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ABSTRACT 

Energy access is essential in achieving healthy and productive households with a growing modern 

economy; however, more than 17% of the world’s population lacks access to electricity. Sub-

Saharan African countries present only about two-fifths of the population with access to electricity, 

the statistics being the lowest worldwide. East Africa region offers the highest solar photovoltaic 

potential of about 220 Petawatt and wind potential of about 170 Petawatt per year, compared to 

other African regions; however, poor electric access and cost of transmission, especially in rural 

areas with pronounced outages to connected customers, is still articulating. 

Microgrid technologies seem promising; however, their sustainability has been questioned and 

doubted due to several challenges. The ever-increasing level of demand and its uncertainty pose 

technical challenges leading to pronounced unscheduled power outages and uneconomic 

operational ways of the microgrid (e.g., demand and the availability of solar and wind power are 

often not synchronised, thus requiring large storage capacities to bridge the temporal gap between 

supply and demand). Demand-side management (DSM) is an indispensable tool for addressing 

challenges. Several DSM techniques have been adopted; however, they do not guarantee global 

convergence as the studies are limited in developing countries. In addition, the lack of tailored 

demand-side management strategies that align with the region’s socio-economic context makes it 

hard for the established microgrids to be sustainable. 

This study investigates and optimises demand-side management (DSM) strategies within solar 

microgrids in East Africa. Three microgrids in Tanzania (Mpale), Uganda (Bunjako), and Kenya 

(Lwak) were used to detail the region’s specific microgrid technical challenges and propose DSM 

strategies for optimising the microgrids. Results show that the incentive-based DSM strategy 

achieved a power reduction of 14% by providing incentives to maximise utility benefits. Also, the 

presence of deferrable loads has been considered to bring more flexible demand-side management 

with a reduction in peak demand and peak-to-average ratio of about 31.2% and 7.5%, respectively. 

Load shifting efficiently reduces energy consumption during the unavailability of the sun, hence 

promising more flexibility to customers. 

A notable association was observed between refrigerator and freezer inefficiency and failure in 

temperature control. The findings underscore the significance of addressing energy efficiency in 

these appliances to enhance overall performance and reliability. Potential cost savings were evident, 

revealing that replacing only two refrigeration appliances could yield substantial financial benefits, 

estimated at USD 1325 in five years. The findings hold significant implications for the broader field 

of energy engineering, offering a tailored approach to microgrid design and operation in regions 

with similar energy landscapes.  
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KURZFASSUNG 

Die Energieversorgung ist für die Gesundheit und Produktivität von Haushalten und für das Wachstum 

moderner Volkswirtschaften von entscheidender Bedeutung. Mehr als 17 % der Weltbevölkerung haben 

jedoch keinen Zugang zu Elektrizität und damit auch keinen Strom. In Afrika südlich der Sahara haben 

nur etwa zwei Fünftel der Bevölkerung Zugang zu Elektrizität, das ist der niedrigste Wert weltweit. Im 

Vergleich zu anderen afrikanischen Regionen verfügt Ostafrika über das größte Potenzial an 

Photovoltaik und Windenergie (220 bzw. 170 Petawattstunden pro Jahr). Der schlechte Zugang zu 

Elektrizität und die hohen Stromübertragungskosten, insbesondere in ländlichen Gebieten mit häufigen 

Stromausfällen, stellen jedoch nach wie vor ein Problem dar. Microgrid-Technologien erscheinen 

vielversprechend, aber ihre Nachhaltigkeit wird durch eine Reihe von Herausforderungen gefährdet. Die 

ständig steigende Nachfrage und deren Unsicherheit stellen technische Herausforderungen dar, die zu 

hohen ungeplanten Stromausfällen und einem unwirtschaftlichen Betrieb des Microgrids führen (z.B. 

sind Nachfrage und Verfügbarkeit von Solar- und Windenergie oft nicht synchron, so dass große 

Speicherkapazitäten erforderlich sind, um die zeitliche Lücke zwischen Angebot und Nachfrage zu 

überbrücken). Demand Side Management (DSM) ist ein unverzichtbares Instrument zur Bewältigung 

dieser Herausforderungen. Verschiedene DSM-Techniken wurden bereits eingesetzt, konnten jedoch 

keine umfassende Lösung bieten, da nur wenige Studien in Entwicklungsländern durchgeführt wurden. 

Darüber hinaus fehlt es an maßgeschneiderten Strategien zur Nachfragesteuerung, die auf den 

sozioökonomischen Kontext der Region abgestimmt sind. Diese Studie untersucht und optimiert 

Strategien zur Nachfragesteuerung (Demand Side Management, DSM) in solaren Mikrogrids in 

Ostafrika. Anhand von drei Mikrogrids in Tansania (Mpale), Uganda (Bunjako) und Kenia (Lwak) 

wurden die spezifischen technischen Herausforderungen der Region für Mikrogrids untersucht und 

DSM-Strategien zur Optimierung der Mikrogrids vorgeschlagen. Die Ergebnisse zeigen, dass die 

anreizbasierte DSM-Strategie eine Leistungsreduzierung von 14% erzielte, indem sie Anreize zur 

Maximierung des Nutzens für den Versorger bot. Darüber hinaus wird davon ausgegangen, dass das 

Vorhandensein von verschiebbaren Lasten ein flexibleres Nachfragemanagement mit einer Reduzierung 

der Spitzennachfrage und des Verhältnisses zwischen Spitzen- und Durchschnittsverbrauch um etwa 

31,2% bzw. 7,5% ermöglicht. Lastverschiebung reduziert effizient den Energieverbrauch in Zeiten, in 

denen die Sonne nicht zur Verfügung steht, und bietet den Kunden mehr Flexibilität. 

 Ein bemerkenswerter Zusammenhang wurde zwischen der Ineffizienz von Kühl- und Gefriergeräten 

und dem Versagen der Temperaturregelung festgestellt. Die Ergebnisse unterstreichen, wie wichtig es 

ist, die Energieeffizienz dieser Geräte zu verbessern, um die Gesamtleistung und Zuverlässigkeit zu 

erhöhen. Potenzielle Kosteneinsparungen waren offensichtlich und zeigten, dass der Austausch von nur 

zwei Kühlgeräten erhebliche finanzielle Vorteile bringen könnte, die auf 1325 USD in fünf Jahren 

geschätzt werden. Die Ergebnisse haben relevance Auswirkungen auf den breiteren Bereich der 

Energietechnik und bieten einen maßgeschneiderten Ansatz für die Gestaltung und den Betrieb von 

Mikrogrids in Regionen mit ähnlichen Energielandschaften. 
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IKISIRI 

Upatikanaji wa nishati ni muhimu katika kupata kaya zenye afya na zenye tija na uchumi unaokua 

wa kisasa; Hata hivyo, zaidi ya asilimia 17 ya watu duniani hawana umeme. Nchi za Afrika Kusini 

mwa Jangwa la Sahara zinawasilisha tu karibu theluthi mbili ya idadi ya watu walio na upatikanaji 

wa umeme, takwimu ambazo ni za chini zaidi ulimwenguni. Ikilinganishwa na mikoa mingine ya 

Afrika, Afrika Mashariki ina uwezo wa juu wa jua na upepo wa karibu 220 PWh na 170 PWh kwa 

mwaka, kwa mtiririko huo; Hata hivyo, upatikanaji duni wa umeme na gharama za usambazaji, 

hasa katika maeneo ya vijijini yenye kukatika kwingi kwa umeme kwa wateja waliounganishwa, 

bado ni tatizo kubwa.  

Teknolojia ya microgrid inaonekana kuwa ya kuahidi; Hata hivyo, uendelevu wao umehojiwa na 

kutiliwa shaka kutokana na changamoto kadhaa. Kiwango cha kuongezeka kwa mahitaji na 

kutokuwa na uhakika wake husababisha changamoto za kiufundi zinazosababisha kukatika kwa 

umeme usio na mpangilio na njia zisizo za kiuchumi za microgrid (kwa mfano, mahitaji na 

upatikanaji wa nishati ya jua na upepo mara nyingi hazisawazishwi, na hivyo kuhitaji uwezo 

mkubwa wa kuhifadhi kuziba pengo la muda kati ya usambazaji na mahitaji). Usimamizi wa upande 

wa mahitaji (DSM) ni chombo muhimu cha kushughulikia changamoto. Mbinu kadhaa za DSM 

zimefanyika; hata hivyo, hazihakikishi ushirikiano wa kimataifa kwani masomo ni madogo katika 

nchi zinazoendelea. Kwa kuongezea, ukosefu wa mikakati ya usimamizi wa upande wa mahitaji 

ambayo inaendana na muktadha wa kijamii na kiuchumi wa kanda husika hufanya iwe vigumu kwa 

microgrids zilizoanzishwa kuwa endelevu. 

Utafiti huu unachunguza na kuboresha mikakati ya usimamizi wa upande wa mahitaji (DSM) ndani 

ya microgrids za jua katika Afrika Mashariki. Mikrogrids tatu nchini Tanzania (Mpale), Uganda 

(Bunjako), na Kenya (Lwak) zilitumika kuelezea changamoto maalum za kiufundi za kanda hiyo 

na kupendekeza mikakati ya DSM ya kuboresha microgrids. Matokeo yanaonyesha kuwa mkakati 

wa DSM unaotegemea motisha ulifikia kupunguza matumizi ya nishati kwa 14% kwa kutoa 

motisha ya kuongeza faida za matumizi. Pia, mabadiliko ya utumiaji wa baadhi ya vifaa vya umeme 

muda ambapo watumiaji ni wengi zaidi hupunguza matumizi ya nishati wakati wa kutopatikana 

kwa jua. 

Uhusiano kati ya ufanisi wa friji na kushindwa kudhibiti joto ufanisi wake unapokuwa mdogo 

ulionekana. Matokeo yanasisitiza umuhimu wa kushughulikia ufanisi wa nishati katika vifaa hivi 

ili kuongeza utendaji wa jumla. Uwezekano wa kuokoa gharama ulikuwa dhahiri, kwani 

kubadilisha vifaa viwili tu vya friji kunaweza kutoa faida kubwa za kifedha, makadirio ya $ 1,325 

katika miaka mitano. Hii inasisitiza motisha ya kiuchumi ya kutekeleza hatua za ufanisi wa nishati 

katika vifaa vya nyumbani. Matokeo yana athari kubwa kwa uwanja mpana wa uhandisi wa nishati, 

kutoa njia iliyolengwa kwa muundo wa microgrid na uendeshaji wake katika maeneo yaliyo na 

mandhari sawa ya nishati na haya yaliyozungumziwa katika utafiti huu. 
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LAY SUMMARY / CONTRIBUTION 

The overarching objective of this study is to make pioneering contributions to the optimization of 

East African microgrids, particularly addressing economic load dispatch, coordination of multiple 

generators, and the integration of shiftable appliances. Within the practical implementation context, 

a key focus is placed on temperature-based control for refrigeration appliances, with a unique 

emphasis on its effect on inefficient refrigerators. In the realm of economic load dispatch, this work 

seeks to introduce a context-aware incentive structure that aligns with the socio-economic dynamics 

of the region. By doing so, it not only optimizes energy distribution but also fosters increased 

compliance and efficiency.  

Additionally, in addressing the coordination of multiple generators, the research focuses on 

developing a novel dispatch algorithm tailored to East African microgrids’ diversity of power 

sources. This algorithm aims to maximize utilization and reliability by effectively coordinating the 

output of various generators, ensuring a seamless and optimized power supply. Moreover, this study 

delves into integrating shiftable appliances within the microgrid framework. This involves 

designing a dynamic load control algorithm that enhances grid efficiency and considers the specific 

energy usage patterns and appliance characteristics prevalent in East African households. 

Integrating shiftable appliances contributes to a more flexible and responsive energy system, 

aligning with the unique demands of the region. Through these multifaceted contributions, this 

research aspires to redefine the energy management landscape in East African microgrids, offering 

innovative solutions that bridge critical gaps in the existing literature. The ultimate aim is to guide 

the development of sustainable energy practices, making a significant and practical contribution to 

the field and fostering energy resilience in the region. 
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CHAPTER ONE 

1. Introduction 

1.1. Background Information 

Advanced civilisation and better quality of life depend significantly on energy availability, 

accessibility, acceptability, and affordability (Schnitzer et al., 2014; Stevanato et al., 2019). 

Availability entails an element of absolute or geological/physical existence and infinite 

supply (Kruyt et al., 2009; Narula, 2014). Accessibility entails the supply concentration 

resulting from a large spatial discrepancy between consumption and production of 

resources with geopolitical implications for access acquisition (Kruyt et al., 2009). 

Acceptability refers to the environmental and societal elements of resource extraction and 

energy use. Switching away from a carbon-intensive fuel portfolio is a good indicator of 

acceptability (Narula, 2014). Affordability relates to the economic element that influences 

energy prices. Energy access is essential in achieving healthy and productive households 

with a growing modern economy, having a multiplier effect on education, health, water 

supply, agriculture, transport, and other sectors (Blimpo & Cosgrove-davies, 2020; 

Pachauri, 2011). 

Despite the world’s dilemma between satisfying the increasing demand and preventing 

climate change impacts by reducing carbon dioxide emissions, the need for energy demand 

is expected to double in the next 40 years, putting the developing and developed world 

under economic pressure (Gebreslassie & Khellaf, 2021). Although Africa is the most 

vulnerable, energy scarcity significantly impacts economic activities worldwide. 

Approximately 1.2 billion people (about 17% worldwide) have no access to electricity, with 

the vast majority in Africa, particularly sub-Saharan Africa (Chirambo, 2018). Sub-Saharan 

African countries present only about two-fifths of the population with access to electricity, 

the statistics being the lowest worldwide (Blimpo & Cosgrove-davies, 2020; Philipo et al., 

2020). 

In East Africa (consisting of the countries Tanzania, Kenya, Uganda, Rwanda, Burundi, 

Democratic Republic of Congo, and South Sudan), energy access is still critical as about 

80% of the population have poor access to electricity, mostly people in rural areas 

(Williams et al., 2017). Rural area electrification in developing countries poses challenges 

in constructing power generation and transmission networks (Micangeli et al., 2018). 
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Several studies have shown that despite efforts to improve grid transmission and power 

generation, emphasis is more on urban and industrial areas due to the higher load demand 

and political relevance (Azurza et al., 2012). The electrification discrepancy can be 

achieved using microgrid technologies and meet the sustainable development goal 7: 

"affordable, reliable, sustainable, and modern energy for all by 2030". Microgrids offer 

potential alternatives to the challenging rural electrification framework due to their 

affordability (Stevanato et al., 2019; Takalani & Bekker, 2020; Williams et al., 2017). 

Microgrids are an alternative to areas where grid extension is technically or economically 

infeasible. In addition, microgrids can meet the need for reliable and safe electricity through 

renewable energy sources (Stevanato et al., 2019; Takalani & Bekker, 2020; Williams et 

al., 2017). Several challenges are associated with deploying microgrids, such as the 

variability nature of renewables and unpredicted customer demand, especially during peak 

hours (Chauhan & Chauhan, 2018; Lazaroiu et al., 2016). 

The commonly available solution to the challenges involves incorporating storage systems 

and adapting demand-side management schemes (Barton & Infield, 2004; Cecati et al., 

2011; Philipo et al., 2020). Storage systems are practical yet very expensive technology; 

thus, economic viability has proven challenging, especially when microgrids are not 

optimised (Hartvigsson et al., 2015). Demand-side management uses techniques such as 

load shifting, direct load control, load filling, and energy efficiency appliances, where peak 

loads can be appropriately managed (Torriti, 2012; Warren, 2014). Several demand-side 

management programs have been implemented. However, not much attention is paid to the 

combination of classification and prioritisation of consumer demand, assessing their 

correlation, predicting their future demand, and studying their energy input and output to 

select proper demand-side management strategies while reducing the cost of storage. This 

study aims to find the best practice of a solar microgrid in East Africa through demand-side 

management, customer classification, and prioritisation. 

1.2. Problem Statement 

Despite the rapid expansion of microgrids in East Africa, blackouts, brownouts, and poor 

sustainability are still the most significant challenges for microgrids. The reasons can be 

attributed to the intermittent nature of solar power, over/under design, and limited access 

to reliable data for demand forecasting, leading to unpredicted or variable energy 

consumption patterns. In addition, over-dimensioned or poorly designed systems increase 

the microgrid systems’ operation costs (Bui et al., 2018). 
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Higher operational costs increase electricity costs, affecting affordability for end users and 

resulting in customer attrition (Steyer et al., 2014). Due to the unreliability of most 

microgrid data, finding an optimal solution for microgrid operation has proven challenging. 

Furthermore, the lack of a tailored demand-side management solution that aligns with the 

socio-economic context of the region makes it hard for the established microgrids to 

sustain. 

This study aims to investigate and optimise demand-side management strategies within 

solar microgrids in East Africa by addressing the challenges related to energy consumption, 

appliance usage behaviour, and system design. Estimating near-accurate forecasts of load 

profiles and microgrid data is essential for selecting proper energy management. Weather 

and seasonal changes play critical roles in demand variability and the probability of 

microgrid failures (Yazdkhasti & Diduch, 2020). The results of this study will act as an 

essential push factor to guarantee a feasible operation of microgrids in East Africa. 

1.3. The Rationale of Study 

Poor access to reliable electricity imposes significant constraints on modern economic 

activities, the provision of public services, the adoption of new technologies, and the quality 

of life. This study focuses on the critical need to improve the performance and sustainability 

of solar microgrids in East Africa. By investigating today’s microgrids and addressing the 

challenges associated with demand-side management, we aim to contribute valuable 

insights that can inform utility companies and governments to develop tailored solutions 

and customers to adopt energy efficiency behaviours to save energy. The study is motivated 

by the potential to optimise energy consumption, improve system efficiency, and promote 

the widespread adoption of renewable energy to foster sustainable development in the 

region. 

1.4. Objectives 

1.4.1. General Objective 

To optimise microgrid operations, including minimisation of storage requirement and cost 

through load profile analysis and demand side management measures to synchronize 

demand with supply (e.g., by PV). 

1.4.2. Specific Objectives 

a) To assess and analyse customer demand and other power quality parameters to 

establish a baseline for demand-side management measures. 
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b) To investigate the correlation of daily/seasonal consumption with statistics, tasks, 

weather, season, appliances, etc. 

c) To optimise microgrid operations through a proper demand-side management 

scheme using modelling and simulation considering location context. 

d) To promote energy efficiency of microgrids through practical load control and 

appliance demand data analysis. 

1.5. Significance of the Study 

This study’s significance is rooted in its potential to catalyse positive transformations 

within East African communities through overcoming challenges related to solar microgrid 

operations. The study anticipates the following outcomes: energy savings, increased energy 

access, improved reliability, and reduced end-user costs by employing optimisation and 

demand-side management solutions. Furthermore, the findings can inform microgrid 

operators on proper design and possible solutions to impose to customers for mutual 

benefits; policymakers can use the acquired results for better policy decisions, and the 

results can also guide investment in sustainable energy infrastructure and contribute to the 

broader discourse on enhancing energy resilience in developing regions. The study’s 

significance lies in its ability to promote environmentally consciousness and economically 

viable solutions for powering underserved communities. 

1.6. Research Outline 

This dissertation utilised data from three microgrids in the East African countries of 

Tanzania, Uganda, and Kenya. The data were used to analyse the operation of microgrids 

and develop a proper demand-side management scheme and recommendation that aligns 

with the communities visited. The dissertation comprises five chapters. 

a) Chapter One introduces the study. It includes the background information, problem 

statement, study rationale, research objectives and expected outcomes, and research 

significance. 

b) Chapter Two presents a critical and in-depth review of published literature. 

c) Chapter Three contains the study’s methodology, including data collection, 

technical data analysis, modelling, and simulation. 

d) Chapter Four presents an analysis and discussion of the modelling and simulation. 

e) Chapter Five presents the conclusions and recommendations that have been arrived 

at based on the results obtained from modelling and simulation.  
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CHAPTER TWO 

2. Literature Review 

This chapter reviews the literature on the analysis and demand side management of East 

African rural microgrids through optimising and reducing storage costs. The chapter is 

divided into six sub-sections. Section 2.1 details the renewable energy potential in Africa, 

section 2.2 introduces the concept of microgrids, and section 2.2.2 discusses the 

classification of microgrids and their advantages and disadvantages. Section 2.2.3 narrows 

the discussion to microgrids in East Africa, challenges experienced, and proposed solutions 

to mitigate the challenges; section 2.3 discusses the demand-side management categories 

and their methods, and chapter 2.4 summarises the literature review. 

2.1. Renewable Energy Resources in Africa 

Africa has a natural advantage in benefiting from various renewable energy resources such 

as solar, wind, biomass, and hydropower. Due to its geographical position, Africa has a 

solar radiation potential averaging 325 days of sunshine with an estimated 656,730 TWh 

solar photovoltaic potential per year. The available solar potential varies between normal 

direct and global horizontal solar irradiation. In East Africa, solar energy is abundant due 

to its proximity to the equator, which results in high levels of sunlight exposure (Figure 

2-1). It is a clean, renewable energy source that can be harnessed using photovoltaic (PV) 

panels. Solar panels can be installed on rooftops or in small solar farms, making them 

suitable for decentralized rural electrification. However, initial investment costs can be 

high, and solar energy production depends on weather conditions (Gebreslassie & Khellaf, 

2021). 

Africa’s wind potential, estimated at 656,000 TWh annually, is mainly concentrated along 

the coastal, Sahel, and highlands areas (Figure 2-2). In Africa, East and North have better 

wind potential than others (Gebreslassie & Khellaf, 2021). East Africa has more wind 

potential in the coastal regions and highlands, where wind turbines can be installed 

individually or in wind farms to harness wind power. Wind energy is purely renewable and 

clean, with low operating costs once infrastructure is in place, but it can be unpredictable 

due to production variability and wind speed dependence (Erdoğan et al., 2022a). 

Hydropower generation, estimated at 10,240 MW, is Africa’s leading renewable energy 

resource, covering more than 70% of overall electricity generation in the continent 
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(Abriendomundo, 2023). East Africa has plenty of water bodies with notable rivers, such 

as the Nile (the world’s longest river), which runs along its borders and is suitable for 

hydroelectric power generation (Figure 2-3). Large hydroelectric dams provide a stable and 

reliable source of electricity to rural areas. While large-scale hydropower projects can cost-

effectively improve electricity access, they can have significant environmental and social 

impacts, including habitat disruption and displacement of communities. Also, they can take 

a decade or more to plan and build. 

Biomass energy uses organic materials such as wood, crop residues, and animal waste for 

cooking and electricity generation (Figure 2-4). It plays a crucial role in the African energy 

mix, which has the potential to ensure a future fuel supply (Balat & Ayar, 2005). Biomass 

power plants utilize dedicated energy crops or agricultural residues for electricity 

generation. 40% of Africa’s waste resources and wood residues are concentrated in North 

Africa, with the central region having the lowest wood residue potential (Gebreslassie & 

Khellaf, 2021). In rural areas of East Africa, biomass is commonly used for cooking and 

heating. Although biomass is readily available and can act as a source of income in rural 

communities, there are environmental repercussions of using biomass as a fuel source, 

depending on the type of conversion technology. Inefficient combustion practices can lead 

to indoor air pollution and deforestation. 

 

Figure 2-1: Solar photovoltaic potential map of Africa (SolarGIS, 2021) 
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Figure 2-2: Wind potential map of Africa (Erdoğan et al., 2022b) 

 

Figure 2-3: Hydropower potential map of Africa (Erdoğan et al., 2022b) 
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Figure 2-4: Biomass potential map of Africa (Bouvet et al., 2018) 

Choosing the best energy source for rural electrification in East Africa should consider 

combining the available options considering the local conditions and needs. Areas with 

access to rivers and water bodies can make use of hydroelectric power to provide a stable 

source of electricity, and wind energy can act as a complement in regions with consistent 

wind patterns and with proper biomass management, it can be used as a supplementary 

source of electricity or for cooking and heating where appropriate. Generally, solar energy 

is often a suitable choice for decentralized electrification in remote areas with limited 

infrastructure. However, a diversified energy portfolio that harnesses the strengths of each 

energy source can enhance energy security and resilience in rural East Africa, and 

microgrids can help reach scattered rural settlements. 

2.2. Microgrids 

2.2.1. Introduction 

Energy demands and electricity consumption worldwide are increasing daily due to 

technological advancements, population growth, and urbanisation. The primary source of 

energy consumed is from fossil fuel. The combustion of fossil fuels to generate power is 

one of the major causes of global warming (Greg Adams et al., 2016). Efforts to minimise 
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the effects of global warming require an alternative energy source which achieves green 

energy production while meeting rising energy demands. 

Despite the rising energy demands, in Sub-Saharan Africa, large parts of the population 

lack access to electricity (Figure 2-5). The lack of access to electricity is due to poor 

coverage of the electricity grids, isolated areas such as islands, and remote regions where 

high investment costs are needed to extend the already built national grids. One of the 

reliable solutions for rural electrification is standalone power systems. Standalone power 

systems are off-the-grid, independent electricity systems for locations that lack an extensive 

utility-scale electricity distribution system. Microgrids are an example of such a system 

(Riahi et al., 2021). 

Microgrids are electricity distribution systems containing loads and distributed energy 

resources such as distributed generators, storage devices, or controllable loads that can be 

controlled and coordinated while connected to the main power network or islanded. For 

rural electrification, microgrids are an exciting way to provide electricity to serve local 

needs and solve supply problems. They offer new ways to provide reliable and resilient 

electrical power. Coupled with the demand for alternative green energy, microgrids offer 

an alternative to fossil fuel energy in efforts to curb the effects of climate change (Riahi et 

al., 2021). 

 

Figure 2-5: The 2020 Electricity access map for sub-Saharan Africa (IRENA, 2003) 
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With the advent of low-cost solar panels and the ability to generate, store and use direct 

current (DC) electrical energy locally, solar microgrids act as an ideal solution to transform 

energy infrastructure for rural communities to power households and local businesses. The 

implementation is affordable, safe, simple, flexible, and energy efficient. Various 

community-based working models can be implemented to operate and sustain these 

microgrids. Microgrids are expected to increase the power quality and bring multiple 

economic, environmental and technical benefits to consumers and electric providers, 

ensuring efficient systems (Thirunavukkarasu et al., 2022). 

2.2.2. Classification of Microgrids 

Microgrids can be categorized by their generation capacity, applications, system 

architecture, and customer type. The classifications of microgrids are outlined in Table 2-1. 

The categorisation of microgrids based on sizes is rarely accurate as functionality is the 

main difference between them. Minigrids and microgrids are similar based on their sizes. 

However, unlike microgrids, minigrid acts independently and cannot be connected to the 

main grid. Thus, it is best to categorise depending on their functionality and usage, such as 

customer type, application, generation capacity, and system architecture (Ogg, 2015). 

2.2.2.1. By Customer Type 

There are three categories available: true microgrids (µ-grids), milli-grids (m-grids), and 

remote microgrids (r-grids). True microgrids are microgrids in which the whole system is 

on a single site to a utility customer. Milli-grids are microgrids that involve a segment-

regulated grid that allows distributed energy resources to be deployed and directed to 

critical infrastructure in emergencies. Remote microgrids are isolated and unable to operate 

in a grid-connected mode. 

2.2.2.2. By Application 

These are microgrids that are categorised based on the end user’s application. Such 

microgrids include military microgrids, industrial microgrids, development microgrids for 

small commercial operations, hidden microgrids for those with generators on-site that they 

use to provide emergency power, microgrids for isolated vacation homes, and mobile 

microgrids for military and emergency power response in the event of disasters. In addition, 

mobile microgrids are often used for remote, strategic applications when electricity is 

immediately required, and there is no short-term potential to connect to the grid network 

(Roosa, 2021). 
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2.2.2.3. By Generation Capacity 

There are six categories depending on the generation capacity, presented in Table 2-1, in addition to their characteristics and complexity. 

Table 2-1: Microgrid categories based on generation capacity, complexity, functionality and status on grid connection (Kempener et al., 2015; 

Ogg, 2015) 

Category Size Capability Complexity Function Connection to Main Grid 

Picogrid 0 – 1 kW 

• Single controller 

• Single voltage (DC) 

• DC systems 

• Serve single load 

• Telemetry 

• Charging 

• Lighting 

No 

Nanogrid 0 – 5 kW 

• Single voltage (DC) 

• Single price 

• Controllers negotiate with 

others across gateways to 

buy/sell power 

• Both are grid-tied and 

remote systems 

• DC systems 

• Serving single load 

• Single administrator 

• Telecom 

• Household 

Off-grid 

Microgrid 5 – 300 kW 

• Manage local energy supply 

and demand 

• Provide a variety of voltages 

(AC/DC) 

• Provide a variety of quality and 

reliable power options 

• Incorporate generation 

• Varying pricing possible 

• Distributed 

Possible 
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Category Size Capability Complexity Function Connection to Main Grid 

• Optimise multiple-output 

energy systems 

Minigrid 5 – 300 kW 

• Generation satisfying local 

demand 

• Transmission limited to 11 kV 

• Interconnected 

customers 

• Local 

No 

Macrogrid > 300kW 
• Transmission up to 400 kV 

• Single voltage (AC) 

• It can be coupled to a 

microgrid 

• Centralised 
Yes 

Supergrid > 100MW 
• Transmission up to 400 kV 

• AC/HVDC voltages 

• It can be coupled to a 

microgrid 

• Centralised 
Yes 
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2.2.2.4. By System Architecture 

2.2.2.4.1. AC Microgrid 

 

Figure 2-6: Alternating current (AC) microgrid system layout (Ahmad et al., 2019) 

An AC microgrid system consists of distributed energy (DG) units (which can be from 

hydro under hydro turbines, photo voltaic (PV) or wind energy conversion system 

(WECS) ) and Energy storage systems (ESS) connected at points within the distribution 

networks, forming a small, isolated AC electric power system (Figure 2-6). During normal 

operating conditions, the two networks are interconnected at the point of common coupling 

(PCC), while the loads are supplied from local sources. If the load demand power is less 

than the power produced by the DG units, excess energy can be exported to the utility 

(Ahmad et al., 2019). 

2.2.2.4.2. AC/DC Microgrid 

Microgrids have different types of sources, and loads are the type of AC/DC systems. The 

conceptual layout of the hybrid AC/DC microgrid is shown in Figure 2-7. The hybrid 

microgrids facilitate the benefits of integrating AC technology with DC technology through 

interlinking bidirectional converters. After staying on AC technology in the electric power 

supply, DC power joins it with increasing technology advancements in power conversion, 

generation, transmission, and consumption. However, challenges in DC technologies 

warrant the integration of algorithms in some or every step of the microgrid (Ahmad et al., 

2019). 
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Figure 2-7: The alternating current (AC) and direct current (DC) microgrid system layout 

(Ahmad et al., 2019) 

2.2.2.4.3. DC Microgrid 

While traditional electric power system was designed to move the AC power via high-

voltage AC transmission lines and lower voltage distribution lines to households and 

businesses, the DC power system has been used in industrial power distribution systems, 

telecommunication infrastructures, and point-to-point transmissions over long distances via 

sea cables and for interconnecting AC grids with different frequencies. Most consumer 

equipment and DG units are dominated by power electronics devices, which need DC 

power. However, all these DC devices require converting the available AC power into DC, 

and most of these conversion stages typically use inefficient rectifiers. 

Thus, the DC-based DG units have been converted to AC to tie in with the existing AC 

electric network, only later to be converted to DC for many end users. However, the DC–

AC–DC power conversion stages result in substantial energy losses. Using the positive 

experiences in the high-voltage DC (HVDC) operation and the advances in power 

electronics technology, interest in pursuing effective solutions has increased. Figure 2-8 

shows the typical DC MG systems interconnected with the PCC’s central systems: VAC 

networks from the conventional power plants or an HVDC transmission line connecting an 

offshore wind farm (Ahmad et al., 2019). 
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Figure 2-8: Direct current (DC) microgrid system layout (Ahmad et al., 2019) 

2.2.2.5. Other Classifications 

Further classifications of microgrids are available. Advanced microgrids can automatically 

interact with, connect to, and disconnect from another grid like many microgrids. They 

grant users the flexibility to securely manage the reliability and resiliency of the microgrid 

and connected loads while mitigating the economic impacts associated with power 

disruptions. A key feature of advanced microgrids is the ability to achieve plug-and-play 

interoperability within the sphere of the technologies used for electrical generation and 

compatible communication.  

Some microgrids can be classified as virtual microgrids (v-grids). These include DERs 

located at multiple nonadjacent sites that are coordinated so that they can be presented to 

the grid as a single entity but operate virtually as a controlled island or coordinated 

numerous islands. Virtual microgrids are often loose aggregations of individual generation 

sources and loads that can be remotely controlled. In this case, they use the infrastructure 

of the host grid, and while unable to be decoupled physically, they are operated within the 

energy market as if independent. They can be configured based on software connectivity 

(cloud-based) (Ahmad et al., 2019). 

2.2.2.6. Advantages and Disadvantages of Microgrids 

There are advantages and disadvantages associated with the deployment of microgrids, as 

outlined in the following chapters. 



 

16 

2.2.2.6.1. Advantages of Microgrids 

Microgrids generate and operate electricity from various electrical generation sources using 

multiple technologies. Microgrids have lower carbon footprints and emit less pollution 

when renewable energy sources are used. 

Microgrids improve electrical system reliability, as the electricity is generated at or near 

the consumer loads, substantially reducing transmission costs and improving resiliency. 

Another advantage of microgrids is that they have lower repair costs as the line voltages 

are much lower than high voltage power transmission, and less transmission infrastructure 

is needed as energy is generated locally. 

Microgrids can provide dispatchable power to critical loads, thus being available upon 

demand. Hydropower, biomass, tidal power, and geothermal energy can be designed to be 

dispatchable without energy storage. In addition, microgrid power can be stored in batteries 

or reservoirs to generate dispatchable electricity. 

Microgrids can separate and operate in isolation (i.e., islanding) from the utility’s 

distribution system. Islanding appeals to entities that experience high costs from electrical 

outages, as the microgrids offer an uninterrupted power supply. Furthermore, islanding 

ensures remote communities without connection to the electricity grid access to continuous 

electricity. 

Microgrids have black-start capability due to multiple generation resources within the 

microgrid, allowing the system to restart independently. Black Start is restoring power to 

part of an electric grid without relying on external electric power transmission networks.  

Utility companies install microgrids along the high-voltage electric grid to operate as 

command centres to coordinate response activities during massive area-wide outages. 

These microgrids can reduce investment costs to accommodate increased load, peak power 

requirements, or power quality issues. When a substation upgrade is required to address 

increased limitations or power quality, a microgrid with on-site generation could satisfy the 

need without a significant capital investment. 

Microgrids allow the integration of multiple generation sources. Thus, decisions can be 

made about which type of fuel source is the least expensive at a given time. Microgrid 

management systems can be designed to reduce costs by incorporating peak-shaving 

capabilities and to regulate energy pricing differences profitably. Algorithms can be used 

to minimise risks and selectively energize loads during operations and extended outages. 
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Lastly, renewable generation inclusion in the microgrid eliminates the business risks 

associated with variable fossil fuel costs. Revenue can thus be generated by selling excess 

power to the grid if the microgrid is interconnected. 

2.2.2.6.2. Disadvantages of microgrids 

Development and maintenance costs can be expensive, especially when multiple electrical 

generation systems are included. If the microgrid is connected to grid power, increased 

charges for the interconnection equipment and storage system (i.e., batteries, compressed 

air, pumped storage hydropower, etc.) are incurred. 

Economics and customer preferences are causing microgrids to integrate more significant 

amounts of non-dispatchable renewables, such as solar and wind power, from 50% to 100% 

of their capacity, which can present intermittency problems and system-balancing 

challenges. 

The engineering expertise to develop and maintain microgrids may not be readily available, 

especially for remote microgrids. The maintenance and service costs at the remote location 

can be higher than anticipated. 

Another disadvantage that prevents microgrid development involves imposed limitations 

by policymakers. Often, regulations concerning microgrid development are unclear or non-

existent. 

Lastly, existing electric utility companies often resist microgrid operations within their 

established service territories. Reluctance to embrace local renewable generation due to 

fears that the existing power grids cannot reliably integrate distributed energy generation 

has limited many microgrid projects to provide no more than 15% of peak power demands. 

2.2.3. Microgrids in East Africa 

Compared to other African regions, East Africa presents the highest solar photovoltaic and 

wind potential of about 220 PWh and 170 PWh, respectively (Figure 2-9). Among the East 

African countries, Kenya is leading in microgrid maturity and implementation with more 

than 40% of the total operational and under-construction microgrids (Duby et al., 2017). 
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Figure 2-9: The potential of solar photovoltaic and wind for African countries (IRENA, 

2003) 

Despite the solar photovoltaic and wind potential, microgrid growth in the East Africa 

region is slowly increasing, and net addition is stunted due to several challenges (Kent, 

2018). Some challenges are economic, ownership, environmental, policies or technical, 

which are discussed further in the next section. In addition, proposed solutions are also 

presented (Babayomi & Okharedia, 2019). 

2.2.3.1. Challenges of Microgrids in East Africa 

Investment risks in developing microgrid systems are high since microgrid projects are 

often funded by project finances based on projected future cash flows rather than physical 

assets or collateral. Thus, project developers must demonstrate to loan providers that the 

projects are financially secure throughout the loan tenure. Furthermore, the projects usually 

incorporate capital-intensive, especially renewable energy systems. Thus, the projects are 

expected to break even and generate profits. The financial expectations expose project 

owners to long-term risks that may lead to project failures before the recovery of initial 

capital investments (Williams et al., 2017). 

Securing finance for microgrid projects is another challenge, especially in rural areas. 

Electrification projects are always seen as high risk by both debt and equity funders due to 

serving in developing countries. This frequently results in projects being unable to secure 

the capital required for implementation. Furthermore, upon obtaining money, the projects 

are compounded with unfavourable financial repayment terms such as high-interest rates 

and short debt tenors and damaging risk remedial measures such as grid encroachment, 
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unregulated competition, loss of operating subsidies, changes in regulated tariffs, and other 

sources of policy and regulatory uncertainty (Williams et al., 2017). 

Unaffordable installation costs and electricity bills, especially for rural microgrid projects, 

pose challenges to microgrid growth. Rural microgrids often serve poor populations with 

limited means to pay for electricity services. As microgrid projects are usually expected to 

operate in a balance between risks and expected returns, the ability to pay for electricity 

services in rural communities is poor. Rural communities depend highly upon activities 

such as subsistence farming, with a small fraction of the population able to generate regular 

cash flow, thus resulting in seasonality of income. The inconsistent repayment of bills is 

costly to project owners and challenges revenue collection (Cross & Neumark, 2021). 

Poor policies and an unfriendly regulatory environment for investment in microgrids. 

Microgrid policies for rural electrification have been unfavourable, especially in creating 

low electricity tariffs due to political pressure to maintain affordability. Unfortunately, 

these low tariffs have made the electricity sector in many countries unprofitable and 

unattractive to the private sector. In addition, policies and regulations that are frequently 

changing and poorly defined demoralise investors’ confidence that the policies on which 

they build their business case will be respected. Institutional structures and regulatory 

processes are often complex and challenging to navigate as barriers to potential project 

developers and investors (Williams et al., 2017). 

Furthermore, private investment in microgrids usually incurs roadblocks and is subject to 

state-owned monopolies in the electricity sector. There is no clearly defined relationship 

between the private and public sectors. Private sectors always succumb to bureaucratic red 

tape, increasing transaction costs, unnecessarily extending timelines, and discouraging 

investment (Williams et al., 2017). 

Tampering of the microgrid systems, power theft, and theft of the microgrid systems 

elements affect microgrids’ growth in East Africa. 

A lack of local technical skills challenges the maintenance and operation of the system. 

Most microgrids are remotely located; thus, maintenance and repairs are challenging, with 

high costs and long lead times for the delivery of replacement parts, which may not be 

available in local markets. 

Lack of prior demand data, especially in remote locations, renders demand forecasting 

ineffective, thus affecting the growth of microgrids. The demand forecast is essential for 
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proper microgrid design to guarantee sustainability (Yazdkhasti & Diduch, 2020; Yoder & 

Williams, 2020). The level of demand itself is highly uncertain as a direct measurement in 

a community that has never had access proves challenging. Methods such as surveys of 

current energy use or basing assumptions on other villages’ experiences are usually used. 

Since the project profitability is highly dependent on the amount of electricity produced 

and sold, uncertainty in electricity demand poses a significant risk to investors. Should the 

demand fall short of expectations, the microgrid may be unprofitable. On the other hand, 

should the demand exceed expectations, the installed generation capacity may fall short, 

resulting in poor performance and customer satisfaction, jeopardising the project’s 

sustainability. 

Efforts to guarantee the sustainability of microgrids call for energy management schemes 

which can mitigate risks and improve microgrids’ performance. Demand side management 

(DSM) is one of the management schemes that reduces the cost of energy acquisition by 

continuously monitoring energy use and managing appliance schedules (Bakare et al., 

2023). DSM is used to lower peak loads, control time of service (TOU) levels of power 

demand, evaluate user profiles for electricity loads, lower carbon emissions, and provide 

consumers with a preferred energy source. This study will utilise demand-side management 

to achieve optimisation of rural microgrids. 

2.3. Demand Side Management 

2.3.1. Introduction 

Demand-side management (DSM) is the planning and implementation of energy 

conservation strategies that seek to manage consumer demand for energy rather than supply 

it to produce desired changes in the utility’s load shape. Customers are encouraged to 

willingly change load usage patterns without sacrificing their comfort and quality of service 

(Gyamfi et al., 2022). DSM is the best approach for supply-demand matching by which 

customer demand can be shaped to improve utilisation factors and load balance. In addition, 

DSM programs may defer capital investment in generation, transmission and distribution 

networks and storage and improve system load. 

The initial concepts of DSM were defined by (Gellings, 1985) and can be visualized in 

Figure 2-10. The six mechanisms in Figure 2-10 can further be divided into three groups: 

Load reduction (Peak clipping and strategic conservation), load increase (valley filling and 

load growth) and Load shifting (Load shifting and flexible load shaping). Peak clipping 

aims to reduce demand during peak hours. Utilities achieve this control by incentivising 
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customers not to consume power during peak hours, directly controlling loads or setting 

higher prices. The method is helpful in cases where there is no possibility of setting up or 

installing new power plants. Valley filling focuses on raising usage during very low 

electricity profile periods to balance demand and supply, avoiding generators' start-up and 

ramp-up costs. Load growth is expected when using electric vehicles, where customers are 

encouraged to increase usage up to a certain threshold for grid stability. Load shifting gives 

consumers options to shift their usage pattern to off-peak hours based on cheap tariffs. It is 

the combination of load clipping and valley filling. Flexible load shaping is when 

consumers are flexible enough to shift their loads to different low-usage slots. Usually, 

customers willing to participate are identified and incentivized for their participation. 

Energy efficiency is when the overall load profile is lowered thought the day by using more 

energy-efficient devices or through cyclic operation. 

 

Figure 2-10: Different demand-side management (DSM) techniques adapted from 

(Lampropoulos, 2014). 

2.3.2. Categories of Demand Side Management 

DSM plays an essential role in power industry development and environmental protection 

by bringing the following advantages to the market: promoting and restraining efficient 

market operation and power; relieving demand congestion during peak hours; improving 

the reliability of power system; alleviating investment pressure on power generation, 

transmission, and distribution; and facilitate the creation of new prospects for realization 

of energy conservation and reduction of emissions. DSM can be further categorised into 

Demand Response and Energy Efficiency, Conservation, and Load Reduction (Figure 

2-11). 
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Figure 2-11: Categories of demand side management (DSM) (Gyamfi et al., 2022) 

2.3.2.1. Demand Response 

Demand Response (DR) is a strategy that minimises high-energy demand by influencing 

the consumption pattern of the end-users. DR is achieved by allowing consumers a more 

significant role in shifting their demand for electricity during the peak demand period 

(Gyamfi et al., 2022). DR strategies can be subdivided into price-based demand response 

schemes, energy-saving behaviours, and incentive-based demand response schemes 

(Figure 2-11). 
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a) Price-based demand response schemes (PBDRS) 

i. Critical Peak Pricing (CPP) 

In this strategy, an extreme peak demand period is picked out, during which a 

much higher electricity price per kWh is selected and designated as critical by 

the utility providers (Figure 2-12). Furthermore, two or three averaged price 

points are calculated to reflect different market conditions, and the consumer is 

informed of the periods for specific critical hours or days. Three types of pricing 

are usually considered: fixed-period critical peak pricing, variable critical peak 

pricing, and variable-period essential peak pricing. In a fixed-period critical 

peak pricing, a specific period during a day is selected, and a fixed high 

electricity price is set. The application period is specified for variable critical 

peak pricing, but the electricity price varies according to the current demand. In 

a variable-period critical peak pricing, the application period is not fixed, and 

the operation frequency and duration are limited.  Utilities trigger the critical 

peak pricing based on predefined criteria (Gyamfi et al., 2022). 

 

Figure 2-12: Example of the profile showing the pricing of electricity at different usage 

periods with high prices at peak hours (Li et al., 2017) 

ii. Time of Use (ToU) 

In the time-of-use strategy, a utility rate per kWh of electricity is higher during 

peak demand hours and lower during off-peak hours, which vary according to 

the time of the day, seasons, and day type, reducing the overall cost for both the 

utility and the consumers.  

The prices differ in different time slots, with a flat fee applied to each slot. In 

this strategy, customers tend to shift their demand to a lower price period 

(Gyamfi et al., 2022). 
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iii. Real-Time Pricing (RTP) 

In this strategy, the cost of power (per kWh) fluctuates frequently, usually by 

hours, based on the real-time electricity production cost at the end of the 

generation side (see Figure 2-13). Thus, retail electricity rates are higher during 

peak times than shoulder and off-peak times. Real-time pricing delivers efficient 

and effective utilization of power to adjust the power balance between supply 

and demand. This scheme is more acceptable to the industrial and commercial 

sectors than the residential ones. There are two main difficulties in applying for 

this scheme. Firstly, it relies on continuous real-time data exchange, which is 

unfavourable for customers. Secondly, large-scale data processing increases the 

complexity of the whole system (Li et al., 2017). 

 

Figure 2-13: Example of a profile showing real-time pricing in 30 min steps (Li et al., 

2017) 

b) Incentive-based demand response scheme (IBDRS) 

i. Direct Load Control (DLC) 

In this strategy, as per advanced agreement between customers and utilities, the 

utilities can remotely control the operation of some equipment, such as air-

conditioning systems and water heaters, during specific hours of the day and 

season. The notices for the procedure are typically announced a short time 

ahead. To participate in this method, customers must be equipped with a remote-

control switch system so that utilities can reschedule, turn on, or turn off the 

appliances. This is usually achieved by incentivising consumers to minimize 

energy demand and stabilize the grid. The strategy is voluntary, and customers 

are not penalized for not curtailing their loads. Direct load control is primarily 
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applied to the residential or small-scale commercial sectors (Gyamfi et al., 

2022). 

ii. Load Shifting 

Load shifting is a technique in which load demand is shifted from peak to off-

peak hours, but the total consumption remains constant. Load shifting is 

beneficial as electricity market prices are dynamic depending on demand. An 

increase in total system demand increases the electricity bills and vice versa. 

Thus, industries and commercial businesses can optimise electricity 

consumption during night shifts when power demand is low relative to system 

supply.  

iii. Interruptible Tariff 

An interruptible tariff strategy is usually offered to residential and commercial 

customers based on a contractual agreement between the utility and the 

customer on the cost of electricity per unit. Consumers receive a rate or bill 

discount for agreeing to reduce their consumption when the system is congested. 

The energy consumed by the customer does not decrease but instead shifts to an 

off-peak period. This helps stabilise the grid or handle an emergency 

significantly when the demand is projected to increase. In this method, the 

operation frequency and the duration are limited; thus, if a customer fails to 

respond in the predefined period, they could receive a fine (Gyamfi et al., 2022). 

iv. Emergency Demand Response Programs (EDRP) 

The strategy is a voluntary emergency program that gives customers an 

incentive for a short-notice reduction in their energy consumption when there is 

a shortfall in supply reserves. There is no penalty if customers do not respond 

to curtail their loads (Li et al., 2017). 

v. Ancillary Service Market Programs (ASMP) 

Customers (usually independent system operators and regional transmission 

organizations) can bid on load curtailment in the spot market for energy balance 

maintenance, frequency and voltage regulation, voltage support, and constraint 

management in ancillary services market programs. After bid acceptance, the 

participating consumer is paid the market price for commitment (Li et al., 2017). 

vi. Capacity Market Program (CMP) 

CMP strategy is where a customer receives a guaranteed payment for 

committing to reducing consumption when there are contingencies in the 
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electric grid. These curtailments are treated as system capacity to replace the 

conventional generation and delivery resources. By proving their ability to 

curtail, customers can receive a reservation payment. And by providing the 

reduction, customers can receive an incentive. In contrast to the Emergency 

Demand Response Programs, customers can receive a penalty if they fail to 

deliver it (Li et al., 2017). 

vii. Demand Bidding Programs (DBP) 

In this strategy, consumers can bid on a specific load reduction based on their 

situation and the wholesale market. In this arrangement, utilities announce the 

total amount of electricity that must be curtailed based on the generation and 

demand situation. The bid is accepted if it is less than the market price. 

However, customers must curtail their loads by the amount specified in the 

terms; otherwise, they become liable for penalties. This method is also suitable 

for large-scale customers. Aggregators can integrate small-scale customers and 

be involved as a unit (Li et al., 2017). 

2.3.2.2. Energy efficiency, Conservation, and Load Reduction 

On the other hand, energy efficiency consists of using less energy, which reduces total 

energy consumption. This leads to reduced CO2 emissions and the cost of utility bills. This 

category focuses on energy-saving behaviour or consumers’ energy-use behaviour change. 

EE strategy requires little or no charge to implement and is divided into two, namely, 

investment behaviour and curtailment behaviour. Investment behaviour involves using 

monetary investment to improve energy-saving behaviour, while curtailment behaviour 

strategy requires little or no financial investment toward energy-saving (Gyamfi et al., 

2022). 

a) Energy Efficiency (EE) 

EE reduces the overall demand for electricity while maintaining the same amount 

or quality of service output with less energy. For example, instead of lowering the 

temperature of a conventional furnace, you can install an energy-efficient furnace 

to keep your house at a specific temperature while consuming less energy than you 

would with a conventional one. 

b) Energy Conservation (EC) 

EC refers to the overall reduction of energy consumption or demand for electricity 

by adjusting behaviour. It involves a certain degree of sacrifice, such as using a 
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clothes dryer less often, turning down the heat in winter, turning off appliances 

when they are not in use, etc. 

c) Load Reduction 

i. Investment behaviour 

This strategy involves motivating customers to reduce their electricity 

consumption by investing in compact fluorescent lamps and Light-emitting 

diodes (LED) rather than incandescent bulbs (Li et al., 2017). 

ii. Curtailment behaviour 

In this strategy, customers are motivated to save energy by being involved in 

user practices that promote load reduction, such as putting off electric loads that 

are not in use (Gyamfi et al., 2022). 

In recent years, more efforts have been dedicated to improving the energy efficiency of 

home appliances worldwide (Sarfi et al., 2018). For major households in the developed 

world, using energy-efficient appliances has been enhanced due to several factors. In 

Canadian households’ regulatory efforts, the imposition of standards for household 

appliances and technological advancement were considered critical factors. Research 

conducted in the United States (Golden Carrot program) and the work of NUTEK in 

Sweden show that energy labelling, procurement of energy-efficient appliances, 

enforcement of minimum energy efficiency standards, voluntary agreements and demand 

side management (DSM) are the reasons (Turiel, 1997). The last two methods contributed 

to significant reductions in residential and commercial sector electricity demand, 

highlighting the potential for reducing the number of new power plants through such 

programs. 

2.3.3. Demand Side Management Methods 

Demand-side management is vital for achieving sustainability of microgrids as it facilitates 

efficient use of resources and reduces electricity production waste and excessive storage 

capacities. Different demand-side generation methods are available, which help enhance 

microgrid stability and optimise renewable energy resources within the microgrid. The 

DSM methods include the multi-objective optimization method, the linear matrix inequality 

(LMI) approach, and the particle swarm method (Li et al., 2017). 

2.3.3.1. Multi-objective Optimization Method 

The multi-objective optimisation method considers several objectives and obtains an 

optimised decision without favouring any intent. A multi-objective artificial immune 



 

28 

system algorithm is used to find Pareto-optimal solutions. The multi-objective artificial 

immune system algorithm uses gene operation to maintain diversity. A solution is Pareto-

dominated if other solutions can provide better performance for at least one objective 

without hurting other goals. First, a group of solutions are generated based on the 

predefined requirement. Then, the dominated solutions are gradually removed during the 

iteration while the nondominated solutions remain (Li et al., 2017). 

The method has been used in multiple microgrid projects for a market operator and 

distribution network operator. Three participants are usually considered microgrids, a 

power grid, and an independent system operator (i.e., ISO). The power grid aims to 

maximize the net gain (in terms of energy and money) for providing power to microgrids. 

For microgrids, the aim is to maximize the net revenue for consuming power supplied by 

the power grid. For the ISO, in an emergency, the storage must be maintained around a 

standard level; the closer, the better. Therefore, the objective is to minimize the sum of 

differences between the current status and the average level. 

From the above problem, a specific solution that can maximize the minimum improvement 

in all objectives is selected. Power demand is generally more significant than power 

generation. Storage systems are used to supply the imbalance between the demand and 

generation. An increase in renewable power generation can lead to a decrease in power 

generation by diesel generators. This multi-objective optimization method can be applied 

to other scenarios involving different objectives and constraints. Because this method is not 

based on a specific model, it represents a framework for searching for Pareto-optimal 

solutions to multi-objective problems. 

2.3.3.2. Linear Matrix Inequality Method 

The LMI approach has been used for many situations. Because of the convex property, the 

associated problem can be solved efficiently (Li et al., 2017). It has been used to design a 

storage system in intelligent grid networks (Li et al., 2017). The basic idea is to charge the 

batteries when the utility electricity price is lower than the threshold and discharge the 

batteries when the price is higher. Price signals, system uncertainties, and physical 

constraints are three critical factors that must be considered in this design. 

2.3.3.3. Artificial Neural Network (ANN) 

Artificial neural networks are a technology based on studies of the brain and nervous system 

simulating their electrical activity. The networks emulate a biological neural network 
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associated with a signal-processing system and information consisting of many simple 

processors called neurons (Walczak & Cerpa, 2003). 

The neurons are interconnected by synapses, allowing distributed parallel processing to 

learn and establish precise, complex relationships between various numeric variables 

without imposing any preconceived model. ANNs are useful in systems where no 

mathematical model is available. Furthermore, ANNs can create nonlinear and traditional 

linear models, thus applicable across a broader range of problem types (both linear and 

nonlinear) (Devi & Ayswarya, 2015). 

2.3.3.4. Genetic Algorithm (GA) 

A genetic algorithm (GA) developed by John Holland and his collaborators in the 1960s 

and 1970s solves constrained and unconstrained optimisation problems based on Charles 

Darwin’s theory of natural selection that mimics biological evolution (Yang, 2021). 

Genetic Algorithm involves encrypting an optimisation function as arrays of bits 

(mimicking chromosomes), manipulating strings by genetic operators, and selecting 

according to fitness to find an optimal solution to the problem. These genetic operators 

form an essential part of the genetic algorithm as a problem-solving strategy (Yang, 2021).  

Genetic algorithms have several advantages over other optimisation algorithms. The two 

most notable are the ability to deal with various optimisations despite the objective function 

being stationary or non-stationary, linear or nonlinear, continuous or discontinuous, or with 

random noise. The other advantage is the ability to explore the search space in many 

directions simultaneously, making it ideal for parallelising the algorithms for 

implementation. Different parameters and even different groups of encoded strings can be 

manipulated at the same time. 

2.3.3.5. Particle Swarm Optimisation (PSO) Method 

The PSO method was introduced by James Kennedy and Russel C. Eberhart in 1995. It is 

based on the swarm intelligence paradigm and is motivated by the social behaviour of 

animals such as fish and birds, mimicking how they navigate or forage (Slowik, 2011). 

Birds fly in one direction, searching for food; if one bird sees the food, all other birds will 

follow in searching for the food. The swarm searches for food cooperatively, and each 

member learns from the experience and changes the search pattern to locate food. Thus, the 

best position is found when they move from one place to another.  
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The PSO method works under two principles: communication and learning. This study 

utilised the PSO as a demand-side management method to analyse the selected East African 

microgrids. Three power sources were considered: solar PV, battery, and backup generator. 

The aim was to minimize the conventional generator’s fuel cost through provisional 

incentives. The basic idea is to encourage customers to cut-down loads or shift them from 

peak to off-peak hours to avoid consuming too much generator fuel when PV and batteries 

cannot cater for the peak load. The multi-objective function to be solved by the PSO 

involves minimising generator fuel costs and maximising utility benefits. 

2.3.4. Particle Swarm Optimisation 

The PSO algorithm shares principles with a search algorithm, as a large population of 

individuals (i.e., particles) aim to find the optimal solution in a given multi-dimensional 

search space (Menos‐aikateriniadis et al., 2022). The particles represent possible solutions, 

and their location represents the value of the objective function that needs to be optimized 

(Roy et al., 2019). An optimal result is identified when the particles continue searching 

through hyperspace as they move towards a new location with an updated velocity (Eqn 

2-1). After each iteration, the velocities are stochastically updated based on the historical 

optimal positions of individual particles and the historical global best position among all 

particles (Eqn 2-2). Figure 2-14 and Figure 2-15 describe the working mechanism and flow 

chart of the particle swarm optimisation method, respectively. 

a)

 

b)

 

Figure 2-14: a) Representation of particle swarm optimization algorithm (PSO) working 

mechanism b) Vectoral representation of particle movement in PSO method (own 

representation ideas borrowed from (Mirjalili et al., 2020). 

From the vectorial representation of PSO, new position and velocity can be calculated as; 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) Eqn 2-1 
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𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1[𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2[𝑔(𝑡) − 𝑥𝑖(𝑡)] Eqn 2-2 

The standard PSO equations for updating the velocity can be written as follows: 

𝑣𝑖𝑗(𝑡 + 1) = 𝑤𝑣𝑖𝑗(𝑡) + 𝑟1𝑐1[𝑝𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)] + 𝑟2𝑐2[𝑔𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)] Eqn 2-3 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) Eqn 2-4 

Where 𝑤 and 𝑣 are the inertia weight factors, 𝑟1 and 𝑟2 are random numbers uniformly 

distributed in the range of 0 to 1, 𝑐1 and 𝑐2 are acceleration coefficient, j is the jth 

component. 

 
Figure 2-15: Flow chart of particle swarm optimization algorithm (PSO) (Roy et al., 2019) 
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The detailed algorithm of the PSO method can be described as follows; 

Step 1) Input: A set of generation and load profiles, i.e., 𝑔𝑡_𝑐 and  𝑙𝑡_1 regarding 

particle positions 

Initialize the number of iterations and the number of population n. 

Step 2) Output: An optimal set of design variables in terms of the position of the 

swarm 

Step 3) BEGIN ALGORITHM 

Step 4)  /∗Start iteration∗/ 

Step 5) For it = 1, 2, ..., 𝑖𝑡𝑚𝑎𝑥 

Step 6)  /∗Generate random position of particles 𝑥𝑖= [𝑔𝑡_𝑐 𝑙𝑡_1] as designed 

variable∗/ 

Step 7) For it = 1, 2, ..., 𝑖𝑡𝑚𝑎𝑥 

Step 8) For each particle, calculate the fitness. (Fitness refers to the objective 

function that the algorithm is optimizing. It quantifies the quality of a 

potential solution within the solution space. PSO uses fitness values to guide 

their movement through the search space, aiming to find the optimal 

solution) 

Step 9) A particle with the best fitness is considered as 𝑝𝑏𝑒𝑠𝑡 

Step 10) If (current fitness ˃ 𝑝𝑏𝑒𝑠𝑡) 

Step 11) 𝑝𝑏𝑒𝑠𝑡 = current fitness 

Step 12) else 

Step 13) 𝑝𝑏𝑒𝑠𝑡 will retain its value 

Step 14) End If 

Step 15) The particle’s overall previous best is known as 𝑔𝑏𝑒𝑠𝑡 

Step 16) If (current fitness ˃ 𝑔𝑏𝑒𝑠𝑡) 

Step 17) 𝑔𝑏𝑒𝑠𝑡= current fitness 

Step 18) else 

Step 19) 𝑔𝑏𝑒𝑠𝑡 will retain its value 

Step 20) Update the velocity and position of particles using (12) and (13), 

respectively. 

Step 21) End if 

Step 22) If (𝑖𝑡≥ 𝑖𝑡𝑚𝑎𝑥) 

Step 23) go to Step 27 
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Step 24) else 

Step 25) go to step 8 

Step 26) End If 

Step 27) End For 

Step 28) The individuals that generate the latest are the optimal design variables 

Step 29) END ALGORITHM 

2.3.4.1. Particle Swarm Optimisation Methods 

PSO is selected over other methods due to its low computational needs, near-optimal 

solution identification, the small number of initialization parameters, and the lack of model 

training prior to implementation (Roy et al., 2019). Various methods employed within PSO 

are presented below. 

a) Canonical/traditional 

b) Multi-objective PSO 

c) Bi-level PSO (BLPSO), 

d) Binary PSO, 

e) Gradient-based PSO, 

f) Modified PSO, 

g) Quadratic BPSO, 

h) Cooperative PSO, such as stochastic attraction-repulsion of diversity (SARD) and 

stochastic repulsion, 

2.3.4.2. Advantages of the Particle Swarm Optimisation Method 

PSO has several advantages: it is a simple yet powerful algorithm, inexpensive in terms of 

memory and speed, can be easily implemented using computer programming, does not 

involve any probability distribution, and does not store any previous solution. PSO is the 

most widely used method compared to other optimization methods and has the following 

advantages; 

a) Simple and easy to use, 

b) Fast convergence and robustness, even in complex and highly constrained multi-

dimensional search spaces, 

c) High applicability as it can be used in numerous optimization problems and 

d) High adjustability as it can be easily hybridized and modified to fit the purpose of 

each problem and improve its performance. 
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2.3.4.3. Disadvantages of the Particle Swarm Optimisation Method 

Some of the potential drawbacks that can be encountered while using PSO are; 

a) Risk of suboptimal solutions (local optima) due to either the problem formulation 

characteristics or a lack of diversity in particle movement that leads to premature 

convergence, 

b) There is no guarantee that PSO will reach the global optimum solution since there 

is a risk of premature convergence to local optima and 

c) Lack of interpretability given that the algorithm is not based on a strong 

mathematical theoretical basis (i.e., lack of mathematical proof of convergence). 

It is worth noting that poor PSO performance can result from problem formulation, 

modelling inputs, and system constraints (Roy et al., 2019). 

2.4. Summary 

This chapter discussed the analysis and demand side management of East African rural 

microgrids through optimisation and reduction of storage costs. 

Africa has a natural advantage in benefitting from various renewable energy resources such 

as solar, wind, biomass, and hydropower. Choosing the best energy source for rural 

electrification in East Africa should consider available renewable resources in context with 

the local conditions and needs. Generally, solar energy is often a suitable choice for 

decentralized electrification in remote areas with limited infrastructure. One of the reliable 

solutions for rural electrification employing solar energy is standalone power systems such 

as microgrids. 

Different microgrids are categorised depending on the generation capacity, applications, 

system architecture, and customer type. The Microgrids face several challenges in their 

installation and application, such as investment risks in developing the microgrid systems, 

securing finance for microgrid projects, unaffordable installation costs and electricity bills 

once operational, poor policies and unfriendly regulatory environment for investment, 

tampering with the microgrid systems, power theft, theft of the microgrid systems elements, 

and lack of prior demand data, especially in remote locations. These challenges affect 

microgrids’ growth in East Africa. Lack of local technical skills challenges the maintenance 

and operation of the system. 

Efforts to curb these challenges and guarantee the sustainability of microgrids call for 

energy management schemes that can mitigate risks and improve microgrids’ performance, 
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such as demand side management (DSM). Demand-side management (DSM) is the 

planning and implementation of energy conservation strategies that seek to manage 

consumer demand for energy rather than supply it to produce desired changes in the utility’s 

load shape.  

Different demand-side generation methods were implemented to help enhance microgrid 

stability and optimise renewable energy resources within the microgrid. However, not 

much attention was paid to the combination of classification and prioritisation of consumer 

demand, assessing their correlation, predicting their future demand, and studying their 

energy input and output to select proper demand-side management strategies while 

reducing the cost of storage. This study aims to find the best practice of a solar microgrid 

in East Africa through demand-side management, customer classification, and 

prioritisation. Thus, the above aspects provided the basis for further investigation, the 

details of which are presented in Chapter Three (3). 
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CHAPTER THREE 

3. Methodology 

3.1. Introduction 

This chapter presented the methodology utilised in the research to achieve the general and 

specific objectives. Figure 3-1 presents the summary used. 

 

Figure 3-1: Flow chart of the step-by-step activities involved in the modelling and 

experimental methodology. 

3.2. Site Selection and Data Collection 

The study data was collected from three selected microgrids: Mpale, Lwak, and Bunjako 

microgrids in Tanzania, Kenya, and Uganda, respectively. Lwak microgrid was a new 

microgrid installed in July 2023, operated by ART-D Grids, and selected as a practical case 

study. Figure 3-2 presents the geographical location of the selected microgrids.

Analysis and Demand Side Management of East African Rural 
Microgrids: Modelling and Experimental study

Site selection

Data collection

Technical Data Analysis

Modelling and Simulation

(Mpale & Bunjako microgrids)

Practical Case Study

(Lwak microgrid)

Results and Discussions

Conclusions & Recommendations



 

37 

 

Figure 3-2: Map showing the locations of the selected microgrids (Google Earth, 2023). 

 

Bunjako 

Lwak 

Mpale 
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Table 3-1: Specifications and ratings of installed photovoltaic (PV) system for Mpale, Bunjako, and Lwak microgrids 

Name Unit Specification 

Microgrids Mpale Bunjako 35kW Lwak Convent 

PV generator (number of 

modules, type) 

Manufacture country 

Model Name 

Type 

Maximum power rating 

Module efficiency 

Number of modules 

 

 

 

 

 

Wp 

% 

 

 

AMERISOLAR (China) 

AS-6P30-250 W 

Polycrystalline silicon 

250 

15.37 

192 

 

 

Jinko Solar   

JKM375M-72-V  

Polycrystalline silicon 

400 

19.33 

96 

 

 

China 

JA Solar modules 

Monocrystalline Silicon 

415 

20.7 

30 

Battery 

Manufacturer Country 

Model name 

Battery type 

Nominal Capacity (1 cell) 

Nominal cell Voltage (1 cell) 

Number of battery cells 

Total storage capacity 

 

 

 

 

Ah 

V 

 

kWh 

 

SUNLIGHT (Greece) 

2 V-14 RES OPzS 2765 

Lead–acid battery 

2769 

1.85 

48 

246 

 

Hoppecke OPzV Sun/Power 

VR L 2-1700 

Lead-acid battery 

1545 

2 

48  

148.32 

 

Hoppecke / Germany 

Sun/Power VR M 12-105 

Lead–acid battery 

87 Ah C10 /101 Ah C100 

2.25 

36  

36 

Diesel Generator (AC 

Synchronous Generator) 

kVA MJB 200 SB4 None (Cummins 40 kW generator) 
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3.2.1. Site Selection 

3.2.1.1. Mpale microgrid 

Mpale microgrid is located in Mpale ward, Korogwe district, Tanga region in Tanzania 

(Figure 3-3). Geographical coordinates of the Mpale microgrid are given as -4°59’58.2"S 

38°28’4.44"E (-4.9995°,38.4679°). The microgrid is supplied only with solar energy and 

has battery storage. A diesel generator is available and switched on to charge the battery 

whenever there is an insufficient PV supply. The microgrid serves a community of about 

700 inhabitants. The specifications and ratings of the installed PV system configurations 

are depicted in Table 3-1. 

 

Figure 3-3: Location of the Mpale Microgrid at Korogwe district in Tanga region, 

Tanzania (-4°59’58.2"S 38°28’4.44"E (-4.9995°,38.4679°)) 

The microgrid was selected as a case study due to its customer variety, the magnitude of 

data (about three years of data in-store), which proved to be essential for the research, the 

nature of the demand, which fluctuates frequently, underutilisation of the grid, reports on 

blackouts assumed due to transients and reactive power, low generation during the rainy 

season prompting the use of an expensive backup generator, and non-agreeable tariff 

structure used. 

Mpale microgrid offered several advantages: real-time data availability, plugging demand 

and weather instruments for measurements, and permission to interview connected 

customers. However, due to having many connected customers, accessibility to all 

appliances proved to be challenging. 
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3.2.1.2. Bunjako Microgrid 

Bunjako microgrid is located on Bunjako island, Central region of Uganda (0°0’10" N, 

32°8’4" E). The microgrid is an isolated microgrid supplied with solar PV coupled with 

battery storage.  

The microgrids are in the form of containerized off-grid Remote Power Units (RPU), 

aiming to provide power and communications to schools, clinics, retail and commercial 

customers, and communities. The RPUs are designed to supply base load power ranging 

from 1 – 5 kW and peak loads from 6 up to 24 kW for 24 hours. Several versions of the 

RPUs are designed based on the solution’s real customer needs and scalability. Currently, 

up to 3 versions of the RPU have been developed (Table 3-2).  

Bunjako microgrid has a total installed capacity of 114 kW with an inverter size of 174 kW 

and was aimed to power four (4) of eight villages on the island, targeting 500 connections. 

The specifications and ratings of the installed PV system configurations are depicted in 

Table 3-1. 

Table 3-2: Details of the Bunjako Remote Power Units (RPU) with their number of 

photovoltaic modules, capacity, storage, and energy supplied 

RPU 

version 

No. PV 

modules 

Nominal DC 

capacity (kW) 

Energy supplied 

(kWh/day) 

Battery pack 

(kWh) 

RPU 7 24 7.92 34 32.7 

RPU 17 54 17.82 76 74.2 

RPU 30 96 31.68 135 148.3 

3.2.1.3. Lwak Microgrid 

Lwak microgrid is located in a convent at Siaya county in western Kenya at coordinates 

0°8.4 S, 34°21.4E (Latitude: -0.1424748530737744; Longitude: 34.35782880740559) 

(Figure 3-4). The specifications and ratings of the installed PV system configurations are 

depicted in Table 3-1. 
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Figure 3-4: Location of Lwak centre showing all the Lwak community composing of the 

convent, hospital, schools and staff quarters (Google Earth, 2023). 

 

Figure 3-5: Site plan of Lwak convent where the Lwak microgrid has been installed 

(Google Earth, 2023). 



 

42 

Table 3-3: List of appliances used in Lwak convent with power ratings and usage hours in a day (Acronyms B, E, and P represent Bethany, 

Emmaus, and Postulants houses, respectively) 

S/N HOUSES BETHANY EMMAUS POSTULANTS CHAPEL TOTAL Hrs /day RATING (W) 

 LIGHTS   

1 
Fluorescent Light 

(Long) 
30 12 8 32 82 

6 
36 – 40 W 

2 
Fluorescent Light 

(Short) 
56 20 13 – 89 

6 
18 – 20 W 

3 Globe light 25 2 8 (2 in use) – 27 2 5 – 15 W 

4 Fluorescent bulbs 3 2 – 6 11 8 30 – 40 W 

5 
Energy server 

lights (coils) 
1 2 2 – 5 

8 
7 W 

6 Security lights 1 – – – 1 8 10 – 100 W 

 COOLING/FREEZING APPLIANCES   

1 Fridges 
Fridge 2 

(Toshiba GR-EF 3) 

Fridge 4 

(Haier HRF-3674) 

Fridge 6 

(Goldstar GR-312S) 
– 3 

6 – 

E 80 W 

P 120 W 

2 Freezers 
Freezer 1 

(Bruhm BCF- 398S) 

Freezer 5 

(ArmCoAF-C38S) 
Freezer 7 – 3 

6 B 106 W 

E 210 W 

– 
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S/N HOUSES BETHANY EMMAUS POSTULANTS CHAPEL TOTAL Hrs /day RATING (W) 

Freezer 3 

(HTCF208A2) 
– 

Freezer 8 

(Bruhm BCF-

398SD) 

– 2 

6 
B 94 W 

E 106 W 

 OTHER APPLIANCES   

1 Kettles – 1 – – 1 1 2200 W 

2 Irons 6 – 3 – 9 0.5 B 1000 W 

3 Water Dispenser 1 2 – – 3 
4 B 530 W 

E 635 W 

4 Laptops 8 – – – 8 5 50 – 150 W 

5 Desktops – – 2 – 2 6 150 – 300 W 

6 Televisions 1 2 1 – 4 4 40 W 

7 Decoders – – 1 – 1 3 50 W 

8 Blenders – 1 – – 1 0.5 300 – 700 W 

9 Water Pumps 2 1 1 – 4 
2 B 1700 W 

E&P 1210 W 

10 Printer – – 2 – 2 2 – 

The appliances’ features (power ratings and usage time) were recorded per observation, and questionnaires were conducted at the site. The actual 

power consumption of targeted appliances (i.e., cooling appliances) was measured at the site and detailed in Chapter 3.6.
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3.2.2. Data Acquisition 

Two types of data were collected: primary and secondary. The primary data were 

qualitative data obtained via semi-structured interviews among electricity users, mini-grid 

operators, and local leaders. Secondary data, such as solar irradiance, demand data, and 

energy consumption, were collected from quantitative data to optimise microgrid 

performance. 

3.2.2.1. Primary Data Collection 

Mpale Village is divided into three localities, and qualitative data collection was done to 

capture a representation of all three divisions of the village (Figure 3-6). 75 interviews were 

conducted with 45 households, 18 businesses, eight (8) local leaders, and two (2) 

institutions (secondary school and dispensary). 

  

Figure 3-6: Mpale microgrid divisions of customers for qualitative data collection 

3.2.2.2. Secondary Data Collection 

The data acquisition process in the microgrids involved collecting and recording data 

related to solar generation, storage, and consumption (i.e., data from solar panels, batteries, 

inverters, and connected loads). The aim was to gather data on factors such as solar 

irradiance, battery state of charge, and energy consumption. 

The recorded data was vital as it is crucial for optimizing the microgrid’s performance, 

managing demand and supply, and ensuring microgrid efficiency and reliability. 

Furthermore, data collection enabled real-time monitoring and control, which helped make 
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informed decisions for sustainable and cost-effective energy management. The following 

tools were used in data collection. 

a) MAVOWATT 270 Power Quality Analyser 

MAVOWATT is a series of GOSSEN METRAWATT, a portable, hand-held, eight-

channel power quality meter/monitor with a high-speed sampling board for capturing 

the details of high-speed transients. The MAVOWATT can simultaneously monitor, 

record, and display data on four voltage and current channels. It displays captured 

information in either graphic or textual form, including events and trends, voltage 

compliance and mini-reports. These include trended data and events generated from 

user-programmed triggers or thresholds. 

Power quality and Energy information that can be generated and reported by 

MAVOWATT include voltage and current (rms, transients, sags, swells, unbalance, 

DC), flicker (voltage THD, current THD, short term, long term), frequency, phase, 

harmonics, power (active, reactive, apparent); power factor (true, displacement); energy 

(W-hrs, VA-hrs, var-hrs); demand (current, active power, apparent power, reactive 

power), predicted demand, peak demand (daily, weekly, monthly). It is a high-precision 

power quality and energy analyser with an impressive RMS accuracy of ± 0.1 % of 

reading ± 0.05 % of full-scale over 15 KHz bandwidth. ± 0.1 % of Reading for V > 60 

Vrms, RMS Variations Accuracy: ± 0.2 % of reading (rdg). Transient Input Range: 50 - 

2000 Vpeak Transient Accuracy: ± 10 % of rdg, ± 0.5 % Full Scale for Pulse widths > 

10 μS. Frequency accuracy: ± 10 mHz of rdg. The recommended calibration interval for 

this unit is once every 12 months (Tiffany Sue Burgess, 2015). 

b) Pyranometer/Irradiance sensor 

A pyranometer is a solar irradiance sensor that measures solar radiation flux density 

(W/m²) on a planar surface. It provides high-quality data for feasibility studies and 

monitoring the photovoltaic performance of established solar projects. This work uses a 

SPLite2 silicon pyranometer for solar radiation measurement. It creates a voltage output 

proportional to the incoming radiation that is done by a photodiode detector. It is 

uniquely designed so that its sensitivity is proportional to the cosine of the incoming 

radiation’s angle of incidence, hence accurate and consistent measurements. The 

accuracy of the bubble level is less than 0.2°. 

c) Temperature sensors 
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For temperature measurements, the SDL400 light meter or datalogger was used. It 

records data on an SD card in Excel format. The maximum range it can record is 10,000 

Fc or 100 kLux. This was the limitation of the instruments as it was clipping the 

measurements above the maximum range. It utilizes a precision silicon photo diode and 

spectral response filter. Offset adjustment is used for zero function to make relative 

measurements adjustable data sampling rate. The meter can store 99 readings manually 

and 20 million readings via a 2 Gigabyte SD card. Table 3-4 shows details of the meter 

specifications, ranges, resolution, and accuracy. 

Table 3-4: Specifications, ranges, resolution, and basic accuracy of temperature sensor 

SDL400 light meter 

Specifications  Range Resolution Basic Accuracy 

Fc Range 200, 2000, 10 kFc 0.1 Fc ± 4 %rdg 

Lux Range 2000, 20 k, 100 kLux 1 Lux ± 4 %rdg 

Type K 

Temperature 

-148 to 2372°F (-100 to 

1300°C) 
0.1° ± (0.4 % +1.8°F/1°C) 

Type J 

Temperature 

-148 to 2192°F (-100 to 

1200°C) 
0.1° ± (0.4 % + 1.8°F/1°C) 

d) Measurement setup 

The microgrids taken as case studies are equipped with display, datalogger, monitoring 

and communication functionality. It has an Xtender system and a Remote control and 

programming unit (RCC) for configuration, display, and data logging. The remote 

control RCC-02/-03 offers a function that allows the system to record many electrical 

values over a long time. With this function, you can, for instance, follow the energy 

consumption and the battery voltage or see the power cuts, the state of the auxiliary 

relays, the input currents and voltages, the output powers, etc. The above configuration 

records all PV, battery, inverter, and load data. The data logging is done on the SD card 

at a 1-minute resolution. 

Irradiation data was recorded at the site using an irradiation sensor (pyranometer) with 

a resolution of 10 seconds. The irradiation measured is the in-plane global irradiance 

since the pyranometer is placed on the module plane. 

A temperature sensor was installed to record the panel’s temperature (Figure 3-7). 

MAVOWATT 270® power quality analyser was also installed to measure different 

power quality parameters of the microgrid (Figure 3-8). 
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Figure 3-7: The solar irradiance and temperature sensors installed on the plane of the 

module in the Mpale microgrid (Inclination of 10o facing North-South direction) 

 

Figure 3-8: Power Quality measurement and recording setup using MAVOWATT 270 

Power Quality analyser in Mpale microgrid 

e) Measurement Setup: Lwak microgrid 

Lwak microgrid comprises three convent houses and a chapel. Since measurements were 

taken on cooling appliances, only the chapel houses were prioritised as the chapel does 

not have cooling appliances. Houses Bethany and Postulants have two chest freezers and 

one fridge freezer. House Emmaus has one chest freezer and one fridge-freezer.  

Apparatus and platforms used for measurement employed the Internet of Things (IoT), 

which was used to achieve temperature control for fridges and freezers and intelligent 

automation. This work uses a comprehensive technology stack to create a control and 
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monitoring system. Figure 3-10 presents an overall set-up of the IoT communication 

used in the Lwak microgrid. 

i. Docker serves as our containerization platform, ensuring consistent deployment 

across various environments. It uses containerization technology to package an 

application and its dependencies into a standardized unit called a "container."  

ii. Node-RED is a flow-based development platform which provides a user-friendly 

interface for creating automation flows. Leveraging its visual programming 

capabilities on an IoT lies in the users’ ability to utilize its flow editor without 

extensive coding. Node-RED facilitates intuitive flow-based development, enhancing 

the efficiency of the system’s design. It also supports MQTT and is commonly used 

in IoT applications for device-to-device communication.  

iii. MQTT, or Message Queuing Telemetry Transport, is a server that receives and 

routes messages to the desired clients. It was employed for seamless communication. 

MQTT serves as a lightweight messaging protocol to facilitate communication 

between devices. It works as a publish-subscribe messaging protocol for the IoT, 

where Publishers send messages (publish) to specific topics, and subscribers receive 

messages from topics of interest. Mosquitto, as the MQTT broker, enables real-time 

data exchange and collaboration between components. The primary function of 

Eclipse Mosquitto is to facilitate communication between publishers and subscribers, 

essentially serving as a communication channel. MQTT enabled communication and 

data recording between shelly devices. A flow was created which receives MQTT 

messages from a Shelly device, processes the message, and sends control messages 

back to the device using MQTT.  

iv. The influxDB database stores time-series data generated over time, offering optimal 

efficiency for the project’s requirements. 

v. The study utilized Grafana to visualise data, providing insightful dashboards and 

analytics. The synergy of Docker, Node-RED, MQTT, Mosquitto, InfluxDB, and 

Grafana forms the system's backbone, ensuring a cohesive and efficient architecture 

for the intended application.  

vi. Shelly Devices known for their compact design and versatility, offer seamless 

integration with household appliances. By incorporating Shelly temperature sensors 

and smart switches into the fridge ecosystem, users gain real-time insights into 
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internal temperatures and the ability to control the appliance remotely. 

Implementation Steps 

• Shelly smart sockets, together with their temperature sensor add-ons, were 

installed. Shelly temperature sensors were placed inside the fridge, connecting 

smart switches to control power. 

• Node-RED Installation was done on a Raspberry Pi 4 as part of other docker 

elements like influxDB, graphana and mosquito.  

• Node-RED Configuration: a flow within Node-RED was designed to monitor 

temperature data from shelly smart sockets (shelly plus 1 pm) Shelly sensors. The 

node-red flows are shown in the figure. 

• Temperature Thresholds: Upper and lower temperature thresholds were defined 

according to the maximum and minimum temperatures a fridge or freezer is 

designed for. The specified temperature thresholds within the Node-RED flow aid 

in triggering actions. 

• Automation Logic: an automatic control logic was created within Node-RED to 

switch OFF the fridge/freezer if it falls below the lower threshold temperatures 

and switch it back on when it exceeds the upper threshold. 

This setup allows the development of a user interface within Node-RED or a separate 

application to enable users to customize temperature settings and view real-time data. 

Precise temperature control offers energy efficiency by ensuring optimal energy 

consumption, contributing to overall household energy efficiency. Users can remotely 

monitor and adjust fridge temperatures, providing flexibility and convenience. Also, 

customization allows users to set personalized temperature thresholds that align with 

specific storage needs. 

By combining the capabilities of Shelly devices and Node-RED, this approach 

empowers users to take control of their fridge’s temperature dynamics, fostering a more 

energy-efficient and tailored approach to appliance management. 

The cooling appliances had 16 A, 110-240V AC smart sockets (shelly plus 1PMs) for 

power consumption measurement, monitoring, and control (Figure 3-9). The smart 

sockets can connect directly with temperature and humidity sensors, thus giving the 

advantage of monitoring other parameters simultaneously. Despite having several 

temperature and humidity add-ons, this study used a temperature sensor DS18B20 to 

monitor/measure the fridge/freezer’s internal temperature.  
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Figure 3-9: Measurement setup for demand and temperature measurement at Lwak 

microgrid 

 

Figure 3-10: Setup of the Internet of Things (IoT) communication system for data 

capturing, monitoring and control at Lwak microgrid 

A local network connection is essential for efficient communication in the IoT setup.  

Shelly devices, typically IoT devices, are designed for home automation and connect to 

local networks via Wi-Fi or Ethernet. The devices are then communicated with a router that 

acts as an internet gateway. Node-RED, a flow-based development tool, is often deployed 

on a local server within the network. It is an intermediary between the Shelly devices and 
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external services or applications. The local network connection facilitates seamless data 

exchange between these components, ensuring low latency, enhanced security, and reliable 

communication. Users can efficiently control and automate their Shelly devices by 

leveraging the local network. Figure 3-11 shows the overall local network for the setup at 

Lwak. 

 

Figure 3-11: Overall local network connecting routers and smart sockets placed at the 

cooling appliances at Lwak microgrid for data acquisition and control Lwak microgrid 

3.2.3. Data Pre-processing and Management 

There is a high possibility of missing essential demand data from the measured data due to 

measurement, sensing errors, and communication failures. Predicting and reconstructing 

the data requires investigating correlation models among estimated data to recover the 

missing data. Generally, investigation of the correlation between different data, for 

example, voltage and power for houses connected to the same transformer, individual 

homes’ voltage and frequency, and spatial and temporal power consumption for different 

places, proved effective in reconstructing and predicting missing and future data, 

respectively. Predicting future data is essential for real-time control and management 

(Huang & Zhu, 2016). 
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The usage pattern of all the connected customers in the microgrids will be identified to 

assess the current load profile of microgrids and their generation capacity. The household 

questionnaire analysis and field power measurement will determine the customer load 

characteristics. The effect of seasons, temperature and other demographic factors on 

customer power consumption will be investigated. The critical electric appliances, their 

usage period and seasonality will be identified. Customers will be grouped according to 

their usage from the meter data. 

Both long-term and short-term load behaviour must be understood to design a financially 

stable microgrid. Long-term behaviour influences capacity expansion strategies, and short-

term behaviour affects technology implementation and choice of energy sources. Figure 

3-12 explains the step-by-step process of achieving load profile analysis. 

 

Figure 3-12: Step-by-step process in achieving load profile analysis (Huang & Zhu, 2016) 

3.3. Technical Data Analysis 

Technical data analysis presents the secondary data collected in Mpale, Bunjako, and Lwak 

microgrids prior to modelling and simulation. 

Define study population

Stratification

Questionnaire design

Identify electricity appliances and 
usage patterns

Load patterns derivation from each 
customer

Load profile analysis

Test sample design and meter 
installments (MAVOWATT)

Demand data collection from 
smart meters
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3.3.1. Mpale Microgrid Data 

3.3.1.1. Weather Data 

Figure 3-13 shows the graph of measured global solar irradiance in the plane of modules 

from 10th May 2022 to 12th December 2022. The data were measured at intervals of 10 

seconds. The measurements show that the maximum possible irradiance during that time 

interval is 1464.8 W/m2, and the minimum is -0.4 W/m2 with an average of 165.89 W/m2. 

The irradiance values of the location show excellent potential for solar power production 

since the maximum is even more than the standard 1000 W/m2. Table 3-5 shows that 25% 

of the data falls below 0.2 W/m2, 50% falls below 2.5 W/m2, and 75% falls below 237 

W/m2. The vast difference between the 25th and 75th percentile shows considerable 

variability in irradiance data, as shown in Figure 3-13. 

 

Figure 3-13: Daily global solar irradiance in the plane of modules from 10th May 2022 to 

12th December 2022 (measured by a calibrated pyranometer) 

Table 3-5: Statistical summary of the measured irradiance data from 10th May 2022 to 12th 

December 2022 

Parameter Irradiance quantity (W/m2) 

Count 1.84×10+6 

Mean 166 

Standard deviation 273 

Minimum 0.0 

25% (1st Quartile) 0.2 

50% (2nd Quartile) 2.8 
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Parameter Irradiance quantity (W/m2) 

75% (3rd Quartile) 238 

Maximum 1460 

Figure 3-14 shows a plot of hourly global solar irradiance with a dotted line representing 

the mean. The irradiance values peak around noon due to the fact that at solar noon, the sun 

is at its highest point, giving more direct sunlight on the surface of the earth and, hence, 

maximizing the solar irradiance received. There are lower irradiance values in the morning 

and evening hours since the sun’s angle decreases, leading to a longer path for the sunlight 

to travel in the atmosphere. Figure 3-15 shows the same measured daily solar irradiance 

with a confidence interval band to convey the estimated value, in this case, the mean, and 

the level of uncertainty associated with it to understand the reliability of the data. The 

confidence band is narrow, indicating a more precise estimate. 

 

Figure 3-14: Hourly global solar irradiance in the plane of modules from 10th May 2022 

to 12th December 2022 (measured by a calibrated pyranometer with their mean 

representation in blue colour) 
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Figure 3-15: Hourly global solar irradiance in the plane of modules from 10th May 2022 

to 12th December 2022 (measured by a calibrated pyranometer with a 95% confidence band 

with dashed lines representing the mean values) 

Figure 3-16 and Figure 3-17 show the daily irradiance profile of the location as downloaded 

from the NASA website. The data trend looks similar, however, there are some differences 

which might be due to measurements location since the satellite data from NASA are based 

on satellite observations rather than ground-based measurements. Usually, the data derived 

from various NASA satellite missions are combined with weather models to provide global 

coverage and comprehensive datasets. Also, the location matters since on-site measurement 

might differ from satellite measurement as on-site measurements capture the temporal 

variabilities that are present. Resolution of measurement could be another reason. 

 
Figure 3-16: Hourly global solar irradiance NASA satellite data from 10 May 2022 to 12 

December 2022 with mean representation in blue colour (NASA, 2023) 
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Figure 3-17: Hourly global solar irradiance NASA satellite data from 10 May 2022 to 12 

December 2022 with a 95% confidence band (NASA, 2023) 

Load demand relates to weather data such as temperature, wind speed, relative humidity, 

and cloud cover. These factors are vital in load forecasting and management. Temperature 

and relative humidity primarily affect demand during moderate weather. Load demand 

varies non-linearly with temperature, so load demand increases as the temperature reaches 

extreme points (high/low) (Aboul-Magd & Ahmed, 2001). Figure 3-18 compares irradiance 

data measured with a pyranometer and NASA satellite data from the 10th of May 2022 to 

the 12th of December 2022. 

 

Figure 3-18: Comparison between hourly average NASA satellite data and irradiance 

measured by a pyranometer from the 10th of May 2022 to the 12th of December 2022  
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Figure 3-19: Solar photovoltaic power output (kW) from January 2019 to July 2022 

(measured and recorded by the solar system data manager in 1 – min intervals) 

 

Figure 3-20: Hourly solar photovoltaic power output (kW) from January 2019 to July 2022 

sampled from the 1–minutes interval solar power output (with their mean representation 

in blue) 
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Figure 3-21: Hourly solar photovoltaic power output (kW) from January 2019 to July 2022 

sampled from the 1 – min interval solar power output (with 95% confidence band) 

Figure 3-19 shows the solar power output in kW measured from January 2019 to July 2022, 

while Figure 3-20 and Figure 3-21 show their sampled hourly solar power output without 

and with a confidence interval band, respectively. From Figure 3-20, the solar production 

of individual daily plots peaked at different times and values due to seasonal effects and 

the nature of the irradiation during the day. The maximum solar production on a typical day 

was around 11 am. The mean solar power output peaked at around 10 – 11 am, declining 

during waning hours and without irradiance. 

Solar power output is calculated from the irradiation falling in a given square meter area, 

and its wattage value is provided by; 

𝑃𝑃𝑉 = 𝐴 × 𝑟 × 𝐼 × 𝑃𝑅  Eqn 3-1 

Where; 

A = total area in meters squared of the solar panel (for Mpale microgrid area, the 

total area is 900 m2), 

r = percentage solar panel yield efficiency (i.e., 20.4%), 

I = solar irradiance (in W/m2), and 

PR = performance ratio (0.75, default value) (Khalid et al., 2016). 

The calculation compares expected and actual power generated from the analysis. Desired 

power is calculated using the actual irradiation falling on the panel on the basis that the 

solar panel converts all irradiation. Figure 3-22 shows the comparison between actual and 
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expected solar power generated. The actual solar power generated does not match the 

expected power attributed to solar panel efficiency, orientation, tracking system, and other 

weather-affecting parameters like temperature, wind, and cloud cover. 

 

Figure 3-22: Comparison between actual and expected average hourly solar photovoltaic 

power output (kW) from January 2019 to July 2022 

3.3.1.2. Historical Demand Data 

Table 3-6: Historical Demand Data for Mpale Microgrid over the five years showing their 

monthly mean, standard deviation, minimum and maximum values 

Solar Power Generated (kWh/m2 per day) 

Months Mean Minimum Maximum Standard deviation 

January 2.95 2.09 3.69 0.81 

February 3.03 2.13 3.68 0.77 

March 3.28 2.11 4.37 1.03 

April 2.41 0.57 3.77 1.41 

May 2.51 0.43 3.79 1.57 

June 2.24 0.32 3.78 1.50 

July 2.73 0.32 4.66 1.65 

August 2.39 0.47 4.20 1.47 

September 2.20 0.78 3.80 1.13 

October 2.90 1.82 4.67 1.16 

November 2.69 1.96 3.81 0.87 

December 2.45 1.55 3.76 1.01 
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3.3.1.3. Yearly Solar Power Generation 

  

Figure 3-23: Monthly solar power generated for five years with some months’ data missing 

(2018 only December data, 2019: January -November 2020: January – August 2021: 

January – September 2022: January – March) 

Figure 3-23 shows the seasonal solar power produced from 2018 to 2022. An empty field 

means no data for such month in the respective year. Mpale microgrid experiences a rainy 

season from April to June, hence low power production. January to March is Tanga’s 

hottest season, with the highest solar power production. They usually have spring seasons 

around September to December. 

Figure 3-24 and Figure 3-25 show the cartesian and polar coordinates of the sun’s position 

at Mpale village, respectively. The sun’s position in a particular place is best described by 

its vertical angle (altitude) and horizontal angle (azimuth). These angles change throughout 

the day due to seasons and the earth’s rotation. The azimuth angle, which indicates the 

sun’s direction relative to the observer, is essential as it helps to know where solar panels 

should be positioned to receive maximum sunlight. For the Mpale location, with an azimuth 

angle of 71.02°, it suggests that the sun is slightly East of due North. The elevation angle 

(the angle between the horizon and the sun) measures or indicates how high the sun is in 

the sky. A higher elevation angle means the sun is more directly overhead; hence, solar 

panels should be placed to match that angle for optimal energy capture. An elevation angle 

of 41.44° observed at Mpale village signifies that the sun is relatively high in the sky, 

decreasing the sun’s path through the atmosphere and allowing more direct sunlight to 

reach the solar panels with little scattering. Based on the angles, Mpale is a good location 
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for solar production if the panels are well placed to capture enough sunlight (slightly to the 

right of the north and with a tilt angle close to its latitude). 

 

Figure 3-24: Cartesian coordinate chart representation of the Sun’s position over Mpale 

(-4.9995°, 38.4679) microgrid in Tanzania (SunEarthTools, 2023) 

 
Figure 3-25: Polar coordinate chart representation of the Sun’s position over Mpale (-

4.9995°, 38.4679) microgrid in Tanzania (SunEarthTools, 2023) 
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Figure 3-26 shows the variation of irradiance values sampled at 10-minutes, 20-minutes, 

and 1-hour intervals, illustrating the irradiance trend expected at Mpale village. The 

differences between sampling rates are due to data resolution, averaging effect, and 

sampling frequency. The 20-minute and 1-hour intervals represent averages over long 

periods compared to the 10-minute interval, which provides a general view by smoothing 

the short-term variations. 

 

Figure 3-26: Variations of minute and hourly mean values of global irradiance for the 

measured data at Mpale microgrid from 16th May 2022 to 16th December 2022 

3.3.1.4. Demand 

The Mpale Microgrid system has four (4) inverters (two inverters share the load in phase 

two). From the type of data provided, as attached in the appendix, phase 2 is L2-2 plus L2-

3. So, 1,2,3 are phases and 1,2,3,4 are inverters. 

Figure 3-27 shows the average summation of total power consumed from 2018 to 2022. It 

is worth noting that the Mpale microgrid was constructed in 2016, commissioned in 2017, 

and data recording commenced in December 2018. It is clearly shown that there is a 

significant increase in energy usage each year. This can be attributed to buying new 

electrical appliances, new customers, and even starting new businesses due to electricity 

access. The increase will create significant demand in the future, so taking immediate 

measures to control the rise in demand is essential. This was validated by the survey 
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questionnaires, where the main load when the grid started was only lights and phones, but 

people kept adding more appliances. 

 

Figure 3-27: Total average yearly electricity consumption for the years 2018-2022 at 

Mpale microgrid showing a trend of annual demand growth 

The four-year demand profile was prepared and sampled to a daily hourly profile (Figure 

3-28). Peak load behaviour showed a typical load profile of households in the village with 

demands in the evening hours. 

 

Figure 3-28: Maximum power consumed in the three phases and their total power 

averaged from January 2019 to July 2022 sampled from the 1 – min interval power data 
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The demand profile shows a spike in power consumption between 0500 and 0700, 

indicating that most inhabitants’ activities were before work or school. Typically, from 

hours 7 to 18 on weekdays, less power was observed as inhabitants were involved in 

activities such as farming, which did not consume considerable power. From 1800 to 2200 

hours, a spike in power consumption indicated that most inhabitants were back home 

performing activities that consume power, such as cooking and watching TV. The pie chart 

(Figure 3-29) represents the percentage of average power consumption for different days 

of the week, with Sunday being the highest in electric power consumption. The variations 

can be attributed to more people spending their time at home and using more power from 

staying at home. 

 

Figure 3-29: Pie plot showing weekday and weekend demand of the percentage energy 

consumed at Mpale microgrid 

Figure 3-30 and Figure 3-31 show a plot of battery SOC and temperature. The plot shows 

that the battery SOC drops below 50% during morning hours due to higher power 

consumption. Also, the trend of decreasing SOC is observed in the evening hours. There is 

charging of the battery when the sun is available, meaning that at some point when there is 

not enough sunlight, batteries are not fully charged; hence, it brings us to the same 

importance of DSM. Also, Figure 3-31 shows the variation of battery temperature as the 

activity of the battery changes. 



 

65 

 

Figure 3-30: Hourly Battery State of Charge (SOC) from January 2019 to July 2022 

sampled from the 1–minutes interval battery state of charge data (with their mean 

representation in blue) 

 

Figure 3-31: Hourly Battery temperature from January 2019 to July 2022 sampled from 

the 1–minutes battery temperature data (with their mean representation in blue) 

Figure 3-32 shows the comparison of solar power produced and electricity usage. There is 

no proper correlation since people consume more when there is insufficient sunlight 

(morning and evening). Also, it should be noted that much power is wasted if it has already 

been used to charge the batteries. The idea of DSM through load shifting could make more 

sense in this way. Also, alternative storage, like electric vehicles, could help avoid power 

wastage. 
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Figure 3-32: Comparisons between average solar photovoltaic power generated and total 

energy consumed from January 2019 to July 2022 sampled from the 1–minutes solar power 

and demand data 

The generated solar power differs from the irradiation, possibly due to panel orientation, 

which prevents solar panels from capturing maximum sunlight. When solar panels are not 

correctly oriented, they can capture sunlight intensity earlier in the day than expected. Also, 

even a small amount of shading from nearby objects like buildings or trees could reduce 

solar output. Other reasons could be temperature effects and local weather patterns. 

3.3.1.5. Power Quality results. 

This section presents the power quality results measured by the MAVOWATT power 

quality analyser from 14/05/2022 to 12/06/2022. Figure 3-33 shows the voltage plots of the 

average and minimum rms values for the three phases. According to the Tanzania Bureau 

of Standards for Quality of Supply (TBS), voltage whose upper limit of nominal RMS value 

is 1 kV is termed as Low Voltage (LV), voltage ranging from 1 – 33 kV is medium voltage 

(MV), 33 ‒ 220 kV is High Voltage (HV) and 33 – 400 kV Extra High Voltage (EHV) 

(Tanzania Bureau of Standards (TBS), 2011). This case study lies in the LV range. The 

standard AC voltage for customers supplied at LV shall be 400 V phase to phase and 230 

V to neutral. However, it is observed that there are several voltage fluctuations and 

interruptions within the measurements, which will be further explained in the coming 

paragraphs. Reliability remains a serious concern with the poor access to electricity in most 

rural and urban areas in Sub-Saharan Africa. The system average interruption duration 

index (SAIDI) represents the average time (seconds) per year a customer’s power is 
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interrupted (Paul et al., 2017). The SAIDI value for Nairobi in East Africa, viewed as 

standard reliability, is 216.3 hours (Muhihi & Paschal, 2022). According to the Tanzanian 

standard TZS 1374:201, the SAIDI value is supposed to be less than 650minutes (10.8 

Hours) per customer per year; however, from 2012 to 2016, Tanzania had load-shedding 

of up to 20.3 hours; from June 2018 it had an unplanned outage of 1044 hours (Muhihi & 

Paschal, 2022). Reliability is crucial in electricity consumption for both productive and 

domestic use. 

On 15 May 2022, a deviation from the standard voltage of 230 V was observed in phase A, 

as shown in Figure 3-33. Voltage swell refers to a sudden increase in voltage or simply 

overvoltage. The graphs show that the two phases, B and C, maintained the same voltage 

of 230 V, but phase A voltage increased to 266 V, which is almost 11.3% lower than the 

permissible voltage limit value of ±15% based on the TBS standards and the South African 

National Grid code (Eskom & Nersa, 2003). Also, on 28th May 2022, a voltage rise of 

almost 262.5 V was observed in phase A. Several factors are the reasons for voltage swell, 

including the sudden switching of large loads on or off could be the reason. Figure 3-34 

shows the magnified phase A voltage rise to explain the event clearly. 

 
Figure 3-33: MAVOWATT voltage plots for the three phases from 14th May 2022 to 12th 

June 2022 
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Figure 3-34: The magnified voltage swell event observed on phase A on 15th May 2022 at 

0248 hours 

When analysing voltage interruptions in the Mpale microgrid, Figure 3-35 shows the 

relationship between the total load profile and the voltage in the three phases. The observed 

pattern of interruptions, especially during evening hours, suggests potential challenges in 

maintaining a consistent and reliable power supply. These interruptions may stem from 

insufficient generation capacity, frequent equipment failures, or an overstrained grid during 

peak demand. Addressing these issues through enhanced capacity planning, infrastructure 

improvements, demand side management and proactive maintenance measures could 

significantly improve the microgrid’s reliability and mitigate the impact of voltage 

interruptions on the community. 
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Figure 3-35: Relationship between total load profile and voltage in the three phases from 

14th May 2022 to 12th June 2022 

Harmonics or distortion in the waveforms was one of the other parameters measured. 

Figure 3-36 shows all the observed voltage harmonics in the time range of the 

measurements. They might have been caused by non-linear loads that draw non-linear 

currents in the system, introducing harmonics. Figure 3-37 shows the statistical distribution 

of the observed voltage and current harmonics in the three phases. For phases A and C, 

only 5% of the harmonic values are below 5 V and 1 A current, while most harmonics are 

between 15 and 20 V with a corresponding current of about 3.5 A. Phase B experiences the 

most harmonics values, with 5% reaching almost 7 V with 3.5 A and most harmonics being 

around 25 V and 9 A. According to the Tanzanian Bureau of Standards and the Kenyan 

Nation Distribution Grid Code, the THD of the supply voltage for the LV network shall not 

exceed 8% (ERPA, 2021; Tanzania Bureau of Standards (TBS), 2011). Phase B exceeded 

the set limit since it has almost 11% of the fundamental voltage, while phases A and C lie 

within the limit set. 
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Figure 3-36: Time plots for the voltage total harmonic distortion of the three phases 

measured from 14th May 2022 to 12th June 2022 

 

Figure 3-37: Statistical distribution of the overall voltage and current harmonic distortion 

for the three phases from 14th May 2022 to 12th June 2022. 

Figure 3-38 and Figure 3-39 show a plot of the total frequency and total load curve with 

their respective zoomed versions to show the variations clearly. The observed variations 

provide valuable insights into the stability and performance of the microgrid. Significant 

fluctuations in frequency, especially during peak load periods, may indicate challenges in 

maintaining grid stability and proper frequency control. This could result from mismatches 

between generation and demand, insufficient grid inertia, or inadequate control 

mechanisms. According to the African national grid code, the allowable frequency limit for 

an islanded system is ± 5% (± 2,5 Hz) (Eskom & Nersa, 2003); however, for some of the 

periods, the limit is highly exceeded in this case. 
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Analysing the load curve with frequency variations helps identify periods of high demand 

and their impact on system stability. Implementing measures like demand-side 

management, energy storage, or optimizing generation capacity can contribute to a more 

stable frequency profile, enhancing the overall reliability of the microgrid.  

 

Figure 3-38: A plot of total frequency versus total load curve for a period from 13 May 

2022 to 12 June 2022 

 

Figure 3-39: A plot of total frequency versus total load curve for a period from 14 May 

2022 to 17 May 2022 

Variations in load, both increases and decreases, can indeed lead to frequency variations in 

a power system. When the load on the microgrid increases, there’s an immediate demand 

for more power. If the generation capacity cannot match this sudden surge in demand, it 

can decrease system frequency. 
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Conversely, when the load decreases, there is a surplus of generated power, leading to 

increased frequency. These frequency variations can affect the stability of the power system 

and the performance of connected devices. Figure 3-40 shows the mentioned effect for the 

measured data in the Mpale microgrid. Hence, proper load forecasting, efficient demand 

management, and a well-balanced generation mix are crucial to maintaining a stable 

frequency in a microgrid or any power system. 

 
Figure 3-40: A plot of total frequency versus total load showing the effect of increase and 

sudden decrease of the load on the frequency 

The quality of the power supply expressed as the percentage of voltage deviation from the 

nominal or rated voltage of 230 V was also examined. Figure 3-41 indicates the voltage 

distribution levels. For all three phases, most of the voltage recorded aligns with the 

nominal voltage of 230 V. Only 5% of the data set has voltages below 75 V. This can be 

due to events of interruption to the power system and blackouts. 

 

Figure 3-41: Overall voltage distribution for three phases from 14th May - 12th June 2022  

Figure 3-42 represents the activities of voltage sags, swells, interruptions, and transients. 

They have been further explained in detail in  
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Table 3-7. The simultaneous occurrence of dips, swells, interruptions, and transients in the 

system, with a concentration during evening hours, suggests a complex interplay of factors 

affecting the microgrid. The evening peak demand could contribute to dips and 

interruptions due to strained capacity. Swells may be linked to issues such as sudden load 

releases. 

The presence of transients throughout the day may indicate external factors like lightning 

or switching events. A comprehensive analysis should consider upgrading infrastructure to 

handle peak loads, improving voltage regulation mechanisms, and implementing protective 

measures against transients. Balancing generation, load, and robust system protection 

becomes crucial for addressing these multifaceted challenges.  

 
a) Voltage dips 

 
b) Voltage swells 

 
c) Voltage interruptions 

 
d) Voltage transients 

Figure 3-42: Activity plots for the magnitude of voltage dips, swells, interruptions, and 

transients from 14th May 2022 to 12th June 2022  
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Table 3-7: Worst Case Summary of the magnitude and duration of the measured voltage 

dips, swells, interruptions, and transients measured from 14th May 2022 to 12th June 2022 

Out of 59 Total voltage dips 

Criteria Phase Category Data Date Time 

Lowest Magnitude C SUSTAINED 0.1 V, 17.45 min. 
11/06/2022 

19:55:39.28 

 C SUSTAINED 0.1 V, 1.38 hrs. 
01/06/2022 

16:19:54.89 

 C SUSTAINED 0.1 V, 5.58 min. 
07/06/2022 

20:21:03.50 

 C SUSTAINED 0.1 V, 10.14 hrs. 
01/06/2022 

21:37:26.94 

Longest Duration A SUSTAINED 0.1 V, 10.14 hrs. 
01/06/2022 

21:37:26.94 

 A SUSTAINED 0.1 V, 4.94 hrs. 
28/05/2022 

08:26:30.43 

 A SUSTAINED 0.1 V, 4.69 hrs. 
05/06/2022 

03:46:25.82 

 A SUSTAINED 0.1 V, 4.42 hrs. 
06/06/2022 

06:01:36.23 

 A SUSTAINED 0.1 V, 4.94 hrs. 
28/05/2022 

08:26:30.43 

Out of 5 total VOLTAGE SWELLS 

Largest Magnitude A INSTANTANEOUS 266.4 V, 0.100 Sec. 
15/05/2022 

02:48:16.11 

 A INSTANTANEOUS 262.5 V, 0.040 Sec. 
28/05/2022 

21:33:26.11 

 A MOMENTARY 261.5 V, 1.460 Sec. 
28/05/2022 

21:33:26.61 

 A INSTANTANEOUS 261.4 V, 0.040 Sec. 
15/05/2022 

02:48:17.53 

Longest Duration A MOMENTARY 261.5 V, 1.460 Sec. 
28/05/2022 

21:33:26.61 

 A INSTANTANEOUS 255.7 V, 0.130 Sec. 
15/05/2022 

02:48:15.87 

 A INSTANTANEOUS 266.4 V, 0.100 Sec. 
15/05/2022 

02:48:16.11 

 A INSTANTANEOUS 262.5 V, 0.040 Sec. 
28/05/2022 

21:33:26.11 
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Out of 354 total VOLTAGE INTERRUPTIONS 

Longest Duration A MOMENTARY 0.1 V, 9.57 hrs. 
01/06/2022 

22:11:31.56 

 A MOMENTARY 0.1 V, 17767.205 Sec. 
28/05/2022 

08:26:30.47 

 A MOMENTARY 0.1 V, 4.94 hrs. 
05/06/2022 

03:46:25.85 

 A MOMENTARY 0.1 V, 4.42 hrs. 
06/06/2022 

06:01:36.26 

Out of 2733 total VOLTAGE TRANSIENTS 

Largest Magnitude A  1314.8 V, 0.004 Sec. 
04/06/2022 

18:29:03.62 

 C  1280.0 V, 0.003 Sec. 
07/06/2022 

20:26:48.64 

 B  1278.0 V, 0.002 Sec. 
06/06/2022 

17:38:11.88 

 B  1272.0 V, 0.004 Sec. 
04/06/2022 

18:29:03.62 

Table 3-7 summarises all the recorded worst-case scenarios of measured voltage dips, 

swells, interruptions and transients from 14th May 2022 to 12th June 2022 with their 

duration and magnitude. From the observed results, phases A and C suffered more from 

prolonged time of voltage dip events. According to the TBS, voltage dips are generally 

caused by system or distribution network faults. Most voltage dips have a duration of less 

than 1s; however, voltage dips with greater depth and duration can occur infrequently. It 

also mentioned the causes of these dips, which could be switching loads in the network; 

however, it is impossible to set national compatibility levels of acceptable dips since the 

environment significantly impacts the frequency of faults that give rise to voltage dips. 

From the observed data, the two phases had a severe and prolonged dip, which led to a 

blackout. These were thought to be connecting large appliances, which consume more 

energy at the start-up. Only five voltage swells were observed, and none was sustained; 

they were instantaneous and momentarily, lasting less than two seconds. Voltage swells 

adhere to the TBS (measured following TZS 1382 standard), which states that a swell is 

defined to have a duration from 20 ms to 10 min with a voltage threshold of +15% of the 

standard voltage for the networks with voltage less than 500 V. although the most 

considerable swell magnitude of 266.4 V (15.82% of nominal voltage) exceeded the set 

threshold, its duration lasted only for 0.1 seconds. 
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Figure 3-43 and Figure 3-44 represent the total daily and weekly load profiles by their 

maximum, minimum, and average values. Analyzing the load profile with higher peaks in 

the evening reveals a pronounced demand pattern during those hours. This event likely 

indicates high energy consumption during peak hours when residents return home, 

businesses operate, and various activities intensify.  

Strategies like demand-side management, energy storage deployment, or staggered 

operation of specific loads could be considered to address this. Implementing these 

measures can help flatten the load curve, ensuring a more balanced distribution of energy 

consumption throughout the day, thereby improving the overall efficiency and reliability 

of the microgrid. 

 

Figure 3-43: Plots of total load profiles using maximum, average, and minimum values 

zoomed for a period from 2022-05-17 00:00 to 2022-05-17 23:00 
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Figure 3-44: Weekly total load profiles zoomed for a period from 2022-05-17 00:00 to 

2022-05-24 23:00 

3.3.1.6. Reactive Power 

Figure 3-45 shows how much reactive power is introduced into the system. A plot of the 

load curve and reactive power provides insights into the power factor and system efficiency. 

The presence of reactive power may indicate a power factor correction issue. Poor power 

factor can result in inefficient energy use and higher losses in the system. For this case 

study, the reason is customers’ use of inductive loads, which is believed to be so since many 

connected customers in Mpale use the older cathode ray tube (CRT) televisions, which are 

considered inductive loads due to their technology, which relies on the movement of 

electrons facilitated by magnetic fields. 

Addressing this could involve implementing power factor correction devices or optimizing 

the operation of existing equipment. A balanced load curve and improved power factor 

contribute to a more efficient and reliable power system, reducing energy losses and 

enhancing the overall performance of the microgrid.   
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Figure 3-45: A plot of the total load profile and its associated total reactive power 

generated in the system zoomed for a period from 2022-05-17 00:00 to 2022-05-18 23:00 

3.3.1.7. Correlation 

For the first time, correlation and regression were defined as statistical parameters due to 

empirical and theoretical development by  Sir Francis Galton in 1885, followed by Karl 

Pearson, who developed the coefficient a decade later (Rodgers & Nicewander, 1988). In 

1904, psychologist Spearman Charles introduced the rank correlation coefficient called 

Spearman’s coefficient (Zar, 1972). In 1955, the Kendall rank correlation coefficient was 

discovered, which evaluates the degree of similarity among two sets of ranks (Abdi, 2008). 

In literature, Pearson’s correlation is widely used to analyse linear data by calculating its 

coefficient. Pearson’s correlation tends to be one of the most representative methods for 

evaluating the correlation between two mutual variables with dissimilar physical quantities 

(Song et al., 2017). Pearson correlation is only sensitive to a linear relationship between 

two variables or even when one variable is a nonlinear function of the other.  

The coefficient talks about the direction and strength of correlation. The strength of the 

correlation is represented by the absolute value of the coefficient, in which the more 

significant the weight, the stronger the correlation. In order to minimise errors in estimating 

correlation, circumstances like the linearity and non-linearity of data needed to be carefully 

analysed. Pearson’s correlation coefficient is calculated using Eqn 3-2. 
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𝑟𝑐𝑐 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑁

𝑖

∑ (𝑥𝑖 − 𝑥)2 ∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖

𝑁
𝑖

 Eqn 3-2 

Where, 𝑟𝑐𝑐 = Pearson’s correlation coefficient; 𝑥𝑖 , 𝑦𝑖 = observations from populations x and 

y (where 𝑥 is the independent variable, y is the dependent variable), respectively; 𝑥, 𝑦 = 

means of objects in the population. 

The coefficient 𝑟𝑐𝑐 lies in the range of [-1,1], and different ranges in between signify various 

levels of relationship. A strong correlation is when the value is higher than 0.7.  

Kendall and Spearman’s correlation was more sensitive to nonlinear relationships.  

Using a monotonic function, Spearman’s rank coefficient assesses how well the 

relationship between two variables can be described. It is a nonparametric measure of 

statistical dependence between two variables. Spearman’s rank coefficient assumes 

independent pairs of observation whereby the two variables should be measured on an 

ordinal, interval or ratio scale. Also, it assumes a monotonic relationship between the two 

variables. The formula by which Spearman’s coefficient is calculated is as follows: 

ρ =
∑ (𝑅(𝑥

𝑖
) − 𝑅(𝑥))(𝑅(𝑦

𝑖
) − 𝑅(𝑦))𝑁

𝑖

∑ (𝑅(𝑥
𝑖
) − 𝑅(𝑥))

2 ∑ (𝑅(𝑦
𝑖
) − 𝑅(𝑦))

2𝑁
𝑖

𝑁
𝑖

= 1 −
6 ∑ (𝑅(𝑥𝑖) − 𝑅(𝑦𝑖))2𝑛

𝑖=1

𝑛(𝑛2 − 1)
 Eqn 3-3 

where 𝑅(𝑥𝑖) represents the rank of 𝑥𝑖, while 𝑅(𝑦𝑖) represents the rank of 𝑦𝑖, 𝑅(𝑥) is the 

mean rank of 𝑥𝑖,  𝑅(𝑦)  is the mean rank of 𝑦𝑖 , 𝑛 is the number of pairs (Selami Shaqiri et 

al., 2023). 

Kendall correlation is a lesser-used correlation method, represented by its coefficient Tau 

(τ). Kendall’s tau is a correlation coefficient that can be used for data in the form of ranks 

as an alternative to Spearman’s rho. It is a simple function of the minimum number of 

neighbour swaps needed to produce one order from another (Iljazi, 2021). The formula to 

calculate Kendall’s Tau is as follows: 

τ =
𝐶 − 𝐷

1

2
𝑛(𝑛 − 1)

 Eqn 3-4 

Where 𝐶 is the sum of the number of the most significant values of y 

(number of concordant pairs), 𝐷 is the sum of the number of the smallest values of y 

(number of discordant pairs), 𝑛 is the number of pairs. The sums C and D represent the 

pairs’ incompatible and irreconcilable numbers. Table 3-8 describes the different 

correlation values in detail. 
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Table 3-8: Interpretation of Pearson’s, Spearman’s and Kendall’s correlation coefficients 

𝒓𝒄𝒄 Description 

|𝑟𝑐𝑐| ˃ 0.9 Very strong correlation 

0.9 ≥ |𝑟𝑐𝑐| ˃ 0.7 Strong correlation 

0.7 ≥ |𝑟𝑐𝑐| ˃ 0.4 Relatively strong correlation 

0.4 ≥ |𝑟𝑐𝑐| ˃ 0.1 Moderate correlation 

0.1 ≥ |𝑟𝑐𝑐| ˃ 0 Weak correlation 

|𝑟𝑐𝑐| = 0 No correlation 

|𝑟𝑐𝑐| = 1 Identical/linearly related 

|𝑟𝑐𝑐| = -1 Strict anti-correlation 

|𝑟𝑐𝑐| = 0 Anti-correlated 

|𝑟𝑐𝑐| = -ve values Negative correlation 

|𝑟𝑐𝑐| = +ve values Positive correlation 

 

Figure 3-46: Pearson’s correlation scatter plots for solar photovoltaic power produced, 

power consumed in the three phases and SOC (The correlation red line represents the 

relationship between the two variables, and the shaded area around it indicates the 
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confidence interval showing the range within which true correlation is likely to fall. Bar 

graphs represent the strength or direction of the correlation, which provides a visual 

summary of the relationship between observed data). 

 

Figure 3-47: The heat map plots of Pearson’s correlation for solar photovoltaic power 

produced, power consumed in the three phases and SOC  

Table 3-9: Spearman’s correlation table for the power in the three phases, solar 

photovoltaic power produced and battery state of charge 

 Phase 1 Phase 2 Phase 3 Battery SOC 
PV Power 

produced 

Phase 1 1 0.96 0.98 0.09 -0.88 

Phase 2 0.96 1 0.95 0.06 -0.84 

Phase 3 0.98 0.95 1 0.03 -0.83 

SOC 0.09 0.06 0.03 1 -0.09 

PV Power 

Produced 
-0.88 -0.84 -0.83 -0.09 1 

Table 3-10: Kendall Correlation table for the power in the three phases, solar photovoltaic 

power produced and battery state of charge 

 Phase 1 Phase 2 Phase 3 
Battery 

SOC 

PV Power 

produced 

Phase 1 1 0.87 0.93 0.16 -0.74 
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 Phase 1 Phase 2 Phase 3 
Battery 

SOC 

PV Power 

produced 

Phase 2 0.87 1 0.85 0.09 -0.70 

Phase 3 0.93 0.85 1 0.11 -0.66 

SOC 0.16 0.09 0.11 1 -0.12 

PV Power 

Produced 
-0.74 -0.70 -0.66 -0.12 1 

Figure 3-46 and Figure 3-47 present Pearson’s correlation scatter and heat plots between 

demand, supply and storage, respectively. All three phases show a strong correlation, an 

indicator that the trend of energy usage is similar. The lack of correlation of demand 

between sites is essential to determine potential investment deferment in generation and 

possibilities of new connections required to utilise the lack of correlation. Phase 1 has 

households connected; Phase 2 supplies families and businesses; Phase 3 is connected to 

homes. The almost similar correlation value may imply that the three phases only differ in 

the amount of power used, but the trend is the same. 

The negative correlation between demand in the phases and solar power produced means 

that solar generation cannot meet demand, especially during peak hours. Solar PV, in effect, 

shaves demand in the middle of the day while most peak demand occurs later in the evening 

and early morning. This suggests that solar power requires supplementing with energy 

storage to meet peak demand (if demand cannot be shifted to the midday hours). The state 

of charge of a battery shows a moderate and weak correlation with demand in all three 

phases and the solar electricity power produced. The negative sign of its correlation with 

solar electricity power produced may signify the charging of the battery, which, as a result, 

decreases solar power when battery SOC is increasing (e.g., in the late afternoon hours). 

Table 3-9 and Table 3-10 show the same correlation coefficients using Spearman’s and 

Kendall‘s correlation coefficients, respectively.  
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Figure 3-48: Pearson’s correlation scatter plots for irradiance, solar photovoltaic power 

produced, total power consumption and SOC 

 

Figure 3-49: The heat map plots of Pearson’s correlation for irradiance, solar 

photovoltaic power produced, the total power consumed and SOC 
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Figure 3-48 and Figure 3-49 represent Pearson’s correlation scatter and heat map plots 

showing correlation coefficients for irradiance, solar power produced, total power 

consumed and SOC. It is observed that the correlation between irradiance and solar power 

produced is around 0.6. This value suggests a moderate correlation between the two, i.e., 

solar power is produced as irradiance increases. The two do not show a perfect correlation 

since other factors influence power production, such as solar panel efficiency, panel 

temperature, orientation, dust on the panel, etc.  

A strong negative correlation between irradiance and total power consumed signifies more 

irradiance with low power consumption and vice versa. This may be because more power 

is consumed during morning hours and late evening when there is insufficient irradiance. 

Also, one may argue that higher irradiance coincides with sunnier conditions, reducing the 

need for artificial lighting, which is the most power consuming unit in the villages. The 

same reason explains the negative correlation between solar power produced and 

consumed. A weak correlation between SOC and other parameters indicates a weak 

relationship since other factors are behind the overall dynamics, such as 

charging/discharging efficiency. Also, A weak negative correlation value of -0.29 between 

battery State of Charge (SOC) and solar power generation might imply that the battery SOC 

tends to decrease slightly as solar power generation increases. The negative correlation 

could indicate factors such as energy consumption exceeding solar generation during 

specific periods, leading to reduced battery SOC. It doesn’t necessarily mean the battery is 

full, but rather, a modest inverse relationship exists between solar power generation and the 

battery’s state of charge. 

3.3.1.8. Clustering of Data 

Clustering is one of the methods for determining intrinsic patterns in data sets. The main 

goal of clustering is to group data according to their similarities into clusters, e.g., to 

determine inherent patterns in data sets (Rajabi et al., 2020). With clustering, items in the 

same cluster are more similar than those in different clusters. Therefore, high intra-cluster 

and low inter-cluster similarities are achieved. Clustering of data was done using the 

following steps: 

a) Demand data collection 

Data on electricity consumption from customers’ smart meters was collected. They 

pre-process the gathered data to cater for incomplete (missing), insufficient, and 

corrupted data due to uncommon situations like unexpected failures. Different 
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techniques like regression can be used to repair the data. Data abnormalities can 

also be handled uniquely as one of the clustering stages (Rajabi et al., 2020). 

b) Clustering stage 

The selection of accurate parameters and a proper clustering algorithm is performed 

in this stage. The type of clustering technique depends on various factors such as 

the type and size of the dataset, user preferences, computational facilities and the 

final clustering goal.  More than one clustering technique may be applied to the 

demand profiles and final results compared to achieve the best results. Furthermore, 

the author proved that different clustering techniques could be combined to obtain 

better results or speed up the process (Kwac et al., 2014).  

c) Clustering performance assessment 

Although assessing the quality of the clusters obtained is not clear due to an 

unsupervised process of the clustering algorithm, a suitable clustering method 

should ensure the compactness of each cluster and wide separation of different 

clusters (Wang et al., 2015). Clustering validity indexes (CVIs) are used to evaluate 

the clustering results. 

d) Formation of customer classes 

This stage can be termed postprocessing of the resulting clusters to match real-

world scenarios. For example, depending on whether the final goal for clustering is 

tariff design or demand response, the number of clusters can be in a specific 

allowable range. The ultimate user (DR personnel or operator) should specify the 

number of customer segments.  In this stage, consolidation of clusters with similar 

patterns is possible (Smith et al., 2012). 

Electricity consumption data of the Mpale microgrid were considered, whereby the K-

means clustering algorithm was performed using the Scikit-Learn Python package (Barupal 

& Fiehn, 2019). Clustering was done to identify the typical usage patterns of the customers 

and group them into respective clusters depending on their electricity usage trends. 

Knowing the respective clusters is essential to achieve a more flexible DSM, especially in 

deciding suitable candidates for DSM and designing incentives in case of incentive-based 

DSM (Philipo et al., 2021). Figure 3-50 shows the optimal number of clusters using the 

elbow method. The elbow method decides the optimal cluster numbers K by the turning 
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point of the graph that gives the slightest decrease in the error sum. From Figure 3-50, the 

optimal K value obtained in this case is three; hence, three clusters will be identified.  

 

Figure 3-50: A graph of the elbow method used to determine the optimal value of K in 

clusters 

Figure 3-51 shows distinct patterns in electricity demand throughout the day in the village, 

comprising households and businesses. Cluster 2, the highest power consumption, peaks 

around 7-10 PM, likely representing peak evening usage when villagers return home from 

work or school. Activities such as cooking dinner, watching TV, using electric appliances, 

and lighting up homes contribute to increased electricity demand during this time. The 7 – 

10 PM peak aligns with the typical residential consumption patterns, suggesting that cluster 

2 comprises mainly households. 

Clusters 1 and 3 represent medium usage trends with peak demand around 4-7 PM. These 

clusters may correspond to the early evening and late afternoon periods when villagers are 

still active but perhaps not yet engaged in peak household activities. The clusters reflect the 

combination of early household and business operational activities since most businesses 

are active at that particular hour. Also, the presence of two separate clusters within this time 

frame could indicate variations in the timing of activities among different households or 

businesses within the village. For example, some households may start their evening 

routines earlier than others. 
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The clustering analysis reveals distinct usage patterns that align with daily routines and 

activities within the village. Understanding these patterns can help electricity providers 

optimize resource allocation, plan for infrastructure upgrades, and implement targeted 

energy efficiency initiatives. 

 

Figure 3-51: Clusters obtained after applying the K-Means clustering algorithm to the 

demand data of Mpale microgrid 

3.3.2. Bunjako Microgrid Data 

3.3.2.1. Weather Data 

Figure 3-52 shows the measured irradiance using irradiation sensors for a week in February 

2022, sampled in a daily profile, as shown in Figure 3-53. The aim was to see the trend and 

the fitting between the load profiles and irradiation, generating solar power. Figure 3-54 

shows the measured power consumed for the same period from 22–28 February 2022. 
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Figure 3-52: Measured Solar Irradiance in the plane of the modules for the Bunjako 

Microgrid for the period from 24 February to 28 February 2022 

 

Figure 3-53: Hourly irradiance sampled from the Measured Solar Irradiance in the plane 

of the modules for the Bunjako Microgrid for the period from 24 February to 28 February 

2022 
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3.3.2.2. Demand Data 

 
Figure 3-54: Total measured power demand for Bunjako Microgrid from 22 February to 

28 February 2022. 

Figure 3-55 shows the customers’ total daily power consumption profiles connected to one 

of the Bunjako microgrids sampled into a daily load profile from July 2021 to September 

2021. Peak demand of about 5 kW was observed between 1800 h and 2200 h, implying that 

most customers are back home and have switched on various electric appliances, such as 

lights, fans, and televisions. Demand–response strategies and control were not considered 

or implemented. Figure 3-56 shows the total daily power consumption profile with a 95% 

confidence interval. 

 
Figure 3-55: Power demand sampled from the measured demand data for the Bunjako 

Microgrid for the period from 26 July to 31 August 
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Figure 3-56: Power demand sampled from the Measured demand data for the Bunjako 

Microgrid for the period from 26 July to 31 August with a 95% Confidence interval 

Figure 3-57 shows the median, average, maximum and minimum power consumed from 

the grid in a 24-hour time horizon. The average electricity demand of the data samples 

ranges from 1000 W to 2000 W, with a total range from a minimum of about 750 W to a 

maximum of 5000 W. The median and average values are closely related, and all the 

profiles peak in the evening, a typical load profile for users in the village. 

 

Figure 3-57: Maximum, minimum, and average daily power sampled from the Measured 

demand data for the Bunjako Microgrid for the period from 26 July to 31 August 
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Electricity consumption significantly depends on the day, whether weekend or weekday 

and the activities taking place. It may further depend on several factors, such as whether 

people stay at home most of the time, the kinds of people present in the households, e.g., 

students, and the nature of economic activities. The box plot in Figure 3-58 shows the 

variation in power consumed for different days of the week. The central line on each box 

plot represents the median value, and the dots are the outliers. 

 

Figure 3-58: Box plots of the power demand distribution for the days of the week sampled 

from measured demand data of Bunjako microgrid for the period from 26 July to 31 August 

3.3.2.3. Power Quality Data 

3.3.2.3.1. Voltage and Current magnitude 

Figure 3-59 shows the values of the measured voltage time plots from 24th February 2022 

to 4th March 2022. The East African power quality standards consider the low voltage 

system to be less than 1000 V, which is the case for the Bunjako microgrid (ERPA, 2021; 

Tanzania Bureau of Standards (TBS), 2011). The standard phase voltage for such a system 

is 230 V. However, substantial voltage fluctuations were observed, with phase B being the 

most affected line. On 26th February 2022, phase B experienced an instantaneous low 

voltage of about 152.4 V, which might have resulted from sudden significant load changes 

in current time plots. Figure 3-60 clearly shows events of a sudden increase in loads, 

represented by a sudden increase in current, which is proportional to the sudden drop in 

voltage. 
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Figure 3-59: Voltage time plots measured from 24th February 2022 12:43:14.0 to 4th 

March 2022 10:05:00.0 

 
Figure 3-60: Current time plots measured from 24th February 2022 12:43:14.0 to 4th 

March 2022 10:05:00.0 

 

 



 

93 

3.3.2.3.2. Current and Voltage Harmonic Distortion Time Plots 

Harmonics, an integer multiple of the fundamental frequency in the electrical signal, was 

measured and analysed within a time frame from 24 February 2022 to 4 February 2022. 

The presence of harmonics in the power system leads to distortion of the current and voltage 

waveforms. Figure 3-61, Figure 3-62 and Figure 3-63 show the current harmonic distortion 

waveforms for phases A, B and C, respectively, while Figure 3-64, Figure 3-65, and Figure 

3-66 show their respective voltage waveforms.  

Phase A, being the highest, had a total harmonic distortion of around 7.32 A, with odd 

harmonics of 7.34 A and even harmonics of 0.14 A. Phase B experienced odd and even 

current harmonics of 5.3 A and 0.2 A, respectively, with total harmonic distortion of 5.29 

A. Phase C had a total harmonic distortion of 4.24 A with odd harmonics 4.25 A and even 

harmonics of 0.14 A which was the phase with minimal current harmonics. 

 

Figure 3-61: Current harmonics of phase A time plot measured from 24th February 2022 

12:43:14.0 to 04th March 2022 10:05:00.0 
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Figure 3-62: Current harmonics of phase B time plot measured from 24th February 2022 

12:43:14.0 to 04th March 2022 10:05:00.0 

 

Figure 3-63: Current harmonics of phase C time plot measured from 24th February 2022 

12:43:14.0 to 04th March 2022 10:05:00.0 

For the voltage harmonics distortion, Figure 3-64, Figure 3-65, and Figure 3-66 represent 

their time plots for phases A, B and C. Phase A had the highest total harmonic distortion of 

almost 29 V, Phase B had 20.43 V total harmonics distortion (1.15 V even, 20.87 V odd) 

and phase C experienced a total harmonic distortion of 17.07 V (0.74 V even, 17.32 odd). 
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According to the East African standards, which follow the IEEE Standard 519, harmonic 

limits on THD should be 8% of the fundamental voltage; however, the limit can be relaxed 

for special loads like converters (ERPA, 2021; Tanzania Bureau of Standards (TBS), 2011). 

Phases A and B exceeded the set harmonic limit since they have almost 12.6% and 9% of 

the fundamental voltage, respectively. Phase C has 7.4%, which is within the limit. 

 

Figure 3-64: Voltage harmonics of phase A time plot measured from 24th February 2022 

12:43:14.0 to 04th March 2022 10:05:00.0 

 

Figure 3-65: Voltage harmonics of phase B time plot measured from 24th February 2022 

12:43:14.0 to 04th March 2022 10:05:00.0 
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Figure 3-66: Voltage harmonics of phase C time plot measured from 24th February 2022 

12:43:14.0 to 04th March 2022 10:05:00.0 

Figure 3-67 shows the percentage composition of voltage and current harmonics for the 

three phases. It clearly indicates that phase A has the highest voltage THD values, most of 

which lie between 20 to 25 V, followed by phase B with most values ranging from 15 to 

20 V. Phase C has the least values between 10 to 15 V. 

 

Figure 3-67: Total voltage and current harmonics percentage composition for each phase 
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3.3.2.3.3. Voltage Frequency Plots 

Figure 3-68 shows the total average voltage frequency plots, and Figure 3-69 shows the 

average, minimum and maximum voltage frequency plots measured for a period spanning 

from 24th February 2022 to 4th March 2022. There is an observance of frequency variations 

between 49 Hz and 52 Hz, which can be attributed to fluctuations in supply and demand, 

sudden load changes or grid disturbances. A minimum voltage of around 49.7 Hz is 

observed, and the maximum frequency is almost 51.75 Hz. According to the quality of 

supply standards, frequency excursions outside the range of 51.5 Hz and 48.5 

Hz is not within the permitted limit of the generation unit to be connected to the supply unit 

to avoid damage (ERPA, 2021). Therefore, the higher frequency value observed was more 

than the permitted value. 

 

Figure 3-68: Total average Voltage frequency plots measured from 24th February 2022 

12:43:14.0 to 4th March 2022 10:05:00.0 

 

Figure 3-69: Average, Maximum and Minimum Voltage frequency plots measured from 

24th February 2022 12:43:14.0 to 4th March 2022 10:05:00.0 
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3.3.2.3.4. Quality of Supply 

The quality of the power supply expressed as the percentage of voltage deviation from the 

nominal or rated voltage of 230 V was also examined. Figure 3-70 indicates the voltage 

distribution levels. For all three phases, most of the voltage recorded ranges between 229 

V and 233 V, which aligns with the nominal voltage of 230 V. Even the few percentages 

of under or overvoltage do not cross the rated voltage to a significant number, which 

indicates a good quality of supply compared to the Mpale microgrid in Tanzania. 

 

Figure 3-70: Quality of supply represented as a percentage of voltage deviation from the 

rated voltage of 230 V for the three phases 

3.3.2.4. Activity Plots 

Figure 3-71 and Figure 3-72 represent all the observed voltage dips and voltage transients 

at Bunjako Microgrid for the measured period (24th February 2022 to 4th March 2022). 

Unlike the Mpale microgrid in Tanzania, the voltage dips are higher between 07:00 am and 

4:00 pm, the reason being most of the connected customers in phase B, which is the line 

with more customers composed of businesses which work or consume power within that 

stipulated time. The same applies to transients in Figure 3-72, which might be because most 

types of equipment prone to causing transients are operated in the said time range. 

 

Figure 3-71: Voltage dip events observed at Bunjako microgrid for a period from 24th 

February 2022 12:43:14.0 to 4th March 2022 10:05:00.0 
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From Figure 3-71, no voltage swells or interruptions were found. 

 

Figure 3-72: Transients measured at Bunjako microgrid for a period from 24th February 

2022 12:43:14.0 to 4th March 2022 10:05:00.0 

Table 3-11 summarizes the worst-case scenarios of all the events that occurred within the 

period of measurements with their respective magnitude, duration and how long they lasted. 

Out of all 349 voltage dip events, only phase B had the worst case, with the lowest 

magnitude of 154.5 V, which lasted for half a second. For the case of voltage transients, 

phase B had the most significant magnitude of 720.8 V, lasting for 0.002 seconds, followed 

by phase A with a magnitude of 711.6 V for 0.001 Sec. Phase C had no report of the worst 

case. No worst-case voltage interruptions and voltage swells were observed. 

Table 3-11: Worst-case scenario for activity plots showing the lowest magnitude and 

duration of all the observed events for a period from 24th February 2022 12:43:14.0 to 4th 

March 2022 10:05:00.0 

Out of 349 Total voltage dips 

Criteria Phase Category Data Date Time 

Lowest 

Magnitude 

B INSTANTANEOUS 154.5 V, 0.519 Sec. 26/02/2022 13:10:42.80 

B INSTANTANEOUS 188.0 V, 0.350 Sec. 04/03/2022 06:36:03.29 

B INSTANTANEOUS 198.4 V, 0.029 Sec. 01/03/2022 15:07:10.30 

B INSTANTANEOUS 199.1 V, 0.029 Sec. 26/02/2022 09:13:19.31 

Longest 

Duration 

B INSTANTANEOUS 154.5 V, 0.519 Sec. 26/02/2022 13:10:42.80 

B INSTANTANEOUS 188.0 V, 0.350 Sec. 04/03/2022 06:36:03.29 

B INSTANTANEOUS 203.3 V, 0.040 Sec. 01/03/2022 07:57:34.07 

B INSTANTANEOUS 205.5 V, 0.040 Sec. 02/03/2022 07:02:40.32 

0 total VOLTAGE SWELLS 

0 total VOLTAGE INTERRUPTIONS 

Out of 6782 total VOLTAGE TRANSIENTS 

Largest 

Magnitude 

B  720.8 V, 0.002 Sec. 01/03/2022 16:17:59.73 

B  716.0 V, 0.000 Sec. 04/03/2022 06:31:14.03 
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A  711.6 V, 0.001 Sec. 25/02/2022 10:52:18.82 

B  711.0 V, 0.000 Sec. 04/03/2022 08:56:46.88 

3.3.3. Lwak Microgrid Data 

3.3.3.1. Demand Data 

Demand data were also measured for the consumers in the Lwak microgrid in Kenya, as 

represented by Figure 3-73, Figure 3-74, Figure 3-75 and Figure 3-76. In analysing the 

recorded demand power for three phases representing distinct houses in Lwak, Kenya, it 

becomes evident that there are notable disparities in maximum power consumption across 

the phases. Phase 1 exhibits the highest maximum power demand at 3576 watts, followed 

by Phase 3 at 2300 watts, with Phase 2 displaying the lowest maximum power requirement 

at 1499 watts. These variations in maximum power consumption may be attributed to 

various factors, including differences in household size, usage patterns, and appliance types 

among the residences. Phase 1, potentially housing an enormous household or featuring 

more energy-intensive appliances, demonstrates the highest power demand. 

In contrast, Phase 2 may represent a smaller household with fewer appliances, resulting in 

lower power consumption. Phase 3 falls between these extremes, suggesting a moderate 

power usage level. Understanding these distinctions provides valuable insights into 

household energy consumption patterns within the studied location, facilitating informed 

decision-making for energy management strategies and infrastructure planning. Table 3-12 

shows power in the three phases plus their respective summation. Together, they consume 

maximum power of around 6 kW, as represented by Figure 3-77. 

 
Figure 3-73: Total power consumption at Lwak microgrid for Phase 1 for the period from 

25th September 2023 and 26th September 2023 
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Figure 3-74: Total power consumption at Lwak microgrid for Phase 2 for the period from 

25th September 2023 and 26th September 2023 

 

Figure 3-75: Total power consumption at Lwak microgrid for Phase 3 for the period from 

25th September 2023 to 26th September 2023 

Table 3-12: Summary of demand power for all three phases (W) at Lwak microgrid for the 

period from 25th September 2023 to 26th September 2023 

 Maximum Average Minimum 

Phase 1 3576.00 676.20 81.10 

Phase 2 1499.00 125.02 0.00 

Phase 3 2300.00 199.37 0.00 

Total 6178.00 1000.59 102.15 
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Figure 3-76: Total Power consumption at Lwak microgrid for all three phases with their 

total for the period from 25th September 2023 to 26th September 2023 

Figure 3-77 and Figure 3-78 show the average per phase and total power consumed for the 

Lwak microgrid measured in two days. There are two prominent daily consumption peaks, 

7 am - 9 am and 6 pm - 9 pm. The maximum measured power is considered as peak values 

are better for solar system and battery sizing applications. 

 

Figure 3-77: Daily total convent power for the Lwak convent for the period from 25th 

September 2023 to 26th September 2023 
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Figure 3-78: Daily average power consumed for all three phases and their respective 

summation of all consumption at Lwak microgrid for the period from 25th September 2023 

to 26th September 2023 

3.3.4. General observation from all the three microgrids 

From the intensive data analysis for the selected microgrids, here are some of the problems 

generally facing the microgrids, which motivates the need for optimization and practical 

approach to take place as core of this study as it will further be explained in the following 

chapter of modelling and valuable case study. 

a) Intermittent Power Supply: 

Due to unreliable electricity, there is a trend of frequent occurrence of power 

outages or intermittent power supply in the microgrid, negatively impacting daily 

life, businesses, and essential services. The unreliable power gave rise to reliance 

on Diesel Generators as a primary source of power in off-grid or weak-grid areas, 

which has the economic and environmental implications of relying on non-

renewable and often costly fuel sources. 

b) Variable Renewable Resource Utilization: 

The utilization of variable renewable energy resources like solar, in which its 

availability is widely affected by weather conditions, affects energy production and, 

subsequently, the microgrid’s reliability. 

 

 

 



 

104 

c) Inefficiencies in Energy Dispatch: 

The microgrids face challenges in meeting the demand during peak periods. Also, 

there are inefficiencies in the dispatch and scheduling of energy generation sources. 

For example, certain generators are underutilized. 

d) Lack of appliance/ load control mechanisms: No initiatives of load control 

mechanisms or appliance scheduling based on their internal conditions to facilitate 

shifting usage to more energy production hours.  

e) Inefficiency appliances used: Substantial energy wastage or suboptimal 

performance in many connected appliances due to a lack of knowledge of the 

importance of efficiency measures.  

f) Costs and Affordability: The operators being forced to operate at a high price, e.g., 

using diesel generators when batteries could not support the system, gave rise to the 

economic burden of high energy costs on consumers. 

3.4. Modelling and Simulation: Mpale Microgrid 

 

Figure 3-79: Schematic layout of Mpale microgrid (Source: own diagram modified from 

Mpale microgrid diagram). 
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3.4.1. Case 1: Minimising fuel cost through incentive provision 

Figure 3-79 presents a schematic layout of the Mpale microgrid system. Eqn 3-5 provides 

the hourly electrical energy output of the PV (Tazvinga et al., 2014). 

𝑆𝑃𝑉𝑡 =  ƞ𝑃𝑉𝐴𝐶𝐼𝑃𝑉𝑡               Eqn 3-5 

Where,  ƞ𝑃𝑉 = is the nominal STC efficiency of the solar panel used, 𝐴𝐶  = front surface 

area, 𝐼𝑃𝑉𝑡 = the hourly solar irradiance in kWh/hm2 and 𝑆𝑃𝑉𝑡
 = Estimated (maximum) solar 

power from the solar generator in kW. 

In this case, the objective was to minimise the conventional diesel generator’s fuel cost by 

including an incentive-based demand response program. 

𝐹1(𝑡) = ∑(PG(t))

T

t=1

× C  Eqn 3-6 

Where; 𝐹1(𝑡) = Objective function in $/kWh, 𝑡 = Time, 𝐶 = Cost in $, and 𝑃𝐺(𝑡) = Generator 

power. The equation is subject to: 

a) Power balance, i.e., total supply, should be able to meet demand. 

𝑃𝐷(𝑡) ‒ ∑ 𝑋(𝑡)

𝑁

𝑛=0

= 𝑃𝑆𝑃𝑉(𝑡) + 𝑃𝐵(𝑡) + 𝑃𝐺(𝑡) Eqn 3-7 

b) Generator limits 

0 ≤ 𝑃𝐺(𝑡) ≤ 𝑃𝐺𝑀𝑎𝑥(𝑡) Eqn 3-8 

𝐷𝑅𝐺 ≤ 𝑃𝐺(𝑡 + 1) − 𝑃𝐺(𝑡) ≤ 𝑈𝑅𝐺 Eqn 3-9 

Where, 𝑃𝐷(𝑡) = Demand power, 𝑃𝑆𝑃𝑉(𝑡) = Solar power produced, 𝑆𝑃𝑉𝑡 = 

Maximum solar power generated, 𝑃𝐵(𝑡) = Battery power, 𝑃𝐺𝑀𝑎𝑥(𝑡) = Maximum 

generator power, 𝐷𝑅𝐺  = Minimum generator ramp–up rate and 𝑈𝑅𝐺 = 

Maximum generator ramp-up rate. 

c) Power generated by the solar generator at any time t should not be negative or 

exceed the maximum estimated PV power. 

0 ≤ 𝑃𝑆𝑃𝑉(𝑡) ≤ 𝑆𝑃𝑉𝑡 Eqn 3-10 
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d) The battery’s energy must always be between the minimum and maximum 

levels. Also, there should be a maintained energy balance for the start and end 

of the storage time. 

𝐸𝐵𝑚𝑖𝑛 ≤ 𝐸𝐵(𝑡) ≤ 𝐸𝐵𝑚𝑎𝑥 Eqn 3-11 

𝐸𝐵𝑚𝑖𝑛 = (1‒ 𝐷𝑂𝐷) × 𝐸𝐵𝑚𝑎𝑥 Eqn 3-12 

𝑆𝑂𝐶𝑀𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑀𝑎𝑥 Eqn 3-13 

Where, 𝐸𝐵𝑚𝑎𝑥 = Maximum battery energy, 𝐸𝐵𝑚𝑖𝑛 = Minimum battery energy, 

𝑆𝑂𝐶 = State of charge of battery, 𝑆𝑂𝐶𝑀𝑎𝑥 = Maximum State of charge of battery 

and 𝑆𝑂𝐶𝑀𝑖𝑛 = Minimum state of battery charge. 

Therefore, the demand side model for minimisation of the conventional generator’s fuel 

cost by including an incentive-based demand response program can be formulated using 

the following steps. 

Let, 𝐶(𝑛, 𝑥) be the cost of customer n who shifted or switched off load by power x W and 

receives an incentive of y in monetary values, i.e. $/kWh. The benefit to the customer will 

be; 

𝐹2(𝜃, 𝑥, 𝑦) = 𝑦 − 𝐶(𝜃, 𝑥) Eqn 3-14 

The utility function will be as follows; 

𝐹3(𝜃, 𝑥, 𝑦) = ⍴𝑥 −  𝑦 Eqn 3-15 

Where, ⍴ = saved cost of not supplying power when load 𝑥 has been shifted or cut off. 

The customer aims to reduce its electricity bills, and the utility seeks to maximize its 

benefit. Thus, Eqn 3-15 should be maximised using the following equation. 

The cost of customers can be calculated as follows: (Alvarado & Fahriog, 2000) 

𝐶(𝜃, 𝑥) = 𝑎1𝑥2 + 𝑎2𝑥 − 𝑎2𝑥𝜃 Eqn 3-16 

Where, 𝑎1and 𝑎2 = cost coefficients, and 𝜃 = customer readiness to switch off loads during 

peak hours/customer preference parameter (It is a kind of probability/likelihood function). 

The term 𝑎2𝑥𝜃 sorts customers by way of  𝜃 such that different 𝜃 results in different 

marginal costs (
ⅆ𝐶

ⅆ𝑥
). 𝑎1and 𝑎2 are assumed to be 1 2⁄  and 1, respectively. 𝜃 ranges between 

0 and 1, with more 𝜃 value the less the cost of the customer (Alvarado & Fahriog, 2000). 
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For a customer to participate in a demand response program, they need to see the benefit 

of the load curtailment. Thus, it is necessary that: 

𝐹3(𝜃, 𝑥, 𝑦) ≥ 0 Eqn 3-17 

𝐹3(𝜃, 𝑥, 𝑦) = ∑ ∑ ⍴𝑥(𝑛, 𝑡)

𝑁

𝑛=1

𝑇

𝑡=1

−  𝑦(𝑛, 𝑡) Eqn 3-18 

𝑇 is the total time period, and 𝑁 is the total number of customers. 

Eqn 3-17 and Eqn 3-18 constraints are such that: 

a) At any time, the total incentive given to all customers should not exceed the budget 

set by the utility/utility budget (UB). 

∑ ∑ 𝑦(𝑛, 𝑡)

𝑁

𝑛=1

𝑇

𝑡=1

≤ 𝑈𝐵 Eqn 3-19 

b) The load to be shifted or curtailed by the individual customer within the time 

horizon should be within the limit of the loads that can be shifted at that particular 

time. x ≤ acceptable non-critical loads and SL=Shiftable loads. 

∑ 𝑋(𝑛, 𝑡)

𝑇

𝑡=1

≤ 𝑆𝐿(𝑛) Eqn 3-20 

or 

𝑃𝑆𝑃𝑉(𝑡) + 𝑃𝐵(𝑡) + 𝑃𝐺(𝑡) ≥ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 Eqn 3-21 

There are two objective functions involved in this case, one being the minimization of 

generator fuel costs 𝐹1(𝑡) and the second one is the maximization of the utility’s benefit 

𝐹3(𝜃, 𝑥, 𝑦). 

Therefore, the overall demand side equation for case 1 becomes: 

𝑀𝑖𝑛 𝑤 ∑(𝑃𝐺(𝑡))

𝑇

𝑡=1

× 𝐶 + (1 − 𝑤) ∑ ∑ ⍴𝑥(𝑛, 𝑡)

𝑁

𝑛=1

𝑇

𝑡=1

−  𝑦(𝑛, 𝑡) Eqn 3-22 

Where 𝑤 is the objective function weight. 
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3.4.2. Case 2: Economic and emission dispatch of a microgrid with multiple diesel 

generators 

Economic and emission load dispatch intend to operate online generation units 

economically at minimal emission levels while satisfying power demand and operational 

constraints (Trivedi et al., 2018). The combined economic and emission problem was 

formulated as a single optimisation problem (Eqn 3-23). 

Min F = ∑(Fi(Pi), Ei(Pi))

N

i=1

  Eqn 3-23 

The generator fuel cost is defined as a quadratic function (Eqn 3-24). 

𝐹1 = ∑(𝑥𝑖𝑃𝑖
2 + 𝑦𝑖𝑃𝑖 + 𝑧𝑖)

𝑁

𝑖=1

  Eqn 3-24 

Where, 𝐹1 = Total fuel cost in $ ℎ⁄ , 𝑁 = is the number of generators, 𝑃𝑖 = Active power 

generation of the i-th generator, 𝑥𝑖 = Cost coefficient of i-th generator in $ 𝑀𝑊2ℎ⁄ ,  𝑦𝑖 = 

Cost coefficient of i-th generator in $ 𝑀𝑊ℎ⁄ , and 𝑧𝑖= Cost coefficient of i-th generator in 

$ ℎ⁄  (independent of power or energy delivered). 

Operating diesel generators results in the emission of various pollutants, such as carbon 

dioxide (𝐶𝑂2), nitrogen oxide (𝑁𝑂), and Sulphur dioxide (𝑆𝑂2) (S Krishnamurthy & 

Tzoneva, 2012; Palanichamy & Babu, 2008). Thus, the emission minimisation function is 

added to the optimisation problem to achieve clean energy’s universal goal (Elattar, 2018). 

𝐹2 = ∑(𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖)

𝑁

𝑖=1

  Eqn 3-25 

Where, 𝐹2 = Total Emission value in 𝑘𝑔 ℎ⁄ , 𝑁 is the number of generators, 𝑃𝑖 = Active 

power generation of the ith generator, 𝑎𝑖 = Emission coefficient of ith generator in 

𝑘𝑔 𝑀𝑊2ℎ⁄ , 𝑏𝑖 = Emission coefficient of ith generator in 𝑘𝑔 𝑀𝑊ℎ⁄ , and 𝑐𝑖= Emission 

coefficient of ith generator in 𝑘𝑔 ℎ⁄ . 

The emission equation is subject to power balance (i.e., total supply should be able to meet 

demand). The equation is also used to calculate the deficit that the generators should supply. 

The power balance of the Mpale microgrid indicates that when the demand exceeds the 

energy generated by the PV system plus the energy stored in the ESS for an hour, the 

dispatchable generators supply the deficit power. 
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𝑃𝐷(𝑡)  = 𝑃𝑆𝑃𝑉(𝑡) + 𝑃𝐵(𝑡) + ∑ 𝑃𝑖(𝑡)  Eqn 3-26 

Where, 𝑃𝐷(𝑡) = Total demand at any time t; in 𝑘𝑊, 𝑃𝑆𝑃𝑉(𝑡) = Total solar power generated 

at time t and 𝑃𝑆𝑃𝑉(𝑡) = Total battery power supplied at time t. 

Generator limits: 

𝑃𝑖𝑀𝑖𝑛(𝑡) ≤ 𝑃𝑖(𝑡) ≤ 𝑃𝑖𝑀𝑎𝑥(𝑡)  Eqn 3-27 

Where, 𝑃𝑖𝑀𝑖𝑛(𝑡) = Minimum value of real power allowed at generator i and 𝑃𝑖𝑀𝑎𝑥(𝑡) = 

Maximum value of real power allowed at generator i. 

Power generated in kW by the solar generator at any time t should not be negative or exceed 

the maximum forecasted PV power. 

0 ≤ 𝑃𝑆𝑃𝑉(𝑡) ≤ 𝑆𝑃𝑉𝑡  Eqn 3-28 

The energy and power of the battery must always be between the minimum and maximum 

levels. Also, there should be a maintained energy balance at the start and end of storage 

time. 

𝐸𝐵𝑚𝑖𝑛 ≤ 𝐸𝐵(𝑡) ≤ 𝐸𝐵𝑚𝑎𝑥 

𝑆𝑂𝐶𝑀𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑀𝑎𝑥  

Eqn 3-29 

 

Eqn 3-30 

The overall objective function combines economic and emission problems, which are 

correlated using the penalty factor 𝑤𝑖 in $ 𝑘𝑔⁄ . The penalty factors used include Max – 

Max, Min – Max, Min – Min, average, and common (Senthil Krishnamurthy & Tzoneva, 

2011; Thakur et al., 2006). The Min – Max price penalty has been proven to yield a 

minimum cost of the combined function (Eqn 3-31) and thus was adopted in this study (S 

Krishnamurthy & Tzoneva, 2012). 

𝑤𝑖 =
(𝑥𝑖𝑃𝑖,𝑚𝑖𝑛

2 + 𝑦𝑖𝑃𝑖,𝑚𝑖𝑛 + 𝑧𝑖)

(𝑎𝑖𝑃𝑖,𝑚𝑎𝑥
2 + 𝑏𝑖𝑃𝑖,𝑚𝑎𝑥 + 𝑐𝑖)

  Eqn 3-31 

Table 3-13 provides the generator’s cost and emission coefficients of the system 

components, which are borrowed from Jakhrani et al., (2012) and Nwulu & Xia, (2017). 

All the generators’ minimum power limits start at zero. 

The overall multi-objective function F becomes; 
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F = ∑(F1 + wiF2)

N

i=1

  Eqn 3-32  

Where, 𝐹1 = Total fuel cost in $ ℎ⁄ , penalty factor 𝑤𝑖 in $ 𝑘𝑔⁄ , and 𝐹2= Total Emission 

value in 𝑘𝑔 ℎ⁄ . 

Table 3-13: Generator cost and emission coefficients of the selected generators with their 

maximum power  (Traoré et al., 2018) 

i 
Emission coefficients 

𝑷𝒊,𝑴𝒂𝒙 
Cost coefficients 

𝑥𝑖 𝑦𝑖  𝑧𝑖 𝑎𝑖 𝑏𝑖 𝑐𝑖 

1 0 0.511 0.1298 2 0 1.22 0.32 

2 0 0.569 0.155 3 0 1.46 0.383 

3 0 0.694 0.181 4 0 1.70 0.446 

4 0 0.791 0.206 5 0 1.94 0.509 

5 0.04 0.3 0 9 0.04 3.43 0.60 

3.5. Modelling and Simulation: Bunjako microgrid 

A MATLAB/Simulink-based model was implemented to simulate the Bunjako microgrid. 

A microgrid model with possible shiftable loads was simulated for 24 hours, starting from 

midnight and running for the next 24 hours.  

 

Figure 3-80: Simulink model of the Bunjako microgrid showing all sources and loads with 

their control strategies (load shifting and peak clipping) [Images: (Weetch, 2021)] 



 

111 

Figure 3-80 shows the block diagram of the model in Simulink, in which a three-phase 

system is connected to a battery and solar PV with consumer loads. The irradiation 

measurement and battery state of charge measurements were also linked. In the Bunjako 

microgrid, load shifting and peak clipping used two demand-side management subsystems. 

Bunjako’s total loads were divided into deferable and non-deferable loads to enhance 

switching on/off loads during peak and off-peak hours. Table 3-14 represents household 

appliance categories described by Nawaz et al., (2020). Based on a study conducted in 

Bangladesh, the related on-and off-times were noted to have characteristics similar to those 

in Africa. Thus, the on and off times were used for the simulation in the Bunjako microgrid 

to decide the rating of deferrable loads to be either switched on/off or shifted. 

It is noted that the load profiles will not be the same as no two appliances with the same 

rating can be used for the same program all the time (Degefa et al., 2018). In addition, 

Denholm et al., (2012) estimated shiftable demand by subtracting base demand from its 

peak for the days of almost similar characteristics. This background gave the basis for 

evaluating the deferable load profile in this study. 

Table 3-14: Household appliances categories, ratings and hours of operation (Nawaz et 

al., 2020; Panda et al., 2022) 

Appliance Category Appliance Name 
Power rating 

(kW) 

Hours of 

operation/day (h) 

Shiftable interruptible 

Personal computer 0.03 4 

Microwave 1.5 0.5 

Pump (41m/75LPM) 0.9 4 

Blender 0.3 4 

Shiftable non-

interruptible 

Iron 1 2 

Washing machine 0.5 2 

Consistency 

Refrigerator 0.3 6 

Fan 0.05 8 

Water Purifier 0.5 9 

Figure 3-81 represents the simulation of the two load categories in Simulink. Some loads 

can be shifted only for a certain amount of time, e.g., freezers. The duration of possible 

shifting depends on the actual state of the freezer (temperature of goods). 
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Figure 3-81: Simulink model of deferable and non-deferable loads [Images: (Lundstrom 

et al., 2018)] 

Figure 3-82 shows the energy inlet and outlet from the microgrid, including the battery’s 

state of charge (SOC). 

 

Figure 3-82: Block diagram of energy inlets and outlets to and from the microgrid 

From Figure 3-83 and Figure 3-84, the two DSM strategies (load shifting and peak clipping) 

are simulated. The approaches make use of ANN to achieve the results. The use of switches 

allows control of the on and off time of the shiftable loads. 
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The input data provided to the ANN control scheme are the consumer usage and time 

horizon of the day (24 hours). The overall horizon is 24 hours. Based on this, the ANN 

returns generated signal pre-defined deferable loads to either switch off/on or shift to 

another time of the day, depending on the solar power generated. This is in the case of peak 

clipping and load shifting, respectively. Philipo et al., (2022) further explain the ANN 

approach. 

 

Figure 3-83: Simulink energy management model through Load Shifting (LS) using a 

neural network 

 

Figure 3-84: Simulink energy management model through Peak Clipping (PC) using a 

neural network 
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3.6. Practical case study (Lwak Microgrid) 

Based on the modelling and simulation of Mpale and Bunjako microgrids, it was deduced 

that most East African microgrids have similar attributes in electricity consumption. Most 

microgrids in rural areas consist of medium home appliances such as fridges, freezers, and 

water pumps. In addition, most inhabitants use inefficient appliances (i.e., Mpale microgrid 

appliances). Thus, the Lwak microgrid was selected to be a practical case study for several 

reasons: 

a) Ease accessibility to the site as part of the Art-D project. Thus, measurement can 

be easily conducted, 

b) Different practical improvements can be achieved to the microgrid, 

c) The grid has a good relativeness as the microgrid is composed of both shiftable 

and non-shiftable loads; thus, demand-side management is possible. 

Demand side management of the Lwak microgrid was conducted to achieve the following: 

a) Appliances’ control of usage time and temperature-based control 

b) Energy efficiency demand-side management analysis due to implications on the 

power quality of the microgrid. 

3.6.1. Motivation for Energy Efficiency Demand side management 

Improved energy efficiency in home appliances is vital for guaranteeing sustainable and 

clean energy usage. The study aimed to analyse and explore energy efficiency for home 

appliances in the Lwak microgrid. The adaptation of energy-saving appliances was an 

essential strategy for achieving energy efficiency. 

The study delved into an energy audit of the inhabitants by observing their consumption 

profile and appliances, particularly the cooling appliances, to introduce a model for 

assessing energy efficiency possibilities. Furthermore, efficient and non-efficient devices 

were also observed to analyse potential savings achievable through the adaptation of 

energy-saving appliances. Finally, based on the results, the microgrid best practices were 

recommended, promoting economic savings. 

3.6.2. Current Electricity Usage 

A list of all appliances used in the Lwak convent has been presented (Table 3-3). Power 

consumption in percentage for all appliances was prepared and is shown in Figure 3-85. 
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Figure 3-85: A pie chart showing the hourly load composition of appliances in Lwak 

Lightning recorded the highest power consumption. Apart from water pumps, cooling 

appliances (i.e., fridges and freezers) consume a reasonable percentage of power. Thus, 

attention was given to fridges and freezers as their consumption is continuous compared to 

water pumps and dispensers. Water pumps’ power consumption behaviour proved an 

excellent candidate for load-shifting demand-side management. In addition, PV pump 

applications are relatively resilient to power outages due to the use of a sufficient water 

tank, as long as they do not last extremely long. Demand side management also appears 

advantageous due to the water tank, where pumped water can be easily stored, especially 

for load-shifting applications. 

3.6.3. Fridge/Freezer temperature control with Shelly Devices and Node-RED 

3.6.3.1. Assumptions 

Several assumptions were considered in the study; 

a) All fridges and freezers kept the same type and quantity of food, thus having similar 

specific heat capacities. All three houses are inhabited by nuns who conform to 

similar lifestyles, i.e., cooking and eating the same food. 

b) The effect of door openings has been neglected. 

c) The ambient temperature effects were not considered. 
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3.6.3.2. Temperature threshold set 

After data collection, the temperature inside fridges and freezers was monitored and 

analysed to observe their minimum and maximum operating temperatures before initiating 

control. The minimum and maximum temperature thresholds were set depending on the 

operating temperature to avoid food spoilage.  

From the literature, the recommended fridge temperature to prevent food spoilage is 1.1℃ 

to 4.4℃ (Kakande et al., 2023), while a temperature of 2℃ to 4℃ is recommended for 

ready-to-eat foods (He et al., 2017). Other sources reported 5℃ to 8℃ as refrigerator 

temperature thresholds (Refrigeration, 2019). For freezers, Postnikov et al., (2019) 

recommended temperature as below -12℃, while Tran et al., (2015) stated the temperature 

to be below -18℃. Table 3-15 shows the temperature of all the fridges and freezers plus 

their set temperature thresholds.  

It is worth noting that consumption may increase with increasing external temperature; 

thus, placing a fridge/freezer in a cooler environment may result in lower energy 

consumption. In addition, it is recommended that consumers not store their refrigerators or 

freezers in areas that will experience temperatures below 55°F or above 90°F (Tiffany Sue 

Burgess, 2015). 

Figure 3-86 shows a flow chart of load control using shelly devices. After the fridge/freezer 

connection to the intelligent socket, instant temperatures are monitored using the IoT 

arrangements and compared with the thresholds set. When the temperature lies below the 

threshold minimum, the fridge will be turned OFF, and when the temperature increases to 

above or equal to the threshold maximum, the fridge/freezers are switched back ON to 

avoid food spoilage. 

Table 3-15: Minimum and maximum recorded temperatures for fridges and freezers with 

their respective minimum and maximum thresholds for temperature control 

 Temperatures /℃ 

 Minimum Room Temp Threshold Minimum Threshold Maximum 

Freezer 1 -16 28.4 -15 -12 

Fridge 2 -15.9 29.1 -15 -12 

Freezer 3 -14.4 25.9 -14 -12 

Fridge 4 -23.8 29.7 -18 -12 

Freezer 5 -14.2 36.2 -14 -12 
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 Temperatures /℃ 

 Minimum Room Temp Threshold Minimum Threshold Maximum 

Fridge 6 -16.1 30.4 -15 -12 

Freezer 7 -14.4 32.4 -14 -12 

Freezer 8 -25.2 28.6 -18 -12 

 

Figure 3-86: Flow chart of the cooling appliances control mechanism of switching ON and 

OFF appliances based on temperature  
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CHAPTER FOUR 

4. Results and Analysis 

4.1. Results and Analysis (Mpale Microgrid) 

4.1.1. Case 1: Minimising fuel cost through incentive provision 

With reference to Figure 3-28, medium peaks were observed between 00:00 and 05:00 hrs 

as most residents switched on storage appliances (i.e., fridges and freezers) as per the 

survey. Morning peaks were not significant considering the lifestyle in the village, where 

most engage in farming activities early in the morning. Highest peaks observed from 18:00 

to 22:00 hours were attributed to consumption by many appliances (TV, cooking, fans) 

switched as household members were at home. Gradually, the peaks decline towards 24:00 

hours up to 07:00 hours, where only light bulbs and fans remain on. Phase 2 recorded the 

maximum power consumption through the 24-hour interval, attributed to the type of 

customers connected (i.e., households and businesses). 

Figure 4-1 shows the average daily demand and maximum potential solar power based on 

measured irradiance. The mismatch between the demand and solar power produced 

signifies that solar generation cannot meet demand growth, especially during peak hours. 

Solar PV shaves demand in the middle of the day, while most peak demand occurs later in 

the evening and early morning. This suggests that solar power requires supplementing with 

energy storage and backup generation to meet the peak demand. 

 
Figure 4-1: Total average daily demand vs maximum daily solar power produced at Mpale 

microgrid 
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Figure 4-2 summarizes the optimal power curtailed by each customer group. More 

curtailment is observed during peak hours and less in the afternoon when there is enough 

solar production. The amount of power curtailed is proportional to the incentive received, 

as  Table 4-1 illustrates. Power curtailment may be achieved by scheduling responsive loads 

from the customer end. Results agree with Jasim et al., (2022), where optimal dispatch was 

achieved based on appliance scheduling. Furthermore, customers connected to phase two 

present more power reduction since most are suitable candidates for DSM. 

 

Figure 4-2: A plot showing total daily customer power curtailed after receiving incentives 

Table 4-1: Total daily energy curtailed and incentive received in US dollars (1 USD = 

2515 Tanzania shillings) 

 Energy curtailed (kWh/day) Incentive received ($/day) 

Customers in Phase 1 3.94 3.40 

Customers in Phase 2 10.62 4.95 

Customers in Phase 3 4.07 3.75 

Total 18.63 12.10 

Figure 4-3 results provide a viewpoint on the microgrid operation. Throughout the 24-hour 

interval, the solar generator operates with a conventional generator and battery support. 

Conventional generators and batteries reduce their power output when solar generators 

begin to work. During the peak period, the battery works in the discharge state supported 

by the generator. The battery is charged or out of operation in the valley periods. The 
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charging and discharging modes of the battery depend on its state of charge (SOC) value 

(Xu et al., 2020). 

 

Figure 4-3: Average daily output power from a solar generator, diesel generator and 

battery averaged from data measured for a period of 5 years at Mpale microgrid 

Figure 4-4 shows the load profile before and after DSM. Customers can curtail some loads 

during peak hours through incentives, resulting in peak reduction. It is observed that during 

the evening peak, a significant amount of power curtailment is possible with higher 

incentive values. Summing up per hour daily demand before and after the proposed strategy 

gives an overall saving of around 11.02%. Higher incentives resulted in a higher 

willingness to save. However, it should be noted that without proper incentive selection, 

the utility may suffer revenue loss (Philipo et al., 2020). Hence, mutual benefit among all 

microgrid actors should be considered for a successful DSM approach (Pacheco & 

Foreman, 2017). 
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Figure 4-4: Load profile before and after demand side management 

4.1.1.1. Sensitivity Analysis 

The base case is assumed when the operator assigns equal weights to the two objective 

functions (Tazvinga et al., 2014). However, in any multi-objective optimisation, studying 

and analysing the impact of different weight preferences on the objective function and how 

they influence the optimal solution is crucial. The weight w varies from 0 to 1. In this case, 

the study when w = 0 implies that the objective is to maximise the operator’s benefit without 

minimising fuel cost. When w = 1, more attention is paid to minimising fuel cost rather 

than maximising utility benefit. Table 4-2 explains the sensitivity of the operator decision 

to objective function preference. Utility incurs more cost of paying incentives to the 

customer at less power curtailment when they focus only on neglecting the concept of 

demand response. Also, less power is saved when no attention is paid to minimising the 

generator fuel cost. The best microgrid operation is achieved when equal weight is given 

to both demand response and generator fuel minimisation. This observation is also 

supported by Figure 4-5. 

Table 4-2: Effect of objective function weights (w) on different parameters of the microgrid 

 w = 0.00 w = 0.50 w = 1.00 

Total energy curtailed (kWh) 19.48 18.63 15.77 

Total incentive received ($) 16.10 12.10 13.03 
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 w = 0.00 w = 0.50 w = 1.00 

Total energy from generator (kWh) 24.66 24.08 28.85 

Total energy supplied by a battery (kWh) 49.82 52.68 49.98 

 

Figure 4-5: Percentage of power curtailed at different weight values 

4.1.2. Case 2: Economic and emission dispatch of a microgrid with multiple diesel 

generators 

The per-hour daily load profile, presented in Figure 4-6, determines power supply 

requirements. The profile is characterised by morning peaks (02:00 – 06:00) and evening 

peaks (20:00 – 23:00) hrs. These can be attributed to people’s daily routines, which demand 

more energy in the morning when they wake up and late evening when they return home. 

Figure 4-7 shows the overall power balance in the microgrid. The negative power of the 

battery implies charging, which takes place more in the afternoon when solar power is 

abundant with minimal load. Battery discharges to supply loads when solar is not available. 
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Figure 4-6: Per-hour average daily load demand profile of Mpale microgrid averaged 

from data recorded over 5 years period 

 

Figure 4-7: Average power produced by solar photovoltaic and battery storage to meet 

power demand of Mpale microgrid (Power balance of the system) 
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Different arrangements of five generators were used as dispatchable sources. GA and PSO 

algorithms were used to optimise the selection of generators in various system 

configurations, i.e., which generators or generators should be ON to minimise cost during 

peak demand. The results of different generator selections were analysed. The proposed 

study optimised five generators considering morning and evening peaks. GA gives the 

lowest cost of 28.06 $/day, and power sharing among the generators is shown. 

Figure 4-8 and Figure 4-9 shows the energy shared among the generators for the two 

optimisation algorithms. The optimisation results indicate that three diesel generators (G1, 

G2, and G5) are the most prioritised to allow the optimum performance of the diesel 

generators, minimising fuel consumption and emissions. 

 
 

Figure 4-8: Optimal generator arrangements selected to provide backup power to the load 

out of the five diesel generators using genetic algorithm (GA) 
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Figure 4-9: Optimal generator arrangements selected to provide backup power to the load 

out of the five diesel generators using PSO 

On the other hand, only one diesel generator is required for the minimum cost of all the 

algorithms, as shown in Figure 4-10. This observation aligns with Rangel et al., (2023), 

who simulated different hybrid configurations and observed that one generator system 

promises minimum costs if a battery is included. 

 

Figure 4-10: Overall cost of fuel and emissions incurred per day for different diesel 

generator configurations using genetic and particle swarm optimization algorithms  
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Figure 4-10 shows the optimisation costs for the two algorithms (GA and PSO) at different 

generator arrangements. GA and PSO yield almost the same results for the cases of five 

and one generators. For the case of three generators, GA gives the most optimal results 

compared to PSO. However, the computational run time of GA for all the scenarios is more 

than that of PSO. 

However, it is crucial to assess the specific situation, including load requirements, fuel 

efficiency, emissions, and other factors, since choosing between one big diesel generator 

and multiple small diesel generators to minimize emissions and fuel costs depends on 

several factors, as explained. For a significantly fluctuating power demand, having two 

smaller diesel generators that can be turned on and off as needed might be more efficient 

to avoid running a single large diesel generator at partial load, which can be less fuel-

efficient and produce more emissions.  

Also, it is essential to consider the maintenance and reliability requirements of the 

generators. Smaller diesel generators may have shorter maintenance intervals but can be 

more easily replaced if one fails. Large diesel generators might require less frequent 

maintenance but can be costlier to repair. A comparison between the fuel efficiencies of the 

specific diesel generators should be made since smaller diesel generators are often more 

fuel-efficient at partial loads. In contrast, some modern large diesel generators are designed 

to be efficient across various loads. Other things to consider are scalability and initial costs; 

a single larger diesel generator might be more scalable for future power growth. 

4.2. Results and Analysis (Bunjako Microgrid) 

Figure 4-11 compares the average hourly power consumed and minimum irradiance 

measured at the Bunjako microgrid (0°0’10" N, 32°8’4" E). As is typical, average 

irradiation peaks around 11 am and, after that, declines, while the power consumption 

displays an increasing trend during the hours of waning and no irradiance (Akmam 

Naamandadin et al., 2018).  
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Figure 4-11: Comparisons between hourly average power consumed (in kW) and minimum 

daily irradiance (in W/m2) measured at Bunjako (22nd to 28th of February 2022)  

Figure 4-12 represents measurements of the microgrid model before DSM. The model takes 

irradiance and demand data from the measurements, and accordingly, the profile of 

deferable loads is decided based on the peak and base load profile. 

 

Figure 4-12: Simulink measurement results before the application of DSM 
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4.2.1. Effect of Peak Clipping 

Peak clipping is achieved using an energy controller or switches. The energy consumption 

trend is monitored; the controller switches deferable loads off if it approaches unwanted 

levels. Examples of deferable loads that can be switched off are washing machines, pumps, 

water purifiers, etc. In this work, the loads to be shut down are decided based on consumer 

priority and grouped as deferable and non-deferable loads. 

Figure 4-13 represents power usage reduction through DSM using a peak clipping strategy. 

A significant improvement in the load profile is observed, with a decrease of about 31.2% 

in peak demand. This method shows a more substantial improvement in the PAR of the 

system, as shown in Table 4-3. However, there is a question regarding customer comfort 

regarding the importance of considering priority from both utility and customer points of 

view (Moghaddam et al., 2011; Philipo et al., 2020). 

 

Figure 4-13: Load profile before and after DSM through Peak Clipping 

4.2.2. Effect of Load Shifting 

Figure 4-14 represents DSM through load shifting. A close look at the simulation results 

shows that deferable load operation is being shifted during the 24 hrs of a day. Most of the 

operation is taken towards hours, during which solar irradiance is used to reduce storage. 

Shifting most of the usage pattern towards hours of more generation gives a window for 

most critical loads whose operation cannot be stopped to be supplied even during peak 

hours, as shown in the results from around (1800 – 1900) hrs. Critical loads such as security 

systems and fridges have strict energy necessities, and once their operation is initiated, it 

becomes hard to reschedule (Diyan et al., 2020). However, adaptable and manageable 
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appliances can be rescheduled from peak hours to off-peak if the demand for these devices 

cannot be satisfied (Lu et al., 2019). 

During peak hours, the clipping scheme lowers energy consumption and discomfort by 

switching off excess loads. Load shifting allows the rescheduling of appliances to off-peak 

hours with less energy consumption reduction, as shown in Figure 4-15. The results are 

comparable to Diyan’s (Diyan et al., 2020). 

 

Figure 4-14: Load profile before and after DSM through Load Shifting 

 

Figure 4-15: Load profile before and after demand side management through both Peak 

Clipping and Load Shifting 
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Table 4-3: Statistical parameters of profiles before and after demand side management 

Statistical value Original Profile Load shifting Peak clipping 

Maximum 8.970 8.970 6.170 

Minimum 2.200 2.200 2.200 

Peak to Peak 6.770 6.770 3.970 

Mean 4.899 4.773 3.645 

Median 4.989 5.000 2.899 

RMS 5.289 5.085 3.873 

Maximum Hour 19 19 13 

Minimum Hour 4 4 4 

PAR 1.831 1.879 1.693 

% Peak reduction 0.000% 0.000% 31.215% 

4.2.3. Peak to Average Ratio (PAR) 

Peak to Average Ratio (PAR) is a measure of how an electric system’s reliability and 

efficiency are affected by peak electricity consumption. It is measured as the ratio of the 

peak to time-averaged power level. Customers’ power consumption behaviour directly 

affects the system’s peak consumption. Through maintaining a balance between supply and 

demand, PAR can be minimized, which benefits both utility and consumer. One of the 

primary goals of DSM is PAR minimization, hence maintaining the reliability and stability 

of the grid. PAR is given as follows, 

𝑃𝐴𝑅 =
𝑀𝑎𝑥 (𝑃𝑜𝑤𝑒𝑟)

1
24⁄ (∑ 𝑃𝑜𝑤𝑒𝑟)24

𝑡=1

 Eqn 4-1 

The plotted histogram of the comparisons of PAR of demand profiles before and after DSM 

using the two approaches is shown in Figure 4-16. Profile before DSM has a PAR of 1.831, 

whereas LS DSM and PC DSM have PAR of 1.693 and 1.879, respectively. High PAR in 

load shifting resulted from the generated peak power consumption (see Figure 4-14) after 

the loads were shifted. It can be seen clearly from the results that peak clipping performs 

better in minimising PAR, which is comparable to results with load shifting. 
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Figure 4-16: Peak-to-average ratio values for load shifting and peak clipping for the case 

of Bunjako Island July-September 2021 

4.3. Results and Analysis (Lwak Microgrid) 

4.3.1. Current Energy consumption analysis 

This section measured the daily profile of cooling appliances in the locality (Fridges and 

Freezers) using the installed smart sockets. The results of the measurements are represented 

by Figure 4-17 to Figure 4-22. 

 
Figure 4-17: Daily measured power consumption of cooling appliances for the Bethany 

house at Lwak microgrid 
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Figure 4-18: Daily measured power consumption of cooling appliances for the Emmaus 

house at Lwak microgrid 

 

Figure 4-19: Daily measured power consumption of cooling appliances for the Postulancy 

house at Lwak microgrid 
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Figure 4-20: Total daily measured power consumption of cooling appliances for all three 

houses (Postulancy, Bethany and Emmaus) at Lwak microgrid 

 

Figure 4-21: Daily measured power consumption of freezers of all the houses at Lwak 

microgrid 
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Figure 4-22: Daily measured power consumption of fridges of all the houses at Lwak 

microgrid 

Figure 4-20 represents the total daily power consumption from all three houses. It is 

noticeable that the maximum consumption curve does not occur in the early afternoon, 

which would have been expected given the outside temperatures, but in the evening hours. 

This was presumably due to opening, removing, or exchanging refrigerated goods when 

the sisters prepared food. 

Figure 4-21 and Figure 4-22 represent the separate hourly power plots of freezers and 

fridges. Figure 4-21 represents five freezers and their hourly power pattern within a day. 

The figure indicates that freezer three draws the least power due to its low-rated power 

capacity of 94 W compared to the other freezers, as shown in the table. Freezers one and 

eight show the second least power consumption, and the two freezers show almost a similar 

trend and values because they are the same brand of freezers with the same rated values. 

The minor discrepancies might be due to different foods in the fridges and different times 

of opening and closing of doors for the freezers. Freezer five shows a more varied profile 

with some gaps due to missing data during recording. This might be due to interference 

with human activities at the location. Freezer seven, which holds almost the maximum 

power usage, was found to be the most energy-drawing freezer, and due to its being too 

old, its model and power rating description could not be found, as shown in the table. It 
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might be too old due to its high power consumption; hence, replacing it with a more energy-

efficient one is better. 

Moreover, looking closely at the figure and comparing it to the table of rated values shows 

that the freezers operate more than their rated capacity at particular points. From the 

research point of view, this can be attributed to the following factors; 

a) Overloading of freezers 

It is noted that putting over the recommended amount of food in the fridge forces 

the fridge to operate more than its rated power to cool the foods, drawing more 

current. 

b) Dusts and Debris 

When the condenser accumulates dust or debris, it reduces efficiency and works 

inefficiently by drawing more power. 

c) Age and wear 

The older the compressor, the less efficient it becomes; hence, it draws more power 

than required. A good example is freezer 5, rated at 210W, but through the 

operation, it was going beyond that due to its age. (Biglia et al., 2018) and (Evans 

et al., 2018) confirmed that appliances use more energy as they age. Their tests 

revealed that appliances under two years used approximately one-third of the energy 

they used over 11 years. 

d) Refrigerant problems and thermostat issues 

A malfunctioning thermostat and leakage problems of the refrigerant may affect the 

freezers’ cooling mechanism, causing them to work harder to draw more power. 

e) Poor seals 

Ineffective door seals allow hot air to affect cooling and force the compressor to 

compensate by drawing more power. According to the literature, testing of proper 

sealing can be done using an 80 gsm A4 sheet of paper. If the paper can be pulled 

out easily or where the paper was not gripped, the seals are rated as poor or awful, 

which might need replacing (Evans et al., 2018). Also, opening and closing freezer 

doors can influence how they should be handled. 

Likewise, from Figure 4-18, fridge four has the least energy consumption pattern. The 

reason might be that it is a new and energy–efficient fridge labelled with the Energy Star 



 

136 

certification by the Kenyan Energy and Petroleum Regulatory Authority (EPRA), and one 

of its responsibilities is labelling appliances. It currently uses a five-star to more or the 

highest energy-efficient appliances and one for the lowest (Figure 4-23). 

 
Figure 4-23: Components of energy labels for cooling appliances labelled with the Energy 

Star certification by the Kenyan Energy and Petroleum Regulatory Authority (EPRA) 

After analysing the cooling appliances, we suggested that the star-labelled appliances 

should be kept and the remaining old appliances replaced. 

4.3.2. Identification of energy inefficiency: Rebound Effect 

In this case, the rebound effect is calculated as a temperature and correlation coefficient 

ratio. The temperature coefficient describes the relative change in power consumption 

associated with a given per-unit change in temperature. It provides the quantified direct 

impact of temperature on power consumption. The correlation coefficient is a numerical 

value varying from -1 to 1 that measures the strength and direction of the linear relationship 

between power consumed and temperature. Through correlation, we can get an insight into 

how the temperature explains variations in power consumption. The ratio of the two gives 

a normalized relationship between temperature coefficient and strength, which helps better 

interpret the impact of temperature on energy usage.  

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑇𝑐 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑁

𝑖

∑ (𝑥𝑖 − 𝑥)2𝑁
𝑖

 Eqn 4-2 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑟𝑐𝑐 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑁

𝑖

∑ (𝑥𝑖 − 𝑥)2 ∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖

𝑁
𝑖

 Eqn 4-3 

https://en.wikipedia.org/wiki/Temperature
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𝑅𝑒𝑏𝑜𝑢𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 = 𝑇𝑐 𝑟𝑐𝑐⁄  Eqn 4-4 

Where, 𝑇𝑐 = temperature coefficient t, 𝑟𝑐𝑐 = correlation coefficient, 𝑥 = independent variable 

(temperature), 𝑦 = dependent variable (power consumed),  𝑥 𝑎𝑛𝑑 𝑦 = means of the 

variables, and 𝑁 = a number of data points. 

Correlation analysis used the linear regression model of the fridge’s internal temperature 

and daily power consumption (Figure 4-24). Rebound effect was calculated to decide which 

fridge/freezer was efficient or inefficient; hence, decision on replacement was made. 

Relationship between temperature changes and energy consumption was established. 

Sudden temperature drop in temperature leads to an increase in power consumption, thus, 

more pronounced increase in power consumption due to temperature changes suggests 

higher inefficiency in of the fridges/freezers as fridges/freezers work harder to maintain 

lower temperatures. An absolute value of the rebound effect represents this scenario. The 

higher the absolute value of the rebound effect, the more inefficiency of the appliance. 

  
 

  
 

  

Figure 4-24: Correlation scatter plots scatter plots for fridge and freezer power 

consumption and their temperature. 
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Figure 4-25: Rebound and correlation (Top values = correlation, downward values = 

rebound value) 

Figure 4-25 shows the correlation coefficient and rebound values. Rebound values 

represent the change in power consumption associated with a unit temperature change. A 

more negative value reflects a more significant increase in power consumption due to 

temperature change, hence a potentially inefficient appliance. 

Based on the observed results, the cooling appliances were classified into three main grades 

(A, B, C) based on their rebound effect values. Table 4-4 and  

Table 4-5 represent the categories. Grade C represents relatively inefficient appliances that 

should be considered for replacement first. Freezer 5 and fridge 4 were found to have higher 

rebound values, representing their higher inefficiency. This observation suggests that 

freezer 5 and fridge 4 cannot maintain stable internal temperature properly. This 

observation is supported by our previous work that measured the average ON state power, 

and it was found that their instantaneous power and consumption values exceeded the rated 

values, suggesting inefficiency. 

In this study, fridge 4 and freezer 5 should be replaced first, and the target efficiency should 

be grade A (More efficient). Group B represents medium inefficient fridges, which should 

be considered for replacement; however, considering the income or nature of the people in 

the villages where microgrids are common, the work suggested slow improvement to avoid 

straining their income. In that case, fridge 4 and freezer 5 will be replaced. Since freezer 5 

has almost the same measured/average ON state Power (W) as freezer 1, freezer 1 was 

considered a replacement since it is found in group A (highly efficient group). Fridge 4 was 

suggested to be replaced with a new fridge of the same rating since there were no fridges 
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of the same rating on site. The study has considered replacing existing, more efficient 

fridge/freezer models; however, the replacement should be done with more energy-efficient 

fridges to achieve more energy savings. Table 4-6 shows the current model of fridge 4 and 

freezer 5 in use with their energy efficient alternatives available on market. The suggested 

replacement guarantee to reduce not only electricity usage but also lowers the overall 

energy profile of the microgrid contributing to a more sustainable energy profile. 

Table 4-4: Fridge-rated power and rebound values with their respective classes based on 

efficiency 

Appliances Rating (W) Absolute Rebound Class 

Fridge 2 _ -1.394 B 

Fridge 4 _ -4.239 C 

Fridge 6 120 -0.943 A 

 

Table 4-5: Freezer-rated power and rebound values with their respective classes based on 

efficiency 

Appliances Rating (W) Absolute Rebound Class 

Freezer 1 _ -1.148 A 

Freezer 3 94 -1.741 B 

Freezer 5 210 -3.764 C 

Freezer 7 _ -1.007 A 

Freezer 8 106 -1.867 B 

 

Table 4-6: Refrigeration appliances details and their replacement model with market price 

Appliance type Model Rating Replaced to Market Price 

Fridge 4 Haier HRF-3674 80 W Haier HRF-3674 417.99 

Freezer 5 ArmCoAF-C38S 210 W Bruhm BCF- 398S 269.07 

TOTAL COST 687.06 

Figure 4-26 and Table 4-7 show energy savings before and after replacing fridge 4 and 

freezer 5. The comparison between the load profiles before and after the replacement of the 

appliances clearly demonstrates the effectiveness of the intervention with about 15% 
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energy and cost savings per year. Prior to replacement, the energy consumption profile was 

notably higher, reflecting the inefficiency of older models. After the replacement, the 

energy profile shows a marked reduction, highlighting the impact of using energy-efficient 

fridges/freezers available on the market. This outcome underscores the importance of 

upgrading appliances to energy-efficient models, which offer both economic and 

environmental benefits. 

 

Figure 4-26: Plot of total power consumption before and after energy efficiency for all the 

refrigeration appliances. 

Table 4-7: Overall annual energy and cost savings after energy-efficient DSM 

 Before EE After EE Savings 
Percentage 

Saving (%) 

Energy 

(kWh/year) 
14754.92 12518.99 2235.92 15.15 

Cost 

(USD/year) 
2655.88 2253.42 402.47 15.15 

Figure 4-27 shows a projection of cost savings in a span of five years. An initial negative 

saving of about 284USD is observed in the first year which is primarily due to the upfront 

investment required for the purchase new energy-efficient appliances. However, as the in 

the long run, a steady increase in cost savings is observed reflecting the cumulative effect 
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of reduced energy consumption and lower operating costs over time. Over the five-year 

period, the total cost savings are substantial (1325USD), demonstrating that while there is 

an initial financial outlay, the long-term gains from energy efficiency far outweigh the 

initial costs. This reinforces the value of making energy-efficient upgrades, not just for 

immediate benefits, but for sustainable cost savings in the long run. 

 

Figure 4-27: Cost savings before and after energy efficiency DSM for a span of five years 

The setup was first made before the control to see the overview of power consumption and 

temperature changes in the appliances. The figures below show measurements taken before 

fridge control starts; a one-day range was taken on 25th September 2023 from 0849 hrs to 

26th September 2023 at 1000 hrs. A control was then initiated, and a range of day effects 

was taken to assess the impact. However, the control is still ongoing on the Lwak site after 

the control range was taken from 26th September 2023 at 1002 hrs to 27th September 2023 

at 1952 hrs. 

Figure 4-28, Figure 4-29, Figure 4-30, Figure 4-31, Figure 4-32, Figure 4-33, Figure 4-34 

and Figure 4-35 shows the daily demand plots before and after temperature-based control 

for all the studied appliances. The results show that freezers 1, 3, 6, 7, and 8 have less 

energy-consuming profiles after load control. That means we can save energy by switching 

them off while preserving food as before. Fridge 4 and freezer 5 show the worst results 

after temperature-based control. They tend to consume more energy instead of saving, and 
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from the users’ experience, they tend to have poor cooling capabilities, and food is not 

adequately stored as before. The results can best be explained by the previous analysis on 

finding inefficient fridges and freezers using the rebound effect described in  

Table 4-5, where fridge 4 and freezer 5 were the most inefficient appliances. This incident 

can explain why their temperature control yielded negative results since the two appliances 

might have struggled to maintain the temperatures, consuming more energy with more 

temperature fluctuations. So, for inefficient fridges or freezers, temperature-based control 

can be challenging or less effective since they suffer from limited temperature stability and 

hence struggle to maintain stable temperatures, which might compromise food safety and 

quality. The struggle to maintain temperature leads to more power consumption, and since 

inefficient fridges/freezers have ageing cooling systems, attempting to do rigorous 

temperature control could strain the system more. Therefore, it is crucial to assess and 

recognize the limitations of inefficient appliances before doing temperature control to 

exploit the benefit of temperature-based control sustainably. 

 

Figure 4-28: Daily profile before and after temperature-based control for Freezer 1 
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Figure 4-29: Daily profile before and after temperature-based control for Fridge 2 

 

Figure 4-30: Daily profile before and after temperature-based control for Freezer 3 

 

Figure 4-31: Daily profile before and after temperature-based control for Fridge 4 
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Figure 4-32: Daily profile before and after temperature-based control for Freezer 5 

 

Figure 4-33: Daily profile before and after temperature-based control for Fridge 6 

 

Figure 4-34: Daily profile before and after temperature-based control for Freezer 7 



 

145 

 

Figure 4-35: Daily profile before and after temperature-based control for Freezer 8 
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CHAPTER FIVE 

5. Conclusion and Recommendations 

5.1. Conclusions 

This work analysed data from three microgrids: Mpale, Bunjako, and Lwak. Possible DSM 

measures were modelled and analysed based on the data analysis results and the location 

context of the microgrids. The following specific conclusions can be drawn from the results 

analysed and discussed in Chapter 4. 

5.1.1. Assessing and analysing customer demand and other power quality 

parameters to establish a baseline for demand-side management measures. 

The results of technical data analysis implied that most East African microgrids have 

similar characteristics regarding electricity consumption, nature of appliances, and location 

context. Most microgrids are found in rural areas, and the inhabitants have identical 

economic activities, thus affecting electricity usage patterns. Electricity consumption 

spikes during evening hours when there is insufficient sunlight as most inhabitants are 

available at home. Furthermore, the nature of appliances is similar, consisting of medium 

appliances with fridges and freezers, as the heavy loads affect electricity consumption. 

There is a trend of frequent power outages due to unreliable electricity, negatively 

impacting daily life, businesses, and essential services. The unreliable power led to reliance 

on diesel generators as a backup power source in off-grid or weak-grid areas. Diesel 

generators have the economic and environmental implications of relying on non-renewable 

and often costly energy sources. 

Most microgrids face challenges in meeting the energy demand during peak periods due to 

similar energy pattern usage. In addition, there are inefficiencies in the dispatch and 

scheduling of energy generation sources, such as when generators are underutilized. 

Lack of appliance control mechanisms as no initiatives of load control mechanisms or 

appliance scheduling based on their internal conditions to facilitate shifting usage to more 

energy production hours. Furthermore, inefficient appliances are used: Substantial energy 

wastage or suboptimal performance in many connected appliances is due to a lack of 

knowledge of the importance of efficiency measures. 
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5.1.2. Optimisation of microgrid operations through proper demand-side 

management schemes using modelling and simulation. 

The study considered two cases in the Mpale microgrid and one in the Bunjako microgrid. 

Firstly, a multi-objective optimisation strategy was applied to the Mpale microgrid system 

through incentive provision. The optimisation model determined the optimal power 

generation schedule for diesel and PV generators, optimal power curtailed, and incentive 

received in a scheduled 24-hour period. Sensitivity analysis was conducted on the impact 

of preference weights on objectives and their effect on microgrid solutions. Results 

indicated that including a demand response program in the optimisation problem provides 

a demand-supply match and optimal operation of the microgrid. Due to the improved 

matching of load to generation, the storage necessities can be reduced. 

Furthermore, a power reduction of 14% was achieved through the provision of incentives 

for equal weights of objective functions. Sensitivity analysis showed that higher costs are 

achieved when minimising generator fuel cost at the expense of maximising utility benefit. 

Therefore, the proposed method efficiently reduces energy consumption during the 

unavailability of the sun. 

Secondly, the study also considered utilising different generator arrangements and two 

metaheuristic optimisation algorithms, i.e., PSO and GA, for optimal dispatching of a 

microgrid to improve the performance of diesel generators. The result showed that the 

multiple generators dependent on demand time promoted optimal performance and peak 

demand reduction costs. Three generator configurations resulted in the lowest cost with GA 

compared to PSO. The three diesel generators are the most prioritised to allow the optimum 

performance of the diesel generators, minimising fuel consumption and emissions. The 

proposed study optimised five generators considering morning and evening peaks. GA 

gives the lowest cost of around 28.06 $/day. On the other hand, only one diesel generator 

is required for the minimum cost of all the algorithms. This observation aligns with Rangel 

et al., (2023), who simulated different hybrid configurations and observed that one 

generator system promises minimum costs if a battery is included. 

In the Bunjako microgrid, the study proposed scheduling household appliances based on 

load shifting and peak clipping DSM simulated in MATLAB/ Simulink environment. The 

concept of shiftable and non-shiftable appliances was modelled considering their operating 

time and the possibility of rescheduling. The proposed method was tested using real-time 

data for a 24-hour period. After applying the proposed DSM strategies, it was observed that 
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the proposed algorithm reduces the peak demand, smoothing the load profile to the desired 

level, and improves the system’s peak-to-average ratio (PAR). The presence of deferrable 

loads has been considered to bring more flexible demand-side management. Results 

promise decreases in peak demand and peak-to-average ratio of about 31.2% and 7.5% 

through peak clipping. In addition, load shifting promises more flexibility to customers. 

5.1.3. Promoting energy efficiency of microgrids through practical load control and 

appliance demand data analysis. 

Finally, the experimental setup was done at the Lwak microgrid to assess the effectiveness 

of load control, mainly for fridges and freezers, considering their actual temperatures. In 

addition, energy efficiency was analysed by using real data measured at the Lwak 

microgrid. 

For load control, less energy-consuming profiles were observed after load control for some 

of the refrigeration appliances since some parts of the cooling were without electricity 

consumption. In contrast, the worst results were observed for other refrigeration appliances, 

which tend to consume more after temperature-based control due to inefficiencies, leading 

to a struggle to maintain their temperatures. These results tell us that we can save energy 

by switching off refrigeration appliances and preserving food as before; however, it is 

crucial to assess and recognize the limitations of inefficient appliances before doing 

temperature control to exploit the benefit of temperature-based control sustainably. Also, 

there is a significant promise of cost savings when moving to more energy-

efficient appliances. 

5.1.4. Summary 

Generally, this study will benefit most East African microgrids when considering design 

solutions to address environmental and Climate change targets, accelerating the 

achievement of African countries’ targets in the Paris Climate Agreement. It also efficiently 

reduces energy consumption during the unavailability of the sun. Due to the improved 

matching of load to generation, the storage necessities have been reduced. Future work will 

include calculating all microgrid energy sources’ capital, operation, and maintenance costs 

and finding the best configurations. 

5.2. Recommendations 

The study assessed the effectiveness of microgrids in the East African context through 

modelling, simulation, and practical load control to propose methods to save energy and 
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improve the microgrids’ operation and sustainability. Following the results and discussion, 

the following are the recommendations proposed by this study: 

a) Utility companies should employ incentives to promote the shifting of loads during 

peak hours through dynamic tariffs, smart meters, etcetera. 

b) Microgrid operators should consider using multiple generators instead of a single 

generator during designing and redesigning processes to avoid underutilisation of 

the generator and promote cost effectiveness through fuel cost savings and emission 

reduction. 

c) Utility companies can liaise with customers with high load demands, such as 

industries and businesses, to register shiftable loads operating during non-peak 

hours, e.g., when PV generation is at its maximum, to maximise solar utilisation. 

d) Utility companies, in conjunction with customers, can control appliances based on 

their condition, such as temperature, which can improve energy savings, especially 

during peak hours, to avoid deep discharge of the batteries. 

e) Energy efficiency is vital in everyday appliances, and increased energy 

consumption due to inefficiency can lead to energy cost implications as well as 

environmental impact.  

f) Individuals and entities should find ways to improve their energy efficiency in 

appliances by optimising operational practices and improving or changing to a 

proper appliance design or technology that saves energy. 

g) As shifting to energy-efficient appliance usage requires long-lasting policy and 

behaviour changes, the government or responsible organisation should promote the 

reduction of barriers to the penetration of energy-efficient appliances and set 

thresholds for energy consumption limits.  

h) Furthermore, the government should promote phasing out non-efficient appliances 

by utilising incentives and loans with low interest rates, especially for low-income 

families that cannot afford the complete or quick transformation. 

i) Customer awareness regarding the importance of energy-efficient habits should be 

promoted. 

j) Further research can explore load shifting by utilising the thermal capacities of 

refrigeration units to achieve a meaningful temporal load shift.  
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https://doi.org/10.1109/PowerAfrica57932.2023.10363161
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Appendix A: Mavowatt Power Quality Reports 

Appendix A-1: MAVOWATT Manual website link 

MAVOWATT 270 | GOSSEN METRAWATT | CAMILLE BAUER 

Mpale Mavowatt power quality data obtained from MAVOWATT quick report 

Appendix A-2: Voltage Timeplots 

Site: MPALEDATATUESDAY 

Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00 
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Appendix A-3: Activity Plots 

Site: MPALEDATATUESDAY 

Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00 
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Appendix A-4: Worst Case Summary Waveforms 

Site: MPALE DATA TUESDAY 

Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00 

Lowest Magnitude Voltage Dip: Phase C                                       Highest Magnitude Voltage Swell: Phase C 

Sustained 0.1V,1947.619 Sec., on 10/05/2022 19:27:02.64 Momentary 281.4V,1.615 Sec., on 10/05/2022 

13:32:55.71 

  

Longest Duration Voltage Dip: Phase A                                           Longest Duration Voltage Swell: Phase C 

Sustained 0.1V,1947.619 Sec., on 10/05/2022 19:27:02.64 Momentary 281.2V,2.027 Sec., on 10/05/2022 

13:32:57.35 

 

Most Energy Missing Voltage Dip: Phase C                                Most Energy Added Voltage Swell: Phase C 

Instantaneous 55.4V,0.423 Sec., on 10/05/2022 13:32:47.43 Momentary 281.2V,2.027 Sec., on 10/05/2022 

13:32:57.35 
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Longest Duration Voltage Interruption: Phase A                    Largest Magnitude Voltage Transients: Phase A 

Momentary 0.1V,1511.455 Sec., on 11/05/2022 09:46:19.44  1261.0V,0.003 Sec., on 10/05/2022 18:41:55.18 
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Appendix A-5: Phase A Harmonic Timeplot 

Site: MPALE DATA TUESDAY 

Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00 
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Appendix A- 6: Phase B Harmonic Timeplot 

Site: MPALE DATA TUESDAY 

Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00 
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CURRENT 
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Appendix A- 7: Phase C Harmonic Timeplot 

Site: MPALE DATA TUESDAY 

Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00 
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CURRENT 
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Bunjako Mavowatt power quality data obtained from MAVOWATT quick report 

Appendix A- 8: Voltage Timeplots 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A- 9: Current Timeplots 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A-10: VTHD TIMEPLOTS 

Site: Bunjjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A-11: VOLTAGE UNBALANCE TIMEPLOTS 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A-12: FLICKER (PLT) TIMEPLOTS 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A-13: VOLTAGE FREQUENCY TIMEPLOTS 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A- 14: Quality of Supply 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A- 15:ACTIVITY PLOTS 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A- 16: Worst Case Summary 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 

 

Of 349 total VOLTAGE DIPS 

 

CRITERIA PHASE CATEGORY DATA

 DATE/TIME 

Lowest Magnitude B INSTANTANEOUS 154.5V, 0.519 Sec. 26/02/2022 

13:10:42.80 

 B INSTANTANEOUS 188.0V, 0.350 Sec. 04/03/2022 

06:36:03.29 

 B INSTANTANEOUS 198.4V, 0.029 Sec. 01/03/2022 

15:07:10.30 

 B INSTANTANEOUS 199.1V, 0.029 Sec. 26/02/2022 

09:13:19.31 

Longest Duration B INSTANTANEOUS 154.5V, 0.519 Sec. 26/02/2022 

13:10:42.80 

 B INSTANTANEOUS 188.0V, 0.350 Sec. 04/03/2022 

06:36:03.29 

 B INSTANTANEOUS 203.3V, 0.040 Sec. 01/03/2022 

07:57:34.07 

 B INSTANTANEOUS 205.5V, 0.040 Sec. 02/03/2022 

07:02:40.32 

Most Energy Missing B INSTANTANEOUS 154.5V, 0.519 Sec. 26/02/2022 

13:10:42.80 

 B INSTANTANEOUS 188.0V, 0.350 Sec. 04/03/2022 

06:36:03.29 

 B INSTANTANEOUS 205.5V, 0.040 Sec. 02/03/2022 

07:02:40.32 

 B INSTANTANEOUS 206.2V, 0.039 Sec. 01/03/2022 

08:19:46.69 

 

Of 0 total VOLTAGE SWELLS 

CRITERIA PHASE CATEGORY DATA

 DATE/TIME 

 

Of 0 total VOLTAGE INTERRUPTIONS 

CRITERIA PHASE CATEGORY DATA

 DATE/TIME 

 

Of 6782 total VOLTAGE TRANSIENTS 

CRITERIA PHASE  DATA

 DATE/TIME 

Largest Magnitude B  720.8V, 0.002 Sec. 01/03/2022 

16:17:59.73 

 B  716.0V, 0.000 Sec. 04/03/2022 

06:31:14.03 

 A  711.6V, 0.001 Sec. 25/02/2022 

10:52:18.82 

 B  711.0V, 0.000 Sec. 04/03/2022 

08:56:46.88 
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Appendix A- 17: Worst Case Summary Waveforms 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 

 

Lowest Magnitude Voltage Dip: Phase B Highest Magnitude Voltage Swell: No 

event 
Instantaneous 154.5V,0.519 Sec., on 26/02/2022 13:10:42.80  

 

 
Longest Duration Voltage Dip: Phase B Longest Duration Voltage Swell: No 

event 
Instantaneous 154.5V,0.519 Sec., on 26/02/2022 13:10:42.80  

 

 
Most Energy Missing Voltage Dip: Phase B                               Most Energy Added Voltage Swell: No 

event 
Instantaneous 154.5V,0.519 Sec., on 26/02/2022 13:10:42.80  

 

 
Longest Duration Voltage Interruption: No event                Largest Magnitude Voltage Transients: Phase B 
  720.8V,0.002 Sec., on 01/03/2022 16:17:59.73 
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Appendix A- 18: Min/Max/Avg Summary Report 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 

 

VOLTAGE 

 Channel A Channel B 

Min Volts 205.02 on 24/02/2022 13:50:00 154.47 on 26/02/2022 13:20:00 

Max Volts 250.30 on 27/02/2022 07:40:00 251.55 on 04/03/2022 06:40:00 

Median Volts 230.77 229.77 

Average Volts 230.94 229.78 

 Channel C Channel A-B 

Min Volts 218.16 on 02/03/2022 06:00:00 308.6 on 26/02/2022 10:50:00 

Max Volts 239.47 on 03/03/2022 08:00:00 454.0 on 03/03/2022 08:00:00 

Median Volts 230.50 400.4 

Average Volts 230.39 400.5 

 Channel B-C Channel C-A 

Min Volts 296.5 on 26/02/2022 13:20:00 343.0 on 26/02/2022 12:50:00 

Max Volts 447.9 on 04/03/2022 06:40:00 447.4 on 26/02/2022 10:10:00 

Median Volts 397.2 398.5 

Average Volts 397.3 398.6 

CURRENT 

 Channel A Channel B 

Min Amps 2.22 on 25/02/2022 06:50:00 3.77 on 02/03/2022 16:40:00 

Max Amps 69.31 on 26/02/2022 07:40:00 97.93 on 03/03/2022 08:50:00 

Median Amps 3.71 9.38 

Average Amps 4.73 10.14 

 Channel C  

Min Amps 3.45 on 25/02/2022 06:00:00  

Max Amps 45.28 on 27/02/2022 11:20:00  

Median Amps 6.99  

Average Amps 7.94  
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Appendix A- 19: Demand and Energy Timeplots 

Site: Bunjako 

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00 
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Appendix A- 20: Min/Max/Avg Power Report 

Site: Bunjako 

Measured from 24/02/2022 12:43:14.0 to 04/03/2022 10:05:00.0 

 

POWER 
ACTIVE POWER, P (W) 

 A B C  TOTAL  

Min kW  -10.559 0.475 0.316  -7.308 on 27/02/2022 16:10:00 

Max kW  0.290 17.350 7.829  20.286 on 26/02/2022 12:50:00 

Median kW  -0.391 1.719 1.197  2.504 

Average kW  -0.597 1.894 1.398  2.695 

 

APPARENT POWER,S (VA) 

 A B C  TOTAL  

Min kVA  0.604 0.905 0.848  2.793 on 03/03/2022 16:50:00 

Max kVA  13.366 18.999 8.003  25.571 on 26/02/2022 10:50:00 

Median kVA  0.857 2.171 1.613  5.172 

Average kVA  1.109 2.372 1.827  5.307 

 

REACTIVE POWER Q, AT FUND. FREQ. (VAR) 

 A B C  TOTAL  

Min kVAR  -8.126 -0.236 0.097  -5.445 on 25/02/2022 17:10:00 

Max kVAR  0.070 8.839 2.737  9.764 on 25/02/2022 15:30:00 

Median kVAR  -0.232 0.803 0.420  0.981 

Average kVAR  -0.297 0.905 0.558  1.165 

 

POWER FACTOR, PF 

 A B C  TOTAL  

Min   -0.886 -0.982 0.366  -1.000 on 25/02/2022 06:40:00 

Max   0.961 0.976 0.985  1.000 on 25/02/2022 06:40:00 

Median   0.424 0.777 0.721  0.646 

Average   0.439 0.769 0.692  0.603 

 

 

DEMAND 
REAL POWER DEMAND 

 A B C  TOTAL  

Min kWh/h      -0.296 on 27/02/2022 02:20:00 

Max kWh/h      7.567 on 28/02/2022 17:10:00 

Median kWh/h      2.502 

Average kWh/h      2.695 

 

 

ENERGY 
ENERGY - INTEGRATED ACTIVE POWER (W-HRS) 

 A B C  TOTAL  

 kWh  113.01 358.3 264.47  509.8 on 04/03/2022 10:05:00 
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Appendix B: NodeRED Flow of Temperature-Based Control 

and Data Collection for Cooling Appliances in Lwak 
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EM 3 CONNECTIONS 
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Appendix C: Electronic Devices Datasheet 

Appendix C- 1: Datasheet for the Temperature data logger  

 



 

190 

Appendix C- 2: SP2Lite Pyranometer/ Irradiance Sensor Data sheet 
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