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Übersetzungen, Mikroverfilmungen, sowie die Einspeicherung und Verarbeitung in elektroni-
schen Systemen.
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Außerdem möchte ich mich herzlich bei meinen Kollegen und Kolleginnen für die gu-
te Zusammenarbeit und angenehme kollegiale Atmosphäre bedanken. Insbesondere An-
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einer Windenergieanlage zu erläutern sowie Datensätze seiner Arbeit zu überlassen.

Schließlich empfinde ich große Dankbarkeit und Zuneigung gegenüber meiner Familie
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Zusammenfassung

Ziel dieser Arbeit ist die Entwicklung eines modellbasierten Beobachters für eingangs-
affine, nichtlineare Systeme, der trotz Modellungenauigkeiten eine hohe Schätzgüte er-
zielt und zusätzlich eine parametrische, physikalisch interpretierbare Darstellung dieser
ermöglicht. Diese soll zur automatisierten Verbesserung des Modells verwendet wer-
den. Die vorliegende Arbeit analysiert sowohl Techniken der hybriden Systemidenti-
fikation wie physikalisch motivierte neuronale Netze, als auch Methoden zur Kompensa-
tion von Modellungenauigkeiten im Beobachterentwurf. Basierend auf der Analyse wird
ein neuartiger, modellbasierter Beobachter entworfen, der Systemzustände und Modell-
ungenauigkeiten gleichzeitig schätzt und insbesondere eine parametrische, physikalisch
interpretierbare Darstellung der Ungenauigkeiten erzielt. Diese besteht aus einer Linear-
kombination von physikalisch interpretierbaren Funktionen, deren dazugehörige, dünn-
besetzt modellierte Parameter mithilfe eines augmentierten Zustands parallel zu den Sys-
temzuständen geschätzt werden. Das Novum dieser Arbeit stellt somit die echtzeitfähige
Schätzung von Zuständen und Modellungenauigkeiten in physikalisch-technischer Form
dar, auf deren Grundlage ein Konzept zur automatisierten Modelladaption umgesetzt
wird. Die Applikation der neuartigen Methode ist in der Situation auftretender System-
veränderungen besonders vorteilhaft, da diese zur Laufzeit durch den augmentierten Be-
obachter geschätzt und identifiziert werden können.

Abstract

The aim of this thesis is the development of a model-based observer for input-affine,
nonlinear systems that achieves a high estimation quality despite model inaccuracies. By
additionally providing a parametric, physically interpretable representation of the mo-
del inaccuracies, an automated improvement of the model should be enabled. This thesis
analyzes techniques of hybrid system identification such as physics-guided neural net-
works, as well as methods for compensating model inaccuracies within the observer de-
sign. Based on this analysis, a novel model-based observer is designed, which estimates
states and model inaccuracies jointly and, in particular, obtains a parametric, physically
interpretable representation of the inaccuracies. This consists of a linear combination of
physically interpretable functions, whose associated parameters are modeled sparse and
estimated in parallel to the system’s states using an augmented state. The novelty of this
thesis is thus the real-time capability to jointly estimate states and model inaccuracies in
a physical-technical manner, on the basis of which an automated model adaption can be
carried out. The application of the new methodology is particularly advantageous in the
situation of occurring system changes since these can be estimated and identified at run
time by the augmented observer.
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1 Motivation und Zielsetzung

Die Zustandsschätzung ist ein fundamentaler Pfeiler moderner Regelungstechnik, obwohl
die Ursprünge vieler Methoden bis weit zurück in das 20. Jahrhundert reichen (z. B.
[Kal60; Lue64]). Da die meisten dynamischen Systeme, die in Natur und Technik vor-
kommen, nicht vollständig oder quantitativ messbar sind, braucht es für die Entwick-
lung geeigneter Regelungs- oder Steuerungsstrategien einen Schätzer, der möglichst ge-
nau die unbekannten Größen erfasst, die zur Berechnung eines Regeleingriffs oder einer
Stellgröße erforderlich sind [FKL+22; Lun16]. So kam beispielsweise für die Apollo-
Mission ein Kalman-Filter zum Einsatz, welches die Navigation in der Raumfahrttechnik
erleichterte. Ebenso muss das standardmäßig verbaute Fahrerassistenzsystem ESP z. B.
die Geschwindigkeit eines Fahrzeugs basierend auf Sensorwerten wie den Raddrehzahlen
oder der Beschleunigung schätzen, um ggf. eingreifen zu können. Aufgrund der steigen-
den Komplexität mechatronischer Systeme und der kürzeren Produktentwicklungszyklen
ist es jedoch herausfordernd, einen zuverlässigen Schätzer zu entwickeln, da vielfältige
Wechselwirkungen zwischen verbauten Teilsystemen unterschiedlicher Disziplinen zu
berücksichtigen sind.

Etablierte Schätzverfahren nutzen daher in der Regel ein Modell des Systems, um Aussa-
gen oder Vorhersagen über die Zustände des dynamischen Systems treffen zu können. Die
modellbasierte Betrachtung von physikalischen oder allgemein naturwissenschaftlichen
Problemen ist indes eine sehr alte Vorgehensweise, die bereits in der Antike angewendet
wurde. Ausgehend von geometrischen Problemen, wie sie beispielsweise in der Erdver-
messung oder Architektur auftraten [Mit14; Fro22], entwickelten die Griechen Modelle,
um diese zu lösen. Allerdings waren sich die Griechen schon damals der Unvollkom-
menheit eines Modells und der damit einhergehenden Herausforderungen bewusst. So
beschrieb Platon, griechischer Philosoph um 400 v. Chr., in seinem Höhlengleichnis das
Dilemma zwischen Wahrnehmung, Wissen und Realität [Pla16]. Diese Problematik, wel-
che durch das antike Gleichnis aufgezeigt wird, lässt sich auch im Modellbildungsprozess
erkennen: Der Prozess ist geprägt durch die empirische und subjektive Wahrnehmung
der physikalisch zu modellierenden Phänomene. Ein Modell kann deshalb lediglich ein
schwächeres Abbild der Realität widerspiegeln, welches noch Ungenauigkeiten enthält
[BGA20; Löw20].

Aufgrund des Bewusstseins, dass bei größeren Modellabweichungen keine zuverlässigen
Schätzungen des Zustands zu erwarten sind, ist ein iterativer Modellierungsprozess meist
unumgänglich, um das Modell basierend auf Messdaten anzupassen. Dieser iterative Vor-
gang bindet allerdings nicht nur kostenintensive Ressourcen wie Personal und Software,
sondern kann wegen äußerer Störungen oder internen Einflüssen wie etwa Verschleiß die
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Modell-Realitäts-Lücke nie ganzheitlich schließen. Daher wird dieser Herausforderung in
den letzten Jahren vermehrt mit der Nutzung von Messdaten entgegen getreten. So werden
diese nicht nur zur Parameteridentifikation oder Modellvalidierung eingesetzt, sondern
können aufgrund der gestiegenen technischen Leistungen in Prozessoren und Speichern
nun in größerem Umfang für die Erstellung von datenbasierten Modellen genutzt werden.
Dies gelingt durch datenverarbeitende Methoden, beispielsweise mittels maschinellem
Lernen (ML) oder künstlicher Intelligenz (KI), welche sich in den Ingenieurwissenschaf-
ten einer zunehmenden Popularität erfreuen und deren Einsatz überwiegend positiv anti-
zipiert wird [SBW+18]. Die Popularität von ML- oder KI-Methoden nicht nur in den In-
genieurwissenschaften drückt sich z. B. in der Anzahl der Google-Scholar-Publikationen
aus, die diese Begriffe als Schlagwort enthalten. In der Abbildung 1-1 ist ein enormer
Zuwachs an Beiträgen pro Jahr in den letzten beiden Dekaden zu erkennen, welcher in
der Spitze etwa eine Million Beiträge pro Jahr hervorbrachte.
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Abbildung 1-1: Popularität der Begriffe Artificial Intelligence und Machine Learning
zwischen 1980 und 2022, dargestellt durch Auftreten als Schlagwort in
Google-Scholar-Beiträgen (Stand September 2023, erzeugt durch die mo-
difizierte Nutzung von [Thi22])

Obwohl KI und ML heutzutage bereits in vielen Alltagssituationen gegenwärtig sind,
z. B. durch digitale Sprachassistenten oder Chatbots, und ihr Einsatz intensiv durch die
Bundesregierung gefördert wird [Die18; Die20], besteht in den Ingenieurwissenschaften
jedoch der Anspruch sowie die Pflicht, physikalisch nachvollziehbare und robuste Mo-
delle zu erstellen (vgl. die aktuelle Normierungsroadmap [DD22]). Dies ist insbesondere
in gesellschaftsrelevanten Bereichen wie der kritischen Infrastruktur, der Medizintechnik,
der Automobiltechnik oder der Robotik von Bedeutung und z. T. noch nicht gesetzlich
verankert bzw. noch im Prozess der Gesetzgebung [Pre23; Sch23a]. Schlagzeilen wie

”Tesla-Chef warnt vor tödlichen Robotern“1 und ”Wie schlau werden unsere Autos?“2

1https://www.welt.de/wirtschaft/article166725047/Tesla-Chef-Musk-warnt-vor-toedlichen-
Robotern.html, abgerufen am 24.02.2023

2https://www.quarks.de/technik/mobilitaet/kuenstliche-intelligenz-wie-schlau-werden-unsere-autos/,
abgerufen am 24.02.2023
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zeugen jedoch von dem bestehenden Sicherheitsrisiko sowie der öffentlichen Besorgnis,
die auch von Expertengruppen geteilt wird [Rud19; Fut23], wenn KI- oder ML-basierte
Modelle in hochtechnologischen Systemen für gesellschaftsrelevante Anwendungen ein-
gesetzt werden. In der Abbildung 1-1 ist ab dem Jahr 2018 zu erkennen, dass die An-
zahl der Publikationen im Zusammenhang mit ML bzw. KI deutlich abnimmt. Dies lässt
sich neben dem Effekt der Corona-Pandemie u. a. auf diese gesellschaftlichen Bedenken,
die ein kritisches Hinterfragen statt ein unbedachtes Nutzen dieser Methoden anstoßen,
zurückführen. In der Folge reift in den Ingenieurwissenschaften die Idee, physikalisch
bewährte Modelle mit datenbasierten Techniken zu verknüpfen, und schürt die Hoffnung,
dass diese hybriden Modelle3 die Stärken sowie die Wissenskomponenten beider Perspek-
tiven kombinieren können und ein Synergieeffekt für die resultierenden Modelle bewirken
[KAF+17; HW13; Rud19], z. B. dass sich der Aufwand der Modellbildung reduzieren
und die Modell-Realitäts-Lücke verringern lässt [BGH+21]. Daher ist der abnehmende
Trend in Abbildung 1-1 vor allem mit der Verschiebung von generalisierten Oberbegriffen
hin zu spezialisierten Fachtermini zu erklären, da weiterhin intensiv zu ML/KI geforscht
wird. Die Verschmelzung der physikalisch basierten und datengetriebenen Blickwinkel
ist schließlich schematisch in der Abbildung 1-2, angelehnt an [KAF+17], dargestellt und
weist die grundlegenden Voraussetzungen für die hybride Modellbildung aus: Physikali-
sches Wissen sowie Verfügbarkeit von Daten. Der Anteil dieser bestimmt die Ausprägung
eines hybriden Modells bzgl. beider Perspektiven, welche im folgenden Abschnitt im Zu-
sammenhang zum modellbasierten Regelungsentwurf beleuchtet werden.
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Abbildung 1-2: Hybride Modellierung als Kombination aus physikalisch basierten und
datengetriebenen Wissenskomponenten bzw. Methoden, angelehnt an
[KAF+17]

3Ein Modell heißt hybrid, wenn es sowohl physikalisch basierte als auch datengetriebene Teilkompo-
nenten aufweist bzw. aus jenen Modellierungstechniken hervorgegangen ist.
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1.1 Modellbasierter Regelungsentwurf

Ein modellbasierter Regelungsentwurf, der in der Abbildung 1-4(a) dargestellt ist, um-
fasst neben der Modellbildung und Parameteridentifikation den Entwurf einer Regelung
und (meistens auch) eines Beobachters, woraufhin die Inbetriebnahme der Regelung durch-
geführt wird [FKL+22; Nis19]. In jedem dieser Schritte spielt das Modell der Strecke4 ei-
ne wesentliche Rolle für die Umsetzbarkeit und Güte der resultierenden Regelung, da auf
dessen Grundlage Designentscheidungen für den Regler und Beobachter vorgenommen
werden. Die Entwicklung des Streckenmodells kann dabei durch theoretische oder expe-
rimentelle Modellbildung erfolgen5. Diese sind nach [IM11, S.2] in der Abbildung 1-3
dargestellt und unterscheiden sich darin, ob Vorwissen aus physikalischen Gesetzen oder
Messdaten aus Experimenten zur Identifikation eines Modells genutzt werden. Das Vor-
gehen der beiden Strategien ähnelt sich an einigen Stellen. Beide entwickeln ausgehend
von Vorwissen oder Annahmen ein Modell, welches anschließend ggf. noch vereinfacht
wird. Zudem ergänzen sich die Strategien u. U. durch Teilelemente untereinander, z. B.
bei der Parameteridentifikation des analytisch entwickelten Modells durch Messdaten.

Theoretische Modellbildung

Annahmen

Physikalische Gesetze

Analytisches Modell
parametrisch

Vereinfachung

Experimentelle Modellbildung

A priori Vorwissen
bekannte Struktur | unbekannte Struktur

Experiment

Identifikation
parametrisch | nicht parametrisch

Experimentelles Modell
parametrisch | nicht parametrisch

Vereinfachung

Vergleich & Auswahl
Modellanpassungen

Abbildung 1-3: Theoretische und experimentelle Modellbildung nach [IM11, S.2]

4In der Regelungstechnik wird das zu beeinflussende, dynamische System, welches über einen Fluss
oder ein Vektorfeld definiert werden kann und die Evolution zeitveränderlicher Größen beschreibt
(vgl. [CFSS82; BK19; FKL+22]), als (Regel-)Strecke bezeichnet.

5Manchmal wird zwischen analytischer und empirischer Modellbildung unterschieden, z. B. [Wal22].
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Unabhängig davon, ob ein Modell aus der theoretischen oder experimentellen Vorgehens-
weise hervorgegangen ist, muss das entwickelte Modell anhand von Messdaten oder Si-
mulationen validiert werden [Lju99; Ada18]. Dabei werden meist Abweichungen auf-
grund von zuvor getätigten Abstraktionen, Annahmen oder bestehenden Wissenslücken,
welche in der Abbildung 1-3 als hellgraue Blöcke dargestellt sind, festgestellt. Somit ist
eine Modellanpassung, welche durch die gestrichelten Linien angedeutet ist, erforder-
lich und resultiert in einer erneuten, mindestens teilweisen Durchführung der Modellbil-
dung. Dieser aufwendige Kreislauf zwischen Modellentwurf und -validierung ist insbe-
sondere auf die steigende Komplexität mechatronischer Systeme zurückzuführen, welche
aufgrund der verschiedenen Disziplinen und vielfältiger Wechselwirkungen eine Model-
lierung in angemessenem Umfang erschwert. Neben dem klassischen, modellbasierten
Regelungsentwurf stellt das V-Modell nach der VDI-Richtlinie 2206 [VDI01], welches
sowohl in der Wissenschaft als auch Industrie die Grundlage eines modellbasierten Ent-
wurfsprozess bildet und in der Abbildung 1-4(b) zu sehen ist, ein domänenübergreifendes
Entwurfskonzept dar. Dieses berücksichtigt systemspezifische Anforderungen und Schnitt-
stellen der unterschiedlichen Disziplinen sowie die Validierung jedes einzelnen Entwurfs-
schritts bezogen auf das Gesamtsystem.

Modell-
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Parameter-
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Entwurf eines
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nahme
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(a) Modellbasierter
Regelungsentwurf

(b) V-Modell nach [VDI01]

Abbildung 1-4: Entwurfskonzepte für mechatronische Systeme

Da allerdings der Aufwand und die Kosten durch eine iterative, sich sukzessiv verbes-
sernde Modellierung steigen und die Ursachen von Modellabweichungen vor allem in der
Abstraktion und in Wissenslücken während der Modellierung liegen, schaffen rein daten-
basierte Modelle eine kostengünstige, z. T. automatisierbare und vorteilhafte Alternative,
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vgl. [Cox18]. Diese ist geprägt durch den BegriffData-driven modeling bzw. Data-driven

control, deren Beliebtheit in Analogie zu den Trends des maschinelles Lernens und der
künstlichen Intelligenz seit den vergangenen Jahren zugenommen hat. Dieser Effekt ist
in der Abbildung 1-5 wiederum durch die Anzahl der Google-Scholar-Beiträge, die diese
Begriffe als Schlagworte enthalten, skizziert.
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Abbildung 1-5: Popularität der Begriffe Data-driven control und Data-driven modeling
zwischen 1980 und 2022, dargestellt durch Auftreten als Schlagwort in
Google-Scholar-Beiträgen (Stand September 2023, erzeugt durch die mo-
difizierte Nutzung von [Thi22])

Im Vergleich zum Trend von ML und KI (vgl. Abbildung 1-1) reduziert sich die Anzahl
der Publikationen ebenfalls ab dem Jahr 2018, was auf die Skepsis gegenüber einer sol-
chen rein datenbasierten Modellierung in der Regelungstechnik und eine Verschiebung zu
hybriden Techniken hindeutet. Diese Skepsis ist berechtigt, da die Nutzung rein datenge-
triebener Modelle häufig einen Verlust an Transparenz und physikalischer Interpretierbar-
keit verursacht, aufgrund dessen sicherheitskritische Situationen resultieren können (vgl.
Abschnitt 4.6.2 in [DD22]). Aus diesem Spannungsfeld, bestehend aus der Notwendig-
keit, eine hohe Schätzgüte trotz Modellungenauigkeiten zu erzielen, die Ungenauigkeiten
physikalisch interpretierbar in einer parametrischen Form darzustellen sowie diese ver-
besserten Modelle für nachfolgende Schritte zugänglich zu halten, ergibt sich die Pro-
blemstellung dieser Arbeit, welche im nächsten Abschnitt thematisiert wird.

1.2 Problemstellung und Anforderungen

Ziel eines Regeleingriffs ist es, eine Regelstrecke durch eine geeignete Maßnahme in eine
gewünschte Situation zu überführen. Die grundlegende Struktur eines einfachen Regel-
kreises ist dazu in der Abbildung 1-6 dargestellt. Das gewünschte Verhalten, welches
eingestellt werden soll, wird dabei durch die Führungsgröße w6 ausgedrückt. Die Größe,

6Alle nun folgenden Variablen sind kontinuierliche Größen und von der Zeit t abhängig.
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die die Strecke beeinflusst, wird als Stellgröße u ∈ Rp bezeichnet und vom Stellglied rea-
lisiert. Anhand der Messgröße y ∈ Rm, welche über das Messglied Rückschlüsse über die
Strecke erlaubt, wird die Abweichung zwischen gewünschtem und tatsächlichem Verhal-
ten berechnet, auf deren Grundlage der Regeleingriff bestimmt wird [Lun16; FKL+22].
Da die Messgröße y in der Regel nicht identisch mit dem inneren Zustand x ∈ Rn des
dynamischen Systems ist, welches beeinflusst werden soll, muss dieser mittels eines Be-
obachters durch x̂ zuverlässig geschätzt werden. Dies erfolgt üblicherweise durch einen
modellbasierten Ansatz. Zentraler Ausgangspunkt eines modellbasierten Beobachterent-
wurfs ist somit das Modell der zu schätzenden Strecke, dessen Qualität einen entschei-
denden Einfluss auf die Güte eines Beobachters aufweist. Jedoch ergibt sich häufig ein
Zielkonflikt zwischen der Wirtschaftlichkeit, Genauigkeit und Komplexität eines Modells,
d. h. dass dieses beispielsweise nur in einem vertretbaren und für die Aufgabe erforder-
lichen Aufwand erarbeitet werden kann, um kostenintensive Ressourcen möglichst effizi-
ent einzusetzen [Loc20; VDI01]. Notwendigerweise kommt es daher im Entwicklungs-
prozess zu Annahmen und Vereinfachungen, die die Modell-Realitäts-Lücke vergrößern.
Diese Lücke kann allerdings auch bei sehr aufwendiger und anspruchsvoller Modellie-
rung nie ganzheitlich geschlossen werden.

Regler Stellglied

Messglied

Regelstrecke

−

w u

y

Abbildung 1-6: Grundstruktur eines Regelkreises, vgl. auch [Lun16],[FKL+22]

Schätzgüte

Die Abweichung des Beobachters von der Strecke aufgrund von Modellungenauigkeiten
wird über den Schätzfehler e B x̂ − x quantifiziert. Ist der Schätzfehler groß, da fehler-
hafte oder ungenaue Schätzungen ermittelt werden, weist der Beobachter eine niedrige
Schätzgüte auf. Diese verursacht nicht nur potentielle Stabilitätsprobleme des Beobach-
ters, sondern beeinflusst auch die Stabilität des geschlossenen Regelkreises sowie das Er-
reichen des Regelziels, da der Regeleingriff auf der Qualität der Schätzungen basiert. Um
eine funktionierende Regelung zu ermöglichen sowie das Risiko von Schäden an Mensch
oder Hardware zu vermeiden, hat die Garantie einer durchgängig hohen Schätzgüte des-
halb trotz Modellungenauigkeiten höchste Priorität.
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Interpretierbarkeit

Diese Modell-Realitäts-Lücke wird zunehmend auch durch hybride Methoden zu vermin-
dern versucht (vgl. Abbildung 1-2). Allerdings ist je nach Wahl der datenverarbeitenden
Methode ein Verlust an physikalisch-technischer Interpretierbarkeit zu befürchten, der
für regelungstechnische Anwendungen, insbesondere im sicherheitskritischen Bereich,
nicht hinzunehmen ist. Interpretierbarkeit ist jedoch kein fest definierter Begriff und wird
fachdisziplinabhängig charakterisiert und bewertet [BMJ+23; Rud19; LPK21; MV20]. In
dieser Arbeit wird ein physikalisch-technisch interpretierbares Modell als solches ver-
standen, dessen parametrische7 Form eine konkrete Zuordnung von physikalischen Wirk-

prinzipien erlaubt. Die Bedeutung dieser Definition lässt sich anhand der Beispiele in der
Abbildung 1-7 erläutern.

Modell 1 Modell 2

x
c

d

m

ζ ji ζl j

x ŷ

ẍ = − c
m x − d

m ẋ ŷl(x, ζ) = f2

(∑
j ζl j · f1

(∑
i ζ jixi

))

Beschleunigung ẍ Dämpfungskraft Fd Aktivierungsfkt. f• Gewichte ζ•

Federkraft Fc Linearkombinationen
∑

(·)

Interpretierbar Nicht interpretierbar

Abbildung 1-7: Interpretierbarkeit als konkrete Zuordnung von physikalischen Wirkprin-
zipien zur parametrischen Form, z. B. Kräfte im Kontrast zur rein funktio-
nellen, mathematischen Beschreibung von Aktivierungsfunktionen

Ein in diesem Sinne interpretierbares Modell stellt das Modell 1 dar, dessen parametri-
sche Form eine gewöhnliche Differentialgleichung ist. Anhand dieser lassen sich direkt
die physikalischen Phänomene des Systems erkennen. So beschreibt jede Komponente
der Differentialgleichung eine dynamische Eigenschaft des Einmassenschwingers, bei-

7In dieser Arbeit werden ausschließlich parametrische Modelle betrachtet, vgl. Abbildung 1-3. Ein
Kennfeld stellt z. B. ein nicht parametrisches Modell dar.
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spielsweise die Wirkung einer Dämpfungskraft, welche sich durch das Produkt des Para-
meters − d

m und der zeitlich abgeleiteten Ortsvariable x kennzeichnet. Im Gegensatz dazu
ist Modell 2 nicht im Sinne der Definition interpretierbar, da die parametrische Form ei-
nes neuronalen Netzes keine konkrete Kausalität zu den physikalischen Wirkprinzipien
des approximierten dynamischen Zusammenhangs zulässt. So können die Gewichte ζ•,
die Aktivierungsfunktionen f• sowie die potentiell verschachtelten Linearkombinationen
jeweils keinem konkreten physikalischen Effekt zugeordnet werden, der direkt aus dem
Modell erkenn- und ablesbar ist, sondern stellen einen rein funktionellen, mathematischen
Sachverhalt dar, der den Einmassenschwinger beschreibt. Aufgrund des Anspruchs, einer-
seits nachvollziehbare und andererseits sicherheitskritisch beständige Modelle zu entwi-
ckeln, stellt die Interpretierbarkeit eine wichtige Eigenschaft dar, die aber u. U. nicht jedes
datengetriebene oder hybride Modell konservieren kann.

Nutzbarkeit

Ein Modell, welches aufgrund bestehender Modellabweichungen überarbeitet und ange-
passt worden ist, muss weiterhin kompatibel für nachfolgende Entwurfsschritte sein, um
für weitere Analyse- und Syntheseschritte zugänglich zu bleiben, die für die Anwendung
am System gedacht sind. Denn dies ist der Zweck eines Modells [Lju99; Ada18]. Es soll
beispielsweise mit diesem adaptierten Modell eine Regelungsaufgabe erfolgreich durch-
geführt werden können, indem ein klassisches Regelverfahren direkt basierend auf die-
sem umgesetzt werden kann. Diese Eigenschaften definieren im Rahmen dieser Arbeit
den Begriff Nutzbarkeit, welcher sich auf ein verbessertes Modell bezieht, das nun auch
jene Charakteristika des Systems abbildet, die wegen der vorher bestehenden Modellun-
genauigkeiten nicht erfasst wurden. Die Nutzbarkeit eines verbesserten Modells ist somit
zwingend erforderlich, allerdings nicht immer sichergestellt. Modell 2 ist ein Beispiel
dafür, dass die Nutzbarkeit lediglich bedingt gegeben ist. Denn aufgrund seines begrenz-
ten Wirkungsbereichs basierend auf den Trainingsdaten ist ein neuronales Netz u. U. nicht
in der Lage, über diesen Bereich hinaus zuverlässig zu extrapolieren und zu generalisie-
ren, was für die Bestimmung eines Regeleingriffs aber notwendig sein kann. Zudem ist
seine Black-Box-Struktur nicht mit beliebigen Verfahren kompatibel. Dies zeigt, dass der
Gedanke der Nutzbarkeit bereits bei der Entwicklung neuer Modellierungsstrategien von
zentraler Bedeutung ist, um die entstehenden Modelle im Sinne der Nachhaltigkeit ver-
wertbar einsetzen zu können.

Aus den zuvor erörterten Aspekten der Problemstellung ergeben sich somit für den mo-
dellbasierten Beobachterentwurf die folgenden Anforderungen:

F.1 Primär soll der modellbasierte Beobachter trotz Modellungenauigkeiten eine hohe
Schätzgüte aufweisen.
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F.2 Als sekundäres Ziel soll der Beobachter eine genaue Schätzung der Modellun-
genauigkeiten erlauben und eine möglichst physikalisch interpretierbare, parame-
trische Darstellung dieser liefern, um vertiefendes Systemwissen sowie eine Adap-
tion des Modells zu ermöglichen.

F.3 Weiterhin soll die Nutzbarkeit des entwickelten Modells bzw. des entwickelten Ver-
fahrens für die folgenden Schritte des Regelungsentwurfs gegeben sein, sodass die
identifizierten Modellungenauigkeiten auch für diese zugänglich sind.

Die genannten Anforderungen basieren hierbei auf der Annahme, dass bereits ein physi-
kalisches Simulationsmodell des betrachteten dynamischen Systems existiert sowie grund-
legendes Systemwissen, wie die Systemordnung und definierte Zustände, zur Verfügung
stehen. Beides ist in der Regel mit geringem Aufwand zu erarbeiten, sodass dies realisti-
sche, niedrigschwellige Voraussetzungen darstellen.

Forschungsbeitrag

Diese Voraussetzungen dienen daher als Grundlage, auf der in der vorliegenden Arbeit
eine neuartige Methode zur Zustandsschätzung ausgearbeitet wird, welche die obigen
drei Ziele berücksichtigt. Basierend auf dem Simulationsmodell, welches noch Modell-
abweichungen aufweist, wird ein erweitertes Modell formuliert, das eine Approxima-
tionsvorschrift für die Modellungenauigkeiten vorsieht. Diese Vorschrift besteht aus einer
Linearkombination aus geeigneten physikalischen Termen ψ, welche in einer Bibliothek Ψ
gespeichert und durch Parameter θ ausgewertet werden. Die Hypothese ist hierbei, dass
aufgrund von Erfahrungswissen Vermutungen bzgl. der unbekannten Dynamik formu-
liert werden können. In der folgenden Abbildung 1-8 wird das Beispiel des Einmassen-
schwingers fortgeführt und anhand dessen die in dieser Arbeit entwickelte Methode il-
lustriert. Die nicht modellierte Reibung FR wird durch die Vermutungen ψ in der Bi-
bliothek Ψ versucht anzunähern, diese umfassen u. a. auch den zur Beschreibung der
Reibkraft geeigneten Term ψ4. Um eine hohe Schätzgüte zu erzielen, wird das erwei-
terte Modell anschließend in einen bewährten Beobachter eingesetzt. In dieser Arbeit
ist dies überwiegend das Unscented Kalman Filter. Zur Erhaltung der Interpretierbar-
keit beinhaltet die Bibliothek nur physikalisch interpretierbare Terme. Darüber hinaus
wird basierend auf dem Prinzip Occam’s Razor8 das Konzept Sparsity9 umgesetzt, wel-
ches die Auswahl der Approximationsterme ψ so steuert, dass lediglich einige wenige

8Dieses geht auf den Philosophen Wilhelm von Ockham (1288-1347) zurück, welches postuliert,
dass aus vielen Möglichkeiten meist die einfachste Lösung (oder Erklärung) mit hoher Wahrschein-
lichkeit die beste Option darstellt. Dieses heuristische Prinzip wird vielfach in der Modellbildung
verschiedener Disziplinen und im ML-Kontext zur Modellauswahl berücksichtigt [BK19].

9Im Deutschen ist dieses unter dem Begriff Dünnbesetztheit bekannt.
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Terme zur Darstellung der Dynamik ausgewählt werden. Eine statistische Analyse über
den Zeitraum der Schätzung, welche offline, aber auch zur Laufzeit immer wieder durch
sich verschiebende Zeitfenster durchgeführt werden kann, identifiziert jene Terme, die die
Modellungenauigkeiten bestmöglich approximieren. Für den Fall des Einmassenschwin-
gers lautet dieser Term ψ4(x, ẋ, u) = sign(ẋ), welcher daher aufgrund der Analyse für das
adaptierte Modell ausgewählt wird, sodass dieses seine interpretierbare Form behält (vgl.
Abbildung 1-8). Die flexible Handhabung der statistischen Analyse ermöglicht zudem,
ggf. bei Systemveränderungen eine effiziente Modellanpassung während des Schätzens
vorzunehmen. Ein solch adaptiertes Modell 3 ist weiterhin nutzbar, da es aufgrund seiner
überschaubaren und interpretierbaren Struktur vielen Verfahren zugänglich bleibt. Somit
wird in der vorliegenden Dissertationsschrift eine neuartige Methode erarbeitet, welche
die Online-Schätzung von Modellungenauigkeiten unter Beibehaltung einer physikalisch-
technischen Interpretierbarkeit erlaubt. Diese wird daraufhin zur automatischen Modell-
anpassung genutzt, um eine sukzessive Verbesserung des Modells zu erzielen und dieses
bei ggf. auftretenden Systemveränderungen zu adaptieren.

Modell 3
x

c

d

m

FR

Erweitertes Modell: ẍ = − c
m x − d

m ẋ + θTΨ(x, ẋ, u)
Ansatz von Hypothesen: Ψ(x, ẋ, u) = (1, x, ẋ, sign(ẋ), u)T

Adaptiertes Modell: ẍ = − c
m x − d

m ẋ + θ4 · ψ4(x, ẋ, u)

Federkraft Fc Reibkraft FR

Beschleunigung ẍ Dämpfungskraft Fd

Interpretierbar

Abbildung 1-8: Illustration des Forschungsbeitrags anhand des Einmassenschwingers

1.3 Aufbau der Dissertation

Die vorliegende Arbeit, welche eine neuartige Methode zur Zustandsschätzung bei Exis-
tenz von Modellungenauigkeiten nach den zuvor definierten Anforderungen umsetzt, glie-
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dert sich in sechs Kapitel. Das anschließende Kapitel 2 thematisiert zunächst die mathe-
matischen Grundlagen, auf denen die Zustands- und Parameterschätzung basieren und
die zum Verständnis der Dissertationsschrift erforderlich sind. Diese umfassen Erkennt-
nisse aus der Wahrscheinlichkeitstheorie und Statistik im Abschnitt 2.1, wie die Gauß-
Verteilung und statistische Momente, sowie Beobachtertypen im Abschnitt 2.2 bzw. 2.3,
die in dieser Arbeit verwendet und hinsichtlich der Schätzung von Modellungenauigkei-
ten analysiert werden. Dabei wird basierend auf den Vorarbeiten von [Sch17] ein stärkerer
Fokus auf die Kalman-Filter gelegt. Abschließend beleuchtet Abschnitt 2.4 die Struktur
von Modellungenauigkeiten und kategorisiert diese anhand ihrer Charakteristika.

Kapitel 3 analysiert daraufhin den Stand der Forschung und Wissenschaft, indem Me-
thoden der hybriden Systemidentifikation im Abschnitt 3.1 und Kompensationsstrategien
von Beobachtern im Abschnitt 3.2 hinsichtlich der Anforderungen dieser Arbeit unter-
sucht und z. T. eigenständig weiterentwickelt werden. Im ersten Teil des Kapitels liegt der
Schwerpunkt daher auf physikalisch motivierten neuronalen Netzen, deren Modellgüte
und Nutzbarkeit im modellbasierten Entwurf intensiv anhand von Anwendungsbeispielen
und qualitativer Kriterien überprüft werden. Hierbei trägt die vorliegende Dissertations-
schrift dazu bei, eine geeignete Formulierung der physikalisch motivierten Netze für me-
chatronische Systeme zu finden und durch ein angepasstes Training die physikalische
Plausibilität der resultierende Modelle zu verbessern. Der zweite Teil des Kapitels stellt
vor allem die optimale Wahl von Parametrierungen in den Vordergrund, welche die Mo-
dellunsicherheit in Beobachtern repräsentiert. Dazu wird evaluiert, inwiefern diese mit
Unterstützung von ML geschickt bestimmt werden können, sodass Modellungenauigkei-
ten kompensiert werden. Im Abschnitt 3.3 wird eine Bewertung der im Kapitel 3 disku-
tierten Methoden vorgenommen, woraufhin der Handlungsbedarf abgeleitet wird.

Anschließend wird im Kapitel 4 eine neuartige Methode zur zuverlässigen Zustandsschät-
zung und interpretierbaren Identifikation von Modellungenauigkeiten entwickelt, welche
bereits existierende Ansätze erstmalig kombiniert und diese hinsichtlich der interpretier-
baren Identifikation und Modelladaption für den Beobachterentwurf amplifiziert. Dazu
wird zunächst im Abschnitt 4.1 das Konzept der Joint Estimation vorgestellt, auf deren
Grundidee die Methode basiert und welche für die Schätzung von Zuständen und Mo-
dellungenauigkeiten erweitert wird. Nach der Klärung von Voraussetzungen und Annah-
men im Abschnitt 4.2 beschreibt der folgende Abschnitt einen augmentierten Beobach-
terentwurf mittels Ansätzen aus dem Compressed Sensing für ein Unscented Kalman Fil-
ter. Eine effiziente Ergänzung dieses Entwurfs durch Ausnutzung der Filterstruktur folgt
im Abschnitt 4.4. Zudem wird die Methode im Abschnitt 4.5 auf einen Sliding-Mode-
Beobachter transformiert, der somit eine automatische Schätzung und Identifikation von
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Störungen erlaubt. Das Kapitel schließt mit einer Zusammenfassung und Bewertung der
Entwurfsverfahren im Abschnitt 4.6 ab.

Nach der Erläuterung des in dieser Dissertationsschrift erarbeiteten Beobachterentwurfs
beschreibt Kapitel 5 die automatisierte Online-Modelladpation während der Schätzung.
Dies geschieht auf Basis der Hauptkomponentenanalyse, deren Funktionsweise für eine
Merkmalsanalyse und Merkmalsextraktion der relevanten Charakteristika der Modellun-
genauigkeiten im Abschnitt 5.1 dargelegt wird. Daraufhin wird ein Konzept zur automa-
tischen Online-Aktualisierung des Modells im Abschnitt 5.2 vorgestellt und umgesetzt.
Anhand der Abschnitte 5.3 und 5.4 werden zudem die Interpretierbarkeit der entstande-
nen Modelle beleuchtet sowie der Aufwand und Nutzen des Verfahrens im Vergleich zu
klassischen Ansätzen kritisch bewertet.

Schließlich fasst Kapitel 6 die wesentlichen Erkenntnisse dieser Dissertation zusammen,
woraufhin ein Ausblick auf weitere Forschungsarbeiten und -fragestellungen gegeben
wird.
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2 Grundlagen zur Zustands- und Parameterschätzung

Der Herausforderung, nicht bekannte oder nicht messbare Größen basierend auf gemes-
senen Ein- und Ausgangsdaten zu schätzen, lässt sich mathematisch begegnen. Dieses
Kapitel stellt daher die grundlegenden Techniken vor, die zur Zustands- und Parame-
terschätzung erforderlich sind. Zunächst werden im Abschnitt 2.1 Begriffe aus der Wahr-
scheinlichkeitstheorie und Statistik eingeführt, welche die Unsicherheit einer Schätzung
mathematisch definieren und beschreiben. Anschließend werden im Abschnitt 2.2 das
Kalman-Filter und seine Erweiterungen vorgestellt, die diese stochastische Perspektive
nutzen, um das Schätzproblem für lineare und nichtlineare dynamische Systeme zu lösen.
Des Weiteren wird ein robuster Beobachter im Abschnitt 2.3 thematisiert, der stochas-
tische Störungen kompensieren kann. Abschließend wird im Abschnitt 2.4 die Existenz
und Auswirkung von Modellungenauigkeiten auf die Zustands- und Parameterschätzung
näher beleuchtet.

2.1 Wahrscheinlichkeitstheorie und Statistik

Im Alltag und den Medien finden sich häufig Aussagen wie ”Was schätzt du, wie lange es
noch dauern wird, bis wir unseren Zielort erreichen?“ oder ”Bei der Umweltkatastrophe
sind 25 bis 50 Prozent der Fische verendet, schätzen Experten.“10 Implizit besteht da-
bei eine Wechselwirkung zwischen Schätzung, Wissen und Unsicherheit. Jede Schätzung
wird auf Basis des aktuellen Wissensstands getroffen, um Aussagen über unsichere oder
unbekannte Situationen zu tätigen. Bei der Abschätzung der Fahrtzeit besteht z. B. auf-
grund einer gewählten Route die Kenntnis über die verbleibende Strecke und die aktuel-
le Geschwindigkeit, aber Unsicherheit, ob Unfälle oder Staus die Reisezeit verzögern
können. Ebenso ist Sachverständigen die genaue Anzahl von Fischen innerhalb eines
Ökosystems unbekannt, aber die Größe des Gewässers lässt Rückschlüsse zur Popula-
tion zu, zu der die Menge der aufgefundenen, vergifteten Fische ins Verhältnis gesetzt
werden kann. Um solche mit Unsicherheit behafteten Aussagen formulieren zu können,
wird in der Mathematik die Wahrscheinlichkeitstheorie verwendet. Diese definiert präzise
die Sicherheit, bezogen auf das Auftreten eines Ereignisses A, und wird durch eine nicht-
negative Zahl ausgedrückt [Bis06; PP06; Sch17]:

P(A) =
Mögliches Auftreten des Ereignisses A

Alle möglichen Ereignisse
≥ 0.

Die Statistik erlaubt dagegen konkrete, quantitative Aussagen basierend auf Stichproben.
In den nächsten Abschnitten werden daher die grundlegenden Begriffe dieser Konzepte
10https://www.tagesschau.de/inland/oder-fischsterben-111.html, abgerufen am 12.04.2023
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eingeführt und definiert, welche für das Verständnis dieser Arbeit erforderlich sind. Da-
bei orientiert sich die Darstellung dieses Abschnitts an grundlegenden Fachbüchern der
Wahrscheinlichkeitstheorie und Statistik [Bis06; PP06] sowie an der Vorarbeit [Sch17].

2.1.1 Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Eine Zufallsvariable X beschreibt eine Größe, deren Auftreten durch den Zufall geprägt
ist. Ein alltägliches, intuitives Beispiel ist der homogene Münzwurf, dessen Zufallsvaria-
ble lediglich zwei Ereignisse annehmen kann: Kopf (Ereignis A) oder Zahl (Ereignis B).
Die Wahrscheinlichkeit, dass die Münze auf dem Kopf landen wird, d. h. dass Ereig-
nis X = A eintreten wird, wird mit p(X = A) oder abgekürzt p(A) angegeben. Hierbei
beschreibt p(·) die Wahrscheinlichkeitsdichtefunktion, auch bekannt als Wahrscheinlich-
keitsdichte oder Dichte. Für diese gilt

0 ≤ p(x) ≤ 1,

d. h. die Wahrscheinlichkeit für das Eintreten eines Ereignisses liegt zwischen Null und
Eins. Neben dem diskreten Beispiel des Münzwurfs kann eine Zufallsvariable auch kon-
tinuierliche Werte annehmen. Ein veranschaulichendes Beispiel ist die Füllmenge eines
Produkts, welches z. B. genau 200 ml enthalten soll, im maschinellen Einfüllprozess aber
durchaus Abweichungen aufweisen kann. Die Wahrscheinlichkeit, dass sich der Wert der
Zufallsvariablen X in einem gegebenen Intervall [a, b] befindet, demnach beispielswei-
se innerhalb einer Toleranz von [195, 205] ml in der Herstellung des Produkts, lässt sich
durch die Integration der Wahrscheinlichkeitsdichte angeben:

P(a ≤ x ≤ b) =
∫ b

a
p(x) dx.

Diese resultiert aus der Ableitung der Verteilungsfunktion F(x), welche die Wahrschein-
lichkeit ausdrückt, mit der die Zufallsvariable X einen Wert kleiner oder gleich x anneh-
men wird [Mur12; Pap17; Sch17]:

F(x) = P(X ≤ x).

In dieser Arbeit werden überwiegend kontinuierliche Zufallsvariablen von Belang sein.
Neben der Laplace-Verteilung, welche im Abschnitt 4.4.1 thematisiert wird, wird vor al-
lem die Gaußsche Normalverteilung N(x; µ, σ2) eine wesentliche Rolle in dieser Arbeit
spielen, z. B. in den Abschnitten 2.1.3 und 2.2 sowie im Kapitel 4. Dabei entspricht die
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Notation X ∼ N(µ, σ2) der zuvor Eingeführten mit p(X = x) = N(x; µ, σ2). Die Wahr-
scheinlichkeitsdichte der Normalverteilung lautet

p(x) = N(x; µ, σ2) =
1√

2πσ2
exp

(
−1

2
(x − µ)2

σ2

)
(2.1)

mit den Parametern µ ∈ R, σ ∈ R>0 und stellt durch die Varianz σ2 eine Glockenform
um den Mittelwert µ11 dar, weshalb sie auch als Gaußsche Glockenkurve bezeichnet wird
[Pap17]. Das obige Beispiel des Einfüllprozesses, welcher in der Regel 200 ml abfüllt,
aber gewisse Toleranzen aufweisen kann, kann am einfachsten mit einer solchen Vertei-
lung abgebildet werden. Unabhängig jedoch davon, ob es sich um eine diskrete oder kon-
tinuierliche Zustandsvariable handelt, ist die Wahrscheinlichkeitsdichte einer Verteilung
normiert, d. h. die Wahrscheinlichkeit aller auftretenden Ereignisse ergibt Eins:

∑

x∈X
p(x) = 1,

∫ ∞

−∞
p(x) dx = 1,

wobei X die Ergebnismenge darstellt. Darüber hinaus können auch mehrdimensionale
Zufallsvariablen betrachtet werden, für welche die gezeigten Konzepte analog formuliert
werden können [Mur12; Pap17]. In vielen Situationen interessiert zudem nicht nur die
Wahrscheinlichkeit eines einzelnen Ereignisses. Ist das Eintreten von Ereignis A oder
B relevant, wobei A ∩ B = ∅ gilt, lautet die Wahrscheinlichkeit, dass eines der beiden
Ereignisse eintreten wird:

P(A ∪ B) = P(A) + P(B).

Falls das Eintreten dieser beiden Ereignisse voneinander stochastisch unabhängig ist,
kann die Wahrscheinlichkeit, dass beide Ereignisse eintreten, durch

P(A ∩ B) = P(A) · P(B) (2.2)

ausgedrückt werden. Daraufhin kann die bedingte Wahrscheinlichkeit für das Eintreten
von Ereignis B, falls das Ereignis A sicher eintritt bzw. eingetreten ist und demnach
P(A) > 0 gilt, mit

P(B | A) =
P(A ∩ B)
P(A)

(2.3)

11Die Erläuterung der Begriffe Varianz und Mittelwert folgt im nächsten Abschnitt.
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angegeben werden. Aus der Relation (2.2) sowie der Beziehung (2.3) lässt sich direkt der
Satz von Bayes, welcher auf den Mathematiker Thomas Bayes im Jahr 1763 zurückgeht,
formulieren:

P(A | B) =
P(A ∩ B)
P(B)

=

P(A∩B)
P(A) · P(A)

P(B)
(2.4)

=
P(B | A) · P(A)

P(B)
.

Hierbei beschreiben P(A) und P(B) jeweils die sogenannte A-priori-Wahrscheinlichkeit
der beiden Ereignisse A und B, während P(B | A) analog zu P(A | B) die bedingte Wahr-
scheinlichkeit von B, unter der Bedingung, dass A eingetreten ist, darstellt [Bis06; Mur12;
Pap17; Sch17]. Die Schlussfolgerung, die durch den Satz von Bayes gezogen werden
kann, bildet in vielen Anwendungen ein wertvolles Instrument, um Aussagen über unsi-
chere Situationen zu erlauben, z. B. in der Bayesschen Statistik [Bis06; KBK+13]. Die
Bayessche Optimierung, welche im Abschnitt 2.1.3 vorgestellt und erläutert wird, basiert
ebenso auf dem Satz von Bayes.

2.1.2 Statistische Momente

Häufig sind die statistischen Größen einer Wahrscheinlichkeitsverteilung zur Charakte-
risierung dieser besonders hilfreich, wie etwa die Angabe des Erwartungswertes E[x].
Liegen N Stichproben vor, kann der arithmetische Mittelwert dieser Erhebung durch

x̄ =
1
N

N∑

i=1

xi

angegeben werden. Je größer der Stichprobenumfang N ist, wenn demnach N → ∞ ten-
diert, desto mehr strebt der Mittelwert x̄ gegen den Erwartungswert E[x]. Alternativ kann
dieser bei Kenntnis der Dichtefunktion p(x) ebenfalls durch

µ = E[x] =
∞∑

i=1

xi p(xi),

µ = E[x] =
∫ ∞

−∞
xp(x) dx

(2.5)

berechnet werden, abhängig davon, ob es sich um eine diskrete oder kontinuierliche Zu-
fallsvariable handelt. Neben dem Erwartungswert ist oftmals die Streuung der Zufallsva-
riable von Interesse, d. h. wie hoch die Wahrscheinlichkeit ist, dass die Zufallsvariable
Werte nah oder weiter entfernt vom Erwartungswert aufweist. Die Varianz σ2 bzw. ihre
positive Wurzel σ, die Standardabweichung, stellen ein Maß für diese Streuung dar. Da-
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bei wird die Varianz abhängig vom Erwartungswert (2.5) für diskrete bzw. kontinuierliche
Zufallsvariablen auf die nachfolgende Weise definiert:

σ2 = E
[
(x − E[x])2

]
=

∞∑

i=1

(xi − E[x])2 p(xi),

σ2 = E
[
(x − E[x])2

]
=

∫ ∞

−∞
(x − E[x])2 p(x) dx.

(2.6)

Um die lineare Abhängigkeit zweier Zufallsvariablen x, y auszudrücken, d. h. inwiefern
diese miteinander korrelieren, wird die Kovarianz genutzt. Ist diese Null, sind die bei-
den Zufallsvariablen voneinander unabhängig. Die Kovarianz ist analog zur Varianz (2.6)
folgendermaßen definiert [Bis06]:

Pxy = E
[
(x − E[x])(y − E[y])

]
= E[xy] − E[x]E[y]. (2.7)

In der vorliegenden Arbeit wird diese für vektorielle Zufallsvariablen zur Kovarianzma-
trix erweitert und in den Abschnitten des Unterkapitels 2.2 eine zentrale Rolle in der
Zustandsschätzung einnehmen. Neben dem Erwartungswert und der Varianz existieren
darüber hinaus noch weitere Größen zur Charakterisierung einer Wahrscheinlichkeitsver-
teilung. Diese werden auch als Momente einer Zufallsvariable bezeichnet [PP06]. Hierbei
wird in Momente um Null und um den Erwartungswert unterschieden. Letztere sind da-
her auch als zentrale Momente bekannt und stellen eine Kenngröße jeder Wahrscheinlich-
keitsverteilung dar. Wiederum analog zur Varianz (2.6) wird das zentrale Moment j-ter
Ordnung somit durch

E
[
(x − E[x]) j

]
=

∞∑

i=1

(xi − E[x]) j p(xi),

E
[
(x − E[x]) j

]
=

∫ ∞

−∞
(x − E[x]) j p(x) dx

definiert, wobei ersteres für diskrete und letzteres für kontinuierliche Zufallsvariablen gilt.
Dabei werden die Momente über Erwartungswert und Varianz hinaus als höhere Momen-
te bezeichnet. Häufig stellen jedoch nur das dritte und vierte Moment relevante Größen
dar. Während das dritte Moment die Schiefe, ein Maß für die Symmetrie einer Verteilung,
ausdrückt, beschreibt das vierte Moment die Wölbung einer Verteilung, also die Steilheit
dieser. Für die im vorigen Abschnitt eingeführte Normalverteilung (2.1) sind das erste so-
wie dritte Moment unabhängig von den Parametern µ und σ Null, da der Erwartungswert
µ beträgt. Die Varianz lautet σ2, die Wölbung beträgt 3σ4. Diese Eigenschaften der Gauß-
Verteilung werden im Abschnitt 4.4.1 noch von Bedeutung sein. Häufig wird die Normal-
verteilung als Referenz für andere Verteilungen genutzt, sodass die Wölbung normiert
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werden muss [Mur12; Sch17]. Darüber hinaus wird die normalisierte Gauß-Verteilung
mit X ∼ N(0, 1) als Standardnormalverteilung bezeichnet (vgl. Gleichung (2.1)).

2.1.3 Bayessche Optimierung

Der Satz von Bayes (2.4) eröffnet nicht nur die Möglichkeit, die Eintrittswahrschein-
lichkeit für ein bedingtes Ereignis zu berechnen, sondern auch ein globales Optimum
eines Optimierungsproblems anzunähern. Liegt eine Zielfunktion J(x) als Black-Box-
Funktion vor, weil es sich nicht um eine analytisch darstellbare Funktion handelt oder
es grundsätzlich sehr teuer und aufwendig ist, diese auszuwerten, bietet die Bayessche

Optimierung (BO) eine Lösungsmethode in dieser Situation. Die experimentelle Ein-
richtung eines Prüfstands oder einer Maschine, bei der jeder Test durch Material, Ver-
schleiß und Zeitaufwand Kosten verursacht (vgl. [HHTT22]), sowie die Suche nach ei-
ner optimalen Parametrierung für ein komplexes neuronales Netz (vgl. Abschnitt 3.1.2,
[AC19; SLA12]), welche aufwendige Parameterstudien erfordert, beschreiben zwei Bei-
spiele solcher Situationen. Ziel ist es trotz der Black-Box-Struktur das Optimum dieser
Zielfunktion zu bestimmen, z. B. das Minimum

x∗ = arg min
x∈X

J(x) (2.8)

zu finden. Da wegen der unbekannten Zielfunktion J keine Gradienten vorliegen, können
mächtige, gradientenbasierte Optimierungsverfahren wie das Newton-Verfahren nicht ge-
nutzt werden, um die Lösung (2.8) zu ermitteln. Ebenso stehen lediglich wenige N0 Da-
tenauswertungen DN0 = {(xi, J(xi))}N0

i=1, z. B. Experimente, zur Verfügung und es können
nicht beliebig viele weitere Daten erhoben werden. Folglich besteht die Kernidee der BO
darin, ein probabilistisches Ersatzmodell Ĵ der Zielfunktion, welches auf den wenigen Da-
ten und der Nutzung des Bayesschen Theorems (2.4) basiert, zu entwickeln und dieses zur
Bestimmung des Optimums zu nutzen. Durch die Auswertung oder Beobachtung weiterer
Datenpunkte (xN0+1, J(xN0+1)), wie etwa eines weiteren Parametertests oder eines neuen
Experiments, kann das probabilistische Ersatzmodell aktualisiert und im Laufe der Itera-
tionen verfeinert werden, sodass das Auffinden bzw. Annähern des globalen Minimums
ermöglicht wird. Es handelt sich daher um ein sequentielles, probabilistisch motiviertes
Optimierungsverfahren.
Grundsätzlich besteht die Bayessche Optimierung aus zwei Schritten [Fra18]: Einerseits
die Aktualisierung des probabilistischen Modells Ĵ basierend auf dem aktuellen Datensatz
sowie andererseits die Bestimmung der nächsten, sinnvollsten Auswertung xi+1 über eine
Entscheidungsfunktion α(xi,Di), welche auch Acquisitionfunction genannt wird. Dieses
Vorgehen wird iterativ wiederholt, bis eine Abbruchbedingung erreicht wird, welche in



2.1 Wahrscheinlichkeitstheorie und Statistik 21

der Regel durch eine Maximalzahl N an Iterationen vorgegeben ist. Die Abbildung 2-1
visualisiert dieses Vorgehen, welches in den nächsten Absätzen näher erläutert wird.
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Abbildung 2-1: Fünfte Iteration der BO durchgeführt mittels der Software
MATLAB©: Der Gaußprozess nähert die skalare Zielfunktion
J(x) = sin(x) + 0.1x2 − 0.01x3 + 0.5 tanh(x) über Datenpunkte an.
Die Acquisitionfunction weist hohe Werte an Stellen auf, an denen das
Modell einen niedrigen Wert für J(x) anzeigt (Exploitation) oder die
Unsicherheit in der Vorhersage groß ist (Exploration).
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Das probabilistische Modell Ĵ, welches die Zielfunktion approximieren soll, wird meist
als Gaußprozess-Regressionsmodell (GP-Modell) angenommen. Ein Gaußprozess (GP)
ist die Erweiterung einer Normalverteilung (vgl. Gleichung (2.1)) hin zu Funktionen und
charakterisiert sich eindeutig über seine Mittelwertfunktion µ(x) und seine Kovarianz-
funktion k(x, x′), welche durch

µ B µ(x) = E[J(x)],

Σ B k(x, x′) = E
[
(x − µ(x))

(
x′ − µ(x′)

)T
] (2.9)

für zwei Variablen x und x′ definiert sind (vgl. für Details zu Gaußprozessen [AC19]). So-
mit lässt sich das GP-Modell für die Zielfunktion J(x) mit den Gleichungen (2.9) durch

Ĵ(x) ∼ GP(x;µ,Σ) (2.10)

beschreiben. Die Mittelwert- und Kovarianzfunktion stellen hierbei die veränderlichen
Parameter des Modells (2.10) dar und können als p = (µ,Σ) zusammengefasst werden.
Unter der laufenden Nutzung von Daten D kann das Modell über seine Parameter p und
den Satz von Bayes (2.4) daher durch

P(p |D) =
P(D | p) · P(p)
P(D)

(2.11)

aktualisiert werden (vgl. Anhang A2, Gleichung (A2-2)). In der vorherigen Abbildung 2-1
ist das aktuelle Modell exemplarisch nach vier ausgewerteten Stichproben abgebildet. Die
anzunähernde skalare Funktion, dargestellt in rot, approximiert der Gaußprozess durch
die Mittelwertfunktion, welche als blaue Linie visualisiert ist, und die Kovarianzfunktion,
deren Verlauf durch die grauen Bereiche zu erkennen ist. Allerdings besteht für die Acqui-
sitionfunction α ein Zielkonflikt zwischen der Auswertung neuer und bekannter Bereiche
des Definitionsbereichs X. Dies ist auch bekannt als Dilemma zwischen Exploration und
Exploitation [SSW+16; Fra18; Gar23]. Im Beispiel 2-1 ist beispielsweise durch die Ko-
varianz zu erkennen, dass der Bereich zwischen x = 5 und x = 9 bis zur fünften Iteration
wenig exploriert wurde. Dies spiegelt auch die Acquisitionfunction in der unteren Abbil-
dung wider, welche in diesem Bereich Werte größer als Null annimmt. Je nach Anwen-
dung können verschiedene Funktionen α hilfreich sein, meist wird jedoch ein Kompro-
miss zwischen beiden Zielen verwendet. Im Kontrast zur Black-Box-Form der zu mini-
mierenden Funktion J weist die Acquisitionfunction eine numerisch kostengünstig auszu-
wertende Form auf. Allgemein lassen sich verbesserungsbasierte, optimistische und infor-
mationsbasierte Entscheidungsfunktionen unterscheiden [SSW+16]. Eine der populärsten
Wahlen für eine Acquisitionfunction entstammt der verbesserungsbasierten Perspektive,
welche einen nächsten Punkt xi+1 zur Auswertung favorisiert, dessen Wahrscheinlichkeit
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für J(xi+1) ≤ J(xi) hoch ist [SSW+16; SLA12; Fra18]. So maximiert die Acquisitionfunc-
tion der Expected Improvement (EI) die erwartete Verbesserung bzgl. der Zielfunktion,
indem

αEI(x,D) B E
[
max

(
Ĵ(x) − J(x+), 0

)]

gilt. Dabei beschreibt x+ = arg minx∈D J(x) die bisher beste, observierte Auswertung von
J(x). In der Abbildung 2-1 ist die EI für das Beispiel verwendet worden und zeigt durch
ihr Maximum den Punkt für die nächste Iteration an. Somit lässt sich das Vorgehen der
BO durch den folgenden Pseudocode zusammenfassen [SSW+16; Fra18; AC19]:

Algorithmus 1 Bayessche Optimierung
Initialisiere: D0 = DN0 , GP-Modell (2.10), N maximale Iterationen, i = 0

while i ≤ N do
Update das GP-Modell (2.10) nach Gl. (2.11) durch die verfügbaren Daten Di.
Bestimme den nächsten Datenpunkt xi+1 mittels der Acquisitionfunction α(x,Di).
Beobachte J(xi+1) und aktualisiere die Datenmenge Di+1 = Di ∪ {(xi+1, J(xi+1))}.

end while
Gib basierend auf dem aktuell minimalen Ergebnis J(x∗) die Lösung x∗ aus.

Die Bayessche Optimierung ist demnach eine datenbasierte, probabilistische Methode,
deren Popularität sich in den letzten beiden vergangenen Dekaden aufgrund ihres fle-
xiblen Einsatzgebietes vergrößert hat. Obschon die Kernidee der BO länger besteht, wird
die Prägung des Begriffs Bayessche Optimierung dem Autor Jonas Mockus zugeschrie-
ben [Moc89]. Heutzutage wird die BO überwiegend in Methoden des maschinellen Ler-
nens eingesetzt, um die Hyperparameter dieser Verfahren zu optimieren. Dennoch ist ihre
Nutzbarkeit auf kleine Dimensionen beschränkt, d. h. nur für n ≤ 20. Neben der Heraus-
forderung in der Anwendung höher dimensionaler Probleme besteht zudem noch For-
schungsbedarf für beschränkte Optimierungsprobleme [SSW+16; Fra18]. In dieser Arbeit
wird die BO in den Abschnitten 3.1.2 bis 3.1.4 zur Parametrierung von neuronalen Netzen
sowie im Abschnitt 3.2.1 zur Initialisierung von Kovarianzmatrizen des Kalman-Filters
genutzt, dessen Funktionsweise im folgenden Abschnitt thematisiert wird.

2.2 Kalman-Filter

Eines der bekanntesten und populärsten Schätzverfahren ist das Kalman-Filter12, welches
auf Rudolf E. Kalman in 1960 zurückgeht [Kal60] und die Grundlage für viele weitere Fil-
tertypen darstellt. Daher wird in diesem Abschnitt das Kalman-Filter zunächst ausführlich

12In dieser Arbeit wird das diskrete Filter genutzt, für die Zustandsschätzung von kontinuierlichen
Problemen wird auf das Kalman-Bucy-Filter verwiesen, z. B. [Sim06; Gib11].



24 2 Grundlagen zur Zustands- und Parameterschätzung

basierend auf [Sim06; Gib11] hergeleitet, worauf die nachfolgenden Erweiterungen auf-
bauen. Ausgangspunkt des Kalman-Filters ist ein lineares, zeitinvariantes System (LTI-
System), welches durch

xk+1 = Axk + Buk + wk,

yk = Cxk + vk

(2.12)

beschrieben werden kann13. Dabei stellen A ∈ Rn×n, B ∈ Rn×p und C ∈ Rm×n die Sys-
temmatrizen des LTI-Systems dar. Ziel des Kalman-Filters ist es, den Zustand xk ∈ Rn

trotz des auftretenden, stochastischen Rauschens zuverlässig zu schätzen. Hierbei wird
der Zustand als normalverteilte Zufallsvariable mit Erwartungswert E[x] und Varianz P
definiert. Das erwähnte Rauschen kann einerseits durch die Sensorik als Messrauschen vk

resultieren oder andererseits Modellungenauigkeiten und Störungen durch das Prozess-
rauschen wk abbilden. Beide Arten werden als normalverteiltes, mittelwertfreies Rau-
schen angenommen, es gilt daher wk ∼ N(0,Q) bzw. vk ∼ N(0, R). Zudem liegen die
Ausgangsgröße yk ∈ Rm und die Stellgröße uk ∈ Rp als Messwerte vor. Ob der Zustand
aus diesen Informationen trotz Rauschens geschätzt werden kann, klärt der Begriff der Be-
obachtbarkeit. Ein lineares, zeitinvariantes System (2.12) ist beobachtbar, wenn ein belie-
biger Anfangszustand x0 aus der Kenntnis der Ein- und Ausgangsgröße uk bzw. yk in einer
endlichen Zeit rekonstruiert werden kann (vgl. [FKL+22; Wal22]). Dies kann mit dem Be-
obachtbarkeitskriterium nach Kalman überprüft werden. Der Begriff der Beobachtbarkeit
kann auch auf nichtlineare Systeme erweitert werden (vgl. Abschnitt 2.3, Anhang A1).
Damit der Zustand korrekt geschätzt werden kann, muss der Schätzfehler ek = x̂k − xk

mit x̂k als geschätzten Zustand gegen Null streben für k → ∞. Diese Anforderung wird in
dieser Arbeit aus der Optimierungsperspektive als Kleinste-Quadrate-Problem zunächst
unabhängig vom Zeitschritt k formuliert, indem

J(x̂) =
1
2
E

[
(x̂ − x)TW(x̂ − x)

]
(2.13)

minimiert wird. In [Gib11] wird gezeigt, dass das Minimum unabhängig von der Präsenz
der symmetrisch, positiv definiten Gewichtungsmatrix W ist. Daher wird die Kostenfunk-
tion (2.13) fortan ohne die Gewichtungsmatrix W bzw. mit W = I betrachtet. Unter
der Annahme, dass zwischen dem geschätzten Zustand x̂ und der Messung y ein affi-
ner Zusammenhang besteht, d. h. dass x̂ = Ky + b für bestimmte K, b gilt, wird zunächst
die Optimalität des Kalman-Filters gezeigt, auf deren Basis die Gleichungen des iterati-
ven Prädiktor-Korrektor-Schemas hergeleitet werden können. Da der geschätzte Zustand
erwartungstreu zum tatsächlichen Zustand sein soll, kann b mittels des Systemmodells

13Handelt es sich um ein LPV-System, können die Inhalte dieses Abschnitts analog mit der Notation
über den Zeitschritt k, z. B. für die Dynamikmatrix Ak, auf dieses übertragen werden.
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(2.12), der Rechenregeln des Erwartungswertes (vgl. Anhang A2) und aufgrund des mit-
telwertfreien Rauschens bestimmt werden zu

E [x̂ − x] = E
[
(Ky + b) − x

]

= E [(KCx + Kv + b) − x]

= KCE[x] + KE[v] + b − E[x]

= (KC − I)E[x] + b
!
= 0 ⇒ b = (I − KC)x̄

(2.14)

mit dem Erwartungswert x̄ = E[xk]. Folglich gilt für den Schätzfehler:

x̂ − x = K (Cx + v) + (I − KC)x̄ − x

= (I − KC) (x − x̄) + Kv.
(2.15)

Daraufhin kann die Kostenfunktion (2.13) mittels der Gleichungen (2.15) und (2.7) um-
formuliert werden, sodass mit P = E[(x− x̄)(x− x̄)T ] und aufgrund der Eigenschaften der
Spur (vgl. Anhang A2) Folgendes gilt:

J(K) =
1
2
E

[
(x̂ − x)T (x̂ − x)

]

=
1
2

[
tr

(
(I − KC)E

[
(x − x̄)(x − x̄)T

]
(I − CT KT ) + KE[vvT ]KT

)]

=
1
2

tr
(
(I − KC)P(I − CT KT ) + KRKT

)
.

(2.16)

Dabei gelten R = E[vvT ] und E[(x − x̄)vT ] = 0 aufgrund des unkorrelierten Rauschens
und der linearen Unabhängigkeit des Schätzfehlers vom Messrauschen. Um die Kosten-
funktion (2.16) zu minimieren, muss anschließend der Gradient abhängig von K gebildet
werden (vgl. Anhang A2):

∂J
∂K
= −(I − KC)PCT + KR !

= 0 ⇒ K = PCT
(
CPCT + R

)−1
. (2.17)

Daraufhin kann durch die Gleichungen (2.14) und (2.17) der optimale Schätzwert x̂ mit-
tels der affinen Transformation x̂ = Ky + b berechnet werden. Diese Optimalität kann
ebenso aus der Bayesschen Perspektive, welche dieselbe Lösung des Minimum-Varianz-
Problems bzw. des Minimum-Mean-Squared-Error (MMSE) (2.13) mithilfe des beding-
ten Erwartungswerts formuliert, oder als geometrisches Problem, welches dieselbe Lösung
durch eine orthogonale Projektion herleitet, gezeigt werden (vgl. [Gib11]).
Die Funktionsweise des Kalman-Filters ergibt sich anschließend durch ein Prädiktor-
Korrektor-Verfahren, welches eine rekursive Kleinste-Quadrate-Methode darstellt (vgl.
Algorithmus 2). Zunächst wird ein Prädiktionsschritt basierend auf dem Modell (2.12)
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durchgeführt, woraufhin sich der a priori geschätzte Zustand x̂k+1|k berechnen lässt. Hier-
bei stellt die Notation •k+1|k allgemein eine prädizierte Variable zum Zeitpunkt k + 1 ba-
sierend auf Messungen oder der Kenntnis jener Variable bis zum Zeitpunkt k dar. Auch
die a priori Kovarianzmatrix Pk+1|k wird basierend auf dem Modell bestimmt, da

Pk+1|k = E
[(

x̂k+1|k − xk+1|k
) (

x̂k+1|k − xk+1|k
)T

]

= E
[
A

(
x̂k|k − xk|k

) (
x̂k|k − xk|k

)T AT
]
+ E[wkwT

k ]︸    ︷︷    ︸
=Q

= APk|k AT + Q

gilt. Anschließend erfolgt auf Basis der Messung yk der Korrekturschritt, indem zunächst
der optimale Eingriff Kk+1 über die Gleichung (2.17) berechnet wird. Daraufhin kann die
Schätzung des Zustands durch den Innovationsterm

(
yk − Cx̂k+1|k

)
korrigiert werden, so-

dass die a posteriori Zustandsschätzung x̂k+1|k+1 vorliegt. Der Innovationsterm beschreibt
hierbei die Qualität der Schätzung im Vergleich zur Messung, welche sich auch durch
die Residualkovarianz

(
CPk+1|kCT + R

)
bewerten lässt. Zudem wird die a posteriori Ko-

varianzmatrix Pk+1|k+1 aktualisiert (vgl. für Details [Gib11]). Daher ergibt sich mit der
Initialisierung des Anfangszustands x̂0, der Kovarianzmatrix P0 und den Rauschkovari-
anzen Q, R14 der iterative Wechsel zwischen Prädiktions- und Korrekturschritt, welcher
im Algorithmus 2 dargestellt ist.

Algorithmus 2 Kalman-Filter

Initialisiere: x̂0 = E[x0], P0 = E
[
(x̂0 − x0)(x̂0 − x0)T

]
,Q, R

for k = 1, . . . ,∞ do

Prädiktionsschritt:

x̂k+1|k = Ax̂k|k + Buk

Pk+1|k = APk|k AT + Q

Korrekturschritt:

Kk+1 = Pk+1|kCT
(
CPk+1|kCT + R

)−1

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
yk − Cx̂k+1|k

)

Pk+1|k+1 = (I − Kk+1C)Pk+1|k
end for

Trotz der stochastischen Perspektive des Kalman-Filters besteht eine enge Verwandt-
schaft zum Luenberger-Beobachter, der z. B. am Prüfstand des Golfroboters angewen-
det wird (vgl. Anhang A6.1). Die Beobachter unterscheiden sich lediglich durch die Art

14Diese können bei Bedarf zeitvariant modelliert werden, sodass Q und R im Algorithmus 2 durch Qk
und Rk ersetzt werden.
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der Berechnung der Korrekturmatrix K bzw. L, welche durch die Minimierung einer
Kostenfunktion bzw. durch Polvorgabe bestimmt wird. Diese unterschiedliche Bestim-
mung des Korrektureingriffs begründet sich durch die Fähigkeit, verschiedene Typen von
Störungen kompensieren zu können [FKL+22]. Neben seiner Fähigkeit zur Prädiktion
in der Zustands- und Parameterschätzung wird das Kalman-Filter darüber hinaus zur
Glättung und Filterung verrauschter Signale genutzt (vgl. [Sim06; Gib11; Ein19; Wal22]).
Da in der vorliegenden Arbeit der Fokus jedoch auf der Schätzung von Zuständen für die
Zustandsregelung liegt, werden diese Funktionen vernachlässigt.

2.2.1 Extended Kalman Filter

Da das Kalman-Filter allerdings nur auf die Schätzung linearer Systemdynamiken limi-
tiert ist und die meisten technischen Applikationen nichtlineare Strukturen aufweisen,
wurde es im Zuge des Apollo-Programms15 erweitert, um auch Zustände einer nichtlinea-
ren Systemdynamik verarbeiten und schätzen zu können. Diese kann durch

xk+1 = f (xk,uk) + wk,

yk = h(xk,uk) + vk

(2.18)

dargestellt werden, wobei f und h die differenzierbare System- und Messdynamik be-
schreiben. Weiterhin wird wie beim linearen System (2.12) unkorreliertes, weißes Prozess-
und Messrauschen angenommen, sodass wk ∼ N(0,Q) und vk ∼ N(0, R) gilt. Kernidee
des Extended Kalman Filters (EKFs) ist die Annäherung einer nichtlinearen Dynamik
durch eine Taylorreihe erster Ordnung, um die Formulierung des Kalman-Filters nutzen
zu können. Basierend auf der letzten Schätzung (x̂k,uk) werden die linearisierten System-
matrizen

Ak+1 =
∂ f
∂x

∣∣∣∣∣
(x=x̂k|k ,u=uk)

,

Ck+1 =
∂h
∂x

∣∣∣∣∣
(x=x̂k|k ,u=uk)

bestimmt. Diese können anschließend im Algorithmus 3 analog zum Prädiktor-Korrektor-
Schema des Kalman-Filters genutzt werden (vgl. Algorithmus 2). Implizite Annahme ist
dabei, dass sich das Verhalten des nichtlinearen Systems in der Umgebung des Tupels
(x̂k,uk) linear verhält. Dies ist in der Abbildung 2-2 skizziert, in der eine skalare, nicht-
lineare Funktion anhand einzelner Arbeitspunkte und deren linearer Wirkungsbereiche,
dargestellt durch die Ellipsen, approximiert werden kann. Im Unterschied zum Gain-

15Unter https://ntrs.nasa.gov/api/citations/19860003843/downloads/19860003843.pdf ist der techni-
sche Bericht der NASA dazu zu finden, welcher am 25.04.2023 abgerufen wurde.
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Scheduling-Ansatz, welcher im Anhang A6.1 für den Regelungsentwurfs eines Golfro-
boters genutzt wird, bestimmt das EKF zu jedem Zeitpunkt k die Jacobimatrizen Ak+1

und Ck+1 mittels des aktuellen, geschätzten Zustands und Eingangs. Daher ist diese im-
plizite Annahme lediglich von der Schrittweite bzw. Abtastrate abhängig, mit der die
linearisierten Matrizen aktualisiert werden.

Algorithmus 3 Extended Kalman Filter

Initialisiere: x̂0 = E[x0], P0 = E
[
(x̂0 − x0)(x̂0 − x0)T

]
,Q, R

for k = 1, . . . ,∞ do

Prädiktionsschritt:

x̂k+1|k = f (x̂k|k,uk)
Pk+1|k = Ak+1 Pk+1|k AT

k+1 + Q

Korrekturschritt:

Kk+1 = Pk+1|kCT
k+1

(
Ck+1 Pk+1|kCT

k+1 + R
)−1

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
yk − Ck+1 x̂k+1|k

)

Pk+1|k+1 = (I − Kk+1Ck+1)Pk+1|k
end for

Das EKF bietet den Vorteil, eine einfache Struktur für die Schätzung nichtlinearer Dyna-
miken bereitzustellen, die das Konzept des Kalman-Filters nutzen kann. Es verliert aber
dessen Optimalität (vgl. Gleichungen (2.13)-(2.17)), da es eine nichtlineare Dynamik über
die Taylorreihe erster Ordnung abzubilden versucht [Mur12]. Durch die Linearisierung
wird die abzubildende Wahrscheinlichkeitsverteilung nicht korrekt repräsentiert, sodass
es zu großen Abweichungen zwischen Modell und System kommen kann [Wal22]. Dies
resultiert bei stark nichtlinearen Systemen in einer schlechten Schätzgüte und eröffnet das
Risiko der Divergenz, da diese Nichtlinearitäten aufgrund des Abschneidens in der Tay-
lorreihe bzw. von den gewählten Arbeitspunkten nicht adäquat erfasst werden können. Zu-
dem bedarf das EKF der ersten Ableitungen des Systems, welche durch ihre Auswertung
in jedem Zeitschritt einen erhöhten Rechenaufwand darstellen und für manche Systeme
schwer zu bestimmen sind bzw. nicht analytisch vorliegen. Zur verbesserten Schätzung
von Nichtlinearitäten existieren zwar auch EKFs mit höheren Termen der Taylorreihe,
diese erfordern aber die Kenntnis höherer Ableitungen sowie einen gestiegenen Rechen-
aufwand [Sim06]. Daneben bieten iterierende EKFs die Möglichkeit, den Korrekturschritt
mehrfach auszuführen, um beispielsweise stark nichtlineare Systeme besser zu erfassen,
stellen aber ebenso einen erhöhten Rechenaufwand dar [Sim06; Wal22].



2.2 Kalman-Filter 29

x

f(
x)

Abbildung 2-2: Näherungsweise lineares Verhalten der skalaren, nichtlinearen Funktion
f in der Nähe ausgewählter Arbeitspunkte

2.2.2 Unscented Kalman Filter

Obwohl das EKF als das grundlegende Werkzeug zur Zustandsschätzung nichtlinearer
Systeme gilt, existieren zwei gravierende Nachteile, die bereits im vorigen Abschnitt
erwähnt wurden. Die Kenntnis der Ableitungen ist zwingend notwendig, um die nicht-
lineare Systemdynamik zu linearisieren und die Struktur des linearen Kalman-Filters
anwenden zu können, stellt jedoch häufig eine Herausforderung dar, wenn diese nicht
analytisch bekannt sind und auf numerische Weise aufwendig bestimmt werden müssen.
Ebenso verursacht die Annäherung der nichtlinearen Dynamik durch eine Taylorreihe ers-
ter Ordnung u. U. eine ungenügende Schätzgüte, falls zu große Abweichungen zwischen
Modell und System bestehen.
Das Unscented Kalman Filter (UKF)16 stellt dagegen eine ableitungsfreie Alternative
zur Zustandsschätzung nichtlinearer Dynamiken dar. Dabei basiert die Grundidee des
UKFs auf der Beobachtung, dass die Approximation einer Wahrscheinlichkeitsverteilung
deutlich einfacher als die einer nichtlineare Transformation ist [JU97]. Aufgrund dieser
Einschätzung stellten die Autoren Julier und Uhlmann in [JU97] einen neuen Ansatz ei-
nes rekursiven Minimum-Mean-Squared-Error-Schätzers vor, der die ersten beiden statis-
tischen Momente einer Wahrscheinlichkeitsverteilung mittels deterministisch gewählter
Stichprobenpunkte X approximiert17. Diese Stichproben, Sigmapunkte genannt, werden
durch die System- und Messgleichungen transformiert, woraufhin die Rekonstruktion des

16Der Begriff unscented hat hierbei keine fachliche oder technische Bedeutung, sondern ist durch
einen der Autoren vergeben worden. Vgl. dazu das Interview zur Erscheinung von [JU04] unter
https://ethw.org/First-Hand:The Unscented Transform, abgerufen am 21.04.2023.

17Für eine angenommene Gauß-Verteilung werden sogar die ersten drei Momente angenähert, da
das dritte Moment gleich Null ist.
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Erwartungswerts und der Kovarianz der Zustände aus diesen transformierten Sigmapunk-
ten erfolgen kann. Der Vorteil der höheren Approximationsgüte und der Unabhängigkeit
von Gradienteninformationen kann allerdings je nach Anwendung in einem erhöhten Re-
chenaufwand resultieren. Der nachfolgende Abschnitt orientiert sich insbesondere an den
Vorarbeiten von [Sch17].

Unscented Transformation

Da die Kernidee des UKFs auf der Approximation der ersten beiden statistischen Mo-
mente einer Wahrscheinlichkeitsverteilung basiert, wird diese im Folgenden erläutert. Die
nichtlineare Transformation der Sigmapunkte und die anschließende Rekonstruktion des
Mittelwerts und der Kovarianz der Verteilung werden hierbei als Unscented Transforma-

tion (UT) bezeichnet. Zunächst wird die intuitive Idee der UT anhand eines autonomen
Beispiels gezeigt. Dabei wird zur Übersichtlichkeit der Zeitindex k vernachlässigt. Eine
Zufallsvariable x ∈ Rn mit Erwartungswert x̄ = E[x] und Kovarianz P wird durch eine
bekannte, nichtlineare Funktion f transformiert, sodass y = f (x) gilt. Ziel ist es nun, den
Erwartungswert und die Kovarianz von y zu schätzen, also die ersten beiden Momente des
transformierten Vektors x. Dazu werden 2n + 1 deterministische Sigmapunkte gewählt,
welche durch

X =

[
x̄, x̄ +

( √
(n + κ)P

)
i1
, x̄ −

( √
(n + κ)P

)
i2

]
(2.19)

mit i1 = 1, . . . , n und i2 = n + 1, . . . , 2n bezogen auf die Spalten des Matrixausdrucks
definiert werden. Diese Stützstellen sind demnach symmetrisch um den Erwartungswert x̄
gruppiert, vgl. die Darstellung in der Abbildung 2-3. Bei einer angenommenen Gauß-
Verteilung18 weist dies den Vorteil auf, dass die Symmetrie der Verteilung erfasst wird
und somit die ersten drei zentralen Momente

E[x] = 0, E[x2] = I, E[x3] = 0 (2.20)

korrekt bestimmt werden können. Anschließend werden diese Stützstellen durch die nicht-
lineare Funktion transformiert, sodass

yi = h(Xi)

18Liegt keine Standard-Gauß-Verteilung vor, kann jene Verteilung mithilfe der Matrixwurzel von P zur
Standard-Gauß-Verteilung hin verschoben werden, vgl. [Sch17].
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für i = 1, . . . , 2n + 1 vorliegt. Daraufhin können der Erwartungswert ȳ und die Kovarianz
Py von y über

ȳ =
2n∑

i=0

Wiyi,

Py =

2n∑

i=0

Wi
(
yi − ȳ

) (
yi − ȳ

)T

(2.21)

approximiert werden. Die Gewichte W ergeben sich somit aus den Bedingungen zur Er-
fassung der ersten beiden Momente sowie aus einer Normalisierungsbedingung:

1 =
2n∑

i=0

Wi = W0 + 2nW1. (2.22)

Dabei bewirkt die symmetrische Anordnung der Sigmapunkte um den Erwartungswert
(vgl. Gleichung (2.19)), dass W1 = W2 = · · · = Wn gilt. Für den Erwartungswert lautet die
Bedingung aufgrund der Standardnormalverteilung (vgl. Gleichung (2.20))

E[x] =
2n∑

i=0

WiXi
!
= 0. (2.23)

Um die Kovarianz korrekt zu erfassen, muss die folgende Gleichung erfüllt sein (vgl.
Gleichung (2.20)):

E[xxT ] =
2n∑

i=0

Wi (Xi − x̄) (Xi − x̄)T
= 2W1s2

1 · I !
= I, (2.24)

wobei s1 den Abstand zwischen dem Erwartungswert x̄ und einem Sigmapunkt Xi mit
i , 0 beschreibt. Daraufhin können aus den Gleichungen (2.22), (2.23) und (2.24) durch
Umstellung der Gleichungen die folgenden Zusammenhänge formuliert werden [JU04;
Sim06; Sch17]:

s1 =
1√
2W1

,

W0 = 1 − 2nW1.

(2.25)

Um die zwei Gleichungen (2.25) mit den drei Unbekannten W0,W1, s1 zu lösen, wird
schließlich ein Entwurfsparameter κ ∈ R definiert. Indem die Gewichte um den Erwar-
tungswert für i = 1, . . . , 2n durch

Wi =
1

2(n + κ)
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beschrieben werden, ergibt sich für den Abstand s1 und für das Gewicht des nullten Sig-
mapunktes (vgl. [JU04; Sch17]):

s1 =
√

n + κ,

W0 =
κ

n + κ
.

Der Parameter κ stellt folglich einen Entwurfsparameter für die UT dar, der Einfluss auf
das Gewicht des nullten Sigmapunktes nehmen kann und somit die Wölbung, demnach
das vierte Moment, anpassen kann, falls Vorwissen vorhanden ist. Im Fall einer vorliegen-
den Gauß-Verteilung kann das optimale κ somit durch κ = 3 − n bestimmt werden19. Für
κ = 0 reduziert sich die UT dagegen auf eine Transformation mit nur 2n Sigmapunkten
[Sim06]. Die Gewichte lassen sich in diesem Fall leicht nach dem obigen Schema und un-
ter Nutzung der Formel für die Kovarianz (2.7) herleiten (vgl. [Sim06]). Allerdings kann
die Wahl von κ < 0 dazu führen, dass die Kovarianzmatrix nicht positiv (semi-)definit
ist [Sim06; Sch17]. In diesem Fall können keine Sigmapunkte nach Gleichung (2.19)
bestimmt werden. Um diese Auswirkung zu vermeiden, wird die skalierte UT genutzt,
welche im Anschluss an ein Beispiel im nachfolgenden Abschnitt erläutert werden wird.
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s1

Xi

X0,W0

X1,W1

X2,W2

X3,W3

X4,W4

E[xxT ] = I

E[x] = 0

D
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Abbildung 2-3: Anordnung der Sigmapunkte einer zweidimensionalen Zufallsvariable,
Darstellung nach [Sch17]

Ein einfaches, beliebtes Beispiel der erläuterten UT für eine zweidimensionale Zufalls-
variable ist in der Abbildung 2-4 visualisiert. Die Transformation beschreibt die Um-
19Dies kann leicht nachgerechnet werden, vgl. [JU04].
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wandlung von Polar- in kartesische Koordinaten, welche klassischerweise in der Sensorik
auftritt [JU04; Sim06]. Es werden 300 zufällig verteilte Punkte x = (r, φ)T gewählt, wobei
r ∈ [−0, 01; 0.01] und φ ∈ [−0.35; 0.35] gilt, und durch die folgende Funktion transfor-
miert:


y1

y2

 = h(x) =


r cos(φ)
r sin(φ)

 . (2.26)

Es gilt zudem E[x] = (0, π/2)T , P = diag([σ2
r , σ

2
φ]) sowie κ = 1. In der Abbildung 2-4

werden die Kovarianzen als Ellipsen dargestellt, wohingegen die Mittelwerte als Kreise
visualisiert sind. Es ist zu erkennen, dass die UT die Eigenschaften der Verteilung sehr gut
approximiert, da der Mittelwert und die Kovarianz sehr nah an den exakten ersten beiden
Momenten liegt. Der durch die Linearisierung ermittelte Mittelwert sowie die Kovarianz
weisen dagegen eine deutlich schlechtere Güte auf (vgl. [Sim06; JU04]). Dies stellt den
Vorteil der UT bzgl. der Approximationsgenauigkeit heraus.
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Abbildung 2-4: Approximation des Erwartungswerts und der Kovarianz (in grün) durch
Linearisierung (in rot) und UT (in blau) für das Beispiel (2.26) nach
[Sim06; JU04]

Scaled Unscented Transformation

Um die Berechnung nicht positiv (semi-)definiter Kovarianzmatrizen zu vermeiden, wird
in [Jul02] eine Skalierung der Sigmapunkte um den Erwartungswert durchgeführt. Dabei
wird ein weiterer Parameter α ∈ R definiert, der die Entfernung der Sigmapunkte mit
i = 1, . . . , 2n zum Erwartungswert skaliert:

Xi = X0 + α(Xi −X0).
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Indem weiterhin die Bedingungen an die ersten beiden Momente erfüllt sein müssen (vgl.
Gleichung (2.20)), können die Gewichte W analog zu Gleichungen (2.23) und (2.24) für
die Skalierung angepasst werden. Da die Grundidee zur Berechnung der Gewichte bereits
im vorigen Abschnitt für den allgemeinen Fall der UT gezeigt worden ist und die skalier-
te UT eine Erweiterung dieser ist20, wird an dieser Stelle darauf verzichtet und auf die
Herleitung in [JU04; Sch17] verwiesen.
Darüber hinaus wird in [Jul02] ein weiterer Entwurfsparameter β ∈ R definiert, dessen
Wirkung im Kontrast zum Parameter κ die Wölbung nach der Transformation prägt, in-
dem dieser das Gewicht des nullten Sigmapunktes verändert. Handelt es sich um eine
Gauß-Verteilung, kann gezeigt werden, dass für β = 2 das Moment vierter Ordnung op-
timal approximiert werden kann. Auf eine ausführliche Herleitung wird zugunsten des
Leseflusses erneut verzichtet, da die Argumentation über die Taylorreihe in [Jul02] und
[JU04] nachvollzogen werden kann. Da der Parameter β jedoch auf das Gewicht des null-
ten Sigmapunktes X0 wirkt, ändert sich die Berechnung des Erwartungswertes und der
Kovarianz. Folglich werden die Gewichte unterschieden in jene zur Berechnung des Er-
wartungswertes, welche mit dem Index •(m) versehen sind, und in solche zur Berechnung
der Kovarianz, welche stattdessen mit •(c) gekennzeichnet sind. Anschließend können die
Gewichte mit dem neu eingeführten Parameter λ = α2(n + κ) − n folgendermaßen formu-
liert werden:

W (m)
0 =

λ

n + λ
,

W (c)
0 =

λ

n + λ
+ 1 − α2 + β,

W (m)
i = W (c)

i =
1

2(n + λ)
i = 1, . . . , 2n.

(2.27)

Aus den Gleichungen (2.21) und (2.27) ergibt sich somit das Vorgehen für das skalier-
te UKF, welches im Algorithmus 4 formuliert ist. Hierbei stellen pUKF = (α, β, κ) die
Entwurfsparameter des UKFs dar, deren jeweilige Werte zu Beginn festgelegt werden
müssen. Der Parameter α steuert die Entfernung der Sigmapunkte vom Erwartungswert,
denn je kleiner α ist, desto näher befinden sich die Sigmapunkte am Erwartungswert. Die
Einflussgrößen β und κ beeinflussen jeweils das Gewicht des nullten Sigmapunktes und
somit die Wölbung der Verteilung nach bzw. vor der Transformation. Dies bedeutet, je
größer β bzw. κ gewählt werden, desto stärker ist die Wölbung der resultierenden Ver-
teilung, sodass die Wahrscheinlichkeit für Werte nah am Erwartungswert deutlich höher
ist als bei einer flacheren Wölbung. Dieser Einfluss der Entwurfsparameter pUKF wird
besonders ausführlich in [Sch17] illustriert sowie für Black-Box-Modelle optimal über
eine Gaußprozessregression ausgelegt. Analog zum Kalman-Filter prägen darüber hi-

20Für α = 1 stellt die skalierte UT die allgemeine, zuvor gezeigte UT dar.
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naus die Kovarianzmatrizen des Prozess- und Messrauschens die Performanz des UKFs,
welche ebenfalls initialisiert werden müssen. Dies ist mitunter nicht einfach und resul-
tiert häufig in einem aufwendigen, händischen Tuning (vgl. [NSRH21; CHJA18] und
Abschnitt 3.2.1). Alternativ können diese Entwurfsparameter durch einen erweiterten Zu-
stand gleichzeitig zu den Zuständen geschätzt werden, vor allem wenn diese Rauschpro-
zesse nichtlineare Strukturen aufweisen [JU04; Sim06; Gib11].

Algorithmus 4 Scaled Unscented Kalman Filter

Initialisiere: α, β, κ, x̂0 = E[x0], P0 =
(
E

[
(x̂0 − x0)(x̂0 − x0)T

])
,Q, R

for k = 1, . . . ,∞ do
Berechnung der Sigmapunkte:

Xk−1 =
[
x̂k−1 x̂k−1 +

√
(n + λ)Pk−1|k−1 x̂k−1 −

√
(n + λ)Pk−1|k−1

]

Prädiktionsschritt:

Xk|k−1 = f (Xk−1,uk−1)
x̂−k =

∑2n
i=0 W (m)

i Xi,k|k−1

Pk|k−1 =
∑2n

i=0 W (c)
i

[
Xi,k|k−1 − x̂−k

] [
Xi,k|k−1 − x̂−k

]T
+ Q

Y k|k−1 = h
(
Xk|k−1,uk−1

)

ŷ−k =
∑2n

i=0 W (m)
i Y i,k|k−1

Py =
∑2n

i=0 W (c)
i

[
Y i,k|k−1 − ŷ−k

] [
Y i,k|k−1 − ŷ−k

]T
+ R

Pxy =
∑2n

i=0 W (c)
i

[
Xi,k|k−1 − x̂−k

] [
Y i,k|k−1 − ŷ−k

]T

Korrekturschritt:

Kk = Pxy P−1
y

x̂k = x̂−k + Kk
(
yk − ŷ−k

)

Pk|k = Pk|k−1 − Kk PyKT
k

end for

Square Root Unscented Kalman Filter (SRUKF)

Neben der ursprünglichen UKF-Formulierung in Algorithmus 4 existiert in der Literatur
eine Vielzahl an Erweiterungen und Spezialformen des Filters. Diese sind meist durch
numerische Gründe motiviert und unterscheiden sich beispielsweise in der Anzahl der
verwendeten Sigmapunkte, um den Rechenaufwand zu reduzieren [Jul03; JU04; Sim06].
Hierbei stellt die Bestimmung der Sigmapunkte X den größten Anteil dieses Aufwandes
dar. Zudem ist die numerische Berechnung von Pk besonders sensibel, da die Kovari-
anzmatrix symmetrisch positiv (semi-)definit sein muss. Um dies sicher zu stellen und
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gleichzeitig den Berechnungsaufwand durch die Bestimmung der Sigmapunkte zu redu-
zieren, ist die Variante Square Root Unscented Kalman Filter (SRUKF) entwickelt worden
[vW01], deren Algorithmus folgendermaßen lautet:

Algorithmus 5 Square Root Unscented Kalman Filter

Initialisiere: α, β, κ, x̂0 = E[x0],S0 = chol
(
E

[
(x̂0 − x0)(x̂0 − x0)T

])
,Q, R

for k = 1, . . . ,∞ do
Berechnung der Sigmapunkte:

Xk−1 =
[
x̂k−1 x̂k−1 +

√
(n + κ)Sk−1 x̂k−1 −

√
(n + κ)Sk−1

]

Prädiktionsschritt:

Xk|k−1 = f (Xk−1,uk−1)
x̂−k =

∑2n
i=0 W (m)

i Xi,k|k−1

S−k = qr
([√

W (c)
1 (X1:2n,k|k−1 − x̂−k )

√
Q
])

S−k = cholupdate
(
S−k ,X0,k − x̂−k ,W

(c)
0

)

Y k|k−1 = h
(
Xk|k−1,uk−1

)

ŷ−k =
∑2n

i=0 W (m)
i Y i,k|k−1

Korrekturschritt:

Sy = qr
([√

W (c)
1 (Y1:2n,k|k−1 − x̂−k )

√
R
])

Sy = cholupdate
(
Sy,Y0,k − ŷ−k ,W

(c)
0

)

Pxy =
∑2n

i=0 W (c)
i

[
Xi,k|k−1 − x̂−k

] [
Y i,k|k−1 − ŷ−k

]T

Kk = Pxy P−1
yy =

(
Pxy/ST

y

)
/Sy

x̂k = x̂−k + Kk
(
yk − ŷ−k

)

U = KkSy
Sk = cholupdate

(
S−k ,U,−1

)

end for

Diese Variante schafft Abhilfe, indem die symmetrische, positiv (semi-)definite Matrix Pk

durch ihre Wurzel Sk dargestellt wird:

Pk = SkST
k .

Die Vorteile, wenn die Matrixwurzel Sk in der UT benutzt wird, liegen nicht nur in einer
erhöhten Robustheit bzgl. numerischer Ungenauigkeiten, da Pk symmetrisch und posi-
tiv (semi-)definit bleibt, sondern auch in der Verringerung des Rechen- und Speicher-
aufwands. Dies resultiert aus den effizienteren algebraischen Methoden wie der QR- und
Cholesky-Zerlegung oder der Berechnung einer Kleinsten-Quadrate-Lösung (vgl. [vW01]
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und Anhang A4), welche im SRUKF-Algorithmus 5 die wesentlichen Unterschiede zum
UKF-Algorithmus 4 darstellen. Der UKF- bzw. SRUKF-Algorithmus kann zudem wie
alle anderen Kalman-Filter zur reinen Parameterschätzung eingesetzt werden, wenn der
Zustand des Algorithmus 5 als die zu identifizierenden Parameter definiert wird [vW01].
Alternativ kann auch eine gleichzeitige Schätzung von Zuständen und Parametern vor-
genommen werden, indem der Zustand um diese erweitert wird. Im Abschnitt 4.1 dient
die Grundidee der simultanen Schätzung als Ausgangspunkt für die Entwicklung einer
neuartigen Methode zur Schätzung von Zuständen und Modellungenauigkeiten.

Der Blick auf die bisherigen Methoden dieses Kapitels war stark stochastisch und we-
niger regelungstechnisch geprägt, da die gezeigten Techniken nicht nur zur Zustands-
und Parameterschätzung genutzt werden können, sondern vielfältigen Schätzproblemen
zur Verfügung stehen. Dies kann beispielsweise die Filterung und Glättung von Signalen
sein. Daher werden solche Verfahren häufig als Schätzer im allgemeinen Kontext bezeich-
net, vgl. [Gib11]. Der Begriff Beobachter bezieht sich dagegen auf den regelungstechni-
schen Vorgang, die Zustände (oder Parameter, Störungen) eines dynamischen Systems zu
schätzen und diese zu prädizieren, um eine Zustandsregelung zu ermöglichen. Daher wird
dieser Begriff im weiteren Verlauf dieser Arbeit verwendet.

2.3 Sliding-Mode-Beobachter

Neben einer hohen Schätzgüte, welche das wichtigste Kriterium für die Qualität eines
Zustandsbeobachters darstellt, gibt es weitere Anforderungen, die je nach Anwendungs-
fall wünschenswert sind. Die Robustheit bzgl. Anfangsstörungen und Störgrößen stellt in
der Praxis eine ebenso wichtige Einflussgröße dar. So ist ein Luenberger-Beobachter (vgl.
[FKL+22], Anhang A6.1) robust gegenüber Anfangsstörungen, kann jedoch im Vergleich
zu den Kalman-Filtern keine stochastisch auftretenden Störungen kompensieren. Ein po-
pulärer, robuster Beobachter, der verschiedene Arten von Störungen kompensieren und
weiterhin korrekte Schätzwerte liefern kann, ist ein Sliding-Mode-Beobachter (SMO).
Dieser ist durch die Sliding-Mode-Regelung motiviert, welche zu den strukturvariablen
Regelungen gehört und bereits seit den 1960er Jahren praktiziert wird (vgl. [Spu08],
[Ada18]). Die Grundidee dieses Reglers besteht darin, theoretisch unendlich schnell zwi-
schen unterschiedlichen Regelgesetzen zu schalten, um den Regelfehler trotz bestehender
Störungen oder Modellabweichungen zu reduzieren. In der Praxis führt dieses schnelle
Umschalten allerdings zu dem Nachteil einer hohen Beanspruchung der Aktorik, welches
sich in einem unerwünschten Rattern der Stellgröße äußert. Dieser Nachteil ist jedoch
keine Herausforderung für einen Beobachter, dessen Dynamik auf keine Aktorik wirkt,
sodass das Rattern lediglich numerische Auswirkungen aufweist und die Grundidee des
Reglers unkompliziert adaptiert werden kann.
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Um die Funktionsweise eines SMOs zu verdeutlichen und dessen Eigenschaften kennen-
zulernen, wird zunächst ein einfaches, lineares Beispiel21 erarbeitet. Das folgende System
stammt aus [Bou15] und ist mittels des expliziten Euler-Verfahrens und der Schrittwei-
te ∆t > 0 diskretisiert worden (vgl. Anhang A5.1). Es weist eine skalare, beschränkte
Störung ρk ≤ |∆ fmax| für alle Zeitschritte k mit bekannter Schranke ∆ fmax auf:

xk+1 = xk + ∆t


x2,k

uk + ρk

 , (2.28)

yk = xk.

Das Ziel ist es nun, die Zustände des Systems (2.28) trotz auftretender, unbekannter
Störung ρk zu schätzen. Daher wird die Sliding-Variable als Schätzfehler ey,k = ŷk − yk

definiert, für welchen ey = 0 in endlicher Zeit erreicht werden soll, woraus ey,k → 0 für
k → ∞ folgt. Ein Sliding-Mode-Beobachter für das lineare System (2.28) lautet somit
folgendermaßen:

x̂k+1 = x̂k + ∆t
(
uk − ϑ sign(ey,k)

)
,

ŷk = x̂k.
(2.29)

Voraussetzung für die Konvergenz des Beobachters ist die Bedingung ϑ ≥ |∆ fmax|, deren
Notwendigkeit mittels einer Stabilitätsanalyse basierend auf Lyapunov-Funktionen, wie
etwa V(ey,k) = 1

2e2
y,k, gezeigt werden kann (vgl. [DFL05; KCM+14; Mor27]). Wirkt exem-

plarisch eine uniform verteilte Störung ρk auf das System, d. h. ρk ∈ U(0, 1), und wird der
Beobachter (2.29) mit ϑ = 9 > 1 = |∆ fmax| parametriert, lässt sich die Schätzgüte in der
Abbildung 2-5 analysieren. In dieser Grafik wird die Qualität zweier SMOs verglichen,
welche sich durch die Schrittweite ∆t unterscheiden. Beide Beobachter weisen eine hohe
Schätzgüte auf, variieren jedoch bzgl. der Stärke des auftretenden Ratterns. Dieses wird
durch den Korrekturterm ν(ey,k) = −ϑ sign(ey,k) ausgelöst. Der Korrekturterm wird meist
als Schaltfunktion bezeichnet und kann komplexere Formen annehmen, beispielsweise

ν(ey,k) = −ϑ |ey,k| 12 sign(ey,k), (2.30)

wobei der Exponent auch höhere Werte annehmen kann. In der vorliegenden Art (2.30)
ist der Sliding-Mode-Beobachter als Super Twisting Algorithmus (STA) bekannt, Verall-
gemeinerungen der Schaltfunktion mit z. B. höheren Exponenten sind dagegen als Ge-

neralized Super Twisting Algorithmus (GSTA) oder höherdimensionale STAs bekannt

21Für die Anwendung auf einem Digitalrechner muss der Beobachter diskret vorliegen, deswegen
wird er entgegen der üblichen kontinuierlichen Formulierung in der Literatur direkt in diskreter Form
dargestellt. Hierbei beeinflusst die Wahl der Schrittweite ∆t die Performanz des Beobachters, vgl.
[Bou15].
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[Spu08; Mor27; SEFL14; DFP06; KCM+14]. Der potenzierte absolute Schätzfehler als
zusätzlicher Faktor in den Schaltfunktionen des STAs oder GSTAs sorgt dabei für eine
schnellere Konvergenz und höhere Robustheit, u. U. aber auch für ein stärkeres Rattern.
Die Ursache des Ratterns resultiert aus den zwei Phasen der Beobachterdynamik eines
SMOs. Die Phase, bis ey,k = 0 erreicht ist, wird Reaching-Phase genannt. Diese ist für das
Beispiel (2.29) in der Abbildung 2-5 nur sehr kurz bis etwa 0,01s zu erkennen.

0 0,5 1 1,5 2 2,5 3
0

5

10

x 1

x x̂ mit ∆t = 0.05 x̂ mit ∆t = 0.01

0 0,5 1 1,5 2 2,5 3
0

5

10

Zeit t [s]

x 2

0 0,5 1 1,5 2 2,5 3
0

5

10

x 1

x x̂ mit ∆t = 0.05 x̂ mit ∆t = 0.01

0 0,5 1 1,5 2 2,5 3
0

5

10

Zeit t [s]

x 2

Abbildung 2-5: Zustandsschätzung für das lineare Beispiel (2.28): Einfluss der Schritt-
weite auf die Schätzgüte und das typische Rattern

Die folgende Visualisierung in Abbildung 2-6 bildet dagegen den Phasenraum des Schätz-
fehlers für unterschiedliche Anfangsbedingungen des Beobachters x̂0 ab, welche durch
die verschiedenen, rot gestrichelten Linien dargestellt sind. Die Reaching-Phase ist somit
sehr deutlich durch das Zulaufen des Fehlers auf die Schaltgerade, beispielhaft dargestellt
in schwarz, zu erkennen. Anschließend tritt der Beobachter in die Sliding-Phase, auch be-
kannt als der namensgebende Sliding-Mode, ein, bei der die Sliding-Variable theoretisch
idealerweise bei Null verbleibt, durch das hochfrequente Umschalten jedoch in einer klei-
nen Umgebung um Null oszilliert [Spu08; SEFL14; NM22]. Dieser Effekt kann für die
Fehlerdynamik anschaulich in der Abbildung 2-6 beobachtet werden, bei der die Sliding-
Variable auf der Schaltgerade verbleibt und zur Ruhelage gleitet. Dieses Verhalten ist in
der Grafik 2-5 anhand des typischen Ratterns erkennbar. Je nach Wahl der Schrittweite ∆t

und des Einflussfaktors ϑ sowie der Art der Schaltfunktion ν kann dieser Effekt geringer
oder stärker ausfallen. In der Sliding-Phase sind der beobachtete und gemessene Aus-
gang trotz dieses Ratterns nahezu identisch, sodass die übrigen beobachteten Zustände
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abhängig von der Modellqualität und den Konvergenzeigenschaften die realen Zustände
abbilden. Die positiven Konvergenz- und Robustheitseigenschaften eines SMOs werden
an dieser Stelle nicht bewiesen, können aber mithilfe von Lyapunov-Funktionen leicht ge-
zeigt werden (vgl. [NM22; SEFL14; DFP06]) und stellen sicher, dass es sich während der
Reaching-Phase um eine attraktive Region handelt und die Sliding-Variable bei Erreichen
der Sliding-Phase in dieser verbleibt.
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Abbildung 2-6: Typischer Phasenraum des Schätzfehlers anhand des Beispiels (2.28):
Verschiedene Anfangsbedingungen x̂0 und ∆t = 0.01

Nach dem einführenden Beispiel wird nun die allgemeine Form eines SMOs hergeleitet.
Diese bezieht sich auf mehrdimensionale, nichtlineare Systeme mit eindimensionalem
Ausgang, d. h. m = 1. Für den Fall m > 1 wird auf [FOT14; Dra92; DU95] verwie-
sen. Zunächst wird der Begriff der Beobachtbarkeit (vgl. Abschnitt 2.2) für nichtlineare
Systeme definiert, der aus Gründen der Übersichtlichkeit in den nächsten Absätzen in
kontinuierlicher Zeit und mit den Dynamiken22 f und h formuliert wird. Für ein nichtli-
neares System mit y ∈ R lassen sich die Lie-Ableitungen Li−1

f h(x,u) durch h1(x) = h(x,u)
und

Li−1
f h(x,u) = hi(x,u) =

∂hi−1(x,u)
∂x

f (x,u), i = 2, . . . , n.

22Diese stellen kurzzeitig die kontinuierlichen System- und Messdynamik dar, obwohl sie als das dis-
krete Pendant definiert worden sind und dieses auch nach dem Begriff der Beobachtbarkeit weiter
repräsentieren.
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definieren. Daraufhin kann die Beobachtbarkeitsmatrix durch

z =



z1

z2

z3
...

zn



=



y

ẏ

ÿ
...

y(n−1)



=



h(x,u)
L f h(x,u)
L2

f h(x,u)
...

Ln−1
f h(x,u)



= On−1(x,u) (2.31)

formuliert werden [Ada18]. Ist die Beobachtbarkeitsmatrix (2.31) invertierbar, d. h. ist
O−1

n−1(x,u)∀x ∈ Rn,∀u ∈ Rp injektiv, ist das System (2.18) beobachtbar23 [Ada18; Mor27].
Anschließend kann es in die nichtlineare Regelungsnormalform überführt werden [Ada18]:

ż =



ẏ

ÿ
...

y(n−1)

y(n)



=



z2

z3
...

zn

hn

(
O−1

n−1(x,u)
)



,

y = z1.

(2.32)

Auf Grundlage der Beobachtbarkeitsform (2.32) kann der Sliding-Mode-Beobachter für
ein allgemeines System anschließend in die folgende, diskrete Struktur überführt werden,
bei der die Modelldynamik f̂ ausschließlich auf die letzte Zeile und die n Schaltfunktio-
nen νi auf jede Zeile wirken:



x̂1,k+1

x̂2,k+1
...

x̂n,k+1


= x̂k + ∆t



x̂2,k + ν1(ey,k)
x̂3,k + ν2(ey,k)

...

f̂ (x̂1,k, x̂2,k, . . . , x̂n−1,k, yk, k) + νn(ey,k)


,

ŷk = x̂1,k,

ey,k = ŷk − yk.

(2.33)

Mithilfe der Darstellung (2.33) lässt sich schließlich die Fehlerdynamik des SMOs er-
mitteln. Der Modellfehler ∆ f , der aus Anfangsfehlern, Störungen oder Modellungenau-
igkeiten resultieren kann, ist dabei als Differenz zwischen Modell f̂ und realem System f

durch

∆ f = f̂ (x̂1,k, x̂2,k, . . . , x̂n−1,k, yk, k) − f (x1,k, x2,k, . . . , xn−1,k, yk, k)

23Einfacher nachzuweisen ist häufig die schwache Beobachtbarkeit eines Systems durch den
vollständigen Rang der Jacobimatrix von On−1.
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definiert [DFP06; Spu08; SEFL14]. Daher gilt für die Fehlerdynamik:



ey,k+1

e2,k+1
...

en−1,k+1

en,k+1



=



x̂1,k+1 − x1,k+1

x̂2,k+1 − x2,k+1
...

x̂n−1,k+1 − xn−1,k+1

x̂n,k+1 − xn,k+1



= ek + ∆t



e2,k + ν1(ey,k)
e3,k + ν2(ey,k)

...

en,k + νn−1(ey,k)
∆ f + νn(ey,k)



. (2.34)

Der Effekt, dass die geschätzten Zustände den realen nachfolgen bzw. asymptotisch ge-
gen diese konvergieren, wenn sich der Beobachter in der Sliding-Phase befindet, kann
nun anhand der Fehlerdynamik (2.34) verdeutlicht und bestätigt werden. Ist ey,k+1 = 0,
bestimmen die Einflussparameter des Beobachters ϑ2, . . . , ϑn die Konvergenz und deren
Geschwindigkeit.

Neben der Schätzung von Zuständen wird der Sliding-Mode-Beobachter auch zur Para-
meteridentifikation eingesetzt, z. B. um unbekannte physikalische Parameter, auftreten-
de Störungen oder Modellungenauigkeiten zu erfassen (vgl. Abschnitt 2.4). Zur Para-
meterschätzung kann der Sliding-Mode-Beobachter unkompliziert erweitert werden, in-
dem die Parameter als Zustände definiert werden [DFP06; Mor27]. Zur Identifikation von
Störungen oder Modellungenauigkeiten kann die Schaltfunktion ν genutzt werden, wenn
sich der Beobachter in der Sliding-Phase befindet. In dieser Situation kann eine Störung ρk

wie im Beispiel (2.28) oder allgemein die Modellungenauigkeit ∆ f durch eine Tiefpass-
filterung von νn(ey,k) identifiziert werden [Mor27; KCM+14; FOT14]. Neben dem SMO
existieren weitere robuste Beobachter, wie etwa der H∞-Beobachter [Sim06], welche im
Rahmen dieser Dissertationsschrift jedoch nicht betrachtet werden.

2.4 Modellungenauigkeiten und ihre Struktur

In der Einführung dieser Arbeit ist die Modell-Realitäts-Lücke als eine mögliche Hürde
im modellbasierten Regelungsentwurf identifiziert worden (vgl. Abschnitt 1.1). Dieser
Umstand lässt sich auf Modellungenauigkeiten zurückführen, welche eine realitätsnahe
Abbildung eines betrachteten Prozesses erschweren oder verhindern. Diese Modellunge-
nauigkeiten bilden daher eine strukturelle Herausforderung in den Methoden der modell-
basierten Zustandsschätzung, welche in den vorigen Abschnitten vorgestellt und erläutert
worden sind. Dementsprechend werden in diesem Abschnitt Modellungenauigkeiten nä-
her beleuchtet und bzgl. ihrer Struktur sowie ihres Auftretens kategorisiert. Die Inhalte
dieses Abschnitts erheben jedoch nicht den Anspruch, universal gültig und vollständig
zu sein, sondern stellen eine domänenspezifische und subjektive Einordnung basierend
auf der Problemstellung dieser Dissertationsschrift dar. Darüber hinaus werden Verfahren
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zur Identifikation von solchen Modellungenauigkeiten aus dem gegenwärtigen Stand der
Technik vorgestellt.

In der Regelungstechnik und Mechatronik können Modellungenauigkeiten aus verschie-
denen Quellen resultieren, wie es beispielsweise in der Abbildung 2-7 dargestellt ist (vgl.
[Jan10; IM11]). Durch eine fehlerhafte Kalibrierung eines Sensors kann beispielswei-
se ein Offset entstehen oder das Messrauschen eines Sensors führt zu einer ungenauen
Auswertung eines Prozesses. Andere Quellen können ggf. die Existenz von physischen
Grenzen, die eine Regelstrecke aufweist und in der Modellierung nicht berücksichtigt
wurden, oder eine fehlerhafte Annahme in der Parametrierung eines Modells sein, welche
in der Abbildung 2-7 rechts unten als inkorrekte Frequenz zu erkennen ist. Die Katego-
risierung dieser Unsicherheiten ist aufgrund ihrer unterschiedlichen Herkunft bisweilen
herausfordernd.
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Abbildung 2-7: Beispiele von Modellungenauigkeiten im Uhrzeigersinn beginnend von
links oben: Offset durch fehlerhafte Kalibrierung, Existenz von Begren-
zungen, falsche Frequenz oder fehlerhafte Parametrierung, Messrauschen
oder stochastische Störung

Im Kontext von maschinellem Lernen werden Modellunsicherheiten in systematische
und zufällige Fehler (englisch epistemic vs. aleatoric uncertainty) unterschieden, vgl.
[HW21]. In den Ingenieurwissenschaften existiert bisher keine einheitliche Kategorisie-
rung von Modellungenauigkeiten in der Literatur, es findet sich jedoch häufig eine ähnlich
motivierte Klassifizierung, z. B. in [PGPS21; Rai94]. Daher wird die Kategorisierung in
systematische und stochastische Ungenauigkeiten in dieser Arbeit genutzt, um die am
weitesten verbreiteten Fehlerquellen einzuordnen. Eine domänenspezifische Darstellung
und Klassifizierung einiger dieser Fehlerquellen ist in der Abbildung 2-8 zu erkennen.
Systematische Modellungenauigkeiten, welche in dynamische und statische Fehler un-
terschieden werden, beschreiben Unsicherheiten, die durch einen Mangel an Informatio-
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nen entstehen, beispielsweise durch eine zu geringe Modellierungstiefe [Loc20]. Diese
können durch verfügbares Wissen oder mathematische Operationen reduziert werden. So
lassen sich möglicherweise Ungenauigkeiten wie Parameter durch Messungen identifi-
zieren, Zustandsbegrenzungen durch Experimente annähern oder (Eigen-)Schwingungen
durch eine Spektral- oder Fourieranalyse charakterisieren. Ebenso können Messfehler,
die beispielsweise entweder statisch durch eine fehlerhafte Kalibrierung oder dynamisch
durch numerische Rechenfehler entstanden sind, durch einen Least-Squares-Ansatz redu-
ziert werden.
Zufällig oder stochastisch entstandene Modellfehler können dagegen nicht einzeln verhin-
dert oder verringert werden. Als Beispiel kann z. B. eine verminderte Druckqualität eines
3D-Druckers genannt werden, welche durch die fehlerhafte Position des Druckkopfs auf-
grund von Bodenschwingungen eines vorbeifahrenden Zuges resultiert. Die einzige Maß-
nahme, stochastische Fehlerquellen zu reduzieren, besteht in der wiederholten Messung
der Phänomene und der Abschätzung dieser durch statistische und wahrscheinlichkeits-
basierte Methoden (vgl. [Sch11], Abschnitt 2.1).

Modellungenauigkeit

Systematisch Zufällig

StatischDynamisch Stochastische Störungen

Schwingungen, z.B. durch
Erdbewegungen oder Verkehr
...

...

Parameter

Begrenzungen

(Eigen-)Schwingungen

Reibung

Ungenauigkeiten
durch Sensorik/Aktorik

Parameter

Begrenzungen

Reibung

Offsets durch
Sensorik/Aktorik

Abbildung 2-8: Kategorisierung von Modellungenauigkeiten sowie ausgewählte Beispiele
auftretender Fehlerquellen für mechatronische Systeme

Eine weitere Unterscheidung von auftretenden Modellungenauigkeiten bezogen auf den
Wirkungsbereich wird zudem spezifisch in der Regelungstechnik vorgenommen. So wird
zwischen eingangsseitigen und ausgangsseitigen Störungen oder Modellungenauigkeiten
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differenziert. In dieser Arbeit werden allerdings nur potentielle ausgangsseitige Fehler
angenommen, obwohl einige der diskutierten Methoden auch eingangsseitig wirkende
Unsicherheiten kompensieren können.

Für ein nichtlineares, beobachtbares System (2.18) lässt sich die Existenz einer Modell-
ungenauigkeit g(xk,uk) allgemein durch

xk+1 = f (xk,uk, p, g(xk,uk)) ,

yk = h(xk),
(2.35)

in die bekannte Struktur integrieren. Häufig wird dies sogar weiter vereinfacht als additive
Modellungenauigkeit dargestellt, in seltenen Fällen als multiplikative Unsicherheit, vgl.
[Rai94]. Ohne Beschränkung der Allgemeinheit kann aber die vereinfachte Version mit
der additiven Modellungenauigkeit angenommen werden, da sich jede Unsicherheit durch
Superposition in dieser Art ausdrücken lässt. Daher gilt Folgendes:

xk+1 = f (xk,uk, p) + g(xk,uk),

yk = h(xk).
(2.36)

Kann das System sogar wie in Gleichung (2.32) als nichtlineare Regelungsnormalform
formuliert werden, wirkt die Modellungenauigkeit lediglich auf den n-ten Ausgang und
liegt somit eindimensional als g(xk,uk) vor:



x1,k+1

x2,k+1

. . .

xn−1,k+1

xn,k+1



= xk + ∆t



x2,k+1

x3,k+1

. . .

xn,k+1

f̂ (xk,uk, p) + g(xk,uk)



,

yk = x1,k.

(2.37)

Diese Systembeschreibung wird im Abschnitt 4.2 noch weiter präzisiert. Um Modell-
ungenauigkeiten, wie sie im Modell (2.36) oder (2.37) formuliert werden, zu identi-
fizieren, existieren verschiedene Techniken. Diese sind unter dem Begriff Systemiden-

tifikation zusammengefasst und ermöglichen grundsätzlich die Annäherung eines Sys-
tems durch parametrische und nicht-parametrische Modelle (vgl. [IM11], Abbildung 1-3,
Abschnitt 3.1). Als Exempel sind Spektral- oder Fourieranalyse, Hauptkomponentenana-
lyse, Least-Square-Techniken, das bereits vorgestellte Kalman-Filter, Frequenzgangsmes-
sungen, die Gaußprozessregression oder neuronale Netze zu nennen [IM11; FKL+22;
Kro16; Wal22; BPK16b]. Die Grundlage dieser Identifikation bilden in der Regel Mess-
daten von Experimenten bzw. Daten aus Simulationen. Einige dieser Verfahren werden
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hinsichtlich ihrer Fähigkeit, Modellungenauigkeiten zu identifizieren, im nachfolgenden
Kapitel 3 analysiert und unter den formulierten Anforderungen dieser Arbeit F.1 bis F.3
weiterentwickelt sowie bewertet. Alle betrachteten Techniken des Kapitels stellen jedoch
eine u. U. aufwendige Nachbehandlung dar, die zusätzlich und iterativ zum modellbasier-
ten Regelungsentwurf erfolgen muss (vgl. Abbildung 1-4(a)). Wird dieses zeit- und kos-
tenintensive, iterative Vorgehen nicht durchgeführt, leidet je nach Charakter der Modell-
ungenauigkeit und verwendetem Beobachter die Qualität der Zustandsschätzung darunter,
sodass die Umsetzung einer Zustandsregelung gefährdet sein kann.

Neben diesen Methoden, die eine erneute Durchführung von Experimenten oder zusätz-
liche Analysen erfordern, um Modellungenauigkeiten zu erfassen und das Modell zu
verbessern, existiert neuerdings ein weiterer, effizienterer Ansatz. Üblicherweise ist die
Auslegung eines Zustandsbeobachters für die Zustandsregelung ohnehin erforderlich. Die
Idee, dass der Beobachter auch gleichzeitig die Modellunsicherheit ermittelt, stammt aus
der Praxis, in der Zustände und Systemparameter gleichzeitig geschätzt werden (vgl. dazu
Abschnitt 4.1). Dieser Ansatz der gleichzeitigen Schätzungen wird in einigen Quellen für
die Identifikation dynamischer Modellungenauigkeiten adaptiert. So wird in [BMTD21;
KJY21; Kul21] dieselbe Ausgangssituation wie in der Gleichung (2.35) beschrieben und
eine Lösung zur Schätzung von g(xk,uk) gesucht. Während in [BMTD21] ein GP-Modell
in der Kombination mit einem High-Gain-Beobachter genutzt wird, um die Modellun-
genauigkeit zu approximieren, nähert [KJY21] diese über ein geometrisch motiviertes
Verfahren an, bei dem jeweils die oberen und unteren Intervallgrenzen berechnet wer-
den, zwischen denen sich g(xk,uk) aktuell befindet. Die Autoren in [Kul21] nutzen da-
gegen eine Linearkombination aus radialen Basisfunktionen innerhalb eines EKFs, wel-
che die Modellungenauigkeit approximieren. Für den Spezialfall, dass Gleichung (2.36)
gilt, es sich dabei um eine statische Modellungenauigkeit handelt und die bekannte Mo-
delldynamik f linear ist, wird in [Sch10] ein lernfähiger Beobachter basierend auf dem
Luenberger-Beobachter formuliert, der die isolierte Ungenauigkeit durch ein neuronales
Netz approximiert. Dabei werden sowohl Fehlerabschätzungen als auch die Konvergenz
des lernfähigen Beobachters nachgewiesen. Obwohl diese Vorarbeiten vielversprechen-
de Perspektiven liefern, Modellungenauigkeiten parallel zur Zustandsschätzung zu iden-
tifizieren, werden nicht alle zu Beginn dieser Arbeit formulierten Anforderungen (vgl.
Abschnitt 1.2) berücksichtigt. Daher wird Kapitel 4 basierend auf diesen Vorarbeiten ei-
ne alternative, neuartige Methode entwickeln, welche beispielsweise die Grundidee von
[KSH21] einbezieht. Im folgenden Kapitel 3 werden jedoch zunächst Techniken der hy-
briden Systemidentifikation diskutiert, welche die Identifikation der Modellungenauig-
keiten separat entweder durch eine Modellkorrektur oder durch die Kompensation der
Unsicherheit im Beobachterentwurf anstreben.
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3 (Offline-)Strategien zur Kompensation von
Modellungenauigkeiten

Die erfolgreiche Umsetzung eines modellbasierten Regelungsentwurfs, welcher im Ab-
schnitt 1.1 angesprochen worden ist, hängt in hohem Maße von der Qualität des ver-
wendeten Streckenmodells ab. Dies trifft insbesondere auf die Zustandsschätzung zu, da
diese nach Kapitel 2 basierend auf dem Streckenmodell erfolgt. Treten im Modell Abwei-
chungen zur Strecke auf, z. B. aufgrund von Reibung, Verschleiß oder Temperaturschwan-
kungen, kann der Beobachter u. U. keine zuverlässigen Schätzwerte mehr ermitteln, so-
dass eine unzureichende Umsetzung der Regelung oder gar Schäden an der zu regelnden
Anlage zu befürchten sind. Um eine aufwendige, iterativ durchzuführende Modellbildung
zu vermeiden und Ressourcen zu sparen (vgl. Abschnitt 1.1), diskutiert dieses Kapitel
Strategien zur Kompensation von auftretenden Modellungenauigkeiten. Diese setzen ent-
weder direkt bei der Identifikation des Modells oder beim Beobachterentwurf an, d. h. es
werden Maßnahmen in den Abschnitten 3.1 und 3.2 erörtert, deren Wirkungsbereich auf
diesen jeweiligen Entwurfsschritt begrenzt ist. Das verbindende Element der vielfältigen
Methoden dieses Kapitels stellt hierbei das (Beobachter-)Modell der Strecke dar, wel-
ches hinsichtlich Modellungenauigkeiten verbessert werden soll. Dabei werden bis auf
Abschnitt 3.2.2 Offline-Methoden thematisiert, deren Umsetzung erst durch umfangrei-
che Messdaten und nicht in Echtzeit erfolgen kann. Abschließend werden die untersuch-
ten Verfahren im Abschnitt 3.3 zusammengefasst und bzgl. der in dieser Arbeit formu-
lierten Anforderungen F.1-F.3 bewertet.

3.1 Systemidentifikation mittels hybrider Modelle

Die Nutzung von Prozess- oder Messdaten zur Systemidentifikation ist eine sehr verbrei-
tete und traditionelle Herangehensweise in den Ingenieurwissenschaften. Aufgrund der
Verfügbarkeit von Daten an vielen technischen Anlagen werden diese genutzt, um tiefere
Einblicke in das System zu erhalten und etwa physikalische Parameter zu identifizieren,
die durch ein Modell zuvor definiert worden sind. Ist die innere Struktur eines Systems
weniger oder gar nicht bekannt, werden in den letzten Jahren vermehrt datenverarbeitende
Methoden eingesetzt, um aus den Messdaten realitätsnahe Modelle zu entwickeln. Bereits
im Abschnitt 1.1 ist die grundsätzliche Unterscheidung in theoretische und experimentelle
Modellbildung erörtert worden [IM11; Wal22]. Die Grenzen zwischen diesen Perspekti-
ven verlaufen allerdings fließend und sind nicht streng definiert, da viele Modelle sowohl
mittels physikalischer Gesetzmäßigkeiten als auch durch Messdaten formuliert und iden-
tifiziert werden (vgl. Abbildung 1-3). Diese können daher je nach Art der verwendeten
Information und Kenntnis der Systemstruktur als White-, Gray- oder Black-Box-Modelle
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charakterisiert werden. In der Abbildung 3-1, welche an [IM11, S.6] angelehnt ist, ist
eine beispielhafte Unterteilung zu erkennen. So ist ein Modell z. B. der Kategorie White-
Box-Modell zuzuordnen, wenn die Systemstruktur sowie Parameter durch physikalische
Gesetzmäßigkeiten bekannt sind und sich im Modell widerspiegeln. Black-Box-Modelle
stellen dagegen das Ein-/Ausgangsverhalten dar und erlauben lediglich Vermutungen zur
Struktur. Modelle, die sowohl aus der theoretischen als auch aus der experimentellen Mo-
dellbildung hervorgehen, weil sie beispielsweise nach physikalischen Gesetzen entwor-
fen, aber ihre Parameter durch Daten identifiziert wurden, werden als Gray-Box-Modelle
bezeichnet. Diese Modelle, deren Anteil am jeweiligen Spektrum theoretische bzw. ex-
perimentelle Modellbildung variieren kann, werden im weiteren Verlauf dieser Arbeit als
hybrid24 bezeichnet.

Theoretische
Modellbildung

Experimentelle
Modellbildung

White-Box-Modell Gray-Box-Modell Black-Box-Modell
NNPG(R)NN SINDyPhys. Modell

Physikalische Gesetze,
Struktur bekannt,

Parameter bekannt

Physikalische Gesetze
oder Regeln,

Struktur un-/bekannt,
Parameter unbekannt,

Messbare Signale

Ein-/Ausgangssignale,
Vermutungen über

Struktur

Abbildung 3-1: Beispielhafte Modellkategorien basierend auf dem Grad der verwendeten
Messdaten und des physikalischen Vorwissens, angelehnt an [IM11, S.6],
und Einordnung der in Abschnitt 3.1 diskutierten Modellarten

Im folgenden Unterkapitel werden daher Methoden vorgestellt, die sowohl auf Messda-
ten als auch physikalischem Vorwissen basieren und deren resultierende Modelle sich
bei den Gray-Box-Modellen einordnen lassen. Zunächst wird Abschnitt 3.1.1 das Ver-
fahren SINDy erläutern, welches auf der Grundlage von Messdaten (und ggf. Vorwis-
sen) ein interpretierbares Modell identifiziert. Somit ist dieses in der Abbildung 3-1 bei
den Gray-Box-Modellen vorzufinden. Neuronale Netze (NN), welche im darauffolgenden
Abschnitt 3.1.2 für den weiteren Verlauf der Arbeit kurz definiert werden, gehören zu den
Black-Box-Modellen. Ihre Erweiterung um ein physikalisches Simulationsmodell, das
laut der Abbildung 3-1 zu den White-Box-Modellen gehört, führt zu den Physics-Guided

24Der Begriff hybrid ist dabei nicht zu verwechseln mit hybriden Modellen, die diskret und kontinuierlich
sind.
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(Recurrent) Neural Networks (PG(R)NNs) in den Abschnitten 3.1.3 und 3.1.4. Diese
können ebenfalls zu den Gray-Box-Modellen gezählt werden und werden in dieser Ar-
beit auf die Anwendung nicht-autonomer, mechatronischer Systeme erweitert. Schließlich
wird die Nutzbarkeit solcher Modelle, angelehnt an die Definition aus Abschnitt 1.2, nach
den Anforderungen F.1-F.3 im Abschnitt 3.1.5 analysiert. Einige der folgenden Absätze
sind zudem bereits Teil der Vorveröffentlichungen [GT22; SGT22].

3.1.1 Sparse Identification of Nonlinear Dynamics (SINDy)

Ausgehend von hochdimensionalen Systemen in der Fluiddynamik, entstand in [BPK16b]
die Methode Sparse Identification of Nonlinear Dynamics (SINDy), welche ein lineares
Regressionsmodell ausschließlich aus Messdaten extrahiert. Damit weist das Verfahren
eine nahe Verwandtschaft zu Modellreduktionstechniken wie Proper Orthogonal Decom-

position und zu Koopman-basierten Techniken wie Dynamic Mode Decomposition auf
[BK19]. Aufgrund der einfachen Handhabung und der Zugänglichkeit der entstehenden
Modelle für weitere Analyse- oder Syntheseschritte erfreut es sich in verschiedenen Dis-
ziplinen großer Beliebtheit, z. B. in der Biologie und Physik [DBR+17; SST16].
Voraussetzung für SINDy ist die Verfügbarkeit von Messdaten des vollständigen Zustands
x ∈ Rn, wobei die Systemordnung n eine sehr hohe Dimension widerspiegeln kann. Lie-
gen N Messdaten des Zustands für jeden Zeitschritt k = 1, . . . ,N vor, so können diese
zeitversetzt in Matrizen X und X′ ∈ Rn×(N−1) angeordnet werden, sodass

X =



| | |
x1 x2 . . . xN−1

| | |


, X′ =



| | |
x2 x3 . . . xN

| | |


(3.1)

gilt. Die grundlegende Frage lautet nun, wie eine geeignete Darstellung für die Evolu-
tion des Zustands über xk+1 = f (xk) gefunden werden kann. Dazu wird die Dynamik f
als eine Linearkombination geeigneter Terme aus der Matrix Ψ(X) ∈ R(N−1)×nθ mit der
Parametermatrix θ ∈ Rn×nθ repräsentiert, indem

X′ = θΨT (X) (3.2)

gilt. Hierbei beschreibt Ψ(X) =
(
ψ1(X), ψ2(X), ψ3(X), . . . , ψnθ(X)

)
eine Funktions-

bibliothek aus nθ (nicht-)linearen Termen ψi(·), die möglicherweise die Dynamik f des
Systems, von dem die Messdaten stammen, beschreiben können. Da die meisten dyna-
mischen Systeme jedoch durch einige wenige Funktionen charakterisiert werden können,
wird angenommen, dass die Parametermatrix θ dünnbesetzt ist (engl. sparse), d. h. dass le-
diglich einige wenige Einträge verschieden von Null sind. Somit lassen sich Algorithmen
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aus dem Bereich der Sparse Regression anwenden. Die Autoren von SINDy empfehlen
dazu den populären Ansatz Least Absolute Shrinkage and Selection Operator (LASSO),
welcher auf [Tib96] zurückgeht und eine Pareto-optimale Lösung bzgl. Modellgüte und
Modellkomplexität liefert. Mittels LASSO lässt sich dann für die i-te Zeile von θ mit
i = 1, . . . , n und λ > 0 die folgende Lösung des Optimierungsproblems formulieren:

θ∗i = arg min
θi

||X′i − θiΨ
T (X)||2 + λ||θi||1. (3.3)

Hierbei stellt X′i die i-te Zeile der Datenmatrix X′ dar. Das konvexe Optimierungsproblem
(3.3) lässt sich ebenso auf den Fall nicht-autonomer Systeme, d. h. Systeme mit Eingang,
erweitern und wird dann als SINDYc bezeichnet25 [BPK16a]. Dazu werden die Messwer-
te des Eingangs u ebenfalls in einer Datenmatrix U gesammelt, woraufhin das Verfahren
analog mit einer angepassten Bibliothek, welche auch Terme bezogen auf den Eingang
enthält, durchgeführt werden kann. Neben der rein datenbasierten Identifikation durch
Messdaten kann das SINDy-Verfahren auch Vorwissen berücksichtigen, z. B. durch eine
konkrete Bibliothekswahl, bei der Hypothesen über das zu identifizierende System einge-
hen. Weitere Eigenschaften, die durch Vorwissen bekannt sind, wie Symmetrie, können
durch Nebenbedingungen formuliert werden (vgl. [BK19]). Dementsprechend kann das
SINDy-Verfahren sowohl zu den datenbasierten als auch zu den hybriden Techniken in
der Systemidentifikation gezählt werden.
Da für die Identifikation mittels SINDy genügend Daten vorliegen müssen, wird das Mo-
dell offline basierend auf der Trainingsmenge aus den Datenmatrizen X, X′ und ggf. U be-
stimmt. Nach erfolgreicher Validierung anhand von weiteren Messdaten liegt schließlich
ein (in der Regel nichtlineares) Modell vor, welches interpretierbar und für die weiteren
Schritte des Regelungsentwurfs zugänglich ist. Allerdings besteht ein gravierender Nach-
teil darin, dass das SINDy-Verfahren Messwerte des vollständigen Zustands benötigt.
Dies ist in realen Prozessen aufgrund von messtechnischen Herausforderungen oder des
Kostendrucks bzgl. der Sensorik selten umsetzbar. Dieser Nachteil kann nur relativiert
werden, wenn alle Zustände des Systems einen differentiellen Zusammenhang aufwei-
sen, sodass die nicht messbaren Zustandsgrößen alternativ numerisch differenziert oder
gefiltert werden können.

Modellierung des Golfroboters

Dennoch wird die Methode nun anhand eines realitätsnahen Beispiels, dem Golfrobo-
ter, untersucht, welcher am Lehrstuhl für Regelungstechnik und Mechatronik (RtM) als
25Diese Abkürzung bedeutet SINDy with control (SINDYc). Im weiteren Verlauf wird jedoch der Be-

griff SINDy genutzt, da sich die Betrachtung autonomer und nicht-autonomer Systeme aus dem
Zusammenhang ergibt.
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Testobjekt für ML-Methoden dient und in der Abbildung 3-2 dargestellt ist. Das Rege-
lungsziel des Roboters ist es, den Golfball erfolgreich in das Loch zu putten. Dafür ist
es erforderlich, dass der Schläger eine bestimmte Geschwindigkeit zum Zeitpunkt des
Schlags aufweist, die ihn weder über das Loch springen noch vor dem Loch stoppen lässt.
Diese Schlagdynamik wird durch das nichtlineare Zustandsraummodell mit dem Zustand
x = (x1, x2)T = (φ, φ̇)T ∈ R2, dem Motormoment als Eingang u ∈ R und den Parametern
p ∈ R7, die im Anhang in der Tabelle A6-1 dargestellt sind, folgendermaßen formuliert:

ẋ = f (x, u, p)

=


x2

J−1 (−mga sin(x1) − Md(x) + 4u)

 ,

y = h(x) = x1.

(3.4)

Dabei gilt für das nichtlineare Dämpfungsmoment:

Md(x) = dx2 + rrµ sign(x2) |mx2
2a + mg cos(x1)|. (3.5)

Details zum Golfroboter, wie etwa seine Regelungsstrategie, finden sich im Anhang A6.1
sowie in [JFTT22] und werden an dieser Stelle nicht weiter ausgeführt.

(a) Aktueller Aufbau, Stand 2023,
©Heinz Nixdorf Institut

φ

g

SSchläger

a rr

m, J

d, µ

(b) Vereinfachter physikalischer Freischnitt,
vgl. [Fit20]

Abbildung 3-2: Der Golfroboter und seine physikalische Modellierung

Die Anwendung von SINDy ist möglich, da der Roboter genau den erforderlichen diffe-
rentiellen Zusammenhang zwischen dem gemessenen Winkel φ und der nicht messbaren
Winkelgeschwindigkeit φ̇ aufweist. Nach Gleichung (3.1) werden die aufgenommenen
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Messwerte in den Matrizen X, X′ und U gesammelt, wobei X′ durch numerische Dif-
ferentiation hergeleitet wird. Anschließend werden die folgenden, zueinander ähnlichen
Bibliotheken zur Identifikation genutzt:

Ψ1(x, u) =
(
1, x1, x2, x2

1, x
2
2, u

)
,

Ψ2(x, u) = (1, x1, x2, cos(x1), cos(x2), u) ,

Ψ3(x, u) =
(
1, x1, x2, cos(x1), x2

2, u
)
.

Die Abbildung 3-3 zeigt, inwiefern die auf Messdaten basierenden Modelle unabhängig
von verschiedenen Bibliotheken die Dynamik des Golfroboters wiedergeben können. Da-
zu wird eine Trajektorie ausgewählt, welche nicht zur Entwicklung der Modelle genutzt
worden ist und anhand derer die Modellgüte der SINDy-Modelle evaluiert werden kann.
Es ist zu erkennen, dass alle drei Modelle trotz ihrer unterschiedlichen Bibliotheken die
Dynamik des Golfroboters sehr gut wiedergeben können, da alle prädizierten Trajekto-
rien auf der gemessenen Referenztrajektorie, welche in schwarz dargestellt ist, liegen.
Dies wird insbesondere durch die Vergrößerung des Verlaufs der Winkelgeschwindigkeit
sowie durch den Vergleich des kumulierten quadratischen Fehlers, der für alle Modelle
im Bereich 10−2 liegt, deutlich. Die entstandenen Modelle können mithilfe der genutzten
Bibliotheken und der dazugehörigen, identifizierten Parameter formuliert werden. Diese
lauten folgendermaßen:

θ1 =


0 1 0 0 0 0
0 −0, 0122 0, 999 0 0 0, 0267

 ,

θ2 =


0 1 0 0 0 0

0, 0014 −0, 0127 0, 999 −0, 0012 0 0, 0267

 ,

θ3 =


0 1 0 0 0 0

0, 0014 −0, 0127 0, 999 −0, 0012 0 0, 0267

 .

(3.6)

Folglich weisen die Modelle aufgrund der sich nur geringfügig unterscheidenden Biblio-
theken eine ähnliche Struktur auf, welche physikalisch interpretierbar und daher für wei-
tere Analyse- oder Syntheseschritte nutzbar ist. Dies liegt daran, dass die jeweilige Pa-
rametermatrix dünnbesetzt ist, was sich beispielsweise durch die Werte in der zweiten
Zeile im Bereich 10−3 bestätigt. Bemerkenswerterweise stimmen sogar die Modelle 2
und 3 vollständig überein, obwohl sie sich im Term ψ5 unterscheiden. Alle drei Mo-
delle weisen zudem gleichwertige Skalierungen auf. Allerdings wiegt der Nachteil, dass
der vollständige Zustand bekannt sein muss, für die Nutzung in der Zustandsschätzung
schwer. Zudem werden die SINDy-Modelle offline generiert und können deshalb nicht
während der Zustandsschätzung genutzt werden. Ferner besteht wie bei allen datenba-
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sierten oder hybriden Verfahren die Notwendigkeit, dass geeignete Messdaten vorliegen,
die den interessierenden Phasenraum abdecken. Dennoch stellt diese Methode eine vor-
teilhafte Möglichkeit dar, aus Messdaten interpretierbare Modelle zu extrahieren, welche
eine hohe Modellgüte aufweisen. Somit setzt das SINDy-Verfahren nicht nur Anforde-
rung F.2 um, sondern lässt aufgrund seiner hohen Modellgüte auch eine hohe Schätzgüte
erwarten, wenn die Schwierigkeit, dass der vollständige Zustand bekannt sein muss, über-
wunden werden kann. Daher wird die Grundidee dieses Verfahrens im Kapitel 4 näher be-
leuchtet und für die Entwicklung geeigneter Schätzverfahren aufgegriffen. Die Nutzung
einer Bibliothek aus physikalisch motivierten Termen stellt hierbei den Kern des entwi-
ckelten Verfahrens dar (vgl. Abschnitt 4.2).
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Abbildung 3-3: Modellgüte eines SINDy-Modells unterschieden in die Bibliotheken
Ψ1,Ψ2,Ψ3 und basierend auf Code aus [BK19]

3.1.2 Neuronale Netze

Eine der populärsten Methoden im maschinellen Lernen sind künstliche neuronale Net-
ze (NN). Diese sind der biologischen Informationsverarbeitung nachempfunden und sol-
len einen beliebigen, funktionalen Zusammenhang f von Eingängen x ∈ X ⊆ RD und
Ausgängen y ∈ Y ⊆ RL mit

f : X 7→ Y (3.7)
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approximieren. Dieser Zusammenhang wird durch ein neuronales Netz als eine Funk-
tion f NN über einen gerichteten Graphen, bestehend aus Knoten und Kanten, beschrie-
ben [Bis06; KBK+13; Kro16; Sch10]. Die Knoten, nachfolgend als Neuronen bezeichnet,
sind als Verarbeitungseinheiten in mehreren Schichten angeordnet. Die Neuronen sind
hierbei durch gerichtete Kanten verbunden, wobei jeder Kante, die ein Neuron i mit einem
Neuron j verbindet, ein Gewicht ζ ji zugeordnet wird. Zudem existiert für jede Schicht ein
weiteres Neuron ζ j0, welches als additives Gewicht genutzt werden kann. Daher kann der
obige Zusammenhang (3.7) mit ζ ∈ U und ŷ ∈ Y durch das NN konkretisiert werden zu

f NN : X × U 7→ Y, ŷ = f NN(x, ζ). (3.8)

Die Anordnung der Neuronen und ihr Informationsfluss untereinander, der durch die
Kantenrichtungen ausgedrückt wird, wird als Netzarchitektur bezeichnet und ist in der
Abbildung 3-4 skizziert. Dabei lassen sich grundsätzlich zwei verschiedene Architekturen
unterscheiden. Wenn der Informationsfluss der Neuronen ausschließlich vorwärts von den
Eingängen zu den Ausgängen verläuft, demnach ohne Verbindungen in eine vorige oder in
die aktuelle Schicht, handelt es sich um ein vorwärts gerichtetes Netz (vgl. Abbildung 3-4
links). Ist dagegen eine Form der Rückkopplung des Informationsflusses gegeben, z. B.
dass der Ausgang eines Neurons mit einem Neuron einer vorhergehenden Schicht ver-
bunden ist, zeichnet sich das Netz durch eine rekurrente Architektur aus und wird als
rekurrentes neuronales Netz (RNN) bezeichnet. Weitere Arten von Rückkopplungen sind
in der Abbildung 3-4 rechts dargestellt.
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Abbildung 3-4: Architekturen eines NNs: Vorwärts gerichtet (links) und rekurrent (rechts)
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Die Kernidee des Lernens bildet ein lineares Regressionsmodell, das auf einer Linearkom-
bination nichtlinearer Basisfunktionen basiert und mehrere nichtlineare Transformationen
durchläuft [Bis06; KBK+13; Kro16; Sch10]. Anhand des einfachen, vorwärts gerichteten
und zweischichtigen Netzes, welches in der Abbildung 3-4 visualisiert ist, wird nun der
Vorgang des Lernens veranschaulicht. Es wird ausschließlich überwachtes Lernen, engl.
supervised learning, thematisiert, sodass die Kenntnis der Ausgänge y zu den zugehörigen
Eingängen x vorausgesetzt wird. Zunächst wird das Netz von links nach rechts durchlau-
fen, woraufhin ein Netzausgang ŷl mit l = 1, . . . , L basierend auf den Eingängen x sowie
auf den zufällig mit kleinen Werten initialisierten Gewichten ζ berechnet wird:

ŷl(x, ζ) = f2


J∑

j=1

ζ(2)
l j · f1


D∑

i=1

ζ(1)
ji xi + ζ

(1)
j0

 + ζ(2)
l0

 , (3.9)

wobei D Eingangsneuronen, J versteckte Neuronen und L Ausgangsneuronen vorliegen
und f1, f2 (nichtlineare) Aktivierungsfunktionen darstellen. In der Gleichung (3.9) können
die Schichten und Berechnungsvorschriften des NNs durch die Klammerausdrücke von
innen nach außen identifiziert werden. Der prädizierte Netzausgang ŷl erfolgt somit durch
eine mehrfache Abfolge aus Linearkombinationen der Neuronen mit den Gewichten und
nichtlinearen Funktionen. Hierbei wird die letzte, sogenannte Ausgabefunktion je nach
Problemstellung gewählt, für Regressionsprobleme ist dies in der Regel die Identität.
Das neuronale Netz beschreibt daher, wie in Gleichung (3.8) dargestellt, einen nichtli-
nearen, funktionalen Zusammenhang zwischen den Eingängen x und den Ausgängen y
unter dem Einfluss der Gewichte ζ. Nachdem der Informationsfluss von den Eingängen
zu den Ausgängen verarbeitet worden ist, werden für jedes Tupel (x, y)q mit q = 1, . . . ,N
Trainingsdaten der Netzausgang ŷ mit dem Ausgang y verglichen. Der Trainingsfehler eq,
definiert durch

eq = ŷ(xq, ζ) − yq,

soll dabei möglichst klein werden, damit das Netz den zu lernenden Zusammenhang kor-
rekt wiedergibt. In der Regel wird daher der quadratische Fehler basierend auf den ge-
samten Trainingsdaten als Kostenfunktion gewählt, sodass

Jerr(x, ζ) =
1
2

N∑

q=1

||ŷ(xq, ζ) − yq||22 (3.10)

minimiert werden soll. Dies gelingt, indem das Verfahren der Backpropagation angewen-
det wird, welches den Fehler durch die Nutzung des Gradienten ∇Jerr(ζ) = ∂Jerr

∂ζ
rückwärts

durch das neuronale Netz berechnet. Dieses lässt sich sehr einfach anhand der differen-
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zierbaren Aktivierungsfunktionen sowie durch Anwendung der Kettenregel durchführen
(vgl. [Bis06]). Anschließend kann mit dem Newton-Verfahren ein geeigneter Gewichts-
vektor ζ(τ+1) für den nächsten Iterationsschritt τ + 1 durch

ζ(τ+1) = ζ(τ) − η∇Jerr

(
x, ζ(τ)

)

bestimmt werden, wobei der Parameter η > 0 als Lernrate bezeichnet wird. Die Lern-
rate beeinflusst die Konvergenzgeschwindigkeit maßgeblich und muss sorgsam gewählt
werden. Optimierungsbasierte Anpassungen wie die Nutzung der Hessematrix in ab-
geschwächten Algorithmen wie z. B. dem Quasi-Newton-Verfahren sind populär und
erhöhen den Optimierungserfolg [Bis06]. Für die Anwendungsbeispiele in dieser Arbeit
wird das ADAM-Verfahren genutzt [KB15], welches auf algorithmischer Differentiation
basiert [GW08]. Während des Trainings wird häufig eine weitere Datenmenge zur Vali-
dierung genutzt, welche andere Datentupel als die Trainingsmenge enthält, um den Trai-
ningsfortschritt zu bewerten. Ist das Training durch die Konvergenz der Gewichte oder
durch eine Abbruchbedingung beendet, steht üblicherweise eine weitere Testdatenmenge
zur Verfügung, um die Performanz des neuronalen Netzes und damit dessen Trainingser-
folg final zu bewerten. Diese unterscheidet sich von den Trainingsdaten und enthält andere
Datentupel. Ist der zu lernende Zusammenhang durch eine geeignete Wahl von Trainings-
daten abgedeckt und besitzt das neuronale Netz eine ausreichend komplexe Netzwerkar-
chitektur, kann durch mathematische Theoreme für verschiedene Architekturen und Akti-
vierungsfunktionen gezeigt werden, dass das neuronale Netz konvergiert und als globaler
Funktionsapproximator wirkt, der einen beliebigen Zusammenhang annähern kann (vgl.
[HSW89; FN93; CC95b; CC95a]). Häufig müssen die Daten jedoch zunächst vorverarbei-
tet werden, um eine vergleichbare Skalierung der Daten untereinander zu gewährleisten.
Ebenso gilt es Herausforderungen bzgl. der Überanpassung, engl. Overfitting, oder der
Explorationsfähigkeit zu beachten (vgl. [Bis06]).

3.1.3 Physics-Guided Neural Network (PGNN)

Durch ihre Eigenschaft als lineare Regressionsmodelle, welche im vorangegangenen Ab-
schnitt beschrieben wurde, können neuronale Netze einen beliebigen, funktionalen Zu-
sammenhang abbilden, sofern geeignete Trainingsdaten über diesen vorliegen und die
Netzarchitektur entsprechend gewählt wird (vgl. [HSW89; CC95a]). Diese Eigenschaft
als globale Funktionsapproximatoren ist insbesondere vorteilhaft, um die im Kapitel 1
beschriebene Problematik der Modell-Realitäts-Lücke zu lösen. Dort, wo physikalisch
und mathematisch motivierte Modelle an ihre Grenzen stoßen und gleichzeitig Messdaten
verfügbar sind, kann ein neuronales Netz in Kombination mit einem physikalisch moti-
vierten Modell unterstützen und die Modell-Realität-Lücke ∆ f möglicherweise verklei-
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nern. Damit stellen die sogenannten Physics-Guided Neural Networks (PGNNs), Physics-

Informed Neural Networks (PINNs) oder Physics-Based Neural Networks (PBNNs) einen
sehr populären Ansatz dar, welcher sich in der Abbildung 3-5 durch einen sprunghaf-
ten Anstieg des jeweiligen Schlagworts in Google-Scholar-Beiträgen bemerkbar macht.
Dabei scheint die Häufigkeit der Schlagworte anzuzeigen, dass sich erste Konzepte be-
reits früh entwickelten und vor allem in der letzten Dekade an Popularität gewannen. Das
Diagramm 3-5 suggeriert zudem, dass eine weitere Zunahme zu erwarten ist. Für dieselbe
grundlegende Idee werden hierbei unterschiedliche Begriffe von den Publizierenden ge-
nutzt, welche vom restriktiven Begriff physikalisch basiert über physikalisch informiert

bis hin zur vagen Bezeichnung physikalisch motiviert wandeln. Eine eindeutige Definition
bzw. Zuordnung dieser Begriffe zu konkreten Strukturen lässt sich bisher nicht einheitlich
in der Literatur erkennen und drückt sich höchstens durch Tendenzen aus, sodass die Fach-
ausdrücke häufig synonym und nach Auffassung der Publizierenden verwendet werden.
Am populärsten scheint nach der Abbildung 3-5 der Begriff physikalisch basierte neuro-
nale Netze zu sein, aufgrund der Historie in der Literatur hat sich jedoch die Bezeichnung
PGNN für die vorliegende Dissertationsschrift etabliert.
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Abbildung 3-5: Popularität der PGNNs, PINNs und PBNNs zwischen 1980 und 2022,
dargestellt durch Auftreten als Schlagwort in Google-Scholar-Beiträgen
(Stand September 2023, erzeugt durch die modifizierte Nutzung von
[Thi22])

Auf der Grundlage, dass ein physikalisches Simulationsmodell in parametrischer Form
vorliegt, können verschiedene Arten der Kombination in Betracht gezogen werden. Im
folgenden Verlauf dieses und des darauffolgenden Abschnitts stellt eine Differentialglei-
chung mit dem Zustand xphy ∈ Rn und den Parametern p ∈ Rnp ein solches Simulations-
modell dar:

ẋphy = f phy(xphy,u, p),

yphy = xphy.
(3.11)
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Voraussetzung für ein überwachtes Lernen der realen Systemdynamik f mithilfe neuro-
naler Netze ist allerdings, dass der vollständige Zustand messbar ist, d. h. dass y = x
gilt, oder dieser durch einen differentiellen Zusammenhang ermittelt werden kann (vgl.
Abschnitt 3.1.1). Dies ist im überwachten Lernen erforderlich, um die Gesamtdynamik
eines betrachteten Prozesses in der Trainingsmenge abbilden zu können. Zudem sollte
das Simulationsmodell (3.11) mittels eines einfachen, numerischen Integrationsverfah-
rens stabil ausgewertet werden können, sodass die diskreten Zustände xphy,k bestimmt
werden können (vgl. Anhang A5). Existiert nun ein solches Modell, lassen sich verschie-
dene Arten der Verschaltung in Erwägung ziehen, welche im Rahmen dieser Arbeit kate-
gorisiert worden sind (vgl. Vorveröffentlichung [GT22]). Diese sind in der Abbildung 3-6
während der Trainingsphase dargestellt, in welcher jeweils der Fehler ek+1 zwischen dem
messbaren Prozessausgang xk+1 und dem Modellausgang x̂k+1 minimiert wird.
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Abbildung 3-6: Modellierungsarten aus physikalischen (grün) und datenbasierten (rot)
Komponenten, wobei jeweils der Fehler ek+1 durch das Training minimiert
wird: a) Serielle Anordnung b) Parallele Anordnung c) Mischform

Historisch und strukturell gesehen ist die Reihenschaltung aus physikalischem Modell
und NN, welche in der Abbildung 3-6a) visualisiert ist, eine der populärsten hybriden
Konstruktionen, da der Modellfehler ∆ f = xk+1 − xphy,k+1 zwischen Prozess und physi-
kalischem Modell approximiert wird. Bereits in [PU92] wird die Abweichung durch ein
vorgeschaltetes Netz angenähert. Der Vorteil der Reihenschaltung ist eine einfache Hand-
habung, die das Problem der Modelldiskrepanz löst. Der Fehler ∆ f wird jedoch nur tem-
porär gelernt. Aufgrund des Systemverhaltens, der Anregung oder anderer Zeit- und Um-
welteinflüsse weist dieser zu jedem Zeitpunkt einen anderen quantitativen Wert auf. Damit
erlaubt die serielle Anordnung die Kompensation der Modellabweichung, aber keine Ein-
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sicht, worin diese besteht bzw. woraus diese resultiert. Daher kann kein übergeordnetes
Lernen stattfinden, welches eine Rückkopplung auf das Modell erlaubt und beispielsweise
Anforderung F.2 umgesetzt. Folglich stellt ein trainiertes Netz dieser Art keine universal
gültige Lösung dar, weil dessen Performanz stark von den Trainingsdaten abhängt und
u. U. eine geringe Extrapolationsfähigkeit außerhalb der Trainingsdaten aufweist. Den-
noch ist diese Anordnung für bestimmte Fälle eine geeignete Wahl, z. B. wenn bekannt
ist, dass es sich um konstante Modellfehler wie Offsets durch Mess- oder Kalibrierungs-
fehler handelt (vgl. Abbildung 2-7). Eine weitere Möglichkeit besteht in der rein datenge-
triebenen Modellierung der Systemdynamik, dargestellt in der Abbildung 3-6b), bei der
ein neuronales Netz parallel zum physikalischen Modell geschaltet wird und kein Infor-
mationstransfer stattfindet. Dies stellt jedoch kein probates Mittel für das Ziel F.2 dieser
Arbeit dar, welches explizit eine Anwendbarkeit jenseits eines Black-Box-Modells for-
dert.
Als letzte Möglichkeit, welche in der Abbildung 3-6c) zu erkennen ist, kann eine Misch-
form aus beiden zuvor diskutierten Strukturen eine sinnvolle Option zur Modellierung
sein. Diese geht auf [KWRK18] zurück und ist mittlerweile eine populäre Strategie ge-
worden, um physikalisch und datenbasierte Komponenten zu verbinden [PWF+18]. Als
Bezeichnung hat sich das PGNN für diese Struktur durchgesetzt, dessen Gültigkeits-
bereich in der Abbildung 3-7 durch den gestrichelten Kasten dargestellt ist.
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Abbildung 3-7: Struktur eines PGNNs während des Trainings: Es umfasst ein physikali-
sches Simulationsmodell (grün) und ein vorwärts gerichtetes NN (rot).

Im Unterschied zur seriellen Anordnung in Abbildung 3-6a) erhält das neuronale Netz in
der Struktur nach [KWRK18] als Eingänge nicht nur den prädizierten Ausgang des Simu-
lationsmodells xphy,k+1, sondern auch die aktuelle Stellgröße uk, mit welcher das reale Sys-
tem angeregt wird, und den aktuellen Zustand xk, in dem sich das System befindet. Dem-
nach kann das neuronale Netz nicht nur den Modellfehler, sondern auch die vollständige
Dynamik sowie die Wechselwirkungen zwischen Modellfehler und tatsächlicher System-
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dynamik lernen. Darüber hinaus erleichtert die Berücksichtigung des prädizierten Aus-
gangs xphy,k+1 das Training, da es das Netz in eine physikalisch plausible Richtung lenkt,
auch wenn das Simulationsmodell (3.11) qualitativ Abweichungen oder Mängel aufweist.
Der funktionale, zeitkontinuierliche Zusammenhang, der durch ein PGNN gelernt wer-
den soll, wird im Rahmen dieser Arbeit auf nicht-autonome Systeme erweitert (vgl. Vor-
veröffentlichung [GT22]) und durch

f PGNN : Rn × Rn × Rp × U 7→ Rn, x̂ = f PGNN(x, xphy,u, ζ)

beschrieben. Klassischerweise wird die Dynamik f PGNN durch Minimierung der Kosten-
funktion (3.10) gelernt, indem die Gewichte ζ optimiert werden. Um allerdings nicht
nur ein physikalisch plausibles Modell basierend auf den Trainingsdaten zu entwickeln,
sondern auch eine physikalisch konsistente Prädiktion außerhalb der Trainingsdaten bzw.
erhöhte Extrapolationsfähigkeit zu gewährleisten, schlagen Karpatne et al. in [KWRK18]
eine Erweiterung der rein Daten auswertenden Kostenfunktion Jerr um einen physikali-
schen Term Jphy vor. Dieser berücksichtigt qualitatives Vorwissen, welches zusätzlich zu
den Daten verfügbar ist. Beispiele dafür sind physikalische Naturgesetze, Erhaltungsprin-
zipien, Beschränkungen, Regelgesetze oder vages Erfahrungswissen [MIM+18; RC21].
Dieses Wissen lässt sich durch Gleichheits- oder Ungleichheitsbedingungen G bzw. H
ausdrücken, welche als weitere Kostenfunktion Jphy formuliert werden können:

G(x) = 0 → Jphy(x, ζ) = ||G(x)||2,
H(x) ≤ 0 → Jphy(x, ζ) = max(0,H(x)).

(3.12)

So erörtern Karpatne et al. beispielsweise die Problematik, wie die Temperatur inner-
halb eines Sees abhängig von der Tiefe des Gewässers modelliert werden kann. Sie lösen
diese Problematik mithilfe eines PGNNs, welches ein physikalisch motiviertes Seemo-
dell enthält und die Beziehung zwischen Temperatur, Dichte und Tiefe des Wassers als
zusätzliche Wissenskomponente Jphy über eine Bedingung H im Lernprozess berück-
sichtigt. Die Resultate zeigen, dass das PGNN die wenigen aufgenommenen Messdaten
entsprechend nachbilden und physikalisch plausibel darstellen kann. Entgegen dieser For-
mulierung in [KWRK18], bei der Jphy durch einen Faktor lediglich als Regularisierungs-
term betrachtet wird, wird die physikalische Kostenfunktion in dieser Arbeit jedoch in ein
Mehrzieloptimierungsproblem eingebettet, sodass

ζ∗ = arg min
ζ

J(x, ζ) = arg min
ζ

(1 − λphy) · Jerr(x, ζ) + λphy · Jphy(x, ζ). (3.13)

gilt. Die Lösung dieses Mehrzieloptimierungsproblems (3.13) wird mit einem einfachen
Skalarisierungsverfahren erzielt. Konkret wird die gewichtete Summe verwendet [Ehr05;
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NW06], welche durch den Skalar 0 ≤ λphy ≤ 1 die Priorisierung der einzelnen Ziele
J• festlegt. Das Auffinden der Pareto-optimalen Punkte gestaltet sich in der Praxis aber
u. U. herausfordernd. Daher diskutieren die Autoren von [RPG21] verschiedene Ein-
flussfaktoren auf die Konvergenz des Mehrzieloptimierungsproblems, wenn im Gegen-
satz zum vorgestellten Konzept die Differentialgleichung des Simulationsmodells (3.11)
als physikalische Kostenfunktion Jphy betrachtet wird, um das Netz direkt die System-
dynamik lernen zu lassen. Diese populäre Strategie, das physikalische Simulationsmo-
dell statt qualitativem Vorwissen in den Lernprozess zu integrieren [LRP19; GDY19;
RPK19; ACS+21; NKFU22], ist jedoch nur zielführend, wenn das Simulationsmodell
eine hohe Modellgüte aufweist, da das Netz potentiell irrtümliche Eigenschaften nach-
bilden kann. Im Rahmen dieser Arbeit steht jedoch ein Simulationsmodell mit Unge-
nauigkeiten am Ausgangspunkt der Problemstellung, weswegen diese Strategie nicht in
Frage kommt (vgl. Abschnitt 1.2). Allerdings zeigen Rohrhofer et al. in [RPG21] auf,
dass insbesondere Parameter, die die Struktur des Netzes bestimmen, einen starken Ein-
fluss auf die Form der Paretomenge besitzen, sodass diese mittels der Hyperparameter-
optimierung sorgsam gewählt werden sollten. Darüber hinaus steigt die Komplexität des
Optimierungsproblems, wenn eine Anpassung für mehr als zwei Ziele in der Kosten-
funktion (3.13) vorgenommen wird, vgl. [Pie17]. In dieser Arbeit wird das Konstrukt
des PGNNs erstmals auf ein nicht-autonomes System aus der Mechatronik angewendet.
Üblicherweise existiert in dieser Disziplin qualitatives Vorwissen, welches in der Kosten-
funktion durch einen Mehrzieloptimierungsansatz berücksichtigt werden kann, z. B. die
Kenntnis über die Energiebilanz eines Systems. Daher werden nicht mehr als zwei Ziele
betrachtet, wenn im Folgenden die Modellgüte eines PGNNs für den Golfroboter und die
Ventildynamik eines Hydraulikzylinders mithilfe ihrer Energiebilanz untersucht werden.
Ergebnisse dieser Analyse bilden bereits Teile der Vorveröffentlichung [GT22].

Modellierung des Golfroboters

Dem Modell des Golfroboters (3.4) ist ein aufwendiger Modellierungsprozess vorange-
gangen, da beispielsweise die Charakterisierung der nichtlinearen Dämpfung infolge des
Riemens eine Herausforderung darstellt. Diese Dämpfung, welche im nichtlinearen Mo-
dell durch das Moment Md (vgl. Gleichung (3.5)) als Stick-Slip-Effekt angenähert wird,
führt aufgrund seiner Komplexität weiterhin zu einer Modellabweichung im Vergleich zu
den Messdaten des Golfroboters. Diese soll daher datenbasiert identifiziert werden, um
die Modellierung der Dämpfung zu ergänzen. Als physikalisches Simulationsmodell f phy

dient dem PGNN deshalb das Modell (3.4). Das Vorwissen, dass es sich beim Golfrobo-
ter um ein dissipatives System handelt sowie dass der Energiefluss eines Systems durch
seine Zu- und Abflüsse definiert ist, kann darüber hinaus zur Beschreibung einer qualitati-
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ven Energiebilanz genutzt werden, die das PGNN während des Trainings berücksichtigen
soll. Diese beinhaltet neben potentieller, kinetischer und dissipativer Energie auch jene
Energie, die dem Golfroboter durch den Eingang zugeführt wird [SGT22; MPS08]:

Jphy( ¨̂φ, ˙̂φ, φ̂, u) = ∆E( ¨̂φ, ˙̂φ, φ̂, u) (3.14)

= J ¨̂φ ˙̂φ + mga ˙̂φ sin(φ̂) + d ˙̂φ2 + rµ sign( ˙̂φ) | ˙̂φ2a + mg cos(φ̂) | ˙̂φ − 4u ˙̂φ.

Die Teilkostenfunktion (3.14), deren Abhängigkeit von den Gewichten ζ aus Gründen der
Übersichtlichkeit vernachlässigt wurde, überprüft demzufolge die physikalische Plausibi-
lität der Energieänderung des Systems von einem zum nächsten Zeitschritt. Aufgrund
der Betrachtung der Zu- und Abflüsse der Systemenergie sollte idealerweise ∆E ≈ 0
gelten, sodass mangelnde physikalische Integrität mittels G aus der Gleichung (3.12)
während des Lernens bestraft werden kann. Anschließend werden Messdaten, die ver-
schiedene Trajektorien in Folge von sinusförmigen Anregungen mit konstanter bzw. sich
verändernder Frequenz und Sprunganregungen enthalten, für das Training des PGNNs
vorbereitet. Dabei werden 60% dieser Daten für das Training genutzt, wohingegen jeweils
20% für die Validierung während des Trainings sowie für den Test nach Beendigung des
Trainings dienen. Um eine optimale Wahl der Einstellparameter für das PGNN zu bestim-
men, wird zudem eine Hyperparameteroptimierung mithilfe der BO durchgeführt (vgl.
Abschnitt 2.1.3). Diese bestimmt u. a. die Anzahl der Neuronen, die (initiale) Lernrate η
oder die Gewichtung λphy bzgl. der beiden Ziele.
Einen Eindruck von der Pareto-optimalen Menge bzgl. dieser Ziele Jerr und Jphy gibt die
Abbildung 3-8, welche für den Golfroboter die Pareto-optimalen und dominierten Punk-
te stichprobenartig26 darstellt. Die variierende Farbe der Datenpunkte in der Abbildung
repräsentiert hierbei den Gewichtungsfaktor λphy. Ist dieser besonders klein, dargestellt
durch einen blaugrünen Datenpunkt in der Abbildung 3-8, wird der typische Fehlerterm
Jerr, der die Ausgänge des Netzes mit den Trainingsdaten abgleicht, schwerpunktmäßig
berücksichtigt und die Verletzung physikalischer Zusammenhänge durch Jphy lediglich
geringfügig beachtet. Eine Vergrößerung von λphy führt daher zu einer Verringerung des
physikalischen Fehlers und zu einer Vergrößerung des datenbasierten Fehlers. In der
Abbildung 3-8 ist dagegen zu erkennen, dass die Pareto-optimalen Punkte alle sehr nah
beieinander liegen, wodurch die Auswirkungen des Gewichtungsterms für den Golfro-
boter moderat ausfallen. Weitere Beispiele für solche Paretofronten sind in der Quelle
[RPG21] zu finden, welche diese systematisch für PINNs untersucht, deren Jphy die Dif-
ferentialgleichung des Systems enthält.

26Es wurden pro λphy zehn verschiedene, unterschiedlich initialisierte Netze ausgewertet.
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Abbildung 3-8: Paretofront für den Golfroboter mit variierendem Gewichtungsfaktor λphy,
ausgedrückt durch die Farbskala, vgl. [GT22]

Nach dem Training und Auffinden der optimalen Parametrierung (BO: λphy = 0.8175,
Anzahl der Neuronen 27) wird das entstandene Golfroboter-Modell fPGNN anhand einer
anderen, unbekannten Trajektorie getestet und mit einem klassischen neuronalen Netz,
dem nichtlinearen Simulationsmodell und einem SINDy-Modell verglichen. Letzteres ist
dabei basierend auf der Bibliothek Ψ(x, u) = (x1, x2, sin(x1), cos(x2), tan−1(x2), u)T trai-
niert worden. Die Abbildung 3-9 visualisiert die Ergebnisse dieses Vergleichs, indem die
prädizierten Trajektorien der verschiedenen Modelle bzgl. der Testtrajektorie, welche in
schwarz abgebildet ist, dargestellt werden. Grundsätzlich scheinen alle Modelle eine ver-
gleichbare Modellgüte aufzuweisen. Wird jedoch jeweils ein Teilstück der Abbildungen
vergrößert, lassen sich Abweichungen und Unterschiede der einzelnen Modelle erken-
nen. Das PGNN, dargestellt in rot, schwankt meistens zwischen dem Verlauf der Mess-
daten und des physikalischen Simulationsmodells (in grün), kann aber in der Regel eine
Verbesserung der Modellgüte im Vergleich zum physikalischen Modell erzielen, z. B.
für den Winkel. Dagegen weicht das NN (in hellblau) am stärksten vom tatsächlichen
Verlauf des Golfroboters ab, obwohl dieses mit 39 Neuronen mehr Neuronen als das
PGNN aufweist. Folglich scheint das PGNN die Vorteile beider Perspektiven zu verei-
nen und daraus ein qualitativ höherwertiges Modell zu erschaffen. Allerdings übertrifft
das SINDy-Modell, dessen Trajektorien in lila dargestellt sind, die Approximationsgüte
des PGNN-Modells deutlich. Dies ist nicht nur qualitativ anhand der Verläufe und ins-
besondere ihrer Vergrößerungen zu erkennen, sondern auch durch die Betrachtung des
mittleren quadratischen Fehlers in Tabelle 3-1, der für das SINDy-Modell wesentlich ge-
ringer als für das PGNN-Modell ausfällt.
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Diese Situation wandelt sich jedoch, wenn wenige Datensätze für das Training zur Verfü-
gung stehen. Im Anhang A6.1 zeigt die Abbildung A6-4 beispielsweise das Approxi-
mationsverhalten der betrachteten Modelle, wenn ausschließlich transiente Dynamiken
während des Einschwingens bzw. kurz nach Beginn der Anregung Teil der Trainingsdaten
sind. Aufgrund der geringen und wenig aussagekräftigen Trainingsdaten kann das SINDy-
Verfahren kein adäquates Modell extrahieren und die Golfroboterdynamik nur ungenau
wiedergeben. Durch das physikalische Simulationsmodell kann das PGNN trotz der ge-
ringen Datenmenge robust die Dynamik des Golfroboters annähern. Folglich stellt das
SINDy-Verfahren weiterhin die vorteilhafte Lösung dar, wenn viele und aussagekräftige
Messdaten zur Verfügung stehen, da es im Gegensatz zum PGNN wenig Aufwand im
Training erfordert und ein interpretierbares Modell liefert, welches auch jenseits der Trai-
ningsmenge extrapolieren kann. Ist die Datenverfügbarkeit und -qualität jedoch limitiert,
erweist sich das PGNN als die bessere Wahl zur Modellierung der Systemdynamik. Auf-
grund der Fähigkeit des PGNNs, die Dynamik eines Systems hinreichend genau zu appro-
ximieren, wenn ein physikalisches Simulationsmodell mit ausreichender Modellierungs-
tiefe gegeben ist und die Datenverfügbarkeit variiert, wird im folgenden Anwendungsbei-
spiel die Modellgüte des PGNNs in Abhängigkeit verschiedener Modellierungstiefen des
verwendeten, physikalischen Simulationsmodells analysiert.

0 2 4 6 8 10
−1

0
1

φ
[r

ad
]

Messung Phys. Simulationsmodell NN
PGNN SINDy

0 2 4 6 8 10
−2

0
2
4

φ̇
[r

ad
/s

]

0 2 4 6 8 10
−0,4
−0,2

0
0,2

Zeit t [s]

u
[N

m
]

0 2 4 6 8 10
−1

0
1

φ
[r

ad
]

Messung Phys. Simulationsmodell NN
PGNN SINDy

0 2 4 6 8 10
−2

0
2
4

φ̇
[r

ad
/s

]

0 2 4 6 8 10
−0,4
−0,2

0
0,2

Zeit t [s]

u
[N

m
]

0 2 4 6 8 10
−1

0
1

φ
[r

ad
]

Messung Phys. Simulationsmodell NN
PGNN SINDy

0 2 4 6 8 10
−2

0
2
4

φ̇
[r

ad
/s

]

0 2 4 6 8 10
−0,4
−0,2

0
0,2

Zeit t [s]

u
[N

m
]

Abbildung 3-9: Modellgüte eines PGNNs im Vergleich zu anderen datengetriebenen und
physikalisch basierten Modellen anhand des Golfroboters, vgl. die ver-
größerten Bildausschnitte (rechts) und [GT22]
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Modellierung der Ventildynamik

Servoventile bilden in vielen hydraulischen Aktoren den zentralen Bestandteil einer Re-
gelung. Allerdings ist ihre Dynamik sehr komplex, sodass eine detaillierte Modellbildung
einen hohen Aufwand erfordert. Dies lässt sich aus der technischen Darstellung in der
Abbildung A6-8 ableiten. In der Praxis hat es sich daher bewährt, je nach Zweck, für den
das Modell erschlossen werden soll, verschiedene Modellierungstiefen des Ventils zu nut-
zen sowie den Detaillierungsgrad nicht höher als erforderlich zu wählen. Dies stellt eine
übliche Maxime in der Modellbildung dar, nach der der Detaillierungsgrad eines Modells
vorangetrieben wird, das Modell aber so einfach wie möglich für den Zugang der jewei-
ligen Anwendung bleibt [Loc20]. Im Rahmen dieser Arbeit wird ein zweistufiges Servo-
ventil mit einem Düsen-Drallplatte-System betrachtet, welches innerhalb eines Hydrau-
likzylinders verbaut ist und für welches ein nichtlineares Modell der Ventildynamik durch
[Ker21] erarbeitet worden ist. Dieses ist inklusive seiner identifizierten Parameter und
weiterer, geringerer Modellierungstiefen im Anhang A6.2 zu finden (vgl. Tabelle A6-2).
Die Abbildung 3-10 stellt die Modellierungstiefe anhand ausgewählter, verschiedener
Modelle für das Servoventil dar und reicht vom einfachen Verstärkungsglied über ein
PT2-Glied bis zum detaillierten, nichtlinearen Modell. Die zunehmende Modellierungs-
tiefe von links nach rechts resultiert somit jeweils in einer höheren Modellgüte und Mo-
dellgenauigkeit (vgl. [Loc20]27).

Verstärkungsglied PT2-Glied PT2-Glied mit
Beschränkungen

Linearisiertes Modell
mit Beschränkungen

Nichtlineares
Modell

Modellierungstiefe
nimmt zu

Genauigkeit
nimmt zu

Abbildung 3-10: Auswahl einiger Modelle für das Servoventil mit unterschiedlichen Mo-
dellierungstiefen

Einen Kompromiss bzgl. der Modellierungstiefe und -genauigkeit stellt das folgende Mo-
dell dar, welches eine Verzögerungsdynamik zweiter Ordnung aufweist:

ẋ =


x2

−2DV
TV

x2 − 1
T 2

V
x1 +

KV
T 2

V
uV

 ,

y = x1.

(3.15)

27Lochbichler definiert in seiner Dissertation die Begriffe Modellierungsgrad und Modellgenauigkeit.
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Hierbei stellt der Zustand x = (yV , ẏV)T die Ventilschieberposition bzw. dessen Ge-
schwindigkeit dar. Als Eingang erhält das Ventil die Spannung uV . Die Parameter des
Modells p = (KV ,DV ,TV)T sind im Anhang A6.2 in der Tabelle A6-3 zu finden. Dieses
PT2-Glied ist fähig, die grundlegende Systemdynamik des Ventils abzubilden, kann aber
Beschränkungen der Ventilschiebergeschwindigkeit bzw. -beschleunigung, welche durch
die Viskosität des Öls resultieren, nicht darstellen. Durch mehrere Versuche können sol-
che Beschränkungen allerdings experimentell geschätzt und in das PT2-Modell integriert
werden, welches somit einen weiteren Detaillierungsgrad erhält (vgl. Abbildung 3-10 und
Anhang A6.2). Die Auswirkung unterschiedlicher Modellierungstiefen des Simulations-
modells auf die Modellgüte eines PGNNs ist bisher noch nicht untersucht worden. Daher
wird in dieser Arbeit eine Analyse des Einflusses anhand der Ventildynamik durchgeführt,
deren Ergebnisse in der Abbildung 3-11 dargestellt sind.
Dabei wird in Analogie zur Gleichung (3.14) im vorigen Abschnitt erneut ein physika-
lischer Kostenterm Jphy zur Energiebilanz berücksichtigt, sodass das Training mithilfe
der Kostenfunktion (3.13) erfolgt. Dieses basiert auf verschiedenen verrauschten Tra-
jektorien, die infolge unterschiedlicher Sprunganregungen variierend von minus zehn
bis plus zehn Volt gemessen worden sind. Die Aufteilung der Trainingsdaten in Trai-
ning, Validierung und Test geschieht wie im vorigen Beispiel. Anschließend zeigt die
Abbildung 3-11a) das Verhalten, wenn das Modell (3.15) verwendet wird, wohingegen
die Abbildung 3-11b) jenes darstellt, wenn das Modell (3.15) zusätzlich mit den experi-
mentell bestimmten Beschränkungen ausgestattet wird (vgl. Abbildung 3-10). Daher un-
terscheiden sich die beiden Abbildungen lediglich durch die Verläufe des PGNNs und des
physikalischen Simulationsmodells. Beide PGNNs weisen 11 Neuronen auf, unterschei-
den sich jedoch in der Gewichtung des physikalischen Kostenterms zu λphy = 0, 2527
bzw. λphy = 0, 3206. Dies deutet bereits nach der Hyperparameteroptimierung die Aus-
wirkung einer höheren Modellierungstiefe durch eine verstärkte Berücksichtigung des
physikalischen Terms an. Neben dem jeweils zugrunde liegenden Simulationsmodell wird
das PGNN zudem mit dem detaillierten, nichtlinearen Ventilmodell (A6-4) sowie mit ei-
nem Standard-NN, dessen Hyperparameteroptimierung zu 92 Neuronen führte, und einem
SINDy-Modell verglichen, wobei die beiden letzteren auf denselben Trainingsdaten wie
das PGNN trainiert wurden. Die Bibliothek des SINDy-Verfahrens basiert dabei auf den
Zuständen und dem Eingang, um die Vergleichbarkeit zum Vorwissen des physikalischen
Modells (3.15) zu gewährleisten.
In der Abbildung 3-11a) weist das physikalische Modell (3.15) durch die fehlenden Be-
schränkungen große Abweichungen zu den Messdaten auf, welche sich insbesondere in
der Geschwindigkeit des Ventilschiebers durch ein Überschwingen bemerkbar machen.
Trotzdem gelingt es dem PGNN, eine sehr gute Approximation des Ventils zu erzielen,
welche auf dem Niveau des nichtlinearen Ventilmodells liegt.
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Abbildung 3-11: Modellgüte eines PGNNs bestehend aus einem Simulationsmodell mit
unterschiedlichen Modellierungstiefen im Vergleich zu anderen datenge-
triebenen und physikalisch basierten Modellen anhand der Ventildyna-
mik: a) Simulationsmodell (3.15) ohne Beschränkungen, b) Simulations-
modell (3.15) mit Beschränkungen, vgl. [GT22]
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Dies lässt sich beispielsweise in den beiden Vergrößerungen rechts von der Abbildung
erkennen. Im Kontrast dazu schaffen es weder das NN noch das SINDy-Modell das Sys-
temverhalten anzunähern und weisen starke qualitative Abweichungen auf. Dies resultiert
aus der einfach gewählten Bibliothek des SINDy-Modells. Erhielte dieses eine Biblio-
thek mit Elementen des nichtlinearen Modells, wäre eine höhere Modellgüte zu erwarten.
Wird für das PGNN ein Modell mit höherem Detaillierungsgrad verwendet, wie z. B.
durch Berücksichtigung der Beschränkungen, verbessert sich die Modellgüte enorm. Die
Abbildung 3-11b) verdeutlicht diese Erkenntnis, da die Vergrößerungen eine genauere
Approximation als das nichtlineare Modell sowohl für die Ventilschieberposition als auch
für die -geschwindigkeit zeigen.
Anhand des Golfroboters und der Ventildynamik werden daher die Vorteile eines PGNNs
offensichtlich: Die Modellgüte erhöht sich, wenn sowohl Messdaten als auch physika-
lisches Vorwissen in das PGNN eingehen. Ferner kann in der vorliegenden Arbeit an-
hand der Ventildynamik gezeigt werden, dass sich diese Güte erwartungsgemäß sogar
verbessern lässt, wenn die Modellierungstiefe des verwendeten physikalischen Simula-
tionsmodells erhöht wird. Die Modellgüte eines PGNNs ist somit explizit von der Qualität
des verwendeten physikalischen Simulationsmodells abhängig. Die Nutzung des PGNNs
erlaubt deshalb eine Ersparnis des Modellierungsaufwands, da das nichtlineare Ventil-
modell aus einer zeitintensiven und Personal aufwendigen Entwicklung hervorgegangen
ist. Dieser Entwicklungszyklus kann durch das Training und die Nutzung eines PGNNs
bei Gewährleistung einer vergleichbar hohen Modellgüte deutlich reduziert werden.
Der qualitative Eindruck der beiden Anwendungsbeispiele aus den Abbildungen 3-9 und
3-11, welcher eine hohe Modellgüte für die PGNNs vermittelt, lässt sich anhand des
quadratischen mittleren Fehlers (engl. Root Mean Squared Error (RMSE)), welcher in
der Tabelle 3-1 zu sehen ist, quantifizieren. Insbesondere die thematisierte Verbesse-
rung der Modellgüte, wenn ein physikalisches Simulationsmodell mit höherer Qualität
für das PGNN verwendet wird (vgl. den RMSE für das physikalische Simulationsmo-
dell), zeigt sich im Vergleich der letzten Zeile für die Ventildynamik. So liegt der RMSE
für das PGNN mit dem Modell (3.15) im Bereich 10−4, wohingegen das PGNN mit den
zusätzlichen Beschränkungen eine Verringerung auf den Bereich 10−5 erzielt.

Modell Golfroboter Ventil (Abb. 3-11 a) ) Ventil (Abb. 3-11 b) )
Phys. Modell 6.6563· 10−4 5.0501· 10−4 3.9959· 10−4

NN 8.9736· 10−4 2.1382· 10−4 2.1382· 10−4

SINDy 3.4516· 10−4 2.8619· 10−4 2.8619· 10−4

PGNN 3.7982· 10−4 1.1982· 10−4 7.3835· 10−5

Tabelle 3-1: Quadratischer mittlerer Fehler der Testverläufe aus den Abbildungen 3-9
und 3-11, vgl. [GT22]
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3.1.4 Physics-Guided Recurrent Neural Network (PGRNN)

Das Konzept der PGNNs zeigte bereits im vorangegangenen Abschnitt eine vielverspre-
chende Strategie zur Systemidentifikation. Dennoch weist die Struktur eines PGNNs ei-
nige Nachteile für die Modellierung dynamischer Systeme auf. So stellt die vollständige
Vernachlässigung der zeitlichen Änderung, welche Kern der Definition eines dynami-
schen Systems ist (vgl. [CFSS82]), einen gravierenden Makel dar. Die Zeit ist neben dem
inneren Zustand und der Anregung eine der Einflussgrößen eines dynamischen Systems
und sollte daher in einem hybriden Modell berücksichtigt werden. Darüber hinaus be-
stehen die meisten dynamischen Systeme in der Mechatronik aus Energiespeichern, die
über einen längeren Zeitraum Einfluss auf das dynamische Verhalten ausüben können.
Somit ist die vorwärts gerichtete Architektur, die in Abbildung 3-4 links dargestellt ist
und keinen rückwärtigen oder parallelen Informationsaustausch unter den Neuronen er-
laubt, nicht für jedes dynamische System die geeignete Struktur. Bei Zeitreihendaten wird
häufig eine rekurrente Architektur empfohlen, um den sequentiellen Verlauf und dessen
Langzeiteffekte abbilden zu können [FN93; SZ06; KBK+13; Kro16]. Daher wird die im
Abschnitt 3.1.3 entwickelte Struktur nun durch die Nutzung eines rekurrenten statt ei-
nes vorwärts gerichteten Netzes angepasst. Der folgende Abschnitt ist bereits Teil der
Vorveröffentlichung [SGT22], welche durch nachfolgende Forschungsarbeiten basierend
auf der studentischen Arbeit [Sch21] entstand. Die angesprochene, adaptierte Struktur
wird schließlich als Physics-Guided Recurrent Neural Network (PGRNN) bezeichnet und
wird beispielsweise für das bereits erwähnte Beispiel zur Schätzung von Temperaturen
in Flüssen und Gewässern eingesetzt [JZS+21]. Das in der Abbildung 3-12 dargestellte
PGRNN fPGRNN weist die gleiche Grundstruktur aus physikalischem Simulationsmodell,
dargestellt in grün, und datenbasiertem Anteil, visualisiert in rot, wie das PGNN in der
Abbildung 3-7 auf.

Prozess

Physikalisches
Simulationsmodell

RNN

xk+1uk, xk

x̂k+1

xphy,k+1

−

ek+1

tk+1

hk x̂k+1

Xk

Uk

Xphy,k

Tk GRU-Layer Output-
Layer

PGRNN

Abbildung 3-12: Struktur eines PGRNNs während des Trainings (vgl. [SGT22]): Es um-
fasst ein physikalisches Simulationsmodell (grün) und ein RNN (rot),
welches ein GRU-Layer gefolgt von einer Ausgabeschicht enthält.
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Es unterscheidet sich somit nur durch den zusätzlichen Eingang der Zeit t ∈ R sowie
durch die innere Architektur des neuronalen Netzes. Dieses ist in der Abbildung 3-12
vergrößert dargestellt und besitzt analog zur Modellierung in der Regelungstechnik einen
intrinsischen Zustand, den sogenannten Hidden State hk ∈ RZ mit Z Neuronen, der zeit-
lich aufeinanderfolgende Daten durch eine Rückführung berücksichtigt. Im Kontrast zu
bestehenden Formulierungen des PGRNNs (vgl. [JZS+21]) wird das Konstrukt wiederum
für nicht-autonome Systeme erweitert. Daher hängt hk in dieser Arbeit sowohl von dem
vorherigen Zustand hk−1 als auch von den aktuellen Eingängen ab. Diese umfassen jeweils
N vergangene, zeitliche Verläufe bis zum aktuellen Zeitpunkt k, sodass Folgendes gilt:

Xk B (x0, x1, . . . , xk),

Uk B (u0,u1, . . . ,uk),

Xphy,k B (xphy,1, xphy,2, . . . , xphy,k+1),

Tk B (t0, t1, . . . , tk).

Die Verarbeitung der sequenziellen Daten kann allerdings zu numerischen Herausforde-
rungen führen, welche mit der Einführung der Long Short-Term Memory (LSTM)-Zelle
[HS97] und der Weiterentwicklung dieser zur Gated Recurrent Unit (GRU)-Zelle behoben
werden konnten [CvG+14]. Deshalb nutzt das PGRNN die GRU-Zelle, welche die Daten
durch sogenannte Update Gates und Reset Gates verarbeitet. Das Update Gate zk übergibt
dem Hidden State neue Informationen, während das Reset Gate rk sukzessiv andere, nicht
mehr relevante Informationen löscht. Es resultieren die folgenden Gleichungen für den
Eingang sk = (xk,uk, xphy,k)T , welche zur Aktualisierung des Zustands hk durch eine Li-
nearkombination des vorherigen Zustands hk−1 und des Zustands h̃k genutzt werden (vgl.
Vorveröffentlichung [SGT22]):

zk = σg(W zsk + bz + Rzhk−1),

rk = σg(W rsk + br + Rrhk−1),

h̃k = σs(W h̃sk + bh̃ + rk ⊙ (Rh̃hk−1)),

hk = (1 − zk) ⊙ hk−1 + zk ⊙ h̃k.

Die Gewichte sind nach Eingangsgewichten W•, rekurrenten Gewichten R• und additi-
ven Gewichten b• aufgeteilt, wohingegen die Aktivierungsfunktion der Gates σg jeweils
durch eine logistische Funktion und die Aktivierungsfunktion des Hidden States σs durch
eine Tangens-Hyperbolicus-Funktion abgebildet werden. Anschließend folgt wie in der
Abbildung 3-12 zu erkennen eine Ausgabeschicht, welche aus dem hochdimensionalen
Zustand hk den tatsächlichen Systemzustand x̂k+1 extrahiert. Auch für das PGRNN wird
die Grundidee des physikalisch konsistenten Lernens in Analogie zum vorherigen Ab-
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schnitt 3.1.3 beibehalten. Im Unterschied zu anderen PGRNNs, welche Vorwissen als
Regularisierungsterm berücksichtigen [JZS+21], wird dieses weiterhin im Rahmen einer
Mehrzieloptimierung gelernt. Um eine höhere Genauigkeit für die Lösung des Mehrziel-
optimierungsproblems zu erzielen und die bekannten Nachteile eines einfachen Skalari-
sierungsverfahrens zu vermeiden (vgl. Gleichung (3.13), [Ehr05; NW06]), wird die Nut-
zung eines komplexeren Lösungsverfahrens angestrebt. Während die gewichtete Sum-
me meist die erste Wahl in vielen Publikationen darstellt [RPG21], wird im Folgenden
die Gütevektoroptimierung nach Kreißelmeier und Steinhauser genutzt [KS79; FKL+22],
welche den Lernerfolg enorm verbessert. Der Leitgedanke des Verfahrens bildet die Kon-
struktion von Grenzen für jede der einzelnen Kostenfunktionen Ji mit i = 1, . . . ,NJ, die
diese jeweils sukzessiv verkleinern. Zu Beginn jeder Lerniteration ĩ = 0, . . . , ϱ werden
diese Grenzen cĩ

i mit cĩ
i > J ĩ

i(·) initialisiert, woraufhin das Maximum der NJ genormten
Kostenfunktionen J(·) gesucht wird:

J(·) = max


Jϱ1(·)
cϱ1

, . . . ,
JϱNJ

(·)
cϱNJ

 , mit Jϱi (·) ≤ cϱi ≤ cϱ−1
i ≤ · · · ≤ c0

i . (3.16)

Dadurch können alle Gütemaße Ji schrittweise verkleinert werden, wie es exemplarisch
in der Abbildung 3-13 für NJ = 2 Kostenfunktionen und ϱ = 3 Iterationen dargestellt
ist. Dieses Vorgehen wird so lange durchgeführt, bis entweder eine maximale Anzahl an
Iterationen erreicht worden ist oder keine Verringerung der Grenze ci mehr erreicht wird.

c3
1 c1

1 c0
1

c3
2

c1
2

c0
2

Menge der Pareto optimalen Punkte
J1

J 2

Menge der Pareto optimalen Punkte

Abbildung 3-13: Schematischer Ablauf einer Gütevektoroptimierung für zwei konkurrie-
rende Ziele J1 und J2 mit drei Iterationen



72 3 (Offline-)Strategien zur Kompensation von Modellungenauigkeiten

Das ist der Fall, wenn beispielsweise eine Kostenfunktion Ji bereits sehr niedrig ist oder
ein Pareto-optimaler Punkt gefunden worden ist (vgl. Abbildung 3-13). Ein PGRNN,
welches mit dieser Mehrzieloptimierungsstrategie während des Trainings betrieben wor-
den ist, wird nun als Multi-Objective Physics-Guided Recurrent Neural Network (MOP-

GRNN) bezeichnet (vgl. Vorveröffentlichung [SGT22]).
Obwohl die Erweiterung zur rekurrenten Architektur und zur Gütevektoroptimierung wäh-
rend des Trainings viele Vorteile aufweist, resultieren die Anpassungen aufgrund der re-
kurrenten Struktur des RNNs dennoch in ein aufwendigeres Training, welches je nach
betrachtetem System hohe Ressourcen, insbesondere Zeit- und Rechenkapazitäten, er-
fordern kann. Exemplarisch wird daher die Modellgüte des Verfahrens für das zweidi-
mensionale Anwendungsbeispiel des Golfroboters im kritischen Vergleich zu anderen
Methoden evaluiert, woraufhin der Vorteil der in dieser Arbeit eingesetzten, komplexe-
ren Lösungsmethode für das Mehrzieloptimierungsproblem aufgezeigt wird. Ein wei-
teres Beispiel findet sich in der Vorveröffentlichung [SGT22] sowie im Anhang (vgl.
Abbildung A6-5).

Modellierung des Golfroboters

In Analogie zum Abschnitt der PGNNs wird nun die Modellgüte eines PGRNNs für den
Golfroboter analysiert. Für die Vergleichbarkeit wird dazu weiterhin dasselbe, nichtlinea-
re Simulationsmodell (3.4) sowie die Energiebilanz (3.14) für den Teil der physikalischen
Kostenfunktion Jphy genutzt. Für das Training werden dieselben Messdaten des Golfro-
boters verwendet, welche bereits im Abschnitt 3.1.3 für das Training eingesetzt wurden.
Um die Abhängigkeit der Modellgüte von der Datenmenge zu analysieren, werden die
Messdaten in verschiedene Datensätze mit unterschiedlichem Umfang aufgeteilt. Somit
können Trainings entweder auf Basis weniger Datensätze (z. B. drei bis sechs Trainings-
samples) oder vieler Datensätze (z. B. 12-15 Trainingssamples) durchgeführt werden. Die
Auswertung der Kostenfunktion erfolgt zudem im Kontrast zum vorigen Abschnitt mit
dem durchschnittlichen absoluten Fehler (Mean Absolute Error (MAE), vgl. [SGT22]).
Nach der Optimierung der Hyperparameter durch die Bayessche Optimierung ergibt sich
das in der Abbildung 3-14 dargestellte Modellverhalten, welches aus einem Training mit
sechs Samples resultiert und im Vergleich zu Messdaten des Golfroboters, gekennzeich-
net durch die schwarzen Trajektorien, abgebildet ist. Neben dem physikalischen Modell
(in grün) wird das rekurrente, physikalisch motivierte Netz wiederum mit dem RNN (in
blau), demnach mit Modellen vergleichbar zu seinen jeweiligen Teilkomponenten, ver-
glichen. Aufgrund seiner wesentlichen Erweiterung hin zur Gütevektoroptimierung wird
zudem in das Modell ohne diese28 (PGRNN, rot) bzw. mit dieser (MOPGRNN, violett)
28In diesem Fall wird das Mehrzieloptimierungsproblem weiterhin mit einer gewichteten Summe gelöst.
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unterschieden. Die optimierte Anzahl der Neuronen liegt bei allen drei Netzen in einem
ähnlichen Bereich, wobei das MOPGRNN die kleinste Anzahl mit 624 Eingangs- und
208 rekurrenten Neuronen aufweist. Die Abbildung 3-14 zeigt auf, dass das RNN die Dy-
namik des Golfroboters grundlegend annähern und wiedergeben kann, im Vergleich zu
den anderen Modellen jedoch die größten Abweichungen aufweist. Dies wird insbeson-
dere in den Vergrößerungen rechts der Abbildung deutlich. Zudem ist erkennbar, dass das
PGRNN, welches ohne die Gütevektoroptimierung trainiert worden ist, im Vergleich zum
physikalischen Simulationsmodell überwiegend eine Verbesserung der Modellgüte erzeu-
gen kann. Dies zeigt sich vor allem in der Approximation der Winkelgeschwindigkeit und
stützt die Erkenntnisse aus Abschnitt 3.1.3. Auffällig ist aber, dass das PGRNN trotz der
Nutzung des physikalischen Modells und entgegen der Erkenntnisse aus Abschnitt 3.1.3
eine vergleichbare komplexe Architektur wie das RNN besitzt. Wird nun eine komplexere
Mehrzieloptimierungsstrategie basierend auf Gleichung (3.16) statt einer einfachen Ska-
larisierung gewählt, verbessert sich die Modellgüte des PGRNNs erneut: Die Trajektorien
des MOPGRNNs, dargestellt in violett, geben die Dynamik des Golfroboters am besten
wieder. Dies scheint allein aus der detaillierteren Berücksichtigung des physikalischen
Vorwissens in Form der Energiebilanz zu resultieren, da das MOPGRNN aufgrund der
ähnlich skalierten Neuronenanzahl eine vergleichbare Komplexität wie die anderen bei-
den Netze aufweist.
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Abbildung 3-14: Modellgüte eines PGRNNs bzw. MOPGRNNs im Vergleich zu anderen
datengetriebenen und physikalisch basierten Modellen anhand des Golf-
roboters, vgl. die vergrößerten Bildausschnitte (rechts) und [SGT22]
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Da die Initialisierung der Gewichte eines neuronalen Netzes allerdings einen größeren
Einfluss auf ihre Performanz aufweist, wird eine statistische Untersuchung durchgeführt,
um die Datenabhängigkeit zu ermitteln. Dazu wird jede der drei Netzarten 16 Mal mit
denselben Trainingseinstellungen trainiert. Für jedes dieser Netze wird anschließend die
Modellgüte anhand derselben Testtrajektorie überprüft und mittels eines Simulationsfeh-
lers esim quantifiziert [SGT22]:

esim =
1
N

N∑

s=1

1
qs

∫ tq

t0

|ẋs(t̃) − ˙̂xs(t̃)|1
1 + λt̃ t̃

dt̃.

Dieser Simulationsfehler wertet die Fehlerfläche zwischen der tatsächlichen und der prädi-
zierten Trajektorie aus, wobei N die Anzahl der Trainingssamples, welche jeweils eine
Länge qs mit s = 1, . . . ,N aufweisen, sowie ẋs bzw. ˙̂xs die jeweiligen Trajektorien dar-
stellen. Der Parameter λt̃ stellt hierbei die Option dar, den Fehler zeitabhängig zu prio-
risieren, wird aber für die folgenden Untersuchungen auf λt̃ = 1 gesetzt, sodass kein
Vergessensfaktor berücksichtigt wird [SGT22]. Aufgrund der Berechnung des zeitlichen
Simulationsfehlers lässt sich die Modellgüte der verschiedenen Modelle und mehrfach
durchgeführten Versuche quantitativ durch den durchschnittlichen Fehler µ und die Stan-
dardabweichung σ bemessen, welche in der Abbildung 3-15 durch einen Punkt bzw.
eine vertikale Linie dargestellt sind. Die Abbildung zeigt zudem nicht nur den Simula-
tionsfehler der verschiedenen Modelle im Vergleich, sondern untersucht auch ihre Daten-
abhängigkeit, indem die x-Achse die Anzahl der genutzten Trainingssamples beschreibt.

3 6 9 12 15

0,1

0,2

0,3

Anzahl der Trainingssamples

Si
m

ul
at

io
ns

fe
hl

er
e s

im
/
s(
µ
±2

σ
2 )

RNN PGRNN MOPGRNN Phys. Simulationsmodell

3 6 9 12 15

0,1

0,2

0,3

Anzahl der Trainingssamples

Si
m

ul
at

io
ns

fe
hl

er
e s

im
/
s(
µ
±2

σ
2 )

Abbildung 3-15: Statistische Auswertung des Simulationsfehlers verschiedener Modellar-
ten für den Golfroboter, unterschieden nach der Anzahl der Trainings-
samples und danach, ob die Trainingsdaten sinusförmige Anregungen
enthielten (rechte Grafik) oder nicht (linke Grafik), vgl. [SGT22]
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Zudem wird in ein Training mit (rechte Grafik) und ohne (linke Grafik) sinusförmigen
Anregungen unterschieden, da der Golfroboter insbesondere bei sinusförmigen Anregun-
gen seine starken nichtlinearen Effekte aufzeigt (vgl. Abbildung A6-2). Allerdings können
zwei Erkenntnisse sogar unabhängig von den verwendeten Daten und der Anzahl der Trai-
ningssamples aus dieser Abbildung gewonnen werden: Das RNN unterliegt grundsätzlich
den anderen Modellen und kann nicht an die Modellgüte eines physikalischen Modells
bzw. eines hybriden Modell heranreichen. Es existiert jedoch für das RNN ein optimaler
Datensatz, der sich bei neun bzw. zwölf Trainingssamples befindet, da sich der Simula-
tionsfehler danach mit steigender Datenmenge wieder erhöht. Die zweite Erkenntnis be-
zieht sich auf das MOPGRNN: Dieses scheint unabhängig von der Datenmenge und der
Anzahl der Trainingsdaten einen vergleichbar niedrigen Simulationsfehler zu erzielen,
welcher sogar geringer als der des physikalischen Simulationsmodells ist. Somit verbes-
sert die Mehrzieloptimierung mittels der Gütevektoroptimierung nicht nur die Modellgüte
des MOPGRNNs im Vergleich zum physikalischen oder datengetriebenen Modell, son-
dern erhöht zudem die Robustheit des Netzes hinsichtlich der Menge der verwendeten
Trainingsdaten. Dies bestätigt das vergleichbar formulierte PGRNN, welches nicht mit
der Gütevektoroptimierung die Mehrzieloptimierung (3.13) umgesetzt worden ist und ei-
ne Abhängigkeit bzgl. der Daten aufweist. Diese äußert sich darin, dass einerseits je nach
Anregung in den Trainingsdaten eine verminderte Modellgüte resultiert und andererseits
erst mit steigender Anzahl an Trainingssamples eine vergleichbare Modellgüte wie das
MOPGRNN erzielt werden kann.
Die statistische Analyse zeigt demnach, dass die Verbesserung des Mehrzieloptimierungs-
ansatzes viele Vorteile wie Robustheit bzgl. der Trainingsdaten für das (MO)PGRNN
bringt und dadurch eine zuverlässig hohe Modellgüte erzielt werden kann, welche die
des nichtlinearen, physikalischen Simulationsmodells übersteigt. Im Anhang vergleicht
die Abbildung A6-5 zudem die Modellgüte des PGRNNs und MOPGRNNs zum SINDy-
Modell (3.6) mit der BibliothekΨ1 und zum PGNN-Modell aus dem Abschnitt 3.1.3. Die
Verbesserung der Modellgüte im Vergleich zum PGNN aufgrund der rekurrenten Struktur
und der Zeitabhängigkeit fällt besonders stark auf. Dennoch übertrifft das SINDy-Modell
auch weiterhin die physikalisch motivierten Netze bzgl. der Genauigkeit. Somit stellt das
MOPGRNN zwar eine vorteilhafte Möglichkeit dar, eine hohe Modellgüte bei gleichzei-
tiger Erhaltung physikalischer Prinzipien zu erzielen, schneidet aber im Verhältnis des
Aufwands und Nutzens deutlich schlechter als ein SINDy-Modell ab, welches mit we-
nig Aufwand erarbeitet werden kann und eine ähnliche Genauigkeit liefern kann. Für
das MOPGRNN lässt sich demnach eine ähnliche Einschätzung wie beim PGNN vor-
nehmen: Für komplexe Systeme und wenige Datensätze ist es eine effiziente Methode,
ein Modell mit höher Güte zu erzielen, für weniger komplexe Anwendungsfälle eignet
sich meist die physikalisch basierte Modellierung oder das SINDy-Verfahren. Im Folgen-



76 3 (Offline-)Strategien zur Kompensation von Modellungenauigkeiten

den werden die bisher betrachteten Techniken der hybriden Systemidentifikation bzgl. der
Anforderung F.3 eingeordnet.

3.1.5 Nutzbarkeit für den Beobachter- und Reglerentwurf

Ziel dieser Arbeit ist die Entwicklung oder Erweiterung einer Methode zur Zustandsschät-
zung trotz Modellungenauigkeiten unter den spezifischen Anforderungen F.1-F.3. Daher
lautet nun die Frage, inwiefern sich die entwickelten Modelle aus den vorangegangenen
Abschnitten zur Zustandsschätzung (und Regelung) eignen. Das SINDy-Modell ist auf-
grund seiner physikalisch plausiblen Form (vgl. Gleichung (3.6)) für viele Beobachter-
und Reglertypen nutzbar, auch wenn ggf. Anpassungen an das Modell, wie eine Linea-
risierung, vorgenommen werden müssen. Im Kontrast dazu stellen PG(R)NNs29 trotz ih-
rer hohen Modellgüte eine Herausforderung für den modellbasierten Regelungsentwurf
durch die Black-Box-Struktur des neuronalen Netzes dar. Denn obwohl ein physikalisches
Simulationsmodell Teil des Gesamtmodells ist, welches weiterhin die Anforderungen an
einen modellbasierten Entwurf erfüllt, bildet der Kern der Gesamtkonstruktion durch die
Verwendung eines neuronalen Netzes eine Black-Box-Struktur. Diese Struktur kann nicht
für Regler- oder Beobachterentwürfe herangezogen werden, die eine Zustandsraumdar-
stellung erfordern, wie ein Riccati-Regler oder Luenberger-Beobachter es tun [Ada18;
FKL+22]. Als Konsequenz sind die PG(R)NN-Modelle daher nur für solche Beobachter
und Regler nutzbar, welche auf dem Ein-/Ausgangsverhalten eines Systemmodells basie-
ren, und werden deshalb in den beiden nachfolgenden Abschnitten exemplarisch in jenen
angewendet.

Beobachterentwurf

Einer der wenigen modellbasierten Beobachter, der Modelle mit Ein-/Ausgangsverhal-
ten verarbeiten kann, ist das SRUKF, welches im Abschnitt 2.2.2 vorgestellt worden ist.
Da dieses im Prädiktorschritt lediglich Kenntnis über die Systemdynamik erfordert, um
den nächsten Zustand zu prädizieren, kann das PG(R)NN-Modell unkompliziert einge-
setzt und genutzt werden. Anhand des Golfroboters wird die Schätzgüte eines PG(R)NN-
basierten SRUKFs nun simulationsbasiert untersucht, da eine Umsetzung am Prüfstand
aufgrund der zu Verfügung stehenden Software für komplexe neuronale Netze nicht mög-
lich war. Als Referenz der geschätzten Trajektorien dienen daher Messdaten vom Prüf-
stand. Die genutzten PG(R)NN-Modelle resultieren aus den Abschnitten 3.1.3 bzw. 3.1.4,
die verwendeten Kovarianzmatrizen lauten Q = 0, 01 · I und R = 0, 00001. Die Resultate
der Analyse zeigen in der Abbildung 3-16 auf der linken Seite den Schätzfehler, wenn

29Es wird die Abkürzung PG(R)NN genutzt, wenn ein PGNN und/oder ein PGRNN gemeint sind.
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der Golfroboter mit einer sinusförmigen Schwingung mit gleich bleibender (Sinus) bzw.
größer werden Frequenz (Chirp) oder mit einem Sprung angeregt wird. Dieser absolute
Schätzfehler wird durch

e =
1

n · N
n∑

i=1

N∑

j=1

|x̂i, j − xi, j|

abhängig vom gewählten PG(R)NN-Modell und der jeweiligen Anregung anhand von N

Datensätzen bestimmt. Die Ergebnisse des Schätzfehlers zeigen, dass weder ein PGNN-
noch PGRNN-basierter Beobachter besonders gut schätzt.
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hä
tz

fe
hl

er
e

PGNN
PGRNN

0 1 2 3 4 5 6 7 8
−1

0
1

φ
[r

ad
]

Messung PGNN PGRNN

0 1 2 3 4 5 6 7 8
−5

0
5

φ̇
[r

ad
/s

]

0 1 2 3 4 5 6 7 8
−0,4
−0,2

0
0,2
0,4

Zeit t [s]

u
[N

m
]

Abbildung 3-16: Auswertung der PG(R)NN-basierten Zustandsschätzung:
Schätzfehleranalyse (links) von drei Testtrajektorien und exempla-
rischer Trajektorienverlauf bei Sprunganregung (rechts)

Allerdings zeigt der Vergleich, dass das PGNN-basierte Filter in den meisten Fällen dem
des PGRNN-basierten überlegen ist, welches einen sehr hohen Schätzfehler aufweist. Ein-
zige Ausnahme bildet die Anregung einer Sinusschwingung mit sich verändernder Fre-
quenz, bei welcher beide Schätzfehler in einem vergleichbaren Rahmen liegen. Zur qua-
litativen Einschätzung sind auf der rechten Seite der Abbildung 3-16 die geschätzten Tra-
jektorien des Golfroboters im Vergleich zu den Messdaten (in schwarz) bei einer Sprung-
anregung dargestellt. Da der Winkel gemessen wird, lässt sich der qualitative Unterschied
der Schätzung in der Winkelgeschwindigkeit erkennen: Während das PGNN-basierte Fil-
ter (in rot) überwiegend eine korrekte Zustandsschätzung bis auf Ausreißer um drei bzw.
fünf Sekunden ermöglicht, sind die Schätzungen des PGRNN-Beobachters (in grün) sehr
stark verrauscht, wenn auch oszillierend um den tatsächlichen Verlauf. Es konnte aller-
dings keine geeignete Einstellung für das Filter bzw. dessen Kovarianzmatrizen gefun-
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den werden, die dieses Rauschen verringern. Daher lässt sich festhalten, dass eine Zu-
standsschätzung mit PG(R)NN-basierten Modellen möglich ist, diese jedoch in Qualität
und Güte hinter einem physikalischen basierten Beobachter zurücksteht.

Reglerentwurf

Obwohl die erarbeiteten Modelle vor allem für die Zustandsschätzung genutzt werden
sollen, formuliert Anforderung F.3 den Anspruch, dass diese grundsätzlich in einer nach-
vollziehbaren, physikalisch transparenten Gestalt erscheinen und insbesondere für weitere
Schritte zugänglich sein sollten. Daher wird beispielhaft überprüft, inwiefern ein solches
Modell für den Reglerentwurf nutzbar ist. Zugänglichkeit und Nutzbarkeit bedeuten in
dieser Situation, dass ein Regelverfahren gewählt werden kann, welches einerseits mit
dem hybriden Modell kompatibel ist und andererseits eine erfolgreiche Durchführung der
Regelungsaufgabe erlaubt (vgl. Abschnitt 1.2). Aufgrund ihrer Teil-Black-Box-Struktur,
welche lediglich die Kenntnis des Ein-/Ausgangsverhaltens erlaubt, wird stellvertretend
die modellprädiktive Regelung (MPC) als Regelverfahren analysiert. Dieses Verfahren
berechnet mittels eines gleitenden Zeithorizonts und basierend auf der Prädiktion eines
Systemmodells die optimale Stellgröße, die den Regelfehler und die Stellenergie auf der
Grundlage gewählter Designgrößen minimiert [Ada18]. Da die MPC nur den nächsten
prädizierten Zustand xk+1 erhalten muss, kann ein PG(R)NN für diese Regelstrategie ge-
nutzt werden, d. h. es ist zugänglich für einen solchen Reglerentwurf. Die Herausforde-
rung für eine MPC besteht jedoch immer darin, trotz der Optimierung in jedem Zeitschritt
echtzeitfähig zu sein. Während für lineare Systeme eine Konvergenz durch die Konvexität
des Optimierungsproblems garantiert werden kann, ist für nichtlineare Systeme nicht si-
cher, ob das Problem konvergiert, da mehrere lokale Minima existieren können. Zudem
erfordert die Auswertung einer nichtlinearen Dynamik im Allgemeinen eine hohe Re-
chenzeit. Im Fall der PG(R)NN kommt neben der Auswertung des Simulationsmodells
noch die Berechnung des jeweiligen NNs hinzu, welche für ein RNN besonders auf-
wendig ist. Die Struktur einer MPC, wenn ein PG(R)NN als Modell genutzt wird, ist
schematisch in der Abbildung 3-17 dargestellt und an die Visualisierung in [Rei22, S.80]
angelehnt.
In [ACS+21; NKFU22] konnte bereits erfolgreich gezeigt werden, dass der Van-der-Pol-
Oszillator oder ein mehrgelenkiger Roboterarm durch eine auf PG(R)NN-Modellen ba-
sierten MPC geregelt werden können. Die dort verwendeten PG(R)NN-Modelle unter-
scheiden sich in ihrer Struktur aufgrund der physikalischen Teilkostenfunktion zu denen
dieses Abschnitts, stellen jedoch das Potential für die MPC heraus. In [Rei22] wurden
daher die in den Abschnitten 3.1.3 und 3.1.4 entwickelten Modelle des Golfroboters hin-
sichtlich der Nutzung für eine MPC analysiert. Dabei zeigten sich Herausforderungen in
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der Echtzeitfähigkeit aufgrund der nichtlinearen Struktur der MPC (vgl. Abbildung 3-17),
sodass eine Anwendung auf dem Prüfstand nicht möglich war. Allerdings konnte durch
eine simulierte MPC die Analyse der Modellgüte bestätigt werden, da die PG(R)NN-
basierte MPC eingestellten Sollverläufen überwiegend adäquat folgen konnte. Dies ist
insbesondere überraschend, da die Modelle mit rein gesteuerten Signalen trainiert wur-
den. Ein Nachtraining dieser mit geregelten Signalen lässt eine noch bessere Qualität
der MPC erwarten. Im Vergleich jedoch zu anderen Regelverfahren, wie der aktuell im-
plementierten Gain-Scheduling-Strategie am Golfroboter, ist der Nutzen der PG(R)NN-
Modelle aufgrund ihrer Einschränkung bzgl. der Echtzeitfähigkeit nur bedingt gegeben.
Diese könnte u. U. durch Verwendung anderer Softwareoptionen, z. B. CasADi30, verbes-
sert werden.
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Abbildung 3-17: (Nichtlineare) MPC mit PG(R)NN als Streckenmodell, vgl. [Rei22, S.80]

Fazit

Die Erkenntnisse der vorigen Abschnitte zeigen: Die durch PG(R)NN bzw. SINDy ent-
standenen Modelle erfüllen nicht alle Kriterien, die im Abschnitt 1.2 formuliert worden
sind. So sind die PG(R)NN-Modelle beispielsweise nur bedingt für weitere Schritte im
Regelungsentwurf geeignet, da ihr Einsatz ausschließlich für Beobachter- und Regler-
verfahren möglich ist, die auf dem Ein-/Ausgangsverhalten eines Modells basieren. Dies
schränkt die Nutzung der PG(R)NN-Modelle stark ein und widerspricht trotz ihrer ho-
hen Modellgüte der zu Beginn dieser Dissertationsschrift formulierten Anforderung F.3.
Darüber hinaus können auftretende Modellungenauigkeiten durch die Netzstruktur kaum
physikalisch dargestellt und interpretiert werden, weil sie durch die Netzarchitektur und
das Training intrinsisch kodiert werden, sodass Anforderung F.2 trotz physikalischer Plau-
sibilität nicht erfüllt wird. Obwohl sich die PG(R)NNs durch eine sehr hohe Modellgüte

30https://web.casadi.org/, abgerufen am 12.10.2023
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auszeichnen und eine zufriedenstellende Alternative für eine vollständige Systemidenti-
fikation darstellen, die eine hohe Schätzgüte erwarten lässt (vgl. Anforderung F.1), ber-
gen sie demnach in der Nutzbarkeit für den Beobachter- und Reglerentwurf einige nicht
zu vernachlässigende Herausforderungen. Je nach Applikation können diese u. U. einen
höheren Aufwand in Form von Entwicklungs- und Rechenzeit bedeuten, der den der klas-
sischen, rein physikalisch basierten Methoden erheblich überschreitet. Gleichwohl zeigen
PG(R)NNs in vielfältigen Situationen eine besonders hohe Modellgüte und flexible An-
wendbarkeit, z. B. in einer MPC (vgl. [NKFU22]) oder wenn wie bei der Ventildynamik
die Modellierung durch ein PG(R)NN eine zeit- und kosteneffizientere Wahl darstellt (vgl.
Abbildung 3-11). Als Lösungsmethode im Rahmen dieser Dissertationsschrift eignen sie
sich jedoch aufgrund der mangelnden Umsetzung der zu Beginn formulierten Anforde-
rungen nicht. Deutlich vorteilhafter ist ein SINDy-Modell, welches durch seine Gestalt
physikalisch nachvollziehbar bleibt und dadurch einer Vielzahl an Beobachter- und Reg-
lerverfahren zur Verfügung gestellt werden kann. Allerdings ist dieses Verfahren lediglich
anwendbar, wenn der vollständige Zustand messbar ist oder einen differentiellen Zusam-
menhang aufweist. Dies ist eine starke Einschränkung in der Nutzung dieser Methode, da
das primäre Ziel und der Ausgangspunkt dieser Arbeit die korrekte Schätzung des Sys-
temzustands trotz gegenwärtiger Modelldiskrepanzen darstellt. Dennoch weist das Ver-
fahren SINDy bis auf diesen Nachteil großes Potential auf, um die Ziele dieser Arbeit
umzusetzen. Deshalb wird die Grundidee einer physikalisch motivierten Bibliothek, wel-
che Interpretierbarkeit erlaubt, im Kapitel 4 fortgeführt und für die Formulierung eines
Beobachterentwurfs genutzt. Alternativ zur hybriden Systemidentifikation wird zunächst
der Schritt des Beobachterentwurfs adressiert und untersucht, inwiefern ein Beobachter-
modell bzgl. der Modell-Realitäts-Lücke korrigiert und angepasst werden kann.

3.2 Modellkorrektur innerhalb eines Beobachters

Obwohl die erörterten Methoden der vorherigen Abschnitte 3.1.3 und 3.1.4 eine hohe
Modellgüte bzgl. der realen Strecke aufweisen und somit eine erfolgreiche Systemiden-
tifikation darstellen, ist der Einsatz solch hybrider Modelle in den nachfolgenden Rege-
lungsentwurfsschritten aufgrund ihrer Teil-Black-Box-Struktur häufig schwierig und li-
mitiert die Wahl der Schätz- und Regelverfahren. Insbesondere die Notwendigkeit, dass
die zur Systemidentifikation genutzten Messdaten den vollständigen Zustand umfassen
müssen, ist in der Praxis meistens nicht gegeben und erfordert gerade genau einen Be-
obachter, der diese Größen zuverlässig schätzt. Alternativ wird der Lösungsansatz daher
in die Richtung des Beobachterentwurfs verschoben und untersucht, inwiefern ein bereits
identifiziertes, rein physikalisches Modell mit minderer Qualität in einen modellbasier-
ten Beobachter eingesetzt werden und trotz existierender Modellungenauigkeiten zufrie-
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denstellende Schätzwerte liefern kann. Konkret wird somit die Kompensationsfähigkeit
eines Beobachters in Abhängigkeit von Modellgüte und Art der Modellungenauigkeiten
analysiert (vgl. Abschnitt 2.4). Die Erwartungshaltung ist hierbei, dass die klassischen
Beobachter, welche in den Abschnitten 2.2 und 2.3 vorgestellt worden sind und deren
Formulierung explizit Modellungenauigkeiten tolerieren, diese kompensieren und daher
das Ziel einer hohen Schätzgüte (vgl. Anforderung F.1) umsetzen können. Allerdings wer-
den die Abschnitte dieses Kapitels zeigen, dass dazu u. a. zusätzliche Unterstützung durch
Vorwissen oder Daten erforderlich ist und Interpretierbarkeit nach Anforderung F.2 nicht
erzielt werden kann. In der Literatur finden sich zudem viele verschiedene Verfahren, die
einerseits häufig ausschließlich auf bestimmte Anwendungsfälle zugeschnitten sind und
andererseits nicht alle drei formulierten Kriterien F.1 bis F.3 erfüllen. So ermöglicht bei-
spielsweise der lernende Luenberger-Beobachter nach [Sch10] die Kompensation einer
isolierten, nicht bekannten Streckennichtlinearität durch die Nutzung eines neuronalen
Netzes. Dieser setzt die Anforderungen F.1 und F.3 um, kann aber durch die Struktur
eines neuronalen Netzes keine physikalisch wertvolle Darstellung der Nichtlinearität ge-
ben. Daher werden in den folgenden Abschnitten zwei der populärsten Methoden aus
dem aktuellen Stand der Technik beleuchtet, inwiefern diese nicht nur die Anforderung
einer hohen Schätzgüte erfüllen, sondern auch, ob die weiteren Forderungen F.2 und F.3
bzgl. der physikalischen, parametrischen Identifikation der Modellungenauigkeit und der
Zugänglichkeit der Erkenntnisse über diese umgesetzt werden können. Vereinzelte Inhal-
te der nachfolgenden Abschnitte sind bereits in geringem Umfang in den studentischen
Arbeiten [Ros22] und [Klu23] enthalten oder basieren teilweise auf den erarbeiteten Al-
gorithmen.

3.2.1 Kompensation durch optimal initialisierte Kovarianzmatrizen

Da die Qualität eines Beobachters nicht nur von der Modellgüte, sondern auch von der
Genauigkeit und Auflösung der Sensorik abhängt, ist es üblich, dies im Zustandsmo-
dell des Beobachters zu berücksichtigen. Im Abschnitt 2.2 wurde die Unsicherheit, wel-
che die Messwerte aufgrund der Sensorik beinhalten können, bereits in den Kalman-
Filtern als stochastisches Messrauschen berücksichtigt. Neben dem Messrauschen mo-
dellieren diese Beobachter zudem Prozessrauschen, welches als Puffer für Abweichungen
zur tatsächlichen Dynamik des Systems dient und aus diesem Grund als Ausdruck für die
Unsicherheit eines Modells bezogen auf den realen Prozess aufgefasst werden kann. In
der Regel werden beide Arten des Rauschens mittels einer Normalverteilung modelliert,
sodass wk ∼ N(0,Q) und vk ∼ N(0, R) gilt. Zu Beginn der Filterauslegung müssen die
Kovarianzmatrizen Q, R initialisiert werden. Dabei kann die Varianz des Messrauschens
meist sehr gut anhand von Probemessungen bestimmt werden, die des Prozessrauschens
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ist jedoch deutlich schwieriger zu wählen (vgl. [van04; CHJA18]). Da die Kovarianzma-
trizen einen nicht zu unterschätzenden Einfluss auf die Schätzgüte besitzen, sollten sie
nicht beliebig initialisiert werden. Die Abbildung 3-18 illustriert daher den Einfluss von
zwei verschiedenen Prozesskovarianzen auf die Qualität der Schätzung anhand eines Ein-
fachpendels (Q1 = 0, 001 · I und Q2 = I mit der Einheitsmatrix I). Es ist zu erkennen,
dass die Schätzung der Winkelgeschwindigkeit durch das verwendete SRUKF deutlich
schlechter wird, wenn die Varianz des Prozessrauschens zu groß angesetzt wird. Somit
besitzt die Prozesskovarianz einen starken Einfluss auf die Schätzgüte. Diese Erkennt-
nis hilft bei der Herausforderung, wenn größere Modellungenauigkeiten ∆ f zur Strecke
bestehen und ein modellbasierter Beobachter eine hohe Schätzgüte erzielen soll. Im Fol-
genden wird daher untersucht, inwiefern eine optimale Initialisierung der Kovarianzen
eine Kompensation von Modellungenauigkeiten bewirken kann.
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Abbildung 3-18: Einfluss der Prozesskovarianzmatrix im SRUKF auf die Schätzgüte eines
Einfachpendels mit identisch gewählten R, P0 und x0 , x̂0

Neben einer zufälligen oder rasterbasierten Suche bietet die Bayessche Optimierung, de-
ren Vorteile im Abschnitt 2.1.3 dargelegt worden sind, eine effizientere Möglichkeit, op-
timale Einträge der Kovarianzmatrizen insbesondere auch für höherdimensionale Sys-
teme zu finden. In [CHJA18] und [CAJH19] wird genau diese Vorgehensweise für ein
Kalman-Filter bzw. ein EKF diskutiert. Alternative Methoden zum automatischen Tu-
ning stellen [KA16; CBW+19] dar, welche entweder regelbasiertes Erfahrungswissen mit-
tels Fuzzy-Logik und neuronaler Netze umsetzen oder eine Partikelschwarmoptimierung
durchführen. Aufgrund der Performanz der BO in der Hyperparameteroptimierung wird
diese im Folgenden unter der Zielsetzung, Modellungenauigkeiten durch optimale Ko-
varianzen zu kompensieren, analysiert. Hierbei bilden die Einträge der Matrizen Q und
R die Optimierungsvariablen der BO. Zur Reduktion des Rechenaufwands und für die
Übersichtlichkeit wird für den weiteren Verlauf dieses Abschnitts eine Diagonalgestalt
beider Matrizen angenommen, d. h. dass keine Korrelationen untereinander bestehen und
n + m Optimierungsvariablen {qii, r j j} bestimmt werden müssen.
Da eine hohe Schätzgüte das Ziel eines jeden Beobachters ist, wird die Minimierung
des Schätzfehlers ex = x̂ − x als Kostenfunktion der BO angestrebt. Allerdings ist der
Schätzfehler basierend auf realen Messungen normalerweise nicht berechenbar, weil der
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Zustand nicht vollständig messbar ist. Daher wird der Ausgangsfehler ey = ŷ − y in der
Kostenfunktion genutzt, falls nur Messungen und keine Simulationen vorliegen. Häufig
findet zudem eine Gewichtung des Schätz- bzw. Ausgangsfehlers mit einer Gewichtungs-
matrix Wx bzw. Wy für N Mess- oder Simulationswerte statt, sodass eine der beiden
folgenden Funktionen durch die BO minimiert werden soll (vgl. [CHJA18; CAJH19;
Ros22]):

J(x̂)WEES = log


1
N

N∑

k=1

(eT
x,kWxex,k)

 , J(x̂)WIS = log


1
N

N∑

k=1

(eT
y,kWyey,k)

 . (3.17)

Dabei beschreiben die Abkürzungen jeweils die Art der Kostenfunktion: Weighted Esti-

mation Error Squared (WEES) bzw. Weighted Innovation Error Squared (WIS). Für die
folgenden Untersuchungen wird die Gewichtungsmatrix als Einheitsmatrix angenommen.
Manchmal wird zudem bei dynamischen Schätzern ein weiteres statistisches Merkmal,
das der Konsistenz eines Filters, genutzt, um die Qualität des Beobachters zu bewerten.
Details dazu finden sich im Anhang A6.1. Die Idee, die BO zur Bestimmung optimal
initialisierter Kovarianzmatrizen zu nutzen, basiert auf der Voraussetzung, dass bereits ei-
nige initiale Experimente mit verschiedenen Parametrierungen {qii, r j j} durchgeführt wor-
den sind, auf deren Grundlage die Schätzgüte des Filters evaluiert werden kann. Zudem
besteht eine weitere Voraussetzung darin, während der Optimierung Experimente am Sys-
tem durchführen zu können, um weitere Daten zu sammeln. Dies kann aber auch in Si-
mulationen erfolgen, um Zeit und Kosten zu sparen. Der grundlegende Ablauf, wie die
Kovarianzen eines Filters mittels der BO optimal bestimmt werden können, ist dazu ana-
log zum Algorithmus 1 in der Abbildung 3-19 dargestellt.

Start Initialisierung
der BO

Ausführung
des Filters

Auswertung der
Kostenfunktion J

Aktualisierung
des Modells Ĵ

Abbruchbedingung
erfüllt?

Maximierung der
Acquisitionfunction

Stopp

D = DN0

z ∈ {(qii, r j j)} D ∪ (z, J(z))

JaNein

Abbildung 3-19: Vorgehen zur Bestimmung optimal initialisierter Kovarianzmatrizen
durch Bayessche Optimierung

Nach der Initialisierung der BO durch Mess- oder Simulationsdaten D = DN0 werden
basierend auf dem Ersatzmodell Ĵ Parameterwerte z ∈ {(qii, r j j)} für die Kovarianzen Q
und R gewählt, deren Wirkung anschließend hinsichtlich der gewählten Kostenfunktion
J quantifiziert wird. Nach der Anpassung des Modells Ĵ auf Grundlage der neuen Daten
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D ∪ (z, J(z)) wird durch die Maximierung der Acquisitionfunction eine neue Parame-
trierung bestimmt, mit welcher das Filter ausgeführt und der Kreislauf fortgeführt wird,
sofern die maximale Anzahl an Iterationen oder ein anderes Abbruchkriterium noch nicht
erreicht worden ist.

Analyse des Kalman-Filters

Nach der Beschreibung des Vorgehens werden nun die Kovarianzmatrizen eines Kalman-
Filters optimal initialisiert, um zu analysieren, inwiefern bestehende Modellabweich-
ungen kompensiert werden können. Dazu dient der Golfroboter (3.4) als Beispiel, des-
sen Modellungenauigkeit durch die Linearisierung der Systemdynamik für den Gain-
Scheduling-Ansatz resultiert (vgl. Anhang A6.1,[Ada18]). Da für den Golfroboter ein
detailliertes, nichtlineares Modell vorliegt, kann dieses für die BO genutzt werden, so-
dass die Bestimmung optimal initialisierter Kovarianzmatrizen simulationsbasiert und im
offenen Regelkreis erfolgt. Als Kostenfunktion wird JWIS nach Gleichung (3.17) genutzt.
Für die 20 Iterationen der BO wird als Acquisitionfunction Expected Improvement so-
wie ein identischer Suchraum [10−5, 1]3 für alle drei Optimierungsvariablen gewählt. Der
Verlauf der Optimierung ist daraufhin in der Abbildung 3-20 exemplarisch dargestellt.
Diese zeigt im Vergleich zum nichtlinearen Modell, abgebildet durch die schwarzen Tra-
jektorien, die zu dem Zeitpunkt der Iteration resultierende Trajektorie des Kalman-Filters,
welche von den Kovarianzmatrizen abhängig ist.
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Abbildung 3-20: Ergebnis verschiedener Iterationen während der BO für die Kostenfunk-
tion WIS (3.17): Iteration 20 stellt die beste, durch die BO gefundene
Initialisierung dar.
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So zeigt sich, dass eine Einstellung der Kovarianzmatrizen nah am Optimum bereits nach
Iteration 13 erreicht wird, die optimale Einstellung allerdings erst in Iteration 20 erzielt
wird. Dies ist an den orange gestrichelten Trajektorien und dem Wert der Kostenfunktion
erkennbar, welcher auf der rechten Seite der Abbildung dargestellt ist. In dieser Visuali-
sierung ist zudem zu sehen, dass der Modellfehler sukzessiv mit den Iterationen vermin-
dert und die Qualität der Zustandsschätzung erhöht werden. Die optimale Parametrierung
aus Iteration 20 ist daraufhin in der Tabelle 3-2 festgehalten. Diese fasst die Entwicklung
der Optimierungsergebnisse durch ausgewählte Iterationen im Vergleich der Kostenfunk-
tionen WEES und WIS zusammen und gibt Aufschluss über die Parameterwerte für die
Kovarianzmatrizen. Besonders auffällig ist, dass die optimalen Werte für Q und R sich
trotz unterschiedlicher Kostenfunktionen wenig unterscheiden, sondern in der gleichen
Größenordnung liegen. Folglich sind beide geeignet, kleinere Modellabweichungen sowie
Messrauschen, welches während der Simulationen wirkte, zu erkennen und zu kompen-
sieren. Weitere Ergebnisse bzgl. anderer, Konsistenz basierter Kostenfunktionen werden
im Anhang A6.1 behandelt.

WEES WIS
Iteration JWEES q11 q22 r11 JWIS q11 q22 r11

1 -0,1 0,00040 0,00002 0,00750 -1,9 0,17010 0,68740 0,03890
6 -0,9 0,00580 0,00001 0,00001 -1,2 0,96330 0,00001 0,74320

13 -1,7 0,00002 0,00009 0,00001 -2,2 0,07160 0,97000 0,00830
20 -4,7 0,00006 0,96310 0,00001 -4,7 0,00002 0,92970 0,00001

Tabelle 3-2: Kovarianzmatrizen Q und R für den Golfroboter basierend auf simulativen
Ergebnissen und unterschieden nach den verwendeten Kostenfunktion WEES
und WIS (vgl. Abbildung 3-20)

Die bisherige Analyse zeigt, dass das Kalman-Filter durch eine optimale Initialisierung
fähig ist, geringe Modelldiskrepanzen, die z. B. durch die Linearisierung und Nutzung
linearer Modelle zu definierten Betriebspunkten resultieren, zu kompensieren und sei-
ne Schätzgüte zu verbessern. Dies stellt eine Alternative zum EKF dar, das durch die
Aktualisierung zu jedem Zeitschritt die Modelldiskrepanz erfasst, allerdings dazu in je-
dem Schritt eine Bestimmung des Gradienten durchführen muss, die u. U. aufwendig oder
nicht durchführbar ist (vgl. Abschnitt 2.2.1). Bestehen jedoch größere Abweichungen, die
beispielsweise dynamisch stärkere Auswirkungen aufweisen, ist der Ansatz einer Kom-
pensation durch Kovarianzen u. U. nicht mehr ausreichend, wie die nachfolgenden Ab-
schnitte zeigen werden.
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Analyse des SRUKFs

Um zu untersuchen, inwiefern größere Abweichungen durch die Prozesskovarianzma-
trix kompensiert werden können, wird das SRUKF mit Modellen des Golfroboters ge-
nutzt, die Teile des Reib- oder Dämpfungsmoments nicht enthalten (vgl. Anhang A6.1,
Gleichungen (A6-1) und (A6-2)). Wird beispielsweise der Stick-Slip-Effekt MH(x, u) nicht
modelliert, bestehen gravierende Modellungenauigkeiten. Neben der Auswirkung der Mo-
dellierungstiefe wird zudem untersucht, wie sich die BO optimal initialisierten Beob-
achter im geschlossenen Regelkreis beweisen. Dabei wird lediglich das Objekt des Be-
obachters ausgetauscht, während der Regler und die Vorsteuerung weiterhin durch die
Gain-Scheduling-Strategie (vgl. Anhang A6.1) umgesetzt werden. In verschiedenen Ex-
perimenten konnte beobachtet werden, dass die optimalen Parametrierungen der Kova-
rianzen trotz unterschiedlicher Modellierungstiefen kaum Unterschiede aufwiesen und
trotz größerer Modellabweichungen eine zuverlässige Schätzung erlaubten. Schließlich
fasst die Abbildung 3-21 die bisherigen Analysen bzgl. der Beobachtertypen und der un-
terschiedlichen Modellabweichungen für die Kostenfunktion WEES zusammen. Hierbei
werden sowohl Parametrierungen des SRUKFs, dargestellt durch Kreise, als auch des
Kalman-Filters, abgebildet durch Dreiecke, betrachtet. Für beide Beobachter werden die
einzelnen, durch die BO getesteten Parametrierungen abhängig von dem Wert der Kosten-
funktion, welcher durch die Farbe der Punkte gekennzeichnet ist, dargestellt. Somit gilt,
je mehr sich ein Datenpunkt im blauen Farbspektrum befindet, desto kleiner ist der Wert
der Kostenfunktion und desto besser ist die Parametrierung.
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Abbildung 3-21: Durch die BO getestete Parametrierungen für das SRUKF im geschlos-
senen Regelkreis bzw. für das Kalman-Filter im offenen Regelkreis bei
unterschiedlich großen Modellabweichungen
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Denn über den Wert der Kostenfunktion WEES kann die Größenordnung des Schätzfehlers
abgelesen werden, da der Zusammenhang ϵ → 0⇒ log(ϵ)→ −∞ für eine beliebige Zahl
ϵ > 0 gilt. Daher zeigt die Abbildung 3-21 deutlich, dass sich ein Minimum unabhängig
von der existierenden Modellabweichung oder dem gewählten Filtertyp entlang der q22-
Achse und insbesondere für q22 ∈

(
1
2 , 1

)
einzustellen scheint, obwohl die BO den Such-

raum explorierend untersucht hat. Daraus folgt, dass die BO zuverlässig die größte Mo-
dellabweichung in der Beschreibung der Winkelgeschwindigkeit bzw. -beschleunigung
erkennt, woraufhin eine größere Unsicherheit durch die Parametrierung des Prozessrau-
schens q22 modelliert wird. Zudem postuliert die BO korrekterweise wenig bis keine Mo-
dellabweichungen in q11 bzw. r11.
Aufgrund der Analysen zeigt sich, dass die optimale Initialisierung der Kovarianzmatri-
zen von Kalman-Filtern bedingt geeignet ist, um Modellungenauigkeiten zu kompensie-
ren. Gemäß ihrer Struktur bilden sie eine Option, um Modellabweichungen durch das
Prozessrauschen zu kompensieren, z. B. beim Golfroboter aufgrund der Linearisierung.
Existieren größere Abweichungen im Modell, wie fehlende Dynamikanteile, so gelingt
eine Kompensation und eine zufriedenstellende Schätzung u. U. nicht mehr, wie Experi-
mente am Prüfstand des Golfroboters zeigten. Dies resultiert einerseits aus der zeitinvari-
anten Betrachtung der Kovarianzmatrizen, da eine zeitvariante Bestimmung dieser durch
eine BO nicht umsetzbar ist, sowie andererseits aus der Struktur des Kalman-Filters bzw.
SRUKFs selbst, bei der die Varianzen in der Regel invariant betrachtet werden31. Die Be-
trachtung der Korrelation zwischen den Zuständen, d. h. eine Nicht-Diagonalgestalt für
Q, zeigte ähnliche Erkenntnisse (vgl. [Ros22]).
Neben der partiellen Verletzung der wichtigsten Anforderung, eine hohe Schätzgüte zu
erzielen, stellt diese Methode außerdem kein probates Mittel dar, um Modellungenauig-
keiten zu identifizieren und physikalisch darzustellen. Es wird zwar ein Eindruck bzgl. der
Ungenauigkeit durch die Größe der Kovarianzmatrixelemente vermittelt, diese können je-
doch keine zufriedenstellende Identifikation ermöglichen und somit auch nur bedingt für
weitere Schritte im Regelungsentwurf nutzbar sein. Somit sind die Forderungen F.1 und
F.2 nicht erfüllt, obwohl die Nutzbarkeit eines durch Kalman-Filter erstelltes Modells für
weitere Schritte im Regelungsentwurf grundsätzlich gegeben ist (vgl. Anforderung F.3).
Daher wird im folgenden Abschnitt der Fokus auf einen robusten Beobachter gelegt, der
im Kontrast zu den Kalman-Filtern aufgrund seiner natürlichen Struktur besonders für
den Einsatz bei auftretenden Störungen und Modellungenauigkeiten geeignet ist und diese
zeitvariant schätzt bzw. kompensiert [SEFL14]. Auch dieser wird bzgl. seiner Fähigkeit,
Modellungenauigkeiten zu kompensieren und zu identifizieren, analysiert.

31Nach [WN01; Sch17] bietet die Robbins-Monro-Methode eine Möglichkeit, die Kovarianz zeitvariant
zu gestalten, indem ein Korrektureingriff vorgenommen wird.
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3.2.2 Kompensation durch diskontinuierliche Schaltfunktionen

Statt Modellungenauigkeiten durch Kovarianzen abzumildern, nutzt der im Abschnitt 2.3
eingeführte Sliding-Mode-Beobachter (SMO) dynamische Schaltfunktionen, die durch
den Mess- bzw. Schätzfehler beeinflusst werden, um Modellabweichungen zu kompensie-
ren. Diese Kompensation durch Schaltfunktionen erlaubt eine dynamische Schätzung der
Modellungenauigkeiten oder auftretender Störungen, weshalb dieser Beobachter häufig
in der Störidentifikation bzw. -schätzung eingesetzt wird. Allerdings erfordert der SMO
eine geeignete Parametrierung der Schaltfunktionen für die Konvergenz in den Sliding-
Modus (vgl. Abschnitt 2.3). Diese Parametrierung ϑi ist wiederum abhängig vom Mo-
dellfehler ∆ f , da sich die gewünschte Fehlerdynamik (2.34) erst bei ϑn > |∆ fmax| für
einen n-dimensionalen SMO einstellt. Dieser Einfluss setzt sich auch für die weiteren
Parameter ϑi mit i = 1, . . . , n−1 fort und erfordert in der Regel eine sukzessive Inbetrieb-
nahme des Beobachters [SEFL14; Klu23]. Somit ist auch hier die Parametrierung des
SMOs ähnlich zu den Kalman-Filtern herausfordernd, insbesondere wenn kein Vorwis-
sen über die Schranke ∆ fmax existiert. Ein Beispiel, welches die Herausforderung durch
die Parametrierung illustriert, ist in der Abbildung 3-22 dargestellt. Es handelt sich um
ein nichtlineares Pendel, welches auch in [DFP06; SEFL14; Klu23] diskutiert wird und
dessen Parameter p = (m, g, l, J, d)T im Anhang A6.3 zu finden sind:

ẋ =


x2

−mgl
J sin(x1) − d

J x2 +
1
J u + ρ

 ,

y = x1.

(3.18)

Neben der Anregung u kann zudem ein Störmoment ρ auf die Dynamik der Zustände
x = (φ, φ̇)T wirken, welches durch den folgenden Beobachter

˙̂x =


x̂2 + ϑ1 · sign(ey)
−mgl

J sin(x̂1) − d
J x̂2 +

1
J u + ϑ2 · sign(ey)

 ,

ŷ = x̂1,

ey = y − ŷ,

(3.19)

zusammen mit den Zuständen erfasst werden soll. Der SMO (3.19) ist mit ϑ1 = 2 parame-
triert, während ϑ2 variiert, um die Auswirkungen und Abhängigkeiten von der maximalen
Modellabweichung ∆ f zu analysieren. Wirkt ein zusätzliches Moment ρ(t) = 3 ·cos(t) auf
das Pendel und existieren zusätzlich Anfangsstörungen x̂0 , x0, ergibt sich daher das Ver-
halten, welches in der Abbildung 3-22 dargestellt ist. Dieses verdeutlicht, dass die Wahl
des Parameters ϑ2 in Abhängigkeit der Modellabweichung ∆ f erfolgen muss, welche in
der Abbildung 3-23 zu sehen ist und aufgrund der Parametrierung leicht variiert.



3.2 Modellkorrektur innerhalb eines Beobachters 89

0 5 10 15 20 25 30
−5

0
5

φ
[r

ad
]

Simulation ϑ2 = 80 ϑ2 = 5 ϑ2 = 1

0 5 10 15 20 25 30
−10

0
10

φ̇
[r

ad
/s

]

0 5 10 15 20 25 30
−2

0
2

Zeit t [s]

u
[N

m
]

u(t) ρ(t) uges(t)

0 5 10 15 20 25 30
−5

0
5

φ
[r

ad
]

Simulation ϑ2 = 80 ϑ2 = 5 ϑ2 = 1

0 5 10 15 20 25 30
−10

0
10

φ̇
[r

ad
/s

]

0 5 10 15 20 25 30
−2

0
2

Zeit t [s]

u
[N

m
]

u(t) ρ(t) uges(t)

0 5 10 15 20 25 30
−5

0
5

φ
[r

ad
]

Simulation ϑ2 = 80 ϑ2 = 5 ϑ2 = 1

0 5 10 15 20 25 30
−10

0
10

φ̇
[r

ad
/s

]

0 5 10 15 20 25 30
−2

0
2

Zeit t [s]

u
[N

m
]

u(t) ρ(t) uges(t)

Abbildung 3-22: Einfluss des Parameters ϑ2 auf die Schätzgüte des SMOs bei Existenz
einer Störung ρ(t) anhand des nichtlinearen Pendels
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Ist ϑ2 zu klein gewählt, z. B. mit ϑ2 = 1, obwohl die maximale Abweichung bei etwa
vier Meter pro Quadratsekunde liegt, gelingt es dem SMO nicht, die Zustände korrekt zu
schätzen. Dies äußert sich insbesondere durch die hohen Fehler e1 = ey und e2 = x̂2 − x2

in der Abbildung 3-23. Je größer der Parameter gewählt wird, desto stärker kann das für
den Beobachter typische Rauschen auftreten, welches die Qualität der Zustandsschätzung
nachteilig beeinflusst. Zusätzlich nimmt die Reduktion von Anfangsfehlern längere Zeit
in Anspruch, wie in der Abbildung 3-22 für ϑ2 = 80 erkennbar ist. Untersuchungen in
[Klu23] ergaben, dass für ϑ2 > |∆ fmax| eine obere Grenze existiert, die u. a. von der Re-
chenschrittweite des numerischen Integrationsverfahrens abhängig ist, mit der der Beob-
achter betrieben wird. Infolgedessen zeigt sich, dass das Problem der Initialisierung bezo-
gen auf Parameter, die die Kompensation von Modellungenauigkeiten bzw. die Korrektur
des Beobachtermodells aufgrund dieser beeinflussen, lediglich verschoben wird und wie
bei den Kovarianzmatrizen der Kalman-Filter ebenfalls für den SMO resultiert. Der we-
sentliche Unterschied zwischen diesen Beobachtern, der den SMO vorteilhafter aus Sicht
der Ziele dieser Arbeit erscheinen lässt, liegt in der Fähigkeit des SMOs, eine deutlich
robustere Schätzung durch die dynamische Kompensation der Modellungenauigkeiten zu
ermöglichen. Denn der SMO gibt sogar Aufschluss über den zeitlichen Verlauf dieser, was
einen tieferen Einblick in das System als die Kovarianzen der Kalman-Filter gewährt. In-
dem die geschätzte Modellungenauigkeit ∆ f̂ = {−ϑ2 · sign(ey)}eq durch ein Tiefpassfilter
mit Ts = 0, 01 s geglättet wird [DFP06; SEFL14], ergibt sich sogar eine temporäre Identi-
fikation, wie sie in der Abbildung 3-24 für das obige Beispiel dargestellt ist. Die Glättung
des Signals bewirkt aber keine Nutzbarkeit aufgrund der nicht-parametrischen Zeitreihen-
form für eine weitere Verbesserung des Modells hinsichtlich der Modellungenauigkeiten.
Deshalb erfüllt der SMO die Anforderung einer hohen Schätzgüte (vgl. Anforderung F.1),
kann die weitere Ziele F.2 und F.3 allerdings nur teilweise und nicht zufriedenstellend
umsetzen. Basierend auf den Erkenntnissen dieses Kapitels wird der folgende Abschnitt
deshalb eine Bewertung der diskutierten Methoden hinsichtlich der Problemstellung die-
ser Arbeit vornehmen, woraufhin der Handlungsbedarf abgeleitet wird.
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3.3 Bewertung und Handlungsbedarf

Im Verlauf dieses Kapitels wurden Methoden erörtert, welche basierend auf einer hy-
briden Systemidentifikation Modelle formulieren oder durch Nutzung von Mess- bzw.
Simulationsdaten eine Modellkorrektur durchführen, um die Modell-Realitäts-Lücke zu
reduzieren und korrekte Schätzungen des Zustandes zu ermöglichen. Dabei fokussieren
sich diese Techniken jeweils auf einen konkreten Schritt des Regelungsentwurfs (vgl.
Abschnitt 1.1), um Verbesserungen für die nachfolgenden Aktionen im Regelungsentwurf
zu erzielen. Zentrales Element dieser Methoden ist das Streckenmodell, welches entwe-
der vollständig überarbeitet oder durch Korrekturterme bei der Schätzung angepasst wird.
Viele dieser Techniken bieten den Vorteil, dass sie bei kleineren Abweichungen zwischen
Modell und Strecke eine Verbesserung der Modell- bzw. Schätzgüte ermöglichen. Aller-
dings ist ihr Einsatz häufig aufwendig und nicht für jede Situation geeignet, z. B. aufgrund
der Datenverfügbarkeit und erforderlichen Kenntnis des vollständigen Zustands. Ferner
weist die isolierte Betrachtung und Anpassung einzelner Entwurfsschritte häufig Nach-
teile für die darauffolgenden Entwurfsschritte auf. So ist die Verwendung von PG(R)NN-
Modellen nur bedingt empfehlenswert für den Regler- bzw. Beobachterentwurf, denn die
Black-Box-Struktur des neuronalen Netzes lässt keinen Rückschluss auf die Dynamik
der Modellungenauigkeit zu. Ebenso können die optimal initialisierten Kovarianzmatri-
zen u. U. Diskrepanzen zwischen Modell und Strecke kompensieren, aber keinen Einblick
in die tatsächlich wirkenden Effekte geben. Daher stellt die Abbildung 3-25 eine qualita-
tive Einordnung der Methoden dieses Kapitels anhand eines Netzdiagramms und bezogen
auf die formulierten Anforderungen F.1-F.3 dar. Als weiteres, für die Zustandsschätzung
sehr wesentliches Bewertungskriterium wird zudem die Flexibilität berücksichtigt, einen
nicht vollständig messbaren Zustand verarbeiten zu können.
Die Abbildung zeigt somit sehr deutlich die bereits erwähnten Schwächen der untersuch-
ten Verfahren bzw. ihrer Modelle auf: Die PG(R)NN-Modelle können durch ihre Appro-
ximationsfähigkeit lediglich beim Kriterium der hohen Modellgüte punkten, wohingegen
die Beobachter-basierten Verfahren vor allem ihre Stärken als Beobachter ausspielen, je-
doch weniger gut eine physikalische Interpretierbarkeit der Modellungenauigkeiten oder
eine hohe Nutzbarkeit der resultierenden Modelle in Bezug auf die charakterisierten Mo-
dellungenauigkeiten gewährleisten können. Besonders hervorzuheben ist allerdings das
Verfahren SINDy, welches allen drei formulierten Zielen dieser Arbeit in hohem Maße
gerecht wird. Dennoch kann dieses Verfahren nicht die grundlegende Anforderung einer
Zustandsschätzung erfüllen, auch mit einem nicht vollständig messbaren Zustand um-
gehen zu können und zuverlässige Schätzungen zu erlauben. Ferner ist es (wie fast alle
diskutierten Methoden in diesem Kapitel) nicht in der Lage, eine Online-Schätzung von
Modellungenauigkeiten zu ermöglichen.
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Hohe Schätz-
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Abbildung 3-25: Qualitative Einordnung der Methoden bzw. Modelle des aktuellen Kapi-
tels nach den Zielen und Anforderungen dieser Arbeit

Als Konsequenz aus den bisherigen Untersuchungen lassen sich folglich zwei Schlüsse
ziehen: Erstens ist ein isolierter Fokus, d. h. entweder nur auf eine hybride Modellüber-
arbeitung oder auf eine Beobachter-basierte Kompensation von Modellungenauigkeiten,
nicht zielführend. Daher erscheint eine gleichzeitige Analyse von Zuständen und Modell-
ungenauigkeiten für eine zuverlässige Zustandsschätzung sinnvoller. Als zweite Konse-
quenz sticht die Grundidee des SINDy-Verfahrens heraus, welche die dieser Disserta-
tionsschrift zugrunde liegenden Ziele bis auf die Flexibilität bzgl. eines teilweise messba-
ren Zustands mehrheitlich erfüllen kann und somit im Kapitel 4 bzgl. ihres Potentials für
den Beobachterentwurf näher beleuchtet und aufgegriffen wird.
Aufgrund der wichtigen Erkenntnis aus der ersten Konsequenz komplettiert diese nun die
drei Anforderungen aus Abschnitt 1.2:

F.4 Eine isolierte Betrachtung der Systemidentifikation oder des Beobachterentwurfs
ist nicht zielführend, um korrekte Zustandsschätzungen zu ermöglichen und gleich-
zeitig Modellungenauigkeiten zu erfassen. Die Wechselwirkungen dieser beiden
Schritte sollten analysiert werden.

Diese Folgerung wird nun zusammen mit den anderen Anforderungen im Kapitel 4 basie-
rend auf der Grundidee von SINDy, eine Dynamik durch Linearkombinationen geeigneter
Bibliotheksfunktionen zu approximieren, und basierend auf der gleichzeitigen Schätzung
von Zuständen und Modellungenauigkeiten umgesetzt.
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Die Untersuchungen des vorigen Kapitels zeigen, dass ein isoliertes Vorgehen, bezo-
gen entweder nur auf die Systemidentifikation oder den Beobachterentwurf, aufgrund
der mangelnden Interpretierbarkeit oder Nutzbarkeit für weitere Entwurfsschritte nicht
zielführend ist. Vielmehr ist eine effiziente, gemeinsame Betrachtung der Entwurfsschrit-
te notwendig, um gleichermaßen eine hohe Schätzgüte und Modellgüte zu erzielen sowie
eine physikalisch-technische Darstellung zu konservieren. Daher wird dieses Kapitel die
gleichzeitige Schätzung von Zuständen und Modellungenauigkeiten adressieren, welche
in Echtzeit erfolgt, daher zur Online-Modelladaption im Kapitel 5 genutzt werden kann
und den Neuheitswert dieser Dissertationsschrift darstellt. Zunächst wird Abschnitt 4.1
das Vorgehen durch die Analogie zur gleichzeitigen Schätzung von Zuständen und Para-
metern motivieren, woraufhin einige Voraussetzungen und Annahmen für die Entwick-
lung der Schätzverfahren im Abschnitt 4.2 thematisiert werden. Anschließend entwerfen
die Abschnitte 4.3 bis 4.5 neuartige Methoden, welche basierend auf dem Ansatz einer
Linearkombination aus geeigneten, physikalisch motivierten Funktionen die Modellun-
genauigkeit approximieren (vgl. Abbildung 1-7) und innerhalb der Struktur eines Filters
eingebettet werden können. Schließlich wird Abschnitt 4.6 eine Bewertung der Entwurfs-
verfahren vornehmen. Einige Abschnitte dieses Kapitels sind darüber hinaus bereits Teil
der Vorveröffentlichungen [GT23a; GT23b; GKT23].

4.1 Konzept Joint Estimation

In der Einführung dieser Arbeit ist die Parameteridentifikation in der Abbildung 1-4(a)
als notwendiger Schritt im Rahmen der Systemidentifikation gekennzeichnet worden.
Üblicherweise werden die Parameter eines Modells durch eine Optimierung mithilfe auf-
genommener Messdaten identifiziert. Allerdings kann diese Identifikation auch ohne einen
zusätzlichen Schritt gemeinsam mit der Zustandsschätzung erfolgen. Dazu existieren zwei
strukturelle Ansätze. Die Dual Estimation schaltet ein zweites Filter für die Parameter
θ ∈ Rnθ parallel zum Filter der Zustandsschätzung [WvN99; Nel00; WN01]. Eine effi-
zientere Lösung bildet das Konzept Joint Estimation32. Grundidee dieser Strategie ist es,
den Zustandsvektor des Filters so zu augmentieren, dass er alle interessierenden, nicht
messbaren Größen enthält [Nel00; vW01; van04; Sch17]. Folglich ist statt zwei Filtern,
die untereinander Informationen austauschen müssen, nur ein einziges Filter erforderlich.
Eine Visualisierung dieser beiden Ansätze ist angelehnt an [van04] in der Abbildung 4-1
zu sehen und stellt die zuvor beschriebenen Unterschiede dieser Konzepte im Blockschalt-

32Dieser Begriff lässt sich ins Deutsche mit gemeinsamer oder gleichzeitiger Schätzung übersetzen.
Im Folgenden wird jedoch auch weiterhin der englische Fachbegriff genutzt.
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bild am Beispiel eines UKFs dar. Die Visualisierung hebt besonders den erhöhten Auf-
wand des Dual-Filters hervor, der im Vergleich zum Joint-Filter wegen des zweiten Filters
quasi einen doppelten Rechenaufwand erfordert.

UKF(x,u, θ)
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yk

uk

(
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x̂k θ̂k

Joint Filter Dual Filter

Abbildung 4-1: Funktionsweise eines Joint-UKFs vs. eines Dual-UKFs, vgl. [van04]

Aufgrund des vorteilhaften, geringeren Rechenaufwands wird nun das Konzept Joint Esti-
mation näher beleuchtet. Der erweiterte Zustandsvektor ˆ̃x ∈ Rn+nθ des Joint-Filters defi-
niert sich durch die Systemzustände x̂ ∈ Rn und die Parameter des Systems θ̂ ∈ Rnθ . Seine
Dynamik wird über das folgende Modell abgebildet:

˙̃̂x =


˙̂x
˙̂θ

 =


f ( ˆ̃x,u, θ)
0

 ,

ŷ = h(x̂,u).

(4.1)

In der ersten Zeile der Zustandsgleichung (4.1) ist somit weiterhin die Dynamik f des
betrachteten Systems vertreten, während für die Parameter θ̂ ein zeitinvariantes Verhalten
angenommen wird. Die Ausgangsgleichung h wird weiterhin am nicht erweiterten Zu-
stand x̂ ausgewertet, da die physikalischen Parameter in der Regel nicht zu messen sind.
Zur Illustration der gleichzeitigen Zustands- und Parameterschätzung wird der Duffing-
Oszillator betrachtet, dessen Zustände und Parameter geschätzt werden sollen. Der Duf-
fing-Oszillator ist ein nichtlineares, schwingfähiges System, welches gedämpft ist und
eine kubische Rückstellkraft aufweist. Es wird üblicherweise als Standardbeispiel für
Untersuchungen bzgl. dynamischer Systeme genutzt, z. B. in [BK19] ohne Dämpfung.
Somit kann der Duffing-Oszillator mit dem Zustand x = (x1, x2)T ∈ R2 und dem Eingang
u ∈ R, welche z. B. Winkel und Winkelgeschwindigkeit sowie eine Kraft symbolisieren,
folgendermaßen definiert werden:

ẋ =


x2

−θ3x2 − θ1x1 − θ2x3
1 + u

 ,

y = x1.
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Die physikalischen Parameter werden zu θ = (−1, 3, 0,1)T gewählt. In der Abbildung 4-2
wird nun der Parameter θ2 = 3 zusätzlich zu den Zuständen geschätzt, wenn das System
durch einen sinusförmigen Eingang angeregt wird. Dabei werden in schwarz die simulier-
ten Trajektorien des Oszillators bzw. der tatsächlich wirkende Parameter θ2 dargestellt,
wohingegen die Schätzungen des SRUKFs in rot zu sehen sind. Die linke Visualisie-
rung zeigt anhand des Phasenraums die Zustände des Schwingers, welche vom SRUKF
sehr gut geschätzt werden, da der Anfangswertfehler schnell reduziert wird und kaum
Abweichungen zwischen den beiden Trajektorien zu erkennen sind. Dazu trägt auch die
Schätzung des Parameters θ̂2 bei, welche zunächst bei θ̂2,0 = −1 startet und schnell gegen
den tatsächlichen Wert θ2 = 3 strebt. Je nach Größe der gewählten Parameterkovarianz
oszilliert dieser Schätzwert θ̂2 weniger oder stärker ausgeprägt um den Wert θ2.
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Abbildung 4-2: Zustands- und Parameterschätzung durch ein SRUKF für den Duffing-
Oszillator bei Anregung aus den Anfangswerten x0 = (2, 1)T und
x̂0 = (3, 5)T mit u(t) = sin(t)

Dieses Beispiel zeigt folglich, dass die Schätzung physikalischer Parameter, welche ge-
wöhnlich zeitinvariant angenommen werden, parallel zur Zustandsschätzung eine effizi-
ente Möglichkeit darstellt, diese Modellungenauigkeit in Form von Parametern zu iden-
tifizieren. Nach Abschnitt 2.4 stellen jedoch dynamische Modellungenauigkeiten g(x, u)
wesentlich größere Herausforderungen als zeitinvariante physikalische Parameter dar. Um
zu evaluieren, ob das Konzept auch für die Identifikation solcher dynamischer Ungenauig-
keiten eine hilfreiche Maßnahme sein kann, wird das Beispiel des Duffing-Oszillators
erneut herangezogen. Statt der physikalischen Parameter wird nun angenommen, dass
der kubische Term g(x, u) = −θ2x3

1 unbekannt ist, d. h. nicht modelliert wurde und da-
her als dynamische Modellungenauigkeit resultiert. Diese kann im Modell als Funktion g

berücksichtigt werden, wie es in der Gleichung (4.3) zu sehen ist. Eine der einfachsten
und populärsten Ansätze zur Approximation dieser Modellungenauigkeit stammt aus der
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linearen Regression [Mur12; Bis06]: Die Ungenauigkeit wird durch eine Linearkombina-
tion geeigneter Basisfunktionen ψi : Rn × Rp 7→ R angenähert, sodass

g(x,u) ≈
nθ∑

i=1

θi · ψi(x,u) = θTΨ(x,u) (4.2)

gilt. Diese Basisfunktionen können in einer Bibliothek Ψ(x,u) ∈ Rnθ gesammelt wer-
den, welche durch den Parametervektor θ ∈ Rnθ ausgewertet wird. Dabei wird wie beim
augmentierten Modell der Parameterschätzung (4.1) eine invariante Dynamik für die Pa-
rameter angenommen. Diese Überlegungen münden für den Duffing-Oszillator somit in
das folgende Modell:

ẋ =


x2

−θ3x2 − θ1x1 + u + g(x, u)

⇒ ˙̃x ≈



x2

−θ3x2 − θ1x1 + u + θTΨ(x, u)
0


,

y = x1.

(4.3)

Für die Wahl der Bibliotheksterme sind aus der linearen Regression viele mögliche Basis-
systeme bekannt, z. B. polynomiale oder radiale Basisfunktionen (RBFs) (vgl. [Mur12]).
So nutzen [Kul21] beispielsweise RBFs mit kompaktem Träger, um Modellungenauigkei-
ten mittels eines erweiterten Modells durch ein adaptiertes EKF zu schätzen. Diese bieten
den Vorteil, dass sie jeden beliebigen Funktionszusammenhang annähern können, und da-
her eine zuverlässige Wahl für die Kompensation der Modellungenauigkeit bilden. Diese
soll aber nicht nur approximiert werden, sondern es soll auch eine physikalisch interpre-
tierbare Darstellung dieser gefunden werden (vgl. Anforderung F.2). Dies ist für RBFs
jedoch schwierig, da ein konkretes Wirkprinzip eines physikalischen Gesetzes nicht zu
erkennen ist. Um die Auswirkung dieser beiden Arten von Basisfunktionen zu illustrie-
ren, werden für den Duffing-Oszillator (4.3) zwei verschiedene Bibliotheken untersucht,
die den kubischen Term identifizieren sollen:

Ψ1(x, u) = (e−(0,01·x1)2
, e−(10·x1)2

, e−x2
1 , e−(100·x1)2

, e−(0,1·x2)2
, e−x2

2 , e−(10·u)2
)T ,

Ψ2(x, u) = (1, x1, x2, x2
2, x

2
1, x

3
1, cos(x2), u)T .

In den Abbildungen 4-3 und 4-4 sind die zeitlichen Verläufe der Zustände und Parame-
ter der Linearkombination abgebildet. Grundsätzlich zeigt die Abbildung 4-3 den Vorteil
einer hohen Schätzgüte durch die Approximation der Modellungenauigkeit g im Kon-
trast zu einem SRUKF auf, das mit einem Modell ohne den Term g bzw. ĝ nur eine de-
fizitäre Zustandsschätzung erlauben würde. Unabhängig von der gewählten Bibliothek
bewirkt somit die Annäherung der Ungenauigkeit über eine Linearkombination eine Ver-
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besserung der Schätzgüte. Allerdings ist die Qualität der Schätzung wesentlich schlechter,
wenn RBFs in der Bibliothek genutzt werden.
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Abbildung 4-3: Einfluss der Art der gewählten Bibliotheksfunktionen auf die Schätzgüte
anhand der Bibliotheken Ψ1 und Ψ2 im Vergleich zu einem Standard-
SRUKF ohne augmentiertes Modell (4.3)
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Abbildung 4-4: Evolution der Parameter θ̂ abhängig von den Bibliotheken Ψ1 und Ψ2

Zudem zeigt sich anhand der Zeitverläufe der Parameter in der Abbildung 4-4, welche
vergrößert dargestellt sind, dass sich die zu den RBFs gehörenden Parameter explosions-
artig vergrößern und sich ihre Werte stark überlagern, was eine Interpretation der appro-
ximierten Modellungenauigkeit ĝΨ1 erschwert. In [KSH21] werden RBFs mit kompaktem
Träger erfolgreich genutzt, um innerhalb eines EKFs eine Kompensation und Approxima-
tion der Modellungenauigkeiten zu gewährleisten, sodass eine hohe Schätzgüte resultiert.
Die Autoren diskutieren allerdings keine Strategie zur ganzheitlichen Identifikation der
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Ungenauigkeiten und ermöglichen somit keine Modellanpassung. Im Gegensatz zu den
Parametern der RBFs sind die Parameter der physikalisch basierten Bibliothek ähnlich
skaliert (vgl. die untere Zeile der Abbildung 4-4), auch wenn eine Interpretation der Dy-
namik aufgrund der Vielzahl an unübersichtlichen Parametern weiterhin herausfordernd
ist. Dennoch ermöglicht die physikalisch basierte Bibliothek im Kontrast zur Bibliothek
mit radialen Basisfunktionen grundsätzlich einen Rückschluss auf Wirkprinzipien, so-
fern ihre Parameter und Terme interpretierbar gestaltet und weitere Bedingungen beach-
tet werden (vgl. dazu die folgenden Abschnitte 4.2 sowie 4.3). Neben dem Konzept des
erweiterten Zustands und augmentierten Modells, welches bereits durch [KSH21] ange-
sprochen worden ist, existieren weitere Ansätze, um eine Modellungenauigkeit parallel
zur Zustandsschätzung zu erfassen. In [KJY21] wählen die Autoren eine komplexe geo-
metrische Approximation, die eine obere und untere Grenze der Modellungenauigkeit be-
stimmt, zwischen denen sich der tatsächliche, aktuelle Wert gk B g(xk,uk) befindet. Dies
erlaubt punktuell eine sehr genaue Annäherung, jedoch keine zusammenhängende Dar-
stellung, die einen physikalisch-technischen Mehrwert bietet. Darüber hinaus weist das
Verfahren eine aufwendige Struktur auf, die die Einstellung und Abschätzung verschie-
dener Designparameter erfordert. Weitere Strategien werden beispielsweise in [Sch10;
BMTD21] beschrieben und basieren auf neuronalen Netzen oder Gaußprozessen, wel-
che ebenfalls keine physikalisch-technische Interpretierbarkeit in parametrischer Form
ermöglichen. Aufgrund dessen wird für diese Arbeit der Ansatz der Linearkombination
basierend auf physikalisch motivierten Termen gewählt.

4.2 Voraussetzungen und Annahmen

Nachdem die grundlegende Idee der Joint Estimation im vorigen Abschnitt skizziert wor-
den ist, wird diese nun formalisiert, indem Voraussetzungen und Annahmen formuliert
sowie die Ausgangssituation für die Nutzung des Modells innerhalb eines Beobachters
definiert werden. Um Modellungenauigkeiten eindeutig zu identifizieren, werden in die-
ser Arbeit ausschließlich eingangsaffine Systeme mit relativem Grad δ = n33 betrachtet,
die sich durch ihre Struktur

ẋ = a(x) + b(x) · u
y = h(x)

(4.4)

mit a(x) ∈ Rn und b(x) ∈ Rn×p kennzeichnen [Ada18]. Viele technische Systeme, wie
z. B. der bereits diskutierte Golfroboter, weisen diese Struktur auf, bei der der Eingang u
linear auf das System wirkt. Ferner wird angenommen, dass sich das System (4.4) mit-
hilfe der Lie-Ableitungen (vgl. Abschnitt 2.3) in die nichtlineare Regelungsnormalform
33Somit ist das System beobachtbar, vgl. [Ada18] und Anhang A1.
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f (x,u) überführen lässt, bei der bereits die Modellungenauigkeit g berücksichtigt und an-
schließend durch ein augmentiertes Modell f̃ (x̃,u) adressiert wird (vgl. Gleichung (2.32),
[Ada18]):

ẋ =



ẋ1

ẋ2
...

ẋn


=



x2

x3
...

a(x) + b(x,u) + g(x,u)


︸                          ︷︷                          ︸

C f (x,u)

⇒ ˙̃x =



ẋ1

ẋ2
...

ẋn

θ̇



≈



x2

x3
...

a(x) + b(x,u) + θTΨ(x,u)
0


︸                               ︷︷                               ︸

C f̃ (x̃,u)

,

y = h(x,u). (4.5)

Dabei wirken die Systemdynamik f (x,u) = a(x)+b(x,u) und die reale Modellungenauig-
keit g(x,u) nur auf die n-te Zeile, während für die Parameter der Linearkombination des
augmentierten Modells wie im vorigen Abschnitt weiterhin eine zeitinvariante Dynamik
angenommen wird. Im Vergleich zur allgemeinen Definition einer Modellungenauigkeit
(2.35) wird im erweiterten Modell direkt eine additive Wirkung dieser angenommen (vgl.
Gleichung (2.36)), da überwiegend alle diskutierten Anwendungen dieser Arbeit dieser
Form entsprechen. Allerdings wird das Beispiel der Windenergieanlage im Abschnitt 4.3
zeigen, dass auch eine multiplikative Modellungenauigkeit im Kontext der Joint Estima-
tion betrachtet werden kann. Nach der Definition des Modells (4.5) muss eine Bibliothek
Ψ ∈ Rnθ gewählt werden. Diese soll Hypothesen ψi : Rn × Rp 7→ R beinhalten, welche
Erfahrungswissen und Vermutungen über die Modellungenauigkeit in das erweiterte Mo-
dell einpflegen. Um eine Interpretation der Ungenauigkeit zu erlauben, werden daher nur
physikalisch motivierte Terme in der Bibliothek berücksichtigt (vgl. die Argumentation
des vorigen Abschnitts und Abbildung 4-4). In der Regel kann jedoch davon ausgegangen
werden, dass grundlegendes Wissen wie die Definition der Zustände sowie die Kenntnis
der Systemordnung vorhanden ist, weshalb die Bibliothek

Ψ0(x,u) = (1, x1, . . . , xn, u1, . . . , up)T (4.6)

als Minimalanforderung gilt, da diese das Vorwissen durch linear eingehende Zustände,
Eingänge und Konstanten berücksichtigt. Ist die Bibliothek festgelegt, kann das resul-
tierende Modell (4.5) analog zur gleichzeitigen Zustands- und Parameterschätzung (vgl.
Gleichung (4.1)) in ein bestehendes Filter, nachfolgend z. B. ein SRUKF, eingesetzt wer-
den. Ferner kann die Bibliothek etwaige Vermutungen zur Beschreibung der Modellun-
genauigkeiten enthalten, beispielsweise trigonometrische Terme, um Schwingungen ab-
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zubilden. Allerdings zeigt die Abbildung 4-5 anhand des Duffing-Oszillators, dass eine
beliebig gewählte, physikalisch motivierte Bibliothek

Ψ3(x,u) = (1, x1, x2, x2
2, x

2
1, x

3
1, cos(x2), sin(x1), x2

2 · x1, x2 · x2
1, u)T

das Risiko eines divergierenden Beobachters auslöst. Dies ist ab etwa sechs Sekunden
in der linken Grafik zu beobachten, bei der x̂2 explosionsartig zunimmt und schließ-
lich divergiert. Bei Betrachtung der zugehörigen Parameterwerte θ̂ in der rechten Grafik
ist auffällig, dass die Parameter stark variieren und teilweise große Skalierungen auf-
weisen. Die Ursachen dieses divergierenden, instabilen Beobachters konnten erfahrungs-
gemäß auf die hohe Anzahl der Freiheitsgrade für die Parameter bzw. Terme, da zu je-
dem Zeitpunkt alle nθ Bibliotheksterme gewählt werden können, auf die fehlende Ska-
lierung unterschiedlicher Parameter sowie auf die u. U. schwache Beobachtbarkeit dieser
zurückgeführt werden.
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Abbildung 4-5: Divergierendes SRUKF ab etwa sechs Sekunden aufgrund der gewählten
Bibliothek Ψ3, deren Parameter θ̂ rechts qualitativ dargestellt sind

Aufgrund der Erkenntnis aus dem vorangegangenen Beispiel wird offensichtlich, dass die
unbeschränkte Wahl an möglichen Termen ψi nicht nur das stabile Betreiben eines Beob-
achters gefährden kann, sondern auch die Forderung der Interpretierbarkeit F.2 missach-
tet, welche wegen der Vielzahl nθ an Termen und ihrer Superposition ab einer gewissen
Anzahl nicht mehr gegeben ist. So kann die rechte Grafik der Abbildung 4-5 z. B. keinen
qualitativen Aufschluss darüber geben, welche der Terme ψi die Modellungenauigkeit g

nun tatsächlich charakterisieren können. Daher wird die Anforderung F.2 im folgenden
Absatz überarbeitet und konkretisiert.
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Anforderung für die Interpretierbarkeit

Aufgrund der großen Anzahl nθ an möglichen Termen aus der Bibliothek Ψ besteht nicht
nur das Risiko der Instabilität des Beobachters, welches bereits aufgezeigt worden ist und
aus verschiedenen Gründen resultiert34. Insbesondere kann die geforderte physikalisch-
technische Interpretierbarkeit und Transparenz durch die Superposition potentiell vie-
ler Terme nicht zwingend gewährleistet werden. Da der Begriff Interpretierbarkeit im
Kontext der Mechatronik für dynamische Systeme nicht eindeutig festgelegt ist, wird
basierend auf der Motivation im Abschnitt 1.2 eine intuitive Definition verwendet. So
wurde der Begriff Interpretierbarkeit dort bereits als eine Zuordnung von konkreten ma-
thematischen bzw. parametrischen Darstellungen zu physikalischen Wirkprinzipien ein-
geführt. Bezogen auf die Linearkombinationen bedeutet dies, dass die Modellungenauig-
keit nicht durch eine Superposition vieler, wenn auch physikalisch motivierter dyna-
mischer Terme ausgedrückt werden sollte, da eine konkrete Zuordnung zu physikalischen
Gesetzmäßigkeiten dadurch verhindert wird. Dies zeigt beispielsweise die Undurchschau-
barkeit der Parameter in der unteren Visualisierung der Abbildung 4-4, welche keinen ein-
deutigen Rückschluss auf die Charakterisierung der Modellungenauigkeit geben. Denn
die Approximation zum Zeitpunkt t = 8 s lautet z. B. folgendermaßen:

ĝt=8 ≈ 0, 23− 0, 14x1 − 0, 09x2 + 0, 09x2
2 − 0, 40x2

1 − 5, 47x3
1 − 0, 12 cos(x2)+ 0, 084u.

Obgleich der zum System passende Term x3
1 am höchsten skaliert ist, weisen andere Ter-

me wie x1,x2
1, cos(x2) oder Konstanten ebenfalls höhere Parameterwerte auf, sodass eine

eindeutige Interpretation nicht gegeben ist. Da jedoch die Mehrheit von physikalischen
Effekten, die in Natur und Technik auftreten, im Sinne des Prinzips Occam’s Razor eher
durch wenige als viele dynamische Terme charakterisiert werden kann [BPK16b; BK19],
sollte dieses Erfahrungswissen dazu genutzt werden, die Eigenschaft der Interpretierbar-
keit umzusetzen. So wird die Erfahrung, dass nur einige wenige, sogenannte dominante

Funktionsterme ψi für die Identifikation der Modellungenauigkeit g relevant sind, mithilfe
der ℓ0-Norm35 in die mathematische Formulierung übersetzt, dass der Parametervektor θ
überwiegend Nullelemente enthält [KL12]:

||θ||0 B #{i | θi , 0} ≤ nθ,act ≪ nθ. (4.7)

Die ℓ0-Norm gibt dabei die Anzahl der Nichtnullelemente aus, welche maximal, aber
nicht notwendigerweise bei nθ,act liegen kann und deutlich kleiner als die Anzahl der ge-
samten Bibliotheksterme nθ ist. Die Eigenschaft, die durch Gleichung (4.7) definiert wird,

34Eine Maßnahme zur Verbesserung der Beobachtbarkeit wird z. B. im Abschnitt 4.3 eingeführt.
35Im mathematischen Sinne ist dies keine Norm, sondern eine Halbnorm. Aufgrund der Verwandt-

schaft zur p-Norm (vgl. [Kön01]) wird jedoch der Name für diese beibehalten.
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wird als Sparsity bezeichnet: Der Parametervektor θ ist dünnbesetzt bzw. im Englischen
nθ,act-sparse, wenn nur für wenige seiner Elemente θi , 0 gilt [KL12]. Jene Elemente
deuten schließlich auf die gesuchten, dominanten Bibliotheksterme ψi hin, die für eine
interpretierbare Darstellung der Modellungenauigkeit g geeignet sind. Dies ist beispiel-
haft durch die eindeutigen Verläufe der Parameter in der Abbildung 4-6 skizziert, welche
aus der Abbildung 4-4 resultieren, aber nun mit der Sparsity-Bedingung (4.7) ausgestattet
worden ist. Im Allgemeinen ist jedoch nicht bekannt, wie viele Elemente nicht Null sind,
sodass der Parameter nθ,act nach Erfahrungswissen oder durch eine Hyperoptimierung
festgelegt werden muss. Das Konzept Sparsity ist bereits kurz im Kontext der Methode
SINDy angesprochen worden (vgl. Abschnitt 3.1.1). Diese erzielt offline ein interpretier-
bares Modell aus Messdaten durch die Lösung eines Optimierungsproblems (3.3). Dabei
nutzt SINDy jedoch die ℓ1-Norm, um Interpretierbarkeit zu gewährleisten. Die Ursache
für die Verwendung der ℓ1- statt der ℓ0-Norm, welche laut Definition (4.7) erforderlich ist,
sowie die Relation beider Normen folgen im Abschnitt 4.3.1.
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Abbildung 4-6: Der dünnbesetzte Parametervektor θ lässt interpretierbare Rückschlüsse
auf die Modellungenauigkeit des Duffing-Oszillators zu, wenn im Gegen-
satz zur Abbildung 4-4 die Sparsity-Bedingung (4.7) umgesetzt wird. Ob-
gleich nθ,act = 3 gewählt wurde, reicht bereits der Term ψ6 = x3

1 zur Ap-
proximation der Ungenauigkeit aus.

Somit konkretisiert sich die Anforderung F.2, welche bereits zu Beginn dieser Arbeit im
Abschnitt 1.2 formuliert worden ist, zu der folgenden Aussage:

F.2+ Die Anzahl der dominanten Funktionsterme ψi ist klein, da die meisten, in Natur
und Technik auftretenden Dynamiken im Sinne des Prinzips Occam’s Razor mit
wenigen dynamischen Termen charakterisiert werden können. Somit soll der Para-
metervektor θk zu jedem Zeitpunkt k dünnbesetzt sein.

Diese Vorüberlegungen und Voraussetzungen führen schließlich zu den im Rahmen dieser
Dissertationsschrift erarbeiteten, neuartigen Beobachterentwürfen der nächsten Abschnit-
te. Die Art und Weise, wie die Forderung F.2+ umgesetzt wird, adressieren die Abschnitte
in unterschiedlicher Ausprägung. Dabei werden diese Entwürfe anhand des SRUKFs und
des SMOs, welche sich durch ihre Robustheit anbieten, durchgeführt.
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4.3 Augmentierter Beobachterentwurf

Basierend auf den am Lehrstuhl RtM erfolgten Vorarbeiten von [Sch17] wird das SRUKF
ausgewählt, um einen neuartigen Beobachter zu entwerfen, der sowohl eine zuverlässige
Zustandsschätzung als auch die Identifikation von Modellungenauigkeiten erlaubt. Um
die angepasste Forderung F.2+ umzusetzen, wird das Konzept Sparsity zunächst analy-
siert. Dazu werden im Abschnitt 4.3.1 Methoden der Signalverarbeitung basierend auf
[BK19; KL12; HTW15] beleuchtet, deren Konzepte erstmals für den Beobachterent-
wurf zur Identifikation von Modellungenauigkeiten adaptiert werden können. Anschlie-
ßend wird der Entwurf im Abschnitt 4.3.2 durchgeführt und die Qualität des Entwurfs
basierend auf den Anforderungen dieser Arbeit anhand ausgewählter Anwendungen im
letzten Abschnitt 4.3.3 analysiert. Teile dieses Abschnitts finden sich bereits in der Vor-
veröffentlichung [GT23b; GT24].

4.3.1 Motivation aus dem Compressed Sensing

Viele hochdimensionale Signale, wie z. B. Bild- oder Audiosignale, werden heutzutage
komprimiert, um eine effiziente Speicherung oder einen beschleunigten Datentransfer zu
ermöglichen. Dies bedeutet, dass das ursprüngliche Signal möglichst ohne Informations-
verlust in reduzierter Form durch einige wenige Charakteristika dargestellt werden soll.
So kann ein Signal s ∈ Rn beispielsweise durch eine geeignete BasiswahlΨ ∈ Rn×n mittels
der Basisfunktionen ψi mit i = 1, . . . , n komprimiert werden, indem

s = Ψθ =
∑

i

θiψi (4.8)

gilt. Die Approximation des Signals s kann durch die Projektion auf eine orthonormale
Basis, wie z. B. die Fourierbasis, garantiert werden [KL12; HTW15; BK19]. Das Fo-
to des Golfroboters, welches in der Visualisierung 4-7(a) im Originalzustand zu sehen
ist, kann beispielsweise durch eine Fourierbasis komprimiert werden, indem nur ein ge-
ringer Prozentsatz der betragsmäßig größten Fourierkoeffizienten behalten wird, um das
Bild zu rekonstruieren. Da die Fourierbasis als orthonormale Basis eine sehr genaue Ap-
proximation zulässt, ist das auf 1% komprimierte Foto in der Abbildung 4-7(b) kaum
vom Original zu unterscheiden. Erst bei einer sehr starken Reduktion auf 0, 1% der be-
tragsmäßig größten Koeffizienten, weist das komprimierte Foto in der Abbildung 4-7(c)
Ungenauigkeiten durch Rauschen auf, erfasst die wesentlichen Eigenschaften des Origi-
nalfotos jedoch weiterhin gut. Anhand des Beispiels wird deutlich, dass das Signal, in
diesem Fall ein Foto, durch eine geeignete Basiswahl mit wenigen Basisfunktionen nahe-
zu ohne Informationsverlust charakterisiert werden kann.
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(a) Ursprüngliches Foto,
©Heinz Nixdorf Institut

(b) Komprimiertes Foto (c) Stark komprimiertes Foto

Abbildung 4-7: Mithilfe der Fouriertransformation komprimiertes Foto (durch Nutzung
von leicht modifiziertem Code aus [BK19])

Diese Eigenschaft wird Sparsity genannt, d. h. das Signal kann im Kontrast zur kano-
nischen Basis in einer anderen Basis durch einige, im Vergleich deutlich weniger Cha-
rakteristika ψi mit i = 1, . . . , nθ,act ≪ n dargestellt werden. Somit ist der Parameter der
Gleichung (4.8) in der orthonormalen Basis nθ,act-sparse. Dies kann mathematisch durch
die ℓ0-Norm ausgedrückt werden: ||θ||0 = nθ,act. Allerdings existieren zwei Nachteile eines
solchen Vorgehens: Erstens stellen orthonormale Basen eine limitierte Wahl für beliebige
Signale dar, da sich nicht für jedes Signal eine einzelne, konkrete orthonormale Basis eig-
net, vgl. [HTW15]. Zweitens muss das hochdimensionale Signal s zunächst gemessen und
anschließend komprimiert werden, was in praktischen Anwendungen u. U. ineffizient und
rechenaufwendig ist. Aus diesen Nachteilen hat sich in der Signalverarbeitung der Bereich
Compressed Sensing entwickelt, der auf die Arbeiten von [Don06; CRT06] zurückgeht.
Diese adressieren die angesprochenen Nachteile, indem einerseits beliebige Projektionen,
auch basierend auf nicht orthonormalen Basen, zur Kompression des Signals betrachtet
werden, und andererseits die Extraktion des Signals direkt aus der Messung y ∈ Rm des
komprimierten Signals erfolgt, sodass mit Gleichung (4.8) Folgendes gilt:

y = HΨθ = Hs. (4.9)

Das komprimierte Signal lässt sich dabei durch die Messmatrix36 H ∈ Rm×n messen, da
y = HΨθ gilt. Obwohl das Gleichungssystem y = Hs aufgrund von m < n in der Re-
gel unterbestimmt ist, kann durch die Kenntnis der Basis Ψ sowie des Wissens, dass der
Vektor θ dünnbesetzt ist, das Signal s dennoch rekonstruiert werden. Durch Umformulie-

36In der Regelungstechnik ist damit die Ausgangsmatrix C bzw. die Jacobimatrix der Messfunktion h
gemeint.
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rung des Signals in den Gleichungen (4.8) und (4.9) lässt sich die Rekonstruktion in das
folgende ℓ0-Problem übersetzen:

θ̂ = arg min
θ

||θ||0, sodass y = HΨθ. (4.10)

Allerdings ist das Optimierungsproblem (4.10) nicht konvex und nur durch Kombinatorik
bzw. eine Brute-Force-Suche zu lösen37. Diese Eigenschaft der Nicht-Konvexität wird für
eine zweidimensionale Variable anhand der Abbildung 4-8 illustriert, welche die durch
verschiedene p-Normen resultierenden Regionen darstellt und für p < 1 nicht konve-
xe Gebiete aufzeigt. Unter bestimmten Umständen, welche im folgenden Abschnitt the-
matisiert werden, kann das Problem (4.10) jedoch äquivalent in der ℓ1-Norm formuliert
werden [HTW15; KL12], was eine vorteilhafte, konvexe Gestalt bewirkt:

θ̂ = arg min
θ

||θ||1, sodass y = HΨθ. (4.11)

Sind die Messungen rauschbehaftet, was in der Praxis meistens der Fall ist, lässt sich das
obige Problem mit 0 < ϵ ≪ 1 abmildern zu:

θ̂ = arg min
θ

||θ||1, sodass ||HΨθ − y||2 ≤ ϵ. (4.12)

Aufgrund der Optimierungstheorie kann das Problem (4.12) zudem nicht nur als Kosten-
funktion mit Regularisierungsterm formuliert werden, wie es z. B. im LASSO-Verfahren
der Fall ist, sondern auch als duales Problem über die Herleitung mithilfe von Lagrange-
Multiplikatoren mit einer angepassten NebenbedingungH(x̃) ≤ 0 durch

θ̂ = arg min
θ
||HΨθ − y||2, sodass ||θ||1 ≤ ϵ′, (4.13)

aufgefasst werden [CGK10; JL07]. Innerhalb einer iterativen, auf der Lösung einer ℓ2-
Kostenfunktion basierenden Filterstruktur stört jedoch eine Nebenbedingung H . Diese
kann aber auch als eine Projektion auf den Lösungsraum interpretiert werden [JL07;
CGK10]. Dazu wird die Ungleichheitsbedingung durch eine zusätzliche, fiktive Messung
mit ϵ′ > 0 und

0 = ||θ||1 − ϵ′ (4.14)

innerhalb des Filters umgesetzt, die schließlich durch die vorhandenen Strukturen im Fil-
ter ausgewertet werden kann. Der Vorteil des ℓ1-basierten Optimierungsproblems in den
Gleichungen (4.11) und (4.12) sowie des ℓ1-restringierten Problems in Gleichung (4.13)

37Die Gleichung (4.10) ist ein nicht-polynomiales, hartes (NP-hard) Problem [BK19; HTW15].
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besteht in der Garantie der Konvexität, während gleichzeitig eine dünnbesetzte Lösung
gefördert wird. In der Abbildung 4-8 wird der Zusammenhang zwischen den Eigenschaf-
ten Konvexität und Sparsity illustriert, indem für einen zweidimensionalen Parameter die
durch die jeweilige ℓp-Norm induzierte Region dargestellt ist. Je kleiner das p der Norm
gewählt ist, desto mehr werden das Konzept der Sparsity berücksichtigt und dünnbesetzte
Parameter gefördert. Allerdings ist die induzierte Region lediglich für die ℓ2- und ℓ1-Norm
konvex, während dies für die Regionen mit p < 1 nicht mehr gilt. Die ℓ1-Norm stellt
demnach den besten Kompromiss zwischen Konvexität und Sparsity dar. Die Umstände,
welche eine äquivalente Rekonstruktion des Signals durch die Nutzung der ℓ1-Norm er-
lauben, sind geometrischer Natur und werden im nachfolgenden Abschnitt thematisiert.
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θ2

θ1

θ2

θ1
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Abbildung 4-8: Zusammenhang zwischen der ℓp-Norm und den Eigenschaften Konvexität
sowie Sparsity: Je kleiner p ist, desto mehr nähern sich die Parameter
der Eigenschaft Sparsity an. Gilt jedoch p < 1, ist keine Konvexität mehr
gegeben (vgl. [HTW15]).

Zusammenhang ℓ0- und ℓ1-Norm

Nach den Arbeiten von [Don06; CRT06] zeigt sich, dass die Struktur und Gestalt der
Messmatrix H ausschlaggebend für die Umformulierung des Problems (4.10) in ein kon-
vexes Optimierungsproblem (4.11) ist. Dies gilt insbesondere, wenn beliebige Projek-
tionen, d. h. nicht orthonormale oder orthogonale Basissysteme Ψ, genutzt werden. Da-
mit die Umformulierung gelingt und tatsächlich mithilfe der ℓ1-Norm eine dünnbesetzte
Lösung angenähert werden kann, muss die Messmatrix H inkohärent zur Basis Ψ sein.
Dies bedeutet, dass die Zeilen der Messmatrix unabhängig von den Spalten der Basis sind
[BK19]. Anders ausgedrückt, kann diese Bedingung auch über die Matrix HΨ überprüft
werden, indem die einzelnen Spalten dieser Matrix auf Orthonormalität getestet werden
[HTW15]. Liegen genügend Messungen m vor, sodass etwa m ≈ O(nθ,act · log(n/nθ,act))
gilt, konvergiert das Problem (4.11) mit hoher Wahrscheinlichkeit zur dünnbesetzten Lö-
sung θ̂ [HTW15; BK19]. Diese Eigenschaften sind auch unter den Begriffen Restricted



4.3 Augmentierter Beobachterentwurf 107

Isometry Property (RIP) und Restricted Nullspace (RN) bekannt und untersuchen die geo-
metrische Wirkung der Messungen und der gewählten Basis hinsichtlich der Sparsity-
Bedingung. Diese soll annähernd einer unitären Transformation entsprechen.

4.3.2 Beobachterentwurf für ein Unscented Kalman Filter

Mithilfe der Methoden des Compressed Sensings kann nun die Forderung F.2+ umge-
setzt werden, d. h. dass die Parameter θ ∈ Rnθ , welche mittels der Bibliothek Ψ ∈ Rnθ

als Linearkombination (4.2) zur Approximation der Modellungenauigkeit g ∈ R dienen,
dünnbesetzt sein sollen. Doch es bleibt zu klären, wie ein Optimierungsproblem in der Art
von Gleichung (4.13) in der klassischen Korrektor- und Prädiktorstruktur eines SRUKFs
(vgl. Algorithmus 5) berücksichtigt werden kann. Zunächst wird das Modell (4.5) mit-
tels des expliziten Euler-Verfahrens durch die Schrittweite ∆t > 0 diskretisiert (vgl.
Anhang A5.1) und hinsichtlich des SRUKFs angepasst, indem noch Prozess- und Mess-
rauschen in der Formulierung der Dynamiken f bzw. f̃ berücksichtigt werden:

xk+1 = xk + ∆t · ( f (xk,uk) + wx
k
) ⇒ x̃k+1 ≈ x̃k + ∆t ·

 f̃ (x̃k,uk) +


wx

k

wθk


 ,

yk = h(xk,uk) + vk.

(4.15)

Dabei gilt für das Prozessrauschen wx
k ∈ Rn ∼ N(0,Qx), wθk ∈ Rnθ ∼ N(0,Qθ) und für das

Messrauschen vk ∼ N(0, R) (vgl. Abschnitt 2.2.2). Somit kann die Prozesskovarianzma-
trix für den erweiterten Zustand vereinfachend als Blockmatrix der beiden Einzelkova-
rianzen durch Q̃ = blkdiag(Qx,Qθ) mit den restlichen Einträgen als Null angenommen
werden. Zur Übersichtlichkeit werden jedoch in den beiden folgenden Gleichungen die
Zeitindizes k vernachlässigt. Ausgehend von der Minimierung des Schätzfehlers (2.13)
sowie den Überlegungen im vorigen Abschnitt (4.13) kann das Minimierungsproblem,
welches den Schätzfehler reduzieren und gleichzeitig die Sparsity-Bedingung umsetzen
soll, durch

ˆ̃x∗ = arg min
ˆ̃x

1
2
E[( ˆ̃x − x̃)T ( ˆ̃x − x̃)], sodass ||Ĩ ˆ̃x||1 ≤ ϵ, (4.16)

definiert werden. Dabei stellt 0 < ϵ ≪ 1 eine Schranke bzgl. des Messrauschens dar,
während Ĩ = blkdiag(0n, Inθ) eine Blockmatrix aus Nullen und Einsen beschreibt und so-
mit die Anforderung F.2+ bzgl. der Parameter θ kodiert. Allerdings ist die Einbettung und
Lösung des Optimierungsproblems (4.16) innerhalb der iterativen Struktur des Filters wie
bereits im vorigen Abschnitt angesprochen nicht einfach. Daher wird auf die zusätzliche,
fiktive Messung des vorigen Abschnitts (4.14) zurückgegriffen, welche als Projektion auf-



108 4 Online-Schätzung von Modellungenauigkeiten

gefasst werden kann [GT23b; CGK10; JL07]. Diese wird als Pseudomessung ypm mit der
angepassten, stetigen Ausgangsgleichung hpm durch

ypm = hpm(x̃) = max(||Ĩ ˆ̃x||1 − ϵ, 0) (4.17)

definiert. Die Größe ϵ ∼ N(0,Rpm) repräsentiert nun das fiktionale Messrauschen, wel-
ches durch das Optimierungsproblem die Nebenbedingung steuert. Hierbei stellt Rpm die
Kovarianz des fiktionalen Messrauschens dar. Da das SRUKF auf der UT basiert, kann
die nichtlineare, fiktionale Ausgangsgleichung (4.17) direkt innerhalb des Filters ein-
gesetzt werden, ohne dass weitere Anpassungen erforderlich sind. Dies steht im Kon-
trast zum EKF, vgl. [JL07; KSH21]. Da es sich um eine zusätzliche Messung handelt,
ist keine erneute Auswertung des Dynamikschritts erforderlich, sodass stattdessen die
Identitätsabbildung f Id für diesen Schritt im SRUKF genutzt wird. Bei Bedarf kann die
Projektion mittels der Pseudomessung mehrfach erfolgen, um die Genauigkeit der Ne-
benbedingungH zu erhöhen [CGK10; JL07]. Ist dies gewünscht, muss die maximale Ite-
ration Niter , 1 gewählt werden. Das entwickelte Vorgehen des Joint Estimation SRUKFs
(JE-SRUKFs) ist im Algorithmus 6 zusammengefasst und wird nachfolgend kurz erläutert
(vgl. Vorveröffentlichung [GT23b]):

Algorithmus 6 JE-SRUKF mit fester Schranke zur Umsetzung der Sparsity
...
ˆ̃xk = ˆ̃x−k + Kk

(
yk − ŷ−k

)

Sk = cholupdate(S−k ,U,−1)

% Sparsity-Überprüfung und ggf. Aktualisierung:
Initialisiere: hpm,Niter, nθ,act, γ, j = 1,Spm,0 = Sk, ˆ̃xpm,0 = ˆ̃xk

while #{θ j|θ j > λ̃} > nθ,act and j < Niter

% Schätzung mit Sparsity-Bedingung
ˆ̃xpm, j,Spm, j ← SRUKF (Algo. 5) mit ( ˆ̃xpm, j−1,Spm, j−1, f Id, hpm, Q̃,Rpm)
j = j + 1

end

% Bestimmung des finalen Zustands und dessen Kovarianz
Sk, f inal = Spm, j

[ ˆ̃xk, f inal](1:n) = [ ˆ̃xk](1:n),
[ ˆ̃xk, f inal](n+1:ñ) = (1 − γ)[ ˆ̃xpm, j](n+1:ñ) + γ[ ˆ̃xk](n+1:ñ)

end
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Aufgrund der harten Grenze λ̃, welche beschreibt, ab wann ein Element θ̂i als Nichtnull-
element bewertet wird, resultiert erfolgreich der dünnbesetzte Parametervektor θ̂. Diese
wird ähnlich zum Parameter im LASSO-Verfahren je nach Anwendungsziel bzw. Ska-
lierung der Parameter festgelegt und befindet sich nahe Null. Um jedoch harte Sprünge
in den Werten von einem zum nächsten Zeitschritt zu vermeiden, besteht die Option,
mittels des Parameters γ ∈ [0, 1] eine Gewichtung aus dem vorherigen und neuen Wert
des Parametervektors θ̂k bzw. θ̂pm, j vorzunehmen. Im Algorithmus wird dies durch die
Indizes (n + 1) : ñ dargestellt, wobei ñ als Gesamtsystemordnung durch ñ B n + nθ defi-
niert ist. Daraufhin setzt sich der finale, augmentierte Zustand ˆ̃xk, f inal durch den zuvor im
klassischen Vorgehen berechneten Zustand x̂k und den ggf. gewichteten Parametervektor
θ̂k zusammen. Anschließend wird zunächst wiederum der klassische Algorithmus 5 des
SRUKFs durchlaufen, der in jedem Zeitschritt k einmalig erfolgt. Dies wird durch die
letzte Zeile des Algorithmus 5 angedeutet, bevor der Pseudocode des Teils folgt, der das
Konzept der Sparsity umsetzt (vgl. Vorveröffentlichung [GT23b]).

4.3.3 Analyse der Schätzgüte

Im folgenden Abschnitt wird der neu erarbeitete Entwurf anhand verschiedener Anwen-
dungen validiert und bzgl. seiner Umsetzung der geforderten Ziele F.1-F.3 untersucht.
Darüber hinaus wird die Performanz des Entwurfs mit einem unveränderten SRUKF, das
basierend auf dem ungenauen Modell ohne Approximation der Modellungenauigkeit g

schätzt, oder dem am Prüfstand genutzten Luenberger-Beobachter verglichen. Für jede
Applikation gilt zudem ˆ̃x0 , x̃0, λ̃ = 0,1, nθ,act = 3, Rpm = 1 sowie Niter = 1 und γ = 0.
Die Parameter der Linearkombination werden mit kleinen Werten initialisiert.

Evaluation am Duffing-Oszillator

Zur Veranschaulichung des Entwurfs wird zunächst das Beispiel des Duffing-Oszillators
thematisiert, welches aufgrund seiner bekannten Struktur eine gute Möglichkeit darstellt,
die Funktionsweise und Qualität des neuartigen, augmentierten Beobachterentwurfs zu
überprüfen. Dazu wird weiterhin das Modell (4.3) betrachtet, das den kubischen Term
g(x, u) = −3x3

1 nicht berücksichtigt, sodass dieser als Modellungenauigkeit resultiert. Zu-
nächst wird überprüft, ob die Integrität des Verfahrens gewährleistet ist, indem der nicht
modellierte Term in der gewählten Bibliothek vorhanden ist. Dazu sollte der Beobachter
erwartungsgemäß diesen Term von den anderen Optionen ψi unterscheiden und zur Cha-
rakterisierung der Modellungenauigkeit g nutzen. Um dies zu überprüfen, wird die Biblio-
thekΨ1(x, u) = (1, x1, x2, x2

2, sin(x2), x1 · x2, cos(x1), u, x3
1)T ∈ R9 verwendet, welche durch

ψ9 den korrekten Term enthält. Links in der Abbildung 4-9 werden Ergebnisse der Zu-
standsschätzung dargestellt, indem die geschätzten Trajektorien des JE-SRUKFs sowohl
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zu den simulierten Trajektorien des korrekten Modells, welche in schwarz abgebildet sind,
als auch zu den geschätzten Zustandsverläufen eines klassischen SRUKFs, das mit dem
fehlerhaften Modell arbeitet und in blau visualisiert ist, verglichen. Offensichtlich ist die
Modellungenauigkeit g so gravierend, dass das klassische SRUKF es nicht schafft, ei-
ne zuverlässige Schätzung durchzuführen. Dies äußert sich ebenfalls quantitativ in der
kumulierten Fehlerbetrachtung auf der rechten Seite der Abbildung 4-9. Die Schätzung
des JE-SRUKFs mittels der Bibliothek Ψ1 ist dagegen nach einem transienten Verhal-
ten aufgrund eines abweichenden Initialwerts sehr zutreffend und weist nur geringfügige
Phasenverzögerungen auf.
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Abbildung 4-9: Qualität der Zustandsschätzung im Vergleich zu verschiedenen Bibliothe-
ken und einem klassischen SRUKF, das ohne die Modellungenauigkeit g
schätzt, vgl. [GT23b]

Die in der Abbildung 4-10 in der oberen Zeile dargestellten Zeitverläufe des Parameter-
vektors geben ferner Aufschluss über die Art der Approximation der Modellungenauig-
keit, aus der die hohe Schätzgüte resultiert: Nach einem anfänglichem Einschwingen wird
hauptsächlich der Parameter θ̂9 genutzt, welcher mit dem Term ψ9(x, u) = x3

1 korreliert,
während alle weiteren Parameter wie gewünscht nahe Null verbleiben. Allerdings ist zu
erkennen, dass der Parameter θ̂9 nicht gegen den Wert −3 strebt, sondern Schwankungen
aufweist. Dies ist einerseits damit begründbar, dass zu jedem Zeitpunkt der Schätzung
unabhängig von der vorigen Identifikation alle nθ Möglichkeiten zur Verfügung stehen,
um die temporäre Modellungenauigkeit ĝ zu approximieren. Andererseits ist zudem die
Sichtbarkeit der Modellungenauigkeit entscheidend, für welche g . 0 gelten muss, damit
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der augmentierte Beobachter diese identifizieren kann. Demnach wird nicht nur das Ziel,
Forderung F.2+ umzusetzen und eine interpretierbare Darstellung zu finden, erreicht, son-
dern auch der korrekte, kubische Term zur Charakterisierung genutzt, sofern dieser in der
Bibliothek vorhanden ist. Denn es gilt z. B. zum Zeitpunkt t = 8 s:

ĝt=8 ≈ 0, 04−0, 05x1+0, 1x2−0, 06x2
2+0, 1 sin(x2)+0, 09x1x2−0, 02 cos(x1)+0, 02u−1, 96x3

1.

Da λ̃ = 0, 1 festgelegt worden ist, können fast alle Terme bis auf ĝ1,t=8 ≈ −1, 96x3
1 ver-

nachlässigt werden. Tatsächlich ist es in der Praxis in der Regel nicht realisierbar, dass
genau der zutreffende Dynamikterm in der Bibliothek enthalten ist, der die Modellunge-
nauigkeiten am besten approximiert, da höchstens Hypothesen zu dieser formuliert wer-
den können. Daher wird dasselbe Szenario mit den beiden Bibliotheken

Ψ2(x, u) = (1, x1, x2, x2
2, sin(x2), x1 · x2, cos(x1), u, x2

1)T ∈ R9

Ψ3(x, u) = (1, x1, x2, x2
2, sin(x2), x1 · x2, cos(x1), u)T ∈ R8

(4.18)

analysiert und überprüft, inwiefern der Beobachterentwurf mit alternativen Darstellungen
zur Charakterisierung umgehen kann und falls ja, ob diese auch hauptsächlich zur Appro-
ximation der Modellungenauigkeit genutzt werden. Dazu unterscheiden sich die Biblio-
theken ausschließlich in der Potenz des ersten Zustands.
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Abbildung 4-10: Zeitlicher Verlauf des Parametervektors θ̂ im Vergleich verschiedener Bi-
bliotheken, vgl. [GT23b], und die jeweils daraus zugeordneten dominan-
ten Bibliotheksterme (dargestellt anhand der Pfeile)
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Die Ergebnisse dieser Simulation sind ebenfalls in der Abbildung 4-9 illustriert und zei-
gen trotz des mangelnden kubischen Terms eine akzeptable Genauigkeit. Im Vergleich zur
ersten Bibliothek reduziert sich die Schätzgüte jeweils zur zweiten bzw. erneut zur dritten
Bibliothek mit sinkendem Exponenten des Zustands x1. Der kumulierte Fehler bestätigt
diesen Eindruck in quantitativer Hinsicht. Dennoch zeigt die Abbildung 4-10 anhand der
zeitlichen Verläufe des Parametervektors für beide Bibliotheken auf, dass Alternativen
zum kubischen Term gefunden werden, welche die Modellungenauigkeit approximieren.
Besonders auffällig ist hierbei der Parameter θ̂9 der zweiten BibliothekΨ2 in der mittleren
Zeile der Abbildung 4-10, der das negative Vorzeichen der Modellungenauigkeit g durch
einen ständigen Vorzeichenwechsel ausgleicht. Denn der quadratische Term ψ9(x, u) = x2

1

nähert zwar aufgrund kleiner Winkel den kubischen Term an, verursacht aber nur posi-
tive Werte ohne den dazugehörigen Parameter θ̂9. Selbst wenn nur der Zustand x1 in der
Bibliothek Ψ3 enthalten ist, wählt das JE-SRUKF nach einem transienten Einschwingen
der Parameter diesen Term ψ2(x, u) = x1 als Alternative zum kubischen Term. Dies ist in
der unteren Zeile der Abbildung 4-10 erkennbar. Somit wird nicht nur die Funktionsweise
des JE-SRUKFs bestätigt, sondern auch eine interpretierbare Darstellung der Modellun-
genauigkeit erzielt. Diese ist bisher rein visuell extrahierbar, wird im Kapitel 5 allerdings
automatisiert detektiert, sodass eine Formulierung der Modellungenauigkeit g daher mit
angeschlossener Parameteridentifikation als parametrisches Modell erfolgen kann.
Denn trotz der hohen Schätzgüte, welche Anforderung F.1 erfüllt, und der Implementie-
rung der Sparsity-Bedingung, die Anforderung F.2+ zur Interpretierbarkeit der Modell-
ungenauigkeit umsetzt, ist die Konvergenz des Entwurfs nicht eindeutig. Unabhängig von
den drei Bibliotheken bilden sich nach dem Einschwingen der Parameterdynamik auf Ba-
sis der Konstanten (vgl. Abbildungen 4-10 und 4-11) nach etwa drei Sekunden einzelne
Terme heraus, die über den Zeitraum häufig für die Charakterisierung der Modellunge-
nauigkeit genutzt werden. Diese als dominant bezeichneten Terme basieren jedoch nicht
auf einer eindeutigen Konvergenz der Parameter zu einem konkreten Wert, wie es bei-
spielsweise für die Bibliothek Ψ1 für den Parameter θ̂9 → −3 für t → ∞ zu erwarten
ist. Diese mangelnde asymptotische Konvergenz resultiert aus der harten Grenze λ̃ und
der Tatsache, dass alle Terme zu jedem Zeitpunkt k unabhängig von der vorigen Analy-
se wieder gleichberechtigt in Erwägung gezogen werden, um die Modellungenauigkeit g

zu approximieren. Der zeitliche Zusammenhang ist neben dem aktuellen Messwert yk

ausschließlich in der Kovarianz Px̃x̃,k−1 kodiert, welche diesem Einfluss im Kontrast zur
expliziten Berücksichtigung von mehreren vergangenen Zeitschritten wie z. B. in der re-
kursiven Least-Squares-Methode nicht gerecht wird (vgl. [IM11; Wal22])38. Wird statt
einer temporären Schätzung ĝk = θ̂

TΨ(x̂k, uk) eine datenbasierte Identifikation des Terms
vorgenommen, wie es Kapitel 5 thematisiert, kann anschließend eine klassische Parame-

38Dieser Aspekt wird im Ausblick der Arbeit im Kapitel 6 aufgegriffen.
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teridentifikation durchgeführt werden, um den zu dem Term korrekten, physikalischen
Parameter zu finden.
Wird schließlich die gesamte Linearkombination ĝ(x̂, u) = θ̂TΨ(x̂, u) betrachtet, kann
diese im Fall des theoretischen Beispiels des Duffing-Oszillators mit der tatsächlichen
Modellungenauigkeit g verglichen werden. Dieser Vergleich ist für alle drei Bibliotheken
in der Abbildung 4-11 dargestellt. Nach dem Einschwingen der Parameter zeigt sich, dass
die unterschiedliche Qualität der Schätzgüte insbesondere daraus entsteht, dass die Ma-
xima und Minima des zeitlichen Verlaufs von g unterschiedlich gut approximiert werden.
Während ĝ1 diese noch einigermaßen adäquat annähert, wird diese Approximation suk-
zessiv von ĝ2 zu ĝ3 schlechter. Dennoch identifizieren alle drei Approximation ĝi immer-
hin qualitativ den Charakter der Modellungenauigkeit g so gut, dass eine hohe Schätzgüte
erzielt werden kann und durch eine nachfolgende Glättung eine zusätzliche Verbesserung
zu erwarten ist. Folglich zeigt das Anwendungsbeispiel des Duffing-Oszillators neben der
Umsetzung der Ziele F.1 bis F.4, dass nicht nur der tatsächliche Term, sondern auch Alter-
nativen zur Identifikation von Modellungenauigkeiten durch das Verfahren aufgefunden
werden, wodurch der Anspruch der Lösungsmethode validiert wird.
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ĝ2 := θ̂
T
Ψ2
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Abbildung 4-11: Approximation der Modellungenauigkeit g(x, u) = −3x3
1 im Vergleich

verschiedener Bibliotheken

Evaluation am Golfroboter

Neben dem theoretischen Beispiel des nichtlinearen Schwingers wird nun eine reale Ap-
plikation betrachtet. Da der Golfroboter des Lehrstuhls trotz seines detaillierten nicht-
linearen Modells (3.4) Abweichungen aufgrund des Stick-Slips-Effekts aufweist (vgl.
Anhang A6.1), ist das Ziel, diese Modellungenauigkeiten mithilfe des neuartigen, aug-
mentierten Beobachters zu kompensieren und zu identifizieren. Die Identifikation von
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Reibung und Dämpfung ist in der Praxis ein häufiges Problem. Dazu wird das Modell
(A6-2) des Golfroboters, welches keine Dämpf- und Reibmomente enthält, um eine Li-
nearkombination und die Dynamik der Parameter nach Gleichung (4.15) augmentiert.
Anschließend wird das System mit einem Signal angeregt, das aufgrund von verschiede-
nen Sprunganregungen einen ähnlichen Charakter zur Stellgröße aufweist, die für einen
Schlag aufgeschaltet wird. Dabei wird zunächst die Bibliothek

Ψ1(x, u) =
(
1, x1, x2, x2

1, x
2
2, x1x2, x3

1, x
3
2, x

2
1x2, x2

2x1, u
)T

genutzt, welche rein polynomiale Terme beinhaltet und einer Bibliothek entspricht, die
kein zielgerichtetes Vorwissen basierend auf der Reibung berücksichtigt, sondern ver-
sucht, sich durch eine Taylorreihe der Identifikation der Modellungenauigkeiten anzu-
nähern. Die Wahl der Bibliotheksterme sowie ihre Größe und weitere Eigenschaften wer-
den im weiteren Verlauf dieses Abschnitts diskutiert. Basierend auf der Bibliothek Ψ1

zeigt die Abbildung 4-12 die Schätzgüte sowie den kumulierten quadratischen Fehler,
wenn das JE-SRUKF zur Schätzung der Zustände verwendet wird. Im Vergleich zur
Schätzung mit dem fehlerhaften Modell (A6-2), dessen Einsatz im SRUKF durch die
blauen Trajektorien visualisiert wird und aufgrund der fehlenden Reibung keine zuverläs-
sige Schätzung erlaubt, erzielt das JE-SRUKF eine sehr hohe Schätzgüte. Dies bestätigt
zudem der quantitative Vergleich des kumulierten quadratischen Fehlers auf der rechten
Seite der Visualisierung.
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Abbildung 4-12: Qualität der Zustandsschätzung bei Verwendung der Bibliothek Ψ1 und
im Vergleich zum klassischen SRUKF, das mittels des Modells (A6-2)
schätzt



4.3 Augmentierter Beobachterentwurf 115

Die Analyse der Parameter, welche in der Abbildung 4-13 zu sehen sind, weist auf eine
weniger gut geeignete Bibliothek hin, da zunächst nur die Konstanten ψ1(x, u) = 1 durch
den Parameter θ̂1 präsent sind, welche keine hilfreiche, physikalisch präzise Identifikation
der Modellungenauigkeit erlauben. Gegen Ende des betrachteten Zeitraums ist sogar eine
starke Divergenz der Parameter θ̂3 und θ̂8 zu beobachten. Diese resultiert aus der Proble-
matik, dass ab etwa neun Sekunden sowohl der Eingang u ≡ 0 bzw. u ≈ 0 als auch der
Zustand x ≡ 0 bzw. x ≈ 0 sind und aufgrund der mangelnden Dynamik keine Identifika-
tion mehr durch den Beobachter stattfinden kann. Das in Kapitel 5 entwickelte Konzept
zur Online-Modellaktualisierung berücksichtigt diese Situation, woraufhin eine sinnvolle
Approximation der Modellungenauigkeit ermöglicht wird.
Um die Qualität der Approximation ĝ1 zu überprüfen, welche für den Golfroboter im
Gegensatz zum Duffing-Oszillator unbekannt ist, werden die aufgenommenen Messdaten
mit dem Modell (A6-2) verglichen, woraufhin die Diskrepanz als gmess bezeichnet wird.
Diese ist in der Abbildung 4-14 als schwarze Trajektorie dargestellt, während die Appro-
ximation ĝ1 durch einen rot gestrichelten Verlauf abgebildet wird. Es ist zu erkennen, dass
der qualitative Verlauf gut angenähert wird, die Approximation der Diskrepanz allerdings
noch stark verrauscht ist und stellenweise stärkere Abweichungen aufweist. Aufgrund der
Abbildung 4-12 kann jedoch gefolgert werden, dass die Approximationsgüte ausreichend
hoch zu sein scheint, um eine hohe Schätzgüte zu erzielen.
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Abbildung 4-14: Approximation ĝ der Modellabweichung gmess zwischen Messdaten und
dem qualitativ minderwertigen Modell (A6-2)

Nach dieser vielversprechenden Evaluation wird der Regelkreis geschlossen, sodass das
JE-SRUKF die Rolle des Beobachters vollständig ausübt. Dazu wird das Verhalten mit
dem Luenberger-Beobachter verglichen, der in der Zwei-Freiheitsgrade-Struktur am Prüf-
stand eingesetzt wird (vgl. Anhang A6.1), und in mehreren Versuchen evaluiert. Einen
wesentlichen Einflussfaktor auf die Stabilität des Beobachters, aber auch auf seine Schätz-
güte, stellt darüber hinaus die Wahl der Bibliotheksfunktionen dar. Die in der Tabelle 4-1
dargestellte Auswahl an Experimenten fasst daher die Auswirkung der Bibliothekswahl
auf die Stabilität des JE-SRUKFs im offenen und geschlossen Regelkreis (ORK bzw.
GRK) zusammen. Im ORK schätzt das JE-SRUKF parallel zum am Prüfstand verwende-
ten Luenberger-Beobachter, der mittels Gain-Scheduling die Schätzwerte für den Regler
liefert, sodass ein Schlag ausgeführt werden kann (vgl. Anhang A6.1), während im ge-
schlossenen Regelkreis die Rolle des Beobachters durch das JE-SRUKF ausgeübt wird.
Neben der Anzahl der Terme wird insbesondere die Art der Zusammensetzung der Terme
evaluiert. Die Ergebnisse in der Tabelle 4-1, die einen Auszug aus durchgeführten Experi-
menten darstellen, stützen die zuvor formulierte Forderung (4.6), dass die Bibliothek min-
destens die Zustände, den Eingang sowie Konstanten enthalten muss. Da beispielsweise
das JE-SRUKF mit der Bibliothek Ψ6 divergiert, welche sich zur im GRK funktionie-
renden Bibliothek Ψ3 nur durch die Berücksichtigung des Eingangs unterscheidet, wird
die Forderung nach einer minimalen Bibliothek Ψ0 untermauert (vgl. Gleichung (4.6)).
Darüber hinaus scheint eine gewisse Vielseitigkeit an Termen, jedenfalls für das Anwen-
dungsbeispiel des Golfroboters bzw. der Approximation von Reibung und Dämpfung, er-
forderlich zu sein. Besteht die Bibliothek nur aus Polynomen, wie z. B. Ψ1, kann dies das
Risiko der Instabilität und Divergenz bergen, da die Dynamik nicht genau genug über eine
Reihenentwicklung aufgrund der dem widersprechenden Sparsity-Bedingung angenähert
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werden kann. Die Ergebnisse dieses Versuchs sind zur Illustration in den Abbildungen
4-15 und 4-16 dargestellt. Erstere bildet die gemessenen Trajektorien des JE-SRUKFs in
rot-gestrichelt ab, welche trotz Stabilität und vielversprechender Schätzgüte im ORK kurz
vor dem Schlag divergieren (vgl. Abbildung 4-12). Dies ist ebenso anhand der Parame-
terverläufe in der Abbildung 4-16 zu erkennen. Eine ausgewogen gewählte Bibliothek ist
somit für die Anwendung am Prüfstand unerlässlich.

Bibliothek Ψ(x, u) nθ ORK GRK

Ψ1 =
(
1, x1, x2, x2

1, x
2
2, x1x2, x3

1, x
3
2, x

2
1x2, x2

2x1, u
)T

11 ✓ ✗

Ψ2 =
(
1, x1, x2, x2

1, x
2
2, x1x2, cos(x1), cos(x2), tanh(x1), tanh(x2), u

)T
11 ✓ ✓

Ψ3 =
(
1, x1, x2, cos(x1), x2

2, x
3
2, u

)T
7 ✓ ✓

Ψ4 =
(
1, x1, x2, sin(x1), x2

2, x
3
2, u

)T
7 ✓ ✓

Ψ5 =
(
1, x1, x2, cos(x1), tanh(x2), x3

2, u
)T

7 ✓ ✓

Ψ6 =
(
1, x1, x2, cos(x1), x2

2, x
3
2

)T
6 ✓ ✗

Ψ7 = (1, x1, x2, cos(x1), u)T 5 ✓ ✗

Tabelle 4-1: Auszug aus Experimenten am Prüfstand zur Stabilität unterschiedlicher Ar-
ten von Bibliotheken Ψ hinsichtlich der Nutzung im offenen (ORK) und ge-
schlossenen Regelkreis (GRK): Ein Kreuz markiert einen divergierenden Be-
obachter. Ein Haken repräsentiert einen funktionierenden Beobachter.
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Abbildung 4-15: Qualität der Zustandsschätzung im geschlossenen Regelkreis bei
gewählter Bibliothek Ψ1 am Prüfstand, vgl. Tabelle 4-1
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Abbildung 4-16: Verlauf der Parameter θ̂, wenn der augmentierte Beobachter die
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Die finale Erkenntnis aus den Versuchen orientiert sich an der Anzahl nθ der Bibliotheks-
funktionen ψi: Eine zu kleine Bibliothek, die wenig Spielraum für die Approximation
zulässt, scheint eine höhere Wahrscheinlichkeit aufzuweisen, im GRK zu divergieren als
eine Bibliothek mit vielseitigen Möglichkeiten (vgl. Bibliothek Ψ7 vs. Bibliothek Ψ2).
Wird eine ausgewogene Bibliothek gewählt, die neben der minimalen Bibliothek Ψ0 auch
vielfältige dynamische Terme aufweist, welche zudem physikalisches Vorwissen einbrin-
gen, sind im Gegensatz zum vorigen Experiment ein stabiler Betrieb des Beobachters
sowie zuverlässige Schätzungen zu erwarten. Die Größe der Bibliothek ist dabei ent-
scheidend: Ist diese zu klein gewählt, indizierten die Experimente einen divergierenden
Beobachter, wohingegen bis zu nθ ≤ 15 Bibliotheksterme eine zuverlässige Schätzung er-
laubten. Für die BibliothekΨ2 zeigen beispielsweise die Abbildungen 4-17 und 4-18 Mes-
sungen vom Prüfstand. Erstere stellt die Zustandsverläufe des geschlossenen Regelkrei-
ses dar: Der Ist-Verlauf folgt dem Soll-Verlauf, welcher aufgrund der Deckungsgleichheit
kaum zu erkennen ist. Hierbei schätzt der augmentierte Beobachter die Zustände im Ver-
gleich zum Luenberger-Beobachter sogar genauer, was insbesondere durch den berechne-
ten Fehler verdeutlicht wird. Die dazugehörigen Parameterverläufe sind in der oberen Zei-
le der Abbildung 4-18 dargestellt und deuten auf eine überlagerte Identifikation der Rei-
bung durch die Terme ψ11(x, u) = u, ψ8(x, u) = cos(x2), ψ3(x, u) = x2 und ψ2(x, u) = x1

hin, da deren Parameter überwiegend genutzt werden. Die Sparsity-Bedingung ist da-
mit zwar umgesetzt, denn die meisten der elf Parameter sind durchgehend Null, aber eine
Interpretation der Approximation ist aufgrund der nicht eindeutigen Konvergenz der Para-
meter weiterhin herausfordernd. Kapitel 5 wird diese Problematik schließlich durch eine
automatisierte, statistische Auswertung der Parameterverläufe adressieren.
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Abbildung 4-17: Qualität der Zustandsschätzung im Vergleich zum Luenberger-

Beobachter im geschlossenen Regelkreis bei gewählter BibliothekΨ2 am
Prüfstand, vgl. Tabelle 4-1
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Abbildung 4-18: Verlauf der Parameter θ̂, wenn keine Systemveränderungen vorlie-
gen (oben, vgl. Abbildung 4-17) bzw. Systemveränderungen existie-
ren (unten, vgl. Abbildung 4-19, [GT24]) und jeweils die Bibliothek
Ψ2(x, u) =

(
1, x1, x2, x2

1, x
2
2, x1x2, cos(x1), cos(x2), tanh(x1), tanh(x2), u

)T

genutzt wird
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Wird am Schläger des Golfroboters eine zusätzliche Masse angebracht, so kann dies als
Systemveränderung interpretiert werden. Im nachfolgenden Experiment ist die Masse des
Schlägers verdoppelt worden, ohne dass das Modell des Golfroboters angepasst wurde
(vgl. [JPTT23]), während fortan die Bibliothek Ψ2 genutzt wird. In der Abbildung 4-19
ist die Auswirkung dieser Systemveränderung auf die Schätz- und Regelgüte zu erken-
nen. Da die Vorsteuerung und der Regler weiterhin mit dem unveränderten, nichtlinearen
Modell (3.4) berechnet werden, ist aufgrund der Systemveränderung eine Abweichung
von den Solltrajektorien und ein im Vergleich zur Abbildung 4-17 verändertes Motor-
moment zu erkennen. Allerdings gelingt es dem JE-SRUKF mit der Bibliothek Ψ2 (vgl.
Tabelle 4-1), die Ist-Trajektorien sehr genau zu schätzen. Im Gegensatz dazu ist es dem
Luenberger-Beobachter aufgrund seiner nicht-adaptiven Struktur nicht möglich, die Ge-
schwindigkeit des Schlags korrekt zu erfassen, was der kumulierte quadratische Fehler
in der rechten Visualisierung bestätigt. Stattdessen müssten die linearisierten Modelle
des Luenberger-Beobachters rekursiv angepasst werden, um ebenso geeignet auf Sys-
temveränderungen reagieren zu können (vgl. [JPTT23; IM11]). Die Parameter des aug-
mentierten Beobachters sind schließlich in der Abbildung 4-18 in der unteren Zeile dar-
gestellt. Je nach Phase des Schlagens39 identifiziert das Verfahren unterschiedliche rele-
vante Terme aufgrund der Systemveränderung. Da nicht nur das Reibmoment Md kom-
pensiert werden muss, sondern sich die veränderte Masse auch auf die Trägheit und Pen-
delbewegung auswirkt, weist das Modell (A6-2) eine fehlerhafte Parametrierung auf, die
zusätzlich kompensiert werden muss und daher eine eindeutige Identifikation von Termen
für den gesamten Zeitraum verhindert. So findet der Beobachter beispielsweise heraus,
dass während des Schlags eine Kompensation durch die Geschwindigkeit, Konstanten
und Gewichtskraft (vgl. ψ7) ausreicht, da zum Zeitpunkt t = 1, 5 s Folgendes gilt:

ĝ2, t=1,5 ≈3.48 − 0, 02x1 − 5, 11x2 + 0, 01x2
1 + 0, 29x2

2 + 0, 09x1x2 + 0, 27 cos(x1)

+ 0, 03 cos(x2) + 0, 03 tanh(x1) − 0, 08 tanh(x2) − 0, 06u.

Dagegen erfordert das Rückholen des Schlägers die Beschreibung von Winkel sowie Win-
kelgeschwindigkeit durch ψ2(x, u) = x1 und ψ6(x, u) = x1x2, um die veränderte Gewichts-
kraft und Trägheit für die Kinetik zu berücksichtigen und den Schläger in die Nullposi-
tion zurück zu befördern. Somit zeigt dieses Experiment den Vorteil der Nutzung des
JE-SRUKFs auf: Potentielle Systemveränderungen stellen bei geeignet gewählter Biblio-
thek keine Herausforderung dar, sodass eine hohe Schätzgüte gewährleistet werden kann.
Kapitel 5 entwickelt ferner eine Modelladaption basierend auf den Daten des augmentier-
ten Beobachters, welche im Fall einer Systemveränderung zur Robustheit des Beobachters
beiträgt und für Vorsteuerung und Regler vorteilhaft sein kann (vgl. Abbildung 4-19).

39Ausholen des Schlägers, Schlag, Rückholen des Schlägers, vgl. Abbildung A6-3
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Abbildung 4-19: Qualität der Zustandsschätzung im Vergleich zum Luenberger-

Beobachter im geschlossenen Regelkreis bei Systemveränderungen und
Verwendung der Bibliothek Ψ2 am Prüfstand, vgl. Tabelle 4-1, [GT24]

Die Anwendung am Golfroboter zeigt somit, dass die Methode des JE-SRUKFs nicht
nur für ein Simulationsbeispiel wie den Duffing-Oszillator geeignet ist, sondern auch zu-
verlässige Schätzungen in der Prüfstands- und Echtzeitanwendung im geschlossenen Re-
gelkreis im Zusammenspiel von Regler und Vorsteuerung ermöglicht. Allerdings zeigen
die Untersuchungen, dass der Einfluss der Bibliothek entscheidend für die Stabilität und
Schätzgüte des Beobachters ist, da bei einer zu einseitigen oder klein gewählten Biblio-
thek ein divergierendes Verhalten auftreten kann (vgl. Abbildung 4-15). Wird eine geeig-
nete Bibliothek gewählt, werden sowohl Anforderung F.1, eine hohe Schätzgüte trotz Mo-
dellungenauigkeiten zu erzielen, sowie Anforderung F.2, eine interpretierbare Darstellung
der Modellungenauigkeit zu finden, erfüllt (vgl. Abbildung 4-17). Ebenso ist durch die
parametrische Darstellung eine Nutzbarkeit für weitere Schritte (vgl. Anforderung F.3)
gegeben. Kapitel 5 wird zeigen, dass diese temporäre Schätzung der Modellungenauigkei-
ten basierend auf statistischen Methoden zur Modelladaption verwendet werden kann und
hierbei für den Fall des Golfroboters ähnliche Terme zum Dämpfungsmoment Md (3.5)
identifiziert werden können. Daher gelingt es durch Umsetzung der Anforderung F.4, eine
Lösungsmethode anzubieten, die zuverlässige Schätzungen bei existierenden Modellun-
genauigkeiten und eine Identifikation dieser erlaubt. Dies wird sogar in der Situation von
Systemveränderungen gewährleistet, wie der Versuch in der Abbildung 4-19 bestätigt.
Nachdem das Verfahren am Prüfstand validiert worden ist, wird im folgenden Abschnitt
ein komplexeres Simulationsbeispiel betrachtet, bei dem die Modellungenauigkeiten nicht
mehr additiv, sondern multiplikativ in das System eingehen.
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Evaluation an der Windenergieanlage nach Ritter

Die bisher betrachteten Anwendungen kennzeichnen sich durch rein additive Modellun-
genauigkeiten, welche z. B. aufgrund von Dämpfung oder Reibung resultieren. In der
Modellierung von Windenergieanlagen spielt jedoch der Einfluss des Windes eine große
Rolle, dessen Geschwindigkeit nicht immer genau genug gemessen werden kann und der
daher als Störgröße modelliert wird. Aufgrund der starken Wirkung auf die Dynamik
der Windenergieanlage wird diese Störgröße daher als Modellungenauigkeit aufgefasst
und soll mittels des augmentierten Beobachters geschätzt werden. Als Beispiel dient ein
zweidimensionales Modell einer Windenergieanlage aus der Dissertation [Rit20] bzw.
der dazugehörigen Publikation [SR20], auf deren Grundlage das Referenzmodell simu-
liert und reale Winddaten genutzt werden können. Eine Zeichnung des Systems mit den
relevanten physikalischen Größen ist in der Abbildung 4-20 abgebildet.
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Abbildung 4-20: Seitenansicht einer Windenergieanlage mit freundlicher Genehmigung
von B. Ritter (vgl. [Rit20])



4.3 Augmentierter Beobachterentwurf 123

Der Zustand der Windenergieanlage besteht dabei aus dem Rotorwinkel φT und der Po-
sition der Gondel xT sowie deren Geschwindigkeiten, sodass x = (φT , φ̇T , xT , ẋT )T gilt.
Daneben wird die Windgeschwindigkeit in x-Richtung als Störgröße z modelliert. Somit
kann das Modell der zweidimensionalen Windenergieanlage nach [Rit20; SR20] definiert
werden durch

ẋ =



x2
ρ

2
πR3

Θ
CM(λ) · (z − x4)2 − igb

Θ
u

x4
ρ

2
πR2

mT
CT (λ) · (z − x4)2 − 2Dω0x4 − ω2

0x3


,

y =
(

30
π

igbx2,
ρ

2
πR2

mT
CT (λ) · (z − x4)2 − 2Dω0x4 − ω2

0x3

)

=
(
ng, ẋ4

)
.

(4.19)

Die aerodynamischen Eigenschaften des Rotors werden dabei durch die Koeffizienten der
Momente und des Schubs CM(λ) bzw. CT (λ) dargestellt, welche aus einer geschwindig-
keits- und drehzahlbasierten Relation resultieren. Kurzdetails zu diesen Zusammenhängen
sowie die Parameterwerte40 finden sich im Anhang A6.5 in der Tabelle A6-6 und bzgl. λ
in den Gleichungen (A6-6) und (A6-7). Für ausführliche Informationen wird auf [Rit20;
SR20] verwiesen. Die Geschwindigkeit des Generators ng sowie die Beschleunigung
der Gondel ẍT stellen die Messgrößen dar. Als Eingang dient das Moment u des elek-
trischen Generators, welches mittels eines nichtlinearen Reglers mit u = kp · n2

g bestimmt
wird (vgl. [SR20]). Ziel ist es im Folgenden, die Windgeschwindigkeit, welche in der
Abbildung 4-21 dargestellt ist, sowie die Position des Turmkopfes, dessen Geschwindig-
keit und die Winkelgeschwindigkeit des Rotorwinkels zu schätzen, um die Windenergie-
anlage sicher betreiben zu können.
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Abbildung 4-21: Beispielhafter Verlauf von Realdaten der Windgeschwindigkeit z in
x-Richtung mit Mittelwert 8, 5 m/s in rot und freundlicher Genehmigung
von B. Ritter (vgl. [Rit20])

Obwohl die Windenergieanlage ein eingangsaffines System ist und in die Form (4.4) trans-
formiert werden kann, stellt es aufgrund der multiplikativen Ungenauigkeit, die durch den

40Die Parameter λ, Θ und ρ stellen aufgrund der Notation in [SR20] ausschließlich in diesem Abschnitt
physikalische Parameter der Windenergieanlage dar.
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Term (z − x4)2 entsteht, ein komplexes und herausforderndes Beispiel im Vergleich zu
den vorigen Applikationen dar. Um diese Komplexität etwas zu reduzieren, ist es im Be-
obachterentwurf üblich, ein Störmodell für eine Störung anzunehmen [FKL+22]. Dieses
zusätzliche Vorwissen kann anschließend in das augmentierte Modell (4.5) eingebracht
werden. Exemplarisch wird ein konstantes Störmodell für die Windgeschwindigkeit an-
genommen, sodass ż = 0 gilt. Dies erscheint aufgrund der Struktur der Winddaten, welche
in der Abbildung 4-21 abgebildet sind und um einen Mittelwert von etwa 8, 5 m/s41 vari-
ieren, eine sinnvolle Wahl zu sein. Wird die Windgeschwindigkeit wiederum als Linear-
kombination aus geeigneten Bibliotheksfunktionen angenähert (vgl. Gleichung (4.2)), so
ergibt sich Folgendes, wobei aufgrund der Übersichtlichkeit die Abhängigkeiten der Bi-
bliothek Ψ(x, u) vernachlässigt werden:

ż = 0 (4.20)

⇔ ∂

∂t

(
θTΨ

)
= 0

⇔ θ̇TΨ + θT Ψ̇ = 0

⇔ θ̇TΨ = −θT Ψ̇

⇔ ΨT θ̇ = −Ψ̇Tθ

⇔
(
ΨT

)+
ΨT θ̇ = −

(
ΨT

)+
Ψ̇Tθ

⇔ θ̇ = −
(
ΨT

)+
Ψ̇Tθ.

Nach der Umformulierung der obigen Gleichung (4.20) dient schließlich die letzte Zeile,
bei der

(
ΨT

)+
die Pseudoinverse von ΨT darstellt, als Dynamikvorschrift für die Para-

meter im augmentierten Modell (4.15). Dies steht im Kontrast zur bisherigen Model-
lierung der zeitinvarianten Parameter und resultiert aus der Berücksichtigung des Vor-
wissens. Anschließend wird die Bibliothek Ψ1(x, u, t) = (1, cos(20 · t), 0,001 · t, x1, x3)T

gewählt, welche neben den üblichen Konstanten und Zuständen auch Zusammenhänge
zur Zeit aufweist, da z. B. Korrelationen zwischen der Biegung des Turms, entsprechend
x3, und der Windgeschwindigkeit zu vermuten sind. Hierbei ist anzumerken, dass diese
Bibliothek entgegen der Formulierung (4.6) zur Vereinfachung und Übersichtlichkeit nur
einen Teil der Zustände enthält, da die Bibliothek Ψ aufgrund der Berücksichtigung des
zusätzlichen Vorwissen nach Gleichung (4.20) differenziert werden muss. Kommen die
Zustände x2 und x4 hinzu, ergibt sich ein sehr ähnliches Resultat. Daraufhin wird das
erweiterte Modell der Windenergieanlage formuliert und mit der Parameterdynamik ba-
sierend auf einem konstanten Störmodell in Simulationen eingesetzt, deren Ergebnisse

41Dies entspricht laut dem deutschen Wetterdienst und der Beaufort-Skala frischem Wind, vgl.
https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?lv3=100390&lv2=100310, abgeru-
fen am 06.12.2023.
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in der Abbildung 4-22 dargestellt sind. Dabei wird auf die Darstellung des Rotorwin-
kels verzichtet, da dieser Integratorverhalten aufweist und für die Regelung irrelevant
ist. Die Windgeschwindigkeit, welche die Windenergieanlage erfährt, ist bereits in der
Abbildung 4-21 dargestellt worden. Da die Winkelgeschwindigkeit φ̇T indirekt durch den
Messwert ng zu bestimmen ist, konvergiert der Anfangsfehler schnell, sodass ˙̂φT sehr gut
geschätzt wird. Ebenso gelingt es trotz Unkenntnis der Störung z, die Position und Ge-
schwindigkeit des Turmkopfes der Windenergieanlage gut anzunähern. Allerdings ist die
Konvergenz aufgrund des fehlerhaften Initialwerts deutlich langsamer und es dauert etwa
50 Sekunden, bis x̂T bzw. ˙̂xT die tatsächlichen Zustände erreichen. Dabei weist die Posi-
tion sogar ein dauerhaftes Offset auf. Grundsätzlich erlaubt das JE-SRUKF folglich eine
ausreichend genaue Schätzgüte trotz der Störung z, weist jedoch aufgrund der multiplika-
tiven Struktur jener Beeinträchtigungen bzgl. der Schätzgüte auf. Diese zeigen daher Li-
mitationen des augmentierten Beobachterentwurfs auf, welche ggf. durch eine angepasste
Systemformulierung in den Voraussetzungen des Beobachterentwurfs (vgl. Abschnitt 4.2)
aufgeweicht werden können.
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Abbildung 4-22: Qualität der Zustandsschätzung bei Verwendung der Bibliothek Ψ1,
wenn die Windgeschwindigkeit z unbekannt ist

Um die Schätzung und Identifikation der multiplikativen Unsicherheit zu analysieren,
wird der zeitliche Verlauf der Parameter der Linearkombination in der Abbildung 4-23
betrachtet. In der oberen Visualisierung zeigt sich für alle Parameter eine eindeutige und
schnelle Konvergenz. Außer θ̂5, der gegen 1,1 strebt, konvergieren alle Parameter zu Null
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oder oszillieren mit geringer Amplitude um Null, was insbesondere die Vergrößerung in
der unteren Zeile der Abbildung deutlich herausstellt. Somit identifiziert das JE-SRUKF
den fünften Term als denjenigen, der zur Charakterisierung der Windgeschwindigkeit
dient. Dies ist plausibel, da die Durchbiegung des Turmkopfes der Windenergieanlage
in direktem Zusammenhang zur Windgeschwindigkeit steht. Werden die Zustände der
Geschwindigkeiten ebenfalls in der Bibliothek berücksichtigt, stellt sich ein ähnliches Er-
gebnis ein: Zusätzlich zur Position des Turms x3 detektiert der augmentierte Beobachter
die Geschwindigkeit des Turmkopfes x4, welche ebenfalls in direkter Relation zur Wind-
geschwindigkeit aus x-Richtung steht.
Wird die Linearkombination, welche ẑ nach Glättung des Signals darstellt, nun mit der
Windgeschwindigkeit z verglichen, zeigt die obere Grafik in Abbildung 4-24, dass die
Approximation qualitativ gelingt, da sich nach etwa 50 Sekunden eine Konvergenz zum
Mittelwert der Windgeschwindigkeit z einstellt. Allerdings zeigt die untere Grafik in der
Vergrößerung, dass der qualitative Verlauf mit einzelnen Schwingungen gut abgebildet
wird, aber phasenverzögert erfolgt. Dies erlaubt daher keine exakte Approximation der
Windgeschwindigkeit. Die Methode weist folglich Limitationen auf, da keine Verbes-
serung im Vergleich zu bestehenden Verfahren erreicht werden konnte [SR20; Rit20].
Dennoch zeigt der augmentierte Ansatz des JE-SRUKFs für eine solche Ungenauigkeit,
deren Charakter rauschbehaftet ist und die multiplikativ in das Modell eingeht (vgl. Glei-
chung (4.19)), das vielversprechende Potential auf, einerseits eine hohe Schätzgüte (vgl.
Anforderung F.1) und andererseits eine sinnvolle, parametrische Darstellung der Modell-
ungenauigkeit bzw. Störung (vgl. Anforderung F.2+) zu erzielen.
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Abbildung 4-23: Zeitlicher Verlauf der Parameter θ̂ (oben), Vergrößerung (unten), bei
Verwendung der Bibliothek Ψ1(x, u, t) = (1, cos(20 · t), 0,001 · t, x1, x3)T
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Abbildung 4-24: Approximation ẑ im Vergleich zur gemessenen Windgeschwindigkeit z
(oben), Vergrößerung (unten)

4.4 Strukturell effizienter, augmentierter Beobachterentwurf

Das Vorgehen aus Abschnitt 4.3 setzt die Forderung F.2+ durch eine feste Schranke um,
welche die Anzahl der Nichtnullelemente überprüft. Obwohl der gewünschte Effekt, einen
dünnbesetzten Parametervektor θk zu erhalten, eintritt, erfordert diese Umsetzung die
Festlegung weiterer Hyperparameter, wie die Schrankenhöhe λ̃ oder die Anzahl der er-
laubten Nichtnullelemente nθ,act. Aufgrund der Vielzahl von Einstellparametern entsteht
so ein deutlich komplexeres Initialisierungsproblem, was insbesondere an den rauschbe-
hafteten Verläufen der Parameter erkennbar ist. Da das SRUKF strukturell jedoch aus
einer stochastischen Perspektive motiviert ist, stellt die Berücksichtigung von Vorwis-
sen durch Wahrscheinlichkeitsverteilungen eine wesentlich elegantere und effizientere
Möglichkeit dar [HTW15; GT23a]. Somit wird die Forderung F.2+ zunächst durch ein
stochastisches Vorwissenmodell im Abschnitt 4.4.1 basierend auf [HTW15; HBK22] mo-
tiviert und definiert. Anschließend wird dieses Vorwissenmodell innerhalb des Filters im
Abschnitt 4.4.2 umgesetzt. Daraufhin werden wie beim Entwurf zuvor im Abschnitt 4.4.3
anhand ausgewählter Anwendungen die Funktionsweise und die Qualität des Entwurfs
beleuchtet. Teile dieses Abschnitts finden sich bereits in der Vorveröffentlichung [GT23a].

4.4.1 Motivation durch die Filterstruktur

Um die Forderung F.2+ effizienter umzusetzen, kann die Struktur des SRUKFs ausgenutzt
werden. Dies gelingt, indem die Sparsity-Bedingung stochastisch formuliert wird. Die
Kalman-Filter, im Besonderen daher auch das SRUKF, basieren auf der Annahme, dass
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der Zustand sowie dessen zeitliche Dynamik und Beobachtung Gauß-verteilt sind, z. B.
dass x̃ ∼ N(µ,Σ) gilt (vgl. Abschnitt 2.2). Nun lässt sich die Sparsity-Bedingung F.2+
nicht nur durch die Überprüfung der Anzahl der Nichtnullelemente ausdrücken (vgl.
Gleichung (4.7)), sondern auch durch eine Wahrscheinlichkeitsverteilung für die Parame-
ter θ modellieren. Eine sehr bekannte Verteilung, welche diese Eigenschaft in natürlicher
Weise kodiert, ist die Laplace-Verteilung [Mur12; HTW15]. Deren Wahrscheinlichkeits-
dichtefunktion wird für ein θi ∈ R mit den Parametern µ ∈ R, b̃ ∈ R+ durch

p(θi | µ, b̃) =
1

2b̃
e−

|θi−µ|
b̃ (4.21)

definiert. Dabei stellen µ den Erwartungswert und b̃ einen Skalierungsparameter dar. Für
die Varianz einer Laplace-verteilten Zufallsvariable θi ∼ Lap(µ, b̃) gilt σ2 = 2b̃2. Auf-
grund ihrer Form, welche beispielhaft im Vergleich zu Gauß-Verteilungen in der Abbil-
dung 4-25 zu sehen ist, wird die Verteilung manchmal als Doppelexponentialverteilung
bezeichnet. Sie kennzeichnet sich durch das Zentrieren der Wahrscheinlichkeitsmasse um
den Erwartungswert, was sich durch die Spitze um µ = 0 und durch ein steiles Gefälle
hin zu den Rändern der Verteilung äußert. Diese Charakteristik ermöglicht eine robus-
tere Modellierung von Ausreißern im Kontrast zur Gauß-Verteilung [Mur12; HTW15;
PP06]. Dieselbe Eigenschaft ist für die Modellierung der dünnbesetzten Parameter θ vor-
teilhaft, da zwar die meisten Elemente Null, einige wenige jedoch nicht Null sein sollen.
Warum genau diese Verteilung eine Alternative zur Formulierung der ℓ1-Regularisierung
in Gleichung (4.16) darstellt, wird der nachfolgende Abschnitt aufzeigen.
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Abbildung 4-25: Laplace-Verteilung (visualisiert in rot) im Vergleich zu verschiedenen
Gauß-Verteilungen (dargestellt durch variierende Farben von schwarz
bis grau): Für alle abgebildeten Verteilungen gilt µ = 0, vgl. [GT23a].
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Zusammenhang zur ℓ1-Regularisierung

In der Bayesschen Schätzung wird die sogenannte Posterior-Verteilung42, verkürzt auch
Posterior genannt, über das Maximum-A-Posteriori-Prinzip gewonnen. Dieses basiert auf
dem Satz von Bayes (2.4), da der Posterior p(θ | y) mithilfe einer dem Prozess zugrunde
liegenden Wahrscheinlichkeitsverteilung, der Likelihood p(y | θ), und eines Vorwissenmo-
dells, dem Prior p(θ), bestimmt werden kann. Die Maximierung des Posteriors führt an-
schließend zur Schätzung der Parameter θ̂, wobei die Verteilung der Daten p(y) aufgrund
ihrer Unabhängigkeit von den Parametern vernachlässigt werden kann:

θ̂ = arg max
θ

p(θ | y) = arg max
θ

p(y | θ)p(θ)
p(y)

= arg max
θ

p(y | θ) · p(θ) = arg max
θ

log (p(y | θ) · p(θ))

= arg max
θ

(
log p(y | θ) + log p(θ)

)
.

(4.22)

Mithilfe der obigen Herleitung ist das Ziel nun, die Parameter θ̂ zu finden, welche den
Zusammenhang der Zeitreihenmatrizen X, Y mittels der Gleichung Y = θT X+ ϵ approxi-
mieren. Hierbei gelten die Annahmen, dass die Likelihood p(Y | θ) sowie das Rauschen ϵ
Gauß-verteilt und der Prior p(θ) Laplace-verteilt sind (vgl. Gleichung (4.21)). Mithilfe
der Logarithmus-Rechenregeln und der Negation des Maximierungsproblems ergibt sich
daher ausgehend von der letzten Zeile der Herleitung (4.22) Folgendes:

θ̂ = arg max
θ

log
∏

i

1√
2πσ2

e−
(Yi−θT Xi)

2

2σ2 + log
∏

j

1
2b̃

e−
|θ j |
b̃



= arg max
θ

−
∑

i

(Yi − θT Xi)2

2σ2 −
∑

j

|θ j|
b̃



= arg min
θ


1

2σ2

∑

i

(Yi − θT Xi)2 +
2σ2

b̃

∑

j

|θ j|


= arg min
θ

1
2σ2 ||Y − θT X||22 + λ̃ ||θ||1.

(4.23)

Die letzte Zeile stellt dabei genau die ℓ1-Regularisierung (4.13) mit X B (HΨ)T dar,
wenn keine Nebenbedingung, sondern ein Regularisierungsterm formuliert wird. Demzu-
folge zeigen die Gleichungen (4.23) die Verwandtschaft der Bayesschen Schätzung mit
der Laplace-Verteilung als Prior zur ℓ1-Regularisierung des LASSO-Verfahrens auf (vgl.
Gleichung (3.3) mit λ̃ = 2σ2

b̃ , [HTW15; HBK22; Mur12]).

42Die Fachbegriffe Posterior, Likelihood und Prior entstammen dem Englischen und sind teilweise
lateinischen Ursprungs. Da es keine adäquate, präzise Übersetzung dieser Begriffe ins Deutsche
gibt, werden im Folgenden die englischen Termini verwendet.
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Allerdings weist die Verwendung der Laplace-Verteilung als Prior zwei Nachteile auf.
Erstens ist die Struktur des SRUKFs darauf ausgelegt, dass sowohl Prior als auch Like-
lihood Gauß-verteilt sind [vW01]. Ist dies nicht der Fall, ist die Struktur der Unscented
Transform (UT), wie im Algorithmus 5 beschrieben, nicht mehr zutreffend. Es existieren
vielfältige Erweiterungen und Generalisierungen der UT für beliebige Verteilungen, wie
in [EBN+21]. Die Autoren entwickeln eine verallgemeinerte UT, welche nicht nur die
ersten beiden Momente einer Verteilung approximiert, sondern auch ihr drittes und vier-
tes Moment. Somit können weitere Distributionen, beispielsweise Poisson- oder Gamma-
Verteilung, genutzt werden [EBN+21]. Diese UT verursacht jedoch einen Mehraufwand in
der Reformulierung des SRUKFs aufgrund der weiteren Momente. Da zweitens die Ver-
wendung der Laplace-Verteilung als Prior nicht in einer Posterior-Verteilung resultiert,
die Sparsity modelliert, muss über die aufwendige Reformulierung des SRUKFs nicht
nachgedacht werden. Denn der Laplace-Posterior nähert den korrekten Erwartungswert
an, weist aber weiterhin eine glockenförmige Gestalt auf, sodass die eindeutige Unter-
scheidung von Nichtnull- und Nullelementen erschwert wird [HTW15; HBK22].
Die Autoren in [HBK22] illustrieren diesen Effekt des entstehenden Posteriors mithilfe
eines linearen Regressionsbeispiels, welches in dieser Arbeit ebenfalls zur Veranschau-
lichung dient. So liegen 400 Datensätze bestehend aus X ∼ N(0, 1) ∈ R10 und Y vor,
wobei Letzteres mit ϵ ∼ N(0, 0,52) und θ = (0,3, 0,2, −0,3, 0, 0, 0, 0, 0, 0, 0)T durch
Y = θT X + ϵ resultiert. Soll der Koeffizientenvektor θ identifiziert werden, ergibt sich bei
der Wahl einer Laplace-Verteilung als Prior die linke Darstellung in der Abbildung 4-26.
Diese zeigt die Posterior-Verteilungen für die einzelnen θi, welche zwar eindeutig die ers-
ten drei Nichtnullelemente erfassen, aber keine Distribution darstellen, die das Konzept
Sparsity für die Nichtnullelemente modelliert. Dies wird besonders durch die leicht ver-
schobenen Erwartungswerte der Parameter, z. B. θ6 oder θ8, deutlich, welche die Unter-
scheidung in Nichtnull- und Nullelemente erschweren. Zudem stellt eine solche Posterior-
Verteilung, welche keine Laplace-typische Form aufweist und somit keine Berücksichti-
gung der Bedingung F.2+ ermöglicht, eine ungünstige Wahl für die fortlaufende Nutzung
innerhalb eines Filters dar, wenn diese als Prior für den zukünftigen Schritt iterativ weiter
verwendet wird. Daher wird der nächste Abschnitt Maßnahmen thematisieren, wie eine
Verteilung formuliert werden kann, deren Verwendung als Prior das Konzept Sparsity für
eine Posterior-Verteilung umsetzt und deren Einsatz innerhalb eines SRUKFs möglich
ist.

Imitation der Laplace-Verteilung

Da die Laplace-Verteilung aufgrund der diskutierten Ursachen eine ungünstige Wahl als
Prior darstellt [HTW15; HBK22] und die Funktionalität des SRUKFs mit unveränderter
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UT lediglich gegeben ist, wenn die zugrunde liegende Wahrscheinlichkeitsdichte eine
Gauß-Verteilung ist [vW01], scheidet die Modellierung θi ∼ Lap(0, b̃) aus. Alternativ
kann die Form der Laplace-Verteilung über eine Gauß-Verteilung imitiert werden, indem
deren Varianz veränderlich formuliert wird, sodass sich die Gestalt der resultierenden
Gauß-Verteilung fortwährend anpasst (vgl. Vorveröffentlichung [GT23a]). Damit kann
die imitierte Laplace-Verteilung als Vorwissenmodell genutzt und innerhalb des SRUKFs
verwendet werden, da es sich um eine Gauß-Verteilung handelt. Die bereits thematisier-
te Abbildung 4-25 illustriert diese Idee, indem eine konkrete Laplace-Verteilung durch
verschiedene Gauß-Verteilungen angenähert wird.

Laplace-Prior SAS-Prior RHS-Prior

θi

0, 2−0, 2 0

θi

0, 2−0, 2 0

θi

0, 2−0, 2 0

Abbildung 4-26: Von [HBK22] inspirierte Darstellung der resultierenden Posterior-
Verteilungen für die Parameter θi, unterschieden nach gewähltem Prior:
Laplace-Prior (links), SAS-Prior (mittig) und RHS-Prior (rechts)

Zur Imitation der Laplace-Verteilung, welche als Prior eine dünnbesetzte Zufallsvariable θ
modellieren soll, wird üblicherweise die Spike-and-Slab-Verteilung (SAS-Verteilung) ge-
nutzt [HBK22; PV17; BDPW19; Mur12]. Diese lässt sich folgendermaßen definieren:

θi | λi ∼ N(0, c2)λi,

λi ∼ Ber(p).
(4.24)

Die Verteilung (4.24) stellt eine hierarchische Struktur dar, welche mittels λi
43 zwischen

der Spike- und der Slab-Verteilung umschaltet. Letztere entspricht der Situation, wenn
λi aufgrund der Bernoulli-Verteilung mit der Eintrittswahrscheinlichkeit p gleich Eins

43Damit die in der Literatur übliche Notation gewahrt wird, bezieht sich die Variable λi im Unterschied
zur sonstigen Nutzung in dieser Arbeit für die Definition der drei Verteilungen jeweils auf eine Zu-
fallsvariable.
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ist. In diesem Fall ist der Parameter θi nicht Null, sondern orientiert sich an der Nor-
malverteilung mit Varianz c2. Ist λi dagegen Null, ist der Parameter θi irrelevant für die
Modellierung, da die Verteilung (4.24) als Dirac-Delta-Verteilung definiert wird. Die-
se weist einen Dirac-Impuls im Ursprung auf, sodass der Parameter θi bei Null liegt
(vgl. [Mur12; PV17; HBK22]). In der Abbildung 4-26 sind in der mittleren Darstellung
die Posterior-Verteilungen für den Koeffizientenvektor θ des bereits zuvor diskutierten
Beispiels abgebildet, wenn die SAS-Verteilung als Prior genutzt wurde. Die Koeffizien-
ten sind nun eindeutig bzgl. der Nichtnull- und Nullelemente zu unterscheiden, da die
Posterior-Verteilungen nur für Nichtnullelemente eine glockenförmige Gestalt aufwei-
sen und für die Nullelemente eine sehr geringe, aufgrund des Dirac-Impuls kaum vor-
handene Varianz resultiert. Diese sind wegen der Dirac-Delta-Verteilung diskreter Natur,
können aber bei Nutzung einer kontinuierlichen Verteilung relativiert werden [HBK22].
Trotz ihrer Vorteile stellt die SAS-Verteilung in manchen praktischen Anwendungen auf-
grund ihrer diskreten Struktur eine Herausforderung dar. Daher hat sich die Regularized-

Horseshoe-Verteilung (RHS-Verteilung) als vergleichbare Alternative entwickelt [HBK22;
PV17; BDPW19]. Diese wird folgendermaßen definiert:

θi | λ̌i, τ, c ∼ N(0, λ̌2
i τ

2),

λi ∼ C+(0, 1),

τ ∼ C+(0, τ0),

c2 ∼ Inv-Γ(a, b),

λ̌i =
cλi√

c2 + τ2λ2
i

.

(4.25)

Die hierarchisch unterlagerten Distributionen entstammen jeweils der positiven Halbebe-
ne der Cauchy-Verteilung C+(·, ·) und bestimmen den Grad der Dünnbesetztheit weiterhin
durch die Varianz der Normalverteilung. Während τ die globale Eigenschaft des Koeffizi-
entenvektors θ steuert, möglichst viele Nichtnullelemente zu besitzen, d. h. die Posterior-
Verteilungen dieser Parameter θi zu verkleinern, bewirkt λi, dass lokal einige wenige Pa-
rameter θi dem entgehen [HBK22]. Die Wahl des Parameters τ0 beeinflusst dabei, wie
dünnbesetzt θ tatsächlich ist, da eine Verkleinerung des Parameters eine Verstärkung des
Sparsity-Effekts und somit eine erhöhte Anzahl der Nullelemente bewirkt. Dieser Effekt
ist im Anhang in der Abbildung A3-1 illustriert. Üblicherweise wird τ0 < 1 gewählt,
z. B. in [HBK22]. Die Varianz der Normalverteilung wird zudem reguliert, um zu ver-
meiden, dass diese zu große Werte annimmt. Dazu stellt Inv-Γ(·, ·) die inverse Gamma-
Verteilung dar, deren Parameter c2 die Form des Posteriors steuert und die Maximalwerte
begrenzt, wenn θi ein Nichtnullelement ist [HBK22; PV17]. Dieser Einfluss ist ebenfalls
im Anhang in der Abbildung A3-3 visualisiert. Die Wirkung des RHS-Priors wird schließ-



4.4 Strukturell effizienter, augmentierter Beobachterentwurf 133

lich anhand des Beispiels in der rechten Darstellung der Abbildung 4-26 deutlich, in der
die Posterior-Verteilungen bzgl. der einzelnen Koeffizientenelemente abgebildet sind. Im
Vergleich zu den vorherigen Prior-Verteilungen ist zu erkennen, dass einerseits weiterhin
die Nichtnullelemente eindeutig durch ihre Glockenform detektiert werden. Andererseits
weisen die Nullelemente analog zur SAS-Verteilung eine sehr geringe Varianz auf, wel-
che aber größer als die der diskreten SAS-Verteilung ausfällt. Anhand des Beispiels wird
daher veranschaulicht, dass mithilfe der RHS-Verteilung eine geschickte Modellierung
einer imitierten Laplace-Verteilung möglich ist, die eine Unterscheidung in Nichtnull-
und Nullelemente vereinfacht. Die Nutzung dieser Verteilung als Prior ist somit für den
Zweck dieser Arbeit sehr vorteilhaft, führt aber gleichzeitig zu einer erhöhten Anzahl
an Parametern, die für zwei der drei hierarchisch unterlagerten Verteilungen eingestellt
werden müssen. Der Einfluss dieser einzelnen Distributionen ist allerdings nicht einfach
zu durchschauen und wird daher im Anhang in der Abbildungen A3-2-A3-3 anhand ver-
schiedener Parametrierungen der jeweiligen Prior-Verteilung und deren Wirkung auf die
resultierende Posterior-Verteilung dargestellt.

4.4.2 Beobachterentwurf für ein Unscented Kalman Filter

Nachdem die Modellierung der Dünnbesetztheit für θ aus einer stochastischen Perspek-
tive motiviert und ein geschickt gewählter Prior für das Filter vorgeschlagen worden ist,
folgt der überarbeitete Beobachterentwurf. Analog zum Abschnitt 4.3.2 wird weiterhin
das augmentierte Modell (4.15) innerhalb des SRUKFs genutzt. Zudem bestehen diesel-
ben Annahmen und Definitionen bzgl. der Kovarianzen und der Pseudomessung (4.17).
Ebenso findet wie im Algorithmus 6 zunächst ein Durchlauf des Standard-SRUKFs (vgl.
Algorithmus 5) statt. Allerdings unterscheidet sich der Beobachterentwurf vom vorigen
in der Art und Weise, wie die Sparsity-Forderung F.2+ für die Parameter umgesetzt wird.
Durch die stochastische Modellierung der Parameter θ wird in jedem Zeitschritt eine Va-
rianz σ2

⋆ mithilfe der RHS-Verteilung bestimmt, um die Laplace-Verteilung zu imitieren.
Anschließend werden die Gewichte der UT angepasst und ein erneuter Durchlauf des
SRUKFs mit der Identität f Id als Dynamikvorschrift und mit der Pseudomessung hpm als
Messmodell vollzogen. Die Anpassung der Gewichte ist erforderlich, da im SRUKF ei-
ne Standardnormalverteilung angenommen ist, sodass κ(1) = 3 − ñ optimal gewählt wird
[Gib11; Sch17]. Ist dies wie bei der stochastischen Modellierung der Parameter θ nicht der
Fall, gilt für diese Situation κ(2) = 3σ4 − ñ, wobei σ zu σ⋆ aufgrund der RHS-Verteilung
bestimmt wird [GT23a]. Anschließend wird eine erneute Schätzung durchgeführt, wo-
raufhin sich der Zustand x̃−k+1|k aus den n Einträgen der ersten Schätzung und aus den nθ
Einträgen der zweiten Schätzung ergibt. Gleiches gilt für die Kovarianz. Dieses wird je-
weils durch die eckigen Klammern und mithilfe der programmiertechnischen Darstellung
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des Doppelpunkts dargestellt. Daher resultiert der folgende Algorithmus, welcher sich in
jedem Zeitschritt k dem Durchlauf des Algorithmus 5 anschließt:

Algorithmus 7 JE-SRUKF mit stochastischer Umsetzung der Sparsity
...
ˆ̃xk = ˆ̃x−k + Kk

(
yk − ŷ−k

)

Sk = cholupdate(S−k ,U,−1)

Initialisiere: Rpm, τ0, a, b

% Bestimmung der Varianz bzw. der neuen Gewichte
σ2
⋆ = E[σ2] ← Bestimme mit Gl. (4.25) mit τ0, a, b

W(2)
m ,W(2)

c ← α, β, κ(2) = 3σ4
⋆ − ñ

% Schätzung mit Sparsity-Modellierung
ˆ̃xpm,Spm ← SRUKF (Algo. 5) mit ( ˆ̃xk,Sk, f Id, hpm, Q̃,Rpm)

% Bestimmung des finalen Zustands und dessen Kovarianz
Sk, f inal = Sk

[Sk, f inal](n+1:ñ,n+1:ñ) = Spm
ˆ̃xk, f inal = ˆ̃xk,
[ ˆ̃xk, f inal](n+1:ñ) = [ ˆ̃xpm](n+1:ñ)

end

4.4.3 Analyse der Schätzgüte

Nach der angepassten Formulierung des Vorwissens, welches nun über eine modellierte
Wahrscheinlichkeitsverteilung in den Filter eingeht, erfolgt wiederum eine Analyse der
Schätzgüte. Dabei werden zur Vergleichbarkeit einige Anwendungsbeispiele aus dem vo-
rigen Abschnitt 4.3.3 betrachtet, um die Vorteile des überarbeiteten Entwurfs zu beleuch-
ten und hervorzuheben. Für die Parametrierung des Priors wird durchgehend τ0 = 0, 1,
a = 4, 5 und b = 1, 5 angenommen (vgl. die Vorveröffentlichung [GT23a]), während
die Initialisierung der Kovarianzen und weiterer Einstellungsparameter unverändert zum
Abschnitt 4.3.3 bleibt.

Evaluation am Duffing-Oszillator

Analog zum Entwurf im Abschnitt 4.3 wird die Schätzgüte zunächst am Duffing-Oszillator
(4.3) analysiert, dessen Ungenauigkeit im Modell weiterhin durch die Abwesenheit des
kubischen Terms resultiert. Zur Vergleichbarkeit sind die Parameter des Entwurfs un-
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verändert zu den Simulationen aus Abschnitt 4.3.3. Insbesondere werden dieselben Bi-
bliotheken Ψi mit i = 1, 2, 3 genutzt (vgl. u. a. Gleichung (4.18)). Zunächst wird die
Anforderung F.1 durch die Abbildung 4-27 überprüft. Im Vergleich zu den Ergebnissen
in der Abbildung 4-9 zeigt sich durch die Modellierung des Vorwissens als Wahrschein-
lichkeitsverteilung nun eine stark verbesserte Schätzgüte für alle drei Bibliotheken. Die
Qualität der Schätzung unterscheidet sich im Kontrast zu vorherigen Ergebnissen nicht
mehr so stark, auch wenn die Bibliothek Ψ1, welche den kubischen Term enthält, weiter-
hin die höchste Schätzgüte liefert. Diese Erkenntnisse verifiziert der kumulierte quadra-
tische Fehler in der rechten Visualisierung.
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Abbildung 4-27: Qualität der Zustandsschätzung im Vergleich zu verschiedenen Biblio-
theken und einem klassischen SRUKF, das ohne die Modellungenauig-
keit g schätzt, vgl. [GT23a]

Die Auswirkung der vorteilhaften Modellierung der Forderung F.2+ durch eine Wahr-
scheinlichkeitsverteilung ist ebenso in den zeitlichen Verläufen der Parameter der Linear-
kombination zu sehen. Diese werden in der Abbildung 4-28 dargestellt und setzen erkenn-
bar die Bedingung F.2+ um, da die meisten Parameter nahe Null verweilen. Im Vergleich
zur Abbildung 4-10 weisen die Parameterschätzungen einen glatteren Verlauf auf, iden-
tifizieren jedoch weiterhin dieselben dominanten Terme. Sie unterscheiden sich lediglich
geringfügig im Einschwingverhalten und in der Skalierung der Verläufe. So können bei-



136 4 Online-Schätzung von Modellungenauigkeiten

spielsweise zum Zeitpunkt t = 8 s temporär die folgenden Linearkombinationen für die
drei unterschiedlichen Bibliotheken identifiziert werden:

ĝ1,t=8 ≈ −0, 026 − 0, 016x1 − 0, 003x2 − 0, 019x2
2 − 0, 002 sin(x2) + 0, 0003x1x2

− 0, 019 cos(x2) − 0, 003u − 3, 708x3
1,

ĝ2,t=8 ≈ −0, 024 − 0, 034x1 + 0, 007x2 − 0, 0134x2
2 − 0, 006 sin(x2) + 0, 009x1x2

− 0, 015 cos(x1) − 0, 007u − 3, 419x2
1,

ĝ3,t=8 ≈ −0, 034 − 3, 618x1 + 0, 018x2 + 0, 009x2
2 + 0, 0218 sin(x2) + 0, 007x1x2

− 0, 017 cos(x1) − 0, 017u

Folglich entsprechen diese Resultate der Erwartungshaltung, da weiterhin die physika-
lisch plausiblen Terme, die je nach Bibliothek bzgl. des Exponenten variieren, temporär
identifiziert werden. Um jedoch eine finale, interpretierbare Modellierung der Ungenauig-
keit zu erhalten, wird Kapitel 5 schließlich eine automatisierte Identifikation jener Terme
durchführen. Anhand dessen können die dominanten Terme extrahiert und anschließend
ihre dazugehörigen Parameter durch eine Parameteridentifikation oder Optimierung be-
stimmt werden. Der Eindruck einer glatteren und genaueren Approximation kann zudem
insbesondere durch den Vergleich der Ungenauigkeit g zu den Approximationen ĝi in der
Abbildung 4-29 bestätigt werden. Im Kontrast zur Abbildung 4-11 ist nun eine sehr ho-
he Approximationsgüte gegeben, welche nicht nur einen sehr glatten Verlauf aufweist,
sondern auch die Maxima und Minima von g erfasst. Zudem weisen alle approximier-
ten Verläufe ĝi unabhängig von der gewählten Bibliothek eine hohe Genauigkeit auf, was
die hohe Schätzgüte aus der Abbildung 4-27 erklärt. Auffällig ist im Vergleich zu den
Abbildungen 4-10 und 4-11 weiterhin, dass die Parameter unabhängig von den drei Bi-
bliotheken allesamt gleich Null sind, wenn die Modellungenauigkeit g ≡ 0 ist. Dies ist
beispielsweise zum Zeitpunkt t = 10 s in beiden Abbildungen zu erkennen. Analog zum
Argument der Sichtbarkeit einer Nichtlinearität im Ausgang, welches bei der Formulie-
rung eines lernfähigen Luenberger-Beobachters basierend auf neuronalen Netzen vorge-
bracht wird (vgl. [Sch10]), kann die Ursache des beobachteten Phänomens auf die erfor-
derliche Sichtbarkeit der Modellungenauigkeit zurückgeführt werden. Ist die Wirkung der
Modellungenauigkeit nicht in den Signalen erkennbar, die gemessen werden können44, so
kann der Beobachter keine Identifikation vornehmen, woraufhin der gesamte Parameter-
vektor zu diesem Zeitpunkt Null ist. Die Verwendung einer stochastisch motivierten Mo-
dellierung des Vorwissens F.2+ führt demzufolge zu einer gravierend höheren Schätzgüte,
da die dominanten Terme der Linearkombination effizienter ausgewählt werden.

44In diesem Fall ist dies sogar durch die Systembeschreibung (4.5) direkt anhand der Modell-
ungenauigkeit g zu erkennen.
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bliotheken, vgl. [GT23a], und die jeweils daraus zugeordneten dominan-
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Evaluation am Golfroboter

Nachdem eine deutliche Verbesserung der Schätzgüte durch eine angepasste Umsetzung
der Sparsity-Bedingung beobachtet worden ist, wird anhand des Golfroboters überprüft,
ob der überarbeitete Entwurf auch für ein komplexeres System anwendbar ist. Wie im
Abschnitt 4.3.3 wird weiterhin das Golfrobotermodell (A6-2) verwendet. Zur Vergleich-
barkeit wird der offene Regelkreis simuliert, indem analog zu den Abbildungen 4-12 bis
4-14 dieselbe polynomiale Bibliothek Ψ1 genutzt wird (vgl. Tabelle 4-1). Die Qualität
der Zustandsschätzung ist anschließend in der Abbildung 4-30 dargestellt, während die
Parameterverläufe sowie die Approximation der Modellungenauigkeit in den folgenden
Abbildungen 4-31 bzw. 4-32 visualisiert sind. Im Vergleich zur Abbildung 4-12 sind in
der Abbildung 4-30 zunächst kaum Unterschiede zu erkennen. Dennoch erzielt die sto-
chastisch motivierte Umsetzung der Sparsity-Bedingung eine etwas höhere Schätzgüte,
was sich anhand des geringeren, kumulierten Fehlers und des genaueren Verlaufs der
Winkelgeschwindigkeit in der Abbildung 4-30 zeigt. Neben einer höheren Schätzgüte,
welche Anforderung F.1 erfüllt, weisen die Parameterverläufe in der Abbildung 4-31 wie
beim Duffing-Oszillator einen deutlich glatteren Verlauf als jene in der Abbildung 4-13
auf. Zudem ist die Sparsity-Bedingung erfolgreich umgesetzt worden, da die meisten Ele-
mente nahe Null verweilen (vgl. Anforderung F.2+). Allerdings ist anhand der Parameter
zu erkennen, dass die gewählte Bibliothek Ψ1 weniger gut geeignet ist, die Modellun-
genauigkeit zu erfassen, da eine Identifikation überwiegend durch die Konstanten und le-
diglich zu bestimmten Zeiten geringfügig durch geschwindigkeitsbasierte Terme erfolgt.
So lautet z. B. die temporäre Approximation zum Zeitpunkt t = 5 s:

ĝ1,t=5 ≈0, 56 − 0, 0004x1 − 0, 009x2 + 0, 002x2
1 + 0, 004x2

2 − 0, 001x1x2

− 0, 0001x3
1 − 0, 63x3

2 − 0, 0005x2
1x2 − 0, 002x2

2x1 + 0, 004u

Diese Erkenntnis, dassΨ1 keine für den Golfroboter geeignete Bibliothek darstellt, ist be-
reits im Abschnitt 4.3.3 festgehalten worden. Doch eine qualitativ zutreffende, obgleich
ungenaue Schätzung der Modellungenauigkeit ist möglich, wie die Abbildung 4-32 bestä-
tigt. Aufgrund der stochastischen Modellierung ist diese Approximation ĝ1 weniger ver-
rauscht als jene, welche in der Abbildung 4-14 zu erkennen ist, weist aber eine schlechtere
Identifikation der Modellungenauigkeit g auf. Dies ist auf die Wahl der Bibliothek zurück-
zuführen, weil nur Konstanten als Charakterisierung identifiziert werden, sodass die Mo-
dellungenauigkeit ĝ eine größere Abweichung zur gemessenen Diskrepanz aufweist. Den-
noch ermöglicht der angepasste augmentierte Beobachter eine höhere Schätzgüte sowie
eine Vereinfachung der Identifikation der Modellungenauigkeit, indem die Parameter der
Linearkombination als Wahrscheinlichkeitsverteilung modelliert werden.
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Abbildung 4-30: Qualität der Zustandsschätzung bei Verwendung der Bibliothek
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und im Vergleich zum
klassischen SRUKF, das mittels des Modells (A6-2) schätzt

0 2 4 6 8 10

−4

−2

0

2

4

Zeit t [s]

θ̂ Ψ
1

θ̂1 θ̂7

θ̂2 θ̂8

θ̂3 θ̂9

θ̂4 θ̂10

θ̂5 θ̂11

θ̂6

Abbildung 4-31: Verlauf der Parameter θ̂, wenn der augmentierte Beobachter die
Bibliothek Ψ1 =

(
1, x1, x2, x2

1, x
2
2, x1x2, x3

1, x
3
2, x

2
1x2, x2

2x1, u
)T

verwendet
(vgl. Tabelle 4-1)



140 4 Online-Schätzung von Modellungenauigkeiten

0 2 4 6 8 10

−4

−2

0

2

4

6

Zeit t [s]

g/
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Abbildung 4-32: Approximation ĝ der Modellabweichung gmess zwischen Messdaten und
dem qualitativ minderwertigen Modell (A6-2)

Im vorigen Abschnitt 4.3.2 ist die Wirkung von Messrauschen im Kontext des augmen-
tierten Beobachterentwurfs lediglich indirekt thematisiert worden, da Experimente am
Prüfstand durchgeführt wurden, welche geringes Messrauschen aufgrund der guten Sen-
sorik des Golfroboters enthielten. Hierbei konnte bei geeignet gewählter Bibliothek eine
sehr hohe Schätzgüte erzielt werden, obgleich geringes Messrauschen präsent war. Daher
wird dieser Einflussfaktor simulationsbasiert anhand desselben Szenarios, welches in den
Abbildungen 4-30 und 4-31 diskutiert wurde, untersucht. Existiert beispielsweise ein nor-
malverteiltes Rauschen mit einer Abweichung von maximal 0, 2 rad ≈ 11, 46◦, so kann
der augmentierte Beobachter die Zustände des Golfroboters bei Verwendung der Biblio-
thekΨ1 weiterhin korrekt schätzen. Dies ist in der Abbildung 4-33 zu erkennen. Aufgrund
des Messrauschens ist der kumulierte Fehler etwas höher als die Schätzung ohne Messrau-
schen (vgl. Abbildung 4-30), dennoch bleibt die Schätzgüte weiterhin hoch. Die Wirkung
des Messrauschens ist darüber hinaus in den Verläufen der Parameter zu erkennen, wel-
che in der Abbildung 4-34 dargestellt sind. Diese weisen im Vergleich zur Abbildung 4-31
trotz Verwendung der stochastischen Modellierung starkes Rauschen auf. Dennoch wer-
den dieselben dominanten Terme wie in der Abbildung 4-31 detektiert. Die Wirkung des
Messrauschens auf die Qualität des augmentierten Beobachters ist folglich moderat, da
die Schätzung des gezeigten Beispiels mit einer großen Abweichung von etwa 11, 46◦

sehr robust durchgeführt werden konnte. Weitergehende Analysen zeigten, dass der aug-
mentierte Beobachter ein Messrauschen ab etwa 0, 4 rad ≈ 22, 92◦ maximaler Abwei-
chung nicht mehr kompensieren konnte und daraufhin divergierte. Dieses Messrauschen
entspricht beim Golfroboter jedoch bereits einer sehr großen Pendelbewegung, sodass ein
robustes Schätzverhalten des augmentierten Beobachters bestätigt werden konnte.
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Abbildung 4-33: Qualität der Zustandsschätzung bei Messrauschen und Verwendung der
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Die Vorteile des überarbeiteten augmentierten Beobachterentwurfs können ausschließ-
lich durch Simulationsergebnisse gestützt werden, da eine erfolgreiche Umsetzung am
Prüfstand nicht möglich war. Trotz intensiver Untersuchungen und Bemühungen konnte
in allen Versuchen lediglich ein divergierendes Verhalten des Beobachters ab Betriebs-
zeitpunkt festgestellt werden, welches unabhängig von der gewählten Bibliothek und den
Einstellparametern stattfand. Aufgrund vorheriger Erfahrungen am Prüfstand liegt die
Vermutung nahe, dass die zur Verfügung stehende Software, welche wegen der Hard-
wareanforderungen des Prüfstands eine veraltete Version aufweist, die Umsetzung ei-
nes mehrfach durchgeführten Samplings von stochastischen Verteilungen erschwert und
dies zur Divergenz direkt ab dem Start des Beobachters führt. Diese Vermutung wird
insbesondere durch die Tatsache gestützt, dass der augmentierte Beobachterentwurf aus
Abschnitt 4.3.3 am Prüfstand umgesetzt werden konnte und sich nur durch die Modellie-
rung der Sparsity-Bedingung (4.7) von der im Algorithmus 7 beschriebenen Erweiterung
unterscheidet. Diese stellt jedoch simulationsbasiert eine vielversprechende Alternative
zur Sparsity-Formulierung dar, sodass eine Validierung der beobachteten, sehr guten Er-
gebnisse durch Messdaten zu erwarten ist, wenn eine moderne Laborausstattung in Zu-
kunft zur Verfügung stehen wird und anschließend eine zielgerichtete Implementierung
erfolgen kann (vgl. Kapitel 6). Folglich stellt die Option, die Anforderung F.2+ durch
eine Wahrscheinlichkeitsverteilung umzusetzen, eine vorteilhafte Wahl dar, um effizient
die Struktur des Filters auszunutzen und eine höhere Schätzgüte durch eine verbesserte
Modellierung zu erzielen. Die beim Duffing-Oszillator und Golfroboter erzielten Erkennt-
nisse konnten ebenfalls erfolgreich bei der Anwendung auf das Beispiel der Windenergie-
anlage (vgl. System (4.19)) festgestellt werden, welches sich im Unterschied zu den zuvor
genannten Systemen durch eine multiplikative Modellungenauigkeit auszeichnet. Anhand
dieses Beispiels werden in den Abbildungen A6-11 bis A6-13 zudem die Auswirkungen
einer ungünstigen Parametrierung der RHS-Verteilung dargestellt. Aufgrund der zu ge-
ringen Wahl von τ0 = 0, 1 wird eine zu starke Dünnbesetztheit der Parameter modelliert,
sodass die Identifikation der Windgeschwindigkeit limitiert ist (vgl. Abbildung A6-13).

4.5 Online-Schätzung von Störungen

Da Modellungenauigkeiten nicht nur durch eine mangelnde Modellierungstiefe und des
daraus resultierenden Abstraktionslevels entstehen, sondern auch durch externe Störungen
ausgelöst werden können, wird dieser Abschnitt untersuchen, inwiefern sich die vor-
gestellten Methoden nicht nur für SRUKFs eignen, sondern auch auf einen robusten
Störbeobachter übertragen lassen. Dazu wird ein SMO, welcher bereits im Abschnitt 2.3
vorgestellt worden ist, mit der Grundidee der Joint Estimation versehen. Teile dieses Ab-
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schnitts finden sich bereits in der Vorveröffentlichung [GKT23] und basieren u. a. auf der
studentischen Arbeit [Klu23].

4.5.1 Automatisierte Bibliotheksgenerierung

Die Fähigkeit eines SMOs, auch bei Auftreten von Störungen robust zu schätzen, resultiert
vor allem durch die Nutzung der n-ten Schaltfunktion νn, welche die Modelldiskrepanz
∆ f 45 kompensiert (vgl. Abschnitt 2.3). Diese Schaltfunktion νn wird gewöhnlich durch ein
Tiefpassfilter identifiziert [SEFL14]. Allerdings kann die Option, die Modelldiskrepanz
∆ f als parametrisches Modell zu identifizieren, in manchen Situationen einen Vorteil dar-
stellen. Dies ist beispielsweise der Fall, wenn Eigenfrequenzen der Störung identifiziert
werden können, sodass durch eine aktive Dämpfung eine höhere Bauteillebensdauer zu er-
warten ist. Daher wird die Grundidee der Joint Estimation auf den SMO übertragen, indem
für die Modellabweichung ∆ f der Ansatz der Linearkombination mit den Parametern θ
und der Bibliothek Ψ gewählt wird (vgl. Gleichung (4.2)):

∆ f ≈ θTΨ(x,u).

Befindet sich der SMO aufgrund einer geeigneten Parametrierung ϑi in der Sliding-Phase,
so streben die Fehler ei asymptotisch gegen Null. Somit folgt basierend auf der letzten
Zeile der Gleichung (2.34) der Zusammenhang ∆ f = −νn(ey). Um die Modelldiskrepanz
zu identifizieren, muss der Interpretationsfehler eθ = ∆ f − θTΨ(x̂,u) für t → ∞ gegen
Null tendieren. Daraus ergibt sich das folgende Optimierungsproblem [GKT23]:

θ̂ = arg min
θ

∫ t

0
e2
θ dτ

= arg min
θ

∫ t

0

(
∆ f − θTΨ(x̂,u)

)2
dτ

= arg min
θ

∫ t

0

(
−νn(ey) − θTΨ(x̂,u)

)2
dτ.

(4.26)

Eine effiziente Lösung des Optimierungsproblems (4.26) liefert [DFP06]:

θ̂ =

(
−

∫ t

0
νn(ey)Ψ(x̂,u)T dτ

) [∫ t

0
Ψ(x̂,u)Ψ(x̂,u)T dτ

]−1

.

Hierbei wird die Lösung über einen rekursiven Least-Squares-Ansatz mithilfe einer dyna-
mischen Berechnung der Inversen

[∫ t

0
Ψ(x̂,u)Ψ(x̂,u)T dτ

]−1
bestimmt [DFP06]. In [Klu23]

wird das Optimierungsproblem (4.26) zudem mit einem Zeitfaktor versehen, um zeit-
variantes Verhalten einer Störung besser abzubilden. Neben der Berücksichtigung von
45Die Diskrepanz ∆ f kann im SMO-Kontext als additive Modellungenauigkeit g aufgefasst werden.
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Vorwissen in Form von Hypothesen oder der Nutzung der minimalen Bibliothek (4.6)
kann jedoch zunächst eine Datenakquise erfolgen, auf deren Grundlage die Charakte-
ristika der Störung analysiert werden. So kann z. B. bei oszillierenden Störungen ei-
ne Fouriertransformation genutzt werden, um auftretende Frequenzen aus Verläufen von
νn(ey) zu identifizieren. Die Fouriertransformation bietet zudem den Vorteil, dass es sich
um eine orthonormale Basistransformation handelt (vgl. Abschnitt 4.3.1). Dazu werden
für einen bestimmten Zeithorizont die Daten der Schaltfunktion aufgenommen, während
sich der SMO in der Sliding-Phase befindet. Diese Informationen können anschließend
verwendet werden, um mittels der Fouriertransformation Frequenzen des vergangenen
Zeitraums in Ansatzfunktionen ψi zu platzieren. Somit enthält die Bibliothek Terme, die
höchstwahrscheinlich der Identifikation der Störung bzw. Modelldiskrepanz ∆ f dienen.
In der Abbildung 4-35 ist diese Idee skizziert, indem ein durch die Fouriertransforma-
tion detektiertes Frequenzspektrum anhand der relativen Häufigkeit in den Daten gekenn-
zeichnet wird. Dabei handelt es sich um ein Experiment am Einfachpendel mit Wagen
(vgl. Modell (A6-5)), welches mit der Anregung u und der Störung ρ, welche am Wagen
wirkt, beaufschlagt worden ist:

u(t) = sin
(
π · t + π

2

)
,

ρ(t) = 4 · sin
(
3π · t + π

2

)
.

(4.27)

Anhand der Visualisierung 4-35 ist erkennbar, dass die Fouriertransformation die Fre-
quenz der Störung ωρ = 3π in den Daten als wichtigste Frequenz erkennt und sogar die
der Anregung ωu = π als weitere detektiert.
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Abbildung 4-35: Die durch die Fouriertransformation identifizierten Frequenzen zur auto-
matisierten Bildung von Bibliothekstermen ψi weisen die höchsten Pro-
zentsätze auf, vgl. [GKT23].
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Mittels dieses Vorgehens lässt sich die Bibliothek z. B. folgendermaßen automatisiert
erarbeiten, wobei ähnlich wie bei der Anwendung der Windenergieanlage eine explizite
Abhängigkeit von der Zeit t besteht [GKT23]:

Ψ(x,u, t) =
(
sin(x2), x2, sign(x2), sin

(
π · t + π

2

)
, sin

(
3π · t + π

2

)
, sin

(
5π · t + π

2

))T
.

(4.28)

Diese Bibliothek enthält nun die beiden identifizierten Frequenzen in den Termen ψ4 und
ψ5 sowie weitere mögliche Terme, um den Vergleich zu einer nur durch Vorwissen und
Hypothesen bestückten Bibliothek zu erlauben. Somit ist eine Vergleichbarkeit für die
folgenden Untersuchungen gegeben, welche die Identifikation der Störung durch eine Bi-
bliothek, die aus Vorwissen resultiert, und durch eine automatisierte Bibliothek analy-
sieren. Diese Automatisierung der Bibliotheksfunktionen ist besonders vorteilhaft, wenn
wenig Vorwissen bzgl. der Ungenauigkeit vorliegt, und eignet sich daher als robustes
Werkzeug in der intelligenten Fehlererkennung bzw. Störungsbeseitigung [GKT23].

4.5.2 Analyse der Schätzgüte

Die im vorigen Abschnitt entworfene Erweiterung für einen SMO wird anhand des Ein-
fachpendels auf einem Wagen evaluiert, dessen Modell und Parameter im Anhang A6.4
beschrieben werden und welches sich im Labor des RtM befindet. Dazu wird das System
für 120 Sekunden mit der zuvor definierten Anregung u beaufschlagt, während es eine
zusätzliche Störung ρ erfährt (vgl. Gleichung (4.27)). Um die Wirkung der automatisier-
ten Bibliothekswahl mithilfe der Fouriertransformation im Vergleich zu einer zuvor fest-
gelegten Bibliothek zu bewerten, wird dieselbe Bibliothek (4.28) für beide Fälle genutzt.
Folglich wird die zuvor festgelegte Bibliothek als die automatisiert gewählte Bibliothek
bestimmt. Zunächst wird überprüft, inwiefern sich die Zustandsschätzung mit automati-
sierter Bibliothekswahl von jener mit einer zuvor festgelegten Bibliothek unterscheidet.
Abbildung 4-36 zeigt einen Exzerpt der Zustandsschätzung, bei dem jeweils nur die nicht
messbaren Zustände dargestellt werden. Für beide Fälle wird eine hohe Schätzgüte er-
zielt, da keine Abweichungen in den Verläufen der Geschwindigkeiten zu erkennen sind.
Anschließend stellt die Abbildung 4-37 einen Ausschnitt der zeitlichen Verläufe der Pa-
rameter sowie der Schaltfunktion ν2 dar, welche jeweils mit und ohne automatisierter
Bibliothekswahl abgebildet sind. Aufgrund der notwendigen Analyse durch die Fourier-
transformation verzögert sich die Reduktion des Modellfehlers, welcher durch die Schalt-
funktion ausgedrückt wird, im Vergleich zur Situation einer zuvor festgelegten Bibliothek.
Dies liegt an der erforderlichen Aufnahme der Daten. Ist dieser Prozess der Analyse je-
doch abgeschlossen, wird ein vergleichbares Fehlerniveau erreicht, wenn die Parameter
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der Linearkombination konvergiert sind. Dies ist exemplarisch anhand der Verläufe der
Parameter θ̂5 bzw. θ̂6 zu erkennen, welche nach der Phase der Datenanalyse konvergieren
und die Dynamik der Störung ρ eindeutig charakterisieren (vgl. [GKT23]).
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Abbildung 4-36: Exzerpt aus Zustandsschätzung mit festgelegter Bibliothek (Index p) und
automatisiert gewählter Bibliothek (Index f ) und i = 2, 4, vgl. [GKT23]
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Abbildung 4-37: Verlauf der Schaltfunktion ν2, welche die Modelldiskrepanz ∆ f wider-
spiegelt, und Auszug aus den Parameterverläufen θ̂, vgl. [GKT23]
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Schließlich vergleicht Abbildung 4-38 die Approximationsgüte von ρ̂ im Vergleich zur
(in diesem Szenario bekannten) Störung ρ, wenn die Parameter θ̂ konvergiert sind. In die-
sem Ausschnitt ist erkennbar, dass bei einer automatisierten Bibliothekswahl eine sehr
gute Approximation der Störung erzielt werden kann. Die Analysen bestätigen demnach,
dass eine Automatisierung der Bibliothekswahl die Anforderungen F.1 und F.2+ nicht
negativ beeinflusst, sondern hilft, diese umzusetzen, da eine hohe Schätzgüte und eine
interpretierbare Identifikation der Störung ρ erzielt werden konnten. Untersuchungen in
[Klu23] zeigten ferner, dass im geschlossenen Regelkreis eine aktive Störkompensation,
bei der Informationen auf Basis der Approximation ρ̂ ins Modell zurückgeführt wer-
den, eine höhere Regelgüte erzielen kann. Diese Erweiterung einer automatisierten Bi-
bliothekswahl ist somit eine Ergänzung des augmentierten Beobachters und stellt ei-
ne hilfreiche Maßnahme dar, welche als Werkzeug in der intelligenten Fehlererkennung
und Störkompensation gewinnbringend eingesetzt werden kann. Darüber hinaus wird die
Grundidee einer automatisierten Gestaltung der Bibliothek basierend auf erhobenen Da-
ten im Kapitel 5 für die Modelladaption aufgegriffen.
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Abbildung 4-38: Auszug des Vergleichs der Störung ρ und der Approximation
ρ̂ = θ̂TΨ(x̂, u), wenn die Bibliothek automatisiert bestimmt worden ist,
vgl. [GKT23]

4.6 Zusammenfassung der Entwurfsverfahren

Alle neuartig entwickelten Verfahren dieses Kapitels basieren auf dem Konzept der Joint
Estimation und augmentieren den Zustand um Parameter einer Linearkombination, wel-
che die Modellungenauigkeiten approximiert. Beide Methoden der Abschnitte 4.3 und
4.4 stellen mittels einer Projektion auf den Unterraum, der die Sparsity-Bedingung für
die Parameter aufspannt, ihre Funktionalität unter Beweis und werden im Kontext von
SRUKFs formuliert. Sie unterscheiden sich ausschließlich durch die Modellierung der
Eigenschaft Sparsity, welche als Vorwissen für die Parameter unterschiedlich umgesetzt
wird. Hierbei stellt der zweite, stochastisch motivierte Entwurf deutliche Vorteile bzgl.
der Schätzgüte und der Glattheit der Parameter gegenüber dem ersten heraus, welcher auf
der heuristischen Schranke zur Bestimmung der Nichtnullelemente basiert. Das Verfah-
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ren im Abschnitt 4.5 stellt einerseits den Transfer des augmentierten Beobachters vom
SRUKF zum SMO dar und ergänzt andererseits die Methode um eine Option zur auto-
matisierten Bibliothekswahl basierend auf einer Fourieranalyse. Im Kontrast zur Methode
SINDy, welche ebenfalls interpretierbare Modelle durch einen Bibliotheksansatz und das
Konzept Sparsity erzeugt (vgl. Gleichung (3.2)), aber aufgrund der Abhängigkeit vom
vollständigen Zustand lediglich offline eingesetzt werden kann (vgl. Abbildung 3-25),
ermöglichen die in dieser Arbeit neu entwickelten Verfahren eine Online-Umsetzung
durch die Beobachterstruktur. Somit besteht die Chance, Modellungenauigkeiten parallel
zur Zustandsschätzung online zu identifizieren. Aufgrund der Analysen der Anwendungs-
beispiele werden zunächst zwei allgemeine Erkenntnisse über das Entwurfskonzept Joint
Estimation festgehalten:

• Eine gleichzeitige Schätzung von Zuständen und Modellungenauigkeiten ist durch
die Augmentation des Zustands um Parameter einer Linearkombination, welche die
Modellungenauigkeiten approximiert, umsetzbar.

• Die Bibliothekswahl der Linearkombination besitzt einen entscheidenden Einfluss
auf die Stabilität und Schätzgüte des Beobachters. Eine geeignet gewählte Biblio-
thek umfasst die minimale Bibliothek Ψ0 und besteht aus möglichst vielseitigen
Termen (vgl. beispielsweise Gleichung (4.6), Abbildung 4-5, Tabelle 4-1) oder wird
auf Basis einer Datenanalyse automatisiert bestimmt.

Neben der Bestätigung, dass Anforderung F.4 umsetzbar ist, lassen sich einige weite-
re Erkenntnisse zusammenfassen, welche die Umsetzung der zu Beginn formulierten
Anforderungen F.1 bis F.3 bewerten:

• Eine hohe Genauigkeit der Zustandsschätzung kann trotz existierender Modellun-
genauigkeiten bei geeignet gewählter Bibliothek gewährleistet werden.
→ Anforderung F.1 erfüllt

• Durch Umsetzung des Konzepts Sparsity ist der Parametervektor dünnbesetzt und
liefert die Grundlage für interpretierbare Aussagen.
→ Anforderung F.2+ erfüllt

• Ist der tatsächliche Term zur Charakterisierung der Modellungenauigkeit in der Bi-
bliothek enthalten, wird dieser eindeutig identifiziert und der Modellungenauigkeit
zugeordnet (vgl. beispielsweise Abbildung 4-10).
→ Anforderung F.2 teilweise erfüllt

• Ist der tatsächliche Term nicht in der Bibliothek enthalten, wird bei geeignet ge-
wählter Bibliothek eine alternative, verwandte Darstellung zur Charakterisierung
gefunden (vgl. beispielsweise Abbildung 4-10, Abbildung 4-18).
→ Anforderung F.2 teilweise erfüllt
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• Eine Nutzung der Verfahren im geschlossenen Regelkreis ist bei geeignet gewählter
Bibliothek möglich (vgl. Tabelle 4-1).
→ Anforderung F.3 teilweise erfüllt

• Die Adaptionsfähigkeit des augmentierten Beobachters im Fall von Systemverän-
derungen ist gegeben (vgl. Abbildung 4-19).
→ Anforderung F.3 teilweise erfüllt

Anhand der Auflistung ist erkennbar, dass die Anforderungen einer hohen Schätzgüte so-
wie einer interpretierbaren Schätzung der Modellungenauigkeiten erfolgreich durch die
Anforderung F.4 mittels der Konzepte Joint Estimation und Sparsity umgesetzt werden
konnten. Allerdings ist der erfolgreiche Einsatz in hohem Maße von der Wahl der Biblio-
thek abhängig, welche die Stabilität des Beobachters im geschlossenen Regelkreis46 be-
einflusst (vgl. Tabelle 4-1). Des Weiteren ist die Nutzung des augmentierten Beobachters
auf die Anwendung eingangsaffiner Systeme und die Existenz von additiven Modellun-
genauigkeiten limitiert, obwohl bereits erste Untersuchungen anhand der Windenergiean-
lage vorgenommen worden sind, deren Ergebnisse vielversprechend erscheinen. Zudem
kann es in manchen Situationen sinnvoller sein, auf altbewährte Strategien wie das Gain-
Scheduling zurückzugreifen, um den Aufwand in einem vertretbaren Rahmen zu halten.
Abschnitt 5.4 wird dieses Thema der Aufwand-Nutzen-Ratio genauer beleuchten.
Ferner ist die Identifikation der Modellungenauigkeiten in der Form einer parametrischen
Darstellung zur Modelladaption und Nutzbarkeit bisher nur im geringen Maße adressiert
worden. Auch wenn der Einsatz des augmentierten Beobachters bereits erfolgreich im
geschlossenen Regelkreis getestet worden ist, sind die Anforderungen F.2 und F.3 jeweils
lediglich teilweise erfüllt, da außer der visuellen Identifikation der Modellungenauigkei-
ten durch die Schätzwerte der Parameter (vgl. Abbildung 4-10) keine Auswertung für
eine parametrische Darstellung erfolgt ist. Diese ist jedoch nützlich, um eine Modelladap-
tion vorzunehmen, sodass das verbesserte Modell auch in weiteren Anwendungsschritten
einen Mehrwert bietet und verwertet werden kann. Dieser Anspruch wird daher im fol-
genden Kapitel umgesetzt, indem eine Online-Adaption zur Laufzeit basierend auf der pa-
rametrischen Darstellung der Modellungenauigkeiten formuliert wird, welche die bisher
nur teilweise erfüllten Anforderungen F.2 und F.3 schließlich vollständig berücksichtigt.
Die Grundidee des Vorgehens bildet hierbei eine automatisierte Datenanalyse während
der Schätzung, welche bereits im Abschnitt 4.5 zur automatisierten Bibliothekswahl the-
matisiert worden ist.

46Um diese Aussage vollständig zu validieren, müsste im Gegensatz zu den durchgeführten Untersu-
chungen eine nichtlineare Regelung am Golfroboter eingesetzt werden, welche das augmentierte,
nichtlineare Beobachtermodell nutzt. Dennoch ist der Einfluss der Bibliothek jederzeit präsent, da
der Regeleingriff auf den Schätzungen des Beobachters basiert.
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5 Automatisierte Modellaktualisierung während der Laufzeit

Nachdem im vorigen Kapitel unterschiedliche Optionen zur gleichzeitigen Schätzung von
Zuständen und Modellungenauigkeiten erarbeitet wurden, welche die Anforderung F.1
erfüllen und eine hohe Schätzgüte aufweisen, steht die explizite, nicht nur temporäre Iden-
tifikation der geschätzten Modellungenauigkeiten noch aus. Zwar werden die Ungenauig-
keiten während der Laufzeit dynamisch geschätzt, woraufhin die Schätzungen z. B. an-
hand visueller Analysen ausgewertet werden (vgl. Abbildung 4-28), jedoch wurde eine
automatisierte Identifikation und Extraktion in einer physikalisch-parametrischen Form
bisher noch nicht durchgeführt. Dies ist notwendig, um das Modell längerfristig zu adap-
tieren sowie bei Systemveränderungen zu aktualisieren (im Gegensatz zur temporären
Anpassung in der Abbildung 4-19). Somit sind die Anforderungen F.2 und F.3 ledig-
lich teilweise erfüllt (vgl. Abschnitt 4.6). Daher wird dieses Kapitel basierend auf den
vorangegangenen Ergebnissen des Kapitels 4 diese Anforderungen explizit adressieren
und Methoden zur automatisierten Extraktion interpretierbarer Modellungenauigkeiten
präsentieren, welche eine Nutzbarkeit der gesammelten Erkenntnisse in Form einer Ana-
lyse oder Synthese ermöglicht. Im Abschnitt 5.1 wird dazu die Hauptkomponentenanalyse
erläutert, welche eine Modellreduktion für die Approximation der Modellungenauigkeit
durchführt, sodass diese durch einige wenige Merkmale der Bibliothek Ψ erfasst wer-
den kann. Um jedoch schon während der Laufzeit eine solche Aktualisierung vornehmen
zu können, welche vorteilhaft für eine hohe Schätzgüte ist, wird im Abschnitt 5.2 ein
neuartiges Konzept zur Aktualisierung während der Laufzeit vorgestellt und umgesetzt,
welches die Idee einer automatischen Bibliothekswahl aus Abschnitt 4.5 aufgreift und
weiterentwickelt. Abschließend werden die Abschnitte 5.3 und 5.4 die physikalische In-
terpretierbarkeit der identifizierten Terme sowie den Aufwand und Nutzen des Verfahrens
kritisch beleuchten. Einige Abschnitte dieses Kapitels sind darüber hinaus bereits Teil
der Vorveröffentlichungen [GT23a; GT24]. Ferner sind die nachfolgenden, theoretischen
Grundlagen der Hauptkomponentenanalyse in geringem Maße in der studentischen Arbeit
[Sch23b] enthalten.

5.1 Merkmalsanalyse und -extraktion

Unabhängig von dem gewählten Filter oder Beobachter mit erweitertem Modell und des-
sen Methode zur Umsetzung der Anforderung F.2+ bzw. F.4, wird zu jedem Zeitpunkt k

eine temporäre Schätzung der Modellungenauigkeit g(xk,uk) ≈ θ̂T
kΨ(x̂k,uk) berechnet.

Neben dem primären Ziel, eine hohe Schätzgüte des Beobachters trotz Modellungenauig-
keiten sicherzustellen, stellt eine Modelladaption basierend auf den temporären Schät-
zungen der Modellungenauigkeit einen untergeordneten, aber nicht weniger wichtigen
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Zweck dar. Denn langfristig kann diese Adaption zu einer dauerhaft hohen Schätzgüte
beitragen. Folglich stellt sich die Frage, inwiefern die temporäre Schätzung der Modell-
ungenauigkeit ĝ = θ̂T

kΨ(x̂k,uk) Rückschlüsse auf das dynamische Verhalten der Mo-
dellungenauigkeit zulässt und wie diese für eine Modellaktualisierung genutzt werden
können. Während der Laufzeit k = 1, . . . ,N können die geschätzten Parameter θ̂k der Li-
nearkombination zu jedem Zeitpunkt gespeichert und einer Matrix Θ ∈ Rnθ×N zugeführt
werden, die diese Zeitreihendaten wie im Abschnitt 4.5 sammelt. Unter der Vorausset-
zung, dass die Bibliotheksterme ψi ähnlich skaliert47 sind, geben die Parameter durch
ihren Betrag indirekt Aufschluss über die Dominanz und Wichtigkeit der einzelnen Bi-
bliotheksterme zur Charakterisierung der Ungenauigkeit. Um die qualitativen Erkenntnis-
se, welche die Zeitverläufe der Parameter visuell im Kapitel 4 darstellen, auch quantitativ
und ohne eine menschenbezogene Interaktion nutzbar zu gestalten, werden in dieser Ar-
beit statistische Techniken zur Auswertung der Datenmatrix Θ genutzt. Diese bieten den
Vorteil, dass eine Entscheidung zur Bestimmung der dominanten Terme aus der Biblio-
thek getroffen werden kann, die reproduzierbar sowie nachvollziehbar, aber unabhängig
vom visuellen Eindruck der Person ist, die diese bewertet. Der größte Vorteil ist aller-
dings die automatisierte Durchführung der Merkmalsextraktion der Datenmatrix Θ an-
hand von statistischen Kenngrößen. Im Modellbildungsprozesses stellt die Merkmalsex-
traktion aus Daten darüber hinaus die Möglichkeit dar, automatisiert eine Modellreduk-
tion durchzuführen. Dies erlaubt die Approximation der Modellungenauigkeit durch ei-
nige wenige Merkmale, d. h. Bibliotheksterme, basierend auf den gesammelten Daten.
Nachfolgend wird daher die Hauptkomponentenanalyse als eine Methode zur Merkmal-
sanalyse und -extraktion erläutert, auf deren Grundlage anschließend eine Modellreduk-
tion durchgeführt wird. Neben der Hauptkomponentenanalyse existieren ferner vielfältige
Techniken zur Modellreduktion, auf die an dieser Stelle durch [BGQ+21; BGW15; BS14]
verwiesen wird.

Hauptkomponentenanalyse (PCA)

Eine der bekanntesten und populärsten Methoden zur Analyse hochdimensionaler Da-
ten ist die Hauptkomponentenanalyse, welche im deutschen Sprachgebrauch auch zu-
nehmend unter dem englischen Fachbegriff Principal Component Analysis (PCA) be-
kannt ist. Diese geht auf die Arbeiten von [Pea01] und [Hot33] zurück und basiert auf
der Singulärwertzerlegung (vgl. Anhang A4.3). In der Datenverarbeitung nimmt die PCA
häufig eine zentrale Rolle ein, wenn eine Merkmalsanalyse und/oder eine Modellreduk-
tion durchgeführt werden soll(en) (vgl. [Jol02], [BK19]). Anwendungsgebiete finden sich

47Diese Voraussetzung ist bereits in der Formulierung der Hypothesen ψi erforderlich, um eine geeig-
net gewählte Bibliothek sicherzustellen.
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z. B. in der Bild- und Videoverarbeitung, wenn diese komprimiert werden [BK19], in der
Finanzmarktanalyse [Jol02] sowie in vielen technischen Prozessen [Jol02; San12a; BS14].
Grundlegendes Ziel der PCA ist eine Koordinatentransformation der vorliegenden Daten
Θ ∈ Rnθ×N in ein Koordinatensystem, welches die Daten besser als das vorherige, meist
kartesische Koordinatensystem darstellen kann. Diese Grundidee ist in der Abbildung 5-1
beispielhaft für zwei Dimensionen visualisiert. Da sich die Daten, illustriert durch die
Punkte, anhand ihrer Varianz charakterisieren lassen, befindet sich in der Abbildung 5-1
die durch die PCA transformierte erste Achse entlang der größten Varianz der Daten,
während die zweite Achse orthogonal zu dieser steht und die zweitgrößte Varianz in den
Daten beschreibt.
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Abbildung 5-1: Koordinatentransformation durch die PCA anhand eines zweidimensio-
nalen Beispiels: Die roten Ellipsen stellen jeweils die einfache, doppelte
und dreifache Standardabweichung dar, die blauen Achsen beschreiben
das durch die PCA gefundene Koordinatensystem, vgl. [BK19].

Die Datenmatrix Θ besteht jedoch nicht nur aus zwei, sondern aus nθ verschiedenen
Merkmalen, die in N Beobachtungen, z. B. durch Experimente, erfasst worden sind. Wenn
die Daten eine unterschiedliche Skalierung aufweisen, ist eine Vorverarbeitung dieser un-
erlässlich. Erfolgt diese nicht, verzerrt die PCA die tatsächlich zugrunde liegenden In-
formationen (vgl. [Jol02, Abbildungen 2.1 und 2.2]). Aufgrund der Sensitivität der PCA
werden die Daten zunächst standardisiert, indem der Mittelwert µΘ und die Standard-
abweichung σΘ berechnet werden, sodass diese durch die standardisierte Matrix ΘS in
einem vergleichbaren Rahmen vorliegen. Anschließend werden die Daten in einer Kova-
rianzmatrix

PΘ = ΘSΘ
T
S
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angeordnet, woraufhin deren Eigenwerte λi
48 und Eigenvektoren υi mit i = 1, . . . , nθ

bestimmt werden. Da die Eigenwerte von PΘ eine enge Verwandtschaft zu den Sin-
gulärwerten von Θ aufweisen, können diese mithilfe der Singulärwertzerlegung effizient
berechnet werden (vgl. Anhang A4.3, [Jol02], [BK19]). Die dazugehörigen Eigenvekto-
ren υi sind dabei orthonormal zueinander. In der Regel wird die PCA nicht nur zur Analy-
se der Daten genutzt, sondern auch zur Modellreduktion. Dies gelingt unter der Prämisse,
dass manche der Achsen mit geringer Varianz lediglich Rauschen enthalten, woraufhin
die darin enthaltenen Informationen vernachlässigt werden können.

Merkmalsextraktion

Die Auswertung der DatenmatrixΘnθ×N mittels PCA liefert aufgrund der Singulärwertzer-
legung eine strukturierte Sortierung der nθ Eigenwerte mit λ1 ≥ λ2 ≥ · · · ≥ λnθ und ihrer
Eigenvektoren υ1, . . . , υnθ . Allerdings ist noch ungeklärt, wie entschieden wird, welche
der nθ Eigenwerte beibehalten und welche für die Darstellung der gesammelten Daten
vernachlässigt werden können. Darüber hinaus stellt sich die Frage, wie die jeweiligen
Bibliotheksterme basierend auf den beibehaltenen Eigenwerten ermittelt werden. Grund-
lage für diese Entscheidung ist zunächst die Beurteilung der Eigenwerte hinsichtlich ih-
rer Fähigkeit, die gegebenen Daten zu repräsentieren. Je größer ein Eigenwert ist, desto
höher ist sein Anteil daran, die gesammelten Daten gut darstellen zu können. Dement-
sprechend liegen die Eigenwerte nach der PCA bereits in einer geeigneten Sortierung vor.
Dennoch steht die Entscheidung weiterhin aus, welche Eigenwerte berücksichtigt und
vernachlässigt werden, d. h. ab welchem Eigenwert λi∗ mit 1 ≤ i∗ ≤ nθ eine Modell-
reduktion auf die ersten ein bis i∗ Eigenwerte stattfindet. Dazu existieren überwiegend
einfache, empirische Kriterien. Die Verwendung von statistisch basierten Bedingungen
zur Entscheidungsfindung ist weniger verbreitet, da diese meist formal aufwendiger sind
und keinen Vorteil im Vergleich zu einfachen Maßnahmen aufzeigen [Jol02; San12b].
Somit stellen die Kaiser-Methode, der Scree-Test und das Verfahren der kumulativen Va-
rianz die populärsten Kriterien dar [Jol02; San12b].
Die Kaiser-Methode basiert auf dem Mittelwert λ̄ aller Eigenwerte, anhand dessen ei-
ne Grenze λi∗ > aλ̄ mit frei wählbarem Parameter a > 0 für die Eigenwerte bestimmt
wird, die beibehalten werden sollen [Kai60]. Diese Methode ist von einfacher Natur und
stellt ihren Nutzen nicht aufgrund von formalen Eigenschaften, sondern durch ihren er-
probten Einsatz in verschiedenen Studien heraus [Jol02]. Der Scree-Test, dessen Begriff
Cattell in [Cat66] geprägt hat, ist dagegen eine grafische Methode, bei der die Anzahl der
Merkmale nθ mit dem jeweiligen Eigenwert als Tupel in ein Koordinatensystem einge-
tragen werden. Anschließend wird überprüft, an welcher Stelle sich der stärkste Knick

48Im Kontrast zu vorigen Kapiteln bezeichnet das Symbol λ einen Eigenwert in diesem Kapitel.
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des resultierenden Graphen befindet. Dieser markiert die Unterscheidung zwischen domi-
nanten und nicht dominanten Eigenwerten. Eine Visualisierung dieser Methode ist exem-
plarisch in der Grafik links unten der Abbildung 5-3 zu erkennen. Beide Verfahren sind
dennoch stark subjektiv, da z. B. die Wahl des Parameters a schwierig festzulegen und das
Auftreten des Knicks stark von der Skalierung der Eigenwerte abhängig ist, sodass die-
se Methoden häufig zu Missinterpretationen führen können [Jol02; San12a]. Eine nach-
vollziehbare, obgleich weiterhin subjektive Entscheidung wird mithilfe der Methode der
kumulativen Varianz getroffen. Die grundlegende Idee der Modellreduktion wird hierbei
durch eine plausible Abschätzung aufgegriffen:

Q =
∑i∗

l1=1 λl1∑nθ
l2=1 λl2

· 100. (5.1)

Um die Fähigkeit, die gesammelten Daten adäquat zu repräsentieren, quantitativ zu be-
werten, wird in der Gleichung (5.1) zunächst ein Quotient bestehend aus der Summe der
ersten i∗ Eigenwerten bezogen auf die Summe aller Eigenwerte gebildet. Dieser Quotient
wird daraufhin prozentual ausgewertet und stellt somit die totale prozentuale Varianz der
Daten dar [Jol02; San12a]. Indem ein Prozentsatz vorgegeben wird, den das reduzierte
Modell bezogen auf die Daten in jedem Fall darstellen können muss, wird die kumulative
Varianz Q mit diesem Wert verglichen. Schließlich werden die i∗ Eigenwerte behalten,
die mit ihrer kumulativen Varianz Q genau die vorgegebene Grenze überschreiten. In der
Regel wird ein Prozentsatz zwischen 70% und 90% gewählt [Jol02]. Obwohl auch die-
ses Verfahren eine subjektiv gewählte Grenze in Form eines Prozentsatzes erwartet, stellt
es ein intuitiveres Mittel dar, dessen Parameter durch einen Menschen sinnvoll vorgege-
ben werden kann, weil dieser die qualitative Wirkung des Parameters nachvollziehen und
einschätzen kann. Dennoch bleibt aufgrund der empirischen, einfachen Struktur dasselbe
Risiko einer Missinterpretation bestehen, beispielsweise wenn viele gleich große Eigen-
werte vorliegen und ein sehr hoher Prozentsatz vorgegeben ist. Wegen seiner intuitiven
Anwendung sowie Eignung zur Automatisierung wird die Methode der kumulativen Va-
rianz zur Auswertung der PCA im weiteren Verlauf dieser Arbeit genutzt.
Unabhängig von der gewählten Entscheidungsmethode stehen die Eigenwerte λ1, . . . ,λi∗

anschließend fest, auf die das Modell reduziert werden soll. Ziel dieses Kapitels ist die
Identifikation der dominanten Bibliotheksterme, daher steht die Beantwortung der zwei-
ten, zuvor gestellten Frage noch aus. Nachdem analysiert wurde, welche Eigenwerte in
welcher Reihenfolge einen Beitrag zu den Daten leisten, können nun die dazugehörigen
Eigenvektoren genutzt werden, um auf die einzelnen Terme ψi zu schließen. Dazu kann
geometrisch argumentiert werden: Für jeden Eigenwert zeigt der betragsmäßig größte
Eintrag des Eigenvektors in genau die Richtung des Elements, der den Eigenwert am
meisten dominiert. In der Abbildung 5-2 sind zur Illustration des Vorgehens die Elemente
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der Eigenvektoren υ1, υ2 der beiden größten Eigenwerte λ1, λ2 in der x- bzw. y-Achse
dargestellt. Die Elemente der Eigenvektoren υ1,i bzw. υ2,i sind in der Abbildung durch
den Index des Bibliotheksterms ψi dargestellt, sodass z. B. die Position von ψ9 in der
Abbildung durch das neunte Element von υ1 und das neunte Element von υ2 bestimmt
wird. Somit visualisiert die Abbildung 5-2 die Beiträge der einzelnen Bibliotheksterme
zum jeweiligen Eigenwert. Für den größten Eigenwert λ1, der in diesem Beispiel 81, 69%
Anteil an der Varianz besitzt, weist ψ9 den stärksten Beitrag auf, da das neunte Element
von υ1 betragsmäßig am größten ist. Dies ist in der Abbildung daran zu erkennen, dass
alle anderen Terme bzgl. der x-Achse nahe Null positioniert sind. Für den zweitgrößten
Eigenwert, der 12, 2% Anteil an der Varianz besitzt, kann anhand der y-Achse abgelesen
werden, dass sowohl das erste als auch das zweite Element des Eigenvektors υ2 einen
Einfluss besitzen. Da das erste Element, erkennbar an der Position des Terms ψ1, jedoch
einen betragsmäßig größeren Einfluss aufweist, wird dieses als dominant bestimmt und
deshalb auf den Term ψ1 zurückgeführt. Alle weiteren Terme besitzen keinen Einfluss
auf diesen Eigenwert, da deren Beträge nahe Null sind, was durch die Überlagerung der
Terme um Null dargestellt ist. Folglich wird zu jedem der dominanten Eigenwerte λi der
Eigenvektor υi bzgl. seines betragsmäßig größten Elements ausgewertet. Dieses Element
υl∗ mit 1 ≤ l∗ ≤ nθ ist dann die Referenz für den Bibliotheksterm ψl∗ , der den stärksten
Einfluss auf den Eigenwert λi aufweist.
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Abbildung 5-2: Die ersten beiden Eigenwerte λ1, λ2 decken zusammen mehr als 93%
der Varianz ab. Die Elemente der dazugehörigen Eigenvektoren υ1 und
υ2 sind in dieser Visualisierung in Abhängigkeit voneinander als Krei-
se dargestellt. Die Zahlen i stellen das jeweilige Element des Eigenvek-
tors υ1 bzw. υ2 dar und können infolgedessen auf die Bibliotheksterme ψi

zurückgeführt werden.
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Evaluation der Merkmalsextraktion

Im Folgenden wird nun überprüft, inwiefern die Merkmalsanalyse und -extraktion das dy-
namische Verhalten einer konkreten Modellungenauigkeit approximieren können. Dazu
werden die aus dem Kapitel 4 bekannten Daten der Parameter θ̂k vom Duffing-Oszillator
und Golfroboter ausgewertet. Zunächst werden die Parametersätze des Duffing-Oszillators
untersucht, da die Qualität der Merkmalsextraktion hierfür besonders vorteilhaft aufgrund
der bekannten, definierten Modellungenauigkeit g(x, u) = −3x1 begutachtet werden kann.
Zum qualitativen Vergleich ist in der oberen Zeile der Abbildung 5-3 weiterhin der zeit-
liche Verlauf der Parameter θ̂ aus Kapitel 4 vom Beispiel mit der Bibliothek Ψ1 abge-
bildet, welcher der PCA durch die Datenmatrix Θ als Informationsgrundlage dient (vgl.
Abbildungen 4-27 bis 4-28). In der unteren, linken Visualisierung ist ein Scree-Test ba-
sierend auf den Ergebnissen der PCA dargestellt. Für dieses Exempel ist der Knick sehr
deutlich zwischen dem ersten und zweiten Eigenwert zu erkennen, sodass lediglich der
erste Eigenwert als dominant erachtet wird.
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Abbildung 5-3: Merkmalsanalyse des zeitlichen Verlaufs der θ̂ mittels PCA (obere Zeile)
und Auswertung durch einen Scree-Test (links) bzw. die Methode der ku-
mulativen Varianz (rechts) am Beispiel des Duffing-Oszillators und der
Bibliothek Ψ1(x, u) = (1, x1, x2, x2

2, sin(x2), x1 · x2, cos(x1), u, x3
1)T , vgl.

Abbildung 4-28
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Im Vergleich dazu ist rechts die Methode der kumulativen Varianz dargestellt, welche die
Varianz der einzelnen Eigenwerte sukzessiv aufaddiert. Hierbei ist die jeweilige addier-
te Varianz pro Eigenwert als roter Teil des Säulendiagramms dargestellt. Wird für den
Duffing-Oszillator eine Grenze von 80% gewählt, entspricht die Einteilung in dominan-
te und nicht dominante Eigenwerte genau dem Scree-Plot. Wird dagegen eine Varianz
von 90% gefordert, wird der zweite Eigenwert ebenfalls zur Dominanz hinzugezählt. Aus
beiden Visualisierungen ergibt sich die Zuordnung der Varianz zu den Bibliothekstermen,
sodass in beiden Fällen der richtige Term ψ9(x, u) = x3

1, gefolgt von den Konstanten
ψ1, durch das Verfahren detektiert wird. Der sich anschließende, notwendige Schritt der
Identifikation des dazugehörigen, konkreten physikalischen Parameters kann durch eine
klassische Parameteridentifikation erfolgen, z. B. durch eine Optimierung auf Grundlage
von Messdaten oder durch eine gleichzeitige Schätzung von Zuständen und des Para-
meters (vgl. Abschnitt 4.1, Gleichung (4.1)). Werden schließlich die beiden wichtigsten,
dominanten Terme ψ9 und ψ1 genutzt, um die Modellungenauigkeit zu approximieren,
kann diese reduzierte Identifikation ĝ1,red zur vollständigen Linearkombination ĝ1 und
zur Modellungenauigkeit g verglichen werden. In der Abbildung 5-4 ist dieser Vergleich
dargestellt, welcher aufzeigt, dass aufgrund der Modellreduktion zwar geringfügig Infor-
mationen verloren gehen, die ĝ1 aufweist und welche sich daher als Abweichung bei ĝ1,red

bemerkbar machen, im Allgemeinen aber die Genauigkeit weiterhin hoch ist.
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Abbildung 5-4: Approximation der Modellungenauigkeit g durch die vollständige Linear-
kombination ĝ1 und durch die von der PCA reduzierte Linearkombination
ĝ1,red, vgl. [GT23a]
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Somit liefert die Modellreduktion durch die PCA die Identifikation relevanter Terme,
die eine physikalisch-technische Interpretierbarkeit der Modellungenauigkeit nach den
Anforderungen F.2 und F.3 ermöglichen. Analog durchgeführte Hauptkomponentenana-
lysen für die Bibliotheken Ψ2,Ψ3 (vgl. Gleichung (4.18)) ergeben die im Kapitel 4 postu-
lierten Ergebnisse: Für die BibliothekΨ2 werden die Terme ψ9(x, u) = x2

1 und ψ1(x, u) = 1
extrahiert, für die Bibliothek Ψ3 erfüllen die zwei Terme ψ2(x, u) = x1 und ψ1(x, u) = 1
die 90%-Hürde. Demnach bestätigt sich auch quantitativ, dass das Verfahren in der Lage
ist, den korrekten Term, falls dieser enthalten ist, oder passende Alternativen zu diesem,
wie im Fall des Duffing-Oszillators mit dem quadratischen und linearen Zustand, zu extra-
hieren. Nach dieser Analyse werden nun die Messdaten des Golfroboters während eines
Schlags, welche aus einem Experiment am Prüfstand stammen, ausgewertet. Erneut ist
in der oberen Zeile der Abbildung 5-5 der visuelle, zeitliche Verlauf der Parameter ab-
gebildet, während in der unteren Zeile zwei Auswertungen der Modellreduktion durch
die PCA und deren Zuordnung zu den Bibliothekstermen zu sehen sind. Die im Versuch
verwendete Bibliothek lautet Ψ5 und ist bereits in der Tabelle 4-1 dargestellt worden.
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Abbildung 5-5: Merkmalsanalyse des zeitlichen Verlaufs der Prüfstandsdaten θ̂ mittels
PCA (obere Zeile) und Auswertung durch einen Scree-Test (links) bzw. die
Methode der kumulativen Varianz (rechts) am Beispiel des Golfroboters
und der Bibliothek Ψ5(x, u) =

(
1, x1, x2, cos(x1), tanh(x2), x3

2, u
)T
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Nach dem Scree-Test werden nur die beiden Terme ψ4(x, u) = cos(x1) und ψ3(x, u) = x2

als dominant ausgewählt, wohingegen nach der Methode der kumulativen Varianz bei
einer Wahl von 90% zusätzlich ψ1(x, u) = 1 als weiterer, wichtiger Beitrag zur Ap-
proximation der Modellungenauigkeit g eingestuft wird. Im Vergleich zum Modell des
Golfroboters (3.4) fällt nach den Auswertungen auf, dass insbesondere die zwei wichtigs-
ten Bestandteile des Dämpfungsmoments Md durch die PCA identifiziert werden (vgl.
Gleichung (3.5)): Die Abhängigkeit des Stick-Slips-Effekts infolge der Gewichtskraft,
welche durch ψ4(x, u) = cos(x1) extrahiert wird, sowie die Abhängigkeit der Reibung
von der Winkelgeschwindigkeit, welche durch ψ3(x, u) = x2 berücksichtigt wird. Somit
ermöglicht das Verfahren ebenfalls auf Basis von Realdaten und im geschlossenen Regel-
kreis nachvollziehbare und physikalisch wertvolle Einsichten in das betrachtete System,
sofern eine geeignete Bibliothek gewählt worden ist (vgl. Abschnitt 4.3). Werden diese
Einsichten wiederum genutzt und durch ein PCA reduziertes Modell umgesetzt, so lässt
sich die gemessene Abweichung gmess durch ĝ5,red entsprechend approximieren und mit
der nichtlinearen Modellierung ĝNL vergleichen. Im Gegensatz zu ĝNL, welches die Rei-
bung bereits sehr gut modelliert, weisen die Approximationen ĝ5, ĝ5,red größere Aufwei-
chungen auf, nähern das dynamische Verhalten aber qualitativ gut an. Diese Genauigkeit
genügt, um eine ausreichend hohe und verbesserte Schätzgüte im Vergleich zum Modell
(A6-2) zu erzielen.
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5.2 Modellaktualisierung

Häufig ist es vorteilhaft, statt einer einmalig, offline durchgeführten Analyse schon wäh-
rend der Laufzeit eine Anpassung des Modells vornehmen zu können, beispielsweise
wenn anhand der Parameterschwankungen oder der Zustandsschätzung erkennbar ist,
dass die statisch verwendete BibliothekΨ keine oder lediglich eine geringe Verbesserung
der Schätzgüte bewirkt. Dies lässt den Rückschluss zu, dass die verwendeten Hypothesen
ψi möglicherweise nicht allesamt gleich gut geeignet sind, um die Modellungenauigkeit g

adäquat zu charakterisieren, sodass ein nachfolgender, weiterer Schritt der Identifikation
erfolgen muss. Die Möglichkeit, basierend auf der Merkmalsanalyse eine variable und
sich anpassende Bibliothek, welche auch neue Hypothesen ψ j,neu beinhaltet, zu nutzen,
eröffnet daher die Chance, eine sukzessiv genauere Approximation der Modellungenauig-
keit während der Laufzeit zu erzielen. Diese bewirkt eine höhere Modellgüte, wodurch
eine Verbesserung der Schätzgüte gefördert wird. Darüber hinaus besteht ein weiterer
Vorteil einer Online-Aktualisierung in der Diagnose und Adaption des Modells an sich
(potentiell schleichend) verändernde Betriebszustände aufgrund von Verschleiß, Tempe-
raturen oder anderen Umwelteinflüssen. In dieser Situation kann ein sich aktualisieren-
des Modell dafür sorgen, dass der Schätzfehler weiterhin in einem vertretbaren Rahmen
bleibt und die Regelung robust funktioniert. In diesem Abschnitt wird daher ein Kon-
zept zur Online-Modellaktualisierung entwickelt, welches situationsabhängig basierend
auf der Merkmalsanalyse entweder die Bibliothek anpasst oder die aktuell verwendete
Bibliothek beibehält. Aufgrund der notwendigen Phase der Datenakquise der Parameter-
vektoren θ̂k existieren zwei zeitlich getrennte Phasen in diesem Konzept, welches in der
Abbildung 5-7 in einem Ablaufdiagramm dargestellt ist. Dieses ordnet die bisher themati-
sierten Methoden aus Kapitel 4 und Abschnitt 5.1 in ein Gesamtkonzept ein. Nachfolgend
werden beide Phasen erläutert und mittels Experimenten am Golfroboter illustriert.

Phase der Datenakquise und Aktivitätsüberprüfung

Bevor wie im Abschnitt 5.1 beschrieben eine fundierte Analyse der auftretenden Parame-
ter erfolgen kann, müssen zunächst genügend Datensätze gesammelt werden. Dabei gilt
es das transiente Verhalten des dynamischen Systems abzuwarten, falls das System erst-
malig angeregt und/oder mit dem augmentierten Beobachter genutzt wird. Die Dauer der
Datenakquise richtet sich somit einerseits nach der Einschwingphase, die zum Zeitpunkt
tk = T0 beendet ist, und andererseits nach der Menge N der zu sammelnden Parameter-
vektoren. Letztere ist abhängig von der Anwendung und vom Ziel der Untersuchung zu
wählen, sollte aber in der Regel ein Vielfaches der Abtastzeit T1 aufweisen, um nθ ≪ N

sicherzustellen. Analog zu anderen Verfahren mit gleitenden Zeithorizonten, wie etwa die
modellprädiktive Regelung, kann dieser Einflussfaktor vorgegeben und variabel gestal-
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tet werden. Je kleiner N gewählt wird, desto häufiger wird das Modell ggf. aktualisiert.
Eine weitere Bedingung, die die Merkmalsanalyse einleiten kann, resultiert aus dem Ver-
gleich des System- und Modellverhaltens. Überschreitet der messbare Modellfehler ∆ f ,
z. B. der Ausgangsfehler ey = ŷ − y, eine festgelegte Schranke δ f , bedeutet dies, dass
die Modellgüte unzureichend ist und eine Aktualisierung des Modells auf Basis der bis-
her gesammelten Informationen erfolgen soll. Diese Überprüfung ist besonders hilfreich,
um Systemveränderungen des Systems zu detektieren, die eine Adaption des Modells
erfordern. Daneben ist zu beachten, dass keine Identifikation der Modellungenauigkeit
aufgrund mangelnder Dynamik erfolgen kann, wenn sich das System in Ruhe bzw. nahe
der Ruhelage befindet, demnach u ≡ 0 bzw. u ≈ 0 und x ≡ 0 bzw. x ≈ 0 gelten. Eben-
so muss die Wirkung der Modellungenauigkeiten g sichtbar sein, sodass keine plausible
Identifikation erfolgen kann, wenn g ≡ 0 bzw. g ≈ 0 gilt.
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Abbildung 5-7: Konzept zur simultanen Schätzung und Modellaktualisierung, vgl. [GT24]



5.2 Modellaktualisierung 163

Eine zielgerichtete Analyse der Modellungenauigkeit kann somit nur erfolgen, wenn das
Konzept zur Online-Modellaktualisierung die beschriebenen Situationen vom gewöhn-
lichen Betrieb unterscheidet und berücksichtigt. Die Aktivität der Modellaktualisierung
wird deshalb über eine Abfrage gesteuert, wie es im Ablaufdiagramm 5-7 dargestellt ist.
Liegen N Schätzwerte für θ̂ vor und existiert eine Modellabweichung, so startet die Ana-
lyse zur Modellaktualisierung. Ist dies nicht der Fall, beispielsweise wenn keine zu große
Modellabweichung |∆ f | besteht, oder noch nicht genügend Schätzwerte für die Parameter
gesammelt worden sind, wird weiterhin simultan geschätzt, aber keine Modellaktualisie-
rung vorgenommen. Gleiches gilt, wenn das transiente Verhalten tk ≤ T0 noch nicht abge-
schlossen ist. Einflussfaktoren wie der Zeitpunkt T0, welcher das Ende des Einschwingens
markiert, die Anzahl N der zu sammelnden Parametervektoren sowie die Schranke δ f für
den Modellfehler sind demnach Größen, die der automatisierten Modellaktualisierung
vorgegeben werden müssen.

Phase der Analyse, Adaption und Aktualisierung

Sind die Voraussetzungen für eine Modellaktualisierung gegeben, wird zunächst eine
Analyse des vergangenen Zeithorizonts durch die N erfassten Datensätze vorgenommen,
um zu überprüfen, wie hilfreich die genutzte Bibliothek Ψ zur Approximation der Mo-
dellungenauigkeit gewesen ist. Dazu kann zwischen einer benutzerdefinierten und einer
automatisierten Analyse gewählt werden. Aufgrund der zeitlichen Verzögerung, die eine
solche personenbezogene Untersuchung verursacht, sowie der subjektiven Bewertung, die
zu einer Verzerrung der Informationen führen kann, wird ausschließlich der Pfad der au-
tomatisierten Analyse betrachtet. Nach der Durchführung der Merkmalsanalyse, welche
die dominanten Bibliotheksterme ψi liefert, werden die nicht dominanten Terme ψ j mit
i , j aus der Bibliothek entfernt und durch neue Hypothesen ψ j,neu ersetzt. Diese stammen
aus vorgefertigten Bibliotheken Ψ∗1,Ψ

∗
2, . . . , die beispielsweise nach Anwendungsfeldern

oder Dynamikart gruppiert sein können. Für mechanische Systeme könnte eine vorgefer-
tigte Bibliothek ggf. aus Reibungselementen oder aus schwingungstypischen Elementen
bestehen. Anschließend werden neue Terme ψ j,neu aus dieser großen Vielfalt randomisiert
oder aufgrund der vorangegangenen Analyse49 ausgewählt und der Bibliothek, nun als
Ψneu bezeichnet, mit den zuvor als dominant gekennzeichneten Termen ψi zugeführt. We-
gen der Erfahrungswerte aus Kapitel 4 wird jedoch eine Randomisierung vorgeschlagen,
bei welcher z. B. auch verschiedene Wahrscheinlichkeiten zur Auswahl bestimmter, neuer
Hypothesen hinterlegt sein können, um eine vielseitige und ausgewogene neue Bibliothek
zu gewährleisten. Je nach Applikation und Vorwissen kann diese Auswahl aus lediglich

49Wegen der Auswahlmethode, welche einen konkreten Wert für die kumulative Varianz definiert,
könnten auch nicht dominante Terme, die einen verhältnismäßig hohen Anteil an Varianz aufweisen
und bisher nicht berücksichtigt wurden, weiter genutzt werden.
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einer vorgefertigten, thematischen Bibliothek erfolgen, z. B. wenn bekannt ist, dass es
sich bei den Ungenauigkeiten um Schwingungen oder Vibrationen handelt, oder durch
die zufällige Selektion aus mehreren, verschiedenen Bibliotheken, falls die Ungenauig-
keiten gänzlich unbekannter Art sind. Wie in der Abbildung 5-7 zu erkennen ist, wird
diese neue BibliothekΨneu daraufhin für den nächsten Zeithorizont im augmentierten Be-
obachter verwendet und stellt demnach eine angepasste, häufig verbesserte Option zur
Approximation der Modellungenauigkeit dar. Je nach Länge des Aktualisierungs- und
Analysezeitraums besteht u. U. der Bedarf, einen konkreten Parameterwert zu den je-
weils identifizierten dominanten Termen zu finden, um ein festes interpretierbares Modell
zu erhalten, welches auch die physikalische Parametrierung der gefundenen, identifizier-
ten Terme widerspiegelt. Dies ist bereits im Abschnitt 5.1 thematisiert und mithilfe ei-
ner klassischen Parameteridentifikation, etwa nach Gleichung (4.1), adressiert worden.
Im Fall der Online-Modellaktualisierung entsteht dieser Bedarf zudem ausschließlich
durch lange Aktualisierungs- und Analysezeiträume, da andernfalls eine Identifikation
der Parameter durch den augmentierten Beobachter erfolgt und ohnehin mehrere, sich
ggf. stark unterscheidende Teilmodelle entstehen, weil es sich beispielsweise um ein sich
schnell veränderndes System handelt. Schließlich liegt nach Abbildung 5-7 ein geschlos-
sener Kreislauf vor, der grundsätzlich durchgehend fortgeführt werden kann, um ein sich
sukzessiv verbesserndes Modell zu erzielen. Dies ist vor allem hilfreich, wenn System-
veränderungen auftreten und das Modell an diese adaptiert werden muss. Da durch die
Modelladaption lediglich ein Teil des Beobachtermodells angepasst wird, bewirken die
adaptiven Umschaltprozesse in der Regel keine größeren Nachteile bzgl. der Regelgüte.

Evaluation am Beispiel des Golfroboters

Für das beschriebene Konzept (vgl. Abbildung 5-7) wird nun anhand des Golfroboters
ein Machbarkeitsnachweis durchgeführt, der exemplarisch einzelne Situationen des Kon-
zepts beleuchtet. Hierbei wird aufgrund der Softwareanforderungen des Prüfstands und
der intuitiven Implementierung statt der Formulierung mehrerer Bibliotheken Ψ∗1,Ψ

∗
2 nur

eine Bibliothek Ψ∗ ∈ R17 als Option genutzt, welche aus einer Vielzahl an Termen
besteht. Die Bibliothek des Beobachters, die zur Approximation der Modellungenauig-
keit dienen soll, beinhaltet lediglich jeweils neun Terme. Daher werden jene neun Ter-
me aus der Bibliothek Ψ∗ randomisiert gewählt, sodass eine vielfältige Kombination
an Bibliothekskombinationen entsteht und der Nachweis als umfassend und allgemein
gültig angesehen werden kann. Die Terme der Bibliothek Ψ∗(x, u) sind inklusive ihrer
Nummerierung in der Tabelle 5-1 zusammengefasst. Der Machbarkeitsnachweis wird
zunächst für den allgemeinen Betrieb des Golfroboters gezeigt, bei welchem weiterhin
das Modell (A6-2) genutzt wird. Abschließend wird ein Nachweis für den Fall von Sys-
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temveränderungen erörtert. Dieser wird anhand einer Simulation untersucht, weil eine
plötzliche, bauliche Veränderung am Prüfstand während der Zustandsschätzung im ge-
schlossenen Regelkreis nicht möglich ist. Bei der erstmaligen Nutzung des Beobach-
ters werden für alle nachfolgend beschriebenen Untersuchungen dieses Kapitels jeweils
die ersten neun Elemente von Ψ∗ verwendet (vgl. die Tabelle 5-1), sodass die Biblio-
thek Ψ0(x, u) = (1, x1, x2, cos(x1), x2

2, tanh(x2), sin(x2), x2
1x2, u)T gebildet wird. Diese ini-

tiale Bibliothek stellt für den Golfroboter vielfältige Hypothesen bereit, da sowohl trigo-
nometrische als auch polynomiale Elemente enthalten sind, und ist folglich vorteilhaft für
den Beginn der Identifikation der Modellungenauigkeiten.

Index 1 2 3 4 5 6 7 8 9
Term 1 x1 x2 cos(x1) x2

2 tanh(x2) sin(x2) x2
1x2 u

Index 10 11 12 13 14 15 16 17
Term u2 x2

1 ex2 sinh(x2) x1x2 tan(x2) sin(x1)2 sin(x2
1)

Tabelle 5-1: Bibliotheksterme von Ψ∗ und ihr Index für den Machbarkeitsnachweis

Machbarkeitsnachweis: Allgemeiner Betrieb

In der Abbildung 5-8 werden Informationen bzgl. der Adaption und Aktualisierung der
Bibliothek Ψneu, die nach dem Gesamtkonzept 5-7 durch Löschen und Hinzufügen neu-
er Hypothesen aus Ψ∗ entsteht, abhängig von der Zeit dargestellt. Die jeweils genutzten
Bibliotheksterme sind anhand ihrer Nummerierung nach Tabelle 5-1 gekennzeichnet, wel-
che durch verschiedene Farben veranschaulicht wird. Die aktuelle Bibliothek Ψneu lässt
sich daher gedanklich durch einen vertikalen Balken zum interessierenden Zeitpunkt t

ablesen. So lässt sich beispielsweise die Einschwingphase T0 = 1 s erkennen, da die
ersten neun Indizes innerhalb der ersten Sekunde konstant bleiben und demnach die
Bibliothek Ψ0 genutzt wird. Zudem ist anhand dessen der Aktualisierungszeitraum er-
kennbar, welcher 0, 25 Sekunden umfasst. Mittels schwarzer Symbole werden darüber
hinaus die nach jedem Aktualisierungshorizont identifizierten, dominanten Terme des
vergangenen Zeitraums illustriert. Dabei werden jeweils die letzten 0, 375 Sekunden zur
Analyse genutzt. Da diese Terme durch die kumulative Varianz, welche in diesem Fall
zur Veranschaulichung auf 99% festgelegt ist, bestimmt werden (vgl. Gleichung (5.1)),
werden u. U. mehrere Bibliotheksterme pro analysiertem Zeitraum identifiziert. Um den-
noch die Gewichtung der dominanten Terme zu verdeutlichen, werden diese durch ver-
schiedene Symbole unterschieden, wobei die Indizes mit Kreisen auf den dominantesten
Term hinweisen. Für dieses Exempel eines allgemeinen Betriebs zeigen sich je nach Pha-
se der Schlagdynamik andere Terme, welche die Modellungenauigkeit, die aus der nicht
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berücksichtigten Reibung resultiert, annähern und das Modell anhand der Bibliothek Ψ∗

adaptieren. So resultieren die folgenden dominanten Terme, welche nachfolgend exem-
plarisch für jede Schlagphase aus der Visualisierung 5-8 abgelesen werden:

t = 1 s : ψ3(x, u) = x2, ψ1(x, u) = 1,

t = 1, 5 s : ψ16(x, u) = sin(x1)2, ψ10(x, u) = u2,

t = 2 s : ψ5(x, u) = x2
2, ψ13(x, u) = sinh(x2), ψ14(x, u) = x1x2.

(5.2)

Während des Ausholens bis zur ersten Sekunde charakterisieren insbesondere die Win-
kelgeschwindigkeit ψ3(x, u) = x2 und Konstanten ψ1(x, u) = 1 das Manöver. Dies ändert
sich beim Schlag zu trigonometrischen und stellgrößenabhängigen Funktionen, wohin-
gegen das Rückholen des Schlägers durch geschwindigkeitsbasierte und trigonometri-
sche Terme sowie Korrelationen zwischen Winkel und Winkelgeschwindigkeit geprägt
ist (vgl. Gleichung (5.2)). Die Wirkung der Reibung ist somit nach den dynamischen
Phasen des Golfroboters anhand der temporären Konvergenz der Bibliotheksindizes zu
erkennen und ermöglicht eine physikalisch interpretierbare Kompensation der Reibung
im Sinne der Anforderungen F.2 und F.3. Infolge der kurzen Aktualisierungs- und Ana-
lysezeiträume findet lediglich diese temporäre Identifikation der Terme statt, welche sich
innerhalb der verschiedenen Phasen unterscheiden und keine finale, dauerhafte Zuord-
nung für den Golfroboter ermöglichen. Dies soll illustrieren, dass die Echtzeitfähigkeit
der Online-Aktualisierung auch für sich potentiell schnell verändernde Systeme gegeben
ist.
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Abbildung 5-8: Indizes aktiver Bibliotheksterme und der durch die PCA identifizierten
dominanten Terme zur Bibliotheksanpassung
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Die Qualität des adaptiven, augmentierten Beobachters lässt sich nicht nur im Vergleich
zu den Messungen des Ist-Zustandes, welcher auf den Sollwert für die Schlagdynamik
eingestellt werden soll, bewerten, sondern auch anhand des am Prüfstand verwendeten
Luenberger-Beobachters analysieren. Abbildung 5-9 zeigt beispielsweise die Schätzgüte
des offenen Regelkreises, wenn der Luenberger-Beobachter die Schätzwerte für die Re-
gelung liefert und das adaptive JE-SRUKF parallel betrachtet wird. Die Modelladaption
basierend auf der sich stetig anpassenden BibliothekΨ∗ beeinflusst hierbei die Schätzgüte
des Beobachters nicht nachteilig, sondern ist sogar geringfügig höher als die des Luen-
berger-Beobachters.

0 1 2 3
−1

0
1

φ
[r

ad
]

Sollwert
Messung
Luenberger
JE-SRUKF mit Ψ∗0 1 2 3

−2
0
2
4

φ̇
[r

ad
/s

]

0 1 2 3

−0,2
0

0,2
0,4

Zeit t [s]

u
[N

m
]

Abbildung 5-9: Schätzgüte des offenen Regelkreises bei Nutzung einer adaptiven Biblio-
thek Ψ∗ am Prüfstand

Werden längere Aktualisierungs- und Analysezeiträume für die Modelladaption gewählt,
findet im Kontrast zur vorigen, temporären Identifikation dominanter Terme eine eindeuti-
gere, über die Zeiträume nahezu gleichbleibende Identifikation statt. So zeigt Tabelle 5-2
einen kurzen Ausschnitt aus Experimenten, deren Aktualisierungszeitraum jeweils bei
zwei Sekunden und einer Sekunde liegt und deren Analysezeitraum um die vorangegan-
genen 0, 125 Sekunden ergänzt wird. Da weiterhin der Zeitraum nach T0 = 1 s bis zum
Ende des Schlags bei t = 3 s betrachtet wird, werden die dominanten Terme jeweils nur
zwei- bzw. dreimal identifiziert. Ähnlich zur Abbildung 5-5, bei der einmalig der gesamte
Zeitraum analysiert wird, werden in diesen Versuchen überwiegend einheitliche Terme
identifiziert, z. B. ψ3(x, u) = x2, ψ1(x, u) = 1 und ψ6(x, u) = tanh(x2), ψ12(x, u) = ex2 .
Diese deuten folglich auf eine vornehmlich geschwindigkeitsbasierte Modellierung des
Reibmoments hin. Alternativ können nach einer temporären Identifikation wie in der
Abbildung 5-8 die pro Schlagphase identifizierten Terme in einer gemeinsamen Biblio-



168 5 Automatisierte Modellaktualisierung während der Laufzeit

thek zusammengeführt werden und mithilfe eines weiteren Schlags über einen langen
Aktualisierungs- und Analysezeitraum final identifiziert werden. Der diskutierte Vorteil
der hohen Schätzgüte und der Adaptionsfähigkeit gegenüber dem Luenberger-Beobachter,
welcher Systemwissen benötigt, um ein korrektes Modell (ggf. durch Linearisierung)
zu bestimmen, wird besonders im nachfolgenden Abschnitt deutlich, wenn Systemver-
änderungen existieren, die eine Anpassung des Modells erfordern.

Nr. T0 [s] Zeitraum [s] Terme 1.Phase Terme 2.Phase Terme 3.Phase
26 1 2 / 2, 125 ψ3, ψ1 ψ3, ψ1, ψ13 -
27 1 1 / 1, 125 ψ3, ψ1 ψ3, ψ6, ψ12 ψ6, ψ12

Tabelle 5-2: Dominante Bibliotheksterme für längere Aktualisierungs-/Analysezeiträume

Machbarkeitsnachweis: Systemveränderungen

Um eine Systemveränderung zu simulieren, wird eine Veränderung der Masse und der
Trägheit bzgl. des Golfschlägers ab einem konkreten Zeitpunkt Tkrit angenommen. Hin-
tergrund dieses Szenarios ist, dass die dynamischen Eigenschaften des Golfroboters ins-
besondere aus der Gewichtskraft des Schlägers sowie dessen Geschwindigkeit resultieren
und sich deshalb zur Demonstration von Systemveränderungen besonders eignen. Im fol-
genden Experiment wird daher ab dem Zeitpunkt Tkrit = 1 s eine Systemveränderung
simuliert, indem die Masse etwa verdreifacht wird. Infolgedessen ändert sich ebenfalls
die Trägheit. Die Einschwingphase, in der zunächst Daten gesammelt und keine Analyse
oder Aktualisierung durchgeführt werden, wird zu T0 = 0, 75 s festgelegt, der gleitende
Horizont umfasst weiterhin 0, 375 Sekunden. Eine Aktualisierung der Bibliothek und des
Modells erfolgt zur Vergleichbarkeit des vorigen Nachweises wiederum alle 0, 25 Sekun-
den. Zudem ist in der Simulation Messrauschen berücksichtigt worden. Die Ergebnisse
dieser Untersuchung sind in der Abbildung 5-10 dargestellt, welche die Informationen
bzgl. der Bibliothek und der Aktualisierungen wie zuvor bereits beschrieben bereitstellt.
Die Analyse der Modelladaption ergibt, dass der Einfluss der veränderten Gewichtskraft
und Trägheit identifiziert sowie durch den adaptiven, augmentierten Beobachter im Mo-
dell berücksichtigt wird. Dies ist in der Abbildung anhand der temporären Konvergenz
der Indizes, welche als dominant detektiert werden, zu erkennen. Im Gegensatz zum vor-
herigen Fall des allgemeinen Betriebs, vgl. Abbildung 5-8, werden andere Terme extra-
hiert. So werden trigonometrische Terme, z. B. ψ4(x, u) = cos(x1), geschwindigkeits-
abhängige Terme, wie ψ3(x, u) = x2, oder winkelabhängige Terme, wie ψ2(x, u) = x1,
identifiziert. Jene Terme sind genau solche Dynamikanteile, die einerseits die infolge der
Systemveränderung veränderte Rotationsbewegung beim Ausholen bzw. Rückholen des
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Schlägers und andererseits die fehlende, komplexe Reibung, die das Modell (A6-2) nicht
berücksichtigt, beschreiben. Folglich bestätigt sich die postulierte Fähigkeit des augmen-
tierten Beobachters, auch bei Systemveränderungen eine physikalisch interpretierbare
und fundierte Modelladaption umsetzen zu können, welche insbesondere eine vorteilhafte
Nutzbarkeit nach Anforderung F.3 für nachfolgende Syntheseschritte erlaubt. Allerdings
stellt sich die Frage, inwiefern eine hohe Schätzgüte während der fortlaufenden Modell-
adaption nach dem Konzept 5-7 aufrecht erhalten werden kann.

0 0,5 1 1,5 2 2,5 3
1

3

5

7

9

11

13

15

17

Zeit t [s]

In
de

x
ia

kt
iv

er
Te

rm
e
ψ

i

1.dominanter Index 2.dominanter Index 3.dominanter Index

Abbildung 5-10: Indizes aktiver Bibliotheksterme und der durch die PCA identifizierten
dominanten Terme zur Bibliotheksanpassung, vgl. [GT24]

Dies lässt sich wiederum im Vergleich zu dem am Prüfstand verwendeten Luenberger-
Beobachter und dem nichtlinearen Modell (3.4) bewerten, welches in der Simulation als
Referenz für das Prüfstandsmodell dient. In der Abbildung 5-11 ist der Zeitpunkt der
Systemveränderung anhand des Luenberger-Beobachters deutlich zu erkennen, da die-
ser ab Tkrit = 1 s nicht mehr die Winkelgeschwindigkeit des Prüfstandmodells schätzen
kann. Die Systemveränderung ist darüber hinaus durch das veränderte Motormoment er-
sichtlich, welches nun aufgrund der Diskrepanz zwischen Reglermodell und Strecke ver-
rauschter agiert und ein höheres Moment in Folge der Gewichtskraft und Trägheit stellen
muss. Die Sollvorgabe ist dagegen an die Systemveränderung angepasst, da sich diese
in Abhängigkeit des Winkels und der Winkelgeschwindigkeit berechnet. Der Anstieg der
Geschwindigkeit φ̇ ist während des Schlags größer, was das adaptive JE-SRUKF jedoch
erkennt und bis auf minimale Abweichungen, die beim Rückführen des Schlägers ent-
stehen, zuverlässig schätzt. Die Adaptionsfähigkeit des Verfahrens 5-7 ist demnach auch
für den Fall einer Systemveränderung gegeben und ermöglicht eine sichere Schätzung
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der Zustandsgrößen am realen Prüfstand, wie es bereits für die Situation ohne Online-
Aktualisierung in der Abbildung 4-19 erfolgreich gezeigt worden ist. Folglich stellt die
Nutzung der Online-Modellaktualisierung insbesondere für den Fall von Systemverände-
rungen ihren Vorteil deutlich heraus.
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Abbildung 5-11: Schätzgüte des simulierten, geschlossenen Regelkreises bei Auftreten von
Systemveränderungen ab Tkrit = 1 s und Nutzung einer adaptiven Biblio-
thek Ψ∗, vgl. [GT24]

5.3 Überprüfung der Interpretierbarkeit

Nach den Erkenntnissen der vorangegangenen Abschnitte stellt sich nun die Frage, inwie-
fern das Ziel F.2, einen tieferen und physikalisch-plausiblen Einblick in das System bzw.
in die Modellungenauigkeit zu erhalten, durch die PCA und Online-Modellaktualisierung
erreicht worden und zu bewerten ist. Dazu wird der abstrakte Begriff Interpretierbarkeit

beleuchtet, der bereits in der Einleitung 1.2 definiert worden ist, im Folgenden aber etwas
ausführlicher eingeordnet wird. Der Begriff Interpretierbarkeit ist im Kontext datenverar-
beitender Methoden, wie etwa im maschinellen Lernen, nicht klar definiert. In der media-
len Berichterstattung werden die Terminologien Interpretierbarkeit und Erklärbarkeit bei-
spielsweise in einem Zusammenhang genannt oder sogar gleichgesetzt. Allerdings ist kein
deckungsgleicher Bedeutungsinhalt gegeben (vgl. [LPK21],[MV20],[RMB+20]). Unter
der Frage, inwiefern datenbasierte Modelle transparent und fair gestaltet werden können,
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um z. B. keine bestimmten Personengruppen zu benachteiligen50 oder zu diskriminieren51,
findet daher eine intensive Forschung zu erklärbarer und interpretierbarer künstlicher In-
telligenz statt.
In der Regelungstechnik werden entstandene Modelle gewöhnlich physikalisch-technisch
interpretiert, d. h. einer mathematischen Formulierung oder parametrischen Darstellung
wird ein konkretes physikalisch-technisches Phänomen oder eine ebensolche Wirkung
zugeordnet. Aus einer Differentialgleichung können beispielsweise die zeitlichen Effek-
te oder einzelnen Wirkprinzipien abgelesen werden, wie es bereits in der Abbildung 1-7
illustriert worden ist. Diese veranschaulichte zudem, dass ein neuronales Netz im Ge-
gensatz zur Differentialgleichung nicht interpretierbar im Sinne der in dieser Arbeit ver-
wendeten Definition ist. Ähnlich verhält es sich mit Linearkombinationen aus beliebig
vielen komplexen Funktionen, die bzgl. ihrer physikalischen Wirkprinzipien schwer zu
deuten sind oder als Superposition vieler einzelner Dynamiken resultieren und nicht un-
terschieden werden können. Radiale Basisfunktionen, die zur Approximation der Mo-
dellungenauigkeiten in [KSH21] genutzt werden, stellen beispielsweise Funktionen dar,
deren physikalisch-technische Bedeutung für mechatronische Systeme nicht direkt und
objektiv ersichtlich ist. Daher wurde zu Beginn dieser Arbeit der Bedarf festgestellt, einer-
seits physikalisch motivierte Bibliotheksfunktionen zu nutzen sowie andererseits durch
die Begrenzung auf dominante Terme eine Übersichtlichkeit zu gewährleisten, die eine
Analyse und Deutung aus physikalisch-technischer Sicht erst ermöglicht. Obwohl diese
Arbeit nicht den Anspruch erhebt, die korrekte bzw. reale Darstellung der Modellunge-
nauigkeit zwingend zu finden und zu extrahieren, denn dies ist ob der Vielfalt der dyna-
mischen Terme und ihrer Superposition nicht eindeutig möglich, besteht der Vorteil der
präsentierten Methoden darin, Interpretierbarkeit in einer Darstellung zu ermöglichen, die
möglicherweise der tatsächlichen nahe kommt und in jedem Fall einen tieferen System-
einblick generiert.
Anhand des Duffing-Oszillators konnte beispielsweise gezeigt werden, dass der tatsäch-
lich wirkende Dynamikterm der Modellungenauigkeit, sofern dieser in der Bibliothek
vorhanden ist, identifiziert oder eine vergleichbare Alternative gefunden werden kann, die
sehr nah an der wirkenden Dynamik liegt (vgl. Abbildungen 4-10 und 5-3). Experimente
am Golfroboter bestätigten Modellierungsansätze des vermuteten Stick-Slip-Effekts und
offenbarten interessante, zuvor unbekannte Zusammenhänge, die nicht nur einen physika-
lischen Mehrwert bringen, sondern auch bzgl. einer Adaption bei Systemveränderungen
vorteilhaft sind. Diese Einblicke in das System und seine Dynamik, welche durch ei-
ne parametrische Darstellung angenähert wird, die einen Rückschluss auf physikalisch-

50https://www.zeit.de/arbeit/2018-10/bewerbungsroboter-kuenstliche-intelligenz-amazon-frauen-
diskriminierung, abgerufen am 20.12.2023

51https://www.forbes.com/sites/emmawoollacott/2022/12/29/apple-sued-over-racial-bias-of-apple-
watch/, abgerufen am 20.12.2023
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technische Wirkprinzipien zulässt, sind insbesondere für weitere Synthese- und Analy-
seschritte nutzbar. Die Zugänglichkeit, solche Schritte anzuschließen, wird schließlich in
diesem Kapitel durch die Aktualisierung der Bibliothek und durch eine automatische Mo-
delladaption gewährleistet (vgl. Abschnitt 5.1 und 5.2), wobei die Anpassung wie bereits
zuvor angemerkt abhängig vom Aktualisierungs- und Analysezeitraum geschieht. Sind
diese Zeiträume großzügig gewählt, kann anstelle einer temporären, phasenabhängigen
Identifikation eine zielgerichtete dauerhafte Extraktion ähnlich zur einmaligen Offline-
Identifikation in Abschnitt 5.1 erzielt werden. So zeigten die Untersuchungen, dass nicht
nur im Fall von Systemveränderungen eine automatische Modelladaption vorteilhaft ist,
sondern ebenfalls im allgemeinen Betrieb tiefere Einsichten in das Systemverhalten sowie
höherwertige Modelle erzielt werden können, deren Qualität allen modellbasierten Kom-
ponenten zur Verfügung stehen könnte. Im Folgenden werden daher die Schätzgüte, die
Dünnbesetztheit der Parameter θ̂k während der gesamten Laufzeit k = 1, . . . ,N und die
Anzahl der dominanten Terme, welche aus einer 90%-igen Varianz resultieren, als quanti-
tative Kriterien verwendet, um die Interpretierbarkeit nach Anforderung F.2 zu bewerten.
Der Schätzfehler stellt hierbei ein wichtiges Merkmal im Zusammenhang der Interpre-
tierbarkeit dar, sodass dieser als drittes Kriterium einfließt. Die quantitative Bewertung
wird anhand von Simulations- und Prüfstandsexperimenten des Golfroboters exempla-
risch durchgeführt. Hierbei gilt ein Versuch jeweils in höherem Maße interpretierbar, je
geringer die Werte aller drei Kriterien ausfallen.
In der Abbildung 5-12 wird eine solche Bewertung der Interpretierbarkeit auf der Grund-
lage von Simulationsergebnissen, die bei Vorherrschen von Systemveränderungen durch
eine aktive, fortwährende Modelladaption nach dem Konzept 5-7 erzielt worden sind,
vorgenommen. Diese Systemveränderungen resultieren beispielsweise aus einer verdrei-
fachten Masse, einem verdoppelten dynamischen und halbierten statischen Reibkoeffi-
zienten oder einer veränderten Trägheit. Zudem ist Messrauschen in den Simulationen
berücksichtigt worden. Die Abbildung stellt dazu die drei Maße im Vergleich dar: den
Schätzfehler auf der x-Achse, die Dünnbesetztheit anhand der ℓ1-Norm auf der y-Achse
sowie die Anzahl der dominanten Terme als Farbskala. Hierbei repräsentiert jeweils ein
Dreieck einen Versuch. In der Abbildung ist zu erkennen, dass sowohl der Schätzfehler als
auch die Auswertung der ℓ1-Norm aller Parameter keine starke Streuung aufweisen und
sich in einem geringen Wertebereich befinden. Ebenso bleiben nahezu alle Modelle inter-
pretierbar, da maximal vier Terme zur Beschreibung von auftretenden Ungenauigkeiten
trotz der Existenz von Systemveränderungen benötigt werden. In der Mehrheit der Versu-
che identifiziert die PCA drei Terme. Aufgrund der geringen Werte und der kleinen Streu-
ung für alle drei Maße ist somit eine physikalisch-technische Interpretierbarkeit nach dem
in dieser Arbeit formulierten Verständnis gegeben, obwohl Systemveränderungen präsent
sind.
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Abbildung 5-12: Quantifizierung der Interpretierbarkeit für das System des Golfroboters:
Simulationsergebnisse bei Systemveränderungen und Modelladaption

Im Gegensatz zu den Simulationsergebnissen weisen fast alle Kriterien bei Prüfstandsex-
perimenten erwartungsgemäß höhere Werte auf. Diese werden in der Abbildung 5-13 dar-
gestellt, wobei zwischen Experimenten ohne Modelladaption (vgl. Abbildung 5-13(a)),
d. h. ohne eine fortlaufende Aktualisierung der Bibliothek nach dem Gesamtkonzept 5-7,
und mit Modelladaption (vgl. Abbildung 5-13(b)) differenziert wird. Erstere weist zudem
eine Unterscheidung in Versuche mit und ohne Systemveränderungen auf, welche durch
die Dreiecke bzw. Kreise gekennzeichnet werden. In dieser Abbildung 5-13(a) zeigt sich,
dass bis auf zwei Ausnahmen eine hohe Schätzgüte erzielt wird, da der Schätzfehler für
die meisten Experimente sehr klein ist und lediglich eine geringe Streuung der Versu-
che aufweist. Einzig jene mit Systemveränderungen weisen teils eine etwas niedrigere
Schätzgüte auf. Dagegen ist die Streuung der Dünnbesetztheit, gemessen an der ℓ1-Norm,
quantitativ höher als in den Simulationsergebnissen, korreliert jedoch überwiegend mit
der Anzahl der identifizierten, dominanten Bibliotheksterme. So ist dieser Wert umso klei-
ner, je weniger Terme durch die PCA identifiziert werden. Bis auf eine Ausnahme sind da-
bei nicht mehr als drei Terme erforderlich, wobei die Mehrheit der Prüfstandsexperimente
einen oder drei Terme zur Charakterisierung der Modellungenauigkeit benötigt. Dies re-
sultiert aus der Bibliothekswahl (vgl. Tabelle 4-1), welche sehr unterschiedliche Terme
beinhalten kann, die sich ohne eine Online-Modelladaption nicht ändern.
Im Vergleich zu diesen Erkenntnissen ist in der Abbildung 5-13(b) aufgrund der Modell-
adaption eine Verringerung der Werte für alle drei Kriterien zu beobachten. Besonders
auffällig ist hierbei die Reduktion der Dünnbesetztheit, welche bis zu viermal geringer
ausfällt als in den Versuchen ohne Modelladaption.
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Abbildung 5-13: Quantifizierung der Interpretierbarkeit für das System des Golfroboters:
Prüfstandsergebnisse mit / ohne Systemveränderungen /Modelladaption



5.3 Überprüfung der Interpretierbarkeit 175

Ähnliches spiegelt sich in der Anzahl der dominanten Terme und des Schätzfehlers wi-
der, wobei zwei Ausnahmen erkennbar sind, die aber weiterhin einen kleinen Schätzfehler
aufweisen. Diese Entwicklung ist unmittelbar auf den Einsatz der Online-Aktualisierung
zurückzuführen, da diese eine regelmäßige Anpassung und Überprüfung der Bibliotheks-
terme ermöglicht, die ggf. je nach Dynamik einen höheren Grad an Interpretierbarkeit
besitzen. Die Tatsache, dass eine Korrelation zwischen dem Wert der Dünnbesetztheit
und der Anzahl der dominanten Terme nicht mehr zu bestehen scheint, da z. B. ein gerin-
gerer Wert auf der y-Achse mit drei Termen statt mit einem Term erzielt wird, lässt sich
ebenso mit der Aktualisierung und der wechselnden Besetzung der Bibliothek erklären.
Die Experimente am Prüfstand zeigen demnach durchgängig eine hohe Interpretierbarkeit
anhand der gewählten Maße, da bis auf wenige Ausreißer sowohl eine hohe Schätzgüte
als auch eine geringe Anzahl an dominanten Termen sowie häufig ein kleiner Wert der
Dünnbesetztheit erzielt werden. Darüber hinaus bestätigen die Versuche vorteilhafte Aus-
wirkungen, wenn eine Online-Modellaktualisierung umgesetzt wird, da sich aufgrund der
wechselnden Bibliotheksterme der Grad der Dünnbesetztheit und die Anzahl dominanter
Terme reduzieren. Grundsätzlich zeigen die Untersuchungen, dass Systemveränderungen
keine Schwierigkeit für den augmentierten Beobachter darstellen, weil auch diese inter-
pretierbar kompensiert werden, aber ggf. zu einem etwas erhöhten Schätzfehler führen
können. Basierend auf den Simulations- und Prüfstandsergebnissen erweist sich außer-
dem die postulierte, vorteilhafte Online-Modellaktualisierung insbesondere im Fall von
Systemveränderungen als hilfreich, da eine Verringerung des Schätzfehlers und des Werts
der Dünnbesetztheit im Vergleich zu Resultaten ohne Modelladaption bewirkt wird.
Die quantitative Bewertung der Interpretierbarkeit mittels der drei Kriterien Schätzgüte,
Dünnbesetztheit und Anzahl dominanter Terme bestätigt folglich die Umsetzung des zu
Beginn dieser Arbeit formulierten Anspruchs F.2 bzw. F.2+, da für das betrachtete Bei-
spiel des Golfroboters eine hohe Interpretierbarkeit mithilfe des augmentierten Beob-
achters erzielt werden konnte. Dieses positive Resultat wurde sowohl für den Fall einer
Online-Modellaktualisierung als auch für die Situation einer sich nicht stetig anpassenden
Bibliothek ermittelt, wobei diese zudem Fälle mit Systemveränderungen berücksichtigte.
Trotz vieler Vorteile, welche insbesondere die Umsetzung der Anforderungen F.1 bis F.3
betreffen, erfordern die Online-Adaption bzw. Formulierung des augmentierten Beobach-
ters in der Regel einen höheren Aufwand, der sorgfältig gegenüber dem Nutzen abgewo-
gen werden muss. Dieser Aspekt wird daher im nachfolgenden Abschnitt kurz aufgegrif-
fen und kritisch hinterfragt.
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5.4 Bewertung des Aufwands und Nutzens

Im Vergleich zu klassischen Beobachtern und ihren Verfahren zur Schätzung von Modell-
ungenauigkeiten ist das Vorgehen der Joint Estimation mit anschließender automatischer
Modellaktualisierung umfangreicher. Daher wird in diesem Abschnitt erörtert, in welchen
Situationen eine Online-Schätzung der Modellungenauigkeiten unter Beibehaltung einer
physikalisch-technischen Interpretierbarkeit vorteilhaft ist. In der Volks- und Betriebs-
wirtschaft ist die Kosten-Nutzen-Analyse ein probates Mittel, um Lösungsansätze oder
Investitionsmöglichkeiten und damit einhergehende, potentiell weitreichende Entschei-
dungen zu bewerten [HIJ11; Mis75]. In diesem Sinne wird nun der Aufwand, welcher
mit den in dieser Arbeit erarbeiteten Methoden verbunden ist, dem Nutzen, der durch je-
ne erzielt werden kann, gegenübergestellt. Merkmale, die diese Gegenüberstellung und
somit den Einsatz eines augmentierten Beobachters beeinflussen, stellen die angestreb-
te Modellierungstiefe eines Systems, die Datenverfügbarkeit und deren Qualität sowie
der Grad des physikalischen Vorwissens dar. Die angestrebte Modellierungstiefe beein-
flusst den Aufwand direkt, da beispielsweise für ein detailliertes, nichtlineares Modell
mehr Ressourcen als für ein einfaches PT2-Modell aufgewendet werden müssen (vgl.
Abbildung 3-10). Hierbei kann ein augmentierter Beobachter unterstützen und etwaige
komplexe Phänomene modellieren, sodass Ressourcen angemessen eingesetzt werden
können. Zudem ist dieses Vorgehen besonders vorteilhaft, wenn Systemveränderungen
im laufenden Betrieb auftreten und kompensiert werden müssen (vgl. Abbildungen 4-19
und 5-11). Allerdings erfordern die in dieser Arbeit entwickelten Methoden einen ausrei-
chend hohen Grad an Vorwissen, weil einerseits bereits ein simples, physikalisch moti-
viertes Modell vorhanden sein muss und andererseits die Hypothesen ψi der Bibliothek Ψ
geeignet gewählt werden müssen, um eine Approximation der Modellungenauigkeiten
zu erlauben (vgl. Abbildung 4-15, Tabelle 4-1). Gelingt es, eine geeignete Bibliothek
zu wählen, ist der Nutzen des augmentierten Beobachters im Vergleich zum Aufwand
hoch. Denn es werden nicht nur die Anforderungen F.1 und F.3 erfüllt, sondern es wird
auch eine erhöhte Interpretierbarkeit verglichen zu einem klassischen Beobachter erzielt,
welcher eine Modellungenauigkeit lediglich kompensiert (vgl. Abbildung 4-12). Wie je-
der Zustandsschätzer ist jedoch auch der augmentierte Beobachter von der Datenqualität
abhängig, wodurch die Bereinigung von Messdaten u. U. eine nicht vermeidbare Aufgabe
ist, die dem Aufwand zuzurechnen ist. Der Einsatz eines augmentierten Beobachters ist
anhand der Aufwand-Nutzen-Analyse demnach vorteilhaft, wenn die Interpretation von
Modellungenauigkeiten und eine Modelladaption einen Mehrwert bringen, z. B. wenn
diese Ungenauigkeiten per se aufgrund ihres Grads an Nichtlinearität oder auftretende
Systemveränderungen ein Risiko für die Regelung darstellen. Sollen lediglich kleinere
Ungenauigkeiten kompensiert werden, deren physikalisches Wirkprinzip nicht von Be-
lang ist, rechtfertigt der Aufwand des augmentierten Beobachters seinen Nutzen nicht.
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6 Resümee und Perspektiven

Das folgende Kapitel fasst die wesentlichen Erkenntnisse dieser Dissertationsschrift zu-
sammen und gibt einen Ausblick über zukünftige Forschungsarbeiten. Da üblicherweise
nicht alle Zustandsgrößen gemessen werden können, konstituiert die Zustandsschätzung
eine erfolgreiche Umsetzung einer Regelung. Wird ein modellbasierter Zustandsbeobach-
ter verwendet, ist darüber hinaus die Qualität des verwendeten Modells entscheidend, um
zuverlässige Schätzungen der Zustände zu erhalten. Aufgrund der steigenden Komplexität
mechatronischer Systeme und der kürzeren Produktentwicklungszeiten wird der Modell-
bildungsprozess jedoch zunehmend herausfordernder. Die daraus resultierenden Modell-
ungenauigkeiten stellen ein Risiko für die Zustandsschätzung dar. Infolgedessen können
lediglich ungenaue oder fehlerhafte Schätzwerte ermittelt werden, deren Unsicherheiten
sich ggf. auf die Regelgüte auswirken. Die Zielsetzung dieser Dissertationsschrift be-
stand deshalb in der Entwicklung einer Methode, welche sowohl die Zustände als auch
die Modellungenauigkeiten eines nichtlinearen Systems zuverlässig schätzt. Ferner soll-
te für jene Modellungenauigkeiten eine parametrische Darstellung gefunden werden, die
durch ihre physikalisch-technische Interpretierbarkeit einen Mehrwert sowie die Option
zur Modelladaption bietet.

Wegen seines Einflusses auf die Schätzgüte wurden im Kapitel 3 die Qualität des im Beob-
achter verwendeten Modells und der Beobachterentwurf separat adressiert, um der Her-
ausforderung von Modellungenauigkeiten zu begegnen. Dazu wurden zunächst hybride
Techniken der Systemidentifikation analysiert, welche physikalisch motivierte und daten-
getriebene Modellkomponenten kombinieren und demzufolge als vorteilhaft zur Verrin-
gerung der Modell-Realitäts-Lücke gelten. So wurden zur Modellierung des Golfroboters
und eines Servoventils physikalisch motivierte neuronale Netze weiterentwickelt, wel-
che durch eine Mehrzieloptimierung zusätzliches, physikalisches Vorwissen während des
Trainings berücksichtigten. Ihre Validierung bestätigte eine sehr hohe Modellgüte, die je-
ne der vergleichbaren, rein physikalisch- oder datenbasierten Modelle übertraf. Eine eben-
so hohe Güte wies das SINDy-Modell auf, welches mithilfe der LASSO-Optimierung
durch die Linearkombination geeigneter Funktionen und der Auswertung von Messda-
ten eine interpretierbare Form erzielen konnte. Sowohl physikalisch motivierte neuronale
Netze als auch das SINDy-Verfahren sind jedoch von den Messdaten, die zur Offline-
Identifikation genutzt werden, stark abhängig und können aufgrund ihrer Extrapolations-
fähigkeit außerhalb der Trainingsdaten u. U. eine geringere Modellgüte aufweisen (vgl.
Abbildung A6-4). Ferner mangelt es beiden Methoden insbesondere an der Fähigkeit,
Modelle aus Messdaten mit nur teilweise messbarem Zustand zu identifizieren. Daher
wurde die Kompensationsfähigkeit ausgewählter Beobachterkonzepte bezogen auf Mo-
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dellungenauigkeiten untersucht. Hierbei wurden die Kovarianzen von verschiedenen Ver-
tretern der Kalman-Filter-Familie mithilfe der Bayesschen Optimierung so initialisiert,
dass diese etwaige Modellungenauigkeiten kompensieren konnten. Ebenso wurden Sli-
ding-Mode-Beobachter (SMO) bzgl. ihrer Robustheit untersucht, trotz Modellungenauig-
keiten zuverlässig schätzen zu können. Die Analysen ergaben, dass in der Regel eine hohe
Schätzgüte und im Fall des SMOs zusätzlich eine temporäre, quantitative Identifikation
der Ungenauigkeiten erzielt werden können, aber keine parametrische Identifikation in
physikalisch-interpretierbarer Hinsicht ermöglicht wird, auf deren Grundlage eine Mo-
delladaption durchgeführt werden kann.

Aus den Erkenntnissen des Kapitels 3 wurde schließlich gefolgert, dass eine isolier-
te Betrachtung der Entwurfsschritte Systemidentifikation und Beobachterentwurf nicht
zielführend ist, um Modellungenauigkeiten in der Zustandsschätzung zu adressieren und
eine hohe Schätzgüte bei gleichzeitiger Identifikation der Modellungenauigkeiten zu er-
zielen. Infolgedessen wurde im Kapitel 4 eine neuartige Strategie zur simultanen Schätzung
von Zuständen und Modellungenauigkeiten entwickelt, wobei die Grundidee des SINDy-
Verfahrens berücksichtigt wurde. Basierend auf dem Konzept der Joint Estimation wurde
ein augmentiertes Modell formuliert, welches die Modellungenauigkeiten mithilfe einer
Linearkombination aus physikalisch motivierten Termen approximiert. Dazu wurden die
Parameter dieser Linearkombination zeitinvariant angenommen und parallel zum System-
zustand geschätzt. Nach dem Prinzip des Occam’s Razor wurde ferner vorausgesetzt, dass
der Parametervektor der Linearkombination dünnbesetzt ist. Diese Bedingung wurde an-
schließend im Abschnitt 4.3 durch eine Pseudomessung innerhalb der rekursiven Struktur
eines SRUKFs basierend auf Methoden des Compressed Sensings umgesetzt. Diese Um-
setzung wurde im Abschnitt 4.4 amplifiziert, indem die Dünnbesetztheit der Parameter
durch eine konkret gewählte Wahrscheinlichkeitsverteilung modelliert wurde. Ergänzend
zu diesen Entwürfen wurde die Grundidee der gleichzeitigen Schätzung im Abschnitt 4.5
auf einen robusten Beobachter, einen SMO, übertragen und um die Möglichkeit einer
automatisiert gewählten Bibliothek erweitert.

Anhand ausgewählter Anwendungsbeispiele konnte der in dieser Dissertationsschrift ent-
wickelte, augmentierte Beobachter bei geeignet gewählter Bibliothek eine hohe Schätz-
güte erzielen, welche durch eine zielgerichtete Approximation der Modellungenauig-
keiten mithilfe der Linearkombination resultierte. Obgleich zur klassischen Parameter-
identifikation die Bedingung der Persistent Excitation erfüllt sein muss (vgl. [IM11]),
ist dies innerhalb eines Beobachters nicht immer realisierbar, wenn dieser im geschlos-
senen Regelkreis eingesetzt wird und das Stellsignal vorgegeben ist. Demzufolge kann
grundsätzlich nur eine Identifikation stattfinden, wenn die Sichtbarkeit der Modellun-
genauigkeit gewährleistet ist, sodass g . 0 gilt. In den Untersuchungen des Kapitels 4
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war daher in der Regel keine eindeutige Konvergenz der Parameter zu einem konstanten
Wert zu erkennen. Dennoch wiesen die Parameterverläufe in den Applikationen auf phy-
sikalisch interpretierbare Terme hin, sodass der tatsächlich wirkende Term, sofern dieser
in der Bibliothek vorhanden war, oder alternative, verwandte Terme zu diesem gefun-
den wurden. Ferner wurde bei Messrauschen sowohl in Prüfstandsexperimenten als auch
in Simulationen eine robuste Schätzung erzielt. Die Untersuchungen bestätigten dem-
nach die geforderte Identifikation der Modellungenauigkeiten in physikalisch-technischer
Weise sowohl im offenen als auch geschlossenen Regelkreis. Insbesondere in der Situa-
tion von Systemveränderungen stellte der augmentierte Beobachter seinen Vorteil her-
aus, da er im Kontrast zu Beobachtern mit unveränderlichem Modell Ungenauigkeiten
zur Laufzeit adaptiv erfasste und weiterhin zuverlässige Schätzungen ermöglichte (vgl.
Abbildung 4-19).

Um aus der temporären Schätzung der Modellungenauigkeiten die dominanten Biblio-
theksterme zu identifizieren, wurde im Kapitel 5 die Hauptkomponentenanalyse zur Merk-
malsextraktion verwendet. Diese Analyse lieferte die dominanten Terme, welche die Mo-
dellungenauigkeiten des betrachteten System charakterisieren und exemplarisch für den
Duffing-Oszillator sowie den Golfroboter durchgeführt wurde. Basierend auf der resultie-
renden physikalisch interpretierbaren, parametrischen Darstellung wurde im Abschnitt 5.2
ein Konzept zur automatisierten Modelladaption entworfen und ebenfalls anhand des
Golfroboters durch Machbarkeitsnachweise validiert. Abschließend wurde die Interpre-
tierbarkeit dieser und der im Kapitel 4 durchgeführten Untersuchungen anhand der Schätz-
güte, der ℓ1-Norm sowie der Anzahl dominanter Terme quantifiziert, woraufhin eine Iden-
tifikation der Modellungenauigkeiten unter Beibehaltung einer physikalisch-technischen
Interpretierbarkeit bestätigt werden konnte.

Die Tabelle 6-1 fasst schließlich den Neuheitswert der vorliegenden Arbeit im Kontext
von Forschungsbeiträgen zusammen, welche die entwickelte Methode dieser Disserta-
tionsschrift inspirierten und eine inhaltliche Verwandtschaft zu jener aufweisen. Im Kon-
trast zu den in der Tabelle 6-1 aufgeführten Verfahren besteht der Forschungsbeitrag die-
ser Arbeit darin, lediglich den unbekannten Teil der Systemdynamik zu identifizieren, da
bereits ein physikalisch basiertes Teilmodell vorliegt. Anstelle einer Offline-Identifikation
werden diese Modellungenauigkeiten in Echtzeit parallel zur Schätzung der Zustände ap-
proximiert. Hierbei werden statt einer mathematisch abstrakten Bibliothek, beispielswei-
se bestehend aus radialen Basisfunktionen (RBFs), physikalisch motivierte Bibliotheks-
terme verwendet, welche eine physikalisch-technische Interpretationen durch ihre para-
metrische Darstellung zulassen und so zu einer automatisierten Modelladaption genutzt
werden können.
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Quelle Konzeption Abgrenzung Dissertationsschrift

[KSH21] Ausschließlich temporäre Approxi-
mation von Modellungenauigkeiten
g(x,u) ≈ θ̂TΨ(x̂,u) innerhalb eines
EKFs basierend auf RBFs mit kom-
paktem Träger

Keine physikalisch-technische In-
terpretierbarkeit, keine langfristige
Modelladaption möglich

[BPK16a] Offline-Identifikation des Systems
durch X′ = θTΨ(X) über das LASSO-
Verfahren

Kein echtzeitfähiger Einsatz inner-
halb eines Beobachters möglich

[HBK22] Offline-Identifikation des Systems
durch X′ = θTΨ(X) mit der Modellie-
rung θi ∼ N(0, τ2λ̌2

i ) für dünnbesetzte
Parameter

Kein echtzeitfähiger Einsatz inner-
halb eines Beobachters möglich

[CGK10] Pseudomessung 0 = H ˆ̃x − ϵ mit
H = (sign( ˆ̃x1), . . . , sign( ˆ̃xñ)) innerhalb
eines KFs

Nicht anwendbar zur Schätzung
nichtlinearer Systemdynamiken

Tabelle 6-1: Forschungsbeiträge, die diese Arbeit besonders inspirierten, und ihre Ab-
grenzung zum Beitrag dieser Dissertationsschrift

Folglich führt die vorliegende Dissertationsschrift einige der in Tabelle 6-1 aufgeführten
Konzepte erstmals in einer neuartigen Methode zusammen und amplifiziert diese um eine
echtzeitfähige, physikalisch interpretierbare und adaptive Identifikation innerhalb eines
Beobachters. Aufgrund der getroffenen Voraussetzungen unterliegt die Anwendung des
augmentierten Beobachters aber einigen strukturellen Limitationen. Diese Grenzen be-
stehen einerseits in der Systemklasse, da ausschließlich eingangsaffine Systeme der Form
(4.5) verwendet werden können, und andererseits in der Abhängigkeit der gewählten,
physikalisch motivierten Bibliothek. Letztere kann bei sehr ungünstiger Wahl ohne oder
mit nur geringem physikalischem Vorwissen zur Instabilität des Beobachters führen. Da
in dieser Arbeit jedoch angenommen wird, dass grundsätzlich Vorwissen vorhanden ist,
kann dieses als Hypothesen in der Bibliothek formuliert werden. Alternativ besteht die
Möglichkeit, die Bibliothek nach den Abschnitten 4.5 und 5.2 durch eine Analyse auto-
matisiert zu initialisieren bzw. zu aktualisieren. Infolgedessen sind eine hohe Schätzgüte
auch im geschlossenen Regelkreis sowie ein vertiefender, physikalischer Einblick in das
System wegen der identifizierten Modellungenauigkeiten zu erwarten. Damit bildet der
in dieser Dissertationsschrift erarbeitete Entwurf nicht nur einen wertvollen Beitrag zur
echtzeitfähigen Schätzung von Zuständen und Modellungenauigkeiten nichtlinearer Sys-
teme, sondern stellt auch ein Werkzeug zur automatisierten, sukzessiven Modelladaption
und -überwachung unter Beibehaltung einer physikalischen Interpretierbarkeit dar.
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Da der Neuheitswert dieser Arbeit u. a. in der Option besteht, eine Modelladaption zur
Laufzeit durchzuführen, kann darauf aufbauend in zukünftigen Forschungsarbeiten ei-
ne Modellselbstüberwachung installiert werden. So kann das im Kapitel 5 formulier-
te Konzept zur Online-Aktualisierung des Modells als Methode im Kontext des Auto-

mated Machine Learning (AutoML) gewertet werden. Dieser Forschungsbereich adres-
siert Techniken zur automatisierten Merkmalsextraktion und Modellauswahl basierend
auf Verfahren des maschinellen Lernens, vgl. [HZC21; HKV19]. Der in dieser Disser-
tationsschrift entwickelte augmentierte Beobachter kann aufgrund der Möglichkeit, nach
Abbildung 5-7 sowohl eine dauerhafte als auch eine situationsabhängige Modellanpas-
sung vorzunehmen, diesem Forschungsbereich zugerechnet werden. Dieses Vorgehen ist
insbesondere in Situationen vorteilhaft, wenn plötzliche Systemveränderungen auftreten
(vgl. Abbildung 4-19) oder es sich um ein System handelt, welches in kurzer Zeit mehrere
Betriebsphasen durchläuft und dessen Systemverhalten sich daher schnell ändert. Mithil-
fe verschiedener Kriterien, wie der Überprüfung des Modellfehlers (vgl. Abbildung 5-7),
und einer noch nachfolgend durchzuführenden Parameteridentifikation, sobald die domi-
nanten Terme identifiziert sind, kann anschließend eine Modellselbstüberwachung um-
gesetzt werden. Ferner sollte die in Abschnitt 4.4 vorgestellte, effiziente Erweiterung
des augmentierten Beobachters nicht nur in vielfältigen Simulationen, sondern in Zu-
kunft auch in Prüfstandsversuchen getestet werden. Deren Umsetzung war aufgrund der
gegenwärtig genutzten Softwareversion nicht möglich, sodass mithilfe einer modernen
Laborausstattung die Bestätigung der vielversprechenden Simulationsergebnisse durch
eine Validierung am Prüfstand zu erwarten ist. Weiteres Entwicklungspotential besteht
wie zuvor bereits angemerkt bzgl. der Konvergenz der Parameter. Deren Schätzung ba-
siert in der gegenwärtigen Implementierung auf einer geringen Anzahl zurückliegender
Messwerte, welche keine eindeutige Konvergenz zu einem konstanten Wert fördert. Mit-
hilfe der rekursiven Least-Squares-Methode, vgl. z. B. [IM11], und der Berücksichtigung
von einer erhöhten Anzahl vergangener Messwerte lässt sich eine verbesserte Konver-
genz erwarten, wobei die Echtzeitfähigkeit des augmentierten Beobachters insbesondere
im geschlossenen Regelkreis beachtet werden muss. Darüber hinaus kann die Formulie-
rung von Fehlermaßen bzw. -schranken für konkrete Anwendungsbeispiele und Biblio-
theken in Erwägung gezogen werden, um eine Garantie für die Stabilität des Beobachters
ähnlich zur Herleitung in [Sch10] zu erhalten, welche ebenfalls eine Bedingung zur Sicht-
barkeit der Modellungenauigkeit beinhaltet. Schließlich können zukünftige Forschungs-
arbeiten den Einsatz des augmentierten Beobachters mit Modelladaption hinsichtlich der
Applikation in den Bereichen Condition Monitoring und Predictive Maintenance unter-
suchen sowie dessen Struktur für allgemeinere Systemklassen erweitern. Auf diese Weise
können die Vorteile einer hohen Schätzgüte trotz Modellungenauigkeiten sowie der Mo-
dellselbstüberwachung weiteren Anwendungen zur Verfügung gestellt werden.
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sity, 2021

[KWRK18] Karpatne, A.; Watkins, W.; Read, J.; Kumar, V.: Physics-guided Neural

Networks (PGNN): An Application in Lake Temperature Modeling. 2018. h
ttps://arxiv.org/pdf/1710.11431v2.pdf (besucht am 26. 01. 2024)

[Lju99] Ljung, L.: System Identification: Theory for the User. 2. Aufl. Prentice Hall
Information and System Sciences Series. Upper Saddle River, New Jersey:
Prentice Hall, 1999

[Loc20] Lochbichler, M.: Systematische Wahl einer Modellierungstiefe im Ent-

wurfsprozess mechatronischer Systeme. Dissertation. Paderborn: Univer-
sität Paderborn, 2020
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A1 Beobachtbarkeit

Da in dieser Arbeit eingangsaffine Systeme betrachtet werden (vgl. Gleichung (4.4)), wird
die Definition der Beobachtbarkeit für diese Systemklasse wiedergegeben [Ada18]:

Ein eingangsaffines System (4.4) ist beobachtbar, wenn sein relativer Grad δ = n ist.

Um den relativen Grad δ zu überprüfen, werden die Lie-Ableitungen (vgl. Abschnitt 2.3)
gebildet, sodass

z =



y

ẏ
...

y(n−1)


=



h(x)
Lah(x) + Lbh(x)u

...

Ln−1
a h(x) + LbLn−2

a h(x)u + · · · + Lbh(x)u(n−2)


= q(x, u, u̇, . . . , u(n−2))

gilt. Liegt nun δ = n vor, so kann das System (4.4) durch einen Diffeomorphismus

z = q(x) =



h(x)
Lah(x)

...

Ln−1
a h(x)



in die nichtlineare Beobachtbarkeitsnormalform überführt werden [Ada18]:



ż1
...

żn−1

żn


=



z2
...

zn

Ln
ah(q−1(z)) + LbLn−1

a h(q−1(z))u


.

Somit ist das System beobachtbar. Darüber hinaus können eingangsaffine Systeme mit
δ < n existieren, die ebenfalls beobachtbar sind [Ada18]. Für die betrachteten Anwen-
dungsbeispiele dieser Dissertationsschrift ist Beobachtbarkeit gegeben.
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A2 Statistische Rechenregeln

Bei der Herleitung des optimalen Korrektureingriffs Kk für das Kalman-Filter sind im
Abschnitt 2.2 Rechenregeln des Erwartungswertes sowie Eigenschaften bzgl. der Spur ei-
ner Matrix verwendet worden, welche in diesem Abschnitt kurz erläutert werden. Bei der
Rechnung mit dem Erwartungswert, z. B. in der Gleichung (2.14), kann dessen Linearität
ausgenutzt werden. So gilt für die zwei Zufallsvariablen X,Y und die Konstanten a, b ∈ R
Folgendes (vgl. [Pap17]):

E[a · X + b · Y] = a · E[X] + b · E[Y].

Zudem sind in der Gleichung (2.16) die nachfolgend aufgeführten Eigenschaften der Spur
angewendet worden. Ist der Ausdruck AT BA mit den Matrizen A, B skalar, so folgt mit
der Produktregel der Spur

AT BA = tr(AT BA) = tr(BAAT ). (A2-1)

Wird Gleichung (A2-1) nun mit dem Operator des Erwartungswerts versehen, ergibt
sich:

E[AT BA] = E[tr(AT BA)]

= E[tr(BAAT )]

= tr(E[BAAT ]).

Darüber hinaus ist für die Berechnung des Gradienten in der Gleichung (2.17) die Ablei-
tung der Spur erforderlich, welche sich durch

∂

∂B
tr(BA) = AT

bestimmen lässt. Neben den grundlegenden Rechenregeln eines Erwartungswertes wird
im Folgenden die Aktualisierung der ersten beiden Momente basierend auf neuen Da-
tensätzen erläutert, welche im Kontext der Bayesschen Optimierung im Abschnitt 2.1.3
genutzt wird. Denn für die BO wird das probabilistische Modell Ĵ meist als ein GP-Modell
angenommen (vgl. Gleichung (2.10)), dessen charakteristischen Größen nach Gleichung
(2.9) die Mittelwert- und Kovarianzfunktion µ bzw.Σ sind. Mit fortschreitender Anzahl an
Datenpunkten werden diese angepasst, indem nach [Bis06] für den nächsten Datenpunkt
(
xN0+1, J(xN0+1)

)
die bis zu diesem Zeitpunkt zur Verfügung stehenden Daten(-matrizen)
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X = (x1, . . . , xN0) und J = (J1, . . . , JN0) genutzt werden. Anschließend können sowohl
der Mittelwert also auch die Kovarianz durch

µN0+1 = µ(xN0+1) + k
(
X, xN0+1

)T k (X, X)−1 (J − µ(X))

ΣN0+1 = k
(
xN0+1, xN0+1

) − k
(
X, xN0+1

)T k (X, X)−1 k
(
X, xN0+1

) (A2-2)

bestimmt und für die Aktualisierung des Modells Ĵ verwendet werden [Bis06].
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A3 Regularized-Horseshoe-Verteilung

Im Abschnitt 4.4.1 wird die Modellierung der Parameter θ durch die RHS-Verteilung
(4.25) angestrebt, welche als hierarchische Gauß-Verteilung mithilfe der unterlagerten
Distributionen ihre Varianz an die Form einer Laplace-Verteilung anpasst, um diese zu
imitieren. Da der Einfluss dieser unterlagerten Distributionen aus der mathematischen
Formulierung nur schwer nachvollziehbar ist, wird dieser daher in diesem Abschnitt be-
leuchtet. Dazu werden in den nachfolgenden Abbildungen links jeweils die unterlagerte
Distribution, u. U. abhängig von ihren Parametern, und rechts jeweils die daraus resultie-
rende RHS-Verteilung abgebildet. Die RHS-Verteilungen sind hierbei durch Histogram-
me dargestellt, da sie Monte-Carlo-gesampelt worden sind. Die Parameter der unterla-
gerten Distributionen, die in der jeweiligen Abbildung nicht untersucht werden, variieren
dabei nicht, um die Wirkung der resultierenden Gesamtverteilung nicht zu verfälschen.
Die Abbildung A3-1 veranschaulicht die bereits im Abschnitt 4.4.1 erwähnte Wirkung
von τ: Je kleiner die Varianz τ0 für die positive Cauchy-Distribution C+(·, ·) gewählt wird,
aus der τ stammt, desto mehr wird diese in Richtung der y-Achse gestreckt und desto
wahrscheinlicher ist es daher, dass der Koeffizient θi Null ist. Dies lässt sich daran erken-
nen, dass die Varianz der resultierenden RHS-Verteilung für τ0 = 0, 025, dargestellt in
rot, deutlich schmaler als die der blau abgebildeten Verteilung ist, welche aufgrund von
τ0 = 0, 2 eine wesentlich breitere Streuung um Null aufzeigt. Der Parameter τ0 steuert
somit den Grad der Dünnbesetztheit in globaler Art und Weise, weil dieser für alle θi

festgelegt wird [PV17; HBK22].
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Abbildung A3-1: Einfluss der Distribution τ ∼ C+(0, τ0) auf die RHS-Verteilung

Damit das Ziel, dass einige Parameter θi nicht Nullelemente sind, umgesetzt werden
kann, ermöglicht die nicht-parameterabhängige, ebenfalls positive Cauchy-Verteilung für
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λi Ausnahmen von dieser globalen Dünnbesetztheit. In der Abbildung A3-2 ist diese Wir-
kung anhand der größeren Varianz der resultierenden RHS-Verteilung zu erkennen.
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Abbildung A3-2: Einfluss der Distribution λi ∼ C+(0, 1) auf die RHS-Verteilung

Schließlich dient der Wert c2, welcher mithilfe einer inversen Gamma-Verteilung be-
stimmt wird, zur Regularisierung der hierarchischen RHS-Verteilung. Wird diese ohne
Regularisierung verwendet, handelt es sich um die Horseshoe-Verteilung (HS-Verteilung)

[PV17; HBK22]. Diese weist jedoch den Nachteil von potentiell sehr großen Nichtnullele-
menten θi auf, welche mit dieser Regularisierung vermieden werden sollen. Die Variation
der Parameter a, b für die inverse Gamma-Verteilung, dargestellt durch die Farben Rot,
Blau und Grün, illustriert deshalb den Einfluss der Regularisierung auf die resultierende
RHS-Verteilung in der Abbildung A3-3.
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Abbildung A3-3: Einfluss der Distribution c2 ∼ Inv-Γ(a, b) auf die RHS-Verteilung
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A4 Matrixzerlegungen

Dieser Abschnitt stellt die wichtigsten Matrixzerlegungen in kompakter Weise vor, wel-
che für das Verständnis dieser Arbeit benötigt werden. Diese finden beispielsweise An-
wendung in den Kalman-Filtern (vgl. Abschnitt 2.2) oder der Hauptkomponentenanaly-
se (PCA) (vgl. Abschnitt 5.1). Die betrachteten Zerlegungen werden für reelle Matrizen
dargestellt, können aber ausgenommen der Cholesky-Zerlegung auf komplexe Matrizen
erweitert werden.

A4.1 Cholesky-Zerlegung

Eine symmetrische, positiv definite Matrix A ∈ Rn×n kann mithilfe der Cholesky-Zerlegung

durch ein Produkt aus einer unteren Dreiecksmatrix L und deren Transponierten LT be-
schrieben werden, sodass

A = LLT (A4-1)

gilt. Dabei basiert die Cholesky-Zerlegung auf der Eigenschaft, dass jede symmetrische,
positiv definite Matrix A eindeutig in die Form A = L̃DL̃T zerlegt werden kann [DH19;
FH07]. Darin stellen L̃ eine unipotente, untere Dreiecksmatrix und D eine positive Diago-
nalmatrix dar, sodass sich der Zusammenhang zur Cholesky-Zerlegung durch L = L̃

√
D

ergibt. Die Berechnung der Zerlegung erfolgt durch die elementweise Auswertung der
Gleichung (A4-1), vgl. [DH19; FH07]. Vorteile dieser Zerlegung bestehen in der nume-
rischen Robustheit, der Lösung von Gleichungsproblemen und der Fähigkeit, symmetri-
sche, positiv definite Matrizen zu detektieren. Diese Zerlegung wird daher in der effizien-
ten, numerischen Berechnung des SRUKFs genutzt (vgl. Abschnitt 2.2.2).

A4.2 QR-Zerlegung

Zur Lösung von linearen Gleichungssystemen wird häufig eine QR-Zerlegung gewählt.
Diese ist für eine Matrix A ∈ Rn×n durch

A = QR (A4-2)

mit Q ∈ Rn×n als orthonormale Matrix und R ∈ Rn×n als obere Dreiecksmatrix defi-
niert [FH07; DH19]. Dabei existieren verschiedene Algorithmen, um eine Zerlegung der
Art (A4-2) durchzuführen, z. B. das Gram-Schmidtsche-Orthonormalisierungsverfahren.
Zudem ist die QR-Zerlegung auch erweiterbar für nicht-quadratische Matrizen. Diese Zer-
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legung wird ebenfalls in der effizienten, numerischen Berechnung des SRUKFs genutzt
(vgl. Abschnitt 2.2.2).

A4.3 Singulärwertzerlegung

Die Singulärwertzerlegung ist ein probates Mittel, um vielfältige Informationen über eine
Matrix A ∈ Rn×m zu erhalten und wird beispielsweise in der PCA genutzt (vgl. Kapitel 5).
Jede Matrix A kann durch das Produkt

A = UΣVT (A4-3)

beschrieben werden [DH19]. Dabei sind U ∈ Rn×n,V ∈ Rm×m orthogonale Matrizen und
Σ ∈ Rn×m stellt eine Matrix dar, auf deren Hauptdiagonalen sich die Singulärwerte σi ≥ 0
mit i = 1, . . . , r befinden, während alle weiteren Elemente Null sind. Die Singulärwerte
sind dabei nach ihrer Größe sortiert, sodass σ1 ≥ σ2 ≥ · · · ≥ σr > 0 gilt. Die jeweiligen
Spaltenvektoren u j mit j = 1, . . . , n bzw. vl mit l = 1, . . . ,m werden zudem als Links-
bzw. Rechtssingulärvektoren bezeichnet. Die Zerlegung (A4-3) kann als eine Abfolge
von Drehungen durch die orthogonalen Matrizen und eine Stauchung bzw. Streckung
durch die Matrix Σ interpretiert werden. Zudem besteht eine enge Verwandtschaft zum
Eigenwertproblem, da die quadrierten Singulärwerte die Eigenwerte der Matrizen AAT

bzw. AT A bilden und folglich auch aus diesen bestimmt werden können [DH19].
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A5 Numerische Integrationsverfahren

Um Differentialgleichungen der Art ẋ = f (x,u) für beliebige Anfangswerte x0 ∈ Rn

und Schrittweiten ∆t ∈ R>0 zu simulieren, ist ihre Auswertung mittels numerischer In-
tegrationsverfahren erforderlich. Im Folgenden werden zwei der bekanntesten Verfahren
vorgestellt, welche in der Praxis häufig genutzt werden und in der vorliegenden Disserta-
tionsschrift beispielsweise in den Kapiteln 3 und 5 Verwendung finden.

A5.1 Explizites Euler-Verfahren

Die Popularität des expliziten Euler-Verfahrens begründet sich durch seine Einfachheit,
welche einen geringen Rechenaufwand verursacht und somit insbesondere in Digitalan-
wendungen eingesetzt wird. Denn die numerische Integration erfolgt über die Annäherung
des Integrals durch ein Rechteck, indem

xk+1 = xk + ∆t · f (xk,uk)

bestimmt wird. Dabei stellt der Index k die jeweilige Größe zum Zeitpunkt tk dar, d. h.
xk B x(tk). Allerdings sind aufgrund der einfachen Rechteckstruktur Einbußen bzgl. der
Genauigkeit der Integration zu erwarten. Dieser Nachteil kann z. B. durch andere, kom-
plexere Einschrittverfahren, wie das Heun-Verfahren oder das Simpson-Verfahren, ver-
mieden werden. Jene Verfahren werden als Runge-Kutta-Verfahren zweiter bzw. dritter
Ordnung bezeichnet [Ada18].

A5.2 Runge-Kutta-Verfahren

Soll die Genauigkeit der numerischen Integration erhöht, der Rechenaufwand aber gleich-
zeitig moderat bleiben, wird in den meisten Fällen das Runge-Kutta-Verfahren vierter
Ordnung als numerisches Integrationsverfahren ausgewählt. Dieses löst die obige Diffe-
rentialgleichung mit der Definition uk+0.5 B u

(
tk +

∆t
2

)
folgendermaßen [Ada18]:

p1 = f (xk,uk),

p2 = f
(
xk +

∆t
2
· p1,uk+0.5

)
,

p3 = f
(
xk +

∆t
2
· p2,uk+0.5

)
,

p4 = f (xk + ∆t · p3,uk+1),

xk+1 = xk +
∆t
6
· (p1 + 2p2 + 2p3 + p4

)
.
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A6 Anwendungsbeispiele

Dieser Abschnitt stellt ergänzende Informationen zu den Anwendungsbeispielen bereit,
die in den Kapiteln 3 bis 5 untersucht werden. Darüber hinaus werden z. T. weiterführende
Ergebnisse präsentiert.

A6.1 Golfroboter

Der Golfroboter ist ein Prüfstand am Lehrstuhl für Regelungstechnik und Mechatro-
nik (RtM), der als Testobjekt für ML-Methoden im Vergleich zu klassischen regelungs-
technischen Methoden dient. Es handelt sich dabei um ein komplexes mechatronisches
System, bestehend aus elektrischen, mechanischen und informationstechnischen Kompo-
nenten, deren Zusammenspiel durch konkrete physikalische Wirkprinzipien entsteht. Die
Abbildung 3-2 zeigt den aktuellen Aufbau des Roboters [JFTT22]. Im Rahmen dieser Ar-
beit ist die autonome Fahrstrategie des Roboters nicht relevant, sodass nur der Roboter-
aufbau ohne Räder betrachtet wird. Dieser besteht aus einem Zahnriemengetriebe, einem
Schläger mit Schlagkopf sowie einer Antriebseinheit und ähnelt somit vom physikali-
schen Prinzip einem Pendel. Betrachtet wird nur der letzte Teil eines Golfspiels, in dem
der Golfball auf dem sogenannten Green in das Loch geschlagen werden muss. Dies wird
als Putten bezeichnet 52. Das Regelungsziel des Roboters ist es daher, den Golfball erfolg-
reich in das Loch zu schlagen. Dafür muss der Schläger eine bestimmte Geschwindigkeit
zum Zeitpunkt des Schlags aufweisen, die ihn weder über das Loch springen noch vor
dem Loch stoppen lässt. Diese Schlagdynamik wird mittels einer Zwei-Freiheitsgrade-
Struktur eingestellt [FKL+22], welche in der Abbildung A6-1 dargestellt ist.

LQ-Regler

Beobachter

Golfroboter

Gain
Scheduling

Vor-
steuerung

+

−+

w

u y

x̂0

x̂

u∗

x∗

x0

uC
i

Abbildung A6-1: Zwei-Freiheitsgrade-Struktur für den Golfroboter nach [FKL+22;
JFTT22]

52Unter https://serviceportal.dgv-intranet.de/regularien/golfregeln/offizielle-golfregeln.cfm können die
Regeln des Golfspiels nachgelesen werden, abgerufen am 26.01.2024.
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Das nichtlineare Modell (3.4) aus Abschnitt 3.1.1 ist durch eine aufwendige Modellie-
rung entstanden, dem mehrere Vereinfachungen vorausgingen. So wird die obere Zahn-
riemenscheibe als Angriffspunkt des Motormoments angenommen, woraufhin die beiden
Zahnriemenscheiben zu einem Getriebe zusammengefasst werden können. Das Motor-
moment wird daraufhin durch ein Übersetzungsverhältnis des Zahnriemengetriebes von
4:1 berücksichtigt. Durch eine Optimierung mittels Messdaten wurden die Parameter p
des Modells identifiziert, welche in der folgenden Tabelle aufgeführt sind [JFTT22]:

Bezeichnung Symbol Wert Einheit

Masse des Schlägers m 0,5241 kg
Trägheitsmoment des Schlägers J 0,1445 kg/m2

Gravitationskonstante g 9,8100 m/s2

Länge Rotationsachse - Schwerpunkt des Golfschlägers a 0,4702 m
Dynamischer Reibkoeffizient d 0,0132 kg m2/s
Länge Rotationsachse - Reibpunkt rr 0,0245 m
Statischer Reibkoeffizient µ 1,5136 −

Tabelle A6-1: Parameter p des Golfroboters nach [JFTT22]

Das Modell liefert in den meisten Situationen eine hohe Modellgüte. Allerdings zeigt der
Golfroboter das in der Abbildung A6-2 dargestellte, ruckartige Verhalten, wenn eine sehr
langsame Anregung gewählt wird. Dieses resultiert aus einer Mischung von Haft- und
Gleitreibung, welche als Stick-Slip-Effekt bekannt ist [KH02], aber durch das modellierte
Reibmoment (3.5) nur angenähert werden kann. Daher bestehen in dieser Situation noch
Modellungenauigkeiten, die in den Kapiteln 3 und 4 angenähert werden.

Um die gewünschte Schlagdynamik, welche beispielhaft in der Abbildung A6-3 darge-
stellt ist, auszuführen, wird eine konstante Vorsteuerung sowie ein LQ-Regler gewählt.
Dazu wird das nichtlineare Modell (3.4) mittels der Gain-Scheduling-Strategie in meh-
rere lineare Systeme abhängig von Betriebspunkten transformiert [Ada18; JFTT22]. An-
schließend kann für jedes linearisierte Modell ein eigener Regler ausgelegt werden. Da
allerdings nur der Winkel des Golfroboters gemessen werden kann, wird zur Schätzung
der Winkelgeschwindigkeit φ̇ nach Überprüfung der Beobachtbarkeit ein Luenberger-
Beobachter entworfen [Lue64]. Erneut wird aufgrund der Systemdynamik (3.4) der Gain-
Scheduling-Ansatz genutzt, um die lineare Struktur des Luenberger-Beobachter nutzen
zu können. Dabei wird der Korrektureingriff aufgrund der Dualität mittels Polvorgabe
bestimmt. Schließlich liegen verschiedene Beobachtermodelle vor, die je nach aktuellem
Winkel φ über einen Vergleich mittels der Variable i ausgewählt werden [Fit20; JFTT22].
Dies ist in der Abbildung A6-1 durch den Block Gain Scheduling dargestellt.
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Abbildung A6-2: Auftreten des Stick-Slips-Effekts am Beispiel des Winkels bei einer sehr
langsamen Anregung
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Abbildung A6-3: Beispielhafte Sollvorgabe für den Golfroboter nach [JFTT22]: Ausholen
zum Schlag in Phase I, Schlag bei φkrit = 0◦ mit der Geschwindigkeit φ̇krit

in Phase II, Rückholen zur Ausgangsposition in Phase III

Modelle des Golfroboters

Neben dem nichtlinearen Modell (3.4), welches das physikalische Modell mit der höchsten
Modellgüte dargestellt, werden in dieser Arbeit noch weitere Modelle in verschiedenen
Methoden genutzt, um beispielsweise Ungenauigkeiten, die aus dem Stick-Slip-Effekt re-
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sultieren, genauer zu approximieren. Dazu wird u. a. das folgende Modell ohne den Anteil
der viskosen Reibung MV(x) = −dx2 genutzt:

ẋ = f V(x, u, p)

=


x2

J−1
(
−mga sin(x1) − rrµ sgn(x2) |mx2

2a + mg cos(x1)| + 4u
)
 ,

y = h(x) = x1.

Darüber hinaus wird das Modell ohne den Anteil der Gleit- und Haftreibung MH(x, u) =
rrµ sgn(x2) |mx2

2a + mg cos(x1)| betrachtet, welches durch

ẋ = f H(x, u, p)

=


x2

J−1 (−mga sin(x1) − dx2 + 4u)

 ,

y = h(x) = x1

(A6-1)

beschrieben wird. Schließlich kann noch das Modell ohne wirkende Dämpfung oder Rei-
bung betrachtet werden. Dieses lässt sich durch

ẋ = f WO(x, u, p)

=


x2

J−1 (−mga sin(x1) + 4u)

 ,

y = h(x) = x1

(A6-2)

charakterisieren.

Physikalisch motivierte (rekurrente) neuronale Netze

Im Abschnitt 3.1.3 ist bereits die Modellgüte eines PGNN im Vergleich zu anderen daten-
getriebenen und physikalisch motivierten Methoden analysiert worden. Wird jedoch die
Datenverfügbarkeit als Einflussfaktor untersucht, ergibt sich insbesondere für die PGNN-
und SINDYc-Modelle ein anderes Bild bzgl. ihrer Modellgüte. In der Abbildung A6-4
zeigt sich, dass das SINDYc-Modell von der Datenqualität abhängt, da es stark an Ge-
nauigkeit verliert und den Winkel bzw. die Winkelgeschwindigkeit nicht mehr korrekt
wiedergeben kann, wenn nur transientes Dynamikverhalten des Golfroboters in den Trai-
ningsdaten enthalten ist. Das PGNN erzielt aufgrund des physikalischen Simulationsmo-
dells allerdings weiterhin eine robuste Approximation des Systemverhaltens und zeigt
wenig Veränderung, wenn sich der Datenumfang verändert. Dies ist besonders in der Ver-
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größerung zu erkennen. Ferner wird in der Abbildung A6-5 ein Vergleich der verschie-
denen hybriden Modelle abgebildet, wobei SINDy weiterhin als das Verfahren mit der
höchsten Modellgüte zu erkennen ist.
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Abbildung A6-4: Modellgüte eines PGNNs in Abhängigkeit des genutzten Datenumfangs
während des Trainings anhand des Golfroboters
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Abbildung A6-5: Modellgüte eines PGRNNs und MOPGRNNs im Vergleich zum PGNN-
und SINDy-Modell anhand des Golfroboters

Optimal initialisierte Kovarianzmatrizen

Neben der Minimierung des Schätzfehlers als Kostenfunktion in der Bayesschen Opti-
mierung (vgl. Abschnitt 3.2.1), wird häufig auch die Forderung nach einem konsistenten
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Filter berücksichtigt. Ein Schätzer weist die Eigenschaft der Konsistenz auf, wenn der
Schätzfehler unverzerrt ist, d. h. wenn E[ex,k] = 0∀k gilt, und dieser mit zunehmendem
Stichprobenumfang abnimmt, demnach sich dem zu schätzenden Wert annähert [Rüs14].
Daher gibt es analog zur Gleichung (3.17) noch zwei weitere Möglichkeiten, die Kosten-
funktion zu formulieren. Wird die Konsistenz eines Filters bewertet, so wird die Kosten-
funktion durch

J(x̂)NEES = log


1
N

N∑

k=1

(eT
x,k P−1

k|kex,k)

 , J(x̂)NIS = log


1
N

N∑

k=1

(eT
y,kS

−1
in,k|key,k)

 , (A6-3)

mit der Innovationskovarianz Sin formuliert. Die Abkürzungen stehen dabei für Norma-

lized Estimation Error Squared und Normalized Innovation Squared. Diese Kostenfunk-
tionen wurden ebenfalls dazu verwendet, optimal initialisierte Kovarianzmatrizen zu fin-
den. Ein exemplarischer Verlauf der durch die BO durchgeführten Iterationen und deren
Schätzung ist jeweils in den Abbildungen A6-6 und A6-7 dargestellt. Die Einstellparame-
ter der BO sind identisch zu denen aus Abschnitt 3.2.1 gewählt worden.
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Abbildung A6-6: Ergebnis verschiedener Iterationen während der BO für die Kostenfunk-
tion NEES (A6-3): Iteration 16 stellt die beste, durch die BO gefundene
Lösung dar.

Im Vergleich zur WEES- bzw. WIS-Kostenfunktion findet die BO bezogen auf die Mo-
dellgüte schlechtere Minima. Diese werden jeweils durch die letzte dargestellte Iteration
visualisiert. Ursache dieser Resultate ist die betrachtete Kostenfunktion, in welche die
Kovarianz bzw. Varianz der Innovation eingeht. Es lässt sich anhand dieser Ergebnisse
feststellen, dass die beiden Kalman-Filter nach der Optimierung ihr Potential, ein konsis-



A6.2 Servoventil 217

tenter Schätzer zu sein, noch nicht erreicht haben. Abhilfe schafft eine Optimierung mit
einem längeren Iterationshorizont oder die Wahl einer anderen Acquisitionfunction.
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Abbildung A6-7: Ergebnis verschiedener Iterationen während der BO für die Kostenfunk-
tion NIS (A6-3): Iteration 10 stellt die beste, durch die BO gefundene
Lösung dar.

A6.2 Servoventil

Um das Verständnis für den Abschnitt 3.1.3 zu erleichtern, werden einige Details zum
betrachteten Servoventil skizziert, welche der internen Dokumentation [Ker21] des Lehr-
stuhls entstammen. Das zweistufige Ventil mit elektrischer Positionsregelung, welches
nach dem Drüse-Prallplatten-Prinzip agiert, ist in der Abbildung A6-8 dargestellt.
Für das nichtlineare Modell des Ventils wird der Aufbau nach Abbildung A6-9 ange-
nommen, welcher aus einem Torquemotor, einem hydraulischen Verstärker sowie einem
Längsschieberventil mit Steuerschieber besteht. Hierbei stellen i den Steuerstrom und
∆pS den Differenzdruck der Drücke an den beiden Stirnseiten des Steuerschiebers dar.
Auch für das komplexe, nichtlineare Modell der Ventildynamik werden einige Annah-
men getroffen [Ker21], z. B. dass die Strömungskräfte an der Prallplatte vernachlässigt
werden, eine ideale Sensorik vorliegt oder konstante Drücke an den Ventilschlüssen herr-
schen. Da dieser Abschnitt lediglich die grundlegenden Eigenschaften des Ventils und
das nichtlineare Modell beschreibt, welche zum Verständnis des Abschnitts 3.1.3 erfor-
derlich sind, wird für eine vollständige Liste der Vereinfachungen und weiterer Details
auf [Ker21] verwiesen.

Anschließend wird die Ventildynamik durch das nichtlineare Simulationsmodell (A6-4)
dargestellt, welches auf der nachfolgenden Seite abgebildet ist.
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Abbildung A6-8: Physikalische Skizze des Servoventils mit Düse-Prallplatten-Prinzip
nach [Ker21]
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Abbildung A6-9: Aufbau des nichtlinearen Ventilmodells nach [Ker21]

Dabei beschreibt der Zustand x = (α̇, α, p1, p2, ẏS , yS )T die Drehbewegung des Ankers
durch den Winkel α bzw. dessen Geschwindigkeit α̇, die Drücke p1 bzw. p2, die an den
beiden Seiten der Prallplatte herrschen und die Ventilschieberlage yS bzw. dessen Ge-
schwindigkeit ẏS . Eingang des Ventils stellt die Spannung u = uV dar, der Ausgang
yV =

yS
yS ,max

ist die relative Ventilschieberlage. Die Parameter des nichtlinearen Modells
wurden durch Prüfstandsmessungen und Datenblätter validiert und ergeben sich wie in
der Tabelle A6-2 zusammengefasst. Das nichtlineare Modell kann wie im Abschnitt 3.1.3
beschrieben ebenfalls durch Modelle mit geringerer Modellierungstiefe ersetzt werden,
z. B. durch ein einfaches Verzögerungsglied zweiter Ordnung (vgl. Gleichung (3.15)).
Dessen Parameter p = (KV , DV , TV)T können der Tabelle A6-3 entnommen werden.
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ẋ =



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6



=



1
J
· (−d1 · x1 + (KPM · r2

1 − KBR · r2
1 − KF · r2

3) · x2 − ANr2x3 + ANr2x4 − (KF · r3 + KP · Ki · r1) · x6

x1
1

Chyd
· (C0 · π · DN · r2 · x2 · √x3 − p3 −C0 · π · DN · xN · √x3 − p3 +C0 · A0 · √p0 − x3 − AS x5)

1
Chyd

· (−C0 · π · DN · r2 · x2 · √x4 − p3 −C0 · π · DN · xN · √x4 − p3 +C0 · A0 · √p0 − x4 + AS x5)

1
mS
· (−KF · r3 · x2 + AS · x3 − AS · x4 − d2 · x5 − (KB + KF) · x6)

x5



+



KP · Ki · r1

KV
· yS ,max

0
0
0
0
0



· u

(A6-4)

bzw.

ẋ =



α̈

α̇

ṗ1

ṗ2

ÿS

ẏS



=



1
J
· (−d1 · α̇ + (KPM · r2

1 − KBR · r2
1 − KF · r2

3) · α − ANr2 p1 + ANr2 p2 − (KF · r3 + KP · Ki · r1) · yS

α̇
1

Chyd
· (C0 · π · DN · r2 · α · √p1 − p3 −C0 · π · DN · xN · √p1 − p3 +C0 · A0 · √p0 − p1 − AS ẏS )

1
Chyd

· (−C0 · π · DN · r2 · α · √p2 − p3 −C0 · π · DN · xN · √p2 − p3 +C0 · A0 · √p0 − p2 + AS ẏS )

1
mS
· (−KF · r3 · α + AS · p1 − AS · p2 − d2 · ẏS − (KB + KF) · yS )

ẏS



+



KP · Ki · r1

KV
· yS ,max

0
0
0
0
0



· u

y =
(
0 0 0 0 0

1
yV,max

)
· x = yV .
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Bezeichnung Symbol Wert Einheit

Steuerkolbenquerschnitt AS 3,4 × 10−5 m2

Durchfluss/Dichte-Beiwert C0 0,0306 m/(s
√

Pa)
Festdrosseldurchmesser D0 2,772 × 10−4 m
Torquemotor/Hydraulischer
Verstärker-Dämpfbeiwert d1 9,7 × 10−3 N m s
Steuerkolben-Dämpfbeiwert d2 1549,5 N s m−1

Düsendurchmesser DN 8,352 × 10−4 m
Rücklauf-Drosseldurchmesser DR 3,81 × 10−4 m
Ersatzkompressionsmodul E

′
Öl

1,8 × 109 Pa
Massenträgheitsmoment Torquemotor J 1,6948 × 10−7 kg m2

Bernoulli-Konstante KB 8,5167 × 105 N m−1

Biegerohrsteifigkeit, bezogen auf eine
Wirkungslinie im Luftspalt (Hebelarm r1)

KBR 2,1736 × 104 N m−1

Magnetische Federkonstante, bezogen auf ei-
ne Wirkungslinie im Luftspalt (Hebelarm r1)

KPM 0 N m−1

Rückführfedersteifigkeit, bezogen auf eine
Wirkungslinie mit Hebelarm r3 am Kolben

KF 1752 N m−1

Torquemotorkonstante, bezogen auf eine
Kraftwirkung im Luftspalt (Hebelarm r1)

Ki 0,0289 N mA−1

Reglerverstärkung KP 1,1367 × 107 -
Steuerkolbenmasse m 0,015 kg
Systemdruck p0 280 bar
Abstand Luftspalt/Drehpunkt r1 0,0586 m
Abstand Düse/Drehpunkt r2 0,0054 m
Abstand Steuerkolben/Drehpunkt r3 0,0854 m
Ventiltotzeit Ttot 6,5 × 10−4 s
Maximale Eingangsspannung uV,max 10 V
Steuerkammervolumen V 2,1916 × 10−6 m2

Abstand Düse/Prallplatte (in Mittelstellung) xN 6,5332 × 10−5 m
Maximaler Ventilschieberweg yS ,max 4,2672 × 10−4 m

Tabelle A6-2: Identifizierte Parameter des nichtlinearen Modells für die Ventildynamik
nach [Ker21]

Bezeichnung Symbol Wert Einheit

Eigenfrequenz fV 350 Hz
Dämpfungswert DV 0,5 −
Verstärkungsfaktor KV 0,1 −

Tabelle A6-3: Parameter des Verzögerungsglieds zweiter Ordnung für die Ventildynamik

Wird das PT2-Glied (3.15) aus Abschnitt 3.1.3 zudem mit empirisch erhobenen Be-
schränkungen ausgestattet, um seinen Detaillierungsgrad zu erhöhen, so lauten diese für
die Beschleunigung ÿS ≤ 71, 6280 m/s2 und für die Geschwindigkeit ẏS ≤ 0, 0965 m s−1.
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A6.3 Pendel

Das physikalische Pendel ist ein nichtlineares Anwendungsbeispiel in der Regelungstech-
nik, welches üblicherweise zur Illustration verschiedener Regelstrategien genutzt wird. Im
Abschnitt 3.2.2 wird das Modell des Pendels (3.18) verwendet, um den Einfluss der Para-
metrierung eines SMOs zu veranschaulichen. Dazu können die physikalischen Parameter
des Systems aus der Tabelle A6-4 abgelesen werden.

Bezeichnung Symbol Wert Einheit

Masse des Pendels m 1,10 kg
Gravitationskonstante g 9,81 m/s2

Länge des Pendels l 0,90 m
Trägheitsmoment J 0,89 kg/m2

Dämpfungskoeffizient d 0,18 −
Tabelle A6-4: Parameter p des Pendels

A6.4 Einfachpendel auf einem Wagen

Das Einfachpendel auf einem Wagen, welches sich im Labor des Lehrstuhls RtM befindet
und im Abschnitt 4.5 als veranschaulichendes Beispiel genutzt wird, stellt die Erweite-
rung des Pendels durch einen Wagen dar. In der Abbildung A6-10 ist ein physikalisches
Ersatzbild des Systems zu erkennen. Der Winkel des Pendelarms, die Position des Wagens
sowie deren Geschwindigkeiten werden mit x = (φ, φ̇, y, ẏ)T als Zustandsgrößen des Sys-
tems definiert, wobei der Winkel und die Position gemessen werden können. Der Eingang
u ist die Beschleunigung des Wagens. Anschließend kann das Modell des Einfachpendels
auf einem Wagen mit den Parametern p = (m, g, a, J, d)T durch

ẋ =



x2
am cos(x1)u + mga sin(x1) − dx2

J + ma2

x4

u



, (A6-5)

y =
(
x1, x3

)

formuliert werden. Die Parameter des Modells (A6-5) sind in der Tabelle A6-5 vermerkt.
Über eine Zwei-Freiheitsgrade-Struktur werden eine optimale Steuerung für den Auf-
schwung sowie ein zeitvarianter Riccati-Regler genutzt, um den Pendelarm in die obere
Ruhelage zu bewegen und dort zu stabilisieren, vgl. [FKL+22; Trä24; TKOT11].
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Abbildung A6-10: Physikalische Skizze des Einfachpendels auf einem Wagen [Trä24]

Bezeichnung Symbol Wert Einheit

Masse m 0,654 kg
Gravitationskonstante g 9,810 m/s2

Länge des Pendelarms a 0,250 m
Trägheitsmoment J 0,010 kg/m/s2

Dämpfungskonstante d 0,001 Nms

Tabelle A6-5: Parameter p des Einfachpendels auf einem Wagen [Trä24]

A6.5 Windenergieanlage nach Ritter und Schmitt

Das im Abschnitt 4.3.3 verwendete Beispiel der Windenergieanlage stammt aus [SR20;
Rit20]. Die an dieser Stelle gegebenen Details entstammen folglich diesen Quellen. Die
Koeffizienten zur Beschreibung des Moments bzw. des Schubs können somit folgender-
maßen bestimmt werden:

CM(λ) = cm,2λ
2 + cm,1λ + cm,0, (A6-6)

CT (λ) = ct,2λ
2 + ct,1λ + ct,0,

wobei das Verhältnis aus Geschwindigkeit und Drehzahl λ in Abhängigkeit der Zustände
und der Windgeschwindigkeit durch

λ =
x2R

z − x4
(A6-7)

definiert ist. Die verwendeten Parameter der obigen Gleichung sowie des Modells (4.19)
sind in der nachfolgenden Tabelle A6-6 zusammengefasst. In den Abbildungen A6-11 bis
A6-13 sind zudem Ergebnisse der Zustandsschätzung dargestellt, wenn der augmentierte
Beobachter nach Abschnitt 4.4 genutzt wird und der Parameter τ0, welcher die globa-
le Eigenschaft der Dünnbesetztheit beschreibt, zu klein gewählt worden ist. Dies lässt
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sich daran erkennen, dass die Zustände bis auf das bekannte Offset aus Abschnitt 4.3
korrekt geschätzt bzw. angenähert werden, aber die Schätzung der Windgeschwindigkeit
aufgrund der zu dünnbesetzt modellierten Parameter der Linearkombination nicht zufrie-
denstellend ist.

Bezeichnung Symbol Wert Einheit

Luftdichte ρ 1,225 kg/m3

Eigenfrequenz der Gondel ω0 2,1 Hz
Masse des Turmkopfes mT 450 × 103 kg
Rotorradius R 63 m
Dämpfungskoeffizient D 0,01 −
Umsetzungsverhältnis igb 97 −
Trägheitsmoment Θ 4,05 × 107 kg m2

Reglerverstärkung kp 23,8 × 10−3 N m/ rpm2

Koeffizient cm,0 10 × 10−2 −
Koeffizient cm,1 −17 × 10−4 −
Koeffizient cm,2 −40 × 10−5 −
Koeffizient ct,0 −16 × 10−2 −
Koeffizient ct,1 18 × 10−2 −
Koeffizient ct,2 −77 × 10−4 −

Tabelle A6-6: Parameter p der Windenergieanlage aus [SR20; Rit20]
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Abbildung A6-11: Qualität der Zustandsschätzung bei Verwendung der BibliothekΨ1 und
des augmentierten Beobachters nach Abschnitt 4.4
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Ziel dieser Arbeit ist die Entwicklung eines modellbasierten Beobachters 
für eingangsaffine, nichtlineare Systeme, der trotz Modellungenauig-
keiten eine hohe Schätzgüte erzielt und zusätzlich eine parametrische, 
physikalisch interpretierbare Darstellung dieser ermöglicht. Diese soll 
zur automatisierten Verbesserung des Modells verwendet werden. Die 
vorliegende Arbeit analysiert sowohl Techniken der hybriden System-
identifikation wie physikalisch motivierte neuronale Netze, als auch Me-
thoden zur Kompensation von Modellungenauigkeiten im Beobachter-
entwurf. Basierend auf der Analyse wird ein neuartiger, modellbasierter 
Beobachter entworfen, der Systemzustände und Modellungenauigkeiten 
gleichzeitig schätzt und insbesondere eine parametrische, physikalisch 
interpretierbare Darstellung der Ungenauigkeiten erzielt. Diese besteht 
aus einer Linearkombination von physikalisch interpretierbaren Funk-
tionen, deren dazugehörige, dünnbesetzt modellierte Parameter mithil-
fe eines augmentierten Zustands parallel zu den Systemzuständen ge-
schätzt werden. Das Novum dieser Arbeit stellt somit die echtzeitfähige 
Schätzung von Zuständen und Modellungenauigkeiten in physikalisch-
technischer Form dar, auf deren Grundlage ein Konzept zur automatisier-
ten Modelladaption umgesetzt wird. Die Applikation der neuartigen Me-
thode ist in der Situation auftretender Systemveränderungen besonders 
vorteilhaft, da diese zur Laufzeit durch den augmentierten Beobachter 
geschätzt und identifiziert werden können.
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