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Abstract

We study the abilities of competitive markets to produce su�cient energy capacities to

meet a �xed energy demand. Renewable energy producers with stochastic outputs and no

variable costs compete against conventional energy producers with deterministic, pollutant

outputs and increasing marginal costs. We �nd that either market forces are strong enough

to serve the entire demand, or they are too weak such that the market fails and nothing is

produced. This crucially depends on the relative cost of renewable energy investments, such

that relatively cheap renewable energy causes the market to fail. Welfare analyses show that

with increasing levels of conventional energy pollution the ability of the market to produce

an e�cient outcome further declines. As a policy implication, our �ndings refute the use of

a strategic reserve as a blackout backstop solution. Instead, a capacity mechanism consisting

of a tax-and-subsidy scheme can align the market outcome with the e�cient solution for all

pollution levels and relative costs of renewable energy capacities.

Keywords: Renewable versus conventional energy, capacity mechanisms, strategic reserves,

capacity payments

JEL Classi�cation Numbers: D41, L11, Q48

1 Introduction

In recent years, the energy market has experienced various changes. Starting from a market

dominated by conventional energies (coal, nuclear power, oil, and gas) and state monopolies, we

experienced both a liberalization and the entry of renewable energy producers in great numbers,

mainly thanks to technological progress and generous state subsidies. The idea of these subsidies is

ecologically motivated, but at the same time the challenge of ensuring energy security is increasingly

at stake. Both in politics and in science there is an ongoing debate about how to tackle the problem

of how to ensure energy security when more and more energy production is volatile (presented in

the literature review below).

At the center of attention are capacity mechanisms where compared to energy-only markets,

producers are not (only) paid for energy supply but for capacity provision. These mechanisms

1



aim at creating an environment in which potential power blackouts are compensated by market

participants whenever renewable energies fail to produce. Such backup energy can, however, only

be accessed if su�cient capacity has been built up and is available at the moment of the energy

shortage.

Behind the discussion about the functioning of capacity markets is a concrete question for

market designers and institutions: Can there be a market solution to the energy security problem,

that is, are there su�cient incentives for market participants to provide enough energy? And,

if this is not the case, how could appropriate measures to solve this problem look like? While

the existing literature gives some convincing arguments why the �rst question should be negated

, the second question is much harder to answer. With this paper we contribute to deepen the

understanding of the market solution to the energy security problem.

There are various reasons why market incentives are too weak to induce su�cient investments

in energy capacities. Joskow and Tirole (2007) and Cramton and Ockenfels (2016) point at the

de�cit elements of energy-only markets. Their arguments center around three major issues. First,

consumers hardly respond to price changes and they do not reduce their consumption quickly

enough so that demand cannot be met at times where energy is scarce, even if all producers

produce at their capacity limit. Second, there is the �missing-money� problem (see also Cramton

and Stoft, 2006). This problem is again due to the low price elasticity of energy demand. In

times of scarcity, this implies great market power of energy producers, which is currently restricted

by market regulators in many countries by means of price caps. Consequently, the price for

energy during demand peaks does not induce adequate investment incentives and so the price

caps contribute to the supply shortage. Third, and �nally, it is argued that investments in energy

capacities have the nature of a public good. In case of a power blackout, no producer is able to

sell its energy. However, the costs of building up the capacity to avoid such a blackout are born by

single investors. As these investments rescue all energy producers, the ratio of costs and bene�ts

is out of balance and causes underinvestments.

As a response to these institutional obstacles to the energy security problem, the subsequent

literature has discussed and tested various forms of capacity mechanisms. Bublitz et al. (2019)

provide a detailed classi�cation and cluster the di�erent streams of this literature.1 Notable are

especially the contributions by Cramton and Stoft (2005) and Cramton et al. (2013) who address

the questions of how the pricing of capacity units and the procedure should be designed. Common

to all these designs is the idea that energy producers earn an additional revenue stream on the

part of their capacity that they withhold from the regular market and only provide when energy

is scarce.

An open question in this literature is, however, under which conditions it is bene�cial or even

essential to replace conventional energy-only markets by capacity mechanisms? Put di�erently,

1The latest literature review can be found in Duggan (2020).
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when are market incentives no longer strong enough to provide su�cient energy supply? And, how

does this depend on the available energy technology? In this paper, we set up a theoretical model to

shed light on these questions. In particular, our model starts from two types of available production

technologies: a renewable energy technology which allows production without any variable costs,

but which results in a stochastic output; and a conventional technology, which results in a reliable

output but has an increasing marginal cost of production. One might think of wind and solar

energy, on the one hand, and a mix of coal, oil, and gas plants, on the other hand, whereby oil and

gas plants are �red up when coal plants are at their limit. Further, the market is split into three

sequential parts in our model: a capacity market (if it exists), a future market, and a spot market.

In particular, we assume that the demand on the future market is �xed and that supply is perfectly

competitive with free entry into the future market (or capacity market in case it exists). Moreover,

the actual renewable energy output becomes known after the closing of the future market but

before the opening of the spot market. Thus, in our model, producers of conventional energy may

not o�er all their capacity on the future market but instead speculate on a low renewable energy

output and thus a high price on the spot market.

In our �rst set of results, we identify di�erent market scenarios depending on which types of

energy technologies are active in the future market, ranging from the traditional markets with only

conventional energy to the markets of the future where only renewable energy is traded. Next,

we show that only two of these scenarios survive when producers build up investments without

a capacity market: in the unique stable free-entry equilibrium, either only conventional energy

suppliers enter the market or a mixture of conventional and renewable energy producers such that

the total conventional energy capacity is large enough so that conventional energy producers alone

can ensure energy security. Which of the two equilibria arises crucially depends on the relative

costs of renewable energy investments, such that the mixed equilibrium requires renewable energy

costs to be on an intermediate level. Most importantly here, we �nd that it is not possible that

demand is met by a technology mix dominated by renewable energies. Technically, our model

admits for no free-entry equilibrium when the investment costs of the renewable technology are

relatively low.

In other words, our model suggests that a fundamental shift away from energy-only markets

will become unavoidable when the costs of renewable energy technologies tend to fall as fast as

they currently do. Moreover, it suggests that a strategic reserve provided by a system operator

is of little use because either market participants can ensure system stability on their own or the

system operator has to serve the entire demand on its own, which is similar to returning to a

state-owned energy system.2

2In some countries, such as Belgium or Germany, the strategic reserve is an intermediate form of a capacity
mechanism, as the system operator reserves a �xed amount of capacity from every producer that is no longer
available for the wholesale market. Either producers can actively apply to put (parts) of their capacity into the
reserve, or the operator prohibits the deactivation of older power plants. In other countries like France the system
operator runs its own power plants. To make the distinction with the capacity mechanism clear, we assume the
latter form of strategic reserve in our model.
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In a welfare analysis, we evaluate if and when a regime switch is also socially desirable. Welfare

consists of the probability to serve the energy demand, investment costs, variable costs, and a

pollution cost on conventional energy. Our analysis of the optimal technology mix shows that

without pollution and a relative expensive renewable technology, the two types of stable equilibria

mentioned above are also aligned with the e�cient solution. However, with positive pollution costs

or low renewable energy costs, a technology mix dominated by renewable energy is preferred even

in the parameter range where a stable market equilibrium exists.

In order to close the gap between stability and e�ciency, we �nally investigate the potential

of capacity payments. In particular, we study a subsidy on renewable energy investments and a

tax on conventional energy investments and compute for all parameter constellations of our model,

the optimal tax-and-subsidy policy that induces a perfect alignment between investment incentives

and e�cient investment levels. Our results here are the following: There is only one parameter

constellation where conventional energy producers should be taxed: that is to keep them out

of the market when only renewable energy technologies are desired and the society accepts power

blackouts. Otherwise, in all other parameter constellations, conventional energy is needed to ensure

system stability when renewable energy output is low. Under the optimal policy mix, renewable

energy, by contrast, is always subsidized to increase their share in the technology mix. When

only renewable energy is desired, the optimal subsidy level is even as high as the total cost of a

renewable energy investment.

Our model and �ndings are related to the following studies that also extend on the fundamental

insights by Joskow and Tirole (2007) and Cramton and Ockenfels (2016). The private investment

incentives in energy capacity and the role of capacity mechanisms have been studied in a number

of papers. In an environment with perfect competition, Stoft (2002) investigates the combination

of a capacity mechanism with a price cap on units of energy. Fabra (2018) extends on his analysis

by adding imperfect competition and market power to the picture. In her approach, price caps

are combined with capacity payments of the type also studied in our paper. Holmberg and Ritz

(2020) follow a similar approach but also incorporate a strategic reserve into their model. Neuho�

and De Vries (2004) add risk-averse consumers and producers and study the role of long-term

contracts. Finally, Grimm and Zoettl (2013) analyze investment incentives under di�erent degrees

of competition in the energy market.

Strategic reserves have been previously compared to capacity mechanisms as well. Hary et al.

(2016) run a simulation study and �nd that both approaches can reduce cyclical investments but

the strategic reserve is less e�cient in terms of social welfare. In contrast, Neuho� et al. (2016)

argue that capacity mechanisms should be used as one component of an integrated approach.

Then the strategic reserve has the advantage of being a rather mild market impact and is therefore

quicker installed and uninstalled again. Finally, Traber (2017) computes the optimal strategic

reserve size alongside with an optimal reserve payment by a system operator. His welfare analysis
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provides ambiguous results in terms of which mechanism should be implemented.

The main contribution of our paper is that we set up a basic framework by introducing two

di�erent types of available technologies: a renewable energy technology with a stochastic output

and no variable production costs and a conventional energy technology with a deterministic, pol-

lutant output and increasing marginal costs of production. Our main �nding is that the market

can either provide the entire supply or none at all. In neither case a strategic reserve is helpful.

Instead, a tax-and-subsidy system can close the gap between stable market outcomes and welfare

e�cient solutions. In Section 2, we set up our model and characterize the market scenarios. The

welfare analysis is done in Section 3, and Section 4 introduces the optimal tax-and-subsidy scheme.

Section 5 concludes.

2 Model

We consider a three-stage model consisting of an entry and investment stage (supported by a

tax-and-subsidy scheme in Section 4), a future market, and a spot market, which take place in

that order. There are two types of potential entrants, both taking the prices, investments, and

energy supplies of all other producers as �xed and given when making their decisions (perfect

competition): �rst, renewable energy producers, which we denote windmill operator w from now

on, and second, conventional energy producers, which we denote the thermal power operators t.

In the investment stage investors choose to enter the market. We assume for simplicity that

each potential entrant i has the choice between either entering the market with one unit of output

with either wind energy, thermal energy, or not entering at all. There are �xed investment costs

for each unit built, which are speci�ed below. With perfect competition nw and nt producers enter

the market until the marginal entrant and the marginal unit of capacity has an expected pro�t

of zero.3 The capacities �x the outputs the producers can supply on the day of delivery after the

closure of the spot market. Denote with qw ≤ 1 and qt ≤ 1 units of wind and thermal energy

outputs and total capacities with Qw and Qt respectively. For users of the wind technology, these

are the only costs of production as there are no further variable costs of wind generation. Users

of the thermal technology, by contrast, have an additional variable cost of c(qt), which satis�es

c(6) = 0 and which is increasing and convex in qt, that is, c′(qt) > 0 and c′′(qt) > 0. In addition

to increasing the capacity limit, any unit of investment in thermal energy has an indirect e�ect on

the variable production costs of a thermal producer because this producer can spread out its total

output on a larger capacity. Concretely, we assume a linearly increasing marginal cost function

c′(qt) = βqt and c(qt) =

∫ qt

0

c′(x)dx =
β(qt)2

2
(1)

so that β measures the marginal cost at the capacity limit and the marginal cost at qt < 1 is simply

3Throughout, we ignore the integer problem and allow nw and nt to be real numbers.
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given by the ratio between qt and 1.

On the future market, the incumbent producers commit to energy outputs qwf and qtf respec-

tively, which they plan to deliver on the day of delivery. Consumer demand is price inelastic and

given by D up until a reservation price p = 1. For p > 1, demand is 0. We assume that every

producer can promise to supply at most its capacity limit, that is, qf ≤ 1. The nt thermal energy

producers and the nw wind energy producers then o�er total outputs of Qtf and Qwf units respec-

tively, against the market price pf . This price is the same for all market participants and market

clearing thus requires a pf ≤ p = 1 such that Qtf +Qwf = D or a pf > 1 such that Qtf +Qwf = 0.

Due to perfect competition, the market price pf is equal to the highest unit cost of delivery. That

unit cost is the outcome of a random variable because the wind output on the day of delivery is

uncertain and the actual wind output will only become common knowledge after the future market

closes.

After the closing of the future market, the actual wind output v per unit of investment in

windmills will be revealed. The wind output v is a random variable that can be interpreted as

the velocity of the wind. For simplicity, let us assume that wind outputs are perfectly correlated

among the windmills and that there are only two states of the wind: with probability θ the wind

blows at full velocity (v = 1) and with probability 1 − θ the wind does not blow at all (v = 0).

Whether or not the output Qtf + Qwf = D promised on the future market can be supplied on the

day of delivery is thus dependent on the actual state of the wind. If v = 1, then windmill operators

can supply their promised output. As the total supply is then larger or equal to D, every producer

can deliver what he has promised against the already paid market price pf . By contrast, if the

actual wind output is zero and Qwf > 0, then there is a supply shortage. In this case, thermal

energy producers have the possibility to provide the missing energy on a spot market.

On the spot market, thermal producers receive a price pv for every unit of energy they provide

in addition. We assume that this price is paid by the windmill operators and can be understood

as a penalty on every promised unit they fail to deliver. Denote by qtf the quantity that a thermal

energy producer schedules on the future market and by qtv the actual quantity the producer supplies

on the delivery day. Then, qtv−qtf measures the producer's supply on the spot market. For reasons

that become clear below, a thermal producer will supply as much as he can on the spot market,

but it might occur that there is insu�cient total thermal capacity to compensate for the missing

wind output. Thus, three scenarios are possible on the spot market depending on the velocity of

the wind: �rst, actual wind output meets or even exceeds the wind output scheduled on the future

market. This scenario we call a long market. Second, the wind does not blow, but there is enough

thermal capacity to cover this shortage. This is what we call a short market. Third, there is no

wind output and thermal producers do not have the capacities to close the gap, which is what we

call a failed market. Formally, the spot market is

• long if v = 1,
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• short if v = 0 and Qt ≥ D,

• failed if v = 0 and Qt < D.

Hence, there might be an energy shortage on the delivery day because windmill operators cannot

supply whatever they have promised on the future market. In that case, thermal energy producers

who still have available capacity can sell additional units of energy in the spot market.

In case of a failed market, the system operator needs to step in to prevent a power blackout. For

that matter, we assume that the system operator has built up an amount R ≥ 0 of energy capacity

as a strategic reserve. This reserve is large enough to cover whatever is needed. Moreover, it has

to consist of conventional energy to guarantee its availability on the delivery day so that the �xed

and variable costs of the strategic reserve are the same as the costs of a thermal energy plant. This

reserve cannot be used in the future market or in the spot market but only for whatever shortage is

left after the spot market closes. Thus, implementing such a state's safety measurement in�uences

the private investors' decisions by guaranteeing a functional market, while prices on future and

spot market are not a�ected. This allows us to focus the analysis on the market's ability to provide

su�cient capacities.

2.1 Pro�t functions

From an ex-ante perspective, the choice for a certain technology is associated with the following

expected pro�t function. Let there be normalized investment costs for thermal and wind energy

respectively with kt β2 and kwθβ. Thus, investment costs in thermal energy are expressed in terms

of the average marginal production cost, β/2, and investment costs in wind energy are expressed

in terms of the expected maximal avoided penalty, θβ. Then thermal energy producers earn:

E[πt|qtf , qtv] = pfq
t
f − θ c(qtf ) + (1− θ)

(
pv=0(qtv=0 − qtf )− c(qtv=0)

)
− kt

β

2
(2)

subject to the constraint that 0 ≤ qtf ≤ 1, and qtf ≤ qtv=0. Windmill operators earn:

E[πw|qwf ] = pfq
w
f − (1− θ)pv=0 q

w
f − kwθβ . (3)

subject to the constraints that 0 ≤ qwf ≤ 1.

Thus, the expected pro�t of the thermal technology consists of the revenue on the future market

pfq
t
f and the revenue on the spot market for selling additional energy pv=0(qtv=0− qtf ) when v = 0.

From this, the �xed costs kt β2 and the variable costs are deducted, which might either be c(qtf )

when v = 1 or c(qtv=0) when v = 0. The expected pro�t of the wind technology, by contrast,

consists of the spot market revenue pfq
w
f minus the �xed investment cost kwθβ and the penalty

pv=0 q
w
f if v = 0.
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3 Free entry equilibrium

3.1 Spot market

We solve the model via backward induction. Since we assumed that wind output is perfectly cor-

related among producers, only thermal producers can become active on the spot market whenever

the wind does not blow (v = 0). With perfect competition, the following conditions hold for an

optimal quantity qtv and the equilibrium spot market price pv:

(qtv=0, pv=0) =


(
D
nt , c

′(Dnt )
)

for Qt ≥ D ,(
1, β

)
for Qt < D .

The equilibrium price pv is equal to the unit production cost of the last unit of thermal energy

that is needed to restock the energy shortage, both in a short and in a failed market. This price

is also what windmill operators have to pay for every unit of energy they promised on the future

market but failed to deliver. In case of a failed market, the highest marginal cost is the marginal

cost at the capacity limit, β and the system operator needs to step in to stabilize the market with

an additional supply of Rv=0 = D −Qt.4

3.2 Future market

Thermal producers maximize (2), anticipating on the pv and qtv in the spot market. Windmill

operators maximize (3). For any pf ≥ 0, the optimal quantities of both types of producers must

thus satisfy the Karush-Kuhn-Tucker conditions (Chiang, 1984, pp.722):

thermal plants:

[
pf − (1− θ)pv=0 − θc′(qtf )

]
qtf
(
qtf − 1

)
= 0

windmills:

[
pf − (1− θ)pv=0

]
qwf
(
qwf − 1

)
= 0 .

The square brackets show the partial derivatives ∂E[πt]/(∂qtf ) and ∂E[πw]/(∂qwf ), the other factors

cover the possible corner solutions of either scheduling nothing on the future market or scheduling

the capacity limit.

4Note, that even though there is not enough privately provided energy in a failed market, thermal energy
producers cannot exert any market power and increase the price above marginal costs of β. This goes back to the
assumption that the central operator has su�cient reserve to keep at the level of Qt.
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Thus, the optimal outputs are dependent on the price pf as follows:

qwf =


0 if pf < (1− θ)pv=0

(0, 1) if pf = (1− θ)pv=0

1 otherwise ,

(4)

qtf =


0 if pf < (1− θ)pv=0 + θc′(qtf )

(0, 1) if pf = (1− θ)pv=0 + θc′(qtf )

1 otherwise .

(5)

To grasp the intuition, recall that windmill operators anticipate the price on the spot market to

be equal to the expected penalization costs. Windmill operators compare these costs to the price

on the future market. When the expected costs are higher, no wind energy is sold on the future

market. When the price is higher, the operators schedule at their capacity limit. Thermal energy

producer make a similar comparison. This means that an interior equilibrium, the price pf must

be such that producers are indi�erent between scheduling and not.

Turning to the equilibrium prices and quantities, the �rst thing to note is that pf < (1−θ)pv=0

cannot occur in equilibrium because supply would be zero at that price, but demand would be

strictly positive. Second, our model predicts the merit order of �clean energy �rst� to endogenously

arise in equilibrium. In fact, (4) and (5) together imply that for a price pf where thermal producers

become active on the future market, windmill operators already schedule at their capacity limit.

This means that only the following equilibrium con�gurations may occur: The demand is covered

by thermal energy alone (scenario i), or demand is covered by both types of energies, such that

only windmills operate at their capacity limit (scenario ii) or both types of producers (scenario

iii), or demand is covered by wind energy alone (scenario iv).

i) Just Thermal: It is possible that only thermal producers are active when no windmill oper-

ators enter the market (nw = 0). In this scenario, it must be that Qt ≥ D. Moreover, the

future market price is equal to pf = c′(Dnt ). The expected pro�t of thermal producers thus

becomes

E[πt] = c′(
D

nt
)
D

nt
− c(D

nt
) − kt

β

2
,

with E[πt]+kt β2 = c′(Dnt )
D
nt −c(

D
nt ) > 0 since c(6) = 0 and since marginal costs are increasing

in qtv.

ii) Wind and Thermal: Qt ≥ Qtf = D−Qwf and because thermal producers jump in at a higher

price than windmill operators, it must be that Qwf = Qw. The price pf satis�es the no
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arbitrage condition

pf = (1− θ)pv=0 + θc′(qtf ) .

where pv=0 = β when D > Qt and pv=0 = c′
(
D
nt

)
when D ≤ Qt. Expected pro�ts become

E[πt] = θ

(
c′(
D −Qw

nt
)
D −Qw

nt
− c(

D −Qw

nt
)

)
− kt

β

2

+


(1− θ)

(
c′(Dnt )

D
nt − c(

D
nt )

)
if D ≤ Qt

(1− θ)
(
β − β

2

)
if D > Qt

E[πw] = θc′(
D −Qw

nt
) − kwθβ

with E[πt] + kt β2 > 0 and E[πw] + kwθβ > 0.

Even though we have not speci�ed the regulator's role yet, it may have a special interest

in the scenario D ≤ Qt. Here we observe that thermal energy producers have entered with

such large capacities that they can always prevent a system failure on their own. This can

be understood as a natural reserve, which emerges purely via the market mechanism.

iii) Capacity limit: A scenario with Qt + Qw = D. Note that no less capacity would su�ce

because this would mean that demand cannot be met even in a long market (v = 1). In this

scenario, the future market price is equal to the marginal cost of thermal producers at their

capacity limit, pf = β. The system will not always fail because in a long market both types

of suppliers can deliver their scheduled amounts. Expected pro�ts thus become

E[πt] = β − β

2
− kt

β

2

E[πw] = θβ − kwθβ .

iv) Just Wind: Qtf = 0, Qwf = D ≤ Qw, and the price satis�es the no-arbitrage condition

pf = (1− θ)pv=0,

where pv=0 = β when D > Qt and pv=0 = c′
(
D
nt

)
when D ≤ Qt.

Note that pf cannot be higher than the expected marginal penalty of the windmill operators.

If it it would be higher, then pf would exceed their expected marginal cost of supply of

(1 − θ)pv=0 according to (5), because thermal producers have a marginal cost of zero at

qtf = 0. This, however, leads to a contradiction to Qtf = 0. Since thermal producers are only

active on the spot market, their expected pro�t consists of the gross pro�t on the spot market

minus their investment costs. The expected pro�t of windmill operators consists, in contrast,

of the certain pro�t on the future market minus the penalty when they cannot deliver it and

10



their investment costs. With the future market price exactly compensating for the penalty,

we get E[πw] = −kwθβ. Without further calculation, we can immediately formulate our �rst

proposition.

Proposition 1. A free entry equilibrium in the Just Wind scenario does not exist.

The proof is straightforward because wind energy producers have negative expected pro�ts in

this scenario. This is a direct consequence of perfect competition between producers without

variable production costs but positive �xed costs. Hence, windmill operators will not enter

the market, unless there is at least one thermal energy producer active on the future market

that drives up the price pf . This is notable on a more general dimension: If a designer prefers

an energy market with only renewable (zero variable costs) energy, for instance for ecological

reasons, an energy-only market cannot produce the necessary incentives to guarantee a stable

supply.

Comparing the equilibrium prices pf between the di�erent scenarios, we can observe an addi-

tional e�ect: The higher the share of wind energy in the future market and the larger the total

capacity, the lower is the price on the future market.

3.3 Entry and investments

We now turn to the investment phase, in which potential producers choose one of the two tech-

nologies and so many of them enter the market until the expected pro�t of the entrants reaches

zero.

In the following, we describe the conditions under which each of the four future market scenarios

described above can be supported in a free entry equilibrium. We also study the stability of

equilibria by means of tâtonnement stability. We thus say that an equilibrium is stable when any

perturbation to the number of entrants nt or nw causes a bouncing back to the original point via

a dynamic adjustment process.5

Scenario iv) can be ignored since it cannot arise in a free entry equilibrium by Proposition 1.

The following results characterize the conditions under which Scenario i) to iii) arise.

Proposition 2. There exists a unique and stable `Just Thermal' equilibrium with nt = D/
√
kt

and nw = 0 when kt ≤ min{1, (kw)2} .

Proof. Given the functional form of the cost function (1), the expected pro�ts as a function of the

number of entrants can be written as

E[πt|nt] =
β

2
(
D

nt
)2 − kt

β

2
(6)

E[πw|nw = 0] = θβ
D

nt
− θβkw

5We refer to Mas-Colell et al. (1995) for a profound background of tâtonnement stability.
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Entrants will choose the thermal technology until expected pro�ts are zero, giving us nt = D/
√
kt.

The expected pro�t of the wind technology needs to be smaller zero at nw = 0. This gives

kt ≤ (kw)2. Finally, Qt ≥ D needs to hold, giving kt ≤ 1. Together, these conditions ensure

existence of a free entry equilibrium. The equilibrium is moreover stable because E[πt|nt] < 0 if

and only if nt > D/
√
kt so that thermal suppliers exit (enter) the market after a small, random

perturbation to nt.

A Just Thermal equilibrium arises when the wind technology is relatively expensive compared

to the thermal technology, and kt ≤ 1 such that at least one thermal producer would enter the

market. Obviously, there is no need for a spot market or a strategic reserve in this scenario.

Proposition 3. There exists a unique and stable `Wind and Thermal' equilibrium with nw < D,

nt ≥ D, and Rv=0 = 0 when 1 > kt > (kw)2 ≥ kt−1+θ
θ . In particular, the equilibrium numbers of

�rms are given by

nw = D

(
1− kw

√
1− θ

kt − θ(kw)2

)

nt = D

√
1− θ

kt − θ(kw)2

R = 0

Proof. Pro�ts as functions of the number of �rms become:

E[πt|nt] = θ

(
β(D − nw)

nt
D − nw

nt
− β(D − nw)2

2(nt)2

)
− kt

β

2
+ (1− θ)β

2
(
D

nt
)2

=
β

2

(
θ
(D − nw

nt
)2

+ (1− θ)
(D
nt
)2 − kt

)
(7)

E[πw|nw] = θc′(
D − nw

nt
) − kw

= θβ

(
D − nw

nt
− kw

)
.

Applying the free entry condition, we get the following best reaction function to compute the

number of entrants:

nw := r(nt) = D − ntkw (8)

nt := r(nw) =

√
D2 − 2θDnw + θ(nw)2

kt

Plugging in the nw expression into the nt expression in (8), the equilibrium number of �rms are

12



given by

nw = D

(
1− kw

√
1− θ

kt − θ(kw)2

)
(9)

nt = D

√
1− θ

kt − θ(kw)2
.

As we require that Qt = nt ≥ D, we need to have kt

θ > (kw)2 ≥ kt−1+θ
θ . Moreover, because we

want nw > 0, (kw)2 < kt must be satis�ed. Together, this gives the condition kt > (kw)2 ≥ kt−1+θ
θ .

In order for both inequalities to be ful�lled, kt < 1 also needs to hold.

To prove the stability of the equilibrium, it is

∂rt

∂nw
∂rw

∂nt
=

(
− θ(D − nw)

nt
)(
− kw

)
= (kw)2θ < 1 .

Thus, any perturbation ε > 0 to an equilibrium value of nt (or similarly nw) initiates a monotoni-

cally converging process that leads back to the initial point after an in�nite number of steps, that

is, a sequence with (nt)1 = nt ± ε, |(nt)t+1 − nt| < |(nt)t − nt| for t ≥ 1, and limt→∞(nt)t = nt.

In this equilibrium type, there is no need for a strategic reserve because the low investment

costs attract enough thermal producers to cover any potential shortages. It emerges when the

thermal technology is still comparatively cheap, but not so cheap to keep wind energy producers

out of the market. The equilibrium has the Just Thermal equilibrium as the borderline case.

Proposition 4. Multiple `Wind and Thermal' equilibria with nt ∈
(
0 , D

)
, nw = D − kwnt, and

nw + nt > D exist when (kw)2 = kt−1+θ
θ < 1. None of these equilibria is stable.

Proof. In this scenario, expected pro�ts are given by

E[πt|nt] = θ

(
β(D − nw)

nt
D − nw

nt
− β(D − nw)2

2(nt)2

)
− kt

β

2
+ (1− θ)β

2

=
β

2

(
θ
(D − nw

nt
)2

+ (1− θ) − kt
)

(10)

E[πw|nw] = θβ

(
D − nw

nt
− kw

)

Free entry implies that the numbers of �rms must satisfy the best response functions

nw := rt
′
(nt) = D − kwnt

nt := rw
′
(nw) =

√
θ

kt − 1 + θ
(D − nw) .

13



These two equations have a unique intersection point at nw = D and nt = 0, unless

(kw)2 =
kt − 1 + θ

θ
,

in which case any nt ∈ (0 , D) and nw = D− kwnt is an equilibrium when the following additional

condition is satis�ed: As we need to have nt + nw > D, we additionally require 1 − θ < kt < 1.

This also implies that kw < 1.

To prove the instability, adding (removing) a small amount ε > 0 to (from) an equilibrium

value of nt, 0 < nt < D leads to a new equilibrium point (nt)′ = nt + ε and (nw)′ = D − kw(nt)′,

from which there is no return to (nt, nw).

We observe that a Wind and Thermal equilibrium with nt ∈
(
0 , D

)
only emerges under a

particular parameter constellation. Moreover, if such an equilibrium emerges, it is unstable.

Proposition 5. Multiple `capacity limit' equilibria with nw, nt > 0 and nt + nw = D exist when

kt = kw = 1. None of these equilibria is stable.

Proof. Filling in the the cost function (1) into the expected pro�t functions gives

E[πt|nt] =
β

2
− kt

β

2
(11)

E[πw|nw] = θβ − θβkw .

Hence, in order to satisfy the break even condition, kt and kw must be equal to 1. Any numbers of

nw and nt is an equilibrium in this case as long as nt+nw = D. Yet, all equilibria are unstable. To

see this, consider an equilibrium point (nw, nt). Removing a small amount ε from nt has no impact

on the expected pro�ts of wind and thermal producers, respectively. Yet, the market clearing

condition is violated, which yields several ways to return to an equilibrium: (i) add ε to nt, (ii)

add ε to nw, or (iii) any combination of the two until we end up at a new equilibrium point with

(nt)′ + (nw)′ = D. Since (ii) and (iii) are options, the initial equilibrium is unstable.

Similar to the previous scenario, this equilibrium type also only emerges under a particular

parameter constellation. Total energy capacity is just enough to serve the demand, therefore a

strategic reserve as high as the total wind capacity is needed to close the gap between demand and

what thermal producers can supply under a failed market.

So far, we have examined all possible equilibrium con�gurations and calculated the necessary

parameter conditions on the investment costs. If we combine these conditions, we make two

observations:

Corollary 1. There is a unique stable free entry equilibrium when kt ≤ 1 and (kw)2 ≥ kt−1+θ
θ .

In contrast, no free entry equilibrium exist when kt > 1 or (kw)2 < kt−1+θ
θ .

14



To develop some intuition, consider �rst the case where kt > 1. Note that, by comparison of

the pro�t terms in (6), (11), (7), and (10), the highest equilibrium pro�t that a thermal energy

producer can collect is β
2 −

β
2 k

t. This is what a producer earns when no wind is o�ered on the

future market and the total thermal capacity is just enough to cover the demand, i.e, nt = D

(see in particular (6)). When kt > 1, this however means that thermal pro�ts are negative in any

equilibrium constellation. In other words, a free entry equilibrium does not exist when kt > 1

because the thermal technology is too expensive.

Consider next the case where (kw)2 < kt−1+θ
θ and thus where the wind technology is relatively

cheap. In fact, it is so cheap in this case that, by (9), it must be that 0 < nt < D and, thus, that

relatively few thermal producers are active. This, however, means by (10) that the expected pro�t

of the thermal technology becomes (β/2)(θ(kw)2+1−θ−kt), which is negative for any 0 < nt < D

when (kw)2 < kt−1+θ
θ . Hence, the wind technology crowds out the thermal technology in this case.

Eventually, this leads us to the Just Wind scenario described in Proposition 1, where we know

that also no wind producer can make a positive pro�t. In other words, there does not exist a free

entry equilibrium when (kw)2 < kt−1+θ
θ because of the excessive entry of wind producers.

1

1

𝑘𝑤 2

1 − Θ 𝑘𝑡

Figure 1: Free entry equilibrium

We can combine the previous statements in following �gure. It shows the free entry equilibria for

any combination of investment costs. The gray solid area marks the stable Just Thermal equilibria

of Proposition 2 and the dashed area the stableWind and Thermal equilibria of Proposition 3. The

dotted line marks the locations of the unstable Wind and Thermal equilibria of Proposition 4 and

the dot at (1, 1) the locus of the unstable capacity limit equilibrium. In the remaining parameter

regimes, we do not have any free entry equilibrium.

So far, we have investigated the conditions under which a competitive market is able to serve
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the energy market on its own. One of the �ndings is that in none of the stable equilibria sketched

above, a strategic reserve is a meaningful supplement to the market solution. Either the market is

able to provide a su�cient amount of thermal capacity on its own to avoid system failure on the

delivery day or the investment incentives are so weak that a system operator would need to build

up a strategic reserve as large as the entire demand to ensure system stability under all states of

the wind.

This raises the question for an alternative solution, such as a capacity payment scheme.6 More-

over, it raises the question whether a benevolent system operator does actually want to secure the

system under costs. We turn to the second question �rst.

4 Welfare analysis

A benevolent system operator is on the one hand obviously interested in maintaining a properly

running energy system. This is why thermal energy capacities may be justi�ed. However, on the

other hand the operator may also want to avoid the associated environmental damages. Therefore,

we determine here the socially optimal levels of thermal, nt, and wind capacities, nw, assuming that

thermal energy production pollutes the environment.7 Hence, in this section we do not consider free

market entry of private �rms. Instead, we analyze the market constellation a central planner would

choose. To perform the analysis, we need to add one more assumption: we said that consumers'

reservation price is given by p = 1 up until amount D and that the unit cost per thermal output

is β ≤ 1 at the capacity limit. Suppose, now, that ρ measures the social cost of pollution per unit

of thermal energy burned and we assume that 0 ≤ ρ < 1. This upper bound ensures that at least

some thermal energy can make sense from a societal viewpoint.

Social welfare is a function of nt and nw and consists of the likelihood that the built-up capacity

can meet the demand D, minus variable costs of thermal energy production, minus the amount

of pollution, and minus the total investment costs in both thermal and wind capacities. We

can distinguish between six regimes of how a socially optimal capacity mix may look like. Note

that these regimes only partially overlap with the scenarios of Section 3 because �rst, we do not

di�erentiate between privately and publicly thermal energy here and second, we consider regimes

where partial blackouts may be acceptable for the system operator.

(1) First, the system operator just builds up thermal capacities. The welfare expression becomes

W (nt) = D − nt β
2

(D
nt
)2 − ρD − ntkt β

2
,

6Another alternative solution, which we do not look at, is to allow a single or a few suppliers enter the market
who can then set their prices above their production cost on the future market. Also, we ignore the possibility that
a system operator might o�er its strategic reserve on the future market to lower the residual demand D −R below
the capacity of the thermal producers, nt. Instead, we assume that the strategic reserve is only meant as a backup
on the delivery day.

7For comparison with the free entry model of the previous section, the socially optimal level of thermal capacity,
nt, computed here corresponds to the sum of privately provided and strategic reserve capacities computed there,
which are both of thermal energy origin.
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with nt ≥ D. The �rst-order condition is −kt +D2/(nt)2 = 0 and thus, we get nt = D/
√
kt.

Moreover, for nt ≥ D to be satis�ed, we require that kt ≤ 1. This regime is equivalent to

the Just Thermal scenario of Section 3.

(2) Here, the system operator chooses a thermal capacity stock that is su�cient to serve the entire

demand alone, and additionally a stock of wind capacities, which are, however, insu�cient to

serve the demand. In both states of the wind, v = 1 and v = 0, energy supply is thus secured

by thermal energy, but with more pollution when v = 0. The welfare expression becomes

W (nt, nw) = θ

[
D − nt β

2

(D − nw
nt

)2 − ρ(D − nw)

]
+ (1− θ)

[
D − nt β

2

(D
nt
)2 − ρD]− nwkwθβ − ntkt β

2

under the constraints that nt ≥ D and 0 < nw < D. The Karush-Kuhn-Tucker conditions

are8

−kt + θ
(D − nw)2

(nt)2
+ (1− θ) D2

(nt)2
= 0 and

−kw +
ρ

β
+
D − nw

nt
= 0 and

nt ≥ D and

0 < nw < D .

Combining these conditions result in the unique interior solution

nw = D

(
1− (kw − ρ

β
)

√
1− θ

kt − θ(kw − ρ
β )2

)

nt = D

√
1− θ

kt − θ(kw − ρ
β )2

.

We thus call this solution the Wind and Thermal solution. Note that it satis�es the second-

order condition for a local maximum, i.e., the Hessian matrix at this point is negative de�nite.

Moreover, the solution requires that 1 > kt > (kw − ρ
β )2 ≥ (kt − 1 + θ)/θ for nt ≥ D and

0 < nw < D to hold true.

(3) The system operator may alternatively build up a capacity stock so that the entire demand

is satis�ed by wind energy when v = 1 and by thermal energy when v = 0. This regime is

thus equivalent to the Just Wind equilibrium of Section 3. The welfare expression is given

by

W (nt, nw) = θD + (1− θ)
[
D − nt β

2

(D
nt
)2 − ρD]− nwkwθβ − ntkt β

2
,

8We omit the alternative optimality condition nt−D = 0 because the existing condition in line must be satis�ed
even at nt = D for otherwise the system operator would prefer a capacity regime with nt < D.
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under the constraints that nt, nw ≥ D. Obviously, nw = D is optimal here. Moreover, the

�rst-order condition for an interior nt, i.e., −kt + (1− θ)(D/nt)2 = 0, gives

nt = D

√
1− θ
kt

.

This solution satis�es the second-order condition ∂2W/∂(nt)2 < 0 for a local maximum.

Moreover, it requires that kt ≤ 1− θ for nt ≥ D to hold true.

(4) In this regime, the system operator may build up a capacity mix where thermal capacities

are insu�cient to serve the total demand alone, but jointly with wind energy demand can be

met. Since nt < D in this case, the system crashes if v = 0 (which happens with probability

1−θ) so that neither positive welfare nor pollution is generated. Welfare can thus be written

as

W (nt, nw) = θ

[
D − nt β

2

(D − nw
nt

)2 − ρ(D − nw)

]
− nwkwθβ − ntkt β

2
,

with the inequality and non-negativity constraints nt + nw ≥ D, 0 ≤ nt < D, and nw ≥ 0.

Obviously, there is no reason to build up wind capacities in excess of D because when the

system is positive, the total demand can be met with wind alone even when nw = D. Hence,

the Karush-Kuhn-Tucker conditions become9

nt
[
θ

(D − nw)2

(nt)2
− kt + y

]
= 0 and

ρ

β
+
D − nw

nt
− kw + y = 0 and[

nt + nw −D
]
y = 0 and

0 ≤ nt < D and

0 ≤ nw ≤ D and

y ≥ 0 ,

where y denotes the Lagrangian multiplier that appears because of the inequality constraint

nt + nw ≥ D (Chiang, 1984, pp.722).

These conditions have four potential solutions, all of which lead to the same solution nt = 0

and nw = D. Hence, intuitively, the planner prefers just �clean� energy in this capacity

regime. This is intuitive because thermal capacities are insu�cient to serve the demand

alone (nt < D) so that the system crashes anyway when v = 0.

Note that this solution is not identical to the Just Wind equilibrium described in Section 3

9We omit the alternative optimality condition nw − D = 0 from this set of conditions because the existing
condition in line two must be satis�ed even at nw = D for otherwise the system operator would prefer a capacity
nw 6= D.

18



since there we assumed that a crash of the market will be avoided by the system operator by

means of a strategic reserve. We therefore call this regime here a Pure Wind regime because

the system operator only builds up wind capacities.

(5) Finally, the system operator may build up capacities so small that the demand can never be

met in no state of the wind, that is, nt + nw < D. This, however, means that it is optimal

to set nt = nw = 0.

Now that we have allocated welfare to the di�erent regimes, we can add e�ciency to the previous

discussion of the market outcomes. We can distinguish between two cases, one with low pollution,

i.e. ρ ≤ 1− β, and one with high pollution ρ > 1− β

Proposition 6. Let ρ ≤ 1− β. Then, for kw > ρ/β the welfare maximizing regime is

• regime (1) when (kw − ρ
β )2 ≥ kt and kt ≤ 1,

• regime (2) when kt > (kw − ρ
β )2 ≥ (kt − 1 + θ)/θ,

• regime (4) when (kw − ρ
β )2 < (kt − 1 + θ)/θ and 1 + ρ

β ≥ k
w, and

• regime (5) when kw > 1 + ρ
β and kt > 1.

Whereas for kw ≤ ρ/β the welfare maximizing regime is

• regime (3) when kt ≤ 1− θ

• regime (4) when kt > 1− θ

(𝜌
𝛽
)2

(1+𝜌
𝛽
)2

1 − Θ 1

𝑘𝑤 2

𝑘𝑡

1

Figure 2: Welfare e�ciency for ρ ≤ 1− β

The proof is in the appendix. Broadly speaking, the socially optimal capacity mix depends on

the relative investment costs for thermal and wind capacities, respectively. Interestingly, it can be
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socially desirable to just invest in wind energy and to a�ord blackouts as in regime (4). This is

the case when the social costs of pollution and/or the thermal investment costs exceed the bene�ts

of a steady energy supply. Another interesting regime is regime (3), where the system operator

maintains an overcapacity that is su�cient to cover twice the demand when v = 1. This regime is

preferred when investment costs for both technologies are low.

Figure 2 sketches the welfare e�cient regimes when pollution is low (ρ ≤ 1 − β). In the light

gray area and in the shaded area, regime (1) and regime (2) respectively is welfare maximizing.

These regimes are already known from Figure 1 as the Just Thermal and the Wind and Thermal

equilibrium. New is the dotted area where regime (3) is welfare e�cient. In the dark gray area

regime (4) and in the remaining white areas regime (5) are welfare-maximizing.

We get similar results for e�cient regimes with high pollution, i.e. ρ > 1− β.

Proposition 7. Let ρ > 1− β and kw > ρ/β. Then, the welfare maximizing regime is

• regime (1) when (kw − ρ
β )2 ≥ kt and kt ≤ ( 1−ρ

β )2,

• regime (2) when kt > (kw − ρ
β )2 ≥ (kt − (1− θ)( 1−ρ

β )2)/θ,

• regime (4) when (kw − ρ
β )2 < (kt − (1− θ)( 1−ρ

β )2)/θ and 1/β ≥ kw, and

• regime (5) when kw > 1/β and kt > ( 1−ρ
β )2,

When kw ≤ ρ/β instead, the welfare maximizing regime is

• regime (3) when kt ≤ (1− θ)
(
1−ρ
β

)2
• regime (4) when kt > (1− θ)

(
1−ρ
β

)2
.

(𝜌
𝛽
)2

(1+𝜌
𝛽
)2

1 − Θ 1

𝑘𝑤 2

𝑘𝑡

1

Figure 3: Welfare e�ciency for ρ > 1− β

The proof is also in the appendix. Figure 3 illustrates the welfare-e�cient regimes. The same

legend of Figure 2 applies to this �gure, i.e. light gray is regime (1), shaded is regime (2), dotted is
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regime (3), dark gray is regime (4) and the remaining white area regime (5). In addition, we take

k̄t = (1−θ)
(
1−ρ
β

)2
. We observe the same pattern in the high pollution case as in the low pollution,

just with a stronger impact. The intuition behind it is that with high pollution the range where

the social planner prefers the pure wind regime naturally increases.

So far we have identi�ed all scenarios where the market is able to provide energy as well as the

regimes that a social planner would choose. Now we are in the position to compare the market

outcomes with the e�cient solutions.

Corollary 2. When ρ = 0, then every stable market equilibrium is e�cient.

The result is a simple combination of Propositions 2, 3, and 6, and can be seen as an application

of the �rst welfare theorem. However, do note that even when ρ = 0 there can be an important

source of ine�ciency in our model. In particular, when (kw)2 < (kt − 1 + θ)/θ and kt ≤ 1 then

a benevolent system operator would want to establish a Pure Wind regime (4), but as we know,

such a system cannot be maintained in an unregulated market.

If we consider cases with ρ > 0 instead, we observe the following:

Corollary 3. When ρ > 0, only the `Just Thermal' equilibrium is also e�cient if in addition (a)

(kw − ρ
β )2 ≤ kt < 1 when ρ < 1− β or (b) (kw − ρ

β )2 ≤ kt < ( 1−ρ
β )2 when ρ ≥ 1− β.

Here we combine Propositions 2, 3, 6, and 7, such that we are within the borders of regime (1).

Thus, the only case that is both welfare e�cient and yields a stable market outcome is when a

social planner neglects the pollution factor. Yet, with increasing pollution the range of this result

becomes successively smaller. Further, we observe that no unique and stable Wind and Thermal

equilibria of Proposition 3 can also be e�cient, because pollution always induces the social planner

to choose less thermal energy. Hence, it becomes even less likely that the system operator can rely

on market logic to provide the needed energy.

5 Capacity payments

We now consider a policy to attain a perfect match between the market outcome of Section 3 and

the welfare e�cient solution. A simple and e�ective way to stimulate wind investments (and to

sti�e thermal investments) is to subsidize entry with the wind technology by tw ≤ 0 and to tax

entry with the thermal technology by tt ≥ 0 in the investment stage of the game. To obtain tax

neutrality, the system operator could then reclaim (reimburse) the subsidy (tax income) from (to)

consumers. Given the inelastic demand, one way to do this is in the form of a use-independent

lump sum transfer, another equivalent way is a consumption-dependent tax (subsidy).

In the following, we �rst write down the pro�ts of thermal and wind producers in the di�erent

solutions developed in Section 4 as functions of tt and tw. We then determine the levels of tt and

tw that support these solutions in a free entry equilibrium.
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i) For a Just Thermal equilibrium with subsidies/taxes corresponding to welfare regime (1),

i.e, with nw = 0 and nt ≥ D, we need to set tw and tt such that

E[πt|nt, nw = 0, tt] =
β

2

(
(
D

nt
)2 − (kt + tt)

)
= 0

E[πw|nt, nw = 0, tw] = θβ

(
D

nt
− (kw + tw)

)
≤ 0 .

The number of thermal producers as a function of tt then becomes nt = D/
√
kt + tt.

ii) In order to get a Wind and Thermal equilibrium (type I) corresponding to welfare regime

(2), i.e, with nt ≥ D and nw < D, subsidies and taxes need to ensure that

E[πt|nt, nw, tt] =
β

2

(
θ
(D − nw

nt
)2

+ (1− θ)
(D
nt
)2 − (kt + tt)

)
= 0

E[πw|nt, nw, tw] = θβ

(
D − nw

nt
− (kw + tw)

)
= 0 .

The equilibrium number of �rms as functions of tt and tw thus become

nw = D

(
1− (kw + tw)

√
1− θ

kt + tt − θ(kw + tw)2

)

nt = D

√
1− θ

kt + tt − θ(kw + tw)2
.

iii) For a Wind and Thermal equilibrium (type II) corresponding to welfare regime (3), i.e.

nt ≥ D and nw = D, pro�ts need to satisfy the same conditions as under iii). The equilibrium

number of thermal producers as a function of tt then becomes

nt = D

√
1− θ
kt + tt

.

iv) To maintain a Pure Wind equilibrium with subsidies/taxes corresponding to welfare regime

(4), i.e. nw = D and nt = 0, we need to set tw and tt such that

E[πt|nt = 0, nw = D, tt] =
β

2

(
1− θ − (kt + tt)

)
≤ 0

E[πw|nt = 0, nw = D, tw] = 0 − θβ(kw + tw) = 0 .

v) Finally, let a breakdown equilibrium correspond to welfare regime (5), i.e, with nw = nt = 0,

we require that

E[πt|nt = nw = 0, tt] =
β

2

(
1 − (kt + tt)

)
≤ 0

E[πw|nt = nw = 0, tw] = θβ

(
1− (kw + tw)

)
≤ 0 .
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These conditions enable us to compute the optimal subsidy/tax system which induces an e�-

cient result. The following result summarizes.

Proposition 8. The optimal level of taxes and subsidies are given by

i) tw ≥ −ρ/β and tt = 0 when the parameter conditions of welfare regime (1) are met,

ii) tw = −ρ/β and tt = 0 when the parameter conditions of welfare regime (2) are met,

iii) tw = −kw and tt = 0 when the parameter conditions of welfare regime (3) are met.

iv) tw = −kw and tt ≥ 1− θ − kt when the parameter conditions of welfare regime (4) are met,

v) tw ≥ 1− kw and tt ≥ 1− kt when the parameter conditions of welfare regime (5) are met.

Proof. Simply note that for the taxes and subsidies speci�ed above, the equilibrium numbers of

suppliers, nw and nt, are identical to the e�cient number of plants derived in Section 4.

Let us interpret this result step by step. Both in regime (3) and (4), wind energy is supposed

to cover full demand as long as it is available. However, since the market cannot generate this

outcome, investment costs have to be fully covered by subsidies in iii) and iv). Thus, windmill

operators are just paid for availability when the price on the future market is zero.

Di�erent among these two settings is that in the Pure Wind regime thermal investors should

be kept out of the market. Hence, a tax of tt > 1 − θ − kt prevents that thermal investors can

make pro�t. In contrast, no taxes are collected from thermal energy producers in all other cases,

except for the breakdown case v). The reason for tt = 0 is that society needs thermal producers to

cover the demand if there is no wind available.

The Just Thermal regime (1) implies that windmill entry is socially not desirable. Whether

wind energy investors are not subsidized too much with tw ≥ −ρ/β or not at all, lead to the

same result: Only thermal investors are active and do so without the need of further incentives.

Thus, since no windmills are actually built in this equilibrium constellation, no state intervention

is needed and the policy is revenue neutral.

In case ii), the optimal policy is similar to the described equilibrium constellation iii) above:

Thermal investments are not penalized unlike what is expected to be optimal for a standard market

with a global externality. The reason is that society needs thermal production in order to ensure

system balance. Windmills are, in contrast, subsidized to increase their share in the production

mix. The optimal policy is thus not demand neutral. It is also interesting that the higher β, the

smaller the optimal subsidy tw needs to be. This is reminiscent of earlier results that less money

is missing the higher the markup over (average) costs.
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6 Conclusion

In this paper we have discussed the challenge of the energy market to deal with an increasing

share of renewable energy sources and volatile supply. In order to understand the advantages and

disadvantages of di�erent policy measures, we set up a model to identify the possibilities of the

market to come up with a solution by itself. The model re�ects a competitive setting of renewable

energy producers with volatile output but no variable costs vs conventional energy producers with

reliable output and variable costs. In three stages producers �rst decide to build up capacities,

and then sell energy in a perfectly competitive future market. If renewable energy falls short to

deliver the promised energy, conventional energy producers can compensate the shortage on the

spot market.

First, we consider a rather mild impact of a capacity mechanism with the strategic reserve.

Thus, the state is able to prevent a market crash, but the reserved energy has no further e�ect on

future or spot market. We show that in this setup the market can only establish two scenarios. On

the one hand, there is just conventional energy in the market, if investments in this energy is much

cheaper than in renewable energy. On the other hand, there is a scenario with some renewable

energy and enough conventional to serve the entire market. In both cases a strategic reserve is not

needed. In contrast, a scenario with just renewable energy cannot occur because investment costs

can never be compensated when the competition pushes the price to zero. Other scenarios where a

strategic reserve would be needed does not produce a stable equilibrium if we apply tâtonnement

stability. Hence, market incentives are either strong enough to create the entire supply or none at

all.

Next, we run a welfare analysis with a central planner taking investment costs, variable costs

and additionally a pollution factor for conventional energy into consideration. We identify the

market constellation of renewable and conventional energy that is socially desirable and thus welfare

e�cient. A pollution factor of zero causes each stable equilibrium to be also e�cient. However,

with increasing pollution the capacity of the market to come up with a solution is constantly

shrinking.

Last, we formulate an alternative approach to nationalizing total energy production if the

market cannot provide su�cient energy. We introduce a system of subsidizing investments in

renewable energy and taxing investments in conventional energy. Taxes only make sense to keep

conventional energy out of the market whenever the central planner prefers a blackout if renewable

energy is not available. Contrarily, renewable energy should be subsidized either partly in order

to boost investments, or even with total investment costs. The latter case occurs when renewable

energy is supposed to cover total demand if it is available.

Further research could tackle the question how other types of capacity mechanisms would a�ect

the outcome in our competitive setup. The role of market power, which could be an answer to the

challenges mentioned in this paper, could also be investigated in more detail. And �nally, empirical
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research could check whether or not the theoretical results of this paper pass an application test.
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A Appendix

The following proof serves for both Proposition 6 and 7.

Proof. If we combine regime (1) and (2), welfare can be written as

W =



0 if (6)

θD(1− kwβ) if (2)

D(1−
√
ktβ − ρ) if (3)

D(1− θkwβ)−Dβ
√

(1− θ)(kt − θ(kw − ρ
β )2)− (1− θ)ρD if (4)

D(1− θkwβ)− βD
√

(1− θ)kt − (1− θ)ρD if (5)

In particular, welfare in regime (4) follows from the intermediate expressions

D − θkwβD
(
1− (kw − ρ

β
)Z
)
− kt β

2
ZD − θ

(
β

2
(kw − ρ

β
)2 + ρ(kw − ρ

β
)

)
ZD

− (1− θ)
(
ρD +

β

2
D/Z

)
= D(1− θkwβ) + θkwβ(kw − ρ

β
)ZD − ktβZD +

β

2

(
kt − θ(kw − ρ

β
)2
)
ZD − θρ(kw − ρ

β
)ZD

− (1− θ)
(
ρD +

β

2
D/Z

)
= D(1− θkwβ) + θβ(kw − ρ

β
)2ZD − ktβZD − (1− θ)ρD

= D(1− θkwβ)− β(kt − θ(kw − ρ

β
)2)ZD − (1− θ)ρD

= D(1− θkwβ)− β
√

(1− θ)(kt − θβ(kw − ρ

β
)2)D − (1− θ)ρD ,

where Z ≡
√

1−θ
kt−θ(kw− ρβ )2)

≥ 1. The �rst and the second line is nothing but optimal nw and nt �lled

in. The third and the fourth line follows from expansion (and reduction) by the same summand

−kt β2ZD. Going to line �ve, note that (kt−θ(kw− ρ
β )2)Z = (1−θ)/Z so that two summands cancel

against each other. Moreover, θkwβ(kw − ρ
β )ZD − θρ(kw − ρ

β )ZD = θβ(kw − ρ
β )2ZD. Line six

summarizes the terms and line seven uses that (kt− θ(kw− ρ
β )2)Z =

√
(1− θ)(kt − θβ(kw − ρ

β )2).

Case kw ≤ ρ/β: By inspection, welfare under (5) dominates welfare under (4) and also (3)

whenever kw ≤ ρ/β. Comparing (5) to (2) we see that (5) is dominant for kt ≤ (1 − θ)
(
1−ρ
β

)2
.

However, regime (5) is by de�nition only feasible for kt ≤ 1 − θ. Hence, the lower bound for this

regime is (1 − θ)
(
1−ρ
β

)2
if ρ > 1 − β and kt ≤ 1 − θ otherwise. Moreover, (6) is no option when

kw ≤ ρ/β because it is dominated by (2).

Case kw > ρ/β and ρ ≤ 1−β and kt ≤ 1: Next, we consider kw > ρ/β, such that (4) is strictly

better than (5). Moreover, it is W (3) ≥ W (5) if and only if kt ≤ ( θ
1−
√
1−θ )2(kw − ρ

β )2, whereby
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( θ
1−
√
1−θ )2 > 1 for all feasible 0 < θ < 1. Finally, it is W (3) > W (4) if and only if kt < (kw − ρ

β )2.

This means that out of the three, (5) is preferred when (kw− ρ
β )2 < (kt− 1 + θ)/θ, (4) is preferred

when kt > (kw− ρ
β )2 ≥ (kt−1+θ)/θ and (3) is preferred when (kw− ρ

β )2 ≥ kt. However, since (5)

is only valid if kt ≤ 1− θ, the condition for (5) can never be met. Hence, (5) is dominated by (3)

and (4), which makes intuitive sense since the social planner would want to avoid overinvestments.

Adding regime (2) to the picture, it is W (4) ≥ W (2) if and only if (kw − ρ
β )2 ≥ (kt − (1 −

θ)( 1−ρ
β )2)/θ. When ρ ≤ 1− β, then the lower bound (kt− (1− θ)( 1−ρ

β )2)/θ is weakly smaller than

(kt− 1 + θ)/θ. Thus, out of (2), (3), and (4), (2) is preferred when (kw − ρ
β )2 < (kt− 1 + θ)/θ, (4)

is preferred when kt > (kw − ρ
β )2 ≥ (kt − 1 + θ)/θ, and (3) is preferred when (kw − ρ

β )2 ≥ kt.

Adding regime (6) to the picture, it is W (4) ≥ W (6) if and only if (kw − ρ
β )2 ≥ (kt − (1 −

θ)( 1−βθkw
β(1−θ) −

ρ
β )2)/θ, W (2) ≥ W (6) if and only if kw ≤ 1/β, and W (3) ≥ W (6) if and only if

kt ≤ ( 1
β −

ρ
β )2. This last condition is only binding when ρ > 1 − β, since (3) also requires that

kt ≤ 1. Hence, we have W (3) ≥W (6) if and only if kt ≤ 1 and ρ ≤ 1− β. This means that (6) is

no option whenever kt ≤ 1 and ρ ≤ 1− β because it is dominated by (3).

Case kw > ρ/β and ρ > 1 − β and kt ≤ ( 1−ρ
β )2: When ρ > 1 − β, then the lower bound

(kt − (1 − θ)( 1−ρ
β )2)/θ is larger than (kt − 1 + θ)/θ. Yet, since ρ < 1 it is never larger than kt.

Hence, out of (2), (3), and (4), (2) is preferred when (kw − ρ
β )2 < (kt − (1 − θ)( 1−ρ

β )2)/θ, (4) is

preferred when kt > (kw− ρ
β )2 ≥ (kt− (1− θ)( 1−ρ

β )2)/θ, and (3) is preferred when (kw− ρ
β )2 ≥ kt.

Adding regime (6) to the picture, it is W (3) ≥W (6) if and only if kt ≤ ( 1−ρ
β )2 and ρ > 1− β.

This means that (6) is no option when kt ≤ ( 1−ρ
β )2 and ρ > 1− β.

Case kw > ρ/β and ρ ≤ 1− β and kt > 1: When kt > 1, then the race is only between (6) and

(2), which is won by (2) if and only if ρ/β < kw ≤ 1/β. With ρ ≤ 1 − β and ρ < 1 we also get

β < 1, such that we end up with ρ/β < kw ≤ 1 + ρ
β .

Case kw > ρ/β and ρ > 1 − β and kt > ( 1−ρ
β )2: When ρ > 1 − β and kt > ( 1−ρ

β )2, then the

race is between (6), (2), and (4). (4) is better than when kt > (kw − ρ
β )2 ≥ (kt− (1− θ)( 1−ρ

β )2)/θ,

which is never satis�ed within the given range, which leaves (2) and (6). Then (2) dominates (6)

as long as kw < 1
β . In contrast (6) is the dominating regime for kw ≥ 1

β , which is only valid for

kt > ( 1−ρ
β
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