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Abstract

Factors in graphs form a classical area of graph theory. In particular, per-
fect matchings in cubic graphs and regular factors of regular graphs are well-
studied. One major conjecture that is still open was formulated by Fulkerson
in 1971 and states that every bridgeless cubic graph has six perfect match-
ings such that each edge is in exactly two of them. An r-graph, which can
be seen as a generalization of a bridgeless cubic graph, is an r-regular graph
in which every odd set of vertices is connected to its complement by at least
r edges. Similar to the cubic case, Seymour conjectured that every r-graph
has 27 perfect matchings such that each edge is in exactly two of them. Both
conjectures are trivially true for graphs with chromatic index A, but widely
open in general.

In this thesis we present various new results in the broad area of graph
factors; most of them are well-related to the two aforementioned conjectures.
In particular we study perfect matchings in r-graphs. The main motivation is
to get a better understanding of the structure of graphs that are not A-edge-

colorable.
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Zusammenfassung

Faktoren in Graphen bilden ein klassisches Gebiet der Graphentheorie. Ins-
besondere perfekte Matchings in kubischen Graphen und regulire Faktoren
von reguldren Graphen sind gut erforscht. Eine bedeutende Vermutung, die
immer noch offen ist, wurde 1971 von Fulkerson formuliert und besagt, dass
jeder briickenlose kubische Graph sechs perfekte Matchings hat, so dass jede
Kante in genau zwei von ihnen vorkommt. Ein r-Graph, der als Verallge-
meinerung eines briickenlosen kubischen Graphen angesehen werden kann, ist
ein r-reguldrer Graph, in dem jede ungerade Menge von Knoten mit seinem
Komplement durch mindestens r Kanten verbunden ist. Ahnlich wie im kubis-
chen Fall vermutete Seymour, dass jeder r-Graph 2r perfekte Matchings hat,
so dass jede Kante in genau zwei von ihnen vorkommt. Beide Vermutungen
sind trivialerweise wahr flir Graphen mit chromatischem Index A, aber im
Allgemeinen noch weitgehend offen.

In dieser Arbeit stellen wir verschiedene neue Ergebnisse auf dem Gebiet
der Graphenfaktoren vor; die meisten stehen in engem Zusammenhang mit den
beiden oben genannten Vermutungen. Insbesondere untersuchen wir perfekte
Matchings in r-Graphen. Die Hauptmotivation ist, ein besseres Verstédndnis

der Struktur von Graphen die nicht A-kantenférbbar sind, zu erlangen.

v



Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Dr. Eckhard
Steffen for the great opportunity to do my doctorate in his working group. It
was an exciting time in which I learned quite a lot. In particular, his clear view
for the connections between topics and the ability to put questions and results
in a wider context was impressive and very helpful. Furthermore, he always
had some interesting questions and ideas to think about.

Next, I would like to thank Astrid Canisius for taking care of all organiza-
tional matters, which made my time at Paderborn University much easier.

Moreover, I thank my colleagues and friends Chiara, Davide and Yulai not
only for the inspiring mathematical discussions, but also for making the time
in the office very enjoyable and for accepting my way of making coffee.

During my PhD studies I had the pleasure to be a visiting researcher at
other universities. Many thanks to Prof. Dr. Giuseppe Mazzuoccolo for the
invitation to Verona and Modena. I really enjoyed the fruitful discussions and
the time in Italy in general.

Furthermore, I am very grateful to my longtime companion Tabea for her
constant support and for believing in me, especially at times when things did
not go that smoothly.

Lastly, I would also like to thank the Deutsche Forschungsgemeinschaft for

the financial support.






Contents

Bbstract . . . . . . . . iii
|Acknowledgements| . . . . . . .. ... ... 0oL v
(1__Introduction| 1
1.1 Background| . . . . . ... .. ... ... 1
(.2 OQutline and contributions of this thesisl. . . . . ... ... ... 5
[1.3  Publications and preprints| . . . . . . .. ... .. ... ... .. 10
N - [basic defimtions 12

[3 Fractional factors, component factors and isolated vertex con- |

[_ditions] 18
(3.1 Isolated vertex conditions and fractional factors . . . . . .. .. 21
13.2 Isolated vertex conditions and component factors| . . . . . . . . 24
|3.3 Structural properties of the trees in 7'%| ............. 29

[4 Factors in edge-chromatic critical graphs| 35
4.1 Cycle-factors| . . . . ... ... . ... ... 37
4.2 Vertex-cuts consisting of divalent vertices| . . ... ... .. .. 48
4.3 Path-factors . . . . . ... ... 50

[ Factors intersecting disjoint odd circuits in regular graphs| 53
b.1  3k-regular graphs|. . . . . . ... ... ... 000000 56
5.2 4k-regular graphs| . . . . . ... 58

vii



b.4  Graphs with cut-vertices| . . . . . . ... ... ... ... .... 62
5.5  Concluding remarks and open problems| . . . . ... ... ... 67

[6 Rotation r-graphs| 68
[6.1  Definition of rotation r-graphs| . . . .. ... ... ... .. .. 69
6.2 Mainresult] . . ... .. oL 70
6.3 Proof of Theorem6.2.11. . . . . . . ... ... ... ... .... 72
[6.3.1  Preliminaries . . . ... .. .. ... ... .. ...... 72

6.3.2 Construction of G| . . . ... ... ... ... ... ... 73

6.4  Concluding remarks| . . . .. ... ... ... ... ..., 77

[7 Number of pairwise disjoint perfect matchings in r-graphs| 78
(.1 Preliminaries) . . . .. ... ... .. o 80
[7.1.1 The Petersen graph and its perfect matchings| . . . . . . 81

[7.1.2  An useful graph operation|. . . . . . ... ... ... .. 83

(7.2 The complexity of PDPM (k,r)[. . . . . ... ... ... .... 85
[7.3  r-edge-connected r-graphs| . . . . ... ... 87
[7.3.1 Proof of TheoremI7.04 . ... ... ... ........ 88

[7.3.2  Equivalences for statements on the existence of a k-PDPM)]| 93

[7.3.3 5-graphs|. . . . . .. ..o 100

[7.4  r-graphs with arbitrary edge-connectivity|] . . . . ... ... .. 108
[(41 Proof of TheoremI7.06 . .. ... ... ... ...... 108

[7.4.2  Concluding remarks] . . ... ... ... ... ...... 114

[ Complete sets| 115
[8.0.1  Order structurel . . . . . . . ... ... ... L. 117

[8.1 Characterization of H,|. . . . . . . .. ... ... .. 118
[8.1.1  Substructures and liftingf. . . . . .. ... ... ... .. 118

8.1.2 Theset H,| . . . ... . . ... ... 122

8.2 Elementsof H,| . . . .. .. ... L 125




[8.2.1  Smallest r-graphsofclass 2| . . . .. ... ... ... ..

[8.2.2  Lower bounds for [S,| . . ... ... ... .. ...

8.2.3  Infinite subsets of H,| . . . . ... ... ... ... ...

8.3 Simple r-graphs|. . . . ..o oo

8.4 Open Problems| . . . . .. ... ... oo

[List of Figures|

[References|

X

145

149

153






Chapter 1

Introduction

1.1 Background

A very famous long-standing problem in mathematics has been the 4-Color
Conjecture, which was formulated by Guthrie in 1852. He conjectured that the
regions of every map in the plane can be colored by four colors such that no
two regions sharing a boundary receive the same color. When studying this
problem, the notion of a graph turned out to be very useful. In graph theoretical
terms, the 4-Color Conjecture states that the vertices of every planar graph
can be colored with four colors such that no two adjacent vertices receive the
same color. The 4-Color Conjecture bothered mathematicians for more than
one century; several proofs and disproofs turned out to be false. Nevertheless,
early proofs by Kempe and Tait, despite being incorrect, contained useful new
ideas and techniques. In 1880, Tait [83] proved that the 4-Color Conjecture is
equivalent to the statement that every planar bridgeless cubic graph is 3-edge-
colorable. In 1977, the 4-Color Conjecture was finally verified with the help of
a computer [6}/7]; now it is a theorem. Moreover, the equivalent formulation
of Tait opened the door to some classic areas in graph theory including edge-

colorings and factors of graphs.

Vizing proved fundamental results of edge-coloring by showing that x'(G) <
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A(G) + pu(QG) for every graph G and x'(G) € {A(G), A(G) + 1} if G is simple.
The density of a graph G, denoted T'(G), is defined by

I'G) = max{ |V|E(G[S])|—‘ S CV(G), |8 > 2}

if |V(G)| > 2 and I'(G) = 0 otherwise. In every edge-coloring of G at most
|21S]] edges of G[S] can receive the same color for all S C V(G). As a
consequence, Y'(G) > T'(G) and thus, x'(G) > max{A(G),I'(G)}. In the
1970s various authors including Goldberg [26] and Seymour [77] independently
conjectured that x'(G) < max{A(G)+1,T'(G)} for every graph G, which is also
known as the Goldberg-Seymour Conjecture. In a very recent breakthrough
result, this conjecture was verified by Chen, Jing and Zang [14]. Hence, \/(G) =
max{A(G),I'(G)} or x(G) = max{A(G) + 1,I'(G)} for every graph G. Based
on the aforementioned results, it is natural to divide the set of graphs into
two classes. A graph G is class 1 if x'(G) = A(G); otherwise G is class
2. The density of a given graph can be computed in polynomial time (see
for example [17]). Nevertheless, the decision problem whether a given graph
G is A(G)-edge-colorable is N P-complete, even when reduced to 3-regular
graphs [34]. So far, very little is known about the structure of graphs with

chromatic index A + 1.

First results concerning graph factors were obtained by Petersen and Konig;
these theorems are fundamental results of graph theory in general. In 1891,
in his seminal paper “Die Theorie der reguldren graphs” [72], Petersen proved
that (1) every bridgeless cubic graph has a perfect matching and (2) every 2r-
regular graph can be decomposed into r 2-factors. In 1916, Konig [49] showed
that every regular bipartite graph is class 1. Since then, factors in graphs has
been a subject of intensive research. In particular perfect matchings of cubic
graphs and, more general, regular factors of regular graphs have been studied.

For an excellent overview, the interested reader is referred to [2].
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Cubic graphs

A snarks is a bridgeless cubic graph that is not 3-edge-colorable. The smallest
snark is the well-known Petersen graph, which was discovered in 1898. Snarks
play an important role in graph theory, since some notorious hard conjectures
are true in general if they are true for bridgeless cubic class 2 graphs. This

includes the following two long-standing open conjectures.

Conjecture 1.1.1 (Berge-Fulkerson Conjecture [24]). Every bridgeless cubic
graph has siz perfect matchings such that each edge belongs to exactly two of

them.

Conjecture 1.1.2 (Cycle Double Cover Conjecture [78,82]). Every bridgeless
graph has a collection of cycles such that each edge belongs to exactly two of

them.

The Berge-Fulkerson Conjecture was first proposed by Berge, but it was put
into print by Fulkerson [24] in 1971 (cf. [77]). The Cycle Double Cover Conjec-
ture was independently proposed by Szekeres [82] in 1973 and Seymour [78] in
1979. As a unifying approach to both conjectures, Jaeger (see [39]) introduced
colorings with edges of another graph. For two graphs G and H, an H-coloring
of G is a mapping f: E(G) — E(H) such that

e if e1,e9 € E(G) are adjacent, then f(e1) # f(e2),

e for every v € V(G) there exists a vertex u € V(H) such that f(dg(v)) =
O (u).

If such a mapping exists, we say H colors G. H-colorings have the useful
property that the existence of specific substructures in H implies the existence
of similar substructures in G. In 1980 Jaeger [37] made the following famous

conjecture, which is known as the Petersen Coloring Conjecture.

Conjecture 1.1.3 (Petersen Coloring Conjecture [37]). The Petersen graph

colors every bridgeless cubic graph.
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Since the Petersen graph satisfies the Berge-Fulkerson Conjecture and the
Cycle Double Cover Conjecture, these two conjectures are true if the Petersen
Coloring Conjecture is true.

All three conjectures are trivially true for bridgeless cubic class 1 graphs

but, despite much effort, remain widely open for snarks.

r-graphs

An r-graph is an r-regular graph G with |0(S)| > r for every S C V(G) of odd
cardinality. A 3-graph is nothing else than a bridgeless cubic graph; r-graphs
can be seen as a generalisation of bridgeless cubic graphs. Note that r-graphs
are of even order and might have small edge-cuts separating two sets of even
cardinality. The density of an r-regular graph G is at least r; it equals r if and
only if G is an r-graph. Hence, r-graphs satisfy the necessary condition for
being class 1. Nevertheless, for every r > 3 there are r-graphs of class 2. By
the proof of the Goldberg-Seymour Conjecture, every r-graph has chromatic
index either r or r + 1. Thus, class 2 r-graphs behave like simple graphs.
Similar to the cubic case, r-graphs are important since some well-known
conjectures can be reduced to r-graphs (or are formulated directly for r-graphs).
One example is Tutte’s 3-Flow Conjecture, which states that every bridgeless
graph without 3-edge-cuts has a nowhere-zero 3-flow (see also [12] unsolved
problem 48). It is folklore that this conjecture can be reduced to 5-graphs.
Furthermore, some conjectures for bridgeless cubic graphs might be true in the
more general setting of r-graphs. The following conjecture was proposed by

Seymour |77] in 1979 and is known as Seymour’s Exact Conjecture.

Conjecture 1.1.4 (Seymour’s Exact Conjecture [77]). Every planar r-graph

s class 1.

Note that for r = 3 the statement is true by the 4-Color Theorem. Further-
more, Seymour’s Exact Conjecture is verified for all » € {4,...,8} by various

authors [18}19,21,29]. Also in [77], Seymour generalized the Berge-Fulkerson
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Conjecture to r-graphs.

Conjecture 1.1.5 (Generalized Berge-Fulkerson Conjecture [77]). Every r-

graph has 2r perfect matching such that each edge is in exactly two of them.

Similar to the cubic case, the Generalized Berge-Fulkerson Conjecture is
trivially true for r-graphs of class 1 but widely open for r-graphs of class 2.
Thus, structural properties of snarks and more generally of class 2 r-graphs are

of huge interest.

1.2 Outline and contributions of this thesis

In this thesis different problems concerning factors in graphs are considered;
most of them are related to the conjectures mentioned above. Our main moti-
vation is to get a better understanding of the structure of graphs with chromatic
index A + 1. In this section we shortly introduce each topic and summarize
the main results.

In Chapter [2] all basic notation concerning graph theory that is used
throughout this thesis is defined. In Chapter |3| and {4 we consider some
problems about factors in simple graphs. Chapter [5| focuses on regular graphs,

whereas in Chapter [0} [7] and [§] 7-graphs are under investigation.

Chapter [3} Isolated toughness and component factors

The isolated toughness of a simple graph G, denoted I(G), was first introduced
by Yang, Ma and Liu [91] and is defined as follows:

5]

I(G) = min{iso(G—S): S CV(G),iso(G—S) > 2}

if G is not a complete graph and I(G) = oo otherwise. For t € R, a simple
graph G is isolated t-tough if I(G) > t. The isolated toughness is strongly
related to the existence of specific component factors. For instance, in the

case of isolated %—tough graphs the Star Factor Theorem states that for every
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positive integer n, a simple graph G has a {K;;: 1 < i < n}-factor if and
only if iso(G — S) < n|S| for all S C V(G) [|4,50]. Similar characterisations
are obtained in [92] for isolated “*-tough graphs when n is odd, n > 3 and
m = 2. In Chapter [3| we consider the following general problem which was
proposed by Kano, Lu and Yu |45 (see also Problem 7.10 in [2]). If n,m are
two positive integers and G is a simple graph such that iso(G — S) < || for
all ) # S C V(G), what factor does G have? We characterize isolated -tough

graphs in terms of their component factors when n > m. This extends the

results of [92] and give an answer to the above problem when n > m.

Chapter [4: Factors in edge-chromatic critical graphs

A simple graph G is (edge-chromatic) critical, if it is class 2 but every proper
subgraph has a smaller chromatic index. Clearly, every simple graph contains a
critical subgraph. Thus, in order to get a better understanding of the structure
of simple class 2 graphs, one attempt is to study critical graphs. One famous
conjecture in this field is Vizings’s 2-Factor Conjecture [88], which was pro-
posed in 1965 and states that every critical graph has a 2-factor. So far, this
conjecture has only been verified for some specific classes of critical graphs such
as overfull graphs [28] or critical graphs with large maximum degree in relation
to their order [15,53]. In Chapter 4| we focus on slightly easier statements,
which are implied by Vizings’s 2-Factor Conjecture. In particular we study the
question whether every critical graph has a cycle-factor, which was conjectured
to be true in [9]. Our main result in Chapter [4|is that every critical graph with
a small number of divalent vertices (compared to its maximum degree) has a

cycle-factor.
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Chapter [5} Factors intersecting disjoint odd circuits in regular

graphs

The Berge-Fulkerson Conjecture has been open for more than 50 years; notwith-
standing a solution seems to be far away. Thus, in order to make some progress,
weaker conjectures moved into focus. One of them was proposed by Mazzuoc-
colo [65] in 2013 and states that every bridgeless cubic graph has two perfect
matchings such that the complement of their union is bipartite. Clearly, this
statement is true if the Berge-Fulkerson Conjecture is true. Very recently,
Kardos, Mécajova and Zerafa [47] proved the following statement, which im-
plies the above conjecture of Mazzuoccolo. If G is a bridgeless cubic graph,
O is a set of pairwise edge-disjoint odd circuits and e is an edge of GG, then G
has a perfect matching containing e and at least one edge of every element of
0. In Chapter [p| we study whether similar statements are true for graphs of
higher regularity. Our main results are the following: (1) for every 2-connected
3k-regular graph G and every set O of pairwise edge-disjoint odd circuits of G
there exists a k-factor F' of G such that E(F) N E(O) # ( for every O € O,
and (2) for every 2-connected 4k-regular graph G and every set O of pair-
wise edge-disjoint odd circuits of G there exists a 2k-factor F' of G such that
E(F)N E(O) # 0 for every O € O. Furthermore, we show that these results

are best possible in some sense.

Chapter [6; Rotation r-graphs

Since the discovery of the Petersen graph, many other non-trivial snarks as
well as infinite families of non-trivial snarks (one example are the well-known
Flower snarks [35]) were constructed. Hoffmann-Ostenhof and Jatschka [33]
introduced a family of highly symmetrical snarks, which they called rotation
snarks. Informally a rotation snark is a snark that has a 2%—ro‘cation symmetry

fixing one vertex and a balanced spanning tree not containing divalent vertices

(for a precise definition see [33]). At first glance rotation snarks seem to be very
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special; nevertheless the Petersen graph as well as the two Loupekine’s snarks
are rotation snarks (see [33]). Moreover, there are infinitely many cyclically
5-edge-connected rotation snarks, as shown by Mécajova and Skoviera [59]. In
Chapter[6] we generalize the notion of rotation snarks to r-graphs of odd regular-
ity and show that every r-graph of odd regularity can be “blown up” to a simple
rotation r-graph (which produces many small edge-cuts). As a consequence,
some hard long-standing open conjectures including the aforementioned (gen-
eralized) Berge-Fulkerson Conjecture and Tutte’s 3-Flow Conjecture can be
reduced to simple rotation r-graphs. However, our proof heavily relies on the

fact that we allow 2-edge-cuts in the definition of rotation r-graphs.

Chapter Pairwise disjoint perfect matchings in r-graphs

Class 2 r-graphs, which exist for every r > 3, have at most r — 2 pairwise
disjoint perfect matchings. One natural question concerning the structure of
r-graphs is the following. What is the maximum number ¢ such that every
r-graph has ¢ pairwise disjoint perfect matchings? On one side, every r-graph
has a perfect matching [77]. On the other side, snarks are 3-graphs in which
every two perfect matchings intersect. In former times the general opinion was
that the cubic case is very exclusive. In 1979, Seymour [77] conjectured that
when r > 4 every r-graph has a perfect matching M such that G — M is an
(r — 1)-graph. If true this would imply that every r-graph has r — 2 pairwise
disjoint perfect matchings. It turned out that this is not the case. In 1999,
Rizzi [75] constructed r-graphs in which every two perfect matchings intersect
for every r > 4, which completely answers the above question. Neverthe-
less, all r-graphs with this property that are known so far have a 4-edge-cut.
Thus, it is natural to ask whether the situation changes for r-graphs with
larger edge-connectivity. Thomassen [84] proposed the problem whether every
r-edge-connected r-graph has r — 2 pairwise disjoint perfect matchings. For

r = 4 the answer to Thomassen’s problem is “no” by Rizzi. As an extension,
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Mattiolo and Steffen [63] constructed counterexamples when r is a multiple of
4. For the remaining cases, Thomassen’s problem is still open. Moreover, there
is also very little known about the number of pairwise disjoint perfect match-
ings in r-graphs whose edge-connectivity is in between 4 and r. Chapter [7] is
divided into three parts. In the first part we prove that for every 1 < k < r
it is N P-complete to decide whether a given r-graph has k pairwise disjoint
perfect matchings. In the second part, r-edge-connected r-graph are under
investigation. We extend the result of Mattiolo and Steffen to all even inte-
gers by constructing r-edge-connected r-graphs without r — 2 pairwise disjoint
perfect matchings when r = 2 (mod 4). Furthermore, we relate statements on
the number of pairwise disjoint perfect matchings in 5-edge-connected 5-graphs
to some of the aforementioned conjectures in cubic graphs. In the third part
of Chapter [7] -graphs with arbitrary edge-connectivity are considered. We
construct A-edge-connected r-graphs without %)\ — b pairwise disjoint perfect
matchings, for every even A > 6 and every r > A. This result suggests that
there might be a relation between the edge-connectivity and the number of

pairwise disjoint perfect matchings in r-graphs.

Chapter [8f Complete sets

A set A of connected r-graphs is r-complete if every connected r-graph can
be colored by an element of A. As in the cubic case, if there exists an r-
complete set in which every element satisfies the generalized Berge-Fulkerson
Conjecture, then every r-graph satisfies this conjecture. Thus, one approach to
the generalized Berge-Fulkerson Conjecture is to study r-complete sets. The
Petersen Coloring Conjecture states that the set whose only element is the
Petersen graph is a 3-complete set. Similar to the cubic case, Mazzuoccolo
et al. (Problem 4.8 in [68]) asked whether there exists an r-complete set of
cardinality 1 for every r > 4. In Chapter |8 we first prove that for every r > 3

there is exactly one inclusion-wise minimal r-complete set, which is denoted
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by H,. Next, we show that either Hs consists of the Petersen graph or it is an
infinite set. Moreover, we prove that H, is an infinite set for every r > 4, which
gives a negative answer to the problem of Mazzuoccolo et al. As a by-product

we determine the smallest r-graphs of class 2.

1.3 Publications and preprints

Major parts of this thesis have been already published (or are available as
preprints). This thesis is based on the following publications (the numbering

is consistent with the bibliography).

[54] Y. Ma, D. Mattiolo, E. Steffen and I. H. Wolf. Pairwise disjoint perfect
matchings in r-edge-connected r-regular graphs. SIAM J. on Discrete

Math., 37(3):1548-1565, 2023.

[55] Y. Ma, D. Mattiolo, E. Steffen and I. H. Wolf. Sets of r-graphs that color
all r-graphs. arXiw:2305.08619, submitted 2023.

[56] Y. Ma, D. Mattiolo, E. Steffen and I. H. Wolf. Edge-connectivity and
pairwise disjoint perfect matchings in regular graphs. Combinatorica,

44(2):429-440, 2024.

[79] E. Steffen and I. H. Wolf. Even factors in edge-chromatic-critical graphs
with a small number of divalent vertices. Graphs and Combinatorics,

38(104), 2022.

[81] E. Steffen and I. H. Wolf. Rotation r-graphs. Discrete Mathematics,
347(8):113457, 2024.

[90] I. H. Wolf. Fractional factors and component factors in graphs with
isolated toughness smaller than 1. arXiv:2312.11095 (to appear in J.
Graph Theory), submitted 2023.

In addition, during his PhD studies the author was involved in the following

publications, which are not part of this thesis.
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[25] J. Goedgebeur, D. Mattiolo, G. Mazzuoccolo, J. Renders and I. H. Wolf.
Non-double covered cubic graphs. arXiv:2402.08538, submitted 2024.

[80] E. Steffen and I. H. Wolf. Bounds for the chromatic index of signed
multigraphs. Discrete Applied Mathematics, 337:185-189, 2023.

Furthermore, Chapter [5|is based on an ongoing joined work with J. Goedge-
beur, D. Mattiolo, G. Mazzuoccolo, J. Renders and L. Toffanetti. The results
of this chapter were mainly obtained during two research stays in Italy (one in
Verona and one in Modena) and are not published yet.

A short explanation which results are already published can be found at

the beginning of each chapter.



Chapter 2

Notation and basic definitions

This chapter is designated to introduce all basic notations concerning graphs
that are used in this thesis. We mainly follow the notation used in [11]. For
notation that we may have missed, the interested reader is referred to [11].

A graph G is a pair (V(G), E(G)) consisting of two disjoint sets V(G),
E(G) together with a function 1) that maps every element of E(G) to an one-
or two-elemental subset of V(G). The elements of V(G) are called vertices;
the elements of E(G) are called edges. A graph is finite, if its vertex-set and
its edge-set are finite. For an edge e, the elements of ¥ (e) are called the
end-vertices of e. An edge with only one end-vertex is a loop; two edges with
the same set of end-vertices are parallel. In this thesis we only consider finite
graphs without loops that may have parallel edges. Thus, from now on with
the notation “graph” we always mean a finite, loopless graph. A graph without
parallel edges is called simple.

A graph can be represented by a drawing in the plane, where every vertex
is represented by one point (drawn as a circle) and every edge is represented
by a line connecting the two points corresponding to its end-vertices. A graph
is planar if it admits a drawing in the plane such that edges intersect only in

the points corresponding to their common end-vertices.

Let G be a graph. The number of vertices of G is the order of G. For an

12
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edge e with end-vertices u,v, we say e connects u and v, and we occasionally
denote e by uv. Two edges (respectively, two vertices) are adjacent if they
share an end-vertex (respectively, if they are connected by an edge). For a
vertex v, the set of vertices adjacent to v is denoted by Ng(v); the elements
of Ng(v) are called neighbours of v. For a subset X C V(G) we write Ng(X)
for Uyex N(v) \ X. A vertex v and an edge e are incident if v is an end-
vertex of e. For two vertices u, v, the number of edges connecting v and v is
denoted by pg(u,v); if pg(u,v) = 1, then the edge uv is simple. Furthermore,
w(G) = max{ug(u,v): u,v € V(G)}. The degree of a vertex v, denoted dg(v),
is the number of edges incident with v. A vertex of degree 2 is called divalent; a
vertex of degree 0 is called isolated. The set of isolated vertices of G is denoted
by Iso(G); we write iso(G) for |Iso(G)|. The maximum degree of a vertex of
G is denoted by A(G). The graph G is regular, if every vertex has the same
degree; and G is r-reqular, if every vertex is of degree r. A 3-regular graph is

also called a cubic graph.

The underlying graph of G is the simple graph H with V(H) = V(G) and

i (u,v) =1 if and only if pg(u,v) > 1.

A graph H is isomorphic to G, denoted by G = H, if there are two bijections
0:V(G)— V(H) and ¢ : E(G) — E(H) such that ¢g(e) = {u,v} if and only
if Y (p(e)) = {0(u),0(v)}. In this case we call the pair of mappings (6, ¢) an
isomorphism between G and H. In particular, an automorphism of a graph is

an isomorphism of the graph to itself.

A graph H is a subgraph of G, if V(H) C V(G), E(H) € E(G) and
Yu = Yc|p)- In this case, we say G contains H. If V(H) = V(G), then
H is spanning; if V(H) # V(G) or E(H) # E(G), then H is proper. Two
graphs are disjoint (edge-disjoint, respectively) if their vertex-sets (edge-sets,
respectively) are disjoint. If Hy, ..., Hy are pairwise edge-disjoint subgraphs of
G such that E(G) = Ule E(H;), then G can be decomposed into Hy, ..., Hy,

and {H1,..., Hy} is a decomposition of G.



14 Chapter 2:  Notation and basic definitions

For two disjoint subsets X, Y of V(G) the set of edges with one end-vertex
in X and the other in Y is denoted by Eq(X,Y); the cardinality of Eg(X,Y)
is denoted by eq(X,Y). We write 0g(X) for Eq(X,V(G) \ X); if X is a non-
empty proper subset of V(G) we call 0g(X) an edge-cut of G. For convenience,
if X or Y consist of a single vertex we omit the set-brackets in these notations.
For example, we write Eg(v,Y) and 0g(v) instead of Eg({v},Y) and dg({v}).
A k-edge-cut is an edge-cut consisting of k edges; an edge of a 1-edge-cut is
called a bridge. The graph G is k-edge-connected if its order is at least 2 and
there is no edge-cut with less than k£ edges; a 1-edge-connected graph is called
a connected graph. The edge-connectivity of G, denoted A(G), is the maximum
number ¢ such that G is t-edge-connected. A component of GG is a maximum
connected subgraph of G. A set of vertices X C V(G) is a vertez-cut of G if
G — X has more components than G; a vertex cut consisting of k elements is
a k-vertex-cut. The only element of a 1-vertex-cut is called a cut-vertex. The
graph G is k-connected if G is connected, |V(G)| > k and every vertex-cut

contains at least k vertices.

For a positive integer r, the graph G is an r-graph if G is r-regular and

|0c(X)| > r for every X C V(G) of odd cardinality.

A spanning subgraph of G is called a factor of G. A factor is a k-factor, if
every vertex is of degree k. The edge-set of a 1-factor of G is called a perfect
matching; the edge-set of a l-regular subgraph of G is called a matching. For
a set of graphs G, a factor is a G-factor if every component is isomorphic to an

element of G.

For a subset X C V(@) the subgraph with vertex-set X and whose edge-set
consists of all edges of G having both end-vertices in X is denoted by G[X].
We say that X induces G[X] and call G[X] an induced subgraph. We write
G — X for G[V(G) \ X] and G — v for G — X if X consists of a single vertex
v. Similarly, for a subset £ C E(G) the subgraph with edge-set E and whose

vertex-set consists of all vertices of GG incident with an edge of F is denoted by
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G[E]. We say that E induces G[E]. The subgraph with vertex-set V(G) and
edge-set F(G)\ E is denoted by G — E. When E = {e}, we write G — e instead
of G- L.

For a subset X C V(G), a new graph can be obtained form G as follows:
add a new vertex wx; delete all edges having both end-vertices in X; for every
remaining edge e with an end-vertex w € X, change the end-vertex w of e to
wx; delete every vertex in X. The resulting graph is denoted by G/X and we
say G/X is obtained from G by identifying the vertices in X (to a new vertex
wx). Note that we use the same labels for the edges in G and in G/X, i.e.
E(G/X) C E(G). Furthermore, if we do not explicitly introduce another label,
the vertex in V(G/X)\ V(G) will always be denoted by wyx. We remark, that
in the literature the notation G/X is sometimes also used to denote the graph
obtained from G by contracting every edge in G[X], i.e. G[X] needs to be

connected. In our notation, G/X is also defined when G[X] is not connected.

For a vertex v € V(@) and a graph H disjoint from G, a new graph G’ can
be obtained from G as follows: add H; for every edge e € F(G) incident to v,
replace the end-vertex v of e by a vertex of H; delete v. We say G’ is obtained
from G by replacing v with H. Note that there are many different graphs that
can be obtained from G by replacing v with H; all of them have vertex-set

(V(G)\v) UV (H) and edge-set E(G) U E(H).

A k-edge-coloring of G is a function ¢ : E(G) — {1, ..., k}; the elements of
{1,...,k} are called colors. A k-edge-coloring ¢ is proper, if no two adjacent
edges receive the same color. If a proper k-edge-coloring of G exists, then G is
k-edge-colorable. The chromatic indez, denoted x'(G), is the smallest integer k
such that G is k-edge-colorable. If x'(G) = A(G), then G is class 1; otherwise
G is class 2.

An orientation D of G is a pair of two functions tail: E(G) — V(G) and
head: E(G) — V(G) such that for every e € E(G) the set of end-vertices of

e equals {tail(e), head(e)}. We say e is directed from tail(e) towards head(e).
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For a vertex v € V(G) the number of edges directed towards v is the indegree
of v. For an integer k > 2 a nowhere-zero k-flow is a function f: E(G) —

{£1,...,£(k — 1)} together with an orientation D = (tail,head) such that

> ecr@) fle) =2 cep@) f(€) for every v € V(G).
tail(e)=v head(e')=v

A cycle is a graph in which every vertex is of positive even degree. The
graph G is acyclic if it does not contain a cycle; it is cyclically k-edge-connected
if G — FE has at most one component containing a cycle for every edge-cut
E C E(G) of cardinality less than k. A tree is a connected acyclic graph T
A vertex of degree 1 is called a leaf of T'; the set of leaves of T' is denoted by

Leaf(T). Every edge incident with a leaf of T' is a pendant edge.

A circuit is a 2-regular connected graph. A circuit is even (odd, respectively)
if its order is even (odd, respectively). A circuit of order k is called a k-circuit.
Up to isomorphism there is only one k-circuit, which is denoted by Cj. For
convenience, we also denote a circuit with vertex-set {v1,...,v;} and edge-set
{vkvi,vivipr: i€ {1,...,k —1}} by vy ... vgv;.

A path is a connected graph P in which exactly two vertices are of degree
1 and every other vertex is of degree 2. The vertices of degree 2 of P are called
inner vertices. If dp(u) = dp(v) = 1, then P is a u, v-path and u, v are the ends
of P. Up to isomorphism there is only one path of order k, which is denoted
by Pj. For convenience, we also denote a path with vertex-set {v1,...,v;} and
edge-set {vjviy1: 1 € {1,...,k —1}} by v;...vg. For two vertices u,v € V(G)
that belong to the same component of G, the distance between u and v is the

number of edges of a shortest u, v-path contained in G.

A factor is a cycle-factor, if it is a cycle; a factor is a path-factor, if every

component is a path.

A complete graph is a simple graph in which every two vertices are adjacent.
Up to isomorphism there is only one complete graph of order n, which is denoted
by K,.

A set X C V(G) of pairwise non-adjacent vertices is called stable. If V(G)
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can be partitioned into two stable sets A, B, then G is bipartite and we call
{4, B} a bipartition of G. If additionally G is simple and u, v are adjacent for
every u € A, v € B, then G is a complete bipartite graph. A complete bipartite
graph whose bipartition contains a set of cardinality 1 is called a star. For two
integers 0 < n < m, up to isomorphism there is only one complete bipartite
graph, denoted by K, ,,, whose bipartition consists of a set of cardinality n

and a set of cardinality m.

In all notations defined above, when it is clear which graph we consider, we

will omit the lower index that indicates the graph we are referring to.



Chapter 3

Fractional factors, component
factors and isolated vertex

conditions

This chapter is based on [90]; all results in Chapter [3[ can be found in that
preprint.
Recall that the isolated toughness of a graph G, denoted I(G), was first

introduced in [91] and is defined as follows:

I(G) = min{iso(|GS|—S’): S CV(G),iso(G—S) > 2}

if G is not a complete graph and I(G) = oo otherwise. For ¢t € R, a graph G
is isolated t-tough if I(G) > t. The isolated toughness is strongly related to
the existence of specific component factors. Tutte [85] characterized isolated
1-tough graphs by the existence of component factors as follows.

Theorem 3.0.1 (Tutte [85]). Let G be a simple graph. Then, G has a
{K11,C;:i> 3}-factor if and only if

iso(G —S) <|S|  forall S C V(G).

This result was extended by Amahashi, Kano [4] and Las Vergnas [50] to

isolated %—tough graphs.

18
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Theorem 3.0.2 (Amahashi, Kano [4], Las Vergnas [50]). Let G be a simple
graph and let n > 2 be an integer. Then, G has a {Ky,;: 1 < i < n}-factor if
and only if

iso(G — S) <nl|S| forall S C V(G).

Kano, Lu and Yu [45] asked for a general relation between isolated tough-

ness and the existence of component factors.

Problem 3.0.3 (Problem 1 in [45], Problem 7.10 in [2]). Let G be a simple

graph and let n,m be two positive integers. If

iso(G —S) < —|S| forall® # S CV(G),

3=

what factor does G have?

The same authors [92] gave an answer to Problem [3.0.3] when n is odd,
n >3 and m = 2. Let T (3) be the set of trees that can be obtained as follows

(see |92] for a more detailed definition):
1. start with a tree T' in which every vertex has degree 1 or 3,
2. insert a new vertex of degree 2 into every edge of T
3. add a new pendant edge to every leaf of T

For every integer k > 2, let 7 (2k+1) be the set of trees that can be obtained

as follows (see |92] for a more detailed definition):
1. start with a tree T" such that for every v € V(T)

° dT*Leaf(T)(rl» S {1,3, 2k + 1}, and
e 2{w: w € Leaf(T) N Nr(v)}| + dr_peaery(v) < 2k + 1,

2. insert a new vertex of degree 2 into every edge of T'— Leaf(T),

3. for every v € T — Leaf(T) with dp_reqpry(v) = 20 +1 < 2k + 1, add
k—1—|{w: we Leaf(T) N Nr(v)}| new pendant edges to v.
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Theorem 3.0.4 (Kano, Lu, Yu [92]). A simple graph G has a {P>,Cs, P5,T: T €
T (3)}-factor if and only if

iso(G — S) < %\5’] for all S C V(G).
Theorem 3.0.5 (Kano, Lu, Yu [92]). Let k > 2 be an integer. A simple graph

G has a {K1;,T:1<i<k,TeT(2k+1)}-factor if and only if

2k+1

iso(G — 8) < 5

|S|  forall S C V(G).

We extend these results and give an answer to Problem [3.0.3| when n >
m. The main tool are fractional factors, which are defined as follows. Let
91, f1: V(G) = Z and ga, fo : V(G) — R be functions with g;(w) < f;(w) for
every w € V(G) and every i € {1,2}. A factor F of G is a (g1, f1)-factor, if
g1(w) < dp(w) < fi(w) for every w € V(G). For a function h : E(G) — [0,1]
we define d"(v) := D ecouw) ble) I ga(w) < d"(w) < fo(w) for every w €
V(G), then h is a fractional (ge, f2)-factor of G. Additionally, if g2(w) = a
and fa(w) = b for every w € V(G), then a fractional (g2, f2)-factor is called a
fractional [a, b]-factor.

Furthermore, for every two integers n, m with 0 < m < n let ’T% be the set

of trees T such that
e iso(T — S) < 2|S| for all S C V(T), and

o for every e € E(T) there is a set S* C V(T') with iso((T' —e) — S*) >
m 97

The following theorem is the main result of this chapter.

Theorem 3.0.6. Let G be a simple graph and let n,m be integers with 0 <

m < n. Then the following statements are equivalent:
1) iso(G — S) < Z|S| for every S C V(G).

2) G has a fractional [1, [-]-factor.
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3) G has a fractional [1, 2]-factor with values in {0, X, ..., =1 1},

4) G has a {Coiy1, T2 1 < i < 0 T € T }-factor.

n—m?’

The remainder of this chapter is structured as follows. In Section we
give a relation between the isolated toughness and the existence of fractional
factors, which proves the equivalence of 1), 2) and 3). In Section (3.2 we prove
the equivalence of 1) and 4) by using fractional factors. In Section we

characterize the trees in 7~ and deduce further structural properties.

3.1 Isolated vertex conditions and fractional factors

There is a strong relation between the isolated toughness of a graph and the
existence of fractional [1, *]-factors. When = is an integer, Ma, Wang and

Li [57] obtained the following relation.

Theorem 3.1.1 (Ma, Wang, Li [57]). Let G be a simple graph and b > 1 be

an integer. Then
iso(G —8) <b|S| forall S CV(G)
if and only if G has a fractional [1,b]-factor.

As shown by Yu, Kano and Lu [92], similar results are true for isolated

2_tough graphs, where n is an odd integer with n > 3.

n

Theorem 3.1.2 (Kano, Lu, Yu [92]). Let G be a simple graph and k > 1 be
an integer. Then

2k+1
2

iso(G—95) < |S|  for all S C V(G)

if and only if G has a fractional [1, %TJFI]—factor with values in {0, %, 1}.

It turned out that their proof also works for *-tough graphs, where n,m
are arbitrary integers with 0 < m < n. By substituting 2k + 1 with n and 2
with m in the proof of Theorem given in [92], this result can be extended

as follows.
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Theorem 3.1.3. Let G be a simple graph and let n,m be integers with 0 <

m < n. Then

iso(G—8) < —|S| forall S C V(G) (1)

3=

if and only if G has a fractional [1, X]-factor with values in {0 Lo,ml

Y m?

For the sake of completeness, in the remainder of this section we state
the proof of [92] (with the substitutions mentioned above) and deduce the
equivalence of statements 1), 2) and 3) of Theorem

The main tool to prove Theorem (respectively Theorem is pro-
vided by the next theorem. For a function f : V(G) — Z* U {0} and a set

X CV(G), set f(X):=> cx f(x).

Theorem 3.1.4 (Anstee 5|, Heinrich et al. [32]). Let G be a graph and g, f :
V(G) = Z1t U {0} with 0 < g(x) < f(z) for all x € V(G). Then G has a
(g, f)-factor if and only if

o(T) — dg_5(T) < £(S) for all § € V(G).
where T'={v € V(G)\ S: dg_s(v) < g(v)}.

Proof of Theorem [3.1.5 (cf. Kano, Lu, Yu [92]). Assume that G satisfies (T]).
Let G* denote the graph obtained from G by replacing each edge e of G by m
parallel edges e(1),...,e(m). Then V(G*) = V(G), and dg=(v) = m - dg(v) for
every v € V(G*). Define two functions g, f : V(G*) — Z1T U {0} as

glx)=m and f(z)=n forall z € V(G").
Then g < f, and for any S C V(G*), we have

T={veV(G)\S:dg—s5(v) < g(v) =m}
= {U S V(G*) \ S dg*,s(v) = 0}

= Iso(G — S).
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Thus it follows from the above equality and that

g(T) —dg+—s(T) =m -iso(G—S)—0

<n|S| = f(5).

Hence by Theorem G* has a (g, f)—factor F. Now we construct a frac-
tional [1, Z]-factor h : E(G) — {0, X

Sy ey L 1} as follows: for every edge e of
G, define h(e) = % where k(e) is the number of integers i € {1,...,m} with
e(i) € E(F'). It is easy to see, that h is the desired fractional [1, *]-factor with
values in {0, L, ..., =1 1},

Next assume that G has a fractional [1, ™ ]-factor h. Let S C V(G), and let
F be the spanning subgraph of G induced by {e € E(G): h(e) # 0}. Clearly,

the neighbours of each isolated vertex u of G — S are contained in S and

d"(u) > 1, thus we have
iso(G — S) < Z h(e)

<> d(x) g% S|.

z€S

Hence, iso(G — §) < 25|, i.e. holds. O

The fact, that & has values in {0, 1 m=1 1} is not needed in the second

5 m’ ceey

part of the proof of Theorem As a consequence, we obtain the following

corollary:

Corollary 3.1.5. Let G be a simple graph and let n,m be integers with 0 <
m < n. If G has a fractional [1, J-]-factor, then G has a fractional [1, J-]-factor

with values in {0, X P ,mT_l, 1}.

Therefore, the equivalence of statements 1), 2) and 3) of Theorem is

proved.
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3.2 Isolated vertex conditions and component fac-

tors

In this section we use Theorem to prove the following equivalence, which
completes the proof of Theorem [3.0.6}

Theorem 3.2.1. Let G be a simple graph and let n,m be integers with 0 <

m < n. Then

iso(G — S) < —|S| forall S C V(QG)

3=

if and only if G has a {Coi1,T: 1 <i < ;5. T € Tr }-factor.

Observe that - < 1 if and only if ' > 2, and hence, {Co;y1,T: 1 <i <

T T € Trn}=Txr in this case.

n—m’

 _isolated-
m

For two positive integers n,m we say a graph G satisfies the
vertez-condition, if iso(G — S) < *|S| for all S C V(G). In order to prove

Theorem we need the following observation.

n

Observation 3.2.2. A simple graph G satisfies the --isolated-vertex-

n

condition, if and only if every component of G satisfies the ;--isolated-verte-

condition.

Proof. If G satisfies the [--isolated-vertex-condition and C'is a component of

G, then for every S C V(C) we have:

iso(C — S) <iso(G—S5) < —|S]

3=

On the other hand, if G is a graph with components Hi, ..., H; and every
component satisfies the J*-isolated-vertex-condition, then for each S C V(G)

we have:

l l
iso(G — 8) =Y iso(H; — (SNV(H)) <Y %|s NV (H,))| = %|S|.
i=1 =1
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For a fractional [1,b]-factor h of a graph G and v € V(G), we call v a
(+)-vertez if d*(v) > 1 and a (—)-vertex if d"(v) = 1.

Proof of Theorem [3.2.1, First, assume that G has a {Coiy1,7:1 < i <

M T € Tu }-factor F'. Let Hy, ..., H; be the components of F'. Clearly, every

n—m?’

N
m

component of F' satisfies the isolated-vertex-condition and thus, F' also
does. For every S C V(@) each isolated vertex of G — S is also an isolated
vertex of F' — S, and thus iso(G — S) < iso(F — S) < X|S].

Next, assume G satisfies iso(G — ) < *|S| for all S C V(G). Let F be
an inclusion-wise minimal factor of GG, that also satisfies the --isolated-vertex-
condition. By Theorem F has a fractional [1, ]-factor, whereas every
spanning proper subgraph of F' does not admit such a fractional factor. In
particular, for every e € E(F), the graph F — e does not have a fractional
[1, ~]-factor. In conclusion, the following claim holds:

Claim 1. h(e) # 0 for every e € E(F) and every fractional [1, *]-factor h
of F.

We now prove that F' is the desired factor.

A closed trail of length k (of F') is a sequence (v, eg, vy, €1, ...,€—1,0;) Of
alternately vertices and edges of F' with e; = v;v;41 for all ¢ <[ and vy = v;.

Claim 2. F does not contain a closed trail of an even length.

Proof of Claim[3. Suppose F contains a closed trail X of an even length.
Let e be an arbitrary edge of X. Now fix a fractional [1, *]-factor h of I with

values in {0, %, v %, 1}, such that
(i) h(e) is as small as possible,

(i1) with respect to (i), > .ic () h(€') is as small as possible.

Now suppose, there is an edge €’ € F(F') between two (4)-vertices. By Claim
the edge €’ did not receive the value 0. Thus, reducing h(e’) by % leads to a
new fractional [1, *]-factor with a smaller sum, which contradicts the choice

of h. Therefore, the set of (+)-vertices (with respect to h) is stable in F'. This
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implies, that an edge of F' received the value 1 if and only if it is incident with
a vertex of degree 1 in F. As a consequence, h(e’) < 1 for every edge ¢’ of X.
Now we modify the fractional factor h as follows: add % and —% alternately

to the edges of X such that —% is added to e (see Figure .

Figure 3.1: The modifying of h if F' contains a closed trail of an even length.

Since no edge of X had the value 0 or 1, this leads to a new fractional [1, X ]-

factor h' of F' with values in {0, %, e mT_l, 1}. This contradicts the choice of
h, since W' (e) = h(e) — L. [ |

As a consequence the following claims hold:

Claim 3. F does not contain an even circuit.

Claim 4. F' does not contain two circuits that share an edge.

Proof of Claim [ Suppose Claim [ is false. Then F' contains two circuits
C,C’" such that there common edges induce a path P in F. By Claim [2] the
circuits C, C" are odd and thus the graph induced by (FE(C)U E(C")\)E(P) is

an even circuit. This contradicts Claim [l [ ]

Claim 5. F' does not contain two circuits that share a vertex.

Proof of Claim @ Suppose F contains two circuits C, C’ that share a vertex.
By Claim 3| C,C" are odd circuits; by Claim {4} E(C) N E(C") = (). Hence,
the edgeset E(C) U E(C’) provides a closed trail of an even length, which

contradicts Claim Bl [ ]

Claim 6. F does not contain two disjoint circuits C, C’ and a path P such
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that V(C)NV(P) =z and V(C") NV (P) =y, where z,y are the ends of P.
Proof of Claim @ Suppose F' contains two disjoint circuits C,C’ and a
path P with the above properties. Let e be an arbitrary edge of P. Now fix a

fractional [1, X]-factor h of F' with values in {0, %, ey mT_l, 1}, such that

(i) h(e) is as small as possible,
(1) with respect to (i), >.ic gy h(€') is as small as possible.

Again, no two (+)-vertices are adjacent in F. This implies, h(e’) < 1 for all
¢ € E(C)UE(C"YUE(P). Since C and C" are odd by Claim [3, both circuits
contain adjacent (—)-vertices. In conclusion, there is a path P’ = (vy,...,v;)
such that E(P’) C E(C)U E(C')U E(P), e € E(P') and vy, vy are two (—)-
vertices of C' and v;_1,v; are two (—)-vertices of C’. Now, add % and —%
alternately to the edges of P’ — {vjvg,v;_1v;} such that —% is added to e.
If vovs or vj_ou;_1 received —%, add % to vivg or v;_jv;, respectively. An

example is shown in Figure [3.2

Figure 3.2: The modifying of h if F' contains two disjoint circuits connected by a

path. The solid edges are the edges of P’.

The resulting function A’ has values in {0, %, s m7—17 1}, since no edge
of C, C’" or P had the value 0 or 1 before. Furthermore, we have d" (v) €
{d"(v),d"(v) + L} for every v € {v1,v2,v;_1,v;} and d" (w) = d"(w) for every

other vertex w. Since vy, va, vj—1 and vy are (—)-vertices (with respect to h), h’ is
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a fractional [1, *]-factor of I with values in {0, %, ey %, 1}. This contradicts
the choice of h, since h(e) = h(e) — L. [ |

Claim 7. No component of F' contains a circuit and a vertex of degree 1.

Proof of Claim[7 Suppose F contains a component with a circuit C' and a
vertex z with Np(z) = {y}. Let z € Np(y) \ {z} be a vertex such that either
z and C' belong to the same component of F' —y or y,z € V(C). Now, fix a

fractional [1, X]-factor h of F with values in {0, %, vy mﬁfl, 1}, such that

(i) h(yz) is as small as possible,
(17) with respect to (i), - cp(p) h(e) is as small as possible.

Again, no two (+)-vertices are adjacent in F', which implies that C' contains
adjacent (—)-vertices. Furthermore, an edge received the value 1 if and only if
it is incident with a vertex of degree 1, in particular h(zy) = 1 and hence y is
a (+)-vertex. By the choice of z, there is a path P = v;...v; such that v; =y,
vy = z and v;_1, vy are two (—)-vertices of C'. Now, add % and —% alternately

to the edges of P — v;_q1v; such that —% is added to yz. If vj_sv;_1 received

—%, add % to vj_1v; (see Figure .

(a) (b)

Figure 3.3: The modifying of h if F contains a component with a circuit and a
vertex of degree 1 in the cases (a) y ¢ V(C) and (b) y € V(C). The
solid edges are the edges of P.

The resulting function is denoted by h'. For each edge e € E(P) we have
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h(e) > 0 by Claim [I|and h(e) < 1 since P does not contain a vertex of degree
1

S m "

d"(y) = d'(y) — L, d"(v) € {d"(v),d"(v) + L} for every v € {vr_1, v} and

1 in F. In conclusion, A’ has values in {0 . ’”7_1, 1}. Furthermore we have
d" (w) = d"(w) for every other vertex w. Since y is a (+)-vertex and v;_1, v; are
(—)-vertices (with respect to h), b’ is a fractional [1, 2]-factor of F' with values
in {0, %, ey ’"T_l, 1}. This contradicts the choice of h, since h'(yz) = h(yz)— %
[ |

By Claims each component of F' is isomorphic to either an odd circuit
or a tree.

Claim 8. If 7 is a positive integer and C' is a component of F' isomorphic

to Cgi+1, then i < -2

n—m’

Proof of Claim [§ By the choice of F' and Observation no proper
subgraph of C' satisfies the -isolated-vertex-condition. In particular, Pa; 1

does not satisfy the -*-isolated-vertex-condition. Therefore, % > =, which is

equivalent to ¢ < ™. [ |

Claim 9. If T is a component of F' that is isomorphic to a tree, then
T e T%.

Proof of Claim[9 By Observation T satisfies the -isolated-vertex-
condition, whereas no proper subgraph of T satisfies this condition. Hence,

TeTn. |

In conclusion, every component of F' is isomorphic to an element of
{C241,T:1 < i < T € 7=} and thus, F is the desired factor. This

completes the proof of Theorem [3.2.1 O

3.3 Structural properties of the trees in 7»

In this section we characterize the trees in 7~ in terms of their bipartition.

Theorem 3.3.1. Let n,m be integers with 0 < m < n and let T be a tree with

bipartition {A, B}, where 0 < |B| < |A|. Then, the following statements are
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equivalent:

1) TeTn.

2) for every x € B, T has a fractional [1, X]-factor h with values in
L2101} such that d"(a) =1 for every a € A, d"(b) = 2 for every

be B\ {z} and d"(z) = 2 + |A| — 2|B|.

3) |A] < Z|B| and for every e = xy € E(T): |V(Tc) VAl > 2|V (Te) N B|,
where T, is the component of T — e that contains the unique vertex in

{z,y} N A.

Proof. 1) = 2). For stars 2) trivially holds. Thus, we assume 7" is not a star
and hence, there is an u € Leaf(T — Leaf(T')). Recall that no fractional [1, -
factor of T" uses value 0. Let h be a fractional [1, *]-factor of T" with values in

L., m7—17 1}, such that

(i) d"(u) is as small as possible,
(17) with respect to (i), - .cp(r) h(€) is as small as possible.

Observe that no two (+)-vertices are adjacent and as a consequence, h(e) = 1
if and only if e is a pendant edge of T'. Furthermore, every vertex adjacent to
a leaf of T is a (+)-vertex since T is not isomorphic to K.

First, suppose T contains a path P = ww;...v; in T such that v;_; is a
(—)-vertex and d"(v;) < Z. Modify h as follows: add —% and L alternately
to the edges of P — v;_1v; such that —% is added to uwy. If vj_ov;_1 received
—%, add % to v;_1vy, see Figure

Note that v; is not a leaf, since it is adjacent to a (—)-vertex. Hence, no
edge of P is a pendant edge of T' and thus, every e € F(P) satisfies h(e) < 1. In
conclusion, the modification of h, denoted h’, has values in {0, %, = Y
Moreover, &' is a fractional [1, 2]-factor of T since d"(u) > 1, d"(v;_1) = 1 and

d"(v;) < 2. This contradicts the choice of h, since d" (u) = d"(u) — L.

m
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‘s
1 — n
-1 41 L () 41 <
®-------- o ® ° ° °
U V1 V-1 Uy
.

Figure 3.4: The modifying of h if T contains a path P = uwv; ...v; such that v;_;
is a (—)-vertex and d"(v;) < . The solid edges belong to P.

The non-existence of such a path implies that the set of (—)—Vertices is
stable and every v € V(T) \ {u} that is a (+)-vertex satisfies d"(v) = 2. The
former implies that A consists of all (—)-vertices and B of all (+)—Vertices.
Hence,

Al =) dMa) =) d"(b) !B|—1)+dh( );

acA beB
which implies d”"(u) = 2 + [A| — Z|B|.
Now, let = be an arbitrary (+)-vertex, let P be the u,z-path contained in
T and let | = m (2 —d"(u)). Note that [V(P)| is odd, since P consists of
alternately (+)- and (—)-vertices. Set hg = h and for i € {1,...,1} let h; be
the function obtained from h;_1 by alternately adding % and —% to the edges
of P such that % is added to the edge of P incident with u (see Figure .

‘\
1 1
4+ L 1 += 1
o-—" o " o o "o
u x
.

Figure 3.5: The modifying of h;_; to obtain h;. The solid edges belong to P.

We have d" (u) = d"(u)+ L = 2 and @ (z) = d"(z) - L = 2 — L = dh(u).
As a consequence, d"(v) € [1, 2] for every i € {1,...,l} and every v € V(T).
Furthermore, for every i € {1,...,1}, if h;_1 is a fractional [1, ]-factor that

does not use value 0 nor 1 on P, then h; is a fractional [1, *]-factor. Thus, h;

also does not use value 0 on P. Moreover, it also does not use value 1 on P,
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since every edge of P is incident with a (—)-vertex (with respect to h;) that is
not a leaf of T. As a consequence, for every i € {1,...,l}, h; only uses values
%, R mﬁfl on P and therefore, h; is the desired fractional factor.

2) = 3) By Theorem T satisfies the “-isolated-vertex-condition and
hence |A| = iso(T — B) < *|B|. Let e = xy € E(T), where y € A, and
let h be a fractional [1, /*]-factor of T with the properties stated in 2) (with
pre-described vertex z). Then,

V(T)nAl= Y d'@)=h@y)+ Y d'(w)

veV (T.)NA weV (T.)NB

= h(zy) + ~V(T) N B,

which proves 3), since h(zy) > 0.

3) = 1) For every e € E(T), statement 3) implies
iso((T'—e) = (V(Te) N B)) = [V(Te) N A] > *lV( e) N B.

Thus, by Theorem it suffice to show that 7" has a fractional [1, /*]-factor.

For every e € E(T) set

he) = V(T N Al = 5 IV(T) 1 B

For every e € E(T), statement 3) imply

he) = IV(T) N A] = (V) N Bl = V(T) 0 Al = V() N B| >0,

By the definition of h, for every a € A and every b € B we have

|A]

> h(e) = (dr(a) = 1)(|A| = 1) + dr(a) — 5 (dr(a) — 1)| B
|B|
e’€dr(a)
=dp(a)|A] = [A] +1 - |A|(dr(a) — 1) =1
and
Al oy I1A]
= > he)=1A1- 5 (1Bl 1) =

eGaT )
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Note that 1 < % <

where x € B, the above calculations imply

since |A| > |B|. Furthermore, for every e = zy € E(T),

n
m’

e'€dr(y)\{e}

In conclusion, h is a fractional [1, *]-factor of T', which proves 7' € Tx. O

Note that, by the proof of 3) = 1), every T' € T= has a fractional [1, *]-
factor h such that d"(a) = 1 for every a € A and d"(b) = % for every b € B.
On the other hand, not every tree with such a factor belongs to Tﬁ. As the

following corollary shows, Theorem [3.3.1] imply some structural properties of

trees in Tn.
m

Corollary 3.3.2. Let n,m be integers with 0 < m < n and letT € Tn be a

tree with bipartition {A, B}, where 0 < |B| < |A|. Then, the following holds
(1) either T = Ky, or Leaf(T) C A,

(13) dr(a) < m for every a € A,

(7i7) dp(b) < n for every b € B,

(iv) dp(x) = [2] +1 for every x € Leaf(T — Leaf(T)),

(v) if n=1 (mod m), then either T is a star or |A| = | B| and |V (T)| is a

multiple of n +m.

Proof. For stars the statements are trivial. Thus, assume T is not a star
and hence, there are two distinct vertices z1,z2 € Leaf(T — Leaf(T)). Note
that every vertex v € Leaf(T — Leaf(T)) belongs to B, since h(v) > 1 for

every fractional [1, *]-factor h of T. Consider two fractional [1,.*]-factors

m
hi,ho of T with the properties stated in statement 2) of Theorem m (with
respect to x1 and xa, respectively). The existence of hy imply (4), (i), (i7i) and
d(z) = | =] +1for every x € Leaf(T — Leaf(T))\{z1}. By the existence of hy

we have d(z1) = |- | + 1, which proves (iv). Furthermore, if n =1 (mod m),



34 Chapter 3:  Fractional factors, component factors and isolated vertex conditions

then 2 = | 2|+ L < gM(z) < 2. Hence, L = d"(z1) = 2 + |4] — 2B,
ie. |A] = =|B|. Moreover, we observe that % is an integer, since =1 is an

integer and |A| = 2|B| = ~=1|B 1Bl As a consequence, |V (G)| = |A|+|B| =
m m m

B+ |B| = (n+ m)'B‘ which proves (v). O

m

By (i), (iii) and (iv), for every T' € Tn the set Leaf(T — Leaf(T)) is empty,
which is equivalent to T being a star. As a consequence, 7-% ={K;:1<i<

n}, or equivalently, Theorem holds.



Chapter 4

Factors in edge-chromatic

critical graphs

This chapter (excluding Sections and is based on [79]. Theorems [4.0.2

[4.0.3] and [4.2.1] are unpublished; all other results in Chapter [4] are published

in |79).

Vizing [87] proved the fundamental result on edge-coloring simple graphs
by showing that the chromatic index of a simple graph G is either A(G) or
A(G)+ 1. An edge e € E(Q) is critical, if X' (G) = A(G)+1 and /(G —e) =
A(G). If G is connected, A(G) = k and all edges of G are critical, then G
is k-critical. Clearly, every simple graph H with x'(H) = A(H) + 1 contains
a A(H)-critical subgraph. There had been several conjectures with regard to
the order or to (near) perfect matchings of critical graphs, which all turned
out to be false, see [9] for a survey. The situation changes when we consider
2-factors. In 1965, Vizing [88] conjectured that every critical graph has a 2-
factor. This conjecture has been verified for some specific classes of critical
graphs as overfull graphs [28] or critical graphs with large maximum degree
in relation to their order [15,/53]. Furthermore, some equivalent formulations
or reduction to some classes of critical graphs as e.g. critical graphs of even

order are proved in [9,|16]. All these approaches have not yet led to significant

35
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progress in answering the question whether critical graphs have a 2-factor.

To gain more insight into structural properties of critical graphs it might be
useful to investigate slightly easier statements about factors in critical graphs.
If Vizing’s 2-factor conjecture is true, then (1) every critical graph has a cycle-
factor, (2) every critical graph does not contain an inclusion-wise minimal
vertex-cut consisting of an odd number of divalent vertices, and (3) every crit-
ical graph has a path-factor. Statements (1) and (3) were conjectured to be
true in [9]; Statement (3) is verified in [48]. For Statement (1) note that ev-
ery bridgeless graph with minimum degree at least 3 has a cycle-factor [23].
Thus, the question whether every critical graph has a cycle-factor is reduced
to critical graphs with divalent vertices.

In this chapter, first we prove Statement (1) for critical graphs with a
small number of divalent vertices. Next, we show that every vertex-cut (not
necessary of odd cardinality) consisting of divalent vertices in a critical graph
has a huge cardinality compared to the maximum degree, which partially proves
(2). Furthermore, we slightly extend the result of [48]. The following theorems

are the main results of Chapter

Theorem 4.0.1. Let k > 3 and let G be a k-critical graph. If G has at most

2k — 6 divalent vertices, then G has a cycle-factor.

Theorem 4.0.2. Let k > 2 and let G be a k-critical graph. If A is an inclusion-
wise minimal vertex-cut consisting of divalent vertices, then

4l > [1(k3— k%) ,ifk<6

3(k? — k) L if k> 6.

Theorem 4.0.3. Let k > 3 and let G be a k-critical graph. Then, G has a
path-factor F with dp(v) = 2 for all v € V(G) with dg(v) = 2.

In order to prove the above results, we need some further definitions as well

as an observation.
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Let ¢ be a proper k-edge-coloring of a simple graph G and v € V(G). For
a color i € {1,..,k}, we say color i is present at v if an edge incident to v is
colored with color i. Otherwise, color i is missing at v. The set of colors present
at v is denoted by ¢(v); the set of colors missing at v is denoted by @(v). For
two different colors i,5 € {1,...,k}, the subgraph induced by the edges that
are colored i or j is denoted by K (i,j). Its components are called (i, j)-Kempe
chains or sometimes just Kempe chains. Clearly, a Kempe chain is a path or a
circuit. If {4, j} Np(v) # 0, then the unique component of K (7, j) that contains
v is denoted by P (i,7). We will omit the upper index if this does not cause
any ambiguity. A new proper k-edge-coloring, denoted by ¢/P,(i,j), can be
obtained from ¢ by interchanging colors i and j in P, (i, 7).

In the proofs of Lemma and Theorem we will use the
following basic observation without reference: Let G be a simple graph with a
critical edge vw and let ¢ be a proper A(G)-edge-coloring of G — vw. If color
1 is missing at v and j is missing at w, then color ¢ is present at w, color j is

present at v and PJ (i, ) is a v, w-path.

4.1 Cycle-factors

In this section we prove Theorem In order to do so, we first prove two

technical lemmas as well as a theorem.

Lemma 4.1.1. Let G be a simple graph with A(G) =k, X'(G) = k+ 1, and
let AC V(G) be a set of vertices such that

e e(A,v) =1 for every v € N(A), and

e N(A) = {z,y,w1,...,w} withl > 1, d(y) < d(x) < k and d(w;) = 2 for

every i € {1,...,1}.

If at least one edge in Eq(A,{wi,...,w}) is critical, then | > k(k —d(y)) —
d(z)+1.
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Proof. Let w € {wy,...,w;} be a divalent vertex, let w’ be the unique neighbour

of w that belongs to A, and let the edge w'w be critical.

Claim 1. There is a proper k-edge-coloring ¢ of G —w'w such that @p(w’) =
e(w) ={1} and 1 € @(z).

Proof of Claim . Since w'w is critical there is a proper k-edge-coloring
¢ of G — w'w. Furthermore, ¢'(w') = ¢/'(w) = {i} for a color i € {1, ..., k}.
Since d(z) < k, there is a color j that is missing at x. If i = j # 1, then we
obtain a coloring with the desired properties by interchanging colors ¢ and 1.
If i # j, then P/ (i,j) is a w', w-path and thus does not contain x. Therefore,
the coloring ¢”, defined by ¢” = ¢'/Py(i,7), satisfies ¢’ (w') = ¢"(w) = {j}
and j € ¢"(x). Again, if j # 1, then a coloring with the desired properties can

be obtained by interchanging colors j and 1. Thus, the claim is proved. |

Now fix a proper k-edge-coloring ¢ of G — w'w with the properties stated

in Claim[Il Define a set M as follows:

M ={(h,z,h): z€ N(A)\ {w}, {h,h'} Cp(z),h #H,

¢(e) = h, where e is the unique edge in Eg (A4, 2)}.

We prove a lower bound for the number of triples in M, which will be used
to obtain the lower bound for [.
For each triple (h, z,h’) of M there is a unique Kempe chain P, that contains
the two edges incident with z that are colored h and h’. In this case we say
P contains (h, z,h’). Furthermore, if P is a path and v is an end of P, then
we can interpret P as a vertex-list starting with v. This gives an order of the
vertices of P and thus an order of the triples contained in P. We define the
first and the last triple contained in P (starting with v) in the natural way.
An example is given in Figure

If i € {2,...,k}, then the Kempe chain P,,(1,1) is a path with ends w’ and
w and thus, it contains at least one triple of M. Therefore, we can define a

subset M; of M as follows: For every i € {2,...k} let (i1, i, 2) be the last triple
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Figure 4.1: P,(1,2) contains (1,y,2), (2,2/,1) and (2,2,1). (1,y,2) is the first and
(2, 2,1) the last triple contained in P,(1,2) (starting with v).

contained in P, (1,7) (starting with w’) and set
My = {(i1, zi,9) - i € {2,..k}}.

Figure shows an example. We note, that {ij,io} = {1,i} for every i €
{2,...,k} and in particular, x is not in a triple of Mj, since color 1 is missing

at x.

Figure 4.2: The triple (3, z3, 1) is the last triple contained in P, (1,3); (1,y,2) is
the last triple contained in P,/ (1, 2)(starting with w’). Thus,
(3,23,1), (1, 22,2) € My where zo = y.

Claim 2. |M;| =k — 1.
Proof of Claim [4 Let 4,7 be two different colors of {2,...,k}. Then,

{ir,in} = {1,4} # {1,7'} = {4}, 45}, and hence (i1, 2, i2) # (¢}, zir, 7). [ |

Claim 3. Let i € {2,...,k} and j € ¢(z;). Then P;,(i1,7) contains a triple

i
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of M.

Proof of Claim @ Suppose, P, (i1, j) does not contain a triple of M. Then,
the coloring ¢', defined by ¢’ = ¢/P,, (i1, ]), satisfies @' (w') = ¢'(w) = {1}.
Since (i1, 2i,12) is the last triple contained in P, (1,4) (starting with w’), the
Kempe chain Pf{f/ (i1,i2) has ends w and z;. In particular P{ff/ (i1,12) is not a

w’, w-path. We have either i; = 1 or i, = 1, a contradiction. See Figure

for an example. [ |
/Pwr(l’?’)/'"— \\
Pad Se- ---‘
'l' """"" L -~
. '
' ‘. 23 1
' S - @,
] 7 s
L e~
“ PZJ(3’2) :
;
Q~~~ / ll'

Figure 4.3: The triple (3, 23,1) is in M;. Color 2 is missing at z3. The Kempe
chain P,,(3,2) does not contain a triple of M. Interchanging colors 3
and 2 in P,,(3,2) produces a contradiction, since P, (1,3) is not

longer a w’, w-path.

Next, define a second subset My of M as follows:

My = {(h,z,h): i €{2,....k},j € §(2i), (h,z k') is the first triple

contained in P, (i1, ) (starting with z;)}.

An example is given in Figure [.4]

Claim 4. M; N M, = 0.

Proof of Claim[j We have z; ¢ {w',w} for every i € {2,....,k}. Hence,
every triple of My is contained in a path with an end that is neither w’ nor w,

whereas every triple of M; is contained in a w’, w-path. |

Claim 5. |[Ms| = [{(j,2:) 11 €{2,....k},7 € (%)}
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Figure 4.4: The triple (1, 22,2) is in M;, where 25 = y. Color 3 is missing at y.
The triple (3, z, 1) is the first triple contained in P,(1,3) (starting
with y) and thus in M.

Proof of Claim [3 Let i,i" € {2,...k}, j € @(z) and j' € @(z) such
that (j,z;) # (j',2¢). Then, the paths P, (i1,j) and P, (i],j') have at least
one different color or a different starting vertex (interpreted as a vertex-list
starting with z; or zy respectively). Therefore, these two paths have different
first triples (in the case z; # zy we use the fact that both triples are first
triples). [ |

Claim 6. [{(j,2z;):i€{2,....k},7 € ¢(z)} > (k—d(y))(k—1).

Proof of Claim[6l Since color 1 is missing at x, there isno i € {2, ..., k} with
zi = x. If z; = zy for two different integers i,4 of {2,...,k}, then z; = z;y = y,
since every vertex in N(A) \ {z,y} is divalent. Furthermore, the number of
indices i € {2, ..., k} with z; = y is at most d(y) — 1. Vertex y misses k — d(y)

colors whereas all other vertices in N(A)\{w, 2} miss k—2 colors. In conclusion:

H(]? Zi) S {27"'7k}7j € @(ZZ)H
2(k—d(y)) + (k=1—(d(y) —1))(k - 2)
=(k —d(y))(k - 1).
|

We now prove that | > k(k — d(y)) — d(x) + 1. Since eg(A,v) = 1 for
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every v € N(A) and all vertices in N(A) \ {z,y} are divalent, the inequality
[ >|M|—(d(z) —1) — (d(y) — 1) holds. By claims and [6] we have:

L>[M] = (d(z) - 1) = (d(y) = 1)
> [My| + |Ma| = (d(x) = 1) = (d(y) — 1)
>k =1+ (k—d(y)(k—-1)—(dz)-1) - (dy) - 1)

= k(k — d(y)) — d(z) + 1.
O

Lemma 4.1.2. Let k > 3 and let G be a simple graph with A(G) = k and
X'(G) =k+1. If E' C E(G) is an inclusion-wise minimal edge-cut consisting

of three critical edges, then no edge in E’' is incident to a divalent vertex.

Proof. Let G be a simple graph with A(G) = k and x/(G) = k+1. Furthermore,
let E' C E(G) be an inclusion-wise minimal edge-cut consisting of three critical
edges e1, eg and e3; let A and B be the components of G — E’, and let e; = x;y;,
where x; belongs to A and y; to B. Let G4 be the subgraph induced by
V(A)U{y1,y2,ys}, and let Gp be the subgraph induced by V(B)U{x1, 22, x3}.

We say a k-edge-coloring ¢ of G4 or Gp is of

type 1, if p(e1) = p(e2) = p(e3),

type 2, if p(e1) = p(e2) # p(e3),

type 3, if p(e1) = w(e3) # p(e2),

type 4, if p(e2) = p(es) # w(en),

type 5, if p(e1) # w(e2), ple1) # p(es), plez) # p(es).

Suppose to the contrary that there is an edge of E’ that is incident to a divalent
vertex. We will show that there is a proper k-edge-coloring 4 of G4 and a

proper k-edge-coloring ¢p of Gp such that ¢4 and pp can be combined to
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a proper k-edge-coloring of G (by possibly relabeling the colors in one of the

colorings), a contradiction.

In order to label the appearing colorings properly, we use the following
definition: For an edge e € E’, a k-edge-coloring ¢ of G — e and a color
i€ {1,...,k}, let p; denote the k-edge-coloring of G obtained from ¢ by coloring
e with 1.

Suppose to the contrary that d(y;) = 2. First of all we use the fact that
e1 is critical. Let ¢ be a proper k-edge-coloring of G — e; such that w.l.o.g.
@(z1) = ¢(y1) = {1} holds. Thus, for every i € {2,...,k} the Kempe chain
P, (1,i) is an z1, y1-path. Since k > 3, at least two of these paths, say P, (1,2)
and Py, (1,3), contain w.l.o.g. ez, which means ¢(e2) = 1. We first prove that
the coloring ¢ can be used to obtain a proper type 1 and a proper type 2
k-edge-coloring of G4 and a proper type 3, a proper type 4 and a proper type

5 k-edge-coloring of G'p, no matter which color the edge es has received.
Case 1. p(e3) = 1.

In this case, the coloring ¢1 |g(qa,) is a proper type 1 k-edge-coloring of
G 4. On the other hand, 2 |g(g,) is a proper type 4 k-edge-coloring of G'p.
Furthermore, the coloring ¢, defined by ¢’ = ¢/P,,(1,2), satisfies ¢'(e3) = 2,
while ¢'(21) = ¢'(y1) = {1} and ¢'(e2) = 1 still hold. Therefore, ¢} |p(,) is a
proper type 2 k-edge-coloring of G 4, the coloring ¢4 |g(g,) is a proper type 3
k-edge-coloring of G, and ¢ | E(Gp) is a proper type 5 k-edge-coloring of Gp.

Case 2. p(e3) # 1.

If e € Py, (1,0(es)), then the coloring ¢', defined by ¢’ = ¢/ Py, (1, p(e3)),
satisfies @'(x1) = ¢'(y1) = {p(e3)} and ¢'(e2) = ¢'(es) = 1. Hence, for
any ¢ € {2,...,k} \ {¢(e3)} the Kempe chain Pgﬁ/(z’,go(eg)) is not an x1,yi-
path, a contradiction. Therefore, we may assume e3 ¢ Py, (1,¢(e3)), which
implies e; € Py, (1,p(e3)). As a consequence, the coloring ¢, defined by ¢’ =
0/ Pry(1,0(e3)), satisfies @ (x1) = ¢’ (y1) = {1} and ¢'(e2) = ¢'(e3) = 1. Since
P (1,2) and P¥,(1,3) still contain ez, Case 1 applies.
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In both cases there is a proper type 1 and a proper type 2 k-edge-coloring of
G 4, and a proper type 3, a proper type 4 and a proper type 5 k-edge-coloring
of Gp.
We now use the fact that the edge es is critical as well. Let ¢’ be a proper
k-edge-coloring of G — e3 with i € @'(z3) and j € @'(y3). If e; and ey are
colored with the same color, then gp} ] E(Gp) 18 a proper k-edge-coloring of G
that is of type 1 or 2. On the other hand, if ¢'(e1) # ¢'(e2), then ¢} |gq,) is
a proper type 3, type 4 or type 5 k-edge-coloring of G 4.
In every case there are two proper k-edge-colorings, one of G 4 and one of Gp,
that are of the same type. This contradicts the fact that G is not k-edge-

colorable. O

A graph without a cycle-factor can be characterized as follows (see Theorem

6.2 (p. 221) in [2)).
Theorem 4.1.3 ( [2]). If G is a graph, then G has no cycle-factor, if and only
if there is an X C V(G) with

> () —2) - q(G; X) <0, (1)

veX
where q(G; X) denotes the number of components D of G — X such that
eq(V(D),X) is odd.

We will give a more detailed formulation of Theorem with regard to

a minimal set X that satisfies inequality .

Theorem 4.1.4. If G is a connected graph, then G has no cycle-factor, if and
only if there is an X C V(G) with the following properties: Let D1, ..., D,, be
the components of G — X.

(a) > (d(v) —2) —q(G; X) <0,

veX

(b) eq(V(D;),v) <1 for every v € X and everyi € {1,...,n},

(c) X is stable,
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(d) eq(V(D;),X) is odd for every i € {1,...,n},

7

(e) EZX (d(v) —3) + 3 ;(€G<V(Dz‘),X) —3)<|{veX:dw) =2}
d(v)#2

Proof. By Theorem[£.1.3]it suffices to prove one direction. Let G be a connected
graph without a cycle-factor. By Theorem there is a set that satisfies
inequality . Let X C V(G) be the smallest set with > _y(d(v) —2) —
q(G; X) < 0. We show that X satisfies (b) - (e).

For each v € X let ¢(v) be the number of components D of G — X with
eq(V(D),X) =1 (mod 2) and eq(V(D),v) > 1. We first prove c¢(v) = d(v)
for every v € X, which implies properties (b) - (d), since G is connected.

Let z € X and X’ = X \ {z}. By the choice of X, the set X’ does not satisfy
inequality (a). Furthermore, we observe that —2|X|+ > .y d(v) —q(G; X) is

even. As a consequence,

0< Y (dv) —2) — q(G; X')

veX'’
< =2X|+2+ ) d(v) —d(x) - (a(G; X) — e(x))
veX
= =2|X|+ ) d(v) - q(G; X) +2 — d(x) + c()
veEX

< =242 —d(z) + c(z).

Thus, d(z) < ¢(x), which implies d(z) = ¢(z). Therefore, the set X satisfies

(b) - (d).
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Next, by using (¢) and (d) we can transform (a) to (e) as follows:

> (d(v) —2) — q(G; X) <0

veX
& g(d(v) —2)<n
o %Z(d(v)—2)+2(d(v)—2) <§Zl
veX veX i=1
& 530 (VD). X)) = X+ 3 (@) =2 < 305
=1 veX =1
& 53 (eaVID), X) ~3)+ 3 (dw) ~3) <0
=1 vEX
& 2 > (eaVD), X) = 3)+ Y (dle) —3) — {ve X :d(v) =2} <0
= diuye2
& Y @) -3)+ % S (ea(V(Di), X) = 3) < [{v € X : d(v) = 2}].
veX i=1
d(v)#2

O

Proof of Theorem[{.0.1]. For k = 3 there is nothing to prove. Let k > 3. Let G
be a k-critical graph without a cycle-factor. Hence, there is a subset X C V(G)
that satisfies conditions (a) -(e) of Theorem We show that X contains
more than 2k — 6 divalent vertices.

Let Dy, ..., D, be the components of G — X and g : {D, ..., D,,} — R with

9(D;) := > d(dv()v_)Q forie {1,...,n}.
veN(V(D;))

Properties (a) -(d) imply
" B " d(v) —2 B
900 = 3 > T e o=z
=1 =1 veN(V(Dy))

< GX) = n.
(a) a ) (4)

Thus, there is at least one component D € {Dy, ..., D, } with g(D) < 1. Every
critical graph does not contain a vertex of degree 1. Therefore, there are at

most two vertices in N (V' (D)) that are not divalent. Moreover, if N(V (D))
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contains two vertices of degree at least 3, then one of them is of degree 3 and
the other is of degree at most 5. Furthermore, since every critical graph is
bridgeless, the component D has at least three neighbours in X by (b) and (d).
In conclusion, we can assume N(V (D)) = {z,y, w1, ...,w;}, where | > 1, the
vertices wy, ..., w; are divalent and either d(y) = 2, or d(y) = 3 and d(z) < 5.
We consider the following two cases:

Case 1. d(x) < k.

By condition (b) and Lemma [4.1.1]it follows that

I>k(k—dy) —d@) +1>k(k—3)—k+2=k(k—4) +2 > 2k — 6.

Case 1. d(z) = k.

If there are three components adjacent to x such that each has exactly three
edges to X, then none of these components is adjacent with a divalent vertex
by Lemma In conclusion, we obtain with property (b)

S g(Di) > d(x) —2+6 @) — d(x).
1€{1,...,n}

2eN(V(Dy))
Since Y., g(D;) < n, there is another component D' € {Dx,...,D,} with
g(D') < 1, but x ¢ N(D'). If D" is not adjacent to a vertex of degree k,
then N(V(D')) contains at least 2k — 6 divalent vertices since Case 1 applies.
Otherwise X contains at least two vertices of degree k. Since G is bridge-
less, property (d) implies that eq(V(D;), X) > 3 for every i € {1,...,n}. In

conclusion, property (e) implies that
{v e X :d(v) =2} >2(k—3)=2k—6.

If at most two components adjacent to x have exactly three edges to X, then
by properties (b) - (d) there are at least d(x) — 2 components such that each

has at least five edges to X. Therefore, property (e) implies that
1
Hv e X :d(v) =2} >d(x) — 3+ (d(z) — 2)5(5 —3) =2k -5,

and the proof is completed. O
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4.2 Vertex-cuts consisting of divalent vertices

In this section we prove Theorem Lemma already provides some
information about the cardinality of a vertex-cut containing only divalent ver-
tices (in a critical graph). More precisely, there is no k-critical graph with a
vertex-cut consisting of (k—1)2 or less divalent vertices. The following theorem,

which implies Theorem improves this bound.

Theorem 4.2.1. Let G be a simple graph with A(G) =k and X' (G) =k + 1;
let A C V(G) be a set of divalent vertices. If A is an inclusion-wise minimal
vertex-cut and at least one edge in Eq(A, N(A)) is critical, then

> [L(k*—K?)] ,ifk<6

3(k? — k) ,if k > 6.

Proof. Let vw € E(G) be a critical edge with v € A and w ¢ A; let ¢ be
a proper k-edge-coloring of G — vw with ¢(v) = @¢(w) = {1}. We count the
number of vertices in A\ {v} that are incident with a 1-colored edge. The set

of such vertices is denoted by M, i.e.

M={z:z€ A\ {v}, 1 € p(2)}.

For each j € {2, ..., k}, the Kempe-Chain P, (1, j) is a v, w-path, thus it contains
at least one inner vertex that belongs to M. Some of these paths may contain

exactly one inner vertex belonging to M, and we define:
M,y = {z;: z; is the only inner vertex of P,(1,j) that belongs to A}.

The remaining Kempe-Chains contain at least 3 inner vertices that belong to

M, and we define analogously:
My ={z: z € A\ My, z is an inner vertex of P,(1,7) for one j € {2,....k}}.

Since all vertices in M are divalent, we have |[M;| € {0,....,.k—1}, MyN My = ()
and My > 3((k — 1) — M)
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Now for every z; € M; and each i € ((z;), the path P, (1,4) also contains
at least one inner vertex belonging to M. Otherwise the coloring ¢’, defined
by ' = ¢/P.,(1,i), satisfies ¢'(v) = ¢'(w) = {1}, but z; is an endvertex of
cither Pf (1,5) or P£ (1,7), a contradiction. Let M; be the set of these inner

vertices, i.e.
Mz = {z: z; € My, i€ ¢(25), 2 € A, z is an inner vertex of P, (1,7)}.

Each vertex of M7 misses k—2 colors. Furthermore for each vertex z € Mgz there
are at most two different pairs (j,7) and (j,4") such that z is an inner vertex of
P,;(1,4) and P, (1,7'). This happens if and only if P;;(1,4) = P, ,(1,4’). Thus

we obtain:

My > PM1|(§ - 2)—‘

For every z; € M and every i € (p(z;) the path P, (1,i) has an end that is
neither v nor w, and hence M3 N (MU Ms) = (. In conclusion |M]| is bounded

from below as follows:

|M| > [My] + |Ma| + | M3
My|(k —2
ZLMH+3«k—1}4Aﬁ)+[’1K)W

SR LIS ) 2

%—3+Ft%kﬂw,ﬁk§6
>

3k — 3 Jif k> 6
HED itk <6

= =: f(k)
3(k—1) ,ifk>6

We now choose an arbitrary h € {2,...,k} and consider the k-edge-coloring
op, defined by ¢, = ¢/P,(1,h). This coloring satisfies ¢, (v) = @p(w) = {h}.
By using the argumentation above, there are at least f(k) different vertices

z € A\ {v} with h € pp(z). We note that the color swap did not change the
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colors appearing on a vertex in A\ {v}, i.e. p(2) = ¢p(z) for every z € A\ {v}.
Therefore, there are also at least f(k) edges incident to a vertex of A\ {v} that
are colored h in the coloring . Since h was arbitrary, there are at least kf(k)
different edges incident to a vertex of A\ {v}. By using the fact that every

vertex in A\ {v} is divalent, we finally obtain:

L3 — k)] |ifk<6
'A'>VW= 5k — k)]

(k2 —k)  ,ifk>6.

[\C][9V]

4.3 Path-factors

In this section we prove Theorem We use the following two results.

Lemma 4.3.1 (Vizing’s Adjacency Lemma [89]). Let G be a critical graph and
zy € E(GQ). Then at least A(G) — d(y) + 1 vertices in N(x) \ {y} have degree
A(G).

For two integers a,b with 0 < a < b and a graph G a factor F' of G is an
[a, b]-factor if a < dp(v) < b for every v € V(G). Note that a [1,2]-factor is
a factor whose components are paths and circuits. Graphs admitting a [1, 2]-

factor can be characterized as follows.

Theorem 4.3.2 ( [1]). A simple graph G has a [1,2]-factor if and only if
iso(G — S) < 2|S| for all S C V(G).

Proof of Theorem[{.0.3. Let G be a critical graph. We first prove that G has
a [1,2]-factor F' such that every divalent vertex of G is also a divalent vertex
in F. Let G* be the graph obtained from G by splitting each divalent vertex
T into two vertices x1, xo of degree 1. That is: delete x; add two new vertices
x1, xo of degree 1, where x1 is adjacent to one former neighbour of z and x-

is adjacent to the other former neighbour of z. It is easy to see that G has a
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[1,2]-factor F' with dp(v) = 2 for all divalent vertices v of G if and only if G*
has a [1, 2]-factor. Thus, by Theorem it is sufficient to show

iso(G* — §) < 2|8 (1)

for all S C V(G*).

Let S be an arbitrary subset of V(G*). We use the Discharging-Method to
prove (). Define an initial charge function ch : Iso(G* — S) — R by ch(u) =
for all u € Iso(G* — S). Now ch is modified by moving charge locally around
as follows: every u € Iso(G* — S) distributes its charge equally among all
neighbours. Since each neighbour of a vertex u € Iso(G* — S) is in S, this
leads to a new charge function ch’ : S — R. Furthermore, since we just move
charge around, the following holds:
iso(G*—S) = Z ch(u) = Z ch'(w).
uelso(G*—5) wes

We prove that each w € S has modified charge at most 2, which implies .
Let w be an arbitrary vertex of S. If w is of degree 1, then w received at
most charge 1 from its neighbour and thus ch/(w) < 2 obviously holds. If w is
adjacent to a vertex v of degree 1, then w is adjacent to v and A(G)—1 vertices

of degree A(G) by the construction of G* and Vizing’s Adjacency Lemma.

Hence ch/(w) <1+ g()) < 2. Therefore, we may assume, that w and none
of its neighbours is of degree 1. As a consequence, each vertex in {w}UN (w) has
the same degree in G* and G. Let s be the smallest degree of a vertex in N (w)
and let n be the number of vertices of degree A(G) in N (w). Clearly, w received
charge at most ﬁ from each neighbour of degree A(G) and at most charge

l from every other neighbour and thus ch/(w) < A?G) + A(Gs)fn. Furthermore,

Vizing’s Adjacency Lemma implies n > A(G) — s+ 1. In conclusion:

ch (w) < AZ‘G) + A(GS)_” —( ) 1)

< (a5~ 3) @@ -5+ 1+ 59 —AGX(‘Gj“ﬁj <2
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Thus, G has a [1,2]-factor F with dp(v) = 2 for all divalent vertices v of G.
By Vizing’s Adjacency Lemma, for & > 3 every two divalent vertices of a k-
critical graph have distance at least 3. Hence, every circuit of F' contains two
adjacent vertices that are not divalent in G. As a consequence, by deleting an
appropriate edge of every circuit, F' can be transformed to a path-factor F’ of

G such that dp/(v) = 2 for all v € V(G) with dg(v) = 2. O

We also note, that a critical graph G has a 2-factor, if and only if G* has a
[1, 2]-factor F' such that every vertex of degree 1 in F' is also a vertex of degree

1 in G*.



Chapter 5

Factors intersecting disjoint

odd circuits in regular graphs

This chapter is based on a joined work with J. Goedgebeur, D. Mattiolo, G.
Mazzuoccolo, J, Renders and L. Toffanetti, which was mainly carried out during
two research stays in Italy (one in Verona and one in Modena). The results in

this chapter are not yet published.

Recall that the Berge-Fulkerson Conjecture (Conjecture states that
every bridgeless cubic graph has six perfect matchings such that each edge
belongs to exactly two of them. If G is a 3-edge-colorable cubic graph, then
its edge-set can be partitioned into three perfect matchings. By taking each of
these perfect matchings twice we obtain six perfect matchings with the desired
property. Thus, Conjecture [I.1.T]reduces to snarks, i.e. bridgeless cubic graphs
of class 2. With the help of a computer, the Berge-Fulkerson Conjecture was
verified for all snarks of order at most 36 [13], which can be seen as a strong
indication that the conjecture might be true in general. Nevertheless, a general

solution seems to be far away.

If true, Conjecture implies that every bridgeless cubic graph has five
perfect matchings such that each edge is in at least one of them. This state-

ment was conjectured to be true by Berge (unpublished) and is also known as

93
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the Berge Conjecture. At first glance, the Berge-Fulkerson Conjecture seems
to be stronger than the Berge Conjecture; but it turned out that they are
in fact equivalent (Mazzuoccolo [64]). Despite much effort, both conjectures
remain widely open; the Berge-Fulkerson Conjecture is unsolved for over 50
years. Hence, in order to make some progress, weaker statements moved into
focus. The following three conjectures are all implied by the Berge-Fulkerson
Conjecture and decrease in their strength, i.e. each conjecture is implied by

the previous.

Conjecture 5.0.1 (Fan, Raspaud [22]). Every bridgeless cubic graph has three

perfect matchings with an empty intersection.

Conjecture 5.0.2 (Macajova, Skoviera [60], see also [43]). Every bridgeless
cubic graph has two perfect matchings such that their intersection does not

contain an edge-cut of odd cardinality.

Conjecture 5.0.3 (Mazzuoccolo [65]). Every bridgeless cubic graph has two
perfect matchings My, Ma such that G — (M, U Ma) is bipartite.

Very recently, the weakest of these conjectures (Conjecture[5.0.3|) was finally
verified by Kardos, Macajova and Zerafa [47] by proving the following more

general statement.

Theorem 5.0.4 (Kardos, Macajova, Zerafa [47]). Let G be a bridgeless cubic
graph. Let I be a factor of G such that every vertex is of degree at least 1 in
F and let e € E(G). Then, there exists a perfect matching M of G such that
e€ M and G — (E(F)U M) is bipartite.

Theorem is equivalent to the following statement; in fact in [47] they

proved this equivalent version.

Theorem 5.0.5 (Kardos, Macajovd, Zerafa [47]). Let G be a 2-connected cubic
graph. Let O be a set of pairwise edge-disjoint odd circuits of G and let e €
E(G). Then, there exists a 1-factor F' of G such that e € E(F) and E(F) N
E(O) # 0 for every O € O.
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It is natural to ask whether similar statements are true for graphs of higher

regularity. In this chapter we consider the following problem.

Problem 5.0.6. Let r,t be integers with 1 <t < r—2. Is it true that for every
(sufficiently connected) r-regular graph G and every set O of pairwise edge-
disjoint odd circuits of G there is a t-factor F of G such that E(F)NE(O) # ()

for every O € OF

Note that there are combinations of r and ¢ such that there exist r-regular
graphs that do not have a t-factor. Thus, we need to make some connectivity
assumptions on G to make sure that G admits a ¢-factor. Problem seems
to be particularly interesting when ¢ is small. In this chapter we answer some
instances of Problem In particular, we give a positive answer in the cases
when ¢ = § and when ¢t = 5, where ¢ is even. The following two theorems are

our main results.

Theorem 5.0.7. Let k > 1 be an integer and let G be a 2-connected 3k-
reqular graph. Let O be a set of pairwise edge-disjoint odd circuits of G and
let e € E(G). Then, there exists a k-factor F of G such that e € E(F) and
E(F)N E(O) is a non-empty matching of G for every O € O.

Theorem 5.0.8. Let k > 1 be an integer and let G be a 2-connected 4k-reqular
graph. Let O be a set of pairwise edge-disjoint odd circuits of G. Then, there
exists a 2k-factor F of G such that E(O) N E(F) # 0 and E(O) N (E(G) \
E(F)) # 0 for every O € O.

We furthermore prove that these results are best possible in the sense that
(1) the answer to Problem is negative when ¢ < g and (2) for all r,#, the
assumption that GG has no cut-vertices is a necessary condition for a positive

answer to Problem [(.0.61
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5.1 3k-regular graphs

In this section we prove Theorem [5.0.7] For that, we define a series of sets of

trees 71,72, ... inductively as follows:
o T'={Kis}
o for every k > 1, T* consists of all trees that can be obtained as follows:

1. start with a tree T € T+~!
2. add two copies Hq, Hy of K3
3. identify [,1; and Il to a new vertex, where | € Leaf(T), Iy €

Leaf(Hi) and Iy € Leaf(H>).

The only graph in 72 as well as an element of 72 is depicted in Figure

Note that for every positive integer k, every tree of 7% has exactly 3k leaves.

Figure 5.1: The only element of 72 (left) and an element of 72 (right).

Moreover, the set 7% contains a tree such that at most one pendant edge is

not adjacent to another pendant edge. Furthermore, we observe the following.

Observation 5.1.1. Let T € T* and let M C E(T) be a matching such that
every vertex of V(T') \ Leaf(T) is incident to an element of M. Then, M

contains exactly k pendant edges of T

Proof. We prove the statement by induction on k. For k = 1 the statement
is trivially true. Next, assume the statement is true for every &' < k. Let

T' € TF 1 and let T € T* be obtained from T’ by the procedure described
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in the definition of 7%. Let e be the edge of T that is a pendant edge in T”
but not in T, let eq,...,es be the pendant edges of T not belonging to 7". If
e € M, then M contains exactly two edges of {ej,...,es}. Hence, M contains
exactly k —1 — 1+ 2 = k pendant edges of T' by induction. If e ¢ M, then M
contains exactly one edge of {ey,...,eq}. Thus, the statement follows again by

induction. O

Proof of Theorem[5.0.7. Let T € T* such that at most one pendant edge of
T is not adjacent to another pendant edge. First, we transform G to a new
graph G’ as follows. For every v € V(G) replace v by a copy T, of T'— Leaf(T')
such that (1) every vertex of T), is of degree 3 and (2) if e, f € dz(v) belong
to the same circuit of O, then e, f remain adjacent in the resulting graph. An

example is given in Figure Note that (1) is possible since T" has exactly

v

=>

e f € fo € f €2 fo

Figure 5.2: The replacement of a vertex v in the proof of Theorem in the
case that k£ = 2 and the edges ey, f1 as well as es, fo belong to the

same circuit.

3k leaves; (2) is possible since at most one pendant edge of T is not adjacent
to another pendant edge of T. We obtain a cubic graph G’ with vertex-set
Uvev(e) V(Ty) and edge-set E(G) U U,cy (g) E(Tv). Furthermore, for every
v € V(Q), the graph G’ — V(T,) is connected, since G is 2-connected. As a
consequence, G’ is bridgeless. For every O € O the subgraph of G’ induced by
E(O) is an odd circuit in G’, which will be denoted by O'. Let O’ = {O0": O €
O}. By Theorem G’ has a perfect matching M such that e € M and
M N E(O") # ( for every O' € O'. Let F be the subgraph of G induced by
the edge set M N E(G). By Observation |0c (V(Ty)) N M| = k for every
v € V(G) and hence, F is a k-factor of G. Furthermore, E(O') N M is a
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non-empty matching in G’ for every O' € O’ and therefore, E(O) N E(F) is a
non-empty matching in G for every O € O by the construction of G’. Thus, F’

has the desired properties. O

Note that if » and ¢ have the same parity, then for every r-regular graph
G and every t-factor F' of G the graph G — E(F) can be decomposed into
2-factors. Thus, for every t' € {t,t +2,...7} the graph G has a t-factor that

contains F'. As a consequence, Theorem [5.0.7 implies the following corollary.

Corollary 5.1.2. Let k > 1 be an integer and let G be a 2-connected 3k-
reqular graph. Let O be a set of pairwise edge-disjoint odd circuits of G and let
e € E(G). Then, for everyt € {k,k+2,...,3k} there exists a t-factor F of G
such that e € E(F) and E(F) N E(O) # 0 for every O € O.

5.2 4k-regular graphs

In this section we prove Theorem Let G be a graph with an orientation
D. A circuit C of G is an oriented circuit (with respect to D), if for every
v € V(C) exactly one edge of dg(v) N E(C) is directed towards v. We first

prove the following lemma.

Lemma 5.2.1. Let k be a positive integer, let G be a 2-connected 4k-reqular
graph and let O be a set of pairwise edge-disjoint odd circuits of G. Then, there

exists an orientation of G such that
(1) every vertex has an even in-degree,
(13) no circuit of O is an oriented circuit.

Proof. By Petersen, the graph G—Jycp £(O) can be decomposed into circuits,
since it only contains vertices of even degree. Thus, G has a decomposition Q
into circuits such that O C Q. Let D be an orientation of G such that every
circuit of Q is an oriented circuit. We will change the direction of some edges

in order to obtain the desired orientation.
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First, transform G into a cubic graph as follows. Let T" be a tree such that
T has 4k leaves, every other vertex is of degree 3 and every pendant edge is
adjacent with another pendant edge. Note that 7" as well as T'— Leaf(T') are
of even order; if k = 1, then T — Leaf(T) is isomorphic to Ks. For every
v € V(G) replace v by a copy T, of T'— Leaf(T') such that (1) every vertex of
T, is of degree 3 and (2) if e, f € Og(v) belong to the same circuit of O, then
e, f remain adjacent in the resulting graph. We obtain a cubic graph G’ with
V(G") = Upev(e)V(Tv) and E(G') = E(G) UU,ey (e E(Ty). Furthermore,
G’ is bridgeless, since G is 2-connected. For every O € O the subgraph of G’
induced by F(O) is an odd circuit in G’, which will be denoted by O’. Let
O’ = {0': O € O}. Hence, by Theorem G’ has a perfect matching M
such that E(O") N M # () for every O' € O'.

Now, for every e € E(G) for which the corresponding edge in G’ belongs
to M, change the direction of e in D to obtain a new orientation D’ of G. For
every v € V(G), the set M N Og ((V(Ty)) is of even cardinality, since T}, is of
even order. Hence, for every v € V(G) we changed the direction of an even
number of edges of dg(v). Thus, D’ satisfies (i) since in D every vertex has
indegree 2k. Furthermore, for every O' € O'; the set E(O’)N M is a non-empty

matching in G’. As a consequence, D’ satisfies (ii). O

Proof of Theorem [5.0.8, Consider an orientation D of G that satisfies proper-
ties (i) and (i7) of Lemma For every v € V(G), split v into 2k vertices
vy, ..., U of degree 2 (that is, replace v by a graph H, consisting of 2k iso-
lated vertices vy, ...,vg, such that every vertex of V(H,) is of degree 2 in
the resulting graph). We obtain a 2-regular graph G’ with E(G’) = E(G) and
V(G = Uvev(a{v1s - var}. Since every vertex in G has even indegree (with
respect to D), this procedure can be done such that (1) for every v € V(G)
and every i € {1,...,2k} the two edges incident with v; in G’ are either both
directed towards v or both not directed towards v in G and (2) if O € O,
x € V(0) and e, f € E(O) N 0g(x) are such that e, f are either both directed
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towards z or both not directed towards x, then e, f are adjacent in G'. By (1),
the graph G’ is bipartite. Hence, it has a perfect matching M. Let F be the
subgraph of G induced by the edge set M. Observe that F' is a 2k-factor of G,
since M is a perfect matching of G’. Furthermore, for every O € O there is a
vo € V(0) such that the two edges in dg(vo) N E(O) are either both directed
towards vp or both not directed towards vp, since no circuit of O is an oriented
circuit (with respect to D). Thus, by the construction of G’, these two edges
are adjacent in G’ and hence, M as well as E(F') contain exactly one of these
edges. As a consequence, E(O) N E(F) # (0 and E(O) N (E(G) \ E(F)) # 0.

Thus, F' has the desired properties.

As is the case of 3k-regular graphs, we obtain the following corollary.

Corollary 5.2.2. Let k > 1 be an integer and let G be a 2-connected 4k-
reqular graph. Let O be a set of pairwise edge-disjoint odd circuits of G. Then,
for every t € {2k,2k + 2,...,4k} there exists a t-factor F of G such that
E(F)NE(O) # 0 for every O € O.

5.3 Problem [5.0.6l when ¢ is small

The smallest ¢ for which we know that Problem has a positive answer
is t = [§] (only in the cases 7 = 0 (mod 3) and r = 4). In this section we
prove that this is indeed best possible. The following theorem gives a negative
answer to Problem for all ¢t < %, even when we only consider r-connected

r-regular graphs of even order.

Theorem 5.3.1. For every r > 3 there is an r-connected r-reqular graph G of
even order and a set O of pairwise disjoint odd circuits of G with the property

that if F' is a t-factor of G with E(F)NE(O) # ) for every O € O, thent > %.

Proof. For i € {1,2,3} let G; be a graph isomorphic to K,_3,, where the two

partitions are given by A; = {a,...,al} and B; = {b%,...,bi_,}. Construct
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a new graph G from G1,Gy,G3 by adding the edges ajl-a?, a}a;’ and ajza? for

every j € {1,...,r}. Let O be the set of pairwise disjoint triangles of G that
are induced by the added edges, ie. O = {a]la?a?a}: je{l,...,r}}. The
graph G and the set of circuits O are depicted in Figure in the case when

r = 4. We claim that G and O have the desired properties. By construction,

Figure 5.3: The graph G constructed in the proof of Theorem in the case
r = 4. The set O consists of the triangles whose edges are drawn with

dashed lines.

G is an r-regular graph of even order. Let X C V(G) be a vertex-cut of G. If
G[V(G;) \ X] is connected for every i € {1,2,3}, then X contains at least one
vertex of every triangle of O. As a consequence | X| > r. Thus, we can assume
that w.l.o.g. G[V(G1) \ X] is not connected. Hence, 41 C X or B; C X. In
both cases, |X| > r since G — By does not have a cut-vertex. Therefore, G is
r-connected. Next, let F' be a t-factor of G with E(F) N E(O) # () for every
O € O. By the construction of G, we have |E(F)NJg(B1UByUBs)| = 3(r—2)t.
Furthermore, E(F') contains at least one edge of every triangle in O. As a
consequence, 3(r — 2)t +r < |E(F)| = t(3r — 3), which can be transformed to

5 <t by a short calculation. O
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5.4 Graphs with cut-vertices

In Theorem and Theorem [5.0.8 we assumed that G is 2-connected. In
this section we show that this assumption is necessary, even when we consider
Problem only for graphs admitting a t-factor.

For a set E = {ujvy,...,uuv;} of pairwise non-parallel edges having both
end-vertices in V(G), we denote by kE the set consisting of k parallel edges

connecting u; and v; for every i € {1,...,1}.

Theorem 5.4.1. Let r,t be integers with 0 < t < r — 2. Then, there exists
an r-regular graph G and a set O of pairwise edge-disjoint odd circuits of G
such that G has a t-factor but every t-factor is edge-disjoint with at least one

element of O.

Proof. We consider four cases depending on the parity of r and t.
Case 1. r and ¢ are odd.

In this case define G.; by
V(Gr‘,t) = {U,U,U}} U {l‘ivyia Zi - (XS {17 o 73t}}

and

—t 1 1
E(Gry) = (T2 >AUBluBQUB3U <T2> D1 U <T‘g )Dg,

where

A = {uv,uw,vw},

By ={ux;:i€{1,...,t}},

By ={vz;:ie{t+1,...,2t}},
Bs ={wz;:i1€{2t+1,...,3t}},
Dy = {zyyi, iz i € {1,...,3t}},

Dy = {yizi 11 € {1,. . .,3t}}.

Set O = {uvwu}; an example is shown in Figure
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Figure 5.4: The graph G, when r and ¢ are odd in the case r =7, t = 3. The set

O consists of the triangle whose edges are drawn with dashed lines.

By construction G is r-regular and the edge set B; U By U B3 U (%) DU
(%) D5 induces a t-factor. Moreover, every t-factor of G, ; contains the only
edge in O({x;,yi, z}) for every i € {1,...,3t} by parity reasons, and hence is
edge-disjoint with the triangle uvwu.

Case 2. r and t are even.

In this case define Gy by
V(Gry) = {v} U{zi,yi,zi i € {1,...,1}}

and

-2 2
E(Gr,t):AUBU<T2 >D1U(r—; >D2,

where
A={vz;ie{l,...,r}},
B ={xjzit1:ie€{l,...,r —1},i odd},
Dy =A{ziyi,xizi i € {1,...,7}},

Dy = {yz-zi:z'e {1,...,7“}}.

Set O = {vzzipiv:i € {1,...,r —1},i odd}, see Figure[5.5
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:@1 P 2

Figure 5.5: The graph G, ; when r and ¢ are even in the case r = 6. The set O

consists of the triangles whose edges are drawn with dashed lines.

By construction G is an r-regular graph, which has a ¢-factor since r and
t are even. Let F' be a t-factor of G,;. Without loss of generality we assume
vy ¢ E(F). By parity reasons, |0rp({x1,y1,21})| and |0p({z2,y2, 22})| are
even, which implies that F' and the triangle vzizsv are edge-disjoint.

Case 3. r is odd and ¢t is even.

In this case define G.; by
V(Grp) = {u,v,w} U {, v, w'y U{z;, v,z 10 € {1,...,6}}

and

1 1
E(Gyy) = AU(r—2) BUC U (TQ >D1U <r+ )DQ,

where

A = {uwv,uw,vw},

B = {uu/, v, ww'},

C = {v'zy,u'zo, v 23,0 24, W' w5, W 26},
Dy ={xyi,wizi i €{1,...,6}},

Dgz{yizi:ie{l,...ﬁ}}.

Set O = {uvwu}. Figure shows G, in the case r = 5.
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23

Figure 5.6: The graph G,; when 7 is odd and ¢ is even in the case r = 5. The set

O consists of the triangle whose edges are drawn with dashed lines.

By construction G,; is r-regular and the edge set tB U (%) D U (%) Do
induces a t-factor. Moreover, every t-factor of G, ; does not contain the only
edge in 9({z;,y;, 2;}) for every i € {1,...,6} by parity reasons. Hence, it
contains every edge of 9({u, v, w}), and thus, it is edge-disjoint with the triangle

UVWU.
Case 4. r is even and ¢ is odd.

In this case define G.; by
V(Gry) = {u, v} U{wi, 2, 95,2 11 € {1,...,2r — 4}}

and

E(G,:) =2AUBUCU (7";2> Dy UDyU (g) Ds,
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where

A = {uv},
B = {uw;, vw; gy 11 € {1,...,7 = 2}},
C ={wjw;iy1 1€ {1,...,2r —4},i odd},
D = {w;zi,wiy; i € {1,...,2r —4}},
Dy ={zy; i€ {1,...,2r —4}},

D3 = {xizi,yizz- NS {1, e, 2r — 4}}

Set O = {uwwit1u:i € {1,...,r —2},i odd}, see Figure for an example.

Figure 5.7: The graph G,; when r is even and ¢ is odd in the case r = 6. The set

O counsists of the triangles whose edges are drawn with dashed lines.

By construction G, is r-regular. Furthermore, the edge set 24 U Dy U D3
can be partitioned into two disjoint perfect matchings My, Ms of G4, since it
induces a 2-factor that only contains even circuits. By Petersen, G, ; — M1 UM>
has a (¢ — 1)-factor, since r — 2 and ¢t — 1 are even. A t-factor of G,; can
be obtained by adding either M; or My to this (t — 1)-factor. Next, let F'
be a arbitrary t-factor of G,;. Without loss of generality we assume uw; ¢
E(F). By parity reasons, |0p({w1,z1,y1,21})| and |0p ({wa, x2,y2, 22})| are

even, which implies that F' and the triangle uwjwsou are edge-disjoint. O
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5.5 Concluding remarks and open problems

In addition to solving other instances of Problem it is also interesting to
study this problem in the case that O consists of pairwise edge-disjoint circuits
(of order at least 3), no matter whether they are even or odd. In the cubic case,
Kardos, Méacajovéa and Zerafa [46] extended their result to arbitrary circuits by
proving the following statement. For every cyclically 3-edge-connected cubic
graph G and every set O of pairwise edge-disjoint circuits, there is a perfect
matching containing at least one edge of every element of O (see [46] for more
details). In an ongoing work we study possible extensions of this result to
graphs of higher regularity.

Another interesting question is whether the statement of Conjecture
(which is true by Theorem can be extended to r-graphs of higher reg-
ularity. More precisely, the following problem seems to be natural. What is
the minimum number ¢ such that every r-graph has ¢ perfect matchings whose
removal leaves a bipartite graph? Note that if the Generalized Berge-Fulkerson

Conjecture (Conjecture [1.1.5)) is true, then 2r — 4 perfect matchings suffices.



Chapter 6

Rotation r-graphs

This chapter is based on [81]; all results of Chapter [6] are published in [81].

A tree is homeomorphically irreducible if it has no vertex of degree 2 and if
a graph G has a homeomorphically irreducible spanning tree T', then T is called
a hist and G a hist graph. The study of hist graphs has been a very active area

of research within graph theory for decades, see for example [3,31,36].

Cubic hist graphs then have a spanning tree in which every vertex has either
degree 1 or 3. They further have the nice property that their edge-set can be
partitioned into the edges of the hist and of an induced cycle on the leaves
of the hist. Recall that a snark is a bridgeless cubic graph that is not 3-edge-
colorable. Informally, a rotation snark is a snark that has a balanced hist and a
2%-rota‘cion symmetry which fixes one vertex. Hoffmann-Ostenhof and Jatschka
[33] studied rotation snarks and conjectured that there are infinitely many non-
trivial rotation snarks. This conjecture was proved by Macajova and Skoviera
[59] by constructing an infinite family of cyclically 5-edge-connected rotation
snarks. It is natural, to ask whether some notoriously difficult conjectures can
be proved for rotation snarks. As a first result in this direction, Liu et al. [52]

proved that the Berge-Fulkerson Conjecture (Conjecture [1.1.1)) is true for the

rotation snarks of [59).

We generalize the notion of rotation snarks to r-graphs of odd regularity

68
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and show that every r-graph of odd regularity can be ”blown up” to a simple
rotation r-graph (which produces many small edge-cuts). As a consequence,
some hard long-standing open conjectures can be reduced to simple rotation -
graphs. However, our proof heavily relies on the fact that we allow 2-edge-cuts.

It would be interesting to study rotation r-graphs with high edge-connectivity.

6.1 Definition of rotation r-graphs

Recall that an automorphism of a graph G consists of two bijections 6 : V/(G) —
V(G) and ¢ : E(G) — E(G) such that e has end-vertices u, v if and only if ¢(e)
has end-vertices §(u), 6(v) for every e € E(G). Note that in this case, for every
two vertices u,v € V(G) the number of edges between u and v is the same as
the number of edges between 6(u) and 6(v). On the other hand, every bijection
a: V(G) = V(G) with this property can be extended to an automorphism (by
appropriately defining a bijection 8: E(G) — E(G)). Thus, an automorphism
can be defined alternatively as follow. An automorphism of a graph G is a
mapping a: V(G) — V(G), such that for every two vertices u,v € V(G) the
number of edges between u and v is the same as the number of edges between
a(u) and a(v). In Chapter [6] we will stick with this alternative definition, since
it is more convenient for our purposes.

For an automorphism a: V(G) — V(G) and a vertex v € V(G), the small-
est positive integer k such that o®(v) = v is denoted by dn(v). An automor-
phism « of a tree T is rotational with respect to a vertex v € V(T'), if do(v) =1
and dq(u) = dr(v) for every uw € V(T) \ {v}. The unique tree with vertex de-
grees in {1,7} and a vertex x with distance i to every leaf is denoted by T7 .
Vertex x is unique and it is called the root of T7".

Recall that an r-regular graph G is an r-graph, if |0(S)| > r for every
S C V(G) of odd cardinality. An r-regular graph G is a 1} -graph, if G has
a spanning tree 7' isomorphic to 7. If, additionally, G’ has an automorphism

that is rotational on 7' (with respect to the root), then G is a rotation T -graph.
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Note that G can be embedded in the plane (crossings allowed) such that the
embedding has a 277r—1f0tation symmetry fixing the root. A rotation r-graph is

an r-graph that is a rotation 7}-graph for some integer 7.

Observation 6.1.1. Let r,4 be positive integers, let G be a T} -graph with corre-
sponding spanning tree T'. The order of G is 1+Z§;B r(r—1)7, which is even if
and only if r is odd. In particular, if G is an r-graph, then r is odd, G[Leaf(T)]
is a cycle and E(G) can be partitioned into E(T) and E(G[Leaf(T)]).

6.2 Main result

Let G be an r-graph and S C V(G) be of even cardinality. If |0(S)| = 2, then
N¢(S) consists of precisely two vertices, say u,v. Let G’ be obtained from G
by deleting G[S] U 9(S) and adding the edge uv. We say that G’ is obtained
from G by a 2-cut reduction (of S). The following theorem is the main result

of this chapter.

Theorem 6.2.1. Let r be a positive odd integer. For every r-graph G there is
a simple rotation r-graph G', such that G can be obtained from G’ by a finite

number of 2-cut reductions.
The following corollary is a direct consequence of Theorem [6.2.1

Corollary 6.2.2. Let r be a positive odd integer and let A be a graph-property
that is preserved under 2-cut reduction. FEvery r-graph has property A if and

only if every simple rotation r-graph has property A.

As a consequence, some notoriously difficult conjectures can be reduced to

rotation r-graphs.

Corollary 6.2.3. Let r be a positive odd integer. The following statements are

equivalent:

1. (generalized Berge-Fulkerson Conjecture [77]) Every r-graph has 2r per-

fect matchings such that each edge is in exactly two of them.
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2. Every simple rotation r-graph has 2r perfect matchings such that each

edge is in exactly two of them.

3. (generalized Berge Conjecture) Every r-graph has 2r —1 perfect matchings

such that each edge is in at least one of them.

4. Bvery simple rotation r-graph has 2r — 1 perfect matchings such that each

edge is in at least one of them.

Proof. Let G and G’ be two r-graphs such that G can be obtained from G’
by a 2-cut reduction of a set S C V(G'). For parity reasons, every perfect
matching of G’ contains either both or no edges of 9(S). Hence, each perfect
matching of G’ can be transformed into a perfect matching of G, which implies
the equivalences (1 < 2) and (3 < 4). The equivalence (1 < 3) is proved

in [66]. 0

As mentioned in the previous chapter, for r = 3, statement 3 of Corollary
[6.2.3] is usually attributed to Berge and is known as the Berge Conjecture.

Fan and Raspaud [22] conjectured that every 3-graph has three perfect
matchings such that every edge is in at most two of them (Conjecture [5.0.1)).

Equivalent formulations of this conjecture are studied in [42].

Corollary 6.2.4. Let r be an odd integer and 2 < k < r — 1. Every r-graph
has r perfect matchings, such that each edge is in at most k of them if and only
if every simple rotation r-graph has r perfect matchings, such that each edge is

in at most k of them.

In 1954, Tutte [86] stated his seminal conjecture that every bridgeless graph
admits a nowhere-zero 5-flow. In 1972, Tutte formulated the no less challenging
conjecture that every bridgeless graph without 3-edge-cuts has a nowhere-zero
3-flow. It is a folklore that the 5-Flow Conjecture can be reduced to snarks,
whereas the 3-Flow Conjecture is true if and only if it is true for 5-graphs.
Admitting a nowhere-zero k-flow is invariant under 2-cut reduction. Hence, we

obtain the following consequences of Theorem [6.2.1
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Corollary 6.2.5. Every snark admits a nowhere-zero 5-flow if and only if

every simple rotation snark admits a nowhere-zero 5-flow.

Corollary 6.2.6. Every 5-graph admits a nowhere-zero 3-flow if and only if

every simple rotation 5-graph admits a nowhere-zero 3-flow.

6.3 Proof of Theorem [6.2.1]

6.3.1 Preliminaries

For the proof of Theorem we will use the following lemma. The non-trivial

direction of the statement is proved by Rizzi in [75] (Lemma 2.3).

Lemma 6.3.1 ( [75]). Let G be an r-regular graph and let S C V(G) be a set
of odd cardinality with |0(S)| = r. Then, G is an r-graph, if and only if G/S
and G/S¢ are both r-graphs.

Let G be an r-graph and T be a spanning tree of G. We need the following
two expansions of G and T'.

Edge-expansion: Let e be an edge with e = uv € E(G) \ E(T). Let G’
be the graph obtained from G — e by adding two new vertices u’, v’ that are
connected by r — 1 edges, and adding two edges wu’ and vv’. Extend T to
a spanning tree 7" of G’ by adding the vertices v/, v and the edges uu’, vv’
(see Figure[6.1). For S = {u,u/,v'} it follows with Lemma [6.3.1] that G’ is an
r-graph.

Figure 6.1: An edge-expansion in the case r = 5. The solid edges belong to the

spanning tree T".

Leaf-expansion: Let r be odd. Let [ be a leaf of T" and let u be the
neighbor of [ in T'. Let K be a copy of K, and let V(K) = {l1,...,l,}. Let G’
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be the unique r-regular graph obtained from G by replacing [ with K. Without
loss of generality we assume uly; € E(G'). Extend T —1 to a spanning tree T of
G’ by adding V(K) and the edges ul; and [;; for j € {2,...,r}. Vertex [; has
degree r in T”, whereas all other vertices of K are leaves of T”. Furthermore,
if [ has distance d to a vertex x € V(T'), then the r — 1 leaves la, ... 1. of T"
have distance d + 1 to x in T".

Since K41 is an r-graph, G’ is an r-graph by Lemma We note that

a leaf-expansion of leaf [ has the following properties:
(i) In G', no vertex of K is incident with parallel edges.

(ii) Let S C V(G) be a set of even cardinality with [ € S and [9(S)| = 2. In
the leaf-expansion G’, the set S = S\ {I} UV (K) is of even cardinality
and satisfies |0(S")] = 2. Moreover, the graph obtained from G by a 2-
cut reduction of S is the same graph that is obtained from G’ by a 2-cut

reduction of S’.

An example of leaf-expansion is shown in Figure [6.2

Figure 6.2: An example of a leaf-expansion of the leaf [ € V(G) in the case r = 5.

The solid edges belong to the spanning trees T and T’ respectively.

6.3.2 Construction of ¢

Let r > 1 be an odd integer and G be an r-graph. We will construct G’ in two

steps.
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1. We construct a simple r-graph H with a spanning tree Ty isomorphic to
T for some integer ¢ such that G can be obtained from H by a finite number

of 2-cut reductions.

Let Tz be an arbitrary spanning tree of G. Apply an edge-expansion on
every edge of F(G) \ E(T¢) to obtain an r-graph H; with spanning tree T7.
Clearly, G can be obtained from H; by 2-cut reductions. Furthermore, V(G) C
V(H,y), every vertex of V(G) has degree r in T} and all vertices of V (H1)\V (G)

are leaves of T7.

Let x € V(H;) with dr, (z) = r and let d be the maximal distance of = to
a leaf in T7. Repeatedly apply leaf-expansions until every leaf has distance
d+ 1 to x. Let Hs be the resulting graph and 75 be the resulting spanning

tree of Hy. By the construction, T3 is isomorphic to T}y, ;,

where x is the root
of T5. By the definition of d, we applied a leaf-expansion of [ for every leaf
[ of T1. Hence, the graph H is simple by property (i) of leaf-expansions.
Furthermore, no expansion of a vertex in V(G) (and degree r in T7) is applied.
As a consequence, property (ii) of leaf-expansions implies that G can be

obtained from Hs by 2-cut reductions. Thus, by setting H = Hs and Ty = Tb

we obtain a graph with the desired properties.

2. We construct a simple rotation r-graph G’ from which H can be obtained

by a 2-cut reduction.

Let y1,...,y, be the neighbors of x in H. Let R be an arbitrary simple
rotation r-graph with a spanning tree Tx isomorphic to 7jj,,. For example,
such a graph can be obtained from the rotational 77 -graph K, by repeatedly

applying leaf-expansions. Let xr be the root of Tk and let ag be the corre-

sponding rotational automorphism. Label the neighbors of zz with zq,..., z,
such that ap(z;) = zi41 for every i € {1,...,r}, where the indices are added
modulo 7.

Take r copies H',...,H" of H and (r — 1)2 — r copies Rl,...,R(”_l)2_T
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of R. In each copy we label the vertices accordingly by using an upper index.
For example, if v is a vertex of H, then v’ is the corresponding vertex in H'.
Furthermore, the automorphism of R’ that correspond to ar will be denoted
by api. Delete the root in each of the (r — 1)? copies, i.e. in each copy of H
and in each copy of R. The resulting r(r —1)? vertices of degree r — 1 are called

root-neighbors.

Take a tree 1" isomorphic to T3 with root 7. The graph T'—z7 consists of r
pairwise isomorphic components, thus it has a rotation automorphism ap with
respect to xp. Let lq,...,[,_1 be the leaves of one component of T'—zp. Clearly,
the set of leaves of T'is given by {a’-(1;): i € {0,...,r —1},j € {1,...,r — 1}},

where oz?p = idr.

Connect the 7(r — 1) leaves of T with the 7(r — 1) root-neighbors by adding
r(r — 1) new edges as follows. For every i € {1,...,r} define an ordered list

N; of root-neighbors and an ordered list L; of leaves of 1" by

. ) r—1)2—p i i
N; = (yi,...,yi,z},...,z( 2 ) and L; = (it (l),. .., (lm)).

)

The list N; has (r — 1)? entries, whereas L; has © — 1 entries. For each
i€ {1,...,r}, connect the first » — 1 entries of N; with the first entry of L; by
r — 1 new edges; connect the second r — 1 entries of IN; with the second entry
of L; by r — 1 new edges and so on. The set of new edges is denoted by E and
the resulting graph by G’. In Figure the construction of G’ is shown in the

case r = 3.
Every root-neighbor appears exactly once in the lists Ny,..., N,, whereas
every leaf of T' appears exactly once in the lists Ly,..., L,. Consequently, G’

is an r-regular simple graph with a spanning tree T that is obtained from
the union of the trees of each copy of H and R (without its roots) and T by

adding the edge set E. Note that T¢ is isomorphic to Tjj, ; and zr is the root
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Figure 6.3: The construction of G’ in the case r = 3. The solid edges belong to T;
the dashed edges belong to E.

of Ter. Let agr: V(G') — V(G') be defined as follows:

ar(v) ifveV(T),

api(v) ifveV(R)\{zy}, ie{l,...,(r— 1) —r},

acr(v)
vt if v=10'€ V(H)\{2'}, i € {1,...,r} and the indices

{ are added modulo 7.

By definition, a is an automorphism of G’ — E and T — E that fixes the
root x7 of T' and satisfies d,,, (v) = r for every other vertex v of G’. For
i €{1,...,m}, if we apply ag on each element of N; (or L; respectively), then
we obtain the ordered list N;y1 (or L;y; respectively), where the indices are
added modulo r. As a consequence, if wv € E, then ag (u)ag (v) € E and
hence, o is an automorphism of G’ and a rotational automorphism of Ty.
To see that G’ is an r-graph, transform G’ as follows: for each i € {1,...,r}
identify all vertices in V/(H?) \ % to a vertex H' and for every j € {1,...,(r —
1)2 —7r} all vertices in V (R7) \qu to a vertex R/ (see Figure. The resulting
graph is an r-regular bipartite graph and therefore, an r-graph. Since every
copy of H and of R is an r-graph, it follows by successively application of

Lemma that G’ is an r-graph.
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Figure 6.4: The graph constructed from G’ in the case r = 3.

Last, the set S C V(G’) defined by S = (V(HY) \ {z'}) U {l1} is a set of
even cardinality, such that |0(S)| = 2. Applying a 2-cut reduction on V(G')\ S
transforms G’ into the copy H' of H. In conclusion, G can be obtained from

G’ by a finite number of 2-cut reductions, which completes the proof.

6.4 Concluding remarks

The graph G’ constructed in the proof of Theorem has many small edge-
cuts. It would be interesting to construct and study highly edge-connected
rotation r-graphs. For example, is there an r-edge-connected rotation r-graph
of class 2 for every positive odd integer r? In particular, the case r = 5 seems
to be of interest, as we will see in the next chapter. Furthermore, it might also
be possible to prove some of the conjectures mentioned in Corollaries -
for some families of rotation r-graphs with high edge-connectivity.



Chapter 7

Number of pairwise disjoint

perfect matchings in r-graphs

Major parts of Chapter [7| are already published in [56] and [54]. The results
of Sections and appeared in [56]; the results of Section appeared
in [54]. The results of Section are unpublished.

Every r-graph has a perfect matching [77]. On the other hand, class 2
r-graphs, which exist for every r > 3, have at most r — 2 pairwise disjoint
perfect matchings. A set of k pairwise disjoint perfect matchings of a graph
G is called a k-PDPM. It is natural to ask ”What is the maximum number
s such that every r-graph has an s-PDPM?“. Rizzi 75| constructed r-graphs
in which every two perfect matchings intersect; such r-graphs are called poorly
matchable. Thus, in general the answer to the above question is ¢ = 1. However,
every poorly matchable r-graph know so far has a 4-edge-cut. It might be that
the situation changes for r-graphs with larger edge-connectivity.

For 1 <t < rlet m(t,r) be the maximum number s such that every t-edge-

connected r-graph has an s-PDPM. This gives rise to the following problem.
Problem 7.0.1. Determine m(t,r) for all r >t > 1.

The function m(t,r) is monotone increasing in ¢, in other words m(t,r) <

m(t',r) for t < /. In particular we have that m(t,r) < m(r,r) for all t €

78
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{1,...,7r}. Clearly, m(1,1) = 1, m(2,2) = 2, m(3,3) = 1 and m(t,r) > 1 for
every r > t > 1. Furthermore, m(4,r) = 1 for every r > 4 by the result of
Rizzi [75]. In addition to its exact determination, lower and upper bounds for
this parameter are of great interest.

For all » > 3 and r # 5, class 2 r-edge-connected r-graphs are known
(see [69]). Thus, m(r,r) < r —2 for these r. Surprisingly, no such graphs seem

to be known for r = 5, i.e. the following problem seems to be unsolved.
Problem 7.0.2. Is there any 5-edge-connected 5-regular class 2 graph?

Note that for planar graphs, the answer to the above question is “no”.
Guenin [29] proved that all planar 5-graphs are class 1. For general r,
Thomassen (Problem 1 of [84]) proposed the following question for the value

of m(r,r).
Problem 7.0.3 (Thomassen [84]). For allr > 3, is it true that m(r,r) = r—27%

For r = 4 the answer is “no” by Rizzi. Furthermore, in [63] it is proved
that m(r — 1,r7) < r —3 if r is odd and m(r,r) < r —3 if r = 0 mod 4,
which gives a negative answer to Problem when r is a multiple of 4. It is
worth mentioning, that up to now there is no non-trivial lower bound known
for m(t,r). Nevertheless, Thomassen [84] conjectured that such bounds exist
for sufficiently large r. Precisely, he conjectured that there is an integer ry such
that there is no poorly matchable r-graph for every r > ry.

This chapter is divided into three parts. In Section [7.2] we prove that for
every 1 < k < r it is N P-complete to decide whether a given r-graph has a
k-PDPM. In Section [7.3 we consider r-edge-connected r-graphs. In particular
we study the remaining cases of Problem Our main results in the second

part are the following.

Theorem 7.0.4. If r =2 mod 4, then m(r,r) <r — 3.
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Theorem 7.0.5. If m(5,5) > 2, then the Fan-Raspaud Conjecture holds.
Moreover, if m(5,5) = 5, then both the 5-Cycle Double Cover Conjecture and

the Berge-Fulkerson Conjecture hold.

In Section [7.4] we study r-graphs with arbitrary edge-connectivity and ob-
tain an upper bound for m(¢,r) that only depends on the edge-connectivity

parameter as follows.

Theorem 7.0.6. For everyl >3 and r > 21, m(2l,r) < 3l — 6.

7.1 Preliminaries

In order to prove the main results of this chapter (as well as the main result
of Chapter |8) we need some further notation (mainly concerning the Petersen

graph) as well as some lemmas, which will be introduced in this section.

A multiset M consists of objects with possible repetitions. We denote by
| M| the number of (not necessary distinct) objects in M. For a positive integer
k, we define kM to be the multiset consisting of k£ copies of each element of M.
Let G be a graph and N a multiset of edges of the complete graph on V(G).
The graph G + N is obtained by adding a copy of all edges of N to G. This
operation might generate parallel edges. More precisely, if N contains exactly

t edges connecting the vertices u and v of G, then pugyn(u,v) = pe(u,v) + t.

For a multiset N of perfect matchings of a graph G and an edge e € E(G),
we say that N contains (avoids, respectively) e if e € [Jyen N (6 € Unen IV,

respectively).

We will frequently use the following simple fact without reference.

Observation 7.1.1. Let G be a graph with a perfect matching M. For any
subset X C V(Q), if | X| is odd, then |0q(X) N M| is odd.
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7.1.1 The Petersen graph and its perfect matchings

In the remainder of this chapter as well as in Chapter [§] we make extensive
use of the Petersen graph, denoted by P, and of the properties of its perfect
matchings. Rizzi [75] observed that every two distinct 1-factors of the Petersen
graph have precisely one edge in common, and proved that there is a one-to-one
correspondence between edges and pairs of distinct 1-factors in the Petersen

graph. Then we have the following proposition immediately.

Proposition 7.1.2. The Petersen graph has ezxactly six perfect matchings, and

each edge is contained in exactly two of them.

We fix a drawing of P as in Figure left. With reference to Figure
we define My to be the perfect matching consisting of all edges u;v;, for
i €{1,...,5}. Moreover, for i € {1,...,5}, by Proposition [7.1.2) we let M; be
the only other perfect matching of P different from My and containing wu;v;,

see Figure Let M be a multiset of perfect matchings of P. We denote by

Figure 7.1: The Petersen graph P, and its perfect matchings My and M;.
na(i) the number of copies of M; appearing in M. We define PM to be the
graph P + > pc y( F' and we remark that it has the following nice property.

Lemma 7.1.3 ( |27]). For every finite multiset M of perfect matchings of the

Petersen graph P, the graph P is class 2.
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Now, let N be a multiset of perfect matchings of PM. Note that each
perfect matching N of N can be interpreted as a perfect matching of P by
caring only about the end-vertices of each edge. If N corresponds to the perfect
matching M; in P, then we say N is of typ i in PM. Moreover, the multiset
N can be interpreted as a multiset of perfect matchings of P, which is denoted

by Np. Note that |[Np| = |N]. We need the following two lemmas.

Lemma 7.1.4. Let M be a multiset of perfect matchings of P. Let N be a set of
pairwise disjoint perfect matchings of PM. There is at most one i € {0,...,5}
such that s, (1) > nag (7).

In particular, there is no triple of different vertices u,v,w in P, with w

adjacent to both v and u, such that N contains all edges of Epm({u,v},{w}).

Proof. First, suppose that there are two indices i and j such that i # j,
nap (1) > naq(i), and np,(j) > na(y). Let wv be the edge of P belong-
ing to both M; and M by Proposition Since the perfect matchings of N/
are pairwise disjoint, at most ppm(u,v) perfect matchings in A/ can contain
an edge connecting u and v. This implies na;, (i) + 1 (5) < ppa(u,v). Then

the following contradiction arises.

ppm(u,v) = (i) + 1 (§) + 1 < npp () + na(d) < nap (i) + nagp (5)-

Next, we prove the second part of the lemma. Let u,v be two different
vertices both adjacent to the vertex w in PM. Suppose by contradiction that A/
contains all edges of Epm({u,v},{w}). By Proposition we may assume
without loss of generality that {uw} = My N My and {vw} = My N Ms. Then,
since all edges of Epm({u,v},{w}) are contained in N, we similarly deduce

that
o 15 (0) + 1rcn (1) = pipna (1, w) = mag(0) + mag(1) + 1;
o 1 (2) + i (3) = e (v, ) = maa(2) + mag(3) + 1.

Then we conclude that there is s € {0,1} and ¢ € {2, 3}, such that np,(s) >

nam(s) and np, (t) > naq(t), which is impossible.
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Lemma 7.1.5. Let M be a multiset of k perfect matchings of P and let p =
w(PMY. Then, A\(PM) = min{k + 3,2k + 6 — 2u}.

Proof. Note that P is a 3-graph, and P is a (k + 3)-graph since every perfect
matching of P intersects each edge-cut that separates two vertex sets of odd car-
dinality. Let X be a non-empty proper subset of V(PM) minimizing |0par (X)].
It implies that PM[X] is connected. If | X| is odd, then |Opm(X)| > k+3 since
PM is a (k + 3)-graph. If |X| is even, then it suffices to consider the cases
|X| € {2,4}. Since P does not contain a circuit of order less than 5, either
P[X] is a path on two or four vertices, or it is isomorphic to K 3. Then Opa (X)
contains at least k43— p edges for each vertex of degree 1 in P[X], and so we get
that |0pm (X)| > 2(k+3— ). Consequently, A(PM) > min{k+3,2k+6—2u}.
Finally, observe that [0pm({u,v})| = 2k + 6 — 2u for every two vertices u,v

with ppam(u,v) = p. Thus, the statement follows. O

7.1.2 An useful graph operation

Definition 7.1.6. Let G and H be two graphs with u,v € V(G) and x,y €
V(H) such that pg(u,v) >t and pg(z,y) >r—t. Then, (G,u,v) & (H,z,y)
is the graph obtained from G and H by deleting exactly t edges connecting u
and v in G and r —t edges connecting x and y in H, identifying v and x to a

new verter wyz, and identifying v and y to a new vertex wyy, see Figure .

G H (Gyu,v) @ (H,2, )
u T Wy

.

VN 7

\ /

\ \ |

\ /]

| \ ! |

1 [ |

KRN B R

| / \ |

1 7 \\ \

! // r—t \\\
v Y wﬂy

Figure 7.2: The operation of Definition [7.1.6
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Lemma 7.1.7. Let G and H be two r-graphs with u,v € V(G) and x,y € V(H)
such that pg(u,v) >t and pg(z,y) > r —t. Then, G' = (G,u,v) & (H,z,y)
18 an r-graph with

A(GY) = min{\(G), \(H)}.

Proof. By the construction in Definition G' = (G,u,v) & (H,x,y) is r-
regular. For every Y C V(G)\ {v}, we have |0¢(Y)| = |0c (Y \ {u}) U{wyz})]|
ifueY and [0g(Y)| = |0g(Y)| otherwise. Similarly, for every Y’ C V(H) \
{y}, we have 9 (Y")] = 106/ (Y'\ {2}) U {we )| if 2 € Y7 and |0p(Y")] =
|0c (Y")| otherwise. As a consequence, there is an X C V(G') with |0g(X)| =
min{A(G), A(H)}. Thus, it suffices to prove that, for each non-empty proper
subset S C V(G'), we have |0g(S)| > min{\(G), \(H)} if |S| is even, and
|0 (S)] > r if |S| is odd. Since, for all Y C V(G'), 0 (Y) = 0 (V(G') \ Y),
we just need to consider the two cases when [S N {wyz, wyy}| = 0 and [S N
{wue, woy¥| = 1.

First, assume |[S N {wyg, wyy}| = 0. It is clear that |0g/(S)| = |0q(S N
V(G))| + 10g(SNV(H))|. Note that one of [SNV(G)| and |SNV(H)| is odd
if |S] is odd. So |0¢/(S)| > min{\(G), \(H)} if |S| is even, and |0g/(S)| > r if
|S| is odd.

Next, we assume |S N {wyz, Woy}| = 1. Without loss of generality, say
wye € S. Note that [9cr(S)] = |0c((5\ {wuz} U{u}) NV(G))| =t +[0m((5\
{wyg} U{a}) NV(H))| — (r —t). If one of |(S\ {wuz} U{u}) N V(G)| and
|(S\ {wuz} U{z}) NV (H)| is odd, then the other has the same parity as |S|.
This implies |0g/(S)| > min{A(G), A\(H)} if |S| is even, and |0g/(S)| > r if | S|
is odd. Thus, the remaining case is that both (S \ {wuz} U {u}) NV (G)| and
|(S\ {wy }U{x})NV (H)| are even, and |S| is odd. Since |(S\{wy:})NV(G)] is
odd in this case and G is an r-graph, we obtain |0 ((S\{wys }U{u})NV(G))| >
2416 (u,v) = 2t. Similarly, |0 ((S\{wue }{z})NV (H))| = 2um(2,y) = 2(r—t).
So [0¢/(S)| > 2t —t+ 2(r —t) — (r — t) = r. This completes the proof. O

Lemma 7.1.8. Let r,t be two integers with 2 < t < r, let G be an r-graph
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and let u,v € V(G) such that pug(u,v) > t. Let M be a multiset of r — 3
perfect matchings of P, let x,y € V(PM) such that ppm(x,y) > r —t and let
G' = (G,u,v) & (PM,z,y). If G has a k-PDPM N”, then G has a k-PDPM
N such that

(i) N avoids at least one edge connecting u and v,
(it) for every e € E(G'[V(G)\ {u,v}]), if N' avoids e, then N avoids e.

Proof. Assume that N7 is a k&-PDPM of G'. Every perfect matching of G’
contains either zero or exactly two edges of g/ (V(PM)\{z,y}), since |V (PM)\
{z,y}| is even. The same holds for V(G) \ {u,v}, since |V (G) \ {u,v}| is also
even. Hence, every perfect matching of G’ can be transformed into a perfect
matching of G and of PM by adding either uv or xy. In particular, N7 can
be transformed into a &-PDPM N of G, which satisfies (i7). Suppose that N
contains all edges connecting v and v, which implies that A/ contains all edges
of dg'(V(G)). As a consequence, PM has a k-PDPM that contains all edges of
Opm({x,y}). This means that PM has a k-PDPM containing all edges incident

with y and not with z, a contradiction to Lemma [7.1.4] O

7.2 The complexity of PDPM (k,r)

For every r > 3 the problem whether a given r-regular graph is class 1 is N P-
complete, which was shown by Leven and Galil [51]. We extend this result
as follows. For every two integers k,r with 1 < k < r let PDPM((k,r) be
the problem to decide whether a given r-graph has k pairwise disjoint perfect

matchings.

Theorem 7.2.1. For every two integers k,r with 1 < k < r the decision

problem PDPM (k,r) is N P-complete.

Proof. First, we prove that for every r > 3 the decision problem PDPM (r —

1,7) is NP-complete. Leven and Galil [51] proved that for every r > 3 the
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problem whether a given r-regular graph is class 1 is N P-complete. Recall
that an r-regular graph is an r-graph if and only if its density equals r, where
the density of a graph G is defined by
I'G) = max{ |V|E(1G[S])|—‘ : S CV(G),|S| > 2}
[315]]
if [V(G)| > 2 and I'(G) = 0 otherwise. The density of graph can be computed
in polynomial time (see for example [17]) and therefore, it can be decided in
polynomial time whether a given r-regular graph is an r-graph. Furthermore,
every r-regular graph that is not an r-graph is class 2. Therefore, the result
of Leven and Galil implies that for every » > 3 it is N P-complete to decide
whether a given r-graph is class 1, i.e. PDPM (r — 1,r) is N P-complete.
Next, we complete the proof by showing that for every two integers k,r
with 1 < k < r, if PDPM(k,r) is N P-complete, then PDPM (k,r+1) is N P-
complete. Let G be an r-graph. Every r-graph has a perfect matching [77];
let M = {x1y1,...,2sys} be a perfect matching of G. For every i € {1,...,s},
let H® be a copy of P + (r — 2)My. In each copy, the vertices and perfect
matchings are labelled accordingly by using an upper index, i.e. the vertex
of H' corresponding to u; in P + (r — 2)Mp is labelled as u}. Define graphs

GO, ..., G* inductively as follows:

G’ =G+ M,

G' = (G zy, ;) @o (H',ul,vt) for every i € {1,...,s}

and set G’ = G*. Note that pgo(z;, ;) > 2 and pgi(ul, vi) = r—1 for every i €
{1,...,s} and hence, G’ is well-defined. Furthermore, by Lemma[7.1.7] G’ is an
(r+1)-graph, since G® and P+ (r —2) My are both (r+1)-graphs. Lemmal7.1.§]
implies, if G’ has a k-PDPM, then G has a k-PDPM avoiding every edge of M,
i.e. G has a k-PDPM. On the other hand, let N' = {Ny, ..., N} be a k-PDPM
of G. Note that pgr (wmiui’wywi) = pg(xi,y;) — 1 for every i € {1,...,s}, and
thus G — M is a subgraph of G’. Hence, we can assume that N; C E(G’) for
every j € {1,...,k —1}. For each i € {1,...,s} let N* = {N{,...,Ni} be
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a k-PDPM of H? where N,f/, is is a perfect matching of type 2 in H* and all
other elements of A are of type 0. Furthermore, for every j € {1,....k — 1}
let Nj = N;jUUi_; Nj\ {ujvi} and set N = U;_; Ni. Then, {N{,...,N;} is
a k-PDPM of G’. As a consequence, G’ has a k-PDPM if and only if G has a
k-PDPM. Clearly, G’ can be obtained from G in polynomial time. Therefore,
if PDPM (k,r) is N P-complete, then PDPM (k,r + 1) is N P-complete, witch

completes the proof. O

Rizzi [75] constructed a poorly matchable (r + 1)-graph starting with a
poorly matchable r-graph. We remark that the construction of G’ from G in

the above proof is similar to that construction.

7.3 r-edge-connected r-graphs

In this section we are mainly motivated by the open cases of Problem [7.0.3
First, we prove Theorem which, together with the results of [63}/75],

imply the following corollary.
Corollary 7.3.1. Ifr > 2 is even, then m(r,r) <r — 3.

The graphs that prove Corollary have a 2-vertex-cut. It is easy to
see that for odd r, an r-edge-connected r-graph is 3-vertex-connected (see Ob-
servation . This shows that our methods are limited to the case when r
is even. Thus, the main motivation for Subsection is the study of Prob-
lems and for odd r. We prove that every r-edge-connected r-graph
has k € {2,...,r — 2} pairwise disjoint perfect matchings if and only if ev-
ery r-edge-connected r-graph has k pairwise disjoint perfect matchings that
contain (or that avoid) a fixed edge. For odd r, we prove the stronger state-
ment that every r-edge-connected r-graph has an (r — 2)-PDPM if and only if
for every r-edge-connected r-graph and every |5] adjacent edges, there is an
(r —2)-PDPM of G containing all |Z] edges. In Subsection we consider
Problem when r =t = 5. For r > 3, r # 5, an r-edge-connected r-graph
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can be constructed by appropriately adding r — 3 perfect matchings to the
Petersen graph. Such graphs are class 2 by Lemma However, we cannot
easily construct a 5-edge-connected 5-regular graph in the same way. Indeed,
adding two perfect matchings to P generates a 4-edge-cut. So far, we have
not succeeded in constructing 5-edge-connected 5-regular class 2 graphs. Also,
intensive literature research and computer-assisted searches in graph databases
did not lead to the desired success. Thus, for m(5,5) we only have the trivial
bounds, i.e. 1 < m(5,5) <5. In Subsection we use the results from Sub-
section [7.3.2] to prove Theorem Furthermore, we deduce some properties

of a minimum possible 5-edge-connected class 2 5-graph.

7.3.1 Proof of Theorem [7.0.4]

In this subsection we construct a (4k + 2)-edge-connected (4k + 2)-graph Gy,
without a 4k-PDPM for each integer £ > 1. As in [63], we first construct a
graph Py by adding perfect matchings to the Petersen graph and a graph Qy
by using two copies of Pr. Then, we construct a graph Sy and ”replace” some

edges of S; by copies of Qi to obtain the graph G with the desired properties.

The graphs P, and Qy

For each k£ > 1, let
Prp =P + k(Mo + My + M) + (k — 1) Ms,

as shown in Figure

Let 73,{1J and 77,3 be two distinct copies of Py. For each w € V(Py), the
vertex of P} (P2, respectively) that corresponds to w is denoted by w! (w?,
respectively). Now, we obtain the graph @ from 73,% and 73,3 by removing
the 2k + 1 parallel edges connecting u¢ and vi from P,i, for each i € {1,2},

and identifying u} and u? to a new vertex, denoted by ug,. Note that the

degree of ug, in Q) is 4k + 2. For a graph G containing ), as a subgraph, let
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Figure 7.3: The graph Ps.

E! = Eq(v},V(G)\V(Qy)) for each i € {1,2}. The subgraph Q2 and the edge
sets Fi and E? are shown in Figure

Figure 7.4: The subgraph Q. (solid lines) and the edge sets F3 and E3 (dashed

lines).

The following lemma is similar to Lemma 2.5 in [63] (Qj is different), and
it can be proved analogously. In order to keep this thesis self-contained, we

present the proof here.

Lemma 7.3.2. Let G be a graph that contains Qi as an induced subgraph. Let
N ={Ny,..., Ny} be a set of pairwise disjoint perfect matchings of G and let
N=U¥ N, Ifo(V(Qr) = EL U EZ, then

|ELNN|=|E;NN| =2k

Proof. Every perfect matching of G intersects 9(V(Qy)) precisely once since
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[V(Qg)| is odd and {v],v}} is a 2-vertex-cut. It remains to show that E}
intersects precisely 2k elements of M. Recall that @y is constructed by using

two copies of P + > ,c ¢ M, where

M = {MO,MI,MQ, s 7M07M17M27M57 .. 'aM5}'

k times k—1 times

We argue by contradiction. Without loss of generality, suppose that ]E,i NN| <
2k, which is equivalent to |[EZ N N| > 2k. Every perfect matching of N that
intersects E} also intersects the set Eg(uq,,V (P?)), and vice versa. Con-
sequently, the existence of A implies that there is a set N of 4k pairwise
disjoint perfect matchings in 73,1 such that N’ contains at most 2k — 1 edges
of Ep (ui,vi). Hence, N contains all edges of 8791% (ud)\ Ep (ud,v}), a contra-

diction to Lemma Hence, |E} N N| = |EZN N| = 2k. O

The graph Sj,

For every k > 1, let Si be the graph with vertex-set {z;,y;,z;,w : i €
{1,...,4k +2}} and edge-set Ay UkB; U (k+ 1)Dy U (2k + 1)(Ey U Fy) where

A ={wz i €{1,...,4k + 2}},

By = {zizi, ziy; 1 € {1,...,4k + 2}},
Dy ={zy;:ie{1,...,4k+ 2}},

Er ={yiziz1:i€{1,...,4k + 2}},

Fy ={zizitopr1 1€ {1,...,2k + 1}},
and the indices are added modulo 4k + 2, see Figure

Lemma 7.3.3. For all k > 1, Sy is (4k + 2)-edge-connected and (4k + 2)-

reqular.

Proof. By definition, Sy is (4k 4 2)-regular. Let X C V(G) be a non-empty
set. First, we consider the case that there are two vertices u,v € {x;,y; :

i€{1,...,4k + 2}} such that X contains exactly one of them. Clearly, there
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Figure 7.5: The graphs S; (left) and Sy (right).

are 4k + 2 pairwise edge-disjoint u, v-paths in Sk, which only contain edges of
kB U (k + 1)Dy, U (2k + 1)E),. Hence, |0s, (X)| > 4k + 2. Therefore, without
loss of generality we may assume {z;,y; : ¢ € {1,...,4k+2}} N X = (). Since
Sk is (4k 4 2)-regular and pg, (u,v) < 2k + 1 for every u,v € V(Sy), we have
|X| ¢ {1,2}. Hence, X either contains at least three vertices of {z; : i €
{1,...,4k + 2}} or w and exactly two vertices of {z; : i € {1,...,4k + 2}}.
In the first case, 9(X) contains at least 6k edges of kBj. In the second case,
0(X) contains 4k edges of Ay and at least 4k edges of kBj, which completes
the proof. ]

The graph Gy,

For every k > 1, let G, be the graph obtained from Sy, as follows. First, remove
all edges of (2k + 1)(Ey U Fy). Then, for every edge e = uv € Ey U Fy, add a
copy Qf of Qk, connect u with the vertex corresponding to v} by 2k + 1 new
parallel edges and connect v with the vertex corresponding to v} by 2k + 1 new
parallel edges, see Figure [7.6

In order to prove that G has the desired properties, we need the following

two observations.
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Figure 7.6: The graph G, where the boxes are copies of Q.

Observation 7.3.4. Let G be a graph and let u,v € V(G) with pg(u,v) = t.
Let H be the graph obtained from G by identifying u and v to a (new) vertex
w. If G is 2t-edge-connected and 2t-regular, then H is 2t-edge-connected and

2t-regular.

Proof. Assume that G is 2t-edge-connected and 2¢-regular. Since pg(u,v) =t,
it follows that dg({u,v}) = 2t and hence, H is 2t-regular. Let X C V(H) be
a non-empty set. If w € X, then |0g(X)| = |0c(X \ {w} U {u,v})| > 2¢. If
w ¢ X, then |0g(X)| = |0c(X)| > 2t. O

Observation 7.3.5. Let G and G’ be two disjoint graphs and let u,v € V(Q)
and u',v" € V(G') such that pug(u,v) = pe(uw',v') = t. Let H be the graph
obtained from G and G’ as follows. Remove the t parallel edges between u and
v and the t parallel edges between u' and v'. Add t parallel edges between u and
u' and t parallel edges between v and v'. If G and G’ are 2t-edge-connected and

2t-regular, then H is 2t-edge-connected and 2t-regular.

Proof. Clearly, H is 2t-regular. Note that G — Eg(u,v) and G’ — Eg(u/,v")
are t-edge-connected. Let X C V(H) be a non-empty set.
Case 1. XNV(G)=V(GQ) or XNV (G") =V(G).



7.3. r-edge-connected r-graphs 93

Say V(G) C X, then 9y (X) contains either (i) Ex(u, ') and Eg(v,v’) or
(ii) one of Ex(u,u’) and Eg(v,v") and a ti-edge-cut of G’ — Eg (v, v") with
t1 >t or (iii) a ta-edge-cut of G' — Egr(u/,v") with to > 2t.

Case 2. X NV(G) #V(GQ) and X NV(G') # V(G).

If XNV(G)#0and X NV (G') # 0, then |0 (X)| > |0c¢(X NV (GQ))|—t+
|0 (XNV(G)|—t > 2t. it XNV(G') =0, then |0 (X)| > |0a(X)| > 2t. O

Theorem 7.3.6. For allk > 1, Gy, is a (4k+2)-edge-connected (4k +2)-graph

without 4k pairwise disjoint perfect matchings.

Proof. By construction, u(Pr) = 2k + 1. As a consequence, Py is (4k + 2)-
edge-connected and (4k + 2)-regular by Lemma Hence, by Observations
and the graph Qj, + (2k + 1){v{v?} is (4k + 2)-edge-connected and
(4k + 2)-regular. Thus, G, is (4k + 2)-edge-connected and (4k + 2)-regular by
Observation [7.3.5]again. Furthermore, the order of Gy, is |V (Sy)|+ 19| Ej, U Fy|,
which is even. Suppose to the contrary that Gy has 4k pairwise disjoint perfect
matchings. Let N C E(Gy) be the union of them and let wz; € N. Lemma
implies |N N dg, ({4, yi, zi})| = 6k + 1. On the other hand, every perfect
matching contains an odd number of edges of dg, ({2, yi, z:}) by Observation

Therefore, |N N 0g, ({xi, yi, zi})| is even, a contradiction. O

Theorem implies that m(r,r) <r—3if r =2 mod 4. Thus, Theorem
and Corollary are proved.

7.3.2 Equivalences for statements on the existence of a

E-PDPM

The graph G} from the previous subsection has many 2-vertex-cuts. The fol-
lowing observation shows that such a construction will not apply for the odd

case of Problem [T.0.3]

Observation 7.3.7. For odd r > 3, every r-edge-connected r-graph is 3-

connected.
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Proof. Let G be an r-edge-connected r-graph. Clearly, GG is of even order and
2-connected. Suppose that there are two vertices v, ve such that G —{vy, v} is
not connected. Then G — {v;, v2} has exactly two components A and B. Since
the order of G is even, A and B are either both of even order or both of odd
order. In the first case, [0(V(A))| + [0(V(B))| < |0(v1)| + |0(v2)| = 2r. Since
A and B are of even order, |0(V(A))| and [9(V(B))| are both even. Hence,
it follows that either [9(V(A))| < r or |0(V(B))| < r since r is odd. In the
second case, |O(V(A)U{vi})|+|0(V(B)U{v1})| = |0(v1)|+|0(v2)| = 2r. Thus,
|0(V(A)U{v1})| <ror|d(V(B)U{vi})| < r since A and B are of odd order.
Therefore, both cases lead to a contradiction with the assumption that G is

r-edge-connected. O

We are going to prove some equivalent statements about the existence of a
k-PDPM in r-edge-connected r-graphs.

We recall the following definition from Chapter [2| For a graph G, a vertex
v € V(G) and a graph H disjoint from G, a new graph G’ can be obtained
from G as follows: add H; for every edge e € E(G) incident to v, replace
the end-vertex v of e by a vertex of H; delete v. We say G’ is obtained from
G by replacing v with H. Note that there are many different graphs that
can be obtained from G by replacing v with H; all of them have vertex-set
(V(G)\v) UV (H) and edge-set E(G) U E(H).

In the following we need a special case of the replacing operation.

Definition 7.3.8. Let G and H be two disjoint r-regular graphs with u € V(G)
and v € V(H). Let (G,u)|(H,v) be the set of all graphs obtained by replacing
the vertex u of G by (H,v), that is, start with G and replace v by H — u such

that the resulting graph is r-regular.

Lemma 7.3.9. If G and H are two disjoint r-edge-connected r-regular graphs
with w € V(GQ) and v € V(H), then every graph in (G,u)|(H,v) is r-reqular

and r-edge-connected.
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Proof. Suppose to the contrary that there exists a graph G’ € (G, u)|(H,v) with
aset X C V(G') such that |0g/(X)| <r—1. f X CV(G—u)or X CV(H—v),
then |0q(X)| = |0¢/(X)| < r—1or |0y (X)| = |0¢(X)| < r—1, a contradiction.
Hence, by symmetry, we assume X N V(G —u) = X5, XNV (H —v) = X,
XNV (G—u) = X3 and XNV (H—v) = X4, where X¢ = V(G')—X and X; # 0
for each i € {1,2,3,4}. Since |0¢/(X)| < r — 1, we have eg/ (X1, X3) < L%j
or ecr(Xo, X4) < [551]. It implies that G — u or H — v has an edge-cut of
cardinality at most L%J, which contradicts the assumption that both G and

H are r-edge-connected. O

In what follows we show that if every r-edge-connected r-graph has a k-
PDPM, then every r-edge-connected r-graph has a k-PDPM containing or

avoiding a fixed set of edges.

Theorem 7.3.10. Letr >4 and 2 < k <r —2. The following statements are
equivalent.

(i) Every r-edge-connected r-graph has a k-PDPM.

(ii) For every r-edge-connected r-graph G and every e € E(G), there exists a
k-PDPM of G containing e.

(iii) For every r-edge-connected r-graph G and every e € E(G), there exists a
k-PDPM of G avoiding e.

(iv) For every r-edge-connected r-graph G, every v € V(G) and e € 9g(v),

there are at least s = r — |"5%] — 1 edges e1, ..., es in Oc(v) \ {e} such that,

for each i € {1,...,s}, there exists a k-PDPM of G containing e; and e.

Proof. Clearly, each of (i7), (ii7) and (¢v) implies (). Thus, it suffices to prove
that (7) implies (i7); (¢) implies (i77); and (i) implies (iv).

(i) = (d1), (i94). Assume that statement (i) is true and let G be an 7-
edge-connected r-graph with an edge vv;. We use the same construction for
both implications. Let Co,. = ujus...us-u1 be a circuit of order 2r. Denote
Uy, = {u; : i is odd} and U, = {u; : i is even}. We construct a new graph H

from Cy, as follows. Replace each edge of Cy, by % parallel edges, if r is odd,
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and replace the edge wju;y1 (ujujr1 and ug,uq, respectively) of Co, by 5 (%,
respectively) parallel edges for each u; € U, (uj € Ue \ {ua,}, respectively), if
r is even. Add two new vertices, denoted by u and u, such that u is adjacent
to each vertex in U, and u’ is adjacent to each vertex in U, see Figure

Clearly, H is r-regular and r-edge-connected.

(b) r=4

Figure 7.7: Two examples for the graph H obtained from Cs, as in the proof of

Theorem

Let I = {i:i€{1,...,2r},iis odd} and for every i € I let G* be a copy of
G, in which the vertices are labeled accordingly by using an upper index. For
example, v* is the vertex of G that corresponds to the vertex v of G. Following
the procedure described in Definition [7.3.8] we construct another new graph
H' from H by successively replacing each vertex u; € U, of H by (G%,v") such
that for each i € I the vertex v! is adjacent to u (see Figure . By Lemma
H'’ is r-regular and r-edge-connected. Note that H’ is an r-graph since
it is of even order.

In order to prove statements (i7) and (iii) we observe the following. Let
M be an arbitrary perfect matching of H' and for every i € I, let m; =
|05 (V(G* — v%)) N M|. The set M contains exactly one edge incident with
u and one edge incident with u/. Thus, by the construction of H' we have

Y icrmi = |M N O (Ue)| = |I]. Observation implies m; > 1 and hence,
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(b) r=4

Figure 7.8: Two examples for the graph H' obtained from G and H as in the

proof of Theorem

m; = 1 for every ¢ € I. Thus, every perfect matching of H' can be translated

into a perfect matching of G for each i € I.

Now, by statement (¢), H' has a k-PDPM N. Furthermore there are two
integers 7,5 € I such that N contains uv} and avoids uv{. By the above
observation, the graph G has a k-PDPM containing v*v¢ and G’ has a k-
PDPM avoiding v/ v{, which proves statements (ii) and (iii).

(73) = (iv). Let G be an r-edge-connected r-graph and let e; = vv; € E(G).
Suppose |{e € dg(v) \ {e1} : there exists a k-PDPM of G containing e, e; }| <

s. As a consequence, d;(v)\{e1} contains at least t = r—1—(s—1) = 55| +1

edges ea, ..., €41, such that for every j € {2,...,¢t + 1} there is no k-PDPM
of G containing e; and e;. For each j € {2,...,t+ 1} denote e; = vv;.

Let K4 be the complete graph of order 4 and let V(Ky) = {u1, ua, us, uq}.
We construct a new r-regular graph H from K, by replacing each edge of
{uyug, ugus, usug, ugui } by % parallel edges if r is odd, and replacing each
edge of {ujuz, usus} ({uous,usus}, respectively) by (%, respectively) par-
allel edges if r is even, see Figure Clearly, H is r-edge-connected.

For each i € {1,3}, let G* be a copy of G in which the vertices and edges are

labeled accordingly by using an upper index and let V* = {v; cjEe{2,...,t+
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w1 gt

U9 Uy u2 U4
us u3
(a) r=5 (b) r=4

Figure 7.9: Two examples for the graph H obtained from K, as in the proof of

Theorem

1}}. Following the procedure in Definition we construct another new
graph H' from H by successively replacing each vertex u; € {uj,us} of H
by (G% v%) such that v{ is adjacent to v; and Eps(ug, VI U V3) contains as
many edges as possible, see Figure The graph H' is r-regular and r-
edge-connected by Lemma [7.3.9] By statement (i7), H has a k-PDPM N =
{Ni,..., N} containing uguy. Clearly, v%v% and wuouy are in the same perfect
matching of A" and so each N; € N contains exactly one edge of O/ (V (G —v'))
and one edge of dg(V (G3 —v?)) by Observation Thus, N;NExr(ug, ViU
V3) =0 for each i € {1,...,k}. Now we consider the following two cases.

Case 1. r is odd.

Since t = |"5%| +1 < 7, the set Ep/(u2, V) contains ¢ edges for each

i € {1,3} by the construction of H'. Note that N; N Eg(uz, VI UV3) = 0 for
each i € {1,...,k}. Hence, the k-PDPM N of H' contains at most r — 2t =

=252 +1) <r—2("=E=L 4 1) = k — 1 edges in 9y (u2), a contradiction.
Case 2. r is even.
Case 2.1. k= 2.

Since t = |52] + 1 = %, the set Epr(u2, V! UV?3) contains 2t —1 =r —1
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11
Gl —v G — ¢!

Figure 7.10: Two examples for the graph H’ obtained from G and H as in the
proof of Theorem [7.3.10

edges. Hence, the k--PDPM N of H' contains at most r — (2t — 1) = 1 edges in
Op(u2), a contradiction.

Case 2.2. k£ > 2.

Since t = Lrgkj +1< 54 +1=1%—1, we have that Eg(ug, V*) contains

t edges for each i € {1,3} by the construction of H'. Hence, the k-PDPM N

of H' contains at most r — 2t = T—Q(L”gkj +1) < r—Q(% +1)=k—-1

edges in Opr(u2), a contradiction again. O

For the special case kK = r — 2, we can obtain a stronger result as follows.

Theorem 7.3.11. Let k > 1. The following statements are equivalent.

(i) Every (2k + 1)-edge-connected (2k + 1)-graph has a (2k — 1)-PDPM.

(ii) For every (2k + 1)-edge-connected (2k + 1)-graph G and every k edges
sharing a common vertez, there exists a (2k —1)-PDPM of G containing these

k edges.

Proof. Tt suffices to prove that statement (i) implies statement (iz). Let G be
a (2k + 1)-edge-connected (2k + 1)-graph and let v € V(G) be a vertex with
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Og(v) ={e; i€ {l,...,2k+ 1}}. We show that there is a (2k — 1)-PDPM of
G that contains the edges ey, ..., eg.

Denote e; = vv; for each i € {1,...,2k +1}. Let G! be a copy of G in
which the vertices and edges are labeled accordingly by using an upper index.
As described in Definition [7.3.8] construct a new graph H from G by replacing
v with (G, v') such that Og(V(G) \ v) = {varq1v3,1} U E1 U By, where
By = {vw},, i€ {1,...,k}} and By = {v]viyr s i € {1,...,k}}. By Lemma
H is (2k + 1)-edge-connected and (2k + 1)-regular. Thus, by statement
(7) and Theoremthere is a (2k —1)-PDPM W of H avoiding vag4103;, ;-
By Observation [T.1.1] every perfect matching of N contains exactly one edge
of Oy (V(G)\ {v}) and hence, N contains either every edge of F; or every edge
of Fs. In the first case, G has a (2k — 1)-PDPM that contains ey,...,ex; in
the second case, G! has a (2k — 1)-PDPM that contains e%, el e,lc. This proves

statement (7).

7.3.3 bH-graphs

In this subsection we first related statements on the value of m(5,5) to well-
known conjectures for cubic graphs. In particular we prove Theorem
Next, we deduce structural properties of a smallest 5-edge-connected 5-graph
of class 2, if such a graph exists.

We recall the following three conjectures.

Conjecture (Berge-Fulkerson Conjecture [24]). FEvery bridgeless cubic
graph has siz perfect matchings such that each edge belongs to exactly two of

them.

Conjecture (Cycle Double Cover Conjecture [78,82]). Every bridgeless
graph has a collection of cycles such that each edge belongs to exactly two of

them.
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Conjecture (Fan-Raspaud Conjecture [22|). Fvery bridgeless cubic

graph has three perfect matchings with an empty intersection.

A minimum counterexample to Conjecture [1.1.2] if it exists, is a snark.

Hence, the Cycle Double Cover is implied by the following stronger conjecture.

Conjecture 7.3.12 (5-Cycle Double Cover Conjecture, see |93]). Every bridge-

less cubic graph has b-cycles such that each edge is in exactly two of them.

Let G be a cubic graph and let F = {Fy,..., F;} be a multiset of subsets
F; of E(G). For an edge e of G, we denote by vr(e) the number of elements of
F containing e. A Fan-Raspaud triple, or F R-triple, is a multiset T of three
perfect matchings of G such that vy(e) < 2 for all e € E(G). A 5-cycle double
cover, or 5-CDC, is a multiset C of five cycles in G such that, for every edge
e € E(G), ve(e) = 2. A Berge-Fulkerson cover, or BF-cover, is a multiset T

of six perfect matchings of G such that vy (e) = 2 for all e € E(G).

Relation to the Fan-Raspaud Conjecture

We show that the Fan-Raspaud Conjecture is true if there is no poorly match-
able 5-edge-connected 5-graph. For that we need one result from [44] as well

as an equivalent formulation of the Fan-Raspaud Conjecture.

Theorem 7.3.13 (Kaiser and Skrekovski [44]). Bvery bridgeless cubic graph
has a 2-factor that intersects every edge-cut of cardinality 3 and 4. Moreover,

any two adjacent edges can be extended to such a 2-factor.

As proved in [71], the following conjecture is equivalent to the Fan-Raspaud

Conjecture.

Conjecture 7.3.14 (Mkrtchyan and Vardanyan [71]). Let G' be a bridgeless
cubic graph. For every e € E(G) and i € {0,1,2}, there is an FR-triple T

with vr(e) = 1.
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In the same paper, they also pointed out the following observation but
without proof. To keep this thesis self-contained, we present a short proof

here.

Observation 7.3.15 (Mkrtchyan and Vardanyan [71]). A minimum possi-
ble counterezample G to Conjecture |7.5.14] with respect to |V (G)| is 3-edge-

connected.

Proof. Suppose that G is a minimum counterexample to Conjecture[7.3.14] with
respect to |[V(G)|. Then, there is e € E(G) and i € {0, 1,2} such that no FR-
triple T satisfies v7(e) = i. Suppose that thereisaset X C V(G) with u,v € X
and 0g(X) = {uz,vy}. Let Hy = G[X]+{uv} and Hy = G— X +{zy}. Notice
that both H; and Hs are bridgeless cubic graphs. If e € {ux, vy}, since |V (G)|
is minimum, there is an F R-triple 77 of H; and an F'R-triple 75 of Hs such that
vr; (uv) = vy, (zy) = i. Then T; and T2 can be used to construct an F'R-triple
T of G with vr(e) = i, a contradiction. Hence, without loss of generality we
may assume e € E(Hj). Since |V(G)| is minimum, there is an F R-triple Ty
of Hy and an F'R-triple T3 of Hy such that vy (e) = i and vy (zy) = vy (uv).
Again, 71 and T2 can be used to construct an F R-triple T of G with vy(e) =1,

a contradiction. O

Theorem 7.3.16. If m(5,5) > 2, then Conjecture|7.5.14) is true.

Proof. By contradiction, suppose that m(5,5) > 2 and Conjecture is
false. Let G be a minimum counterexample to Conjecture with respect
to |V(G)|. Then, there is an edge e = uv of G and an i € {0, 1,2} such that no
FR-triple T satisfies v7(e) = i. By Observation G is 3-edge-connected.

First, we consider the case i = 0. By Theorem there is a 2-factor
F of G such that e € E(F) and F intersects every edge-cut of cardinality 3
and 4. Let H = G + E(F) and let ¢ be the new edge parallel to e. Since
G is 3-edge-connected, the graph H is 5-edge-connected by the choice of F.
Since m(5,5) > 2, it follows with Theorem (iv) that for each edge
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eo € 9 (v) \ {e, €'}, there are at least three edges eq, e, e3 € g (v) \ {ep} such
that for each j € {1,2,3} there exists a 2-PDPM containing e; and ey. This
implies that H has two disjoint perfect matchings N; and Ny such that e and
¢/ are in none of them. In the graph G, let N| and NJ be the perfect matchings
corresponding to Ny and Ny, respectively. Let N3 = E(G)\E(F). Since N; and
Ny are disjoint, every edge of Nj N N} belongs to E(F), i.e. T = {Nj, N, N3}
is an F'R-triple of G. Furthermore v7(e) = 0, a contradiction.

Next suppose i € {1,2}. By Theorem we can choose a 2-factor F
of G such that e ¢ E(F) and F intersects every edge-cut of cardinality 3 and
4. Again, the graph H defined by H = G + E(F) is 5-edge-connected. Since
m(5,5) > 2, by statements (i) and (éii) of Theorem[7.3.10, H has two disjoint
perfect matchings N7 and Ns such that e is in exactly ¢ — 1 of them. Therefore,
T = {N{, N3, N3} is an FR-triple of G with v7(e) = i where Ni and Nj are
the perfect matchings of G that correspond to N; and N, respectively, and
N3 = E(G) \ E(F). This leads to a contradiction again. O

If m(5,5) > 2, then in particular every 5-edge-connected 5-graph with
an underlying cubic graph has two disjoint perfect matchings. By adjusting
Theorem [7.3.10} one can show the following strengthening of Theorem [7.3.16|
(for a sketch of the proof, see Appendix .

Theorem 7.3.17. If every 5-edge-connected 5-graph whose underlying graph
is cubic has two disjoint perfect matchings, then Congjecture [7.3.1]] is true.

Relation to the 5-Cycle Double Cover Conjecture

Now we focus on the consequences of the non-existence of 5-edge-connected
class 2 b-graphs. Let k > 3 be an integer. A k-wheel Wy is a k-circuit C plus

one additional vertex w adjacent to all vertices of Cf.

Theorem 7.3.18. The following statements are equivalent.
(i) Every 5-edge-connected 5-graph is class 1.

(ii) Every 5-edge-connected 5-graph with an underlying cubic graph is class 1.
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Proof. The first statement implies trivially the second one. We prove now the
other implication. Let G be a 5-edge-connected 5-graph. For every vertex v of
G, let W be a copy of the graph W5 + E(C5). Moreover, let w” and CY be
the vertex and, respectively, the circuit of W2 corresponding to w and C5 in
W5. Following the procedure described in Definition [7.3.8] successively replace
every vertex v of G with (W}, w") to obtain a new graph H, which is 5-regular
and 5-edge-connected. Moreover, its underlying graph is cubic and so H is class
1 by statement (i7). Hence, H has a 5-PDPM, denoted by N'= {Ny,..., N5}.
Since |V (CY)] is odd, by Observation [7.1.1], we have that, for all i € {1,...,5},
|IN; N0 (V(C¥))| = 1. Hence, the restriction N of N; to the graph G is a
perfect matching of G. Moreover, {N7,..., Nt} is a 5-PDPM of G. Therefore,
G is class 1. O

It is well known that a counterexample of minimum order to Conjecture

[7:312)is a cyclically 4-edge-connected cubic class 2 graph.
Theorem 7.3.19. If m(5,5) = 5, then Conjecture is true.

Proof. Let K be the graph obtained from a 4-wheel by doubling the edges of
the outer circuit and of one spoke. Note that K has one vertex of degree 6,
which we denote by w, and four vertices of degree 5.

Let G be a minimum counterexample to Conjecture with respect to
|V(G)|. Then, G is cubic and cyclically 4-edge-connected. Thus, the graph
2G = G+ E(QG) is 6-edge-connected. For every vertex v of G, let K" be a copy
of K and let w" be the vertex of KV corresponding to w in K. Analogously to
Definition let H be the 5-regular graph obtained by replacing each vertex
v of 2G by (K", w"), in such a way that parallel edges of 2G are incident with
the same vertex of KV. Then, H is a 5-edge-connected 5-graph and therefore,
it has a 5-PDPM N = {Ny,..., N5}. For every v € V(2G), there exist exactly
three perfect matchings of N, say N7, N4, N4, such that |[N/Nog (KY —w")| = 2

for each ¢ € {1,2,3}. Hence, for every j € {1,...,5}, the restriction of each
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N; € N on G induces a cycle Fj in G. Moreover, we have v¢(e) = 2 for each

e € E(G), where C = {Fy,...,F5}. SoC is a 5-CDC of G. O

Relation to the Berge-Fulkerson Conjecture

Observation 7.3.20. If m(5,5) =5, then Conjecture is true.

Proof. Assume m(5,5) = 5 and suppose that G is a counterexample to the
Berge-Fulkerson Conjecture such that the order of G is minimum. Let F' be
a 2-factor of G. As shown in [58|, G is cyclically 5-edge-connected and hence,
G + E(F) is 5-edge-connected. Therefore, G + E(F') has five pairwise disjoint
perfect matchings. The corresponding five perfect matchings of G and E(G) \
E(F) are a BF-cover of G, a contradiction. O

Properties of a minimum possible 5-edge-connected class 2 5-graph

We are going to prove some structural properties of a smallest possible 5-
edge-connected class 2 5-graph. Let G be a graph and let x € V(G) with
|INg(z)| > 2. A lifting (of G) at x is the following operation: Choose two
distinct neighbors y and z of x, delete an edge e; connecting x with ¥, delete
an edge ey connecting x with 2z and add a new edge e connecting y with z;
additionally, if e; and ey were the only two edges incident with z, then delete

the vertex x in the new graph. We say e and ey are lifted to e.

Theorem 7.3.21 (Mader [61]). Let G be a finite graph and let v € V(G) such
that d(v) > 4, IN(v)| > 2 and G — v is connected. There is a lifting of G at v
such that, for every pair of distinct vertices u,w € V(G) \ {v}, the number of
edge-disjoint u, w-paths in the resulting graph equals the number of edge-disjoint

w, w-paths in G.

Statement (7i) of the following theorem is already mentioned in [19] for

planar r-graphs without proof.
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Theorem 7.3.22. Let G be a 5-edge-connected class 2 5-graph such that the
order of G is as small as possible. The following statements hold.

(i) Every 5-edge-cut of G is trivial, i.e. if X C V(G) and |0(X)| = 5, then
I X|=1o0r|V(G)\ X|=1.

(ii) Every 3-vertex-cut is trivial, i.e. if X C V(G), |X| =3 and G — X is not

connected, then one component of G — X is a single vertex.

Proof. (i). The proof follows easily and is left to the reader.

(#4). By contradiction, suppose that X = {vy,vs,v3} C V(G) is a 3-vertex-
cut of G such that none of the components of G — X is a single vertex. By
Observation and the edge-connectivity of G, the graph G — X has at most
three components. First, we consider the case that G — X has exactly three
components. Denote the vertex-sets of these three components by A, B and C.
We have that |0g(S)| =5, for each S € {A,B,C}, and so |[A| = |B|=|C|=1
by statement (i), a contradiction.

Next, we assume that G — X has exactly two components whose vertex-sets
are denoted by A and B. Since G has even order, we may assume |A| is odd

and |B| is even. For each i € {1,2,3}, set n; = |0g(B) N dg(v;)| and let

1 1 1
azi(n1+n2—n3), bzi(—n1+n2+n3), czi(nl—ng—i—ng).

We have that ny + ng + n3 = |0g(B)| is even, since |B| is even. Thus, all of
a,b,c are integers. Furthermore, 5 < |0g(B U {vs})| = n1 +na + (5 — n3g) and
hence, a > 0. Analogously, we obtain b, ¢ > 0. Therefore, we can define a new

graph H; as follows (see Figure [7.11)).
Hy = (G — B) + a{viva} + b{vavz} + c{vsv1 }.

By the definitions of a,b, ¢, the graph H; is 5-regular. Moreover H; is also
5-edge-connected. Indeed, let Y C V(H;). We can assume, without loss of
generality, that |Y N {v1,ve,v3}| < 1 (otherwise, we argue by taking its com-
plement). By the choices of a,b and ¢, we have |9, (Y)| = [0¢(Y)| > 5 and so

H is 5-edge-connected.
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Let H' be the graph obtained from G by identifying all vertices in A to a
new vertex u, see Figure Then, H' is 5-edge-connected and every vertex
is of degree 5 except u. Since |A| is odd, we have that |0g(A)| is odd. Hence,
the vertex u has an odd degree of at least 5 in H'. Now, by Theorem
a new 5-edge-connected 5-graph Hj can be obtained from H’ by 3(dg(u) — 5)
liftings at u, see Figure [7.11]

Figure 7.11: An example for the graphs Hy, H' and Hj obtained from G in the

proof of Theorem @

We will refer to the edges of Hs obtained by a lifting at u as lifting edges

and denote the set of all lifting edges by L.
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By the minimality of |V(G)|, H; has a 5-PDPM {N{,...,Ni} and Ho
has a 5-PDPM {NZ,...,N2}. Since u has at most three neighbors in Ha,
every perfect matching of Hs contains at most one lifting edge. For each

i€{1,...,5}, let N; be the subset of edges of H' defined as follows.

N? if N2NL=0;

Ni= 9 (N?\ {e})U{e1,ea} if N2NL = {e} and ey, eq are the two edges

lifted to e.

Every perfect matching of H; contains either one or three edges of dg, (A)
by Observation Let s; be the number of integers i € {1,...,5} with
IN} N O, (A)] = 3, let s = |£| and let s’ be the number of integers j €
{1,...,5} with |N; N dg/(u)] = 3. We have that s = s’. Moreover, we
have dg(A) = 3s1 + (5 — s1) = 5+ 2s9 and so s; = s2 = s’. Note that
Op, (A) = 0g(A) and recall that H' is obtained from G by identifying all
vertices in A to u. As a consequence, the sets of edges Ny,..., N5 of H and
the perfect matchings Nll, e Ng of Hi can be combined to obtain a 5-PDPM

of G, a contradiction. O

7.4 r-graphs with arbitrary edge-connectivity

In this section, we prove Theorem i.e. we show m(2l,r) < 31—6 for every
I > 3 and r > 2[. Note that this bound only depends on the edge-connectivity
parameter. Furthermore, for an r-graph G with a subset X C V(G), we
observe that |0g(X)| = r - |X| — 2|E(G[X])] is even if |X| is even. Therefore,

the edge-connectivity of an r-graph is either r or an even number.

7.4.1 Proof of Theorem [7.0.6

Recall that m(t,r) < m(t',r) whenever t < ¢. Moreover, m(4,5) = 1 and

m(r,r) < r — 2 for each r > 3, r # 5 and thus, r — 2 is a trivial upper bound
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for m(2l,7). As a consequence, Theorem trivially holds for the case
21 < r < 3l —4,i.e. it suffices to prove Theorem for the case r > 31 — 3.
We will construct 2l-edge-connected r-graphs inductively starting with a
2l-edge-connected (3] — 4)-graph without a (3] — 5)-PDPM if [ > 4 and a
6-edge-connected 6-graph without a 4-PDPM if [ = 3.
For this we first describe the induction step. Then we give the base graphs
for the two cases. Finally we deduce the statement of Theorem

Induction step from r to r +1

Lemma 7.4.1. Let r, 1, k be integers such thatr > 3l—4,1>2 and2 < k <.

If there is an r-graph G such that
e \G) > 2,
e G has a perfect matching M such that pg(u,v) > 1—1 for every uv € M,
e GG has no k-PDPM,
then there is an (r + 1)-graph G' such that
e \G) >2I,
e G’ has a perfect matching M’ such that pc(u,v) >1—1 for every uv €
M,
e G’ has no k-PDPM.

Proof. Assume that the order of G is 2s and let M = {z1y1,...,2sys}. In

order to construct G’ we define a graph Pirs1,0) by

—1 —1
P(r+1,l) =P+ ’77"2-‘ MO + \‘T2J M1 + (l — Q)MQ

Since G is 2l-edge-connected, we have r > 2[. Thus, P, is well defined. For
every i € {1,...,s}, take a copy P(ir—O—l ) of P(r41,)- In each copy, the vertices

and perfect matchings are labelled accordingly by using an upper index, i.e.
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the vertex of Pér 1) corresponding to uy in P41, is labeled as ul. Define

graphs H, ..., H® inductively as follows:

HY =G+ M,

H = (H™ ' 2,y & (P(irﬂjl),u’i,vi) for every i € {1,...,s}.

Note that H° and P(r41,) are both (r+1)-graphs. Furthermore, g (2i,y:) > 1
for every i € {1,...,s} by the choice of M. Recall that ujv; € E(P) is the
unique edge in Mo N My. Thus, pp,, ,(u1,v1) = (r+1) — I by the definition

of Pr41,)- As a consequence, HO ... H?® are well defined. Set

G = H* and M =M.

Figure 7.12: The graph G =P + 2My + M; + My + M3 (left) and the graph G’
(right) constructed from G in the proof of Lemma The edges

of M and M’ respectively are drawn in bold red lines.
An example is given in Figure We claim that G’ and M’ have the
desired properties.

The perfect matching M, does not contain the edge ujv,. Thus, M’ is well

defined. Furthermore, M’ is a perfect matching of G’ since M is a perfect
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matching of G. By the definition of P, ;y, we have pgs(u,v) > 1 —1 for every
uv € M’'. Hence, M’ has the desired properties.

The graph H? is a 2l-edge-connected (r + 1)-graph, since G is a 2il-edge-
connected r-graph. Furthermore, L%ZJ >1l—2sincer > 3l—4. Thus, r—1+1
is the maximum number of parallel edges of P, ;) and hence, A(P,11,)) = 2l
by Lemma Therefore, for each i € {1,...,s}, H' is a 2l-edge-connected
(r 4+ 1)-graph by Lemma|7.1.7, and so is G'.

Now, suppose that H® has a k-PDPM N*. By applying Lemma with
t =1 to the (r + 1)-graph H*® and A'® we obtain a k-PDPM N*~! of H*~1,
which avoids x®y® by property (i). Apply Lemma to H5~! and N*1
to obtain a k-PDPM N*~2 of H* 2, which avoids 2°~!y*~! by property (i)
and z°y® by property (ii). By inductively repeating this process, we obtain a
k-PDPM of H? that avoids every edge of M. This is not possible, since G has
no k-PDPM. Therefore, G’ has no k-PDPM, which completes the proof. ]

We note that the condition r > 3l — 4 is necessary in Lemma since
APy1py) < 2l if r < 31 — 4. In view of Lemma we need to construct

suitable base graphs for all [ > 3, which will be done now.

Base graph if [ = 3.

In order to construct the required base graph G°, we need the graph G con-
structed in the Subsection m (see also Figure . For a precise definition
of G1 (and its vertex-labeling) the reader is referred to that subsection. Every
perfect matching of G; contains an edge in dg, (w), which is simple. Thus, in
order to use Lemma we need to slightly modify G;. For any v € V(Gy),
we define a 3-expansion to be the operation that splits v into two vertices v’
and v” (edges formerly incident with v will be incident with exactly one of v/
and v”) and adds three parallel edges between them.

Let G® be the graph obtained from G by applying a 3-expansion to the

vertices 29,24, 26 and w. Let w’ and w” be the new vertices in which w has
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been split (see Figure [7.13]).

Figure 7.13: The graph G°, where the boxes a re copies of Q. The bold red
edges are used to construct M® in the proof of Theorem

It is straightforward that GO is still a 6-edge-connected 6-graph. By using
similar arguments as in the Proof of Theorem it follows that G has no

4-PDPM. For the sake of completeness we present a short proof here.
Proposition 7.4.2. The graph G° has no 4-PDPM.

Proof. In this proof vertex labelings of G® are considered with reference to Fig-
ure Assume by contradiction that G° has a 4-PDPM M = {Ny,..., N4}.
Then, there is j € {1,...,4} such that dgs({w’,w”}) N N; # 0. Let e €
Igs({w',w"}) N N;. We can assume without loss of generality that e is in-
cident with 2. Let X = {z2,92,25} C V(G®). Then, from Lemma |7.3.2 we
infer that |0gs(X)NN| is odd, where N = U?_| N;. On the other hand, since X
is an odd set, we have that for every i € {i,...,4}, |X N N;| is an odd number.

Thus, |[X N N| = Zle | X N N;| must be an even number, a contradiction. [
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Base graphs if [ > 4.

Let [ > 4 and consider the following graph
G =P 4 (1 —2)My + (I — 3)M; + (I — 3) My + Ms.

The graph G® is shown in the left-hand side of Figure By definition,
G345 a (31 — 4)-graph, which is 2i-edge-connected by Lemma It is well
known, see [27], that G3'~* is of class 2 and hence has no (3] — 5)-PDPM.

Now we are ready to prove Theorem [7.0.6

Proof of Theorem [7.0.6. We prove the statement by induction on 7. When
I > 4 we choose G3~* as base graph (defined above) and we consider the
perfect matching My of G3—4,

Recall that G3'~* is a 2l-edge-connected (3] — 4)-graph with no (31 — 5)-
PDPM. Furthermore, for all uv € My, peasi-a(u,v) > 1—1. Hence the base case
is settled. Then, the inductive step follows by Lemma [7.4.1) and the statement
is proved.

When | = 3, we again argue by induction on 7. We choose G% as base
graph. We have already proved that it is a 6-edge-connected 6-graph without
a 4-PDPM. Hence, m(6,6) < 3.

Let MY be the perfect matching of G® defined as follows. Consider the
matching consisting of the bold red edges depicted in Figure Extend this
matching to a perfect matching of GY by choosing, for every copy of @i, the
bold red edges depicted in Figure

Note that the chosen set of edges is indeed a perfect matching and each
edge of such perfect matching has at least one other parallel edge. This means
that the condition on the multiplicities of Lemmal[7.4.1]is satisfied, i.e. for every
edge uv € MO, jge(u,v) > 2 = [ —1. Therefore the base step is settled. Again,
by Lemma[7.4.1] the inductive step follows. Then Theorem [7.0.6]is proved. O
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Figure 7.14: The graph Q; (solid lines) and the edge sets Ef, E? (dashed lines).
The bold red edges are used to construct M6 in the proof of

Theorem

7.4.2 Concluding remarks

By asking for lower bounds on the parameter m(t,r), one can prove the exis-
tence of sets of perfect matchings having specific intersection properties in reg-
ular graphs. For example, it can be proved that for [ > 5, if m(2l,3]) > 2l — 1,
then every bridgeless cubic graph admits a perfect matching cover of cardinal-
ity 20 — 1. As another example, it can be proved that, for [ > 3, if m(2l,3l) > I,
then every bridgeless cubic graph has [ perfect matchings with empty intersec-
tion. Both these proofs rely on the properties of the Petersen graph described
in Lemma [T.1.4

We though believe that these lower bounds are quite strong conditions. We

believe the following statement to be true.
Conjecture 7.4.3. For alll > 2 and r > 21, m(2l,r) <1 —1.

Note that when [ = 2, Conjecture is true by Rizzi [75].



Chapter 8

Complete sets

Chapter [8]is based on [55]; all results in this chapter appeared in that preprint.

As a unifying approach to study some hard conjectures on cubic graphs,
Jaeger (see [39]) introduced colorings with edges of another graph. Recall that
for two graphs G and H an H-coloring of G is a mapping f: E(G) — E(H)

such that
o if e1,e3 € E(G) are adjacent, then f(e1) # f(e2),

e for every v € V(G) there exists a vertex u € V(H) with f(9g(v)) =

If such a mapping exists, then we write H < G and say H colors G. A set
A of connected r-graphs such that for every connected r-graph G there is an
H e A with H < G is said to be r-complete.

For r = 3, Jaeger [37] conjectured that the Petersen graph colors every
bridgeless cubic graph (Conjecture [I.1.3), i.e. he conjectured that {P} is a
3-complete set. If true, this conjecture would have far reaching consequences.
For instance, it would imply that the Berge-Fulkerson Conjecture (Conjec-
ture and the 5-Cycle Double Cover Conjecture (Conjecture are
also true. The Petersen Coloring Conjecture is a starting point for research

in several directions. Different aspects of it are studied and partial results are

115
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proved, see for instance [20,[30}38,/41}67,[73.76].

In this chapter we are mainly motivated by the generalized Berge-Fulkerson
Conjecture (Conjecture , which was proposed by Seymour [77] and states
that every r-graph has 2r perfect matchings such that every edge is in precisely
two of them. Analogously to the cubic case, for every r > 3 if all elements of an
r-complete set would satisfy the generalized Berge-Fulkerson Conjecture, then
every r-graph would satisfy it. Mazzuoccolo et al. [68] asked whether there
exists a connected r-graph H such that H < G for every (simple) r-graph G,
for all » > 3. In other words, they asked whether there is an r-complete set of
cardinality 1 for every r > 3.

By definition, any r-graph G of class 1 can be colored with any r-graph H.
Indeed, let Ni,..., N, be r pairwise disjoint perfect matchings of G and v a
vertex of H with 0y (v) = {e1,...,e,}. Every edge of N; of G can be mapped
to e; in H. Hence, the aforementioned questions and conjectures reduce to
r-graphs of class 2.

For every r > 3, let H, be an inclusion-wise minimal r-complete set. The
following theorem is the main result of this chapter and gives a negative answer

to the question of Mazzuoccolo et al. when r > 4.

Theorem 8.0.1. Either Hz = {P} or Hs is an infinite set. Moreover, ifr > 4,

then H, is an infinite set.

This chapter is organized as follows. In Section [8.I] we characterize H, for
every r > 3. The following statement is the main result of that section, which

implies that H, is unique.

Theorem 8.0.2. Let r > 3 and let G be a connected r-graph. The following

statements are equivalent.
1) G € H,.
2) The only connected r-graph coloring G is G itself.

3) G cannot be colored by a smaller r-graph.
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In Section [8:2) we are going to prove Theorem [8.0.1] by showing that if #,
has more than one element, then it has infinitely many elements. For r» > 1, let
S, be the set of the smallest r-graphs of class 2. For example, the only element
of 83 is the Petersen graph. As a partial result in Section [8.2| we determine the
set S, of the smallest r-graphs of class 2 for each r > 3, which we think is of
interest of its own. We show that S, C H,..

In Section [8.3] we prove similar results for simple r-graphs. We conclude
Chapter [§] with Section where we state some open problems.

In this chapter the following observation will frequently be used without

reference.

Observation 8.0.3. Let r > 3, let G be an r-graph and let X C V(G). If | X|
is even, then |0g(X)| is even. If | X| is odd, then |0c(X)| has the same parity

asrTr.

8.0.1 Order structure

Jaeger [37] initiated the study of the Petersen Coloring Conjecture in terms of
partial ordered sets. DeVos, Nesetfil and Raspaud [20] studied cycle-continuous
mappings and asked whether there is an infinite set G of bridgeless graphs
such that every two of them are cycle-continuous incomparable, i.e. there is
no cycle-continuous map between any two graphs in G. Sdmal [76] gave an
affirmative answer to the above question by constructing such an infinite set
G of bridgeless cubic graphs. In fact, he also mentioned that this result can
be considered in view of a quasi-order induced by cycle-continuous mappings
on the set of bridgeless cubic graphs. That is, this quasi-ordered set contains
infinite antichains.

For every integer » > 1, H-colorings give a quasi-order on the set of r-
graphs, which is denoted by (G,, <). Thus, Theorem can be restated as

follows.

Theorem . For r =3, either Hz = {P} or Hs is an infinite antichain
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in (Gz, <). For each r > 4, H, is an infinite antichain in (G, <).

8.1 Characterization of H,

In this section we will characterize H,. We start with some preliminary tech-

nical results. In particular, we introduce a lifting operation for r-graphs.

8.1.1 Substructures and lifting

Some of the following observations appeared also in [68].

Observation 8.1.1. Let H and G be graphs and let f be an H-coloring of G.

(i) X'(G) < X'(H).

(ii) If Ni,...,Ny are k pairwise disjoint perfect matchings in H, then

YN, ..., f7Y(NL) are k pairwise disjoint perfect matchings in G.

(iii) If C is a 2-reqular subgraph of H, then f~Y(E(C)) induces a 2-reqular

subgraph in G.

(iv) If H' is a {K11,Cm: m > 2}-factor in H, then f~Y(E(H')) induces a
{K11,Cp: m > 2}-factor in G.

Proof. Let H' be a subgraph of H and G’ be the subgraph of G induced by
fY(E(H"). By the definition of H-coloring, if H' is k-regular (spanning,
respectively) then G’ is k-regular (spanning, respectively). Then statements
(4),(23) and (7i7) can be obtained immediately. In order to show statement
(iv), assume that H' is a {Kj 1, Cp,: m > 2}-factor. We decompose H' into a
l-regular subgraph H; and a 2-regular subgraph Hs. The sets f~!(E(H1)) and
f~Y(E(H3)) induce a 1-regular subgraph G and a 2-regular subgraph Gy of
G, respectively. By the definition of H-coloring, G1 and G5 are disjoint. This

completes the proof. O



8.1. Characterization of H., 119

We recall the following definition. Let G be a graph and let z € V(G)
with |Ng(z)| > 2. A lifting (of G) at x is the following operation: Choose two
distinct neighbors y and z of x, delete an edge e; connecting x with y, delete
an edge ey connecting x with 2z and add a new edge e connecting y with z;
additionally, if e; and ey were the only two edges incident with z, then delete
the vertex x in the new graph. We say e; and e are lifted to e. Moreover, the
new graph is denoted by G(ey, e2).

We will make use of the following fact. Let G be a graph, then |0g(X N
Y)| 4+ |0c(XUY)| <|0c(X)|+ |0q(Y)]| for every X, Y C V(G).

Lemma 8.1.2. Letr > 2 be an integer and let G be a connected graph of order

at least 2 with a vertex v € V(G) such that
o dg(v) =7 for allv e V(G)\ {z}, and
o if |V(G)| is even, then dg(x) # r, and
e [0c(S)| > r for every S CV(G) \ {z} of odd cardinality.

Then, for every labeling Og(x) = {e1,...,€4,)} there exists an i € Zgg ()
such that G(e;,eiv1) is a connected graph with |0, e,,,)(S")| = 7 for every
S" CV(G(ei,eir1)) \ {z} of odd cardinality.

Proof. We argue by contradiction. Let G be a possible counterexample of
smallest order, let d = dg(x), and let e; = zy; for every i € {1,...,d}.

First we show |Ng(x)| > 2. Suppose that x has just one neighbor z’. Note
that dg(2') = r by our assumptions. If |[V(G)| is even, then dg(z) # r. As a
consequence, the set S = V(G) \ {z} is a set of odd cardinality with [0g(S)| =
da(z) < r, a contradiction. If |[V(G)| is odd, then the set S = V(G) \ {z,2'}
is a set of odd cardinality with |0g(S)| = r — dg(z) < r, a contradiction again.
Therefore, |[Ng(z)| > 2.

Hence, we can choose an i € Zg such that y; # y;41 and, if G — x is not

connected, then y; and y;41 belong to different components of G — x. Suppose
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that G has a bridge e. Then, for parity reasons, the component H of G — e not
containing x is of odd order, a contradiction since |0g(V (H))| =1 < r. Thus,
G is bridgeless and hence, the graph G(e;, e;+1) is connected by the choice of i.
As a consequence, there is a set T' C V(G(e;, €i+1)) \{z} of odd cardinality with
10G(es,e4,.1)(T)] <1, since G is a counterexample. Observe that [0 (T')| has the
same parity as r, which implies |0¢(T)| = r and y;,yit1 € T. Set Gy = G/T
and label the edges of dg, () with the same labels as in G. Then, G; and z
satisfy the conditions of the statement. Therefore, by the minimality of |V (G)|,
there is an integer j € Zg4 such that the graph Go = Gi(ej,ej41) satisfies
|0G, (S)| > r for every S C V(G2)\{z} of odd cardinality. Set G5 = G(ej, ej+1).

The graphs G, G1, Gy and G3 are depicted in Figure [8.1]
X T X
c) G (d) Gs

T
(b) Gi (c) G2
Figure 8.1: An example for the graphs G,G1, G2 and Gs.

Note that V(G) = V(Gs) and V(G2) \ {wr} = V(G3) \ T. Furthermore,

we observe the following:
o for every X C T |0q(X)| = |0as(X)|,

e forevery X C V(G2)\{wr}: |06, (X)| = |0c,(X)| and |0, (X U{wr})| =
06, (X UT)|.

Now, let S C V(G3) \ {z} be a set of odd cardinality. Set A =S NT and
B =S\ A. We consider two cases.
Case 1. | 4| is even.

As a consequence, B and T\ A are sets of odd cardinality. Therefore, by
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using the above observations we obtain the following:

1065 (S)| = 06, (S°)| = |06, (SN T)| + [0, (S UT)| = |0c, (T)|
= [0c, (T'\ A)| + |065(B)| — [0c(T)]
= [0c(T \ A)| +9¢,(B)| — 10c(T)|
>rdr—r

=T.

Case 2. | 4| is odd.

Thus, B is a set of even cardinality, which implies

106:(9)| = 1065 (S N T)| +[065(S U T)| = 065 (T)]
= 0c;(A)| + 106, (BUT)| — 06, (T)]
= [0c(A) + 106, (B U{wr})| - [0a(T)]
>rdr—r

=7

In any case, we have |0g,(5)| > r, which implies [0g(c; ¢,,,)(S)| > 7 for every
S" C V(G(ej,ejq1)) \ {z} of odd cardinality. This is a contradiction to the

assumption that G is a counterexample. O
The previous lemma can be used in r-graphs as follows.

Theorem 8.1.3. Let r > 2 be an integer, let G be a connected r-graph and
let X be a non-empty proper subset of V(G). If | X| is even, then G/X can be
transformed into a connected r-graph by applying % |0c(X)| lifting operations
at wyx. If | X| is odd, then G/X can be transformed into a connected r-graph

by applying 3 (|0c(X)| — r) lifting operations at wx.

Proof. Consider any labeling of 9/ x (wx). The statement follows by applying
repeatedly Lemma to G/X at wy. Note that wx is removed in the last

step when | X| is even. O
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Note that the previous lifting operations can be applied such that they

preserve embeddings of graphs in surfaces.

8.1.2 The set H,

Let f be an H-coloring of G. The subgraph of H induced by the edge set
Im(f) is denoted by Hy. Observe that Hy also colors G. Furthermore, if H
has no two vertices uj,us with dg(u1) = 9m(uz2), then f induces a mapping
fv: V(G) — V(H), where every v € V(G) is mapped to the unique vertex
u € V(H) with f(0g(v)) = Ou(u). Note that fy is well defined if H is a
connected graph with |V (H)| > 2. A vertex of V(H)\ Im(fv) is called unused.

Theorem 8.1.4. Let r > 3 and let G be an r-graph of class 2 that cannot be
colored by an r-graph of smaller order. If H is a connected r-graph and f is

an H-coloring of G, then (fv, f) is an isomorphism, i.e. H = G.

Proof. Let f: E(G) — E(H) be an H-coloring of G. Note, that since G is
class 2, H is also class 2 and therefore, fy is well defined. We first prove three
claims.

Claim 1. f is injective.

Proof of Claim[1 Suppose to the contrary that f is not injective, which
implies |E(Hy)| < |E(G)|. If H contains no unused vertices, then |E(H)| =
|E(Hyf)| < |E(G)]|, which contradicts the assumption that G cannot be colored
by an r-graph of smaller order. Thus, H contains unused vertices; let U C
V(H) be the set of them. Transform the graph H/U into a new r-graph H’
as follows. If |U| is even, then apply % |9y (U)| lifting operations at wy (see
Figure . If |U] is odd, then apply 3 (|0g(U)| — r) lifting operations at wy
(see Figure . By Theorem this can be done in such a way that the
resulting graph H’ is indeed an r-graph.

Note that every edge of I'm(f) is incident with at most one vertex of U.
Thus, we can define a function f': E(G) — E(H/U) as follows. For every
e € E(G) let f'(e) be the edge of H/U corresponding to the edge f(e) of H.
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p i

Figure 8.3: An example for the graphs H, H/U and H' when |U| is odd.

Observe that f” is an H/U-coloring of G, where wy is the only unused vertex.
Next, define a new mapping f”: E(G) — E(H') as follows. For every e € E(G)
set

e) 4 if f’(e) is one of the two edges lifted to ¢/,
e) =
f'(e) if f'(e) € E(H').
By construction, f”(0g(v)) = dps(fyv(v)) for every v € V(G). Since G and
H' are r-regular it follows that f” is an H’-coloring. Therefore, H' < G and

hence |V (H')| > |V (G)| by our assumptions. This is a contradiction, since

|E(H')| < |[E(H/U)| = |E(Hy)| < |E(G)].

Claim 2. fy is surjective.
Proof of Claim[9 Suppose that H contains unused vertices. Then, there

are v1,v2 € V(G) and e € Eg(vi,v2) such that f(e) is incident with exactly
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one unused vertex in H, since H is connected. Thus, f(9g(vi)) = f(0c(v2)),

which contradicts Claim [1l [

Claim 3. |V(H)| = |V(G)|.

Proof of Claim[3 Since G cannot be colored by an r-graph of smaller order,
we have |V(H)| > |[V(G)|. On the other hand, |V(H)| < [V(G)] by Claim [2}
|

Claims and [3] imply that f and fy are bijections. Furthermore, we
obtain that e € Eg(v1, v2) if and only if f(e) € En(fy(v1), fv(v2)). Therefore,
(fv, f) is an isomorphism between G and H, i.e. H = G. O

In [70], Mkrtchyan proved that if a connected 3-graph H colors the Petersen
graph P, then H = P. The following result is implied by Theorem
together with Observation (71) and gives a generalization of Mkrtchyan’s
result in the r-regular case. For every r-graph G let 7(G) be the largest integer

t such that G has t pairwise disjoint perfect matchings.

Corollary 8.1.5. Let r > 3 and let G be an r-graph of class 2 such that
m(G") > w(Q) for every r-graph G" with |V(G")| < |V(G)|. If H is a connected
r-graph with H < G, then H = G.

Now we can prove Theorem (8.0.2

Theorem Let r > 3 and let G be a connected r-graph. The following

statements are equivalent.
1) G € H,.
2) The only connected r-graph coloring G is G itself.
3) G cannot be colored by a smaller r-graph.

Proof. 2) = 1) follows trivially.
1) = 3). Assume by contradiction that 3) is not true. Then, let H

be a smallest r-graph smaller than GG such that H < G. Note that H cannot
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be colored by a smaller r-graph because otherwise, since the relation < is
transitive, G would be colored by an r-graph smaller than H. Hence, H € H,.
by Theorem Thus, H, \ {G} is an r-complete set, in contradiction to the

inclusion-wise minimality of H,.

3) = 2) follows by Theorem O

Corollary 8.1.6. For everyr > 3, there exists only one inclusion-wise minimal

r-complete set, i.e. H, is unique.

8.2 Elements of H,

Let r > 3 and k € {1,...,7} be integers. Let G(r, k) = {G: G is an r-graph
with 7(G) = k}. Note that G(r,r — 1) = (), since every r-graph with r — 1
pairwise disjoint perfect matchings is a class 1 graph and thus, it has r pairwise
disjoint perfect matchings. If k& < r — 2, then the elements of G(r, k) are class
2 graphs and G(r,i)NG(r,j) =0, if 1 <14 # j <r—2. We are interested in the
subset of G(r, k) consisting of all such graphs with the smallest order. This set
is denoted by S(r, k). By definition, S, C (J/—7 S(r, ).

By Corollary ‘H, contains the smallest r-graphs of class 2 and the
smallest poorly matchable r-graphs, i.e. S, US(r,1) € H,. Note that for
r = 3, we have S, = §(r,1) = {P}. The Petersen Coloring Conjecture states
that Hz = {P}. This situation is very exclusive as we show in this section.
We first determine the elements of S, and show that H, has more than one
element for » > 4. Then, we show that if H, has more than one element, then
it has infinitely many elements, which proves Theorem [8.0.1

In order to prove the results above, we heavily rely on the properties of
the Petersen graph P and its perfect matchings. We will use the labels and
notations defined in Section for definitions concerning the Petersen graph

that are not given here, the reader is referred to Section
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8.2.1 Smallest r-graphs of class 2

Recall that for every multiset M of perfect matchings of P, the graph PM
is class 2 (Lemma [7.1.3). The following theorem extends Lemma and
characterizes the perfect matchings M on V(P) such that P + M is a class 2

graph.

Theorem 8.2.1. Let P be the Petersen graph and H be a 1-reqular graph on
V(P) with edge-set M. Then P + M is class 2 if and only if M C E(P).

Proof. Lemma has shown that M C E(P) is a sufficient condition for
P + M to be class 2. We establish its necessity by way of contradiction.
Suppose that there exists an edge e € M, that is not parallel to an edge of
E(P). Let Hi = P + M. Since any two vertices of the Petersen graph are in
a b-circuit, the subgraph P of H; can be decomposed into two 5-circuits, C%
and C2, and a 1-factor H' such that both ends of e belongs to V(C3). Without
loss of generality, we assume Cé = ujusuzugusu, with e = usus, as shown in

Figure Let Hy = Hy — E(H') = P+ M — E(H’). Note that Hy is 3-regular

Uy

U2 Us

u3 Uq

Figure 8.4: The 5-circuit Ci with the edge e.

and contains C} and C2. If |0, (V(CL))| # 1, then Hs is 2-edge-connected.
This implies that Hs is class 1 since it is not isomorphic to P, as it contains
a 4-circuit uguguqusug. So, Hy = Hy + E(H') is also class 1, a contradiction.
Therefore, we may assume [0, (V(C2))| = 1 and set 9u,(V(CE)) = {'}.
The remaining proof is split into two cases. First, if ¢ is incident with uq,

then M contains an edge incident with uwg and ws. Thus, H3 = Hi — N,
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contains a 3-circuit ujususuq, a 2-circuit uguqusz and a 5-circuit 052, where
Ny = (M \{ugus, usug })U{ugus, usus}. Moreover, there are five edges between
V(C}) and V(C2) in Hs, which implies that Hj is 2-edge-connected. Thus, Hs
is class 1 and so is Hq, a contradiction. Second, if €’ is incident with ug or uy,
then, without loss of generality, we assume that €’ is incident with ug, and so
M contains the edge ujug. Let No = (M \ {uiuq, ugus}) U{uiug, usus} and let
H, = H; — Ns. There are two adjacent vertices vy and v4 in P such that v; €
Np(u;) \ V(C2) for each i € {1,4}. Then Hy contains a 4-circuit ujuqvqviuy.
Moreover, Hy is 2-edge-connected since there are five edges between V(C3)
and V(C52). This implies that Hy is class 1 and therefore, H; is also class 1, a

contradiction. O

Theorem 8.2.2. For all v >3, S, = S(r,r — 2) = {PM: M is a multiset of

r — 3 perfect matchings of the Petersen graph P}.

Proof. For an r-graph G and an odd set X C V(G), we say the edge-cut dg(X)
is tight if it consists of exactly r edges; and it is trivial if | X| =1 or | X¢| = 1.
We will deduce the statement from the following three claims.

Claim 1. Let r > 3. If G is a smallest r-graph of class 2, then G has no
non-trivial tight edge-cut.

Proof of Claim . Suppose that there is an odd set X C V(G) such that
|0c(X)| = r and neither X nor X ¢ consists of a single vertex. By the minimality
of [V(G)|, the r-graphs G/X and G/X¢ are class 1. As a consequence, G is

also class 1, a contradiction. [ |

Claim 2. Let r > 3. If G is a smallest r-graph of class 2, then |V (G)| = 10
and G has r — 2 pairwise disjoint perfect matchings.

Proof of Claim[3 We prove the claim by induction on r. When r = 3,
the statement follows from the fact that the smallest 3-graph of class 2 is the
Petersen graph. Hence, let r > 4 and assume the statement is true for every

<.
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Let G be a smallest r-graph of class 2. By Lemma V(G)| < 10.
Note that every r-graph has a perfect matching [77]. Thus, let M be a perfect
matching of G.

If H=G— M is an (r — 1)-graph, then H is also class 2, since otherwise
G would be class 1. Furthermore, we have |V (G)| = |V(H)| > 10 in this case,
which implies |V(G)| = |V(H)| = 10. Thus, the statement follows by induction

Therefore, we may assume that H = G — M is not an (r — 1)-graph. By
the definition and Observation there is an odd set X C V(@) such that
|06(X) \ M| < r — 3. Moreover, we have [0c(X)| > r + 2 by Claim[I] Hence,
|0c(X)N M| =10c(X)|—|0c(X)\ M| > 5. Since M is a perfect matching, we
conclude that |V(G)| = 10. As a consequence, M has cardinality 5 and thus,
|0c(X) N M| =5 and [0g(X)| = r + 2. Let z1y1 and zoys be two different
edges of dg(X) N M, where 1,29 € X. The graph G' = G — {z1y1, 222} +
{z129, 1192} is still an r-graph. Indeed, for any odd set Y C V(G’) we have
|0/ (Y)| > 10c(Y)| —2 > r. Moreover, |0g/(X)| = r and hence, G’ is class 1 by
Claim Let NV be a set of r pairwise disjoint perfect matchings of G’ and let N,
and N, be the perfect matchings containing x;x9 and yiy» respectively (note
that N, # N, since otherwise G itself would be class 1). Then N \ {N;, Ny}

is a set of r — 2 pairwise disjoint perfect matchings of G. |

Claim 3. Let » > 3. If G is a smallest r-graph of class 2, then there is a set
M of r — 3 pairwise disjoint perfect matchings of G such that G — ;e M =
P.

Proof of Claim[3 We prove the claim by induction on . When r = 3, the
statement is trivial since the smallest 3-graph of class 2 is the Petersen graph.
Hence, let r > 4 and assume the statement is true for every r’ < r.

Let G be a smallest r-graph of class 2. By Claim [2| G is of order 10 and
has a set N of r — 2 pairwise disjoint perfect matchings. Let M € N. Then
G — M is class 2, since otherwise G would be class 1. If G — M is an (r — 1)-
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graph, then the statement follows by induction. Hence, there exists an odd set
X CV(G—M) with |0g—n(X)| < r—3. Furthermore, V(G — M) = V(G) and
|06(X) \ M| = |0g-m(X)|. By Claim[f] and Claim [ we have [0¢(X)| > r+2
and |M| = 5. As a consequence, we obtain |0g(X)| = r+2 and |0g(X)N M| =
5, which implies | X| = 5. Set H = G — Unen N and note that H is a 2-factor
of G, which contains at least two odd circuits, since otherwise G would be class
1. Every perfect matching of A/ contains at least one edge of d;(X) and hence,
|0 (X)| = 0. Thus, both H[X] and H[X¢] either consists of a 5-circuit or a
3-circuit and a 2-circuit. We consider the following two cases.

Case 1. H + M is a 3-graph.

In this case H + M = P, since otherwise H + M is class 1 which would
imply that G is also class 1.

Case 2. H + M is not a 3-graph.

Thus, H + M has a bridge, which implies that both H[X] and H[X€]
consists of a 3-circuit and a 2-circuit and |Og4p(V(C) U V(C"))| = 1, where
C is the 3-circuit of H[X] and C’ is the 2-circuit of H[X¢|. As a consequence,
there is only one possibility for the structure of G 4+ M, which is depicted
in Figure With respect to the vertex labels in Figure set M' =
(M \ {z124, 2223}) U{z122, 2324} and N' = (M \ {M}) U {M'}. Then, N’ is
a set of r — 2 pairwise disjoint perfect matchings of G. Now, consider N’
and M’ instead of NV and M, respectively, and repeat the same arguments as
above. We deduce that G — M’ is an (r — 1)-graph and the statement follows

by induction. |

-----------------------------------------

Figure 8.5: The graph H + M in Case 2 of the proof of Claim (Theorem [8.2.2)).
The dashed edges belong to M.
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By Claim [2| we have S, = S(r,7 — 2). Moreover, by Theorem and
Claim [2| for any multiset M of r — 3 perfect matchings of P, the graph PM is
in S,. It remains to show that, if G € S,., then G = PM for a suitable multiset
M. By Claim [3] there is a set A of r — 3 pairwise disjoint perfect matchings of
G such that the graph H = G —Jycar IV is isomorphic to the Petersen graph.
For every N € N, the graph H + N is class 2, since otherwise G is class 1.
Therefore, G = PV by Theorem O

8.2.2 Lower bounds for |S,|

The following lemma is a direct consequence of the fact that the Petersen graph
is 3-arc-transitive, see e.g. Corollary 1.8 in [8]. That is, for any two paths of
order 4 of P there is an automorphism of P which maps one to the other.

Recall that the six perfect matchings of the Petersen graph are denoted by
My, ..., Mg (see Section .

Lemma 8.2.3. Let Ni,No,N3s € {M,...,Ms} and g: {N1,No, N3} —
{My, ..., Mg} be an injective function. There is an automorphism (0, ) of P
such that, for alli € {1,2,3}, ¢(N;) = g(IVi).

Proof. Let N1, Ny and N3 be pairwise different perfect matchings of P. If we
prove the statement in this case then the proof is complete.

Note that the unique edge z1x2 in N1 N Ny and the unique edge z3x4 in
Nj N N3 are at distance one, i.e. the subgraph P[{x1, zo,x3,24}] is a path T
on four vertices. Up to changing names to such vertices, we may assume that
T = x1z9w374. The same holds for the unique edge y1y2 in g(N1) N g(N2)
and the unique edge y3y4 in g(N1) N g(N3). Without loss of generality, we can
assume again that y1yoysys is a path on four vertices.

Since P is 3-arc-transitive there is an automorphism (6, ¢) of P such that,
for all © € {1,...,4}, 6(z;) = y;. Since (0,¢) is an automorphism, ¢(N7)
must be a perfect matching. Moreover, since the only perfect matching of P

containing both y1y2 and ysy4 is g(N1) we get ¢(N1) = g(Ny).
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Similarly, ¢(N2) and ¢(N3) are perfect matchings of P different from ¢(Ny),
such that y1y2 € ¢(N2) and ysys € ¢(N3). Then, the only possibility is that
¢(N2) = g(N2) and ¢(N3) = g(N3). 0

We now consider partitions of integers, which are ways of writing an integer
as a sum of positive integers, see e.g. [62]. We are interested in partitions of
an integer into a fixed number of parts. We allow 0 to be a part of a partition.
A partition of an integer n into k parts is a multiset of k integers ni,...,ng
with n; > 0 for ¢ € {1,...,k} such that n = Zle n;. Two partitions of n
are equal if they yield the same multiset, i.e. if they differ only in the order of
their elements. For two positive integers k < n, let p'(n, k) be the number of

partitions of n into k parts. Set p'(0,k) = 1.

Theorem 8.2.4. If 3 < r < 8, then |S,| = p/(r — 3,6), and if r > 9, then
|Sr| > p'(r —3,6).

Proof. By Theorem [B:2.2] any graph G € S, can be expressed as G = P +
E?:l n;M;. In this case, ni,...,ng is a partition of » — 3 into six parts. We
say that G induces this partition of r — 3.

Claim 1. Let r > 3 be an integer and G,G’ € S,.. If G = G’, then G and
G’ induce the same partition of r — 3.

Proof of Claim . We can assume that G = P + 2?21 njM; and G' =
P+ Z?:1 n’:M;. For the subgraph P of G and G’, we label an edge e of P by
the set {p, ¢} if M, " M, = {e}, p # q. Then all possible labels are used and
no two edges receive the same label in P.

Since G = @', there is an isomorphism between G and G’ which maps

the labeled edge {p, ¢} of G to a labeled edge {ip,iq} of G’ for each {p,q} C

{1,...,6}. Furthermore, n, +nq = n; +mn; . Thus, Z?:Z (n1+n;) = 4ng +
Z?:1 nj = 4n; + Z?Zl ngj Since Z?Zl nj = 2]6-:1 n;-j = r — 3, it follows that
ny = n;, . With similar arguments, we further obtain that n; = n;j for each

jed{l,...,6}. |
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Claim 2. If » > 9, then there are non-isomorphic graphs in &, which
induce the same partition.

Proof of Claim[3. Let Ni,..., Ny be four pairwise different perfect match-
ings of P such that the edge in Ny N Ny = {uv} is adjacent to the edge in
N3 N Ny = {uz}. There is a fifth perfect matching N5 of P such that the
unique edge in N3 N N5 is not adjacent to uv.

Let t > 2 be an integer and consider the (¢ + 7)-graphs G} = P + tN; +
2Ny + N3 + Ny and G? = P + tNy + 2N + N3 + N5. Note that both G} and
G? have exactly one pair of vertices connected by t + 3 edges, i.e. e (u,v) =
pigz(u,v) = ¢+ 3. On one hand, uv is adjacent to uz and pgi(u,z) = 3. On
the other hand, by the choice of N5, uv is adjacent only to edges zy such that
ez (w,y) < 2. We deduce that G} # G2 [

Claim 3. Let r < 8 and G,G’ € S,.. If G and G’ induce the same partition
of r — 3, then G = G'.

Proof of Claim @ Assume that G = PM = P + Z?Zl njM; and G' =
PM = 77—1—2?:1 n’; M; induce the same partition of r—3. Let Mo = {M;: n; #
0} and Mg = {M;: n} # 0}. Then [Mo| = [Mg|.

If |[Mp| < 3, choose a bijection g: My — Mg such that if g(M,) = Ma,
then no = nj. By Lemma there is an automorphism (6, ¢) of P such
that, for each perfect matching N € Mg, ¢(N) = g(N). It follows that (0, ¢') is
an isomorphism of PM to PM' | where ¢'(M;) = ¢(M;) for each i € {1,...,6}.

The only other cases are the following.
e r — 3 =4 with partition 1,1,1,1,0,0;
e r — 3 =5 with partitions 2,1,1,1,0,0 or 1,1,1,1,1,0.

In such cases, we let My = {M;: n; = 1} and Mj = {M;: nj = 1}. Let
N1 be the set of perfect matchings of P different from those of M; and N
be the set of perfect matchings of P different from those of M). Then, there
is a bijection g: N1 — Nj such that if g(Ma) = Mp, then n, = nj. The



8.2. Elements of H.. 133

proof now, follows as above. Namely, since |N7| = |N/| < 3, by Lemma
there is an automorphism (6, ¢) of P such that, for all N € Ny, ¢(N) = g(N).
Then, (6, ¢) is an isomorphism of PM to PM', where ¢/ (M;) = ¢(M;) for each
ie{l,...,6}. [ |

By Claims and [3] the theorem is proved. O

By Theorem and Corollary we obtain the following theorem,
which implies that |#H,| > 2 when r > 4.

Theorem 8.2.5. For everyr >3, S(r,r —2)US(r,1) C H,.

8.2.3 Infinite subsets of H,

Lemma 8.2.6. Let r > 3, let G and H be two connected r-graphs and let
f be an H-coloring of G. For any 2-edge-cut F' = {e1,es} C E(G), either
|f(E)| =1 or f(F) is a 2-edge-cut of H.

Proof. Let u and v be the endvertices of f(e1). Suppose by contradiction that
|f(F)| = 2 but f(F) is not a 2-edge-cut of H. Then, there is a wu,v-path
T in H avoiding the edges of f(F). Consider the circuit C = T + f(ey1).
By Observation (iii), f~Y(E(C)) is a union of circuits of G. This is a

contradiction, since f~1(FE(C)) contains e; but not es. O

Let G, H be two graphs, let f: E(G) - E(H), g: V(G) — V(H) and let
G’ be a subgraph of G. The restriction of f to E(G’) is denoted by f|gs; the

restriction of g to V(G’) is denoted by g|¢r.

Lemma 8.2.7. Let G and H be two r-graphs, where r > 3, and let f be an
H-coloring of G. Let M be a multiset of r — 3 perfect matchings of P and
let eg € E(PM). Let G' be an induced subgraph of G isomorphic to PM — ¢
and H' be the subgraph of H induced by f(E(G')). Then, (fv|a, fla’) is an

isomorphism between G' and H', i.e. H = G'.



134 Chapter 8: Complete sets

Proof. By the definition of G’, we have |0g(V(G'))| = 2. Assume that
Ia(V(G")) ={e1,ea} and e; = w;z; with w; € V(G’) for each i € {1,2}.

We first consider the case f(e1) = f(e2). Let G* be the r-graph obtained
from G’ by adding a new edge e3 connecting w; and wy. Set f*(e) = f(e) =
flar(e) for each e € E(G*) \ {es} and f*(e3) = f(e1) = f(e2). Then f* is an
H-coloring of G*. Since G* = PM we have that ( fi, f*) is an isomorphism
between G* and H by Theorem [8.1.4 Thus (fv|cs, f|cr) is an isomorphism of
G’ to H' by the definition of f*.

Now we assume that f(e;) # f(e2). By Lemma {f(e1), f(e2)} is a
2-edge-cut of H. Let X be a subset of V/(H) such that 0y (X) = {f(e1), f(e2)}-

Denote f(e;) = x;y; with z; € X for each ¢ € {1,2}. We consider the following
two cases.

Case 1. fy(V(G")) C X or fy(V(G") CV(H)\ X.

Without loss of generality, assume that fy (V(G')) € X. Let G* be the
r-graph obtained from G’ by adding a new edge ez connecting w; and ws, and
H* be the r-graph obtained from H[X]| by adding a new edge e4 connecting 1
and z2. Set f*(e) = f(e) = f|g(e) for each e € E(G*) \ {e3} and f*(e3) = e4.
Then f* is an H*-coloring of G*. Since G* = PM, we have that (fy, f*) is an
isomorphism between G* and H* by Theorem Thus (fv|ar, flgr) is an
isomorphism of G’ to H' by the definition of f* and the statement follows.

Case 2. fy(V(G))NX #£0 and fiy (V(G))N(V(H)\ X) #0.

We show that this case does not apply. Let Z; = fi(V(G')) N X and
Zy = fy(V(G))N(V(H)\X). Observe that {f(e1), f(e2)} C Iy (Z1)U0u(Z2).
Set Uy = X \ Z; and Uy = (V(H) \ X) \ Z2. Note that U; and Uz might be
empty. We construct a new r-graph Hs from H in two steps. First, if U; = 0,
set Hy = H. Otherwise we can construct an r-graph H; starting from H/U;
by taking suitable lifting operations at w;, as described in Theorem
namely: if |Uy] is even, then apply 5 |0 (Uy)] lifting operations at wyy ; if |U7 ]

is odd, then apply % (|0n(U1)| — r) lifting operations at wy,. Observe that
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Uy C V(Hy). Next, if Uy = 0, set Hy = Hy. Otherwise let Hy be a graph
obtained from H;/U; by taking similar lifting operations as described above at

the vertex wy,. An example for the construction of Hy is given in Figure [8.6]

Figure 8.6: An example for the graphs H, Hy and Hs, when Uy, Us are

non-empty, Uy is of even cardinality and Us is of odd cardinality.

By Theorem this can be done such that H» is an r-graph. Further-

more, we have
|E(Hs)| < [E(H") U{f(e1), f(e2)}| < |E(G')] +2.

As a consequence, |V(Hz)| < 10. Thus, Hj is class 1 since it has a 2-edge-cut
and hence, Ho has r pairwise disjoint perfect matchings. By the construction
of Hs, we deduce that H contains r pairwise disjoint sets of edges, denoted
by Si,...,Sr, such that [0n(y) NSj| = 1 for each y € fy(V(G')) and each
je{l,...,r}. Then f~1(S1),..., f~1(S,) are r pairwise disjoint sets of edges
of G such that [0g(u)Nf~1(S;)] = 1 for each u € V(G') and each j € {1,...,7}.

This is a contradiction since G’ is class 2. O

Let G and G’ be two disjoint r-graphs of class 2 with e € F(G) and €’ €
E(G"). Denote by (G,e)|(G',¢’) the set of all graphs obtained from G by
replacing the edge e of G by (G',¢€’), that is, deleting e from G and ¢’ from G’,
and then adding two edges between V(G) and V(G’) such that the resulting
graph is regular (see Figure [8.7).

In fact, any graph in (G,e)|(G’,€’) is an r-graph of class 2. Furthermore,
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TIZ1>

Figure 8.7: A replacement of the edge e by (G',¢’).

we use G|(G',€’) to denote the set of all graphs obtained from G by replacing
each edge of G by (G',¢).

Theorem 8.2.8. Let M be a multiset of r — 3 perfect matchings of P, where
r >3, and let eg € E(PM). Let G be an r-graph such that G 2 PM. If
G € H,, then G|(PM, ey) C H,.

Proof. By Theorem it suffices to prove that any G* € G|(PM, ey) cannot
be colored by a connected r-graph of smaller order. Let H be a connected
r-graph such that G* has an H-coloring, denoted by f. Label all subgraphs
of G* isomorphic to PM — eq as Gy, ..., Gy, where £ = |E(G)|, and denote by
H; the subgraph of H induced by fi/(V(G;)). Note that H; = PM — ¢y by
Lemma [8.2.7 For each i € {1,...,¢}, we label the two edges of dg-(V(G;)) as
e} and e?, and let e! = ulv! with v! ¢ V(G;) for each t € {1,2}.

Claim 1. f(0g+(V(G;))) is a 2-edge-cut in H, for every i € {1,...,¢}.

Proof of Claim[]l By Lemmal[8.2.6] we suppose to the contrary that there is
i €{1,...,0} such that f(e}) = f(e?). With G; = PM — ¢g, we have H < PM
by Lemma and so H = PM by Theorem Then, |f(F)| =1 for any
2-edge-cut F' C E(G*) by Lemma since PM is 3-edge-connected. Thus,
by the construction of G*, we have H < GG, which implies H = G by Theorem
This is a contradiction to the fact that G 2 PM. [ |

Claim 2. V(H;) = V(H;) or V(H;) N V(H;) = 0, for every i,j €
{1,...,¢}.

Proof of Claim [4 Assume V(H;) NV (H;) # 0. To complete the proof,
we shall show V(H;) \ V(H;) = 0 and V(H;) \ V(H;) = 0. Without loss
of generality, suppose to the contrary that V(H;) \ V(H;) # 0. Note that
f(0e+(V(Gy))) is a 2-edge-cut in H by Claim [I} Observe that both H; and
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Hj are isomorphic to PM _ ¢y by Lemma Thus, at least one edge of
f(0c+(V(Gy))) is contained in E(Hj), since H; is connected. As a consequence,
Hj either has a bridge or a 2-edge-cut consisting of two non-adjacent edges,

since an r-graph has no cut-vertex. This is not possible. |

Claim 3. fy(2) ¢ UL, V(H,), for every = € V(G)\ (UL, V().
Proof of Claim [ Suppose to the contrary that there is a vertex z €
V(G*)\ (Uf:1 V(G;)) such that fy(z) € V(H;) for some j € {1,...,¢}. Let e
be an edge incident with fy/(2) in H;. By the construction of G*, the only edge
of f~1(e) N dg+(z) is an element of dg+(V (G},)) for some k € {1,...,¢}. Thus,
e is in a 2-edge-cut of H by Claim contradicting the fact that H; = PpM
by Lemma |

By Claim [, 9 (V(Hy) = (0 (V(Ge))) = {F(eD), F(e)}. Let f(el) =
zly! with yf ¢ V(H ) for each t € {1,2}.

Claim 4. {y},y?} NV (H;) =0, for every i,j € {1,...,¢}.

Proof of C’lazml /. By contradiction, suppose y! € V(H,) for some t € {1,2}.
Note that fy (v)) € {y!, 2!} and 2t € V(H;). Thus, fy(v}) € V(H;) UV (H;).
This is a contradiction to Claim E since v} € V(G*)\ (Uf:1 V(G;)) by the

construction of G*. |

Note that G' can be obtained from G* by deleting all vertices of G; and
adding a new edge edge e; connecting v} and v? for each i € {1,...,¢}. By
Clalmslandl, H)U{yt, y2})NV (H;) = 0if V(H;) # V(H;) for each i, j €
{1,...,£}. Thus, we can construct an r-graph H’' from H by deleting all vertices
of H; and adding a new edge g; connecting y} and y? for each i € {1,...,(}.
Note that, for some i # j € {1,...,¢}, it might happen that V(H;) = V(Hj;).
In such a case, g; = gj. Define a mapping f': E(G) — E(H') by letting
f'(e;) = gi, for each i € {1,...,¢}. By Clann' fi/(z) € V(H') for every vertex
z € V(G) C V(G*). Furthermore, we have f'(0g(z)) = Om(fi,(2)). Since both
G and H' are r-graphs, f’ is proper. Thus, f’ is an H'-coloring of G. Then,
(fi/, f') is an isomorphism between G and H' by Theorem This implies
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that |V (G*)\ Uizt V(G))| = [VHE)\ (Uizy V (H))|, and V (H;) # V (H;) for
any distinct 7,7 € {1,...,¢} since f'(e;) # f'(e;). Therefore, |[V(G*)| = |V (H)|
by Claims [2 and [, which completes the proof. O

Thus we now can prove Theorem [8.0.1

Theorem FEither Hs = {P} or Hs is an infinite set. Moreover, if r > 4,

then H, is an infinite set.

Proof. If Hs # {P}, then H3 contains a graph not isomorphic to P. Thus, we
can use Theorem to inductively construct infinitely many graphs belong-
ing to Hs.

By Theorem S(r,1) C H,. Note that the set S(r,1) is non-empty
(see [75]), and for r > 4, it does not contain any graph isomorphic to PM,
where M is any multiset of r — 3 perfect matchings of P. Hence, we can use
Theorem to inductively construct infinitely many graphs belonging to
H. O

8.3 Simple r-graphs

In [68] the authors also asked whether for every r > 4, there is a connected
r-graph coloring all simple r-graph. In this section we answer this question by
showing that there is no finite set of connected r-graphs H! such that every

connected simple r-graph can be colored by an element of H...
Lemma 8.3.1 ( [40]). Let r be a positive integer, G be an r-graph and F C
E(G). If |[F| <r—1, then G — F has a 1-factor.

Recall that, for an r-graph G and an odd set X C V(G), the edge-cut
O0c(X) is tight if it consists of exactly r edges; and it is trivial if | X| =1 or
| X = 1.

Lemma 8.3.2. Let r > 3, let G, H be connected r-graphs and let f be an
H-coloring of G. If F C E(QG) is a tight edge-cut in G, then f(F) is a tight

edge-cut in H.
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Proof. Since F is a tight edge-cut, we have |f(F')| < r. Suppose that |f(F)| < r.
By Lemma H — f(F) has a perfect matching M. Thus, f~1(M) is a
perfect matching of G such that f~'(M)N F = (), a contradiction. Therefore,
|f(F)| =, and let Hy,..., H,, be the components of H — f(F).

We first claim that the two endvertices of each edge in f(F) are in different
components of H — f(F'). By contradiction, suppose that there is an edge
xy € f(F) such that x and y are on the same component H' of H — f(F'). Let
T be an z, y-path contained in H’. Then, f~}(E(T)U{ry}) induces a 2-regular
subgraph in G (see Observation (7i7)) and intersects F' exactly once, a

contradiction.
The remaining proof is split into two cases as follows.
Case 1. H — f(F) has a component of odd order.

If m > 2, then there is an odd component H' with |0g(V (H'))| < r, since
H — f(F) has at least two components of odd order, a contradiction. Hence,
H — f(F) has exactly two components, which are of odd order and therefore,
f(F) is a tight edge-cut in H.

Case 2. Every component of H — f(F') is of even order.

Let H be the graph obtained from H by identifying all vertices in V(H;) to
a new vertex for each ¢ € {1,...,m}. Since every component is of even order,
H is a connected graph on |f(F)| = r edges in which every vertex is of even

degree.

Now, we shall prove that H is bipartite. Suppose by contradiction that H
has an odd circuit of order 2¢ + 1. This means that there is an odd number of

H

192¢4+1

components H; in H — f(F) such that, for all j € Zg;1 there is an

199

edge z;yj+1 € f(F) such that z; € V(H;,) and yj41 € V(H;

; +1)- Moreover, for
all j € Zo¢11 there is an x;, y;-path T; contained in the component H;_, i.e. such
that E(T;) N f(F) = (0. Consider the circuit C' induced by x;y; 1 and all edges
of T for all j € Zgsy1. Then |E(C) N f(F)| =2t+1 and f~}(E(C)) induces a

2-regular subgraph in G such that |F N f~1(E(C))| = 2t + 1, a contradiction.
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Since H is a bipartite graph, we can assume without loss of generality that
there is an s € {1,...,m — 1} such that f(F) = 0g(W), where W = V(H;) U
---UV/(Hs). Note that |W| is even since every component of H — f(F) has even
order. Thus, a perfect matching M of H is such that |[MNIg(W)| = | MNf(F)]

is even. But then |f~1(M) N F| is even as well, a contradiction. O

Lemma 8.3.3. Let r > 3, let G and H be two r-graphs, and let X be a subset
of V(H) such that 0y (X) is a tight cut and X' (H/X®) =r. If H < G, then
H/X <G.

Proof. Assume that f is an H-coloring of G. Label the edges of 0y (X) as
el,...,er. Since x'(H/X¢) = r, the subset E(H[X]) U 0 (X) of E(H) can
be partitioned into r pairwise disjoint matchings, denoted by Ny, ..., N,, such
that each edge of Jy(X) is contained in exactly one of them. Without loss
of generality, we may assume e; € N; for each ¢ € {1,...,r}. Note that
E(G) = f7H(E(H)) = f (B(HX) U f~ (M) U...U £~/ (N,). Moreover,
for convenience, every edge and every vertex of H/X is labeled as in H. We
define a mapping f': E(G) — E(H/X) as follows. For every e € E(G), set
: ~1 -
P LI T e
ei ife e f7HV;), forie {1,...,r}.
To conclude the proof, we shall show that f’ is an H/X-coloring of G. Let v
be a vertex of V(G). If f(0g(v)) = Om(u) for some vertex u € X°¢ C V(H),
then f'(0g(v)) = f(0a(v)) = On(u) = Ou/x(u) by the definition of f’. If
f(0a(v)) = O (u) for some vertex u € X, then the image under f of each edge
of dg(v) is contained in one of Ny,..., N,. Hence, the image under f’ of each
edge of dg (v) appears once in dy/x (wx ). This implies f'(0g(v)) = O/ x (wx).
Thus, f’ is an H/X-coloring of G. O

A simple graph H is regularizable if we can obtain a regular graph from
H by replacing each edge of H by a nonempty set of parallel edges. We need

the following lemma, which follows from two results of [10] and [74]. The
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equivalence of the first two statements is shown in [10]; the equivalence of the

first and the third statement is shown in [74].

Lemma 8.3.4. Let G be a simple connected graph which is not bipartite with
two partition sets of the same cardinality. The following statements are equiv-

alent:
e iso(G—S) < |S|, for all S CV(QG).
e G is reqularizable [10].

e for every v € V(G), both G —v and G have a {K;11,Cp: m > 3}-
factor [7]).

Lemma 8.3.5. Let r > 3, let G and H be r-graphs, where H is connected, and
let S C V(Q) such that 0g(S) is a tight cut and G[S] has no {K1,1,Cyp, : m >
3}-factor. If G has an H-coloring f: E(G) — E(H) and 0g(X) = f(0a(S))
for an X CV(H), then H/X or H/X€ is a bipartite graph with two partition

sets of the same cardinality.

Proof. Suppose to the contrary that both H/X and H/X¢ are not bipartite
graphs with two partition sets of the same cardinality. By Lemma the
edge-cut Oy (X) is tight and so both H/X and H/X¢ are r-regular. Thus, the
underling graphs of H/X and H/X¢ are both regularizable and hence, both
H/X —wx and H/X®—wxe have a {K11,Cy, : m > 3}-factor, by Lemmal8.3.4]
Let H' be the union of these two factors. Note that H is a {Kj 1,Cy, : m > 3}-
factor of H, which contains no edge of 9y (X). Since 0y (X) = f(9c(95)) and
by Observation (iv), G has a {K1,Cp, : m > 2}-factor F', which contains
no edge of dg(5). By deleting one edge of every component of F' isomorphic
to Cq, we obtain a {K;1,Cp, : m > 3}-factor of G, which contradicts the

assumption that G[S] has no {K 1,C,, : m > 3}-factor. O

For an r-regular graph G and a vertex v € V(G), a Meredith extension of
G at v is the operation that replaces v by K, _1, such that the resulting graph

is r-regular.
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Theorem 8.3.6. Let r > 3 and let H be a set of connected r-graphs such that
every H € H does not contain a non-trivial tight edge-cut Oy (X) such that
H/X or H/X€ is class 1. If every connected simple r-graph can be colored by

an element of H, then every connected r-graph can be colored by an element of

H.

Proof. Let G be an arbitrary r-graph. By applying a Meredith extension on
every vertex of G, we obtain a simple r-regular graph G¢. From the fact
that both G and K, , are r-graphs, we know that G° is also an r-graph by
Lemma [6.3.1] Hence, there is H € H such that H < G°. Let f be an H-
coloring of G°. Note that for any induced subgraph G’ of G¢ isomorphic to
K, ,_1, the edge-cut dge (V(G")) is tight, and so f(9ge(V(G’))) is also tight in
H by Lemma[8.3.2] Let X C V(H) such that 9y (X) = f(0ge(V(G"))). Since
K, 1 contains no {Kj 1,Cp,: m > 3}-factor, Lemma implies that H/X
or H/X¢ is a bipartite graph with two partition sets of the same cardinality.
In particular, H/X or H/X¢ is class 1, which implies that X or X¢ is a single
vertex by the choice of H. Therefore, the edge-cut dge (V(G')) is mapped to
a trivial edge-cut of H under f. Since G’ was chosen arbitrarily, we conclude

that G also has an H-coloring, which completes the proof. O

Thus, we can deduce our main result for simple graphs as well.

Theorem 8.3.7. Let r > 3 and let H.. be a set of connected r-graphs such that

every connected simple r-graph can be colored by an element of H,.
i) If the Petersen Coloring Conjecture is false, then MY is an infinite set.
it) If r > 4, then H. is an infinite set.

Proof. By Lemma we can identify suitable subsets of vertices of graphs

in ). to obtain a set H.' of connected r-graphs with the following properties.

e Every connected simple r-graph can be colored by an element of H/ .
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e For every H € H!, there is no non-trivial tight edge-cut dg(X) such that
H/X or H/X¢ is class 1.

Hence, by Theorem|8.3.6| every connected r-graph can be colored by an element
of H!. Thus, H, C H/ and hence, H! is an infinite set by Theorem By
the construction of H! we have |H]| > |H/|, and hence, H,. is also an infinite

set. O

8.4 Open Problems

Recall that the edge connectivity of an r-graph is equal to r or it is an even
number. We have shown that for every » > 3 and every multiset M of r — 3
perfect matchings of the Petersen graph, the graph P belongs to H,.. Thus,
for r # 5, for each possible edge-connectivity ¢ there is a t-edge-connected r-
graph in ‘H,. For r = 5, we do not know any 5-edge-connected 5-graph in H,.
However, we know only a finite number of t-edge-connected r-graphs of H, if

t>3.

Problem 8.4.1. Forr,t > 3, does H, contain infinitely many t-edge-connected

r-graphs?

It is also not clear whether #H, contains elements of S(r, k) for k € {2,...,r—
3}. So far, these sets are not determined for k € {1,...,r — 3}. Indeed, we
even do not know the order of their elements. Let o(r, k) be the order of the

graphs of S(r, k).
Problem 8.4.2. For allT >3 and k € {1,...,7 —2}: Determine o(r, k).

By our results, o(r,r — 2) = 10. By results of Rizzi [75], o(r,1) < 2 x 572,

We conjecture the following to be true.
Conjecture 8.4.3. Forallr >3 and k € {2,...,7 —2}: o(r,k — 1) > o(r, k).

If Conjecture would be true, then it would follow with Corollary
that S(r, k) C H, for each k € {1,...,r —2}.
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Similar problems arise for simple r-graphs. Let os(r, k) be the smallest
order of a simple r-graph G with 7(G) = k. Small simple r-graphs of class
2 can be obtained as follows. Consider a perfect matching M of P and the
graph G = P + (r — 3)M. Let H be a simple r-graph of smallest order and
v e V(H). Then, H isclass 1 and |V(H)|=r+1ifrisodd and |V (H)| = r+2
if r is even. Now, replace appropriately five vertices of G by H — v (such that
the resulting graph is r-regular) to obtain a simple r-graph G’. Since H is
class 1 and 7(G) = r — 2, we have 7(G’) = r — 2. Therefore, if 7 is odd, then
os(r,r—2) < 5(r+1) and if r is even, then os(r,r —2) < 5(r+2). Furthermore,
bounds for os(r, k) can be obtained by using Meredith extensions, since if G’

is a Meredith extension of an r-graph G, then 7(G’) = 7(Q).
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A.1: A sketch of the proof of Theorem (7.3.17

In order to prove Theorem [7.3.17| we adjust Theorem [7.3.10] as follows.

Theorem A.1. The following statements are equivalent.

(i) Every 5-edge-connected 5-graph with an underlying cubic graph has a 2-
PDPM.

(ii) For every 5-edge-connected 5-graph G with an underlying cubic graph and
every simple e € E(G), there is a 2-PDPM containing e.

(iii) For every 5-edge-connected 5-graph G with an underlying cubic graph and
every simple e € E(G), there is a 2-PDPM avoiding e.

(iv) For every 5-edge-connected 5-graph G with an underlying cubic graph and
every simple e € E(G) and every two parallel edges ey, es adjacent with e, there

18 a 2-PDPM containing e and avoiding e1, es.

Proof. Clearly, each of (ii), (ii7) and (iv) implies (). Thus, it suffices to prove
that (7) implies (i7); (¢) implies (i47); and (i) implies (iv).

(1) = (it), (i7i). Let G be a 5-edge-connected 5-graph whose underlying
graph is cubic and let e = vv; be a simple edge of G. Let H and H' be
the graphs constructed in the part ”(i) = (i), (¢97)” of the proof of Theorem
by using Co, and r copies of G in the case r = 5 (see Figures (a)
and (a)). Clearly, the graph H' can be constructed from H such that every
vertex of V(H') \ {u,u'} has degree 3 in the underlying graph of H'. Let
W = Ws + E(Cs). Now, according to Definition replace u by (W', w')

145
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and replace v’ by (W2, w?), where W' is a copy of W and w' is the vertex of
W' corresponding to w, for I € {1,2}. The resulting graph, denoted by H”,
is a 5-edge-connected 5-graph by Lemma [7.3.9] Since its underlying graph is
cubic, H” has two disjoint perfect matchings Ni, Ny by statement (i). Let
N = N; U Ny and recall that I = {1,3,5,7,9}. For every ¢ € I and j € {1, 2},
Observation implies m;; € {1, 3}, where m;; = |0 (V(G*) \ {v'}) N Nj|.
Furthermore, we have |9y (V/(W') \ {w!}) N N;| € {1,3} for every [,j € {1,2}
also by Observation Thus, [0« (V(WH\ {w'}) N N| € {2,4} for every
[ € {1,2}. As a consequence, there is an integer ¢ € I such that N does not
contain the unique edge in Egr (v, V(W) \ {w'}). We have m;; = mz = 1.
Therefore, G* has two disjoint perfect matchings such that vv¢ is in none
of them, which proves statement (i7i). For statement (i7), we consider the

following cases.

Case 1. |[N N O (V(WH\ {w'})| = |N N dgn (V(W?2) \ {w?})] = 2.

In this case, H' has a 2-PDPM, and hence, statement (ii) follows by the
same argumentation as in the proof of Theorem part 7 (i) = (1), (¢4i)”.

Case 2. Without loss of generality [Ny N O (V (W) \ {w'})| = 3.

In this case, there is an integer ¢ € I, say ¢ = 1, such that N; con-
tains the unique edge in Egr(vi, V(W) \ {w'}) and the unique edge in
Epn(0iT2 V(W) \ {w'}). The set N7 contains exactly one edge incident with
ug and thus, my; = 1 or m3; = 1 by the construction of H”. Therefore, G!
has two disjoint perfect matchings such that vlv} is in one of them or G® has

3

two disjoint perfect matchings such that 1231)1 is in one of them, which proves

statement (7).
Case 3. Without loss of generality | Ny N Oy (V(W?) \ {w?})| = 3.

In this case, there is an integer ¢+ € I, say ¢ = 3, such that N; con-
tains the unique edge in Egn(u;—1, V(W?) \ {w?}) and the unique edge in
Egr(uiv1, VIW?)\ {w?}). As a consequence, N; contains the unique edge in

Egn(v, V(W) \ {w'}) and mg; = 1. Therefore, G® has two disjoint perfect
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matchings such that v3v? is in one of them, which proves statement (47).

(ii) = (iv). Let G be a 5-edge-connected 5-graph whose underlying graph is
cubic, let v € V(G) and let Ng(v) = {v1,v2,v3}. Furthermore, let pg(v,v1) =
1, pa(v,v2) = pg(v,v3) = 2, let e be the edge connecting v and v and let
e1, ez be the two parallel edges connecting v and ve. We show that there are
two disjoint perfect matchings such that their union contains e but neither e;
nor es.

Let G' and G? be two copies of G in which the vertices and edges are labeled
accordingly by using an upper index. Let H be the graph constructed in the
part 7 (ii) = (iv)” of the proof of Theorem [7.3.10] by using Ky in the case r = 5,
see Figure (a). According to Definition construct a new graph H’
from H by replacing u; with (G, v!) and replacing uz with (G2,v?) such that
par(vi,vf) = 1 and ppgr(vg,u2) = pgr (05, u2) = pgr(vg,us) = pgr(v3,us) =
2. The graph H’ is 5-edge-connected and 5-regular by Lemma and its
underlying graph is cubic. Therefore, by statement (ii) there are two disjoint
perfect matchings Ny, No of H' such that usuy € N;. By Observation
we have viv? € Ny and [0y (V(G) \ {v'}) N N;| = 1 for every i € {1,3} and
every j € {1,2}. Furthermore, N; U Ny either does not contain the two edges
connecting va and uz or does not contain the two edges connecting v3 and us.
In the first case, G' has two disjoint perfect matchings such that their union
contains el but neither ef nor el; in the second case G® has two disjoint perfect
matchings such that their union contains e® but neither e} nor 3. This proves

statement (iv). O

Theorem [7.3.17] can be proved like Theorem [7.3.16] by using Theorem [A]]
instead of Theorem [7.3.101
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