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Zusammenfassung

Ziel dieser Arbeit ist die Entwicklung eines modellbasierten Beobachters fiir eingangs-
affine, nichtlineare Systeme, der trotz Modellungenauigkeiten eine hohe Schitzgiite er-
zielt und zusitzlich eine parametrische, physikalisch interpretierbare Darstellung dieser
ermOglicht. Diese soll zur automatisierten Verbesserung des Modells verwendet wer-
den. Die vorliegende Arbeit analysiert sowohl Techniken der hybriden Systemidenti-
fikation wie physikalisch motivierte neuronale Netze, als auch Methoden zur Kompensa-
tion von Modellungenauigkeiten im Beobachterentwurf. Basierend auf der Analyse wird
ein neuartiger, modellbasierter Beobachter entworfen, der Systemzustinde und Modell-
ungenauigkeiten gleichzeitig schitzt und insbesondere eine parametrische, physikalisch
interpretierbare Darstellung der Ungenauigkeiten erzielt. Diese besteht aus einer Linear-
kombination von physikalisch interpretierbaren Funktionen, deren dazugehorige, diinn-
besetzt modellierte Parameter mithilfe eines augmentierten Zustands parallel zu den Sys-
temzustdnden geschitzt werden. Das Novum dieser Arbeit stellt somit die echtzeitfdhige
Schitzung von Zustdnden und Modellungenauigkeiten in physikalisch-technischer Form
dar, auf deren Grundlage ein Konzept zur automatisierten Modelladaption umgesetzt
wird. Die Applikation der neuartigen Methode ist in der Situation auftretender System-
verdnderungen besonders vorteilhaft, da diese zur Laufzeit durch den augmentierten Be-

obachter geschitzt und identifiziert werden kdnnen.

Abstract

The aim of this thesis is the development of a model-based observer for input-affine,
nonlinear systems that achieves a high estimation quality despite model inaccuracies. By
additionally providing a parametric, physically interpretable representation of the mo-
del inaccuracies, an automated improvement of the model should be enabled. This thesis
analyzes techniques of hybrid system identification such as physics-guided neural net-
works, as well as methods for compensating model inaccuracies within the observer de-
sign. Based on this analysis, a novel model-based observer is designed, which estimates
states and model inaccuracies jointly and, in particular, obtains a parametric, physically
interpretable representation of the inaccuracies. This consists of a linear combination of
physically interpretable functions, whose associated parameters are modeled sparse and
estimated in parallel to the system’s states using an augmented state. The novelty of this
thesis is thus the real-time capability to jointly estimate states and model inaccuracies in
a physical-technical manner, on the basis of which an automated model adaption can be
carried out. The application of the new methodology is particularly advantageous in the
situation of occurring system changes since these can be estimated and identified at run

time by the augmented observer.
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1 Motivation und Zielsetzung

Die Zustandsschitzung ist ein fundamentaler Pfeiler moderner Regelungstechnik, obwohl
die Urspriinge vieler Methoden bis weit zuriick in das 20. Jahrhundert reichen (z. B.
[Kal60; Lue64]). Da die meisten dynamischen Systeme, die in Natur und Technik vor-
kommen, nicht vollstindig oder quantitativ messbar sind, braucht es fiir die Entwick-
lung geeigneter Regelungs- oder Steuerungsstrategien einen Schitzer, der moglichst ge-
nau die unbekannten GroBen erfasst, die zur Berechnung eines Regeleingriffs oder einer
Stellgrofle erforderlich sind [FKL*22; [Lun16]. So kam beispielsweise fiir die Apollo-
Mission ein Kalman-Filter zum Einsatz, welches die Navigation in der Raumfahrttechnik
erleichterte. Ebenso muss das standardmiBig verbaute Fahrerassistenzsystem ESP z. B.
die Geschwindigkeit eines Fahrzeugs basierend auf Sensorwerten wie den Raddrehzahlen
oder der Beschleunigung schitzen, um ggf. eingreifen zu kénnen. Aufgrund der steigen-
den Komplexitdt mechatronischer Systeme und der kiirzeren Produktentwicklungszyklen
ist es jedoch herausfordernd, einen zuverldssigen Schitzer zu entwickeln, da vielféltige
Wechselwirkungen zwischen verbauten Teilsystemen unterschiedlicher Disziplinen zu

beriicksichtigen sind.

Etablierte Schitzverfahren nutzen daher in der Regel ein Modell des Systems, um Aussa-
gen oder Vorhersagen iiber die Zustidnde des dynamischen Systems treffen zu konnen. Die
modellbasierte Betrachtung von physikalischen oder allgemein naturwissenschaftlichen
Problemen ist indes eine sehr alte Vorgehensweise, die bereits in der Antike angewendet
wurde. Ausgehend von geometrischen Problemen, wie sie beispielsweise in der Erdver-
messung oder Architektur auftraten [Mitl14; Fro22], entwickelten die Griechen Modelle,
um diese zu losen. Allerdings waren sich die Griechen schon damals der Unvollkom-
menheit eines Modells und der damit einhergehenden Herausforderungen bewusst. So
beschrieb Platon, griechischer Philosoph um 400 v. Chr., in seinem Hohlengleichnis das
Dilemma zwischen Wahrnehmung, Wissen und Realitit [Plal6]. Diese Problematik, wel-
che durch das antike Gleichnis aufgezeigt wird, ldsst sich auch im Modellbildungsprozess
erkennen: Der Prozess ist gepridgt durch die empirische und subjektive Wahrnehmung
der physikalisch zu modellierenden Phinomene. Ein Modell kann deshalb lediglich ein
schwiicheres Abbild der Realitdt widerspiegeln, welches noch Ungenauigkeiten enthélt
[BGA20; Low20].

Aufgrund des Bewusstseins, dass bei groBeren Modellabweichungen keine zuverlédssigen
Schitzungen des Zustands zu erwarten sind, ist ein iterativer Modellierungsprozess meist
unumginglich, um das Modell basierend auf Messdaten anzupassen. Dieser iterative Vor-
gang bindet allerdings nicht nur kostenintensive Ressourcen wie Personal und Software,

sondern kann wegen duflerer Storungen oder internen Einfliissen wie etwa Verschleif die



2 1 Motivation und Zielsetzung

Modell-Realitits-Liicke nie ganzheitlich schlieen. Daher wird dieser Herausforderung in
den letzten Jahren vermehrt mit der Nutzung von Messdaten entgegen getreten. So werden
diese nicht nur zur Parameteridentifikation oder Modellvalidierung eingesetzt, sondern
konnen aufgrund der gestiegenen technischen Leistungen in Prozessoren und Speichern
nun in groerem Umfang fiir die Erstellung von datenbasierten Modellen genutzt werden.
Dies gelingt durch datenverarbeitende Methoden, beispielsweise mittels maschinellem
Lernen (ML) oder kiinstlicher Intelligenz (KI), welche sich in den Ingenieurwissenschaf-
ten einer zunehmenden Popularitit erfreuen und deren Einsatz {iberwiegend positiv anti-
zipiert wird [SBW™18]]. Die Popularitit von ML- oder KI-Methoden nicht nur in den In-
genieurwissenschaften driickt sich z. B. in der Anzahl der Google-Scholar-Publikationen
aus, die diese Begriffe als Schlagwort enthalten. In der Abbildung ist ein enormer
Zuwachs an Beitrdgen pro Jahr in den letzten beiden Dekaden zu erkennen, welcher in

der Spitze etwa eine Million Beitrdge pro Jahr hervorbrachte.
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Abbildung 1-1: Popularitit der Begriffe Artificial Intelligence und Machine Learning
zwischen 1980 und 2022, dargestellt durch Auftreten als Schlagwort in
Google-Scholar-Beitréiigen (Stand September 2023, erzeugt durch die mo-
difizierte Nutzung von [|Thi22])

Obwohl KI und ML heutzutage bereits in vielen Alltagssituationen gegenwirtig sind,
z. B. durch digitale Sprachassistenten oder Chatbots, und ihr Einsatz intensiv durch die
Bundesregierung gefordert wird [Diel8}; Die20)], besteht in den Ingenieurwissenschaften
jedoch der Anspruch sowie die Pflicht, physikalisch nachvollziehbare und robuste Mo-
delle zu erstellen (vgl. die aktuelle Normierungsroadmap [DD22]). Dies ist insbesondere
in gesellschaftsrelevanten Bereichen wie der kritischen Infrastruktur, der Medizintechnik,
der Automobiltechnik oder der Robotik von Bedeutung und z. T. noch nicht gesetzlich
verankert bzw. noch im Prozess der Gesetzgebung [Pre23; [Sch23a]. Schlagzeilen wie

,,Lesla-Chef warnt vor todlichen Robotern‘ﬂ und ,,Wie schlau werden unsere Autos?“E]

'https://www.welt.de/wirtschaft/article166725047/Tesla-Chef-Musk-warnt-vor-toedlichen-
Robotern.html, abgerufen am 24.02.2023

2https://www.quarks.de/technik/mobilitaet/kuenstliche-intelligenz-wie-schlau-werden-unsere-autos/,
abgerufen am 24.02.2023



zeugen jedoch von dem bestehenden Sicherheitsrisiko sowie der offentlichen Besorgnis,
die auch von Expertengruppen geteilt wird [Rud19; |Fut23]], wenn KI- oder ML-basierte
Modelle in hochtechnologischen Systemen fiir gesellschaftsrelevante Anwendungen ein-
gesetzt werden. In der Abbildung [I-1]ist ab dem Jahr 2018 zu erkennen, dass die An-
zahl der Publikationen im Zusammenhang mit ML bzw. KI deutlich abnimmt. Dies lédsst
sich neben dem Effekt der Corona-Pandemie u. a. auf diese gesellschaftlichen Bedenken,
die ein kritisches Hinterfragen statt ein unbedachtes Nutzen dieser Methoden anstoBen,
zuriickfiihren. In der Folge reift in den Ingenieurwissenschaften die Idee, physikalisch
bewihrte Modelle mit datenbasierten Techniken zu verkniipfen, und schiirt die Hoffnung,
dass diese hybriden Modelleﬂ die Stirken sowie die Wissenskomponenten beider Perspek-
tiven kombinieren konnen und ein Synergieeffekt fiir die resultierenden Modelle bewirken
[KAFT17; HW13; Rud19]], z. B. dass sich der Aufwand der Modellbildung reduzieren
und die Modell-Realitdts-Liicke verringern ldasst [BGH21]]. Daher ist der abnehmende
Trend in Abbildung|1-1|vor allem mit der Verschiebung von generalisierten Oberbegriften
hin zu spezialisierten Fachtermini zu erkliren, da weiterhin intensiv zu ML/KI geforscht
wird. Die Verschmelzung der physikalisch basierten und datengetriebenen Blickwinkel
ist schlieBlich schematisch in der Abbildung angelehnt an [KAF"17], dargestellt und
weist die grundlegenden Voraussetzungen fiir die hybride Modellbildung aus: Physikali-
sches Wissen sowie Verfiigbarkeit von Daten. Der Anteil dieser bestimmt die Auspragung
eines hybriden Modells bzgl. beider Perspektiven, welche im folgenden Abschnitt im Zu-

sammenhang zum modellbasierten Regelungsentwurf beleuchtet werden.

viel

hybride Methoden

Datenverfiigbarkeit
datenbasierte Methoden

wenig

physikalisch motivierte Methoden

»

. physikalisches Wissen
wenig viel
Abbildung 1-2: Hybride Modellierung als Kombination aus physikalisch basierten und
datengetriebenen Wissenskomponenten bzw. Methoden, angelehnt an
[KAF*17]

3Ein Modell heiBt hybrid, wenn es sowohl physikalisch basierte als auch datengetriebene Teilkompo-
nenten aufweist bzw. aus jenen Modellierungstechniken hervorgegangen ist.
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1.1 Modellbasierter Regelungsentwurf

Ein modellbasierter Regelungsentwurf, der in der Abbildung dargestellt ist, um-
fasst neben der Modellbildung und Parameteridentifikation den Entwurf einer Regelung
und (meistens auch) eines Beobachters, worauthin die Inbetriebnahme der Regelung durch-
gefiihrt wird [FKL*22; Nis19]. In jedem dieser Schritte spielt das Modell der Streckeﬂ ei-
ne wesentliche Rolle fiir die Umsetzbarkeit und Giite der resultierenden Regelung, da auf
dessen Grundlage Designentscheidungen fiir den Regler und Beobachter vorgenommen
werden. Die Entwicklung des Streckenmodells kann dabei durch theoretische oder expe-
rimentelle Modellbildung erfolge Diese sind nach [IM11, S.2] in der Abbildung
dargestellt und unterscheiden sich darin, ob Vorwissen aus physikalischen Gesetzen oder
Messdaten aus Experimenten zur Identifikation eines Modells genutzt werden. Das Vor-
gehen der beiden Strategien dhnelt sich an einigen Stellen. Beide entwickeln ausgehend
von Vorwissen oder Annahmen ein Modell, welches anschlieBend ggf. noch vereinfacht
wird. Zudem erginzen sich die Strategien u. U. durch Teilelemente untereinander, z. B.

bei der Parameteridentifikation des analytisch entwickelten Modells durch Messdaten.

Theoretische Modellbildung Experimentelle Modellbildung

\ 4 \ 4

- Annahmen A priori Vorwissen -
bekannte Struktur| unbekannte Struktur
A 4 A 4
Physikalische Gesetze Experiment
Identifikation

parametrisch | nicht parametrisch

v v

E Analytisches Modell Experimentelles Modell E

parametrisch parametrisch| nicht parametrisch
\ 4 \ 4
- > Vereinfachung Vereinfachung < -

e

R e e T Ty Vergleich & Auswahl ~  F-------ommmim oo !
Modellanpassungen

Abbildung 1-3: Theoretische und experimentelle Modellbildung nach [IM11, S.2]

*In der Regelungstechnik wird das zu beeinflussende, dynamische System, welches iiber einen Fluss
oder ein Vektorfeld definiert werden kann und die Evolution zeitveranderlicher Gré3en beschreibt
(vgl. [CFSS82;|BK19;|FKL*22]), als (Regel-)Strecke bezeichnet.

SManchmal wird zwischen analytischer und empirischer Modellbildung unterschieden, z. B. [Wal22].
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Unabhingig davon, ob ein Modell aus der theoretischen oder experimentellen Vorgehens-
weise hervorgegangen ist, muss das entwickelte Modell anhand von Messdaten oder Si-
mulationen validiert werden 'Adal8]]. Dabei werden meist Abweichungen auf-
grund von zuvor getitigten Abstraktionen, Annahmen oder bestehenden Wissensliicken,
welche in der Abbildung [[-3]als hellgraue Blocke dargestellt sind, festgestellt. Somit ist
eine Modellanpassung, welche durch die gestrichelten Linien angedeutet ist, erforder-
lich und resultiert in einer erneuten, mindestens teilweisen Durchfiihrung der Modellbil-
dung. Dieser aufwendige Kreislauf zwischen Modellentwurf und -validierung ist insbe-
sondere auf die steigende Komplexitit mechatronischer Systeme zuriickzufiihren, welche
aufgrund der verschiedenen Disziplinen und vielféltiger Wechselwirkungen eine Model-
lierung in angemessenem Umfang erschwert. Neben dem klassischen, modellbasierten
Regelungsentwurf stellt das V-Modell nach der VDI-Richtlinie 2206 [VDIOI]], welches
sowohl in der Wissenschaft als auch Industrie die Grundlage eines modellbasierten Ent-
wurfsprozess bildet und in der Abbildung[I-4(b)|zu sehen ist, ein doméneniibergreifendes
Entwurfskonzept dar. Dieses beriicksichtigt systemspezifische Anforderungen und Schnitt-
stellen der unterschiedlichen Disziplinen sowie die Validierung jedes einzelnen Entwurfs-
schritts bezogen auf das Gesamtsystem.

Modell-  [&:--"
bildung g X ! Geschaftsmodell Ubergabe
! 1 ! 1
1 1
i
v RS E
1 1
Parameter- | ' 1 ! | - Planung von Verifikation f
. . . r idi q S
identifikation e, SRR &
: i : E) gbé Integration
! 1 ! a-_: ‘Z_Q 0
1
IV : : T &
1 1
:Aus egung | ! o =
eines Reglers . ]
1 Q
=
! : Implementierung
1
4 L
Entwurf eines ¥ :
Beobachters :
: Implementierung der
1 Systemelementfe
1
\ 4 : Software
. Elektrik/ Elektronik [ I\ QOO LA LLL P
Inbetrieb- | ! Mechanik Quelle: VDI/VDE 2206:2021-11
nahme andere Disziplinen www.vdi.de/2206
(a) Modellbasierter (b) V-Modell nach [|[VDIOI
Regelungsentwurf

Abbildung 1-4: Entwurfskonzepte fiir mechatronische Systeme

Da allerdings der Aufwand und die Kosten durch eine iterative, sich sukzessiv verbes-
sernde Modellierung steigen und die Ursachen von Modellabweichungen vor allem in der
Abstraktion und in Wissensliicken wihrend der Modellierung liegen, schaffen rein daten-

basierte Modelle eine kostengiinstige, z. T. automatisierbare und vorteilhafte Alternative,
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vgl. [Cox18]]. Diese ist gepréagt durch den Begriff Data-driven modeling bzw. Data-driven
control, deren Beliebtheit in Analogie zu den Trends des maschinelles Lernens und der
kiinstlichen Intelligenz seit den vergangenen Jahren zugenommen hat. Dieser Effekt ist
in der Abbildung[I-5 wiederum durch die Anzahl der Google-Scholar-Beitrige, die diese

Begriffe als Schlagworte enthalten, skizziert.

=] T T T T T . : l
5] —
E 100000 k| e Data-driven modeling ; “‘_:_
S 75000 - Y
[a¥ :

5 50000 K ]
s} ‘83\

T 25000 _— |
E ---u----n-.--n-u-u|-||n||.i-ih‘li‘i“""\"\'lu'h

< ressemm == |

1 1 1 1 1 1 1 1
1980 1985 1990 1995 2000 2005 2010 2015 2020
Jahr

Abbildung 1-5: Popularitit der Begriffe Data-driven control und Data-driven modeling
zwischen 1980 und 2022, dargestellt durch Auftreten als Schlagwort in
Google-Scholar-Beitrdgen (Stand September 2023, erzeugt durch die mo-
difizierte Nutzung von [Thi22)])

Im Vergleich zum Trend von ML und KI (vgl. Abbildung[I-1) reduziert sich die Anzahl
der Publikationen ebenfalls ab dem Jahr 2018, was auf die Skepsis gegeniiber einer sol-
chen rein datenbasierten Modellierung in der Regelungstechnik und eine Verschiebung zu
hybriden Techniken hindeutet. Diese Skepsis ist berechtigt, da die Nutzung rein datenge-
triebener Modelle hiufig einen Verlust an Transparenz und physikalischer Interpretierbar-
keit verursacht, aufgrund dessen sicherheitskritische Situationen resultieren konnen (vgl.
Abschnitt 4.6.2 in [DD22]]). Aus diesem Spannungsfeld, bestehend aus der Notwendig-
keit, eine hohe Schitzgiite trotz Modellungenauigkeiten zu erzielen, die Ungenauigkeiten
physikalisch interpretierbar in einer parametrischen Form darzustellen sowie diese ver-
besserten Modelle fiir nachfolgende Schritte zugédnglich zu halten, ergibt sich die Pro-

blemstellung dieser Arbeit, welche im nidchsten Abschnitt thematisiert wird.

1.2 Problemstellung und Anforderungen

Ziel eines Regeleingriffs ist es, eine Regelstrecke durch eine geeignete Mafinahme in eine
gewiinschte Situation zu iiberfiihren. Die grundlegende Struktur eines einfachen Regel-
kreises ist dazu in der Abbildung dargestellt. Das gewiinschte Verhalten, welches
eingestellt werden soll, wird dabei durch die Fiihrungsgrofie wﬁ] ausgedriickt. Die Grofe,

6Alle nun folgenden Variablen sind kontinuierliche GréBen und von der Zeit ¢ abhangig.
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die die Strecke beeinflusst, wird als StellgroBe u € R? bezeichnet und vom Stellglied rea-
lisiert. Anhand der MessgroBe y € R™, welche tiber das Messglied Riickschliisse iiber die
Strecke erlaubt, wird die Abweichung zwischen gewiinschtem und tatsdchlichem Verhal-
ten berechnet, auf deren Grundlage der Regeleingriff bestimmt wird [Lunl6j FKL*22].
Da die Messgrofle y in der Regel nicht identisch mit dem inneren Zustand x € R”" des
dynamischen Systems ist, welches beeinflusst werden soll, muss dieser mittels eines Be-
obachters durch % zuverldssig geschitzt werden. Dies erfolgt iiblicherweise durch einen
modellbasierten Ansatz. Zentraler Ausgangspunkt eines modellbasierten Beobachterent-
wurfs ist somit das Modell der zu schitzenden Strecke, dessen Qualitit einen entschei-
denden Einfluss auf die Giite eines Beobachters aufweist. Jedoch ergibt sich hédufig ein
Zielkonflikt zwischen der Wirtschaftlichkeit, Genauigkeit und Komplexitit eines Modells,
d. h. dass dieses beispielsweise nur in einem vertretbaren und fiir die Aufgabe erforder-
lichen Aufwand erarbeitet werden kann, um kostenintensive Ressourcen moglichst effizi-
ent einzusetzen [Loc20; VDIO1]. Notwendigerweise kommt es daher im Entwicklungs-
prozess zu Annahmen und Vereinfachungen, die die Modell-Realitits-Liicke vergroern.
Diese Liicke kann allerdings auch bei sehr aufwendiger und anspruchsvoller Modellie-

rung nie ganzheitlich geschlossen werden.

\ 4
v

—> Regler Stellglied » Regelstrecke

Messglied '«

Abbildung 1-6: Grundstruktur eines Regelkreises, vgl. auch [Lunl6|],[FKL*22|]

Schatzgite

Die Abweichung des Beobachters von der Strecke aufgrund von Modellungenauigkeiten
wird iiber den Schitzfehler e := ¥ — x quantifiziert. Ist der Schitzfehler groB3, da fehler-
hafte oder ungenaue Schitzungen ermittelt werden, weist der Beobachter eine niedrige
Schditzgiite auf. Diese verursacht nicht nur potentielle Stabilitidtsprobleme des Beobach-
ters, sondern beeinflusst auch die Stabilitéit des geschlossenen Regelkreises sowie das Er-
reichen des Regelziels, da der Regeleingrift auf der Qualitit der Schitzungen basiert. Um
eine funktionierende Regelung zu ermoglichen sowie das Risiko von Schiden an Mensch
oder Hardware zu vermeiden, hat die Garantie einer durchgingig hohen Schitzgiite des-

halb trotz Modellungenauigkeiten hochste Prioritét.
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Interpretierbarkeit

Diese Modell-Realitits-Liicke wird zunehmend auch durch hybride Methoden zu vermin-
dern versucht (vgl. Abbildung[I-2). Allerdings ist je nach Wahl der datenverarbeitenden
Methode ein Verlust an physikalisch-technischer Interpretierbarkeit zu befiirchten, der
fiir regelungstechnische Anwendungen, insbesondere im sicherheitskritischen Bereich,
nicht hinzunehmen ist. Interpretierbarkeit ist jedoch kein fest definierter Begriff und wird
fachdisziplinabhéngig charakterisiert und bewertet [BMJ*23; Rud19; LPK21; MV20]. In
dieser Arbeit wird ein physikalisch-technisch interpretierbares Modell als solches ver-
standen, dessen parametrisch Form eine konkrete Zuordnung von physikalischen Wirk-
prinzipien erlaubt. Die Bedeutung dieser Definition lésst sich anhand der Beispiele in der
Abbildung [T-7]erldutern.

Modell |1| Modell |2|

f=—tx- i 16,0 = £(2,45 - fi (Ti4iw)

[N /

Beschleunigung i Déampfungskraft F, Aktivierungsfkt. f, Gewichte £,

Federkraft F', Linearkombinationen }(+)

Interpretierbar Nicht interpretierbar

Abbildung 1-7: Interpretierbarkeit als konkrete Zuordnung von physikalischen Wirkprin-
zipien zur parametrischen Form, z. B. Krdfte im Kontrast zur rein funktio-
nellen, mathematischen Beschreibung von Aktivierungsfunktionen

Ein in diesem Sinne interpretierbares Modell stellt das Modell [T] dar, dessen parametri-
sche Form eine gewoOhnliche Differentialgleichung ist. Anhand dieser lassen sich direkt
die physikalischen Phinomene des Systems erkennen. So beschreibt jede Komponente

der Differentialgleichung eine dynamische Eigenschaft des Einmassenschwingers, bei-

’In dieser Arbeit werden ausschlieBlich parametrische Modelle betrachtet, vgl. Abbildung Ein
Kennfeld stellt z. B. ein nicht parametrisches Modell dar.
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spielsweise die Wirkung einer Ddmpfungskraft, welche sich durch das Produkt des Para-
meters —% und der zeitlich abgeleiteten Ortsvariable x kennzeichnet. Im Gegensatz dazu
ist Modell [2 nicht im Sinne der Definition interpretierbar, da die parametrische Form ei-
nes neuronalen Netzes keine konkrete Kausalitit zu den physikalischen Wirkprinzipien
des approximierten dynamischen Zusammenhangs zulidsst. So konnen die Gewichte £,
die Aktivierungsfunktionen f, sowie die potentiell verschachtelten Linearkombinationen
jeweils keinem konkreten physikalischen Effekt zugeordnet werden, der direkt aus dem
Modell erkenn- und ablesbar ist, sondern stellen einen rein funktionellen, mathematischen
Sachverhalt dar, der den Einmassenschwinger beschreibt. Aufgrund des Anspruchs, einer-
seits nachvollziehbare und andererseits sicherheitskritisch bestindige Modelle zu entwi-
ckeln, stellt die Interpretierbarkeit eine wichtige Eigenschaft dar, die aber u. U. nicht jedes

datengetriebene oder hybride Modell konservieren kann.

Nutzbarkeit

Ein Modell, welches aufgrund bestehender Modellabweichungen iiberarbeitet und ange-
passt worden ist, muss weiterhin kompatibel fiir nachfolgende Entwurfsschritte sein, um
fiir weitere Analyse- und Syntheseschritte zugéinglich zu bleiben, die fiir die Anwendung
am System gedacht sind. Denn dies ist der Zweck eines Modells [Lju99; Adal§]. Es soll
beispielsweise mit diesem adaptierten Modell eine Regelungsaufgabe erfolgreich durch-
gefiihrt werden konnen, indem ein klassisches Regelverfahren direkt basierend auf die-
sem umgesetzt werden kann. Diese Eigenschaften definieren im Rahmen dieser Arbeit
den Begriff Nutzbarkeit, welcher sich auf ein verbessertes Modell bezieht, das nun auch
jene Charakteristika des Systems abbildet, die wegen der vorher bestehenden Modellun-
genauigkeiten nicht erfasst wurden. Die Nutzbarkeit eines verbesserten Modells ist somit
zwingend erforderlich, allerdings nicht immer sichergestellt. Modell[2] ist ein Beispiel
dafiir, dass die Nutzbarkeit lediglich bedingt gegeben ist. Denn aufgrund seines begrenz-
ten Wirkungsbereichs basierend auf den Trainingsdaten ist ein neuronales Netz u. U. nicht
in der Lage, iiber diesen Bereich hinaus zuverldssig zu extrapolieren und zu generalisie-
ren, was fiir die Bestimmung eines Regeleingriffs aber notwendig sein kann. Zudem ist
seine Black-Box-Struktur nicht mit beliebigen Verfahren kompatibel. Dies zeigt, dass der
Gedanke der Nutzbarkeit bereits bei der Entwicklung neuer Modellierungsstrategien von
zentraler Bedeutung ist, um die entstehenden Modelle im Sinne der Nachhaltigkeit ver-

wertbar einsetzen zu konnen.

Aus den zuvor erdrterten Aspekten der Problemstellung ergeben sich somit fiir den mo-

dellbasierten Beobachterentwurf die folgenden Anforderungen:

F.1 Primir soll der modellbasierte Beobachter trotz Modellungenauigkeiten eine hohe

Schitzgiite aufweisen.
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F.2 Als sekundires Ziel soll der Beobachter eine genaue Schitzung der Modellun-
genauigkeiten erlauben und eine moglichst physikalisch interpretierbare, parame-
trische Darstellung dieser liefern, um vertiefendes Systemwissen sowie eine Adap-

tion des Modells zu ermoglichen.

F.3 Weiterhin soll die Nutzbarkeit des entwickelten Modells bzw. des entwickelten Ver-
fahrens fiir die folgenden Schritte des Regelungsentwurfs gegeben sein, sodass die

identifizierten Modellungenauigkeiten auch fiir diese zuginglich sind.

Die genannten Anforderungen basieren hierbei auf der Annahme, dass bereits ein physi-
kalisches Simulationsmodell des betrachteten dynamischen Systems existiert sowie grund-
legendes Systemwissen, wie die Systemordnung und definierte Zustdnde, zur Verfligung
stehen. Beides ist in der Regel mit geringem Aufwand zu erarbeiten, sodass dies realisti-

sche, niedrigschwellige Voraussetzungen darstellen.

Forschungsbeitrag

Diese Voraussetzungen dienen daher als Grundlage, auf der in der vorliegenden Arbeit
eine neuartige Methode zur Zustandsschitzung ausgearbeitet wird, welche die obigen
drei Ziele beriicksichtigt. Basierend auf dem Simulationsmodell, welches noch Modell-
abweichungen aufweist, wird ein erweitertes Modell formuliert, das eine Approxima-
tionsvorschrift fiir die Modellungenauigkeiten vorsieht. Diese Vorschrift besteht aus einer
Linearkombination aus geeigneten physikalischen Termen /, welche in einer Bibliothek ¥
gespeichert und durch Parameter € ausgewertet werden. Die Hypothese ist hierbei, dass
aufgrund von Erfahrungswissen Vermutungen bzgl. der unbekannten Dynamik formu-
liert werden konnen. In der folgenden Abbildung wird das Beispiel des Einmassen-
schwingers fortgefiihrt und anhand dessen die in dieser Arbeit entwickelte Methode il-
lustriert. Die nicht modellierte Reibung Fy wird durch die Vermutungen ¢ in der Bi-
bliothek ¥ versucht anzunihern, diese umfassen u. a. auch den zur Beschreibung der
Reibkraft geeigneten Term ¢,. Um eine hohe Schitzgiite zu erzielen, wird das erwei-
terte Modell anschlieBend in einen bewihrten Beobachter eingesetzt. In dieser Arbeit
ist dies iiberwiegend das Unscented Kalman Filter. Zur Erhaltung der Interpretierbar-
keit beinhaltet die Bibliothek nur physikalisch interpretierbare Terme. Dariiber hinaus
wird basierend auf dem Prinzip Occam’s Razmﬂ das Konzept Sparsityﬂ umgesetzt, wel-

ches die Auswahl der Approximationsterme ¢ so steuert, dass lediglich einige wenige

8Dieses geht auf den Philosophen Wilhelm von Ockham (1288-1347) zuriick, welches postuliert,
dass aus vielen Mdglichkeiten meist die einfachste Losung (oder Erklédrung) mit hoher Wahrschein-
lichkeit die beste Option darstellt. Dieses heuristische Prinzip wird vielfach in der Modellbildung
verschiedener Disziplinen und im ML-Kontext zur Modellauswahl berlcksichtigt [BK19].

%Im Deutschen ist dieses unter dem Begriff Diinnbesetztheit bekannt.
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Terme zur Darstellung der Dynamik ausgewihlt werden. Eine statistische Analyse iiber
den Zeitraum der Schitzung, welche offline, aber auch zur Laufzeit immer wieder durch
sich verschiebende Zeitfenster durchgefiihrt werden kann, identifiziert jene Terme, die die
Modellungenauigkeiten bestmoglich approximieren. Fiir den Fall des Einmassenschwin-
gers lautet dieser Term 4(x, X, u) = sign(x), welcher daher aufgrund der Analyse fiir das
adaptierte Modell ausgewihlt wird, sodass dieses seine interpretierbare Form behilt (vgl.
Abbildung [I-8). Die flexible Handhabung der statistischen Analyse ermdglicht zudem,
ggf. bei Systemverdnderungen eine effiziente Modellanpassung wihrend des Schitzens
vorzunehmen. Ein solch adaptiertes Modell 3] ist weiterhin nutzbar, da es aufgrund seiner
tiberschaubaren und interpretierbaren Struktur vielen Verfahren zuginglich bleibt. Somit
wird in der vorliegenden Dissertationsschrift eine neuartige Methode erarbeitet, welche
die Online-Schitzung von Modellungenauigkeiten unter Beibehaltung einer physikalisch-
technischen Interpretierbarkeit erlaubt. Diese wird daraufhin zur automatischen Modell-
anpassung genutzt, um eine sukzessive Verbesserung des Modells zu erzielen und dieses

bei ggf. auftretenden Systemverdnderungen zu adaptieren.

Modell 3|

Erweitertes Modell: X=-<-x— %x + 0" (x, %, u)
Ansatz von Hypothesen: W(x, x,u) = (1, x, , sign(%), u)”

Adaptiertes Modell: ¥=—Sx—Lx 40, yux, x,u)

m m

\

Federkraft F, Reibkraft F

Beschleunigung ¥  Ddmpfungskraft F,

Interpretierbar

Abbildung 1-8: Illustration des Forschungsbeitrags anhand des Einmassenschwingers

1.3 Aufbau der Dissertation

Die vorliegende Arbeit, welche eine neuartige Methode zur Zustandsschitzung bei Exis-

tenz von Modellungenauigkeiten nach den zuvor definierten Anforderungen umsetzt, glie-
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dert sich in sechs Kapitel. Das anschliefende Kapitel [2| thematisiert zunédchst die mathe-
matischen Grundlagen, auf denen die Zustands- und Parameterschitzung basieren und
die zum Verstidndnis der Dissertationsschrift erforderlich sind. Diese umfassen Erkennt-
nisse aus der Wahrscheinlichkeitstheorie und Statistik im Abschnitt 2.1} wie die GauB-
Verteilung und statistische Momente, sowie Beobachtertypen im Abschnitt 2.2/ bzw.
die in dieser Arbeit verwendet und hinsichtlich der Schitzung von Modellungenauigkei-
ten analysiert werden. Dabei wird basierend auf den Vorarbeiten von [[Sch17] ein stirkerer
Fokus auf die Kalman-Filter gelegt. Abschlielend beleuchtet Abschnitt die Struktur

von Modellungenauigkeiten und kategorisiert diese anhand ihrer Charakteristika.

Kapitel [3] analysiert daraufhin den Stand der Forschung und Wissenschaft, indem Me-
thoden der hybriden Systemidentifikation im Abschnitt|3.1{und Kompensationsstrategien
von Beobachtern im Abschnitt hinsichtlich der Anforderungen dieser Arbeit unter-
sucht und z. T. eigenstindig weiterentwickelt werden. Im ersten Teil des Kapitels liegt der
Schwerpunkt daher auf physikalisch motivierten neuronalen Netzen, deren Modellgiite
und Nutzbarkeit im modellbasierten Entwurf intensiv anhand von Anwendungsbeispielen
und qualitativer Kriterien iiberpriift werden. Hierbei trigt die vorliegende Dissertations-
schrift dazu bei, eine geeignete Formulierung der physikalisch motivierten Netze fiir me-
chatronische Systeme zu finden und durch ein angepasstes Training die physikalische
Plausibilitit der resultierende Modelle zu verbessern. Der zweite Teil des Kapitels stellt
vor allem die optimale Wahl von Parametrierungen in den Vordergrund, welche die Mo-
dellunsicherheit in Beobachtern reprédsentiert. Dazu wird evaluiert, inwiefern diese mit
Unterstiitzung von ML geschickt bestimmt werden konnen, sodass Modellungenauigkei-
ten kompensiert werden. Im Abschnitt 3.3 wird eine Bewertung der im Kapitel [3] disku-

tierten Methoden vorgenommen, worauthin der Handlungsbedarf abgeleitet wird.

Anschlieend wird im Kapitel 4| eine neuartige Methode zur zuverlédssigen Zustandsschét-
zung und interpretierbaren Identifikation von Modellungenauigkeiten entwickelt, welche
bereits existierende Ansitze erstmalig kombiniert und diese hinsichtlich der interpretier-
baren Identifikation und Modelladaption fiir den Beobachterentwurf amplifiziert. Dazu
wird zunichst im Abschnitt 4.1 das Konzept der Joint Estimation vorgestellt, auf deren
Grundidee die Methode basiert und welche fiir die Schitzung von Zustinden und Mo-
dellungenauigkeiten erweitert wird. Nach der Kldrung von Voraussetzungen und Annah-
men im Abschnitt[4.2] beschreibt der folgende Abschnitt einen augmentierten Beobach-
terentwurf mittels Ansédtzen aus dem Compressed Sensing fiir ein Unscented Kalman Fil-
ter. Eine effiziente Ergédnzung dieses Entwurfs durch Ausnutzung der Filterstruktur folgt
im Abschnitt Zudem wird die Methode im Abschnitt 4.5] auf einen Sliding-Mode-

Beobachter transformiert, der somit eine automatische Schitzung und Identifikation von
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Storungen erlaubt. Das Kapitel schliet mit einer Zusammenfassung und Bewertung der
Entwurfsverfahren im Abschnitt4.6] ab.

Nach der Erlduterung des in dieser Dissertationsschrift erarbeiteten Beobachterentwurfs
beschreibt Kapitel [5] die automatisierte Online-Modelladpation wihrend der Schitzung.
Dies geschieht auf Basis der Hauptkomponentenanalyse, deren Funktionsweise fiir eine
Merkmalsanalyse und Merkmalsextraktion der relevanten Charakteristika der Modellun-
genauigkeiten im Abschnitt 5.1| dargelegt wird. Daraufthin wird ein Konzept zur automa-
tischen Online-Aktualisierung des Modells im Abschnitt vorgestellt und umgesetzt.
Anhand der Abschnitte [5.3] und [5.4] werden zudem die Interpretierbarkeit der entstande-
nen Modelle beleuchtet sowie der Aufwand und Nutzen des Verfahrens im Vergleich zu

klassischen Ansétzen kritisch bewertet.

SchlieBlich fasst Kapitel E] die wesentlichen Erkenntnisse dieser Dissertation zusammen,
woraufhin ein Ausblick auf weitere Forschungsarbeiten und -fragestellungen gegeben

wird.
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2 Grundlagen zur Zustands- und Parameterschatzung

Der Herausforderung, nicht bekannte oder nicht messbare Grof3en basierend auf gemes-
senen Ein- und Ausgangsdaten zu schitzen, lidsst sich mathematisch begegnen. Dieses
Kapitel stellt daher die grundlegenden Techniken vor, die zur Zustands- und Parame-
terschitzung erforderlich sind. Zunidchst werden im Abschnitt|2.1| Begriffe aus der Wahr-
scheinlichkeitstheorie und Statistik eingefiihrt, welche die Unsicherheit einer Schitzung
mathematisch definieren und beschreiben. AnschlieBend werden im Abschnitt[2.2] das
Kalman-Filter und seine Erweiterungen vorgestellt, die diese stochastische Perspektive
nutzen, um das Schitzproblem fiir lineare und nichtlineare dynamische Systeme zu 16sen.
Des Weiteren wird ein robuster Beobachter im Abschnitt [2.3] thematisiert, der stochas-
tische Storungen kompensieren kann. AbschlieBend wird im Abschnitt die Existenz
und Auswirkung von Modellungenauigkeiten auf die Zustands- und Parameterschitzung

naher beleuchtet.

2.1 Wahrscheinlichkeitstheorie und Statistik

Im Alltag und den Medien finden sich hdufig Aussagen wie ,,Was schitzt du, wie lange es
noch dauern wird, bis wir unseren Zielort erreichen?* oder ,,Bei der Umweltkatastrophe
sind 25 bis 50 Prozent der Fische verendet, schitzen Experten.‘m Implizit besteht da-
bei eine Wechselwirkung zwischen Schitzung, Wissen und Unsicherheit. Jede Schitzung
wird auf Basis des aktuellen Wissensstands getroffen, um Aussagen iiber unsichere oder
unbekannte Situationen zu titigen. Bei der Abschitzung der Fahrtzeit besteht z. B. auf-
grund einer gewdhlten Route die Kenntnis iiber die verbleibende Strecke und die aktuel-
le Geschwindigkeit, aber Unsicherheit, ob Unfille oder Staus die Reisezeit verzogern
konnen. Ebenso ist Sachverstindigen die genaue Anzahl von Fischen innerhalb eines
Okosystems unbekannt, aber die GroBe des Gewiissers lisst Riickschliisse zur Popula-
tion zu, zu der die Menge der aufgefundenen, vergifteten Fische ins Verhiltnis gesetzt
werden kann. Um solche mit Unsicherheit behafteten Aussagen formulieren zu konnen,
wird in der Mathematik die Wahrscheinlichkeitstheorie verwendet. Diese definiert prizise
die Sicherheit, bezogen auf das Auftreten eines Ereignisses A, und wird durch eine nicht-
negative Zahl ausgedriickt [Bis06; |[PP06; Sch17]:

P(A) = Mogliches Auftreten des Ereignisses A >0

Alle moglichen Ereignisse

Die Statistik erlaubt dagegen konkrete, quantitative Aussagen basierend auf Stichproben.

In den nichsten Abschnitten werden daher die grundlegenden Begriffe dieser Konzepte

1Onttps://www.tagesschau.de/inland/oder-fischsterben-111.html, abgerufen am 12.04.2023
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eingefiihrt und definiert, welche fiir das Verstidndnis dieser Arbeit erforderlich sind. Da-
bei orientiert sich die Darstellung dieses Abschnitts an grundlegenden Fachbiichern der
Wahrscheinlichkeitstheorie und Statistik [B1s06}; [PP06]] sowie an der Vorarbeit [Sch17]].

2.1.1  Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Eine Zufallsvariable X beschreibt eine Grofle, deren Auftreten durch den Zufall geprigt
ist. Ein alltdgliches, intuitives Beispiel ist der homogene Miinzwurf, dessen Zufallsvaria-
ble lediglich zwei Ereignisse annehmen kann: Kopf (Ereignis A) oder Zahl (Ereignis B).
Die Wahrscheinlichkeit, dass die Miinze auf dem Kopf landen wird, d. h. dass Ereig-
nis X = A eintreten wird, wird mit p(X = A) oder abgekiirzt p(A) angegeben. Hierbei
beschreibt p(-) die Wahrscheinlichkeitsdichtefunktion, auch bekannt als Wahrscheinlich-
keitsdichte oder Dichte. Fiir diese gilt

0<px) <1,

d. h. die Wahrscheinlichkeit fiir das Eintreten eines Ereignisses liegt zwischen Null und
Eins. Neben dem diskreten Beispiel des Miinzwurfs kann eine Zufallsvariable auch kon-
tinuierliche Werte annehmen. Ein veranschaulichendes Beispiel ist die Fiillmenge eines
Produkts, welches z. B. genau 200 ml enthalten soll, im maschinellen Einfiillprozess aber
durchaus Abweichungen aufweisen kann. Die Wahrscheinlichkeit, dass sich der Wert der
Zufallsvariablen X in einem gegebenen Intervall [a, b] befindet, demnach beispielswei-
se innerhalb einer Toleranz von [195,205] ml in der Herstellung des Produkts, ldsst sich

durch die Integration der Wahrscheinlichkeitsdichte angeben:

b
Pla<x<b)= f p(x)dx.

Diese resultiert aus der Ableitung der Verteilungsfunktion F(x), welche die Wahrschein-
lichkeit ausdriickt, mit der die Zufallsvariable X einen Wert kleiner oder gleich x anneh-
men wird [Murl2; Pap17;Schl7]:

F(x) =P(X < x).

In dieser Arbeit werden iiberwiegend kontinuierliche Zufallsvariablen von Belang sein.
Neben der Laplace-Verteilung, welche im Abschnitt 4.4.1| thematisiert wird, wird vor al-
lem die Gaufische Normalverteilung N (x; u, o?) eine wesentliche Rolle in dieser Arbeit
spielen, z. B. in den Abschnitten und 2.2] sowie im Kapitel 4] Dabei entspricht die
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Notation X ~ N(u, 0?) der zuvor Eingefiihrten mit p(X = x) = N(x;u, 0%). Die Wahr-

scheinlichkeitsdichte der Normalverteilung lautet

1 _ 2
exp(—z(x 02“) ) @1

p(x) = N(x;p,07) =

2no?

mit den Parametern u € R,o € R>® und stellt durch die Varianz o eine Glockenform
um den Mittelwert pE] dar, weshalb sie auch als Gaul3sche Glockenkurve bezeichnet wird
[Papl7]. Das obige Beispiel des Einfiillprozesses, welcher in der Regel 200 ml abfiillt,
aber gewisse Toleranzen aufweisen kann, kann am einfachsten mit einer solchen Vertei-
lung abgebildet werden. Unabhéngig jedoch davon, ob es sich um eine diskrete oder kon-
tinuierliche Zustandsvariable handelt, ist die Wahrscheinlichkeitsdichte einer Verteilung

normiert, d. h. die Wahrscheinlichkeit aller auftretenden Ereignisse ergibt Eins:

D P =1

xeX

pr(X)dx =1,

wobei X die Ergebnismenge darstellt. Dariiber hinaus konnen auch mehrdimensionale
Zufallsvariablen betrachtet werden, fiir welche die gezeigten Konzepte analog formuliert
werden konnen [Murl2}; Papl7]. In vielen Situationen interessiert zudem nicht nur die
Wahrscheinlichkeit eines einzelnen Ereignisses. Ist das Eintreten von Ereignis A oder
B relevant, wobei A N B = 0 gilt, lautet die Wahrscheinlichkeit, dass eines der beiden

Ereignisse eintreten wird:
P(A U B) =P(A) + P(B).

Falls das FEintreten dieser beiden Ereignisse voneinander stochastisch unabhingig ist,

kann die Wahrscheinlichkeit, dass beide Ereignisse eintreten, durch
PANB)=PA)-P(B) 2.2)

ausgedriickt werden. Daraufthin kann die bedingte Wahrscheinlichkeit fiir das Eintreten
von Ereignis B, falls das Ereignis A sicher eintritt bzw. eingetreten ist und demnach
P(A) > 0 gilt, mit

P(A N B)

P(B|A) = TP

(2.3)

""Die Erlauterung der Begriffe Varianz und Mittelwert folgt im nachsten Abschnitt.
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angegeben werden. Aus der Relation (2.2) sowie der Beziehung (2.3)) ldsst sich direkt der

Satz von Bayes, welcher auf den Mathematiker Thomas Bayes im Jahr 1763 zuriickgeht,

formulieren:
P(ANB)
_PANB) _ pw PA
PA|B) = PB) PB) 2.4)
_P(B|A)-P(A)
- P(B) '

Hierbei beschreiben $(A) und P(B) jeweils die sogenannte A-priori-Wahrscheinlichkeit
der beiden Ereignisse A und B, wihrend (B |A) analog zu P(A | B) die bedingte Wahr-
scheinlichkeit von B, unter der Bedingung, dass A eingetreten ist, darstellt [Bis06; Mur12;
Papl7; Schl7]]. Die Schlussfolgerung, die durch den Satz von Bayes gezogen werden
kann, bildet in vielen Anwendungen ein wertvolles Instrument, um Aussagen iiber unsi-
chere Situationen zu erlauben, z. B. in der Bayesschen Statistik [Bis06; KBK*13]]. Die
Bayessche Optimierung, welche im Abschnitt [2.1.3| vorgestellt und erldutert wird, basiert

ebenso auf dem Satz von Bayes.

2.1.2 Statistische Momente

Hiufig sind die statistischen GroBen einer Wahrscheinlichkeitsverteilung zur Charakte-
risierung dieser besonders hilfreich, wie etwa die Angabe des Erwartungswertes E[x].
Liegen N Stichproben vor, kann der arithmetische Mittelwert dieser Erhebung durch

X =

N
Xi
=1

1
N <4

1

angegeben werden. Je groBBer der Stichprobenumfang N ist, wenn demnach N — oo ten-
diert, desto mehr strebt der Mittelwert X gegen den Erwartungswert E[x]. Alternativ kann

dieser bei Kenntnis der Dichtefunktion p(x) ebenfalls durch

(o8]

p=Elx] = ) xip(x),
i=1 (2.5)

u=E[x] = foo xp(x)dx

berechnet werden, abhingig davon, ob es sich um eine diskrete oder kontinuierliche Zu-
fallsvariable handelt. Neben dem Erwartungswert ist oftmals die Streuung der Zufallsva-
riable von Interesse, d. h. wie hoch die Wahrscheinlichkeit ist, dass die Zufallsvariable
Werte nah oder weiter entfernt vom Erwartungswert aufweist. Die Varianz o bzw. ihre

positive Wurzel o, die Standardabweichung, stellen ein Ma8 fiir diese Streuung dar. Da-
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bei wird die Varianz abhingig vom Erwartungswert (2.5) fiir diskrete bzw. kontinuierliche

Zufallsvariablen auf die nachfolgende Weise definiert:

o? =B[(x—BLx]?| = ) (x — Bx])” p(x),
= (2.6)

o’ =E [(x - E[x])z] = foo (x — E[x])* p(x)dx.

Um die lineare Abhédngigkeit zweier Zufallsvariablen x, y auszudriicken, d. h. inwiefern
diese miteinander korrelieren, wird die Kovarianz genutzt. Ist diese Null, sind die bei-
den Zufallsvariablen voneinander unabhéngig. Die Kovarianz ist analog zur Varianz (12.6))
folgendermalien definiert [B1s06]:

P, = E[(x - E[xD(y — ElyD] = Elxy] - E[x]E[y]. 2.7)

In der vorliegenden Arbeit wird diese fiir vektorielle Zufallsvariablen zur Kovarianzma-
trix erweitert und in den Abschnitten des Unterkapitels [2.2] eine zentrale Rolle in der
Zustandsschitzung einnehmen. Neben dem Erwartungswert und der Varianz existieren
dartiber hinaus noch weitere Groen zur Charakterisierung einer Wahrscheinlichkeitsver-
teilung. Diese werden auch als Momente einer Zufallsvariable bezeichnet [PPO6|]. Hierbei
wird in Momente um Null und um den Erwartungswert unterschieden. Letztere sind da-
her auch als zentrale Momente bekannt und stellen eine Kenngrof3e jeder Wahrscheinlich-
keitsverteilung dar. Wiederum analog zur Varianz (2.6) wird das zentrale Moment j-ter

Ordnung somit durch

E[(x—ElxY| = ) (i — Elx]) p(x),
i=1
Eloe-Bl| = [ =Bl podn

definiert, wobei ersteres fiir diskrete und letzteres fiir kontinuierliche Zufallsvariablen gilt.
Dabei werden die Momente iiber Erwartungswert und Varianz hinaus als hohere Momen-
te bezeichnet. Hiufig stellen jedoch nur das dritte und vierte Moment relevante Gréen
dar. Wihrend das dritte Moment die Schiefe, ein MaB fiir die Symmetrie einer Verteilung,
ausdriickt, beschreibt das vierte Moment die Wolbung einer Verteilung, also die Steilheit
dieser. Fiir die im vorigen Abschnitt eingefiihrte Normalverteilung (2.1)) sind das erste so-
wie dritte Moment unabhiéngig von den Parametern u und o Null, da der Erwartungswert
u betriigt. Die Varianz lautet o2, die Wolbung betrigt 30*. Diese Eigenschaften der GauB3-
Verteilung werden im Abschnitt.4.T|noch von Bedeutung sein. Haufig wird die Normal-

verteilung als Referenz fiir andere Verteilungen genutzt, sodass die Wolbung normiert
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werden muss [Murl2; Sch17]]. Dariiber hinaus wird die normalisierte GauB3-Verteilung
mit X ~ N(0, 1) als Standardnormalverteilung bezeichnet (vgl. Gleichung (2.1))).

2.1.3 Bayessche Optimierung

Der Satz von Bayes (2.4) eroffnet nicht nur die Moglichkeit, die Eintrittswahrschein-
lichkeit fiir ein bedingtes Ereignis zu berechnen, sondern auch ein globales Optimum
eines Optimierungsproblems anzunihern. Liegt eine Zielfunktion J(x) als Black-Box-
Funktion vor, weil es sich nicht um eine analytisch darstellbare Funktion handelt oder
es grundsitzlich sehr teuer und aufwendig ist, diese auszuwerten, bietet die Bayessche
Optimierung (BO) eine Losungsmethode in dieser Situation. Die experimentelle Ein-
richtung eines Priifstands oder einer Maschine, bei der jeder Test durch Material, Ver-
schleil und Zeitaufwand Kosten verursacht (vgl. [HHTT22]), sowie die Suche nach ei-
ner optimalen Parametrierung fiir ein komplexes neuronales Netz (vgl. Abschnitt
[AC19; SLA12]]), welche aufwendige Parameterstudien erfordert, beschreiben zwei Bei-
spiele solcher Situationen. Ziel ist es trotz der Black-Box-Struktur das Optimum dieser

Zielfunktion zu bestimmen, z. B. das Minimum
x" = argmin J(x) (2.8)
xeX

zu finden. Da wegen der unbekannten Zielfunktion J keine Gradienten vorliegen, konnen
michtige, gradientenbasierte Optimierungsverfahren wie das Newton-Verfahren nicht ge-

nutzt werden, um die Losung (2.8) zu ermitteln. Ebenso stehen lediglich wenige Ny Da-
No
i=1°

nicht beliebig viele weitere Daten erhoben werden. Folglich besteht die Kernidee der BO

tenauswertungen Dy, = {(x;, J(x;))} |, z. B. Experimente, zur Verfiigung und es konnen
darin, ein probabilistisches Ersatzmodell J der Zielfunktion, welches auf den wenigen Da-
ten und der Nutzung des Bayesschen Theorems (2.4)) basiert, zu entwickeln und dieses zur
Bestimmung des Optimums zu nutzen. Durch die Auswertung oder Beobachtung weiterer
Datenpunkte (xy,+1,J(xn,+1)), Wie etwa eines weiteren Parametertests oder eines neuen
Experiments, kann das probabilistische Ersatzmodell aktualisiert und im Laufe der Itera-
tionen verfeinert werden, sodass das Auffinden bzw. Annédhern des globalen Minimums
ermoglicht wird. Es handelt sich daher um ein sequentielles, probabilistisch motiviertes
Optimierungsverfahren.

Grundsitzlich besteht die Bayessche Optimierung aus zwei Schritten [Fral8]: Einerseits
die Aktualisierung des probabilistischen Modells J basierend auf dem aktuellen Datensatz
sowie andererseits die Bestimmung der néchsten, sinnvollsten Auswertung x;, iiber eine
Entscheidungsfunktion a(x;, D;), welche auch Acquisitionfunction genannt wird. Dieses

Vorgehen wird iterativ wiederholt, bis eine Abbruchbedingung erreicht wird, welche in
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der Regel durch eine Maximalzahl N an Iterationen vorgegeben ist. Die Abbildung [2-1]

visualisiert dieses Vorgehen, welches in den nichsten Absétzen niher erldutert wird.

— Mittelwertfunktion u(x) Kovarianzfunktion k(x, x")
—— Zielfunktion J(x) e Stichproben x;

3_ -

25

102 x

10

()
)
~
(@)
o)

Abbildung 2-1: Fiinfte Iteration der BO durchgefiihrt mittels der Software
MATLAB®: Der Gauflprozess nihert die skalare Zielfunktion
J(x) = sin(x) + 0.1x> = 0.01x* + 0.5tanh(x) iiber Datenpunkte an.
Die Acquisitionfunction weist hohe Werte an Stellen auf, an denen das
Modell einen niedrigen Wert fiir J(x) anzeigt (Exploitation) oder die
Unsicherheit in der Vorhersage grof3 ist (Exploration).
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Das probabilistische Modell J, welches die Zielfunktion approximieren soll, wird meist
als GauBlprozess-Regressionsmodell (GP-Modell) angenommen. Ein GauBprozess (GP)
ist die Erweiterung einer Normalverteilung (vgl. Gleichung (2.1))) hin zu Funktionen und
charakterisiert sich eindeutig iiber seine Mittelwertfunktion g(x) und seine Kovarianz-

funktion k(x, x’), welche durch

po=p(x) =E[J(x)],

(2.9)
Y =k(x,x)=E [(x — p(x)) (x" - u(x’))T]

fiir zwei Variablen x und x’ definiert sind (vgl. fiir Details zu GauB3prozessen [AC19]). So-
mit ldsst sich das GP-Modell fiir die Zielfunktion J(x) mit den Gleichungen (2.9) durch

J(x) ~ GP(x; pu, ) (2.10)

beschreiben. Die Mittelwert- und Kovarianzfunktion stellen hierbei die verdnderlichen
Parameter des Modells (2.10) dar und konnen als p = (u, X) zusammengefasst werden.
Unter der laufenden Nutzung von Daten D kann das Modell iiber seine Parameter p und
den Satz von Bayes (2.4)) daher durch

PD|p)-P(p)

P(p|D) = —PD) (2.11)
aktualisiert werden (vgl. Anhang Gleichung (A2-2))). In der vorherigen Abbildung
ist das aktuelle Modell exemplarisch nach vier ausgewerteten Stichproben abgebildet. Die
anzunihernde skalare Funktion, dargestellt in rot, approximiert der GauBprozess durch
die Mittelwertfunktion, welche als blaue Linie visualisiert ist, und die Kovarianzfunktion,
deren Verlauf durch die grauen Bereiche zu erkennen ist. Allerdings besteht fiir die Acqui-
sitionfunction « ein Zielkonflikt zwischen der Auswertung neuer und bekannter Bereiche
des Definitionsbereichs X. Dies ist auch bekannt als Dilemma zwischen Exploration und
Exploitation [SSW™16; |[Fral8; Gar23|]. Im Beispiel ist beispielsweise durch die Ko-
varianz zu erkennen, dass der Bereich zwischen x = 5 und x = 9 bis zur fiinften Iteration
wenig exploriert wurde. Dies spiegelt auch die Acquisitionfunction in der unteren Abbil-
dung wider, welche in diesem Bereich Werte groBer als Null annimmt. Je nach Anwen-
dung konnen verschiedene Funktionen « hilfreich sein, meist wird jedoch ein Kompro-
miss zwischen beiden Zielen verwendet. Im Kontrast zur Black-Box-Form der zu mini-
mierenden Funktion J weist die Acquisitionfunction eine numerisch kostengiinstig auszu-
wertende Form auf. Allgemein lassen sich verbesserungsbasierte, optimistische und infor-
mationsbasierte Entscheidungsfunktionen unterscheiden [SSW™16]. Eine der populérsten
Wabhlen fiir eine Acquisitionfunction entstammt der verbesserungsbasierten Perspektive,

welche einen nédchsten Punkt x,,; zur Auswertung favorisiert, dessen Wahrscheinlichkeit
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fiir J(x;41) < J(x;) hoch ist [SSW™16; SLA12; Fral8]. So maximiert die Acquisitionfunc-
tion der Expected Improvement (EI) die erwartete Verbesserung bzgl. der Zielfunktion,

indem
ap(x,D) =E [max (f(x) — J(x), o)]

gilt. Dabei beschreibt x* = arg min,_,, J(x) die bisher beste, observierte Auswertung von
J(x). In der Abbildung [2-T]ist die EI fiir das Beispiel verwendet worden und zeigt durch
thr Maximum den Punkt fiir die néchste Iteration an. Somit ldsst sich das Vorgehen der
BO durch den folgenden Pseudocode zusammenfassen [SSW™16; Fral8;|AC19]:

Algorithmus 1 Bayessche Optimierung

Initialisiere: D, = Dy,, GP-Modell (2.10), N maximale Iterationen, i = 0
while i < N do
Update das GP-Modell (2.10) nach GI. (2.11)) durch die verfiigbaren Daten D;.
Bestimme den nédchsten Datenpunkt x;,; mittels der Acquisitionfunction a(x, D;).
Beobachte J(x;,;) und aktualisiere die Datenmenge D, = D; U {(x;1, J(Xi11))}.
end while
Gib basierend auf dem aktuell minimalen Ergebnis J(x*) die Losung x* aus.

Die Bayessche Optimierung ist demnach eine datenbasierte, probabilistische Methode,
deren Popularitiit sich in den letzten beiden vergangenen Dekaden aufgrund ihres fle-
xiblen Einsatzgebietes vergroflert hat. Obschon die Kernidee der BO langer besteht, wird
die Prigung des Begriffs Bayessche Optimierung dem Autor Jonas Mockus zugeschrie-
ben [Moc89]. Heutzutage wird die BO iiberwiegend in Methoden des maschinellen Ler-
nens eingesetzt, um die Hyperparameter dieser Verfahren zu optimieren. Dennoch ist ihre
Nutzbarkeit auf kleine Dimensionen beschrinkt, d. h. nur fiir n < 20. Neben der Heraus-
forderung in der Anwendung hoher dimensionaler Probleme besteht zudem noch For-
schungsbedarf fiir beschriankte Optimierungsprobleme [SSW™16;|Fral8]]. In dieser Arbeit
wird die BO in den Abschnitten[3.1.2]bis[3.1.4zur Parametrierung von neuronalen Netzen
sowie im Abschnitt[3.2.1] zur Initialisierung von Kovarianzmatrizen des Kalman-Filters

genutzt, dessen Funktionsweise im folgenden Abschnitt thematisiert wird.

2.2 Kalman-Filter

Eines der bekanntesten und populérsten Schitzverfahren ist das Kalman-Filteﬂ welches
auf Rudolf E. Kalman in 1960 zurtickgeht [Kal60] und die Grundlage fiir viele weitere Fil-

tertypen darstellt. Daher wird in diesem Abschnitt das Kalman-Filter zunéchst ausfiihrlich

2In dieser Arbeit wird das diskrete Filter genutzt, fir die Zustandsschétzung von kontinuierlichen
Problemen wird auf das Kalman-Bucy-Filter verwiesen, z. B. [Sim06; |Gib11].
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basierend auf [S1m06} Gib11] hergeleitet, worauf die nachfolgenden Erweiterungen auf-
bauen. Ausgangspunkt des Kalman-Filters ist ein lineares, zeitinvariantes System (LTI-

System), welches durch

X+l = Axk + Buk + Wy, (212)
Y = ka + Vi

beschrieben werden kamﬂ Dabei stellen A € R™ B € R™” und C € R™" die Sys-
temmatrizen des LTI-Systems dar. Ziel des Kalman-Filters ist es, den Zustand x;, € R”
trotz des auftretenden, stochastischen Rauschens zuverlédssig zu schitzen. Hierbei wird
der Zustand als normalverteilte Zufallsvariable mit Erwartungswert E[x] und Varianz P
definiert. Das erwihnte Rauschen kann einerseits durch die Sensorik als Messrauschen v;,
resultieren oder andererseits Modellungenauigkeiten und Storungen durch das Prozess-
rauschen w;, abbilden. Beide Arten werden als normalverteiltes, mittelwertfreies Rau-
schen angenommen, es gilt daher w, ~ N(0,Q) bzw. v, ~ N(0, R). Zudem liegen die
Ausgangsgrofle y, € R™ und die StellgroBe u; € R” als Messwerte vor. Ob der Zustand
aus diesen Informationen trotz Rauschens geschitzt werden kann, klart der Begriff der Be-
obachtbarkeit. Ein lineares, zeitinvariantes System (2.12)) ist beobachtbar, wenn ein belie-
biger Anfangszustand x( aus der Kenntnis der Ein- und Ausgangsgrofle u; bzw. y, in einer
endlichen Zeit rekonstruiert werden kann (vgl. [FKL722; Wal22]]). Dies kann mit dem Be-
obachtbarkeitskriterium nach Kalman iiberpriift werden. Der Begrift der Beobachtbarkeit
kann auch auf nichtlineare Systeme erweitert werden (vgl. Abschnitt Anhang [AT).
Damit der Zustand korrekt geschitzt werden kann, muss der Schitzfehler e, = X, — xi
mit X, als geschétzten Zustand gegen Null streben fiir k — oo. Diese Anforderung wird in
dieser Arbeit aus der Optimierungsperspektive als Kleinste-Quadrate-Problem zunichst

unabhingig vom Zeitschritt k formuliert, indem
SO T Y S
J@®) = JE |& -0 W& - x)| (2.13)

minimiert wird. In [Gib11]] wird gezeigt, dass das Minimum unabhiingig von der Prédsenz
der symmetrisch, positiv definiten Gewichtungsmatrix W ist. Daher wird die Kostenfunk-
tion (2.13) fortan ohne die Gewichtungsmatrix W bzw. mit W = I betrachtet. Unter
der Annahme, dass zwischen dem geschitzten Zustand ¥ und der Messung y ein affi-
ner Zusammenhang besteht, d. h. dass ¥ = Ky + b fiir bestimmte K, b gilt, wird zunéchst
die Optimalitdt des Kalman-Filters gezeigt, auf deren Basis die Gleichungen des iterati-
ven Préadiktor-Korrektor-Schemas hergeleitet werden konnen. Da der geschitzte Zustand

erwartungstreu zum tatsdchlichen Zustand sein soll, kann b mittels des Systemmodells

SHandelt es sich um ein LPV-System, kénnen die Inhalte dieses Abschnitts analog mit der Notation
Uber den Zeitschritt k, z. B. fur die Dynamikmatrix Ay, auf dieses Ubertragen werden.
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(2.12)), der Rechenregeln des Erwartungswertes (vgl. Anhang und aufgrund des mit-

telwertfreien Rauschens bestimmt werden zu
E[x —x] =E[(Ky + b) — x]
=E[(KCx + Kv + b) — x]
= KCE[x] + KE[v] + b — E[x] (2.14)
=(KC - DE[x]+ b
=0 = b=(I-KO%

mit dem Erwartungswert X = E[x;]. Folglich gilt fiir den Schitzfehler:

¥x—-x=K(Cx+v)+(I-KO)x —-x
= -KC)(x—Xx)+Kv.

(2.15)

Darauthin kann die Kostenfunktion (2.13)) mittels der Gleichungen (2.13) und (2.7) um-
formuliert werden, sodass mit P = E[(x — ¥)(x — X)” ] und aufgrund der Eigenschaften der
Spur (vgl. Anhang Folgendes gilt:

J(K) = -E [(:2 —x)7(& - x)]

— N =

= o ((1 —~KOE [(x —®)(x - x)T] (I-C'K") + KE[va]KT)] (2.16)

= %tr (- KC)PUI - C'K") + KRK").

Dabei gelten R = E[vv”] und E[(x — ¥)v"] = 0 aufgrund des unkorrelierten Rauschens
und der linearen Unabhingigkeit des Schitzfehlers vom Messrauschen. Um die Kosten-
funktion (2.16)) zu minimieren, muss anschlieBend der Gradient abhéngig von K gebildet
werden (vgl. Anhang[A2):

oJ -1

% = —(I - KC)PCT + KR 20 = K = PC” (CPCT +R) . (2.17)

Daraufhin kann durch die Gleichungen (2.14) und (2.17)) der optimale Schitzwert £ mit-

tels der affinen Transformation ¥ = Ky + b berechnet werden. Diese Optimalitit kann

ebenso aus der Bayesschen Perspektive, welche dieselbe Losung des Minimum-Varianz-
Problems bzw. des Minimum-Mean-Squared-Error (MMSE) (2.13) mithilfe des beding-
ten Erwartungswerts formuliert, oder als geometrisches Problem, welches dieselbe Losung
durch eine orthogonale Projektion herleitet, gezeigt werden (vgl. [Gib11]).

Die Funktionsweise des Kalman-Filters ergibt sich anschlieBend durch ein Pridiktor-
Korrektor-Verfahren, welches eine rekursive Kleinste-Quadrate-Methode darstellt (vgl.
Algorithmus [2). Zundchst wird ein Pridiktionsschritt basierend auf dem Modell (2.12)
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durchgefiihrt, worauthin sich der a priori geschitzte Zustand ¥y, berechnen lidsst. Hier-
bei stellt die Notation e, allgemein eine pridizierte Variable zum Zeitpunkt k + 1 ba-
sierend auf Messungen oder der Kenntnis jener Variable bis zum Zeitpunkt k£ dar. Auch

die a priori Kovarianzmatrix Py, wird basierend auf dem Modell bestimmt, da

Py =E [(ffk+1|k — Xpsii) Rprne — xk+1|k)T]
=E [A (ﬁklk - xk|k) (ﬁklk - xk|k)T AT] + E[kaZ] = APk|kAT + Q
=0

gilt. Anschlieend erfolgt auf Basis der Messung y, der Korrekturschritt, indem zunéichst
der optimale Eingriff K, iiber die Gleichung (2.17)) berechnet wird. Daraufhin kann die
Schitzung des Zustands durch den Innovationsterm (y, — CXy.1y) korrigiert werden, so-
dass die a posteriori Zustandsschitzung X vorliegt. Der Innovationsterm beschreibt
hierbei die Qualitdt der Schitzung im Vergleich zur Messung, welche sich auch durch
die Residualkovarianz (CPkH\kCT + R) bewerten lidsst. Zudem wird die a posteriori Ko-
varianzmatrix Py, aktualisiert (vgl. fiir Details [Gib11]). Daher ergibt sich mit der
Initialisierung des Anfangszustands X, der Kovarianzmatrix P, und den Rauschkovari-
anzen Q, R[lzl der iterative Wechsel zwischen Pridiktions- und Korrekturschritt, welcher

im Algorithmus [2] dargestellt ist.

Algorithmus 2 Kalman-Filter

Initialisiere: £ = Elxo], Py = E[ (& — x0)(%0 — x0)7| . Q. R
fork=1,...,00do

Pradiktionsschritt:

i = AXiy + Buy,
T
P = APy A" +Q

Korrekturschritt:

-
Kivi = P CT (CPk+1|kCT + R)

Rirtper1 = X + Kirr 0 — CRpr1i)
Piiips1 = T = Ky 1 C) Py
end for

Trotz der stochastischen Perspektive des Kalman-Filters besteht eine enge Verwandt-
schaft zum Luenberger-Beobachter, der z. B. am Priifstand des Golfroboters angewen-
det wird (vgl. Anhang[A6.1). Die Beobachter unterscheiden sich lediglich durch die Art

“Diese kénnen bei Bedarf zeitvariant modelliert werden, sodass Q und R im Algorithmusdurch O
und R, ersetzt werden.
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der Berechnung der Korrekturmatrix K bzw. L, welche durch die Minimierung einer
Kostenfunktion bzw. durch Polvorgabe bestimmt wird. Diese unterschiedliche Bestim-
mung des Korrektureingriffs begriindet sich durch die Féahigkeit, verschiedene Typen von
Storungen kompensieren zu konnen [FKL*22|]. Neben seiner Fahigkeit zur Pradiktion
in der Zustands- und Parameterschitzung wird das Kalman-Filter dariiber hinaus zur
Glattung und Filterung verrauschter Signale genutzt (vgl. [S1m06; Gib1 1;|[Ein19; Wal22]).
Da in der vorliegenden Arbeit der Fokus jedoch auf der Schitzung von Zustidnden fiir die

Zustandsregelung liegt, werden diese Funktionen vernachlissigt.

2.2.1 Extended Kalman Filter

Da das Kalman-Filter allerdings nur auf die Schitzung linearer Systemdynamiken limi-
tiert ist und die meisten technischen Applikationen nichtlineare Strukturen aufweisen,
wurde es im Zuge des Apollo-Programmﬂ erweitert, um auch Zusténde einer nichtlinea-

ren Systemdynamik verarbeiten und schitzen zu konnen. Diese kann durch

Xps1 = f(xk, up) +wy, (2.18)

Vi = h(xi, up) + vy

dargestellt werden, wobei f und h die differenzierbare System- und Messdynamik be-
schreiben. Weiterhin wird wie beim linearen System (2.12) unkorreliertes, weilles Prozess-
und Messrauschen angenommen, sodass w;, ~ N(0,Q) und v, ~ N(0, R) gilt. Kernidee
des Extended Kalman Filters (EKFs) ist die Anndherung einer nichtlinearen Dynamik
durch eine Taylorreihe erster Ordnung, um die Formulierung des Kalman-Filters nutzen

zu konnen. Basierend auf der letzten Schitzung (X, u;) werden die linearisierten System-

matrizen
of
Ak+1 = )
Ox (x=Zyp.u=ur)
oh
Ck+1 =
ox (X=X u=ur)

bestimmt. Diese konnen anschlieBend im Algorithmus [3|analog zum Pridiktor-Korrektor-
Schema des Kalman-Filters genutzt werden (vgl. Algorithmus [2). Implizite Annahme ist
dabei, dass sich das Verhalten des nichtlinearen Systems in der Umgebung des Tupels
(X1, uy) linear verhilt. Dies ist in der Abbildung skizziert, in der eine skalare, nicht-
lineare Funktion anhand einzelner Arbeitspunkte und deren linearer Wirkungsbereiche,

dargestellt durch die Ellipsen, approximiert werden kann. Im Unterschied zum Gain-

SUnter https://ntrs.nasa.gov/api/citations/19860003843/downloads/19860003843.pdf ist der techni-
sche Bericht der NASA dazu zu finden, welcher am 25.04.2023 abgerufen wurde.
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Scheduling-Ansatz, welcher im Anhang fiir den Regelungsentwurfs eines Golfro-
boters genutzt wird, bestimmt das EKF zu jedem Zeitpunkt k die Jacobimatrizen Ay
und Cy, mittels des aktuellen, geschitzten Zustands und Eingangs. Daher ist diese im-
plizite Annahme lediglich von der Schrittweite bzw. Abtastrate abhingig, mit der die

linearisierten Matrizen aktualisiert werden.

Algorithmus 3 Extended Kalman Filter

Initialisiere: £, = Elxo], Py = E| (& — x0)(%0 - %0)"| . Q. R
fork=1,...,00do

Priadiktionsschritt:

JACk+1|k = f(fkuc, u)
T
Piii = Ak1 ProigAi + 0

Korrekturschritt:

-1
Kii1 = PrpCiy,y (Ck+1Pk+1\kC/{+1 + R)

Xir1k+1 = X1k + K. (Yk - Ck+1xk+l|k)
Priie1 = T = K1 Cr)) Prsi

end for

Das EKEF bietet den Vorteil, eine einfache Struktur fiir die Schidtzung nichtlinearer Dyna-
miken bereitzustellen, die das Konzept des Kalman-Filters nutzen kann. Es verliert aber
dessen Optimalitit (vgl. Gleichungen (2.13)-(2.17)), da es eine nichtlineare Dynamik iiber
die Taylorreihe erster Ordnung abzubilden versucht [Murl2]]. Durch die Linearisierung
wird die abzubildende Wahrscheinlichkeitsverteilung nicht korrekt reprisentiert, sodass
es zu groBen Abweichungen zwischen Modell und System kommen kann [Wal22]. Dies
resultiert bei stark nichtlinearen Systemen in einer schlechten Schitzgiite und er6ffnet das
Risiko der Divergenz, da diese Nichtlinearitdten aufgrund des Abschneidens in der Tay-
lorreihe bzw. von den gewéhlten Arbeitspunkten nicht addquat erfasst werden kénnen. Zu-
dem bedarf das EKF der ersten Ableitungen des Systems, welche durch ihre Auswertung
in jedem Zeitschritt einen erhohten Rechenaufwand darstellen und fiir manche Systeme
schwer zu bestimmen sind bzw. nicht analytisch vorliegen. Zur verbesserten Schitzung
von Nichtlinearititen existieren zwar auch EKFs mit hoheren Termen der Taylorreihe,
diese erfordern aber die Kenntnis hoherer Ableitungen sowie einen gestiegenen Rechen-
aufwand [S1m06]]. Daneben bieten iterierende EKFs die Moglichkeit, den Korrekturschritt
mehrfach auszufiihren, um beispielsweise stark nichtlineare Systeme besser zu erfassen,

stellen aber ebenso einen erhohten Rechenaufwand dar [[S1imO06; [Wal22].
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fx)

Abbildung 2-2: Naherungsweise lineares Verhalten der skalaren, nichtlinearen Funktion
f in der Niihe ausgewdhlter Arbeitspunkte

2.2.2 Unscented Kalman Filter

Obwohl das EKF als das grundlegende Werkzeug zur Zustandsschidtzung nichtlinearer
Systeme gilt, existieren zwei gravierende Nachteile, die bereits im vorigen Abschnitt
erwihnt wurden. Die Kenntnis der Ableitungen ist zwingend notwendig, um die nicht-
lineare Systemdynamik zu linearisieren und die Struktur des linearen Kalman-Filters
anwenden zu konnen, stellt jedoch hidufig eine Herausforderung dar, wenn diese nicht
analytisch bekannt sind und auf numerische Weise aufwendig bestimmt werden miissen.
Ebenso verursacht die Anndherung der nichtlinearen Dynamik durch eine Taylorreihe ers-
ter Ordnung u. U. eine ungeniigende Schitzgiite, falls zu grole Abweichungen zwischen
Modell und System bestehen.

Das Unscented Kalman Filter (UKF m stellt dagegen eine ableitungsfreie Alternative
zur Zustandsschidtzung nichtlinearer Dynamiken dar. Dabei basiert die Grundidee des
UKFs auf der Beobachtung, dass die Approximation einer Wahrscheinlichkeitsverteilung
deutlich einfacher als die einer nichtlineare Transformation ist [JU97]. Aufgrund dieser
Einschitzung stellten die Autoren Julier und Uhlmann in [JU97] einen neuen Ansatz ei-
nes rekursiven Minimum-Mean-Squared-Error-Schitzers vor, der die ersten beiden statis-
tischen Momente einer Wahrscheinlichkeitsverteilung mittels deterministisch gewéhlter
Stichprobenpunkte X approximier Diese Stichproben, Sigmapunkte genannt, werden

durch die System- und Messgleichungen transformiert, worauthin die Rekonstruktion des

8Der Begriff unscented hat hierbei keine fachliche oder technische Bedeutung, sondern ist durch
einen der Autoren vergeben worden. Vgl. dazu das Interview zur Erscheinung von [JUO4] unter
https://ethw.org/First-Hand:The_Unscented_Transform, abgerufen am 21.04.2023.

"Fiir eine angenommene GauB-Verteilung werden sogar die ersten drei Momente angenahert, da
das dritte Moment gleich Null ist.
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Erwartungswerts und der Kovarianz der Zusténde aus diesen transformierten Sigmapunk-
ten erfolgen kann. Der Vorteil der hdheren Approximationsgiite und der Unabhéngigkeit
von Gradienteninformationen kann allerdings je nach Anwendung in einem erhdhten Re-
chenaufwand resultieren. Der nachfolgende Abschnitt orientiert sich insbesondere an den
Vorarbeiten von [Schl17].

Unscented Transformation

Da die Kernidee des UKFs auf der Approximation der ersten beiden statistischen Mo-
mente einer Wahrscheinlichkeitsverteilung basiert, wird diese im Folgenden erldutert. Die
nichtlineare Transformation der Sigmapunkte und die anschlieBende Rekonstruktion des
Mittelwerts und der Kovarianz der Verteilung werden hierbei als Unscented Transforma-
tion (UT) bezeichnet. Zunichst wird die intuitive Idee der UT anhand eines autonomen
Beispiels gezeigt. Dabei wird zur Ubersichtlichkeit der Zeitindex k vernachlissigt. Eine
Zufallsvariable x € R"” mit Erwartungswert X = E[x] und Kovarianz P wird durch eine
bekannte, nichtlineare Funktion f transformiert, sodass y = f(x) gilt. Ziel ist es nun, den
Erwartungswert und die Kovarianz von y zu schitzen, also die ersten beiden Momente des
transformierten Vektors x. Dazu werden 2n + 1 deterministische Sigmapunkte gewdhlt,

welche durch

X = [i $+ (Vo oP) . - (Ve K)P)iz] (2.19)

miti; = 1,...,nund i, = n+ 1,...,2n bezogen auf die Spalten des Matrixausdrucks
definiert werden. Diese Stiitzstellen sind demnach symmetrisch um den Erwartungswert X
gruppiert, vgl. die Darstellung in der Abbildung Bei einer angenommenen Gaul3-
Verteilunﬂ weist dies den Vorteil auf, dass die Symmetrie der Verteilung erfasst wird

und somit die ersten drei zentralen Momente
E[x] = 0, E[x*] =1, E[x’]1 =0 (2.20)

korrekt bestimmt werden konnen. AnschlieBend werden diese Stiitzstellen durch die nicht-

lineare Funktion transformiert, sodass

Y = k(X))

'8Liegt keine Standard-GauB-Verteilung vor, kann jene Verteilung mithilfe der Matrixwurzel von P zur
Standard-Gauf3-Verteilung hin verschoben werden, vgl. [Sch17].
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firi =1,...,2n + 1 vorliegt. Daraufhin kdnnen der Erwartungswert y und die Kovarianz

P, von y iiber

y=) Wy,

i=0

o (2.21)
Py = Z Wiy, =5 _J_’)T
i=0
approximiert werden. Die Gewichte W ergeben sich somit aus den Bedingungen zur Er-

fassung der ersten beiden Momente sowie aus einer Normalisierungsbedingung:

2n
1= Wi=Wo+2nW,. (2.22)
i=0
Dabei bewirkt die symmetrische Anordnung der Sigmapunkte um den Erwartungswert
(vgl. Gleichung (2.19)), dass W, = W, = - -- = W, gilt. Fiir den Erwartungswert lautet die
Bedingung aufgrund der Standardnormalverteilung (vgl. Gleichung (2.20))

2n
E[x] = Z WX, = 0. (2.23)
i=0

Um die Kovarianz korrekt zu erfassen, muss die folgende Gleichung erfiillt sein (vgl.

Gleichung (2.20)):

2n
Blxx’]= > W (Xi- D) (X — %) =2Wist - I=1, (2.24)

i=0
wobei s; den Abstand zwischen dem Erwartungswert ¥ und einem Sigmapunkt X; mit
i # 0 beschreibt. Daraufhin kénnen aus den Gleichungen (2.22)), (2.23)) und (2.24)) durch

Umstellung der Gleichungen die folgenden Zusammenhidnge formuliert werden [JUO4;
S1mO06}; Sch17]:

1
§1 = s

2W, (2.25)
Wy =1-2nW,.

Um die zwei Gleichungen (2.25) mit den drei Unbekannten Wy, Wy, s; zu 16sen, wird
schlieBlich ein Entwurfsparameter x € R definiert. Indem die Gewichte um den Erwar-

tungswert fiiri = 1,...,2n durch

1
Wl‘ =
2(n + k)
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beschrieben werden, ergibt sich fiir den Abstand s; und fiir das Gewicht des nullten Sig-
mapunktes (vgl. [JUO4; [Sch17]):

S1 = Vn+k,
K
Wy =

n+k

Der Parameter « stellt folglich einen Entwurfsparameter fiir die UT dar, der Einfluss auf
das Gewicht des nullten Sigmapunktes nehmen kann und somit die Wolbung, demnach
das vierte Moment, anpassen kann, falls Vorwissen vorhanden ist. Im Fall einer vorliegen-
den GauB3-Verteilung kann das optimale « somit durch k = 3 — n bestimmt werderfﬂ Fiir
k = 0 reduziert sich die UT dagegen auf eine Transformation mit nur 2n Sigmapunkten
[S1mO6]]. Die Gewichte lassen sich in diesem Fall leicht nach dem obigen Schema und un-
ter Nutzung der Formel fiir die Kovarianz (2.7)) herleiten (vgl. [Sim06])). Allerdings kann
die Wahl von « < 0 dazu fiihren, dass die Kovarianzmatrix nicht positiv (semi-)definit
ist [Sim06}; [Sch17]. In diesem Fall konnen keine Sigmapunkte nach Gleichung (2.19)
bestimmt werden. Um diese Auswirkung zu vermeiden, wird die skalierte UT genutzt,

welche im Anschluss an ein Beispiel im nachfolgenden Abschnitt erldutert werden wird.

Dimension 2

v

Dimension 1

Abbildung 2-3: Anordnung der Sigmapunkte einer zweidimensionalen Zufallsvariable,
Darstellung nach [Schl7|]

Ein einfaches, beliebtes Beispiel der erlduterten UT fiir eine zweidimensionale Zufalls-
variable ist in der Abbildung visualisiert. Die Transformation beschreibt die Um-

9Dies kann leicht nachgerechnet werden, vgl. [JU04].
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wandlung von Polar- in kartesische Koordinaten, welche klassischerweise in der Sensorik
auftritt [JUO4;|Sim06]. Es werden 300 zufillig verteilte Punkte x = (r, )7 gewiihlt, wobei
r € [-0,01; 0.01] und ¢ € [-0.35; 0.35] gilt, und durch die folgende Funktion transfor-

miert:

[y ‘) — h(x) = [FC?S("”)). (2.26)
2 rsin(y)

Es gilt zudem E[x] = (0,7/2)", P = diag([o},07,]) sowie k = 1. In der Abbildung
werden die Kovarianzen als Ellipsen dargestellt, wohingegen die Mittelwerte als Kreise
visualisiert sind. Es ist zu erkennen, dass die UT die Eigenschaften der Verteilung sehr gut
approximiert, da der Mittelwert und die Kovarianz sehr nah an den exakten ersten beiden
Momenten liegt. Der durch die Linearisierung ermittelte Mittelwert sowie die Kovarianz
weisen dagegen eine deutlich schlechtere Giite auf (vgl. [S1m06; JUO4]). Dies stellt den
Vorteil der UT bzgl. der Approximationsgenauigkeit heraus.

T T T T T T
1 - -
0,95 - Fea i
: %
09r x .
— linearisiert
0,85 || — unscented 4
exakt x
1 1 1 1
-0,6 04 -0,2 O 02 04 0,6
Y1

Abbildung 2-4: Approximation des Erwartungswerts und der Kovarianz (in griin) durch
Linearisierung (in rot) und UT (in blau) fiir das Beispiel (2.26)) nach
[ISim06; JUO4|]

Scaled Unscented Transformation

Um die Berechnung nicht positiv (semi-)definiter Kovarianzmatrizen zu vermeiden, wird
in [Jul02] eine Skalierung der Sigmapunkte um den Erwartungswert durchgefiihrt. Dabei
wird ein weiterer Parameter @ € R definiert, der die Entfernung der Sigmapunkte mit

i =1,...,2n zum Erwartungswert skaliert:

X,’ = Xo + CY(X,‘ - Xo)
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Indem weiterhin die Bedingungen an die ersten beiden Momente erfiillt sein miissen (vgl.
Gleichung (2.20)), konnen die Gewichte W analog zu Gleichungen (2.23) und (2.24) fiir
die Skalierung angepasst werden. Da die Grundidee zur Berechnung der Gewichte bereits
im vorigen Abschnitt fiir den allgemeinen Fall der UT gezeigt worden ist und die skalier-
te UT eine Erweiterung dieser istlT_G], wird an dieser Stelle darauf verzichtet und auf die
Herleitung in [JUO4; Sch17]] verwiesen.

Dariiber hinaus wird in [Jul02] ein weiterer Entwurfsparameter 8 € R definiert, dessen
Wirkung im Kontrast zum Parameter « die Wolbung nach der Transformation prigt, in-
dem dieser das Gewicht des nullten Sigmapunktes veridndert. Handelt es sich um eine
GauB-Verteilung, kann gezeigt werden, dass fiir 8 = 2 das Moment vierter Ordnung op-
timal approximiert werden kann. Auf eine ausfiihrliche Herleitung wird zugunsten des
Leseflusses erneut verzichtet, da die Argumentation iiber die Taylorreihe in [Jul02] und
[JUO4] nachvollzogen werden kann. Da der Parameter 8 jedoch auf das Gewicht des null-
ten Sigmapunktes X, wirkt, dndert sich die Berechnung des Erwartungswertes und der
Kovarianz. Folglich werden die Gewichte unterschieden in jene zur Berechnung des Er-
wartungswertes, welche mit dem Index ¢ versehen sind, und in solche zur Berechnung
der Kovarianz, welche stattdessen mit o gekennzeichnet sind. AnschlieBend koénnen die
Gewichte mit dem neu eingefiihrten Parameter A = a?(n + k) — n folgendermafen formu-

liert werden:

m _ A

0 n+A’

(©) 2
= +1-a +58, 2.27

0 n+A4 @ +p (2.27)

, 1
1 A 77— i=1,...,2n.
i P T2+ "

Aus den Gleichungen (2.21)) und (2.27) ergibt sich somit das Vorgehen fiir das skalier-
te UKF, welches im Algorithmus [ formuliert ist. Hierbei stellen pyx, = (@,B,«) die
Entwurfsparameter des UKFs dar, deren jeweilige Werte zu Beginn festgelegt werden
miissen. Der Parameter « steuert die Entfernung der Sigmapunkte vom Erwartungswert,
denn je kleiner « ist, desto ndher befinden sich die Sigmapunkte am Erwartungswert. Die
Einflussgrofen S und « beeinflussen jeweils das Gewicht des nullten Sigmapunktes und
somit die Wolbung der Verteilung nach bzw. vor der Transformation. Dies bedeutet, je
groBer S bzw. k gewihlt werden, desto stirker ist die Wolbung der resultierenden Ver-
teilung, sodass die Wahrscheinlichkeit fiir Werte nah am Erwartungswert deutlich héher
ist als bei einer flacheren Wolbung. Dieser Einfluss der Entwurfsparameter p;x, wird
besonders ausfiihrlich in [Sch17] illustriert sowie fiir Black-Box-Modelle optimal iiber

eine Gaullprozessregression ausgelegt. Analog zum Kalman-Filter priagen dariiber hi-

20F{r @ = 1 stellt die skalierte UT die allgemeine, zuvor gezeigte UT dar.
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naus die Kovarianzmatrizen des Prozess- und Messrauschens die Performanz des UKFs,
welche ebenfalls initialisiert werden miissen. Dies ist mitunter nicht einfach und resul-
tiert hiufig in einem aufwendigen, hiandischen Tuning (vgl. [NSRH21}; (CHJA18] und
Abschnitt[3.2.T)). Alternativ konnen diese Entwurfsparameter durch einen erweiterten Zu-
stand gleichzeitig zu den Zustdnden geschitzt werden, vor allem wenn diese Rauschpro-

zesse nichtlineare Strukturen aufweisen [JUO4}; |Sim06; |Gib11]].

Algorithmus 4 Scaled Unscented Kalman Filter

Initialisiere: a.f, x, £ = Elxo], Po = (B[ (& — x0)(& — x0)"|). Q. R
fork=1,...,00do
Berechnung der Sigmapunkte:

X1 = [-’Ack—l X1 + A+ DProqpr X — (n+ /l)Pk—llk—l]

Priadiktionsschritt:

Xklk—l = f(Xi-1,ui-1)
X = > W,-(m)Xi,k|k—1
. N T
Pyr = X7 W [Xi,k\k—l - xk] [Xi,klk—l - xk] +0
yklk—l = hz(xklk—l > uk—l)
Ve = 2o Wi(m)y iklk—1
. N RETs
P, =3 Wi( L [yi,klk—l —yk] [yi,klk—l —yk] +R
. o T
P, = hapan W,-( ) [Xi,klk—l - xk] [yi,klk—l —yk]

Korrekturschritt:

K, =P,P}

X =% + K (e — 51)

Py = Py — Kk P K|
end for

Square Root Unscented Kalman Filter (SRUKF)

Neben der urspriinglichen UKF-Formulierung in Algorithmus [] existiert in der Literatur
eine Vielzahl an Erweiterungen und Spezialformen des Filters. Diese sind meist durch
numerische Griinde motiviert und unterscheiden sich beispielsweise in der Anzahl der
verwendeten Sigmapunkte, um den Rechenaufwand zu reduzieren [Jul03; JUO4; SimO6].
Hierbei stellt die Bestimmung der Sigmapunkte X den groBten Anteil dieses Aufwandes
dar. Zudem ist die numerische Berechnung von P; besonders sensibel, da die Kovari-

anzmatrix symmetrisch positiv (semi-)definit sein muss. Um dies sicher zu stellen und
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gleichzeitig den Berechnungsaufwand durch die Bestimmung der Sigmapunkte zu redu-
zieren, ist die Variante Square Root Unscented Kalman Filter (SRUKF') entwickelt worden

[vWOI]], deren Algorithmus folgendermal3en lautet:

Algorithmus S Square Root Unscented Kalman Filter

Initialisiere: ., x, £ = E[xo], So = chol (E (£ - x0)(& — x0)]). Q. R
fork=1,...,00do
Berechnung der Sigmapunkte:

Xi-1 = [ﬁfk—l Xio1+ Vo + 18,1 Xjm — V(i + K)Sk—l]

Pradiktionsschritt:

Xige—1 = f(Xi—1, ui-1)
X, = 7 Wi(m)xi,klk—l
S; = qr([ \/WEC)(XI:Zn,klk—l -X) \/@])

S, = cholupdate (S,:, KXoy — X, W(()C))
yklk—l =h (Xklk—l,uk—l)
o= W,-(m)y i k=1

Korrekturschritt:

Sy = qr([ W(yl:zn,mk—l - X)) \/E])
S, = cholupdate (Sy, Yoi—I;» Wéc))

P, =3 W [Xi,klk—l - 56,?] [yi,klk—l - 5’;:]
Ki = PP} = (Py/S}) /S,

X=X+ K (v — 910)

T

U =KS,
Sy = cholupdate (S;, U, -1)
end for

Diese Variante schafft Abhilfe, indem die symmetrische, positiv (semi-)definite Matrix Py

durch ihre Wurzel S, dargestellt wird:
P, =S.S;].

Die Vorteile, wenn die Matrixwurzel S, in der UT benutzt wird, liegen nicht nur in einer
erhohten Robustheit bzgl. numerischer Ungenauigkeiten, da P, symmetrisch und posi-
tiv (semi-)definit bleibt, sondern auch in der Verringerung des Rechen- und Speicher-
aufwands. Dies resultiert aus den effizienteren algebraischen Methoden wie der QR- und

Cholesky-Zerlegung oder der Berechnung einer Kleinsten-Quadrate-Losung (vgl. [vVWO1]
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und Anhang[A4), welche im SRUKF-Algorithmus [5] die wesentlichen Unterschiede zum
UKF-Algorithmus 4| darstellen. Der UKF- bzw. SRUKF-Algorithmus kann zudem wie
alle anderen Kalman-Filter zur reinen Parameterschitzung eingesetzt werden, wenn der
Zustand des Algorithmus [5]als die zu identifizierenden Parameter definiert wird [vWOI].
Alternativ kann auch eine gleichzeitige Schitzung von Zustinden und Parametern vor-
genommen werden, indem der Zustand um diese erweitert wird. Im Abschnitt [@ dient
die Grundidee der simultanen Schitzung als Ausgangspunkt fiir die Entwicklung einer

neuartigen Methode zur Schitzung von Zustidnden und Modellungenauigkeiten.

Der Blick auf die bisherigen Methoden dieses Kapitels war stark stochastisch und we-
niger regelungstechnisch geprigt, da die gezeigten Techniken nicht nur zur Zustands-
und Parameterschitzung genutzt werden konnen, sondern vielféltigen Schétzproblemen
zur Verfligung stehen. Dies kann beispielsweise die Filterung und Glittung von Signalen
sein. Daher werden solche Verfahren hiufig als Schitzer im allgemeinen Kontext bezeich-
net, vgl. [Gibl1]. Der Begriff Beobachter bezieht sich dagegen auf den regelungstechni-
schen Vorgang, die Zustinde (oder Parameter, Storungen) eines dynamischen Systems zu
schiitzen und diese zu prddizieren, um eine Zustandsregelung zu ermoglichen. Daher wird

dieser Begriff im weiteren Verlauf dieser Arbeit verwendet.

2.3 Sliding-Mode-Beobachter

Neben einer hohen Schitzgiite, welche das wichtigste Kriterium fiir die Qualitiit eines
Zustandsbeobachters darstellt, gibt es weitere Anforderungen, die je nach Anwendungs-
fall wiinschenswert sind. Die Robustheit bzgl. Anfangsstorungen und Storgrofen stellt in
der Praxis eine ebenso wichtige Einflussgrofle dar. So ist ein Luenberger-Beobachter (vgl.
[FKL722], Anhang robust gegeniiber Anfangsstorungen, kann jedoch im Vergleich
zu den Kalman-Filtern keine stochastisch auftretenden Stérungen kompensieren. Ein po-
puldrer, robuster Beobachter, der verschiedene Arten von Storungen kompensieren und
weiterhin korrekte Schitzwerte liefern kann, ist ein Sliding-Mode-Beobachter (SMO).
Dieser ist durch die Sliding-Mode-Regelung motiviert, welche zu den strukturvariablen
Regelungen gehort und bereits seit den 1960er Jahren praktiziert wird (vgl. [SpuO8],
[Adal8]). Die Grundidee dieses Reglers besteht darin, theoretisch unendlich schnell zwi-
schen unterschiedlichen Regelgesetzen zu schalten, um den Regelfehler trotz bestehender
Storungen oder Modellabweichungen zu reduzieren. In der Praxis fiihrt dieses schnelle
Umschalten allerdings zu dem Nachteil einer hohen Beanspruchung der Aktorik, welches
sich in einem unerwiinschten Rattern der Stellgrole duBert. Dieser Nachteil ist jedoch
keine Herausforderung fiir einen Beobachter, dessen Dynamik auf keine Aktorik wirkt,
sodass das Rattern lediglich numerische Auswirkungen aufweist und die Grundidee des

Reglers unkompliziert adaptiert werden kann.
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Um die Funktionsweise eines SMOs zu verdeutlichen und dessen Eigenschaften kennen-
zulernen, wird zunéchst ein einfaches, lineares Beispiel@ erarbeitet. Das folgende System
stammt aus [Boul5] und ist mittels des expliziten Euler-Verfahrens und der Schrittwei-
te At > O diskretisiert worden (vgl. Anhang [A5.T)). Es weist eine skalare, beschrinkte
Storung pr < |Afmax| fiir alle Zeitschritte £ mit bekannter Schranke A f,.x auf:

Xl = Xp + At( 2k ) (2.28)
Up + Pk

yk = Xk.

Das Ziel ist es nun, die Zustinde des Systems (2.28) trotz auftretender, unbekannter
Storung pi zu schitzen. Daher wird die Sliding-Variable als Schitzfehler ey, = §, — y,
definiert, fiir welchen e, = 0 in endlicher Zeit erreicht werden soll, woraus ey, — 0 fiir
k — oo folgt. Ein Sliding-Mode-Beobachter fiir das lineare System (2.28) lautet somit
folgendermalen:

j\jk+1 = -’x\‘k + At (uk -9 Sign(ey,k)) » (2 29)

Vi = Xy
Voraussetzung fiir die Konvergenz des Beobachters ist die Bedingung & > |A fi.|, deren
Notwendigkeit mittels einer Stabilititsanalyse basierend auf Lyapunov-Funktionen, wie
etwa V(ey ) = %e;k, gezeigt werden kann (vgl. [DFL05; KCM™*14; Mor27]). Wirkt exem-
plarisch eine uniform verteilte Stérung p; auf das System, d. h. o, € U(0, 1), und wird der
Beobachter (2.29) mit ¢ = 9 > 1 = |Af,..| parametriert, ldsst sich die Schétzgiite in der
Abbildung [2-3] analysieren. In dieser Grafik wird die Qualitdt zweier SMOs verglichen,
welche sich durch die Schrittweite At unterscheiden. Beide Beobachter weisen eine hohe
Schiitzgiite auf, variieren jedoch bzgl. der Stirke des auftretenden Ratterns. Dieses wird
durch den Korrekturterm v(e, ) = —t sign(e, ) ausgelost. Der Korrekturterm wird meist

als Schaltfunktion bezeichnet und kann komplexere Formen annehmen, beispielsweise
v(eyx) = —B ey l? sign(ey), (2.30)

wobei der Exponent auch héhere Werte annehmen kann. In der vorliegenden Art (2.30)
ist der Sliding-Mode-Beobachter als Super Twisting Algorithmus (STA) bekannt, Verall-
gemeinerungen der Schaltfunktion mit z. B. hoheren Exponenten sind dagegen als Ge-

neralized Super Twisting Algorithmus (GSTA) oder hoherdimensionale STAs bekannt

2'Fir die Anwendung auf einem Digitalrechner muss der Beobachter diskret vorliegen, deswegen
wird er entgegen der Ublichen kontinuierlichen Formulierung in der Literatur direkt in diskreter Form
dargestellt. Hierbei beeinflusst die Wahl der Schrittweite At die Performanz des Beobachters, vgl.
[Bou15|.
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[Spu08; Mor27; SEFL14; [DFP06; KCM™14]. Der potenzierte absolute Schitzfehler als
zusitzlicher Faktor in den Schaltfunktionen des STAs oder GSTAs sorgt dabei fiir eine
schnellere Konvergenz und hohere Robustheit, u. U. aber auch fiir ein stdrkeres Rattern.
Die Ursache des Ratterns resultiert aus den zwei Phasen der Beobachterdynamik eines
SMOs. Die Phase, bis e, = 0 erreicht ist, wird Reaching-Phase genannt. Diese ist fiir das
Beispiel (2.29) in der Abbildung [2-5|nur sehr kurz bis etwa 0,01s zu erkennen.

10 -

X1

0 1 1 1 1 1 M
0 0,5 1 1,5 2 2,5

10

X2

MM

1
0 05 1 1,5 2 25 3
Zeit t[s]

\—x—fc mit Af = 0.05— & mit Az = 0.01 \

Abbildung 2-5: Zustandsschdtzung fiir das lineare Beispiel (2.28): Einfluss der Schritt-
weite auf die Schdtzgiite und das typische Rattern

Die folgende Visualisierung in Abbildung[2-6|bildet dagegen den Phasenraum des Schiitz-
fehlers fiir unterschiedliche Anfangsbedingungen des Beobachters X, ab, welche durch
die verschiedenen, rot gestrichelten Linien dargestellt sind. Die Reaching-Phase ist somit
sehr deutlich durch das Zulaufen des Fehlers auf die Schaltgerade, beispielhaft dargestellt
in schwarz, zu erkennen. Anschlieend tritt der Beobachter in die Sliding-Phase, auch be-
kannt als der namensgebende Sliding-Mode, ein, bei der die Sliding-Variable theoretisch
idealerweise bei Null verbleibt, durch das hochfrequente Umschalten jedoch in einer klei-
nen Umgebung um Null oszilliert [Spu08}; SEFL14; NM22]. Dieser Effekt kann fiir die
Fehlerdynamik anschaulich in der Abbildung[2-6beobachtet werden, bei der die Sliding-
Variable auf der Schaltgerade verbleibt und zur Ruhelage gleitet. Dieses Verhalten ist in
der Grafik[2-5|anhand des typischen Ratterns erkennbar. Je nach Wahl der Schrittweite At
und des Einflussfaktors ¢} sowie der Art der Schaltfunktion v kann dieser Effekt geringer
oder stdrker ausfallen. In der Sliding-Phase sind der beobachtete und gemessene Aus-

gang trotz dieses Ratterns nahezu identisch, sodass die iibrigen beobachteten Zustdnde
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abhingig von der Modellqualitit und den Konvergenzeigenschaften die realen Zustinde
abbilden. Die positiven Konvergenz- und Robustheitseigenschaften eines SMOs werden
an dieser Stelle nicht bewiesen, konnen aber mithilfe von Lyapunov-Funktionen leicht ge-
zeigt werden (vgl. [NM22;|SEFL14; DFPO6]) und stellen sicher, dass es sich wihrend der
Reaching-Phase um eine attraktive Region handelt und die Sliding-Variable bei Erreichen

der Sliding-Phase in dieser verbleibt.

10

Slidin

€y k+1
o

~10 1 1 R B

Abbildung 2-6: Typischer Phasenraum des Schdtzfehlers anhand des Beispiels (2.28)):
Verschiedene Anfangsbedingungen Xy und At = 0.01

Nach dem einfiihrenden Beispiel wird nun die allgemeine Form eines SMOs hergeleitet.
Diese bezieht sich auf mehrdimensionale, nichtlineare Systeme mit eindimensionalem
Ausgang, d. h. m = 1. Fiir den Fall m > 1 wird auf [FOT14; Dra92; DU95] verwie-
sen. Zundchst wird der Begriftf der Beobachtbarkeit (vgl. Abschnitt fiir nichtlineare
Systeme definiert, der aus Griinden der Ubersichtlichkeit in den nichsten Absitzen in
kontinuierlicher Zeit und mit den DynamikerEZ] S und h formuliert wird. Fiir ein nichtli-
neares System mit y € R lassen sich die Lie-Ableitungen L}‘ "h(x, u) durch hy(x) = h(x, u)

und

Ohi_1(x,u)

i—-1 _ —
Ly h(x,u) = hi(x,u) = e

f(xau)a i:2,...,n.

2?Diese stellen kurzzeitig die kontinuierlichen System- und Messdynamik dar, obwohl sie als das dis-
krete Pendant definiert worden sind und dieses auch nach dem Begriff der Beobachtbarkeit weiter
reprasentieren.
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definieren. Daraufhin kann die Beobachtbarkeitsmatrix durch

2 y h(x,u)
22 y th(x9 u)

z=|z3]= y = szch(x,u) = On_l(x,u) (231)
z) L) L hx,w)

formuliert werden [[Adal§]. Ist die Beobachtbarkeitsmatrix (2.3T)) invertierbar, d. h. ist
O;_ll(x, u)Vx € R",Yu € R? injektiv, ist das System (2.18)) beobachtbaﬂ[Adal& Mor27].

Anschlieend kann es in die nichtlineare Regelungsnormalform iiberfiihrt werden [AdalS8||:

y 22
y 23
z= = )
ot . (2.32)
Y )\ (01 (x.w))
Y=z

Auf Grundlage der Beobachtbarkeitsform (2.32)) kann der Sliding-Mode-Beobachter fiir
ein allgemeines System anschlieBend in die folgende, diskrete Struktur iiberfiihrt werden,
bei der die Modelldynamik f ausschlieBlich auf die letzte Zeile und die n Schaltfunktio-

nen v; auf jede Zeile wirken:

Rik+1 ok + vileyr)
Xoser| i+ v2(eyr)
= xk + At . ’
A Aa A . (2.33)
Xnjes1 SR X2ss -+ o5 Bnc 1o Yio &) + vileyr)
5’k = ?ACl,k,

€k = Yk — Yk-

Mithilfe der Darstellung (2.33) ldsst sich schlieBlich die Fehlerdynamik des SMOs er-
mitteln. Der Modellfehler Af, der aus Anfangsfehlern, Storungen oder Modellungenau-
igkeiten resultieren kann, ist dabei als Differenz zwischen Modell f und realem System f
durch

Af = fRigsXoks oo Xnct o Vi k) = F(X ks X2 s+ -+ s Xnm1 > Vis k)

23Einfacher nachzuweisen ist haufig die schwache Beobachtbarkeit eines Systems durch den
vollstdndigen Rang der Jacobimatrix von O,_;.
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definiert [DFPO6; |SpuO8; SEFL14]|. Daher gilt fiir die Fehlerdynamik:

ey k+1 Xik+1 = X1k+1 er + vi(eyr)
€2 k+1 X2 k+1 — X2k+1 e3x + valeyr)
= : = e + At : . (2.34)
Cn—1 k+1 Xp1k+1 — Xn—1+1 eni + Va-1(ey)
€nk+1 Xng+1 — Xn g+l Af +va(eyr)

Der Effekt, dass die geschitzten Zustinde den realen nachfolgen bzw. asymptotisch ge-
gen diese konvergieren, wenn sich der Beobachter in der Sliding-Phase befindet, kann
nun anhand der Fehlerdynamik (2.34) verdeutlicht und bestitigt werden. Ist e,y = O,
bestimmen die Einflussparameter des Beobachters 1, ..., 1, die Konvergenz und deren
Geschwindigkeit.

Neben der Schitzung von Zustinden wird der Sliding-Mode-Beobachter auch zur Para-
meteridentifikation eingesetzt, z. B. um unbekannte physikalische Parameter, auftreten-
de Storungen oder Modellungenauigkeiten zu erfassen (vgl. Abschnitt 2.4). Zur Para-
meterschitzung kann der Sliding-Mode-Beobachter unkompliziert erweitert werden, in-
dem die Parameter als Zustdnde definiert werden [DFP06; Mor27|]. Zur Identifikation von
Storungen oder Modellungenauigkeiten kann die Schaltfunktion v genutzt werden, wenn
sich der Beobachter in der Sliding-Phase befindet. In dieser Situation kann eine Stdrung py
wie im Beispiel (2.28) oder allgemein die Modellungenauigkeit Af durch eine Tiefpass-
filterung von v, (e, ) identifiziert werden [Mor27; KCM™14; FOT14]. Neben dem SMO
existieren weitere robuste Beobachter, wie etwa der H,,-Beobachter [Sim06]], welche im

Rahmen dieser Dissertationsschrift jedoch nicht betrachtet werden.

24 Modellungenauigkeiten und ihre Struktur

In der Einfiihrung dieser Arbeit ist die Modell-Realitits-Liicke als eine mogliche Hiirde
im modellbasierten Regelungsentwurf identifiziert worden (vgl. Abschnitt [I.T]). Dieser
Umstand ldsst sich auf Modellungenauigkeiten zuriickfiihren, welche eine realititsnahe
Abbildung eines betrachteten Prozesses erschweren oder verhindern. Diese Modellunge-
nauigkeiten bilden daher eine strukturelle Herausforderung in den Methoden der modell-
basierten Zustandsschitzung, welche in den vorigen Abschnitten vorgestellt und erldutert
worden sind. Dementsprechend werden in diesem Abschnitt Modellungenauigkeiten né-
her beleuchtet und bzgl. ihrer Struktur sowie ihres Auftretens kategorisiert. Die Inhalte
dieses Abschnitts erheben jedoch nicht den Anspruch, universal giiltig und vollstdndig
zu sein, sondern stellen eine doménenspezifische und subjektive Einordnung basierend

auf der Problemstellung dieser Dissertationsschrift dar. Dariiber hinaus werden Verfahren
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zur Identifikation von solchen Modellungenauigkeiten aus dem gegenwirtigen Stand der
Technik vorgestellt.

In der Regelungstechnik und Mechatronik konnen Modellungenauigkeiten aus verschie-
denen Quellen resultieren, wie es beispielsweise in der Abbildung dargestellt ist (vgl.
[Jan10; IM11]). Durch eine fehlerhafte Kalibrierung eines Sensors kann beispielswei-
se ein Offset entstehen oder das Messrauschen eines Sensors fiihrt zu einer ungenauen
Auswertung eines Prozesses. Andere Quellen konnen ggf. die Existenz von physischen
Grenzen, die eine Regelstrecke aufweist und in der Modellierung nicht beriicksichtigt
wurden, oder eine fehlerhafte Annahme in der Parametrierung eines Modells sein, welche
in der Abbildung[2-7|rechts unten als inkorrekte Frequenz zu erkennen ist. Die Katego-

risierung dieser Unsicherheiten ist aufgrund ihrer unterschiedlichen Herkunft bisweilen
herausfordernd.

Signal
Signal
o

1
— —
< <
= =
2000 .2h
n 9]

1 1 1 1
0 05 1 1,5 2 25 3 0 05 1 5 2 25 3
Zeit t [s] ‘ — Messung - -- Modell ‘ Zeit t[s]

Abbildung 2-7: Beispiele von Modellungenauigkeiten im Uhrzeigersinn beginnend von
links oben: Offset durch fehlerhafte Kalibrierung, Existenz von Begren-

zungen, falsche Frequenz oder fehlerhafte Parametrierung, Messrauschen
oder stochastische Storung

Im Kontext von maschinellem Lernen werden Modellunsicherheiten in systematische
und zufillige Fehler (englisch epistemic vs. aleatoric uncertainty) unterschieden, vgl.
[HW21]. In den Ingenieurwissenschaften existiert bisher keine einheitliche Kategorisie-
rung von Modellungenauigkeiten in der Literatur, es findet sich jedoch héufig eine dhnlich
motivierte Klassifizierung, z. B. in [PGPS21; Ra194]. Daher wird die Kategorisierung in
systematische und stochastische Ungenauigkeiten in dieser Arbeit genutzt, um die am
weitesten verbreiteten Fehlerquellen einzuordnen. Eine doménenspezifische Darstellung
und Klassifizierung einiger dieser Fehlerquellen ist in der Abbildung[2-§] zu erkennen.

Systematische Modellungenauigkeiten, welche in dynamische und statische Fehler un-

terschieden werden, beschreiben Unsicherheiten, die durch einen Mangel an Informatio-
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nen entstehen, beispielsweise durch eine zu geringe Modellierungstiefe [Loc20]. Diese
konnen durch verfiigbares Wissen oder mathematische Operationen reduziert werden. So
lassen sich moglicherweise Ungenauigkeiten wie Parameter durch Messungen identifi-
zieren, Zustandsbegrenzungen durch Experimente annidhern oder (Eigen-)Schwingungen
durch eine Spektral- oder Fourieranalyse charakterisieren. Ebenso konnen Messfehler,
die beispielsweise entweder statisch durch eine fehlerhafte Kalibrierung oder dynamisch
durch numerische Rechenfehler entstanden sind, durch einen Least-Squares-Ansatz redu-
ziert werden.

Zufillig oder stochastisch entstandene Modellfehler konnen dagegen nicht einzeln verhin-
dert oder verringert werden. Als Beispiel kann z. B. eine verminderte Druckqualitit eines
3D-Druckers genannt werden, welche durch die fehlerhafte Position des Druckkopfs auf-
grund von Bodenschwingungen eines vorbeifahrenden Zuges resultiert. Die einzige Mal3-
nahme, stochastische Fehlerquellen zu reduzieren, besteht in der wiederholten Messung
der Phinomene und der Abschitzung dieser durch statistische und wahrscheinlichkeits-
basierte Methoden (vgl. [Sch11]], Abschnitt[2.T)).

Modellungenauigkeit
Systematisch Zufillig
Dynamisch Statisch — Stochastische Storungen
— Parameter — Parameter — Schwingungen, z.B. durch
Erdbewegungen oder Verkehr
— Begrenzungen — Begrenzungen L -

I

(Eigen-)Schwingungen [~ Reibung

I
[

Offsets durch
Sensorik/Aktorik

Reibung

I

Ungenauigkeiten
durch Sensorik/Aktorik

Abbildung 2-8: Kategorisierung von Modellungenauigkeiten sowie ausgewdhlte Beispiele
auftretender Fehlerquellen fiir mechatronische Systeme

Eine weitere Unterscheidung von auftretenden Modellungenauigkeiten bezogen auf den
Wirkungsbereich wird zudem spezifisch in der Regelungstechnik vorgenommen. So wird

zwischen eingangsseitigen und ausgangsseitigen Storungen oder Modellungenauigkeiten
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differenziert. In dieser Arbeit werden allerdings nur potentielle ausgangsseitige Fehler
angenommen, obwohl einige der diskutierten Methoden auch eingangsseitig wirkende

Unsicherheiten kompensieren konnen.

Fiir ein nichtlineares, beobachtbares System (2.18) lésst sich die Existenz einer Modell-

ungenauigkeit g(xy, u;) allgemein durch

Xie1 = f (xp, ug, p, g(xi,up)),

yk = h(xk)v

(2.35)

in die bekannte Struktur integrieren. Haufig wird dies sogar weiter vereinfacht als additive
Modellungenauigkeit dargestellt, in seltenen Féllen als multiplikative Unsicherheit, vgl.
[Rai94]. Ohne Beschrinkung der Allgemeinheit kann aber die vereinfachte Version mit
der additiven Modellungenauigkeit angenommen werden, da sich jede Unsicherheit durch

Superposition in dieser Art ausdriicken ldsst. Daher gilt Folgendes:

Xis1 = f(xp, ug, p) + g(xp, up), 2.36)

Yi = h(xy).

Kann das System sogar wie in Gleichung (2.32)) als nichtlineare Regelungsnormalform
formuliert werden, wirkt die Modellungenauigkeit lediglich auf den n-ten Ausgang und

liegt somit eindimensional als g(x, u;) vor:

X1 k+1 X2, k+1
X2, k+1 X3 k+1
=x; + At R s
(2.37)
Xn—-1,k+1 Xnk+1
Xnjer1 f(xr, up, p) + g(xi, uy)
Yk = X1k-

Diese Systembeschreibung wird im Abschnitt [4.2] noch weiter prizisiert. Um Modell-
ungenauigkeiten, wie sie im Modell oder formuliert werden, zu identi-
fizieren, existieren verschiedene Techniken. Diese sind unter dem Begriff Systemiden-
tifikation zusammengefasst und ermoglichen grundsitzlich die Annidherung eines Sys-
tems durch parametrische und nicht-parametrische Modelle (vgl. [IM11]], Abbildung|[I-3]
Abschnitt[3.1)). Als Exempel sind Spektral- oder Fourieranalyse, Hauptkomponentenana-
lyse, Least-Square-Techniken, das bereits vorgestellte Kalman-Filter, Frequenzgangsmes-
sungen, die GauBprozessregression oder neuronale Netze zu nennen [IM11}; [FKL*22;
Krol6; |[Wal22; BPK16b|. Die Grundlage dieser Identifikation bilden in der Regel Mess-

daten von Experimenten bzw. Daten aus Simulationen. Einige dieser Verfahren werden
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hinsichtlich ihrer Fahigkeit, Modellungenauigkeiten zu identifizieren, im nachfolgenden
Kapitel [3| analysiert und unter den formulierten Anforderungen dieser Arbeit bis [F.3]
weiterentwickelt sowie bewertet. Alle betrachteten Techniken des Kapitels stellen jedoch
eine u. U. aufwendige Nachbehandlung dar, die zusitzlich und iterativ zum modellbasier-
ten Regelungsentwurf erfolgen muss (vgl. Abbildung [[-4(a)). Wird dieses zeit- und kos-
tenintensive, iterative Vorgehen nicht durchgefiihrt, leidet je nach Charakter der Modell-
ungenauigkeit und verwendetem Beobachter die Qualitit der Zustandsschitzung darunter,

sodass die Umsetzung einer Zustandsregelung geféhrdet sein kann.

Neben diesen Methoden, die eine erneute Durchfithrung von Experimenten oder zusétz-
liche Analysen erfordern, um Modellungenauigkeiten zu erfassen und das Modell zu
verbessern, existiert neuerdings ein weiterer, effizienterer Ansatz. Ublicherweise ist die
Auslegung eines Zustandsbeobachters fiir die Zustandsregelung ohnehin erforderlich. Die
Idee, dass der Beobachter auch gleichzeitig die Modellunsicherheit ermittelt, stammt aus
der Praxis, in der Zustédnde und Systemparameter gleichzeitig geschitzt werden (vgl. dazu
Abschnitt[d.T). Dieser Ansatz der gleichzeitigen Schitzungen wird in einigen Quellen fiir
die Identifikation dynamischer Modellungenauigkeiten adaptiert. So wird in [BMTD21}
KJY21; |Kul21] dieselbe Ausgangssituation wie in der Gleichung beschrieben und
eine Losung zur Schitzung von g(xy, u;) gesucht. Wihrend in [BMTD21] ein GP-Modell
in der Kombination mit einem High-Gain-Beobachter genutzt wird, um die Modellun-
genauigkeit zu approximieren, nihert [KJY21] diese iiber ein geometrisch motiviertes
Verfahren an, bei dem jeweils die oberen und unteren Intervallgrenzen berechnet wer-
den, zwischen denen sich g(xy,u;) aktuell befindet. Die Autoren in [Kul21]] nutzen da-
gegen eine Linearkombination aus radialen Basisfunktionen innerhalb eines EKFs, wel-
che die Modellungenauigkeit approximieren. Fiir den Spezialfall, dass Gleichung
gilt, es sich dabei um eine statische Modellungenauigkeit handelt und die bekannte Mo-
delldynamik f linear ist, wird in [Sch10] ein lernfdhiger Beobachter basierend auf dem
Luenberger-Beobachter formuliert, der die isolierte Ungenauigkeit durch ein neuronales
Netz approximiert. Dabei werden sowohl Fehlerabschidtzungen als auch die Konvergenz
des lernfiahigen Beobachters nachgewiesen. Obwohl diese Vorarbeiten vielversprechen-
de Perspektiven liefern, Modellungenauigkeiten parallel zur Zustandsschitzung zu iden-
tifizieren, werden nicht alle zu Beginn dieser Arbeit formulierten Anforderungen (vgl.
Abschnitt [[.2)) beriicksichtigt. Daher wird Kapitel ] basierend auf diesen Vorarbeiten ei-
ne alternative, neuartige Methode entwickeln, welche beispielsweise die Grundidee von
[KSH21] einbezieht. Im folgenden Kapitel 3| werden jedoch zunéchst Techniken der hy-
briden Systemidentifikation diskutiert, welche die Identifikation der Modellungenauig-
keiten separat entweder durch eine Modellkorrektur oder durch die Kompensation der

Unsicherheit im Beobachterentwurf anstreben.
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3 (Offline-)Strategien zur Kompensation von
Modellungenauigkeiten

Die erfolgreiche Umsetzung eines modellbasierten Regelungsentwurfs, welcher im Ab-
schnitt angesprochen worden ist, hingt in hohem MaBle von der Qualitdt des ver-
wendeten Streckenmodells ab. Dies trifft insbesondere auf die Zustandsschitzung zu, da
diese nach Kapitel [2|basierend auf dem Streckenmodell erfolgt. Treten im Modell Abwei-
chungen zur Strecke auf, z. B. aufgrund von Reibung, Verschleifl oder Temperaturschwan-
kungen, kann der Beobachter u. U. keine zuverldssigen Schitzwerte mehr ermitteln, so-
dass eine unzureichende Umsetzung der Regelung oder gar Schiden an der zu regelnden
Anlage zu befiirchten sind. Um eine aufwendige, iterativ durchzufiihrende Modellbildung
zu vermeiden und Ressourcen zu sparen (vgl. Abschnitt [I.1), diskutiert dieses Kapitel
Strategien zur Kompensation von auftretenden Modellungenauigkeiten. Diese setzen ent-
weder direkt bei der Identifikation des Modells oder beim Beobachterentwurf an, d. h. es
werden MalBnahmen in den Abschnitten und erortert, deren Wirkungsbereich auf
diesen jeweiligen Entwurfsschritt begrenzt ist. Das verbindende Element der vielféltigen
Methoden dieses Kapitels stellt hierbei das (Beobachter-)Modell der Strecke dar, wel-
ches hinsichtlich Modellungenauigkeiten verbessert werden soll. Dabei werden bis auf
Abschnitt [3.2.2] Offline-Methoden thematisiert, deren Umsetzung erst durch umfangrei-
che Messdaten und nicht in Echtzeit erfolgen kann. Abschlieend werden die untersuch-
ten Verfahren im Abschnitt zusammengefasst und bzgl. der in dieser Arbeit formu-
lierten Anforderungen [F.I{E.3|bewertet.

3.1 Systemidentifikation mittels hybrider Modelle

Die Nutzung von Prozess- oder Messdaten zur Systemidentifikation ist eine sehr verbrei-
tete und traditionelle Herangehensweise in den Ingenieurwissenschaften. Aufgrund der
Verfiigbarkeit von Daten an vielen technischen Anlagen werden diese genutzt, um tiefere
Einblicke in das System zu erhalten und etwa physikalische Parameter zu identifizieren,
die durch ein Modell zuvor definiert worden sind. Ist die innere Struktur eines Systems
weniger oder gar nicht bekannt, werden in den letzten Jahren vermehrt datenverarbeitende
Methoden eingesetzt, um aus den Messdaten realitdtsnahe Modelle zu entwickeln. Bereits
im Abschnitt[[.T]ist die grundsitzliche Unterscheidung in theoretische und experimentelle
Modellbildung erortert worden [IM11; |Wal22]. Die Grenzen zwischen diesen Perspekti-
ven verlaufen allerdings flieBend und sind nicht streng definiert, da viele Modelle sowohl
mittels physikalischer GesetzméBigkeiten als auch durch Messdaten formuliert und iden-
tifiziert werden (vgl. Abbildung [I-3). Diese konnen daher je nach Art der verwendeten
Information und Kenntnis der Systemstruktur als White-, Gray- oder Black-Box-Modelle
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charakterisiert werden. In der Abbildung welche an [IM11, S.6] angelehnt ist, ist
eine beispielhafte Unterteilung zu erkennen. So ist ein Modell z. B. der Kategorie White-
Box-Modell zuzuordnen, wenn die Systemstruktur sowie Parameter durch physikalische
GesetzmiBigkeiten bekannt sind und sich im Modell widerspiegeln. Black-Box-Modelle
stellen dagegen das Ein-/Ausgangsverhalten dar und erlauben lediglich Vermutungen zur
Struktur. Modelle, die sowohl aus der theoretischen als auch aus der experimentellen Mo-
dellbildung hervorgehen, weil sie beispielsweise nach physikalischen Gesetzen entwor-
fen, aber ihre Parameter durch Daten identifiziert wurden, werden als Gray-Box-Modelle
bezeichnet. Diese Modelle, deren Anteil am jeweiligen Spektrum theoretische bzw. ex-
perimentelle Modellbildung variieren kann, werden im weiteren Verlauf dieser Arbeit als
hybri(fz] bezeichnet.

Theoretische Experimentelle
Modellbildung l l Modellbildung
Physikalische Gesetze, Physikalische Gesetze Ein-/Ausgangssignale,

Struktur bekannt, oder Regeln,
Struktur un-/bekannt,

Parameter unbekannt,

Vermutungen iiber

Struktur

Parameter bekannt

Messbare Signale

White-Box-Modell Gray-Box-Modell
Phys. Modell PG(R)NN || SINDy |

Abbildung 3-1: Beispielhafte Modellkategorien basierend auf dem Grad der verwendeten
Messdaten und des physikalischen Vorwissens, angelehnt an [IM11, S.6],
und Einordnung der in Abschnitt|3. l|diskutierten Modellarten

Im folgenden Unterkapitel werden daher Methoden vorgestellt, die sowohl auf Messda-
ten als auch physikalischem Vorwissen basieren und deren resultierende Modelle sich
bei den Gray-Box-Modellen einordnen lassen. Zunichst wird Abschnitt das Ver-
fahren SINDy erldutern, welches auf der Grundlage von Messdaten (und ggf. Vorwis-
sen) ein interpretierbares Modell identifiziert. Somit ist dieses in der Abbildung [3-1] bei
den Gray-Box-Modellen vorzufinden. Neuronale Netze (NN), welche im darauffolgenden
Abschnitt fiir den weiteren Verlauf der Arbeit kurz definiert werden, gehdren zu den
Black-Box-Modellen. Thre Erweiterung um ein physikalisches Simulationsmodell, das
laut der Abbildung [3;1'] zu den White-Box-Modellen gehort, fiihrt zu den Physics-Guided

24Der Begriff hybrid ist dabei nicht zu verwechseln mit hybriden Modellen, die diskret und kontinuierlich
sind.
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(Recurrent) Neural Networks (PG(R)NNs) in den Abschnitten [3.1.3| und [3.1.4] Diese

konnen ebenfalls zu den Gray-Box-Modellen gezihlt werden und werden in dieser Ar-

beit auf die Anwendung nicht-autonomer, mechatronischer Systeme erweitert. SchlieBlich
wird die Nutzbarkeit solcher Modelle, angelehnt an die Definition aus Abschnitt[I.2] nach
den Anforderungen im Abschnitt[3.1.5] analysiert. Einige der folgenden Absitze
sind zudem bereits Teil der Vorverdffentlichungen [GT22; |SGT22].

3.1.1 Sparse Identification of Nonlinear Dynamics (SINDy)

Ausgehend von hochdimensionalen Systemen in der Fluiddynamik, entstand in [BPK16b]
die Methode Sparse Identification of Nonlinear Dynamics (SINDy), welche ein lineares
Regressionsmodell ausschlieBlich aus Messdaten extrahiert. Damit weist das Verfahren
eine nahe Verwandtschaft zu Modellreduktionstechniken wie Proper Orthogonal Decom-
position und zu Koopman-basierten Techniken wie Dynamic Mode Decomposition auf
[BK19]]. Aufgrund der einfachen Handhabung und der Zugénglichkeit der entstehenden
Modelle fiir weitere Analyse- oder Syntheseschritte erfreut es sich in verschiedenen Dis-
ziplinen grofer Beliebtheit, z. B. in der Biologie und Physik [DBR*17; |SST16].

Voraussetzung fiir SINDy ist die Verfiigbarkeit von Messdaten des vollstdndigen Zustands
x € R", wobei die Systemordnung n eine sehr hohe Dimension widerspiegeln kann. Lie-
gen N Messdaten des Zustands fiir jeden Zeitschritt k = 1,..., N vor, so konnen diese

zeitversetzt in Matrizen X und X’ € R™¥~D angeordnet werden, sodass

X = X1 X2 ... Xn-1|> X = X2 X3 ... Xy (31)

gilt. Die grundlegende Frage lautet nun, wie eine geeignete Darstellung fiir die Evolu-
tion des Zustands iiber x;,; = f(x;) gefunden werden kann. Dazu wird die Dynamik f
als eine Linearkombination geeigneter Terme aus der Matrix ¥(X) € R¥=D>% mit der

Parametermatrix 6 € R™" reprisentiert, indem
X =0¥Y'(X) (3.2)

gilt. Hierbei beschreibt ¥(X) = (%(X), U (X), vi(X), ..., lﬂng(X)) eine Funktions-
bibliothek aus ngy (nicht-)linearen Termen (), die moglicherweise die Dynamik f des
Systems, von dem die Messdaten stammen, beschreiben konnen. Da die meisten dyna-
mischen Systeme jedoch durch einige wenige Funktionen charakterisiert werden konnen,
wird angenommen, dass die Parametermatrix 6 diinnbesetzt ist (engl. sparse), d. h. dass le-

diglich einige wenige Eintrdage verschieden von Null sind. Somit lassen sich Algorithmen
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aus dem Bereich der Sparse Regression anwenden. Die Autoren von SINDy empfehlen
dazu den populidren Ansatz Least Absolute Shrinkage and Selection Operator (LASSO),
welcher auf [[Tib96]] zuriickgeht und eine Pareto-optimale Losung bzgl. Modellgiite und
Modellkomplexitit liefert. Mittels LASSO ldsst sich dann fiir die i-te Zeile von 6 mit

i=1,...,nund 4 > 0 die folgende Losung des Optimierungsproblems formulieren:

0 = argomin X, — ;¥ (X)|l, + 164, (3.3)
Hierbei stellt X die i-te Zeile der Datenmatrix X’ dar. Das konvexe Optimierungsproblem
(3.3) ldsst sich ebenso auf den Fall nicht-autonomer Systeme, d. h. Systeme mit Eingang,
erweitern und wird dann als SINDYc¢ bezeichne@ [BPK16a]. Dazu werden die Messwer-
te des Eingangs u ebenfalls in einer Datenmatrix U gesammelt, worauthin das Verfahren
analog mit einer angepassten Bibliothek, welche auch Terme bezogen auf den Eingang
enthélt, durchgefiihrt werden kann. Neben der rein datenbasierten Identifikation durch
Messdaten kann das SINDy-Verfahren auch Vorwissen beriicksichtigen, z. B. durch eine
konkrete Bibliothekswahl, bei der Hypothesen iiber das zu identifizierende System einge-
hen. Weitere Eigenschaften, die durch Vorwissen bekannt sind, wie Symmetrie, konnen
durch Nebenbedingungen formuliert werden (vgl. [BK19]). Dementsprechend kann das
SINDy-Verfahren sowohl zu den datenbasierten als auch zu den hybriden Techniken in
der Systemidentifikation gezidhlt werden.

Da fiir die Identifikation mittels SINDy geniigend Daten vorliegen miissen, wird das Mo-
dell offline basierend auf der Trainingsmenge aus den Datenmatrizen X, X’ und ggf. U be-
stimmt. Nach erfolgreicher Validierung anhand von weiteren Messdaten liegt schlielich
ein (in der Regel nichtlineares) Modell vor, welches interpretierbar und fiir die weiteren
Schritte des Regelungsentwurfs zuginglich ist. Allerdings besteht ein gravierender Nach-
teil darin, dass das SINDy-Verfahren Messwerte des vollstdndigen Zustands benotigt.
Dies ist in realen Prozessen aufgrund von messtechnischen Herausforderungen oder des
Kostendrucks bzgl. der Sensorik selten umsetzbar. Dieser Nachteil kann nur relativiert
werden, wenn alle Zustinde des Systems einen differentiellen Zusammenhang aufwei-
sen, sodass die nicht messbaren Zustandsgroflen alternativ numerisch differenziert oder

gefiltert werden konnen.

Modellierung des Golfroboters

Dennoch wird die Methode nun anhand eines realitdtsnahen Beispiels, dem Golfrobo-

ter, untersucht, welcher am Lehrstuhl fiir Regelungstechnik und Mechatronik (RtM) als

2Diese Abkiirzung bedeutet SINDy with control (SINDYc). Im weiteren Verlauf wird jedoch der Be-
griff SINDy genutzt, da sich die Betrachtung autonomer und nicht-autonomer Systeme aus dem
Zusammenhang ergibt.
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Testobjekt fir ML-Methoden dient und in der Abbildung [3-2] dargestellt ist. Das Rege-
lungsziel des Roboters ist es, den Golfball erfolgreich in das Loch zu putten. Dafiir ist
es erforderlich, dass der Schldger eine bestimmte Geschwindigkeit zum Zeitpunkt des
Schlags aufweist, die ihn weder iiber das Loch springen noch vor dem Loch stoppen lésst.
Diese Schlagdynamik wird durch das nichtlineare Zustandsraummodell mit dem Zustand
x = (x1,%)7 = (¢, )" € R?, dem Motormoment als Eingang u € R und den Parametern
p € R7, die im Anhang in der Tabelle dargestellt sind, folgendermafen formuliert:

x = f(x,u,p)

X
i (J—l (—mgassi . ’ (3.4)
gasin(x;) — My(x) + 4u)

y = h(x) = x;.
Dabei gilt fiir das nichtlineare Dimpfungsmoment:
My(x) = dx; + rousign(x;) mxia + mg cos(x)|. (3.5)

Details zum Golfroboter, wie etwa seine Regelungsstrategie, finden sich im Anhang[A6.1]
sowie in [JFTT22] und werden an dieser Stelle nicht weiter ausgefiihrt.

(a) Aktueller Aufbau, Stand 2023, (b) Vereinfachter physikalischer Freischnitt,
© Heinz Nixdorf Institut vgl.

Abbildung 3-2: Der Golfroboter und seine physikalische Modellierung

Die Anwendung von SINDy ist méglich, da der Roboter genau den erforderlichen diffe-
rentiellen Zusammenhang zwischen dem gemessenen Winkel ¢ und der nicht messbaren

Winkelgeschwindigkeit ¢ aufweist. Nach Gleichung (3.1) werden die aufgenommenen
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Messwerte in den Matrizen X, X" und U gesammelt, wobei X’ durch numerische Dif-
ferentiation hergeleitet wird. AnschlieBend werden die folgenden, zueinander dhnlichen

Bibliotheken zur Identifikation genutzt:

\Pl(xs I/l) = (19 X1, X2, X%a -x%a u) )
Wa(x,u) = (1, x1, x2, cos(x1), cos(xz), u)

Ws(x, 1) = (1, x1, %2, coS(x1), 15, 1)

Die Abbildung [3-3|zeigt, inwiefern die auf Messdaten basierenden Modelle unabhéngig
von verschiedenen Bibliotheken die Dynamik des Golfroboters wiedergeben konnen. Da-
zu wird eine Trajektorie ausgewdhlt, welche nicht zur Entwicklung der Modelle genutzt
worden ist und anhand derer die Modellgiite der SINDy-Modelle evaluiert werden kann.
Es ist zu erkennen, dass alle drei Modelle trotz ihrer unterschiedlichen Bibliotheken die
Dynamik des Golfroboters sehr gut wiedergeben konnen, da alle pridizierten Trajekto-
rien auf der gemessenen Referenztrajektorie, welche in schwarz dargestellt ist, liegen.
Dies wird insbesondere durch die VergroBerung des Verlaufs der Winkelgeschwindigkeit
sowie durch den Vergleich des kumulierten quadratischen Fehlers, der fiir alle Modelle
im Bereich 1072 liegt, deutlich. Die entstandenen Modelle kénnen mithilfe der genutzten
Bibliotheken und der dazugehorigen, identifizierten Parameter formuliert werden. Diese

lauten folgendermaBen:

o0 1 0 00 0
"“lo -0,0122 0,999 0 0 0,0267)’
0 1 0 0 0 0
6, = ; (3.6)
0,0014 —0,0127 0,999 —-0,0012 0 0,0267
o[ O 1 0 0 0 0
* 10,0014 -0,0127 0,999 -0,0012 0 0,0267)

Folglich weisen die Modelle aufgrund der sich nur geringfiigig unterscheidenden Biblio-
theken eine dhnliche Struktur auf, welche physikalisch interpretierbar und daher fiir wei-
tere Analyse- oder Syntheseschritte nutzbar ist. Dies liegt daran, dass die jeweilige Pa-
rametermatrix diinnbesetzt ist, was sich beispielsweise durch die Werte in der zweiten
Zeile im Bereich 10~ bestiitigt. Bemerkenswerterweise stimmen sogar die Modelle 2
und 3 vollstindig iiberein, obwohl sie sich im Term s unterscheiden. Alle drei Mo-
delle weisen zudem gleichwertige Skalierungen auf. Allerdings wiegt der Nachteil, dass
der vollstdndige Zustand bekannt sein muss, fiir die Nutzung in der Zustandsschidtzung
schwer. Zudem werden die SINDy-Modelle offline generiert und kénnen deshalb nicht
wihrend der Zustandsschidtzung genutzt werden. Ferner besteht wie bei allen datenba-
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sierten oder hybriden Verfahren die Notwendigkeit, dass geeignete Messdaten vorliegen,
die den interessierenden Phasenraum abdecken. Dennoch stellt diese Methode eine vor-
teilhafte Moglichkeit dar, aus Messdaten interpretierbare Modelle zu extrahieren, welche
eine hohe Modellgiite aufweisen. Somit setzt das SINDy-Verfahren nicht nur Anforde-
rung [F.2|um, sondern lésst aufgrund seiner hohen Modellgiite auch eine hohe Schitzgiite
erwarten, wenn die Schwierigkeit, dass der vollstindige Zustand bekannt sein muss, iiber-
wunden werden kann. Daher wird die Grundidee dieses Verfahrens im Kapitel 4] nédher be-
leuchtet und fiir die Entwicklung geeigneter Schitzverfahren aufgegriffen. Die Nutzung

einer Bibliothek aus physikalisch motivierten Termen stellt hierbei den Kern des entwi-

ckelten Verfahrens dar (vgl. Abschnitt 4.2).

T | g— T T 0,03 T T T T 1
= O \, 1% &7
S -1 1 1 1 1 1 1 = ¥
0o 1 2 3 4 / 6 7 8 onft FI
—_ B3 ¥
Q 2 ~ I * : = g .gf";'
i 0 N é‘” e S s
s 2t \f 1 2 ]
S- & 0,01 | k -
0 T 5 :
E‘ ()’5 - T T T T T T E {5,;
E, 0 N é 0 :-'"'-‘“4; |
S 05k 1 1 1 1 1 1 N TR R R N B
0 1 2 3 4 5 6 7 01234567
Zeit t[s] Zeit t [s]

= Messung === SINDyy, '+++ SINDyy, SINDyy,

Abbildung 3-3: Modellgiite eines SINDy-Modells unterschieden in die Bibliotheken
VY,,¥,, W5 und basierend auf Code aus [|[BK19|]

3.1.2 Neuronale Netze

Eine der populérsten Methoden im maschinellen Lernen sind kiinstliche neuronale Net-
ze (NN). Diese sind der biologischen Informationsverarbeitung nachempfunden und sol-

len einen beliebigen, funktionalen Zusammenhang f von Eingingen x € X € R” und

Ausgiingen y € Y C RE mit

fiX>Y (3.7)
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approximieren. Dieser Zusammenhang wird durch ein neuronales Netz als eine Funk-
tion f,, Uber einen gerichteten Graphen, bestehend aus Knoten und Kanten, beschrie-
ben [Bis06; KBK™13; Kro16;/Sch10]]. Die Knoten, nachfolgend als Neuronen bezeichnet,
sind als Verarbeitungseinheiten in mehreren Schichten angeordnet. Die Neuronen sind
hierbei durch gerichtete Kanten verbunden, wobei jeder Kante, die ein Neuron i mit einem
Neuron j verbindet, ein Gewicht {; zugeordnet wird. Zudem existiert fiir jede Schicht ein
weiteres Neuron j, welches als additives Gewicht genutzt werden kann. Daher kann der
obige Zusammenhang (3.7) mit { € Uund y € Y durch das NN konkretisiert werden zu

Suw: XXUBY, §=fyxd. (3.8)

Die Anordnung der Neuronen und ihr Informationsfluss untereinander, der durch die
Kantenrichtungen ausgedriickt wird, wird als Netzarchitektur bezeichnet und ist in der
Abbildung [3-4]skizziert. Dabei lassen sich grundsitzlich zwei verschiedene Architekturen
unterscheiden. Wenn der Informationsfluss der Neuronen ausschlieBlich vorwirts von den
Eingiingen zu den Ausgiingen verlduft, demnach ohne Verbindungen in eine vorige oder in
die aktuelle Schicht, handelt es sich um ein vorwirts gerichtetes Netz (vgl. Abbildung[3-4]
links). Ist dagegen eine Form der Riickkopplung des Informationsflusses gegeben, z. B.
dass der Ausgang eines Neurons mit einem Neuron einer vorhergehenden Schicht ver-
bunden ist, zeichnet sich das Netz durch eine rekurrente Architektur aus und wird als
rekurrentes neuronales Netz (RNN) bezeichnet. Weitere Arten von Riickkopplungen sind
in der Abbildung rechts dargestellt.

Abbildung 3-4: Architekturen eines NNs: Vorwdirts gerichtet (links) und rekurrent (rechts)
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Die Kernidee des Lernens bildet ein lineares Regressionsmodell, das auf einer Linearkom-
bination nichtlinearer Basisfunktionen basiert und mehrere nichtlineare Transformationen
durchlauft [Bis06; KBK™ 13; Kro16; Sch10]. Anhand des einfachen, vorwirts gerichteten
und zweischichtigen Netzes, welches in der Abbildung [3-4] visualisiert ist, wird nun der
Vorgang des Lernens veranschaulicht. Es wird ausschlieBlich iiberwachtes Lernen, engl.
supervised learning, thematisiert, sodass die Kenntnis der Ausginge y zu den zugehdrigen
Eingédngen x vorausgesetzt wird. Zunéchst wird das Netz von links nach rechts durchlau-
fen, woraufhin ein Netzausgang $ mit/ = 1, ..., L basierend auf den Eingiingen x sowie

auf den zufillig mit kleinen Werten initialisierten Gewichten ¢ berechnet wird:

J D
hx0 = f [Z 47 - {Z %+ 4}}3] + é,i?] : (3.9)
j=1

i=1

wobei D Eingangsneuronen, J versteckte Neuronen und L Ausgangsneuronen vorliegen
und fi, f> (nichtlineare) Aktivierungsfunktionen darstellen. In der Gleichung (3.9)) kénnen
die Schichten und Berechnungsvorschriften des NNs durch die Klammerausdriicke von
innen nach auflen identifiziert werden. Der préadizierte Netzausgang y; erfolgt somit durch
eine mehrfache Abfolge aus Linearkombinationen der Neuronen mit den Gewichten und
nichtlinearen Funktionen. Hierbei wird die letzte, sogenannte Ausgabefunktion je nach
Problemstellung gewihlt, fiir Regressionsprobleme ist dies in der Regel die Identitit.
Das neuronale Netz beschreibt daher, wie in Gleichung (3.8) dargestellt, einen nichtli-
nearen, funktionalen Zusammenhang zwischen den Eingéngen x und den Ausgidngen y
unter dem Einfluss der Gewichte {. Nachdem der Informationsfluss von den Eingéngen
zu den Ausgingen verarbeitet worden ist, werden fiir jedes Tupel (x,y), mitg =1,...,N
Trainingsdaten der Netzausgang § mit dem Ausgang y verglichen. Der Trainingsfehler e,
definiert durch

eq :ﬁ(xq’g) _yq’

soll dabei moglichst klein werden, damit das Netz den zu lernenden Zusammenhang kor-
rekt wiedergibt. In der Regel wird daher der quadratische Fehler basierend auf den ge-

samten Trainingsdaten als Kostenfunktion gewihlt, sodass

| =

N
Jer(%,0) = 5 3 190, ) = y, I (3.10)
q=1

minimiert werden soll. Dies gelingt, indem das Verfahren der Backpropagation angewen-

det wird, welches den Fehler durch die Nutzung des Gradienten VJ,,,({) = ag—Z”‘ riickwirts

durch das neuronale Netz berechnet. Dieses ldsst sich sehr einfach anhand der differen-
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zierbaren Aktivierungsfunktionen sowie durch Anwendung der Kettenregel durchfiihren
(vgl. [B1s06]]). AnschlieBend kann mit dem Newton-Verfahren ein geeigneter Gewichts-

vektor £V fiir den nichsten Iterationsschritt 7 + 1 durch

{ =40 =V (2.47)

bestimmt werden, wobei der Parameter > 0 als Lernrate bezeichnet wird. Die Lern-
rate beeinflusst die Konvergenzgeschwindigkeit mageblich und muss sorgsam gewéhlt
werden. Optimierungsbasierte Anpassungen wie die Nutzung der Hessematrix in ab-
geschwichten Algorithmen wie z. B. dem Quasi-Newton-Verfahren sind populdar und
erhohen den Optimierungserfolg [Bis06]. Fiir die Anwendungsbeispiele in dieser Arbeit
wird das ADAM-Verfahren genutzt [KB15]], welches auf algorithmischer Differentiation
basiert [GWOS|]. Wihrend des Trainings wird hiufig eine weitere Datenmenge zur Vali-
dierung genutzt, welche andere Datentupel als die Trainingsmenge enthilt, um den Trai-
ningsfortschritt zu bewerten. Ist das Training durch die Konvergenz der Gewichte oder
durch eine Abbruchbedingung beendet, steht iiblicherweise eine weitere Testdatenmenge
zur Verfiigung, um die Performanz des neuronalen Netzes und damit dessen Trainingser-
folg final zu bewerten. Diese unterscheidet sich von den Trainingsdaten und enthilt andere
Datentupel. Ist der zu lernende Zusammenhang durch eine geeignete Wahl von Trainings-
daten abgedeckt und besitzt das neuronale Netz eine ausreichend komplexe Netzwerkar-
chitektur, kann durch mathematische Theoreme fiir verschiedene Architekturen und Akti-
vierungsfunktionen gezeigt werden, dass das neuronale Netz konvergiert und als globaler
Funktionsapproximator wirkt, der einen beliebigen Zusammenhang annédhern kann (vgl.
[HSW89; FN93; CC95bj; CC95al]). Haufig miissen die Daten jedoch zunéchst vorverarbei-
tet werden, um eine vergleichbare Skalierung der Daten untereinander zu gewihrleisten.
Ebenso gilt es Herausforderungen bzgl. der Uberanpassung, engl. Overfitting, oder der

Explorationsfdhigkeit zu beachten (vgl. [Bis06]).

3.1.3 Physics-Guided Neural Network (PGNN)

Durch ihre Eigenschaft als lineare Regressionsmodelle, welche im vorangegangenen Ab-
schnitt beschrieben wurde, konnen neuronale Netze einen beliebigen, funktionalen Zu-
sammenhang abbilden, sofern geeignete Trainingsdaten iiber diesen vorliegen und die
Netzarchitektur entsprechend gewihlt wird (vgl. [HSW&9; |(CC95al])). Diese Eigenschaft
als globale Funktionsapproximatoren ist insbesondere vorteilhaft, um die im Kapitel
beschriebene Problematik der Modell-Realitits-Liicke zu 16sen. Dort, wo physikalisch
und mathematisch motivierte Modelle an ihre Grenzen stoen und gleichzeitig Messdaten
verfiigbar sind, kann ein neuronales Netz in Kombination mit einem physikalisch moti-

vierten Modell unterstiitzen und die Modell-Realitit-Liicke Af moglicherweise verklei-
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nern. Damit stellen die sogenannten Physics-Guided Neural Networks (PGNNs), Physics-
Informed Neural Networks (PINNs) oder Physics-Based Neural Networks (PBNNs) einen
sehr populdren Ansatz dar, welcher sich in der Abbildung [3-5] durch einen sprunghaf-
ten Anstieg des jeweiligen Schlagworts in Google-Scholar-Beitrigen bemerkbar macht.
Dabei scheint die Haufigkeit der Schlagworte anzuzeigen, dass sich erste Konzepte be-
reits friih entwickelten und vor allem in der letzten Dekade an Popularitidt gewannen. Das
Diagramm [3-5|suggeriert zudem, dass eine weitere Zunahme zu erwarten ist. Fiir dieselbe
grundlegende Idee werden hierbei unterschiedliche Begriffe von den Publizierenden ge-
nutzt, welche vom restriktiven Begrift physikalisch basiert iiber physikalisch informiert
bis hin zur vagen Bezeichnung physikalisch motiviert wandeln. Eine eindeutige Definition
bzw. Zuordnung dieser Begriftfe zu konkreten Strukturen ldsst sich bisher nicht einheitlich
in der Literatur erkennen und driickt sich hochstens durch Tendenzen aus, sodass die Fach-
ausdriicke hiufig synonym und nach Auffassung der Publizierenden verwendet werden.
Am populirsten scheint nach der Abbildung der Begriff physikalisch basierte neuro-
nale Netze zu sein, aufgrund der Historie in der Literatur hat sich jedoch die Bezeichnung

PGNN fiir die vorliegende Dissertationsschrift etabliert.

[ T I I I I I I I

Y = PGNNs

= - -

& 125007 . pINNs

£ 10000 | PBNNs -

S 7500 F o

[a W r

5 5000 ;-

"O L4

S 2500 o

E O dhppspueESsEEEEm "'/_

< | | | | | | | |
1980 1985 1990 1995 2000 2005 2010 2015 2020

Jahr

Abbildung 3-5: Popularitidt der PGNNs, PINNs und PBNNs zwischen 1980 und 2022,
dargestellt durch Auftreten als Schlagwort in Google-Scholar-Beitriigen
(Stand September 2023, erzeugt durch die modifizierte Nutzung von
[[Thi22])

Auf der Grundlage, dass ein physikalisches Simulationsmodell in parametrischer Form
vorliegt, konnen verschiedene Arten der Kombination in Betracht gezogen werden. Im
folgenden Verlauf dieses und des darauffolgenden Abschnitts stellt eine Differentialglei-
chung mit dem Zustand x,,, € R" und den Parametern p € R" ein solches Simulations-
modell dar:

xphy = fphy(xphya u, P), (3 11)

y phy = X phy-
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Voraussetzung fiir ein iiberwachtes Lernen der realen Systemdynamik f mithilfe neuro-
naler Netze ist allerdings, dass der vollstindige Zustand messbar ist, d. h. dass y = x
gilt, oder dieser durch einen differentiellen Zusammenhang ermittelt werden kann (vgl.
Abschnitt[3.1.1). Dies ist im iiberwachten Lernen erforderlich, um die Gesamtdynamik
eines betrachteten Prozesses in der Trainingsmenge abbilden zu konnen. Zudem sollte
das Simulationsmodell (3.TT]) mittels eines einfachen, numerischen Integrationsverfah-
rens stabil ausgewertet werden konnen, sodass die diskreten Zustéinde x,,; bestimmt
werden konnen (vgl. Anhang[A5)). Existiert nun ein solches Modell, lassen sich verschie-
dene Arten der Verschaltung in Erwédgung ziehen, welche im Rahmen dieser Arbeit kate-
gorisiert worden sind (vgl. Vorveroffentlichung [GT22]]). Diese sind in der Abbildung[3-6|
wihrend der Trainingsphase dargestellt, in welcher jeweils der Fehler e, zwischen dem

messbaren Prozessausgang x;,; und dem Modellausgang X;,; minimiert wird.

U, X Xi+1 (78]
> Prozess >
Ui, Xi X+l €kl
> Prozess —»O—>»>
Physikalisches -~ NN A
| Simulationsmodell - .
X phy.k Xi+1
Physikalisches
> . . —,\_>
Simulationsmodell
c) X phy k
Ui, Xk Xi+1 (7381
» Prozess >
> NN
£k+l
Physikalisches _ NN
| Simulationsmodell " .
X phyk Xi+1

Abbildung 3-6: Modellierungsarten aus physikalischen (griin) und datenbasierten (rot)
Komponenten, wobei jeweils der Fehler ey, durch das Training minimiert
wird: a) Serielle Anordnung b) Parallele Anordnung c) Mischform

Historisch und strukturell gesehen ist die Reihenschaltung aus physikalischem Modell
und NN, welche in der Abbildung [3-6f) visualisiert ist, eine der populidrsten hybriden
Konstruktionen, da der Modellfehler Af = X1 — Xppy 41 zWischen Prozess und physi-
kalischem Modell approximiert wird. Bereits in [PU92] wird die Abweichung durch ein
vorgeschaltetes Netz angendhert. Der Vorteil der Reihenschaltung ist eine einfache Hand-
habung, die das Problem der Modelldiskrepanz 16st. Der Fehler A f wird jedoch nur tem-
porir gelernt. Aufgrund des Systemverhaltens, der Anregung oder anderer Zeit- und Um-
welteinfliisse weist dieser zu jedem Zeitpunkt einen anderen quantitativen Wert auf. Damit

erlaubt die serielle Anordnung die Kompensation der Modellabweichung, aber keine Ein-
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sicht, worin diese besteht bzw. woraus diese resultiert. Daher kann kein iibergeordnetes
Lernen stattfinden, welches eine Riickkopplung auf das Modell erlaubt und beispielsweise
Anforderung [F.2] umgesetzt. Folglich stellt ein trainiertes Netz dieser Art keine universal
giiltige Losung dar, weil dessen Performanz stark von den Trainingsdaten abhingt und
u. U. eine geringe Extrapolationsfihigkeit aulerhalb der Trainingsdaten aufweist. Den-
noch ist diese Anordnung fiir bestimmte Fille eine geeignete Wahl, z. B. wenn bekannt
ist, dass es sich um konstante Modellfehler wie Offsets durch Mess- oder Kalibrierungs-
fehler handelt (vgl. Abbildung[2-7). Eine weitere Moglichkeit besteht in der rein datenge-
triebenen Modellierung der Systemdynamik, dargestellt in der Abbildung [3-6b), bei der
ein neuronales Netz parallel zum physikalischen Modell geschaltet wird und kein Infor-
mationstransfer stattfindet. Dies stellt jedoch kein probates Mittel fiir das Ziel [F.2] dieser
Arbeit dar, welches explizit eine Anwendbarkeit jenseits eines Black-Box-Modells for-
dert.

Als letzte Moglichkeit, welche in der Abbildung ) zu erkennen ist, kann eine Misch-
form aus beiden zuvor diskutierten Strukturen eine sinnvolle Option zur Modellierung
sein. Diese geht auf [KWRKI18]|] zuriick und ist mittlerweile eine populidre Strategie ge-
worden, um physikalisch und datenbasierte Komponenten zu verbinden [PWF*18]. Als
Bezeichnung hat sich das PGNN fiir diese Struktur durchgesetzt, dessen Giiltigkeits-
bereich in der Abbildung durch den gestrichelten Kasten dargestellt ist.

Ui, Xk X+ 1 €r+1
> Prozess

NN
Physikalisches

| Simulationsmodell

»
'

X phy,k+1

Abbildung 3-7: Struktur eines PGNNs wdhrend des Trainings: Es umfasst ein physikali-
sches Simulationsmodell (griin) und ein vorwdirts gerichtetes NN (rot).

Im Unterschied zur seriellen Anordnung in Abbildung [3-6p) erhilt das neuronale Netz in
der Struktur nach [KWRK18] als Einginge nicht nur den pridizierten Ausgang des Simu-
lationsmodells X,y «+1, sondern auch die aktuelle StellgroBe u;, mit welcher das reale Sys-
tem angeregt wird, und den aktuellen Zustand x;, in dem sich das System befindet. Dem-
nach kann das neuronale Netz nicht nur den Modellfehler, sondern auch die vollstindige

Dynamik sowie die Wechselwirkungen zwischen Modellfehler und tatsdchlicher System-
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dynamik lernen. Dariiber hinaus erleichtert die Beriicksichtigung des pridizierten Aus-
gangs X, x+1 das Training, da es das Netz in eine physikalisch plausible Richtung lenkt,
auch wenn das Simulationsmodell (3.11)) qualitativ Abweichungen oder Méngel aufweist.
Der funktionale, zeitkontinuierliche Zusammenhang, der durch ein PGNN gelernt wer-
den soll, wird im Rahmen dieser Arbeit auf nicht-autonome Systeme erweitert (vgl. Vor-
veroffentlichung [GT22]) und durch

Srony : RTXR*XRP XU - R, £ = f penn (X, Xphy, 1, &)

beschrieben. Klassischerweise wird die Dynamik f p;yy durch Minimierung der Kosten-
funktion (3.10) gelernt, indem die Gewichte ¢ optimiert werden. Um allerdings nicht
nur ein physikalisch plausibles Modell basierend auf den Trainingsdaten zu entwickeln,
sondern auch eine physikalisch konsistente Pradiktion aulerhalb der Trainingsdaten bzw.
erhohte Extrapolationsfihigkeit zu gewihrleisten, schlagen Karpatne et al. in [KWRKI18]]
eine Erweiterung der rein Daten auswertenden Kostenfunktion J,,, um einen physikali-
schen Term J,,;,, vor. Dieser berlicksichtigt qualitatives Vorwissen, welches zusitzlich zu
den Daten verfiigbar ist. Beispiele dafiir sind physikalische Naturgesetze, Erhaltungsprin-
zipien, Beschriankungen, Regelgesetze oder vages Erfahrungswissen [MIM™18; RC21].
Dieses Wissen ldsst sich durch Gleichheits- oder Ungleichheitsbedingungen G bzw. H

ausdriicken, welche als weitere Kostenfunktion J,;,, formuliert werden konnen:

Gx) =0 — ) =GP,

(3.12)
Hx) <0  — Jyy(x, ) = max(0, H(x)).

So erortern Karpatne et al. beispielsweise die Problematik, wie die Temperatur inner-
halb eines Sees abhéngig von der Tiefe des Gewissers modelliert werden kann. Sie 16sen
diese Problematik mithilfe eines PGNNs, welches ein physikalisch motiviertes Seemo-
dell enthilt und die Beziehung zwischen Temperatur, Dichte und Tiefe des Wassers als
zusitzliche Wissenskomponente J,;, iiber eine Bedingung H im Lernprozess beriick-
sichtigt. Die Resultate zeigen, dass das PGNN die wenigen aufgenommenen Messdaten
entsprechend nachbilden und physikalisch plausibel darstellen kann. Entgegen dieser For-
mulierung in [KWRKI18], bei der J,;,, durch einen Faktor lediglich als Regularisierungs-
term betrachtet wird, wird die physikalische Kostenfunktion in dieser Arbeit jedoch in ein

Mehrzieloptimierungsproblem eingebettet, sodass
g* = arg min J(x, {) = arg min (1 - /lphy) ’ Jerr(xa g) + /lphy ’ Jphy(x7 é‘) (313)
4 ¢

gilt. Die Losung dieses Mehrzieloptimierungsproblems (3.13]) wird mit einem einfachen

Skalarisierungsverfahren erzielt. Konkret wird die gewichtete Summe verwendet [EhrO5;
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NWO06||, welche durch den Skalar O < A,,, < 1 die Priorisierung der einzelnen Ziele
J. festlegt. Das Auffinden der Pareto-optimalen Punkte gestaltet sich in der Praxis aber
u. U. herausfordernd. Daher diskutieren die Autoren von [RPG21]] verschiedene Ein-
flussfaktoren auf die Konvergenz des Mehrzieloptimierungsproblems, wenn im Gegen-
satz zum vorgestellten Konzept die Differentialgleichung des Simulationsmodells (3.1T))
als physikalische Kostenfunktion J,, betrachtet wird, um das Netz direkt die System-
dynamik lernen zu lassen. Diese populdre Strategie, das physikalische Simulationsmo-
dell statt qualitativem Vorwissen in den Lernprozess zu integrieren [LRP19; GDY19;
RPK19; ACS™21; NKFU22|, ist jedoch nur zielfiihrend, wenn das Simulationsmodell
eine hohe Modellgiite aufweist, da das Netz potentiell irrtlimliche Eigenschaften nach-
bilden kann. Im Rahmen dieser Arbeit steht jedoch ein Simulationsmodell mit Unge-
nauigkeiten am Ausgangspunkt der Problemstellung, weswegen diese Strategie nicht in
Frage kommt (vgl. Abschnitt [T.2). Allerdings zeigen Rohrhofer et al. in [RPG21] auf,
dass insbesondere Parameter, die die Struktur des Netzes bestimmen, einen starken Ein-
fluss auf die Form der Paretomenge besitzen, sodass diese mittels der Hyperparameter-
optimierung sorgsam gewéhlt werden sollten. Dariiber hinaus steigt die Komplexitit des
Optimierungsproblems, wenn eine Anpassung fiir mehr als zwei Ziele in der Kosten-
funktion (3.13) vorgenommen wird, vgl. [Piel7]. In dieser Arbeit wird das Konstrukt
des PGNNSs erstmals auf ein nicht-autonomes System aus der Mechatronik angewendet.
Ublicherweise existiert in dieser Disziplin qualitatives Vorwissen, welches in der Kosten-
funktion durch einen Mehrzieloptimierungsansatz beriicksichtigt werden kann, z. B. die
Kenntnis iiber die Energiebilanz eines Systems. Daher werden nicht mehr als zwei Ziele
betrachtet, wenn im Folgenden die Modellgiite eines PGNNs fiir den Golfroboter und die
Ventildynamik eines Hydraulikzylinders mithilfe ihrer Energiebilanz untersucht werden.

Ergebnisse dieser Analyse bilden bereits Teile der Vorverdffentlichung [GT22]].

Modellierung des Golfroboters

Dem Modell des Golfroboters (3.4)) ist ein aufwendiger Modellierungsprozess vorange-
gangen, da beispielsweise die Charakterisierung der nichtlinearen Dampfung infolge des
Riemens eine Herausforderung darstellt. Diese Ddmpfung, welche im nichtlinearen Mo-
dell durch das Moment M, (vgl. Gleichung (3.5))) als Stick-Slip-Effekt angenéhert wird,
fiihrt aufgrund seiner Komplexitit weiterhin zu einer Modellabweichung im Vergleich zu
den Messdaten des Golfroboters. Diese soll daher datenbasiert identifiziert werden, um
die Modellierung der Ddmpfung zu ergéinzen. Als physikalisches Simulationsmodell f
dient dem PGNN deshalb das Modell (3.4). Das Vorwissen, dass es sich beim Golfrobo-
ter um ein dissipatives System handelt sowie dass der Energiefluss eines Systems durch

seine Zu- und Abfliisse definiert ist, kann dariiber hinaus zur Beschreibung einer qualitati-
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ven Energiebilanz genutzt werden, die das PGNN wihrend des Trainings beriicksichtigen
soll. Diese beinhaltet neben potentieller, kinetischer und dissipativer Energie auch jene
Energie, die dem Golfroboter durch den Eingang zugefiihrt wird [SGT22; MPSO8|:

Jphy(‘:éa (,;b, ‘;b, I/t) = AE(‘;b’ ‘;b’ (;b, I/t) (3 14)
= J¢>¢z + mgag?) sin(®) + d(fpz +ru sign(tfo) | é)za + mg cos(p) |¢J - 4u¢).

Die Teilkostenfunktion (3.14)), deren Abhingigkeit von den Gewichten ¢ aus Griinden der
Ubersichtlichkeit vernachlissigt wurde, iiberpriift demzufolge die physikalische Plausibi-
litdt der Energiednderung des Systems von einem zum néchsten Zeitschritt. Aufgrund
der Betrachtung der Zu- und Abfliisse der Systemenergie sollte idealerweise AE ~ 0
gelten, sodass mangelnde physikalische Integritdt mittels G aus der Gleichung (3.12)
wihrend des Lernens bestraft werden kann. Anschlieend werden Messdaten, die ver-
schiedene Trajektorien in Folge von sinusférmigen Anregungen mit konstanter bzw. sich
verdndernder Frequenz und Sprunganregungen enthalten, fiir das Training des PGNNs
vorbereitet. Dabei werden 60% dieser Daten fiir das Training genutzt, wohingegen jeweils
20% fiir die Validierung wéhrend des Trainings sowie fiir den Test nach Beendigung des
Trainings dienen. Um eine optimale Wahl der Einstellparameter fiir das PGNN zu bestim-
men, wird zudem eine Hyperparameteroptimierung mithilfe der BO durchgefiihrt (vgl.
Abschnitt [2.1.3). Diese bestimmt u. a. die Anzahl der Neuronen, die (initiale) Lernrate
oder die Gewichtung 4,,, bzgl. der beiden Ziele.

Einen Eindruck von der Pareto-optimalen Menge bzgl. dieser Ziele J,,, und J,, gibt die
Abbildung [3-8] welche fiir den Golfroboter die Pareto-optimalen und dominierten Punk-
te stichprobenartigﬁ] darstellt. Die variierende Farbe der Datenpunkte in der Abbildung
reprisentiert hierbei den Gewichtungsfaktor A,,. Ist dieser besonders klein, dargestellt
durch einen blaugriinen Datenpunkt in der Abbildung wird der typische Fehlerterm
Jerr, der die Ausginge des Netzes mit den Trainingsdaten abgleicht, schwerpunktméBig
beriicksichtigt und die Verletzung physikalischer Zusammenhinge durch J,;, lediglich
geringfiigig beachtet. Eine VergroBerung von A, fiihrt daher zu einer Verringerung des
physikalischen Fehlers und zu einer Vergroferung des datenbasierten Fehlers. In der
Abbildung [3-8]ist dagegen zu erkennen, dass die Pareto-optimalen Punkte alle sehr nah
beieinander liegen, wodurch die Auswirkungen des Gewichtungsterms fiir den Golfro-
boter moderat ausfallen. Weitere Beispiele fiir solche Paretofronten sind in der Quelle
[RPG21]] zu finden, welche diese systematisch fiir PINNs untersucht, deren J,;, die Dif-

ferentialgleichung des Systems enthilt.

#Es wurden pro 4, zehn verschiedene, unterschiedlich initialisierte Netze ausgewertet.
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Abbildung 3-8: Paretofront fiir den Golfroboter mit variierendem Gewichtungsfaktor Ay,
ausgedriickt durch die Farbskala, vgl. [GT22|]

Nach dem Training und Auffinden der optimalen Parametrierung (BO: A,,, = 0.8175,
Anzahl der Neuronen 27) wird das entstandene Golfroboter-Modell fpgyy anhand einer
anderen, unbekannten Trajektorie getestet und mit einem klassischen neuronalen Netz,
dem nichtlinearen Simulationsmodell und einem SINDy-Modell verglichen. Letzteres ist
dabei basierend auf der Bibliothek ¥(x,u) = (X, x,, sin(x;), cos(x,), tan~'(x,), )" trai-
niert worden. Die Abbildung [3-9] visualisiert die Ergebnisse dieses Vergleichs, indem die
pradizierten Trajektorien der verschiedenen Modelle bzgl. der Testtrajektorie, welche in
schwarz abgebildet ist, dargestellt werden. Grundsitzlich scheinen alle Modelle eine ver-
gleichbare Modellgiite aufzuweisen. Wird jedoch jeweils ein Teilstiick der Abbildungen
vergrofert, lassen sich Abweichungen und Unterschiede der einzelnen Modelle erken-
nen. Das PGNN, dargestellt in rot, schwankt meistens zwischen dem Verlauf der Mess-
daten und des physikalischen Simulationsmodells (in griin), kann aber in der Regel eine
Verbesserung der Modellgiite im Vergleich zum physikalischen Modell erzielen, z. B.
fiir den Winkel. Dagegen weicht das NN (in hellblau) am stérksten vom tatsdchlichen
Verlauf des Golfroboters ab, obwohl dieses mit 39 Neuronen mehr Neuronen als das
PGNN aufweist. Folglich scheint das PGNN die Vorteile beider Perspektiven zu verei-
nen und daraus ein qualitativ hoherwertiges Modell zu erschaffen. Allerdings iibertrifft
das SINDy-Modell, dessen Trajektorien in lila dargestellt sind, die Approximationsgiite
des PGNN-Modells deutlich. Dies ist nicht nur qualitativ anhand der Verlaufe und ins-
besondere ihrer VergroBBerungen zu erkennen, sondern auch durch die Betrachtung des
mittleren quadratischen Fehlers in Tabelle der fiir das SINDy-Modell wesentlich ge-
ringer als fiir das PGNN-Modell ausfillt.
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Diese Situation wandelt sich jedoch, wenn wenige Datensitze fiir das Training zur Verfii-
gung stehen. Im Anhang zeigt die Abbildung beispielsweise das Approxi-
mationsverhalten der betrachteten Modelle, wenn ausschlieBlich transiente Dynamiken
wihrend des Einschwingens bzw. kurz nach Beginn der Anregung Teil der Trainingsdaten
sind. Aufgrund der geringen und wenig aussagekriftigen Trainingsdaten kann das SINDy-
Verfahren kein adidquates Modell extrahieren und die Golfroboterdynamik nur ungenau
wiedergeben. Durch das physikalische Simulationsmodell kann das PGNN trotz der ge-
ringen Datenmenge robust die Dynamik des Golfroboters anndhern. Folglich stellt das
SINDy-Verfahren weiterhin die vorteilhafte Losung dar, wenn viele und aussagekréftige
Messdaten zur Verfiigung stehen, da es im Gegensatz zum PGNN wenig Aufwand im
Training erfordert und ein interpretierbares Modell liefert, welches auch jenseits der Trai-
ningsmenge extrapolieren kann. Ist die Datenverfiigbarkeit und -qualitiit jedoch limitiert,
erweist sich das PGNN als die bessere Wahl zur Modellierung der Systemdynamik. Auf-
grund der Fihigkeit des PGNNs, die Dynamik eines Systems hinreichend genau zu appro-
ximieren, wenn ein physikalisches Simulationsmodell mit ausreichender Modellierungs-
tiefe gegeben ist und die Datenverfiigbarkeit variiert, wird im folgenden Anwendungsbei-
spiel die Modellgiite des PGNNs in Abhiingigkeit verschiedener Modellierungstiefen des

verwendeten, physikalischen Simulationsmodells analysiert.

- Messung Phys. Simulationsmodell NN
--=- PGNN --- SINDy

¢ [rad]

¢ [rad/s]

u[Nm]

Zeit t[s]

Abbildung 3-9: Modellgiite eines PGNNs im Vergleich zu anderen datengetriebenen und
physikalisch basierten Modellen anhand des Golfroboters, vgl. die ver-
grofierten Bildausschnitte (rechts) und [|GT22)]
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Modellierung der Ventildynamik

Servoventile bilden in vielen hydraulischen Aktoren den zentralen Bestandteil einer Re-
gelung. Allerdings ist ihre Dynamik sehr komplex, sodass eine detaillierte Modellbildung
einen hohen Aufwand erfordert. Dies ldsst sich aus der technischen Darstellung in der
Abbildung [A6-8]ableiten. In der Praxis hat es sich daher bewihrt, je nach Zweck, fiir den
das Modell erschlossen werden soll, verschiedene Modellierungstiefen des Ventils zu nut-
zen sowie den Detaillierungsgrad nicht hoher als erforderlich zu wihlen. Dies stellt eine
tibliche Maxime in der Modellbildung dar, nach der der Detaillierungsgrad eines Modells
vorangetrieben wird, das Modell aber so einfach wie moglich fiir den Zugang der jewei-
ligen Anwendung bleibt [Loc20]. Im Rahmen dieser Arbeit wird ein zweistufiges Servo-
ventil mit einem Diisen-Drallplatte-System betrachtet, welches innerhalb eines Hydrau-
likzylinders verbaut ist und fiir welches ein nichtlineares Modell der Ventildynamik durch
[Ker21]] erarbeitet worden ist. Dieses ist inklusive seiner identifizierten Parameter und
weiterer, geringerer Modellierungstiefen im Anhang zu finden (vgl. Tabelle [A6-2).
Die Abbildung [3-10] stellt die Modellierungstiefe anhand ausgewihlter, verschiedener
Modelle fiir das Servoventil dar und reicht vom einfachen Verstirkungsglied iiber ein
PT2-Glied bis zum detaillierten, nichtlinearen Modell. Die zunehmende Modellierungs-
tiefe von links nach rechts resultiert somit jeweils in einer hoheren Modellgiite und Mo-
dellgenauigkeit (vgl. [Loc20).

Genauigkeit
nimmt zu

v

PT2-Glied mit Linearisiertes Modell Nichtlineares

Verstirkungsglied dRasity Beschrinkungen mit Beschrinkungen Modell

v

Modellierungstiefe
nimmt zu

Abbildung 3-10: Auswahl einiger Modelle fiir das Servoventil mit unterschiedlichen Mo-
dellierungstiefen

Einen Kompromiss bzgl. der Modellierungstiefe und -genauigkeit stellt das folgende Mo-

dell dar, welches eine Verzogerungsdynamik zweiter Ordnung aufweist:

X2
X =
2y, _ L LS

y = X1.

27Lochbichler definiert in seiner Dissertation die Begriffe Modellierungsgrad und Modellgenauigkeit.
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Hierbei stellt der Zustand x = (yy, yv)? die Ventilschieberposition bzw. dessen Ge-
schwindigkeit dar. Als Eingang erhilt das Ventil die Spannung uy. Die Parameter des
Modells p = (Ky, Dy, Ty)" sind im Anhang in der Tabelle zu finden. Dieses
PT2-Glied ist fahig, die grundlegende Systemdynamik des Ventils abzubilden, kann aber
Beschrinkungen der Ventilschiebergeschwindigkeit bzw. -beschleunigung, welche durch
die Viskositit des Ols resultieren, nicht darstellen. Durch mehrere Versuche kénnen sol-
che Beschrinkungen allerdings experimentell geschitzt und in das PT2-Modell integriert
werden, welches somit einen weiteren Detaillierungsgrad erhilt (vgl. Abbildung[3-10jund
Anhang [A6.2). Die Auswirkung unterschiedlicher Modellierungstiefen des Simulations-
modells auf die Modellgiite eines PGNNSs ist bisher noch nicht untersucht worden. Daher
wird in dieser Arbeit eine Analyse des Einflusses anhand der Ventildynamik durchgefiihrt,
deren Ergebnisse in der Abbildung dargestellt sind.

Dabei wird in Analogie zur Gleichung (3.14) im vorigen Abschnitt erneut ein physika-
lischer Kostenterm J,;,, zur Energiebilanz beriicksichtigt, sodass das Training mithilfe
der Kostenfunktion (3.13)) erfolgt. Dieses basiert auf verschiedenen verrauschten Tra-
jektorien, die infolge unterschiedlicher Sprunganregungen variierend von minus zehn
bis plus zehn Volt gemessen worden sind. Die Aufteilung der Trainingsdaten in Trai-
ning, Validierung und Test geschieht wie im vorigen Beispiel. Anschlieend zeigt die
Abbildung [3-1Tp) das Verhalten, wenn das Modell (3.15) verwendet wird, wohingegen
die Abbildung [3-T1b) jenes darstellt, wenn das Modell (3.15)) zusitzlich mit den experi-
mentell bestimmten Beschrinkungen ausgestattet wird (vgl. Abbildung [3-10). Daher un-
terscheiden sich die beiden Abbildungen lediglich durch die Verldufe des PGNNs und des
physikalischen Simulationsmodells. Beide PGNNs weisen 11 Neuronen auf, unterschei-
den sich jedoch in der Gewichtung des physikalischen Kostenterms zu A,,, = 0,2527
bzw. A,,, = 0,3206. Dies deutet bereits nach der Hyperparameteroptimierung die Aus-
wirkung einer hoheren Modellierungstiefe durch eine verstirkte Beriicksichtigung des
physikalischen Terms an. Neben dem jeweils zugrunde liegenden Simulationsmodell wird
das PGNN zudem mit dem detaillierten, nichtlinearen Ventilmodell sowie mit ei-
nem Standard-NN, dessen Hyperparameteroptimierung zu 92 Neuronen fiihrte, und einem
SINDy-Modell verglichen, wobei die beiden letzteren auf denselben Trainingsdaten wie
das PGNN trainiert wurden. Die Bibliothek des SINDy-Verfahrens basiert dabei auf den
Zustinden und dem Eingang, um die Vergleichbarkeit zum Vorwissen des physikalischen
Modells (3.15)) zu gewihrleisten.

In der Abbildung [3-1Th) weist das physikalische Modell durch die fehlenden Be-
schrinkungen groBBe Abweichungen zu den Messdaten auf, welche sich insbesondere in
der Geschwindigkeit des Ventilschiebers durch ein Uberschwingen bemerkbar machen.
Trotzdem gelingt es dem PGNN, eine sehr gute Approximation des Ventils zu erzielen,

welche auf dem Niveau des nichtlinearen Ventilmodells liegt.
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Abbildung 3-11:

Modellgiite eines PGNNs bestehend aus einem Simulationsmodell mit
unterschiedlichen Modellierungstiefen im Vergleich zu anderen datenge-
triebenen und physikalisch basierten Modellen anhand der Ventildyna-
mik: a) Simulationsmodell (3.15) ohne Beschrinkungen, b) Simulations-

modell (3.15) mit Beschrinkungen, vgl. [GT22
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Dies lésst sich beispielsweise in den beiden VergroBerungen rechts von der Abbildung
erkennen. Im Kontrast dazu schaffen es weder das NN noch das SINDy-Modell das Sys-
temverhalten anzundhern und weisen starke qualitative Abweichungen auf. Dies resultiert
aus der einfach gewihlten Bibliothek des SINDy-Modells. Erhielte dieses eine Biblio-
thek mit Elementen des nichtlinearen Modells, wire eine hohere Modellgiite zu erwarten.
Wird fiir das PGNN ein Modell mit hoherem Detaillierungsgrad verwendet, wie z. B.
durch Beriicksichtigung der Beschrinkungen, verbessert sich die Modellgiite enorm. Die
Abbildung [3-T1p) verdeutlicht diese Erkenntnis, da die VergroBerungen eine genauere
Approximation als das nichtlineare Modell sowohl fiir die Ventilschieberposition als auch
fiir die -geschwindigkeit zeigen.

Anhand des Golfroboters und der Ventildynamik werden daher die Vorteile eines PGNNs
offensichtlich: Die Modellgiite erhoht sich, wenn sowohl Messdaten als auch physika-
lisches Vorwissen in das PGNN eingehen. Ferner kann in der vorliegenden Arbeit an-
hand der Ventildynamik gezeigt werden, dass sich diese Giite erwartungsgemil3 sogar
verbessern ldsst, wenn die Modellierungstiefe des verwendeten physikalischen Simula-
tionsmodells erhoht wird. Die Modellgiite eines PGNNSs ist somit explizit von der Qualitit
des verwendeten physikalischen Simulationsmodells abhingig. Die Nutzung des PGNNs
erlaubt deshalb eine Ersparnis des Modellierungsaufwands, da das nichtlineare Ventil-
modell aus einer zeitintensiven und Personal aufwendigen Entwicklung hervorgegangen
ist. Dieser Entwicklungszyklus kann durch das Training und die Nutzung eines PGNNs
bei Gewihrleistung einer vergleichbar hohen Modellgiite deutlich reduziert werden.

Der qualitative Eindruck der beiden Anwendungsbeispiele aus den Abbildungen [3-9|und
@], welcher eine hohe Modellgiite fiir die PGNNs vermittelt, ldsst sich anhand des
quadratischen mittleren Fehlers (engl. Root Mean Squared Error (RMSE)), welcher in
der Tabelle zu sehen ist, quantifizieren. Insbesondere die thematisierte Verbesse-
rung der Modellgiite, wenn ein physikalisches Simulationsmodell mit hoherer Qualitit
fiir das PGNN verwendet wird (vgl. den RMSE fiir das physikalische Simulationsmo-
dell), zeigt sich im Vergleich der letzten Zeile fiir die Ventildynamik. So liegt der RMSE
fiir das PGNN mit dem Modell im Bereich 107, wohingegen das PGNN mit den
zusiitzlichen Beschriinkungen eine Verringerung auf den Bereich 107> erzielt.

Modell Golfroboter  Ventil (Abb. |3—1 1| a)) Ventil (Abb. |3—1 1| b))
Phys. Modell 6.6563- 10~* 5.0501- 10~ 3.9959- 10~
NN 8.9736- 10 2.1382- 107 2.1382- 10
SINDy 3.4516- 107 2.8619- 1074 2.8619- 1074
PGNN 3.7982- 10 1.1982- 10~ 7.3835-107°

Tabelle 3-1: Quadratischer mittlerer Fehler der Testverliufe aus den Abbildungen[3-9

und vgl. [|GT22|]
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3.1.4 Physics-Guided Recurrent Neural Network (PGRNN)

Das Konzept der PGNNSs zeigte bereits im vorangegangenen Abschnitt eine vielverspre-
chende Strategie zur Systemidentifikation. Dennoch weist die Struktur eines PGNNSs ei-
nige Nachteile fiir die Modellierung dynamischer Systeme auf. So stellt die vollstandige
Vernachlissigung der zeitlichen Anderung, welche Kern der Definition eines dynami-
schen Systems ist (vgl. [CFSS82]), einen gravierenden Makel dar. Die Zeit ist neben dem
inneren Zustand und der Anregung eine der EinflussgroBen eines dynamischen Systems
und sollte daher in einem hybriden Modell beriicksichtigt werden. Dariiber hinaus be-
stehen die meisten dynamischen Systeme in der Mechatronik aus Energiespeichern, die
tiber einen ldngeren Zeitraum Einfluss auf das dynamische Verhalten ausiiben konnen.
Somit ist die vorwirts gerichtete Architektur, die in Abbildung [3-4] links dargestellt ist
und keinen riickwirtigen oder parallelen Informationsaustausch unter den Neuronen er-
laubt, nicht fiir jedes dynamische System die geeignete Struktur. Bei Zeitreithendaten wird
hiufig eine rekurrente Architektur empfohlen, um den sequentiellen Verlauf und dessen
Langzeiteffekte abbilden zu konnen [FN93; SZ06; KBK™*13}; Krol6]. Daher wird die im
Abschnitt[3.1.3] entwickelte Struktur nun durch die Nutzung eines rekurrenten statt ei-
nes vorwirts gerichteten Netzes angepasst. Der folgende Abschnitt ist bereits Teil der
Vorverdffentlichung [SGT22], welche durch nachfolgende Forschungsarbeiten basierend
auf der studentischen Arbeit [Sch21] entstand. Die angesprochene, adaptierte Struktur
wird schlieBlich als Physics-Guided Recurrent Neural Network (PGRNN) bezeichnet und
wird beispielsweise fiir das bereits erwihnte Beispiel zur Schitzung von Temperaturen
in Fliissen und Gewissern eingesetzt [JZS*21]. Das in der Abbildung dargestellte
PGRNN fpgryvy weist die gleiche Grundstruktur aus physikalischem Simulationsmodell,
dargestellt in griin, und datenbasiertem Anteil, visualisiert in rot, wie das PGNN in der
Abbildung [3-7] auf.
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Abbildung 3-12: Struktur eines PGRNNs wdihrend des Trainings (vgl. [SGT22]): Es um-
fasst ein physikalisches Simulationsmodell (griin) und ein RNN (rot),
welches ein GRU-Layer gefolgt von einer Ausgabeschicht enthiilt.
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Es unterscheidet sich somit nur durch den zusitzlichen Eingang der Zeit t+ € R sowie
durch die innere Architektur des neuronalen Netzes. Dieses ist in der Abbildung
vergrofert dargestellt und besitzt analog zur Modellierung in der Regelungstechnik einen
intrinsischen Zustand, den sogenannten Hidden State h; € R? mit Z Neuronen, der zeit-
lich aufeinanderfolgende Daten durch eine Riickfiihrung beriicksichtigt. Im Kontrast zu
bestehenden Formulierungen des PGRNNSs (vgl. [JZS*21]]) wird das Konstrukt wiederum
fiir nicht-autonome Systeme erweitert. Daher hidngt A, in dieser Arbeit sowohl von dem
vorherigen Zustand h,_; als auch von den aktuellen Eingéngen ab. Diese umfassen jeweils

N vergangene, zeitliche Verldufe bis zum aktuellen Zeitpunkt k, sodass Folgendes gilt:

X = (X0, X1, ..., %),
Uk = (uo,ul,...,uk),
Xonyk = (Xphy,1s Xphy2s -+ s Xphyk+1)s

Ty = (to,t1,...,1).

Die Verarbeitung der sequenziellen Daten kann allerdings zu numerischen Herausforde-
rungen fiihren, welche mit der Einfiihrung der Long Short-Term Memory (LSTM)-Zelle
[HS97] und der Weiterentwicklung dieser zur Gated Recurrent Unit (GRU )-Zelle behoben
werden konnten [[CvG™14]. Deshalb nutzt das PGRNN die GRU-Zelle, welche die Daten
durch sogenannte Update Gates und Reset Gates verarbeitet. Das Update Gate z; libergibt
dem Hidden State neue Informationen, wiahrend das Reset Gate r; sukzessiv andere, nicht
mehr relevante Informationen 16scht. Es resultieren die folgenden Gleichungen fiir den
Eingang s, = (x, uy, xphy,k)T, welche zur Aktualisierung des Zustands h; durch eine Li-
nearkombination des vorherigen Zustands k;_; und des Zustands h, genutzt werden (vgl.
Vorveroffentlichung [SGT22]):

2% =0g(W s + b, + Ry ),
ry = 0 (W.si + b, + R.hy_y),
hy
hy=(1-2)0hy + 2,0 hy.

a's(W;,sk + bfz +r,© (Ri,hk—l))a

Die Gewichte sind nach Eingangsgewichten W,, rekurrenten Gewichten R, und additi-
ven Gewichten b, aufgeteilt, wohingegen die Aktivierungsfunktion der Gates o, jeweils
durch eine logistische Funktion und die Aktivierungsfunktion des Hidden States o~ durch
eine Tangens-Hyperbolicus-Funktion abgebildet werden. Anschlieend folgt wie in der
Abbildung [3-12] zu erkennen eine Ausgabeschicht, welche aus dem hochdimensionalen
Zustand h; den tatsdchlichen Systemzustand Xy, extrahiert. Auch fiir das PGRNN wird

die Grundidee des physikalisch konsistenten Lernens in Analogie zum vorherigen Ab-
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schnitt beibehalten. Im Unterschied zu anderen PGRNNs, welche Vorwissen als
Regularisierungsterm beriicksichtigen [JZS™21], wird dieses weiterhin im Rahmen einer
Mehrzieloptimierung gelernt. Um eine hohere Genauigkeit fiir die Losung des Mehrziel-
optimierungsproblems zu erzielen und die bekannten Nachteile eines einfachen Skalari-
sierungsverfahrens zu vermeiden (vgl. Gleichung (3.13)), [Ehr05; NWO06]), wird die Nut-
zung eines komplexeren Losungsverfahrens angestrebt. Wihrend die gewichtete Sum-
me meist die erste Wahl in vielen Publikationen darstellt [RPG21]], wird im Folgenden
die Giitevektoroptimierung nach Kreilelmeier und Steinhauser genutzt [KS79; FKL*22],
welche den Lernerfolg enorm verbessert. Der Leitgedanke des Verfahrens bildet die Kon-
struktion von Grenzen fiir jede der einzelnen Kostenfunktionen J; miti = 1,...,N,, die
diese jeweils sukzessiv verkleinern. Zu Beginn jeder Lerniteration i = 0,...,0 werden
diese Grenzen ci mit cj > JE(‘) initialisiert, worauthin das Maximum der N, genormten

Kostenfunktionen J(-) gesucht wird:

Jo( Iy, )
J() = max{ 12),..., NZ, , mit  JO() < ¢ < cf_l << (3.16)
G Cn,

Dadurch konnen alle Giitemalle J; schrittweise verkleinert werden, wie es exemplarisch
in der Abbildung fiir Ny = 2 Kostenfunktionen und o = 3 Iterationen dargestellt
ist. Dieses Vorgehen wird so lange durchgefiihrt, bis entweder eine maximale Anzahl an

Iterationen erreicht worden ist oder keine Verringerung der Grenze c¢; mehr erreicht wird.

Ji

Menge der Pareto optimalen Punkte

Abbildung 3-13: Schematischer Ablauf einer Giitevektoroptimierung fiir zwei konkurrie-
rende Ziele J, und J, mit drei Iterationen
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Das ist der Fall, wenn beispielsweise eine Kostenfunktion J; bereits sehr niedrig ist oder
ein Pareto-optimaler Punkt gefunden worden ist (vgl. Abbildung [3-13). Ein PGRNN,
welches mit dieser Mehrzieloptimierungsstrategie wihrend des Trainings betrieben wor-
den ist, wird nun als Multi-Objective Physics-Guided Recurrent Neural Network (MOP-
GRNN) bezeichnet (vgl. Vorverdffentlichung [SGT22]).

Obwohl die Erweiterung zur rekurrenten Architektur und zur Giitevektoroptimierung wih-
rend des Trainings viele Vorteile aufweist, resultieren die Anpassungen aufgrund der re-
kurrenten Struktur des RNNs dennoch in ein aufwendigeres Training, welches je nach
betrachtetem System hohe Ressourcen, insbesondere Zeit- und Rechenkapazititen, er-
fordern kann. Exemplarisch wird daher die Modellgiite des Verfahrens fiir das zweidi-
mensionale Anwendungsbeispiel des Golfroboters im kritischen Vergleich zu anderen
Methoden evaluiert, woraufhin der Vorteil der in dieser Arbeit eingesetzten, komplexe-
ren Losungsmethode fiir das Mehrzieloptimierungsproblem aufgezeigt wird. Ein wei-

teres Beispiel findet sich in der Vorveroffentlichung [SGT22] sowie im Anhang (vgl.

Abbildung [A6-5)).

Modellierung des Golfroboters

In Analogie zum Abschnitt der PGNNs wird nun die Modellgiite eines PGRNN:Ss fiir den
Golfroboter analysiert. Fiir die Vergleichbarkeit wird dazu weiterhin dasselbe, nichtlinea-
re Simulationsmodell (3.4) sowie die Energiebilanz (3.14) fiir den Teil der physikalischen
Kostenfunktion J,;, genutzt. Fiir das Training werden dieselben Messdaten des Golfro-
boters verwendet, welche bereits im Abschnitt fiir das Training eingesetzt wurden.
Um die Abhingigkeit der Modellgiite von der Datenmenge zu analysieren, werden die
Messdaten in verschiedene Datensitze mit unterschiedlichem Umfang aufgeteilt. Somit
konnen Trainings entweder auf Basis weniger Datensitze (z. B. drei bis sechs Trainings-
samples) oder vieler Datensitze (z. B. 12-15 Trainingssamples) durchgefiihrt werden. Die
Auswertung der Kostenfunktion erfolgt zudem im Kontrast zum vorigen Abschnitt mit
dem durchschnittlichen absoluten Fehler (Mean Absolute Error (MAE), vgl. [SGT22]).
Nach der Optimierung der Hyperparameter durch die Bayessche Optimierung ergibt sich
das in der Abbildung [3-14] dargestellte Modellverhalten, welches aus einem Training mit
sechs Samples resultiert und im Vergleich zu Messdaten des Golfroboters, gekennzeich-
net durch die schwarzen Trajektorien, abgebildet ist. Neben dem physikalischen Modell
(in griin) wird das rekurrente, physikalisch motivierte Netz wiederum mit dem RNN (in
blau), demnach mit Modellen vergleichbar zu seinen jeweiligen Teilkomponenten, ver-
glichen. Aufgrund seiner wesentlichen Erweiterung hin zur Giitevektoroptimierung wird
zudem in das Modell ohne dieseF_g] (PGRNN, rot) bzw. mit dieser (MOPGRNN, violett)

28|n diesem Fall wird das Mehrzieloptimierungsproblem weiterhin mit einer gewichteten Summe geldst.
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unterschieden. Die optimierte Anzahl der Neuronen liegt bei allen drei Netzen in einem
dhnlichen Bereich, wobei das MOPGRNN die kleinste Anzahl mit 624 Eingangs- und
208 rekurrenten Neuronen aufweist. Die Abbildung [3-14]zeigt auf, dass das RNN die Dy-
namik des Golfroboters grundlegend anndhern und wiedergeben kann, im Vergleich zu
den anderen Modellen jedoch die gro3ten Abweichungen aufweist. Dies wird insbeson-
dere in den VergroBerungen rechts der Abbildung deutlich. Zudem ist erkennbar, dass das
PGRNN, welches ohne die Giitevektoroptimierung trainiert worden ist, im Vergleich zum
physikalischen Simulationsmodell iiberwiegend eine Verbesserung der Modellgiite erzeu-
gen kann. Dies zeigt sich vor allem in der Approximation der Winkelgeschwindigkeit und
stiitzt die Erkenntnisse aus Abschnitt @ Auffillig ist aber, dass das PGRNN trotz der
Nutzung des physikalischen Modells und entgegen der Erkenntnisse aus Abschnitt
eine vergleichbare komplexe Architektur wie das RNN besitzt. Wird nun eine komplexere
Mehrzieloptimierungsstrategie basierend auf Gleichung (3.16)) statt einer einfachen Ska-
larisierung gewdhlt, verbessert sich die Modellgiite des PGRNNs erneut: Die Trajektorien
des MOPGRNN:S, dargestellt in violett, geben die Dynamik des Golfroboters am besten
wieder. Dies scheint allein aus der detaillierteren Beriicksichtigung des physikalischen
Vorwissens in Form der Energiebilanz zu resultieren, da das MOPGRNN aufgrund der
dhnlich skalierten Neuronenanzahl eine vergleichbare Komplexitit wie die anderen bei-

den Netze aufweist.
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Abbildung 3-14: Modellgiite eines PGRNNs bzw. MOPGRNNs im Vergleich zu anderen
datengetriebenen und physikalisch basierten Modellen anhand des Golf-
roboters, vgl. die vergrofierten Bildausschnitte (rechts) und [|SGT22]
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Da die Initialisierung der Gewichte eines neuronalen Netzes allerdings einen groferen
Einfluss auf ihre Performanz aufweist, wird eine statistische Untersuchung durchgefiihrt,
um die Datenabhéngigkeit zu ermitteln. Dazu wird jede der drei Netzarten 16 Mal mit
denselben Trainingseinstellungen trainiert. Fiir jedes dieser Netze wird anschlieend die
Modellgiite anhand derselben Testtrajektorie tiberpriift und mittels eines Simulationsfeh-
lers ey, quantifiziert [SGT22]:

€sim =

ftq |xs(i) xs(i)ll ~
qs 1+ A7 .

Dieser Simulationsfehler wertet die Fehlerfliche zwischen der tatsidchlichen und der pridi-
zierten Trajektorie aus, wobei N die Anzahl der Trainingssamples, welche jeweils eine
Linge g, mit s = 1,..., N aufweisen, sowie ¥, bzw. &, die jeweiligen Trajektorien dar-
stellen. Der Parameter A; stellt hierbei die Option dar, den Fehler zeitabhingig zu prio-
risieren, wird aber fiir die folgenden Untersuchungen auf A; = 1 gesetzt, sodass kein
Vergessensfaktor beriicksichtigt wird [SGT22]]. Aufgrund der Berechnung des zeitlichen
Simulationsfehlers ldsst sich die Modellgiite der verschiedenen Modelle und mehrfach
durchgefiihrten Versuche quantitativ durch den durchschnittlichen Fehler u und die Stan-
dardabweichung o bemessen, welche in der Abbildung durch einen Punkt bzw.
eine vertikale Linie dargestellt sind. Die Abbildung zeigt zudem nicht nur den Simula-
tionsfehler der verschiedenen Modelle im Vergleich, sondern untersucht auch ihre Daten-

abhingigkeit, indem die x-Achse die Anzahl der genutzten Trainingssamples beschreibt.
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Abbildung 3-15: Statistische Auswertung des Simulationsfehlers verschiedener Modellar-
ten fiir den Golfroboter, unterschieden nach der Anzahl der Trainings-
samples und danach, ob die Trainingsdaten sinusformige Anregungen
enthielten (rechte Grafik) oder nicht (linke Grafik), vgl. [SGT22|]
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Zudem wird in ein Training mit (rechte Grafik) und ohne (linke Grafik) sinusformigen
Anregungen unterschieden, da der Golfroboter insbesondere bei sinusformigen Anregun-
gen seine starken nichtlinearen Effekte aufzeigt (vgl. Abbildung[A6-2). Allerdings konnen
zwel Erkenntnisse sogar unabhéngig von den verwendeten Daten und der Anzahl der Trai-
ningssamples aus dieser Abbildung gewonnen werden: Das RNN unterliegt grundsétzlich
den anderen Modellen und kann nicht an die Modellgiite eines physikalischen Modells
bzw. eines hybriden Modell heranreichen. Es existiert jedoch fiir das RNN ein optimaler
Datensatz, der sich bei neun bzw. zwdlf Trainingssamples befindet, da sich der Simula-
tionsfehler danach mit steigender Datenmenge wieder erhoht. Die zweite Erkenntnis be-
zieht sich auf das MOPGRNN: Dieses scheint unabhiingig von der Datenmenge und der
Anzahl der Trainingsdaten einen vergleichbar niedrigen Simulationsfehler zu erzielen,
welcher sogar geringer als der des physikalischen Simulationsmodells ist. Somit verbes-
sert die Mehrzieloptimierung mittels der Giitevektoroptimierung nicht nur die Modellgiite
des MOPGRNNSs im Vergleich zum physikalischen oder datengetriebenen Modell, son-
dern erhoht zudem die Robustheit des Netzes hinsichtlich der Menge der verwendeten
Trainingsdaten. Dies bestitigt das vergleichbar formulierte PGRNN, welches nicht mit
der Giitevektoroptimierung die Mehrzieloptimierung (3.13) umgesetzt worden ist und ei-
ne Abhingigkeit bzgl. der Daten aufweist. Diese duBert sich darin, dass einerseits je nach
Anregung in den Trainingsdaten eine verminderte Modellgiite resultiert und andererseits
erst mit steigender Anzahl an Trainingssamples eine vergleichbare Modellgiite wie das
MOPGRNN erzielt werden kann.

Die statistische Analyse zeigt demnach, dass die Verbesserung des Mehrzieloptimierungs-
ansatzes viele Vorteile wie Robustheit bzgl. der Trainingsdaten fiir das (MO)PGRNN
bringt und dadurch eine zuverlidssig hohe Modellgiite erzielt werden kann, welche die
des nichtlinearen, physikalischen Simulationsmodells iibersteigt. Im Anhang vergleicht
die Abbildung[A6-5|zudem die Modellgiite des PGRNNs und MOPGRNNs zum SINDy-
Modell (3.6) mit der Bibliothek ¥; und zum PGNN-Modell aus dem Abschnitt[3.1.3] Die
Verbesserung der Modellgiite im Vergleich zum PGNN aufgrund der rekurrenten Struktur
und der Zeitabhédngigkeit fillt besonders stark auf. Dennoch tibertrifft das SINDy-Modell
auch weiterhin die physikalisch motivierten Netze bzgl. der Genauigkeit. Somit stellt das
MOPGRNN zwar eine vorteilhafte Moglichkeit dar, eine hohe Modellgiite bei gleichzei-
tiger Erhaltung physikalischer Prinzipien zu erzielen, schneidet aber im Verhiltnis des
Aufwands und Nutzens deutlich schlechter als ein SINDy-Modell ab, welches mit we-
nig Aufwand erarbeitet werden kann und eine dhnliche Genauigkeit liefern kann. Fiir
das MOPGRNN lisst sich demnach eine dhnliche Einschidtzung wie beim PGNN vor-
nehmen: Fiir komplexe Systeme und wenige Datensitze ist es eine effiziente Methode,
ein Modell mit hoher Giite zu erzielen, fiir weniger komplexe Anwendungsfille eignet

sich meist die physikalisch basierte Modellierung oder das SINDy-Verfahren. Im Folgen-
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den werden die bisher betrachteten Techniken der hybriden Systemidentifikation bzgl. der
Anforderung [F.3]| eingeordnet.

3.1.5 Nutzbarkeit fiir den Beobachter- und Reglerentwurf

Ziel dieser Arbeit ist die Entwicklung oder Erweiterung einer Methode zur Zustandsschét-
zung trotz Modellungenauigkeiten unter den spezifischen Anforderungen [F.IHE.3] Daher
lautet nun die Frage, inwiefern sich die entwickelten Modelle aus den vorangegangenen
Abschnitten zur Zustandsschidtzung (und Regelung) eignen. Das SINDy-Modell ist auf-
grund seiner physikalisch plausiblen Form (vgl. Gleichung (3.6)) fiir viele Beobachter-
und Reglertypen nutzbar, auch wenn ggf. Anpassungen an das Modell, wie eine Linea-
risierung, vorgenommen werden miissen. Im Kontrast dazu stellen PG(R)NN&FE] trotz ih-
rer hohen Modellgiite eine Herausforderung fiir den modellbasierten Regelungsentwurf
durch die Black-Box-Struktur des neuronalen Netzes dar. Denn obwohl ein physikalisches
Simulationsmodell Teil des Gesamtmodells ist, welches weiterhin die Anforderungen an
einen modellbasierten Entwurf erfiillt, bildet der Kern der Gesamtkonstruktion durch die
Verwendung eines neuronalen Netzes eine Black-Box-Struktur. Diese Struktur kann nicht
fiir Regler- oder Beobachterentwiirfe herangezogen werden, die eine Zustandsraumdar-
stellung erfordern, wie ein Riccati-Regler oder Luenberger-Beobachter es tun [Adals;
FKL*22]. Als Konsequenz sind die PG(R)NN-Modelle daher nur fiir solche Beobachter
und Regler nutzbar, welche auf dem Ein-/Ausgangsverhalten eines Systemmodells basie-
ren, und werden deshalb in den beiden nachfolgenden Abschnitten exemplarisch in jenen

angewendet.

Beobachterentwurf

Einer der wenigen modellbasierten Beobachter, der Modelle mit Ein-/Ausgangsverhal-
ten verarbeiten kann, ist das SRUKF, welches im Abschnitt [T_ZZ] vorgestellt worden ist.
Da dieses im Pridiktorschritt lediglich Kenntnis iiber die Systemdynamik erfordert, um
den néchsten Zustand zu pridizieren, kann das PG(R)NN-Modell unkompliziert einge-
setzt und genutzt werden. Anhand des Golfroboters wird die Schétzgiite eines PG(R)NN-
basierten SRUKFs nun simulationsbasiert untersucht, da eine Umsetzung am Priifstand
aufgrund der zu Verfiigung stehenden Software fiir komplexe neuronale Netze nicht mog-
lich war. Als Referenz der geschitzten Trajektorien dienen daher Messdaten vom Priif-
stand. Die genutzten PG(R)NN-Modelle resultieren aus den Abschnitten[3.1.3|bzw.
die verwendeten Kovarianzmatrizen lauten Q = 0,01 - I und R = 0,00001. Die Resultate

der Analyse zeigen in der Abbildung [3-16] auf der linken Seite den Schitzfehler, wenn

29Es wird die Abkiirzung PG(R)NN genutzt, wenn ein PGNN und/oder ein PGRNN gemeint sind.
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der Golfroboter mit einer sinusformigen Schwingung mit gleich bleibender (Sinus) bzw.
grofler werden Frequenz (Chirp) oder mit einem Sprung angeregt wird. Dieser absolute

Schitzfehler wird durch

1 n N
1 j=1

abhédngig vom gewihlten PG(R)NN-Modell und der jeweiligen Anregung anhand von N
Datensitzen bestimmt. Die Ergebnisse des Schitzfehlers zeigen, dass weder ein PGNN-
noch PGRNN-basierter Beobachter besonders gut schitzt.
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Abbildung 3-16: Auswertung der PG(R)NN-basierten Zustandsschdtzung:
Schdtzfehleranalyse (links) von drei Testtrajektorien und exempla-
rischer Trajektorienverlauf bei Sprunganregung (rechts)

Allerdings zeigt der Vergleich, dass das PGNN-basierte Filter in den meisten Féllen dem
des PGRNN-basierten iiberlegen ist, welches einen sehr hohen Schitzfehler aufweist. Ein-
zige Ausnahme bildet die Anregung einer Sinusschwingung mit sich verdndernder Fre-
quenz, bei welcher beide Schitzfehler in einem vergleichbaren Rahmen liegen. Zur qua-
litativen Einschitzung sind auf der rechten Seite der Abbildung [3-16|die geschitzten Tra-
jektorien des Golfroboters im Vergleich zu den Messdaten (in schwarz) bei einer Sprung-
anregung dargestellt. Da der Winkel gemessen wird, lédsst sich der qualitative Unterschied
der Schitzung in der Winkelgeschwindigkeit erkennen: Wihrend das PGNN-basierte Fil-
ter (in rot) iiberwiegend eine korrekte Zustandsschitzung bis auf Ausreiler um drei bzw.
fiinf Sekunden ermdglicht, sind die Schitzungen des PGRNN-Beobachters (in griin) sehr
stark verrauscht, wenn auch oszillierend um den tatsdchlichen Verlauf. Es konnte aller-

dings keine geeignete Einstellung fiir das Filter bzw. dessen Kovarianzmatrizen gefun-
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den werden, die dieses Rauschen verringern. Daher lésst sich festhalten, dass eine Zu-
standsschitzung mit PG(R)NN-basierten Modellen moglich ist, diese jedoch in Qualitit
und Giite hinter einem physikalischen basierten Beobachter zuriicksteht.

Reglerentwurf

Obwohl die erarbeiteten Modelle vor allem fiir die Zustandsschidtzung genutzt werden
sollen, formuliert Anforderung |[E.3/den Anspruch, dass diese grundsitzlich in einer nach-
vollziehbaren, physikalisch transparenten Gestalt erscheinen und insbesondere fiir weitere
Schritte zugédnglich sein sollten. Daher wird beispielhaft iiberpriift, inwiefern ein solches
Modell fiir den Reglerentwurf nutzbar ist. Zugédnglichkeit und Nutzbarkeit bedeuten in
dieser Situation, dass ein Regelverfahren gewihlt werden kann, welches einerseits mit
dem hybriden Modell kompatibel ist und andererseits eine erfolgreiche Durchfiihrung der
Regelungsaufgabe erlaubt (vgl. Abschnitt [I.2). Aufgrund ihrer Teil-Black-Box-Struktur,
welche lediglich die Kenntnis des Ein-/Ausgangsverhaltens erlaubt, wird stellvertretend
die modellpridiktive Regelung (MPC) als Regelverfahren analysiert. Dieses Verfahren
berechnet mittels eines gleitenden Zeithorizonts und basierend auf der Pridiktion eines
Systemmodells die optimale StellgroBe, die den Regelfehler und die Stellenergie auf der
Grundlage gewihlter DesigngroBen minimiert [Adal8]. Da die MPC nur den néchsten
pradizierten Zustand x;,; erhalten muss, kann ein PG(R)NN fiir diese Regelstrategie ge-
nutzt werden, d. h. es ist zugédnglich fiir einen solchen Reglerentwurf. Die Herausforde-
rung fiir eine MPC besteht jedoch immer darin, trotz der Optimierung in jedem Zeitschritt
echtzeitfihig zu sein. Wihrend fiir lineare Systeme eine Konvergenz durch die Konvexitit
des Optimierungsproblems garantiert werden kann, ist fiir nichtlineare Systeme nicht si-
cher, ob das Problem konvergiert, da mehrere lokale Minima existieren konnen. Zudem
erfordert die Auswertung einer nichtlinearen Dynamik im Allgemeinen eine hohe Re-
chenzeit. Im Fall der PG(R)NN kommt neben der Auswertung des Simulationsmodells
noch die Berechnung des jeweiligen NNs hinzu, welche fiir ein RNN besonders auf-
wendig ist. Die Struktur einer MPC, wenn ein PG(R)NN als Modell genutzt wird, ist
schematisch in der Abbildung dargestellt und an die Visualisierung in [Rei22, S.80]
angelehnt.

In [ACS™21; NKFU22| konnte bereits erfolgreich gezeigt werden, dass der Van-der-Pol-
Oszillator oder ein mehrgelenkiger Roboterarm durch eine auf PG(R)NN-Modellen ba-
sierten MPC geregelt werden konnen. Die dort verwendeten PG(R)NN-Modelle unter-
scheiden sich in ihrer Struktur aufgrund der physikalischen Teilkostenfunktion zu denen
dieses Abschnitts, stellen jedoch das Potential fiir die MPC heraus. In [Rei22]] wurden
daher die in den Abschnitten und entwickelten Modelle des Golfroboters hin-

sichtlich der Nutzung fiir eine MPC analysiert. Dabei zeigten sich Herausforderungen in
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der Echtzeitfihigkeit aufgrund der nichtlinearen Struktur der MPC (vgl. Abbildung [3-17),
sodass eine Anwendung auf dem Priifstand nicht moglich war. Allerdings konnte durch
eine simulierte MPC die Analyse der Modellgiite bestitigt werden, da die PG(R)NN-
basierte MPC eingestellten Sollverldufen iiberwiegend addquat folgen konnte. Dies ist
insbesondere iiberraschend, da die Modelle mit rein gesteuerten Signalen trainiert wur-
den. Ein Nachtraining dieser mit geregelten Signalen lédsst eine noch bessere Qualitit
der MPC erwarten. Im Vergleich jedoch zu anderen Regelverfahren, wie der aktuell im-
plementierten Gain-Scheduling-Strategie am Golfroboter, ist der Nutzen der PG(R)NN-
Modelle aufgrund ihrer Einschrinkung bzgl. der Echtzeitfdhigkeit nur bedingt gegeben.

Diese konnte u. U. durch Verwendung anderer Softwareoptionen, z. B. CasADi@ verbes-

sert werden.
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Abbildung 3-17: (Nichtlineare) MPC mit PG(R)NN als Streckenmodell, vgl. [Rei22, S.80]

Fazit

Die Erkenntnisse der vorigen Abschnitte zeigen: Die durch PG(R)NN bzw. SINDy ent-
standenen Modelle erfiillen nicht alle Kriterien, die im Abschnitt [I.2] formuliert worden
sind. So sind die PG(R)NN-Modelle beispielsweise nur bedingt fiir weitere Schritte im
Regelungsentwurf geeignet, da ihr Einsatz ausschlieBlich fiir Beobachter- und Regler-
verfahren moglich ist, die auf dem Ein-/Ausgangsverhalten eines Modells basieren. Dies
schrankt die Nutzung der PG(R)NN-Modelle stark ein und widerspricht trotz ihrer ho-
hen Modellgiite der zu Beginn dieser Dissertationsschrift formulierten Anforderung[F.3]
Dariiber hinaus konnen auftretende Modellungenauigkeiten durch die Netzstruktur kaum
physikalisch dargestellt und interpretiert werden, weil sie durch die Netzarchitektur und
das Training intrinsisch kodiert werden, sodass Anforderung [F.2]trotz physikalischer Plau-
sibilitdt nicht erfiillt wird. Obwohl sich die PG(R)NNs durch eine sehr hohe Modellgiite

3Ohttps://web.casadi.org/, abgerufen am 12.10.2023
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auszeichnen und eine zufriedenstellende Alternative fiir eine vollstandige Systemidenti-
fikation darstellen, die eine hohe Schitzgiite erwarten ldsst (vgl. Anforderung [F.1)), ber-
gen sie demnach in der Nutzbarkeit fiir den Beobachter- und Reglerentwurf einige nicht
zu vernachldssigende Herausforderungen. Je nach Applikation kénnen diese u. U. einen
hoheren Aufwand in Form von Entwicklungs- und Rechenzeit bedeuten, der den der klas-
sischen, rein physikalisch basierten Methoden erheblich iiberschreitet. Gleichwohl zeigen
PG(R)NNs in vielféltigen Situationen eine besonders hohe Modellgiite und flexible An-
wendbarkeit, z. B. in einer MPC (vgl. [NKFU22]) oder wenn wie bei der Ventildynamik
die Modellierung durch ein PG(R)NN eine zeit- und kosteneffizientere Wahl darstellt (vgl.
Abbildung [3-TT). Als Losungsmethode im Rahmen dieser Dissertationsschrift eignen sie
sich jedoch aufgrund der mangelnden Umsetzung der zu Beginn formulierten Anforde-
rungen nicht. Deutlich vorteilhafter ist ein SINDy-Modell, welches durch seine Gestalt
physikalisch nachvollziehbar bleibt und dadurch einer Vielzahl an Beobachter- und Reg-
lerverfahren zur Verfiigung gestellt werden kann. Allerdings ist dieses Verfahren lediglich
anwendbar, wenn der vollstandige Zustand messbar ist oder einen differentiellen Zusam-
menhang aufweist. Dies ist eine starke Einschrinkung in der Nutzung dieser Methode, da
das primire Ziel und der Ausgangspunkt dieser Arbeit die korrekte Schitzung des Sys-
temzustands trotz gegenwirtiger Modelldiskrepanzen darstellt. Dennoch weist das Ver-
fahren SINDy bis auf diesen Nachteil grofes Potential auf, um die Ziele dieser Arbeit
umzusetzen. Deshalb wird die Grundidee einer physikalisch motivierten Bibliothek, wel-
che Interpretierbarkeit erlaubt, im Kapitel 4| fortgefiihrt und fiir die Formulierung eines
Beobachterentwurfs genutzt. Alternativ zur hybriden Systemidentifikation wird zunéchst
der Schritt des Beobachterentwurfs adressiert und untersucht, inwiefern ein Beobachter-
modell bzgl. der Modell-Realitits-Liicke korrigiert und angepasst werden kann.

3.2 Modellkorrektur innerhalb eines Beobachters

Obwohl die erdrterten Methoden der vorherigen Abschnitte und eine hohe
Modellgiite bzgl. der realen Strecke aufweisen und somit eine erfolgreiche Systemiden-
tifikation darstellen, ist der Einsatz solch hybrider Modelle in den nachfolgenden Rege-
lungsentwurfsschritten aufgrund ihrer Teil-Black-Box-Struktur hiufig schwierig und li-
mitiert die Wahl der Schitz- und Regelverfahren. Insbesondere die Notwendigkeit, dass
die zur Systemidentifikation genutzten Messdaten den vollstindigen Zustand umfassen
miissen, ist in der Praxis meistens nicht gegeben und erfordert gerade genau einen Be-
obachter, der diese GroB3en zuverlédssig schitzt. Alternativ wird der Losungsansatz daher
in die Richtung des Beobachterentwurfs verschoben und untersucht, inwiefern ein bereits
identifiziertes, rein physikalisches Modell mit minderer Qualitiit in einen modellbasier-

ten Beobachter eingesetzt werden und trotz existierender Modellungenauigkeiten zufrie-
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denstellende Schitzwerte liefern kann. Konkret wird somit die Kompensationsfihigkeit
eines Beobachters in Abhéngigkeit von Modellgiite und Art der Modellungenauigkeiten
analysiert (vgl. Abschnitt 2.4). Die Erwartungshaltung ist hierbei, dass die klassischen
Beobachter, welche in den Abschnitten [2.2] und [2.3] vorgestellt worden sind und deren
Formulierung explizit Modellungenauigkeiten tolerieren, diese kompensieren und daher
das Ziel einer hohen Schitzgiite (vgl. Anforderung[F.1)) umsetzen konnen. Allerdings wer-
den die Abschnitte dieses Kapitels zeigen, dass dazu u. a. zusitzliche Unterstiitzung durch
Vorwissen oder Daten erforderlich ist und Interpretierbarkeit nach Anforderung [F.2] nicht
erzielt werden kann. In der Literatur finden sich zudem viele verschiedene Verfahren, die
einerseits hiufig ausschlieBlich auf bestimmte Anwendungsfille zugeschnitten sind und
andererseits nicht alle drei formulierten Kriterien [F.1] bis [F.3] erfiillen. So erméglicht bei-
spielsweise der lernende Luenberger-Beobachter nach [Sch10] die Kompensation einer
isolierten, nicht bekannten Streckennichtlinearitit durch die Nutzung eines neuronalen
Netzes. Dieser setzt die Anforderungen und um, kann aber durch die Struktur
eines neuronalen Netzes keine physikalisch wertvolle Darstellung der Nichtlinearitét ge-
ben. Daher werden in den folgenden Abschnitten zwei der populidrsten Methoden aus
dem aktuellen Stand der Technik beleuchtet, inwiefern diese nicht nur die Anforderung
einer hohen Schiitzgiite erfiillen, sondern auch, ob die weiteren Forderungen [F.2] und [F.3|
bzgl. der physikalischen, parametrischen Identifikation der Modellungenauigkeit und der
Zuginglichkeit der Erkenntnisse iiber diese umgesetzt werden konnen. Vereinzelte Inhal-
te der nachfolgenden Abschnitte sind bereits in geringem Umfang in den studentischen
Arbeiten [Ros22]] und [Klu23|] enthalten oder basieren teilweise auf den erarbeiteten Al-

gorithmen.

3.2.1 Kompensation durch optimal initialisierte Kovarianzmatrizen

Da die Qualitit eines Beobachters nicht nur von der Modellgiite, sondern auch von der
Genauigkeit und Auflosung der Sensorik abhingt, ist es tiiblich, dies im Zustandsmo-
dell des Beobachters zu beriicksichtigen. Im Abschnitt [2.2] wurde die Unsicherheit, wel-
che die Messwerte aufgrund der Sensorik beinhalten kdnnen, bereits in den Kalman-
Filtern als stochastisches Messrauschen beriicksichtigt. Neben dem Messrauschen mo-
dellieren diese Beobachter zudem Prozessrauschen, welches als Puffer fiir Abweichungen
zur tatsdchlichen Dynamik des Systems dient und aus diesem Grund als Ausdruck fiir die
Unsicherheit eines Modells bezogen auf den realen Prozess aufgefasst werden kann. In
der Regel werden beide Arten des Rauschens mittels einer Normalverteilung modelliert,
sodass w; ~ N(0,Q) und v, ~ N(0, R) gilt. Zu Beginn der Filterauslegung miissen die
Kovarianzmatrizen Q, R initialisiert werden. Dabei kann die Varianz des Messrauschens

meist sehr gut anhand von Probemessungen bestimmt werden, die des Prozessrauschens
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ist jedoch deutlich schwieriger zu wihlen (vgl. [van04; |CHJA18])). Da die Kovarianzma-
trizen einen nicht zu unterschitzenden Einfluss auf die Schitzgiite besitzen, sollten sie
nicht beliebig initialisiert werden. Die Abbildung [3-18]illustriert daher den Einfluss von
zwei verschiedenen Prozesskovarianzen auf die Qualitédt der Schitzung anhand eines Ein-
fachpendels (@, = 0,001 - I und Q, = I mit der Einheitsmatrix I). Es ist zu erkennen,
dass die Schitzung der Winkelgeschwindigkeit durch das verwendete SRUKF deutlich
schlechter wird, wenn die Varianz des Prozessrauschens zu grof} angesetzt wird. Somit
besitzt die Prozesskovarianz einen starken Einfluss auf die Schitzgiite. Diese Erkennt-
nis hilft bei der Herausforderung, wenn groBere Modellungenauigkeiten Af zur Strecke
bestehen und ein modellbasierter Beobachter eine hohe Schitzgiite erzielen soll. Im Fol-
genden wird daher untersucht, inwiefern eine optimale Initialisierung der Kovarianzen

eine Kompensation von Modellungenauigkeiten bewirken kann.
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Abbildung 3-18: Einfluss der Prozesskovarianzmatrix im SRUKF auf die Schditzgiite eines
Einfachpendels mit identisch gewdhlten R, Py und xo # X

Neben einer zufilligen oder rasterbasierten Suche bietet die Bayessche Optimierung, de-
ren Vorteile im Abschnitt [2.1.3] dargelegt worden sind, eine effizientere Moglichkeit, op-
timale Eintrage der Kovarianzmatrizen insbesondere auch fiir hoherdimensionale Sys-
teme zu finden. In [CHJA18|] und [CAJHI19] wird genau diese Vorgehensweise fiir ein
Kalman-Filter bzw. ein EKF diskutiert. Alternative Methoden zum automatischen Tu-
ning stellen [KA16;|(CBW™19] dar, welche entweder regelbasiertes Erfahrungswissen mit-
tels Fuzzy-Logik und neuronaler Netze umsetzen oder eine Partikelschwarmoptimierung
durchfiihren. Aufgrund der Performanz der BO in der Hyperparameteroptimierung wird
diese im Folgenden unter der Zielsetzung, Modellungenauigkeiten durch optimale Ko-
varianzen zu kompensieren, analysiert. Hierbei bilden die Eintrige der Matrizen Q und
R die Optimierungsvariablen der BO. Zur Reduktion des Rechenaufwands und fiir die
Ubersichtlichkeit wird fiir den weiteren Verlauf dieses Abschnitts eine Diagonalgestalt
beider Matrizen angenommen, d. h. dass keine Korrelationen untereinander bestehen und
n + m Optimierungsvariablen {g;;, r;;} bestimmt werden miissen.

Da eine hohe Schitzgiite das Ziel eines jeden Beobachters ist, wird die Minimierung
des Schitzfehlers e, = £ — x als Kostenfunktion der BO angestrebt. Allerdings ist der

Schitzfehler basierend auf realen Messungen normalerweise nicht berechenbar, weil der
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Zustand nicht vollstindig messbar ist. Daher wird der Ausgangsfehler e, = y — y in der
Kostenfunktion genutzt, falls nur Messungen und keine Simulationen vorliegen. Héufig
findet zudem eine Gewichtung des Schitz- bzw. Ausgangsfehlers mit einer Gewichtungs-
matrix W, bzw. W, fiir N Mess- oder Simulationswerte statt, sodass eine der beiden
folgenden Funktionen durch die BO minimiert werden soll (vgl. [CHJA18; CAJH19;
Ros22])):

A 1 N A 1 N
J®wers = log[ﬁ Z(e;kwxex,k)], J®wis = 1og(ﬁ D el kWyey,u). (3.17)
k=1 k=1

Dabei beschreiben die Abkiirzungen jeweils die Art der Kostenfunktion: Weighted Esti-
mation Error Squared (WEES) bzw. Weighted Innovation Error Squared (WIS). Fiir die
folgenden Untersuchungen wird die Gewichtungsmatrix als Einheitsmatrix angenommen.
Manchmal wird zudem bei dynamischen Schiitzern ein weiteres statistisches Merkmal,
das der Konsistenz eines Filters, genutzt, um die Qualitit des Beobachters zu bewerten.
Details dazu finden sich im Anhang Die Idee, die BO zur Bestimmung optimal
initialisierter Kovarianzmatrizen zu nutzen, basiert auf der Voraussetzung, dass bereits ei-
nige initiale Experimente mit verschiedenen Parametrierungen {g;;, r;;} durchgefiihrt wor-
den sind, auf deren Grundlage die Schitzgiite des Filters evaluiert werden kann. Zudem
besteht eine weitere Voraussetzung darin, wiahrend der Optimierung Experimente am Sys-
tem durchfiihren zu konnen, um weitere Daten zu sammeln. Dies kann aber auch in Si-
mulationen erfolgen, um Zeit und Kosten zu sparen. Der grundlegende Ablauf, wie die
Kovarianzen eines Filters mittels der BO optimal bestimmt werden konnen, ist dazu ana-
log zum Algorithmus [T]in der Abbildung [3-19] dargestellt.

D = Dy,
z € {(qii» rjj)} DU (z,J(2))
Start Initialisierung .| Ausfiihrung _ Auswertung der Aktualisierung
der BO " des Filters »  Kostenfunktion J | ) des Modells J

v

Maximierung der el Abbruchbedingung
Acquisitionfunction erfiillt?

Nein ‘ Ja

Stopp

Abbildung 3-19: Vorgehen zur Bestimmung optimal initialisierter Kovarianzmatrizen
durch Bayessche Optimierung

Nach der Initialisierung der BO durch Mess- oder Simulationsdaten D = Dy, werden
basierend auf dem Ersatzmodell J Parameterwerte z € {(qii, rjj)} fiir die Kovarianzen Q
und R gewihlt, deren Wirkung anschlieBend hinsichtlich der gewihlten Kostenfunktion
J quantifiziert wird. Nach der Anpassung des Modells J auf Grundlage der neuen Daten
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D U (z,J(z)) wird durch die Maximierung der Acquisitionfunction eine neue Parame-
trierung bestimmt, mit welcher das Filter ausgefiihrt und der Kreislauf fortgefiihrt wird,
sofern die maximale Anzahl an Iterationen oder ein anderes Abbruchkriterium noch nicht

erreicht worden ist.

Analyse des Kalman-Filters

Nach der Beschreibung des Vorgehens werden nun die Kovarianzmatrizen eines Kalman-
Filters optimal initialisiert, um zu analysieren, inwiefern bestehende Modellabweich-
ungen kompensiert werden konnen. Dazu dient der Golfroboter (3.4)) als Beispiel, des-
sen Modellungenauigkeit durch die Linearisierung der Systemdynamik fiir den Gain-
Scheduling-Ansatz resultiert (vgl. Anhang [A6.1][Adal8]]). Da fiir den Golfroboter ein
detailliertes, nichtlineares Modell vorliegt, kann dieses fiir die BO genutzt werden, so-
dass die Bestimmung optimal initialisierter Kovarianzmatrizen simulationsbasiert und im
offenen Regelkreis erfolgt. Als Kostenfunktion wird Jy;s nach Gleichung genutzt.
Fiir die 20 Iterationen der BO wird als Acquisitionfunction Expected Improvement so-
wie ein identischer Suchraum [107>, 1]? fiir alle drei Optimierungsvariablen gewihlt. Der
Verlauf der Optimierung ist daraufhin in der Abbildung [3-20] exemplarisch dargestellt.
Diese zeigt im Vergleich zum nichtlinearen Modell, abgebildet durch die schwarzen Tra-
jektorien, die zu dem Zeitpunkt der Iteration resultierende Trajektorie des Kalman-Filters,

welche von den Kovarianzmatrizen abhéngig ist.
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Abbildung 3-20: Ergebnis verschiedener Iterationen wihrend der BO fiir die Kostenfunk-
tion WIS (3.17)): Iteration 20 stellt die beste, durch die BO gefundene

Initialisierung dar.



3.2 Modellkorrektur innerhalb eines Beobachters 85

So zeigt sich, dass eine Einstellung der Kovarianzmatrizen nah am Optimum bereits nach
Iteration 13 erreicht wird, die optimale Einstellung allerdings erst in Iteration 20 erzielt
wird. Dies ist an den orange gestrichelten Trajektorien und dem Wert der Kostenfunktion
erkennbar, welcher auf der rechten Seite der Abbildung dargestellt ist. In dieser Visuali-
sierung ist zudem zu sehen, dass der Modellfehler sukzessiv mit den Iterationen vermin-
dert und die Qualitédt der Zustandsschitzung erhoht werden. Die optimale Parametrierung
aus Iteration 20 ist daraufhin in der Tabelle festgehalten. Diese fasst die Entwicklung
der Optimierungsergebnisse durch ausgewihlte Iterationen im Vergleich der Kostenfunk-
tionen WEES und WIS zusammen und gibt Aufschluss iiber die Parameterwerte fiir die
Kovarianzmatrizen. Besonders auffillig ist, dass die optimalen Werte fiir Q und R sich
trotz unterschiedlicher Kostenfunktionen wenig unterscheiden, sondern in der gleichen
GroBenordnung liegen. Folglich sind beide geeignet, kleinere Modellabweichungen sowie
Messrauschen, welches wihrend der Simulationen wirkte, zu erkennen und zu kompen-

sieren. Weitere Ergebnisse bzgl. anderer, Konsistenz basierter Kostenfunktionen werden
im Anhang behandelt.

WEES WIS
Iteration | Jweks qn g2 r | Jwis qn g2 I

1 -0,1 0,00040 0,00002 0,00750 | -1,9 0,17010 0,68740 0,03890
6 -0,9 0,00580 0,00001 0,00001 | -1,2 0,96330 0,00001 0,74320
13 -1,7 0,00002 0,00009 0,00001 | -2,2 0,07160 0,97000 0,00830
20 -4,7 0,00006 0,96310 0,00001 | -4,7 0,00002 0,92970 0,00001

Tabelle 3-2: Kovarianzmatrizen Q und R fiir den Golfroboter basierend auf simulativen
Ergebnissen und unterschieden nach den verwendeten Kostenfunktion WEES

und WIS (vgl. Abbildung[3-20)

Die bisherige Analyse zeigt, dass das Kalman-Filter durch eine optimale Initialisierung
fahig ist, geringe Modelldiskrepanzen, die z. B. durch die Linearisierung und Nutzung
linearer Modelle zu definierten Betriebspunkten resultieren, zu kompensieren und sei-
ne Schitzgiite zu verbessern. Dies stellt eine Alternative zum EKF dar, das durch die
Aktualisierung zu jedem Zeitschritt die Modelldiskrepanz erfasst, allerdings dazu in je-
dem Schritt eine Bestimmung des Gradienten durchfiihren muss, die u. U. aufwendig oder
nicht durchfiihrbar ist (vgl. Abschnitt[2.2.T). Bestehen jedoch grofiere Abweichungen, die
beispielsweise dynamisch stirkere Auswirkungen aufweisen, ist der Ansatz einer Kom-
pensation durch Kovarianzen u. U. nicht mehr ausreichend, wie die nachfolgenden Ab-

schnitte zeigen werden.
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Analyse des SRUKFs

Um zu untersuchen, inwiefern groflere Abweichungen durch die Prozesskovarianzma-
trix kompensiert werden konnen, wird das SRUKF mit Modellen des Golfroboters ge-
nutzt, die Teile des Reib- oder Ddmpfungsmoments nicht enthalten (vgl. Anhang [A6.1]
Gleichungen (A6-1]) und (A6-2))). Wird beispielsweise der Stick-Slip-Effekt My (x, u) nicht

modelliert, bestehen gravierende Modellungenauigkeiten. Neben der Auswirkung der Mo-

dellierungstiefe wird zudem untersucht, wie sich die BO optimal initialisierten Beob-
achter im geschlossenen Regelkreis beweisen. Dabei wird lediglich das Objekt des Be-
obachters ausgetauscht, wihrend der Regler und die Vorsteuerung weiterhin durch die
Gain-Scheduling-Strategie (vgl. Anhang[A6.T)) umgesetzt werden. In verschiedenen Ex-
perimenten konnte beobachtet werden, dass die optimalen Parametrierungen der Kova-
rianzen trotz unterschiedlicher Modellierungstiefen kaum Unterschiede aufwiesen und
trotz groBerer Modellabweichungen eine zuverldssige Schitzung erlaubten. SchlieBlich
fasst die Abbildung[3-21]die bisherigen Analysen bzgl. der Beobachtertypen und der un-
terschiedlichen Modellabweichungen fiir die Kostenfunktion WEES zusammen. Hierbei
werden sowohl Parametrierungen des SRUKFs, dargestellt durch Kreise, als auch des
Kalman-Filters, abgebildet durch Dreiecke, betrachtet. Fiir beide Beobachter werden die
einzelnen, durch die BO getesteten Parametrierungen abhidngig von dem Wert der Kosten-
funktion, welcher durch die Farbe der Punkte gekennzeichnet ist, dargestellt. Somit gilt,
je mehr sich ein Datenpunkt im blauen Farbspektrum befindet, desto kleiner ist der Wert

der Kostenfunktion und desto besser ist die Parametrierung.

J
oSRUKF weEs (2)

aKF

q» 00 q11

Abbildung 3-21: Durch die BO getestete Parametrierungen fiir das SRUKF im geschlos-
senen Regelkreis bzw. fiir das Kalman-Filter im offenen Regelkreis bei
unterschiedlich grofen Modellabweichungen
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Denn iiber den Wert der Kostenfunktion WEES kann die Groenordnung des Schétzfehlers
abgelesen werden, da der Zusammenhang € — 0 = log(e) — —oo fiir eine beliebige Zahl
€ > 0 gilt. Daher zeigt die Abbildung [3-21] deutlich, dass sich ein Minimum unabhingig
von der existierenden Modellabweichung oder dem gewéhlten Filtertyp entlang der go,-
Achse und insbesondere fiir g, € (% 1) einzustellen scheint, obwohl die BO den Such-
raum explorierend untersucht hat. Daraus folgt, dass die BO zuverldssig die gro3te Mo-
dellabweichung in der Beschreibung der Winkelgeschwindigkeit bzw. -beschleunigung
erkennt, worauthin eine groere Unsicherheit durch die Parametrierung des Prozessrau-
schens g, modelliert wird. Zudem postuliert die BO korrekterweise wenig bis keine Mo-
dellabweichungen in g;; bzw. ry;.

Aufgrund der Analysen zeigt sich, dass die optimale Initialisierung der Kovarianzmatri-
zen von Kalman-Filtern bedingt geeignet ist, um Modellungenauigkeiten zu kompensie-
ren. Gemal ihrer Struktur bilden sie eine Option, um Modellabweichungen durch das
Prozessrauschen zu kompensieren, z. B. beim Golfroboter aufgrund der Linearisierung.
Existieren groBBere Abweichungen im Modell, wie fehlende Dynamikanteile, so gelingt
eine Kompensation und eine zufriedenstellende Schétzung u. U. nicht mehr, wie Experi-
mente am Priifstand des Golfroboters zeigten. Dies resultiert einerseits aus der zeitinvari-
anten Betrachtung der Kovarianzmatrizen, da eine zeitvariante Bestimmung dieser durch
eine BO nicht umsetzbar ist, sowie andererseits aus der Struktur des Kalman-Filters bzw.
SRUKEFs selbst, bei der die Varianzen in der Regel invariant betrachtet werdelﬂ Die Be-
trachtung der Korrelation zwischen den Zustdnden, d. h. eine Nicht-Diagonalgestalt fiir
0, zeigte dhnliche Erkenntnisse (vgl. [Ros22]).

Neben der partiellen Verletzung der wichtigsten Anforderung, eine hohe Schitzgiite zu
erzielen, stellt diese Methode auB3erdem kein probates Mittel dar, um Modellungenauig-
keiten zu identifizieren und physikalisch darzustellen. Es wird zwar ein Eindruck bzgl. der
Ungenauigkeit durch die Grofe der Kovarianzmatrixelemente vermittelt, diese konnen je-
doch keine zufriedenstellende Identifikation ermodglichen und somit auch nur bedingt fiir
weitere Schritte im Regelungsentwurf nutzbar sein. Somit sind die Forderungen [F.1] und
[F-2| nicht erfiillt, obwohl die Nutzbarkeit eines durch Kalman-Filter erstelltes Modells fiir
weitere Schritte im Regelungsentwurf grundsitzlich gegeben ist (vgl. Anforderung [F.3).
Daher wird im folgenden Abschnitt der Fokus auf einen robusten Beobachter gelegt, der
im Kontrast zu den Kalman-Filtern aufgrund seiner natiirlichen Struktur besonders fiir
den Einsatz bei auftretenden Storungen und Modellungenauigkeiten geeignet ist und diese
zeitvariant schitzt bzw. kompensiert [SEFL14]. Auch dieser wird bzgl. seiner Fahigkeit,

Modellungenauigkeiten zu kompensieren und zu identifizieren, analysiert.

3"Nach [WNO01;|Sch17] bietet die Robbins-Monro-Methode eine Méglichkeit, die Kovarianz zeitvariant
zu gestalten, indem ein Korrektureingriff vorgenommen wird.
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3.2.2 Kompensation durch diskontinuierliche Schaltfunktionen

Statt Modellungenauigkeiten durch Kovarianzen abzumildern, nutzt der im Abschnitt
eingefiihrte Sliding-Mode-Beobachter (SMO) dynamische Schaltfunktionen, die durch
den Mess- bzw. Schitzfehler beeinflusst werden, um Modellabweichungen zu kompensie-
ren. Diese Kompensation durch Schaltfunktionen erlaubt eine dynamische Schitzung der
Modellungenauigkeiten oder auftretender Storungen, weshalb dieser Beobachter hiufig
in der Storidentifikation bzw. -schitzung eingesetzt wird. Allerdings erfordert der SMO
eine geeignete Parametrierung der Schaltfunktionen fiir die Konvergenz in den Sliding-
Modus (vgl. Abschnitt [2.3). Diese Parametrierung ¢; ist wiederum abhingig vom Mo-
dellfehler Af, da sich die gewiinschte Fehlerdynamik (2.34) erst bei ¢, > |Afua,l fiir
einen n-dimensionalen SMO einstellt. Dieser Einfluss setzt sich auch fiir die weiteren
Parameter %; miti = 1,...,n— 1 fort und erfordert in der Regel eine sukzessive Inbetrieb-
nahme des Beobachters [SEFL14; Klu23|]. Somit ist auch hier die Parametrierung des
SMOs dhnlich zu den Kalman-Filtern herausfordernd, insbesondere wenn kein Vorwis-
sen iiber die Schranke Af,,,, existiert. Ein Beispiel, welches die Herausforderung durch
die Parametrierung illustriert, ist in der Abbildung [3-22] dargestellt. Es handelt sich um
ein nichtlineares Pendel, welches auch in [DFPO6; [SEFL14; Klu23|] diskutiert wird und
dessen Parameter p = (m, g,1, J,d)" im Anhang zu finden sind:

X2

X = ’
(—’"Tgl sin(xp) — $x; + Lu +p) (3.18)

y = X1.

Neben der Anregung u# kann zudem ein Stormoment p auf die Dynamik der Zustinde

x = (¢, @)" wirken, welches durch den folgenden Beobachter

A [ Xy + 1 - sign(e,) )
X = ’
—2sin(8) = §8 + ju+ 0, - sign(e,)
A (3.19)
Yy =Xy,
ey = y - j}a

zusammen mit den Zustéinden erfasst werden soll. Der SMO (3.19) ist mit #; = 2 parame-
triert, wihrend #, variiert, um die Auswirkungen und Abhéngigkeiten von der maximalen
Modellabweichung A f zu analysieren. Wirkt ein zusétzliches Moment p(t) = 3-cos(?) auf
das Pendel und existieren zusitzlich Anfangsstorungen X, # x, ergibt sich daher das Ver-
halten, welches in der Abbildung @ dargestellt ist. Dieses verdeutlicht, dass die Wahl
des Parameters #, in Abhingigkeit der Modellabweichung A f erfolgen muss, welche in
der Abbildung zu sehen ist und aufgrund der Parametrierung leicht variiert.
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Abbildung 3-22: Einfluss des Parameters ¥, auf die Schdtzgiite des SMOs bei Existenz
einer Storung p(t) anhand des nichtlinearen Pendels
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Abbildung 3-23: Einfluss des Parameters 1, auf die Schdtzfehler sowie die daraus resul-
tierende Modellungenauigkeit Af des nichtlinearen Pendels
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Ist @, zu klein gewihlt, z. B. mit %, = 1, obwohl die maximale Abweichung bei etwa
vier Meter pro Quadratsekunde liegt, gelingt es dem SMO nicht, die Zustdnde korrekt zu
schitzen. Dies duflert sich insbesondere durch die hohen Fehler ¢; = e, und e; = %, — x»
in der Abbildung[3-23] Je groBer der Parameter gewihlt wird, desto stiarker kann das fiir
den Beobachter typische Rauschen auftreten, welches die Qualitit der Zustandsschitzung
nachteilig beeinflusst. Zusatzlich nimmt die Reduktion von Anfangsfehlern lingere Zeit
in Anspruch, wie in der Abbildung[3-22] fiir ¥, = 80 erkennbar ist. Untersuchungen in
[Klu23] ergaben, dass fiir 1, > |Af,..x| eine obere Grenze existiert, die u. a. von der Re-
chenschrittweite des numerischen Integrationsverfahrens abhéngig ist, mit der der Beob-
achter betrieben wird. Infolgedessen zeigt sich, dass das Problem der Initialisierung bezo-
gen auf Parameter, die die Kompensation von Modellungenauigkeiten bzw. die Korrektur
des Beobachtermodells aufgrund dieser beeinflussen, lediglich verschoben wird und wie
bei den Kovarianzmatrizen der Kalman-Filter ebenfalls fiir den SMO resultiert. Der we-
sentliche Unterschied zwischen diesen Beobachtern, der den SMO vorteilhafter aus Sicht
der Ziele dieser Arbeit erscheinen lésst, liegt in der Fihigkeit des SMOs, eine deutlich
robustere Schitzung durch die dynamische Kompensation der Modellungenauigkeiten zu
ermOglichen. Denn der SMO gibt sogar Aufschluss iiber den zeitlichen Verlauf dieser, was
einen tieferen Einblick in das System als die Kovarianzen der Kalman-Filter gewihrt. In-
dem die geschiitzte Modellungenauigkeit Af = {—, - sign(ey)}., durch ein Tiefpassfilter
mit 7, = 0,01 s geglittet wird [DFPO6; [SEFL14], ergibt sich sogar eine temporire Identi-
fikation, wie sie in der Abbildung fiir das obige Beispiel dargestellt ist. Die Glittung
des Signals bewirkt aber keine Nutzbarkeit aufgrund der nicht-parametrischen Zeitreihen-
form fiir eine weitere Verbesserung des Modells hinsichtlich der Modellungenauigkeiten.
Deshalb erfiillt der SMO die Anforderung einer hohen Schitzgiite (vgl. Anforderung[F.1),
kann die weitere Ziele [F.2] und [F.3 allerdings nur teilweise und nicht zufriedenstellend
umsetzen. Basierend auf den Erkenntnissen dieses Kapitels wird der folgende Abschnitt
deshalb eine Bewertung der diskutierten Methoden hinsichtlich der Problemstellung die-

ser Arbeit vornehmen, woraufthin der Handlungsbedarf abgeleitet wird.

A

Zeit t[s]

— Af - Afyso=== Afy,os — Afy,-

Abbildung 3-24: Vergleich der Modellungenauigkeit Af mit den Approximationen Af
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3.3 Bewertung und Handlungsbedarf

Im Verlauf dieses Kapitels wurden Methoden erortert, welche basierend auf einer hy-
briden Systemidentifikation Modelle formulieren oder durch Nutzung von Mess- bzw.
Simulationsdaten eine Modellkorrektur durchfiithren, um die Modell-Realitéts-Liicke zu
reduzieren und korrekte Schitzungen des Zustandes zu ermdoglichen. Dabei fokussieren
sich diese Techniken jeweils auf einen konkreten Schritt des Regelungsentwurfs (vgl.
Abschnitt[T.1)), um Verbesserungen fiir die nachfolgenden Aktionen im Regelungsentwurf
zu erzielen. Zentrales Element dieser Methoden ist das Streckenmodell, welches entwe-
der vollstindig iiberarbeitet oder durch Korrekturterme bei der Schitzung angepasst wird.
Viele dieser Techniken bieten den Vorteil, dass sie bei kleineren Abweichungen zwischen
Modell und Strecke eine Verbesserung der Modell- bzw. Schitzgiite ermoglichen. Aller-
dings ist ihr Einsatz hiufig aufwendig und nicht fiir jede Situation geeignet, z. B. aufgrund
der Datenverfiigbarkeit und erforderlichen Kenntnis des vollstindigen Zustands. Ferner
weist die isolierte Betrachtung und Anpassung einzelner Entwurfsschritte hdufig Nach-
teile fiir die darauffolgenden Entwurfsschritte auf. So ist die Verwendung von PG(R)NN-
Modellen nur bedingt empfehlenswert fiir den Regler- bzw. Beobachterentwurf, denn die
Black-Box-Struktur des neuronalen Netzes ldsst keinen Riickschluss auf die Dynamik
der Modellungenauigkeit zu. Ebenso konnen die optimal initialisierten Kovarianzmatri-
zen u. U. Diskrepanzen zwischen Modell und Strecke kompensieren, aber keinen Einblick
in die tatsdchlich wirkenden Effekte geben. Daher stellt die Abbildung eine qualita-
tive Einordnung der Methoden dieses Kapitels anhand eines Netzdiagramms und bezogen
auf die formulierten Anforderungen dar. Als weiteres, fiir die Zustandsschétzung
sehr wesentliches Bewertungskriterium wird zudem die Flexibilitét beriicksichtigt, einen
nicht vollstdndig messbaren Zustand verarbeiten zu konnen.

Die Abbildung zeigt somit sehr deutlich die bereits erwidhnten Schwiichen der untersuch-
ten Verfahren bzw. ihrer Modelle auf: Die PG(R)NN-Modelle kénnen durch ihre Appro-
ximationsfihigkeit lediglich beim Kriterium der hohen Modellgiite punkten, wohingegen
die Beobachter-basierten Verfahren vor allem ihre Stirken als Beobachter ausspielen, je-
doch weniger gut eine physikalische Interpretierbarkeit der Modellungenauigkeiten oder
eine hohe Nutzbarkeit der resultierenden Modelle in Bezug auf die charakterisierten Mo-
dellungenauigkeiten gewihrleisten konnen. Besonders hervorzuheben ist allerdings das
Verfahren SINDy, welches allen drei formulierten Zielen dieser Arbeit in hohem Malle
gerecht wird. Dennoch kann dieses Verfahren nicht die grundlegende Anforderung einer
Zustandsschitzung erfiillen, auch mit einem nicht vollstindig messbaren Zustand um-
gehen zu konnen und zuverldssige Schitzungen zu erlauben. Ferner ist es (wie fast alle
diskutierten Methoden in diesem Kapitel) nicht in der Lage, eine Online-Schitzung von

Modellungenauigkeiten zu ermoglichen.
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Nutzbarkeit des

resultierenden Modells

Hohe Schiitz-
bzw. Modellgiite

—— PG(R)NN

Physikalische SINDy
Interpretierbarkeit " 3
P e BO Initialisierung
Flexibilitit bzgl. SMO

teilweise messbarem Zustand

Abbildung 3-25: Qualitative Einordnung der Methoden bzw. Modelle des aktuellen Kapi-
tels nach den Zielen und Anforderungen dieser Arbeit

Als Konsequenz aus den bisherigen Untersuchungen lassen sich folglich zwei Schliisse
ziehen: Erstens ist ein isolierter Fokus, d. h. entweder nur auf eine hybride Modelliiber-
arbeitung oder auf eine Beobachter-basierte Kompensation von Modellungenauigkeiten,
nicht zielfilhrend. Daher erscheint eine gleichzeitige Analyse von Zustinden und Modell-
ungenauigkeiten fiir eine zuverldssige Zustandsschitzung sinnvoller. Als zweite Konse-
quenz sticht die Grundidee des SINDy-Verfahrens heraus, welche die dieser Disserta-
tionsschrift zugrunde liegenden Ziele bis auf die Flexibilitit bzgl. eines teilweise messba-
ren Zustands mehrheitlich erfiillen kann und somit im Kapitel 4] bzgl. ihres Potentials fiir
den Beobachterentwurf ndher beleuchtet und aufgegriffen wird.

Aufgrund der wichtigen Erkenntnis aus der ersten Konsequenz komplettiert diese nun die
drei Anforderungen aus Abschnitt [I.2}

F.4 Eine isolierte Betrachtung der Systemidentifikation oder des Beobachterentwurfs
ist nicht zielfiihrend, um korrekte Zustandsschitzungen zu ermoglichen und gleich-
zeitig Modellungenauigkeiten zu erfassen. Die Wechselwirkungen dieser beiden

Schritte sollten analysiert werden.

Diese Folgerung wird nun zusammen mit den anderen Anforderungen im Kapitel || basie-
rend auf der Grundidee von SINDy, eine Dynamik durch Linearkombinationen geeigneter
Bibliotheksfunktionen zu approximieren, und basierend auf der gleichzeitigen Schétzung

von Zustinden und Modellungenauigkeiten umgesetzt.
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4 Online-Schatzung von Modellungenauigkeiten

Die Untersuchungen des vorigen Kapitels zeigen, dass ein isoliertes Vorgehen, bezo-
gen entweder nur auf die Systemidentifikation oder den Beobachterentwurf, aufgrund
der mangelnden Interpretierbarkeit oder Nutzbarkeit fiir weitere Entwurfsschritte nicht
zielfiihrend ist. Vielmehr ist eine effiziente, gemeinsame Betrachtung der Entwurfsschrit-
te notwendig, um gleichermaflen eine hohe Schitzgiite und Modellgiite zu erzielen sowie
eine physikalisch-technische Darstellung zu konservieren. Daher wird dieses Kapitel die
gleichzeitige Schitzung von Zustinden und Modellungenauigkeiten adressieren, welche
in Echtzeit erfolgt, daher zur Online-Modelladaption im Kapitel [5] genutzt werden kann
und den Neuheitswert dieser Dissertationsschrift darstellt. Zunédchst wird Abschnitt
das Vorgehen durch die Analogie zur gleichzeitigen Schitzung von Zustidnden und Para-
metern motivieren, woraufhin einige Voraussetzungen und Annahmen fiir die Entwick-
lung der Schitzverfahren im Abschnitt 4.2 thematisiert werden. AnschlieBend entwerfen
die Abschnitte @ bis @] neuartige Methoden, welche basierend auf dem Ansatz einer
Linearkombination aus geeigneten, physikalisch motivierten Funktionen die Modellun-
genauigkeit approximieren (vgl. Abbildung und innerhalb der Struktur eines Filters
eingebettet werden konnen. SchlieBlich wird Abschnitt|.6|eine Bewertung der Entwurfs-
verfahren vornehmen. Einige Abschnitte dieses Kapitels sind dariiber hinaus bereits Teil
der Vorverdffentlichungen [GT23a; GT23b; GKT23|.

4.1 Konzept Joint Estimation

In der Einfiihrung dieser Arbeit ist die Parameteridentifikation in der Abbildung
als notwendiger Schritt im Rahmen der Systemidentifikation gekennzeichnet worden.
Ublicherweise werden die Parameter eines Modells durch eine Optimierung mithilfe auf-
genommener Messdaten identifiziert. Allerdings kann diese Identifikation auch ohne einen
zusitzlichen Schritt gemeinsam mit der Zustandsschitzung erfolgen. Dazu existieren zwei
strukturelle Ansitze. Die Dual Estimation schaltet ein zweites Filter fiir die Parameter
@ < R™ parallel zum Filter der Zustandsschétzung [WvN99; NelOO; WNOI1]. Eine effi-
zientere Losung bildet das Konzept Joint Estimatiorﬁ Grundidee dieser Strategie ist es,
den Zustandsvektor des Filters so zu augmentieren, dass er alle interessierenden, nicht
messbaren GroBen enthilt [NelOO; vWO1; |vanO4; [Sch17]]. Folglich ist statt zwei Filtern,
die untereinander Informationen austauschen miissen, nur ein einziges Filter erforderlich.
Eine Visualisierung dieser beiden Ansitze ist angelehnt an [van04] in der Abbildung [4-T]

zu sehen und stellt die zuvor beschriebenen Unterschiede dieser Konzepte im Blockschalt-

%2Djeser Begriff lasst sich ins Deutsche mit gemeinsamer oder gleichzeitiger Schétzung ibersetzen.
Im Folgenden wird jedoch auch weiterhin der englische Fachbegriff genutzt.



94 4 Online-Schitzung von Modellungenauigkeiten

bild am Beispiel eines UKFs dar. Die Visualisierung hebt besonders den erhohten Auf-
wand des Dual-Filters hervor, der im Vergleich zum Joint-Filter wegen des zweiten Filters

quasi einen doppelten Rechenaufwand erfordert.

Vi Xy

l N up, —p UKF(x,u) »

Xk
Ui (9k) s
—» UKF(x,u,0) > Yk X 0,

\ 4 ~
O

Uiy —»| UKEF(9) »

Joint Filter Dual Filter

Abbildung 4-1: Funktionsweise eines Joint-UKFs vs. eines Dual-UKFs, vgl. [van04]

Aufgrund des vorteilhaften, geringeren Rechenaufwands wird nun das Konzept Joint Esti-
mation niher beleuchtet. Der erweiterte Zustandsvektor ¥ € R"* des Joint-Filters defi-
niert sich durch die Systemzustinde £ € R” und die Parameter des Systems 6 € R™. Seine

Dynamik wird iiber das folgende Modell abgebildet:

-
0 0 ) (4.1)

$ = h(z,u).

In der ersten Zeile der Zustandsgleichung (#.1)) ist somit weiterhin die Dynamik f des
betrachteten Systems vertreten, wihrend fiir die Parameter 0 ein zeitinvariantes Verhalten
angenommen wird. Die Ausgangsgleichung h wird weiterhin am nicht erweiterten Zu-
stand X ausgewertet, da die physikalischen Parameter in der Regel nicht zu messen sind.
Zur Illustration der gleichzeitigen Zustands- und Parameterschitzung wird der Duffing-
Oszillator betrachtet, dessen Zustidnde und Parameter geschitzt werden sollen. Der Duf-
fing-Oszillator ist ein nichtlineares, schwingfihiges System, welches gedampft ist und
eine kubische Riickstellkraft aufweist. Es wird iiblicherweise als Standardbeispiel fiir
Untersuchungen bzgl. dynamischer Systeme genutzt, z. B. in [BK19] ohne Didmpfung.
Somit kann der Duffing-Oszillator mit dem Zustand x = (x;, x;)7 € R? und dem Eingang
u € R, welche z. B. Winkel und Winkelgeschwindigkeit sowie eine Kraft symbolisieren,
folgendermaBen definiert werden:

; X2
X = 3 ,
—03x, — 01 x1 — 92)61 +u

y = X.
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Die physikalischen Parameter werden zu 6 = (-1, 3, 0,1)” gewihlt. In der Abbildung
wird nun der Parameter 6, = 3 zusitzlich zu den Zustdnden geschitzt, wenn das System
durch einen sinusformigen Eingang angeregt wird. Dabei werden in schwarz die simulier-
ten Trajektorien des Oszillators bzw. der tatsdchlich wirkende Parameter 6, dargestellt,
wohingegen die Schitzungen des SRUKFs in rot zu sehen sind. Die linke Visualisie-
rung zeigt anhand des Phasenraums die Zustinde des Schwingers, welche vom SRUKF
sehr gut geschitzt werden, da der Anfangswertfehler schnell reduziert wird und kaum
Abweichungen zwischen den beiden Trajektorien zu erkennen sind. Dazu trigt auch die
Schitzung des Parameters 6, bei, welche zunichst bei 6, = —1 startet und schnell gegen
den tatsdchlichen Wert 6, = 3 strebt. Je nach Grofe der gewéhlten Parameterkovarianz

oszilliert dieser Schitzwert §, weniger oder stirker ausgeprigt um den Wert 6.

T T T T T T T T T T
10§ .
4+ -
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= - - b G -
0 g 4 ._ oS :". AN K '.. ‘:'b. ".I-. Y . .
5 = N - s
_2 - - A~ 2 |- -
0 — %]
—4t . - B
1 1 1 1 1 1 _2 = 1 1 1 1
-2 -1 0 1 2 3 2 4 6 8 10
X1 Zeit t[s]

Abbildung 4-2: Zustands- und Parameterschdtzung durch ein SRUKF fiir den Duffing-
Oszillator bei Anregung aus den Anfangswerten xo = (2,1)T und
%o = (3,5)T mit u(t) = sin(z)

Dieses Beispiel zeigt folglich, dass die Schitzung physikalischer Parameter, welche ge-
wohnlich zeitinvariant angenommen werden, parallel zur Zustandsschédtzung eine effizi-
ente Moglichkeit darstellt, diese Modellungenauigkeit in Form von Parametern zu iden-
tifizieren. Nach Abschnitt stellen jedoch dynamische Modellungenauigkeiten g(x, u)
wesentlich groBBere Herausforderungen als zeitinvariante physikalische Parameter dar. Um
zu evaluieren, ob das Konzept auch fiir die Identifikation solcher dynamischer Ungenauig-
keiten eine hilfreiche MaBBnahme sein kann, wird das Beispiel des Duffing-Oszillators
erneut herangezogen. Statt der physikalischen Parameter wird nun angenommen, dass
der kubische Term g(x,u) = —Hzx';’ unbekannt ist, d. h. nicht modelliert wurde und da-
her als dynamische Modellungenauigkeit resultiert. Diese kann im Modell als Funktion g
beriicksichtigt werden, wie es in der Gleichung (4.3) zu sehen ist. Eine der einfachsten

und populérsten Ansétze zur Approximation dieser Modellungenauigkeit stammt aus der
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linearen Regression [Murl2; Bis06|: Die Ungenauigkeit wird durch eine Linearkombina-

tion geeigneter Basisfunktionen ¢; : R" X R” — R angenihert, sodass

ng
g, u) ~ > 0 yi(x,u) = 07 (x,u) 4.2)

i=1
gilt. Diese Basisfunktionen konnen in einer Bibliothek W(x,u) € R™ gesammelt wer-
den, welche durch den Parametervektor 8 € R™ ausgewertet wird. Dabei wird wie beim
augmentierten Modell der Parameterschitzung (4.1)) eine invariante Dynamik fiir die Pa-

rameter angenommen. Diese Uberlegungen miinden fiir den Duffing-Oszillator somit in
das folgende Modell:

X2
. X2 < T
X = S XR|-03x0—-01x1+u+0"¥Y(x,ul,
—03x; — 01 x1 +u+ g(x,u) 0 4.3)

y = X1.

Fiir die Wahl der Bibliotheksterme sind aus der linearen Regression viele mogliche Basis-
systeme bekannt, z. B. polynomiale oder radiale Basisfunktionen (RBFs) (vgl. [Mur12]).
So nutzen [Kul21]] beispielsweise RBFs mit kompaktem Triger, um Modellungenauigkei-
ten mittels eines erweiterten Modells durch ein adaptiertes EKF zu schitzen. Diese bieten
den Vorteil, dass sie jeden beliebigen Funktionszusammenhang annéhern konnen, und da-
her eine zuverlédssige Wabhl fiir die Kompensation der Modellungenauigkeit bilden. Diese
soll aber nicht nur approximiert werden, sondern es soll auch eine physikalisch interpre-
tierbare Darstellung dieser gefunden werden (vgl. Anforderung [F.2). Dies ist fiir RBFs
jedoch schwierig, da ein konkretes Wirkprinzip eines physikalischen Gesetzes nicht zu
erkennen ist. Um die Auswirkung dieser beiden Arten von Basisfunktionen zu illustrie-
ren, werden fiir den Duffing-Oszillator (4.3]) zwei verschiedene Bibliotheken untersucht,

die den kubischen Term identifizieren sollen:
_ . 2 _ . 2 42 _ . 2 _ . 2 42 _ )2
‘I’l(x, Ll) — (6 (0,01-x1) ,e (10-x1) ,e xl,e (100-x1) ,e 0,1-xp) e xz’e (10-u) )T’

2 2 3 T
Wo(x,u) = (1, x1, X2, X35, X7, X7, €08(x2), u)" .

In den Abbildungen 4-3|und sind die zeitlichen Verldaufe der Zustinde und Parame-
ter der Linearkombination abgebildet. Grundsitzlich zeigt die Abbildung den Vorteil
einer hohen Schitzgiite durch die Approximation der Modellungenauigkeit g im Kon-
trast zu einem SRUKF auf, das mit einem Modell ohne den Term g bzw. g nur eine de-
fizitdre Zustandsschidtzung erlauben wiirde. Unabhiéngig von der gewihlten Bibliothek

bewirkt somit die Anndherung der Ungenauigkeit iiber eine Linearkombination eine Ver-



4.1 Konzept Joint Estimation 97

besserung der Schitzgiite. Allerdings ist die Qualitédt der Schitzung wesentlich schlechter,

wenn RBFs in der Bibliothek genutzt werden.
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Abbildung 4-3: Einfluss der Art der gewdhlten Bibliotheksfunktionen auf die Schditzgiite
anhand der Bibliotheken ¥, und ¥, im Vergleich zu einem Standard-
SRUKF ohne augmentiertes Modell (4.3))
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Abbildung 4-4: Evolution der Parameter 0 abhdingig von den Bibliotheken ¥, und ¥,

Zudem zeigt sich anhand der Zeitverldufe der Parameter in der Abbildung -4 welche
vergrofert dargestellt sind, dass sich die zu den RBFs gehorenden Parameter explosions-
artig vergroBern und sich ihre Werte stark iiberlagern, was eine Interpretation der appro-
ximierten Modellungenauigkeit gy, erschwert. In [KSH21]] werden RBFs mit kompaktem
Tréager erfolgreich genutzt, um innerhalb eines EKFs eine Kompensation und Approxima-
tion der Modellungenauigkeiten zu gewdhrleisten, sodass eine hohe Schitzgiite resultiert.

Die Autoren diskutieren allerdings keine Strategie zur ganzheitlichen Identifikation der
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Ungenauigkeiten und ermoglichen somit keine Modellanpassung. Im Gegensatz zu den
Parametern der RBFs sind die Parameter der physikalisch basierten Bibliothek @hnlich
skaliert (vgl. die untere Zeile der Abbildung §-4)), auch wenn eine Interpretation der Dy-
namik aufgrund der Vielzahl an uniibersichtlichen Parametern weiterhin herausfordernd
ist. Dennoch ermdglicht die physikalisch basierte Bibliothek im Kontrast zur Bibliothek
mit radialen Basisfunktionen grundsitzlich einen Riickschluss auf Wirkprinzipien, so-
fern ihre Parameter und Terme interpretierbar gestaltet und weitere Bedingungen beach-
tet werden (vgl. dazu die folgenden Abschnitte sowie [4.3). Neben dem Konzept des
erweiterten Zustands und augmentierten Modells, welches bereits durch [KSH21]] ange-
sprochen worden ist, existieren weitere Ansitze, um eine Modellungenauigkeit parallel
zur Zustandsschitzung zu erfassen. In [KJY21] wihlen die Autoren eine komplexe geo-
metrische Approximation, die eine obere und untere Grenze der Modellungenauigkeit be-
stimmt, zwischen denen sich der tatsdchliche, aktuelle Wert g, := g(x;, u;) befindet. Dies
erlaubt punktuell eine sehr genaue Anndherung, jedoch keine zusammenhédngende Dar-
stellung, die einen physikalisch-technischen Mehrwert bietet. Dariiber hinaus weist das
Verfahren eine aufwendige Struktur auf, die die Einstellung und Abschitzung verschie-
dener Designparameter erfordert. Weitere Strategien werden beispielsweise in [Sch10j
BMTD21] beschrieben und basieren auf neuronalen Netzen oder Gaullprozessen, wel-
che ebenfalls keine physikalisch-technische Interpretierbarkeit in parametrischer Form
ermdglichen. Aufgrund dessen wird fiir diese Arbeit der Ansatz der Linearkombination

basierend auf physikalisch motivierten Termen gewdhlt.

4.2 Voraussetzungen und Annahmen

Nachdem die grundlegende Idee der Joint Estimation im vorigen Abschnitt skizziert wor-
den ist, wird diese nun formalisiert, indem Voraussetzungen und Annahmen formuliert
sowie die Ausgangssituation fiir die Nutzung des Modells innerhalb eines Beobachters
definiert werden. Um Modellungenauigkeiten eindeutig zu identifizieren, werden in die-
ser Arbeit ausschlieBlich eingangsaffine Systeme mit relativem Grad 6 = n{”r_;] betrachtet,
die sich durch ihre Struktur

x=ax)+bx) u

y = h(x)

(4.4)

mit a(x) € R"” und b(x) € R kennzeichnen [Adal8]. Viele technische Systeme, wie
z. B. der bereits diskutierte Golfroboter, weisen diese Struktur auf, bei der der Eingang u
linear auf das System wirkt. Ferner wird angenommen, dass sich das System (4.4]) mit-
hilfe der Lie-Ableitungen (vgl. Abschnitt in die nichtlineare Regelungsnormalform

3330mit ist das System beobachtbar, vgl. [Ada18] und Anhang
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Jf(x,u) tiberfiihren lésst, bei der bereits die Modellungenauigkeit g beriicksichtigt und an-
schlieBend durch ein augmentiertes Modell f(&, u) adressiert wird (vgl. Gleichung (Z.32),
[Adal8]):

. i o
X1 X .
. i N
X2 X3 i
X = = - %= ~ : |
+ b(x,u) + 67W(x,
X a(x)+ b(x,u) + g(x,u) x a(x) (x,u) (x,u)
o 0
= f(x,u) -
= f(X,u)
y = h(x,u). ws)

Dabei wirken die Systemdynamik f(x,u) = a(x)+b(x,u) und die reale Modellungenauig-
keit g(x,u) nur auf die n-te Zeile, wihrend fiir die Parameter der Linearkombination des
augmentierten Modells wie im vorigen Abschnitt weiterhin eine zeitinvariante Dynamik
angenommen wird. Im Vergleich zur allgemeinen Definition einer Modellungenauigkeit
(2.35) wird im erweiterten Modell direkt eine additive Wirkung dieser angenommen (vgl.
Gleichung (2.36))), da iiberwiegend alle diskutierten Anwendungen dieser Arbeit dieser
Form entsprechen. Allerdings wird das Beispiel der Windenergieanlage im Abschnitt[4.3]
zeigen, dass auch eine multiplikative Modellungenauigkeit im Kontext der Joint Estima-
tion betrachtet werden kann. Nach der Definition des Modells muss eine Bibliothek
¥ € R"™ gewihlt werden. Diese soll Hypothesen ¢; : R" X R” — R beinhalten, welche
Erfahrungswissen und Vermutungen iiber die Modellungenauigkeit in das erweiterte Mo-
dell einpflegen. Um eine Interpretation der Ungenauigkeit zu erlauben, werden daher nur
physikalisch motivierte Terme in der Bibliothek berticksichtigt (vgl. die Argumentation
des vorigen Abschnitts und Abbildung[-4)). In der Regel kann jedoch davon ausgegangen
werden, dass grundlegendes Wissen wie die Definition der Zustinde sowie die Kenntnis

der Systemordnung vorhanden ist, weshalb die Bibliothek
\Po(x’u):(lsxla"~axnaul9~"9up)T (4'6)

als Minimalanforderung gilt, da diese das Vorwissen durch linear eingehende Zusténde,
Einginge und Konstanten beriicksichtigt. Ist die Bibliothek festgelegt, kann das resul-
tierende Modell (4.5) analog zur gleichzeitigen Zustands- und Parameterschitzung (vgl.
Gleichung (@.1))) in ein bestehendes Filter, nachfolgend z. B. ein SRUKEF, eingesetzt wer-
den. Ferner kann die Bibliothek etwaige Vermutungen zur Beschreibung der Modellun-

genauigkeiten enthalten, beispielsweise trigonometrische Terme, um Schwingungen ab-
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zubilden. Allerdings zeigt die Abbildung anhand des Dufling-Oszillators, dass eine
beliebig gewihlte, physikalisch motivierte Bibliothek

2 .2 .3 . 2 2 T
Ys(x,u) = (1, x1, X2, X3, X7, X7, €OS(X2), sin(xy), x5 - X1, X2 - X7, U)

das Risiko eines divergierenden Beobachters auslost. Dies ist ab etwa sechs Sekunden
in der linken Grafik zu beobachten, bei der X, explosionsartig zunimmt und schlief3-
lich divergiert. Bei Betrachtung der zugehérigen Parameterwerte  in der rechten Grafik
ist auffdllig, dass die Parameter stark variieren und teilweise grofe Skalierungen auf-
weisen. Die Ursachen dieses divergierenden, instabilen Beobachters konnten erfahrungs-
gemdl auf die hohe Anzahl der Freiheitsgrade fiir die Parameter bzw. Terme, da zu je-
dem Zeitpunkt alle ny Bibliotheksterme gewihlt werden konnen, auf die fehlende Ska-

lierung unterschiedlicher Parameter sowie auf die u. U. schwache Beobachtbarkeit dieser

zuriickgefiihrt werden.

¥;

T
1
s

T
1
N

Zeit t[s] Zeit t[s]
\ — Simulation - - - JE-Modell mit ¥, \

Abbildung 4-5: Divergierendes SRUKF ab etwa sechs Sekunden aufgrund der gewdhlten
Bibliothek W3, deren Parameter 0 rechts qualitativ dargestellt sind

Aufgrund der Erkenntnis aus dem vorangegangenen Beispiel wird offensichtlich, dass die
unbeschrinkte Wahl an méglichen Termen ¢; nicht nur das stabile Betreiben eines Beob-
achters gefihrden kann, sondern auch die Forderung der Interpretierbarkeit [F.2| missach-
tet, welche wegen der Vielzahl ng an Termen und ihrer Superposition ab einer gewissen
Anzahl nicht mehr gegeben ist. So kann die rechte Grafik der Abbildung[4-5|z. B. keinen
qualitativen Aufschluss dariiber geben, welche der Terme ¢; die Modellungenauigkeit g
nun tatsachlich charakterisieren konnen. Daher wird die Anforderung [F.2]im folgenden

Absatz iiberarbeitet und konkretisiert.
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Anforderung fiir die Interpretierbarkeit

Aufgrund der groen Anzahl ny an moglichen Termen aus der Bibliothek W besteht nicht
nur das Risiko der Instabilitdt des Beobachters, welches bereits aufgezeigt worden ist und
aus verschiedenen Griinden resultier@ Insbesondere kann die geforderte physikalisch-
technische Interpretierbarkeit und Transparenz durch die Superposition potentiell vie-
ler Terme nicht zwingend gewihrleistet werden. Da der Begrift Interpretierbarkeit im
Kontext der Mechatronik fiir dynamische Systeme nicht eindeutig festgelegt ist, wird
basierend auf der Motivation im Abschnitt [I.2] eine intuitive Definition verwendet. So
wurde der Begriff Interpretierbarkeit dort bereits als eine Zuordnung von konkreten ma-
thematischen bzw. parametrischen Darstellungen zu physikalischen Wirkprinzipien ein-
gefiihrt. Bezogen auf die Linearkombinationen bedeutet dies, dass die Modellungenauig-
keit nicht durch eine Superposition vieler, wenn auch physikalisch motivierter dyna-
mischer Terme ausgedriickt werden sollte, da eine konkrete Zuordnung zu physikalischen
GesetzmaBigkeiten dadurch verhindert wird. Dies zeigt beispielsweise die Undurchschau-
barkeit der Parameter in der unteren Visualisierung der Abbildung[-4] welche keinen ein-
deutigen Riickschluss auf die Charakterisierung der Modellungenauigkeit geben. Denn

die Approximation zum Zeitpunkt ¢ = 8 s lautet z. B. folgendermal3en:
88 ~ 0,23 -0, 14x; —0,09x; + 0, 09x5 — 0, 40x7 — 5,47 x; — 0, 12 cos(x,) + 0, 084u.

Obgleich der zum System passende Term xf am hochsten skaliert ist, weisen andere Ter-
me wie xl,xf, cos(x,) oder Konstanten ebenfalls hohere Parameterwerte auf, sodass eine
eindeutige Interpretation nicht gegeben ist. Da jedoch die Mehrheit von physikalischen
Effekten, die in Natur und Technik auftreten, im Sinne des Prinzips Occam’s Razor eher
durch wenige als viele dynamische Terme charakterisiert werden kann [BPK16b; BK19],
sollte dieses Erfahrungswissen dazu genutzt werden, die Eigenschaft der Interpretierbar-
keit umzusetzen. So wird die Erfahrung, dass nur einige wenige, sogenannte dominante
Funktionsterme ; fiir die Identifikation der Modellungenauigkeit g relevant sind, mithilfe
der fo-Nomﬁ in die mathematische Formulierung iibersetzt, dass der Parametervektor 6
tiberwiegend Nullelemente enthilt [KL12]:

10l == #{i | 6; # 0} < ng s < ng. 4.7)

Die {)-Norm gibt dabei die Anzahl der Nichtnullelemente aus, welche maximal, aber
nicht notwendigerweise bel ng ., liegen kann und deutlich kleiner als die Anzahl der ge-
samten Bibliotheksterme ny ist. Die Eigenschaft, die durch Gleichung (4.7) definiert wird,

*4Eine MaBnahme zur Verbesserung der Beobachtbarkeit wird z. B. im Abschnitt[4.3]eingefiihrt.
3%m mathematischen Sinne ist dies keine Norm, sondern eine Halbnorm. Aufgrund der Verwandt-
schaft zur p-Norm (vgl. [Kon01])) wird jedoch der Name fir diese beibehalten.
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wird als Sparsity bezeichnet: Der Parametervektor 6 ist diinnbesetzt bzw. im Englischen
Ngac-Sparse, wenn nur fiir wenige seiner Elemente 6, # 0 gilt [KL12]. Jene Elemente
deuten schlieBlich auf die gesuchten, dominanten Bibliotheksterme ; hin, die fiir eine
interpretierbare Darstellung der Modellungenauigkeit g geeignet sind. Dies ist beispiel-
haft durch die eindeutigen Verldufe der Parameter in der Abbildung skizziert, welche
aus der Abbildung[d-4Jresultieren, aber nun mit der Sparsity-Bedingung (4.7) ausgestattet
worden ist. Im Allgemeinen ist jedoch nicht bekannt, wie viele Elemente nicht Null sind,
sodass der Parameter ng,, nach Erfahrungswissen oder durch eine Hyperoptimierung
festgelegt werden muss. Das Konzept Sparsity ist bereits kurz im Kontext der Methode
SINDy angesprochen worden (vgl. Abschnitt[3.1.T)). Diese erzielt offline ein interpretier-
bares Modell aus Messdaten durch die Losung eines Optimierungsproblems (3.3)). Dabei
nutzt SINDy jedoch die ¢;-Norm, um Interpretierbarkeit zu gewéhrleisten. Die Ursache
fiir die Verwendung der ¢, - statt der {,-Norm, welche laut Definition erforderlich ist,
sowie die Relation beider Normen folgen im Abschnitt

6, b5

0, — Oy —

0, 0,
Zeit ¢ [s] On — 6

Abbildung 4-6: Der diinnbesetzte Parametervektor @ lisst interpretierbare Riickschliisse
auf die Modellungenauigkeit des Duffing-Oszillators zu, wenn im Gegen-
satz zur Abbildung die Sparsity-Bedingung umgesetzt wird. Ob-
gleich ng .., = 3 gewdhlt wurde, reicht bereits der Term Y = xf zur Ap-
proximation der Ungenauigkeit aus.

Somit konkretisiert sich die Anforderung [F.2] welche bereits zu Beginn dieser Arbeit im

Abschnitt [[.2] formuliert worden ist, zu der folgenden Aussage:

F.2+ Die Anzahl der dominanten Funktionsterme ; ist klein, da die meisten, in Natur
und Technik auftretenden Dynamiken im Sinne des Prinzips Occam’s Razor mit
wenigen dynamischen Termen charakterisiert werden konnen. Somit soll der Para-

metervektor 6, zu jedem Zeitpunkt k diinnbesetzt sein.

Diese Voriiberlegungen und Voraussetzungen fiihren schlieBlich zu den im Rahmen dieser
Dissertationsschrift erarbeiteten, neuartigen Beobachterentwiirfen der nachsten Abschnit-
te. Die Art und Weise, wie die Forderung umgesetzt wird, adressieren die Abschnitte
in unterschiedlicher Auspriagung. Dabei werden diese Entwiirfe anhand des SRUKFs und
des SMOs, welche sich durch ihre Robustheit anbieten, durchgefiihrt.
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4.3 Augmentierter Beobachterentwurf

Basierend auf den am Lehrstuhl RtM erfolgten Vorarbeiten von [Sch17] wird das SRUKF
ausgewdhlt, um einen neuartigen Beobachter zu entwerfen, der sowohl eine zuverléssige
Zustandsschitzung als auch die Identifikation von Modellungenauigkeiten erlaubt. Um
die angepasste Forderung umzusetzen, wird das Konzept Sparsity zunichst analy-
siert. Dazu werden im Abschnitt Methoden der Signalverarbeitung basierend auf
[BK19; KL12; [HTWI15] beleuchtet, deren Konzepte erstmals fiir den Beobachterent-
wurf zur Identifikation von Modellungenauigkeiten adaptiert werden kénnen. Anschlie-
Bend wird der Entwurf im Abschnitt 4.3.2] durchgefiihrt und die Qualitit des Entwurfs
basierend auf den Anforderungen dieser Arbeit anhand ausgewéihlter Anwendungen im
letzten Abschnitt [4.3.3] analysiert. Teile dieses Abschnitts finden sich bereits in der Vor-
veroffentlichung [GT23b; | GT24].

4.3.1 Motivation aus dem Compressed Sensing

Viele hochdimensionale Signale, wie z. B. Bild- oder Audiosignale, werden heutzutage
komprimiert, um eine effiziente Speicherung oder einen beschleunigten Datentransfer zu
ermdoglichen. Dies bedeutet, dass das urspriingliche Signal méglichst ohne Informations-
verlust in reduzierter Form durch einige wenige Charakteristika dargestellt werden soll.
So kann ein Signal s € R” beispielsweise durch eine geeignete Basiswahl ¥ € R™" mittels

der Basisfunktionen ; mit i = 1,...,n komprimiert werden, indem
s = Yo = Z Ol (4.8)

gilt. Die Approximation des Signals s kann durch die Projektion auf eine orthonormale
Basis, wie z. B. die Fourierbasis, garantiert werden [KL12; HTW15; BK19]. Das Fo-
to des Golfroboters, welches in der Visualisierung im Originalzustand zu sehen
ist, kann beispielsweise durch eine Fourierbasis komprimiert werden, indem nur ein ge-
ringer Prozentsatz der betragsmiBig grolten Fourierkoeffizienten behalten wird, um das
Bild zu rekonstruieren. Da die Fourierbasis als orthonormale Basis eine sehr genaue Ap-
proximation zuldsst, ist das auf 1% komprimierte Foto in der Abbildung kaum
vom Original zu unterscheiden. Erst bei einer sehr starken Reduktion auf 0, 1% der be-
tragsmiBig groBten Koeffizienten, weist das komprimierte Foto in der Abbildung
Ungenauigkeiten durch Rauschen auf, erfasst die wesentlichen Eigenschaften des Origi-
nalfotos jedoch weiterhin gut. Anhand des Beispiels wird deutlich, dass das Signal, in
diesem Fall ein Foto, durch eine geeignete Basiswahl mit wenigen Basisfunktionen nahe-

zu ohne Informationsverlust charakterisiert werden kann.
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(a) Urspriingliches Foto, (b) Komprimiertes Foto  (c) Stark komprimiertes Foto
© Heinz Nixdorf Institut

Abbildung 4-7: Mithilfe der Fouriertransformation komprimiertes Foto (durch Nutzung
von leicht modifiziertem Code aus )

Diese Eigenschaft wird Sparsity genannt, d. h. das Signal kann im Kontrast zur kano-
nischen Basis in einer anderen Basis durch einige, im Vergleich deutlich weniger Cha-
rakteristika y; mit i = 1,...,n9,, < n dargestellt werden. Somit ist der Parameter der
Gleichung (&.8) in der orthonormalen Basis ng ,-sparse. Dies kann mathematisch durch
die {y-Norm ausgedriickt werden: [|0|ly = ng... Allerdings existieren zwei Nachteile eines
solchen Vorgehens: Erstens stellen orthonormale Basen eine limitierte Wahl fiir beliebige
Signale dar, da sich nicht fiir jedes Signal eine einzelne, konkrete orthonormale Basis eig-
net, vgl. [HTW15]]. Zweitens muss das hochdimensionale Signal s zunéchst gemessen und
anschlieBend komprimiert werden, was in praktischen Anwendungen u. U. ineffizient und
rechenaufwendig ist. Aus diesen Nachteilen hat sich in der Signalverarbeitung der Bereich
Compressed Sensing entwickelt, der auf die Arbeiten von [Don06; [CRT06] zuriickgeht.

Diese adressieren die angesprochenen Nachteile, indem einerseits beliebige Projektionen,

auch basierend auf nicht orthonormalen Basen, zur Kompression des Signals betrachtet
werden, und andererseits die Extraktion des Signals direkt aus der Messung y € R™ des

komprimierten Signals erfolgt, sodass mit Gleichung (#.8)) Folgendes gilt:
y = HY60 = Hs. 4.9)

Das komprimierte Signal lisst sich dabei durch die Messmatrif"| H € R"™" messen, da
y = HY@O gilt. Obwohl das Gleichungssystem y = Hs aufgrund von m < n in der Re-
gel unterbestimmt ist, kann durch die Kenntnis der Basis ¥ sowie des Wissens, dass der

Vektor 6 diinnbesetzt ist, das Signal s dennoch rekonstruiert werden. Durch Umformulie-

36In der Regelungstechnik ist damit die Ausgangsmatrix C bzw. die Jacobimatrix der Messfunktion k
gemeint.
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rung des Signals in den Gleichungen (#.8) und ({.9) ldsst sich die Rekonstruktion in das

folgende £,-Problem iibersetzen:

A

6 = argmin ||0]lp, sodass y = HWYE. (4.10)
0

Allerdings ist das Optimierungsproblem (4.10) nicht konvex und nur durch Kombinatorik
bzw. eine Brute-Force-Suche zu léserﬂ Diese Eigenschaft der Nicht-Konvexitdt wird fiir
eine zweidimensionale Variable anhand der Abbildung @ 1llustriert, welche die durch
verschiedene p-Normen resultierenden Regionen darstellt und fiir p < 1 nicht konve-
xe Gebiete aufzeigt. Unter bestimmten Umstidnden, welche im folgenden Abschnitt the-
matisiert werden, kann das Problem (4.10) jedoch &dquivalent in der ¢;-Norm formuliert
werden [HTW15; KL12|], was eine vorteilhafte, konvexe Gestalt bewirkt:

A

0 = argmin ||6]|;, sodass y = HYE. 4.11)
0

Sind die Messungen rauschbehaftet, was in der Praxis meistens der Fall ist, ldsst sich das

obige Problem mit 0 < € < 1 abmildern zu:

A

0 = argmin |||, sodass |HYO -yl <e. (4.12)
9

Aufgrund der Optimierungstheorie kann das Problem (#.12)) zudem nicht nur als Kosten-
funktion mit Regularisierungsterm formuliert werden, wie es z. B. im LASSO-Verfahren
der Fall ist, sondern auch als duales Problem iiber die Herleitung mithilfe von Lagrange-

Multiplikatoren mit einer angepassten Nebenbedingung H (%) < 0 durch

6 = argmin||H¥6 - yl,, sodass |6l <€/, (4.13)
6

aufgefasst werden [CGK10; JLO7]. Innerhalb einer iterativen, auf der Losung einer ¢,-
Kostenfunktion basierenden Filterstruktur stort jedoch eine Nebenbedingung /. Diese
kann aber auch als eine Projektion auf den Losungsraum interpretiert werden [JLO7;
CGK10]. Dazu wird die Ungleichheitsbedingung durch eine zusitzliche, fiktive Messung

mit € > 0 und
0=10| - € (4.14)

innerhalb des Filters umgesetzt, die schlieBlich durch die vorhandenen Strukturen im Fil-
ter ausgewertet werden kann. Der Vorteil des ¢;-basierten Optimierungsproblems in den
Gleichungen (@.11) und (4.12)) sowie des ¢,-restringierten Problems in Gleichung (.13)

37Die Gleichung (@.10) ist ein nicht-polynomiales, hartes (NP-hard) Problem [BK19; HTW15].
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besteht in der Garantie der Konvexitidt, wihrend gleichzeitig eine diinnbesetzte Losung
gefordert wird. In der Abbildung wird der Zusammenhang zwischen den Eigenschaf-
ten Konvexitit und Sparsity illustriert, indem fiir einen zweidimensionalen Parameter die
durch die jeweilige £,-Norm induzierte Region dargestellt ist. Je kleiner das p der Norm
gewdhlt ist, desto mehr werden das Konzept der Sparsity beriicksichtigt und diinnbesetzte
Parameter gefordert. Allerdings ist die induzierte Region lediglich fiir die £,- und £,;-Norm
konvex, wihrend dies fiir die Regionen mit p < 1 nicht mehr gilt. Die £;-Norm stellt
demnach den besten Kompromiss zwischen Konvexitét und Sparsity dar. Die Umstéinde,
welche eine dquivalente Rekonstruktion des Signals durch die Nutzung der £,;-Norm er-

lauben, sind geometrischer Natur und werden im nachfolgenden Abschnitt thematisiert.

6, 0, 0, 6h

N N AL
(<7 i

6 4 lo,

Abbildung 4-8: Zusammenhang zwischen der {,-Norm und den Eigenschaften Konvexitdit
sowie Sparsity: Je kleiner p ist, desto mehr nihern sich die Parameter
der Eigenschaft Sparsity an. Gilt jedoch p < 1, ist keine Konvexitdit mehr
gegeben (vgl. [HTW15]).

Zusammenhang ¢)- und {;-Norm

Nach den Arbeiten von [Don06; CRTO6] zeigt sich, dass die Struktur und Gestalt der
Messmatrix H ausschlaggebend fiir die Umformulierung des Problems (4.10)) in ein kon-
vexes Optimierungsproblem (4.11)) ist. Dies gilt insbesondere, wenn beliebige Projek-
tionen, d. h. nicht orthonormale oder orthogonale Basissysteme ¥, genutzt werden. Da-
mit die Umformulierung gelingt und tatsichlich mithilfe der £;-Norm eine diinnbesetzte
Losung angendhert werden kann, muss die Messmatrix H inkohidrent zur Basis W sein.
Dies bedeutet, dass die Zeilen der Messmatrix unabhiingig von den Spalten der Basis sind
[BK19]. Anders ausgedriickt, kann diese Bedingung auch iiber die Matrix H'Y tiberpriift
werden, indem die einzelnen Spalten dieser Matrix auf Orthonormalitit getestet werden
[HTW15]. Liegen geniigend Messungen m vor, sodass etwa m ~ O(ng 4, - 10g(n/ng c1))
gilt, konvergiert das Problem (4.11) mit hoher Wahrscheinlichkeit zur diinnbesetzten L6-
sung § [HTW15; BK19]. Diese Eigenschaften sind auch unter den Begriffen Restricted
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Isometry Property (RIP) und Restricted Nullspace (RN) bekannt und untersuchen die geo-
metrische Wirkung der Messungen und der gewihlten Basis hinsichtlich der Sparsity-

Bedingung. Diese soll annihernd einer unitdren Transformation entsprechen.

4.3.2 Beobachterentwurf fiir ein Unscented Kalman Filter

Mithilfe der Methoden des Compressed Sensings kann nun die Forderung umge-
setzt werden, d. h. dass die Parameter 8 € R, welche mittels der Bibliothek ¥ € R™
als Linearkombination (4.2)) zur Approximation der Modellungenauigkeit g € R dienen,
diinnbesetzt sein sollen. Doch es bleibt zu kldren, wie ein Optimierungsproblem in der Art
von Gleichung (@.13)) in der klassischen Korrektor- und Pradiktorstruktur eines SRUKFs
(vgl. Algorithmus [5) beriicksichtigt werden kann. Zundchst wird das Modell (4.5) mit-
tels des expliziten Euler-Verfahrens durch die Schrittweite Az > 0 diskretisiert (vgl.
Anhang [A5.T)) und hinsichtlich des SRUKFs angepasst, indem noch Prozess- und Mess-

rauschen in der Formulierung der Dynamiken f bzw. f beriicksichtigt werden:

X1 = X+ A (f e, up) +wy) = K = X+ At [f(xk’ ' ( /;)) ’
w, (4.15)

Vi = h(xy, ug) + vy

Dabei gilt fiir das Prozessrauschen wy € R" ~ N(0,Q,), w,f € R™ ~ N(0,Qy) und fiir das
Messrauschen v, ~ N(0, R) (vgl. Abschnitt 2.2.2). Somit kann die Prozesskovarianzma-
trix fiir den erweiterten Zustand vereinfachend als Blockmatrix der beiden Einzelkova-
rianzen durch Q = blkdiag(Q,,Q,) mit den restlichen Eintriigen als Null angenommen
werden. Zur Ubersichtlichkeit werden jedoch in den beiden folgenden Gleichungen die
Zeitindizes k vernachlissigt. Ausgehend von der Minimierung des Schitzfehlers (2.13)
sowie den Uberlegungen im vorigen Abschnitt (#.13)) kann das Minimierungsproblem,
welches den Schitzfehler reduzieren und gleichzeitig die Sparsity-Bedingung umsetzen
soll, durch

X = arg min %E[(fc - x)(x —%)], sodass |IX| <e, (4.16)
definiert werden. Dabei stellt 0 < € < 1 eine Schranke bzgl. des Messrauschens dar,
wihrend T = blkdiag(0,, I,,,) eine Blockmatrix aus Nullen und Einsen beschreibt und so-
mit die Anforderung[F.2+|bzgl. der Parameter € kodiert. Allerdings ist die Einbettung und
Losung des Optimierungsproblems (4.16) innerhalb der iterativen Struktur des Filters wie
bereits im vorigen Abschnitt angesprochen nicht einfach. Daher wird auf die zusitzliche,

fiktive Messung des vorigen Abschnitts (4.14]) zuriickgegriffen, welche als Projektion auf-
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gefasst werden kann [GT23b; CGK10; JLO7]. Diese wird als Pseudomessung y ,, mit der

angepassten, stetigen Ausgangsgleichung #,,, durch
Ypm = hpn(%) = max(|[IX]|, — €,0) (4.17)

definiert. Die GroBe € ~ N(0,R,,,) reprdsentiert nun das fiktionale Messrauschen, wel-
ches durch das Optimierungsproblem die Nebenbedingung steuert. Hierbei stellt R, die
Kovarianz des fiktionalen Messrauschens dar. Da das SRUKF auf der UT basiert, kann
die nichtlineare, fiktionale Ausgangsgleichung @.17) direkt innerhalb des Filters ein-
gesetzt werden, ohne dass weitere Anpassungen erforderlich sind. Dies steht im Kon-
trast zum EKEF, vgl. [JLO7; KSH21]. Da es sich um eine zusitzliche Messung handelt,
ist keine erneute Auswertung des Dynamikschritts erforderlich, sodass stattdessen die
Identitétsabbildung f,, fiir diesen Schritt im SRUKF genutzt wird. Bei Bedarf kann die
Projektion mittels der Pseudomessung mehrfach erfolgen, um die Genauigkeit der Ne-
benbedingung H zu erhohen [CGK10; JLO7|]. Ist dies gewiinscht, muss die maximale Ite-
ration Ny, # 1 gewihlt werden. Das entwickelte Vorgehen des Joint Estimation SRUKFs
(JE-SRUKFs) ist im Algorithmus|6|zusammengefasst und wird nachfolgend kurz erldutert
(vgl. Vorveroffentlichung [[GT23b]):

Algorithmus 6 JE-SRUKF mit fester Schranke zur Umsetzung der Sparsity

X=X + K (- 57)
S« = cholupdate(S;, U, -1)

% Sparsity-Uberpriifung und ggf. Aktualisierung:
Initialisiere: /1, Niter, Noact, ¥, J = 1, Spmo = Sk Xpmo = X

while #6010, > A} > ng . and j < Ny,
% Schitzung mit Sparsity-Bedingung
ipm,j, Spm,j — SRUKF (Algo EI) mit (ipm,j—la Spm,j—la f[da hpma Q’ Rpm)
j=j+1

end

% Bestimmung des finalen Zustands und dessen Kovarianz
S]l\c,final = Spm,j .

[-gk,final](lzn) = [ik](lzn)a . .

[jzk,final](nﬂ:ﬁ) =- 7)[-’7pm,j](n+1:ﬁ) + V[fk](nn:ﬁ)

end
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Aufgrund der harten Grenze A, welche beschreibt, ab wann ein Element 9:‘ als Nichtnull-
element bewertet wird, resultiert erfolgreich der diinnbesetzte Parametervektor 0. Diese
wird dhnlich zum Parameter im LASSO-Verfahren je nach Anwendungsziel bzw. Ska-
lierung der Parameter festgelegt und befindet sich nahe Null. Um jedoch harte Spriinge
in den Werten von einem zum néchsten Zeitschritt zu vermeiden, besteht die Option,
mittels des Parameters y € [0, 1] eine Gewichtung aus dem vorherigen und neuen Wert
des Parametervektors 8, bzw. @, ; vorzunechmen. Im Algorithmus wird dies durch die
Indizes (n + 1) : i dargestellt, wobei 7i als Gesamtsystemordnung durch 7 = n + ny defi-
niert ist. Daraufhin setzt sich der finale, augmentierte Zustand )cck, finai durch den zuvor im
klassischen Vorgehen berechneten Zustand X; und den ggf. gewichteten Parametervektor
6, zusammen. AnschlieBend wird zunichst wiederum der klassische Algorithmus |5 des
SRUKFs durchlaufen, der in jedem Zeitschritt k einmalig erfolgt. Dies wird durch die
letzte Zeile des Algorithmus [5 angedeutet, bevor der Pseudocode des Teils folgt, der das
Konzept der Sparsity umsetzt (vgl. Vorveroffentlichung [GT23b]).

4.3.3 Analyse der Schatzglite

Im folgenden Abschnitt wird der neu erarbeitete Entwurf anhand verschiedener Anwen-
dungen validiert und bzgl. seiner Umsetzung der geforderten Ziele F.3| untersucht.
Dariiber hinaus wird die Performanz des Entwurfs mit einem unverinderten SRUKEF, das
basierend auf dem ungenauen Modell ohne Approximation der Modellungenauigkeit g
schitzt, oder dem am Priifstand genutzten Luenberger-Beobachter verglichen. Fiir jede
Applikation gilt zudem Xo # ¥0, 1= 0,1, Noact = 3, Ry = 1 sowie Ny, = 1 und y = 0.

Die Parameter der Linearkombination werden mit kleinen Werten initialisiert.

Evaluation am Duffing-Oszillator

Zur Veranschaulichung des Entwurfs wird zunéchst das Beispiel des Duffing-Oszillators
thematisiert, welches aufgrund seiner bekannten Struktur eine gute Moglichkeit darstellt,
die Funktionsweise und Qualitit des neuartigen, augmentierten Beobachterentwurfs zu
tiberpriifen. Dazu wird weiterhin das Modell (4.3)) betrachtet, das den kubischen Term
g(x,u) = =3x] nicht beriicksichtigt, sodass dieser als Modellungenauigkeit resultiert. Zu-
nichst wird {iberpriift, ob die Integritit des Verfahrens gewéhrleistet ist, indem der nicht
modellierte Term in der gewihlten Bibliothek vorhanden ist. Dazu sollte der Beobachter
erwartungsgemil diesen Term von den anderen Optionen ¥; unterscheiden und zur Cha-
rakterisierung der Modellungenauigkeit g nutzen. Um dies zu iiberpriifen, wird die Biblio-
thek Wy (x, u) = (1, x1, X2, X3, 8in(x2), X7 - X2, cos(x1), u, x7)" € R’ verwendet, welche durch
Y9 den korrekten Term enthélt. Links in der Abbildung werden Ergebnisse der Zu-
standsschitzung dargestellt, indem die geschitzten Trajektorien des JE-SRUKFs sowohl
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zu den simulierten Trajektorien des korrekten Modells, welche in schwarz abgebildet sind,
als auch zu den geschitzten Zustandsverldufen eines klassischen SRUKFs, das mit dem
fehlerhaften Modell arbeitet und in blau visualisiert ist, verglichen. Offensichtlich ist die
Modellungenauigkeit g so gravierend, dass das klassische SRUKF es nicht schafft, ei-
ne zuverlidssige Schitzung durchzufiihren. Dies duflert sich ebenfalls quantitativ in der
kumulierten Fehlerbetrachtung auf der rechten Seite der Abbildung -9 Die Schitzung
des JE-SRUKFs mittels der Bibliothek ¥, ist dagegen nach einem transienten Verhal-

ten aufgrund eines abweichenden Initialwerts sehr zutreffend und weist nur geringfiigige

Phasenverzogerungen auf.
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Abbildung 4-9: Qualitdit der Zustandsschdtzung im Vergleich zu verschiedenen Bibliothe-
ken und einem klassischen SRUKF, das ohne die Modellungenauigkeit g

schatzt, vgl. [GT23b)]

Die in der Abbildung [-10]in der oberen Zeile dargestellten Zeitverldufe des Parameter-
vektors geben ferner Aufschluss iiber die Art der Approximation der Modellungenauig-
keit, aus der die hohe Schitzgiite resultiert: Nach einem anfanglichem Einschwingen wird
hauptsichlich der Parameter 8y genutzt, welcher mit dem Term yo(x, u) = x korreliert,
wihrend alle weiteren Parameter wie gewiinscht nahe Null verbleiben. Allerdings ist zu
erkennen, dass der Parameter 8y nicht gegen den Wert —3 strebt, sondern Schwankungen
aufweist. Dies ist einerseits damit begriindbar, dass zu jedem Zeitpunkt der Schitzung
unabhiéngig von der vorigen Identifikation alle ny Mdoglichkeiten zur Verfiigung stehen,
um die temporidre Modellungenauigkeit ¢ zu approximieren. Andererseits ist zudem die

Sichtbarkeit der Modellungenauigkeit entscheidend, fiir welche g # 0 gelten muss, damit
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der augmentierte Beobachter diese identifizieren kann. Demnach wird nicht nur das Ziel,
Forderung[F.2+/umzusetzen und eine interpretierbare Darstellung zu finden, erreicht, son-
dern auch der korrekte, kubische Term zur Charakterisierung genutzt, sofern dieser in der

Bibliothek vorhanden ist. Denn es gilt z. B. zum Zeitpunkt # = 8 s:

=8 ~ 0,04-0,05x;+0, 1x,—0, 06x5+0, 1 sin(x;)+0, 09:x; x,—0, 02 cos(x;)+0, 02u—1, 96’ .

Dal=0,1 festgelegt worden ist, konnen fast alle Terme bis auf g;,-s ~ —1, 96xf ver-
nachldssigt werden. Tatsdchlich ist es in der Praxis in der Regel nicht realisierbar, dass
genau der zutreffende Dynamikterm in der Bibliothek enthalten ist, der die Modellunge-
nauigkeiten am besten approximiert, da hochstens Hypothesen zu dieser formuliert wer-
den konnen. Daher wird dasselbe Szenario mit den beiden Bibliotheken

W, (x, u) = (1, X1, X2, X3, 8in(x2), X - X2, cos(x1), u, x1)7 € R?

(4.18)

2 : T
T3(x’ M) = (19 X1, X2, X5, Sln(-XZ)’ X1+ X2, COS(Xl), u) € RS

analysiert und iiberpriift, inwiefern der Beobachterentwurf mit alternativen Darstellungen
zur Charakterisierung umgehen kann und falls ja, ob diese auch hauptsédchlich zur Appro-
ximation der Modellungenauigkeit genutzt werden. Dazu unterscheiden sich die Biblio-

theken ausschlieBlich in der Potenz des ersten Zustands.
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Abbildung 4-10: Zeitlicher Verlauf des Parametervektors 0 im Vergleich verschiedener Bi-
bliotheken, vgl. [GT23b], und die jeweils daraus zugeordneten dominan-
ten Bibliotheksterme (dargestellt anhand der Pfeile)
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Die Ergebnisse dieser Simulation sind ebenfalls in der Abbildung illustriert und zei-
gen trotz des mangelnden kubischen Terms eine akzeptable Genauigkeit. Im Vergleich zur
ersten Bibliothek reduziert sich die Schétzgiite jeweils zur zweiten bzw. erneut zur dritten
Bibliothek mit sinkendem Exponenten des Zustands x;. Der kumulierte Fehler bestitigt
diesen Eindruck in quantitativer Hinsicht. Dennoch zeigt die Abbildung anhand der
zeitlichen Verldufe des Parametervektors fiir beide Bibliotheken auf, dass Alternativen
zum kubischen Term gefunden werden, welche die Modellungenauigkeit approximieren.
Besonders aufillig ist hierbei der Parameter 8y der zweiten Bibliothek W, in der mittleren
Zeile der Abbildung der das negative Vorzeichen der Modellungenauigkeit g durch
einen stindigen Vorzeichenwechsel ausgleicht. Denn der quadratische Term yo(x, u) = x7
nihert zwar aufgrund kleiner Winkel den kubischen Term an, verursacht aber nur posi-
tive Werte ohne den dazugehorigen Parameter fo. Selbst wenn nur der Zustand x; in der
Bibliothek W5 enthalten ist, wihlt das JE-SRUKF nach einem transienten Einschwingen
der Parameter diesen Term ¢, (x, u) = x; als Alternative zum kubischen Term. Dies ist in
der unteren Zeile der Abbildung erkennbar. Somit wird nicht nur die Funktionsweise
des JE-SRUKFs bestitigt, sondern auch eine interpretierbare Darstellung der Modellun-
genauigkeit erzielt. Diese ist bisher rein visuell extrahierbar, wird im Kapitel [5]allerdings
automatisiert detektiert, sodass eine Formulierung der Modellungenauigkeit g daher mit
angeschlossener Parameteridentifikation als parametrisches Modell erfolgen kann.

Denn trotz der hohen Schitzgiite, welche Anforderung erfiillt, und der Implementie-
rung der Sparsity-Bedingung, die Anforderung [F.2+ zur Interpretierbarkeit der Modell-
ungenauigkeit umsetzt, ist die Konvergenz des Entwurfs nicht eindeutig. Unabhéngig von
den drei Bibliotheken bilden sich nach dem Einschwingen der Parameterdynamik auf Ba-
sis der Konstanten (vgl. Abbildungen {4-10| und nach etwa drei Sekunden einzelne
Terme heraus, die liber den Zeitraum héufig fiir die Charakterisierung der Modellunge-
nauigkeit genutzt werden. Diese als dominant bezeichneten Terme basieren jedoch nicht
auf einer eindeutigen Konvergenz der Parameter zu einem konkreten Wert, wie es bei-
spielsweise fiir die Bibliothek W, fiir den Parameter §y — —3 fiir t — oo zu erwarten
ist. Diese mangelnde asymptotische Konvergenz resultiert aus der harten Grenze A und
der Tatsache, dass alle Terme zu jedem Zeitpunkt k£ unabhiingig von der vorigen Analy-
se wieder gleichberechtigt in Erwigung gezogen werden, um die Modellungenauigkeit g
zu approximieren. Der zeitliche Zusammenhang ist neben dem aktuellen Messwert y;
ausschlieBlich in der Kovarianz Pjsz;-; kodiert, welche diesem Einfluss im Kontrast zur
expliziten Beriicksichtigung von mehreren vergangenen Zeitschritten wie z. B. in der re-
kursiven Least-Squares-Methode nicht gerecht wird (vgl. [IM11; Wa122]ﬁ Wird statt
einer temporiren Schitzung g, = 67 W (%, u) eine datenbasierte Identifikation des Terms

vorgenommen, wie es Kapitel |5 thematisiert, kann anschlieend eine klassische Parame-

38Dieser Aspekt wird im Ausblick der Arbeit im Kapitel @aufgegriffen.
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teridentifikation durchgefiihrt werden, um den zu dem Term korrekten, physikalischen
Parameter zu finden.

Wird schlieBlich die gesamte Linearkombination g(%,u) = 67 ¥(&,u) betrachtet, kann
diese im Fall des theoretischen Beispiels des Duffing-Oszillators mit der tatsidchlichen
Modellungenauigkeit g verglichen werden. Dieser Vergleich ist fiir alle drei Bibliotheken
in der Abbildung4-1T]dargestellt. Nach dem Einschwingen der Parameter zeigt sich, dass
die unterschiedliche Qualitiit der Schitzgiite insbesondere daraus entsteht, dass die Ma-
xima und Minima des zeitlichen Verlaufs von g unterschiedlich gut approximiert werden.
Wihrend 2, diese noch einigermallen addquat annihert, wird diese Approximation suk-
zessiv von &, zu gz schlechter. Dennoch identifizieren alle drei Approximation g; immer-
hin qualitativ den Charakter der Modellungenauigkeit g so gut, dass eine hohe Schitzgiite
erzielt werden kann und durch eine nachfolgende Glittung eine zusétzliche Verbesserung
zu erwarten ist. Folglich zeigt das Anwendungsbeispiel des Duffing-Oszillators neben der
Umsetzung der Ziele [K.1|bis dass nicht nur der tatséchliche Term, sondern auch Alter-
nativen zur Identifikation von Modellungenauigkeiten durch das Verfahren aufgefunden

werden, wodurch der Anspruch der Losungsmethode validiert wird.

— g(x,u)
=0
| ) gz = 9T“P2
‘JJ\,‘ g1 = 0'w,

\\\y P = g
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Zeit ¢ [s]

Abbildung 4-11: Approximation der Modellungenauigkeit g(x,u) = —3xf im Vergleich
verschiedener Bibliotheken

Evaluation am Golfroboter

Neben dem theoretischen Beispiel des nichtlinearen Schwingers wird nun eine reale Ap-
plikation betrachtet. Da der Golfroboter des Lehrstuhls trotz seines detaillierten nicht-
linearen Modells (3.4) Abweichungen aufgrund des Stick-Slips-Effekts aufweist (vgl.
Anhang [A6.1)), ist das Ziel, diese Modellungenauigkeiten mithilfe des neuartigen, aug-

mentierten Beobachters zu kompensieren und zu identifizieren. Die Identifikation von
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Reibung und Didmpfung ist in der Praxis ein hédufiges Problem. Dazu wird das Modell
des Golfroboters, welches keine Dampf- und Reibmomente enthélt, um eine Li-
nearkombination und die Dynamik der Parameter nach Gleichung @#.13) augmentiert.
Anschlieend wird das System mit einem Signal angeregt, das aufgrund von verschiede-
nen Sprunganregungen einen dhnlichen Charakter zur StellgroBBe aufweist, die fiir einen

Schlag aufgeschaltet wird. Dabei wird zunichst die Bibliothek

W —(1 2 2 3 .3 2 2 T
1(x,u) = (1, x5, x2, X7, X35, X1 X2, X7, X5, X] X2, X53X1, U

genutzt, welche rein polynomiale Terme beinhaltet und einer Bibliothek entspricht, die
kein zielgerichtetes Vorwissen basierend auf der Reibung beriicksichtigt, sondern ver-
sucht, sich durch eine Taylorreihe der Identifikation der Modellungenauigkeiten anzu-
ndhern. Die Wahl der Bibliotheksterme sowie ihre Groe und weitere Eigenschaften wer-
den im weiteren Verlauf dieses Abschnitts diskutiert. Basierend auf der Bibliothek ¥,
zeigt die Abbildung die Schitzgiite sowie den kumulierten quadratischen Fehler,
wenn das JE-SRUKF zur Schitzung der Zustinde verwendet wird. Im Vergleich zur
Schitzung mit dem fehlerhaften Modell (A6-2), dessen Einsatz im SRUKF durch die
blauen Trajektorien visualisiert wird und aufgrund der fehlenden Reibung keine zuverlis-
sige Schitzung erlaubt, erzielt das JE-SRUKEF eine sehr hohe Schitzgiite. Dies bestitigt

zudem der quantitative Vergleich des kumulierten quadratischen Fehlers auf der rechten

Seite der Visualisierung.

=
~

=
W
T

u:
[
T
..-'-.-
-
|

Kumulierter quadratischer Fehler
L
[\
T

'E 0,2_ T T i '---_.__
é 0 ‘I"-.-’-'
= —0,2-_‘_I— | 1 1 0 “'-'l | | |

0 2 4 6 8 10 0 2 4 6 8 10

Zeit t[s] Zeit t[s]

— Messung - - - SRUKEF - - - JE-SRUKF mit ¥,

Abbildung 4-12: Qualitdt der Zustandsschdtzung bei Verwendung der Bibliothek W und
im Vergleich zum klassischen SRUKF, das mittels des Modells (A6-2)

schdtzt
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Die Analyse der Parameter, welche in der Abbildung zu sehen sind, weist auf eine
weniger gut geeignete Bibliothek hin, da zunéchst nur die Konstanten (x, #) = 1 durch
den Parameter 0, prisent sind, welche keine hilfreiche, physikalisch prizise Identifikation
der Modellungenauigkeit erlauben. Gegen Ende des betrachteten Zeitraums ist sogar eine
starke Divergenz der Parameter 65 und 5 zu beobachten. Diese resultiert aus der Proble-
matik, dass ab etwa neun Sekunden sowohl der Eingang u = 0 bzw. u =~ 0 als auch der
Zustand x = 0 bzw. x = 0 sind und aufgrund der mangelnden Dynamik keine Identifika-
tion mehr durch den Beobachter stattfinden kann. Das in Kapitel [5| entwickelte Konzept
zur Online-Modellaktualisierung beriicksichtigt diese Situation, worauthin eine sinnvolle
Approximation der Modellungenauigkeit ermoglicht wird.

Um die Qualitdt der Approximation &, zu iiberpriifen, welche fiir den Golfroboter im
Gegensatz zum Duffing-Oszillator unbekannt ist, werden die aufgenommenen Messdaten
mit dem Modell (A6-2)) verglichen, woraufhin die Diskrepanz als g,,.;s; bezeichnet wird.
Diese ist in der Abbildung als schwarze Trajektorie dargestellt, wihrend die Appro-
ximation g, durch einen rot gestrichelten Verlauf abgebildet wird. Es ist zu erkennen, dass
der qualitative Verlauf gut angenihert wird, die Approximation der Diskrepanz allerdings
noch stark verrauscht ist und stellenweise stiarkere Abweichungen aufweist. Aufgrund der
Abbildung [d-12]kann jedoch gefolgert werden, dass die Approximationsgiite ausreichend

hoch zu sein scheint, um eine hohe Schitzgiite zu erzielen.
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Abbildung 4-13: Verlauf der Parameter 8, wenn der augmentierte Beobachter die

T
Bibliothek ¥ (x,u) = (1, X1, X2, X7, X5, X1 X2, X3, X3, X3 X2, X5 X, u) nutzt
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Abbildung 4-14: Approximation g der Modellabweichung g,,..s zwischen Messdaten und
dem qualitativ minderwertigen Modell (A6-2))

Nach dieser vielversprechenden Evaluation wird der Regelkreis geschlossen, sodass das
JE-SRUKEF die Rolle des Beobachters vollstindig ausiibt. Dazu wird das Verhalten mit
dem Luenberger-Beobachter verglichen, der in der Zwei-Freiheitsgrade-Struktur am Priif-
stand eingesetzt wird (vgl. Anhang [A6.1)), und in mehreren Versuchen evaluiert. Einen
wesentlichen Einflussfaktor auf die Stabilitit des Beobachters, aber auch auf seine Schitz-
giite, stellt dariiber hinaus die Wahl der Bibliotheksfunktionen dar. Die in der Tabelle
dargestellte Auswahl an Experimenten fasst daher die Auswirkung der Bibliothekswahl
auf die Stabilitdt des JE-SRUKFs im offenen und geschlossen Regelkreis (ORK bzw.
GRK) zusammen. Im ORK schitzt das JE-SRUKEF parallel zum am Priifstand verwende-
ten Luenberger-Beobachter, der mittels Gain-Scheduling die Schitzwerte fiir den Regler
liefert, sodass ein Schlag ausgefiihrt werden kann (vgl. Anhang[A6.1)), wihrend im ge-
schlossenen Regelkreis die Rolle des Beobachters durch das JE-SRUKF ausgeiibt wird.
Neben der Anzahl der Terme wird insbesondere die Art der Zusammensetzung der Terme
evaluiert. Die Ergebnisse in der Tabelled-1] die einen Auszug aus durchgefiihrten Experi-
menten darstellen, stiitzen die zuvor formulierte Forderung (4.6)), dass die Bibliothek min-
destens die Zustinde, den Eingang sowie Konstanten enthalten muss. Da beispielsweise
das JE-SRUKF mit der Bibliothek ¥¢ divergiert, welche sich zur im GRK funktionie-
renden Bibliothek W3 nur durch die Beriicksichtigung des Eingangs unterscheidet, wird
die Forderung nach einer minimalen Bibliothek ¥, untermauert (vgl. Gleichung (#.6)).
Dartiiber hinaus scheint eine gewisse Vielseitigkeit an Termen, jedenfalls fiir das Anwen-
dungsbeispiel des Golfroboters bzw. der Approximation von Reibung und Dampfung, er-
forderlich zu sein. Besteht die Bibliothek nur aus Polynomen, wie z. B. ¥, kann dies das
Risiko der Instabilitit und Divergenz bergen, da die Dynamik nicht genau genug iiber eine

Reihenentwicklung aufgrund der dem widersprechenden Sparsity-Bedingung angenéhert
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werden kann. Die Ergebnisse dieses Versuchs sind zur Illustration in den Abbildungen
und dargestellt. Erstere bildet die gemessenen Trajektorien des JE-SRUKFs in
rot-gestrichelt ab, welche trotz Stabilitit und vielversprechender Schitzgiite im ORK kurz
vor dem Schlag divergieren (vgl. Abbildung[4-12). Dies ist ebenso anhand der Parame-
terverldufe in der Abbildung zu erkennen. Eine ausgewogen gewdhlte Bibliothek ist

somit fiir die Anwendung am Priifstand unerlésslich.

Bibliothek ¥(x, 1) ne ORK GRK
T

¥, = (l,xl,xz,xf,xg,xlxz,xf,xg,x%xz,xgxl,u) ) 11 X

¥y = (1, x1, %2, X3, %3, X1 %2, cos(le), cos(x,), tanh(x,), tanh(x,), u) 11

¥ = (1, x1, x2, cos(xy), X2, xg,u) 7

-

T
s = (1, x1, xp, cos(xy), tanh(x,), x3, u)

<
NN N NN
LI S NI N NN

(

( T
4 = (l,xl,xz,sin(xl),xg,xg,u)

(

(

(

7
7
6
5

<

6 = (1, x1, x2, cos(xy), x3, xg)
T
7 = (1, x1, x2, cos(xy), u)

Tabelle 4-1: Auszug aus Experimenten am Priifstand zur Stabilitdt unterschiedlicher Ar-
ten von Bibliotheken ¥ hinsichtlich der Nutzung im offenen (ORK) und ge-
schlossenen Regelkreis (GRK): Ein Kreuz markiert einen divergierenden Be-
obachter. Ein Haken reprdsentiert einen funktionierenden Beobachter.

.1020
—_ C T T ] T T
7 ! 5 .
s 0 \/\/\—-— = 250 .
S 1t , , 4 ;
18 20 2 8 oL -
— T T 8 :
2 4b 1 -
E ;M g |
=0 S "
9. —2rc I I = 1L ' |
18 20 2 5 :
—_ 0,5 T T % 0,5+ E N
=) '
E of | E .
I; M O = - - -
_0,5 1 1 1 1
18 20 22 18 20 22
Zeit t [s] Zeit t[s]

Sollverlauf == Messung - - - JE-SRUKF mit ¥,

Abbildung 4-15: Qualitit der Zustandsschdtzung im geschlossenen Regelkreis bei
gewdihlter Bibliothek Y, am Priifstand, vgl. Tabelle
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Abbildung 4-16: Verlauf der Parameter 8, wenn der augmentierte Beobachter die

T
Bibliothek W1(x,u) = (1, X1, X2, x%, x%, X1X2, x?, x;, x%xz, x%xl , u) nutzt

Die finale Erkenntnis aus den Versuchen orientiert sich an der Anzahl ny der Bibliotheks-
funktionen ¢;: Eine zu kleine Bibliothek, die wenig Spielraum fiir die Approximation
zulisst, scheint eine hohere Wahrscheinlichkeit aufzuweisen, im GRK zu divergieren als
eine Bibliothek mit vielseitigen Moglichkeiten (vgl. Bibliothek ¥, vs. Bibliothek ¥»).
Wird eine ausgewogene Bibliothek gewdhlt, die neben der minimalen Bibliothek ¥, auch
vielfiltige dynamische Terme aufweist, welche zudem physikalisches Vorwissen einbrin-
gen, sind im Gegensatz zum vorigen Experiment ein stabiler Betrieb des Beobachters
sowie zuverldssige Schitzungen zu erwarten. Die GroBe der Bibliothek ist dabei ent-
scheidend: Ist diese zu klein gewihlt, indizierten die Experimente einen divergierenden
Beobachter, wohingegen bis zu ny < 15 Bibliotheksterme eine zuverldssige Schitzung er-
laubten. Fiir die Bibliothek W, zeigen beispielsweise die Abbildungen@-17jund d-18Mes-
sungen vom Priifstand. Erstere stellt die Zustandsverldufe des geschlossenen Regelkrei-
ses dar: Der Ist-Verlauf folgt dem Soll-Verlauf, welcher aufgrund der Deckungsgleichheit
kaum zu erkennen ist. Hierbei schitzt der augmentierte Beobachter die Zustidnde im Ver-
gleich zum Luenberger-Beobachter sogar genauer, was insbesondere durch den berechne-
ten Fehler verdeutlicht wird. Die dazugehorigen Parameterverldufe sind in der oberen Zei-
le der Abbildung [4-18] dargestellt und deuten auf eine iiberlagerte Identifikation der Rei-
bung durch die Terme 1;(x, u) = u, Yg(x,u) = cos(xy), Y3(x,u) = x, und Yo(x,u) = x;
hin, da deren Parameter liberwiegend genutzt werden. Die Sparsity-Bedingung ist da-
mit zwar umgesetzt, denn die meisten der elf Parameter sind durchgehend Null, aber eine
Interpretation der Approximation ist aufgrund der nicht eindeutigen Konvergenz der Para-
meter weiterhin herausfordernd. Kapitel [5| wird diese Problematik schlieBlich durch eine

automatisierte, statistische Auswertung der Parameterverldufe adressieren.
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Abbildung 4-17: Qualitit der Zustandsschdtzung im Vergleich zum Luenberger-
Beobachter im geschlossenen Regelkreis bei gewdhlter Bibliothek ¥, am

Priifstand, vgl. Tabelle -1]
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Abbildung 4-18: Verlauf der Parameter 0, wenn keine Systemverinderungen vorlie-
gen (oben, vgl. Abbildung bzw. Systemverdnderungen existie-
ren (unten, vgl. Abbildung [GT24)]) und jeweils die Bibliothek
Yo, u) = (1, x1, %2, 3%, 2, X122, COS(x ), COS(x2), tanh(x)), tanh(xy), )
genutzt wird
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Wird am Schlédger des Golfroboters eine zusitzliche Masse angebracht, so kann dies als
Systemverdnderung interpretiert werden. Im nachfolgenden Experiment ist die Masse des
Schlédgers verdoppelt worden, ohne dass das Modell des Golfroboters angepasst wurde
(vgl. [JPTT23]), wihrend fortan die Bibliothek ¥, genutzt wird. In der Abbildung[4-19|
ist die Auswirkung dieser Systemveridnderung auf die Schitz- und Regelgiite zu erken-
nen. Da die Vorsteuerung und der Regler weiterhin mit dem unverédnderten, nichtlinearen
Modell (3.4) berechnet werden, ist aufgrund der Systemveridnderung eine Abweichung
von den Solltrajektorien und ein im Vergleich zur Abbildung verdandertes Motor-
moment zu erkennen. Allerdings gelingt es dem JE-SRUKF mit der Bibliothek ¥, (vgl.
Tabelle 4-1)), die Ist-Trajektorien sehr genau zu schitzen. Im Gegensatz dazu ist es dem
Luenberger-Beobachter aufgrund seiner nicht-adaptiven Struktur nicht moglich, die Ge-
schwindigkeit des Schlags korrekt zu erfassen, was der kumulierte quadratische Fehler
in der rechten Visualisierung bestitigt. Stattdessen miissten die linearisierten Modelle
des Luenberger-Beobachters rekursiv angepasst werden, um ebenso geeignet auf Sys-
temverdanderungen reagieren zu konnen (vgl. [JPTT23; IM11]). Die Parameter des aug-
mentierten Beobachters sind schlieBlich in der Abbildung [4-18§]in der unteren Zeile dar-
gestellt. Je nach Phase des Schlagensif] identifiziert das Verfahren unterschiedliche rele-
vante Terme aufgrund der Systemveridnderung. Da nicht nur das Reibmoment M, kom-
pensiert werden muss, sondern sich die verdnderte Masse auch auf die Tragheit und Pen-
delbewegung auswirkt, weist das Modell (A6-2)) eine fehlerhafte Parametrierung auf, die
zusitzlich kompensiert werden muss und daher eine eindeutige Identifikation von Termen
fiir den gesamten Zeitraum verhindert. So findet der Beobachter beispielsweise heraus,
dass wihrend des Schlags eine Kompensation durch die Geschwindigkeit, Konstanten

und Gewichtskraft (vgl. ¥7) ausreicht, da zum Zeitpunkt 7 = 1,5 s Folgendes gilt:

821215 *3.48 — 0,02x; — 5, 11x, + 0,01x7 +0,29x3 + 0,09x,x + 0,27 cos(x;)
+0,03 cos(xy) + 0,03 tanh(x;) — 0, 08 tanh(x,) — 0, 061

Dagegen erfordert das Riickholen des Schlidgers die Beschreibung von Winkel sowie Win-
kelgeschwindigkeit durch y,(x, #) = x; und ¥¢(x, u) = x;x,, um die veridnderte Gewichts-
kraft und Tragheit fiir die Kinetik zu beriicksichtigen und den Schlédger in die Nullposi-
tion zuriick zu beférdern. Somit zeigt dieses Experiment den Vorteil der Nutzung des
JE-SRUKFs auf: Potentielle Systemveridnderungen stellen bei geeignet gewéihlter Biblio-
thek keine Herausforderung dar, sodass eine hohe Schitzgiite gewihrleistet werden kann.
Kapitel [S|entwickelt ferner eine Modelladaption basierend auf den Daten des augmentier-
ten Beobachters, welche im Fall einer Systemverinderung zur Robustheit des Beobachters
beitrdgt und fiir Vorsteuerung und Regler vorteilhaft sein kann (vgl. Abbildung @-19).

39 Ausholen des Schlagers, Schlag, Riickholen des Schldgers, vgl. Abbildung
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Abbildung 4-19: Qualitit der Zustandsschdtzung im Vergleich zum Luenberger-
Beobachter im geschlossenen Regelkreis bei Systemverdinderungen und
Verwendung der Bibliothek W, am Priifstand, vgl. Tabelle [|GT24)]

Die Anwendung am Golfroboter zeigt somit, dass die Methode des JE-SRUKFs nicht
nur fiir ein Simulationsbeispiel wie den Duffing-Oszillator geeignet ist, sondern auch zu-
verlidssige Schitzungen in der Priifstands- und Echtzeitanwendung im geschlossenen Re-
gelkreis im Zusammenspiel von Regler und Vorsteuerung ermoglicht. Allerdings zeigen
die Untersuchungen, dass der Einfluss der Bibliothek entscheidend fiir die Stabilitdt und
Schitzgiite des Beobachters ist, da bei einer zu einseitigen oder klein gewihlten Biblio-
thek ein divergierendes Verhalten auftreten kann (vgl. Abbildung §-15). Wird eine geeig-
nete Bibliothek gewihlt, werden sowohl Anforderung[F.1] eine hohe Schitzgiite trotz Mo-
dellungenauigkeiten zu erzielen, sowie Anforderung eine interpretierbare Darstellung
der Modellungenauigkeit zu finden, erfiillt (vgl. Abbildung §-17). Ebenso ist durch die
parametrische Darstellung eine Nutzbarkeit fiir weitere Schritte (vgl. Anforderung [F3)
gegeben. Kapitel[5|wird zeigen, dass diese temporire Schitzung der Modellungenauigkei-
ten basierend auf statistischen Methoden zur Modelladaption verwendet werden kann und
hierbei fiir den Fall des Golfroboters dhnliche Terme zum Dampfungsmoment M,
identifiziert werden konnen. Daher gelingt es durch Umsetzung der Anforderung[F.4] eine
Losungsmethode anzubieten, die zuverldssige Schitzungen bei existierenden Modellun-
genauigkeiten und eine Identifikation dieser erlaubt. Dies wird sogar in der Situation von
Systemverdnderungen gewihrleistet, wie der Versuch in der Abbildung[4-19] bestitigt.
Nachdem das Verfahren am Priifstand validiert worden ist, wird im folgenden Abschnitt
ein komplexeres Simulationsbeispiel betrachtet, bei dem die Modellungenauigkeiten nicht

mehr additiv, sondern multiplikativ in das System eingehen.
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Evaluation an der Windenergieanlage nach Ritter

Die bisher betrachteten Anwendungen kennzeichnen sich durch rein additive Modellun-
genauigkeiten, welche z. B. aufgrund von Dampfung oder Reibung resultieren. In der
Modellierung von Windenergieanlagen spielt jedoch der Einfluss des Windes eine grol3e
Rolle, dessen Geschwindigkeit nicht immer genau genug gemessen werden kann und der
daher als Storgrole modelliert wird. Aufgrund der starken Wirkung auf die Dynamik
der Windenergieanlage wird diese Storgrofe daher als Modellungenauigkeit aufgefasst
und soll mittels des augmentierten Beobachters geschitzt werden. Als Beispiel dient ein
zweidimensionales Modell einer Windenergieanlage aus der Dissertation [Rit20] bzw.
der dazugehorigen Publikation [SR20]], auf deren Grundlage das Referenzmodell simu-
liert und reale Winddaten genutzt werden konnen. Eine Zeichnung des Systems mit den
relevanten physikalischen Grofen ist in der Abbildung #-20|abgebildet.
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Abbildung 4-20: Seitenansicht einer Windenergieanlage mit freundlicher Genehmigung
von B. Ritter (vgl. [Rit20])
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Der Zustand der Windenergieanlage besteht dabei aus dem Rotorwinkel ¢ und der Po-
sition der Gondel x; sowie deren Geschwindigkeiten, sodass x = (¢r, ¢r, x7, X7)" gilt.
Daneben wird die Windgeschwindigkeit in x-Richtung als Storgroe z modelliert. Somit
kann das Modell der zweidimensionalen Windenergieanlage nach [Rit20; SR20] definiert

werden durch

X2
.o 2 () - (2 — ) — Zu
X4
B C() - (2 = 2a)? — 2Dy xs — w3 (+19)

¥ = (Rigrs, §2Cr(D) - (2= x4 = 2Dwoxs - wixs)

= (ng, )’c4).

Die aerodynamischen Eigenschaften des Rotors werden dabei durch die Koeffizienten der
Momente und des Schubs Cy,(1) bzw. Cr (1) dargestellt, welche aus einer geschwindig-
keits- und drehzahlbasierten Relation resultieren. Kurzdetails zu diesen Zusammenhéngen
sowie die Parameterwertem finden sich im Anhang in der Tabelle und bzgl. A
in den Gleichungen und (A6-7). Fiir ausfiihrliche Informationen wird auf [Rit20;
SR20|] verwiesen. Die Geschwindigkeit des Generators n, sowie die Beschleunigung
der Gondel ¥7 stellen die Messgroflen dar. Als Eingang dient das Moment u des elek-
trischen Generators, welches mittels eines nichtlinearen Reglers mit u = k, - n§ bestimmt
wird (vgl. [SR20]). Ziel ist es im Folgenden, die Windgeschwindigkeit, welche in der
Abbildung [lef] dargestellt ist, sowie die Position des Turmkopfes, dessen Geschwindig-
keit und die Winkelgeschwindigkeit des Rotorwinkels zu schitzen, um die Windenergie-

anlage sicher betreiben zu konnen.

z[m/s]

0 50 100 150 200 250 300 350
Zeit t[s]

Abbildung 4-21: Beispielhafter Verlauf von Realdaten der Windgeschwindigkeit z in
x-Richtung mit Mittelwert 8,5 m/s in rot und freundlicher Genehmigung
von B. Ritter (vgl. [Rit20])

Obwohl die Windenergieanlage ein eingangsaffines System ist und in die Form (4.4)) trans-

formiert werden kann, stellt es aufgrund der multiplikativen Ungenauigkeit, die durch den

40Dje Parameter A, ® und p stellen aufgrund der Notation in [SR20] ausschlieBlich in diesem Abschnitt
physikalische Parameter der Windenergieanlage dar.
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Term (z — x,;)* entsteht, ein komplexes und herausforderndes Beispiel im Vergleich zu
den vorigen Applikationen dar. Um diese Komplexitit etwas zu reduzieren, ist es im Be-
obachterentwurf tiblich, ein Stormodell fiir eine Storung anzunehmen [FKL*22]]. Dieses
zusitzliche Vorwissen kann anschlieBend in das augmentierte Modell (4.5)) eingebracht
werden. Exemplarisch wird ein konstantes Stormodell fiir die Windgeschwindigkeit an-
genommen, sodass Z = 0 gilt. Dies erscheint aufgrund der Struktur der Winddaten, welche
in der Abbildung 4-21] abgebildet sind und um einen Mittelwert von etwa 8,5 m/ s@ vari-
ieren, eine sinnvolle Wahl zu sein. Wird die Windgeschwindigkeit wiederum als Linear-
kombination aus geeigneten Bibliotheksfunktionen angenéhert (vgl. Gleichung (#.2))), so
ergibt sich Folgendes, wobei aufgrund der Ubersichtlichkeit die Abhingigkeiten der Bi-

bliothek W(x, u) vernachléssigt werden:

z =0 (4.20)
& %(0“1') =0
& 'Y+0'¥Y=0
o 'Y =-0'¥
& Yo =-¥7¢
o (¥7) o =—(¥7) ¥o
o 0 = —(¥7) ¥'e.

Nach der Umformulierung der obigen Gleichung (4.20) dient schlieBlich die letzte Zeile,
bei der (‘I’T)+ die Pseudoinverse von W darstellt, als Dynamikvorschrift fiir die Para-
meter im augmentierten Modell (.15). Dies steht im Kontrast zur bisherigen Model-
lierung der zeitinvarianten Parameter und resultiert aus der Beriicksichtigung des Vor-
wissens. AnschlieBend wird die Bibliothek W, (x, u, ) = (1, cos(20 - £), 0,001 - ¢, x;, x3)"
gewihlt, welche neben den iiblichen Konstanten und Zustinden auch Zusammenhinge
zur Zeit aufweist, da z. B. Korrelationen zwischen der Biegung des Turms, entsprechend
x3, und der Windgeschwindigkeit zu vermuten sind. Hierbei ist anzumerken, dass diese
Bibliothek entgegen der Formulierung (#.6)) zur Vereinfachung und Ubersichtlichkeit nur
einen Teil der Zustdnde enthilt, da die Bibliothek ¥ aufgrund der Beriicksichtigung des
zusitzlichen Vorwissen nach Gleichung (4.20) differenziert werden muss. Kommen die
Zustiande x, und x4 hinzu, ergibt sich ein sehr dhnliches Resultat. Darauthin wird das
erweiterte Modell der Windenergieanlage formuliert und mit der Parameterdynamik ba-

sierend auf einem konstanten Stormodell in Simulationen eingesetzt, deren Ergebnisse

“IDies entspricht laut dem deutschen Wetterdienst und der Beaufort-Skala frischem Wind, vgl.
https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?lv3=100390&Iv2=100310, abgeru-
fen am 06.12.2023.
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in der Abbildung[-22] dargestellt sind. Dabei wird auf die Darstellung des Rotorwin-
kels verzichtet, da dieser Integratorverhalten aufweist und fiir die Regelung irrelevant
ist. Die Windgeschwindigkeit, welche die Windenergieanlage erféhrt, ist bereits in der
Abbildung [4-2T|dargestellt worden. Da die Winkelgeschwindigkeit ¢7 indirekt durch den
Messwert n, zu bestimmen ist, konvergiert der Anfangsfehler schnell, sodass 7 sehr gut
geschitzt wird. Ebenso gelingt es trotz Unkenntnis der Storung z, die Position und Ge-
schwindigkeit des Turmkopfes der Windenergieanlage gut anzundhern. Allerdings ist die
Konvergenz aufgrund des fehlerhaften Initialwerts deutlich langsamer und es dauert etwa
50 Sekunden, bis &7 bzw. %7 die tatsdchlichen Zustinde erreichen. Dabei weist die Posi-
tion sogar ein dauerhaftes Offset auf. Grundsitzlich erlaubt das JE-SRUKF folglich eine
ausreichend genaue Schitzgiite trotz der Storung z, weist jedoch aufgrund der multiplika-
tiven Struktur jener Beeintrachtigungen bzgl. der Schitzgiite auf. Diese zeigen daher Li-
mitationen des augmentierten Beobachterentwurfs auf, welche ggf. durch eine angepasste
Systemformulierung in den Voraussetzungen des Beobachterentwurfs (vgl. Abschnitt[4.2))

aufgeweicht werden konnen.

@r [rad/s]
[\]

xr [m]

Xr [m/s]

u [Nm]

|
0 50 100 150 200 250 300 350
Zeit t[s]
— Simulation - - - JE-SRUKF mit ¥,

Abbildung 4-22: Qualitit der Zustandsschitzung bei Verwendung der Bibliothek W,
wenn die Windgeschwindigkeit 7 unbekannt ist

Um die Schitzung und Identifikation der multiplikativen Unsicherheit zu analysieren,
wird der zeitliche Verlauf der Parameter der Linearkombination in der Abbildung4-23|
betrachtet. In der oberen Visualisierung zeigt sich fiir alle Parameter eine eindeutige und

schnelle Konvergenz. AuBer 8s, der gegen 1,1 strebt, konvergieren alle Parameter zu Null
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oder oszillieren mit geringer Amplitude um Null, was insbesondere die Vergroferung in
der unteren Zeile der Abbildung deutlich herausstellt. Somit identifiziert das JE-SRUKF
den fiinften Term als denjenigen, der zur Charakterisierung der Windgeschwindigkeit
dient. Dies ist plausibel, da die Durchbiegung des Turmkopfes der Windenergieanlage
in direktem Zusammenhang zur Windgeschwindigkeit steht. Werden die Zustédnde der
Geschwindigkeiten ebenfalls in der Bibliothek beriicksichtigt, stellt sich ein dhnliches Er-
gebnis ein: Zusdtzlich zur Position des Turms x; detektiert der augmentierte Beobachter
die Geschwindigkeit des Turmkopfes x4, welche ebenfalls in direkter Relation zur Wind-
geschwindigkeit aus x-Richtung steht.

Wird die Linearkombination, welche Z nach Glittung des Signals darstellt, nun mit der
Windgeschwindigkeit z verglichen, zeigt die obere Grafik in Abbildung dass die
Approximation qualitativ gelingt, da sich nach etwa 50 Sekunden eine Konvergenz zum
Mittelwert der Windgeschwindigkeit z einstellt. Allerdings zeigt die untere Grafik in der
VergroBerung, dass der qualitative Verlauf mit einzelnen Schwingungen gut abgebildet
wird, aber phasenverzogert erfolgt. Dies erlaubt daher keine exakte Approximation der
Windgeschwindigkeit. Die Methode weist folglich Limitationen auf, da keine Verbes-
serung im Vergleich zu bestehenden Verfahren erreicht werden konnte [SR20; Rit20].
Dennoch zeigt der augmentierte Ansatz des JE-SRUKFs fiir eine solche Ungenauigkeit,
deren Charakter rauschbehaftet ist und die multiplikativ in das Modell eingeht (vgl. Glei-
chung (4.19)), das vielversprechende Potential auf, einerseits eine hohe Schitzgiite (vgl.
Anforderung und andererseits eine sinnvolle, parametrische Darstellung der Modell-
ungenauigkeit bzw. Storung (vgl. Anforderung zu erzielen.
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Abbildung 4-23: Zeitlicher Verlauf der Parameter O (oben), Vergroferung (unten), bei
Verwendung der Bibliothek ¥1(x,u,t) = (1,cos(20 - 1), 0,001 - £, x;, x3)7
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Abbildung 4-24: Approximation Z im Vergleich zur gemessenen Windgeschwindigkeit z
(oben), Vergrofierung (unten)

4.4 Strukturell effizienter, augmentierter Beobachterentwurf

Das Vorgehen aus Abschnitt 3] setzt die Forderung durch eine feste Schranke um,
welche die Anzahl der Nichtnullelemente iiberpriift. Obwohl der gewiinschte Effekt, einen
diinnbesetzten Parametervektor 6, zu erhalten, eintritt, erfordert diese Umsetzung die
Festlegung weiterer Hyperparameter, wie die Schrankenhdhe A oder die Anzahl der er-
laubten Nichtnullelemente ng,.,. Aufgrund der Vielzahl von Einstellparametern entsteht
so ein deutlich komplexeres Initialisierungsproblem, was insbesondere an den rauschbe-
hafteten Verldufen der Parameter erkennbar ist. Da das SRUKF strukturell jedoch aus
einer stochastischen Perspektive motiviert ist, stellt die Beriicksichtigung von Vorwis-
sen durch Wahrscheinlichkeitsverteilungen eine wesentlich elegantere und effizientere
Moglichkeit dar [HTW15]; [GT23a]. Somit wird die Forderung [F:2+| zunéchst durch ein
stochastisches Vorwissenmodell im Abschnitt[d.4.T|basierend auf [HTW15; HBK22] mo-
tiviert und definiert. AnschlieBend wird dieses Vorwissenmodell innerhalb des Filters im
Abschnitt[4.4.2lumgesetzt. Daraufhin werden wie beim Entwurf zuvor im Abschnitt
anhand ausgewihlter Anwendungen die Funktionsweise und die Qualitit des Entwurfs
beleuchtet. Teile dieses Abschnitts finden sich bereits in der Vorverdffentlichung [GT23a].

441 Motivation durch die Filterstruktur

Um die Forderung[F.2+|effizienter umzusetzen, kann die Struktur des SRUKFs ausgenutzt
werden. Dies gelingt, indem die Sparsity-Bedingung stochastisch formuliert wird. Die

Kalman-Filter, im Besonderen daher auch das SRUKEF, basieren auf der Annahme, dass



128 4 Online-Schitzung von Modellungenauigkeiten

der Zustand sowie dessen zeitliche Dynamik und Beobachtung GauB3-verteilt sind, z. B.
dass ¥ ~ N(u,X) gilt (vgl. Abschnitt [2.2)). Nun ldsst sich die Sparsity-Bedingung [F.2+|
nicht nur durch die Uberpriifung der Anzahl der Nichtnullelemente ausdriicken (vgl.
Gleichung (4.7)), sondern auch durch eine Wahrscheinlichkeitsverteilung fiir die Parame-
ter # modellieren. Eine sehr bekannte Verteilung, welche diese Eigenschaft in natiirlicher
Weise kodiert, ist die Laplace-Verteilung [Murl2; HTW15]. Deren Wahrscheinlichkeits-
dichtefunktion wird fiir ein §; € R mit den Parametern u € R, b € R* durch

16; —pl

- 1
pO;1u,b) = Y e b (4.21)

definiert. Dabei stellen u den Erwartungswert und b einen Skalierungsparameter dar. Fiir
die Varianz einer Laplace-verteilten Zufallsvariable 6; ~ Lap(u, b) gilt o> = 2b%. Auf-
grund ihrer Form, welche beispielhaft im Vergleich zu Gauf3-Verteilungen in der Abbil-
dung zu sehen ist, wird die Verteilung manchmal als Doppelexponentialverteilung
bezeichnet. Sie kennzeichnet sich durch das Zentrieren der Wahrscheinlichkeitsmasse um
den Erwartungswert, was sich durch die Spitze um x = 0 und durch ein steiles Gefille
hin zu den Réindern der Verteilung duBert. Diese Charakteristik ermoglicht eine robus-
tere Modellierung von Ausreiflern im Kontrast zur GauB3-Verteilung [Murl2; [HTW15;
PP06]. Dieselbe Eigenschaft ist fiir die Modellierung der diinnbesetzten Parameter 6 vor-
teilhaft, da zwar die meisten Elemente Null, einige wenige jedoch nicht Null sein sollen.
Warum genau diese Verteilung eine Alternative zur Formulierung der ¢;-Regularisierung
in Gleichung darstellt, wird der nachfolgende Abschnitt aufzeigen.

p(6)

-3 -2 -1 0 1 2 3
Parameter 6,

—0’:1 0'20,9 0'20,8
oc=0,7 0=0,6m=p=0,7

Abbildung 4-25: Laplace-Verteilung (visualisiert in rot) im Vergleich zu verschiedenen
Gaufs-Verteilungen (dargestellt durch variierende Farben von schwarz
bis grau): Fiir alle abgebildeten Verteilungen gilt u = 0, vgl. [GT23al].
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Zusammenhang zur ¢,-Regularisierung

In der Bayesschen Schitzung wird die sogenannte Posterior- Verteilung@ verkiirzt auch
Posterior genannt, liber das Maximum-A-Posteriori-Prinzip gewonnen. Dieses basiert auf
dem Satz von Bayes (2.4), da der Posterior p(@|y) mithilfe einer dem Prozess zugrunde
liegenden Wahrscheinlichkeitsverteilung, der Likelihood p(y | #), und eines Vorwissenmo-
dells, dem Prior p(8), bestimmt werden kann. Die Maximierung des Posteriors fiihrt an-
schlieBend zur Schitzung der Parameter @, wobei die Verteilung der Daten p(y) aufgrund

ihrer Unabhéngigkeit von den Parametern vernachlissigt werden kann:

6 = arg max p(@|y) = arg max Py 16)p(6)
o 0 pQ)
= argmax p(y16) - p(8) = arg max log (p(y0) - p(6)) 422)

= arg max (log p(y | 6) + log p(0)) .
0

Mithilfe der obigen Herleitung ist das Ziel nun, die Parameter 0 zu finden, welche den
Zusammenhang der Zeitreihenmatrizen X, ¥ mittels der Gleichung Y = 6" X + € approxi-
mieren. Hierbei gelten die Annahmen, dass die Likelihood p(Y | #) sowie das Rauschen €
GauB-verteilt und der Prior p(6) Laplace-verteilt sind (vgl. Gleichung (4.21))). Mithilfe
der Logarithmus-Rechenregeln und der Negation des Maximierungsproblems ergibt sich
daher ausgehend von der letzten Zeile der Herleitung (4.22)) Folgendes:

_w-oTx)? 101
6 = arg max [log n 22 4log 1—[ —e b
V2no?

_ Y - "X,y 161
_arggnax[ L ol

i i
~ |1 row 207
= arg;mn(r‘a Z(Y, -0 X))+ 7 Zj: |Hj|]

= arg mm ||Y 6" XI5 + 1116];.

(4.23)

Die letzte Zeile stellt dabei genau die £,-Regularisierung @.13) mit X := (H¥)" dar,
wenn keine Nebenbedingung, sondern ein Regularisierungsterm formuliert wird. Demzu-
folge zeigen die Gleichungen (4.23)) die Verwandtschaft der Bayesschen Schitzung mit

der Laplace-Verteilung als Prior zur {-Regularisierung des LASSO-Verfahrens auf (vgl.
Gleichung (3:3) mit 1 = 22, [HTW15; HBK22: Mur12]).

“2Dje Fachbegriffe Posterior, Likelihood und Prior entstammen dem Englischen und sind teilweise
lateinischen Ursprungs. Da es keine adaquate, prazise Ubersetzung dieser Begriffe ins Deutsche
gibt, werden im Folgenden die englischen Termini verwendet.
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Allerdings weist die Verwendung der Laplace-Verteilung als Prior zwei Nachteile auf.
Erstens ist die Struktur des SRUKFs darauf ausgelegt, dass sowohl Prior als auch Like-
lihood GauB-verteilt sind [[vWO1]. Ist dies nicht der Fall, ist die Struktur der Unscented
Transform (UT), wie im Algorithmus [5|beschrieben, nicht mehr zutreffend. Es existieren
vielfiltige Erweiterungen und Generalisierungen der UT fiir beliebige Verteilungen, wie
in [EBN*21]]. Die Autoren entwickeln eine verallgemeinerte UT, welche nicht nur die
ersten beiden Momente einer Verteilung approximiert, sondern auch ihr drittes und vier-
tes Moment. Somit konnen weitere Distributionen, beispielsweise Poisson- oder Gamma-
Verteilung, genutzt werden [EBN™21]]. Diese UT verursacht jedoch einen Mehraufwand in
der Reformulierung des SRUKFs aufgrund der weiteren Momente. Da zweitens die Ver-
wendung der Laplace-Verteilung als Prior nicht in einer Posterior-Verteilung resultiert,
die Sparsity modelliert, muss iiber die aufwendige Reformulierung des SRUKFs nicht
nachgedacht werden. Denn der Laplace-Posterior nihert den korrekten Erwartungswert
an, weist aber weiterhin eine glockenformige Gestalt auf, sodass die eindeutige Unter-
scheidung von Nichtnull- und Nullelementen erschwert wird [HTW15; HBK22].

Die Autoren in [HBK22]| illustrieren diesen Effekt des entstehenden Posteriors mithilfe
eines linearen Regressionsbeispiels, welches in dieser Arbeit ebenfalls zur Veranschau-
lichung dient. So liegen 400 Datensitze bestehend aus X ~ N(0,1) € R'” und Y vor,
wobei Letzteres mit € ~ N(0, 0,5%) und 6 = (0,3, 0,2, —=0,3, 0, 0, 0, 0, 0, 0, 0)7 durch
Y = 0" X + € resultiert. Soll der Koeffizientenvektor 6 identifiziert werden, ergibt sich bei
der Wahl einer Laplace-Verteilung als Prior die linke Darstellung in der Abbildung
Diese zeigt die Posterior-Verteilungen fiir die einzelnen 6;, welche zwar eindeutig die ers-
ten drei Nichtnullelemente erfassen, aber keine Distribution darstellen, die das Konzept
Sparsity fiir die Nichtnullelemente modelliert. Dies wird besonders durch die leicht ver-
schobenen Erwartungswerte der Parameter, z. B. 6¢ oder 6, deutlich, welche die Unter-
scheidung in Nichtnull- und Nullelemente erschweren. Zudem stellt eine solche Posterior-
Verteilung, welche keine Laplace-typische Form aufweist und somit keine Beriicksichti-
gung der Bedingung ermdglicht, eine ungiinstige Wabhl fiir die fortlaufende Nutzung
innerhalb eines Filters dar, wenn diese als Prior fiir den zukiinftigen Schritt iterativ weiter
verwendet wird. Daher wird der nidchste Abschnitt MaBBnahmen thematisieren, wie eine
Verteilung formuliert werden kann, deren Verwendung als Prior das Konzept Sparsity fiir
eine Posterior-Verteilung umsetzt und deren Einsatz innerhalb eines SRUKFs moglich

ist.

Imitation der Laplace-Verteilung

Da die Laplace-Verteilung aufgrund der diskutierten Ursachen eine ungiinstige Wahl als
Prior darstellt [HTW15; HBK22]] und die Funktionalitit des SRUKFs mit unverianderter



4.4 Strukturell effizienter, augmentierter Beobachterentwurf 131

UT lediglich gegeben ist, wenn die zugrunde liegende Wahrscheinlichkeitsdichte eine
GauB-Verteilung ist [vWOI]], scheidet die Modellierung 6; ~ Lap(O0, b) aus. Alternativ
kann die Form der Laplace-Verteilung iiber eine Gaul3-Verteilung imitiert werden, indem
deren Varianz verinderlich formuliert wird, sodass sich die Gestalt der resultierenden
GauB-Verteilung fortwidhrend anpasst (vgl. Vorveroffentlichung [GT23a]). Damit kann
die imitierte Laplace-Verteilung als Vorwissenmodell genutzt und innerhalb des SRUKFs
verwendet werden, da es sich um eine Gaul3-Verteilung handelt. Die bereits thematisier-
te Abbildung illustriert diese Idee, indem eine konkrete Laplace-Verteilung durch

verschiedene GauB}-Verteilungen angenéhert wird.

Laplace-Prior SAS-Prior RHS-Prior
A b AT A AT A A
- A - A
- A - A
- A - A
- A - A
- A - A
- A - A

-0,2 0 0,2 -0,2 0 0,2 -0,2 0 0,2
o; 0; 0;

Abbildung 4-26: Von [HBK22] inspirierte Darstellung der resultierenden Posterior-
Verteilungen fiir die Parameter 6,, unterschieden nach gewdhltem Prior:
Laplace-Prior (links), SAS-Prior (mittig) und RHS-Prior (rechts)

Zur Imitation der Laplace-Verteilung, welche als Prior eine diinnbesetzte Zufallsvariable 6
modellieren soll, wird {iblicherweise die Spike-and-Slab-Verteilung (SAS-Verteilung) ge-
nutzt [HBK22; |PV17; BDPW19; Murl2]]. Diese ldsst sich folgendermallen definieren:

614 ~ N(O, 02)/11',
A; ~ Ber(p).

(4.24)

Die Verteilung (#.24) stellt eine hierarchische Struktur dar, welche mittels A{7| zwischen
der Spike- und der Slab-Verteilung umschaltet. Letztere entspricht der Situation, wenn

A; aufgrund der Bernoulli-Verteilung mit der Eintrittswahrscheinlichkeit p gleich Eins

43Damit die in der Literatur (ibliche Notation gewahrt wird, bezieht sich die Variable A; im Unterschied
zur sonstigen Nutzung in dieser Arbeit fUr die Definition der drei Verteilungen jeweils auf eine Zu-
fallsvariable.
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ist. In diesem Fall ist der Parameter 6; nicht Null, sondern orientiert sich an der Nor-
malverteilung mit Varianz ¢?. Ist A; dagegen Null, ist der Parameter 6; irrelevant fiir die
Modellierung, da die Verteilung (4.24) als Dirac-Delta-Verteilung definiert wird. Die-
se weist einen Dirac-Impuls im Ursprung auf, sodass der Parameter 6; bei Null liegt
(vgl. [Murl2; PV17; HBK22]). In der Abbildung sind in der mittleren Darstellung
die Posterior-Verteilungen fiir den Koeffizientenvektor 6 des bereits zuvor diskutierten
Beispiels abgebildet, wenn die SAS-Verteilung als Prior genutzt wurde. Die Koeffizien-
ten sind nun eindeutig bzgl. der Nichtnull- und Nullelemente zu unterscheiden, da die
Posterior-Verteilungen nur fiir Nichtnullelemente eine glockenformige Gestalt aufwei-
sen und fiir die Nullelemente eine sehr geringe, aufgrund des Dirac-Impuls kaum vor-
handene Varianz resultiert. Diese sind wegen der Dirac-Delta-Verteilung diskreter Natur,
konnen aber bei Nutzung einer kontinuierlichen Verteilung relativiert werden [HBK22].
Trotz ihrer Vorteile stellt die SAS-Verteilung in manchen praktischen Anwendungen auf-
grund ihrer diskreten Struktur eine Herausforderung dar. Daher hat sich die Regularized-
Horseshoe-Verteilung (RHS-Verteilung) als vergleichbare Alternative entwickelt [HBK22;
PV17; BDPW19]. Diese wird folgendermaB3en definiert:

Qi | ;li’ Tc~ N(Oa ;11'27-2)9
A ~C*(0, 1),
7~ C"(0,70),

c? ~ Inv-I'(a, b),
~ C/li
1=

l —0
N2+ T2

Die hierarchisch unterlagerten Distributionen entstammen jeweils der positiven Halbebe-

(4.25)

ne der Cauchy-Verteilung C* (-, -) und bestimmen den Grad der Diinnbesetztheit weiterhin
durch die Varianz der Normalverteilung. Wihrend 7 die globale Eigenschaft des Koeffizi-
entenvektors @ steuert, moglichst viele Nichtnullelemente zu besitzen, d. h. die Posterior-
Verteilungen dieser Parameter 6; zu verkleinern, bewirkt A;, dass lokal einige wenige Pa-
rameter 6; dem entgehen [HBK?22]. Die Wahl des Parameters 7, beeinflusst dabei, wie
diinnbesetzt @ tatsdchlich ist, da eine Verkleinerung des Parameters eine Verstirkung des
Sparsity-Effekts und somit eine erhohte Anzahl der Nullelemente bewirkt. Dieser Effekt
ist im Anhang in der Abbildung illustriert. Ublicherweise wird 7, < 1 gewihlt,
z. B. in [HBK?22]. Die Varianz der Normalverteilung wird zudem reguliert, um zu ver-
meiden, dass diese zu gro3e Werte annimmt. Dazu stellt Inv-I'(:,-) die inverse Gamma-
Verteilung dar, deren Parameter ¢? die Form des Posteriors steuert und die Maximalwerte
begrenzt, wenn 6; ein Nichtnullelement ist [HBK22; PV 17]]. Dieser Einfluss ist ebenfalls
im Anhang in der Abbildung[A3-3]visualisiert. Die Wirkung des RHS-Priors wird schlief3-
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lich anhand des Beispiels in der rechten Darstellung der Abbildung deutlich, in der
die Posterior-Verteilungen bzgl. der einzelnen Koeffizientenelemente abgebildet sind. Im
Vergleich zu den vorherigen Prior-Verteilungen ist zu erkennen, dass einerseits weiterhin
die Nichtnullelemente eindeutig durch ihre Glockenform detektiert werden. Andererseits
weisen die Nullelemente analog zur SAS-Verteilung eine sehr geringe Varianz auf, wel-
che aber grofBler als die der diskreten SAS-Verteilung ausfillt. Anhand des Beispiels wird
daher veranschaulicht, dass mithilfe der RHS-Verteilung eine geschickte Modellierung
einer imitierten Laplace-Verteilung moglich ist, die eine Unterscheidung in Nichtnull-
und Nullelemente vereinfacht. Die Nutzung dieser Verteilung als Prior ist somit fiir den
Zweck dieser Arbeit sehr vorteilhaft, fiihrt aber gleichzeitig zu einer erhohten Anzahl
an Parametern, die fiir zwei der drei hierarchisch unterlagerten Verteilungen eingestellt
werden miissen. Der Einfluss dieser einzelnen Distributionen ist allerdings nicht einfach
zu durchschauen und wird daher im Anhang in der Abbildungen [A3-2}{A3-3]anhand ver-
schiedener Parametrierungen der jeweiligen Prior-Verteilung und deren Wirkung auf die

resultierende Posterior-Verteilung dargestellt.

44,2 Beobachterentwurf fiir ein Unscented Kalman Filter

Nachdem die Modellierung der Diinnbesetztheit fiir @ aus einer stochastischen Perspek-
tive motiviert und ein geschickt gewihlter Prior fiir das Filter vorgeschlagen worden ist,
folgt der tiberarbeitete Beobachterentwurf. Analog zum Abschnitt wird weiterhin
das augmentierte Modell (#.13) innerhalb des SRUKFs genutzt. Zudem bestehen diesel-
ben Annahmen und Definitionen bzgl. der Kovarianzen und der Pseudomessung (4.17).
Ebenso findet wie im Algorithmus [6| zunédchst ein Durchlauf des Standard-SRUKFs (vgl.
Algorithmus [5)) statt. Allerdings unterscheidet sich der Beobachterentwurf vom vorigen
in der Art und Weise, wie die Sparsity-Forderung fiir die Parameter umgesetzt wird.
Durch die stochastische Modellierung der Parameter 6 wird in jedem Zeitschritt eine Va-
rianz o2 mithilfe der RHS-Verteilung bestimmt, um die Laplace-Verteilung zu imitieren.
Anschlieend werden die Gewichte der UT angepasst und ein erneuter Durchlauf des
SRUKFs mit der Identitit f;, als Dynamikvorschrift und mit der Pseudomessung £, als
Messmodell vollzogen. Die Anpassung der Gewichte ist erforderlich, da im SRUKF ei-
ne Standardnormalverteilung angenommen ist, sodass ) = 3 — 7i optimal gewihlt wird
[Gib11;Sch17]. Ist dies wie bei der stochastischen Modellierung der Parameter @ nicht der
Fall, gilt fiir diese Situation ® = 30* — 7, wobei o zu o, aufgrund der RHS-Verteilung
bestimmt wird [GT23a]. AnschlieBend wird eine erneute Schitzung durchgefiihrt, wo-
rauthin sich der Zustand ¥, ,, aus den n Eintrdgen der ersten Schidtzung und aus den ng
Eintragen der zweiten Schitzung ergibt. Gleiches gilt fiir die Kovarianz. Dieses wird je-

weils durch die eckigen Klammern und mithilfe der programmiertechnischen Darstellung
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des Doppelpunkts dargestellt. Daher resultiert der folgende Algorithmus, welcher sich in
jedem Zeitschritt k dem Durchlauf des Algorithmus [5|anschlieft:

Algorithmus 7 JE-SRUKF mit stochastischer Umsetzung der Sparsity

X = fc; + K (v, = 57)
S« = cholupdate(S,, U, -1)

Initialisiere: R, 7o, a, b

% Bestimmung der Varianz bzw. der neuen Gewichte
02 = E[0?] « Bestimme mit Gl. (4.23) mit 7, a, b
WO WD — a,B,k? =30 -1

% Schitzung mit Sparsity-Modellierung

X pms S pm « SRUKEF (Algo. [5) mit (X, Sk, f4> Hpm> Qs Rpm)

% Bestimmung des finalen Zustands und dessen Kovarianz

Sk,final = Sk
[Sk,final](n+l:ﬁ,n+l:ﬁ) = Spm
X final = Xt

[Xk finatlne1:) = [X pm)ne1:m)

end

4.4.3 Analyse der Schatzglte

Nach der angepassten Formulierung des Vorwissens, welches nun iiber eine modellierte
Wahrscheinlichkeitsverteilung in den Filter eingeht, erfolgt wiederum eine Analyse der
Schitzgiite. Dabei werden zur Vergleichbarkeit einige Anwendungsbeispiele aus dem vo-
rigen Abschnitt betrachtet, um die Vorteile des liberarbeiteten Entwurfs zu beleuch-
ten und hervorzuheben. Fiir die Parametrierung des Priors wird durchgehend 7o =0, 1,
a = 4,5und b = 1,5 angenommen (vgl. die Vorverdffentlichung [GT23a]), wihrend
die Initialisierung der Kovarianzen und weiterer Einstellungsparameter unverdndert zum
Abschnitt bleibt.

Evaluation am Duffing-Oszillator

Analog zum Entwurf im Abschnitt[4.3|wird die Schitzgiite zunédchst am Duffing-Oszillator
(4.3) analysiert, dessen Ungenauigkeit im Modell weiterhin durch die Abwesenheit des

kubischen Terms resultiert. Zur Vergleichbarkeit sind die Parameter des Entwurfs un-
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verdndert zu den Simulationen aus Abschnitt 4.3.3] Insbesondere werden dieselben Bi-
bliotheken W; mit i = 1,2,3 genutzt (vgl. u. a. Gleichung (4.18))). Zunéchst wird die
Anforderung [F1] durch die Abbildung tiberpriift. Im Vergleich zu den Ergebnissen
in der Abbildung [4-9]zeigt sich durch die Modellierung des Vorwissens als Wahrschein-
lichkeitsverteilung nun eine stark verbesserte Schitzgiite fiir alle drei Bibliotheken. Die
Qualitédt der Schitzung unterscheidet sich im Kontrast zu vorherigen Ergebnissen nicht
mehr so stark, auch wenn die Bibliothek ¥;, welche den kubischen Term enthilt, weiter-

hin die hochste Schitzgiite liefert. Diese Erkenntnisse verifiziert der kumulierte quadra-

tische Fehler in der rechten Visualisierung.
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Abbildung 4-27: Qualitdit der Zustandsschdtzung im Vergleich zu verschiedenen Biblio-
theken und einem klassischen SRUKF, das ohne die Modellungenauig-

keit g schditzt, vgl. [GT23al]

Die Auswirkung der vorteilhaften Modellierung der Forderung durch eine Wahr-
scheinlichkeitsverteilung ist ebenso in den zeitlichen Verldufen der Parameter der Linear-
kombination zu sehen. Diese werden in der Abbildung dargestellt und setzen erkenn-
bar die Bedingung um, da die meisten Parameter nahe Null verweilen. Im Vergleich
zur Abbildung [4-10| weisen die Parameterschitzungen einen glatteren Verlauf auf, iden-
tifizieren jedoch weiterhin dieselben dominanten Terme. Sie unterscheiden sich lediglich

geringfiigig im Einschwingverhalten und in der Skalierung der Verlidufe. So konnen bei-
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spielsweise zum Zeitpunkt # = 8 s temporir die folgenden Linearkombinationen fiir die

drei unterschiedlichen Bibliotheken identifiziert werden:

818 = —0,026 — 0,016x; — 0,003x, — O, 019x§ — 0,002 sin(x,) + 0,0003x; x,
— 0,019 cos(x) — 0,003u — 3,708x],

82— ~ —0,024 — 0,034x, + 0,007x, — 0,0134x3 — 0,006 sin(x,) + 0,009x, x,
— 0,015 cos(x;) — 0,007u — 3,419x7,

83,23 ~ —0,034 — 3,618x; + 0,018x, + 0,009x; + 0,0218 sin(x,) + 0, 007 x; x,
—0,017cos(x;) —0,017u

Folglich entsprechen diese Resultate der Erwartungshaltung, da weiterhin die physika-
lisch plausiblen Terme, die je nach Bibliothek bzgl. des Exponenten variieren, temporér
identifiziert werden. Um jedoch eine finale, interpretierbare Modellierung der Ungenauig-
keit zu erhalten, wird Kapitel [5| schlieBlich eine automatisierte Identifikation jener Terme
durchfiihren. Anhand dessen konnen die dominanten Terme extrahiert und anschlie3end
ihre dazugehorigen Parameter durch eine Parameteridentifikation oder Optimierung be-
stimmt werden. Der Eindruck einer glatteren und genaueren Approximation kann zudem
insbesondere durch den Vergleich der Ungenauigkeit g zu den Approximationen g; in der
Abbildung bestitigt werden. Im Kontrast zur Abbildung ist nun eine sehr ho-
he Approximationsgiite gegeben, welche nicht nur einen sehr glatten Verlauf aufweist,
sondern auch die Maxima und Minima von g erfasst. Zudem weisen alle approximier-
ten Verldufe g; unabhingig von der gewihlten Bibliothek eine hohe Genauigkeit auf, was
die hohe Schitzgiite aus der Abbildung[4-27] erklirt. Auffillig ist im Vergleich zu den
Abbildungen 4-10] und - TT| weiterhin, dass die Parameter unabhidngig von den drei Bi-
bliotheken allesamt gleich Null sind, wenn die Modellungenauigkeit g = 0 ist. Dies ist
beispielsweise zum Zeitpunkt r = 10 s in beiden Abbildungen zu erkennen. Analog zum
Argument der Sichtbarkeit einer Nichtlinearitdt im Ausgang, welches bei der Formulie-
rung eines lernfihigen Luenberger-Beobachters basierend auf neuronalen Netzen vorge-
bracht wird (vgl. [Sch10]), kann die Ursache des beobachteten Phinomens auf die erfor-
derliche Sichtbarkeit der Modellungenauigkeit zuriickgefiihrt werden. Ist die Wirkung der
Modellungenauigkeit nicht in den Signalen erkennbar, die gemessen werden kénnerﬂ SO
kann der Beobachter keine Identifikation vornehmen, woraufhin der gesamte Parameter-
vektor zu diesem Zeitpunkt Null ist. Die Verwendung einer stochastisch motivierten Mo-
dellierung des Vorwissens [E.2+ fiihrt demzufolge zu einer gravierend hoheren Schitzgiite,

da die dominanten Terme der Linearkombination effizienter ausgewéihlt werden.

*“In diesem Fall ist dies sogar durch die Systembeschreibung [@3) direkt anhand der Modell-
ungenauigkeit g zu erkennen.



4.4 Strukturell effizienter, augmentierter Beobachterentwurf 137

5 T T T T T T T T]/Tz \113
~ — /\ ) N
& ot = |8
—5 1 1| 1 1 |x1 1 1 @
0 2 4 6 8 10 12 14 2 T T
5 T T T T T T T @3
& Ofrpt~—m A |4 — —
—5 1 ll 1 1 |x1| |-‘ é
0 2 4 6 8 10 12 14 |7
5 T T T T T T T 96 - -
vt va yemva yik
-5 l\‘ll 1 1 S W L ég — —
0 2 4 6 8 10 12 14 R
Zeit t[s] O )

Abbildung 4-28: Zeitlicher Verlauf des Parametervektors 0 im Vergleich verschiedener Bi-
bliotheken, vgl. [GT23a], und die jeweils daraus zugeordneten dominan-
ten Bibliotheksterme (dargestellt anhand der Pfeile)

—g(x,u)

=Y
A\ ety
: : 2:=0"y,

Zeit t [s]

Abbildung 4-29: Approximation der Modellungenauigkeit g(x,u) = —3xf im Vergleich
verschiedener Bibliotheken, vgl. [GT23a
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Evaluation am Golfroboter

Nachdem eine deutliche Verbesserung der Schitzgiite durch eine angepasste Umsetzung
der Sparsity-Bedingung beobachtet worden ist, wird anhand des Golfroboters iiberpriift,
ob der iiberarbeitete Entwurf auch fiir ein komplexeres System anwendbar ist. Wie im
Abschnitt [4.3.3| wird weiterhin das Golfrobotermodell (A6-2) verwendet. Zur Vergleich-
barkeit wird der offene Regelkreis simuliert, indem analog zu den Abbildungen bis
dieselbe polynomiale Bibliothek ¥; genutzt wird (vgl. Tabelle 4-1)). Die Qualitit
der Zustandsschitzung ist anschlieBend in der Abbildung [4-30] dargestellt, wihrend die
Parameterverldufe sowie die Approximation der Modellungenauigkeit in den folgenden
Abbildungen §-31| bzw. [4-32] visualisiert sind. Im Vergleich zur Abbildung sind in

der Abbildung 4-30] zunéchst kaum Unterschiede zu erkennen. Dennoch erzielt die sto-

chastisch motivierte Umsetzung der Sparsity-Bedingung eine etwas hohere Schitzgiite,
was sich anhand des geringeren, kumulierten Fehlers und des genaueren Verlaufs der
Winkelgeschwindigkeit in der Abbildung [4-30] zeigt. Neben einer hoheren Schitzgiite,
welche Anforderung @ erfiillt, weisen die Parameterverlidufe in der Abbildung @ wie
beim Duffing-Oszillator einen deutlich glatteren Verlauf als jene in der Abbildung
auf. Zudem ist die Sparsity-Bedingung erfolgreich umgesetzt worden, da die meisten Ele-
mente nahe Null verweilen (vgl. Anforderung [F.2+). Allerdings ist anhand der Parameter
zu erkennen, dass die gewihlte Bibliothek ¥, weniger gut geeignet ist, die Modellun-
genauigkeit zu erfassen, da eine Identifikation tiberwiegend durch die Konstanten und le-
diglich zu bestimmten Zeiten geringfiigig durch geschwindigkeitsbasierte Terme erfolgt.

So lautet z. B. die temporire Approximation zum Zeitpunkt ¢ = 5's:

81.4=5 ~0,56 — 0,0004x; — 0,009x; + 0,002x; + 0,004x5 — 0,001, x,
—0,0001x; - 0,63x; — 0,0005x7x, — 0,002x5x; + 0,004u

Diese Erkenntnis, dass W, keine fiir den Golfroboter geeignete Bibliothek darstellt, ist be-
reits im Abschnitt [4.3.3] festgehalten worden. Doch eine qualitativ zutreffende, obgleich
ungenaue Schitzung der Modellungenauigkeit ist moglich, wie die Abbildung #-32]besti-
tigt. Aufgrund der stochastischen Modellierung ist diese Approximation g; weniger ver-
rauscht als jene, welche in der Abbildung[4-14|zu erkennen ist, weist aber eine schlechtere
Identifikation der Modellungenauigkeit g auf. Dies ist auf die Wahl der Bibliothek zuriick-
zufiihren, weil nur Konstanten als Charakterisierung identifiziert werden, sodass die Mo-
dellungenauigkeit g eine grolere Abweichung zur gemessenen Diskrepanz aufweist. Den-
noch ermoglicht der angepasste augmentierte Beobachter eine hohere Schitzgiite sowie
eine Vereinfachung der Identifikation der Modellungenauigkeit, indem die Parameter der

Linearkombination als Wahrscheinlichkeitsverteilung modelliert werden.
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Abbildung 4-32: Approximation g der Modellabweichung g,,..s zwischen Messdaten und
dem qualitativ minderwertigen Modell (A6-2))

Im vorigen Abschnitt ist die Wirkung von Messrauschen im Kontext des augmen-
tierten Beobachterentwurfs lediglich indirekt thematisiert worden, da Experimente am
Priifstand durchgefiihrt wurden, welche geringes Messrauschen aufgrund der guten Sen-
sorik des Golfroboters enthielten. Hierbei konnte bei geeignet gewihlter Bibliothek eine
sehr hohe Schitzgiite erzielt werden, obgleich geringes Messrauschen priasent war. Daher
wird dieser Einflussfaktor simulationsbasiert anhand desselben Szenarios, welches in den
Abbildungen 4-30{und diskutiert wurde, untersucht. Existiert beispielsweise ein nor-
malverteiltes Rauschen mit einer Abweichung von maximal 0,2rad ~ 11,46°, so kann
der augmentierte Beobachter die Zustinde des Golfroboters bei Verwendung der Biblio-
thek ¥, weiterhin korrekt schétzen. Dies ist in der Abbildung zu erkennen. Aufgrund
des Messrauschens ist der kumulierte Fehler etwas hoher als die Schidtzung ohne Messrau-
schen (vgl. Abbildung[4-30)), dennoch bleibt die Schitzgiite weiterhin hoch. Die Wirkung
des Messrauschens ist dariiber hinaus in den Verldufen der Parameter zu erkennen, wel-
che in der Abbildung dargestellt sind. Diese weisen im Vergleich zur Abbildung
trotz Verwendung der stochastischen Modellierung starkes Rauschen auf. Dennoch wer-
den dieselben dominanten Terme wie in der Abbildung [4-31] detektiert. Die Wirkung des
Messrauschens auf die Qualitit des augmentierten Beobachters ist folglich moderat, da
die Schitzung des gezeigten Beispiels mit einer grolen Abweichung von etwa 11,46°
sehr robust durchgefiihrt werden konnte. Weitergehende Analysen zeigten, dass der aug-
mentierte Beobachter ein Messrauschen ab etwa 0,4rad ~ 22,92° maximaler Abwei-
chung nicht mehr kompensieren konnte und daraufhin divergierte. Dieses Messrauschen
entspricht beim Golfroboter jedoch bereits einer sehr gro3en Pendelbewegung, sodass ein

robustes Schitzverhalten des augmentierten Beobachters bestitigt werden konnte.



4.4 Strukturell effizienter, augmentierter Beobachterentwurf 141

=
~

=
(O8]
T

Kumulierter quadratischer Fehler
=
[\
T

— 02 T L I T 0,1 r —
g 50 B 1 8 | 5 e
N _0,2 r_\—|— 1 1 1 0 "‘.T' 1 1 1

0 2 4 6 8 10 0 2 4 6 8 10

Zeit t[s] Zeit t[s]

— Messung - == SRUKF - - - JE-SRUKF mit ¥,
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Die Vorteile des iiberarbeiteten augmentierten Beobachterentwurfs konnen ausschlieB3-
lich durch Simulationsergebnisse gestiitzt werden, da eine erfolgreiche Umsetzung am
Priifstand nicht moglich war. Trotz intensiver Untersuchungen und Bemiihungen konnte
in allen Versuchen lediglich ein divergierendes Verhalten des Beobachters ab Betriebs-
zeitpunkt festgestellt werden, welches unabhingig von der gewéhlten Bibliothek und den
Einstellparametern stattfand. Aufgrund vorheriger Erfahrungen am Priifstand liegt die
Vermutung nahe, dass die zur Verfiigung stehende Software, welche wegen der Hard-
wareanforderungen des Priifstands eine veraltete Version aufweist, die Umsetzung ei-
nes mehrfach durchgefiihrten Samplings von stochastischen Verteilungen erschwert und
dies zur Divergenz direkt ab dem Start des Beobachters fiihrt. Diese Vermutung wird
insbesondere durch die Tatsache gestiitzt, dass der augmentierte Beobachterentwurf aus
Abschnitt am Priifstand umgesetzt werden konnte und sich nur durch die Modellie-
rung der Sparsity-Bedingung von der im Algorithmus [/|beschriebenen Erweiterung
unterscheidet. Diese stellt jedoch simulationsbasiert eine vielversprechende Alternative
zur Sparsity-Formulierung dar, sodass eine Validierung der beobachteten, sehr guten Er-
gebnisse durch Messdaten zu erwarten ist, wenn eine moderne Laborausstattung in Zu-
kunft zur Verfiigung stehen wird und anschlieend eine zielgerichtete Implementierung
erfolgen kann (vgl. Kapitel [6)). Folglich stellt die Option, die Anforderung durch
eine Wahrscheinlichkeitsverteilung umzusetzen, eine vorteilhafte Wahl dar, um effizient
die Struktur des Filters auszunutzen und eine hohere Schitzgiite durch eine verbesserte
Modellierung zu erzielen. Die beim Duffing-Oszillator und Golfroboter erzielten Erkennt-
nisse konnten ebenfalls erfolgreich bei der Anwendung auf das Beispiel der Windenergie-
anlage (vgl. System (4.19)) festgestellt werden, welches sich im Unterschied zu den zuvor

genannten Systemen durch eine multiplikative Modellungenauigkeit auszeichnet. Anhand

dieses Beispiels werden in den Abbildungen |A6-11|bis|A6-13|zudem die Auswirkungen

einer ungiinstigen Parametrierung der RHS-Verteilung dargestellt. Aufgrund der zu ge-
ringen Wahl von 7y = 0, 1 wird eine zu starke Diinnbesetztheit der Parameter modelliert,
sodass die Identifikation der Windgeschwindigkeit limitiert ist (vgl. Abbildung|A6-13]).

4.5 Online-Schatzung von Stérungen

Da Modellungenauigkeiten nicht nur durch eine mangelnde Modellierungstiefe und des
daraus resultierenden Abstraktionslevels entstehen, sondern auch durch externe Storungen
ausgelost werden konnen, wird dieser Abschnitt untersuchen, inwiefern sich die vor-
gestellten Methoden nicht nur fiir SRUKFs eignen, sondern auch auf einen robusten
Storbeobachter iibertragen lassen. Dazu wird ein SMO, welcher bereits im Abschnitt[2.3]

vorgestellt worden ist, mit der Grundidee der Joint Estimation versehen. Teile dieses Ab-
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schnitts finden sich bereits in der Vorverdftentlichung [GKT23] und basieren u. a. auf der
studentischen Arbeit [Klu23].

4.5.1 Automatisierte Bibliotheksgenerierung

Die Féhigkeit eines SMOs, auch bei Auftreten von Storungen robust zu schitzen, resultiert
vor allem durch die Nutzung der n-ten Schaltfunktion v,, welche die Modelldiskrepanz
A fi¥|kompensiert (vgl. Abschnitt. Diese Schaltfunktion v, wird gewohnlich durch ein
Tiefpassfilter identifiziert [SEFL14]. Allerdings kann die Option, die Modelldiskrepanz
Af als parametrisches Modell zu identifizieren, in manchen Situationen einen Vorteil dar-
stellen. Dies ist beispielsweise der Fall, wenn Eigenfrequenzen der Storung identifiziert
werden konnen, sodass durch eine aktive Ddmpfung eine hohere Bauteillebensdauer zu er-
warten ist. Daher wird die Grundidee der Joint Estimation auf den SMO iibertragen, indem
fiir die Modellabweichung Af der Ansatz der Linearkombination mit den Parametern 6
und der Bibliothek W gewihlt wird (vgl. Gleichung (#.2))):

Af =~ 0"¥(x,u).

Befindet sich der SMO aufgrund einer geeigneten Parametrierung J; in der Sliding-Phase,
so streben die Fehler e; asymptotisch gegen Null. Somit folgt basierend auf der letzten
Zeile der Gleichung (2.34) der Zusammenhang Af = —v,(e,). Um die Modelldiskrepanz
zu identifizieren, muss der Interpretationsfehler ey = Af — 8" W(&, u) fiir t — oo gegen

Null tendieren. Daraus ergibt sich das folgende Optimierungsproblem [GK'T23]:

!
0= argminf epdr
0 0

d 2
= arg min f (Af - 0"P(&.w) dr (4.26)
0 0

. Tasre )2
= arg min (—vn(ey) -0'¥Y(x, u)) dr.
0 0

Eine effiziente Losung des Optimierungsproblems (4.26)) liefert [DFPO6]:

9:(— f v,,(ey)‘l’(fc,u)TdT) [ f ‘P(J%,u)‘P(fc,u)TdT]
0 0

Hierbei wird die Losung iiber einen rekursiven Least-Squares-Ansatz mithilfe einer dyna-
-1
mischen Berechnung der Inversen [ fot Y(x,u)¥(x, u)TdT] bestimmt [DFPO6]. In [[Klu23|]

wird das Optimierungsproblem (4.26) zudem mit einem Zeitfaktor versehen, um zeit-

-1

variantes Verhalten einer Storung besser abzubilden. Neben der Beriicksichtigung von

45Die Diskrepanz Af kann im SMO-Kontext als additive Modellungenauigkeit g aufgefasst werden.
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Vorwissen in Form von Hypothesen oder der Nutzung der minimalen Bibliothek
kann jedoch zundchst eine Datenakquise erfolgen, auf deren Grundlage die Charakte-
ristika der Stérung analysiert werden. So kann z. B. bei oszillierenden Storungen ei-
ne Fouriertransformation genutzt werden, um auftretende Frequenzen aus Verldufen von
va(ey) zu identifizieren. Die Fouriertransformation bietet zudem den Vorteil, dass es sich
um eine orthonormale Basistransformation handelt (vgl. Abschnitt 4.3.1). Dazu werden
fiir einen bestimmten Zeithorizont die Daten der Schaltfunktion aufgenommen, wihrend
sich der SMO in der Sliding-Phase befindet. Diese Informationen konnen anschlieBend
verwendet werden, um mittels der Fouriertransformation Frequenzen des vergangenen
Zeitraums in Ansatzfunktionen ¢; zu platzieren. Somit enthilt die Bibliothek Terme, die
hochstwahrscheinlich der Identifikation der Storung bzw. Modelldiskrepanz Af dienen.
In der Abbildung ist diese Idee skizziert, indem ein durch die Fouriertransforma-
tion detektiertes Frequenzspektrum anhand der relativen Héufigkeit in den Daten gekenn-
zeichnet wird. Dabei handelt es sich um ein Experiment am Einfachpendel mit Wagen
(vgl. Modell (A6-3))), welches mit der Anregung u und der Stérung p, welche am Wagen
wirkt, beaufschlagt worden ist:

u(t) = Sin(ﬂ'-t+g),

p(t):4-sin(37r-t+g).

(4.27)

Anhand der Visualisierung ist erkennbar, dass die Fouriertransformation die Fre-
quenz der Storung w, = 37 in den Daten als wichtigste Frequenz erkennt und sogar die

der Anregung w, = m als weitere detektiert.

Prozentsatz der Frequenz [%]

Frequenzen w [Hz]

Abbildung 4-35: Die durch die Fouriertransformation identifizierten Frequenzen zur auto-
matisierten Bildung von Bibliothekstermen ; weisen die hochsten Pro-
zentsdtze auf, vgl. [|[GKT23|].
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Mittels dieses Vorgehens ldsst sich die Bibliothek z. B. folgendermalBlen automatisiert
erarbeiten, wobei dhnlich wie bei der Anwendung der Windenergieanlage eine explizite
Abhingigkeit von der Zeit ¢ besteht [GKT23|:

) ) ) T\ . T\ . m\/
Y(x,u,t) = (51n(x2), X2, sign(x,), sin (n -+ 5) , sin (37r -1+ 5) , sin (57r -1+ 5)) .

(4.28)

Diese Bibliothek enthilt nun die beiden identifizierten Frequenzen in den Termen ¢, und
Y5 sowie weitere mogliche Terme, um den Vergleich zu einer nur durch Vorwissen und
Hypothesen bestiickten Bibliothek zu erlauben. Somit ist eine Vergleichbarkeit fiir die
folgenden Untersuchungen gegeben, welche die Identifikation der Stérung durch eine Bi-
bliothek, die aus Vorwissen resultiert, und durch eine automatisierte Bibliothek analy-
sieren. Diese Automatisierung der Bibliotheksfunktionen ist besonders vorteilhaft, wenn
wenig Vorwissen bzgl. der Ungenauigkeit vorliegt, und eignet sich daher als robustes

Werkzeug in der intelligenten Fehlererkennung bzw. Storungsbeseitigung [GKT23]].

4.5.2 Analyse der Schatzglte

Die im vorigen Abschnitt entworfene Erweiterung fiir einen SMO wird anhand des Ein-
fachpendels auf einem Wagen evaluiert, dessen Modell und Parameter im Anhang
beschrieben werden und welches sich im Labor des RtM befindet. Dazu wird das System
fiir 120 Sekunden mit der zuvor definierten Anregung u beaufschlagt, wihrend es eine
zusitzliche Storung p erfihrt (vgl. Gleichung (#.27)). Um die Wirkung der automatisier-
ten Bibliothekswahl mithilfe der Fouriertransformation im Vergleich zu einer zuvor fest-
gelegten Bibliothek zu bewerten, wird dieselbe Bibliothek (4.28)) fiir beide Fille genutzt.
Folglich wird die zuvor festgelegte Bibliothek als die automatisiert gewéhlte Bibliothek
bestimmt. Zunéchst wird iliberpriift, inwiefern sich die Zustandsschédtzung mit automati-
sierter Bibliothekswahl von jener mit einer zuvor festgelegten Bibliothek unterscheidet.
Abbildung [4-36|zeigt einen Exzerpt der Zustandsschitzung, bei dem jeweils nur die nicht
messbaren Zustinde dargestellt werden. Fiir beide Fille wird eine hohe Schitzgiite er-
zielt, da keine Abweichungen in den Verldaufen der Geschwindigkeiten zu erkennen sind.
AnschlieBend stellt die Abbildung einen Ausschnitt der zeitlichen Verldufe der Pa-
rameter sowie der Schaltfunktion v, dar, welche jeweils mit und ohne automatisierter
Bibliothekswahl abgebildet sind. Aufgrund der notwendigen Analyse durch die Fourier-
transformation verzogert sich die Reduktion des Modellfehlers, welcher durch die Schalt-
funktion ausgedriickt wird, im Vergleich zur Situation einer zuvor festgelegten Bibliothek.
Dies liegt an der erforderlichen Aufnahme der Daten. Ist dieser Prozess der Analyse je-

doch abgeschlossen, wird ein vergleichbares Fehlerniveau erreicht, wenn die Parameter
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der Linearkombination konvergiert sind. Dies ist exemplarisch anhand der Verldufe der
Parameter 65 bzw. 6 zu erkennen, welche nach der Phase der Datenanalyse konvergieren

und die Dynamik der Storung p eindeutig charakterisieren (vgl. [GKT23]).

¢ [rad/s]

y [m/s]

Zeit t [s]

— Messung —X; , - - - X; f

Abbildung 4-36: Exzerpt aus Zustandsschdtzung mit festgelegter Bibliothek (Index p) und
automatisiert gewdhlter Bibliothek (Index f) und i = 2,4, vgl. [GKT23

v, [rad/s]

-3 1 ‘I 1 1

0 20 40 60 80 100 120
Zeit t[s]

— nicht automatisiert - - - automatisiert

Abbildung 4-37: Verlauf der Schaltfunktion v,, welche die Modelldiskrepanz Af wider-
spiegelt, und Auszug aus den Parameterverldufen 6, vgl. [|[GKT23
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SchlieBlich vergleicht Abbildung die Approximationsgiite von p im Vergleich zur
(in diesem Szenario bekannten) Storung p, wenn die Parameter 8 konvergiert sind. In die-
sem Ausschnitt ist erkennbar, dass bei einer automatisierten Bibliothekswahl eine sehr
gute Approximation der Storung erzielt werden kann. Die Analysen bestidtigen demnach,
dass eine Automatisierung der Bibliothekswahl die Anforderungen [F.1] und nicht
negativ beeinflusst, sondern hilft, diese umzusetzen, da eine hohe Schitzgiite und eine
interpretierbare Identifikation der Storung p erzielt werden konnten. Untersuchungen in
[Klu23|] zeigten ferner, dass im geschlossenen Regelkreis eine aktive Storkompensation,
bei der Informationen auf Basis der Approximation p ins Modell zuriickgefiihrt wer-
den, eine hohere Regelgiite erzielen kann. Diese Erweiterung einer automatisierten Bi-
bliothekswahl ist somit eine Erginzung des augmentierten Beobachters und stellt ei-
ne hilfreiche MaBBnahme dar, welche als Werkzeug in der intelligenten Fehlererkennung
und Storkompensation gewinnbringend eingesetzt werden kann. Dariiber hinaus wird die
Grundidee einer automatisierten Gestaltung der Bibliothek basierend auf erhobenen Da-

ten im Kapitel [5| fiir die Modelladaption aufgegriffen.

T T T T
10 - .
Q
~ 0
Q
-10
1 1 1 1

80 82 84 86 88 90
—p---p Zeit t [s]

Abbildung 4-38: Auszug des Vergleichs der Storung p und der Approximation
p= OT‘P(.Q', u), wenn die Bibliothek automatisiert bestimmt worden ist,
vgl. [|[GKT23]

4.6 Zusammenfassung der Entwurfsverfahren

Alle neuartig entwickelten Verfahren dieses Kapitels basieren auf dem Konzept der Joint
Estimation und augmentieren den Zustand um Parameter einer Linearkombination, wel-
che die Modellungenauigkeiten approximiert. Beide Methoden der Abschnitte 4.3] und
[.4] stellen mittels einer Projektion auf den Unterraum, der die Sparsity-Bedingung fiir
die Parameter aufspannt, ihre Funktionalitit unter Beweis und werden im Kontext von
SRUKFs formuliert. Sie unterscheiden sich ausschlieBlich durch die Modellierung der
Eigenschaft Sparsity, welche als Vorwissen fiir die Parameter unterschiedlich umgesetzt
wird. Hierbei stellt der zweite, stochastisch motivierte Entwurf deutliche Vorteile bzgl.
der Schitzgiite und der Glattheit der Parameter gegeniiber dem ersten heraus, welcher auf

der heuristischen Schranke zur Bestimmung der Nichtnullelemente basiert. Das Verfah-
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ren im Abschnitt 5] stellt einerseits den Transfer des augmentierten Beobachters vom
SRUKF zum SMO dar und ergénzt andererseits die Methode um eine Option zur auto-
matisierten Bibliothekswahl basierend auf einer Fourieranalyse. Im Kontrast zur Methode
SINDy, welche ebenfalls interpretierbare Modelle durch einen Bibliotheksansatz und das
Konzept Sparsity erzeugt (vgl. Gleichung (3.2)), aber aufgrund der Abhingigkeit vom
vollstindigen Zustand lediglich offline eingesetzt werden kann (vgl. Abbildung[3-25)),
ermOglichen die in dieser Arbeit neu entwickelten Verfahren eine Online-Umsetzung
durch die Beobachterstruktur. Somit besteht die Chance, Modellungenauigkeiten parallel
zur Zustandsschétzung online zu identifizieren. Aufgrund der Analysen der Anwendungs-
beispiele werden zunéchst zwei allgemeine Erkenntnisse tiber das Entwurfskonzept Joint

Estimation festgehalten:

e Fine gleichzeitige Schitzung von Zustinden und Modellungenauigkeiten ist durch
die Augmentation des Zustands um Parameter einer Linearkombination, welche die

Modellungenauigkeiten approximiert, umsetzbar.

e Die Bibliothekswahl der Linearkombination besitzt einen entscheidenden Einfluss
auf die Stabilitit und Schitzgiite des Beobachters. Eine geeignet gewdhlte Biblio-
thek umfasst die minimale Bibliothek W, und besteht aus moglichst vielseitigen
Termen (vgl. beispielsweise Gleichung (4.6)), Abbildung[4-5] Tabelle[d-1)) oder wird

auf Basis einer Datenanalyse automatisiert bestimmt.

Neben der Bestitigung, dass Anforderung [F:4] umsetzbar ist, lassen sich einige weite-
re Erkenntnisse zusammenfassen, welche die Umsetzung der zu Beginn formulierten
Anforderungen [F.1] bis [F.3] bewerten:

e Eine hohe Genauigkeit der Zustandsschitzung kann trotz existierender Modellun-
genauigkeiten bei geeignet gewihlter Bibliothek gewdéhrleistet werden.
— Anforderung [F.1] erfiillt

e Durch Umsetzung des Konzepts Sparsity ist der Parametervektor diinnbesetzt und
liefert die Grundlage fiir interpretierbare Aussagen.
— Anforderung erfiillt

o [st der tatsdchliche Term zur Charakterisierung der Modellungenauigkeit in der Bi-
bliothek enthalten, wird dieser eindeutig identifiziert und der Modellungenauigkeit
zugeordnet (vgl. beispielsweise Abbildung [@-10).

— Anforderung [F.2] teilweise erfiillt

e Ist der tatsdchliche Term nicht in der Bibliothek enthalten, wird bei geeignet ge-
wihlter Bibliothek eine alternative, verwandte Darstellung zur Charakterisierung
gefunden (vgl. beispielsweise Abbildung Abbildung [4-T8).

— Anforderung [F.2] teilweise erfiillt
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e Eine Nutzung der Verfahren im geschlossenen Regelkreis ist bei geeignet gewihlter
Bibliothek moglich (vgl. Tabelle [4-TJ.
— Anforderung [F.3| teilweise erfiillt

e Die Adaptionsfahigkeit des augmentierten Beobachters im Fall von Systemverén-
derungen ist gegeben (vgl. Abbildung [4-19).
— Anforderung [F.3| teilweise erfiillt

Anhand der Auflistung ist erkennbar, dass die Anforderungen einer hohen Schitzgiite so-
wie einer interpretierbaren Schitzung der Modellungenauigkeiten erfolgreich durch die
Anforderung mittels der Konzepte Joint Estimation und Sparsity umgesetzt werden
konnten. Allerdings ist der erfolgreiche Einsatz in hohem MafBe von der Wahl der Biblio-
thek abhingig, welche die Stabilitit des Beobachters im geschlossenen Regelkreiﬂ be-
einflusst (vgl. Tabelle §-T)). Des Weiteren ist die Nutzung des augmentierten Beobachters
auf die Anwendung eingangsaffiner Systeme und die Existenz von additiven Modellun-
genauigkeiten limitiert, obwohl bereits erste Untersuchungen anhand der Windenergiean-
lage vorgenommen worden sind, deren Ergebnisse vielversprechend erscheinen. Zudem
kann es in manchen Situationen sinnvoller sein, auf altbewihrte Strategien wie das Gain-
Scheduling zuriickzugreifen, um den Aufwand in einem vertretbaren Rahmen zu halten.
Abschnitt[5.4] wird dieses Thema der Aufwand-Nutzen-Ratio genauer beleuchten.

Ferner ist die Identifikation der Modellungenauigkeiten in der Form einer parametrischen
Darstellung zur Modelladaption und Nutzbarkeit bisher nur im geringen Malle adressiert
worden. Auch wenn der Einsatz des augmentierten Beobachters bereits erfolgreich im
geschlossenen Regelkreis getestet worden ist, sind die Anforderungen [F-2Jund [F-3]jeweils
lediglich teilweise erfiillt, da auler der visuellen Identifikation der Modellungenauigkei-
ten durch die Schitzwerte der Parameter (vgl. Abbildung 4-10) keine Auswertung fiir
eine parametrische Darstellung erfolgt ist. Diese ist jedoch niitzlich, um eine Modelladap-
tion vorzunehmen, sodass das verbesserte Modell auch in weiteren Anwendungsschritten
einen Mehrwert bietet und verwertet werden kann. Dieser Anspruch wird daher im fol-
genden Kapitel umgesetzt, indem eine Online-Adaption zur Laufzeit basierend auf der pa-
rametrischen Darstellung der Modellungenauigkeiten formuliert wird, welche die bisher
nur teilweise erfiillten Anforderungen [F-2) und [F-3]schlieBlich vollstindig beriicksichtigt.
Die Grundidee des Vorgehens bildet hierbei eine automatisierte Datenanalyse wihrend
der Schitzung, welche bereits im Abschnitt zur automatisierten Bibliothekswahl the-

matisiert worden ist.

46Um diese Aussage vollsténdig zu validieren, miisste im Gegensatz zu den durchgefiihrten Untersu-
chungen eine nichtlineare Regelung am Golfroboter eingesetzt werden, welche das augmentierte,
nichtlineare Beobachtermodell nutzt. Dennoch ist der Einfluss der Bibliothek jederzeit prasent, da
der Regeleingriff auf den Schatzungen des Beobachters basiert.
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5 Automatisierte Modellaktualisierung wahrend der Laufzeit

Nachdem im vorigen Kapitel unterschiedliche Optionen zur gleichzeitigen Schétzung von
Zustinden und Modellungenauigkeiten erarbeitet wurden, welche die Anforderung [F.1]
erfiillen und eine hohe Schitzgiite aufweisen, steht die explizite, nicht nur temporére Iden-
tifikation der geschitzten Modellungenauigkeiten noch aus. Zwar werden die Ungenauig-
keiten wihrend der Laufzeit dynamisch geschitzt, woraufthin die Schétzungen z. B. an-
hand visueller Analysen ausgewertet werden (vgl. Abbildung 4-28)), jedoch wurde eine
automatisierte Identifikation und Extraktion in einer physikalisch-parametrischen Form
bisher noch nicht durchgefiihrt. Dies ist notwendig, um das Modell ldngerfristig zu adap-
tieren sowie bei Systemverdnderungen zu aktualisieren (im Gegensatz zur temporidren
Anpassung in der Abbildung[-19). Somit sind die Anforderungen[F.2] und [F-3] ledig-
lich teilweise erfiillt (vgl. Abschnitt 4.6). Daher wird dieses Kapitel basierend auf den
vorangegangenen Ergebnissen des Kapitels ] diese Anforderungen explizit adressieren
und Methoden zur automatisierten Extraktion interpretierbarer Modellungenauigkeiten
prasentieren, welche eine Nutzbarkeit der gesammelten Erkenntnisse in Form einer Ana-
lyse oder Synthese ermdglicht. Im Abschnitt[S. 1| wird dazu die Hauptkomponentenanalyse
erldautert, welche eine Modellreduktion fiir die Approximation der Modellungenauigkeit
durchfiihrt, sodass diese durch einige wenige Merkmale der Bibliothek W erfasst wer-
den kann. Um jedoch schon wihrend der Laufzeit eine solche Aktualisierung vornehmen
zu konnen, welche vorteilhaft fiir eine hohe Schitzgiite ist, wird im Abschnitt ein
neuartiges Konzept zur Aktualisierung wihrend der Laufzeit vorgestellt und umgesetzt,
welches die Idee einer automatischen Bibliothekswahl aus Abschnitt [4.5] aufgreift und
weiterentwickelt. AbschlieBend werden die Abschnitte 5.3] und die physikalische In-
terpretierbarkeit der identifizierten Terme sowie den Aufwand und Nutzen des Verfahrens
kritisch beleuchten. Einige Abschnitte dieses Kapitels sind dariiber hinaus bereits Teil
der Vorveroffentlichungen [GT23a;|GT24]. Ferner sind die nachfolgenden, theoretischen
Grundlagen der Hauptkomponentenanalyse in geringem Mal3e in der studentischen Arbeit
[Sch23b] enthalten.

5.1 Merkmalsanalyse und -extraktion

Unabhingig von dem gewihlten Filter oder Beobachter mit erweitertem Modell und des-
sen Methode zur Umsetzung der Anforderung bzw. [F4], wird zu jedem Zeitpunkt &
eine tempordre Schitzung der Modellungenauigkeit g(x;, u;) =~ QZT(.%k,uk) berechnet.
Neben dem priméren Ziel, eine hohe Schitzgiite des Beobachters trotz Modellungenauig-
keiten sicherzustellen, stellt eine Modelladaption basierend auf den temporédren Schit-

zungen der Modellungenauigkeit einen untergeordneten, aber nicht weniger wichtigen
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Zweck dar. Denn langfristig kann diese Adaption zu einer dauerhaft hohen Schitzgiite
beitragen. Folglich stellt sich die Frage, inwiefern die temporire Schitzung der Modell-
ungenauigkeit ¢ = 9,{‘1’(3?:;(,uk) Riickschliisse auf das dynamische Verhalten der Mo-
dellungenauigkeit zulidsst und wie diese fiir eine Modellaktualisierung genutzt werden
konnen. Wihrend der Laufzeit k = 1,..., N konnen die geschitzten Parameter 9k der Li-
nearkombination zu jedem Zeitpunkt gespeichert und einer Matrix @ € R"*" zugefiihrt
werden, die diese Zeitreihendaten wie im Abschnitt 4.5 sammelt. Unter der Vorausset-
zung, dass die Bibliotheksterme ; @hnlich skalieﬂ[ﬂ sind, geben die Parameter durch
ihren Betrag indirekt Aufschluss iiber die Dominanz und Wichtigkeit der einzelnen Bi-
bliotheksterme zur Charakterisierung der Ungenauigkeit. Um die qualitativen Erkenntnis-
se, welche die Zeitverldufe der Parameter visuell im Kapitel @] darstellen, auch quantitativ
und ohne eine menschenbezogene Interaktion nutzbar zu gestalten, werden in dieser Ar-
beit statistische Techniken zur Auswertung der Datenmatrix ® genutzt. Diese bieten den
Vorteil, dass eine Entscheidung zur Bestimmung der dominanten Terme aus der Biblio-
thek getroffen werden kann, die reproduzierbar sowie nachvollziehbar, aber unabhéngig
vom visuellen Eindruck der Person ist, die diese bewertet. Der grofite Vorteil ist aller-
dings die automatisierte Durchfiihrung der Merkmalsextraktion der Datenmatrix ® an-
hand von statistischen Kenngrof8en. Im Modellbildungsprozesses stellt die Merkmalsex-
traktion aus Daten dariiber hinaus die Moglichkeit dar, automatisiert eine Modellreduk-
tion durchzufiihren. Dies erlaubt die Approximation der Modellungenauigkeit durch ei-
nige wenige Merkmale, d. h. Bibliotheksterme, basierend auf den gesammelten Daten.
Nachfolgend wird daher die Hauptkomponentenanalyse als eine Methode zur Merkmal-
sanalyse und -extraktion erldutert, auf deren Grundlage anschlieBend eine Modellreduk-
tion durchgefiihrt wird. Neben der Hauptkomponentenanalyse existieren ferner vielféltige
Techniken zur Modellreduktion, auf die an dieser Stelle durch [BGQ™21; BGW15; BS14]

verwiesen wird.

Hauptkomponentenanalyse (PCA)

Eine der bekanntesten und populédrsten Methoden zur Analyse hochdimensionaler Da-
ten ist die Hauptkomponentenanalyse, welche im deutschen Sprachgebrauch auch zu-
nehmend unter dem englischen Fachbegriff Principal Component Analysis (PCA) be-
kannt ist. Diese geht auf die Arbeiten von [PeaOl]] und [Hot33]] zuriick und basiert auf
der Singuldrwertzerlegung (vgl. Anhang[A4.3). In der Datenverarbeitung nimmt die PCA
hiufig eine zentrale Rolle ein, wenn eine Merkmalsanalyse und/oder eine Modellreduk-
tion durchgefiihrt werden soll(en) (vgl. [Jol02]], [BK19]]). Anwendungsgebiete finden sich

4’Diese Voraussetzung ist bereits in der Formulierung der Hypothesen y; erforderlich, um eine geeig-
net gewahlte Bibliothek sicherzustellen.
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z. B. in der Bild- und Videoverarbeitung, wenn diese komprimiert werden [BK19], in der
Finanzmarktanalyse [Jol02] sowie in vielen technischen Prozessen [Jol02; Sanl2a; BS14].
Grundlegendes Ziel der PCA ist eine Koordinatentransformation der vorliegenden Daten
® € R in ein Koordinatensystem, welches die Daten besser als das vorherige, meist
kartesische Koordinatensystem darstellen kann. Diese Grundidee ist in der Abbildung
beispielhaft fiir zwei Dimensionen visualisiert. Da sich die Daten, illustriert durch die
Punkte, anhand ihrer Varianz charakterisieren lassen, befindet sich in der Abbildung @
die durch die PCA transformierte erste Achse entlang der grolten Varianz der Daten,
wihrend die zweite Achse orthogonal zu dieser steht und die zweitgrofte Varianz in den
Daten beschreibt.

X1

Abbildung 5-1: Koordinatentransformation durch die PCA anhand eines zweidimensio-
nalen Beispiels: Die roten Ellipsen stellen jeweils die einfache, doppelte
und dreifache Standardabweichung dar, die blauen Achsen beschreiben
das durch die PCA gefundene Koordinatensystem, vgl. [BK19].

Die Datenmatrix ® besteht jedoch nicht nur aus zwei, sondern aus ny verschiedenen
Merkmalen, die in N Beobachtungen, z. B. durch Experimente, erfasst worden sind. Wenn
die Daten eine unterschiedliche Skalierung aufweisen, ist eine Vorverarbeitung dieser un-
erldsslich. Erfolgt diese nicht, verzerrt die PCA die tatsichlich zugrunde liegenden In-
formationen (vgl. [Jol02, Abbildungen 2.1 und 2.2]). Aufgrund der Sensitivitit der PCA
werden die Daten zunéchst standardisiert, indem der Mittelwert pg und die Standard-
abweichung og berechnet werden, sodass diese durch die standardisierte Matrix @y in
einem vergleichbaren Rahmen vorliegen. Anschlieend werden die Daten in einer Kova-

rianzmatrix

Py = 050}
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angeordnet, woraufhin deren Eigenwerte /lﬂ und Eigenvektoren v; mit i = 1,...,ng
bestimmt werden. Da die Eigenwerte von Pg eine enge Verwandtschaft zu den Sin-
guldrwerten von @ aufweisen, konnen diese mithilfe der Singuldrwertzerlegung effizient
berechnet werden (vgl. Anhang[A4.3] [Jol02]], [BK19]). Die dazugehérigen Eigenvekto-
ren v; sind dabei orthonormal zueinander. In der Regel wird die PCA nicht nur zur Analy-
se der Daten genutzt, sondern auch zur Modellreduktion. Dies gelingt unter der Pramisse,
dass manche der Achsen mit geringer Varianz lediglich Rauschen enthalten, worauthin

die darin enthaltenen Informationen vernachléssigt werden konnen.

Merkmalsextraktion

Die Auswertung der Datenmatrix ™" mittels PCA liefert aufgrund der Singulidrwertzer-
legung eine strukturierte Sortierung der ny Eigenwerte mit 4, > A, > --- > A4, und ihrer
Eigenvektoren vy, ..., v,,. Allerdings ist noch ungeklirt, wie entschieden wird, welche
der ny Eigenwerte beibehalten und welche fiir die Darstellung der gesammelten Daten
vernachldssigt werden konnen. Dariiber hinaus stellt sich die Frage, wie die jeweiligen
Bibliotheksterme basierend auf den beibehaltenen Eigenwerten ermittelt werden. Grund-
lage fiir diese Entscheidung ist zunichst die Beurteilung der Eigenwerte hinsichtlich ih-
rer Fihigkeit, die gegebenen Daten zu reprisentieren. Je groBer ein Eigenwert ist, desto
hoher ist sein Anteil daran, die gesammelten Daten gut darstellen zu konnen. Dement-
sprechend liegen die Eigenwerte nach der PCA bereits in einer geeigneten Sortierung vor.
Dennoch steht die Entscheidung weiterhin aus, welche Eigenwerte beriicksichtigt und
vernachlidssigt werden, d. h. ab welchem Eigenwert 4 mit 1 < i* < ny eine Modell-
reduktion auf die ersten ein bis i* Eigenwerte stattfindet. Dazu existieren iiberwiegend
einfache, empirische Kriterien. Die Verwendung von statistisch basierten Bedingungen
zur Entscheidungsfindung ist weniger verbreitet, da diese meist formal aufwendiger sind
und keinen Vorteil im Vergleich zu einfachen Maflnahmen aufzeigen [Jol02; San12b].
Somit stellen die Kaiser-Methode, der Scree-Test und das Verfahren der kumulativen Va-
rianz die populérsten Kriterien dar [Jol02; San12b].

Die Kaiser-Methode basiert auf dem Mittelwert A aller Eigenwerte, anhand dessen ei-
ne Grenze A > ad mit frei wihlbarem Parameter a > O fiir die Eigenwerte bestimmt
wird, die beibehalten werden sollen [Kai160]. Diese Methode ist von einfacher Natur und
stellt ihren Nutzen nicht aufgrund von formalen Eigenschaften, sondern durch ihren er-
probten Einsatz in verschiedenen Studien heraus [Jol02]. Der Scree-Test, dessen Begriff
Cattell in [Cat66] geprégt hat, ist dagegen eine grafische Methode, bei der die Anzahl der
Merkmale ny mit dem jeweiligen Eigenwert als Tupel in ein Koordinatensystem einge-

tragen werden. Anschlieend wird tiberpriift, an welcher Stelle sich der stirkste Knick

“8]m Kontrast zu vorigen Kapiteln bezeichnet das Symbol A einen Eigenwert in diesem Kapitel.
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des resultierenden Graphen befindet. Dieser markiert die Unterscheidung zwischen domi-
nanten und nicht dominanten Eigenwerten. Eine Visualisierung dieser Methode ist exem-
plarisch in der Grafik links unten der Abbildung [5-3] zu erkennen. Beide Verfahren sind
dennoch stark subjektiv, da z. B. die Wahl des Parameters a schwierig festzulegen und das
Auftreten des Knicks stark von der Skalierung der Eigenwerte abhingig ist, sodass die-
se Methoden héufig zu Missinterpretationen fiihren konnen [Jol02; [San12a]. Eine nach-
vollziehbare, obgleich weiterhin subjektive Entscheidung wird mithilfe der Methode der
kumulativen Varianz getroffen. Die grundlegende Idee der Modellreduktion wird hierbei

durch eine plausible Abschitzung aufgegriffen:
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Um die Fahigkeit, die gesammelten Daten addquat zu repridsentieren, quantitativ zu be-
werten, wird in der Gleichung (5.1)) zunéchst ein Quotient bestehend aus der Summe der
ersten i* Eigenwerten bezogen auf die Summe aller Eigenwerte gebildet. Dieser Quotient
wird darauthin prozentual ausgewertet und stellt somit die totale prozentuale Varianz der
Daten dar [Jol02; |[San12al]. Indem ein Prozentsatz vorgegeben wird, den das reduzierte
Modell bezogen auf die Daten in jedem Fall darstellen konnen muss, wird die kumulative
Varianz Q mit diesem Wert verglichen. Schlieflich werden die i* Eigenwerte behalten,
die mit ihrer kumulativen Varianz Q genau die vorgegebene Grenze iiberschreiten. In der
Regel wird ein Prozentsatz zwischen 70% und 90% gewdhlt [Jol02]. Obwohl auch die-
ses Verfahren eine subjektiv gewihlte Grenze in Form eines Prozentsatzes erwartet, stellt
es ein intuitiveres Mittel dar, dessen Parameter durch einen Menschen sinnvoll vorgege-
ben werden kann, weil dieser die qualitative Wirkung des Parameters nachvollziehen und
einschitzen kann. Dennoch bleibt aufgrund der empirischen, einfachen Struktur dasselbe
Risiko einer Missinterpretation bestehen, beispielsweise wenn viele gleich grofie Eigen-
werte vorliegen und ein sehr hoher Prozentsatz vorgegeben ist. Wegen seiner intuitiven
Anwendung sowie Eignung zur Automatisierung wird die Methode der kumulativen Va-
rianz zur Auswertung der PCA im weiteren Verlauf dieser Arbeit genutzt.

Unabhingig von der gewihlten Entscheidungsmethode stehen die Eigenwerte Ay, ... ,A;
anschlieBend fest, auf die das Modell reduziert werden soll. Ziel dieses Kapitels ist die
Identifikation der dominanten Bibliotheksterme, daher steht die Beantwortung der zwei-
ten, zuvor gestellten Frage noch aus. Nachdem analysiert wurde, welche Eigenwerte in
welcher Reihenfolge einen Beitrag zu den Daten leisten, konnen nun die dazugehdrigen
Eigenvektoren genutzt werden, um auf die einzelnen Terme y; zu schlieBen. Dazu kann
geometrisch argumentiert werden: Fiir jeden Eigenwert zeigt der betragsmalig grofite
Eintrag des Eigenvektors in genau die Richtung des Elements, der den Eigenwert am
meisten dominiert. In der Abbildung sind zur [llustration des Vorgehens die Elemente
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der Eigenvektoren v, v, der beiden groBiten Eigenwerte A;, A, in der x- bzw. y-Achse
dargestellt. Die Elemente der Eigenvektoren v;; bzw. v,; sind in der Abbildung durch
den Index des Bibliotheksterms i; dargestellt, sodass z. B. die Position von i in der
Abbildung durch das neunte Element von v; und das neunte Element von v, bestimmt
wird. Somit visualisiert die Abbildung die Beitrdge der einzelnen Bibliotheksterme
zum jeweiligen Eigenwert. Fiir den groffiten Eigenwert A, der in diesem Beispiel 81, 69%
Anteil an der Varianz besitzt, weist 9 den stirksten Beitrag auf, da das neunte Element
von v betragsmifBig am groBten ist. Dies ist in der Abbildung daran zu erkennen, dass
alle anderen Terme bzgl. der x-Achse nahe Null positioniert sind. Fiir den zweitgrof3ten
Eigenwert, der 12,2% Anteil an der Varianz besitzt, kann anhand der y-Achse abgelesen
werden, dass sowohl das erste als auch das zweite Element des Eigenvektors v, einen
Einfluss besitzen. Da das erste Element, erkennbar an der Position des Terms i1, jedoch
einen betragsmiBig groBeren Einfluss aufweist, wird dieses als dominant bestimmt und
deshalb auf den Term y; zuriickgefiihrt. Alle weiteren Terme besitzen keinen Einfluss
auf diesen Eigenwert, da deren Betriige nahe Null sind, was durch die Uberlagerung der
Terme um Null dargestellt ist. Folglich wird zu jedem der dominanten Eigenwerte A; der
Eigenvektor v; bzgl. seines betragsmiflig groften Elements ausgewertet. Dieses Element
v mit 1 < [* < ng ist dann die Referenz fiir den Bibliotheksterm i, der den stirksten

Einfluss auf den Eigenwert A; aufweist.
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Abbildung 5-2: Die ersten beiden Eigenwerte Ay, A, decken zusammen mehr als 93%
der Varianz ab. Die Elemente der dazugehorigen Eigenvektoren v, und
v, sind in dieser Visualisierung in Abhdngigkeit voneinander als Krei-
se dargestellt. Die Zahlen i stellen das jeweilige Element des Eigenvek-
tors v bzw. v, dar und konnen infolgedessen auf die Bibliotheksterme y;
zuriickgefiihrt werden.
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Evaluation der Merkmalsextraktion

Im Folgenden wird nun iiberpriift, inwiefern die Merkmalsanalyse und -extraktion das dy-
namische Verhalten einer konkreten Modellungenauigkeit approximieren kénnen. Dazu
werden die aus dem Kapitel @ bekannten Daten der Parameter §; vom Duffing-Oszillator
und Golfroboter ausgewertet. Zunédchst werden die Parametersitze des Duffing-Oszillators
untersucht, da die Qualitidt der Merkmalsextraktion hierfiir besonders vorteilhaft aufgrund
der bekannten, definierten Modellungenauigkeit g(x, u) = —3x; begutachtet werden kann.
Zum qualitativen Vergleich ist in der oberen Zeile der Abbildung weiterhin der zeit-
liche Verlauf der Parameter 6 aus Kapitel 4| vom Beispiel mit der Bibliothek ¥, abge-
bildet, welcher der PCA durch die Datenmatrix ® als Informationsgrundlage dient (vgl.
Abbildungen [4-27] bis §-28). In der unteren, linken Visualisierung ist ein Scree-Test ba-
sierend auf den Ergebnissen der PCA dargestellt. Fiir dieses Exempel ist der Knick sehr
deutlich zwischen dem ersten und zweiten Eigenwert zu erkennen, sodass lediglich der

erste Eigenwert als dominant erachtet wird.
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Abbildung 5-3: Merkmalsanalyse des zeitlichen Verlaufs der 0 mittels PCA (obere Zeile)
und Auswertung durch einen Scree-Test (links) bzw. die Methode der ku-
mulativen Varianz (rechts) am Beispiel des Duffing-Oszillators und der
Bibliothek W (x,u) = (1,x1,X,x3,sin(x2), x1 - x2,c08(x1), u, x7)", vgl.

Abbildung
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Im Vergleich dazu ist rechts die Methode der kumulativen Varianz dargestellt, welche die
Varianz der einzelnen Eigenwerte sukzessiv aufaddiert. Hierbei ist die jeweilige addier-
te Varianz pro Eigenwert als roter Teil des Sdulendiagramms dargestellt. Wird fiir den
Duffing-Oszillator eine Grenze von 80% gewdhlt, entspricht die Einteilung in dominan-
te und nicht dominante Eigenwerte genau dem Scree-Plot. Wird dagegen eine Varianz
von 90% gefordert, wird der zweite Eigenwert ebenfalls zur Dominanz hinzugezihlt. Aus
beiden Visualisierungen ergibt sich die Zuordnung der Varianz zu den Bibliothekstermen,
sodass in beiden Fillen der richtige Term yo(x,u) = xf, gefolgt von den Konstanten
Y1, durch das Verfahren detektiert wird. Der sich anschlieBende, notwendige Schritt der
Identifikation des dazugehorigen, konkreten physikalischen Parameters kann durch eine
klassische Parameteridentifikation erfolgen, z. B. durch eine Optimierung auf Grundlage
von Messdaten oder durch eine gleichzeitige Schitzung von Zustinden und des Para-
meters (vgl. Abschnitt 4.1 Gleichung (4.1))). Werden schlielich die beiden wichtigsten,
dominanten Terme 9 und ¢, genutzt, um die Modellungenauigkeit zu approximieren,
kann diese reduzierte Identifikation &, ,.; zur vollstindigen Linearkombination g; und
zur Modellungenauigkeit g verglichen werden. In der Abbildung[5-4]ist dieser Vergleich
dargestellt, welcher aufzeigt, dass aufgrund der Modellreduktion zwar geringfiigig Infor-
mationen verloren gehen, die g; aufweist und welche sich daher als Abweichung bei g .4

bemerkbar machen, im Allgemeinen aber die Genauigkeit weiterhin hoch ist.
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Abbildung 5-4: Approximation der Modellungenauigkeit g durch die vollstindige Linear-
kombination g, und durch die von der PCA reduzierte Linearkombination
81.reas V8L [GT23a|]
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Somit liefert die Modellreduktion durch die PCA die Identifikation relevanter Terme,
die eine physikalisch-technische Interpretierbarkeit der Modellungenauigkeit nach den
Anforderungen [F2] und [F.3] ermoglichen. Analog durchgefiihrte Hauptkomponentenana-
lysen fiir die Bibliotheken W,, ¥5 (vgl. Gleichung (4.18)) ergeben die im Kapitel 4] postu-
lierten Ergebnisse: Fiir die Bibliothek ¥, werden die Terme y(x, u) = x% und ¥ (x,u) =1
extrahiert, fiir die Bibliothek W5 erfiillen die zwei Terme ¥, (x,u) = x; und ¥ (x,u) = 1
die 90%-Hiirde. Demnach bestitigt sich auch quantitativ, dass das Verfahren in der Lage
ist, den korrekten Term, falls dieser enthalten ist, oder passende Alternativen zu diesem,
wie im Fall des Duffing-Oszillators mit dem quadratischen und linearen Zustand, zu extra-
hieren. Nach dieser Analyse werden nun die Messdaten des Golfroboters wihrend eines
Schlags, welche aus einem Experiment am Priifstand stammen, ausgewertet. Erneut ist
in der oberen Zeile der Abbildung@] der visuelle, zeitliche Verlauf der Parameter ab-
gebildet, wihrend in der unteren Zeile zwei Auswertungen der Modellreduktion durch
die PCA und deren Zuordnung zu den Bibliothekstermen zu sehen sind. Die im Versuch
verwendete Bibliothek lautet W5 und ist bereits in der Tabelle dargestellt worden.
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Abbildung 5-5: Merkmalsanalyse des zeitlichen Verlaufs der Priifstandsdaten @ mittels
PCA (obere Zeile) und Auswertung durch einen Scree-Test (links) bzw. die
Methode der kumulativen Varianz (rechts) am Beispiel des Golfroboters

und der Bibliothek Ws(x,u) = (1, X1, X2, cos(xy), tanh(x,), xg, u)T
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Nach dem Scree-Test werden nur die beiden Terme ¥4(x, u) = cos(x;) und Y¥3(x, u) = x;
als dominant ausgewdhlt, wohingegen nach der Methode der kumulativen Varianz bei
einer Wahl von 90% zusitzlich ¢ (x,u) = 1 als weiterer, wichtiger Beitrag zur Ap-
proximation der Modellungenauigkeit g eingestuft wird. Im Vergleich zum Modell des
Golfroboters (3.4) fillt nach den Auswertungen auf, dass insbesondere die zwei wichtigs-
ten Bestandteile des Dampfungsmoments M, durch die PCA identifiziert werden (vgl.
Gleichung (3.5)): Die Abhéngigkeit des Stick-Slips-Effekts infolge der Gewichtskraft,
welche durch ¥4 (x,u) = cos(x;) extrahiert wird, sowie die Abhéngigkeit der Reibung
von der Winkelgeschwindigkeit, welche durch ¥3(x, u) = x, beriicksichtigt wird. Somit
ermOglicht das Verfahren ebenfalls auf Basis von Realdaten und im geschlossenen Regel-
kreis nachvollziehbare und physikalisch wertvolle Einsichten in das betrachtete System,
sofern eine geeignete Bibliothek gewihlt worden ist (vgl. Abschnitt[4.3)). Werden diese
Einsichten wiederum genutzt und durch ein PCA reduziertes Modell umgesetzt, so lasst
sich die gemessene Abweichung g,,.,s durch gs ., entsprechend approximieren und mit
der nichtlinearen Modellierung gy, vergleichen. Im Gegensatz zu gy, welches die Rei-
bung bereits sehr gut modelliert, weisen die Approximationen gs, 8s,.s groere Aufwei-
chungen auf, nihern das dynamische Verhalten aber qualitativ gut an. Diese Genauigkeit

geniigt, um eine ausreichend hohe und verbesserte Schitzgiite im Vergleich zum Modell

zu erzielen.
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Abbildung 5-6: Approximation der gemessenen Abweichung g,..s durch die vollstindige
Linearkombination gs und durch die von der PCA reduzierte Linearkom-
bination gs ,.q sowie im Vergleich zur Modellierung durch gy, = M,



5.2 Modellaktualisierung 161

5.2 Modellaktualisierung

Haufig ist es vorteilhaft, statt einer einmalig, offline durchgefiihrten Analyse schon wih-
rend der Laufzeit eine Anpassung des Modells vornehmen zu konnen, beispielsweise
wenn anhand der Parameterschwankungen oder der Zustandsschidtzung erkennbar ist,
dass die statisch verwendete Bibliothek ¥ keine oder lediglich eine geringe Verbesserung
der Schitzgiite bewirkt. Dies ldsst den Riickschluss zu, dass die verwendeten Hypothesen
¥; moglicherweise nicht allesamt gleich gut geeignet sind, um die Modellungenauigkeit g
addquat zu charakterisieren, sodass ein nachfolgender, weiterer Schritt der Identifikation
erfolgen muss. Die Moglichkeit, basierend auf der Merkmalsanalyse eine variable und
sich anpassende Bibliothek, welche auch neue Hypothesen ¢, beinhaltet, zu nutzen,
erdffnet daher die Chance, eine sukzessiv genauere Approximation der Modellungenauig-
keit wihrend der Laufzeit zu erzielen. Diese bewirkt eine hohere Modellgiite, wodurch
eine Verbesserung der Schitzgiite gefordert wird. Dariiber hinaus besteht ein weiterer
Vorteil einer Online-Aktualisierung in der Diagnose und Adaption des Modells an sich
(potentiell schleichend) verdndernde Betriebszustidnde aufgrund von Verschlei3, Tempe-
raturen oder anderen Umwelteinfliissen. In dieser Situation kann ein sich aktualisieren-
des Modell dafiir sorgen, dass der Schitzfehler weiterhin in einem vertretbaren Rahmen
bleibt und die Regelung robust funktioniert. In diesem Abschnitt wird daher ein Kon-
zept zur Online-Modellaktualisierung entwickelt, welches situationsabhédngig basierend
auf der Merkmalsanalyse entweder die Bibliothek anpasst oder die aktuell verwendete
Bibliothek beibehilt. Aufgrund der notwendigen Phase der Datenakquise der Parameter-
vektoren 6 existieren zwei zeitlich getrennte Phasen in diesem Konzept, welches in der
Abbildung[5-7)in einem Ablaufdiagramm dargestellt ist. Dieses ordnet die bisher themati-
sierten Methoden aus Kapitel | und Abschnitt[5.1]in ein Gesamtkonzept ein. Nachfolgend

werden beide Phasen erldutert und mittels Experimenten am Golfroboter illustriert.

Phase der Datenakquise und Aktivitatstiberpriifung

Bevor wie im Abschnitt[5.T|beschrieben eine fundierte Analyse der auftretenden Parame-
ter erfolgen kann, miissen zunichst geniigend Datensiitze gesammelt werden. Dabei gilt
es das transiente Verhalten des dynamischen Systems abzuwarten, falls das System erst-
malig angeregt und/oder mit dem augmentierten Beobachter genutzt wird. Die Dauer der
Datenakquise richtet sich somit einerseits nach der Einschwingphase, die zum Zeitpunkt
1, = T, beendet ist, und andererseits nach der Menge N der zu sammelnden Parameter-
vektoren. Letztere ist abhdngig von der Anwendung und vom Ziel der Untersuchung zu
wihlen, sollte aber in der Regel ein Vielfaches der Abtastzeit T aufweisen, um nyg < N
sicherzustellen. Analog zu anderen Verfahren mit gleitenden Zeithorizonten, wie etwa die

modellpriadiktive Regelung, kann dieser Einflussfaktor vorgegeben und variabel gestal-
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tet werden. Je kleiner N gewihlt wird, desto hédufiger wird das Modell ggf. aktualisiert.
Eine weitere Bedingung, die die Merkmalsanalyse einleiten kann, resultiert aus dem Ver-
gleich des System- und Modellverhaltens. Uberschreitet der messbare Modellfehler Af,
z. B. der Ausgangsfehler e, = $ — y, eine festgelegte Schranke 67, bedeutet dies, dass
die Modellgiite unzureichend ist und eine Aktualisierung des Modells auf Basis der bis-
her gesammelten Informationen erfolgen soll. Diese Uberpriifung ist besonders hilfreich,
um Systemverdnderungen des Systems zu detektieren, die eine Adaption des Modells
erfordern. Daneben ist zu beachten, dass keine Identifikation der Modellungenauigkeit
aufgrund mangelnder Dynamik erfolgen kann, wenn sich das System in Ruhe bzw. nahe
der Ruhelage befindet, demnach u = 0 bzw. u ~ 0 und x = 0 bzw. x ~ 0 gelten. Eben-
so muss die Wirkung der Modellungenauigkeiten g sichtbar sein, sodass keine plausible

Identifikation erfolgen kann, wenn g = 0 bzw. g = 0 gilt.
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Abbildung 5-7: Konzept zur simultanen Schdtzung und Modellaktualisierung, vgl. [GT24)]
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Eine zielgerichtete Analyse der Modellungenauigkeit kann somit nur erfolgen, wenn das
Konzept zur Online-Modellaktualisierung die beschriebenen Situationen vom gewohn-
lichen Betrieb unterscheidet und beriicksichtigt. Die Aktivitit der Modellaktualisierung
wird deshalb iiber eine Abfrage gesteuert, wie es im Ablaufdiagramm dargestellt ist.
Liegen N Schitzwerte fiir 8 vor und existiert eine Modellabweichung, so startet die Ana-
lyse zur Modellaktualisierung. Ist dies nicht der Fall, beispielsweise wenn keine zu grofle
Modellabweichung |A f| besteht, oder noch nicht geniigend Schitzwerte fiir die Parameter
gesammelt worden sind, wird weiterhin simultan geschitzt, aber keine Modellaktualisie-
rung vorgenommen. Gleiches gilt, wenn das transiente Verhalten ¢, < T\, noch nicht abge-
schlossen ist. Einflussfaktoren wie der Zeitpunkt 7, welcher das Ende des Einschwingens
markiert, die Anzahl N der zu sammelnden Parametervektoren sowie die Schranke ¢ fiir
den Modellfehler sind demnach GréBen, die der automatisierten Modellaktualisierung

vorgegeben werden miissen.

Phase der Analyse, Adaption und Aktualisierung

Sind die Voraussetzungen fiir eine Modellaktualisierung gegeben, wird zunichst eine
Analyse des vergangenen Zeithorizonts durch die N erfassten Datensitze vorgenommen,
um zu iiberpriifen, wie hilfreich die genutzte Bibliothek ¥ zur Approximation der Mo-
dellungenauigkeit gewesen ist. Dazu kann zwischen einer benutzerdefinierten und einer
automatisierten Analyse gewihlt werden. Aufgrund der zeitlichen Verzégerung, die eine
solche personenbezogene Untersuchung verursacht, sowie der subjektiven Bewertung, die
zu einer Verzerrung der Informationen fiihren kann, wird ausschlieBlich der Pfad der au-
tomatisierten Analyse betrachtet. Nach der Durchfiihrung der Merkmalsanalyse, welche
die dominanten Bibliotheksterme ; liefert, werden die nicht dominanten Terme ; mit
i # j aus der Bibliothek entfernt und durch neue Hypothesen ¢ ., ersetzt. Diese stammen
aus vorgefertigten Bibliotheken W}, W5, ..., die beispielsweise nach Anwendungsfeldern
oder Dynamikart gruppiert sein konnen. Fiir mechanische Systeme konnte eine vorgefer-
tigte Bibliothek ggf. aus Reibungselementen oder aus schwingungstypischen Elementen
bestehen. AnschlieBend werden neue Terme ;.. aus dieser grolen Vielfalt randomisiert
oder aufgrund der vorangegangenen Analyself] ausgewdhlt und der Bibliothek, nun als
¥ ... bezeichnet, mit den zuvor als dominant gekennzeichneten Termen y; zugefiihrt. We-
gen der Erfahrungswerte aus Kapitel 4 wird jedoch eine Randomisierung vorgeschlagen,
bei welcher z. B. auch verschiedene Wahrscheinlichkeiten zur Auswahl bestimmter, neuer
Hypothesen hinterlegt sein konnen, um eine vielseitige und ausgewogene neue Bibliothek

zu gewdbhrleisten. Je nach Applikation und Vorwissen kann diese Auswahl aus lediglich

“SWegen der Auswahlmethode, welche einen konkreten Wert fiir die kumulative Varianz definiert,
kénnten auch nicht dominante Terme, die einen verhaltnismaiig hohen Anteil an Varianz aufweisen
und bisher nicht bertcksichtigt wurden, weiter genutzt werden.
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einer vorgefertigten, thematischen Bibliothek erfolgen, z. B. wenn bekannt ist, dass es
sich bei den Ungenauigkeiten um Schwingungen oder Vibrationen handelt, oder durch
die zufillige Selektion aus mehreren, verschiedenen Bibliotheken, falls die Ungenauig-
keiten gédnzlich unbekannter Art sind. Wie in der Abbildung zu erkennen ist, wird
diese neue Bibliothek ¥, daraufhin fiir den nichsten Zeithorizont im augmentierten Be-
obachter verwendet und stellt demnach eine angepasste, hdufig verbesserte Option zur
Approximation der Modellungenauigkeit dar. Je nach Linge des Aktualisierungs- und
Analysezeitraums besteht u. U. der Bedarf, einen konkreten Parameterwert zu den je-
weils identifizierten dominanten Termen zu finden, um ein festes interpretierbares Modell
zu erhalten, welches auch die physikalische Parametrierung der gefundenen, identifizier-
ten Terme widerspiegelt. Dies ist bereits im Abschnitt[3.1] thematisiert und mithilfe ei-
ner klassischen Parameteridentifikation, etwa nach Gleichung (@.T]), adressiert worden.
Im Fall der Online-Modellaktualisierung entsteht dieser Bedarf zudem ausschlieBlich
durch lange Aktualisierungs- und Analysezeitrdume, da andernfalls eine Identifikation
der Parameter durch den augmentierten Beobachter erfolgt und ohnehin mehrere, sich
ggf. stark unterscheidende Teilmodelle entstehen, weil es sich beispielsweise um ein sich
schnell verinderndes System handelt. SchlieBlich liegt nach Abbildung ein geschlos-
sener Kreislauf vor, der grundsitzlich durchgehend fortgefiihrt werden kann, um ein sich
sukzessiv verbesserndes Modell zu erzielen. Dies ist vor allem hilfreich, wenn System-
verdnderungen auftreten und das Modell an diese adaptiert werden muss. Da durch die
Modelladaption lediglich ein Teil des Beobachtermodells angepasst wird, bewirken die

adaptiven Umschaltprozesse in der Regel keine grof3eren Nachteile bzgl. der Regelgiite.

Evaluation am Beispiel des Golfroboters

Fiir das beschriebene Konzept (vgl. Abbildung wird nun anhand des Golfroboters
ein Machbarkeitsnachweis durchgefiihrt, der exemplarisch einzelne Situationen des Kon-
zepts beleuchtet. Hierbei wird aufgrund der Softwareanforderungen des Priifstands und
der intuitiven Implementierung statt der Formulierung mehrerer Bibliotheken W7, ¥, nur
eine Bibliothek ¥* € R!7 als Option genutzt, welche aus einer Vielzahl an Termen
besteht. Die Bibliothek des Beobachters, die zur Approximation der Modellungenauig-
keit dienen soll, beinhaltet lediglich jeweils neun Terme. Daher werden jene neun Ter-
me aus der Bibliothek ¥* randomisiert gewdhlt, sodass eine vielfiltige Kombination
an Bibliothekskombinationen entsteht und der Nachweis als umfassend und allgemein
giiltig angesehen werden kann. Die Terme der Bibliothek W*(x, u) sind inklusive ihrer
Nummerierung in der Tabelle [5-1] zusammengefasst. Der Machbarkeitsnachweis wird
zunidchst fiir den allgemeinen Betrieb des Golfroboters gezeigt, bei welchem weiterhin
das Modell genutzt wird. AbschlieBend wird ein Nachweis fiir den Fall von Sys-
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temverdnderungen erortert. Dieser wird anhand einer Simulation untersucht, weil eine
plotzliche, bauliche Verdnderung am Priifstand wéhrend der Zustandsschidtzung im ge-
schlossenen Regelkreis nicht moglich ist. Bei der erstmaligen Nutzung des Beobach-
ters werden fiir alle nachfolgend beschriebenen Untersuchungen dieses Kapitels jeweils
die ersten neun Elemente von ¥* verwendet (vgl. die Tabelle[5-1)), sodass die Biblio-
thek Wo(x, u) = (1, x1, xp, cos(xy), X3, tanh(xy), sin(xy), x7x, u)" gebildet wird. Diese ini-
tiale Bibliothek stellt fiir den Golfroboter vielfiltige Hypothesen bereit, da sowohl trigo-
nometrische als auch polynomiale Elemente enthalten sind, und ist folglich vorteilhaft fiir

den Beginn der Identifikation der Modellungenauigkeiten.

Index | 1 | 2 | 3 4 5 6 7 8

Term | 1 | x; | xp | cos(x;) | x; |tanh(xy) | sin(xy) | xjxo |u
Index | 10 | 11 | 12 13 14 15 16 17

Term | u” | x7 | €® | sinh(x;) | x;x, | tan(x) | sin(xy)* | sin(xy)

Tabelle 5-1: Bibliotheksterme von Y* und ihr Index fiir den Machbarkeitsnachweis

Machbarkeitsnachweis: Allgemeiner Betrieb

In der Abbildung werden Informationen bzgl. der Adaption und Aktualisierung der
Bibliothek W, die nach dem Gesamtkonzept durch Loschen und Hinzufiigen neu-
er Hypothesen aus W* entsteht, abhingig von der Zeit dargestellt. Die jeweils genutzten
Bibliotheksterme sind anhand ihrer Nummerierung nach Tabelle [5-I|gekennzeichnet, wel-
che durch verschiedene Farben veranschaulicht wird. Die aktuelle Bibliothek W, ldsst
sich daher gedanklich durch einen vertikalen Balken zum interessierenden Zeitpunkt ¢
ablesen. So lédsst sich beispielsweise die Einschwingphase 7y = 1s erkennen, da die
ersten neun Indizes innerhalb der ersten Sekunde konstant bleiben und demnach die
Bibliothek ¥ genutzt wird. Zudem ist anhand dessen der Aktualisierungszeitraum er-
kennbar, welcher 0,25 Sekunden umfasst. Mittels schwarzer Symbole werden dariiber
hinaus die nach jedem Aktualisierungshorizont identifizierten, dominanten Terme des
vergangenen Zeitraums illustriert. Dabei werden jeweils die letzten 0, 375 Sekunden zur
Analyse genutzt. Da diese Terme durch die kumulative Varianz, welche in diesem Fall
zur Veranschaulichung auf 99% festgelegt ist, bestimmt werden (vgl. Gleichung (5.1)),
werden u. U. mehrere Bibliotheksterme pro analysiertem Zeitraum identifiziert. Um den-
noch die Gewichtung der dominanten Terme zu verdeutlichen, werden diese durch ver-
schiedene Symbole unterschieden, wobei die Indizes mit Kreisen auf den dominantesten
Term hinweisen. Fiir dieses Exempel eines allgemeinen Betriebs zeigen sich je nach Pha-

se der Schlagdynamik andere Terme, welche die Modellungenauigkeit, die aus der nicht
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beriicksichtigten Reibung resultiert, anndhern und das Modell anhand der Bibliothek ¥*
adaptieren. So resultieren die folgenden dominanten Terme, welche nachfolgend exem-

plarisch fiir jede Schlagphase aus der Visualisierung[5-8 abgelesen werden:

t=1s: Ys(x,u)=x, Y1(x,u) =1,
t=1,5s: Yiex,u) = sin(x;)?, Yio(x, u) = u?, (5.2)

t=2s: s(x,u) = x5, Y13(x,u) = sinh(xy), Yi4(x, u) = x,x5.

Wihrend des Ausholens bis zur ersten Sekunde charakterisieren insbesondere die Win-
kelgeschwindigkeit ¢3(x, u) = x, und Konstanten i, (x, ) = 1 das Manover. Dies dndert
sich beim Schlag zu trigonometrischen und stellgro3enabhéngigen Funktionen, wohin-
gegen das Riickholen des Schldgers durch geschwindigkeitsbasierte und trigonometri-
sche Terme sowie Korrelationen zwischen Winkel und Winkelgeschwindigkeit geprigt
ist (vgl. Gleichung (5.2))). Die Wirkung der Reibung ist somit nach den dynamischen
Phasen des Golfroboters anhand der temporiren Konvergenz der Bibliotheksindizes zu
erkennen und ermoglicht eine physikalisch interpretierbare Kompensation der Reibung
im Sinne der Anforderungen [F:2)und [E.3] Infolge der kurzen Aktualisierungs- und Ana-
lysezeitrdume findet lediglich diese temporire Identifikation der Terme statt, welche sich
innerhalb der verschiedenen Phasen unterscheiden und keine finale, dauerhafte Zuord-
nung fiir den Golfroboter ermdglichen. Dies soll illustrieren, dass die Echtzeitfahigkeit
der Online-Aktualisierung auch fiir sich potentiell schnell verdndernde Systeme gegeben

ist.
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Abbildung 5-8: Indizes aktiver Bibliotheksterme und der durch die PCA identifizierten
dominanten Terme zur Bibliotheksanpassung
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Die Qualitidt des adaptiven, augmentierten Beobachters lédsst sich nicht nur im Vergleich
zu den Messungen des Ist-Zustandes, welcher auf den Sollwert fiir die Schlagdynamik
eingestellt werden soll, bewerten, sondern auch anhand des am Priifstand verwendeten
Luenberger-Beobachters analysieren. Abbildung [5-9] zeigt beispielsweise die Schitzgiite
des offenen Regelkreises, wenn der Luenberger-Beobachter die Schitzwerte fiir die Re-
gelung liefert und das adaptive JE-SRUKF parallel betrachtet wird. Die Modelladaption
basierend auf der sich stetig anpassenden Bibliothek ¥* beeinflusst hierbei die Schitzgiite
des Beobachters nicht nachteilig, sondern ist sogar geringfiigig hoher als die des Luen-

berger-Beobachters.
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Abbildung 5-9: Schditzgiite des offenen Regelkreises bei Nutzung einer adaptiven Biblio-
thek W* am Priifstand

Werden ldngere Aktualisierungs- und Analysezeitrdume fiir die Modelladaption gewéhlt,
findet im Kontrast zur vorigen, temporiren Identifikation dominanter Terme eine eindeuti-
gere, liber die Zeitrdume nahezu gleichbleibende Identifikation statt. So zeigt Tabelle
einen kurzen Ausschnitt aus Experimenten, deren Aktualisierungszeitraum jeweils bei
zwei Sekunden und einer Sekunde liegt und deren Analysezeitraum um die vorangegan-
genen 0, 125 Sekunden ergédnzt wird. Da weiterhin der Zeitraum nach 7y = 1s bis zum
Ende des Schlags bei t = 3 s betrachtet wird, werden die dominanten Terme jeweils nur
zwei- bzw. dreimal identifiziert. Ahnlich zur Abbildung bei der einmalig der gesamte
Zeitraum analysiert wird, werden in diesen Versuchen iiberwiegend einheitliche Terme
identifiziert, z. B. ¥3(x,u) = xp,¥1(x,u) = 1 und Ye(x,u) = tanh(x,), Y2(x, u) = €.
Diese deuten folglich auf eine vornehmlich geschwindigkeitsbasierte Modellierung des
Reibmoments hin. Alternativ konnen nach einer temporiren Identifikation wie in der

Abbildung [5-8| die pro Schlagphase identifizierten Terme in einer gemeinsamen Biblio-



168 5 Automatisierte Modellaktualisierung wéhrend der Laufzeit

thek zusammengefiihrt werden und mithilfe eines weiteren Schlags iiber einen langen
Aktualisierungs- und Analysezeitraum final identifiziert werden. Der diskutierte Vorteil
der hohen Schitzgiite und der Adaptionsfihigkeit gegeniiber dem Luenberger-Beobachter,
welcher Systemwissen bendotigt, um ein korrektes Modell (ggf. durch Linearisierung)
zu bestimmen, wird besonders im nachfolgenden Abschnitt deutlich, wenn Systemver-

dnderungen existieren, die eine Anpassung des Modells erfordern.

Nr. | Ty [s] | Zeitraum [s] | Terme 1.Phase | Terme 2.Phase | Terme 3.Phase

26 1 2/2,125 Y3, ¥ U3, Y, 013 -
27 1 1/1,125 U3, ¥ U3, e, Yo Ve, Y12

Tabelle 5-2: Dominante Bibliotheksterme fiir lingere Aktualisierungs-/Analysezeitrdume

Machbarkeitsnachweis: Systemveranderungen

Um eine Systemverdnderung zu simulieren, wird eine Verdnderung der Masse und der
Tréagheit bzgl. des Golfschlédgers ab einem konkreten Zeitpunkt 7%,; angenommen. Hin-
tergrund dieses Szenarios ist, dass die dynamischen Eigenschaften des Golfroboters ins-
besondere aus der Gewichtskraft des Schligers sowie dessen Geschwindigkeit resultieren
und sich deshalb zur Demonstration von Systemveridnderungen besonders eignen. Im fol-
genden Experiment wird daher ab dem Zeitpunkt 7%,, = 1s eine Systemverdnderung
simuliert, indem die Masse etwa verdreifacht wird. Infolgedessen @ndert sich ebenfalls
die Tréagheit. Die Einschwingphase, in der zunéchst Daten gesammelt und keine Analyse
oder Aktualisierung durchgefiihrt werden, wird zu 7, = 0,75 s festgelegt, der gleitende
Horizont umfasst weiterhin 0, 375 Sekunden. Eine Aktualisierung der Bibliothek und des
Modells erfolgt zur Vergleichbarkeit des vorigen Nachweises wiederum alle 0, 25 Sekun-
den. Zudem ist in der Simulation Messrauschen berticksichtigt worden. Die Ergebnisse
dieser Untersuchung sind in der Abbildung dargestellt, welche die Informationen
bzgl. der Bibliothek und der Aktualisierungen wie zuvor bereits beschrieben bereitstellt.
Die Analyse der Modelladaption ergibt, dass der Einfluss der verdnderten Gewichtskraft
und Trigheit identifiziert sowie durch den adaptiven, augmentierten Beobachter im Mo-
dell beriicksichtigt wird. Dies ist in der Abbildung anhand der temporidren Konvergenz
der Indizes, welche als dominant detektiert werden, zu erkennen. Im Gegensatz zum vor-
herigen Fall des allgemeinen Betriebs, vgl. Abbildung werden andere Terme extra-
hiert. So werden trigonometrische Terme, z. B. y4(x,u) = cos(x;), geschwindigkeits-
abhédngige Terme, wie ¥3(x,u) = x,, oder winkelabhédngige Terme, wie ¥, (x,u) = xi,
identifiziert. Jene Terme sind genau solche Dynamikanteile, die einerseits die infolge der

Systemverdnderung verdanderte Rotationsbewegung beim Ausholen bzw. Riickholen des
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Schlédgers und andererseits die fehlende, komplexe Reibung, die das Modell nicht
beriicksichtigt, beschreiben. Folglich bestitigt sich die postulierte Fihigkeit des augmen-
tierten Beobachters, auch bei Systemveridnderungen eine physikalisch interpretierbare
und fundierte Modelladaption umsetzen zu konnen, welche insbesondere eine vorteilhafte
Nutzbarkeit nach Anforderung [F.3| fiir nachfolgende Syntheseschritte erlaubt. Allerdings
stellt sich die Frage, inwiefern eine hohe Schitzgiite wihrend der fortlaufenden Modell-

adaption nach dem Konzept aufrecht erhalten werden kann.

17 -
S 15¢ — —
(D) r —c —
é 13 + R ., -
SR -
5 L ]
2 9rF =
kv L J
s 7F -
= L ]
'§ > - ° o o o o .
= 3 h==:O=ssi===O=s=
a a o
1 1 I 1 I E I 1 I 1 l—*_q)
0 0,5 1 1,5 2 2,5 3
Zeit 1 [s]

ol.dominanter Index a2.dominanter Index ©3.dominanter Index

Abbildung 5-10: Indizes aktiver Bibliotheksterme und der durch die PCA identifizierten
dominanten Terme zur Bibliotheksanpassung, vgl. [|GT24]

Dies ldsst sich wiederum im Vergleich zu dem am Priifstand verwendeten Luenberger-
Beobachter und dem nichtlinearen Modell (3.4)) bewerten, welches in der Simulation als
Referenz fiir das Priifstandsmodell dient. In der Abbildung ist der Zeitpunkt der
Systemverdnderung anhand des Luenberger-Beobachters deutlich zu erkennen, da die-
ser ab Ty,;; = 1s nicht mehr die Winkelgeschwindigkeit des Priifstandmodells schitzen
kann. Die Systemveridnderung ist dariiber hinaus durch das verinderte Motormoment er-
sichtlich, welches nun aufgrund der Diskrepanz zwischen Reglermodell und Strecke ver-
rauschter agiert und ein hoheres Moment in Folge der Gewichtskraft und Trégheit stellen
muss. Die Sollvorgabe ist dagegen an die Systemveridnderung angepasst, da sich diese
in Abhéngigkeit des Winkels und der Winkelgeschwindigkeit berechnet. Der Anstieg der
Geschwindigkeit ¢ ist wahrend des Schlags groBer, was das adaptive JE-SRUKF jedoch
erkennt und bis auf minimale Abweichungen, die beim Riickfiihren des Schligers ent-
stehen, zuverlédssig schitzt. Die Adaptionsfihigkeit des Verfahrens ist demnach auch

fiir den Fall einer Systemverdnderung gegeben und ermoglicht eine sichere Schitzung
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der ZustandsgroBBen am realen Priifstand, wie es bereits fiir die Situation ohne Online-

Aktualisierung in der Abbildung erfolgreich gezeigt worden ist. Folglich stellt die
Nutzung der Online-Modellaktualisierung insbesondere fiir den Fall von Systemverédnde-

rungen ihren Vorteil deutlich heraus.
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Abbildung 5-11: Schditzgiite des simulierten, geschlossenen Regelkreises bei Auftreten von
Systemverdnderungen ab Ty,;; = 1 s und Nutzung einer adaptiven Biblio-

thek W, vgl. [GT24|]

5.3 Uberpriifung der Interpretierbarkeit

Nach den Erkenntnissen der vorangegangenen Abschnitte stellt sich nun die Frage, inwie-
fern das Ziel [F.2] einen tieferen und physikalisch-plausiblen Einblick in das System bzw.
in die Modellungenauigkeit zu erhalten, durch die PCA und Online-Modellaktualisierung
erreicht worden und zu bewerten ist. Dazu wird der abstrakte Begrift Interpretierbarkeit
beleuchtet, der bereits in der Einleitung[I.2]definiert worden ist, im Folgenden aber etwas
ausfiihrlicher eingeordnet wird. Der Begriff Interpretierbarkeit ist im Kontext datenverar-
beitender Methoden, wie etwa im maschinellen Lernen, nicht klar definiert. In der media-
len Berichterstattung werden die Terminologien Interpretierbarkeit und Erklidrbarkeit bei-
spielsweise in einem Zusammenhang genannt oder sogar gleichgesetzt. Allerdings ist kein
deckungsgleicher Bedeutungsinhalt gegeben (vgl. [LPK21],[MV20],[RMB*20]). Unter

der Frage, inwiefern datenbasierte Modelle transparent und fair gestaltet werden konnen,
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um z. B. keine bestimmten Personengruppen zu benachteiligeﬂ oder zu diskriminierelﬂ
findet daher eine intensive Forschung zu erkldrbarer und interpretierbarer kiinstlicher In-
telligenz statt.

In der Regelungstechnik werden entstandene Modelle gewohnlich physikalisch-technisch
interpretiert, d. h. einer mathematischen Formulierung oder parametrischen Darstellung
wird ein konkretes physikalisch-technisches Phinomen oder eine ebensolche Wirkung
zugeordnet. Aus einer Differentialgleichung konnen beispielsweise die zeitlichen Effek-
te oder einzelnen Wirkprinzipien abgelesen werden, wie es bereits in der Abbildung [I-7]
illustriert worden ist. Diese veranschaulichte zudem, dass ein neuronales Netz im Ge-
gensatz zur Differentialgleichung nicht interpretierbar im Sinne der in dieser Arbeit ver-
wendeten Definition ist. Ahnlich verhilt es sich mit Linearkombinationen aus beliebig
vielen komplexen Funktionen, die bzgl. ihrer physikalischen Wirkprinzipien schwer zu
deuten sind oder als Superposition vieler einzelner Dynamiken resultieren und nicht un-
terschieden werden konnen. Radiale Basisfunktionen, die zur Approximation der Mo-
dellungenauigkeiten in [KSH21]] genutzt werden, stellen beispielsweise Funktionen dar,
deren physikalisch-technische Bedeutung fiir mechatronische Systeme nicht direkt und
objektiv ersichtlich ist. Daher wurde zu Beginn dieser Arbeit der Bedarf festgestellt, einer-
seits physikalisch motivierte Bibliotheksfunktionen zu nutzen sowie andererseits durch
die Begrenzung auf dominante Terme eine Ubersichtlichkeit zu gewihrleisten, die eine
Analyse und Deutung aus physikalisch-technischer Sicht erst ermoglicht. Obwohl diese
Arbeit nicht den Anspruch erhebt, die korrekte bzw. reale Darstellung der Modellunge-
nauigkeit zwingend zu finden und zu extrahieren, denn dies ist ob der Vielfalt der dyna-
mischen Terme und ihrer Superposition nicht eindeutig moglich, besteht der Vorteil der
prasentierten Methoden darin, Interpretierbarkeit in einer Darstellung zu ermoglichen, die
moglicherweise der tatsdchlichen nahe kommt und in jedem Fall einen tieferen System-
einblick generiert.

Anhand des Duffing-Oszillators konnte beispielsweise gezeigt werden, dass der tatsidch-
lich wirkende Dynamikterm der Modellungenauigkeit, sofern dieser in der Bibliothek
vorhanden ist, identifiziert oder eine vergleichbare Alternative gefunden werden kann, die
sehr nah an der wirkenden Dynamik liegt (vgl. Abbildungen #-10Jund [5-3)). Experimente
am Golfroboter bestitigten Modellierungsansitze des vermuteten Stick-Slip-Effekts und
offenbarten interessante, zuvor unbekannte Zusammenhinge, die nicht nur einen physika-
lischen Mehrwert bringen, sondern auch bzgl. einer Adaption bei Systemveridnderungen
vorteilhaft sind. Diese Einblicke in das System und seine Dynamik, welche durch ei-

ne parametrische Darstellung angenéhert wird, die einen Riickschluss auf physikalisch-

SOhttps://www.zeit.de/arbeit/2018-10/bewerbungsroboter-kuenstliche-intelligenz-amazon-frauen-
diskriminierung, abgerufen am 20.12.2023

5Thttps://www.forbes.com/sites/emmawoollacott/2022/12/29/apple-sued-over-racial-bias-of-apple-
watch/, abgerufen am 20.12.2023
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technische Wirkprinzipien zulésst, sind insbesondere fiir weitere Synthese- und Analy-
seschritte nutzbar. Die Zuginglichkeit, solche Schritte anzuschlieBen, wird schlieBlich in
diesem Kapitel durch die Aktualisierung der Bibliothek und durch eine automatische Mo-
delladaption gewihrleistet (vgl. Abschnitt[5.Tlund [5.2)), wobei die Anpassung wie bereits
zuvor angemerkt abhingig vom Aktualisierungs- und Analysezeitraum geschieht. Sind
diese Zeitraume grofiziigig gewdhlt, kann anstelle einer temporiren, phasenabhéngigen
Identifikation eine zielgerichtete dauerhafte Extraktion dhnlich zur einmaligen Offline-
Identifikation in Abschnitt|5.1]erzielt werden. So zeigten die Untersuchungen, dass nicht
nur im Fall von Systemveridnderungen eine automatische Modelladaption vorteilhaft ist,
sondern ebenfalls im allgemeinen Betrieb tiefere Einsichten in das Systemverhalten sowie
hoherwertige Modelle erzielt werden kdnnen, deren Qualitit allen modellbasierten Kom-
ponenten zur Verfiigung stehen konnte. Im Folgenden werden daher die Schitzgiite, die
Diinnbesetztheit der Parameter 8, wihrend der gesamten Laufzeit k = 1,..., N und die
Anzahl der dominanten Terme, welche aus einer 90%-igen Varianz resultieren, als quanti-
tative Kriterien verwendet, um die Interpretierbarkeit nach Anforderung [F.2 zu bewerten.
Der Schitzfehler stellt hierbei ein wichtiges Merkmal im Zusammenhang der Interpre-
tierbarkeit dar, sodass dieser als drittes Kriterium einflieft. Die quantitative Bewertung
wird anhand von Simulations- und Priifstandsexperimenten des Golfroboters exempla-
risch durchgefiihrt. Hierbei gilt ein Versuch jeweils in hoherem Maf3e interpretierbar, je
geringer die Werte aller drei Kriterien ausfallen.

In der Abbildung wird eine solche Bewertung der Interpretierbarkeit auf der Grund-
lage von Simulationsergebnissen, die bei Vorherrschen von Systemverinderungen durch
eine aktive, fortwihrende Modelladaption nach dem Konzept erzielt worden sind,
vorgenommen. Diese Systemveridnderungen resultieren beispielsweise aus einer verdrei-
fachten Masse, einem verdoppelten dynamischen und halbierten statischen Reibkoeffi-
zienten oder einer verdnderten Trigheit. Zudem ist Messrauschen in den Simulationen
beriicksichtigt worden. Die Abbildung stellt dazu die drei Malle im Vergleich dar: den
Schitzfehler auf der x-Achse, die Diinnbesetztheit anhand der ¢;-Norm auf der y-Achse
sowie die Anzahl der dominanten Terme als Farbskala. Hierbei représentiert jeweils ein
Dreieck einen Versuch. In der Abbildung ist zu erkennen, dass sowohl der Schitzfehler als
auch die Auswertung der {;-Norm aller Parameter keine starke Streuung aufweisen und
sich in einem geringen Wertebereich befinden. Ebenso bleiben nahezu alle Modelle inter-
pretierbar, da maximal vier Terme zur Beschreibung von auftretenden Ungenauigkeiten
trotz der Existenz von Systemveridnderungen benotigt werden. In der Mehrheit der Versu-
che identifiziert die PCA drei Terme. Aufgrund der geringen Werte und der kleinen Streu-
ung fiir alle drei MaB3e ist somit eine physikalisch-technische Interpretierbarkeit nach dem
in dieser Arbeit formulierten Verstindnis gegeben, obwohl Systemveridnderungen prisent

sind.
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Abbildung 5-12: Quantifizierung der Interpretierbarkeit fiir das System des Golfroboters:
Simulationsergebnisse bei Systemverdnderungen und Modelladaption

Im Gegensatz zu den Simulationsergebnissen weisen fast alle Kriterien bei Priifstandsex-
perimenten erwartungsgemif hohere Werte auf. Diese werden in der Abbildung dar-
gestellt, wobei zwischen Experimenten ohne Modelladaption (vgl. Abbildung [5-13(a)),
d. h. ohne eine fortlaufende Aktualisierung der Bibliothek nach dem Gesamtkonzept
und mit Modelladaption (vgl. Abbildung differenziert wird. Erstere weist zudem
eine Unterscheidung in Versuche mit und ohne Systemverdnderungen auf, welche durch
die Dreiecke bzw. Kreise gekennzeichnet werden. In dieser Abbildung zeigt sich,
dass bis auf zwei Ausnahmen eine hohe Schitzgiite erzielt wird, da der Schitzfehler fiir
die meisten Experimente sehr klein ist und lediglich eine geringe Streuung der Versu-
che aufweist. Einzig jene mit Systemverinderungen weisen teils eine etwas niedrigere
Schitzgiite auf. Dagegen ist die Streuung der Diinnbesetztheit, gemessen an der £;-Norm,
quantitativ hoher als in den Simulationsergebnissen, korreliert jedoch iiberwiegend mit
der Anzahl der identifizierten, dominanten Bibliotheksterme. So ist dieser Wert umso klei-
ner, je weniger Terme durch die PCA identifiziert werden. Bis auf eine Ausnahme sind da-
bei nicht mehr als drei Terme erforderlich, wobei die Mehrheit der Priifstandsexperimente
einen oder drei Terme zur Charakterisierung der Modellungenauigkeit benotigt. Dies re-
sultiert aus der Bibliothekswahl (vgl. Tabelle 4-T)), welche sehr unterschiedliche Terme
beinhalten kann, die sich ohne eine Online-Modelladaption nicht dndern.

Im Vergleich zu diesen Erkenntnissen ist in der Abbildung aufgrund der Modell-
adaption eine Verringerung der Werte fiir alle drei Kriterien zu beobachten. Besonders
auffallig ist hierbei die Reduktion der Diinnbesetztheit, welche bis zu viermal geringer

ausfillt als in den Versuchen ohne Modelladaption.
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Ahnliches spiegelt sich in der Anzahl der dominanten Terme und des Schiitzfehlers wi-
der, wobei zweil Ausnahmen erkennbar sind, die aber weiterhin einen kleinen Schitzfehler
aufweisen. Diese Entwicklung ist unmittelbar auf den Einsatz der Online-Aktualisierung
zuriickzufiihren, da diese eine regelmiBige Anpassung und Uberpriifung der Bibliotheks-
terme ermoglicht, die ggf. je nach Dynamik einen hoheren Grad an Interpretierbarkeit
besitzen. Die Tatsache, dass eine Korrelation zwischen dem Wert der Diinnbesetztheit
und der Anzahl der dominanten Terme nicht mehr zu bestehen scheint, da z. B. ein gerin-
gerer Wert auf der y-Achse mit drei Termen statt mit einem Term erzielt wird, 14sst sich
ebenso mit der Aktualisierung und der wechselnden Besetzung der Bibliothek erkléren.
Die Experimente am Priifstand zeigen demnach durchgéngig eine hohe Interpretierbarkeit
anhand der gewihlten Malle, da bis auf wenige Ausreiler sowohl eine hohe Schitzgiite
als auch eine geringe Anzahl an dominanten Termen sowie hiufig ein kleiner Wert der
Diinnbesetztheit erzielt werden. Dariiber hinaus bestitigen die Versuche vorteilhafte Aus-
wirkungen, wenn eine Online-Modellaktualisierung umgesetzt wird, da sich aufgrund der
wechselnden Bibliotheksterme der Grad der Diinnbesetztheit und die Anzahl dominanter
Terme reduzieren. Grundsitzlich zeigen die Untersuchungen, dass Systemveridnderungen
keine Schwierigkeit fiir den augmentierten Beobachter darstellen, weil auch diese inter-
pretierbar kompensiert werden, aber ggf. zu einem etwas erhohten Schitzfehler fithren
konnen. Basierend auf den Simulations- und Priifstandsergebnissen erweist sich aufler-
dem die postulierte, vorteilhafte Online-Modellaktualisierung insbesondere im Fall von
Systemverdnderungen als hilfreich, da eine Verringerung des Schétzfehlers und des Werts
der Diinnbesetztheit im Vergleich zu Resultaten ohne Modelladaption bewirkt wird.

Die quantitative Bewertung der Interpretierbarkeit mittels der drei Kriterien Schitzgiite,
Diinnbesetztheit und Anzahl dominanter Terme bestitigt folglich die Umsetzung des zu
Beginn dieser Arbeit formulierten Anspruchs [F.2] bzw. da fiir das betrachtete Bei-
spiel des Golfroboters eine hohe Interpretierbarkeit mithilfe des augmentierten Beob-
achters erzielt werden konnte. Dieses positive Resultat wurde sowohl fiir den Fall einer
Online-Modellaktualisierung als auch fiir die Situation einer sich nicht stetig anpassenden
Bibliothek ermittelt, wobei diese zudem Fille mit Systemverdnderungen beriicksichtigte.
Trotz vieler Vorteile, welche insbesondere die Umsetzung der Anforderungen [F.1] bis
betreffen, erfordern die Online-Adaption bzw. Formulierung des augmentierten Beobach-
ters in der Regel einen hoheren Aufwand, der sorgfiltig gegeniiber dem Nutzen abgewo-
gen werden muss. Dieser Aspekt wird daher im nachfolgenden Abschnitt kurz aufgegrif-

fen und kritisch hinterfragt.
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54 Bewertung des Aufwands und Nutzens

Im Vergleich zu klassischen Beobachtern und ihren Verfahren zur Schitzung von Modell-
ungenauigkeiten ist das Vorgehen der Joint Estimation mit anschlieBender automatischer
Modellaktualisierung umfangreicher. Daher wird in diesem Abschnitt erortert, in welchen
Situationen eine Online-Schitzung der Modellungenauigkeiten unter Beibehaltung einer
physikalisch-technischen Interpretierbarkeit vorteilhaft ist. In der Volks- und Betriebs-
wirtschaft ist die Kosten-Nutzen-Analyse ein probates Mittel, um Losungsansitze oder
Investitionsmoglichkeiten und damit einhergehende, potentiell weitreichende Entschei-
dungen zu bewerten [HIJ11; Mis75]. In diesem Sinne wird nun der Aufwand, welcher
mit den in dieser Arbeit erarbeiteten Methoden verbunden ist, dem Nutzen, der durch je-
ne erzielt werden kann, gegeniibergestellt. Merkmale, die diese Gegeniiberstellung und
somit den Einsatz eines augmentierten Beobachters beeinflussen, stellen die angestreb-
te Modellierungstiefe eines Systems, die Datenverfiigbarkeit und deren Qualitit sowie
der Grad des physikalischen Vorwissens dar. Die angestrebte Modellierungstiefe beein-
flusst den Aufwand direkt, da beispielsweise fiir ein detailliertes, nichtlineares Modell
mehr Ressourcen als fiir ein einfaches PT2-Modell aufgewendet werden miissen (vgl.
Abbildung [3-10). Hierbei kann ein augmentierter Beobachter unterstiitzen und etwaige
komplexe Phidnomene modellieren, sodass Ressourcen angemessen eingesetzt werden
konnen. Zudem ist dieses Vorgehen besonders vorteilhaft, wenn Systemveridnderungen
im laufenden Betrieb auftreten und kompensiert werden miissen (vgl. Abbildungen 4-19
und [5-TT)). Allerdings erfordern die in dieser Arbeit entwickelten Methoden einen ausrei-
chend hohen Grad an Vorwissen, weil einerseits bereits ein simples, physikalisch moti-
viertes Modell vorhanden sein muss und andererseits die Hypothesen ¢; der Bibliothek ¥
geeignet gewihlt werden miissen, um eine Approximation der Modellungenauigkeiten
zu erlauben (vgl. Abbildung[@d-15] Tabelled-T)). Gelingt es, eine geeignete Bibliothek
zu wihlen, ist der Nutzen des augmentierten Beobachters im Vergleich zum Aufwand
hoch. Denn es werden nicht nur die Anforderungen [F.1] und erfiillt, sondern es wird
auch eine erhohte Interpretierbarkeit verglichen zu einem klassischen Beobachter erzielt,
welcher eine Modellungenauigkeit lediglich kompensiert (vgl. Abbildung[d-12). Wie je-
der Zustandsschitzer ist jedoch auch der augmentierte Beobachter von der Datenqualitit
abhéngig, wodurch die Bereinigung von Messdaten u. U. eine nicht vermeidbare Aufgabe
ist, die dem Aufwand zuzurechnen ist. Der Einsatz eines augmentierten Beobachters ist
anhand der Aufwand-Nutzen-Analyse demnach vorteilhaft, wenn die Interpretation von
Modellungenauigkeiten und eine Modelladaption einen Mehrwert bringen, z. B. wenn
diese Ungenauigkeiten per se aufgrund ihres Grads an Nichtlinearitit oder auftretende
Systemverdnderungen ein Risiko fiir die Regelung darstellen. Sollen lediglich kleinere
Ungenauigkeiten kompensiert werden, deren physikalisches Wirkprinzip nicht von Be-

lang ist, rechtfertigt der Aufwand des augmentierten Beobachters seinen Nutzen nicht.
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6 Resliimee und Perspektiven

Das folgende Kapitel fasst die wesentlichen Erkenntnisse dieser Dissertationsschrift zu-
sammen und gibt einen Ausblick iiber zukiinftige Forschungsarbeiten. Da iiblicherweise
nicht alle Zustandsgroflen gemessen werden konnen, konstituiert die Zustandsschédtzung
eine erfolgreiche Umsetzung einer Regelung. Wird ein modellbasierter Zustandsbeobach-
ter verwendet, ist dariiber hinaus die Qualitit des verwendeten Modells entscheidend, um
zuverldssige Schitzungen der Zustdnde zu erhalten. Aufgrund der steigenden Komplexitit
mechatronischer Systeme und der kiirzeren Produktentwicklungszeiten wird der Modell-
bildungsprozess jedoch zunehmend herausfordernder. Die daraus resultierenden Modell-
ungenauigkeiten stellen ein Risiko fiir die Zustandsschédtzung dar. Infolgedessen konnen
lediglich ungenaue oder fehlerhafte Schitzwerte ermittelt werden, deren Unsicherheiten
sich ggf. auf die Regelgiite auswirken. Die Zielsetzung dieser Dissertationsschrift be-
stand deshalb in der Entwicklung einer Methode, welche sowohl die Zustinde als auch
die Modellungenauigkeiten eines nichtlinearen Systems zuverldssig schitzt. Ferner soll-
te fiir jene Modellungenauigkeiten eine parametrische Darstellung gefunden werden, die
durch ihre physikalisch-technische Interpretierbarkeit einen Mehrwert sowie die Option

zur Modelladaption bietet.

Wegen seines Einflusses auf die Schitzgiite wurden im Kapitel [3|die Qualitiit des im Beob-
achter verwendeten Modells und der Beobachterentwurf separat adressiert, um der Her-
ausforderung von Modellungenauigkeiten zu begegnen. Dazu wurden zunichst hybride
Techniken der Systemidentifikation analysiert, welche physikalisch motivierte und daten-
getriebene Modellkomponenten kombinieren und demzufolge als vorteilhaft zur Verrin-
gerung der Modell-Realitdts-Liicke gelten. So wurden zur Modellierung des Golfroboters
und eines Servoventils physikalisch motivierte neuronale Netze weiterentwickelt, wel-
che durch eine Mehrzieloptimierung zusitzliches, physikalisches Vorwissen wihrend des
Trainings beriicksichtigten. Ihre Validierung bestétigte eine sehr hohe Modellgiite, die je-
ne der vergleichbaren, rein physikalisch- oder datenbasierten Modelle iibertraf. Eine eben-
so hohe Giite wies das SINDy-Modell auf, welches mithilfe der LASSO-Optimierung
durch die Linearkombination geeigneter Funktionen und der Auswertung von Messda-
ten eine interpretierbare Form erzielen konnte. Sowohl physikalisch motivierte neuronale
Netze als auch das SINDy-Verfahren sind jedoch von den Messdaten, die zur Offline-
Identifikation genutzt werden, stark abhéngig und konnen aufgrund ihrer Extrapolations-
fahigkeit aulerhalb der Trainingsdaten u. U. eine geringere Modellgiite aufweisen (vgl.
Abbildung [A6-4). Ferner mangelt es beiden Methoden insbesondere an der Fihigkeit,
Modelle aus Messdaten mit nur teilweise messbarem Zustand zu identifizieren. Daher

wurde die Kompensationsfihigkeit ausgewihlter Beobachterkonzepte bezogen auf Mo-
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dellungenauigkeiten untersucht. Hierbei wurden die Kovarianzen von verschiedenen Ver-
tretern der Kalman-Filter-Familie mithilfe der Bayesschen Optimierung so initialisiert,
dass diese etwaige Modellungenauigkeiten kompensieren konnten. Ebenso wurden Sli-
ding-Mode-Beobachter (SMO) bzgl. ihrer Robustheit untersucht, trotz Modellungenauig-
keiten zuverldssig schitzen zu konnen. Die Analysen ergaben, dass in der Regel eine hohe
Schitzgiite und im Fall des SMOs zusitzlich eine temporire, quantitative Identifikation
der Ungenauigkeiten erzielt werden konnen, aber keine parametrische Identifikation in
physikalisch-interpretierbarer Hinsicht ermdglicht wird, auf deren Grundlage eine Mo-

delladaption durchgefiihrt werden kann.

Aus den Erkenntnissen des Kapitels [3| wurde schlieBlich gefolgert, dass eine isolier-
te Betrachtung der Entwurfsschritte Systemidentifikation und Beobachterentwurf nicht
zielfiihrend ist, um Modellungenauigkeiten in der Zustandsschitzung zu adressieren und
eine hohe Schitzgiite bei gleichzeitiger Identifikation der Modellungenauigkeiten zu er-
zielen. Infolgedessen wurde im Kapitel @ eine neuartige Strategie zur simultanen Schitzung
von Zustidnden und Modellungenauigkeiten entwickelt, wobei die Grundidee des SINDy-
Verfahrens beriicksichtigt wurde. Basierend auf dem Konzept der Joint Estimation wurde
ein augmentiertes Modell formuliert, welches die Modellungenauigkeiten mithilfe einer
Linearkombination aus physikalisch motivierten Termen approximiert. Dazu wurden die
Parameter dieser Linearkombination zeitinvariant angenommen und parallel zum System-
zustand geschitzt. Nach dem Prinzip des Occam’s Razor wurde ferner vorausgesetzt, dass
der Parametervektor der Linearkombination diinnbesetzt ist. Diese Bedingung wurde an-
schlieBend im Abschnitt [4.3]durch eine Pseudomessung innerhalb der rekursiven Struktur
eines SRUKFs basierend auf Methoden des Compressed Sensings umgesetzt. Diese Um-
setzung wurde im Abschnitt4.4] amplifiziert, indem die Diinnbesetztheit der Parameter
durch eine konkret gewihlte Wahrscheinlichkeitsverteilung modelliert wurde. Ergénzend
zu diesen Entwiirfen wurde die Grundidee der gleichzeitigen Schétzung im Abschnitt 4.5
auf einen robusten Beobachter, einen SMO, iibertragen und um die Moglichkeit einer

automatisiert gewihlten Bibliothek erweitert.

Anhand ausgewihlter Anwendungsbeispiele konnte der in dieser Dissertationsschrift ent-
wickelte, augmentierte Beobachter bei geeignet gewéhlter Bibliothek eine hohe Schitz-
giite erzielen, welche durch eine zielgerichtete Approximation der Modellungenauig-
keiten mithilfe der Linearkombination resultierte. Obgleich zur klassischen Parameter-
identifikation die Bedingung der Persistent Excitation erfiillt sein muss (vgl. [IM11]),
ist dies innerhalb eines Beobachters nicht immer realisierbar, wenn dieser im geschlos-
senen Regelkreis eingesetzt wird und das Stellsignal vorgegeben ist. Demzufolge kann
grundsitzlich nur eine Identifikation stattfinden, wenn die Sichtbarkeit der Modellun-

genauigkeit gewihrleistet ist, sodass g # O gilt. In den Untersuchungen des Kapitels {4
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war daher in der Regel keine eindeutige Konvergenz der Parameter zu einem konstanten
Wert zu erkennen. Dennoch wiesen die Parameterverldufe in den Applikationen auf phy-
sikalisch interpretierbare Terme hin, sodass der tatsdchlich wirkende Term, sofern dieser
in der Bibliothek vorhanden war, oder alternative, verwandte Terme zu diesem gefun-
den wurden. Ferner wurde bei Messrauschen sowohl in Priifstandsexperimenten als auch
in Simulationen eine robuste Schitzung erzielt. Die Untersuchungen bestitigten dem-
nach die geforderte Identifikation der Modellungenauigkeiten in physikalisch-technischer
Weise sowohl im offenen als auch geschlossenen Regelkreis. Insbesondere in der Situa-
tion von Systemverdnderungen stellte der augmentierte Beobachter seinen Vorteil her-
aus, da er im Kontrast zu Beobachtern mit unverinderlichem Modell Ungenauigkeiten

zur Laufzeit adaptiv erfasste und weiterhin zuverlédssige Schitzungen ermoglichte (vgl.

Abbildung F=19).

Um aus der temporiren Schitzung der Modellungenauigkeiten die dominanten Biblio-
theksterme zu identifizieren, wurde im Kapitel [5|die Hauptkomponentenanalyse zur Merk-
malsextraktion verwendet. Diese Analyse lieferte die dominanten Terme, welche die Mo-
dellungenauigkeiten des betrachteten System charakterisieren und exemplarisch fiir den
Duffing-Oszillator sowie den Golfroboter durchgefiihrt wurde. Basierend auf der resultie-
renden physikalisch interpretierbaren, parametrischen Darstellung wurde im Abschnitt
ein Konzept zur automatisierten Modelladaption entworfen und ebenfalls anhand des
Golfroboters durch Machbarkeitsnachweise validiert. Abschlieend wurde die Interpre-
tierbarkeit dieser und der im Kapitel[d]durchgefiihrten Untersuchungen anhand der Schiitz-
giite, der £;-Norm sowie der Anzahl dominanter Terme quantifiziert, woraufhin eine Iden-
tifikation der Modellungenauigkeiten unter Beibehaltung einer physikalisch-technischen

Interpretierbarkeit bestitigt werden konnte.

Die Tabelle fasst schlieBlich den Neuheitswert der vorliegenden Arbeit im Kontext
von Forschungsbeitrigen zusammen, welche die entwickelte Methode dieser Disserta-
tionsschrift inspirierten und eine inhaltliche Verwandtschaft zu jener aufweisen. Im Kon-
trast zu den in der Tabelle aufgefiihrten Verfahren besteht der Forschungsbeitrag die-
ser Arbeit darin, lediglich den unbekannten Teil der Systemdynamik zu identifizieren, da
bereits ein physikalisch basiertes Teilmodell vorliegt. Anstelle einer Offline-Identifikation
werden diese Modellungenauigkeiten in Echtzeit parallel zur Schitzung der Zustidnde ap-
proximiert. Hierbei werden statt einer mathematisch abstrakten Bibliothek, beispielswei-
se bestehend aus radialen Basisfunktionen (RBFs), physikalisch motivierte Bibliotheks-
terme verwendet, welche eine physikalisch-technische Interpretationen durch ihre para-
metrische Darstellung zulassen und so zu einer automatisierten Modelladaption genutzt

werden kOnnen.
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Quelle Konzeption Abgrenzung Dissertationsschrift

[KSH21] AusschlieBlich temporidre Approxi- Keine physikalisch-technische In-
mation von Modellungenauigkeiten terpretierbarkeit, keine langfristige
g(x,u) = 9T‘I’(fc, u) innerhalb eines Modelladaption moglich
EKFs basierend auf RBFs mit kom-
paktem Triger

[BPK16a] Offline-Identifikation des Systems Kein echtzeitfahiger Einsatz inner-
durch X’ = "¥(X) iiber das LASSO- halb eines Beobachters moglich
Verfahren

[HBK22] Offline-Identifikation des Systems Kein echtzeitfdhiger Einsatz inner-
durch X’ = 6" ¥(X) mit der Modellie- halb eines Beobachters moglich
rung 6; ~ N(0,72A2) fiir diinnbesetzte
Parameter

[CGK10] Pseudomessung 0= Hx—e¢ mit Nicht anwendbar zur Schitzung
H = (sign(fcl), e, sign(fcﬁ)) innerhalb nichtlinearer Systemdynamiken
eines KFs

Tabelle 6-1: Forschungsbeitrige, die diese Arbeit besonders inspirierten, und ihre Ab-
grenzung zum Beitrag dieser Dissertationsschrift

Folglich fiihrt die vorliegende Dissertationsschrift einige der in Tabelle aufgefiihrten
Konzepte erstmals in einer neuartigen Methode zusammen und amplifiziert diese um eine
echtzeitfihige, physikalisch interpretierbare und adaptive Identifikation innerhalb eines
Beobachters. Aufgrund der getroffenen Voraussetzungen unterliegt die Anwendung des
augmentierten Beobachters aber einigen strukturellen Limitationen. Diese Grenzen be-
stehen einerseits in der Systemklasse, da ausschlieBlich eingangsaffine Systeme der Form
(4.5) verwendet werden konnen, und andererseits in der Abhingigkeit der gewdhlten,
physikalisch motivierten Bibliothek. Letztere kann bei sehr ungiinstiger Wahl ohne oder
mit nur geringem physikalischem Vorwissen zur Instabilitdt des Beobachters fiihren. Da
in dieser Arbeit jedoch angenommen wird, dass grundsétzlich Vorwissen vorhanden ist,
kann dieses als Hypothesen in der Bibliothek formuliert werden. Alternativ besteht die
Moglichkeit, die Bibliothek nach den Abschnitten 4.3 und durch eine Analyse auto-
matisiert zu initialisieren bzw. zu aktualisieren. Infolgedessen sind eine hohe Schitzgiite
auch im geschlossenen Regelkreis sowie ein vertiefender, physikalischer Einblick in das
System wegen der identifizierten Modellungenauigkeiten zu erwarten. Damit bildet der
in dieser Dissertationsschrift erarbeitete Entwurf nicht nur einen wertvollen Beitrag zur
echtzeitfihigen Schitzung von Zustinden und Modellungenauigkeiten nichtlinearer Sys-
teme, sondern stellt auch ein Werkzeug zur automatisierten, sukzessiven Modelladaption

und -iiberwachung unter Beibehaltung einer physikalischen Interpretierbarkeit dar.



181

Da der Neuheitswert dieser Arbeit u. a. in der Option besteht, eine Modelladaption zur
Laufzeit durchzufiihren, kann darauf aufbauend in zukiinftigen Forschungsarbeiten ei-
ne Modellselbstiiberwachung installiert werden. So kann das im Kapitel [5| formulier-
te Konzept zur Online-Aktualisierung des Modells als Methode im Kontext des Auto-
mated Machine Learning (AutoML) gewertet werden. Dieser Forschungsbereich adres-
siert Techniken zur automatisierten Merkmalsextraktion und Modellauswahl basierend
auf Verfahren des maschinellen Lernens, vgl. [HZC21; HKV19]. Der in dieser Disser-
tationsschrift entwickelte augmentierte Beobachter kann aufgrund der Moglichkeit, nach
Abbildung sowohl eine dauerhafte als auch eine situationsabhidngige Modellanpas-
sung vorzunehmen, diesem Forschungsbereich zugerechnet werden. Dieses Vorgehen ist
insbesondere in Situationen vorteilhaft, wenn plotzliche Systemverdnderungen auftreten
(vgl. Abbildung oder es sich um ein System handelt, welches in kurzer Zeit mehrere
Betriebsphasen durchliduft und dessen Systemverhalten sich daher schnell dndert. Mithil-
fe verschiedener Kriterien, wie der Uberpriifung des Modellfehlers (vgl. Abbildung [5-7)),
und einer noch nachfolgend durchzufiihrenden Parameteridentifikation, sobald die domi-
nanten Terme identifiziert sind, kann anschlieend eine Modellselbstiiberwachung um-
gesetzt werden. Ferner sollte die in Abschnitt [4.4] vorgestellte, effiziente Erweiterung
des augmentierten Beobachters nicht nur in vielfdltigen Simulationen, sondern in Zu-
kunft auch in Priifstandsversuchen getestet werden. Deren Umsetzung war aufgrund der
gegenwirtig genutzten Softwareversion nicht moglich, sodass mithilfe einer modernen
Laborausstattung die Bestdtigung der vielversprechenden Simulationsergebnisse durch
eine Validierung am Priifstand zu erwarten ist. Weiteres Entwicklungspotential besteht
wie zuvor bereits angemerkt bzgl. der Konvergenz der Parameter. Deren Schitzung ba-
siert in der gegenwirtigen Implementierung auf einer geringen Anzahl zuriickliegender
Messwerte, welche keine eindeutige Konvergenz zu einem konstanten Wert fordert. Mit-
hilfe der rekursiven Least-Squares-Methode, vgl. z. B. [IM11]], und der Beriicksichtigung
von einer erhohten Anzahl vergangener Messwerte ldsst sich eine verbesserte Konver-
genz erwarten, wobei die Echtzeitfiahigkeit des augmentierten Beobachters insbesondere
im geschlossenen Regelkreis beachtet werden muss. Dariiber hinaus kann die Formulie-
rung von FehlermafBen bzw. -schranken fiir konkrete Anwendungsbeispiele und Biblio-
theken in Erwigung gezogen werden, um eine Garantie fiir die Stabilitit des Beobachters
dhnlich zur Herleitung in [Sch10] zu erhalten, welche ebenfalls eine Bedingung zur Sicht-
barkeit der Modellungenauigkeit beinhaltet. SchlieBlich kénnen zukiinftige Forschungs-
arbeiten den Einsatz des augmentierten Beobachters mit Modelladaption hinsichtlich der
Applikation in den Bereichen Condition Monitoring und Predictive Maintenance unter-
suchen sowie dessen Struktur fiir allgemeinere Systemklassen erweitern. Auf diese Weise
konnen die Vorteile einer hohen Schitzgiite trotz Modellungenauigkeiten sowie der Mo-

dellselbstiiberwachung weiteren Anwendungen zur Verfiigung gestellt werden.
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A1 Beobachtbarkeit

Da in dieser Arbeit eingangsaffine Systeme betrachtet werden (vgl. Gleichung (4.4))), wird
die Definition der Beobachtbarkeit fiir diese Systemklasse wiedergegeben [Adalg|:

Ein eingangsaffines System {.4)) ist beobachtbar, wenn sein relativer Grad & = n ist.

Um den relativen Grad ¢ zu tiberpriifen, werden die Lie-Ableitungen (vgl. Abschnitt[2.3))
gebildet, sodass

h(x)
y Loh(x) + Lyh(x)u
7= Y = *) _ ph(x) :q(x,u,u,...,u(”_z))
YU AL h(x) + Ly L2 *h(X)u + - - - + Lyh(x)u™?

gilt. Liegt nun 6 = n vor, so kann das System (#.4)) durch einen Diffeomorphismus

h(x)
L.,h
z=4q(x) = .(x)
L' h(x)

in die nichtlineare Beobachtbarkeitsnormalform {iberfiihrt werden [[AdalS§]:

2 2

Zn—l Zn
zo ) \Lih(q7'(2)) + LyL ' h(qg™" (2))u

Somit ist das System beobachtbar. Dariiber hinaus konnen eingangsaffine Systeme mit
0 < n existieren, die ebenfalls beobachtbar sind [[Adal8|]. Fiir die betrachteten Anwen-

dungsbeispiele dieser Dissertationsschrift ist Beobachtbarkeit gegeben.
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A2 Statistische Rechenregeln

Bei der Herleitung des optimalen Korrektureingriffs K, fiir das Kalman-Filter sind im
Abschnitt 2.2|Rechenregeln des Erwartungswertes sowie Eigenschaften bzgl. der Spur ei-
ner Matrix verwendet worden, welche in diesem Abschnitt kurz erlautert werden. Bei der
Rechnung mit dem Erwartungswert, z. B. in der Gleichung (2.14), kann dessen Linearitét
ausgenutzt werden. So gilt fiir die zwei Zufallsvariablen X, Y und die Konstanten a,b € R
Folgendes (vgl. [Papl7]):

Ela-X+b-Y]=a-E[X]+b-E[Y].

Zudem sind in der Gleichung (2.16]) die nachfolgend aufgefiihrten Eigenschaften der Spur
angewendet worden. Ist der Ausdruck ATBA mit den Matrizen A, B skalar, so folgt mit

der Produktregel der Spur
ATBA = tr(ATBA) = tr(BAA"). (A2-1)

Wird Gleichung (A2-T) nun mit dem Operator des Erwartungswerts versehen, ergibt

sich:

E[ATBA] = E[tr(AT BA)]
= E[tr(BAAT)]
= tr(E[BAAT)).

Dariiber hinaus ist fiir die Berechnung des Gradienten in der Gleichung (2.17)) die Ablei-
tung der Spur erforderlich, welche sich durch

a T
Sgl(BA) = A

bestimmen ldsst. Neben den grundlegenden Rechenregeln eines Erwartungswertes wird
im Folgenden die Aktualisierung der ersten beiden Momente basierend auf neuen Da-
tensitzen erldutert, welche im Kontext der Bayesschen Optimierung im Abschnitt 2.1.3]
genutzt wird. Denn fiir die BO wird das probabilistische Modell J meist als ein GP-Modell
angenommen (vgl. Gleichung (2.10)), dessen charakteristischen Groen nach Gleichung
(2.9) die Mittelwert- und Kovarianzfunktion g bzw. X sind. Mit fortschreitender Anzahl an
Datenpunkten werden diese angepasst, indem nach [Bis06] fiir den nédchsten Datenpunkt

(X415 J(Xny+1)) die bis zu diesem Zeitpunkt zur Verfiigung stehenden Daten(-matrizen)
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X = (xy,...,x5)und J = (Jy,...,Jy,) genutzt werden. AnschlieBend konnen sowohl

der Mittelwert also auch die Kovarianz durch

Hyoer = Hxp1) + & (X, Xnpe1)| k(X X7 (J — p(X))

r » (A2-2)
EN0+1 =k (xN0+1,xN0+1) -k (X, xN0+1) k(X,X)" k (X, xN0+1)

bestimmt und fiir die Aktualisierung des Modells J verwendet werden [Bis06].
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A3 Regularized-Horseshoe-Verteilung

Im Abschnitt wird die Modellierung der Parameter € durch die RHS-Verteilung
(4.23) angestrebt, welche als hierarchische Gaul3-Verteilung mithilfe der unterlagerten
Distributionen ihre Varianz an die Form einer Laplace-Verteilung anpasst, um diese zu
imitieren. Da der Einfluss dieser unterlagerten Distributionen aus der mathematischen
Formulierung nur schwer nachvollziehbar ist, wird dieser daher in diesem Abschnitt be-
leuchtet. Dazu werden in den nachfolgenden Abbildungen links jeweils die unterlagerte
Distribution, u. U. abhéngig von ihren Parametern, und rechts jeweils die daraus resultie-
rende RHS-Verteilung abgebildet. Die RHS-Verteilungen sind hierbei durch Histogram-
me dargestellt, da sie Monte-Carlo-gesampelt worden sind. Die Parameter der unterla-
gerten Distributionen, die in der jeweiligen Abbildung nicht untersucht werden, variieren
dabei nicht, um die Wirkung der resultierenden Gesamtverteilung nicht zu verfélschen.
Die Abbildung [A3-T] veranschaulicht die bereits im Abschnitt [4.4.1] erwédhnte Wirkung
von 7: Je kleiner die Varianz 7 fiir die positive Cauchy-Distribution C*(-, -) gewéhlt wird,
aus der 7 stammt, desto mehr wird diese in Richtung der y-Achse gestreckt und desto
wahrscheinlicher ist es daher, dass der Koeflizient 8; Null ist. Dies lédsst sich daran erken-
nen, dass die Varianz der resultierenden RHS-Verteilung fiir 7o = 0, 025, dargestellt in
rot, deutlich schmaler als die der blau abgebildeten Verteilung ist, welche aufgrund von
79 = 0,2 eine wesentlich breitere Streuung um Null aufzeigt. Der Parameter 7, steuert
somit den Grad der Diinnbesetztheit in globaler Art und Weise, weil dieser fiir alle 6,
festgelegt wird [PV17; HBK22].

6 . 250 — | ' ' '
|—79=0,025 —19=0,2 79=0,025 l19=0,2
200 - .
4 - -
150 - .
O S
N9
= 100} .
2 - -
50 - .
T 0 —
0o 05 1 15 2 25 3 2 o1 0 I 2
T 9

Abbildung A3-1: Einfluss der Distribution T ~ C*(0, 79) auf die RHS-Verteilung

Damit das Ziel, dass einige Parameter 6; nicht Nullelemente sind, umgesetzt werden

kann, ermoglicht die nicht-parameterabhéngige, ebenfalls positive Cauchy-Verteilung fiir
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A; Ausnahmen von dieser globalen Diinnbesetztheit. In der Abbildung ist diese Wir-

kung anhand der groeren Varianz der resultierenden RHS-Verteilung zu erkennen.

T T T T 250 . . . L
0,6 |
200 F :
~ 04+ { ~ 13or 7
2 <
= = 100+ .
02+ i,
50 F :
0 1 1 ! 0 = T T T _I
0 2 4 6 8 10 _1 0 i 5
A 0

Abbildung A3-2: Einfluss der Distribution A; ~ C*(0, 1) auf die RHS-Verteilung

SchlieBlich dient der Wert c¢?, welcher mithilfe einer inversen Gamma-Verteilung be-
stimmt wird, zur Regularisierung der hierarchischen RHS-Verteilung. Wird diese ohne
Regularisierung verwendet, handelt es sich um die Horseshoe-Verteilung (HS-Verteilung)
[PV17; HBK22]. Diese weist jedoch den Nachteil von potentiell sehr grolen Nichtnullele-
menten 6; auf, welche mit dieser Regularisierung vermieden werden sollen. Die Variation
der Parameter a, b fiir die inverse Gamma-Verteilung, dargestellt durch die Farben Rot,
Blau und Griin, illustriert deshalb den Einfluss der Regularisierung auf die resultierende
RHS-Verteilung in der Abbildung[A3-3]

1 2 1 1 1 1
00 ' ' a=4, b=2 >0 a=4, b=2
—a=1, b=0,5 a=1, b=0,5
80 a=10,b=0,5 200 - a=10,b=0.,5
_ 60F 1 150F 7
T S
= ol 1= 100F .
20 - . S0 i
O‘kl 1 1 1 1 O— T T T I_
0 05 1 15 2 25 3 5 0 ) 4
C 0,'

Abbildung A3-3: Einfluss der Distribution ¢* ~ Inv-I'(a, b) auf die RHS-Verteilung
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A4 Matrixzerlegungen

Dieser Abschnitt stellt die wichtigsten Matrixzerlegungen in kompakter Weise vor, wel-
che fiir das Verstindnis dieser Arbeit benotigt werden. Diese finden beispielsweise An-
wendung in den Kalman-Filtern (vgl. Abschnitt [2.2)) oder der Hauptkomponentenanaly-
se (PCA) (vgl. Abschnitt[5.T). Die betrachteten Zerlegungen werden fiir reelle Matrizen
dargestellt, konnen aber ausgenommen der Cholesky-Zerlegung auf komplexe Matrizen

erweitert werden.

A4.1 Cholesky-Zerlegung

Eine symmetrische, positiv definite Matrix A € R kann mithilfe der Cholesky-Zerlegung
durch ein Produkt aus einer unteren Dreiecksmatrix L und deren Transponierten L’ be-

schrieben werden, sodass
A=LL" (A4-1)

gilt. Dabei basiert die Cholesky-Zerlegung auf der Eigenschaft, dass jede symmetrische,
positiv definite Matrix A eindeutig in die Form A = LDL" zerlegt werden kann [DHI19;
FHO7]). Darin stellen L eine unipotente, untere Dreiecksmatrix und D eine positive Diago-
nalmatrix dar, sodass sich der Zusammenhang zur Cholesky-Zerlegung durch L = LD
ergibt. Die Berechnung der Zerlegung erfolgt durch die elementweise Auswertung der
Gleichung (A4-T)), vgl. [DH19; FHO7]. Vorteile dieser Zerlegung bestehen in der nume-
rischen Robustheit, der Losung von Gleichungsproblemen und der Fihigkeit, symmetri-
sche, positiv definite Matrizen zu detektieren. Diese Zerlegung wird daher in der effizien-
ten, numerischen Berechnung des SRUKFs genutzt (vgl. Abschnitt [2.2.2).

A4.2 QR-Zerlegung

Zur Losung von linearen Gleichungssystemen wird hiufig eine QR-Zerlegung gewdhlt.

Diese ist fiir eine Matrix A € R™" durch
A =0R (A4-2)

mit @ € R™” als orthonormale Matrix und R € R™" als obere Dreiecksmatrix defi-
niert [FHO7; DH19]. Dabei existieren verschiedene Algorithmen, um eine Zerlegung der
Art (A4-2) durchzufiihren, z. B. das Gram-Schmidtsche-Orthonormalisierungsverfahren.

Zudem ist die QR-Zerlegung auch erweiterbar fiir nicht-quadratische Matrizen. Diese Zer-
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legung wird ebenfalls in der effizienten, numerischen Berechnung des SRUKFs genutzt

(vgl. Abschnitt|2.2.2).

A4.3 Singularwertzerlegung

Die Singuldrwertzerlegung ist ein probates Mittel, um vielféltige Informationen iiber eine
Matrix A € R™" zu erhalten und wird beispielsweise in der PCA genutzt (vgl. Kapitel [3)).
Jede Matrix A kann durch das Produkt

A=UxV’ (A4-3)

beschrieben werden [DH19]]. Dabei sind U € R™", V € R™" orthogonale Matrizen und
Y € R stellt eine Matrix dar, auf deren Hauptdiagonalen sich die Singuldrwerte o; > 0
mit i = 1,...,r befinden, wihrend alle weiteren Elemente Null sind. Die Singuldrwerte
sind dabei nach ihrer Grofe sortiert, sodass oy > 0 > --- > o, > 0 gilt. Die jeweiligen
Spaltenvektoren u; mit j = 1,...,n bzw. v, mit [ = 1,...,m werden zudem als Links-
bzw. Rechtssinguldrvektoren bezeichnet. Die Zerlegung (A4-3) kann als eine Abfolge
von Drehungen durch die orthogonalen Matrizen und eine Stauchung bzw. Streckung
durch die Matrix X interpretiert werden. Zudem besteht eine enge Verwandtschaft zum
Eigenwertproblem, da die quadrierten Singulirwerte die Eigenwerte der Matrizen AA”

bzw. AT A bilden und folglich auch aus diesen bestimmt werden konnen [DH19].
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A5 Numerische Integrationsverfahren

Um Differentialgleichungen der Art ¥ = f(x,u) fiir beliebige Anfangswerte x, € R”
und Schrittweiten At € R”? zu simulieren, ist ihre Auswertung mittels numerischer In-
tegrationsverfahren erforderlich. Im Folgenden werden zwei der bekanntesten Verfahren
vorgestellt, welche in der Praxis hdufig genutzt werden und in der vorliegenden Disserta-

tionsschrift beispielsweise in den Kapiteln [3|und [5| Verwendung finden.

A5.1 Explizites Euler-Verfahren

Die Popularitit des expliziten Euler-Verfahrens begriindet sich durch seine Einfachheit,
welche einen geringen Rechenaufwand verursacht und somit insbesondere in Digitalan-
wendungen eingesetzt wird. Denn die numerische Integration erfolgt tiber die Annéherung

des Integrals durch ein Rechteck, indem
Xie1 = X+ At - f(xi, up)

bestimmt wird. Dabei stellt der Index k die jeweilige GroBBe zum Zeitpunkt #; dar, d. h.
x; = x(t;). Allerdings sind aufgrund der einfachen Rechteckstruktur Einbuf3en bzgl. der
Genauigkeit der Integration zu erwarten. Dieser Nachteil kann z. B. durch andere, kom-
plexere Einschrittverfahren, wie das Heun-Verfahren oder das Simpson-Verfahren, ver-
mieden werden. Jene Verfahren werden als Runge-Kutta-Verfahren zweiter bzw. dritter
Ordnung bezeichnet [Adal§].

A5.2 Runge-Kutta-Verfahren

Soll die Genauigkeit der numerischen Integration erhoht, der Rechenaufwand aber gleich-
zeitig moderat bleiben, wird in den meisten Fillen das Runge-Kutta-Verfahren vierter
Ordnung als numerisches Integrationsverfahren ausgewihlt. Dieses 10st die obige Diffe-

rentialgleichung mit der Definition uy.s == u (tk + %) folgendermaBlen [Adal8]:

P = f(xk’ uk),

At
D, = f(xk + 5 'Pl,uk+o.5) )

At
Py =[x+ 5 *DrsUki05 ]

p4 = f(xk + At : pS’uk+l)a

At
Xpr1l = X + ra (p) +2p, +2p; + p,).
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A6 Anwendungsbeispiele

Dieser Abschnitt stellt ergidinzende Informationen zu den Anwendungsbeispielen bereit,
die in den Kapiteln3|bis[5|untersucht werden. Dariiber hinaus werden z. T. weiterfiihrende
Ergebnisse prisentiert.

A6.1  Golfroboter

Der Golfroboter ist ein Priifstand am Lehrstuhl fiir Regelungstechnik und Mechatro-
nik (RtM), der als Testobjekt fiir ML-Methoden im Vergleich zu klassischen regelungs-
technischen Methoden dient. Es handelt sich dabei um ein komplexes mechatronisches
System, bestehend aus elektrischen, mechanischen und informationstechnischen Kompo-
nenten, deren Zusammenspiel durch konkrete physikalische Wirkprinzipien entsteht. Die
Abbildung [3-2|zeigt den aktuellen Aufbau des Roboters [JFTT22]. Im Rahmen dieser Ar-
beit ist die autonome Fahrstrategie des Roboters nicht relevant, sodass nur der Roboter-
aufbau ohne Rider betrachtet wird. Dieser besteht aus einem Zahnriemengetriebe, einem
Schldager mit Schlagkopf sowie einer Antriebseinheit und dhnelt somit vom physikali-
schen Prinzip einem Pendel. Betrachtet wird nur der letzte Teil eines Golfspiels, in dem
der Golfball auf dem sogenannten Green in das Loch geschlagen werden muss. Dies wird
als Putten bezeichnet Das Regelungsziel des Roboters ist es daher, den Golfball erfolg-
reich in das Loch zu schlagen. Dafiir muss der Schldger eine bestimmte Geschwindigkeit
zum Zeitpunkt des Schlags aufweisen, die ihn weder iiber das Loch springen noch vor
dem Loch stoppen lédsst. Diese Schlagdynamik wird mittels einer Zwei-Freiheitsgrade-
Struktur eingestellt [FKL*22], welche in der Abbildung dargestellt ist.

b
u* u y

—(O » Golfroboter

\/

3
—
< *
o)

stel\llgrrung LQ-Regler |+—1 SchGegE;ing ]
)"
£ P \ 4
—> Beobachter «
+ -

Abbildung A6-1: Zwei-Freiheitsgrade-Struktur fiir den Golfroboter nach [FKL*22;
JFTT22|]

S2Unter https:/serviceportal.dgv-intranet.de/regularien/golfregeln/offizielle-golfregeln.cfm kénnen die
Regeln des Golfspiels nachgelesen werden, abgerufen am 26.01.2024.
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Das nichtlineare Modell (3.4) aus Abschnitt ist durch eine aufwendige Modellie-
rung entstanden, dem mehrere Vereinfachungen vorausgingen. So wird die obere Zahn-
riemenscheibe als Angriffspunkt des Motormoments angenommen, woraufhin die beiden
Zahnriemenscheiben zu einem Getriebe zusammengefasst werden konnen. Das Motor-
moment wird daraufhin durch ein Ubersetzungsverhiltnis des Zahnriemengetriebes von
4:1 beriicksichtigt. Durch eine Optimierung mittels Messdaten wurden die Parameter p
des Modells identifiziert, welche in der folgenden Tabelle aufgefiihrt sind [JETT22]:

Bezeichnung Symbol Wert Einheit
Masse des Schligers m 0,5241 kg
Tragheitsmoment des Schlidgers J 0,1445 kg/m?
Gravitationskonstante g 9,8100 m/s?
Linge Rotationsachse - Schwerpunkt des Golfschligers a 0,4702 m
Dynamischer Reibkoeffizient d 0,0132  kgm?/s
Liange Rotationsachse - Reibpunkt r, 0,0245 m
Statischer Reibkoeffizient u 1,5136 -

Tabelle A6-1: Parameter p des Golfroboters nach [JFTT22)]

Das Modell liefert in den meisten Situationen eine hohe Modellgiite. Allerdings zeigt der
Golfroboter das in der Abbildung dargestellte, ruckartige Verhalten, wenn eine sehr
langsame Anregung gewihlt wird. Dieses resultiert aus einer Mischung von Haft- und
Gleitreibung, welche als Stick-Slip-Effekt bekannt ist [KHO02], aber durch das modellierte
Reibmoment nur angendhert werden kann. Daher bestehen in dieser Situation noch

Modellungenauigkeiten, die in den Kapiteln [3und ] angenéhert werden.

Um die gewiinschte Schlagdynamik, welche beispielhaft in der Abbildung [A6-3] darge-
stellt ist, auszufiihren, wird eine konstante Vorsteuerung sowie ein LQ-Regler gewihlt.
Dazu wird das nichtlineare Modell (3.4) mittels der Gain-Scheduling-Strategie in meh-
rere lineare Systeme abhiingig von Betriebspunkten transformiert [Adal8; JFTT22]. An-
schlieBend kann fiir jedes linearisierte Modell ein eigener Regler ausgelegt werden. Da
allerdings nur der Winkel des Golfroboters gemessen werden kann, wird zur Schitzung
der Winkelgeschwindigkeit ¢ nach Uberpriifung der Beobachtbarkeit ein Luenberger-
Beobachter entworfen [Lue64]. Erneut wird aufgrund der Systemdynamik (3.4)) der Gain-
Scheduling-Ansatz genutzt, um die lineare Struktur des Luenberger-Beobachter nutzen
zu konnen. Dabei wird der Korrektureingriff aufgrund der Dualitidt mittels Polvorgabe
bestimmt. SchlieBlich liegen verschiedene Beobachtermodelle vor, die je nach aktuellem
Winkel ¢ tiber einen Vergleich mittels der Variable i ausgewi@hlt werden [F1t20; JFTT22].
Dies ist in der Abbildung durch den Block Gain Scheduling dargestellt.
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Abbildung A6-2: Auftreten des Stick-Slips-Effekts am Beispiel des Winkels bei einer sehr
langsamen Anregung
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Abbildung A6-3: Beispielhafte Sollvorgabe fiir den Golfroboter nach [JFTT22]: Ausholen
zum Schlag in Phase I, Schlag bei ¢y,;; = 0° mit der Geschwindigkeit @i,
in Phase II, Riickholen zur Ausgangsposition in Phase II1

Modelle des Golfroboters

Neben dem nichtlinearen Modell (3.4)), welches das physikalische Modell mit der héchsten
Modellgiite dargestellt, werden in dieser Arbeit noch weitere Modelle in verschiedenen

Methoden genutzt, um beispielsweise Ungenauigkeiten, die aus dem Stick-Slip-Effekt re-
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sultieren, genauer zu approximieren. Dazu wird u. a. das folgende Modell ohne den Anteil

der viskosen Reibung My(x) = —dx, genutzt:

x=fy(x,u,p)

X2

J! (—mga sin(x;) — ryp sgn(xy) Imxsa + mg cos(x;)| + 4”) ’
y= h(X) = Xi.

Dartiiber hinaus wird das Modell ohne den Anteil der Gleit- und Haftreibung My(x, u) =

o sgn(x;) Imxga + mg cos(x;)| betrachtet, welches durch

.723 = fH(xa u, p)
_ e , (A6-1)
J~' (=mgasin(x;) — dx, + 4u)

y=h(x) = x

beschrieben wird. SchlieBlich kann noch das Modell ohne wirkende Ddmpfung oder Rei-

bung betrachtet werden. Dieses lésst sich durch

.X'f = fWO(x’ u’p)
X2
= : , (A6-2)
J ' (=mgasin(x;) + 4u)
y=h(x)=x
charakterisieren.

Physikalisch motivierte (rekurrente) neuronale Netze

Im Abschnitt[3.1.3]ist bereits die Modellgiite eines PGNN im Vergleich zu anderen daten-
getriebenen und physikalisch motivierten Methoden analysiert worden. Wird jedoch die
Datenverfiigbarkeit als Einflussfaktor untersucht, ergibt sich insbesondere fiir die PGNN-
und SINDYc-Modelle ein anderes Bild bzgl. ihrer Modellgiite. In der Abbildung|[A6-4]
zeigt sich, dass das SINDYc-Modell von der Datenqualitéit abhingt, da es stark an Ge-
nauigkeit verliert und den Winkel bzw. die Winkelgeschwindigkeit nicht mehr korrekt
wiedergeben kann, wenn nur transientes Dynamikverhalten des Golfroboters in den Trai-
ningsdaten enthalten ist. Das PGNN erzielt aufgrund des physikalischen Simulationsmo-
dells allerdings weiterhin eine robuste Approximation des Systemverhaltens und zeigt

wenig Verdnderung, wenn sich der Datenumfang veridndert. Dies ist besonders in der Ver-
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groferung zu erkennen. Ferner wird in der Abbildung [A6-5|ein Vergleich der verschie-
denen hybriden Modelle abgebildet, wobei SINDy weiterhin als das Verfahren mit der
hochsten Modellgiite zu erkennen ist.
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Abbildung A6-4: Modellgiite eines PGNNs in Abhdngigkeit des genutzten Datenumfangs
wdéhrend des Trainings anhand des Golfroboters
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Abbildung A6-5: Modellgiite eines PGRNNs und MOPGRNNs im Vergleich zum PGNN-
und SINDy-Modell anhand des Golfroboters
Optimal initialisierte Kovarianzmatrizen

Neben der Minimierung des Schitzfehlers als Kostenfunktion in der Bayesschen Opti-

mierung (vgl. Abschnitt[3.2.T)), wird héufig auch die Forderung nach einem konsistenten
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Filter beriicksichtigt. Ein Schitzer weist die Eigenschaft der Konsistenz auf, wenn der
Schitzfehler unverzerrt ist, d. h. wenn E[e, ;] = 0Vk gilt, und dieser mit zunehmendem
Stichprobenumfang abnimmt, demnach sich dem zu schitzenden Wert annéhert [Riis14].
Daher gibt es analog zur Gleichung (3.17) noch zwei weitere Moglichkeiten, die Kosten-
funktion zu formulieren. Wird die Konsistenz eines Filters bewertet, so wird die Kosten-

funktion durch

N N
J(®)nees = log [% ;(eikP ];|]1(ex,k)] , J(X)nis = log [% kz;(ei kSi_,:ery,k)) ,» (A6-3)
mit der Innovationskovarianz §;, formuliert. Die Abkiirzungen stehen dabei fiir Norma-
lized Estimation Error Squared und Normalized Innovation Squared. Diese Kostenfunk-
tionen wurden ebenfalls dazu verwendet, optimal initialisierte Kovarianzmatrizen zu fin-
den. Ein exemplarischer Verlauf der durch die BO durchgefiihrten Iterationen und deren
Schitzung ist jeweils in den Abbildungen[A6-6|und[A6-7|dargestellt. Die Einstellparame-
ter der BO sind identisch zu denen aus Abschnitt [3.2.1| gewihlt worden.

— 0,5 T T T T = T T T
—% K
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= % T T T T i~
— _1 L 7 _ ;_»2_]
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Zeit ¢ [s] Iteration

— Nichtlin. Modell — Iteration 1 Iteration 6 — Iteration 13 Iteration 16 ‘

Abbildung A6-6: Ergebnis verschiedener Iterationen wiihrend der BO fiir die Kostenfunk-
tion NEES (A6-3): Iteration 16 stellt die beste, durch die BO gefundene

Losung dar.

Im Vergleich zur WEES- bzw. WIS-Kostenfunktion findet die BO bezogen auf die Mo-
dellgiite schlechtere Minima. Diese werden jeweils durch die letzte dargestellte Iteration
visualisiert. Ursache dieser Resultate ist die betrachtete Kostenfunktion, in welche die
Kovarianz bzw. Varianz der Innovation eingeht. Es ldsst sich anhand dieser Ergebnisse

feststellen, dass die beiden Kalman-Filter nach der Optimierung ihr Potential, ein konsis-
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tenter Schitzer zu sein, noch nicht erreicht haben. Abhilfe schafft eine Optimierung mit

einem ldngeren Iterationshorizont oder die Wahl einer anderen Acquisitionfunction.
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Abbildung A6-7: Ergebnis verschiedener Iterationen wiihrend der BO fiir die Kostenfunk-
tion NIS (A6-3): Iteration 10 stellt die beste, durch die BO gefundene

Losung dar.

A6.2 Servoventil

Um das Verstidndnis fiir den Abschnitt zu erleichtern, werden einige Details zum
betrachteten Servoventil skizziert, welche der internen Dokumentation [Ker21|] des Lehr-
stuhls entstammen. Das zweistufige Ventil mit elektrischer Positionsregelung, welches
nach dem Driise-Prallplatten-Prinzip agiert, ist in der Abbildung dargestellt.

Fiir das nichtlineare Modell des Ventils wird der Aufbau nach Abbildung ange-
nommen, welcher aus einem Torquemotor, einem hydraulischen Verstirker sowie einem
Lingsschieberventil mit Steuerschieber besteht. Hierbei stellen i den Steuerstrom und
Aps den Differenzdruck der Driicke an den beiden Stirnseiten des Steuerschiebers dar.
Auch fiir das komplexe, nichtlineare Modell der Ventildynamik werden einige Annah-
men getroffen [Ker21]], z. B. dass die Stromungskrifte an der Prallplatte vernachléssigt
werden, eine ideale Sensorik vorliegt oder konstante Driicke an den Ventilschliissen herr-
schen. Da dieser Abschnitt lediglich die grundlegenden Eigenschaften des Ventils und
das nichtlineare Modell beschreibt, welche zum Verstindnis des Abschnitts [3.1.3] erfor-
derlich sind, wird fiir eine vollstindige Liste der Vereinfachungen und weiterer Details

auf [Ker21]] verwiesen.

AnschlieBfend wird die Ventildynamik durch das nichtlineare Simulationsmodell (A6-4)
dargestellt, welches auf der nachfolgenden Seite abgebildet ist.
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Abbildung A6-8: Physikalische Skizze des Servoventils mit Diise-Prallplatten-Prinzip
nach [Ker21|]
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Abbildung A6-9: Aufbau des nichtlinearen Ventilmodells nach [Ker21|]

Dabei beschreibt der Zustand x = (&, a, p1, p2, Vs, ys)! die Drehbewegung des Ankers
durch den Winkel @ bzw. dessen Geschwindigkeit &, die Driicke p; bzw. p,, die an den
beiden Seiten der Prallplatte herrschen und die Ventilschieberlage ys bzw. dessen Ge-
schwindigkeit ys. Eingang des Ventils stellt die Spannung u = uy dar, der Ausgang
Yv = }Sy—jm
wurden durch Priifstandsmessungen und Datenblitter validiert und ergeben sich wie in
der Tabelle[A6-2] zusammengefasst. Das nichtlineare Modell kann wie im Abschnitt[3.1.3]

beschrieben ebenfalls durch Modelle mit geringerer Modellierungstiefe ersetzt werden,

ist die relative Ventilschieberlage. Die Parameter des nichtlinearen Modells

z. B. durch ein einfaches Verzogerungsglied zweiter Ordnung (vgl. Gleichung (3.15)).
Dessen Parameter p = (Ky, Dy, Ty)! konnen der Tabelle entnommen werden.
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Bezeichnung Symbol Wert Einheit
Steuerkolbenquerschnitt Ag 3,4x107 m?
Durchfluss/Dichte-Beiwert Co 0,0306 m/(s VPa)
Festdrosseldurchmesser Dy 2,772 x 107 m
Torquemotor/Hydraulischer

Verstirker-Dampfbeiwert d; 9,7x 1073 Nms
Steuerkolben-Dampfbeiwert d 1549,5 Nsm™!
Diisendurchmesser Dy 8,352x10% m
Riicklauf-Drosseldurchmesser Dg 3,81 x 107* m
Ersatzkompressionsmodul E’Ol 1,8 x 10° Pa
Massentrigheitsmoment Torquemotor J 1,6948 x 107 kgm?
Bernoulli-Konstante Kg 8,5167x10° Nm™!
Biegerohrsteifigkeit, bezogen auf eine Kjpg 2,1736 x 10*  Nm™!
Wirkungslinie im Luftspalt (Hebelarm r;)

Magnetische Federkonstante, bezogen auf ei- Kpy 0 Nm™!
ne Wirkungslinie im Luftspalt (Hebelarm r)

Riickfiihrfedersteifigkeit, bezogen auf eine Kp 1752 Nm™!
Wirkungslinie mit Hebelarm r; am Kolben

Torquemotorkonstante, bezogen auf eine K; 0,0289 NmA™!
Kraftwirkung im Luftspalt (Hebelarm r;)

Reglerverstirkung Kp 1,1367 x 107 -
Steuerkolbenmasse m 0,015 kg
Systemdruck Do 280 bar
Abstand Luftspalt/Drehpunkt ry 0,0586 m
Abstand Diise/Drehpunkt r 0,0054 m
Abstand Steuerkolben/Drehpunkt r3 0,0854 m
Ventiltotzeit Tiot 6,5x 107 S
Maximale Eingangsspannung UV max 10 \Y%
Steuerkammervolumen 1% 2,1916 x 107 m?
Abstand Diise/Prallplatte (in Mittelstellung)  xy 6,5332x 10> m
Maximaler Ventilschieberweg VS.max 42672 x107* m

Tabelle A6-2: Identifizierte Parameter des nichtlinearen Modells fiir die Ventildynamik

nach [Ker21|]
Bezeichnung Symbol Wert Einheit
Eigenfrequenz fv 350 Hz
Déampfungswert Dy 0,5 -
Verstiarkungsfaktor Ky 0,1 -

Tabelle A6-3: Parameter des Verzogerungsglieds zweiter Ordnung fiir die Ventildynamik

Wird das PT2-Glied (3.15) aus Abschnitt [3.1.3] zudem mit empirisch erhobenen Be-
schrinkungen ausgestattet, um seinen Detaillierungsgrad zu erhohen, so lauten diese fiir
die Beschleunigung js < 71,6280 m/s? und fiir die Geschwindigkeit y5 < 0,0965ms™'.
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A6.3 Pendel

Das physikalische Pendel ist ein nichtlineares Anwendungsbeispiel in der Regelungstech-
nik, welches tiblicherweise zur Illustration verschiedener Regelstrategien genutzt wird. Im
Abschnitt[3.2.2) wird das Modell des Pendels (3.18) verwendet, um den Einfluss der Para-
metrierung eines SMOs zu veranschaulichen. Dazu koénnen die physikalischen Parameter

des Systems aus der Tabelle |A6-4| abgelesen werden.

Bezeichnung Symbol Wert Einheit
Masse des Pendels m 1,10 kg
Gravitationskonstante g 9,81 m/s?
Linge des Pendels [ 0,90 m
Triigheitsmoment J 0,89 kg/m?
Déampfungskoeftizient d 0,18 -

Tabelle A6-4: Parameter p des Pendels

A6.4 Einfachpendel auf einem Wagen

Das Einfachpendel auf einem Wagen, welches sich im Labor des Lehrstuhls RtM befindet
und im Abschnitt 4.5] als veranschaulichendes Beispiel genutzt wird, stellt die Erweite-
rung des Pendels durch einen Wagen dar. In der Abbildung ist ein physikalisches
Ersatzbild des Systems zu erkennen. Der Winkel des Pendelarms, die Position des Wagens
sowie deren Geschwindigkeiten werden mit x = (¢, ¢, y, )’ als ZustandsgroBen des Sys-
tems definiert, wobei der Winkel und die Position gemessen werden konnen. Der Eingang
u ist die Beschleunigung des Wagens. AnschlieBend kann das Modell des Einfachpendels

auf einem Wagen mit den Parametern p = (m, g,a, J,d)" durch

X2
am cos(xy)u + mga sin(x;) — dx;
X = J + ma? , (A6-5)
X4

u

y= (Xl, x3)

formuliert werden. Die Parameter des Modells (A6-3)) sind in der Tabelle [A6-3] vermerkt.
Uber eine Zwei-Freiheitsgrade-Struktur werden eine optimale Steuerung fiir den Auf-
schwung sowie ein zeitvarianter Riccati-Regler genutzt, um den Pendelarm in die obere
Ruhelage zu bewegen und dort zu stabilisieren, vgl. [FKL™22; Tra24; TKOT11].
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//////////////////////////////////////
//////////////////////////////////////

Abbildung A6-10: Physikalische Skizze des Einfachpendels auf einem Wagen [Tri24|]

Bezeichnung Symbol Wert Einheit
Masse m 0,654 kg
Gravitationskonstante g 9,810 m/s’
Linge des Pendelarms a 0,250 m
Trigheitsmoment J 0,010 kg/m/s?
Déampfungskonstante d 0,001 Nms

Tabelle A6-5: Parameter p des Einfachpendels auf einem Wagen [Tri24|]

A6.5 Windenergieanlage nach Ritter und Schmitt

Das im Abschnitt 4.3.3] verwendete Beispiel der Windenergieanlage stammt aus [SR20;
R1t20]. Die an dieser Stelle gegebenen Details entstammen folglich diesen Quellen. Die
Koeffizienten zur Beschreibung des Moments bzw. des Schubs konnen somit folgender-

malen bestimmt werden:

CM(/l) = Cm,Z/lz + Cm,l/l + Cm,0» (A6-6)

Cr(d) = c o + i d + ¢y,
wobei das Verhiltnis aus Geschwindigkeit und Drehzahl A in Abhédngigkeit der Zustinde
und der Windgeschwindigkeit durch

sz
Z— X4

A= (A6-7)
definiert ist. Die verwendeten Parameter der obigen Gleichung sowie des Modells (4.19)
sind in der nachfolgenden Tabelle[A6-6]zusammengefasst. In den Abbildungen [A6-11]bis
[A6-13|sind zudem Ergebnisse der Zustandsschitzung dargestellt, wenn der augmentierte
Beobachter nach Abschnittid.4] genutzt wird und der Parameter 7y, welcher die globa-

le Eigenschaft der Diinnbesetztheit beschreibt, zu klein gewihlt worden ist. Dies ldsst



A6.5 Windenergieanlage nach Ritter und Schmitt 223

sich daran erkennen, dass die Zustinde bis auf das bekannte Offset aus Abschnitt4.3]
korrekt geschitzt bzw. angenédhert werden, aber die Schitzung der Windgeschwindigkeit
aufgrund der zu diinnbesetzt modellierten Parameter der Linearkombination nicht zufrie-

denstellend ist.

Bezeichnung Symbol Wert Einheit
Luftdichte o 1,225 kg/m?
Eigenfrequenz der Gondel wo 2,1 Hz
Masse des Turmkopfes mr 450 x 10° kg
Rotorradius R 63 m
Déampfungskoeftizient D 0,01 -
Umsetzungsverhiltnis Lgh 97 -
Trigheitsmoment Q) 4,05 x 10’ kg m?
Reglerverstirkung k, 23,8x 1073 N m/ rpm?
Koeffizient Cmo 10 x 1072 -
Koeffizient Cm.1 -17x 107 -
Koeffizient Cmo -40x 107 -
Koeffizient Cro -16 x 1072 -
Koeffizient il 18 x 1072 -
Koeffizient Cin -77 x 107 -

Tabelle A6-6: Parameter p der Windenergieanlage aus [SR20; Rit20]
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des augmentierten Beobachters nach Abschnitt
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Abbildung A6-13: Approximation Z im Vergleich zur gemessenen Windgeschwindigkeit z









Das Heinz Nixdorf Institut —
Interdisziplinares Forschungszentrum
far Informatik und Technik

Das Heinz Nixdorf Institut ist ein Forschungszentrum der Universitat Paderborn. Es entstand
1987 aus der Initiative und mit Férderung von Heinz Nixdorf. Damit wollte er Ingenieurwis-
senschaften und Informatik zusammenfuhren, um wesentliche Impulse fur neue Produkte und
Dienstleistungen zu erzeugen. Dies schlie8t auch die Wechselwirkungen mit dem gesellschaft-
lichen Umfeld ein.

Die Forschungsarbeit orientiert sich an dem Programm ,,.Dynamik, Vernetzung, Autonomie:
Neue Methoden und Technologien fir die intelligenten technischen Systeme von morgen®. In
der Lehre engagiert sich das Heinz Nixdorf Institut in Studiengéngen der Informatik, der Inge-
nieurwissenschaften und der Wirtschaftswissenschaften.

Heute wirken am Heinz Nixdorf Institut acht Professoren/in mit insgesamt 120 Mitarbeiterin-
nen und Mitarbeitern. Pro Jahr promovieren hier etwa 15 Nachwuchswissenschaftlerinnen und
Nachwuchswissenschaftler.

Heinz Nixdorf Institute —
Interdisciplinary Research Centre
for Computer Science and Technology

The Heinz Nixdorf Institute is a research centre within the University of Paderborn. It was
founded in 1987 initiated and supported by Heinz Nixdorf. By doing so he wanted to create a
symbiosis of computer science and engineering in order to provide critical impetus for new
products and services. This includes interactions with the social environment.

Our research is aligned with the program “Dynamics, Networking, Autonomy: New methods
and technologies for intelligent technical systems of tomorrow”. In training and education the
Heinz Nixdorf Institute is involved in many programs of study at the University of Paderborn.
The superior goal in education and training is to communicate competencies that are critical in
tomorrows economy.

Today eight Professors and 120 researchers work at the Heinz Nixdorf Institute. Per year ap-
proximately 15 young researchers receive a doctorate.






Zuletzt erschienene Bande der Verlagsschriftenreihe des Heinz Nixdorf Instituts

Bd. 397 DREWEL, M.: Systematik zum Einstieg in Bd. 404 OLwmA, S.: Systemtheorie von Hardware-
die Plattformdkonomie. Dissertation, in-the-Loop-Simulationen mit Anwendung
Fakultat fur Maschinenbau, Universitat auf einem Fahrzeugachspruifstand mit
Paderborn, Verlagsschriftenreihe des parallelkinematischem Lastsimulator.
Heinz Nixdorf Instituts, Band 397, Dissertation, Fakultat fir Maschinenbau,
Paderborn, 2021 — ISBN 978-3-947647- Universitat Paderborn, Verlagsschriften-
16-3 reihe des Heinz Nixdorf Instituts, Band

404, Paderborn, 2022 — ISBN 978-3-

Bd. 398 FRANK, M.: Systematik zur Planung des 947647-23-1
organisationalen Wandels zum Smart
Service-Anbieter. Dissertation, Fakultat Bd. 405 FECHTELPETER, C.: Rahmenwerk zur
fiir Maschinenbau, Universitat Paderborn, Gestaltung des Technologietransfers in
Verlagsschriftenreihe des Heinz Nixdorf mittelstdndisch gepragten Innovations-
Instituts, Band 398, Paderborn, 2021 — clustern. Dissertation, Fakultat fur
ISBN 978-3-947647-17-0 Elektrotechnik, Informatik und Mathe-

matik, Universitdt Paderborn, Verlags-

Bd. 399 KOLDEWEY, C.: Systematik zur Entwick- schriftenreihe des Heinz Nixdorf Instituts,
lung von Smart Service-Strategien im Band 405, Paderborn, 2022 — ISBN 978-
produzierenden Gewerbe. Dissertation, 3-947647-24-8
Fakultat fir Maschinenbau, Universitat
Paderborn, Verlagsschriftenreihe des Bd. 406 OLEFF, C.: Proaktives Management von
Heinz Nixdorf Instituts, Band 399, Pader- Anforderungsanderungen in der
born, 2021 — ISBN 978-3-947647-18-7 Entwicklung komplexer technischer

Systeme. Dissertation, Fakultat fir

Bd. 400 GAUSEMEIER, J. (Hrsg.): Vorausschau und Maschinenbau, Universitat Paderborn,
Technologieplanung. 16. Symposium fir Verlagsschriftenreihe des Heinz Nixdorf
Vorausschau und Technologieplanung, Instituts, Band 406, Paderborn, 2022 —
Heinz Nixdorf Institut, 2. und 3. Dezem- ISBN 978-3-947647-25-5
ber 2021, Berlin-Brandenburgische
Akademie der Wissenschaften, Berlin, Bd. 407 JAVED, A. R.: Mixed-Signal Baseband
Verlagsschriftenreine des Heinz Nixdorf Circuit Design for High Data Rate
Instituts, Band 400, Paderborn, 2021 — Wireless Communication in Bulk CMOS
ISBN 978-3-947647-19-4 and SiGe BiCMOS Technologies.

Dissertation, Fakultat fiir Elektrotechnik,

Bd. 401 BReTz, L.: Rahmenwerk zur Planung und Informatik und Mathematik, Universitat
Einfiihrung von Systems Engineering und Paderborn, Verlagsschriftenreihe des
Model-Based Systems Engineering. Heinz Nixdorf Instituts, Band 407, Pader-
Dissertation, Fakultat flr Elektrotechnik, born, 2022 — ISBN 978-3-947647-26-2
Informatik und Mathematik, Universitat
Paderborn, Verlagsschriftenreihe des Bd. 408 DuwmiTRESCU, R, KOLDEWEY, C.: Daten-
Heinz Nixdorf Instituts, Band 401, Pader- gestltzte Projektplanung. Fachbuch.
born, 2021 — ISBN 978-3-947647-20-0 Fakultat fir Elektrotechnik, Informatik und

Mathematik, Universitat Paderborn,

Bd. 402 Wu, L.: Ultrabreitbandige Sampler in Verlagsschriftenreihe des Heinz Nixdorf
SiGe-BiCMOS-Technologie fiir Analog- Instituts, Band 408, Paderborn, 2022 —
Digital-Wandler mit zeitversetzter ISBN 978-3-947647-27-9
Abtastung. Dissertation, Fakultat fur
Elektrotechnik, Informatik und Bd. 409 POHLER, A.: Automatisierte dezentrale
Mathematik, Universitat Paderborn, Produktionssteuerung fiir cyber-
Verlagsschriftenreihe des Heinz Nixdorf physische Produktionssysteme mit digita-
Instituts, Band 402, Paderborn, 2021 — ler Reprasentation der Beschaftigten.
ISBN 978-3-947647-21-7 Dissertation, Fakultat fir Maschinenbau,

Universitat Paderborn, Verlagsschriften-

Bd. 403  HILLEBRAND, M.: Entwicklungssystematik reine des Heinz Nixdorf Instituts, Band
zur Integration von Eigenschaften der 409, Paderborn, 2022 — ISBN 978-3-
Selbstheilung in Intelligente Technische 947647-28-6
Systeme. Dissertation, Fakultat fir
Elektrotechnik, Informatik und
Mathematik, Universitat Paderborn,

Verlagsschriftenreihe des Heinz Nixdorf

Instituts, Band 403, Paderborn, 2021 —

ISBN 978-3-947647-22-4
Bezugsadresse:

Heinz Nixdorf Institut
Universitat Paderborn
Firstenallee 11
33102 Paderborn



Zuletzt erschienene Bande der Verlagsschriftenreihe des Heinz Nixdorf Instituts

Bd. 410 RUDDENKLAU, N.: Hardware-in-the-Loop- Bd. 416 YANG, X.: Eine Methode zur Unterstit-
Simulation von HD-Scheinwerfer-Steuer- zung von Entscheidungen bei der Ent-
geraten zur Entwicklung von Lichtfunk- wicklung modularer Leichtbauprodukte.
tionen in virtuellen Nachtfahrten. Disser- Dissertation, Fakultat fir Maschinenbau,
tation, Fakultat fir Maschinenbau, Universitat Paderborn, Verlagsschriften-
Universitat Paderborn, Verlagsschriften- reihe des Heinz Nixdorf Instituts, Band
reihe des Heinz Nixdorf Instituts, Band 416, Paderborn, 2024 — ISBN 978-3-
410, Paderborn, 2023 — ISBN 978-3- 947647-35-4
947647-29-3

Bd. 417 GRALER, M.: Entwicklung adaptiver Ein-

Bd. 411 BiemELT, P.: Entwurf und Analyse modell- richtassistenzsysteme fiir Produktions-
pradiktiver Regelungsansatze zur Steige- prozesse. Dissertation, Fakultat fir Ma-
rung des Immersionsempfindens in inter- schinenbau, Universitat Paderborn, Ver-
IigtII(\llJ?tgti?]rr]:\S/’Ilan;lcj:lhaitrl]zrrligu[)lljﬁﬁ/ré?gi?gt’ lagsschriftenreihe des Heinz Nixdorf Insti-
Paderborn, Verlagsschriftenreihe des gu;;_sB_ 3?1(71&177_ ,32?1derborn, 2024 - 1SBN
Heinz Nixdorf Instituts, Band 411, Pader-
born, 2023 — ISBN 978-3-947647-30-9 )

Bd. 418 ROsMANN, D.: Menschenzentrierte Mon-

Bd. 412 HAAKE, C.-J., MEYER AUF DER HEIDE, F., tageplanung und -steuerung durch fahig-
PLATZNER, M., WACHSMUTH, H., WEHRHEIM, keitsorientierte Aufgabenzuordnung. Dis-
H. (Eds..): On-The-Fly Computing - Indivi- sertation, Fakultat fir Maschinenbau,
dualized IT-Services in dynamic markets, Universitat Paderborn, Verlagsschriften-
Collaborative Research Centre 901 reihe des Heinz Nixdorf Instituts, Band
(2011 - 2023), Verlagsschriftenreihe des 418, Paderborn, 2024 — ISBN 978-3-
Heinz Nixdorf Instituts, Band 412, Pader- 947647-37-8
born, 2023 — ISBN 978-3-947647-31-6

Bd. 419 BAHMANIAN, M.: Optoelectronic Phase-

Bd. 413 DuUMITRESCU, R.; HOLZLE, K. (Hrsg.): Locked Loop, Theory and Implementa-
Vorausschau und Technologieplanung. tion. I.Dlssertatlon., Fakultat fir EIeI§tro-
17. Symposium fiir Vorausschau und technik, Informatik und Mathematik,
Technologieplanung, Heinz Nixdorf Universitat Paderborn, Verlagsschriften-
Institut, 14./15. September 2023, Berlin- reihe des Heinz Nixdorf Instituts, Band
Brandenburgische Akademie der 419, Paderborn, 2024 — ISBN 978-3-
Wissenschaften, Berlin, Verlagsschriften- 947647-38-5
reihe des Heinz Nixdorf Instituts, Band
413, Paderborn, 2023 — ISBN 978-3- Bd. 420 HEIHOFF-SCHWEDE, J.: Spezifikations-
947647-32-3 technik zur Analyse, Gestaltung und

Bewertung von Engineering-IT-Architek-

Bd. 414 ABUGHANNAM, S.: Low-power Direct- turen. Dissertation, Fakultat fir Elektro-
detection Wake-up Receiver at 2.44 GHz technik, Informatik und Mathematik,
for Wireless Sensor Networks. Disserta- Universitat Paderborn, Verlagsschriften-
tion, Fakultat fir Elektrotechnik, Informa- reihe des Heinz Nixdorf Instituts, Band
tik und Mathematik, Universitat Pader- 420, Paderborn, 2024 — ISBN 978-3-
born, Verlagsschriftenreihe des Heinz 947647-39-2
Nixdorf Instituts, Band 414, Paderborn, )

2024 — ISBN 978-3-947647-33-0 Bd. 421 MEYER, M.: Systematlk zur Planung und
Verwertung von Betriebsdaten-Analysen

Bd. 415 REINHOLD, J.: Systematik zur musterba- in der strategischen Produktplanung. Dis-
sierten Transformation von Wertschép- sertation, Fakultat fir Elektrotechnik, In-
fungssystemen fiir Smart Services. Dis- formatik und Mathematik, Universitat Pa-
sertation, Fakultat fiir Maschinenbau, Uni- derborn, Verlagsschriftenreihe des Heinz
versitat Paderborn, Verlagsschriftenreihe Nixdorf Instituts, Band 421, Paderborn,
des Heinz Nixdorf Instituts, Band 415, Pa- 2024 — ISBN 978-3-947647-40-8
derborn, 2024 — ISBN 978-3-947647-34-7

Bd. 422 MALENA, K.: Konzipierung, Analyse und
Realumsetzung eines mehrstufigen mo-
dellpradiktiven Lichtsignalanlagenrege-
lungssystems. Dissertation, Fakultat fir
Maschinenbau, Universitat Paderborn,
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 422, Paderborn, 2024 —
ISBN 978-3-947647-41-5

Bezugsadresse:

Heinz Nixdorf Institut
Universitat Paderborn
Firstenallee 11
33102 Paderborn






Ziel dieser Arbeit ist die Entwicklung eines modellbasierten Beobachters
fiir eingangsaffine, nichtlineare Systeme, der trotz Modellungenauig-
keiten eine hohe Schatzgiite erzielt und zusatzlich eine parametrische,
physikalisch interpretierbare Darstellung dieser ermdglicht. Diese soll
zur automatisierten Verbesserung des Modells verwendet werden. Die
vorliegende Arbeit analysiert sowohl Techniken der hybriden System-
identifikation wie physikalisch motivierte neuronale Netze, als auch Me-
thoden zur Kompensation von Modellungenauigkeiten im Beobachter-
entwurf. Basierend auf der Analyse wird ein neuartiger, modellbasierter
Beobachter entworfen, der Systemzustande und Modellungenauigkeiten
gleichzeitig schatzt und insbesondere eine parametrische, physikalisch
interpretierbare Darstellung der Ungenauigkeiten erzielt. Diese besteht
aus einer Linearkombination von physikalisch interpretierbaren Funk-
tionen, deren dazugehdrige, diinnbesetzt modellierte Parameter mithil-
fe eines augmentierten Zustands parallel zu den Systemzustanden ge-
schdtzt werden. Das Novum dieser Arbeit stellt somit die echtzeitfahige
Schadtzung von Zustdanden und Modellungenauigkeiten in physikalisch-
technischer Form dar, auf deren Grundlage ein Konzept zur automatisier-
ten Modelladaption umgesetzt wird. Die Applikation der neuartigen Me-
thode ist in der Situation auftretender Systemveranderungen besonders
vorteilhaft, da diese zur Laufzeit durch den augmentierten Beobachter
geschatzt und identifiziert werden kénnen.
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