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Abstract

Automatic signal processing of sensor signals is an integral part of automotive radar
sensors. Only the signal processing extracts the relevant information from the sampled
sensor signals and enables the driver-assistance system to issue warnings or make
automated changes to the control-loop.

Due to parasitic effects, signal processing is suboptimal and new algorithms are con-
stantly being developed to improve the quality of processing. One possible development
path is the class of machine learning algorithms. The associated algorithms recognize
patterns based on previously presented data sets. An important subclass here are the
supervised learning procedures, which require labeled datasets. The datasets consist of
input data and corresponding target values. During a training procedure, the algorithms
are then automatically optimized and attempt to estimate the target values based on
the input data. This work deals with the automatic association of image content from
camera and radar sensors. With the help of this association, any data from the camera
can be used as a target value for training machine learning procedures on radar data
and vice versa. The benefit of this association is demonstrated using the examples of
trained direction-of-arrival estimators, target detectors, semantic segmentation of radar
spectra as well as radar-power prediction from camera-images.






Zusammenfassung

Die automatische Signalverarbeitung von Sensorsignalen ist ein integraler Bestandteil
von automotiven Radarsensoren. Erst die Signalverarbeitung extrahiert die relevanten
Informationen aus den abgetasteten Sensorsignalen und ermoéglicht dem Fahrerassis-
tenzsystem, gezielt Warnhinweise auszugeben oder automatisiert Verdnderungen von
Stellgrofen durchzufiihren.

Die Giite der zur Signalverarbeitung eingesetzten Algorithmen wird mitunter durch
Faktoren wie Laufzeitbedingungen, Robustheit gegeniiber Rauschen bzw. parasitéren
Signalanteilen sowie Robustheit der Modellannahmen der genutzten Algorithmen defi-
niert. Um diese Gilite zu verbessern, werden fortlaufend neue Algorithmen entwickelt.
Ein moglicher Entwicklungspfad ergibt sich dabei durch die Klasse der Algorithmen zum
maschinellen Lernen. Die damit verbundenen Algorithmen erkennen Muster anhand
zuvor préasentierter Datensitze. Eine wichtige Unterklasse sind dabei die iiberwachten
Lernverfahren, bei welchen die Datensétze aus den Eingangsdaten der Algorithmen und
gelabelten Zielwerten zu den Eingangsdaten bestehen. Wéhrend einer Trainingsprozedur
werden die Algorithmen dann automatisch optimiert und versuchen die Zielwerte anhand
der Eingangsdaten zu schitzen. Diese Arbeit befasst sich mit der automatischen Asso-
ziation von Bildinhalten aus Kamera und Radarsensoren. Mit Hilfe dieser Assoziation
lassen sich etwaige Daten der Kamera als Zielwert fiir das Training von maschinellen
Lernverfahren auf Radardaten und umgekehrt verwenden. Der Benefit dieser Assoziation
wird demonstriert an den Beispielen von trainierten Winkelschatzern, Zieldetektoren,
semantischer Segmentierung von Radar-Spektren sowie einer Radar-Leistungsschétzung
aus Kamerabildern.






Inhaltsverzeichnis

1. Einleitung
1.1. Auflistung automotiver Datensétze und verwandter Arbeiten . . . . . .
1.2. Wissenschaftlicher Beitrag dieser Arbeit . . . . . . . ... .. ... ...
1.3. Gliederung dieser Arbeit . . . . . . . . ... ...

2. Grundlagen zur Signalverarbeitung

2.1. Radarsignalverarbeitung fiir automotive Anwendungen . . . . . . . . ..
2.1.1. Reflexionspfad . . . . .. .. .. ... ... ..
2.1.2. Definition des Radarkoordinatensystems . . . . . . . . ... ...
2.1.3. Signalmodulation und Vorverarbeitung . . . . . . . .. ... ...
2.1.4. Zieldetektion . . . . . .. .. o
2.1.5. Einfallswinkelschatzung . . . . . . ... ... ... ... ... ..
Inferenz und Training bei neuronalen Netzwerken . . . . . . . .. .. ..
2.2.1. Vorwartsdurchlauf . . . ... ... ... ... ... ........
2.2.2. Rickwartsdurchlauf . . . .. ... ... ... o o0

2.2.

Aufbau und Kalibrierung des Sensorsystems

3.1. Definition der Koordinatensysteme . . . . . .. .. .. ... ... .. ..

3.2.

3.3.

3.4.

3.5.

3.6.
3.7.

4.1.
4.2.
4.3.
4.4.
4.5.

Radar . . . ..

3.2.1. Intrinsische geometrische Kalibrierung . . . . . . . .. ... ...
3.2.2. Extrinsische geometrische Kalibrierung . . . . . . . . . ... ...

3.3.1. Intrinsische geometrische Kalibrierung . . . . . . . .. ... ...
3.3.2. Extrinsische geometrische Kalibrierung . . . . . . . . .. .. ...

Kamera . . . .

3.4.1. Intrinsische geometrische Kalibrierung . . . . . . .. .. .. ...
3.4.2. Extrinsische geometrische Kalibrierung . . . . . . . . . ... ...

DGPS-INS . .

3.5.1. Intrinsische geometrische Kalibrierung . . . . . . . . . ... ...
3.5.2. Extrinsische geometrische Kalibrierung . . . . . . . . .. ... ..
Weitere Koordinatentransformationen . . . . . .. .. .. .. ... ...
Temporale Kalibrierung . . . . . . . . . ... . oo
3.7.1. Assoziation der Abtastung . . . . . . .. .. .. ... ...
3.7.2. Korrektur der Abtastungen aus Lidarsensor . . . . ... .. ...

Aufbereitung der Sensordaten

Tiefenvervollsténdigung . . . . . . . . . . ... L o
Schitzung der Oberflichennormalen . . . . . . . .. .. ... ... ...
Semantische Instanz-Segmentierung der Kamerabilder . . . . . . .. ..
Verfeinerung der Instanzmasken durch Clusterbildung . . . . . . .. ..

Optischer Fluss

0 O N =

(=]

10
11
13
17
20
24
24
25

27
27
28
29
29
30
30
30
33
34
37
40
40
40
40
41
41
43

45
45
48
50
o1
o1



Inhaltsverzeichnis

5.

Schatzung der Radialgeschwindigkeit aus Referenzsensordaten 55
5.1. Erlduterungen zum 3D-Szenenfluss . . . . . . ... ... ... ... ... 55
5.2. Erweiterung von Deep-Rigid-Instance-Scene-Flow (DRISF) zu DRISFwR 56
5.3. Eingangsdaten . . . . .. .. ... 57
5.3.1. Imstanzsegmentierung . . . . . . . .. ... ... 58
5.3.2. Tiefenmaske . . . . . . . . . . ... 58
5.3.3. Optischer Fluss . . . . . . . . .. ... ... ... . ... ..... 58
5.3.4. RD-map . . . . . . . . . . e 58
5.4. Mengendefinitionen . . . . . . ... Lo 59
5.5. Definition der Bewegung . . . . . . . . ... oL 60
5.6. Bestimmung der Hintergrundbewegung . . . . . . . . .. ... ... ... 60
5.7. Bestimmung der Vordergrundbewegung . . . . . . ... ... ... ... 63
5.7.1. Bewegungsparameter . . . . . . . . .. . ... 63
5.7.2. Formulierung der Optimierungsfunktionen . . . . . . . . ... .. 64
5.7.3. Losung mittels Gau-Newton Optimierer . . . . ... ... ... 71
5.7.4. Herleitung der Residuen . . . . . . .. .. .. ... 73
5.7.5. Herleitung der Jacobi-Matrizen . . . . . . ... ... ... .... 74
5.7.6. Herleitung der Wichtungsmatrizen . . . . . ... ... ... ... 7
5.7.7. Spezielle Modifikationen von DRISFwR . . . . . ... ... ... 77
5.8. Evaluation. . . . . .. .. ... 79
5.8.1. Datensatz fiir Evaluation des Szenenflusses . . . . ... .. ... 80
5.8.2. Quantifizierung der Schatzfehler . . . . . .. .. ... ... ... 82
5.8.3. Qualitativer Vergleich . . . ... .. ... ... ... ....... 89
5.8.4. Vergleich der Laufzeit . . . . ... ... ... ... .. ...... 90
5.9. Zusammenfassung . . . . . ... 94
Projektion von range-Doppler (RD)-Gitter Daten in Kamerabilder 95
6.1. Definition der Warprichtungen . . . . . . . .. ... ... ... ... .. 97
6.2. Generische Netzwerkstruktur und Trainingsprozess . . . . . .. . .. .. 98
6.3. VOrwartswarp . . . . . . . . o . .o 100
6.3.1. Vorwartsdurchlauf . . . ... ... ... .. ... ... ...... 100
6.3.2. Rickwartsdurchlauf . . . .. .. ... ... 00000 100
6.4. Rickwartswarp . . . . . . . ..o 101
6.4.1. Nachster-Nachbar-Interpolation (NNI) . . . ... ... ... ... 101
6.4.2. Bilineare Interpolation . . . . . . . .. ... o000 103
6.4.3. Trilineare Interpolation . . . . . . . . .. ... ... ... .. .. 104
6.5. Subjektive Bewertung . . . . ... ... Lo 105
6.6. Zusammenfassung . . . . .. ..o Lo Lo Lo 107
Evaluation 109
7.1. Datensatz . . . . . . ..o 109
7.1.1. Datensplit . . . . . . . .. 109
7.1.2. Manuelle Annotation der Daten . . . . . . . .. ... ... .. .. 109
7.2. Direction-of-Arrival (DoA) Schatzung . . . . ... ... ... ... ... 112
7.2.1. Eingangsdaten . . . . . . ... ... oL 112
7.2.2. Zielwerte . . . . . .. e 112
7.2.3. Netzwerkarchitektur . . . . . . ... ... ... 00 113

ii



Inhaltsverzeichnis

7.2.4. Assoziation von Prédiktion und Label durch Warping . . . . . . 114
7.2.5. Messung der Abweichung . . . . .. ... ... ... ... .... 114
7.2.6. Selektion der Pixelmenge . . . . ... ... ... ... ...... 114
7.2.7. Gesamtkosten . . . . . . . . ... .. 118
7.2.8. Initialisierung der Parameter . . . . . . . .. .. ... ... ... 118
7.2.9. Optimierer . . . . . . . . . . 118
7.2.10. Trainingsprozess . . . . . .« v v v i i 119
7211, Ergebnis . . . . . . .. 120
7.3. Zieldetektion . . . . . ... Lo Lo 127
7.3.1. Eingangsdaten . . . . .. ... .. ... L. 128
7.3.2. Zielwerte . . . . . . . 128
7.3.3. Netzwerkarchitektur . . . . . . . ... .. ... .00 133
7.3.4. Assoziation von Prédiktion und Label durch Warping . . . . . . 133
7.3.5. Messung der Abweichung . . . . . . ... ... ... ... 133
7.3.6. Allgemeine Selektion der Pixelmenge . . . . . . . .. ... .. .. 134
7.3.7. Gesamtkosten . . . . . . . ... oL 134
7.3.8. Initialisierung der Parameter . . . . . . . ... ... ... ... 134
7.3.9. Optimierer . . . . . . . . . . .. . .. e 134
7.3.10. Trainingsprozess . . . . . . . . . . . .o 134
7.3.11. Ergebnis . . . . . . . .. 134
7.4. Semantische Segmentierung . . . . . . .. ... Lo 139
7.4.1. Eingangsdaten . . . . . . ... ... 140
7.4.2. Zielwerte . . . . ... 141
7.4.3. Netzwerkarchitektur . . . . . . .. .. .. ... 143
7.4.4. Assoziation von Pridiktion und Label durch Warping . . . . . . 143
7.4.5. Messung der Abweichung . . . . .. ... ... ... ... ... 143
7.4.6. Selektion der Pixelmenge . . .. ... ... ... ... ... .. 146
7.4.7. Gesamtkosten . . . . . . . ... 146
7.4.8. Initialisierung der Parameter . . . . . . . .. ... ... ... 146
7.4.9. Optimierer . . . . . . . . . . e 146
7.4.10. Trainingsprozess . . . . . . . . . . ..o 146
7.4.11. Ergebnis . . . . . . . .. 147
7.5. Empfangsleistungsschétzung iiber das Kamerabild . . . ... ... ... 153
7.5.1. Eingangsdaten . . .. . ... ... ... ... 154
7.5.2. Zielwerte . . . . . .. e 154
7.5.3. Netzwerkarchitektur . . . . . . .. .. ... ... L. 154
7.5.4. Assoziation von Prédiktion und Label durch Warping . . . . . . 154
7.5.5. Messung der Abweichung . . . . .. ... ... ... ... ... . 155
7.5.6. Selektion der Pixelmenge . . . . ... ... ... ... ..., 156
7.5.7. Gesamtkosten . . . . . . . .. ... 157
7.5.8. Initialisierung der Parameter . . . . . . . .. ... ... ... 157
7.5.9. Optimierer . . . . . . . . . . . e 157
7.5.10. Trainingsprozess . . . . . . . . . . oo e 157
7.5.11. Ergebnis . . . . . . .. 158
7.6. Zusammenfassung . . . . . ... 164

iii



8. Zusammenfassung und Ausblick

8.1. Zusammenfassung . ... ... ... ...
8.2. Ausblick . . ... ... ... ........

A. Anhang

A.1. Untersuchungen zum Umgang mit Labelnoise durch Optimierung im

Skalierungsraum . . . .. ... ... ...

A.1.1. Trainingsprozess . . .. ... ...
A.2. Gegeniiberstellung von Aspektwinkel und SNR fiir Zieldetektion

A.2.1. Gegeniiberstellung NN und CFAR Préadiktion fiir Zieldetektion
A.3. Konfusionsmatritzen . . . ... ... ...

A .4. Beispiele der semantischen Segmentierung
Akronyme
Notationen und Symbole
Abbildungsverzeichnis
Tabellenverzeichnis
Literaturverzeichnis

Eigene Publikationen

165
165
166

167

167
169

. 173
. 173

178
180

185
189
193
203
205

219



1. Einleitung

Automotive-Radarsensoren sind ein integraler Bestandteil fir heutige Fahrerassistenz-
systeme. Die Sensoren emittieren elektromagnetische (EM)-Wellen in die Umgebung
und kénnen aus der Reflexion der Wellen Riickschliisse iiber die Umgebung ableiten und
dem Fahrerassistenzsystem auf unterschiedlichen Signalabstraktionsebenen présentieren.
Es werden vier Signalabstraktionsebenen unterschieden:

1. ADU-Ebene: Die am Radarsensor ankommende Welle wird nach analoger Vor-
verarbeitung durch einen Analog-Digital-Umsetzer (ADU) abgetastet und somit
flir eine maschinelle Verarbeitung in digitale Werte gewandelt.

2. Frequenzspekten-Ebene: Als erste digitale Verarbeitung werden die ADU-
Daten durch Fourier-Transformation in den Frequenzraum transformiert und
Eigenschaften der Signale fiir weitere Verarbeitungsschritte damit zugénglicher
gemacht.

3. Detektions-Ebene: In den Frequenzspektren werden signifikante Signalanteile
detektiert und physikalisch sinnvolle Signaleigenschaften wie Entfernung, Ge-
schwindigkeit und Einfallswinkel geschétzt.

4. Objekt-Ebene: Die Detektionen werden zu Objekten gebtindelt (engl.: ,cluster*)
und reprisentieren zusammenhingende Korper wie Fahrzeuge oder Fulgénger.

5. Warnalgorithmus-Ebene: Die Objekte werden verfolgt (engl: ,,tracked*) und de-
ren Fahrtrajektorie geschiitzt. Bei gefihrlicher Uberschneidung mit der Trajektorie
des Ego-Fahrzeuges werden entsprechende Warnmeldungen an Fahrerassistenzsys-
tem und Fahrer iibermittelt.

Der Fokus dieser Arbeit liegt auf der Verarbeitung von Signalen auf der Detektions-Ebene.
Dabei soll insbesondere die Verarbeitung mit modernen Signalverarbeitungsverfahren
untersucht werden.

In den letzten zehn Jahren haben sich auf neuronalen Netzwerken (NN) basierende
Algorithmen im Vergleich zu klassischen Algorithmen des maschinellen Lernens in ver-
schiedenen Anwendungen als iiberlegen erwiesen [HDH™ 19, CMMS11,ZTM*17]. Einen
grofen Beitrag dafiir hat die fortlaufende Forschung und Entwicklung zu Methoden um
das maschinelle Lernen geliefert. Nicht zuletzt liegt dies aber auch an der steigenden
Anzahl annotierter Trainingsdaten. Mit diesen Trainingsdaten kénnen die Netzwerk-
parameter des NNs statistisch optimiert werden. Wahrend des Trainings werden dem
NN dazu Eingangsdaten préasentiert, welche das NN in Pradiktionen umwandelt. Diese
Prédiktionen werden gegen vorgegebene Zielwerte verglichen, die Abweichung ermittelt
und dann entsprechend die Netzwerkparameter optimiert [Bis95]. Haufig wird dabei das
Uberwachungsprinzip bzw. iiberwachte Lernen angewendet, bei welchem die Zielwerte
manuell oder automatisch festgelegt werden. Man spricht dabei von der ,,Annotation®,
dem ,Labeling” oder auch der , Ftikettierung*.



1. Einleitung

1.1. Auflistung automotiver Datensatze und verwandter
Arbeiten

Typischerweise stellen Kamera und Lidar die Umgebung in einer fiir den Menschen
vertrauten Art und Weise dar. Entsprechend einfach sind die Daten durch den Menschen
zu verstehen und zu annotieren, so dass eine frithe Entwicklung und Veroffentlichung von
automotiven Datensitzen mit dem Fokus auf Kamera- und Lidardaten zu beobachten
war und den Einstieg in die Entwicklung und den Vergleich von Signalverarbeitungen
vereinfachte.

2012 wurde durch [GLSU12| der bekannte KITTI-Datensatz veroffentlicht. Wurden
zuvor Algorithmen meist unter Laborbedingungen validiert, konnte dies nun mit dem
Datensatz, bestehend aus Sensordaten von Global-Positioning-System (GPS), Lidar und
Kamera und den dazugehérigen Annotationen fiir Objekterkennung in typischen Fahrsze-
narien aus Karlsruhe durchgefiihrt werden. Einhergehend wurden 6ffentliche Benchmarks
fiir Stereosehen, optischen-Fluss, visuelle Odometrie und 3D-Objekterkennung gestar-
tet. Seitdem wurden weitere Benchmarks zur Tiefenvervollstindigung, semantischen
Segmentierung und Szenenfluss-Schiatzung aufgenommen [GLU12, MG15a]. Obschon
dieser Datensatz ein bedeutender Meilenstein fiir die Validierung von kamera- und
lidarbasierter Signalverarbeitung ist, hat er aufgrund fehlender Radardaten keine direkte
Relevanz fiir radarbasierte Signalverarbeitung.

In 2019 wurde deshalb durch [CBL*19] der nuScenes-Multi-Sensor-Datensatz ver-
offentlicht. Dieser beinhaltet neben Daten aus Kamera und Lidar auch Punktwolken
aus Radarsensoren. Der Datensatz beinhaltet Daten aus etwa 242 km Fahrtstrecken in
Boston, USA und Singapur. Die Annotationen in Form von 3D-Bounding-Boxen (BBox)
wurden primér von menschlichen Labelern bereitgestellt. Als BBox werden rechteckige
Hillen bezeichnet, welche in Kamerabildern oder Punktwolken eingezeichnet werden
und die einzelnen Objekte umschlieBen. Da fiir die Radarsensoren keine Frequenzdaten
vorliegen, aus denen mittels Signalverarbeitung die Detektionen gebildet werden, hat
dieser Datensatz keine wesentliche Bedeutung fiir die vorliegende Arbeit und die Ent-
wicklung entsprechender Signalverarbeitung. Als neuerer Datensatz mit Kamera- und
Lidardaten sei der Waymo-Datensatz [SKDT20, ECCt, CGQ™23] zu nennen. Da keine
Radardaten enthalten sind, hat auch dieser Datensatz keine Relevanz fiir die vorliegende
Arbeit.

Ahnliche Restriktionen ergeben sind fiir die Datensitze aus [COR™16] und [NOBK17].

Die Sensordaten aus automotiven Radarsensoren, insbesondere niedriger Signalebene,
sind fir den Menschen nicht/kaum zu interpretieren und konnten daher nicht, wie z.B.
Kamerabilder, manuell annotiert werden. In den letzten Jahren haben sich jedoch auch
hier Verfahren und Datensétze entwickelt, welche das Training und die Validierung
radarbasierter Signalverarbeitungen ermoglichen. Eine unvollstdndige Zusammenfassung
publizierter Verfahren zur automatischen Annotation von Radardaten und dazugehérigen
Datensétzen ist nachfolgend gegeben.

2018 2018 wurden durch [HHBD18] Punktwolken automatisch annotiert. Dabei wurde
keine Referenzsensorik verwendet und die Punktwolken durch Vorwarts- und Riick-
wiartsaggregation/Registrierung der Punktwolken verdichtet. Nach der Aggregation
wurde einmalig ein NN zur Objektdetektion in den Punktwolken trainiert, welches
anschliefend zur Annotation des gesamten Datensatzes verwendet wurde. Da der Fokus




1.1. Auflistung automotiver Datensdtze und verwandter Arbeiten

der vorliegenden Arbeit die Generierung von Punktwolken selbst ist, ist dieser Ansatz
nicht ohne Weiteres kompatibel.

2019 2019 wurde durch [Lim19] neben der radarbasierten Signalverarbeitung eine
parallele Signalverarbeitung von Kameradaten mittels NN eingefiihrt. Die Signale
wurden fusioniert und so eine verbesserte Detektion von Fahrzeugen erreicht. Fahrzeuge
wurden semi-automatisch anhand von Lidar-Punktwolken annotiert.

In [MFA™19] wurde ein Fahrzeug mit Lidar, Kamera und Radar ausgestattet. In den
gefahrenen Autobahnszenarien wurden anhand der Lidar-Punktwolken semi-automatisch
Fahrzeuge detektiert und verfolgt. Diese wurden als Annotation fiir das Training einer
Radarsignalverarbeitung mittels NN genutzt. Die Verkniipfung der Annotationen und der
Radardaten erfolgt durch Transformation der Radardaten, gegeben in Polarkoordinaten,
in das kartesische Koordinatensystem der Lidar-Punktwolken.

Durch [MK19] wurde ein Datensatz bestehend aus Kamerabildern, Lidar- und Radar-
Punktwolken verdffentlicht. Darin sind 3D-BBox fiir Fahrzeuge und Fuflginger enthalten.
Auflerdem wird beschrieben, wie durch ,, Active Learning* der manuelle Annotationsauf-
wand verringert werden konnte.

2020 TIm Jahr 2020 wurde durch [NKK ™ 20] eine Freiraumerkennung mittels Convolutional-
Neural-Network (CNN) auf Radardaten trainiert. Die Annotationen wurden dabei
automatisch mittels ,,Structure from Motion* aus Kameradaten erzeugt.

Durch [PDKG20] wurde eine Objekterkennung fiir FuBgéanger, Fahrzeuge und Fahr-
radfahrer mittels NN auf range-azimuth-Doppler (RAD)-Spektren vorgestellt. Als An-
notationen wurden in den Bildern der verwendeten Stereo-Kamera 3D-BBox fiir die
Instanzen detektiert.

[DWZL20] haben Fahrzeuge durch eine NN basierte Radarsignalverarbeitung detek-
tiert. Die Annotationen fiir das Training wurden automatisch durch eine Signalverarbei-
tung von Lidar-Punktwolken generiert.

[MWRH20] haben den Zendar-Datensatz veroffentlicht. Dabei wurde eine Detektion
bewegter Fahrzeuge mittels CNN Signalverarbeitung von RD-maps erreicht. Zur Anno-
tation der Daten wurden mittels klassischer Verarbeitung Objekte im RAD-Spektrum
detektiert und in ein Synthetic-Aperture-Radar (SAR)-Bild projiziert. Durch die Pro-
jektion wurden bewegte von stationdren Objekten diskriminiert.

Der CARRADA-Datensatz wurde von [ONR™121] verdffentlicht. In dem Datensatz
wurden Objekte der Klassen Fuflginger, Fahrzeug oder Fahrrad in den Kamerabildern
detektiert und verfolgt. Gleichzeitig werden im Radar RAD-Spektrum Ziele mittels eines
klasisschen Constant-False-Alarm-Rate (CFAR)-Detektors erkannt und anschliefend
zu Instanzen geclustert. Durch Assoziation der Instanzen aus Radar und Kameradaten
werden die Annotationen aus den Kamerabildern in das Radar Spektrum projiziert. Die
Annotationen fiir den Radar sind entsprechend stark durch die Detektion mittels CFAR
bestimmt. In der vorliegenden Arbeit ist die Annotation der Radardaten, basierend
ausschliefllich auf den Daten der Referenzsensorik, gewiinscht, um so nicht durch eine
vorhandene Radarsignalverarbeitung beeinflusst zu werden.

[BGM™20] haben den Ozford Radar RobotCar-Datensatz vorgestellt. Dieser beinhaltet
neben Kamerabildern und Lidar-Punktwolken auch range-Azimuth (RA)-Spektren eines
Radarsensors. In [KDMGN20] wurde dieser Datensatz verwendet, um aus Kamera- und
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Lidardaten semantische Annotationen fiir Radar-Punktwolken zu schaffen, gegen welche
ein CNN zur Radar-Signalverarbeitung trainiert wurde.

Durch [KPC20] wurde der MulRan-Datensatz veréffentlicht. Dieser beinhaltet neben
Lidar-Punktwolken auch RA-Spektren eines verwendeten Radarsensors. Ziel dieses Da-
tensatzes ist die Positionserkennung mit Radar und Lidar. Es werden keine Annotationen
fiir weitere Radaranwendungen geliefert.

[BRZB20] veroffentlichten den Pointillism-Datensatz. Darin sind Punktwolken mehre-
rer Radar- und Lidarsensoren sowie Kamerabilder enthalten. Der Fokus dieses Datensat-
zes liegt in der Fusion von Punktwolken mehrerer Radarsensoren zur Objektdetektion.

[GMJ20] veréffentlichten ein Verfahren und einen Datensatz zur Schiitzung hoch-
auflosender Bilder aus Radar-Heatmaps. Ein Generative-Adversarial-Network (GAN)
prozessiert dabei die Heatmaps aus Radarsensoren und imitiert dadurch hochaufgeloste
Tiefenbilder aus einem Stereo-Kamera-System.

2021 Im RADDet-Datensatz [ZNL21] aus dem Jahr 2021 wurden Personen, Fahrrider
und Fahrzeuge in Radarpunktwolken und Kamerabildern detektiert, miteinander fusio-
niert und verfolgt. Die fusionierten Objekte wurden in das RAD-Spektrum projiziert
und dienten so als Annotation fiir das Training einer NN basierten Objekterkennung
auf Radardaten.

[WJLT21, WWH™21] stellten den CRUW-Datensatz vor. Aufgabe ist das Trai-
ning einer Objekterkennung von Fufligingern, Fahrradfahrern und Fahrzeugen mittels
NN basierter Signalverarbeitung der Radar-Frequenzdaten. Annotationen werden aus
Kamerabildern und Radar-Punktwolken generiert.

Durch [SDPM*21] wurde ein weiterer Datensatz mit Kamerabildern, Lidar-Punktwolken
und RA-Spektren verdffentlicht. Im Gegensatz zu anderen Datensétzen lag der Fokus
dabei auf der Bereitstellung von Daten aus unterschiedlichen Witterungsbedingungen.
So beinhaltet der Datensatz Aufnahmen aus sonnigen, verregneten, dunklen, verne-
belten und verschneiten Tagen. Im Datensatz wurden Fahrzeuge und Fufliginger als
2D-BBox annotiert. [SHST21] hat den RadarScenes-Datensatz bereitgestellt. Annota-
tionen wurden fiir Fahrzeuge, Fufliginger und Tiere generiert. Eine Beschreibung des
manuellen Annotationsprozesses ist u.a. in [Rad21] dokumentiert. Der Datensatz enthélt
unkalibrierte Kamerabilder und Radar-Punktwolken.

[KSRD21] veroffentlichte den Radar Ghost-Datensatz und ein NN basiertes Verfahren
zur automatischen Detektion von sogenannten Geisterreflexionen in Radar-Punktwolken.

Durch [DD21] wurde ein Verfahren vorgestellt, um aus RD-maps des Radars Kamera-
bilder zu rekonstruieren. Dabei kamen Variational-Autoencoder (VAE) zum Lernen des
Merkmalraums zum Einsatz.

[MKT?21] detektierten Fahrzeuge in RAD-Spektren mittels Graph-NN.

Durch [WJP21] wurde ein GAN als generatives Modell zur Erzeugung von Radar
RA-Spektren vorgestellt. Dabei wurden dem GAN Elevationskarten aus Lidar und die
RA-Spektren aus dem Radar présentiert und das GAN so trainiert, dass Daten aus der
jeweils anderen Sensordoméne pradiziert werden konnten. Die gezeigten Beispiele sehen
plausibel aus und durch Doménen-Adaption konnten weiterhin synthetische Radardaten
aus simulierten Lidar-Elevationskarten erzeugt werden.

2022 Im Jahr 2022 wurde von [ROMP22]| der RADIal-Datensatz vorgestellt. Es ste-
hen Kamerabilder, Lidar- und Radarpunktwolken sowie Radarfrequenzspektren zur
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Verfiigung. Der Fokus dieses Datensatzes liegt auf der Objekterkennung und Freirau-
merkennung mittels Radarpunktwolken und Radarfrequenzspektren. Entsprechende
Annotationen werden bereitgestellt.

Zwischen 2021 und 2022 wurde durch [GXRL21, GLX122] der UWCR-Datensatz
beschrieben und veréffentlicht. Dieser beinhaltet Kamerabilder und ADU-Daten eines
verwendeten Radarsensors. Annotationen wurden fiir Fahrradfahrer, Fugénger und
Fahrzeuge in Form von 3D-BBox bereitgestellt.

Durch [PPBT22] wurde der View of Delft-Datensatz verdffentlicht. Dieser beinhaltet
Bilder aus einem Stereo-Kamera System, Lidar- und Radar-Punktwolken aus urbanen
Szenarien. Annotiert wurden 3D-BBox fiir u.a. Fahrzeuge, Fuigdnger, Fahrrad- und
Motorradfahrer. [ZMZT22] verdffentlichten den T.J4DRadSet-Datensatz. Neben Kame-
rabildern sind Lidar- und Radar-Punktwolken vorhanden. Annotiert wurden 3D-BBox
von bewegten Objekten. Gefahren wurde in Suzhou, China.

[PKW22] haben den K-Radar-Datensatz veroffentlicht. Er beinhaltet Kamerabilder,
Lidar-Punktwolken und range-azimuth-elevation-Doppler (RAED)-Spektren. Annotiert
wurden 3D-BBox bewegter Objekte. Hervorzuheben ist die auffillig umfassende Doku-
mentation des Kalibrier- und Annotationsprozesses [Ka22].

Durch [BRB22] wurde ein weiteres Verfahren iiber die Fusion von Kamerabildern und
Radarpunktwolken zur Detektion von Fahrzeugen vorgestellt.

[KWL22] verdffentlichten ein Verfahren zur Erkennung von Verdeckungen durch
Reflektoren in Radardaten. Zum Einsatz kam ein NN welches RA-Spektren prozes-
sierte und versuchte, Verdeckungen zu detektieren. Trainiert wurde das NN gegen
Lidar-Punktwolken. Durch die unterschiedlichen Wahrnehmungseigenschaften von Li-
dar und Radar kam es zu Falschdetektionen nach dem Training. Aus diesem Grund
wurden Vorverarbeitungsschritte unternommen, um diese unterschiedlichen Wahrneh-
mungseigenschaften zu beriicksichtigen und schlussendlich die Falschdetektionen zu
reduzieren.

2023 TIm Jahr 2023 wurde durch [MBB™23] der aiMotive-Datensatz verdffentlicht.
Dieser beinhaltet synchronisierte und kalibrierte Daten aus Lidar (Punktwolke), Kamera
(Bild) und Radar (Punktwolke). Es wurden 3D-BBox fiir Fahrzeuge, Fuigénger, Motor-
und Fahrriader, Anhdnger und Ziige bereitgestellt.

Zwischen 2020 und 2023 wurde durch [DSH'20,DSVH™"21,Dim23] der IMEC tracking-
Datensatz vorgestellt. Dieser beinhaltet Sensordaten aus Radar (Punktwolken und RAD-
Spektren), Kamera (Bilder) und Lidar (Punktwolke). Der Datensatz ist iber [Gen23]
erreichbar. Annotiert wurden Fuflgianger und Fahrzeuge in Form von BBox.

Durch [CYH 23] wurde der MSC-RAD/R-Datensatz verdffentlicht. Er beinhaltet
neben Bildern aus einem Stereo-Kamerasystem auch Punktwolken aus Lidar- und
Radarsensoren. Annotiert wurden 3D-BBox bewegter Objekte.

[EHR23] stellten einen Datensatz zur Untersuchung von Radar-Cross-Section (RCS)
Abhéngigkeiten in typischen Fahrszenarien vor. Dabei wurden Fahrzeuge vor einem
verfolgenden Radarsensor bewegt, die Punktwolken des Radarsensors akquiriert und
so die Abhéngigkeit von RCS gegeniiber z.B. Aspektwinkeln bei unterschiedlichen
Fahrzeugen gemessen.

In [KKPD23] wurde ein Verfahren vorgestellt, welches automatisch Stérziele in Radar-
Punktwolken und echte (bewegt und stationar) Ziele klassifiziert. Als Ursache fiir diese
Storziele wurden insbesondere Mehrwegeausbreitungen in der Propagation der ausgesen-
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deten EM-Wellen des Radars genannt. Diese kénnen nachgelagerte Signalverarbeitungen
storen und sind deshalb zu identifizieren.

Durch [BWY 22, BYW 23] wurde der Boreas-Datensatz vorgestellt. Neben Kame-
rabildern und Lidar-Punktwolken sind RD-Spektren eines Radarsensors vorhanden.
Annotationen wurden in Form von 3D-BBox fiir Fufliginger, Fahrzeuge und Fahrrad-
fahrer zur Verfiigung gestellt. [JDFMV23] stellten eine NN basierte Freiraum- und
Fahrzeugerkennung anhand von RAD-Spektren vor. Annotationen dafiir wurden aus
Kamerabildern gewonnen.

Durch [HBS™23] wurden semi-automatisch automotive Radardaten anhand von Luft-
aufnahmen annotiert. Die Kamerabilder wurden durch Unmanned-Aerial-Vehicle (UAV)
bzw. Drohnen akquiriert und anschliefend durch panoptische Segmentierung verarbeitet.
Durch die genaue Kenntnis der Pose von Drohne und Radarsensor konnte die Segmen-
tierung so in das Koordinatensystem des Radars {iberfithrt werden.

Fiir den interessierten Leser sind dariiber hinaus in [ZLZ122,SM23, ZHO23] umfang-
reiche Ubersichten zum Stand der Wissenschaft dokumentiert.

Leider wurden viele der genannten Datensétze erst veroffentlicht, als die praktische
Arbeit zu diesemm Werk bereits abgeschlossen war. Somit wurde ein eigener, nicht
Offentlicher Datensatz fiir das Training und den Test von Algorithmen entwickelt. Die
dabei gemachten Beobachtungen und Methoden sind in diesem Werk niedergeschrieben.

1.2. Wissenschaftlicher Beitrag dieser Arbeit

Bei den im vorigen Abschnitt genannten Arbeiten wurden meist Radardaten ausschlief3-
lich in Form von Punktwolken bereitgestellt. Diese werden, wie im nachfolgenden Kapitel
ndher beschrieben wird, durch die Detektion signifikanter Reflektoren im empfangenen
Reflexionssignal extrahiert und somit ist bereits ein Grofiteil der Signalverarbeitung
verrichtet. Da die Detektionen hiufig mittels CFAR Algorithmen gebildet werden, wird
haufig von Pra- oder Post-CFAR Signalverarbeitungsbene gesprochen. In der zu Be-
ginn dieses Kapitels genannten Einteilung der Signalverarbeitungsebenen entspricht
dies Level 1-2 und 3-5. Fiir die Entwicklung von NN basierter Signalverarbeitung von
Pra-CFAR-Algorithmen sind entsprechend auch nur Datensétze mit Eingangsdaten vor
dieser Detektionsschicht niitzlich.

Ein weiteres Problem der meisten Datenséatze ist, dass die Annotationen nur Zielwerte
fiir Objekte der Klasse Fulginger und Fahrzeuge bereitstellen. Gerade in urbanen Fahr-
szenarien kann ein wesentlicher Anteil der Reflexionen jedoch von stationdren Objekten
wie Fahrbahnen und Randbebauungen ausgehen. Da automotive Radarsensoren auch
diese stationdren Ziele erkennen miissen, sind entsprechende Annotationen notwendig.

Mit dieser Arbeit wird gezeigt, wie sich Annotationen fiir automotive Pra-CFAR
Radardaten unabhéngig von ihrer Klasse automatisch erzeugen lassen. Dazu wird ein
Verfahren vorgestellt, mit welchem sich Sensordaten von Radar- und Kamerasensoren
automatisch miteinander assoziieren lassen. Fiir jedes Kamerapixel werden die entspre-
chenden Bins/Gates/Pixel im Pra-CFAR Frequenzspektrum des Radars ermittelt und
der Szeneninhalt somit zueinander in Verbindung gebracht. Durch diese Assoziation
lassen sich hochwertige Annotationen aus Kameradaten fiir das Training von tiberwach-
ten Lernverfahren auf Radardaten anwenden. Die Assoziation zwischen Kamera und
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Radardaten ist nicht trivial, da beide Sensoren auf unterschiedlichen Messprinzipien
arbeiten und insbesondere auch einen anderen Messraum besitzen. So 16st der Radar
beispielsweise die Geschwindigkeit von Reflexionen auf, was der Kamera vorenthalten
bleibt. In dieser Arbeit wird der Messraum der Kamera durch automatische Schiatzung
der Geschwindigkeit mit einem neuen Verfahren zur Szenenfluss-Schétzung erweitert.
Dabei wird fiir den Inhalt jedes Kamerapixels die Geschwindigkeit im Raum geschatzt
und somit die Doppler-Messfahigkeit des Radars nachgebildet.

Die Hauptmotivation dieser Arbeit liegt auf der Ermoglichung von iiberwachtem
Training einer Signalverarbeitung von Pra-CFAR Radardaten durch NN. Der vorge-
schlagene Ansatz ist in Abbildung 1.1 dargestellt. Er kann als generischer Ansatz fiir
die ,kreuzmodale“ Uberwachung von NN basierter Signalverarbeitung von Frequency-
Modulated-Continuous-Wave (FMCW) Radarsignalen betrachtet werden. Fiir die Pro-
jektion von Radardaten auf Kamerabilder wird eine Warping Schicht vorgestellt, welche
differenzierbar ist und so in den Trainingsprozess mittels Fehlerriickfithrung (engl.:
werror backpropagation®) eingebaut werden kann.

Szenenfluss- &
-------------- . Neuronales

, g Tiefenschatzung Netzwerk

Lidar & Etikettierung N .
Kamera | | (Optisches Modell) _t warpihg
¥ e
S oo Fehlerriickfithrung

Abbildung 1.1.: Ubersicht iiber die Trainingspipeline zum iiberwachten Ler-
nen eines Radar NN: Das NN auf der rechten Seite wird durch
Radardaten gespeist und fiihre eine Inferenz aus. Diese Inferenz wird
durch die Warping Schicht auf das Kamerabild projiziert und mit den
Zielwerten aus dem optischen Modell verglichen. Etwaige Abweichun-
gen werden durch Fehlerriickfiihrung durch die Schichten propagiert
und entsprechend die NN Parameter optimiert. Die Warpingschicht
wird durch Szenenfluss und Tiefenschitzung im Kamerabild unterstiitzt.
Nach [EB6].

Diese Trainings-Pipeline wird fiir die folgenden radarbasierten Anwendungen demons-
triert

 Direction-of-Arrival (DoA) Schitzungen (Abschnitt 7.2),
o Zieldetektionen (Abschnitt 7.3) und

o semantischen Segmentierungen (Abschnitt 7.4).

In dieser Pipeline ergibt sich eine sogenannte , Teacher/Student“ Rollenverteilung
[HVD15, HLL"23]. Das optische Modell liefert die Zielwerte und nimmt damit die Rolle
des ,Lehrers“ ein. Das NN im Radar-Zweig wird gegen diese Zielwerte trainiert und ist
somit in der Rolle des ,Studenten. Es wird auch gezeigt, dass sich diese Rollenverteilung
umkehren lasst, womit Zielwerte von Radar und Eingangsdaten von Kamera geliefert
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werden. Demonstriert wird dies mit der Schiatzung der Radar-Empfangsleistung aus
Kamerabildern (Abschnitt 7.5).

1.3. Gliederung dieser Arbeit

Der Rest dieser Arbeit ist wie folgt gegliedert. Kapitel 2 gibt eine kurze Einfithrung
in die notwendigen Grundlagen zur klassischen Signalverarbeitung fiir automotive Ra-
darsysteme sowie eine Einfiihrung in die Optimierung von NNen. In Kapitel 3 wird
das gewéahlte Referenzsensorsystem vorgestellt und die notwendigen Kalibrierungen
diskutiert. Kapitel 4 befasst sich mit der Vorverarbeitung der Signale aus dem Refe-
renzsensorsystem. In Kapitel 5 wird ein bestehendes Szenenflussverfahren erweitert und
damit eine verbesserte Geschwindigkeitsschitzung der Umgebung erreicht. In Kapitel 6
wird die Projektion von Radarfrequenzdaten in das Kamerabild vorgestellt und dabei
unter anderem die Prozessierung aus den vorigen Kapiteln genutzt. Damit werden in
Kapitel 7 einige Anwendungen der NN Signalverarbeitung trainiert und der Wert der in
dieser Arbeit vorgestellten Methoden bemessen. In Kapitel 8 wird die Arbeit zusammen-
gefasst und ein Ausblick gegeben. Abkiirzungsverzeichnis, Ubersicht der Symbole und
Notationen, Abbildungs-, Tabellen- und Literaturverzeichnis sind dahinter zu finden.




2. Grundlagen zur Signalverarbeitung

In diesem Kapitel werden zunéchst die zum Verstdndnis dieser Arbeit notwendigen
Grundlagen zur klassischen Signalverarbeitung von Radarsignalen fiir automotive An-
wendungen beschrieben. Anschliefend werden die notwendigen Grundlagen fiir die
Optimierung von NNen beschrieben.

2.1. Radarsignalverarbeitung fiir automotive Anwendungen

Radartechnik wurde erstmals vor etwa 115 Jahren durch Christian Hiilsmeyer entwickelt
[Hii04a, Hii04b]. Das entwickelte, ,, Telemobiloskop“ genannte Messsystem wurde fiir
die Fernortung von Schiffen bei schlechter Sicht eingesetzt. Eine Abbildung aus den
Patentschriften ist in Abbildung 2.1 zu sehen.

Abbildung 2.1.: Patentzeichung: zur Schifffernortung aus [Hii04a].

Schon damals erkannte Hiilsemeyer die besondere Bedeutung der theoretischen Ab-
handlung Maxwells von 1873 iiber die elektromagnetischen Wellen, welche 1886 durch
Hertz experimentell nachgewiesen werden konnten [Hun91]. Es dauerte noch einige
Jahre, bis sich die Technik Hiilsemeyers in der Luft- und Seeraumiiberwachung etablier-
te. Einem wesentlich breiteren Nutzerpublikum erreichte die Radartechnik durch den
Einzug in die Automibiltechnik um 1979 [Mei98].

Um aus den Sensorsignalen Warnhinweise fiir Fahrer zu présentieren oder automati-
sche Regeleingriffe durch das Fahrerassistenzsystem durchzufiihren, ist eine automatische
Auswertung der Radarsignale notwendig. Einige der etablierten Verfahren zur Signalver-
arbeitung werden in diesem Kapitel vorgestellt. Ziel dieses Kapitels ist es, einen Einblick
in elementare Aspekte der Radarsignalverarbeitung zu geben, die zum Verstdndnis
dieser Arbeit notwendig sind. Begonnen wird dabei bei einem Modell zur Beschreibung
der Interaktion der vom Radar emittierten Signale an Reflektoren. Darauf folgend wird
eine kurze Definition der relativen Grofien erfolgen, ehe in einem weiteren Abschnitt auf
klassische Signalverarbeitung fiir automotive Radarsysteme eingegangen wird. Mit Hilfe
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dieser Signalverarbeitung lassen sich die von den Reflektoren zuriickgeworfenen Signale
verarbeiten und wichtige Zustandsgrofien schétzen.
Kein Aspekt dieser Arbeit werden z.B. Informationen zur Antennentechnik sein.

2.1.1. Reflexionspfad

Ein typisches automotives Radargeréit sendet EM-Wellen in einem Frequenzbereich um
24 GHz oder 77 GHz aus. Diese Wellen sind grofitenteils durch Phasenlage, Amplitude,
Polarisation und Wellenldnge spezifiziert. Durch Interaktion, z.B. durch Reflexion, mit
der Umgebung, werden die Welleneigenschaften verdndert. Eine Beschreibung fiir diese
Welleninteraktion liefern beispielsweise die Fresnelschen-Formeln [Roy08], welche die
Anderung der EM-Welle an Grenzflichen beschreibt. Weisen diese Grenzflichen eine
Anderung des Brechungsindex auf, so wird die Welle teilweise wieder in das urspriingliche
Ubertragungsmedium reflektiert. Ein anderer Teil der urspriinglichen Welle propagiert
in das neue Medium. Die sich daraus ergebenden Wellen werden dann als Reflexion und
Transmission beschrieben. In Abhéngigkeit von dem Einfallswinkel auf der Grenzfliche,
der Polarisation der Welle, der Wellenldnge und dem Brechungsindex der Medien werden
die Amplitude und die Polarisation der EM-Welle skaliert. Ein Beispiel der Fresnelschen
Formel sei gegeben als die relative Signalamplitude der Reflexion und Transmission bei
senkrechter (( ) s) und paralleler (( . .)p) Polarisation! in der Ebene aufgespannt von

Einfallsvektor und Ausfallsvektor

Ey _ 2Nq cos ae (2.1)
Eoe ) Ny cos ae + //j;é Ny cos ag ’
Ey, B Ny cosae — Zg Ny cos ag 2.9)
Eoe ), ~ Njcosae + %Ng oS (g ’
Eyy _ 2Nj cos ae (2.3)
Epe » Ny cosag + Zg Ny cos ae

Ey, B —Nj cos ag + %NQ COS Qe (2.4)
Eye ~ Njcosag + %Nz CoS (re ’

Hier entsprechen Ey;, Ey, und Ey. der Wellenamplitude fiir Transmission, Reflexion
und der einfallenden Welle. Weiterhin beschreiben Ni und N9 die Brechungsindices
der Medien, o, und «, sind Winkel zwischen Ein-/Ausfallsvektor und Oberflichennor-
malen und p,q, -0 magnetische Permeabilitdt der Medien. Zur Veranschaulichung der
Welleninteraktion an Grenzflichen ist in Abbildung 2.2 eine graphische Darstellung
gegeben. Hierin weisen obere und untere Halbebene unterschiedliche Brechungsindices
auf. Die Strahlen sind rot, die senkrechten und parallelen Polarisationen blau und griin
dargestellt. Der von oben links kommende Strahl wird an der Grenzfliche in beide
Materialien reflektiert. Ein- und Ausfallswinkel fiir Fy, und Ey, sind entsprechend des
Snelliusschen Brechungsgesetzes identisch eingezeichnet [BDE™09].

Weitere Informationen zur Thematik konnen in grundlegender Literatur zur Elektrody-
namik, Photonik oder physikalischen Optik, beispielsweise [BDE109], gefunden werden.

'Man spricht hierbei von linearer Polarisation. Beliebige Polarisationsrichtungen kénnen aus diesen
Polarisationsrichtungen kombiniert werden.
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Abbildung 2.2.: Reflexion an Grenzflichen: Ein von oben links kommender Strahl
wird an der Grenzfliche (Trennfliche zwischen oberer und unterer
Halbebene) in das Material und die Umgebung reflektiert. Eintreffende
und reflektierende Strahlen sind rot dargestellt. Senkrechte und parallele
Polarisation zur Bildebene sind blau und griin dargestellt.

Eine anschauliche Ubersicht weiterer Reflexionsmodelle ist z.B. in [TFR21] zu finden. Ei-
ne vorgefertigte Literaturiibersicht zu allgemeinen Themen der Radarsignalverarbeitung
ist in [ZHO23| zu finden.

Wird die reflektierte Welle wieder in Richtung des Radarsensors geworfen, so kann
der Sensor die Welle abtasten (Amplitude, Polarisation) und durch geschickte Signalver-
arbeitung die Reflexionsparameter wie Reflexionsamplitude, Entfernung, Doppler und
Einfallswinkel schéitzen. Schwierigkeiten bei der Signalverarbeitung ergeben sich insbe-
sondere durch Uberlagerungen der Wellen aus der gesamten Szene und durch parasitéire
Storsignale (z.B. thermisches Rauschen, elektromagnetische Storeinstrahlung), welche
bei der Signalabtastung mit aufgezeichnet werden.

2.1.2. Definition des Radarkoordinatensystems

Die Reflexionsparameter sind relativ zur Position und Bewegung des Radarsensors zu
betrachten, welcher hier an einer beliebigen Position der Fahrzeugkarosserie montiert
ist. Es sei ein kartesisches Koordinatensystem (KOOS) P mit den Einheitsvektoren
{e Pla]> €P[y]- © P[z]} fest im Ursprung des Radarsensors definiert, vgl. Abbildung 2.3. Mit
Hilfe dieses KOOSs lésst sich die Lage von Reflektoren aus Sicht des Radarsensors
beschreiben. Dazu sei beispielhaft ein Reflektor T definiert, welcher sich an der Position

T
P= [p[x],p[y],p[zﬂ im Koordinatensystem P befindet.

In der Radarsignalverarbeitung ist eine Darstellung in Kugelkoordinaten iiblich.
Dazu sei im Ursprung von P ein weiteres Koordinatensystem B definiert, dessen erste

11



2. Grundlagen zur Signalverarbeitung

Abbildung 2.3.: Transformation der Koordinatensysteme: Reflektor im Radar
Koordinatensystem, adaptiert von [Gva,Bos].

Koordinate bm in Richtung des Reflektors zeigt.2 Die Position des Reflektors im
kartesischen Koordinatensystem lasst sich angeben durch

Pla] cos(¢az) cos(¢e1) —sin(Paz) —cos(¢az) sin(@el) | | bfa]
P= |P[y| = |sin(az) cos(del) OS(Paz) —sin(¢az)sin(de) | |bfy] - (2.5)
Pl sin(¢e)) 0 cos(¢el) by

Die Koordinatentransformation von B nach P (,passive Drehung“) ergibt sich aus
sequentieller Euler-Rotation um By und P, um die Winkel ¢, und ¢,z. Diese Winkel
werden im weiteren Verlauf dieser Arbeit als Elevati%nswinkel und Azimutwinkel bezeich-
net. Die kartesischen Koordinaten {pm Ply) p[z]] fur den Reflektor werden berechnet
(Gleichung 2.5) durch das Einsetzen der Winkel ¢4, und ¢ sowie des Translationsvektors

T T

b= [b[z] b[y] b[zﬂ = [7“ 0 0} .
Neben der Position sei noch die Geschwindigkeit in Kugelkoordinaten definiert. Es
sei eine rein translatorische Bewegung in p(¢) angenommen. Die polare Geschwindigkeit

ergibt sich dann durch Umstellung von Gleichung 2.5 nach b(t¢) aus der zeitlichen
Ableitung der Position in Kugelkoordinaten entsprechend

cos(@az) cos(de1)  sin(@az) cos(der)  sin(ge)
dlc)lit) = —sin(¢az) cos(¢az) 0 dl()iit) (2.6)
—cos(¢az) sin(@e1) —sin(gaz) sin(@er) cos(gel)

dbpg) dbyy dby,

Hier entsprechen “dr der Radialgeschwindigkeit und “ar und a den zwei Tangen-

dpp, dp dp
tialgeschwindigkeitskomponenten. Die Komponenten [x], d[ty] und d[tz}

der longitudinalen, lateralen und vertikalen Geschwindigkeit am Sensorursprung.

entsprechen

2Hinweis: In Abbildung 2.3 wurde das Koordinatensystem B aus Griinden der Ubersichtlichkeit in die
Position des Reflektors geschoben, befindet sich jedoch im Ursprung von P.

12



2.1. Radarsignalverarbeitung fiir automotive Anwendungen

2.1.3. Signalmodulation und Vorverarbeitung

In den beiden vorangegangenen Abschnitten wurde eine Definition von Reflexion an
Grenzflichen zweier Ubertragungsmedien und eine Definition von relativen Koordinaten
gegeben. In diesem Abschnitt werden die Signalmodulation und Signalaufbereitung
beschrieben, um spater eine Schétzung der Reflexionsparameter iiber Signalverarbeitung
zu ermoglichen. Wir konzentrieren uns dabei ausschliefllich auf eine Modulation nach
dem sogenannten ,FMCW Chirp Sequence“ Prinzip, welches nachfolgend erldutert wird.
FMCW beschreibt dabei, dass die vom Radarsensor ausgestrahlten EM-Welle in ihrer
Frequenz nicht konstant sind. Der Begriff Chirp-Sequence (CS) fasst dabei zusammen,
dass eine Folge von Wellen transmittiert wird.

2.1.3.1. Sendesignal

Das in dieser Arbeit verwendete Radargerdt verwendet ein Sendesignal der Klasse
FMCW-CS. Hierbei wird fiir einen kurzen Zeitbereich eine Sequenz von frequenzmodu-
lierten EM-Wellen, den sogenannten Chirps, ausgesendet.

Nach [Sch13] kann das frequenzmodulierte Sendesignal eines Chirps dargestellt werden,
als

STX(t) = ATX COs @Tx(t) = ATX COS (27‘1’ (f()t + QJ%Z‘:VTPﬂ)) y (27)
chirp

wobei Arx, fo, fsweep und T die Amplitude des Sendesignals, die Grundfrequenz,
die Bandbreite und die Chirpperiode sind. t ist die Zeitvariable.

2.1.3.2. Empfangssignal

Das Sendesignal propagiert mit Lichtgeschwindigkeit durch die Szene und wird an
Grenzflichen verschiedener Ubertragungsmedien reflektiert, siehe Unterabschnitt 2.1.1.
Strahlen die reflektierten Wellen wieder in Richtung des Sensors, kann ihre EM-Wirkung
dort durch einen ADU zeitdiskret abgetastet werden. Die Abtastung erfolgt iiber die
Dauer eines Chirps. Das Empfangssignal sei als zeitlich verschobene und geddmpfte
Kopie des Sendesignals modelliert

spx () = Arx cos (O1x (t—7(t))), (2.8)

mit Amplitude Agx.

Die Signallatenz 7 ergibt sich fiir Ziele konstanter Geschwindigkeit zu

t
r(t) = 270t Ut (2.9)
c

wobei 1, vr und ¢ der initiale Zielabstand, die radiale Relativgeschwindigkeit und die
Lichtgeschwindigkeit sind.

Das Signal sgx wird anschliefend mit dem Sendesignal gemischt, tiefpassgefiltert und
hier unter der Annahme Apx = Agrx = 1 durch das Runtermischen auf upyx modelliert
als

54(t) = cos (Opx(t) —Orx(t)) = cos (O4(1)). (2.10)
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2. Grundlagen zur Signalverarbeitung

Weiterfiithrend gilt
. fsweep fsweep 2
Oq(t) =27 | for(t) + =—=tr(t) + —=——1t7(t)" |, (2.11)
Tchirp 2 Tchirp

was durch Einsetzen von Gleichung 2.9, der Wellenldnge A = J% und Vernachléssigung

des Terms mit verschwindend geringer Grofe durch 7(¢)? umformuliert wird in

70 Ur fsweep 0]
Oqt)=2r(2—=+2—t+2 —t]. (2.12)
A A Tehirp €

Folgende zusétzliche Notationen seien definiert

70
=23 2.13
¢0 2\ ) ( )
fp=22 (2.14)

A

und F
70

fp =222 0 2.15
R Tchirp ¢ ( )

wobei ¢, fp und fr eine von der Entfernung abhéngige konstante Phase, die Dopplerfre-
quenz und ein von der Entfernung abhéngige Frequenz sind. Die Zeit wird diskretisiert
zu t = (kTsample + (Tenirp)- Die Argumente k und [ sind Laufindices zur Beschreibung
der Zeit entlang eines Chirps sowie der Zeit iiber mehrere Chirps, in der Regel ,fast-
time“ und ,,slow-time“ genannt. Das zeitkontinuierliche Reflexionssignal eines Chirps

ug(t) wird somit mit einer Abtastperiode von Tgymple = th(“p digital abgetastet zu

S(k, l) = COS <27T (d)O + fR(kTsample + chhirp) 7fD(kTsample + chhirp)))v (2'16)

2.1.3.3. Entfernungsmessung

Mit steigendem J;SWW% wird der Einfluss des Doppler-Anteils innerhalb eines Chirps
chirp

(fpkT, sample) vernachléssigbar gering, so dass sich die Entfernung direkt abschétzen
ldasst. Dazu wird das ins Basisband gemischte Zeitsignal jedes Chirps [ durch eine
Diskrete-Fourier-Transformation (DFT) (im Folgendem ,Range-FT“ genannt) in den
Frequenzraum umgewandelt

K,
Sl 1) = 3 s(k, 1)e 29K (2.17)
=0

[

ol

Das Zeitsignal der Lange K wird im Frequenzraum tiber die Frequenzvariable u
beschrieben. Die Zielentfernung lédsst sich im Frequenzspektrum iiber die Beziehung

C

R = Umax * AR = Umax * (218)

2fsweep '

abschétzen, wobei umax das Frequenzbin des lokalen Maximums im Spektrum ist.

14



2.1. Radarsignalverarbeitung fiir automotive Anwendungen

Im vorliegenden Fall ist das abgetastete Zeitsignal reellwertig, wodurch das Frequenz-
signal hermitesch gespiegelt wird. Signalfrequenzen oberhalb von g werden durch einen

analogen Tiefpass geddmpft.

Eine anschauliche Ubersicht der bisherigen Verarbeitungsschritte von der Signallatenz
zwischen Sende- und Empfangssignal iiber die Darstellung des abgetasten Signals im
Basisband und die Darstellung des Amplitudenspektrums nach der Fouriertransformation
aus Gleichung 2.17 ist in Abbildung 2.4 dargestellt.

Chirp index n

= & = =) S
E 5
+~
| / ,,,,,,,,,,,,,,, -
] n
£ 3
Teit in s (b) Abgestatstes Empfangssignal im Basisband
mit Hervorhebung der Phasenlagen der
(a) Rot: Sendesignal. Griin: Empfangssignal jeweiligen Chirps.
F in H
Chirp index n requenz m He
|
s | =
- - ... L =
o % >> 'S
o= o
N O]
: :
=} o)
g =
=
(d) Amplitudenspektrum nach Range und
(¢) Amplitudenspektrum nach Range DFT Speed DFT

Abbildung 2.4.: Signalmodulation und Vorverarbeitung: Dargestellt sind die vier
elementaren Verarbeitungsschritte bei CS Modulation.

2.1.3.4. Geschwindigkeitsmessung

Fiir die Entfernungsmessung wurde in Unterabschnitt 2.1.3.3 angenommen, dass der
Doppler-Anteil innerhalb eines Chirps aufgrund kurzer Beobachtungszeit vernachléssig-
bar gering ist. Die Beobachtungszeit eines Reflektors {iber mehrere aneinander gereihte
Chirps ist jedoch deutlich linger?, so dass der Einfluss von Doppler bzw. die Geschwindig-
keit iber mehrere Chirps hinweg nicht vernachléssigt werden kann. Die Geschwindigkeit
fithrt dazu, dass sich der radiale Abstand eines Reflektors zum Sensor marginal entlang
der Zeit verdndert. Hierdurch ergibt sich eine Verschiebung der Phase, siche Abb. 2.4b,

3man spricht von der sogenannten ,slow time“
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2. Grundlagen zur Signalverarbeitung

welche durch eine zweite DFT entlang des Chirp Index [ gemessen werden kann
L-1 -
Sra(u, v) = Z Se(u, l)e 2™L (2.19)
=0

Diese DF'T sei weiterfiihrend ,,Speed-DFT* genannt. Diese DF'T hat eine Frequenzauflo-
sung von

1
Afp=——7>+— (2.20)
L- Tchirp
welche mit einer Phasenverschiebung um 2%, vgl. Gleichung 2.9, zu der Relativge-
schwindigkeit
A
’UT == ’Umax . §AfD == Umax . A/U (2.21)

wird, wobei max die zum Reflektor korrespondiernde Binposition im Leistungsspektrum
ist.

Zum einfacheren Verstdndnis der Signale wurden z.B. Kopplungsterme zwischen r
und v, nicht weiter berticksichtigt. Der interessierte Leser sei an dieser Stelle an [Sch13]
verwiesen.

Das Leistungsspektrum nach Range- und Speed-DFT wird héufig als RD-map be-
zeichnet. Werden mehrere Sende- und Empfangsantennen verwendet, so ergibt sich die
RD-map als inkohdrent addiertes Leistungsspektren der Kanéle (S.q;) zu

RD(u, v) = 20logyg Z Srd,i (U, v)‘ . (2.22)
7

Im weiteren Verlauf dieser Arbeit wird die gesamte RD-map als Matrix verarbeitet.
Als Darstellung wird die Notation RDy,, ,; verwendet, bei welcher die Indices der Matrix
in den tiefgestellten eckigen Klammern dargestellt sind.

2.1.3.5. Doppler-Mehrdeutigkeit

Bedingt durch die Signalabtastung verhélt sich, geméfi Nyquist-Shannon Abtasttheorem
[Shad9], die maximale Frequenz reziprok zur Abtastperiode. Dies fithrt dazu, dass die
eindeutige Doppler-Geschwindigkeit aus dem komplexwertigen Signal limitiert ist auf

1
f o0 = f— (2.23)
D,max/min 9 Tchirp

beziehungsweise
A
v

=
r,max,/min 4 Tchirp

(2.24)

Uberschreitet die Geschwindigkeit eines Objektes diese Eindeutigkeitsgrenze, so wird
seine Abbildung in der RD-map zyklisch projiziert. Ein Beispiel dieses Verhaltens ist in
Abbildung 2.5 zu sehen. Die linken beiden Bilder stellen Kamerabilder des Szenarios
dar, aufgenommen rechts seitlich aus dem Fahrzeug, sowie nach hinten gerichtet. Rechts
daneben ist das dazugehorige RD-map dargestellt fiir den Radarsensor, welcher hinten
rechts im Fahrzeug montiert ist. In der RD-map sind zwei gebogene Streifen erhéhter
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2.1. Radarsignalverarbeitung fiir automotive Anwendungen

Helligkeit zu erkennen. Es kann angenommen werden, dass der obere Streifen den
Reflexionen des Bordsteins entspricht und der untere Streifen hochstwahrscheinlich der
Reflexion der Fassade des Industriegebdudes oder des Zaunes entspricht. Bedingt durch
den Einfallswinkel weisen die ausgedehnten Objekte Bordstein, Zaun und Hausfassade-
ausgeprigte kinematische Signaturen auf. Diese starten ungefihr bei -5m s~ Doppler
bis hin zur eindeutigen Doppler-Geschwindigkeit. Danach werden die Ausldufer der
Objekte am linken Rand des RD-maps gespiegelt.

-
|3}
)
5]
=
=
o0
=]
=
a
—
&
+~
=}
€|
1

-10 -5 0 5 10
Doppler in Meter pro Sekunde —

Abbildung 2.5.: Abbildung einer typischen Fahrszene mit stationidren Objekten:
Links: Kameraabbildungen rechts aus dem Fahrzeug heraus, sowie nach
hinten gerichtet. Rechts: RD-map der Szene. Bildhelligkeit verhélt sich
proportional zur Leistung. Szeneninhalt im Kamerabild und RD-map
wurden durch farbige Rechtecke verbunden.

2.1.4. Zieldetektion

In Unterunterabschnitt 2.1.3.2 wurde die Amplitude des Empfangssignals zunéchst
dquivalent zur Sendeamplitude angenommen. Diese Vereinfachung diente ausschlieflich
der anschaulicheren Beschreibung der CS-Vorverarbeitung. Wie aus Unterabschnitt 2.1.1
bekannt ist, findet jedoch eine Amplitudenddmpfung der EM-Welle an Grenzflichen
zwischen zwei Ubertagungsmedien statt. Leider ergeben sich noch weitere Dimpfungen
der Signalamplitude, welche eine Bestimmung der Reflexionsparameter erschweren. Eine
makroskopische Beschreibung dieser Dampfung gibt die bekannte ,,Radargrundglei-
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2. Grundlagen zur Signalverarbeitung

chung“ an:
_ PiGiGrA\2o

P, = (A (2.25)

Hier beschreiben P, und P; die Empfangs- bzw. Sendeleistung. Gy und G, sind
die Verstarkungsfaktoren (,,Antennengewinn®) fiir Sende- und Empfangsantennen. o
ist die Pseudogréfie RCS und gibt die Riickstrahlleistung eines Objektes im Vergleich
zu einem perfekt leitenden Kugelreflektor mit einer Oberfliche von 1m? an. r ist
der einfache Abstand zwischen Radargerédt und Reflektor. Fiir tiefere Einblicke zur
Radargrundgleichung sei auf weiterfithrende Literatur wie [Sko01] verwiesen.

Die Amplitude eines Reflektors in der RD-map ergibt sich aus der Leistung nach
Gleichung 2.25. In Unterabschnitt 2.1.1 wurde bereits erwdhnt, dass sich neben den
Signalen der Reflexion auch parasitdre Rauschanteile in das abgetastete Empfangssi-
gnal mischen. Das breitbandige Rauschen verringert den Signal-Rausch-Abstand bzw.
maskiert die Signale vollstdndig und erschwert deren Detektion. Werden diese Signale
nicht detektiert, so spricht man von einem falsch-negativ (engl.: ,false-negative®) Fehler.
Werden Rauschsignale hingegen félschlicherweise als Ziel detektiert, so spricht man vom
falsch-positiv (engl.: ,false-positive*) Fehler. Letztere Fehler fithren zu sogenannten
Falschalarmen. Im Kontext von Fahrerassistenzsystemen konnten diese Falschalarme
einen Regeleingriff hervorrufen, ohne dass dieser Eingriff gewollt und notwendig gewesen
ware. Bei falsch-negativen Féllen konnte ein notwendiger Regeleingriff ausbleiben. In
ihrer einfachsten Form wird bei der Zieldetektion der Leistungswert des Empfangssignals
ausgewertet und gegeniiber einem definierten Schwellwert verglichen. Uberschreitet die
Leistung den Grenzwert, so wird von einem Ziel ausgegangen. In der Bildverarbeitung
werden dariiber hinaus noch andere Detektionsalgorithmen (Pixel-, Kanten-, Regionen-,
Textur- und modellorientierte Verfahren) [Jah05] verwendet, wobei in der Radarsignal-
verarbeitung hauptsichlich pixelorientierte Verfahren zum Einsatz kommen. Fiir den
interessierten Leser sei ein Beispiel solch eines Detektors nachfolgend gegeben.

Nach [Sch13] seien die Hypothesen

Hy:z = ny (2.26)
H:z = ng+s (2.27)

definiert, bei denen ng4 als komplexwertiges Gauflsches-Rauschen und s als komplexwer-
tiges Signal eines Pixels in der RD-map ist. Ein ,square law detector” versucht dann,
einen adaptiven Schwellwert T zu finden, welcher durch

y < T — Hy (2.28)
y > T— H (2.29)

eine Entscheidung anhand der gemessenen Leistung y = ]:c\Q bzw. hier y = RD u,0] trifft.
Hier wird ein zum Cell Averaging Constant False Alarm Rate (CA-CFAR) analoger
Detektor [Sch13] verwendet. Dieser Detektor schétzt den Rauschpegel und bestimmt
daraus adaptiv den Schwellwert. Die Rauschpegelschétzung entspricht der mittleren
Amplitude der Rauschleistung in der Nachbarschaft eines zu untersuchenden Pixels bzw.
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Zelle in der RD-map:

N N
_ Zutsz ZUtZ*N RD[’LLT+’lLt,’Ur+Ut]

Z
(2N +1)2

. (2.30)

Hierbei sei N definiert als die Grofle der einseitigen Pixelnachbarschaft, welche zur
Schéitzung des Rauschlevels verwendet wird. Die Pixelnachbarschaft besteht somit aus
(2N + 1)2 Pixeln. u, und v, seien die Pixelpositionen in Entfernung und Geschwindig-
keitsrichtung. Parametriert sei der Schwellwert 1" als Summe

T = 7 + 3oy, (2.31)

wobei Z die mittlere Rauschleistung und oy die Standardabweichung des Rauschens ist.
Die Standardabweichung des Rauschens kann beispielsweise iiber die gesamte RD-map
geschatzt werden. Die Leistung eines Pixels in der RD-map muss also um mindestens 3oy
grofler als die mittlere Leistung der Nachbarschaft sein, um als Ziel nach Gleichung 2.29
erkannt zu werden. Wird das Rauschen als Gauf}-Verteilung angenommen, so wird durch
diesen Schwellwert ein Grofiteil aller Realisierungen des Rauschens berticksichtigt. Fiir
weitere Implementierungsmoglichkeiten zum CFAR-Verfahren sei auf weiterfiihrende
Literatur verwiesen, z.B. [Sch13].

Als illustratives Beispiel ist in Abbildung 2.6 das Ergebnis von Rauschlevelschidtzung
und Zieldetektion dargestellt. Die Grofe der Pixelnachbarschaft in der RD-map entsprach
N =5.

0 20 40 0 20 40 0 020406 08 1
SNR in dB — Rauschpegel in dB — Detektion —

Abbildung 2.6.: Zieldetektion mittels CFAR: Links: Typisches RD-map aus Fahr-
szene. Mitte: Ergebnis der Rauschlevelschétzung mit N = 5. Rechts:
Ergebnis der CFAR-Detektion. Heller Bildbereiche entsprechen Bewer-
tung nach H; Hypothese.

Es ist zu erkennen, dass der CFAR-Algorithmus die Bereiche mit erhohtem Signal-
Rausch-Verhaltnis (engl.: Signal-to-noise-ratio (SNR)) als Ziele detektiert hat.

Wurde ein Ziel in der RD-map detektiert, so sind seine Entfernung und seine radiale
Geschwindigkeit gegeniiber dem Radarsensor anhand seiner Pixelposition in der RD-map
und Gleichung 2.18 sowie 2.21 zu schétzen.
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2.1.5. Einfallswinkelschatzung

Neben der Zieldetektion nach Unterabschnitt 2.1.4 und der damit verbundenen Iden-
tifikation von Entfernung und Doppler von signifikanten Reflexionen in der RD-map
ist die Identifikation des Einfallswinkels der Reflexionen eine typische Anwendung
bei automotiven Radargeriten. Eine ausfiihrliche Ubersicht méglicher Verfahren zur
Einfallswinkelschéatzung ist beispielsweise in [BM13,Che09] zu finden. In dieser Arbeit
wird vom fest verbauten Radargeriten ohne mechanische Schwenkung der Antennen
ausgegangen. FKine Vermessung des Einfallswinkels wird ausschlieflich {iber die Verwen-
dung mehrerer Empfangsantennen realisiert, wobei der Signalunterschied der Reflexion
zwischen den Antennen prozessiert wird. Eine graphische Ubersicht dieses Signal- bzw.
Phasenunterschiedes ist in Abbildung 2.7 dargestellt.

Q
o

<
\;‘3&
V"Q
&

Abbildung 2.7.: Phasenlage der reflektierten Welle an Empfangsantennen: Lage
EM-Wellen strahlen in lineares Antennenarray. In rot gezeichnet sind
beispielhafte Wellenfronten. Durch die unterschiedliche Position der
Antennen ergeben sich unterschiedliche Phasenlagen der Wellen.

Dargestellt ist ein Reflektor, welcher zuvor aktiv durch das Sendesignal bestrahlt
wurde. Die rot eingezeichneten Kreisbogen sollen die EM-Wellenfronten bzw. Wellen-
berge der Reflexion darstellen. Zwischen den Wellenfronten ergibt sich ein Abstand
geméafl der Wellenldnge A. Auflerdem sind die Positionen dreier Empfangsantennen
(Rx Antenna 0, Rx Antenna 1, Rx Antenna 2) mit einem Abstand dy bzw. do skizziert.
In der Abbildung ist zu erkennen, dass die Wellenfronten die Positionen der Emp-
fangsantennen zu unterschiedlichen Zeitpunkten erreichen bzw. dass die Wellen an den
Empfangsantennen unterschiedliche Phasenauspragungen aufweisen.

Die Kriimmung x der Wellenfronten verhélt sich reziprok gegeniiber dem Abstand r
zum Kreismittelpunkt (k = %), siehe z.B. [Wik22]. Bei hinreichend groflem Abstand lésst
sich die Wellenfront am ausgedehnten Antennenarray? als Gerade annéhern. Man spricht
dann von einer ,,ebenen Welle“. Geméafl des sogenannten ,,Fraunhofer-Abstandes“ ist

eine ebene Welle als Anndherung einer Welle erfiillt, wenn der punktférmige Reflektor

4Als Antennenarray wird die Anordnung der Empfangsantennen bezeichnet.
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im Fernfeld rg,, des Antennearrays liegt [Kra8§]

22 2(dy + do 2
Trefl., ant. > Tfern = T = ()\)7 (2.32)

wobei L die Ausdehnung (,,Apertur”) der Antenne beschreibt.

Unter der Annahme dieser Bedingung werden nun zwei klassische DoA-Schétzer
vorgestellt, welche im weiteren Verlauf dieser Arbeit als Referenzverfahren gegen eigene
Winkelschéatzer verwendet werden.

2.1.5.1. Monopulsverfahren

Fiir diese ebene Wellenfornt lésst sich der Wellenvektor in die kartesischen Komponenten

ky = sin(O) K| (2.34)
ky = cos(O)|k|| (2.35)
27
kl| = — 2.
Il = =; (2.36)

aufteilen, wobei © nach Abbildung 2.7 der Aspektwinkel gegeniiber einer zum Anten-
nenarray aufgespannten Normalen ist. Das Koordinatensystem wird hier so gewéhlt,
dass die Antennen auf der x-Achse liegen. Die Phasendifferenz an den Antennen ergibt
sich als skalare Projektion des Wellenvektors auf den Richtungsvektor zwischen den
Antennen. Somit ergibt sich die Phasendifferenz A® als

A® = fypd = sin(@)%”d, (2.37)

Durch Auflésen nach © ergibt sich

AAD
6= in| —— 2.38
arcsin ( 5 d > , (2.38)

welches bei der Kenntnis tiber die rechten Parameter zur Schéitzung des Einfallswinkels
fiihrt.

Bei der Bestimmung des Einfallswinkels in einem Antennenarray werden die gemesse-
nen Phasenwinkel und Antennenabstidnde aller Antennen beriicksichtigt. Zunéchst sei
ein Vektor mit den gemessenen Phasendifferenzen zwischen geometrisch benachbarten
Antennen definiert

£ ésrd,l(ua ’U), Srd,Z(ua U);

£ Srd,l(ua U)v Srd,3(u7 U) (2 39)

£ (Sea1 (), San(u,0)) | 91N
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wobei die Phasenwinkel folgend berechnet werden:

2 (Sea i, v), S (u,v)) = arg (srd,xu, 0)S" a1 (1 v>) : (2.40)

Auflerdem wird ein Vektor der geometrischen Antennenabsténde definiert zu

Ty — 1 b12
b= 27” R b1:,3 : (2.41)
TN -1 bi,n
wobei z; mit ¢ =1,---, N die horizontalen Positionen der Antennen sind.

In GI. 2.37 werden die Phasenwinkel unbeschrankt modelliert. Gleichung 2.40 bildet
jedoch die Phasenwinkel nur im Intervall [-7, 4+) ab, so fir die korrekte Bestimmung
des Einfallswinkels die gemessenen Phasenwinkel eindeutig gemacht werden miissen.
Dazu wird zunéchst der Einfallswinkel, basierend auf einem eindeutigen Antennenpaar®
(hier: Antennenpaar (1,2)) gelost (Bedingung: d < \/2),

UNES [a172/7r * ka] . (2.42)

Als eindeutiges Antennenpaar wird ein Antennenpaar bezeichnet, dessen Abstand an
den Grenzen des Field-of-View (FoV), z.B. fiir © = 90° gerade eine noch eindeutige
Phasendifferenz von £+ ergibt

A A
dunamb. = % = 5 (2'43)

Basierend darauf wird die erwartete Phasenabbildung fiir jedes uneindeutige Anten-
nenpaar berechnet und synthetisch zur gemessenen Phasendifferenz addiert, so dass sich
die Phasendifferenzen wieder linear proportional zum Antennenabstand verhalten

a1,2 221,2
S el S (2.44)
a1,N i,N
Das lineare Gleichungssystem ergibt sich somit analog zu Gleichung 2.38 zu
a = bsin(®) (2.45)

und kann mit Hilfe der Moore-Penrose Pseudo-Inversen [Penb5] gelost werden zu
sin(@pyg) = (b7b) 'bTa. (2.46)

FEine Schitzung des Einfallswinkels fiir Antennenarrays ergibt sich mittels Phase-

5Nach Gleichung 2.37 ist die Phasendifferenz proportional zum Antennenabstand.
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2.1. Radarsignalverarbeitung fiir automotive Anwendungen

comparison-Monopulse (PM) somit zu

®pyp = arcsin (b’ b) b a. (2.47)

2.1.5.2. Beamformer

Wurden beim Monopulsverfahren ausschlielich die gemessenen Phasendifferenzen zwi-
schen den Antennen zur Winkelschétzung verwendet, so integriert der Bartlett Beam-
former [KV96] zusétzlich die gemessenen Signalamplituden und erreicht ein besseres
Schéitzergebnis. Aulerdem wird durch die Anwendung des Beamformers ein Winkelspek-
trum erzeugt. Das zuvor erzeugte zweidimensionale Leistungsspektrum bzw. RD-map
wird somit um die Dimension zum Sinus des Winkels erweitert. Starke Reflexionen erzeu-
gen ein lokales Maximum tiiber alle drei Dimensionen. Die Entfernung, der Doppler und
der Winkel ergeben sich automatisch aus der Auflésung entlang der drei Dimensionen.
Ein Vorteil des Beamforming (BF) gegentiber den Punktschitzern, z.B. gegentiber PM,
ist, dass Reflexionen auch im Winkel aufgel6st werden und in Entfernung und Doppler
iiberlagerte Reflexionen somit iber den Winkel voneinander getrennt werden koénnen,
sofern es die Winkelauflésung und spektralen Signaleigenschaften zulassen.

Fir die Implementierung des BF-Verfahrens sei zunédchst den Antennenabstand zum
Antennenursprung als diskrete Variable definiert

d[n] = dsgn, (2.48)

wobei dg = Q—)fi ein Skalar ist, welcher den Abstand der Antennen als Vielfaches der
halben Wellenldnge skaliert. n € [0,1, N — 1] sei der Laufindex zur Indexierung iiber die
N Empfangsantennen.

Das Empfangssignal z fiir alle N Antennen sei modelliert nach Gleichung 2.37 zu

zn] = 3 sin(©)d[n] _ 5 dssin(©)5n (2.49)

Mittels DFT ergibt sich das Winkelspektrum X zu

N-1 N-1
X[k] _ Z x[n]efﬂﬂ'kn/N _ Z GjQT”dssin(@)%neijﬂ’kn/N_ (2.50)
n=0

n=0
Der gesamte Exponent kann abgelesen werden zu
2 A
j;ds sin(6) S~ j2rkn/N. (2.51)
Eine kohérente Signalintegration ergibt sich, wenn der Exponent gerade Null wird,
wodurch der Exponent aufgeldst werden kann zu

2k
~ dgN’

sin(O) (2.52)

Der DFT Index k kann damit zur Beschreibung des Einfallswinkels verwendet werden.
Die Winkelauflosung des BF ergibt sich als Abstand zweier benachbarter DFT-Zellen,
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2. Grundlagen zur Signalverarbeitung

bzw. Setzen von k =1 zu

2
AO = arcsin <d3N> . (2.53)

Einen Punktschétzer des Einfallswinkels @ fiir ein Pixel in der RD-map erhélt man
an der Stelle der maximalen Leistung im Winkelspektrum zu

kmax = argmaxX|[k]X™[k] (2.54)
k
(2
Opp(kmax) = arcsm( d:“;"). (2.55)

Fir die Implementierung mittels DFT ist weiterhin zu beachten, dass bei nicht
dquidistanten AntennenabstéindenS die Empfangssignale gemé8 des minimalen Anten-
nenabstandes mit Nullen aufgefiillt werden miissen. Dieses, als ,zero-padding* benannte,
Verfahren ermoglicht dartiber hinaus eine Interpolation des Winkelspektrums bzw. eine
feinere Diskretisierung und somit eine erhdhte Schétzgenauigkeit von &pp.

2.2. Inferenz und Training bei neuronalen Netzwerken

Als Deep-Neural-Network (DNN) bezeichnet man Funktionsapproximatoren, die Ein-
gangsdaten in mehreren Schichten nichtlinear verarbeiten. Durch diese schichtweise,
nichtlineare Verarbeitung kénnen diese Netzwerke jede beliebige Ubertragungsfunktion
abbilden. Der interessierte Leser findet unter dem Begriff , universal approximation theo-
rem*“ viele interessante Artikel. Diese theoretische Eigenschaft macht DNNs universell
einsetzbar fiir Aufgaben, bei denen ein deterministischer oder statistischer Zusammen-
hang zwischen Ein- und Ausgabedaten existiert. Neben dem Aufbau des Netzwerkes ist
das Training der Netzwerkparameter kritisch fiir den erfolgreichen Einsatz des DNNs.
In diesem Abschnitt wird beides kurz beleuchtet und somit die Grundlage fir das
Verstdndnis der Signalverarbeitung mittels NN in dieser Arbeit geliefert.

2.2.1. Vorwartsdurchlauf

Fiir die Inferenz werden die Eingangsdaten schichtweise verarbeitet. Es sei zunéchst
eine einfache Netzwerkschicht? definiert zu

y = f(Wx+Db). (2.56)

Hierin sind x und y ein Eingangsvektor bzw. ein Ausgangsvektor. W und b sind
trainierbare Gewichtsmatrix und Bias. f(- - -) ist eine nichtlineare Aktivierungsfunktion,
wie z.B. Sigmoid, Tangens hyperbolicus oder ReLLU. Der Eingangsvektor x wird somit
durch W und b linear und das Ergebnis durch f(---) nichtlinear transformiert.

Diese Transformation wird in einem NN mehrfach hintereinander ausgefiihrt. Dazu

man spricht dann von nicht Uniform-Linear-Array (ULA) Antennen-Array
"Demonstriert wird das Netzwerk anhand von sogenannten ,fully connected layer®.
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2.2. Inferenz und Training bei neuronalen Netzwerken

sei das beispielhafte Netzwerk mit drei Schichten definiert

y1 = fi(Wix +by) (2.57)
y2 = f2(Way1 + bo) (2.58)
o = f3(W3y2 + b3). (2.59)

Jede Netzwerkschicht hat eigenstédndig trainierbare Projektionsparameter W; und b;
und eine eigens wahlbare Nichtlinearitét f(---);. Die Pradiktion des Netzwerkes wird
durch o geliefert.

2.2.2. Riickwartsdurchlauf

Damit diese Pradiktion sinnvolle Werte erreicht, miissen Projektionsparameter W
und b; wéhrend einer Trainingsprozedur optimiert werden. Dazu wird zunéchst die
Abweichung vom Zielwert ogt ermittelt. Das Subskript gt wurde hier in Anlehnung
an den englischen Begriff ,, ground-truth“ gewéhlt. Je nach Anwendung kann diese
Abweichung z.B. als Differenz und konvexer Skalierungsfunktion 7(-) als

l(0,0gt) =T (e) =7 (0 - ogt) , (2.60)

dargestellt werden.

Héufig werden die Parameter mit einem , gradient descent Verfahren mit Schritt-
weite ~y trainiert, so dass die Netzwerkparameter iterativ von Schritt (n) nach (n + 1)
aktualisiert werden zu

ol

Wgn—kl) _ WE”) _ Vaw(n) (2.61)
p(+D) _ () Waj(lm (2.62)

Der letzte Term beschreibt den Gradienten der Fehlerfunktion, bezogen auf die
Netzwerkparameter W und b, und kann durch Anwendung der Kettenregel berechnet
werden. Fiir die Parameter der Schichten ergeben sich damit

o _otoroe oo
awgn) 07 de Do 8W§n)
o _otoroe o
8b§n) ~ 97 e do gp(n)’

7

(2.63)

(2.64)

Die Projektionsparameter der anderen Schichten kénnen analog aktualisiert werden.
Wesentlich fiir das Verstdndnis dieser Arbeit ist die Erkenntnis, dass zur Anwendung
der Parameteraktualisierung die Gradienten von der gemessenen Abweichung [, bis zu
den Projektionsparametern bestimmt werden kénnen und so die Fehler in die Netzwerk-
schichten zuriick propagiert werden kénnen.

Fiir eine umfangreichere Beschreibung vieler Themen zur Nutzung von NNen seien
dem Leser die Werke [Sch14, GBC16] empfohlen.
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3. Aufbau und Kalibrierung des
Sensorsystems

Fiir die im spéteren Verlauf dieser Arbeit vorgestellten Algorithmen und Versuche wurde
ein Fahrzeug aufgebaut, welches mit einer Vielzahl von Sensoren ausgestattet ist. Ziel
ist eine detaillierte, beriihrungslose Abtastung der Umgebung fiir die automatische
Ermittlung von Zielwerten fiir den ebenfalls verbauten Radarsensor vom Typ HELLA
5Gen 77 GHz. Mit den Zielwerten sollen spéater Machine-Learning (ML)-Algorithmen
zur Signalverarbeitung trainiert werden. Als Referenzsensoren kommen zwei Lidar-
scanner vom Typ Velodyne VLP-32C [LiD20] zum Einsatz. Diese aktiven Sensoren
strahlen EM-Pulse fiir bestimmte Elevations- und Azimutwinkel aus und schétzen
aus der Reflexion die Tiefe. Durch die Menge der Tiefenmessungen wird dann eine
sparliche Punktwolke der Umgebung konstruiert. Ebenso werden zwei Kameras vom
Typ FirstSensor DC3C-1-E4P-105 [Fir| verwendet. Kameras sind passive Sensoren und
tasten die Wellenldngen im sichtbaren Frequenzbereich fiir diskrete Elevation- und Azi-
mutwinkel ab. Durch Anordnung benachbarter Winkel werden so Farbbilder konstruiert,
welche eine optische Abbildung der Umgebung darstellen. Fiir Informationen beziiglich
der Bewegung und Position des Ego-Fahrzeuges wird ein Differential-GPS-with-Inertial-
Navigation-System (DGPS-INS)-System vom Typ GeneSys ADMA-G-Pro+ [Gen20]
verwendet. Es sei festzuhalten, dass die spéter aufgebauten Algorithmen mit diesen
Sensoren getestet wurden und somit eine Definition an dieser Stelle notwendig ist. Aus
Sicht des Autors ist ein Austausch mit artverwandten Sensoren aber technisch méglich.
Eine Darstellung des Versuchstrigers mit den eingebauten Sensoren ist in Abbildung 3.1
gegeben.

3.1. Definition der Koordinatensysteme

Jeder Sensor tastet die Umgebung relativ zu seiner eigenen Position und Ausrichtung
ab. Die Sensordaten liegen dann in dem fiir jeden Sensor spezifischen KOOS vor, siehe
Unterabschnitt 2.1.2. Zur Beschreibung der Sensordaten definieren wir fiir jeden Sensor
ein kartesisches KOOS im Sensorursprung entsprechend der Sensorausrichtung. Eine qua-
litative Ubersicht der KOOSen ist in Abbildung 3.1 gegeben. Um die Sensordaten spiter
miteinander fusionieren zu konnen, miissen die Daten zwischen den KOOSen ineinander
iiberfithrt werden konnen. Wir definieren dazu die generische affine Transformation

x; = "Rx; 4+ 14, (3.1)

welche die Transformation der geometrischen Sensordaten in Vektorform x; € R3*1
von einem Ursprungskoordinatensystem J in ein Zielkoordinatensystem [ iiberfihrt.
Hierbei entsprechen /R € R3*3 einer Rotationsmatrix und //t € R3*! einem Trans-
lationsvektor. Die Darstellung der Sensordaten in Form von x; werden wir nachfolgend
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3. Aufbau und Kalibrierung des Sensorsystems
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Abbildung 3.1.: Qualitative Darstellung und Ausrichtung der Koordinatensys-
teme: Rot: Fahrzeug-KOOS; Griin: Lidar-KOOS; Blau: DGPS-KOOS;
Lila: Kamera-KOOS; Orange: Radar-KOOS. Nach [EB6].

als ,intrinsische geometrische Kalibrierung“ bezeichnen. Die Identifikation der Rotati-
onsmatrix und des Translationsvektors wird nachfolgend als ,extrinsische geometrische
Kalibrierung“ bezeichnet. Die Beschreibung der geometrischen Kalibrierungen der Sen-
soren ist Bestandteil dieses Kapitels.

Als Synonym des jeweiligen KOOSs definieren wir uns folgende Symbole:

e E: Bezugs KOOS auf dem Ego-Fahrzeug
o D: KOOS des DGPS-INS

e (7, Cy: KOOSe der zwei Kamerasensoren
e L, Ly: KOOSe der zwei Lidarsensoren

e R: KOOS des Radarsensors.

Da die unterschiedlichen Sensoren eigene Zeitbasen haben und die Szene nicht zu
gleichen Zeitpunkten abtasten, miissen die zeitlichen Unterschiede in der Abtastung
kompensiert werden, um eine synchrone Fusion der Daten zu erreichen. Im Laufe dieses
Kapitels wird ebenfalls vorgestellt, wie diese zeitliche Kompensation, auch ,temporale
Synchronisation* genannt, durchgefithrt wurde.

3.2. Radar

Der hier verwendete Radarsensor ist ein Entwicklungssensor mit dem Antennendesign
eines aktuellen Seriensensors, jedoch mit physikalischer Schnittstelle zur Ausgabe von
ADU-Daten. Das FoV bzw. die ,,Strahlbreite“ des Sensors betragt in Azimut etwa 140°
und Elevation ca. 20°.
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3.2. Radar

3.2.1. Intrinsische geometrische Kalibrierung

Wie im Abschnitt 2.1 erwéhnt, kann der Radarsensor durch geschickte Signalverarbei-
tung u.a. die Entfernung, die Geschwindigkeit und den Einfallswinkel der Reflektoren
bzw. Reflexionen schétzen. In Gleichung 3.1 ist die Position des Reflektors in kartesischen
Koordinaten gefordert. Mit Hilfe von Gleichung 2.5 lasst sich die Position von Polarko-
ordinaten (Azimut, Elevation, Entfernung) in kartesische Koordinaten tiberfiithren

TR[x] cos(¢az) cos(¢el)
xp = [eRp] el R |%Ri]| = [eRK CRW] R Sin(aﬁgz)(;os)(qbel) r, (3.2)
xR[Z} S1n el

wobei egy], eg[y] und eg,] die Einheitsvektoren zum KOOS fiir xp sind. Die Schétzung
der Einfallswinkel ¢, und ¢, kénnen z.B. nach den in Unterabschnitt 2.1.5 vorgestellten
Verfahren durchgefithrt werden. Bedingt durch Fertigungstoleranzen und Signalbeugung
am Stofifinger ergeben sich Phasenverzerrungen zwischen den Antennen, welche die
Modellbeschreibung nach Gleichung 2.37 storen. Eine Kompensation dieser Verzerrung
wurde, wie in [Kuel7] beschrieben, durch eine Kreuzkalibrierung mit durch Roboter
platzierten Referenzzielen durchgefiihrt. Da diese Kreuzkalibrierung fiir das Verstédndnis
der Aspekte dieser Arbeit nicht notwendig ist, sei der interessierte Leser auf referenzierte
Literatur verwiesen. Ein alternatives Verfahren zur Kreuzkalibrierung zwischen Radar
und Lidar ist in [PSK20] zu finden. Ein Verfahren fiir die Kreuzkalibrierung von Radar
und Kamera ist in [CYH23] zu finden.

3.2.2. Extrinsische geometrische Kalibrierung

Als Zielkoordinatensystem bei der extrinsischen geometrischen Kalibrierung wurde hier
das Ego-KOOS gewéhlt, welches die Pose des Radarsensors relativ zu einem KOOS
E im Ego-Fahrzeug beschreibt. Das fortlaufend als ,,FEgo-KOOS* bezeichnete KOOS,
dessen Ausrichtung analog zur ISO-8855 [ISO11, MWO04] verlduft, wurde im Zentrum
der Fahrzeugvorderachse platziert, siche Abbildung 3.1. Es wird angenommen, dass
sdmtliche verwendeten Sensoren fest am Fahrzeug angebracht sind und dass zu keiner
Zeit eine Deformation des Fahrzeuges oder der Sensorhalterung bspw. durch dynamische
Fahrmandver entsteht.

Die Identifikation der Rotationsmatrix Z“®R und des Translationsvektors £t erfolg-
te anhand der Computer-Aided-Design (CAD)-Konstruktion. In der CAD-Konstruktion
war die Einbauhalterung des Radarsensors bereits konstruiert und somit die Einbaupose
festgelegt. Kleinere Abweichungen der Einbauorientierung wurden durch die intrinsi-
sche Kalibrierung kompensiert. Die Transformation eines Punktes, gegeben durch den
Radarsensor, kann somit folgend in das Ego-KOOS transformiert werden

xp = PRRxp + PFy. (3.3)
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3. Aufbau und Kalibrierung des Sensorsystems

3.3. Lidar

Das Sensorsetup umfasst zwei Lidarsensoren. Die Kalibrierung beider Sensoren erfolgt
analog zueinander. Falls notwendig, werden, wie in Abbildung 3.1 gezeigt, zur Unter-
scheidung der Lidarsensoren nachgestellte Indizes verwendet, beispielsweise E<liR fiir
den ersten Lidarsensor.

3.3.1. Intrinsische geometrische Kalibrierung

Analog zum Radarsensor liefert der Lidarsensor Reflexionsparameter in Polarkoordinaten,
so dass die Darstellung der Lidar-Daten in kartesischen Koordinaten x; analog zur
Gleichung 3.2 vorgenommen wird.

3.3.2. Extrinsische geometrische Kalibrierung

Wie beim Radarsensor wurde das Ego-KOOS als Zielsystem der Koordinatentransforma-
tion gewihlt. Die Identifikation der Transformationsparameter Z“R und £t erfolgt
in drei wesentlichen Schritten.

Im ersten Arbeitsschritt wird das Fahrzeug mit den montierten Lidarsensoren auf einer
Stellfliche positioniert. Diese Stellfliche sollte moglichst eben sein und in unmittelbarer
Néahe zum Fahrzeug (ca. 30 m) keine vertikal ausgedehnten Objekte beinhalten. Nun
wird mittels RANSAC-Verfahren [FB81] eine Ebene in der Punktwolke! detektiert.
Dabei wird iterativ (100 Durchgénge) eine Untermenge (3 Punkte) der Punktwolke
gezogen und eine Ebene durch die Untermenge der Punkte gepasst. Danach wird die
Anzahl aller Punkte ermittelt, die einen geringen orthogonalen Abstand d zur Ebene
aufweisen (d < 0.2m). Schlussendlich wird die Ebene mit der hochsten Anzahl an
Punkten mit geringem Abstand gewéhlt. Durch die Wahl des Szenarios ist davon
auszugehen, dass diese Ebene der Bodenfldche entspricht. Ein Beispiel dieser Detektion
ist in Abbildung 3.2 links zu sehen, in der die Bodenpunkte schwarz markiert wurden.
Die rot markierten Punkte stellen vertikal ausgedehnte Objekte auf der Stellfliche wie
Hauswénde, parkende Fahrzeuge und Baume dar.

Mittels Hauptkomponentenanalyse (engl: Prinicipal-Component-Analysis (PCA))
[F.RO1] wird nun der Normalenvektor der detektierten Ebene (in positiver Z-Richtung)
berechnet. Dazu fassen wir die kartesischen Koordinaten aller Punkte zur detektierten
Ebene in Matrixform zusammen:

Izl Toyl  Ina
Dsurf = . (3'4)
Ira N ZLyN ILaN

Anschliefend wird die Kovarianzmatrix X € R3*3 aus der Punktwolke berechnet und
in Eigenwertdarstellung umgewandelt

1 7 T
¥ = DL Dy = VAV, (3.5)

A = diag(\1, A9, \3) ist die Eigenwertmatrix und V die Eigenvektormatrix. Die

'Menge aller Punkte von z7,
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3.3. Lidar

Nyert,. N Ngyrf,

je—

Abbildung 3.2.: Horizontierung der Bodenreflexionen aus Lidarsensor: Links:
Die schwarzen Punkte markieren die als Boden detektierten Punkte,
die roten Punkte entsprechend Ausreifler bei der RANSAC-Schétzung.
Ebenfalls eingetragen sind qualitative Darstellungen der identifizierten
Oberflachennormalen ng,,,¢ , der Zielausrichtung der Oberflachennorma-
len nyert. und der Drehachse ngyat.. Rechts: Darstellung der Bodenre-
flexionen (schwarz) und Ausreifier (rot) nach der Rotation.

Eigenvektormatrix enthélt drei orthogonal zueinander stehende Vektoren, welche die
Hauptkomponenten der Punktwolke darstellen. Durch die vorausgegangene Detektion
von Aureiflern orthogonal zur Ebene, kann angenommen werden, dass die Punkte in der
Ebene deutlich starker streuen als orthogonal zur Ebene, so dass die Hauptkomponente
mit kleinstem Eigenwert eine Schétzung der Normalen zur Ebene ist

Ngyf, = Vi, argmin(Ag)]. (3.6)

Wie in Unterabschnitt 3.2.2 beschrieben, sei das Ego-KOOS definiert als kartesisches

KOOS in welchem die z-Achse orthogonal zur Fahrbahnoberfliche verlduft. Daraus
T

ergibt sich der Zielvektor der Z-Achse der Ebenen zu nyert. = [0, 0, 1} . Es wird eine

Rotationsmatrix Rg,.f gesucht, welche ng, ¢t in den Zielvektor nyert. dreht. Aus dem
Zielvektor nyert, und dem Normalenvektor ng,.s wird zunéchst das Einheitquaternion
q gebildet

a=|ar, a2, a3, ) = {cos(gl), W} (3.7)
mit
Y1 = arccos ( Dsurf, * Tvert. ) (3.8)
gt [ vert. |
und

Nguat. = Ngyurf. X Nyert,. - (3.9)

Anschaulich betrachtet entspricht nguat. der Rotationsachse, um welche mit dem
Winkel v, gedreht werden muss, damit die Vektoren nyert, und ng, kongruent zuein-
ander sind. Diese Rotation kann nach [KUI99] auch in Form einer Rotationsmatrix
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3. Aufbau und Kalibrierung des Sensorsystems

R ¢ € R3*3 dargestellt werden, zu

1-2(a +af)  2(aq3—@ua1) 2(92q4 + 93q1)
Rout = (2(q2a3 + aqq1) 1-2(a3+4d3)  2(azqq—q2qp) | - (3.10)
2(q2q4 —q3q1) 2(q3qs +a2q1) 1-2(q3 +q3)

Durch Drehung der Punktwolke ( Rsurf_Dglrf) ergibt sich eine Punktwolke, in welcher
die detektierte Fahrbahn orthogonal zur z-Achse verlduft, siehe Abbildung 3.2 rechts.
Da durch die PCA nicht die Ober- oder Unterseite der Fahrbahn erkannt wird, muss
Ny, gegebenenfalls manuell umgekehrt werden.

Die vorausgegangene Rotation zielt darauf ab, die Punktwolke des Lidars parallel zur
Ebene auszurichten. Die Punktwolke kann jedoch noch um die z-Achse des Fahrzeuges
verdreht sein. Um diese Verdrehung zu identifizieren, werden sdmtliche Punkte oberhalb
der Fahreben entsprechend ihrer Position in der Ebene in ein Bild eingetragen, wobei
der Grauwert durch die Reflexionsintensitdt des Punktes bestimmt wird. Nun wird das
Fahrzeug geradeaus mit etwa 20kmh ! bewegt. Das Bild wird fiir jeden Frame neu
gerendert. Der Bildinhalt bewegt sich nun ebenfalls geradlinig entsprechend der verblie-
benen Verdrehung. Um diese geradlinige Bewegung zu identifizieren, werden mittels
Shi-Tomasi [ST94] Detektor wichtige Punkte (engl: ,keystones“) des Grauwertbildes
detektiert und mit Lucas-Kanade-Methode [LK81] zeitlich verfolgt, sieche Abbildung 3.3.

Abbildung 3.3.: Verfolgung wichtiger keystones in der Lidar-Punktwolke: Links:
Darstellung der nicht in der Fahrbahnebene liegenden Punktwolke
sowie der detektierten keystones im Grauwertbild. Rechts: Tracks der
keystones nach Geradeausfahrt des Fahrzeuges. Die Tracks verlaufen
im Winkel 9 zur Bildhorizontalen.

Aus der Gesamtheit aller verfolgten Punkte (engl: ,, Tracks“) wird die mittlere Orien-
tierung o gegeniiber der vertikalen Bildachse geschétzt. Dabei wurde festgelegt, dass die
vertikale Bildachse der Langsachse des Fahrzeuges entsprechen soll und die Punkte somit
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3.4. Kamera

bei sich vorwérts bewegendem Fahrzeug vom oberen Bildbereich nach unten wandern
sollen. Fiir die Schétzung von -9 kommt wieder ein RANSAC-Verfahren zum Einsatz,
um Ausreifler in den Tracks zu detektieren und die Schétzung von 9 zu stabilisieren.
Die sich daraus ergebene Rotationsmatrix stellt eine Drehung um die z-Achse mit dem
Drehwinkel o dar

cos(90° —79)  sin(90° —~9) 0O
Rkeystones —sin(90° —92) cos(90°—v2) 0] . (3.11)
0 0 1

Die gesamte Rotation des Lidars gegeniiber dem Ego-Fahrzeug wird somit zu
FE<L
“R = RkeystonesRsurf. (3-12)

identifiziert.
Neben der Rotation wird die Translation £t von Lidar und Ego-Koordinaten befiillt

T

E<L
Tt = LLidar YLidar ALidar| - (3-13)

Die Komponente 214, 1dsst sich aus der mittleren vertikalen Hohe aller Punkte der
Ebene berechnen, tiber

21 ,derot. - - - TN derot. B T
Y1,derot. - - - YN, derot. | = RDsurfa (3'14)
2],derot. - - - #N ,derot.
zu
1 N
ZLidar = N Z Zj,derot.- (3.15)
1
Die Komponenten zjy;q,r und yq;qsr werden mittels Ma3band manuell ausgemessen.
ILidar ist dabei der Abstand der Fahrzeugvorderachse und ;4. der Abstand von der
Fahrzeuglédngsachse zum Lidarsensor.

Die Algorithmen koénnen auf einem im Fahrzeug verbautem Personal-Computer (PC)
in Echtzeit prozessiert werden und die gesamte Kalibrierung der Lidarsensoren somit
innerhalb von etwa 5min durchgefiihrt werden.

Die Transformation von Positionen des ersten Lidar KOOS konnte somit wie folgt in
das Ego-KOOS vorgenommen werden

xp = PTRxp, + P, (3.16)
Fiir den zweiten Lidarsensor ergibt sich analog eine Transformation zu

xp = Pl2Rxp, + P, (3.17)

3.4. Kamera

Die verwendeten Kameras haben einen horizontalen Offnungswinkel von etwa 105° und
einen vertikalen Offnungswinkel von etwa 80°. Da das FoV einer einzelnen Kamera
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3. Autbau und Kalibrierung des Sensorsystems

nicht ausreicht, um das FoV des verwendeten Radarsensors abzudecken (vgl.: 140°),
wurden zwei Kameras an dhnlicher Position, aber mit unterschiedlicher Ausrichtung
am Fahrzeug montiert. Durch Fusion beider Kamerabilder oder separate Auswertung
der Kamerabilder lasst sich spéter die Signalverarbeitung auf Radardaten iiber dessen
gesamtes FoV auswerten.

3.4.1. Intrinsische geometrische Kalibrierung

Fiir die Darstellung von Bildpunkten in der Kamera hin zu kartesischen Koordinaten
fiir eine Transformation geméfl Gleichung 3.1 werden zwei Arbeitsschritte durchgefiihrt.
Dies ist erstens die Rektifizierung des Kamerabildes und zweitens die Beschreibung der
kartesischen Koordinaten {iber ein Lochkameramodell.

3.4.1.1. Rektifizierung des Kamerabildes

Bei der verwendeten Kamera wurde eine positive radiale optische Verzeichnung fest-
gestellt. Dabei handelt es sich um geometrische Abbildungsfehler, welche zu lokalen
Verzerrungen des Bildinhaltes fithren. Dieser Effekt ist in Abbildung 3.4 links zu se-
hen. Die gerade verlaufenden Langsbalken und Querrohre an der Decke haben eine
ausgeprigte Krimmung im Kamerabild.

Abbildung 3.4.: Rektifizierung des Kamerabildes: Links: unbearbeitetes Bild
RGB,;s;. - Rechts: Bild nach Rektifizierung RGByect.. Die Verzerrung
durch die Kameralinse fiithrt zu einer Verzerrung gerader Objekte im
Kamerabild, bspw. den Langstragern an der Decke. Nach der Rekti-
fizierung liegt der Langstriger auch im Bild in einer Flucht, mit der
eingezeichneten gelben Linie.

Urséchlich fiir die optische Verzeichnung ist haufig die Linsengeometrie. In der Re-
gel steigt die optische Verzerrung bei Linsen mit gréfierem Offnungswinkel. Die hier
verwendete Linse erméglicht einen verhiltnisméBig grofen Offnungswinkel von etwa
105° und eine Entzerrung bzw. Rektifizierung des Bildes ist notwendig, um im weiteren
Verlauf eine bestmoégliche Projektion von Lidarpunkten zu ermdglichen. Zur Kompensa-
tion dieser optischen Verzeichnung bietet die verwendete Kamera eine interne digitale
Entzerrung an, deren Ergebnis in Abbildung 3.4 rechts dargestellt ist. Dabei werden die
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3.4. Kamera

Bildkoordinaten im Kamerabild nach dem parametrischen Modell aus [Bro66, Zhe99]
manipuliert. Die Bildkoordinaten in der verzerrten Optik lassen sich dabei modellieren,
als

U*Cu

€T = 3.18
T (3.18)

v — CU
= 3.19
YT (3.19)
ugist. = fur(1+m1r% + Kart) + ¢y (3.20)
vaist, = foy(1+ m17? + ror?) + ¢y (3.21)

ro= 22+ y2 (3.22)

wobei u und v die nicht verzerrten Pixel Koordinaten sind. Die Verzerrungsfaktoren
k1 = —0.11 und k9 = 0.085 wurden bei einer Identifikation der intrinsischen Kame-
raparameter geschétzt. ¢y, ¢y, fy und f, werden im néchsten Abschnitt benannt und
identifiziert.

Das rektifizierte Kamerabild wird durch den in Algorithmus 1 dargestellten Pseudocode
berechnet.

Algorithmus 1: Bild-Rektifizierung

Daten: Verzerrtes Kamerabild RGBg;st. und intrinsische Kameraparameter

{fiL‘?fCCa Cx, Cy, K1, "92}

Ergebnis: Rektifiziertes Kamerabild RGByect.

fiir u < 0 bis 6401 tue
fiir v + 0 bis 4801 tue
T (u—cy)/fu
y < (v—cv)/fo
r— /22 + y?
K« 1+ k112 —|—/€27"4
Ugist. < round(fz Kz + c;)
Vgist. < round(fy Ky + cy)
RGBrect.[ — RGBdist.[

0, Udist. » Vdist. ]

r;,turn RGBect.

Der interessierte Leser sei an dieser Stelle auf weiterfithrende Literatur zur optischen
Verzeichnung verwiesen, bspw. [MMT10, Szel0).

3.4.1.2. Beschreibung der Bildkoordinaten iiber Lochkameramodel

Nach der erfolgten Rektifizierung des Kamerabildes lédsst sich die optische Abbil-
dung durch die Kamera mit guter Naherung durch ein einfaches Lochkameramodell
(engl.: camera pinhole model) [FP12] beschreiben?. Eine Darstellung des Modells ist in
Abbildung 3.5 gegeben.

2Aquivalemt kann auf die Rektifizierung des Kamerabildes verzichtet werden, wenn im Gegenzug ein
entsprechend komplexeres Kameramodell verwendet wird.
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3. Aufbau und Kalibrierung des Sensorsystems

€Cly]

Abbildung 3.5.: Lochkameramodel: Projektion eines Punktes aus Kamerakoordinaten
in Bildkoordinaten.

Die graue Fléche stellt das Kamerabild dar. Das Koordinatenkreuz F die Position
und Orientierung der Kamera. Ein Punkt P gegeben in Kamerakoordinaten, durchstofit
das Kamerabild an den Bildkoordinaten u und v und wird an dieser Position im
Kamerabild dargestellt. Durch Anwenden des Strahlensatzes ergeben sich die folgenden
geometrischen Beziehungen

= 3.23
e (3.23)
v—cy _ XCy
= . 3.24
e (3.21a)

Die intrinsischen Kameraparameter fy, fy, ¢y, ¢y beschreiben die Brennweiten bzw. den
Bildversatz und werden in der Einheit Pixel angegeben. Ein Punkt x» € RGXD) wird
durch seine Koordinaten, die tiefgestellte eckige Klammer kennzeichnet die jeweilige
Komponente, z.B. TO[y)» dargestellt.

Durch Umstellen der Gleichungen nach Kamerakoordinaten ergeben sich die karte-
sischen Koordinaten im Kamera-KOOS aus den Bildkoordinaten und der Tiefe X0
zu

Tol)| |7 Ol
X0 = |Toly | = vacv Tol | - (3.25)
el el

Zur Identifikation der intrinsischen Kameraparameter wurde die MATLAB-Toolbox
[Mat17] verwendet und Kamerabilder einer Szene mit Kalibriermustern aufgezeich-
net, siehe Abbildung 3.6. Als Kalibriermuster wurden Schachbrettmuster mit einer
Seitenldnge von hier 45 mm auf Papier ausgedruckt und zur Stabilisierung auf Pappe
verklebt.

In der MATLAB-Toolbox werden die Eckpunkte sdmtlicher Felder des Schachbrett-
musters detektiert. Durch Variation der Position der Kalibriermuster im Kamerabild

36



3.4. Kamera

Abbildung 3.6.: Kalibriermuster fiir Identifikation der intrinsischen Kamera
Parameter: Darstellung der verwendeten Kalibriermuster fiir die in-
trinsische Kalibrierung der Kameras.

werden die intrinsischen Parameter (Brennweite und optische Achse) des Lochkame-
ramodells automatisch identifiziert. Bei den verwendeten Kameras wurden die Brenn-
weiten f, = f, ~ 510px identifiziert. Die optische Achse ¢, = MO% = 320px und

_ 480px
- 2

Cy = 240px wurde auf den Bildmittelpunkt zentriert.

3.4.2. Extrinsische geometrische Kalibrierung

Um die Beobachtungsposition von Kamera und Lidar moéglichst gleich zu halten und
somit Abbildungsunterschiede der Umgebung gering zu halten, wurden die Kameras
direkt in der Nahe der Lidarsensoren verbaut, siehe Abbildung 3.7a. Ein weiterer Vorteil
ist, dass die extrinsischen geometrischen Kalibrierparameter in Form von Versatz und
Verdrehung der Kameras gegeniiber den Lidarsensoren aus der CAD-Konstruktion
entnommen werden kénnen, siehe Abbildung 3.7b und 3.7c.

Die Fertigung der Halter fiir Lidar und Kameras erfolgte mittels FDM-3D-Druckverfahren
in PETG. Die Halter wurden an einem Vierkantprofil aus Stahl verschraubt. Am Fuf}
des Vierkantprofils wurden Winkelplatten montiert, welche wiederum iiber Aluprofile
am Dachgepécktrager des Fahrzeugs montiert wurden. Eine Nahaufnahme der Halterung
ist in Abbildung 3.8 zu sehen.

Uber die Winkelplatten konnte die Verkippung der Lidarsensoren gegeniiber dem
Fahrzeug eingestellt werden. Die Lidarsensoren wurden manuell so eingestellt, dass sich
eine subjektiv homogene und dichte Verteilung der Lidarpings in den Kamerabildern
ergab. Die gesamte Konstruktion wurde als ausreichend stabil empfunden und eine
Deformation wiahrend der Aufnahme des Datensatzes wurde nicht erwartet.
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3. Aufbau und Kalibrierung des Sensorsystems

(b) Horizontaler Versatz und
(a) Vorderansicht der Kon- Verdrehung der Kameras (c) Vertikaler Versatz der Ka-
struktion ggi. Lidar meras ggii. Lidar

Abbildung 3.7.: CAD-Modell der Kamera- und Lidar-Halterung: Lidar und Ka-
meras (gelb dargestellt) werden tiber Halter (griin bzw. blau dargestellt)
an einem Vierkantprofil (schwarz dargestellt) verschraubt.

Wie zuvor beschrieben, ergibt sich aus der CAD-Konstruktion die extrinsische Kali-
brierung der Kamera gegeniiber dem Lidarsensor, analog zu Gleichung 3.1 zu

x;, = FORx o + PCh. (3.26)

Hierbei ist Z“CR die Rotationsmatrix vom Kamera in das Lidar KOOS und £Ct die
entsprechende Translation. Durch Umstellen der Gleichung nach Kamerakoordinaten
und mit Hilfe von Gleichung 3.25 kénnen Punktmessungen des Lidars in das Kamerabild
transformiert werden. Durch Fertigungs- und Verbautoleranzen sind die Parameter
der CAD-Konstruktion nur Néherungen fiir die extrinsische Kalibrierung. Bei der
Projektion der Lidar-Punkte in das Kamerabild konnten marginale Abweichungen
zwischen Objektkonturen und Lidar-Punkten festgestellt werden. Zur Verbesserung
der Kalibrierung wurde eine manuelle Kreuzkalibrierung zwischen Lidar und Kamera
vorgenommen.

Diese Kreuzkalibrierung der extrinsischen Verdrehparameter erfolgte durch Vergleich
der projizierten Lidarpunkte im Kamerabild gegeniiber dem Bildinhalt. Die Rotations-
matrix wurde folgend modifiziert

L(_CR = RmanualRC’AD (3'27)
AXcap, ©

IC¢ = |AYcap, © (3.28)
AZcap, ©
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3.4. Kamera

Abbildung 3.8.: Nahaufnahme der Kamera und Lidar-Halterung: Die Kameras
sind fest am Stédnder des hinteren Lidarsensors montiert. Die Lidarsen-
soren sind verstellbar iiber Winkelplatten am Fahrzeug montiert.

wobei
cos| $CAD, © *Sin(¢CAD, C) 0
Reoap = |sin QsCAD, C COS(quAD’ C) 0 (3'29)
1

die urspriingliche, aus der CAD-Konstruktion entnommene Transformationsmatrix
darstellt. Diese Parameter der Matrix wurden wie folgt aus der CAD Konstruktion
abgelesen: Euler-Rotation mit Winkel ¢cap, ¢ um die z-Achse und Translation um
AXcap, ¢s AYcap, ¢ und AZgap, ¢- Fiir die linke Kamera in Abbildung 3.7b er-
gaben sich somit beispielhafte Transformationsparameter von ¢cap, ¢ = 42.5° und
AXCAD, C = 0.52 cm, AYCAD, C= —6.8 cm und AZCAD, C = 11.48 cm.

R anual € R3*3 ist eine Rotationsmatrix. Anhand statischer Strukturen wie Zéunen

oder Laternenmasten wurde die Verdrehung R .21 manuell so weit modifiziert, bis
eine gute Kongruenz von Bildinhalt und Lidarpunkten wahrgenommen wurde. Durch
die groben Kalibrierparameter aus der CAD-Konstruktion konnte die feine Kalibrierung
im Bildkoordinatensystem erfolgen, was die manuelle Identifikation erheblich verein-
facht hat, da (a) die zusétzlichen Verdrehparameter betragsméafig < 2° lagen und die
3D-Drehung somit nahezu entkoppelt® wird und (b) durch die Identifikation im Bildko-
ordinatensystem die Drehungen um die Bildachsen leicht zu interpretieren sind. Eine
manuelle Nachkalibrierung des Kameraversatzes ist nicht erfolgt, da hier eine geringe

3Die Reihenfolge bei sequentieller Drehung um z,y und z ist bei geringen Winkeln nahezu egal. Dies
vereinfacht die manuelle Identifikation erheblich.
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3. Aufbau und Kalibrierung des Sensorsystems

Abweichung erwartet wurde und somit der Einfluss auf die Projektion vernachléssigbar
ist.

3.5. DGPS-INS

3.5.1. Intrinsische geometrische Kalibrierung

Das DGPS-INS ist mit einer Doppelbandantenne mit dynamischen Korrekturdaten iiber
Mobilfunk ausgestattet, womit sich eine prézise Position in Weltkoordinaten messen lésst.
Zuséatzlich ist das verwendete System mit einer Kreiselplattform ausgestattet, welche
die Dreh- und Léangsbeschleunigung des Fahrzeuges ermitteln kann. In der Sensorik
werden diese Messwerte miteinander fusioniert und erlauben das Schétzen weiterer
ZustandsgroBen wie z.B. der Geschwindigkeit. Fiir die Fusion wurde dem System eine
per Hand gemessene Einbauposition von Antenne und Kreiselplattform mitgeteilt. Bei
Fahrtbeginn wurde ein nach Herstellerangaben vorgegebenes Fahrtszenario durchfahren,
in welchem sich das System selbststandig kalibriert.

3.5.2. Extrinsische geometrische Kalibrierung

Die Kreiselplatform wurde moéglichst dicht an der Fahrzeughinterachse montiert und die
DGPS-Antenne auf dem Fahrzeugdach, so dass eine Stérung von Lidar und Kamera
moglichst ausgeschlossen werden konnte. Die Ausgabe der DGPS-INS Daten konnte auf
einen beliebigen Fahrzeugbezugspunkt parametriert werden. Als Bezugspunkt wurde die
Fahrzeughinterachse gewahlt, weil diese sich als besonders giinstig fiir die Berechnung
von Fahrzeugdynamikparametern erweist [MWO04]. Die Transformation von Positionen
aus DGPS-INS in das Ego-KOOS wird folgend ermittelt

xg = PPRxp + PP, (3.30)

T
wobei PR e R3*3 cine Einheitsmatrix ist und ZPtp = [72.871 m Om Om}

3.6. Weitere Koordinatentransformationen

Die Transformationen fiir Lidarsensoren, DGPS-INS und Radarsensoren sind bereits im
fahrzeugfesten Ego-KOOS gegeben. Die Transformation der Kameradaten dagegen nur
bezogen auf den tragenden Lidarsensor. Sollen die Positionen aus der Kamera x. ebenfalls
im Ego-KOOS dargestellt werden, so wird eine sequentielle Transformation zunéchst
nach Gleichung 3.26 und danach nach Gleichung 3.16 durchgefiihrt. Die resultierende
Transformation entspricht

Xp = FB<lq RLleCl Rxcl + EéLlRLleolt + Eeth

_ BCiRy, 1 By, (3.31)

Soll dagegen die Darstellung von Punkten gegeben im Ego-KOOS im Kamera KOOS
gegeben werden, so ist Gleichung 3.31 entsprechend nach x, umzustellen

xg, = (#O R)il (xp—O1t). (3.32)
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Sollen Daten aus dem Ego-Koordinatensystem in das Radarkoordinatensystem trans-
formiert werden, so ist dazu Gleichung 3.3 nach xp umzustellen und Gleichung 3.31
einzusetzen

Xp = (E«RR>*1 (XE B EeRt)

_ (E«RR)*l (E«CRXC L By EeRt)

= BORx o 4 ¢Ch. (3.33)
Hierbei sind 3
BOR = (BFR) FOR (3.34)
und .
ROy = (BRR) -~ (BCg - Efiy) (3.35)

Analog kénnen die Transformationen der Daten aus anderen Sensoren erreicht werden.

3.7. Temporale Kalibrierung

Die Abtastung der Umgebung sémtlicher Sensoren erfolgt zu diskreten Zeitpunkten. Die
Abtastzeitpunkte sind fiir die unterschiedlichen Sensoren nicht einheitlich. Die Aufgabe
der temporalen Kalibrierung ist, die Abtastzeitpunkte der Sensoren zu vereinheitlichen,
so dass die Sensoren eine Abtastung der Szene zu identischen Zeitpunkten vornehmen.
So wird sichergestellt, dass der Szeneninhalt zwischen den Aufnahmen der Sensoren
keine zeitliche Variation aufweist und der Szeneninhalt kongruent zueinander ist. Die
verwendeten Sensoren erlauben jedoch keine externe Auslésung der Aufnahme, so
dass keine einheitliche Auslosung wahrend der Datenakquise erreicht werden kann.
Zusétzlich ergibt sich aufgrund unterschiedlicher Abtastraten eine zeitverdnderliche
Latenz zwischen den Aufnahmezeitpunkten der Sensoren. Neben der Auslosung der
Aufnahme unterscheidet sich weiter die Abtastrate der unterschiedlichen Sensoren.

Nachfolgend wird vorgestellt, wie Unterschiede im Abtastzeitpunkt synthetisch nach
Datenakquise korrigiert bzw. kompensiert werden kénnen.

3.7.1. Assoziation der Abtastung

Um eine zeitliche Latenz der Aufnahme zwischen den Sensoren auszugleichen, wird
zunéchst eine Modellbeschreibung der Aufnahmen erstellt. Der Radarsensor tastet mit
einer Frequenz von 20 Hz das angegebene FoV ab. Das gesamte FoV des Radars wird
nahezu simultan abgetastet, so dass sich die Abtastung als ., global—shutter“4 beschreiben
lasst. Die Kameras haben eine eingestellte Abtastfrequenz von 30 Hz. Auch hier erfolgt
nahezu eine simultane Abtastung des FoV. Der Lidar ist ein mechanischer Scanner,
welcher mit einer Frequenz von 10 Hz um seine Achse rotiert. Abgetastet wird dabei
immer ein kleiner Winkelbereich, zu welchem der Scanner gerade ausgerichtet ist. Das
FoV des Lidars wird rollend abgetastet. Man spricht dann vom ,rolling-shutter*.

In Abbildung 3.9 ist ein beispielhaftes Abtastdiagramm der Sensoren dargestellt. In
der oberen Zeile sind die Abtastzeitpunkte des Radarsensors dargestellt. Die Abtastung

4Global shutter bedeutet, dass das gesamte FoV gleichzeitig abgetastet wird.

41



3. Aufbau und Kalibrierung des Sensorsystems

des gesamten FoVs erfolgt {iber einen Zeitraum von etwa 8 ms. In der zweiten Zeile
sind Abtastungen einer Kamera dargestellt. Die einzelne Abtastung erfolgt iiber einen
Zeitraum von etwa 16 ms. Das gesamte FoV wird simultan abgetastet. In der dritten
Zeile sind die Abtastungen des Lidars dargestellt. Die einzelne Abtastung erfolgt {iber
einen Zeitraum von etwa 100 ms. Das FoV wird rollend abgetastet.

N 1 2 3 4 5 6 7 8
= ! |
g A |
— = = R = = = =
- ¢
ATradar
% 1 2 3 4 5.6 7 8 9 10 11 12
g > 1B
%ﬁ‘ N
M ‘\ | | | L | | | | | | |
[ | [ [ [ [ [ [ [ [ | | "
ATkamera
. 1 o 3 4
< > I
R — \ >
Y .
ATyqar

Abbildung 3.9.: Abtastdiagram der Sensoren: Die Sensoren tasten zu unterschied-
lichen Zeitpunkten und mit unterschiedlichen Frequenzen ab. Radar
und Kamera tasten das gesamte FoV gleichzeitig ab, wohingegen Lidar
rollend abtastet.

Um einen zeitlichen Versatz der Abtastungen so gering wie moglich zu halten, werden
nach der Akquise die Abtastungen der Sensoren gesucht, welche die geringste zeitliche
Abweichung voneinander aufweisen. Als Device-under-Test wird der Radarsensor als
Taktgeber festgelegt. Zu jedem einzelnen Zyklus des Radarsensors werden also die
néchstgelegenen Abtastungen der anderen Sensoren gesucht. Da die Assoziation der
Abtastungen nach der Datenakquise erfolgt, kann die zeitliche Assoziation auch nicht
kausal sein, d.h. die Abtastungen der anderen Sensoren kénnen auch zu einem spéteren
Zeitpunkt der Radarauslésung erfolgt sein. Ein Beispiel der Assoziation aus Radar,
Kamera und Lidar ist in Abbildung 3.9 als gestrichelte Rechteckboxen markiert. Die
assoziierten Frames der sechs Sensoren (Radar, zwei Kameras, zwei Lidar, DGPS-INS)

werden hier als 6-Tupel k(kadar) = {Aradars kkamera,b kkamera,Qa klidar,l, klidar,Za kdgps}
zusammengefasst. Zusammen mit der Wahl des 6-Tupels ergeben sich die Startzeitpunkte

tr = {t(kadar), U(Kxamera, 1) t(Akamera,2)s t(Klidar1): t(Klidar,2), t(kdgps)} der Sensorabtas-
tungen. Bei der Datenakquise kommunizieren alle Sensoren ihre Messdaten mit dem
Messrechner als User-Datagram-Protocol (UDP)-Botschaften. Die UDP-Nachrichten
enthalten den Startzeitpunkt der Aufnahme, nach dem das 6-Tuple ¢ spéter erstellt
werden kann.

Nach der Assoziation wurde die automatische Assoziation anhand der Projektion
der Detektionen aus Radar und Lidar in die Kamerabilder bewertet. Diese wurde
als gut empfunden. Durch die rollende Abtastung des Lidarsensors ergab sich jedoch
insbesondere bei dynamischen Fahrszenarien eine schlechte Kongruenz der Projektion
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von Lidar-Messungen im Kamerabild. Diese wird im néchsten Abschnitt dargestellt und
synthetisch korrigiert.

3.7.2. Korrektur der Abtastungen aus Lidarsensor

Definiert sei

Atping(t) =A TlidartAt(letl(iidar) - (t(kkamera) - t(hidar)) =t- t(kkamera)v (3-36)

als die zeitliche Differenz eines jeden Lidar Pings® bezogen auf den Startzeitpunkt des
assoziierten Kameraframes. Der Term ATlidar%lf(:Fk}f%r) beschreibt die zeitliche Differenz

durch die rollende Abtastung. Der Term (t(kkamera) - t(klidar)) beschreibt die zeitliche
Differenz der Startpunkte von Lidar und Kameraaufnahme.

Ein geometrischer Versatz der Abtastung wird geméfl dieser zeitlichen Differenz kom-
pensiert. Dabei wird angenommen, dass sich die Pings ausschliefilich entsprechend der
Bewegung des Ego-Fahrzeuges in Weltkoordinaten bewegen, also stationér gegeniiber
Grund sind. Zur Kompensation wird das in [MDB™17] vorgestellte Verfahren verwendet.
Das, auf Runge-Kutta basierende Verfahren, integriert die translatorische und rotatori-
sche Bewegung des Fahrzeuges. Das Verfahren ist in Algorithmus 2 zusammengefasst.

Algorithmus 2: Ego-Bewegungs-Korrektur von Lidar-Punkten
Daten: Unkorrigierte Lidar-Punktwolke g, Zeit der Lidarpings bezogen auf

Drehstartpunkt #ine, Fahrzeuglingsgeschwindigkeit v, und Gierrate
Ergebnis: Korrigierte Lidar-Punktwolke ggo, corrected
fiir p < 0 bis #Lidar Pings tue
Az vg;.Atping (t(p))
Apq ¢Atping (t (p))
Azy Az cos(Ady)
Ayq < Azsin(Ady)

cos(A¢py) —sin(Apy) 0 Az
IEgo, corrected(P) < | Sin(Adqa)  cos(Apa) 0 ngo(p) + | AYa
0 0 1 0

return TEgo, corrected

Dabei entsprechen v, und ¢ der Lingsgeschwindigkeit und der Gierrate des Fahrzeuges.
Da die Messung der Bewegung durch das DGPS-INS im Ego-KOOS vorgenommen wird,
werden die Lidar-Pings zunéchst in das Ego-KOOS transformiert (Gleichung 3.16) und
dort die Kompensation durchgefithrt. Durch Bewegung und zeitlichen Versatz ergibt
sich eine Translation der Punkte im Ego-KOOS entsprechend Az, und Ay, sowie eine
Rotation um die Hochachse entsprechend um Ag,, .

Eine Gegeniiberstellung korrigierter und unkorrigierter Lidar-Punktwolken ist in
Abbildung 3.10 dargestellt. In dem Beispiel fahrt das Ego-Fahrzeug mit tiblicher Ge-
schwindigkeit auf einer Autobahn und die Kameras sind nach vorne gerichtet. Zu

®Ping als Synonym einer einzelnen raumlichen Abtastung durch den Lidarsensor.
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3. Aufbau und Kalibrierung des Sensorsystems

erkennen ist, dass die unkorrigierten Punkte in Abbildung 3.10a den Baum im linken
Bildbereich nicht gut treffen. Im Gegensatz dazu schlieffen die selben Punkte nach der
Kompensation in Abbildung 3.10b deutlich besser mit den Konturen des Baums ab.

depth in meter —

Gepth in meter —

(b) Mit Ego-Bewegungskorrektur

Abbildung 3.10.: Vergleich von projizierten Lidar-Pings auf Kamerabild, vor
und nach Ego-Bewegungs Korrektur: Die Lidar-Pings sind farb-
lich entsprechend der gemessenen Entfernung codiert. Im oberen Bild
ist eine schlechte Kongruenz, z.B. am linksseitigen Baum, zu erkennen,
welche durch die Ego-Bewegungs Korrektur im unteren Bild behoben
wurde.

Angemerkt sei, dass sich diese Kompensation immer auf die einzelnen Kamerabilder
bezieht. Da zwei Kameras verwendet werden, wurden die Pings aus den Lidarsensoren
jeweils fiir beide Kamerabilder korrigiert. Zur Vereinfachung der Beschreibung seien
im weiteren Verlauf dieser Arbeit immer die korrigierten Lidar-Pings gemeint, wenn
Lidar-Daten verwendet werden.
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4. Aufbereitung der Sensordaten

Auf den Daten der Referenzsensorik wird eine vorverarbeitende Signalverarbeitung
angewandt, welche fiir die weiteren Verarbeitungsschritte dieser Arbeit bendtigt wird.
Bei den Verarbeitungsschritten handelt es sich um aus der Literatur bekannte Verfahren
zur Tiefenvervollstindigung, Normalenschitzung, Schiatzung des optischen Flusses und
der semantischen Instanz-Segmentierung, welche zur Abgrenzung selbst entwickelter
Signalverarbeitungen gesondert in diesem Kapitel vorgestellt werden.

4.1. Tiefenvervollstandigung

Trotz der Verwendung von zwei Lidarsensoren werden nicht alle Kamerapixel mit
Tiefeninformationen befiillt. Die Ausrichtung der Lidarsensoren wurde so vorgenommen,
dass die vertikale Mitte der Kamerabilder dicht mit projizierten Tiefenmessungen aus
den Lidarsensoren bedeckt ist. Ein Beispiel dazu ist in Abbildung 4.1 dargestellt.

Abbildung 4.1.: Abdeckung der Szene durch Lidarmessungen: Die Abtastungen
der Lidarsensoren sind rot (Sensor 1) und griin (Sensor 2) hervorgehoben.
Durch Verkippung der Lidarsensoren zueinander wird der Bildinhalt
grofitenteils dicht vermessen. Es verbleiben jedoch Bildregionen mit
geringer Tiefeninformation.

Zu erkennen ist, dass insbesondere im unteren Bereich des Bildes kaum Pixel mit
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4. Aufbereitung der Sensordaten

Tiefeninformationen belegt sind. Analog fehlt auch im oberen Bildbereich die Tiefen-
messung, welche aufgrund der zu groflen Entfernung zum Himmel nicht durch die
Lidarsensoren vermessen wurde. In diesem Abschnitt wird die spérliche Tiefenmessung
im Kamerabild durch Tiefenschatzungen ergénzt, so dass fiir jedes Pixel im Kamerabild
ein Tiefenwert geschatzt wird. Da wir im spédteren Verlauf dieser Arbeit fiir das gesamte
Kamerabild eine automatische Annotation der Radardaten ableiten werden, ist diese
dichte Tiefeninformation notwendig.

In vielen automotiven Datensiitzen, wie beispielsweise dem KITTI-Datensatz [USST17],
ist die Tiefenvervollstdndigung (engl.: ,depth completion) eine eigenstdndige Disziplin.
Das Ziel ist dabei, die spérliche Tiefenmessung des Lidars um geschétzte Tiefeninfor-
mationen zu erweitern, so dass fiir das gesamte Kamerabild Tiefeninformation vorliegt.
Einige Verfahren zur Tiefenvervollstandigung sind in [GLSU12], [DT06] zu finden. In der
vorliegenden Arbeit wird das Verfahren aus [HN09] verwendet, welches eine Erweiterung
des Markov-Zufallsfelds aus [DT06] darstellt. Das Markovfeld nutzt die Bildgradienten im
Kamerabild, um die spérliche Tiefeninformation in Pixelregionen ohne Tiefenmessung zu
propagieren. Es wird davon ausgegangen, dass der Tiefenverlauf stetig in Bildbereichen
homogener Farbe ist und nur an Farbkanten im Kamerabild Tiefenspriinge entstehen.
Das Markovfeld propagiert die spéarlichen Tiefeninformationen so, dass homogene Bild-
bereiche auch homogene Tiefeninformationen erhalten und Tiefenspriinge an Bildkanten
stattfinden. Eine anschauliche Darstellung des Markovfeldes ist in Abbildung 4.2 zu
finden.

@© Laser range measurement, z
O Reconstructed range, y

© Image gradient, u

© Image pixels, x

@ Depth discontinuity, w

Quelle: [DTO8]

Abbildung 4.2.: Markov-Zufallsfeld zur Tiefenvervollstandigung: Das Markov
Zufallsfeld zur Tiefenvervollstandigung aus [DT06]. Die blauen Punkte
entsprechen den Tiefenmessungen durch Lidar. Die gelben Punkte ent-
sprechen den geschétzten Tiefen. Die rosafarbenen Punkte entsprechen
den Bildgradienten. Die griinen Punkte entsprechen den Bildpixeln. Die
lilafarbenen Punkte entsprechen dem Tiefengradienten.

In der Darstellung werden die Pixel des Kamerabildes durch das reguldre Gitter der
griilnen Punkten dargestellt. Zwischen den Pixeln lassen sich Farbgradienten berechnen,
welche durch die rosafarbenen Punkte dargestellt sind. Die blauen Punkte stellen die
sparliche Tiefenmessung durch Lidar dar. Ziel ist die Schatzung des dichten Tiefengit-
ters, dargestellt durch gelbe Punkte. Das Gitter dieser gelben Punkte wird durch die
Tiefenmessung von Lidar und durch den Farbgradienten des Kamerabildes bzw. daraus
abgeleitete Hilfsgitter (lilafarbene Punkte) bestimmt.
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4.1. Tiefenvervollstdndigung

Es wurde in [HN09] beobachtet, dass das Markovfeld parallel zum Kamerabild verlau-
fende Oberflichen bevorzugt, da Tiefengradienten primar an Kanten im Kamerabild
zugelassen werden. Verlaufen Objektoberflichen jedoch nicht parallel zum Kamera-
bild, so haben benachbarte Pixel meist dhnliche Farbintensitdten und trotzdem einen
Tiefengradienten. [HNO09] erweitern das Markovfeld durch eine Stetigkeitsbedingung
zweiter Ordnung auf dem Tiefenbild. Diese zusétzliche Bedingung erméglicht eine bes-
sere Propagation der Tiefeninformation in Bildbereiche mit linear oder parabolisch
verlaufenden Oberflichen. Beispiele fiir die Tiefenvervollstdndigung auf unseren Daten
mit dem Verfahren aus [HN09] sind in Abbildung 4.3 zu finden.

Dsparse

2 2.5 3.334.97 9.87 2 2.5 3.334.979.87
Tiefe in Meter — Tiefe in Meter —

Abbildung 4.3.: Beispiele der Tiefenvervollstindigung: Links: Kamerabilder; Mitte:
Spérliche Tiefeninformation aus Lidarsensoren; Rechts: Verdichtete
Tiefeninformation aus Kamerabild.

Die linke Spalte der Abbildungen zeigt beispielhafte Kamerabilder, die mittlere
Spalte die Projektion der spérlichen Lidarpunktwolke im Kamerabild, und die rechte
Spalte die damit geschéitzten dichten Tiefenmasken. Als Referenz werden die Symbole
RGB, Dgparse und D verwendet. Wie oben beschrieben, ist in Abbildung 4.3 zu sehen,
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4. Aufbereitung der Sensordaten

dass die Farbverldufe der Tiefenmasken D an geraden Fliachen stetig verlaufen. Die
Tiefenvervollstdndigung wurde als plausibel empfunden und keine weitere Untersuchung
zur Genauigkeit der verwendeten Tiefenvervollstdndigung durchgefiihrt.

4.2. Schdtzung der Oberflachennormalen

Im spéteren Verlauf der vorliegenden Arbeit wird geschétzt, von welchen Pixeln im
Kamerabild eine signifikante Reflexion fiir den Radar zu erwarten ist. Die Daten der
Referenzsensorik liefern keinen direkten Messwert beziiglich des Reflexionsvermogens
von EM-Wellen fiir 77 GHz Radar. Das Reflexionsvermoégen soll daher automatisch aus
den Daten der Referenzsensorik geschétzt werden.

Einen hohen Einfluss auf das Reflexionsvermégen bzw. die relative Reflexionsamplitude
hat nach den Fresnelschen-Gleichungen aus Unterabschnitt 2.1.1, der Aspektwinkel
an Grenzflichen. Fiir die Berechnung des Aspektwinkels ist der Normalenvektor der
Oberflachen zu schétzen, was nachfolgend beschrieben wird.

Zur Schéitzung der Oberflichennormalen werden wir der Implementierung aus der
freien Mathematik Software OCTAVE [Oct22] folgen. Die Pixel im Tiefenbild der Ka-
mera werden dazu zunéchst in kartesische Koordinaten im Radarkoordinatensystem
transformiert, sieche Gleichung 3.3, 3.25 und 3.31. Anschlieflend werden die diagonalen
Richtungsvektoren benachbarter Pixel im Kamerabild geschitzt. Uber das Kreuzprodukt
der Richtungsvektoren wird dann die Oberflichennormale n. geschétzt.

In Abbildung 4.4 sind einige Beispiele von Kamerabildern RGB, dazugehorigen
Tiefenmasken D und geschétzten Oberflaichennormalen N dargestellt. Die Ausrichtung
der Oberflichennormalen wurde farblich codiert. Die Beschreibung der Farbcodierung
ist der Bildunterschrift zu entnehmen.

Zu erkennen ist, dass Bereiche der Strafle und Gehwege fast ausschliellich griin
dargestellt sind; die zugehorigen Oberflichennormalen somit hauptséichlich vertikal
ausgerichtet geschitzt wurden. In der zweiten, dritten und vierten Zeile sind die Ober-
flachennormalen der Hauswénde hauptsichlich rot dargestellt, was einer horizontal
im Kamerabild ausgerichteten Normale entspricht. In der ersten, dritten und vierten
Zeile sind Teilbereiche der Fahrzeuge blau dargestellt, welches einer orthogonal zur
Bildebene entsprechenden Ausrichtung der Normalen entspricht. Die beschriebenen
Bereiche stellen plausible Schétzergebnisse dar, jedoch gibt es auch Bildregionen, in
denen die Normalen unplausibel sind. Beispielhaft dafiir sind, dass die unteren linken
Bildbereiche blau gefiarbt sind, obwohl dort ebenfalls die Strafle im Kamerabild abgebil-
det ist und entsprechend eine vertikale Normale bzw. griine Einfarbung zu erwarten wére.
Urséchlich dafiir ist, dass die Oberflichennormalen aus dem vervollstdndigten Tiefenbild
geschitzt werden. Etwaige Fehler in dieser Tiefenschitzung resultieren entsprechend
in fehlerhaften Schatzungen der Oberflichennormalen. Es ist wahrscheinlich, dass die
Abtastung durch Lidar in manchen Bildregionen zu spérlich war, so dass dort keine
verniinftige Tiefenvervollstdndigung erfolgen konnte. Da der wissenschaftliche Mehrwert
dieser Arbeit nicht in der Tiefenverwollstdndigung und Oberflachennormalenschiatzung
liegen soll, werden die Ergebnisse fiir den weiteren Verlauf der Arbeit so akzeptiert und
keine mogliche Verbesserung der Oberflichenschétzung durchgefiihrt.
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4.2. Schétzung der Oberflichennormalen

RGB D N

Abbildung 4.4.: Beispiele der Oberflichennormalenschitzung: Links: Kamerabil-
der; Mitte: dichte Tiefenmaske; Rechts: geschétzte Oberflichennorma-
lenausrichtung. Die Koordinaten der Oberflichennormalen wurden in
die RGB-Kanile eingetragen. Rote Pixel entsprechen Oberflichennor-
malen mit hauptsédchlich horizontaler Ausrichtung. Griin entsprechend
vertikaler Ausrichtung. Blau entsprechend Ausrichtung orthogonal zur
Bildebene.
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4. Aufbereitung der Sensordaten

4.3. Semantische Instanz-Segmentierung der Kamerabilder

Fiir weitere Verarbeitungsschritte ist ein tieferes Versténdnis der Szene notwendig. Ein
wichtiger Informationstrager stellen dabei die Bilder der Kameras dar. Zwar fehlt den
Kamerabildern im Vergleich zum verwendeten Lidarsensor die Tiefeninformation. Dafiir
wird zum einen die Farbinformation der Umgebung mit abgebildet und zum anderen
eine deutlich grofiere Winkelauflosung erreicht. Man vergleiche dazu die projizierten
Lidar-Pings im Kamerabild mit der Anzahl der Pixel im Kamerabild, siehe z.B. Abbil-
dung 4.1. Diese Merkmale fithren dazu, dass die Kamerabilder im Vergleich zu spérlichen
Punktwolken, z.B. aus Lidarsensoren, fiir den menschlichen Betrachter eingéngiger und
verstdndlicher sind. Auch im Feld der ,,maschinellen Bildverarbeitung* werden Bilder
als Informationstrager verwendet und maschinell z.B. semantische Informationen aus
den Bildern extrahiert. Eine typische Aufgabe aus der maschinellen Bildverarbeitung
stellt dabei die semantische Instanzsegmentierung dar. Das Ziel dabei ist, alle Instan-
zen gesuchter Objektklassen im Kamerabild zu detektieren. Gleichzeitig sind zu einer
Instanz gehorende Pixel zu markieren. Beispiele einer solchen Segmentierung sind in
Abbildung 4.5 dargestellt.
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Persons=: tpmek - POBOL — . truck car

Abbildung 4.5.: Semantische Instanz-Segmentierung: Beispielhafte Ergebnisse der
automatischen semantischen Instanz-Segmentierung.

Die automatische semantische Instanz-Segmentierung der Kamerabilder erfolgte in
dieser Arbeit mit Hilfe des Verfahrens ,mask_rcnn_ inception_v2_ coco* aus dem
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4.4. Verfeinerung der Instanzmasken durch Clusterbildung

Tensorflow-Model-Zoo [HRS ™17, Ten20]. Das Verfahren basiert auf einem CNN, welches
speziell fir die Aufgabe der semantischen Instanz-Segmentierung auf dem COCO-
Datensatz trainiert wurde. Das Netzwerk wurde gewahlt, da es zufriedenstellende
Segmentierungen erreicht und dabei noch akzeptable Laufzeit (inklusive Export der
Daten) von etwa 300 ms pro Kameraframe auf dem verwendeten PC erreicht.

Fiir die Inferenz der Segmentierung wird ausschlieBlich das Kamerabild zum Frame
verwendet und die Pradiktion in Form einer Maske M erzeugt. Die Maske M umfasst
die einzelnen Pixel zu jeder detektierten Objektinstanz. Da das verwendete Verfahren
nicht ausschliefflich fiir automotive Anwendungen trainiert wurde, kann es eine Vielzahl
von hier nicht relevanten Objektklassen wie z.B. Flugzeugen, Schiffen oder Tieren wie
Giraffen oder Walen erkennen. Die im Rahmen dieser Arbeit als wesentlich beurteilten
Objektklassen sind: Fulgdnger, PKW, LKW, Fahrrad und Motorrad. Detektionen
anderer Objektklassen durch das CNN werden im weiteren Verlauf dieser Arbeit ignoriert.

Es seien zusétzlich noch die Masken My, und Mpgq. definiert, welche die Instanz-
masken aller PKW, LKW und Zweirdder bzw. aller Fu3gdnger abbilden.

4.4. Verfeinerung der Instanzmasken durch Clusterbildung

Die zuvor vorgestellte semantische Instanz-Segmentierung erlaubt eine Detektion von
Objekten in der Kameraebene. Da die geschétzten Instanzmasken nicht fehlerfrei sind,
kommt es zum Beispiel vor, dass die Instanzmaske gelegentlich Pixel detektiert, welche
nicht mehr zur abgebildeten Objektinstanz gehéren. Hiufig kann beobachtet werden,
dass z.B. bei hintereinander parkenden Fahrzeugen ein Teil der Pixel des hinteren
Fahrzeuges dem vorderen Fahrzeug zugeordnet wird und umgekehrt. Obschon die
Objekte im Kamerabild benachbart liegen, so sind sie im dreidimensionalen Raum
zwingend getrennt. Diese Eigenschaft wird genutzt, um mdgliche Fehler in der Instanz-
Segmentierung automatisch zu erkennen. Dazu werden Pixel des Kamerabildes nach der
semantischen Instanz-Segmentierung weiter geclustert.

Mit Hilfe der zuvor geschétzten Tiefenmaske aus Abschnitt 4.1 werden die Pixel,
die zu einer Instanzmaske gehoren, zunichst in Kamerakoordinaten transformiert, sie-
he Gleichung 3.23a, Gleichung 3.24a und Gleichung 3.31. Die sich ergebene, zu einer
Instanzmaske gehérende Punktwolke wird iiber das Density-Based-Spatial-Clustering-
of-Applications-with-Noise (DBSCAN) Verfahren [EKSX96] weiter geclustert. Dabei
werden Punkte, welche eine euklidische Abweichung von mehr 0.3 m zum néchstgelege-
nen Cluster haben, als Ausreifler klassifiziert und aus dem Datensatz ausgeschlossen.
Es resultiert eine Menge aller verbliebenen als valide klassifizierten Pixel Ppggcan-
Fiir die Wahl der maximalen eingestellten Abweichung wurde angenommen, dass die
Winkelauflosung der Referenzsensorik 0.1° betragt und die maximale Entfernung 30 m.
Ein moglicher tangentialer Fehler ergibt sich somit zu sin(0.1°)30m = 0.05cm bzw.
iiberschlégig als Summe in beide Tangentialrichtungen zu 0.1 cm. Die Parameterwahl
sollte diesen Wert nicht unterschreiten, so dass sich 0.3 m als valider Wert ergab.

4.5. Optischer Fluss

Im Folgenden Kapitel 5 wird aus den Daten der Sensoren eine Schitzung der 3D-
Bewegung sdmtlicher Kamerapixel durchgefiihrt. Dafiir wird eine Schétzung der Be-
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4. Aufbereitung der Sensordaten

wegung in der Bildebene bendtigt, bei welcher fiir jedes Pixel im Kamerabild die
Verschiebung in horizontaler und vertikaler Bildachse ermittelt wird. Diese Verschiebung
in der Bildebene wird in der Literatur auch als ,optischer Fluss*“ [HS81] bezeichnet und
in unzahligen Veroffentlichungen behandelt.

Zum Zeitpunkt der Bearbeitung dieses Werkes erreichte das von Yin [YDY19] ver-
Offentlichte Verfahren einen der vorderen Platze im KITTI ,,Optical Flow Evaluation
2015“ benchmark. Das Verfahren hob sich von anderen Verfahren ab, da es neben sehr
guten Schéitzgenauigkeiten des optischen Flusses auch noch Schéitzkonfidenzen auf Pixel-
ebene bereitstellt. Diese Konfidenzen geben einen Anhaltspunkt iiber Fehler im optischen
Fluss, und die entsprechenden Pixel kénnen automatisch aus der Beriicksichtigung fiir
die automatische Annotation der Radardaten ausgeschlossen werden.

Es wird an dieser Stelle auf eine ausfiihrliche technische Beschreibung des Verfahrens
verzichtet und der interessierte Leser stattdessen auf die entsprechende Veréffentlichung
[YDY19] verwiesen. Zum anschaulichen Verstdndnis seien stattdessen Ergebnisse der
optischen Flussschétzung in Abbildung 4.6 dargestellt.
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Abbildung 4.6.: Beispiel des optischen Flusses: Links und Mitte: Zwei aufeinander
folgende Kamerabilder. Rechts; Resultierender optischer Fluss zwischen
den Kamerabildern. Unten: Farblegende zum optischen Fluss mit An-
gabe in Pixeln.

In den ersten beiden Spalten der Abbildung sind jeweils zwei aufeinander folgende
Kamerabilder dargestellt, zwischen denen der optische Fluss geschéitzt wurde. Der
optische Fluss ist jeweils auf der rechten Seite dargestellt. Die farbliche Kodierung
entspricht der in der Literatur tiblichen Darstellung, wobei der Farbton (engl.: ,hue*)
gemaf der Bewegungsrichtung des optischen Flusses und der Hellwert (engl.: ,value®)
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4.5. Optischer Fluss

entsprechend dem Betrag des optischen Flusses skaliert wird. Die Farblegende ist im
unteren Bereich der Abbildung dargestellt. In den Beispielen ist zu erkennen, dass in
den jeweils unteren linken Ecken der Bilder ein diagonal nach rechts oben gerichteter
optischer Fluss geschatzt wurde. Dies ist plausibel, da sich die Kamera geradlinig
bewegt und die abgebildeten Objekte sich in Richtung des Bildzentrums bewegen. Im
unteren Beispiel ist ein roter Kleinwagen zu sehen, welcher sich in Richtung des linken
Bildbereiches bewegt und folgerichtig der optische Fluss geschétzt wurde. Im weiteren
Verlauf dieser Arbeit werden wir F als Bezeichnung fiir die Maske des optischen Flusses
verwenden.
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5. Schatzung der Radialgeschwindigkeit aus
Referenzsensordaten

In dieser Arbeit werden Verfahren zur kreuzmodalen Supervision von NN basierten
Verfahren zur Signalverarbeitung von Radarfrequenzspektren und Kamerabildern vor-
gestellt. Die Frequenzspektren geben, wie in Unterabschnitt 2.1.3.3, 2.1.3.4 und 2.1.5
gezeigt, die Dimensionen Entfernung, Radialgeschwindigkeit und Einfallswinkel der
abgetasteten EM-Wellen wieder. Bei der automatischen Annotation miissen die Labels
also entsprechend Entfernung, Doppler und Winkel in Radarfrequenzspektren plat-
ziert werden. Entfernung und Einfallswinkel der Umgebung lassen sich mittels der in
Kapitel 4 vorgestellten Tiefenvervollstdndigung schétzen. Zu beachten ist, dass die
Tiefenvervollstandigung im Kamerakoordinatensystem vorliegt und fiir die Annotation
mittels der Koordinatentransformationen aus Kapitel 3 in das Radarkoordinatensystem
transformiert werden muss. Zur vollstdndigen Platzierung der Labels in dem Radar-
frequenzspektrum werden noch Doppler- bzw. Radialgeschwindigkeit der Kamerapixel
benoétigt. Ein entsprechendes Verfahren zur Geschwindigkeitsschatzung der Kamerapixel
wird in diesem Kapitel vorgestellt. Es handelt sich um eine Erweiterung eines aus der
Literatur bekannten Verfahrens zur 3D-Szenenflussschéatzung.

Das Kapitel wird begonnen mit einer generischen Beschreibung des Szenenflusses
(Abschnitt 5.1), ehe in Abschnitt 5.2 eine Kurzbeschreibung der Neuerungen des hier
entwickelten Verfahrens zur Szenenflussschitzung vorgestellt wird. Anschlieend wer-
den die Eingangsdaten aufgelistet (Abschnitt 5.3) und elementare Mengendefinitionen
vorgestellt (Abschnitt 5.4), ehe das zugrunde liegende Modell der Bewegung eingefiihrt
wird (Abschnitt 5.5). Die Bewegungsparameter des Modells werden aus den Eingangs-
daten geschétzt, ehe am Ende des Kapitels das Verfahren evaluiert wird. Dabei wird
untersucht, welche Szenenflussgenauigkeit von dem vorgestellten Schéitzer zu erwarten
ist (Abschnitt 5.8).

5.1. Erlauterungen zum 3D-Szenenfluss

Als Szenenfluss bezeichnet man in der Wissenschaft zur digitalen Bildverarbeitung das
(semi-)dichte 3D-Vektorfeld zur Beschreibung der Bewegungen von Pixelinhalten relativ
zur Kamera. Die Bewegung setzt sich dabei aus zwei Komponenten in der Bildebene
sowie einer Komponente orthogonal zur Bildebene, der Bildnormalen, zusammen. Eine
Entfernungsmessung in Bildnormalen ist bei typischen Mono-Kameras nicht direkt
moglich, somit ist die Berechnung eines 3D-Bewegungsfeldes eine herausfordernde
Aufgabe. In vielen Publikationen wird eine Entfernungsmessung in Bildnormalen durch
Verwendung von RGB-D oder Stereo-Kamerasystemen erreicht und entsprechend die
Schétzung einer Bewegung, insbesondere die Komponente in Richtung der Bildnormalen,
verbessert. Eine Ubersicht méglicher Szenenflussverfahren erméglicht die KITTI Scene
Flow FEvaluation 2015, in welcher eine Reihe von Verfahren aufgelistet und bewertet
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

sind [MHG18, MHG15].

Da immer wieder neue Verfahren mit besseren Schétzergebnissen in der KITTI
Hierarchie veroffentlicht werden, ist dies Nachweis dafiir, dass die Schitzung des 3D-
Bewegungsfeldes weiterhin herausfordernd bleibt. Wir definieren das Bewegungsfeld &
durch Bildung von Differenzenquotienten

® _ k) (k1)
Ep =%

Clp] ~XCla(p) (5.1)

wobei p ein Pixel im aktuellen Kamerabild und ¢(p) ein korrespondierendes Pixel im
zeitlich benachbarten Kamerabild ist. £ und k — 1 beschreiben zeitlich benachbarte
Kameraframes. Die Assoziationsfunktion ¢(p) ergibt sich nicht automatisch und muss
durch das Verfahren zur Szenenflussschitzung selber ermittelt werden. Fiir eine gute
Szenenflussschitzung muss zum einen die Position x der Punkte moglichst fehler-
frei gemessen werden und anschlieflend die Assoziationsfunktion ¢(p) eine fehlerfreie
Assoziation der Punkte zwischen den Frames durchfiihren.

5.2. Erweiterung von DRISF zu DRISFwR

Wiéhrend der Entwicklung dieser Arbeit erreichte das Verfahren Deep-Rigid-Instance-
Scene-Flow (DRISF) zeitweise die hochsten Metriken im KITTI Scene Flow Benchmark.
Fine Gemeinsamkeit mit anderen Verfahren ist, dass z.B. die Szene vorab in unter-
schiedliche Aktoren unterteilt wird. Diese Aktoren werden als Starrkérper angenommen,
dessen Pixel sich mit identischer Bewegung in der Szene fortbewegen. Bei korrekter
Segmentierung in Aktoren fithrt diese Annahme dazu, dass viele Datenpunkte (mehrere
hundert Pixel im Kamerabild) fiir die Schitzung weniger Bewegungsparameter verwendet
werden konnen und eine weniger vom Rauschen beeinflusste Schitzung erreicht werden
kann. Typischerweise wird die Bewegung jedes Aktors durch jeweils eine 3D-Translation
und 3D-Rotation beschrieben.

Zur Schitzung des Szenenflusses nutzt DRISF optische Informationsquellen, soge-
nannte ,visual Cues®. Hierbei handelt es sich um praprozessierte Informationen aus
den Sensordaten. Konkret werden bei DRISF der optische Fluss, die Tiefenmasken der
Sequenz und die Instanzmaske verwendet. Fiir diese Cues definiert DRISF Transfor-
mationsgleichungen und Giitefunktionen, welche eine Schiatzung des Szenenflusses mit
Hilfe eines GauB-Newton Optimierers ermdglichen.

Ein praktischer Vorteil bietet DRISF gegeniiber anderen Verfahren durch die modulare
Trennung der Cues und des Optimieres, welches eine einfache Pflege der Cues ermdglicht.
Ergibt sich mit der Zeit Zugang zu Algorithmen mit genauer Instanzsegmentierung,
optischen Fluss und Tiefenschétzung, so konnen diese leicht in DRISF ausgetauscht und
somit die Schétzqualitidt des Szenenflusses verbessert werden, ohne die Transformations-
gleichungen anpassen zu miissen. Wie in diesem Kapitel gezeigt wird, lasst sich DRISF
aber auch leicht mit anderen Cues erweitern. Konkret wird dies durch Erweiterung von
DRISF zu Deep-Rigid-Instance-Scene-Flow-with-Radar (DRISFwR) erreicht, welches als
zusatzlichen Cue die RD-map des Radars verwendet und eine entsprechende Erweiterung
der Transformationsgleichung zur Beriicksichtigung des Cues bereitstellt.

Eine grafische Ubersicht der Adaption von DRISF zu Deep-Rigid-Instance-Scene-
Flow-with-Radar (DRISFwR) ist in Abbildung 5.1 zu finden.
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RD Maske

DRISFwR
Adaption

m i -
ﬁ

t+1
A Seg : Flow S
tereo/ Mask ‘

J

Extract D2

Structure optimization
visual cue )

'\ _original DRISF

Quelle: [MWH™19]
Abbildung 5.1.: Ubersicht von DRISFwR (adaptiert aus [MWH19]): Die origi-
nale Verarbeitung durch DRISF ist im unteren gestrichelten Rechteck
dargestellt. Es werden zunéchst aus Stereokamera-Bildpaaren der opti-
sche Fluss, Instanzsegmentierung und Tiefenmaske geschétzt. Anschlie-
Bend wird fiir die detektierten Instanzen der Szenenfluss mittels Gauf-
Newton-Schétzer bestimmt. Dariiber ist die Erweiterung zu DRISFwR
dargestellt. Nach jeder Iteration wird eine zuséatzliche Objektmaske aus
der RD-map extrahiert und fiir die néchste Iteration des Optimierers
verwendet. Dieser versucht, Objektmasken entsprechend den Vorgaben
durch Variation des Szenenflusses zu extrahieren.

Ausschlaggebend fiir die Erweiterung zu DRISFwR sind zwei Motivationen. Zum
einen besteht der Wunsch, eine gegeniiber DRISF verbesserte Szenenflussgenauigkeit
zu erreichen. Zum anderen soll durch die Hinzunahme der RD-maps eine automatische
Ausrichtung des geschétzten Szenenflusses am Inhalt der RD-maps erreicht werden. Fiir
die zugrunde liegende Aufgabe, die automatische Annotation von Radarfrequenzspektren,
ist dies entscheidend, da Fehler in der Platzierung der Annotationen minimiert werden.

Im weiteren Verlauf dieses Abschnittes werden wir die Adaptionen von DRISFwR im
Detail vorstellen. Dabei werden die fundamentalen Grundlagen zu DRISF vermittelt.
Diese Grundlagen zu DRISF konnen keinesfalls den gesamten wissenschaftlichen Umfang
der Publikationen von DRISF nachbilden. Dem interessierten Leser wird an dieser Stelle
empfohlen, die originale Veroffentlichung [MWHT19] zu DRISF zu studieren, bevor mit
der weiteren Durchsicht dieser Arbeit fortgefahren wird.

5.3. Eingangsdaten

Als Eingangsdatenmenge fiir DRISFwR werden vier verschiedene Cues bereitgestellt:
Instanzmaske, Tiefenmaske, optischer Fluss und RD-map. Die ersten drei Cues, die
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

optischen Cues, finden auch bei DRISF Verwendung. Wir fithren den letzten Cue als
erste Adaption von DRISFwR ein.

5.3.1. Instanzsegmentierung

Bei DRISF wird wie zuvor erwahnt das Kamerabild RGB in unterschiedliche Aktoren mit
gleichem Bewegungsmuster aufgeteilt. Diese Aufteilung erfolgt automatisch anhand einer
Instanzsegmentierung, welche bereits in Abschnitt 4.4 vorgestellt wurde. Abkiirzend fiir
die resultierende Instanzmaske werden wir nachfolgend die Abkiirzung M verwenden.
Bei der Instanzmaske werden ganze Fulgédnger oder Fahrzeuge als einzelne Aktoren
zusammengefasst. Zwar hétten sich sowohl Fuiginger als auch Fahrzeuge mechanisch
besser als Mehrkorpermodelle beschreiben lassen. DRISF verzichtet auf diese Model-

lierung und nimmt etwaige Ungenauigkeiten zu Gunsten verringerter Komplexitét in
Kauf.

5.3.2. Tiefenmaske

Fiir die rdumliche Abtastung des Bildinhaltes wird die aus Abschnitt 4.1 bekannte
Tiefenvervollstandigung verwendet. Dem Verfahren zur Szenenflussschétzung wird dabei
die Tiefenmaske zweier zeitlich benachbarter Kameraframes zur Verfiigung gestellt,
welche wir nachfolgend in der Form DY und D! abkiirzen werden. In der originalen DRISF-
Veroffentlichung wurden die Tiefenmasken mittels Stereo-Kamerabildern geschétzt.
Da hier jedoch die Tiefenmessung durch Lidarsensoren moglich ist, bietet sich diese
Anderung an und demonstriert noch einmal die zuvor beschriebene Modularitéit des
Verfahrens.

5.3.3. Optischer Fluss

Der optische Fluss beschreibt die Verschiebung der Pixel in der Kameraebene zwischen
zwei zeitlich benachbarten Kamerabildern. In Abschnitt 4.5 wurde die Schétzung des
optischen Flusses mit dem HD? Verfahren nach [YDY19] vorgestellt. Wir werden die
resultierende Maske des optischen Flusses nachfolgend durch das Symbol F abkiirzen.

5.3.4. RD-map

Als neue Quelle fithrt DRISFwR die RD-map RD aus dem Radarsensor ein. Eine
Einfithrung zum RD-map wurde bereits in Unterabschnitt 2.1.3.4 gegeben.

Neben der RD-map stellt ein typischer Radarsensor auch noch identifizierte Detektio-
nen bereit. Alternativ oder ergénzend zum RD-map kénnen auch diese Detektionen als
Cue fiir DRISFwR verwendet werden. Der Autor dieser Arbeit hat sich jedoch explizit da-
fiir entschieden, diese Detektionen nicht bei der Inferenz des Szenenflusses bei DRISFwR
zu verwenden, da sie (a) als Untermenge in der RD-map bereits enthalten sind und (b)
die Szenenflussinferenz moglichst unabhangig von klassischer Radarsignalverarbeitung
sein sollte, um mogliche Fehler nicht in das Training eines NN zu transportieren.
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5.4. Mengendefinitionen

5.4. Mengendefinitionen

Bevor mit der Einfithrung in die Algorithmen von DRISFwR eingestiegen wird, werden
nun einige Mengen definiert.

Fiir eine verkiirzte Darstellung von Gleichungen definieren wir
I = {RGBO, RGBl, DY, D! MO F, RD}. Wird eine oder mehrere der Masken benétigt,
so wird stellvertretend Z als Argument verwendet.

Bei der Verarbeitung mittels DRISF oder DRISFwR wird zwischen statischen Objekten
und potenziell bewegten Objekten unterschieden. Wir definieren dafiir die Menge aller
Pixel, welche bei der Instanzsegmentierung als Fuflginger oder Fahrzeuge erkannt
wurden

Prg = {p‘M(p) € {pedestrian, car, truck, bicycle, motorbike}}. (5.2)

Durch die Hinzunahme von RD-maps in DRISFwR muss beriicksichtigt werden,
dass Kamerapixel auflerhalb des Radar FoV liegen kénnen und somit fiir den Radar
unsichtbar sind. Bei der Optimierung sollen diese Pixel ausgeschlossen werden. Dazu
seien entsprechend vom Radar FoV eingeschlossene Pixel definiert als

135° 22°
Pradar = {pxr) [0 (x8) < 757 Adax) <5} (53)

Hierbei sind ¢q,. (xg) = arctan(xR[y]/xR[z]) und ¢g1 (xR) = arctan(xR[z]/xR[z]) der
Azimut- und Elevationswinkel der Pixel.

In Abschnitt 4.4 wurden Ausreiffer in den Instanzmasken detektiert. Auch diese
Ausreifler sollen bei der Optimierung unberiicksichtigt bleiben. Dazu definieren wir

P; = {P | p € PDBSCAN AP € Pradar}- (5.4)

Diese Menge wird entsprechend als valide Pixelmenge bezeichnet. Beispiele dieser
Pixelmenge sind in Abbildung 5.2 dargestellt.

(a) Kamera 1 (b) Kamera 2

Abbildung 5.2.: Maske zur Selektion valider Pixel: Beispiele valider Pixel (gelb)
fiir alle Objekte nach P;, dargestellt fiir beide Kameras.
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

5.5. Definition der Bewegung

Mittels des Uberlagerungsprinzips setzten wir die Bewegung des gesamten Bildinhaltes
aus mehreren Teilbewegungen zusammen. Zunachst wird die Bewegung der Kamera
gegeniiber Grund definiert. Nachfolgend werden wir diese Bewegung auch als Hin-
tergrundbewegung bezeichnen und aus den Bewegungsdaten des Fahrzeuges, direkt
gemessen iiber das DGPS-INS, berechnen. Die Hintergrundbewegung ergibt fiir jedes
Pixel im Kamerabild einen Geschwindigkeitsvektor. Nach erfolgter Schétzung der Hin-
tergrundbewegung wird eine additive Komponente der Bewegung fiir Objekte relativ
iiber Grund geschétzt. Diese Komponente wird nachfolgend als Vordergrundbewegung
bezeichnet und fiir alle Pixel der detektierten Aktoren geschétzt. Formal werden wir
den Szenenfluss fiir jedes Pixel als 3D-Vektor & = [5[1;]75[3,]75[4] T in kartesischen Ko-
ordinaten zusammenfassen. Die Hintergrundbewegung bzw. die relative Bewegung der
Kamera tiber Grund wird definiert als &,. Die Vordergrundbewegung bzw. die relative
Bewegung des Pixels iiber Grund wird definiert zu £z,. Nach dem Uberlagerungsprinzip
ergibt sich die Komposition beider Bewegungen zu

£ =28+ &y (5.5)

5.6. Bestimmung der Hintergrundbewegung

Fiir ein Fahrzeug ohne (signifikanten) Schlupf an den Reifen ldsst sich die Bewegung
gut nach dem Ackermann Modell [MWO04] modellieren. Es wird dabei angenommen,
dass ausschliellich die Vorderrédder schwenkbar sind und die Lenkaufgabe iibernehmen.
Samtliche Réder rollen ausschliefSlich um ihre Drehachse. Verlangert man die Dreh-
achsen, so treffen sie in einem Schnittpunkt zusammen, welcher den Drehpunkt des
Fahrzeuges bei Kurvenfahrt darstellt. Dadurch ergibt sich eine longitudinale Bewegung
am Hinterachsmittelpunkt mit Rotation um das Zentrum der Hinterachse. Die Bewegung
eines beliebigen Punktes auf dem Koérper des Ego-Fahrzeuges ldsst sich extrapolieren.

Wir beschreiben dazu die Bewegung durch Aufteilung der Geschwindigkeit in transla-
torische virans. und rotatorische vyot. Komponenten

V = Vtrans. T Vrot.- (5.6)

Die translatorische Geschwindigkeit ist der Anteil, welcher durch die Modellierung
geradliniger Bewegungen induziert wird. Die rotatorische Geschwindigkeit ist analog
dem Anteil, welcher durch Drehung um im Raum liegenden Achsen induziert wird.

Wir wollen nun die Geschwindigkeit eines beliebigen Punktes auf dem Ego-Fahrzeug
betrachten. In Abbildung 5.3 sind dazu beispielhaft die Geschwindigkeitsvektoren zweier
Punkte auf dem Fahrzeug eingezeichnet. Der Punkt H; vorne links sowie der Punkt Hy
hinten rechts im Fahrzeug.

Das Fahrzeug bewege sich auf einer Kreisbahn. Damit ergibt sich die Bahngeschwin-
digkeit der Punkte nach den Grundlagen der Dynamik, siehe z.B. [Pall4], zu

Vrot. = W X I'rot., (5-7)

wobei w die Giergeschwindigkeiten um die Achsen und ryo. der Verbindungsvektor
zwischen Drehachse und Bahnpunkt sind, z.B. H; — R.
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5.6. Bestimmung der Hintergrundbewegung

Abbildung 5.3.: Geschwindigkeit nach Ackermann Prinzip: Das Fahrzeug rotiert
um einen Punkt R mit den Giergeschwindigkeiten w. Fiir jede Posi-
tion auf dem ausgedehnten Fahrzeugkorper ergibt sich aufgrund der
unterschiedlichen Verbindungsvektoren zu R eine unterschiedliche Ge-
schwindigkeitskomponente. Fahrzeugkontur nach [ARFssN16].

Das DGPS-INS liefert den Geschwindigkeitsvektor der Fahrzeughinterachse und die
Gierraten. Die Geschwindigkeit der Fahrzeughinterachse ergibt sich nach Gleichung 5.7
zu

Viot., HA = @ X I'HA- (5'8)

Ist die relative Position der Punkte H; und Hs gegeniiber der Fahrzeughinterachse
bekannt, z.B. Arg, = Hy — gy, so ergibt sich der Geschwindigkeitsvektor fiir Punkt
H1 zu

Viot, Hp = @ X (rHA + ArHl)
=w X rygp +w x Arg,
= Vyga + AVHl. (5.9)

Die Geschwindigkeit des Punktes setzt sich somit aus der Langsgeschwindigkeit der
Fahrzeughinterachse vipp und der additiven Geschwindigkeit durch Rotation Avp,
zusammen.

Wir wollen nun die Position eines beliebigen Punktes p im Ego-Koordinatensystem
und Frame k fiir den nédchsten Frame k 4+ 1 préadizieren. Mit der oben definierten
Geschwindigkeit definieren wir die Translation des Punktes im Raum zu

v AT
tEJ)g: ’UyAT 5 (510)
vV, AT

wobei vy, vy, v, die mit dem DGPS-INS gemessenen Geschwindigkeiten nach Glei-
chung 5.9 sind. AT ist das Abtastintervall zwischen zwei aufeinanderfolgenden Frames.
Neben der Translation ergibt sich durch die Drehung des Ego-Fahrzeuges auch eine
Drehung des Koordinatensystems. Wir definieren die Drehung als eine Euler-Rotation
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

um die Fahrzeughochachse zu

cos(w,AT) sin(w,AT) 0
Rp oy = fsin(cngT) cos(ngT) (1) , (5.11)

wobei w, die vom DGPS-INS gemessene Gierrate ist. Daraus ermitteln wir die neue

geschéitzte Position i%ﬁl) des Punkte xg) mit

igﬁ[;}l) =Ry <X(Ek[)p] + APH) —Arg —tp (5.12)

Zur Kennzeichnung der Position im ersten Frame wird die Symbolik {- - - }(k) verwendet.
Fiir den zweiten Frame entsprechend {---}(#*1) {.7.} soll symbolisieren, dass es
sich um eine aus dem Szenenfluss geschétzte Position handelt. Bei der Berechnung
wurde beriicksichtigt, dass nach Ackermann-Modell eine Rotation des Fahrzeuges um die
Fahrzeughinterachse erfolgt. In dem dargestellten Modell erfolgte erst die Rotation, bevor
die Translation addiert wurde. Es gibt unterschiedliche numerische Verfahren fiir diese
Integration. Anstelle diese aufwendig zu untersuchen, verfeinern wir die kinematischen
Zustandsgrofen mittels visueller Odometrie mit dem in [Ali22] vorgestellten Verfahren.
Damit folgen wir der Empfehlung aus [MG15a], in welcher eine ungentigende Genauigkeit
der Pixelpridiktion mittels Zustandsgréfien aus DGPS-INS beobachtet wurde.

Im weiteren Verlauf besteht besonderes Interesse an der relativen Geschwindigkeit
der Umgebung aus Sicht der Kamera. Nach obigem Modell muss dafiir die Position der
Kamera auf dem Ego-Fahrzeug beriicksichtigt werden und damit die Geschwindigkeit der
Kameral! iiber Grund ermittelt werden. Durch Anwendung der Koordinatentransformati-
on aus Gleichung 3.31 und Anwendung der Bewegungstransformation aus Gleichung 5.12
erhalten wir

~(k+1 k
X(C[p]) - Rc’ng(C[)p] +tCbg (5.13a)
-1
RC,bg(k) = (EeCR) REJ)gE«CR (5.13D)

-1
tepg = (“OR) Ry, (Pt + Arg)
-1
- (E“C R) (ArH b+ E“Ct) . (5.13¢)
Dies ergibt schliellich den Hintergrundszenenfluss des Pixels p:

- (k+1) (k)

Shglp] = Xcpp) X Cfp) (5.14)

Nach Gleichung 5.5 ergibt sich damit der erste Teil des Szenenflusses (§;,), welcher
durch die Bewegung der Kamera iiber Grund entsteht.

'Da die Transformation fiir beide verwendeten Kameras analog giiltig ist, wird auf den Kameraindex
in den Gleichungen verzichtet.
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5.7. Bestimmung der Vordergrundbewegung

Wesentlich aufwendiger als die Schéitzung der Hintergrundbewegung ist die Schéitzung
der Bewegung von Aktoren tiber Grund &y, da die Bewegung aus den Daten selbst
geschétzt werden muss und nicht als direkte Messdaten vorliegt. Die technischen Details
dafiir werden im Folgenden vorgestellt.

5.7.1. Bewegungsparameter

In Gleichung 5.12 wurde die Positionsédnderung durch die Rotation und Translation
des Ego-Fahrzeuges beschrieben. Zur Beschreibung der Bewegung wurde die Rotation
eines Punktes um die Fahrzeughinterachse berechnet. Damit wurde die Bewegung der
Kamera abgeleitet.

Bei grofler werdender Distanz zwischen Hinterachse und beobachtetem Punkt steigt
der Einfluss der Rotation. Das beschriebene Bewegungsmodell modelliert dabei das
spezifische Bewegungsverhalten eines typischen Fahrzeuges im Straflenverkehr und
kann deshalb nicht nur fir die Modellierung des Ego-Fahrzeuges verwendet werden,
sondern auch fiir andere typische Fahrzeuge im Stralenverkehr, wie Personenkraftwagen
(PKW) und Lastkraftwagen (LKW). Im Unterschied zur Ego-Bewegung miissen bei
der Bewegung von Aktoren allerdings alle Reflexionspunkte der Aktoren beriicksichtigt
werden. Durch die geometrische Ausdehnung ergibt sich somit pro Aktor eine ganze
Signatur der Bewegung, welche wir kurz tiberschlagen werden.

Es sei ein typischer PKW mit einer Lange von 5m angenommen, dessen Hinterachse
1m vor dem Heck des Fahrzeuges liegt und somit die maximale geometrische Differenz
zwischen Fahrzeughinterachse und eines Punktes an der Fahrzeugfront, unbeachtet
der Fahrzeugbreite, bei 4 m liegt. Weiterhin sei angenommen, dass das Fahrzeug mit
maximal 20° s um die Hinterachse giert?. Daraus ergibt sich eine, durch Rotation
induzierte, Geschwindigkeit (siehe Gleichung 5.7) von 4m¥71r§%‘3 ~ MTm. Dieser Wert
iibersteigt die Dopplerauflosung vieler automotiver Radarsensoren und entsprechende
Rotation und Objektausdehnung kénnte zu einer kinematischen Ausdehnung in der
RD-map fithren. Ohne empirische Untersuchungen wird hier jedoch angenommen, dass
bei typischen Szenarien nur ein kleiner Teil der Fahrzeugkontur gleichzeitig beobach-
tet wird, so dass die gesamte geometrische und somit kinematische Signatur selten
zu beobachten ist. Zugunsten einer sinkenden Komplexitidt werden wir somit auf die
Schétzung der rotatorischen Bewegungsparameter der Verkehrsteilnehmer verzichten
und stattdessen ausschliellich die translatorischen Bewegungsparameter ermitteln. Zur
Veranschaulichung der beobachteten Geschwindigkeiten aus Sicht des Ego-Fahrzeuges ist
in Abbildung 5.4 ein Ego-Fahrzeug und ein gierendes Objekt eingezeichnet. Geschwin-
digkeitsvektoren sind fiir einen Punkt an der Fahrzeugfront und dem Fahrzeugheck
eingezeichnet.

Weitere typische Verkehrsteilnehmer sind Fuigdnger. Aus Sicht des Radars wird bei
der Kinematik von Fufigingern héufig zwischen Bewegung von Torso und Extremitaten
unterschieden, deren Bewegungsprofil als Mikro-Doppler betitelt wird [vDGO08]. Eine
Vernachlassigung von Rotationsgeschwindigkeiten beim Fufiginger motivieren wir hier
durch zwei Punkte. Erstens wird die Mehrkérperdynamik von Fuigdngern ebenfalls
nicht in DRISF beriicksichtigt, wodurch kein Nachteil von DRISF gegeniiber DRISFwR

2Dieser Wert wurde bei Durchsicht von [MWO04] als ungefihrer Maximalwert identifiziert
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Abbildung 5.4.: Beobachtete Geschwindigkeiten aus Sicht des Ego-Fahrzeuges:
Zwei beispielhafte Punkte auf dem beobachteten Fahrzeug bewegen sich
aus Sicht des Ego-Fahrzeuges mit unterschiedlicher Geschwindigkeit. Zu
beachten ist die unterschiedliche Ausrichtung der Geschwindigkeitsvek-
toren an Fahrzeugfront und -heck. Fahrzeugkontur nach [ARFssN16].

entsteht. Und zweitens: Fiir die spéter betrachteten Anwendungen ist eine Annotation
der makroskopischen Bewegung bzw. der Torsobewegung in der RD-map ausreichend. Ein
auf RD-map operierendes CNN sieht weiterhin die volle kinematische und geometrische
Signatur eines reflektierenden Objektes im RD-map, wird jedoch gegen die gemittelten
Zielwerte des gesamten Korpers trainiert.

Im Gegensatz zu DRISF wird nun also die Vordergrundbewegung in 3 translatorische
Bewegungsparameter kodiert, anstatt in 6 (3 rotational + 3 translational). Diese Ver-
einfachung wird zur Verringerung der Komplexitit und zur méglichen Verbesserung der
Robustheit vorgenommen und wie oben beschrieben begriindet.

5.7.2. Formulierung der Optimierungsfunktionen

Fiir eine automatische Schitzung der Bewegungsparameter wird zunéchst eine Ziel-
funktion definiert, welche durch Anpassung der Bewegungsparameter optimiert bzw.
minimiert wird. Diese Zielfunktion beschreibt, wie gut die Punkte aufeinanderfolgender
Frames durch Anwendung der geschitzten Bewegung ineinander tiberfiithrt werden
kénnen. Die Zielfunktion bringt damit die abgetastete Abbildung der Umgebung und
die zu schitzenden Bewegungsparameter in einen fiir einen Optimierer verstédndlichen,
mathematischen Zusammenhang.

In Anlehnung an DRISF, definieren wir die Zielfunktion bzw. die Optimierungsaufgabe
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iiber mehrere gewichtete Zielfunktionen zu:

méin { )‘photoEphoto (&) + )‘rigidErigid (&:7) + Mow Efiow (& Z)
DRISF

+)‘radar,sd Eradar (Ea Z) } :
Erweiterung durch DRISFwR

(5.15)

Die obere Reihe beschreibt den photometrischen Fehler (orig.: ,,photometric error*)

Ephoto, die rdumliche Kongruenz (orig.: ,rigid fitting®) Eijgiq und die Konsistenz des

P
Flusses (orig.: ,flow consistency®) Egq,y- Diese Terme sind aus [MWHT19] bekannt.

In der unteren Reihe wird die Konsistenz zur Radarmessung F.., 4, durch DRISFwR
eingefithrt. Die A Terme sind positive Skalare zur Wichtung der einzelnen Zielfunktionen.
Die einzelnen Zielfunktionen sind wie folgt mathematisch beschrieben.

5.7.2.1. Photometrischer Fehler

Bewegt sich ein Objekt im Raum, so verdndert sich seine Position zwischen aufeinander-
folgenden Kamerabildern?.

Die Transformation von Welt- in Bildkoordinaten ist bereits aus den Gleichung 3.23a
und 3.24a bekannt. Durch Modifizierung der Gleichungen kann die Bewegung im Raum
in die Bewegung im Kamerabild {iberfithrt werden. Dazu definieren wir analog zu
Gleichung 5.14 zunéachst die rdumliche Verschiebung eines Punktes:

gD — B e (5.16)

Mittels Kameralochbildmodell pradizieren wir die Pixelposition im neuen Frame
f)(k+1) aus der Pixelposition des alten Frames p(k) und & zu:

(k)

XC[z]+€[w]f
Qe+
P = k)| = |0 (5.17)
v X1y 1)
&) fot ey
X L2

Es sei angenommen, dass sich die Farbwerte des Punktes zwischen den Frames nicht
dndern und der Bildinhalt ausschliefSlich durch die Bewegung verédndert wird. Wird
nun das zweite Bild mit dem korrekten Szenenfluss & verzerrt, d.h. die Pixel nach Glei-
chung 5.17 angeordnet, so sollten die Farbwerte sdmtlicher Pixel des Ursprungsbildes mit
denen des verzerrten Bildes {ibereinstimmen. Eine unerwiinschte farbliche Abweichung

wird durch den photometrischen Fehler e)oto = G([];?;glgl)] - G([l:))(k)] in einem Skalar
zusammengefasst:
k+1 k
Epoto,i(&T) = > p(ephoto) = D p(G([ﬁ(kjl)} G([p)(k)}) (5.18)

PoEP; PoEP;

3Unter Beachtung der Epipolargeometrie
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

Hierbei soll G([ i Jr)l ) den Grauwert aus G*+1) an der Pixelposition p(k'H) darstellen.

Das Grauwertbild G € RM*XY wird aus dem Red-Green-Blue (RGB) Kamerabild
RGB € R3*MXN transformiert:

Gy, = [0.2089,0.587,0,114| RGBy,, (5.19)

dabei werden die einzelnen RGB Farbkanéle des Farbwertbildes gewichtet zum Grauwert-
bild summiert [Unill]. M und N sind die Pixeldimension des Kamerabildes und « und
v die Pixelposition eines ausgewdhlten Kamerapixels. Alternativ wére eine homogene
Gewichtung der Farbkanile denkbar. Es wird jedoch erwartet, dass die Skalierung
nach Gleichung 5.19 zu homogeneren Bildgradienten fithrt und somit bessere Optimie-
rungseigenschaften aufweist. Eine empirische Untersuchung wird diesbeziiglich nicht
vorgenommen.

Maschinell effizient ldsst sich die Differenz aus Gleichung 5.18 berechnen, indem das
zweite Bild verzerrt wird. Dazu wird ein Gitter der Pixel p(k) aufgebaut und dieses mit
den Grauwerten des zweiten Bildes bei den korrespondierenden Pixeln p(k"'l) befiillt.

In Gleichung 5.18 wird die Farbwertdifferenz iiber eine robuste Fehlerfunktion p
transformiert. Mit dieser Fehlerfunktion wird (a) die Differenz in ein konvexes Optimie-
rungsproblem tberfiihrt und (b) der Einfluss von Ausreifilern auf die gesamte Zielfunktion
gewichtet. Im Laufe dieser Arbeit und analog zur originalen DRISF-Veroffentlichung
findet hier die generalisierte Charbonnier-Funktion p(z) = (22 4 €2)® Anwendung.

Die Zielfunktion ergibt sich aus der Akkumulation der skalaren Abweichungen aller
als valide klassifizierten Pixel P;.

5.7.2.2. Raumliche Kongruenz

Wurden beim ersten Energieterm die Farbwertabweichungen der Pixel unter der Be-
riicksichtigung der Bewegung gemessen, so wird bei der rdumlichen Kongruenz die
geometrische Abweichung der Punkte unter Beriicksichtigung der Bewegung in kartesi-
schen Koordinaten vermessen.

Wie in Gleichung 5.16 und 5.17 beschrieben, wird fiir jedes Pixel p(k) die rdumliche
Position pradiziert und das korrespondierende Pixel f)(k+1) im neuen Frame geschétzt.
Uber den aus Abschnitt 4.5 bekannten optischen Fluss berechnen wir die assoziierte
Pixelposition p(k+1) = p(k) +F (p(k)> und extrahieren die gemessenen Koordinaten als

{x(clyﬁ]l),x(éfg]l),x(éf; ]1)} aus den Sensordaten des zweiten Frames:

4 ) [
z [ z
(k+1) (k+1)_ . (k+1)
g vl o
1)
C'[z (p - ) IC[z}
wobei (k1) (k+1) (k+1)

und Tor2) die Pixelkoordinaten und die Tiefenmessung an der

Stelle p(k‘H) sind.
Die préadizierten Koordinaten { 5:(6],6[—;]1), 5:(61,6[;5]1) , :f:g{[—:]l)} sollten idealerweise mit den
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5.7. Bestimmung der Vordergrundbewegung

rdumlichen Koordinaten im zweiten Frame {xgﬁ[it]l), xgc[;]l), m(clf[zl)} iibereinstimmen.

Als Ma#8 fiir die Abweichung seien definiert

_ . (k) p(k+1) | (k+1)  ~(k+1) (k+1) (k)
Crigid[z] \ PV P x(cl;m | - x(cl;[m] | z(cl;[w] | - $(C;§$} —f[m]
+1 ~(k+1 +1
erigid (A&, p:T) = | engiapy) (P pH TV ) | = xﬁiyl )736(6;6[1/] ) ) m(c;g[y] . x(Ck[)y ]~ 41y
+1 ~(k+1 +1
rigid( P, pFHD e Tord e Pt Sl

Der Energieterm fiir die rdumliche Abweichung sei damit:

Brigia (&T) = > (P <€rigid[m}) +p (%gid[y}) +p (erigid[z]>) : (5.21)

Po€P;

Wie beim photometrischen Fehler werden die Abweichungen durch die Anwendung
der p Funktion konvex abgebildet.

5.7.2.3. Konsistenz des Flusses

Zuvor haben wir fiir jedes Pixel p(k) im ersten Frame die durch die Bewegung verén-
derte neue Pixelposition f)(k‘H) im neuen Frame geschétzt. Die Differenz der beiden
Pixelpositionen <f)(k+1) - p(k)) entspricht dem in der Bildebene wirksamen Anteil des
Szenenflusses und somit dem durch Szenenfluss verursachten optischen Fluss in der
Bildebene. Diesen kénnen wir mit dem aus Abschnitt 4.5 geschétzten optischen Fluss
vergleichen. Die Abweichung eg,,, sei definiert zu

L) (B
. | Cow[u] | _ [=(k+1 k _ u u u[p]
eﬂow(AéapaI) = [ owl ]‘| = (p( + )*p( ))7F[p] - (@(kJrl) 7U(k) _ "

, (5.22
fow|v] ( )

Foyp)

wobei F,, und F, die zwei Komponenten des optischen Flusses entlang der Bildkoordi-
naten sind.
Der skalare Energieterm ergibt sich daraus zu:

Eﬂow,i(az) = Z p(eﬂow[u]) + p(eﬂow[v])' (5.23)
p1EP;

Der optische Fluss bildet ausschliefSlich die tangentiale Bewegung zur Bildebene ab,
womit hier ausschlieBlich die tangentiale Bewegung optimiert wird?.

5.7.2.4. Konsistenz der Radarmessung

Bereits in [MWHT19] wurde beschrieben, dass die Giitefunktionen Erigiq und Efoy in
DRISF stark voneinander abhingig und einzig Ep} ot von der Qualitdt des optischen
Flusses sind bzw. ist. Fehler im optischen Fluss haben somit starken Einfluss auf die

4Aussage gilt nur bei punktférmigen Zielen, da bei Verdnderung der Distanz eine entsprechende
Kontraktion im Bild wahrzunehmen ist.
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

Qualitdt des geschétzten Szenenflusses. Dariiber hinaus sei ergénzt, dass der optische
Fluss selbst haufig mittels zu Eyp,qt, vergleichbaren Metriken geschétzt wird. Etwaige
Abweichungen in den Kameraabbildungen haben somit einen Einfluss auf alle drei Giite-
funktionen. Die Abhéngigkeit von der Qualitit des optischen Flusses werden wir durch
die Einfiihrung einer vierten, von den Daten des Radars abhéngigen, Giitefunktionen
reduzieren.

Bevor wir in die mathematischen Details dieser neu eingefiihrten Giitefunktionen
einsteigen, wollen wir das grobe Vorgehen anhand von Abbildung 5.5 darstellen und
motivieren. In der oberen blauen Box ist ein Kamerabild und die RD-map aus einem
typischen Fahrszenario dargestellt. Das Kamerabild stammt aus der nach hinten gerich-
teten Kamera und zeigt die Szene, in welcher sich das Fahrzeug mit einer typischen
Geschwindigkeit entlang einer Strafie bewegt. Im linken Bildteil sind Randbebauungen
(Bordstein, Zaun, Biische) zu sehen, in der Bildmitte zwei folgende Fahrzeuge, zur
besseren Sichtbarkeit durch rote Boxen markiert und in einem separaten Ausschnitt ver-
grofert dargestellt. Diese beiden Fahrzeuge werden auch in der RD-map abgebildet und
die entsprechenden Signaturen ebenfalls durch rote Boxen im RD-map gekennzeichnet.
Verbindungslinien kennzeichnen die Assoziation der Fahrzeuge zwischen Kamerabild und
RD-map. Es ist zu erkennen, dass die Signaturen der Fahrzeuge eine erhohte Leistung
aufweisen, gekennzeichnet durch hellere Pixel im RD-map und sich signifikant vom blau
dargestellten Hintergrund unterscheiden. Diese Beobachtung ist typisch und bedingt
durch die Reflektivitdt der Objekte, vgl. Gleichung 2.25. Wie spéiter gezeigt wird, ldsst
sich der radiale Anteil der rdumlichen Geschwindigkeit aus der Szenenflussschitzung
berechnen, so dass Objekte aus Kamera und Lidar iiber ihre Entfernung und Radi-
algeschwindigkeit in das RD-map projiziert werden konnen. Diese Projektion ist in
Abbildung 5.5 in der gelben Box unten fiir eines der Fahrzeuge bereits dargestellt. Dabei
wurde eine initiale Geschwindigkeit angenommen, welche im linken Teil (m = 0) dazu
fiihrt, dass die rot dargestellte Signatur des Objektes nicht auf den hellen Pixeln im
RD-map liegt, sondern auf Pixeln niedriger Leistung (blaue Pixel) daneben. Entspre-
chend unserer oben beschriebenen Beobachtung, dass Objekte durch helle Signaturen
auffallen, ist diese Projektion also fehlerhaft, und intuitiv wiirden wir die Signatur nun
linksseitig in die helleren Pixel verschieben. Diese Verschiebung ist durch die weiteren
Signaturprojektionen (m = 1 und m = 100) dargestellt®. In der grauen Box wurden
die Leistungswerte aus der RD-map in das Kamerabild projiziert. Diese Projektion
werden wir in Kapitel 6 vorstellen. Analog zur Ausrichtung der Signatur in der RD-map
kann beobachtet werden, dass die Helligkeit der Pixel an den Positionen der Objekte
im Kamerabild bei m = 100 deutlich hoher ist als bei m = 0 und der physikalischen
Erwartung einer erhohten Reflektivitdt von Objekten nachgekommen wird.

Diese Verschiebungen wurden automatisch durch die integrative Optimierung des in dieser Arbeit
vorgestellten DRISFwR, Verfahrens erreicht.
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Unverarbeitete Daten:

RGB :

Iterative Szenenfluss Ausrichtung via DRISFwR:

Kopien
gegen Doppler
RD: Uneindeutigkeiten au .

Ur

Skalierungsebenen

m =20 m=1 m = 100

DRISFwR Iteration

Projektion der Leistung:

RDc @Qm=0:

RD¢ @ m = 100

Abbildung 5.5.: Automatische Ausrichtung vom Szenenfluss in der RD-map:
Blaue Box: Kamerabild und RD-map einer typischen Fahrszene. Rot
gekennzeichnet sind zwei dem Ego-Fahrzeug folgende Fahrzeuge. Gelbe
Box: Eine ungefihre Projektion eines der Fahrzeuge wurde unten links
(m = 0) im RD-map eingetragen. An der Stelle der Projektion weist
die Projektion kein lokales Leistungsmaximum auf und wird durch
DRISFwR linksseitig im RD-map verschoben (m = 1, m = 100). Zur
Steigerung der Robustheit gegeniiber lokalen Maxima wurden Skalie-
rungsebenen des RD-map mit unterschiedlicher Filterung verwendet.
Graue Box: Projektion der Leistungen aus RD-map in Kamerabild. Es
ist zu erkennen, dass nach m = 100 DRISFwR Iterationen eine erhéhte
Leistung der Fahrzeugpixel zu beobachten ist. Nach [EB6).

Die in Abbildung 5.5 gezeigte Verschiebung der Signatur in der RD-map wird nun
automatisiert. Dazu definieren wir zunédchst die Projektion eines Pixels aus dem Ka-
merabild in die RD-map. Dem Pixel im Kamerabild sind aus der Tiefenschéitzung
(Abschnitt 4.1) und der hier durchzufithrenden Szenenflussschéitzung die kartesische
Position x und die kartesische Geschwindigkeit £ im Kamerakoordinatensystem be-
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

kannt. Mit den Koordinatentransformationen aus Gleichung 3.33 transformieren wir die
Position aus Kamerakoordinaten in Radarkoordinaten.

Die Position der Projektion in der RD-map wird nach Abschnitt 2.1 durch die radiale
Entfernung und die radiale Geschwindigkeit sowie die gewéhlte Modulation definiert.
Die radiale Position ergibt sich aus xp mit der euklidischen Norm zu

r(xgr) = [xgll- (5.24)

Es ist weiterhin bekannt, dass die Radialgeschwindigkeit eine Skalarprojektion der
3D-Geschwindigkeit auf den Radialvektor ist:

T

. X
r('ﬁradar) - o &radar (5-25)
xRl
wobei hier &,,4ar die kartesische Geschwindigkeit im Radarkoordinatensystem ist. Diese
entspricht der zeitliche Ableitung von xp und kann daher mit der Transformation aus
Gleichung 3.33 und dem Szenenfluss £ berechnet werden zu

oxp ox
Eradar = at = RGCR 8t0

= f<CRe. (5.26)

Fiir jedes Pixel im Kamerabild kann mit Hilfe von Gleichung 2.18 und 2.21 die
Pixelposition in der RD-map berechnet werden zu

uR[p}] _ T ((Eradar[p]) /AU (5‘27)

PR[p] [UR[p] r (XR[p]) JAr

Der Leistungswert eines Pixels in der RD-map ergibt sich damit zu RD[pR}.

Nachdem die Projektion in die RD-map damit mathematisch beschrieben ist, wollen
wir uns nun der Giitefunktion zuwenden. Bei der Beschreibung von Abbildung 5.5 wurde
beobachtet, dass die beiden verfolgenden Fahrzeuge eine erhohte Leistungssignatur in
der RD-map aufweisen und vom Hintergrundrauschen klar zu trennen sind. Die initiale
Projektion der Objekte lag allerdings auf dem Hintergrundrauschen. Intuitiv haben
wir aus der Beobachtung heraus definiert, dass die initiale Projektion damit fehlerhaft
ist. Diesen Fehler wollen wir jetzt messen. Dazu definieren wir die Abweichung der
Leistungsprojektion gegeniiber einem festzulegenden Zielwert Utarget als

eradar (PR} L) = Utarget — RD[F‘R]' (5.28)

Wir legen fest, dass epaqa-(P; Z) minimiert werden soll, wenn die Projektion auf einem
(lokalen) Leistungsmaximum liegt. Utarget muss somit dem (lokalen) Leistungsmaximum
in der RD-map entsprechen. Dieses Maximum mag stark von Verkehrsteilnehmern
und Szenario abhéngen. So haben Fufigénger statistisch ein geringeres RCS als LKW
und weiter entfernte Ziele eine geringere Signalleistung als nidher gelegene, vgl. G1.2.25.
Wiinschenswert wére nun, den Wert von Ugarget entsprechend variieren zu konnen. Es
ware denkbar, aus den Daten der Instanzsegmentierung und Tiefenmaske den statistisch
wahrscheinlichen Zielwert der Leistung fiir unterschiedliche Verkehrsteilnehmer zu
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schitzen. Dies wiirde den Umfang dieser Arbeit jedoch merklich iibertreffen. Der
Einfachheit halber werden wir als Zielwert Ugarget den Maximalwert des RD-maps
iibernehmen und annehmen, dass die initiale Projektion der Objekte in die RD-map
gut ist und zumindest in der Pixelnachbarschaft der tatséchlichen Signatur liegt, so
dass der Optimierer das lokale Maximum findet. In Unterabschnitt 5.7.7 werden wir
spezielle Modifikationen der Kosten vorstellen, u.a. um diese Konvergenz zu steuern.
Diese speziellen Modifikationen sind textuell absichtlich getrennt, da sie zum allgemeinen
Verstdndnis von DRISFwR, zunéchst nicht bendtigt werden.

Um die Residuen konvex zu machen, wenden wir, wie zuvor auch, die generalisierte
Charbonnier-Funktion an und definieren den Energieterm

radar(& I Z p eradar(p’I)) (5'29)
PEP;

5.7.3. Losung mittels GauB-Newton Optimierer

Nachdem wir im Abschnitt 5.5 die gesuchten Bewegungsparameter und in Unterab-
schnitt 5.7.2 die Zielfunktionen definiert haben, kénnen wir uns nun der Inferenz
der Parameter zuwenden. Analog zu DRISF [MWH™19] werden wir auch hier einen
GauB3-Newton (GN)-Optimierer zur Minimierung der nichtlinearen Zielfunktion (Glei-
chung 5.15) verwenden. Einige der Herleitungen fiir die speziellen DRISF-Energieterme
sind in der erweiterten Veréffentlichung von DRISF [MWH™19] zu finden und werden
hier zum einfachen Verstdndnis fiir den Leser wiedergegeben. Zur Honorierung der wis-
senschaftlichen Vorarbeit durch DRISF sei dem Leser die Durchsicht der oben genannten
Veroffentlichung nahegelegt.

Wie in [MWHT19] gezeigt wurde, liisst sich die Minimierung der Energiefunktionen
mittels GN-Schétzer durchfiithren. Jeder der Energieterme hat eine Form analog zu:

= > p(e¢,mI), (5.30)

peP;

in welche p die Pixel zu einer Instanz sind und e(...) eine skalare Abweichung fiir
das Pixel darstellt. Gesucht wird die Transformation é, welche die Energiefunktion
minimiert
£ = argmin E(¢;7) = argmin Z p(e(&,p;Z)). (5.31)
£ PEP;

Der Verlauf der Residuen e = {ephoto Erigids € flows €radar) ist nicht linear {iber den
Szenenfluss, der somit nicht analytisch gefunden werden kann. Durch Linearisierung der
Residuenfunktion kann ein iteratives Suchen nach lokalen Minima umgesetzt werden.
Die linearisierte Residuenfunktion ergibt sich zu

AepT) = e+ AepT) ~ gD + EPE e s

Durch Einsetzten der Linearisierung in Gleichung 5.31 und der Definition der ,,Jacobi-
Matrix“ J, € R1*3 der Residuen

de(€,p; 1)

(5.33)
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ergibt sich das Optimierungsproblem

A¢ = argmganp( (A€, p; ))

PEP;

= agmin - 7 (¢/(A¢,p7) ¢/ (A8, p; 7))
PEP;

= argmin 3 7 ((e(&, s T) +3,26) T (e(&, D T) +3,48)) . (5.34)
PEP;

Hierbei wird p(z) = (2T z) verwendet. Wir definieren zusétzlich

Ly = ¢(A¢,p; )" ¢ (A, p; T). (5.35)

Das Minimum ergibt sich an der Stelle des verschwindenden Gradienten zu:

1 OF
0 = Ba¢
= aLp oel, DA
T
> )13
PEP; a
ot(L
6(Lp)2<e<s,p;z>+JpAs>TJp- (5.36)
p
PEP,

Die rechte Seite entspricht der Ableitung der linearisierten Energiesumme aus
Gleichung 5.34. Die Aufteilung der Gradienten erfolgt durch Anwendung der Kettenre-
gel.

Umstellen der letzten Zeile ergibt

87’ Ly)
Z p TJPAS Z 8[1 Aé, b; ) (537)
PEP; pEP; P
was mit or(Ly)
_ 97(Lp
Wy = JL, (5.38)
nach A& aufgelost werden kann:
-1
Ag=—| > I Wl S I Wye(Ag piT) | (5.39)

PEP; PEP;

Nach jedem Iterationsdurchlauf wird der Szenenfluss aktualisiert zu
glm) — glm1) L Ag (5.40)

wobei & (m) der Szenenfluss im m-ten Iterationsschritt ist.
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5.7.4. Herleitung der Residuen

Zur Inferenz der Parameter nach Gleichung 5.37 werden unter anderem die Residuen
e(...) benétigt. Der besseren Ubersicht halber werden die Residuen fiir die einzelnen
Energieterme hier wiederholt.

5.7.4.1. Photometrischer Fehler

Die Residuen fiir den photometrischen Fehler entsprechen dem Helligkeitsunterschied
der Kamerapixel

_ W+l (k)

€photo = G[ﬁ(k_,_l)} - G[p(k)}' (5.41)
Da das Grauwertbild G nur einen Kanal hat, ist die Dimension der Residuen per Pixel
1 x1.

5.7.4.2. Raumliche Kongruenz

Die Residuen der raumlichen Kongruenz entsprechen dem Abstand, welcher sich aus der
Differenz der kartesischen Positionen eines Pixels im Kamerabild und seiner um den Sze-
nenfluss korrigierten Korrespondenz im néchsten Kameraframe ergibt. In Gleichung 5.21
wurde Epjgiq; als homogene Summe der Abweichungen in den drei Raumrichtungen
zusammengefasst. Mathematisch &quivalent ldsst sich dies als drei einzelne Energieterme
auffassen und die Residuen fiir den Optimierer als Vektor darstellen:

(k+1) (k)
mcl'c[x]l - f”ckgx} ~&[a]
erigid(A€7 p,I) = x(C[—;/_] ) - x(C[y} - f[y] (542)
(k+1) (k)

Die Dimension der Residuen ist 3 x 1, da der Positionsvektor drei Elemente hat.

5.7.4.3. Konsistenz des Flusses

Die Residuen zur Konsistenz des Flusses ergeben sich aus dem auf die Bildebene
projizierten Szenenfluss und dem vermessenen optischen Fluss:

PV (@(Hl),u(k) ~ Pyl A
eﬂow( €7p7 )_ (’Zj(k—"_l)f’y(k) 7Fv[p} . (5 3)

Die Dimension der Residuen ist 2 x 1, da der optische Fluss zwei Elemente hat.

5.7.4.4. Konsistenz der Radarmessung

Die Residuen zur Radarmessung ergibt sich aus dem Leistungswert eines Pixels in der
RD-map RD[pR] und einem parametrierten Zielwert Utarget zu:

eradar (PR} L) = Utarget — RD[I’R]' (5.44)

Die Dimension der Residuen ist 1 x 1, da das RD-map RD nur einen Kanal hat.
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5.7.5. Herleitung der Jacobi-Matrizen

Fiir die Optimierung mittels GN-Léser sind nach Gleichung 5.34 die partiellen Ab-
leitungen der Residuen entlang aller Komponenten des Szenenflusses in Form von
Jacobi-Matritzen notwendig. Diese werden nun fiir alle Energieterme in diesem Ab-
schnitt vorgestellt.

5.7.5.1. Photometrischer Fehler

Fiir den photometrischen Fehler ergibt sich nach [MWH™19]

dephoto. (&, P; T)
JphOtO. - L Otoa&

(k+1) (k)
’ (G =) G[p<k>]>
g
oG(E+1) op(k+1) 52 oG k)

opktl) 9z 9t O¢

Q

9 ~(k+1) 9 ~(k+1) MelF] zor,
%G[ﬁ(kﬂ)] ) %G[p(kﬂ)ﬂ ( ol

wobei G([];)(k)] der Farb-/Grauwert im ersten Frame ist und nicht vom geschétzten
(k+1)

[f,(k+1)]
wurde durch Anwendung der Kettenregel in die weiteren Gradienten aufgeteilt. Es wird
zunédchst der Farb- bzw. Helligkeitsgradient des Bildes in Abhéngigkeit der Pixeldnderung
berechnet und danach der Gradient von Pixelposition in Abhéngigkeit zur kartesischen
Position (siehe Gleichung 5.17). Beim zweiten Term wurden die Abhéngigkeiten der
partiellen Ableitungen untereinander vernachldssigt, womit alle Ableitungen effizient
berechnet werden konnen. Gegeniiber DRISF wurde angepasst, dass nun ausschlieflich
drei Translationen zu schétzen sind. Die Dimension der Matrix ist 1 x 3, da das
Grauwertbild G einen Kanal und der gesuchte Bewegungsvektor & drei Elemente hat.

k
Szenenfluss abhéngt, wodurch 06l _ 0 ist. Der Gradient von G dagegen
3 6°8
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5.7.5.2. Raumliche Kongruenz

Fiir die raumliche Kongruenz ergibt sich

Oeyigia. (&, P; )
xC [2]
(k+1)
)~ Sl

(1) (k)
19,
+
0|20~ oy~ Ly
} )
Cl7] Lo
0¢

1,0,0
= —|0,1,0]. (5.46)
0,0,1

Die Terme x(**t1) und x(*) sind invariant gegeniiber dem Szenenfluss €. Es verbleibt
die partielle Ableitung des Szenenflusses gegeniiber sich selbst, was unter Schitzung
von ausschlieBlich translatorischen Komponenten zur (negativen) Einheitsmatrix fiithrt.
Die Dimension der Matrix ist 3 x 3, da die Position drei Elemente hat, ebenso wie der
gesuchte Bewegungsvektor &.

5.7.5.3. Konsistenz des Flusses

Fiir die Flusskonsistenz ergibt sich die Jacobi-Matrix zu

8eﬂ0w(£yp§z)

JﬂOW = ag

5 (k1) _ (k) *Fu[p])
<@(k+1) (k) U[p])

i (%)
(f;:) a xc[z]fu2

xF) T (k) 1,0,0
Clz] Xor, >

~ ((f)”) 0,1,0] . (5.47)

0, i< | o.0.1

Dies entspricht gerade den letzten beiden Termen der Gradientenkette des photometri-
schen Fehlers (siehe Gleichung 5.45) und muss bei einer effizienten Implementierung
nicht separat neu berechnet werden. Die Dimension der Matrix ist 2 x 3, da der optische
Fluss F zwei Kanidle hat, der gesuchte Bewegungsvektor & drei Elemente.
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

5.7.5.4. Konsistenz der Radarmessung

Die Jacobi-Matrix zur Konsistenz der Radarmessung ergibt sich zu

J _ oadar(&,piT)
radar — 85
9 (Utarget ~RD [pR])
o€
,aRD[PR} 8pR[p] 8£radar(€)
apR[p] O&radar(§) 23

X R

Die Dimension der Matrix ist 1 x 3, da das RD-map RD einen Kanal hat, der gesuchte
Bewegungsvektor & drei Elemente.

Analog zu den anderen Energiefunktionen wurde auch hier die Kettenregel verwendet
und so der Gesamtgradient als Produkt einzelner interpretierbarer Terme aufgeteilt. Der
erste Term entspricht der Abhéngigkeit des RD-maps vom Radarpixel pp. Da durch
den Szenenfluss nur der Radialgeschwindigkeitsanteil von pp modifiziert werden kann,
entspricht dies somit dem Bildgradienten entlang der Radialgeschwindigkeit. Der Bild-
gradient wird durch Faltung mit dem Faltungskern V,, = [-1,0, 1] in Dopplerrichtung
des RD-maps berechnet. Dabei werden das Pixel und seine horizontalen Nachbarn mit
dem Faltungskern kombiniert und es ergibt sich fiir jedes Pixel ein skalarer Wert. Zur
Veranschaulichung ist der Bildgradient in Abbildung 5.5 (gelbe Box, rechts) dargestellt.

Der zweite Term entspricht der linearen Abhéngigkeit der Radialgeschwindigkeit
vom Szenenfluss im Radar-Koordinatensystem. Die Transformation von Szenenfluss im
Radar-Koordinatensystem in Radialgeschwindigkeit ist aus Gleichung 5.25 bekannt. Der
Gradient ergibt sich durch Ableitung dieser Gleichung nach &;,4ar zu

9 . T
PRp] _ O07(&adar) _ *R (5.49)

8€radar(£) 8£radar ”XR ” .
Die Variation des Szenenflusses hat keine Auswirkung auf den Abstand r in pp, siehe
Gleichung 5.27. In der RD-map wird durch den Szenenfluss schliefllich auch nur eine
Verschiebung entlang der Doppler-Richtung vollzogen. Folglich ist dieser Gradient Null
und hat keinen Einfluss auf die Optimierung. Zu Gunsten einer besseren Ubersicht wurde
dieser Gradient nicht in Gleichung 5.49 dargestellt. Die Dimension dieses Teilgradienten
ist 1 x 3.

Der letzte Teilgradient aus Gleichung 5.48 ergibt sich aus der Ableitung von Glei-
chung 5.26 nach & zu
8£radar(€) _ 8R€CRE _ RéCR

% 5% (5.50)

und hat die Dimension 3 x 3.
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5.7. Bestimmung der Vordergrundbewegung

5.7.6. Herleitung der Wichtungsmatrizen

Dem Beispiel von DRISF folgend, wird fiir alle Energieterme die generalisierte Charbonnier-
Funktion [SRB10] verwendet

pla) = (2 + )" (5.51)

Hierdurch wird die Energiefunktion fiir den Optimierer konvex und die Residuen ge-
wichtet. Analog zu DRISF wurde auch hier e = 10 und o = 0.45 gewshlt.

Nach Gleichung 5.38 ist die Wichtungsmatrix definiert als das Produkt aus Wich-
tungsfaktor A und der Ableitung der gewéahlten robusten Kostenfunktion nach den
quadratischen Residuen, welche sich zu

Or(Lp)  O(Lp + €2)

— _ 2\ya-1
oL, iL, =a(Ly + €) (5.52)

ergibt. Am Beispiel der Zielfunktion fiir Radar ergibt sich somit eine Wichtungsmatrix

dp?
radar 5 9
9 Tradar

Wradar = A

)70.55

= 045\ radar (€aar +10°° (5.53)

Die Wichtungsmatrizen der anderen Energieterme ergeben sich analog.

Fiir die effiziente numerische Optimierung aller Energieterme koénnen die Residu-
en der Energieterme in einem Vektor und die Jacobi-Matrizen zwecks numerischer
Verarbeitung in Matrizenform konkateniert werden. Die Gesamtwichtungsmatrix ist
dann als Diagonalmatrix zu bilden. Entsprechend ihrer Auflistung in dieser Arbeit
haben die Energieterme 1, 2, 3 und 1 Element/e. Daraus ergibt sich die Dimension der
Gesamtrichtungsmatrix zu 7 x 7.

5.7.7. Spezielle Modifikationen von DRISFwR

In den Abschnitten zuvor wurden die Erweiterungen von DRISF zu DRISFwR durch
die Aufnahme des Energieterms ,, Konsistenz der Radarmessung® beschrieben. Um die
Inferenz weiter zu steuern, wurden weitere Modifikationen vorgenommen. Diese werden
in diesem Abschnitt erlautert.

5.7.7.1. Beriicksichtigung von Doppler-Mehrdeutigkeit

In Gleichung 5.54 wurde festgelegt, dass die RD-map RD zur Messung von Residuen ver-
wendet wird. Dieses entsteht durch zweifache Fouriertransformation auf den abgetasteten
Zeitsignalen, vgl. Unterunterabschnitt 2.1.3.4. Durch Verwendung von Fouriertransfor-
mation ergibt sich ein Eindeutigkeitsintervall der Geschwindigkeit, und Objekte mit
hoherer Geschwindigkeit wickeln sich auf der anderen Seite des Geschwindigkeitsspek-
trums wieder in das RD-map hinein, vgl. Unterunterabschnitt 2.1.3.5. Dieses Phanomen
ist allgemein als , Alias-Effekt* bekannt. Damit die Projektion von Kamerabildern in
Radardaten entsprechend Abstand und Geschwindigkeit bei der Szenenflussschétzung
plausibel ist, wurde in Abbildung 5.5 das RD-map mehrfach fortgesetzt, so dass beim
Uberschreiten des eindeutigen Geschwindigkeitsintervalls der oben beschriebene Effekt
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

beriicksichtigt wird. Ein dquivalentes Ergebnis, aber effizientere Implementierung ergibt
sich, wenn die geschétzten Pixelpositionen in der RD-map nach Gleichung 5.27 ent-
sprechend der Bildgréfle des RD-maps durch Modulo-Operation projiziert werden. Zur
grafischen Hervorhebung fiir den Leser wurde im Rahmen dieser Arbeit jedoch erster
Vorschlag implementiert.

5.7.7.2. Virtuelle Reduktion der Auflosung des RD-maps

Wir haben im Laufe dieses Kapitels gesehen, dass ein iterativer Optimierer zur Schéitzung
des Szenenflusses verwendet wird, welcher das in die RD-map projizierte Objekt in
Richtung der Radialgeschwindigkeit verschiebt und dabei versucht, den Zielwert Utarget
aus Gleichung 5.54 der Leistung zu erreichen. Das Bestreben des Optimierers, das
projizierte Objekt weiter zu verschieben, hingt insbesondere auch vom Bildgradienten
in der RD-map bzw. der horizontalen Helligkeitsdnderung ab. Liegt das projizierte
Objekt in einem Bereich mit hohem Bildgradienten, hat der Optimierer das Bestreben,
den geschéitzten Szenenfluss anzupassen und das Objekt im RD-map zu verschieben.
Bei verschwindenden Gradienten hat der Optimierer entsprechend kein Bestreben zur
Verschiebung. Die Gradienten des RD-maps beim Ubergang von Hintergrundrauschen
zu Objekten sind héufig sehr steil, erstrecken sich jedoch nur iiber eine kleine Pixel-
nachbarschaft um das Objekt, entsprechend des Auflésungsvermogens des Radars. Liegt
ein projiziertes Objekt falschlicherweise auflerhalb dieses Bereichs, so stagniert die
Optimierung aufgrund des flachen Bildgradienten. Um diese Stagnation zu unterbinden,
wird ein Skalierungsraum® auf der RD-map gebaut. Das RD-map wird durch mehrfache
Anwendung von Gauf3-Filter geglittet und die Auflésung des RD-map virtuell durch
Anwendung von Max-Pooling Filter reduziert. Durch diese Glattung und Reduktion der
Auflésung wird der Bildgradient in einen grofleren Bereich um das lokale Bildmaximum
verschoben. Zur Veranschaulichung wurden in Abbildung 5.6 ein originales RD-map
und zwei Skalierungsebenen eingezeichnet.

In der Abbildung sind die gefilterten RD-maps sowie die Bildgradienten dargestellt.
Fiir den optischen Vergleich wurden die Ergebnisse der Skalierungsebenen durch bilineare
Interpolation auf die Bildgrofie des originalen RD-maps hochskaliert. Insbesondere in
den unteren Skalierungseben ist zu erkennen, dass der Bildgradient bei den lokalen
Maxima weiter nach auflen verschoben wird als beim urspriinglichen RD-map.

Die Beriicksichtigung der Skalierungsebenen wurde in Gleichung 5.15 durch den
Parameter s; angedeutet. Mit s; = 1 bezeichnen wir das originale RD-map und
mit s; > 1 die Skalierungsebenen. Diese Modifikation wird durch Anpassung der
Gleichung 5.54 und 5.55 vorgenommen. Hierbei wurde Us, zur Kennung des RD-
maps auf der Skalierungsebene s; verwendet. Im Rahmen dieser Arbeit wurden drei
Skalierungsebenen verwendet. Wie in Abbildung 5.6 gezeigt, wurde der Fangbereich
damit ungefihr verdoppelt. Eine Optimierung oder tiefere Analyse der Skalierungsebenen
wird im Rahmen dieser Arbeit nicht durchgefiihrt.

eradar (PR Z, $4) = Utarget — RDSd[PR]' (5.54)

6Skalierumgsrétume finden haufig in der Schéatzung des optischen Flusses Verwendung, siehe z.B.
[TBKP12).
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ORD

“UT

RD:
-

Skalierungsebenen

Abbildung 5.6.: Skalierungsebenen auf der RD-map zur Vergroflerung des
Fangbereichs: Das originale RD-map (oben links), wird durch
zweifaches Anwenden von GaufB-Filter, Max-Pooling und bilinearer-
Interpolation verschmiert. Durch die Vierschmierung flacht der Bildgra-
dient ab, dehnt sich jedoch iiber einen weiteren Bildbereich aus. Die
zu den Skalierungen gehorenden Bildgradienten sind rechts dargestellt.
Die Farbskalierung ist blau fiir negative Gradienten, gelb fiir positive
Gradienten und griin fiir neutrale Gradienten. Man beachte hierbei
insbesondere die erwidhnte Ausdehnung der Bildgradienten tiber die Ska-
lierungsebenen. Zur Verdeutlichung wurden rote gestrichelte Hilfslinien
fiir einen ausgewéhlten Bereich der Gradienten eingezeichnet. Deutlich
zu erkennen ist, wie sich die Hilfslinien voneinander distanzieren.

3
Eradar(£§I) = Z Z p(eradar(pRQIa Sd)) (5'55)
sq=1pRreP;

5.8. Evaluation

In der Evaluation von DRISF konnte in der originalen Veréffentlichung [MWH™19] der
KITTI-Datensatz [MG15b] verwendet werden, welcher unter anderem tiber Daten aus
Stereokameras, Lidar und DGPS-INS verfiigt. Durch die Erweiterung von DRISF zu
DRISFwR werden RD-maps aus einem Radarsensor fiir die Inferenz des Szenenflusses
bendtigt. Diese sind nicht im KITTI-Datensatz enthalten, so dass im Rahmen dieser
Arbeit ein eigener Datensatz zur Evaluation der Algorithmen akquiriert und erstellt
wurde. Nachfolgend wird dieser Datensatz vorgestellt. Anschliefend werden Metriken zur
Evaluation der Szenenflussschiatzgenauigkeit vorgestellt, mit denen DRISFwR bewertet
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten

wird.

Bei DRISF und DRISFwR wird die GN-Optimierung gestoppt, sobald (a) die Ak-
tualisierung konvergiert ||A€||o < 0.1 mm oder (b) 100 Iterationsschritte durchgefiihrt
wurden.

5.8.1. Datensatz fiir Evaluation des Szenenflusses

Fiir die Akquise von realen Sensordaten wurde das in Kapitel 3 vorgestellte Fahrzeug
samt Sensorik verwendet. Auf diesem Datensatz werden die Schitzgenauigkeiten der
Algorithmen zur Szenenflussschitzung quantifiziert und miteinander verglichen. Fiir
diese Quantifizierung ist eine exakte Referenz des tatséichlichen Szenenflusses notwendig.
Ist diese Referenz exakt, entspricht also dem tatséchlichen Szenenfluss, so spricht man
von absoluter Referenz (engl.: , ground truth“). Eine Abweichung der Schitzung zur
absoluten Referenz entspricht demnach der Abweichung zum tatséchlichen Wert. Ist die
Referenz allerdings nicht exakt, so spricht man auch von der relativen Referenz. Eine
Abweichung von dieser Referenz entspricht also nicht der Abweichung zum tatséchlichen
Szenenfluss. Will man eine Referenz mittels Referenzsensorik abbilden, so wird bedingt
durch systematische und stochastische Messungenauigkeiten der Referenzsensorik immer
eine relative Referenz geschaffen. Als Faustformel fiir Referenz wird angenommen, dass
die Genauigkeit der Referenzmessung mindestens um eine Dekade besser sein sollte als
die Genauigkeit der zu bewertenden Messung. Die im Rahmen dieser Arbeit verwendete
Referenz fiir Szenenfluss leiten wir aus dem Vorbild des KITTI-Datensatzes ab.

Im KITTI-Datensatz wurde fiir die Evaluation von optischem Fluss die Lidarpunkt-
wolke aus 11 zeitlich benachbarten Frames mittels Iterative-Closest-Points (ICP) akku-
muliert bzw. registriert und die Referenz fiir den optischen Fluss {iber die Projektionen
der Pings in den néchsten Frame [GLU12] erstellt. Zusitzlich wurden Ausreifier und
mehrdeutige Objekte, wie Fenster und Zéune, aus den Referenzdaten durch entspre-
chendes Labeling entfernt. In [MG15a] wurde beschrieben, dass dieses Vorgehen nur fiir
statische Szenen Giiltigkeit besitzt (,,provide scene-flow ground truth only for rigid scenes
without independently moving objects “) und die Referenzgenerierung fiir Szenenfluss
mit unabhéngig bewegten Objekten vorgestellt und in KITTT integriert. Dabei wurde zu-
néchst der Szenenfluss fiir statische Objekte berechnet, indem die Lidar-Punktwolken aus
mehreren Frames akkumuliert wurden. Fiir die Akkumulation wurde die Egobewegung
aus einer Kombination von ICP und GPS-Daten geschétzt. Punkte von bewegten Ob-
jekten wurden danach manuell entfernt. Fiir den Szenenfluss von unabhéngig bewegten
Objekten wurden die Pings der bewegten Objekte manuell gekennzeichnet und CAD-
Modelle von typischen Fahrzeugen in diese Punktwolken eingepasst. Der Szenenfluss
fiir diese Objekte wurde dann aus der Verschiebung und Verdrehung der CAD-Modelle
zwischen den Frames geschéitzt. Der gesamte Szenenfluss ergab sich somit als Summe
von Szenenfluss von statischen Objekten und Szenenfluss von unabhéngig bewegten
Objekten. Dieses Vorgehen ist in seiner Qualitdt aus anderen Datensétzen nicht bekannt,
hat jedoch den Nachteil, dass ein sehr zeitintensiver manueller Labelingaufwand zu
investieren ist. Mafigeblich dafiir ist der zu investierende Aufwand fiir das manuelle
Labeling und die Implementierung der Einpassung von CAD-Modellen. Selbst in KITTI
konnten mit der Methodik nur etwa 400 Beispiele bereitgestellt werden, obschon diese
aus moglichst statistisch unabhingigen Szenarien entstammten. Weiterhin wurden bei
der CAD-Einpassung nur starre Kérper beriicksichtigt und Mehrkorperdynamiken von
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Objekten somit nicht berticksichtigt. Trotz dieses hohen Aufwandes wurden in anderen
Veroffentlichungen Imperfektionen der Szenenflussreferenz gefunden und beschrieben,
siehe bspw. [MWH™19]. Obige Probleme beziehen sich mafigeblich auf die Referenz fiir
unabhéngig bewegte Objekte. Um diesen Problemen aus dem Weg zu gehen, werden wir
eine Bewertung des Szenenflusses ausschliellich anhand statischer Szenen vornehmen
und den Referenzszenenfluss fiir statische Objekte nach obigem Vorbild generieren.
Der Referenzszenenfluss entspricht dem geschétzten Szenenfluss fiir die Bewegung des
Hintergrundes nach Abschnitt 5.6. Da DRISF und DRISFwR, zur Szenenflussschitzung
keine offensichtliche Differenzierung bei der Szenenflusschétzung zwischen statischen
und dynamischen Objekten machen, ist aus Sicht des Autors die Evaluierung anhand
statischer Szenen ein guter Indikator fiir mogliche Verbesserung der Schétzgenauig-
keit. Fiir die Evaluierung wurde ein Parkplatzszenario ausgewahlt, in welchem keine
bewegten Objekte vorhanden waren. Die gefahrene Trajektorie des Datensatzes ist in
Abbildung 5.7 dargestellt. Ein beispielhaftes Kamerabild mit Lidar-Projektionen ist in
Abbildung 4.1 dargestellt.

Abbildung 5.7.: Gefahrene Trajektorie des Datensatzes: Bei der Akquise wurde
etwa 1h lang durch Lippstadt gefahren. Die Aufzeichnung erfolgte konti-
nuierlich. Dabei wurden typisch Szenarien aus Stadtverkehr, Autobahn,
Landstrale und Parkplatz aufgezeichnet. Vergroflert dargestellt, ist
die Fahrtrajektorie aus dem Parkplatzszenario fir die Evaluierung der
Szenenflussschitzung. Nach [EB6].

Der Datensatz fiir die Evaluierung hat eine Dauer von etwa 3 min und umfasst etwa
1700 Bilder pro Kamera. Dabei wurden etwa 13000 Instanzen von einzelnen parkenden
Fahrzeugen detektiert. Einige Beispiele sind in Abbildung 5.8 dargestellt.
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Abbildung 5.8.: Szenenbeispiele des Datensatzes zur Szenenfluss Evaluierung:
Dargestellt sind einige reprasentative Beispiele aus dem Datensatz zur
Szenenfluss Evaluierung. In der oberen Reihe sind die Beispiele der
ersten Kamera dargestellt, in der unteren Reihe, der zweiten Kamera.
In den Farbbildern sind die Instanzmasken farblich {iberlagert hervor-
gehoben.

Die Fahrtrajektorie bestand aus stark variierender Fahrzeugdynamik mit einer Fahr-
zeuggeschwindigkeit bis etwa 60kmh ™. In den Abbildungen wird noch einmal verdeut-
licht, dass zwar ausschliellich stationdre Objekte dargestellt sind, diese aber mitunter
stark verdeckt sind und den Schwierigkeitsgrad fiir u.a. die Szenenflussschitzung somit
erhohen.

Fiir den Datensatz wurden die Instanzen automatisch mit dem in Abschnitt 4.3
vorgestellten Ansatz detektiert und mit dem in Abschnitt 4.4 vorgestellten Cluster-
verfahren verfeinert. Diese wurden als gut empfunden, obschon kleinere Fehler in den
Masken wahrgenommen werden kénnen, siehe beispielsweise einzelne fehlende Objekte in
Abbildung 5.8. Unter Beriicksichtigung des Aufwandes wurde ein manuelles Nachlabeln
der Instanzmasken als nicht notwendig empfunden. Da hier ohnehin statische Szenen
bewertet werden und somit benachbarte Pixel einen dhnlichen Szenenfluss aufweisen,
ist der Einfluss von Imperfektionen in den Instanzmasken zu vernachléssigen und kein
wesentlicher Einfluss auf die Evaluierungsmetriken zu erwarten.

5.8.2. Quantifizierung der Schatzfehler

Im vorigen Abschnitt wurde das Vorgehen zur Bestimmung des ,,ground-truth® Szenen-
flusss vorgestellt. In diesem Abschnitt werden wir einen objektiven Vergleich der Szenen-
flussschitzer anhand von quantifizierten Abweichungen gegeniiber ,, ground-truth“ Sze-
nenfluss durchfithren. Da in dieser Arbeit die Motivation auf einer automatischen
Annotation von RD-Daten des Radars liegt, werden wir besonderen Fokus auf Abwei-
chungen in der Radialgeschwindigkeit gegeniiber der Referenz legen.

5.8.2.1. Metrik nach KITTI

Fiir die Bewertung von Szenenfluss werden im KITTI-Datensatz Fehlerraten fiir Dispa-
ritdt und optischen Fluss berechnet. Die Disparitét ergibt sich im KITTI-Datensatz
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zu [Mon22]
focallength - baseline

depth

disparity = , (5.56)

wobei ,focallength“ die Brennweite der verwendeten Kamera in Pixeln ist, ,,baseline*
der laterale Abstand der Stereokameras in Metern und ,depth“ die Tiefenmessung
in Metern ist. Der optische Fluss ist die Pixelverschiebung in Bildkoordinaten und
wird in Pixeln angegeben, vgl. Abschnitt 4.5. Eine kurze Beschreibung, wie im KITTI-
Datensatz das ,,ground-truth“ bestimmt wurde, ist im vorigen Abschnitt gegeben.
Wenn die Abweichung der Disparitdt oder optischen Fluss 3px oder 5% tbersteigt,
wurde dies als Fehler in der Szenenflussschétzung gewertet. Eine Dokumentation iiber
die Motivation hinter den Schwellwerten beim KITTI-Datensatz konnte nicht gefunden
werden.

5.8.2.2. Angepasste Metrik fiir den Radar

Eine Aufgabe dieser Arbeit ist das automatische Labeling von RD-Daten. Wir werden
im spéateren Verlauf dieser Arbeit das Labeling in Kamerabildern durchfiithren und diese
mit den Pixeln aus RD-Daten des Radars assoziieren. Fiir eine korrekte Assoziation
ist eine hinreichend gute Qualitdt von radialem Abstand und radialer Geschwindigkeit
erforderlich. Die Abweichung zum , ground-truth“ sollte die Auflésung des Radars
in den RD-Dimensionen nicht iiberschreiten. Fiir das verwendete Radar liegt diese
Dopplerauflésung bei 0.25ms . Im Rahmen dieser Auswertung macht es also durchaus
Sinn, sich auf diese Festlegung zu konzentrieren und als Abweichungen in der radialen
Geschwindigkeitsschitzung nach SI [BIP06] Einheiten in ms ! zu ermitteln.

Mit den Parametern aus der Kamerakalibrierung und Gleichung 5.20, 5.25 und 5.26
ermitteln wir dazu die Radialgeschwindigkeit in Radarsensorkoordinaten zu
U—Cy U—Cy R<C
[ fu ) fv I 1} : R€
(a7 + (5P +1

u v

Ur, radar (P, §) = (5.57)
\/

Im Zahler wird das Skalarprodukt zweier 1 x 3 Vektoren gebildet. Folglich handelt es
sich um eine skalare Grofle.

Wie zuvor beschrieben, werden zur Evaluierung ausschliellich Szenen mit
(geo—)stationéirem7 Inhalt herangezogen, so dass ,,ground-truth* bzw. der beste Schétz-
wert des Szenenflusses 5 = £, dem Hintergrundszenenfluss aus Gleichung 5.14 ent-
spricht. Damit berechnet sich die Abweichung der Radialgeschwindigkeitskomponente
fiir das Kamerapixel p zu

eSF,radial(p) = |Ur, radar(Egt[p}) - Uy radar(&[p}”' (5'58)

Geméf} oben genannter Bedingung definieren wir zusétzlich einen Fehler, wenn die

"Der Begriff ,, geostationdr soll ausdriicken, dass die Objekte stationdr gegeniiber Grund sind. Das
Ego-Fahrzeug kann sich jedoch bewegen.
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Abweichung der Radialgeschwindigkeit die Auflosung des Radars iiberschreitet

1 eSF,radial(p) > 0.251?(1871

€SF radial,bin (P) = { (5.59)

0 sonst

Da bei DRISF und DRISFwR &, algorithmisch bereits fiir die Bestimmung des
Szenenflusses aller Hintergrundpixel verwendet wurde und fir Hintergrundpixel die
Abweichung entsprechend verschwindet, wird bei der Auswertung ausschlielich die
Abweichung der Vordergrundpixel Py, ausgewertet.

Uber die Menge der Vordergrundpixel berechnet sich eine mittlere Abweichung pro

Kamerabild zu 1

MAESF,radial = N Z ESF,radial(p)7 (5'60)
pEPfg

wobei N die Kardinalitit der Menge P, ist. Analog berechnet sich die Fehlerrate zu

1
MAESF radial bin = N > esF radial bin (P)- (5.61)
pepfg

Die mittlere absolute Abweichung mittelt iber sdmtliche Vordergrundpixel eines
Kamerabildes im Testdatensatz. Diese Art der Mittlung ist motiviert durch die Metriken
im KITTI-Datensatz, bei denen ebenfalls iiber alle Pixel gemittelt wird. Problematisch
dabei ist, dass die Pixelmenge entsprechend der Entfernung skaliert, vgl. Abbildung 3.5,
und damit implizit Objekte mit geringer Entfernung zur Linse stérker gewichtet werden.
Analog reduziert sich die Pixelanzahl von Objekten haufig durch Teilverdeckung, wie in
Abbildung 5.8 dargestellt.

Neben der pixelbasierten Metrik wollen wir eine instanzbasierte Metrik verwenden, um
damit unabhingig von der zuvor genannten Skalierung der Pixelmenge iiber Entfernung
zu sein. Dafiir definieren wir zusétzlich die mittlere Abweichung iiber alle Pixel einer
Instanz zu

€SF,radial,instance(i) = Z GSFJadial(p)’ (5'62)
PEP;

und die mittlere Abweichung aller Instanzen

1 M

MAESF,radial,instance = N N Z eSF,radial,instance(p)7 (5.63)
li=1""Pl pep,;=i

1

wobei Nj die Anzahl der Instanzen im Kamerabild und Np,; der Anzahl der Pixel einer
Instanz im Kamerabild ist. Analog wird die mittlere Fehlerrate definiert zu

1 i

MAESF,radial,instance,bin - Nl Z Npi Z eSF,radial,bin(I))- (5-64)
i=1 » peEP;=1

1

FEine Auswertung der Tangentialgeschwindigkeit wird hier nicht vorgenommen, da
sie fiir das Labeling von Radardaten und damit fiir den weiteren Verlauf dieser Arbeit
keine Bedeutung haben.
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5.8.2.3. Per Bild Fehler

Die Abweichung der radialen Komponente des Szenenflusses geméafl Gleichung 5.60
gegeniiber der Referenz ist fiir drei verschiedene Algorithmen in Abbildung 5.9 a)
dargestellt. Rot markiert sind die Abweichungen von HD? [YDY19]. Das Verfahren
ist kein eigentliches Szenenflussverfahren, sondern ein Verfahren fiir die Schétzung des
optischen Flusses, welches die Assoziation der Lidarpings zwischen den Frames vornimmt.
Bei der Schitzung des Szenenflusses kommt keine Segmentierung nach Instanzen zum
Einsatz, sodass potenziell zusammenhéngende Bewegungsmuster nicht geclustert werden.
Griin markiert sind die Abweichungen zur Referenz, erreicht durch das klassische
DRISF-Verfahren. In Blau dargestellt sind die Abweichungen durch das in dieser Arbeit
vorgestellte DRISFwR Verfahren. Entlang der horizontalen Koordinatenachse sind die
Frames des Testdatensatzes aufgelistet. Entlang der vertikalen Koordinatenachse sind
die erreichten Abweichungen dargestellt. Zu erkennen ist, dass die Abweichungen mit
dem Verfahren nach HD? in der Regel groBer ausfallen als beim Verfahren DRISF
und DRISFwR. Des Weiteren sind die vielen griinen Datenpunkte zu erkennen. Das
bedeutet, dass bei gleichem Frame DRISFwR eine geringere Abweichung erreicht hat
als DRISF. Um diese Abweichung noch klarer darzustellen, sind in Abbildung 5.9 b) die
Verbesserungen der radialen Komponente des Szenenflusses durch DRISFwR gegeniiber
den anderen Verfahren dargestellt. Positive Werte bedeuten eine Verbesserung durch
den Einsatz von DRISFwR. Negative Werte: Eine Verschlechterung durch den Einsatz
von DRISFwR.

In fast keinem Frame sind negative Werte (Abbildung 5.9, unten) zu beobachten, so
dass kein signifikanter Nachteil durch die Verwendung von DRISFwR festgestellt werden
kann. Im Gegenteil, es sind fast ausschlieflich positive Werte zu beobachten, welche
eine bessere Schitzgenauigkeit durch DRISFwR belegen.

Da sich die eingetragenen Datenpunkte verdecken konnen und somit im Wesentlichen
nur der eingenommene Wertebereich erkennbar ist, sind in alternativer Darstellung
die Abweichungen als Histogramm in Abbildung 5.10 dargestellt. Auf der horizontalen
Koordinatenachse ist das MAE eingetragen. Auf der vertikalen Koordinatenachse die
Haufigkeit.

Zu erkennen ist, dass die MAE-Verteilung bei HD?3 bis etwa 0.8 ms ! reicht. Bei DRISF
und DRISFwR beschrinkt sich die Verteilung im wesentlichen auf einen Bereich bis
etwa 0.1ms !, wobei bei DRISFwR die Hiufigkeit des ersten Balkens ([-0.01,0.01)ms 1)
gegeniiber DRISF fast verdoppelt wurde (542 vs. 941).

In Abbildung 5.11 ist der nach Gleichung 5.61 ermittelte prozentuale Anteil an Pixeln
pro Bild eingezeichnet, welche mit einer Abweichung von mehr als 0.25 ms ! vermessen

wurden.

Auch hier ist zu beobachten, dass HD? fast in allen Frames eine schlechtere Fehlerrate
erreicht als DRISF und DRISFwR. Die Metrik bei DRISFwR ist ein wenig besser als
bei DRISF. Werden die Datenpunkte aus allen Frames zusammengefasst, so ergeben
sich die in Tabelle 5.1 dargestellten Werte.
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5. Schatzung der Radialgeschwindigkeit aus Referenzsensordaten
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Abbildung 5.9.: MAE, gemittelt iiber alle Bildpixel: Oben dargestellt ist das er-
reichte Mean-Absolute-Error (MAE) nach Gleichung 5.60. Niedrigere
Werte entsprechen einer besseren Schéitzung. Unten dargestellt ist die
MAE-Differenz der Verfahren gegeniiber der MAE aus dem hier vor-
gestellten DRISFwR. Positive Werte entsprechen einem Benefit durch
DRISFwR. Negative Werte bedeuten eine Verschlechterung durch die
Verwendung von DRISFwR.

Tabelle 5.1.: Gemittelten Metriken iiber alle Frames. Dargestellt sind die gemit-
telten MAE und Fehlerraten sowie der Median der mittleren Abweichung
fiir die Verfahren zur Szenenflussschéitzung.

Methods MAESF,radial (Cm/s) Median AEsﬂradial (Cm/s) MAESFJadial,bin (%)

HD? 39,8 31,7 50.0016
DRISF 12,3 1,3 11.3126
DRISFwR 11,6 0,9 10.5223

Zu beobachten ist, dass DRISFwR in nahezu allen Szenarien eine Reduktion der
Abweichung der radialen Komponente von der Referenz erreichen konnte. Die absolute
Abweichung in der radialen Komponente kann aus den Moden der Histogramme aus
Abbildung 5.10 abgeschétzt werden. Diese entsprechen in etwa der Median-Abweichung
aus Tabelle 5.1.
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Abbildung 5.10.: MAE, gemittelt iiber alle Bildpixel: Dargestellt ist das erreichte
MAE nach Gleichung 5.60 in Form eines Histogramms.

5.8.2.4. Per Instanz Fehler

Die bisherigen Ergebnisse lassen vermuten, dass durch die Hinzunahme des radarbasier-
ten Energieterms, siehe Gleichung 5.15, eine leichte Verbesserung in der Szenenflussschét-
zung zu erreichen ist. Wie in den Gleichung 5.62, Gleichung 5.63 und Gleichung 5.64
beschrieben, wird die Auswertung nun ebenfalls per Instanz vorgenommen. Analog zu
Abbildung 5.9 sind die Abweichungen aller Objekte aus dem Testdatensatz in Abbil-
dung 5.12 dargestellt.

Lagen die Abweichungen in Abbildung 5.9 insbesondere fiir die Verfahren DRISF
und DRISFwR im Wesentlichen unterhalb von 0.1 ms !, so ist in Abbildung 5.12 eine
deutlich hohere Streuung der Punkte zu beobachten. Wie zuvor beschrieben, werden in
Unterunterabschnitt 5.8.2.3 der Linse nahe gelegene Objekte mit entsprechend gréflerer
Pixelmenge statistisch stéarker gewichtet und gleichzeitig genauer, wodurch die geringeren
Werte in der Metrik zu erkldren sind. Eine weitere Validierung zur Stiitzung dieser
Hypothese wird im Rahmen dieser Arbeit nicht durchgefiihrt, da ihr fiir den weiteren
Verlauf dieser Arbeit keine wesentliche Relevanz zugeordnet wird.

Weiterhin kann beobachtet werden, dass auch hier DRISFwR gegeniiber DRISF im
Allgemeinen eine kleinere Abweichung per Objekt erreicht. Dies zeigt sich insbesondere
auch in Abbildung 5.12, unten), wo noch einmal die Differenz der Abweichung gegeniiber
DRISFwR dargestellt sind. Nur bei wenigen Objekten konnte DRISF ein geringeres
MAE erreichen als DRISFwR.

Wie zuvor auch wurden auch hier die Abweichungen in Form eines Histogramms
gesammelt und in Abbildung 5.13 dargestellt.

In der Histogramm-Darstellung ist zu beobachten, dass die Abweichung zur Referenz
bei allen Verfahren im Gros kleiner als die Doppler-Auflésung des Radars (0.25ms 1)
ist.

Der Vollstédndigkeit halber sind in Abbildung 5.14 die Fehlerraten der Verfahren per
Objekt dargestellt. Dabei wurde ermittelt, wie hoch der relative Anteil an Pixeln per
Instanz ist, die eine groflere Abweichung als die Dopplerauflésung des Radars aufweisen.

Da die Streuung der Datenpunkte mitunter sehr hoch ist und sich viele Datenpunk-
te optisch iiberlagern, wird diese Darstellung eher als ungeeignet fiir eine Bewertung
empfunden. Deutlich eingéngiger sind die gemittelten Metriken in Tabelle 5.2 zusam-
mengefasst.
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Abbildung 5.11.: Mittlere Fehlerrate pro Bild: Oben dargestellt ist die erreichte
Fehlerrate nach Gleichung 5.61. Niedrigere Werte entsprechen einer
besseren Schiatzung. Unten dargestellt ist die Fehlerrate der Verfahren
gegeniiber der Fehlerrate aus dem hier vorgestellten DRISFwR. Positive
Werte entsprechen einem Benefit durch DRISFwR. Negative Werte
bedeuten eine Verschlechterung durch die Verwendung von DRISFwR.

Tabelle 5.2.: Gemittelten Metriken iiber alle Objekte. Dargestellt sind die gemit-
telten MAE und Fehlerraten sowie der Median der mittleren Abweichung
fiir die Verfahren zur Szenenflussschiatzung.

Methods MAESF,radial (cm/s) Median AEsf,radial (cm/s) MAESF,radial,bin (%)

HD? 50,2 11,0 63.4834
DRISF 21,8 1,7 34.5126
DRISFwR 16,2 1,4 29.6659

In der Tabelle wurden die Abweichungen und Fehlerraten aller Objekte gemittelt.
Zusétzlich ist der Medianwert der Abweichungen dargestellt, welcher in etwa den Moden
aus Abbildung 5.13 entspricht. In allen Metriken hat DRISFwR besser abgeschnitten
als die anderen Verfahren. Als wissenschaftliche Aussage léasst sich so festhalten, dass
durch die Hinzunahme der radarbasierten Giitefunktion eine leichte Verbesserung in der
Szenenflussschétzung erreicht wurde. Diese Aussage gilt im Rahmen der hier untersuchten
Testbedingungen. Ohne einen Nachweis nach den Methoden der Statistik vorzunehmen,
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Abbildung 5.12.: MAE des Szenenflusses aller Objekte: Oben dargestellt ist das
erreichte MAE per Instanz nach Gleichung 5.62. Niedrigere Werte
entsprechen einer besseren Schétzung. Unten dargestellt ist die MAE
Differenz der Verfahren gegeniiber der MAE aus dem hier vorgestellten
DRISFwR. Positive Werte entsprechen einem Benefit durch DRISFwR.
Negative Werte bedeuten eine Verschlechterung durch die Verwendung
von DRISFwR.

wird bei den verwendeten ca. 13000 Instanzen im Testdatensatz von einer statistischen
Signifikanz ausgegangen.

5.8.3. Qualitativer Vergleich

Um einen Eindruck von den Fehlern zu erhalten, wurden die Abweichungen nach
Gleichung 5.60 zur DRISFwR-Schéitzung berechnet und aufsteigend sortiert. Das 10%-,
50%-, 70%- und 90%-Perzentil der Bilder ist in Abbildung 5.15 dargestellt. Zu beachten
ist, dass die Abweichung nur innerhalb des FoV des Radarsensors berechnet wurde, siehe
Abbildung 5.2, so dass z.B. der offensichtlich fehlerhaft geschétzte Szenenfluss fiir die
Instanz oben rechts in Abbildung 5.15 a) nicht in das Bild zur Abweichung transportiert
wird.

Die Bilder aus Abbildung 5.15 bestétigen insgesamt eine gute Qualitdt der Szenen-
flussschéatzung. Trotz der erheblichen Verdeckung der Instanzen kann kaum eine gréfiere
Szenenflussabweichung fiir die dargestellten Szenarien beobachtet werden. Da hier nach
den oben genannten Perzentilen allesamt unterhalb oder gleich dem 90-Perzentil se-
lektierte Szenarien dargestellt sind, bestétigt sich die Verteilung aus Abbildung 5.10.
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Abbildung 5.13.: MAE, gemittelt iiber alle Bildpixel: Dargestellt ist das erreichte
MAE nach Gleichung 5.64 in Form eines Histogramms.

Der Grofiteil der Daten liegt bei einer geringeren Abweichung bzw. nur ein sehr gerin-
ger Prozentteil der Bilder weist eine groflere gemittelte Abweichung auf. Zur weiteren
Veranschaulichung sind in Abbildung 5.16 die 95—, 97—, 99— und 100— Perzentile darge-
stellt. Beim 95— und 99-Perzentil ist insgesamt eine kleinere Abweichung < 0.2ms™!
fiir fast alle Instanzen erkennbar. Beim 97—Perzentil ist eine groflere Abweichung fiir
eine verdeckte Instanz in der zweiten Parkreihe zu erkennen. Beim 100—Perzentil ist
ein vollstandig falscher Szenenfluss zu beobachten, welcher durch einmalig korrupte
Sensordaten entstand.

5.8.4. Vergleich der Laufzeit

Neben der eigentlichen Schatzgenauigkeit ist auch die Laufzeit der Szenenflussschitzung
fiir die Bearbeitung grofler Datensétze relevant. Die gemittelten Laufzeiten iiber den
gesamten Datensatz zu der in Abbildung 5.7 dargestellten Fahrtrajektorie sind in
Tabelle 5.3 eingetragen. Die Laufzeiten wurden auf einem PC gemessen. Der PC ist
mit einem Intel Core I7 Prozessor und einer NVIDIA GEFORCE GTX 1080 Graphics-
Processing-Unit (GPU) ausgestattet gewesen. Alle Algorithmen wurden als GPU-Code
implementiert.

Tabelle 5.3.: Vergleich der Inferenzdauer fiir Szenenflussschitzung

Methods runtime

HD? 0.12s
DRISF 0.6s
DRISFwR  0.8s

Zu erkennen ist, dass DRISFwR in etwa 0.8 s pro Kameraframe benétigt hat. Durch
die gestiegene Komplexitat gegeniiber DRISF hat sich die Laufzeit um etwa 0.2s
verschlechtert. Die Inferenz des etwa einstiindigen Datensatzes mit etwa 36000 Frames
(72000 Bilder) dauert mit DRISFwR in etwa 16 h.
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Abbildung 5.14.: Mittlere Fehlerrate pro Bild: Oben dargestellt ist das erreichte
Fehlerrate nach Gleichung 5.64. Niedrigere Werte entsprechen einer
besseren Schétzung. Unten dargestellt ist das Fehlerrate der Verfahren
gegeniiber der Fehlerrate aus dem hier vorgestellten DRISFwR. Positive
Werte entsprechen einem Benefit durch DRISFwR. Negative Werte
bedeuten eine Verschlechterung durch die Verwendung von DRISFwR.
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Abbildung 5.15.: Vergleich von Szenenflussreferenz und -schitzung: Von links
nach rechts: RGB Kamerabild mit hervorgehobenen Instanzen, Refe-
renzszenenfluss, Szenenflusschitzung und daraus ermittelter Abwei-
chung nach Gleichung 5.60. Von oben nach unten: 10%-, 50%-, 70%-
und 90%-Perzentil sortiert nach Szenenflussabweichung.
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Abbildung 5.16.:
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Vergleich von Szenenflussreferenz und -schitzung: Von links
nach rechts: RGB Kamerabild mit hervorgehobenene Instanzen, Refe-
renzszenenfluss, Szenenflusschitzung und daraus ermittelter Abwei-
chung nach Gleichung 5.60.Von oben nach unten: 95%-, 97%-, 99%-
und 100%-Perzentil sortiert nach Szenenflussabweichung.
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5.9. Zusammenfassung

In diesem Kapitel wurde ein Verfahren zur Schétzung des Szenenflusses um Informationen
aus Radarmessungen erweitert. Wie in Abbildung 5.9 und 5.12 gezeigt wurde, konnte
dadurch in den meisten Beispielen eine Verringerung der Abweichung in der radialen
Komponente des Szenenflusses gegeniiber einer Referenz erreicht werden. Nur bei wenigen
Instanzen hatte DRISFwR eine grofiere Abweichung von der Referenz als DRISF, siehe
Abbildung 5.12.

Analog zur Vorgehensweise im KITTI-Datensatz wurden die Abweichungen per Bild
ermittelt. Da diese Statistik Instanzen entsprechend ihrer Pixelanzahl im Kamerabild
gewichtet, wurde eine alternative Statistik generiert, bei welcher die Abweichung per
Instanz gemittelt wird und die von der Pixelmenge unabhéngig ist. Hier konnte eine
deutliche Verbesserung gegeniiber den anderen Szenenflussverfahren identifiziert werden.

Wie in anderer Literatur beschrieben, bspw. [MG15a], wurde auch hier ein statisti-
scher Vorteil fiir Verfahren mit Bewegungsmodell gegeniiber einem nahezu modellfreien
Schétzer beobachtet. Eine Erklarung kann sein, dass Objekte als Starrkdrper eine ein-
heitliche Bewegung aufweisen. Fiir alle Pixel eines Objektes wird somit eine einheitliche
Bewegung erwartet, und die Anzahl der zu schitzenden Parameter kann somit auf die
Bewegungsparameter des Objektes reduziert werden.

Obwohl DRISFwR eine erhebliche Reduktion der Abweichung in der Radialgeschwin-
digkeit in der Szenenflussschitzung auf etwa 0.16 ms ™ im Mittel und 0.0l ms™! im
Median, siche Tabelle 5.2, erreichen konnte, ergaben sich bei noch etwa 30% der Instan-
zen eine Abweichung, die grofier als die Dopplerauflosung des hier verwendeten Radars
ist. Fiir bestmogliche Labelingergebnisse ist im weiteren Verlauf der Arbeit mit einer
manuellen Nachannotation der Daten zu rechnen.

Die Laufzeit von DRISFwR betragt im Schnitt etwa 0.8 s und iibersteigt die von
DRISF mit 0.6s nur leicht. Bei der verwendeten Framerate von 10 Frames-Per-Second
(FPS) und dem zweiten Kamerasystem lésst sich eine einstiindige Aufnahme in 16 h
prozessieren, was im Rahmen dieses Projektes als akzeptabel empfunden wurde.
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6. Projektion von RD-Gitter Daten in
Kamerabilder

In Abschnitt 2.1 wurde das zweidimensionale RD-Spektrum sowie die Erweiterung mittels
Beamforming zum RAD-Spektrum beschrieben. Ziel dieses Kapitels ist es, die Daten
der Radarspektren vollsténdig in Kamerabilder zu projizieren und so eine eingéngige
visuelle Interpretation der Spektren zu schaffen. Ein Beispiel dieses Vorhabens ist in
Abbildung 6.1 dargestellt.

Vergroflerung;:

x| RD RD .

Abbildung 6.1.: Warping des RD-maps in ein Kamerabild: Als Beispiel der
Warping-Operation wird die Intensitdt des RD-maps in das Kame-
rabild RGB projiziert. Dazu werden die radiale Entfernung, die radiale
Geschwindigkeit und die korrespondierende Intensitéat in der RD-map
bestimmt. Dieser Intensitdtswert wird anschlieflend in das Gitter des
Kamerbildes RD ; eingetragen. Dieser Prozess ist fiir zwei beispielhafte
Kamerapixel (pinke und orangene Boxen) hervorgehoben. Zu beachten
ist, dass in RD ¢ ausschlieBlich die Pixel im FoV des Radars gewarpt
wurden, dargestellt durch die nicht-weiflen Pixel in RD . Nach [EB6].

In der Abbildung ist oben links das Kamerabild RGB und mittig unten das RD-map RD
einer Szene dargestellt. Mittels geschétzter Entfernung (mittig oben) und Szenenfluss
(unten links) im Kamerabild werden fir jedes Pixel im Kamerabild die Positionen im
RD-Gitter bestimmt und entsprechende Leistungsintensitit in das Kamerabild projiziert
RD (unten rechts).

Neben der Visualisierung im Kamerabild ist eine wesentliche weitere Motivation
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6. Projektion von RD-Gitter Daten in Kamerabilder

das iiberwachte Training von ML-Verfahren auf Radarspektren durch Nutzung be-
stehender oder einfach zu generierender Annotationen aus Kameradaten. Die Nutzung
von Annotationen aus anderen Sensoren (,Lehrer”) zum Training eines Verfahrens
zur Signalverarbeitung (,,Schiiler”) wird in der Literatur hdufig unter der Bdezeich-
nung ,,Cross-Modal Supervision“ gefithrt. Unter diesem Titel gibt es Beispiele aus
der Spracherkennung [NSR™20], Radar-Objekterkennung [WJG™20] und WiFi-Radio
Signalverarbeitung [ZLA119].

Wie gleich gezeigt wird, bedeutet das Warping praktisch eine Umstrukturierung
der urspriinglichen Pixel- bzw. Voxelanordnung im RD bzw. RAD-Gitter, so dass die
Pixel an entsprechender Stelle im Kamerabild positioniert werden. Das Warping ist so
aufgebaut, dass es sich nicht auf die Leistungsspektren des Radars beschrankt, sondern
alle Daten, welche in Form eines RD bzw. RAD-Gitters vorliegen, in das Kamerabild
gewarpt werden konnen. Dies konnen z.B. Ausgaben klassischer Signalverarbeitungen
wie Winkelmessungen mittels PM-Schétzer oder Detektionkonfidenzen aus CFAR fiir die
Pixel/Voxel im RD sein, insbesondere aber auch Signalverarbeitungen aus ML-Verfahren
wie Winkelschdtzungen via NN-Verarbeitung. Ein Beispiel dafiir ist in Abbildung 6.2
dargestellt.
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Abbildung 6.2.: Ubersicht des vorgestellten Systems zum iiberwachtem Trai-
ning von Radar Signalverarbeitungen: Lidar und Kamera stellen
Sensordaten an das optische Modell (engl.: ,vision model“) bereit, wel-
ches automatisch Annotationen im Kamerabild generiert. Gleichzeitig
werden die vom Radar bereitgestellten Spektren durch ein NN prozes-
siert und durch die Warping-Schicht in die Doméne des Kamerabildes
gewarpt. Die Abweichung zwischen generierter Annotation und gewarp-
ter NN Préadiktion wird berechnet und iiber die Warping-Schicht zuriick
in das NN propagiert (grimer Pfeil). Die Warping-Schicht benotigt
dichten Szenenfluss und Tiefenschitzung im Kamerabild, welche durch
Lidar, Kamera und Radardaten bestimmt werden. Die unteren Bilder
zeigen Beispiele einer semantischen Segmentierung an. Von links nach
rechts: Kamerabild, semantische Referenzmaske (nur relevante Pixel
angezeigt), gewarpte Prédiktion der semantischen Maske, pradizierte
semantische Maske im RD-Gitter, RD-map. Nach [EB6].

Neben der Bereitstellung annotierter Trainingsdaten (Abbildung 6.2, optisches Mo-
dell), muss ein Training von ML-Verfahren algorithmisch gewéhrleistet sein. Fiir das
Training von NN wird typischerweise das sogenannte , Error-Backpropagation® ver-
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wendet, bei welchem die Abweichungen zwischen Pradiktion des Netzwerkes und der
Annotation ermittelt und sequenziell riickwéartsgerichtet durch alle Schichten des Netz-
werkes propagiert werden. Praktisch wird immer ein Gradientenverfahren angewendet,
welches den Fehlergradienten in Bezug auf die Parameter der Schichten berechnet.
Danach werden die Schichtenparameter mit einer definierten Schrittweite entgegen
dem Fehlergradienten aktualisiert. Dieser Vorgang wird bis zu einem Abbruchkriterium
wiederholt. Nach erfolgreichem Training sollte die Abweichung zwischen Prédiktion
und Label klein sein und damit einhergehend auch der Fehlergradient in jeder Schicht.
Um diesen Trainingsprozess zu ermoglichen, muss die Warpingschicht erlauben, den
Fehlergradienten zu bestimmen.

In diesem Kapitel wird zunéchst eine allgemeine Einfithrung tiber das Warping in
der Bildverarbeitung gegeben. Dann wird die oben beschriebene Notwendigkeit der
Differenzierbarkeit am Beispiel eines generischen neuronalen Netzwerkes hergeleitet.
Danach werden unterschiedliche Interpolationsverfahren zur Realisierung des War-
pings vorgestellt und deren Vorwérts- und Riickwértsdurchlauf im Trainingsprozess
dokumentiert und somit die Tauglichkeit fiir das Training theoretisch nachgewiesen.
Schlussendlich werden die Ergebnisse unterschiedlicher Warpingschichten dargestellt
und visuell bewertet.

6.1. Definition der Warprichtungen

Wie beispielsweise in [RA15] beschrieben, wird der Begriff ,Warping“ in der Bildverar-
beitung als Synonym fiir die Anwendung von (geometrischen) Transformationen auf
Bildinhalt verwendet. Als einfache Transformationen werden beispielsweise globale Rota-
tion oder Deformation genannt. Aus der Art der Transformation kann ein Verzerrungsfeld
berechnet werden, welches festlegt, wie die einzelnen Pixel aus einem Ursprungsbild in
ein Zielbild verschoben werden. Dabei werden grundsétzlich zwei Arten von Bildwarping,
das Vorwérts-Warping und das Riickwarts-Warping, verwendet. Beim Vorwéartswarp
wird jedes Pixel aus dem Ursprungsbild entsprechend der Transformation verschoben,
wodurch ein neues Bildgitter entsteht. Dieses neue Bildgitter passt in aller Regel nicht
zum gewiinschten Bildgitter des Zielbildes, so dass einzelne Pixel im Zielbild nicht oder
mehrfach von Pixeln aus dem Ursprungsbild belegt sein konnen. Dieser Effekt ergibt sich
aufgrund der Tatsache, dass die Transformationsfunktion im Allgemeinen nicht bijektiv
ist. Beim Riickwéartswarp wird daher ausgehend vom Bildgitter des Zielbildes entspre-
chend der inversen Transformation ein Pixelgitter iiber das Ursprungsbild gebildet. Auch
hier passt das neu geformte Gitter nicht automatisch zum Gitter des Ursprungsbildes,
jedoch kann damit sichergestellt werden, dass alle Pixel im Zielbild prozessiert werden.
Liegen das transformierte Gitter und das Gitter vom Ursprungs- oder Zielbild nicht
iibereinander, so kénnen die Pixel durch Interpolation auf die Zielgitter angendhert
werden. Anschauliche Beispiele hierzu sind in [RA15] zu finden.

Im Rahmen dieser Arbeit werden sowohl Vorwiérts- als auch Riickwértswarp verwendet.
Der Vorwirtswarp wird verwendet, wenn Pixel des Kamerabildes in das Gitter des
RD-maps transformiert werden sollen. Der Riickwértswarp dagegen, wenn Pixel aus
dem Gitter des RD-maps in das Kamerabild transformiert werden sollen.

In Abbildung 6.3 sind die beiden Warp-Richtungen dargestellt. Es ist zu erkennen,
dass Quell- und Zielbild eine unterschiedliche Grofie haben kénnen. Wie spéter gezeigt
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6. Projektion von RD-Gitter Daten in Kamerabilder

wird, wird die Transformationsfunktion in beiden Féllen zwischen den Gittern aus Radar
und Kamera vollstdndig aus den Daten der Referenzsensorik (Entfernung, Szenenfluss
und Winkel) der Kamerapixel bestimmt.

Vorwartswarp Riickwartswarp
Quellbild: Zielbild: Zielbild: Quellbild:
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Abbildung 6.3.: Vergleich der Warp Richtungen: Beim Vorwértswarp wird jedes Pi-
xel im Quellbild (,Source image*) geometrisch in das Zielbild (,,Target
image*) transformiert und der Pixelinhalt entsprechend einer Inter-
polatrionsmethode in das Zielpixel eingetragen bzw. akkumuliert. Bei
Riickwartswarp wird ausgehend von jedem Zielbildpixel das entspre-
chende Pixel im Quellbild berechnet und dessen Wert ins Zielpixel
eingetragen. Zeigt die assoziative Verbindungslinie auf eine Position
auflerhalb des Bildbereiches, wird das Pixel im Zielbild nicht befillt.
Nach [EBT7].

Der wesentliche praktische Unterschied zwischen Vorwéarts- und Riickwéartswarp ist,
dass beim Vorwartswarp mehrere Pixel des Quellbildes auf das gleiche Pixel im Zielbild
zeigen konnen. Das Zielbild kann durch Akkumulation der Quellpixel aufgebaut werden.
Beim Riickwértswarp zeigt ein Zielpixel immer nur auf ein Pixel im Quellbild und holt
sich daher den Grauwert. In beiden Féllen kann Interpolation angewendet werden, wenn
nach der Transformation der Pixel die Gitterstruktur nicht getroffen wird.

Es ergibt sich das Problem, dass mathematisch festgelegt werden muss, wie bei der
Sammlung mehrerer Quellpixel in ein Zielpixel umzugehen ist.

6.2. Generische Netzwerkstruktur und Trainingsprozess

Soll die Warping-Operation im Trainingsprozess eines NNes verwendet werden, so
muss der Fehlergradient iiber sdmtliche Operationen, wie in Abschnitt 2.2 beschrieben,
berechnet werden kénnen.

Wie in Abbildung 6.2 gezeigt, findet ein Vergleich von Label im Kamerabild und der
gewarpten Netzwerkpradiktion statt. Wir definieren das Label als fqp und die gewarpte
Pradiktion f’. Fiir den Vergleich definieren wir eine Kostenfunktion ! z.B. in der Form!

lu,v) = 7(e)=71 (f/ (u, v, r,7,0) - far (u, v)) , (6.1)

wobei 7 eine konvexe Skalierungsfunktion ist und e die Differenz aus Pradiktion und

! Andere Formen sind moglich und iiblich, z.B. bei Anwendung der Kreuzentropie.
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Label ist. Die Pradiktion an der Pixelposition [u, v] hdngt zum einen von den Warping-
Parametern r und 7 statt, welche die Pixelposition im RD-Gitter definieren, und zum
anderen von den Parametern 6 des NNes. In unserem Fall sind wir nicht an einem
Training der Warping-Parameter interessiert, sondern ausschliefSlich am Training der
Netzwerkparameter. Beim ,error-backpropagation® werden die Warping-Parameter als
nicht variabel angesehen.

Verwendet man nun ein klassisches ,, gradient descent“ Verfahren (Schrittweite ) zum
Training der Netzwerkparameter, so wiirde eine Aktualisierung der Netzwerkparameter
im Schritt n folgende Form annehmen:

ol

(n+1) Y
0 789'

6(") (6.2)

Der letzte Term beschreibt den Gradienten der Fehlerfunktion, bezogen auf die
Netzwerkparameter, und kann durch Anwendung der Kettenregel modelliert werden zu

oL _ oloroeor of 03
00 Ot 0edf Of 00’ '

Hierbei ist % die Ableitung von der Abweichung, bezogen auf die Skalierungsfunktion,

und im gezeigten Beispiel % = 1. % ist die Ableitung von der Skalierungsfunkti-

on, bezogen auf die Differenz e. Wird als Kostenfunktion beispielsweise der mittlere
quadratische Fehler verwendet, so ist

T(e) = 162 (6.4)
2
und somit 5
-

Die Ableitung hingt also ausschliellich von der Wahl der Kostenfunktion ab. 5975 =1ist

die Ableitung der Differenz e zur Pridiktion im Kamerabild f’. %—]}/ ist die Ableitung der
Pradiktion im Kamerabild, bezogen auf die Pradiktion im RD-Gitter, und hiangt von
der Wahl der Warping-Schicht ab und wird spéter definiert. Zuletzt ist % der Gradient
der Pradiktion im RD-Gitter bezogen auf die Netzwerkparameter.

In dieser Arbeit wird das Warping von Radardaten aus dem RD-Gitter und dem
RAD-Gitter untersucht. Beim Ersten werden ausschliefilich Entfernungs- und Geschwin-
digkeitsinformation von der Referenzsensorik genutzt, um die Position eines Pixels
aus dem Kamerabild im RD-Gitter zu bestimmen. Beim Zweiten wird zuséatzlich noch
der Einfallswinkel verwendet, um die Pixel- bzw. Voxelposition im RAD-Gitter zu
bestimmen.

Im Folgenden wird definiert, wie Vorwérts- und Riickwértswarp durchzufithren sind.
Dabei wird insbesondere auch Pixelinterpolation beschrieben. Pixelinterpolation ist not-
wendig, wenn, so wie in Abbildung 6.1 gezeigt, das Warping nicht exakt auf ein Pixel im
Quellbild zeigt und die Pixelindizes somit keine Ganzzahlen, sondern FlieSkommazahlen
sind.
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6.3. Vorwartswarp

Beim Vorwértswarp wird hier ausschlielich die nichste Nachbarinterpolation verwendet.
Bei der Néchster-Nachbar-Interpolation (NNI) (engl.: ,nearest neighbour interpolation®)
handelt es sich um eine der einfachsten Formen von Interpolation. Zeigt das Warping nicht
exakt auf ein Pixel, so werden die Pixelindizes auf die nichste Ganzzahl gerundet und
als Interpolationswert somit der Wert des geometrisch néchsten Nachbarn ausgegeben.
Fiir den interessierten Leser sei als weiterfiihrende Literatur [Han13] empfohlen.

6.3.1. Vorwartsdurchlauf

Beim Vorwértswarp ergibt sich ein Vorwértsdurchlauf der Schicht, wie in Algorithmus 3
beschrieben.

Algorithmus 3: Vorwéartswarp - Vorwértsdurchlauf

Daten: Kamerabild Cg € CNs*Ms  Geschwindigkeitsbild V,. € RVs*Ms
Entfernungsbild R € RYs*Ms und Auflssung {Ar, Ar}
Ergebnis: Zielbild U; € CNexM:
Ut 0
fiir ug + 0 bis Ng—1 tue
fiir vs < 0 bis My;—1 tue
VT,[us,vs] )
T Ave
v 4 round(L“As’T”s]>
wenn (u; >=0) & (v >=0) & (u < Ny) & (v < M) dann
L Ut[ut,vt]Jr = Cs[us,vs]

up round(

return U;

Die Grauwerte im Zielbild ergeben sich durch Akkumulation der assoziierten Pixel
aus dem Quellbild.

6.3.2. Riickwartsdurchlauf

Die partielle Ableitung ergibt sich beim Vorwéartswarp an Pixeln, welche zwischen Quell-
und Zielbild assoziiert wurden, zu eins. Ansonsten wird der Gradient genullt, siehe
Algorithmus 4.
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Algorithmus 4: Vorwéartswarp - Riickwértsdurchlauf

Daten: Kamerabild Cg € CNs*Ms - Geschwindigkeitsbild V,. € RVs*Ms
Entfernungsbild R € RVs*Ms und Auflssung {Av,, Ar}

!
Ergebnis: Gradienten % e cVixU
st
Tf ~—0
fiir us < 0 bis Ns—1 tue
fiir vs < 0 bis Mg—1 tue
V"”v[USA,Us]
—nftarn]

Ur

U round(%)

wenn (uy >=0) & (v >=0) & (u < Ny) & (v < M) dann
L %(us, vg) =1

sonst
!
%(us, vg) =0

U — round(

sf!

return ST

6.4. Riickwartswarp

Beim Riickwértswarp haben sich im Rahmen dieser Arbeit drei mégliche Interpolations-
verfahren angeboten, welche im Folgenden kurz vorgestellt werden.

6.4.1. Nachster-Nachbar-Interpolation (NNI)

Auch beim Riickwértswarp kann die NNI verwendet werden.

6.4.1.1. Vorwartsdurchlauf

Die NNI beim Riickwértswarp kann folgendermaflen in Gleichungsform beschrieben

werden:
s = {0 LSl o0

Hierbei ist f der Grauwert an der Pixelposition u, v. |- - - | entspricht der Gauflklammer
als Rundungsoperation. Durch die Fallunterscheidung erzeugen Pixel auflerhalb des
Quellbildes einen Interpolationswert von 0.

Um die Interpolationswerte fiir das Warping zu bestimmen, werden fiir jedes Pixel
im Kamerabild nun zunéchst die radiale Entfernung und Geschwindigkeit im Radar-
Koordinatensystem bestimmt. Eine Beschreibung hierzu wurde bereits in Gleichung 5.27

T
gegeben. Durch das Einsetzen der RD-Gitter-Pixelposition p,(p) = {uT(p), vr(p)} in
Gleichung 6.6 ergibt sich schliellich der Helligkeitswert fiir das Kamerapixel p zu

_ { Ul @)1, Lor(p)]) 0= tr < Ur, 0 <0 < Vi (6.7)

0 sonst
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6. Projektion von RD-Gitter Daten in Kamerabilder

wobei U, und V- die Dimensionen des RD-maps sind. Wir verwenden RD ¢ nun als
Synonym fiir das in das Kamerabild gewarpte RD-map.

Ein stellvertretendes Beispiel fiir das Warping mittels NNI ist in Abbildung 6.4
dargestellt.

== .-.ﬁ.‘h-‘
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SNR in dB — SNR in dB —

(a) RD-map (b) Gewarptes RD-map auf Kamerabild

Abbildung 6.4.: Warping des RD-map auf Kamerabild mittels NNI: Die RD-map
auf der linken Seite, wurde durch Anwendung der Interpolation in das
Kamerabild gewarpt. Die Positionen in der RD-map ergeben sich aus
der zuvor berechneten relativen Entfernung und Geschwindigkeit der
Kamerapixel, transformiert in das Radarkoordinatensystem. Pixel im
Kamerabild auflerhalb des Radar FoV wurden genullt.

Zu erkennen ist in Abbildung 6.4 b), dass den parkenden Fahrzeugen hohe Leis-
tungswerte aus der RD-map zugewiesen wurden. Deutlich geringe Leistung wurde der
Fahrbahnoberfliche zugewiesen. Beides wird als plausibel empfunden (vgl. Unterab-
schnitt 2.1.1). Deutlich zu erkennen ist aulerdem eine Blockbildung der Intensitétswerte
in Abbildung 6.4 b), z.B. mittig links am parkenden Fahrzeug. Als Blockbildung wird
hierbei verstanden, dass benachbarte Pixel exakt die gleiche Intensitdt aufweisen. Dieser
Effekt wird in der Literatur auch als ,Mosaik Phdnomen*“ oder ,Mosaik Effekt* (engl.:
»mosaic phenomen®) bezeichnet [Han13] und héufig im Zusammenhang mit der NNI
genannt.

6.4.1.2. Riickwartsdurchlauf

Analog wie bei max-pooling-Schichten [SMB10] aus NN, gilt bei der NNI das ,winner
takes it all“ Prinzip. Anders als beim max-pooling entscheidet dabei jedoch nicht
der Wert der Neuronenaktivierung, sondern die Pixeldistanz in der Nachbarschaft,
welches Pixel bzw. dessen Inhalt weiter im Vorwéartsdurchlauf beriicksichtigt wird. Im
Riickwértsdurchlauf wird der Fehlergradient dementsprechend auch ausschliellich fiir
das siegreiche Pixel propagiert. Es ergibt sich folgender Gradient {iber die NNI Schicht:

of [ 1 w=|ul,v=|v]
af { 0 sonst ' (6:8)
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6.4.2. Bilineare Interpolation

Bei der NNI wurden Pixel aus dem Kamerabild immer auf das Gitter des RD-maps
gerundet, wodurch sich Blockbildungen im interpolierten Bild ergaben. Als eine mogliche
Alternative benennt die Literatur die bilineare-Interpolation (BI) [Hanl3|. Hiermit
lassen sich Zwischenwerte im zweidimensionalen Gitter interpolieren. Dabei wird der
Grauwertgradient zwischen Pixelnachbarn ermittelt und basierend darauf Zwischenwerte
approximiert.

6.4.2.1. Vorwartsdurchlauf

Nach [Han13] lasst sich die Interpolation in folgende Gleichung iiberfiihren

o Ty [l L)) (. L)) [
fwo) = s }waLMD fUM,MD]lv’l (6.9)
Grauwertnachbarschaft

_ S =)A= A e

+f(Lu), [o])u/' (1= o) + f([u], [v])u'v

wobei |--- ] und [---] die Gauklammern als Operator fiir Ab- und Aufrunden sind.
Der gesuchte Zielwert befindet sich an der Stelle u, v. Die Parameter v’ = u— ] und
v/ = v—|v] sind die Dezimalwerte der Pixelposition. Das in das Kamerabild gewarpte
RD-map ergibt sich mittels BI zu

U U, 1—9
Upip = (14" 4/ l (Lul,Lv]] [M,LUH] [ ] (6.11)
Clp] [ } Ulu), o] Ylrul,rol) v

Ein stellvertretendes Beispiel fiir das Warping mittels BI ist in Abbildung 6.5 darge-
stellt.

Im Vergleich zu Abbildung 6.4 ist kein ,,Mosaik-Effekt* mehr zu erkennen und der
Helligkeitsverlauf im gewarpten RD-map ist kontinuierlich. Wie zuvor auch wurden
Pixel aulerhalb des FoV des Radars genullt.

6.4.2.2. Riickwartsdurchlauf

Der Gradient %—}}/ kann iiber Gleichung 6.10 abgeleitet werden zu

s
5f(LUJ Lv]) (1-u/)(1—)

o _ w w | _ | (L)

7 - | waw | (6.12)
6f(LgJJ[ ol o
ST(Tul,ToT)

Anders als bei der NNI ergibt sich bei der BI ein Gradient fiir alle beteiligten Pixel.
Hieraus ergibt sich moglicherweise ein praktischer Vorteil gegeniiber NNI, denn wenn
die Warpingparameter (Szenenfluss und Entfernung) marginal fehlerhaft sind, kann das
tatséchliche Pixel im RD-Gitter durch BI dennoch getroffen und somit trainiert werden.
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(a) RD-map (b) Gewarptes RD-map auf Kamerabild

Abbildung 6.5.: Warping des RD-map auf Kamerabild mittels BI: Die RD-map
auf der linken Seite, wurde durch Anwendung der Interpolation in das
Kamerabild gewarpt. Die Positionen in der RD-map ergeben sich aus
der zuvor berechneten relativen Entfernung und Geschwindigkeit der
Kamerapixel, transformiert in das Radarkoordinatensystem. Pixel im
Kamerabild auflerhalb des Radar FoV wurden genullt.

6.4.3. Trilineare Interpolation

In Unterunterabschnitt 2.1.5.2 wurde gezeigt, dass bei Verwendung mehrerer Antennen
neben dem RD-Gitter noch eine weitere Auflésungsdimension ermittelt werden kann. Es
ergibt sich der RAD-Raum. Um auch hieraus Werte in das Kamerabild warpen zu kénnen,
lasst sich die BI trivial zur trilinearen-Interpolation (TI) um eine Dimension erweitern.
Vorwérts- und Riickwéirtsdurchlauf der TT Schicht kénnen analog zur BI hergeleitet
werden. Da hierbei jedoch 8 Pixel beriicksichtigt werden miissen, verzichten wir aus
Griinden der Ubersicht auf die Darstellung von Vorwiérts- und Riickwértsdurchlauf der
Schicht.

Ein stellvertretendes Beispiel fiir das Warping mittels T1 ist in Abbildung 6.6 darge-
stellt.

Wie auch bei der BI, Abbildung 6.5 sind keine Blockbildungen zu beobachten. Wei-
terhin féllt auf, dass in Regionen mit niedrigerem SNR, z.B. der Strafle, geringere
Helligkeiten erreicht wurden als bei der BI. Dieser Effekt ergibt sich durch den SNR
Gewinn des angewendeten Beamformers.

Ebenfalls fillt auf, dass die Leistung im Bereich des hinteren Fahrzeuges linksseitig in
Abbildung 6.6 fokussierter ist, als an gleicher Position in Abbildung 6.5. Die Leistung
konzentriert sich dabei mehr auf die eigentliche Position des Fahrzeuges und etwas we-
niger auf umliegende Pixel (Strale) mit vergleichbarer Entfernung und Geschwindigkeit.
Da nun der Einfallswinkel im Radarspektrum berticksichtigt wird, ist diese Beobachtung
plausibel.

Obwohl der Unterschied zwischen bi- und trilinearer Interpolation hier subjektiv
kaum bemerkbar ist, erhofft sich der Autor, dass bei zukiinftigen Radargenerationen mit
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(a) RD-map (b) Gewarptes RAD-map auf Kamerabild

Abbildung 6.6.: Warping des RD-map auf Kamerabild mittels TI: Die RD-map
auf der linken Seite, wurde durch Anwendung der Interpolation in das
Kamerabild gewarpt. Die Positionen in der RD-map ergeben sich aus
der zuvor berechneten relativen Entfernung und Geschwindigkeit der
Kamerapixel, transformiert in das Radarkoordinatensystem. Pixel im
Kamerabild auflerhalb des Radar FoV wurden genullt.

verbessertem Azimut-Nebenkeulendimpfung (engl.: ,sidelobe level“)? ein merklicher
Unterschied bemerkbar sein wird.

6.5. Subjektive Bewertung

Nachdem die drei Interpolationsmethoden vorgestellt und die Differenzierbarkeit der
Warping-Schichten nachgewiesen wurde, wollen wir nun eine Bewertung vornehmen.
In [Han13] fand eine Bewertung der Verfahren anhand von Bildrekonstruktion kiinstlich
verkleinerter Bilder statt. Es wurde also ein Bild verkleinert und anschliefend durch die
Interpolationsverfahren wieder auf die Originalgrofle skaliert, anschlieend die Grauwerte
des originalen Bildes mit skalierten Bildern verglichen und ein SNR gebildet. Dieses
Vorgehen war nur moglich, weil der Zielwert durch das originale Bild gegeben ist.
In unserem Fall ist dies leider nicht moglich, weil der Zielwert im Kamerabild nicht
bekannt ist. Statt eines quantitativen Vergleichs wollen wir in diesem Abschnitt die
offensichtlichen Unterschiede und Probleme diskutieren.

Im Vergleich zur BI ergaben sich bei der NNI deutliche Artefakte durch Blockbildung.
Diese Artefakte entstehen ausschliefSlich durch die Interpolationsmethode und sind
auch in anderen Anwendungen bekannt [Hanl3]. Da die Artefakte bei der BI und
TI nicht zu beobachten sind, sind diese beiden Verfahren aus Sicht des Autors zu
praferieren. Ein weiterer bereits genannter theoretischer Vorteil von BI und TT ist, dass
sich der Helligkeitswert eines Pixels im Kamerabild aus 4 bzw. 8 benachbarten Pixeln
im RD bzw. RAD-Gitter zusammensetzt. Bei marginalen Fehlern in der Bestimmung
der Warpingparameter (Szenenflusss und Entfernung) ergibt sich eine erhéhte Chance,

2Charakteristika zur Antennenspezifikation
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das tatsdchliche Pixel aus dem RD bzw. RAD-Gitter zu treffen. Dieser Effekt mag einen
praktischen Vorteil beim Training von NN ergeben, wird aber nicht weiter untersucht.

Unter Bijektivitdt bzw. Eineindeutigkeit versteht man in der Mengenlehre eine Abbil-
dung, welche eindeutig zwischen Ursprungsmenge und abgebildeter Menge assoziiert. In
unserem Fall ist das RD-Gitter die Ursprungsmenge und das ins Kamerabild gewarpte
RD-Gitter die abgebildete Menge. Meist kann die Kamera einzelne Ziele aufgrund
hoher Auflésung in einzelne Pixel trennen, im Radar fallen diese Bereiche jedoch noch
in gemeinsame Zellen. Eine Bijektion ist dann nicht mehr gegeben. Mit den verwen-
deten Interpolationsverfahren hat dies zur Folge, dass die Leistungssumme in RD ¢~
nun nicht mehr der urspriinglichen Leistungssumme aus RD entspricht. Elektrische
Beitrage einzelner Pixel im Kamerabild werden somit sicher nicht korrekt abgebildet.
Das féllt beispielsweise auf, wenn man die Leistungsprojektion der parkenden Fahrzeuge
in Abbildung 6.7 betrachtet. Die Regionen, in welchen eine hohe Leistung in RD ¢
vorhanden ist, aber aufgrund schwacher Reflektoren nicht zu erwarten ist, wurden hier
rot markiert.

0 5 10 15 20 25 30 35 40 45 50 55 60
SNR in dB —

Abbildung 6.7.: Kennzeichnung unplausibler Leistungswerte nach Warping des
RD-map auf Kamerabild mittels TI: Regionen, in denen eine
unerwartet hohe Leistung vorhanden ist, wurden rot markiert.

Nach Sichtung der Daten ist aufgefallen, dass die Kamerapixel in den rot markierten
Zonen haufig auf gleiche Pixel in der RD-map verweisen und somit vom Radar nicht in
einzelne Pixel aufgelost wurden. Féllt in diese nicht aufgelsten Pixel dann noch ein
starker Reflektor, wie beispielsweise ein Fahrzeug, so wird durch die nicht vorhandene
Bijektion der Projektion die Leistung des starken Reflektors in angrenzende Regionen
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im Kamerabild projiziert. Auch bei Punktzielen, welche eine kleinere geometrische
und kinematische Ausdehnung haben, als es der Radarsensor auflésen kann, gibt es
Leistungsverteilungen im RD-map, bedingt durch z.B. Signalimperfektionen, Leakage
bzw. Fensterungseffekte. Fiir die in Abbildung 6.7 rot markierten Bereiche geniigt es
also bereits, in einer direkten Pixelnachbarschaft im RD-map zu einem starken Reflektor
zu liegen. Im Vergleich von BI und TT ergab sich bei TI eine verbesserte Fokussierung
der Leistung auf das zweite parkende Fahrzeug und etwas weniger Leistungsprojektion
auf die umliegende Strafle. Kamerapixel, die bei der BI noch auf ein gleiches RD-Pixel
verwiesen haben, verweisen nun auf unterschiedliche Pixel im RAD-Gitter.

6.6. Zusammenfassung

Mit dem in diesem Kapitel vorgestellten Warping wurden Werte aus RD oder RAD-
Gitter in das Kamerabild projiziert. Zum einen lassen sich die Werte damit in einer
anschaulichen Anordnung im Kamerabild visualisieren. Zum anderen lassen sich dadurch
aber auch Annotationen im Kamerabild fiir das Training von ML-basierten Verfahren
verwenden. Ein Nachweis fiir dieses Training wird in Kapitel 7 erbracht.

Beim Warping wurde festgestellt, dass durch die fehlende Bijektivitdt des Warpings
teilweise unplausibel hohe Leistungen in Kamerapixeln beobachtet wurden. Dies ist
technisch damit zu begriinden, dass die Leistung aus RD und RAD-Gitter mehrfach
auf unterschiedliche Kamerapixel zugeordnet wurde. Bei einem verbesserten Warping
miisste sich die beobachtete Leistung eines RD oder RAD-Pixels auf die Kamerapixel
verteilen. Im Idealfall wiirde dabei eine Verteilung entsprechend der elektrischen Beitrége
der Kamerapixel erfolgen. Leider geben die Messwerte aus der Referenzsensorik keinen
Riickschluss auf diese elektrischen Beitrage, so dass vorerst mit der vorgestellten Warping-
Operation ausgekommen werden muss. Im weiteren Verlauf dieser Arbeit werden weitere
Untersuchungen durchgefiihrt, um die elektrischen Beitrédge weiter zu identifizieren
(Unterabschnitt 7.3.2) und gar auf Kameradaten zu schitzen (Abschnitt 7.5). Als
Synonym fiir die Rickwéarts- bzw. Vorwartswarp wird fortlaufend folgende Notation
verwendet:

Zeam = TTBW (mRD—grid§ T, T> (6.13)
TRD-grid = FW (mcamQ T 7">a (6.14)
wobei ZRp_griq eine Variable im RD-Gitter ist und Zcam die entsprechend ins Kame-

rabild gewarpte Variable. 7 ist Warpingfunktion und + und r sind relative radiale
Geschwindigkeit und Abstand.
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In den vorangegangenen Kapiteln wurden aus den Daten der Referenzsensorik durch
Signalverarbeitung eine Tiefenvervollsténdigung und Szenenefluss geschétzt. Anschlie-
Bend wurden damit die Pixel aus RD oder RAD-Gitter in das Kamerabild gewarpt,
vor dem Hintergrund, diese mit Annotationen im Kamerabild vergleichen zu kénnen.
In diesem Kapitel werden wir diese Annotationen nutzen und nachweisen, dass damit
eine NN-basierte Signalverarbeitung von Daten im RD-Gitter trainiert werden kann.
Begonnen wird dabei mit der Vorstellung des eingefahrenen Datensatzes (Abschnitt 7.1).
Anschliefend werden NN zur Schétzung von Einfallswinkel (Abschnitt 7.2), Zieldetektion
(Abschnitt 7.3) und semantischen Segmentierung (Abschnitt 7.4) untersucht. Als zusétz-
liche Untersuchung werden wir die in Abbildung 6.2 dargestellte Trainingshierarchie
(Lehrer vs. Student) umkehren und die Daten aus Radar als Annotation verwenden, um
ein NN operierend auf Kameradaten zu trainieren (Abschnitt 7.5).

7.1. Datensatz

Fiir die Akquise von realen Sensordaten wurde das in Kapitel 3 vorgestellte Fahrzeug samt
Sensorik verwendet. Bei einer durchgehenden Fahrt durch Lippstadt, siehe Abbildung 5.7,
wurden die Sensorsignale aufgezeichnet. Die Fahrt beinhaltete einen geringen Anteil von
Szenen im Hella-Werk, viele Szenen auf 6ffentlicher Stadtstrale, Szenen auf 6ffentlicher
Stadtautobahn sowie Szenen auf einem Parkplatzgeldnde. Insgesamt wurden Daten aus
etwas mehr als 1h Aufnahmelédnge akquiriert. Dabei wurden etwa 36000 Frames a 10
FPS aufgezeichnet und dabei ungefihr 7 - 10° Datenpunkte auf Pixelebene der Kamera
eingefahren.

7.1.1. Datensplit

Fiir das Training und die Validierung der nachfolgenden Algorithmen wurde der akqui-
rierte Datensatz in 10s lange Sequenzen a 100 Frames geteilt. Diese Sequenzen wurden
zuféllig in Trainings-, Evaluations- und Testdatenmengen geordnet. Der Datensplit
betrug in etwa 70%, 15%, 15%. Durch die zeitliche Trennung der Sequenzen soll erreicht
werden, dass statistisch unabhangige Beispiele in Trainings und Testdaten vorhanden
sind und eine generalisierbare Aussagekraft der Auswertung entsteht.

7.1.2. Manuelle Annotation der Daten

Obschon die in den vorangegangenen Abschnitten vorgestellte Methodik zur automa-
tischen Annotation der Daten dem Stand der Wissenschaft entsprechen mag, so sind
Fehler bei der Annotation keineswegs auszuschlielen. So wurde z.B. in Tabelle 5.2 fest-
gehalten, dass Fehler im Szenenfluss bei etwa 30% der Objekte grofier als die Auflésung
des Radars waren. Dieser Wert wurde in Parkplatzszenen mit starker Uberdeckung der
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Objekte ermittelt. Bei einfacheren Szenarien kann der Fehlerwert also niedriger ausfallen.
Gleichzeitig ergeben sich aber noch weitere Fehlermoglichkeiten, durch z.B. Fehler in
der Instanzsegmentierung, welche durch diesen empirisch ermittelten Fehlerwert nicht
beriicksichtigt wurden und die Qualitdt der Labels des Datensatzes degradieren kénnen.
Diese Labelfehler haben einen negativen Einfluss auf die quantitative Gréfle der Be-
wertung der Verfahren. Nach manueller Durchsicht der Daten wurden im Wesentlichen
drei verschiedene Fehlerbilder beobachtet, welche nachfolgend als Anomalien bezeichnet
werden. Diese waren:

1. wenn ein stationédres Objekt filschlicherweise als bewegtes Objekt erkannt wurde

2. Eine erhebliche Menge der Leistung aus der RD-map nicht in das Kamerabild
projiziert wurde RD ¢

3. Fehlerhafte Segmentierung der Punktwolke, was zu einer unplausiblen Ausdehnung
der geometrischen Signatur im RD-Gitter fithrt RD.

Beispiele zu den Fehlerfillen sind in Abbildung 7.1 dargestellt.

RGB + M RD ¢ RD

Abbildung 7.1.: Beispiele von Anomalien im Datensatzlabeling: Von links nach
rechts: Kamerabild mit eingezeichneter Instanzsegmentierung (Rot:
Fuiginger; Griin: Fahrzeug) im FoV der Radars, auf das Kamerabild
gewarpte RD-map und RD-map mit projizierter Instanzmaske, sowie
manuell eingezeichneter Anomaliemasken (weifle Boxen). Die orangen
Pfeile deuten korrespondierende Regionen zwischen Kamerabild und
RD-map an. In den ersten beiden Zeilen wurden parkende Objekte,
aufgrund fehlerhafter Szenenflussschitzung, falschlicherweise als bewegt
detektiert (Fehlertyp 1). In der unteren Zeile ist eine fehlerhafte Instanz-
segmentierung eingezeichnet. Dabei wurden Pixel des Hintergrundes
als FuBgidnger klassifiziert, was in einer unplausiblen geometrischen
Ausdehnung in der RD-map resultiert (Fehlertyp 3). Nach [EBG].

In der ersten Spalte der Abbildung sind Kamerabilder mit den farblich eingezeichneten
Masken fiir bewegte FuBgénger (rot) und bewegte Fahrzeuge (griin) dargestellt. In der
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zweiten Spalte ist die ins Kamerabild projizierte Leistung aus der RD-map dargestellt. In
der letzten Spalte ist die RD-map sowie die Signatur der bewegten Objekte dargestellt.
Ebenfalls dargestellt sind die manuell erstellten Anomaliemasken, welche Regionen mit
Labelfehlern kennzeichnen.

In der obersten Reihe ist zu erkennen, dass das Fahrzeug am linken Bildrand als
bewegt identifiziert wurde, obwohl es sich hierbei um ein parkendes Fahrzeug handelte.
Es wurde also offensichtlich eine falsche Geschwindigkeit des Fahrzeuges geschétzt. Bei
genauer Betrachtung des RD-maps ist zu erkennen, dass die Signatur des entsprechenden
Fahrzeuges nur wenige Pixel in Doppler-Richtung von der stationdren Bebauung abweicht.
Die Geschwindigkeitsabweichung ist also nur marginal. Trotzdem wurde in diesem
Beispiel die Region als fehlerhaft markiert und aus dem Testdatensatz ausgeschlossen.
Eine dhnliche Beobachtung wurde bei dem Objekt am linken Bildrand aus der zweiten
Bildreihe gemacht. In der letzten Bildreihe ist zu erkennen, dass die Signatur des
Fuigingers (rot) in der RD-map eine unplausibel groie geometrische Ausdehnung
aufweist. Umgerechnet entspréiche dies einer mehrere Meter langen radialen Ausdehnung.
Zur Maskierung der Anomalie wurde die Box tiber die als fehlerhaft identifizierte Region
in der RD-map gezeichnet.

Gliicklicherweise sind diese Anomalien durch einen menschlichen Beobachter leicht
zu identifizieren und manuell zu markieren. Diese manuelle Annotation der Anoma-
lien wurde fiir den gesamten Testdatensatz durchgefithrt. Dem Labeler! wurden die
Daten analog zur Abbildung 7.1 im Labelingframework [Tzul5] présentiert. Die Frames
wurden einzeln in der Reihenfolge der Aufzeichnung dargestellt. Der Labeler konnte
mit Tastaturbefehlen schnell zwischen benachbarten Frames dirigieren, um ein besseres
Verstéandnis der Szenendynamik zu erlangen. So war es z.B. einfacher nachzuvollziehen,
welche Objekte geparkt waren und wie sich die Labels iiber die Frames entwickelten.
Wurde eine Anomalie erkannt, so wurde manuell eine Box in Kamerabild oder RD-map
eingetragen. Die Grofe der Box wurde so gewéhlt, dass die fehlerfreien Daten des Frames
erhalten blieben, jedoch keine fehlerhaften Labels verblieben. Wurden diese Masken
eingezeichnet, so wurden die entsprechenden Regionen im Testdatensatz exkludiert.

In Summe wurde bei den etwa 10800 Frames des Testdatensatzes in etwa 20.3%
der Frames mindestens eine Anomalie erkannt. Die durchschnittliche Zeit zum Labeln
eines Frames betrug etwa 5s. Durch die Verwendung der in dieser Arbeit vorgestellten
Verfahren wurde ausschliefllich das manuelle Labeln von Anomalien durchgefiihrt. Die
Labelingaufgabe beschrénkte sich somit auf eine binére Klassifikation, bei welcher der
menschliche Labeler entscheiden musste, ob das vorgeschlagene Label plausibel oder
fehlerhaft ist. Ohne diese Methodik hétte beispielsweise fiir jedes Pixel in der RD-map
ein Label, beispielsweise fiir Winkelschidtzung, manuell vorgegeben werden miissen. Es
ist anzunehmen, dass durch das vorgestellte Verfahren eine erhebliche Reduktion des
manuellen Aufwandes erreicht werden konnte.

Es sei wiederholt, dass Anomaliemasken ausschliellich fiir den Testdatensatz ge-
zeichnet wurden. Das im Nachfolgenden beschriebene Training der NN wurde auf den
Trainingsdaten durchgefiihrt.

In Abbildung 6.7 wurden weitere Fehler, verursacht durch die Warpingschicht, dar-
gestellt. Diese wurden bei der manuellen Anotation nicht berticksichtigt und werden
stattdessen bei der Auswertung Beachtung finden.

!Der Begriff Labeler wurde hier als Synonym fiir den Autor dieser Arbeit verwendet.

111



7. Evaluation

7.2. DoA Schatzung

In erster Anwendung wird das Training eines NNes zur Azimutwinkelschitzung von
Reflexionen in den RD-Gittern durchgefiihrt. Es handelt sich dabei um eine Regressions-
aufgabe, bei der eine kontinuierliche Zielvariable zu schétzen ist. In diesem Abschnitt
werden wir die Eingangsdaten (Unterabschnitt 7.2.1), die Zielwerte (Unterabschnitt 7.2.2)
und Netzwerkarchitekturen (Unterabschnitt 7.2.3) diskutieren, danach die Fehlermetrik
definieren (Unterabschnitt 7.2.4 - 7.3.7), die Initialisierung (Unterabschnitt 7.2.8) und
den Optimierer des NN (Unterabschnitt 7.2.9) aufzeigen. AbschlieBend werden der
Trainingsprozess (Unterabschnitt 7.2.10) und die Ergebnisse unter Testdaten ermittelt
und diskutiert (Unterabschnitt 7.2.11).

7.2.1. Eingangsdaten

Das NN zur Winkelschitzung operiert auf den Eingangsdaten I', welche aus den
Frequenzspektren des Radars bestehen. Dazu wurden drei Receiver (Rx)-Kanile in
Frequenzraumdarstellung {S;q 1, Srd,2, Srd,3} des Radarsensors mit nicht dquidistantem
Antennenabstand wie folgt aufbereitet, bevor sie in das NN eingespeist wurden.

RD
r= 1< Srd,Qv Srd,l (71)
£ Srd,3aSrd,2
Der erste Eingangskanal ist die RD-map, wohingegen als zweiter und dritter Eingangs-
kanal die Differenzen der Phasenspektren £ ( Syq;, SrcLi-l) zwischen den benachbarten

Antennenpaaren ist.

7.2.2. Zielwerte

Fiir das Training des NNes zur Winkelschétzung miissen neben den Eingangsdaten
ebenfalls die Zielwerte bereitgestellt werden. Das NN wird dann so optimiert, dass es
versucht, diese Zielwerte aus den Eingangsdaten zu pradizieren.

Bei der Winkelschétzung ist der Einfallswinkel der Reflexionen zu schétzen, siehe
bspw. Abbildung 2.7. Um den Einfallswinkel als Zielwert automatisch aus den Daten
der Referenzsensorik zu ermitteln, interpretieren wir nun jedes Pixel im Kamerabild
als Reflexion. Mit Hilfe von Gleichung 5.20 lasst sich aus den Pixelpositionen und
Tiefeninformationen im Kamerakoordinatensystem eine 3D-Punktwolke bilden. Diese
Punktwolke wird nun in das Radarkoordinatensystem transformiert, um die Perspektive
des Radars nachzustellen, siche Gleichung 3.33. Der Einfallswinkel in Azimutrichtung
wird nun aus der Position in Radarkoordinaten bestimmt zu

Plabel (P) = arctan (XRMM) : (7.2)

*Rlz][p]

Ebenso kann der Einfallswinkel in Elevationsrichtung ermittelt werden. Als Nachweis
fiir die Funktionsfahigkeit des iiberwachten Trainings der in dieser Arbeit vorgestell-
ten Pipeline gentigt uns die erste Winkelrichtung, so dass ¢j,pe1(p) die Zielwerte der
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Winkelschétzaufgabe ausmachen.

7.2.3. Netzwerkarchitektur

Als Netzwerk wurde ein CNN aufgebaut, welches die drei Eingangskanéle entgegennimmt
und dann sukzessive in den Netzwerkschichten verarbeitet. Die Dimension der Kanile
wurde liber die Netzwerkschichten konstant gehalten, jedoch die Anzahl der Kanéle in
den Zwischenschichten variiert. Als Schrittweite (engl.: ,stride“) und Fiillung (engl.:
ypadding*) wurde der Einheitsschritt bzw. Gleichfiillung (engl.: ,same®) verwendet.
In den Zwischenschichten wurden als Aktivierungen LeakyReLUs verwendet. In der
letzten Netzwerkschicht wurde eine Tangens-hyperbolicus-Aktivierungsfunktion mit
Skalierung auf den Zielwertebereich [-90,90]° angewendet. Eine grafische Ubersicht der
NN-Architektur ist in Abbildung 7.2 dargestellt.
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Abbildung 7.2.: CNN Struktur fiir Winkelschiitzung: Die Ubersicht der Schichten.
In jeder Schicht (convy, N, Kkxk + F) werden Faltung der Nj, Ein-
gangskanéle auf Nyy Zielkanédle durchgefithrt. Dabei werden K x K
Kernel verwendet. Abschlieend die mit F' spezifizierte Aktivierungs-
funktion angewendet.

Wir definieren die Ubertragungsfunktion des NN zur Winkelpridiktion als

¢predict, RD-grid — d"Net(F)‘ (7‘3)

Das oben definierte Netzwerk zur Winkelprédiktion hat ausgehend von einem Pixel
aus der RD-map mit einer GroéBe von etwa 0.25m x 0.25ms ! ein rezeptives Feld
von etwa 3.75m x 3.75ms !. Bei der Faltung tiber die Eingangsdaten wird die NN
Pradiktion jedes Pixels also durch die in dem rezeptiven Feld definierte Nachbarschaft
an Pixeln beeinflusst. Um zu testen, ob diese Nachbarschaft einen positiven Einfluss auf
die Winkelpréadiktion hat, wurde zum Vergleich das oben definierte Netzwerk ebenfalls
mit 1 x 1 anstelle von 3 x 3 Faltungskernen gebaut. Das rezeptive Feld des zweiten NNes
beschrankt sich dabei auf ein Pixel der Eingangsdaten, womit die Pradiktion unabhéngig
von den Werten der Pixelnachbarschaft erfolgt, analog zu den klassischen Verfahren
aus Unterabschnitt 2.1.5. Um die Parameteranzahl beider NN-Architekturen identisch
zu halten, wird die Kanalzahl des 1 x 1 NN in den Zwischenschichten verdreifacht
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(Schichtmodifizierer: ¢ = 3). Die in Abbildung 7.2 dargestellte Architektur entspricht
also dem 3 x 3 NN. Das 1 x 1 NN ist analog aufgebaut, jedoch mit anderer Kanalzahl.
Auf eine analoge Darstellung wird an dieser Stelle verzichtet. Eine Ubersicht der NN
Architekturen ist in Tabelle 7.1 dargestellt.

Tabelle 7.1.: NN Architekturen fiir Winkelschitzung: Ubersicht der Parameter
der Netzwerke.

Name Grofe der Faltungskerne — Schichtmodifizierer (t) Parameterzahl
NN (1x1) 1x1 3 ~ 195k
NN (3x3) 3x3 1 ~ 195k

7.2.4. Assoziation von Pradiktion und Label durch Warping

Da Pradiktion im RD-Gitter durchgefiihrt wurde, die Zielwerte jedoch im Format des
Kamerabildes vorliegen, werden die Préadiktionen fiir den Vergleich in das Kamerabild
projiziert

Cbpredict7 cam(P) = BW (¢predict, RD-grid>» ur(P), |XT(p)|>' (7.4)

Zur Projektion der Préadiktionen in das Kamerabild wurde die 2D-bilineare Interpo-
lation verwendet. Die 3D-trilineare Interpolation wurde nicht verwendet, weil eine
Winkelschitzung basierend auf den Phasendifferenzen der Antennenpaare gewollt war.

7.2.5. Messung der Abweichung

Durch die Projektion der Prédiktion liegen die Schatzwerte nun im Kamerabild vor
und koénnen nun pixelweise direkt mit den Zielwerten verglichen werden. Als Metrik fiir
die Abweichung zum Zielwert wird die Charbonnier-Abweichung (siche bspw. [Bar19])
bestimmt

oA (P) = 1/ (Plabel (P) ~ Spredict, cam(P))2 + 1076, (7.5)

Die Charbonnier-Abweichung ist eine differenzierbare Approximation der Betragsab-
weichung und bestraft Abweichung quasi linear. Sie wurde gewahlt, da kein statistisches
Modell des Winkelfehlers vorhanden war, welches eine andere Wahl begriindet hétte.

7.2.6. Selektion der Pixelmenge

Bedingt durch unterschiedliche FoVs von Kamera und Radar diirfen fiir die Optimierung
der Kosten aus Gleichung 7.5 nicht alle Pixel aus Kamera und RD-map verwendet
werden. Es gilt vorab zu entscheiden, welche Reflexionen in beiden Sensoren sichtbar
sind. Dafiir wurde eine Selektion anhand von geometrischen Bedingungen aus den Daten
der Referenzsensorik durchgefiihrt. Daneben wird eine zusétzliche Selektion anhand des
SNRs aus der RD-map getestet. Motivation dafiir ist, dass viele Pixel in der RD-map
Rauschpixel sind und das Training des NN stéren konnen.
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7.2.6.1. Selektion anhand von Daten aus Referenzsensorik

Fiir die Optimierung der Kosten aus Gleichung 7.5 werden die Abweichungen fiir die
Pixel beriicksichtigt, welche folgende Bedingungen erfiillen:

1. Keine Ego-Reflexion: Aufgrund der unterschiedlichen Einbauposition von Ka-
mera und Radar bildet die Kamera das Ego-Fahrzeug wesentlich deutlicher ab, als
es der Radarsensor tun wiirde. Es werden daher alle zum Ego-Fahrzeug gehéren-
den Pixel aus der Optimierungsschleife entfernt. Praktisch wurde dazu manuell
eine stationdre Maske Ppg, gezeichnet, welche diese Pixelmenge beinhaltet. Ein
Beispiel dieser Maske ist in Abbildung 7.3a zu sehen, wobei die dunkel gefarbten
Pixel den maskierten Pixeln entsprechen.

2. Sichtbar im Radar FoV: Das FoV von Kamera und Radar unterscheiden sich
deutlich, so dass ausschliefllich Pixel in der Optimierung beriicksichtigt werden,
welche potenziell im FoV des Radars liegen wiirden. Dazu wurden zunéchst
die Azimut (vgl. Gleichung 7.2) und Elevationswinkel sowie die Entfernungen
sdmtlicher Pixel im Radarkorrdinatensystem berechnet. Anschliefend wurden die
Pixel maskiert, welche aulerhalb der Radarkeule liegen. Die Antennenkeule wurde
hier mit einem Azimuth- und Elevationséffnungswinkel von +70° und 4+10°, die
maximale Reichweite mit 25 m parametriert. Diese Parameter ergeben sich aus der
Konfiguration des hier verwendeten Radarsensors. Ein Beispiel dieser Maske Pggy
ist in Abbildung 7.3b zu sehen, wobei die dunkel gefarbten Pixel den maskierten
Pixeln entsprechen.

3. Keine Ausreifler bei DBSCAN-Methode: Bei den Instanzenmasken im Ka-
merabild kommt es héaufig vor, dass die Pixel der Tiefenschiatzung Werte aus
dahinter liegenden Objekten beinhalten, bspw. die Instanzenmaske eines Fuf3gén-
gers beinhaltet filschlicherweise ein paar Pixel des Gehwegs. Werden diese Pixel
in die RD-map projiziert, fithrt das zu einer Uberschiitzung der geometrischen
Ausdehnung. Die fehlerhaft segmentierten Pixel weisen moglicherweise auch eine
falsche Doppler-Schétzung auf, so dass diese Pixel an die falsche Doppler-Position
im RD-Gitter projiziert werden. Die Pixel der Instanzenmaske werden zuséatzlich
mit der Tiefenschidtzung durch den DBSCAN-Algorithmus segmentiert (engl.:
»geclustert®). Die Cluster mit der nicht maximalen GroBe werden als Ausreifler be-
handelt und aus der Instanzenmaske entfernt. Ein Beispiel dieser Maske Ppggcan
ist in Abbildung 7.3c zu sehen, wobei die dunkel gefarbten Pixel den maskierten
Pixeln entsprechen.
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(a) Ego Maske (b) FoV Maske (c) DBSCAN Maske (d) Gesamtmaske

Abbildung 7.3.: Masken zur Selektion der Pixel: Beispiele der Masken (gelb dar-
gestellt) zur Selektion der Pixelmenge der Optimierungslaufe. Spal-
tenweise: Die Pixelmaske zur Maskierung des Ego-Fahrzeuges, Pixel
auflerhalb des Radar FoVs, DBSCAN Ausreifler und die kombinierte
Maske. Zeilenweise: Beispiele fiir beide Kameras.

Durch die Reduktion der Pixelmenge werden Pixel aus den Gesamtkosten entfernt,
welche den Trainingsprozess degradieren wiirden, da sie fehlerhafte Zielwerte aufweisen.
Ein Beispiel der sich ergebenen Gesamtmaske ist in Abbildung 7.3d zu sehen, wobei die
dunkel gefirbten Pixel den maskierten Pixeln entsprechen.

Wir fithren die drei Masken zu einer Schnittmenge zusammen

Pan = PEgo N Prov N PDBSCAN> (7.6)

als Menge aller Pixel, die bei der Optimierung berticksichtigt werden.

7.2.6.2. Pixelselektion anhand von SNR

Wir unterteilen die Pixelmenge in der RD-map in die zwei Klassen: Hintergrundrauschen
und Signalreflexion. Die erste Klasse soll alle Pixel beinhalten, bei denen der Rauschanteil
iiberwiegt. Bei der zweiten Klasse hingegen sollen Pixel beschrieben werden, bei denen
eine Reflexion aus der Umgebung wahrscheinlich ist bzw. bei denen der Signalanteil
iiberwiegt. Fiir deren Identifikation wird zunéchst die Haufigkeitsverteilung des SNRs
aller Pixel im Trainingsdatensatz dargestellt, sieche rot gezeichnete Linie in Abbildung 7.4.
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50 60

SNR in dB —

—— Stichprobenverteilung
Geschétzer Mischanteil durch Rauschen
—— Geschétzer Mischanteil durch Signal
- - - Identifizierter Mischanteil als Gaufiverteilung
- - - Identifizierter Mischanteil als Chi-Quadrat-Verteilung

Abbildung 7.4.: SNR Haufigkeitsverteilung: Die Probenverteilung des Trainingsda-
tensatzes ist rot gezeichnet dargestellt. Die identifizierten Mischanteile
des Rauschens und der Signalreflexion sind als griin und blau gezeich-
nete Polygonziige dargestellt. Zuséatzlich wurden die Mischanteile als
Gaufl Wahrscheinlichkeitsdichtefunktion (WDF) (schwarz gestrichelt)
und Chi-Quadrat (pink gestrichelt) approximiert. Nach [EB6].

Analog zur oben beschriebenen Klassifizierung wird angenommen, dass es sich bei der
dargestellten Haufigkeitsverteilung um eine Mischverteilung aus Gaufi- und Chi-Quadrat-
Verteilung handelt. Motiviert wurde die Annahme damit, dass sich Rauscheffekte geméafl
dem zentralen Grenzwertsatz iiber Gaulverteilungen [Durl9] der Form

z— 2
P(z,pu,0) = ! 5 exp{ (z_p) } (7.7)

(270 20°

dulern. Radarreflexionen mit dominierender Reflexionsquelle lassen sich z.B. iiber ein
Swerling-Typ-3-Modell beschreiben [Mes06], welches eine Chi-Quadrat-Verteilung (vier
Freiheitsgrade) der Form aufweist

_ Ao ) 20op)
P(I,Uavg.nu)—(gavg.iu)g p{ (Gavg‘m}. (7.8)

Zur Identifikation der Mischanteile wurde zunéchst die Probenverteilung des Rauschens
identifiziert. Dazu wurde der Verlauf der gesamten Haufigkeitsverteilung linksseitig des
globalen Maximums nach rechts gespiegelt. Dabei wurde angenommen, dass das globale
Maximum dem Mittelwert der Gaufverteilung entspricht. Der resultierende Verlauf ist
in Abbildung 7.4 als griin gezeichneter Polygonzug dargestellt. Die Probenverteilung der
Reflexionssignale wurde identifiziert, indem die zuvor identifizierte Probenverteilung des
Rauschens von der gesamten Probenverteilung subtrahiert wurde. Die Probenverteilung
der Signalreflexionen ist in Abbildung 7.4 als blau gezeichneter Polygonzug dargestellt.

Zu erkennen ist, dass sich die griine und die schwarz gestrichelte bzw. die blaue und die
pink gestrichelte Linien nahezu kongruent sind. Es ist also eine hohe Ubereinstimmung
der eingepassten Verteilungsfunktionen mit den Mischanteilen und kein offensichtlicher
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Einwand gegen die oben gemachte Klassifikation zu beobachten.

Damit Rauschpixel bzw. Pixel aus dem linken Mischanteil den Trainingsprozess der
NNen nicht stéren, werden diese aus der Trainingsmenge entfernt. Die Wahrscheinlichkeit,
entsprechende Pixel zu ziehen, betriagt bei 10dBgng bereits weniger als 0.1%. Oberhalb
von 10dBgng werden mafigeblich Pixel aus dem rechten Mischanteil beobachtet. Damit
definieren wir die weitere Pixelmenge

Ptrain = {p | P € Pradar N RDc(p) > 1OdBSNR}' (7'9)

Einhergehend wird untersucht, ob sich diese Selektion vorteilhaft auf die Qualitat
der Winkelschétzung auswirkt. Dazu werden NNen nach den in Tabelle 7.2 gezeigten
Parametrierungen trainiert. Es werden also zwei Netwerkarchitekturen (1 x 1 und 3 x 3)
jeweils mit oder ohne diese Pixelselektion getestet.

Tabelle 7.2.: NN Architekturen und Konfigurationen mit Pixelselektion nach

Leistung.
Name Faltungskern (t) SNR Selektion
NN, 1x1 ]
NN, 1x1 RD > 10dB
NN, 3x3 ;
NNj 3x3 RD > 10dB

7.2.7. Gesamtkosten

Die Gesamtkosten ergeben sich als Mittelwert der Abweichungen iiber die Pixel zu

1
IDOA, all = 75— > Iboa(P)- (7.10)
‘Pall N Ptraln’ PEPINPrain

Wie durch Tabelle 7.2 beschrieben, findet die Selektion der Pixelmenge anhand von
SNR nicht fiir alle Konfigurationen statt, so dass die Menge Pipain  in den Kosten
teilweise entfallt.

7.2.8. Initialisierung der Parameter

Die Initialisierung der Netzwerkparameter erfolgte fiir Schichten mit Sigmoid oder
Tangens-hyperbolicus-Aktivierungsfunktionen geméfl der Xavier-Methode [GB10]. Fir
Schichten mit ReLU-Aktivierungsfunktion geméf der Kaiming-Methode [HZRS15].

7.2.9. Optimierer

Zur Optimierung der Netzwerkparameter wurde ADAM [KB15] mit einer initialen
Schrittweite von 10 und »early stopping® verwendet.
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7.2.10. Trainingsprozess

In jedem Trainingsschritt wird aus dem Trainingsdatensatz ein beliebiges Beispiel
gezogen. Die Ziehung von Frame und Kameraindex erfolgt aus Gleichverteilung. Dieses
Beispiel wird dem NN zugefiihrt, Inferenz ausgefiihrt, die Abweichung vom Zielwert
ermittelt und die Netzwerkparameter aktualisiert. Ein Training wurde jedoch nur
durchgefiihrt, wenn das Ego-Fahrzeug in Bewegung (v, = [0,30]ms ') war und stationére
Ziele somit in Dopplerdimension besser voneinander getrennt sind. Der Verlauf der
Kosten im Trainingsprozess ist in Abbildung 7.5 dargestellt.

25 -
— NN,
— NN
NN,
20 i NNj5
/l\
g 15|
z
4
&
=
g B
.é 10
H
5 |
0 | | | | | | | |

| |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Trainingsschritt — 104

Abbildung 7.5.: Verlauf des Trainingsprozesses der Winkelnetzwerke: Die Kosten
wahrend des Trainings konvergieren bereits nach einigen Trainingsbei-
spielen.

Die Winkelnetzwerke wurden fiir eine Epoche trainiert. Es ist zu beobachten, dass
sdmtliche NNe nach etwa 1000 Trainingsschritten den gréfiten Teil der Optimierung
erfahren haben und augenscheinliche Konvergenz eingetreten ist. Dies entspricht etwa
einem Zwanzigstel der gesamten Trainingsmenge. Urséchlich fiir die schnelle Konvergenz
kann die Wahl der Schrittweite, aber auch die Effizienz der Annotation sein. Durch eine
noch kleinere Schrittweite des Optimierens kénnte die Konvergenz verzogert und gegebe-
nenfalls eine bessere Inferenz ermdglicht werden. Als positives Merkmal der vorgestellten
automatischen Annotation wird deren Effizienz angesehen. Pro Frame werden etwa 3-10°
Kamera-Pixel-Trainingsbeispiele bereitgestellt. Die 1000 Trainingsbeispiele entsprechen
bei kontinuierlicher Aufnahme mit 10 FPS einer Lénge von weniger als 2 min Aufnahme
und bilden dementsprechend etwa 3 - 10% annotierten Eingangs-Ausgangsverkniipfungen
des NN dar.

Nach den in Tabelle 7.2 aufgefithrten Parametern wurden unterschiedliche Kosten-
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funktionen fiir die NNen festgelegt, wodurch sich die unterschiedlichen Konvergenzwerte
in Abbildung 7.5 begriinden lassen. Ein Vergleich der NN Schétzgenauigkeit kann basie-
rend auf diesen Trainingskosten nicht vorgenommen werden. Dieser Vergleich wird im
folgenden Abschnitt bei identischer Metrik durchgefiihrt.

7.2.11. Ergebnis
7.2.11.1. Referenzverfahren

Als Referenzverfahren fiir die Bewertung der Winkelschitzgenauigkeit aus dem NN wird
der PM Winkelschétzer (siehe Unterunterabschnitt 2.1.5.1) sowie der Bartlett BF (siehe
Unterunterabschnitt 2.1.5.2) aus der klassischen Radar-Signalverarbeitung verwendet.

7.2.11.2. Beschreibung der Metriken

In Abs. 2.1.5 wurden aus dem Modell einer einzelnen reflektierten EM-Welle und
der daraus resultierenden Phasendifferenz A® verschiedene Winkelschétzverfahren
abgeleitet. Dies ist stark vereinfacht und in der Praxis strahlen meist EM-Wellen
aus unterschiedlichen Winkelbereichen in den Radarsensor ein. Eine Trennung der
Wellen/Reflektoren entsprechend des Einfallswinkels ist nicht immer mdoglich. Sowohl
das hier vorgestellte NN zur Winkelschéitzung als auch der PM-Winkelschétzer liefern
einen einzigen Winkelschitzwert pro Zelle im RD-Gitter (sog. ,,Punktschétzer”). Wird
dieser Schétzwert in das Kamerabild projiziert, so wird der einzelne Schétzwert, wie in
Abschnitt 6.5 beschrieben, mehreren Kamerapixeln in gleicher Weise zugeordnet. Daraus
ergibt sich, dass die projizierte Winkelschitzung gegen ein Ensemble an Zielwerten
der zugehorigen Kamerapixel verglichen werden muss. Die Streuung der Zielwerte
kann gering ausfallen, wenn es sich um Nachbarpixel im Kamerabild handelt. Sind
die Pixel im Kamerabild jedoch weiter gestreut, so konnen die Zielwerte iber einige
Winkelgrad streuen. Als Beispiel beider Félle sei auf Abbildung 6.7 verwiesen. Der erste
Fall wurde beim links parkenden Fahrzeug durch die rot markierte Zone hervorgehoben.
Der zweite Fall wird durch die weiteren, rot markierten, zur XZ Ebene (im Ego-KOOS)
spiegelsymmetrischen Zonen markiert.

Fiir den Fall, dass einer RD-Gitter-Zelle mehrere Kamerapixel zugeordnet werden,
kann basierend auf den Sensordaten nicht festgestellt werden, welches der Kamerapixel
bzw. welche Kombination zum Radarsignal gefiihrt hat. Zur Veranschaulichung dieses
Dilemmas ist in Abbildung 7.6 ein fiktives Beispiel dargestellt. Im linken Drittel der
Abbildung sind zehn komplexe Vektoren (schwarz dargestellt) zu erkennen, welche
die sich komplex iiberlagernden Wellen unterschiedlicher Reflexionspunkte darstellen
sollen. Die Winkel der Vektoren gegeniiber den Achskoordinaten sollen die einzelnen
Phasendifferenzen A® der Wellenanteile beschreiben. Die Lange der Vektoren die Am-
plitude der Wellenanteile. Durch die komplexe Summation der Vektoren ergibt sich ein
resultierender Vektor (rot dargestellt) mit entsprechend resultierenden Phasendifferenz
(griin eingezeichnet), welcher die Messung in der RD-Gitter-Zelle darstellt. Die Lange der
schwarzen Vektoren bestimmt somit die Wichtung der einzelnen Vektorwinkel auf den
Gesamtphasenwinkel. Aus den Daten der Referenzsensorik kann nun zwar der Einfalls-
winkel der Reflexionspunkte, nicht jedoch deren Amplitude gemessen werden. Im ersten
Bild wurde naiv angenommen, dass alle Reflexionspunkte die gleiche Wellenamplitude
aufweisen, und der resultierende Summenvektor eingezeichnet.
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Resultierendes Signal Resultierendes Signal Verschiedene Realisierungen
bei Vernachlassigung bei Beriicksichtigung bei unbekanntem
des elektrischen Beitrags des elektrischen Beitrags elektrischen Beitrag
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Abbildung 7.6.: Winkelsynthese bei mehreren Reflektoren: Links: Zehn komplexe
Einzelvektoren (schwarz) gleicher Lange und unterschiedlichem Win-
kel gegeniiber den Koordinatenachsen wurden zu einem resultierenden
Vektor (rot) addiert. Die vom Radar gemessene Phasendifferenz AP
ist in griin eingezeichnet. Mitte: Die Lange der Einzelvektoren wurde
einmalig aus einer Gleichverteilung gezogen bestimmt. Die Winkel der
Vektoren entsprechen denen der vorigen Vektoren. Der resultierende
Vektor variiert im Vergleich zum ersten Beispiel und somit auch die
Phasendifferenz. Rechts: Die Lénge der Einzelvektoren wurde mehr-
mals gezogen und jeweils die resultierenden Vektoren eingetragen. Das
Ensemble der resultierenden Vektoren erstreckt sich iiber einen weiten
Winkelbereich, dargestellt {iber den blauen Kreissektor. Nicht einge-
zeichnet ist die entsprechende Streuung der Phasendifferenzen.

Um die unbekannten elektromagnetischen Reflexionseigenschaften beispielhaft zu si-
mulieren, wurde die Lange der Vektoren aus einer Verteilungsfunktion (Gleichverteilung)
gezogen (mittleres Drittel der Abbildung). Die Wichtung der einzelnen Vektoren fallt
damit unterschiedlich aus, und der resultierende Vektor hat einen leicht unterschiedlichen
Zielwinkel gegeniiber der naiven Variante. Da die Lange der Vektoren unbekannt ist — die
elektromagnetischen Reflexionseigenschaften sind aus den Daten der Referenzsensorik
ja nicht bekannt —, kann der resultierende Vektor natiirlich eine Vielzahl an moglichen
Richtungen annehmen. Im letzten Drittel der Abbildung sind deshalb eine Vielzahl
an moglichen resultierenden Vektoren dargestellt. Der kleinste Winkel des resultieren-
den Vektors ergibt sich aus dem kleinsten Winkel aller Einzelvektoren, ndmlich dann,
wenn die Vektorldange aller anderen Einzelvektoren gerade Null ist. Der grofite Winkel
umgekehrt aus dem gréfiten Winkel eines Einzelvektors.

Fiir die Evaluation bedeutet das, dass, wenn ein Winkelschétzer einen Einfallswinkel
schétzt, der im Intervall zwischen kleinstem und gréffitem Winkelwert der assoziierten
Kamerapixel liegt, der Schiatzwert ohne weitere Kenntnis der elektromagnetischen
Reflexionseigenschaften damit durchaus valide ist und in einer Evaluationsmetrik nicht
als moglicher Fehler angezeigt werden darf. Zum Vergleich: Bei dem Training des NN
wurde aufgrund der zuvor genannten technischen Limitierung keine Gewichtung der
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Einfallsrichtungen in Gl. 7.10 vorgenommen und somit die naive Variante nachgebaut.
Um die Evaluationsmetrik mathematisch auszudriicken, definieren wir vorab die
Menge aller Kamerapixel, welche auf das gleiche Pixel prp im RD-Gitter zeigen, als

PCam(PRD) = {p‘p € Pradar A Pr(P) = pRD}' (7.11)

Zur Erinnerung: Hier ist Pc,,, die Menge aller Kamerapixel im Radar FoV, siehe
Gleichung 5.3. p,.(p) = prp schneidet diese Menge, indem nur Kamerapixel selektiert
werden, welche auf das Radarpixel pgp zeigen.

Nun definieren wir die Grenzen des Winkelintervalls zu

¢label,min (PrD) = min Plabel (P) (7.12)
VPEPCam (PRD)
und
(blabeLmax(pRD) = max Plabel (P)- (7.13)

VPEPcam (pRD)

Liegt die Pradiktion nun auflerhalb des moglichen Winkelintervalls, so wird die
Abweichung zu den Intervallgrenzen betragsméfig festgehalten:

|Ppredict (PRD) — Plabel,min(PRD)|  @predict (PRD) < @label,min(PRD)

4DoA (PRD) = { |[Ppredict (PRD) ~ Plabel,max(PRD)|  Ppredict (PRD) > Plabel,max(PRD)
0 sonst

(7.14)
und fiir alle Pixel pgp € Prp des RD-maps gemittelt zu

> prpEPrp oA (PRD)
[Prp|

@DoA = (7.15)

Die in Gleichung 7.15 dargestellte Metrik kann also als MAE mit optimaler? Assozia-
tion von Kamera- und Radarpixel interpretiert werden.

Es sei zusétzlich bemerkt, dass hier nur ein einfacher Winkelschétzer trainiert wurde.
Fiir eine mogliche Anwendung mit Winkeltrennung iiber ein zu schitzendes Azimut-
spektrum kann die Metrik analog angewendet werden. Allerdings bleibt auch dabei ein
unterschiedliches Auflésungsvermégen von Referenzsensorsytsem und Radar bestehen,
so dass weiterhin keine bijektive Abbildung entsteht. Jedoch verbessert sich durch
Hinzunahme einer weiteren Dimension die Eindeutigkeit, so dass die Menge Poam (PRD)
kleiner ausfallen wiirde.

7.2.11.3. Quantitative Auswertung

Zur Veranschaulichung der Schétzqualitat wurden die Metrik nach Gleichung 7.15 fiir alle
Winkelschétzer auf den Daten des Testdatensatzes ermittelt. Da die Schitzqualitéit in
der Regel stark vom SNR abhéngig ist, wurden die Metriken iiber das SNR aufgetragen.
Die erreichten Werte der Winkelschétzer sind in Abbildung 7.7 dargestellt.

20Optimal in der Hinsicht der minimalen Winkelabweichung.
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Abbildung 7.7.: Qualitdtsmafle der Winkelschitzer iiber SNR: Die mittlere abso-
lute Abweichung der Winkelschétzer iiber SNR. Vergréflert dargestellt
sind jeweils ein Bereich niedrigen SNRs, mittleren SNRs und hohen
SNRs.

In Abbildung 7.7 ist zu erkennen, dass der MAE bei allen Schétzern mit steigendem
SNR fallt. Dieses Verhalten ist plausibel, da bei steigendem SNR der Rauschanteil
gegeniiber dem Signalanteil weniger stark ausgeprégt ist und entsprechend die Schatzung
weniger beeinflusst.

Da es bei der Menge an Winkelschétzern visuell schwierig ist, den Unterschied zwischen
den NNen nach Tabelle 7.2 ausfindig zu machen, wurden die Schétzer in Tabelle 7.3 an
drei SNR-Punkten entsprechend der erreichten MAE hierarchisch eingeordnet. Diese
gewdhlten drei SNR, Punkte liegen dquidistant zueinander und représentieren niedriges,
mittleres und hohes SNR.

Tabelle 7.3.: Hierarchische Einordnung der Schitzer entsprechend erreichter

MAE.
| SNR5dB SNR 20dB SNR 35 dB

NN NNy NN

PM NN; NN;

T NN PM NNy

o BF NNy PM

S| NN NN NN

NNy BF BF

Aus der Tabelle lédsst sich nun identifizieren, welche Parameter der NN-Konfiguration
einen Einfluss auf die Schatzgenauigkeit gehabt haben. Beginnend beim ersten Parameter,
der SNR-Selektion nach Unterunterabschnitt 7.2.6.2, welche bei den ungeraden NNen
aktiv war, muss also das MAE der NN-Paare NN vs. NN1 und NNy vs. NN5 verglichen
werden. Bei SNR 20 dB und SNR 35 dB haben alle NNen mit aktivierter SNR-basierter

123



7. Evaluation

Pixelselektion ein verbessertes MAE erreicht als ihre Partner. Bei SNR 5 dB ist dieses
Bild genau umgedreht, was daran zu begriinden ist, dass die Pixelselektion keine Beispiele
unterhalb von 10 dB SNR fiir das Training bereitgestellt hat. Da aber auch hier die
NNen mit aktivierter Pixelselektion dhnliche MAE Werte erreicht haben, deutet dies
auf eine gute Generalisierung der Schétzer hin.

Nun werden die Unterschiede zwischen NNen mit 1 x 1 und 3 x 3 Filterkernen
verglichen. Geméf Tabelle 7.2 sind dazu die NN-Paare NNg vs. NNy und NN vs. NNj
zu vergleichen. Aus Tabelle 7.3 ist ersichtlich, dass in allen SNR-~Bereichen die NNen
mit 3 x 3 Filterkernen eine geringere MAE erreichen als die analogen 1 x 1 NNen.
Daraus wird gedeutet, dass das Einbeziehen der Pixelnachbarschaft im RD-Gitter einen
positiven Einfluss auf die Winkelschéatzung hat.

Im Vergleich zu den klassischen Winkelschétzern erreichen die besten NNen, NN5 und
NNy, in Abbildung 7.7 bis etwa 10 dB SNR ein geringeres MAE, danach ein dhnliches
MAE. Es ist festzuhalten, dass es sich beim BF um ein Verfahren mit Winkeltrennfa-
higkeit handelt, wohingegen die NNen nur auf Punktschitzung des Winkels trainiert
wurden. Beim klassischen PM handelt es sich um einen vergleichbaren Punktschétzer,
welche allerdings in allen SNR-Regionen dem BF und den beiden NNen unterlegen ist.

Um eventuelle Winkelinhomogenitdaten der Winkelschétzer aufzudecken, wurden in
Abbildung 7.8 die Metriken aller Schéitzer gegeniiber SNR, und Einfallswinkel dargestellt.
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Abbildung 7.8.: 2D MAE Histogramme: Darstellung der Abhéngigkeit von MAE
gegeniiber von SNR und Einfallswinkel. Nach [EB6].
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Gut zu erkennen sind nun die Winkelbereiche, bei denen die Parameter der NN
einen merklichen Unterschied verursacht haben. So kann bei allen NNen mit aktivierter
Pixelselektion eine erhebliche Reduktion des MAEs an den dufleren Winkelbereichen
beobachtet werden. Man vergleiche dazu Abb. 7.8a vs. 7.8b und 7.8c vs. 7.8d.

Ebenfalls kann beobachtet werden, dass durch die Verwendung von 3 x 3 anstelle
von 1 x 1 Filterkernen der CNNs eine weitere Verringerung der Winkelinhomogenitét
erreicht werden konnte. Man vergleiche dazu Abb. 7.8a vs. 7.8c und 7.8b vs. 7.8d.

Im Vergleich zu den klassischen Verfahren (PM und BF) erreichen die besten NNen
(NN5 und NNy) im Allgemeinen ein geringeres MAE im Winkelintervall [-40°,40°]. In
den Randbereichen des FoV erreichen die klassischen Winkelschétzer verringerte MAE.
Da es sich bei den NNen um iiberwachte Lernverfahren handelt, wire es denkbar, dass
die NNen gelernt haben, diese Randbereiche aufgrund geringerer Auftretenswahrschein-
lichkeiten zu vernachléssigen. Weitere Anpassungen der Kostenfunktionen, um diese
Winkelinhomogenitidt der NN-basierten Schéatzer auszugleichen, sind fir die Zukunft
vorstellbar, werden im Zuge dieser Arbeit aber nicht weiter verfolgt.

7.2.11.4. Qualitative Auswertung

Um einen subjektiven Eindruck der Winkelschiatzung zu bekommen, sind in Abbil-
dung 7.9 die Winkelschitzung von NN5 und PM dargestellt.

In der linken Spalte sind die Zielwerte des Winkels farblich kodiert iiber dem Kame-
rabild dargestellt. Die Farbkodierung des Winkels ist in der Farblegende am unteren
Rand der Abbildung zu entnehmen. In zweiter und dritter Spalte sind die Pradiktionen
von NN und PM basierter Schitzung ins Kamerabild projiziert. Die Farbhelligkeit
wurde entsprechend der Signalleistung in der RD-map skaliert, so dass Rauschbereiche
unterdriickt und Signalbereiche hervorgehoben werden. In vierter und fiinfter Spalte
sind die Prédiktionen analog farblich codiert im RD-map eingetragen. In den letzten
beiden Spalten sind die Winkelschéitzungen RD-map gegeben. Dabei wurde eine andere
Farbkodierung gewahlt und die Helligkeit nicht entsprechend des SNRs skaliert.

Zu sehen ist, dass die Winkelschétzer die Zielwerte aus der Referenzsensorik meist
gut reprisentieren. Auffallig ist, dass bei der NN basierten Schitzung die Winkel von
benachbarten Zellen in der RD-map (rechten Spalten in Abbildung 7.9) erheblich glattere
Verldufe aufweisen als bei der PM basierten Schitzung. Daraus wird geschlossen, dass
das NN statistische Zusammenhéinge zwischen den Winkeln benachbarten Zellen im
RD-map gelernt hat.

7.2.11.5. Laufzeitanalyse

Bisher wurden die Winkelschitzer nur anhand ihrer Schétzgenauigkeit verglichen. Wir
werden den Vergleich nun mit einer Analyse der Laufzeitkomplexitéiten3 abschlieSen.
Dazu wird die Anzahl der FlieSkommaoperationen ermittelt.

Fiir den PM-Schétzer ergibt sich die Anzahl FlieBkommaoperationen aus den einzelnen
Termen in Gleichung 2.47. Mit der Anzahl der Antennenpaaren M ergibt sich so eine
Operationszahl der Einzelterme wie in Tab 7.4 gelisteten.

3Hierbei wird in der Informatik die Anzahl der Rechenschritte zur Losung eines Problems verstanden
[Wik23]
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Priadiktionen  Pridiktionen  Préidiktionen  Priidiktionen  Préidiktionen  Pridiktionen
(3 x 3) NN: PM: (3 x 3) NN: PM: (3 x 3) NN: PM:

Zielwerte:

e

i .

3

Azimutwinkel in Grad Azimutwinkel in Grad

| O

Abbildung 7.9.: Qualitative Ergebnisse der DoA-Schitzung auf Testdaten. Von
links nach rechts: Referenz-Azimutwinkel, pradizierter Azimutwinkel
(Helligkeit entspricht der vom Radar empfangenen Leistung) ind Ka-
merabild und RD-map. Priadizierter Winkel in Graustufen (Farbe ent-
spricht dem Azimutwinkel). In den Kamerabildern wurden nur Pixel
im Radar-FoV visualisiert. Wahrend des Netzwerktrainings werden die
Pixelwerte der gewarpten Pradiktion mit denen der Referenz verglichen
und die Préadiktion entsprechend trainiert. Nach [EB6].

wiid)

- gm.’l

Tabelle 7.4.: Anzahl der Operation fiir PM Verfahren:

Mathematische Operation | Anzahl der Operationen
A 3M

B 4M

Bt =BTB M+ (M-1)

At =BTA M+ (M -1)

= 1

BT AT 1

arcsin() 1

Mit der Anzahl der Pixel in der RD-map N ergibt sich die Summe der Operationen
za N« ((3M) + (4M) + (M + (M ~1)) + (M + (M ~1)) + 1+ 1+ 1) bzw. hier zu
12896 ((3%2) + (4x2)+(2+ (2-1))+(2+(2-1))+1+1+1) = 282624.

Fiir den Beamformer ergibt sich die Anzahl der Operationen aus der Anzahl der
Pixel in der RD-map und der Anzahl der Operationen der Fast-Fourier-Transformation
(FFT)-Engine. Wir verwenden hier beispielhaft die ,split-radix“ Methode [JF07], dessen
Operationszahl mit 4Llogy(L) — 6L + 8 skaliert. Bei einer gewahlten FFT-Lénge von
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L = 64 ergibt sich die Anzahl der Operationen zu N %1160 = 128 % 96 x 1160 = 14254080.
Die FlieSkommaoperationen in den NNen wurden mit Hilfe einer automatischen
Operationszihlung [eLa21] ermittelt und zur besseren Ubersicht in Tabelle 7.5 dargestellt.

Tabelle 7.5.: Anzahl der Operation fiir DoA Verfahren:
Algorithmus ‘ Anzahl der Operationen geschitzte Laufzeit bei 300 MHz

PM 282624 0.94ms
BF 14254080 47.5ms
NN 4785438700 16s

Bei Verwendung einer CPU mit einer Taktfrequenz von 300 MHz wurden grob geschétz-
te Laufzeiten ermittelt (Anzahl der Operationen / Taktfrequenz) und in Tabelle 7.5
eingetragen. Diese Laufzeitabschatzung vernachléssigt von der Implementierung und
Architektur abhéngige Details, wie z.B. zusédtzlichen Operationsaufwand durch Spei-
cheraufwand oder Parallelisierung. Unter Annahme, dass die geforderte Framerate des
Radarsensors 20 FPS ist, wiirde sich das hier dargestellte NN aufgrund der deutlich zu
langen Inferenzdauer disqualifizieren. Die verbesserte Genauigkeit der Winkelschétzung
durch BF oder NN gegeniiber PM wurde durch eine erheblich gesteigerte Rechenkom-
plexitat erkauft. Fir die Inferenz auf einem Radarsensor mit typischer Prozessoraus-
stattung sollte die Architektur des NN deutlich vereinfacht werden. Ebenfalls wiirde
sich eine NN-Implementierung mit Ganzzahl-Datentypen (Integer) im Vergleich zur
FlieBkommazahl-Datentypen (Float) anbieten. Dadurch wiirde sicherlich die Inferenz
beschleunigt, aber insbesondere auch der Speicherbedarf reduziert.

Da der Datenbedarf fiir das Training eines NN im Allgemeinen mit der Grofle des NN
steigt, wurde absichtlich eine NN-Architektur gewéhlt, die dementsprechend schwieriger
zu trainieren ist und die hohe Laufzeit des NN somit absichtlich in Kauf genommen. Da
die hier verwendeten NNen wahrend des Trainings schnell konvergiert sind, gibt es aus
Sicht des Autors wenig Zweifel am Erfolg eines Trainingsprozesses kleinerer NNen mit
ausreichend schneller Inferenz fiir typische Radarsensoren. Ein Laufzeitvorteil durch die
Verwendung von NNen gegeniiber klassischen Winkelschétzern bzw. Winkeltrennverfah-
ren wurde bereits in [GFFW18, FWG19b, FWG19a] beschrieben und ist deshalb kein
weiterer Bestandteil dieser Arbeit.

7.2.11.6. Weitere Analyse

Zusétzlich wurde in A.1 eine Untersuchung zur Reduktion des Einflusses von Labelnoise
auf das NN-Training durchgefiihrt. Die darin vorgeschlagene Methode fiihrte jedoch
nicht zu gewiinschtem Ergebnis und ist deshalb nicht in dem Hauptteil dieser Arbeit
dokumentiert.

7.3. Zieldetektion

In diesem Abschnitt wird ein mdogliches Vorgehen zum {iberwachten Training eines
Zieldetektors mittels NN vorgestellt. Bei der Winkelschétzaufgabe kann {iber die 3D-
Position der Pixel der Zielwert des Einfallswinkels und somit das Label bestimmt
werden. Da Referenzsensorik und Radarsensor auf unterschiedlichen EM-Wellenlédngen
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operieren, unterscheidet sich deren Sensitivitdt gegeniiber der Sensorumgebung. Fiir
die Aufgabe der Zieldetektion kann deshalb kein nativer Zielwert aus den Daten der
Referenzsensorik verwendet werden. In diesem Abschnitt werden stattdessen die Zielwerte
fiir die Zieldetektionsaufgabe automatisch aus den Daten der Referenzsensorik geschéatzt
und anschlieffend ein NN zur Pradiktion dieser Zielwerte auf den Radardaten trainiert.

7.3.1. Eingangsdaten

Analog zur klassischen CFAR-Methode soll auch das NN exklusiv auf dem Leistungsspek-
trum bzw. RD-map arbeiten. Als einziger Eingangskanal des NNs wird dementsprechend
die RD-map bereitgestellt. Wir definieren die Eingangsdaten des NNs als

I'rp = RD. (7.16)

7.3.2. Zielwerte

Fiir die Winkelschatzung wurde ausschliellich der Einfallswinkel der Reflexionen be-
trachtet, welcher sich aus der geometrischen Position eines Punktes in der Umgebung
ergibt. Mit Kenntnis dieser Position konnte der Zielwert fiir den Winkelschétzer mit der
nativen Messfihigkeit? der Referenzsensorik nachgestellt werden. Bei den Zielwerten
fiir die Zieldetektion ist dies nicht so einfach moéglich. Ursachlich dafiir ist, dass sich
EM-Reflexionseigenschaften bzw. die Streuung mit der Wellenldnge ganz wesentlich
dndern kénnen. Man vergleiche dazu die relativen Reflexionsamplituden nach Fresnel
in Gleichung 2.4, in denen die relativen Reflexionsamplituden im Wesentlichen vom
Aspektwinkel und den Brechungsindices der Materialien abhéngen. Die Brechungsin-
dices sind eine Funktion der Wellenldnge und kénnen somit die Reflexionsantwort der
Sensoren beeinflussen. Fiir die Aufgabe der Zieldetektion bedeutet das, dass der Radar
(ca. 3.54mm Wellenldnge) nicht automatisch alle Punkte sehen kann, welche z.B. der
Lidar sieht (ca. 905 nm Wellenldnge). Folglich wurden mdogliche Ziele aus den Daten der
Referenzsensorik heuristisch geschétzt.

7.3.2.1. Einflussparameter der Reflexionsamplitude

In Unterabschnitt 2.1.1 wurde bereits beschrieben, wie sich relative Reflexionsampli-
tuden von EM-Wellen nach physikalischer Optik an Grenzflichen verhalten. Fiir die
Zieldetektion mittels NN muss nun festgelegt werden, (a) wo diese Grenzflachen in der
Szene positioniert sind und (b) welche Eigenschaften die Grenzflichen aufweisen miissen,
um fiir den Radar iberhaupt wahrnehmbar zu sein.

In der Literatur wird héufig zwischen Spiegelreflektoren und diffusen Reflektoren
unterschieden, siche z.B. [Jud88]. Bei Spiegelreflektoren ergeben sich ausschliellich
Transmission in das Material und Reflexion nach Fresnel, wobei der Ausfallswinkel der
Welle dem Einfallswinkel gespiegelt an der Oberflichennormalen entspricht. Weisen die
Grenzflachen geometrische Imperfektionen (raue Oberflache) auf, wird das eintreffende
Signalbiindel in viele Richtungen gestreut. Man spricht von der diffusen Reflexion.
Das Rayleigh-Kriterium [Wo006] beschreibt den Zusammenhang von Transmission
und Reflexion an rauen Oberflichen in Abhéngigkeit von der Wellenldnge. Es wird

4Der Lidar misst bereits die Position.
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beschrieben, dass Material bei kiirzerer Wellenléinge eher als diffus wahrgenommen wird.
Verléngert sich die Wellenlénge, so verringert sich die Signalstreuung und es kommt eher
zur spiegelnden Reflexion. Eine diffuse Reflexion sorgt dafiir, dass ein Objekt nahezu
unabhéngig vom Betrachtungswinkel wahrgenommen werden kann. Demnach sorgt die
deutlich kiirzere Wellenlidnge der Referenzsensorik (Lidar 905nm) dafiir, dass Grenzfla-
chen eher diffus wahrgenommen werden und dementsprechend nahezu unabhéngig vom
Einfallswinkel wahrgenommen werden kénnen, als es fiir den Radar mit der grofieren
Wellenlénge (ca. 3.54 mm) der Fall ist. Nur unter Beriicksichtigung der Wellenlénge sollte
die Referenzsensorik also in der Lage sein, alle Grenzflichen im Szenario wahrzunehmen,
welche auch beim Radarsensor zu einer moglichen Signalreflexion zum Sensor fithren
wiirden.

Motiviert durch Gleichung 2.4 wird der Aspektwinkel als eine bedeutsame Gréfie
der Reflexionsamplitude interpretiert. Zwar wird die Reflexionsamplitude auch durch
verbleibende Terme in Gleichung 2.4 beeinflusst, welche die Materialeigenschaften der
Medien beschreiben. Im Folgenden werden wir jedoch eine automatische Annotation der
Zielwerte fiir die Zieldetektion ausschlielich anhand des Aspektwinkels untersuchen.
Begriindet wird diese Simplifikation damit, dass der Aspektwinkel sich relativ einfach
aus den Daten der Referenzsensorik ermitteln lasst. Eine Schitzung der (frequenzabhén-
gigen) Materialeigenschaften aus den Daten der Referenzsensorik ist vermutlich deutlich
aufwendiger und wird daher fiir mégliche weiterfithrende Untersuchungen zuriickgestellt.
Es sei noch einmal erwahnt, dass der Aspektwinkel in Gleichung 2.4 als Multiplikator
eingebettet ist und damit fir alle Materialeigenschaften einen erheblichen Einfluss auf
die Reflexionsamplitude hat. Diese Eigenschaft wird z.B. auch in [Mes06, YLZL06] durch
Simulation und Messung bestétigt.

7.3.2.2. Schatzung des Aspektwinkels

Zur Bestimmung des Aspektwinkels an den Grenzflichen wurden in Abschnitt 4.2 be-
reits die Oberflichennormalen ny = N bestimmt. Da fiir den Radar der Aspektwinkel,
bezogen auf das Radarkoordinatensystem, relevant ist, werden die Oberflichennorma-
len, gegeben im Kamerakoordinatensystem, zunédchst in das Radarkoordinatensystem
transformiert. Der Ursprung des Normalenvektors entspricht gerade Koordinaten im
Kamerakoordinatensystem x und ist nach Gleichung 3.22 fiir jedes Kamerapixel zu
bestimmen. Die Normalenvektoren stellen Richtungsvektoren dar. Wir definieren deren
Start- und Endpunkt als X j, stary = X¢ und X¢ p, end = X¢ +ng. Wie in Gleichung 3.33
beschrieben, werden diese beiden Punkte in das Radarkoordinatensystem transformiert
und bilden so den Start- und Endpunkt (Xpg j, stqrt D2W. XR p end) des Richtungsvektors
in Radarkoordinaten ab,

R<«C R<C
XR n,start = ) RXC,n,start+ “t (7.17)

und
R«C R«C
XR,n,end — : RxC,n,end + Ut (7-18)

Der Ortsvektor der Oberflichennormalen ergibt sich nun wiederum als Differenz
XR = XR pend — XR,nstart = R<CRn,.. Damit kann der Aspektwinkel aus der Oberfli-
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chennormalen z, und dem Einfallsvektor xg ,, start berechnet werden, zu

B XR.n,start - IR
o) o (i)
;n,start) %R nstart MR (P)l

7.3.2.3. Statistische Untersuchung zum Aspektwinkel

Da in Gleichung 2.4 die Winkelterme ausschliellich iiber die Cosinus-Funktion skaliert
werden, werden wir nachfolgend den Term cos <4 (Xr,n,start7 nr)> mit dem Synonym

»Aspektwinkelwert* verwenden. Dieser Wert und die in das Kamerabild projizierte Leis-
tung/SNR aus Radar sind zur Veranschaulichung in Abbildung 7.10 fiir ein Kameraframe
dargestellt.

20 0 20 40 0 0.2 0.4 0.6 0.8 1
SNR in dB — Aspektwinkelwert —

Abbildung 7.10.: SNR vs. Aspektwinkel: Links: Projiziertes SNR im Kamerabild.
Rechts: Aspektwinkelwert im Kamerbild.

Zu erkennen ist in Abbildung 7.10, dass im Bereich der Gebdudewand, im linken
Bildbereich, ein hoher Aspektwinkelwert geschéitzt wurde. An gleicher Stelle ist das
projizierte SNR aus der RD-map ebenfalls hoch. Ebenso dhnlich verhalten sich die
Abbildungen von SNR und Aspektwinkelwert im Bereich des parkenden Fahrzeuges,
des Fufigingers und grofitenteils auch im Bereich der Strafle. Die Strafle verlief nahezu
glatt und wies keine erkennbaren Oberflachenfehler auf. In weiten Teilen der Strafle ist
der geschétzte Aspektwinkelwert plausibel, da er als niedrig und homogen geschétzt
wurde. Im Bereich des Ego-Fahrzeuges ist der geschatzte Aspektwinkelwert der Fahrbahn
inhomogen und von hoher Varianz. Das ist unplausibel und lsst sich technisch durch die
im Bereich des Ego-Fahrzeuges spérlichere Tiefenabtastung begriinden, welche zu einem
hoheren Fehler der dichten Tiefenmaske fithrt, vgl. Abbildung 4.1. Eine Verbesserung
der dichten Tiefenmaske und damit einhergehend der Aspektwinkelmaske wére fir
die Zukunft winschenswert, ist aber kein Bestandteil dieser Arbeit. Basierend auf
diesem Bild ldsst sich ein statistischer Zusammenhang zwischen Aspektwinkelmaske
und SNR-Maske durchaus erahnen. Um diese subjektiv wahrgenommene Abhéngigkeit
anhand einer grofleren Datenbasis zu festigen, wurde die Korrelation als Mafl der
(linearen) Abhéangigkeit zwischen den Aspektwinkelwerten und den projizierten SNR-
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Werten tiber den Pearson’s Korrelationskoeffizient [FPP07] berechnet. Dabei ergab sich
ein Korrelationskoeffizient von 0.5, was als moderate lineare Abhéngigkeit gedeutet
werden kann. Die Verteilung der Datenpunkte ist in Abbildung 7.11 in Form eines
2D-Histogramms dargestellt. Der Farbwert entspricht der Kombinationshiufigkeit und
ist der dargestellten Farblegende zu entnehmen. Da die meisten Kombinationen im
Bereich des Hintergundrauschens, gekennzeichnet durch niedriges SNR, entstanden
sind, wurde die Helligkeit logarithmisch skaliert, so dass andere Bereiche visuell noch
wahrnehmbar bleiben.

1
0.8
0.6

0.4

Aspektwinkel-Wert —

0.2

-20 -10 0 10 20 30 40 50 60 70

SNR in dB —

T
I ‘
0 0.5 1 1.5 2

2.5

w

Héaufigkeit —

Abbildung 7.11.: Haufigkeitsverteilung von SNR vs. Aspektwinkelwert: Die
Héaufigkeiten sind logarithmisch skaliert.

Wie oben bereits erwahnt, ist eine grole Hiufung von Kombinationen im Bereich
um SNR 0 dB zu erkennen, welche sich vermutlich aus dem Hintergundrauschen in
der RD-map ergibt. Dann ist im oberen rechten Bereich eine Ansammlung von Pixeln
mit hohem SNR und Aspektwinkel zu erkennen. Diese ersten beiden Ansammlungen
stimmen dem hier zugrunde gelegten Modell fiir die automatische Bestimmung von
Zielwerten iiber Aspektwinkelwerte zu. Dann ergeben sich noch Ansammlungen von
Bereichen, bei denen

o das SNR hoch ist und der Aspektwinkelwert gering (hervorgehoben durch pinkfar-
biges Rechteck)

o oder das SNR gering und der Aspektwinkelwert hoch ist (hervorgehoben durch
orangefarbiges Rechteck).

Die entsprechenden Bereiche wurden in Abbildung 7.11 durch farbige Rechtecke ge-
kennzeichnet. Fiir die Ursachenforschung dieser Anomalien wurden die RD-Zellen zu
den Kombinationen entsprechend farblich kodiert im Kamerabild gekennzeichnet. Ein
reprasentatives Beispiel ist in Abbildung 7.12 zu sehen, weitere Beispiele in Anh. A.2.
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0 02 04 06 08
SNR in dB — Aspektwinkelwert — SNR in dB —

Abbildung 7.12.: Gegeniiberstellung von Aspektwinkel und SNR: Links: Proji-
ziertes SNR; Mitte: Aspektwinkelwert; Rechts: Projiziertes SNR und
farblich markiert (pink, orange) Abweichungen von der Modellbeschrei-
bung.

In Abbildung 7.12 ist links sowie rechts das projizierte SNR im Kamerabild und
mittig der Aspektwinkelwert im Kamerabild gezeichnet. Zusétzlich sind im rechten Bild
die oben genannten Anomalien markiert. Zu beobachten ist, dass die orange markierten
Bereiche hauptséichlich dort zu finden sind, in denen der Aspektwinkel unplausibel ist.
Dies kann leicht durch die hier verwendete Methode zur Tiefenvervollstdndigung und
Oberflaichennormalenschétzung hervorgerufen werden. Bessere Methoden zur Oberfla-
chennormalenschitzung wiirden hier wahrscheinlich Abhilfe schaffen, sind jedoch nicht
Bestandteil dieser Untersuchung und werden daher nicht getestet. Die pink markier-
ten Bereiche sind in der Regel benachbart zu Bereichen mit hohem SNR und hohem
Aspektwinkelwert. In der RD-map sind diese Pixel Nachbarzellen zum lokalen Maxi-
mum, welchem bedingt durch z.B. begrenzte Abtastung und Fensterung ebenfalls ein
hoher Leistungswert zugeordnet wurde, der deutlich iiber dem Rauschlevel liegt. Es
kann vermutet werden, dass diese Nachbarzellen zu den pink markierten Bereichen in
Abbildung 7.12 fithren. Es wird festgehalten, dass die Anomalien in der Statistik héufig
durch fehlerhaft geschétzte Aspektwinkelwerte und ausgedehnte Leistungssignaturen im
RD-map hervorgerufen werden.

Fiir die automatische Ermittlung der Zielwerte werden Kamerapixel mit einem Aspekt-
winkelwert > 0.7 als positives Ziel und Pixel mit einem Wert < 0.7 als negatives Beispiel
gewéhlt. Dieser Schwellwert ergab sich nach Sicht der stochastischen Verteilung aus
Abbildung 7.11 als subjektiv plausibel. Die Zielmaske ergibt sich somit zu

> 0.
QGT(P) —_ 1 |COS <4 <Xr,n,start(p), nr(p)>> | - 0.7 (7‘20)
0 sonst

Dieses Modell zur automatischen Identifikation von signifikanten Reflexionen/Grenzfla-
chen, basierend auf Daten der Referenzsensorik, beriicksichtigt nur den Aspektwinkelwert.
Ein statistischer Zusammenhang zwischen Aspektwinkelwert und Reflexionsleistung
wurde theoretisch durch die Fresnelschen Gleichungen motiviert und durch reale Mes-
sungen hier wahrgenommen. Weitere Merkmale, wie z.B. geschéitzte Materialeigenschaft,
wurden in dieser Arbeit zur Zielwertschétzung nicht beriicksichtigt, konnen aus Sicht
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des Autors aber relevante und interessante weitere wissenschaftliche Fragestellungen
ergeben.

7.3.3. Netzwerkarchitektur

Fiir die Zieldetektion wurde die Netzwerkarchitektur aus der Winkelschétzung, siehe
Unterabschnitt 7.2.3, leicht adaptiert. Anderungen sind, dass nur ein Eingangskanal
vorhanden ist, siehe Unterabschnitt 7.3.1, und in der letzten Schicht die Sigmoid-
Aktivierungsfunktion verwendet wurde. Die Anderung der Aktivierungsfunktion wurde
vorgenommen, damit die Pradiktion der Zielwerte im Intervall [0, 1] geschétzt wird. Eine
visuelle Ubersicht der Netzwerkarchitektur ist in Abbildung 7.13 dargestellt.
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Abbildung 7.13.: CNN Struktur fiir Zieldetektion: Die Ubersicht der Schichten.

Wir definieren die Ubertragungsfunktion des NN zur Zieldetektion als

TDpredict, RD-grid — TD'Net(FTD)- (7'21)

7.3.4. Assoziation von Pradiktion und Label durch Warping

Da auch bei der Zieldetektion die Zielwerte im Kamerabild definiert wurden, wird
analog zur Winkelschétzung aus Unterabschnitt 7.2.4 das Warping der Pradiktionen
vom RD-Gitter in das Kamerabild durchgefiihrt

TDpredict7 cam(P) = BW <TDpredict, RD-grid; Ur (p), |X7~(p)|). (7.22)

Da die Zieldetektion auf dem zweidimensionalen RD-map durchgefiihrt werden sollte,
wurde die 2D-Interpolation verwendet.

7.3.5. Messung der Abweichung

Die Zieldetektion wird als bindrer Entscheider abgebildet. Es wird entschieden, ob
es sich bei einem Pixel in der RD-map entweder um ein Ziel oder Rauschen handelt.
Es handelt sich also um eine sogenannte ,Multiclass-Classification“. Nach Wahl der
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Sigmoid-Aktivierungsfunktion der letzten Netzwerkschicht wird hier der gdngigen Praxis
gefolgt und die Kreuzentropie als Maf fiir die Abweichung der Pradiktion verwendet.

Irp (p) = 7‘QGT(p) log (TDpredict, cam(p)) - (1 - ‘QGT(p)) log (1 - TDpredict, cam(p))
(7.23)

7.3.6. Allgemeine Selektion der Pixelmenge

Die Auswahl der Pixelmenge fiir die Optimierung wurde entsprechend Unterunterab-
schnitt 7.2.6.1 iibernommen.

7.3.7. Gesamtkosten

Die Gesamtkosten ergeben sich als Mittelwert der Abweichungen iiber alle Skalierungs-
ebenen und Pixel.

1
D, al = 75— Y, ltn(p)- (7.24)
Panl \ 57

7.3.8. Initialisierung der Parameter

Die Initialisierung der Netzwerkparameter erfolgte analog der Beschreibung aus Unter-
abschnitt 7.2.8.

7.3.9. Optimierer

Die Optimierung der Netzwerkparameter erfolgte analog der Beschreibung aus Unterab-
schnitt 7.2.9.

Da der Trainingsprozess bei der Winkelpradiktion bereits nach wenigen Trainings-
schritten konvergierte, wurde bei der Zieldetektion die initiale Schrittweite fiir die
Optimierungen von 107% auf 10 reduziert.

7.3.10. Trainingsprozess

Der Verlauf der Kosten wihrend des Trainings ist in Abbildung 7.14 dargestellt.

Es ist zu beobachten, dass das NN nach etwa 10000 Trainingsschritten grofitenteils
konvergiert ist und keine signifikante Anderung im Verlauf der Trainingskosten zu
beobachten ist.

7.3.11. Ergebnis

Nach dem Training des NN wird nun die Schatzqualitdt ermittelt und gegeniiber einem
Referenzverfahren bewertet.

7.3.11.1. Referenzverfahren

Als Referenzverfahren fiir die Bewertung der Zieldetektion aus dem NN wird ein CFAR-
Zieldetektor (siehe Unterabschnitt 2.1.4) aus der klassischen Radarsignalverarbeitung
verwendet.
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Abbildung 7.14.: Verlauf des Trainingsprozesses Zieldetektor Netzwerk: Die

Kosten wéhrend des Trainings konvergieren bereits nach einigen Trai-
ningsbeispielen. Griin: Trainingskosten je Beispiel. Blau: Geglétteter
Verlauf der Trainingskosten

7.3.11.2. Beschreibung der Metriken

Fir die automatische Berechnung der Pradiktionsgenauigkeit der Zieldetektion definieren
wir eine passende Metrik. Dafiir miissen sowohl Zielwerte als auch Priadiktoren als binére
Klassifikationen dargestellt sein. Durch Verwendung der Sigmoid-Aktivierungsfunktion
erfolgt die Pradiktion jedoch im Intervall [0, 1]. Zur Binérisierung definieren wir eine
Netwerkausgabe > 0.5 als Préadiktion eines Ziels und entsprechend < 0.5 als Pradiktion
von Rauschen. Es ergeben sich vier mogliche Félle beim Vergleich von Zielwert 2T (p)
und Prédiktion TDpedict, cam (P):

Richtig-positiv: TP = {p € Pan
Falsch-negativ: FN = {p € Pan
Falsch-positiv: FP = {p € Pan

Richtig-negativ: TN = {p € Pan

R2qr(p) = 17TDpredict, cam(P) > 0-5}

‘QGT(p) =1, TDpredict, cam(p) < 0'5}

2¢r(p) =0, TDpredict, cam(P) > 0-5}

QGT(p) =0, TDpredic‘c7 cam(p) < 0-5}-

Bei der Fallunterscheidung werden ausschliellich Kamerapixel aus Py, siche Unter-
unterabschnitt 7.2.6.1, beriicksichtigt.

Zusitzlich definieren wir die Menge aller richtigen Klassifikationen zu CC = TP U TN.
Mit Hilfe dieser Mengendefinition berechnen wir die Klassifikationsgenauigkeit als die
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Summe aller richtigen Entscheidungen, normiert iiber die Summe aller Entscheidungen
zu

ICC|
[ Pan|”

Accuracy = (7.25)

7.3.11.3. Quantitative Auswertung

Bei der Winkelschétzung ergeben sich die Zielwerte durch die native Auflésung der
Referenzsensorik, insbesondere jener Winkelauflésung der Kamera. Fiir die Anwendung
der Zieldetektion wurden die Zielwerte tiber die Modellbeschreibung des Aspektwin-
kels geschétzt. Dabei hat sich in Unterabschnitt 7.3.2 gezeigt, dass diese automatisch
ermittelten Zielwerte, mafigeblich bedingt durch Fehler in der Apsketwinkelschitzung,
teilweise unplausibel erscheinen. Beispielsweise ergaben sich hohe Aspektwinkelwerte auf
geraden Fldchen, siehe Abbildung 7.12. Es ist zu erwarten, dass diese Unplausibilitét der
Zielwerte sich als Rauschen in den Datenpunkten fiir Gleichung 7.25 bemerkbar machen
und einen Vergleich der beiden Verfahren zur Zieldetektion erschweren wird. Dieses
,Label noise“® wurde bereits in Unterabschnitt 7.3.2 deutlich und kénnte in Zukunft
durch den Einsatz einer verbesserten Aspektwinkelschidtzung in der Signalverarbeitung
der Referenzsensorik verbessert werden. Wir wollen uns daher primér der Fragestel-
lung widmen, ob iiberhaupt ein zielfithrendes Training einer Zieldetektion mittels der
Zielwertdefinition tiber Aspektwinkel erreicht werden kann.

Die in Gleichung 7.25 definierte Metrik wurde fiir sémtliche Frames im Testdatensatz
berechnet. Eine Ubersicht der Datenpunkte ist in Abbildung 7.15 dargestellt.

Fir jedes Kamerabild, bestehend aus einer groflen Menge an Pixeln, wurde die
mittlere Abweichung von Prédiktion und Zielwert nach Gleichung 7.25 ermittelt. Durch
die Mittlung iiber die Pixelmenge ergibt sich pro Kamerabild eine Genauigkeit zwischen
0% und 100%, welche als Datenpunkt in die linke Seite von Abbildung 7.15 eingetragen
wurde. Fiir den CFAR Detektor wurden diese Punkte rot dargestellt, fiir die NN
basierte Pradiktion griin. Die Bildpunkte wurden auf der rechten Bildseite in Form
eines Histogramms gesammelt. In dem Histogramm ist zu sehen, dass die NN basierte
Pradiktion (griin) tendenziell eine hohere Klassifikationsgenauigkeit erreicht als der
CFAR Detektor. Dies ist nicht verwunderlich, da die NN-basierte Pradiktion explizit auf
den vorhandenen Daten (Trainingsdatensatz) optimiert wurde. Gleichzeitig fallt auf, dass
die Streuung der Genauigkeit im Histogramm sehr stark ist, besonders bei der CFAR-
Pradiktion iiber den gesamten Wertebereich erfolgt. Es ist denkbar, dass ein Teil der
Streuung durch das in Unterunterabschnitt 7.3.2.3 beschriebene ,label-noise“ verursacht
wurde.

Aufgrund der starken Streuung féllt es schwer, einen klaren Favoriten bei der Ziel-
detektion hervorzuheben. Die wesentliche wissenschaftliche Fragestellung fiir diesen
Versuch war aber ohnehin nicht, ob ein NN eine bessere Zieldetektion erreichen kann
als ein klassischer Zieldetektor, sondern die fundamentalen Fragestellungen, (a) ob mit
dem vorgestellten Warping auch eine Zieldetektion trainiert werden kann und (b), ob
sich der Aspektwinkel zum Trainieren eines NN fiir die Anwendung der Zieldetektion
eignet. Da bei der Zieldetektion mittels CFAR-Detektor ausschlieSlich das SNR fiir

5Tm Kontext des maschinellen Lernens wird bei fehlerhaften und verrauschten Zielwerten auch von
,Label Noise“ gesprochen
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Abbildung 7.15.: Genauigkeit: Die Abweichung der Pradiktion gegeniiber den au-
tomatisch generierten Labeln fiir alle Bilder im Testdatensatz. Rot:
Abweichungen fiir CFAR; Griin: Abweichungen fiir NN Pradiktion.

die Bestimmung von Zielen verwendet wird und bereits in Unterabschnitt 7.3.2 eine
mindestens moderate lineare Abhéngigkeit zwischen SNR und Aspektwinkel identifiziert
wurde, iiberrascht es nicht, dass CFAR und NN-Detektoren bei der oben genannten
Metrik vergleichbare Ergebnisse erzielen konnten.

7.3.11.4. Qualitative Auswertung

Zur Veranschaulichung der Zieldetektion sind in Abbildung 7.16 die annotierten Zielwerte
iiber Aspektwinkel und die Pradiktionen aus NN und CFAR sowohl im Kamerabild als
auch RD-map dargestellt.

In Bildregionen mit Fahrzeugen oder Hiuserwidnden scheinen hohe Aktivierungen
vorzuliegen. In Bildregionen mit flachem Einstrahlwinkel, wie der Fahrbahn, scheint
bei beiden Verfahren tendenziell eher niedrige Aktivierung sichtbar zu sein. Die Bei-
spiele beider Detektoren scheinen plausibel zu sein. Im oben und unten dargestellten
Parkszenario sind die Aktivierungen aus NN etwas fokussierter auf den Fahrzeugober-
flachen, wohingegen die Aktivierungen mit CFAR auch bei den dazwischenliegenden
leeren Fliachen hoch sind. Dieser Unterschied kénnte mit einer statistischen Optimierung
des CFAR-Detektors gegen die Zielwerte vermutlich verringert werden und somit die
Schétzungen beider Detektoren weiter angeglichen werden.

Um Unterschiede zwischen CFAR und NN-basierter Zieldetektion zu finden, wurden
in Anh. A.2.1 weitere Untersuchungen angestellt.

Analog zu den Ergebnissen aus der quantitativen Auswertung ergeben sich auch bei
der qualitativen Bewertung der Pradiktionen nur marginale Unterschiede. Aus Sicht des
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Abbildung 7.16.: Beispiele der Zieldetektion aus dem Testdatensatz. Von links
nach rechts: RGB-Bild mit farbkodierten Zielen, RGB-Bild mit farb-
kodierten Pradiktionen aus NN, RGB-Bild mit farbkodierten Pradik-
tionen aus CFAR, RD-map mit farbkodierten Priadiktionen aus NN,
RD-map mit farbkodierten Pradiktionen aus CFAR, RD-map.

Autors ein weiteres Indiz dafiir, dass die automatische Annotation der Zielwerte fiir die
Zieldetektion mittels Aspektwinkelwert eine valide Methode ist.

7.3.11.5. Laufzeitanalyse

Zur Bewertung der Laufzeit beider Detektionsverfahren wurde die Anzahl der Opera-
tionen geschétzt und in Tabelle 7.6 eingetragen. Die Operationszahl fiir den CFAR-
Algorithmus skaliert mit der Operationszahl zur Berechnung des adaptiven Referenz-
wertes im 11 x 11 Fenster (11-11 = 121 Additionsoperationen) und der Pixelzahl in der
RD-map (128 x 96 = 12288). Als Produkt ergab sich eine gesamte Operationszahl von
1486848.

Die Anzahl der Operationen fiir das NN wurde, wie in Unterunterabschnitt 7.2.11.5
beschrieben, ermittelt.

Die resultierenden Laufzeiten der beiden Verfahren unterscheiden sich um mehrere
Zehnerpotenzen. Alle in Unterunterabschnitt 7.2.11.5 gemachten Bewertungen gelten
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Tabelle 7.6.: Anzahl der Operation fiir TD Verfahren:
Algorithmus ‘ Anzahl der Operationen geschéitzte Laufzeit bei 300 MHz
CA-CFAR 1486848 5ms
NN 4785438700 16s

auch fir diesen Abschnitt.

7.3.11.6. Antwort zur wissenschaftlichen Hypothese

Bei den Untersuchungen zur Zieldetektion wurde die Antwort auf folgende Fragestellun-
gen gesucht:

o Kann eine Zieldetektion mittels vorgestelltem Warping trainiert werden?

o Ist der Aspektwinkel ein valides Mafl fiir die automatische Bestimmung von
Zielwerten fiir die Zieldetektion?

Da die trainierte Zieldetektion vergleichbare Ergebnisse zum klassischen CFAR-
Detektor erreicht, kénnen beide Fragestellungen bejaht werden. Aus Sicht des Autors
wird aber empfohlen, die Qualitat der Aspektwinkelschatzung weiter zu verbessern.

In Abschnitt 7.5 wird aulerdem noch ein datenbasierter Schitzer vorgestellt, welcher
die Leistungsbeitrige der individuellen Kamerapixel schétzt. Es ist moglich, dass dieser
in Zukunft auch anstelle der (modellbasierten) Aspektwinkelschitzung fiir die Zielwert-
bestimmung bei Detektionsaufgaben verwendet werden kann. Hierdurch ergibe sich der
Vorteil, dass nicht nur geometrische Figenschaften der Objekte beriicksichtigt werden,
sondern evtl. auch andere physikalische Eigenschaften, wie z.B. Materialeigenschaften.

7.4. Semantische Segmentierung

Als natiirliche Erweiterung zur Zieldetektion wird in diesem Abschnitt die semanti-
sche Segmentierung der RD-maps durchgefiihrt. Bei der semantischen Segmentierung
handelt es sich um die Klassifikation der einzelnen Zellen/Pixel in der RD-map. Die
Klassifikation wird hier in die Zielklassen , Fulginger®, ,,Fahrzeuge“und ,stationére
Ziele* vorgenommen. Zum einen kommen diese Objektklassen im Straflenverkehr hiufig
vor. Zum anderen weisen diese Objekte im Messraum aber auch spezifische Signaturen
auf, so dass eine Trennung iiber die vorhandenen Radardaten technisch mdoglich ist.
Diese spezifischen Signaturen werden nachfolgend kurz beschrieben.

Bei den stationédren Zielen handelt es sich um geostationdre Reflexionen, also Re-
flexionen, deren Dopplersignatur nur durch die Bewegung des Radarsensors bzw. des
Ego-Fahrzeuges iiber Grund bestimmt ist.

Als Fufigidnger bezeichnen wir Menschen in Bewegung. Durch den speziellen Bewe-
gungsapparat und das Bewegungsmuster ergeben sich aus Sicht des Radars spezifische
Dopplersignaturen. Der bewegte menschliche Koérper kann als Mehrkérpermodell angese-
hen werden. Durch die oszillierende Bewegung der Extremitéten ergeben sich ausgedehnte
Dopplersignaturen in der RD-Map, welche mafigeblich in Abhéngigkeit von der Schritt-
weite, Schrittfrequenz und Schrittphase variieren und als ,Mikro-Doppler” bekannt sind,
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siehe z.B. [vDGO8]. Der Torso des Menschen liefert die in Doppler nahezu konstante
Reflexion, den ,,Makro-Doppler®.

Als letzte Klasse betrachten wir alle Reflexionen von typischen Fahrzeugen wie PKW,
LKW und Motorrad, welche nicht geostationér sind. Sich also durch Bewegung iiber
Grund auszeichnen.

Wie bei der Zieldetektion auch, liefert die Referenzsensorik keine native Annotation
fiir diese Aufgabe. Basierend auf den Daten der Referenzsensorik wird diese Annotation
nachfolgend automatisch mittels einer Instanzsegmentierung auf den Kamerabildern
geschatzt.

7.4.1. Eingangsdaten

Die semantische Segmentierung soll unter anderem zwischen geostationiren Reflexionen
und bewegten Reflexionen diskriminieren kénnen. Diese Diskrimination wird in der
Literatur héaufig als Moving-Target-Indication (MTI) bezeichnet und kann mittels
Kenntnis der Eigenbewegung und des Einfallswinkels der Reflexionen iiber klassische
Methoden mit guter Genauigkeit vorgenommen werden, siehe beispielsweise [EBI,
EB2,EB3,EB5]. Dariiber hinaus wurde z.B. in [EB4] eine Erweiterung der klassischen
MTT mit einem Recurrent-Neural-Network (RNN) vorgenommen, bei welchem einzelne
Detektionen des Radars geclustert und iiber ein RNN klassifiziert wurden.

Das hier verwendete NN wird mit zwei Eingangskanélen ausgestattet und versorgt.
In dem ersten Eingangskanal wird die RD-map RD eingespeist. In dem zweiten Ein-
gangskanal wird die Pradiktion einer klassischen MTI (MTI) eingespeist

RD ] . (7.26)

T = [MTI

Fiir die Berechnung von MTI wird eine Adaption der MTT aus [EB3] verwendet. Bei

der Implementierung aus [EB3| handelt es sich um einen Hypothesentest mit harter

Schwellwertentscheidung, welche eine bindre Entscheidung erzwingt. Grundlage dafiir
ist die Definition der relativen Bewegung nach Gleichung 2.6.

Wie zuvor erwéahnt, kann ein Radarsensor nur die relative radiale Geschwindigkeit

vermessen und auflosen, welche sich fiir geostationdren Reflektoren aus der ersten Zeile
von Gleichung 2.6 ergibt zu

op  dbpy

OPla] Py
Urstat. = - COS(Ba) €OS(d01) — - 5in(9az) c08(Get) — L sin(Got) — b = —

ot ot

. (7.27)

Zu beachten ist, dass in Gleichung 2.6 die Bewegung eines Punktes im Radarkoordina-
tensystem beschrieben wurde. Da nun die Geschwindigkeit des Sensors verwendet wird,
muss entsprechend das Vorzeichen der Bewegungen umgekehrt werden, wodurch der
Vorzeichenwechsel gegeniiber Gleichung 2.6 zu erkléren ist. Damit kann durch Einsetzen
der vom Radar gemessenen Einfallswinkel und der iiber DGPS-INS gemessenen Sensor-
geschwindigkeit ein Schitzwert fiir die radiale Geschwindigkeit einer Reflexion unter
der Annahme von Geostationaritit berechnet werden. Ist die Differenz pp aus dieser
geschitzten Geschwindigkeit und der vom Radar gemessenen Radialgeschwindigkeit
hinreichend grof3

HE = Ur — Urstat., (7-28)
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so kann mit hoher Wahrscheinlichkeit davon ausgegangen werden, dass es sich bei einer
untersuchten Reflexion nicht um ein stationéres Ziel handelt. Die Beriicksichtigung von
Ungenauigkeiten in Winkel- und Geschwindigkeitsschétzung wurde in [EB3] beschrie-
ben, kann in &hnlicher Form aber auch vergleichbaren Verdffentlichungen entnommen
werden, z.B. [Kell7]. Diese Ungenauigkeit fassen wir durch o zusammen. Anstelle der
bindren Entscheidung wird eine Transformation iiber eine Gau-Aktivierungsfunktion
vorgenommen

1

(UE‘ Q! (a/Q))2

Wobei Pre, i, €ine Pseudowahrscheinlichkeit der Klassenzugehérigkeit angibt. Eine
niedrige Aktivierung bedeutet, dass es sich beim untersuchten Signal wahrscheinlich
nicht um einen geostationidren Reflektor handelt. Bei hoher Aktivierung kann es sich
weiterhin um einen geostationdren Reflektor handeln.

Im Gegensatz zur harten FEntscheidung (engl.:  hardstep”) ist die
Gauf-Aktivierungsfunktion differenzierbar und etwaige Fehler in der MTI kénnten
vollstédndig zuriickpropagiert werden. Des Weiteren ergeben sich aus der MTI mit-
tels GauB-Aktivierungsfunktion kontinuierliche Werte, anstelle der bindren Werte beim
,Hardstep®. Die Motivation dahinter ist also: a) Fehler in der MTT kénnten beim Training
ermittelt, durch die MTI-Schicht propagiert werden und schliefllich die Winkelschatzung
optimiert werden. Und b) durch die kontinuierliche Variable kann das NN die Signaldy-
namik eigensténdig erlernen. Untersuchungen zu diesen Hypothesen werden in dieser
Arbeit jedoch nicht durchgefiihrt.

Ein Beispiel der MTI ist in Abbildung 7.17 dargestellt. In der ersten Spalte ist das Sze-
nario aus Sicht der nach hinten aus dem Egofahrzeug gerichteten Kamera dargestellt. Das
Ego-Fahrzeug fihrt auf einer Strafle und wird von einem Paketdienstfahrzeug verfolgt.
Das korrespondierende RD-map ist rechts daneben dargestellt. In der dritten Spalte ist
das Ergebnis der MTT in der RD-map (Prcmoving) dargestellt. Die gelben Regionen zeigen
Bereiche hoher Werte von Pre, s, und entsprechend bewegte Reflexionen an. Dunkle
Regionen zeigen hingegen niedrige Werte von Pre, ;. und mogliche geostationére
Reflexionen an. Durch die Anordnung im RD-Gitter kann die MTI-Préadiktion {iber
Gleichung 6.14 in das Kamerabild projiziert werden. Das Ergebnis der Projektion ist
rechts dargestellt. Es ist zu sehen, dass die Pixel an der Position des Paketdienstfahr-
zeuges mit hoher Konfidenz als bewegte Ziele erkannt wurden. Die verbleibenden Pixel
im Kamerabild sind geostationdr und weisen entsprechend eine geringe Konfidenz fiir
bewegte Reflexion auf.

Wir definieren die Menge der Pseudowahscheinlichkeiten fiir sémtliche Pixel im
RD-Gitter als MTI.

(7.29)

Prcmoving =exXpy—

7.4.2. Zielwerte

Fiir die semantische Segmentierung wird eine Einteilung der Kamerapixel in die gesuchten
Klassen vorgenommen. Fiir die Klassifikation der Pixel in geostationédre Pixel wird die
aus dem Szenenfluss geschéitzte kartesische Geschwindigkeit mit der aus dem DGPS-
INS gelesenen Ego-Geschwindigkeit im Kamera-Koordinatensystem kompensiert. Diese
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Abbildung 7.17.: Beispiel fiir eine Bewegtzielerkennung. Dargestellt ist ein Sze-
nario, in welchem sich das Ego-Fahrzeug bewegt, wahrend der Pa-
ketdienstwagen folgt. Links dargestellt ist das Kamerabild. Rechts
daneben die RD-map. Wiederum rechts daneben die Bewegtzielerken-
nung in der RD-map. Rechts die Bewegtzielerkennung projiziert in das
Kamerabild.

entspricht gerade der Vordergrundbewegung &y, aus Gleichung 5.5. Anschliefiend wird
diese Relativgeschwindigkeit in das Radarkoordinatensystem zu £, 1adar transformiert.
Die Transformation wird analog zu Gleichung 5.26 vorgenommen

&y radar(P) = “ORE (D). (7.30)

Da der Radarsensor nur die Radialgeschwindigkeit messen kann, wird die Geschwin-
digkeit &5y 1qdqr auBerdem als relative Radialgeschwindigkeit aus Sicht des Radarsensors
dargestellt. Diese Berechnung erfolgt analog zu Gleichung 5.25 als

~xz(@) T

= megJadar(p)' (7‘31)

U, fg. (p)

Der Betrag von v g definiert nun die Abweichung der Radialgeschwindigkeit von sta-
tiondren Reflexionen. Da die Geschwindigkeitsschitzung imperfekt ist, werden alle Pixel
als geostationdr klassifiziert, deren Betrag von v g, innerhalb eines Toleranzbereiches
Ay stationar = 0.2 ms ! liegt. Die Wahl des Schwellwertes erfolgte unter Beriicksichtigung
der Geschwindigkeitsauflosung des verwendeten Radarsensors sowie des ermittelten
mittleren Schétzfehlers der Geschwindigkeit nach Tabelle 5.2. Die Maske fiir stationére
Ziele Wsg, giat. €rgibt sich somit zu

1 Ur, fg. (p)‘ < Av,stationéir (7.32)
0 sonst

WSS, stat.(p) = {

Aus den Instanzmaske aus Abschnitt 4.3 berechnen sich die Zielmasken fiir Fufigdnger
und Fahrzeuge als Schnittmenge der bewegten Pixel zu

WSS, ped. — Mpeq. N !pSS, stat. (733)
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und
Uss, veh. = Mveh. NS, stat.- (7.34)

Beispiele der Zielmasken werden spéater (Abbildung 7.21) gezeigt.

7.4.3. Netzwerkarchitektur

Fiir die semantische Segmentierung wurde die Netzwerkarchitektur aus der Zieldetektion,
siche Unterabschnitt 7.3.3, adaptiert. Anderungen sind, dass die Eingangskanéle iiber
separierte Pfade vorprozessiert werden und in der letzten Schicht drei Ausgangskanile,
je einer pro Klasse, vorhanden sind. Die Aktivierung der Ausgangskanéile wird iiber eine
Softmax vorgenommen. Daraus ergibt sich eine ,multi-class“ Prédiktion, bei welcher die
Summe der Netzwerkausgabe eins ergibt und eine Klassifikation in eine einzelne Klasse
gewollt ist. Alternativ liefle sich auch iiber die Entkopplung der letzten Schicht iiber
z.B. die Sigmoid-Aktivierungsfunktion eine ,multi-label* Pradiktion vornehmen, bei
welcher mehrere Klassen parallel hohe Aktivierungen aufweisen diirften.

Da die MTI nach Ansicht des Autors bereits gute Ergebnisse liefert, bestand kein
Bedarf, davon wesentlich abzuweichen. Es wurde analog zu ,Residual neural net-
work“ [HZRS16] eine ,,skip connection® der Eingangsdaten durchgefiihrt. Im Pfad der
,skip connection® wurde eine inverse Sigmoid-Funktion (sig ! (z) = log(ﬁ” verwendet,
um aus den MTI Netzwerkaktivierungen zu simulieren.

Eine visuelle Ubersicht der Netzwerkarchitektur ist in Abbildung 7.18 dargestellt.

Wir definieren die Ubertragungsfunktion des NN zur semantischen Segmentierung als

NIpredict7 RD-grid = M'Net(WM)- (7-35)

7.4.4. Assoziation von Pradiktion und Label durch Warping

Wie bei der Winkel- und Zieldetektion findet fiir die Assoziation von Pradiktion und
Zielwert ein Warping der Prédiktion in das Kamerabild, analog zu Unterabschnitt 7.2.4,
statt. Fiir ein Pixel p ergibt sich die Projektion zu

NIpredict7 cam(P) = MBW (Mpredict, RD-grids ur(P), |XT(p)‘)' (7.36)

7.4.5. Messung der Abweichung
7.4.5.1. Skalierungsraum

Analog zur Winkelschitzung, siehe Abschnitt A.1, wurde auch bei der semantischen
Segmentierung ein Skalierungsraum der Kosten erstellt, um so den Einfluss von fehler-
hafter Geschwindigkeits- und Tiefenschétzung in den Referenzdaten zu verringern. Die
Skalierungskosten ergeben sich zu:

Mprediction, scaled (U, U, 8) =
Eiszfs ZZS* s Mprediction(u + us, v + vs) (RD(u + us, v + vs) — RDpip)

(25 4+ 1)2 305 = s X,=s(RD(u + us, v+ vs) - RDyyip)

(7.37)
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Abbildung 7.18.: CNN Struktur fiir semantische Segmentierung: Die Ubersicht
der Schichten.

Die Pradiktion im Kamerabild ergibt sich somit zu

Mpredict, cam, scaled(p) = IBW (Mpredict, scaled) ’l}r(p), |X7=(p)|). (7'38)

7.4.5.2. Abweichung

Wie in Unterabschnitt 7.4.3 beschrieben, wird bei der semantischen Segmentierung eine
,multi-class“ Pradiktion durchgefiithrt. Ein praktisches Problem beim Training des NN
ergab sich durch stark unausgewogene Klassenhdufigkeiten (engl.: ,class-imbalance®)
des Datensatzes. Ein Grofiteil der Pixel ist der Klasse geostationdrerer Reflexionen
zugeordnet, nur ein Bruchteil den Klassen Fufiginger und Fahrzeug. Dies représentiert
durchaus die statische Verteilung realer Fahrszenarien, kann beim Training eines NN
jedoch dazu fiithren, dass eine einzelne Klasse favorisiert wird. Es konnte also passieren,
dass das trainierte NN ausschliefllich geostationére Pixel detektiert. Um diesen Effekt

144



7.4. Semantische Segmentierung

zu vermeiden und die Klassenimbalance zu berticksichtigen, wird hier mittels ,,Focal-
Loss“ [LGG120] Kostenfunktion optimiert. Dabei handelt es sich um eine Erweiterung
der Kreuzentropie, bei der die Kosten mit der Konfidenz der Pradiktion gewichtet
werden. Hierdurch wird der Fokus von einfacher Entscheidung hin zu schwierigeren
Entscheidungen verlagert.

Zum tbersichtlichen Vergleich von Kreuzentropie und Focal-Loss sind die Definitionen
aus [LGGT20] nachfolgend dargestellt

CE(pt) = —atlog (pt) (7.39)

und
FL(p1) = (1 pt)"arlog (pt) , (7.40)

wobei p; die Netzwerkpréadiktion ist, ay der Zielwerte und v > 0 der Fokussierungspara-
meter. Bei der Wahl v = 0 wird Focal-Loss zur Kreuzentropie. Bei steigendem v werden
die einfachen bzw. eindeutigen Klassifikationen mit sinkender Grofle gewichtet.

Unter Einfiihrung von ayg, einer von der Klasse abhéngigen Skalierung fiir die
Positivbeispiele, ergibt sich die Kostenfunktion fiir die semantische Segmentierung zu

5
h(p,s) = —am (1 - Mpredict,scaled (p, 5)) U\ (p) log (Mpredict,scaled (p, 5))

N
- (Mpredict,scaled (p, 5)) (1 - WM(p)) log (1 - Mpredict,scaled (p, 5)) . (741)

Die Wahl der Parameter der Kostenfunktion (ayg, v, $) fiir die Optimierung hat einen
Einfluss auf die trainierten NN-Parameter. Da keine Anhaltspunkte fiir diese Werte
vorhanden waren, wurden mehrere NNen mit unterschiedlicher Parameterwahl trainiert.
Eine Ubersicht der Parameterwahl ist in Tabelle 7.7 zu finden.

Tabelle 7.7.: Parameterwahl fiir das Training des NN fiir die semantischen

Segmentierung.
Name ~ ap(FuBgénger) Skalierungsebenen s
NNy O 10 0
NN; 0 10 2
NNy 0 100 0
NN3 0 100 2
NNy, 2 10 0
NN; 2 10 2
NNg 2 100 0
NN; 2 100 2

Fiir die Anwendung der Winkelschidtzung wurde durch die Anwendung der Skalie-
rungsebenen eher ein Nachteil in der Winkelschatzqualitét festgestellt, siehe Unterun-
terabschnitt 7.2.11.3. Es wird vermutet, dass Fehler in der Szenenflussschiatzung bei der
semantischen Segmentierung grofiere Auswirkungen haben als bei der Winkelschitzung,
weil hier speziell gegen bewegte Objekte trainiert wird. Bei der Winkelschétzung wurde
gegen alle Pixel trainiert, unter denen geostationdre Pixel dominant sind, welche einen
deutlich geringeren Schétzfehler des Szenenflusses aufweisen und daher weniger héufig
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Label-Noise aufweisen. Es soll daher noch einmal getestet werden, ob die Anwendung
der Skalierungsebenen fiir die semantische Segmentierung vorteilhaft sein kann.

Durch die Verwendung der , Focal-Loss* Kostenfunktion und des Fokussierungspara-
meters wird die Klassenimbalance bekampft, was der Pradiktion dynamischer Objekte
zu Gute kommen sollte. Fiir Objekte der Klasse Fuflgidnger soll zusétzlich eine manuelle
Skalierung tiber den Parameter ayg(FuBBginger) getestet werden, da hier eine deutlich
geringere Reprasentation im Datensatz erwartet wurde.

Um die Klassenimbalance iiber die angepasste Kostenfunktion hinaus zu beriicksichti-
gen, fand das Training ausschlieBlich in Frames statt, bei denen mindestens ein Objekt
der Klasse Fufiginger oder Fahrzeug erkannt wurde. Der Trainingsdatensatz reduzierte
sich dadurch auf etwa 2000 Beispiele.

7.4.6. Selektion der Pixelmenge

Zur Selektion der Pixelmenge wird die Zielmaske 21 (p) aus Unterunterabschnitt 7.3.2.3
verwendet. Das NN soll somit ausschliefllich gegen Pixel trainiert werden, welche anhand
der Daten der Referenzsensorik als mogliche Ziele identifiziert wurden. Die Maske dieser
Ziele sei definiert als

SR = {p € Pau

“QGT(p) > 0.5} . (7.42)

7.4.7. Gesamtkosten

Die Gesamtkosten ergeben sich als Mittelwert der Abweichungen {iber alle Skalierungs-
ebenen nach (Gleichung 7.41) und Pixeln zu

3
= l y Uy
Iy = 25=0 Z%esn M (U, v 3). (7.43)
25:() |SR|

7.4.8. Initialisierung der Parameter

Die Initialisierung der Netzwerkparameter erfolgte analog zur Beschreibung aus Unter-
abschnitt 7.2.8.

7.4.9. Optimierer

Die Optimierung der Netzwerkparameter erfolgte analog zur Beschreibung aus Unterab-
schnitt 7.3.9.

7.4.10. Trainingsprozess

Der Verlauf der Kosten iiber den gesamten Trainingsprozess ist fiir alle Netzwerkkonfi-
gurationen aus Tabelle 7.7 in Abbildung 7.19 dargestellt.

Zu erkennen ist, dass eine Reduktion der Kosten iiber die Trainingsbeispiele bei allen
NNen vorhanden ist, ein Training im Grundsatz also erfolgreich war. Auflerdem ist
zu erkennen, dass sich die Trainingskosten fiir die unterschiedlichen Parameter stark
unterscheiden, was durch die unterschiedliche Wahl der Skalierungsparameter o) und
~ zu erkldren ist. Anhand der Trainingskosten kann nicht prognostiziert werden, welche
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Abbildung 7.19.: Verlauf des Trainingsprozesses der semantischen Segmentie-
rung: Die Kosten wihrend des Trainings konvergieren bereits nach
einigen Trainingsbeispielen.

NN Wahl die beste Genauigkeit bei der semantischen Segmentierung erreicht. Diese
Analyse wird im nachfolgenden Abschnitt durchgefiihrt.

7.4.11. Ergebnis
7.4.11.1. Beschreibung der Metriken

Fiir die Bewertung der per-Pixel-Klassifikationsgenauigkeit bei der semantischen Seg-
mentierung, wird die Mean-Intersection-over-Union (MIoU)-Metrik verwendet, welche
w.a. in [GOOT17] dokumentiert ist und folgende Form hat

K
1 Pii
MIoU = — g .
K= Sl i+ S pji - pa

(7.44)

Darin ist K die Anzahl der unterschiedlichen Klassen, im vorliegenden Fall
K = |{Stationér, Fuigénger, Fahrzeug }| = 3. Die Werte p; und p;; zéhlen die Anzahl
der Pixel, bei denen die Klasse des Labels und der Pradiktion identisch sind bzw. die
Anzahl der Pixel, bei denen sich die Klassen unterscheiden. Der Index 7 bedeutet, dass
das Label der Klasse ¢ entspricht, die Préadiktion der Klasse j.

Die MIoU nimmt Werte im Intervall [0,1] an, wobei héhere Werte einer besseren
Klassifikation entsprechen.

Die MIoU mittelt iiber alle Klassen und fasst somit alle Datenpunkte in einer Metrik
zusammen. Nachteilig dabei ist, dass keine klassenspezifische Aussage durchgefiihrt
werden kann. Neben der MIoU wird deshalb auch noch die Konfusionsmatrix [Faw06]
iiber die Klassen ermittelt.

7.4.11.2. Quantitative Auswertung

Die Metriken aller Frames des Testdatensatzes und NN-Parametrierungen wurden
berechnet und sind in Abbildung 7.20 in Form von Histogrammen dargestellt. Jeder
FEintrag im Histogramm entspricht einem Frame. Die MIoU wurde dabei also fiir alle
Pixel im Kamerabild berechnet und die Verteilung der MIoU in allen Kameraframes
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dargestellt. Da die Frames im Datensatz unterschiedliche Szenen abgebildet haben und
die Klassifikationsgenauigkeit entsprechend beeinflusst wird, ergibt sich daraus eine
Verteilung der MIoU.

NNg

2
Z

2,
Z,
o

Z
Z,
w

NNy
NNj
NNg
NN~
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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[N}
o
=]
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o
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(=)
o
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800 1,000 1,200 1,400
Héufigkeit —

Abbildung 7.20.: Klassifikationsgenauigkeit der semantischen Segmentierung:
Die MIoU wurde fiir alle Frames des Testdatensatzen und Netzwerk-
parametrieriserungen berechnet und dargestellt. Zu sehen ist mitunter
eine hohe Fluktuation der Metrik iiber alle Frames.

Fir alle NN-Parametrierungen sind hellere Farbwerte bzw. grofle Haufigkeiten bei
groferen MIoU zu beobachten. Leicht zu beobachten sind Unterschiede der Farbverteilung
zwischen den NN-Parametrierungen.

Die Konfusionmatrizen aller NN-Parametrierungen sind in Anh. A.3 dargestellt. Die
Diagonalelemente der Konfusionsmatrizen sind in Tabelle 7.8 dargestellt und beschreiben
die relative Haufigkeit korrekter Klassifikationen in Abhédngigkeit der Klasse.

In Tabelle 7.8 ist zu sehen, dass die Klassifikationsrate fiir die Klasse ,,Stationédr® fiir
alle NN Parametrierungen oberhalb von 90% liegt. Die Aktivierung dieser Klasse wird
wesentlich durch die ,,skip-connection® , zu sehen in Abbildung 7.18, definiert. Unterschie-
de in der Klassifikationsgenauigkeit fiir stationére Ziele zwischen den Parametrierungen
ergeben sich somit ausschlieBlich iiber die Aktivierungen der Klassen Fuflgiénger und
Fahrzeug, welche die Netzwerkausgabe durch die Softmax-Aktivierungsfunktion skalie-
ren. Die Klassifikationsrate fiir Fahrzeuge und Fuf3gdnger féllt merklich schlechter aus.
Durch Sichtung der Konfusionsmatrizen aus Anh. A.3 kann festgestellt werden, dass bei
allen Parametrierungen Pixel vom Typ Fufiginger haufig (39.6 —60.12%) als stationére
Pixel pradiziert wurden. Diese Art der Falschklassifikation ist durchaus wahrscheinlich
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Tabelle 7.8.: Ubersicht der Klassifikationsraten und MIoU fiir die Parameter-
sets: Angaben in %

Name | Stationdr Fuflgdnger Fahrzeug | MIoU
NN 97.66 32.30 74.97 99.89
NN; 96.17 47.28 57.21 99.94
NN, 94.19 59.57 59.86 99.00
NNj3 95.67 48.99 36.02 99.46
NNy 96.16 49.28 47.31 99.82
NNj 95.53 53.17 65.93 99.66
NNg 91.36 53.00 66.42 86.43
NN~ 91.14 42.60 42.24 96.47

und plausibel, weil Fuflgdnger in der Regel eine langsame Geschwindigkeit aufweisen
und somit iiber Doppler kaum von stationédren Zielen getrennt werden kénnen. Moglich
ist, dass die separate Prozessierung durch MTI bzw. die Parametrierung hier nicht aus-
reicht, um eine bessere Klassifikationsrate fiir Fu3génger zu erreichen. Auch Fahrzeuge
wurden teilweise falsch als stationér klassifiziert, eine groBere Menge (5.53 —45.05%) der
Fahrzeuge wurde jedoch falsch als Fuginger klassifiziert. Fiir die drei Klassen konnten
Klassifikationsraten, deutlich besser als Zufallsziehungen (33.3% )erreicht werden. Sinn-
volle Anderungen, um die Klassifikationsrate zu verbessern, kénnten beispielsweise sein,
(a) die MTI Klassifikation zu optimieren oder wegzulassen und (b) die Klassifikation
iiber ganze Sequenzen von RD-maps durchzufiithren, so dass der Klassifikator zeitlich
variierende Merkmale extrahieren kann®. Da das Augenmerk dieser Arbeit jedoch nicht
auf der Optimierung der semantischen Segmentierung liegt, wird diese Untersuchung
fiir mogliche Folgearbeiten aufgespart.

Anhand der hier ermittelten Klassifikationsraten kann keine unmittelbare Tendenz
fiir die Optimierung mit Skalierungsebenen oder Fokussierungsparametern beobachtet
werden. Fiir den qualitativen Vergleich wird das Parameterset NN5 gewdhlt, da es
vergleichsweise hohe Klassifikationsgenauigkeiten fiir alle Klassen aufweist.

7.4.11.3. Qualitative Auswertung

Eine reprisentative Ubersicht der Pridiktionen fiir die Anwendung der semantischen
Segmentierung ist in Abbildung 7.21 dargestellt. Wie zuvor beschrieben, wird bei
der Priadiktion die Netzwerkausgabe von NN5 verwendet. In der linken Spalte ist die
semantische Maske Wy eingetragen, welche die Zielwerte fiir das NN-Training darstellt.

In der zweiten Spalte wurden die semantischen Masken M edict, cam dargestellt. Zur
besseren Ubersicht wurden Pixel, welche durch das NN zur Zieldetektion als Hintergrund
detektiert wurden (TDpredict, cam (P) < 0.5) ausgeblendet. In der letzten Spalte sind die
Pradiktionen in der RD-map gezeigt. In allen Spalten wurden die Pixel entsprechend
der Klassifikation, siche Farblegende, eingeférbt.

In Abbildung 7.21 sind unterschiedliche Szenarien mit bewegten Objekten der Klasse
FuBgénger und Fahrzeug dargestellt. In der oberen Zeile ist auf der linken Bildseite

SDer Benefit einer Zufiihrung zeitlicher Merkmale fiir die Klassifikation von Radarzielen wurde u.a.
in [Heul3] und [Saul6] nachgewiesen
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ein FuBginger und in der Bildmitte ein Fahrzeug zu sehen. Diese wurden automatisch
entsprechend in der Zielmaske eingefarbt. Das NN konnte ausschliefSlich das Fahrzeug
korrekt klassifizieren. In der zweiten Zeile im linken Bildbereich sind zwei Fulginger zu
sehen. Im rechten Bildbereich zwei weitere, welche sich jedoch auflerhalb des Radars
FoV befinden. Die linken Fuflginger wurden folgerichtig automatisch gelabelt und durch
das NN ebenfalls korrekt klassifiziert. In der dritten Zeile ist ein bewegtes Fahrzeug zu
erkennen, welches durch das NN erfolgreich klassifiziert wurde. In der letzten Zeile ist
ein Fufigidnger zu erkennen, welcher ebenfalls erfolgreich klassifiziert wurde. In allen
Szenarien wurden Pixel zu stationdren Reflexionen zuverléssig eingefarbt. Einige Pixel
wurden durch das NN falschlicherweise als Fulgdnger klassifiziert, obwohl die Pixel
stationare Objekte abbilden.

In Abbildung 7.21 wurden Pixel entsprechend der grofiten Netzwerkausgabe ein-
gefarbt. Zur weiteren Analyse der Inferenz sind in Abbildung 7.22 die vollstandigen
Netzwerkausgaben der semantischen Segmentierung fiir die Klassen dargestellt. In der
oberen Zeile sind Kamerabilder und RD-map dargestellt. In der zweiten Zeile sind die
Netzwerkausgaben fiir die Klassen projiziert in das Kamerabild (Kamera 2) dargestellt.
Es fallt auf, dass die Pradiktion von stationdren Zielen, dem Fufigdnger und einem
fehlenden Fahrzeug plausibel ist. Besonders interessant ist die unterste Zeile. Dort sind
die Netzwerkausgaben im RD-Gitter dargestellt. Die Aktivierung fiir stationire Ziele
wird primér durch die MTI auflerhalb des NN festgelegt, siche Unterabschnitt 7.4.3. Zu
beobachten ist, dass Pixelregionen in der ndheren Umgebung von stationaren Klassi-
fikationen als Fugidnger klassifiziert werden. Weiter entfernte Pixel werden dagegen
ausschlieflich als Fahrzeug klassifiziert. Das NN scheint entsprechend gelernt zu haben,
dass Fu3gdnger wahrscheinlich niedrigere Geschwindigkeiten aufweisen als Fahrzeuge.
Nach Ansicht des Autors ist so eine Annahme durchaus plausibel.

Weitere Beispiele der semantischen Segmentierung inklusive Szenenbeschreibung und
Beobachtungen sind in Anh. A.4 zu finden.

7.4.11.4. Antwort zur wissenschaftlichen Hypothese

Nach Bewertung der Beobachtungen aus quantitativer und qualitativer Analyse kann
gesagt werden, dass das Training eines NN zur semantischen Segmentierung von RD-maps
gegen die automatisch ermittelten Zielwerte aus der Referenzsensorik in Kombination
mit der zugefithrten MTI deutlich bessere Klassifikationsraten als ein Zufallsklassifikator
hervorgebracht hat. Die beobachteten Beispiele der Inferenz waren im Wesentlichen
plausibel und attestierten ein erfolgreiches Training. Weitere Verbesserungsmoglichkeiten
(bessere MTI, Klassifikation tiber zeitliche Sequenz) der Netzwerkarchitektur wurden
vorgeschlagen, sind aber kein weiterer Bestandteil dieser Arbeit.
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Label: Prédiktion: Pridiktion:
(Mpredict, cam) (Mpredict, RD—grid)

Abbildung 7.21.: Beispiele der semantischen Segmentierung durch Radar. Von
links-nach-rechts: RGB Bild mit Zielwerten der semantischen Segmen-
tierung, RGB Bild mit Pradiktionen der semantischen Segmentierung
und RD-map mit Pradiktionen der semantischen Segmentierung. Alle
Pixel wurden entsprechend der grofiten Klassenzugehorigkeit einge-
farbt. Die Farblegende ist am unteren Bildrand zu erkennen.
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Abbildung 7.22.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben fiir die Klassen
SStationar”, FuBginger® und ,Fahrzeug® gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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7.5. Empfangsleistungsschatzung iiber das Kamerabild

In Abbildung 6.2 wurde die Pipeline zum iiberwachten Training einer Signalverarbei-
tung auf Radardaten vorgestellt. Diese wurde gegen Zielwerte kommend von einer
Referenzsensorik trainiert. In den vorangegangenen Abschnitten wurde das Training an
den Beispielen der Winkelschatzung, Zieldetektion und semantischen Segmentierung
demonstriert. Dass es technisch moglich ist, auch eine Signalverarbeitung der Kame-
radaten gegen die Radardaten zu trainieren, wird in diesem Abschnitt gezeigt. Die
allgemeine Struktur der Pipeline zum iiberwachten Training muss dafiir, wie in Abbil-
dung 7.23 gezeigt, nur leicht verindert werden. Das NN7 prozessiert nun die Kamera-
und Lidardaten. Die Radardaten werden iiber die Warpingschicht in das Pixelgitter der
Kamera projiziert. Danach wird die Abweichung der NN-Ausgabe und der projizierten
Radardaten ermittelt und das NN durch Fehlerriickfithrung (,,error backpropagation*)
optimiert.

________________________________________________

-> Szenenfluss- &

, | Tiefenschatzung Neuronales : |
: Netzwerk i :
Lidar & Riickwarts
o 4{
Kamera Wg_' ] Warp Radar }
Fehlerriickfiihrung

(a) Training mit Riickwértswarp

> Szenenfluss- &

___________________

, | Tiefenschétzung Neuronales !
| Netzwerk ;
Lidar & Vorwérts
Kamera Wg_' Warp _:.
Fehlerriickfiihrung

(b) Training mit Vorwéartswarp

Abbildung 7.23.: Ubersicht der vorgestellten Systeme zum iiberwachtem Trai-
ning von Signalverarbeitungen der Kamera- und Lidardaten:
Lidar und Kamera stellen Sensordaten fiir das NN bereit. Im NN wird
fir jedes Pixel eine Leistungsschétzung durchgefithrt. Nach [EB7]. (a)
Durch die Riickwértswarp-Schicht, werden die Zielwerte in das Gitter
des Kamerabildes gewarpt und dort mit den Pradiktionen verglichen.
Abweichung werden unmittelbar in das NN (b) Durch die Vorwérts-
warp Schicht, werden die Leistungswerte auf das Gitter des RD-maps
gewarpt und dort mit der RD-map des Radars verglichen. Abweichun-
gen werden gemessen und durch die Warping-Schicht zuriick in das
NN propagiert.

"Andere trainierbare Algorithmen sind hier nicht ausgeschlossen.
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Motiviert wird dieses Vorgehen insbesondere auch aus dem Wunsch, die
EM-Leistungsbeitrage der einzelnen Kamerapixel zu schétzen und fiir das Training
und die Auswertung der bereits vorgestellten Verfahren zur Verfiigung zu stellen. Eine
Kurziibersicht des hier vorgestellten Verfahrens wurde in [EB7] veréffentlicht.

Ein wesentlicher Unterschied der beiden in Abbildung 7.23 gezeigten Strukturen ist,
dass bei der oberen Struktur mogliche Fehler im Warping nicht durch das NN gelernt
und kompensiert werden kénnen. In Abschnitt 6.5 wurde als systematischer Fehler durch
das Riickwartswarp die mehrfache Zuordnung der Leistung eines RD-map-Pixels zu
verschiedenen Kamerapixeln identifiziert. In diesem Abschnitt werden beide Strukturen
trainiert und deren Pradiktionen gegeniibergestellt. Dabei wird dieser systematische
Fehler noch einmal offensichtlich gemacht.

7.5.1. Eingangsdaten

Als Eingangswerte zur Leistungsschitzung erhélt das NN das Kamerabild RGBY, die
Tiefenmaske D?, die semantische Instanzmaske MY und Maske der geschiitzten Aspekt-
winkel NV

RGBY

0
rpo=| 2o 1. (7.45)

Kamerabild und Instanzmaske wurden ausgewéhlt, damit das NN selbst Informationen
aus den optischen Daten extrahieren kann, die Tiefenmaske, weil die Empfangsleistung
des Radars geméafl der Radargrundgleichung, siehe Gleichung 2.25, reziprok zur vierten
Ordnung davon abhéngt. Aspektwinkel wurden bereitgestellt, weil sie nach Gleichung 2.4
unter anderem die relativen Amplituden der Reflexion beeinflussen.

7.5.2. Zielwerte

Das NN soll versuchen, die Leistungswerte aus der RD-map RD des Radars zu schétzen.
Die Zielwerte werden also direkt durch den Radarsensor erstellt und bereitgestellt.

7.5.3. Netzwerkarchitektur

Fiir die Leistungsschiatzung wurde die Netzwerkarchitektur aus der Winkelschatzung,

siche Unterabschnitt 7.2.3, leicht adaptiert. Anderungen sind, dass nun vier Eingangs-

kanéle bereitgestellt werden, sieche Unterabschnitt 7.5.1 und in der letzten Schicht keine

Aktivierungsfunktion verwendet wird, da hier eine Regressionsaufgabe durchgefiihrt

wird. Eine visuelle Ubersicht der Netzwerkarchitektur ist in Abbildung 7.24 dargestellt.
Wir definieren die Ubertragungsfunktion des NN zur Leistungsschitzung als

Popredict7 cam = Po-Net(I'p). (7.46)

7.5.4. Assoziation von Pradiktion und Label durch Warping

In diesem Kapitel werden wir Untersuchungen von Vorwérts- und Riickwartswarp aus
Kapitel 6 machen. In beiden Féllen liegt die Netzwerkausgabe Popedict, cam im Gitter
des Kamerabildes vor.

154



7.5. Empfangsleistungsschatzung tiber das Kamerabild

= = =) =
223|213 |3
[} m Qj Q [}
o= é = = ~ ~
& > ~ ~ =z =z
- ~ s s < s = g
3 8 8 g g X g
5 3 i o = = i &
g + B e + L + L+ b+ B8 = 2
~ » X ® ) ) o) o B
X 2 4 & X X z A
g > 0 < :“ :" 3 o
8 5 = = i g ~
= z 2 S £ K
(=] > > = =
o ) g g S 15
8 g g g g
— g _
Po-Net

Abbildung 7.24.: CNN Struktur fiir Leistungsschiitzung: Die Ubersicht der Schich-
ten. Nach [EB7].

7.5.4.1. Vorwartswarp

Anders als bei den Anwendungen der Winkel-, Ziel- und Semantikschétzung findet
die Inferenz hier nicht im Pixelgitter des RD-maps statt, sondern bereits im Gitter
des Kamerabildes. Die Pixelwerte werden nun durch Vorwértswarp in das Gitter des
RD-maps gebracht. Die Transformation der Inferenz sei wie folgt durchgefiihrt:

Popredict, RD(PRD) = 16w (Popredict, cams vr(P), [ (P)]) (7.47)

wobei Popredict, RD die in das RD-Gitter gewarpten Schitzwerte sind.

7.5.4.2. Riickwartswarp

Beim Riickwértswarp bleiben die Werte der Inferenz im Pixelgitter der Kamera. Statt-
dessen werden die Zielwerte der Leistung vom RD-map in das Kamerabild gewarpt.
Die Zielwerte wurden somit bereits in Kapitel 6 als RD ¢ definiert und entsprechende
Beispiele gezeigt.

7.5.5. Messung der Abweichung

Zur Messung der Abweichung der Leistungsschitzung gegeniiber Radar wird angenom-
men, dass sich die Reflexionen der Objekte nach ,Swerling Typ 1“ [Mes06] iiberlagern.
Dabei wird angenommen, dass Objekte durch eine Vielzahl kleinerer Reflektoren mit un-
terschiedlichem Abstand modelliert werden kénnen. Durch die Uberlagerung der Wellen
der einzelnen Reflektoren ergibt sich eine Verteilungsdichte des RCS nach Chi-Quadrat
mit DoF= 2 (m = 1) und dem mittleren RCS &:

1
—€

2

alla

plofz) = (7.48)

Die Empfangsleistung des Radars und somit der Grauwert des RD-maps skaliert nach
Gleichung 2.25 mit dem RCS. Wir bestimmen eine passende Kostenfunktion fiir die
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Optimierung des Leistungsschétzers als Maximum-Likelihood-Schétzer fiir . Die Log-
Likelihood Funktion zu Gleichung 7.48 ergibt sich zu

N

_ 1 o 1y 1 &
log (L (7)) = log (H —e a> = Nlog<a> = Zal (7.49)

1

wobei hier die Verteilung einer Beobachtungsfolge eingesetzt wurde. Die Ableitung
ergibt sich zu

- N
alog;ﬁ@) . (7.50)

Der zugehorige Maximum-Likelihood-Schéatzer kann durch Nullsetzen der Log-Likelihood
Funktion hergeleitet werden zu

_ N N
M:OZNE—ZUFZ(E—W):»E(ML):Z(”. (7.51)

0o N

7
In Gleichung 7.51 ist zu erkennen, dass zur Optimierung die Differenz aus gezogenem
und beobachtetem RCS, o; und @, berechnet werden kann.

7.5.5.1. Vorwirtswarp

Fiir den Vorwértswarp ergibt sich daraus eine mégliche Kostenfunktion nach

Ipo,Fw (PRD) = [Popredict, RD(PRD) ~RD[p. 1l- (7.52)
Damit der ,,gradient descent “ Optimierer konvergiert, wurden hier Betragsklammern
eingefiihrt.
7.5.5.2. Riickwartswarp

Fiir den Riickwértswarp ergibt sich daraus eine mogliche Kostenfunktion nach

lPo,BW(p> = ’POpredict, cam(P) — RDC,[pH' (7.53)

Wie beim Vorwéartswarp, wurden auch hier Betragsklammern verwendet.

7.5.6. Selektion der Pixelmenge

Wie fiir die anderen Trainingsanwendungen, wird beim Training eine Untermenge
der Kamerapixel verwendet, um beispielsweise das FoV zwischen Kamera und Radar
abzugleichen und detektierte Anomalien auszugrenzen.

7.5.6.1. Vorwartswarp

Die Auswahl der Pixelmenge fiir die Optimierung wurde entsprechend Unterunterab-
schnitt 7.2.6.1 iibernommen. Da die Kosten im Pixelgitter des RD-maps akkumuliert
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werden, werden die validen Pixel via Vorwéartswarp auf das RD-Gitter projiziert:
Pan, RD(PRD) = MFW (Pan; ur(p), !Xr(p)|>- (7.54)

7.5.6.2. Riickwartswarp

Die Auswahl der Pixelmenge fiir die Optimierung wurde entsprechend Unterunterab-
schnitt 7.2.6.1 iibernommen.

7.5.7. Gesamtkosten
7.5.7.1. Vorwartswarp

Durch Akkumulation der Abweichungen nach Gleichung 7.52 {iber die Pixelmenge
Pan, rD ergeben sich die Gesamtkosten beim Vorwértswarp zu

1

m Z lPo,FW(P)- (7-55)
a‘ b

PEPal, RD

Lpo rw =

Beim Vorwértswarp werden die Kosten iiber die validen Pixel im RD-Gitter ermittelt
und akkumuliert.
7.5.7.2. Riickwartswarp

Durch Akkumulation der Abweichungen nach Gleichung 7.53 iiber die Pixelmenge Py
ergeben sich die Gesamtkosten beim Vorwértswarp zu

1
Lpo,pw = Pl > lpopw(P)- (7.56)
alll pep,
Beim Riickwértswarp werden die Kosten iiber die validen Pixel im Kamerabild
ermittelt und akkumuliert.
7.5.8. Initialisierung der Parameter

Die Initialisierung der Netzwerkparameter erfolgt analog zur Beschreibung aus Unterab-
schnitt 7.2.8.

7.5.9. Optimierer

Die Optimierung der Netzwerkparameter erfolgte analog zur Beschreibung aus Unterab-
schnitt 7.2.9.

7.5.10. Trainingsprozess

Der Verlauf der Kosten wahrend des Trainings fiir Vorwérts- und Riickwértswarp ist in
Abbildung 7.25 dargestellt.

Zu erkennen ist, dass bei beiden Schétzern der Trainingsverlauf abflacht. Fiir den
Schétzer mit Vorwértswarp passiert die Reduktion der Trainingskosten zunédchst deutlich
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Abbildung 7.25.: Verlauf des Trainingsprozesses der Leistungsschitzung im
Kamerabild: Fiir Riickwartswarp (,BW*) und Vorwértswarp (,FW*).
Die Kosten wéahrend des Trainings konvergieren bereits nach einigen
Trainingsbeispielen. Nach [EB7].

schneller als fiir den Schétzer mit Riickwértswarp. Insgesamt scheinen die Schétzfehler
beim Vorwartswarp weniger Fluktuationen aufzuweisen als die vom Riickwéartswarp.

Wie zuvor beschrieben, wird erwartet, dass durch Riickwértswarp die Leistung im
Kamerabild tiberschétzt wird. Es werden je nach Szenario also systematische Fehler
induziert, welche das NN-Lernen erschweren. Dies ist beim Vorwértswarp nicht der
Fall. Damit sind nach Ansicht des Autors die schnellere Konvergenz und die geringeren
Fluktuationen beim Vorwartswarp im Schétzfehler also plausibel.

7.5.11. Ergebnis

Nach dem Training der NNen werden nun die Schitzqualitdten im Testdatensatz ermittelt
und bewertet.

7.5.11.1. Beschreibung der Metriken

Als Referenz fiir die Leistung stellt der Radar die RD-map bereit. Dieses fasst nach
Abschnitt 2.1 die Empfangsleistung der Reflexionen aus der Szene zusammen. Dabei ist
zu beachten, dass das FoV des Radars begrenzt ist und keine Reflexionen von auflerhalb
erwartet werden. Bedingt durch die unterschiedlichen FoVs von Kamera und Lidar muss
folglich die Auswertung der Leistungsschitzung auf das FoV des Radars beschréankt
werden. Bereits in Gleichung 7.55 wurden die Abweichungen der Leistung im RD-Gitter
gemessen und iiber valide Pixel im FoV des Radars gemittelt. Fiir die quantitative
Auswertung werden also analog die Schétzfehler fiir Vorwérts- und Riickwértswarp nach
Gleichung 7.55 im Testdatensatz ermittelt und kénnen somit verglichen werden. Zu
beachten ist, dass der Schatzer mit Vorwartswarp bereits nach dieser Metrik optimiert
wurde und folglich bessere Ergebnisse zu erwarten sind. Um einen Eindruck davon zu
bekommen, ob die Schéatzergebnisse biasfrei sind, werden ebenfalls die Residuen, wie
Gleichung 7.55 jedoch ohne Betrag, ermittelt.
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7.5.11.2. Quantitative Auswertung

In Abbildung 7.26 sind die erreichten Metriken von Vorwérts- und Riickwértswarp fir
die Leistungsschitzung auf Kameradaten dargestellt. Die Metriken wurden fiir alle
Bildindices des Testdatensatzes dargestellt, um einen Eindruck iiber die Fluktuation
aller Testbeispiele zu ermoglichen.

In der oberen Zeile sind die mittleren Abweichungen dargestellt, in der unteren Zeile
die mittleren absoluten Abweichungen. Zu beobachten ist, dass beim Riickwéirtswarp
die mittleren Abweichungen durchweg positiv sind, wohingegen beim Vorwartswarp
die Residuen um 0dB schwanken. Die Leistung wurde beim Riickwartswarp also, wie
erwartet, immer iiberschétzt.

Der Riickwéartswarp fiihrt also definitiv nicht zu einem biasfreien Schétzer. Beim
Vorwértswarp ist kein offensichtlicher Bias zu beobachten.

Entsprechend féllt bei Beobachtung der Betragsabweichung auf, dass der Vorwartswarp
geringe Fluktuationen in der Testmetrik aufweist, ein Indikator dafiir, dass das NN hier
besser die Leistungsschitzung generalisieren kann.

60 [ ‘ ° ;Rﬁckwér‘tswarp .
T ' o Vorwartswarp
o LY LT 1T
= H W ‘l. . i ! "' |
§ 20 | i ° B
i oAY i ,
3 0\ Wit ¢ ll'l" lh’ll'ﬂ
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Abbildung 7.26.: Metriken der Leistungsschidtzung: Oben: Residuen fiir Vorwérts-
und Riickwértswarp. Unten: Betragsabweichungen. Nach [EB7].

Die in Abbildung 7.26 dargestellten Metriken wurden aulerdem gemittelt und in
Tabelle 7.9 dargestellt.

In den ersten beiden Zeilen sind die Mittelwerte von Residuen und der Betrag der
Residuen dargestellt. Wie oben beschrieben, hat der Riickwértswarp einen empirischen
Bias von knapp 35dB. Beim Vorwartswarp betrdgt der empirische Bias etwa —2.4dB.
In den unteren beiden Zeilen sind die Varianz der Residuen und die Varianz der
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Tabelle 7.9.: Metiken der Leistungsschéatzung auf Testdatensatz

Metrik Riickwartswarp Vorwértswarp
Residues 34.62 -2.36
|Residues| 34.98 9.59
Var(Residues) 4.45 3.96
Var(|Residues|) 4.34 1.71

Betragsresiduen dargestellt. Wie oben beobachtet, weist Vorwértswarp eine deutlich
verringerte Varianz der Schétzgenauigkeit auf.

7.5.11.3. Qualitative Auswertung

Um einen Eindruck von der Leistungspradiktion zu bekommen, werden wir uns nun ein
paar ausgewéahlte Beispiele aus dem Testdatensatz ansehen. Bei der Selektion wurden
Beispiele ausgewéhlt, in welchen nach Ansicht des Autors interessante Objekte bzw.
Reflektoren abgebildet sind. Ein vollsténdiges Beispiel mit Kamerabild, RD-map, Masken
zu den validen Pixeln, NN-Pradiktion der Leistung in Kamera und RD-Gitter sowie
Abweichungen der Préadiktion gegeniiber RD-map ist in Abbildung 7.27 dargestellt.

In der ersten Zeile sind Kamerabilder und RD-maps der Szene dargestellt. Darunter
die validen Pixel P, und Py, gp- Die Préadiktion der Leistung von Rickwérts- und
Vorwértswarp ist in Zeile drei zu sehen.

In der vierten, die nicht validen Pixel nach P,; maskiert.

In Zeile fiinf sind die Pradiktionen nach dem Warp in das RD-Gitter dargestellt. In
der letzten Zeile sind die Abweichungen der gewarpten Priadiktion gegeniiber RD-map
zu erkennen.

Bei der Szene handelt es sich um ein Parkplatzszenario mit ein paar parkenden Autos
am linken Rand des Kamerabildes. Am rechten Rand sind komplexe Gebaudestrukturen
zu erkennen. Die Pradiktionen der Leistung (Zeile drei) zwischen Riickwérts- und Vor-
wartswarp unterscheiden sich ganz offensichtlich. Die Grauwerte beim Riickwértswarp
scheinen homogen und gefiltert zu sein. Bei Vorwértswarp sind die Grauwerte heteroge-
ner verteilt und es sind schirfere Ubergéinge zwischen den Pixeln zu erkennen. Beim
Vorwértswarp erscheinen die vertikalen Pfosten des Zauns am rechten Bildrand deutlich
intensiver als beim Riickwartswarp.

Bei Betrachtung der Residuen aus der letzten Zeile fillt noch die Uberschitzung
der Leistung durch den Riickwértswarp besonders auf. Beim Vorwértswarp sind die
Residuen mal positiv, mal negativ.

Weitere Beispiele der Inferenz sind in Abbildung 7.28 dargestellt. Um Platz einzuspa-
ren, wurden hier nur die Kamerabilder, RD-maps sowie die Pradiktionen dargestellt. Die
Beispiele wurden manuell ausgewéhlt. Dabei wurden folgende Beobachtungen gemacht.

Beim Beispiel aus der ersten Zeile sind im linken Bildbereich Kettenpfosten zu er-
kennen. Insbesondere beim Verfahren nach Vorwértswarp wurde dort eine erhohte
Reflexionsleistung pradiziert. Nach Ansicht des Autors ist das plausibel, da die Ketten-
pfosten aus Metall bestehen.

Im Beispiel aus der zweiten Zeile ist im linken Bildbereich die Spiegelung eines
Fahrzeuges im Fenster eines Geschéfts zu sehen. Die Prédiktoren schétzen hier erhohte
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Empfangsleistung, was unplausibel ist.

Im Beispiel aus der dritten Zeile wurden bei beiden Prédiktoren die Stellen der
Bordsteinkante préadiziert. Die Signatur der Bordsteinkante ist auch in der RD-map zu
erkennen und daher plausibel.

Im Beispiel aus der vierten Zeile ist eine Leitplanke zu erkennen. In der RD-map
ergibt sich insbesondere bei den Leitplankenpfosten erhéhte Leistung. Die Leitplanke
an sich scheint aufgrund spiegelnder Reflexion nur geringe Leistung in der RD-map her-
vorzubringen. Insbesondere beim Pradiktor nach Vorwartswarp scheint dieses Verhalten
(Pfosten hohe Leistung, Leitplanke geringe Leistung) korrekt abgebildet zu werden.

Im Beispiel aus der funften Zeile ist im linken Bildbereich ein Baum zu sehen. In der
RD-map ist die Signatur des Baumes klar zu erkennen. Auch die Pradiktoren weisen
dem Baum erhohte Reflexionsleistung zu.

Im Beispiel aus der sechsten Zeile sind zwei Fahrzeuge dargestellt. In der RD-map
sind entsprechend zwei Punkte mit erhohter Leistung zu erkennen. Die Pradiktoren
weisen den Fahrzeugen ebenfalls erhohte Leistung zu.

Im Beispiel aus der siebten Zeile ist im linken Bildbereich ein Fahrzeug eines Glaser-
unternehmens abgebildet. Insbesondere das Verfahren nach Vorwértswarp erkennt die
feinen Strukturen der seitlichen Ladefliche und weist diesen, je nach Aspektwinkel, eine
erhohte Leistung zu. Unplausibel erscheint, dass im Bereich der Fahrerkabine deutlich
héhere Leistung préadiziert wurde als im Bereich der Ladefléche.

Im Beispiel aus der achten Zeile ist ein Metallpfosten abgebildet. In der RD-map
ist dieser durch eine punktférmige Signatur abgebildet. Beide Prédiktoren pradizieren
an dieser Stelle eine erhéhte Leistung gegeniiber der Umgebung. Auch dieses Szenario
wurde plausibel pradiziert.

7.5.11.4. Antwort zur wissenschaftlichen Hypothese

In diesem Abschnitt wurde ein Schétzer der Empfangsleistung eines Radars basierend
auf Kameradaten vorgestellt. Nach Wertung des Autors erscheinen die Pradiktionen
der Leistung durchaus plausibel. Es wurde gezeigt, dass durch Verwendung von Riick-
wirtswarp eine systematische Uberschitzung der Leistung entsteht, und diese wurde
technisch begriindet. Durch Verwendung von Vorwértswarp wurde diese systematische
Uberschitzung eliminiert bzw. zumindest deutlich reduziert.

Bei der quantitativen Auswertung aus Unterunterabschnitt 7.5.11.2 wurde die Szene
global ausgewertet. Die Metriken bilden also ein Mittel aus allen moglichen Objektklassen
ab. Fiir zukinftige Auswertungen ist eine dezidierte Auswertung, bezogen auf einzelne
Objektklassen, durchaus interessant, um mogliche systematische Fehler der Pradiktion
aufzudecken.
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Abbildung 7.27.: Beispiel der Leistungsschitzung: 1. Zeile: Kamerabild und RD-
map. 2. Zeile: Valide Pixel in Kamerabild und RD-map. 3. Zeile:
Préadikation durch NN Trainiert via Riickwérts- bzw. Vorwartswarp.
4. Zeile: Wie 3. Zeile, aber nur valide Pixel. 5. Zeile: Pradiktionen pro-
jiziert mittels Vorwértswarp in das RD-Gitter. 6. Zeile: Abweichungen
von Prédiktionen im RD-Gitter gegeniiber RD-map. Nach [EB7].
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Abbildung 7.28.: Weitere Beispiele der Leistungsschitzung: Von links nach rechts:
Kamerabild, RD-map, Pradiktion via Riickwartswarp, Pradiktion via
Vorwértswarp. Verwendet wurde eine ,viridis“ Farbcodierung wobei
hellere Farbwerte eine hthere Empfangsleistung darstellen. Nach [EB7].
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7.6. Zusammenfassung

In diesem Kapitel wurde das in dieser Arbeit vorgestellte Verfahren zum iiberwachten
Training einer NN basierten Radarsignalverarbeitung mittels Warping auf bzw. von Ka-
merabildern validiert. Die Vielfaltigkeit des Verfahrens wurde fiir die unterschiedlichen
Anwendungen der Winkelschitzung, Zieldetektion und Klassifikation von Radardaten, so-
wie der Radarleistungsschitzung aus Kameradaten demonstriert. In allen Anwendungen
konnten plausible Ergebnisse erzielt werden. In den Anwendungen der Winkelschatzung
und Zieldetektion wurden die Leistungsfahigkeit der resultierenden Schatzer gegeniiber
klassischen Schétzern anhand von umfangreichen Echtweltaufnahmen quantifiziert.
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8.1. Zusammenfassung

Der Wunsch nach immer leistungsfédhigeren Advanced-Driver-Assistance-Systems (ADAS)
treibt die Entwicklung beteiligter Systeme wie automatische Perzeption, Bewegungs-
planung und Aktorik immer weiter an. Fiir die Perzeption bieten sich eine Vielzahl
verschiedener Sensoren an, die ein moglichst genaues Abbild der Fahrzeugumgebung
schaffen und ein semantisch automatisiertes Verstdndnis der Szene ermoglichen. Einer
der etablierten Sensortypen sind automotive Radarsysteme. Diese lassen sich aufgrund
ihrer Bau- und Wirkweise versteckt hinter beispielsweise Stofifinger oder Schweller
integrieren, ohne dabei den Ausbreitungspfad der ausgesendeten und an der Umgebung
reflektierten EM-Wellen zu blockieren. Der Sensor besteht neben der Hardware, welche
beispielsweise Radom, Gehduse, Antennendesign und Schaltkreise einschliefit, auch
aus Software. In dieser werden die Reflexionen der Umgebung ausgewertet. Géngige
Algorithmen fiir diese Verarbeitung wurden in Abschnitt 2.1 vorgestellt.

Um dem Wunsch nach leistungsfahiger Perzeption nachzukommen, ist eine Weiterent-
wicklung der Algorithmen denkbar und wahrscheinlich sogar notwendig. Im Rahmen
dieser Arbeit wurde untersucht, inwieweit sich NNe zur Umsetzung dieser Algorithmen
eignen und welchen statistischen Leistungsvorteil diese erreichen kénnen. Das Training
von NNen nach dem Prinzip der Fehlerriickfithrung (engl.: ,error-backpropagation®)
erfordert dabei annotierte Trainingsdaten. Zur Annotation der Trainingsdaten in gréfie-
rer Menge wurde zunéchst ein Versuchsfahrzeug mit Referenzsensorik, bestehend aus
Kamera, Lidar und DGPS-INS, aufgebaut (Kapitel 3). Die Daten der Referenzsensorik
wurden fusioniert und verarbeitet, so dass der wesentliche Messraum des Radarsensors,
bestehend aus den Zustdnden Entfernung, Radialgeschwindigkeit und Einfallswinkel,
abgedeckt werden konnte. Einen wesentlichen Beitrag stellt dabei die Szenenflussschét-
zung aus Kapitel 5 dar, bei welcher durch Fusion aller Sensoren eine verbesserte und am
Radar ausgerichtete Geschwindigkeitsschétzung der Umgebung realisiert werden konnte.

In Kapitel 6 wurde gezeigt, wie Radardaten aus einem RAD-Gitter mittels differen-
zierbarer Warpingschicht in Kamerabilder projiziert werden kénnen. Analog wurde eine
Warpingschicht demonstriert, bei welcher Daten aus dem Pixelgitter der Kamera in das
RAD-Gitter des Radars projiziert werden kénnen. Durch die Projektion zwischen den
Pixelgittern von Kamera und Radar und der damit verbundenen Assoziation der Pixel
lassen sich die automatisiert generierten Annotationen der Kamera nutzen, um ein iiber-
wachtes Training einer NN-basierten Signalverarbeitung zu ermoglichen. In Kapitel 7
wurde dies ausgiebig an Beispielen wie einer Winkelschétzung, einer Zieldetektion und
semantischen Segmentierung von RD-Spektren demonstriert. Es wurde gezeigt, dass
die NN-basierte Signalverarbeitung mindestens ebenbiirtige Schiatzgenauigkeiten gegen-
iiber klassischen Signalverarbeitungsverfahren unter realistischen Umgebungsszenarien
erreichen kann.

Die Assoziation von Radar- und Kamerapixeln erlaubt dariiber hinaus das Trainieren
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einer NN-Signalverarbeitung der Kameradaten mit Hilfe der Annotationen aus dem
RAD-Gitter. Dies wurde am Beispiel einer Leistungsschitzung demonstriert, bei welcher
ein NN die Radarempfangsleistung aus den Kameradaten pridiziert. Die Ergebnisse
sind vielversprechend und in Summe biasfrei, wenn auch nicht immer plausibel.

Der CUDA und PyTorch basierte Code fiir den Vorwirtswarp wurde unter
https://github.com/ChrGri/Forward-Warp veroffentlicht.

8.2. Ausblick

Insbesondere bei der Priadiktion der Radarempfangsleistung aus Kamerabildern ergibt
sich nach Empfinden des Autors grofies Entwicklungspotential. Die Leistungsschitzung
koénnte tiefere Einblicke in die Wahrnehmung durch den Radar ermdéglichen und bei
der Auswertung zum Beispiel bei der Simulation von anderen Radarkonfigurationen
nitzlich sein. Ebenfalls niitzlich konnte die Leistungsschétzung fiir die Validierung von
Radarperzeptionsalgorithmen sein, da sie einen Einblick in das liefert, was fiir den Radar
potenziell sichtbar oder unsichtbar ist.

Beim vorgestellten Leistungsschétzer wurde eine kohdrente Summation der reellwerti-
gen Kamerapixel durchgefiihrt. Es ist denkbar, hier noch die Phasenlagen der Wellen
zu schétzen. Auflerdem konnte eine Raytracing-Schicht entwickelt werden, welche Mehr-
wegereflexionen nachbildet. Durch beides kénnte das zu schétzende Verhalten durch
teilweise ,,white box engineering” stiickweise vorgegeben und das Schéitzproblem des
NN so vereinfacht werden.
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A. Anhang

A.1. Untersuchungen zum Umgang mit Labelnoise durch
Optimierung im Skalierungsraum

Beim Warping der Netzwerkpradiktionen vom RD-Gitter in das Kamerabild kann es
durch fehlerhafte Schéitzung der Warpingparameter (Entfernung, Geschwindigkeit und
Winkel) zu einer fehlerhaften Positionierung im Kamerabild kommen. Durch die falsche
Positionierung im Kamerabild werden die Netzwerkpradiktionen im Trainingsprozess
mit falschen Zielwerten verglichen, im Allgemeinen auch , Label-noise“ genannt, wodurch
eine Degradation des Trainingsprozesses moglich ist. Es wird daher zusétzlich untersucht,
ob es vorteilhaft ist, die Auflésung des Radars virtuell zu reduzieren, um somit die
Anforderung an die Warpingparameter zu reduzieren und den Einfluss fehlerhafter
Warpingparameter auf den Trainingsprozess zu reduzieren.

Um das Auflésungsvermégen des Radars virtuell zu reduzieren, wird auf die Netz-
werkpradiktion im RD-Gitter ein 2D-Mittelwertfilter angewendet. Zwar bleibt damit
die Dimension des RD-Gitters konstant, jedoch werden die Netzwerkpradiktionen in
umliegende Pixelnachbarschaften tibertragen und bilden mit der Pixelnachbarschaft eine
Linearkombination, welche den Wert der gefilterten Pradiktion bestimmt. Nun wird nicht
die urspriingliche Pradiktion in das Kamerabild gewarpt, sieche Unterabschnitt 7.2.4,
sondern die mittelwertgefilterte Pradiktion. Fiihren fehlerhafte Warpingparameter beim
Training nun dazu, dass nicht das korrekte Pixel aus dem RD-Gitter in das Kamerabild
gewarpt wird, sondern eins aus seiner Pixelnachbarschaft, so steckt in dieser Pixelnach-
barschaft auch die Pradiktion der korrekt gewarpten Pixels. Wird im Trainingsprozess
die Pixelabweichung fiir ein Kamerapixel berechnet, so hat das Parameterupdate fiir
alle RD-Gitter-Pixel aus der Pixelnachbarschaft Folge.

Durch die Mittelwertfilterung der Pradiktion werden leider auch Pradiktionen von
RD-Gitter-Pixel trainiert, welche moglicherweise gar nicht zum Kamerapixel passen.
Um diese ungewollten Trainingspfade zu blockieren bzw. abzuschwéchen, wird kein
klassisches Mittelwertfilter verwendet, sondern eine gewichtete Mittelung anhand der
Leistung aus der RD-map. Die Wichtung beriicksichtigt die Leistung im RD-Gitter, so
dass Pixel mit hoherer Intensitdt groferen Einfluss haben:

d)prediction, scaled (U, v, 8) =
Ziszfs Zf/s:fs d’prediction(u + us, v + vs)(RD[u—l-us,v—Fvs] —~RDyin)
(23 + 1)2 Ziszfs Ef}s:fs(RD[u—ku&v-kvs] - RDmin)

(A1)

Hier entspricht RD[(W)] —RDyi, der Leistungsdifferenz des Pixels und der global mi-
nimalen Leistung, so dass ausschliefllich positive Gewichtungen auftreten. Der Parameter
s bestimmt die Fenstergrofie der Faltung, welche zu 2s + 1 festgelegt wurde.
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Die Pridiktion ¢prediction, scaled (4 v, 8) soll sich somit automatisch an die Position der
Leistungssignatur in der RD-map angleichen und mégliche Fehler im Bereich der Grofle
des Faltungskerns in der Positionierung ausgleichen. Das Ergebnis dieser Skalierung ist
in Abbildung A.1 an simulierten Daten fiir s = 0 und s = 2 dargestellt.

@pred.,scaled(s =0)=-11.2°

djpred.,scaled(s = 2) =1°

-10 0 10 20
SNR in dB — Ppred. iIn ° —

Abbildung A.1.: Beispiel fiir die Pradiktion im Skalierungsraum: Links: Aus-
schnitt einer simulierten RD-maps. Rechts: Winkelschétzungen fiir
jedes Pixel. In roten Késten dargestellt, sind die nach Gleichung A.1
gemittelten Winkelschétzungen fiir s = 0 und s = 2. Der Zielwert des
Winkels fiir die Signalanteile betragt 0°. Fiir das Hintergrundrauschen
wurde der Winkel aus einer Gleichverteilung gezogen. Zu erkennen ist,
dass bei s = 2 der pradizierte Winkel nur um 1°, statt zuvor 11.2° vom
Zielwert 0° abweicht.

FEine fehlerhafte Geschwindigkeitsschétzung der Referenzsensorik wurde simuliert, in
der nicht ein lokales Maximum selektiert wurde, sondern ein horizontal dazu versetztes
Pixel, hervorgehoben durch das kleine rot dargestellte Késtchen. Als Zielwinkel fiir alle
Ziele wurde 0° eingestellt und der Winkel aller Pixel mit einem zusétzlichen Winkel
aus einer Gleichverteilung beaufschlagt, um iiberlagertes Rauschverhalten nachzustellen.
Nun wurde der gemittelte Winkel fiir s = 0 (kleine rote Késtchen) und s = 2 (grofere
rote Késtchen) geméafl Gleichung A.1 berechnet und entsprechend in die Abbildung
eingetragen. Zu erkennen ist, dass der gemittelte Winkel fiir s = 0 etwa —11.2° entspricht,
was gegeniiber dem Zielwert von 0° einer ebenso groflen Abweichung entspricht. Der
gemittelte Winkel bei s = 2 entspricht dagegen 1°, was einer deutlich geringeren
Abweichung entspricht. Durch die geringe Abweichung zum Zielwert wird eine geringere
Anpassung der Netzwerkparameter wahrend des Trainings erzwungen. Dieser Effekt ist
erwiinscht, da die Abweichung zum Zielwert hier primér durch fehlerhafte Assoziation
von Zielwerten und Préadiktionen zwischen Kamerabild und RD-Gitter entstanden ist.

Da die optimale Wahl von s nicht bekannt ist, werden mehrere gemittelte Netz-
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werkpradiktionen aus dem Wertebereich S = [0, 1, 2] parallel ermittelt, fir jede die
Abweichung gegeniiber den Zielwerten ermittelt und wiederum gewichtet gemittelt.

Bei Anwendung des Skalierungsparameters s sind die gewarpte Pradiktion, die Pixel-
kosten und die Gesamtkosten folgendermaflen zu adaptieren:

¢predict, cam(P; 8) = BW <¢prediction, scaled (8); vr(P), |X7~(p)|>. (A.2)
Ipoa (P, s) = \/(¢label(p) - ¢predict, cam (P 5)2 +10°6. (A.3)
&l 1
lDOA, all = Z IPH—P Z Ipoa(P; 8)- (A.4)
s=0 all tra1n| PEPanNPirain

Es wird nun untersucht, wie sich das Training im Skalierungsraum nach dem oben
genannten Vorgehen auf die Qualitdt der Inferenz fiir Winkelschédtzung auswirkt. Dazu
werden die in Tabelle A.1 spezifizierten NN Parametrierungen trainiert. Es werden also
zwei Netwerkarchitekturen (1x und 3 x 3) jeweils mit oder ohne diese Pixelselektion
getestet.

Tabelle A.1.: NN Architekturen und Konfigurationen mit Skalierungsriumen
der Pradiktionen.

Name Faltungskern Schichtmodifizierer (t) Skalierungsebenen

NNy 1x1 3 0
NNy 1x1 3 2
NNg 3% 3 1 0
NN, 3x3 1 2

A.1.1. Trainingsprozess

Analog zu Unterabschnitt 7.2.10 wurde da Training fir die NN nach Tabelle A.1
durchgefiihrt. Der Verlauf der Trainingskosten ist in Abbildung A.2 gezeigt.

Auch hier ist eine Konvergenz der Schétzer nach wenigen Beispielen zu beobachten.

A.1.1.1. Quantitative Auswertung

Analog zu Unterunterabschnitt 7.2.11.3 ist eine quantitative Auswertung vorgenommen
worden. Das erreichte MAE der Schétzer ist in Abbildung A.3 {iber das SNR aufgetragen.
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Abbildung A.2.: Verlauf des Trainingsprozesses der Winkelnetzwerke: Die Kos-

ten wiahrend des Trainings konvergieren bereits nach einigen Trainings-
beispielen.

SNR in dB —

— NN, NN,— NN, — NN, - - - NN,
- NN,---NNy---NN,——PM  BF

Abbildung A.3.: Qualitdtsmafle der Winkelschitzer iiber SNR: Die mittlere abso-

lute Abweichung der Winkelschétzer iiber SNR. Vergroflert dargestellt
sind jeweils ein Bereich niedrigen SNRs, mittleren SNRs und hohen
SNRs.
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Wie zuvor auch, ist die bessere Schétzgenauigkeit bei steigendem SNR. zu beobachten.
Zur besseren Ubersicht wurden die Schéitzer an drei Stiitzstellen entsprechend erreichtem
MAE hierarchisch in Tabelle A.2 aufgelistet.

Tabelle A.2.: Hierarchische Einordnung der Schitzer entsprechend erreichter

MAE.
| SNR5dB SNR 20dB SNR 35 dB
NN, NN, NN,
PM NNy NNy
1| NNj NNj NNj
€a) NNy NNy NNy
S| NN PM NNg
BF NNg NNy
NNj NN, PM
NN- NNj NNj
NN, BF NN7
NNg NN- BF

Zur Untersuchung des Einflusses mit der Optimierung der NN im Skalierungsraum
sind geméafl Tabelle A.2 die NN Paare NNy vs. NNo, NN; vs. NN3, NNy vs. NNg und
NNy vs. NN7 zu vergleichen. In Tabelle 7.3 zeichnet sich kein klarer Unterschied zwischen
NNen mit oder ohne Skalierungsraumoptimierung ab. Bei den iiber den gréfiten Teil
des SNR-Bereichs am besten verhaltenden NNen, NN5 und NN, handelt es sich um
ein oberes Paar mit und ohne Skalierungsraumoptimierung. Das Paar erreicht durchweg
ein nahezu identisches MAE. Es wird geschlussfolgert, dass die hier implementierte
Art der Skalierungsraumoptimierung keinen signifikanten Einfluss auf die Qualitéat der
Winkelschatzer beim verwendeten Datensatz hat.

Um auch hier eventuelle Winkelinhomogenitéten aufzudecken, wurde in Abbildung A.4
das erreichte MAE iiber Einfallswinkel und SNR aufgetragen.

Fiir die NN mit Optimierung im Skalierungsraum (NNo, NN3, NNg und NN7) sehen
die Abbildungen unwesentlich anders aus gegeniiber den Abbildungen der reguldren NN
(NN(), NNl, NN4 und NN5).

A.1.1.2. Zusammenfassung

Bei der quantitativen Analyse konnten keine signifikanten Unterschiede durch die
Anwendung der Optimierung mit Skalierungsebenen beobachtet werden. Es wird daher
geschlussfolgert, dass die Optimierung mit Skalierungsebenen hier keinen signifikanten
Einfluss auf die Qualitdt der Winkelschitzgenauigkeit hat.
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Abbildung A.4.: 2D MAE Histogramme: Darstellung der Abhéngigkeit von MAE
gegeniiber von SNR und Einfallswinkel.
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A.2. Gegeniiberstellung von Aspektwinkel und SNR fiir
Zieldetektion

In Unterunterabschnitt 7.3.2.3 wurde eine statistische Untersuchung von Aspektwin-
kel und SNR durchgefiihrt. Es wurden automatisch Bildregionen markiert, welche
dem eingefithrten Modell widersprechen. In Abbildung A.5 sind weitere Beispielframes

dargestellt.
T

-20 40 0 02 04 06 0.8 10 40
SNR, in dB — Aspektwinkelwert — SNR indB —

(a) Beispiel 1

20 0 20 40
SNR in dB — Aspektwinkelwert — SNR in dB —

(b) Beispiel 2

-20 0 20 40 60 0 0.2 04 0.6 0.8
SNR in dB — Aspektwinkelwert — SNR in dB —

(c) Beispiel 3

Abbildung A.5.: Gegeniiberstellung von Aspektwinkel und SNR: Links: Proji-
ziertes SNR; Mitte: Aspektwinkel-Wert; Rechts: Projiziertes SNR und
farblich markiert (pink, orange) Abweichungen von der Modellbeschrei-
bung.

A.2.1. Gegeniiberstellung NN und CFAR Pradiktion fiir Zieldetektion

Um die Unterschiede zwischen den Detektoren weiter zu analysieren, wurden die Bi-
niarmasken! der Zieldetektoren miteinander verglichen, um so etwaige Unterschiede
untereinander ausfindig zu machen. Fiir diesen Vergleich wurden die Bindrmasken aus

' Als Bindrmaske wird die Klassifikation der Pixel der RD-map bezeichnet
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allen Frames mittels des aus der Bildverarbeitung bekannten Verfahrens Structural-
Similarity-Index (SSIM) nach [WBSS04] in Bezug gebracht. Beim SSIM werden die
Leuchtdichte, der Kontrast und die Struktur der Bilder miteinander verglichen und in
Form eines Skalars im Intervall [0, 1] angegeben. Hohere Werte werden bei sich stérker
dhnelnden Bildern erzeugt. Eine tiefere Beschreibung der Metrik wiirde den Rahmen
dieser Arbeit sprengen. Der interessierte Leser sei deshalb auf oben genannte Literatur
verwiesen.

Sicherlich sind auch andere Metriken zum Vergleich der Bildinhalte verwendbar.
Aufgrund der Popularitéit wurde sich fiur SSIM entschieden. Die SSIM-Metrik ist fiir
simtliche Bildindizes aus dem Testdatensatz in Abbildung A.6 dargestellt.

'hu“ug , !rugllm".. a

1

|

0.8

T

SSIM —

0 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4

Bildindex — 104

Abbildung A.6.: Structual Similarity der Detektionen aus CFAR und NN: Zum
automatischen Identifikation der sich am starksten und am schwéchsten
dhnelnden Detektionen, wurde der SSIM fiir alle Frames berechnet.

In Abbildung A.6 ist zu erkennen, dass der SSIM zwischen NN-basierter Detektion
und CFAR-Detektion hier immer Werte oberhalb von 0.5 annimmt und gréftenteils
oberhalb von 0.8 liegt. Die SSIM-Werte ermoglichen nun das Sortieren der Bindrmasken
entsprechend dieser automatisch ermittelten Ahnlichkeit und somit das Auffinden
von Beispielen, bei denen CFAR und NN besonders dhnliche oder unterschiedliche
Detektionen erreicht haben. Anhand des SSIM wurden automatisch die fiinf Frames
mit der geringsten Ubereinstimmung ausgewéihlt und in Abbildung A.7 dargestellt.
Die fiinf Frames mit der groften Ubereinstimmung wurden analog in Abbildung A.8
dargestellt. Bei den Frames mit der groBten Ubereinstimmung ist, wie zu erwarten, nur
ein geringer optischer Unterschied zwischen NN und CFAR-Pradiktion auszumachen.
Aus Sicht des Autors ist es hier nicht mdoglich, eines der beiden Verfahren zu préferieren.
In den Beispielen mit der geringsten Ubereinstimmung dagegen scheint die Pradiktion
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des NN eine bessere Segmentierung der RD-maps durchgefithrt zu haben. Der Detektor
schldgt in Bereichen erhohter Leistung héufiger an als der CFAR-Detektor, erzeugt
aber keine offensichtlichen Falschdetektionen. Nach Meinung des Autors kénnte dieser
Unterschied durch eine statistische Optimierung des CFAR-Detektors angepasst bzw.
minimiert werden. Aus den Beispielen kann jedoch geschlossen werden, dass der NN-
basierte Detektor plausible Entscheidungen trifft und das Training mittels Aspektwinkel
erfolgreich durchgefiihrt werden konnte.
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(d) Beispiel 4
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(e) Beispiel 5

Abbildung A.7.: Optischer Vergleich der Detektoren (niedrige Ubereinstim-

mung): Detektionen mit grofiter SSIM Abweichung. Von links nach
rechts: RD-map, NN Pradiktion TDredict, RD-grids TDpredict, RD-grid >
0.5, CFAR Pradiktion
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Imageldx: 25118  Prediction Bin. sim.: 0.98682 SSIM: 0.93994
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(a) Beispiel 1
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(b) Beispiel 2
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(c) Beispiel 3
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(d) Beispiel 4
Imageldx: 27096  Prediction Bin. sim.: 0.98893 SSIM: 0.95539
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(e) Beispiel 5

Abbildung A.8.: Optischer Vergleich der Detektoren (hohe Ubereinstimmung):
Detektionen mit groBter SSIM Ahnlichkeit. Von links nach rechts:
RD-map, NN Pradiktion TDpredict, RD-grid> TDpredict, RD-grid > 0.9,
CFAR Prédiktion
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A.3. Konfusionsmatritzen

Bei der Bewertung der semantischen Segmentierung wurden die Klassifikationsraten der
Schétzer herangezogen. Die Klassifikationsrate ist die Wahrscheinlichkeit, mit welcher
die Klasse der Objekte korrekt geschéitzt wurde. Da neben der korrekten Klassifikation
auch die Analyse der Falschklassifikationen interessant sein mag, sind in Tabelle A.3 -
A.10 die Konfusionsmatrizen der Schétzer dargestellt.

In den Konfusionsmatrizen sind zeilenweise die tatsédchlichen Klassen der Objekte
gesammelt, spaltenweise die Pradiktionen zu diesen Klassen. In der ersten Zeile sind
somit Objekte vom Typ ,,Stationir“ gesammelt und die Wahrscheinlichkeiten, mit
welchen diese entsprechend als ,,Stationdr, ,Fufigdnger® oder ,Fahrzeug“ klassifiziert
wurden.

Zu erkennen ist, dass je nach Parametersatz die Klassifikationsraten der Schétzer
fur die jeweiligen Klassen beeinflusst werden. Zum Beispiel wurde fur Paremeterset 4
nur eine Klassifikationsrate fiir Fahrzeuge von etwa 36% erreicht. Im Vergleich dazu
wurde bei Parameterset 1 eine Klassifikationsrate von etwa 75% erreicht. Die Wahl der
Parameter hat also einen erheblichen Einfluss auf Klassifikation und kann somit als
Werkzeug fiir das Tuning der selbigen verstanden werden. Die Wahl der Tuningparameter
héngt vom Fokus der Echtweltanwendung ab und wird deshalb im Rahmen dieser Arbeit
nicht weiter spezifiziert.

Tabelle A.3.: Konfusionsmatrix fiir semantische Segmentierung: Angaben in %,
Parameterset 1

Pradiktion
Stationdr Fussgédnger Fahrzeug
o o Otationdr 97.66 2.11 0.23
% 2 FuBgénger | 60.12 32.2 7.69
= & Fahrzeug 19.5 5.53 74.97

Tabelle A.4.: Konfusionsmatrix fiir semantische Segmentierung: Angaben in %,
Parameterset 2

Pradiktion
Stationdr Fussgédnger Fahrzeug
o o Otationdr 96.17 3.8 0.02
= % FuBginger | 50.38 47.28 2.33
= & Fahrzeug 19.09 23.7 57.21
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Tabelle A.5.:

Tabelle A.6.:

Tabelle A.7.:

Tabelle A.8.:

Tabelle A.9.:

Konfusionsmatrix fiir semantische Segmentierung: Angaben in %,
Parameterset 3

Pradiktion
Stationdr FuBginger Fahrzeug
o o Stationir 94.19 5.77 0.04
£ % FuBginger | 396 59.57 0.82
= & Fahrzeug 16.98 23.15 59.86

Konfusionsmatrix fiir semantische Segmentierung: Angaben in %,
Parameterset 4

Pradiktion
Stationdr Fufginger Fahrzeug
o o Otationdr 95.67 4.3 0.03
£ 7 FuBginger | 50.52 48.99 0.48
= & Fahrzeug 18.93 45.05 36.02

Konfusionsmatrix fiir semantische Segmentierung: Angaben in %,
Parameterset 5

Pradiktion
Stationdr Fufiginger Fahrzeug
o o Otationdr 96.16 3.82 0.02
= % Fubgénger | 50.64 49.28 0.08
= & Fahrzeug 19.25 33.44 47.31

Konfusionsmatrix fiir semantische Segmentierung: Angaben in %,
Parameterset 6

Pradiktion
Stationdr Fufiginger Fahrzeug
o o Otationdr 95.53 4.39 0.08
%‘ 2 FuBgéinger | 43.92 53.17 2.91
= &  Fahrzeug 16.5 17.57 65.93

Konfusionsmatrix fiir semantische Segmentierung: Angaben in %,
Parameterset 7

Pradiktion
Stationdr FuBginger Fahrzeug
o o Stationdr 91.36 8.6 0.05
% 2 FuBgéinger | 40.43 53 6.57
= & Fahrzeug 17.18 16.39 66.42
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Tabelle A.10.: Konfusionsmatrix fiir semantische Segmentierung: Angaben in %,
Parameterset 8

Pradiktion
Stationdr FuBiginger Fahrzeug
o o Stationir 91.14 8.82 0.04
£ % FuBginger | 4351 56.37 0.12
= & Fahrzeug 15.16 42.6 42.24

A.4. Beispiele der semantischen Segmentierung

Nachfolgend sind einige zusétzliche Beispiele der semantischen Segmentierung dargestellt.
In Abbildung A.9 ist ein Szenario mit bewegtem Ego-Fahrzeug zu sehen. Das Ego-
Fahrzeug wird von einem Kleintransporter verfolgt. Dieser wird korrekt durch das NN
als bewegtes Fahrzeug klassifiziert. Der gehende Fuigdnger im linken Bildbereich von
Kamera 2 wurde filschlicherweise als stationér klassifiziert.

Kamera 1 Kamera 2 RD-map

bﬁo 100 T
=

= 0 g
€3 0
1 Doppler — r%
Stationir T Fufiginger T Fahrzeug T
1 2 1 ¥ 1 ¥
iy iy iy
b 2 b1 2 2
0 = 0 < 0 =
Z Z, Z
Z Z Z
Stationir T Fulgiéinger T Fahrzeug T
1 2 1 2 1
oy ¥ i
b1 2 sz g 2
2 X 2 X 2 =
Z Z Z
Z Z Z

Abbildung A.9.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben fiir die Klassen
yotationdr®, | Fuflgdnger® und ,Fahrzeug® gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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In Abbildung A.10 ist ein Szenario mit bewegtem Ego-Fahrzeug zu sehen. Im linken
Bildbereich von Kamera 2 ist ein Fugdnger zu sehen, welcher neben einem parkenden
Fahrrad steht. Dieser wurde korrekt als stationér klassifiziert.
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Abbildung A.10.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben fiir die Klassen
L,otationdt®,  FuBginger* und ,,Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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In Abbildung A.11 ist ein Szenario mit stehendem Ego-Fahrzeug zu sehen. Im Bild
von Kamera 2 sind ein weiteres stationédres Fahrzeug sowie ein sich bewegendes Fahrrad
samt Fahrer zu sehen. Fahrzeug und Fahrrad wurden korrekt als stationdr und Vehikel
klassifiziert.
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Abbildung A.11.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben fiir die Klassen
Hotationdt®,  FuBginger* und ,,Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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A.4. Beispiele der semantischen Segmentierung

In Abbildung A.12 ist ein Szenario mit fahrendem Ego-Fahrzeug zu sehen. Im Bild
von Kamera 2 sind parkende Fahrzeuge zu sehen. Diese wurden korrekt als stationar
erkannt.
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Abbildung A.12.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben fiir die Klassen
L,otationdt®,  FuBginger* und ,,Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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A. Anhang

In Abbildung A.13 ist ein Szenario mit fahrendem Ego-Fahrzeug zu sehen. Die
Umgebung ist stationédr und wurde folgerichtig als stationér klassifiziert.
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Abbildung A.13.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben fiir die Klassen
H,otationdt®,  FuBginger* und ,,Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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Akronyme

ADAS Advanced-Driver-Assistance-Systems.

ADU Analog-Digital-Umsetzer.

BBox Bounding-Box.
BF Beamforming.

Bl bilineare-Interpolation.

CA-CFAR Cell Averaging Constant False Alarm Rate.
CAD Computer-Aided-Design.

CFAR Constant-False-Alarm-Rate.

CNN Convolutional-Neural-Network.

CS Chirp-Sequence.

DBSCAN Density-Based-Spatial-Clustering-of- Applications-with-Noise.

DFT Diskrete-Fourier-Transformation.

DGPS Differential-GPS.

DGPS-INS Differential-GPS-with-Inertial-Navigation-System.
DNN Deep-Neural-Network.

DoA Direction-of-Arrival.

DRISF Deep-Rigid-Instance-Scene-Flow.

DRISFwR Deep-Rigid-Instance-Scene-Flow-with-Radar.
EM elektromagnetische.

FFT Fast-Fourier-Transformation.
FMCW Frequency-Modulated-Continuous-Wave.
FoV Field-of-View.

FPS Frames-Per-Second.
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Akronyme

FT Fourier-Transformation.

GAN Generative-Adversarial-Network.
GN Gaufl-Newton.
GPS Global-Positioning-System.

GPU Graphics-Processing-Unit.
ICP Iterative-Closest-Points.
KOOS Koordinatensystem.
LKW Lastkraftwagen.

MAE Mean-Absolute-Error.
MloU Mean-Intersection-over-Union.
ML Machine-Learning.

MTI Moving-Target-Indication.

NN neuronale Netzwerke.

NNI Nachster-Nachbar-Interpolation.

PC Personal-Computer.
PCA Prinicipal-Component-Analysis.
PKW Personenkraftwagen.

PM Phase-comparison-Monopulse.

RA range-Azimuth.

RAD range-azimuth-Doppler.

RAED range-azimuth-elevation-Doppler.
RCS Radar-Cross-Section.

RD range-Doppler.

RGB Red-Green-Blue.

RNN Recurrent-Neural-Network.

Rx Receiver.

SAR Synthetic-Aperture-Radar.
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SNR Signal-to-noise-ratio.

SSIM Structural-Similarity-Index.

STFT Short-Time-Fourier-Transformation.

Tl trilineare-Interpolation.

UAV Unmanned-Aerial-Vehicle.
UDP User-Datagram-Protocol.

ULA Uniform-Linear-Array.
VAE Variational-Autoencoder.

WDF Wahrscheinlichkeitsdichtefunktion.
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Notationen und Symbole

Notationen

Zur einheitlichen Darstellung in dieser Arbeit werden folgende Notationen verwendet:

e Zur Unterscheidung von Skalaren, Vektoren und Matrizen werden Kleinbuchstaben,
Kleinbuchstaben in Fett und Groflbuchstaben in Fett verwendet, z.B. z, x und ,
X.

e Zur Darstellung von Mengen, wird die kalligrafische Darstellung verwendet, z.B.
X.

e Zusatzinformationen wie Koordinatensystem, Namen, Indices werden als Klein-
buchstaben an die Variable angehéngt, z.B. x;. Zur Indexierung von Matrixelemen-
ten, z.B. Zeilen- und Spaltenindex, werden diese tiefgestellt in eckige Klammern
notiert, z.B. Xp[z’j}-

o Zeitliche Kennzeichnung von Symbolen werden durch hochgestellte, in runden
Klammern notierte Ziffern notiert, z.B. 2.

e Als Dezimaltrennzeichen bei Zahlenangaben wird ein Punkt verwendet, z.B. so
dass €1.23 dem Wert ,ein Euro dreiundzwanzig Cent* entspricht.

o Komplexe Konjugation wird durch hochgestelltes Sternchen X* gekennzeichnet.

Symbole

Kapitel 2

DAz o Azimutwinkel der Reflexion

Dl o Elevationswinkel der Reflexion
Do Position des Reflektors in Reflektorkoordinaten
T o Position des Reflektors in Radarkoordinaten
A Relativer Abstand des Reflektors

A Wellenlénge

Spd e komplexwertiges Range Doppler FFT Spektrum
RD .................. RD-map
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Notationen und Symbole

Kapite

Kapite

13

14

RGB .................

Pr = [ur, Ur]t .........
P(Epadar) «vvevroernnns

£radar6

3D Koordinaten im Koordinatensystem J in Vektorschreibweise
Rotationsmatrix zur Drehung vom Ursprungskoordinatensystem J
in das Zielkoordinatensystem [

Translationsvektor zur Verschiebung der Koordinaten vom Ur-
sprungskoordinatensystem J in das Zielkoordinatensystem I

Kamerabild mit RGB Farbkanélen

Spérliche Tiefenmaske

Dichte Tiefenmaske

Maske der Oberflichennormalen

Maske der semantische Instanz-Segmentierung
Instanz-Maske fur Fahrzeuge

Instanz-Maske fiir Fuflginger

Maske des optischen Flusses

Menge der durch DBSCAN geclusterten Pixel

Menge aller Pixel der Klassen Fu3gdnger oder Fahrzeug

Menge aller Pixel im Radar FoV

Schnittmenge aller Pixel aus Radar FoV und verfeinerter Instanz-
Segmentierung via DBSCAN

Szenenfluss eines Pixels (R3*1)

Szenenfluss induziert durch Bewegung der Kamera iiber Grund
(R3><1)

Szenenfluss induziert durch Bewegung von Aktoren iiber Grund
(R3><1)

Pixel im Kamerabild (N2X1)

Pixel in der RD-map (N2*1)

Radiale Geschwindigkeit eines Punktes im Radarkoordinatensystem
Kartesische Geschwindigkeit eines Punktes im Radarkoordinatensys-
tem

Rotationsmatrix zur Aufpriagung der Drehung bedingt durch Ego-
Bewegung, fiir Punkte gegeben im Kamera-Koordinatensystem
Translationsvektor zur Aufpragung der Translation bedingt durch
Ego-Bewegung, fiir Punkte gegeben im Kamera-Koordinatensystem

Szenenfluss eines Pixels (R3*! im Radarkoordinatensystem)
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Kapitel 6
RDgy oot Auf das Pixelgitter des Kamerabildes projizierte RD-map

NBW | ZRD-grid; 7 r) .. Riickwartswarp Operation

MFW | Zeam; 7 7’) ..... Vorwiartswarp Operation
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1.1.

2.1.
2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

3.1.

Ubersicht iiber die Trainingspipeline zum iiberwachten Lernen
eines Radar NIN: Das NN auf der rechten Seite wird durch Radardaten
gespeist und fiithre eine Inferenz aus. Diese Inferenz wird durch die
Warping Schicht auf das Kamerabild projiziert und mit den Zielwerten
aus dem optischen Modell verglichen. Etwaige Abweichungen werden
durch Fehlerriickfithrung durch die Schichten propagiert und entsprechend
die NN Parameter optimiert. Die Warpingschicht wird durch Szenenfluss
und Tiefenschétzung im Kamerabild unterstiitzt. Nach [EB6]. . . . . . .

Patentzeichung: zur Schifffernortung aus [Hii04a]. . . . ... ... ..

Reflexion an Grenzflichen: Ein von oben links kommender Strahl wird
an der Grenzflache (Trennfliche zwischen oberer und unterer Halbebene)
in das Material und die Umgebung reflektiert. Eintreffende und reflektie-
rende Strahlen sind rot dargestellt. Senkrechte und parallele Polarisation
zur Bildebene sind blau und griin dargestellt. . . . . . .. .. ... ...

Transformation der Koordinatensysteme: Reflektor im Radar Ko-
ordinatensystem, adaptiert von [Gva,Bos]. . . . ... ... ... ...

Signalmodulation und Vorverarbeitung: Dargestellt sind die vier
elementaren Verarbeitungsschritte bei CS Modulation. . . . . . . .. ..

Abbildung einer typischen Fahrszene mit stationiren Objekten:
Links: Kameraabbildungen rechts aus dem Fahrzeug heraus, sowie nach
hinten gerichtet. Rechts: RD-map der Szene. Bildhelligkeit verhélt sich
proportional zur Leistung. Szeneninhalt im Kamerabild und RD-map
wurden durch farbige Rechtecke verbunden. . . . . . . .. .. .. .. ..

Zieldetektion mittels CFAR: Links: Typisches RD-map aus Fahrszene.
Mitte: Ergebnis der Rauschlevelschidtzung mit N = 5. Rechts: Ergebnis
der CFAR-Detektion. Heller Bildbereiche entsprechen Bewertung nach
Hy Hypothese. . . . . . . . . . .

Phasenlage der reflektierten Welle an Empfangsantennen: Lage
EM-Wellen strahlen in lineares Antennenarray. In rot gezeichnet sind
beispielhafte Wellenfronten. Durch die unterschiedliche Position der An-
tennen ergeben sich unterschiedliche Phasenlagen der Wellen. . . . . . .

Qualitative Darstellung und Ausrichtung der Koordinatensys-
teme: Rot: Fahrzeug-KOOS; Griin: Lidar-KOOS; Blau: DGPS-KOOS;
Lila: Kamera-KOOS; Orange: Radar-KOOS. Nach [EB6]. . .. ... ..
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Abbildungsverzeichnis

3.2. Horizontierung der Bodenreflexionen aus Lidarsensor: Links:
Die schwarzen Punkte markieren die als Boden detektierten Punkte,
die roten Punkte entsprechend Ausreifler bei der RANSAC-Schétzung.
Ebenfalls eingetragen sind qualitative Darstellungen der identifizierten
Oberflichennormalen ng,¢ , der Zielausrichtung der Oberflichennormalen
Nyert, und der Drehachse ngyat.. Rechts: Darstellung der Bodenreflexionen
(schwarz) und Ausreiler (rot) nach der Rotation. . . . . . .. ... ...

3.3. Verfolgung wichtiger keystones in der Lidar-Punktwolke: Links:
Darstellung der nicht in der Fahrbahnebene liegenden Punktwolke sowie
der detektierten keystones im Grauwertbild. Rechts: Tracks der keystones
nach Geradeausfahrt des Fahrzeuges. Die Tracks verlaufen im Winkel o
zur Bildhorizontalen. . . . . . . .. ..o oo

3.4. Rektifizierung des Kamerabildes: Links: unbearbeitetes Bild RGB st -

Rechts: Bild nach Rektifizierung RGByect.. Die Verzerrung durch die Ka-
meralinse fithrt zu einer Verzerrung gerader Objekte im Kamerabild,
bspw. den Langstragern an der Decke. Nach der Rektifizierung liegt der
Langstrager auch im Bild in einer Flucht, mit der eingezeichneten gelben
Linie. . . . . . e

3.5. Lochkameramodel: Projektion eines Punktes aus Kamerakoordinaten
in Bildkoordinaten. . . . . . . ... L L Lo

3.6. Kalibriermuster fiir Identifikation der intrinsischen Kamera
Parameter: Darstellung der verwendeten Kalibriermuster fiir die intrin-
sische Kalibrierung der Kameras. . . . . . . ... ... ... .. .....

3.7. CAD-Modell der Kamera- und Lidar-Halterung: Lidar und Ka-
meras (gelb dargestellt) werden iiber Halter (griin bzw. blau dargestellt)
an einem Vierkantprofil (schwarz dargestellt) verschraubt. . . . . . . . .

3.8. Nahaufnahme der Kamera und Lidar-Halterung: Die Kameras sind
fest am Stédnder des hinteren Lidarsensors montiert. Die Lidarsensoren
sind verstellbar iiber Winkelplatten am Fahrzeug montiert. . . . . . ..

3.9. Abtastdiagram der Sensoren: Die Sensoren tasten zu unterschiedli-
chen Zeitpunkten und mit unterschiedlichen Frequenzen ab. Radar und
Kamera tasten das gesamte FoV gleichzeitig ab, wohingegen Lidar rollend

3.10. Vergleich von projizierten Lidar-Pings auf Kamerabild, vor
und nach Ego-Bewegungs Korrektur: Die Lidar-Pings sind farblich
entsprechend der gemessenen Entfernung codiert. Im oberen Bild ist eine
schlechte Kongruenz, z.B. am linksseitigen Baum, zu erkennen, welche
durch die Ego-Bewegungs Korrektur im unteren Bild behoben wurde. . .

4.1. Abdeckung der Szene durch Lidarmessungen: Die Abtastungen
der Lidarsensoren sind rot (Sensor 1) und griin (Sensor 2) hervorgehoben.
Durch Verkippung der Lidarsensoren zueinander wird der Bildinhalt grofi-
tenteils dicht vermessen. Es verbleiben jedoch Bildregionen mit geringer
Tiefeninformation. . . . . . . .. .. ... L
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4.2.

4.3.

4.4.

4.5.

4.6.

5.1.

5.2.

9.3.

5.4.

Markov-Zufallsfeld zur Tiefenvervollstindigung: Das Markov Zu-
fallsfeld zur Tiefenvervollstindigung aus [DT06]. Die blauen Punkte
entsprechen den Tiefenmessungen durch Lidar. Die gelben Punkte ent-
sprechen den geschétzten Tiefen. Die rosafarbenen Punkte entsprechen
den Bildgradienten. Die griinen Punkte entsprechen den Bildpixeln. Die
lilafarbenen Punkte entsprechen dem Tiefengradienten. . . . . .. . ..

Beispiele der Tiefenvervollstandigung: Links: Kamerabilder; Mit-
te: Sparliche Tiefeninformation aus Lidarsensoren; Rechts: Verdichtete
Tiefeninformation aus Kamerabild. . . . . . .. ... ... ... .....

Beispiele der Oberflichennormalenschiatzung: Links: Kamerabil-
der; Mitte: dichte Tiefenmaske; Rechts: geschétzte Oberflachennormalen-
ausrichtung. Die Koordinaten der Oberflichennormalen wurden in die
RGB-Kanile eingetragen. Rote Pixel entsprechen Oberflichennormalen
mit hauptséchlich horizontaler Ausrichtung. Griin entsprechend vertikaler
Ausrichtung. Blau entsprechend Ausrichtung orthogonal zur Bildebene. .

Semantische Instanz-Segmentierung: Beispielhafte Ergebnisse der
automatischen semantischen Instanz-Segmentierung. . . . . . . . . . ..

Beispiel des optischen Flusses: Links und Mitte: Zwei aufeinander
folgende Kamerabilder. Rechts; Resultierender optischer Fluss zwischen
den Kamerabildern. Unten: Farblegende zum optischen Fluss mit Angabe
inPixeln. . . . . . . . . e

Ubersicht von DRISFwR. (adaptiert aus [MWH19]): Die origi-
nale Verarbeitung durch DRISF ist im unteren gestrichelten Rechteck
dargestellt. Es werden zunéchst aus Stereokamera-Bildpaaren der optische
Fluss, Instanzsegmentierung und Tiefenmaske geschétzt. Anschliefend
wird fiir die detektierten Instanzen der Szenenfluss mittels Gau3-Newton-
Schétzer bestimmt. Dariiber ist die Erweiterung zu DRISFwR dargestellt.
Nach jeder Iteration wird eine zusétzliche Objektmaske aus der RD-map
extrahiert und fir die néchste Iteration des Optimierers verwendet. Dieser
versucht, Objektmasken entsprechend den Vorgaben durch Variation des
Szenenflusses zu extrahieren. . . . . . . ... ... ... ... ... ...

Maske zur Selektion valider Pixel: Beispiele valider Pixel (gelb) fiir
alle Objekte nach Pj, dargestellt fiir beide Kameras. . . . .. ... ...

Geschwindigkeit nach Ackermann Prinzip: Das Fahrzeug rotiert
um einen Punkt R mit den Giergeschwindigkeiten w. Fiir jede Posi-
tion auf dem ausgedehnten Fahrzeugkorper ergibt sich aufgrund der
unterschiedlichen Verbindungsvektoren zu R eine unterschiedliche Ge-
schwindigkeitskomponente. Fahrzeugkontur nach [ARFssN16]. . . . . . .

Beobachtete Geschwindigkeiten aus Sicht des Ego-Fahrzeuges:
Zwei beispielhafte Punkte auf dem beobachteten Fahrzeug bewegen sich
aus Sicht des Ego-Fahrzeuges mit unterschiedlicher Geschwindigkeit. Zu
beachten ist die unterschiedliche Ausrichtung der Geschwindigkeitsvekto-
ren an Fahrzeugfront und -heck. Fahrzeugkontur nach [ARFssN16]. . . .
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9.5.

5.6.

9.7.

5.8.

5.9.

5.10.

Automatische Ausrichtung vom Szenenfluss in der RD-map:
Blaue Box: Kamerabild und RD-map einer typischen Fahrszene. Rot
gekennzeichnet sind zwei dem Ego-Fahrzeug folgende Fahrzeuge. Gelbe
Box: Eine ungefahre Projektion eines der Fahrzeuge wurde unten links
(m = 0) im RD-map eingetragen. An der Stelle der Projektion weist die
Projektion kein lokales Leistungsmaximum auf und wird durch DRISFwR
linksseitig im RD-map verschoben (m = 1, m = 100). Zur Steigerung der
Robustheit gegeniiber lokalen Maxima wurden Skalierungsebenen des RD-
map mit unterschiedlicher Filterung verwendet. Graue Box: Projektion
der Leistungen aus RD-map in Kamerabild. Es ist zu erkennen, dass nach
m = 100 DRISFwR Iterationen eine erhohte Leistung der Fahrzeugpixel
zu beobachten ist. Nach [EB6]. . . . .. ... ... ... . ........

Skalierungsebenen auf der RD-map zur Vergréflerung des Fang-
bereichs: Das originale RD-map (oben links), wird durch zweifaches
Anwenden von GauB3-Filter, Max-Pooling und bilinearer-Interpolation
verschmiert. Durch die Vierschmierung flacht der Bildgradient ab, dehnt
sich jedoch tiber einen weiteren Bildbereich aus. Die zu den Skalierungen
gehorenden Bildgradienten sind rechts dargestellt. Die Farbskalierung
ist blau fiir negative Gradienten, gelb fiir positive Gradienten und griin
fiir neutrale Gradienten. Man beachte hierbei insbesondere die erwahnte
Ausdehnung der Bildgradienten iiber die Skalierungsebenen. Zur Ver-
deutlichung wurden rote gestrichelte Hilfslinien fir einen ausgewéhlten
Bereich der Gradienten eingezeichnet. Deutlich zu erkennen ist, wie sich
die Hilfslinien voneinander distanzieren. . . . . . . . .. ... ... ...

Gefahrene Trajektorie des Datensatzes: Bei der Akquise wurde
etwa 1h lang durch Lippstadt gefahren. Die Aufzeichnung erfolgte konti-
nuierlich. Dabei wurden typisch Szenarien aus Stadtverkehr, Autobahn,
Landstrafle und Parkplatz aufgezeichnet. Vergroflert dargestellt, ist die
Fahrtrajektorie aus dem Parkplatzszenario fiir die Evaluierung der Sze-
nenflussschdtzung. Nach [EB6]. . . . . . ... ... .. ... ... ....

Szenenbeispiele des Datensatzes zur Szenenfluss Evaluierung:
Dargestellt sind einige repréisentative Beispiele aus dem Datensatz zur
Szenenfluss Evaluierung. In der oberen Reihe sind die Beispiele der ersten
Kamera dargestellt, in der unteren Reihe, der zweiten Kamera. In den
Farbbildern sind die Instanzmasken farblich iiberlagert hervorgehoben.

MAE, gemittelt iiber alle Bildpixel: Oben dargestellt ist das erreich-
te MAE nach Gleichung 5.60. Niedrigere Werte entsprechen einer besseren
Schéatzung. Unten dargestellt ist die MAE-Differenz der Verfahren ge-
geniiber der MAE aus dem hier vorgestellten DRISFwR. Positive Werte
entsprechen einem Benefit durch DRISFwR. Negative Werte bedeuten
eine Verschlechterung durch die Verwendung von DRISFwR. . . .. ..

MAE, gemittelt iiber alle Bildpixel: Dargestellt ist das erreichte
MAE nach Gleichung 5.60 in Form eines Histogramms. . . . ... ...
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5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

6.1.

Mittlere Fehlerrate pro Bild: Oben dargestellt ist die erreichte Feh-
lerrate nach Gleichung 5.61. Niedrigere Werte entsprechen einer besseren
Schatzung. Unten dargestellt ist die Fehlerrate der Verfahren gegeniiber
der Fehlerrate aus dem hier vorgestellten DRISFwR. Positive Werte ent-
sprechen einem Benefit durch DRISFwR. Negative Werte bedeuten eine
Verschlechterung durch die Verwendung von DRISFwR. . . . .. .. ..

MAE des Szenenflusses aller Objekte: Oben dargestellt ist das
erreichte MAE per Instanz nach Gleichung 5.62. Niedrigere Werte ent-
sprechen einer besseren Schitzung. Unten dargestellt ist die MAE Dif-
ferenz der Verfahren gegeniiber der MAE aus dem hier vorgestellten
DRISFwR. Positive Werte entsprechen einem Benefit durch DRISFwR.
Negative Werte bedeuten eine Verschlechterung durch die Verwendung
von DRISFwR. . . . . . . . ..

MAE, gemittelt iiber alle Bildpixel: Dargestellt ist das erreichte
MAE nach Gleichung 5.64 in Form eines Histogramms. . . . . . . . . ..

Mittlere Fehlerrate pro Bild: Oben dargestellt ist das erreichte Feh-
lerrate nach Gleichung 5.64. Niedrigere Werte entsprechen einer besseren
Schatzung. Unten dargestellt ist das Fehlerrate der Verfahren gegeniiber
der Fehlerrate aus dem hier vorgestellten DRISFwR. Positive Werte ent-
sprechen einem Benefit durch DRISFwR. Negative Werte bedeuten eine
Verschlechterung durch die Verwendung von DRISFwR. . . . .. .. ..

Vergleich von Szenenflussreferenz und -schitzung: Von links nach
rechts: RGB Kamerabild mit hervorgehobenen Instanzen, Referenzszenen-
fluss, Szenenflusschétzung und daraus ermittelter Abweichung nach Glei-
chung 5.60. Von oben nach unten: 10%-, 50%-, 70%- und 90%-Perzentil
sortiert nach Szenenflussabweichung. . . . . . . .. . ... ... ... ..

Vergleich von Szenenflussreferenz und -schitzung: Von links nach
rechts: RGB Kamerabild mit hervorgehobenene Instanzen, Referenzsze-
nenfluss, Szenenflusschéitzung und daraus ermittelter Abweichung nach
Gleichung 5.60.Von oben nach unten: 95%-, 97%-, 99%- und 100%-
Perzentil sortiert nach Szenenflussabweichung. . . . . . . . ... ... ..

Warping des RD-maps in ein Kamerabild: Als Beispiel der Warping-
Operation wird die Intensitdt des RD-maps in das Kamerabild RGB pro-
jiziert. Dazu werden die radiale Entfernung, die radiale Geschwindigkeit
und die korrespondierende Intensitéat in der RD-map bestimmt. Dieser
Intensitétswert wird anschliefend in das Gitter des Kamerbildes RD ¢~
eingetragen. Dieser Prozess ist fiir zwei beispielhafte Kamerapixel (pin-
ke und orangene Boxen) hervorgehoben. Zu beachten ist, dass in RD ¢
ausschliefllich die Pixel im FoV des Radars gewarpt wurden, dargestellt
durch die nicht-weien Pixel in RD . Nach [EB6]. . . . . ... ... ..
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6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

Ubersicht des vorgestellten Systems zum iiberwachtem Trai-
ning von Radar Signalverarbeitungen: Lidar und Kamera stellen
Sensordaten an das optische Modell (engl.: ,vision model®) bereit, wel-
ches automatisch Annotationen im Kamerabild generiert. Gleichzeitig
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