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ABSTRACT

Energy access is essential in achieving healthy and productive households with a growing modern
economy; however, more than 17% of the world’s population lacks access to electricity. Sub-
Saharan African countries present only about two-fifths of the population with access to electricity,
the statistics being the lowest worldwide. East Africa region offers the highest solar photovoltaic
potential of about 220 Petawatt and wind potential of about 170 Petawatt per year, compared to
other African regions; however, poor electric access and cost of transmission, especially in rural

areas with pronounced outages to connected customers, is still articulating.

Microgrid technologies seem promising; however, their sustainability has been questioned and
doubted due to several challenges. The ever-increasing level of demand and its uncertainty pose
technical challenges leading to pronounced unscheduled power outages and uneconomic
operational ways of the microgrid (e.g., demand and the availability of solar and wind power are
often not synchronised, thus requiring large storage capacities to bridge the temporal gap between
supply and demand). Demand-side management (DSM) is an indispensable tool for addressing
challenges. Several DSM techniques have been adopted; however, they do not guarantee global
convergence as the studies are limited in developing countries. In addition, the lack of tailored
demand-side management strategies that align with the region’s socio-economic context makes it

hard for the established microgrids to be sustainable.

This study investigates and optimises demand-side management (DSM) strategies within solar
microgrids in East Africa. Three microgrids in Tanzania (Mpale), Uganda (Bunjako), and Kenya
(Lwak) were used to detail the region’s specific microgrid technical challenges and propose DSM
strategies for optimising the microgrids. Results show that the incentive-based DSM strategy
achieved a power reduction of 14% by providing incentives to maximise utility benefits. Also, the
presence of deferrable loads has been considered to bring more flexible demand-side management
with a reduction in peak demand and peak-to-average ratio of about 31.2% and 7.5%, respectively.
Load shifting efficiently reduces energy consumption during the unavailability of the sun, hence

promising more flexibility to customers.

A notable association was observed between refrigerator and freezer inefficiency and failure in
temperature control. The findings underscore the significance of addressing energy efficiency in
these appliances to enhance overall performance and reliability. Potential cost savings were evident,
revealing that replacing only two refrigeration appliances could yield substantial financial benefits,
estimated at USD 1325 in five years. The findings hold significant implications for the broader field
of energy engineering, offering a tailored approach to microgrid design and operation in regions

with similar energy landscapes.



KURZFASSUNG

Die Energieversorgung ist fur die Gesundheit und Produktivitat von Haushalten und fiir das Wachstum
moderner VVolkswirtschaften von entscheidender Bedeutung. Mehr als 17 % der Welthevélkerung haben
jedoch keinen Zugang zu Elektrizitat und damit auch keinen Strom. In Afrika siidlich der Sahara haben
nur etwa zwei Finftel der Bevdlkerung Zugang zu Elektrizitat, das ist der niedrigste Wert weltweit. Im
Vergleich zu anderen afrikanischen Regionen verfligt Ostafrika (ber das grofite Potenzial an
Photovoltaik und Windenergie (220 bzw. 170 Petawattstunden pro Jahr). Der schlechte Zugang zu
Elektrizitat und die hohen StromUbertragungskosten, insbesondere in landlichen Gebieten mit haufigen
Stromausféllen, stellen jedoch nach wie vor ein Problem dar. Microgrid-Technologien erscheinen
vielversprechend, aber ihre Nachhaltigkeit wird durch eine Reihe von Herausforderungen gefahrdet. Die
standig steigende Nachfrage und deren Unsicherheit stellen technische Herausforderungen dar, die zu
hohen ungeplanten Stromausfallen und einem unwirtschaftlichen Betrieb des Microgrids fuhren (z.B.
sind Nachfrage und Verfiigbarkeit von Solar- und Windenergie oft nicht synchron, so dass grofe
Speicherkapazitaten erforderlich sind, um die zeitliche Licke zwischen Angebot und Nachfrage zu
Uberbriicken). Demand Side Management (DSM) ist ein unverzichtbares Instrument zur Bewaltigung
dieser Herausforderungen. Verschiedene DSM-Techniken wurden bereits eingesetzt, konnten jedoch
keine umfassende Losung bieten, da nur wenige Studien in Entwicklungsléandern durchgefiihrt wurden.
Daruber hinaus fehlt es an malgeschneiderten Strategien zur Nachfragesteuerung, die auf den
soziodkonomischen Kontext der Region abgestimmt sind. Diese Studie untersucht und optimiert
Strategien zur Nachfragesteuerung (Demand Side Management, DSM) in solaren Mikrogrids in
Ostafrika. Anhand von drei Mikrogrids in Tansania (Mpale), Uganda (Bunjako) und Kenia (Lwak)
wurden die spezifischen technischen Herausforderungen der Region fur Mikrogrids untersucht und
DSM-Strategien zur Optimierung der Mikrogrids vorgeschlagen. Die Ergebnisse zeigen, dass die
anreizbasierte DSM-Strategie eine Leistungsreduzierung von 14% erzielte, indem sie Anreize zur
Maximierung des Nutzens fiir den Versorger bot. Darliber hinaus wird davon ausgegangen, dass das
Vorhandensein von verschiebbaren Lasten ein flexibleres Nachfragemanagement mit einer Reduzierung
der Spitzennachfrage und des Verhaltnisses zwischen Spitzen- und Durchschnittsverbrauch um etwa
31,2% bzw. 7,5% ermdglicht. Lastverschiebung reduziert effizient den Energieverbrauch in Zeiten, in

denen die Sonne nicht zur Verfiigung steht, und bietet den Kunden mehr Flexibilitat.

Ein bemerkenswerter Zusammenhang wurde zwischen der Ineffizienz von Kihl- und Gefriergeraten
und dem Versagen der Temperaturregelung festgestellt. Die Ergebnisse unterstreichen, wie wichtig es
ist, die Energieeffizienz dieser Gerate zu verbessern, um die Gesamtleistung und Zuverléssigkeit zu
erhéhen. Potenzielle Kosteneinsparungen waren offensichtlich und zeigten, dass der Austausch von nur
zwei Kihlgeraten erhebliche finanzielle Vorteile bringen kénnte, die auf 1325 USD in finf Jahren
geschatzt werden. Die Ergebnisse haben relevance Auswirkungen auf den breiteren Bereich der
Energietechnik und bieten einen maligeschneiderten Ansatz fiir die Gestaltung und den Betrieb von

Mikrogrids in Regionen mit &hnlichen Energielandschaften.



IKISIRI

Upatikanaji wa nishati ni muhimu katika kupata kaya zenye afya na zenye tija na uchumi unaokua
wa Kisasa; Hata hivyo, zaidi ya asilimia 17 ya watu duniani hawana umeme. Nchi za Afrika Kusini
mwa Jangwa la Sahara zinawasilisha tu karibu theluthi mbili ya idadi ya watu walio na upatikanaji
wa umeme, takwimu ambazo ni za chini zaidi ulimwenguni. Ikilinganishwa na mikoa mingine ya
Afrika, Afrika Mashariki ina uwezo wa juu wa jua na upepo wa karibu 220 PWh na 170 PWh kwa
mwaka, kwa mitiririko huo; Hata hivyo, upatikanaji duni wa umeme na gharama za usambazaji,

bado ni tatizo kubwa.

Teknolojia ya microgrid inaonekana kuwa ya kuahidi; Hata hivyo, uendelevu wao umehojiwa na
kutiliwa shaka kutokana na changamoto kadhaa. Kiwango cha kuongezeka kwa mahitaji na
kutokuwa na uhakika wake husababisha changamoto za kiufundi zinazosababisha kukatika kwa
umeme usio na mpangilio na njia zisizo za kiuchumi za microgrid (kwa mfano, mabhitaji na
upatikanaji wa nishati ya jua na upepo mara nyingi hazisawazishwi, na hivyo kuhitaji uwezo
mkubwa wa kuhifadhi kuziba pengo la muda kati ya usambazaji na mahitaji). Usimamizi wa upande
wa mabhitaji (DSM) ni chombo muhimu cha kushughulikia changamoto. Mbinu kadhaa za DSM
zimefanyika; hata hivyo, hazihakikishi ushirikiano wa kimataifa kwani masomo ni madogo katika
nchi zinazoendelea. Kwa kuongezea, ukosefu wa mikakati ya usimamizi wa upande wa mahitaji
ambayo inaendana na muktadha wa kijamii na kiuchumi wa kanda husika hufanya iwe vigumu kwa

microgrids zilizoanzishwa kuwa endelevu.

Utafiti huu unachunguza na kuboresha mikakati ya usimamizi wa upande wa mahitaji (DSM) ndani
ya microgrids za jua katika Afrika Mashariki. Mikrogrids tatu nchini Tanzania (Mpale), Uganda
(Bunjako), na Kenya (Lwak) zilitumika kuelezea changamoto maalum za kiufundi za kanda hiyo
na kupendekeza mikakati ya DSM ya kuboresha microgrids. Matokeo yanaonyesha kuwa mkakati
wa DSM unaotegemea motisha ulifikia kupunguza matumizi ya nishati kwa 14% kwa kutoa
motisha ya kuongeza faida za matumizi. Pia, mabadiliko ya utumiaji wa baadhi ya vifaa vya umeme
muda ambapo watumiaji ni wengi zaidi hupunguza matumizi ya nishati wakati wa kutopatikana

kwa jua.

Uhusiano kati ya ufanisi wa friji na kushindwa kudhibiti joto ufanisi wake unapokuwa mdogo
ulionekana. Matokeo yanasisitiza umuhimu wa kushughulikia ufanisi wa nishati katika vifaa hivi
ili kuongeza utendaji wa jumla. Uwezekano wa kuokoa gharama ulikuwa dhahiri, kwani
kubadilisha vifaa viwili tu vya friji kunaweza kutoa faida kubwa za kifedha, makadirio ya $ 1,325
katika miaka mitano. Hii inasisitiza motisha ya kiuchumi ya kutekeleza hatua za ufanisi wa nishati
katika vifaa vya nyumbani. Matokeo yana athari kubwa kwa uwanja mpana wa uhandisi wa nishati,
kutoa njia iliyolengwa kwa muundo wa microgrid na uendeshaji wake katika maeneo yaliyo na

mandhari sawa ya nishati na haya yaliyozungumziwa katika utafiti huu.

Xi



LAY SUMMARY / CONTRIBUTION

The overarching objective of this study is to make pioneering contributions to the optimization of
East African microgrids, particularly addressing economic load dispatch, coordination of multiple
generators, and the integration of shiftable appliances. Within the practical implementation context,
a key focus is placed on temperature-based control for refrigeration appliances, with a unique
emphasis on its effect on inefficient refrigerators. In the realm of economic load dispatch, this work
seeks to introduce a context-aware incentive structure that aligns with the socio-economic dynamics
of the region. By doing so, it not only optimizes energy distribution but also fosters increased
compliance and efficiency.

Additionally, in addressing the coordination of multiple generators, the research focuses on
developing a novel dispatch algorithm tailored to East African microgrids’ diversity of power
sources. This algorithm aims to maximize utilization and reliability by effectively coordinating the
output of various generators, ensuring a seamless and optimized power supply. Moreover, this study
delves into integrating shiftable appliances within the microgrid framework. This involves
designing a dynamic load control algorithm that enhances grid efficiency and considers the specific
energy usage patterns and appliance characteristics prevalent in East African households.
Integrating shiftable appliances contributes to a more flexible and responsive energy system,
aligning with the unique demands of the region. Through these multifaceted contributions, this
research aspires to redefine the energy management landscape in East African microgrids, offering
innovative solutions that bridge critical gaps in the existing literature. The ultimate aim is to guide
the development of sustainable energy practices, making a significant and practical contribution to

the field and fostering energy resilience in the region.
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CHAPTER ONE

1. Introduction

1.1.  Background Information

Advanced civilisation and better quality of life depend significantly on energy availability,
accessibility, acceptability, and affordability (Schnitzer et al., 2014; Stevanato et al., 2019).
Availability entails an element of absolute or geological/physical existence and infinite
supply (Kruyt et al., 2009; Narula, 2014). Accessibility entails the supply concentration
resulting from a large spatial discrepancy between consumption and production of
resources with geopolitical implications for access acquisition (Kruyt et al., 2009).
Acceptability refers to the environmental and societal elements of resource extraction and
energy use. Switching away from a carbon-intensive fuel portfolio is a good indicator of
acceptability (Narula, 2014). Affordability relates to the economic element that influences
energy prices. Energy access is essential in achieving healthy and productive households
with a growing modern economy, having a multiplier effect on education, health, water
supply, agriculture, transport, and other sectors (Blimpo & Cosgrove-davies, 2020;
Pachauri, 2011).

Despite the world’s dilemma between satisfying the increasing demand and preventing
climate change impacts by reducing carbon dioxide emissions, the need for energy demand
is expected to double in the next 40 years, putting the developing and developed world
under economic pressure (Gebreslassie & Khellaf, 2021). Although Africa is the most
vulnerable, energy scarcity significantly impacts economic activities worldwide.
Approximately 1.2 billion people (about 17% worldwide) have no access to electricity, with
the vast majority in Africa, particularly sub-Saharan Africa (Chirambo, 2018). Sub-Saharan
African countries present only about two-fifths of the population with access to electricity,
the statistics being the lowest worldwide (Blimpo & Cosgrove-davies, 2020; Philipo et al.,
2020).

In East Africa (consisting of the countries Tanzania, Kenya, Uganda, Rwanda, Burundi,
Democratic Republic of Congo, and South Sudan), energy access is still critical as about
80% of the population have poor access to electricity, mostly people in rural areas
(Williams et al., 2017). Rural area electrification in developing countries poses challenges

in constructing power generation and transmission networks (Micangeli et al., 2018).



Several studies have shown that despite efforts to improve grid transmission and power
generation, emphasis is more on urban and industrial areas due to the higher load demand
and political relevance (Azurza et al., 2012). The electrification discrepancy can be
achieved using microgrid technologies and meet the sustainable development goal 7:
"affordable, reliable, sustainable, and modern energy for all by 2030". Microgrids offer
potential alternatives to the challenging rural electrification framework due to their
affordability (Stevanato et al., 2019; Takalani & Bekker, 2020; Williams et al., 2017).

Microgrids are an alternative to areas where grid extension is technically or economically
infeasible. In addition, microgrids can meet the need for reliable and safe electricity through
renewable energy sources (Stevanato et al., 2019; Takalani & Bekker, 2020; Williams et
al., 2017). Several challenges are associated with deploying microgrids, such as the
variability nature of renewables and unpredicted customer demand, especially during peak
hours (Chauhan & Chauhan, 2018; Lazaroiu et al., 2016).

The commonly available solution to the challenges involves incorporating storage systems
and adapting demand-side management schemes (Barton & Infield, 2004; Cecati et al.,
2011; Philipo et al., 2020). Storage systems are practical yet very expensive technology;
thus, economic viability has proven challenging, especially when microgrids are not
optimised (Hartvigsson et al., 2015). Demand-side management uses techniques such as
load shifting, direct load control, load filling, and energy efficiency appliances, where peak
loads can be appropriately managed (Torriti, 2012; Warren, 2014). Several demand-side
management programs have been implemented. However, not much attention is paid to the
combination of classification and prioritisation of consumer demand, assessing their
correlation, predicting their future demand, and studying their energy input and output to
select proper demand-side management strategies while reducing the cost of storage. This
study aims to find the best practice of a solar microgrid in East Africa through demand-side

management, customer classification, and prioritisation.
1.2. Problem Statement

Despite the rapid expansion of microgrids in East Africa, blackouts, brownouts, and poor
sustainability are still the most significant challenges for microgrids. The reasons can be
attributed to the intermittent nature of solar power, over/under design, and limited access
to reliable data for demand forecasting, leading to unpredicted or variable energy
consumption patterns. In addition, over-dimensioned or poorly designed systems increase

the microgrid systems’ operation costs (Bui et al., 2018).



Higher operational costs increase electricity costs, affecting affordability for end users and
resulting in customer attrition (Steyer et al., 2014). Due to the unreliability of most
microgrid data, finding an optimal solution for microgrid operation has proven challenging.
Furthermore, the lack of a tailored demand-side management solution that aligns with the
socio-economic context of the region makes it hard for the established microgrids to

sustain.

This study aims to investigate and optimise demand-side management strategies within
solar microgrids in East Africa by addressing the challenges related to energy consumption,
appliance usage behaviour, and system design. Estimating near-accurate forecasts of load
profiles and microgrid data is essential for selecting proper energy management. Weather
and seasonal changes play critical roles in demand variability and the probability of
microgrid failures (Yazdkhasti & Diduch, 2020). The results of this study will act as an
essential push factor to guarantee a feasible operation of microgrids in East Africa.

1.3.  The Rationale of Study

Poor access to reliable electricity imposes significant constraints on modern economic
activities, the provision of public services, the adoption of new technologies, and the quality
of life. This study focuses on the critical need to improve the performance and sustainability
of solar microgrids in East Africa. By investigating today’s microgrids and addressing the
challenges associated with demand-side management, we aim to contribute valuable
insights that can inform utility companies and governments to develop tailored solutions
and customers to adopt energy efficiency behaviours to save energy. The study is motivated
by the potential to optimise energy consumption, improve system efficiency, and promote
the widespread adoption of renewable energy to foster sustainable development in the
region.

1.4,  Objectives

1.4.1. General Objective

To optimise microgrid operations, including minimisation of storage requirement and cost
through load profile analysis and demand side management measures to synchronize
demand with supply (e.g., by PV).

1.4.2. Specific Objectives

a) To assess and analyse customer demand and other power quality parameters to

establish a baseline for demand-side management measures.



b) To investigate the correlation of daily/seasonal consumption with statistics, tasks,
weather, season, appliances, etc.

c) To optimise microgrid operations through a proper demand-side management
scheme using modelling and simulation considering location context.

d) To promote energy efficiency of microgrids through practical load control and

appliance demand data analysis.
1.5.  Significance of the Study

This study’s significance is rooted in its potential to catalyse positive transformations
within East African communities through overcoming challenges related to solar microgrid
operations. The study anticipates the following outcomes: energy savings, increased energy
access, improved reliability, and reduced end-user costs by employing optimisation and
demand-side management solutions. Furthermore, the findings can inform microgrid
operators on proper design and possible solutions to impose to customers for mutual
benefits; policymakers can use the acquired results for better policy decisions, and the
results can also guide investment in sustainable energy infrastructure and contribute to the
broader discourse on enhancing energy resilience in developing regions. The study’s
significance lies in its ability to promote environmentally consciousness and economically

viable solutions for powering underserved communities.

1.6. Research Outline

This dissertation utilised data from three microgrids in the East African countries of
Tanzania, Uganda, and Kenya. The data were used to analyse the operation of microgrids
and develop a proper demand-side management scheme and recommendation that aligns

with the communities visited. The dissertation comprises five chapters.

a) Chapter One introduces the study. It includes the background information, problem
statement, study rationale, research objectives and expected outcomes, and research
significance.

b) Chapter Two presents a critical and in-depth review of published literature.

c) Chapter Three contains the study’s methodology, including data collection,
technical data analysis, modelling, and simulation.

d) Chapter Four presents an analysis and discussion of the modelling and simulation.

e) Chapter Five presents the conclusions and recommendations that have been arrived

at based on the results obtained from modelling and simulation.



CHAPTER TWO

2. Literature Review

This chapter reviews the literature on the analysis and demand side management of East
African rural microgrids through optimising and reducing storage costs. The chapter is
divided into six sub-sections. Section 2.1 details the renewable energy potential in Africa,
section 2.2 introduces the concept of microgrids, and section 2.2.2 discusses the
classification of microgrids and their advantages and disadvantages. Section 2.2.3 narrows
the discussion to microgrids in East Africa, challenges experienced, and proposed solutions
to mitigate the challenges; section 2.3 discusses the demand-side management categories

and their methods, and chapter 2.4 summarises the literature review.
2.1. Renewable Energy Resources in Africa

Africa has a natural advantage in benefiting from various renewable energy resources such
as solar, wind, biomass, and hydropower. Due to its geographical position, Africa has a
solar radiation potential averaging 325 days of sunshine with an estimated 656,730 TWh
solar photovoltaic potential per year. The available solar potential varies between normal
direct and global horizontal solar irradiation. In East Africa, solar energy is abundant due
to its proximity to the equator, which results in high levels of sunlight exposure (Figure
2-1). It is a clean, renewable energy source that can be harnessed using photovoltaic (PV)
panels. Solar panels can be installed on rooftops or in small solar farms, making them
suitable for decentralized rural electrification. However, initial investment costs can be
high, and solar energy production depends on weather conditions (Gebreslassie & Khellaf,
2021).

Africa’s wind potential, estimated at 656,000 TWh annually, is mainly concentrated along
the coastal, Sahel, and highlands areas (Figure 2-2). In Africa, East and North have better
wind potential than others (Gebreslassie & Khellaf, 2021). East Africa has more wind
potential in the coastal regions and highlands, where wind turbines can be installed
individually or in wind farms to harness wind power. Wind energy is purely renewable and
clean, with low operating costs once infrastructure is in place, but it can be unpredictable

due to production variability and wind speed dependence (Erdogan et al., 2022a).

Hydropower generation, estimated at 10,240 MW, is Africa’s leading renewable energy

resource, covering more than 70% of overall electricity generation in the continent



(Abriendomundo, 2023). East Africa has plenty of water bodies with notable rivers, such
as the Nile (the world’s longest river), which runs along its borders and is suitable for
hydroelectric power generation (Figure 2-3). Large hydroelectric dams provide a stable and
reliable source of electricity to rural areas. While large-scale hydropower projects can cost-
effectively improve electricity access, they can have significant environmental and social
impacts, including habitat disruption and displacement of communities. Also, they can take

a decade or more to plan and build.

Biomass energy uses organic materials such as wood, crop residues, and animal waste for
cooking and electricity generation (Figure 2-4). It plays a crucial role in the African energy
mix, which has the potential to ensure a future fuel supply (Balat & Ayar, 2005). Biomass
power plants utilize dedicated energy crops or agricultural residues for electricity
generation. 40% of Africa’s waste resources and wood residues are concentrated in North
Africa, with the central region having the lowest wood residue potential (Gebreslassie &
Khellaf, 2021). In rural areas of East Africa, biomass is commonly used for cooking and
heating. Although biomass is readily available and can act as a source of income in rural
communities, there are environmental repercussions of using biomass as a fuel source,
depending on the type of conversion technology. Inefficient combustion practices can lead

to indoor air pollution and deforestation.

PVOUT: Long-term average of PV power potential, period 1994-2020 (1999-2020 in the Middle East)
Yearly totals: 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

KWh/kWp

<
Daily totals: ~ 3.01 329 3.56 3.83 411 438 465 493 5.20 5.48

Figure 2-1: Solar photovoltaic potential map of Africa (SolarGlIS, 2021)
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Figure 2-4: Biomass potential map of Africa (Bouvet et al., 2018)

Choosing the best energy source for rural electrification in East Africa should consider
combining the available options considering the local conditions and needs. Areas with
access to rivers and water bodies can make use of hydroelectric power to provide a stable
source of electricity, and wind energy can act as a complement in regions with consistent
wind patterns and with proper biomass management, it can be used as a supplementary
source of electricity or for cooking and heating where appropriate. Generally, solar energy
is often a suitable choice for decentralized electrification in remote areas with limited
infrastructure. However, a diversified energy portfolio that harnesses the strengths of each
energy source can enhance energy security and resilience in rural East Africa, and
microgrids can help reach scattered rural settlements.

2.2.  Microgrids
2.2.1. Introduction

Energy demands and electricity consumption worldwide are increasing daily due to
technological advancements, population growth, and urbanisation. The primary source of
energy consumed is from fossil fuel. The combustion of fossil fuels to generate power is

one of the major causes of global warming (Greg Adams et al., 2016). Efforts to minimise



the effects of global warming require an alternative energy source which achieves green

energy production while meeting rising energy demands.

Despite the rising energy demands, in Sub-Saharan Africa, large parts of the population
lack access to electricity (Figure 2-5). The lack of access to electricity is due to poor
coverage of the electricity grids, isolated areas such as islands, and remote regions where
high investment costs are needed to extend the already built national grids. One of the
reliable solutions for rural electrification is standalone power systems. Standalone power
systems are off-the-grid, independent electricity systems for locations that lack an extensive
utility-scale electricity distribution system. Microgrids are an example of such a system
(Riahi et al., 2021).

Microgrids are electricity distribution systems containing loads and distributed energy
resources such as distributed generators, storage devices, or controllable loads that can be
controlled and coordinated while connected to the main power network or islanded. For
rural electrification, microgrids are an exciting way to provide electricity to serve local
needs and solve supply problems. They offer new ways to provide reliable and resilient
electrical power. Coupled with the demand for alternative green energy, microgrids offer
an alternative to fossil fuel energy in efforts to curb the effects of climate change (Riahi et
al., 2021).

New Connections
M On-grid
B Mini-grids

Stand-alone systems

Transmission Lines (>69 kV)

——Existing
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Figure 2-5: The 2020 Electricity access map for sub-Saharan Africa (IRENA, 2003)



With the advent of low-cost solar panels and the ability to generate, store and use direct
current (DC) electrical energy locally, solar microgrids act as an ideal solution to transform
energy infrastructure for rural communities to power households and local businesses. The
implementation is affordable, safe, simple, flexible, and energy efficient. Various
community-based working models can be implemented to operate and sustain these
microgrids. Microgrids are expected to increase the power quality and bring multiple
economic, environmental and technical benefits to consumers and electric providers,

ensuring efficient systems (Thirunavukkarasu et al., 2022).
2.2.2. Classification of Microgrids

Microgrids can be categorized by their generation capacity, applications, system
architecture, and customer type. The classifications of microgrids are outlined in Table 2-1.
The categorisation of microgrids based on sizes is rarely accurate as functionality is the
main difference between them. Minigrids and microgrids are similar based on their sizes.
However, unlike microgrids, minigrid acts independently and cannot be connected to the
main grid. Thus, it is best to categorise depending on their functionality and usage, such as

customer type, application, generation capacity, and system architecture (Ogg, 2015).
2.2.2.1. By Customer Type

There are three categories available: true microgrids (p-grids), milli-grids (m-grids), and
remote microgrids (r-grids). True microgrids are microgrids in which the whole system is
on a single site to a utility customer. Milli-grids are microgrids that involve a segment-
regulated grid that allows distributed energy resources to be deployed and directed to
critical infrastructure in emergencies. Remote microgrids are isolated and unable to operate

in a grid-connected mode.
2.2.2.2. By Application

These are microgrids that are categorised based on the end user’s application. Such
microgrids include military microgrids, industrial microgrids, development microgrids for
small commercial operations, hidden microgrids for those with generators on-site that they
use to provide emergency power, microgrids for isolated vacation homes, and mobile
microgrids for military and emergency power response in the event of disasters. In addition,
mobile microgrids are often used for remote, strategic applications when electricity is
immediately required, and there is no short-term potential to connect to the grid network
(Roosa, 2021).
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2.2.2.3. By Generation Capacity

There are six categories depending on the generation capacity, presented in Table 2-1, in addition to their characteristics and complexity.

Table 2-1: Microgrid categories based on generation capacity, complexity, functionality and status on grid connection (Kempener et al., 2015;

Ogg, 2015)
Category Size Capability Complexity Function Connection to Main Grid
e Single controller e DC systems e Telemetry
Picogrid 0-1KkW |e Single voltage (DC) e Serve single load e Charging No
e Lighting
e Single voltage (DC) e Both are grid-tied and | e Telecom
e Single price remote systems e Household
Nanogrid 0-5kW |e Controllers negotiate  with | ® DC systems Off-grid
others across gateways to |e Serving single load
buy/sell power e Single administrator
e Manage local energy supply |e Incorporate generation | e Distributed
and demand e Varying pricing possible
Microgrid 5 _ 200 KW e Provide a variety of voltages Possible

(AC/DC)
¢ Provide a variety of quality and
reliable power options
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Category Size Capability Complexity Function Connection to Main Grid
e Optimise multiple-output
energy systems
e Generation satisfying local | e Interconnected e Local
Minigrid 5-300 kW | demand customers No
e Transmission limited to 11 kV
) e Transmission up to 400 kV e |t can be coupled to a | e Centralised
Macrogrid > 300kW ) ) Yes
e Single voltage (AC) microgrid
_ e Transmission up to 400 kV e |t can be coupled to a | e Centralised
Supergrid > 100MW Yes

¢ AC/HVDC voltages

microgrid
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2.2.2.4. By System Architecture
2.2.2.4.1. AC Microgrid
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Figure 2-6: Alternating current (AC) microgrid system layout (Ahmad et al., 2019)

An AC microgrid system consists of distributed energy (DG) units (which can be from
hydro under hydro turbines, photo voltaic (PV) or wind energy conversion system
(WECS) ) and Energy storage systems (ESS) connected at points within the distribution
networks, forming a small, isolated AC electric power system (Figure 2-6). During normal
operating conditions, the two networks are interconnected at the point of common coupling
(PCC), while the loads are supplied from local sources. If the load demand power is less
than the power produced by the DG units, excess energy can be exported to the utility
(Ahmad et al., 2019).

2.2.2.4.2. AC/DC Microgrid

Microgrids have different types of sources, and loads are the type of AC/DC systems. The
conceptual layout of the hybrid AC/DC microgrid is shown in Figure 2-7. The hybrid
microgrids facilitate the benefits of integrating AC technology with DC technology through
interlinking bidirectional converters. After staying on AC technology in the electric power
supply, DC power joins it with increasing technology advancements in power conversion,
generation, transmission, and consumption. However, challenges in DC technologies
warrant the integration of algorithms in some or every step of the microgrid (Ahmad et al.,
2019).
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Figure 2-7: The alternating current (AC) and direct current (DC) microgrid system layout
(Ahmad et al., 2019)

2.2.2.4.3. DC Microgrid

While traditional electric power system was designed to move the AC power via high-
voltage AC transmission lines and lower voltage distribution lines to households and
businesses, the DC power system has been used in industrial power distribution systems,
telecommunication infrastructures, and point-to-point transmissions over long distances via
sea cables and for interconnecting AC grids with different frequencies. Most consumer
equipment and DG units are dominated by power electronics devices, which need DC
power. However, all these DC devices require converting the available AC power into DC,

and most of these conversion stages typically use inefficient rectifiers.

Thus, the DC-based DG units have been converted to AC to tie in with the existing AC
electric network, only later to be converted to DC for many end users. However, the DC—
AC-DC power conversion stages result in substantial energy losses. Using the positive
experiences in the high-voltage DC (HVDC) operation and the advances in power
electronics technology, interest in pursuing effective solutions has increased. Figure 2-8
shows the typical DC MG systems interconnected with the PCC’s central systems: VAC
networks from the conventional power plants or an HYDC transmission line connecting an
offshore wind farm (Ahmad et al., 2019).
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Figure 2-8: Direct current (DC) microgrid system layout (Ahmad et al., 2019)
2.2.2.5. Other Classifications

Further classifications of microgrids are available. Advanced microgrids can automatically
interact with, connect to, and disconnect from another grid like many microgrids. They
grant users the flexibility to securely manage the reliability and resiliency of the microgrid
and connected loads while mitigating the economic impacts associated with power
disruptions. A key feature of advanced microgrids is the ability to achieve plug-and-play
interoperability within the sphere of the technologies used for electrical generation and

compatible communication.

Some microgrids can be classified as virtual microgrids (v-grids). These include DERs
located at multiple nonadjacent sites that are coordinated so that they can be presented to
the grid as a single entity but operate virtually as a controlled island or coordinated
numerous islands. Virtual microgrids are often loose aggregations of individual generation
sources and loads that can be remotely controlled. In this case, they use the infrastructure
of the host grid, and while unable to be decoupled physically, they are operated within the
energy market as if independent. They can be configured based on software connectivity
(cloud-based) (Ahmad et al., 2019).

2.2.2.6. Advantages and Disadvantages of Microgrids

There are advantages and disadvantages associated with the deployment of microgrids, as

outlined in the following chapters.
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2.2.2.6.1. Advantages of Microgrids

Microgrids generate and operate electricity from various electrical generation sources using
multiple technologies. Microgrids have lower carbon footprints and emit less pollution

when renewable energy sources are used.

Microgrids improve electrical system reliability, as the electricity is generated at or near
the consumer loads, substantially reducing transmission costs and improving resiliency.
Another advantage of microgrids is that they have lower repair costs as the line voltages
are much lower than high voltage power transmission, and less transmission infrastructure

is needed as energy is generated locally.

Microgrids can provide dispatchable power to critical loads, thus being available upon
demand. Hydropower, biomass, tidal power, and geothermal energy can be designed to be
dispatchable without energy storage. In addition, microgrid power can be stored in batteries

or reservoirs to generate dispatchable electricity.

Microgrids can separate and operate in isolation (i.e., islanding) from the utility’s
distribution system. Islanding appeals to entities that experience high costs from electrical
outages, as the microgrids offer an uninterrupted power supply. Furthermore, islanding
ensures remote communities without connection to the electricity grid access to continuous

electricity.

Microgrids have black-start capability due to multiple generation resources within the
microgrid, allowing the system to restart independently. Black Start is restoring power to

part of an electric grid without relying on external electric power transmission networks.

Utility companies install microgrids along the high-voltage electric grid to operate as
command centres to coordinate response activities during massive area-wide outages.
These microgrids can reduce investment costs to accommodate increased load, peak power
requirements, or power quality issues. When a substation upgrade is required to address
increased limitations or power quality, a microgrid with on-site generation could satisfy the

need without a significant capital investment.

Microgrids allow the integration of multiple generation sources. Thus, decisions can be
made about which type of fuel source is the least expensive at a given time. Microgrid
management systems can be designed to reduce costs by incorporating peak-shaving
capabilities and to regulate energy pricing differences profitably. Algorithms can be used

to minimise risks and selectively energize loads during operations and extended outages.
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Lastly, renewable generation inclusion in the microgrid eliminates the business risks
associated with variable fossil fuel costs. Revenue can thus be generated by selling excess

power to the grid if the microgrid is interconnected.
2.2.2.6.2. Disadvantages of microgrids

Development and maintenance costs can be expensive, especially when multiple electrical
generation systems are included. If the microgrid is connected to grid power, increased
charges for the interconnection equipment and storage system (i.e., batteries, compressed

air, pumped storage hydropower, etc.) are incurred.

Economics and customer preferences are causing microgrids to integrate more significant
amounts of non-dispatchable renewables, such as solar and wind power, from 50% to 100%
of their capacity, which can present intermittency problems and system-balancing
challenges.

The engineering expertise to develop and maintain microgrids may not be readily available,
especially for remote microgrids. The maintenance and service costs at the remote location

can be higher than anticipated.

Another disadvantage that prevents microgrid development involves imposed limitations
by policymakers. Often, regulations concerning microgrid development are unclear or non-

existent.

Lastly, existing electric utility companies often resist microgrid operations within their
established service territories. Reluctance to embrace local renewable generation due to
fears that the existing power grids cannot reliably integrate distributed energy generation

has limited many microgrid projects to provide no more than 15% of peak power demands.
2.2.3. Microgrids in East Africa

Compared to other African regions, East Africa presents the highest solar photovoltaic and
wind potential of about 220 PWh and 170 PWh, respectively (Figure 2-9). Among the East
African countries, Kenya is leading in microgrid maturity and implementation with more

than 40% of the total operational and under-construction microgrids (Duby et al., 2017).
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Figure 2-9: The potential of solar photovoltaic and wind for African countries (IRENA,
2003)

Despite the solar photovoltaic and wind potential, microgrid growth in the East Africa
region is slowly increasing, and net addition is stunted due to several challenges (Kent,
2018). Some challenges are economic, ownership, environmental, policies or technical,
which are discussed further in the next section. In addition, proposed solutions are also
presented (Babayomi & Okharedia, 2019).

2.2.3.1. Challenges of Microgrids in East Africa

Investment risks in developing microgrid systems are high since microgrid projects are
often funded by project finances based on projected future cash flows rather than physical
assets or collateral. Thus, project developers must demonstrate to loan providers that the
projects are financially secure throughout the loan tenure. Furthermore, the projects usually
incorporate capital-intensive, especially renewable energy systems. Thus, the projects are
expected to break even and generate profits. The financial expectations expose project
owners to long-term risks that may lead to project failures before the recovery of initial

capital investments (Williams et al., 2017).

Securing finance for microgrid projects is another challenge, especially in rural areas.
Electrification projects are always seen as high risk by both debt and equity funders due to
serving in developing countries. This frequently results in projects being unable to secure
the capital required for implementation. Furthermore, upon obtaining money, the projects
are compounded with unfavourable financial repayment terms such as high-interest rates

and short debt tenors and damaging risk remedial measures such as grid encroachment,
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unregulated competition, loss of operating subsidies, changes in regulated tariffs, and other

sources of policy and regulatory uncertainty (Williams et al., 2017).

Unaffordable installation costs and electricity bills, especially for rural microgrid projects,
pose challenges to microgrid growth. Rural microgrids often serve poor populations with
limited means to pay for electricity services. As microgrid projects are usually expected to
operate in a balance between risks and expected returns, the ability to pay for electricity
services in rural communities is poor. Rural communities depend highly upon activities
such as subsistence farming, with a small fraction of the population able to generate regular
cash flow, thus resulting in seasonality of income. The inconsistent repayment of bills is

costly to project owners and challenges revenue collection (Cross & Neumark, 2021).

Poor policies and an unfriendly regulatory environment for investment in microgrids.
Microgrid policies for rural electrification have been unfavourable, especially in creating
low electricity tariffs due to political pressure to maintain affordability. Unfortunately,
these low tariffs have made the electricity sector in many countries unprofitable and
unattractive to the private sector. In addition, policies and regulations that are frequently
changing and poorly defined demoralise investors’ confidence that the policies on which
they build their business case will be respected. Institutional structures and regulatory
processes are often complex and challenging to navigate as barriers to potential project
developers and investors (Williams et al., 2017).

Furthermore, private investment in microgrids usually incurs roadblocks and is subject to
state-owned monopolies in the electricity sector. There is no clearly defined relationship
between the private and public sectors. Private sectors always succumb to bureaucratic red
tape, increasing transaction costs, unnecessarily extending timelines, and discouraging
investment (Williams et al., 2017).

Tampering of the microgrid systems, power theft, and theft of the microgrid systems

elements affect microgrids’ growth in East Africa.

A lack of local technical skills challenges the maintenance and operation of the system.
Most microgrids are remotely located; thus, maintenance and repairs are challenging, with
high costs and long lead times for the delivery of replacement parts, which may not be

available in local markets.

Lack of prior demand data, especially in remote locations, renders demand forecasting

ineffective, thus affecting the growth of microgrids. The demand forecast is essential for
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proper microgrid design to guarantee sustainability (Yazdkhasti & Diduch, 2020; Yoder &
Williams, 2020). The level of demand itself is highly uncertain as a direct measurement in
a community that has never had access proves challenging. Methods such as surveys of
current energy use or basing assumptions on other villages’ experiences are usually used.
Since the project profitability is highly dependent on the amount of electricity produced
and sold, uncertainty in electricity demand poses a significant risk to investors. Should the
demand fall short of expectations, the microgrid may be unprofitable. On the other hand,
should the demand exceed expectations, the installed generation capacity may fall short,
resulting in poor performance and customer satisfaction, jeopardising the project’s

sustainability.

Efforts to guarantee the sustainability of microgrids call for energy management schemes
which can mitigate risks and improve microgrids’ performance. Demand side management
(DSM) is one of the management schemes that reduces the cost of energy acquisition by
continuously monitoring energy use and managing appliance schedules (Bakare et al.,
2023). DSM is used to lower peak loads, control time of service (TOU) levels of power
demand, evaluate user profiles for electricity loads, lower carbon emissions, and provide
consumers with a preferred energy source. This study will utilise demand-side management

to achieve optimisation of rural microgrids.
2.3. Demand Side Management
2.3.1. Introduction

Demand-side management (DSM) is the planning and implementation of energy
conservation strategies that seek to manage consumer demand for energy rather than supply
it to produce desired changes in the utility’s load shape. Customers are encouraged to
willingly change load usage patterns without sacrificing their comfort and quality of service
(Gyamfi et al., 2022). DSM s the best approach for supply-demand matching by which
customer demand can be shaped to improve utilisation factors and load balance. In addition,
DSM programs may defer capital investment in generation, transmission and distribution
networks and storage and improve system load.

The initial concepts of DSM were defined by (Gellings, 1985) and can be visualized in
Figure 2-10. The six mechanisms in Figure 2-10 can further be divided into three groups:
Load reduction (Peak clipping and strategic conservation), load increase (valley filling and
load growth) and Load shifting (Load shifting and flexible load shaping). Peak clipping

aims to reduce demand during peak hours. Utilities achieve this control by incentivising
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customers not to consume power during peak hours, directly controlling loads or setting
higher prices. The method is helpful in cases where there is no possibility of setting up or
installing new power plants. Valley filling focuses on raising usage during very low
electricity profile periods to balance demand and supply, avoiding generators' start-up and
ramp-up costs. Load growth is expected when using electric vehicles, where customers are
encouraged to increase usage up to a certain threshold for grid stability. Load shifting gives
consumers options to shift their usage pattern to off-peak hours based on cheap tariffs. It is
the combination of load clipping and valley filling. Flexible load shaping is when
consumers are flexible enough to shift their loads to different low-usage slots. Usually,
customers willing to participate are identified and incentivized for their participation.
Energy efficiency is when the overall load profile is lowered thought the day by using more
energy-efficient devices or through cyclic operation.
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Figure 2-10: Different demand-side management (DSM) techniques adapted from

(Lampropoulos, 2014).
2.3.2. Categories of Demand Side Management

DSM plays an essential role in power industry development and environmental protection
by bringing the following advantages to the market: promoting and restraining efficient
market operation and power; relieving demand congestion during peak hours; improving
the reliability of power system; alleviating investment pressure on power generation,
transmission, and distribution; and facilitate the creation of new prospects for realization
of energy conservation and reduction of emissions. DSM can be further categorised into
Demand Response and Energy Efficiency, Conservation, and Load Reduction (Figure
2-11).

21



Categories of DSM
l

v ) 4
Energy efficiency,
Demand Response Conservation, and Load
Reduction
Price based Incentive-based o
demand response demand response Energy efficiency
| schemes | scheme
e _ Energy
Criticial peak
p > Direct load control conservation
pricing (CPP)
= Load Shifting
=» Time of use (TOU) Load reduction
> Interruptible tariff
|, Real time pricing Emergency Investment
(RTP) > demand response behaviour
| programs
) ] Curtailment
Ancillary service behaviour
market programs

Capacity market
programs

Demand bidding
programs

Figure 2-11: Categories of demand side management (DSM) (Gyamfi et al., 2022)
2.3.2.1. Demand Response

Demand Response (DR) is a strategy that minimises high-energy demand by influencing
the consumption pattern of the end-users. DR is achieved by allowing consumers a more
significant role in shifting their demand for electricity during the peak demand period
(Gyamfi et al., 2022). DR strategies can be subdivided into price-based demand response
schemes, energy-saving behaviours, and incentive-based demand response schemes
(Figure 2-11).
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a) Price-based demand response schemes (PBDRS)

Critical Peak Pricing (CPP)
In this strategy, an extreme peak demand period is picked out, during which a
much higher electricity price per kWh is selected and designated as critical by
the utility providers (Figure 2-12). Furthermore, two or three averaged price
points are calculated to reflect different market conditions, and the consumer is
informed of the periods for specific critical hours or days. Three types of pricing
are usually considered: fixed-period critical peak pricing, variable critical peak
pricing, and variable-period essential peak pricing. In a fixed-period critical
peak pricing, a specific period during a day is selected, and a fixed high
electricity price is set. The application period is specified for variable critical
peak pricing, but the electricity price varies according to the current demand. In
a variable-period critical peak pricing, the application period is not fixed, and
the operation frequency and duration are limited. Utilities trigger the critical
peak pricing based on predefined criteria (Gyamfi et al., 2022).

Critical peak time
20
18
16
14

12
10

Peak time

Electricity price in p/kWh

~— Off-peak time

oON O

0 2 4 6 8 10 12 14 16 18 20 22 24

Time inh

Figure 2-12: Example of the profile showing the pricing of electricity at different usage

periods with high prices at peak hours (Li et al., 2017)

Time of Use (ToU)

In the time-of-use strategy, a utility rate per kWh of electricity is higher during
peak demand hours and lower during off-peak hours, which vary according to
the time of the day, seasons, and day type, reducing the overall cost for both the
utility and the consumers.

The prices differ in different time slots, with a flat fee applied to each slot. In
this strategy, customers tend to shift their demand to a lower price period
(Gyamfi et al., 2022).
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Real-Time Pricing (RTP)

In this strategy, the cost of power (per kWh) fluctuates frequently, usually by
hours, based on the real-time electricity production cost at the end of the
generation side (see Figure 2-13). Thus, retail electricity rates are higher during
peak times than shoulder and off-peak times. Real-time pricing delivers efficient
and effective utilization of power to adjust the power balance between supply
and demand. This scheme is more acceptable to the industrial and commercial
sectors than the residential ones. There are two main difficulties in applying for
this scheme. Firstly, it relies on continuous real-time data exchange, which is
unfavourable for customers. Secondly, large-scale data processing increases the

complexity of the whole system (Li et al., 2017).
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Figure 2-13: Example of a profile showing real-time pricing in 30 min steps (Li et al.,

2017)

b) Incentive-based demand response scheme (IBDRS)

Direct Load Control (DLC)

In this strategy, as per advanced agreement between customers and utilities, the
utilities can remotely control the operation of some equipment, such as air-
conditioning systems and water heaters, during specific hours of the day and
season. The notices for the procedure are typically announced a short time
ahead. To participate in this method, customers must be equipped with a remote-
control switch system so that utilities can reschedule, turn on, or turn off the
appliances. This is usually achieved by incentivising consumers to minimize
energy demand and stabilize the grid. The strategy is voluntary, and customers

are not penalized for not curtailing their loads. Direct load control is primarily
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Vi.

applied to the residential or small-scale commercial sectors (Gyamfi et al.,
2022).

Load Shifting

Load shifting is a technique in which load demand is shifted from peak to off-
peak hours, but the total consumption remains constant. Load shifting is
beneficial as electricity market prices are dynamic depending on demand. An
increase in total system demand increases the electricity bills and vice versa.
Thus, industries and commercial businesses can optimise electricity
consumption during night shifts when power demand is low relative to system
supply.

Interruptible Tariff

An interruptible tariff strategy is usually offered to residential and commercial
customers based on a contractual agreement between the utility and the
customer on the cost of electricity per unit. Consumers receive a rate or bill
discount for agreeing to reduce their consumption when the system is congested.
The energy consumed by the customer does not decrease but instead shifts to an
off-peak period. This helps stabilise the grid or handle an emergency
significantly when the demand is projected to increase. In this method, the
operation frequency and the duration are limited; thus, if a customer fails to
respond in the predefined period, they could receive a fine (Gyamfi et al., 2022).
Emergency Demand Response Programs (EDRP)

The strategy is a voluntary emergency program that gives customers an
incentive for a short-notice reduction in their energy consumption when there is
a shortfall in supply reserves. There is no penalty if customers do not respond
to curtail their loads (Li et al., 2017).

Ancillary Service Market Programs (ASMP)

Customers (usually independent system operators and regional transmission
organizations) can bid on load curtailment in the spot market for energy balance
maintenance, frequency and voltage regulation, voltage support, and constraint
management in ancillary services market programs. After bid acceptance, the
participating consumer is paid the market price for commitment (Li et al., 2017).
Capacity Market Program (CMP)

CMP strategy is where a customer receives a guaranteed payment for

committing to reducing consumption when there are contingencies in the
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Vii.

electric grid. These curtailments are treated as system capacity to replace the
conventional generation and delivery resources. By proving their ability to
curtail, customers can receive a reservation payment. And by providing the
reduction, customers can receive an incentive. In contrast to the Emergency
Demand Response Programs, customers can receive a penalty if they fail to
deliver it (Li et al., 2017).

Demand Bidding Programs (DBP)

In this strategy, consumers can bid on a specific load reduction based on their
situation and the wholesale market. In this arrangement, utilities announce the
total amount of electricity that must be curtailed based on the generation and
demand situation. The bid is accepted if it is less than the market price.
However, customers must curtail their loads by the amount specified in the
terms; otherwise, they become liable for penalties. This method is also suitable
for large-scale customers. Aggregators can integrate small-scale customers and
be involved as a unit (Li et al., 2017).

2.3.2.2. Energy efficiency, Conservation, and Load Reduction

On the other hand, energy efficiency consists of using less energy, which reduces total

energy consumption. This leads to reduced CO2 emissions and the cost of utility bills. This

category focuses on energy-saving behaviour or consumers’ energy-use behaviour change.

EE strategy requires little or no charge to implement and is divided into two, namely,

investment behaviour and curtailment behaviour. Investment behaviour involves using

monetary investment to improve energy-saving behaviour, while curtailment behaviour

strategy requires little or no financial investment toward energy-saving (Gyamfi et al.,

2022)

a) Energy Efficiency (EE)

b)

EE reduces the overall demand for electricity while maintaining the same amount

or quality of service output with less energy. For example, instead of lowering the

temperature of a conventional furnace, you can install an energy-efficient furnace

to keep your house at a specific temperature while consuming less energy than you

would with a conventional one.

Energy Conservation (EC)

EC refers to the overall reduction of energy consumption or demand for electricity

by adjusting behaviour. It involves a certain degree of sacrifice, such as using a
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clothes dryer less often, turning down the heat in winter, turning off appliances
when they are not in use, etc.
¢) Load Reduction

I. Investment behaviour
This strategy involves motivating customers to reduce their electricity
consumption by investing in compact fluorescent lamps and Light-emitting
diodes (LED) rather than incandescent bulbs (Li et al., 2017).

ii. Curtailment behaviour
In this strategy, customers are motivated to save energy by being involved in
user practices that promote load reduction, such as putting off electric loads that

are not in use (Gyamfi et al., 2022).

In recent years, more efforts have been dedicated to improving the energy efficiency of
home appliances worldwide (Sarfi et al., 2018). For major households in the developed
world, using energy-efficient appliances has been enhanced due to several factors. In
Canadian households’ regulatory efforts, the imposition of standards for household
appliances and technological advancement were considered critical factors. Research
conducted in the United States (Golden Carrot program) and the work of NUTEK in
Sweden show that energy labelling, procurement of energy-efficient appliances,
enforcement of minimum energy efficiency standards, voluntary agreements and demand
side management (DSM) are the reasons (Turiel, 1997). The last two methods contributed
to significant reductions in residential and commercial sector electricity demand,
highlighting the potential for reducing the number of new power plants through such

programs.
2.3.3. Demand Side Management Methods

Demand-side management is vital for achieving sustainability of microgrids as it facilitates
efficient use of resources and reduces electricity production waste and excessive storage
capacities. Different demand-side generation methods are available, which help enhance
microgrid stability and optimise renewable energy resources within the microgrid. The
DSM methods include the multi-objective optimization method, the linear matrix inequality

(LMI) approach, and the particle swarm method (Li et al., 2017).
2.3.3.1. Multi-objective Optimization Method
The multi-objective optimisation method considers several objectives and obtains an

optimised decision without favouring any intent. A multi-objective artificial immune
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system algorithm is used to find Pareto-optimal solutions. The multi-objective artificial
immune system algorithm uses gene operation to maintain diversity. A solution is Pareto-
dominated if other solutions can provide better performance for at least one objective
without hurting other goals. First, a group of solutions are generated based on the
predefined requirement. Then, the dominated solutions are gradually removed during the

iteration while the nondominated solutions remain (Li et al., 2017).

The method has been used in multiple microgrid projects for a market operator and
distribution network operator. Three participants are usually considered microgrids, a
power grid, and an independent system operator (i.e., 1SO). The power grid aims to
maximize the net gain (in terms of energy and money) for providing power to microgrids.
For microgrids, the aim is to maximize the net revenue for consuming power supplied by
the power grid. For the ISO, in an emergency, the storage must be maintained around a
standard level; the closer, the better. Therefore, the objective is to minimize the sum of

differences between the current status and the average level.

From the above problem, a specific solution that can maximize the minimum improvement
in all objectives is selected. Power demand is generally more significant than power
generation. Storage systems are used to supply the imbalance between the demand and
generation. An increase in renewable power generation can lead to a decrease in power
generation by diesel generators. This multi-objective optimization method can be applied
to other scenarios involving different objectives and constraints. Because this method is not
based on a specific model, it represents a framework for searching for Pareto-optimal

solutions to multi-objective problems.
2.3.3.2. Linear Matrix Inequality Method

The LMI approach has been used for many situations. Because of the convex property, the
associated problem can be solved efficiently (Li et al., 2017). It has been used to design a
storage system in intelligent grid networks (Li et al., 2017). The basic idea is to charge the
batteries when the utility electricity price is lower than the threshold and discharge the
batteries when the price is higher. Price signals, system uncertainties, and physical

constraints are three critical factors that must be considered in this design.

2.3.3.3. Artificial Neural Network (ANN)

Artificial neural networks are a technology based on studies of the brain and nervous system

simulating their electrical activity. The networks emulate a biological neural network
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associated with a signal-processing system and information consisting of many simple

processors called neurons (Walczak & Cerpa, 2003).

The neurons are interconnected by synapses, allowing distributed parallel processing to
learn and establish precise, complex relationships between various numeric variables
without imposing any preconceived model. ANNs are useful in systems where no
mathematical model is available. Furthermore, ANNs can create nonlinear and traditional
linear models, thus applicable across a broader range of problem types (both linear and

nonlinear) (Devi & Ayswarya, 2015).

2.3.3.4. Genetic Algorithm (GA)

A genetic algorithm (GA) developed by John Holland and his collaborators in the 1960s
and 1970s solves constrained and unconstrained optimisation problems based on Charles
Darwin’s theory of natural selection that mimics biological evolution (Yang, 2021).
Genetic Algorithm involves encrypting an optimisation function as arrays of bits
(mimicking chromosomes), manipulating strings by genetic operators, and selecting
according to fitness to find an optimal solution to the problem. These genetic operators
form an essential part of the genetic algorithm as a problem-solving strategy (Yang, 2021).

Genetic algorithms have several advantages over other optimisation algorithms. The two
most notable are the ability to deal with various optimisations despite the objective function
being stationary or non-stationary, linear or nonlinear, continuous or discontinuous, or with
random noise. The other advantage is the ability to explore the search space in many
directions simultaneously, making it ideal for parallelising the algorithms for
implementation. Different parameters and even different groups of encoded strings can be

manipulated at the same time.

2.3.3.5. Particle Swarm Optimisation (PSO) Method

The PSO method was introduced by James Kennedy and Russel C. Eberhart in 1995. It is
based on the swarm intelligence paradigm and is motivated by the social behaviour of
animals such as fish and birds, mimicking how they navigate or forage (Slowik, 2011).
Birds fly in one direction, searching for food; if one bird sees the food, all other birds will
follow in searching for the food. The swarm searches for food cooperatively, and each
member learns from the experience and changes the search pattern to locate food. Thus, the

best position is found when they move from one place to another.
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The PSO method works under two principles: communication and learning. This study
utilised the PSO as a demand-side management method to analyse the selected East African
microgrids. Three power sources were considered: solar PV, battery, and backup generator.
The aim was to minimize the conventional generator’s fuel cost through provisional
incentives. The basic idea is to encourage customers to cut-down loads or shift them from
peak to off-peak hours to avoid consuming too much generator fuel when PV and batteries
cannot cater for the peak load. The multi-objective function to be solved by the PSO

involves minimising generator fuel costs and maximising utility benefits.
2.3.4. Particle Swarm Optimisation

The PSO algorithm shares principles with a search algorithm, as a large population of
individuals (i.e., particles) aim to find the optimal solution in a given multi-dimensional
search space (Menos-aikateriniadis et al., 2022). The particles represent possible solutions,
and their location represents the value of the objective function that needs to be optimized
(Roy et al., 2019). An optimal result is identified when the particles continue searching
through hyperspace as they move towards a new location with an updated velocity (Egn
2-1). After each iteration, the velocities are stochastically updated based on the historical
optimal positions of individual particles and the historical global best position among all
particles (Egn 2-2). Figure 2-14 and Figure 2-15 describe the working mechanism and flow

chart of the particle swarm optimisation method, respectively.
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Figure 2-14: a) Representation of particle swarm optimization algorithm (PSO) working
mechanism b) Vectoral representation of particle movement in PSO method (own

representation ideas borrowed from (Mirjalili et al., 2020).

From the vectorial representation of PSO, new position and velocity can be calculated as;

xi(t + 1) = xi(t) + Ui(t + 1) Eqn 2-1
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vi(t +1) = w(t) + ¢ [pi(8) — x; ()] + c2[g () — x;:(¢)] Eqn 2-2

The standard PSO equations for updating the velocity can be written as follows:
vt + 1) = wo(6) + ric[pij(0) — x5 (O)] + 1202[g(1) — x;5(0)] Eqgn 2-3
xi(t+1) =x;(t) + vt + 1) Eqn 2-4

Where w and v are the inertia weight factors, r; and r, are random numbers uniformly

distributed in the range of 0 to 1, c¢; and c, are acceleration coefficient, j is the j

component.
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velocity vectors
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Figure 2-15: Flow chart of particle swarm optimization algorithm (PSO) (Roy et al., 2019)
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The detailed algorithm of the PSO method can be described as follows;

Step 1)

Step 2)

Step 3)
Step 4)
Step 5)
Step 6)

Step 7)
Step 8)

Step 9)

Step 10)
Step 11)
Step 12)
Step 13)
Step 14)
Step 15)
Step 16)
Step 17)
Step 18)
Step 19)
Step 20)

Step 21)
Step 22)
Step 23)

Input: A set of generation and load profiles, i.e., g, . and [, ; regarding

particle positions
Initialize the number of iterations and the number of population n.

Output: An optimal set of design variables in terms of the position of the
swarm

BEGIN ALGORITHM

[ #Start iteration #/

Forit=1,2, ..., ityax

/ *Generate random position of particles x;= [g te l; 1] as designed
variable #/

Forit=1,2, ..., itmax

For each particle, calculate the fitness. (Fitness refers to the objective
function that the algorithm is optimizing. It quantifies the quality of a
potential solution within the solution space. PSO uses fitness values to guide
their movement through the search space, aiming to find the optimal
solution)

A particle with the best fitness is considered as ppes:

If (current fitness > ppest)

Ppest = current fitness

else

Prese Will retain its value

End If

The particle’s overall previous best is known as g

If (current fitness > gy est)

IJpese= current fitness

else

Ipese Will retain its value

Update the velocity and position of particles using (12) and (13),
respectively.

End if

If (it>itmax)

go to Step 27
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Step 24) else

Step 25) goto step 8
Step 26) End If

Step 27) End For

Step 28) The individuals that generate the latest are the optimal design variables
Step 29) END ALGORITHM

2.34.1.

Particle Swarm Optimisation Methods

PSO is selected over other methods due to its low computational needs, near-optimal

solution identification, the small number of initialization parameters, and the lack of model

training prior to implementation (Roy et al., 2019). Various methods employed within PSO

are presented below.

a)
b)
c)
d)
€)
f)
9)
h)

2.34.2.

Canonical/traditional

Multi-objective PSO

Bi-level PSO (BLPSO),

Binary PSO,

Gradient-based PSO,

Modified PSO,

Quadratic BPSO,

Cooperative PSO, such as stochastic attraction-repulsion of diversity (SARD) and
stochastic repulsion,

Advantages of the Particle Swarm Optimisation Method

PSO has several advantages: it is a simple yet powerful algorithm, inexpensive in terms of

memory and speed, can be easily implemented using computer programming, does not

involve any probability distribution, and does not store any previous solution. PSO is the

most widely used method compared to other optimization methods and has the following

advantages;

a)
b)

c)
d)

Simple and easy to use,

Fast convergence and robustness, even in complex and highly constrained multi-
dimensional search spaces,

High applicability as it can be used in numerous optimization problems and
High adjustability as it can be easily hybridized and modified to fit the purpose of

each problem and improve its performance.
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2.3.4.3. Disadvantages of the Particle Swarm Optimisation Method
Some of the potential drawbacks that can be encountered while using PSO are;

a) Risk of suboptimal solutions (local optima) due to either the problem formulation
characteristics or a lack of diversity in particle movement that leads to premature
convergence,

b) There is no guarantee that PSO will reach the global optimum solution since there
is a risk of premature convergence to local optima and

c) Lack of interpretability given that the algorithm is not based on a strong

mathematical theoretical basis (i.e., lack of mathematical proof of convergence).

It is worth noting that poor PSO performance can result from problem formulation,

modelling inputs, and system constraints (Roy et al., 2019).
24. Summary

This chapter discussed the analysis and demand side management of East African rural

microgrids through optimisation and reduction of storage costs.

Africa has a natural advantage in benefitting from various renewable energy resources such
as solar, wind, biomass, and hydropower. Choosing the best energy source for rural
electrification in East Africa should consider available renewable resources in context with
the local conditions and needs. Generally, solar energy is often a suitable choice for
decentralized electrification in remote areas with limited infrastructure. One of the reliable
solutions for rural electrification employing solar energy is standalone power systems such

as microgrids.

Different microgrids are categorised depending on the generation capacity, applications,
system architecture, and customer type. The Microgrids face several challenges in their
installation and application, such as investment risks in developing the microgrid systems,
securing finance for microgrid projects, unaffordable installation costs and electricity bills
once operational, poor policies and unfriendly regulatory environment for investment,
tampering with the microgrid systems, power theft, theft of the microgrid systems elements,
and lack of prior demand data, especially in remote locations. These challenges affect
microgrids’ growth in East Africa. Lack of local technical skills challenges the maintenance

and operation of the system.

Efforts to curb these challenges and guarantee the sustainability of microgrids call for

energy management schemes that can mitigate risks and improve microgrids’ performance,
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such as demand side management (DSM). Demand-side management (DSM) is the
planning and implementation of energy conservation strategies that seek to manage
consumer demand for energy rather than supply it to produce desired changes in the utility’s

load shape.

Different demand-side generation methods were implemented to help enhance microgrid
stability and optimise renewable energy resources within the microgrid. However, not
much attention was paid to the combination of classification and prioritisation of consumer
demand, assessing their correlation, predicting their future demand, and studying their
energy input and output to select proper demand-side management strategies while
reducing the cost of storage. This study aims to find the best practice of a solar microgrid
in East Africa through demand-side management, customer classification, and
prioritisation. Thus, the above aspects provided the basis for further investigation, the
details of which are presented in Chapter Three (3).
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CHAPTER THREE

3. Methodology

3.1. Introduction

This chapter presented the methodology utilised in the research to achieve the general and

specific objectives. Figure 3-1 presents the summary used.

e ™

Analysis and Demand Side Management of East African Rural
Microgrids: Modelling and Experimental study

Site selection

4

Data collection

‘ Technical Data Analysis ‘

I
v v

Modelling and Simulation Practical Case Study

(Mpale & Bunjako microgrids) (Lwak microgrid)

"

Results and Discussions ‘

Conclusions & Recommendations ‘

Figure 3-1: Flow chart of the step-by-step activities involved in the modelling and
experimental methodology.
3.2.  Site Selection and Data Collection

The study data was collected from three selected microgrids: Mpale, Lwak, and Bunjako
microgrids in Tanzania, Kenya, and Uganda, respectively. Lwak microgrid was a new
microgrid installed in July 2023, operated by ART-D Grids, and selected as a practical case

study. Figure 3-2 presents the geographical location of the selected microgrids.
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Figure 3-2: Map showing the locations of the selected microgrids (Google Earth, 2023).
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Table 3-1: Specifications and ratings of installed photovoltaic (PV) system for Mpale, Bunjako, and Lwak microgrids

Synchronous Generator)

Name Unit Specification
Microgrids Mpale Bunjako 35kW Lwak Convent

PV __generator (number of
modules, type)
Manufacture country AMERISOLAR (China) Jinko Solar China
Model Name AS-6P30-250 W JKM375M-72-V JA Solar modules
Type Polycrystalline silicon Polycrystalline silicon Monocrystalline Silicon
Maximum power rating W, 250 400 415
Module efficiency % 15.37 19.33 20.7
Number of modules 192 96 30
Battery
Manufacturer Country SUNLIGHT (Greece) Hoppecke OPzV Sun/Power Hoppecke / Germany
Model name 2 V-14 RES OPzS 2765 VR L 2-1700 Sun/Power VR M 12-105
Battery type Lead-acid battery Lead-acid battery Lead-acid battery
Nominal Capacity (1 cell) Ah 2769 1545 87 Ah C10 /101 Ah Cioo
Nominal cell Voltage (1 cell) \Y 1.85 2 2.25
Number of battery cells 48 48 36
Total storage capacity kWh 246 148.32 36
Diesel Generator (AC kVA MJB 200 SB4 None (Cummins 40 kW generator)
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3.2.1. Site Selection
3.2.1.1. Mpale microgrid

Mpale microgrid is located in Mpale ward, Korogwe district, Tanga region in Tanzania
(Figure 3-3). Geographical coordinates of the Mpale microgrid are given as -4°59°58.2"'S
38°28°4.44"E (-4.9995°,38.4679°). The microgrid is supplied only with solar energy and
has battery storage. A diesel generator is available and switched on to charge the battery
whenever there is an insufficient PV supply. The microgrid serves a community of about

700 inhabitants. The specifications and ratings of the installed PV system configurations

are depicted in Table 3-1.

Figure 3-3: Location of the Mpale Microgrid at Korogwe district in Tanga region,
Tanzania (-4°59'58.2"S 38°28 '4.44"E (-4.9995°,38.4679°))

The microgrid was selected as a case study due to its customer variety, the magnitude of
data (about three years of data in-store), which proved to be essential for the research, the
nature of the demand, which fluctuates frequently, underutilisation of the grid, reports on
blackouts assumed due to transients and reactive power, low generation during the rainy
season prompting the use of an expensive backup generator, and non-agreeable tariff
structure used.

Mpale microgrid offered several advantages: real-time data availability, plugging demand
and weather instruments for measurements, and permission to interview connected
customers. However, due to having many connected customers, accessibility to all
appliances proved to be challenging.
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3.2.1.2. Bunjako Microgrid

Bunjako microgrid is located on Bunjako island, Central region of Uganda (0°0°10" N,
32°8’4" E). The microgrid is an isolated microgrid supplied with solar PV coupled with
battery storage.

The microgrids are in the form of containerized off-grid Remote Power Units (RPU),
aiming to provide power and communications to schools, clinics, retail and commercial
customers, and communities. The RPUs are designed to supply base load power ranging
from 1 — 5 kW and peak loads from 6 up to 24 kW for 24 hours. Several versions of the
RPUs are designed based on the solution’s real customer needs and scalability. Currently,
up to 3 versions of the RPU have been developed (Table 3-2).

Bunjako microgrid has a total installed capacity of 114 kW with an inverter size of 174 kW
and was aimed to power four (4) of eight villages on the island, targeting 500 connections.
The specifications and ratings of the installed PV system configurations are depicted in
Table 3-1.

Table 3-2: Details of the Bunjako Remote Power Units (RPU) with their number of
photovoltaic modules, capacity, storage, and energy supplied

RPU No. PV Nominal DC Energy supplied  Battery pack
version modules capacity (kW) (kwWh/day) (kWh)
RPU 7 24 7.92 34 32.7
RPU 17 54 17.82 76 74.2
RPU 30 96 31.68 135 148.3

3.2.1.3. Lwak Microgrid

Lwak microgrid is located in a convent at Siaya county in western Kenya at coordinates
0°8.4 S, 34°21.4E (Latitude: -0.1424748530737744; Longitude: 34.35782880740559)
(Figure 3-4). The specifications and ratings of the installed PV system configurations are
depicted in Table 3-1.
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Figure 3-4: Location of Lwak centre showing all the Lwak community composing of the

convent, hospital, schools and staff quarters (Google Earth, 2023).
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Figure 3-5: Site plan of Lwak convent where the Lwak microgrid has been installed
(Google Earth, 2023).
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Table 3-3: List of appliances used in Lwak convent with power ratings and usage hours in a day (Acronyms B, E, and P represent Bethany,

Emmaus, and Postulants houses, respectively)

S/N HOUSES BETHANY EMMAUS POSTULANTS CHAPEL | TOTAL | Hrs/day | RATING (W)
LIGHTS
Fluorescent Light 6
1 30 12 8 32 82 36-40W
(Long)
Fluorescent Light 6
2 56 20 13 - 89 18-20W
(Short)
3 | Globe light 25 2 8 (2 in use) - 27 2 5-15W
4 | Fluorescent bulbs 3 2 — 6 11 8 30 -40W
Energy server 8
5 ) ) 1 2 2 - 5 7W
lights (coils)
6 | Security lights 1 - - - 1 8 10-100 W
COOLING/FREEZING APPLIANCES
6 _
) Fridge 2 Fridge 4 Fridge 6
1 | Fridges ) ) - 3 E80OW
(Toshiba GR-EF 3) | (Haier HRF-3674) | (Goldstar GR-312S)
P120 W
6 B 106 W
Freezer 1 Freezer 5
2 | Freezers Freezer 7 — 3 E210 W
(Bruhm BCF- 398S) | (ArmCoAF-C38S)
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SIN HOUSES BETHANY EMMAUS POSTULANTS CHAPEL | TOTAL | Hrs/day | RATING (W)
Freezer 8 6
Freezer 3 B 94 W
- (Bruhm BCF- - 2
(HTCF208A2) E 106 W
398SD)
OTHER APPLIANCES
1 | Kettles — 1 — - 1 1 2200 W
2 Irons 6 - 3 - 9 0.5 B 1000 W
) 4 B 530 W
3 | Water Dispenser 1 2 — — 3
E 635 W
4 | Laptops 8 — — — 8 5 50-150 W
5 | Desktops - - 2 - 2 6 150 — 300 W
6 | Televisions 1 2 1 - 4 4 40w
7 | Decoders — — 1 - 1 3 50 W
8 | Blenders - 1 — - 1 0.5 300 -700 W
2 B 1700 W
9 | Water Pumps 2 1 1 - 4
E&P 1210 W
10 | Printer — — 2 — 2 2 —

The appliances’ features (power ratings and usage time) were recorded per observation, and questionnaires were conducted at the site. The actual

power consumption of targeted appliances (i.e., cooling appliances) was measured at the site and detailed in Chapter 3.6.
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3.2.2. Data Acquisition

Two types of data were collected: primary and secondary. The primary data were
qualitative data obtained via semi-structured interviews among electricity users, mini-grid
operators, and local leaders. Secondary data, such as solar irradiance, demand data, and
energy consumption, were collected from quantitative data to optimise microgrid

performance.
3.2.2.1. Primary Data Collection

Mpale Village is divided into three localities, and qualitative data collection was done to
capture a representation of all three divisions of the village (Figure 3-6). 75 interviews were
conducted with 45 households, 18 businesses, eight (8) local leaders, and two (2)
institutions (secondary school and dispensary).

Division 1

Division 2 Diyision 8

s \Gooale

Figure 3-6: Mpale microgrid divisions of customers for qualitative data collection
3.2.2.2. Secondary Data Collection

The data acquisition process in the microgrids involved collecting and recording data
related to solar generation, storage, and consumption (i.e., data from solar panels, batteries,
inverters, and connected loads). The aim was to gather data on factors such as solar
irradiance, battery state of charge, and energy consumption.

The recorded data was vital as it is crucial for optimizing the microgrid’s performance,
managing demand and supply, and ensuring microgrid efficiency and reliability.

Furthermore, data collection enabled real-time monitoring and control, which helped make

44



informed decisions for sustainable and cost-effective energy management. The following

tools were used in data collection.
a) MAVOWATT 270 Power Quality Analyser

MAVOWATT is a series of GOSSEN METRAWATT, a portable, hand-held, eight-
channel power quality meter/monitor with a high-speed sampling board for capturing
the details of high-speed transients. The MAVOWATT can simultaneously monitor,
record, and display data on four voltage and current channels. It displays captured
information in either graphic or textual form, including events and trends, voltage
compliance and mini-reports. These include trended data and events generated from

user-programmed triggers or thresholds.

Power quality and Energy information that can be generated and reported by
MAVOWATT include voltage and current (rms, transients, sags, swells, unbalance,
DC), flicker (voltage THD, current THD, short term, long term), frequency, phase,
harmonics, power (active, reactive, apparent); power factor (true, displacement); energy
(W-hrs, VA-hrs, var-hrs); demand (current, active power, apparent power, reactive
power), predicted demand, peak demand (daily, weekly, monthly). It is a high-precision
power quality and energy analyser with an impressive RMS accuracy of £ 0.1 % of
reading = 0.05 % of full-scale over 15 KHz bandwidth. + 0.1 % of Reading for V > 60
Vrms, RMS Variations Accuracy: + 0.2 % of reading (rdg). Transient Input Range: 50 -
2000 Vpeak Transient Accuracy: = 10 % of rdg, + 0.5 % Full Scale for Pulse widths >
10 puS. Frequency accuracy: + 10 mHz of rdg. The recommended calibration interval for

this unit is once every 12 months (Tiffany Sue Burgess, 2015).

b) Pyranometer/Irradiance sensor

A pyranometer is a solar irradiance sensor that measures solar radiation flux density
(W/m2) on a planar surface. It provides high-quality data for feasibility studies and
monitoring the photovoltaic performance of established solar projects. This work uses a
SPL.ite2 silicon pyranometer for solar radiation measurement. It creates a voltage output
proportional to the incoming radiation that is done by a photodiode detector. It is
uniquely designed so that its sensitivity is proportional to the cosine of the incoming
radiation’s angle of incidence, hence accurate and consistent measurements. The
accuracy of the bubble level is less than 0.2°.

¢) Temperature sensors
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For temperature measurements, the SDL400 light meter or datalogger was used. It
records data on an SD card in Excel format. The maximum range it can record is 10,000
Fc or 100 kLux. This was the limitation of the instruments as it was clipping the
measurements above the maximum range. It utilizes a precision silicon photo diode and
spectral response filter. Offset adjustment is used for zero function to make relative
measurements adjustable data sampling rate. The meter can store 99 readings manually
and 20 million readings via a 2 Gigabyte SD card. Table 3-4 shows details of the meter

specifications, ranges, resolution, and accuracy.

Table 3-4: Specifications, ranges, resolution, and basic accuracy of temperature sensor
SDL400 light meter

Specifications Range Resolution Basic Accuracy
Fc Range 200, 2000, 10 kFc 0.1Fc + 4 %rdg
Lux Range 2000, 20 k, 100 kLux 1 Lux + 4 %rdg
Type K -148 to 2372°F (-100 to

0.1° + (0.4 % +1.8°F/1°C)
Temperature 1300°C)
Type J -148 to 2192°F (-100 to

0.1° + (0.4 % + 1.8°F/1°C)
Temperature 1200°C)

d) Measurement setup

The microgrids taken as case studies are equipped with display, datalogger, monitoring
and communication functionality. It has an Xtender system and a Remote control and
programming unit (RCC) for configuration, display, and data logging. The remote
control RCC-02/-03 offers a function that allows the system to record many electrical
values over a long time. With this function, you can, for instance, follow the energy
consumption and the battery voltage or see the power cuts, the state of the auxiliary
relays, the input currents and voltages, the output powers, etc. The above configuration
records all PV, battery, inverter, and load data. The data logging is done on the SD card
at a 1-minute resolution.

Irradiation data was recorded at the site using an irradiation sensor (pyranometer) with
a resolution of 10 seconds. The irradiation measured is the in-plane global irradiance
since the pyranometer is placed on the module plane.

A temperature sensor was installed to record the panel’s temperature (Figure 3-7).
MAVOWATT 270® power quality analyser was also installed to measure different

power quality parameters of the microgrid (Figure 3-8).
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Figure 3-7: The solar irradiance and temperature sensors installed on the plane of the

module in the Mpale microgrid (Inclination of 10° facing North-South direction)

Figure 3-8: Power Quality measurement and recording setup using MAVOWATT 270

Power Quality analyser in Mpale microgrid
e) Measurement Setup: Lwak microgrid

Lwak microgrid comprises three convent houses and a chapel. Since measurements were
taken on cooling appliances, only the chapel houses were prioritised as the chapel does
not have cooling appliances. Houses Bethany and Postulants have two chest freezers and

one fridge freezer. House Emmaus has one chest freezer and one fridge-freezer.

Apparatus and platforms used for measurement employed the Internet of Things (loT),
which was used to achieve temperature control for fridges and freezers and intelligent

automation. This work uses a comprehensive technology stack to create a control and
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monitoring system. Figure 3-10 presents an overall set-up of the 10T communication

used in the Lwak microgrid.

Vi.

Docker serves as our containerization platform, ensuring consistent deployment
across various environments. It uses containerization technology to package an

application and its dependencies into a standardized unit called a "container."

Ii. Node-RED is a flow-based development platform which provides a user-friendly

interface for creating automation flows. Leveraging its visual programming
capabilities on an IoT lies in the users’ ability to utilize its flow editor without
extensive coding. Node-RED facilitates intuitive flow-based development, enhancing
the efficiency of the system’s design. It also supports MQTT and is commonly used

in 10T applications for device-to-device communication.

MQTT, or Message Queuing Telemetry Transport, is a server that receives and
routes messages to the desired clients. It was employed for seamless communication.
MQTT serves as a lightweight messaging protocol to facilitate communication
between devices. It works as a publish-subscribe messaging protocol for the IoT,
where Publishers send messages (publish) to specific topics, and subscribers receive
messages from topics of interest. Mosquitto, as the MQTT broker, enables real-time
data exchange and collaboration between components. The primary function of
Eclipse Mosquitto is to facilitate communication between publishers and subscribers,
essentially serving as a communication channel. MQTT enabled communication and
data recording between shelly devices. A flow was created which receives MQTT
messages from a Shelly device, processes the message, and sends control messages
back to the device using MQTT.

The influxDB database stores time-series data generated over time, offering optimal

efficiency for the project’s requirements.

The study utilized Grafana to visualise data, providing insightful dashboards and
analytics. The synergy of Docker, Node-RED, MQTT, Mosquitto, InfluxDB, and
Grafana forms the system's backbone, ensuring a cohesive and efficient architecture

for the intended application.

Shelly Devices known for their compact design and versatility, offer seamless
integration with household appliances. By incorporating Shelly temperature sensors

and smart switches into the fridge ecosystem, users gain real-time insights into
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internal temperatures and the ability to control the appliance remotely.

Implementation Steps

» Shelly smart sockets, together with their temperature sensor add-ons, were
installed. Shelly temperature sensors were placed inside the fridge, connecting
smart switches to control power.

* Node-RED Installation was done on a Raspberry Pi 4 as part of other docker
elements like influxDB, graphana and mosquito.

* Node-RED Configuration: a flow within Node-RED was designed to monitor
temperature data from shelly smart sockets (shelly plus 1 pm) Shelly sensors. The
node-red flows are shown in the figure.

» Temperature Thresholds: Upper and lower temperature thresholds were defined
according to the maximum and minimum temperatures a fridge or freezer is
designed for. The specified temperature thresholds within the Node-RED flow aid
in triggering actions.

« Automation Logic: an automatic control logic was created within Node-RED to
switch OFF the fridge/freezer if it falls below the lower threshold temperatures

and switch it back on when it exceeds the upper threshold.

This setup allows the development of a user interface within Node-RED or a separate
application to enable users to customize temperature settings and view real-time data.
Precise temperature control offers energy efficiency by ensuring optimal energy
consumption, contributing to overall household energy efficiency. Users can remotely
monitor and adjust fridge temperatures, providing flexibility and convenience. Also,
customization allows users to set personalized temperature thresholds that align with

specific storage needs.

By combining the capabilities of Shelly devices and Node-RED, this approach
empowers users to take control of their fridge’s temperature dynamics, fostering a more

energy-efficient and tailored approach to appliance management.

The cooling appliances had 16 A, 110-240V AC smart sockets (shelly plus 1PMs) for
power consumption measurement, monitoring, and control (Figure 3-9). The smart
sockets can connect directly with temperature and humidity sensors, thus giving the
advantage of monitoring other parameters simultaneously. Despite having several
temperature and humidity add-ons, this study used a temperature sensor DS18B20 to

monitor/measure the fridge/freezer’s internal temperature.
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Fridge/Freezers

SI0SuU3s aJnjesadwa]

Shelly plus 1PM devices

Figure 3-9: Measurement setup for demand and temperature measurement at Lwak

microgrid

=3

[
|
‘.\ Shelly plus 1PM

o

Figure 3-10: Setup of the Internet of Things (IoT) communication system for data

capturing, monitoring and control at Lwak microgrid

A local network connection is essential for efficient communication in the IoT setup.
Shelly devices, typically 10T devices, are designed for home automation and connect to
local networks via Wi-Fi or Ethernet. The devices are then communicated with a router that
acts as an internet gateway. Node-RED, a flow-based development tool, is often deployed

on a local server within the network. It is an intermediary between the Shelly devices and
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external services or applications. The local network connection facilitates seamless data
exchange between these components, ensuring low latency, enhanced security, and reliable
communication. Users can efficiently control and automate their Shelly devices by
leveraging the local network. Figure 3-11 shows the overall local network for the setup at
Lwak.

Gl raspberrypi

DESKTOP-16RBAL3

FRITZ!Box 4060

P add sREEREES

fritz.box 1 - Bethany

8 s Fridge 2 ART-D 07
@ freezer room 118 Mbi

oo o7 wmbi/. Freezer 3ART-D 02

Freezer 1 ART-D 08
HOME NETWORK

fritz.box 4 - Postulants

netwak @ Dining
P add

FRITZ!Box 4060

P addre srestEres

Fridge 4 ART-D 03

N “"_ Fridge 6 ART-D 11

FRETHTIES

~ Fridge 6 ART-D 11
Freezer 7 ART-D 14
Freezer 5 ART-D 06

"' Freezer 8 ART-D 10

hj fritz.box 2 - Bethany Dining
|

¥ idr ERETEERES
&I 1B

HOME NETWORK

netwak

Figure 3-11: Overall local network connecting routers and smart sockets placed at the

cooling appliances at Lwak microgrid for data acquisition and control Lwak microgrid
3.2.3. Data Pre-processing and Management

There is a high possibility of missing essential demand data from the measured data due to
measurement, sensing errors, and communication failures. Predicting and reconstructing
the data requires investigating correlation models among estimated data to recover the
missing data. Generally, investigation of the correlation between different data, for
example, voltage and power for houses connected to the same transformer, individual
homes’ voltage and frequency, and spatial and temporal power consumption for different
places, proved effective in reconstructing and predicting missing and future data,
respectively. Predicting future data is essential for real-time control and management
(Huang & Zhu, 2016).
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The usage pattern of all the connected customers in the microgrids will be identified to
assess the current load profile of microgrids and their generation capacity. The household
questionnaire analysis and field power measurement will determine the customer load
characteristics. The effect of seasons, temperature and other demographic factors on
customer power consumption will be investigated. The critical electric appliances, their
usage period and seasonality will be identified. Customers will be grouped according to

their usage from the meter data.

Both long-term and short-term load behaviour must be understood to design a financially
stable microgrid. Long-term behaviour influences capacity expansion strategies, and short-
term behaviour affects technology implementation and choice of energy sources. Figure

3-12 explains the step-by-step process of achieving load profile analysis.

Define study population 1

!

Stratification ‘

Questionnaire design installments (MAVOWATT)

| 1

Identify electricity appliances and Demand data collection from ‘

Test sample design and meter ‘

usage patterns smart meters

y N

»

Load patterns derivation from each
customer

\

Load profile analysis

Figure 3-12: Step-by-step process in achieving load profile analysis (Huang & Zhu, 2016)
3.3.  Technical Data Analysis

Technical data analysis presents the secondary data collected in Mpale, Bunjako, and Lwak

microgrids prior to modelling and simulation.
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3.3.1. Mpale Microgrid Data
3.3.1.1. Weather Data

Figure 3-13 shows the graph of measured global solar irradiance in the plane of modules
from 10" May 2022 to 12" December 2022. The data were measured at intervals of 10
seconds. The measurements show that the maximum possible irradiance during that time
interval is 1464.8 W/m? and the minimum is -0.4 W/m? with an average of 165.89 W/m?2,
The irradiance values of the location show excellent potential for solar power production
since the maximum is even more than the standard 1000 W/m?. Table 3-5 shows that 25%
of the data falls below 0.2 W/m?, 50% falls below 2.5 W/m?, and 75% falls below 237
W/m?. The vast difference between the 25" and 75" percentile shows considerable

variability in irradiance data, as shown in Figure 3-13.
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Figure 3-13: Daily global solar irradiance in the plane of modules from 10" May 2022 to
12" December 2022 (measured by a calibrated pyranometer)

Table 3-5: Statistical summary of the measured irradiance data from 10" May 2022 to 12
December 2022

Parameter Irradiance quantity (W/m?)
Count 1.84x10%
Mean 166
Standard deviation 273
Minimum 0.0
25% (1% Quartile) 0.2
50% (2" Quiartile) 2.8
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Parameter Irradiance quantity (W/m?)
75% (3" Quartile) 238
Maximum 1460

Figure 3-14 shows a plot of hourly global solar irradiance with a dotted line representing
the mean. The irradiance values peak around noon due to the fact that at solar noon, the sun
is at its highest point, giving more direct sunlight on the surface of the earth and, hence,
maximizing the solar irradiance received. There are lower irradiance values in the morning
and evening hours since the sun’s angle decreases, leading to a longer path for the sunlight
to travel in the atmosphere. Figure 3-15 shows the same measured daily solar irradiance
with a confidence interval band to convey the estimated value, in this case, the mean, and
the level of uncertainty associated with it to understand the reliability of the data. The

confidence band is narrow, indicating a more precise estimate.
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Figure 3-14: Hourly global solar irradiance in the plane of modules from 10" May 2022
to 12" December 2022 (measured by a calibrated pyranometer with their mean

representation in blue colour)
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Figure 3-15: Hourly global solar irradiance in the plane of modules from 10" May 2022
to 12" December 2022 (measured by a calibrated pyranometer with a 95% confidence band

with dashed lines representing the mean values)

Figure 3-16 and Figure 3-17 show the daily irradiance profile of the location as downloaded
from the NASA website. The data trend looks similar, however, there are some differences
which might be due to measurements location since the satellite data from NASA are based
on satellite observations rather than ground-based measurements. Usually, the data derived
from various NASA satellite missions are combined with weather models to provide global
coverage and comprehensive datasets. Also, the location matters since on-site measurement
might differ from satellite measurement as on-site measurements capture the temporal

variabilities that are present. Resolution of measurement could be another reason.
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Figure 3-16: Hourly global solar irradiance NASA satellite data from 10 May 2022 to 12
December 2022 with mean representation in blue colour (NASA, 2023)
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Figure 3-17: Hourly global solar irradiance NASA satellite data from 10 May 2022 to 12
December 2022 with a 95% confidence band (NASA, 2023)

Load demand relates to weather data such as temperature, wind speed, relative humidity,

and cloud cover. These factors are vital in load forecasting and management. Temperature

and relative humidity primarily affect demand during moderate weather. Load demand

varies non-linearly with temperature, so load demand increases as the temperature reaches

extreme points (high/low) (Aboul-Magd & Ahmed, 2001). Figure 3-18 compares irradiance

data measured with a pyranometer and NASA satellite data from the 10" of May 2022 to
the 12" of December 2022.
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Figure 3-18: Comparison between hourly average NASA satellite data and irradiance

measured by a pyranometer from the 10" of May 2022 to the 12" of December 2022
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Figure 3-19: Solar photovoltaic power output (kW) from January 2019 to July 2022
(measured and recorded by the solar system data manager in 1 — min intervals)
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Figure 3-20: Hourly solar photovoltaic power output (kW) from January 2019 to July 2022
sampled from the 1-minutes interval solar power output (with their mean representation
in blue)
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Figure 3-21: Hourly solar photovoltaic power output (kW) from January 2019 to July 2022

sampled from the 1 — min interval solar power output (with 95% confidence band)

Figure 3-19 shows the solar power output in kW measured from January 2019 to July 2022,
while Figure 3-20 and Figure 3-21 show their sampled hourly solar power output without
and with a confidence interval band, respectively. From Figure 3-20, the solar production
of individual daily plots peaked at different times and values due to seasonal effects and
the nature of the irradiation during the day. The maximum solar production on a typical day
was around 11 am. The mean solar power output peaked at around 10 — 11 am, declining

during waning hours and without irradiance.

Solar power output is calculated from the irradiation falling in a given square meter area,
and its wattage value is provided by;

Py =A Xr XI X PR Eqgn 3-1
Where;

A = total area in meters squared of the solar panel (for Mpale microgrid area, the
total area is 900 m?),

r = percentage solar panel yield efficiency (i.e., 20.4%),
| = solar irradiance (in W/m?), and
PR = performance ratio (0.75, default value) (Khalid et al., 2016).

The calculation compares expected and actual power generated from the analysis. Desired
power is calculated using the actual irradiation falling on the panel on the basis that the
solar panel converts all irradiation. Figure 3-22 shows the comparison between actual and
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expected solar power generated. The actual solar power generated does not match the

expected power attributed to solar panel efficiency, orientation, tracking system, and other

weather-affecting parameters like temperature, wind, and cloud cover.
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Figure 3-22: Comparison between actual and expected average hourly solar photovoltaic
power output (kW) from January 2019 to July 2022

3.3.1.2. Historical Demand Data

Table 3-6: Historical Demand Data for Mpale Microgrid over the five years showing their

monthly mean, standard deviation, minimum and maximum values

Solar Power Generated (kWh/m? per day)

Months Mean Minimum Maximum Standard deviation
January 2.95 2.09 3.69 0.81
February 3.03 2.13 3.68 0.77
March 3.28 211 4.37 1.03
April 2.41 0.57 3.77 1.41
May 2.51 0.43 3.79 1.57
June 2.24 0.32 3.78 1.50
July 2.73 0.32 4.66 1.65
August 2.39 0.47 4.20 1.47
September 2.20 0.78 3.80 1.13
October 2.90 1.82 4.67 1.16
November 2.69 1.96 3.81 0.87
December 2.45 1.55 3.76 1.01
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3.3.1.3. Yearly Solar Power Generation
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Figure 3-23: Monthly solar power generated for five years with some months ’ data missing
(2018 only December data, 2019: January -November 2020: January — August 2021:
January — September 2022: January — March)

Figure 3-23 shows the seasonal solar power produced from 2018 to 2022. An empty field
means no data for such month in the respective year. Mpale microgrid experiences a rainy
season from April to June, hence low power production. January to March is Tanga’s
hottest season, with the highest solar power production. They usually have spring seasons

around September to December.

Figure 3-24 and Figure 3-25 show the cartesian and polar coordinates of the sun’s position
at Mpale village, respectively. The sun’s position in a particular place is best described by
its vertical angle (altitude) and horizontal angle (azimuth). These angles change throughout
the day due to seasons and the earth’s rotation. The azimuth angle, which indicates the
sun’s direction relative to the observer, is essential as it helps to know where solar panels
should be positioned to receive maximum sunlight. For the Mpale location, with an azimuth
angle of 71.02°, it suggests that the sun is slightly East of due North. The elevation angle
(the angle between the horizon and the sun) measures or indicates how high the sun is in
the sky. A higher elevation angle means the sun is more directly overhead; hence, solar
panels should be placed to match that angle for optimal energy capture. An elevation angle
of 41.44° observed at Mpale village signifies that the sun is relatively high in the sky,
decreasing the sun’s path through the atmosphere and allowing more direct sunlight to
reach the solar panels with little scattering. Based on the angles, Mpale is a good location
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for solar production if the panels are well placed to capture enough sunlight (slightly to the

right of the north and with a tilt angle close to its latitude).
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Figure 3-24: Cartesian coordinate chart representation of the Sun’s position over Mpale
(-4.9995°, 38.4679) microgrid in Tanzania (SunEarthTools, 2023)
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Figure 3-25: Polar coordinate chart representation of the Sun’s position over Mpale (-

4.9995°, 38.4679) microgrid in Tanzania (SunEarthTools, 2023)
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Figure 3-26 shows the variation of irradiance values sampled at 10-minutes, 20-minutes,
and 1-hour intervals, illustrating the irradiance trend expected at Mpale village. The
differences between sampling rates are due to data resolution, averaging effect, and
sampling frequency. The 20-minute and 1-hour intervals represent averages over long
periods compared to the 10-minute interval, which provides a general view by smoothing

the short-term variations.
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Figure 3-26: Variations of minute and hourly mean values of global irradiance for the

measured data at Mpale microgrid from 16" May 2022 to 16" December 2022
3.3.1.4. Demand

The Mpale Microgrid system has four (4) inverters (two inverters share the load in phase
two). From the type of data provided, as attached in the appendix, phase 2 is L2-2 plus L2-
3. S0, 1,2,3 are phases and 1,2,3,4 are inverters.

Figure 3-27 shows the average summation of total power consumed from 2018 to 2022. It
is worth noting that the Mpale microgrid was constructed in 2016, commissioned in 2017,
and data recording commenced in December 2018. It is clearly shown that there is a
significant increase in energy usage each year. This can be attributed to buying new
electrical appliances, new customers, and even starting new businesses due to electricity
access. The increase will create significant demand in the future, so taking immediate

measures to control the rise in demand is essential. This was validated by the survey
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questionnaires, where the main load when the grid started was only lights and phones, but

people kept adding more appliances.
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Figure 3-27: Total average yearly electricity consumption for the years 2018-2022 at

Mpale microgrid showing a trend of annual demand growth

The four-year demand profile was prepared and sampled to a daily hourly profile (Figure
3-28). Peak load behaviour showed a typical load profile of households in the village with

demands in the evening hours.
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Figure 3-28: Maximum power consumed in the three phases and their total power
averaged from January 2019 to July 2022 sampled from the 1 — min interval power data
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The demand profile shows a spike in power consumption between 0500 and 0700,
indicating that most inhabitants’ activities were before work or school. Typically, from
hours 7 to 18 on weekdays, less power was observed as inhabitants were involved in
activities such as farming, which did not consume considerable power. From 1800 to 2200
hours, a spike in power consumption indicated that most inhabitants were back home
performing activities that consume power, such as cooking and watching TV. The pie chart
(Figure 3-29) represents the percentage of average power consumption for different days
of the week, with Sunday being the highest in electric power consumption. The variations
can be attributed to more people spending their time at home and using more power from

staying at home.
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Figure 3-29: Pie plot showing weekday and weekend demand of the percentage energy

consumed at Mpale microgrid

Figure 3-30 and Figure 3-31 show a plot of battery SOC and temperature. The plot shows
that the battery SOC drops below 50% during morning hours due to higher power
consumption. Also, the trend of decreasing SOC is observed in the evening hours. There is
charging of the battery when the sun is available, meaning that at some point when there is
not enough sunlight, batteries are not fully charged; hence, it brings us to the same
importance of DSM. Also, Figure 3-31 shows the variation of battery temperature as the

activity of the battery changes.
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Figure 3-30: Hourly Battery State of Charge (SOC) from January 2019 to July 2022
sampled from the 1-minutes interval battery state of charge data (with their mean
representation in blue)
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Figure 3-31: Hourly Battery temperature from January 2019 to July 2022 sampled from

the 1-minutes battery temperature data (with their mean representation in blue)

Figure 3-32 shows the comparison of solar power produced and electricity usage. There is
no proper correlation since people consume more when there is insufficient sunlight
(morning and evening). Also, it should be noted that much power is wasted if it has already
been used to charge the batteries. The idea of DSM through load shifting could make more
sense in this way. Also, alternative storage, like electric vehicles, could help avoid power
wastage.
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Figure 3-32: Comparisons between average solar photovoltaic power generated and total
energy consumed from January 2019 to July 2022 sampled from the 1-minutes solar power

and demand data

The generated solar power differs from the irradiation, possibly due to panel orientation,
which prevents solar panels from capturing maximum sunlight. When solar panels are not
correctly oriented, they can capture sunlight intensity earlier in the day than expected. Also,
even a small amount of shading from nearby objects like buildings or trees could reduce

solar output. Other reasons could be temperature effects and local weather patterns.
3.3.1.5. Power Quality results.

This section presents the power quality results measured by the MAVOWATT power
quality analyser from 14/05/2022 to 12/06/2022. Figure 3-33 shows the voltage plots of the
average and minimum rms values for the three phases. According to the Tanzania Bureau
of Standards for Quality of Supply (TBS), voltage whose upper limit of nominal RMS value
is 1 kV is termed as Low Voltage (LV), voltage ranging from 1 — 33 kV is medium voltage
(MV), 33 — 220 kV is High Voltage (HV) and 33 — 400 kV Extra High Voltage (EHV)
(Tanzania Bureau of Standards (TBS), 2011). This case study lies in the LV range. The
standard AC voltage for customers supplied at LV shall be 400 V phase to phase and 230
V to neutral. However, it is observed that there are several voltage fluctuations and
interruptions within the measurements, which will be further explained in the coming
paragraphs. Reliability remains a serious concern with the poor access to electricity in most
rural and urban areas in Sub-Saharan Africa. The system average interruption duration
index (SAIDI) represents the average time (seconds) per year a customer’s power is
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interrupted (Paul et al., 2017). The SAIDI value for Nairobi in East Africa, viewed as
standard reliability, is 216.3 hours (Muhihi & Paschal, 2022). According to the Tanzanian
standard TZS 1374:201, the SAIDI value is supposed to be less than 650minutes (10.8
Hours) per customer per year; however, from 2012 to 2016, Tanzania had load-shedding
of up to 20.3 hours; from June 2018 it had an unplanned outage of 1044 hours (Muhihi &
Paschal, 2022). Reliability is crucial in electricity consumption for both productive and

domestic use.

On 15 May 2022, a deviation from the standard voltage of 230 V was observed in phase A,
as shown in Figure 3-33. Voltage swell refers to a sudden increase in voltage or simply
overvoltage. The graphs show that the two phases, B and C, maintained the same voltage
of 230 V, but phase A voltage increased to 266 V, which is almost 11.3% lower than the
permissible voltage limit value of £15% based on the TBS standards and the South African
National Grid code (Eskom & Nersa, 2003). Also, on 28" May 2022, a voltage rise of
almost 262.5 V was observed in phase A. Several factors are the reasons for voltage swell,
including the sudden switching of large loads on or off could be the reason. Figure 3-34

shows the magnified phase A voltage rise to explain the event clearly.
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Figure 3-33: MAVOWATT voltage plots for the three phases from 14th May 2022 to 12th
June 2022
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Figure 3-34: The magnified voltage swell event observed on phase A on 15" May 2022 at
0248 hours

When analysing voltage interruptions in the Mpale microgrid, Figure 3-35 shows the
relationship between the total load profile and the voltage in the three phases. The observed
pattern of interruptions, especially during evening hours, suggests potential challenges in
maintaining a consistent and reliable power supply. These interruptions may stem from
insufficient generation capacity, frequent equipment failures, or an overstrained grid during
peak demand. Addressing these issues through enhanced capacity planning, infrastructure
improvements, demand side management and proactive maintenance measures could
significantly improve the microgrid’s reliability and mitigate the impact of voltage
interruptions on the community.
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Figure 3-35: Relationship between total load profile and voltage in the three phases from
14™ May 2022 to 12" June 2022

Harmonics or distortion in the waveforms was one of the other parameters measured.
Figure 3-36 shows all the observed voltage harmonics in the time range of the
measurements. They might have been caused by non-linear loads that draw non-linear
currents in the system, introducing harmonics. Figure 3-37 shows the statistical distribution
of the observed voltage and current harmonics in the three phases. For phases A and C,
only 5% of the harmonic values are below 5 V and 1 A current, while most harmonics are
between 15 and 20 V with a corresponding current of about 3.5 A. Phase B experiences the
most harmonics values, with 5% reaching almost 7 V with 3.5 A and most harmonics being
around 25 V and 9 A. According to the Tanzanian Bureau of Standards and the Kenyan
Nation Distribution Grid Code, the THD of the supply voltage for the LV network shall not
exceed 8% (ERPA, 2021; Tanzania Bureau of Standards (TBS), 2011). Phase B exceeded
the set limit since it has almost 11% of the fundamental voltage, while phases A and C lie

within the limit set.
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Figure 3-36: Time plots for the voltage total harmonic distortion of the three phases
measured from 14th May 2022 to 12th June 2022
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Figure 3-37: Statistical distribution of the overall voltage and current harmonic distortion
for the three phases from 14th May 2022 to 12th June 2022.

Figure 3-38 and Figure 3-39 show a plot of the total frequency and total load curve with
their respective zoomed versions to show the variations clearly. The observed variations
provide valuable insights into the stability and performance of the microgrid. Significant
fluctuations in frequency, especially during peak load periods, may indicate challenges in
maintaining grid stability and proper frequency control. This could result from mismatches
between generation and demand, insufficient grid inertia, or inadequate control
mechanisms. According to the African national grid code, the allowable frequency limit for
an islanded system is = 5% (+ 2,5 Hz) (Eskom & Nersa, 2003); however, for some of the

periods, the limit is highly exceeded in this case.
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Analysing the load curve with frequency variations helps identify periods of high demand
and their impact on system stability. Implementing measures like demand-side
management, energy storage, or optimizing generation capacity can contribute to a more

stable frequency profile, enhancing the overall reliability of the microgrid.
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Figure 3-38: A plot of total frequency versus total load curve for a period from 13 May
2022 to 12 June 2022
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Figure 3-39: A plot of total frequency versus total load curve for a period from 14 May
2022 to 17 May 2022

Variations in load, both increases and decreases, can indeed lead to frequency variations in
a power system. When the load on the microgrid increases, there’s an immediate demand
for more power. If the generation capacity cannot match this sudden surge in demand, it

can decrease system frequency.
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Conversely, when the load decreases, there is a surplus of generated power, leading to
increased frequency. These frequency variations can affect the stability of the power system
and the performance of connected devices. Figure 3-40 shows the mentioned effect for the
measured data in the Mpale microgrid. Hence, proper load forecasting, efficient demand
management, and a well-balanced generation mix are crucial to maintaining a stable

frequency in a microgrid or any power system.
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Figure 3-40: A plot of total frequency versus total load showing the effect of increase and
sudden decrease of the load on the frequency

The quality of the power supply expressed as the percentage of voltage deviation from the
nominal or rated voltage of 230 V was also examined. Figure 3-41 indicates the voltage
distribution levels. For all three phases, most of the voltage recorded aligns with the
nominal voltage of 230 V. Only 5% of the data set has voltages below 75 V. This can be
due to events of interruption to the power system and blackouts.
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Figure 3-41: Overall voltage distribution for three phases from 14th May - 12th June 2022

Figure 3-42 represents the activities of voltage sags, swells, interruptions, and transients.
They have been further explained in detail in
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Table 3-7. The simultaneous occurrence of dips, swells, interruptions, and transients in the
system, with a concentration during evening hours, suggests a complex interplay of factors
affecting the microgrid. The evening peak demand could contribute to dips and
interruptions due to strained capacity. Swells may be linked to issues such as sudden load

releases.

The presence of transients throughout the day may indicate external factors like lightning
or switching events. A comprehensive analysis should consider upgrading infrastructure to
handle peak loads, improving voltage regulation mechanisms, and implementing protective
measures against transients. Balancing generation, load, and robust system protection

becomes crucial for addressing these multifaceted challenges.
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Figure 3-42: Activity plots for the magnitude of voltage dips, swells, interruptions, and

transients from 14th May 2022 to 12th June 2022
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Table 3-7: Worst Case Summary of the magnitude and duration of the measured voltage

dips, swells, interruptions, and transients measured from 14" May 2022 to 12" June 2022

Out of 59 Total voltage dips

Criteria Phase Category Data Date Time
. . 11/06/2022
Lowest Magnitude C SUSTAINED 0.1V, 17.45 min.
19:55:39.28
01/06/2022
C SUSTAINED 0.1V, 1.38hrs.
16:19:54.89
07/06/2022
C SUSTAINED 0.1V, 5.58 min.
20:21:03.50
01/06/2022
C SUSTAINED 0.1V, 10.14 hrs.
21:37:26.94
. 01/06/2022
Longest Duration A SUSTAINED 0.1V, 10.14 hrs.
21:37:26.94
28/05/2022
A SUSTAINED 0.1V, 4.94 hrs.
08:26:30.43
05/06/2022
A SUSTAINED 0.1V, 4.69 hrs.
03:46:25.82
06/06/2022
A SUSTAINED 0.1V, 4.42hrs.
06:01:36.23
28/05/2022
A SUSTAINED 0.1V, 4.94 hrs.
08:26:30.43
Out of 5 total VOLTAGE SWELLS
. 15/05/2022
Largest Magnitude A INSTANTANEOUS 266.4 V, 0.100 Sec.
02:48:16.11
28/05/2022
A INSTANTANEOUS 262.5V, 0.040 Sec.
21:33:26.11
28/05/2022
A MOMENTARY 261.5V, 1.460 Sec.
21:33:26.61
15/05/2022
A INSTANTANEOUS 261.4 V, 0.040 Sec.
02:48:17.53
) 28/05/2022
Longest Duration A MOMENTARY 261.5V, 1.460 Sec.
21:33:26.61
15/05/2022
A INSTANTANEOUS 255.7 V, 0.130 Sec.
02:48:15.87
15/05/2022
A INSTANTANEOUS 266.4 V, 0.100 Sec.
02:48:16.11
28/05/2022
A INSTANTANEOUS 262.5 V, 0.040 Sec.
21:33:26.11

74



Out of 354 total VOLTAGE INTERRUPTIONS
. 01/06/2022
Longest Duration A MOMENTARY 0.1V, 9.57 hrs.
22:11:31.56
28/05/2022
A MOMENTARY 0.1V, 17767.205 Sec.
08:26:30.47
05/06/2022
A MOMENTARY 0.1V, 4.94 hrs.
03:46:25.85
06/06/2022
A MOMENTARY 0.1V, 4.42 hrs.
06:01:36.26
Out of 2733 total VOLTAGE TRANSIENTS
. 04/06/2022
Largest Magnitude A 1314.8 V, 0.004 Sec.
18:29:03.62
07/06/2022
C 1280.0 V, 0.003 Sec.
20:26:48.64
06/06/2022
B 1278.0 V, 0.002 Sec.
17:38:11.88
04/06/2022
B 1272.0 V, 0.004 Sec.
18:29:03.62

Table 3-7 summarises all the recorded worst-case scenarios of measured voltage dips,
swells, interruptions and transients from 14" May 2022 to 12" June 2022 with their
duration and magnitude. From the observed results, phases A and C suffered more from
prolonged time of voltage dip events. According to the TBS, voltage dips are generally
caused by system or distribution network faults. Most voltage dips have a duration of less
than 1s; however, voltage dips with greater depth and duration can occur infrequently. It
also mentioned the causes of these dips, which could be switching loads in the network;
however, it is impossible to set national compatibility levels of acceptable dips since the
environment significantly impacts the frequency of faults that give rise to voltage dips.
From the observed data, the two phases had a severe and prolonged dip, which led to a
blackout. These were thought to be connecting large appliances, which consume more
energy at the start-up. Only five voltage swells were observed, and none was sustained,;
they were instantaneous and momentarily, lasting less than two seconds. Voltage swells
adhere to the TBS (measured following TZS 1382 standard), which states that a swell is
defined to have a duration from 20 ms to 10 min with a voltage threshold of +15% of the
standard voltage for the networks with voltage less than 500 V. although the most
considerable swell magnitude of 266.4 V (15.82% of nominal voltage) exceeded the set

threshold, its duration lasted only for 0.1 seconds.

75



Figure 3-43 and Figure 3-44 represent the total daily and weekly load profiles by their
maximum, minimum, and average values. Analyzing the load profile with higher peaks in
the evening reveals a pronounced demand pattern during those hours. This event likely
indicates high energy consumption during peak hours when residents return home,

businesses operate, and various activities intensify.

Strategies like demand-side management, energy storage deployment, or staggered
operation of specific loads could be considered to address this. Implementing these
measures can help flatten the load curve, ensuring a more balanced distribution of energy
consumption throughout the day, thereby improving the overall efficiency and reliability
of the microgrid.

3 — Maximum

— Average
—— Minimum

33

Load Curve in kW

/8

I
S

ez

Sul
>
%\

%
@
1

S
NN

05-17 00 05-17 03 05-17 06 05-17 09 05-17 12 05-17 15 05-17 18 05-17 21
Date and Time

Figure 3-43: Plots of total load profiles using maximum, average, and minimum values
zoomed for a period from 2022-05-17 00:00 to 2022-05-17 23:00
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Figure 3-44: Weekly total load profiles zoomed for a period from 2022-05-17 00:00 to
2022-05-24 23:00

3.3.1.6. Reactive Power

Figure 3-45 shows how much reactive power is introduced into the system. A plot of the
load curve and reactive power provides insights into the power factor and system efficiency.
The presence of reactive power may indicate a power factor correction issue. Poor power
factor can result in inefficient energy use and higher losses in the system. For this case
study, the reason is customers’ use of inductive loads, which is believed to be so since many
connected customers in Mpale use the older cathode ray tube (CRT) televisions, which are
considered inductive loads due to their technology, which relies on the movement of

electrons facilitated by magnetic fields.

Addressing this could involve implementing power factor correction devices or optimizing
the operation of existing equipment. A balanced load curve and improved power factor
contribute to a more efficient and reliable power system, reducing energy losses and

enhancing the overall performance of the microgrid.
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Figure 3-45: A plot of the total load profile and its associated total reactive power
generated in the system zoomed for a period from 2022-05-17 00:00 to 2022-05-18 23:00

3.3.1.7. Correlation

For the first time, correlation and regression were defined as statistical parameters due to
empirical and theoretical development by Sir Francis Galton in 1885, followed by Karl
Pearson, who developed the coefficient a decade later (Rodgers & Nicewander, 1988). In
1904, psychologist Spearman Charles introduced the rank correlation coefficient called
Spearman’s coefficient (Zar, 1972). In 1955, the Kendall rank correlation coefficient was
discovered, which evaluates the degree of similarity among two sets of ranks (Abdi, 2008).
In literature, Pearson’s correlation is widely used to analyse linear data by calculating its
coefficient. Pearson’s correlation tends to be one of the most representative methods for
evaluating the correlation between two mutual variables with dissimilar physical quantities
(Song et al., 2017). Pearson correlation is only sensitive to a linear relationship between
two variables or even when one variable is a nonlinear function of the other.
The coefficient talks about the direction and strength of correlation. The strength of the
correlation is represented by the absolute value of the coefficient, in which the more
significant the weight, the stronger the correlation. In order to minimise errors in estimating
correlation, circumstances like the linearity and non-linearity of data needed to be carefully

analysed. Pearson’s correlation coefficient is calculated using Eqn 3-2.
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i L =0 =)
XN =022 (v - y)?
Where, 7. = Pearson’s correlation coefficient; x;, y; = observations from populations x and

Eqgn 3-2

y (where x is the independent variable, y is the dependent variable), respectively; x,y =

means of objects in the population.

The coefficient 7. lies in the range of [-1,1], and different ranges in between signify various

levels of relationship. A strong correlation is when the value is higher than 0.7.
Kendall and Spearman’s correlation was more sensitive to nonlinear relationships.

Using a monotonic function, Spearman’s rank coefficient assesses how well the
relationship between two variables can be described. It is a nonparametric measure of
statistical dependence between two variables. Spearman’s rank coefficient assumes
independent pairs of observation whereby the two variables should be measured on an
ordinal, interval or ratio scale. Also, it assumes a monotonic relationship between the two
variables. The formula by which Spearman’s coefficient is calculated is as follows:

) ZHRG) - RONROY —ROD  _ 6% (R(x) — RO))?
YN(R(x) — R@)’ TR, — RO’ n(n?— 1)

Eqgn 3-3

where R(x;) represents the rank of x;, while R(y;) represents the rank of y;, R(x) is the
mean rank of x;, R(y) is the mean rank of y; , n is the number of pairs (Selami Shagiri et
al., 2023).

Kendall correlation is a lesser-used correlation method, represented by its coefficient Tau
(7). Kendall’s tau is a correlation coefficient that can be used for data in the form of ranks
as an alternative to Spearman’s rho. It is a simple function of the minimum number of
neighbour swaps needed to produce one order from another (lljazi, 2021). The formula to
calculate Kendall’s Tau is as follows:

)
=1 Eqn 3-4

En(n -1
Where C is the sum of the number of the most significant values of y
(number of concordant pairs), D is the sum of the number of the smallest values of y
(number of discordant pairs), n is the number of pairs. The sums C and D represent the
pairs’ incompatible and irreconcilable numbers. Table 3-8 describes the different

correlation values in detail.
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Table 3-8: Interpretation of Pearson’s, Spearman’s and Kendall ’s correlation coefficients

Tee Description

[7ec] > 0.9 Very strong correlation
09> |r.|>0.7 Strong correlation
0.7>|1ec] > 0.4 Relatively strong correlation
0.4 > || >0.1 Moderate correlation

0.1>|r|>0 Weak correlation

[rec] =0 No correlation

|ree] =1 Identical/linearly related

|7ec] = -1 Strict anti-correlation

|7ec] =0 Anti-correlated

|7.c| = -ve values

|7.c| = +ve values

Negative correlation

Positive correlation

P\ Power Prodused
o w

[
fr

o4 06 08 10 L2L0
Phase 1

10 L2 50 (-] ™ B0 o0 o 5 10
B P Power Produced

Figure 3-46: Pearson’s correlation scatter plots for solar photovoltaic power produced,
power consumed in the three phases and SOC (The correlation red line represents the
relationship between the two variables, and the shaded area around it indicates the
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confidence interval showing the range within which true correlation is likely to fall. Bar

graphs represent the strength or direction of the correlation, which provides a visual

summary of the relationship between observed data).

Figure 3-47: The heat map plots of Pearson’s correlation for solar photovoltaic power

Phase 1

Phase 3 Phase 2

PV Power Produced SQC

Phase 1

0.99

Phase 2

0.99
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PV Power Produced

produced, power consumed in the three phases and SOC

Table 3-9: Spearman’s correlation table for the power in the three phases, solar

photovoltaic power produced and battery state of charge

PV Power
Phase 1 Phase 2 Phase 3 Battery SOC

produced
Phase 1 1 0.96 0.98 0.09 -0.88
Phase 2 0.96 1 0.95 0.06 -0.84
Phase 3 0.98 0.95 1 0.03 -0.83
SOC 0.09 0.06 0.03 1 -0.09
PV Power

-0.88 -0.84 -0.83 -0.09 1

Produced

Table 3-10: Kendall Correlation table for the power in the three phases, solar photovoltaic

power produced and battery state of charge

Battery PV Power
Phase 1 Phase 2 Phase 3
SOC produced
Phase 1 1 0.87 0.93 0.16 -0.74
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Battery PV Power
Phase 1 Phase 2 Phase 3
SOC produced
Phase 2 0.87 1 0.85 0.09 -0.70
Phase 3 0.93 0.85 1 0.11 -0.66
SOC 0.16 0.09 0.11 1 -0.12
PV Power
-0.74 -0.70 -0.66 -0.12 1

Produced

Figure 3-46 and Figure 3-47 present Pearson’s correlation scatter and heat plots between
demand, supply and storage, respectively. All three phases show a strong correlation, an
indicator that the trend of energy usage is similar. The lack of correlation of demand
between sites is essential to determine potential investment deferment in generation and
possibilities of new connections required to utilise the lack of correlation. Phase 1 has
households connected; Phase 2 supplies families and businesses; Phase 3 is connected to
homes. The almost similar correlation value may imply that the three phases only differ in

the amount of power used, but the trend is the same.

The negative correlation between demand in the phases and solar power produced means
that solar generation cannot meet demand, especially during peak hours. Solar PV, in effect,
shaves demand in the middle of the day while most peak demand occurs later in the evening
and early morning. This suggests that solar power requires supplementing with energy
storage to meet peak demand (if demand cannot be shifted to the midday hours). The state
of charge of a battery shows a moderate and weak correlation with demand in all three
phases and the solar electricity power produced. The negative sign of its correlation with
solar electricity power produced may signify the charging of the battery, which, as a result,
decreases solar power when battery SOC is increasing (e.g., in the late afternoon hours).

Table 3-9 and Table 3-10 show the same correlation coefficients using Spearman’s and

Kendall‘s correlation coefficients, respectively.
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Figure 3-48: Pearson’s correlation scatter plots for irradiance, solar photovoltaic power

produced, total power consumption and SOC
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Figure 3-49: The heat map plots of Pearson’s correlation for irradiance, solar

photovoltaic power produced, the total power consumed and SOC
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Figure 3-48 and Figure 3-49 represent Pearson’s correlation scatter and heat map plots
showing correlation coefficients for irradiance, solar power produced, total power
consumed and SOC. It is observed that the correlation between irradiance and solar power
produced is around 0.6. This value suggests a moderate correlation between the two, i.e.,
solar power is produced as irradiance increases. The two do not show a perfect correlation
since other factors influence power production, such as solar panel efficiency, panel

temperature, orientation, dust on the panel, etc.

A strong negative correlation between irradiance and total power consumed signifies more
irradiance with low power consumption and vice versa. This may be because more power
is consumed during morning hours and late evening when there is insufficient irradiance.
Also, one may argue that higher irradiance coincides with sunnier conditions, reducing the
need for artificial lighting, which is the most power consuming unit in the villages. The
same reason explains the negative correlation between solar power produced and
consumed. A weak correlation between SOC and other parameters indicates a weak
relationship since other factors are behind the overall dynamics, such as
charging/discharging efficiency. Also, A weak negative correlation value of -0.29 between
battery State of Charge (SOC) and solar power generation might imply that the battery SOC
tends to decrease slightly as solar power generation increases. The negative correlation
could indicate factors such as energy consumption exceeding solar generation during
specific periods, leading to reduced battery SOC. It doesn’t necessarily mean the battery is
full, but rather, a modest inverse relationship exists between solar power generation and the

battery’s state of charge.
3.3.1.8. Clustering of Data

Clustering is one of the methods for determining intrinsic patterns in data sets. The main
goal of clustering is to group data according to their similarities into clusters, e.g., to
determine inherent patterns in data sets (Rajabi et al., 2020). With clustering, items in the
same cluster are more similar than those in different clusters. Therefore, high intra-cluster
and low inter-cluster similarities are achieved. Clustering of data was done using the

following steps:
a) Demand data collection

Data on electricity consumption from customers’ smart meters was collected. They
pre-process the gathered data to cater for incomplete (missing), insufficient, and
corrupted data due to uncommon situations like unexpected failures. Different
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b)

d)

techniques like regression can be used to repair the data. Data abnormalities can

also be handled uniquely as one of the clustering stages (Rajabi et al., 2020).
Clustering stage

The selection of accurate parameters and a proper clustering algorithm is performed
in this stage. The type of clustering technique depends on various factors such as
the type and size of the dataset, user preferences, computational facilities and the
final clustering goal. More than one clustering technique may be applied to the
demand profiles and final results compared to achieve the best results. Furthermore,
the author proved that different clustering techniques could be combined to obtain
better results or speed up the process (Kwac et al., 2014).

Clustering performance assessment

Although assessing the quality of the clusters obtained is not clear due to an
unsupervised process of the clustering algorithm, a suitable clustering method
should ensure the compactness of each cluster and wide separation of different
clusters (Wang et al., 2015). Clustering validity indexes (CVIs) are used to evaluate

the clustering results.
Formation of customer classes

This stage can be termed postprocessing of the resulting clusters to match real-
world scenarios. For example, depending on whether the final goal for clustering is
tariff design or demand response, the number of clusters can be in a specific
allowable range. The ultimate user (DR personnel or operator) should specify the
number of customer segments. In this stage, consolidation of clusters with similar

patterns is possible (Smith et al., 2012).

Electricity consumption data of the Mpale microgrid were considered, whereby the K-
means clustering algorithm was performed using the Scikit-Learn Python package (Barupal
& Fiehn, 2019). Clustering was done to identify the typical usage patterns of the customers
and group them into respective clusters depending on their electricity usage trends.
Knowing the respective clusters is essential to achieve a more flexible DSM, especially in
deciding suitable candidates for DSM and designing incentives in case of incentive-based
DSM (Philipo et al., 2021). Figure 3-50 shows the optimal number of clusters using the
elbow method. The elbow method decides the optimal cluster numbers K by the turning
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point of the graph that gives the slightest decrease in the error sum. From Figure 3-50, the

optimal K value obtained in this case is three; hence, three clusters will be identified.

1e8

1.0

2 4 (¢} 8 10
Number of clusters

Figure 3-50: A graph of the elbow method used to determine the optimal value of K in

clusters

Figure 3-51 shows distinct patterns in electricity demand throughout the day in the village,
comprising households and businesses. Cluster 2, the highest power consumption, peaks
around 7-10 PM, likely representing peak evening usage when villagers return home from
work or school. Activities such as cooking dinner, watching TV, using electric appliances,
and lighting up homes contribute to increased electricity demand during this time. The 7 —
10 PM peak aligns with the typical residential consumption patterns, suggesting that cluster

2 comprises mainly households.

Clusters 1 and 3 represent medium usage trends with peak demand around 4-7 PM. These
clusters may correspond to the early evening and late afternoon periods when villagers are
still active but perhaps not yet engaged in peak household activities. The clusters reflect the
combination of early household and business operational activities since most businesses
are active at that particular hour. Also, the presence of two separate clusters within this time
frame could indicate variations in the timing of activities among different households or
businesses within the village. For example, some households may start their evening

routines earlier than others.
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The clustering analysis reveals distinct usage patterns that align with daily routines and
activities within the village. Understanding these patterns can help electricity providers
optimize resource allocation, plan for infrastructure upgrades, and implement targeted
energy efficiency initiatives.
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Figure 3-51: Clusters obtained after applying the K-Means clustering algorithm to the
demand data of Mpale microgrid
3.3.2. Bunjako Microgrid Data
3.3.2.1. Weather Data
Figure 3-52 shows the measured irradiance using irradiation sensors for a week in February
2022, sampled in a daily profile, as shown in Figure 3-53. The aim was to see the trend and
the fitting between the load profiles and irradiation, generating solar power. Figure 3-54

shows the measured power consumed for the same period from 22—-28 February 2022.
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Figure 3-52: Measured Solar Irradiance in the plane of the modules for the Bunjako
Microgrid for the period from 24 February to 28 February 2022
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Figure 3-53: Hourly irradiance sampled from the Measured Solar Irradiance in the plane
of the modules for the Bunjako Microgrid for the period from 24 February to 28 February
2022
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3.3.2.2. Demand Data

Feb Power drawn for Bunjako
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Figure 3-54: Total measured power demand for Bunjako Microgrid from 22 February to

28 February 2022,

Figure 3-55 shows the customers’ total daily power consumption profiles connected to one
of the Bunjako microgrids sampled into a daily load profile from July 2021 to September
2021. Peak demand of about 5 kW was observed between 1800 h and 2200 h, implying that
most customers are back home and have switched on various electric appliances, such as
lights, fans, and televisions. Demand-response strategies and control were not considered
or implemented. Figure 3-56 shows the total daily power consumption profile with a 95%

confidence interval.
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Figure 3-55: Power demand sampled from the measured demand data for the Bunjako

Microgrid for the period from 26 July to 31 August
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Figure 3-56: Power demand sampled from the Measured demand data for the Bunjako

Microgrid for the period from 26 July to 31 August with a 95% Confidence interval

Figure 3-57 shows the median, average, maximum and minimum power consumed from

the grid in a 24-hour time horizon. The average electricity demand of the data samples

ranges from 1000 W to 2000 W, with a total range from a minimum of about 750 W to a

maximum of 5000 W. The median and average values are closely related, and all the

profiles peak in the evening, a typical load profile for users in the village.
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Figure 3-57: Maximum, minimum, and average daily power sampled from the Measured

demand data for the Bunjako Microgrid for the period from 26 July to 31 August
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Electricity consumption significantly depends on the day, whether weekend or weekday
and the activities taking place. It may further depend on several factors, such as whether
people stay at home most of the time, the kinds of people present in the households, e.g.,
students, and the nature of economic activities. The box plot in Figure 3-58 shows the
variation in power consumed for different days of the week. The central line on each box

plot represents the median value, and the dots are the outliers.
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Figure 3-58: Box plots of the power demand distribution for the days of the week sampled
from measured demand data of Bunjako microgrid for the period from 26 July to 31 August

3.3.2.3. Power Quality Data
3.3.2.3.1. Voltage and Current magnitude

Figure 3-59 shows the values of the measured voltage time plots from 24" February 2022
to 4" March 2022. The East African power quality standards consider the low voltage
system to be less than 1000 V, which is the case for the Bunjako microgrid (ERPA, 2021;
Tanzania Bureau of Standards (TBS), 2011). The standard phase voltage for such a system
is 230 V. However, substantial voltage fluctuations were observed, with phase B being the
most affected line. On 26" February 2022, phase B experienced an instantaneous low
voltage of about 152.4 V, which might have resulted from sudden significant load changes
in current time plots. Figure 3-60 clearly shows events of a sudden increase in loads,
represented by a sudden increase in current, which is proportional to the sudden drop in

voltage.
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Figure 3-59: Voltage time plots measured from 24th February 2022 12:43:14.0 to 4th
March 2022 10:05:00.0
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Figure 3-60: Current time plots measured from 24th February 2022 12:43:14.0 to 4th
March 2022 10:05:00.0
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3.3.2.3.2. Current and Voltage Harmonic Distortion Time Plots

Harmonics, an integer multiple of the fundamental frequency in the electrical signal, was
measured and analysed within a time frame from 24 February 2022 to 4 February 2022.
The presence of harmonics in the power system leads to distortion of the current and voltage
waveforms. Figure 3-61, Figure 3-62 and Figure 3-63 show the current harmonic distortion
waveforms for phases A, B and C, respectively, while Figure 3-64, Figure 3-65, and Figure

3-66 show their respective voltage waveforms.

Phase A, being the highest, had a total harmonic distortion of around 7.32 A, with odd
harmonics of 7.34 A and even harmonics of 0.14 A. Phase B experienced odd and even
current harmonics of 5.3 A and 0.2 A, respectively, with total harmonic distortion of 5.29
A. Phase C had a total harmonic distortion of 4.24 A with odd harmonics 4.25 A and even

harmonics of 0.14 A which was the phase with minimal current harmonics.
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Figure 3-61: Current harmonics of phase A time plot measured from 24th February 2022
12:43:14.0 to 04th March 2022 10:05:00.0
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Figure 3-62: Current harmonics of phase B time plot measured from 24th February 2022
12:43:14.0 to 04th March 2022 10:05:00.0
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Figure 3-63: Current harmonics of phase C time plot measured from 24th February 2022
12:43:14.0 to 04th March 2022 10:05:00.0

For the voltage harmonics distortion, Figure 3-64, Figure 3-65, and Figure 3-66 represent
their time plots for phases A, B and C. Phase A had the highest total harmonic distortion of
almost 29 V, Phase B had 20.43 V total harmonics distortion (1.15 V even, 20.87 V odd)
and phase C experienced a total harmonic distortion of 17.07 V (0.74 V even, 17.32 odd).
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According to the East African standards, which follow the IEEE Standard 519, harmonic

limits on THD should be 8% of the fundamental voltage; however, the limit can be relaxed
for special loads like converters (ERPA, 2021; Tanzania Bureau of Standards (TBS), 2011).
Phases A and B exceeded the set harmonic limit since they have almost 12.6% and 9% of

the fundamental voltage, respectively. Phase C has 7.4%, which is within the limit.
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Figure 3-64: Voltage harmonics of phase A time plot measured from 24th February 2022
12:43:14.0 to 04th March 2022 10:05:00.0
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Figure 3-65: Voltage harmonics of phase B time plot measured from 24th February 2022
12:43:14.0 to 04th March 2022 10:05:00.0
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Figure 3-66: Voltage harmonics of phase C time plot measured from 24th February 2022
12:43:14.0 to 04th March 2022 10:05:00.0

Figure 3-67 shows the percentage composition of voltage and current harmonics for the
three phases. It clearly indicates that phase A has the highest voltage THD values, most of
which lie between 20 to 25 V, followed by phase B with most values ranging from 15 to
20 V. Phase C has the least values between 10 to 15 V.
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Figure 3-67: Total voltage and current harmonics percentage composition for each phase
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3.3.2.3.3. Voltage Frequency Plots

Figure 3-68 shows the total average voltage frequency plots, and Figure 3-69 shows the
average, minimum and maximum voltage frequency plots measured for a period spanning
from 24" February 2022 to 4" March 2022. There is an observance of frequency variations
between 49 Hz and 52 Hz, which can be attributed to fluctuations in supply and demand,
sudden load changes or grid disturbances. A minimum voltage of around 49.7 Hz is
observed, and the maximum frequency is almost 51.75 Hz. According to the quality of
supply standards, frequency excursions outside the range of 51.5 Hz and 48.5
Hz is not within the permitted limit of the generation unit to be connected to the supply unit

to avoid damage (ERPA, 2021). Therefore, the higher frequency value observed was more

than the permitted value.
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Figure 3-68: Total average Voltage frequency plots measured from 24th February 2022
12:43:14.0 to 4th March 2022 10:05:00.0
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3.3.2.3.4. Quality of Supply

The quality of the power supply expressed as the percentage of voltage deviation from the
nominal or rated voltage of 230 V was also examined. Figure 3-70 indicates the voltage
distribution levels. For all three phases, most of the voltage recorded ranges between 229
V and 233 V, which aligns with the nominal voltage of 230 V. Even the few percentages
of under or overvoltage do not cross the rated voltage to a significant number, which

indicates a good quality of supply compared to the Mpale microgrid in Tanzania.
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Figure 3-70: Quality of supply represented as a percentage of voltage deviation from the

rated voltage of 230 V for the three phases
3.3.2.4. Activity Plots

Figure 3-71 and Figure 3-72 represent all the observed voltage dips and voltage transients
at Bunjako Microgrid for the measured period (24th February 2022 to 4th March 2022).
Unlike the Mpale microgrid in Tanzania, the voltage dips are higher between 07:00 am and
4:00 pm, the reason being most of the connected customers in phase B, which is the line
with more customers composed of businesses which work or consume power within that
stipulated time. The same applies to transients in Figure 3-72, which might be because most

types of equipment prone to causing transients are operated in the said time range.
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Figure 3-71: Voltage dip events observed at Bunjako microgrid for a period from 24th
February 2022 12:43:14.0 to 4th March 2022 10:05:00.0
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From Figure 3-71, no voltage swells or interruptions were found.
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Figure 3-72: Transients measured at Bunjako microgrid for a period from 24th February
2022 12:43:14.0 to 4th March 2022 10:05:00.0

Table 3-11 summarizes the worst-case scenarios of all the events that occurred within the
period of measurements with their respective magnitude, duration and how long they lasted.
Out of all 349 voltage dip events, only phase B had the worst case, with the lowest
magnitude of 154.5 V, which lasted for half a second. For the case of voltage transients,
phase B had the most significant magnitude of 720.8 V, lasting for 0.002 seconds, followed
by phase A with a magnitude of 711.6 V for 0.001 Sec. Phase C had no report of the worst

case. No worst-case voltage interruptions and voltage swells were observed.

Table 3-11: Worst-case scenario for activity plots showing the lowest magnitude and
duration of all the observed events for a period from 24" February 2022 12:43:14.0 to 4%
March 2022 10:05:00.0

Out of 349 Total voltage dips
Criteria | Phase Category Data Date Time

B INSTANTANEOUS | 154.5V, 0.519 Sec. | 26/02/2022 13:10:42.80
Lowest B INSTANTANEOUS | 188.0V, 0.350 Sec. | 04/03/2022 06:36:03.29
Magnitude B INSTANTANEOUS | 198.4V, 0.029 Sec. | 01/03/2022 15:07:10.30
B INSTANTANEOUS | 199.1V, 0.029 Sec. | 26/02/2022 09:13:19.31
B INSTANTANEOUS | 154.5V, 0.519 Sec. | 26/02/2022 13:10:42.80
Longest B INSTANTANEOUS | 188.0V, 0.350 Sec. | 04/03/2022 06:36:03.29
Duration B INSTANTANEOUS | 203.3V, 0.040 Sec. | 01/03/2022 07:57:34.07
B INSTANTANEOUS | 205.5V, 0.040 Sec. | 02/03/2022 07:02:40.32

0 total VOLTAGE SWELLS

0 total VOLTAGE INTERRUPTIONS
Out of 6782 total VOLTAGE TRANSIENTS

Largest 720.8 'V, 0.002 Sec. | 01/03/2022 16:17:59.73
Magnitude 716.0 V, 0.000 Sec. | 04/03/2022 06:31:14.03
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711.6 'V, 0.001 Sec. | 25/02/2022 10:52:18.82
B 711.0V, 0.000 Sec. | 04/03/2022 08:56:46.88

3.3.3. Lwak Microgrid Data
3.3.3.1. Demand Data

Demand data were also measured for the consumers in the Lwak microgrid in Kenya, as
represented by Figure 3-73, Figure 3-74, Figure 3-75 and Figure 3-76. In analysing the
recorded demand power for three phases representing distinct houses in Lwak, Kenya, it
becomes evident that there are notable disparities in maximum power consumption across
the phases. Phase 1 exhibits the highest maximum power demand at 3576 watts, followed
by Phase 3 at 2300 watts, with Phase 2 displaying the lowest maximum power requirement
at 1499 watts. These variations in maximum power consumption may be attributed to
various factors, including differences in household size, usage patterns, and appliance types
among the residences. Phase 1, potentially housing an enormous household or featuring

more energy-intensive appliances, demonstrates the highest power demand.

In contrast, Phase 2 may represent a smaller household with fewer appliances, resulting in
lower power consumption. Phase 3 falls between these extremes, suggesting a moderate
power usage level. Understanding these distinctions provides valuable insights into
household energy consumption patterns within the studied location, facilitating informed
decision-making for energy management strategies and infrastructure planning. Table 3-12
shows power in the three phases plus their respective summation. Together, they consume

maximum power of around 6 kW, as represented by Figure 3-77.
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Figure 3-73: Total power consumption at Lwak microgrid for Phase 1 for the period from
25" September 2023 and 26" September 2023
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Figure 3-74: Total power consumption at Lwak microgrid for Phase 2 for the period from
25" September 2023 and 26" September 2023
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Figure 3-75: Total power consumption at Lwak microgrid for Phase 3 for the period from
25" September 2023 to 26" September 2023

Table 3-12: Summary of demand power for all three phases (W) at Lwak microgrid for the
period from 25" September 2023 to 26" September 2023

Maximum Average Minimum
Phase 1 3576.00 676.20 81.10
Phase 2 1499.00 125.02 0.00
Phase 3 2300.00 199.37 0.00
Total 6178.00 1000.59 102.15
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Figure 3-76: Total Power consumption at Lwak microgrid for all three phases with their
total for the period from 25" September 2023 to 26" September 2023

Figure 3-77 and Figure 3-78 show the average per phase and total power consumed for the
Lwak microgrid measured in two days. There are two prominent daily consumption peaks,

7 am-9am and 6 pm - 9 pm. The maximum measured power is considered as peak values
are better for solar system and battery sizing applications.
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Figure 3-77: Daily total convent power for the Lwak convent for the period from 25%
September 2023 to 26™ September 2023
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Figure 3-78: Daily average power consumed for all three phases and their respective

summation of all consumption at Lwak microgrid for the period from 25" September 2023
to 26" September 2023

3.3.4. General observation from all the three microgrids

From the intensive data analysis for the selected microgrids, here are some of the problems

generally facing the microgrids, which motivates the need for optimization and practical

approach to take place as core of this study as it will further be explained in the following
chapter of modelling and valuable case study.

a) Intermittent Power Supply:

Due to unreliable electricity, there is a trend of frequent occurrence of power
outages or intermittent power supply in the microgrid, negatively impacting daily

life, businesses, and essential services. The unreliable power gave rise to reliance

on Diesel Generators as a primary source of power in off-grid or weak-grid areas,

which has the economic and environmental implications of relying on non-
renewable and often costly fuel sources.

b) Variable Renewable Resource Utilization:

The utilization of variable renewable energy resources like solar, in which its

availability is widely affected by weather conditions, affects energy production and,
subsequently, the microgrid’s reliability.
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d)

3.4.

Charge

Controllers

Inefficiencies in Energy Dispatch:

The microgrids face challenges in meeting the demand during peak periods. Also,
there are inefficiencies in the dispatch and scheduling of energy generation sources.
For example, certain generators are underutilized.

Lack of appliance/ load control mechanisms: No initiatives of load control
mechanisms or appliance scheduling based on their internal conditions to facilitate
shifting usage to more energy production hours.

Inefficiency appliances used: Substantial energy wastage or suboptimal
performance in many connected appliances due to a lack of knowledge of the
importance of efficiency measures.

Costs and Affordability: The operators being forced to operate at a high price, e.g.,
using diesel generators when batteries could not support the system, gave rise to the

economic burden of high energy costs on consumers.

Modelling and Simulation: Mpale Microgrid

Diesel Back up

Solar photovoltaic Generator

&5 <2 2

=} =]
—— i Power Conversion

I :

End User
¥ Electricity Dispensers
Batteries i =
-
Distribution Line .
Legend —31
=p D.C. Current » y
===p A.C. Current S
=3

Figure 3-79: Schematic layout of Mpale microgrid (Source: own diagram modified from

Mpale

microgrid diagram).
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3.4.1. Case 1: Minimising fuel cost through incentive provision
Figure 3-79 presents a schematic layout of the Mpale microgrid system. Eqn 3-5 provides
the hourly electrical energy output of the PV (Tazvinga et al., 2014).

Spve = NpyAclpye Eqn 3-5

Where, npy = is the nominal STC efficiency of the solar panel used, A, = front surface
area, Ipy, = the hourly solar irradiance in kWh/hm? and Spy, = Estimated (maximum) solar

power from the solar generator in kW.

In this case, the objective was to minimise the conventional diesel generator’s fuel cost by

including an incentive-based demand response program.

T

Fy(t) = Z(PG(t)) x C Eqn 3-6

t=1

Where; F, (t) = Objective function in $/kWh, t = Time, C = Cost in $, and P (t) = Generator
power. The equation is subject to:

a) Power balance, i.e., total supply, should be able to meet demand.

Py (t) - Z X(6) = Popy (£) + Py(t) + Ps(0) Eqn 3-7
n=0

b) Generator limits
0 < P;(t) < Poprax(t) Eqgn 3-8
DR; < P;(t+1) — Pg(t) < UR; Egn 3-9

Where, P,(t) = Demand power, Psp,(t) = Solar power produced, Spy; =
Maximum solar power generated, Pg(t) = Battery power, Pguq, (t) = Maximum
generator power, DR; = Minimum generator ramp-up rate and UR; =

Maximum generator ramp-up rate.

c) Power generated by the solar generator at any time t should not be negative or

exceed the maximum estimated PV power.

0 < Pspy(t) < Spys Eqgn 3-10

105



d) The battery’s energy must always be between the minimum and maximum
levels. Also, there should be a maintained energy balance for the start and end

of the storage time.

Epmin < Eg(t) < Epmax Egn 3-11
SOCyin < SOC < SOCuax Eqn 3-13

Where, Egmqer = Maximum battery energy, Egmin = Minimum battery energy,
S0C = State of charge of battery, SOC,,, = Maximum State of charge of battery

and SOCy;, = Minimum state of battery charge.

Therefore, the demand side model for minimisation of the conventional generator’s fuel
cost by including an incentive-based demand response program can be formulated using

the following steps.
Let, C(n, x) be the cost of customer n who shifted or switched off load by power x W and
receives an incentive of y in monetary values, i.e. $/kWh. The benefit to the customer will
be;
FZ(H'x'y) =y—- C(H,X) Eqn 3-14
The utility function will be as follows;
F;(0,x,y) =px—y Eqgn 3-15

Where, p = saved cost of not supplying power when load x has been shifted or cut off.

The customer aims to reduce its electricity bills, and the utility seeks to maximize its

benefit. Thus, Egn 3-15 should be maximised using the following equation.

The cost of customers can be calculated as follows: (Alvarado & Fahriog, 2000)
C(6,x) = a;x? + ax — a,x0 Eqn 3-16

Where, a;and a, = cost coefficients, and 6 = customer readiness to switch off loads during
peak hours/customer preference parameter (It is a kind of probability/likelihood function).
The term a,x0 sorts customers by way of & such that different 6 results in different
marginal costs (Z—i). a,and a, are assumed to be 1/2 and 1, respectively. 8 ranges between

0 and 1, with more 6 value the less the cost of the customer (Alvarado & Fahriog, 2000).
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For a customer to participate in a demand response program, they need to see the benefit

of the load curtailment. Thus, it is necessary that:

F;(0,x,y) =0 Eqgn 3-17
T
N
F;(0,x,y) = Z px(n,t) — y(n,t) Eqgn 3-18
n=1
t=1

T is the total time period, and N is the total number of customers.
Eqgn 3-17 and Eqn 3-18 constraints are such that:

a) Atany time, the total incentive given to all customers should not exceed the budget
set by the utility/utility budget (UB).

T

N
Z y(n,t) <UB Eqn 3-19
n=1

t=1

b) The load to be shifted or curtailed by the individual customer within the time
horizon should be within the limit of the loads that can be shifted at that particular

time. x < acceptable non-critical loads and SL=Shiftable loads.

T
z X(n,t) < SL(n) Eqn 3-20
t=1
or
Pspy (t) + Pg(t) + P;(t) = Baseline Egn 3-21

There are two objective functions involved in this case, one being the minimization of

generator fuel costs F; (t) and the second one is the maximization of the utility’s benefit
F3 (9' X, }’)

Therefore, the overall demand side equation for case 1 becomes:

T

T N
Minw » (P;(£)) X C+ (1—w) px(n,t) — y(n,t) Eqn 3-22

t=1

Where w is the objective function weight.
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3.4.2. Case 2: Economic and emission dispatch of a microgrid with multiple diesel

generators

Economic and emission load dispatch intend to operate online generation units
economically at minimal emission levels while satisfying power demand and operational
constraints (Trivedi et al., 2018). The combined economic and emission problem was

formulated as a single optimisation problem (Eqn 3-23).

N
i=1

The generator fuel cost is defined as a quadratic function (Eqn 3-24).

N
F, = Z(xiPiz +y;P; + ZL') Eqgn 3-24

=1
Where, F; = Total fuel cost in $/h, N = is the number of generators, P; = Active power
generation of the i-th generator, x; = Cost coefficient of i-th generator in $/MW 2h, y; =
Cost coefficient of i-th generator in $/MWh, and z;= Cost coefficient of i-th generator in

$/h (independent of power or energy delivered).

Operating diesel generators results in the emission of various pollutants, such as carbon
dioxide (CO,), nitrogen oxide (NO), and Sulphur dioxide (S0,) (S Krishnamurthy &
Tzoneva, 2012; Palanichamy & Babu, 2008). Thus, the emission minimisation function is
added to the optimisation problem to achieve clean energy’s universal goal (Elattar, 2018).

N

F, = Z(aipi2 + biP; +¢) Eqn 3-25

i=1
Where, F, = Total Emission value in kg/h, N is the number of generators, P; = Active
power generation of the ith generator, a; = Emission coefficient of ith generator in
kg/MW?2h, b; = Emission coefficient of i"" generator in kg/MWHh, and c;= Emission

coefficient of i generator in kg /h.

The emission equation is subject to power balance (i.e., total supply should be able to meet
demand). The equation is also used to calculate the deficit that the generators should supply.
The power balance of the Mpale microgrid indicates that when the demand exceeds the
energy generated by the PV system plus the energy stored in the ESS for an hour, the

dispatchable generators supply the deficit power.
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Po®) = Popy(®) + Po(© + ) Pi(®) Eqn 3-26

Where, P, (t) = Total demand at any time t; in kW, Pgpy, (t) = Total solar power generated
at time t and Pgpy, (t) = Total battery power supplied at time t.

Generator limits:

PiMin(t) < Pi(t) < PiMax(t) Eqn 3-27

Where, P;p,(t) = Minimum value of real power allowed at generator i and P;y,, () =

Maximum value of real power allowed at generator i.

Power generated in kW by the solar generator at any time t should not be negative or exceed

the maximum forecasted PV power.

0 < Pspv(t) < SPVC Eqn 3'28

The energy and power of the battery must always be between the minimum and maximum
levels. Also, there should be a maintained energy balance at the start and end of storage

time.

Epmin < Ep @) < Epmax Eqgn 3-29

SOCuyin < SOC < SOCpqy Eqn 3-30

The overall objective function combines economic and emission problems, which are
correlated using the penalty factor w; in $/kg. The penalty factors used include Max —
Max, Min — Max, Min — Min, average, and common (Senthil Krishnamurthy & Tzoneva,
2011; Thakur et al., 2006). The Min — Max price penalty has been proven to yield a
minimum cost of the combined function (Egn 3-31) and thus was adopted in this study (S
Krishnamurthy & Tzoneva, 2012).

2
_ (xiPimin” + YiPimin + 2i)
- 2
(aiPi,max + biPi,max + Ci)

Wi Eqgn 3-31

Table 3-13 provides the generator’s cost and emission coefficients of the system
components, which are borrowed from Jakhrani et al., (2012) and Nwulu & Xia, (2017).

All the generators’ minimum power limits start at zero.

The overall multi-objective function F becomes;
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N
F= Z(F1 + wiF,) Eqn 3-32
i=1

Where, F; = Total fuel cost in $/h, penalty factor w; in $/kg, and F,= Total Emission
value in kg/h.

Table 3-13: Generator cost and emission coefficients of the selected generators with their

maximum power (Traoré et al., 2018)

Emission coefficients Cost coefficients
[ Pi,Max
X; Vi z; a; b; Ci
1 0 0.511 0.1298 2 0 1.22 0.32
2 0 0.569 0.155 3 0 1.46 0.383
3 0 0.694 0.181 4 0 1.70 0.446
4 0 0.791 0.206 5 0 1.94 0.509
5| 004 0.3 0 9 0.04 3.43 0.60
3.5.  Modelling and Simulation: Bunjako microgrid

A MATLAB/Simulink-based model was implemented to simulate the Bunjako microgrid.
A microgrid model with possible shiftable loads was simulated for 24 hours, starting from
midnight and running for the next 24 hours.

Load Shifting
Peak Clipping

Measurements

fordl>——— 5
) 2
[Lrad>—— s
Time -
0 Tsland oady

Power

Time

ESpe '

Co 1%

[ Continuous

powergui

Total Load

Figure 3-80: Simulink model of the Bunjako microgrid showing all sources and loads with
their control strategies (load shifting and peak clipping) [Images: (Weetch, 2021)]
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Figure 3-80 shows the block diagram of the model in Simulink, in which a three-phase
system is connected to a battery and solar PV with consumer loads. The irradiation
measurement and battery state of charge measurements were also linked. In the Bunjako
microgrid, load shifting and peak clipping used two demand-side management subsystems.

Bunjako’s total loads were divided into deferable and non-deferable loads to enhance
switching on/off loads during peak and off-peak hours. Table 3-14 represents household
appliance categories described by Nawaz et al., (2020). Based on a study conducted in
Bangladesh, the related on-and off-times were noted to have characteristics similar to those
in Africa. Thus, the on and off times were used for the simulation in the Bunjako microgrid

to decide the rating of deferrable loads to be either switched on/off or shifted.

It is noted that the load profiles will not be the same as no two appliances with the same
rating can be used for the same program all the time (Degefa et al., 2018). In addition,
Denholm et al., (2012) estimated shiftable demand by subtracting base demand from its
peak for the days of almost similar characteristics. This background gave the basis for
evaluating the deferable load profile in this study.

Table 3-14: Household appliances categories, ratings and hours of operation (Nawaz et
al., 2020; Panda et al., 2022)

) ) Power rating Hours of
Appliance Category Appliance Name )
(kW) operation/day (h)
Personal computer 0.03 4
] ) ) Microwave 1.5 0.5
Shiftable interruptible

Pump (41m/75LPM) 0.9 4

Blender 0.3 4

Shiftable non- Iron 1 2

interruptible Washing machine 0.5 2

Refrigerator 0.3 6

Consistency Fan 0.05 8

Water Purifier 0.5 9

Figure 3-81 represents the simulation of the two load categories in Simulink. Some loads
can be shifted only for a certain amount of time, e.g., freezers. The duration of possible

shifting depends on the actual state of the freezer (temperature of goods).
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Figure 3-81: Simulink model of deferable and non-deferable loads [Images: (Lundstrom

etal., 2018)]
Figure 3-82 shows the energy inlet and outlet from the microgrid, including the battery’s
state of charge (SOC).
-
.|
- i ESS State of Charge (%)
| pvM
[load2]
- 1 I
m = <PV> I Microgrid Usage i D

Figure 3-82: Block diagram of energy inlets and outlets to and from the microgrid

From Figure 3-83 and Figure 3-84, the two DSM strategies (load shifting and peak clipping)
are simulated. The approaches make use of ANN to achieve the results. The use of switches

allows control of the on and off time of the shiftable loads.
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The input data provided to the ANN control scheme are the consumer usage and time
horizon of the day (24 hours). The overall horizon is 24 hours. Based on this, the ANN
returns generated signal pre-defined deferable loads to either switch off/on or shift to
another time of the day, depending on the solar power generated. This is in the case of peak

clipping and load shifting, respectively. Philipo et al., (2022) further explain the ANN
approach.
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Figure 3-83: Simulink energy management model through Load Shifting (LS) using a
neural network

<out>
. <PV>
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Function Fitting Neural Network

Figure 3-84: Simulink energy management model through Peak Clipping (PC) using a
neural network
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3.6.  Practical case study (Lwak Microgrid)

Based on the modelling and simulation of Mpale and Bunjako microgrids, it was deduced
that most East African microgrids have similar attributes in electricity consumption. Most
microgrids in rural areas consist of medium home appliances such as fridges, freezers, and
water pumps. In addition, most inhabitants use inefficient appliances (i.e., Mpale microgrid
appliances). Thus, the Lwak microgrid was selected to be a practical case study for several

reasons.

a) Ease accessibility to the site as part of the Art-D project. Thus, measurement can
be easily conducted,

b) Different practical improvements can be achieved to the microgrid,

c) The grid has a good relativeness as the microgrid is composed of both shiftable

and non-shiftable loads; thus, demand-side management is possible.
Demand side management of the Lwak microgrid was conducted to achieve the following:

a) Appliances’ control of usage time and temperature-based control
b) Energy efficiency demand-side management analysis due to implications on the

power quality of the microgrid.
3.6.1. Motivation for Energy Efficiency Demand side management

Improved energy efficiency in home appliances is vital for guaranteeing sustainable and
clean energy usage. The study aimed to analyse and explore energy efficiency for home
appliances in the Lwak microgrid. The adaptation of energy-saving appliances was an

essential strategy for achieving energy efficiency.

The study delved into an energy audit of the inhabitants by observing their consumption
profile and appliances, particularly the cooling appliances, to introduce a model for
assessing energy efficiency possibilities. Furthermore, efficient and non-efficient devices
were also observed to analyse potential savings achievable through the adaptation of
energy-saving appliances. Finally, based on the results, the microgrid best practices were

recommended, promoting economic savings.
3.6.2. Current Electricity Usage

A list of all appliances used in the Lwak convent has been presented (Table 3-3). Power

consumption in percentage for all appliances was prepared and is shown in Figure 3-85.
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Figure 3-85: A pie chart showing the hourly load composition of appliances in Lwak

Lightning recorded the highest power consumption. Apart from water pumps, cooling
appliances (i.e., fridges and freezers) consume a reasonable percentage of power. Thus,
attention was given to fridges and freezers as their consumption is continuous compared to
water pumps and dispensers. Water pumps’ power consumption behaviour proved an
excellent candidate for load-shifting demand-side management. In addition, PV pump
applications are relatively resilient to power outages due to the use of a sufficient water
tank, as long as they do not last extremely long. Demand side management also appears
advantageous due to the water tank, where pumped water can be easily stored, especially

for load-shifting applications.

3.6.3. Fridge/Freezer temperature control with Shelly Devices and Node-RED
3.6.3.1. Assumptions

Several assumptions were considered in the study;

a) Allfridges and freezers kept the same type and quantity of food, thus having similar
specific heat capacities. All three houses are inhabited by nuns who conform to
similar lifestyles, i.e., cooking and eating the same food.

b) The effect of door openings has been neglected.

c) The ambient temperature effects were not considered.
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3.6.3.2. Temperature threshold set

After data collection, the temperature inside fridges and freezers was monitored and
analysed to observe their minimum and maximum operating temperatures before initiating
control. The minimum and maximum temperature thresholds were set depending on the

operating temperature to avoid food spoilage.

From the literature, the recommended fridge temperature to prevent food spoilage is 1.1°C
to 4.4°C (Kakande et al., 2023), while a temperature of 2°C to 4°C is recommended for
ready-to-eat foods (He et al., 2017). Other sources reported 5°C to 8°C as refrigerator
temperature thresholds (Refrigeration, 2019). For freezers, Postnikov et al., (2019)
recommended temperature as below -12°C, while Tran et al., (2015) stated the temperature
to be below -18°C. Table 3-15 shows the temperature of all the fridges and freezers plus

their set temperature thresholds.

It is worth noting that consumption may increase with increasing external temperature;
thus, placing a fridge/freezer in a cooler environment may result in lower energy
consumption. In addition, it is recommended that consumers not store their refrigerators or
freezers in areas that will experience temperatures below 55°F or above 90°F (Tiffany Sue
Burgess, 2015).

Figure 3-86 shows a flow chart of load control using shelly devices. After the fridge/freezer
connection to the intelligent socket, instant temperatures are monitored using the loT
arrangements and compared with the thresholds set. When the temperature lies below the
threshold minimum, the fridge will be turned OFF, and when the temperature increases to
above or equal to the threshold maximum, the fridge/freezers are switched back ON to

avoid food spoilage.

Table 3-15: Minimum and maximum recorded temperatures for fridges and freezers with

their respective minimum and maximum thresholds for temperature control

Temperatures /°C

Minimum  Room Temp  Threshold Minimum Threshold Maximum

Freezer 1 -16 28.4 -15 -12
Fridge 2 -15.9 29.1 -15 -12
Freezer 3 -14.4 25.9 -14 -12
Fridge 4 -23.8 29.7 -18 -12
Freezer 5 -14.2 36.2 -14 -12
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Temperatures /°C

Minimum  Room Temp  Threshold Minimum Threshold Maximum

Fridge 6 -16.1 304 -15 -12
Freezer 7 -14.4 324 -14 -12
Freezer 8 -25.2 28.6 -18 -12

Flug fridgeffreezer in
smart socket

!

Set temperature
threshhaolds

I:Tl'llill and Tlrux:l

1

Get instant
temperature (T.}

|

YES

Switch off
fridoeffreezer

YES

Switch on

Figure 3-86: Flow chart of the cooling appliances control mechanism of switching ON and

OFF appliances based on temperature
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CHAPTER FOUR

4, Results and Analysis

4.1. Results and Analysis (Mpale Microgrid)
4.1.1. Case 1: Minimising fuel cost through incentive provision

With reference to Figure 3-28, medium peaks were observed between 00:00 and 05:00 hrs
as most residents switched on storage appliances (i.e., fridges and freezers) as per the
survey. Morning peaks were not significant considering the lifestyle in the village, where
most engage in farming activities early in the morning. Highest peaks observed from 18:00
to 22:00 hours were attributed to consumption by many appliances (TV, cooking, fans)
switched as household members were at home. Gradually, the peaks decline towards 24:00
hours up to 07:00 hours, where only light bulbs and fans remain on. Phase 2 recorded the
maximum power consumption through the 24-hour interval, attributed to the type of

customers connected (i.e., households and businesses).

Figure 4-1 shows the average daily demand and maximum potential solar power based on
measured irradiance. The mismatch between the demand and solar power produced
signifies that solar generation cannot meet demand growth, especially during peak hours.
Solar PV shaves demand in the middle of the day, while most peak demand occurs later in
the evening and early morning. This suggests that solar power requires supplementing with

energy storage and backup generation to meet the peak demand.
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Figure 4-1: Total average daily demand vs maximum daily solar power produced at Mpale

microgrid
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Figure 4-2 summarizes the optimal power curtailed by each customer group. More
curtailment is observed during peak hours and less in the afternoon when there is enough
solar production. The amount of power curtailed is proportional to the incentive received,
as Table 4-1 illustrates. Power curtailment may be achieved by scheduling responsive loads
from the customer end. Results agree with Jasim et al., (2022), where optimal dispatch was
achieved based on appliance scheduling. Furthermore, customers connected to phase two

present more power reduction since most are suitable candidates for DSM.
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Figure 4-2: A plot showing total daily customer power curtailed after receiving incentives
Table 4-1: Total daily energy curtailed and incentive received in US dollars (1 USD =

2515 Tanzania shillings)

Energy curtailed (kWh/day) Incentive received ($/day)

Customers in Phase 1 3.94 3.40
Customers in Phase 2 10.62 4.95
Customers in Phase 3 4.07 3.75
Total 18.63 12.10

Figure 4-3 results provide a viewpoint on the microgrid operation. Throughout the 24-hour
interval, the solar generator operates with a conventional generator and battery support.
Conventional generators and batteries reduce their power output when solar generators
begin to work. During the peak period, the battery works in the discharge state supported

by the generator. The battery is charged or out of operation in the valley periods. The
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charging and discharging modes of the battery depend on its state of charge (SOC) value
(Xu et al., 2020).
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Figure 4-3: Average daily output power from a solar generator, diesel generator and
battery averaged from data measured for a period of 5 years at Mpale microgrid

Figure 4-4 shows the load profile before and after DSM. Customers can curtail some loads
during peak hours through incentives, resulting in peak reduction. It is observed that during
the evening peak, a significant amount of power curtailment is possible with higher
incentive values. Summing up per hour daily demand before and after the proposed strategy
gives an overall saving of around 11.02%. Higher incentives resulted in a higher
willingness to save. However, it should be noted that without proper incentive selection,
the utility may suffer revenue loss (Philipo et al., 2020). Hence, mutual benefit among all
microgrid actors should be considered for a successful DSM approach (Pacheco &
Foreman, 2017).
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Figure 4-4: Load profile before and after demand side management
4.1.1.1. Sensitivity Analysis

The base case is assumed when the operator assigns equal weights to the two objective
functions (Tazvinga et al., 2014). However, in any multi-objective optimisation, studying
and analysing the impact of different weight preferences on the objective function and how
they influence the optimal solution is crucial. The weight w varies from 0 to 1. In this case,
the study when w = 0 implies that the objective is to maximise the operator’s benefit without
minimising fuel cost. When w = 1, more attention is paid to minimising fuel cost rather
than maximising utility benefit. Table 4-2 explains the sensitivity of the operator decision
to objective function preference. Utility incurs more cost of paying incentives to the
customer at less power curtailment when they focus only on neglecting the concept of
demand response. Also, less power is saved when no attention is paid to minimising the
generator fuel cost. The best microgrid operation is achieved when equal weight is given
to both demand response and generator fuel minimisation. This observation is also

supported by Figure 4-5.

Table 4-2: Effect of objective function weights (w) on different parameters of the microgrid

w =0.00 w =0.50 w =1.00
Total energy curtailed (kWh) 19.48 18.63 15.77
Total incentive received ($) 16.10 12.10 13.03
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w =0.00 w =0.50 w=1.00

Total energy from generator (kWh) 24.66 24.08 28.85
Total energy supplied by a battery (kwh) 49.82 52.68 49.98
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Figure 4-5: Percentage of power curtailed at different weight values

4.1.2. Case 2: Economic and emission dispatch of a microgrid with multiple diesel

generators

The per-hour daily load profile, presented in Figure 4-6, determines power supply
requirements. The profile is characterised by morning peaks (02:00 — 06:00) and evening
peaks (20:00 —23:00) hrs. These can be attributed to people’s daily routines, which demand
more energy in the morning when they wake up and late evening when they return home.
Figure 4-7 shows the overall power balance in the microgrid. The negative power of the
battery implies charging, which takes place more in the afternoon when solar power is
abundant with minimal load. Battery discharges to supply loads when solar is not available.
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Figure 4-6: Per-hour average daily load demand profile of Mpale microgrid averaged
from data recorded over 5 years period
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Figure 4-7: Average power produced by solar photovoltaic and battery storage to meet
power demand of Mpale microgrid (Power balance of the system)
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Different arrangements of five generators were used as dispatchable sources. GA and PSO
algorithms were used to optimise the selection of generators in various system
configurations, i.e., which generators or generators should be ON to minimise cost during
peak demand. The results of different generator selections were analysed. The proposed
study optimised five generators considering morning and evening peaks. GA gives the

lowest cost of 28.06 $/day, and power sharing among the generators is shown.

Figure 4-8 and Figure 4-9 shows the energy shared among the generators for the two
optimisation algorithms. The optimisation results indicate that three diesel generators (G1,
G2, and Gb5) are the most prioritised to allow the optimum performance of the diesel

generators, minimising fuel consumption and emissions.
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Figure 4-8: Optimal generator arrangements selected to provide backup power to the load

out of the five diesel generators using genetic algorithm (GA)
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Figure 4-9: Optimal generator arrangements selected to provide backup power to the load

out of the five diesel generators using PSO

On the other hand, only one diesel generator is required for the minimum cost of all the
algorithms, as shown in Figure 4-10. This observation aligns with Rangel et al., (2023),
who simulated different hybrid configurations and observed that one generator system

promises minimum costs if a battery is included.
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Figure 4-10: Overall cost of fuel and emissions incurred per day for different diesel

generator configurations using genetic and particle swarm optimization algorithms
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Figure 4-10 shows the optimisation costs for the two algorithms (GA and PSO) at different
generator arrangements. GA and PSO yield almost the same results for the cases of five
and one generators. For the case of three generators, GA gives the most optimal results
compared to PSO. However, the computational run time of GA for all the scenarios is more
than that of PSO.

However, it is crucial to assess the specific situation, including load requirements, fuel
efficiency, emissions, and other factors, since choosing between one big diesel generator
and multiple small diesel generators to minimize emissions and fuel costs depends on
several factors, as explained. For a significantly fluctuating power demand, having two
smaller diesel generators that can be turned on and off as needed might be more efficient
to avoid running a single large diesel generator at partial load, which can be less fuel-

efficient and produce more emissions.

Also, it is essential to consider the maintenance and reliability requirements of the
generators. Smaller diesel generators may have shorter maintenance intervals but can be
more easily replaced if one fails. Large diesel generators might require less frequent
maintenance but can be costlier to repair. A comparison between the fuel efficiencies of the
specific diesel generators should be made since smaller diesel generators are often more
fuel-efficient at partial loads. In contrast, some modern large diesel generators are designed
to be efficient across various loads. Other things to consider are scalability and initial costs;

a single larger diesel generator might be more scalable for future power growth.
4.2.  Results and Analysis (Bunjako Microgrid)

Figure 4-11 compares the average hourly power consumed and minimum irradiance
measured at the Bunjako microgrid (0°0°10" N, 32°8’4" E). As is typical, average
irradiation peaks around 11 am and, after that, declines, while the power consumption
displays an increasing trend during the hours of waning and no irradiance (Akmam
Naamandadin et al., 2018).
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Figure 4-11: Comparisons between hourly average power consumed (in kW) and minimum
daily irradiance (in W/m2) measured at Bunjako (22" to 28" of February 2022)

Figure 4-12 represents measurements of the microgrid model before DSM. The model takes
irradiance and demand data from the measurements, and accordingly, the profile of
deferable loads is decided based on the peak and base load profile.
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Figure 4-12: Simulink measurement results before the application of DSM
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4.2.1. Effect of Peak Clipping

Peak clipping is achieved using an energy controller or switches. The energy consumption
trend is monitored; the controller switches deferable loads off if it approaches unwanted
levels. Examples of deferable loads that can be switched off are washing machines, pumps,
water purifiers, etc. In this work, the loads to be shut down are decided based on consumer

priority and grouped as deferable and non-deferable loads.

Figure 4-13 represents power usage reduction through DSM using a peak clipping strategy.
A significant improvement in the load profile is observed, with a decrease of about 31.2%
in peak demand. This method shows a more substantial improvement in the PAR of the
system, as shown in Table 4-3. However, there is a question regarding customer comfort
regarding the importance of considering priority from both utility and customer points of
view (Moghaddam et al., 2011; Philipo et al., 2020).
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Figure 4-13: Load profile before and after DSM through Peak Clipping
4.2.2. Effect of Load Shifting

Figure 4-14 represents DSM through load shifting. A close look at the simulation results
shows that deferable load operation is being shifted during the 24 hrs of a day. Most of the

operation is taken towards hours, during which solar irradiance is used to reduce storage.

Shifting most of the usage pattern towards hours of more generation gives a window for
most critical loads whose operation cannot be stopped to be supplied even during peak
hours, as shown in the results from around (1800 — 1900) hrs. Critical loads such as security
systems and fridges have strict energy necessities, and once their operation is initiated, it

becomes hard to reschedule (Diyan et al., 2020). However, adaptable and manageable
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appliances can be rescheduled from peak hours to off-peak if the demand for these devices
cannot be satisfied (Lu et al., 2019).

During peak hours, the clipping scheme lowers energy consumption and discomfort by
switching off excess loads. Load shifting allows the rescheduling of appliances to off-peak
hours with less energy consumption reduction, as shown in Figure 4-15. The results are
comparable to Diyan’s (Diyan et al., 2020).
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Figure 4-14: Load profile before and after DSM through Load Shifting
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Figure 4-15: Load profile before and after demand side management through both Peak

Clipping and Load Shifting
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Table 4-3: Statistical parameters of profiles before and after demand side management

Statistical value Original Profile Load shifting  Peak clipping
Maximum 8.970 8.970 6.170
Minimum 2.200 2.200 2.200
Peak to Peak 6.770 6.770 3.970
Mean 4.899 4.773 3.645
Median 4.989 5.000 2.899
RMS 5.289 5.085 3.873
Maximum Hour 19 19 13
Minimum Hour 4 4 4
PAR 1.831 1.879 1.693
% Peak reduction 0.000% 0.000% 31.215%

4.2.3. Peak to Average Ratio (PAR)

Peak to Average Ratio (PAR) is a measure of how an electric system’s reliability and
efficiency are affected by peak electricity consumption. It is measured as the ratio of the
peak to time-averaged power level. Customers’ power consumption behaviour directly
affects the system’s peak consumption. Through maintaining a balance between supply and
demand, PAR can be minimized, which benefits both utility and consumer. One of the
primary goals of DSM is PAR minimization, hence maintaining the reliability and stability
of the grid. PAR is given as follows,
Max (Power)

PAR = ]
1/54 (B2, Power) Eqgn 4-1

The plotted histogram of the comparisons of PAR of demand profiles before and after DSM
using the two approaches is shown in Figure 4-16. Profile before DSM has a PAR of 1.831,
whereas LS DSM and PC DSM have PAR of 1.693 and 1.879, respectively. High PAR in
load shifting resulted from the generated peak power consumption (see Figure 4-14) after
the loads were shifted. It can be seen clearly from the results that peak clipping performs
better in minimising PAR, which is comparable to results with load shifting.
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Figure 4-16: Peak-to-average ratio values for load shifting and peak clipping for the case

of Bunjako Island July-September 2021
4.3. Results and Analysis (Lwak Microgrid)
4.3.1. Current Energy consumption analysis

This section measured the daily profile of cooling appliances in the locality (Fridges and
Freezers) using the installed smart sockets. The results of the measurements are represented
by Figure 4-17 to Figure 4-22.
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Figure 4-17: Daily measured power consumption of cooling appliances for the Bethany
house at Lwak microgrid
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Figure 4-18: Daily measured power consumption of cooling appliances for the Emmaus
house at Lwak microgrid
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Figure 4-19: Daily measured power consumption of cooling appliances for the Postulancy
house at Lwak microgrid
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Figure 4-20: Total daily measured power consumption of cooling appliances for all three
houses (Postulancy, Bethany and Emmaus) at Lwak microgrid
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Figure 4-21: Daily measured power consumption of freezers of all the houses at Lwak
microgrid
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Figure 4-22: Daily measured power consumption of fridges of all the houses at Lwak
microgrid

Figure 4-20 represents the total daily power consumption from all three houses. It is
noticeable that the maximum consumption curve does not occur in the early afternoon,
which would have been expected given the outside temperatures, but in the evening hours.

This was presumably due to opening, removing, or exchanging refrigerated goods when
the sisters prepared food.

Figure 4-21 and Figure 4-22 represent the separate hourly power plots of freezers and
fridges. Figure 4-21 represents five freezers and their hourly power pattern within a day.
The figure indicates that freezer three draws the least power due to its low-rated power
capacity of 94 W compared to the other freezers, as shown in the table. Freezers one and
eight show the second least power consumption, and the two freezers show almost a similar
trend and values because they are the same brand of freezers with the same rated values.
The minor discrepancies might be due to different foods in the fridges and different times
of opening and closing of doors for the freezers. Freezer five shows a more varied profile
with some gaps due to missing data during recording. This might be due to interference
with human activities at the location. Freezer seven, which holds almost the maximum
power usage, was found to be the most energy-drawing freezer, and due to its being too

old, its model and power rating description could not be found, as shown in the table. It
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might be too old due to its high power consumption; hence, replacing it with a more energy-

efficient one is better.

Moreover, looking closely at the figure and comparing it to the table of rated values shows

that the freezers operate more than their rated capacity at particular points. From the

research point of view, this can be attributed to the following factors;

a)

b)

d)

Overloading of freezers

It is noted that putting over the recommended amount of food in the fridge forces
the fridge to operate more than its rated power to cool the foods, drawing more

current.
Dusts and Debris

When the condenser accumulates dust or debris, it reduces efficiency and works

inefficiently by drawing more power.
Age and wear

The older the compressor, the less efficient it becomes; hence, it draws more power
than required. A good example is freezer 5, rated at 210W, but through the
operation, it was going beyond that due to its age. (Biglia et al., 2018) and (Evans
et al., 2018) confirmed that appliances use more energy as they age. Their tests
revealed that appliances under two years used approximately one-third of the energy

they used over 11 years.
Refrigerant problems and thermostat issues

A malfunctioning thermostat and leakage problems of the refrigerant may affect the

freezers’ cooling mechanism, causing them to work harder to draw more power.
Poor seals

Ineffective door seals allow hot air to affect cooling and force the compressor to
compensate by drawing more power. According to the literature, testing of proper
sealing can be done using an 80 gsm A4 sheet of paper. If the paper can be pulled
out easily or where the paper was not gripped, the seals are rated as poor or awful,
which might need replacing (Evans et al., 2018). Also, opening and closing freezer

doors can influence how they should be handled.

Likewise, from Figure 4-18, fridge four has the least energy consumption pattern. The

reason might be that it is a new and energy—efficient fridge labelled with the Energy Star
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certification by the Kenyan Energy and Petroleum Regulatory Authority (EPRA), and one

of its responsibilities is labelling appliances. It currently uses a five-star to more or the

highest energy-efficient appliances and one for the lowest (Figure 4-23).
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Figure 4-23: Components of energy labels for cooling appliances labelled with the Energy
Star certification by the Kenyan Energy and Petroleum Regulatory Authority (EPRA)

After analysing the cooling appliances, we suggested that the star-labelled appliances

should be kept and the remaining old appliances replaced.
4.3.2. ldentification of energy inefficiency: Rebound Effect

In this case, the rebound effect is calculated as a temperature and correlation coefficient
ratio. The temperature coefficient describes the relative change in power consumption
associated with a given per-unit change in temperature. It provides the quantified direct
impact of temperature on power consumption. The correlation coefficient is a numerical
value varying from -1 to 1 that measures the strength and direction of the linear relationship
between power consumed and temperature. Through correlation, we can get an insight into
how the temperature explains variations in power consumption. The ratio of the two gives
a normalized relationship between temperature coefficient and strength, which helps better
interpret the impact of temperature on energy usage.

YV =) — )
Temperature coef ficient =T, = —
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Eqgn 4-2

Correlation Coefficient = 1,

Eqgn 4-3
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Rebound ef fect = T, /7., Eqn 4-4

Where, T, = temperature coefficient t, r,.. = correlation coefficient, x = independent variable
(temperature), y = dependent variable (power consumed), xandy = means of the

variables, and N = a number of data points.

Correlation analysis used the linear regression model of the fridge’s internal temperature
and daily power consumption (Figure 4-24). Rebound effect was calculated to decide which
fridge/freezer was efficient or inefficient; hence, decision on replacement was made.
Relationship between temperature changes and energy consumption was established.
Sudden temperature drop in temperature leads to an increase in power consumption, thus,
more pronounced increase in power consumption due to temperature changes suggests
higher inefficiency in of the fridges/freezers as fridges/freezers work harder to maintain
lower temperatures. An absolute value of the rebound effect represents this scenario. The

higher the absolute value of the rebound effect, the more inefficiency of the appliance.
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Figure 4-24: Correlation scatter plots scatter plots for fridge and freezer power

consumption and their temperature.

137



Freezer 1|Fridge 2 |Freezer 3|Fridge 4 |Freezer 5|Fridge 6 |Freezer 7 |Freezer 8
{ 0.274
Temperature 1| | -1.148

+/ -0.232
Temperature 2 I -1.394

+f 0.151
Temperature 3 [ -1.741

+ 0.006
Temperature 4 30 -4.239

+/ 0.051
Temperature 5 L -3.764

/' 0.254
Temperature 6 o -0.943

vf’f‘ 0.621
Temperature 7 I -1.007

« 0.135

Temperature 8 I -1.867

Figure 4-25: Rebound and correlation (Top values = correlation, downward values =

rebound value)

Figure 4-25 shows the correlation coefficient and rebound values. Rebound values
represent the change in power consumption associated with a unit temperature change. A
more negative value reflects a more significant increase in power consumption due to

temperature change, hence a potentially inefficient appliance.

Based on the observed results, the cooling appliances were classified into three main grades
(A, B, C) based on their rebound effect values. Table 4-4 and

Table 4-5 represent the categories. Grade C represents relatively inefficient appliances that
should be considered for replacement first. Freezer 5 and fridge 4 were found to have higher
rebound values, representing their higher inefficiency. This observation suggests that
freezer 5 and fridge 4 cannot maintain stable internal temperature properly. This
observation is supported by our previous work that measured the average ON state power,
and it was found that their instantaneous power and consumption values exceeded the rated

values, suggesting inefficiency.

In this study, fridge 4 and freezer 5 should be replaced first, and the target efficiency should
be grade A (More efficient). Group B represents medium inefficient fridges, which should
be considered for replacement; however, considering the income or nature of the people in
the villages where microgrids are common, the work suggested slow improvement to avoid
straining their income. In that case, fridge 4 and freezer 5 will be replaced. Since freezer 5
has almost the same measured/average ON state Power (W) as freezer 1, freezer 1 was
considered a replacement since it is found in group A (highly efficient group). Fridge 4 was

suggested to be replaced with a new fridge of the same rating since there were no fridges
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of the same rating on site. The study has considered replacing existing, more efficient
fridge/freezer models; however, the replacement should be done with more energy-efficient
fridges to achieve more energy savings. Table 4-6 shows the current model of fridge 4 and
freezer 5 in use with their energy efficient alternatives available on market. The suggested
replacement guarantee to reduce not only electricity usage but also lowers the overall

energy profile of the microgrid contributing to a more sustainable energy profile.

Table 4-4: Fridge-rated power and rebound values with their respective classes based on

efficiency
Appliances Rating (W) Absolute Rebound Class
Fridge 2 _ -1.394 B
Fridge 4 _ -4.239 C
Fridge 6 120 -0.943 A

Table 4-5: Freezer-rated power and rebound values with their respective classes based on

efficiency
Appliances Rating (W) Absolute Rebound Class
Freezer 1 _ -1.148 A
Freezer 3 94 -1.741 B
Freezer 5 210 -3.764 C
Freezer 7 _ -1.007 A
Freezer 8 106 -1.867 B

Table 4-6: Refrigeration appliances details and their replacement model with market price

Appliance type Model Rating  Replaced to Market Price
Fridge 4 Haier HRF-3674 80 W Haier HRF-3674 417.99
Freezer 5 ArmCoAF-C38S 210 W Bruhm BCF- 398S  269.07
TOTAL COST 687.06

Figure 4-26 and Table 4-7 show energy savings before and after replacing fridge 4 and
freezer 5. The comparison between the load profiles before and after the replacement of the

appliances clearly demonstrates the effectiveness of the intervention with about 15%
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energy and cost savings per year. Prior to replacement, the energy consumption profile was
notably higher, reflecting the inefficiency of older models. After the replacement, the
energy profile shows a marked reduction, highlighting the impact of using energy-efficient
fridges/freezers available on the market. This outcome underscores the importance of

upgrading appliances to energy-efficient models, which offer both economic and

environmental benefits.
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Figure 4-26: Plot of total power consumption before and after energy efficiency for all the
refrigeration appliances.

Table 4-7: Overall annual energy and cost savings after energy-efficient DSM

) Percentage
Before EE After EE Savings )
Saving (%)
Energy
14754.92 12518.99 2235.92 15.15
(kWhlyear)
Cost
2655.88 2253.42 402.47 15.15
(USDlyear)

Figure 4-27 shows a projection of cost savings in a span of five years. An initial negative
saving of about 284USD is observed in the first year which is primarily due to the upfront
investment required for the purchase new energy-efficient appliances. However, as the in

the long run, a steady increase in cost savings is observed reflecting the cumulative effect
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of reduced energy consumption and lower operating costs over time. Over the five-year
period, the total cost savings are substantial (1325USD), demonstrating that while there is
an initial financial outlay, the long-term gains from energy efficiency far outweigh the
initial costs. This reinforces the value of making energy-efficient upgrades, not just for

immediate benefits, but for sustainable cost savings in the long run.
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Figure 4-27: Cost savings before and after energy efficiency DSM for a span of five years

The setup was first made before the control to see the overview of power consumption and
temperature changes in the appliances. The figures below show measurements taken before
fridge control starts; a one-day range was taken on 25" September 2023 from 0849 hrs to
26" September 2023 at 1000 hrs. A control was then initiated, and a range of day effects
was taken to assess the impact. However, the control is still ongoing on the Lwak site after

the control range was taken from 26" September 2023 at 1002 hrs to 27" September 2023
at 1952 hrs.

Figure 4-28, Figure 4-29, Figure 4-30, Figure 4-31, Figure 4-32, Figure 4-33, Figure 4-34
and Figure 4-35 shows the daily demand plots before and after temperature-based control
for all the studied appliances. The results show that freezers 1, 3, 6, 7, and 8 have less
energy-consuming profiles after load control. That means we can save energy by switching
them off while preserving food as before. Fridge 4 and freezer 5 show the worst results

after temperature-based control. They tend to consume more energy instead of saving, and
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from the users’ experience, they tend to have poor cooling capabilities, and food is not
adequately stored as before. The results can best be explained by the previous analysis on

finding inefficient fridges and freezers using the rebound effect described in

Table 4-5, where fridge 4 and freezer 5 were the most inefficient appliances. This incident
can explain why their temperature control yielded negative results since the two appliances
might have struggled to maintain the temperatures, consuming more energy with more
temperature fluctuations. So, for inefficient fridges or freezers, temperature-based control
can be challenging or less effective since they suffer from limited temperature stability and
hence struggle to maintain stable temperatures, which might compromise food safety and
quality. The struggle to maintain temperature leads to more power consumption, and since
inefficient fridges/freezers have ageing cooling systems, attempting to do rigorous
temperature control could strain the system more. Therefore, it is crucial to assess and
recognize the limitations of inefficient appliances before doing temperature control to
exploit the benefit of temperature-based control sustainably.
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Figure 4-28: Daily profile before and after temperature-based control for Freezer 1
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Figure 4-29: Daily profile before and after temperature-based control for Fridge 2
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Figure 4-30: Daily profile before and after temperature-based control for Freezer 3
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Figure 4-31: Daily profile before and after temperature-based control for Fridge 4
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Figure 4-35: Daily profile before and after temperature-based control for Freezer 8
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CHAPTER FIVE

5. Conclusion and Recommendations

5.1. Conclusions

This work analysed data from three microgrids: Mpale, Bunjako, and Lwak. Possible DSM
measures were modelled and analysed based on the data analysis results and the location
context of the microgrids. The following specific conclusions can be drawn from the results
analysed and discussed in Chapter 4.

5.1.1. Assessing and analysing customer demand and other power quality

parameters to establish a baseline for demand-side management measures.

The results of technical data analysis implied that most East African microgrids have
similar characteristics regarding electricity consumption, nature of appliances, and location
context. Most microgrids are found in rural areas, and the inhabitants have identical
economic activities, thus affecting electricity usage patterns. Electricity consumption
spikes during evening hours when there is insufficient sunlight as most inhabitants are
available at home. Furthermore, the nature of appliances is similar, consisting of medium

appliances with fridges and freezers, as the heavy loads affect electricity consumption.

There is a trend of frequent power outages due to unreliable electricity, negatively
impacting daily life, businesses, and essential services. The unreliable power led to reliance
on diesel generators as a backup power source in off-grid or weak-grid areas. Diesel
generators have the economic and environmental implications of relying on non-renewable

and often costly energy sources.

Most microgrids face challenges in meeting the energy demand during peak periods due to
similar energy pattern usage. In addition, there are inefficiencies in the dispatch and

scheduling of energy generation sources, such as when generators are underutilized.

Lack of appliance control mechanisms as no initiatives of load control mechanisms or
appliance scheduling based on their internal conditions to facilitate shifting usage to more
energy production hours. Furthermore, inefficient appliances are used: Substantial energy
wastage or suboptimal performance in many connected appliances is due to a lack of

knowledge of the importance of efficiency measures.
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5.1.2. Optimisation of microgrid operations through proper demand-side

management schemes using modelling and simulation.

The study considered two cases in the Mpale microgrid and one in the Bunjako microgrid.
Firstly, a multi-objective optimisation strategy was applied to the Mpale microgrid system
through incentive provision. The optimisation model determined the optimal power
generation schedule for diesel and PV generators, optimal power curtailed, and incentive
received in a scheduled 24-hour period. Sensitivity analysis was conducted on the impact
of preference weights on objectives and their effect on microgrid solutions. Results
indicated that including a demand response program in the optimisation problem provides
a demand-supply match and optimal operation of the microgrid. Due to the improved

matching of load to generation, the storage necessities can be reduced.

Furthermore, a power reduction of 14% was achieved through the provision of incentives
for equal weights of objective functions. Sensitivity analysis showed that higher costs are
achieved when minimising generator fuel cost at the expense of maximising utility benefit.
Therefore, the proposed method efficiently reduces energy consumption during the

unavailability of the sun.

Secondly, the study also considered utilising different generator arrangements and two
metaheuristic optimisation algorithms, i.e., PSO and GA, for optimal dispatching of a
microgrid to improve the performance of diesel generators. The result showed that the
multiple generators dependent on demand time promoted optimal performance and peak
demand reduction costs. Three generator configurations resulted in the lowest cost with GA
compared to PSO. The three diesel generators are the most prioritised to allow the optimum
performance of the diesel generators, minimising fuel consumption and emissions. The
proposed study optimised five generators considering morning and evening peaks. GA
gives the lowest cost of around 28.06 $/day. On the other hand, only one diesel generator
is required for the minimum cost of all the algorithms. This observation aligns with Rangel
et al.,, (2023), who simulated different hybrid configurations and observed that one

generator system promises minimum costs if a battery is included.

In the Bunjako microgrid, the study proposed scheduling household appliances based on
load shifting and peak clipping DSM simulated in MATLAB/ Simulink environment. The
concept of shiftable and non-shiftable appliances was modelled considering their operating
time and the possibility of rescheduling. The proposed method was tested using real-time

data for a 24-hour period. After applying the proposed DSM strategies, it was observed that
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the proposed algorithm reduces the peak demand, smoothing the load profile to the desired
level, and improves the system’s peak-to-average ratio (PAR). The presence of deferrable
loads has been considered to bring more flexible demand-side management. Results
promise decreases in peak demand and peak-to-average ratio of about 31.2% and 7.5%

through peak clipping. In addition, load shifting promises more flexibility to customers.

5.1.3. Promoting energy efficiency of microgrids through practical load control and

appliance demand data analysis.

Finally, the experimental setup was done at the Lwak microgrid to assess the effectiveness
of load control, mainly for fridges and freezers, considering their actual temperatures. In
addition, energy efficiency was analysed by using real data measured at the Lwak

microgrid.

For load control, less energy-consuming profiles were observed after load control for some
of the refrigeration appliances since some parts of the cooling were without electricity
consumption. In contrast, the worst results were observed for other refrigeration appliances,
which tend to consume more after temperature-based control due to inefficiencies, leading
to a struggle to maintain their temperatures. These results tell us that we can save energy
by switching off refrigeration appliances and preserving food as before; however, it is
crucial to assess and recognize the limitations of inefficient appliances before doing
temperature control to exploit the benefit of temperature-based control sustainably. Also,
there is a significant promise of cost savings when moving to more energy-

efficient appliances.
5.1.4. Summary

Generally, this study will benefit most East African microgrids when considering design
solutions to address environmental and Climate change targets, accelerating the
achievement of African countries’ targets in the Paris Climate Agreement. It also efficiently
reduces energy consumption during the unavailability of the sun. Due to the improved
matching of load to generation, the storage necessities have been reduced. Future work will
include calculating all microgrid energy sources’ capital, operation, and maintenance costs

and finding the best configurations.
5.2. Recommendations

The study assessed the effectiveness of microgrids in the East African context through
modelling, simulation, and practical load control to propose methods to save energy and
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improve the microgrids’ operation and sustainability. Following the results and discussion,

the following are the recommendations proposed by this study:

a)

b)

d)

9)

h)

)

Utility companies should employ incentives to promote the shifting of loads during
peak hours through dynamic tariffs, smart meters, etcetera.

Microgrid operators should consider using multiple generators instead of a single
generator during designing and redesigning processes to avoid underutilisation of
the generator and promote cost effectiveness through fuel cost savings and emission
reduction.

Utility companies can liaise with customers with high load demands, such as
industries and businesses, to register shiftable loads operating during non-peak
hours, e.g., when PV generation is at its maximum, to maximise solar utilisation.
Utility companies, in conjunction with customers, can control appliances based on
their condition, such as temperature, which can improve energy savings, especially
during peak hours, to avoid deep discharge of the batteries.

Energy efficiency is vital in everyday appliances, and increased energy
consumption due to inefficiency can lead to energy cost implications as well as
environmental impact.

Individuals and entities should find ways to improve their energy efficiency in
appliances by optimising operational practices and improving or changing to a
proper appliance design or technology that saves energy.

As shifting to energy-efficient appliance usage requires long-lasting policy and
behaviour changes, the government or responsible organisation should promote the
reduction of barriers to the penetration of energy-efficient appliances and set

thresholds for energy consumption limits.

Furthermore, the government should promote phasing out non-efficient appliances
by utilising incentives and loans with low interest rates, especially for low-income

families that cannot afford the complete or quick transformation.

Customer awareness regarding the importance of energy-efficient habits should be

promoted.

Further research can explore load shifting by utilising the thermal capacities of

refrigeration units to achieve a meaningful temporal load shift.
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Appendix A: Mavowatt Power Quality Reports

Appendix A-1: MAVOWATT Manual website link

MAVOWATT 270 | GOSSEN METRAWATT | CAMILLE BAUER

Mpale Mavowatt power quality data obtained from MAVOWATT quick report

Appendix A-2: Voltage Timeplots

Site: MPALEDATATUESDAY
Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00
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https://www.gossenmetrawatt.de/en/products/mavowatt-270

Appendix A-3: Activity Plots

Site: MPALEDATATUESDAY
Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00
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Appendix A-4: Worst Case Summary Waveforms

Site: MPALE DATA TUESDAY

Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00
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Highest Magnitude Voltage Swell: Phase C
Momentary 281.4V,1.615 Sec., on 10/05/2022

Longest Duration Voltage Swell: Phase C
Momentary 281.2V,2.027 Sec., on 10/05/2022

Most Energy Added Voltage Swell: Phase C
Momentary 281.2V,2.027 Sec., on 10/05/2022
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Appendix A-5: Phase A Harmonic Timeplot

Site: MPALE DATA TUESDAY
Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00
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Amps
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Total RMS: 6.52 A
DC Level: 287A
Fundamental(H1) RMS: 4.23A

Total Harmonic Distortion THD:

3.43 A (Even: 0.18 A, Odd: 343 A)

Appendix A- 6: Phase B Harmonic Timeplot

Site;: MPALE DATA TUESDAY
Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00
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Total RMS: 229.83V

DC Level: 0.09V
Fundamental(H1) RMS: 227.78V

Total Harmonic Distortion THD:

24.73V (Even: 1.22 V, Odd: 24.86 V)
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Total RMS: 23.34A
DC Level: 3.03A
Fundamental(H1) RMS: 19.74 A

Total Harmonic Distortion THD: 9.51 A (Even: 0.36 A, Odd: 952 A)
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Appendix A- 7: Phase C Harmonic Timeplot

Site: MPALE DATA TUESDAY
Measured from 10/05/2022 13:31:04 to 11/05/2022 11:25:00
VOLTAGE

Volts

20

15__ [ ’JV "'L.-l"-!-._u-'_'

LUAP“JJ | [ W—L’iﬂ

5 Jﬂ[ J
0
T T | T T | T T | T T | T T | T T | T T | T T
15:00 18:00 21:00 00:00 03:00 06:00 09:00
10/05/2022 11/05/2022
Tuesday Wednesday
—— C VTHDRss (avg)
Volts
20 JH
15 +
10
5 —
0] .I_I_I_I_Jl_.u_- -
LIRS [ L U N N N N N U Y [ N U U N N N L NN Y [ N L N N L L L Y (NN N L L N L N N Y N N N N N I B B B B |
THD H10 H20 H30 H40 H50
I C VHam
Total RMS: 230.80V
DC Level: 0.10V
Fundamental(H1) RMS: 229.75V

Total Harmonic Distortion THD: 19.73 V (Even: 1.18 V, Odd: 19.90 V)
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Total RMS: 8.01A

DC Level: 292A

Fundamental(H1) RMS: 591A

Total Harmonic Distortion THD: 3.58 A (Even: 0.22 A, Odd: 3.58 A)
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Bunjako Mavowatt power quality data obtained from MAVOWATT quick report

Appendix A- 8: Voltage Timeplots

Site: Bunjako
Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00
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Appendix A- 9: Current Timeplots

Site: Bunjako
Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00
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Appendix A-10: VTHD TIMEPLOTS

Site: Bunjjako
Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00
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Appendix A-11: VOLTAGE UNBALANCE TIMEPLOTS

Site: Bunjako

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00
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Appendix A-12: FLICKER (PLT) TIMEPLOTS

Site: Bunjako
Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00
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Appendix A-13: VOLTAGE FREQUENCY TIMEPLOTS

Site: Bunjako
Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00
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Appendix A- 14: Quality of Supply

Site: Bunjako
Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00
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Appendix A- 15:ACTIVITY PLOTS

Site: Bunjako
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Appendix A- 16: Worst Case Summary

Site: Bunjako

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00

Of 349 total VOLTAGE DIPS

CRITERIA

Lowest Magnitude
13:10:42.80

06:36:03.29
15:07:10.30
09:13:19.31
Longest Duration
13:10:42.80
06:36:03.29
07:57:34.07

07:02:40.32

Most Energy Missing

13:10:42.80

06:36:03.29

07:02:40.32

08:19:46.69

PHASE CATEGORY

DATE/TIME

B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS
B INSTANTANEOUS

Of 0 total VOLTAGE SWELLS

CRITERIA

PHASE CATEGORY
DATE/TIME

Of 0 total VOLTAGE INTERRUPTIONS

CRITERIA

PHASE CATEGORY
DATE/TIME

Of 6782 total VOLTAGE TRANSIENTS

CRITERIA

Largest Magnitude
16:17:59.73

06:31:14.03
10:52:18.82

08:56:46.88

PHASE
DATE/TIME
B

B

A
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DATA

154.5V, 0.519 Sec.
188.0V, 0.350 Sec.
198.4V, 0.029 Sec.
199.1V, 0.029 Sec.
154.5V, 0.519 Sec.
188.0V, 0.350 Sec.
203.3V, 0.040 Sec.
205.5V, 0.040 Sec.
154.5V, 0.519 Sec.
188.0V, 0.350 Sec.
205.5V, 0.040 Sec.

206.2V, 0.039 Sec.

DATA

DATA

DATA

720.8V, 0.002 Sec.
716.0V, 0.000 Sec.
711.6V, 0.001 Sec.

711.0V, 0.000 Sec.

26/02/2022

04/03/2022

01/03/2022

26/02/2022

26/02/2022

04/03/2022

01/03/2022

02/03/2022

26/02/2022

04/03/2022

02/03/2022

01/03/2022

01/03/2022

04/03/2022

25/02/2022

04/03/2022



Appendix A- 17: Worst Case Summary Waveforms

Site: Bunjako
Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00

Lowest Magnitude Voltage Dip: Phase B Highest Magnitude Voltage Swell: No
event
Instantaneous 154.5V,0.519 Sec., on 26/02/2022 13:10:42.80
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LI L L L L B
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Longest Duration Voltage Interruption: No event Largest Magnitude Voltage Transients: Phase B

720.8V,0.002 Sec., on 01/03/2022 16:17:59.73
NO WAVEFORM AVAILABLE
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200 J e 50
-300 w:.iw .% 75

16:17:59.4 16:17:59.7
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Appendix A- 18: Min/Max/Avg Summary Report

Site: Bunjako

Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00

VOLTAGE

Min Volts
Max Volts
Median Volts
Average Volts

Min Volts
Max Volts
Median Volts
Average Volts

Min Volts
Max Volts
Median Volts
Average Volts
CURRENT

Min Amps
Max Amps
Median Amps
Average Amps

Min Amps
Max Amps
Median Amps
Average Amps

Channel A

205.02 on 24/02/2022 13:50:00
250.30 on 27/02/2022 07:40:00
230.77

230.94

Channel C

218.16 on 02/03/2022 06:00:00
239.47 on 03/03/2022 08:00:00
230.50

230.39

Channel B-C

296.5 on 26/02/2022 13:20:00
447.9 on 04/03/2022 06:40:00
397.2

397.3

Channel A

2.22 on 25/02/2022 06:50:00
69.31 on 26/02/2022 07:40:00
3.71

4,73

Channel C

3.45 on 25/02/2022 06:00:00
45.28 on 27/02/2022 11:20:00
6.99

7.94
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Channel B

154.47 on 26/02/2022 13:20:00
251.55 on 04/03/2022 06:40:00
229.77

229.78

Channel A-B

308.6 on 26/02/2022 10:50:00
454.0 on 03/03/2022 08:00:00
400.4

400.5

Channel C-A

343.0 on 26/02/2022 12:50:00
447 .4 on 26/02/2022 10:10:00
398.5

398.6

Channel B

3.77 on 02/03/2022 16:40:00
97.93 on 03/03/2022 08:50:00
9.38

10.14



Appendix A- 19: Demand and Energy Timeplots

Site: Bunjako
Measured from 24/02/2022 12:43:14 to 04/03/2022 10:05:00
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Appendix A- 20: Min/Max/Avg Power Report

Site: Bunjako
Measured from 24/02/2022 12:43:14.0 to 04/03/2022 10:05:00.0

POWER
ACTIVE POWER, P (W)

A B c TOTAL
Min kW -10.559 0.475 0.316 -7.308 on 27/02/2022 16:10:00
Max kW 0.290 17.350 7.829 20.286 on 26/02/2022 12:50:00
Median kW -0.391 1.719 1.197 2.504
Average kKW -0.597 1.894 1.398 2.695
APPARENT POWER,S (VA)

A B C TOTAL
Min kVA 0.604 0.905 0.848 2.793 on 03/03/2022 16:50:00
Max kVA 13.366 18.999 8.003 25.571 on 26/02/2022 10:50:00
Median kVA 0.857 2.171 1.613 5.172
Average kKVA 1.109 2.372 1.827 5.307
REACTIVE POWER Q, AT FUND. FREQ. (VAR)

A B c TOTAL
Min kVAR -8.126 -0.236 0.097 -5.445 on 25/02/2022 17:10:00
Max kVAR 0.070 8.839 2.737 9.764 on 25/02/2022 15:30:00
Median kVAR -0.232 0.803 0.420 0.981
Average KVAR  -0.297 0.905 0.558 1.165
POWER FACTOR, PF

A B C TOTAL
Min -0.886 -0.982 0.366 -1.000 on 25/02/2022 06:40:00
Max 0.961 0.976 0.985 1.000 on 25/02/2022 06:40:00
Median 0.424 0.777 0.721 0.646
Average 0.439 0.769 0.692 0.603
DEMAND
REAL POWER DEMAND

A B c TOTAL
Min kWh/h -0.296 on 27/02/2022 02:20:00
Max kWh/h 7.567 on 28/02/2022 17:10:00
Median kWh/h 2.502
Average kWh/h 2.695
ENERGY
ENERGY - INTEGRATED ACTIVE POWER (W-HRS)

A B C TOTAL
kWh 113.01 358.3 264.47 509.8 on 04/03/2022 10:05:00
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Appendix B: NodeRED Flow of Temperature-Based Control

and Data Collection for Cooling Appliances in Lwak

Q filter node: Flow 3 Flow 1 Flow 2 Flow 4 Flow 5 Flow 6 P+ - #F debug

»
»

~ common shellyplus 1pm-441793acaff8_Freezer! Y current flow ~ 1 al

BOB46fcf110/statu:

nperatur
Object

101 - msg payload
Dﬂ"m' R E »{ id: 101, tC:
* 27.1, tF: 80.8 )
capine S Ea

091062024, 02 2538

shellyplus 1pm-441793acaff/commandiswitch:0

F @ con
node: temperature:100_tc_Fridge

BOB4GICTD 11 Distatus/temperatur

24,6, tF: 76.2 }

link in ] s £
441793acaf O power ) power_Freezert J
. d ! 08/05/2024, 0225:53
@ connected
link call node: temperature; 100_tc_Fridge
link out temperatur

T H__——_———_< Vokiage Eraarar] BOB46(cIO11D/statu

100 - msg.payload ° Object

comment | comnpmennt [ > { id: 100, tc:
)¢ | curent 24.7, tF: 76.4 )
T " cument_Freezert | |

« function 0910572024, 02:25:53
S e N [ ] node: temperature-101_tc_Fridae
J temperature [ = shellyplus 1
P . T B ore_F 7 ] shellyplus 1pm-
5 function 9110/statusitemperatur
— payload : Object
. switch

- - seneny peczert [
aenergy :»—-[\ | v

\ shellypius 1pm

100 : msg payload - Object

) output Freezer! »{ id: 100, tC:
24.6, tF: 76.2 }

linkin ¢
08/05/2024, 02 25 53
link call w: node: temperature: 100_tc_Fridge
link out shellyplus1pm-44 100 e === BOB46McfS 10/statusitemperatur
A ® connactad R e 100 o e 100 : msg payload - Object
comment »{ id: 100, tc:
24,7, tF: 76.4 }
~ function -44 g. O
temperature 101_te_Freezer1 J node: temperature:101_tc_Fridge
y i hellyplus1pm-
function [,

6fcfa110/statusitemperatur

hellyplus1pm-4417 It ature:100 \
@ connected /
pm-441 icho |

furit:fmn 9 L
- connected
N
e waot m
connecied
furit:fmn 8 F itch-0 r—]
. connected

shellyplus1pm-80646fcfa110_Fridge2

shellyplus1pm-80646fcf9110/command/switch:0 J

C] # ’ @ connected

yplus1pm-801 itchd

B connected

/ !
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»

shelyptus fpm-B0546icra110_Fridge2

shellyplus1pm-
4

TYocurentfow =  @al

09/05/2024, 02:27:59

node: output_Freezer!
shellypluspm-
441793acalf8/status/switch 0
msg payload : boolean
true

0810512024, 02:28.01

node: debug 46
shellypluspm-
80646i00bdad/statusiswitch:0
msg . Object

v { id: @, source:
“mqtt”, output:
true, apower: 112.8,
voltage: 238.7 .. }
091052024, 0228:01

node: Vollage_Freezer3
shellyplus1pm-
80646100bdad/statusiswilch.0
msg payload - number
228.7

0910512024, 02:28:01
node: Current_Freezer3
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Appendix C: Electronic Devices Datasheet

Appendix C- 1: Datasheet for the Temperature data logger

EXT,

INSTRUMENTS Experience the = ({=~
A FLIR COMPANY Advantage

Light Meter/Datalogger

Records data on an SD card in Excel® format PRELIMINARY
For easy transfer to a PC for analysis DATASHEET

Features:

* Wide range to 10,000Fc or 100kLux
» Cosine and color-corrected measurements

« Utilizes precision silicon photo diode and spectral response
filter

* Datalogger date/time stamps and stores readings on an SD EXTECH
card in Excel® format for easy transfer to a PC =

* Selectable data sampling rate: 1 to 3600 seconds
* Manually store/recall up to 99 readings
» Type K/J Thermocouple input

for high temperature measurements Light Meter
» Large backlit LCD "
* Record/Recall MIN, MAX readings © &

» Data Hold plus Auto power off with disable function
 Zero function
 Built-in RS-232 interface

* Complete with 6 x AA batteries, SD card, hard carrying case
and light sensor with protective cover

Specifications Range Resolution Basic Accuracy

Fc Range 200, 2000, 10kFc 0.1Fc +4%rdg

Lux Range 2000, 20k, 100KLux 1Lux +4%rdg

Type K Temperature -148 to 2372°F (-100 to 1300°C) 0.1° +(04% + 1.8%F/1°C)
Type J Temperature -148 to 2192°F (-100 to 1200°C) 01° +(04% + 1.8°F/1°C)
Memory 20M data records using 2G SD card

Dimensions 7.2%x29x1.9" (182X 73 x 47.5mm)

Weight 16.20z (475q)

Ordering Information:

ight Meter/Datalogger
DL400 with NIST Certi

‘@ C€

LISTED

www.extech.com 52511 -R1
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Appendix C- 2: SP2L.ite Pyranometer/ Irradiance Sensor Data sheet

INSTRI.II:TION SHEET
NG - S - HOJA OF I

USER [NFDRMATIDN !
0N

NED)

MECHANICAL

lNSTA LLATION
A1 1

oN

SP

- 42000 W/m?
ite2

Sttcan Pyranumeter

@#Ul—*ﬁ%

011 kg ameto 3140

max BO°C | 176°F
min_-40°C | -40°F

KIPP £
ZONEN

@ satiometzr

t reports

@ Irscion shet

ey
140

Resd this document carckully before installstion.
w: 2 years from date of sveice, subject to correct insta
use. Hipp & Zonen accepts na liabilty for any lnxs or damages
el v offh pretec. T ey somrs by the | € i
9/336/EEC 73{Z3(EEC. Unauthorised modifications may void the warranty
s CEvalicey For th e pradue support nfommation it o webe

S diess okument gt e s lntlation
Die Garantie betrs nmnmnunp:mm bhingig von korreker
nseliston und Gabrseh, Ko bemimme keine Natung fo
miliche Verluste oder Beschdcigungen. die durch den falschen Gebraus
Dol isnom Pl Pk ok o ich;
85/336/EEC 73/23/EEC. Nicht aut
i CE ot ulen. i, et Preltieformatioren ke
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