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Abstract

The increased availability of heterogeneous Knowledge Graphs (KGs) has unlocked
numerous opportunities in data-driven applications, such as information retrieval,
Natural Language Processing (NLP), and geospatial analysis. However, the potential
of these KGs remains largely untapped due to their limited interlinking. This
thesis addresses critical research gaps in the realm of Link Discovery (LD) over KGs
particularly focusing on geospatial KGs. Three key research gaps are identified:
scalability (Research Gap 1), the absence of holistic models for Linked Open
Data (LOD) (Research Gap 2), and the need for explainability in LD with the
human in the loop (Research Gap 3).

To address Research Gap 1, we propose a novel algorithm called LineSimp. In
the LineSimp , we discover the topological relations between geospatial Resource
Description Framework (RDF) resources using a simplified version of such geospatial
RDF resources. Our findings show an average loss of 15% in F-measure on the
original data, but a significant speedup of up to 67x when applied to simplified
geometries. The Intersection Matrix Approach offers a scalable solution in the LD
over geospatial KGs with a speed increase of up to 35% in computation time. In
addition, we introduce COBALT. COBALT combines content measures with R-tree
indexing. Content measures are based on the area, diagonal, and distance of the
Minimum Bounding Boxes (MBBs) of polygons, which speeds up the process while
allowing for further precision.

To address Research Gap 2, we introduce NELLIE, a modular pipeline architecture.
NELLIE not only identifies relevant KGs for linkage but also successfully integrates
them, contributing to a more unified and complete (KG). Our approach shows a
measurable impact on link prediction and KG completeness, marking a milestone
for 24/7 linking and holistic LOD models. When tackling Research Gap 3, we offer
innovative solutions to improve explainability, including the conversion of complex
Link Specifications (LSs) into natural language. Our template-based and neural-
based verbalization methods significantly improve user comprehension without
sacrificing the richness of the underlying LSs.

In summary, this thesis makes groundbreaking contributions to the domain of LD over
geospatial KGs. It introduces scalable, effective, and explainable methodologies that



Vi

have extensive applications in real-time systems, Knowledge Graph (KG) integration,
and the broader realm of explainable Al

Abstract (German language)

Die rasche Ausweitung heterogener Wissensgraphen (KGs) hat zahlreiche Moglichkeiten

in datengetriebenen Bereichen wie der Informationssuche, Natural Language Pro-
cessing (NLP), und geografischen Analyse eroffnet. Das Potenzial dieser KGs bleibt
jedoch aufgrund der begrenzten Vernetzung zwischen ihnen weitgehend ungenutzt.
Diese Dissertation befasst sich mit kritischen Forschungsliicken im Bereich von
Link Discovery (LD) iiber KGs, insbesondere mit einem Fokus auf geografische
KGs. Drei Hauptforschungsliicken werden identifiziert: Skalierbarkeitsprobleme
(Forschungsliicke 1), das Fehlen ganzheitlicher Modelle fiir Linked Open Data
(LOD) (Forschungsliicke 2) und die Notwendigkeit fiir Erklarbarkeit in der LD mit
dem Menschen in der Schleife (Forschungsliicke 3).

Fiir Forschungsliicke 1 schlagen wir neue Algorithmen vor, insbesondere den
Line Simplification Approach. Im Line Simplification Approach entdecken wir den
topologischen Beziehungen zwischen geografischen RDF-Ressourcen durch eine vere-
infachte Version dieser geografischen RDF-Ressourcen. Unsere Ergebnisse zeigen
einen durchschnittlichen Verlust von 15% beim F-Maf3 auf den Originaldaten, aber
eine signifikante Beschleunigung um bis zu 67, wenn sie auf vereinfachte Geome-
trien angewendet werden. Der Intersection Matrix Approach bietet eine skalierbare
Losung in LD iiber geografischen KGs mit einer Geschwindigkeitssteigerung von bis
zu 35% bei der Berechnungszeit. Dariiber hinaus fithren wir COBALT ein. COBALT
kombiniert die die Inhaltsdhnlichkeitsmessungen mit der R-Baum-Indexierung. die
Inhaltsdhnlichkeitsmessungen basieren auf der Fldche, Diagonale und Entfernung
der Minimum Bounding Boxes (MBBs) von Polygonen, was den Prozess beschleunigt,
jedoch weitere Prazision ermoglicht.

Um Forschungsliicke 2 zu beheben, fithren wir NELLIE ein, eine modulare Pipeline-
Architektur. NELLIE identifiziert nicht nur relevante KGs fiir die Verlinkung, sondern
integriert sie auch erfolgreich, was zu einem einheitlicheren und vollstindigeren KG
beitragt. Unser Ansatz zeigt eine messbare Auswirkung auf die Linkvorhersage und
die Vollstandigkeit des KG, und markiert einen Meilenstein fiir 24/7-Verlinkung und
ganzheitliche LOD-Modelle. Bei der Bewiltigung von Forschungsliicke 3 bieten



wir innovative Losungen zur Verbesserung der Erklarbarkeit, einschlieRlich der
Umwandlung komplexer Link Specifications (LSs) in natiirliche Sprache. Unsere
templatebasierten und neuralbasierten Verbalisierungsmethoden verbessern das
Benutzerverstindnis erheblich, ohne die Reichhaltigkeit der zugrundeliegenden LSs
zu opfern.

Zusammenfassend leistet diese Dissertation bahnbrechende Beitrdge zum Bereich
LD iiber geografische KGs. Sie schlédgt skalierbare, effektive und erklarbar Method-
ologien vor, die umfangreiche Anwendungen in Echtzeitsystemen, der Integration
von KGs und dem breiteren Bereich der erkldrbar KI haben.
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Introduction

The key to growth is the introduction of higher
dimensions of consciousness into our awareness.

— Lao Tzu
(Chinese Philosopher)

The digital age has ushered in an era of unprecedented access to information. As
of April 2023, 64.6% of the world’s population had access to the World Wide Web
(WWW)!, which had grown to encompass at least 4.47 billion indexed pages?. This
vast digital landscape, known as Web 2.0 or the Document Web, is interconnected
through links, serving as a primary information source for billions of people. Search
engines like Google, for example, process an average of 99 thousand search requests
per second, translating to over 8.5 billion searches per day®.

However, the Document Web has its limitations. The relationships within it are not
typed, making it challenging to understand the significance of these connections.
Moreover, traditional retrieval techniques often return entire web pages instead of
specific, relevant information from across multiple pages. To address the drawbacks
of the Document Web, Berners-Lee et al.# created the Semantic Web (SW) [BHLO1],
which is an extension of the Document Web and the existing WWW. The SW enables
data to be presented in the form of a globally connected database that smart agents
can access and process. Thus, the data must follow established formats and protocols
and must be available and machine-understandable for agents (i.e., machines) to
process them quickly.

The World Wide Web Consortium (W3C) provides the framework for SW standard-
ization, including syntax, formal descriptions of terminology and concepts, and
vocabularies. For example, the Resource Description Framework (RDF)® standard

"https://www.statista.com/statistics/617136/digital-population-worldwide/
2https ://www.worldwidewebsize.com/ Accessed, 31 July, 2023
*https://www.oberlo.com/blog/google-search-statistics (Accessed, 31 July, 2023)
*https://en.wikipedia.org/wiki/Tim_Berners-Lee

Shttps://www.w3.org/RDF/


https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.worldwidewebsize.com/
https://www.oberlo.com/blog/google-search-statistics
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://www.w3.org/RDF/

allows the representation of facts as triples (see an example about the former presi-
dent of US Barack Obama represented as a set of triples in the Listing 1 in Terse RDF
Triple Language (TTL) format®).

The Web of Linked Data, or Linked Data, is the manifestation of the SW and has
grown from 12 KGs [Ngo+14a] to more than 10,000 KGs’. Recent technological
advancements in hardware development and network infrastructure have facilitated
the accumulation of vast amounts of data in a wide range of disciplines, such as
life sciences, social networks, monitoring industrial plants [Los+11], monitoring
open SPARQL endpoints [Sal+15], implementing the Internet of Things (IoT), and
cloud computing [Meh+15]. As a result, 8.85 million pieces of information about
individuals, locations, species, and artistic works are included in the KGs, such as
DBpedia, the structural representation of Wikipedia pages. More than 1.3 billion
facts in the Linked SPARQL Queries (LSQ) dataset [Sal+15] describe more than
250 million query events at the open SPARQL endpoints. There are more than 20
billion triples that describe millions of geographical things in LinkedGeoData (LGD)
[ALHO9]. In addition to the ever-increasing number of published KGs, we can also
see how the size of an individual KG increases with each new edition. For example,
DBpedia has grown from 103 million triples (DBpedia 2.0), representing 1.95 million
entities, to 10.094 billion triples, representing more than 8.85 million entities in
20228.

However, the LOD cloud? is made entirely of open data that is freely reusable and
distributed under an open license. LOD is a fraction of the Web of Linked Data. Data
must adhere to a set of guidelines known as the "Linked Data Principles" in order to
be published as Linked Data.

These principles are as follows:

1. First Principle. Use the Uniform Resource Identifier (URI)s to name things.

*https://www.w3.org/TeamSubmission/turtle/
"http://lodstats.aksw.org/
®https://DBpedia.org/sparql (Accessed, 10 March, 2022)
“https://lod-cloud.net/

@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix xsd: <http://www.w3.o0rg/2001/XMLSchema#> .

dbr:Barack_Obama dbo:birthDate "2013-05-14"""xsd:date .
dbr :Barack_Obama dbo:birthPlace dbr:Hawaii .

Listing 1: A simple set of triples in TTL format.
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2. Second Principle. Use the Hypertext Transfer Protocol (HTTP) URIs to find
those names.

3. Third Principle. Use standard formats, such as RDF and SPARQL, so that if
someone searches for a URI, it provides useful information.

4. Fourth Principle. Include links to other URIs so that people can discover more
things.

To realize the vision of the Web of Linked Data, resources within one KG must be
linked to resources in another KG within LOD. Thus, in this work, we focus on the
fourth principle. Given a source RDF KG G and a target RDF KG G}, our objective is
to generate new RDF statements that connect the resources of G5 with those of G;.
Establishing these links between KGs is crucial for producing Linked Data. Moreover,
generating links between entities within KGs is essential to gather the data needed
to build a comprehensive model for LOD. Linked KGs play a pivotal role in various
data-driven applications, including information retrieval, NLP, recommendation
systems, search engines, conversational agents, e-commerce platforms, and drug
discovery. The importance of linking KGs in life sciences is illustrated by the question
in example: What are the side effects of drugs used to treat Tuberculosis?

To obtain comprehensive results using the biomedical section of the Linked Data
Question Answering benchmark [Ung+14], question answering systems must utilize
links between pharmaceuticals specified in Diseasome!? and drugs detailed in Sider!!.
The query in Listing 2 demonstrates that the Ontology Web Language (OWL) prop-
erty owl:sameAs is employed to establish the link between pertinent resources in
these KGs (associated with ?s2 and 7s3).

For the effective creation of accurate links across KGs, there are two primary require-
ments, as outlined by Nentwig et al. [Nen+17] for a linking framework (i.e., LD
tools). These requirements are the following:

Yhttps://pubmed.ncbi.nlm.nih.gov/22891498/
Hhttp://sideeffects.embl.de/

SELECT DISTINCT ?x WHERE {

disease:1154 diseasome:possibleDrug 7?s2 .
?s2 rdf:type drugbank:drugs

?7s3 owl:sameAs 7s2 .

?s3 sider:sideEffect 7x .

}

Listing 2: SPARQL query to answer "What are the side effects of drugs used for Tuberculosis?".


https://pubmed.ncbi.nlm.nih.gov/22891498/
http://sideeffects.embl.de/
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* Efficiency. A linking tool should be fast and scalable, especially for large
KGs with millions of resources. A simplistic, non-scalable approach evaluates
all potential resource pairings (the Cartesian product), leading to quadratic
complexity. Thus, a primary efficiency goal is to reduce search space to prevent
unnecessary resource pairings. Nentwig et al. [Nen+17] have highlighted
several frameworks that prioritize the efficiency of a linking framework.

* Effectiveness. A linking tool should produce high-quality mappings based
on standard metrics such as accuracy, recall, and F-measure. The results
should be precise, meaning that the relationships generated by a specific
framework must be accurate. Additionally, to ensure completeness, a linking
tool should generate as many accurate links as possible. Only genuine resource
connections should be established. Nentwig et al. [Nen+17] have reviewed
numerous tools that focus on the effectiveness of a linking framework.

Having introduced the two main requirements for efficient LD frameworks, we now
turn our attention to the specific challenges associated with LD over Geospatial KGs.
While there is comprehensive literature on the scalability of general LD, there are
limited insights when it comes to the difficulties of LD over Geospatial KG. This work
emphasizes the improvement of the scalability of LD over Geospatial KG, given the
limited literature on Geospatial LD at scale. The rapid expansion of linked geospa-
tial data requires scalable methods to identify links between geospatial resources.
Past research indicates that only 7.1% of the relationships between resources are
geographically related [Ngo13]. This can be attributed to the following: I) The
large volume of geospatial resources on LOD requires efficient methods to compute
the relationships between these resources. For example, LGD [ALH09] comprises
more than 20 billion triples that describe millions of geographical entities. II) The
need to compute specific relationships, such as distance and topological connec-
tions between geospatial resources, involves managing the vector representation of
geospatial data.

Geospatial resources are now crucial for many real-time applications, including emer-
gency response, location-based services, and real-time traffic management [ZL05].
Establishing links between real-time geospatial KGs is challenging, especially to
support immediate decision-making. Thus, ensuring the efficiency and scalability
of the LD process is increasingly complex. In our research, we develop innovative
algorithms to improve the scalability of LD over Geospatial KGs. We examine how
simplifying geospatial representations affects the quality of discovered relations
and the efficiency of different LD approaches when using these simplified geome-
tries. We also study the impact of parallel computing on the topological relations
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between geospatial resources, as defined by Dimensionally Extended 9-Intersection
Model (DE-9IM). Additionally, we formalize the problem of topological relation
discovery for geospatial resources, with a focus on content measures and R-Tree
indexing. These algorithms are presented in Part II of the thesis, following the
preliminary concepts covered in Part I. Building upon our novel algorithms and
methods to address the scalability of LD over Geospatial KGs, we further extend
Part II by introducing NELLIE.

NELLIE is a modular pipeline architecture designed to gather the data necessary to
create a holistic model for LOD. It comprises a series of modules, each addressing
a distinct data augmentation task. NELLIE starts by identifying relevant KGs for
integration. It then manages the KG data integration at both ontology and instance
levels. Subsequently, NELLIE fuses related instances/classes to form a unified KG and
then embeds this KG. Our primary aim with this proposed architecture is to gather
the essential data for creating a comprehensive model for LOD.

Having discussed the challenges and advancements in enhancing the scalability of
LD, especially over Geospatial KGs, another equally pressing concern emerges: the
intricacy of LSs and their accessibility to non-experts. A LS a specification with two
components: similarity measures m for comparing properties and operators op for
combining similarities. Frameworks such as SiLk [[JB11] and LIMES [NA11] have
provided robust mechanisms for determining link conditions, but their intricate
specifications often remain elusive for non-experts. Although the literature is rich in
discussions about the scalability of general LD, it has not delved into the challenge
of making LD transparent and comprehensible. It remains largely unaddressed. This
brings us to the forefront of "Explainable LD." In this pioneering endeavor, our aim
is to demystify the world of complexes of LSs. Our innovative approach introduces a
fresh perspective to LD, placing a premium on explainability. Using NLP techniques
and integrating human-in-the-loop, we aspire to transform these complex LSs into
intuitive natural language texts. In Part III of this thesis, we will dive into this
novel approach, offering a new lens through which the LD community can view and
understand LSs.

Motivation

The landscape of heterogeneous KGs adhering to linked data principles is steadily
expanding, as we can see in Figure 1.1. These KGs find extensive applications in
data-driven domains, including information retrieval, NLP, recommendation systems,
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search engines, conversational agents, e-commerce solutions, and drug discovery.
However, only a fraction of these KGs are currently interconnected. According to
recent statistics'? from LOD!3, out of 1564 KGs with 395.121 billion triples, only
2.72 billion links (0.07%) exist between them. This underscores the significant
challenge of discovering links among these KGs, a crucial step towards realizing the
LOD vision!4. The scarcity of links among instances in KGs is primarily due to the
labor-intensive nature of manual link establishment, especially in large KGs such
as DBpedia'®, LGD'®, Bio2RDF'7, KEGG [Kan+16], and Wikidata'®. This challenge
is further amplified by the continuous growth in the number and size of published
KGs. For example, DBpedia has expanded from 103 million triples (DBpedia 2.0),
representing 1.95 million entities, to 10.094 billion triples, representing more than
8.85 million entities in 2022!°. As the number of independent data providers
increases, the simultaneous publication of KGs with identical information is likely to
become more prevalent. For example, DBLP has been published by several entities??,
leading to redundant content in the Data Web. Furthermore, different KGs often
provide varying perspectives on the same data. For example, DrugBank?! KG
mainly describes drug interactions, pharmacology, chemical structures, targets, and
metabolism, while Sider?? KG focuses on drug side effects.

In the context of LD within Geospatial KGs, scalability presents a significant chal-
lenge. This is due to the inherent complexity of LD and the specific challenges
associated with LD over Geospatial KGs. These challenges include: I) The sheer
volume of geospatial resources in LOD, such as LGD [ALH09], which contains more
than 20 billion triples. This vast quantity necessitates the development of scalable
techniques to compute links between these resources. II) The computation of cer-
tain relationships, such as distance and topological connections among geospatial
resources, requires dealing with vector representations of geospatial data. This adds
another layer of complexity to the LD process in Geospatial KGs. As a result of such
massive data expansion as well as multifaceted data publishing, there is a growing
demand for LD approaches at scale. Many frameworks have been developed to
address different challenges of data augmentation. Before combining KGs, such sys-

12Accessed 10.03.2022 https://lod-cloud.net/#about, retrieved using https://github.com/
lod-cloud/lod-cloud-draw/blob/master/scripts/count-data.py

Bhttps://lod-cloud.net/

“https://www.w3.org/Designlssues/LinkedData.html

Phttps://wiki.DBpedia.org/

http://.org/About

https://download.bio2rdf .org/release/4

Bhttps://www.wikidata.org/

YAccessed in 10.03.2022 fromhttps://DBpedia.org/sparql

Phttp://datahub.io/dataset/fu-berlin-dblp and http://dblp.rkbexplorer.com/

https://go.drugbank. com/

Zhttp://sideeffects.embl.de/
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Fig. 1.1.: The landscape of heterogeneous KGs in LOD.

tems mainly identified semantically equivalent entities in different KGs or even the
same KG, where they tried to achieve high efficiency and effectiveness in the linking
process. For example, LogMap [JC11] and Cob1 [NMS10] use structural matching
based on the ontology structure to discover links between ontologies. Nentwig et
al. [Nen+17] list many data augmentation systems that have been developed in the
last two decades. For example, LIMES [NA11l; Ngo+21] and Sitk [IJB11] apply
matching strategies at the instance level to calculate property values. The authors
of [Nen+17] address many challenges and aspects of the current LD frameworks. In
a more recent survey [MT19], the authors have presented methods in the area of
linked data integration, including LD and KG fusion. To fuse the data, the evaluation
and fusion of the quality of the link data quality assessment and fusion SIEVE was
proposed by [MMB12], which is integrated into the link data integration framework
(LDIF) [Sch+11]. DEER [SNL15] is another data augmentation framework that can
perform LD and fusion to produce enriched data.

In LD over Geospatial KGs, algorithms such as RADON [She+17], GIA.NT [Pap+21],
and Doric [Jin+21] have been developed. To address the challenges of efficiency,
effectiveness, and explainability in LD, we present a set of novel approaches in this
thesis that facilitate the following:

* Integration of enormous volumes of KGs within time or space restrictions:
As the number and size of KGs continue to grow, integrating these large
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volumes of data becomes a significant challenge. This is particularly true
when operating within constraints related to time or computational resources.
Efficient integration techniques are required to handle these large-scale KGs.

Techniques for connecting resources based on spatial links: While traditional
LD methods focus on semantic and structural similarities, other types of
link, such as spatial and phonetic links, have received less attention. Spatial
links connect entities based on their geographical proximity or relatedness,
which can be crucial in applications such as geospatial analysis, location-based
services, and environmental studies.

Explainable integration of KGs using natural language techniques: As linking
KGs is based on complex LSs, there is a growing demand for explainability
in KG integration. This involves not only generating accurate and reliable
results, but also providing clear and understandable explanations of how these
results are derived. Natural language techniques can play a crucial role in
this regard. For example, rule-based natural language generation methods
can transform complex data and relationships into human-readable texts.
Sequence-to-sequence neural translation architectures can convert sequences
of data into natural language descriptions. Large Language Model (LLM)s, such
as the Text-To-Text Transfer Transformer (T5)[Raf+19] model, can generate
comprehensive and coherent narratives from complex LSs used to link KGs.
These techniques can significantly enhance the transparency, trustworthiness,
and user-friendliness of KG integration.

Proposing NELLIE, a pipeline architecture to build a chain of modules, in which
each of our modules solves a challenge of data augmentation. NELLIE first
addresses the problem of finding relevant KGs to integrate. Subsequently,
NELLIE tackles the KG data integration task at both the ontology and instance
levels. NELLIE then fuses the matched instances/classes to generate our fused
KG. Finally, NELLIE performs the embedding of the KG of the resulting fused
KG. Our end goal with this suggested architecture is to gather the data needed
to build a holistic model for LOD linking, which, to our knowledge, does
not exist. Our proposed architecture consists of three layers: the core layer,
the application layer, and the publication layer. In this thesis, we pay more
attention to the core layer, as it contains the main components and modules
of our architecture. In particular, we address the following challenges in our
paper: 1) KG matching (i.e., matching KGs based on their content); 2) KG
linking, including ontology and instance matching; 3) KG fusion; and 4) KG
embedding. Note that all these challenges are implemented in our core layer.
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Fig. 1.2.: The modular pipeline architecture of NELLIE.

In the application layer, we address the link prediction challenge to evaluate
the impact of our KG fusion on the link prediction task.

Figure 1.2 shows the architecture of NELLIE. In particular, we develop the key
features of NELLIE as follows.

— Develop a modular pipeline architecture as a milestone for 24/7 linking
that allows the collection of the data necessary to build a holistic model
for LOD linking. Our modular architecture can be easily extended by
adding more components and methods.

— Propose a two-phase linking strategy, starting with ontology matching
and then instance matching.

— Carry out KG fusion to study the impact of KG fusion on link prediction
and KG completion.

1.2 Research Gaps and Contributions

In this thesis, we tackle the main research gaps and challenges related to efficiency,
effectiveness, and explainability in LD. Part I sets the stage by covering the essential
preliminaries of the thesis. Building on this foundation, Part IT addresses the research
gaps denoted as Research Gap 1 and Research Gap 2. Subsequently, Part III delves
into the challenges associated with Research Gap 3. We outline these research gaps
as follows:

1.2 Research Gaps and Contributions
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Research Gap 1: Geospatial Link Discovery over Knowledge
Graphs at Scale

Research Gap 1 focuses on addressing the scalability of LD over geospatial KGs. This
is an area that has been overlooked in the literature. In the context of Research Gap
1, our research is concentrated on the development of novel algorithms that meet
the primary requirements of LD framework, such as scalability and effectiveness,
with a special emphasis on scalability. Below are the solutions made to address
Research Gap 1.

Research Question (RQ1.1)

How does the simplification of geometries impact the performance, scalability,
and accuracy of topological relations in geospatial LD approaches, and what is
the associated computational cost of the simplification process?

To answer this research question, we investigate and formalize the challenges of LD
for geospatial resources and the line simplification problem. We explore the impact of
simplifying geospatial representations on the quality of discovered relations and the
efficiency of various LD approaches when working with these simplified geometries.
Our findings, detailed in Chapter 4, reveal an average loss of 15% in the F-measure
of the original data but a significant speedup of up to 67x when applied to the
simplified data.

Research Question (RQ2)

Does the parallel computation of the Intersection Matrix (IM) speed up the
geospatial LD approach, and to what extent does the number of processors
significantly influence IM computation?

We introduce RADON2 to tackle the challenge and address the research questions
at hand (RQ;2). The approach taken by RADON2 involves calculating the IM
for each geometry resource pair. These calculations are then stored, enabling
efficient verification of topological relationships without the need to recalculate
the IM each time such a relationship is queried. Our study explores the impact of
parallel computing on these topological relationships between geospatial resources,
as described by DE-9IM. Furthermore, we assess how the number of processors
affects the computation time for IM. This topic is covered extensively in Chapter 5.
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Research Question (RQ1.3)

Does using content measures for the discovery of topological relationships
in geospatial KGs result in efficiency gains in terms of reduced runtime, and
what trade-off in accuracy, as measured by F-measure, occurs when employing
these content measures? Moreover, how does the balance between accuracy
and efficiency with simplified versions of the original polygons compare to
using Minimum Bounding Box (MBB)s? Additionally, does the use of R-tree
indexing impact runtime when applying content-based measures, and how
does parallelization enhance performance, especially with large KGs such as
Corine Land Cover (CLC)?

To answer these research questions, we introduce COBALT. COBALT combines con-
tent measures with R-tree indexing for the discovery of topological relationships
in geospatial KGs. COBALT starts with a formalization of the problem of topologi-
cal relation discovery for geospatial resources, emphasizing content measures and
R-Tree indexing. COBALT then explores the efficiency and accuracy implications
of using content-based measures for topological relation discovery. We also assess
the computational costs of DE-9IM and the effects of parallel computing on topo-
logical relations and content-based measures. These findings are elaborated on in
Chapter 6.

Research Gap 2: The Absence of Holistic Models for Linked
Open Data

The proliferation of heterogeneous KGs adhering to linked data principles is evident.
These KGs have become indispensable in data-driven applications, spanning from
information retrieval, NLP, and recommendation systems, to search engines, con-
versational bots, e-commerce solutions, and drug discovery. Despite their ubiquity,
there exists a void: the absence of holistic models for LOD linking. This contrasts
with specific human languages, such as English, which benefit from LLMSs, such as
Bidirectional Encoder Representations from Transformers (BERT) [Dev+18].

Research Question (RQ2.1)

To what extent is the construction of a modular pipeline architecture feasible
as a milestone for 24/7 linking to link Knowledge Graph (KG)s needed for
a holistic LOD model? Additionally, how significant is the impact of using
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the two-phase linking technique on LD in terms of enhancing efficiency and
effectiveness?

To bridge this gap, we introduce NELLIE, a modular pipeline architecture crafted
to sequentially address the challenges associated with enhancing data volume. The
NELLIE pipeline begins by pinpointing relevant KGs for linkage. Then it delves
into the intricate process of KG data integration, encompassing both ontology and
instance levels. Once identified, the matching instances and classes are seamlessly
fused by NELLIE, culminating in a unified KG. The final step involves NELLIE
embedding this fused KG. NELLIE is a milestone for 24/7 linking to gather the
data required to develop a holistic LOD model. Our modular architecture is readily
extensible by adding more components and operations. We also propose a two-phase
linking technique that begins with ontology matching and then moves on to instance
matching. Furthermore, we provide a KG fusion method to investigate the influence
of KG fusion on link prediction and KG completeness. These findings are elaborated
on in Chapter 6.

Research Gap 3: Explainable Link Discovery

In the field of LD, declarative frameworks such as SI1LK [[JB11] and LIMES [NA11]
employ complex LSs to define the conditions for linking two resources. For non-
expert users, these complex LSs can be challenging to decipher, especially when
using frameworks like LIMES. As we move towards explainable LD, the need for
transparency and interpretability in LD becomes paramount. Our approach aims
to verbalize these complex LSs, making them more accessible and understandable
through NLP techniques.

Research Question (RQ3.1)

Does the process of verbalizing L.Ss enhance user comprehension compared
to the original LSs, and if so, how fluent and readable is the generated LSs
verbalization? Furthermore, how accurately does the verbalization capture the
essence of the underlying LSs, and what degree of information is potentially
lost when applying our summarizing approach?

To solve this problem, we introduce a template-based approach to transform LSs
into natural language, enhancing the explainability of the LD process. Inspired by
the pipeline architecture of Natural Language Generation (NLG) systems, such as
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those presented by Reiter & Dale [RD0O0], our method aims to bridge the compre-
hension gap for users. Our evaluations suggest that our approach can generate
comprehensive and user-friendly natural language descriptions. In addition, we
also propose Multi-LSVS, a generic multilingual template-based approach that allows
the verbalization of LSs in many languages, i.e., converts LSs into understandable
natural language text. For example, our multilingual LSs verbalization framework
verbalizes German and Spanish in addition to English. Our approach can generate
complete and easily understandable natural language descriptions even by lay users.
Furthermore, we introduce a neural-based LSs verbalization approach, trained us-
ing verbalization from our template-based method. We also highlight challenges
that require further exploration and propose a multilingual method for concise LSs
verbalization. Details are elaborated on in Chapter 8.

Research Question (RQ3.2)

How does the complexity of LSs influence the performance of our Neural
Machine Verbalization-LS (NMV-LS) when training standard encoder-decoder
architectures? And does fine-tuning an LLM enhance the verbalization capabil-
ities of our NMV-LS system, potentially helping it to generalize across different
LSs for verbalization? Additionally, how does the use of human-annotated data
compare to silver data in terms of the quality of the verbalization produced?

In our pursuit of explainable LD, we introduce NMV-LS, a language model-based
approach for LSs verbalization. This method leverages a few-shot learning strategy
by fine-tuning an LLM, such as T5. It is designed to verbalize a variety of LSs,
reducing the need for crafting specific linguistic rules for each system. By generating
examples in LIMES and fine-tuning a language model, our approach can verbalize LSs
from other tools, like SILK, with minimal examples. This method is also adaptable
to other languages. More insights can be found in Chapter 9.

Thesis Outline

This thesis is structured into three distinct parts, collectively comprising ten chapters.

Part I includes three foundational chapters: Chapter 1 sets the stage by elucidating
the motivation, research topics, hypotheses, and overarching contributions of the
thesis. The subsequent Chapter 2 delineates the basic notation and formalization

1.3 Thesis Outline

19



20

that underpin the thesis. Chapter 3 offers a comprehensive review of the state-
of-the-art, contextualizing our proposed approaches within the broader academic
landscape.

Part II spans four chapters, each systematically segmented into Motivation, Approach,
and Evaluation sections. This segment of the thesis underscores our efforts to
improve the effectiveness and efficiency of LD. Specifically, Chapter 4 explores LD
over geospatial KGs using line simplification algorithms. Chapter 5 discusses LD over
geospatial KG employing buffered IM. Chapter 6 introduces the COBALT approach,
leveraging content measure similarity for efficiency. Lastly, Chapter 7 chronicles the
development of NELLIE, a system designed to build a holistic model for LOD linking,
with its trilayered structure depicted in Figure 1.2. In Figure 1.3, we illustrate
the structure of the thesis. Part III is dedicated to the realm of explainable LD.

[ Geospatial Link Discovery With Human In The Loop J
Part I: Preliminaries Part lll: Explainable Link Discovery
Chapter 1: Chapter 2: Chapter 3: Chapter 8: Chapter 9:
Introduction Notations Related Work Multi LSVS NMV-LS
A 4
Part II: Improving Link Discovery Scalability
( ChaLpi::r . 1 ‘ Chapter 5: ‘ ‘ Chapter 6: ‘ Chapter 7: ‘
Simplification RADON2 COBALT NELLIE
\ 4 l \ 4
[ Chapter 10: Conclusion & Future Work J

Fig. 1.3.: Structure of the thesis.

Part III highlights the complexities inherent in LSs, which often necessitate expert
interpretation. Chapter 8 pioneers a multilingual verbalization and summarizing
approach for explainable LD, incorporating languages such as English, German, and
Spanish. This chapter integrates a rule-based NLG architecture and presents an
foray into a neural architecture: a bidirectional Recurrent neural network (RNN)-
Long short-term memory (LSTM) 2-layer encoder-decoder model with an attention
mechanism. Chapter 9 addresses the vocabulary challenges identified earlier by
introducing the NMV-LS approach. This two-stage strategy combines rule-based
verbalization with the capabilities of a few-shot learning technique, specifically
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fine-tuning the T5 language model. In Chapter 10, we conclude our work in this
thesis and outline future work.
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2.1

Notation

Linked Data

The Web of Linked Data serves as a prominent exemplar within the SW, illustrating
the guiding principles of a Web of Data. These "best practices", often termed the
Linked Data principles, were formulated by Berners-Lee et al.! SW [BHLO1].

Adherence to these guidelines is essential for data publication. The principles are as

follows:

* First Principle. Assign URIs to identify entities.

Second Principle. Utilize HTTP URISs for resource retrieval.

Third Principle. Adopt standard formats like RDF and SPARQL to provide
meaningful information when a URI is accessed.

Fourth Principle. Embed links to other URIs to facilitate further discovery.

The first three Linked Data principles emphasize the need to uniquely identify data
"resources" on the Web using an HTTP URI [HB11]. In the context of Web architec-
ture, "resource" denotes items of interest within a specific domain, encompassing
both tangible entities and abstract concepts. A typical HTTP URI is structured as
follows:

[scheme :][//authority|[path][?query][# fragment]. 2.1

The authority component is further broken down into:

authority = [userin foQlhost[: port). (2.2)

For instance, the Wikipedia article segment on "Fire and Blood" from "A Song of Ice
and Fire" has the following URI:

"https://en.wikipedia.org/wiki/Tim_Berners-Lee
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Example 2.1 https://en.wikipedia.org/wiki/A_Song of Ice_and_Fire#Fire & Blood

HTTP URIs are favored for two main reasons: (1) their simplicity ensures global
uniqueness for any domain owner, and (2) they facilitate linking to descriptive
information about the identified entity [HB11]. For a client to retrieve the URI
using the HTTP protocol and obtain a resource description, the HTTP URI must
be dereferenceable [Ngo+14a]. It is crucial to recognize that distinct URIs are
employed to differentiate between an actual or abstract entity and its descriptive
document. Depending on the end user, be it human or machine, the description of a
resource can be rendered in either HyperText Markup Language (HTML) or RDF.

The W3C has defined the RDF [Kly04] data model to represent knowledge on the
Web in a standardized way. In RDF, information is depicted as statements or RDF
triples, each comprising a subject, a predicate, and an object, analogous to the
components of a basic sentence.

Knowledge Graphs

An RDF KG G is a set of triples (s,p,0) € (RUB) x P x (RULUB), where R is the
set of all resources, B is the set of all blank nodes, P is the set of all predicates and £
the set of all literals. A resource is designated by the subject or the object of a triple,
which may be either an Internationalized Resource Identifier (IRI) or an unidentified
object (blank node). A UNICODE-compatible generalization of URIs is an IRI. An IRI
may be used to identify the predicate of an RDF triple, which indicates the nature of
the relationship between the subject and the object. The object of the triple can also
be a blank node, an IRI literal, or an RDF represented by a UNICODE string.

Some languages are developed on top of RDF and enhance it with more expressive se-
mantics to represent more complicated information using RDF triples. The Resource
Description Framework Schema (RDFS), one of these languages, is a collection of
classes that make use of the RDF data model and have several specific attributes. For
the purpose of structuring RDF resources, it offers RDF vocabularies as a common
language. Web Ontology Language is a different expressive representation language
founded on formal logic OWL. OWL makes it possible to apply logic to the infor-
mation and provides access to knowledge that is only implicitly modeled [HKR09].
An example of an OWL term is http://www.w3.0rg/2002/07/owl#sameAs. For
simplicity reasons, it can be rewritten as owl:sameAs , where the namespace
http://www.w3.0rg/2002/07/owl# is substituted with the prefix owl. Both RDFS
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and OWL follow W3C standardization. However, we require methods for serializa-
tion to publish an RDF KG on the Web. Since the RDF model is a data model and not
a data format, several serializations that adhere to W3C standards have been devel-
oped, including RDF/Extensible Markup Language (XML) [BMO04], Turtle [Bec+14],
N-Triples, and RDF/JavaScript Object Notation (JSON),( See Figure 2.1).

dby, . 3%
"Mount Juliet,Tennessee"@en "—{311}?12191;01_ (Gy) (Gy) rd{/S_';l,a,‘qgf—-* "Mount Juliet"
rdf : type . — rdf : type
dbo:PopulatedPlace Piu i S 1gdt :node153471134 N REREAENN 1gdo:Place
oy
-'«,&\\3,?’/ \Igdo
R\ L b0
P o Py
e N 3y,
"TNMap-doton-MountJuliet.PNG"@en b;g‘?','/ 2 .
il "19369"xsd: int
"Mount Juliet,Tennessee"@en
by . 1gbel
"Mount Juliet,Tennessee"@en ‘»—‘?:?ﬁmePOr (Gs) (Gy) rqff'l}?’ ”””” "Mount Juliet"
rdf :type . . el rdf :type
dbo:PopulatedPlace PANNESAREILANNE dbr :Mount_Julict RACREERREEIN 1 ¢4+ node 153471134 NRRMELASINT) o do: place
8.
.a,\\\a,%_-‘ S )
R\ s €.
T o 20y,
s e,

"TNMap-doton-MountJuliet.PNG"@en &2
Rz 777> 119369"xsd:int

e
"Mount Juliet,Tennessee"@en

Fig. 2.1.: Example of RDF triples as KGs that describe the DBpedia resource
dbr:Mount_Juliet with the LinkedGeoData resource 1gdt:node153471134. We
use owl:sameAs to link the DBpedia resource dbr :Mount_Juliet with the Linked-
GeoData resource 1gdt:node153471134.

2.3 Ontology Matching

Let O, and O; denote the source and target ontologies, represented by the sets
{c5,¢5,...,¢5} for Os and {ct,d, ..., c} for O;. Ontology alignment is a multi-
faceted task that involves identifying a variety of relationships between pairs of
concepts from these sets. Such relationships can range from straightforward to
complex, encompassing transformations, as discussed by Thiéblin et al. [Thi+20], to
inference mechanisms outlined by Zhou [Zho+18]. Nevertheless, the focal point of
this research is to isolate and identify specific pairs (c;, ¢;) within O4 x O, for which
a predefined relationship r(c;, ¢;) is valid [JC11]. An example of such a relationship
is the equivalence between the classes ‘City’ and ‘Town’, formally represented as

owl:equivalentClass(City, Town).

2.3 Ontology Matching
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Link Discovery

Over time, numerous strategies have emerged to address the problem of identifying
connections between resources. Initially, the common approach was to manually
identify pairs (s, t), where s € G, t € Gy, that satisfy a certain relation R. However,
the scale of LOD has expanded dramatically, from an initial size of 12 KGs [Ngo+ 14c]
to now exceeding 1564 KGs2. As such, manually identifying these links has become
an impractical and time-intensive endeavor. Given this context, LD frameworks
have gained importance. These frameworks aim to identify a set of links, denoted
M* C G5 x G, where the measure of similarity m(s,¢) is at least as great as a
predefined threshold #. Formally, the objective is to calculate the mapping M* so
that {(s,t) € G5 x Gy : m(s,t) > 6 }. The concept also extends to distance metrics.
Using a distance function o, M* can be defined as (s,t) € Gs x Gy : 0(s,t) < w,
where w € [0, 00) serves as a distance threshold. Both the distance and similarity
functions can be used interchangeably by converting one into the other, using the
1 1

relationships o (s, t) = T ) and 0 = .

A similarity function m is termed atomic if it is based on a single similarity measure
applied to a specific set of properties, denoted p,,p; € P. For simplicity, this
relationship is written as m(s, ¢, ps, p;) or simply as m(ps, p;). It is termed complex if
it combines multiple similarity measures through a metric operator such as max or

min.

Link Specifications

Declarative LD frameworks define the conditions necessary to generate such links
using LS. Several grammars have been used to describe LS in previous work [1JB11;
SNL17; NL12]. In general, these grammars assume that an LS consists of two
types of atomic components: similarity measures m, which allow comparison of
property values of input resources; and operators op that can be used to combine
these similarities with more complex specifications. Without loss of generality, we
define a similarity measure m as a function m : G5 x Gy — [0, 1]. We use mappings
M C G x Gy to store the results of the application of a similarity function to G5 x G
or subsets thereof. We define a filter as a function f(m,#). We call a specification
(atomic LS) when it consists of exactly one filtering function. A complex specification
(complex LS) can be obtained by combining two specifications, L; and Lo, through
an operator op that allows the results of L; and L, to be merged. Here, we use the

https://lod-cloud.net/

Chapter 2 Notation


https://lod-cloud.net/

2.4.2

1

OR(jaccard(x.name,y.name) |0.42,trigrams (x.name,y.description) |0.61)

Listing 1: Running example.

operators 1, LI, and \ as they are complete and frequently used to define LS [SNL17].
A graphical representation of the complex LS of our example from Listing 1 is given
in Figure 2.2. We define the semantics [[L]]»s of an LS L with respect to a mapping
M as given in Table 2.1. The semantics are similar to those used in languages like
SPARQL, i.e., they are defined extensionally through the mappings they generate.
The mapping [[L]] of an LS L with respect to G5 x G, contains the links that will be
generated by L.

Tab. 2.1.: LS syntax and semantics.

LS [[LS]] v

f(m,0) {(s,t)|(s,t) € M Am(s,t) >0}

Ly Ly {(s,)|(s,1) € [[La]lar A (s,1) € [[Lo]lar}
LU Ly {(s,)[(s,t) € [[La]lm V (s,t) € [[La]lar}
Li\Ly {(s:)|(s,1) € [[La]lar A (s,1) € [[Lo]lar}

An LS L is subsumed by L', denoted by L C L/, if for all mappings M, we have
[[L]]m € [[L']]as- Two LS are equivalent, denoted by L = L' iff L C I/ and L' C L.
Subsumption (C) is a partial order over L.

f(Jaccard(:name, :name), 0.42) |

f(trigrams(:name, :description), 0.61) |

Fig. 2.2.: An example of complex LSs. The filter nodes are rectangles, while the operator
node is a circle.

Link Specifications Verbalization

Our definition of the realization function ( relies on the formalization of LS declared
in the previous section. Let A be the set of all (atomic LS) that can be combined
in a (complex LS) L. Let C° and C” be two sets of constraints that specify the
sets S and T, respectively. Let M be a set of similarity measures and 7 a set of
thresholds. In general, a constraint C' is a logical predicate. The restrictions in LS
could state, for example, the rdf : type of the elements of the set they describe, that

2.4 Link Discovery
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is, C(x) <> = rdf :type someClass, or the characteristics that each element of the
set must have, for example, C(z) <+ (Jy : x someProperty y). Each s € S must
comply with each of the constraints Cy ... 5, while each ¢t € T must comply with
each of the constraints C{...Cf. Wecall 2 € A UCSUCT UMUT an atom.
We define the realization function ¢ : AUC® UCT UM UT — Language, where
Language is our target language, which can be English, German, or Spanish. In
turn, this realization function ¢ maps each atom to a word or a sequence of words
in our target language.

Tab. 2.2.: Dependencies used by LS verbalization.

Dependency Explanation

amod Represents the adjectival modifier dependency.
For example, amod (ROSE,WHITE) stands for white rose.

dobj Dependency between a verb and its direct object.
For example, dobj (EAT,APPLE) expresses "to eat an/the apple".

nn The noun compound modifier is used
to modify a head noun by the means of another noun.
For instance, nn (FARMER, JOHN) stands for farmer John.

poss Expresses a possessive dependency between two lexical items.
For example, poss (JOHN,DOG) expresses John’s dog.

prep_X Stands for the preposition X, where X can be any preposition,
such as, via, of, in, and between.

subj Relation between subject and verb.
For example, subj (PLAY, JOHN) expresses John plays.

coord Stands for the relation between a conjunct (many conjuncts) and
a given conjunction (in most cases and or or).
For example, in the sentence an apple and a pear,
coord (PEAR, APPLE) holds.

Formally, the goals of this chapter are twofold: First, construct the extension of ¢ to
the entire LS so that all atoms z can be mapped to their realization {(x). Second,
manage how these atomic realizations can be combined. For the sake of simplicity,
we denote the extension of ¢ by the same label (. We adopt a rule-based approach
to achieve this goal, where the rule extending ¢ to the entire LS is expressed in
a conjunctive manner. This means that for premises P, ..., P, and consequences
Ki,...,K,, wewrite P, A...AP, = KiA...AK,,. The premises and consequences
are clarified by using an extension of the Stanford dependencies®. In particular,

%For a complete description of the vocabulary, see http://nlp.stanford.edu/software/
dependencies_manual.pdf.
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2.5

2.6

we build on the constructs explained in Table 2.2. For example, the dependency
between a verb and its object is represented as dobj(verb, object).

Neural Machine Verbalization

Given a source sentence x and a target sentence y, verbalization is tasked with

finding y that maximizes the conditional probability of y (i.e., arg maxy, p(y | x)).

In neural machine verbalization, an encoder-decoder model with a set of parameters
is trained to maximize the conditional probability of sentence pairs using a parallel
training dataset. Accordingly, a verbalization model that learned the conditional
distribution can generate a corresponding verbalization of a given sentence by
searching for the sentence that maximizes the conditional probability. This definition
is inspired by the definition of Neural Machine Translation (NMT) [BCB15].

Knowledge Graph Fusion

Let G be a finite source KG and G; be a finite target KG. The aim of KG fusion is
to find a consolidated KG G that contains a fused version of the related entities
from G, and G;. We assume that we have a mapping M, that contains a set of
pairs of similar entities among G and G;. A KG fusion approach fuses each pair of
similar entities into a single entity by applying a fusion strategy operator ¢. In this
thesis, we apply an additive fusion operator.

Link Prediction

Given a subset of all true triples, the goal is to learn a scoring function ¢ that assigns
a score s = ¢(eg, 1, €,) € R, which shows if a triple is true. (es, 7, e,) with e, is the
subject entity, e, is the object entity, and r is a relation. The ultimate goal of link
prediction is to learn a scoring function ¢ to correctly score all missing triples. In the
case of linear models such as TuckER, ComplEx, and DistMult , the scoring function
is a specific form of tensor factorization; in non-linear models, the scoring function
is a more complex (deep) neural network architecture. For a particular triple, a
score is either positive if the model predicts a true fact or negative for a false one.
Furthermore, the logistic sigmoid function is typically applied to the score to return
a corresponding probability prediction p = o(s) € [0, 1] to determine if a certain fact

2.5 Knowledge Graph Fusion
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is true. Table 2.3 lists the scoring functions of three state-of-the-art link prediction
models that we selected for our experiments. All three models are linear.

Tab. 2.3.: Scoring functions for three state-of-the-art link prediction models, together with
the dimensionality of their relation parameters and major terms of their space
complexity. €, € C% is the complex conjugate of e,, e,,w, € R% > denotes
a 2D reshaping of e, and w,. respectively, h._,t., € R% are the head and tail
entity embedding of entity e,, and w,—1 € R% is the embedding of relation r~!
(which is the inverse of relation r). (-) denotes the dot product and x,, denotes
the tensor product along the n-th mode, and W € R *de*d- ig the core tensor
of a Tucker decomposition.

Model Scoring Relation Space
Function Parameters Complexity
TuckER [BAH19] W X1|es Xa W, X3€, W, €R¥ O(nede + n.d,.)
DistMult [Yan+15] (€5, Wy, €0) w, € R O(nede + nypde)
ComplEx [Tro+16] Re((es, w,,€,)) w, € Cle O(nede + npde)

Well-Known Text Format for Geometries

Storing spatial objects in a standardized and readable format is a complex under-
taking. A commonly used standard to represent spatial objects is Well-known Text
Format for Geometries (WKT) [Inc11]. In the context of this thesis, the focus will be
mainly on features of WKT related to polygons.

WKT offers robust solutions to the complex challenge of representing national
territories by utilizing an array of data types, including point, linestring, polygon, and
multipolygon. For instance, a country’s territory may consist of multiple disconnected
parts, such as Spain, which includes the mainland and several islands. Another
challenge arises when a country’s territory completely encircles portions of another
country’s territory. An example is the German municipality "Biisingen am Hochrhein",
which is encircled by Switzerland. It is essential to have a format capable of storing
such complex spatial data, including territories with "holes."

A point simply consists of an x-coordinate and a y-coordinate, represented as point
(1, 2) for a point at coordinates (1, 2). A Linestring is composed of multiple points
to represent a linear shape, such as linestring (1 2, 3 4) to describe a line from point
(1, 2) to point (3, 4).

Polygons in WKT are defined using an exterior ring and one or more interior rings.
The exterior ring, essentially a closed linestring, delineates the polygon’s outer
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boundary. The interior rings specify areas within the exterior ring that do not belong
to the polygon. For example, a square with vertices at points (0, 0) and (3, 3) would
be represented as polygon((0 0, 0 3, 3 3, 30, 0 0)). If we want to exclude a smaller
square with vertices at (1, 1) and (2, 2) from this polygon, the representation would
be polygon((00,03,33,30,00), (11,12,22,21,11)).

In theory, it is possible to represent a territory of multiple disconnected islands
within a single polygon by defining the exterior ring to encompass the entire world
and excluding all areas outside the islands. However, to simplify such cases, WKT in-
troduces the multipolygon data type. A multipolygon consists of multiple individual
polygons, each with its own interior and exterior rings.

Topological Relations

In the field of spatial analysis, the topological relations between geometric entities
play a critical role. Whether it is in Geographic Information Systems (GIS), urban
planning, or environmental studies, a nuanced understanding of how spatial ele-
ments relate to each other is crucial. Two methods stand out for their effectiveness
and widespread use in calculating these relations: DE-9IM and content measures.
These computational models serve as foundational tools to assess and describe
spatial relationships, each with its own unique set of benefits, limitations, and math-
ematical underpinnings. As we delve into the intricacies of spatial relations, these
two approaches will serve as our guiding frameworks. These topological relations
reflect the semantics of the English language [CSE94; CDV93] including equals,
within, contains, disjoint, touches, meets, covers, coveredBy, intersects,

crosses, and overlaps as shown in Figure 2.3.

The DE-9IM

The Dimensionally Extended 9-Intersection Model (DE-9IM)[CSE94] is a topological
model and a standard used to describe the spatial relations of two geometries in two-
dimensional space. Since the spatial relations expressed by DE-9IM are topological,
they are invariant to rotation, translation, and scaling transformations [EF91]. The
DE-9IM model is based on a 3 x 3 IM of the form:

2.8 Topological Relations
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Equal Disjoint
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Inside CoveredBy

Fig. 2.3.: The content measure relations.

dim(I(g1) N 1(g2)) dim(I(g1) N B(g2)) dim(I(g1) N E(g2))
DE9IM(g1,92) = | dim(B(g1) N 1(g2)) dim(B(g1) N B(g2)) dim(B(g1) N E(g2)) | (2.3)
dim(E(g1) N 1(g2)) dim(E(g1) N B(g2)) dim(E(g1) N E(g2))

where dim is the maximum number of dimensions of the intersection N of interior(I),
boundary(B), or exterior(E) of the two geometries g; and g». The domain of dim is
{-1,0,1, 2}, where —1 indicates that there is no intersection, 0 represents an inter-
section that results in a set of one or more points, 1 indicates an intersection made up
of lines, and 2 represents an intersection that results in an area. A simplified binary
version of dim(x) with the binary domain {¢rue, false} is obtained using the Boolean
function B(dim(1(g)) = false iff dim(I(g)) = —1 and true otherwise. There is only
a subset of topological relations available through DE-9IM that reflects the semantics
of the English language [CSE94; CDV93] including equals, within, contains,
disjoint, touches, meets, covers, coveredBy, intersects, crosses, and

overlaps. The relations distinguished by the DE-9IM are shown in Figure 2.3.
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2.8.2 Content Measures of Topological Relations

We use the content measures defined by Godoy et al. [GR04] to decide whether the
relation r(s,t) exists. Godoy et al. have implemented three content measures to
determine whether a topological relation between two polygons exists by comparing
the area, the diagonal or the area, and the diagonal of the polygon’s minimum
bounding boxes. The relations distinguished by the content measures are shown in
Figure 2.3. We formally define the basic components necessary to compute content
similarity.

Definition 1 The MBB of a polygon P with n > 3 points ((z1,y1),- .., (n,Yn)) 1S
defined as the smallest rectangle that contains all the points of the polygon. Formally,

MBB(P) = ((szna Ymax), (Xmaxa Ymm)); where X in = min(mla cee a$n): Xmaz =

max(z1,...,Tn), Ymin = min(yi, ..., yn) and YVie, = max(yi, ..., Yn).

Definition 2 The area of an MBB M is defined as area(M) = (Xmaz — Xmin) -
(Ymax - len)

Definition 3 The diagonal of an MBB M is formally defined as diagonal(M) =
\/(Xmax - szn)2 + (Ymam - Ymm)2

Definition 4 The MBB of the union of two MBBs A and B is defined as MBB(AUB) =
((min(XA Xn )7maX(YnA§in7YT§in))7 (maX<X1¢Lax7XB >7min(YA &5 )>>

min’ “rmin max maz’ - max

Definition 5 The intersection of two MBBs A and B is formally defined as MBB(A N
B) = (x4, 00 ) minYd Y1), (i (X Xf ) max(Vid VE)) )

min> min)

Definition 6 To check if two MBBs A and B overlap on their x-coordinates

false if XA < XB

max min
projxa,p) = \false if X2, > XB.,

true otherwise
Definition 7 To check if the two MBBs A and B overlap on their y-coordinates

projya,p) = { false if YA, >YE

true otherwise
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Definition 8 To further analyze the relation of two MBBs A and B, we also need the
distance between them.

d(A, B)

<mm<xmm CXEB | |XE, X::MD) if ~proj (A, B) A projy (A, B)

mln m’L’IL maz| | min maw |)) ifpron (A7 B) A _‘prOjY (A’ B)

if —projy (A, B) A —projy (A, B)
mln | mln Ymaa:| | mln Ymaw')) )

B
— min( - X2l

m'm, mzn | | max

if area(A U B) = max(area(A), area(B))
mln m7,77,| | max Y'n’?aﬂ |)>

0 if area(A U B) # mazx(area(A), area(B)) A projx (A, B) A projy (A, B)
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Related Work

A picture is worth a thousand words. An
interface is worth a thousand pictures.

— Ben Shneiderman
(Professor of Computer Science)

The Related Work chapter provides a comprehensive review of existing research that
closely aligns with the key research gaps identified in this thesis concerning LD over
KGs, with a particular focus on geospatial KGs. These research gaps include the
challenges related to scalability, the need for more comprehensive models for LOD,
and the increasing importance of explainability in LD. In the realm of scalability
(Research Gap 1), we explore contributions from seminal works such as ORCHID,
RADON, GIA.nt, Strabon, Geo-L, and MaskLink, each providing distinct perspectives
and solutions to the scalability challenges inherent to geospatial LD. For Research
Gap 2, which focuses on the absence of holistic models for LOD, covering works
in data fusion, data integration and KG embedding. These works delve into issues
such as data completeness and conciseness, as well as advanced techniques for
link prediction within KGs. The chapter also covers works about the general LD
landscape, including instance matching and ontology matching. Lastly, in addressing
Research Gap 3 concerning explainability in LD, the chapter reviews advancements
in the field of Explainable Artificial Intelligence (XAI). It discusses how XAI has been
applied to LD, focusing on various methods, such as template-based, NM-based, and
LLM-based approaches.

By exploring these related works, the chapter aims to position the contributions of
this thesis within the broader academic landscape. This allows us to highlight the the-
sis’s unique focus on developing scalable, effective, and explainable methodologies
specifically tailored for LD over geospatial KGs.
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Link Discovery

LD in the realm of KGs and SW technologies has seen remarkable innovations. This
process is crucial for interlinking resources between different RDF KGs, thereby
facilitating data integration, query routing, and numerous other applications. The
LD landscape can be broadly divided into two categories-instance matching and
ontology matching- both of which utilize sophisticated frameworks and machine
learning algorithms to address their respective challenges.

Instance Matching

Declarative LD frameworks build on complex LSs to declare the conditions neces-
sary for linking resources between RDF KGs. For example, the SiLk [IJB11] and
LIMES [NA11] frameworks employ property-based methods for the computation
of links between instances. LIMES aids its users to create LSs manually and exe-
cute them against source-target resources or by using various machine learning
approaches such as WOMBAT [SNL17] and EAGLE [NL12]. LIMES [NA11] offers
many different approximation techniques based on metric spaces to estimate the sim-
ilarities between instances. SERIMI [Ara+11] is an automatic interlinking method
that matches instances between a source KG and a target KG. SERIMI performs
linking without prior knowledge of the data, domain, or schema of these knowledge
bases. The authors of [Niu+12] introduce a semi-supervised learning algorithm
to automatically discover data set—specific instance matching rules. SLINT [NIL12]
uses an approach to schema-independent interlinking. In particular, SLINT starts by
automatically selecting important RDF predicates using coverage and discriminabil-
ity. It then uses weighted co-occurrence and adaptive filtering to carry out instance

matching.

Ontology Matching

Knowledge integration is heavily dependent on ontology alignment, which has been
the subject of extensive research in recent years. We list some of the state-of-the-
art systems. LogMap [JC11] is a highly scalable ontology matching system that
provides reasoning and diagnosis capabilities that are built into the framework.
Cobi [NMS10] is another ontology matching framework based on Markov logic. The
system defines syntax and semantics and formalizes the ontology matching problem.
The authors have introduced in their work [Che+21b] an ML extension that takes
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advantage of distant supervision and semantic embedding and may be applied to
improve conventional ontology alignment systems. To put it simply, it first generates
high-precision seed mappings using the original ontology alignment system and
class disjointness constraints (as heuristic rules), and then uses these mappings
to train a Siamese Neural Network (SiamNN) for predicting cross-ontology class
mappings via semantic embeddings in OWL2Vec, an ontology-adapted language
model [Che+21a].

In [IAK21], the authors have introduced VeeAlign, a deep learning-based model that
employs a new dual attention technique to compute the contextualized representa-
tion of a notion, which is then used to find alignments. By doing this, this approach
is not only able to take advantage of the syntactic and semantic data embedded in
ontologies but is also, by design, versatile and scalable to different domains with
little effort.

Recently, OntoConnect has been introduced in [Cha+21], which describes a domain-
independent, non-human intervention ontology alignment method that uses graph
embedding with negative sampling.

Geospatial Link Discovery over Knowledge Graphs

Geospatial LD over KGs is a specialized branch within the broader realm of LD, focus-
ing on the discovery and understanding of topological relationships between geospa-
tial entities. The area remains relatively underexplored, offering novel challenges
and complexities due to the involvement of spatial data and relations [Ngo+14b].
Various methodologies and frameworks have emerged, aiming to optimize computa-
tions, reduce memory footprint, and enhance performance in geospatial LD tasks
and in the field of spatial analysis, such as using line simplification techniques.

ORCHID

The reduction-ratio-optimal approach ORCHID [Ngo13] optimizes the computation
of point sets based on the distance among geospatial entities. The main idea of
ORCHID is to apply space tiling for both source and target resources and to compare
only resources within a given range. While the use of ORCHID in [Ngo13] is based
only on the Hausdorff metric, the work in [SN15] extends ORCHID to other point-set
distance metrics such as mean and sum of minimums.

3.2 Geospatial Link Discovery over Knowledge Graphs
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SILK

Semros and Koubarakis proposed one of the earliest geospatial data link discovery
approaches as an extension to SILK [SK16]. To avoid the high computational cost of
computing the DE-9IM intersection matrix, they introduced a blocking technique.
This method divides the Earth into multiple equally sized blocks and computes the
MBB for each geometry. Each block is assigned a set containing the geometries that
intersect the block’s MBB. Geometries that do not share a block are considered
disjoint, eliminating the need to compute the intersection matrix. By altering the
size of the blocks, this approach offers a trade-off between avoiding computations
and optimizing indexing time.

RADON

RADON [She+17], developed by Sherif et al., further optimizes the discovery of
topological relationships using a three-step approach. The first step minimizes the
index size by computing the estimated total hypervolume (eth) for both datasets and
indexing the smaller dataset. Since both datasets must be loaded into memory, the
space complexity of RADON increases. Due to the asymmetry of certain geospatial
relations, RADON applies the inverse relation if datasets are swapped. The second
step involves indexing the smaller eth dataset by dividing the space into hyper-
cubes with dynamic height and length, determined by a heuristic granularity factor.
RADON’s adaptive grid sizes of RADON reduce the number of DE-9IM calculations,
especially for geometries in close proximity. The third step utilizes a filter to compute
the intersection matrix only if the bounding boxes of two geometries share a relation
from the set R = equals, intersects, contains, inside, covers, coveredBy. The dis-
joint relation is treated as a special case in RADON and is computed by determining
the intersects relation and excluding intersecting pairs.

GIA.nt

GIA.nt [Pap+21], introduced by Papadakis et al., adapts RADON’s indexing method.
Instead of computing the eth, GIA.nt indexes the first dataset using the same grid
approach. The memory footprint is reduced by loading the target dataset geometries
individually. For each target geometry, GIA.nt computes the MBB and identifies
intersecting index tiles. Unlike RADON and SiLK, GIA.nt computes all relations,
except disjoint, simultaneously. It calculates the DE-9IM intersection matrix and
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adds related geometries to sets for each relation. Pairs that are absent from any set
of relationships are considered disjoint.

DORIC

Jin et al. present DORIC [Jin+21], which uses space tiling and indexes the data set
with the smaller eth, similar to RADON. After checking the bounding-box relations
to rule out potential relations, DORIC adds further filters to reduce the DE-9IM
calculations. By exploiting the transitivity of relations, DORIC reduces the number of
required computations. For example, if geometries a and b are equal and a contains
¢, it can be inferred that b contains c¢. Furthermore, DORIC selectively computes
parts of the intersection matrix relevant to specific relations.

Strabon

Strabon [KKK12] is an RDF store that supports geospatial queries. It stores geome-
tries using the WKT standard and supports GeoSPARQL [BK11] queries. Strabon
and GeoSPARQL use similar relations to the DE-9IM model, with inside and covered
by combined into within, and contains and covers combined into contains. Internally,
Strabon employs an R-tree-over-GiST system for spatial value storage and efficient
spatial query handling.

Geo-L

Geo-L [ZK21], presented by Zinke-Wehlmann and Kirschenbaum, focuses on optimiz-
ing the entire lifecycle of geometric link discovery. Unlike other algorithms, Geo-L
handles robustness and addresses incomplete and invalid geometries. Geo-L saves
partially downloaded datasets and caches them in a database to prevent repeated
downloads and reduce data transfer overhead.

MaskLink

MaskLink [San+18], proposed by Santipantakis et al., reduces disjoint relation
computations. Like other approaches, it uses space tiling to partition the grid and
assign source dataset geometries to intersecting tiles. Each tile is given a mask

3.2 Geospatial Link Discovery over Knowledge Graphs
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representing the area that does not intersect any previously assigned geometries. If
a target geometry lies entirely within the mask, it must be disjoint from all source
geometries in the tile, allowing further computations to be avoided.

Line Simplification

Line simplification techniques have been used in various fields, including computer
vision, cartography, and computer graphics. [SAH18] introduced an approach to
line simplification based on image processing, which is specifically designed for
raster data. An area-reserving subdivision simplification algorithm is proposed
in [Men18], where the algorithm presents a set of topology constraints to render
map data on the screen. In Advanced Driving Assistance Systems (ADAS) [EHZ18],
the Douglas-Peucker line simplification algorithm is used to fix the total number
of vertices for the resultant polygon from static free space extraction, which is
convenient for ADAS and automotive restrictions. Recently, Douglas-Peucker has
been used to simplify the massive Asia-Pacific Data Center trajectories data from
the China Automatic Identification System (AIS) for data-driven automatic maritime
routing [Zha+18a].

Point-Sets Distance Measures

The input to a point-set distance measure is two sets of points. We denote g, =
(s1,...,5n) as a sequence of points to describe the source resource geometry g and
gt = (t1,...,tm) as a sequence of points to describe the target resource geometry
g+- We assume (n >= m), where n resp. m stands for the number of distinct points
in the geometry of g5 resp. ¢g;. A point p; on the surface of the planet is completely
described by two values: its latitude lat(p;) = ; and its longitude lon(p;) = \;. We
denote points p; as pairs (;, ;).

The state of the art of LD includes many measures to calculate the distance between
the vector descriptions of RDF resources. We base our work in this paper on the
LIMES implementation of the Hausdorff, mean, min, link and sumOfMin point-set
distances. Next, we will introduce both the Hausdorff and the mean distance
functions as two examples of such measures. A detailed review of state-of-the-art
approaches to point-set distance measures for LD is available at [SN15].

Chapter 3 Related Work



3.3

Hausdorff Point-Set Distance

The Hausdorff point-set distance [HKR93] is defined as the maximum of the minimum

pairwise distances between the two sets of points of source and target geometries.

Formally,
DHausdorff(QmQt) = max{min{é(si,tj)}} ) (3.1)

5i€9s | tj€g

where 0(s;, t;) is the minimum distance between two points, s; and t;. 6(s;,t;) can
be accurately calculated based on the great distance from the elliptic curve [Bow84];
however, due to its high time complexity, most LD approaches depend on the
orthodromic distance for computing é(s;,t;). The orthodromic distance is formally
defined as:

d(si,ty) = Rcos™! sin(ps, ) sin(py; ) + cos(ps,) cos(pr;) cos(As; — Ay, ), (3.2)

where R = 6371 km is the Earth’s radius, assuming the planet to be a perfect
sphere.

Mean Point-Set Distance

The mean distance function [DHS+73] is one of the most efficient distance measures
for point sets with complexity O(n). First, a mean point is computed for each of the
source and target point sets. Then, the distance between the two mean points is
computed using the orthodromic distance (see Equation 3.2). Formally, the mean
distance between the two geometries g, g; is defined as:

1 1
Dmean(QSagt) =9 (n Z Si, % Z tj) s (33)

Si€Ygs lj€ge

where n and m are the sizes of g, and g, respectively.

Holistic Models for Linked Open Data

We discuss works related to our work in the areas of data fusion, data integration,
and KG embedding. These scholarly works explore aspects such as ensuring data
conciseness and completeness, in addition to delving into sophisticated methods to
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execute link prediction within KGs. The efforts to build a holistic model for LOD are
detailed in depth in our work [ASN23], which is the focus of Chapter 7.

Data Fusion

Data fusion is one of the key goals of data integration. Data fusion increases concise-
ness by fusing duplicate entries and merging common attributes. The work [BN09]
defines the goals of data fusion to achieve more completeness and conciseness of
data. The main challenges of data fusion are uncertainty due to conflicting data val-
ues. In [BNO9], the authors discuss different ways of data fusion and present several
methods. In the systematic survey [NVJ20], the authors introduce the challenges of
KG fusion, discussing advanced techniques for handling KG fusion. The linked data
quality assessment and fusion framework SIEVE [MMB12] is based on the linked
data integration framework (LDIF) [Sch+11]. LDIF is an open-source framework
that provides data translation and identity resolution while keeping track of data
provenance.

Knowledge Graph Embedding

In recent years, dozens of Knowledge Graph Embedding (KGE) techniques have
been developed to address tasks such as graph completion, question answering,
and link prediction [Hua+19; Lin+15; NRP; NTK11; Tro+16]. For example,
RESCAL [NTK11] computes a factorization in three directions of an adjacency
tensor representing the input KG. The adjacency tensor is decomposed into a prod-
uct of a core tensor and embedding matrices. HolE [NRP] uses circular correlation
as its compositional operator.

On the other hand, TransE [Bor+13] is an energy-based KGE model in which a
relation r between entities 4 and ¢ corresponds to a translation of their embeddings,
that is, h + r ~ t provided that (h,r,t) exists in the KG. More details on KGE
approaches and applications can be found in [Wan+17].

Explainable Link Discovery

Explainable artificial intelligence (XAI) has gained widespread recognition as an
indispensable aspect of modern Al technology, particularly in settings that demand
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transparency and interpretability. This pertains especially to semantic data and its
conversion into natural text. LD and LS systems, the focal points of our study, are no
exception. A comprehensive survey by Barredo Arrieta et al. [Bar+20] highlights the
emerging field of XAI, underscoring its various dimensions and critical significance.
In declarative LD such as LIMES, EAGLE [NL12] has addressed the readability of LS,
alongside accuracy and efficiency. However, the generated LS is still expressed in
a declarative manner. Recently, the WOMBAT algorithm [SNL17] has implemented
a machine learning algorithm for automatic LS finding by using generalization
via an upward refinement operator. However, none of these works addressed the
verbalization of LS in terms of natural language description.

Template-based Explainable Link Discovery

Despite substantial advances in Explainable Artificial Intelligence (XAI) [Bar+20],
the task of converting LS into human-readable natural language has received less
attention. Within this context, data-to-text systems [Rei07], a subclass of NLG,
can produce textual output from various nonlinguistic inputs such as sensor data,
logs, or LS. Rule-based NLG methods have proven their adaptability in numerous
applications, ranging from the textual representation of graphical weather data to
the summarizing of numerical databases and the simplification of complex medical
information. In our initial work on explainable LD, we turned to rule-based NLG sys-
tems that adhere to the frameworks developed by Reiter & Dale [RDOO] to translate
LS into comprehensible English text. Our current research builds on this foundation
and broadens the scope of rule-based NLG by extending it to a multilingual setting,
incorporating not only English but also German and Spanish. This expansion im-
proves both the interpretability and the applicability of LS across varied linguistic
landscapes [ASN19a]. These efforts are detailed in depth in Chapter 8.

Neural Machine-based Explainable Link Discovery

Neural Machine Translation (NMT) has undergone a transformative evolution in
recent years [KB13; BCB15; Cho+14b; SVL.14a; Cho+14a]. These influential works
frequently employ robust neural architectures such as Convolutional Neural Network
(CNN) and biLSTM to tackle a variety of complex tasks. Such tasks range from
the extraction of video features to complex text generation operations [Don+17].
In the context of our research, we find that our efforts align seamlessly with the
overarching narrative of post hoc explainability. Our focus is on generating text-based
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explanations that are both practical and scientifically grounded, as corroborated by
the existing literature [Bar+20]. A key application of NMT in our work is related to
the translation of logical expressions, or LS, into human-readable natural language.
For this, we employ a variety of NMT techniques, including standard sequence-to-
sequence (seq2seq) models equipped with Gated Recurrent Unit (GRU) and both
unidirectional and bidirectional LSTM networks. Furthermore, we incorporate
transformer architectures to further enhance the user experience for those engaged
with LD applications, where LS forms the foundational backbone. It should be noted
that we leverage these state-of-the-art technologies not just as a means to enrich
our dataset but also to dive deeper into the multifaceted challenges and potential
solutions associated with making LD more explainable. These efforts are detailed
exhaustively in our works [ASN19a; Ahm+21], which are the focus of Chapter 8.

Large Language Model-based Explainable Link Discovery

The emergence of transfer learning and pre-training methodologies has notably
shifted the landscape of NLP, opening up new avenues for tackling complex prob-
lems. The use of (LLM) such as T5 [Raf+19] has been instrumental in this regard,
demonstrating impressive results in a multitude of NLP tasks. These tasks range
from sentiment analysis and question answering to more nuanced challenges, such
as language translation and summarizing [Raf+19]. The prowess of LLMs is further
augmented when integrated with sophisticated neural architectures, including, but
not limited to, bidirectional Recurrent Neural Networks (RNN) and Long Short-
Term Memory (LSTM) models equipped with attention mechanisms [Mou+19].
These advanced architectures enhance the model’s capability to offer nuanced and
in-depth explainability features. Within the context of our research, we leverage
these cutting-edge technologies not only to enrich our dataset but also to provide a
more comprehensive and insightful understanding of the challenges and solutions
associated with the explainability of LD in our work [ASN19a; Ahm+21] that are
explained in Chapter 9.
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To enable the efficient development of proper links between KGs, a linking framework
(i.e., LD tool) must support high effectiveness and efficiency. In this part, we focus on
linking tools (for example, LIMES [NA11; Ngo+21]) that fall within the declarative
representation paradigm. However, we pay more attention to the efficiency (i.e.,
scalability) challenge in LD over geospatial KGs.

* Effectiveness. A linking tool should provide high-quality mappings using
established metrics such as accuracy, recall, and F-measure. As a result, the
output must be precise; i.e. the relationships generated by a certain framework
must be correct (precision). To be comprehensive, a link generator should
generate as many links as possible. Finally, only links between resources that
truly belong together should be established. Nentwig et. al. [Nen+17] have
surveyed many tools considering the effectiveness of a linking framework.

* Efficiency. A linking tool should be rapid and scalable to large KGs with
hundreds of thousands or millions of resources. A naive, non-scalable approach
evaluates all potential resource pairings (Cartesian product), resulting in a
quadratic complexity. As a result, one of the key efficiency goals is to reduce
the search space so that superfluous resource pairs are avoided. Nentwig et.
al. [Nen+17] have listed many tools dealing with the efficiency of a linking
framework.

To address the efficiency challenge in LD, we present a set of novel approaches
in this part of the thesis. These approaches facilitate the integration of enormous
volumes of KGs while working within time or space restrictions. We also introduce
techniques for connecting resources based on spatial links, which have received
minimal attention in the literature.
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4.1

LineSimp: A Line
Simplification Approach For
Link Discovery over
Geospatial Knowledge
Graphs

Preamble: This chapter is based on Ahmed et al. [ASN18b]. It studies the ef-
fect of simplifying the resource’s geometries on the runtime and F-measure of LD
approaches. In particular, we evaluate LD approaches for computing point-set dis-
tances, as well as the topological relations among RDF resources with geospatial
representation. The results obtained on two different real datasets suggest that most
geospatial LD approaches achieve a speedup of up to 67x using simplification, while
the average loss in their F-measure is less than 15%.

Motivation

With the increasing growth of Linked Data in geospatial resources over recent years
comes the need to develop highly scalable approaches for discovering links among
such resources. As pointed out in previous work [Ngo13], only 7.1% of the links
between resources connect geospatial entities. This is due to two main factors: 1)
the large number of resources with geospatial representation available on the LOD,
which requires scalable algorithms for computing links between geospatial resources.
For example, LGD! contains more than 20 billion triples that describe millions of
geospatial entities [ALH09]. 2) The vector representation of geospatial resources
demands the computation of particular relations, i.e., distance and topological
relations between geospatial resources. For example, finding the nearby point of
interest within a given radius.

"http://linkedgeodata.org
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According to the Linked Data principles?, the provision of links between KGs in
RDF?® is of central importance for numerous SW tasks. However, the LD process
becomes more challenging, especially when dealing with geospatial resources in
real-time applications, including structured machine learning [SNL17], question
answering [Leh+12], and data fusion [SNL15]. In such a real-time application, the
provision of explicit geospatial relations among resources is of central importance
for achieving scalability.

Only a few state-of-the-art approaches have been developed for LD to deal with
geospatial data represented in RDF. For example, [Ngol3] uses the Hausdorff
distance to compute the distance between geospatial entities. A survey of 10 point-
set distance measures for LD is provided in [SN15]. Based on the MultiBlock,
SILK [SK16] computes topological relations according to the DE-9IM standard.
Recently, RADON [She+17] has provided an indexing method combined with space
tiling that enables efficient computation of topological relations between geospatial

resources.

To the best of our knowledge, no previous work has studied the problem of discovery
of geospatial relations among a simplified version of vector representations of
geospatial resources. In this chapter, we study the effect of applying two line-
simplification algorithms as a preprocessing step prior to the discovery of geospatial
relations among such resources. In particular, we consider the effect of simplification
upon both the efficiency of discovered relations (i.e., F-measure) and the scalability
of the LD approaches (i.e., runtime). The contributions of this chapter are as
follows:

1. We present and formalize the problem of LD for geospatial resources as well
as the line simplification problem.

2. We study the effect of simplifying the geospatial representation of resources
on the quality of discovered relations.

3. We study the speedup of various LD approaches when dealing with RDF
resources with simplified geometries.

4. We present an evaluation of two line-simplification approaches for different LD
approaches and show that while such approaches only lose, on average, 15%
F-measure on the original data, they gain up to 67x speedup when applied to
the simplified data.

https://www.w3.org/DesignIssues/LinkedData.html
®*Resource Description Framework, see https://www.w3.org/RDF/
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4.2.1

The rest of this chapter is structured as follows. We begin by introducing our
approach in Section 4.2. Then, in Section 4.3, we present our evaluation and
results.

Approach

The methodology we adopt is focused on LD using the DE-9IM[CSE94] and Point-
Sets Distance Measures with line simplification techniques. A formal definition of
LD is available in Chapter 2, Section 2.4. Works that are related to this topic are
discussed in Chapter 3, specifically in Sections 3.2 and 3.2.10.

Line Simplification

Line simplification (dubbed curve simplification in some literature) has been adopted
in many fields, including computer vision, cartography, and computer graphics.
The input to a line simplification algorithm is a polygonized curve with n vertices
composed of line segments (also called a polyline in some contexts). The goal of
a line simplification algorithm is to find an approximating polygonized curve with
m vertices as output, where m < n. A closely related problem is to take a line with
n vertices and approximate it within a defined error tolerance ¢ > 0. In this work,
we introduce only the Douglas-Peucker and Visvalingam—Whyatt algorithms as case
studies due to their popularity. A detailed review of the line simplification algorithms
can be found in this survey [HG97].

The Douglas-Peucker Algorithm

The Douglas-Peucker algorithm [DP73] is the most widely used high-quality curve
simplification algorithm. It was invented independently by many authors. At each
iteration, the Douglas-Peucker algorithm tries to approximate a sequence of points
by a line segment from the first point to the last point. As shown in Algorithm 1,
the algorithm starts with the two endpoints of the input polyline. Then, it finds the
point with the farthest distance d from the line segment formed by the current start
and endpoints. If d is below the simplification factor dmax, the approximation is
accepted; otherwise, the algorithm is recursively applied to the two polylines before
and after the chosen point. The Douglas-Peucker algorithm, though not optimal,
has generally been invented to generate the highest subjective and objective quality
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approximations when compared with many other heuristic algorithms. Its best-case
time cost is 2(n), its worst-case cost is O(mn), and its expected time cost is about
©(nlogm). The worst-case behavior can be improved, with some sacrifice in the
best-case behavior, using a ©(n log) algorithm employing convex hulls [HG97].

Algorithm 1: Douglas-Peucker-Algorithm
Result: return ResultList[]

function DouglasPeucker (PointList[], epsilon);
dmax = 0;
index = 0;

for i = 2 to (length(PointList) - 1) do

d = PerpendicularDistance(PointList[i], Line(PointList[1], PointList[end]));
if d > dmax then

L index =1;

0o g O Ul A W=

dmax = d;

9 if dmax > epsilon then

10 recResults1[] = DouglasPeucker(PointList[1...index], epsilon);
11 recResults2[] = DouglasPeucker(PointList[index...end], epsilon);
12 ResultList [] = recResults1[1...end-1] recResults2[1...end];

13 else

14 L ResultList[] = PointList[1], PointList[end];

The Visvalingam-Whyatt Algorithm

Visvalingam-Whyatt algorithm [VW93] (see Algorithm 2) uses the concept of effective
area for progressive simplification of a line-by-point elimination. The basic idea
behind this algorithm is to iteratively eliminate the fewer characteristic points, i.e.,
those which produce the least areal displacement from the current part-simplified
line. The algorithm filters points on lines by a process of elimination rather than
selection, while the Dougherty-Peucker Algorithm keeps the points on curves by
selecting points rather than eliminating them. To remove points, Visvalingam-Whyatt
iteratively computes the area of all triangles formed by each three successive points.
If the area of the smallest triangle is smaller than a threshold (area-tolerance), then
its middle point is deleted.

52 Chapter 4 LineSimp: A Line Simplification Approach For Link Discovery over
Geospatial Knowledge Graphs



1
2
3
4
5
6

10
11

4.3

Algorithm 2: Visvalingam-Whyatt Algorithm

Result: L
Input line L as a list of points, separate list R of ranked points;
Compute the effective area of each point on the line;
Delete all points with zero area and store them in a separate list;
for do
Find the point with least effective area and call it current point;
Delete the current point from the original list L and add it to the ranked list
R with its effective area;
Recalculate the effective area of the two adjacent points;
if Size of L = 2 then
| Terminate
end
end

Evaluation

We have now prepared all of the ingredients needed for our study. We study the
impact of line simplification algorithms on the main requirements (i.e., efficiency
and runtime) of LD over RDF KGs containing geospatial entities. We evaluate the
effect of simplifying geometries on the approaches used thus far in geospatial LD:
point-set measures (e.g., Hausdorff and mean measures) and topological relations
(e.g., contains and overlaps relations).

We aimed to answer four questions with our experimental evaluation:

Q1 How much performance (i.e., F-measure) does each of the geospatial LD
approaches lose when dealing with the simplified geometries vs. when dealing
with the original ones?

(2 How well does each of the geospatial LD approaches scale (i.e., runtime and
speedup) in the context of simplified geometries?

(23 Which is most affected relation and less affected relation by the simplification
process?

Q4 What is the runtime cost of simplification?

4.3 Evaluation
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Experimental Setup

Hardware All of the experiments were carried out on the OCuLUS cluster running
OpenJDK 64-Bit 1.8.0 161 on Ubuntu 16.04.3 LTS. OCuLUS is a high-performance
machine located at the computer science institute on the main campus of Paderborn
University. It consists of 9,920 processor cores, 2.6 GHz Intel Xeon "Sandy Bridge",
with a main memory of capacity 45 TB. For our created jobs, we assigned 16 CPUs
and 200 GB of RAM for each job with a termination time of 4 hours.

Limes For our experiments, we selected the LD framework LIMES [NA11] to study
the impact of the line simplification algorithms on the discovery of links between RDF
resources with geospatial representation. We selected LIMES as it implements the
time-efficient approach RADON [She+17] for the discovery of topological relations
and also because it implements various point-set distance functions [SN15].

Datasets We evaluated our approach using two real-world datasets.

(1) Nomenclature of Territorial Units for Statistics (NUTS)# is manually curated
by the Eurostat group of the European Commission. NUTS contains a detailed hi-
erarchical description of whole European regions. (2) CLC is an activity of the
European Environment Agency (EEA) that collects data regarding the land cover of
European countries. CLC contains 44 sub-datasets ranging in size from 240 resources
to 248,242 resources.” We merged all CLC sub-datasets into one big dataset of
2,209, 538 resources that we dubbed CLC. As LIMES can only read geometries in the
WKT format, we adopted the same preprocessing technique proposed by [She+17].
In particular, we preprocessed NUTS and CLC by converting ngeo:posList serial-
ization into WKT, and lines larger than 64 KB were trimmed.

F-measure Analysis

To evaluate the F-measure, we conducted four sets of experiments as follows:

In the first set of experiments, we used the RADON approach with the same setting as
in [She+17] to discover the relations equals, intersects, contains, covers,
coveredBy, touches, crosses, and overlaps. We used the NUTS dataset as
the source dataset and CLC as the target. We then tested the impact of the line

*Version 0.91 (http://nuts.geovocab.org/data/0.91/) is used in this paper
SFor more details about CLC, see https://datahub.io/dataset/corine-land-cover
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simplification algorithm of Douglas-Peucker [DP73] on RADON’s performance (that
is, the F-measure) when applied to the simplified data. To generate the simplified
data, we applied the simplification factors of 0.05,0.09,0.10, and 0.2. Given that
RADON is complete [She+17] (i.e., RADON always achieved an F-measure of 1),
we used the results generated by applying RADON to the original data set as our
reference data set. Using such a reference dataset, we were able to calculate the
F-measures presented in Table 4.1. Our results show a reverse correlation between
the simplification factor and the F-measure. On average, RADON was able to achieve
the 0.94 F-measure when applied against the simplified geometries. This answers ()1
for the LD of the topological relations when applied to simplified geometries using
the Douglas-Peucker algorithm.

Tab. 4.1.: F-measure results of applying RADON against geometries generated using the
Douglas-Peucker line simplification algorithm. R/F= Relation/Factor, Avg.=

Average.

R/F 0.05 0.09 0.10 0.20 Avg.

Equals 1.00 1.00 1.00 1.00 1.00 + 0.00
Intersects  0.99 0.97 0.97 0.94 0.97 £ 0.02
Contains 0.99 0.97 0.97 0.93 0.97 £ 0.03
Within 0.99 0.97 0.97 0.93 0.97 £ 0.03
Covers 0.99 0.97 0.97 0.93 0.97 £ 0.03
Coveredby 0.99 0.97 0.97 0.93 0.97 £ 0.03
Crosses 1.00 1.00 1.00 1.00 1.00 + 0.00
Touches 1.00 1.00 1.00 1.00 1.00 + 0.00
Overlaps 0.80 0.52 0.47 0.28 0.52 £ 0.21
Avg. 0.97 £0.07 0.94+0.16 0.93+0.17 0.90+0.23 0.94 + 0.03

Using the same setting, we ran our second set of experiments, where we used the
Visvalingam-Whyatt [VW95] algorithm to simplify the geometries. The results, as
shown in Table 4.2, show that the selection of the simplification parameter is more
critical to the Visvalingam-Whyatt algorithm. Using the smallest simplification factor
of 0.005 leads to the best results with an average F-measure of 0.97. Also, the
reverse correlation between the simplification factor and the F-measure still holds.
Those results answer ), for LD approaches for topological relations when applied
to simplified geometries using the Visvalingam-Whyatt algorithm.

For the third set of experiments, we performed a deduplication task for the whole
NUTS data set. That is, we set the NUTS data set as the source S and target 7" data
sets. To measure how well each of the point distance measures performs, we first
created a reference mapping M = {(n,n) € NUTS}, then measured the distance
between each of the geometries in S x 7'. We then calculated the F-measure achieved
within the experiment by comparing the pairs in M’ (generated by applying the
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Tab. 4.2.: F-measure results of applying RADON against geometries generated using the
Visvalingam-Whyatt line simplification algorithm. R/F= Relation/Factor, Avg.=

Average.

R/F 0.005 0.05 0.09 Avg.

Equals 1.00 1.00 1.00 1.00 £+ 0.00
Intersects 0.86 0.01 0.00 0.29 + 0.49
Contains 0.86 0.01 0.00 0.29 + 0.49
Within 0.86 0.01 0.00 0.29 + 0.49
Covers 0.86 0.01 0.00 0.29 + 0.49
Coveredby 0.86 0.01 0.00 0.29 + 0.49
Crosses 1.00 1.00 1.00 1.00 £+ 0.00
Touches 1.00 1.00 1.00 1.00 £+ 0.00
Overlaps 0.86 0.03 0.00 0.30 + 0.49
Avg 0.94 + 0.08 0.56 + 0.52 0.56 + 0.53 0.69 £ 0.22

point-set distances) with those in /. We used the implementations of the Hausdorff,
Mean, Min, Link Sum of minimums, and Surjection from LIMES. The results of these
experiments are listed in the last column of Table 4.3. We then used the Douglas-
Peucker algorithm to simplify all the NUTS geometries with simplification factors
{0.05,0.9,0.1,0.2}. As shown in Table 4.3, the simplification factors of 0.1 and 0.2
achieved the best average F-measure of 0.82. One of the most interesting results
of these experiments was that most of the measures of the set of points were able
not only to achieve the same F-measure of the original data set when applied to the
simplified data but also to outperform the F-measure in the original data in the cases
of the Hausdorff, Mean, and Min.

Tab. 4.3.: Average F-measure results of applying a deduplication task on the NUTS dataset
using the point-set distance measures implementations in LIMES. As input, we
used both the original NUTS geometries (results are in the last column) and
simplified geometries generated using the Douglas-Peucker line simplification
algorithm. M/F = Measure/Factor, Avg.= Average,F,= original F-measure

M/F 0.05 0.9 0.1 0.2 Avg. F,
Hausdorff 0.90 0.91 0.91 0.91 0.91 0.88
Mean 0.94 0.94 0.94 0.94 0.94 0.94

Min 0.14 0.16 0.16 0.21 0.18 0.13

Link 0.95 0.95 0.94 0.94 0.94 0.94
SumOfMin 0.95 0.95 0.94 0.94 0.94 0.94

Avg. 0.77+£0.36 0.78+0.35 0.78+0.35 0.794+0.32 0.77+0.36

In the fourth set of experiments, we used the same setting as the last set of experiments
except for the simplification algorithm. In this set of experiments, we generated a
simplified version of the NUTS geometries using the Visvalingam-Whyatt algorithm
with the simplification factors {0.005,0.05,0.1}. We then calculated the F-measure
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based on the following distance measurement functions Hausdorff, Mean, Min, Link,
and Sum of Minimums. The results in Table 4.4 show the comparison between the
F-measure obtained from a simplified version of the data and the F-measure (denoted
Foriginal) obtained from an original version of the data. The results clearly show the
sensitivity of the F-measure to changing the simplification factor. For example, when
the simplification factor is equal to 0.005, the average of the F-measure is 0.77, while
it drops to 0.26 with a simplification factor of 0.1.

Tab. 4.4.: F-measure results of applying a deduplication task on the NUTS dataset using
the point-set distance measures implementations in LIMES. As input, we used
both the original NUTS geometries (results are in the last column) and simplified
geometries generated using the Visvalingam-Whyatt line simplification algorithm.
M/F = Measure/Factor, Avg.= Average, F,= original F-measure.

M/F 0.005 0.05 0.1 Avg. F,
Hausdorff 0.88 0.24 0.02 0.38 £ 0.45 0.88
Mean 0.94 0.94 0.92 0.93 + 0.02 0.94
Min 0.13 0.13 0.13 0.13 £ 0.00 0.13
Link 0.94 0.14 0.01 0.37 £0.51 0.94
Sum of Min 0.94 0.94 0.24 0.71 £ 0.40 0.94
Avg. 0.77£0.36 0.48£0.42 0.26%+0.38 0.77£0.36

Runtime Analysis

In order to answer (02, we evaluated the speedup gained by applying LD approaches
to simplified geometries. We measured the runtime while performing the four sets
of experiments mentioned earlier.

Figure 4.1 shows the runtime results for the first set of experiments, that is, we
measured the runtime of applying RADON to discover topological relations when
applied to the original datasets vs. when applied to the simplified datasets using
the Douglas-Peucker algorithm. On average, RADON provided a 4.9x speedup in
its performance when applied to the original datasets. Moreover, there is a direct
correlation between the speedup achieved and the simplification parameter. In
particular, the lowest speedup of 3.7x is achieved when applying the simplification
factor of 0.05, and the speedup monotonically increases to 6.1 x when applying the
simplification factor of 0.2.

For the second set of experiments, we also measured the runtimes when applying
RADON against the original data sets vs. the simplified datasets using the Visvalingam-
Whyatt algorithm. The results are shown in Figure 4.2. On average, RADON achieved
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Fig. 4.1.: Runtimes of RADON’s implementation of topological relations LD for original
NUTS x CLC datasets vs. the runtimes of the simplified datasets using the
Douglas-Peucker algorithm with simplification factors of {0.05,0.09,0.1,0.2}.

49.2x speedup, with a maximum 67.3x speedup in the case of a simplification factor
of 0.09 but only 4.2x speedup with a simplification factor of 0.005.
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Fig. 4.2.: Runtimes of RADON’s implementation of topological relations LD for original
NUTS x CLC datasets vs. runtimes of the simplified datasets using the
Visvalingam-Whyatt algorithm with simplification parameters {0.005,0.05,0.1}.

Using the same technique, we measured the runtime for the third set of experiments.
The results are presented in Figure 4.3. The distance of the point-set achieved
an average speedup of 9.2 when applied to the simplified geometries using the
Douglas-Peucker algorithm (min. = 2x, max. = 19.8x).

Figure 4.4 shows the results of the run-times of the fourth set of experiments.
Point-set measures achieved only an average speed increase of 2.1 when applied to
simplified geometries using the Visvalingam-Whyatt algorithm (only 1.1 in the case
of a simplification factor of 0.005).
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Fig. 4.3.: Runtimes of LIMES implementation of point-set measures LD deduplication for the
original NUT'S dataset vs. the runtime of the simplified dataset using the Douglas-
Peucker algorithm with simplification parameters {0.05, 0.09,0.1,0.2,0.3}.

LD Relations Analysis

From all previous sets of experiments, we can now answer (3. In the case of the
topological relations, the F-measure of the overlap relation is the most affected by
the Douglas-Peucker simplification. This can be seen in Table 4.1. Also, the equals,
crosses, and touches are not affected at all by any simplification (see Tables 4.1
and 4.2). In the case of point-set measures, the F-measure of the min measure is the
most affected, while all the other relations not only achieve the F-measure of the
original data but also outperform it in many cases (see Tables 4.3 and 4.4).

For the runtime of topological relations, the equal relation achieved the best speedup
in the case of the Douglas-Peucker simplification (see Figure 4.1), while the coverdBy
had the best speedup when using the Visvalingam-Whyatt algorithm (see Figure 4.2).
For the runtime of the point-set relations, the mean relation achieves the shortest
runtime even without any simplification, while the sun0fMin relation has the least
speedup (see Figures 4.3 and 4.4).

Simplification Runtime Analysis

To answer ()4, we measured the runtime cost of applying both the Douglas-Peucker
and Visvalingam-Whyatt line simplification algorithms. We calculated the average
simplification time needed while performing the first and second sets of experiments

4.3 Evaluation
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Fig. 4.4.: Runtimes of LIMES implementation of point-set measures LD deduplication for
the original NUT'S dataset vs. the runtime of the simplified dataset using the
Visvalingam-Whyatt algorithm with simplification parameters {0.005,0.05,0.1}.

together with the average time to run RADON for each of the topological relations
versus the time needed to run RADON against the original data sets. The results are
detailed in Figure 4.6 and Figure 4.5.

In case we want to discover all the topological relations at once, Figure 4.5 shows
the total runtime needed for simplification on the left. Note that the simplification
process is done only once for all topological relations. The total time to run RADON
for all relations in the simplified data is plotted next in the figure. Next comes the
total time of running RADON in addition to the simplification time for all relations.
Finally, the time to run RADON in the original data is plotted. As we can see, as we
perform the simplification process once and use the simplified data to extract all the
relations, RADON is able to achieve on average 2.4x speedup.

Figure 4.6 shows the average runtime needed for running RADON for only one
relation on the original data vs. running it on a simplified one. As we can see, the
simplification time is, on average, greater than the average time for a single RADON
topological relation discovery task (see the first and last columns in Figure 4.6).
This clearly shows that using simplification for the discovery of a single relation is
suboptimal.

A complete answer for ()4 would be that the more relations that need to be discov-
ered, the faster the gains will be obtained from the use of simplification. Moreover,
the simplification runtime cost would be very high once a single relation discovery
is required, i.e., we recommend not using any simplification for a single relation
discovery.

Chapter 4 LineSimp: A Line Simplification Approach For Link Discovery over
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Fig. 4.5.: Total runtime for all topological relations. Runtimes of RADON on the original
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5.1

RADONZ2: An Intersection
Matrix Approach For Link

Discovery over Geospatial
Knowledge Graphs

Preamble: This chapter is based on Ahmed et al. [ASN18c], in which RADON2
is presented. RADON2 addresses the LD problem with geospatial KGs, as it is at
the essence of the SW, where a KG such as LGD consists of more than 20 billion
facts [ALHO9]. Reasoning on these considerable amounts of geospatial KGs lacks
efficient methods to calculate the links between the resources contained in these
KGs. RADON2 is the extension of the RADON algorithm, where we compute all
the topological relations of DE-9IMin parallel to accelerate LD between geospatial
resources. Our evaluation shows that RADON2 outperforms the state of the art
significantly with up to 35% improvement in runtime.

Motivation

In Chapter 4, we began our examination of scalability issues in LD over geospatial
KGs by investigating the role of line simplification algorithms. Specifically, we studied
how these algorithms can serve as preprocessing steps to enhance the discovery of
geospatial relations among simplified versions of vector representations of geospatial
resources. We considered the impact of these algorithms on both the efficiency of
the discovered relations, measured by the F-measure and the runtime scalability of
LD approaches.

In contrast, the present chapter (Chapter 5) shifts the focus toward exploring the
untapped potential of IM for the same LD tasks. More specifically, we study the
impact of IM and its parallelization on the discovery of topological relationships
between geospatial entities. We aim to understand how leveraging parallel IM
computation can enhance the scalability of LD approaches, particularly in terms of
runtime.
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Furthermore, we introduce an extension of the RADON algorithm, originally pre-
sented in [She+17]. This algorithm uses an indexing method combined with space
tiling to allow efficient computation of topological relations between geospatial
resources, based on the DE-9IM standard. By diversifying our focus between line
simplification and IM across different chapters, we aim to offer a more rounded
perspective on improving the scalability of LD in geospatial KGs.

The contributions of this chapter are as follows:

1. We study the effect of parallel computing of all topological relations between
the geospatial resources introduced in DE-9IM at once.

2. We study the impact of the number of processors on the runtime of IM com-
puting.

The rest of this chapter is structured as follows. We begin by introducing our
approach in Section 5.2. Then, in Section 5.3, we present our evaluation and
results.

Approach

The basic idea behind the RADON [She+17] approach to topological relation discov-
ery is to provide an indexing method combined with space tiling that allows efficient
computation of topological relations between geospatial resources. In particular,
RADON presents a novel sparse index for geospatial resources. Then, based on the
bounding boxes of the indexed geospatial resources, RADON applies a strategy to
eliminate unnecessary computations of DE-9IM relations. In this work, our concern
is focused on the computing of IM used in the DE-9IM standard. Initially, in RADON,
each topological relation is individually computed by selecting the relation first and
then calculating the intersection matrix, while in this extension, we first compute
the intersection matrix and, according to the mask of each topological relation, we
define the relation. In particular, we buffer the result of IM of each pair of geometries
so that all topological relations of the same pair can be retrieved without the need
to recompute their respective IM again. For instance, if the IM = [T F x « FFF'x],
where T is true, I is false, and * is not care. To this end, the IM is buffered and
then compared to the mask of all topological relations, such as equals, which has
the mask mask = [T x F x xF F Fx]. By applying this computing strategy, we can
gain the time used during the computation of each individual relation, which leads
to a significant impact. Especially, when the geospatial resource is represented by

Chapter 5 RADON2: An Intersection Matrix Approach For Link Discovery
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thousands of spatial points, as we can see clearly in today’s geospatial RDF KGs (e.g.,
NUTS! and CLC?). Moreover, calculating IM at once for all topological relations
does not affect the accuracy of linking, i.e., the F-measure. Works that are related to
this topic are discussed in Chapter 3, specifically in Sections 3.2 and 3.2.3.

Evaluation

We have now prepared all the ingredients needed for our extension of the RADON
algorithm. Since the F-measure does not change, we study only the impact of
intersection matrix computing on the second main requirement (i.e., runtime) of LD
over RDF KGs containing geospatial entities. We evaluated the impact of intersection
matrix computing in the RADON2 versus RADON algorithm and then the effect of
processor number on the LD performance when we applied the proposed approach.
We aimed to answer the following questions with our experimental evaluation:

Q1 How well does the geospatial LD approach presented in RADON2 scale (i.e.,
runtime speedup) in case of parallel computing of IM?

@2 Does the processor number have a significant impact on IM computing?

Experimental Setup

Hardware All the experiments were carried out on the OCuLUS cluster running
OpenJDK 64-Bit 1.8.0_161 on Ubuntu 16.04.3 LTS. OCuLUS is a high-performance
machine located at the computer science institute on the main campus of Paderborn
University. It consists of 9,920 processor cores, 2.6 GHz Intel Xeon "Sandy Bridge",
with a main memory of capacity 45 TB. For our created jobs, we assigned 16 and 32
CPUs and 20 GB of RAM for each job with a termination time of 4 hours.

Datasets We evaluated our approach using two real-world datasets. (1) NUTS? is
manually curated by the Eurostat group of the European Commission. NUTS contains
a detailed hierarchical description of whole European regions. (2) CLC is an activity
of the EEA that collects data on the land cover of European countries. CLC contains
44 subdatasets ranging in size from 240 to 248, 242 resources.* We merged all CLC

'http://nuts.geovocab.org/data/0.91/
https://datahub.io/dataset/corine-land-cover

3Version 0.91 (http://nuts.geovocab.org/data/0.91/) is used in this paper

“For more details about CLC Cover, see https://datahub.io/dataset/corine-land-cover
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subdatasets into one big dataset of 2,209, 538 resources (dubbed CLC). As LIMES
can only read geometries in the WKT format, we adopted the same preprocessing
technique proposed by [She+17]. In particular, we preprocessed NUTS and CLC by
converting ngeo:posList serialization into WKT.

Runtime Analysis

To answer ()7, we conducted an experiment to measure the run time of the RADON2
vs. the RADON algorithm using NUTS as a source dataset and CLC as a target
dataset. As shown in Figure 5.1, the overall speedup in runtime is up to 28% for all
topological relations equals, within, contains, disjoint, touches, meets,

covers, coveredBy, intersects, crosses and overlaps.
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Run time (in sec.)

Radon Radon2

Fig. 5.1.: Runtimes of RADON2 and RADON for topological relation discovery among
NUTS x CLC datasets.
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Fig. 5.2.: Runtimes of RADON2’s implementation using 16 CPUs of topological relations
LD for NUTS x CLC datasets vs. the runtime of the RADON2’s implementation
using 32 CPUs.

To answer ()2, we conducted a second experiment to study the impact of the
processor number on IM computing. We kept the same setting in the first experiment,
except for the number of processors, which is doubled in this experiment. The result
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in Figure 5.2 shows that by duplicating the number of processors, we gain a speedup
of 35%, which, even if an acceptable speedup, we do not concede it as significant. A
more sophisticated parallelization techniques is still a subject for future research.
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Cobalt: A Content-Based
Similarity Approach For Link
Discovery over Geospatial
Knowledge Graphs

Preamble: This chapter is based on the paper [Bec+23] that proposes COBALT to
speed up the discovery of geospatial links.

COBALT combines content measures with R-tree indexing. Content measures are
based on the area, diagonal, and distance of the MBB of polygons, which speed
up the process but are not perfectly accurate. Thus, we propose two polygon
splitting approaches to improve the accuracy of COBALT. Our experiments in real-
world datasets show that COBALT is able to accelerate the discovery of topological
relationships in geospatial KGs by up to 1.47 x 10* times over state-of-the-art linking
algorithms while maintaining an F-measure between 0.7 and 0.9, depending on
the topological relation. Furthermore, we achieved an F-measure of up to 0.99 by
applying our polygon-splitting approaches before applying the content measures.
The process of discovering links between geospatial resources can be significantly
faster without sacrificing the optimality of the results. This is especially important
for real-time data-driven applications such as emergency response, location-based
services, and traffic management. In future work, additional measures, such as the
location of polygons or the name of the entity represented by the polygon, could be
integrated to further improve the accuracy of the results.

Motivation

The necessity for highly scalable methods for finding links between geospatial
resources has arisen due to a result of the rapid proliferation of Linked Data in
geospatial data. Only 7.1% of the relationships between resources relate geograph-
ical elements, as was noted in earlier publications [Ngo13]. There are two basic
causes for this: 1) The vast quantity of geospatially represented resources on LOD
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requires scalable techniques for computing linkages between geospatial resources.
Examples include LGD [ALHO09], which has more than 20 billion triples that describe
millions of geographical resources. 2) The computation of certain relations, such as
distance and topological links between geospatial resources, is required by the vector
representation of geospatial data. For example, identifying the nearby point of inter-
est within a certain radius. The discovery of links among KGs in RDF is crucial for
many semantic web applications, according to the Linked Data principles. However,
using geospatial resources in time-critical applications [ZL05], such as emergency
response, location-based services, and real-time traffic management, needs instant
access to geospatial KGs to make quick decisions and take instantaneous actions.
Thus, the efficiency of the LD process becomes more challenging. Efficient LD ap-
proaches must be developed to achieve scalability and efficiency in such real-time
applications. Recently, algorithms such as RADON [She+17], RADON2 [ASN18c]
(see Chapter 5), GIA.NT [Pap+21], and Doric [Jin+21] have been developed.
These algorithms compute topological relations between geographical resources
quickly and effectively and the DE-9IM [CSE94] is used in all of them. The DE-9IM
defines the topological relations between two-dimensional geometries by calculating
the dimensions of the intersections between the interior, boundary, and exterior of
two geometries. The relations defined by DE-9IM are commonly used in natural
language [EMH94]: Equals, Disjoint, Intersects, Touches, Crosses, Within,
Contains, Overlaps, Covers, and Covered By. Ahmed et al. [ASN18b] (see Chap-
ter 4) have studied the effect of simplifying resource geometries on the runtime and
F-measure of LD approaches. However, computing the DE-9IM is very expensive in
terms of runtime.

In our efforts to improve the scalability of LD over geospatial KGs, in Chapter 4,
we focused on the scalability of LD by employing line simplification algorithms as
preprocessing steps. Specifically, these algorithms were applied to IM and point-
set distance measures to efficiently detect geospatial relations. This exploration
was centered around evaluating their effect on two critical metrics: the F-measure,
indicating the efficiency of discovered relations, and runtime, which measures
scalability. Then, in Chapter 5, we shifted our focus solely to the role of IM in
LD over geospatial KGs. We examine the scalability implications of parallelizing
IM computations, particularly in terms of runtime. An extension of the RADON
algorithm [She+17] was introduced, which uses a specialized indexing method
combined with space tiling to calculate the topological relations between geospatial
resources based on the DE-9IM standard.

In this chapter, we further refine our approach to address the remaining challenges
associated with the high computational cost involved in both line simplification
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and IM methods. To achieve this, we introduce COBALT. COBALT is a hybrid
methodology that combines content measure similarity and R-tree indexing. This
synergistic approach is designed to significantly reduce computational overhead,
thus improving the efficiency of LD in geospatial KGs. COBALT uses content mea-
sures combined with R-Tree indexing to discover the topological relations defined
in [CSE94] and [EMH94]. To our knowledge, this is the first work that uses content
measures integrated with R-Tree indexing to discover links among RDF geospatial
resources. We summarize our contribution as follows:

1. We present and formalize the problem of topological relation discovery for
geospatial resources based on content measures and R-tree indexing.

2. We study the effect of using different R-tree building algorithms, node capaci-
ties, and the impact of indexing both KGs.

3. We study the impact of using the content-based measures for topological
relations discovery on both runtime and accuracy.

4. To increase the accuracy of our approach, we propose two polygon-splitting
strategies and analyze their effect on both runtime and accuracy.

The remainder of this chapter is structured as follows. We begin by introducing our
approach in Section 6.2. In Section 6.3, we present our evaluation and results.

Approach

We start our approach by indexing the source dataset polygons using the R-tree; we
then apply content measures on the indexed polygons.

R-tree Indexing

R-trees [BS12] are an improved variant of binary trees, where an R-tree stores
the MBBs of the polygons instead of the polygons themselves. In COBALT, we use
Guttman’s R-tree [Gut84] to index the source dataset in order to filter out as many
disconnected polygon pairs as possible to reduce the runtime of the linking process.
Every node’s MBB contains all of its children’s MBBs, so in case an MBB of a parent
node does not intersect a query rectangle (a query rectangle is an MBB from target
data), none of its descendants can [Gut84]. The bottom layer of an R-tree stores the
MBBs of polygons in the source dataset, and all layers above it match the criterion

6.2 Approach
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applied to indexing the bottom layer. An example of a handcrafted R-tree is shown

in Figure 6.1.

Querying R-trees

R-trees are easy to query recursively. Let ¢ be the target MBB of the polygon for
which we want to find the intersected MBBs of the source polygons. Since the
nodes of an R-tree are R-trees, we use the same algorithm for each node. If the
current node of the R-tree is in the bottom layer (i.e., it contains no other R-trees
but polygons), we then verify if ¢ intersects each of the MBBs of the source polygons
saved in this node and add such source polygons to the query result. In case the
current node of the R-tree is not on the bottom layer, we check if each child node’s
MBB has at least one common point with ¢, and if that is the case, we recursively
repeat the method for that node. In Figure 6.1, for instance, the MBBs of the two
blue nodes on the left overlap. If the query rectangle ¢ lies in the area where two
nodes’ MBBs overlap, we have to check the children of both nodes. Therefore, we
need a fast-building approach that minimizes overlapping parent nodes.

Fig. 6.1.: A handcrafted R-tree, where green is the bottom layer, blue is the middle, and
red is the top layer.
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Building R-trees

There are two main ways for constructing R-trees: (i) Static building algorithms
work by getting all data as the input and then constructing the tree with all data
at once. (ii) Dynamic building algorithms work by inserting data one by one into
the tree. As our KGs do not change frequently, we focus on static algorithms, as
dynamic algorithms will require more runtime for reinserting data to keep the R-tree
balanced. Because we only query the R-tree once for every target geometry, the
build quality (i.e., overlap) is less important for an overall fast execution. To test the
impact of different building algorithms, we use four static R-tree building algorithms
(i.e., SmallestX, STR, OTM, and PackedHilbertR-tree) and one dynamic algorithm (i.e.,
R*-tree). The first static algorithm is SmallestX [KF93], which sorts the MBBs by
the smallest x coordinate. The SortTileRecursive [LLE97] algorithm (STR) builds
the R-tree in a bottom-up fashion: it divides the MBBs into slices, initially sorting
them by the z-coordinate and subsequently by the y-coordinate. It then recursively
combines the parent nodes of the bottom layer. The OTM algorithm [LLO3] works
similarly to STR but recursively sorts MBBs by alternating z- and y-coordinates with
a top-down bulk-loading approach. The last static building algorithm we use is
the PackedHilbertR-tree [KF94] algorithm, which sorts the MBBs by their position
on the Hilbert curve. In contrast, we use the dynamic R-tree building algorithm
R*-tree [Bec+90], which supports the insertion of new elements after creation and
tries to minimize the area occupied by nodes. In our experiments, we insert the
polygons one by one into the R*-tree and use the values {4, 8, 16, 32,64, 128,256}
for the capacities of each node.

Content Measures for Topological Relations

Given two MBBs, A and B, the area-based content measure (F,) is the first of the
three content measures from [GR04]. F, is the normalization of the area of each
MBB of both A and B by the area of the MBB of the union of A and B. Formally,

area(A)

Fa(A, B) = area(MBB(AUB))’

(6.1)

where F,(B, A) is defined analogously. The range of F;, € (0, 1]. In Table 6.1, we
present the values of F, (A, B), F,(B, A), and F,(A, B) + F,(B, A) for the different
topological relations. F, cannot distinguish the following pairs of relations: (Meet,
disjoint), (covers, contains), and (covered by, inside). For instance, the
union MBB will be the same as the MBB of the MBBs for contains and covers.

6.2 Approach

73



6.2.5

6.2.6

74

Tab. 6.1.: Area-based content measure relations based on values of F, [GR04].

Relation Disjoint Meets Overlap Equals Covers CoveredBy Contains Inside
F.(A,B) 0,1 (@O O 1 1 0,1) 1 0,1)
Fo(B, A) o1 (©n O 1 0,1) (O, o1 1

Fu(A,B)+F,(B,A) (0,1) (0,11 (0,2) 2 1,2y (1,2 (1,2) (1,2

However, this measure can accurately detect the equalrelation because both input
MBBs have the same area as the MBB of their union. The second content measure is
the diagonal-based content measure (F,;) [GR04], formally defined as:

_ diagonal(A)
~ diagonal(MBB(AUB))’

F;(A, B) (6.2)
The range of F; € (0,1], and it cannot distinguish (covers, contains) and
(covered by, inside) for the same reason as in the case of F,. The third measure
of content is the mixed content measure (F),,) [GRO4]. F,, utilizes the area, diagonal,
and distance of the MBBs to find the topological relations. Unlike the other two
content measures, it is capable of distinguishing between (contains, covers) and
(inside, covered by). Formally,

area(A) — 2 -area(MBB(ANB)) distance(A, B)

Fin(4, B) = area(A) diagonal(A)

(6.3)

Combining R-tree Indexing and Content Measures

Our R-tree indexing filters out disjoint polygon pairs based on their MBB. We only
keep the indexed source dataset in memory, which reduces the space complexity
as we stream-process the target dataset. In the case of the disjoint relation, we
first add all pairs of geometries that the indexing would filter out to the result
set, and then we check the other relations on the rest of the geometries pairs. In
Algorithm 13, we outline the steps for the area-based content measure F,. For
the other measures, we replace F, with Fj for the diagonal measure and F,, for
the mixed measure (Lines 8-9). Additionally, the values of F, need to be checked
against the other measures’ values from [GR04] (Line 11).

Indexing Both Datasets

In many cases, swapping the source and target datasets results in different runtimes.
To reduce the impact of data set ordering on runtime, we study the possibility of

Chapter 6 Cobalt: A Content-Based Similarity Approach For Link Discovery
over Geospatial Knowledge Graphs



1
2
3
4

5
6
7
8

10
11
12

13

1
2
3

[~ IR < ST B

O

6.2.7

Algorithm 3: DiscoverLinksAreaBased (G, Gy, 7)

input :Source KG G, Target KG G, Topological relation r

output: Mapping: M = {(s,r,t)|s € Gs,t € Gy}

tree <— buildRtree(Gs);

Initialise M <« {} ;

for MBB(t) t € G; do

I + queryRtree(tree, t));

if r is disjoint then

L Add all pairs(s,r,t)Vs € (G5 \ I) to M

for MBB(s) s € I do

X « F,(MBB(s), MBB(t));

Y <« F,(MBB(t), MBB(s));

Z+— X+Y;

if X, Y, Z match the respective values of the relation r in Table 6.1 then
L Add (s,r,t) to M;

return M

Algorithm 4: MatchTrees(sourceTree, targetTree)

Result < {};
if area(sourceTree) < area(targetTree) then
L swap sourceTree and targetTree;

foreach child of sourceTree do
if child is leaf then

Result = Result U queryRtree(targetTree, MBB(child));
else

| Result = Result U MatchTrees(child, targetTree);

return Result;

indexing both data sets instead of one. Instead of querying the R-tree for each target
geometry, we use Algorithm 4 to match two R-trees to each other and recursively
find all pairs that intersect. This approach removes the need to choose which dataset
to index, but it comes with the price of increasing the memory footprint of our
approach as we have to keep both datasets in memory.

Splitting Polygons to Gain Accuracy

We can improve the F-measure of COBALT for some relations by splitting the ge-
ometries into multiple pieces before using the content measurement functions to
determine the relation. In particular, we split polygons recursively ¢ into four pieces

6.2 Approach

75



6.3

6.3.1

76

using two strategies: 1) Equal split and 2) Fitting split. With equal split, we split
the original polygon into equal-sized parts. The resulting polygon parts are the
intersection of a grid pattern over the polygon and the original polygon itself. In
some cases, this leads to some splits not achieving any additional information, as
their parts of the grid are empty. For example, in Figure 6.2, any further splits of the
top left corner cell (the blue highlighted cell) would not increase the accuracy of
COBALT as the original polygon does not have any points within this cell.

With fitting split, we divide the polygon into parts of equal size but use the MBB
of the current polygon part for further splitting. Splitting the cell in the upper left
corner of the same polygon of the previous example using this strategy will result in
the splitting presented in Figure 6.3, where further splitting of the blue-highlighted
cell results in more detailed splits that fit better to the shape of the polygon. After
splitting the polygons, we compute the MBBs for all parts. Now, since we have
multiple polygon parts, we change the way the relation of the original polygon is
determined. Let ¢ be the number of divisions into four parts. Let A, ;) be the split
part of geometry A in column i and row j and By, ;) be the split part of geometry
B in column & and row [ for {(i, j, k,1) € N*|0 < i, 4, k,1 < 2'}. The newly defined
relations can be found in Table 6.2. In particular, every grid pattern A; ;) must be
equal to By, ) for the equals relation to hold. For the intersects relation, at least
one A(; ;) has to intersect with at least one By ;). For the within relation, all A; ;)
have to be contained in the MBB of the union of all B; ) it intersects.

For the contains relation, we swap A and B and then compute the within relation
instead. For the overlaps relation, three conditions must hold: 1) at least one
Aig
A ;) intersects with at least one By ;). For the touches relation, at least one A

) is not within B, 2) at least one B,y is not within A, and 3) at least one

z’])
must touch any B, ;) and every B ;) is related to every B ;) by the touches or
disjoint relation.

Evaluation and Results

Datasets

We use two real-world KGs for evaluating COBALT: 1) The NUTS! dataset from the
Eurostat group, which describes the territory of countries in the European Union,

"https://ec.europa.eu/eurostat/de/web/gisco/geodata/reference-data/
administrative-units-statistical-units/NUTS, accessed on 01.09.2022
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6.3.2

Fig. 6.2.: Splitting the polygon into equal-size parts two times. The green triangle is the
original polygon, the dark red lines are the splitting lines for the first split iteration,
and the light red lines are the splitting lines for the second split iteration. The
blue rectangles indicate the MBB used to determine the second iteration splitting
lines of the top left corner.

(potential) candidate countries, and countries belonging to the European Free
Trade Association, and 2) the CLC? [BK17] created by the EEA. The CLC contains
information on land use by the 39 EEA39 countries>.

Hardware and Software

All experiments were carried out in the NOCTUA1# cluster of Paderborn University.
NocTUA1 consists of 256 compute nodes, each having two Intel Xeon Gold "Skylake"
6148 processors, with a total of 40 cores with 2.4 GHz and 192 GiB main memory.
All algorithms were implemented in Java, and the compute nodes were run on
OpenJDK version 11.0.2. For an accurate measurement of runtime, all experiments
were started with all KGs already loaded into the main memory. In addition, to
link each pair of data sets, we run the algorithms on the same compute node. All
experiments were carried out with a memory limit of 30 GB. Unless otherwise stated,
we use only one core for all experiments.

https://land.copernicus.eu/pan-european/corine-land-cover, accessed on 01.09.2022
*https://land.copernicus.eu/portal_vocabularies/geotags/eea39
“https://pc2.uni-paderborn.de/hpc-services/available-systems/noctual
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Fig. 6.3.: Splitting the polygon into fitting parts two times. The green triangle is the original
polygon, the dark red lines are the splitting lines for the first split iteration, and
the light red lines are the splitting lines for the second split iteration. The blue
rectangles indicate the MBB used for determining the second iteration splitting
lines of the top left corner.

Experiments Settings

We use COBALTycq, COBALT 4iqg0nal, 8Nd COBALT ¢4 to dub the area, diagonal, and
the mixed measures of COBALT, respectively. We use the following four baselines:

1. RADON [She+17],
2. RADON with only the MBBs of the original polygons (dubbed RADONygg),
3. GIA.NT [Pap+21], and

4. GIA.NT with only the MBBs of the original polygons (dubbed GIA.NTygg). For
a fair runtime comparison, we use a version of GIA.NT that computes only one
relation at a time.

We also implemented a version based on space indexing of COBALT, where we opti-
mized content-based measures based on space indexing of RADON [She+17]. We
use COBALT g, ¢q(R), COBALT 4iqgonal(R)> a0 COBALT,,,;,cq(r) to dub the area, diagonal,
and mixed measures of the space-tiled indexing measures of COBALT, respectively.
We also used the Douglas-Peucker polygon simplification algorithm [DP73]. Simpli-
fication is applied to the data set using simplification thresholds {0.05, 0.1, 0.2};
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Tab. 6.2.: Topological relations based on multiple splits of polygons.

equals V{(i,j) € N*|0 <i,j < 2'}: A(; ;) equals B j

(
intersects 3 {(i,j,k,1) € N0 <, j, kI < 2t}: A j) intersects By
disjoint Y {(i, 4, k1) € N}0 < i, 5,k 1 < 2t}: A j) disjoint By

within v {(2,]) S N2|0 <45 < 2t}l A(i,j) within MBB({B(k7Z)|V{(k‘,Z) S
N0 < k,l < 2t} :
A ;) intersects B })

contains swap A and B then compute within

overlaps (3 {(i,7,k,1) € N*|0 < 4,5,k,1 < 2!} Ay equals Bpy) V Ag)
within B ) V
A jy contains B ) V A j) overlaps B ))A
(3{(i,7) e N}|0 <4,j < 2'}: A j) - within MBB ({ B, |V{(k,1) €
N0 < k,l < 2t} :
A j) intersects B, ) }))A
(3{(i,j) € N*|0 < 4,5 < 2'}: B ;) ~within MBB({A ;) |V{(k,1) €
N0 < k,l < 2t} :
By; ;) intersects A, }))

touches (3{(i, 4, k,1) e NY0 <, j, k,1 < 2'}: A j) touches By ))A
-(3 {(i,j,k,l) S N4|O <ij,kl< Qt}l A(i,j) equals B(k,l)) V A(i,j)
within B(k,l)) V
A j) contains B ) V A j) overlaps B )

subsequently, the relations are calculated using RADON. They were labeled as
RADONGimp(0.05), RADONgimp(0.1), and RADONgimp(0.2). Within all experiments, we
computed the topological relations {equals, intersects, contains, within,
touches, and overlaps}.

6.3.4 Research Questions

We aim to answer the following research questions:

Q1. What is the effect of indexing the input datasets on the runtime of COBALT?

(2. How much efficiency (i.e., less runtime) can we gain by using content measures
for topological relation discovery?

(3. How much accuracy do we lose (i.e., less F-measure) by using content measures
for topological relation discovery?
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Q4. In case we use a simplified version of the original polygons, will we have a
better trade-off between accuracy and efficiency than using COBALT?

Q5. Will COBALT benefit from parallelization for big KGs such as CLC?

Q. What is the trade-off between accuracy and efficiency when we integrate our
polygon splitting strategies into COBALT?

Research question ;. The aim of our first set of experiments was to evaluate
different R-tree indexing options for COBALT. To measure the difference in runtime
between indexing only one dataset vs. indexing both the source and target datasets,
we linked NUTS to CLC (see Table 6.3) and CLC to NUTS (see Table 6.4). First,
we compared the algorithms that index both datasets to the algorithms that only
index one dataset. Our results showed that when linking NUTS to CLC, most of the
algorithms that only index one dataset are faster than the matching algorithms that
index both of them.

However, in the CLC to NUTS experiment (CLCxNUTS ), the matching algorithms
that index both datasets are faster than the algorithms that only index one dataset.
This shows that the choice of the source dataset makes a difference regarding
the runtime, and the smaller dataset should be indexed instead of the bigger one.
Because of the greater memory needed for indexing both datasets, we decided to
index only one dataset in our further experiments. In addition, our results showed
that computing the Hilbert curve, or inserting entries one by one with the R*-tree,
takes much more time than the other algorithms. OMT and STR have the best
runtime of the algorithms as their computations are not expensive and produce high-
quality R-trees. We conclude that the choice of the R-tree building algorithm and the
capacity of the R-tree are highly dependent on the datasets used for benchmarking.
It is important to find a balance between a fast-building algorithm and an algorithm
that allows efficient queries. Sorting entries by both x- and y-coordinates, such
as OMT and STR, is a good way to achieve this. This answers our first research
question, Q1.

For the following experiments, we use the STR building algorithm with a capacity
of 4, but to respect the downside of only indexing one dataset, we also use the
longer-taking dataset combination for runtime values.

To answer )2, (3, and @4, we conducted our second set of experiments where we
evaluated the performance of COBALT vs. all baselines in terms of runtime and
F-measure. In particular, we aimed to find the topological relations within the
NUTS dataset against itself (i.e., NUTSxNUTS) and CLCxNUTS using each of the
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Tab. 6.3.: Runtime in milliseconds for linking NUTS to CLC using different R-tree building
algorithms and capacities combined with the mixed content measure.

Algorithm 4 8 16 32 64 128 256
R*-TREE 55745 49757 61810 77957 137733 202192 208227
HILBERT 258193 245062 233901 236357 363893 270579 273802
SMALLESTX 204226 95004 58875 64362 65360 62508 65948
OMT 35055 35778 36415 44063 71217 82937 103397
STR 36986 37088 38366 44042 48191 61899 77262

MATCHHILBERT 398502 345562 328975 320710 327772 357677 410224
MATCHSMALLESTX 85300 71626 62810 59780 46495 53344 66957
MATCHOMT 72359 56792 55213 50404 44134 48084 54525
MATCHSTR 45716 42130 41216 41769 41859 42278 43248

Tab. 6.4.: Runtime in milliseconds for linking CLC to NUTS using different R-tree building
algorithms and capacities combined with the mixed content measure.

Algorithm 4 8 16 32 64 128 256
R*-TREE 135037 139044 189439 372823 1067386 3527572 1067386
HILBERT 801618 866145 621211 793548 556130 540250 556130
SMALLESTX 263744 245692 422600 195218 93560 134091 324985
OMT 77928 62193 60354 55639 48598 54950 66138
STR 51448 47783 46708 47289 47359 48344 47359

MATCHHILBERT 401815 357914 363288 358353 344742 370740 417821
MATCHSMALLESTX 138362 106530 73954 70796 57164 68377 107256
MATCHOMT 72590 57643 56258 51175 45958 50478 56514
MATCHSTR 45245 42892 42077 42613 43233 43218 43849

algorithms mentioned above. For linking NUTS x NUTS, the total runtimes required
to compute the topological relations are shown in Figure 6.4. The F-measure for
each relation can be seen in Table 6.5. For linking CLCxNUTS, the total required
runtimes to compute the same six relations are shown in Figure 6.5. The F-measure
of each relation can be seen in Table 6.6.

Research question ;. From Figure 6.4, we can see that all the content-based mea-

sures implemented in COBALT (i.e., COBALT req; COBALT giqgonal, aNd COBALT ;zeq)

with R-tree indexing are 4 to 8 times faster than their counterparts (i.e., COBALT ;¢4 (R)»
COBALT giqgonai(R)> and COBALT,,;,..q(r)) deployed based on the RADON’s space tiling

indexing. For example, the total runtime of COBALT, ;.4 iS 195 milliseconds while the

total runtime of COBALT,;;,.cq(r) is 849 milliseconds, which means that COBALT,;izeq

is 4.3 times faster than COBALT,,;,cq(r)- The slowest content-based measure of

COBALT (that is, COBALT,;¢,) iS, on average, 4840 times faster than RADON.
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RADON | 972982
Raponygs | 1412

GIA.NT 1 965940
Giantveg | 1713
RADONgimp(0.2) | 345860
RADONgmp(0.1) | 365701
RADONg;mp(0.05) | 399208

COBALTaTea(R) ]_627
COBALTdiagonal(R) 1109
COBALTmimed(R) 849

CoBALTarea | 201
COBALTdmgonal 156
COBALT 1 ized 195

Runtime in milliseconds

Fig. 6.4.: Total runtime of linking NUTSxNUTS.

COBALT,izeq is Up to 1.47 x 10* times faster than RADON, which is the best speedup
COBALT has in comparison to all other algorithms. This clearly shows how efficient
the content-based measures are when it comes to run time, which answers our
second research question, ()s.

Research question ;. Based on the results of Table 6.5, we analyzed the impact
of using the content-based measures on the F-measure. For discovering the equals
relation based on the MBBs of the original polygons, all algorithms achieved an
F-measure of 0.996. For the intersects, contains, and within relations, the F-
measures were 0.852, 0.853, and 0.853, respectively. The overlaps relation was
the most impacted relation using the MBBs. For example, in the NUTSx NUTS
experiment, using MBB instead of the original polygons as input to discover the
overlaps relation resulted in 586 true positives (out of 790 or 74.47%), 26884 false
positives, 4012426 true negatives (out of 4039310 or 99.33%) and 204 false negatives.
In total, using MBBs falsely classified 45 more polygon pairs as overlapped than
the true number of overlapping pairs. The high number of pairs that was correctly
identified as not overlapping is caused by the indexing algorithm, which filters out a
high percentage of nonintersecting pairs.

The only relation in which content-based measures produce better F-measures
than both RADONypp and GIA.NTypg was the touches relation. Both RADONypp
and GIA.NTypg Were unable to detect the touches relation correctly in most cases
since the intersection matrix of the MBBs is highly dependent on the shape of the

polygon.
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RADON 1 14120.87
RADONmBR | 6.52

GIA.NT | 14017.71
Gia.NTvwgs | 13.75
l:{ADONsimp(OQ) | 564532
l:{ADONsimp(O.l) | 594008
I%ADONsimp(O.OS) | 632544

COBALTarea(R) 3.93
COBALTdiagonal(R) 1 84
COBALTmixed(R) 1.67
COBALTqrea | 1 09
COBALTdiagonal 0.94
COBALTized | 0.96

Runtime in minutes

Fig. 6.5.: Total runtime of linking CLCxNUTS.

For example, using both RADONygg and GIA.NTygp to discover the touches relation
for the NUTSx NUTS experiment (again, see Table 6.5) resulted in an F-measure of
0.001, while COBALT 4r¢q and COBALT 4jqg0na achieved F-measures of 0.678 and 0.779,
respectively.

Both the area and diagonal measures benefitted from the fact that there are 20150
pairs that touch each other but only 790 pairs that overlap. To summarize, using
the content-based measures, we lose, on average, 32% of the F-measure compared to
the F-measure of 1.0 produced by RADON or GIA.NT. This answers our third research
question, Q)s.

Research question ,. State-of-the-art approaches tend to use polygon simplifica-
tion to speed up the LD of topological relations [ASN18b]. As part of our second
set of experiments, we studied the trade-off between accuracy and efficiency by
using content-based measures on the MBBs of the polygons versus using a simplified
version of the original polygons. Based on the results in Table 6.5, the F-measures of
RADONGimp(0.05)> RADONgimp(0.1) @and RADONgimp(0.2) for the relations contains and
within were worse than all results produced using polygon MBBs.

For example, RADONsimp(0.05), RADONsimp(0.1), @nd RADONgimp(0.2) achieved the F-
measures 0.7, 0.72, and 0.733, respectively. While using COBALT on the MBBs
of the original polygons achieved an F-measure of 0.853 for the contains and
within relations. When using polygon simplification algorithms, the F-measure
for the equals relation is 1.0 for RADON with simplified polygons when linking
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Tab. 6.5.: F-measure for linking NUTSxNUTS (all values rounded to three decimal places).
The results of COBALT combined with RADON indexing are omitted because the
indexing does not change the accuracy.

Algorithm equals intersects contains within touches overlaps
RADON 1.000 1.000 1.000 1.000 1.000 1.000
RADONypg 0.996 0.852 0.853 0.853 0.001 0.041
GIA.NT 1.000 1.000 1.000 1.000 1.000 1.000
GIA.NTumpg 0.996 0.852 0.853 0.853 0.001 0.041
RADONgimp(0.2) ~ 1.000 0.916 0.733 0.733 0.177 0.068
RADONgimp(o.1) ~ 1.000 0.953 0.721 0.721 0.199 0.064
RADONgimp(0.05) 1.000 0.980 0.700 0.700 0.209 0.061
COBALT greq 0.996 0.852 0.853 0.853 0.678 0.041
COBALTgiqgonai  0.996 0.852 0.853 0.853 0.779 0.041
COBALT ized 0.996 0.852 0.853 0.853 0.001 0.041

Tab. 6.6.: F-measure for linking CLCxNUTS. All values are rounded to three decimal places
and - indicates the total absence of the relation in the result set. The results of
CoBALT combined with RADON indexing are omitted because the indexing does
not change the accuracy.

Algorithm equals intersects contains within touches overlaps
RADON - 1.000 1.000 - - 1.000
RADONugR - 0.709 0.689 - - 0.066
GIA.NT - 1.000 1.000 - - 1.000
GIA.NTuMBB - 0.709 0.689 - - 0.066
RADONgimp(0.2) - 0.938 0.931 - - 0.332
RADONgimp(0.1) - 0.963 0.958 - - 0.419
RADONsirnp(O.OS) - 0.980 0.975 - - 0.540
COBALT greq - 0.709 0.689 - - 0.066
COBALTgiqgonal - 0.709 0.689 - - 0.066
COBALT i med - 0.709 0.689 - - 0.066

NUTSxNUTS. The content measures are able to achieve an F-measure of 0.996 for
this relation.

From the aforementioned results, we can conclude that using content-based mea-
sures on the polygons’ MBBs results in a better trade-off between efficiency and
accuracy than using a simplified version of polygons. We can see the same behavior
for our second linking task, i.e., CLCxNUTS (see results in Table 6.6). This clearly
answers our fourth research question, Q4.

Research question Q5 To answer ()5, we conducted our third set of experiments by
linking CLC against itself, i.e., CLCxCLC. For this experiment, we implemented a
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Tab. 6.7.: Runtime for linking CLCx CLC using different numbers of threads. All Runtimes
are recorded in hours, with all values are rounded to three decimal places.

Algorithm 1 Thread 2 Threads 4 Threads 8 Threads
RADON 1179.489 686.007 340.827 186.913
RADONppB 0.703 0.729 0.597 0.586
GIA.NT 1179.463 675.589 334.928 179.415
GIA.NTMBB 0.635 0.458 0.346 0.329
COBALT 4 cq(R) 0.710 0.670 0.583 0.573
COBALT giggonai(r)  0.539 0.564 0.513 0.505
COBALT, ized(R) 0.494 0.550 0.509 0.503
COBALTyeq 0.209 0.215 0.186 0.192
COBALTjagonal 0.190 0.195 0.175 0.183
COBALT yzed 0.179 0.190 0.171 0.180

parallelized version of COBALT, where we used {1, 3,4, 8} thread(s). As shown in
Table 6.7, all MBB-based algorithms did not benefit from using multiple threads
because the MBB-based algorithms are so fast, to the extent that the time needed
for thread coordination is the same as the time saved by allocating the work to other
threads. All MBB-based algorithms were able to finish linking CLC to itself in less
than one hour. This answers our research question, Q5.

On the other hand, multiple threads decreased the runtime of RADON and GIA.NT
because they use the intersection matrix, which requires expensive computing and
can take advantage of employing more threads. In particular, RADON is 6.31 times
faster with eight threads than with only one thread. All content measures with
R-tree indexing are at least three times faster than RADON with MBBs.

Research question Qs. To study the trade-off between accuracy and efficiency
when we apply our polygon splitting strategies (i.e., the equal split and the fitting
split strategies) before applying the content measures, we conducted our last set
of experiments. In particular, we are interested in comparing COBALT with the two
splitting strategies with other approximation algorithms (i.e., polygon simplification).
For this experiment, we computed the topological relations for NUTS xNUTS. We
benchmarked both split strategies defined in Section 6.2.7 against RADON and
the combination of RADON and polygon simplification as we did in the previous
experiments. The splitting algorithms are combined with the diagonal-based content
measure. We dubbed our first splitting strategy (depicted in Figure 6.2) as EQUAL-
t-FD and the second splitting strategy as FITTING-¢-FD (depicted in Figure 6.3),
with ¢ being the number of recursive splits (we used 0 to 4 recursive splits) and FD
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Fig. 6.6.: The equals relation. Runtime in seconds (blue) and F-measure (orange) results
for linking NUTS xNUTS.

being the diagonal-based content measure. As both split strategies produce the same
result for 0 and 1 recursive splits, we only use each of them once as SPLIT-0-FD and
SPLIT-1-FD. For the equals relation (see Figure 6.6), the diagonal content measure
function achieved an F-measure of 0.996 before applying the splitting algorithm on
the polygons. The fitting split strategy with 3 and 4 recursive splits (i.e., FITTING-
3-FD and FITTING-4-FD) achieved the most accurate results. On the other hand,
all the polygon simplification algorithms were able to achieve perfect results in less
time than both FITTING-3-FD and FITTING-4-FD. However, the diagonal content
measure achieved a high F-measure of 0.996 while being more than 100 times faster
than the simplification algorithms. For the intersects relation (see Figure 6.7),
SPLIT-0-FD achieved an F-measure of 0.852 without splitting polygons. The fitting-
split strategy has better accuracy for the intersects relation than the equal-split
strategy for each ¢ but with increased runtime. When we compared FITTING-3-FD to
EQUAL-4-FD, we also noticed that FITTING-3-FD is faster and more accurate than
EQUAL-4-FD. FITTING-3-FD is three times faster than the simplification algorithms
and is only slightly worse in accuracy than the RADONg;mp(0.05) algorithm but better
than RADONgjmp(0.1) and RADONgimp(0.2). For the contains and within relations
(see Figures 6.8 and 6.9), the non-split content measures were able to achieve an
F-measure of 0.853, which was already better than the simplification algorithms. By
splitting the polygons, we were able to achieve a higher F-measure. In particular,
FITTING-3-FD was 99% accurate and used only 26.4% of the runtime RADON to
compute the relation that contains the. This indicated that FITTING-3-FD was
the strategy with the best runtime-accuracy trade-off. The overlaps relation (see
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Fig. 6.7.: The intersects relation. Runtime in seconds (blue) and F-measure (orange)
results for linking NUTS xNUTS.

Figure 6.11) is a relation that cannot be accurately detected by the content measures
or the polygon simplification algorithms. In this case, splitting the polygons has a
positive effect on the accuracy, but it is still too low to be usable, with all F-measures
being smaller than 0.07. For the touches relation (see Figure 6.10), the diagonal
content measure was able to achieve a higher F-measure (0.779) without splitting.
This happens because the diagonal content measure focuses on recall rather than
precision, and by splitting the polygons, there are more cases where parts from
the two polygons overlap. Therefore, splitting reduces accuracy, and the normal
diagonal content measure function should be used for the touch relation. In general,
splitting polygons is a good way to improve the precision of COBALT for the spatial
relations intersects, contains, and within. Our experiments show that FITTING-
T-FD achieves a higher F-measure than EQUAL-T-FD algorithms for each respective T
but also have a longer runtime. By using our splitting technique, we could guarantee
finishing a linking task in a predetermined amount of time while also fully using the
time to maximize the accuracy of the result. This answers our research question,

Qs-
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Fig. 6.8.: The contains relation. Runtime in seconds (blue) and F-measure (orange) results
for linking NUTS xNUTS.
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Fig. 6.9.: The within relation. Runtime in seconds (blue) and F-measure (orange) results
for linking NUTS xNUTS.
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Fig. 6.10.: The touches relation. Runtime in seconds (blue) and F-measure (orange) results

for linking NUTS xNUTS.
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Fig. 6.11.: The overlaps relation. Runtime in seconds (blue) and F-measure (orange)
results for linking NUTSxNUTS.
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7.1

NELLIE: Never-Ending Linking
for Linked Open Data

Preamble: This chapter is based on Ahmed et al. [ASN23] that introduces NELLIE.
NELLIE is a pipeline architecture to build a chain of modules in which each module
addresses a challenge of data augmentation. The ultimate goal of the proposed
architecture’s goal is to build a single fused KG from the LOD. NELLIE starts by
crawling the available KGs in the LOD cloud. Then, it finds a set of matching KG
pairs. NELLIE uses a two-phase linking approach for each pair: first, an ontology
matching phase, then an instance matching phase. Based on ontology and instance
matching, NELLIE fuses each pair of KGs into a single KG. The resulting fused KG
is an ideal data source for knowledge-driven applications such as search engines,
question answering, digital assistants, and drug discovery. Our evaluation shows
an improved score of Hit@Q1 of the link prediction task on the resulting fused KG
by NELLIE in up to 94.44% of the cases. Our evaluation also shows a runtime
improvement by several orders of magnitude when comparing our two-phase link
approach with the estimated runtime of linking using a naive approach.

Motivation

The number of heterogeneous KGs that obey the principles of linked data increases
steadily. These KGs are broadly used in data-driven applications, including informa-
tion retrieval, NLP, recommendation systems, search engines, conversational agents,
e-commerce solutions, and drug discovery. Currently, there are no holistic models for
the LOD to build a single fused KG out of the LOD, i.e., the development of a 24/7
solution (similar to Never Ending Language Learner) to fuse KGs on the LOD.

For LOD to have such a complete model, the instances and ontologies in each
KG must be linked. Currently, only a small number of such KGs are linked. In
particular, the current statistic! of LOD? shows that there are 1564 KGs with 395.121

!Accessed 10.03.2022 https://lod-cloud.net/#about, retrieved using https://github.com/
lod-cloud/lod-cloud-draw/blob/master/scripts/count-data.py
https://lod-cloud.net/

91


https://lod-cloud.net/#about
https://github.com/lod-cloud/lod-cloud-draw/blob/master/scripts/count-data.py
https://github.com/lod-cloud/lod-cloud-draw/blob/master/scripts/count-data.py
https://lod-cloud.net/

92

billion triples and only 2.72 billion links (0.07%) between them. Therefore, finding
links among these KGs is a major challenge in achieving the vision behind LOD3.
Establishing links is a tedious process when performed manually, especially in giant
KGs such as DBpedia*, LGD ° [ALH09], Bio2RDF®, KEGG [Kan+16], and Wikidata’.
In addition to the ever-increasing number of published KGs, the size of individual
KGs increases with each new edition. For example, DBpedia has grown from 103
million triples (DBpedia 2.0), representing 1.95 million entities, to 10.094 billion
triples, representing more than 8.85 million entities in 20228,

Moreover, as the number of independent data providers increases, it is more likely
that the simultaneous publication of KGs with the same information will take place.
For instance, DBLP has been published by several bodies”, leading to duplicate con-
tent in the Data Web. Furthermore, different KGs contain different facets related to
the same data. For example, drug data within the DrugBank'® KG mainly describes
the drugs’ interactions, pharmacology, chemical structures, targets, and metabolism,
while the Sider!! KG contains data concerning drug side effects. As a result of
such huge data expansion and multifaceted data publishing, there is a growing
demand for data augmentation tasks such as ontology and instance linking, as
well as data fusion. Many frameworks have been developed to address different
data augmentation challenges. Prior to fusing KGs, such systems mainly identify
semantically equivalent entities in different KGs where they try to achieve both high
effectiveness and efficiency in the linking process. For example, LogMap [JC11]
and CobIi [NMS10] use structural matching based on the ontology structure to
discover links between ontologies. Nentwig et al. [Nen+17] list many data aug-
mentation systems that have been developed in the last two decades. For example,
LIMES [Ngoll; Ngo+21] and SILK [IJB11] apply matching strategies on the in-
stance level for computing the property values. Nentwig et al. [Nen+17] address
many challenges and aspects of the current LD frameworks. In a more recent sur-
vey [MT19], Mountantonakis and Tzitzikas presented some linked data integration
approaches, including LD and KG fusion. For fusing data, the linked data quality
assessment and fusion SIEVE [MMB12] is proposed, which is integrated into the
linked data integration framework (LDIF) [Sch+11]. DEER [SNL15] is another data

*https://www.w3.org/DesignIssues/LinkedData.html

*https://wiki.DBpedia.org/

*http://linkedgeodata.org/About

®https://download.bio2rdf .org/release/4

"https://www.wikidata.org/

8Accessed in 10.03.2022 from https://DBpedia.org/sparql

‘http://dblp.13s.de/, http://datahub.io/dataset/fu-berlin-dblp and http://dblp.
rkbexplorer.com/

Pnttps://go.drugbank. com/

Uhttp://sideeffects.embl.de/
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augmentation framework that is able to perform LD and fusion to produce enriched
data.

In this work, we propose NELLIE, a pipeline architecture to build a chain of modules
in which each of our modules addresses a data augmentation challenge. Figure 7.1
shows the architecture of NELLIE. NELLIE first addresses the problem of finding
relevant KGs to be integrated. Subsequently, NELLIE tackles the KG data integration
task at both the ontology and instance levels. NELLIE then fuses the matched classes
and instances to generate a fused KG. Finally, NELLIE carries out KG embedding of
the resulting fused KG. The ultimate goal of the proposed architecture is to build a
single fused KG out of the LOD, i.e., the development of a 24/7 solution (similar to
the Never Ending Language Learner) to fuse KGs in the LOD, especially since such a
graph does not yet exist.

Our proposed architecture consists of three layers: the core layer, the application
layer, and the publication layer. In this chapter, we pay more attention to the core
layer, as it contains the main components and modules of our architecture. In
particular, we address the following challenges: 1) KG matching (i.e., matching KGs
based on their content); 2) KG linking, including ontology and instance matching;
3) KG fusion; and 4) KG embedding. Note that all these challenges are implemented
in our core layer. In the application layer, we address the link prediction challenge
to evaluate the impact of our KG fusion on the link prediction task. We summarize
our contributions as follows:

We develop a modular pipeline architecture as a milestone toward the 24/7
linking and fusing of the LOD.

* We propose the two-phase linking strategy, starting with ontology matching
and then instance matching.

* In the KG matching stage, we implemented the three methods presented by
ourselves.

* In the ontology matching stage, we implemented content-based class matching
ourselves and integrated two state-of-the-art systems.

* For the instance matching stage, we base our implementation on the state-of-
the-art LIMES LD framework, LIMES [Ngo+21], where we modified how to
train the WOMBAT [SNL17] to generate link specifications. We then integrated
LIMES into NELLIE, as listed in Algorithm 5.

7.1 Motivation
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Fig. 7.1.: The modular pipeline architecture of NELLIE.

* In the KG fusion stage, we implemented the additive fusion operator with
many different fusion strategies. Finally, we study the impact of KG fusion on
the link prediction task.

We evaluated our two-phase linking by computing a pseudo-F-measure. We also
evaluated our approach to the link prediction task and studied the impact of KG
fusion on this task. We used different KGs and different link prediction models.
Evaluating the efficiency and dependability of NELLIE as a whole is worth considering
but is currently too resource-intensive to implement. We used existing benchmarks
for the sake of comparability. However, we agree that the benchmarks we have
now are made for specific subtasks, such as link prediction, ontology matching, and
instance matching.

7.2 Knowledge Graph Matching

7.2.1 Approach

For the current version of NELLIE, we implemented three methods for KG match-
ing: metadata-based KG matching, content-based KG matching, and manual KG
matching.
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Metadata-Based KG Matching

In this method, we first collect the KG metadata from the LOD Cloud!2. The KG
metadata includes various features of each KG, such as links to other KG websites,
SPARQL endpoints, keywords, and domain. We then configure the LD framework
LIMES [Ngo+21] to match KGs using string similarities such as Jaccard and Cosine
to compute the similarity among both keywords and domain features. We provide
the full LIMES configuration file in Listing 2.

Content-Based KG Matching

For each KG, we retrieve all the text within the literal objects using the SPARQL
query in Listing 1. We then concatenate all the literals contained in each KG to
generate a content document for each input KG. Afterward, we preprocess each KG
content document by applying the following:

1. Tokenization. We perform word tokenization by breaking a raw text into words
(tokens) using White Space Tokenization'3.

2. Stop words removal. We remove all stop words, such as {a, an, the, in,
-+ -}, to increase performance during the string similarity measure.

3. Text Normalization. We use the Normalization Form KC (NFKC)!4. Next, we
clean the text from numbers and special symbols using regular expressions.

To this end, a set of tokens as a first document A = {ay, ag, ..., a,, } and a set of tokens
as a second document B = {by, by, ..., b, } are produced. We used the similarities
of Jaccard, Cosine with TF-IDF document vectors, weighted Jaccard, Dice, and
BERT [Dev+ 18] to calculate the similarities between A and B.

Given A = {ay,aq,...,a,}, a set of tokens representing the first document, and
B = {b1,ba,...,b,}, a set of tokens representing the second document, we compute
the weighted Jaccard similarity between the two documents as defined in [F
C21].

nttps://lod-cloud.net/lod-data. json

Bhttps://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/
WhitespaceTokenizer.html

“https://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html

7.2 Knowledge Graph Matching

95


https://lod-cloud.net/lod-data.json
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/WhitespaceTokenizer.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/WhitespaceTokenizer.html
https://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html

SELECT DISTINCT ?literal
WHERE { 7?s ?p ?literal
FILTER isLiteral(?literal) 1}

Listing 1: SPARQL query to retrieve literal objects.

For Cosine with TF-IDF document vectors, we used the framework!> developed by
DKPro. We first started by calculating the vectors of the TF-IDF document for each
document and second by applying cosine similarity.
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Fig. 7.2.: Example of the DBpedia resource dbr:Mount_Juliet with the LinkedGeoData re-
source 1gdt:node153471134. We used owl:sameAs to link the DBpedia resource
dbr:Mount_Juliet with the LinkedGeoData resource 1gdt:node153471134.

Manual KG Matching

In order to evaluate the performance of NELLIE within a small set of KGs, we
manually select some KGs that belong to the biology domain: Kegg, Drugbank,
Sider, Omim, and Sgd. We also select to match the two KGs LGD and DBpedia.
Although LGD belongs to the geographic domain and DBpedia belongs to general
domain, they still have the potential to be linked since they have many classes in
common (e.g., organization, place, location, and city) with many instances that
refer to the same physical facts. For example, :Mount_Juliet,_Tennessee is a
city located in western Wilson County, Tennessee, as described in DBpedia, and
:node153471134 refers to the same city in LGD, which we used as our running
example (see Figure 7.2).

Bhttps://github.com/dkpro/dkpro-similarity
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Tab. 7.1.: Manual annotation results of our KG matching. A; to A3 are our three annotators;
M A is the mutual agreement.

KGy

harvard_eagle-i_net spargler.nt

KGy Al Ay A3 MA

onto_fel cvut _cz_rdf4j- X X x X
server_repositories.nt

1df fi ww1llod.nt
lov_linkeddata_es_dataset_lov.nt
dbtune_org bbc peel spargl.nt
www_imagesnippets_com_spargl.nt
dbtune org magnatune_spargl.nt
data_nobelprize org.nt

ldf fi wwllod.nt

harvard eagle-i net sparqler.nt
harvard_eagle-i_net_spargler.nt
harvard eagle-i net sparqler.nt
harvard_eagle-i_net_spargler.nt
harvard_eagle-i_net_spargler.nt
harvard_eagle-i_net spargler.nt
onto_fel cvut _cz_rdf4j-
server_repositories.nt

L ENENENENENEN
RN NENENS
L NENENENENEN
EANENENENEN

onto_fel cvut_cz_rdf4j- lov_linkeddata_es_dataset_lovnt v v v V/
server_repositories.nt

onto_fel cvut cz_rdf4j- dbtune_org bbc_peel sparqgl.nt X v x X
server_repositories.nt

onto_fel cvut _cz_rdf4j- www_imagesnippets com_sparglnt X v X X
server_repositories.nt

onto_fel cvut _cz_rdf4j- dbtune_org magnatune sparglnt X v X X
server_repositories.nt

onto_fel cvut cz_rdf4j- data_nobelprize org.nt X X x X
server_repositories.nt

1df fi ww1llod.nt lov_linkeddata_es dataset lovnt v X v V/
ldf fi ww1llod.nt dbtune_org bbc_peel sparql.nt v v 7/
1df fi ww1llod.nt www_imagesnippets com_sparglnt v v X
1df fi wwllod.nt dbtune_org magnatune sparglnt v vV V V/
1df fi ww1llod.nt data_nobelprize org.nt v /S 7/
lov_linkeddata_es_dataset_lov.nt ~ dbtune_org bbc_peel spargl.nt /7 7/
lov_linkeddata_es_dataset lovnt =~ www_imagesnippets_com_sparql.nt v v vV
lov_linkeddata_es_dataset lov.nt  dbtune org magnatune sparglnt v v vV
lov_linkeddata_es_dataset_lov.nt  data_nobelprize org.nt o /7 7/
dbtune_org bbc_peel sparql.nt www_imagesnippets com_sparglnt v v X V
dbtune_org bbc_peel sparql.nt dbtune_org magnatune sparglnt v vV V V/
dbtune_org bbc peel spargl.nt data_nobelprize org.nt v v 7/
www_imagesnippets_com_spargl.nt dbtune org magnatune sparqlnt v v vV V
www_imagesnippets_com_sparql.nt data_nobelprize org.nt v 7 7/
dbtune_org magnatune_spargl.nt data_nobelprize org.nt o /7 7/

7.2.2 Evaluation

Metadata-Based KG Matching

We started by retrieving the global metadata of all KGs available on the LOD.!®
In total, we retrieved the metadata of 1118 KGs. We converted the metadata into
RDF format.!” We then used the LD framework LIMES for matching KGs based on
their metadata. The LIMES configuration file we used to match the KGs’ metadata

Ynttps://lod-cloud.net/lod-data. json, accessed in October 2022
https://git.cs.uni-paderborn.de/kgfusionpg/kgfusion/-/blob/main/lod_metadata_11_
2022.ttl
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Tab. 7.2.: Content-based KG matching.

Similarity Cosine Jaccard Weighted DICE BERT
Method TF-IDF Jaccard

Precision 0.95 1.0 1.0 1.0 0.79
Recall 0.95 1.0 0.68 0.86 1.0
F-Measure 0.95 1.0 0.81 0.93 0.88

is presented in Listing 2 and is also publicly available on the project web site!'®. In
particular, we configure LIMES to compute the exact match string similarity between
the keywords and domain properties. With this configuration, LIMES generated
186452 links. We believe that metadata-based KG matching using LIMES is an
efficient approach in the case of datasets with rich metadata.

Content-Based KG Matching

To the best of our knowledge, there is no benchmark for the KG matching task;
therefore, we had to create our own benchmark. In particular, we chose a list of
8 KGs and manually annotated them by three annotators into either matched (v')
or not matched (X). We then computed the mutual agreement (MA) of our three
annotators as listed in Table 7.1. To this end, we applied our content-based KG
matching, as described in Section 7.2.1. We set the threshold of similarity between
the generated documents of KGs to be > 0.1. Using the mutual agreement among our
annotators (MA) as the ground truth, we computed the precision, recall, and band
F-measure among the KG content documents using the Cosine, Jaccard, Weighted
Jaccard, Dice, and BERT similarity measures. The results are listed in Table 7.2. In
particular, we achieve an F-measure of 1.0 using Jaccard similarity and 0.95 using
Cosine-TF-IDF similarity. On the other hand, using the BERT similarity resulted in
an F-measure of only 0.88. However, the document similarity scores resulting from
using the BERT similarity are, in general, higher than the other similarity measures
such as Jaccard. The reason is that BERT is an advanced language model that
takes into account semantic, contextual and relation between words in its word
representation vectors. For computing Dice similarity, we used the open-source
Java library SimMetrics!®?. We use the pre-trained BERT from HuggingFace?® for
the embedding of the preprocessed documents, where we calculate the similarity of
vectors using the cosine similarity.

Bhttps://git.cs.uni-paderborn.de/kgfusionpg/kgfusion/-/blob/main/LIMESConfig.xml
Yhttps://github.com/Simmetrics/simmetrics
Phttps://huggingface.co/sentence-transformers/all-mpnet-base-v2
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<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE LIMES SYSTEM "limes.dtd">
<LIMES>
<PREFIX>
<NAMESPACE>http://www.w3.0rg/2000/01/rdf ~schema#</NAMESPACE >
<LABEL >rdfs </LABEL >
</PREFIX>
<PREFIX>
<NAMESPACE>http://www.w3.0rg/2002/07/owl#</NAMESPACE >
<LABEL >owl</LABEL>
</PREFIX>

<SOURCE >
<ID>S</1ID
<ENDPOINT>lod\_metadata\_11\_2022.tt1</ENDPOINT >
<VAR>7x</VAR>
<PAGESIZE>-1</PAGESIZE>
<RESTRICTION> </RESTRICTION>
<PROPERTY >rdfs:keywords </PROPERTY >
<PROPERTY >rdfs:domain</PROPERTY >
<TYPE>NT</TYPE>
</SOURCE >

<TARGET >
<ID>T</ID>
<ENDPOINT>lod\_metadatal\_11\_2022.tt1</ENDPOINT>
<VAR>7y</VAR>
<PAGESIZE>-1</PAGESIZE>
<RESTRICTION> </RESTRICTION >
<PROPERTY >rdfs:keywords </PROPERTY >
<PROPERTY >rdfs:domain</PROPERTY >
<TYPE>NT</TYPE>
</TARGET >

<METRIC>AND (exactmatch(x.rdfs:keywords ,y.rdfs:keywords) |0.9, exactmatch(x

.rdfs:domain,y.rdfs:domain) [0.9)
</METRIC >

<ACCEPTANCE >
<THRESHOLD >0.98</THRESHOLD >
<FILE>accepted.ttl</FILE>
<RELATION >owl:sameAs </RELATION >
</ACCEPTANCE>

<REVIEW>
<THRESHOLD >0.80</THRESHOLD >
<FILE>review.ttl</FILE>
<RELATION >owl:sameAs</RELATION>
</REVIEW>

<EXECUTION >
<REWRITER >default </REWRITER>
<PLANNER >default </PLANNER >
<ENGINE>default </ENGINE>
</EXECUTION >

<O0UTPUT >TTL</O0OUTPUT >
</LIMES>

Listing 2: LIMES configuration for metadata-based KG matching.

7.2 Knowledge Graph Matching
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Tab. 7.3.: Evaluation of KG characteristics.

# Kegg Omim Sider Drugbank Sgd
Classes 71 34 12 98 85
Entities 8.627M 1.127M 0479M 0421M 0.991 M
Triples 67.89M 9.68 M 5.57 M 5.5 M 1295 M

Manual KG Matching

For Manual KG matching, we selected the following KGs from the biological domain:
Kegg, Drugbank, Sider, Omim, and Sgd. We selected to manually match these
KGs to ensure the best matching of them, as we used them to evaluate all the next
components of NELLIE (i.e., ontology matching, instance matching, fusion, and link
prediction). Table 7.3 provides the characteristics of these KGs.

Two-Phase Linking Strategy: Ontology Matching
and Instance Matching

Approach

For each pair of matched KGs, we carry out our two-phase linking process. In
particular, we first perform ontology matching followed by instance matching. In
the following, we explain these two linking phases in detail.

Class Matching

Based on our formal definition of ontology matching in Section 2, we implemented
three methods for class matching:

* Content-based class matching. We match classes based on the assumption
that similar classes describe similar things. Therefore, we measure class
similarity based on the overall similarity of the literal objects within those
classes.

We start our class matching process by extracting all classes Cs and C; from
source KG G, and target KG G, respectively. As shown in Listing 3, we query
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PREFIX owl:<http://www.w3.0rg/2002/07/owl#>
PREFIX rdfs:<http://www.w3.0rg/2000/01/rdf-schema#>

SELECT DISTINCT ?c where { 7c a owl:Class.
FILTER NOT exists { [] rdfs:subClassOf ?7c } }

Listing 3: SPARQL query for finding leaf classes.

only for the most specific classes, i.e., the leaf classes, of each KG. However, a
more specific list of classes can be provided by the user if necessary.

We then rank the properties for each class by calculating their coverage and
pick up only the properties with coverage that exceed a certain propriety-
coverage threshold g € [0, 1] defined by the user. The goal of the ranking
of properties is to make sure that only the most important properties have
been retrieved. For example, properties such as (label, name, title) have
a high coverage, which leads to the retrieval of more information. Formally,
we query for proprieties with coverage(p) > /3), where the coverage is defined

as
[{s: (s,p,0) € ci}|
‘{S : Elq (5)(]7 0) € ci}|’

where ¢; € C. [ is a user-defined value between [0, 1. For the target KG, we

coverage(p) = (7.1)

replace ¢; with ¢; in Equation 7.1. After extracting all classes and ranking
properties, we retrieve only the objects with literal values using SPARQL
queries. The retrieved data (i.e., the literals) must be preprocessed before it
can be used for the class matching task. We used the preprocessing steps as
follows.

1. Tokenization. We perform word tokenization by breaking a raw text into

words (tokens) using White Space Tokenization®!.

2. Stop words removal. We remove all stop words such as {a, an, the, in,
.-+ } to increase the performance during string similarity measure.

3. Text normalization. We use Normalization Form KC (NFKC)22. Next,
we clean the text from numbers and special symbols using regular expres-
sions.

https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/
WhitespaceTokenizer.html
Zhttps://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html
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Subsequently, we store the set of distinct tokens (that is, words) that belong
to each class ¢; € G as £; = {l; - - - l,,}. Formally, (key = ¢;, value = L;). We
repeat the same procedures for each target class ¢; € G;.

Now, the classes, together with their cleaned literal object values, are ready
for matching. Our content-based class matching is formally defined as
ClassMatching(c;, L4, cj, L), where ¢; € G, ¢;j € Gy, Gy is the source KG
and G is the target KG. We define the class similarity threshold 7 € [0, 1]. If
StringSimilarity(L;, L;) > T, then ¢; is equivalent to ¢;. These equivalent
pairs of classes are stored in a list of equivalentClasses(c;, c;). By default, we
use the similarity of the Jaccard to measure the similarity between £; and L;.
Still, the user can configure NELLIE to use other string similarities.

Class matching using LogMap. LogMap [JC11] can match a pair of ontologies
by producing mapped pairs utilizing lexical indexation, structural indexation,
and generating anchor mappings. It can even do mapping fixes. It employs var-
ious "confidence" levels to obtain an overestimation of the mappings. LogMap
is scalable and can successfully match semantically rich ontologies of classes.
It also includes techniques for detecting and repairing unsatisfiability on the
fly. Furthermore, LogMap generates a ‘clean’ set of output mappings in many
circumstances, implying that the ontology acquired by integrating LogMap’s
output mappings with the input ontologies is consistent and does not include
unsatisfactory classes.

Class matching using FCA-Map. FCA-Map [Zha+18b] is based on formal
concept analysis to find and evaluate mappings across ontologies, including
one-to-one mappings, complicated mappings, and correspondences between
object characteristics. It generates lexical mappings from class names and
labels, as well as mappings based on ontology structures. FCA-Map generates
three types of formal contexts before extracting mappings from the resultant
lattices. To begin, the token-based formal context illustrates how class names,
labels, and synonyms all share lexical tokens, leading to lexical mappings
(anchors) between ontologies. Second, the relation-based formal context spec-
ifies how classes are connected to anchors in taxonomic, partonomic, and
disjoint ways, yielding positive and negative structural evidence for lexical
matching validation. Third, the positive relation-based context may be lever-
aged to find more structural mappings once the incoherence has been rectified
[ZZ16]. Thus, we can use FCA-Map to extract lexical and structural mappings
of matched classes, objects, and data attributes.
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For LogMap and FCA-Map, first, we can get the output of the preceding step, that
is, the KG matching, in two separate forms. The first form is a model with pairs of
SPARQL endpoints that are the same to a certain degree. The second form of the
output is the pairs of KGs that are matched. The outputs with the matched SPARQL
endpoints are queried to retrieve RDF datasets, which are then saved locally. Second,
we also can feed LogMap and FCA-Map with two sets of ontologies directly, as we
did in our experiments. We ran LogMap and FCA-Map as standalone. Note that this
class matching phase reduces the runtime needed for the instance matching phase
(our second linking phase), as we only perform instance matching among instances
of the matched pairs of classes.

Instance Matching

Based on our formal definition of the matching of instances in Section 2.4, we focus
on owl:sameAs as a relation r between s and ¢. We rely on LIMES [Ngo+21] as it is
a state-of-the-art declarative LD framework with open source implementation that
can be easily adopted and extended in NELLIE. Algorithm 5 shows the procedures we
follow to establish the link between the instances of the source KG G and the target
KG G;. Computing the mapping M among all instances of the source and target KGs
in a trivial way would result in quadratic complexity, i.e., O(|Gs| x |G¢|). Therefore,
we calculate an approximate mapping M’ = {(s,t) € G5 x G; owl:sameAs(s,t) >
0}, where 0 is a threshold between [0, 1], to filter out all pairs with similarity
measures less than 6.

LSs need to be generated, either manually or automatically, to express the conditions
necessary to link resources within these KGs. An LS consists of two types of atomic
components: similarity measures m and operators op. Similarity measures m are used
to compare the property values of input instances and operators op that link these
similarities with more complex specifications. We define a similarity measure m
as a function m : G5 x Gy — [0,1]. An LS is called atomic when it only contains
one similarity measure, while a complex specification (complex LS) can be obtained
by gluing two specifications, L; and Ls, through an operator op that combines the
results of two LSs, L; and L,. Here, we use the operators M, L, and \ as they are
complete and frequently used to define LS [SNL17] (see also Section 2.4.1). An LS
is also called a linkage rule in the literature [IJB11]).

In NELLIE, we use the state-of-the-art algorithm WoMBAT [SNL17] to automatically
generate LSs. WOMBAT learns LSs based on the concept of generalization in quasi-
ordered spaces. We use an unsupervised version of WoMBAT. While lines 1-11
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in Algorithm 5 describe the configuration and preparation for instance matching
using LIMES, lines 12-18 describe the preparation of caches to train WOMBAT. The
goal of the procedures stated in lines 12-18 is to reduce training time in case there
is a large KG. For instance, the idea in line 12 is to filter out any cache that has
a small number of instances (that is, less than 100). Consequently, we define an
integer parameter mcs, i.e., the minimum cache size, for both the source and target
caches. For example, setting mcs to 100 means that the caches must contain at
least 100 instances. In addition to the parameter mcs, we define a second integer
parameter, mss, that refers to the minimum sample size. As the large size of the
cache increases the time to train WOMBAT, the parameter mss plays an important
role by training only a sample of the data if the cache size is greater than the mss.
For example, if we have a source cache size of 10000 instances, a target cache size of
5000 instances, and a mss with the value of 4000, we then select a sample size of
4000 instances from the smaller cache, which is the target cache in our example here.
By taking the sample from the smaller cache, we have a better chance of finding
matches, if such matches exist. This is shown in lines 13-16 in Algorithm 5. We
then train WOMBAT using the source and target training caches from the previous
step in line 19 to generate the best link specification. Using LIMES, we generate the
mapping among the instances of the pair of input classes in line 20 by applying the
best link specification to the original KG.

Evaluation

For the Linking Task, we set the configuration of NELLIE as follows: propriety-
coverage threshold 5 = 0.5 and 7 = 0.2 as a minimum threshold for string similarity
when computing equivalent classes. In other words, we select all properties that
have 5 > 0.5 and classes that have similarity > = = 0.2. We also configure
the parameters of WOMBAT as follows: We set the string similarity measures to
{jaccard, cosine, qgrams, levenshtein}; the maximum iteration number to
10; the maximum execution time to 200 minutes; and the minimum coverage of
properties to 0.9.

Content-Based Class Matching

In Table 7.3, we present the results of applying the content-based class matching to
the classes within the manually matched KGs from our previous step. In particular,
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Algorithm 5: Linking of Knowledge Graphs

input : EQ ={(csy,cty)---(cs,,ct,)} is the list of equivalent classes
input : mcs is the minimum cache size
input : mss is the minimum saple size

output  :approximate mapping: M' = {(s,t) € G5 x G : sameAs(s,t) > 6}

foreach (c,,c;) € EQ do

ps;=GetPropertiesWitAtLeast Covering(cs,,3);

pt,=GetPropertiesWitAtLeast Covering(c,[3);

// Configure LIMES

LIMES.sourceKG(G,);

LiMES.sourceKGRestriction(cs,);

LIMES.sourceKGProperties(ps,);

souceCache = LiMEs.fillSourceCache();

LIMES.targetKG(Gy);

LIiMES.targetKGRestriction(cy,);

LIMES.targetKGProperties(p;,);

targetCache = LiMEs.fillTargetCache();

if souceCache.size() > mes & targetCache.size() > mcs then

if souceCache.size() > mss & targetCache.size() > mss then

sourceTrainingCache = Max(souceCache, targetCache);
targetTrainingCache = Sample(Min(souceCache, targetCache));

else
sourcelrainingCache = souceCache;
| targetTrainingCache = targetCache;

BestLS = LiMEs.runUnsupervisedWombat (
sourcelrainingCache, targetTrainingCache);
| M’ = LimEs(sourceCache, targetCache, BestLS);

return M’

we computed the Jaccard string similarity between the cleaned literals of the pairs
of classes within each pair of KGs, as described in Section 7.3.1. Consequently, a
pair of classes is matched if there is similarity between their respective cleaned
literals > 0.2. In the next step, we run LIMES on each pair of matched classes to link
the instances with these classes, following the procedures defined in Algorithm 5.
In Table 7.4, we list the matched classes within the manually matched KGs (from
Section 7.3). For example, in the case of DBpedia and LGD, we have the matched
classes: {(Settlement, Place), (Settlement, Village), ..., (Place, Village)}. Algorithm 5
then runs LIMES on each pair of the matched classes. We also calculate the pseudo-F-
measure F [NL13] for the instances with each pair of classes. The basic assumption
behind the pseudo-F-measure is that symmetrical one-to-one links exist between
the resources in source and target datasets. For example, pseudo-F-measure F=
0.89 for the matched classes (Settlement, Place) of DBpedia and LGD. We used
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Tab. 7.4.: Class matching results. |c| is the number of instances of a class c¢. Time is in
milliseconds. F is pseudo-F-measure.

Gs Gt Source class (cs) les| Target class (c¢) let] Time F
uniprot_vocabulary:Resource 25009 uniprot_vocabulary:Resource 14259 180686 0.82
Ke Omim ncbigene_vocabulary:Resource 39726 ncbigene_vocabulary:Resource 16080 227034 0.68
88 ensembl_vocabulary:Resource 22171 ensembl_vocabulary:Resource 29006 586008 0.67

Average macro Pseudo-F-Measure 0.72

cas_vocabulary:Resource 21271 cas_vocabulary:Resource 3167 17261  0.35
Kegg Drugbank atc_vocabulary:Resource 3775  atc_vocabulary:Resource 1739 5 0.77

Average macro Pseudo-F-Measure 0.56

go_vocabulary:Resource 3665  go_vocabulary:Resource 5555 6094 0.38
Kegg Sgd ec_vocabulary:Resource 6172  ec_vocabulary:Resource 444 570 0.27

Average macro Pseudo-F-Measure  0.32

Drugbank Sider pubchem.compound_vocabulary:Resource 6111  pubchem.compound_vocabulary:Resource 2097 8376 0.31
Drugbank Omim uniprot_vocabulary:Resource 8392  uniprot_vocabulary:Resource 14259 62370 0.34
Drugbank Sgd pfam_vocabulary:Resource 1819  pfam_vocabulary:Resource 3488 2291 0.46
Settlement 11705 Place 11485 22516  0.89
Settlement 11705 Village 8443 15756  0.83
PopulatedPlace 11318 Place 11485 16709  0.89
DBpedia LGD PopulatedPlace 11318 Village 8443 11966  0.83
Place 11367 Place 11485 17717  0.89
Place 11367 Village 8443 15174 0.83

Average macro Pseudo-F-Measure  0.86

an unsupervised version of the WOMBAT algorithm [SNL17] to calculate pseudo-F-
measure F. We also calculated the average macro pseudo-F-measure in case there
is more than one pair of matched classes, such as (DBpedia, LGD), (Kegg, Omim),
(Kegg, Drugbank), and (Kegg, Sgd). The average macro pseudo-F-measure is listed in
Table 7.4 in boldface font. We also recorded the time required to link the instances
with each pair of matched classes. On the contrary, it does not take into account the
co-occurrence of the words and the context and the relation between words.

LogMap and FCA-Based Class Matching

We integrate the ontology matching components of LogMap and FCA into the NELLIE
ontology matching phase. For the evaluation of each of the two systems, please refer
to the original papers of these systems [Che+21b; Zha+18b].

By applying the ontology matching phase prior to the instance matching phase, we
aim to reduce the overall runtime of the linking procedure. In particular, when
applying a single-phase linking of all-against-all instances directly, we would need

n n
<Z |C’Z|> >~ |Dj| | comparisons between the instances of the leaf classes C; of
i=1 j=1

the source KG G and the leaf classes D; of the target KG G;. Note that we assume
that both G, and G; have the same number of classes n without loss of generality.
W.l.o.g, we will also assume that the classes are ordered in such a manner that
the first k& < n classes match. When using our two-phase linking, we need n?
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7.4

7.4.1

comparisons for the first linking phase, i.e., class matching. Note that, in general,

the average class in a KG has a magnitude greater than the total number of classes.
n

Hence, n << (M) The analogy holds for G;. For the second linking phase,

=1 "

k
i.e., instance matching, we need > |C;||D;| for the k pairs of matched leaf classes

i=1
k
from G, and G;. This gives us a total cost of | > |C;i||D;| +n? | comparisons of
i=1

our two-phase linking. Our gain is then the difference between the number of
comparisons of all-against-all instance linking and our two-phase linking. Given

L ; . . . ., .
that n << ) ('C’|), the expected value of this difference is positive for & < n.
i=1

Empirically, we can compute the speedup achieved by our two-phase linking as the
number of comparisons using all-against-all instance linking divided by the number
of comparisons of our two-phase linking. For example, if we carry out the all-against-
all for the KGs Drugbank and Sgd, we get 0.421 x 105 x 0.991 x 105 = 41.211 x 100
comparisons. On the other hand, the number of comparisons using our two-phase
linker only needs 1819 x 3488 + n? = 6.3446 x 10° 4 8330, given that k = 1 , where
|C1| = 1819, and | D;| = 3488, and n? is 8330. Consequently, our speedup here is

41.211 x 1010

= 6.48695 x 10*
6.3446 x 10° 1 8330 %

which is 4 orders of magnitude. From Table 7.4, we see that our two-phase linking
strategy maintains and achieves 0.86 average macro pseudo-F-measure for DBpedia
and LGD.

Knowledge Graphs Fusion And Link Prediction

Approach
Merging and Fusion of Knowledge Graphs

Merging and fusion are implemented in a straightforward manner. Merging is a
process of combining all produced mappings (i.e., links of instances) from the process
of interlinking a pair of KGs. Formally, M,crge = M1 U M U Mz U -+ U Me,. In
order to perform the KG fusion, we merge all mappings M., = {My,---, M,} of
the matched instances (from the previous linking step) into one universal mapping
Mpmerge = My - - - U M,,. We dub this task as the merging task. Accordingly, the KG
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4

fusion task uses M,crqe to fuse G and G;. In the following, we present our fusion

operator and the strategies implemented so far in NELLIE.

* Additive Fusion Operator. Based on the mapping M,,4. among the resources

from G, and Gy, we implement our additive fusion operator to combine all
resources from G and G. In particular, our additive fusion operator starts by
adding all the resources of G to the fused KG Gq¢. Then, it combines all the
resources of G; fused with all similar resources from G, where all the subjects
of the fused resources are from G5. We present our additive fusion operator
formally in Algorithm 6. Figure 7.3 shows an example of fusing one DBpedia
resource with one LGD resource using our additive fusion operator. Note that
our operator is additive in the sense that we keep all triples of source KG G,
even the ones without similar triples in G; (see Figure 7.4 as an example).

Algorithm 6: KG additive fusion algorithm.

input : Source KG G,

Target KG Gy,
Mapplng Mmerg = {(x,y)]m € Gsay € Gt}

output: Fused KG Gyg
1 GsEBt = GS
2 foreach Mapping pair (z,y) € Myerg do

L

foreach triple(< y,p,0 >) € G; do

| Guat = Gsgr.addTriple(< z,p,0 >)

5 return Ggg:

* Fusion Strategies After applying our additive fusion operator, we define a

number of type-based strategies for fusing the literal objects of the same subject
and predicate. For example, in our example in Figure 7.3, we have the triples
<dbr:Mount Juliet, rdfs:label, "Mount Juliet,Tennessee"@en> and
<dbr:Mount_ Juliet, rdfs:label, "Mount Juliet"@en>. For the two lit-
eral objects "Mount Juliet,Tennessee"@en and "Mount Juliet"@en, we
need to decide to keep one of them, both of them, or to combine them
somehow. Formally, for two or more triples < s,p, A\; > and < s,p, A2 >, we
implement the following type-based fusion strategies:

— KeepBoth STRATEGY. We add the two triples < s,p, A\; > and < s,p, \; >
to the fused KG.

— PreferSource STRATEGY. We add only the triples < s,p, A\; > from the
source KG to the fused KG.
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Fig. 7.3.: Example of fusing the DBpedia resource dbr:Mount_Juliet with the LGD re-
source 1gdt:node153471134 using our additive fusion operator from Algorithm 6.

— PreferTarget STRATEGY. We add only the triples < s,p, A2 > from the
target KG to the fused KG.

— Maximum STRATEGY. We define the Maximum strategy for all numeric
literals such as xsd:integer?® and xsd:decimal, as well as dates (e.g.,
xsd:date), where we add the triple < s, p, max(A1, A2) > to the resultant
fused KG. For string literals, the Maximum strategy selects the longest string.
Formally, add the triple < s, p, arg max(|A1[, |\2|) > to the resultant fused
KG, where |)\] is the string length of the string A;. For xsd:boolean, the
triple < s,p, A1]|\2 > is added to the fused KG, where || is the logical OR
operator.

— Minimum STRATEGY. Following the same manner of the Maximum strategy,
we define the Minimum strategy for numeric and date literals, where
we add the triple < s, p, min(A1, A2) > to the result fused KG. For string
literals, the Minimum strategy selects the shortest string. i.e., add the triple
< s,p,argmax(|A1], |A2]) > to the resultant fused KG. For xsd:boolean,
the triple < s, p, A\1&& A2 > is added to the fused KG, where && is the
logical AND operator.

— Average STRATEGY. We define the Average strategy for numeric and
date literals, where we add the triple < s, p, %()\1 + A\2) > to the result

Bysd=<http://www.w3.org/2001/XMLSchema#>
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< Sg1, owl : sameAs, Sy > < 84, Py, Ogq > < S, Pa, Oy >

MMerge
< Ss2, owl : sameAs, Sy > < Ss2, Py, Osg > < Sio, Py, Op >
< Ss3, Ps3, Og3 > < Si3, P, O >
> KG Fusion

l

< Sqa, Pa, Oga >
< 81, Pa, Oy >
< Sg, Py, Og >
< Ss2, Pa, O >

Gs@t

< 533, P537 033 >

Fig. 7.4.: An example of fusing KGs using our additive fusion operator .

Tab. 7.5.: Fusion strategies for fusing the two triples < s,p, A\; > and < s,p, Ay > .

Method xsd:string xsd:integer xsd:date xsd:boolean
KEEPBOTH < 8,Py AL >, < 8,py A1 >, < 8,p, A1 >, < 8,p, A1 >,

< 8,py A2 > < S, py A2 > < S,py A2 > < 8,p, Ay >
PREFERSOURCE < s,p, A\ > < 8Py A > < 8, Py, A > < 8,p, A\ >
PREFERTARGET < s,p, g > < 8Py Ay > < 8,p, Ay > < 8,p, Ay >
MAXIMUM < s,p,argmax(|A1], [X2]) > < s,p,max(A1, A2) > < s,p,max(A;, A2) > < s,p, Ar]|Ae >
MINIMUM < s,p,argmax(|A1],[A2]) > < s,p,max(A,A2) > < s,p,max(A,A2) > < s,p, A&&Ag >
AVERAGE <s,p s+ Ag) > <spsAit+A) > <spsAit+A) > <sp A&k >
UNION <8, P, AL+ Ay > - - < 8,0, M&&Ag >

fused KG. For string literals, the Average strategy is not defined. For
xsd:boolean, the triple < s,p, A\1&& N2 > is added to the fused KG.

— Union STRATEGY. We define the Union strategy for the literals of type
xsd:boolean, where we add the triple < s, p, \1&& N2 > to the resultant
fused KG. For string literals, the Union strategy is the string concatenation
operator, i.e., the triple < s,p, A1 + A2 > is added to the resultant fused
KG, where + is the string concatenation operator. The Union strategy is
not defined for data types of numerical and date.

Table 7.5 lists all the type-based fusion strategies that we have implemented
so far. For our experiments, we apply the KEEPBOTH strategy.
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KG Embedding and Link Prediction

Although there are dozens of embedding models that can be used to perform
our link prediction task, we deploy the three embedding models TuckER [BAH19],
ComplEx [Tro+16], and DistMult [Yan+15] for embedding in our link prediction task.
We use these models as they are state-of-the-art linear models for link prediction on
KGs. On the basis of the NELLIE architecture, any other embedding model could be
easily added to it.

* TuckER. TuckER is based on Tucker decomposition [Tuc64] that factorizes
a tensor into a set of matrices and a smaller core tensor. In a three-mode
case, given the original tensor X € R/*/>*X Tucker decomposition produces a
tensor Z € RP*@*1 and three matrices A € R/™*F, B ¢ R7*?, C ¢ RE*E;

X ~Zx1A x9B x3C. (7.2)
And, the score function of the TuckER model:

¢5(65,7’, 60) =W X1 €5 X9 Wy X3 €, (73)

For link prediction in a KG’s binary tensor representation, the TuckER model
uses Tucker decomposition by constructing an entity embedding matrix E that
is equal for subject and object entities, i.e., E = A = C € R"*% and the
relation embedding matrix R = B € R™ % where n. and n, denote the
number of entities and relations and d. and d, the dimensionality of entity and
relation embedding vectors. The TuckER architecture can be seen in Figure
7.5, where e,, e, € R% are the rows of E representing the embedding vectors
of the subject and object entity, w, € R% the rows of R representing the
embedding vector of the relation, and WW € R%*d*de i the core tensor.

* DistMult. The scoring function of DistMult in Table 2.3 can be regarded as
equivalent to the scoring function of TuckER in Equation 7.2. The scoring
function consists of a core tensor Z € RF*X@*E P = ) = R = d.. The
superdiagonal of Z is with 1s, i.e., all elements z,, withp = ¢ = r are 1
and all the other elements are 0. In DistMult, the subject and object entities
es, e, € R% are represented by rows of E = A = C € R"*% and rows of
R = B € R™*4 represents the embedding vectors of the relation w, € R%.
Given that matrices A and C are identical, the TuckER interpretation of the
DistMult scoring function can alternatively be interpreted as a special case of
CP decomposition [Hit27]. DistMult belongs to the family of bilinear models.
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Fig. 7.5.: The TuckER architecture [BAH19].

* ComplEx. The scoring function of ComplEx in 2.3 can also be viewed as
equivalent to the scoring function of TuckER in Equation 7.2. The core tensor
Z e RPX@*R P — Q = R = 2d,, in which 3d, elements on different tensor
diagonals are set to 1 and d. elements on one tensor diagonal are set to -1
while all other elements are set to 0. [KP18] explained that ComplEx can be
considered a bilinear model with the real and imaginary parts of an embedding
for each entity concatenated in a single vector.

Evaluation

In this task, we study the impact of fusion on the link prediction task. Since the cost
of computing and the allocation of resources for the link prediction task in KGs that
contain millions of triples is very high, we made two data augmentation scenarios to
conduct experiments on data fusion and link prediction tasks:

* Scenario A. The idea of this scenario is to study the impact of fused KGs on
the quality of the link prediction task. Thus, we used augmented versions of
the source KG G, and target KG G; by only filtering them to the entities within
the mapping: M = {(s,t)|s € Gs,t € G;}. Formally, we augmented our data
as follows: Given the mapping M, we retrieve the sub-KG G, = {(s,7,0) | s €
Gs and V(s,t) € M} and the sub-KG G} = {(¢,r,0) | t € Gy and V(s,t) € M }.
To this end, we use Algorithm 6 to fuse the triples of G/, and G} into the fused
KG Ggg. For evaluating the link prediction task, we compute Hit@1, Hit@3,
Hit@10, and MRR for the source KGs G, and fused KGs Gg¢. The results are
in Tables 7.7, 7.8, 7.9, 7.10, 7.11, and 7.12.
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Tab. 7.6.: Hyperparameter values for TuckER, DistMult, and ComplEx across all KGs, where
Ir denotes learning rate, dr decay rate, and Is label smoothing.

Model Ir dr de d, Is

TuckER  0.005 1.0 200 200 0.1
DistMult 0.001 0.99 200 200 0.1
ComplEx 0.001 0.99 200 200 0.1

Tab. 7.7.: Link prediction for Drugbank, Omim, and the fused data in Scenario A.

Model Data Hit@l Hit@3 Hit@1l0 MRR |Data|

Source  0.6580 0.6581 0.7223 0.6741 18.545
Fused 0.5735 0.6209 0.6506 0.6034 20.891

Improve -8.45 -3.73 -7.17 -7.07
Source  0.5458 0.6378 0.6858 0.5997 18.545

TuckER

DistMulth ¢ ced 05019 0.6279 0.6750 0.6197 20.891
Improve 461  -098  -1.08  2.00
Source 0.6887 0.7486 0.7704 0.7236 18.545
ComplEx

Fused 0.5768 0.6468 0.6800 0.6179 20.891
Improve -11.19 -10.17 -9.04 -10.58

* Scenario B. The idea of this scenario is similar to that of Scenario A. However,
we modify Scenario A by adding a random subset X of resources from Gj,
which are not included within the mapping M, to G. The goal here is to
perform the link prediction task on KGs that contain some enriched entities
and some non-enriched ones. Formally, X = {(s,r,0) C G, | Vs € GsAs ¢ M}
and | X| = |M|. Note that we limit the size of X to the size of M to keep
the balance between the enriched and non-enriched resources. This results
in G, = {(s,r,0) C G5 | Vs € M U X }. To this end, we repeat the procedures
performed in Scenario A. See the results in Tables 7.13, 7.14, 7.15, 7.16, 7.17,
and 7.18.

Setup. We set the hyperparameters as listed in Table 7.6. We followed the same set-
ting, training, and evaluation procedures introduced in the TuckER model [BAH19]
and the codebase?* for TuckER, ComplEx, and DistMult.

Results. We calculate the improvement percentage of each source KG and its fused
KG using the formula (HitQk ¢y scaxc — HitQksource ) ¥ 100. For M RR, we apply a
similar formula. For example, the improvement of fused KG in Table 7.7 for Hit@Q1 is

https://github.com/ibalazevic/TuckER
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Tab. 7.8.: Link prediction for Kegg, Drugbank, and the fused data in Scenario A.

Model Data Hit@l Hit@3 Hit@1l0 MRR |Data|
Source 0.5326 0.5540 0.5999 0.5523 30.351

TuckER Fused  0.4351 0.5207 0.5625 0.4830 34.731
Improve -9.75 -3.34 -3.74 -6.92

Dievul | Source 04172 0.4596  0.4936  0.4459  30.351
Fused  0.4160 0.4727 0.5043 0.4517 34.731
Improve -0.12 1.31 1.07 0.58
Source 04713 0.6075 0.6336 0.5445 30.351

ComplEx

Fused 0.4057 0.4479 0.4646 0.4311 34.731
Improve -6.56 -1596  -16.90 -11.33

Tab. 7.9.: Link prediction for Drugbank, Sider, and the fused data in Scenario A.

Model Data Hit@l Hit@3 Hit@1l0 MRR |Data|

Source  0.6460 0.6735 0.723 0.6668 11.511
Fused 0.6426 0.7669 0.8132 0.7076 25.491

Improve -0.34 9.33 8.99 4.08
Source 0.6086 0.668766 0.7040 0.6446 11.511

TuckER

DistMulti g ced  0.6215 07297 0.7964 0.6839  25.491
Improve 1.29 6.09 9.24 3.93
Source 0.7040 0.7995 0.8249 0.7569 11.511
ComplEx

Fused 0.6003 0.7066 0.7727 0.6613 25.491
Improve -10.37 -9.29 -5.23 -9.56

(0.5008 — 0.3808) * 100 = 12.0% using the DistMulti model. Repeating this procedure,
we calculate the values for all KGs. In particular, we found that fused KGs show
an improvement of Hit@Q1 compared to Hit@Q1 from source KG. To our knowledge,
there is no scientific evidence of the impact of KG alignment or KG fusion on the link
prediction task. However, the results show an improvement in all metrics Hit@Q1,
Hit@3, Hit@Q10, and (M RR). For example, in Scenario A, KG fusion improved to
10 Hit@1 out of 18 Ht@1, which is 55.55% of the cases. While in Scenario B, KG
fusion improved to 17 Hit@Q1 out of 18 Hit@1, which is 94.44% of cases. The results
of Scenario A for the KG Drugbank and KG Omim (Table 7.7) show that KG fusion
improves HitQ1, Hit@3, Hit@10, and (M RR) by up to 12%, 8.31%, 7.66%, and
10.10%, respectively. Therefore, we could see that the KG fusion plays an important
role in improving the link prediction task. In Scenario B, using TucKER embedding
for the KG Drugbank and Omim (Table 7.15), the results show an improvement in
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Tab. 7.10.: Link prediction for Kegg, Sgd, and the fused data in Scenario A.

Model Data Hit@l Hit@3 Hit@1l0 MRR |Data|
Source  0.551 0.5982 0.632 0.5809 12.641

TuckER Fused 0.5628 0.6357 0.6761 0.604  21.215
Improve 1.18 3.75 4.41 2.31

DistMulti Source 0.4527 0.5249 0.5649 0.4962 12.641
Fused 0.5132 0.5861 0.6264 0.5568 21.215
Improve 6.05 6.12 6.16 6.07
Source 0.5279 0.6665 0.6928 0.6026 12.641

ComplEx

Fused 0.5244 0.6 0.6409 0.5679 21.215
Improve -0.35 -6.65 -5.19 -3.47

Tab. 7.11.: Link prediction for Kegg, Omim, and the fused data in Scenario A.

Model Data Hit@l Hit@3 Hit@1l0 MRR |Data|
Source 0.5020 0.5350 0.5541 0.5212 307.375

TuckER Fused  0.5023 0.5605 0.5856 0.5350 496.462
Improve 0.03 2.55 3.14 1.38

DistMulsi Source 0.3808 0.4773 0.5090 0.4322 307.375
Fused 0.5008 0.5604 0.5856 0.5332 496.462
Improve 12.00 8.31 7.66 10.10
Source 0.4421 0.5481 0.5703 0.4976 307.375

ComplEx

Fused 0.4959 0.5668 0.5855 0.5323 496.462
Improve 5.38 1.87 1.52 3.48

Hit1, Hit3, Hit10, and (MRR) by up to 1.7%, 1.49%, 2.22% and 1.17%, respectively.
Another example is the KGs Kegg and Sgd (Scenario B): the improvements are up
to 9.34%, 8.94%, 7.05%, and 8.77% for Hit1, Hit3, Hit10, and (MRR), respectively
(see Table 7.14). From the results, we can also see that, in some cases, KG fusion
lowers the performance of the link prediction task. For example, KG Kegg and KG
Drugbank in Scenario A using TuckER (see Table 7.8).

However, because of the absence of benchmark KGs for such a task (i.e., the impact
of KG fusion on the quality of the link prediction task), it is difficult to say that
this improvement is caused by the models used or the KGs. Fundamentally, the
performance of TuckER, DistMulti, and ComplEx in the literature is evaluated on
benchmark KGs (see [BAH19]). These benchmark KGs are tailored to evaluate
KGE. DistMulti is limited to symmetric relations, while ComplEx is able to capture

7.4 Knowledge Graphs Fusion And Link Prediction
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Tab. 7.12.: Link prediction for DBpedia, LGD, and the fused data in Scenario A.

Model Data Hit@l Hit@3 Hit@1l0 MRR |Data|
Source 0.4504 0.5326 0.5997 0.5033 271.706

TuckER Fused  0.4802 0.5598 0.6088 0.5278  326.792
Improve 2.98 2.72 091 2.45

DieMal | Source  0.3601 04548 05249 04187  271.706
Fused  0.3772 0.4515 0.5224 04277 326.792
Improve 1.71 2033 -025  0.89
Source 0.3350 0.4501 0.5127 0.4022 271.706

ComplEx

Fused 0.3725 0.4507 0.5361 0.4275 326.792
Improve 3.76 0.06 2.34 2.52

Tab. 7.13.: Link prediction for Drugbank, Sider, and the fused data in Scenario B.

Model Data Hit@l Hit@3 Hit@10 MRR |Data|

Source  0.4210 0.4567 0.5047 0.4485 29.02
Fused 0.4571 0.5248 0.5940 0.5037 36.222

Improve 3.60 6.81 8.94 5.52
Source 0.3332 0.4233 0.4854 0.3885 29.02

TuckER

DistMulti £ o4 0.6943 0.8016 0.8303 0.7485 36.222
Improve 36.11 37.82 34.49 36.01
Source 0.4061 04842 0.5380 04551 29.02
ComplEx

Fused 0.4189 0.53 0.5941 0.4846 36.222
Improve 1.28 4.58 5.61 2.95

antisymmetric relations. Thus, if a KG contains many antisymmetric relations,
DistMulti may perform poorly. ComplEx can handle antisymmetric relations, but
its parameter number grows quadratically with the number of relations, which
frequently leads to overfitting, especially for connections with a limited number
of training triples. TuckER manages this problem by modeling relations as vectors
wy, so the number of parameters scales linearly with the number of relations.
Another reason that can affect the results and the performance is the selection
of hyperparameters. In our current experiments, we did not perform any sort of
hyperparameter optimizations. We use hyperparameters from [BAH19]. Based on
these observations, the impact of KG fusion on the quality of the link prediction task
is still an open question and needs a thorough investigation, from benchmarking
KGs to hyperparameter optimization.
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Tab. 7.14.: Link prediction for Kegg, Sgd, and the fused data in Scenario B.

Tab.

Tab.

Model Data Hit@l Hit@3 Hit@l0 MRR |Data|
TuckER Source  0.4445 0.4840 0.5366 0.4747 23.712
Fused 0.5379 0.5733 0.6071 0.5624 31.337
Improve 9.34 8.94 7.05 8.77
DistMulti Source 0.3123 0.3792 0.4283 0.3549 23.712
Fused 0.3998 0.4736 0.5373 0.4482 31.337
Improve 8.75 9.44 10.90 9.33
ComplEx Source 0.3687 0.5128 0.5614 0.4489 23.712
P Fused 0.4580 0.5598 0.5874 0.5150 31.337
Improve 8.93 4.70 2.60 6.61

7.15.: Link prediction for Drugbank, Omim, and the fused data in Scenario B.

Model Data Hit@l Hit@3 Hit@l0 MRR |Data|
TuckER Source  0.4158 0.4537 0.4936 0.4428 46.981
Fused 0.4328 0.4686 0.5157 0.4607 49.308
Improve 1.70 1.49 2.22 1.79
DistMulti Source 0.3169 0.3906 0.4627 0.3671 46.981
Fused 0.3297 0.3930 0.4585 0.3737 49.308
Improve 1.28 0.24 -0.42 0.66
ComplEx Source 0.3921 0.4644 0.5054 0.4363 46.981
P Fused 0.4038 0.4765 0.5188 0.4476 49.308
Improve 1.17 1.21 1.34 1.14
7.16.: Link prediction for Kegg, Omim, and the fused data in Scenario B.
Model Data Hit@l Hit@3 Hit@l0 MRR |Data|
TuckER Source  0.4085 0.4397 0.4642 0.4285 591.5
He Fused 04410 04856 0.5133 0.4674 690.224
Improve 3.26 4.59 4.92 3.89
DistMulti Source 0.2883 0.3284 0.3483 0.3116 591.5
' Fused 0.3480 0.4091 0.4452 0.3839 690.224
Improve 5.97 8.07 9.68 7.23
ComplEx Source 0.3760 0.4555 0.4766 0.4192 591.5
P Fused 0.4243 0.4950 0.5261 0.4651 690.224
Improve 4.83 3.95 4.95 4.59
7.4 Knowledge Graphs Fusion And Link Prediction
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Tab. 7.17.: Link prediction for Kegg, Drugbank, and the fused data in Scenario B.

Model Data Hit@l Hit@3 Hit@1l0 MRR |Data|

TuckER Source  0.4451 0.4718 0.4921 0.4636 56.970
Fused 0.4530 0.4795 0.5046 0.4736 61.332
Improve 0.79 0.76 1.26 1.00

DistMulti Source  0.3146 0.3749 0.4150 0.3526 56.970
Fused 0.5325 0.5540 0.6122 0.5548 61.332
Improve 21.79 17.90 19.72 20.22

ComplEx Source 0.3591 0.4869 0.5105 0.4245 56.970

P Fused 0.3743 0.4878 0.5115 0.4344 61.332

Improve 1.52 0.09 0.10 1.00

Tab. 7.18.: Link prediction for DBpedia, LGD, and the fused data in Scenario B.

Model Data Hit@l Hit@3 Hit@1l0 MRR |Data

TuckER Source 0.3662 0.4313 0.4906 0.4107 511.294
Fused 0.3728 0.4348 0.4969 0.4161 566.380
Improve 0.66 0.35 0.63 0.54

DistMulti Source  0.2684 0.3645 0.4275 0.3273 511.294
Fused 0.2637 0.3406 0.4113 0.3152 566.380
Improve -0.48 -2.39 -1.62 -1.22

ComplEx Source 0.2598 0.3149 0.3924 0.3034 511.294

P Fused 0.2813 0.3349 0.3966 0.3217 566.380

Improve 2.16 2.00 0.42 1.83
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Part IIl

Link Discovery Explainability And Human
In The Loop






8.1

Multilingual Verbalization and
Summarization for
Explainable Link Discovery

Preamble: This chapter is based on the paper by Ahmed et al. [Ahm+21] addressing
the explainability of data integration in declarative LD. Declarative LD frameworks
rely on complex LS to express the conditions under which two resources should
be linked. Understanding such an LS is not a trivial task for non-expert users,
particularly when such users are interested in generating LS to match their needs.
Even if the user applies a machine learning algorithm for the automatic generation
of the required LS, the challenge of explaining the resultant LS persists. Hence,
providing explainable LS is the key challenge in enabling users who are unfamiliar
with the underlying LS technologies to use them effectively and efficiently. In this
paper, we extend our previous work [ASN19a] by proposing a generic multilingual
approach that allows the verbalization of LS in many languages, i.e., converts LS into
understandable natural language text. In this work, we ported our LS verbalization
framework to German and Spanish, in addition to the English language. Our
adequacy and fluency evaluations show that our approach can generate complete
and easily understandable natural language descriptions even by lay users. Moreover,
we devised an experimental neural approach to improve the quality of our generated
texts. Our neural approach achieves promising results in terms of BLEU, METEOR
and chrF++.

Motivation

With the rapid increase in the number and size of RDF datasets comes the need
to link such datasets. Declarative LD frameworks rely on complex LS to express
the conditions necessary for linking resources within these datasets. For example,
state-of-the-art LD frameworks such as LIMES [Ngo11] and SiiLk [IJB11] adopt a
property-based computation of links between entities. To configure LD frameworks,
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the user can either (1) manually enter an LS or (2) use machine learning for
automatic LS generation.

There are a number of machine learning algorithms that can find LS automatically;,
using either supervised, unsupervised or active learning. For example, the EAGLE
algorithm [NL12] is a supervised machine-learning algorithm able to learn LS using
genetic programming. In newer work, the WOMBAT algorithm [SNL17] implements
a positive-only learning algorithm for automatic LS finding based on generalization
via an upward refinement operator. While LD experts can easily understand the
generated LS from such algorithms, and even modify if necessary, most lay users lack
the expertise to proficiently interpret those LSs. In addition, so far, these algorithms
have been unable to explain the LS they generate to lay users. Consequently, these
users will face difficulty when they i) assess the correctness of the generated LS, ii)
adapt their LS, or iii) choose in an informed manner between possible interpretations
of their input. In this chapter, we address the readability of LS in terms of natural
language. To the best of our knowledge, this is the first work that shows how to
verbalize LS and targets many languages, such as English, German, and Spanish. As
a result, our framework will help people who are unfamiliar with the underlying
technology of LS to understand and update it efficiently. The contributions of this
paper are as follows:

1. We propose the first (to the best of our knowledge) multilingual template-
based approach to produce natural text from LS. Our approach is motivated
by the pipeline architecture for NLG systems performed by systems such as
those introduced by Reiter & Dale [RD00]. Our evaluations show that our
LS verbalization template-based approach can generate complete and easily
understandable natural language descriptions even by lay users.

2. We propose a first version of our neural-based LS verbalization approach
trained by automatically generated verbalization from our template-based LS
approach. We also identify the challenges that the research community needs
to address to carry out this task.

3. Finally, we propose a multilingual selectivity-based approach to generate a
summarized verbalization of LS.

The rest of this chapter is structured as follows: First, we introduce an overview
of our template-based approach underlying LS verbalization in Section 8.2. In
Sections 8.2.1 and 8.2.2, we explain document-planner and the tasks carried out in
the micro-planner, respectively. In Sections 8.2.3 and 8.2.4, we explain the German
and Spanish verbalization and the modification carried out. In Section 8.3, we
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8.2.1

1

OR(jaccard(x.name,y.name) |0.42,trigrams (x.name,y.description) |0.61)

Listing 1: Running example.

introduce our neural-based LS verbalization approach. Subsequently, we introduce
our summarization approach in Section 8.4. We then evaluate our approach with
respect to the adequacy and fluency [Dod02] of the natural language representations
it generates in Section 8.5.

Throughout the rest of the chapter, we use the LS shown in Listing 1 as our running
example. It is generated by the WoMBAT [SNL17] algorithm to link the ABT-BUY
benchmark dataset from [KTR09], where the source resource z will be linked to the
target resource y if our running example’s LS holds.

Template-Based LS Verbalization Approach

Our goal here is to generate a complete and correct natural language representation
of an arbitrary LS. Our template-based LS verbalization approach is motivated by
the pipeline architecture for NLG systems, as introduced by Reiter & Dale [RD0O].
The NLG architecture consists of three main stages: document-planner, micro-planner
and surface realizer. Since this work is the first step towards the verbalization of
LS, our efforts will be focused on document-planner (as explained in Section 8.2.1)
with an overview of the tasks carried out in the micro-planner (Section 8.2.2). The
surface realizer is used to create the output text.

Documentplanner

The document-planner consists of the content determination process to create mes-
sages and the document structuring process that combines those messages. We
focus on document structuring to create independently verbalizable messages from
the input LS and to decide on their order and structure. These messages are used
for representing information. This part is carried out in the preprocessing and
processing steps.

8.2 Template-Based LS Verbalization Approach
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Preprocessing

The goal of the preprocessing step is to extract the central information of LS. This
step mainly relies on the atomic LS, where the necessary information can be extracted.
The input for this step is the atomic LS, while the output is the realization of each
individual part of it. To this end, we break down the atomic LS into its individual
parts:

* ps property of the source resources s € S,
* p, property of the target resources ¢t € T,
* similarity threshold # and

* similarity measure m.

The first property ps comes from dataset S (source), and the second property p;
comes from dataset T' (target). For example, p; = label while p; = name that means
we have a pair of properties (ps, p;) = (label, name). After that, on each part of the
atomic LS, we apply the dependency rule introduced in Table 1. We start with the
realization of similarity measure m (e.g. jaccard as stated in our running example
in Listing 1) as follows.

1. ((m) = nn(m,similarity)
Now we can combine ((m) and {(6).
2. ¢m,0) = Cm) A (@) = prep_of(((H),((m))

Furthermore, if # equals 1, we replace its value with “exact match”, and in cases
where 6 is equal to 0, we replace it with “complete mismatch”. Otherwise, we keep the
f value (e.g., in the case of our running example). Regarding the properties ps and
pt, we move the explanation into the processing step since they play an important
role in the construction of a subject to be used later in sentence building.

Processing

In this step, we aim to map all atoms z into their realization function ((z) and to
define how these atomic realizations are to be combined. The input for this step is
the LS and the output is the verbalization of the LS at hand. Given our formalization
of LS in Section 2.4.1, any LS is a binary tree, where the root of the tree is an
operator op and each of its two branches are LSs. Therefore, we recursively and in
order apply our processing step to the LS tree at hand. As the complete verbalization
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8.2.2

of an atomic LS mainly depends on the properties p, and p;, we distinguish two
cases here: the first case where ps and p; are equal, so we only need to verbalize
ps. In this case, the realization function of an atomic LS a € A is constructed as
follows.

3. ((a)=-subj(have,nn(prep_of (((ps), ((source and target)),
((resources))) A dobj(have,((m,0))

The second case is where p; and p; are not equal. Here, both properties need to be
verbalized as follows.

4. C(ps,p)= Cps) A C(pp)

Microplaner

The micro-planner is divided into three processes: lexicalization, referring expression
generation, and aggregation. We explain each process in the following.

Lexicalization

Within the lexicalization process, we decide what specific words should be used to
express the content. In particular, we choose the actual nouns, verbs, adjectives,
and adverbs to appear in the text from a lexicon. Also, we decide which particular
syntactic structures to use, for example, whether to use the phrase the name of
the resource or resource’s name.

5. ((ps)= prep_of ( poss(((resource), ps),((source))
6. ((py)= prep_of( poss(((resource), p;),((target))
7. ((a)= subj(have,((ps,p)) A dobj(have,((m,0))

Applying preprocessing and processing steps followed by the Lexicalization step on our
running example from Listing 1 generates the following verbalization: = The name

of source and target resources has a 42}, of Jaccard similarity or the
resource’s name of the source and the resource’s description of the target
have a 617 of Trigrams similarity. Note that our running example contains

both cases.
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1 OR(jaccard(x.name,y.name) |0.42,ggrams (x.name ,y.name) |0.61)

Listing 2: Grouping example.

Referring Expression Generation

Here, we carry out the task of deciding which expressions should be used to re-
fer to entities. Considering the example, the source and the target have a
resource’s name and they have a 45% of Jaccard similarity, they is refer-
ring to the expression the source and the target. However, we avoid such a
construction in our verbalization because we aim to generate a simple yet readable
text that contains the central information of the LS at hand.

Aggregation

The goal of aggregation in NLG is to avoid duplicating information that has already
been presented. In our LS verbalization, we mainly focus on the subject collapsing,
defined in [DH96] as the process of “collecting clauses with common elements and
then collapsing the common elements”. Formally, we define subject subj (v;, s;) as s;,
object dobj (v;, 0;) as o;

8. ((s1)= ((s2)=...=((sp)= subj(vi,s1) A dobj(vy, coord(oi,02,...,0,))
In Listing 2, we present a second example LS, where grouping is applicable.

The original verbalization of LS from Listing 2 is: The name of source and target
resources has a 42} of Jaccard similarity or the name of source and target
resources has a 61% of Qgrams similarity. And after applying grouping, our
verbalization will become more compact as follows: The name of source and

target resources has a 42) of Jaccard similarity or a 61} of Qgrams similarity.

8.2.3 German Verbalization

Regarding the German language, we make use of the genitive case instead of
using the possessive case since it is widely used in the German language. For
instance, the words "Name" and "Datenquelle" will be verbalized into "Namens der
Datenquelle". We generated German text using the implementation of [Bra+19].
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Considering the complexity of the German language, our running example from
Listing 1 will be converted into "Name von der Datenquelle und dem Datenziel
Ressourcen hat 42, einer Jaccards Ahnlichkeit oder die Ressource Namens
der Datenquelle und die Ressource Descriptions des Datenziels haben 617
einer Trigramss Ahnlichkeit". The same LS can be verblized in German as fol-
lows: "der Link passiert, wenn Name von der Datenquelle und dem Datenziel
Ressourcen 42, einer Jaccards Ahnlichkeit hat oder der Link passiert, wenn
die Ressource Namens der Datenquelle und die Ressource Descriptions des
Datenziels 617 einer Trigramss Ahnlichkeit haben". This is due to the fact
that there are many possible word orders for the same sentence in German. However,
the position of the verb should be changed according to the way of ordering the
words. For instance, in the first verbalization, the verb "hat" is in the middle of the
sentence, while in the second verbalization, after changing the order of words, the
verb "hat" moved to the end of the sentence. From a surface realization perspective,
many inflection rules make the German language more complex than English. While
table look-ups for inflected forms can be performed reasonably in the English lan-
guage, it is not feasible for German. The German language has "ein" and "eine" as
indefinite articles and "das", "der", and "die" as definite articles, whereas in the
English language, the as definite article and a/an as indefinite articles satisfy. Accord-
ingly, all articles and pronouns must be inflected according to gender, number, person
and grammatical case (nominative, genitive, dative, accusative), resulting in more
article forms, for instance for indefinite articles in "einen", "einem", "einer",
and "eines". For example, "die Resource Descriptions des Datenziels 61
einer Trigramss Ahnlichkeit", where the indefinite article "eine" changed to
"einer" obeying the grammar of genitive case. This can be seen for definite ar-
ticles as well. For example, "die Resource Descriptions des Datenziels" is
an inflection for the noun "das Datenziel" in the genitive case (i.e. "... des

Datenziels" )

Spanish Verbalization

For the verbalization in the Spanish language, we rely on the implementation
proposed in [RJB17], in which the authors extended the bilingual English-French
SimpleNLG-EnFr realizer. The Spanish realizer is named SimpleNLG-ES. In SimpleNLG-
EnFr, English and French share most of the basic framework, such as document
elements and some grammar rules which are common for both English and Spanish.
The Spanish language is not rich in terms of morphology rules compared to other
close languages. There are two main contractions between the prepositions "a" and
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"de", and the masculine singular determinant "el" that are always used as follows:
"a el" — "al" meaning to the, and the second case is "de el" — "del" mean-
ing of the. As a result, SimpleNLG-ES provides only support for "al" and "del"

The verbalization in Spanish was adapted in a straightforward manner. In our run-

ning example in Listing 1, the Spanish verbalization was generated as follows: "E1
enlace serd generado se La propiedad "name" de la fuente y los recursos

de destino tiene un 42} de Jaccard similitud o el recurso name de la fuente

y el recurso description de destino tiene un 61} de Trigrams similitud".

8.3 Neural-Based LS Verbalization Approach

To improve our verbalization module quality, we devised a neural approach that
relies on standard sequence-to-sequence [BCB15] models for generating text. It
is well known that neural models require a considerable amount of training data
to achieve good performance [ASN19a]. However, to the best of our knowledge,
our work is the pioneer in generating verbalization, i.e., explanations in natural
language from link specifications data. Therefore, there is a lack of training data
for this task. Thus, our neural approach’s intuition was to train the neural network
on the texts generated by our template-based approach (Section 8.2). Using our
template-based approach, we create parallel training data, the source is composed
of the link specifications, and the target refers to the natural language sentences.
Every link specification is aligned to one natural language sentence. We generated
35,000 parallel data. Our neural architecture is a bidirectional RNN-LSTM 2-layer
encoder-decoder model with an attention mechanism [Mou+19]. The training uses
a batch size of 32 and the stochastic gradient descent with an initial learning rate of
0.0002. We set a source and target word embeddings size of 500 and hidden layers
to size 500, dropout = 0.3 (naive). We used a maximum sentence length of 80, a

vocabulary of 50, 000 words, and a beam size of 5.

8.4 Selectivity-Based LS Summarization Approach

We define the selectivity score of a sub-LS L, € L as a function o (L) that returns the
F-measure achieved by the mapping [[L;]] of Ls by considering the mapping [[L]]
generated by the original LS L as its reference mapping.
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We propose a sentence-scoring-based LS summarization approach. The basic idea
behind our summarization approach is to simplify the original LS tree by pruning
LS sub-trees that achieve the minimum selectivity score, i.e., keep the information
loss minimum. Given an input LS L;, our summarization approach first generates
an ordered list L of simplified LSsof L;, where L is ordered by the selective score
of each of its elements in descending order. This step is carried out by iteratively
pruning the sub-tree of L; with the minimum selectivity score.

In cases where a summarization threshold 7 € [0, 1] is given, the output of our
summarization algorithm will be generated by applying our LS verbalization ap-
proach to the LS L € L with the highest selectivity score o(L) < 7. Otherwise, the
output of our summarization approach will be a list of the verbalization of the whole
list L. For instance, assume we have the LS OR(jaccard(x.name,y.name) |0.45,
qgrams (x.name,y.name) |0.67), from which our summarization approach gener-
ates the ordered list L = {L1, Lo}, where L; = (jaccard(x.name,y.name) |0.45)
and L, = (ggrams(x.name, y.name)|0.67). Accordingly, we compute the scores
of 0(L1) = 0.8 and o(L2) = 0.6. Assume we have the summarization threshold
7 = 0.9. Our approach will thus verbalize the link specification L; with the highest
selectivity score o (L) < 7.

Evaluation

We evaluated our approaches for LS verbalization and summarization in order to
elucidate the following questions:

Q@1: Does the LS verbalization help the user to better understand the conditions
sufficient to link the resources in comparison to the original LS?

Q2: How fluent is the generated LS verbalization, i.e., how good is the natural
language description of the LS verbalization in terms of comprehensibility and

readability?

(Y3: How adequate is the generated LS verbalization? That is, how well does the
verbalization capture the meaning of the underlying LS?

@4: How much information do we lose by applying our summarization approach?
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8.5.1 Experimental Setup

To answer the first three questions, we conducted a user study to evaluate our LS

verbalization. We used our approach to verbalize a set of five LSsautomatically

generated by the EAGLE algorithm [NL12] for the benchmark datasets of Amazon-GP,

ABT-

four

BUY, DBLP-ACM, and DBLP-Scholar from [KTR09]. Our user study consists of
tasks, and each task consists of five multiple choice questions'. Altogether,

we have a group of 18 participants in our user study from the DICE? and AKSW?

research groups. In the following, we explain each task:

Task 1:

Task 2:

Task 3:

This task consists of five identical sub-tasks. For each, we present to the survey
participant a LS and three pairs of source and target resources represented
by their respective concise bounded descriptions (CBD)# graph. These pairs
are matched based on the provided LS with different degrees of confidence.
To this end, the participant is asked to find the best-matched pair, and we
measure the response time for each participant.

This task also consists of five identical sub-tasks. We again follow the same
process in Task 1 of presenting the participant with the CBDs of matched
resources, but this time, we give the survey participant the verbalization of the
LSs. Again, we record the response time of each participant.

Within this task, a survey participant is asked to judge the fluency of the
provided verbalization. Here, we follow the machine translation standard
introduced in [Dod02]. Fluency captures how good the natural language
description is, in terms of comprehensibility and readability, according to the
following six ratings: (6) Perfectly clear and natural; (5) Sounds a bit artificial,
but is clearly comprehensible (may contain minor grammatical flaws); (4)
Sounds very artificial, but is understandable (although may contain significant
grammatical flaws); (3) Barely comprehensible, but can be understood with
some effort; (2) Only a loose and incomplete understanding of the meaning
can be obtained, and (1) Completely incomprehensible.

LS They are then asked to judge the adequacy of the verbalization. Here, we
follow the machine translation standard from [Dod02]. Adequacy addresses
how well the verbalization captures the meaning of the LS, according to
the following six ratings: (6) Perfect; (5) Mostly correct, although maybe

IThe survey interface for English can be accessed at https://umfragen.uni-paderborn.de/index.
php/18691671lang=en

https://dice-research.org/

*http://aksw.org/About.html

*https://www.w3.org/Submission/CBD/
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8.5.2

some expressions don’t match the concepts very well; (4) Close, but some
information is missing or incorrect; (3) There is significant information missing
or incorrect; (2) Natural Language (NL) description and LS are only loosely
connected; and (1) NL description and LS are in no conceivable way related.

To answer the last question, we conducted an experiment on the benchmark datasets
from [KTR09]. We ran the supervised version of the WOMBAT algorithm to generate
an automatic LS for each dataset. We again used [SNL17] to configure WOMBAT.
Afterwards, we applied our summarization algorithm to each of the generated LSs.
Because of the space limitation, we present only the verbalization of the original
LS (the ones generated by WOMBAT) as well as the first summarization of it for
the Amazon-GP and DBLP-Scholar datasets in Table 8.1. The complete results are
available on the project website®. To evaluate the verbalization of German, we
reformulated the same 4 Tasks but the participants were only 8 participants. The
survey can be accessed via . To evaluate our verbalization approach for Spanish,
we conducted a survey similar to the ones created for English and German; however,
we have only two experts in LD who can speak Spanish.

Results and Discussion of English Language Verbalization

After collecting all the responses from our user study, we filtered out those survey
participants who were unlikely to have thoroughly executed the survey (i.e., the ones
who took notably less time than the average response time of all other participants)
or who were likely distracted while executing it (i.e., the ones who took notably
more time than the average time of all other participants). This process reduced
the number of valid participants to 16. Our final accepted time window was 3.5-38
minutes for Tasks 1 & 2. Accordingly, we start our evaluation by comparing the user
time required to find the best-matched source-target pair using LS (Task 1) against
using the verbalization of the provided LS (Task 2).

As shown in Figure 8.1, the average user response time with LS verbalization is less
than the response times for LS in the 5 LSs in our user study. On average, using
verbalization is 36% faster than using LS. Additionally, we also compared the error
rates of participants in Tasks 1 & 2, i.e. the number of incorrect answers per question.
As shown in Figure 8.2, we have a higher error rate using verbalization (5% mean
squared error) than when using LS. These results show that using LS verbalization

“https://bit.1ly/2XKDpKZ
®The survey for German language verbalizationhttps : //umfragen.uni-paderborn.de/index.php/
28811971ang=en
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decreases the average response time, which is an indicator that our participants
were able to better understand underlying LS using verbalization. Still, using the LS
verbalization does not always lead our participants to select the correct answer. This
is due to the complexity involved in the underlying LSs, which leads to verbalization
that is too long. This answers ;. Using our simplification approach on the same LS
verbalization leads our participants to achieve better results.

The results of Task 3 (see Figure 8.3) show that the majority of the generated
verbalizations (i.e., the natural language descriptions) were fluent. In particular,
87% of the cases achieved a rating of 3 or higher. On average, the fluency of the
natural language descriptions is 4.7 & 0.4. This answers Q.

For Task 4, the average adequacy rating of our verbalization was 4.75 4+ 0.6 (see
Figure 8.4), which we consider to be a positive result. In particular, 40% of all
verbalizations were judged to be perfectly adequate, and 83% of the cases achieved
a rating of 3 or higher. This answers Q3.

160+ [] Using LS
- 140 B Using verbalization
120
100
80-
60
40 -
20
0

User's Time in Sec

LS1 LS2 LS3 LS4 LS5

Fig. 8.1.: Average response time of our user study for the English language.

As we can see in Table 8.1, applying our summarization approach reduces the
verbalization of the original LS to more than half of its original size. At most, our
summarization approach loses an F-Measure of 12% of the original description,
which we consider a fair price given the high summarization rate. This clearly
answers our last question.

Results And Discussion of German Language Verbalization

As shown in Figure 8.5, the average user response time with LS verbalization is less
than the ones for LS in 80% of the LSsused in our users’ study. On average, using
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Correct Answers
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Fig. 8.2.: Correct answers of our user study for the English language.
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Fig. 8.3.: Fluency results for the English language.

verbalization is 16% faster than using LS. In addition, we measured the error rates
of participants in Tasks 1 & 2, i.e. the number of incorrect answers per question.
Since there are fewer participants, we did not filter out any survey participants, for
instance, those who are unlikely to have executed the survey in a thorough manner
(i.e., the ones who might take clearly less time than the average response time of all
other participants) or who are likely distracted while running it (i.e., the ones who
might spend notably more time than the average time of all other participants). As
shown in Figure 8.6, using verbalization, we have a higher error rate (1.6% mean
squared error) than when using LS. These results indicate that our participants were
able to better understand underlying LS using verbalization. However, using the
LS verbalization does not always lead our participants to select the correct answer.
This is due to the fact that the underlying LSsare very complex, which makes the
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Tab. 8.1.: Verbalization of different summarization of an LS for the DBLP-SCHOLAR and
Amazon-GP dataset with respective F-measures in the English language.

Dataset F- Verbalization
measure
DBLP-SCHOLAR 1 The link will be generated if the title of

the source and the target resources have a
667 of Cosine similarity

Amazon-GP 1 The link will be generated if the
resource’s title of the source and the
resource’s name of the target have a 48}
of Cosine similarity or the description of
the source and the target resources have a
43%, of Cosine similarity or the resource’s
title of the source and the resource’s
description of the target have a 43), of
Jaccard similarity

Amazon-GP 0.97 The 1link will be generated if the
resource’s title of the source and the
resource’s name of the target have a 48
of Cosine similarity

verbalization too long. This answers ;. For Task 3 (see Figure 8.7), the results
show that the bulk of the generated verbalizations (i.e., the natural language text)
were fluent. In particular, 90% of the cases achieved a rating of 3 or higher. The
average fluency of the natural language descriptions is 4.3 + 0.06. This answers Q».
The results of Task 4 show that the average adequacy rating of our verbalization is
4.8 +0.52 (see Figure 8.8), which we recognize as a positive result. Precisely, 42.5%
of all verbalizations were judged to be perfectly adequate and 92.5% of the cases
achieved a rating of 3 or higher. This answers ()3. In general, the verbalization for
the German language is more difficult compared to English or Spanish because of
the natural difficulty of the German language itself; however, our approach is able
to generate text with an average adequacy rating of 4.8 + 0.52 and the average of
the fluency is 4.3 £ 0.06.

To answer the last question, )4, in Table 8.2, we can see that applying our sum-
marization approach to the German language can reduce the verbalization of the
original LS to more than half of its original size. An F-measure of 12% of the original
description is the highest loss of our summarization approach. We consider a fair cost
given the high summarization rate. Table 8.3 shows the results of summarization
applied to the Spanish language. From our summarization results, we can conclude
that our summarization approach works independently from the language.
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Fig. 8.4.: Adequacy results for the English language.
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Fig. 8.5.: Average response time of our user study for the German language.
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Fig. 8.6.: Correct answers of our user study for the German language.
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Fig. 8.7.: Fluency results for the German language.
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Fig. 8.8.: Adequacy results for the German language.

Results and Discussion of Neural-based Verbalization

As no previous work, to the best of our knowledge, investigated the generation of
natural language from link specifications, our goal was to identify the challenges
for this new line of research. We reckon that the training data is a silver standard
because it was not peer-reviewed manually before creating the test data. However,
it provided many insights and challenges that the research community needs to
address to address this task. Table 8.4 displays the results of our model in the
automatic evaluation standard metrics, BLEU, METEOR, and chrf+ +.

The results of the automatic metrics show that our model was capable of generating
fluent texts. However, we looked more in-depth at the generated texts and investi-
gated the sentences manually. We perceived that some metrics, such as JaroWinkler
and Ngram were rarely verbalized, while Jaccard and Levenstein were frequently
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Tab. 8.2.: Summarization of an LS for the DBLP-SCHOLAR and Amazon-GP datasets together
with respective F-measures in the German language.

Dataset F- Verbalization
measure
DBLP-SCHOLAR 1 "Der Link passiert, wenn Title von der

Datenquelle und dem Datenziel Ressourcen
66J, einer Cosines Ahnlichkeit hat oder

der Link passiert, wenn die Ressource
Titles der Datenquelle und die Ressource
Authorss des Datenziels 43), einer Jaccards
Ahnlichkeit haben oder der Link passiert,
wenn die Ressource Authorss der Datenquelle
und die Ressource Titles des Datenziels 43
einer Trigrams Ahnlichkeit hat"

DBLP-SCHOLAR 0.88 "Der Link passiert, wenn Title von der
Datenquelle und dem Datenziel Ressourcen
66% einer Cosines Ahnlichkeit hat"

Amazon-GP 1 Der Link passiert, wenn die Ressource
Titles der Datenquelle und die Ressource
Namens des Datenziels 48} einer Cosines
Ahnlichkeit haben oder der Link passiert,
wenn Description von der Datenquelle und
dem Datenziel Ressourcen 43} einer Cosines
Khnlichkeit hat oder der Link passiert,
wenn die Ressource Titles der Datenquelle
und die Ressource Descriptions des
Datenziels 43% einer Jaccards Ahnlichkeit
hat

Amazon-GP 0.97 Der Link passiert, wenn die Ressource
Titles der Datenquelle und die Ressource
Namens des Datenziels 48}, einer Cosines
fhnlichkeit haben

generated as they appear several times in the training data. This shows the need to
generate diverse training data with a balanced distribution of tokens for training
the neural models. Additionally, the target side’s vocabulary was small, with only 48
different tokens, while the source side, which is regarded as the link specification,
contains 10, 000 different tokens. Therefore, we envisage that the text generation
for link specification is regarded as a low-resource translation problem. Thus, we
can apply well-known Machine Translation (MT) strategies for dealing with the
data sparsity problem in future work, such as Byte-per-encoding (BPE) [SHB16] and
copy-mechanism [LPM15]. Copy-mechanism tries to substitute the Out-of-vocabulary
(O0OV) words with target words that have the highest attention weight according
to their source words. When the words are not found, it copies the source words
to the position of the not-found target word. BPE is a form of data compression
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Tab. 8.3.: Summarization of an LS for the DBLP-SCHOLAR and Amazon-GP datasets together
with respective F-measures in the Spanish language.

Dataset F- Verbalization
measure
DBLP-SCHOLAR 1 "El enlace sera generado se La propiedad

title de la fuente y los recursos de
destino tiene un 667 de Cosine similitud o
el recurso title de la fuente y el recurso
authors de destino tiene un 43) de Jaccard
similitud o el recurso authors de la fuente
y el recurso title de destino tiene un 43}
de Trigram similitud"

DBLP-SCHOLAR 0.88 "El enlace sera generado se La propiedad
title de la fuente y los recursos de
destino tiene un 66} de Cosine similitud"

Amazon-GP 1 El enlace serd generado se el recurso title
de la fuente y el recurso name de destino
tiene un 48), de Cosine similitud o La
propiedad description de la fuente y los
recursos de destino tiene un 43} de Cosine
similitud o el recurso title de la fuente y
el recurso description de destino tiene un
43}, de Jaccard similitud

Amazon-GP 0.97 El enlace serd generado se el recurso title
de la fuente y el recurso name de destino
tiene un 48J, de Cosine similitud

Tab. 8.4.: Results of BLEU, METEOR, and chrf+ +

Model BLEU METEOR chrf++
LSNeural 32.05  23.41 43.38

that iteratively replaces the most frequent pair of bytes in a sequence with a single,
unused byte.
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9.1

Explainable Integration of
Knowledge Graphs Using
Large Language Models

Preamble: This chapter is based on Ahmed et al. [Ahm+23] that introduced
NMV-LS Linked KGs to build the backbone of many data-driven applications, such
as search engines, conversational agents, and e-commerce solutions. Declarative LD
frameworks use complex LSsto express the conditions under which a link between
two resources can be deemed to exist. However, understanding such complex LSsis a
challenging task for non-expert users of LD frameworks. In [Ahm+23], we address
this drawback by devising NMV-LS, a language model-based verbalization approach
for translating complex LSsinto natural language. NMV-LS relies on the results
of rule-based link specification verbalization to apply continuous training on T5,
an LLM based on the Transformer architecture. We evaluated NMV-LS on English
and German datasets using well-known machine translation metrics such as BLUE,
METEOR, ChrF++, and TER. Our results suggest that our approach achieves a
verbalization performance close to that of humans and outperforms state-of-the-art

approaches.

Motivation

Heterogeneous KGs that obey the principles of linked data are increasing in number.
However, relatively few heterogeneous KGs are actually linked. The current LOD
statistic! shows that there are 1301 KGs having 395.12 billion triples and only 2.72
billion links. Therefore, discovering links among these KGs is a major challenge to
achieving the LOD vision?. Moreover, the linked KGs build the backbone of various
data-driven applications, including information retrieval, recommender systems,
search engines, question answering systems, and digital assistants.

'Release: 05.05.2021, accessed 24.11.2021 https://lod-cloud.net/#about, retrieved using
https://github.com/lod-cloud/lod-cloud-draw/blob/master/scripts/count-data.py
https://www.w3.org/DesignIssues/LinkedData.html
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Declarative LD frameworks are used to link entities among KGs. These frameworks
use complex LSsto express the conditions required to declare a link between two
resources. For example, state-of-the-art LD frameworks such as LIMES [Ngo+21]
and SiLK [IJB11] adopt a property-based computation of links between entities. For
configuring LD frameworks, the user can either (1) manually enter an LS or (2) use
machine learning for the automatic generation of LSs. In both cases, a domain expert
must manually write LS or set the configuration of machine learning algorithms
that are used to generate LS. Furthermore, LD experts can easily understand the
LS produced by such algorithms and modify it if needed. However, most lay users
lack the experience to proficiently interpret those LSs. Due to this lack of experience,
these users have difficulty when they i) check the correctness of the generated LS,
ii) customize their LS, or iii) decide between possible interpretations of their input
in an informed manner.

The aforementioned challenges can be seen as a bottleneck problem that degrades
the effort and potential of ML algorithms to create such LSs automatically. Therefore,
the explanation of link discovery-based artificial intelligence has become increasingly
popular. For example, we begin our efforts in explaining the LSsin Chapter 8, where
we have introduced [ASN19a], a bilingual rule-based approach to verbalize LS, thus
addressing the explainability of LD. For example, we begin our efforts to explain
the LSsin Chapter 8, where we have introduced a bilingual rule-based approach to
verbalize LS, thus addressing the explainability of LD [ASN19a]. Furthermore, in
Chapter 8, we extend the previous approach in [ASN19a] and devised a multilingual
rule-based approach that includes English, German, and Spanish. We also presented
a first attempt to create neural architecture, which is a bidirectional RNN -LSTM
two-layer encoder-decoder model with an attention mechanism [MWN18]. However,
our neural model did not generalize because the vocabulary was very small and not
diverse, Ahmed et al. [Ahm+21].

In this Chapter (Chapter 9), we alleviate the vocabulary problem found in Ahmed et
al. [Ahm+21] (see Chapter 8) by proposing a language-based LS approach, named
NMV-LS. To this end, we propose a pipeline architecture consisting of two stages.
The first stage is a rule-based verbalizer that generates the necessary data to feed
the second stage. The second stage relies on a few-shot learning approach by fine-
tuning an LLM, in our case T5. The underlying idea of using a language model is to
verbalize LS from different types of systems only using a few examples. For example,
LSs from LIMES [Ngo+21] differ from the ones used in SiLk [IJB11]. Furthermore,
the second stage contains a standard two-layer encoder-decoder architecture using
different RNN cells such as GRU, LSTM, BiLSTM, and transformer trained with more
diverse data. Figure 9.1 shows the proposed architecture.
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9.2

To evaluate NMV-LS , we designed two settings. In the first setting, we used two
datasets to assess the first part of our approach (i.e., standard encoder-decoder
architectures). The first dataset contains 107 thousand English pairs, and the
second dataset contains 73 thousand German pairs. It should be noted that each
pair is nothing but an LS and its verbalization. In the second setting, we used
human-annotated data for evaluating the second part of our approach (i.e., few-shot
learning using the T5 model). We created human-annotated data from LIMES with
only 100 pairs, human-annotated manipulated data from LIMES with only 8 pairs,
and human-annotated data from SILK with only 8 pairs. It is important to note that
we evaluated our second part only in English.

Our main contributions are as follows.

* We present NMV-LS, a language model-based LS verbalization approach which
relies on a few-shot learning strategy.

* We propose an approach that is capable of verbalizing different types of LS,
thus mitigating the high efforts to create linguistic rules for each system.

* We propose an approach that is easily extensible to other languages.

The rest of this chapter is structured as follows. First, we give an overview of our
approach underlying neural machine verbalization LS in Section 9.2, followed by the
evaluation of our approach with respect to the automatic evaluation standard metrics
BLEU, METEOR, ChrF++, and TER. We used BENG [Mou+20] to automatically
measure the performance of our approach in Section 9.3.

Approach

NMV-LS consists of two stages. The first stage is the rule-based verbalizer introduced
in [Ahm+21] to generate silver data for the second stage, with blue background
in Figure 9.1. The second stage is shown with a green background in Figure 9.1.
The second stage contains two independent parts. The first part of Stage 2 is based
on standard encoder-decoder architectures, such as two layers seq2seq with GRU,
LSTM and BiLSTM, and transformer. The second part of stage 2 applies the concept
of few-shot learning and is based on the T5 model. In Figure 9.1, @) means that the
data is from LIMES silver data, (2) means that the training data are a combination
of LIMES silver data and human-annotated LIMES silver data, 3) is a combination
of @ and human-annotated manipulated LIMES LS, and @ is a combination of 3)
and human-annotated SiLK LS. In @), the human annotation is applied only to
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the verbalization of LS without changing LS. Manipulated LIMES LS means that we
altered the structure of LIMES LS. Listing 1 shows an example of LIMES silver data,
Listing 2 is an example of LIMES human-annotated data, Listing 3 is an example
of LIMES human-annotated manipulated data, and Listing 4 is an example of SILK
human-annotated data.

Source =
OR (mongeElkan(x.title,y.title) |0.45,
cosine(x.title,y.streetName) [0.37)

Target =

A link will be generated if

- the titles of the source and the target have a Mongeelkan similarity of
45% or

- the title of the source and the streetName of the target have a Cosine
similarity of 37%

Listing 1: LIMES silver data: A pair that contains an LS and its verbalization in English.

Source=

AND (AND(ratcliff (x.givenName ,y.givenName) |0.0,AND(OR(jaroWinkler (x.
givenName ,y.authors) [0.37,cosine (x.givenName ,y.givenName) [0.0) 0.0,
ratcliff (x.givenName ,y.givenName) |0.37)[0.37) 0.0, jaroWinkler (x.
givenName ,y.givenName) |0.37)

Target= a link will be produced supposing that the givenNames of the source
and the target have a Ratcliff similarity of 0% or the givenName of
the source and the author of the target have a Jarowinkler similarity
of 37% or the givenNames of the source and the target have a Cosine
similarity of 0% and a Ratcliff similarity and a Jarowinkler similarity
of a 37%

Listing 2: LIMES human-annotated data: A pair that contains an LS and its verbalization in
English.

Rule-Based Verbalizer

The rule-based verbalizer in [Ahm+21] is based on Reiter & Dale NLG architec-
ture [RD0OO]. In [Ahm+21], real datasets (knowledge graphs) are used to generate
LSs using WOMBAT [SNL17]. Since the number of properties used in [Ahm+21]
is limited, it results in less diverse LSs. Our goal is to add more proprieties into
each generated LSs. Therefore, in this work, we create ten templates to generate
LSsrelying on the rules defined in WoMBAT. The complexity of a LS is formally
defined as the number of combined atomic LS, so that an LS is more complex when
it contains a higher number of combined atomic LS. For example, the template
(A1 U Ay) M (AsL Ay) is less complex than (A; L As) M (As L Ag) M(As U Ag), where

A; is atomic LS.
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1 Source=
2 trigrams (x.givenName, y.name) |0.8 AND cosine(x.title, y.label)|0.7 Or
levenshtein(x.streetAdress, y.locationAdress)|0.9

3
4 Target=
5 The link will be generated when the givenname of the source and the name of
the target have a trigrams similarity of 80\% and the title of the
source and the label of the target have a cosine similarity of 70\% or
the streetAdressenname of the source and the locationAdress of the
target have a levenshtein similarity of 90%
Listing 3: LIMES human-annotated manipulated data: A pair that contains an LS and its
verbalization in English.
1 Source=
2 min( mongeelkanSimilarity(?x/p:producer, ?y/p:producer), ratclifDisitance(
x/p:city,y/p:city))
3
4 Target=
5 The link will be generated if the labels of the source and the target have

minimum mongeelkan similarity or the cities of the source and the
target have minimum ratclif distance

Listing 4: SILK human-annotated data: A pair that contains an LS and its verbalization in
English.

9.2.2 Standard Encoder-Decoder Architectures

As we can see in Figure 9.1, the first part of the second stage in our approach
deploys a set of standard encoder-decoder architectures. Our first part of the
second stage is motivated by the advance in sequence-to-sequence neural translation,
which belongs to a family of encoder-decoder architectures [SVL14a]. The encoder
neural network reads and encodes a source sentence into a vector. The decoder
translates the encoded vectors into a sequence of symbols, i.e., words. The goal
here is to maximize the probability of a correct translation by jointly training the
entire encoder-decoder system using source sentences. We rely on an RNN for
both encoding and decoding [Cho+14b], with the attention mechanism introduced
in [BCB15]. We deploy RNN-GRU -2 layer and RNN -Bi/LSTM-2 layer architectures
to perform the verbalization. The first architecture is based on LSTM [HS97], while
the second architecture is based on GRU [Cho+14b]. Given a sequence of tokens
(i.e., words) x = (x1,--- ,z7) as input in the time step ¢ and a sequence of tokens
y = (y1,...,yr) as output, our encoder-decoder is jointly trained to maximize the
probability of a correct verbalization. Where x is the representation of LS and y is
the representation of natural text verbalized by a trained decoder. The length of x
may differ from the length of y. For our proposed NMV-LS (i.e., part one of stage
two), we use additive attention (as in [BCB15]) with the conditional probability
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Fig. 9.1.: LS Neural Machine Verbalization System.

p(vily1s .- ¥i-1,%) = g(yi—1, si, ¢i), where s; is an RNN decoder’s hidden state at
time i. Formally, s; = f(si—1,%i—1,¢;) (see [Cho+14b] for more details). In this
part of our approach, we also deploy a transformer. Transformer is a sequence-to-
sequence architecture that relies entirely on the attention mechanism to transform
one sequence into another with the help of a two-part encoder and decoder without
implying any recurrent networks (GRU, LSTM, etc). The architecture consists of
multiple identical encoders and decoders stacked on top of each other (more details
in [Vas+17]). We use our rule-based verbalizer to generate silver data to train our
models. However, before feeding these data, we need to apply some preprocessing
techniques.

Few-shot Learning Using the T5 model

As depicted in Figure 9.1, the second part of the second stage in our approach is
based on a few-shot learning strategy that involves fine-tuning an LLM.

To address the vocabulary issue in Ahmed et al. [Ahm+21], we base our ap-
proach on a few-shot learning approach by fine-tuning an LLM such as the T5
model [Raf+19]. T5 is a pre-trained model for text-to-text generative multitasking
based on transformer encoder-decoder and is pre-trained on a large pre-training
dataset (C4) [Raf+19]. Using the T5 pre-trained model allows the model to learn
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9.3.2

the structure and pattern of natural language from a vast quantity of diverse, real-
world text data. This can assist the model in learning to comprehend and generate
high-quality human-like text, which is useful for a variety of natural language pro-
cessing tasks. In addition, the T5 pre-trained model can frequently be fine-tuned for
specific tasks, particularly in our case, to learn the complexity of LS and generate
verbalizations of LS with additional data and training time.

To use the T5 pre-trained model for few-shot learning in our model, as shown in
Figure 9.1, we fine-tune it on four different small training datasets, as detailed in
Section 9.3.3, where those datasets were designed based on the LSsof LIMES. The
goal of the model is to generalize the verbalization of a wide range of LSs. Given a
sequence of LS tokens as input represented by LS = {wy, we, ..., wy} and mapped
into sequence embeddings before being fed into the encoder of T5, which outputs
a sequence of embedding vectors. Furthermore, the T5 decoder accepts as input
both encoder outputs and previously generated tokens from the decoder during the
auto-regressive decoding. Moreover, linear transformation and softmax functions
are applied to the decoder outputs. In addition, beam search decoding [SVL14b] is
utilized to generate the verbalization LS from the model outputs.

Evaluation

Data

Since there are no gold standard datasets for an NM verbalization task to translate
link specification into natural languages, we generated silver standard datasets
using the rule-based approach introduced in [ASN19a] and [Ahm+21]. To evaluate
the standard encoder-decoder architecture, we generated three datasets with the
following sizes: 107k pairs (English) and 73K pairs (German). Table 9.1 shows the
statistical information on the data. To evaluate the fine-tuning of T5, we combined
10k pairs (English) from 107k pairs (English) with 100 pairs of human-annotated
data from LIMES, 8 pairs of human-annotated manipulated data from LIMES, and
only 8 pairs of human-annotated data from SILK.

Evaluation Metrics

To ensure consistent and clear evaluation, we evaluate our approach with respect
to the automatic evaluation standard metrics BLEU [Pap+02], METEOR [BLO5],
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Tab. 9.1.: Statistics about our datasets used in the experiments, where V. is the maximum
verbalization length (in words) and V is the verbalization length.

Data V.. # Records V <50 51 <V < 100 V > 100
EN 107 107424 3744 (3.49%) 88320 (82.22%) 15360 (14.30%)
DE 125 73008 3888 (5.33%) 48384 (66.27%) 20736 (28.40%)

ChrF++ [Pop17] and TER [Sno+06]. BLEU [Pap+02] is a popular N-gram-based
metric that uses a modified precision metric to compare the machine translation
(MT) output with the reference translation. The precision is computed by measuring
the similarity of N-gram (n = 1, ..., 4) at the word level. METEOR [BLO5] is another
metric based on N-grams and is dependent on semantic features to overcome the
semantic weakness of BLEU by considering the synonym overlap through a shared
WordNet synset of words. These semantic features improve the quality of the cor-
relation of the output and the reference of the system. Along with exact standard
word (or phrase) matching, METEOR has additional features, i.e., stemming and
paraphrasing. ChrF++ [Pop17] shows the use of character n-gram precision and
recall (F-score) for automatic evaluation of MT outputs. ChrF+ + has shown a good
correlation with human rankings of different MT outputs. Moreover, ChrF+ + is
language and tokenization independent. TER [Sno+06] measures the minimum
number of edits required to change a system output so that it matches exactly a ref-
erence translation. The edits include deletions, insertions, substitutions, and shifts of
words, as well as capitalization and punctuation. TER score is calculated by dividing
the number of edits by the average referenced words. We use BENG [Mou+20] to
automatically evaluate our approach. BENG is an evaluation tool for text generation
that abides by the FAIR principles and is built upon the successful benchmarking
platform GERBIL [Usb+15].

Experimental Setup

As we can see in Figure 9.1, our approach consists of two stages. The first stage is
the rule-based verbalizer and the second stage contains two parts. The first part is
based on standard encoder-decoder architectures and the second part is based on
the few-shot learning method by fine-tuning an LLM such as T5. However, the first
stage feeds the two parts of the second stage. For example, ) means that the data
is from the LIMES silver data generated by the first stage of NMV-LS, which is the
rule-based verbalizer. (I) feeds both two parts of the second stage of our pipeline
architecture. For evaluating the first part of the second stage in our approach (i.e.,
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standard encoder-decoder architectures), we conducted three sets of experiments
for both English and German to answer the following research question:

Q1. Does the complexity of LS impact the performance of our NMV-LS in case of
training standard encoder-decoder architectures?

For evaluating our second part of the second stage in our approach (i.e., few-shot
learning using the T5 model), we conducted one set of experiments for English to
answer the following research questions:

Q2. Does fine-tuning an LLM improve the verbalization of our NMV-LS system?
Q3. Does fine-tuning a LLM help to generalize different LSsfor verbalization?

Q4+ How large is the impact of using human-annotated data on the quality of
verbalization compared to using silver data?

Experiment Set 1, English Language (107k dataset). We evaluated a GRU /LSTM/-
BiLSTM-2 layers encoder-decoder on an English dataset consisting of 107k pairs
(each pair contains an LS and its verbalization in English or German), split into 70%
for training, 20% for validation, and 10% for testing. For all experiments, we set
the parameters as follows: The learning rate is {0.1, 0.01, and 1}, the dropout is
0.1, the embedding dimensionality is 256, the epochs number is {100, 1000, and
10000}, the clipping value is 0.25, the SGD optimizer with negative log-likelihood
loss function, and the maximum length of a sentence is {107 and 187 tokens}. The
max length of a sentence means that model can filter out all the pairs that have
a length greater than the max length. For LSTM/BILSTM, the batch size is 256.
The selection of parameters is manually adjusted. We run all GRU on colab and
LSTM/BILSTM on a local server with 1 GPU, 16 CPUs, and 32 GB of memory. We
use the Pytorch library to implement our model. The results are listed in Table 9.2.
For these results, we set the learning rate to 0.01 in case of using GRU and to 0.1
in the case of using LSTM/BiLSTM. We conducted additional experiments with the
learning rate set to 1 to study the impact of the learning rate on the results using
LSTM/BILSTM. The results are provided in Table 9.4.

Experiment Set 2, German Language. We evaluated the GRU /LSTM/BILSTM-2
layers encoder-decoder on the German dataset containing only 73k pairs. LSsare
also complex in terms of atomic LSs. For instance, an LS can contain up to 6 atomic
LSsA; combined using operators Ll and M. The results of the experiments are shown
in Table 9.3. The results in Table 9.3 are obtained with the learning rate set to 0.01
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for GRU and to 0.1 for LSTM/BIiLSTM with a batch size of 265. We conducted more
experiments with the learning rate set to 1 to study the impact of the learning rate
on the results. The results are presented in Table 9.5.

Experiment Set 3, Transformer. We implemented our transformer model using the
Pytorch framework with the default parameters, i.e., the number of epochs is 30,
the batch size is 256, and the max sentence length is {107, 187}. The results are
listed in Table 9.6.

Experiment Set 4, Few-shot learning on T5. To address the issues raised by em-
ploying conventional architectures, such as overfitting and limited vocabulary size
as we have seen in previous experiments, we implemented few-shot learning of
text generation on the T5 model with a small number of training samples. This
experiment is designed with four distinct sets of few-shot training data and three
distinct sets of testing data, as shown in Table 9.7. In the first experiment, we
fine-tuned the T5 model using a training dataset of 10k pairs, each consisting of an
LS and its English verbalization from LIMES silver data (D). In the second experiment,
we fine-tuned T5 using the previous training dataset in combination with 70 pairs of
LS and their human-annotated verbalizations from the LIMES silver data ). In the
third experiment, the training dataset from the second experiment is combined with
human-annotated manipulated LIMES LS ). By modifying the formula, Manipulated
LIMES LS is defined differently from the previous LS. Additionally, we fine-tuned
the T5 model on the training dataset in an effort to determine whether the model
can improve the verbalization of manipulated LIMES LS. In the last experiment, we
fine-tuned the T5 model using the training data from the previous experiment in

Tab. 9.2.: BLEU, METEOR, ChrF+ +, and TER scores for the English language, evaluated
on the 107k dataset; the learning rate is 0.01 for GRU and 0.1 for LSTM/BILSTM.

Model  Length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

GRU 107 100 35.92 0.36 0.36 0.66 0.69
GRU 107 1000 41.05 041 0.39 0.71 0.63
GRU 187 1000 22.07 0.22 0.22 0.44 0.56
GRU 107 10000 99.22 0.99 0.78 0.99 0.01
GRU 187 10000 88.81 0.89 0.60 0.93 0.05
LSTM 107 100 82.61 0.83 0.65 0.92 0.27
LSTM 187 100 77.31 0.77 0.58 0.87 0.40
BiLSTM 107 100 85.37 0.85 0.64 0.91 0.26
BiLSTM 187 100 79.23 0.79 0.59 0.89 0.34
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Tab. 9.3.: BLEU, METEOR, ChrF++, and TER scores for the German language evaluated on
the 73K dataset. The learning rate is 0.01 for GRU and 0.10 for LSTM/BILSTM.

Model Length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

GRU 107 100 41.84 0.42 0.43 0.74 0.66
GRU 107 1000 49.75 0.50 0.47 0.79 0.59
GRU 187 1000 54.01 0.54 0.40 0.71 0.38
GRU 107 10000 99.98 1.00 0.90 1.00 0.00
GRU 187 10000 79.52 0.80 0.54 0.84 0.32
LSTM 107 100 60.40 0.60 0.44 0.70 0.45
LSTM 187 100 76.67 0.77 0.63 0.86 0.49
BiLSTM 107 100 81.90 0.82 0.59 0.86 0.21
BiLSTM 187 100 81.30 0.81 0.59 0.85 0.30

Tab. 9.4.: BLEU, METEOR, ChrF+ +, and TER scores for the English language evaluated on
the 107K dataset with the learning rate set to 1.00.

Model length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

LSTM 107 100 83.01 0.83 0.61 0.86 0.22
LSTM 187 100 68.06 0.68 0.67 0.89 0.55
BiLSTM 107 100 94.45 0.94 0.70 0.96 0.08
BiLSTM 187 100 86.18 0.86 0.66 0.89 0.16

combination with SILK LS @). All experiments are built using the Pytorch lightning
framework, with the following hyperparameters such as the number of epochs being
five and the learning rate being 3e-5 and used beam search decoding to generate
verbalization LS with parameters, e.g., max length=256, num beams=15, no repeat
ngram size=6. In addition, t5-base is utilized as a pre-trained model. All mode
LS based on few-shot learning are evaluated using the Table 9.7 test set, which is
designed to investigate the effect of each training dataset on the model’s ability to
improve the generalization quality of LS verbalization.

Tab. 9.5.: BLEU and METEOR, ChrF+ +, and TER scores for the German language evaluated
on the 73K pairs dataset with the learning rate set to 1.

Model Length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

LSTM 107 100 87.19 0.87 0.66 0.90 0.13
LSTM 187 100 96.67 0.97 0.82 0.99 0.06
BiLSTM 107 100 91.74 0.92 0.71 0.93 0.07
BiLSTM 187 100 99.58 1.00 0.85 1.00 0
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Tab. 9.6.: BLEU, METEOR, ChrF+ +, and TER scores for German and English evaluated on
the 73K and 107K pairs datasets using Transformers.

Data Length Iter BLEU BLEU-NLTK METEOR ChrF++ TER
107K (En) 107 30 90.89 0.91 0.67 0.98 0.12
107K (En) 187 30  90.92 0.91 0.67 0.98 0.12
73K (De) 107 30 89.98 0.90 0.66 0.97 0.15
73K (De) 187 30  79.11 0.79 0.60 0.93 0.29

Tab. 9.7.: BLEU, METEOR, ChrF++, and TER scores for the English language using the
Fine-tuned T5 model leveraging few-shot learning.

Train set  Test set BLEU BLEU-NLTK METEOR ChrF++ TER
(@) LIMES original LS 76.27 0.76 0.54 0.87 0.15
(@) SILK LS 3426 0.35 0.26 0.54 0.71
() LIMES original LS 7791 0.78 0.54 0.89 0.13
@ LIMES Manipulated LS 45.76  0.46 0.37 0.68 0.55
(©) LIMES Manipulated LS 63.64 0.64 0.43 0.80 0.48
(©) SILK LS 3493 0.35 0.27 0.54 0.67
@ SILK LS 36.58 0.37 0.34 0.59 0.62

9.3.4 Results and Analysis
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To answer ()1, we set the maximum length of a sentence to be either 107 words
(tokens) or 187 words (tokens) based on the statistics in Table 9.1. This means that
we filter out all verbalized sentences that have a length greater than 107 words
for experiments where the maximum length of a sentence is 107 words. We also
removed all verbalized sentences that exceed 187 words for experiments where
the maximum sentence length was set at 187 words. In Table 9.2, we can observe
that NMV-LS using GRU achieves a better BLEU score, up to 99.22 (Table 9.2). In
Table 9.3, we can observe that the BLEU score is up to 99.98, obtained from our
model using GRU when the length of a verbalized sentence is also less than or equal
to 107. In Table 9.4, the BLEU score is 94.45 using BiLSTM with a max length of 107.
Furthermore, Table 9.3 and Table 9.5 show that the NMV-LS model achieves better
scores when the length of a verbalized sentence is 187. For example, the BLEU score
in the 73k German dataset is 76.67 using LSTM and 99.58 using BiLSTM (Table 9.3
and Table 9.5). The reason is that the 73k German dataset contains complex LSs,
and 28.40% of their verbalizations have sentence lengths greater than 100 words,
and these sentences will be filtered out. In turn, this will affect the training process,
especially since the size of the dataset is only 73k pairs, resulting in decreased
performance. From all these observations, we conclude that the complexity of LS
plays a crucial role in the performance of our NMV-LS model. Furthermore, GRU
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is more sensitive to the complexity of LS than LSTM/BILSTM. LSTM/BILSTM can
handle very complex LSsand improve performance.

To answer ()5, we analyzed the results in Table 9.7. First, LIMES original LS (i.e., it
means that LS generated by LIMES) is used to evaluate the second part of NMV-LS.
Our findings indicate that our technique is capable of generating verbalization at
the human level and outperforms previous approaches. For example, the BLUE
score is 76.27, ChrF++ is 0.87, and METEOR is 0.54. Note that we fine-tuned our
model with only (. In other words, we only used the silver data LIMES generated
by the first stage of NMV-LS (i.e., rule-based verbalizer) to fine-tune our model. This
answers (0.

To answer D3, we implemented the fine-tuned model in () LIMES silver data and
evaluated on SILK LS as the most extreme case because LIMES & SILK have different
rules and grammars to build their LSs. The goal is to study to what extent our model
can be generalized to verbalize LSs in different formats and from different systems
(e.g., SILK). The results in Table 9.7 show that our model achieves a BLUE score
of 34.26. Another case is that we fine-tuned NMV-LS using @ and tested on LIMES
manipulated LSs. In this case, NMV-LS scores 45.76 BLUE, 0.68 ChrF++, and 0.37.
Another case is fine-tuning our model on training data ) and evaluating it on SILK.
From the results, there is no improvement compared to the result generated by the
model fine-tuned on () and tested on SiLK. This can be justified as both @) and @
do not contain any information about SiLK. To further investigate this, we added a
few samples of SILK LSs to create @. To this end, we use @ for fine-tuning NMV-LS
and then evaluate on SiLK. This improved performance by 1.65. We see these results,
in all cases, as a big milestone toward generalizing our approach to verbalize LSs
produced by other systems.

To answer ()4, we implemented a couple of cases. In the first case, we fine-tuned
NMV-LS using @) and evaluated it on the LIMES original LSs. The results in Table 9.7
indicate that human-annotated verbalization of an LS improves the verbalization
very slightly. For example, the BLUE score is 77.91 and is 1.65% higher than the BLUE
score produced using (D. In the second case, we fine-tuned NMV-LS by applying
@ and evaluated it on LiMES-manipulated LSs. This improved the performance
by 17.88 in the BLUE score. We believe that this improvement is led by including
LiMES-manipulated LSsin the training data 3). This answers Q4.

9.3 Evaluation
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Conclusion and Future Work

Conclusion

In this thesis, we addressed several research gaps and challenges in the domain of
LD over KGs with human in the loop, presenting contributions in terms of scalability,
effectiveness, and explainability of LD approaches. Addressing Research Gap 1:
Geospatial Link Discovery over Knowledge Graphs at Scale, we developed novel
algorithms tailored for LD frameworks that emphasize scalability. Our contribu-
tions include the following: the Line Simplification Approach (Chapter 4), where
we applied simplification as a preprocessing step for LD and achieved substantial
improvements in runtime; the Intersection Matrix Approach (Chapter 5), an extension
of the RADON strategy that achieves up to 35% speedup; and COBALT (Chapter 6),
an approach combining R-Tree indexing with content-based measures that maintains
an F-measure between 70% and 90%. To address Research Gap 2: The Absence
of Holistic Models for Linked Open Data, we introduced NELLIE (Chapter 7), a
modular pipeline architecture to build a holistic model for LOD by linking instances
and ontologies within each KG in LOD, performing KG matching, linking, fusion,
embedding, and link prediction. Addressing Research Gap 3: Explainable Link
Discovery, we developed approaches for enhancing LD explainability. Our contribu-
tions here are twofold: a Multilingual Verbalization and Summarization Approach
(Chapter 8) that produces complete and understandable verbalizations, though
fluency decreases with complexity; and NMV-LS (Chapter 9), a language-based LS
verbalization system that uses encoder-decoder and few-shot learning architectures,
showing promising translation quality. In general, this thesis significantly advances
the state of the art in LD over Geospatial KGs, improving efficiency, effectiveness,
and explainability of LD approaches. Furthermore, it addresses key research gaps
with implications for real-time applications, KG integration, and explainable Al.

In the subsequent paragraphs, we have distilled our findings and observations into a
concise summary. This encapsulation highlights the core conclusions we have drawn
from our comprehensive analysis of the thesis.
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Link Discovery over Geospatial RDF: Line Simplification Approach (Chapter 4) We
presented a study of the application of simplification as a preprocessing step for LD
approaches for linking RDF resources with geospatial representation. Our evalua-
tions showed that the LD approaches benefit significantly from the use of simplified
geometries, with substantial improvements in F-measure and runtime, making them
highly suitable for real-time applications such as question answering, where runtime
is the key performance factor and result completeness comes second.

Link Discovery over Geospatial RDF: Intersection Matrix Approach (Chapter 5) In
this chapter, we introduced RADON2, a strategy to scale the original approach,
RADON, by computing the intersection matrix for each pair of resources once and
then using it for all possible topological relations associated with the resources. We
found that this approach can achieve up to 35% speedup in runtime.

Cobalt: A Content-Based Similarity Approach For Link Discovery over Geospatial
Knowledge Graphs (Chapter 6) We proposed COBALT, an approach to topological
relations discovery that combines R-Tree indexing with content-based measures
to scale up the topological relations discovery process. Our experiments showed
that COBALT can achieve a significant acceleration while maintaining an F-measure
between 70% and 90%.

NELLIE: Never-Ending For Linked Open Data (Chapter 7) We presented NELLIE, a
modular pipeline architecture developed to allow the collection of data necessary to
build a holistic model for LOD by linking the instances and ontologies within each
KG in LOD. NELLIE represents a milestone towards building a holistic model for
LOD, performing KG matching, KG linking (including both ontology and instance
matching), KG fusion, embedding, and link prediction.

Multilingual Verbalization and Summarization for Explainable Link Discovery (Chap-
ter8) We extended our previous work by introducing a multilingual template-based
approach to verbalizing LS. Our approach produced both a direct literal verbalization
of the content of the LS and a more natural aggregated version of the same content
in English, German, and Spanish. The generated verbalizations were found to be
complete and easily understandable, enabling non-expert users to understand the
content of LS. However, the fluency of our approach decreases as the LS becomes

more complex.
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Explainable Integration of Knowledge Graphs using Large Language Models (Chap-
ter 9) We presented NMV-LS, a language-based LS verbalization system that trans-
lates LS into natural language. The system consists of two independent parts: the
first is based on standard encoder-decoder architectures, and the second applies the
concept of few-shot learning. Both parts have shown promising results in terms of

translation quality.

Future Work

As the field of Linked Data and KGs continues to evolve, the research presented
in this thesis is a step towards realizing the full potential of these technologies.
However, there are still many avenues for further exploration and improvement.
In the interest of advancing the field, the following points elaborate on key future
research directions that we aim to pursue.

Link Discovery over Geospatial RDF: Line Simplification Approach Our immediate
focus will be on developing a specialized simplification algorithm capable of guar-
anteeing a minimum input F-measure. This is crucial to ensure that the simplified
geometries retain essential characteristics. Through extensive experiments, our aim
is to identify the optimal geometry simplification algorithm and its parameters for
various sets of relations. A significant future aim is to study the scalability of these
algorithms, focusing on optimizing an approach for large-scale RDF KGs.

Link Discovery over Geospatial RDF: Intersection Matrix Approach Our future work
seeks to scale this approach to much larger datasets, which will involve rigorous
performance testing and the development of advanced parallelization techniques.
We also intend to marry this approach with previously developed simplification
algorithms, especially those documented in [ASN18a], to achieve greater speed up
in computation times.

Cobalt: A Content-Based Similarity Approach For Link Discovery over Geospatial
Knowledge Graphs Efficiency improvements in COBALT will be the focus of our
future work. We plan to investigate a wide range of indexing algorithms aimed
at reducing memory footprint. Additional layers of information, such as location
names and organizations that polygons represent, will be integrated into similarity
calculations to improve link discovery accuracy.

10.2 Future Work
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Multilingual Verbalization and Summarization for Explainable Link Discovery To
make LD processes more explainable, we intend to refine our existing verbalization
methods. The focus will be on increasing the fluency and readability of the natural
language output without altering the underlying LS. Furthermore, we aim to develop
algorithms for consistency checks to improve the accuracy of generated text. Neural
network-based approaches will also be refined to address identified challenges in
verbalization and summarization.

Explainable Integration of Knowledge Graphs using Large Language Models The
future scope involves extensive multilingual testing of the second part of NMV-LS,
specifically targeting languages such as German, French, and Spanish. This is in line
with our goal to make the LS learning algorithms capable of multilingual, real-time
verbalization of dynamically learned LS.

NELLIE: Never-Ending Linking for Linked Open Data Future work involves inte-
grating more approaches for each task within NELLIE. Automated KG matching
approaches, e.g., Tapioca [R6d+16], are also on the radar for the complete au-
tomation of NELLIE. Furthermore, we intend to develop benchmark KGs that can
holistically assess NELLIE on various tasks, such as link prediction and instance
matching. Integration with LLMs is planned to enrich the KGs in LOD with unstruc-
tured data such as text.

By thoroughly addressing these future research avenues, we aim to advance the
state of the art in areas such as LD, KG integration, and explainability.
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