://doi.org/10.1109/35.312841
http://www.omg.org/spec/SysML/1.5/
http://www.omg.org/spec/SysML/1.4/

Bibliography

[OR01] G. O’SHEA AND M. ROE. “Child-proof authentication for MIPv6 (CAM)”. In:
ACM SIGCOMM Computer Communication Review 31.2 (2001), pp. 4–8. ISSN:
0146-4833. DOI: 10.1145/505666.505668.

[OR87] D. OTWAY AND O. REES. “Efficient and timely mutual authentication”. In: ACM
SIGOPS Operating Systems Review 21.1 (1987), pp. 8–10. ISSN: 0163-5980. DOI:
10.1145/24592.24594.

[Orm98] H. ORMAN. The OAKLEY Key Determination Protocol. RFC 2412. Nov. 1998.
DOI: 10.17487/RFC2412. URL: https://www.rfc- editor.org/info/
rfc2412.

[Pau00] L. C. PAULSON. “Relations Between Secrets: The Yahalom Protocol”. In: Se-
curity Protocols. Ed. by B. CHRISTIANSON, B. CRISPO, J. A. MALCOLM AND

M. ROE. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 73–77. ISBN:
978-3-540-45570-7.

[Poh10] K. POHL. Requirements Engineering: Fundamentals, Principles, and Techniques.
1st. Springer Publishing Company, Incorporated, 2010. ISBN: 3642125778.

[Poo10] R. POOVENDRAN. “Cyber-Physical Systems: Close Encounters Between Two
Parallel Worlds”. In: Proceedings of the IEEE 98.8 (2010), pp. 1363–1366. ISSN:
0018-9219. DOI: 10.1109/JPROC.2010.2050377.

[PX05] J. J. PAULI AND D. XU. “Misuse case-based design and analysis of secure soft-
ware architecture”. In: International Conference on Information Technology:
Coding and Computing (ITCC’05) - Volume II. IEEE, 2005, 398–403 Vol. 2. ISBN:
0-7695-2315-3. DOI: 10.1109/ITCC.2005.199.

[RA15] Y. ROUDIER AND L. APVRILLE. “SysML-Sec: A model driven approach for
designing safe and secure systems”. In: 2015 3rd International Conference on
Model-Driven Engineering and Software Development (MODELSWARD). 2015,
pp. 655–664.

[RBM+22] M. RAIMONDO, S. BERNARDI, S. MARRONE AND J. MERSEGUER. “An ap-
proach for the automatic verification of blockchain protocols: the Tweetchain case
study”. In: Journal of Computer Virology and Hacking Techniques (2022). DOI:
10.1007/s11416-022-00444-z.

[Res18] E. RESCORLA. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. Aug. 2018. DOI: 10.17487/RFC8446. URL: https://www.rfc-editor.
org/info/rfc8446.

[RH09] P. RUNESON AND M. HÖST. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering 14.2
(2009), pp. 131–164. ISSN: 1382-3256. DOI: 10.1007/s10664-008-9102-8.

[RLF+04] I. RAY, N. LI, R. FRANCE AND D.-K. KIM. “Using uml to visualize role-based
access control constraints”. In: Proceedings of the ninth ACM symposium on
Access control models and technologies - SACMAT ’04. Ed. by T. JAEGER AND

E. FERRARI. New York, New York, USA: ACM Press, 2004, p. 115. ISBN:
1581138725.

158

https://doi.org/10.1145/505666.505668
https://doi.org/10.1145/24592.24594
https://doi.org/10.17487/RFC2412
https://www.rfc-editor.org/info/rfc2412
https://www.rfc-editor.org/info/rfc2412
https://doi.org/10.1109/JPROC.2010.2050377
https://doi.org/10.1109/ITCC.2005.199
https://doi.org/10.1007/s11416-022-00444-z
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.1007/s10664-008-9102-8

Foreign Publications

[RS98] P. RYAN AND S. A. SCHNEIDER. “An attack on a recursive authentication proto-
col A cautionary tale”. In: Information Processing Letters 65.1 (1998), pp. 7–10.
ISSN: 00200190. DOI: 10.1016/S0020-0190(97)00180-4.

[Run12] P. RUNESON, ed. Case study research in software engineering: Guidelines and
examples. 1st ed. Hoboken, N.J: Wiley, 2012. ISBN: 9781118104354. DOI: 10.
1002/9781118181034.

[Sat89] M. SATYANARAYANAN. “Integrating security in a large distributed system”. In:
ACM Transactions on Computer Systems (TOCS) 7.3 (1989), pp. 247–280. ISSN:
0734-2071. DOI: 10.1145/65000.65002.

[Sch90] C. P. SCHNORR. “Efficient Identification and Signatures for Smart Cards”. In:
Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by G. BRASSARD.
New York, NY: Springer New York, 1990, pp. 239–252. ISBN: 978-0-387-34805-
6.

[Sch96] B. SCHNEIER. Applied cryptography: Protocols, algorithms, and source code in
C. 2nd ed. New York: J. Wiley & Sons, 1996. ISBN: 9780471117094. URL: http:
//proquest.tech.safaribooksonline.de/9780471117094.

[SLF+14] G. SHEN, X. LI, R. FENG, G. XU, J. HU AND Z. FENG. “An Extended UML
Method for the Verification of Security Protocols”. In: 2014 19th International
Conference on Engineering of Complex Computer Systems. IEEE, 2014, pp. 19–
28. ISBN: 978-1-4799-5482-7. DOI: 10.1109/ICECCS.2014.12.

[SO05] G. SINDRE AND A. L. OPDAHL. “Eliciting security requirements with misuse
cases”. In: Requirements Engineering 10.1 (2005), pp. 34–44. ISSN: 0947-3602.
DOI: 10.1007/s00766-004-0194-4.

[SR96] V. SHOUP AND A. RUBIN. “Session Key Distribution Using Smart Cards”. In:
Advances in Cryptology — EUROCRYPT ’96. Ed. by G. GOOS, J. HARTMANIS,
J. VAN LEEUWEN AND U. MAURER. Vol. 1070. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 321–331. ISBN:
978-3-540-61186-8. DOI: 10.1007/3-540-68339-9_28.

[SS11] SHEILA FRANKEL AND SURESH KRISHNAN. IP Security (IPsec) and Internet
Key Exchange (IKE) Document Roadmap. 2011. DOI: 10.17487/RFC6071. URL:
https://www.rfc-editor.org/info/rfc6071.

[STP12] E. SIKORA, B. TENBERGEN AND K. POHL. “Industry needs and research direc-
tions in requirements engineering for embedded systems”. In: Requirements En-
gineering 17.1 (2012), pp. 57–78. ISSN: 0947-3602. DOI: 10.1007/s00766-
011-0144-x.

[SW07] W. SCHÄFER AND H. WEHRHEIM. “The Challenges of Building Advanced
Mechatronic Systems”. In: International Conference on Software Engineering,
ISCE 2007, Workshop on the Future of Software Engineering, FOSE 2007, May
23-25, 2007, Minneapolis, MN, USA. Ed. by LIONEL C. BRIAND AND ALEXAN-
DER L. WOLF. 2007, pp. 72–84.

[Tel96] TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU. ITU-T recom-
mendation Z.120 (10/96): Message Sequence Chart (MSC). 1996.

159

https://doi.org/10.1016/S0020-0190(97)00180-4
https://doi.org/10.1002/9781118181034
https://doi.org/10.1002/9781118181034
https://doi.org/10.1145/65000.65002
http://proquest.tech.safaribooksonline.de/9780471117094
http://proquest.tech.safaribooksonline.de/9780471117094
https://doi.org/10.1109/ICECCS.2014.12
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1007/3-540-68339-9_28
https://doi.org/10.17487/RFC6071
https://www.rfc-editor.org/info/rfc6071
https://doi.org/10.1007/s00766-011-0144-x
https://doi.org/10.1007/s00766-011-0144-x

Bibliography

[TMN90] M. TATEBAYASHI, N. MATSUZAKI AND D. B. NEWMAN. “Key Distribution
Protocol for Digital Mobile Communication Systems”. In: Advances in Cryp-
tology — CRYPTO’ 89 Proceedings. Ed. by G. GOOS, J. HARTMANIS, D.
BARSTOW, W. BRAUER, P. BRINCH HANSEN, D. GRIES, D. LUCKHAM, C.
MOLER, A. PNUELI, G. SEEGMÜLLER, J. STOER, N. WIRTH AND G. BRAS-
SARD. Vol. 435. Lecture Notes in Computer Science. New York, NY: Springer
New York, 1990, pp. 324–334. ISBN: 978-0-387-97317-3. DOI: 10 . 1007 / 0 -
387-34805-0{\textunderscore}30.

[VDI04] VDI. Design methodology for mechatronic systems (VDI 2206). 2004.

[vR09] T. VAN DEURSEN AND S. RADOMIROVI. “Attacks on RFID Protocols”. In:
Cryptology ePrint Archive 2008.310 (2009), pp. 1–56.

[WL93] T. WOO AND S. S. LAM. “A semantic model for authentication protocols”. In:
Proceedings. Los Alamitos, Calif: IEEE Computer Society Press, 1993, pp. 178–
194. ISBN: 0-8186-3370-0. DOI: 10.1109/RISP.1993.287633.

[WL94] T. Y. C. WOO AND S. S. LAM. “A lesson on authentication protocol design”. In:
ACM SIGOPS Operating Systems Review 28.3 (1994), pp. 24–37. ISSN: 0163-
5980. DOI: 10.1145/182110.182113.

[Wor23] WORLD ECONOMIC FORUM. Global risks 2021: Insight report. 18th Edition.
Geneva: World Economic Forum, 2023.

[WWH08] J. WHITTLE, D. WIJESEKERA AND M. HARTONG. “Executable misuse cases for
modeling security concerns”. In: Proceedings of the 30th International Confer-
ence on Software Engineering: May 10-18, 2008, Leipzig, Germany. Ed. by W.
SCHÄFER. New York, N.Y.: ACM Press, 2008, p. 121. ISBN: 978-1-60558-079-1.
DOI: 10.1145/1368088.1368106.

[YOM90] S. YAMAGUCHI, K. OKAYAMA AND H. MIYAHARA. “Design and implementa-
tion of an authentication system in WIDE Internet environment”. In: IEEE TEN-
CON’90: 1990 IEEE Region 10 Conference on Computer and Communication
Systems. Conference Proceedings (1990), 653–657 vol.2.

Tool Suites and Tool Frameworks

[EMF] ECLIPSE MODELING FRAMEWORK (EMF). URL: http://www.eclipse.org/
modeling/emf.

[Obj14] OBJECT MANAGEMENT GROUP (OMG). OMG Object Constraint Language
(OCL) – Version 2.4. OMG Document Number: formal/14-02-03. 2014.

[Papyrus] PAPYRUS MODELING ENVIRONMENT. URL: http : / / www . eclipse . org /
papyrus.

[Proverif] PROVERIF: CRYPTOGRAPHIC PROTOCOL VERIFIER IN THE FORMAL MODEL.
URL: https://bblanche.gitlabpages.inria.fr/proverif/.

[QVTo] ECLIPSE QVT OPERATIONAL. URL: http : / / projects . eclipse . org /
projects/modeling.mmt.qvt-oml.

160

https://doi.org/10.1007/0-387-34805-0{\textunderscore }30
https://doi.org/10.1007/0-387-34805-0{\textunderscore }30
https://doi.org/10.1109/RISP.1993.287633
https://doi.org/10.1145/182110.182113
https://doi.org/10.1145/1368088.1368106
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/papyrus
http://www.eclipse.org/papyrus
https://bblanche.gitlabpages.inria.fr/proverif/
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml

Tool Suites and Tool Frameworks

[ST-MSD] SCENARIOTOOLS MSD. URL: http://scenariotools.org/projects2/
msd.

[Tamarin] TAMARIN PROVER. URL: https://tamarin-prover.github.io/.

[UML] OBJECT MANAGEMENT GROUP. OMG Unified Modeling Language (OMG
UML). 2015. URL: http://www.omg.org/spec/UML/2.5/.

[Xtend] ECLIPSE XTEND. URL: https://www.eclipse.org/xtend/.

[Xtext] ECLIPSE XTEXT. URL: https://www.eclipse.org/Xtext/.

161

http://scenariotools.org/projects2/msd
http://scenariotools.org/projects2/msd
https://tamarin-prover.github.io/
http://www.omg.org/spec/UML/2.5/
https://www.eclipse.org/xtend/
https://www.eclipse.org/Xtext/

List of Figures

1.1 Overview of VICE’s workflow . 6
1.2 Overview of security extensions to our requirements engineering methodology

based on Modal Sequence Diagrams [*HFK+16b] 7

2.1 MSD Specification Excerpt . 10
2.2 The Modal Profile . 13

3.1 UML class diagram for the Andrew Secure RPC security protocol 32
3.2 UML collaboration diagram for the Andrew Secure RPC security protocol 33
3.3 MSD for the Andrew Secure RPC security protocol 34
3.4 UML class diagram for the Needham-Schroeder Public Key security protocol . . 35
3.5 UML collaboration diagram for the Needham-Schroeder Public Key security protocol 35
3.6 MSD for the Needham-Schroeder Public Key security protocol 37
3.7 Overview of the SECURITY MODELING PROFILE subprofiles 38
3.8 The subprofile SecurityModelingProfile::ProtocolModeling 40
3.9 The subprofile SecurityModelingProfile::CryptographicKey 42
3.10 The subprofile SecurityModelingProfile::SecureElementModeling 43
3.11 Exemplary MSD to illustrate the Runtime Extensions 46
3.12 Coarse-grained architecture of the implementation and the reused components . . 49
3.13 Screenshot of the SECURITY SCENARIOTOOLS MSD modeling perspective . . . 50
3.14 Screenshot of the SECURITY SCENARIOTOOLS MSD simulation perspective . . 50

4.1 Overview of the model-checking approach for verifying security protocols 59
4.2 UML package diagram of the Verification metamodel 61
4.3 UML class diagram of the Verification metamodel 61
4.4 UML class diagram of the package Verification::Protocol 63
4.5 UML class diagram of the package Verification::Query 64
4.6 Illustration of Transformation Step 2: Derive Structure of the Security Protocol . 66
4.7 Illustration of Transformation Step 3: Derive Initial Knowledge 67
4.8 Illustration of Transformation Step 4: Derive Behavior — Translation of a Message 68
4.9 Illustration of Transformation Step 4: Derive Behavior — Translation of a Security

Assignment . 69
4.10 Illustration of Transformation Step 4: Derive Behavior — Translation of a Security

Condition . 70

163

List of Figures

4.11 Illustration of Transformation Step 5: Preserve ordering of InteractionFragments 71
4.12 Derivation of secrecy queries . 73
4.13 Generic security protocol showing the necessary events for authentication of Par-

ticipantA to ParticipantB . 74
4.14 Generic security protocol showing the necessary events for authentication of Par-

ticipantB to ParticipantA . 74
4.15 Generic security protocol showing messages with arguments and events for au-

thentication . 75
4.16 Overview of the derivation of authentication queries based on the SecurityProto-

colModel . 77
4.17 Illustration of Transformation Step 2: Generate Protocol Structure (PROVERIF) . 80
4.18 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —

Creation of a sub-process for one Participant 81
4.19 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —

Translation of an outgoing MessageEvent without applied security primitive . . . 82
4.20 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —

Translation of an outgoing MessageEvent with one applied security primitive . . 83
4.21 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF)

— Translation of an outgoing MessageEvent with more than one applied security
primitives . 84

4.22 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an incoming MessageEvent without applied security primitive . . 84

4.23 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an incoming MessageEvent with one applied security primitive . . 85

4.24 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of an incoming MessageEvent with more than one applied security
primitive . 86

4.25 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of a SecurityAssignment . 86

4.26 Illustration of Transformation Step 3: Generate Protocol Behavior (PROVERIF) —
Translation of a SecurityCondition . 87

4.27 Illustration of Transformation Step 4: Generate Main Process (PROVERIF) 88
4.28 Translating a PropertyQuery to PROVERIF . 89
4.29 Translating a VariableQuery to PROVERIF . 89
4.30 Translating an AuthenticationQuery to PROVERIF 91
4.31 Illustration of Transformation Step 2: Generate Protocol Structure (TAMARIN) . 95
4.32 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —

Translation of an outgoing MessageEvent without applied security primitive . . . 96
4.33 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —

Translation of an outgoing MessageEvent with one applied security primitive . . 96
4.34 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —

Translation of an outgoing MessageEvent with more than one applied security
primitive . 97

4.35 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with one Argument 98

164

List of Figures

4.36 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with two Arguments 98

4.37 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with more than two Argument 99

4.38 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with one applied security primitive . . 99

4.39 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of an incoming MessageEvent with more than one applied security
primitives . 100

4.40 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of a SecurityAssignment . 101

4.41 Illustration of Transformation Step 3: Generate Protocol Behavior (TAMARIN) —
Translation of a SecurityCondition . 102

4.42 Generating a Secrecy Query in TAMARIN . 103
4.43 Generating an Authentication Query in TAMARIN 104
4.44 UML class diagram of the Result metamodel . 105
4.45 Translating a PROVERIF summary to the ResultModel 107
4.46 Exemplary counterexample in PROVERIF . 108
4.47 Coarse-grained architecture of the implementation and the reused components . . 110
4.48 Overview of the Query Selection View . 111

5.1 UML class diagram for the Man-in-the-Middle-Attack 125
5.2 UML collaboration diagram for the Man-in-the-Middle-Attack 125
5.3 MSD for the Man-in-the-Middle-Attack . 126
5.4 Exemplarily application of the SECURITY MODELING PROFILE to mitigate the

man-in-the-middle attack . 127
5.5 Exemplarily application of the SECURITY PROTOCOL TEMPLATE PROFILE . . . 128
5.6 The MISUSE CASE MODELING PROFILE in Detail 129
5.7 Illustration of the problem of integrating a security protocol into the scenario-

based requirements specification of an application 131
5.8 The SECURITY PROTOCOL TEMPLATE PROFILE in Detail 132
5.9 Resulting MSD after the handling of the SecurityProtocolReference 134
5.10 Detailed overview of the Software Architecture 135

B.1 Class diagram of the package Verification::Protocol::Primitives 184
B.2 Class diagram of the package Verification::Protocol::Types 185

165

List of Tables

3.1 Results of the case study . 52

4.1 Overview of the Capabilities of PROVERIF in relation to the SECURITY MODEL-
ING PROFILE . 78

4.2 Overview of the Capabilities of TAMARIN in relation to the SECURITY MODEL-
ING PROFILE . 92

4.3 Results of the case study for the PROVERIF-related hypotheses 117
4.4 Results of the case study for the TAMARIN-related hypotheses 118

A.1 Usage of security primitives in the security protocols of our literature study . . . 173
A.2 Usage of algebraic operations in the security protocols of our literature study . . 176
A.3 Usage of data types in the security protocols of our literature study 179

167

List of Listings

2.1 Alice & Bob notation of the Needham-Schroder Public Key security protocol . . 15
2.2 Exemplary PROVERIF input model defining functions and types for asymmetric

encryption . 17
2.3 Exemplary PROVERIF input model defining channels and variables 17
2.4 Exemplary PROVERIF input model defining a sub-process 18
2.5 Exemplary PROVERIF input model defining a main process 18
2.6 Exemplary PROVERIF input model defining an authentication query 19
2.7 Exemplary TAMARIN input model defining a theory and importing build-ins . . . 20
2.8 Exemplary TAMARIN input model defining a multiset rewriting rule 20
2.9 Exemplary TAMARIN input model defining a secrecy lemma 21
2.10 Exemplary TAMARIN input model defining an authentication lemma 21

3.1 Alice & Bob notation of the Andrew Secure RPC security protocol 26
3.2 Alice & Bob notation of the Needham-Schroder Public Key security protocol . . 27
3.3 Domain-Specific Language to express Security Assignments 44
3.4 Domain-Specific Language to express Security Conditions 45

4.1 Overview of Authentication Queries in PROVERIF 90
4.2 TAMARIN Template used for the Transformation Approach 94
4.3 Secrecy Lemma in TAMARIN . 102
4.4 Overview of Authentication Lemma in TAMARIN based on [Tamarin] 104
4.5 Exemplary summary of an analysis in PROVERIF 107
4.6 Exemplary summary of an analysis in TAMARIN 109

B.1 PROVERIF Protocol Preamble . 186
B.2 TAMARIN Protocol Preamble . 188

169

List of Algorithms
4.1 Translation from an MSD Specification to the SecurityProtocolModel 65
4.2 Translation from a SecurityProtocolModel to PROVERIF 79
4.3 Translation from a SecurityProtocolModel to TAMARIN 93
4.4 Translation from the Analysis Results to the SECURITY MODELING PROFILE . . 106

171

A

Supplementing Materials for the Specification
of Security MSDs

This appendix presents supplementing materials for the analysis of existing security protocols as
presented in Chapter 3. We analyzed 54 security protocols to identify typical building blocks.
In particular, we analyzed the usage of cryptographic primitives (cf. Section A.1), the usage of
algebraic operations (cf. Section A.2), and the usage of data types (cf. Section A.3).

A.1 Analyzing the Usage of Cryptographic Primitives in Security
Protocols

Table A.1: Usage of security primitives in the security protocols of our literature study

No. Security Protocol Asymmetric
Encryption

Symmetric
Encryption

Digital
Signatures MAC Hashing

1 Andrew Secure RPC [Sat89;
BAN90]

#

2 Andrew Secure RPC (BAN
concrete) [BAN90; Low96a]

#

3 Andrew Secure RPC (BAN
modified) [BAN90]

#

4 Andrew Secure RPC (Lowe
modified) [Low96a]

#

5 Bull’s Authentication
Protocols [BO97; RS98]

#

6 CCITT X.509 (v1) [BAN90;
AN96]

 # # #

7 CCITT X.509 (v2) [BAN90;
IM90]

 # #

8 CCITT X.509 (v3) [BAN90;
AN96; IM90]

 # # #

9 CCITT X.509 (BAN
modified) [BAN90]

 # # #

10 CH07 [vR09] # # # #

11 Child-proof Authentication for
MIPv6 (CAM) [OR01]

173

Appendix A. Supplementing Materials for the Specification of Security MSDs

No. Security Protocol Asymmetric
Encryption

Symmetric
Encryption

Digital
Signatures MAC Hashing

12 Denning-Sacco-Shared-
Key [DS81; Low00]

#

13 Denning-Sacco-Shared-Key
(Lowe modified) [Low00]

#

14 Diffie-Helman [DH76] # # # # #

15 GJM [GJM99] # # # #

16 Gong’s Mutual Authentication
Protocol [Gon89]

 # # #

17 Internet Key Exchange
(IKEv1) [CH98]

18 Internet Key Exchange
(IKEv2)[KHN+14]

#

19 Kao Chow Authentication
(v1) [KC95; CJ97]

#

20 Kao Chow Authentication
(v2) [KC95]

#

21 Kao Chow Authentication
(v3) [KC95]

#

22 Kerberos [BM90; NT94;
Low96a]

#

23 Kerberos (Nonce-based
Improvement of Kerberos
(KSL)) [BM90; NT94;
Low96a; KSL92]

#

24 Kerberos (Nonce-based
Improvement of Kerberos
(KSL, Lowe
modified))[Low96a]

#

25 Needham-Schroeder Public
Key [NS78]

 # # #

26 Needham-Schroeder Public
Key (Lowe modified) [Low95]

 # # #

27 Needham-Schroeder
Symmetric Key [NS78]

#

28 Needham-Schroeder
Symmetric Key
(Amended-version) [NS87]

#

29 Neumann Stubblebine [NS93] # # # #

30 Neumann Stubblebine (Hwang
modified) [NS93; HLL+95]

#

31 Oakley Key Determination
Protocol [Orm98]

 #

32 Otway Rees [OR87] # # # #

33 Schnorr’s Identification
Protocol [Sch90]

#

34 Shamir-Rivest-Adleman Three
Pass Protocol [CJ97]

#

174

A.1. Analyzing the Usage of Cryptographic Primitives in Security Protocols

No. Security Protocol Asymmetric
Encryption

Symmetric
Encryption

Digital
Signatures MAC Hashing

35 SK3[SR96] # # # #

36 Smart-Right (view-only)
[GV03]

37 SPLICE/AS [YOM90] # # #

38 SPLICE/AS (Clark and Jacob
modified) [CJ95]

 # # #

39 SPLICE/AS (Hwang and Chen
modified) [HC95]

 # # #

40 TMN [TMN90] # # #

41 Transport Layer Security (TLS
1.3) [Res18]

42 Wide Mouthed Frog [BAN90] # # # #

43 Wide Mouthed Frog (Lowe
modified) [Low00]

#

44 Wired Equivalent Privacy
(WEP) [IEE99]

#

45 Woo and Lam Mutual
Authentication [WL94]

#

46 Woo and Lam Pi [WL94] # # # #

47 Woo and Lam Pi 1 [WL94] # # # #

48 Woo and Lam Pi 2 [WL94] # # # #

49 Woo and Lam Pi 3 [WL94] # # # #

50 Woo and Lam Pi f [WL94] # # # #

51 Yahalom [BAN90; CJ97] # # # #

52 Yahalom (modified version by
Lowe) [Low98]

#

53 Yahalom (simplified version
by BAN) [BAN90]

#

54 Yahalom (strengthened version
by Paulson) [Pau00]

#

Legend: used in the security protocol, # not used in the security protocol

175

Appendix A. Supplementing Materials for the Specification of Security MSDs

A.2 Analyzing the Usage of Algebraic Operations in Security Proto-
cols

Table A.2: Usage of algebraic operations in the security protocols of our literature study

No. Security Protocol XOR Addition Subtraction Multiplication Division Modular
exponentiation

1 Andrew Secure RPC [Sat89;
BAN90]

#

2 Andrew Secure RPC (BAN
concrete) [BAN90; Low96a]

#

3 Andrew Secure RPC (BAN
modified) [BAN90]

#

4 Andrew Secure RPC (Lowe
modified) [Low96a]

#

5 Bull’s Authentication
Protocols [BO97; RS98]

 # # # # #

6 CCITT X.509 (v1) [BAN90;
AN96]

#

7 CCITT X.509 (v2) [BAN90;
IM90]

#

8 CCITT X.509 (v3) [BAN90;
AN96; IM90]

#

9 CCITT X.509 (BAN
modified) [BAN90]

#

10 CH07 [vR09] # # # # #

11 Child-proof Authentication for
MIPv6 (CAM) [OR01]

#

12 Denning-Sacco-Shared-
Key [DS81; Low00]

#

13 Denning-Sacco-Shared-Key
(Lowe modified) [Low00]

#

14 Diffie-Helman [DH76] # # # # #

15 GJM [GJM99] # # # # # #

16 Gong’s Mutual Authentication
Protocol [Gon89]

#

17 Internet Key Exchange
(IKEv1) [CH98]

18 Internet Key Exchange
(IKEv2) [KHN+14]

19 Kao Chow Authentication
(v1) [KC95]

#

20 Kao Chow Authentication
(v2) [KC95]

#

21 Kao Chow Authentication
(v3) [KC95]

#

22 Kerberos [BM90; NT94;
Low96a]

#

23 Kerberos (Nonce-based
Improvement of Kerberos
(KSL)) [BM90; NT94;
Low96a; KSL92]

#

176

A.2. Analyzing the Usage of Algebraic Operations in Security Protocols

No. Security Protocol XOR Addition Subtraction Multiplication Division Modular
exponentiation

24 Kerberos (Nonce-based
Improvement of Kerberos
(KSL, Lowe modified))
[Low96a]

#

25 Needham-Schroeder Public
Key [NS78]

#

26 Needham-Schroeder Public
Key (Lowe modified) [Low95]

#

27 Needham-Schroeder
Symmetric Key [NS78]

#

28 Needham-Schroeder
Symmetric Key
(Amended-version) [NS87]

#

29 Neumann Stubblebine [NS93] # # # # # #

30 Neumann Stubblebine (Hwang
modified) [NS93; HLL+95]

#

31 Oakley Key Determination
Protocol [Orm98]

32 Otway Rees [OR87] # # # # # #

33 Schnorr’s Identification
Protocol [Sch90]

34 Shamir-Rivest-Adleman Three
Pass Protocol [CJ97]

#

35 SK3 [SR96] # # # # #

36 Smart-Right (view-only)
[GV03]

#

37 SPLICE/AS [YOM90] # # # # #

38 SPLICE/AS (Clark and Jacob
modified) [CJ95]

#

39 SPLICE/AS (Hwang and Chen
modified) [HC95]

#

40 TMN [TMN90] # # # # # #

41 Transport Layer Security (TLS
1.3) [Res18]

42 Wide Mouthed Frog [BAN90] # # # # # #

43 Wide Mouthed Frog (Lowe
modified) [Low00]

#

44 Wired Equivalent Privacy
(WEP) [IEE99]

#

45 Woo and Lam Mutual
Authentication [WL94]

#

46 Woo and Lam Pi [WL94] # # # # # #

47 Woo and Lam Pi 1 [WL94] # # # # # #

48 Woo and Lam Pi 2 [WL94] # # # # # #

177

Appendix A. Supplementing Materials for the Specification of Security MSDs

No. Security Protocol XOR Addition Subtraction Multiplication Division Modular
exponentiation

49 Woo and Lam Pi 3 [WL94] # # # # # #

50 Woo and Lam Pi f [WL94] # # # # # #

51 Yahalom [BAN90; CJ97] # # # # # #

52 Yahalom (modified version by
Lowe) [Low98]

#

53 Yahalom (simplified version
by BAN) [BAN90]

#

54 Yahalom (strengthened version
by Paulson) [Pau00]

#

Legend: used in the security protocol, # not used in the security protocol

178

A.3. Analyzing the Usage of Data Types in Security Protocols

A.3 Analyzing the Usage of Data Types in Security Protocols

Table A.3: Usage of data types in the security protocols of our literature study

No. Security Protocol Nonce Number Timestamp Identifier Cryptographic
Key

1 Andrew Secure RPC [Sat89;
BAN90]

 # #

2 Andrew Secure RPC (BAN
concrete) [BAN90; Low96a]

 # #

3 Andrew Secure RPC (BAN
modified) [BAN90]

 # #

4 Andrew Secure RPC (Lowe
modified) [Low96a]

 # #

5 Bull’s Authentication
Protocols [BO97; RS98]

6 CCITT X.509 (v1) [BAN90;
AN96]

 #

7 CCITT X.509 (v2) [BAN90;
IM90]

 #

8 CCITT X.509 (v3) [BAN90;
IM90]

 #

9 CCITT X.509 (BAN
modified) [BAN90]

 # #

10 CH07 [vR09] # #

11 Child-proof Authentication for
MIPv6 (CAM) [OR01]

 #

12 Denning-Sacco-Shared-
Key [DS81; Low00]

13 Denning-Sacco-Shared-Key
(Lowe modified) [Low00]

 #

14 Diffie-Helman [DH76] # # #

15 GJM [GJM99] # # #

16 Gong’s Mutual Authentication
Protocol [Gon89]

#

17 Internet Key Exchange
(IKEv1) [CH98]

 # #

18 Internet Key Exchange
(IKEv2) [KHN+14]

 # #

19 Kao Chow Authentication
(v1) [KC95]

 # #

20 Kao Chow Authentication
(v2) [KC95]

 # #

21 Kao Chow Authentication
(v3) [KC95]

 # #

22 Kerberos [BM90; NT94;
Low96a]

 #

23 Kerberos (Nonce-based
Improvement of Kerberos
(KSL)) [BM90; NT94;
Low96a; KSL92]

 #

179

Appendix A. Supplementing Materials for the Specification of Security MSDs

No. Security Protocol Nonce Number Timestamp Identifier Cryptographic
Key

24 Kerberos (Nonce-based
Improvement of Kerberos
(KSL, Lowe modified))
[Low96a]

 #

25 Needham-Schroeder Public
Key [NS78]

 # #

26 Needham-Schroeder Public
Key (Lowe modified) [Low95]

 # #

27 Needham-Schroeder
Symmetric Key [NS78]

 # #

28 Needham-Schroeder
Symmetric Key
(Amended-version) [NS87]

29 Neumann Stubblebine [NS93] # #

30 Neumann Stubblebine (Hwang
modified) [NS93; HLL+95]

31 Oakley Key Determination
Protocol [Orm98]

 # #

32 Otway Rees [OR87] # #

33 Schnorr’s Identification
Protocol [Sch90]

34 Shamir-Rivest-Adleman Three
Pass Protocol [CJ97]

35 SK3 [SR96] # # #

36 Smart-Right
(view-only)[GV03]

37 SPLICE/AS [YOM90] #

38 SPLICE/AS (Clark and Jacob
modified) [CJ95]

 #

39 SPLICE/AS (Hwang and Chen
modified) [HC95]

 #

40 TMN [TMN90] # # #

41 Transport Layer Security (TLS
1.3) [Res18]

42 Wide Mouthed Frog [BAN90] # #

43 Wide Mouthed Frog (Lowe
modified) [Low00]

 #

44 Wired Equivalent Privacy
(WEP) [IEE99]

45 Woo and Lam Mutual
Authentication [WL94]

 # #

46 Woo and Lam Pi [WL94] # #

47 Woo and Lam Pi 1 [WL94] # #

48 Woo and Lam Pi 2 [WL94] # #

49 Woo and Lam Pi 3 [WL94] # #

180

A.3. Analyzing the Usage of Data Types in Security Protocols

No. Security Protocol Nonce Number Timestamp Identifier Cryptographic
Key

50 Woo and Lam Pi f [WL94] # #

51 Yahalom [BAN90; CJ97] # # #

52 Yahalom (modified version by
Lowe) [Low98]

53 Yahalom (simplified version
by BAN) [BAN90]

54 Yahalom (strengthened version
by Paulson) [Pau00]

Legend: used in the security protocol, # not used in the security protocol

181

B

Supplementing Materials for the Verification of
Security MSDs

This appendix presents supplementing materials for the concepts presented in Chapter 4. Sec-
tion B.1 describes three metamodels defining parts of the VerificationModel. Afterward, Section B.2
and Section B.3 present further transformation rules from the VerificationModel to PROVERIF and
TAMARIN, respectively.

B.1 Supplementing Materials for the Translation from MSDs to the
VerificationModel

As described in Section 4.3.1, the metamodel Verification is subdivided into several packages.
This section presents an overview of the packages Verification::Protocol::Primitives and Verification::
Protocol::Types.

B.1.1 Overview of the Package Verification::Protocol::Primitives

The class diagram of the package Verification::Protocol::Primitives is depicted in Figure B.1 and
encompasses all classes necessary to specify security primitves. The package provides the abstract
class SecurityPrimitve and five classes extending the abstract class.

Next, we provide an overview of the five classes extending the abstract class SecurityPrimitve:

• The class AsymmetricEncryption describes that a message or an argument is asymmetrically
encrypted. The class encompasses the properties publicKey: EncPublicKey used for the en-
cryption and privateKey: EncPrivateKey used for the decryption.

• The class DigitalSignature describes that a message or an argument is digitally signed. This
signature is added to the message and sent to the receiver of the message. The class encom-
passes the properties privateKey: SigPrivateKey used for the creation of the digital signatur
and publicKey: SigPublicKey used for the validation of the signature.

• The class SymmetricEncryption describes that a message or an argument is symmetrically
encrypted. Therefore, the class encompasses the property symmetricKey: EncSymmetricKey
specifying the key used for the encryption and decryption.

183

Appendix B. Supplementing Materials for the Verification of Security MSDs

• The class HMAC describes that a hash-based message authentication code is added to a mes-
sage and covers all or only part of the message’s arguments. Therefore, the class encom-
passes the property symmetricKey: HMACSymmetricKey specifying the key used for creating
and validating the hash-based message authentication code.

• The class Hashed describes that a message or an argument of a message is cryptographically
hashed.

«metamodel» Verification::Protocol::Primitives«metamodel» Verification::Protocol::Primitives

SecurityPrimitiveSecurityPrimitive

- privateKey: Verification::

Protocol::Types::EncPrivateKey

- publicKey: Verification::

Protocol::Types::EncPublicKey

AsymmetricEncryption

- privateKey: Verification::

Protocol::Types::EncPrivateKey

- publicKey: Verification::

Protocol::Types::EncPublicKey

AsymmetricEncryption

HashHash

- symmetricKey: Verification::

Protocol::Types::EncSymmetric

Key

SymmetricEncryption

- symmetricKey: Verification::

Protocol::Types::EncSymmetric

Key

SymmetricEncryption

- privateKey: Verification::

Protocol::Types::SigPrivateKey

- publicKey: Verification::

Protocol::Types::SigPublicKey

DigitalSignature

- privateKey: Verification::

Protocol::Types::SigPrivateKey

- publicKey: Verification::

Protocol::Types::SigPublicKey

DigitalSignature

- symmetricKey: Verification::

Protocol::Types::HMACSymmet

ricKey

HMAC

- symmetricKey: Verification::

Protocol::Types::HMACSymmet

ricKey

HMAC

Figure B.1: Class diagram of the package Verification::Protocol::Primitives

B.1.2 Overview of the Package Verification::Protocol::Types

The class diagram of the package Verification::Protocol::Types is depicted in Figure B.2. The pack-
age provides primitive types and types for cryptographic keys. The class PrimitiveType has a prop-
erty type of type PrimiveTypes. The abstract class CryptographicKey is extended by six classes.

Next, we provide an overview of the classes extending the abstract class CryptographicKey.

• The class EncSymmetricKey provides means to specify a cryptographic key used for symmet-
ric encryption. In symmetric encryption, several communication partners use the same key
to encrypt and decrypt the communication. The association identicalKeys relates symmetric
keys of participants with each other.

• The class HMACSymmetricKey provides means to specify a cryptographic key used to create
a hashed message-authentication code (HMAC). As for the stereotype EncSymmetricKey, the
stereotype identicalKeys relates symmetric keys of participants with each other.

184

B.1. Supplementing Materials for the Translation from MSDs to the VerificationModel

• The two classes EncPrivateKey and EncPublicKey define a key pair used for asymmetric
encryption. The EncPublicKey specifies the public key used for the encryption, while the
EncPrivateKey specifies the private key used for the decryption. The association keyPair is
used to relate the two parts of the key pair.

• The two classes SigPrivateKey and SigPublicKey define a key pair used to create and validate
a digital signature. The SigPrivateKey specifies the private key used for creation, while the
SigPublicKey specifies the private key used validating the signature. The association keyPair
is used to relate the two parts of the key pair.

«metamodel» Verification::Protocol::Types«metamodel» Verification::Protocol::Types

CryptographicKeyCryptographicKey

EncPublicKeyEncPublicKey

EncSymmetricKeyEncSymmetricKey

EncPrivateKeyEncPrivateKey

HMACSymmetric

Key

HMACSymmetric

Key

SigPublicKeySigPublicKey

SigPrivateKeySigPrivateKey

type: PrimitiveTypes

PrimitiveType

type: PrimitiveTypes

PrimitiveType

- bitstring

- host

- string

- number

PrimitveTypes

- bitstring

- host

- string

- number

PrimitveTypescPrivateKey

cPublicKey

keyPair

cPrivateKey

cPublicKey

keyPair
cPrivateKey

cPublicKey

keyPair
cPrivateKey

cPublicKey

keyPair

identicalKeys

[1..*]

identicalKeys

[1..*]

identicalKeys

[1..*]

identicalKeys

[1..*]

Figure B.2: Class diagram of the package Verification::Protocol::Types

185

Appendix B. Supplementing Materials for the Verification of Security MSDs

B.2 Supplementing Materials for the Translation from the Securi-
tyProtocolModel to PROVERIF

This section provides supplementing materials for the translation from the SecurityProtocolModel
to PROVERIF.

B.2.1 Definition of the Protocol Preamble in PROVERIF

1 (* Definition of the Protocol Preamble *)
2

3 type host.
4

5 (* XOR Operation *)
6

7 fun xor(bitstring , bitstring) : bitstring .
8 const XOR_ZERO : bitstring .
9

10 (* Modular Exponentiation *)
11 fun exp(bitstring , bitstring) : bitstring .
12 fun mod(bitstring , bitstring) : bitstring .
13

14 equation forall P:bitstring , G:bitstring , x:bitstring , y: bitstring ;
15 mod(exp(exp(G, x), y), P) = mod(exp(exp(G, y), x), P).
16

17 (* Increase / Decrease *)
18 fun inc(bitstring) : bitstring .
19 reduc forall x: bitstring ; dec(inc(x)) = x.
20

21 (* Concat *)
22 fun concat (bitstring , bitstring) : bitstring .
23

24 (* Symmetric Encryption *)
25 type symmetricKey .
26

27 fun senc(bitstring , symmetricKey): bitstring .
28

29 reduc forall m: bitstring , k: symmetricKey ; sdec(senc(m,k),k) = m.
30

31 (* Asymmetric Encyption *)
32

33 type ePrivateKey .
34 type ePublicKey .
35

36 fun generatePublicKey4Encryption (ePrivateKey): ePublicKey .
37 fun aenc(bitstring , ePublicKey): bitstring .
38

39 reduc forall m: bitstring , k: ePrivateKey ; adec(aenc(m,
generatePublicKey4Encryption (k)), k) = m.

40

41 (* Digital Signature *)
42

43 type sPrivateKey .
44 type sPublicKey .
45

186

B.2. Supplementing Materials for the Translation from the SecurityProtocolModel to PROVERIF

46 fun generatePublicKey4Signature (sPrivateKey): sPublicKey .
47 fun sign(bitstring , sPrivateKey): bitstring .
48

49 reduc forall m: bitstring , k: sPrivateKey ; getMessage (sign(m,k)) = m.
50 reduc forall m: bitstring , k: sPrivateKey ; verify (sign(m,k),

generatePublicKey4Signature (k)) = m.

Listing B.1: PROVERIF Protocol Preamble

187

Appendix B. Supplementing Materials for the Verification of Security MSDs

B.3 Supplementing Materials for the Translation from the Security
Protocol Model to TAMARIN

This section provides supplementing materials for the translation from the SecurityProtocolModel
to TAMARIN.

B.3.1 Definition of the Protocol Preamble in TAMARIN

1 theory verificationModel . securityProtocolModel . protocol .name
2

3 begin
4

5 // ====================================
6 // == Import Builtin Functions ==
7 // ====================================
8 builtins :
9 asymmetric -encryption ,

10 diffie -hellman ,
11 hashing ,
12 multiset ,
13 signing ,
14 symmetric -encryption ,
15 xor
16

17 // ====================================
18 // == Custom Functions and Equations ==
19 // ====================================
20

21 functions : dec /1, inc /1
22 equations : inc(dec(x))=x
23

24 // ====================================
25 // == PKI Infrastructure (Setup) ==
26 // ====================================
27

28 rule RegisterPublicEncryptionKey :
29 [Fr(∼skA)] --[Secret (∼skA), Gen($A)]->[!Ltk($A , ~skA), !PK($A ,

pk(∼skA)), Out(pk(∼skA))]
30

31 rule RevealPrivateEncryptionKey :
32 [!Ltk(A, ltkA)] --[Reveal (A)]-> [Out(ltkA)]
33

34

35 // ====================================
36 // == Symmetric Key (Setup) ==
37 // ====================================
38

39 rule RegisterSymmetricEncryptionKey :
40 [Fr(∼k)] --[KeyGen ($A), Secret (∼k)]-> [!

SymmetricEncryptionKey ($A , ∼k)]
41

42

43 rule RevealSymmetricEncryptionKey :
44 [! SymmetricEncryptionKey (A, ∼k)] --[Reveal (A)]-> [Out(∼k)]

188

B.3. Supplementing Materials for the Translation from the Security Protocol Model to TAMARIN

45

46 // ====================================
47 // == Common Restrictions ==
48 // ====================================
49

50 restriction unique :
51 "All x #i #j. UniqueFact (x) @#i & UniqueFact (x) @#j ==> #i = #j"
52

53 restriction Equality :
54 "All x y #i. Eq(x,y) @#i ==> x = y"
55

56 restriction Inequality :
57 "All x #i. Neq(x,x) @ #i ==> F"
58

59 restriction OnlyOnce :
60 "All #i #j. OnlyOnce ()@#i & OnlyOnce ()@#j ==> #i = #j"
61

62 restriction LessThan :
63 "All x y #i. LessThan (x,y)@#i ==> Ex z. x + z = y"
64

65 restriction GreaterThan :
66 "All x y #i. GreaterThan (x,y)@#i ==> Ex z. x = y + z"
67 end

Listing B.2: TAMARIN Protocol Preamble

189

C

Own Publication Contributions

[*ABD+19] This publication presents the results of a survey on the state of secure software de-
velopment. The study was conducted within the research project AppSecure.nrw.
I contributed to the design and evaluation of the study and to all sections in joint
work with the other authors. Furthermore, I presented the paper.

[*FHK+18a] This publication presents requirement patterns for MSDs. I contributed to parts
of the requirement patterns. Furthermore, I contributed to parts of the paper and
reviewed the overall paper.

[*FHK+18b] This publication is a supplementing technical report for [*FHK+18a] and presents
requirements pattern for MSDs. I contributed to parts of the requirement patterns.
Furthermore, I contributed to parts of the paper and reviewed the overall paper.

[*HFK+16a] This publication introduces maturity levels for requirements engineering based on
the author’s industrial experiences. I contributed to all sections in joint work with
the other authors.

[*HFK+16b] This publications consolidates the MSD syntax and semantics that this thesis
works with, and introduces the EBEAS. I was one of the main authors of the
EBEAS and a section that describes the usage of MSDs by example requirements
on the EBEAS. In addition, I reviewed other parts of the paper.

[*KDH+20] This publication introduces the Security Modeling Profile and the model transfor-
mations from MSD specifications to ProVerif input models. Thereby, it presents
preliminary work for Chapter 3 and Chapter 4. I am the main author of the publi-
cation, coordinated its creation, contributed to all sections, and presented the pa-
per.

[*KHD14] This paper introduces model transformations from MSD specifications to CCSL
models. I contributed to all sections and reviewed the overall publication.

[*KHL17] This publications present results from a research project on the data exchange by
means of STEP models for mechatronic production systems. I developed the con-
cepts of the paper in joint work with the other authors. Furthermore, I coordinated
the creation of the publication, contributed to all sections, and presented the paper.

191

Appendix C. Own Publication Contributions

[*KHL18] This publications is an extended version of [*KHL17] and presents results from
a research project on the data exchange by means of STEP models for mecha-
tronic production systems. I developed the concepts of the paper in joint work
with the other authors. Furthermore, I coordinated the creation of the publication,
contributed to all sections, and presented the paper.

[*KHS+16] This publications present results from a research project on variant modeling and
on the data exchange by means of STEP models for mechatronic production sys-
tems. I developed the concepts of the paper in joint work with the other authors.
I coordinated the creation of the publication, contributed to all sections, and pre-
sented the paper.

[*KMM+20] This publication presents a experience report on the introduction of software de-
velopment improvements in a machinery and plant engineering company. I coor-
dinated the creation of the publication, contributed to all sections, and presented
the paper.

[*Koc18] This publications presents first ideas on the integration of security and functional
requirements to enable their early analysis. Thereby, it presents preliminary work
for Chapter 4. I wrote and presented the paper.

[*KTD+22] This publication introduces the approach for security protocol templates and their
refercene in a MSD specification. Thereby, it presents preliminary work for Chap-
ter 5. The initial concepts have been developed in [+Tri21]. I am the main author of
the publication, coordinated its creation, contributed to all sections, and presented
the paper.

[*MHK+15] This publication describes an automatic derivation of initial AUTOSAR models
from UML software design specifications in the automotive sector. I contributed
to parts of the paper and reviewed the overall paper.

192

	Abstract
	Zusammenfassung
	Danksagung
	1 Introduction
	1.1 Problem Description
	1.1.1 Specification and Analysis of Security Protocols
	1.1.2 Specification and Analysis of Functional and Security Requirements

	1.2 Contributions
	1.3 Thesis Structure

	2 Foundations
	2.1 Modal Sequence Diagrams (MSDs)
	2.1.1 Structure of MSD Specifications
	2.1.2 Semantics of MSD Specifications
	2.1.3 Analysis Techniques for MSD Specifications
	2.1.4 The Modal Profile

	2.2 Specification and Analysis of Security Protocols
	2.2.1 Alice & Bob Notation
	2.2.2 Analyzing Security Protocols in the Symbolic Model
	2.2.3 Proverif
	2.2.4 Tamarin

	3 Specification of Security MSDs
	3.1 Contributions
	3.2 Requirements on the Security Modeling Profile
	3.2.1 Analyzing Exemplary Security Protocols
	3.2.2 Analyzing the Results

	3.3 Exemplary Application of the Security Modeling Profile
	3.3.1 Modeling the Andrew Secure RPC Security Protocol
	3.3.2 Modeling the Needham-Schroeder Public Key Security Protocol
	3.3.3 Summarizing the Exemplary Application of the Security Modeling Profile

	3.4 The Security Modeling Profile in Detail
	3.4.1 Subprofile SecurityModelingProfile::ProtocolModeling
	3.4.2 Subprofile SecurityModelingProfile::CryptographicKeyModeling
	3.4.3 Subprofile SecurityModelingProfile::SecureElementModeling
	3.4.4 Metamodel SecurityModelingProfile::SecurityAssignment
	3.4.5 Metamodel SecurityModelingProfile::SecurityCondition

	3.5 Extension of the Runtime Semantics to Support the Security Modeling Profile
	3.5.1 Runtime Semantics: Minimal Event
	3.5.2 Runtime Semantics: Message Unification

	3.6 Implementation
	3.6.1 Security ScenarioTools (Software Architecture)
	3.6.2 Security ScenarioTools (User Interface)

	3.7 Evaluation
	3.7.1 Case Study Context
	3.7.2 Setting the Hypotheses
	3.7.3 Validating the Hypotheses
	3.7.4 Analyzing the Results
	3.7.5 Threats to Validity

	3.8 Related Work
	3.9 Summary

	4 Verification of Security MSDs
	4.1 Contributions
	4.2 Overview of the Model-Checking Approach for Verifying Security Protocols
	4.3 Translation from MSDs to the VerificationModel
	4.3.1 Overview of the Metamodel Verification
	4.3.2 Translate an MSD Specification to the SecurityProtocolModel
	4.3.3 Translate an MSD Specification to the QueryModel

	4.4 Translation from the VerificationModel to Proverif input models
	4.4.1 Overview of the Capabilities of Proverif in relation to the Security Modeling Profile
	4.4.2 Translate the SecurityProtocolModel to Proverif
	4.4.3 Translate the QueryModel to Proverif

	4.5 Translation from the VerificationModel to Tamarin input models
	4.5.1 Overview of the Capabilities of Tamarin in relation to the Security Modeling Profile
	4.5.2 Translate the SecurityProtocolModel to Tamarin
	4.5.3 Translate the QueryModel to Tamarin

	4.6 Back-Translation from Security Model Checkers to MSDs
	4.6.1 Overview of the Metamodel Result
	4.6.2 Translate the Analysis Results to the Security Modeling Profile

	4.7 Implementation
	4.7.1 Security ScenarioTools (Software Architecture)
	4.7.2 Security ScenarioTools (User Interface)

	4.8 Evaluation
	4.8.1 Case Study Context
	4.8.2 Setting the Hypotheses
	4.8.3 Validating the Hypotheses
	4.8.4 Analyzing the Results
	4.8.5 Threats to Validity

	4.9 Related Work
	4.9.1 Model-based approaches for the automated verification of security protocols
	4.9.2 Text-based approaches for the automated verification of security protocols

	4.10 Summary

	5 Incorporation of Functional and Security MSDs
	5.1 Contributions
	5.2 Exemplary Application of the Misuse Case Modeling Profile and the Security Protocol Template Profile
	5.3 Specification of Misuse Cases
	5.3.1 The Misuse Case Modeling Profile in Detail
	5.3.2 Extension of the Runtime Semantics to Support the Misuse Case Modeling Profile

	5.4 Integrating Security Protocols into Scenario-based Requirements Specifications
	5.4.1 The Security Protocol Template Profile in Detail
	5.4.2 Extension of the Runtime Semantics to Support the Security Protocol Template Profile

	5.5 Implementation
	5.5.1 Security ScenarioTools (Software Architecture)
	5.5.2 Security ScenarioTools (User-Interface)

	5.6 Evaluation
	5.6.1 Case Study Context
	5.6.2 Setting the Hypotheses
	5.6.3 Validating the Hypotheses
	5.6.4 Analyzing the Results
	5.6.5 Threats to Validity

	5.7 Related Work
	5.7.1 Approaches for the Identification and Analysis of Misuse Cases
	5.7.2 Approaches for the Specification of Security Mechanisms

	5.8 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography
	Own Publications
	Supervised Thesis
	Foreign Publications
	Tool Suites and Tool Frameworks

	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	A Supplementing Materials for the Specification of Security MSDs
	A.1 Analyzing the Usage of Cryptographic Primitives in Security Protocols
	A.2 Analyzing the Usage of Algebraic Operations in Security Protocols
	A.3 Analyzing the Usage of Data Types in Security Protocols

	B Supplementing Materials for the Verification of Security MSDs
	B.1 Supplementing Materials for the Translation from MSDs to the VerificationModel
	B.1.1 Overview of the Package Verification::Protocol::Primitives
	B.1.2 Overview of the Package Verification::Protocol::Types

	B.2 Supplementing Materials for the Translation from the SecurityProtocolModel to Proverif
	B.2.1 Definition of the Protocol Preamble in Proverif

	B.3 Supplementing Materials for the Translation from the Security Protocol Model to Tamarin
	B.3.1 Definition of the Protocol Preamble in Tamarin

	C Own Publication Contributions

