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Abstract

Factors in graphs form a classical area of graph theory. In particular, per-

fect matchings in cubic graphs and regular factors of regular graphs are well-

studied. One major conjecture that is still open was formulated by Fulkerson

in 1971 and states that every bridgeless cubic graph has six perfect match-

ings such that each edge is in exactly two of them. An r-graph, which can

be seen as a generalization of a bridgeless cubic graph, is an r-regular graph

in which every odd set of vertices is connected to its complement by at least

r edges. Similar to the cubic case, Seymour conjectured that every r-graph

has 2r perfect matchings such that each edge is in exactly two of them. Both

conjectures are trivially true for graphs with chromatic index ∆, but widely

open in general.

In this thesis we present various new results in the broad area of graph

factors; most of them are well-related to the two aforementioned conjectures.

In particular we study perfect matchings in r-graphs. The main motivation is

to get a better understanding of the structure of graphs that are not ∆-edge-

colorable.
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Zusammenfassung

Faktoren in Graphen bilden ein klassisches Gebiet der Graphentheorie. Ins-

besondere perfekte Matchings in kubischen Graphen und reguläre Faktoren

von regulären Graphen sind gut erforscht. Eine bedeutende Vermutung, die

immer noch offen ist, wurde 1971 von Fulkerson formuliert und besagt, dass

jeder brückenlose kubische Graph sechs perfekte Matchings hat, so dass jede

Kante in genau zwei von ihnen vorkommt. Ein r-Graph, der als Verallge-

meinerung eines brückenlosen kubischen Graphen angesehen werden kann, ist

ein r-regulärer Graph, in dem jede ungerade Menge von Knoten mit seinem

Komplement durch mindestens r Kanten verbunden ist. Ähnlich wie im kubis-

chen Fall vermutete Seymour, dass jeder r-Graph 2r perfekte Matchings hat,

so dass jede Kante in genau zwei von ihnen vorkommt. Beide Vermutungen

sind trivialerweise wahr für Graphen mit chromatischem Index ∆, aber im

Allgemeinen noch weitgehend offen.

In dieser Arbeit stellen wir verschiedene neue Ergebnisse auf dem Gebiet

der Graphenfaktoren vor; die meisten stehen in engem Zusammenhang mit den

beiden oben genannten Vermutungen. Insbesondere untersuchen wir perfekte

Matchings in r-Graphen. Die Hauptmotivation ist, ein besseres Verständnis

der Struktur von Graphen die nicht ∆-kantenfärbbar sind, zu erlangen.
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Chapter 1

Introduction

1.1 Background

A very famous long-standing problem in mathematics has been the 4-Color

Conjecture, which was formulated by Guthrie in 1852. He conjectured that the

regions of every map in the plane can be colored by four colors such that no

two regions sharing a boundary receive the same color. When studying this

problem, the notion of a graph turned out to be very useful. In graph theoretical

terms, the 4-Color Conjecture states that the vertices of every planar graph

can be colored with four colors such that no two adjacent vertices receive the

same color. The 4-Color Conjecture bothered mathematicians for more than

one century; several proofs and disproofs turned out to be false. Nevertheless,

early proofs by Kempe and Tait, despite being incorrect, contained useful new

ideas and techniques. In 1880, Tait [83] proved that the 4-Color Conjecture is

equivalent to the statement that every planar bridgeless cubic graph is 3-edge-

colorable. In 1977, the 4-Color Conjecture was finally verified with the help of

a computer [6, 7]; now it is a theorem. Moreover, the equivalent formulation

of Tait opened the door to some classic areas in graph theory including edge-

colorings and factors of graphs.

Vizing proved fundamental results of edge-coloring by showing that χ′(G) ≤

1



2 Chapter 1: Introduction

∆(G) + µ(G) for every graph G and χ′(G) ∈ {∆(G),∆(G) + 1} if G is simple.

The density of a graph G, denoted Γ(G), is defined by

Γ(G) = max

{⌈
|E(G[S])|
⌊12 |S|⌋

⌉
: S ⊆ V (G), |S| ≥ 2

}

if |V (G)| ≥ 2 and Γ(G) = 0 otherwise. In every edge-coloring of G at most⌊
1
2 |S|

⌋
edges of G[S] can receive the same color for all S ⊆ V (G). As a

consequence, χ′(G) ≥ Γ(G) and thus, χ′(G) ≥ max{∆(G),Γ(G)}. In the

1970s various authors including Goldberg [26] and Seymour [77] independently

conjectured that χ′(G) ≤ max{∆(G)+1,Γ(G)} for every graph G, which is also

known as the Goldberg-Seymour Conjecture. In a very recent breakthrough

result, this conjecture was verified by Chen, Jing and Zang [14]. Hence, χ′(G) =

max{∆(G),Γ(G)} or χ′(G) = max{∆(G) + 1,Γ(G)} for every graph G. Based

on the aforementioned results, it is natural to divide the set of graphs into

two classes. A graph G is class 1 if χ′(G) = ∆(G); otherwise G is class

2. The density of a given graph can be computed in polynomial time (see

for example [17]). Nevertheless, the decision problem whether a given graph

G is ∆(G)-edge-colorable is NP -complete, even when reduced to 3-regular

graphs [34]. So far, very little is known about the structure of graphs with

chromatic index ∆ + 1.

First results concerning graph factors were obtained by Petersen and König;

these theorems are fundamental results of graph theory in general. In 1891,

in his seminal paper “Die Theorie der regulären graphs” [72], Petersen proved

that (1) every bridgeless cubic graph has a perfect matching and (2) every 2r-

regular graph can be decomposed into r 2-factors. In 1916, König [49] showed

that every regular bipartite graph is class 1. Since then, factors in graphs has

been a subject of intensive research. In particular perfect matchings of cubic

graphs and, more general, regular factors of regular graphs have been studied.

For an excellent overview, the interested reader is referred to [2].



1.1. Background 3

Cubic graphs

A snarks is a bridgeless cubic graph that is not 3-edge-colorable. The smallest

snark is the well-known Petersen graph, which was discovered in 1898. Snarks

play an important role in graph theory, since some notorious hard conjectures

are true in general if they are true for bridgeless cubic class 2 graphs. This

includes the following two long-standing open conjectures.

Conjecture 1.1.1 (Berge-Fulkerson Conjecture [24]). Every bridgeless cubic

graph has six perfect matchings such that each edge belongs to exactly two of

them.

Conjecture 1.1.2 (Cycle Double Cover Conjecture [78,82]). Every bridgeless

graph has a collection of cycles such that each edge belongs to exactly two of

them.

The Berge-Fulkerson Conjecture was first proposed by Berge, but it was put

into print by Fulkerson [24] in 1971 (cf. [77]). The Cycle Double Cover Conjec-

ture was independently proposed by Szekeres [82] in 1973 and Seymour [78] in

1979. As a unifying approach to both conjectures, Jaeger (see [39]) introduced

colorings with edges of another graph. For two graphs G and H, an H-coloring

of G is a mapping f : E(G) → E(H) such that

• if e1, e2 ∈ E(G) are adjacent, then f(e1) ̸= f(e2),

• for every v ∈ V (G) there exists a vertex u ∈ V (H) such that f(∂G(v)) =

∂H(u).

If such a mapping exists, we say H colors G. H-colorings have the useful

property that the existence of specific substructures in H implies the existence

of similar substructures in G. In 1980 Jaeger [37] made the following famous

conjecture, which is known as the Petersen Coloring Conjecture.

Conjecture 1.1.3 (Petersen Coloring Conjecture [37]). The Petersen graph

colors every bridgeless cubic graph.
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Since the Petersen graph satisfies the Berge-Fulkerson Conjecture and the

Cycle Double Cover Conjecture, these two conjectures are true if the Petersen

Coloring Conjecture is true.

All three conjectures are trivially true for bridgeless cubic class 1 graphs

but, despite much effort, remain widely open for snarks.

r-graphs

An r-graph is an r-regular graph G with |∂G(S)| ≥ r for every S ⊆ V (G) of odd

cardinality. A 3-graph is nothing else than a bridgeless cubic graph; r-graphs

can be seen as a generalisation of bridgeless cubic graphs. Note that r-graphs

are of even order and might have small edge-cuts separating two sets of even

cardinality. The density of an r-regular graph G is at least r; it equals r if and

only if G is an r-graph. Hence, r-graphs satisfy the necessary condition for

being class 1. Nevertheless, for every r ≥ 3 there are r-graphs of class 2. By

the proof of the Goldberg-Seymour Conjecture, every r-graph has chromatic

index either r or r + 1. Thus, class 2 r-graphs behave like simple graphs.

Similar to the cubic case, r-graphs are important since some well-known

conjectures can be reduced to r-graphs (or are formulated directly for r-graphs).

One example is Tutte’s 3-Flow Conjecture, which states that every bridgeless

graph without 3-edge-cuts has a nowhere-zero 3-flow (see also [12] unsolved

problem 48). It is folklore that this conjecture can be reduced to 5-graphs.

Furthermore, some conjectures for bridgeless cubic graphs might be true in the

more general setting of r-graphs. The following conjecture was proposed by

Seymour [77] in 1979 and is known as Seymour’s Exact Conjecture.

Conjecture 1.1.4 (Seymour’s Exact Conjecture [77]). Every planar r-graph

is class 1.

Note that for r = 3 the statement is true by the 4-Color Theorem. Further-

more, Seymour’s Exact Conjecture is verified for all r ∈ {4, . . . , 8} by various

authors [18, 19, 21, 29]. Also in [77], Seymour generalized the Berge-Fulkerson
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Conjecture to r-graphs.

Conjecture 1.1.5 (Generalized Berge-Fulkerson Conjecture [77]). Every r-

graph has 2r perfect matching such that each edge is in exactly two of them.

Similar to the cubic case, the Generalized Berge-Fulkerson Conjecture is

trivially true for r-graphs of class 1 but widely open for r-graphs of class 2.

Thus, structural properties of snarks and more generally of class 2 r-graphs are

of huge interest.

1.2 Outline and contributions of this thesis

In this thesis different problems concerning factors in graphs are considered;

most of them are related to the conjectures mentioned above. Our main moti-

vation is to get a better understanding of the structure of graphs with chromatic

index ∆ + 1. In this section we shortly introduce each topic and summarize

the main results.

In Chapter 2 all basic notation concerning graph theory that is used

throughout this thesis is defined. In Chapter 3 and 4 we consider some

problems about factors in simple graphs. Chapter 5 focuses on regular graphs,

whereas in Chapter 6, 7 and 8 r-graphs are under investigation.

Chapter 3: Isolated toughness and component factors

The isolated toughness of a simple graph G, denoted I(G), was first introduced

by Yang, Ma and Liu [91] and is defined as follows:

I(G) = min

{
|S|

iso(G− S)
: S ⊆ V (G), iso(G− S) ≥ 2

}
if G is not a complete graph and I(G) = ∞ otherwise. For t ∈ R, a simple

graph G is isolated t-tough if I(G) ≥ t. The isolated toughness is strongly

related to the existence of specific component factors. For instance, in the

case of isolated 1
n -tough graphs the Star Factor Theorem states that for every
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positive integer n, a simple graph G has a {K1,i : 1 ≤ i ≤ n}-factor if and

only if iso(G − S) ≤ n|S| for all S ⊆ V (G) [4, 50]. Similar characterisations

are obtained in [92] for isolated m
n -tough graphs when n is odd, n ≥ 3 and

m = 2. In Chapter 3 we consider the following general problem which was

proposed by Kano, Lu and Yu [45] (see also Problem 7.10 in [2]). If n,m are

two positive integers and G is a simple graph such that iso(G− S) ≤ n
m |S| for

all ∅ ≠ S ⊂ V (G), what factor does G have? We characterize isolated m
n -tough

graphs in terms of their component factors when n > m. This extends the

results of [92] and give an answer to the above problem when n > m.

Chapter 4: Factors in edge-chromatic critical graphs

A simple graph G is (edge-chromatic) critical, if it is class 2 but every proper

subgraph has a smaller chromatic index. Clearly, every simple graph contains a

critical subgraph. Thus, in order to get a better understanding of the structure

of simple class 2 graphs, one attempt is to study critical graphs. One famous

conjecture in this field is Vizings’s 2-Factor Conjecture [88], which was pro-

posed in 1965 and states that every critical graph has a 2-factor. So far, this

conjecture has only been verified for some specific classes of critical graphs such

as overfull graphs [28] or critical graphs with large maximum degree in relation

to their order [15, 53]. In Chapter 4 we focus on slightly easier statements,

which are implied by Vizings’s 2-Factor Conjecture. In particular we study the

question whether every critical graph has a cycle-factor, which was conjectured

to be true in [9]. Our main result in Chapter 4 is that every critical graph with

a small number of divalent vertices (compared to its maximum degree) has a

cycle-factor.
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Chapter 5: Factors intersecting disjoint odd circuits in regular

graphs

The Berge-Fulkerson Conjecture has been open for more than 50 years; notwith-

standing a solution seems to be far away. Thus, in order to make some progress,

weaker conjectures moved into focus. One of them was proposed by Mazzuoc-

colo [65] in 2013 and states that every bridgeless cubic graph has two perfect

matchings such that the complement of their union is bipartite. Clearly, this

statement is true if the Berge-Fulkerson Conjecture is true. Very recently,

Kardoš, Máčajová and Zerafa [47] proved the following statement, which im-

plies the above conjecture of Mazzuoccolo. If G is a bridgeless cubic graph,

O is a set of pairwise edge-disjoint odd circuits and e is an edge of G, then G

has a perfect matching containing e and at least one edge of every element of

O. In Chapter 5 we study whether similar statements are true for graphs of

higher regularity. Our main results are the following: (1) for every 2-connected

3k-regular graph G and every set O of pairwise edge-disjoint odd circuits of G

there exists a k-factor F of G such that E(F ) ∩ E(O) ̸= ∅ for every O ∈ O,

and (2) for every 2-connected 4k-regular graph G and every set O of pair-

wise edge-disjoint odd circuits of G there exists a 2k-factor F of G such that

E(F ) ∩ E(O) ̸= ∅ for every O ∈ O. Furthermore, we show that these results

are best possible in some sense.

Chapter 6: Rotation r-graphs

Since the discovery of the Petersen graph, many other non-trivial snarks as

well as infinite families of non-trivial snarks (one example are the well-known

Flower snarks [35]) were constructed. Hoffmann-Ostenhof and Jatschka [33]

introduced a family of highly symmetrical snarks, which they called rotation

snarks. Informally a rotation snark is a snark that has a 2π
3 -rotation symmetry

fixing one vertex and a balanced spanning tree not containing divalent vertices

(for a precise definition see [33]). At first glance rotation snarks seem to be very
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special; nevertheless the Petersen graph as well as the two Loupekine’s snarks

are rotation snarks (see [33]). Moreover, there are infinitely many cyclically

5-edge-connected rotation snarks, as shown by Máčajová and Škoviera [59]. In

Chapter 6 we generalize the notion of rotation snarks to r-graphs of odd regular-

ity and show that every r-graph of odd regularity can be “blown up” to a simple

rotation r-graph (which produces many small edge-cuts). As a consequence,

some hard long-standing open conjectures including the aforementioned (gen-

eralized) Berge-Fulkerson Conjecture and Tutte’s 3-Flow Conjecture can be

reduced to simple rotation r-graphs. However, our proof heavily relies on the

fact that we allow 2-edge-cuts in the definition of rotation r-graphs.

Chapter 7: Pairwise disjoint perfect matchings in r-graphs

Class 2 r-graphs, which exist for every r ≥ 3, have at most r − 2 pairwise

disjoint perfect matchings. One natural question concerning the structure of

r-graphs is the following. What is the maximum number t such that every

r-graph has t pairwise disjoint perfect matchings? On one side, every r-graph

has a perfect matching [77]. On the other side, snarks are 3-graphs in which

every two perfect matchings intersect. In former times the general opinion was

that the cubic case is very exclusive. In 1979, Seymour [77] conjectured that

when r ≥ 4 every r-graph has a perfect matching M such that G −M is an

(r − 1)-graph. If true this would imply that every r-graph has r − 2 pairwise

disjoint perfect matchings. It turned out that this is not the case. In 1999,

Rizzi [75] constructed r-graphs in which every two perfect matchings intersect

for every r ≥ 4, which completely answers the above question. Neverthe-

less, all r-graphs with this property that are known so far have a 4-edge-cut.

Thus, it is natural to ask whether the situation changes for r-graphs with

larger edge-connectivity. Thomassen [84] proposed the problem whether every

r-edge-connected r-graph has r − 2 pairwise disjoint perfect matchings. For

r = 4 the answer to Thomassen’s problem is “no” by Rizzi. As an extension,
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Mattiolo and Steffen [63] constructed counterexamples when r is a multiple of

4. For the remaining cases, Thomassen’s problem is still open. Moreover, there

is also very little known about the number of pairwise disjoint perfect match-

ings in r-graphs whose edge-connectivity is in between 4 and r. Chapter 7 is

divided into three parts. In the first part we prove that for every 1 < k < r

it is NP -complete to decide whether a given r-graph has k pairwise disjoint

perfect matchings. In the second part, r-edge-connected r-graph are under

investigation. We extend the result of Mattiolo and Steffen to all even inte-

gers by constructing r-edge-connected r-graphs without r− 2 pairwise disjoint

perfect matchings when r ≡ 2 (mod 4). Furthermore, we relate statements on

the number of pairwise disjoint perfect matchings in 5-edge-connected 5-graphs

to some of the aforementioned conjectures in cubic graphs. In the third part

of Chapter 7 r-graphs with arbitrary edge-connectivity are considered. We

construct λ-edge-connected r-graphs without 3
2λ − 5 pairwise disjoint perfect

matchings, for every even λ ≥ 6 and every r ≥ λ. This result suggests that

there might be a relation between the edge-connectivity and the number of

pairwise disjoint perfect matchings in r-graphs.

Chapter 8: Complete sets

A set A of connected r-graphs is r-complete if every connected r-graph can

be colored by an element of A. As in the cubic case, if there exists an r-

complete set in which every element satisfies the generalized Berge-Fulkerson

Conjecture, then every r-graph satisfies this conjecture. Thus, one approach to

the generalized Berge-Fulkerson Conjecture is to study r-complete sets. The

Petersen Coloring Conjecture states that the set whose only element is the

Petersen graph is a 3-complete set. Similar to the cubic case, Mazzuoccolo

et al. (Problem 4.8 in [68]) asked whether there exists an r-complete set of

cardinality 1 for every r ≥ 4. In Chapter 8 we first prove that for every r ≥ 3

there is exactly one inclusion-wise minimal r-complete set, which is denoted
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by Hr. Next, we show that either H3 consists of the Petersen graph or it is an

infinite set. Moreover, we prove that Hr is an infinite set for every r ≥ 4, which

gives a negative answer to the problem of Mazzuoccolo et al. As a by-product

we determine the smallest r-graphs of class 2.
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Chapter 2

Notation and basic definitions

This chapter is designated to introduce all basic notations concerning graphs

that are used in this thesis. We mainly follow the notation used in [11]. For

notation that we may have missed, the interested reader is referred to [11].

A graph G is a pair (V (G), E(G)) consisting of two disjoint sets V (G),

E(G) together with a function ψG that maps every element of E(G) to an one-

or two-elemental subset of V (G). The elements of V (G) are called vertices;

the elements of E(G) are called edges. A graph is finite, if its vertex-set and

its edge-set are finite. For an edge e, the elements of ψG(e) are called the

end-vertices of e. An edge with only one end-vertex is a loop; two edges with

the same set of end-vertices are parallel. In this thesis we only consider finite

graphs without loops that may have parallel edges. Thus, from now on with

the notation “graph” we always mean a finite, loopless graph. A graph without

parallel edges is called simple.

A graph can be represented by a drawing in the plane, where every vertex

is represented by one point (drawn as a circle) and every edge is represented

by a line connecting the two points corresponding to its end-vertices. A graph

is planar if it admits a drawing in the plane such that edges intersect only in

the points corresponding to their common end-vertices.

Let G be a graph. The number of vertices of G is the order of G. For an

12
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edge e with end-vertices u, v, we say e connects u and v, and we occasionally

denote e by uv. Two edges (respectively, two vertices) are adjacent if they

share an end-vertex (respectively, if they are connected by an edge). For a

vertex v, the set of vertices adjacent to v is denoted by NG(v); the elements

of NG(v) are called neighbours of v. For a subset X ⊆ V (G) we write NG(X)

for
⋃

v∈X N(v) \ X. A vertex v and an edge e are incident if v is an end-

vertex of e. For two vertices u, v, the number of edges connecting u and v is

denoted by µG(u, v); if µG(u, v) = 1, then the edge uv is simple. Furthermore,

µ(G) = max{µG(u, v) : u, v ∈ V (G)}. The degree of a vertex v, denoted dG(v),

is the number of edges incident with v. A vertex of degree 2 is called divalent ; a

vertex of degree 0 is called isolated. The set of isolated vertices of G is denoted

by Iso(G); we write iso(G) for |Iso(G)|. The maximum degree of a vertex of

G is denoted by ∆(G). The graph G is regular, if every vertex has the same

degree; and G is r-regular, if every vertex is of degree r. A 3-regular graph is

also called a cubic graph.

The underlying graph of G is the simple graph H with V (H) = V (G) and

µH(u, v) = 1 if and only if µG(u, v) ≥ 1.

A graphH is isomorphic toG, denoted byG ∼= H, if there are two bijections

θ : V (G) → V (H) and ϕ : E(G) → E(H) such that ψG(e) = {u, v} if and only

if ψH(ϕ(e)) = {θ(u), θ(v)}. In this case we call the pair of mappings (θ, ϕ) an

isomorphism between G and H. In particular, an automorphism of a graph is

an isomorphism of the graph to itself.

A graph H is a subgraph of G, if V (H) ⊆ V (G), E(H) ⊆ E(G) and

ψH = ψG|E(H). In this case, we say G contains H. If V (H) = V (G), then

H is spanning ; if V (H) ̸= V (G) or E(H) ̸= E(G), then H is proper. Two

graphs are disjoint (edge-disjoint, respectively) if their vertex-sets (edge-sets,

respectively) are disjoint. If H1, . . . ,Hk are pairwise edge-disjoint subgraphs of

G such that E(G) =
⋃k

i=1E(Hi), then G can be decomposed into H1, . . . ,Hk

and {H1, . . . ,Hk} is a decomposition of G.



14 Chapter 2: Notation and basic definitions

For two disjoint subsets X,Y of V (G) the set of edges with one end-vertex

in X and the other in Y is denoted by EG(X,Y ); the cardinality of EG(X,Y )

is denoted by eG(X,Y ). We write ∂G(X) for EG(X,V (G) \X); if X is a non-

empty proper subset of V (G) we call ∂G(X) an edge-cut of G. For convenience,

if X or Y consist of a single vertex we omit the set-brackets in these notations.

For example, we write EG(v, Y ) and ∂G(v) instead of EG({v}, Y ) and ∂G({v}).

A k-edge-cut is an edge-cut consisting of k edges; an edge of a 1-edge-cut is

called a bridge. The graph G is k-edge-connected if its order is at least 2 and

there is no edge-cut with less than k edges; a 1-edge-connected graph is called

a connected graph. The edge-connectivity of G, denoted λ(G), is the maximum

number t such that G is t-edge-connected. A component of G is a maximum

connected subgraph of G. A set of vertices X ⊆ V (G) is a vertex-cut of G if

G −X has more components than G; a vertex cut consisting of k elements is

a k-vertex-cut. The only element of a 1-vertex-cut is called a cut-vertex. The

graph G is k-connected if G is connected, |V (G)| > k and every vertex-cut

contains at least k vertices.

For a positive integer r, the graph G is an r-graph if G is r-regular and

|∂G(X)| ≥ r for every X ⊆ V (G) of odd cardinality.

A spanning subgraph of G is called a factor of G. A factor is a k-factor, if

every vertex is of degree k. The edge-set of a 1-factor of G is called a perfect

matching ; the edge-set of a 1-regular subgraph of G is called a matching. For

a set of graphs G, a factor is a G-factor if every component is isomorphic to an

element of G.

For a subset X ⊆ V (G) the subgraph with vertex-set X and whose edge-set

consists of all edges of G having both end-vertices in X is denoted by G[X].

We say that X induces G[X] and call G[X] an induced subgraph. We write

G −X for G[V (G) \X] and G − v for G −X if X consists of a single vertex

v. Similarly, for a subset E ⊆ E(G) the subgraph with edge-set E and whose

vertex-set consists of all vertices of G incident with an edge of E is denoted by
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G[E]. We say that E induces G[E]. The subgraph with vertex-set V (G) and

edge-set E(G)\E is denoted by G−E. When E = {e}, we write G−e instead

of G− E.

For a subset X ⊆ V (G), a new graph can be obtained form G as follows:

add a new vertex wX ; delete all edges having both end-vertices in X; for every

remaining edge e with an end-vertex w ∈ X, change the end-vertex w of e to

wX ; delete every vertex in X. The resulting graph is denoted by G/X and we

say G/X is obtained from G by identifying the vertices in X (to a new vertex

wX). Note that we use the same labels for the edges in G and in G/X, i.e.

E(G/X) ⊆ E(G). Furthermore, if we do not explicitly introduce another label,

the vertex in V (G/X) \ V (G) will always be denoted by wX . We remark, that

in the literature the notation G/X is sometimes also used to denote the graph

obtained from G by contracting every edge in G[X], i.e. G[X] needs to be

connected. In our notation, G/X is also defined when G[X] is not connected.

For a vertex v ∈ V (G) and a graph H disjoint from G, a new graph G′ can

be obtained from G as follows: add H; for every edge e ∈ E(G) incident to v,

replace the end-vertex v of e by a vertex of H; delete v. We say G′ is obtained

from G by replacing v with H. Note that there are many different graphs that

can be obtained from G by replacing v with H; all of them have vertex-set

(V (G) \ v) ∪ V (H) and edge-set E(G) ∪ E(H).

A k-edge-coloring of G is a function φ : E(G) → {1, ..., k}; the elements of

{1, ..., k} are called colors. A k-edge-coloring φ is proper, if no two adjacent

edges receive the same color. If a proper k-edge-coloring of G exists, then G is

k-edge-colorable. The chromatic index, denoted χ′(G), is the smallest integer k

such that G is k-edge-colorable. If χ′(G) = ∆(G), then G is class 1 ; otherwise

G is class 2.

An orientation D of G is a pair of two functions tail : E(G) → V (G) and

head : E(G) → V (G) such that for every e ∈ E(G) the set of end-vertices of

e equals {tail(e), head(e)}. We say e is directed from tail(e) towards head(e).
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For a vertex v ∈ V (G) the number of edges directed towards v is the indegree

of v. For an integer k ≥ 2 a nowhere-zero k-flow is a function f : E(G) →

{±1, . . . ,±(k − 1)} together with an orientation D = (tail, head) such that∑
e∈E(G)
tail(e)=v

f(e) =
∑

e′∈E(G)
head(e′)=v

f(e′) for every v ∈ V (G).

A cycle is a graph in which every vertex is of positive even degree. The

graph G is acyclic if it does not contain a cycle; it is cyclically k-edge-connected

if G − E has at most one component containing a cycle for every edge-cut

E ⊆ E(G) of cardinality less than k. A tree is a connected acyclic graph T .

A vertex of degree 1 is called a leaf of T ; the set of leaves of T is denoted by

Leaf(T ). Every edge incident with a leaf of T is a pendant edge.

A circuit is a 2-regular connected graph. A circuit is even (odd, respectively)

if its order is even (odd, respectively). A circuit of order k is called a k-circuit.

Up to isomorphism there is only one k-circuit, which is denoted by Ck. For

convenience, we also denote a circuit with vertex-set {v1, . . . , vk} and edge-set

{vkv1, vivi+1 : i ∈ {1, . . . , k − 1}} by v1 . . . vkv1.

A path is a connected graph P in which exactly two vertices are of degree

1 and every other vertex is of degree 2. The vertices of degree 2 of P are called

inner vertices. If dP (u) = dP (v) = 1, then P is a u, v-path and u, v are the ends

of P . Up to isomorphism there is only one path of order k, which is denoted

by Pk. For convenience, we also denote a path with vertex-set {v1, . . . , vk} and

edge-set {vivi+1 : i ∈ {1, . . . , k − 1}} by v1 . . . vk. For two vertices u, v ∈ V (G)

that belong to the same component of G, the distance between u and v is the

number of edges of a shortest u, v-path contained in G.

A factor is a cycle-factor, if it is a cycle; a factor is a path-factor, if every

component is a path.

A complete graph is a simple graph in which every two vertices are adjacent.

Up to isomorphism there is only one complete graph of order n, which is denoted

by Kn.

A set X ⊆ V (G) of pairwise non-adjacent vertices is called stable. If V (G)
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can be partitioned into two stable sets A,B, then G is bipartite and we call

{A,B} a bipartition of G. If additionally G is simple and u, v are adjacent for

every u ∈ A, v ∈ B, then G is a complete bipartite graph. A complete bipartite

graph whose bipartition contains a set of cardinality 1 is called a star. For two

integers 0 < n ≤ m, up to isomorphism there is only one complete bipartite

graph, denoted by Kn,m, whose bipartition consists of a set of cardinality n

and a set of cardinality m.

In all notations defined above, when it is clear which graph we consider, we

will omit the lower index that indicates the graph we are referring to.



Chapter 3

Fractional factors, component

factors and isolated vertex

conditions

This chapter is based on [90]; all results in Chapter 3 can be found in that

preprint.

Recall that the isolated toughness of a graph G, denoted I(G), was first

introduced in [91] and is defined as follows:

I(G) = min

{
|S|

iso(G− S)
: S ⊆ V (G), iso(G− S) ≥ 2

}
if G is not a complete graph and I(G) = ∞ otherwise. For t ∈ R, a graph G

is isolated t-tough if I(G) ≥ t. The isolated toughness is strongly related to

the existence of specific component factors. Tutte [85] characterized isolated

1-tough graphs by the existence of component factors as follows.

Theorem 3.0.1 (Tutte [85]). Let G be a simple graph. Then, G has a

{K1,1, Ci : i ≥ 3}-factor if and only if

iso(G− S) ≤ |S| for all S ⊂ V (G).

This result was extended by Amahashi, Kano [4] and Las Vergnas [50] to

isolated 1
n -tough graphs.

18
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Theorem 3.0.2 (Amahashi, Kano [4], Las Vergnas [50]). Let G be a simple

graph and let n ≥ 2 be an integer. Then, G has a {K1,i : 1 ≤ i ≤ n}-factor if

and only if

iso(G− S) ≤ n|S| for all S ⊂ V (G).

Kano, Lu and Yu [45] asked for a general relation between isolated tough-

ness and the existence of component factors.

Problem 3.0.3 (Problem 1 in [45], Problem 7.10 in [2]). Let G be a simple

graph and let n,m be two positive integers. If

iso(G− S) ≤ n

m
|S| for all ∅ ≠ S ⊂ V (G),

what factor does G have?

The same authors [92] gave an answer to Problem 3.0.3 when n is odd,

n ≥ 3 and m = 2. Let T (3) be the set of trees that can be obtained as follows

(see [92] for a more detailed definition):

1. start with a tree T in which every vertex has degree 1 or 3,

2. insert a new vertex of degree 2 into every edge of T ,

3. add a new pendant edge to every leaf of T .

For every integer k ≥ 2, let T (2k+1) be the set of trees that can be obtained

as follows (see [92] for a more detailed definition):

1. start with a tree T such that for every v ∈ V (T )

• dT−Leaf(T )(v) ∈ {1, 3, . . . 2k + 1}, and

• 2|{w : w ∈ Leaf(T ) ∩NT (v)}|+ dT−Leaf(T )(v) ≤ 2k + 1,

2. insert a new vertex of degree 2 into every edge of T − Leaf(T ),

3. for every v ∈ T − Leaf(T ) with dT−Leaf(T )(v) = 2l + 1 < 2k + 1, add

k − l − |{w : w ∈ Leaf(T ) ∩NT (v)}| new pendant edges to v.
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Theorem 3.0.4 (Kano, Lu, Yu [92]). A simple graph G has a {P2, C3, P5, T : T ∈

T (3)}-factor if and only if

iso(G− S) ≤ 3

2
|S| for all S ⊂ V (G).

Theorem 3.0.5 (Kano, Lu, Yu [92]). Let k ≥ 2 be an integer. A simple graph

G has a {K1,i, T : 1 ≤ i ≤ k, T ∈ T (2k + 1)}-factor if and only if

iso(G− S) ≤ 2k + 1

2
|S| for all S ⊂ V (G).

We extend these results and give an answer to Problem 3.0.3 when n >

m. The main tool are fractional factors, which are defined as follows. Let

g1, f1 : V (G) → Z and g2, f2 : V (G) → R be functions with gi(w) ≤ fi(w) for

every w ∈ V (G) and every i ∈ {1, 2}. A factor F of G is a (g1, f1)-factor, if

g1(w) ≤ dF (w) ≤ f1(w) for every w ∈ V (G). For a function h : E(G) → [0, 1]

we define dh(v) :=
∑

e∈∂G(v) h(e). If g2(w) ≤ dh(w) ≤ f2(w) for every w ∈

V (G), then h is a fractional (g2, f2)-factor of G. Additionally, if g2(w) = a

and f2(w) = b for every w ∈ V (G), then a fractional (g2, f2)-factor is called a

fractional [a, b]-factor.

Furthermore, for every two integers n,m with 0 < m < n let T n
m

be the set

of trees T such that

• iso(T − S) ≤ n
m |S| for all S ⊂ V (T ), and

• for every e ∈ E(T ) there is a set S∗ ⊂ V (T ) with iso((T − e) − S∗) >

n
m |S∗|.

The following theorem is the main result of this chapter.

Theorem 3.0.6. Let G be a simple graph and let n,m be integers with 0 <

m < n. Then the following statements are equivalent:

1) iso(G− S) ≤ n
m |S| for every S ⊂ V (G).

2) G has a fractional [1, n
m ]-factor.



3.1. Isolated vertex conditions and fractional factors 21

3) G has a fractional [1, n
m ]-factor with values in {0, 1

m , ...,
m−1
m , 1}.

4) G has a {C2i+1, T : 1 ≤ i < m
n−m , T ∈ T n

m
}-factor.

The remainder of this chapter is structured as follows. In Section 3.1 we

give a relation between the isolated toughness and the existence of fractional

factors, which proves the equivalence of 1), 2) and 3). In Section 3.2 we prove

the equivalence of 1) and 4) by using fractional factors. In Section 3.3 we

characterize the trees in T n
m

and deduce further structural properties.

3.1 Isolated vertex conditions and fractional factors

There is a strong relation between the isolated toughness of a graph and the

existence of fractional [1, n
m ]-factors. When n

m is an integer, Ma, Wang and

Li [57] obtained the following relation.

Theorem 3.1.1 (Ma, Wang, Li [57]). Let G be a simple graph and b > 1 be

an integer. Then

iso(G− S) ≤ b|S| for all S ⊂ V (G)

if and only if G has a fractional [1, b]-factor.

As shown by Yu, Kano and Lu [92], similar results are true for isolated

2
n -tough graphs, where n is an odd integer with n ≥ 3.

Theorem 3.1.2 (Kano, Lu, Yu [92]). Let G be a simple graph and k ≥ 1 be

an integer. Then

iso(G− S) ≤ 2k + 1

2
|S| for all S ⊂ V (G)

if and only if G has a fractional [1, 2k+1
2 ]-factor with values in {0, 12 , 1}.

It turned out that their proof also works for m
n -tough graphs, where n,m

are arbitrary integers with 0 < m < n. By substituting 2k + 1 with n and 2

with m in the proof of Theorem 3.1.2 given in [92], this result can be extended

as follows.
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Theorem 3.1.3. Let G be a simple graph and let n,m be integers with 0 <

m < n. Then

iso(G− S) ≤ n

m
|S| for all S ⊂ V (G) (1)

if and only if G has a fractional [1, n
m ]-factor with values in {0, 1

m , ...,
m−1
m , 1}.

For the sake of completeness, in the remainder of this section we state

the proof of [92] (with the substitutions mentioned above) and deduce the

equivalence of statements 1), 2) and 3) of Theorem 3.0.6.

The main tool to prove Theorem 3.1.2 (respectively Theorem 3.1.3) is pro-

vided by the next theorem. For a function f : V (G) → Z+ ∪ {0} and a set

X ⊆ V (G), set f(X) :=
∑

x∈X f(x).

Theorem 3.1.4 (Anstee [5], Heinrich et al. [32]). Let G be a graph and g, f :

V (G) → Z+ ∪ {0} with 0 ≤ g(x) < f(x) for all x ∈ V (G). Then G has a

(g, f)-factor if and only if

g(T )− dG−S(T ) ≤ f(S) for all S ⊂ V (G),

where T = {v ∈ V (G) \ S : dG−S(v) < g(v)}.

Proof of Theorem 3.1.3 (cf. Kano, Lu, Yu [92]). Assume that G satisfies (1).

Let G∗ denote the graph obtained from G by replacing each edge e of G by m

parallel edges e(1), ..., e(m). Then V (G∗) = V (G), and dG∗(v) = m · dG(v) for

every v ∈ V (G∗). Define two functions g, f : V (G∗) → Z+ ∪ {0} as

g(x) = m and f(x) = n for all x ∈ V (G∗).

Then g < f , and for any S ⊂ V (G∗), we have

T = {v ∈ V (G∗) \ S : dG∗−S(v) < g(v) = m}

= {v ∈ V (G∗) \ S : dG∗−S(v) = 0}

= Iso(G− S).
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Thus it follows from the above equality and (1) that

g(T )− dG∗−S(T ) = m · iso(G− S)− 0

≤ n|S| = f(S).

Hence by Theorem 3.1.4, G∗ has a (g, f)-factor F . Now we construct a frac-

tional [1, n
m ]-factor h : E(G) → {0, 1

m , ...,
m−1
m , 1} as follows: for every edge e of

G, define h(e) = k(e)
m where k(e) is the number of integers i ∈ {1, ...,m} with

e(i) ∈ E(F ). It is easy to see, that h is the desired fractional [1, n
m ]-factor with

values in {0, 1
m , ...,

m−1
m , 1}.

Next assume that G has a fractional [1, n
m ]-factor h. Let S ⊂ V (G), and let

F be the spanning subgraph of G induced by {e ∈ E(G) : h(e) ̸= 0}. Clearly,

the neighbours of each isolated vertex u of G − S are contained in S and

dh(u) ≥ 1, thus we have

iso(G− S) ≤
∑

e∈EF (Iso(G−S),S)

h(e)

≤
∑
x∈S

dh(x) ≤ n

m
|S|.

Hence, iso(G− S) ≤ n
m |S|, i.e. (1) holds.

The fact, that h has values in {0, 1
m , ...,

m−1
m , 1} is not needed in the second

part of the proof of Theorem 3.1.3. As a consequence, we obtain the following

corollary:

Corollary 3.1.5. Let G be a simple graph and let n,m be integers with 0 <

m < n. If G has a fractional [1, n
m ]-factor, then G has a fractional [1, n

m ]-factor

with values in {0, 1
m , ...,

m−1
m , 1}.

Therefore, the equivalence of statements 1), 2) and 3) of Theorem 3.0.6 is

proved.
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3.2 Isolated vertex conditions and component fac-

tors

In this section we use Theorem 3.1.3 to prove the following equivalence, which

completes the proof of Theorem 3.0.6:

Theorem 3.2.1. Let G be a simple graph and let n,m be integers with 0 <

m < n. Then

iso(G− S) ≤ n

m
|S| for all S ⊂ V (G)

if and only if G has a {C2i+1, T : 1 ≤ i < m
n−m , T ∈ T n

m
}-factor.

Observe that m
n−m ≤ 1 if and only if n

m ≥ 2, and hence, {C2i+1, T : 1 ≤ i <

m
n−m , T ∈ T n

m
} = T n

m
in this case.

For two positive integers n,m we say a graph G satisfies the n
m -isolated-

vertex-condition, if iso(G − S) ≤ n
m |S| for all S ⊂ V (G). In order to prove

Theorem 3.2.1 we need the following observation.

Observation 3.2.2. A simple graph G satisfies the n
m -isolated-vertex-

condition, if and only if every component of G satisfies the n
m -isolated-vertex-

condition.

Proof. If G satisfies the n
m -isolated-vertex-condition and C is a component of

G, then for every S ⊂ V (C) we have:

iso(C − S) ≤ iso(G− S) ≤ n

m
|S|

On the other hand, if G is a graph with components H1, ...,Hl and every

component satisfies the n
m -isolated-vertex-condition, then for each S ⊂ V (G)

we have:

iso(G− S) =

l∑
i=1

iso (Hi − (S ∩ V (Hi))) ≤
l∑

i=1

n

m
|S ∩ V (Hi))| =

n

m
|S|.
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For a fractional [1, b]-factor h of a graph G and v ∈ V (G), we call v a

(+)-vertex if dh(v) > 1 and a (−)-vertex if dh(v) = 1.

Proof of Theorem 3.2.1. First, assume that G has a {C2i+1, T : 1 ≤ i <

m
n−m , T ∈ T n

m
}-factor F . Let H1, ...,Hl be the components of F . Clearly, every

component of F satisfies the n
m -isolated-vertex-condition and thus, F also

does. For every S ⊂ V (G) each isolated vertex of G − S is also an isolated

vertex of F − S, and thus iso(G− S) ≤ iso(F − S) ≤ n
m |S|.

Next, assume G satisfies iso(G − S) ≤ n
m |S| for all S ⊂ V (G). Let F be

an inclusion-wise minimal factor of G, that also satisfies the n
m -isolated-vertex-

condition. By Theorem 3.1.3, F has a fractional [1, n
m ]-factor, whereas every

spanning proper subgraph of F does not admit such a fractional factor. In

particular, for every e ∈ E(F ), the graph F − e does not have a fractional

[1, n
m ]-factor. In conclusion, the following claim holds:

Claim 1. h(e) ̸= 0 for every e ∈ E(F ) and every fractional [1, n
m ]-factor h

of F .

We now prove that F is the desired factor.

A closed trail of length k (of F ) is a sequence (v0, e0, v1, e1, ..., el−1, vl) of

alternately vertices and edges of F with ei = vivi+1 for all i < l and v0 = vl.

Claim 2. F does not contain a closed trail of an even length.

Proof of Claim 2. Suppose F contains a closed trail X of an even length.

Let e be an arbitrary edge of X. Now fix a fractional [1, n
m ]-factor h of F with

values in {0, 1
m , ...,

m−1
m , 1}, such that

(i) h(e) is as small as possible,

(ii) with respect to (i),
∑

e′∈E(F ) h(e
′) is as small as possible.

Now suppose, there is an edge e′ ∈ E(F ) between two (+)-vertices. By Claim 1,

the edge e′ did not receive the value 0. Thus, reducing h(e′) by 1
m leads to a

new fractional [1, n
m ]-factor with a smaller sum, which contradicts the choice

of h. Therefore, the set of (+)-vertices (with respect to h) is stable in F . This
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implies, that an edge of F received the value 1 if and only if it is incident with

a vertex of degree 1 in F . As a consequence, h(e′) < 1 for every edge e′ of X.

Now we modify the fractional factor h as follows: add 1
m and − 1

m alternately

to the edges of X such that − 1
m is added to e (see Figure 3.1).

e

+ 1
m

+ 1
m

+ 1
m

+ 1
m

− 1
m

− 1
m

− 1
m

− 1
m

Figure 3.1: The modifying of h if F contains a closed trail of an even length.

Since no edge of X had the value 0 or 1, this leads to a new fractional [1, n
m ]-

factor h′ of F with values in {0, 1
m , ...,

m−1
m , 1}. This contradicts the choice of

h, since h′(e) = h(e)− 1
m . ■

As a consequence the following claims hold:

Claim 3. F does not contain an even circuit.

Claim 4. F does not contain two circuits that share an edge.

Proof of Claim 4. Suppose Claim 4 is false. Then F contains two circuits

C,C ′ such that there common edges induce a path P in F . By Claim 2, the

circuits C,C ′ are odd and thus the graph induced by (E(C) ∪E(C ′)\)E(P ) is

an even circuit. This contradicts Claim 3. ■

Claim 5. F does not contain two circuits that share a vertex.

Proof of Claim 5. Suppose F contains two circuits C,C ′ that share a vertex.

By Claim 3, C,C ′ are odd circuits; by Claim 4, E(C) ∩ E(C ′) = ∅. Hence,

the edgeset E(C) ∪ E(C ′) provides a closed trail of an even length, which

contradicts Claim 2. ■

Claim 6. F does not contain two disjoint circuits C,C ′ and a path P such
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that V (C) ∩ V (P ) = x and V (C ′) ∩ V (P ) = y, where x, y are the ends of P .

Proof of Claim 6. Suppose F contains two disjoint circuits C,C ′ and a

path P with the above properties. Let e be an arbitrary edge of P . Now fix a

fractional [1, n
m ]-factor h of F with values in {0, 1

m , ...,
m−1
m , 1}, such that

(i) h(e) is as small as possible,

(ii) with respect to (i),
∑

e′∈E(F ) h(e
′) is as small as possible.

Again, no two (+)-vertices are adjacent in F . This implies, h(e′) < 1 for all

e′ ∈ E(C) ∪ E(C ′) ∪ E(P ). Since C and C ′ are odd by Claim 3, both circuits

contain adjacent (−)-vertices. In conclusion, there is a path P ′ = (v1, ..., vl)

such that E(P ′) ⊂ E(C) ∪ E(C ′) ∪ E(P ), e ∈ E(P ′) and v1, v2 are two (−)-

vertices of C and vl−1, vl are two (−)-vertices of C ′. Now, add 1
m and − 1

m

alternately to the edges of P ′ − {v1v2, vl−1vl} such that − 1
m is added to e.

If v2v3 or vl−2vl−1 received − 1
m , add 1

m to v1v2 or vl−1vl, respectively. An

example is shown in Figure 3.2.

− 1
m

v1

v2

vl−1

vl

− 1
m+ 1

m + 1
m

+ 1
m

+ 1
m

(−)

(−)

(−)

(−)

− 1
m

e

Figure 3.2: The modifying of h if F contains two disjoint circuits connected by a

path. The solid edges are the edges of P ′.

The resulting function h′ has values in {0, 1
m , ...,

m−1
m , 1}, since no edge

of C, C ′ or P had the value 0 or 1 before. Furthermore, we have dh
′
(v) ∈

{dh(v), dh(v) + 1
m} for every v ∈ {v1, v2, vl−1, vl} and dh

′
(w) = dh(w) for every

other vertex w. Since v1, v2, vl−1 and vl are (−)-vertices (with respect to h), h′ is
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a fractional [1, n
m ]-factor of F with values in {0, 1

m , ...,
m−1
m , 1}. This contradicts

the choice of h, since h′(e) = h(e)− 1
m . ■

Claim 7. No component of F contains a circuit and a vertex of degree 1.

Proof of Claim 7. Suppose F contains a component with a circuit C and a

vertex x with NF (x) = {y}. Let z ∈ NF (y) \ {x} be a vertex such that either

z and C belong to the same component of F − y or y, z ∈ V (C). Now, fix a

fractional [1, n
m ]-factor h of F with values in {0, 1

m , ...,
m−1
m , 1}, such that

(i) h(yz) is as small as possible,

(ii) with respect to (i),
∑

e∈E(F ) h(e) is as small as possible.

Again, no two (+)-vertices are adjacent in F , which implies that C contains

adjacent (−)-vertices. Furthermore, an edge received the value 1 if and only if

it is incident with a vertex of degree 1, in particular h(xy) = 1 and hence y is

a (+)-vertex. By the choice of z, there is a path P = v1...vl such that v1 = y,

v2 = z and vl−1, vl are two (−)-vertices of C. Now, add 1
m and − 1

m alternately

to the edges of P − vl−1vl such that − 1
m is added to yz. If vl−2vl−1 received

− 1
m , add 1

m to vl−1vl (see Figure 3.3).

− 1
mvl

vl−1

− 1
m+ 1

m

+ 1
m

(−)

(−)

xyz

(a)

− 1
m

vl

vl−1

+ 1
m

(−)

(−)

xy

z

(b)

Figure 3.3: The modifying of h if F contains a component with a circuit and a

vertex of degree 1 in the cases (a) y /∈ V (C) and (b) y ∈ V (C). The

solid edges are the edges of P .

The resulting function is denoted by h′. For each edge e ∈ E(P ) we have
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h(e) > 0 by Claim 1 and h(e) < 1 since P does not contain a vertex of degree

1 in F . In conclusion, h′ has values in {0, 1
m , ...,

m−1
m , 1}. Furthermore we have

dh
′
(y) = dh(y) − 1

m , dh
′
(v) ∈ {dh(v), dh(v) + 1

m} for every v ∈ {vl−1, vl} and

dh
′
(w) = dh(w) for every other vertex w. Since y is a (+)-vertex and vl−1, vl are

(−)-vertices (with respect to h), h′ is a fractional [1, n
m ]-factor of F with values

in {0, 1
m , ...,

m−1
m , 1}. This contradicts the choice of h, since h′(yz) = h(yz)− 1

m .

■

By Claims 3-7, each component of F is isomorphic to either an odd circuit

or a tree.

Claim 8. If i is a positive integer and C is a component of F isomorphic

to C2i+1, then i <
m

n−m .

Proof of Claim 8. By the choice of F and Observation 3.2.2, no proper

subgraph of C satisfies the n
m -isolated-vertex-condition. In particular, P2i+1

does not satisfy the n
m -isolated-vertex-condition. Therefore, i+1

i > n
m , which is

equivalent to i < m
n−m . ■

Claim 9. If T is a component of F that is isomorphic to a tree, then

T ∈ T n
m
.

Proof of Claim 9. By Observation 3.2.2, T satisfies the n
m -isolated-vertex-

condition, whereas no proper subgraph of T satisfies this condition. Hence,

T ∈ T n
m
. ■

In conclusion, every component of F is isomorphic to an element of

{C2i+1, T : 1 ≤ i < m
n−m , T ∈ T n

m
} and thus, F is the desired factor. This

completes the proof of Theorem 3.2.1.

3.3 Structural properties of the trees in T n
m

In this section we characterize the trees in T n
m

in terms of their bipartition.

Theorem 3.3.1. Let n,m be integers with 0 < m < n and let T be a tree with

bipartition {A,B}, where 0 < |B| ≤ |A|. Then, the following statements are
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equivalent:

1) T ∈ T n
m
.

2) for every x ∈ B, T has a fractional [1, n
m ]-factor h with values in

{ 1
m , ...,

m−1
m , 1} such that dh(a) = 1 for every a ∈ A, dh(b) = n

m for every

b ∈ B \ {x} and dh(x) = n
m + |A| − n

m |B|.

3) |A| ≤ n
m |B| and for every e = xy ∈ E(T ): |V (Te) ∩ A| > n

m |V (Te) ∩ B|,

where Te is the component of T − e that contains the unique vertex in

{x, y} ∩A.

Proof. 1) ⇒ 2). For stars 2) trivially holds. Thus, we assume T is not a star

and hence, there is an u ∈ Leaf(T−Leaf(T )). Recall that no fractional [1, n
m ]-

factor of T uses value 0. Let h be a fractional [1, n
m ]-factor of T with values in

{ 1
m , ...,

m−1
m , 1}, such that

(i) dh(u) is as small as possible,

(ii) with respect to (i),
∑

e∈E(T ) h(e) is as small as possible.

Observe that no two (+)-vertices are adjacent and as a consequence, h(e) = 1

if and only if e is a pendant edge of T . Furthermore, every vertex adjacent to

a leaf of T is a (+)-vertex since T is not isomorphic to K2.

First, suppose T contains a path P = uv1 . . . vl in T such that vl−1 is a

(−)-vertex and dh(vl) <
n
m . Modify h as follows: add − 1

m and 1
m alternately

to the edges of P − vl−1vl such that − 1
m is added to uv1. If vl−2vl−1 received

− 1
m , add 1

m to vl−1vl, see Figure 3.4.

Note that vl is not a leaf, since it is adjacent to a (−)-vertex. Hence, no

edge of P is a pendant edge of T and thus, every e ∈ E(P ) satisfies h(e) < 1. In

conclusion, the modification of h, denoted h′, has values in {0, 1
m , ...,

m−1
m , 1}.

Moreover, h′ is a fractional [1, n
m ]-factor of T since dh(u) > 1, dh(vl−1) = 1 and

dh(vl) <
n
m . This contradicts the choice of h, since dh

′
(u) = dh(u)− 1

m .
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− 1
m + 1

m + 1
m

< n
m

(−)− 1
m

v1 vl−1 vlu

Figure 3.4: The modifying of h if T contains a path P = uv1 . . . vl such that vl−1

is a (−)-vertex and dh(vl) <
n
m . The solid edges belong to P .

The non-existence of such a path implies that the set of (−)-vertices is

stable and every v ∈ V (T ) \ {u} that is a (+)-vertex satisfies dh(v) = n
m . The

former implies that A consists of all (−)-vertices and B of all (+)-vertices.

Hence,

|A| =
∑
a∈A

dh(a) =
∑
b∈B

dh(b) =
n

m
(|B| − 1) + dh(u),

which implies dh(u) = n
m + |A| − n

m |B|.

Now, let x be an arbitrary (+)-vertex, let P be the u, x-path contained in

T and let l = m
(
n
m − dh(u)

)
. Note that |V (P )| is odd, since P consists of

alternately (+)- and (−)-vertices. Set h0 = h and for i ∈ {1, . . . , l} let hi be

the function obtained from hi−1 by alternately adding 1
m and − 1

m to the edges

of P such that 1
m is added to the edge of P incident with u (see Figure 3.5).

+ 1
m − 1

m − 1
m

+ 1
m

xu

Figure 3.5: The modifying of hi−1 to obtain hi. The solid edges belong to P .

We have dhl(u) = dh(u)+ l
m = n

m and dhl(x) = dh(x)− l
m = n

m− l
m = dh(u).

As a consequence, dhi(v) ∈ [1, n
m ] for every i ∈ {1, . . . , l} and every v ∈ V (T ).

Furthermore, for every i ∈ {1, . . . , l}, if hi−1 is a fractional [1, n
m ]-factor that

does not use value 0 nor 1 on P , then hi is a fractional [1, n
m ]-factor. Thus, hi

also does not use value 0 on P . Moreover, it also does not use value 1 on P ,
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since every edge of P is incident with a (−)-vertex (with respect to hi) that is

not a leaf of T . As a consequence, for every i ∈ {1, . . . , l}, hi only uses values

1
m , . . . ,

m−1
m on P and therefore, hl is the desired fractional factor.

2) ⇒ 3) By Theorem 3.1.3, T satisfies the n
m -isolated-vertex-condition and

hence |A| = iso(T − B) ≤ n
m |B|. Let e = xy ∈ E(T ), where y ∈ A, and

let h be a fractional [1, n
m ]-factor of T with the properties stated in 2) (with

pre-described vertex x). Then,

|V (Te) ∩A| =
∑

v∈V (Te)∩A

dh(v) = h(xy) +
∑

w∈V (Te)∩B

dh(w)

= h(xy) +
n

m
|V (Te) ∩B|,

which proves 3), since h(xy) > 0.

3) ⇒ 1) For every e ∈ E(T ), statement 3) implies

iso ((T − e)− (V (Te) ∩B)) = |V (Te) ∩A| >
n

m
|V (Te) ∩B|.

Thus, by Theorem 3.1.3 it suffice to show that T has a fractional [1, n
m ]-factor.

For every e ∈ E(T ) set

h(e) = |V (Te) ∩A| −
|A|
|B|

|V (Te) ∩B|.

For every e ∈ E(T ), statement 3) imply

h(e) = |V (Te) ∩A| −
|A|
|B|

|V (Te) ∩B| ≥ |V (Te) ∩A| −
n

m
|V (Te) ∩B| > 0.

By the definition of h, for every a ∈ A and every b ∈ B we have

dh(a) =
∑

e′∈∂T (a)

h(e′) = (dT (a)− 1)(|A| − 1) + dT (a)−
|A|
|B|

(dT (a)− 1)|B|

= dT (a)|A| − |A|+ 1− |A|(dT (a)− 1) = 1

and

dh(b) =
∑

e′∈∂T (b)

h(e′) = |A| − |A|
|B|

(|B| − 1) =
|A|
|B|

.
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Note that 1 < |A|
|B| ≤

n
m , since |A| > |B|. Furthermore, for every e = xy ∈ E(T ),

where x ∈ B, the above calculations imply

h(e) = dh(y)−
∑

e′∈∂T (y)\{e}

h(e′) ≤ 1.

In conclusion, h is a fractional [1, n
m ]-factor of T , which proves T ∈ T n

m
.

Note that, by the proof of 3) ⇒ 1), every T ∈ T n
m

has a fractional [1, n
m ]-

factor h such that dh(a) = 1 for every a ∈ A and dh(b) = |A|
|B| for every b ∈ B.

On the other hand, not every tree with such a factor belongs to T n
m
. As the

following corollary shows, Theorem 3.3.1 imply some structural properties of

trees in T n
m
.

Corollary 3.3.2. Let n,m be integers with 0 < m < n and let T ∈ T n
m

be a

tree with bipartition {A,B}, where 0 < |B| ≤ |A|. Then, the following holds

(i) either T ∼= K1,1, or Leaf(T ) ⊆ A,

(ii) dT (a) ≤ m for every a ∈ A,

(iii) dT (b) ≤ n for every b ∈ B,

(iv) dT (x) = ⌊ n
m⌋+ 1 for every x ∈ Leaf(T − Leaf(T )),

(v) if n ≡ 1 (mod m), then either T is a star or |A| = n
m |B| and |V (T )| is a

multiple of n+m.

Proof. For stars the statements are trivial. Thus, assume T is not a star

and hence, there are two distinct vertices x1, x2 ∈ Leaf(T − Leaf(T )). Note

that every vertex v ∈ Leaf(T − Leaf(T )) belongs to B, since h(v) > 1 for

every fractional [1, n
m ]-factor h of T . Consider two fractional [1, n

m ]-factors

h1, h2 of T with the properties stated in statement 2) of Theorem 3.3.1 (with

respect to x1 and x2, respectively). The existence of h1 imply (i), (ii), (iii) and

d(x) = ⌊ n
m⌋+1 for every x ∈ Leaf(T −Leaf(T ))\{x1}. By the existence of h2

we have d(x1) = ⌊ n
m⌋ + 1, which proves (iv). Furthermore, if n ≡ 1 (mod m),
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then n
m = ⌊ n

m⌋ + 1
m ≤ dh1(x1) ≤ n

m . Hence, n
m = dh1(x1) =

n
m + |A| − n

m |B|,

i.e. |A| = n
m |B|. Moreover, we observe that |B|

m is an integer, since n−1
m is an

integer and |A| = n
m |B| = n−1

m |B|+ |B|
m . As a consequence, |V (G)| = |A|+|B| =

n
m |B|+ |B| = (n+m) |B|

m , which proves (v).

By (i), (iii) and (iv), for every T ∈ Tn
1
the set Leaf(T −Leaf(T )) is empty,

which is equivalent to T being a star. As a consequence, Tn
1
= {K1,i : 1 ≤ i ≤

n}, or equivalently, Theorem 3.0.2 holds.



Chapter 4

Factors in edge-chromatic

critical graphs

This chapter (excluding Sections 4.2 and 4.3) is based on [79]. Theorems 4.0.2,

4.0.3 and 4.2.1 are unpublished; all other results in Chapter 4 are published

in [79].

Vizing [87] proved the fundamental result on edge-coloring simple graphs

by showing that the chromatic index of a simple graph G is either ∆(G) or

∆(G) + 1. An edge e ∈ E(G) is critical, if χ′(G) = ∆(G) + 1 and χ′(G− e) =

∆(G). If G is connected, ∆(G) = k and all edges of G are critical, then G

is k-critical. Clearly, every simple graph H with χ′(H) = ∆(H) + 1 contains

a ∆(H)-critical subgraph. There had been several conjectures with regard to

the order or to (near) perfect matchings of critical graphs, which all turned

out to be false, see [9] for a survey. The situation changes when we consider

2-factors. In 1965, Vizing [88] conjectured that every critical graph has a 2-

factor. This conjecture has been verified for some specific classes of critical

graphs as overfull graphs [28] or critical graphs with large maximum degree

in relation to their order [15, 53]. Furthermore, some equivalent formulations

or reduction to some classes of critical graphs as e.g. critical graphs of even

order are proved in [9,16]. All these approaches have not yet led to significant

35
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progress in answering the question whether critical graphs have a 2-factor.

To gain more insight into structural properties of critical graphs it might be

useful to investigate slightly easier statements about factors in critical graphs.

If Vizing’s 2-factor conjecture is true, then (1) every critical graph has a cycle-

factor, (2) every critical graph does not contain an inclusion-wise minimal

vertex-cut consisting of an odd number of divalent vertices, and (3) every crit-

ical graph has a path-factor. Statements (1) and (3) were conjectured to be

true in [9]; Statement (3) is verified in [48]. For Statement (1) note that ev-

ery bridgeless graph with minimum degree at least 3 has a cycle-factor [23].

Thus, the question whether every critical graph has a cycle-factor is reduced

to critical graphs with divalent vertices.

In this chapter, first we prove Statement (1) for critical graphs with a

small number of divalent vertices. Next, we show that every vertex-cut (not

necessary of odd cardinality) consisting of divalent vertices in a critical graph

has a huge cardinality compared to the maximum degree, which partially proves

(2). Furthermore, we slightly extend the result of [48]. The following theorems

are the main results of Chapter 4:

Theorem 4.0.1. Let k ≥ 3 and let G be a k-critical graph. If G has at most

2k − 6 divalent vertices, then G has a cycle-factor.

Theorem 4.0.2. Let k ≥ 2 and let G be a k-critical graph. If A is an inclusion-

wise minimal vertex-cut consisting of divalent vertices, then

|A| >


⌈
1
4(k

3 − k2)
⌉

, if k ≤ 6

3
2(k

2 − k) , if k > 6.

Theorem 4.0.3. Let k ≥ 3 and let G be a k-critical graph. Then, G has a

path-factor F with dF (v) = 2 for all v ∈ V (G) with dG(v) = 2.

In order to prove the above results, we need some further definitions as well

as an observation.
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Let φ be a proper k-edge-coloring of a simple graph G and v ∈ V (G). For

a color i ∈ {1, .., k}, we say color i is present at v if an edge incident to v is

colored with color i. Otherwise, color i is missing at v. The set of colors present

at v is denoted by φ(v); the set of colors missing at v is denoted by φ̄(v). For

two different colors i, j ∈ {1, ..., k}, the subgraph induced by the edges that

are colored i or j is denoted by K(i, j). Its components are called (i, j)-Kempe

chains or sometimes just Kempe chains. Clearly, a Kempe chain is a path or a

circuit. If {i, j}∩φ(v) ̸= ∅, then the unique component of K(i, j) that contains

v is denoted by Pφ
v (i, j). We will omit the upper index if this does not cause

any ambiguity. A new proper k-edge-coloring, denoted by φ/Pv(i, j), can be

obtained from φ by interchanging colors i and j in Pv(i, j).

In the proofs of Lemma 4.1.1, 4.1.2 and Theorem 4.2.1 we will use the

following basic observation without reference: Let G be a simple graph with a

critical edge vw and let φ be a proper ∆(G)-edge-coloring of G− vw. If color

i is missing at v and j is missing at w, then color i is present at w, color j is

present at v and Pφ
v (i, j) is a v, w-path.

4.1 Cycle-factors

In this section we prove Theorem 4.0.1. In order to do so, we first prove two

technical lemmas as well as a theorem.

Lemma 4.1.1. Let G be a simple graph with ∆(G) = k, χ′(G) = k + 1, and

let A ⊆ V (G) be a set of vertices such that

• eG(A, v) = 1 for every v ∈ N(A), and

• N(A) = {x, y, w1, ..., wl} with l ≥ 1, d(y) ≤ d(x) < k and d(wi) = 2 for

every i ∈ {1, ..., l}.

If at least one edge in EG(A, {w1, ..., wl}) is critical, then l > k(k− d(y))−

d(x) + 1.
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Proof. Let w ∈ {w1, ..., wl} be a divalent vertex, let w′ be the unique neighbour

of w that belongs to A, and let the edge w′w be critical.

Claim 1. There is a proper k-edge-coloring φ of G−w′w such that φ̄(w′) =

φ(w) = {1} and 1 ∈ φ̄(x).

Proof of Claim 1. Since w′w is critical there is a proper k-edge-coloring

φ′ of G − w′w. Furthermore, φ̄′(w′) = φ′(w) = {i} for a color i ∈ {1, ..., k}.

Since d(x) < k, there is a color j that is missing at x. If i = j ̸= 1, then we

obtain a coloring with the desired properties by interchanging colors i and 1.

If i ̸= j, then Pw′(i, j) is a w′, w-path and thus does not contain x. Therefore,

the coloring φ′′, defined by φ′′ = φ′/Pw′(i, j), satisfies φ̄′′(w′) = φ′′(w) = {j}

and j ∈ φ̄′′(x). Again, if j ̸= 1, then a coloring with the desired properties can

be obtained by interchanging colors j and 1. Thus, the claim is proved. ■

Now fix a proper k-edge-coloring φ of G − w′w with the properties stated

in Claim 1. Define a set M as follows:

M = {(h, z, h′) : z ∈ N(A) \ {w}, {h, h′} ⊆ φ(z), h ̸= h′,

φ(e) = h, where e is the unique edge in EG(A, z)}.

We prove a lower bound for the number of triples in M , which will be used

to obtain the lower bound for l.

For each triple (h, z, h′) of M there is a unique Kempe chain P , that contains

the two edges incident with z that are colored h and h′. In this case we say

P contains (h, z, h′). Furthermore, if P is a path and v is an end of P , then

we can interpret P as a vertex-list starting with v. This gives an order of the

vertices of P and thus an order of the triples contained in P . We define the

first and the last triple contained in P (starting with v) in the natural way.

An example is given in Figure 4.1.

If i ∈ {2, ..., k}, then the Kempe chain Pw′(1, i) is a path with ends w′ and

w and thus, it contains at least one triple of M . Therefore, we can define a

subsetM1 ofM as follows: For every i ∈ {2, ...k} let (i1, zi, i2) be the last triple
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y1

P  (1,2)
v

A

2

2 z

2

1

1

z'v

Figure 4.1: Pv(1, 2) contains (1, y, 2), (2, z
′, 1) and (2, z, 1). (1, y, 2) is the first and

(2, z, 1) the last triple contained in Pv(1, 2) (starting with v).

contained in Pw′(1, i) (starting with w′) and set

M1 = {(i1, zi, i2) : i ∈ {2, ...k}}.

Figure 4.2 shows an example. We note, that {i1, i2} = {1, i} for every i ∈

{2, ..., k} and in particular, x is not in a triple of M1, since color 1 is missing

at x.

P   (1,3)

A

3 1

3 z 1

w 1w

P   (1,2)

1 y 3

2

'

w'

w'

3

Figure 4.2: The triple (3, z3, 1) is the last triple contained in Pw′(1, 3); (1, y, 2) is

the last triple contained in Pw′(1, 2)(starting with w′). Thus,

(3, z3, 1), (1, z2, 2) ∈M1 where z2 = y.

Claim 2. |M1| = k − 1.

Proof of Claim 2. Let i, i′ be two different colors of {2, ..., k}. Then,

{i1, i2} = {1, i} ≠ {1, i′} = {i′1, i′2}, and hence (i1, zi, i2) ̸= (i′1, zi′ , i
′
2). ■

Claim 3. Let i ∈ {2, ..., k} and j ∈ φ̄(zi). Then Pzi(i1, j) contains a triple
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of M .

Proof of Claim 3. Suppose, Pzi(i1, j) does not contain a triple of M . Then,

the coloring φ′, defined by φ′ = φ/Pzi(i1, j), satisfies φ̄
′(w′) = φ′(w) = {1}.

Since (i1, zi, i2) is the last triple contained in Pw′(1, i) (starting with w′), the

Kempe chain Pφ′
w (i1, i2) has ends w and zi. In particular Pφ′

w (i1, i2) is not a

w′, w-path. We have either i1 = 1 or i2 = 1, a contradiction. See Figure 4.3

for an example. ■

P   (1,3)

A

3 z 1

w 1w

P   (3,2)

'

w'

z

3

3

Figure 4.3: The triple (3, z3, 1) is in M1. Color 2 is missing at z3. The Kempe

chain Pz3(3, 2) does not contain a triple of M . Interchanging colors 3

and 2 in Pz3(3, 2) produces a contradiction, since Pw(1, 3) is not

longer a w′, w-path.

Next, define a second subset M2 of M as follows:

M2 = {(h, z, h′) : i ∈ {2, ..., k}, j ∈ φ̄(zi), (h, z, h
′) is the first triple

contained in Pzi(i1, j) (starting with zi)}.

An example is given in Figure 4.4.

Claim 4. M1 ∩M2 = ∅.

Proof of Claim 4. We have zi /∈ {w′, w} for every i ∈ {2, ..., k}. Hence,

every triple of M2 is contained in a path with an end that is neither w′ nor w,

whereas every triple of M1 is contained in a w′, w-path. ■

Claim 5. |M2| = |{(j, zi) : i ∈ {2, ..., k}, j ∈ φ̄(zi)}|.
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P   (1,2)

A

1 y 2

3 z 1

w 1w

P  (1,3)

4
5

'w

w'

y

Figure 4.4: The triple (1, z2, 2) is in M1, where z2 = y. Color 3 is missing at y.

The triple (3, z, 1) is the first triple contained in Py(1, 3) (starting

with y) and thus in M2.

Proof of Claim 5. Let i, i′ ∈ {2, ..., k}, j ∈ φ̄(zi) and j′ ∈ φ̄(zi′) such

that (j, zi) ̸= (j′, zi′). Then, the paths Pzi(i1, j) and Pzi′ (i
′
1, j

′) have at least

one different color or a different starting vertex (interpreted as a vertex-list

starting with zi or zi′ respectively). Therefore, these two paths have different

first triples (in the case zi ̸= zi′ we use the fact that both triples are first

triples). ■

Claim 6. |{(j, zi) : i ∈ {2, ..., k}, j ∈ φ̄(zi)}| ≥ (k − d(y))(k − 1).

Proof of Claim 6. Since color 1 is missing at x, there is no i ∈ {2, ..., k} with

zi = x. If zi = zi′ for two different integers i, i′ of {2, ..., k}, then zi = zi′ = y,

since every vertex in N(A) \ {x, y} is divalent. Furthermore, the number of

indices i ∈ {2, ..., k} with zi = y is at most d(y)− 1. Vertex y misses k − d(y)

colors whereas all other vertices inN(A)\{w, x}miss k−2 colors. In conclusion:

|{(j, zi) : i ∈ {2, ..., k}, j ∈ φ̄(zi)}|

≥(k − d(y)) + (k − 1− (d(y)− 1))(k − 2)

=(k − d(y))(k − 1).

■

We now prove that l ≥ k(k − d(y)) − d(x) + 1. Since eG(A, v) = 1 for
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every v ∈ N(A) and all vertices in N(A) \ {x, y} are divalent, the inequality

l > |M | − (d(x)− 1)− (d(y)− 1) holds. By claims 2, 4, 5 and 6, we have:

l > |M | − (d(x)− 1)− (d(y)− 1)

≥ |M1|+ |M2| − (d(x)− 1)− (d(y)− 1)

≥ k − 1 + (k − d(y))(k − 1)− (d(x)− 1)− (d(y)− 1)

= k(k − d(y))− d(x) + 1.

Lemma 4.1.2. Let k > 3 and let G be a simple graph with ∆(G) = k and

χ′(G) = k + 1. If E′ ⊆ E(G) is an inclusion-wise minimal edge-cut consisting

of three critical edges, then no edge in E′ is incident to a divalent vertex.

Proof. LetG be a simple graph with ∆(G) = k and χ′(G) = k+1. Furthermore,

let E′ ⊆ E(G) be an inclusion-wise minimal edge-cut consisting of three critical

edges e1, e2 and e3; let A and B be the components of G−E′, and let ei = xiyi,

where xi belongs to A and yi to B. Let GA be the subgraph induced by

V (A)∪{y1, y2, y3}, and let GB be the subgraph induced by V (B)∪{x1, x2, x3}.

We say a k-edge-coloring φ of GA or GB is of

• type 1, if φ(e1) = φ(e2) = φ(e3),

• type 2, if φ(e1) = φ(e2) ̸= φ(e3),

• type 3, if φ(e1) = φ(e3) ̸= φ(e2),

• type 4, if φ(e2) = φ(e3) ̸= φ(e1),

• type 5, if φ(e1) ̸= φ(e2), φ(e1) ̸= φ(e3), φ(e2) ̸= φ(e3).

Suppose to the contrary that there is an edge of E′ that is incident to a divalent

vertex. We will show that there is a proper k-edge-coloring φA of GA and a

proper k-edge-coloring φB of GB such that φA and φB can be combined to
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a proper k-edge-coloring of G (by possibly relabeling the colors in one of the

colorings), a contradiction.

In order to label the appearing colorings properly, we use the following

definition: For an edge e ∈ E′, a k-edge-coloring φ of G − e and a color

i ∈ {1, ..., k}, let φi denote the k-edge-coloring of G obtained from φ by coloring

e with i.

Suppose to the contrary that d(y1) = 2. First of all we use the fact that

e1 is critical. Let φ be a proper k-edge-coloring of G − e1 such that w.l.o.g.

φ̄(x1) = φ(y1) = {1} holds. Thus, for every i ∈ {2, ..., k} the Kempe chain

Px1(1, i) is an x1, y1-path. Since k > 3, at least two of these paths, say Px1(1, 2)

and Px1(1, 3), contain w.l.o.g. e2, which means φ(e2) = 1. We first prove that

the coloring φ can be used to obtain a proper type 1 and a proper type 2

k-edge-coloring of GA and a proper type 3, a proper type 4 and a proper type

5 k-edge-coloring of GB, no matter which color the edge e3 has received.

Case 1. φ(e3) = 1.

In this case, the coloring φ1 |E(GA) is a proper type 1 k-edge-coloring of

GA. On the other hand, φ2 |E(GB) is a proper type 4 k-edge-coloring of GB.

Furthermore, the coloring φ′, defined by φ′ = φ/Px3(1, 2), satisfies φ
′(e3) = 2,

while φ̄′(x1) = φ′(y1) = {1} and φ′(e2) = 1 still hold. Therefore, φ′
1 |E(GA) is a

proper type 2 k-edge-coloring of GA, the coloring φ′
2 |E(GB) is a proper type 3

k-edge-coloring of GB, and φ
′
3 |E(GB) is a proper type 5 k-edge-coloring of GB.

Case 2. φ(e3) ̸= 1.

If e3 ∈ Px1(1, φ(e3)), then the coloring φ′, defined by φ′ = φ/Px1(1, φ(e3)),

satisfies φ̄′(x1) = φ′(y1) = {φ(e3)} and φ′(e2) = φ′(e3) = 1. Hence, for

any i ∈ {2, ..., k} \ {φ(e3)} the Kempe chain Pφ′
x1 (i, φ(e3)) is not an x1, y1-

path, a contradiction. Therefore, we may assume e3 /∈ Px1(1, φ(e3)), which

implies e2 ∈ Px1(1, φ(e3)). As a consequence, the coloring φ′, defined by φ′ =

φ/Px3(1, φ(e3)), satisfies φ̄
′(x1) = φ′(y1) = {1} and φ′(e2) = φ′(e3) = 1. Since

Pφ′
x1 (1, 2) and P

φ′
x1 (1, 3) still contain e2, Case 1 applies.
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In both cases there is a proper type 1 and a proper type 2 k-edge-coloring of

GA, and a proper type 3, a proper type 4 and a proper type 5 k-edge-coloring

of GB.

We now use the fact that the edge e3 is critical as well. Let φ′ be a proper

k-edge-coloring of G − e3 with i ∈ φ̄′(x3) and j ∈ φ̄′(y3). If e1 and e2 are

colored with the same color, then φ′
j |E(GB) is a proper k-edge-coloring of GB

that is of type 1 or 2. On the other hand, if φ′(e1) ̸= φ′(e2), then φ
′
i |E(GA) is

a proper type 3, type 4 or type 5 k-edge-coloring of GA.

In every case there are two proper k-edge-colorings, one of GA and one of GB,

that are of the same type. This contradicts the fact that G is not k-edge-

colorable.

A graph without a cycle-factor can be characterized as follows (see Theorem

6.2 (p. 221) in [2]).

Theorem 4.1.3 ( [2]). If G is a graph, then G has no cycle-factor, if and only

if there is an X ⊂ V (G) with∑
v∈X

(d(v)− 2)− q(G;X) < 0, (1)

where q(G;X) denotes the number of components D of G − X such that

eG(V (D), X) is odd.

We will give a more detailed formulation of Theorem 4.1.3 with regard to

a minimal set X that satisfies inequality (1).

Theorem 4.1.4. If G is a connected graph, then G has no cycle-factor, if and

only if there is an X ⊂ V (G) with the following properties: Let D1, . . . , Dn be

the components of G−X.

(a)
∑
v∈X

(d(v)− 2)− q(G;X) < 0,

(b) eG(V (Di), v) ≤ 1 for every v ∈ X and every i ∈ {1, ..., n},

(c) X is stable,
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(d) eG(V (Di), X) is odd for every i ∈ {1, ..., n},

(e)
∑
v∈X

d(v)̸=2

(d(v)− 3) + 1
2

n∑
i=1

(eG(V (Di), X)− 3) < |{v ∈ X : d(v) = 2}|.

Proof. By Theorem 4.1.3 it suffices to prove one direction. LetG be a connected

graph without a cycle-factor. By Theorem 4.1.3, there is a set that satisfies

inequality (1). Let X ⊂ V (G) be the smallest set with
∑

v∈X(d(v) − 2) −

q(G;X) < 0. We show that X satisfies (b) - (e).

For each v ∈ X let c(v) be the number of components D of G − X with

eG(V (D), X) ≡ 1 (mod 2) and eG(V (D), v) ≥ 1. We first prove c(v) = d(v)

for every v ∈ X, which implies properties (b) - (d), since G is connected.

Let x ∈ X and X ′ = X \ {x}. By the choice of X, the set X ′ does not satisfy

inequality (a). Furthermore, we observe that −2|X|+
∑

v∈X d(v)− q(G;X) is

even. As a consequence,

0 ≤
∑
v∈X′

(d(v)− 2)− q(G;X ′)

≤ −2|X|+ 2 +
∑
v∈X

d(v)− d(x)− (q(G;X)− c(x))

= −2|X|+
∑
v∈X

d(v)− q(G;X) + 2− d(x) + c(x)

≤ −2 + 2− d(x) + c(x).

Thus, d(x) ≤ c(x), which implies d(x) = c(x). Therefore, the set X satisfies

(b) - (d).
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Next, by using (c) and (d) we can transform (a) to (e) as follows:∑
v∈X

(d(v)− 2)− q(G;X) < 0

⇔
(d)

∑
v∈X

(d(v)− 2) < n

⇔ 1

2

∑
v∈X

(d(v)− 2) +
∑
v∈X

(d(v)− 2) <
3

2

n∑
i=1

1

⇔
(c)

1

2

n∑
i=1

(eG(V (Di), X))− |X|+
∑
v∈X

(d(v)− 2) <
n∑

i=1

3

2

⇔ 1

2

n∑
i=1

(eG(V (Di), X)− 3) +
∑
v∈X

(d(v)− 3) < 0

⇔ 1

2

n∑
i=1

(eG(V (Di), X)− 3) +
∑
v∈X

d(v)̸=2

(d(v)− 3)− |{v ∈ X : d(v) = 2}| < 0

⇔
∑
v∈X

d(v) ̸=2

(d(v)− 3) +
1

2

n∑
i=1

(eG(V (Di), X)− 3) < |{v ∈ X : d(v) = 2}|.

Proof of Theorem 4.0.1. For k = 3 there is nothing to prove. Let k > 3. Let G

be a k-critical graph without a cycle-factor. Hence, there is a subset X ⊂ V (G)

that satisfies conditions (a) -(e) of Theorem 4.1.4. We show that X contains

more than 2k − 6 divalent vertices.

Let D1, ..., Dn be the components of G−X and g : {D1, ..., Dn} → R with

g(Di) :=
∑

v∈N(V (Di))

d(v)−2
d(v) for i ∈ {1, ..., n}.

Properties (a) -(d) imply

n∑
i=1

g(Di) =

n∑
i=1

∑
v∈N(V (Di))

d(v)− 2

d(v)
=

(b),(c)

∑
v∈X

d(v)− 2

<
(a)

q(G;X) =
(d)

n.

Thus, there is at least one component D ∈ {D1, ..., Dn} with g(D) < 1. Every

critical graph does not contain a vertex of degree 1. Therefore, there are at

most two vertices in N(V (D)) that are not divalent. Moreover, if N(V (D))
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contains two vertices of degree at least 3, then one of them is of degree 3 and

the other is of degree at most 5. Furthermore, since every critical graph is

bridgeless, the component D has at least three neighbours in X by (b) and (d).

In conclusion, we can assume N(V (D)) = {x, y, w1, ..., wl}, where l ≥ 1, the

vertices w1, ..., wl are divalent and either d(y) = 2, or d(y) = 3 and d(x) ≤ 5.

We consider the following two cases:

Case 1. d(x) < k.

By condition (b) and Lemma 4.1.1 it follows that

l > k(k − d(y))− d(x) + 1 ≥ k(k − 3)− k + 2 = k(k − 4) + 2 ≥ 2k − 6.

Case 1. d(x) = k.

If there are three components adjacent to x such that each has exactly three

edges to X, then none of these components is adjacent with a divalent vertex

by Lemma 4.1.2. In conclusion, we obtain with property (b)∑
i∈{1,...,n}

x∈N(V (Di))

g(Di) ≥ d(x)− 2 + 6

(
1

3

)
= d(x).

Since
∑n

i=1 g(Di) < n, there is another component D′ ∈ {D1, ..., Dn} with

g(D′) < 1, but x /∈ N(D′). If D′ is not adjacent to a vertex of degree k,

then N(V (D′)) contains at least 2k − 6 divalent vertices since Case 1 applies.

Otherwise X contains at least two vertices of degree k. Since G is bridge-

less, property (d) implies that eG(V (Di), X) ≥ 3 for every i ∈ {1, ..., n}. In

conclusion, property (e) implies that

|{v ∈ X : d(v) = 2}| > 2(k − 3) = 2k − 6.

If at most two components adjacent to x have exactly three edges to X, then

by properties (b) - (d) there are at least d(x) − 2 components such that each

has at least five edges to X. Therefore, property (e) implies that

|{v ∈ X : d(v) = 2}| > d(x)− 3 + (d(x)− 2)
1

2
(5− 3) = 2k − 5,

and the proof is completed.
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4.2 Vertex-cuts consisting of divalent vertices

In this section we prove Theorem 4.0.2. Lemma 4.1.1 already provides some

information about the cardinality of a vertex-cut containing only divalent ver-

tices (in a critical graph). More precisely, there is no k-critical graph with a

vertex-cut consisting of (k−1)2 or less divalent vertices. The following theorem,

which implies Theorem 4.0.2, improves this bound.

Theorem 4.2.1. Let G be a simple graph with ∆(G) = k and χ′(G) = k + 1;

let A ⊂ V (G) be a set of divalent vertices. If A is an inclusion-wise minimal

vertex-cut and at least one edge in EG(A,N(A)) is critical, then

|A| >


⌈
1
4(k

3 − k2)
⌉

, if k ≤ 6

3
2(k

2 − k) , if k > 6.

Proof. Let vw ∈ E(G) be a critical edge with v ∈ A and w /∈ A; let φ be

a proper k-edge-coloring of G − vw with φ(v) = φ̄(w) = {1}. We count the

number of vertices in A \ {v} that are incident with a 1-colored edge. The set

of such vertices is denoted by M , i.e.

M = {z : z ∈ A \ {v}, 1 ∈ φ(z)}.

For each j ∈ {2, ..., k}, the Kempe-Chain Pv(1, j) is a v, w-path, thus it contains

at least one inner vertex that belongs to M . Some of these paths may contain

exactly one inner vertex belonging to M , and we define:

M1 = {zj : zj is the only inner vertex of Pv(1, j) that belongs to A}.

The remaining Kempe-Chains contain at least 3 inner vertices that belong to

M , and we define analogously:

M2 = {z : z ∈ A \M1, z is an inner vertex of Pv(1, j) for one j ∈ {2, ..., k}}.

Since all vertices in M are divalent, we have |M1| ∈ {0, ..., k−1}, M1∩M2 = ∅

and |M2| ≥ 3((k − 1)− |M1|).
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Now for every zj ∈ M1 and each i ∈ φ̄(zj), the path Pzj (1, i) also contains

at least one inner vertex belonging to M . Otherwise the coloring φ′, defined

by φ′ = φ/Pzj (1, i), satisfies φ
′(v) = φ̄′(w) = {1}, but zj is an endvertex of

either Pφ′
v (1, j) or Pφ′

w (1, j), a contradiction. Let M3 be the set of these inner

vertices, i.e.

M3 = {z : zj ∈M1, i ∈ φ̄(zj), z ∈ A, z is an inner vertex of Pzj (1, i)}.

Each vertex ofM1 misses k−2 colors. Furthermore for each vertex z ∈M3 there

are at most two different pairs (j, i) and (j′, i′) such that z is an inner vertex of

Pzj (1, i) and Pzj′ (1, i
′). This happens if and only if Pzj (1, i) = Pzj′ (1, i

′). Thus

we obtain:

|M3| ≥
⌈
|M1|(k − 2)

2

⌉
For every zj ∈ M1 and every i ∈ φ̄(zj) the path Pzj (1, i) has an end that is

neither v nor w, and hence M3 ∩ (M1 ∪M2) = ∅. In conclusion |M | is bounded

from below as follows:

|M | ≥ |M1|+ |M2|+ |M3|

≥ |M1|+ 3((k − 1)− |M1|) +
⌈
|M1|(k − 2)

2

⌉
= 3k − 3 +

⌈
|M1|(k − 6)

2

⌉

≥


3k − 3 +

⌈
(k−1)(k−6)

2

⌉
, if k ≤ 6

3k − 3 , if k > 6

=


k(k−1)

2 , if k ≤ 6

3(k − 1) , if k > 6

=: f(k)

We now choose an arbitrary h ∈ {2, ..., k} and consider the k-edge-coloring

φh defined by φh = φ/Pv(1, h). This coloring satisfies φh(v) = φ̄h(w) = {h}.

By using the argumentation above, there are at least f(k) different vertices

z ∈ A \ {v} with h ∈ φh(z). We note that the color swap did not change the
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colors appearing on a vertex in A\{v}, i.e. φ(z) = φh(z) for every z ∈ A\{v}.

Therefore, there are also at least f(k) edges incident to a vertex of A\{v} that

are colored h in the coloring φ. Since h was arbitrary, there are at least kf(k)

different edges incident to a vertex of A \ {v}. By using the fact that every

vertex in A \ {v} is divalent, we finally obtain:

|A| >
⌈
kf(k)

2

⌉
=


⌈
1
4(k

3 − k2)
⌉

, if k ≤ 6

3
2(k

2 − k) , if k > 6.

4.3 Path-factors

In this section we prove Theorem 4.0.3. We use the following two results.

Lemma 4.3.1 (Vizing’s Adjacency Lemma [89]). Let G be a critical graph and

xy ∈ E(G). Then at least ∆(G)− d(y) + 1 vertices in N(x) \ {y} have degree

∆(G).

For two integers a, b with 0 ≤ a ≤ b and a graph G a factor F of G is an

[a, b]-factor if a ≤ dF (v) ≤ b for every v ∈ V (G). Note that a [1, 2]-factor is

a factor whose components are paths and circuits. Graphs admitting a [1, 2]-

factor can be characterized as follows.

Theorem 4.3.2 ( [1]). A simple graph G has a [1, 2]-factor if and only if

iso(G− S) ≤ 2|S| for all S ⊂ V (G).

Proof of Theorem 4.0.3. Let G be a critical graph. We first prove that G has

a [1, 2]-factor F such that every divalent vertex of G is also a divalent vertex

in F . Let G∗ be the graph obtained from G by splitting each divalent vertex

x into two vertices x1, x2 of degree 1. That is: delete x; add two new vertices

x1, x2 of degree 1, where x1 is adjacent to one former neighbour of x and x2

is adjacent to the other former neighbour of x. It is easy to see that G has a
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[1, 2]-factor F with dF (v) = 2 for all divalent vertices v of G if and only if G∗

has a [1, 2]-factor. Thus, by Theorem 4.3.2 it is sufficient to show

iso(G∗ − S) ≤ 2|S| (1)

for all S ⊂ V (G∗).

Let S be an arbitrary subset of V (G∗). We use the Discharging-Method to

prove (1). Define an initial charge function ch : Iso(G∗−S) → R by ch(u) = 1

for all u ∈ Iso(G∗ − S). Now ch is modified by moving charge locally around

as follows: every u ∈ Iso(G∗ − S) distributes its charge equally among all

neighbours. Since each neighbour of a vertex u ∈ Iso(G∗ − S) is in S, this

leads to a new charge function ch′ : S → R. Furthermore, since we just move

charge around, the following holds:

iso(G∗ − S) =
∑

u∈Iso(G∗−S)

ch(u) =
∑
w∈S

ch′(w).

We prove that each w ∈ S has modified charge at most 2, which implies (1).

Let w be an arbitrary vertex of S. If w is of degree 1, then w received at

most charge 1 from its neighbour and thus ch′(w) ≤ 2 obviously holds. If w is

adjacent to a vertex v of degree 1, then w is adjacent to v and ∆(G)−1 vertices

of degree ∆(G) by the construction of G∗ and Vizing’s Adjacency Lemma.

Hence ch′(w) ≤ 1 + ∆(G)−1
∆(G) ≤ 2. Therefore, we may assume, that w and none

of its neighbours is of degree 1. As a consequence, each vertex in {w}∪N(w) has

the same degree in G∗ and G. Let s be the smallest degree of a vertex in N(w)

and let n be the number of vertices of degree ∆(G) in N(w). Clearly, w received

charge at most 1
∆(G) from each neighbour of degree ∆(G) and at most charge

1
s from every other neighbour and thus ch′(w) ≤ n

∆(G) +
∆(G)−n

s . Furthermore,

Vizing’s Adjacency Lemma implies n ≥ ∆(G)− s+ 1. In conclusion:

ch′(w) ≤ n

∆(G)
+

∆(G)− n

s
=

(
1

∆(G)
− 1

s

)
n+

∆(G)

s

≤
(

1

∆(G)
− 1

s

)
(∆(G)− s+ 1) +

∆(G)

s
=

∆(G)− s+ 1

∆(G)
+
s− 1

s
≤ 2.
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Thus, G has a [1, 2]-factor F with dF (v) = 2 for all divalent vertices v of G.

By Vizing’s Adjacency Lemma, for k ≥ 3 every two divalent vertices of a k-

critical graph have distance at least 3. Hence, every circuit of F contains two

adjacent vertices that are not divalent in G. As a consequence, by deleting an

appropriate edge of every circuit, F can be transformed to a path-factor F ′ of

G such that dF ′(v) = 2 for all v ∈ V (G) with dG(v) = 2.

We also note, that a critical graph G has a 2-factor, if and only if G∗ has a

[1, 2]-factor F such that every vertex of degree 1 in F is also a vertex of degree

1 in G∗.



Chapter 5

Factors intersecting disjoint

odd circuits in regular graphs

This chapter is based on a joined work with J. Goedgebeur, D. Mattiolo, G.

Mazzuoccolo, J, Renders and L. Toffanetti, which was mainly carried out during

two research stays in Italy (one in Verona and one in Modena). The results in

this chapter are not yet published.

Recall that the Berge-Fulkerson Conjecture (Conjecture 1.1.1) states that

every bridgeless cubic graph has six perfect matchings such that each edge

belongs to exactly two of them. If G is a 3-edge-colorable cubic graph, then

its edge-set can be partitioned into three perfect matchings. By taking each of

these perfect matchings twice we obtain six perfect matchings with the desired

property. Thus, Conjecture 1.1.1 reduces to snarks, i.e. bridgeless cubic graphs

of class 2. With the help of a computer, the Berge-Fulkerson Conjecture was

verified for all snarks of order at most 36 [13], which can be seen as a strong

indication that the conjecture might be true in general. Nevertheless, a general

solution seems to be far away.

If true, Conjecture 1.1.1 implies that every bridgeless cubic graph has five

perfect matchings such that each edge is in at least one of them. This state-

ment was conjectured to be true by Berge (unpublished) and is also known as

53
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the Berge Conjecture. At first glance, the Berge-Fulkerson Conjecture seems

to be stronger than the Berge Conjecture; but it turned out that they are

in fact equivalent (Mazzuoccolo [64]). Despite much effort, both conjectures

remain widely open; the Berge-Fulkerson Conjecture is unsolved for over 50

years. Hence, in order to make some progress, weaker statements moved into

focus. The following three conjectures are all implied by the Berge-Fulkerson

Conjecture and decrease in their strength, i.e. each conjecture is implied by

the previous.

Conjecture 5.0.1 (Fan, Raspaud [22]). Every bridgeless cubic graph has three

perfect matchings with an empty intersection.

Conjecture 5.0.2 (Máčajová, Škoviera [60], see also [43]). Every bridgeless

cubic graph has two perfect matchings such that their intersection does not

contain an edge-cut of odd cardinality.

Conjecture 5.0.3 (Mazzuoccolo [65]). Every bridgeless cubic graph has two

perfect matchings M1,M2 such that G− (M1 ∪M2) is bipartite.

Very recently, the weakest of these conjectures (Conjecture 5.0.3) was finally

verified by Kardoš, Máčajová and Zerafa [47] by proving the following more

general statement.

Theorem 5.0.4 (Kardoš, Máčajová, Zerafa [47]). Let G be a bridgeless cubic

graph. Let F be a factor of G such that every vertex is of degree at least 1 in

F and let e ∈ E(G). Then, there exists a perfect matching M of G such that

e ∈M and G− (E(F ) ∪M) is bipartite.

Theorem 5.0.4 is equivalent to the following statement; in fact in [47] they

proved this equivalent version.

Theorem 5.0.5 (Kardoš, Máčajová, Zerafa [47]). Let G be a 2-connected cubic

graph. Let O be a set of pairwise edge-disjoint odd circuits of G and let e ∈

E(G). Then, there exists a 1-factor F of G such that e ∈ E(F ) and E(F ) ∩

E(O) ̸= ∅ for every O ∈ O.
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It is natural to ask whether similar statements are true for graphs of higher

regularity. In this chapter we consider the following problem.

Problem 5.0.6. Let r, t be integers with 1 ≤ t ≤ r−2. Is it true that for every

(sufficiently connected) r-regular graph G and every set O of pairwise edge-

disjoint odd circuits of G there is a t-factor F of G such that E(F )∩E(O) ̸= ∅

for every O ∈ O?

Note that there are combinations of r and t such that there exist r-regular

graphs that do not have a t-factor. Thus, we need to make some connectivity

assumptions on G to make sure that G admits a t-factor. Problem 5.0.6 seems

to be particularly interesting when t is small. In this chapter we answer some

instances of Problem 5.0.6. In particular, we give a positive answer in the cases

when t = r
3 and when t = r

2 , where t is even. The following two theorems are

our main results.

Theorem 5.0.7. Let k ≥ 1 be an integer and let G be a 2-connected 3k-

regular graph. Let O be a set of pairwise edge-disjoint odd circuits of G and

let e ∈ E(G). Then, there exists a k-factor F of G such that e ∈ E(F ) and

E(F ) ∩ E(O) is a non-empty matching of G for every O ∈ O.

Theorem 5.0.8. Let k ≥ 1 be an integer and let G be a 2-connected 4k-regular

graph. Let O be a set of pairwise edge-disjoint odd circuits of G. Then, there

exists a 2k-factor F of G such that E(O) ∩ E(F ) ̸= ∅ and E(O) ∩ (E(G) \

E(F )) ̸= ∅ for every O ∈ O.

We furthermore prove that these results are best possible in the sense that

(1) the answer to Problem 5.0.6 is negative when t < r
3 and (2) for all r, t, the

assumption that G has no cut-vertices is a necessary condition for a positive

answer to Problem 5.0.6.
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5.1 3k-regular graphs

In this section we prove Theorem 5.0.7. For that, we define a series of sets of

trees T 1, T 2, . . . inductively as follows:

• T 1 = {K1,3}

• for every k > 1, T k consists of all trees that can be obtained as follows:

1. start with a tree T ∈ T k−1

2. add two copies H1, H2 of K1,3

3. identify l, l1 and l2 to a new vertex, where l ∈ Leaf(T ), l1 ∈

Leaf(H1) and l2 ∈ Leaf(H2).

The only graph in T 2 as well as an element of T 3 is depicted in Figure 5.1.

Note that for every positive integer k, every tree of T k has exactly 3k leaves.

Figure 5.1: The only element of T 2 (left) and an element of T 3 (right).

Moreover, the set T k contains a tree such that at most one pendant edge is

not adjacent to another pendant edge. Furthermore, we observe the following.

Observation 5.1.1. Let T ∈ T k and let M ⊂ E(T ) be a matching such that

every vertex of V (T ) \ Leaf(T ) is incident to an element of M . Then, M

contains exactly k pendant edges of T .

Proof. We prove the statement by induction on k. For k = 1 the statement

is trivially true. Next, assume the statement is true for every k′ < k. Let

T ′ ∈ T k−1 and let T ∈ T k be obtained from T ′ by the procedure described
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in the definition of T k. Let e be the edge of T that is a pendant edge in T ′

but not in T , let e1, . . . , e4 be the pendant edges of T not belonging to T ′. If

e ∈M , then M contains exactly two edges of {e1, . . . , e4}. Hence, M contains

exactly k − 1− 1 + 2 = k pendant edges of T by induction. If e /∈M , then M

contains exactly one edge of {e1, . . . , e4}. Thus, the statement follows again by

induction.

Proof of Theorem 5.0.7. Let T ∈ T k such that at most one pendant edge of

T is not adjacent to another pendant edge. First, we transform G to a new

graph G′ as follows. For every v ∈ V (G) replace v by a copy Tv of T −Leaf(T )

such that (1) every vertex of Tv is of degree 3 and (2) if e, f ∈ ∂G(v) belong

to the same circuit of O, then e, f remain adjacent in the resulting graph. An

example is given in Figure 5.2. Note that (1) is possible since T has exactly

e 1 e 1e

v

2 e 2f 1 f 1f 2 f 2

Figure 5.2: The replacement of a vertex v in the proof of Theorem 5.0.7 in the

case that k = 2 and the edges e1, f1 as well as e2, f2 belong to the

same circuit.

3k leaves; (2) is possible since at most one pendant edge of T is not adjacent

to another pendant edge of T . We obtain a cubic graph G′ with vertex-set⋃
v∈V (G) V (Tv) and edge-set E(G) ∪

⋃
v∈V (G)E(Tv). Furthermore, for every

v ∈ V (G), the graph G′ − V (Tv) is connected, since G is 2-connected. As a

consequence, G′ is bridgeless. For every O ∈ O the subgraph of G′ induced by

E(O) is an odd circuit in G′, which will be denoted by O′. Let O′ = {O′ : O ∈

O}. By Theorem 5.0.5, G′ has a perfect matching M such that e ∈ M and

M ∩ E(O′) ̸= ∅ for every O′ ∈ O′. Let F be the subgraph of G induced by

the edge set M ∩E(G). By Observation 5.1.1, |∂G′(V (Tv))∩M | = k for every

v ∈ V (G) and hence, F is a k-factor of G. Furthermore, E(O′) ∩ M is a
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non-empty matching in G′ for every O′ ∈ O′ and therefore, E(O) ∩ E(F ) is a

non-empty matching in G for every O ∈ O by the construction of G′. Thus, F

has the desired properties.

Note that if r and t have the same parity, then for every r-regular graph

G and every t-factor F of G the graph G − E(F ) can be decomposed into

2-factors. Thus, for every t′ ∈ {t, t + 2, . . . r} the graph G has a t′-factor that

contains F . As a consequence, Theorem 5.0.7 implies the following corollary.

Corollary 5.1.2. Let k ≥ 1 be an integer and let G be a 2-connected 3k-

regular graph. Let O be a set of pairwise edge-disjoint odd circuits of G and let

e ∈ E(G). Then, for every t ∈ {k, k+ 2, . . . , 3k} there exists a t-factor F of G

such that e ∈ E(F ) and E(F ) ∩ E(O) ̸= ∅ for every O ∈ O.

5.2 4k-regular graphs

In this section we prove Theorem 5.0.8. Let G be a graph with an orientation

D. A circuit C of G is an oriented circuit (with respect to D), if for every

v ∈ V (C) exactly one edge of ∂G(v) ∩ E(C) is directed towards v. We first

prove the following lemma.

Lemma 5.2.1. Let k be a positive integer, let G be a 2-connected 4k-regular

graph and let O be a set of pairwise edge-disjoint odd circuits of G. Then, there

exists an orientation of G such that

(i) every vertex has an even in-degree,

(ii) no circuit of O is an oriented circuit.

Proof. By Petersen, the graphG−
⋃

O∈O E(O) can be decomposed into circuits,

since it only contains vertices of even degree. Thus, G has a decomposition Q

into circuits such that O ⊆ Q. Let D be an orientation of G such that every

circuit of Q is an oriented circuit. We will change the direction of some edges

in order to obtain the desired orientation.
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First, transform G into a cubic graph as follows. Let T be a tree such that

T has 4k leaves, every other vertex is of degree 3 and every pendant edge is

adjacent with another pendant edge. Note that T as well as T − Leaf(T ) are

of even order; if k = 1, then T − Leaf(T ) is isomorphic to K2. For every

v ∈ V (G) replace v by a copy Tv of T −Leaf(T ) such that (1) every vertex of

Tv is of degree 3 and (2) if e, f ∈ ∂G(v) belong to the same circuit of O, then

e, f remain adjacent in the resulting graph. We obtain a cubic graph G′ with

V (G′) =
⋃

v∈V (G) V (Tv) and E(G′) = E(G) ∪
⋃

v∈V (G)E(Tv). Furthermore,

G′ is bridgeless, since G is 2-connected. For every O ∈ O the subgraph of G′

induced by E(O) is an odd circuit in G′, which will be denoted by O′. Let

O′ = {O′ : O ∈ O}. Hence, by Theorem 5.0.5, G′ has a perfect matching M

such that E(O′) ∩M ̸= ∅ for every O′ ∈ O′.

Now, for every e ∈ E(G) for which the corresponding edge in G′ belongs

to M , change the direction of e in D to obtain a new orientation D′ of G. For

every v ∈ V (G), the set M ∩ ∂G′((V (Tv)) is of even cardinality, since Tv is of

even order. Hence, for every v ∈ V (G) we changed the direction of an even

number of edges of ∂G(v). Thus, D′ satisfies (i) since in D every vertex has

indegree 2k. Furthermore, for every O′ ∈ O′, the set E(O′)∩M is a non-empty

matching in G′. As a consequence, D′ satisfies (ii).

Proof of Theorem 5.0.8. Consider an orientation D of G that satisfies proper-

ties (i) and (ii) of Lemma 5.2.1. For every v ∈ V (G), split v into 2k vertices

v1, . . . , v2k of degree 2 (that is, replace v by a graph Hv consisting of 2k iso-

lated vertices v1, . . . , v2k such that every vertex of V (Hv) is of degree 2 in

the resulting graph). We obtain a 2-regular graph G′ with E(G′) = E(G) and

V (G′) =
⋃

v∈V (G){v1, . . . , v2k}. Since every vertex in G has even indegree (with

respect to D), this procedure can be done such that (1) for every v ∈ V (G)

and every i ∈ {1, . . . , 2k} the two edges incident with vi in G
′ are either both

directed towards v or both not directed towards v in G and (2) if O ∈ O,

x ∈ V (O) and e, f ∈ E(O) ∩ ∂G(x) are such that e, f are either both directed
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towards x or both not directed towards x, then e, f are adjacent in G′. By (1),

the graph G′ is bipartite. Hence, it has a perfect matching M . Let F be the

subgraph of G induced by the edge set M . Observe that F is a 2k-factor of G,

since M is a perfect matching of G′. Furthermore, for every O ∈ O there is a

vO ∈ V (O) such that the two edges in ∂G(vO) ∩E(O) are either both directed

towards vO or both not directed towards vO, since no circuit of O is an oriented

circuit (with respect to D). Thus, by the construction of G′, these two edges

are adjacent in G′ and hence, M as well as E(F ) contain exactly one of these

edges. As a consequence, E(O) ∩ E(F ) ̸= ∅ and E(O) ∩ (E(G) \ E(F )) ̸= ∅.

Thus, F has the desired properties.

As is the case of 3k-regular graphs, we obtain the following corollary.

Corollary 5.2.2. Let k ≥ 1 be an integer and let G be a 2-connected 4k-

regular graph. Let O be a set of pairwise edge-disjoint odd circuits of G. Then,

for every t ∈ {2k, 2k + 2, . . . , 4k} there exists a t-factor F of G such that

E(F ) ∩ E(O) ̸= ∅ for every O ∈ O.

5.3 Problem 5.0.6 when t is small

The smallest t for which we know that Problem 5.0.6 has a positive answer

is t = ⌈ r3⌉ (only in the cases r ≡ 0 (mod 3) and r = 4). In this section we

prove that this is indeed best possible. The following theorem gives a negative

answer to Problem 5.0.6 for all t < r
3 , even when we only consider r-connected

r-regular graphs of even order.

Theorem 5.3.1. For every r ≥ 3 there is an r-connected r-regular graph G of

even order and a set O of pairwise disjoint odd circuits of G with the property

that if F is a t-factor of G with E(F )∩E(O) ̸= ∅ for every O ∈ O, then t ≥ r
3 .

Proof. For i ∈ {1, 2, 3} let Gi be a graph isomorphic to Kr−2,r, where the two

partitions are given by Ai = {ai1, . . . , air} and Bi = {bi1, . . . , bir−2}. Construct
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a new graph G from G1, G2, G3 by adding the edges a1ja
2
j , a

1
ja

3
j and a2ja

3
j for

every j ∈ {1, . . . , r}. Let O be the set of pairwise disjoint triangles of G that

are induced by the added edges, i.e. O = {a1ja2ja3ja1j : j ∈ {1, . . . , r}}. The

graph G and the set of circuits O are depicted in Figure 5.3 in the case when

r = 4. We claim that G and O have the desired properties. By construction,

b 1
1

a
1

1

a
2

1
a
3

1

b 2
1

b 2
2

a
4

1
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2

a
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2
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3

2
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4

2

Figure 5.3: The graph G constructed in the proof of Theorem 5.3.1 in the case

r = 4. The set O consists of the triangles whose edges are drawn with

dashed lines.

G is an r-regular graph of even order. Let X ⊂ V (G) be a vertex-cut of G. If

G[V (Gi) \X] is connected for every i ∈ {1, 2, 3}, then X contains at least one

vertex of every triangle of O. As a consequence |X| ≥ r. Thus, we can assume

that w.l.o.g. G[V (G1) \X] is not connected. Hence, A1 ⊆ X or B1 ⊆ X. In

both cases, |X| ≥ r since G − B1 does not have a cut-vertex. Therefore, G is

r-connected. Next, let F be a t-factor of G with E(F ) ∩ E(O) ̸= ∅ for every

O ∈ O. By the construction of G, we have |E(F )∩∂G(B1∪B2∪B3)| = 3(r−2)t.

Furthermore, E(F ) contains at least one edge of every triangle in O. As a

consequence, 3(r − 2)t+ r ≤ |E(F )| = t(3r − 3), which can be transformed to

r
3 ≤ t by a short calculation.
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5.4 Graphs with cut-vertices

In Theorem 5.0.7 and Theorem 5.0.8 we assumed that G is 2-connected. In

this section we show that this assumption is necessary, even when we consider

Problem 5.0.6 only for graphs admitting a t-factor.

For a set E = {u1v1, . . . , ulvl} of pairwise non-parallel edges having both

end-vertices in V (G), we denote by kE the set consisting of k parallel edges

connecting ui and vi for every i ∈ {1, . . . , l}.

Theorem 5.4.1. Let r, t be integers with 0 < t ≤ r − 2. Then, there exists

an r-regular graph G and a set O of pairwise edge-disjoint odd circuits of G

such that G has a t-factor but every t-factor is edge-disjoint with at least one

element of O.

Proof. We consider four cases depending on the parity of r and t.

Case 1. r and t are odd.

In this case define Gr,t by

V (Gr,t) = {u, v, w} ∪ {xi, yi, zi : i ∈ {1, . . . , 3t}}

and

E(Gr,t) =

(
r − t

2

)
A ∪B1 ∪B2 ∪B3 ∪

(
r − 1

2

)
D1 ∪

(
r + 1

2

)
D2,

where

A = {uv, uw, vw},

B1 = {uxi : i ∈ {1, . . . , t}},

B2 = {vxi : i ∈ {t+ 1, . . . , 2t}},

B3 = {wxi : i ∈ {2t+ 1, . . . , 3t}},

D1 = {xiyi, xizi : i ∈ {1, . . . , 3t}},

D2 = {yizi : i ∈ {1, . . . , 3t}}.

Set O = {uvwu}; an example is shown in Figure 5.4.
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Figure 5.4: The graph Gr,t when r and t are odd in the case r = 7, t = 3. The set

O consists of the triangle whose edges are drawn with dashed lines.

By construction Gr,t is r-regular and the edge set B1∪B2∪B3∪
(
t−1
2

)
D1∪(

t+1
2

)
D2 induces a t-factor. Moreover, every t-factor of Gr,t contains the only

edge in ∂({xi, yi, zi}) for every i ∈ {1, . . . , 3t} by parity reasons, and hence is

edge-disjoint with the triangle uvwu.

Case 2. r and t are even.

In this case define Gr,t by

V (Gr,t) = {v} ∪ {xi, yi, zi : i ∈ {1, . . . , r}}

and

E(Gr,t) = A ∪B ∪
(
r − 2

2

)
D1 ∪

(
r + 2

2

)
D2,

where

A = {vxi : i ∈ {1, . . . , r}},

B = {xixi+1 : i ∈ {1, . . . , r − 1}, i odd},

D1 = {xiyi, xizi : i ∈ {1, . . . , r}},

D2 = {yizi : i ∈ {1, . . . , r}}.

Set O = {vxixi+1v : i ∈ {1, . . . , r − 1}, i odd}, see Figure 5.5.
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v

x 2

z 2y2

x1

y1 z 1

z 3

y3x 3

Figure 5.5: The graph Gr,t when r and t are even in the case r = 6. The set O

consists of the triangles whose edges are drawn with dashed lines.

By construction Gr,t is an r-regular graph, which has a t-factor since r and

t are even. Let F be a t-factor of Gr,t. Without loss of generality we assume

vx1 /∈ E(F ). By parity reasons, |∂F ({x1, y1, z1})| and |∂F ({x2, y2, z2})| are

even, which implies that F and the triangle vx1x2v are edge-disjoint.

Case 3. r is odd and t is even.

In this case define Gr,t by

V (Gr,t) = {u, v, w} ∪ {u′, v′, w′} ∪ {xi, yi, zi : i ∈ {1, . . . , 6}}

and

E(Gr,t) = A ∪ (r − 2)B ∪ C ∪
(
r − 1

2

)
D1 ∪

(
r + 1

2

)
D2,

where

A = {uv, uw, vw},

B = {uu′, vv′, ww′},

C = {u′x1, u′x2, v′x3, v′x4, w′x5, w
′x6},

D1 = {xiyi, xizi : i ∈ {1, . . . , 6}},

D2 = {yizi : i ∈ {1, . . . , 6}}.

Set O = {uvwu}. Figure 5.6 shows Gr,t in the case r = 5.
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x 2

z 2

z 3

y2

y3x 3

x1

y1 z 1

v
v'

u

u'

w
w'

Figure 5.6: The graph Gr,t when r is odd and t is even in the case r = 5. The set

O consists of the triangle whose edges are drawn with dashed lines.

By construction Gr,t is r-regular and the edge set tB ∪
(
t
2

)
D1 ∪

(
t
2

)
D2

induces a t-factor. Moreover, every t-factor of Gr,t does not contain the only

edge in ∂({xi, yi, zi}) for every i ∈ {1, . . . , 6} by parity reasons. Hence, it

contains every edge of ∂({u, v, w}), and thus, it is edge-disjoint with the triangle

uvwu.

Case 4. r is even and t is odd.

In this case define Gr,t by

V (Gr,t) = {u, v} ∪ {wi, xi, yi, zi : i ∈ {1, . . . , 2r − 4}}

and

E(Gr,t) = 2A ∪B ∪ C ∪
(
r − 2

2

)
D1 ∪D2 ∪

(r
2

)
D3,
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where

A = {uv},

B = {uwi, vwi+(r−2) : i ∈ {1, . . . , r − 2}},

C = {wiwi+1 : i ∈ {1, . . . , 2r − 4}, i odd},

D1 = {wixi, wiyi : i ∈ {1, . . . , 2r − 4}},

D2 = {xiyi : i ∈ {1, . . . , 2r − 4}},

D3 = {xizi, yizi : i ∈ {1, . . . , 2r − 4}}.

Set O = {uwiwi+1u : i ∈ {1, . . . , r − 2}, i odd}, see Figure 5.7 for an example.

x 2

z 2

z 3

y2

y3

y4

x 3

x1

x4
x5

y1

w5

w3

w2

w1

z 1

v u

w4

y5

z 4z 5

Figure 5.7: The graph Gr,t when r is even and t is odd in the case r = 6. The set

O consists of the triangles whose edges are drawn with dashed lines.

By construction Gr,t is r-regular. Furthermore, the edge set 2A ∪D1 ∪D3

can be partitioned into two disjoint perfect matchings M1,M2 of Gr,t, since it

induces a 2-factor that only contains even circuits. By Petersen, Gr,t−M1∪M2

has a (t − 1)-factor, since r − 2 and t − 1 are even. A t-factor of Gr,t can

be obtained by adding either M1 or M2 to this (t − 1)-factor. Next, let F

be a arbitrary t-factor of Gr,t. Without loss of generality we assume uw1 /∈

E(F ). By parity reasons, |∂F ({w1, x1, y1, z1})| and |∂F ({w2, x2, y2, z2})| are

even, which implies that F and the triangle uw1w2u are edge-disjoint.
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5.5 Concluding remarks and open problems

In addition to solving other instances of Problem 5.0.6, it is also interesting to

study this problem in the case that O consists of pairwise edge-disjoint circuits

(of order at least 3), no matter whether they are even or odd. In the cubic case,

Kardoš, Máčajová and Zerafa [46] extended their result to arbitrary circuits by

proving the following statement. For every cyclically 3-edge-connected cubic

graph G and every set O of pairwise edge-disjoint circuits, there is a perfect

matching containing at least one edge of every element of O (see [46] for more

details). In an ongoing work we study possible extensions of this result to

graphs of higher regularity.

Another interesting question is whether the statement of Conjecture 5.0.3

(which is true by Theorem 5.0.5) can be extended to r-graphs of higher reg-

ularity. More precisely, the following problem seems to be natural. What is

the minimum number t such that every r-graph has t perfect matchings whose

removal leaves a bipartite graph? Note that if the Generalized Berge-Fulkerson

Conjecture (Conjecture 1.1.5) is true, then 2r − 4 perfect matchings suffices.



Chapter 6

Rotation r-graphs

This chapter is based on [81]; all results of Chapter 6 are published in [81].

A tree is homeomorphically irreducible if it has no vertex of degree 2 and if

a graph G has a homeomorphically irreducible spanning tree T , then T is called

a hist and G a hist graph. The study of hist graphs has been a very active area

of research within graph theory for decades, see for example [3, 31,36].

Cubic hist graphs then have a spanning tree in which every vertex has either

degree 1 or 3. They further have the nice property that their edge-set can be

partitioned into the edges of the hist and of an induced cycle on the leaves

of the hist. Recall that a snark is a bridgeless cubic graph that is not 3-edge-

colorable. Informally, a rotation snark is a snark that has a balanced hist and a

2π
3 -rotation symmetry which fixes one vertex. Hoffmann-Ostenhof and Jatschka

[33] studied rotation snarks and conjectured that there are infinitely many non-

trivial rotation snarks. This conjecture was proved by Máčajová and Škoviera

[59] by constructing an infinite family of cyclically 5-edge-connected rotation

snarks. It is natural, to ask whether some notoriously difficult conjectures can

be proved for rotation snarks. As a first result in this direction, Liu et al. [52]

proved that the Berge-Fulkerson Conjecture (Conjecture 1.1.1) is true for the

rotation snarks of [59].

We generalize the notion of rotation snarks to r-graphs of odd regularity

68
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and show that every r-graph of odd regularity can be ”blown up” to a simple

rotation r-graph (which produces many small edge-cuts). As a consequence,

some hard long-standing open conjectures can be reduced to simple rotation r-

graphs. However, our proof heavily relies on the fact that we allow 2-edge-cuts.

It would be interesting to study rotation r-graphs with high edge-connectivity.

6.1 Definition of rotation r-graphs

Recall that an automorphism of a graph G consists of two bijections θ : V (G) →

V (G) and ϕ : E(G) → E(G) such that e has end-vertices u, v if and only if ϕ(e)

has end-vertices θ(u), θ(v) for every e ∈ E(G). Note that in this case, for every

two vertices u, v ∈ V (G) the number of edges between u and v is the same as

the number of edges between θ(u) and θ(v). On the other hand, every bijection

α : V (G) → V (G) with this property can be extended to an automorphism (by

appropriately defining a bijection β : E(G) → E(G)). Thus, an automorphism

can be defined alternatively as follow. An automorphism of a graph G is a

mapping α : V (G) → V (G), such that for every two vertices u, v ∈ V (G) the

number of edges between u and v is the same as the number of edges between

α(u) and α(v). In Chapter 6 we will stick with this alternative definition, since

it is more convenient for our purposes.

For an automorphism α : V (G) → V (G) and a vertex v ∈ V (G), the small-

est positive integer k such that αk(v) = v is denoted by dα(v). An automor-

phism α of a tree T is rotational with respect to a vertex v ∈ V (T ), if dα(v) = 1

and dα(u) = dT (v) for every u ∈ V (T ) \ {v}. The unique tree with vertex de-

grees in {1, r} and a vertex x with distance i to every leaf is denoted by T r
i .

Vertex x is unique and it is called the root of T r
i .

Recall that an r-regular graph G is an r-graph, if |∂(S)| ≥ r for every

S ⊆ V (G) of odd cardinality. An r-regular graph G is a T r
i -graph, if G has

a spanning tree T isomorphic to T r
i . If, additionally, G has an automorphism

that is rotational on T (with respect to the root), then G is a rotation T r
i -graph.
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Note that G can be embedded in the plane (crossings allowed) such that the

embedding has a 2π
r -rotation symmetry fixing the root. A rotation r-graph is

an r-graph that is a rotation T r
i -graph for some integer i.

Observation 6.1.1. Let r, i be positive integers, let G be a T r
i -graph with corre-

sponding spanning tree T . The order of G is 1+
∑i−1

j=0 r(r−1)j, which is even if

and only if r is odd. In particular, if G is an r-graph, then r is odd, G[Leaf(T )]

is a cycle and E(G) can be partitioned into E(T ) and E(G[Leaf(T )]).

6.2 Main result

Let G be an r-graph and S ⊆ V (G) be of even cardinality. If |∂(S)| = 2, then

NG(S) consists of precisely two vertices, say u, v. Let G′ be obtained from G

by deleting G[S] ∪ ∂(S) and adding the edge uv. We say that G′ is obtained

from G by a 2-cut reduction (of S). The following theorem is the main result

of this chapter.

Theorem 6.2.1. Let r be a positive odd integer. For every r-graph G there is

a simple rotation r-graph G′, such that G can be obtained from G′ by a finite

number of 2-cut reductions.

The following corollary is a direct consequence of Theorem 6.2.1.

Corollary 6.2.2. Let r be a positive odd integer and let A be a graph-property

that is preserved under 2-cut reduction. Every r-graph has property A if and

only if every simple rotation r-graph has property A.

As a consequence, some notoriously difficult conjectures can be reduced to

rotation r-graphs.

Corollary 6.2.3. Let r be a positive odd integer. The following statements are

equivalent:

1. (generalized Berge-Fulkerson Conjecture [77]) Every r-graph has 2r per-

fect matchings such that each edge is in exactly two of them.
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2. Every simple rotation r-graph has 2r perfect matchings such that each

edge is in exactly two of them.

3. (generalized Berge Conjecture) Every r-graph has 2r−1 perfect matchings

such that each edge is in at least one of them.

4. Every simple rotation r-graph has 2r−1 perfect matchings such that each

edge is in at least one of them.

Proof. Let G and G′ be two r-graphs such that G can be obtained from G′

by a 2-cut reduction of a set S ⊂ V (G′). For parity reasons, every perfect

matching of G′ contains either both or no edges of ∂(S). Hence, each perfect

matching of G′ can be transformed into a perfect matching of G, which implies

the equivalences (1 ⇔ 2) and (3 ⇔ 4). The equivalence (1 ⇔ 3) is proved

in [66].

As mentioned in the previous chapter, for r = 3, statement 3 of Corollary

6.2.3 is usually attributed to Berge and is known as the Berge Conjecture.

Fan and Raspaud [22] conjectured that every 3-graph has three perfect

matchings such that every edge is in at most two of them (Conjecture 5.0.1).

Equivalent formulations of this conjecture are studied in [42].

Corollary 6.2.4. Let r be an odd integer and 2 ≤ k ≤ r − 1. Every r-graph

has r perfect matchings, such that each edge is in at most k of them if and only

if every simple rotation r-graph has r perfect matchings, such that each edge is

in at most k of them.

In 1954, Tutte [86] stated his seminal conjecture that every bridgeless graph

admits a nowhere-zero 5-flow. In 1972, Tutte formulated the no less challenging

conjecture that every bridgeless graph without 3-edge-cuts has a nowhere-zero

3-flow. It is a folklore that the 5-Flow Conjecture can be reduced to snarks,

whereas the 3-Flow Conjecture is true if and only if it is true for 5-graphs.

Admitting a nowhere-zero k-flow is invariant under 2-cut reduction. Hence, we

obtain the following consequences of Theorem 6.2.1.
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Corollary 6.2.5. Every snark admits a nowhere-zero 5-flow if and only if

every simple rotation snark admits a nowhere-zero 5-flow.

Corollary 6.2.6. Every 5-graph admits a nowhere-zero 3-flow if and only if

every simple rotation 5-graph admits a nowhere-zero 3-flow.

6.3 Proof of Theorem 6.2.1

6.3.1 Preliminaries

For the proof of Theorem 6.2.1 we will use the following lemma. The non-trivial

direction of the statement is proved by Rizzi in [75] (Lemma 2.3).

Lemma 6.3.1 ( [75]). Let G be an r-regular graph and let S ⊆ V (G) be a set

of odd cardinality with |∂(S)| = r. Then, G is an r-graph, if and only if G/S

and G/Sc are both r-graphs.

Let G be an r-graph and T be a spanning tree of G. We need the following

two expansions of G and T .

Edge-expansion: Let e be an edge with e = uv ∈ E(G) \ E(T ). Let G′

be the graph obtained from G − e by adding two new vertices u′, v′ that are

connected by r − 1 edges, and adding two edges uu′ and vv′. Extend T to

a spanning tree T ′ of G′ by adding the vertices u′, v′ and the edges uu′, vv′

(see Figure 6.1). For S = {u, u′, v′} it follows with Lemma 6.3.1 that G′ is an

r-graph.

vu u v
u' v'

Figure 6.1: An edge-expansion in the case r = 5. The solid edges belong to the

spanning tree T ′.

Leaf-expansion: Let r be odd. Let l be a leaf of T and let u be the

neighbor of l in T . Let K be a copy of Kr and let V (K) = {l1, . . . , lr}. Let G′
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be the unique r-regular graph obtained from G by replacing l with K. Without

loss of generality we assume ul1 ∈ E(G′). Extend T − l to a spanning tree T ′ of

G′ by adding V (K) and the edges ul1 and l1lj for j ∈ {2, . . . , r}. Vertex l1 has

degree r in T ′, whereas all other vertices of K are leaves of T ′. Furthermore,

if l has distance d to a vertex x ∈ V (T ), then the r − 1 leaves l2, . . . , lr of T ′

have distance d+ 1 to x in T ′.

Since Kr+1 is an r-graph, G′ is an r-graph by Lemma 6.3.1. We note that

a leaf-expansion of leaf l has the following properties:

(i) In G′, no vertex of K is incident with parallel edges.

(ii) Let S ⊆ V (G) be a set of even cardinality with l ∈ S and |∂(S)| = 2. In

the leaf-expansion G′, the set S′ = S \ {l} ∪ V (K) is of even cardinality

and satisfies |∂(S′)| = 2. Moreover, the graph obtained from G by a 2-

cut reduction of S is the same graph that is obtained from G′ by a 2-cut

reduction of S′.

An example of leaf-expansion is shown in Figure 6.2.

l

uu

l1

Figure 6.2: An example of a leaf-expansion of the leaf l ∈ V (G) in the case r = 5.

The solid edges belong to the spanning trees T and T ′ respectively.

6.3.2 Construction of G′

Let r ≥ 1 be an odd integer and G be an r-graph. We will construct G′ in two

steps.
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1. We construct a simple r-graph H with a spanning tree TH isomorphic to

T r
i for some integer i such that G can be obtained from H by a finite number

of 2-cut reductions.

Let TG be an arbitrary spanning tree of G. Apply an edge-expansion on

every edge of E(G) \ E(TG) to obtain an r-graph H1 with spanning tree T1.

Clearly, G can be obtained from H1 by 2-cut reductions. Furthermore, V (G) ⊆

V (H1), every vertex of V (G) has degree r in T1 and all vertices of V (H1)\V (G)

are leaves of T1.

Let x ∈ V (H1) with dT1(x) = r and let d be the maximal distance of x to

a leaf in T1. Repeatedly apply leaf-expansions until every leaf has distance

d + 1 to x. Let H2 be the resulting graph and T2 be the resulting spanning

tree of H2. By the construction, T2 is isomorphic to T r
d+1, where x is the root

of T2. By the definition of d, we applied a leaf-expansion of l for every leaf

l of T1. Hence, the graph H2 is simple by property (i) of leaf-expansions.

Furthermore, no expansion of a vertex in V (G) (and degree r in T1) is applied.

As a consequence, property (ii) of leaf-expansions implies that G can be

obtained from H2 by 2-cut reductions. Thus, by setting H = H2 and TH = T2

we obtain a graph with the desired properties.

2. We construct a simple rotation r-graph G′ from whichH can be obtained

by a 2-cut reduction.

Let y1, . . . , yr be the neighbors of x in H. Let R be an arbitrary simple

rotation r-graph with a spanning tree TR isomorphic to T r
d+1. For example,

such a graph can be obtained from the rotational T r
1 -graph Kr+1 by repeatedly

applying leaf-expansions. Let xR be the root of TR and let αR be the corre-

sponding rotational automorphism. Label the neighbors of xR with z1, . . . , zr

such that αR(zi) = zi+1 for every i ∈ {1, . . . , r}, where the indices are added

modulo r.

Take r copies H1, . . . ,Hr of H and (r − 1)2 − r copies R1, . . . , R(r−1)2−r
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of R. In each copy we label the vertices accordingly by using an upper index.

For example, if v is a vertex of H, then vi is the corresponding vertex in H i.

Furthermore, the automorphism of Ri that correspond to αR will be denoted

by αRi . Delete the root in each of the (r − 1)2 copies, i.e. in each copy of H

and in each copy of R. The resulting r(r−1)2 vertices of degree r−1 are called

root-neighbors.

Take a tree T isomorphic to T r
2 with root xT . The graph T−xT consists of r

pairwise isomorphic components, thus it has a rotation automorphism αT with

respect to xT . Let l1, . . . , lr−1 be the leaves of one component of T−xT . Clearly,

the set of leaves of T is given by {αi
T (lj) : i ∈ {0, . . . , r − 1}, j ∈ {1, . . . , r − 1}},

where α0
T = idT .

Connect the r(r−1) leaves of T with the r(r−1)2 root-neighbors by adding

r(r − 1)2 new edges as follows. For every i ∈ {1, . . . , r} define an ordered list

Ni of root-neighbors and an ordered list Li of leaves of T by

Ni := (yi1, . . . , y
i
r, z

1
i , . . . , z

(r−1)2−r
i ) and Li := (αi−1

T (l1), . . . , α
i−1
T (lr−1)).

The list Ni has (r − 1)2 entries, whereas Li has r − 1 entries. For each

i ∈ {1, . . . , r}, connect the first r− 1 entries of Ni with the first entry of Li by

r − 1 new edges; connect the second r − 1 entries of Ni with the second entry

of Li by r− 1 new edges and so on. The set of new edges is denoted by E and

the resulting graph by G′. In Figure 6.3 the construction of G′ is shown in the

case r = 3.

Every root-neighbor appears exactly once in the lists N1, . . . , Nr, whereas

every leaf of T appears exactly once in the lists L1, . . . , Lr. Consequently, G′

is an r-regular simple graph with a spanning tree TG′ that is obtained from

the union of the trees of each copy of H and R (without its roots) and T by

adding the edge set E. Note that TG′ is isomorphic to T r
d+3 and xT is the root



76 Chapter 6: Rotation r-graphs
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Figure 6.3: The construction of G′ in the case r = 3. The solid edges belong to T ;

the dashed edges belong to E.

of TG′ . Let αG′ : V (G′) → V (G′) be defined as follows:

αG′(v) =



αT (v) if v ∈ V (T ),

αRi(v) if v ∈ V (Ri) \ {xiR}, i ∈ {1, . . . , (r − 1)2 − r},

vi+1 if v = vi ∈ V (H i) \ {xi}, i ∈ {1, . . . , r} and the indices

are added modulo r.

By definition, αG′ is an automorphism of G′ − E and TG′ − E that fixes the

root xT of T and satisfies dαG′ (v) = r for every other vertex v of G′. For

i ∈ {1, ..., r}, if we apply αG′ on each element of Ni (or Li respectively), then

we obtain the ordered list Ni+1 (or Li+1 respectively), where the indices are

added modulo r. As a consequence, if uv ∈ E, then αG′(u)αG′(v) ∈ E and

hence, αG′ is an automorphism of G′ and a rotational automorphism of TG′ .

To see that G′ is an r-graph, transform G′ as follows: for each i ∈ {1, . . . , r}

identify all vertices in V (H i) \ xi to a vertex H̄ i and for every j ∈ {1, . . . , (r−

1)2−r} all vertices in V (Rj)\xjR to a vertex R̄j (see Figure 6.4). The resulting

graph is an r-regular bipartite graph and therefore, an r-graph. Since every

copy of H and of R is an r-graph, it follows by successively application of

Lemma 6.3.1 that G′ is an r-graph.
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l1 l2 αT (l1 ) αT (l2 ) αT
2(l1 ) αT
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1
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Figure 6.4: The graph constructed from G′ in the case r = 3.

Last, the set S ⊆ V (G′) defined by S = (V (H1) \ {x1}) ∪ {l1} is a set of

even cardinality, such that |∂(S)| = 2. Applying a 2-cut reduction on V (G′)\S

transforms G′ into the copy H1 of H. In conclusion, G can be obtained from

G′ by a finite number of 2-cut reductions, which completes the proof.

6.4 Concluding remarks

The graph G′ constructed in the proof of Theorem 6.2.1 has many small edge-

cuts. It would be interesting to construct and study highly edge-connected

rotation r-graphs. For example, is there an r-edge-connected rotation r-graph

of class 2 for every positive odd integer r? In particular, the case r = 5 seems

to be of interest, as we will see in the next chapter. Furthermore, it might also

be possible to prove some of the conjectures mentioned in Corollaries 6.2.3 -

6.2.6 for some families of rotation r-graphs with high edge-connectivity.
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Number of pairwise disjoint

perfect matchings in r-graphs

Major parts of Chapter 7 are already published in [56] and [54]. The results

of Sections 7.1 and 7.4 appeared in [56]; the results of Section 7.3 appeared

in [54]. The results of Section 7.2 are unpublished.

Every r-graph has a perfect matching [77]. On the other hand, class 2

r-graphs, which exist for every r ≥ 3, have at most r − 2 pairwise disjoint

perfect matchings. A set of k pairwise disjoint perfect matchings of a graph

G is called a k-PDPM. It is natural to ask ”What is the maximum number

s such that every r-graph has an s-PDPM?“. Rizzi [75] constructed r-graphs

in which every two perfect matchings intersect; such r-graphs are called poorly

matchable. Thus, in general the answer to the above question is t = 1. However,

every poorly matchable r-graph know so far has a 4-edge-cut. It might be that

the situation changes for r-graphs with larger edge-connectivity.

For 1 ≤ t ≤ r let m(t, r) be the maximum number s such that every t-edge-

connected r-graph has an s-PDPM. This gives rise to the following problem.

Problem 7.0.1. Determine m(t, r) for all r ≥ t ≥ 1.

The function m(t, r) is monotone increasing in t, in other words m(t, r) ≤

m(t′, r) for t ≤ t′. In particular we have that m(t, r) ≤ m(r, r) for all t ∈

78
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{1, . . . , r}. Clearly, m(1, 1) = 1, m(2, 2) = 2, m(3, 3) = 1 and m(t, r) ≥ 1 for

every r ≥ t ≥ 1. Furthermore, m(4, r) = 1 for every r ≥ 4 by the result of

Rizzi [75]. In addition to its exact determination, lower and upper bounds for

this parameter are of great interest.

For all r ≥ 3 and r ̸= 5, class 2 r-edge-connected r-graphs are known

(see [69]). Thus, m(r, r) ≤ r− 2 for these r. Surprisingly, no such graphs seem

to be known for r = 5, i.e. the following problem seems to be unsolved.

Problem 7.0.2. Is there any 5-edge-connected 5-regular class 2 graph?

Note that for planar graphs, the answer to the above question is “no”.

Guenin [29] proved that all planar 5-graphs are class 1. For general r,

Thomassen (Problem 1 of [84]) proposed the following question for the value

of m(r, r).

Problem 7.0.3 (Thomassen [84]). For all r ≥ 3, is it true that m(r, r) = r−2?

For r = 4 the answer is “no” by Rizzi. Furthermore, in [63] it is proved

that m(r − 1, r) ≤ r − 3 if r is odd and m(r, r) ≤ r − 3 if r ≡ 0 mod 4,

which gives a negative answer to Problem 7.0.3 when r is a multiple of 4. It is

worth mentioning, that up to now there is no non-trivial lower bound known

for m(t, r). Nevertheless, Thomassen [84] conjectured that such bounds exist

for sufficiently large r. Precisely, he conjectured that there is an integer r0 such

that there is no poorly matchable r-graph for every r ≥ r0.

This chapter is divided into three parts. In Section 7.2 we prove that for

every 1 < k < r it is NP -complete to decide whether a given r-graph has a

k-PDPM. In Section 7.3 we consider r-edge-connected r-graphs. In particular

we study the remaining cases of Problem 7.0.3. Our main results in the second

part are the following.

Theorem 7.0.4. If r ≡ 2 mod 4, then m(r, r) ≤ r − 3.
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Theorem 7.0.5. If m(5, 5) ≥ 2, then the Fan-Raspaud Conjecture holds.

Moreover, if m(5, 5) = 5, then both the 5-Cycle Double Cover Conjecture and

the Berge-Fulkerson Conjecture hold.

In Section 7.4 we study r-graphs with arbitrary edge-connectivity and ob-

tain an upper bound for m(t, r) that only depends on the edge-connectivity

parameter as follows.

Theorem 7.0.6. For every l ≥ 3 and r ≥ 2l, m(2l, r) ≤ 3l − 6.

7.1 Preliminaries

In order to prove the main results of this chapter (as well as the main result

of Chapter 8) we need some further notation (mainly concerning the Petersen

graph) as well as some lemmas, which will be introduced in this section.

A multiset M consists of objects with possible repetitions. We denote by

|M| the number of (not necessary distinct) objects in M. For a positive integer

k, we define kM to be the multiset consisting of k copies of each element of M.

Let G be a graph and N a multiset of edges of the complete graph on V (G).

The graph G + N is obtained by adding a copy of all edges of N to G. This

operation might generate parallel edges. More precisely, if N contains exactly

t edges connecting the vertices u and v of G, then µG+N (u, v) = µG(u, v) + t.

For a multiset N of perfect matchings of a graph G and an edge e ∈ E(G),

we say that N contains (avoids, respectively) e if e ∈
⋃

N∈N N (e /∈
⋃

N∈N N ,

respectively).

We will frequently use the following simple fact without reference.

Observation 7.1.1. Let G be a graph with a perfect matching M . For any

subset X ⊆ V (G), if |X| is odd, then |∂G(X) ∩M | is odd.
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7.1.1 The Petersen graph and its perfect matchings

In the remainder of this chapter as well as in Chapter 8 we make extensive

use of the Petersen graph, denoted by P, and of the properties of its perfect

matchings. Rizzi [75] observed that every two distinct 1-factors of the Petersen

graph have precisely one edge in common, and proved that there is a one-to-one

correspondence between edges and pairs of distinct 1-factors in the Petersen

graph. Then we have the following proposition immediately.

Proposition 7.1.2. The Petersen graph has exactly six perfect matchings, and

each edge is contained in exactly two of them.

We fix a drawing of P as in Figure 7.1 left. With reference to Figure

7.1, we define M0 to be the perfect matching consisting of all edges uivi, for

i ∈ {1, . . . , 5}. Moreover, for i ∈ {1, . . . , 5}, by Proposition 7.1.2 we let Mi be

the only other perfect matching of P different from M0 and containing uivi,

see Figure 7.1. Let M be a multiset of perfect matchings of P. We denote by

M M0 i

v1 vi

u1 ui

u2u5

u4 u3

v2

v3

v5

v4

Figure 7.1: The Petersen graph P, and its perfect matchings M0 and Mi.

nM(i) the number of copies of Mi appearing in M. We define PM to be the

graph P +
∑

F∈M F and we remark that it has the following nice property.

Lemma 7.1.3 ( [27]). For every finite multiset M of perfect matchings of the

Petersen graph P, the graph PM is class 2.
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Now, let N be a multiset of perfect matchings of PM. Note that each

perfect matching N of N can be interpreted as a perfect matching of P by

caring only about the end-vertices of each edge. If N corresponds to the perfect

matching Mi in P, then we say N is of typ i in PM. Moreover, the multiset

N can be interpreted as a multiset of perfect matchings of P, which is denoted

by NP . Note that |NP | = |N |. We need the following two lemmas.

Lemma 7.1.4. Let M be a multiset of perfect matchings of P. Let N be a set of

pairwise disjoint perfect matchings of PM. There is at most one i ∈ {0, . . . , 5}

such that nNP (i) > nM(i).

In particular, there is no triple of different vertices u, v, w in PM, with w

adjacent to both v and u, such that N contains all edges of EPM({u, v}, {w}).

Proof. First, suppose that there are two indices i and j such that i ̸= j,

nNP (i) > nM(i), and nNP (j) > nM(j). Let uv be the edge of P belong-

ing to both Mi and Mj by Proposition 7.1.2. Since the perfect matchings of N

are pairwise disjoint, at most µPM(u, v) perfect matchings in N can contain

an edge connecting u and v. This implies nNP (i)+nNP (j) ≤ µPM(u, v). Then

the following contradiction arises.

µPM(u, v) = nM(i) + nM(j) + 1 ≤ nNP (i) + nM(j) < nNP (i) + nNP (j).

Next, we prove the second part of the lemma. Let u, v be two different

vertices both adjacent to the vertex w in PM. Suppose by contradiction thatN

contains all edges of EPM({u, v}, {w}). By Proposition 7.1.2, we may assume

without loss of generality that {uw} =M0 ∩M1 and {vw} =M2 ∩M3. Then,

since all edges of EPM({u, v}, {w}) are contained in N , we similarly deduce

that

• nNP (0) + nNP (1) = µPM(u,w) = nM(0) + nM(1) + 1;

• nNP (2) + nNP (3) = µPM(v, w) = nM(2) + nM(3) + 1.

Then we conclude that there is s ∈ {0, 1} and t ∈ {2, 3}, such that nNP (s) >

nM(s) and nNP (t) > nM(t), which is impossible.
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Lemma 7.1.5. Let M be a multiset of k perfect matchings of P and let µ =

µ(PM). Then, λ(PM) = min{k + 3, 2k + 6− 2µ}.

Proof. Note that P is a 3-graph, and PM is a (k+3)-graph since every perfect

matching of P intersects each edge-cut that separates two vertex sets of odd car-

dinality. Let X be a non-empty proper subset of V (PM) minimizing |∂PM(X)|.

It implies that PM[X] is connected. If |X| is odd, then |∂PM(X)| ≥ k+3 since

PM is a (k + 3)-graph. If |X| is even, then it suffices to consider the cases

|X| ∈ {2, 4}. Since P does not contain a circuit of order less than 5, either

P[X] is a path on two or four vertices, or it is isomorphic toK1,3. Then ∂PM(X)

contains at least k+3−µ edges for each vertex of degree 1 in P[X], and so we get

that |∂PM(X)| ≥ 2(k+3−µ). Consequently, λ(PM) ≥ min{k+3, 2k+6−2µ}.

Finally, observe that |∂PM({u, v})| = 2k + 6 − 2µ for every two vertices u, v

with µPM(u, v) = µ. Thus, the statement follows.

7.1.2 An useful graph operation

Definition 7.1.6. Let G and H be two graphs with u, v ∈ V (G) and x, y ∈

V (H) such that µG(u, v) ≥ t and µH(x, y) ≥ r − t. Then, (G, u, v)⊕t (H,x, y)

is the graph obtained from G and H by deleting exactly t edges connecting u

and v in G and r − t edges connecting x and y in H, identifying u and x to a

new vertex wux, and identifying v and y to a new vertex wvy, see Figure 7.2.

r − t

t

u

v

x

y

G H

wux

wvy

(G, u, v)⊕t (H, x, y)

Figure 7.2: The operation of Definition 7.1.6.
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Lemma 7.1.7. Let G and H be two r-graphs with u, v ∈ V (G) and x, y ∈ V (H)

such that µG(u, v) ≥ t and µH(x, y) ≥ r − t. Then, G′ = (G, u, v) ⊕t (H,x, y)

is an r-graph with

λ(G′) = min{λ(G), λ(H)}.

Proof. By the construction in Definition 7.1.6, G′ = (G, u, v) ⊕t (H,x, y) is r-

regular. For every Y ⊆ V (G)\{v}, we have |∂G(Y )| = |∂G′((Y \{u})∪{wux})|

if u ∈ Y and |∂G(Y )| = |∂G′(Y )| otherwise. Similarly, for every Y ′ ⊆ V (H) \

{y}, we have |∂H(Y ′)| = |∂G′((Y ′ \ {x}) ∪ {wux})| if x ∈ Y ′ and |∂H(Y ′)| =

|∂G′(Y ′)| otherwise. As a consequence, there is an X ⊆ V (G′) with |∂G′(X)| =

min{λ(G), λ(H)}. Thus, it suffices to prove that, for each non-empty proper

subset S ⊂ V (G′), we have |∂G′(S)| ≥ min{λ(G), λ(H)} if |S| is even, and

|∂G′(S)| ≥ r if |S| is odd. Since, for all Y ⊆ V (G′), ∂G′(Y ) = ∂G′(V (G′) \ Y ),

we just need to consider the two cases when |S ∩ {wux, wvy}| = 0 and |S ∩

{wux, wvy}| = 1.

First, assume |S ∩ {wux, wvy}| = 0. It is clear that |∂G′(S)| = |∂G(S ∩

V (G))|+ |∂H(S ∩ V (H))|. Note that one of |S ∩ V (G)| and |S ∩ V (H)| is odd

if |S| is odd. So |∂G′(S)| ≥ min{λ(G), λ(H)} if |S| is even, and |∂G′(S)| ≥ r if

|S| is odd.

Next, we assume |S ∩ {wux, wvy}| = 1. Without loss of generality, say

wux ∈ S. Note that |∂G′(S)| = |∂G((S \ {wux} ∪ {u}) ∩ V (G))| − t+ |∂H((S \

{wux} ∪ {x}) ∩ V (H))| − (r − t). If one of |(S \ {wux} ∪ {u}) ∩ V (G)| and

|(S \ {wux} ∪ {x}) ∩ V (H)| is odd, then the other has the same parity as |S|.

This implies |∂G′(S)| ≥ min{λ(G), λ(H)} if |S| is even, and |∂G′(S)| ≥ r if |S|

is odd. Thus, the remaining case is that both |(S \ {wux} ∪ {u}) ∩ V (G)| and

|(S\{wux}∪{x})∩V (H)| are even, and |S| is odd. Since |(S\{wux})∩V (G)| is

odd in this case and G is an r-graph, we obtain |∂G((S\{wux}∪{u})∩V (G))| ≥

2µG(u, v) ≥ 2t. Similarly, |∂H((S\{wux}∪{x})∩V (H))| ≥ 2µH(x, y) ≥ 2(r−t).

So |∂G′(S)| ≥ 2t− t+ 2(r − t)− (r − t) = r. This completes the proof.

Lemma 7.1.8. Let r, t be two integers with 2 ≤ t < r, let G be an r-graph
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and let u, v ∈ V (G) such that µG(u, v) ≥ t. Let M be a multiset of r − 3

perfect matchings of P, let x, y ∈ V (PM) such that µPM(x, y) ≥ r − t and let

G′ = (G, u, v)⊕t (PM, x, y). If G′ has a k-PDPM N ′, then G has a k-PDPM

N such that

(i) N avoids at least one edge connecting u and v,

(ii) for every e ∈ E(G′[V (G) \ {u, v}]), if N ′ avoids e, then N avoids e.

Proof. Assume that N ′ is a k-PDPM of G′. Every perfect matching of G′

contains either zero or exactly two edges of ∂G′(V (PM)\{x, y}), since |V (PM)\

{x, y}| is even. The same holds for V (G) \ {u, v}, since |V (G) \ {u, v}| is also

even. Hence, every perfect matching of G′ can be transformed into a perfect

matching of G and of PM by adding either uv or xy. In particular, N ′ can

be transformed into a k-PDPM N of G, which satisfies (ii). Suppose that N

contains all edges connecting u and v, which implies that N ′ contains all edges

of ∂G′(V (G)). As a consequence, PM has a k-PDPM that contains all edges of

∂PM({x, y}). This means that PM has a k-PDPM containing all edges incident

with y and not with x, a contradiction to Lemma 7.1.4.

7.2 The complexity of PDPM(k, r)

For every r ≥ 3 the problem whether a given r-regular graph is class 1 is NP -

complete, which was shown by Leven and Galil [51]. We extend this result

as follows. For every two integers k, r with 1 < k < r let PDPM(k, r) be

the problem to decide whether a given r-graph has k pairwise disjoint perfect

matchings.

Theorem 7.2.1. For every two integers k, r with 1 < k < r the decision

problem PDPM(k, r) is NP -complete.

Proof. First, we prove that for every r ≥ 3 the decision problem PDPM(r −

1, r) is NP -complete. Leven and Galil [51] proved that for every r ≥ 3 the
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problem whether a given r-regular graph is class 1 is NP -complete. Recall

that an r-regular graph is an r-graph if and only if its density equals r, where

the density of a graph G is defined by

Γ(G) = max

{⌈
|E(G[S])|
⌊12 |S|⌋

⌉
: S ⊆ V (G), |S| ≥ 2

}
if |V (G)| ≥ 2 and Γ(G) = 0 otherwise. The density of graph can be computed

in polynomial time (see for example [17]) and therefore, it can be decided in

polynomial time whether a given r-regular graph is an r-graph. Furthermore,

every r-regular graph that is not an r-graph is class 2. Therefore, the result

of Leven and Galil implies that for every r ≥ 3 it is NP -complete to decide

whether a given r-graph is class 1, i.e. PDPM(r − 1, r) is NP -complete.

Next, we complete the proof by showing that for every two integers k, r

with 1 < k < r, if PDPM(k, r) is NP -complete, then PDPM(k, r+1) is NP -

complete. Let G be an r-graph. Every r-graph has a perfect matching [77];

let M = {x1y1, . . . , xsys} be a perfect matching of G. For every i ∈ {1, . . . , s},

let H i be a copy of P + (r − 2)M0. In each copy, the vertices and perfect

matchings are labelled accordingly by using an upper index, i.e. the vertex

of H i corresponding to u1 in P + (r − 2)M0 is labelled as ui1. Define graphs

G0, . . . , Gs inductively as follows:

G0 := G+M,

Gi := (Gi−1, xi, yi)⊕2 (H
i, ui1, v

i
1) for every i ∈ {1, . . . , s}

and set G′ = Gs. Note that µG0(xi, yi) ≥ 2 and µHi(ui1, v
i
1) = r−1 for every i ∈

{1, . . . , s} and hence, G′ is well-defined. Furthermore, by Lemma 7.1.7 G′ is an

(r+1)-graph, since G0 and P+(r−2)M0 are both (r+1)-graphs. Lemma 7.1.8

implies, if G′ has a k-PDPM, then G0 has a k-PDPM avoiding every edge ofM ,

i.e. G has a k-PDPM. On the other hand, let N = {N1, . . . , Nk} be a k-PDPM

of G. Note that µG′(wxiui
1
, wyivi1

) = µG(xi, yi)− 1 for every i ∈ {1, . . . , s}, and

thus G −M is a subgraph of G′. Hence, we can assume that Nj ⊆ E(G′) for

every j ∈ {1, . . . , k − 1}. For each i ∈ {1, . . . , s} let N i = {N i
1, . . . , N

i
k} be
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a k-PDPM of H i, where N i
k is is a perfect matching of type 2 in H i and all

other elements of N i are of type 0. Furthermore, for every j ∈ {1, . . . , k − 1}

let N ′
j = Nj ∪

⋃s
i=1N

i
j \ {ui1vi1} and set N ′

k =
⋃s

i=1N
i
k. Then, {N ′

1, . . . , N
′
k} is

a k-PDPM of G′. As a consequence, G′ has a k-PDPM if and only if G has a

k-PDPM. Clearly, G′ can be obtained from G in polynomial time. Therefore,

if PDPM(k, r) is NP -complete, then PDPM(k, r+1) is NP -complete, witch

completes the proof.

Rizzi [75] constructed a poorly matchable (r + 1)-graph starting with a

poorly matchable r-graph. We remark that the construction of G′ from G in

the above proof is similar to that construction.

7.3 r-edge-connected r-graphs

In this section we are mainly motivated by the open cases of Problem 7.0.3.

First, we prove Theorem 7.0.4, which, together with the results of [63, 75],

imply the following corollary.

Corollary 7.3.1. If r > 2 is even, then m(r, r) ≤ r − 3.

The graphs that prove Corollary 7.3.1 have a 2-vertex-cut. It is easy to

see that for odd r, an r-edge-connected r-graph is 3-vertex-connected (see Ob-

servation 7.3.7). This shows that our methods are limited to the case when r

is even. Thus, the main motivation for Subsection 7.3.2 is the study of Prob-

lems 7.0.1 and 7.0.3 for odd r. We prove that every r-edge-connected r-graph

has k ∈ {2, . . . , r − 2} pairwise disjoint perfect matchings if and only if ev-

ery r-edge-connected r-graph has k pairwise disjoint perfect matchings that

contain (or that avoid) a fixed edge. For odd r, we prove the stronger state-

ment that every r-edge-connected r-graph has an (r− 2)-PDPM if and only if

for every r-edge-connected r-graph and every ⌊ r2⌋ adjacent edges, there is an

(r − 2)-PDPM of G containing all ⌊ r2⌋ edges. In Subsection 7.3.3 we consider

Problem 7.0.1 when r = t = 5. For r ≥ 3, r ̸= 5, an r-edge-connected r-graph
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can be constructed by appropriately adding r − 3 perfect matchings to the

Petersen graph. Such graphs are class 2 by Lemma 7.1.3. However, we cannot

easily construct a 5-edge-connected 5-regular graph in the same way. Indeed,

adding two perfect matchings to P generates a 4-edge-cut. So far, we have

not succeeded in constructing 5-edge-connected 5-regular class 2 graphs. Also,

intensive literature research and computer-assisted searches in graph databases

did not lead to the desired success. Thus, for m(5, 5) we only have the trivial

bounds, i.e. 1 ≤ m(5, 5) ≤ 5. In Subsection 7.3.3 we use the results from Sub-

section 7.3.2 to prove Theorem 7.0.5. Furthermore, we deduce some properties

of a minimum possible 5-edge-connected class 2 5-graph.

7.3.1 Proof of Theorem 7.0.4

In this subsection we construct a (4k + 2)-edge-connected (4k + 2)-graph Gk

without a 4k-PDPM for each integer k ≥ 1. As in [63], we first construct a

graph Pk by adding perfect matchings to the Petersen graph and a graph Qk

by using two copies of Pk. Then, we construct a graph Sk and ”replace” some

edges of Sk by copies of Qk to obtain the graph Gk with the desired properties.

The graphs Pk and Qk

For each k ≥ 1, let

Pk = P + k(M0 +M1 +M2) + (k − 1)M5,

as shown in Figure 7.3.

Let P1
k and P2

k be two distinct copies of Pk. For each w ∈ V (Pk), the

vertex of P1
k (P2

k , respectively) that corresponds to w is denoted by w1 (w2,

respectively). Now, we obtain the graph Qk from P1
k and P2

k by removing

the 2k + 1 parallel edges connecting ui1 and vi1 from P i
k, for each i ∈ {1, 2},

and identifying u11 and u21 to a new vertex, denoted by uQk
. Note that the

degree of uQk
in Qk is 4k+ 2. For a graph G containing Qk as a subgraph, let
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Figure 7.3: The graph P2.

Ei
k = EG(v

i
1, V (G)\V (Qk)) for each i ∈ {1, 2}. The subgraph Q2 and the edge

sets E1
2 and E2

2 are shown in Figure 7.4.

uQ 2
E 2
1 E 2

2

Figure 7.4: The subgraph Q2 (solid lines) and the edge sets E1
2 and E2

2 (dashed

lines).

The following lemma is similar to Lemma 2.5 in [63] (Qk is different), and

it can be proved analogously. In order to keep this thesis self-contained, we

present the proof here.

Lemma 7.3.2. Let G be a graph that contains Qk as an induced subgraph. Let

N = {N1, . . . , N4k} be a set of pairwise disjoint perfect matchings of G and let

N =
⋃4k

i=1Ni. If ∂(V (Qk)) = E1
k ∪ E2

k, then

|E1
k ∩N | = |E2

k ∩N | = 2k.

Proof. Every perfect matching of G intersects ∂(V (Qk)) precisely once since
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|V (Qk)| is odd and {v11, v21} is a 2-vertex-cut. It remains to show that Ei
k

intersects precisely 2k elements of N . Recall that Qk is constructed by using

two copies of P +
∑

M∈MM , where

M = {M0,M1,M2, . . . ,M0,M1,M2︸ ︷︷ ︸
k times

,M5, . . . ,M5︸ ︷︷ ︸
k−1 times

}.

We argue by contradiction. Without loss of generality, suppose that |E1
k∩N | <

2k, which is equivalent to |E2
k ∩ N | > 2k. Every perfect matching of N that

intersects E1
k also intersects the set EG(uQk

, V (P2
k)), and vice versa. Con-

sequently, the existence of N implies that there is a set N ′ of 4k pairwise

disjoint perfect matchings in P1
k such that N ′ contains at most 2k − 1 edges

of EP1
k
(u11, v

1
1). Hence, N ′ contains all edges of ∂P1

k
(u11) \EP1

k
(u11, v

1
1), a contra-

diction to Lemma 7.1.4. Hence, |E1
k ∩N | = |E2

k ∩N | = 2k.

The graph Sk

For every k ≥ 1, let Sk be the graph with vertex-set {xi, yi, zi, w : i ∈

{1, . . . , 4k+ 2}} and edge-set Ak ∪ kBk ∪ (k+ 1)Dk ∪ (2k+ 1)(Ek ∪ Fk) where

Ak = {wzi : i ∈ {1, . . . , 4k + 2}},

Bk = {zixi, ziyi : i ∈ {1, . . . , 4k + 2}},

Dk = {xiyi : i ∈ {1, . . . , 4k + 2}},

Ek = {yixi+1 : i ∈ {1, . . . , 4k + 2}},

Fk = {zizi+2k+1 : i ∈ {1, . . . , 2k + 1}},

and the indices are added modulo 4k + 2, see Figure 7.5.

Lemma 7.3.3. For all k ≥ 1, Sk is (4k + 2)-edge-connected and (4k + 2)-

regular.

Proof. By definition, Sk is (4k + 2)-regular. Let X ⊂ V (G) be a non-empty

set. First, we consider the case that there are two vertices u, v ∈ {xi, yi :

i ∈ {1, . . . , 4k + 2}} such that X contains exactly one of them. Clearly, there
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x1

x2

y2
z2

y1

z1

w

Figure 7.5: The graphs S1 (left) and S2 (right).

are 4k + 2 pairwise edge-disjoint u, v-paths in Sk, which only contain edges of

kBk ∪ (k + 1)Dk ∪ (2k + 1)Ek. Hence, |∂Sk
(X)| ≥ 4k + 2. Therefore, without

loss of generality we may assume {xi, yi : i ∈ {1, . . . , 4k + 2}} ∩X = ∅. Since

Sk is (4k + 2)-regular and µSk
(u, v) ≤ 2k + 1 for every u, v ∈ V (Sk), we have

|X| /∈ {1, 2}. Hence, X either contains at least three vertices of {zi : i ∈

{1, . . . , 4k + 2}} or w and exactly two vertices of {zi : i ∈ {1, . . . , 4k + 2}}.

In the first case, ∂(X) contains at least 6k edges of kBk. In the second case,

∂(X) contains 4k edges of Ak and at least 4k edges of kBk, which completes

the proof.

The graph Gk

For every k ≥ 1, let Gk be the graph obtained from Sk as follows. First, remove

all edges of (2k + 1)(Ek ∪ Fk). Then, for every edge e = uv ∈ Ek ∪ Fk, add a

copy Qe
k of Qk, connect u with the vertex corresponding to v11 by 2k + 1 new

parallel edges and connect v with the vertex corresponding to v12 by 2k+1 new

parallel edges, see Figure 7.6.

In order to prove that Gk has the desired properties, we need the following

two observations.
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Figure 7.6: The graph G1, where the boxes are copies of Q1.

Observation 7.3.4. Let G be a graph and let u, v ∈ V (G) with µG(u, v) = t.

Let H be the graph obtained from G by identifying u and v to a (new) vertex

w. If G is 2t-edge-connected and 2t-regular, then H is 2t-edge-connected and

2t-regular.

Proof. Assume that G is 2t-edge-connected and 2t-regular. Since µG(u, v) = t,

it follows that ∂G({u, v}) = 2t and hence, H is 2t-regular. Let X ⊂ V (H) be

a non-empty set. If w ∈ X, then |∂H(X)| = |∂G(X \ {w} ∪ {u, v})| ≥ 2t. If

w /∈ X, then |∂H(X)| = |∂G(X)| ≥ 2t.

Observation 7.3.5. Let G and G′ be two disjoint graphs and let u, v ∈ V (G)

and u′, v′ ∈ V (G′) such that µG(u, v) = µG′(u′, v′) = t. Let H be the graph

obtained from G and G′ as follows. Remove the t parallel edges between u and

v and the t parallel edges between u′ and v′. Add t parallel edges between u and

u′ and t parallel edges between v and v′. If G and G′ are 2t-edge-connected and

2t-regular, then H is 2t-edge-connected and 2t-regular.

Proof. Clearly, H is 2t-regular. Note that G − EG(u, v) and G′ − EG′(u′, v′)

are t-edge-connected. Let X ⊂ V (H) be a non-empty set.

Case 1. X ∩ V (G) = V (G) or X ∩ V (G′) = V (G′).
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Say V (G) ⊆ X, then ∂H(X) contains either (i) EH(u, u′) and EH(v, v′) or

(ii) one of EH(u, u′) and EH(v, v′) and a t1-edge-cut of G′ − EG′(u′, v′) with

t1 ≥ t or (iii) a t2-edge-cut of G
′ − EG′(u′, v′) with t2 ≥ 2t.

Case 2. X ∩ V (G) ̸= V (G) and X ∩ V (G′) ̸= V (G′).

If X ∩V (G) ̸= ∅ and X ∩V (G′) ̸= ∅, then |∂H(X)| ≥ |∂G(X ∩V (G))| − t+

|∂G′(X ∩V (G′))|− t ≥ 2t. If X ∩V (G′) = ∅, then |∂H(X)| ≥ |∂G(X)| ≥ 2t.

Theorem 7.3.6. For all k ≥ 1, Gk is a (4k+2)-edge-connected (4k+2)-graph

without 4k pairwise disjoint perfect matchings.

Proof. By construction, µ(Pk) = 2k + 1. As a consequence, Pk is (4k + 2)-

edge-connected and (4k + 2)-regular by Lemma 7.1.5. Hence, by Observations

7.3.4 and 7.3.5, the graph Qk + (2k + 1){v11v21} is (4k + 2)-edge-connected and

(4k + 2)-regular. Thus, Gk is (4k + 2)-edge-connected and (4k + 2)-regular by

Observation 7.3.5 again. Furthermore, the order of Gk is |V (Sk)|+19|Ek∪Fk|,

which is even. Suppose to the contrary that Gk has 4k pairwise disjoint perfect

matchings. Let N ⊆ E(Gk) be the union of them and let wzi ∈ N . Lemma

7.3.2 implies |N ∩ ∂Gk
({xi, yi, zi})| = 6k+1. On the other hand, every perfect

matching contains an odd number of edges of ∂Gk
({xi, yi, zi}) by Observation

7.1.1. Therefore, |N ∩ ∂Gk
({xi, yi, zi})| is even, a contradiction.

Theorem 7.3.6 implies that m(r, r) ≤ r−3 if r ≡ 2 mod 4. Thus, Theorem

7.0.4 and Corollary 7.3.1 are proved.

7.3.2 Equivalences for statements on the existence of a

k-PDPM

The graph Gk from the previous subsection has many 2-vertex-cuts. The fol-

lowing observation shows that such a construction will not apply for the odd

case of Problem 7.0.3.

Observation 7.3.7. For odd r ≥ 3, every r-edge-connected r-graph is 3-

connected.



94 Chapter 7: Number of pairwise disjoint perfect matchings in r-graphs

Proof. Let G be an r-edge-connected r-graph. Clearly, G is of even order and

2-connected. Suppose that there are two vertices v1, v2 such that G−{v1, v2} is

not connected. Then G−{v1, v2} has exactly two components A and B. Since

the order of G is even, A and B are either both of even order or both of odd

order. In the first case, |∂(V (A))| + |∂(V (B))| ≤ |∂(v1)| + |∂(v2)| = 2r. Since

A and B are of even order, |∂(V (A))| and |∂(V (B))| are both even. Hence,

it follows that either |∂(V (A))| < r or |∂(V (B))| < r since r is odd. In the

second case, |∂(V (A)∪{v1})|+ |∂(V (B)∪{v1})| = |∂(v1)|+ |∂(v2)| = 2r. Thus,

|∂(V (A) ∪ {v1})| < r or |∂(V (B) ∪ {v1})| < r since A and B are of odd order.

Therefore, both cases lead to a contradiction with the assumption that G is

r-edge-connected.

We are going to prove some equivalent statements about the existence of a

k-PDPM in r-edge-connected r-graphs.

We recall the following definition from Chapter 2. For a graph G, a vertex

v ∈ V (G) and a graph H disjoint from G, a new graph G′ can be obtained

from G as follows: add H; for every edge e ∈ E(G) incident to v, replace

the end-vertex v of e by a vertex of H; delete v. We say G′ is obtained from

G by replacing v with H. Note that there are many different graphs that

can be obtained from G by replacing v with H; all of them have vertex-set

(V (G) \ v) ∪ V (H) and edge-set E(G) ∪ E(H).

In the following we need a special case of the replacing operation.

Definition 7.3.8. Let G and H be two disjoint r-regular graphs with u ∈ V (G)

and v ∈ V (H). Let (G, u)|(H, v) be the set of all graphs obtained by replacing

the vertex u of G by (H, v), that is, start with G and replace v by H − u such

that the resulting graph is r-regular.

Lemma 7.3.9. If G and H are two disjoint r-edge-connected r-regular graphs

with u ∈ V (G) and v ∈ V (H), then every graph in (G, u)|(H, v) is r-regular

and r-edge-connected.
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Proof. Suppose to the contrary that there exists a graphG′ ∈ (G, u)|(H, v) with

a set X ⊂ V (G′) such that |∂G′(X)| ≤ r−1. If X ⊆ V (G−u) or X ⊆ V (H−v),

then |∂G(X)| = |∂G′(X)| ≤ r−1 or |∂H(X)| = |∂G′(X)| ≤ r−1, a contradiction.

Hence, by symmetry, we assume X ∩ V (G − u) = X1, X ∩ V (H − v) = X2,

Xc∩V (G−u) = X3 andX
c∩V (H−v) = X4, whereX

c = V (G′)−X andXi ̸= ∅

for each i ∈ {1, 2, 3, 4}. Since |∂G′(X)| ≤ r − 1, we have eG′(X1, X3) ≤ ⌊ r−1
2 ⌋

or eG′(X2, X4) ≤ ⌊ r−1
2 ⌋. It implies that G − u or H − v has an edge-cut of

cardinality at most ⌊ r−1
2 ⌋, which contradicts the assumption that both G and

H are r-edge-connected.

In what follows we show that if every r-edge-connected r-graph has a k-

PDPM, then every r-edge-connected r-graph has a k-PDPM containing or

avoiding a fixed set of edges.

Theorem 7.3.10. Let r ≥ 4 and 2 ≤ k ≤ r− 2. The following statements are

equivalent.

(i) Every r-edge-connected r-graph has a k-PDPM.

(ii) For every r-edge-connected r-graph G and every e ∈ E(G), there exists a

k-PDPM of G containing e.

(iii) For every r-edge-connected r-graph G and every e ∈ E(G), there exists a

k-PDPM of G avoiding e.

(iv) For every r-edge-connected r-graph G, every v ∈ V (G) and e ∈ ∂G(v),

there are at least s = r − ⌊ r−k
2 ⌋ − 1 edges e1, . . . , es in ∂G(v) \ {e} such that,

for each i ∈ {1, . . . , s}, there exists a k-PDPM of G containing ei and e.

Proof. Clearly, each of (ii), (iii) and (iv) implies (i). Thus, it suffices to prove

that (i) implies (ii); (i) implies (iii); and (ii) implies (iv).

(i) ⇒ (ii), (iii). Assume that statement (i) is true and let G be an r-

edge-connected r-graph with an edge vv1. We use the same construction for

both implications. Let C2r = u1u2 . . . u2ru1 be a circuit of order 2r. Denote

Uo = {ui : i is odd} and Ue = {ui : i is even}. We construct a new graph H

from C2r as follows. Replace each edge of C2r by
r−1
2 parallel edges, if r is odd,
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and replace the edge uiui+1 (ujuj+1 and u2ru1, respectively) of C2r by r
2 ( r−2

2 ,

respectively) parallel edges for each ui ∈ Uo (uj ∈ Ue \ {u2r}, respectively), if

r is even. Add two new vertices, denoted by u and u′, such that u is adjacent

to each vertex in Uo and u′ is adjacent to each vertex in Ue, see Figure 7.7.

Clearly, H is r-regular and r-edge-connected.

u2

u′

u

u3

u5

u4

u6

u8

u7

u9

u10

u1

(a) r = 5

u1
u2

u4

u3

u6

u5

u8

u7

u′

u

(b) r = 4

Figure 7.7: Two examples for the graph H obtained from C2r as in the proof of

Theorem 7.3.10.

Let I = {i : i ∈ {1, . . . , 2r}, i is odd} and for every i ∈ I let Gi be a copy of

G, in which the vertices are labeled accordingly by using an upper index. For

example, vi is the vertex of Gi that corresponds to the vertex v of G. Following

the procedure described in Definition 7.3.8, we construct another new graph

H ′ from H by successively replacing each vertex ui ∈ Uo of H by (Gi, vi) such

that for each i ∈ I the vertex vi1 is adjacent to u (see Figure 7.8). By Lemma

7.3.9, H ′ is r-regular and r-edge-connected. Note that H ′ is an r-graph since

it is of even order.

In order to prove statements (ii) and (iii) we observe the following. Let

M be an arbitrary perfect matching of H ′ and for every i ∈ I, let mi =

|∂H′(V (Gi − vi)) ∩ M |. The set M contains exactly one edge incident with

u and one edge incident with u′. Thus, by the construction of H ′ we have∑
i∈I mi = |M ∩ ∂H′(Ue)| = |I|. Observation 7.1.1 implies mi ≥ 1 and hence,
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u2

u′

u

G5 − v5

u4

u6

u8

G7 − v7

G9 − v9

u10

v11

G1 − v1

G3 − v3 v31

v51
v71

v91

(a) r = 5

u2

u′

u

G5 − v5

u4
u6

u8

G7 − v7

v11

G1 − v1

G3 − v3 v31

v51

v71

(b) r = 4

Figure 7.8: Two examples for the graph H ′ obtained from G and H as in the

proof of Theorem 7.3.10.

mi = 1 for every i ∈ I. Thus, every perfect matching of H ′ can be translated

into a perfect matching of Gi for each i ∈ I.

Now, by statement (i), H ′ has a k-PDPM N . Furthermore there are two

integers i, j ∈ I such that N contains uvi1 and avoids uvj1. By the above

observation, the graph Gi has a k-PDPM containing vivi1 and Gj has a k-

PDPM avoiding vjvj1, which proves statements (ii) and (iii).

(ii) ⇒ (iv). LetG be an r-edge-connected r-graph and let e1 = vv1 ∈ E(G).

Suppose |{e ∈ ∂G(v) \ {e1} : there exists a k-PDPM of G containing e, e1}| <

s. As a consequence, ∂G(v)\{e1} contains at least t = r−1−(s−1) = ⌊ r−k
2 ⌋+1

edges e2, . . . , et+1, such that for every j ∈ {2, . . . , t + 1} there is no k-PDPM

of G containing e1 and ej . For each j ∈ {2, . . . , t+ 1} denote ej = vvj .

Let K4 be the complete graph of order 4 and let V (K4) = {u1, u2, u3, u4}.

We construct a new r-regular graph H from K4 by replacing each edge of

{u1u2, u2u3, u3u4, u4u1} by r−1
2 parallel edges if r is odd, and replacing each

edge of {u1u2, u3u4} ({u2u3, u4u1}, respectively) by r
2 ( r−2

2 , respectively) par-

allel edges if r is even, see Figure 7.9. Clearly, H is r-edge-connected.

For each i ∈ {1, 3}, let Gi be a copy of G in which the vertices and edges are

labeled accordingly by using an upper index and let V i = {vij : j ∈ {2, . . . , t+
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u1

u2 u4

u3

(a) r = 5

u1

u2 u4

u3

(b) r = 4

Figure 7.9: Two examples for the graph H obtained from K4 as in the proof of

Theorem 7.3.10.

1}}. Following the procedure in Definition 7.3.8, we construct another new

graph H ′ from H by successively replacing each vertex ui ∈ {u1, u3} of H

by (Gi, vi) such that v11 is adjacent to v31 and EH′(u2, V
1 ∪ V 3) contains as

many edges as possible, see Figure 7.10. The graph H ′ is r-regular and r-

edge-connected by Lemma 7.3.9. By statement (ii), H ′ has a k-PDPM N =

{N1, . . . , Nk} containing u2u4. Clearly, v11v
3
1 and u2u4 are in the same perfect

matching ofN and so eachNi ∈ N contains exactly one edge of ∂H′(V (G1−v1))

and one edge of ∂H′(V (G3−v3)) by Observation 7.1.1. Thus, Ni∩EH′(u2, V
1∪

V 3) = ∅ for each i ∈ {1, . . . , k}. Now we consider the following two cases.

Case 1. r is odd.

Since t = ⌊ r−k
2 ⌋ + 1 ≤ r−1

2 , the set EH′(u2, V
i) contains t edges for each

i ∈ {1, 3} by the construction of H ′. Note that Ni ∩ EH′(u2, V
1 ∪ V 3) = ∅ for

each i ∈ {1, . . . , k}. Hence, the k-PDPM N of H ′ contains at most r − 2t =

r− 2(⌊ r−k
2 ⌋+ 1) ≤ r− 2( r−k−1

2 + 1) = k− 1 edges in ∂H′(u2), a contradiction.

Case 2. r is even.

Case 2.1. k = 2.

Since t = ⌊ r−2
2 ⌋+ 1 = r

2 , the set EH′(u2, V
1 ∪ V 3) contains 2t− 1 = r − 1
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G1 − v1

u2 u4

G3 − v3

v11

v31

(a) r = 5

G1 − v1

u2 u4

G3 − v3

v11

v31

(b) r = 4

Figure 7.10: Two examples for the graph H ′ obtained from G and H as in the

proof of Theorem 7.3.10.

edges. Hence, the k-PDPM N of H ′ contains at most r− (2t− 1) = 1 edges in

∂H′(u2), a contradiction.

Case 2.2. k > 2.

Since t = ⌊ r−k
2 ⌋+ 1 ≤ r−4

2 + 1 = r
2 − 1, we have that EH′(u2, V

i) contains

t edges for each i ∈ {1, 3} by the construction of H ′. Hence, the k-PDPM N

of H ′ contains at most r − 2t = r − 2(⌊ r−k
2 ⌋ + 1) ≤ r − 2( r−k−1

2 + 1) = k − 1

edges in ∂H′(u2), a contradiction again.

For the special case k = r − 2, we can obtain a stronger result as follows.

Theorem 7.3.11. Let k ≥ 1. The following statements are equivalent.

(i) Every (2k + 1)-edge-connected (2k + 1)-graph has a (2k − 1)-PDPM.

(ii) For every (2k + 1)-edge-connected (2k + 1)-graph G and every k edges

sharing a common vertex, there exists a (2k− 1)-PDPM of G containing these

k edges.

Proof. It suffices to prove that statement (i) implies statement (ii). Let G be

a (2k + 1)-edge-connected (2k + 1)-graph and let v ∈ V (G) be a vertex with
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∂G(v) = {ei : i ∈ {1, . . . , 2k + 1}}. We show that there is a (2k − 1)-PDPM of

G that contains the edges e1, . . . , ek.

Denote ei = vvi for each i ∈ {1, . . . , 2k + 1}. Let G1 be a copy of G in

which the vertices and edges are labeled accordingly by using an upper index.

As described in Definition 7.3.8, construct a new graph H from G by replacing

v with (G1, v1) such that ∂H(V (G) \ v) = {v2k+1v
1
2k+1} ∪ E1 ∪ E2, where

E1 = {viv1i+k : i ∈ {1, . . . , k}} and E2 = {v1i vi+k : i ∈ {1, . . . , k}}. By Lemma

7.3.9, H is (2k + 1)-edge-connected and (2k + 1)-regular. Thus, by statement

(i) and Theorem 7.3.10 there is a (2k−1)-PDPM N of H avoiding v2k+1v
1
2k+1.

By Observation 7.1.1, every perfect matching of N contains exactly one edge

of ∂H(V (G)\{v}) and hence, N contains either every edge of E1 or every edge

of E2. In the first case, G has a (2k − 1)-PDPM that contains e1, . . . , ek; in

the second case, G1 has a (2k−1)-PDPM that contains e11, . . . , e
1
k. This proves

statement (ii).

7.3.3 5-graphs

In this subsection we first related statements on the value of m(5, 5) to well-

known conjectures for cubic graphs. In particular we prove Theorem 7.0.5.

Next, we deduce structural properties of a smallest 5-edge-connected 5-graph

of class 2, if such a graph exists.

We recall the following three conjectures.

Conjecture 1.1.1 (Berge-Fulkerson Conjecture [24]). Every bridgeless cubic

graph has six perfect matchings such that each edge belongs to exactly two of

them.

Conjecture 1.1.2 (Cycle Double Cover Conjecture [78,82]). Every bridgeless

graph has a collection of cycles such that each edge belongs to exactly two of

them.
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Conjecture 5.0.1 (Fan-Raspaud Conjecture [22]). Every bridgeless cubic

graph has three perfect matchings with an empty intersection.

A minimum counterexample to Conjecture 1.1.2, if it exists, is a snark.

Hence, the Cycle Double Cover is implied by the following stronger conjecture.

Conjecture 7.3.12 (5-Cycle Double Cover Conjecture, see [93]). Every bridge-

less cubic graph has 5-cycles such that each edge is in exactly two of them.

Let G be a cubic graph and let F = {F1, . . . , Ft} be a multiset of subsets

Fi of E(G). For an edge e of G, we denote by νF (e) the number of elements of

F containing e. A Fan-Raspaud triple, or FR-triple, is a multiset T of three

perfect matchings of G such that νT (e) ≤ 2 for all e ∈ E(G). A 5-cycle double

cover, or 5-CDC, is a multiset C of five cycles in G such that, for every edge

e ∈ E(G), νC(e) = 2. A Berge-Fulkerson cover, or BF -cover, is a multiset T

of six perfect matchings of G such that νT (e) = 2 for all e ∈ E(G).

Relation to the Fan-Raspaud Conjecture

We show that the Fan-Raspaud Conjecture is true if there is no poorly match-

able 5-edge-connected 5-graph. For that we need one result from [44] as well

as an equivalent formulation of the Fan-Raspaud Conjecture.

Theorem 7.3.13 (Kaiser and Škrekovski [44]). Every bridgeless cubic graph

has a 2-factor that intersects every edge-cut of cardinality 3 and 4. Moreover,

any two adjacent edges can be extended to such a 2-factor.

As proved in [71], the following conjecture is equivalent to the Fan-Raspaud

Conjecture.

Conjecture 7.3.14 (Mkrtchyan and Vardanyan [71]). Let G be a bridgeless

cubic graph. For every e ∈ E(G) and i ∈ {0, 1, 2}, there is an FR-triple T

with νT (e) = i.
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In the same paper, they also pointed out the following observation but

without proof. To keep this thesis self-contained, we present a short proof

here.

Observation 7.3.15 (Mkrtchyan and Vardanyan [71]). A minimum possi-

ble counterexample G to Conjecture 7.3.14 with respect to |V (G)| is 3-edge-

connected.

Proof. Suppose that G is a minimum counterexample to Conjecture 7.3.14 with

respect to |V (G)|. Then, there is e ∈ E(G) and i ∈ {0, 1, 2} such that no FR-

triple T satisfies νT (e) = i. Suppose that there is a setX ⊆ V (G) with u, v ∈ X

and ∂G(X) = {ux, vy}. Let H1 = G[X]+{uv} and H2 = G−X+{xy}. Notice

that both H1 and H2 are bridgeless cubic graphs. If e ∈ {ux, vy}, since |V (G)|

is minimum, there is an FR-triple T1 of H1 and an FR-triple T2 of H2 such that

νT1(uv) = νT2(xy) = i. Then T1 and T2 can be used to construct an FR-triple

T of G with νT (e) = i, a contradiction. Hence, without loss of generality we

may assume e ∈ E(H1). Since |V (G)| is minimum, there is an FR-triple T1

of H1 and an FR-triple T2 of H2 such that νT1(e) = i and νT2(xy) = νT1(uv).

Again, T1 and T2 can be used to construct an FR-triple T of G with νT (e) = i,

a contradiction.

Theorem 7.3.16. If m(5, 5) ≥ 2, then Conjecture 7.3.14 is true.

Proof. By contradiction, suppose that m(5, 5) ≥ 2 and Conjecture 7.3.14 is

false. Let G be a minimum counterexample to Conjecture 7.3.14 with respect

to |V (G)|. Then, there is an edge e = uv of G and an i ∈ {0, 1, 2} such that no

FR-triple T satisfies νT (e) = i. By Observation 7.3.15, G is 3-edge-connected.

First, we consider the case i = 0. By Theorem 7.3.13 there is a 2-factor

F of G such that e ∈ E(F ) and F intersects every edge-cut of cardinality 3

and 4. Let H = G + E(F ) and let e′ be the new edge parallel to e. Since

G is 3-edge-connected, the graph H is 5-edge-connected by the choice of F .

Since m(5, 5) ≥ 2, it follows with Theorem 7.3.10 (iv) that for each edge
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e0 ∈ ∂H(v) \ {e, e′}, there are at least three edges e1, e2, e3 ∈ ∂H(v) \ {e0} such

that for each j ∈ {1, 2, 3} there exists a 2-PDPM containing ej and e0. This

implies that H has two disjoint perfect matchings N1 and N2 such that e and

e′ are in none of them. In the graph G, let N ′
1 and N

′
2 be the perfect matchings

corresponding toN1 andN2, respectively. LetN3 = E(G)\E(F ). SinceN1 and

N2 are disjoint, every edge of N ′
1 ∩N ′

2 belongs to E(F ), i.e. T = {N ′
1, N

′
2, N3}

is an FR-triple of G. Furthermore νT (e) = 0, a contradiction.

Next suppose i ∈ {1, 2}. By Theorem 7.3.13 we can choose a 2-factor F

of G such that e /∈ E(F ) and F intersects every edge-cut of cardinality 3 and

4. Again, the graph H defined by H = G + E(F ) is 5-edge-connected. Since

m(5, 5) ≥ 2, by statements (ii) and (iii) of Theorem 7.3.10, H has two disjoint

perfect matchings N1 and N2 such that e is in exactly i−1 of them. Therefore,

T = {N ′
1, N

′
2, N3} is an FR-triple of G with νT (e) = i where N ′

1 and N ′
2 are

the perfect matchings of G that correspond to N1 and N2, respectively, and

N3 = E(G) \ E(F ). This leads to a contradiction again.

If m(5, 5) ≥ 2, then in particular every 5-edge-connected 5-graph with

an underlying cubic graph has two disjoint perfect matchings. By adjusting

Theorem 7.3.10, one can show the following strengthening of Theorem 7.3.16

(for a sketch of the proof, see Appendix A.1).

Theorem 7.3.17. If every 5-edge-connected 5-graph whose underlying graph

is cubic has two disjoint perfect matchings, then Conjecture 7.3.14 is true.

Relation to the 5-Cycle Double Cover Conjecture

Now we focus on the consequences of the non-existence of 5-edge-connected

class 2 5-graphs. Let k ≥ 3 be an integer. A k-wheel Wk is a k-circuit Ck plus

one additional vertex w adjacent to all vertices of Ck.

Theorem 7.3.18. The following statements are equivalent.

(i) Every 5-edge-connected 5-graph is class 1.

(ii) Every 5-edge-connected 5-graph with an underlying cubic graph is class 1.
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Proof. The first statement implies trivially the second one. We prove now the

other implication. Let G be a 5-edge-connected 5-graph. For every vertex v of

G, let W v
5 be a copy of the graph W5 + E(C5). Moreover, let wv and Cv

5 be

the vertex and, respectively, the circuit of W v
5 corresponding to w and C5 in

W5. Following the procedure described in Definition 7.3.8, successively replace

every vertex v of G with (W v
5 , w

v) to obtain a new graph H, which is 5-regular

and 5-edge-connected. Moreover, its underlying graph is cubic and so H is class

1 by statement (ii). Hence, H has a 5-PDPM, denoted by N = {N1, . . . , N5}.

Since |V (Cv
5 )| is odd, by Observation 7.1.1, we have that, for all i ∈ {1, . . . , 5},

|Ni ∩ ∂H(V (Cv
5 ))| = 1. Hence, the restriction N ′

i of Ni to the graph G is a

perfect matching of G. Moreover, {N ′
1, . . . , N

′
5} is a 5-PDPM of G. Therefore,

G is class 1.

It is well known that a counterexample of minimum order to Conjecture

7.3.12 is a cyclically 4-edge-connected cubic class 2 graph.

Theorem 7.3.19. If m(5, 5) = 5, then Conjecture 7.3.12 is true.

Proof. Let K be the graph obtained from a 4-wheel by doubling the edges of

the outer circuit and of one spoke. Note that K has one vertex of degree 6,

which we denote by w, and four vertices of degree 5.

Let G be a minimum counterexample to Conjecture 7.3.12 with respect to

|V (G)|. Then, G is cubic and cyclically 4-edge-connected. Thus, the graph

2G = G+E(G) is 6-edge-connected. For every vertex v of G, let Kv be a copy

of K and let wv be the vertex of Kv corresponding to w in K. Analogously to

Definition 7.3.8, let H be the 5-regular graph obtained by replacing each vertex

v of 2G by (Kv, wv), in such a way that parallel edges of 2G are incident with

the same vertex of Kv. Then, H is a 5-edge-connected 5-graph and therefore,

it has a 5-PDPM N = {N1, . . . , N5}. For every v ∈ V (2G), there exist exactly

three perfect matchings of N , say N ′
1, N

′
2, N

′
3, such that |N ′

i∩∂H(Kv−wv)| = 2

for each i ∈ {1, 2, 3}. Hence, for every j ∈ {1, . . . , 5}, the restriction of each
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Nj ∈ N on G induces a cycle Fj in G. Moreover, we have νC(e) = 2 for each

e ∈ E(G), where C = {F1, . . . , F5}. So C is a 5-CDC of G.

Relation to the Berge-Fulkerson Conjecture

Observation 7.3.20. If m(5, 5) = 5, then Conjecture 1.1.1 is true.

Proof. Assume m(5, 5) = 5 and suppose that G is a counterexample to the

Berge-Fulkerson Conjecture such that the order of G is minimum. Let F be

a 2-factor of G. As shown in [58], G is cyclically 5-edge-connected and hence,

G+E(F ) is 5-edge-connected. Therefore, G+E(F ) has five pairwise disjoint

perfect matchings. The corresponding five perfect matchings of G and E(G) \

E(F ) are a BF -cover of G, a contradiction.

Properties of a minimum possible 5-edge-connected class 2 5-graph

We are going to prove some structural properties of a smallest possible 5-

edge-connected class 2 5-graph. Let G be a graph and let x ∈ V (G) with

|NG(x)| ≥ 2. A lifting (of G) at x is the following operation: Choose two

distinct neighbors y and z of x, delete an edge e1 connecting x with y, delete

an edge e2 connecting x with z and add a new edge e connecting y with z;

additionally, if e1 and e2 were the only two edges incident with x, then delete

the vertex x in the new graph. We say e1 and e2 are lifted to e.

Theorem 7.3.21 (Mader [61]). Let G be a finite graph and let v ∈ V (G) such

that d(v) ≥ 4, |N(v)| ≥ 2 and G− v is connected. There is a lifting of G at v

such that, for every pair of distinct vertices u,w ∈ V (G) \ {v}, the number of

edge-disjoint u,w-paths in the resulting graph equals the number of edge-disjoint

u,w-paths in G.

Statement (ii) of the following theorem is already mentioned in [19] for

planar r-graphs without proof.
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Theorem 7.3.22. Let G be a 5-edge-connected class 2 5-graph such that the

order of G is as small as possible. The following statements hold.

(i) Every 5-edge-cut of G is trivial, i.e. if X ⊂ V (G) and |∂(X)| = 5, then

|X| = 1 or |V (G) \X| = 1.

(ii) Every 3-vertex-cut is trivial, i.e. if X ⊂ V (G), |X| = 3 and G−X is not

connected, then one component of G−X is a single vertex.

Proof. (i). The proof follows easily and is left to the reader.

(ii). By contradiction, suppose that X = {v1, v2, v3} ⊂ V (G) is a 3-vertex-

cut of G such that none of the components of G − X is a single vertex. By

Observation 7.3.7 and the edge-connectivity of G, the graph G−X has at most

three components. First, we consider the case that G − X has exactly three

components. Denote the vertex-sets of these three components by A, B and C.

We have that |∂G(S)| = 5, for each S ∈ {A,B,C}, and so |A| = |B| = |C| = 1

by statement (i), a contradiction.

Next, we assume that G−X has exactly two components whose vertex-sets

are denoted by A and B. Since G has even order, we may assume |A| is odd

and |B| is even. For each i ∈ {1, 2, 3}, set ni = |∂G(B) ∩ ∂G(vi)| and let

a =
1

2
(n1 + n2 − n3) , b =

1

2
(−n1 + n2 + n3) , c =

1

2
(n1 − n2 + n3) .

We have that n1 + n2 + n3 = |∂G(B)| is even, since |B| is even. Thus, all of

a, b, c are integers. Furthermore, 5 ≤ |∂G(B ∪ {v3})| = n1 + n2 + (5− n3) and

hence, a ≥ 0. Analogously, we obtain b, c ≥ 0. Therefore, we can define a new

graph H1 as follows (see Figure 7.11).

H1 = (G−B) + a {v1v2}+ b {v2v3}+ c {v3v1} .

By the definitions of a, b, c, the graph H1 is 5-regular. Moreover H1 is also

5-edge-connected. Indeed, let Y ⊆ V (H1). We can assume, without loss of

generality, that |Y ∩ {v1, v2, v3}| ≤ 1 (otherwise, we argue by taking its com-

plement). By the choices of a, b and c, we have |∂H1(Y )| = |∂G(Y )| ≥ 5 and so

H1 is 5-edge-connected.
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Let H ′ be the graph obtained from G by identifying all vertices in A to a

new vertex u, see Figure 7.11. Then, H ′ is 5-edge-connected and every vertex

is of degree 5 except u. Since |A| is odd, we have that |∂G(A)| is odd. Hence,

the vertex u has an odd degree of at least 5 in H ′. Now, by Theorem 7.3.21,

a new 5-edge-connected 5-graph H2 can be obtained from H ′ by 1
2(dH′(u)− 5)

liftings at u, see Figure 7.11.

B

A

(a) G

A

(b) H1

u

B

(c) H ′

u

B

(d) H2

Figure 7.11: An example for the graphs H1, H
′ and H2 obtained from G in the

proof of Theorem 7.3.22.

We will refer to the edges of H2 obtained by a lifting at u as lifting edges

and denote the set of all lifting edges by L.
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By the minimality of |V (G)|, H1 has a 5-PDPM {N1
1 , . . . , N

1
5 } and H2

has a 5-PDPM {N2
1 , . . . , N

2
5 }. Since u has at most three neighbors in H2,

every perfect matching of H2 contains at most one lifting edge. For each

i ∈ {1, . . . , 5}, let Ni be the subset of edges of H ′ defined as follows.

Ni =


N2

i if N2
i ∩ L = ∅;

(N2
i \ {e}) ∪ {e1, e2} if N2

i ∩ L = {e} and e1, e2 are the two edges

lifted to e.

Every perfect matching of H1 contains either one or three edges of ∂H1(A)

by Observation 7.1.1. Let s1 be the number of integers i ∈ {1, . . . , 5} with

|N1
i ∩ ∂H1(A)| = 3, let s2 = |L| and let s′ be the number of integers j ∈

{1, . . . , 5} with |Nj ∩ ∂H′(u)| = 3. We have that s2 = s′. Moreover, we

have ∂G(A) = 3s1 + (5 − s1) = 5 + 2s2 and so s1 = s2 = s′. Note that

∂H1(A) = ∂G(A) and recall that H ′ is obtained from G by identifying all

vertices in A to u. As a consequence, the sets of edges N1, . . . , N5 of H ′ and

the perfect matchings N1
1 , . . . , N

1
5 of H1 can be combined to obtain a 5-PDPM

of G, a contradiction.

7.4 r-graphs with arbitrary edge-connectivity

In this section, we prove Theorem 7.0.6, i.e. we show m(2l, r) ≤ 3l−6 for every

l ≥ 3 and r ≥ 2l. Note that this bound only depends on the edge-connectivity

parameter. Furthermore, for an r-graph G with a subset X ⊆ V (G), we

observe that |∂G(X)| = r · |X| − 2|E(G[X])| is even if |X| is even. Therefore,

the edge-connectivity of an r-graph is either r or an even number.

7.4.1 Proof of Theorem 7.0.6

Recall that m(t, r) ≤ m(t′, r) whenever t ≤ t′. Moreover, m(4, 5) = 1 and

m(r, r) ≤ r − 2 for each r ≥ 3, r ̸= 5 and thus, r − 2 is a trivial upper bound
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for m(2l, r). As a consequence, Theorem 7.0.6 trivially holds for the case

2l ≤ r ≤ 3l − 4, i.e. it suffices to prove Theorem 7.0.6 for the case r ≥ 3l − 3.

We will construct 2l-edge-connected r-graphs inductively starting with a

2l-edge-connected (3l − 4)-graph without a (3l − 5)-PDPM if l ≥ 4 and a

6-edge-connected 6-graph without a 4-PDPM if l = 3.

For this we first describe the induction step. Then we give the base graphs

for the two cases. Finally we deduce the statement of Theorem 7.0.6.

Induction step from r to r + 1

Lemma 7.4.1. Let r, l, k be integers such that r ≥ 3l−4, l ≥ 2 and 2 ≤ k ≤ r.

If there is an r-graph G such that

• λ(G) ≥ 2l,

• G has a perfect matching M such that µG(u, v) ≥ l−1 for every uv ∈M ,

• G has no k-PDPM,

then there is an (r + 1)-graph G′ such that

• λ(G′) ≥ 2l,

• G′ has a perfect matching M ′ such that µG′(u, v) ≥ l − 1 for every uv ∈

M ′,

• G′ has no k-PDPM.

Proof. Assume that the order of G is 2s and let M = {x1y1, . . . , xsys}. In

order to construct G′ we define a graph P(r+1,l) by

P(r+1,l) = P +

⌈
r − l

2

⌉
M0 +

⌊
r − l

2

⌋
M1 + (l − 2)M2.

Since G is 2l-edge-connected, we have r ≥ 2l. Thus, P(r+1,l) is well defined. For

every i ∈ {1, . . . , s}, take a copy P i
(r+1,l) of P(r+1,l). In each copy, the vertices

and perfect matchings are labelled accordingly by using an upper index, i.e.
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the vertex of P i
(r+1,l) corresponding to u1 in P(r+1,l) is labeled as ui1. Define

graphs H0, . . . ,Hs inductively as follows:

H0 := G+M,

H i := (H i−1, xi, yi)⊕l (P i
(r+1,l), u

i
1, v

i
1) for every i ∈ {1, . . . , s}.

Note that H0 and P(r+1,l) are both (r+1)-graphs. Furthermore, µH0(xi, yi) ≥ l

for every i ∈ {1, . . . , s} by the choice of M . Recall that u1v1 ∈ E(P) is the

unique edge in M0 ∩M1. Thus, µP(r+1,l)
(u1, v1) = (r + 1)− l by the definition

of P(r+1,l). As a consequence, H0, . . . ,Hs are well defined. Set

G′ := Hs and M ′ :=

s⋃
i=1

M i
2.

Figure 7.12: The graph G = P + 2M0 +M1 +M2 +M3 (left) and the graph G′

(right) constructed from G in the proof of Lemma 7.4.1. The edges

of M and M ′ respectively are drawn in bold red lines.

An example is given in Figure 7.12. We claim that G′ and M ′ have the

desired properties.

The perfect matching M2 does not contain the edge u1v1. Thus, M
′ is well

defined. Furthermore, M ′ is a perfect matching of G′ since M is a perfect
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matching of G. By the definition of P(r+1,l), we have µG′(u, v) ≥ l−1 for every

uv ∈M ′. Hence, M ′ has the desired properties.

The graph H0 is a 2l-edge-connected (r + 1)-graph, since G is a 2l-edge-

connected r-graph. Furthermore,
⌊
r−l
2

⌋
≥ l−2 since r ≥ 3l−4. Thus, r− l+1

is the maximum number of parallel edges of P(r+1,l) and hence, λ(P(r+1,l)) = 2l

by Lemma 7.1.5. Therefore, for each i ∈ {1, . . . , s}, H i is a 2l-edge-connected

(r + 1)-graph by Lemma 7.1.7, and so is G′.

Now, suppose that Hs has a k-PDPM N s. By applying Lemma 7.1.8 with

t = l to the (r + 1)-graph Hs and N s we obtain a k-PDPM N s−1 of Hs−1,

which avoids xsys by property (i). Apply Lemma 7.1.8 to Hs−1 and N s−1

to obtain a k-PDPM N s−2 of Hs−2, which avoids xs−1ys−1 by property (i)

and xsys by property (ii). By inductively repeating this process, we obtain a

k-PDPM of H0 that avoids every edge of M . This is not possible, since G has

no k-PDPM. Therefore, G′ has no k-PDPM, which completes the proof.

We note that the condition r ≥ 3l − 4 is necessary in Lemma 7.4.1 since

λ(P(r+1,l)) < 2l if r < 3l − 4. In view of Lemma 7.4.1, we need to construct

suitable base graphs for all l ≥ 3, which will be done now.

Base graph if l = 3.

In order to construct the required base graph G6, we need the graph G1 con-

structed in the Subsection 7.3.1 (see also Figure 7.6). For a precise definition

of G1 (and its vertex-labeling) the reader is referred to that subsection. Every

perfect matching of G1 contains an edge in ∂G1(w), which is simple. Thus, in

order to use Lemma 7.4.1 we need to slightly modify G1. For any v ∈ V (G1),

we define a 3-expansion to be the operation that splits v into two vertices v′

and v′′ (edges formerly incident with v will be incident with exactly one of v′

and v′′) and adds three parallel edges between them.

Let G6 be the graph obtained from G1 by applying a 3-expansion to the

vertices z2, z4, z6 and w. Let w′ and w′′ be the new vertices in which w has
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been split (see Figure 7.13).

z2'

z4'

z6'

w '

w ''

z2''

x 2

x 4

x 6 y2

y4

y6

z4''

z6''

Figure 7.13: The graph G6, where the boxes a re copies of Q1. The bold red

edges are used to construct M6 in the proof of Theorem 7.0.6.

It is straightforward that G6 is still a 6-edge-connected 6-graph. By using

similar arguments as in the Proof of Theorem 7.3.6, it follows that G6 has no

4-PDPM. For the sake of completeness we present a short proof here.

Proposition 7.4.2. The graph G6 has no 4-PDPM.

Proof. In this proof vertex labelings of G6 are considered with reference to Fig-

ure 7.13. Assume by contradiction that G6 has a 4-PDPM M = {N1, . . . , N4}.

Then, there is j ∈ {1, . . . , 4} such that ∂G6({w′, w′′}) ∩ Nj ̸= ∅. Let e ∈

∂G6({w′, w′′}) ∩ Nj . We can assume without loss of generality that e is in-

cident with z′2. Let X = {x2, y2, z′2} ⊆ V (G6). Then, from Lemma 7.3.2, we

infer that |∂G6(X)∩N | is odd, where N = ∪4
i=1Ni. On the other hand, since X

is an odd set, we have that for every i ∈ {i, . . . , 4}, |X ∩Ni| is an odd number.

Thus, |X ∩N | =
∑4

i=1 |X ∩Ni| must be an even number, a contradiction.
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Base graphs if l ≥ 4.

Let l ≥ 4 and consider the following graph

G3l−4 = P + (l − 2)M0 + (l − 3)M1 + (l − 3)M2 +M3.

The graph G8 is shown in the left-hand side of Figure 7.12. By definition,

G3l−4 is a (3l−4)-graph, which is 2l-edge-connected by Lemma 7.1.5. It is well

known, see [27], that G3l−4 is of class 2 and hence has no (3l − 5)-PDPM.

Now we are ready to prove Theorem 7.0.6.

Proof of Theorem 7.0.6. We prove the statement by induction on r. When

l ≥ 4 we choose G3l−4 as base graph (defined above) and we consider the

perfect matching M0 of G3l−4.

Recall that G3l−4 is a 2l-edge-connected (3l − 4)-graph with no (3l − 5)-

PDPM. Furthermore, for all uv ∈M0, µG3l−4(u, v) ≥ l−1. Hence the base case

is settled. Then, the inductive step follows by Lemma 7.4.1 and the statement

is proved.

When l = 3, we again argue by induction on r. We choose G6 as base

graph. We have already proved that it is a 6-edge-connected 6-graph without

a 4-PDPM. Hence, m(6, 6) ≤ 3.

Let M6 be the perfect matching of G6 defined as follows. Consider the

matching consisting of the bold red edges depicted in Figure 7.13. Extend this

matching to a perfect matching of G6 by choosing, for every copy of Q1, the

bold red edges depicted in Figure 7.14.

Note that the chosen set of edges is indeed a perfect matching and each

edge of such perfect matching has at least one other parallel edge. This means

that the condition on the multiplicities of Lemma 7.4.1 is satisfied, i.e. for every

edge uv ∈M6, µG6(u, v) ≥ 2 = l−1. Therefore the base step is settled. Again,

by Lemma 7.4.1, the inductive step follows. Then Theorem 7.0.6 is proved.
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E 1
1 v1

1
v1
2

E 1
2

Figure 7.14: The graph Q1 (solid lines) and the edge sets E1
1 , E

2
1 (dashed lines).

The bold red edges are used to construct M6 in the proof of

Theorem 7.0.6.

7.4.2 Concluding remarks

By asking for lower bounds on the parameter m(t, r), one can prove the exis-

tence of sets of perfect matchings having specific intersection properties in reg-

ular graphs. For example, it can be proved that for l ≥ 5, if m(2l, 3l) ≥ 2l− 1,

then every bridgeless cubic graph admits a perfect matching cover of cardinal-

ity 2l−1. As another example, it can be proved that, for l ≥ 3, if m(2l, 3l) ≥ l,

then every bridgeless cubic graph has l perfect matchings with empty intersec-

tion. Both these proofs rely on the properties of the Petersen graph described

in Lemma 7.1.4.

We though believe that these lower bounds are quite strong conditions. We

believe the following statement to be true.

Conjecture 7.4.3. For all l ≥ 2 and r ≥ 2l, m(2l, r) ≤ l − 1.

Note that when l = 2, Conjecture 7.4.3 is true by Rizzi [75].



Chapter 8

Complete sets

Chapter 8 is based on [55]; all results in this chapter appeared in that preprint.

As a unifying approach to study some hard conjectures on cubic graphs,

Jaeger (see [39]) introduced colorings with edges of another graph. Recall that

for two graphs G and H an H-coloring of G is a mapping f : E(G) → E(H)

such that

• if e1, e2 ∈ E(G) are adjacent, then f(e1) ̸= f(e2),

• for every v ∈ V (G) there exists a vertex u ∈ V (H) with f(∂G(v)) =

∂H(u).

If such a mapping exists, then we write H ≺ G and say H colors G. A set

A of connected r-graphs such that for every connected r-graph G there is an

H ∈ A with H ≺ G is said to be r-complete.

For r = 3, Jaeger [37] conjectured that the Petersen graph colors every

bridgeless cubic graph (Conjecture 1.1.3), i.e. he conjectured that {P} is a

3-complete set. If true, this conjecture would have far reaching consequences.

For instance, it would imply that the Berge-Fulkerson Conjecture (Conjec-

ture 1.1.1) and the 5-Cycle Double Cover Conjecture (Conjecture 7.3.12) are

also true. The Petersen Coloring Conjecture is a starting point for research

in several directions. Different aspects of it are studied and partial results are

115
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proved, see for instance [20,30,38,41,67,73,76].

In this chapter we are mainly motivated by the generalized Berge-Fulkerson

Conjecture (Conjecture 1.1.5), which was proposed by Seymour [77] and states

that every r-graph has 2r perfect matchings such that every edge is in precisely

two of them. Analogously to the cubic case, for every r ≥ 3 if all elements of an

r-complete set would satisfy the generalized Berge-Fulkerson Conjecture, then

every r-graph would satisfy it. Mazzuoccolo et al. [68] asked whether there

exists a connected r-graph H such that H ≺ G for every (simple) r-graph G,

for all r ≥ 3. In other words, they asked whether there is an r-complete set of

cardinality 1 for every r ≥ 3.

By definition, any r-graph G of class 1 can be colored with any r-graph H.

Indeed, let N1, . . . , Nr be r pairwise disjoint perfect matchings of G and v a

vertex of H with ∂H(v) = {e1, . . . , er}. Every edge of Ni of G can be mapped

to ei in H. Hence, the aforementioned questions and conjectures reduce to

r-graphs of class 2.

For every r ≥ 3, let Hr be an inclusion-wise minimal r-complete set. The

following theorem is the main result of this chapter and gives a negative answer

to the question of Mazzuoccolo et al. when r ≥ 4.

Theorem 8.0.1. Either H3 = {P} or H3 is an infinite set. Moreover, if r ≥ 4,

then Hr is an infinite set.

This chapter is organized as follows. In Section 8.1 we characterize Hr for

every r ≥ 3. The following statement is the main result of that section, which

implies that Hr is unique.

Theorem 8.0.2. Let r ≥ 3 and let G be a connected r-graph. The following

statements are equivalent.

1) G ∈ Hr.

2) The only connected r-graph coloring G is G itself.

3) G cannot be colored by a smaller r-graph.
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In Section 8.2 we are going to prove Theorem 8.0.1 by showing that if Hr

has more than one element, then it has infinitely many elements. For r ≥ 1, let

Sr be the set of the smallest r-graphs of class 2. For example, the only element

of S3 is the Petersen graph. As a partial result in Section 8.2 we determine the

set Sr of the smallest r-graphs of class 2 for each r ≥ 3, which we think is of

interest of its own. We show that Sr ⊆ Hr.

In Section 8.3 we prove similar results for simple r-graphs. We conclude

Chapter 8 with Section 8.4, where we state some open problems.

In this chapter the following observation will frequently be used without

reference.

Observation 8.0.3. Let r ≥ 3, let G be an r-graph and let X ⊆ V (G). If |X|

is even, then |∂G(X)| is even. If |X| is odd, then |∂G(X)| has the same parity

as r.

8.0.1 Order structure

Jaeger [37] initiated the study of the Petersen Coloring Conjecture in terms of

partial ordered sets. DeVos, Nešetřil and Raspaud [20] studied cycle-continuous

mappings and asked whether there is an infinite set G of bridgeless graphs

such that every two of them are cycle-continuous incomparable, i.e. there is

no cycle-continuous map between any two graphs in G. Šámal [76] gave an

affirmative answer to the above question by constructing such an infinite set

G of bridgeless cubic graphs. In fact, he also mentioned that this result can

be considered in view of a quasi-order induced by cycle-continuous mappings

on the set of bridgeless cubic graphs. That is, this quasi-ordered set contains

infinite antichains.

For every integer r ≥ 1, H-colorings give a quasi-order on the set of r-

graphs, which is denoted by (Gr,≺). Thus, Theorem 8.0.1 can be restated as

follows.

Theorem 8.0.1’. For r = 3, either H3 = {P} or H3 is an infinite antichain
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in (G3,≺). For each r ≥ 4, Hr is an infinite antichain in (Gr,≺).

8.1 Characterization of Hr

In this section we will characterize Hr. We start with some preliminary tech-

nical results. In particular, we introduce a lifting operation for r-graphs.

8.1.1 Substructures and lifting

Some of the following observations appeared also in [68].

Observation 8.1.1. Let H and G be graphs and let f be an H-coloring of G.

(i) χ′(G) ≤ χ′(H).

(ii) If N1, . . . , Nk are k pairwise disjoint perfect matchings in H, then

f−1(N1), . . . , f
−1(Nk) are k pairwise disjoint perfect matchings in G.

(iii) If C is a 2-regular subgraph of H, then f−1(E(C)) induces a 2-regular

subgraph in G.

(iv) If H ′ is a {K1,1, Cm : m ≥ 2}-factor in H, then f−1(E(H ′)) induces a

{K1,1, Cm : m ≥ 2}-factor in G.

Proof. Let H ′ be a subgraph of H and G′ be the subgraph of G induced by

f−1(E(H ′)). By the definition of H-coloring, if H ′ is k-regular (spanning,

respectively) then G′ is k-regular (spanning, respectively). Then statements

(i), (ii) and (iii) can be obtained immediately. In order to show statement

(iv), assume that H ′ is a {K1,1, Cm : m ≥ 2}-factor. We decompose H ′ into a

1-regular subgraph H1 and a 2-regular subgraph H2. The sets f
−1(E(H1)) and

f−1(E(H2)) induce a 1-regular subgraph G1 and a 2-regular subgraph G2 of

G, respectively. By the definition of H-coloring, G1 and G2 are disjoint. This

completes the proof.
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We recall the following definition. Let G be a graph and let x ∈ V (G)

with |NG(x)| ≥ 2. A lifting (of G) at x is the following operation: Choose two

distinct neighbors y and z of x, delete an edge e1 connecting x with y, delete

an edge e2 connecting x with z and add a new edge e connecting y with z;

additionally, if e1 and e2 were the only two edges incident with x, then delete

the vertex x in the new graph. We say e1 and e2 are lifted to e. Moreover, the

new graph is denoted by G(e1, e2).

We will make use of the following fact. Let G be a graph, then |∂G(X ∩

Y )|+ |∂G(X ∪ Y )| ≤ |∂G(X)|+ |∂G(Y )| for every X,Y ⊆ V (G).

Lemma 8.1.2. Let r ≥ 2 be an integer and let G be a connected graph of order

at least 2 with a vertex x ∈ V (G) such that

• dG(v) = r for all v ∈ V (G) \ {x}, and

• if |V (G)| is even, then dG(x) ̸= r, and

• |∂G(S)| ≥ r for every S ⊆ V (G) \ {x} of odd cardinality.

Then, for every labeling ∂G(x) = {e1, . . . , edG(x)} there exists an i ∈ ZdG(x)

such that G(ei, ei+1) is a connected graph with |∂G(ei,ei+1)(S
′)| ≥ r for every

S′ ⊆ V (G(ei, ei+1)) \ {x} of odd cardinality.

Proof. We argue by contradiction. Let G be a possible counterexample of

smallest order, let d = dG(x), and let ei = xyi for every i ∈ {1, . . . , d}.

First we show |NG(x)| ≥ 2. Suppose that x has just one neighbor x′. Note

that dG(x
′) = r by our assumptions. If |V (G)| is even, then dG(x) ̸= r. As a

consequence, the set S = V (G) \ {x} is a set of odd cardinality with |∂G(S)| =

dG(x) < r, a contradiction. If |V (G)| is odd, then the set S = V (G) \ {x, x′}

is a set of odd cardinality with |∂G(S)| = r− dG(x) < r, a contradiction again.

Therefore, |NG(x)| ≥ 2.

Hence, we can choose an i ∈ Zd such that yi ̸= yi+1 and, if G − x is not

connected, then yi and yi+1 belong to different components of G− x. Suppose
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that G has a bridge e. Then, for parity reasons, the component H of G− e not

containing x is of odd order, a contradiction since |∂G(V (H))| = 1 < r. Thus,

G is bridgeless and hence, the graph G(ei, ei+1) is connected by the choice of i.

As a consequence, there is a set T ⊆ V (G(ei, ei+1))\{x} of odd cardinality with

|∂G(ei,ei+1)(T )| < r, since G is a counterexample. Observe that |∂G(T )| has the

same parity as r, which implies |∂G(T )| = r and yi, yi+1 ∈ T . Set G1 = G/T

and label the edges of ∂G1(x) with the same labels as in G. Then, G1 and x

satisfy the conditions of the statement. Therefore, by the minimality of |V (G)|,

there is an integer j ∈ Zd such that the graph G2 = G1(ej , ej+1) satisfies

|∂G2(S)| ≥ r for every S ⊆ V (G2)\{x} of odd cardinality. SetG3 = G(ej , ej+1).

The graphs G,G1, G2 and G3 are depicted in Figure 8.1.

x

yi
yi+1

T

(a) G

x

wT

(b) G1

x

wT ej+1

ej

(c) G2

yi
yi+1

x

T

ej+1

ej

(d) G3

Figure 8.1: An example for the graphs G,G1, G2 and G3.

Note that V (G) = V (G3) and V (G2) \ {wT } = V (G3) \ T . Furthermore,

we observe the following:

• for every X ⊆ T : |∂G(X)| = |∂G3(X)|,

• for everyX ⊆ V (G2)\{wT }: |∂G2(X)| = |∂G3(X)| and |∂G2(X∪{wT })| =

|∂G3(X ∪ T )|.

Now, let S ⊆ V (G3) \ {x} be a set of odd cardinality. Set A = S ∩ T and

B = S \A. We consider two cases.

Case 1. |A| is even.

As a consequence, B and T \ A are sets of odd cardinality. Therefore, by
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using the above observations we obtain the following:

|∂G3(S)| = |∂G3(S
c)| ≥ |∂G3(S

c ∩ T )|+ |∂G3(S
c ∪ T )| − |∂G3(T )|

= |∂G3(T \A)|+ |∂G3(B)| − |∂G3(T )|

= |∂G(T \A)|+ |∂G2(B)| − |∂G(T )|

≥ r + r − r

= r.

Case 2. |A| is odd.

Thus, B is a set of even cardinality, which implies

|∂G3(S)| ≥ |∂G3(S ∩ T )|+ |∂G3(S ∪ T )| − |∂G3(T )|

= |∂G3(A)|+ |∂G3(B ∪ T )| − |∂G3(T )|

= |∂G(A)|+ |∂G2(B ∪ {wT })| − |∂G(T )|

≥ r + r − r

= r.

In any case, we have |∂G3(S)| ≥ r, which implies |∂G(ej ,ej+1)(S
′)| ≥ r for every

S′ ⊆ V (G(ej , ej+1)) \ {x} of odd cardinality. This is a contradiction to the

assumption that G is a counterexample.

The previous lemma can be used in r-graphs as follows.

Theorem 8.1.3. Let r ≥ 2 be an integer, let G be a connected r-graph and

let X be a non-empty proper subset of V (G). If |X| is even, then G/X can be

transformed into a connected r-graph by applying 1
2 |∂G(X)| lifting operations

at wX . If |X| is odd, then G/X can be transformed into a connected r-graph

by applying 1
2 (|∂G(X)| − r) lifting operations at wX .

Proof. Consider any labeling of ∂G/X(wX). The statement follows by applying

repeatedly Lemma 8.1.2 to G/X at wX . Note that wX is removed in the last

step when |X| is even.
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Note that the previous lifting operations can be applied such that they

preserve embeddings of graphs in surfaces.

8.1.2 The set Hr

Let f be an H-coloring of G. The subgraph of H induced by the edge set

Im(f) is denoted by Hf . Observe that Hf also colors G. Furthermore, if H

has no two vertices u1, u2 with ∂H(u1) = ∂H(u2), then f induces a mapping

fV : V (G) → V (H), where every v ∈ V (G) is mapped to the unique vertex

u ∈ V (H) with f(∂G(v)) = ∂H(u). Note that fV is well defined if H is a

connected graph with |V (H)| > 2. A vertex of V (H)\Im(fV ) is called unused.

Theorem 8.1.4. Let r ≥ 3 and let G be an r-graph of class 2 that cannot be

colored by an r-graph of smaller order. If H is a connected r-graph and f is

an H-coloring of G, then (fV , f) is an isomorphism, i.e. H ∼= G.

Proof. Let f : E(G) → E(H) be an H-coloring of G. Note, that since G is

class 2, H is also class 2 and therefore, fV is well defined. We first prove three

claims.

Claim 1. f is injective.

Proof of Claim 1. Suppose to the contrary that f is not injective, which

implies |E(Hf )| < |E(G)|. If H contains no unused vertices, then |E(H)| =

|E(Hf )| < |E(G)|, which contradicts the assumption that G cannot be colored

by an r-graph of smaller order. Thus, H contains unused vertices; let U ⊆

V (H) be the set of them. Transform the graph H/U into a new r-graph H ′

as follows. If |U | is even, then apply 1
2 |∂H(U)| lifting operations at wU (see

Figure 8.2). If |U | is odd, then apply 1
2 (|∂H(U)| − r) lifting operations at wU

(see Figure 8.3). By Theorem 8.1.3, this can be done in such a way that the

resulting graph H ′ is indeed an r-graph.

Note that every edge of Im(f) is incident with at most one vertex of U .

Thus, we can define a function f ′ : E(G) → E(H/U) as follows. For every

e ∈ E(G) let f ′(e) be the edge of H/U corresponding to the edge f(e) of H.
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U

Im(fV )

(a) H

wU

Im(fV )

(b) H/U

Im(fV )

(c) H ′

Figure 8.2: An example for the graphs H, H/U and H ′ when |U | is even.

U

Im(fV )

(a) H

wU

Im(fV )

(b) H/U

wU

Im(fV )

(c) H ′

Figure 8.3: An example for the graphs H, H/U and H ′ when |U | is odd.

Observe that f ′ is an H/U -coloring of G, where wU is the only unused vertex.

Next, define a new mapping f ′′ : E(G) → E(H ′) as follows. For every e ∈ E(G)

set

f ′′(e) =


e′ if f ′(e) is one of the two edges lifted to e′,

f ′(e) if f ′(e) ∈ E(H ′).

By construction, f ′′(∂G(v)) = ∂H′(fV (v)) for every v ∈ V (G). Since G and

H ′ are r-regular it follows that f ′′ is an H ′-coloring. Therefore, H ′ ≺ G and

hence |V (H ′)| ≥ |V (G)| by our assumptions. This is a contradiction, since

|E(H ′)| ≤ |E(H/U)| = |E(Hf )| < |E(G)|.

■

Claim 2. fV is surjective.

Proof of Claim 2. Suppose that H contains unused vertices. Then, there

are v1, v2 ∈ V (G) and e ∈ EG(v1, v2) such that f(e) is incident with exactly
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one unused vertex in H, since H is connected. Thus, f(∂G(v1)) = f(∂G(v2)),

which contradicts Claim 1. ■

Claim 3. |V (H)| = |V (G)|.

Proof of Claim 3. Since G cannot be colored by an r-graph of smaller order,

we have |V (H)| ≥ |V (G)|. On the other hand, |V (H)| ≤ |V (G)| by Claim 2.

■

Claims 1, 2 and 3 imply that f and fV are bijections. Furthermore, we

obtain that e ∈ EG(v1, v2) if and only if f(e) ∈ EH(fV (v1), fV (v2)). Therefore,

(fV , f) is an isomorphism between G and H, i.e. H ∼= G.

In [70], Mkrtchyan proved that if a connected 3-graph H colors the Petersen

graph P, then H ∼= P. The following result is implied by Theorem 8.1.4

together with Observation 8.1.1 (ii) and gives a generalization of Mkrtchyan’s

result in the r-regular case. For every r-graph G let π(G) be the largest integer

t such that G has t pairwise disjoint perfect matchings.

Corollary 8.1.5. Let r ≥ 3 and let G be an r-graph of class 2 such that

π(G′) > π(G) for every r-graph G′ with |V (G′)| < |V (G)|. If H is a connected

r-graph with H ≺ G, then H ∼= G.

Now we can prove Theorem 8.0.2.

Theorem 8.0.2. Let r ≥ 3 and let G be a connected r-graph. The following

statements are equivalent.

1) G ∈ Hr.

2) The only connected r-graph coloring G is G itself.

3) G cannot be colored by a smaller r-graph.

Proof. 2) =⇒ 1) follows trivially.

1) =⇒ 3). Assume by contradiction that 3) is not true. Then, let H

be a smallest r-graph smaller than G such that H ≺ G. Note that H cannot
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be colored by a smaller r-graph because otherwise, since the relation ≺ is

transitive, G would be colored by an r-graph smaller than H. Hence, H ∈ Hr

by Theorem 8.1.4. Thus, Hr \{G} is an r-complete set, in contradiction to the

inclusion-wise minimality of Hr.

3) =⇒ 2) follows by Theorem 8.1.4.

Corollary 8.1.6. For every r ≥ 3, there exists only one inclusion-wise minimal

r-complete set, i.e. Hr is unique.

8.2 Elements of Hr

Let r ≥ 3 and k ∈ {1, . . . , r} be integers. Let G(r, k) = {G : G is an r-graph

with π(G) = k}. Note that G(r, r − 1) = ∅, since every r-graph with r − 1

pairwise disjoint perfect matchings is a class 1 graph and thus, it has r pairwise

disjoint perfect matchings. If k ≤ r − 2, then the elements of G(r, k) are class

2 graphs and G(r, i)∩G(r, j) = ∅, if 1 ≤ i ̸= j ≤ r− 2. We are interested in the

subset of G(r, k) consisting of all such graphs with the smallest order. This set

is denoted by S(r, k). By definition, Sr ⊆
⋃r−2

i=1 S(r, i).

By Corollary 8.1.5, Hr contains the smallest r-graphs of class 2 and the

smallest poorly matchable r-graphs, i.e. Sr ∪ S(r, 1) ⊆ Hr. Note that for

r = 3, we have Sr = S(r, 1) = {P}. The Petersen Coloring Conjecture states

that H3 = {P}. This situation is very exclusive as we show in this section.

We first determine the elements of Sr, and show that Hr has more than one

element for r ≥ 4. Then, we show that if Hr has more than one element, then

it has infinitely many elements, which proves Theorem 8.0.1.

In order to prove the results above, we heavily rely on the properties of

the Petersen graph P and its perfect matchings. We will use the labels and

notations defined in Section 7.1; for definitions concerning the Petersen graph

that are not given here, the reader is referred to Section 7.1.
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8.2.1 Smallest r-graphs of class 2

Recall that for every multiset M of perfect matchings of P, the graph PM

is class 2 (Lemma 7.1.3). The following theorem extends Lemma 7.1.3 and

characterizes the perfect matchings M on V (P) such that P +M is a class 2

graph.

Theorem 8.2.1. Let P be the Petersen graph and H be a 1-regular graph on

V (P) with edge-set M . Then P +M is class 2 if and only if M ⊆ E(P).

Proof. Lemma 7.1.3 has shown that M ⊆ E(P) is a sufficient condition for

P + M to be class 2. We establish its necessity by way of contradiction.

Suppose that there exists an edge e ∈ M , that is not parallel to an edge of

E(P). Let H1 = P +M . Since any two vertices of the Petersen graph are in

a 5-circuit, the subgraph P of H1 can be decomposed into two 5-circuits, C1
5

and C2
5 , and a 1-factor H ′ such that both ends of e belongs to V (C1

5 ). Without

loss of generality, we assume C1
5 = u1u2u3u4u5u1 with e = u2u5, as shown in

Figure 8.4. Let H2 = H1−E(H ′) = P+M −E(H ′). Note that H2 is 3-regular

eu2

u1

u5

u3 u4

Figure 8.4: The 5-circuit C1
5 with the edge e.

and contains C1
5 and C2

5 . If |∂H2(V (C1
5 ))| ≠ 1, then H2 is 2-edge-connected.

This implies that H2 is class 1 since it is not isomorphic to P, as it contains

a 4-circuit u2u3u4u5u2. So, H1 = H2 + E(H ′) is also class 1, a contradiction.

Therefore, we may assume |∂H2(V (C1
5 ))| = 1 and set ∂H2(V (C1

5 )) = {e′}.

The remaining proof is split into two cases. First, if e′ is incident with u1,

then M contains an edge incident with u3 and u4. Thus, H3 = H1 − N1
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contains a 3-circuit u1u2u5u1, a 2-circuit u3u4u3 and a 5-circuit C2
5 , where

N1 = (M \{u2u5, u3u4})∪{u2u3, u4u5}. Moreover, there are five edges between

V (C1
5 ) and V (C2

5 ) in H3, which implies that H3 is 2-edge-connected. Thus, H3

is class 1 and so is H1, a contradiction. Second, if e′ is incident with u3 or u4,

then, without loss of generality, we assume that e′ is incident with u3, and so

M contains the edge u1u4. Let N2 = (M \{u1u4, u2u5})∪{u1u2, u4u5} and let

H4 = H1 −N2. There are two adjacent vertices v1 and v4 in P such that vi ∈

NP(ui) \ V (C1
5 ) for each i ∈ {1, 4}. Then H4 contains a 4-circuit u1u4v4v1u1.

Moreover, H4 is 2-edge-connected since there are five edges between V (C1
5 )

and V (C2
5 ). This implies that H4 is class 1 and therefore, H1 is also class 1, a

contradiction.

Theorem 8.2.2. For all r ≥ 3, Sr = S(r, r − 2) = {PM : M is a multiset of

r − 3 perfect matchings of the Petersen graph P}.

Proof. For an r-graph G and an odd set X ⊆ V (G), we say the edge-cut ∂G(X)

is tight if it consists of exactly r edges; and it is trivial if |X| = 1 or |Xc| = 1.

We will deduce the statement from the following three claims.

Claim 1. Let r ≥ 3. If G is a smallest r-graph of class 2, then G has no

non-trivial tight edge-cut.

Proof of Claim 1. Suppose that there is an odd set X ⊆ V (G) such that

|∂G(X)| = r and neitherX norXc consists of a single vertex. By the minimality

of |V (G)|, the r-graphs G/X and G/Xc are class 1. As a consequence, G is

also class 1, a contradiction. ■

Claim 2. Let r ≥ 3. If G is a smallest r-graph of class 2, then |V (G)| = 10

and G has r − 2 pairwise disjoint perfect matchings.

Proof of Claim 2. We prove the claim by induction on r. When r = 3,

the statement follows from the fact that the smallest 3-graph of class 2 is the

Petersen graph. Hence, let r ≥ 4 and assume the statement is true for every

r′ < r.
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Let G be a smallest r-graph of class 2. By Lemma 7.1.3, |V (G)| ≤ 10.

Note that every r-graph has a perfect matching [77]. Thus, let M be a perfect

matching of G.

If H = G −M is an (r − 1)-graph, then H is also class 2, since otherwise

G would be class 1. Furthermore, we have |V (G)| = |V (H)| ≥ 10 in this case,

which implies |V (G)| = |V (H)| = 10. Thus, the statement follows by induction

.

Therefore, we may assume that H = G −M is not an (r − 1)-graph. By

the definition and Observation 8.0.3, there is an odd set X ⊆ V (G) such that

|∂G(X) \M | ≤ r − 3. Moreover, we have |∂G(X)| ≥ r + 2 by Claim 1. Hence,

|∂G(X)∩M | = |∂G(X)| − |∂G(X) \M | ≥ 5. Since M is a perfect matching, we

conclude that |V (G)| = 10. As a consequence, M has cardinality 5 and thus,

|∂G(X) ∩M | = 5 and |∂G(X)| = r + 2. Let x1y1 and x2y2 be two different

edges of ∂G(X) ∩M , where x1, x2 ∈ X. The graph G′ = G − {x1y1, x2y2} +

{x1x2, y1y2} is still an r-graph. Indeed, for any odd set Y ⊆ V (G′) we have

|∂G′(Y )| ≥ |∂G(Y )|−2 ≥ r. Moreover, |∂G′(X)| = r and hence, G′ is class 1 by

Claim 1. LetN be a set of r pairwise disjoint perfect matchings ofG′ and letNx

and Ny be the perfect matchings containing x1x2 and y1y2 respectively (note

that Nx ̸= Ny since otherwise G itself would be class 1). Then N \ {Nx, Ny}

is a set of r − 2 pairwise disjoint perfect matchings of G. ■

Claim 3. Let r ≥ 3. If G is a smallest r-graph of class 2, then there is a set

M of r−3 pairwise disjoint perfect matchings of G such that G−
⋃

M∈MM ∼=

P.

Proof of Claim 3. We prove the claim by induction on r. When r = 3, the

statement is trivial since the smallest 3-graph of class 2 is the Petersen graph.

Hence, let r ≥ 4 and assume the statement is true for every r′ < r.

Let G be a smallest r-graph of class 2. By Claim 2, G is of order 10 and

has a set N of r − 2 pairwise disjoint perfect matchings. Let M ∈ N . Then

G−M is class 2, since otherwise G would be class 1. If G−M is an (r − 1)-
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graph, then the statement follows by induction. Hence, there exists an odd set

X ⊆ V (G−M) with |∂G−M (X)| ≤ r−3. Furthermore, V (G−M) = V (G) and

|∂G(X) \M | = |∂G−M (X)|. By Claim 1 and Claim 2, we have |∂G(X)| ≥ r+2

and |M | = 5. As a consequence, we obtain |∂G(X)| = r+2 and |∂G(X)∩M | =

5, which implies |X| = 5. Set H = G− ∪N∈NN and note that H is a 2-factor

of G, which contains at least two odd circuits, since otherwise G would be class

1. Every perfect matching of N contains at least one edge of ∂G(X) and hence,

|∂H(X)| = 0. Thus, both H[X] and H[Xc] either consists of a 5-circuit or a

3-circuit and a 2-circuit. We consider the following two cases.

Case 1. H +M is a 3-graph.

In this case H +M ∼= P, since otherwise H +M is class 1 which would

imply that G is also class 1.

Case 2. H +M is not a 3-graph.

Thus, H + M has a bridge, which implies that both H[X] and H[Xc]

consists of a 3-circuit and a 2-circuit and |∂H+M (V (C) ∪ V (C ′))| = 1, where

C is the 3-circuit of H[X] and C ′ is the 2-circuit of H[Xc]. As a consequence,

there is only one possibility for the structure of G + M , which is depicted

in Figure 8.5. With respect to the vertex labels in Figure 8.5, set M ′ =

(M \ {z1z4, z2z3}) ∪ {z1z2, z3z4} and N ′ = (N \ {M}) ∪ {M ′}. Then, N ′ is

a set of r − 2 pairwise disjoint perfect matchings of G. Now, consider N ′

and M ′ instead of N and M , respectively, and repeat the same arguments as

above. We deduce that G−M ′ is an (r − 1)-graph and the statement follows

by induction. ■

z4 z3

z2z1
X

Figure 8.5: The graph H +M in Case 2 of the proof of Claim 3 (Theorem 8.2.2).

The dashed edges belong to M .
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By Claim 2, we have Sr = S(r, r − 2). Moreover, by Theorem 8.2.1 and

Claim 2, for any multiset M of r− 3 perfect matchings of P, the graph PM is

in Sr. It remains to show that, if G ∈ Sr, then G ∼= PM for a suitable multiset

M. By Claim 3, there is a set N of r−3 pairwise disjoint perfect matchings of

G such that the graph H = G−
⋃

N∈N N is isomorphic to the Petersen graph.

For every N ∈ N , the graph H + N is class 2, since otherwise G is class 1.

Therefore, G ∼= PN by Theorem 8.2.1.

8.2.2 Lower bounds for |Sr|

The following lemma is a direct consequence of the fact that the Petersen graph

is 3-arc-transitive, see e.g. Corollary 1.8 in [8]. That is, for any two paths of

order 4 of P there is an automorphism of P which maps one to the other.

Recall that the six perfect matchings of the Petersen graph are denoted by

M1, . . . ,M6 (see Section 7.1).

Lemma 8.2.3. Let N1, N2, N3 ∈ {M1, . . . ,M6} and g : {N1, N2, N3} →

{M1, . . . ,M6} be an injective function. There is an automorphism (θ, ϕ) of P

such that, for all i ∈ {1, 2, 3}, ϕ(Ni) = g(Ni).

Proof. Let N1, N2 and N3 be pairwise different perfect matchings of P. If we

prove the statement in this case then the proof is complete.

Note that the unique edge x1x2 in N1 ∩ N2 and the unique edge x3x4 in

N1 ∩ N3 are at distance one, i.e. the subgraph P[{x1, x2, x3, x4}] is a path T

on four vertices. Up to changing names to such vertices, we may assume that

T = x1x2x3x4. The same holds for the unique edge y1y2 in g(N1) ∩ g(N2)

and the unique edge y3y4 in g(N1)∩ g(N3). Without loss of generality, we can

assume again that y1y2y3y4 is a path on four vertices.

Since P is 3-arc-transitive there is an automorphism (θ, ϕ) of P such that,

for all i ∈ {1, . . . , 4}, θ(xi) = yi. Since (θ, ϕ) is an automorphism, ϕ(N1)

must be a perfect matching. Moreover, since the only perfect matching of P

containing both y1y2 and y3y4 is g(N1) we get ϕ(N1) = g(N1).
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Similarly, ϕ(N2) and ϕ(N3) are perfect matchings of P different from ϕ(N1),

such that y1y2 ∈ ϕ(N2) and y3y4 ∈ ϕ(N3). Then, the only possibility is that

ϕ(N2) = g(N2) and ϕ(N3) = g(N3).

We now consider partitions of integers, which are ways of writing an integer

as a sum of positive integers, see e.g. [62]. We are interested in partitions of

an integer into a fixed number of parts. We allow 0 to be a part of a partition.

A partition of an integer n into k parts is a multiset of k integers n1, . . . , nk

with ni ≥ 0 for i ∈ {1, . . . , k} such that n =
∑k

i=1 ni. Two partitions of n

are equal if they yield the same multiset, i.e. if they differ only in the order of

their elements. For two positive integers k ≤ n, let p′(n, k) be the number of

partitions of n into k parts. Set p′(0, k) = 1.

Theorem 8.2.4. If 3 ≤ r ≤ 8, then |Sr| = p′(r − 3, 6), and if r ≥ 9, then

|Sr| > p′(r − 3, 6).

Proof. By Theorem 8.2.2, any graph G ∈ Sr can be expressed as G = P +∑6
i=1 niMi. In this case, n1, . . . , n6 is a partition of r − 3 into six parts. We

say that G induces this partition of r − 3.

Claim 1. Let r ≥ 3 be an integer and G,G′ ∈ Sr. If G ∼= G′, then G and

G′ induce the same partition of r − 3.

Proof of Claim 1. We can assume that G = P +
∑6

j=1 njMj and G′ =

P +
∑6

j=1 n
′
jMj . For the subgraph P of G and G′, we label an edge e of P by

the set {p, q} if Mp ∩Mq = {e}, p ̸= q. Then all possible labels are used and

no two edges receive the same label in P.

Since G ∼= G′, there is an isomorphism between G and G′ which maps

the labeled edge {p, q} of G to a labeled edge {ip, iq} of G′ for each {p, q} ⊆

{1, . . . , 6}. Furthermore, np + nq = n′ip + n′iq . Thus,
∑6

j=2 (n1 + nj) = 4n1 +∑6
j=1 nj = 4n′i1 +

∑6
j=1 n

′
ij
. Since

∑6
j=1 nj =

∑6
j=1 n

′
ij
= r− 3, it follows that

n1 = n′i1 . With similar arguments, we further obtain that nj = n′ij for each

j ∈ {1, . . . , 6}. ■
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Claim 2. If r ≥ 9, then there are non-isomorphic graphs in Sr which

induce the same partition.

Proof of Claim 2. Let N1, . . . , N4 be four pairwise different perfect match-

ings of P such that the edge in N1 ∩ N2 = {uv} is adjacent to the edge in

N3 ∩ N4 = {uz}. There is a fifth perfect matching N5 of P such that the

unique edge in N3 ∩N5 is not adjacent to uv.

Let t ≥ 2 be an integer and consider the (t + 7)-graphs G1
t = P + tN1 +

2N2 +N3 +N4 and G2
t = P + tN1 + 2N2 +N3 +N5. Note that both G1

t and

G2
t have exactly one pair of vertices connected by t+ 3 edges, i.e. µG1

t
(u, v) =

µG2
t
(u, v) = t + 3. On one hand, uv is adjacent to uz and µG1

t
(u, z) = 3. On

the other hand, by the choice of N5, uv is adjacent only to edges xy such that

µG2
t
(x, y) ≤ 2. We deduce that G1

t ̸∼= G2
t . ■

Claim 3. Let r ≤ 8 and G,G′ ∈ Sr. If G and G′ induce the same partition

of r − 3, then G ∼= G′.

Proof of Claim 3. Assume that G = PM = P +
∑6

j=1 njMj and G′ =

PM′
= P+

∑6
j=1 n

′
jMj induce the same partition of r−3. LetM0 = {Mj : nj ̸=

0} and M′
0 = {Mj : n

′
j ̸= 0}. Then |M0| = |M′

0|.

If |M0| ≤ 3, choose a bijection g : M0 → M′
0 such that if g(Mα) = Mβ,

then nα = n′β. By Lemma 8.2.3, there is an automorphism (θ, ϕ) of P such

that, for each perfect matching N ∈ M0, ϕ(N) = g(N). It follows that (θ, ϕ′) is

an isomorphism of PM to PM′
, where ϕ′(Mi) = ϕ(Mi) for each i ∈ {1, . . . , 6}.

The only other cases are the following.

• r − 3 = 4 with partition 1, 1, 1, 1, 0, 0;

• r − 3 = 5 with partitions 2, 1, 1, 1, 0, 0 or 1, 1, 1, 1, 1, 0.

In such cases, we let M1 = {Mj : nj = 1} and M′
1 = {Mj : n

′
j = 1}. Let

N1 be the set of perfect matchings of P different from those of M1 and N ′
1

be the set of perfect matchings of P different from those of M′
1. Then, there

is a bijection g : N1 → N ′
1 such that if g(Mα) = Mβ, then nα = n′β. The
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proof now, follows as above. Namely, since |N1| = |N ′
1| ≤ 3, by Lemma 8.2.3,

there is an automorphism (θ, ϕ) of P such that, for all N ∈ N1, ϕ(N) = g(N).

Then, (θ, ϕ′) is an isomorphism of PM to PM′
, where ϕ′(Mi) = ϕ(Mi) for each

i ∈ {1, . . . , 6}. ■

By Claims 1, 2 and 3, the theorem is proved.

By Theorem 8.2.2 and Corollary 8.1.5 we obtain the following theorem,

which implies that |Hr| ≥ 2 when r ≥ 4.

Theorem 8.2.5. For every r ≥ 3, S(r, r − 2) ∪ S(r, 1) ⊆ Hr.

8.2.3 Infinite subsets of Hr

Lemma 8.2.6. Let r ≥ 3, let G and H be two connected r-graphs and let

f be an H-coloring of G. For any 2-edge-cut F = {e1, e2} ⊆ E(G), either

|f(F )| = 1 or f(F ) is a 2-edge-cut of H.

Proof. Let u and v be the endvertices of f(e1). Suppose by contradiction that

|f(F )| = 2 but f(F ) is not a 2-edge-cut of H. Then, there is a u, v-path

T in H avoiding the edges of f(F ). Consider the circuit C = T + f(e1).

By Observation 8.1.1 (iii), f−1(E(C)) is a union of circuits of G. This is a

contradiction, since f−1(E(C)) contains e1 but not e2.

Let G,H be two graphs, let f : E(G) → E(H), g : V (G) → V (H) and let

G′ be a subgraph of G. The restriction of f to E(G′) is denoted by f |G′ ; the

restriction of g to V (G′) is denoted by g|G′ .

Lemma 8.2.7. Let G and H be two r-graphs, where r ≥ 3, and let f be an

H-coloring of G. Let M be a multiset of r − 3 perfect matchings of P and

let e0 ∈ E(PM). Let G′ be an induced subgraph of G isomorphic to PM − e0

and H ′ be the subgraph of H induced by f(E(G′)). Then, (fV |G′ , f |G′) is an

isomorphism between G′ and H ′, i.e. H ′ ∼= G′.
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Proof. By the definition of G′, we have |∂G(V (G′))| = 2. Assume that

∂G(V (G′)) = {e1, e2} and ei = wizi with wi ∈ V (G′) for each i ∈ {1, 2}.

We first consider the case f(e1) = f(e2). Let G∗ be the r-graph obtained

from G′ by adding a new edge e3 connecting w1 and w2. Set f∗(e) = f(e) =

f |G′(e) for each e ∈ E(G∗) \ {e3} and f∗(e3) = f(e1) = f(e2). Then f∗ is an

H-coloring of G∗. Since G∗ ∼= PM, we have that (f∗V , f
∗) is an isomorphism

between G∗ and H by Theorem 8.1.4. Thus (fV |G′ , f |G′) is an isomorphism of

G′ to H ′ by the definition of f∗.

Now we assume that f(e1) ̸= f(e2). By Lemma 8.2.6, {f(e1), f(e2)} is a

2-edge-cut of H. Let X be a subset of V (H) such that ∂H(X) = {f(e1), f(e2)}.

Denote f(ei) = xiyi with xi ∈ X for each i ∈ {1, 2}. We consider the following

two cases.

Case 1. fV (V (G′)) ⊆ X or fV (V (G′)) ⊆ V (H) \X.

Without loss of generality, assume that fV (V (G′)) ⊆ X. Let G∗ be the

r-graph obtained from G′ by adding a new edge e3 connecting w1 and w2, and

H∗ be the r-graph obtained from H[X] by adding a new edge e4 connecting x1

and x2. Set f
∗(e) = f(e) = f |G′(e) for each e ∈ E(G∗) \ {e3} and f∗(e3) = e4.

Then f∗ is an H∗-coloring of G∗. Since G∗ ∼= PM, we have that (f∗V , f
∗) is an

isomorphism between G∗ and H∗ by Theorem 8.1.4. Thus (fV |G′ , f |G′) is an

isomorphism of G′ to H ′ by the definition of f∗ and the statement follows.

Case 2. fV (V (G′)) ∩X ̸= ∅ and fV (V (G′)) ∩ (V (H) \X) ̸= ∅.

We show that this case does not apply. Let Z1 = fV (V (G′)) ∩ X and

Z2 = fV (V (G′))∩(V (H)\X). Observe that {f(e1), f(e2)} ⊆ ∂H(Z1)∪∂H(Z2).

Set U1 = X \ Z1 and U2 = (V (H) \ X) \ Z2. Note that U1 and U2 might be

empty. We construct a new r-graph H2 from H in two steps. First, if U1 = ∅,

set H1 = H. Otherwise we can construct an r-graph H1 starting from H/U1

by taking suitable lifting operations at wU1 as described in Theorem 8.1.3,

namely: if |U1| is even, then apply 1
2 |∂H(U1)| lifting operations at wU1 ; if |U1|

is odd, then apply 1
2 (|∂H(U1)| − r) lifting operations at wU1 . Observe that
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U2 ⊂ V (H1). Next, if U2 = ∅, set H2 = H1. Otherwise let H2 be a graph

obtained from H1/U2 by taking similar lifting operations as described above at

the vertex wU2 . An example for the construction of H2 is given in Figure 8.6.

U1X

y1

Z2

x2x1

y2

U2

Z1

(a) H

y1

Z2

x2x1

y2

U2

Z1

(b) H1

y1

Z2

x2x1

wU2

Z1 = Im(fV )

(c) H2

Figure 8.6: An example for the graphs H, H1 and H2, when U1, U2 are

non-empty, U1 is of even cardinality and U2 is of odd cardinality.

By Theorem 8.1.3, this can be done such that H2 is an r-graph. Further-

more, we have

|E(H2)| ≤ |E(H ′) ∪ {f(e1), f(e2)}| ≤ |E(G′)|+ 2.

As a consequence, |V (H2)| ≤ 10. Thus, H2 is class 1 since it has a 2-edge-cut

and hence, H2 has r pairwise disjoint perfect matchings. By the construction

of H2, we deduce that H contains r pairwise disjoint sets of edges, denoted

by S1, . . . , Sr, such that |∂H(y) ∩ Sj | = 1 for each y ∈ fV (V (G′)) and each

j ∈ {1, . . . , r}. Then f−1(S1), . . . , f
−1(Sr) are r pairwise disjoint sets of edges

of G such that |∂G(u)∩f−1(Sj)| = 1 for each u ∈ V (G′) and each j ∈ {1, . . . , r}.

This is a contradiction since G′ is class 2.

Let G and G′ be two disjoint r-graphs of class 2 with e ∈ E(G) and e′ ∈

E(G′). Denote by (G, e)|(G′, e′) the set of all graphs obtained from G by

replacing the edge e of G by (G′, e′), that is, deleting e from G and e′ from G′,

and then adding two edges between V (G) and V (G′) such that the resulting

graph is regular (see Figure 8.7).

In fact, any graph in (G, e)|(G′, e′) is an r-graph of class 2. Furthermore,
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e
G′ − e′

Figure 8.7: A replacement of the edge e by (G′, e′).

we use G|(G′, e′) to denote the set of all graphs obtained from G by replacing

each edge of G by (G′, e′).

Theorem 8.2.8. Let M be a multiset of r − 3 perfect matchings of P, where

r ≥ 3, and let e0 ∈ E(PM). Let G be an r-graph such that G ≇ PM. If

G ∈ Hr, then G|(PM, e0) ⊂ Hr.

Proof. By Theorem 8.0.2, it suffices to prove that any G∗ ∈ G|(PM, e0) cannot

be colored by a connected r-graph of smaller order. Let H be a connected

r-graph such that G∗ has an H-coloring, denoted by f . Label all subgraphs

of G∗ isomorphic to PM − e0 as G1, . . . , Gℓ, where ℓ = |E(G)|, and denote by

Hi the subgraph of H induced by fV (V (Gi)). Note that Hi
∼= PM − e0 by

Lemma 8.2.7. For each i ∈ {1, . . . , ℓ}, we label the two edges of ∂G∗(V (Gi)) as

e1i and e2i , and let eti = utiv
t
i with v

t
i /∈ V (Gi) for each t ∈ {1, 2}.

Claim 1. f(∂G∗(V (Gi))) is a 2-edge-cut in H, for every i ∈ {1, . . . , ℓ}.

Proof of Claim 1. By Lemma 8.2.6, we suppose to the contrary that there is

i ∈ {1, . . . , ℓ} such that f(e1i ) = f(e2i ). With Gi
∼= PM − e0, we have H ≺ PM

by Lemma 8.2.7, and so H ∼= PM by Theorem 8.1.4. Then, |f(F )| = 1 for any

2-edge-cut F ⊂ E(G∗) by Lemma 8.2.6 since PM is 3-edge-connected. Thus,

by the construction of G∗, we have H ≺ G, which implies H ∼= G by Theorem

8.1.4. This is a contradiction to the fact that G ≇ PM. ■

Claim 2. V (Hi) = V (Hj) or V (Hi) ∩ V (Hj) = ∅, for every i, j ∈

{1, . . . , ℓ}.

Proof of Claim 2. Assume V (Hi) ∩ V (Hj) ̸= ∅. To complete the proof,

we shall show V (Hi) \ V (Hj) = ∅ and V (Hj) \ V (Hi) = ∅. Without loss

of generality, suppose to the contrary that V (Hj) \ V (Hi) ̸= ∅. Note that

f(∂G∗(V (Gi))) is a 2-edge-cut in H by Claim 1. Observe that both Hi and
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Hj are isomorphic to PM − e0 by Lemma 8.2.7. Thus, at least one edge of

f(∂G∗(V (Gi))) is contained in E(Hj), since Hj is connected. As a consequence,

Hj either has a bridge or a 2-edge-cut consisting of two non-adjacent edges,

since an r-graph has no cut-vertex. This is not possible. ■

Claim 3. fV (z) /∈
⋃ℓ

i=1 V (Hi), for every z ∈ V (G∗) \ (
⋃ℓ

i=1 V (Gi)).

Proof of Claim 3. Suppose to the contrary that there is a vertex z ∈

V (G∗) \ (
⋃ℓ

i=1 V (Gi)) such that fV (z) ∈ V (Hj) for some j ∈ {1, . . . , ℓ}. Let e

be an edge incident with fV (z) in Hj . By the construction of G∗, the only edge

of f−1(e) ∩ ∂G∗(z) is an element of ∂G∗(V (Gk)) for some k ∈ {1, . . . , ℓ}. Thus,

e is in a 2-edge-cut of H by Claim 1, contradicting the fact that Hj
∼= PM−e0

by Lemma 8.2.7. ■

By Claim 1, ∂H(V (Hi)) = f(∂G∗(V (Gi))) = {f(e1i ), f(e2i )}. Let f(eti) =

xtiy
t
i with y

t
i /∈ V (Hi) for each t ∈ {1, 2}.

Claim 4. {y1i , y2i } ∩ V (Hj) = ∅, for every i, j ∈ {1, . . . , ℓ}.

Proof of Claim 4. By contradiction, suppose yti ∈ V (Hj) for some t ∈ {1, 2}.

Note that fV (v
t
i) ∈ {yti , xti} and xti ∈ V (Hi). Thus, fV (v

t
i) ∈ V (Hi) ∪ V (Hj).

This is a contradiction to Claim 3 since vti ∈ V (G∗) \ (
⋃ℓ

i=1 V (Gi)) by the

construction of G∗. ■

Note that G can be obtained from G∗ by deleting all vertices of Gi and

adding a new edge edge ei connecting v
1
i and v2i for each i ∈ {1, . . . , ℓ}. By

Claims 2 and 4, (V (Hi)∪{y1i , y2i })∩V (Hj) = ∅ if V (Hi) ̸= V (Hj) for each i, j ∈

{1, . . . , ℓ}. Thus, we can construct an r-graphH ′ fromH by deleting all vertices

of Hi and adding a new edge gi connecting y
1
i and y2i for each i ∈ {1, . . . , ℓ}.

Note that, for some i ̸= j ∈ {1, . . . , ℓ}, it might happen that V (Hi) = V (Hj).

In such a case, gi = gj . Define a mapping f ′ : E(G) → E(H ′) by letting

f ′(ei) = gi, for each i ∈ {1, . . . , ℓ}. By Claim 3, f ′V (z) ∈ V (H ′) for every vertex

z ∈ V (G) ⊂ V (G∗). Furthermore, we have f ′(∂G(z)) = ∂H′(f ′V (z)). Since both

G and H ′ are r-graphs, f ′ is proper. Thus, f ′ is an H ′-coloring of G. Then,

(f ′V , f
′) is an isomorphism between G and H ′ by Theorem 8.1.4. This implies
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that |V (G∗) \ (
⋃ℓ

i=1 V (Gi))| = |V (H) \ (
⋃ℓ

i=1 V (Hi))|, and V (Hi) ̸= V (Hj) for

any distinct i, j ∈ {1, . . . , ℓ} since f ′(ei) ̸= f ′(ej). Therefore, |V (G∗)| = |V (H)|

by Claims 2 and 3, which completes the proof.

Thus we now can prove Theorem 8.0.1.

Theorem 8.0.1. Either H3 = {P} or H3 is an infinite set. Moreover, if r ≥ 4,

then Hr is an infinite set.

Proof. If H3 ̸= {P}, then H3 contains a graph not isomorphic to P. Thus, we

can use Theorem 8.2.8 to inductively construct infinitely many graphs belong-

ing to H3.

By Theorem 8.2.5, S(r, 1) ⊂ Hr. Note that the set S(r, 1) is non-empty

(see [75]), and for r ≥ 4, it does not contain any graph isomorphic to PM,

where M is any multiset of r − 3 perfect matchings of P. Hence, we can use

Theorem 8.2.8 to inductively construct infinitely many graphs belonging to

Hr.

8.3 Simple r-graphs

In [68] the authors also asked whether for every r ≥ 4, there is a connected

r-graph coloring all simple r-graph. In this section we answer this question by

showing that there is no finite set of connected r-graphs H′
r such that every

connected simple r-graph can be colored by an element of H′
r.

Lemma 8.3.1 ( [40]). Let r be a positive integer, G be an r-graph and F ⊆

E(G). If |F | ≤ r − 1, then G− F has a 1-factor.

Recall that, for an r-graph G and an odd set X ⊆ V (G), the edge-cut

∂G(X) is tight if it consists of exactly r edges; and it is trivial if |X| = 1 or

|Xc| = 1.

Lemma 8.3.2. Let r ≥ 3, let G,H be connected r-graphs and let f be an

H-coloring of G. If F ⊆ E(G) is a tight edge-cut in G, then f(F ) is a tight

edge-cut in H.
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Proof. Since F is a tight edge-cut, we have |f(F )| ≤ r. Suppose that |f(F )| < r.

By Lemma 8.3.1, H − f(F ) has a perfect matching M . Thus, f−1(M) is a

perfect matching of G such that f−1(M) ∩ F = ∅, a contradiction. Therefore,

|f(F )| = r, and let H1, . . . ,Hm be the components of H − f(F ).

We first claim that the two endvertices of each edge in f(F ) are in different

components of H − f(F ). By contradiction, suppose that there is an edge

xy ∈ f(F ) such that x and y are on the same component H ′ of H − f(F ). Let

T be an x, y-path contained in H ′. Then, f−1(E(T )∪{xy}) induces a 2-regular

subgraph in G (see Observation 8.1.1 (iii)) and intersects F exactly once, a

contradiction.

The remaining proof is split into two cases as follows.

Case 1. H − f(F ) has a component of odd order.

If m > 2, then there is an odd component H ′ with |∂G(V (H ′))| < r, since

H − f(F ) has at least two components of odd order, a contradiction. Hence,

H − f(F ) has exactly two components, which are of odd order and therefore,

f(F ) is a tight edge-cut in H.

Case 2. Every component of H − f(F ) is of even order.

Let H̃ be the graph obtained from H by identifying all vertices in V (Hi) to

a new vertex for each i ∈ {1, . . . ,m}. Since every component is of even order,

H̃ is a connected graph on |f(F )| = r edges in which every vertex is of even

degree.

Now, we shall prove that H̃ is bipartite. Suppose by contradiction that H̃

has an odd circuit of order 2t+ 1. This means that there is an odd number of

components Hi1 , . . . ,Hi2t+1 in H− f(F ) such that, for all j ∈ Z2t+1 there is an

edge xjyj+1 ∈ f(F ) such that xj ∈ V (Hij ) and yj+1 ∈ V (Hij+1). Moreover, for

all j ∈ Z2t+1 there is an xj , yj-path Tj contained in the componentHij , i.e. such

that E(Tj)∩f(F ) = ∅. Consider the circuit C induced by xjyj+1 and all edges

of Tj for all j ∈ Z2t+1. Then |E(C)∩ f(F )| = 2t+ 1 and f−1(E(C)) induces a

2-regular subgraph in G such that |F ∩ f−1(E(C))| = 2t+ 1, a contradiction.



140 Chapter 8: Complete sets

Since H̃ is a bipartite graph, we can assume without loss of generality that

there is an s ∈ {1, . . . ,m− 1} such that f(F ) = ∂H(W ), where W = V (H1) ∪

· · ·∪V (Hs). Note that |W | is even since every component of H−f(F ) has even

order. Thus, a perfect matchingM ofH is such that |M∩∂H(W )| = |M∩f(F )|

is even. But then |f−1(M) ∩ F | is even as well, a contradiction.

Lemma 8.3.3. Let r ≥ 3, let G and H be two r-graphs, and let X be a subset

of V (H) such that ∂H(X) is a tight cut and χ′(H/Xc) = r. If H ≺ G, then

H/X ≺ G.

Proof. Assume that f is an H-coloring of G. Label the edges of ∂H(X) as

e1, . . . , er. Since χ′(H/Xc) = r, the subset E(H[X]) ∪ ∂H(X) of E(H) can

be partitioned into r pairwise disjoint matchings, denoted by N1, . . . , Nr, such

that each edge of ∂H(X) is contained in exactly one of them. Without loss

of generality, we may assume ei ∈ Ni for each i ∈ {1, . . . , r}. Note that

E(G) = f−1(E(H)) = f−1(E(H[Xc])) ∪ f−1(N1) ∪ . . . ∪ f−1(Nr). Moreover,

for convenience, every edge and every vertex of H/X is labeled as in H. We

define a mapping f ′ : E(G) → E(H/X) as follows. For every e ∈ E(G), set

f ′(e) =


f(e) if e ∈ f−1(E(H[Xc]));

ei if e ∈ f−1(Ni), for i ∈ {1, . . . , r}.

To conclude the proof, we shall show that f ′ is an H/X-coloring of G. Let v

be a vertex of V (G). If f(∂G(v)) = ∂H(u) for some vertex u ∈ Xc ⊂ V (H),

then f ′(∂G(v)) = f(∂G(v)) = ∂H(u) = ∂H/X(u) by the definition of f ′. If

f(∂G(v)) = ∂H(u) for some vertex u ∈ X, then the image under f of each edge

of ∂G(v) is contained in one of N1, . . . , Nr. Hence, the image under f ′ of each

edge of ∂G(v) appears once in ∂H/X(wX). This implies f ′(∂G(v)) = ∂H/X(wX).

Thus, f ′ is an H/X-coloring of G.

A simple graph H is regularizable if we can obtain a regular graph from

H by replacing each edge of H by a nonempty set of parallel edges. We need

the following lemma, which follows from two results of [10] and [74]. The
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equivalence of the first two statements is shown in [10]; the equivalence of the

first and the third statement is shown in [74].

Lemma 8.3.4. Let G be a simple connected graph which is not bipartite with

two partition sets of the same cardinality. The following statements are equiv-

alent:

• iso(G− S) < |S|, for all S ⊆ V (G).

• G is regularizable [10].

• for every v ∈ V (G), both G − v and G have a {K1,1, Cm : m ≥ 3}-

factor [74].

Lemma 8.3.5. Let r ≥ 3, let G and H be r-graphs, where H is connected, and

let S ⊆ V (G) such that ∂G(S) is a tight cut and G[S] has no {K1,1, Cm : m ≥

3}-factor. If G has an H-coloring f : E(G) → E(H) and ∂H(X) = f(∂G(S))

for an X ⊆ V (H), then H/X or H/Xc is a bipartite graph with two partition

sets of the same cardinality.

Proof. Suppose to the contrary that both H/X and H/Xc are not bipartite

graphs with two partition sets of the same cardinality. By Lemma 8.3.2, the

edge-cut ∂H(X) is tight and so both H/X and H/Xc are r-regular. Thus, the

underling graphs of H/X and H/Xc are both regularizable and hence, both

H/X−wX andH/Xc−wXc have a {K1,1, Cm : m ≥ 3}-factor, by Lemma 8.3.4.

Let H ′ be the union of these two factors. Note that H ′ is a {K1,1, Cm : m ≥ 3}-

factor of H, which contains no edge of ∂H(X). Since ∂H(X) = f(∂G(S)) and

by Observation 8.1.1 (iv), G has a {K1,1, Cm : m ≥ 2}-factor F , which contains

no edge of ∂G(S). By deleting one edge of every component of F isomorphic

to C2, we obtain a {K1,1, Cm : m ≥ 3}-factor of G, which contradicts the

assumption that G[S] has no {K1,1, Cm : m ≥ 3}-factor.

For an r-regular graph G and a vertex v ∈ V (G), a Meredith extension of

G at v is the operation that replaces v by Kr−1,r such that the resulting graph

is r-regular.
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Theorem 8.3.6. Let r ≥ 3 and let H be a set of connected r-graphs such that

every H ∈ H does not contain a non-trivial tight edge-cut ∂H(X) such that

H/X or H/Xc is class 1. If every connected simple r-graph can be colored by

an element of H, then every connected r-graph can be colored by an element of

H.

Proof. Let G be an arbitrary r-graph. By applying a Meredith extension on

every vertex of G, we obtain a simple r-regular graph Ge. From the fact

that both G and Kr,r are r-graphs, we know that Ge is also an r-graph by

Lemma 6.3.1. Hence, there is H ∈ H such that H ≺ Ge. Let f be an H-

coloring of Ge. Note that for any induced subgraph G′ of Ge isomorphic to

Kr,r−1, the edge-cut ∂Ge(V (G′)) is tight, and so f(∂Ge(V (G′))) is also tight in

H by Lemma 8.3.2. Let X ⊂ V (H) such that ∂H(X) = f(∂Ge(V (G′))). Since

Kr,r−1 contains no {K1,1, Cm : m ≥ 3}-factor, Lemma 8.3.5 implies that H/X

or H/Xc is a bipartite graph with two partition sets of the same cardinality.

In particular, H/X or H/Xc is class 1, which implies that X or Xc is a single

vertex by the choice of H. Therefore, the edge-cut ∂Ge(V (G′)) is mapped to

a trivial edge-cut of H under f . Since G′ was chosen arbitrarily, we conclude

that G also has an H-coloring, which completes the proof.

Thus, we can deduce our main result for simple graphs as well.

Theorem 8.3.7. Let r ≥ 3 and let H′
r be a set of connected r-graphs such that

every connected simple r-graph can be colored by an element of H′
r.

i) If the Petersen Coloring Conjecture is false, then H′
3 is an infinite set.

ii) If r ≥ 4, then H′
r is an infinite set.

Proof. By Lemma 8.3.3 we can identify suitable subsets of vertices of graphs

in H′
r to obtain a set H′′

r of connected r-graphs with the following properties.

• Every connected simple r-graph can be colored by an element of H′′
r .
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• For every H ∈ H′′
r , there is no non-trivial tight edge-cut ∂H(X) such that

H/X or H/Xc is class 1.

Hence, by Theorem 8.3.6, every connected r-graph can be colored by an element

of H′′
r . Thus, Hr ⊂ H′′

r and hence, H′′
r is an infinite set by Theorem 8.0.1. By

the construction of H′′
r we have |H′

r| ≥ |H′′
r |, and hence, H′

r is also an infinite

set.

8.4 Open Problems

Recall that the edge connectivity of an r-graph is equal to r or it is an even

number. We have shown that for every r ≥ 3 and every multiset M of r − 3

perfect matchings of the Petersen graph, the graph PM belongs to Hr. Thus,

for r ̸= 5, for each possible edge-connectivity t there is a t-edge-connected r-

graph in Hr. For r = 5, we do not know any 5-edge-connected 5-graph in Hr.

However, we know only a finite number of t-edge-connected r-graphs of Hr if

t ≥ 3.

Problem 8.4.1. For r, t ≥ 3, does Hr contain infinitely many t-edge-connected

r-graphs?

It is also not clear whetherHr contains elements of S(r, k) for k ∈ {2, . . . , r−

3}. So far, these sets are not determined for k ∈ {1, . . . , r − 3}. Indeed, we

even do not know the order of their elements. Let o(r, k) be the order of the

graphs of S(r, k).

Problem 8.4.2. For all r ≥ 3 and k ∈ {1, . . . , r − 2} : Determine o(r, k).

By our results, o(r, r − 2) = 10. By results of Rizzi [75], o(r, 1) ≤ 2× 5r−2.

We conjecture the following to be true.

Conjecture 8.4.3. For all r ≥ 3 and k ∈ {2, . . . , r − 2} : o(r, k − 1) ≥ o(r, k).

If Conjecture 8.4.3 would be true, then it would follow with Corollary 8.1.5

that S(r, k) ⊂ Hr for each k ∈ {1, . . . , r − 2}.
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Similar problems arise for simple r-graphs. Let os(r, k) be the smallest

order of a simple r-graph G with π(G) = k. Small simple r-graphs of class

2 can be obtained as follows. Consider a perfect matching M of P and the

graph G = P + (r − 3)M . Let H be a simple r-graph of smallest order and

v ∈ V (H). Then, H is class 1 and |V (H)| = r+1 if r is odd and |V (H)| = r+2

if r is even. Now, replace appropriately five vertices of G by H − v (such that

the resulting graph is r-regular) to obtain a simple r-graph G′. Since H is

class 1 and π(G) = r − 2, we have π(G′) = r − 2. Therefore, if r is odd, then

os(r, r−2) ≤ 5(r+1) and if r is even, then os(r, r−2) ≤ 5(r+2). Furthermore,

bounds for os(r, k) can be obtained by using Meredith extensions, since if G′

is a Meredith extension of an r-graph G, then π(G′) = π(G).
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A.1: A sketch of the proof of Theorem 7.3.17

In order to prove Theorem 7.3.17 we adjust Theorem 7.3.10 as follows.

Theorem A.1. The following statements are equivalent.

(i) Every 5-edge-connected 5-graph with an underlying cubic graph has a 2-

PDPM.

(ii) For every 5-edge-connected 5-graph G with an underlying cubic graph and

every simple e ∈ E(G), there is a 2-PDPM containing e.

(iii) For every 5-edge-connected 5-graph G with an underlying cubic graph and

every simple e ∈ E(G), there is a 2-PDPM avoiding e.

(iv) For every 5-edge-connected 5-graph G with an underlying cubic graph and

every simple e ∈ E(G) and every two parallel edges e1, e2 adjacent with e, there

is a 2-PDPM containing e and avoiding e1, e2.

Proof. Clearly, each of (ii), (iii) and (iv) implies (i). Thus, it suffices to prove

that (i) implies (ii); (i) implies (iii); and (ii) implies (iv).

(i) ⇒ (ii), (iii). Let G be a 5-edge-connected 5-graph whose underlying

graph is cubic and let e = vv1 be a simple edge of G. Let H and H ′ be

the graphs constructed in the part ”(i) ⇒ (ii), (iii)” of the proof of Theorem

7.3.10 by using C2r and r copies of G in the case r = 5 (see Figures 7.7 (a)

and 7.8 (a)). Clearly, the graph H ′ can be constructed from H such that every

vertex of V (H ′) \ {u, u′} has degree 3 in the underlying graph of H ′. Let

W = W5 + E(C5). Now, according to Definition 7.3.8 replace u by (W 1, w1)

145
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and replace u′ by (W 2, w2), where W l is a copy of W and wl is the vertex of

W l corresponding to w, for l ∈ {1, 2}. The resulting graph, denoted by H ′′,

is a 5-edge-connected 5-graph by Lemma 7.3.9. Since its underlying graph is

cubic, H ′′ has two disjoint perfect matchings N1, N2 by statement (i). Let

N = N1 ∪N2 and recall that I = {1, 3, 5, 7, 9}. For every i ∈ I and j ∈ {1, 2},

Observation 7.1.1 implies mij ∈ {1, 3}, where mij = |∂H′′(V (Gi) \ {vi}) ∩Nj |.

Furthermore, we have |∂H′′(V (W l) \ {wl}) ∩Nj | ∈ {1, 3} for every l, j ∈ {1, 2}

also by Observation 7.1.1. Thus, |∂H′′(V (W l) \ {wl}) ∩ N | ∈ {2, 4} for every

l ∈ {1, 2}. As a consequence, there is an integer i ∈ I such that N does not

contain the unique edge in EH′′(vi1, V (W 1) \ {w1}). We have mi1 = mi2 = 1.

Therefore, Gi has two disjoint perfect matchings such that vivi1 is in none

of them, which proves statement (iii). For statement (ii), we consider the

following cases.

Case 1. |N ∩ ∂H′′(V (W 1) \ {w1})| = |N ∩ ∂H′′(V (W 2) \ {w2})| = 2.

In this case, H ′ has a 2-PDPM, and hence, statement (ii) follows by the

same argumentation as in the proof of Theorem 7.3.10 part ”(i) ⇒ (ii), (iii)”.

Case 2. Without loss of generality |N1 ∩ ∂H′′(V (W 1) \ {w1})| = 3.

In this case, there is an integer i ∈ I, say i = 1, such that N1 con-

tains the unique edge in EH′′(vi1, V (W 1) \ {w1}) and the unique edge in

EH′′(vi+2
1 , V (W 1) \ {w1}). The set N1 contains exactly one edge incident with

u2 and thus, m11 = 1 or m31 = 1 by the construction of H ′′. Therefore, G1

has two disjoint perfect matchings such that v1v11 is in one of them or G3 has

two disjoint perfect matchings such that v3v31 is in one of them, which proves

statement (ii).

Case 3. Without loss of generality |N1 ∩ ∂H′′(V (W 2) \ {w2})| = 3.

In this case, there is an integer i ∈ I, say i = 3, such that N1 con-

tains the unique edge in EH′′(ui−1, V (W 2) \ {w2}) and the unique edge in

EH′′(ui+1, V (W 2) \ {w2}). As a consequence, N1 contains the unique edge in

EH′′(v31, V (W 1) \ {w1}) and m31 = 1. Therefore, G3 has two disjoint perfect
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matchings such that v3v31 is in one of them, which proves statement (ii).

(ii) ⇒ (iv). Let G be a 5-edge-connected 5-graph whose underlying graph is

cubic, let v ∈ V (G) and let NG(v) = {v1, v2, v3}. Furthermore, let µG(v, v1) =

1, µG(v, v2) = µG(v, v3) = 2, let e be the edge connecting v and v1 and let

e1, e2 be the two parallel edges connecting v and v2. We show that there are

two disjoint perfect matchings such that their union contains e but neither e1

nor e2.

Let G1 and G3 be two copies of G in which the vertices and edges are labeled

accordingly by using an upper index. Let H be the graph constructed in the

part ”(ii) ⇒ (iv)” of the proof of Theorem 7.3.10 by using K4 in the case r = 5,

see Figure 7.9 (a). According to Definition 7.3.8, construct a new graph H ′

from H by replacing u1 with (G1, v1) and replacing u3 with (G3, v3) such that

µH′(v11, v
3
1) = 1 and µH′(v12, u2) = µH′(v32, u2) = µH′(v13, u4) = µH′(v33, u4) =

2. The graph H ′ is 5-edge-connected and 5-regular by Lemma 7.3.9 and its

underlying graph is cubic. Therefore, by statement (ii) there are two disjoint

perfect matchings N1, N2 of H ′ such that u2u4 ∈ N1. By Observation 7.1.1,

we have v11v
3
1 ∈ N1 and |∂H′(V (Gi) \ {vi}) ∩ Nj | = 1 for every i ∈ {1, 3} and

every j ∈ {1, 2}. Furthermore, N1 ∪N2 either does not contain the two edges

connecting v12 and u2 or does not contain the two edges connecting v32 and u2.

In the first case, G1 has two disjoint perfect matchings such that their union

contains e1 but neither e11 nor e
1
2; in the second case G3 has two disjoint perfect

matchings such that their union contains e3 but neither e31 nor e32. This proves

statement (iv).

Theorem 7.3.17 can be proved like Theorem 7.3.16 by using Theorem A.1

instead of Theorem 7.3.10.
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