

Relations Between Observer Viewpoint Gestures and Visual Processing Abilities in Preschoolers

Abstract

5 According to the gesture-as-simulated-action (GSA) framework, simulated visual imagery
6 produces observer viewpoint gestures, whereas simulated motor imagery produces character
7 viewpoint gestures. Although this relation has been reported for adults, little is known about
8 whether it holds for children. Therefore, we conducted a study with 4-year-old children ($M =$
9 50 months, $SD = 3.4$) and hypothesized that children with higher visual processing (Gv)
10 abilities and children with higher fluid intelligence (Gf) would engage more in visual imagery
11 simulation and, therefore, perform a higher rate of observer viewpoint gestures than children
12 with lower Gv or Gf abilities. In the first session, we observed gestures in 39 children across
13 three different communicative tasks. In the second session, we administered a SON-R test to
14 assess children's cognitive abilities. Results revealed strong associations between the
15 frequency with which children used the observer viewpoint in their co-speech gestures and
16 their Gv abilities, but no relation between observer viewpoint gestures and Gf . Because we
17 found this result in all three communicative tasks, we assume it is a general rather than a task-
18 specific phenomenon. We discuss our results in terms of how Gv abilities, and thus observer
19 viewpoint gestures, help children to achieve communicative goals.

20 **Keywords:** GSA framework, iconic gestures, viewpoints, cognitive abilities, mental images

22 **Introduction**

23 Research on gestures reveals a large and growing body of literature on the underlying
24 cognitive mechanisms (e.g., Abramov et al., 2021; Chu & Kita, 2008; Hostetter & Alibali,
25 2008), and there are many theories arguing that the origin of gestures is to be found in mental
26 processes (e.g. Kita & Özyürek, 2003). In this article, we focus on the gesture-as-simulated-
27 action (GSA) framework. This proposes that gestures are tightly coupled to motor and
28 perceptual processes that are likely to be reflected in a speaker's simulated mental imageries
29 (Hostetter & Alibali, 2008, 2019). In this embodied view, when persons reason about objects
30 and events that are currently not present perceptually, they activate similar sensorimotor
31 processes to those that would be involved in actually performing the action or viewing the
32 scene (e.g., Alibali & Kita, 2010; Chu & Kita, 2011; Rizzolatti, Fogassi, & Gallese, 2001;
33 Wilson, 2002). How strongly simulated mental imageries are activated is related to individual
34 differences (see for review: Özer & Göksun, 2020). In their review, Özer and Göksun (2020)
35 point out that most research focuses on children of different ages and on how different verbal
36 skills relate to children's gesture production (Austin & Sweller, 2014; Church, Kelly, &
37 Lynch, 2000; Perry, Church, & Goldin-Meadow, 1992). However, which cognitive abilities
38 drive spontaneous gesture production in early childhood is still unknown (Özer & Göksun,
39 2020). Our study addresses this research gap by investigating how individual differences in
40 cognitive abilities relate to children's iconic co-speech gestures. Iconic co-speech gestures
41 bear semantic information about objects and actions and have been reported to be generated
42 from mental images. We focus specifically on observer viewpoint gestures. These are iconic
43 gestures depicting trajectories of objects from a third-person perspective (McNeill, 1992;
44 Parrill, 2010). The GSA framework assumes that observer viewpoint gestures originate from
45 visual mental imagery (Hostetter & Alibali, 2008). We tested this assumption by relating
46 children's visual processing (Gv) abilities and fluid intelligence (Gf) to their use of observer
47 viewpoint gestures. Gv abilities refer to the ability to manipulate, recall, and think with visual

48 stimuli, whereas *Gf* refers to the ability to solve novel problems, particularly those of a spatial
49 nature (Cattell, 1963; Schretlen et al., 2000). Importantly, both *Gv* abilities and *Gf* have been
50 reported to be involved in the process of visual mental imagery generation from which
51 observer viewpoint gestures are assumed to emerge (Flanagan & Dixon, 2014; Hostetter
52 & Alibali, 2008, 2019; Lohman, 1988; Sassenberg, Foth, Wartenburger, & van der Meer,
53 2011).

54 **Gestures and Mental Imagery**

55 Various studies have investigated how mental images influence people's gesture
56 behavior. Hostetter and Skirving (2011), for example, provided participants with an additional
57 visual or oral presentation of a story and found that in the process of speaking, speakers' co-
58 speech gestures are associated with the perceptual stimuli with which they have experienced
59 an event. Participants who watched and then listened (without pictures) to a story produced
60 more gestures during a retelling task than those who listened to the story twice. This suggests
61 that visual stimuli generate richer mental images, resulting in a greater frequency of gestures
62 during retelling (Hostetter & Skirving, 2011). Other studies have investigated whether a
63 stronger activation of mental imagery during speaking results in a greater production of
64 gestures. Accordingly, Smithson and Nicoladis (2014) asked people to retell a cartoon story
65 while viewing an unrelated visuospatial array that was either complex or simple. The authors
66 found that speakers gestured more while watching the more complex visuospatial array,
67 suggesting that demanding visual input led to an activation of mental imagery that boosted
68 gesture production (Smithson & Nicoladis, 2014). Similarly, Sassenberg and van der Meer
69 (2010) let participants explore a differently complex visuospatial array and studied their
70 descriptions of easy and complicated routes. They found that participants produced more
71 gestures while watching a complex visuospatial array during an easy route's description than
72 when describing a complicated route while experiencing a simple visuospatial array.

73 These findings emphasize that the activation of mental images is an essential part of
74 gesture generation. However, whereas these results indicate that the activation's strength can
75 be influenced externally, it is plausible to argue that it can also be influenced internally by a
76 person's individual cognitive abilities. This argument resonates with findings on individual
77 differences and their relation to the frequency of gestures that speakers perform. Hostetter and
78 Alibali (2007) found that speakers with low verbal but high visualization abilities used
79 representational gestures more frequently than participants with other constellations of visual
80 and verbal skills. This result suggests a possible connection between verbal and spatial skills:
81 When people with low verbal skills but high spatial visualization skills communicate, they
82 seem to draw on their more pronounced spatial abilities, and this ongoing processing
83 increases their gesture frequency (Hostetter & Alibali, 2007). Along these lines, Ehrlich et al.
84 (2006) asked 5-year-old children to explain how they solved a spatial transformation task.
85 They found that it was the children's rate of gestures expressing movements that correlated
86 positively with their spatial abilities. Whereas previous studies have reported on the relation
87 between spatial abilities and gesture production in order to explain individual differences in
88 gesture frequency (Ehrlich et al. 2006; Hostetter & Alibali, 2007), the study by Sassenberg et
89 al. (2011) associated gestures with the more general fluid intelligence (*Gf*)—that is, the ability
90 to understand complex relationships and to solve novel reasoning problems (Cattell, 1963).

91 In their study, Sassenberg et al. (2011) found that compared to students with average
92 *Gf*, students with high *Gf* solved complex spatial tasks faster and more accurately while
93 utilizing more gestures that express movements from an observer perspective. As mentioned
94 above, observer viewpoint gestures are iconic gestures that depict trajectories of objects. The
95 authors concluded that young adults with high *Gf* engage more in visual imagery than their
96 peers with average *Gf*. Hence, the findings of this study indicate a relation between gesture
97 production and a more general cognitive ability—fluid intelligence (Sassenberg et al., 2011).

98 Overall, the literature reviewed above supports the multicomponential processes
99 involved in generating mental images that seem to rely on situational constraints on the one
100 hand and the individual's cognitive abilities on the other. However, the multiple components
101 in this process also concern the kind of mental images that are generated within the
102 production of specific iconic gestures. In the next section, we shall follow up on this
103 component.

104 **Kinds of Mental Images: Viewpoints in Gestures**

105 Recall that the GSA framework proposes that two kinds of gestures need to be
106 differentiated (Hostetter & Alibali, 2008, 2019): Whereas the character viewpoint is suggested
107 to be related to motor imagery—as if the speaker performed the action her- or himself—the
108 observer viewpoint—that is, the way the speaker is watching the events as an outside
109 observer—is related to stimulated visual imagery (Hostetter & Alibali, 2008 p. 504; McNeill,
110 1992). Nonetheless, Parrill (2010) points out convincingly that the viewpoint someone takes
111 when gesturing relates strongly to the corresponding aspects of an event. For example, think
112 of a ball that is thrown and moves through the air until a character catches it with her or his
113 hands. There are aspects of this event that require different descriptions, and these, in turn,
114 elicit different viewpoints in gestures. In her study, Parrill (2010) found that when speakers
115 used gesture to depict a character who is using her or his hands, it was mostly character
116 viewpoint gestures that were elicited, whereas the reference to a movement's trajectories
117 elicited observer viewpoint gestures. More concretely, Parrill (2010) observed that speakers
118 exclusively used character viewpoints in their gestures when referring to someone catching a
119 ball (a motion that requires an agent to use the hands). Referring to this aspect of the event,
120 one speaker mimicked the hands of an observed character and pretended to catch a ball.
121 Mimicking a character's hand is defined as *hand-as-hand* gestures (Cartmill, Rissman,
122 Novack, & Goldin-Meadow, 2017). In contrast, aspects referring to a flying ball elicited
123 exclusively observer viewpoint gestures (Parrill, 2010). Performing such a gesture, a speaker

124 would model the referent (the ball) with her or his hand—which is described as *hand-as-*
125 *object* gestures (Cartmill et al., 2017). However, it has to be noted critically that defining
126 viewpoints by whether the gesturing hand is used as object or hand is problematic. Cartmill et
127 al. (2017) made an important observation that in addition to hand-as-hand gestures, there are
128 specific cases in which character viewpoint gestures can also be performed with hand-as-
129 object gestures. This is the case when the speaker's body is oriented toward the gesture in
130 such a way that suggests a character viewpoint, but the handshape is hand-as-object (Cartmill
131 et al., 2017, p. 44)—for example, depicting how to eat with a spoon while modeling the
132 spoon's shape with the hand (see Table 1). We shall return to this issue when discussing our
133 results.

134 A further study by Parrill and Stec (2018) examined how persons talk about pictures
135 and provided evidence suggesting that exogenous factors such as event structure are closely
136 related to a gesture's viewpoint. The authors analyzed the viewpoint used in gestures
137 according to whether they were performed from a first- or third-person view, and they found
138 that speakers who experienced events from the first-person perspective used character
139 viewpoint gestures at a higher rate than participants who experienced events from a third-
140 person perspective.

141 A study by Sassenberg et al. (2011) also supplements the findings on endogenous
142 factors (cognitive abilities) contributing to mental images: Investigating young adults with
143 high *Gf*, the authors found that when explaining how to solve an analogy task, they performed
144 more gestures from an observer perspective than their peers with average *Gf*. Nonetheless,
145 further supportive evidence for other settings and groups of participants is lacking.

146 Whereas the studies reported so far provide evidence for a relation between mental
147 images and the viewpoint in gesture, another function of viewpoints in gestures that has been
148 discussed recently relates to discourse structure (Debreslioska & Gullberg, 2019; Demir,
149 Levine, & Goldin-Meadow, 2015; McNeill D., 1992; Parrill, 2010). For example,

150 Debreslioska and Gullberg (2019) suggest that the viewpoint in gesture functions as a
151 cohesive device in narrative discourse. More specifically, in a narration, it is necessary to
152 identify “who did what to whom” (Stites & Özçalışkan, 2017, p. 1029). Within this
153 identification of crucial story elements during storytelling, people tend to use character
154 viewpoint gestures if a referent is maintained, whereas they typically perform observer
155 viewpoint gestures to reintroduce a referent. Hence, the gesture’s viewpoint is considered to
156 be an indicator of the accessibility of a character (Debreslioska & Gullberg, 2019). The
157 intriguing point here is that a perspective expressed in the use of gestures might be linked to a
158 specific communicative task: the narration. In this vein, and when investigating
159 developmental effects of the use of viewpoints, Demir et al. (2015) have analyzed how far the
160 use of a particular viewpoint early in the development of narrative competencies predicts later
161 narrative performance. They found that reenacting observed characters by performing
162 character viewpoint gestures at the age of 4 aids children in structuring a retold story more
163 accurately at a later age (Demir et al., 2015). The authors explained that character viewpoint
164 gestures are likely to reflect empathy with observed characters. This empathy might lead to
165 first-person knowledge and, therefore, to a more detailed recall of events (Demir et al., 2015).
166 Beyond this proposed explanation, it is interesting to note that individual differences in the
167 use of a particular viewpoint were predictive of later narration skills. This effect clearly
168 speaks to individual differences requiring further investigation in terms of how the use of
169 viewpoints might be related to what kind of cognitive skills.

170

171

172

173

174 **The Present Study**

175 The following study aims to investigate how individual differences in cognitive
176 abilities relate to the viewpoint in iconic gestures from a developmental perspective. To
177 address this question, we first related children's visual processing (*Gv*) abilities to their use
178 observer viewpoint gestures. *Gv* abilities are responsible for perceiving, analyzing,
179 synthesizing, manipulating, recalling, and thinking with visual patterns and stimuli. This
180 includes spatial relationships, visual memory, and length estimation (Flanagan & Dixon,
181 2014; Lohmann, 1994). Importantly, *Gv* abilities are involved in forming visual mental
182 images (Flanagan & Dixon, 2014) from which, according to the GSA framework, observer
183 viewpoint gestures arise (Hostetter & Alibali, 2008). With this in mind, we assume that the
184 more pronounced a child's *Gv* abilities, the more enriched visual mental images that child will
185 generate, and this will lead to a higher rate of observer viewpoint gestures. Second, we aimed
186 to explore the relation between gestures and the more general cognitive ability of fluid
187 intelligence (*Gf*) reported by Sassenberg et al. (2011) further and investigate it in children
188 performing other tasks. As mentioned above, Sassenberg et al. (2011) showed that when
189 talking about solving a geometric analogy task, adults with high *Gf* performed more gestures
190 that express movements from an observer perspective than adults with average *Gf*. From this,
191 we hypothesized that children with higher *Gf* would perform observer viewpoint gestures at a
192 higher rate than children with lower *Gf*. Hence, we can use our study to test another group of
193 participants (children at the age of 4 years) when performing different communicative tasks.
194 Relating children's cognitive abilities to their use of gestures across different tasks allows us
195 to argue that there are specific or general underlying cognitive mechanisms that lead to the
196 performance of observer viewpoint gestures. The tasks in our study differ in their content,
197 which is crucial, because iconic gestures contain the semantic content of the referent to which
198 they refer (McNeill, 1992). Please note, the tasks were designed for a project which focus on
199 children's iconic gestures in different communicative genres. Each genre imposes its own

200 demands, and children need to organize their talk appropriately (Labov & Waletsky, 1973;
201 Mandler, 1984, Quasthoff et al., 2017). In this article, we use task synonymously for genre.
202 To sum up, research in recent years has focused on how children's individual differences
203 influence their gesture production. Despite the growing interest in this research area, it is still
204 widely unknown how children's gesture behavior is associated with their cognitive abilities.
205 Our study aimed to relate children's observer viewpoint gestures to their *Gv* and *Gf* cognitive
206 abilities, because these have both been reported to be involved in visual mental image
207 generation. The relation of the investigated cognitive abilities to visual mental images is
208 important because, according to the GSA framework, observer viewpoint gestures arise from
209 visual mental imagery. However, it is also crucial to note that not only such endogenous
210 factors as cognitive abilities but also exogenous factors are involved in visual mental image
211 generation and, thus, in gesture production. With this in mind, we elicited children's gestures
212 in three tasks that differed in their exogenous factors. Analyzing the relation of children's
213 cognitive abilities to their gesture behavior in various tasks allows us to argue that there are
214 general or more specific underlying cognitive mechanisms.

215 **Method**

216 **Participants**

217 Fifty-five preschool children from the regions of Bielefeld and Paderborn (North-
218 Rhine Westphalia, Germany) participated in this study. Their ages ranged from 45 to 61
219 months ($M = 50$ months, $SD = 3.4$). Based on a pilot study, we considered 4 years to be the
220 earliest age at which children's iconic gestures as co-speech gestures can be elicited reliably
221 and under comparable conditions. Sixteen children had to be excluded for the following
222 reasons: a deviation from the procedure specified for the communicative task of retelling (7
223 children), and failure to schedule the second appointment at which the intelligence test SON-

224 R was administered (9 children). Children received a book or DVD after the first appointment
225 as reimbursement for their participation and a small toy after the second appointment.

226 **Procedure**

227 The study consisted of two sessions. Each was scheduled on a separate day within one
228 month but at least two weeks apart. Both appointments were in the lab, and the children were
229 invited together with their caregiver.

230 In accordance with Bielefeld University's ethics procedures for research with children,
231 parents provided written consent to their children's participation at the first session. The
232 children also provided verbal consent before participating. Additionally, they were informed
233 that they could break off the interaction at any time.

234 At the first session, children performed on three communicative tasks (explanation,
235 retelling, and illustration) in which both the experimenter and the caregiver were engaged.
236 Each task was designed under two conditions to investigate the influence of possible
237 exogenous factors. In the following, however, we shall focus on children's gesture behavior
238 without considering the different conditions, because we found no significant differences in
239 the children's proportions of viewpoints in gesture between the conditions. Children were
240 assigned to one of the conditions before the start of the first session (see below for a more
241 detailed description of the communicative tasks).

242 At the second appointment, we administered the nonverbal intelligence test SON-R
243 (Tellegen et al., 2007). This test aims to measure children's visual processing abilities (*Gv*)
244 and fluid intelligence (*Gf*) (Mickley & Renner, 2010, 2019).

245

246

247

248

249 **Communicative Tasks**

250 During the communicative tasks, children interacted with a caregiver, because an
251 extensive pilot study in which we explored the conditions under which children gesture the
252 most revealed that interaction with a caregiver allowed children to communicate in a familiar
253 way. This elicited a more natural gesture behavior that we expected would reflect the
254 children's ability more accurately. Indeed, at this age, when communicating, children are
255 often scaffolded in their verbal productions. Caregivers do this in a fine-tuned way. In all
256 communicative tasks, we followed a method of providing input first and eliciting
257 communication afterward. More specifically, children first experienced an event with the
258 experimenter while caregivers waited outside the room where they were given some
259 instructions to read. Afterwards, the children could then communicate the event to their
260 caregivers. The experimenter's role was thus to provide the child with experiences worth
261 telling or to initiate the conversation between child and caregiver. The experimenter used a
262 script for this to achieve better comparability across participants. We should highlight that we
263 controlled the caregiver's behavior only very slightly by providing some written explanations
264 and prompts. These suggestions were applied immediately before the interaction commenced.
265 In total, three communicative tasks were designed to assess children's gestural behavior:
266 explanation, retelling, and illustration.

267 **Explanation.** The study followed a fixed order of communicative tasks starting with
268 explanation. After a warm-up time and filling out the consent form, the experimenter asked
269 the parent to leave the room and told the child that they would be playing a game. Then, the
270 experimenter introduced a self-made jigsaw puzzle to the child and explained the rules. Two
271 conditions were designed for the experimenter's explanation: In one condition, the
272 experimenter explained the game mostly verbally; in the other condition, children received the
273 same verbal introduction supported by iconic gestures (see SUPPLEMENTARY ITEMS).
274 The original aim of these conditions was to investigate possible alignment effects (Bergmann

275 & Kopp, 2012). As for the goal of this game, the child was told that all the pieces of the
276 puzzle needed to be removed from the board. The puzzle pieces depicted parts of a little town
277 at night on the board (see SUPPLEMENTARY ITEMS). The puzzle pieces could be removed
278 by a Playmobil[©] figure “flying” over them. To make the figure fly, the child was allowed to
279 throw a dice six times. The sides of the dice represented the different shapes of the little town
280 and the sky. After the child threw the dice for the sixth time, the experimenter initiated the
281 end of the game with the question, “Has the figure flown everywhere?” If the child answered
282 “yes,” the experimenter replied, “That’s great!” If the child answered “no,” the experimenter
283 replied “No? Well, maybe next time!” After finishing the game, the experimenter put it away
284 and asked the caregiver to reenter the room. They then all sat down on cushions on the floor
285 together. The experimenter asked the child to explain the game to the caregiver so that she or
286 he could play it. After successfully initiating the children’s explanation, the experimenter left
287 the room.

288 **Retelling.** The retelling task was prepared one day before the family arrived at the lab.
289 Families were contacted via post one to two days before they came to the lab and sent a
290 German version of a commercially available book or DVD with the story of a mole (“The
291 mole and the green star” by Doskočilová et al., 1998/2013). In the letter accompanying either
292 the DVD or the book, families were instructed to watch the movie or read the book one day
293 before visiting us in our lab. Importantly, we asked that another caregiver than the one who
294 would be visiting the lab should participate in the home activity with the child. This gave a
295 valid pragmatic justification for the child to tell the story to the caregiver who visited the lab.

296 To initiate the retelling task, the experimenter reentered the room after hearing that the
297 child had completed the explanation (the first task). The child and caregiver remained in the
298 same sitting constellation. Then, the experimenter initiated the retelling by saying “The game
299 that we just played reminds me of the star found by a mole. Do you know this story? Did you
300 see/read the story with your [another caregiver]? Could you retell it for your mother/father?”

301 After the child started her or his retelling from the book or DVD, the experimenter left the
302 room again. The motivation for having two different conditions (book/video) was to
303 investigate whether visual stimuli evoke more gestures than verbal stimuli (Hostetter &
304 Hopkins, 2002).

305 **Illustration with examples.** Finally, after hearing that the child had finished her or his
306 retelling, the experimenter reentered the room and asked the caregiver to wait outside. Then,
307 the experimenter and the child sat down at a table. There, the experimenter used a hand
308 puppet (a dog) to perform some actions. A cover story was used for this performance with the
309 experimenter introducing the dog as a knowledgeable animal that is proud to demonstrate
310 what it knows about humans because it has already been living with them for a long time. In
311 total, the dog demonstrated five daily situations. However, in each case, the dog did
312 something inappropriate. This inappropriateness was surprising and, therefore, funny to the
313 children. For example, the dog demonstrated how to eat from a plate with a spoon but held the
314 spoon the wrong way round. After each demonstration, the dog asked, “Do I know/did I do it
315 right?” Usually, the children were amused and were eager to correct the dog. Children’s
316 corrections were designed to follow two conditions: In one condition, children were
317 encouraged to stand up, walk to the dog, and show how to perform the actions correctly. In
318 the other condition, children were asked to remain seated and to describe the appropriate
319 actions verbally. The two conditions aimed to explore whether a performed action affects how
320 children gesture about this event afterward. In this case, the condition in which children were
321 allowed to walk over to the dog and to enact the action directly should stimulate their later
322 gesture production. After the five events, the experimenter put the dog away, and the
323 caregiver was invited to reenter the room. While waiting outside, the caregiver had been given
324 some written instructions on what type of question to ask the child (see SUPPLEMENTARY
325 ITEMS). Again, the caregiver and child sat down on the cushions on the floor, and the
326 experimenter encouraged the child to report what she or he just experienced with the dog by

327 asking, for example, “Can you tell your father/mother what the dog did?” Then, the
328 experimenter left the room.

329 **Stimuli**

330 **Explanation.** For the explanation, a game board, a Playmobil figure, and a dice with
331 five forms and a blank side on it were used. The game was designed to contain puzzle pieces
332 with the same shapes as the dice (star, rectangle, triangle, circle, moon) that would give rise to
333 many depicting gestures. In one condition, the game was explained to the child with iconic
334 gestures; in the other, without iconic gestures. In the gesture condition, the experimenter
335 performed a total of 7 iconic gestures: For all shapes on the board game (5) as well as for
336 flying through a shape on the board game and for not allowing the child to fly with the figure
337 (see, for a more detailed description, Kern, (2020)).

338 **Retelling.** For retelling, one condition used a movie; the other, a book. Both media are
339 commercially available and about the same story: “The mole and the green star.” The film
340 lasts about 7 min with colored moving pictures but no speech. The book contains selected
341 static pictures of the movie, but most of the story is narrated in continuous text. The story is
342 about a mole who finds a green star. He tries to pin the star back to the sky with the help of
343 other animals. After several attempts have failed, the star is stolen by a magpie. Once the
344 mole has retrieved the star, he finally manages to attach it to the sky with the help of the
345 moon.

346 **Illustration with examples.** All of the five actions that the experimenter performed
347 with the hand puppet are summarized in the SUPPLEMENTARY ITEMS. For these actions,
348 the experimenter acted on additional objects and followed a fixed order reported in the
349 SUPPLEMENTARY ITEMS.

350

351 **Intelligence Test**

352 At a second session, approximately two weeks after the first, we administered the
353 nonverbal intelligence test SON-R (Tellegen, Laros, & Petermann, 2007). For the children's
354 comfort, their caregiver was continuously present in the room but outside the child's field of
355 view. To ensure comparability, caregivers were instructed not to interfere in the test situation.

356 The SON-R intelligence test is designed to measure visuospatial abilities (subscale PS
357 IQ) and abstract and concrete reasoning (subscale RS IQ). According to the Cattell–Horn–
358 Carroll (CHC) theory, the subscale PS IQ assesses visual processing, whereas the subscale RS
359 IQ assesses fluid intelligence (*Gf*) (Mickley & Renner, 2010, 2019). During the testing
360 procedure, feedback from the experimenter is accepted to a certain extent, because the
361 interaction between tester and child is considered to be behavior providing a natural
362 environment for children to demonstrate their cognitive abilities (Laros & Tellegen, 2015).

363 **Table 1**

364 Structure of the non-verbal intelligence test SON-R (Mickley & Renner, 2010, 2019; Tellegen
365 et al., 2007)

Subscales	Test items	Measures
Visual Processing (PS IQ)	Drawing patterns	Visuo-motor skills; action planning; spatial thinking; (the ability to perceive and reproduce spatial position and the arrangement of a figure in a differentiated way)
	Mosaics	Thinking in spatial relationships (ability to grasp form relations between parts and the whole and act according to the template and synthesis of the individual parts)
	Puzzles	Analytical and synthetic thinking (perception of space-situation and figure-ground relationships, but also the child's environmental experiences)
Fluid Reasoning (RS IQ)	Situations	Concrete reasoning in concrete situations
	Categories	Abstract thinking and derive principles of order, grouping objects into categories according to common characteristics
	Analogies	Abstract thinking and deductive thinking (recognizing and applying sorting principles, recognizing and reproducing analogies and regularities)

366

367

368

369

370 **Coding**

371 **Speech.** Within the explanation, retelling, and illustration tasks, children's speech was
372 transcribed and segmented into intonation phrases (Selting et al., 2009). Intonation phrases
373 were used to control for the children's verbosity (number of gestures divided by intonation
374 phrases), because they were not given a time limit resulting in a wide variation in the number
375 of utterances produced. To account for this variation, we divided the number of gestures that
376 the children used by the number of intonation phrases they produced.

377 **Gesture.** We identified iconic gestures using the taxonomy given by Cartmill et al.
378 (2017) who categorize iconic gestures into *hand-as-hand*, *hand-as-object*, and *hand-as-*
379 *neutral* gestures:

- 380 1. Hand-as-hand gestures occur when an action is mirrored (e.g., the action of
381 brushing teeth is performed as if somebody were holding and using a toothbrush).
- 382 2. Hand-as-object gestures stand for an object (e.g., the index finger is standing for the
383 toothbrush and the performer moves it as if she or he were brushing the teeth).
- 384 3. Hand-as-neutral (also called tracer gestures) are performed with a pointing finger
385 but provide some symbolic information by drawing the shape or the movement in the air.

386 We applied this taxonomy for three reasons: First, it was developed to assess behavior
387 in children (in contrast to adults). Second, the taxonomy helps to identify semantic
388 information in hand movements and, therefore, it distinguishes iconic gestures from other
389 types and hand movements. Third, this taxonomy aided us in our second coding step, which
390 was to identify the gesture's viewpoint.

391 Within iconic gestures, four different viewpoints can be differentiated (McNeill,
392 1992): the character viewpoint (C-VPT), the observer viewpoint (O-VPT), the dual viewpoint,
393 or no viewpoint. The taxonomy of "*hand-as-*" gestures is similar to that of viewpoints in

394 gesture, but not identical. For example, hand-as-hand gestures are generally considered
395 character viewpoint gestures, because both gesture types reflect how to handle an object.
396 However, *hand-as-object* gestures can also be used from the first-person perspective—for
397 example, if the speaker models a spoon with her or his hands and pretends to eat with this
398 spoon. In contrast to first-person perspective gestures, observer viewpoint gestures are mostly
399 *hand-as-object* gestures and *hand-as-neutral* gestures (Parrill, 2010). Gestures are considered
400 observer perspective gestures when they depict the trajectory of an object's movement. A
401 typical example of an observer viewpoint gesture is to show how an object falls. *Hand-as-*
402 *neutral* gestures are considered observer viewpoint gestures when they depict an object's
403 trajectory without modeling the object (Parrill, 2010).

404 **Table 2**

405 *Possible Hand Types With Which a Specific Viewpoint in Gesture Can Be Performed*

Hand type	Viewpoints	
	Character viewpoint	Observer viewpoint
Hand-as-hand	Hand-as-object	
Hand-as-object		Neutral (drawing)

407
408
409 The ‘no-viewpoint’ type of gestures are performed with *hand-as-neutral* gestures and
410 mostly depict the shape of an object. The dual-viewpoint type of gestures represents gestures
411 expressing the O-VPT and the C-VPT simultaneously. However, because no-viewpoint and
412 dual-viewpoint gestures rarely occurred in our data, we excluded these categories from further
413 analysis.

414 Two independent coders assessed the reliability of coding different viewpoints in
415 gesture on 10% of the data. Using Cohen's Kappa (Cohen, 1960) to measure interrater

416 reliability, we found a substantial agreement for viewpoints within gestures of $k = .79$ (Landis
417 & Koch, 1977). More specifically, there was an agreement of $k = .83$ for character viewpoint
418 gestures and $k = .75$ for observer viewpoint gestures.

419 **Data Analysis**

420 We analyzed children's gesture behavior in two steps. First, we applied two separate
421 repeated measures ANOVAs. One ANOVA was conducted with the independent variable
422 "communicative tasks" (explanation, retelling, illustration) in order to test effects on iconic
423 gesture frequency. For the second ANOVA, we used the variable "communicative tasks" as
424 the independent variable, while testing for effects on the rate of character and observer
425 viewpoint gestures. Greenhouse-Geisser corrections were applied where necessary.
426 Significant interaction effects were resolved by Bonferroni-corrected post hoc pairwise
427 comparisons.

428 Second, we conducted several linear regressions with children's achieved scores for
429 G_v and G_f as independent variables and children's frequency of iconic, character viewpoint
430 and observer viewpoint gestures as dependent variables.

431

432 **Results**

433 In the following, we shall first report on children's gesture behavior within and
434 between the three communicative tasks—explanation, retelling, and illustration—before
435 moving to the analysis of children's cognitive abilities.

436 **Communicative Tasks**

437 We conducted a repeated measures ANOVA with the proportion of iconic gestures as
438 the dependent variable and the three different communication tasks (explanation, retelling,
439 illustration) as independent variables to analyze children's gestures in the communicative

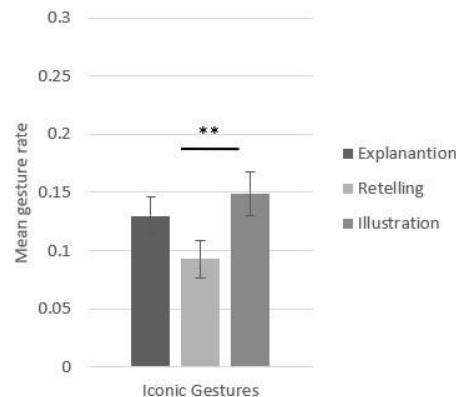
440 tasks. There was a significant intermediate effect for the task variable, $F(2, 76) = 4.74 p < .05$,
441 $\eta^2 = .11$, indicating that the proportion of iconic gestures differed according to tasks.
442 Bonferroni-corrected post hoc pairwise comparisons revealed that iconic gestures were
443 performed significantly more frequently in the illustration task than in the retelling task
444 ($p < .01$; see Figure 1).

445 Next, we analyzed whether the viewpoint children adopted in iconic gestures differed
446 between and within tasks. A repeated measures ANOVA with two viewpoints (character
447 viewpoint vs. observer viewpoint) as dependent variables and the three tasks (explanation,
448 retelling, and illustration) as independent variable revealed a significant interaction effect,
449 $F(2, 76) = 20.13, p < .01, \eta^2 = .35$, indicating that there was a different rate of specific
450 viewpoints in gesture between and within tasks. Bonferroni-corrected post hoc pairwise
451 comparisons revealed that character viewpoint gestures occurred more frequently in the
452 illustration task than in explanation and retelling ($p < .01$). With respect to observer viewpoint
453 gestures, Bonferroni-corrected post hoc pairwise comparisons revealed a higher rate of
454 observer viewpoints in explanation than in retelling and illustration ($p < .01$). Turning to
455 differences within tasks, Bonferroni-corrected post hoc pairwise comparisons showed that
456 character viewpoint gestures were more frequent than observer viewpoints in the illustration
457 task ($p < .01$). No differences in the proportion of a specific viewpoint in gesture were found
458 in either explanation or retelling (see Figure 1).

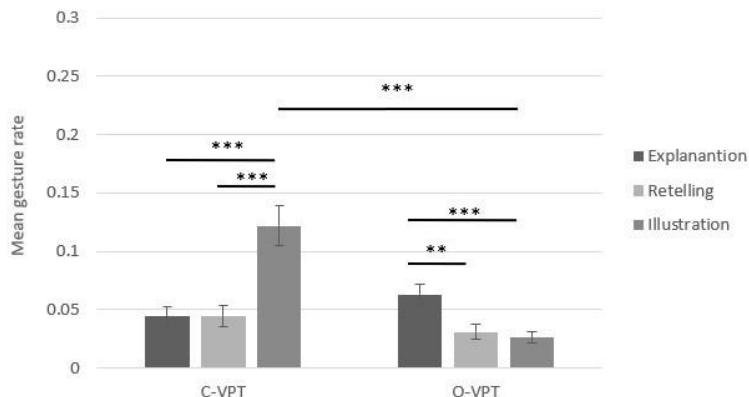
459

460

461


462

463


464 **Figure 1**

465 *Mean Gesture Rates (SE) for (A) Iconic Gestures and for (B) Character Viewpoint (C-VPT)*
466 *and Observer Viewpoint (O-VPT) Gestures Within the Explanation, Retelling, and Illustration*
467 *Tasks*

468 (A)

(B)

469

470 *Note.* Number of gestures divided by intonation phrases. * $p < .05$. ** $p < .01$. *** $p < .001$.

471

472 In summary, we found considerable variance in the proportion of gestural viewpoints
473 distributed both across and within tasks. The explanation task elicited proportionally more
474 observer viewpoint gestures than the retelling and illustration tasks. Character viewpoint
475 gestures occurred proportionally more often in the illustration task than in other tasks.
476 Moreover, children performed proportionally more character viewpoint gestures than observer
477 viewpoint gestures in the illustration task.

478 **Gestures and SON-R Scores**

479 In the next step, we analyzed whether children's cognitive abilities related to their
480 gesture behavior by relating children's scores on the subscales of the nonverbal intelligence
481 test SON-R to their proportions of viewpoints adopted in iconic gestures. The SON-R consists
482 of the subscales SON-PS (visual processing) and SON-RS (fluid intelligence). We analyzed

483 whether the subscales predicted the variance in character viewpoint and observer viewpoint
484 gestures.

485 **Visual Processing**

486 To investigate relations between children's *Gv* (visual processing) score and their
487 gesture production, we conducted several linear regression analyses using children's achieved
488 scores within the subscale for visual processing (SON-PS) as independent variable and the
489 proportion of iconic gestures as well as character viewpoint and observer viewpoint gestures
490 as dependent variables (see Table 3). First, we related children's *Gv* scores to their rate of
491 iconic gestures. We found no effect within all three tasks, indicating that children's *Gv* score
492 could not predict the variance in children's proportions of iconic gestures. Zooming into the
493 gestural viewpoints, we applied a linear regression and used observer viewpoint gestures as a
494 dependent variable (see Table 3). This revealed that children's visual processing scores
495 significantly predicted their rate of proportionally used observer viewpoint gestures within all
496 three tasks. More specifically, within the explanation task, 14.9% of the variation in children's
497 use of observer viewpoint gestures could be explained by children's *Gv* score,
498 $F(1, 37) = 6.46, p < .05$. Within the retelling task, 29% of the variation in observer viewpoint
499 gestures could be explained by children's *Gv* score, $F(1, 37) = 15.08, p < .001$. Finally, within
500 the illustration task, 10% of the variation in children's use of observer viewpoint gestures was
501 explained by children's *Gv* score, $F(1, 37) = 4.15, p < .05$. In contrast, the linear regression
502 analyses for character viewpoint did not yield statistically significant predictions.

503 In sum, we found no general relation between children's *Gv* abilities and the
504 occurrence of iconic gestures. However, separating iconic gestures into different viewpoints
505 yielded the result that children's *Gv* abilities predicted the proportional use of observer
506 viewpoint in all three tasks.

507

508 **Fluid Intelligence**

509 To investigate how children's fluid intelligence (*Gf*) related to their iconic gesture
 510 behavior, we conducted linear regressions using children's scores on the subscale for *Gf* as an
 511 independent variable. The dependent variable was, first, children's rate of iconic gestures in
 512 general and, second, the two viewpoints in gestures. Results showed that children's fluid
 513 intelligence did not predict their iconic gesture behavior (see Table 3).

514 **Table 3**

515 *Relation of Children's Visual Processing (Gv) and Fluid Intelligence (Gf) to Iconic Gestures*
 516 *in General and Specifically to Character and Observer Viewpoint Gestures*

Explanation

Predictor	Iconic		C-VPT		O-VPT	
	R	R ² - Change	R	R ² - Change	R	R ² - Change
Gv	.29	.09	.14	.02	.38	.15*
Gf	.08	.01	.10	.01	.14	.02

Retelling

Predictor	Iconic		C-VPT		O-VPT	
	R	R ² - Change	R	R ² - Change	R	R ² - Change
Gv	.30	.09	.16	.03	.54	.29***
Gf	.11	.01	.09	.01	.16	.03

Illustration

Predictor	Iconic		C-VPT		O-VPT	
	R	R ² - Change	R	R ² - Change	R	R ² - Change
Gv	.22	.05	.13	.02	.32	.10*
Gf	.19	.04	.10	.01	.31	.09

518 *p* < .05. ** *p* < .01. *** *p* < .001.

519

520

521

522

Discussion

524 The gesture-as-simulated-action (GSA) framework proposes that the viewpoints
525 adopted in iconic co-speech gestures relate to simulated mental images. Specifically, GSA
526 proposes that observer viewpoint gestures arise from underlying visual imagery, whereas
527 character viewpoint gestures arise from motor imagery (Hostetter & Alibali, 2008). In this
528 article, we investigated how cognitive abilities as endogenous factors influence gestures in
529 terms of the viewpoint children apply in their iconic co-speech gestures. We did this by
530 conducting a study in which we related children's visual processing abilities (*Gv*) and fluid
531 intelligence (*Gf*) to their use of observer viewpoint gestures. We carefully designed three
532 communicative tasks: explanation, retelling, and illustration. In these tasks, children
533 interacted with their caregivers to elicit a natural communication behavior. To assess
534 children's *Gv* and *Gf* abilities, we administered a nonverbal intelligence test during a separate
535 session.

536 First, we examined the relationship between children's visual processing (*Gv*) abilities
537 and children's use of observer viewpoint gestures. To remind the reader, *Gv* abilities refer to
538 the ability to generate, store, and manipulate visual mental images (Flanagan & Dixon, 2014).
539 We hypothesized that children with higher *Gv* abilities would engage more with simulated
540 visual mental images leading to a higher rate of observer viewpoint gestures during
541 communication. Confirming our hypotheses, linear regressions showed that children's *Gv*
542 abilities were associated positively with the frequency of observer viewpoint gestures within
543 all three communicative tasks. This means that the higher children's *Gv* abilities, the higher
544 the expected frequency of their observer viewpoint gestures. We have to highlight the fact
545 that—despite crucially different tasks with respect to children's speech production, the
546 requirements to involve mental imagery, and the scaffolding that is possible by caregivers—the
547 relation persisted across the different communicative tasks, yielding a quite general
548 mechanism that is applied in all of them. To the best of our knowledge, our study is among

549 the first to investigate possible differences in different forms of discourse systematically as a
550 basis with which to account for specific or more general cognitive task requirements.

551 Second, we aimed to extend Sassenberg et al.'s (2011) findings suggesting that young
552 adults with high fluid intelligence (*Gf*) use more gestures from an observer perspective than
553 speakers with average fluid intelligence. We hypothesized that children with higher *Gf* would
554 engage more strongly in visual imagery than their peers with lower *Gf*, leading to a higher rate
555 of observer viewpoint gestures. Our results do not confirm this assumption. As a result, we
556 suggest that the relation between *Gf* and observer viewpoint is a task-specific phenomenon or
557 applies only to adults.

558 Our analyses reveal that the children's rate of observer viewpoint gestures increased
559 linearly with children's *Gv* abilities in all three tasks. This finding allows us to reason that *Gv*
560 abilities relate to the activations of simulated visual mental images from which observer
561 viewpoints arise (Hostetter & Alibali, 2008). The tasks' situational constraints and events
562 differed strongly in our study, which is reflected in how the tasks varied in eliciting specific
563 viewpoints in gesture (see Figure 1). The fact that children's *Gv* abilities could be associated
564 with observer viewpoint gestures within all three tasks indicates that this relation is a general
565 rather than a task-specific phenomenon. While speaking, children engage with respect to their
566 *Gv* abilities in visual mental simulations that they express in observer viewpoint gestures.
567 Additionally, it indicates that a child's current gesture threshold can be surpassed more easily
568 with a higher activation level (Hostetter & Alibali, 2008). According to the GSA framework,
569 the production of a gesture depends not only on the strength of a mental simulation but also
570 on the current gesture threshold. The gesture threshold is conceptualized as the speaker's
571 current resistance to producing a gesture and is considered to be variable. The actual level of
572 the threshold depends on dispositional and situational factors (Hostetter & Alibali, 2008). Our
573 results within all three tasks indicate that the higher the activations of mental simulations the
574 more likely the current threshold will be surpassed, leading to gesture production.

575 Overall, our results align with research arguing that the form and functions of gestures
576 originate not only from exogenous factors but also from thinking processes as an endogenous
577 factor (e.g., Chu & Kita, 2011; Ehrlich, Levine, & Goldin-Meadow, 2006). Depending on
578 their *Gv* abilities, children seem to simulate visual mental imagery with sufficient strength to
579 surpass their gestures threshold and thus produce observer viewpoint gestures (Hostetter &
580 Alibali, 2008; 2019). Although we found strong evidence for this relation, we did not
581 investigate how it affects children's communication. One possibility is that children with
582 higher *Gv* are more likely to depict aspects of an event in gesture from an observer
583 perspective than from a first-person perspective. For example, to show how someone climbs a
584 ladder, the speaker could depict the upwards movement of the character in the gesture
585 (observer viewpoint) instead of showing the actual movements of the hands for climbing
586 (character viewpoint). In other words, an event that can be performed in gesture from a
587 character or an observer viewpoint is more likely to be performed from an observer viewpoint
588 when a child's *Gv* is high. Another reason that children with higher *Gv* perform more
589 observer viewpoint gestures might be that they choose to talk more about particular aspects of
590 an event, and these aspects predominantly elicit observer viewpoint gestures. Aspects of
591 events that elicit observer viewpoint gestures refer to trajectories of objects with no motor
592 actions involved (Parrill, 2010). It seems reasonable that children with higher *Gv* recall such
593 spatial events more efficiently than events in which actions of the body are in focus.
594 Consequently, children with higher *Gv* address more spatial events involving trajectories of
595 objects than events with motoric content in their speech, and this, in turn, leads to a higher
596 frequency of observer viewpoint gestures.

597 Another function of observer viewpoint gestures is suggested by Cartmill et al. (2012).
598 This function is linked to children's cognitive load, because visuospatial mental simulations
599 do not have to be retained in working memory when gesturing (Cartmill, Beilock, & Goldin-
600 Meadow, 2012). Thanks to gestures, visuospatial mental simulations can be projected to an

601 external space providing external visual cues that can be used to keep task-related visuospatial
602 information active in working memory. This mechanism is considered to decrease the
603 speaker's cognitive load (Cook, Yip, & Goldin-Meadow, 2012; Goldin-Meadow, Nusbaum,
604 Kelly, & Wagner, 2001). Along these lines, Cartmill et al. (2012) argue that especially
605 observer viewpoint gestures are likely to decrease a speaker's cognitive load because the
606 object is represented by the speaker's hand (hand-as-object gesture). This form of
607 representation allows for some cognitive offloading, because the object does not need to be
608 represented mentally. In contrast, when performing character viewpoint gestures, objects are
609 mostly presented imaginatively with a hand-as-hand gesture. This form of representation
610 implies that the imaginary object will be maintained in the speaker's mind (Cartmill et al.,
611 2012). Following this argumentation, it seems reasonable that children who produce observer
612 viewpoint gestures at a higher rate due to their pronounced *Gv* abilities free up more cognitive
613 resources than children with lower *Gv* abilities. Thus, performing observer viewpoint gestures
614 might benefit children in reaching communicative goals in two ways: On the one hand,
615 children provide the listener with task-relevant information through observer viewpoint
616 gestures; on the other hand, they can devote more cognitive effort into recalling and
617 structuring the content of the given task. It should be noted, however, that due to our coding
618 schema, children also performed character viewpoint gestures in which the object is modeled
619 by the speaker's hand (e.g., modeling a spoon and pretending to eat with it). This point is
620 critical in terms of not only how different viewpoints in gesture might decrease a child's
621 cognitive load but also from what kind of mental images a gesture emerges. The GSA
622 framework assumes that character viewpoint gestures arise from simulated motoric mental
623 images. This implies a view in which character viewpoint gestures are always performed with
624 (and defined by) hand-as-hand gestures, because hand-as-hand gestures reflect a hand's
625 motoric behavior. In our view, however, the speaker's conceptual perspective on aspects of an
626 event cannot be determined by analyzing the speaker's hand type alone (hand-as-hand vs.

627 hand-as-object). It is also critical to include the speaker's gaze, body orientation, and how the
628 hands move in relation to the speaker's body (Cartmill et al., 2017; Frederiksen, 2017; Stec,
629 2012). In this vein, Cartmill et al. (2017, p. 44) argue that character viewpoint gestures are
630 gestures in which "the gesture is located in space using the body as a frame of reference in a
631 way that suggests a character viewpoint, but the handshape is hand-as-object." (Cartmill et al.,
632 2017, p. 44). Investigations that blend gestures ("character viewpoint gestures" that are
633 performed with hand-as-object gestures) and character viewpoint gestures with hand-as-hand
634 gestures are functionally similar and belong to the same cognitive mechanism are currently
635 lacking in the relevant literature. Further studies that take the different hand types into account
636 will need to investigate how cognitive abilities and, therefore, mental images relate to
637 character viewpoint gestures.

638 Our second hypothesis was motivated by Sassenberg et al.'s (2011) study. They found
639 that students with high *Gf* used more gestures from an observer perspective than students with
640 average *Gf* while explaining strategies to solve analogical reasoning tasks. Individuals with
641 high fluid intelligence perform well on such tasks (Raven, 1958; Vernon, 1983). The
642 proposed explanation states that people with high *Gf* are assumed to focus very efficiently on
643 task-relevant information (Sassenberg et al., 2011). Along these lines, Sassenberg et al. (2011)
644 argued that young adults with high *Gf* focused more on the rotational movements of the object
645 during the task. This was indicated in their hand gestures during their explanation. However,
646 our second hypothesis suggesting that children with higher fluid intelligence (*Gf*) would
647 perform a higher rate of observer viewpoint gestures than children with lower *Gf* could not be
648 confirmed. One explanation for our result is that in contrast to the analogical reasoning task
649 applied in Sassenberg et al. (2011), the children in our study were exposed to tasks that did
650 not focus exclusively on spatial information. We thus suggest that the relation between *Gf* and
651 observer viewpoint gestures is a task-specific phenomenon. Furthermore, because current
652 literature shows relations between *Gf* and observer viewpoint gestures only for adults who

653 explain their strategies for solving an analogical reasoning task, it still needs to be
654 investigated whether this relation also applies for children when they explain their solving
655 strategies in an analogical reasoning task.

656 **Conclusion**

657 Our study demonstrates strong associations between visual processing (*Gv*) abilities
658 and the rate of observer viewpoint gestures in young children at the age of 4, indicating that
659 observer viewpoint gestures arise from simulated visual mental imagery. These findings
660 contribute to the growing evidence that in addition to many exogenous factors, the form and
661 the functions of gestures originate from endogenous factors such as cognitive processes. The
662 novelty of our research resides in relating children's cognitive abilities to a specific viewpoint
663 in gesture; and it delivers first empirical evidence on the relations between visual mental
664 images and observer viewpoint gestures assumed in the GSA framework. According to our
665 results, the higher a child's *Gv* abilities, the more she or he will engage with simulated visual
666 imagery in all three tasks. Because we studied children and found this effect in all three tasks
667 with the different cognitive demands they impose, we argue that the relation between *Gv*
668 abilities and observer viewpoint gestures is a general and not a task-specific phenomenon.
669 Whereas there is strong evidence for this relation, it remains an open question whether
670 children with higher *Gv* abilities are more likely to perform observer viewpoint gestures for
671 aspects of events that can be realized with character or observer viewpoint gestures, or
672 whether children with higher *Gv* talk more about spatial aspects of events that primarily elicit
673 observer viewpoint gestures.

674
675
676
677

678 References

679 Abramov, O., Kern, F., Koutalidis, S., Mertens, U., Rohlfing, K., & Kopp, S. (2021). The Relation
680 Between Cognitive Abilities and the Distribution of Semantic Features Across Speech and Gesture
681 in 4-year-olds. *Cognitive Science*, 45(7), e13012. <https://doi.org/10.1111/cogs.13012>

682 Alibali, M. W., & Kita, S. (2010). Gesture highlights perceptually present information for speakers.
683 *Gesture*, 10(1), 3–28. <https://doi.org/10.1075/gest.10.1.02ali>

684 Austin, E. E., & Sweller, N. (2014). Presentation and production: The role of gesture in spatial
685 communication. *Journal of Experimental Child Psychology*, 122, 92–103.
686 <https://doi.org/10.1016/j.jecp.2013.12.008>

687 Bergmann, K., & Kopp, S. (2012). Gestural alignment in natural dialogue. In *Proceedings of the*
688 *Annual Meeting of the Cognitive Science Society* 34(34), UC Merced, 1326–1331

689 Cartmill, E. A., Beilock, S., & Goldin-Meadow, S. (2012). A word in the hand: Action, gesture and
690 mental representation in humans and non-human primates. *Philosophical Transactions of the*
691 *Royal Society of London. Series B, Biological Sciences*, 367(1585), 129–143.
692 <https://doi.org/10.1098/rstb.2011.0162>

693 Cartmill, E. A., Rissman, L., Novack, M., & Goldin-Meadow, S. (2017). The development of iconicity in
694 children's co-speech gesture and homesign. *LIA*, 8(1), 42–68. <https://doi.org/10.1075/lia.8.1.03car>

695 Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. *Journal of*
696 *Educational Psychology*, 54(1), 1–22. <https://doi.org/10.1037/h0046743>

697 Chu, M., & Kita, S. (2008). Spontaneous gestures during mental rotation tasks: Insights into the
698 microdevelopment of the motor strategy. *Journal of Experimental Psychology: General*, 137(4),
699 706–723. <https://doi.org/10.1037/a0013157>

700 Chu, M., & Kita, S. (2011). The nature of gestures' beneficial role in spatial problem solving. *Journal of*
701 *Experimental Psychology. General*, 140(1), 102–116. <https://doi.org/10.1037/a0021790>

702 Church, R. B., Kelly, S. D., & Lynch, K. (2000). Immediate memory for mismatched speech and
703 representational gesture across development. *Journal of Nonverbal Behavior*, 24(2), 151–174.
704 <https://doi.org/10.1023/A:1006610013873>

705 Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. *Educational and Psychological*
706 *Measurement*, 20(1), 37–46. <https://doi.org/10.1177/001316446002000104>

707 Cook, S. W., Yip, T. K. Y., & Goldin-Meadow, S. (2012). Gestures, but not meaningless movements,
708 lighten working memory load when explaining math. *Language and Cognitive Processes*, 27(4),
709 594–610. <https://doi.org/10.1080/01690965.2011.567074>

710 Debreslioska, S., & Gullberg, M. (2019). Discourse Reference Is Bimodal: How Information Status in
711 Speech Interacts with Presence and Viewpoint of Gestures. *Discourse Processes*, 56(1), 41–60.
712 <https://doi.org/10.1080/0163853X.2017.1351909>

713 Demir, Ö. E., Levine, S. C., & Goldin-Meadow, S. (2015). A tale of two hands: Children's early gesture
714 use in narrative production predicts later narrative structure in speech. *Journal of Child Language*,
715 42(3), 662–681. <https://doi.org/10.1017/S0305000914000415>

716 Doskocilová, H., Miler, Z., and Jähn, K.-H. (1998/2013). *Der Maulwurf und der Grüne Stern* [The
717 Mole and the Green Star]. Leipzig: Leiv

718 Ehrlich, S. B., Levine, S. C., & Goldin-Meadow, S. (2006). The importance of gesture in children's
719 spatial reasoning. *Developmental Psychology*, 42(6), 1259–1268. <https://doi.org/10.1037/0012-1649.42.6.1259>

721 Flanagan, D. P., & Dixon, S. G. (2014). The Cattell-Horn-Carroll Theory of Cognitive Abilities. In C. R.
722 Reynolds, K. J. Vannest, & E. Fletcher-Janzen (Eds.), *Encyclopedia of special education: A reference*

723 *for the education of children, adolescents, and adults with disabilities and other exceptional*
724 *individuals*. Hoboken, New Jersey: Wiley. <https://doi.org/10.1002/9781118660584.ese0431>

725 Frederiksen, A. T. (2017). Separating viewpoint from mode of representation in iconic co-speech
726 gestures: insights from Danish narratives. *Language and Cognition*, 9(4), 677–708.
727 <https://doi.org/10.1017/langcog.2016.35>

728 Gelman, A., & Park, D. K. (2009). Splitting a Predictor at the Upper Quarter or Third and the Lower
729 Quarter or Third. *The American Statistician*, 63(1), 1–8. <https://doi.org/10.1198/tast.2009.0001>

730 Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing
731 lightens the load. *Psychological Science*, 12(6), 516–522. <https://doi.org/10.1111/1467-9280.00395>

733 Hostetter, A. B., & Alibali, M. W. (2007). Raise your hand if you're spatial: Relations between verbal
734 and spatial skills and gesture production. *Gesture*, 7(1), 73–95.
735 <https://doi.org/10.1075/gest.7.1.05hos>

736 Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action.
737 *Psychonomic Bulletin & Review*, 15(3), 495–514. <https://doi.org/10.3758/PBR.15.3.495>

738 Hostetter, A. B., & Alibali, M. W. (2019). Gesture as simulated action: Revisiting the framework.
739 *Psychonomic Bulletin & Review*, 26(3), 721–752. <https://doi.org/10.3758/s13423-018-1548-0>

740 Hostetter, A. B., & Hopkins, W. D. (2002). The effect of thought structure on the production of lexical
741 movements. *Brain and Language*, 82(1), 22–29. [https://doi.org/10.1016/S0093-934X\(02\)00009-3](https://doi.org/10.1016/S0093-934X(02)00009-3)

742 Hostetter, A. B., & Skirving, C. J. (2011). The Effect of Visual vs. Verbal Stimuli on Gesture Production.
743 *Journal of Nonverbal Behavior*, 35(3), 205–223. <https://doi.org/10.1007/s10919-011-0109-2>

744 Kern, F. (2020). Interactional and multimodal resources in children's game explanations. *Research on*
745 *Children and Social Interaction*, 4(1), 7–27.

746 Kita, S., & Özyürek, A. (2003). What does cross-linguistic variation in semantic coordination of speech
747 and gesture reveal? Evidence for an interface representation of spatial thinking and speaking.
748 *Journal of Memory and Language*, 48(1), 16–32. [https://doi.org/10.1016/S0749-596X\(02\)00505-3](https://doi.org/10.1016/S0749-596X(02)00505-3)

749 Labov, W., & Waletzky, J. (1973). Erzählanalyse: mündliche Versionen persönlicher Erfahrung. In J.
750 Ihwe (Ed.), *Literaturwissenschaft und Linguistik. Eine Auswahl Texte zur Theorie der*
751 *Literaturwissenschaft*, Band 2, (pp. 78–126). Hamburg: Athenäum Fischer Taschenbuch Verlag.

752 Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data.
753 *Biometrics*, 33(1), 159. <https://doi.org/10.2307/2529310>

754 Laros, J. A., & Tellegen, P. J. (2015). *Construction and validation of the SON-R 5 1/2-17, the Snijders-*
755 *Oomen non-verbal intelligence test*. s.n: s.n. Retrieved from
756 <https://www.rug.nl/research/portal/files/3344765/LarosTellegen.PDF>

757 Lohman, D. F. (1988). *Spatial abilities as traits, processes, and knowledge*. In R. J. Sternberg (Ed.),
758 *Advances in the psychology of human intelligence*, Vol. 4 (p. 181–248). Lawrence Erlbaum
759 *Associates, Inc.*

760 Lohman, D. F. (1994). *Spatial ability*. In R. J. Sternberg (Ed.), *Encyclopedia of human intelligence* (pp.
761 1000–1007). New York: Macmillan.

762 Mandler, J. M., & Johnson, N. S. (1977). *Remembrance of things parsed: Story structure and recall*.
763 *Cognitive Psychology*, 9, 111–151.

764 McNeill (1992). Hand and Mind: What Gestures Reveal about Thought. Chicago: The University of
765 Chicago Press.

766 McNeill D. (1992). *Hand and mind: What gestures reveal about thought*.

767 Mickley, M., & Renner, G. (2010). Intelligenztheorie für die Praxis: Auswahl, Anwendung und
768 Interpretation deutschsprachiger Testverfahren für Kinder und Jugendliche auf Grundlage der
769 CHCTheorie. *Klinische Diagnostik und Evaluation*, 3, 447–466. *Klinische Diagnostik Und Evaluation*,
770 3, 447–466.

771 Mickley, M., & Renner, G. (2019). Auswahl, Anwendung und Interpretation deutschsprachiger
772 Intelligenztests für Kinder und Jugendliche auf Grundlage der CHC-Theorie: Update, Erweiterung
773 und kritische Bewertung [Selection, Use, and Interpretation of German Intelligence Tests for
774 Children and Adolescents Based on CHC-theory: Update, Extension, and Critical Discussion]. *Praxis*
775 *der Kinderpsychologie und Kinderpsychiatrie*, 68(4), 323–343.
776 <https://doi.org/10.13109/prkk.2019.68.4.323>

777 Özer, D., & Göksun, T. (2020). Gesture Use and Processing: A Review on Individual Differences in
778 Cognitive Resources. *Frontiers in Psychology*, 11, 573555.
779 <https://doi.org/10.3389/fpsyg.2020.573555>

780 Parrill, F. (2010). Viewpoint in speech–gesture integration: Linguistic structure, discourse structure,
781 and event structure. *Language and Cognitive Processes*, 25(5), 650–668.
782 <https://doi.org/10.1080/01690960903424248>

783 Perry, M., Church, R.B., & Goldin-Meadow, S. (1992). Is gesture-speech mismatch a general index of
784 transitional knowledge? *Cognitive Development*, 7(1), 109–122. [https://doi.org/10.1016/0885-2014\(92\)90007-E](https://doi.org/10.1016/0885-2014(92)90007-E)

786 Quasthoff, U., Heller, V., & Morek, M. (2017). On the sequential organization and genre-orientation
787 of discourse units in interaction: An analytic framework. *Discourse Studies*, 19(1), 84–110.

788 Raven, J. C. (1958). Advanced progressive matrices. London: Lewis.

789 Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the
790 understanding and imitation of action. *Nature Reviews. Neuroscience*, 2(9), 661–670.
791 <https://doi.org/10.1038/35090060>

792 Sassenberg, U., Foth, M., Wartenburger, I., & van der Meer, E. (2011). Show your hands — Are you
793 really clever? Reasoning, gesture production, and intelligence. *Linguistics*, 49(1), 841.
794 <https://doi.org/10.1515/ling.2011.003>

795 Sassenberg, U., & van der Meer, E. (2010). Do we really gesture more when it is more difficult?
796 *Cognitive Science*, 34(4), 643–664. <https://doi.org/10.1111/j.1551-6709.2010.01101.x>

797 Schretlen, D., Pearson, G. D., Anthony, J. C., Aylward, E. H., Augustine, A. M., Davis, A., & Barta, P.
798 (2000). Elucidating the contributions of processing speed, executive ability, and frontal lobe
799 volume to normal age-related differences in fluid intelligence. *Journal of the International
800 Neuropsychological Society*, 6(1), 52–61. <https://doi.org/10.1017/S1355617700611062>

801 Selting, M., Auer, P., Barth-Weingarten, D., Bergmann, J. R., Bergmann, P., Birkner, K., . . . Umann S.
802 (2009). Gesprächsanalytisches Transkriptionssystem 2 (GAT 2). *Gesprächsforschung - Online-
803 Zeitschrift zur verbalen Interaktion*, 10, 353–402.

804 Smithson, L., & Nicoladis, E. (2014). Lending a Hand to Imagery? The Impact of Visuospatial Working
805 Memory Interference Upon Iconic Gesture Production in a Narrative Task. *Journal of Nonverbal
806 Behavior*, 38(2), 247–258. <https://doi.org/10.1007/s10919-014-0176-2>

807 Stec, K. (2012). Meaningful shifts. *Gesture*, 12(3), 327–360. <https://doi.org/10.1075/gest.12.3.03ste>

808 Stites, L. J., & Özcalışkan, Ş. (2017). Who Did What to Whom? Children Track Story Referents First in
809 Gesture. *Journal of Psycholinguistic Research*, 46(4), 1019–1032. <https://doi.org/10.1007/s10936-017-9476-0>

811 Tellegen, Laros, & Petermann (2007). SON-R 2½- 7 Non-verbaler Intelligenztest. Testmanual mit
812 deutscher Normierung und Validierung. Göttingen: Hogrefe.

813 Vernon, P. (1983). Speed of information processing and general intelligence. *Intelligence*, 7(1), 53–70.
 814 [https://doi.org/10.1016/0160-2896\(83\)90006-5](https://doi.org/10.1016/0160-2896(83)90006-5)
 815 Wilson, M. (2002). Six views of embodied cognition. *Psychonomic Bulletin & Review*, 9(4), 625–636.
 816 <https://doi.org/10.3758/BF03196322>

817

818

819 **SUPPLEMENTARY ITEMS**

820 **Table 1: Script for The Game in The Communicative Task of Explanation**

Instruction	Translation
Gleich wird [name of experimenter] Ihrem Kind ein Spiel zeigen. Wenn Sie wieder in den Raum hineinkommen, setzen Sie sich bitte auf ein Kissen gegenüber Ihrem Kind. Die Plätze sind fest vorgesehen, damit die Kamera Ihr Kind gut erfasst.	[name of experimenter] is about to show your child a game. When you come back into the room, please sit on a cushion opposite your child. The seats are fixed so that the camera can capture your child well.
Wenn Sie sitzen, fragen Sie dann bitte Ihr Kind, was das für ein Spiel war und ob es Ihnen den Ablauf erklären kann. Das Spiel können Sie mit Ihrem Kind gern am Ende der Sitzung spielen. (z.B. „Erklär’ mir das Spiel, damit wir es gleich spielen können!“)	When you are seated, please ask your child what kind of game it was and if she or he can explain the procedure to you. You are welcome to play the game with your child at the end of the session. (e.g., “Explain the game so we can play it right away!”)
Falls Ihr Kind keinen Erzählanfang findet, können Sie ihm gern mit folgenden Fragen helfen (dies sind nur Vorschläge, sie brauchen sich diese also nicht alle merken):	If your child cannot find a starting point for the story, you can help her or him with the following questions (these are only suggestions, so you do not need to remember them all):
Worum geht es in dem Spiel?	
Gab es in dem Spiel eine Spielfigur?	What is the game about?
Was war auf dem Würfel?	Was there a character in the game?
Wann darf der Junge fliegen?	What was on the dice?

Wann habe ich gewonnen?	When is the boy allowed to fly? When do I win?
-------------------------	---

821
822
823
824
825

826

Table 2: The Board Game (in The Communicative Task *Explanation*)

Stimuli used	
1	Self-made jigsaw-puzzle (20 cm x 35 cm) included jigsaw pieces: <ul style="list-style-type: none"> - Triangle (as a part of the tower) - Moon - Star - Circle (as a part of the house) - Rectangle (as a part of the house)
2	Figure (1,5 cm x 4 cm) from Playmobil®: This was the protagonist of the game, who could “fly” through the shapes.
3	Wooden dice with yellow shapes on it. The shapes accorded with the shapes available in the jigsaw-puzzle: <ul style="list-style-type: none"> - Triangle - Moon - Star - Circle - Rectangle - Blank

827

828

Table 3: The Five Events That Were Performed by The Hand Puppet

829

in The Communicative Task *Illustration With Examples*

830

	Stimuli	Performed event
	Hand puppet 	The dog performed all the following events:
1	Plastic plate and a plastic spoon (both children's kitchenware) 	<i>Verbal behavior:</i> "Ja, ich habe gesehen, wie die Menschen Löffel halten, nämlich so!" [I have seen how the people hold a spoon, like this!] <i>Nonverbal behavior:</i> Dog holds the spoon on the wrong side and ladles something with the handle
2	Plastic bottle (small size, usual type) 	<i>Verbal behavior:</i> "Und ich weiß, wie man aus einer Flasche trinkt, nämlich so!" [And I know how to drink from a bottle, like this!] <i>Nonverbal behavior:</i> Dog turns the bottle visibly upside down and drinks from the bottom
3	Slice of cheese and a piece of bread (children's playware) 	<i>Verbal behavior:</i> "Und ich weiß, wie ich Käse auf mein Brot tue, nämlich so!" [And I know how to put a slice of cheese on my bread, like this!] <i>Nonverbal behavior:</i> Dog puts the slice on the bread, so it barely touches it (almost beside the bread)
4	Pot from children's kitchenware and a saltshaker (regular size) 	<i>Verbal behavior:</i> "Und ich weiß, wie ich Salz in meine Suppe tun kann, nämlich so!" [And I know how to put salt in my soup, like this!] <i>Nonverbal behavior:</i> Dog put the salt on the table first and tries to take a corn of salt and to put it then in the pot.

5	Cup (regular size) and a tea bag with a string	<p><i>Verbal behavior:</i> "Und ich weiß, wie man einen Tee macht, nämlich so!" [And I know how prepare a tea, like this!]</p> <p><i>Nonverbal behavior:</i> Dog takes a tea bag and throws it entirely in the cup (for a tea bag with a string, a piece of the string has to be left out of the cup)</p>
---	--	---

831