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Abstract
Automatic signal processing of sensor signals is an integral part of automotive radar
sensors. Only the signal processing extracts the relevant information from the sampled
sensor signals and enables the driver-assistance system to issue warnings or make
automated changes to the control-loop.

Due to parasitic effects, signal processing is suboptimal and new algorithms are con-
stantly being developed to improve the quality of processing. One possible development
path is the class of machine learning algorithms. The associated algorithms recognize
patterns based on previously presented data sets. An important subclass here are the
supervised learning procedures, which require labeled datasets. The datasets consist of
input data and corresponding target values. During a training procedure, the algorithms
are then automatically optimized and attempt to estimate the target values based on
the input data. This work deals with the automatic association of image content from
camera and radar sensors. With the help of this association, any data from the camera
can be used as a target value for training machine learning procedures on radar data
and vice versa. The benefit of this association is demonstrated using the examples of
trained direction-of-arrival estimators, target detectors, semantic segmentation of radar
spectra as well as radar-power prediction from camera-images.
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Zusammenfassung
Die automatische Signalverarbeitung von Sensorsignalen ist ein integraler Bestandteil
von automotiven Radarsensoren. Erst die Signalverarbeitung extrahiert die relevanten
Informationen aus den abgetasteten Sensorsignalen und ermöglicht dem Fahrerassis-
tenzsystem, gezielt Warnhinweise auszugeben oder automatisiert Veränderungen von
Stellgrößen durchzuführen.

Die Güte der zur Signalverarbeitung eingesetzten Algorithmen wird mitunter durch
Faktoren wie Laufzeitbedingungen, Robustheit gegenüber Rauschen bzw. parasitären
Signalanteilen sowie Robustheit der Modellannahmen der genutzten Algorithmen defi-
niert. Um diese Güte zu verbessern, werden fortlaufend neue Algorithmen entwickelt.
Ein möglicher Entwicklungspfad ergibt sich dabei durch die Klasse der Algorithmen zum
maschinellen Lernen. Die damit verbundenen Algorithmen erkennen Muster anhand
zuvor präsentierter Datensätze. Eine wichtige Unterklasse sind dabei die überwachten
Lernverfahren, bei welchen die Datensätze aus den Eingangsdaten der Algorithmen und
gelabelten Zielwerten zu den Eingangsdaten bestehen. Während einer Trainingsprozedur
werden die Algorithmen dann automatisch optimiert und versuchen die Zielwerte anhand
der Eingangsdaten zu schätzen. Diese Arbeit befasst sich mit der automatischen Asso-
ziation von Bildinhalten aus Kamera und Radarsensoren. Mit Hilfe dieser Assoziation
lassen sich etwaige Daten der Kamera als Zielwert für das Training von maschinellen
Lernverfahren auf Radardaten und umgekehrt verwenden. Der Benefit dieser Assoziation
wird demonstriert an den Beispielen von trainierten Winkelschätzern, Zieldetektoren,
semantischer Segmentierung von Radar-Spektren sowie einer Radar-Leistungsschätzung
aus Kamerabildern.
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1. Einleitung
Automotive-Radarsensoren sind ein integraler Bestandteil für heutige Fahrerassistenz-
systeme. Die Sensoren emittieren elektromagnetische (EM)-Wellen in die Umgebung
und können aus der Reflexion der Wellen Rückschlüsse über die Umgebung ableiten und
dem Fahrerassistenzsystem auf unterschiedlichen Signalabstraktionsebenen präsentieren.
Es werden vier Signalabstraktionsebenen unterschieden:

1. ADU-Ebene: Die am Radarsensor ankommende Welle wird nach analoger Vor-
verarbeitung durch einen Analog-Digital-Umsetzer (ADU) abgetastet und somit
für eine maschinelle Verarbeitung in digitale Werte gewandelt.

2. Frequenzspekten-Ebene: Als erste digitale Verarbeitung werden die ADU-
Daten durch Fourier-Transformation in den Frequenzraum transformiert und
Eigenschaften der Signale für weitere Verarbeitungsschritte damit zugänglicher
gemacht.

3. Detektions-Ebene: In den Frequenzspektren werden signifikante Signalanteile
detektiert und physikalisch sinnvolle Signaleigenschaften wie Entfernung, Ge-
schwindigkeit und Einfallswinkel geschätzt.

4. Objekt-Ebene: Die Detektionen werden zu Objekten gebündelt (engl.: „cluster“)
und repräsentieren zusammenhängende Körper wie Fahrzeuge oder Fußgänger.

5. Warnalgorithmus-Ebene: Die Objekte werden verfolgt (engl: „tracked“) und de-
ren Fahrtrajektorie geschätzt. Bei gefährlicher Überschneidung mit der Trajektorie
des Ego-Fahrzeuges werden entsprechende Warnmeldungen an Fahrerassistenzsys-
tem und Fahrer übermittelt.

Der Fokus dieser Arbeit liegt auf der Verarbeitung von Signalen auf der Detektions-Ebene.
Dabei soll insbesondere die Verarbeitung mit modernen Signalverarbeitungsverfahren
untersucht werden.

In den letzten zehn Jahren haben sich auf neuronalen Netzwerken (NN) basierende
Algorithmen im Vergleich zu klassischen Algorithmen des maschinellen Lernens in ver-
schiedenen Anwendungen als überlegen erwiesen [HDH+19,CMMS11,ZTM+17]. Einen
großen Beitrag dafür hat die fortlaufende Forschung und Entwicklung zu Methoden um
das maschinelle Lernen geliefert. Nicht zuletzt liegt dies aber auch an der steigenden
Anzahl annotierter Trainingsdaten. Mit diesen Trainingsdaten können die Netzwerk-
parameter des NNs statistisch optimiert werden. Während des Trainings werden dem
NN dazu Eingangsdaten präsentiert, welche das NN in Prädiktionen umwandelt. Diese
Prädiktionen werden gegen vorgegebene Zielwerte verglichen, die Abweichung ermittelt
und dann entsprechend die Netzwerkparameter optimiert [Bis95]. Häufig wird dabei das
Überwachungsprinzip bzw. überwachte Lernen angewendet, bei welchem die Zielwerte
manuell oder automatisch festgelegt werden. Man spricht dabei von der „Annotation“,
dem „Labeling“ oder auch der „Etikettierung“.
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1. Einleitung

1.1. Auflistung automotiver Datensätze und verwandter
Arbeiten

Typischerweise stellen Kamera und Lidar die Umgebung in einer für den Menschen
vertrauten Art und Weise dar. Entsprechend einfach sind die Daten durch den Menschen
zu verstehen und zu annotieren, so dass eine frühe Entwicklung und Veröffentlichung von
automotiven Datensätzen mit dem Fokus auf Kamera- und Lidardaten zu beobachten
war und den Einstieg in die Entwicklung und den Vergleich von Signalverarbeitungen
vereinfachte.

2012 wurde durch [GLSU12] der bekannte KITTI -Datensatz veröffentlicht. Wurden
zuvor Algorithmen meist unter Laborbedingungen validiert, konnte dies nun mit dem
Datensatz, bestehend aus Sensordaten von Global-Positioning-System (GPS), Lidar und
Kamera und den dazugehörigen Annotationen für Objekterkennung in typischen Fahrsze-
narien aus Karlsruhe durchgeführt werden. Einhergehend wurden öffentliche Benchmarks
für Stereosehen, optischen-Fluss, visuelle Odometrie und 3D-Objekterkennung gestar-
tet. Seitdem wurden weitere Benchmarks zur Tiefenvervollständigung, semantischen
Segmentierung und Szenenfluss-Schätzung aufgenommen [GLU12, MG15a]. Obschon
dieser Datensatz ein bedeutender Meilenstein für die Validierung von kamera- und
lidarbasierter Signalverarbeitung ist, hat er aufgrund fehlender Radardaten keine direkte
Relevanz für radarbasierte Signalverarbeitung.

In 2019 wurde deshalb durch [CBL+19] der nuScenes-Multi-Sensor-Datensatz ver-
öffentlicht. Dieser beinhaltet neben Daten aus Kamera und Lidar auch Punktwolken
aus Radarsensoren. Der Datensatz beinhaltet Daten aus etwa 242 km Fahrtstrecken in
Boston, USA und Singapur. Die Annotationen in Form von 3D-Bounding-Boxen (BBox)
wurden primär von menschlichen Labelern bereitgestellt. Als BBox werden rechteckige
Hüllen bezeichnet, welche in Kamerabildern oder Punktwolken eingezeichnet werden
und die einzelnen Objekte umschließen. Da für die Radarsensoren keine Frequenzdaten
vorliegen, aus denen mittels Signalverarbeitung die Detektionen gebildet werden, hat
dieser Datensatz keine wesentliche Bedeutung für die vorliegende Arbeit und die Ent-
wicklung entsprechender Signalverarbeitung. Als neuerer Datensatz mit Kamera- und
Lidardaten sei der Waymo-Datensatz [SKD+20,ECC+,CGQ+23] zu nennen. Da keine
Radardaten enthalten sind, hat auch dieser Datensatz keine Relevanz für die vorliegende
Arbeit.

Ähnliche Restriktionen ergeben sind für die Datensätze aus [COR+16] und [NOBK17].
Die Sensordaten aus automotiven Radarsensoren, insbesondere niedriger Signalebene,

sind für den Menschen nicht/kaum zu interpretieren und konnten daher nicht, wie z.B.
Kamerabilder, manuell annotiert werden. In den letzten Jahren haben sich jedoch auch
hier Verfahren und Datensätze entwickelt, welche das Training und die Validierung
radarbasierter Signalverarbeitungen ermöglichen. Eine unvollständige Zusammenfassung
publizierter Verfahren zur automatischen Annotation von Radardaten und dazugehörigen
Datensätzen ist nachfolgend gegeben.

2018 2018 wurden durch [HHBD18] Punktwolken automatisch annotiert. Dabei wurde
keine Referenzsensorik verwendet und die Punktwolken durch Vorwärts- und Rück-
wärtsaggregation/Registrierung der Punktwolken verdichtet. Nach der Aggregation
wurde einmalig ein NN zur Objektdetektion in den Punktwolken trainiert, welches
anschließend zur Annotation des gesamten Datensatzes verwendet wurde. Da der Fokus
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1.1. Auflistung automotiver Datensätze und verwandter Arbeiten

der vorliegenden Arbeit die Generierung von Punktwolken selbst ist, ist dieser Ansatz
nicht ohne Weiteres kompatibel.

2019 2019 wurde durch [Lim19] neben der radarbasierten Signalverarbeitung eine
parallele Signalverarbeitung von Kameradaten mittels NN eingeführt. Die Signale
wurden fusioniert und so eine verbesserte Detektion von Fahrzeugen erreicht. Fahrzeuge
wurden semi-automatisch anhand von Lidar-Punktwolken annotiert.

In [MFA+19] wurde ein Fahrzeug mit Lidar, Kamera und Radar ausgestattet. In den
gefahrenen Autobahnszenarien wurden anhand der Lidar-Punktwolken semi-automatisch
Fahrzeuge detektiert und verfolgt. Diese wurden als Annotation für das Training einer
Radarsignalverarbeitung mittels NN genutzt. Die Verknüpfung der Annotationen und der
Radardaten erfolgt durch Transformation der Radardaten, gegeben in Polarkoordinaten,
in das kartesische Koordinatensystem der Lidar-Punktwolken.

Durch [MK19] wurde ein Datensatz bestehend aus Kamerabildern, Lidar- und Radar-
Punktwolken veröffentlicht. Darin sind 3D-BBox für Fahrzeuge und Fußgänger enthalten.
Außerdem wird beschrieben, wie durch „Active Learning“ der manuelle Annotationsauf-
wand verringert werden konnte.

2020 Im Jahr 2020 wurde durch [NKK+20] eine Freiraumerkennung mittels Convolutional-
Neural-Network (CNN) auf Radardaten trainiert. Die Annotationen wurden dabei
automatisch mittels „Structure from Motion“ aus Kameradaten erzeugt.

Durch [PDKG20] wurde eine Objekterkennung für Fußgänger, Fahrzeuge und Fahr-
radfahrer mittels NN auf range-azimuth-Doppler (RAD)-Spektren vorgestellt. Als An-
notationen wurden in den Bildern der verwendeten Stereo-Kamera 3D-BBox für die
Instanzen detektiert.

[DWZL20] haben Fahrzeuge durch eine NN basierte Radarsignalverarbeitung detek-
tiert. Die Annotationen für das Training wurden automatisch durch eine Signalverarbei-
tung von Lidar-Punktwolken generiert.

[MWRH20] haben den Zendar-Datensatz veröffentlicht. Dabei wurde eine Detektion
bewegter Fahrzeuge mittels CNN Signalverarbeitung von RD-maps erreicht. Zur Anno-
tation der Daten wurden mittels klassischer Verarbeitung Objekte im RAD-Spektrum
detektiert und in ein Synthetic-Aperture-Radar (SAR)-Bild projiziert. Durch die Pro-
jektion wurden bewegte von stationären Objekten diskriminiert.

Der CARRADA-Datensatz wurde von [ONR+21] veröffentlicht. In dem Datensatz
wurden Objekte der Klassen Fußgänger, Fahrzeug oder Fahrrad in den Kamerabildern
detektiert und verfolgt. Gleichzeitig werden im Radar RAD-Spektrum Ziele mittels eines
klasisschen Constant-False-Alarm-Rate (CFAR)-Detektors erkannt und anschließend
zu Instanzen geclustert. Durch Assoziation der Instanzen aus Radar und Kameradaten
werden die Annotationen aus den Kamerabildern in das Radar Spektrum projiziert. Die
Annotationen für den Radar sind entsprechend stark durch die Detektion mittels CFAR
bestimmt. In der vorliegenden Arbeit ist die Annotation der Radardaten, basierend
ausschließlich auf den Daten der Referenzsensorik, gewünscht, um so nicht durch eine
vorhandene Radarsignalverarbeitung beeinflusst zu werden.

[BGM+20] haben den Oxford Radar RobotCar-Datensatz vorgestellt. Dieser beinhaltet
neben Kamerabildern und Lidar-Punktwolken auch range-Azimuth (RA)-Spektren eines
Radarsensors. In [KDMGN20] wurde dieser Datensatz verwendet, um aus Kamera- und
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1. Einleitung

Lidardaten semantische Annotationen für Radar-Punktwolken zu schaffen, gegen welche
ein CNN zur Radar-Signalverarbeitung trainiert wurde.

Durch [KPC+20] wurde der MulRan-Datensatz veröffentlicht. Dieser beinhaltet neben
Lidar-Punktwolken auch RA-Spektren eines verwendeten Radarsensors. Ziel dieses Da-
tensatzes ist die Positionserkennung mit Radar und Lidar. Es werden keine Annotationen
für weitere Radaranwendungen geliefert.

[BRZB20] veröffentlichten den Pointillism-Datensatz. Darin sind Punktwolken mehre-
rer Radar- und Lidarsensoren sowie Kamerabilder enthalten. Der Fokus dieses Datensat-
zes liegt in der Fusion von Punktwolken mehrerer Radarsensoren zur Objektdetektion.

[GMJ+20] veröffentlichten ein Verfahren und einen Datensatz zur Schätzung hoch-
auflösender Bilder aus Radar-Heatmaps. Ein Generative-Adversarial-Network (GAN)
prozessiert dabei die Heatmaps aus Radarsensoren und imitiert dadurch hochaufgelöste
Tiefenbilder aus einem Stereo-Kamera-System.

2021 Im RADDet-Datensatz [ZNL21] aus dem Jahr 2021 wurden Personen, Fahrräder
und Fahrzeuge in Radarpunktwolken und Kamerabildern detektiert, miteinander fusio-
niert und verfolgt. Die fusionierten Objekte wurden in das RAD-Spektrum projiziert
und dienten so als Annotation für das Training einer NN basierten Objekterkennung
auf Radardaten.

[WJL+21, WWH+21] stellten den CRUW -Datensatz vor. Aufgabe ist das Trai-
ning einer Objekterkennung von Fußgängern, Fahrradfahrern und Fahrzeugen mittels
NN basierter Signalverarbeitung der Radar-Frequenzdaten. Annotationen werden aus
Kamerabildern und Radar-Punktwolken generiert.

Durch [SDPM+21] wurde ein weiterer Datensatz mit Kamerabildern, Lidar-Punktwolken
und RA-Spektren veröffentlicht. Im Gegensatz zu anderen Datensätzen lag der Fokus
dabei auf der Bereitstellung von Daten aus unterschiedlichen Witterungsbedingungen.
So beinhaltet der Datensatz Aufnahmen aus sonnigen, verregneten, dunklen, verne-
belten und verschneiten Tagen. Im Datensatz wurden Fahrzeuge und Fußgänger als
2D-BBox annotiert. [SHS+21] hat den RadarScenes-Datensatz bereitgestellt. Annota-
tionen wurden für Fahrzeuge, Fußgänger und Tiere generiert. Eine Beschreibung des
manuellen Annotationsprozesses ist u.a. in [Rad21] dokumentiert. Der Datensatz enthält
unkalibrierte Kamerabilder und Radar-Punktwolken.

[KSRD21] veröffentlichte den Radar Ghost-Datensatz und ein NN basiertes Verfahren
zur automatischen Detektion von sogenannten Geisterreflexionen in Radar-Punktwolken.

Durch [DD21] wurde ein Verfahren vorgestellt, um aus RD-maps des Radars Kamera-
bilder zu rekonstruieren. Dabei kamen Variational-Autoencoder (VAE) zum Lernen des
Merkmalraums zum Einsatz.

[MKT21] detektierten Fahrzeuge in RAD-Spektren mittels Graph-NN.
Durch [WJP21] wurde ein GAN als generatives Modell zur Erzeugung von Radar

RA-Spektren vorgestellt. Dabei wurden dem GAN Elevationskarten aus Lidar und die
RA-Spektren aus dem Radar präsentiert und das GAN so trainiert, dass Daten aus der
jeweils anderen Sensordomäne prädiziert werden konnten. Die gezeigten Beispiele sehen
plausibel aus und durch Domänen-Adaption konnten weiterhin synthetische Radardaten
aus simulierten Lidar-Elevationskarten erzeugt werden.

2022 Im Jahr 2022 wurde von [ROMP22] der RADIal-Datensatz vorgestellt. Es ste-
hen Kamerabilder, Lidar- und Radarpunktwolken sowie Radarfrequenzspektren zur
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1.1. Auflistung automotiver Datensätze und verwandter Arbeiten

Verfügung. Der Fokus dieses Datensatzes liegt auf der Objekterkennung und Freirau-
merkennung mittels Radarpunktwolken und Radarfrequenzspektren. Entsprechende
Annotationen werden bereitgestellt.

Zwischen 2021 und 2022 wurde durch [GXRL21, GLX+22] der UWCR-Datensatz
beschrieben und veröffentlicht. Dieser beinhaltet Kamerabilder und ADU-Daten eines
verwendeten Radarsensors. Annotationen wurden für Fahrradfahrer, Fußgänger und
Fahrzeuge in Form von 3D-BBox bereitgestellt.

Durch [PPB+22] wurde der View of Delft-Datensatz veröffentlicht. Dieser beinhaltet
Bilder aus einem Stereo-Kamera System, Lidar- und Radar-Punktwolken aus urbanen
Szenarien. Annotiert wurden 3D-BBox für u.a. Fahrzeuge, Fußgänger, Fahrrad- und
Motorradfahrer. [ZMZ+22] veröffentlichten den TJ4DRadSet-Datensatz. Neben Kame-
rabildern sind Lidar- und Radar-Punktwolken vorhanden. Annotiert wurden 3D-BBox
von bewegten Objekten. Gefahren wurde in Suzhou, China.

[PKW22] haben den K-Radar-Datensatz veröffentlicht. Er beinhaltet Kamerabilder,
Lidar-Punktwolken und range-azimuth-elevation-Doppler (RAED)-Spektren. Annotiert
wurden 3D-BBox bewegter Objekte. Hervorzuheben ist die auffällig umfassende Doku-
mentation des Kalibrier- und Annotationsprozesses [Ka22].

Durch [BRB22] wurde ein weiteres Verfahren über die Fusion von Kamerabildern und
Radarpunktwolken zur Detektion von Fahrzeugen vorgestellt.

[KWL22] veröffentlichten ein Verfahren zur Erkennung von Verdeckungen durch
Reflektoren in Radardaten. Zum Einsatz kam ein NN welches RA-Spektren prozes-
sierte und versuchte, Verdeckungen zu detektieren. Trainiert wurde das NN gegen
Lidar-Punktwolken. Durch die unterschiedlichen Wahrnehmungseigenschaften von Li-
dar und Radar kam es zu Falschdetektionen nach dem Training. Aus diesem Grund
wurden Vorverarbeitungsschritte unternommen, um diese unterschiedlichen Wahrneh-
mungseigenschaften zu berücksichtigen und schlussendlich die Falschdetektionen zu
reduzieren.

2023 Im Jahr 2023 wurde durch [MBB+23] der aiMotive-Datensatz veröffentlicht.
Dieser beinhaltet synchronisierte und kalibrierte Daten aus Lidar (Punktwolke), Kamera
(Bild) und Radar (Punktwolke). Es wurden 3D-BBox für Fahrzeuge, Fußgänger, Motor-
und Fahrräder, Anhänger und Züge bereitgestellt.

Zwischen 2020 und 2023 wurde durch [DSH+20,DSVH+21,Dim23] der IMEC tracking-
Datensatz vorgestellt. Dieser beinhaltet Sensordaten aus Radar (Punktwolken und RAD-
Spektren), Kamera (Bilder) und Lidar (Punktwolke). Der Datensatz ist über [Gen23]
erreichbar. Annotiert wurden Fußgänger und Fahrzeuge in Form von BBox.

Durch [CYH+23] wurde der MSC-RAD4R-Datensatz veröffentlicht. Er beinhaltet
neben Bildern aus einem Stereo-Kamerasystem auch Punktwolken aus Lidar- und
Radarsensoren. Annotiert wurden 3D-BBox bewegter Objekte.

[EHR23] stellten einen Datensatz zur Untersuchung von Radar-Cross-Section (RCS)
Abhängigkeiten in typischen Fahrszenarien vor. Dabei wurden Fahrzeuge vor einem
verfolgenden Radarsensor bewegt, die Punktwolken des Radarsensors akquiriert und
so die Abhängigkeit von RCS gegenüber z.B. Aspektwinkeln bei unterschiedlichen
Fahrzeugen gemessen.

In [KKPD23] wurde ein Verfahren vorgestellt, welches automatisch Störziele in Radar-
Punktwolken und echte (bewegt und stationär) Ziele klassifiziert. Als Ursache für diese
Störziele wurden insbesondere Mehrwegeausbreitungen in der Propagation der ausgesen-
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1. Einleitung

deten EM-Wellen des Radars genannt. Diese können nachgelagerte Signalverarbeitungen
stören und sind deshalb zu identifizieren.

Durch [BWY+22,BYW+23] wurde der Boreas-Datensatz vorgestellt. Neben Kame-
rabildern und Lidar-Punktwolken sind RD-Spektren eines Radarsensors vorhanden.
Annotationen wurden in Form von 3D-BBox für Fußgänger, Fahrzeuge und Fahrrad-
fahrer zur Verfügung gestellt. [JDFMV23] stellten eine NN basierte Freiraum- und
Fahrzeugerkennung anhand von RAD-Spektren vor. Annotationen dafür wurden aus
Kamerabildern gewonnen.

Durch [HBS+23] wurden semi-automatisch automotive Radardaten anhand von Luft-
aufnahmen annotiert. Die Kamerabilder wurden durch Unmanned-Aerial-Vehicle (UAV)
bzw. Drohnen akquiriert und anschließend durch panoptische Segmentierung verarbeitet.
Durch die genaue Kenntnis der Pose von Drohne und Radarsensor konnte die Segmen-
tierung so in das Koordinatensystem des Radars überführt werden.

Für den interessierten Leser sind darüber hinaus in [ZLZ+22,SM23,ZHO23] umfang-
reiche Übersichten zum Stand der Wissenschaft dokumentiert.

Leider wurden viele der genannten Datensätze erst veröffentlicht, als die praktische
Arbeit zu diesem Werk bereits abgeschlossen war. Somit wurde ein eigener, nicht
öffentlicher Datensatz für das Training und den Test von Algorithmen entwickelt. Die
dabei gemachten Beobachtungen und Methoden sind in diesem Werk niedergeschrieben.

1.2. Wissenschaftlicher Beitrag dieser Arbeit

Bei den im vorigen Abschnitt genannten Arbeiten wurden meist Radardaten ausschließ-
lich in Form von Punktwolken bereitgestellt. Diese werden, wie im nachfolgenden Kapitel
näher beschrieben wird, durch die Detektion signifikanter Reflektoren im empfangenen
Reflexionssignal extrahiert und somit ist bereits ein Großteil der Signalverarbeitung
verrichtet. Da die Detektionen häufig mittels CFAR Algorithmen gebildet werden, wird
häufig von Prä- oder Post-CFAR Signalverarbeitungsbene gesprochen. In der zu Be-
ginn dieses Kapitels genannten Einteilung der Signalverarbeitungsebenen entspricht
dies Level 1-2 und 3-5. Für die Entwicklung von NN basierter Signalverarbeitung von
Prä-CFAR-Algorithmen sind entsprechend auch nur Datensätze mit Eingangsdaten vor
dieser Detektionsschicht nützlich.

Ein weiteres Problem der meisten Datensätze ist, dass die Annotationen nur Zielwerte
für Objekte der Klasse Fußgänger und Fahrzeuge bereitstellen. Gerade in urbanen Fahr-
szenarien kann ein wesentlicher Anteil der Reflexionen jedoch von stationären Objekten
wie Fahrbahnen und Randbebauungen ausgehen. Da automotive Radarsensoren auch
diese stationären Ziele erkennen müssen, sind entsprechende Annotationen notwendig.

Mit dieser Arbeit wird gezeigt, wie sich Annotationen für automotive Prä-CFAR
Radardaten unabhängig von ihrer Klasse automatisch erzeugen lassen. Dazu wird ein
Verfahren vorgestellt, mit welchem sich Sensordaten von Radar- und Kamerasensoren
automatisch miteinander assoziieren lassen. Für jedes Kamerapixel werden die entspre-
chenden Bins/Gates/Pixel im Prä-CFAR Frequenzspektrum des Radars ermittelt und
der Szeneninhalt somit zueinander in Verbindung gebracht. Durch diese Assoziation
lassen sich hochwertige Annotationen aus Kameradaten für das Training von überwach-
ten Lernverfahren auf Radardaten anwenden. Die Assoziation zwischen Kamera und
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1.2. Wissenschaftlicher Beitrag dieser Arbeit

Radardaten ist nicht trivial, da beide Sensoren auf unterschiedlichen Messprinzipien
arbeiten und insbesondere auch einen anderen Messraum besitzen. So löst der Radar
beispielsweise die Geschwindigkeit von Reflexionen auf, was der Kamera vorenthalten
bleibt. In dieser Arbeit wird der Messraum der Kamera durch automatische Schätzung
der Geschwindigkeit mit einem neuen Verfahren zur Szenenfluss-Schätzung erweitert.
Dabei wird für den Inhalt jedes Kamerapixels die Geschwindigkeit im Raum geschätzt
und somit die Doppler-Messfähigkeit des Radars nachgebildet.

Die Hauptmotivation dieser Arbeit liegt auf der Ermöglichung von überwachtem
Training einer Signalverarbeitung von Prä-CFAR Radardaten durch NN. Der vorge-
schlagene Ansatz ist in Abbildung 1.1 dargestellt. Er kann als generischer Ansatz für
die „kreuzmodale“ Überwachung von NN basierter Signalverarbeitung von Frequency-
Modulated-Continuous-Wave (FMCW) Radarsignalen betrachtet werden. Für die Pro-
jektion von Radardaten auf Kamerabilder wird eine Warping Schicht vorgestellt, welche
differenzierbar ist und so in den Trainingsprozess mittels Fehlerrückführung (engl.:
„error backpropagation“) eingebaut werden kann.

Radar
Neural
Network

warping
Etikettierung

(Optisches Modell)
Lidar &
Kamera

Szenenfluss- &
Tiefenschätzung

−

Sup
erv

isio
n

Fehlerrückführung

Neuronales
Netzwerk

Abbildung 1.1.: Übersicht über die Trainingspipeline zum überwachten Ler-
nen eines Radar NN: Das NN auf der rechten Seite wird durch
Radardaten gespeist und führe eine Inferenz aus. Diese Inferenz wird
durch die Warping Schicht auf das Kamerabild projiziert und mit den
Zielwerten aus dem optischen Modell verglichen. Etwaige Abweichun-
gen werden durch Fehlerrückführung durch die Schichten propagiert
und entsprechend die NN Parameter optimiert. Die Warpingschicht
wird durch Szenenfluss und Tiefenschätzung im Kamerabild unterstützt.
Nach [EB6].

Diese Trainings-Pipeline wird für die folgenden radarbasierten Anwendungen demons-
triert

• Direction-of-Arrival (DoA) Schätzungen (Abschnitt 7.2),

• Zieldetektionen (Abschnitt 7.3) und

• semantischen Segmentierungen (Abschnitt 7.4).

In dieser Pipeline ergibt sich eine sogenannte „Teacher/Student“ Rollenverteilung
[HVD15,HLL+23]. Das optische Modell liefert die Zielwerte und nimmt damit die Rolle
des „Lehrers“ ein. Das NN im Radar-Zweig wird gegen diese Zielwerte trainiert und ist
somit in der Rolle des „Studenten“. Es wird auch gezeigt, dass sich diese Rollenverteilung
umkehren lässt, womit Zielwerte von Radar und Eingangsdaten von Kamera geliefert
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werden. Demonstriert wird dies mit der Schätzung der Radar-Empfangsleistung aus
Kamerabildern (Abschnitt 7.5).

1.3. Gliederung dieser Arbeit
Der Rest dieser Arbeit ist wie folgt gegliedert. Kapitel 2 gibt eine kurze Einführung
in die notwendigen Grundlagen zur klassischen Signalverarbeitung für automotive Ra-
darsysteme sowie eine Einführung in die Optimierung von NNen. In Kapitel 3 wird
das gewählte Referenzsensorsystem vorgestellt und die notwendigen Kalibrierungen
diskutiert. Kapitel 4 befasst sich mit der Vorverarbeitung der Signale aus dem Refe-
renzsensorsystem. In Kapitel 5 wird ein bestehendes Szenenflussverfahren erweitert und
damit eine verbesserte Geschwindigkeitsschätzung der Umgebung erreicht. In Kapitel 6
wird die Projektion von Radarfrequenzdaten in das Kamerabild vorgestellt und dabei
unter anderem die Prozessierung aus den vorigen Kapiteln genutzt. Damit werden in
Kapitel 7 einige Anwendungen der NN Signalverarbeitung trainiert und der Wert der in
dieser Arbeit vorgestellten Methoden bemessen. In Kapitel 8 wird die Arbeit zusammen-
gefasst und ein Ausblick gegeben. Abkürzungsverzeichnis, Übersicht der Symbole und
Notationen, Abbildungs-, Tabellen- und Literaturverzeichnis sind dahinter zu finden.
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2. Grundlagen zur Signalverarbeitung

In diesem Kapitel werden zunächst die zum Verständnis dieser Arbeit notwendigen
Grundlagen zur klassischen Signalverarbeitung von Radarsignalen für automotive An-
wendungen beschrieben. Anschließend werden die notwendigen Grundlagen für die
Optimierung von NNen beschrieben.

2.1. Radarsignalverarbeitung für automotive Anwendungen

Radartechnik wurde erstmals vor etwa 115 Jahren durch Christian Hülsmeyer entwickelt
[Hü04a, Hü04b]. Das entwickelte, „Telemobiloskop“ genannte Messsystem wurde für
die Fernortung von Schiffen bei schlechter Sicht eingesetzt. Eine Abbildung aus den
Patentschriften ist in Abbildung 2.1 zu sehen.

Abbildung 2.1.: Patentzeichung: zur Schifffernortung aus [Hü04a].

Schon damals erkannte Hülsemeyer die besondere Bedeutung der theoretischen Ab-
handlung Maxwells von 1873 über die elektromagnetischen Wellen, welche 1886 durch
Hertz experimentell nachgewiesen werden konnten [Hun91]. Es dauerte noch einige
Jahre, bis sich die Technik Hülsemeyers in der Luft- und Seeraumüberwachung etablier-
te. Einem wesentlich breiteren Nutzerpublikum erreichte die Radartechnik durch den
Einzug in die Automibiltechnik um 1979 [Mei98].

Um aus den Sensorsignalen Warnhinweise für Fahrer zu präsentieren oder automati-
sche Regeleingriffe durch das Fahrerassistenzsystem durchzuführen, ist eine automatische
Auswertung der Radarsignale notwendig. Einige der etablierten Verfahren zur Signalver-
arbeitung werden in diesem Kapitel vorgestellt. Ziel dieses Kapitels ist es, einen Einblick
in elementare Aspekte der Radarsignalverarbeitung zu geben, die zum Verständnis
dieser Arbeit notwendig sind. Begonnen wird dabei bei einem Modell zur Beschreibung
der Interaktion der vom Radar emittierten Signale an Reflektoren. Darauf folgend wird
eine kurze Definition der relativen Größen erfolgen, ehe in einem weiteren Abschnitt auf
klassische Signalverarbeitung für automotive Radarsysteme eingegangen wird. Mit Hilfe
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2. Grundlagen zur Signalverarbeitung

dieser Signalverarbeitung lassen sich die von den Reflektoren zurückgeworfenen Signale
verarbeiten und wichtige Zustandsgrößen schätzen.

Kein Aspekt dieser Arbeit werden z.B. Informationen zur Antennentechnik sein.

2.1.1. Reflexionspfad
Ein typisches automotives Radargerät sendet EM-Wellen in einem Frequenzbereich um
24 GHz oder 77 GHz aus. Diese Wellen sind größtenteils durch Phasenlage, Amplitude,
Polarisation und Wellenlänge spezifiziert. Durch Interaktion, z.B. durch Reflexion, mit
der Umgebung, werden die Welleneigenschaften verändert. Eine Beschreibung für diese
Welleninteraktion liefern beispielsweise die Fresnelschen-Formeln [Roy08], welche die
Änderung der EM-Welle an Grenzflächen beschreibt. Weisen diese Grenzflächen eine
Änderung des Brechungsindex auf, so wird die Welle teilweise wieder in das ursprüngliche
Übertragungsmedium reflektiert. Ein anderer Teil der ursprünglichen Welle propagiert
in das neue Medium. Die sich daraus ergebenden Wellen werden dann als Reflexion und
Transmission beschrieben. In Abhängigkeit von dem Einfallswinkel auf der Grenzfläche,
der Polarisation der Welle, der Wellenlänge und dem Brechungsindex der Medien werden
die Amplitude und die Polarisation der EM-Welle skaliert. Ein Beispiel der Fresnelschen
Formel sei gegeben als die relative Signalamplitude der Reflexion und Transmission bei
senkrechter

(

(. . .)s
)

und paralleler
(

(. . .)p
)

Polarisation1 in der Ebene aufgespannt von
Einfallsvektor und Ausfallsvektor

(

E0t
E0e

)

s
= 2N1 cosαe

N1 cosαe + µr1
µr2

N2 cosαa
(2.1)

(

E0r
E0e

)

s
=

N1 cosαe – µr1
µr2

N2 cosαa
N1 cosαe + µr1

µr2
N2 cosαa

(2.2)
(

E0t
E0e

)

p
= 2N1 cosαe

N1 cosαa + µr1
µr2

N2 cosαe
(2.3)

(

E0r
E0e

)

p
=

–N1 cosαa + µr1
µr2

N2 cosαe
N1 cosαa + µr1

µr2
N2 cosαe

. (2.4)

Hier entsprechen E0t , E0r und E0e der Wellenamplitude für Transmission, Reflexion
und der einfallenden Welle. Weiterhin beschreiben N1 und N2 die Brechungsindices
der Medien, αe und αa sind Winkel zwischen Ein-/Ausfallsvektor und Oberflächennor-
malen und µr1,µr2 magnetische Permeabilität der Medien. Zur Veranschaulichung der
Welleninteraktion an Grenzflächen ist in Abbildung 2.2 eine graphische Darstellung
gegeben. Hierin weisen obere und untere Halbebene unterschiedliche Brechungsindices
auf. Die Strahlen sind rot, die senkrechten und parallelen Polarisationen blau und grün
dargestellt. Der von oben links kommende Strahl wird an der Grenzfläche in beide
Materialien reflektiert. Ein- und Ausfallswinkel für E0e und E0r sind entsprechend des
Snelliusschen Brechungsgesetzes identisch eingezeichnet [BDE+09].

Weitere Informationen zur Thematik können in grundlegender Literatur zur Elektrody-
namik, Photonik oder physikalischen Optik, beispielsweise [BDE+09], gefunden werden.

1Man spricht hierbei von linearer Polarisation. Beliebige Polarisationsrichtungen können aus diesen
Polarisationsrichtungen kombiniert werden.
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2.1. Radarsignalverarbeitung für automotive Anwendungen

N1

N2

αe
αe

αa

E0r

E0e

E0t

Abbildung 2.2.: Reflexion an Grenzflächen: Ein von oben links kommender Strahl
wird an der Grenzfläche (Trennfläche zwischen oberer und unterer
Halbebene) in das Material und die Umgebung reflektiert. Eintreffende
und reflektierende Strahlen sind rot dargestellt. Senkrechte und parallele
Polarisation zur Bildebene sind blau und grün dargestellt.

Eine anschauliche Übersicht weiterer Reflexionsmodelle ist z.B. in [TFR21] zu finden. Ei-
ne vorgefertigte Literaturübersicht zu allgemeinen Themen der Radarsignalverarbeitung
ist in [ZHO23] zu finden.

Wird die reflektierte Welle wieder in Richtung des Radarsensors geworfen, so kann
der Sensor die Welle abtasten (Amplitude, Polarisation) und durch geschickte Signalver-
arbeitung die Reflexionsparameter wie Reflexionsamplitude, Entfernung, Doppler und
Einfallswinkel schätzen. Schwierigkeiten bei der Signalverarbeitung ergeben sich insbe-
sondere durch Überlagerungen der Wellen aus der gesamten Szene und durch parasitäre
Störsignale (z.B. thermisches Rauschen, elektromagnetische Störeinstrahlung), welche
bei der Signalabtastung mit aufgezeichnet werden.

2.1.2. Definition des Radarkoordinatensystems

Die Reflexionsparameter sind relativ zur Position und Bewegung des Radarsensors zu
betrachten, welcher hier an einer beliebigen Position der Fahrzeugkarosserie montiert
ist. Es sei ein kartesisches Koordinatensystem (KOOS) P mit den Einheitsvektoren
{eP[x], eP[y], eP[z]} fest im Ursprung des Radarsensors definiert, vgl. Abbildung 2.3. Mit
Hilfe dieses KOOSs lässt sich die Lage von Reflektoren aus Sicht des Radarsensors
beschreiben. Dazu sei beispielhaft ein Reflektor T definiert, welcher sich an der Position
p =

[

p[x], p[y], p[z]
]T

im Koordinatensystem P befindet.
In der Radarsignalverarbeitung ist eine Darstellung in Kugelkoordinaten üblich.

Dazu sei im Ursprung von P ein weiteres Koordinatensystem B definiert, dessen erste
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2. Grundlagen zur Signalverarbeitung

P

B

eP [x ]

eP [y]

eP [z ]

eB [x ]

eB [y]
eB [z ]

φaz

φel

r

T

Abbildung 2.3.: Transformation der Koordinatensysteme: Reflektor im Radar
Koordinatensystem, adaptiert von [Gva,Bos].

Koordinate b[x] in Richtung des Reflektors zeigt.2 Die Position des Reflektors im
kartesischen Koordinatensystem lässt sich angeben durch

p =







p[x]
p[y]
p[z]







=






cos(φaz) cos(φel) – sin(φaz) – cos(φaz) sin(φel)
sin(φaz) cos(φel) cos(φaz) – sin(φaz) sin(φel)

sin(φel) 0 cos(φel)












b[x]
b[y]
b[z]







. (2.5)

Die Koordinatentransformation von B nach P („passive Drehung“) ergibt sich aus
sequentieller Euler-Rotation um By und Pz um die Winkel φel und φaz. Diese Winkel
werden im weiteren Verlauf dieser Arbeit als Elevationswinkel und Azimutwinkel bezeich-
net. Die kartesischen Koordinaten

[

p[x] p[y] p[z]
]T

für den Reflektor werden berechnet
(Gleichung 2.5) durch das Einsetzen der Winkel φaz und φel sowie des Translationsvektors
b =

[

b[x] b[y] b[z]
]T

=
[

r 0 0
]T

.

Neben der Position sei noch die Geschwindigkeit in Kugelkoordinaten definiert. Es
sei eine rein translatorische Bewegung in p(t) angenommen. Die polare Geschwindigkeit
ergibt sich dann durch Umstellung von Gleichung 2.5 nach b(t) aus der zeitlichen
Ableitung der Position in Kugelkoordinaten entsprechend

db(t)
dt =






cos(φaz) cos(φel) sin(φaz) cos(φel) sin(φel)
– sin(φaz) cos(φaz) 0

– cos(φaz) sin(φel) – sin(φaz) sin(φel) cos(φel)






dp(t)
dt . (2.6)

Hier entsprechen
db[x]
dt der Radialgeschwindigkeit und

db[y]
dt und

db[z]
dt den zwei Tangen-

tialgeschwindigkeitskomponenten. Die Komponenten
dp[x]
dt ,

dp[y]
dt und

dp[z]
dt entsprechen

der longitudinalen, lateralen und vertikalen Geschwindigkeit am Sensorursprung.

2Hinweis: In Abbildung 2.3 wurde das Koordinatensystem B aus Gründen der Übersichtlichkeit in die
Position des Reflektors geschoben, befindet sich jedoch im Ursprung von P.
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2.1.3. Signalmodulation und Vorverarbeitung

In den beiden vorangegangenen Abschnitten wurde eine Definition von Reflexion an
Grenzflächen zweier Übertragungsmedien und eine Definition von relativen Koordinaten
gegeben. In diesem Abschnitt werden die Signalmodulation und Signalaufbereitung
beschrieben, um später eine Schätzung der Reflexionsparameter über Signalverarbeitung
zu ermöglichen. Wir konzentrieren uns dabei ausschließlich auf eine Modulation nach
dem sogenannten „FMCW Chirp Sequence“ Prinzip, welches nachfolgend erläutert wird.
FMCW beschreibt dabei, dass die vom Radarsensor ausgestrahlten EM-Welle in ihrer
Frequenz nicht konstant sind. Der Begriff Chirp-Sequence (CS) fasst dabei zusammen,
dass eine Folge von Wellen transmittiert wird.

2.1.3.1. Sendesignal

Das in dieser Arbeit verwendete Radargerät verwendet ein Sendesignal der Klasse
FMCW-CS. Hierbei wird für einen kurzen Zeitbereich eine Sequenz von frequenzmodu-
lierten EM-Wellen, den sogenannten Chirps, ausgesendet.

Nach [Sch13] kann das frequenzmodulierte Sendesignal eines Chirps dargestellt werden,
als

sTX(t) = ATX cosΘTX(t) = ATX cos



2π
(

f0t + fsweep
2Tchirp

t2
)

, (2.7)

wobei ATX, f0, fsweep und Tchirp die Amplitude des Sendesignals, die Grundfrequenz,
die Bandbreite und die Chirpperiode sind. t ist die Zeitvariable.

2.1.3.2. Empfangssignal

Das Sendesignal propagiert mit Lichtgeschwindigkeit durch die Szene und wird an
Grenzflächen verschiedener Übertragungsmedien reflektiert, siehe Unterabschnitt 2.1.1.
Strahlen die reflektierten Wellen wieder in Richtung des Sensors, kann ihre EM-Wirkung
dort durch einen ADU zeitdiskret abgetastet werden. Die Abtastung erfolgt über die
Dauer eines Chirps. Das Empfangssignal sei als zeitlich verschobene und gedämpfte
Kopie des Sendesignals modelliert

sRX(t) = ARX cos
(
ΘTX(t – τ(t))

)
, (2.8)

mit Amplitude ARX.
Die Signallatenz τ ergibt sich für Ziele konstanter Geschwindigkeit zu

τ(t) = 2r0 + vr t
c , (2.9)

wobei r0, vr und c der initiale Zielabstand, die radiale Relativgeschwindigkeit und die
Lichtgeschwindigkeit sind.

Das Signal sRX wird anschließend mit dem Sendesignal gemischt, tiefpassgefiltert und
hier unter der Annahme ATX = ARX = 1 durch das Runtermischen auf uTX modelliert
als

sd(t) = cos
(
ΘTX(t) –ΘRX(t)

)
= cos

(
Θd(t)

)
. (2.10)
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2. Grundlagen zur Signalverarbeitung

Weiterführend gilt

Θd(t) = 2π
(

f0τ(t) + fsweep
Tchirp

tτ(t) + fsweep
2Tchirp

tτ(t)2
)

, (2.11)

was durch Einsetzen von Gleichung 2.9, der Wellenlänge λ = c
f und Vernachlässigung

des Terms mit verschwindend geringer Größe durch τ(t)2 umformuliert wird in

Θd(t) = 2π
(

2r0
λ

+ 2vr
λ

t + 2 fsweep
Tchirp

r0
c t
)

. (2.12)

Folgende zusätzliche Notationen seien definiert

φ0 = 2r0
λ

, (2.13)

fD = –2vr
λ

(2.14)

und
fR = 2 fsweep

Tchirp

r0
c , (2.15)

wobei φ0, fD und fR eine von der Entfernung abhängige konstante Phase, die Dopplerfre-
quenz und ein von der Entfernung abhängige Frequenz sind. Die Zeit wird diskretisiert
zu t = (kTsample + lTchirp). Die Argumente k und l sind Laufindices zur Beschreibung
der Zeit entlang eines Chirps sowie der Zeit über mehrere Chirps, in der Regel „fast-
time“ und „slow-time“ genannt. Das zeitkontinuierliche Reflexionssignal eines Chirps
ud(t) wird somit mit einer Abtastperiode von Tsample = Tchirp

K digital abgetastet zu

s(k, l) = cos
(

2π
(

φ0 + fR(kTsample + lTchirp) – fD(kTsample + lTchirp)
))

, (2.16)

2.1.3.3. Entfernungsmessung

Mit steigendem fsweep
Tchirp

wird der Einfluss des Doppler-Anteils innerhalb eines Chirps
(fDkTsample) vernachlässigbar gering, so dass sich die Entfernung direkt abschätzen
lässt. Dazu wird das ins Basisband gemischte Zeitsignal jedes Chirps l durch eine
Diskrete-Fourier-Transformation (DFT) (im Folgendem „Range-FT“ genannt) in den
Frequenzraum umgewandelt

Sr(u, l) =
K–1∑

k=0
s(k, l)e–2πj uk

K . (2.17)

Das Zeitsignal der Länge K wird im Frequenzraum über die Frequenzvariable u
beschrieben. Die Zielentfernung lässt sich im Frequenzspektrum über die Beziehung

R = umax ·∆R = umax ·
c

2fsweep
. (2.18)

abschätzen, wobei umax das Frequenzbin des lokalen Maximums im Spektrum ist.
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2.1. Radarsignalverarbeitung für automotive Anwendungen

Im vorliegenden Fall ist das abgetastete Zeitsignal reellwertig, wodurch das Frequenz-
signal hermitesch gespiegelt wird. Signalfrequenzen oberhalb von K

2 werden durch einen
analogen Tiefpass gedämpft.

Eine anschauliche Übersicht der bisherigen Verarbeitungsschritte von der Signallatenz
zwischen Sende- und Empfangssignal über die Darstellung des abgetasten Signals im
Basisband und die Darstellung des Amplitudenspektrums nach der Fouriertransformation
aus Gleichung 2.17 ist in Abbildung 2.4 dargestellt.

. . .
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e
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(d) Amplitudenspektrum nach Range und
Speed DFT

Abbildung 2.4.: Signalmodulation und Vorverarbeitung: Dargestellt sind die vier
elementaren Verarbeitungsschritte bei CS Modulation.

2.1.3.4. Geschwindigkeitsmessung

Für die Entfernungsmessung wurde in Unterabschnitt 2.1.3.3 angenommen, dass der
Doppler-Anteil innerhalb eines Chirps aufgrund kurzer Beobachtungszeit vernachlässig-
bar gering ist. Die Beobachtungszeit eines Reflektors über mehrere aneinander gereihte
Chirps ist jedoch deutlich länger3, so dass der Einfluss von Doppler bzw. die Geschwindig-
keit über mehrere Chirps hinweg nicht vernachlässigt werden kann. Die Geschwindigkeit
führt dazu, dass sich der radiale Abstand eines Reflektors zum Sensor marginal entlang
der Zeit verändert. Hierdurch ergibt sich eine Verschiebung der Phase, siehe Abb. 2.4b,

3man spricht von der sogenannten „slow time“
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welche durch eine zweite DFT entlang des Chirp Index l gemessen werden kann

Srd(u, v) =
L–1∑

l=0
Sr(u, l)e–2πj vl

L . (2.19)

Diese DFT sei weiterführend „Speed-DFT“ genannt. Diese DFT hat eine Frequenzauflö-
sung von

∆fD = 1
L · Tchirp

(2.20)

welche mit einer Phasenverschiebung um 2vTchirp
λ , vgl. Gleichung 2.9, zu der Relativge-

schwindigkeit
vr = vmax ·

λ

2∆fD = vmax ·∆v (2.21)

wird, wobei max die zum Reflektor korrespondiernde Binposition im Leistungsspektrum
ist.

Zum einfacheren Verständnis der Signale wurden z.B. Kopplungsterme zwischen r
und vr nicht weiter berücksichtigt. Der interessierte Leser sei an dieser Stelle an [Sch13]
verwiesen.

Das Leistungsspektrum nach Range- und Speed-DFT wird häufig als RD-map be-
zeichnet. Werden mehrere Sende- und Empfangsantennen verwendet, so ergibt sich die
RD-map als inkohärent addiertes Leistungsspektren der Kanäle (Srd,i) zu

RD(u, v) = 20 log10
∑

i

∣
∣
∣Srd,i(u, v)

∣
∣
∣ . (2.22)

Im weiteren Verlauf dieser Arbeit wird die gesamte RD-map als Matrix verarbeitet.
Als Darstellung wird die Notation RD[u,v] verwendet, bei welcher die Indices der Matrix
in den tiefgestellten eckigen Klammern dargestellt sind.

2.1.3.5. Doppler-Mehrdeutigkeit

Bedingt durch die Signalabtastung verhält sich, gemäß Nyquist-Shannon Abtasttheorem
[Sha49], die maximale Frequenz reziprok zur Abtastperiode. Dies führt dazu, dass die
eindeutige Doppler-Geschwindigkeit aus dem komplexwertigen Signal limitiert ist auf

fD,max/min = ± 1
2Tchirp

, (2.23)

beziehungsweise
vr,max/min = ± λ

4Tchirp
. (2.24)

Überschreitet die Geschwindigkeit eines Objektes diese Eindeutigkeitsgrenze, so wird
seine Abbildung in der RD-map zyklisch projiziert. Ein Beispiel dieses Verhaltens ist in
Abbildung 2.5 zu sehen. Die linken beiden Bilder stellen Kamerabilder des Szenarios
dar, aufgenommen rechts seitlich aus dem Fahrzeug, sowie nach hinten gerichtet. Rechts
daneben ist das dazugehörige RD-map dargestellt für den Radarsensor, welcher hinten
rechts im Fahrzeug montiert ist. In der RD-map sind zwei gebogene Streifen erhöhter
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Helligkeit zu erkennen. Es kann angenommen werden, dass der obere Streifen den
Reflexionen des Bordsteins entspricht und der untere Streifen höchstwahrscheinlich der
Reflexion der Fassade des Industriegebäudes oder des Zaunes entspricht. Bedingt durch
den Einfallswinkel weisen die ausgedehnten Objekte Bordstein, Zaun und Hausfassade-
ausgeprägte kinematische Signaturen auf. Diese starten ungefähr bei –5 m s–1 Doppler
bis hin zur eindeutigen Doppler-Geschwindigkeit. Danach werden die Ausläufer der
Objekte am linken Rand des RD-maps gespiegelt.
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Abbildung 2.5.: Abbildung einer typischen Fahrszene mit stationären Objekten:
Links: Kameraabbildungen rechts aus dem Fahrzeug heraus, sowie nach
hinten gerichtet. Rechts: RD-map der Szene. Bildhelligkeit verhält sich
proportional zur Leistung. Szeneninhalt im Kamerabild und RD-map
wurden durch farbige Rechtecke verbunden.

2.1.4. Zieldetektion

In Unterunterabschnitt 2.1.3.2 wurde die Amplitude des Empfangssignals zunächst
äquivalent zur Sendeamplitude angenommen. Diese Vereinfachung diente ausschließlich
der anschaulicheren Beschreibung der CS-Vorverarbeitung. Wie aus Unterabschnitt 2.1.1
bekannt ist, findet jedoch eine Amplitudendämpfung der EM-Welle an Grenzflächen
zwischen zwei Übertagungsmedien statt. Leider ergeben sich noch weitere Dämpfungen
der Signalamplitude, welche eine Bestimmung der Reflexionsparameter erschweren. Eine
makroskopische Beschreibung dieser Dämpfung gibt die bekannte „Radargrundglei-
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chung“ an:

Pr = PtGtGrλ2σ
(4π)3r4 . (2.25)

Hier beschreiben Pr und Pt die Empfangs- bzw. Sendeleistung. Gt und Gr sind
die Verstärkungsfaktoren („Antennengewinn“) für Sende- und Empfangsantennen. σ
ist die Pseudogröße RCS und gibt die Rückstrahlleistung eines Objektes im Vergleich
zu einem perfekt leitenden Kugelreflektor mit einer Oberfläche von 1 m2 an. r ist
der einfache Abstand zwischen Radargerät und Reflektor. Für tiefere Einblicke zur
Radargrundgleichung sei auf weiterführende Literatur wie [Sko01] verwiesen.

Die Amplitude eines Reflektors in der RD-map ergibt sich aus der Leistung nach
Gleichung 2.25. In Unterabschnitt 2.1.1 wurde bereits erwähnt, dass sich neben den
Signalen der Reflexion auch parasitäre Rauschanteile in das abgetastete Empfangssi-
gnal mischen. Das breitbandige Rauschen verringert den Signal-Rausch-Abstand bzw.
maskiert die Signale vollständig und erschwert deren Detektion. Werden diese Signale
nicht detektiert, so spricht man von einem falsch-negativ (engl.: „false-negative“) Fehler.
Werden Rauschsignale hingegen fälschlicherweise als Ziel detektiert, so spricht man vom
falsch-positiv (engl.: „false-positive“) Fehler. Letztere Fehler führen zu sogenannten
Falschalarmen. Im Kontext von Fahrerassistenzsystemen könnten diese Falschalarme
einen Regeleingriff hervorrufen, ohne dass dieser Eingriff gewollt und notwendig gewesen
wäre. Bei falsch-negativen Fällen könnte ein notwendiger Regeleingriff ausbleiben. In
ihrer einfachsten Form wird bei der Zieldetektion der Leistungswert des Empfangssignals
ausgewertet und gegenüber einem definierten Schwellwert verglichen. Überschreitet die
Leistung den Grenzwert, so wird von einem Ziel ausgegangen. In der Bildverarbeitung
werden darüber hinaus noch andere Detektionsalgorithmen (Pixel-, Kanten-, Regionen-,
Textur- und modellorientierte Verfahren) [Jäh05] verwendet, wobei in der Radarsignal-
verarbeitung hauptsächlich pixelorientierte Verfahren zum Einsatz kommen. Für den
interessierten Leser sei ein Beispiel solch eines Detektors nachfolgend gegeben.

Nach [Sch13] seien die Hypothesen

H0 : x = ng (2.26)
H1 : x = ng + s (2.27)

definiert, bei denen ng als komplexwertiges Gaußsches-Rauschen und s als komplexwer-
tiges Signal eines Pixels in der RD-map ist. Ein „square law detector“ versucht dann,
einen adaptiven Schwellwert T zu finden, welcher durch

y ≤ T → H0 (2.28)
y > T → H1 (2.29)

eine Entscheidung anhand der gemessenen Leistung y = |x|2 bzw. hier y = RD[u,v] trifft.
Hier wird ein zum Cell Averaging Constant False Alarm Rate (CA-CFAR) analoger
Detektor [Sch13] verwendet. Dieser Detektor schätzt den Rauschpegel und bestimmt
daraus adaptiv den Schwellwert. Die Rauschpegelschätzung entspricht der mittleren
Amplitude der Rauschleistung in der Nachbarschaft eines zu untersuchenden Pixels bzw.
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2.1. Radarsignalverarbeitung für automotive Anwendungen

Zelle in der RD-map:

Z =
∑N

ut=–N
∑N

vt=–N RD[ur+ut ,vr+vt ]
(2N + 1)2 . (2.30)

Hierbei sei N definiert als die Größe der einseitigen Pixelnachbarschaft, welche zur
Schätzung des Rauschlevels verwendet wird. Die Pixelnachbarschaft besteht somit aus
(2N + 1)2 Pixeln. ur und vr seien die Pixelpositionen in Entfernung und Geschwindig-
keitsrichtung. Parametriert sei der Schwellwert T als Summe

T = Z + 3σN, (2.31)

wobei Z die mittlere Rauschleistung und σN die Standardabweichung des Rauschens ist.
Die Standardabweichung des Rauschens kann beispielsweise über die gesamte RD-map
geschätzt werden. Die Leistung eines Pixels in der RD-map muss also um mindestens 3σN
größer als die mittlere Leistung der Nachbarschaft sein, um als Ziel nach Gleichung 2.29
erkannt zu werden. Wird das Rauschen als Gauß-Verteilung angenommen, so wird durch
diesen Schwellwert ein Großteil aller Realisierungen des Rauschens berücksichtigt. Für
weitere Implementierungsmöglichkeiten zum CFAR-Verfahren sei auf weiterführende
Literatur verwiesen, z.B. [Sch13].

Als illustratives Beispiel ist in Abbildung 2.6 das Ergebnis von Rauschlevelschätzung
und Zieldetektion dargestellt. Die Größe der Pixelnachbarschaft in der RD-map entsprach
N = 5.

0 20 40

SNR in dB →

0 20 40

Rauschpegel in dB →

0 0.2 0.4 0.6 0.8 1

Detektion →

Abbildung 2.6.: Zieldetektion mittels CFAR: Links: Typisches RD-map aus Fahr-
szene. Mitte: Ergebnis der Rauschlevelschätzung mit N = 5. Rechts:
Ergebnis der CFAR-Detektion. Heller Bildbereiche entsprechen Bewer-
tung nach H1 Hypothese.

Es ist zu erkennen, dass der CFAR-Algorithmus die Bereiche mit erhöhtem Signal-
Rausch-Verhältnis (engl.: Signal-to-noise-ratio (SNR)) als Ziele detektiert hat.

Wurde ein Ziel in der RD-map detektiert, so sind seine Entfernung und seine radiale
Geschwindigkeit gegenüber dem Radarsensor anhand seiner Pixelposition in der RD-map
und Gleichung 2.18 sowie 2.21 zu schätzen.
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2. Grundlagen zur Signalverarbeitung

2.1.5. Einfallswinkelschätzung
Neben der Zieldetektion nach Unterabschnitt 2.1.4 und der damit verbundenen Iden-
tifikation von Entfernung und Doppler von signifikanten Reflexionen in der RD-map
ist die Identifikation des Einfallswinkels der Reflexionen eine typische Anwendung
bei automotiven Radargeräten. Eine ausführliche Übersicht möglicher Verfahren zur
Einfallswinkelschätzung ist beispielsweise in [BM13,Che09] zu finden. In dieser Arbeit
wird vom fest verbauten Radargeräten ohne mechanische Schwenkung der Antennen
ausgegangen. Eine Vermessung des Einfallswinkels wird ausschließlich über die Verwen-
dung mehrerer Empfangsantennen realisiert, wobei der Signalunterschied der Reflexion
zwischen den Antennen prozessiert wird. Eine graphische Übersicht dieses Signal- bzw.
Phasenunterschiedes ist in Abbildung 2.7 dargestellt.

R
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te
n
n
e
0
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x
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n
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n
n
e
1

R
x
A
n
te
n
n
e
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rrefl., ant.Θ

d1 d2

λ

Abbildung 2.7.: Phasenlage der reflektierten Welle an Empfangsantennen: Lage
EM-Wellen strahlen in lineares Antennenarray. In rot gezeichnet sind
beispielhafte Wellenfronten. Durch die unterschiedliche Position der
Antennen ergeben sich unterschiedliche Phasenlagen der Wellen.

Dargestellt ist ein Reflektor, welcher zuvor aktiv durch das Sendesignal bestrahlt
wurde. Die rot eingezeichneten Kreisbögen sollen die EM-Wellenfronten bzw. Wellen-
berge der Reflexion darstellen. Zwischen den Wellenfronten ergibt sich ein Abstand
gemäß der Wellenlänge λ. Außerdem sind die Positionen dreier Empfangsantennen
(Rx Antenna 0, Rx Antenna 1, Rx Antenna 2) mit einem Abstand d1 bzw. d2 skizziert.
In der Abbildung ist zu erkennen, dass die Wellenfronten die Positionen der Emp-
fangsantennen zu unterschiedlichen Zeitpunkten erreichen bzw. dass die Wellen an den
Empfangsantennen unterschiedliche Phasenausprägungen aufweisen.

Die Krümmung κ der Wellenfronten verhält sich reziprok gegenüber dem Abstand r
zum Kreismittelpunkt (κ = 1

r ), siehe z.B. [Wik22]. Bei hinreichend großem Abstand lässt
sich die Wellenfront am ausgedehnten Antennenarray4 als Gerade annähern. Man spricht
dann von einer „ebenen Welle“. Gemäß des sogenannten „Fraunhofer-Abstandes“ ist
eine ebene Welle als Annäherung einer Welle erfüllt, wenn der punktförmige Reflektor

4Als Antennenarray wird die Anordnung der Empfangsantennen bezeichnet.
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im Fernfeld rfern des Antennearrays liegt [Kra88]

rrefl., ant. > rfern = 2L2

λ
= 2(d1 + d2)2

λ
, (2.32)

wobei L die Ausdehnung („Apertur“) der Antenne beschreibt.
Unter der Annahme dieser Bedingung werden nun zwei klassische DoA-Schätzer

vorgestellt, welche im weiteren Verlauf dieser Arbeit als Referenzverfahren gegen eigene
Winkelschätzer verwendet werden.

2.1.5.1. Monopulsverfahren

Für diese ebene Wellenfornt lässt sich der Wellenvektor in die kartesischen Komponenten

k = kxex + kyey (2.33)
kx = sin(Θ)‖k‖ (2.34)
ky = cos(Θ)‖k‖ (2.35)

‖k‖ = 2π
λ

(2.36)

aufteilen, wobei Θ nach Abbildung 2.7 der Aspektwinkel gegenüber einer zum Anten-
nenarray aufgespannten Normalen ist. Das Koordinatensystem wird hier so gewählt,
dass die Antennen auf der x-Achse liegen. Die Phasendifferenz an den Antennen ergibt
sich als skalare Projektion des Wellenvektors auf den Richtungsvektor zwischen den
Antennen. Somit ergibt sich die Phasendifferenz ∆Φ als

∆Φ = kxd = sin(Θ)2π
λ

d, (2.37)

Durch Auflösen nach Θ ergibt sich

Θ = arcsin
(

λ∆Φ

2πd

)

, (2.38)

welches bei der Kenntnis über die rechten Parameter zur Schätzung des Einfallswinkels
führt.

Bei der Bestimmung des Einfallswinkels in einem Antennenarray werden die gemesse-
nen Phasenwinkel und Antennenabstände aller Antennen berücksichtigt. Zunächst sei
ein Vektor mit den gemessenen Phasendifferenzen zwischen geometrisch benachbarten
Antennen definiert

a =












∠

(

Srd,1(u, v), Srd,2(u, v)
)

∠

(

Srd,1(u, v), Srd,3(u, v)
)

...
∠

(

Srd,1(u, v), Srd,N(u, v)
)












=










a1,2
a1,3

...
a1,N










, (2.39)
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wobei die Phasenwinkel folgend berechnet werden:

∠

(

Srd,i(u, v), Srd,i-1(u, v)
)

= arg



Srd,i(u, v)S∗
rd,i-1(u, v)



. (2.40)

Außerdem wird ein Vektor der geometrischen Antennenabstände definiert zu

b = 2π
λ










x2 – x1
x3 – x1

...
xN – x1










=










b1,2
b1,3

...
b1,N










, (2.41)

wobei xi mit i = 1, · · · , N die horizontalen Positionen der Antennen sind.
In Gl. 2.37 werden die Phasenwinkel unbeschränkt modelliert. Gleichung 2.40 bildet

jedoch die Phasenwinkel nur im Intervall [–π, +π) ab, so für die korrekte Bestimmung
des Einfallswinkels die gemessenen Phasenwinkel eindeutig gemacht werden müssen.
Dazu wird zunächst der Einfallswinkel, basierend auf einem eindeutigen Antennenpaar5

(hier: Antennenpaar (1, 2)) gelöst (Bedingung: d < λ/2),

ik,l =
[

a1,2/π ∗ bk,l
]

. (2.42)

Als eindeutiges Antennenpaar wird ein Antennenpaar bezeichnet, dessen Abstand an
den Grenzen des Field-of-View (FoV), z.B. für Θ = 90◦ gerade eine noch eindeutige
Phasendifferenz von ±π ergibt

dunamb. = πλ

2π = λ

2 . (2.43)

Basierend darauf wird die erwartete Phasenabbildung für jedes uneindeutige Anten-
nenpaar berechnet und synthetisch zur gemessenen Phasendifferenz addiert, so dass sich
die Phasendifferenzen wieder linear proportional zum Antennenabstand verhalten

alinear =










a1,2
a1,3

...
a1,N










– 2π










i1,2
i1,2

...
i1,N










. (2.44)

Das lineare Gleichungssystem ergibt sich somit analog zu Gleichung 2.38 zu

a = b sin(Φ) (2.45)

und kann mit Hilfe der Moore-Penrose Pseudo-Inversen [Pen55] gelöst werden zu

sin(ΦPM) = (bT b)–1bT a. (2.46)

Eine Schätzung des Einfallswinkels für Antennenarrays ergibt sich mittels Phase-

5Nach Gleichung 2.37 ist die Phasendifferenz proportional zum Antennenabstand.
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comparison-Monopulse (PM) somit zu

ΦPM = arcsin (bT b)–1bT a. (2.47)

2.1.5.2. Beamformer

Wurden beim Monopulsverfahren ausschließlich die gemessenen Phasendifferenzen zwi-
schen den Antennen zur Winkelschätzung verwendet, so integriert der Bartlett Beam-
former [KV96] zusätzlich die gemessenen Signalamplituden und erreicht ein besseres
Schätzergebnis. Außerdem wird durch die Anwendung des Beamformers ein Winkelspek-
trum erzeugt. Das zuvor erzeugte zweidimensionale Leistungsspektrum bzw. RD-map
wird somit um die Dimension zum Sinus des Winkels erweitert. Starke Reflexionen erzeu-
gen ein lokales Maximum über alle drei Dimensionen. Die Entfernung, der Doppler und
der Winkel ergeben sich automatisch aus der Auflösung entlang der drei Dimensionen.
Ein Vorteil des Beamforming (BF) gegenüber den Punktschätzern, z.B. gegenüber PM,
ist, dass Reflexionen auch im Winkel aufgelöst werden und in Entfernung und Doppler
überlagerte Reflexionen somit über den Winkel voneinander getrennt werden können,
sofern es die Winkelauflösung und spektralen Signaleigenschaften zulassen.

Für die Implementierung des BF-Verfahrens sei zunächst den Antennenabstand zum
Antennenursprung als diskrete Variable definiert

d[n] = ds
λ

2 n, (2.48)

wobei ds = 2d
λ ein Skalar ist, welcher den Abstand der Antennen als Vielfaches der

halben Wellenlänge skaliert. n ∈ [0, 1, N – 1] sei der Laufindex zur Indexierung über die
N Empfangsantennen.

Das Empfangssignal x für alle N Antennen sei modelliert nach Gleichung 2.37 zu

x[n] = ej 2π

λ
sin(Θ)d[n] = ej 2π

λ
ds sin(Θ) λ

2 n . (2.49)

Mittels DFT ergibt sich das Winkelspektrum X zu

X [k] =
N–1∑

n=0
x[n]e–j2πkn/N =

N–1∑

n=0
ej 2π

λ
ds sin(Θ) λ

2 ne–j2πkn/N . (2.50)

Der gesamte Exponent kann abgelesen werden zu

j 2π
λ

ds sin(Θ)λ2 n – j2πkn/N . (2.51)

Eine kohärente Signalintegration ergibt sich, wenn der Exponent gerade Null wird,
wodurch der Exponent aufgelöst werden kann zu

sin(Θ) = 2k
dsN . (2.52)

Der DFT Index k kann damit zur Beschreibung des Einfallswinkels verwendet werden.
Die Winkelauflösung des BF ergibt sich als Abstand zweier benachbarter DFT-Zellen,
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bzw. Setzen von k = 1 zu
∆Θ = arcsin

(

2
dsN

)

. (2.53)

Einen Punktschätzer des Einfallswinkels ΦBF für ein Pixel in der RD-map erhält man
an der Stelle der maximalen Leistung im Winkelspektrum zu

kmax = argmax
k

X [k]X∗[k] (2.54)

ΦBF(kmax) = arcsin
(

2kmax
dsN

)

. (2.55)

Für die Implementierung mittels DFT ist weiterhin zu beachten, dass bei nicht
äquidistanten Antennenabständen6 die Empfangssignale gemäß des minimalen Anten-
nenabstandes mit Nullen aufgefüllt werden müssen. Dieses, als „zero-padding“ benannte,
Verfahren ermöglicht darüber hinaus eine Interpolation des Winkelspektrums bzw. eine
feinere Diskretisierung und somit eine erhöhte Schätzgenauigkeit von ΦBF.

2.2. Inferenz und Training bei neuronalen Netzwerken

Als Deep-Neural-Network (DNN) bezeichnet man Funktionsapproximatoren, die Ein-
gangsdaten in mehreren Schichten nichtlinear verarbeiten. Durch diese schichtweise,
nichtlineare Verarbeitung können diese Netzwerke jede beliebige Übertragungsfunktion
abbilden. Der interessierte Leser findet unter dem Begriff „universal approximation theo-
rem“ viele interessante Artikel. Diese theoretische Eigenschaft macht DNNs universell
einsetzbar für Aufgaben, bei denen ein deterministischer oder statistischer Zusammen-
hang zwischen Ein- und Ausgabedaten existiert. Neben dem Aufbau des Netzwerkes ist
das Training der Netzwerkparameter kritisch für den erfolgreichen Einsatz des DNNs.
In diesem Abschnitt wird beides kurz beleuchtet und somit die Grundlage für das
Verständnis der Signalverarbeitung mittels NN in dieser Arbeit geliefert.

2.2.1. Vorwärtsdurchlauf

Für die Inferenz werden die Eingangsdaten schichtweise verarbeitet. Es sei zunächst
eine einfache Netzwerkschicht7 definiert zu

y = f (Wx + b). (2.56)

Hierin sind x und y ein Eingangsvektor bzw. ein Ausgangsvektor. W und b sind
trainierbare Gewichtsmatrix und Bias. f (· · · ) ist eine nichtlineare Aktivierungsfunktion,
wie z.B. Sigmoid, Tangens hyperbolicus oder ReLU. Der Eingangsvektor x wird somit
durch W und b linear und das Ergebnis durch f (· · · ) nichtlinear transformiert.

Diese Transformation wird in einem NN mehrfach hintereinander ausgeführt. Dazu

6man spricht dann von nicht Uniform-Linear-Array (ULA) Antennen-Array
7Demonstriert wird das Netzwerk anhand von sogenannten „fully connected layer“.
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sei das beispielhafte Netzwerk mit drei Schichten definiert

y1 = f1(W1x + b1) (2.57)
y2 = f2(W2y1 + b2) (2.58)
o = f3(W3y2 + b3). (2.59)

Jede Netzwerkschicht hat eigenständig trainierbare Projektionsparameter Wi und bi
und eine eigens wählbare Nichtlinearität f (· · · )i . Die Prädiktion des Netzwerkes wird
durch o geliefert.

2.2.2. Rückwärtsdurchlauf
Damit diese Prädiktion sinnvolle Werte erreicht, müssen Projektionsparameter Wi
und bi während einer Trainingsprozedur optimiert werden. Dazu wird zunächst die
Abweichung vom Zielwert ogt ermittelt. Das Subskript gt wurde hier in Anlehnung
an den englischen Begriff „ground-truth“ gewählt. Je nach Anwendung kann diese
Abweichung z.B. als Differenz und konvexer Skalierungsfunktion τ(·) als

l(o, ogt) = τ (e) = τ
(

o – ogt
)

, (2.60)

dargestellt werden.
Häufig werden die Parameter mit einem „gradient descent“ Verfahren mit Schritt-

weite γ trainiert, so dass die Netzwerkparameter iterativ von Schritt (n) nach (n + 1)
aktualisiert werden zu

W(n+1)
i = W(n)

i – γ ∂l
∂W(n)

i
(2.61)

b(n+1)
i = b(n)

i – γ ∂l
∂b(n)

i
. (2.62)

Der letzte Term beschreibt den Gradienten der Fehlerfunktion, bezogen auf die
Netzwerkparameter W und b, und kann durch Anwendung der Kettenregel berechnet
werden. Für die Parameter der Schichten ergeben sich damit

∂l
∂W(n)

i
= ∂l
∂τ

∂τ

∂e
∂e
∂o

∂o
∂W(n)

i
(2.63)

∂l
∂b(n)

i
= ∂l
∂τ

∂τ

∂e
∂e
∂o

∂o
∂b(n)

i
. (2.64)

Die Projektionsparameter der anderen Schichten können analog aktualisiert werden.
Wesentlich für das Verständnis dieser Arbeit ist die Erkenntnis, dass zur Anwendung
der Parameteraktualisierung die Gradienten von der gemessenen Abweichung l, bis zu
den Projektionsparametern bestimmt werden können und so die Fehler in die Netzwerk-
schichten zurück propagiert werden können.

Für eine umfangreichere Beschreibung vieler Themen zur Nutzung von NNen seien
dem Leser die Werke [Sch14,GBC16] empfohlen.
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3. Aufbau und Kalibrierung des
Sensorsystems

Für die im späteren Verlauf dieser Arbeit vorgestellten Algorithmen und Versuche wurde
ein Fahrzeug aufgebaut, welches mit einer Vielzahl von Sensoren ausgestattet ist. Ziel
ist eine detaillierte, berührungslose Abtastung der Umgebung für die automatische
Ermittlung von Zielwerten für den ebenfalls verbauten Radarsensor vom Typ HELLA
5Gen 77 GHz. Mit den Zielwerten sollen später Machine-Learning (ML)-Algorithmen
zur Signalverarbeitung trainiert werden. Als Referenzsensoren kommen zwei Lidar-
scanner vom Typ Velodyne VLP-32C [LiD20] zum Einsatz. Diese aktiven Sensoren
strahlen EM-Pulse für bestimmte Elevations- und Azimutwinkel aus und schätzen
aus der Reflexion die Tiefe. Durch die Menge der Tiefenmessungen wird dann eine
spärliche Punktwolke der Umgebung konstruiert. Ebenso werden zwei Kameras vom
Typ FirstSensor DC3C-1-E4P-105 [Fir] verwendet. Kameras sind passive Sensoren und
tasten die Wellenlängen im sichtbaren Frequenzbereich für diskrete Elevation- und Azi-
mutwinkel ab. Durch Anordnung benachbarter Winkel werden so Farbbilder konstruiert,
welche eine optische Abbildung der Umgebung darstellen. Für Informationen bezüglich
der Bewegung und Position des Ego-Fahrzeuges wird ein Differential-GPS-with-Inertial-
Navigation-System (DGPS-INS)-System vom Typ GeneSys ADMA-G-Pro+ [Gen20]
verwendet. Es sei festzuhalten, dass die später aufgebauten Algorithmen mit diesen
Sensoren getestet wurden und somit eine Definition an dieser Stelle notwendig ist. Aus
Sicht des Autors ist ein Austausch mit artverwandten Sensoren aber technisch möglich.
Eine Darstellung des Versuchsträgers mit den eingebauten Sensoren ist in Abbildung 3.1
gegeben.

3.1. Definition der Koordinatensysteme
Jeder Sensor tastet die Umgebung relativ zu seiner eigenen Position und Ausrichtung
ab. Die Sensordaten liegen dann in dem für jeden Sensor spezifischen KOOS vor, siehe
Unterabschnitt 2.1.2. Zur Beschreibung der Sensordaten definieren wir für jeden Sensor
ein kartesisches KOOS im Sensorursprung entsprechend der Sensorausrichtung. Eine qua-
litative Übersicht der KOOSen ist in Abbildung 3.1 gegeben. Um die Sensordaten später
miteinander fusionieren zu können, müssen die Daten zwischen den KOOSen ineinander
überführt werden können. Wir definieren dazu die generische afÏne Transformation

xI = I(J RxJ + I(J t, (3.1)

welche die Transformation der geometrischen Sensordaten in Vektorform xJ ∈ R
3×1

von einem Ursprungskoordinatensystem J in ein Zielkoordinatensystem I überführt.
Hierbei entsprechen I(J R ∈ R

3×3 einer Rotationsmatrix und I(J t ∈ R
3×1 einem Trans-

lationsvektor. Die Darstellung der Sensordaten in Form von xJ werden wir nachfolgend
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Abbildung 3.1.: Qualitative Darstellung und Ausrichtung der Koordinatensys-
teme: Rot: Fahrzeug-KOOS; Grün: Lidar-KOOS; Blau: DGPS-KOOS;
Lila: Kamera-KOOS; Orange: Radar-KOOS. Nach [EB6].

als „intrinsische geometrische Kalibrierung“ bezeichnen. Die Identifikation der Rotati-
onsmatrix und des Translationsvektors wird nachfolgend als „extrinsische geometrische
Kalibrierung“ bezeichnet. Die Beschreibung der geometrischen Kalibrierungen der Sen-
soren ist Bestandteil dieses Kapitels.

Als Synonym des jeweiligen KOOSs definieren wir uns folgende Symbole:

• E : Bezugs KOOS auf dem Ego-Fahrzeug

• D: KOOS des DGPS-INS

• C1, C2: KOOSe der zwei Kamerasensoren

• L1, L2: KOOSe der zwei Lidarsensoren

• R: KOOS des Radarsensors.

Da die unterschiedlichen Sensoren eigene Zeitbasen haben und die Szene nicht zu
gleichen Zeitpunkten abtasten, müssen die zeitlichen Unterschiede in der Abtastung
kompensiert werden, um eine synchrone Fusion der Daten zu erreichen. Im Laufe dieses
Kapitels wird ebenfalls vorgestellt, wie diese zeitliche Kompensation, auch „temporale
Synchronisation“ genannt, durchgeführt wurde.

3.2. Radar
Der hier verwendete Radarsensor ist ein Entwicklungssensor mit dem Antennendesign
eines aktuellen Seriensensors, jedoch mit physikalischer Schnittstelle zur Ausgabe von
ADU-Daten. Das FoV bzw. die „Strahlbreite“ des Sensors beträgt in Azimut etwa 140◦

und Elevation ca. 20◦.
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3.2. Radar

3.2.1. Intrinsische geometrische Kalibrierung

Wie im Abschnitt 2.1 erwähnt, kann der Radarsensor durch geschickte Signalverarbei-
tung u.a. die Entfernung, die Geschwindigkeit und den Einfallswinkel der Reflektoren
bzw. Reflexionen schätzen. In Gleichung 3.1 ist die Position des Reflektors in kartesischen
Koordinaten gefordert. Mit Hilfe von Gleichung 2.5 lässt sich die Position von Polarko-
ordinaten (Azimut, Elevation, Entfernung) in kartesische Koordinaten überführen

xR =
[

eR[x] eR[y] eR[z]
]

·







xR[x]
xR[y]
xR[z]







=
[

eR[x] eR[y] eR[z]
]

·






cos(φaz) cos(φel)
sin(φaz) cos(φel)

sin(φel)




 r , (3.2)

wobei eR[x], eR[y] und eR[z] die Einheitsvektoren zum KOOS für xR sind. Die Schätzung
der Einfallswinkel φaz und φel können z.B. nach den in Unterabschnitt 2.1.5 vorgestellten
Verfahren durchgeführt werden. Bedingt durch Fertigungstoleranzen und Signalbeugung
am Stoßfänger ergeben sich Phasenverzerrungen zwischen den Antennen, welche die
Modellbeschreibung nach Gleichung 2.37 stören. Eine Kompensation dieser Verzerrung
wurde, wie in [Kue17] beschrieben, durch eine Kreuzkalibrierung mit durch Roboter
platzierten Referenzzielen durchgeführt. Da diese Kreuzkalibrierung für das Verständnis
der Aspekte dieser Arbeit nicht notwendig ist, sei der interessierte Leser auf referenzierte
Literatur verwiesen. Ein alternatives Verfahren zur Kreuzkalibrierung zwischen Radar
und Lidar ist in [PSK20] zu finden. Ein Verfahren für die Kreuzkalibrierung von Radar
und Kamera ist in [CYH+23] zu finden.

3.2.2. Extrinsische geometrische Kalibrierung

Als Zielkoordinatensystem bei der extrinsischen geometrischen Kalibrierung wurde hier
das Ego-KOOS gewählt, welches die Pose des Radarsensors relativ zu einem KOOS
E im Ego-Fahrzeug beschreibt. Das fortlaufend als „Ego-KOOS“ bezeichnete KOOS,
dessen Ausrichtung analog zur ISO-8855 [ISO11,MW04] verläuft, wurde im Zentrum
der Fahrzeugvorderachse platziert, siehe Abbildung 3.1. Es wird angenommen, dass
sämtliche verwendeten Sensoren fest am Fahrzeug angebracht sind und dass zu keiner
Zeit eine Deformation des Fahrzeuges oder der Sensorhalterung bspw. durch dynamische
Fahrmanöver entsteht.

Die Identifikation der Rotationsmatrix E(RR und des Translationsvektors E(Rt erfolg-
te anhand der Computer-Aided-Design (CAD)-Konstruktion. In der CAD-Konstruktion
war die Einbauhalterung des Radarsensors bereits konstruiert und somit die Einbaupose
festgelegt. Kleinere Abweichungen der Einbauorientierung wurden durch die intrinsi-
sche Kalibrierung kompensiert. Die Transformation eines Punktes, gegeben durch den
Radarsensor, kann somit folgend in das Ego-KOOS transformiert werden

xE = E(RRxR + E(Rt. (3.3)
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3. Aufbau und Kalibrierung des Sensorsystems

3.3. Lidar
Das Sensorsetup umfasst zwei Lidarsensoren. Die Kalibrierung beider Sensoren erfolgt
analog zueinander. Falls notwendig, werden, wie in Abbildung 3.1 gezeigt, zur Unter-
scheidung der Lidarsensoren nachgestellte Indizes verwendet, beispielsweise E(L1R für
den ersten Lidarsensor.

3.3.1. Intrinsische geometrische Kalibrierung
Analog zum Radarsensor liefert der Lidarsensor Reflexionsparameter in Polarkoordinaten,
so dass die Darstellung der Lidar-Daten in kartesischen Koordinaten xL analog zur
Gleichung 3.2 vorgenommen wird.

3.3.2. Extrinsische geometrische Kalibrierung
Wie beim Radarsensor wurde das Ego-KOOS als Zielsystem der Koordinatentransforma-
tion gewählt. Die Identifikation der Transformationsparameter E(LR und E(Lt erfolgt
in drei wesentlichen Schritten.

Im ersten Arbeitsschritt wird das Fahrzeug mit den montierten Lidarsensoren auf einer
Stellfläche positioniert. Diese Stellfläche sollte möglichst eben sein und in unmittelbarer
Nähe zum Fahrzeug (ca. 30 m) keine vertikal ausgedehnten Objekte beinhalten. Nun
wird mittels RANSAC-Verfahren [FB81] eine Ebene in der Punktwolke1 detektiert.
Dabei wird iterativ (100 Durchgänge) eine Untermenge (3 Punkte) der Punktwolke
gezogen und eine Ebene durch die Untermenge der Punkte gepasst. Danach wird die
Anzahl aller Punkte ermittelt, die einen geringen orthogonalen Abstand d zur Ebene
aufweisen (d ≤ 0.2 m). Schlussendlich wird die Ebene mit der höchsten Anzahl an
Punkten mit geringem Abstand gewählt. Durch die Wahl des Szenarios ist davon
auszugehen, dass diese Ebene der Bodenfläche entspricht. Ein Beispiel dieser Detektion
ist in Abbildung 3.2 links zu sehen, in der die Bodenpunkte schwarz markiert wurden.
Die rot markierten Punkte stellen vertikal ausgedehnte Objekte auf der Stellfläche wie
Hauswände, parkende Fahrzeuge und Bäume dar.

Mittels Hauptkomponentenanalyse (engl: Prinicipal-Component-Analysis (PCA))
[F.R01] wird nun der Normalenvektor der detektierten Ebene (in positiver Z-Richtung)
berechnet. Dazu fassen wir die kartesischen Koordinaten aller Punkte zur detektierten
Ebene in Matrixform zusammen:

Dsurf =







x̂L,x,1 x̂L,y,1 x̂L,z,1
...

...
...

x̂L,x,N x̂L,y,N x̂L,z,N







. (3.4)

Anschließend wird die Kovarianzmatrix Σ ∈ R
3×3 aus der Punktwolke berechnet und

in Eigenwertdarstellung umgewandelt

Σ = 1
N DT

surfDsurf = VΛVT . (3.5)

Λ = diag(λ1,λ2,λ3) ist die Eigenwertmatrix und V die Eigenvektormatrix. Die
1Menge aller Punkte von xL
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3.3. Lidar

nsurf.nvert.

nquat.

Abbildung 3.2.: Horizontierung der Bodenreflexionen aus Lidarsensor: Links:
Die schwarzen Punkte markieren die als Boden detektierten Punkte,
die roten Punkte entsprechend Ausreißer bei der RANSAC-Schätzung.
Ebenfalls eingetragen sind qualitative Darstellungen der identifizierten
Oberflächennormalen nsurf., der Zielausrichtung der Oberflächennorma-
len nvert. und der Drehachse nquat.. Rechts: Darstellung der Bodenre-
flexionen (schwarz) und Ausreißer (rot) nach der Rotation.

Eigenvektormatrix enthält drei orthogonal zueinander stehende Vektoren, welche die
Hauptkomponenten der Punktwolke darstellen. Durch die vorausgegangene Detektion
von Aureißern orthogonal zur Ebene, kann angenommen werden, dass die Punkte in der
Ebene deutlich stärker streuen als orthogonal zur Ebene, so dass die Hauptkomponente
mit kleinstem Eigenwert eine Schätzung der Normalen zur Ebene ist

nsurf. = V [:, argmin(λi)]. (3.6)

Wie in Unterabschnitt 3.2.2 beschrieben, sei das Ego-KOOS definiert als kartesisches
KOOS in welchem die z-Achse orthogonal zur Fahrbahnoberfläche verläuft. Daraus
ergibt sich der Zielvektor der Z-Achse der Ebenen zu nvert. =

[

0, 0, 1
]T

. Es wird eine
Rotationsmatrix Rsurf. gesucht, welche nsurf. in den Zielvektor nvert. dreht. Aus dem
Zielvektor nvert. und dem Normalenvektor nsurf. wird zunächst das Einheitquaternion
q gebildet

q =
[

q1, q2, q3, q4
]T

=
[

cos
(

γ1
2
)

, sin
(
γ1/2

)
nquat.

|nquat.|

]

(3.7)

mit
γ1 = arccos

(

nsurf. · nvert.
‖nsurf.‖‖nvert.‖

)

(3.8)

und
nquat. = nsurf. × nvert.. (3.9)

Anschaulich betrachtet entspricht nquat. der Rotationsachse, um welche mit dem
Winkel γ1 gedreht werden muss, damit die Vektoren nvert. und nsurf. kongruent zuein-
ander sind. Diese Rotation kann nach [KUI99] auch in Form einer Rotationsmatrix
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3. Aufbau und Kalibrierung des Sensorsystems

Rsurf. ∈ R
3×3 dargestellt werden, zu

Rsurf. =







1 – 2(q2
3 + q2

4) 2(q2q3 – q4q1) 2(q2q4 + q3q1)
2(q2q3 + q4q1) 1 – 2(q2

2 + q2
4) 2(q3q4 – q2q1)

2(q2q4 – q3q1) 2(q3q4 + q2q1) 1 – 2(q2
2 + q2

3)







. (3.10)

Durch Drehung der Punktwolke ( Rsurf.DT
surf) ergibt sich eine Punktwolke, in welcher

die detektierte Fahrbahn orthogonal zur z-Achse verläuft, siehe Abbildung 3.2 rechts.
Da durch die PCA nicht die Ober- oder Unterseite der Fahrbahn erkannt wird, muss
nsurf. gegebenenfalls manuell umgekehrt werden.

Die vorausgegangene Rotation zielt darauf ab, die Punktwolke des Lidars parallel zur
Ebene auszurichten. Die Punktwolke kann jedoch noch um die z-Achse des Fahrzeuges
verdreht sein. Um diese Verdrehung zu identifizieren, werden sämtliche Punkte oberhalb
der Fahreben entsprechend ihrer Position in der Ebene in ein Bild eingetragen, wobei
der Grauwert durch die Reflexionsintensität des Punktes bestimmt wird. Nun wird das
Fahrzeug geradeaus mit etwa 20 km h–1 bewegt. Das Bild wird für jeden Frame neu
gerendert. Der Bildinhalt bewegt sich nun ebenfalls geradlinig entsprechend der verblie-
benen Verdrehung. Um diese geradlinige Bewegung zu identifizieren, werden mittels
Shi-Tomasi [ST94] Detektor wichtige Punkte (engl: „keystones“) des Grauwertbildes
detektiert und mit Lucas-Kanade-Methode [LK81] zeitlich verfolgt, siehe Abbildung 3.3.

Keystones Keystone tracks

γ2

u

v

Abbildung 3.3.: Verfolgung wichtiger keystones in der Lidar-Punktwolke: Links:
Darstellung der nicht in der Fahrbahnebene liegenden Punktwolke
sowie der detektierten keystones im Grauwertbild. Rechts: Tracks der
keystones nach Geradeausfahrt des Fahrzeuges. Die Tracks verlaufen
im Winkel γ2 zur Bildhorizontalen.

Aus der Gesamtheit aller verfolgten Punkte (engl: „Tracks“) wird die mittlere Orien-
tierung γ2 gegenüber der vertikalen Bildachse geschätzt. Dabei wurde festgelegt, dass die
vertikale Bildachse der Längsachse des Fahrzeuges entsprechen soll und die Punkte somit
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3.4. Kamera

bei sich vorwärts bewegendem Fahrzeug vom oberen Bildbereich nach unten wandern
sollen. Für die Schätzung von γ2 kommt wieder ein RANSAC-Verfahren zum Einsatz,
um Ausreißer in den Tracks zu detektieren und die Schätzung von γ2 zu stabilisieren.
Die sich daraus ergebene Rotationsmatrix stellt eine Drehung um die z-Achse mit dem
Drehwinkel γ2 dar

Rkeystones






cos(90◦ – γ2) sin(90◦ – γ2) 0
– sin(90◦ – γ2) cos(90◦ – γ2) 0

0 0 1




 . (3.11)

Die gesamte Rotation des Lidars gegenüber dem Ego-Fahrzeug wird somit zu

E(LR = RkeystonesRsurf. (3.12)

identifiziert.
Neben der Rotation wird die Translation E(Lt von Lidar und Ego-Koordinaten befüllt

E(Lt =
[

xLidar yLidar zLidar
]T

. (3.13)

Die Komponente zLidar lässt sich aus der mittleren vertikalen Höhe aller Punkte der
Ebene berechnen, über






x1,derot. . . . xN ,derot.
y1,derot. . . . yN ,derot.
z1,derot. . . . zN ,derot.




 = E(LRDT

surf, (3.14)

zu

zLidar = 1
N

N∑

i
zi,derot.. (3.15)

Die Komponenten xLidar und yLidar werden mittels Maßband manuell ausgemessen.
xLidar ist dabei der Abstand der Fahrzeugvorderachse und yLidar der Abstand von der
Fahrzeuglängsachse zum Lidarsensor.

Die Algorithmen können auf einem im Fahrzeug verbautem Personal-Computer (PC)
in Echtzeit prozessiert werden und die gesamte Kalibrierung der Lidarsensoren somit
innerhalb von etwa 5 min durchgeführt werden.

Die Transformation von Positionen des ersten Lidar KOOS konnte somit wie folgt in
das Ego-KOOS vorgenommen werden

xE = E(L1RxL1 + E(L1t. (3.16)

Für den zweiten Lidarsensor ergibt sich analog eine Transformation zu

xE = E(L2RxL2 + E(L2t. (3.17)

3.4. Kamera
Die verwendeten Kameras haben einen horizontalen Öffnungswinkel von etwa 105◦ und
einen vertikalen Öffnungswinkel von etwa 80◦. Da das FoV einer einzelnen Kamera
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3. Aufbau und Kalibrierung des Sensorsystems

nicht ausreicht, um das FoV des verwendeten Radarsensors abzudecken (vgl.: 140◦),
wurden zwei Kameras an ähnlicher Position, aber mit unterschiedlicher Ausrichtung
am Fahrzeug montiert. Durch Fusion beider Kamerabilder oder separate Auswertung
der Kamerabilder lässt sich später die Signalverarbeitung auf Radardaten über dessen
gesamtes FoV auswerten.

3.4.1. Intrinsische geometrische Kalibrierung
Für die Darstellung von Bildpunkten in der Kamera hin zu kartesischen Koordinaten
für eine Transformation gemäß Gleichung 3.1 werden zwei Arbeitsschritte durchgeführt.
Dies ist erstens die Rektifizierung des Kamerabildes und zweitens die Beschreibung der
kartesischen Koordinaten über ein Lochkameramodell.

3.4.1.1. Rektifizierung des Kamerabildes

Bei der verwendeten Kamera wurde eine positive radiale optische Verzeichnung fest-
gestellt. Dabei handelt es sich um geometrische Abbildungsfehler, welche zu lokalen
Verzerrungen des Bildinhaltes führen. Dieser Effekt ist in Abbildung 3.4 links zu se-
hen. Die gerade verlaufenden Längsbalken und Querrohre an der Decke haben eine
ausgeprägte Krümmung im Kamerabild.

Abbildung 3.4.: Rektifizierung des Kamerabildes: Links: unbearbeitetes Bild
RGBdist.. Rechts: Bild nach Rektifizierung RGBrect.. Die Verzerrung
durch die Kameralinse führt zu einer Verzerrung gerader Objekte im
Kamerabild, bspw. den Längsträgern an der Decke. Nach der Rekti-
fizierung liegt der Längsträger auch im Bild in einer Flucht, mit der
eingezeichneten gelben Linie.

Ursächlich für die optische Verzeichnung ist häufig die Linsengeometrie. In der Re-
gel steigt die optische Verzerrung bei Linsen mit größerem Öffnungswinkel. Die hier
verwendete Linse ermöglicht einen verhältnismäßig großen Öffnungswinkel von etwa
105◦ und eine Entzerrung bzw. Rektifizierung des Bildes ist notwendig, um im weiteren
Verlauf eine bestmögliche Projektion von Lidarpunkten zu ermöglichen. Zur Kompensa-
tion dieser optischen Verzeichnung bietet die verwendete Kamera eine interne digitale
Entzerrung an, deren Ergebnis in Abbildung 3.4 rechts dargestellt ist. Dabei werden die
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3.4. Kamera

Bildkoordinaten im Kamerabild nach dem parametrischen Modell aus [Bro66,Zhe99]
manipuliert. Die Bildkoordinaten in der verzerrten Optik lassen sich dabei modellieren,
als

x = u – cu
fu

(3.18)

y = v – cv
fv

(3.19)

udist. = fux(1 + κ1r2 + κ2r4) + cu (3.20)
vdist. = fvy(1 + κ1r2 + κ2r4) + cv (3.21)

r =
√

x2 + y2, (3.22)

wobei u und v die nicht verzerrten Pixel Koordinaten sind. Die Verzerrungsfaktoren
κ1 = –0.11 und κ2 = 0.085 wurden bei einer Identifikation der intrinsischen Kame-
raparameter geschätzt. cu, cv , fu und fv werden im nächsten Abschnitt benannt und
identifiziert.

Das rektifizierte Kamerabild wird durch den in Algorithmus 1 dargestellten Pseudocode
berechnet.

Algorithmus 1: Bild-Rektifizierung
Daten: Verzerrtes Kamerabild RGBdist. und intrinsische Kameraparameter

{fx , fx , cx , cy ,κ1,κ2}
Ergebnis: Rektifiziertes Kamerabild RGBrect.
für u ← 0 bis 640 – 1 tue

für v ← 0 bis 480 – 1 tue
x ← (u – cu)/fu
y ← (v – cv)/fv
r ←

√

x2 + y2

K ← 1 + κ1r2 + κ2r4

udist. ← round(fxKx + cx)
vdist. ← round(fyKy + cy)
RGBrect.[u,v] ← RGBdist.[udist.,vdist.]

return RGBrect.

Der interessierte Leser sei an dieser Stelle auf weiterführende Literatur zur optischen
Verzeichnung verwiesen, bspw. [MMT10,Sze10].

3.4.1.2. Beschreibung der Bildkoordinaten über Lochkameramodel

Nach der erfolgten Rektifizierung des Kamerabildes lässt sich die optische Abbil-
dung durch die Kamera mit guter Näherung durch ein einfaches Lochkameramodell
(engl.: camera pinhole model) [FP12] beschreiben2. Eine Darstellung des Modells ist in
Abbildung 3.5 gegeben.

2Äquivalent kann auf die Rektifizierung des Kamerabildes verzichtet werden, wenn im Gegenzug ein
entsprechend komplexeres Kameramodell verwendet wird.
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xC

FC

eC[z]

eC[y]

eC[x]
v

u(u, v)

c
u

c
v

f

Abbildung 3.5.: Lochkameramodel: Projektion eines Punktes aus Kamerakoordinaten
in Bildkoordinaten.

Die graue Fläche stellt das Kamerabild dar. Das Koordinatenkreuz FC die Position
und Orientierung der Kamera. Ein Punkt P gegeben in Kamerakoordinaten, durchstößt
das Kamerabild an den Bildkoordinaten u und v und wird an dieser Position im
Kamerabild dargestellt. Durch Anwenden des Strahlensatzes ergeben sich die folgenden
geometrischen Beziehungen

u – cu
fu

=
xC [x]
xC [z]

(3.23a)

v – cv
fv

=
xC [y]
xC [z]

. (3.24a)

Die intrinsischen Kameraparameter fu , fv , cu , cv beschreiben die Brennweiten bzw. den
Bildversatz und werden in der Einheit Pixel angegeben. Ein Punkt xC ∈ R

(3×1) wird
durch seine Koordinaten, die tiefgestellte eckige Klammer kennzeichnet die jeweilige
Komponente, z.B. xC [y], dargestellt.

Durch Umstellen der Gleichungen nach Kamerakoordinaten ergeben sich die karte-
sischen Koordinaten im Kamera-KOOS aus den Bildkoordinaten und der Tiefe xC [z]
zu

xC =







xC [x]
xC [y]
xC [z]







=







u–cu
fu xC [z]

v–cv
fv xC [z]
xC [z]







. (3.25)

Zur Identifikation der intrinsischen Kameraparameter wurde die Matlab-Toolbox
[Mat17] verwendet und Kamerabilder einer Szene mit Kalibriermustern aufgezeich-
net, siehe Abbildung 3.6. Als Kalibriermuster wurden Schachbrettmuster mit einer
Seitenlänge von hier 45 mm auf Papier ausgedruckt und zur Stabilisierung auf Pappe
verklebt.

In der Matlab-Toolbox werden die Eckpunkte sämtlicher Felder des Schachbrett-
musters detektiert. Durch Variation der Position der Kalibriermuster im Kamerabild

36



3.4. Kamera

Abbildung 3.6.: Kalibriermuster für Identifikation der intrinsischen Kamera
Parameter: Darstellung der verwendeten Kalibriermuster für die in-
trinsische Kalibrierung der Kameras.

werden die intrinsischen Parameter (Brennweite und optische Achse) des Lochkame-
ramodells automatisch identifiziert. Bei den verwendeten Kameras wurden die Brenn-
weiten fu = fv ≈ 510px identifiziert. Die optische Achse cu = 640px

2 = 320px und
cv = 480px

2 = 240px wurde auf den Bildmittelpunkt zentriert.

3.4.2. Extrinsische geometrische Kalibrierung

Um die Beobachtungsposition von Kamera und Lidar möglichst gleich zu halten und
somit Abbildungsunterschiede der Umgebung gering zu halten, wurden die Kameras
direkt in der Nähe der Lidarsensoren verbaut, siehe Abbildung 3.7a. Ein weiterer Vorteil
ist, dass die extrinsischen geometrischen Kalibrierparameter in Form von Versatz und
Verdrehung der Kameras gegenüber den Lidarsensoren aus der CAD-Konstruktion
entnommen werden können, siehe Abbildung 3.7b und 3.7c.

Die Fertigung der Halter für Lidar und Kameras erfolgte mittels FDM-3D-Druckverfahren
in PETG. Die Halter wurden an einem Vierkantprofil aus Stahl verschraubt. Am Fuß
des Vierkantprofils wurden Winkelplatten montiert, welche wiederum über Aluprofile
am Dachgepäckträger des Fahrzeugs montiert wurden. Eine Nahaufnahme der Halterung
ist in Abbildung 3.8 zu sehen.

Über die Winkelplatten konnte die Verkippung der Lidarsensoren gegenüber dem
Fahrzeug eingestellt werden. Die Lidarsensoren wurden manuell so eingestellt, dass sich
eine subjektiv homogene und dichte Verteilung der Lidarpings in den Kamerabildern
ergab. Die gesamte Konstruktion wurde als ausreichend stabil empfunden und eine
Deformation während der Aufnahme des Datensatzes wurde nicht erwartet.
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(a) Vorderansicht der Kon-
struktion

(b) Horizontaler Versatz und
Verdrehung der Kameras
ggü. Lidar

(c) Vertikaler Versatz der Ka-
meras ggü. Lidar

Abbildung 3.7.: CAD-Modell der Kamera- und Lidar-Halterung: Lidar und Ka-
meras (gelb dargestellt) werden über Halter (grün bzw. blau dargestellt)
an einem Vierkantprofil (schwarz dargestellt) verschraubt.

Wie zuvor beschrieben, ergibt sich aus der CAD-Konstruktion die extrinsische Kali-
brierung der Kamera gegenüber dem Lidarsensor, analog zu Gleichung 3.1 zu

xL = L(C RxC + L(C t. (3.26)

Hierbei ist L(C R die Rotationsmatrix vom Kamera in das Lidar KOOS und L(C t die
entsprechende Translation. Durch Umstellen der Gleichung nach Kamerakoordinaten
und mit Hilfe von Gleichung 3.25 können Punktmessungen des Lidars in das Kamerabild
transformiert werden. Durch Fertigungs- und Verbautoleranzen sind die Parameter
der CAD-Konstruktion nur Näherungen für die extrinsische Kalibrierung. Bei der
Projektion der Lidar-Punkte in das Kamerabild konnten marginale Abweichungen
zwischen Objektkonturen und Lidar-Punkten festgestellt werden. Zur Verbesserung
der Kalibrierung wurde eine manuelle Kreuzkalibrierung zwischen Lidar und Kamera
vorgenommen.

Diese Kreuzkalibrierung der extrinsischen Verdrehparameter erfolgte durch Vergleich
der projizierten Lidarpunkte im Kamerabild gegenüber dem Bildinhalt. Die Rotations-
matrix wurde folgend modifiziert

L(C R = RmanualRCAD (3.27)

L(C t =






∆XCAD, C
∆YCAD, C
∆ZCAD, C




 (3.28)
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Winkelplatten

Dachgepäckträger

Vierkantprofil

Abbildung 3.8.: Nahaufnahme der Kamera und Lidar-Halterung: Die Kameras
sind fest am Ständer des hinteren Lidarsensors montiert. Die Lidarsen-
soren sind verstellbar über Winkelplatten am Fahrzeug montiert.

wobei

RCAD =








cos
(

φCAD, C
)

– sin
(

φCAD, C
)

0
sin
(

φCAD, C
)

cos
(

φCAD, C
)

0
0 0 1








(3.29)

die ursprüngliche, aus der CAD-Konstruktion entnommene Transformationsmatrix
darstellt. Diese Parameter der Matrix wurden wie folgt aus der CAD Konstruktion
abgelesen: Euler-Rotation mit Winkel φCAD, C um die z-Achse und Translation um
∆XCAD, C, ∆YCAD, C und ∆ZCAD, C. Für die linke Kamera in Abbildung 3.7b er-
gaben sich somit beispielhafte Transformationsparameter von φCAD, C = 42.5◦ und
∆XCAD, C = 0.52 cm, ∆YCAD, C = –6.8 cm und ∆ZCAD, C = 11.48 cm.

Rmanual ∈ R
3×3 ist eine Rotationsmatrix. Anhand statischer Strukturen wie Zäunen

oder Laternenmasten wurde die Verdrehung Rmanual manuell so weit modifiziert, bis
eine gute Kongruenz von Bildinhalt und Lidarpunkten wahrgenommen wurde. Durch
die groben Kalibrierparameter aus der CAD-Konstruktion konnte die feine Kalibrierung
im Bildkoordinatensystem erfolgen, was die manuelle Identifikation erheblich verein-
facht hat, da (a) die zusätzlichen Verdrehparameter betragsmäßig < 2◦ lagen und die
3D-Drehung somit nahezu entkoppelt3 wird und (b) durch die Identifikation im Bildko-
ordinatensystem die Drehungen um die Bildachsen leicht zu interpretieren sind. Eine
manuelle Nachkalibrierung des Kameraversatzes ist nicht erfolgt, da hier eine geringe

3Die Reihenfolge bei sequentieller Drehung um x,y und z ist bei geringen Winkeln nahezu egal. Dies
vereinfacht die manuelle Identifikation erheblich.
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3. Aufbau und Kalibrierung des Sensorsystems

Abweichung erwartet wurde und somit der Einfluss auf die Projektion vernachlässigbar
ist.

3.5. DGPS-INS
3.5.1. Intrinsische geometrische Kalibrierung
Das DGPS-INS ist mit einer Doppelbandantenne mit dynamischen Korrekturdaten über
Mobilfunk ausgestattet, womit sich eine präzise Position in Weltkoordinaten messen lässt.
Zusätzlich ist das verwendete System mit einer Kreiselplattform ausgestattet, welche
die Dreh- und Längsbeschleunigung des Fahrzeuges ermitteln kann. In der Sensorik
werden diese Messwerte miteinander fusioniert und erlauben das Schätzen weiterer
Zustandsgrößen wie z.B. der Geschwindigkeit. Für die Fusion wurde dem System eine
per Hand gemessene Einbauposition von Antenne und Kreiselplattform mitgeteilt. Bei
Fahrtbeginn wurde ein nach Herstellerangaben vorgegebenes Fahrtszenario durchfahren,
in welchem sich das System selbstständig kalibriert.

3.5.2. Extrinsische geometrische Kalibrierung
Die Kreiselplatform wurde möglichst dicht an der Fahrzeughinterachse montiert und die
DGPS-Antenne auf dem Fahrzeugdach, so dass eine Störung von Lidar und Kamera
möglichst ausgeschlossen werden konnte. Die Ausgabe der DGPS-INS Daten konnte auf
einen beliebigen Fahrzeugbezugspunkt parametriert werden. Als Bezugspunkt wurde die
Fahrzeughinterachse gewählt, weil diese sich als besonders günstig für die Berechnung
von Fahrzeugdynamikparametern erweist [MW04]. Die Transformation von Positionen
aus DGPS-INS in das Ego-KOOS wird folgend ermittelt

xE = E(DRxD + E(Dt, (3.30)

wobei E(DR ∈ R
3×3 eine Einheitsmatrix ist und E(DtD =

[

–2.871 m 0 m 0 m
]T

.

3.6. Weitere Koordinatentransformationen
Die Transformationen für Lidarsensoren, DGPS-INS und Radarsensoren sind bereits im
fahrzeugfesten Ego-KOOS gegeben. Die Transformation der Kameradaten dagegen nur
bezogen auf den tragenden Lidarsensor. Sollen die Positionen aus der Kamera xc ebenfalls
im Ego-KOOS dargestellt werden, so wird eine sequentielle Transformation zunächst
nach Gleichung 3.26 und danach nach Gleichung 3.16 durchgeführt. Die resultierende
Transformation entspricht

xE = E(L1RL1(C1RxC1 + E(L1RL1(C1t + E(L1t
= E(C1RxC1 + E(C1t. (3.31)

Soll dagegen die Darstellung von Punkten gegeben im Ego-KOOS im Kamera KOOS
gegeben werden, so ist Gleichung 3.31 entsprechend nach xC1 umzustellen

xC1 =
(

E(C1R
)–1 (

xE – E(C1t
)

. (3.32)

40



3.7. Temporale Kalibrierung

Sollen Daten aus dem Ego-Koordinatensystem in das Radarkoordinatensystem trans-
formiert werden, so ist dazu Gleichung 3.3 nach xR umzustellen und Gleichung 3.31
einzusetzen

xR =
(

E(RR
)–1 (

xE – E(Rt
)

=
(

E(RR
)–1 (E(C RxC + E(C t – E(Rt

)

= R(C RxC + R(C t. (3.33)

Hierbei sind
R(C R =

(
E(RR

)–1 E(C R (3.34)

und
R(C t =

(
E(RR

)–1 (E(C t – E(Rt
)

. (3.35)

Analog können die Transformationen der Daten aus anderen Sensoren erreicht werden.

3.7. Temporale Kalibrierung
Die Abtastung der Umgebung sämtlicher Sensoren erfolgt zu diskreten Zeitpunkten. Die
Abtastzeitpunkte sind für die unterschiedlichen Sensoren nicht einheitlich. Die Aufgabe
der temporalen Kalibrierung ist, die Abtastzeitpunkte der Sensoren zu vereinheitlichen,
so dass die Sensoren eine Abtastung der Szene zu identischen Zeitpunkten vornehmen.
So wird sichergestellt, dass der Szeneninhalt zwischen den Aufnahmen der Sensoren
keine zeitliche Variation aufweist und der Szeneninhalt kongruent zueinander ist. Die
verwendeten Sensoren erlauben jedoch keine externe Auslösung der Aufnahme, so
dass keine einheitliche Auslösung während der Datenakquise erreicht werden kann.
Zusätzlich ergibt sich aufgrund unterschiedlicher Abtastraten eine zeitveränderliche
Latenz zwischen den Aufnahmezeitpunkten der Sensoren. Neben der Auslösung der
Aufnahme unterscheidet sich weiter die Abtastrate der unterschiedlichen Sensoren.

Nachfolgend wird vorgestellt, wie Unterschiede im Abtastzeitpunkt synthetisch nach
Datenakquise korrigiert bzw. kompensiert werden können.

3.7.1. Assoziation der Abtastung
Um eine zeitliche Latenz der Aufnahme zwischen den Sensoren auszugleichen, wird
zunächst eine Modellbeschreibung der Aufnahmen erstellt. Der Radarsensor tastet mit
einer Frequenz von 20 Hz das angegebene FoV ab. Das gesamte FoV des Radars wird
nahezu simultan abgetastet, so dass sich die Abtastung als „global-shutter“4 beschreiben
lässt. Die Kameras haben eine eingestellte Abtastfrequenz von 30 Hz. Auch hier erfolgt
nahezu eine simultane Abtastung des FoV. Der Lidar ist ein mechanischer Scanner,
welcher mit einer Frequenz von 10 Hz um seine Achse rotiert. Abgetastet wird dabei
immer ein kleiner Winkelbereich, zu welchem der Scanner gerade ausgerichtet ist. Das
FoV des Lidars wird rollend abgetastet. Man spricht dann vom „rolling-shutter“.

In Abbildung 3.9 ist ein beispielhaftes Abtastdiagramm der Sensoren dargestellt. In
der oberen Zeile sind die Abtastzeitpunkte des Radarsensors dargestellt. Die Abtastung

4Global shutter bedeutet, dass das gesamte FoV gleichzeitig abgetastet wird.
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3. Aufbau und Kalibrierung des Sensorsystems

des gesamten FoVs erfolgt über einen Zeitraum von etwa 8 ms. In der zweiten Zeile
sind Abtastungen einer Kamera dargestellt. Die einzelne Abtastung erfolgt über einen
Zeitraum von etwa 16 ms. Das gesamte FoV wird simultan abgetastet. In der dritten
Zeile sind die Abtastungen des Lidars dargestellt. Die einzelne Abtastung erfolgt über
einen Zeitraum von etwa 100 ms. Das FoV wird rollend abgetastet.
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Abbildung 3.9.: Abtastdiagram der Sensoren: Die Sensoren tasten zu unterschied-
lichen Zeitpunkten und mit unterschiedlichen Frequenzen ab. Radar
und Kamera tasten das gesamte FoV gleichzeitig ab, wohingegen Lidar
rollend abtastet.

Um einen zeitlichen Versatz der Abtastungen so gering wie möglich zu halten, werden
nach der Akquise die Abtastungen der Sensoren gesucht, welche die geringste zeitliche
Abweichung voneinander aufweisen. Als Device-under-Test wird der Radarsensor als
Taktgeber festgelegt. Zu jedem einzelnen Zyklus des Radarsensors werden also die
nächstgelegenen Abtastungen der anderen Sensoren gesucht. Da die Assoziation der
Abtastungen nach der Datenakquise erfolgt, kann die zeitliche Assoziation auch nicht
kausal sein, d.h. die Abtastungen der anderen Sensoren können auch zu einem späteren
Zeitpunkt der Radarauslösung erfolgt sein. Ein Beispiel der Assoziation aus Radar,
Kamera und Lidar ist in Abbildung 3.9 als gestrichelte Rechteckboxen markiert. Die
assoziierten Frames der sechs Sensoren (Radar, zwei Kameras, zwei Lidar, DGPS-INS)
werden hier als 6-Tupel k(kradar) = {kradar, kkamera,1, kkamera,2, klidar,1, klidar,2, kdgps}
zusammengefasst. Zusammen mit der Wahl des 6-Tupels ergeben sich die Startzeitpunkte
tk = {t(kradar), t(kkamera,1), t(kkamera,2), t(klidar1), t(klidar,2), t(kdgps)} der Sensorabtas-
tungen. Bei der Datenakquise kommunizieren alle Sensoren ihre Messdaten mit dem
Messrechner als User-Datagram-Protocol (UDP)-Botschaften. Die UDP-Nachrichten
enthalten den Startzeitpunkt der Aufnahme, nach dem das 6-Tuple tk später erstellt
werden kann.

Nach der Assoziation wurde die automatische Assoziation anhand der Projektion
der Detektionen aus Radar und Lidar in die Kamerabilder bewertet. Diese wurde
als gut empfunden. Durch die rollende Abtastung des Lidarsensors ergab sich jedoch
insbesondere bei dynamischen Fahrszenarien eine schlechte Kongruenz der Projektion
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von Lidar-Messungen im Kamerabild. Diese wird im nächsten Abschnitt dargestellt und
synthetisch korrigiert.

3.7.2. Korrektur der Abtastungen aus Lidarsensor
Definiert sei

∆tping(t) = ∆Tlidar
t – t(klidar)
∆Tlidar

–
(

t(kkamera) – t(klidar)
)

= t – t(kkamera), (3.36)

als die zeitliche Differenz eines jeden Lidar Pings5 bezogen auf den Startzeitpunkt des
assoziierten Kameraframes. Der Term ∆Tlidar

t–t(klidar)
∆Tlidar

beschreibt die zeitliche Differenz
durch die rollende Abtastung. Der Term

(

t(kkamera) – t(klidar)
)

beschreibt die zeitliche
Differenz der Startpunkte von Lidar und Kameraaufnahme.

Ein geometrischer Versatz der Abtastung wird gemäß dieser zeitlichen Differenz kom-
pensiert. Dabei wird angenommen, dass sich die Pings ausschließlich entsprechend der
Bewegung des Ego-Fahrzeuges in Weltkoordinaten bewegen, also stationär gegenüber
Grund sind. Zur Kompensation wird das in [MDB+17] vorgestellte Verfahren verwendet.
Das, auf Runge-Kutta basierende Verfahren, integriert die translatorische und rotatori-
sche Bewegung des Fahrzeuges. Das Verfahren ist in Algorithmus 2 zusammengefasst.

Algorithmus 2: Ego-Bewegungs-Korrektur von Lidar-Punkten
Daten: Unkorrigierte Lidar-Punktwolke xEgo, Zeit der Lidarpings bezogen auf

Drehstartpunkt tping, Fahrzeuglängsgeschwindigkeit vx und Gierrate ψ̇
Ergebnis: Korrigierte Lidar-Punktwolke xEgo, corrected
für p← 0 bis #Lidar Pings tue

∆x ← vx∆tping
(
t (p)

)

∆φα ← ψ̇∆tping
(
t (p)

)

∆xα ← ∆x cos(∆φα)
∆yα ← ∆x sin(∆φα)

xEgo, corrected(p)←






cos(∆φα) – sin(∆φα) 0
sin(∆φα) cos(∆φα) 0

0 0 1




 xEgo(p) +






∆xα

∆yα

0






return xEgo, corrected

Dabei entsprechen vx und ψ̇ der Längsgeschwindigkeit und der Gierrate des Fahrzeuges.
Da die Messung der Bewegung durch das DGPS-INS im Ego-KOOS vorgenommen wird,
werden die Lidar-Pings zunächst in das Ego-KOOS transformiert (Gleichung 3.16) und
dort die Kompensation durchgeführt. Durch Bewegung und zeitlichen Versatz ergibt
sich eine Translation der Punkte im Ego-KOOS entsprechend ∆xα und ∆yα, sowie eine
Rotation um die Hochachse entsprechend um ∆φα.

Eine Gegenüberstellung korrigierter und unkorrigierter Lidar-Punktwolken ist in
Abbildung 3.10 dargestellt. In dem Beispiel fährt das Ego-Fahrzeug mit üblicher Ge-
schwindigkeit auf einer Autobahn und die Kameras sind nach vorne gerichtet. Zu

5Ping als Synonym einer einzelnen räumlichen Abtastung durch den Lidarsensor.
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erkennen ist, dass die unkorrigierten Punkte in Abbildung 3.10a den Baum im linken
Bildbereich nicht gut treffen. Im Gegensatz dazu schließen die selben Punkte nach der
Kompensation in Abbildung 3.10b deutlich besser mit den Konturen des Baums ab.

(a) Ohne Ego-Bewegungskorrektur

(b) Mit Ego-Bewegungskorrektur

Abbildung 3.10.: Vergleich von projizierten Lidar-Pings auf Kamerabild, vor
und nach Ego-Bewegungs Korrektur: Die Lidar-Pings sind farb-
lich entsprechend der gemessenen Entfernung codiert. Im oberen Bild
ist eine schlechte Kongruenz, z.B. am linksseitigen Baum, zu erkennen,
welche durch die Ego-Bewegungs Korrektur im unteren Bild behoben
wurde.

Angemerkt sei, dass sich diese Kompensation immer auf die einzelnen Kamerabilder
bezieht. Da zwei Kameras verwendet werden, wurden die Pings aus den Lidarsensoren
jeweils für beide Kamerabilder korrigiert. Zur Vereinfachung der Beschreibung seien
im weiteren Verlauf dieser Arbeit immer die korrigierten Lidar-Pings gemeint, wenn
Lidar-Daten verwendet werden.
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Auf den Daten der Referenzsensorik wird eine vorverarbeitende Signalverarbeitung
angewandt, welche für die weiteren Verarbeitungsschritte dieser Arbeit benötigt wird.
Bei den Verarbeitungsschritten handelt es sich um aus der Literatur bekannte Verfahren
zur Tiefenvervollständigung, Normalenschätzung, Schätzung des optischen Flusses und
der semantischen Instanz-Segmentierung, welche zur Abgrenzung selbst entwickelter
Signalverarbeitungen gesondert in diesem Kapitel vorgestellt werden.

4.1. Tiefenvervollständigung
Trotz der Verwendung von zwei Lidarsensoren werden nicht alle Kamerapixel mit
Tiefeninformationen befüllt. Die Ausrichtung der Lidarsensoren wurde so vorgenommen,
dass die vertikale Mitte der Kamerabilder dicht mit projizierten Tiefenmessungen aus
den Lidarsensoren bedeckt ist. Ein Beispiel dazu ist in Abbildung 4.1 dargestellt.

Abbildung 4.1.: Abdeckung der Szene durch Lidarmessungen: Die Abtastungen
der Lidarsensoren sind rot (Sensor 1) und grün (Sensor 2) hervorgehoben.
Durch Verkippung der Lidarsensoren zueinander wird der Bildinhalt
größtenteils dicht vermessen. Es verbleiben jedoch Bildregionen mit
geringer Tiefeninformation.

Zu erkennen ist, dass insbesondere im unteren Bereich des Bildes kaum Pixel mit
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Tiefeninformationen belegt sind. Analog fehlt auch im oberen Bildbereich die Tiefen-
messung, welche aufgrund der zu großen Entfernung zum Himmel nicht durch die
Lidarsensoren vermessen wurde. In diesem Abschnitt wird die spärliche Tiefenmessung
im Kamerabild durch Tiefenschätzungen ergänzt, so dass für jedes Pixel im Kamerabild
ein Tiefenwert geschätzt wird. Da wir im späteren Verlauf dieser Arbeit für das gesamte
Kamerabild eine automatische Annotation der Radardaten ableiten werden, ist diese
dichte Tiefeninformation notwendig.

In vielen automotiven Datensätzen, wie beispielsweise dem KITTI -Datensatz [USS+17],
ist die Tiefenvervollständigung (engl.: „depth completion“) eine eigenständige Disziplin.
Das Ziel ist dabei, die spärliche Tiefenmessung des Lidars um geschätzte Tiefeninfor-
mationen zu erweitern, so dass für das gesamte Kamerabild Tiefeninformation vorliegt.
Einige Verfahren zur Tiefenvervollständigung sind in [GLSU12], [DT06] zu finden. In der
vorliegenden Arbeit wird das Verfahren aus [HN09] verwendet, welches eine Erweiterung
des Markov-Zufallsfelds aus [DT06] darstellt. Das Markovfeld nutzt die Bildgradienten im
Kamerabild, um die spärliche Tiefeninformation in Pixelregionen ohne Tiefenmessung zu
propagieren. Es wird davon ausgegangen, dass der Tiefenverlauf stetig in Bildbereichen
homogener Farbe ist und nur an Farbkanten im Kamerabild Tiefensprünge entstehen.
Das Markovfeld propagiert die spärlichen Tiefeninformationen so, dass homogene Bild-
bereiche auch homogene Tiefeninformationen erhalten und Tiefensprünge an Bildkanten
stattfinden. Eine anschauliche Darstellung des Markovfeldes ist in Abbildung 4.2 zu
finden.

Abbildung 4.2.: Markov-Zufallsfeld zur Tiefenvervollständigung: Das Markov
Zufallsfeld zur Tiefenvervollständigung aus [DT06]. Die blauen Punkte
entsprechen den Tiefenmessungen durch Lidar. Die gelben Punkte ent-
sprechen den geschätzten Tiefen. Die rosafarbenen Punkte entsprechen
den Bildgradienten. Die grünen Punkte entsprechen den Bildpixeln. Die
lilafarbenen Punkte entsprechen dem Tiefengradienten.

In der Darstellung werden die Pixel des Kamerabildes durch das reguläre Gitter der
grünen Punkten dargestellt. Zwischen den Pixeln lassen sich Farbgradienten berechnen,
welche durch die rosafarbenen Punkte dargestellt sind. Die blauen Punkte stellen die
spärliche Tiefenmessung durch Lidar dar. Ziel ist die Schätzung des dichten Tiefengit-
ters, dargestellt durch gelbe Punkte. Das Gitter dieser gelben Punkte wird durch die
Tiefenmessung von Lidar und durch den Farbgradienten des Kamerabildes bzw. daraus
abgeleitete Hilfsgitter (lilafarbene Punkte) bestimmt.
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Es wurde in [HN09] beobachtet, dass das Markovfeld parallel zum Kamerabild verlau-
fende Oberflächen bevorzugt, da Tiefengradienten primär an Kanten im Kamerabild
zugelassen werden. Verlaufen Objektoberflächen jedoch nicht parallel zum Kamera-
bild, so haben benachbarte Pixel meist ähnliche Farbintensitäten und trotzdem einen
Tiefengradienten. [HN09] erweitern das Markovfeld durch eine Stetigkeitsbedingung
zweiter Ordnung auf dem Tiefenbild. Diese zusätzliche Bedingung ermöglicht eine bes-
sere Propagation der Tiefeninformation in Bildbereiche mit linear oder parabolisch
verlaufenden Oberflächen. Beispiele für die Tiefenvervollständigung auf unseren Daten
mit dem Verfahren aus [HN09] sind in Abbildung 4.3 zu finden.

RGB Dsparse D

2 2.5 3.33 4.97 9.87

Tiefe in Meter →

2 2.5 3.33 4.97 9.87

Tiefe in Meter →

Abbildung 4.3.: Beispiele der Tiefenvervollständigung: Links: Kamerabilder; Mitte:
Spärliche Tiefeninformation aus Lidarsensoren; Rechts: Verdichtete
Tiefeninformation aus Kamerabild.

Die linke Spalte der Abbildungen zeigt beispielhafte Kamerabilder, die mittlere
Spalte die Projektion der spärlichen Lidarpunktwolke im Kamerabild, und die rechte
Spalte die damit geschätzten dichten Tiefenmasken. Als Referenz werden die Symbole
RGB, Dsparse und D verwendet. Wie oben beschrieben, ist in Abbildung 4.3 zu sehen,
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dass die Farbverläufe der Tiefenmasken D an geraden Flächen stetig verlaufen. Die
Tiefenvervollständigung wurde als plausibel empfunden und keine weitere Untersuchung
zur Genauigkeit der verwendeten Tiefenvervollständigung durchgeführt.

4.2. Schätzung der Oberflächennormalen
Im späteren Verlauf der vorliegenden Arbeit wird geschätzt, von welchen Pixeln im
Kamerabild eine signifikante Reflexion für den Radar zu erwarten ist. Die Daten der
Referenzsensorik liefern keinen direkten Messwert bezüglich des Reflexionsvermögens
von EM-Wellen für 77 GHz Radar. Das Reflexionsvermögen soll daher automatisch aus
den Daten der Referenzsensorik geschätzt werden.

Einen hohen Einfluss auf das Reflexionsvermögen bzw. die relative Reflexionsamplitude
hat nach den Fresnelschen-Gleichungen aus Unterabschnitt 2.1.1, der Aspektwinkel
an Grenzflächen. Für die Berechnung des Aspektwinkels ist der Normalenvektor der
Oberflächen zu schätzen, was nachfolgend beschrieben wird.

Zur Schätzung der Oberflächennormalen werden wir der Implementierung aus der
freien Mathematik Software Octave [Oct22] folgen. Die Pixel im Tiefenbild der Ka-
mera werden dazu zunächst in kartesische Koordinaten im Radarkoordinatensystem
transformiert, siehe Gleichung 3.3, 3.25 und 3.31. Anschließend werden die diagonalen
Richtungsvektoren benachbarter Pixel im Kamerabild geschätzt. Über das Kreuzprodukt
der Richtungsvektoren wird dann die Oberflächennormale nc geschätzt.

In Abbildung 4.4 sind einige Beispiele von Kamerabildern RGB, dazugehörigen
Tiefenmasken D und geschätzten Oberflächennormalen N dargestellt. Die Ausrichtung
der Oberflächennormalen wurde farblich codiert. Die Beschreibung der Farbcodierung
ist der Bildunterschrift zu entnehmen.

Zu erkennen ist, dass Bereiche der Straße und Gehwege fast ausschließlich grün
dargestellt sind; die zugehörigen Oberflächennormalen somit hauptsächlich vertikal
ausgerichtet geschätzt wurden. In der zweiten, dritten und vierten Zeile sind die Ober-
flächennormalen der Hauswände hauptsächlich rot dargestellt, was einer horizontal
im Kamerabild ausgerichteten Normale entspricht. In der ersten, dritten und vierten
Zeile sind Teilbereiche der Fahrzeuge blau dargestellt, welches einer orthogonal zur
Bildebene entsprechenden Ausrichtung der Normalen entspricht. Die beschriebenen
Bereiche stellen plausible Schätzergebnisse dar, jedoch gibt es auch Bildregionen, in
denen die Normalen unplausibel sind. Beispielhaft dafür sind, dass die unteren linken
Bildbereiche blau gefärbt sind, obwohl dort ebenfalls die Straße im Kamerabild abgebil-
det ist und entsprechend eine vertikale Normale bzw. grüne Einfärbung zu erwarten wäre.
Ursächlich dafür ist, dass die Oberflächennormalen aus dem vervollständigten Tiefenbild
geschätzt werden. Etwaige Fehler in dieser Tiefenschätzung resultieren entsprechend
in fehlerhaften Schätzungen der Oberflächennormalen. Es ist wahrscheinlich, dass die
Abtastung durch Lidar in manchen Bildregionen zu spärlich war, so dass dort keine
vernünftige Tiefenvervollständigung erfolgen konnte. Da der wissenschaftliche Mehrwert
dieser Arbeit nicht in der Tiefenverwollständigung und Oberflächennormalenschätzung
liegen soll, werden die Ergebnisse für den weiteren Verlauf der Arbeit so akzeptiert und
keine mögliche Verbesserung der Oberflächenschätzung durchgeführt.
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RGB D N

Abbildung 4.4.: Beispiele der Oberflächennormalenschätzung: Links: Kamerabil-
der; Mitte: dichte Tiefenmaske; Rechts: geschätzte Oberflächennorma-
lenausrichtung. Die Koordinaten der Oberflächennormalen wurden in
die RGB-Kanäle eingetragen. Rote Pixel entsprechen Oberflächennor-
malen mit hauptsächlich horizontaler Ausrichtung. Grün entsprechend
vertikaler Ausrichtung. Blau entsprechend Ausrichtung orthogonal zur
Bildebene.
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4. Aufbereitung der Sensordaten

4.3. Semantische Instanz-Segmentierung der Kamerabilder

Für weitere Verarbeitungsschritte ist ein tieferes Verständnis der Szene notwendig. Ein
wichtiger Informationsträger stellen dabei die Bilder der Kameras dar. Zwar fehlt den
Kamerabildern im Vergleich zum verwendeten Lidarsensor die Tiefeninformation. Dafür
wird zum einen die Farbinformation der Umgebung mit abgebildet und zum anderen
eine deutlich größere Winkelauflösung erreicht. Man vergleiche dazu die projizierten
Lidar-Pings im Kamerabild mit der Anzahl der Pixel im Kamerabild, siehe z.B. Abbil-
dung 4.1. Diese Merkmale führen dazu, dass die Kamerabilder im Vergleich zu spärlichen
Punktwolken, z.B. aus Lidarsensoren, für den menschlichen Betrachter eingängiger und
verständlicher sind. Auch im Feld der „maschinellen Bildverarbeitung“ werden Bilder
als Informationsträger verwendet und maschinell z.B. semantische Informationen aus
den Bildern extrahiert. Eine typische Aufgabe aus der maschinellen Bildverarbeitung
stellt dabei die semantische Instanzsegmentierung dar. Das Ziel dabei ist, alle Instan-
zen gesuchter Objektklassen im Kamerabild zu detektieren. Gleichzeitig sind zu einer
Instanz gehörende Pixel zu markieren. Beispiele einer solchen Segmentierung sind in
Abbildung 4.5 dargestellt.
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Abbildung 4.5.: Semantische Instanz-Segmentierung: Beispielhafte Ergebnisse der
automatischen semantischen Instanz-Segmentierung.

Die automatische semantische Instanz-Segmentierung der Kamerabilder erfolgte in
dieser Arbeit mit Hilfe des Verfahrens „mask_rcnn_inception_v2_coco“ aus dem
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Tensorflow-Model-Zoo [HRS+17,Ten20]. Das Verfahren basiert auf einem CNN, welches
speziell für die Aufgabe der semantischen Instanz-Segmentierung auf dem COCO-
Datensatz trainiert wurde. Das Netzwerk wurde gewählt, da es zufriedenstellende
Segmentierungen erreicht und dabei noch akzeptable Laufzeit (inklusive Export der
Daten) von etwa 300 ms pro Kameraframe auf dem verwendeten PC erreicht.

Für die Inferenz der Segmentierung wird ausschließlich das Kamerabild zum Frame
verwendet und die Prädiktion in Form einer Maske M erzeugt. Die Maske M umfasst
die einzelnen Pixel zu jeder detektierten Objektinstanz. Da das verwendete Verfahren
nicht ausschließlich für automotive Anwendungen trainiert wurde, kann es eine Vielzahl
von hier nicht relevanten Objektklassen wie z.B. Flugzeugen, Schiffen oder Tieren wie
Giraffen oder Walen erkennen. Die im Rahmen dieser Arbeit als wesentlich beurteilten
Objektklassen sind: Fußgänger, PKW, LKW, Fahrrad und Motorrad. Detektionen
anderer Objektklassen durch das CNN werden im weiteren Verlauf dieser Arbeit ignoriert.

Es seien zusätzlich noch die Masken MVeh. und MPed. definiert, welche die Instanz-
masken aller PKW, LKW und Zweiräder bzw. aller Fußgänger abbilden.

4.4. Verfeinerung der Instanzmasken durch Clusterbildung
Die zuvor vorgestellte semantische Instanz-Segmentierung erlaubt eine Detektion von
Objekten in der Kameraebene. Da die geschätzten Instanzmasken nicht fehlerfrei sind,
kommt es zum Beispiel vor, dass die Instanzmaske gelegentlich Pixel detektiert, welche
nicht mehr zur abgebildeten Objektinstanz gehören. Häufig kann beobachtet werden,
dass z.B. bei hintereinander parkenden Fahrzeugen ein Teil der Pixel des hinteren
Fahrzeuges dem vorderen Fahrzeug zugeordnet wird und umgekehrt. Obschon die
Objekte im Kamerabild benachbart liegen, so sind sie im dreidimensionalen Raum
zwingend getrennt. Diese Eigenschaft wird genutzt, um mögliche Fehler in der Instanz-
Segmentierung automatisch zu erkennen. Dazu werden Pixel des Kamerabildes nach der
semantischen Instanz-Segmentierung weiter geclustert.

Mit Hilfe der zuvor geschätzten Tiefenmaske aus Abschnitt 4.1 werden die Pixel,
die zu einer Instanzmaske gehören, zunächst in Kamerakoordinaten transformiert, sie-
he Gleichung 3.23a, Gleichung 3.24a und Gleichung 3.31. Die sich ergebene, zu einer
Instanzmaske gehörende Punktwolke wird über das Density-Based-Spatial-Clustering-
of-Applications-with-Noise (DBSCAN) Verfahren [EKSX96] weiter geclustert. Dabei
werden Punkte, welche eine euklidische Abweichung von mehr 0.3 m zum nächstgelege-
nen Cluster haben, als Ausreißer klassifiziert und aus dem Datensatz ausgeschlossen.
Es resultiert eine Menge aller verbliebenen als valide klassifizierten Pixel PDBSCAN.
Für die Wahl der maximalen eingestellten Abweichung wurde angenommen, dass die
Winkelauflösung der Referenzsensorik 0.1◦ beträgt und die maximale Entfernung 30 m.
Ein möglicher tangentialer Fehler ergibt sich somit zu sin(0.1◦)30 m = 0.05 cm bzw.
überschlägig als Summe in beide Tangentialrichtungen zu 0.1 cm. Die Parameterwahl
sollte diesen Wert nicht unterschreiten, so dass sich 0.3 m als valider Wert ergab.

4.5. Optischer Fluss
Im Folgenden Kapitel 5 wird aus den Daten der Sensoren eine Schätzung der 3D-
Bewegung sämtlicher Kamerapixel durchgeführt. Dafür wird eine Schätzung der Be-
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wegung in der Bildebene benötigt, bei welcher für jedes Pixel im Kamerabild die
Verschiebung in horizontaler und vertikaler Bildachse ermittelt wird. Diese Verschiebung
in der Bildebene wird in der Literatur auch als „optischer Fluss“ [HS81] bezeichnet und
in unzähligen Veröffentlichungen behandelt.

Zum Zeitpunkt der Bearbeitung dieses Werkes erreichte das von Yin [YDY19] ver-
öffentlichte Verfahren einen der vorderen Plätze im KITTI „Optical Flow Evaluation
2015“ benchmark. Das Verfahren hob sich von anderen Verfahren ab, da es neben sehr
guten Schätzgenauigkeiten des optischen Flusses auch noch Schätzkonfidenzen auf Pixel-
ebene bereitstellt. Diese Konfidenzen geben einen Anhaltspunkt über Fehler im optischen
Fluss, und die entsprechenden Pixel können automatisch aus der Berücksichtigung für
die automatische Annotation der Radardaten ausgeschlossen werden.

Es wird an dieser Stelle auf eine ausführliche technische Beschreibung des Verfahrens
verzichtet und der interessierte Leser stattdessen auf die entsprechende Veröffentlichung
[YDY19] verwiesen. Zum anschaulichen Verständnis seien stattdessen Ergebnisse der
optischen Flussschätzung in Abbildung 4.6 dargestellt.
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Abbildung 4.6.: Beispiel des optischen Flusses: Links und Mitte: Zwei aufeinander
folgende Kamerabilder. Rechts; Resultierender optischer Fluss zwischen
den Kamerabildern. Unten: Farblegende zum optischen Fluss mit An-
gabe in Pixeln.

In den ersten beiden Spalten der Abbildung sind jeweils zwei aufeinander folgende
Kamerabilder dargestellt, zwischen denen der optische Fluss geschätzt wurde. Der
optische Fluss ist jeweils auf der rechten Seite dargestellt. Die farbliche Kodierung
entspricht der in der Literatur üblichen Darstellung, wobei der Farbton (engl.: „hue“)
gemäß der Bewegungsrichtung des optischen Flusses und der Hellwert (engl.: „value“)
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entsprechend dem Betrag des optischen Flusses skaliert wird. Die Farblegende ist im
unteren Bereich der Abbildung dargestellt. In den Beispielen ist zu erkennen, dass in
den jeweils unteren linken Ecken der Bilder ein diagonal nach rechts oben gerichteter
optischer Fluss geschätzt wurde. Dies ist plausibel, da sich die Kamera geradlinig
bewegt und die abgebildeten Objekte sich in Richtung des Bildzentrums bewegen. Im
unteren Beispiel ist ein roter Kleinwagen zu sehen, welcher sich in Richtung des linken
Bildbereiches bewegt und folgerichtig der optische Fluss geschätzt wurde. Im weiteren
Verlauf dieser Arbeit werden wir F als Bezeichnung für die Maske des optischen Flusses
verwenden.
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5. Schätzung der Radialgeschwindigkeit aus
Referenzsensordaten

In dieser Arbeit werden Verfahren zur kreuzmodalen Supervision von NN basierten
Verfahren zur Signalverarbeitung von Radarfrequenzspektren und Kamerabildern vor-
gestellt. Die Frequenzspektren geben, wie in Unterabschnitt 2.1.3.3, 2.1.3.4 und 2.1.5
gezeigt, die Dimensionen Entfernung, Radialgeschwindigkeit und Einfallswinkel der
abgetasteten EM-Wellen wieder. Bei der automatischen Annotation müssen die Labels
also entsprechend Entfernung, Doppler und Winkel in Radarfrequenzspektren plat-
ziert werden. Entfernung und Einfallswinkel der Umgebung lassen sich mittels der in
Kapitel 4 vorgestellten Tiefenvervollständigung schätzen. Zu beachten ist, dass die
Tiefenvervollständigung im Kamerakoordinatensystem vorliegt und für die Annotation
mittels der Koordinatentransformationen aus Kapitel 3 in das Radarkoordinatensystem
transformiert werden muss. Zur vollständigen Platzierung der Labels in dem Radar-
frequenzspektrum werden noch Doppler- bzw. Radialgeschwindigkeit der Kamerapixel
benötigt. Ein entsprechendes Verfahren zur Geschwindigkeitsschätzung der Kamerapixel
wird in diesem Kapitel vorgestellt. Es handelt sich um eine Erweiterung eines aus der
Literatur bekannten Verfahrens zur 3D-Szenenflussschätzung.

Das Kapitel wird begonnen mit einer generischen Beschreibung des Szenenflusses
(Abschnitt 5.1), ehe in Abschnitt 5.2 eine Kurzbeschreibung der Neuerungen des hier
entwickelten Verfahrens zur Szenenflussschätzung vorgestellt wird. Anschließend wer-
den die Eingangsdaten aufgelistet (Abschnitt 5.3) und elementare Mengendefinitionen
vorgestellt (Abschnitt 5.4), ehe das zugrunde liegende Modell der Bewegung eingeführt
wird (Abschnitt 5.5). Die Bewegungsparameter des Modells werden aus den Eingangs-
daten geschätzt, ehe am Ende des Kapitels das Verfahren evaluiert wird. Dabei wird
untersucht, welche Szenenflussgenauigkeit von dem vorgestellten Schätzer zu erwarten
ist (Abschnitt 5.8).

5.1. Erläuterungen zum 3D-Szenenfluss
Als Szenenfluss bezeichnet man in der Wissenschaft zur digitalen Bildverarbeitung das
(semi-)dichte 3D-Vektorfeld zur Beschreibung der Bewegungen von Pixelinhalten relativ
zur Kamera. Die Bewegung setzt sich dabei aus zwei Komponenten in der Bildebene
sowie einer Komponente orthogonal zur Bildebene, der Bildnormalen, zusammen. Eine
Entfernungsmessung in Bildnormalen ist bei typischen Mono-Kameras nicht direkt
möglich, somit ist die Berechnung eines 3D-Bewegungsfeldes eine herausfordernde
Aufgabe. In vielen Publikationen wird eine Entfernungsmessung in Bildnormalen durch
Verwendung von RGB-D oder Stereo-Kamerasystemen erreicht und entsprechend die
Schätzung einer Bewegung, insbesondere die Komponente in Richtung der Bildnormalen,
verbessert. Eine Übersicht möglicher Szenenflussverfahren ermöglicht die KITTI Scene
Flow Evaluation 2015, in welcher eine Reihe von Verfahren aufgelistet und bewertet

55



5. Schätzung der Radialgeschwindigkeit aus Referenzsensordaten

sind [MHG18,MHG15].
Da immer wieder neue Verfahren mit besseren Schätzergebnissen in der KITTI

Hierarchie veröffentlicht werden, ist dies Nachweis dafür, dass die Schätzung des 3D-
Bewegungsfeldes weiterhin herausfordernd bleibt. Wir definieren das Bewegungsfeld ξ

durch Bildung von Differenzenquotienten

ξ
(k)
[p] = x(k)

C [p] – x(k–1)
C [q(p)] (5.1)

wobei p ein Pixel im aktuellen Kamerabild und q(p) ein korrespondierendes Pixel im
zeitlich benachbarten Kamerabild ist. k und k – 1 beschreiben zeitlich benachbarte
Kameraframes. Die Assoziationsfunktion q(p) ergibt sich nicht automatisch und muss
durch das Verfahren zur Szenenflussschätzung selber ermittelt werden. Für eine gute
Szenenflussschätzung muss zum einen die Position xC der Punkte möglichst fehler-
frei gemessen werden und anschließend die Assoziationsfunktion q(p) eine fehlerfreie
Assoziation der Punkte zwischen den Frames durchführen.

5.2. Erweiterung von DRISF zu DRISFwR

Während der Entwicklung dieser Arbeit erreichte das Verfahren Deep-Rigid-Instance-
Scene-Flow (DRISF) zeitweise die höchsten Metriken im KITTI Scene Flow Benchmark.
Eine Gemeinsamkeit mit anderen Verfahren ist, dass z.B. die Szene vorab in unter-
schiedliche Aktoren unterteilt wird. Diese Aktoren werden als Starrkörper angenommen,
dessen Pixel sich mit identischer Bewegung in der Szene fortbewegen. Bei korrekter
Segmentierung in Aktoren führt diese Annahme dazu, dass viele Datenpunkte (mehrere
hundert Pixel im Kamerabild) für die Schätzung weniger Bewegungsparameter verwendet
werden können und eine weniger vom Rauschen beeinflusste Schätzung erreicht werden
kann. Typischerweise wird die Bewegung jedes Aktors durch jeweils eine 3D-Translation
und 3D-Rotation beschrieben.

Zur Schätzung des Szenenflusses nutzt DRISF optische Informationsquellen, soge-
nannte „visual Cues“. Hierbei handelt es sich um präprozessierte Informationen aus
den Sensordaten. Konkret werden bei DRISF der optische Fluss, die Tiefenmasken der
Sequenz und die Instanzmaske verwendet. Für diese Cues definiert DRISF Transfor-
mationsgleichungen und Gütefunktionen, welche eine Schätzung des Szenenflusses mit
Hilfe eines Gauß-Newton Optimierers ermöglichen.

Ein praktischer Vorteil bietet DRISF gegenüber anderen Verfahren durch die modulare
Trennung der Cues und des Optimieres, welches eine einfache Pflege der Cues ermöglicht.
Ergibt sich mit der Zeit Zugang zu Algorithmen mit genauer Instanzsegmentierung,
optischen Fluss und Tiefenschätzung, so können diese leicht in DRISF ausgetauscht und
somit die Schätzqualität des Szenenflusses verbessert werden, ohne die Transformations-
gleichungen anpassen zu müssen. Wie in diesem Kapitel gezeigt wird, lässt sich DRISF
aber auch leicht mit anderen Cues erweitern. Konkret wird dies durch Erweiterung von
DRISF zu Deep-Rigid-Instance-Scene-Flow-with-Radar (DRISFwR) erreicht, welches als
zusätzlichen Cue die RD-map des Radars verwendet und eine entsprechende Erweiterung
der Transformationsgleichung zur Berücksichtigung des Cues bereitstellt.

Eine grafische Übersicht der Adaption von DRISF zu Deep-Rigid-Instance-Scene-
Flow-with-Radar (DRISFwR) ist in Abbildung 5.1 zu finden.
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Abbildung 5.1.: Übersicht von DRISFwR (adaptiert aus [MWH+19]): Die origi-
nale Verarbeitung durch DRISF ist im unteren gestrichelten Rechteck
dargestellt. Es werden zunächst aus Stereokamera-Bildpaaren der opti-
sche Fluss, Instanzsegmentierung und Tiefenmaske geschätzt. Anschlie-
ßend wird für die detektierten Instanzen der Szenenfluss mittels Gauß-
Newton-Schätzer bestimmt. Darüber ist die Erweiterung zu DRISFwR
dargestellt. Nach jeder Iteration wird eine zusätzliche Objektmaske aus
der RD-map extrahiert und für die nächste Iteration des Optimierers
verwendet. Dieser versucht, Objektmasken entsprechend den Vorgaben
durch Variation des Szenenflusses zu extrahieren.

Ausschlaggebend für die Erweiterung zu DRISFwR sind zwei Motivationen. Zum
einen besteht der Wunsch, eine gegenüber DRISF verbesserte Szenenflussgenauigkeit
zu erreichen. Zum anderen soll durch die Hinzunahme der RD-maps eine automatische
Ausrichtung des geschätzten Szenenflusses am Inhalt der RD-maps erreicht werden. Für
die zugrunde liegende Aufgabe, die automatische Annotation von Radarfrequenzspektren,
ist dies entscheidend, da Fehler in der Platzierung der Annotationen minimiert werden.

Im weiteren Verlauf dieses Abschnittes werden wir die Adaptionen von DRISFwR im
Detail vorstellen. Dabei werden die fundamentalen Grundlagen zu DRISF vermittelt.
Diese Grundlagen zu DRISF können keinesfalls den gesamten wissenschaftlichen Umfang
der Publikationen von DRISF nachbilden. Dem interessierten Leser wird an dieser Stelle
empfohlen, die originale Veröffentlichung [MWH+19] zu DRISF zu studieren, bevor mit
der weiteren Durchsicht dieser Arbeit fortgefahren wird.

5.3. Eingangsdaten

Als Eingangsdatenmenge für DRISFwR werden vier verschiedene Cues bereitgestellt:
Instanzmaske, Tiefenmaske, optischer Fluss und RD-map. Die ersten drei Cues, die
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optischen Cues, finden auch bei DRISF Verwendung. Wir führen den letzten Cue als
erste Adaption von DRISFwR ein.

5.3.1. Instanzsegmentierung

Bei DRISF wird wie zuvor erwähnt das Kamerabild RGB in unterschiedliche Aktoren mit
gleichem Bewegungsmuster aufgeteilt. Diese Aufteilung erfolgt automatisch anhand einer
Instanzsegmentierung, welche bereits in Abschnitt 4.4 vorgestellt wurde. Abkürzend für
die resultierende Instanzmaske werden wir nachfolgend die Abkürzung M verwenden.

Bei der Instanzmaske werden ganze Fußgänger oder Fahrzeuge als einzelne Aktoren
zusammengefasst. Zwar hätten sich sowohl Fußgänger als auch Fahrzeuge mechanisch
besser als Mehrkörpermodelle beschreiben lassen. DRISF verzichtet auf diese Model-
lierung und nimmt etwaige Ungenauigkeiten zu Gunsten verringerter Komplexität in
Kauf.

5.3.2. Tiefenmaske

Für die räumliche Abtastung des Bildinhaltes wird die aus Abschnitt 4.1 bekannte
Tiefenvervollständigung verwendet. Dem Verfahren zur Szenenflussschätzung wird dabei
die Tiefenmaske zweier zeitlich benachbarter Kameraframes zur Verfügung gestellt,
welche wir nachfolgend in der Form D0 und D1 abkürzen werden. In der originalen DRISF-
Veröffentlichung wurden die Tiefenmasken mittels Stereo-Kamerabildern geschätzt.
Da hier jedoch die Tiefenmessung durch Lidarsensoren möglich ist, bietet sich diese
Änderung an und demonstriert noch einmal die zuvor beschriebene Modularität des
Verfahrens.

5.3.3. Optischer Fluss

Der optische Fluss beschreibt die Verschiebung der Pixel in der Kameraebene zwischen
zwei zeitlich benachbarten Kamerabildern. In Abschnitt 4.5 wurde die Schätzung des
optischen Flusses mit dem HD3 Verfahren nach [YDY19] vorgestellt. Wir werden die
resultierende Maske des optischen Flusses nachfolgend durch das Symbol F abkürzen.

5.3.4. RD-map

Als neue Quelle führt DRISFwR die RD-map RD aus dem Radarsensor ein. Eine
Einführung zum RD-map wurde bereits in Unterabschnitt 2.1.3.4 gegeben.

Neben der RD-map stellt ein typischer Radarsensor auch noch identifizierte Detektio-
nen bereit. Alternativ oder ergänzend zum RD-map können auch diese Detektionen als
Cue für DRISFwR verwendet werden. Der Autor dieser Arbeit hat sich jedoch explizit da-
für entschieden, diese Detektionen nicht bei der Inferenz des Szenenflusses bei DRISFwR
zu verwenden, da sie (a) als Untermenge in der RD-map bereits enthalten sind und (b)
die Szenenflussinferenz möglichst unabhängig von klassischer Radarsignalverarbeitung
sein sollte, um mögliche Fehler nicht in das Training eines NN zu transportieren.
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5.4. Mengendefinitionen

Bevor mit der Einführung in die Algorithmen von DRISFwR eingestiegen wird, werden
nun einige Mengen definiert.

Für eine verkürzte Darstellung von Gleichungen definieren wir
I =

{

RGB0, RGB1, D0, D1, M0, F, RD
}

. Wird eine oder mehrere der Masken benötigt,
so wird stellvertretend I als Argument verwendet.

Bei der Verarbeitung mittels DRISF oder DRISFwR wird zwischen statischen Objekten
und potenziell bewegten Objekten unterschieden. Wir definieren dafür die Menge aller
Pixel, welche bei der Instanzsegmentierung als Fußgänger oder Fahrzeuge erkannt
wurden

Pfg :=
{

p
∣
∣
∣
∣M(p) ∈ {pedestrian, car, truck, bicycle, motorbike}

}

. (5.2)

Durch die Hinzunahme von RD-maps in DRISFwR muss berücksichtigt werden,
dass Kamerapixel außerhalb des Radar FoV liegen können und somit für den Radar
unsichtbar sind. Bei der Optimierung sollen diese Pixel ausgeschlossen werden. Dazu
seien entsprechend vom Radar FoV eingeschlossene Pixel definiert als

Pradar :=
{

p(xR)
∣
∣
∣
∣|φaz.(xR)| ≤ 135

2
◦

∧ φel.(xR)| ≤ 22
2

◦}

. (5.3)

Hierbei sind φaz.(xR) = arctan
(

xR[y]/xR[x]
)

und φel.(xR) = arctan
(

xR[z]/xR[x]
)

der
Azimut- und Elevationswinkel der Pixel.

In Abschnitt 4.4 wurden Ausreißer in den Instanzmasken detektiert. Auch diese
Ausreißer sollen bei der Optimierung unberücksichtigt bleiben. Dazu definieren wir

Pi :=
{

p | p ∈ PDBSCAN ∧ p ∈ Pradar

}

. (5.4)

Diese Menge wird entsprechend als valide Pixelmenge bezeichnet. Beispiele dieser
Pixelmenge sind in Abbildung 5.2 dargestellt.

(a) Kamera 1 (b) Kamera 2

Abbildung 5.2.: Maske zur Selektion valider Pixel: Beispiele valider Pixel (gelb)
für alle Objekte nach Pi, dargestellt für beide Kameras.
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5.5. Definition der Bewegung
Mittels des Überlagerungsprinzips setzten wir die Bewegung des gesamten Bildinhaltes
aus mehreren Teilbewegungen zusammen. Zunächst wird die Bewegung der Kamera
gegenüber Grund definiert. Nachfolgend werden wir diese Bewegung auch als Hin-
tergrundbewegung bezeichnen und aus den Bewegungsdaten des Fahrzeuges, direkt
gemessen über das DGPS-INS, berechnen. Die Hintergrundbewegung ergibt für jedes
Pixel im Kamerabild einen Geschwindigkeitsvektor. Nach erfolgter Schätzung der Hin-
tergrundbewegung wird eine additive Komponente der Bewegung für Objekte relativ
über Grund geschätzt. Diese Komponente wird nachfolgend als Vordergrundbewegung
bezeichnet und für alle Pixel der detektierten Aktoren geschätzt. Formal werden wir
den Szenenfluss für jedes Pixel als 3D-Vektor ξ = [ξ[x], ξ[y], ξ[z]]T in kartesischen Ko-
ordinaten zusammenfassen. Die Hintergrundbewegung bzw. die relative Bewegung der
Kamera über Grund wird definiert als ξbg . Die Vordergrundbewegung bzw. die relative
Bewegung des Pixels über Grund wird definiert zu ξfg . Nach dem Überlagerungsprinzip
ergibt sich die Komposition beider Bewegungen zu

ξ = ξbg + ξfg . (5.5)

5.6. Bestimmung der Hintergrundbewegung
Für ein Fahrzeug ohne (signifikanten) Schlupf an den Reifen lässt sich die Bewegung
gut nach dem Ackermann Modell [MW04] modellieren. Es wird dabei angenommen,
dass ausschließlich die Vorderräder schwenkbar sind und die Lenkaufgabe übernehmen.
Sämtliche Räder rollen ausschließlich um ihre Drehachse. Verlängert man die Dreh-
achsen, so treffen sie in einem Schnittpunkt zusammen, welcher den Drehpunkt des
Fahrzeuges bei Kurvenfahrt darstellt. Dadurch ergibt sich eine longitudinale Bewegung
am Hinterachsmittelpunkt mit Rotation um das Zentrum der Hinterachse. Die Bewegung
eines beliebigen Punktes auf dem Körper des Ego-Fahrzeuges lässt sich extrapolieren.

Wir beschreiben dazu die Bewegung durch Aufteilung der Geschwindigkeit in transla-
torische vtrans. und rotatorische vrot. Komponenten

v = vtrans. + vrot.. (5.6)

Die translatorische Geschwindigkeit ist der Anteil, welcher durch die Modellierung
geradliniger Bewegungen induziert wird. Die rotatorische Geschwindigkeit ist analog
dem Anteil, welcher durch Drehung um im Raum liegenden Achsen induziert wird.

Wir wollen nun die Geschwindigkeit eines beliebigen Punktes auf dem Ego-Fahrzeug
betrachten. In Abbildung 5.3 sind dazu beispielhaft die Geschwindigkeitsvektoren zweier
Punkte auf dem Fahrzeug eingezeichnet. Der Punkt H1 vorne links sowie der Punkt H2
hinten rechts im Fahrzeug.

Das Fahrzeug bewege sich auf einer Kreisbahn. Damit ergibt sich die Bahngeschwin-
digkeit der Punkte nach den Grundlagen der Dynamik, siehe z.B. [Pal14], zu

vrot. = ω × rrot., (5.7)

wobei ω die Giergeschwindigkeiten um die Achsen und rrot. der Verbindungsvektor
zwischen Drehachse und Bahnpunkt sind, z.B. H1 – R.
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vtrans

ωz

E

eE [x ]

eE [y] eE [z ]

R

r

H1

H2

∆rH1

Abbildung 5.3.: Geschwindigkeit nach Ackermann Prinzip: Das Fahrzeug rotiert
um einen Punkt R mit den Giergeschwindigkeiten ω. Für jede Posi-
tion auf dem ausgedehnten Fahrzeugkörper ergibt sich aufgrund der
unterschiedlichen Verbindungsvektoren zu R eine unterschiedliche Ge-
schwindigkeitskomponente. Fahrzeugkontur nach [ARFssN16].

Das DGPS-INS liefert den Geschwindigkeitsvektor der Fahrzeughinterachse und die
Gierraten. Die Geschwindigkeit der Fahrzeughinterachse ergibt sich nach Gleichung 5.7
zu

vrot.,HA = ω × rHA. (5.8)

Ist die relative Position der Punkte H1 und H2 gegenüber der Fahrzeughinterachse
bekannt, z.B. ∆rH1 = H1 – rHA, so ergibt sich der Geschwindigkeitsvektor für Punkt
H1 zu

vrot.,H1 = ω × (rHA +∆rH1)
= ω × rHA + ω ×∆rH1

= vHA +∆vH1 . (5.9)

Die Geschwindigkeit des Punktes setzt sich somit aus der Längsgeschwindigkeit der
Fahrzeughinterachse vHA und der additiven Geschwindigkeit durch Rotation ∆vH1
zusammen.

Wir wollen nun die Position eines beliebigen Punktes p im Ego-Koordinatensystem
und Frame k für den nächsten Frame k + 1 prädizieren. Mit der oben definierten
Geschwindigkeit definieren wir die Translation des Punktes im Raum zu

tE,bg =






vx∆T
vy∆T
vz∆T




 , (5.10)

wobei vx , vy , vz die mit dem DGPS-INS gemessenen Geschwindigkeiten nach Glei-
chung 5.9 sind. ∆T ist das Abtastintervall zwischen zwei aufeinanderfolgenden Frames.
Neben der Translation ergibt sich durch die Drehung des Ego-Fahrzeuges auch eine
Drehung des Koordinatensystems. Wir definieren die Drehung als eine Euler-Rotation
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um die Fahrzeughochachse zu

RE,bg =






cos(ωz∆T) sin(ωz∆T) 0
– sin(ωz∆T) cos(ωz∆T) 0

0 0 1




 , (5.11)

wobei ωz die vom DGPS-INS gemessene Gierrate ist. Daraus ermitteln wir die neue
geschätzte Position x̃(k+1)

E des Punkte x(k)
E mit

x̃(k+1)
E[p] = RE,bg

(

x(k)
E[p] +∆rH

)

–∆rH – tE,bg . (5.12)

Zur Kennzeichnung der Position im ersten Frame wird die Symbolik {· · · }(k) verwendet.
Für den zweiten Frame entsprechend {· · · }(k+1). ˜{· · · } soll symbolisieren, dass es
sich um eine aus dem Szenenfluss geschätzte Position handelt. Bei der Berechnung
wurde berücksichtigt, dass nach Ackermann-Modell eine Rotation des Fahrzeuges um die
Fahrzeughinterachse erfolgt. In dem dargestellten Modell erfolgte erst die Rotation, bevor
die Translation addiert wurde. Es gibt unterschiedliche numerische Verfahren für diese
Integration. Anstelle diese aufwendig zu untersuchen, verfeinern wir die kinematischen
Zustandsgrößen mittels visueller Odometrie mit dem in [Ali22] vorgestellten Verfahren.
Damit folgen wir der Empfehlung aus [MG15a], in welcher eine ungenügende Genauigkeit
der Pixelprädiktion mittels Zustandsgrößen aus DGPS-INS beobachtet wurde.

Im weiteren Verlauf besteht besonderes Interesse an der relativen Geschwindigkeit
der Umgebung aus Sicht der Kamera. Nach obigem Modell muss dafür die Position der
Kamera auf dem Ego-Fahrzeug berücksichtigt werden und damit die Geschwindigkeit der
Kamera1 über Grund ermittelt werden. Durch Anwendung der Koordinatentransformati-
on aus Gleichung 3.31 und Anwendung der Bewegungstransformation aus Gleichung 5.12
erhalten wir

x̃(k+1)
C [p] = RC,bgx(k)

C [p] + tC,bg (5.13a)

RC,bg(k) =
(

E(C R
)–1

RE,bg
E(C R (5.13b)

tC,bg =
(

E(C R
)–1

RE,bg
(

E(C t +∆rH
)

–
(

E(C R
)–1 (

∆rH + tE,bg + E(C t
)

. (5.13c)

Dies ergibt schließlich den Hintergrundszenenfluss des Pixels p:

ξbg[p] = x̃(k+1)
C [p] – x(k)

C [p], (5.14)

Nach Gleichung 5.5 ergibt sich damit der erste Teil des Szenenflusses (ξbg), welcher
durch die Bewegung der Kamera über Grund entsteht.

1Da die Transformation für beide verwendeten Kameras analog gültig ist, wird auf den Kameraindex
in den Gleichungen verzichtet.
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5.7. Bestimmung der Vordergrundbewegung
Wesentlich aufwendiger als die Schätzung der Hintergrundbewegung ist die Schätzung
der Bewegung von Aktoren über Grund ξfg, da die Bewegung aus den Daten selbst
geschätzt werden muss und nicht als direkte Messdaten vorliegt. Die technischen Details
dafür werden im Folgenden vorgestellt.

5.7.1. Bewegungsparameter
In Gleichung 5.12 wurde die Positionsänderung durch die Rotation und Translation
des Ego-Fahrzeuges beschrieben. Zur Beschreibung der Bewegung wurde die Rotation
eines Punktes um die Fahrzeughinterachse berechnet. Damit wurde die Bewegung der
Kamera abgeleitet.

Bei größer werdender Distanz zwischen Hinterachse und beobachtetem Punkt steigt
der Einfluss der Rotation. Das beschriebene Bewegungsmodell modelliert dabei das
spezifische Bewegungsverhalten eines typischen Fahrzeuges im Straßenverkehr und
kann deshalb nicht nur für die Modellierung des Ego-Fahrzeuges verwendet werden,
sondern auch für andere typische Fahrzeuge im Straßenverkehr, wie Personenkraftwagen
(PKW) und Lastkraftwagen (LKW). Im Unterschied zur Ego-Bewegung müssen bei
der Bewegung von Aktoren allerdings alle Reflexionspunkte der Aktoren berücksichtigt
werden. Durch die geometrische Ausdehnung ergibt sich somit pro Aktor eine ganze
Signatur der Bewegung, welche wir kurz überschlagen werden.

Es sei ein typischer PKW mit einer Länge von 5 m angenommen, dessen Hinterachse
1 m vor dem Heck des Fahrzeuges liegt und somit die maximale geometrische Differenz
zwischen Fahrzeughinterachse und eines Punktes an der Fahrzeugfront, unbeachtet
der Fahrzeugbreite, bei 4 m liegt. Weiterhin sei angenommen, dass das Fahrzeug mit
maximal 20 ◦ s–1 um die Hinterachse giert2. Daraus ergibt sich eine, durch Rotation
induzierte, Geschwindigkeit (siehe Gleichung 5.7) von 4 m20◦

s
πrad
180◦ ≈ 1.4 m

s . Dieser Wert
übersteigt die Dopplerauflösung vieler automotiver Radarsensoren und entsprechende
Rotation und Objektausdehnung könnte zu einer kinematischen Ausdehnung in der
RD-map führen. Ohne empirische Untersuchungen wird hier jedoch angenommen, dass
bei typischen Szenarien nur ein kleiner Teil der Fahrzeugkontur gleichzeitig beobach-
tet wird, so dass die gesamte geometrische und somit kinematische Signatur selten
zu beobachten ist. Zugunsten einer sinkenden Komplexität werden wir somit auf die
Schätzung der rotatorischen Bewegungsparameter der Verkehrsteilnehmer verzichten
und stattdessen ausschließlich die translatorischen Bewegungsparameter ermitteln. Zur
Veranschaulichung der beobachteten Geschwindigkeiten aus Sicht des Ego-Fahrzeuges ist
in Abbildung 5.4 ein Ego-Fahrzeug und ein gierendes Objekt eingezeichnet. Geschwin-
digkeitsvektoren sind für einen Punkt an der Fahrzeugfront und dem Fahrzeugheck
eingezeichnet.

Weitere typische Verkehrsteilnehmer sind Fußgänger. Aus Sicht des Radars wird bei
der Kinematik von Fußgängern häufig zwischen Bewegung von Torso und Extremitäten
unterschieden, deren Bewegungsprofil als Mikro-Doppler betitelt wird [vDG08]. Eine
Vernachlässigung von Rotationsgeschwindigkeiten beim Fußgänger motivieren wir hier
durch zwei Punkte. Erstens wird die Mehrkörperdynamik von Fußgängern ebenfalls
nicht in DRISF berücksichtigt, wodurch kein Nachteil von DRISF gegenüber DRISFwR

2Dieser Wert wurde bei Durchsicht von [MW04] als ungefährer Maximalwert identifiziert
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vtrans

ωz
E

Ex

Ey Ez

Abbildung 5.4.: Beobachtete Geschwindigkeiten aus Sicht des Ego-Fahrzeuges:
Zwei beispielhafte Punkte auf dem beobachteten Fahrzeug bewegen sich
aus Sicht des Ego-Fahrzeuges mit unterschiedlicher Geschwindigkeit. Zu
beachten ist die unterschiedliche Ausrichtung der Geschwindigkeitsvek-
toren an Fahrzeugfront und -heck. Fahrzeugkontur nach [ARFssN16].

entsteht. Und zweitens: Für die später betrachteten Anwendungen ist eine Annotation
der makroskopischen Bewegung bzw. der Torsobewegung in der RD-map ausreichend. Ein
auf RD-map operierendes CNN sieht weiterhin die volle kinematische und geometrische
Signatur eines reflektierenden Objektes im RD-map, wird jedoch gegen die gemittelten
Zielwerte des gesamten Körpers trainiert.

Im Gegensatz zu DRISF wird nun also die Vordergrundbewegung in 3 translatorische
Bewegungsparameter kodiert, anstatt in 6 (3 rotational + 3 translational). Diese Ver-
einfachung wird zur Verringerung der Komplexität und zur möglichen Verbesserung der
Robustheit vorgenommen und wie oben beschrieben begründet.

5.7.2. Formulierung der Optimierungsfunktionen

Für eine automatische Schätzung der Bewegungsparameter wird zunächst eine Ziel-
funktion definiert, welche durch Anpassung der Bewegungsparameter optimiert bzw.
minimiert wird. Diese Zielfunktion beschreibt, wie gut die Punkte aufeinanderfolgender
Frames durch Anwendung der geschätzten Bewegung ineinander überführt werden
können. Die Zielfunktion bringt damit die abgetastete Abbildung der Umgebung und
die zu schätzenden Bewegungsparameter in einen für einen Optimierer verständlichen,
mathematischen Zusammenhang.

In Anlehnung an DRISF, definieren wir die Zielfunktion bzw. die Optimierungsaufgabe
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über mehrere gewichtete Zielfunktionen zu:

min
ξ

{

λphotoEphoto(ξ; I) + λrigidErigid(ξ; I) + λflowEflow(ξ; I)
︸ ︷︷ ︸

DRISF

+λradar,sd Eradar(ξ; I)
︸ ︷︷ ︸

Erweiterung durch DRISFwR

}

.
(5.15)

Die obere Reihe beschreibt den photometrischen Fehler (orig.: „photometric error“)
Ephoto, die räumliche Kongruenz (orig.: „rigid fitting“) Erigid und die Konsistenz des
Flusses (orig.: „flow consistency“) Eflow. Diese Terme sind aus [MWH+19] bekannt.
In der unteren Reihe wird die Konsistenz zur Radarmessung Eradar durch DRISFwR
eingeführt. Die λ Terme sind positive Skalare zur Wichtung der einzelnen Zielfunktionen.
Die einzelnen Zielfunktionen sind wie folgt mathematisch beschrieben.

5.7.2.1. Photometrischer Fehler

Bewegt sich ein Objekt im Raum, so verändert sich seine Position zwischen aufeinander-
folgenden Kamerabildern3.

Die Transformation von Welt- in Bildkoordinaten ist bereits aus den Gleichung 3.23a
und 3.24a bekannt. Durch Modifizierung der Gleichungen kann die Bewegung im Raum
in die Bewegung im Kamerabild überführt werden. Dazu definieren wir analog zu
Gleichung 5.14 zunächst die räumliche Verschiebung eines Punktes:

x̃(k+1)
C = x(k)

C + ξ. (5.16)

Mittels Kameralochbildmodell prädizieren wir die Pixelposition im neuen Frame
p̃(k+1) aus der Pixelposition des alten Frames p(k) und ξ zu:

p̃(k+1) =
[

ũ(k+1)

ṽ(k+1)

]

=










x(k)
C[x]+ξ[x]

x(k)
C[z]+ξ[z]

fu + cu

x(k)
C[y]+ξ[y]

x(k)
C[z]+ξ[z]

fv + cv










. (5.17)

Es sei angenommen, dass sich die Farbwerte des Punktes zwischen den Frames nicht
ändern und der Bildinhalt ausschließlich durch die Bewegung verändert wird. Wird
nun das zweite Bild mit dem korrekten Szenenfluss ξ verzerrt, d.h. die Pixel nach Glei-
chung 5.17 angeordnet, so sollten die Farbwerte sämtlicher Pixel des Ursprungsbildes mit
denen des verzerrten Bildes übereinstimmen. Eine unerwünschte farbliche Abweichung
wird durch den photometrischen Fehler ephoto = G(k+1)

[
p̃(k+1)

] – G(k)
[
p(k)

] in einem Skalar
zusammengefasst:

Ephoto,i(ξ; I) =
∑

p0∈Pi

ρ
(

ephoto
)

=
∑

p0∈Pi

ρ

(

G(k+1)
[
p̃(k+1)

] – G(k)
[
p(k)

]

)

. (5.18)

3Unter Beachtung der Epipolargeometrie
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Hierbei soll G(k+1)
[
p̃(k+1)

] den Grauwert aus G(k+1) an der Pixelposition p̃(k+1) darstellen.

Das Grauwertbild G ∈ R
M×N wird aus dem Red-Green-Blue (RGB) Kamerabild

RGB ∈ R
3×M×N transformiert:

G[u,v] =
[

0.2989, 0.587, 0, 114
]

RGB[u,v], (5.19)

dabei werden die einzelnen RGB Farbkanäle des Farbwertbildes gewichtet zum Grauwert-
bild summiert [Uni11]. M und N sind die Pixeldimension des Kamerabildes und u und
v die Pixelposition eines ausgewählten Kamerapixels. Alternativ wäre eine homogene
Gewichtung der Farbkanäle denkbar. Es wird jedoch erwartet, dass die Skalierung
nach Gleichung 5.19 zu homogeneren Bildgradienten führt und somit bessere Optimie-
rungseigenschaften aufweist. Eine empirische Untersuchung wird diesbezüglich nicht
vorgenommen.

Maschinell efÏzient lässt sich die Differenz aus Gleichung 5.18 berechnen, indem das
zweite Bild verzerrt wird. Dazu wird ein Gitter der Pixel p(k) aufgebaut und dieses mit
den Grauwerten des zweiten Bildes bei den korrespondierenden Pixeln p̃(k+1) befüllt.

In Gleichung 5.18 wird die Farbwertdifferenz über eine robuste Fehlerfunktion ρ

transformiert. Mit dieser Fehlerfunktion wird (a) die Differenz in ein konvexes Optimie-
rungsproblem überführt und (b) der Einfluss von Ausreißern auf die gesamte Zielfunktion
gewichtet. Im Laufe dieser Arbeit und analog zur originalen DRISF-Veröffentlichung
findet hier die generalisierte Charbonnier-Funktion ρ(x) = (x2 + ε2)α Anwendung.

Die Zielfunktion ergibt sich aus der Akkumulation der skalaren Abweichungen aller
als valide klassifizierten Pixel Pi .

5.7.2.2. Räumliche Kongruenz

Wurden beim ersten Energieterm die Farbwertabweichungen der Pixel unter der Be-
rücksichtigung der Bewegung gemessen, so wird bei der räumlichen Kongruenz die
geometrische Abweichung der Punkte unter Berücksichtigung der Bewegung in kartesi-
schen Koordinaten vermessen.

Wie in Gleichung 5.16 und 5.17 beschrieben, wird für jedes Pixel p(k) die räumliche
Position prädiziert und das korrespondierende Pixel p̃(k+1) im neuen Frame geschätzt.
Über den aus Abschnitt 4.5 bekannten optischen Fluss berechnen wir die assoziierte
Pixelposition p(k+1) = p(k) + F

(

p(k)
)

und extrahieren die gemessenen Koordinaten als
{

x(k+1)
C [x] , x(k+1)

C [y] , x(k+1)
C [z]

}

aus den Sensordaten des zweiten Frames:









x(k+1)
C [x]

(

p(k+1)
)

x(k+1)
C [y]

(

p(k+1)
)

x(k+1)
C [z]

(

p(k+1)
)









=










u(k+1)–cu
fu x(k+1)

C [z]
v(k+1)–cv

fv x(k+1)
C [z]

x(k+1)
C [z]










, (5.20)

wobei u(k+1), v(k+1) und x(k+1)
C [z] die Pixelkoordinaten und die Tiefenmessung an der

Stelle p(k+1) sind.
Die prädizierten Koordinaten

{

x̃(k+1)
C [x] , x̃(k+1)

C [y] , x̃(k+1)
C [z]

}

sollten idealerweise mit den
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räumlichen Koordinaten im zweiten Frame
{

x(k+1)
C [x] , x(k+1)

C [y] , x(k+1)
C [z]

}

übereinstimmen.
Als Maß für die Abweichung seien definiert

erigid(∆ξ, p; I) =












erigid[x]

(

p(k), p(k+1)
)

erigid[y]

(

p(k), p(k+1)
)

erigid[z]

(

p(k), p(k+1)
)












=









x(k+1)
C [x] – x̃(k+1)

C [x]
x(k+1)

C [y] – x̃(k+1)
C [y]

x(k+1)
C [z] – x̃(k+1)

C [z]









=









x(k+1)
C [x] – x(k)

C [x] – ξ[x]

x(k+1)
C [y] – x(k)

C [y] – ξ[y]

x(k+1)
C [z] – x(k)

C [z] – ξ[z]









.

Der Energieterm für die räumliche Abweichung sei damit:

Erigid,i(ξ; I) =
∑

p0∈Pi

(

ρ
(

erigid[x]
)

+ ρ
(

erigid[y]
)

+ ρ
(

erigid[z]
))

. (5.21)

Wie beim photometrischen Fehler werden die Abweichungen durch die Anwendung
der ρ Funktion konvex abgebildet.

5.7.2.3. Konsistenz des Flusses

Zuvor haben wir für jedes Pixel p(k) im ersten Frame die durch die Bewegung verän-
derte neue Pixelposition p̃(k+1) im neuen Frame geschätzt. Die Differenz der beiden
Pixelpositionen

(

p̃(k+1) – p(k)
)

entspricht dem in der Bildebene wirksamen Anteil des
Szenenflusses und somit dem durch Szenenfluss verursachten optischen Fluss in der
Bildebene. Diesen können wir mit dem aus Abschnitt 4.5 geschätzten optischen Fluss
vergleichen. Die Abweichung eflow sei definiert zu

eflow(∆ξ, p; I) =
[

eflow[u]
eflow[v]

]

=
(

p̃(k+1) – p(k)
)

–F[p] =






(

ũ(k+1) – u(k)
)

– Fu[p]
(

ṽ(k+1) – v(k)
)

– Fv[p]




 , (5.22)

wobei Fu und Fv die zwei Komponenten des optischen Flusses entlang der Bildkoordi-
naten sind.

Der skalare Energieterm ergibt sich daraus zu:

Eflow,i(ξ; I) =
∑

p1∈Pi

ρ(eflow[u]) + ρ(eflow[v]). (5.23)

Der optische Fluss bildet ausschließlich die tangentiale Bewegung zur Bildebene ab,
womit hier ausschließlich die tangentiale Bewegung optimiert wird4.

5.7.2.4. Konsistenz der Radarmessung

Bereits in [MWH+19] wurde beschrieben, dass die Gütefunktionen Erigid und Eflow in
DRISF stark voneinander abhängig und einzig Ephoto von der Qualität des optischen
Flusses sind bzw. ist. Fehler im optischen Fluss haben somit starken Einfluss auf die

4Aussage gilt nur bei punktförmigen Zielen, da bei Veränderung der Distanz eine entsprechende
Kontraktion im Bild wahrzunehmen ist.
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Qualität des geschätzten Szenenflusses. Darüber hinaus sei ergänzt, dass der optische
Fluss selbst häufig mittels zu Ephoto vergleichbaren Metriken geschätzt wird. Etwaige
Abweichungen in den Kameraabbildungen haben somit einen Einfluss auf alle drei Güte-
funktionen. Die Abhängigkeit von der Qualität des optischen Flusses werden wir durch
die Einführung einer vierten, von den Daten des Radars abhängigen, Gütefunktionen
reduzieren.

Bevor wir in die mathematischen Details dieser neu eingeführten Gütefunktionen
einsteigen, wollen wir das grobe Vorgehen anhand von Abbildung 5.5 darstellen und
motivieren. In der oberen blauen Box ist ein Kamerabild und die RD-map aus einem
typischen Fahrszenario dargestellt. Das Kamerabild stammt aus der nach hinten gerich-
teten Kamera und zeigt die Szene, in welcher sich das Fahrzeug mit einer typischen
Geschwindigkeit entlang einer Straße bewegt. Im linken Bildteil sind Randbebauungen
(Bordstein, Zaun, Büsche) zu sehen, in der Bildmitte zwei folgende Fahrzeuge, zur
besseren Sichtbarkeit durch rote Boxen markiert und in einem separaten Ausschnitt ver-
größert dargestellt. Diese beiden Fahrzeuge werden auch in der RD-map abgebildet und
die entsprechenden Signaturen ebenfalls durch rote Boxen im RD-map gekennzeichnet.
Verbindungslinien kennzeichnen die Assoziation der Fahrzeuge zwischen Kamerabild und
RD-map. Es ist zu erkennen, dass die Signaturen der Fahrzeuge eine erhöhte Leistung
aufweisen, gekennzeichnet durch hellere Pixel im RD-map und sich signifikant vom blau
dargestellten Hintergrund unterscheiden. Diese Beobachtung ist typisch und bedingt
durch die Reflektivität der Objekte, vgl. Gleichung 2.25. Wie später gezeigt wird, lässt
sich der radiale Anteil der räumlichen Geschwindigkeit aus der Szenenflussschätzung
berechnen, so dass Objekte aus Kamera und Lidar über ihre Entfernung und Radi-
algeschwindigkeit in das RD-map projiziert werden können. Diese Projektion ist in
Abbildung 5.5 in der gelben Box unten für eines der Fahrzeuge bereits dargestellt. Dabei
wurde eine initiale Geschwindigkeit angenommen, welche im linken Teil (m = 0) dazu
führt, dass die rot dargestellte Signatur des Objektes nicht auf den hellen Pixeln im
RD-map liegt, sondern auf Pixeln niedriger Leistung (blaue Pixel) daneben. Entspre-
chend unserer oben beschriebenen Beobachtung, dass Objekte durch helle Signaturen
auffallen, ist diese Projektion also fehlerhaft, und intuitiv würden wir die Signatur nun
linksseitig in die helleren Pixel verschieben. Diese Verschiebung ist durch die weiteren
Signaturprojektionen (m = 1 und m = 100) dargestellt5. In der grauen Box wurden
die Leistungswerte aus der RD-map in das Kamerabild projiziert. Diese Projektion
werden wir in Kapitel 6 vorstellen. Analog zur Ausrichtung der Signatur in der RD-map
kann beobachtet werden, dass die Helligkeit der Pixel an den Positionen der Objekte
im Kamerabild bei m = 100 deutlich höher ist als bei m = 0 und der physikalischen
Erwartung einer erhöhten Reflektivität von Objekten nachgekommen wird.

5Diese Verschiebungen wurden automatisch durch die integrative Optimierung des in dieser Arbeit
vorgestellten DRISFwR Verfahrens erreicht.
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Iterative Szenenfluss Ausrichtung via DRISFwR:

Unverarbeitete Daten:

Projektion der Leistung:
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Abbildung 5.5.: Automatische Ausrichtung vom Szenenfluss in der RD-map:
Blaue Box: Kamerabild und RD-map einer typischen Fahrszene. Rot
gekennzeichnet sind zwei dem Ego-Fahrzeug folgende Fahrzeuge. Gelbe
Box: Eine ungefähre Projektion eines der Fahrzeuge wurde unten links
(m = 0) im RD-map eingetragen. An der Stelle der Projektion weist
die Projektion kein lokales Leistungsmaximum auf und wird durch
DRISFwR linksseitig im RD-map verschoben (m = 1, m = 100). Zur
Steigerung der Robustheit gegenüber lokalen Maxima wurden Skalie-
rungsebenen des RD-map mit unterschiedlicher Filterung verwendet.
Graue Box: Projektion der Leistungen aus RD-map in Kamerabild. Es
ist zu erkennen, dass nach m = 100 DRISFwR Iterationen eine erhöhte
Leistung der Fahrzeugpixel zu beobachten ist. Nach [EB6].

Die in Abbildung 5.5 gezeigte Verschiebung der Signatur in der RD-map wird nun
automatisiert. Dazu definieren wir zunächst die Projektion eines Pixels aus dem Ka-
merabild in die RD-map. Dem Pixel im Kamerabild sind aus der Tiefenschätzung
(Abschnitt 4.1) und der hier durchzuführenden Szenenflussschätzung die kartesische
Position xC und die kartesische Geschwindigkeit ξ im Kamerakoordinatensystem be-
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kannt. Mit den Koordinatentransformationen aus Gleichung 3.33 transformieren wir die
Position aus Kamerakoordinaten in Radarkoordinaten.

Die Position der Projektion in der RD-map wird nach Abschnitt 2.1 durch die radiale
Entfernung und die radiale Geschwindigkeit sowie die gewählte Modulation definiert.
Die radiale Position ergibt sich aus xR mit der euklidischen Norm zu

r(xR) = ‖xR‖. (5.24)

Es ist weiterhin bekannt, dass die Radialgeschwindigkeit eine Skalarprojektion der
3D-Geschwindigkeit auf den Radialvektor ist:

ṙ(ξradar) =
xT

R
‖xR‖

ξradar, (5.25)

wobei hier ξradar die kartesische Geschwindigkeit im Radarkoordinatensystem ist. Diese
entspricht der zeitliche Ableitung von xR und kann daher mit der Transformation aus
Gleichung 3.33 und dem Szenenfluss ξ berechnet werden zu

ξradar = ∂xR
∂t = R(C R∂xC

∂t
= R(C Rξ. (5.26)

Für jedes Pixel im Kamerabild kann mit Hilfe von Gleichung 2.18 und 2.21 die
Pixelposition in der RD-map berechnet werden zu

pR[p] =
[

uR[p]
vR[p]

]

=






ṙ
(

(ξradar[p]
)

/∆v
r
(

xR[p]
)

/∆r




 . (5.27)

Der Leistungswert eines Pixels in der RD-map ergibt sich damit zu RD[pR].
Nachdem die Projektion in die RD-map damit mathematisch beschrieben ist, wollen

wir uns nun der Gütefunktion zuwenden. Bei der Beschreibung von Abbildung 5.5 wurde
beobachtet, dass die beiden verfolgenden Fahrzeuge eine erhöhte Leistungssignatur in
der RD-map aufweisen und vom Hintergrundrauschen klar zu trennen sind. Die initiale
Projektion der Objekte lag allerdings auf dem Hintergrundrauschen. Intuitiv haben
wir aus der Beobachtung heraus definiert, dass die initiale Projektion damit fehlerhaft
ist. Diesen Fehler wollen wir jetzt messen. Dazu definieren wir die Abweichung der
Leistungsprojektion gegenüber einem festzulegenden Zielwert Utarget als

eradar(pR; I) = Utarget – RD[pR]. (5.28)

Wir legen fest, dass eradar(p; I) minimiert werden soll, wenn die Projektion auf einem
(lokalen) Leistungsmaximum liegt. Utarget muss somit dem (lokalen) Leistungsmaximum
in der RD-map entsprechen. Dieses Maximum mag stark von Verkehrsteilnehmern
und Szenario abhängen. So haben Fußgänger statistisch ein geringeres RCS als LKW
und weiter entfernte Ziele eine geringere Signalleistung als näher gelegene, vgl. Gl.2.25.
Wünschenswert wäre nun, den Wert von Utarget entsprechend variieren zu können. Es
wäre denkbar, aus den Daten der Instanzsegmentierung und Tiefenmaske den statistisch
wahrscheinlichen Zielwert der Leistung für unterschiedliche Verkehrsteilnehmer zu
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schätzen. Dies würde den Umfang dieser Arbeit jedoch merklich übertreffen. Der
Einfachheit halber werden wir als Zielwert Utarget den Maximalwert des RD-maps
übernehmen und annehmen, dass die initiale Projektion der Objekte in die RD-map
gut ist und zumindest in der Pixelnachbarschaft der tatsächlichen Signatur liegt, so
dass der Optimierer das lokale Maximum findet. In Unterabschnitt 5.7.7 werden wir
spezielle Modifikationen der Kosten vorstellen, u.a. um diese Konvergenz zu steuern.
Diese speziellen Modifikationen sind textuell absichtlich getrennt, da sie zum allgemeinen
Verständnis von DRISFwR zunächst nicht benötigt werden.

Um die Residuen konvex zu machen, wenden wir, wie zuvor auch, die generalisierte
Charbonnier-Funktion an und definieren den Energieterm

Eradar(ξ; I) =
∑

p∈Pi

ρ
(
eradar(p; I)) (5.29)

5.7.3. Lösung mittels Gauß-Newton Optimierer
Nachdem wir im Abschnitt 5.5 die gesuchten Bewegungsparameter und in Unterab-
schnitt 5.7.2 die Zielfunktionen definiert haben, können wir uns nun der Inferenz
der Parameter zuwenden. Analog zu DRISF [MWH+19] werden wir auch hier einen
Gauß-Newton (GN)-Optimierer zur Minimierung der nichtlinearen Zielfunktion (Glei-
chung 5.15) verwenden. Einige der Herleitungen für die speziellen DRISF-Energieterme
sind in der erweiterten Veröffentlichung von DRISF [MWH+19] zu finden und werden
hier zum einfachen Verständnis für den Leser wiedergegeben. Zur Honorierung der wis-
senschaftlichen Vorarbeit durch DRISF sei dem Leser die Durchsicht der oben genannten
Veröffentlichung nahegelegt.

Wie in [MWH+19] gezeigt wurde, lässt sich die Minimierung der Energiefunktionen
mittels GN-Schätzer durchführen. Jeder der Energieterme hat eine Form analog zu:

E(ξ; I) =
∑

p∈Pi

ρ
(
e(ξ, p; I)

)
, (5.30)

in welche p die Pixel zu einer Instanz sind und e(. . . ) eine skalare Abweichung für
das Pixel darstellt. Gesucht wird die Transformation ξ̂, welche die Energiefunktion
minimiert

ξ̂ = arg min
ξ

E(ξ; I) = arg min
ξ

∑

p∈Pi

ρ
(
e(ξ, p; I)

)
. (5.31)

Der Verlauf der Residuen e = {ephoto, erigid, eflow, eradar} ist nicht linear über den
Szenenfluss, der somit nicht analytisch gefunden werden kann. Durch Linearisierung der
Residuenfunktion kann ein iteratives Suchen nach lokalen Minima umgesetzt werden.
Die linearisierte Residuenfunktion ergibt sich zu

e′(∆ξ, p; I) := e(ξ +∆ξ, p; I) ≈ e(ξ, p; I) + ∂e(ξ, p; I)
∂ξ

·∆ξ. (5.32)

Durch Einsetzten der Linearisierung in Gleichung 5.31 und der Definition der „Jacobi-
Matrix“ Jp ∈ R

1×3 der Residuen

Jp = ∂e(ξ, p; I)
∂ξ

(5.33)
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ergibt sich das Optimierungsproblem

∆ξ = arg min
ξ

∑

p∈Pi

ρ
(

e′(∆ξ, p; I)
)

= arg min
ξ

∑

p∈Pi

τ
(

e′(∆ξ, p; I)T e′(∆ξ, p; I)
)

= arg min
ξ

∑

p∈Pi

τ
(

(e(ξ, p; I) + Jp∆ξ)T (e(ξ, p; I) + Jp∆ξ)
)

. (5.34)

Hierbei wird ρ(x) = τ(xT x) verwendet. Wir definieren zusätzlich

Lp = e′(∆ξ, p; I)T e′(∆ξ, p; I). (5.35)

Das Minimum ergibt sich an der Stelle des verschwindenden Gradienten zu:

0 != ∂E
∂∆ξ

=
∑

p∈Pi

∂τ(Lp)
∂Lp

∂Lp
∂e′p

∂e′
p

∂∆ξ

=
∑

p∈Pi

∂τ(Lp)
∂Lp

2(e′
p)T Jp

=
∑

p∈Pi

∂τ(Lp)
∂Lp

2(e(ξ, p; I) + Jp∆ξ)T Jp. (5.36)

Die rechte Seite entspricht der Ableitung der linearisierten Energiesumme aus
Gleichung 5.34. Die Aufteilung der Gradienten erfolgt durch Anwendung der Kettenre-
gel.

Umstellen der letzten Zeile ergibt

∑

p∈Pi

∂τ(Lp)
∂Lp

JT
p Jp∆ξ = –

∑

p∈Pi

∂τ(Lp)
∂Lp

JT
p e(∆ξ, p; I) (5.37)

was mit
Wp = ∂τ(Lp)

∂Lp
(5.38)

nach ∆ξ aufgelöst werden kann:

∆ξ = –






∑

p∈Pi

JT
p WpJp






–1




∑

p∈Pi

JT
p Wpe(∆ξ, p; I)




 . (5.39)

Nach jedem Iterationsdurchlauf wird der Szenenfluss aktualisiert zu

ξ(m) = ξ(m–1) +∆ξ, (5.40)

wobei ξ(m) der Szenenfluss im m-ten Iterationsschritt ist.
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5.7.4. Herleitung der Residuen
Zur Inferenz der Parameter nach Gleichung 5.37 werden unter anderem die Residuen
e(. . .) benötigt. Der besseren Übersicht halber werden die Residuen für die einzelnen
Energieterme hier wiederholt.

5.7.4.1. Photometrischer Fehler

Die Residuen für den photometrischen Fehler entsprechen dem Helligkeitsunterschied
der Kamerapixel

ephoto = G(k+1)
[
p̃(k+1)

] – G(k)
[
p(k)

]. (5.41)

Da das Grauwertbild G nur einen Kanal hat, ist die Dimension der Residuen per Pixel
1× 1.

5.7.4.2. Räumliche Kongruenz

Die Residuen der räumlichen Kongruenz entsprechen dem Abstand, welcher sich aus der
Differenz der kartesischen Positionen eines Pixels im Kamerabild und seiner um den Sze-
nenfluss korrigierten Korrespondenz im nächsten Kameraframe ergibt. In Gleichung 5.21
wurde Erigid,i als homogene Summe der Abweichungen in den drei Raumrichtungen
zusammengefasst. Mathematisch äquivalent lässt sich dies als drei einzelne Energieterme
auffassen und die Residuen für den Optimierer als Vektor darstellen:

erigid(∆ξ, p; I) =









x(k+1)
C [x] – x(k)

C [x] – ξ[x]

x(k+1)
C [y] – x(k)

C [y] – ξ[y]

x(k+1)
C [z] – x(k)

C [z] – ξ[z]









(5.42)

Die Dimension der Residuen ist 3× 1, da der Positionsvektor drei Elemente hat.

5.7.4.3. Konsistenz des Flusses

Die Residuen zur Konsistenz des Flusses ergeben sich aus dem auf die Bildebene
projizierten Szenenfluss und dem vermessenen optischen Fluss:

eflow(∆ξ, p; I) =






(

ũ(k+1) – u(k)
)

– Fu[p]
(

ṽ(k+1) – v(k)
)

– Fv[p]




 . (5.43)

Die Dimension der Residuen ist 2× 1, da der optische Fluss zwei Elemente hat.

5.7.4.4. Konsistenz der Radarmessung

Die Residuen zur Radarmessung ergibt sich aus dem Leistungswert eines Pixels in der
RD-map RD[pR] und einem parametrierten Zielwert Utarget zu:

eradar(pR; I) = Utarget – RD[pR]. (5.44)

Die Dimension der Residuen ist 1× 1, da das RD-map RD nur einen Kanal hat.
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5.7.5. Herleitung der Jacobi-Matrizen

Für die Optimierung mittels GN-Löser sind nach Gleichung 5.34 die partiellen Ab-
leitungen der Residuen entlang aller Komponenten des Szenenflusses in Form von
Jacobi-Matritzen notwendig. Diese werden nun für alle Energieterme in diesem Ab-
schnitt vorgestellt.

5.7.5.1. Photometrischer Fehler

Für den photometrischen Fehler ergibt sich nach [MWH+19]

Jphoto. =
∂ephoto.(ξ, p; I)

∂ξ

=
∂

(

G(k+1)
[
p̃(k+1)

] – G(k)
[
p(k)

]

)

∂ξ

= ∂G(k+1)

∂p̃(k+1)
∂p̃(k+1)

∂x
∂x
∂ξ

– ∂G(k)

∂ξ

≈

[

∂
∂u G(k+1)

[
p̃(k+1)

], ∂
∂v G(k+1)

[
p(k+1)

]

]












fu
x(k)

C[z]
, 0, –

x(k)
C[x]fu

(

x(k)
C[z]

)2

0, fv
x(k)

C[z]
, –

x(k)
C[y]fv

(

x(k)
C[z]

)2

















1, 0, 0
0, 1, 0
0, 0, 1




 , (5.45)

wobei G(k)
[
p(k)

] der Farb-/Grauwert im ersten Frame ist und nicht vom geschätzten

Szenenfluss abhängt, wodurch ∂G(k)
∂ξ

= 0 ist. Der Gradient von G(k+1)
[
p̃(k+1)

] dagegen
wurde durch Anwendung der Kettenregel in die weiteren Gradienten aufgeteilt. Es wird
zunächst der Farb- bzw. Helligkeitsgradient des Bildes in Abhängigkeit der Pixeländerung
berechnet und danach der Gradient von Pixelposition in Abhängigkeit zur kartesischen
Position (siehe Gleichung 5.17). Beim zweiten Term wurden die Abhängigkeiten der
partiellen Ableitungen untereinander vernachlässigt, womit alle Ableitungen efÏzient
berechnet werden können. Gegenüber DRISF wurde angepasst, dass nun ausschließlich
drei Translationen zu schätzen sind. Die Dimension der Matrix ist 1 × 3, da das
Grauwertbild G einen Kanal und der gesuchte Bewegungsvektor ξ drei Elemente hat.
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5.7.5.2. Räumliche Kongruenz

Für die räumliche Kongruenz ergibt sich

Jrigid =
∂erigid.(ξ, p; I)

∂ξ

=

∂









x(k+1)
C [x] – x(k)

C [x] – ξ[x]

x(k+1)
C [y] – x(k)

C [y] – ξ[y]

x(k+1)
C [z] – x(k)

C [z] – ξ[z]









∂ξ

= –






1, 0, 0
0, 1, 0
0, 0, 1




 . (5.46)

Die Terme x(k+1) und x(k) sind invariant gegenüber dem Szenenfluss ξ. Es verbleibt
die partielle Ableitung des Szenenflusses gegenüber sich selbst, was unter Schätzung
von ausschließlich translatorischen Komponenten zur (negativen) Einheitsmatrix führt.
Die Dimension der Matrix ist 3× 3, da die Position drei Elemente hat, ebenso wie der
gesuchte Bewegungsvektor ξ.

5.7.5.3. Konsistenz des Flusses

Für die Flusskonsistenz ergibt sich die Jacobi-Matrix zu

Jflow = ∂eflow(ξ, p; I)
∂ξ

=

∂






(

ũ(k+1) – u(k)
)

– Fu[p])
(

ṽ(k+1) – v(k)
)

– Fv[p])






∂ξ

≈












fu
x(k)

C[z]
, 0, –

x(k)
C[x]fu

(

x(k)
C[z]

)2

0, fv
x(k)

C[z]
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x(k)
C[y]fv

(

x(k)
C[z]

)2

















1, 0, 0
0, 1, 0
0, 0, 1




 . (5.47)

Dies entspricht gerade den letzten beiden Termen der Gradientenkette des photometri-
schen Fehlers (siehe Gleichung 5.45) und muss bei einer efÏzienten Implementierung
nicht separat neu berechnet werden. Die Dimension der Matrix ist 2× 3, da der optische
Fluss F zwei Kanäle hat, der gesuchte Bewegungsvektor ξ drei Elemente.
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5.7.5.4. Konsistenz der Radarmessung

Die Jacobi-Matrix zur Konsistenz der Radarmessung ergibt sich zu

Jradar = ∂eradar(ξ, p; I)
∂ξ

=
∂
(

Utarget – RD[pR]
)

∂ξ

= –
∂RD[pR]
∂pR[p]

∂pR[p]
∂ξradar(ξ)

∂ξradar(ξ)
∂ξ

= –∇vr RD[pR]
xT

R∥
∥xR|

∥
∥

R(C R. (5.48)

Die Dimension der Matrix ist 1×3, da das RD-map RD einen Kanal hat, der gesuchte
Bewegungsvektor ξ drei Elemente.

Analog zu den anderen Energiefunktionen wurde auch hier die Kettenregel verwendet
und so der Gesamtgradient als Produkt einzelner interpretierbarer Terme aufgeteilt. Der
erste Term entspricht der Abhängigkeit des RD-maps vom Radarpixel pR. Da durch
den Szenenfluss nur der Radialgeschwindigkeitsanteil von pR modifiziert werden kann,
entspricht dies somit dem Bildgradienten entlang der Radialgeschwindigkeit. Der Bild-
gradient wird durch Faltung mit dem Faltungskern ∇vr = [–1, 0, 1] in Dopplerrichtung
des RD-maps berechnet. Dabei werden das Pixel und seine horizontalen Nachbarn mit
dem Faltungskern kombiniert und es ergibt sich für jedes Pixel ein skalarer Wert. Zur
Veranschaulichung ist der Bildgradient in Abbildung 5.5 (gelbe Box, rechts) dargestellt.

Der zweite Term entspricht der linearen Abhängigkeit der Radialgeschwindigkeit
vom Szenenfluss im Radar-Koordinatensystem. Die Transformation von Szenenfluss im
Radar-Koordinatensystem in Radialgeschwindigkeit ist aus Gleichung 5.25 bekannt. Der
Gradient ergibt sich durch Ableitung dieser Gleichung nach ξradar zu

∂pR[p]
∂ξradar(ξ) = ∂ṙ(ξradar)

∂ξradar
=

xT
R

‖xR‖
. (5.49)

Die Variation des Szenenflusses hat keine Auswirkung auf den Abstand r in pR, siehe
Gleichung 5.27. In der RD-map wird durch den Szenenfluss schließlich auch nur eine
Verschiebung entlang der Doppler-Richtung vollzogen. Folglich ist dieser Gradient Null
und hat keinen Einfluss auf die Optimierung. Zu Gunsten einer besseren Übersicht wurde
dieser Gradient nicht in Gleichung 5.49 dargestellt. Die Dimension dieses Teilgradienten
ist 1× 3.

Der letzte Teilgradient aus Gleichung 5.48 ergibt sich aus der Ableitung von Glei-
chung 5.26 nach ξ zu

∂ξradar(ξ)
∂ξ

= ∂R(C Rξ

∂ξ
= R(C R (5.50)

und hat die Dimension 3× 3.
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5.7.6. Herleitung der Wichtungsmatrizen
Dem Beispiel von DRISF folgend, wird für alle Energieterme die generalisierte Charbonnier-
Funktion [SRB10] verwendet

ρ(x) =
(

x2 + ε2
)α

. (5.51)

Hierdurch wird die Energiefunktion für den Optimierer konvex und die Residuen ge-
wichtet. Analog zu DRISF wurde auch hier ε = 10–6 und α = 0.45 gewählt.

Nach Gleichung 5.38 ist die Wichtungsmatrix definiert als das Produkt aus Wich-
tungsfaktor λ und der Ableitung der gewählten robusten Kostenfunktion nach den
quadratischen Residuen, welche sich zu

∂τ(Lp)
∂Lp

= ∂(Lp + ε2)α

∂Lp
= α(Lp + ε2)α–1 (5.52)

ergibt. Am Beispiel der Zielfunktion für Radar ergibt sich somit eine Wichtungsmatrix

Wradar = λradar
∂ρ2

∂r2
radar

= 0.45λradar
(

e2
radar + 10–6

)–0.55
. (5.53)

Die Wichtungsmatrizen der anderen Energieterme ergeben sich analog.
Für die efÏziente numerische Optimierung aller Energieterme können die Residu-

en der Energieterme in einem Vektor und die Jacobi-Matrizen zwecks numerischer
Verarbeitung in Matrizenform konkateniert werden. Die Gesamtwichtungsmatrix ist
dann als Diagonalmatrix zu bilden. Entsprechend ihrer Auflistung in dieser Arbeit
haben die Energieterme 1, 2, 3 und 1 Element/e. Daraus ergibt sich die Dimension der
Gesamtrichtungsmatrix zu 7× 7.

5.7.7. Spezielle Modifikationen von DRISFwR
In den Abschnitten zuvor wurden die Erweiterungen von DRISF zu DRISFwR durch
die Aufnahme des Energieterms „Konsistenz der Radarmessung“ beschrieben. Um die
Inferenz weiter zu steuern, wurden weitere Modifikationen vorgenommen. Diese werden
in diesem Abschnitt erläutert.

5.7.7.1. Berücksichtigung von Doppler-Mehrdeutigkeit

In Gleichung 5.54 wurde festgelegt, dass die RD-map RD zur Messung von Residuen ver-
wendet wird. Dieses entsteht durch zweifache Fouriertransformation auf den abgetasteten
Zeitsignalen, vgl. Unterunterabschnitt 2.1.3.4. Durch Verwendung von Fouriertransfor-
mation ergibt sich ein Eindeutigkeitsintervall der Geschwindigkeit, und Objekte mit
höherer Geschwindigkeit wickeln sich auf der anderen Seite des Geschwindigkeitsspek-
trums wieder in das RD-map hinein, vgl. Unterunterabschnitt 2.1.3.5. Dieses Phänomen
ist allgemein als „Alias-Effekt“ bekannt. Damit die Projektion von Kamerabildern in
Radardaten entsprechend Abstand und Geschwindigkeit bei der Szenenflussschätzung
plausibel ist, wurde in Abbildung 5.5 das RD-map mehrfach fortgesetzt, so dass beim
Überschreiten des eindeutigen Geschwindigkeitsintervalls der oben beschriebene Effekt

77
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berücksichtigt wird. Ein äquivalentes Ergebnis, aber efÏzientere Implementierung ergibt
sich, wenn die geschätzten Pixelpositionen in der RD-map nach Gleichung 5.27 ent-
sprechend der Bildgröße des RD-maps durch Modulo-Operation projiziert werden. Zur
grafischen Hervorhebung für den Leser wurde im Rahmen dieser Arbeit jedoch erster
Vorschlag implementiert.

5.7.7.2. Virtuelle Reduktion der Auflösung des RD-maps

Wir haben im Laufe dieses Kapitels gesehen, dass ein iterativer Optimierer zur Schätzung
des Szenenflusses verwendet wird, welcher das in die RD-map projizierte Objekt in
Richtung der Radialgeschwindigkeit verschiebt und dabei versucht, den Zielwert Utarget
aus Gleichung 5.54 der Leistung zu erreichen. Das Bestreben des Optimierers, das
projizierte Objekt weiter zu verschieben, hängt insbesondere auch vom Bildgradienten
in der RD-map bzw. der horizontalen Helligkeitsänderung ab. Liegt das projizierte
Objekt in einem Bereich mit hohem Bildgradienten, hat der Optimierer das Bestreben,
den geschätzten Szenenfluss anzupassen und das Objekt im RD-map zu verschieben.
Bei verschwindenden Gradienten hat der Optimierer entsprechend kein Bestreben zur
Verschiebung. Die Gradienten des RD-maps beim Übergang von Hintergrundrauschen
zu Objekten sind häufig sehr steil, erstrecken sich jedoch nur über eine kleine Pixel-
nachbarschaft um das Objekt, entsprechend des Auflösungsvermögens des Radars. Liegt
ein projiziertes Objekt fälschlicherweise außerhalb dieses Bereichs, so stagniert die
Optimierung aufgrund des flachen Bildgradienten. Um diese Stagnation zu unterbinden,
wird ein Skalierungsraum6 auf der RD-map gebaut. Das RD-map wird durch mehrfache
Anwendung von Gauß-Filter geglättet und die Auflösung des RD-map virtuell durch
Anwendung von Max-Pooling Filter reduziert. Durch diese Glättung und Reduktion der
Auflösung wird der Bildgradient in einen größeren Bereich um das lokale Bildmaximum
verschoben. Zur Veranschaulichung wurden in Abbildung 5.6 ein originales RD-map
und zwei Skalierungsebenen eingezeichnet.

In der Abbildung sind die gefilterten RD-maps sowie die Bildgradienten dargestellt.
Für den optischen Vergleich wurden die Ergebnisse der Skalierungsebenen durch bilineare
Interpolation auf die Bildgröße des originalen RD-maps hochskaliert. Insbesondere in
den unteren Skalierungseben ist zu erkennen, dass der Bildgradient bei den lokalen
Maxima weiter nach außen verschoben wird als beim ursprünglichen RD-map.

Die Berücksichtigung der Skalierungsebenen wurde in Gleichung 5.15 durch den
Parameter sd angedeutet. Mit sd = 1 bezeichnen wir das originale RD-map und
mit sd > 1 die Skalierungsebenen. Diese Modifikation wird durch Anpassung der
Gleichung 5.54 und 5.55 vorgenommen. Hierbei wurde Usd zur Kennung des RD-
maps auf der Skalierungsebene sd verwendet. Im Rahmen dieser Arbeit wurden drei
Skalierungsebenen verwendet. Wie in Abbildung 5.6 gezeigt, wurde der Fangbereich
damit ungefähr verdoppelt. Eine Optimierung oder tiefere Analyse der Skalierungsebenen
wird im Rahmen dieser Arbeit nicht durchgeführt.

eradar(pR; I, sd) = Utarget – RDsd [pR]. (5.54)

6Skalierungsräume finden häufig in der Schätzung des optischen Flusses Verwendung, siehe z.B.
[TBKP12].
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Abbildung 5.6.: Skalierungsebenen auf der RD-map zur Vergrößerung des
Fangbereichs: Das originale RD-map (oben links), wird durch
zweifaches Anwenden von Gauß-Filter, Max-Pooling und bilinearer-
Interpolation verschmiert. Durch die Vierschmierung flacht der Bildgra-
dient ab, dehnt sich jedoch über einen weiteren Bildbereich aus. Die
zu den Skalierungen gehörenden Bildgradienten sind rechts dargestellt.
Die Farbskalierung ist blau für negative Gradienten, gelb für positive
Gradienten und grün für neutrale Gradienten. Man beachte hierbei
insbesondere die erwähnte Ausdehnung der Bildgradienten über die Ska-
lierungsebenen. Zur Verdeutlichung wurden rote gestrichelte Hilfslinien
für einen ausgewählten Bereich der Gradienten eingezeichnet. Deutlich
zu erkennen ist, wie sich die Hilfslinien voneinander distanzieren.

Eradar(ξ; I) =
3∑

sd=1

∑

pR∈Pi

ρ
(
eradar(pR; I, sd)) (5.55)

5.8. Evaluation
In der Evaluation von DRISF konnte in der originalen Veröffentlichung [MWH+19] der
KITTI -Datensatz [MG15b] verwendet werden, welcher unter anderem über Daten aus
Stereokameras, Lidar und DGPS-INS verfügt. Durch die Erweiterung von DRISF zu
DRISFwR werden RD-maps aus einem Radarsensor für die Inferenz des Szenenflusses
benötigt. Diese sind nicht im KITTI -Datensatz enthalten, so dass im Rahmen dieser
Arbeit ein eigener Datensatz zur Evaluation der Algorithmen akquiriert und erstellt
wurde. Nachfolgend wird dieser Datensatz vorgestellt. Anschließend werden Metriken zur
Evaluation der Szenenflussschätzgenauigkeit vorgestellt, mit denen DRISFwR bewertet
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wird.
Bei DRISF und DRISFwR wird die GN-Optimierung gestoppt, sobald (a) die Ak-

tualisierung konvergiert ‖∆ξ‖2 < 0.1 mm oder (b) 100 Iterationsschritte durchgeführt
wurden.

5.8.1. Datensatz für Evaluation des Szenenflusses

Für die Akquise von realen Sensordaten wurde das in Kapitel 3 vorgestellte Fahrzeug
samt Sensorik verwendet. Auf diesem Datensatz werden die Schätzgenauigkeiten der
Algorithmen zur Szenenflussschätzung quantifiziert und miteinander verglichen. Für
diese Quantifizierung ist eine exakte Referenz des tatsächlichen Szenenflusses notwendig.
Ist diese Referenz exakt, entspricht also dem tatsächlichen Szenenfluss, so spricht man
von absoluter Referenz (engl.: „ground truth“). Eine Abweichung der Schätzung zur
absoluten Referenz entspricht demnach der Abweichung zum tatsächlichen Wert. Ist die
Referenz allerdings nicht exakt, so spricht man auch von der relativen Referenz. Eine
Abweichung von dieser Referenz entspricht also nicht der Abweichung zum tatsächlichen
Szenenfluss. Will man eine Referenz mittels Referenzsensorik abbilden, so wird bedingt
durch systematische und stochastische Messungenauigkeiten der Referenzsensorik immer
eine relative Referenz geschaffen. Als Faustformel für Referenz wird angenommen, dass
die Genauigkeit der Referenzmessung mindestens um eine Dekade besser sein sollte als
die Genauigkeit der zu bewertenden Messung. Die im Rahmen dieser Arbeit verwendete
Referenz für Szenenfluss leiten wir aus dem Vorbild des KITTI -Datensatzes ab.

Im KITTI -Datensatz wurde für die Evaluation von optischem Fluss die Lidarpunkt-
wolke aus 11 zeitlich benachbarten Frames mittels Iterative-Closest-Points (ICP) akku-
muliert bzw. registriert und die Referenz für den optischen Fluss über die Projektionen
der Pings in den nächsten Frame [GLU12] erstellt. Zusätzlich wurden Ausreißer und
mehrdeutige Objekte, wie Fenster und Zäune, aus den Referenzdaten durch entspre-
chendes Labeling entfernt. In [MG15a] wurde beschrieben, dass dieses Vorgehen nur für
statische Szenen Gültigkeit besitzt („provide scene-flow ground truth only for rigid scenes
without independently moving objects “) und die Referenzgenerierung für Szenenfluss
mit unabhängig bewegten Objekten vorgestellt und in KITTI integriert. Dabei wurde zu-
nächst der Szenenfluss für statische Objekte berechnet, indem die Lidar-Punktwolken aus
mehreren Frames akkumuliert wurden. Für die Akkumulation wurde die Egobewegung
aus einer Kombination von ICP und GPS-Daten geschätzt. Punkte von bewegten Ob-
jekten wurden danach manuell entfernt. Für den Szenenfluss von unabhängig bewegten
Objekten wurden die Pings der bewegten Objekte manuell gekennzeichnet und CAD-
Modelle von typischen Fahrzeugen in diese Punktwolken eingepasst. Der Szenenfluss
für diese Objekte wurde dann aus der Verschiebung und Verdrehung der CAD-Modelle
zwischen den Frames geschätzt. Der gesamte Szenenfluss ergab sich somit als Summe
von Szenenfluss von statischen Objekten und Szenenfluss von unabhängig bewegten
Objekten. Dieses Vorgehen ist in seiner Qualität aus anderen Datensätzen nicht bekannt,
hat jedoch den Nachteil, dass ein sehr zeitintensiver manueller Labelingaufwand zu
investieren ist. Maßgeblich dafür ist der zu investierende Aufwand für das manuelle
Labeling und die Implementierung der Einpassung von CAD-Modellen. Selbst in KITTI
konnten mit der Methodik nur etwa 400 Beispiele bereitgestellt werden, obschon diese
aus möglichst statistisch unabhängigen Szenarien entstammten. Weiterhin wurden bei
der CAD-Einpassung nur starre Körper berücksichtigt und Mehrkörperdynamiken von
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Objekten somit nicht berücksichtigt. Trotz dieses hohen Aufwandes wurden in anderen
Veröffentlichungen Imperfektionen der Szenenflussreferenz gefunden und beschrieben,
siehe bspw. [MWH+19]. Obige Probleme beziehen sich maßgeblich auf die Referenz für
unabhängig bewegte Objekte. Um diesen Problemen aus dem Weg zu gehen, werden wir
eine Bewertung des Szenenflusses ausschließlich anhand statischer Szenen vornehmen
und den Referenzszenenfluss für statische Objekte nach obigem Vorbild generieren.
Der Referenzszenenfluss entspricht dem geschätzten Szenenfluss für die Bewegung des
Hintergrundes nach Abschnitt 5.6. Da DRISF und DRISFwR zur Szenenflussschätzung
keine offensichtliche Differenzierung bei der Szenenflusschätzung zwischen statischen
und dynamischen Objekten machen, ist aus Sicht des Autors die Evaluierung anhand
statischer Szenen ein guter Indikator für mögliche Verbesserung der Schätzgenauig-
keit. Für die Evaluierung wurde ein Parkplatzszenario ausgewählt, in welchem keine
bewegten Objekte vorhanden waren. Die gefahrene Trajektorie des Datensatzes ist in
Abbildung 5.7 dargestellt. Ein beispielhaftes Kamerabild mit Lidar-Projektionen ist in
Abbildung 4.1 dargestellt.

Abbildung 5.7.: Gefahrene Trajektorie des Datensatzes: Bei der Akquise wurde
etwa 1 h lang durch Lippstadt gefahren. Die Aufzeichnung erfolgte konti-
nuierlich. Dabei wurden typisch Szenarien aus Stadtverkehr, Autobahn,
Landstraße und Parkplatz aufgezeichnet. Vergrößert dargestellt, ist
die Fahrtrajektorie aus dem Parkplatzszenario für die Evaluierung der
Szenenflussschätzung. Nach [EB6].

Der Datensatz für die Evaluierung hat eine Dauer von etwa 3 min und umfasst etwa
1700 Bilder pro Kamera. Dabei wurden etwa 13000 Instanzen von einzelnen parkenden
Fahrzeugen detektiert. Einige Beispiele sind in Abbildung 5.8 dargestellt.
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Abbildung 5.8.: Szenenbeispiele des Datensatzes zur Szenenfluss Evaluierung:
Dargestellt sind einige repräsentative Beispiele aus dem Datensatz zur
Szenenfluss Evaluierung. In der oberen Reihe sind die Beispiele der
ersten Kamera dargestellt, in der unteren Reihe, der zweiten Kamera.
In den Farbbildern sind die Instanzmasken farblich überlagert hervor-
gehoben.

Die Fahrtrajektorie bestand aus stark variierender Fahrzeugdynamik mit einer Fahr-
zeuggeschwindigkeit bis etwa 60 km h–1. In den Abbildungen wird noch einmal verdeut-
licht, dass zwar ausschließlich stationäre Objekte dargestellt sind, diese aber mitunter
stark verdeckt sind und den Schwierigkeitsgrad für u.a. die Szenenflussschätzung somit
erhöhen.

Für den Datensatz wurden die Instanzen automatisch mit dem in Abschnitt 4.3
vorgestellten Ansatz detektiert und mit dem in Abschnitt 4.4 vorgestellten Cluster-
verfahren verfeinert. Diese wurden als gut empfunden, obschon kleinere Fehler in den
Masken wahrgenommen werden können, siehe beispielsweise einzelne fehlende Objekte in
Abbildung 5.8. Unter Berücksichtigung des Aufwandes wurde ein manuelles Nachlabeln
der Instanzmasken als nicht notwendig empfunden. Da hier ohnehin statische Szenen
bewertet werden und somit benachbarte Pixel einen ähnlichen Szenenfluss aufweisen,
ist der Einfluss von Imperfektionen in den Instanzmasken zu vernachlässigen und kein
wesentlicher Einfluss auf die Evaluierungsmetriken zu erwarten.

5.8.2. Quantifizierung der Schätzfehler

Im vorigen Abschnitt wurde das Vorgehen zur Bestimmung des „ground-truth“ Szenen-
flusss vorgestellt. In diesem Abschnitt werden wir einen objektiven Vergleich der Szenen-
flussschätzer anhand von quantifizierten Abweichungen gegenüber „ground-truth“ Sze-
nenfluss durchführen. Da in dieser Arbeit die Motivation auf einer automatischen
Annotation von RD-Daten des Radars liegt, werden wir besonderen Fokus auf Abwei-
chungen in der Radialgeschwindigkeit gegenüber der Referenz legen.

5.8.2.1. Metrik nach KITTI

Für die Bewertung von Szenenfluss werden im KITTI -Datensatz Fehlerraten für Dispa-
rität und optischen Fluss berechnet. Die Disparität ergibt sich im KITTI -Datensatz
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zu [Mon22]
disparity = focallength · baseline

depth , (5.56)

wobei „focallength“ die Brennweite der verwendeten Kamera in Pixeln ist, „baseline“
der laterale Abstand der Stereokameras in Metern und „depth“ die Tiefenmessung
in Metern ist. Der optische Fluss ist die Pixelverschiebung in Bildkoordinaten und
wird in Pixeln angegeben, vgl. Abschnitt 4.5. Eine kurze Beschreibung, wie im KITTI -
Datensatz das „ground-truth“ bestimmt wurde, ist im vorigen Abschnitt gegeben.
Wenn die Abweichung der Disparität oder optischen Fluss 3px oder 5% übersteigt,
wurde dies als Fehler in der Szenenflussschätzung gewertet. Eine Dokumentation über
die Motivation hinter den Schwellwerten beim KITTI -Datensatz konnte nicht gefunden
werden.

5.8.2.2. Angepasste Metrik für den Radar

Eine Aufgabe dieser Arbeit ist das automatische Labeling von RD-Daten. Wir werden
im späteren Verlauf dieser Arbeit das Labeling in Kamerabildern durchführen und diese
mit den Pixeln aus RD-Daten des Radars assoziieren. Für eine korrekte Assoziation
ist eine hinreichend gute Qualität von radialem Abstand und radialer Geschwindigkeit
erforderlich. Die Abweichung zum „ground-truth“ sollte die Auflösung des Radars
in den RD-Dimensionen nicht überschreiten. Für das verwendete Radar liegt diese
Dopplerauflösung bei 0.25 m s–1. Im Rahmen dieser Auswertung macht es also durchaus
Sinn, sich auf diese Festlegung zu konzentrieren und als Abweichungen in der radialen
Geschwindigkeitsschätzung nach SI [BIP06] Einheiten in m s–1 zu ermitteln.

Mit den Parametern aus der Kamerakalibrierung und Gleichung 5.20, 5.25 und 5.26
ermitteln wir dazu die Radialgeschwindigkeit in Radarsensorkoordinaten zu

vr, radar(p, ξ) =

[u–cu
fu , v–cv

fv , 1
]

· R(C Rξ
√

(u–cu
fu )2 + (v–cv

fv )2 + 1
. (5.57)

Im Zähler wird das Skalarprodukt zweier 1× 3 Vektoren gebildet. Folglich handelt es
sich um eine skalare Größe.

Wie zuvor beschrieben, werden zur Evaluierung ausschließlich Szenen mit
(geo-)stationärem7 Inhalt herangezogen, so dass „ground-truth“ bzw. der beste Schätz-
wert des Szenenflusses ξgt = ξbg dem Hintergrundszenenfluss aus Gleichung 5.14 ent-
spricht. Damit berechnet sich die Abweichung der Radialgeschwindigkeitskomponente
für das Kamerapixel p zu

eSF,radial(p) = |vr, radar(ξgt[p]) – vr, radar(ξ[p])|. (5.58)

Gemäß oben genannter Bedingung definieren wir zusätzlich einen Fehler, wenn die

7Der Begriff „geostationär“ soll ausdrücken, dass die Objekte stationär gegenüber Grund sind. Das
Ego-Fahrzeug kann sich jedoch bewegen.
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Abweichung der Radialgeschwindigkeit die Auflösung des Radars überschreitet

eSF,radial,bin(p) =







1 eSF,radial(p) ≥ 0.25 m s–1

0 sonst
. (5.59)

Da bei DRISF und DRISFwR ξbg algorithmisch bereits für die Bestimmung des
Szenenflusses aller Hintergrundpixel verwendet wurde und für Hintergrundpixel die
Abweichung entsprechend verschwindet, wird bei der Auswertung ausschließlich die
Abweichung der Vordergrundpixel Pfg ausgewertet.

Über die Menge der Vordergrundpixel berechnet sich eine mittlere Abweichung pro
Kamerabild zu

MAESF,radial = 1
N

∑

p∈Pfg

eSF,radial(p), (5.60)

wobei N die Kardinalität der Menge Pfg ist. Analog berechnet sich die Fehlerrate zu

MAESF,radial,bin = 1
N

∑

p∈Pfg

eSF,radial,bin(p). (5.61)

Die mittlere absolute Abweichung mittelt über sämtliche Vordergrundpixel eines
Kamerabildes im Testdatensatz. Diese Art der Mittlung ist motiviert durch die Metriken
im KITTI -Datensatz, bei denen ebenfalls über alle Pixel gemittelt wird. Problematisch
dabei ist, dass die Pixelmenge entsprechend der Entfernung skaliert, vgl. Abbildung 3.5,
und damit implizit Objekte mit geringer Entfernung zur Linse stärker gewichtet werden.
Analog reduziert sich die Pixelanzahl von Objekten häufig durch Teilverdeckung, wie in
Abbildung 5.8 dargestellt.

Neben der pixelbasierten Metrik wollen wir eine instanzbasierte Metrik verwenden, um
damit unabhängig von der zuvor genannten Skalierung der Pixelmenge über Entfernung
zu sein. Dafür definieren wir zusätzlich die mittlere Abweichung über alle Pixel einer
Instanz zu

eSF,radial,instance(i) =
∑

p∈Pi

eSF,radial(p), (5.62)

und die mittlere Abweichung aller Instanzen

MAESF,radial,instance = 1
Ni

Ni∑

i=1

1
Np,i

∑

p∈Pi=i
eSF,radial,instance(p), (5.63)

wobei Ni die Anzahl der Instanzen im Kamerabild und Np,i der Anzahl der Pixel einer
Instanz im Kamerabild ist. Analog wird die mittlere Fehlerrate definiert zu

MAESF,radial,instance,bin = 1
Ni

Ni∑

i=1

1
Np,i

∑

p∈Pi=i
eSF,radial,bin(p). (5.64)

Eine Auswertung der Tangentialgeschwindigkeit wird hier nicht vorgenommen, da
sie für das Labeling von Radardaten und damit für den weiteren Verlauf dieser Arbeit
keine Bedeutung haben.
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5.8.2.3. Per Bild Fehler

Die Abweichung der radialen Komponente des Szenenflusses gemäß Gleichung 5.60
gegenüber der Referenz ist für drei verschiedene Algorithmen in Abbildung 5.9 a)
dargestellt. Rot markiert sind die Abweichungen von HD3 [YDY19]. Das Verfahren
ist kein eigentliches Szenenflussverfahren, sondern ein Verfahren für die Schätzung des
optischen Flusses, welches die Assoziation der Lidarpings zwischen den Frames vornimmt.
Bei der Schätzung des Szenenflusses kommt keine Segmentierung nach Instanzen zum
Einsatz, sodass potenziell zusammenhängende Bewegungsmuster nicht geclustert werden.
Grün markiert sind die Abweichungen zur Referenz, erreicht durch das klassische
DRISF-Verfahren. In Blau dargestellt sind die Abweichungen durch das in dieser Arbeit
vorgestellte DRISFwR Verfahren. Entlang der horizontalen Koordinatenachse sind die
Frames des Testdatensatzes aufgelistet. Entlang der vertikalen Koordinatenachse sind
die erreichten Abweichungen dargestellt. Zu erkennen ist, dass die Abweichungen mit
dem Verfahren nach HD3 in der Regel größer ausfallen als beim Verfahren DRISF
und DRISFwR. Des Weiteren sind die vielen grünen Datenpunkte zu erkennen. Das
bedeutet, dass bei gleichem Frame DRISFwR eine geringere Abweichung erreicht hat
als DRISF. Um diese Abweichung noch klarer darzustellen, sind in Abbildung 5.9 b) die
Verbesserungen der radialen Komponente des Szenenflusses durch DRISFwR gegenüber
den anderen Verfahren dargestellt. Positive Werte bedeuten eine Verbesserung durch
den Einsatz von DRISFwR. Negative Werte: Eine Verschlechterung durch den Einsatz
von DRISFwR.

In fast keinem Frame sind negative Werte (Abbildung 5.9, unten) zu beobachten, so
dass kein signifikanter Nachteil durch die Verwendung von DRISFwR festgestellt werden
kann. Im Gegenteil, es sind fast ausschließlich positive Werte zu beobachten, welche
eine bessere Schätzgenauigkeit durch DRISFwR belegen.

Da sich die eingetragenen Datenpunkte verdecken können und somit im Wesentlichen
nur der eingenommene Wertebereich erkennbar ist, sind in alternativer Darstellung
die Abweichungen als Histogramm in Abbildung 5.10 dargestellt. Auf der horizontalen
Koordinatenachse ist das MAE eingetragen. Auf der vertikalen Koordinatenachse die
Häufigkeit.

Zu erkennen ist, dass die MAE-Verteilung bei HD3 bis etwa 0.8 m s–1 reicht. Bei DRISF
und DRISFwR beschränkt sich die Verteilung im wesentlichen auf einen Bereich bis
etwa 0.1 m s–1, wobei bei DRISFwR die Häufigkeit des ersten Balkens ([–0.01, 0.01)m s–1)
gegenüber DRISF fast verdoppelt wurde (542 vs. 941).

In Abbildung 5.11 ist der nach Gleichung 5.61 ermittelte prozentuale Anteil an Pixeln
pro Bild eingezeichnet, welche mit einer Abweichung von mehr als 0.25 m s–1 vermessen
wurden.

Auch hier ist zu beobachten, dass HD3 fast in allen Frames eine schlechtere Fehlerrate
erreicht als DRISF und DRISFwR. Die Metrik bei DRISFwR ist ein wenig besser als
bei DRISF. Werden die Datenpunkte aus allen Frames zusammengefasst, so ergeben
sich die in Tabelle 5.1 dargestellten Werte.
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Abbildung 5.9.: MAE, gemittelt über alle Bildpixel: Oben dargestellt ist das er-
reichte Mean-Absolute-Error (MAE) nach Gleichung 5.60. Niedrigere
Werte entsprechen einer besseren Schätzung. Unten dargestellt ist die
MAE-Differenz der Verfahren gegenüber der MAE aus dem hier vor-
gestellten DRISFwR. Positive Werte entsprechen einem Benefit durch
DRISFwR. Negative Werte bedeuten eine Verschlechterung durch die
Verwendung von DRISFwR.

Tabelle 5.1.: Gemittelten Metriken über alle Frames. Dargestellt sind die gemit-
telten MAE und Fehlerraten sowie der Median der mittleren Abweichung
für die Verfahren zur Szenenflussschätzung.

Methods MAESF,radial (cm/s) Median AEsf,radial (cm/s) MAESF,radial,bin (%)
HD3 39,8 31,7 50.0016
DRISF 12,3 1,3 11.3126
DRISFwR 11,6 0,9 10.5223

Zu beobachten ist, dass DRISFwR in nahezu allen Szenarien eine Reduktion der
Abweichung der radialen Komponente von der Referenz erreichen konnte. Die absolute
Abweichung in der radialen Komponente kann aus den Moden der Histogramme aus
Abbildung 5.10 abgeschätzt werden. Diese entsprechen in etwa der Median-Abweichung
aus Tabelle 5.1.
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Abbildung 5.10.: MAE, gemittelt über alle Bildpixel: Dargestellt ist das erreichte
MAE nach Gleichung 5.60 in Form eines Histogramms.

5.8.2.4. Per Instanz Fehler

Die bisherigen Ergebnisse lassen vermuten, dass durch die Hinzunahme des radarbasier-
ten Energieterms, siehe Gleichung 5.15, eine leichte Verbesserung in der Szenenflussschät-
zung zu erreichen ist. Wie in den Gleichung 5.62, Gleichung 5.63 und Gleichung 5.64
beschrieben, wird die Auswertung nun ebenfalls per Instanz vorgenommen. Analog zu
Abbildung 5.9 sind die Abweichungen aller Objekte aus dem Testdatensatz in Abbil-
dung 5.12 dargestellt.

Lagen die Abweichungen in Abbildung 5.9 insbesondere für die Verfahren DRISF
und DRISFwR im Wesentlichen unterhalb von 0.1 m s–1, so ist in Abbildung 5.12 eine
deutlich höhere Streuung der Punkte zu beobachten. Wie zuvor beschrieben, werden in
Unterunterabschnitt 5.8.2.3 der Linse nahe gelegene Objekte mit entsprechend größerer
Pixelmenge statistisch stärker gewichtet und gleichzeitig genauer, wodurch die geringeren
Werte in der Metrik zu erklären sind. Eine weitere Validierung zur Stützung dieser
Hypothese wird im Rahmen dieser Arbeit nicht durchgeführt, da ihr für den weiteren
Verlauf dieser Arbeit keine wesentliche Relevanz zugeordnet wird.

Weiterhin kann beobachtet werden, dass auch hier DRISFwR gegenüber DRISF im
Allgemeinen eine kleinere Abweichung per Objekt erreicht. Dies zeigt sich insbesondere
auch in Abbildung 5.12, unten), wo noch einmal die Differenz der Abweichung gegenüber
DRISFwR dargestellt sind. Nur bei wenigen Objekten konnte DRISF ein geringeres
MAE erreichen als DRISFwR.

Wie zuvor auch wurden auch hier die Abweichungen in Form eines Histogramms
gesammelt und in Abbildung 5.13 dargestellt.

In der Histogramm-Darstellung ist zu beobachten, dass die Abweichung zur Referenz
bei allen Verfahren im Gros kleiner als die Doppler-Auflösung des Radars (0.25 m s–1)
ist.

Der Vollständigkeit halber sind in Abbildung 5.14 die Fehlerraten der Verfahren per
Objekt dargestellt. Dabei wurde ermittelt, wie hoch der relative Anteil an Pixeln per
Instanz ist, die eine größere Abweichung als die Dopplerauflösung des Radars aufweisen.

Da die Streuung der Datenpunkte mitunter sehr hoch ist und sich viele Datenpunk-
te optisch überlagern, wird diese Darstellung eher als ungeeignet für eine Bewertung
empfunden. Deutlich eingängiger sind die gemittelten Metriken in Tabelle 5.2 zusam-
mengefasst.
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Abbildung 5.11.: Mittlere Fehlerrate pro Bild: Oben dargestellt ist die erreichte
Fehlerrate nach Gleichung 5.61. Niedrigere Werte entsprechen einer
besseren Schätzung. Unten dargestellt ist die Fehlerrate der Verfahren
gegenüber der Fehlerrate aus dem hier vorgestellten DRISFwR. Positive
Werte entsprechen einem Benefit durch DRISFwR. Negative Werte
bedeuten eine Verschlechterung durch die Verwendung von DRISFwR.

Tabelle 5.2.: Gemittelten Metriken über alle Objekte. Dargestellt sind die gemit-
telten MAE und Fehlerraten sowie der Median der mittleren Abweichung
für die Verfahren zur Szenenflussschätzung.

Methods MAESF,radial (cm/s) Median AEsf,radial (cm/s) MAESF,radial,bin (%)
HD3 50,2 11,0 63.4834
DRISF 21,8 1,7 34.5126
DRISFwR 16,2 1,4 29.6659

In der Tabelle wurden die Abweichungen und Fehlerraten aller Objekte gemittelt.
Zusätzlich ist der Medianwert der Abweichungen dargestellt, welcher in etwa den Moden
aus Abbildung 5.13 entspricht. In allen Metriken hat DRISFwR besser abgeschnitten
als die anderen Verfahren. Als wissenschaftliche Aussage lässt sich so festhalten, dass
durch die Hinzunahme der radarbasierten Gütefunktion eine leichte Verbesserung in der
Szenenflussschätzung erreicht wurde. Diese Aussage gilt im Rahmen der hier untersuchten
Testbedingungen. Ohne einen Nachweis nach den Methoden der Statistik vorzunehmen,
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Abbildung 5.12.: MAE des Szenenflusses aller Objekte: Oben dargestellt ist das
erreichte MAE per Instanz nach Gleichung 5.62. Niedrigere Werte
entsprechen einer besseren Schätzung. Unten dargestellt ist die MAE
Differenz der Verfahren gegenüber der MAE aus dem hier vorgestellten
DRISFwR. Positive Werte entsprechen einem Benefit durch DRISFwR.
Negative Werte bedeuten eine Verschlechterung durch die Verwendung
von DRISFwR.

wird bei den verwendeten ca. 13000 Instanzen im Testdatensatz von einer statistischen
Signifikanz ausgegangen.

5.8.3. Qualitativer Vergleich

Um einen Eindruck von den Fehlern zu erhalten, wurden die Abweichungen nach
Gleichung 5.60 zur DRISFwR-Schätzung berechnet und aufsteigend sortiert. Das 10%-,
50%-, 70%- und 90%-Perzentil der Bilder ist in Abbildung 5.15 dargestellt. Zu beachten
ist, dass die Abweichung nur innerhalb des FoV des Radarsensors berechnet wurde, siehe
Abbildung 5.2, so dass z.B. der offensichtlich fehlerhaft geschätzte Szenenfluss für die
Instanz oben rechts in Abbildung 5.15 a) nicht in das Bild zur Abweichung transportiert
wird.

Die Bilder aus Abbildung 5.15 bestätigen insgesamt eine gute Qualität der Szenen-
flussschätzung. Trotz der erheblichen Verdeckung der Instanzen kann kaum eine größere
Szenenflussabweichung für die dargestellten Szenarien beobachtet werden. Da hier nach
den oben genannten Perzentilen allesamt unterhalb oder gleich dem 90-Perzentil se-
lektierte Szenarien dargestellt sind, bestätigt sich die Verteilung aus Abbildung 5.10.
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Abbildung 5.13.: MAE, gemittelt über alle Bildpixel: Dargestellt ist das erreichte
MAE nach Gleichung 5.64 in Form eines Histogramms.

Der Großteil der Daten liegt bei einer geringeren Abweichung bzw. nur ein sehr gerin-
ger Prozentteil der Bilder weist eine größere gemittelte Abweichung auf. Zur weiteren
Veranschaulichung sind in Abbildung 5.16 die 95–, 97–, 99– und 100– Perzentile darge-
stellt. Beim 95– und 99–Perzentil ist insgesamt eine kleinere Abweichung < 0.2 m s–1

für fast alle Instanzen erkennbar. Beim 97–Perzentil ist eine größere Abweichung für
eine verdeckte Instanz in der zweiten Parkreihe zu erkennen. Beim 100–Perzentil ist
ein vollständig falscher Szenenfluss zu beobachten, welcher durch einmalig korrupte
Sensordaten entstand.

5.8.4. Vergleich der Laufzeit
Neben der eigentlichen Schätzgenauigkeit ist auch die Laufzeit der Szenenflussschätzung
für die Bearbeitung großer Datensätze relevant. Die gemittelten Laufzeiten über den
gesamten Datensatz zu der in Abbildung 5.7 dargestellten Fahrtrajektorie sind in
Tabelle 5.3 eingetragen. Die Laufzeiten wurden auf einem PC gemessen. Der PC ist
mit einem Intel Core I7 Prozessor und einer NVIDIA GEFORCE GTX 1080 Graphics-
Processing-Unit (GPU) ausgestattet gewesen. Alle Algorithmen wurden als GPU-Code
implementiert.

Tabelle 5.3.: Vergleich der Inferenzdauer für Szenenflussschätzung
Methods runtime

HD3 0.12s
DRISF 0.6s
DRISFwR 0.8s

Zu erkennen ist, dass DRISFwR in etwa 0.8 s pro Kameraframe benötigt hat. Durch
die gestiegene Komplexität gegenüber DRISF hat sich die Laufzeit um etwa 0.2 s
verschlechtert. Die Inferenz des etwa einstündigen Datensatzes mit etwa 36000 Frames
(72000 Bilder) dauert mit DRISFwR in etwa 16 h.

90



5.8. Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

0.2

0.4

0.6

0.8

1

Objektindex →

A
us

re
iß

er
Ve

rh
äl

tn
is

in
Pr

oz
en

t→

HD3

DRISF
DRISFwR

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

–1

–0.5

0

0.5

1

Objektindex →

A
us

re
iß

er
R

ed
uk

tio
n

du
rc

h
D

R
IS

Fw
R

in
Pr

oz
en

t/
10

0%
→

HD3

DRISF

Abbildung 5.14.: Mittlere Fehlerrate pro Bild: Oben dargestellt ist das erreichte
Fehlerrate nach Gleichung 5.64. Niedrigere Werte entsprechen einer
besseren Schätzung. Unten dargestellt ist das Fehlerrate der Verfahren
gegenüber der Fehlerrate aus dem hier vorgestellten DRISFwR. Positive
Werte entsprechen einem Benefit durch DRISFwR. Negative Werte
bedeuten eine Verschlechterung durch die Verwendung von DRISFwR.
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Abbildung 5.15.: Vergleich von Szenenflussreferenz und -schätzung: Von links
nach rechts: RGB Kamerabild mit hervorgehobenen Instanzen, Refe-
renzszenenfluss, Szenenflusschätzung und daraus ermittelter Abwei-
chung nach Gleichung 5.60. Von oben nach unten: 10%-, 50%-, 70%-
und 90%-Perzentil sortiert nach Szenenflussabweichung.
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Abbildung 5.16.: Vergleich von Szenenflussreferenz und -schätzung: Von links
nach rechts: RGB Kamerabild mit hervorgehobenene Instanzen, Refe-
renzszenenfluss, Szenenflusschätzung und daraus ermittelter Abwei-
chung nach Gleichung 5.60.Von oben nach unten: 95%-, 97%-, 99%-
und 100%-Perzentil sortiert nach Szenenflussabweichung.
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5.9. Zusammenfassung
In diesem Kapitel wurde ein Verfahren zur Schätzung des Szenenflusses um Informationen
aus Radarmessungen erweitert. Wie in Abbildung 5.9 und 5.12 gezeigt wurde, konnte
dadurch in den meisten Beispielen eine Verringerung der Abweichung in der radialen
Komponente des Szenenflusses gegenüber einer Referenz erreicht werden. Nur bei wenigen
Instanzen hatte DRISFwR eine größere Abweichung von der Referenz als DRISF, siehe
Abbildung 5.12.

Analog zur Vorgehensweise im KITTI -Datensatz wurden die Abweichungen per Bild
ermittelt. Da diese Statistik Instanzen entsprechend ihrer Pixelanzahl im Kamerabild
gewichtet, wurde eine alternative Statistik generiert, bei welcher die Abweichung per
Instanz gemittelt wird und die von der Pixelmenge unabhängig ist. Hier konnte eine
deutliche Verbesserung gegenüber den anderen Szenenflussverfahren identifiziert werden.

Wie in anderer Literatur beschrieben, bspw. [MG15a], wurde auch hier ein statisti-
scher Vorteil für Verfahren mit Bewegungsmodell gegenüber einem nahezu modellfreien
Schätzer beobachtet. Eine Erklärung kann sein, dass Objekte als Starrkörper eine ein-
heitliche Bewegung aufweisen. Für alle Pixel eines Objektes wird somit eine einheitliche
Bewegung erwartet, und die Anzahl der zu schätzenden Parameter kann somit auf die
Bewegungsparameter des Objektes reduziert werden.

Obwohl DRISFwR eine erhebliche Reduktion der Abweichung in der Radialgeschwin-
digkeit in der Szenenflussschätzung auf etwa 0.16 m s–1 im Mittel und 0.01 m s–1 im
Median, siehe Tabelle 5.2, erreichen konnte, ergaben sich bei noch etwa 30% der Instan-
zen eine Abweichung, die größer als die Dopplerauflösung des hier verwendeten Radars
ist. Für bestmögliche Labelingergebnisse ist im weiteren Verlauf der Arbeit mit einer
manuellen Nachannotation der Daten zu rechnen.

Die Laufzeit von DRISFwR beträgt im Schnitt etwa 0.8 s und übersteigt die von
DRISF mit 0.6 s nur leicht. Bei der verwendeten Framerate von 10 Frames-Per-Second
(FPS) und dem zweiten Kamerasystem lässt sich eine einstündige Aufnahme in 16 h
prozessieren, was im Rahmen dieses Projektes als akzeptabel empfunden wurde.

94



6. Projektion von RD-Gitter Daten in
Kamerabilder

In Abschnitt 2.1 wurde das zweidimensionale RD-Spektrum sowie die Erweiterung mittels
Beamforming zum RAD-Spektrum beschrieben. Ziel dieses Kapitels ist es, die Daten
der Radarspektren vollständig in Kamerabilder zu projizieren und so eine eingängige
visuelle Interpretation der Spektren zu schaffen. Ein Beispiel dieses Vorhabens ist in
Abbildung 6.1 dargestellt.

|xr |

vr

|xr | →

|vr | →

Gitter

RGB

RDCRD

Vergrößerung:

Gitter

Abbildung 6.1.: Warping des RD-maps in ein Kamerabild: Als Beispiel der
Warping-Operation wird die Intensität des RD-maps in das Kame-
rabild RGB projiziert. Dazu werden die radiale Entfernung, die radiale
Geschwindigkeit und die korrespondierende Intensität in der RD-map
bestimmt. Dieser Intensitätswert wird anschließend in das Gitter des
Kamerbildes RDC eingetragen. Dieser Prozess ist für zwei beispielhafte
Kamerapixel (pinke und orangene Boxen) hervorgehoben. Zu beachten
ist, dass in RDC ausschließlich die Pixel im FoV des Radars gewarpt
wurden, dargestellt durch die nicht-weißen Pixel in RDC . Nach [EB6].

In der Abbildung ist oben links das Kamerabild RGB und mittig unten das RD-map RD
einer Szene dargestellt. Mittels geschätzter Entfernung (mittig oben) und Szenenfluss
(unten links) im Kamerabild werden für jedes Pixel im Kamerabild die Positionen im
RD-Gitter bestimmt und entsprechende Leistungsintensität in das Kamerabild projiziert
RDC (unten rechts).

Neben der Visualisierung im Kamerabild ist eine wesentliche weitere Motivation
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6. Projektion von RD-Gitter Daten in Kamerabilder

das überwachte Training von ML-Verfahren auf Radarspektren durch Nutzung be-
stehender oder einfach zu generierender Annotationen aus Kameradaten. Die Nutzung
von Annotationen aus anderen Sensoren („Lehrer“) zum Training eines Verfahrens
zur Signalverarbeitung („Schüler“) wird in der Literatur häufig unter der Bdezeich-
nung „Cross-Modal Supervision“ geführt. Unter diesem Titel gibt es Beispiele aus
der Spracherkennung [NSR+20], Radar-Objekterkennung [WJG+20] und WiFi-Radio
Signalverarbeitung [ZLA+19].

Wie gleich gezeigt wird, bedeutet das Warping praktisch eine Umstrukturierung
der ursprünglichen Pixel- bzw. Voxelanordnung im RD bzw. RAD-Gitter, so dass die
Pixel an entsprechender Stelle im Kamerabild positioniert werden. Das Warping ist so
aufgebaut, dass es sich nicht auf die Leistungsspektren des Radars beschränkt, sondern
alle Daten, welche in Form eines RD bzw. RAD-Gitters vorliegen, in das Kamerabild
gewarpt werden können. Dies können z.B. Ausgaben klassischer Signalverarbeitungen
wie Winkelmessungen mittels PM-Schätzer oder Detektionkonfidenzen aus CFAR für die
Pixel/Voxel im RD sein, insbesondere aber auch Signalverarbeitungen aus ML-Verfahren
wie Winkelschätzungen via NN-Verarbeitung. Ein Beispiel dafür ist in Abbildung 6.2
dargestellt.
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Network

warping
Etikettierung

(Optisches Modell)
Lidar &
Kamera

Szenenfluss- &
Tiefenschätzung

−

Sup
erv

isio
n

Fehlerrückführung

Neuronales
Netzwerk

Abbildung 6.2.: Übersicht des vorgestellten Systems zum überwachtem Trai-
ning von Radar Signalverarbeitungen: Lidar und Kamera stellen
Sensordaten an das optische Modell (engl.: „vision model“) bereit, wel-
ches automatisch Annotationen im Kamerabild generiert. Gleichzeitig
werden die vom Radar bereitgestellten Spektren durch ein NN prozes-
siert und durch die Warping-Schicht in die Domäne des Kamerabildes
gewarpt. Die Abweichung zwischen generierter Annotation und gewarp-
ter NN Prädiktion wird berechnet und über die Warping-Schicht zurück
in das NN propagiert (grüner Pfeil). Die Warping-Schicht benötigt
dichten Szenenfluss und Tiefenschätzung im Kamerabild, welche durch
Lidar, Kamera und Radardaten bestimmt werden. Die unteren Bilder
zeigen Beispiele einer semantischen Segmentierung an. Von links nach
rechts: Kamerabild, semantische Referenzmaske (nur relevante Pixel
angezeigt), gewarpte Prädiktion der semantischen Maske, prädizierte
semantische Maske im RD-Gitter, RD-map. Nach [EB6].

Neben der Bereitstellung annotierter Trainingsdaten (Abbildung 6.2, optisches Mo-
dell), muss ein Training von ML-Verfahren algorithmisch gewährleistet sein. Für das
Training von NN wird typischerweise das sogenannte „Error-Backpropagation“ ver-
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wendet, bei welchem die Abweichungen zwischen Prädiktion des Netzwerkes und der
Annotation ermittelt und sequenziell rückwärtsgerichtet durch alle Schichten des Netz-
werkes propagiert werden. Praktisch wird immer ein Gradientenverfahren angewendet,
welches den Fehlergradienten in Bezug auf die Parameter der Schichten berechnet.
Danach werden die Schichtenparameter mit einer definierten Schrittweite entgegen
dem Fehlergradienten aktualisiert. Dieser Vorgang wird bis zu einem Abbruchkriterium
wiederholt. Nach erfolgreichem Training sollte die Abweichung zwischen Prädiktion
und Label klein sein und damit einhergehend auch der Fehlergradient in jeder Schicht.
Um diesen Trainingsprozess zu ermöglichen, muss die Warpingschicht erlauben, den
Fehlergradienten zu bestimmen.

In diesem Kapitel wird zunächst eine allgemeine Einführung über das Warping in
der Bildverarbeitung gegeben. Dann wird die oben beschriebene Notwendigkeit der
Differenzierbarkeit am Beispiel eines generischen neuronalen Netzwerkes hergeleitet.
Danach werden unterschiedliche Interpolationsverfahren zur Realisierung des War-
pings vorgestellt und deren Vorwärts- und Rückwärtsdurchlauf im Trainingsprozess
dokumentiert und somit die Tauglichkeit für das Training theoretisch nachgewiesen.
Schlussendlich werden die Ergebnisse unterschiedlicher Warpingschichten dargestellt
und visuell bewertet.

6.1. Definition der Warprichtungen

Wie beispielsweise in [RA15] beschrieben, wird der Begriff „Warping“ in der Bildverar-
beitung als Synonym für die Anwendung von (geometrischen) Transformationen auf
Bildinhalt verwendet. Als einfache Transformationen werden beispielsweise globale Rota-
tion oder Deformation genannt. Aus der Art der Transformation kann ein Verzerrungsfeld
berechnet werden, welches festlegt, wie die einzelnen Pixel aus einem Ursprungsbild in
ein Zielbild verschoben werden. Dabei werden grundsätzlich zwei Arten von Bildwarping,
das Vorwärts-Warping und das Rückwärts-Warping, verwendet. Beim Vorwärtswarp
wird jedes Pixel aus dem Ursprungsbild entsprechend der Transformation verschoben,
wodurch ein neues Bildgitter entsteht. Dieses neue Bildgitter passt in aller Regel nicht
zum gewünschten Bildgitter des Zielbildes, so dass einzelne Pixel im Zielbild nicht oder
mehrfach von Pixeln aus dem Ursprungsbild belegt sein können. Dieser Effekt ergibt sich
aufgrund der Tatsache, dass die Transformationsfunktion im Allgemeinen nicht bijektiv
ist. Beim Rückwärtswarp wird daher ausgehend vom Bildgitter des Zielbildes entspre-
chend der inversen Transformation ein Pixelgitter über das Ursprungsbild gebildet. Auch
hier passt das neu geformte Gitter nicht automatisch zum Gitter des Ursprungsbildes,
jedoch kann damit sichergestellt werden, dass alle Pixel im Zielbild prozessiert werden.
Liegen das transformierte Gitter und das Gitter vom Ursprungs- oder Zielbild nicht
übereinander, so können die Pixel durch Interpolation auf die Zielgitter angenähert
werden. Anschauliche Beispiele hierzu sind in [RA15] zu finden.

Im Rahmen dieser Arbeit werden sowohl Vorwärts- als auch Rückwärtswarp verwendet.
Der Vorwärtswarp wird verwendet, wenn Pixel des Kamerabildes in das Gitter des
RD-maps transformiert werden sollen. Der Rückwärtswarp dagegen, wenn Pixel aus
dem Gitter des RD-maps in das Kamerabild transformiert werden sollen.

In Abbildung 6.3 sind die beiden Warp-Richtungen dargestellt. Es ist zu erkennen,
dass Quell- und Zielbild eine unterschiedliche Größe haben können. Wie später gezeigt
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6. Projektion von RD-Gitter Daten in Kamerabilder

wird, wird die Transformationsfunktion in beiden Fällen zwischen den Gittern aus Radar
und Kamera vollständig aus den Daten der Referenzsensorik (Entfernung, Szenenfluss
und Winkel) der Kamerapixel bestimmt.
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Abbildung 6.3.: Vergleich der Warp Richtungen: Beim Vorwärtswarp wird jedes Pi-
xel im Quellbild („Source image“) geometrisch in das Zielbild („Target
image“) transformiert und der Pixelinhalt entsprechend einer Inter-
polatrionsmethode in das Zielpixel eingetragen bzw. akkumuliert. Bei
Rückwärtswarp wird ausgehend von jedem Zielbildpixel das entspre-
chende Pixel im Quellbild berechnet und dessen Wert ins Zielpixel
eingetragen. Zeigt die assoziative Verbindungslinie auf eine Position
außerhalb des Bildbereiches, wird das Pixel im Zielbild nicht befüllt.
Nach [EB7].

Der wesentliche praktische Unterschied zwischen Vorwärts- und Rückwärtswarp ist,
dass beim Vorwärtswarp mehrere Pixel des Quellbildes auf das gleiche Pixel im Zielbild
zeigen können. Das Zielbild kann durch Akkumulation der Quellpixel aufgebaut werden.
Beim Rückwärtswarp zeigt ein Zielpixel immer nur auf ein Pixel im Quellbild und holt
sich daher den Grauwert. In beiden Fällen kann Interpolation angewendet werden, wenn
nach der Transformation der Pixel die Gitterstruktur nicht getroffen wird.

Es ergibt sich das Problem, dass mathematisch festgelegt werden muss, wie bei der
Sammlung mehrerer Quellpixel in ein Zielpixel umzugehen ist.

6.2. Generische Netzwerkstruktur und Trainingsprozess
Soll die Warping-Operation im Trainingsprozess eines NNes verwendet werden, so
muss der Fehlergradient über sämtliche Operationen, wie in Abschnitt 2.2 beschrieben,
berechnet werden können.

Wie in Abbildung 6.2 gezeigt, findet ein Vergleich von Label im Kamerabild und der
gewarpten Netzwerkprädiktion statt. Wir definieren das Label als fGT und die gewarpte
Prädiktion f ′. Für den Vergleich definieren wir eine Kostenfunktion l z.B. in der Form1

l(u, v) = τ(e) = τ
(

f ′ (u, v, r , ṙ , θ) – fGT (u, v)
)

, (6.1)

wobei τ eine konvexe Skalierungsfunktion ist und e die Differenz aus Prädiktion und
1Andere Formen sind möglich und üblich, z.B. bei Anwendung der Kreuzentropie.
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6.2. Generische Netzwerkstruktur und Trainingsprozess

Label ist. Die Prädiktion an der Pixelposition [u, v] hängt zum einen von den Warping-
Parametern r und ṙ statt, welche die Pixelposition im RD-Gitter definieren, und zum
anderen von den Parametern θ des NNes. In unserem Fall sind wir nicht an einem
Training der Warping-Parameter interessiert, sondern ausschließlich am Training der
Netzwerkparameter. Beim „error-backpropagation“ werden die Warping-Parameter als
nicht variabel angesehen.

Verwendet man nun ein klassisches „gradient descent“ Verfahren (Schrittweite γ) zum
Training der Netzwerkparameter, so würde eine Aktualisierung der Netzwerkparameter
im Schritt n folgende Form annehmen:

θ(n+1) = θ(n) – γ ∂l
∂θ

. (6.2)

Der letzte Term beschreibt den Gradienten der Fehlerfunktion, bezogen auf die
Netzwerkparameter, und kann durch Anwendung der Kettenregel modelliert werden zu

∂l
∂θ

= ∂l
∂τ

∂τ

∂e
∂e
∂f ′

∂f ′

∂f
∂f
∂θ

. (6.3)

Hierbei ist ∂l
∂τ die Ableitung von der Abweichung, bezogen auf die Skalierungsfunktion,

und im gezeigten Beispiel ∂l
∂τ = 1. ∂τ

∂e ist die Ableitung von der Skalierungsfunkti-
on, bezogen auf die Differenz e. Wird als Kostenfunktion beispielsweise der mittlere
quadratische Fehler verwendet, so ist

τ(e) = 1
2e2 (6.4)

und somit
∂τ

∂e = e. (6.5)

Die Ableitung hängt also ausschließlich von der Wahl der Kostenfunktion ab. ∂e
∂f ′ = 1 ist

die Ableitung der Differenz e zur Prädiktion im Kamerabild f ′. ∂f ′

∂f ist die Ableitung der
Prädiktion im Kamerabild, bezogen auf die Prädiktion im RD-Gitter, und hängt von
der Wahl der Warping-Schicht ab und wird später definiert. Zuletzt ist ∂f

∂θ
der Gradient

der Prädiktion im RD-Gitter bezogen auf die Netzwerkparameter.

In dieser Arbeit wird das Warping von Radardaten aus dem RD-Gitter und dem
RAD-Gitter untersucht. Beim Ersten werden ausschließlich Entfernungs- und Geschwin-
digkeitsinformation von der Referenzsensorik genutzt, um die Position eines Pixels
aus dem Kamerabild im RD-Gitter zu bestimmen. Beim Zweiten wird zusätzlich noch
der Einfallswinkel verwendet, um die Pixel- bzw. Voxelposition im RAD-Gitter zu
bestimmen.

Im Folgenden wird definiert, wie Vorwärts- und Rückwärtswarp durchzuführen sind.
Dabei wird insbesondere auch Pixelinterpolation beschrieben. Pixelinterpolation ist not-
wendig, wenn, so wie in Abbildung 6.1 gezeigt, das Warping nicht exakt auf ein Pixel im
Quellbild zeigt und die Pixelindizes somit keine Ganzzahlen, sondern Fließkommazahlen
sind.

99



6. Projektion von RD-Gitter Daten in Kamerabilder

6.3. Vorwärtswarp
Beim Vorwärtswarp wird hier ausschließlich die nächste Nachbarinterpolation verwendet.
Bei der Nächster-Nachbar-Interpolation (NNI) (engl.: „nearest neighbour interpolation“)
handelt es sich um eine der einfachsten Formen von Interpolation. Zeigt das Warping nicht
exakt auf ein Pixel, so werden die Pixelindizes auf die nächste Ganzzahl gerundet und
als Interpolationswert somit der Wert des geometrisch nächsten Nachbarn ausgegeben.
Für den interessierten Leser sei als weiterführende Literatur [Han13] empfohlen.

6.3.1. Vorwärtsdurchlauf
Beim Vorwärtswarp ergibt sich ein Vorwärtsdurchlauf der Schicht, wie in Algorithmus 3
beschrieben.

Algorithmus 3: Vorwärtswarp - Vorwärtsdurchlauf
Daten: Kamerabild Cs ∈ C

Ns×Ms , Geschwindigkeitsbild Vr ∈ R
Ns×Ms ,

Entfernungsbild R ∈ R
Ns×Ms und Auflösung {∆r ,∆r}

Ergebnis: Zielbild Ut ∈ C
Nt×Mt

Ut ← 0
für us ← 0 bis Ns – 1 tue

für vs ← 0 bis Ms – 1 tue
ut ← round

(Vr,[us,vs]
∆vr

)

vt ← round
(R[us,vs]

∆r
)

wenn (ut >= 0) & (vt >= 0) & (ut < Nt) & (vt < Mt) dann
Ut[ut ,vt ]+ = Cs[us,vs]

return Ut

Die Grauwerte im Zielbild ergeben sich durch Akkumulation der assoziierten Pixel
aus dem Quellbild.

6.3.2. Rückwärtsdurchlauf
Die partielle Ableitung ergibt sich beim Vorwärtswarp an Pixeln, welche zwischen Quell-
und Zielbild assoziiert wurden, zu eins. Ansonsten wird der Gradient genullt, siehe
Algorithmus 4.
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Algorithmus 4: Vorwärtswarp - Rückwärtsdurchlauf
Daten: Kamerabild Cs ∈ C

Ns×Ms , Geschwindigkeitsbild Vr ∈ R
Ns×Ms ,

Entfernungsbild R ∈ R
Ns×Ms und Auflösung {∆vr ,∆r}

Ergebnis: Gradienten δf ′

δf ∈ C
Vt×Ut

δf ′

δf ← 0
für us ← 0 bis Ns – 1 tue

für vs ← 0 bis Ms – 1 tue
ut ← round

(Vr,[us,vs]
∆vr

)

vt ← round
(R(u,v)

∆r
)

wenn (ut >= 0) & (vt >= 0) & (ut < Nt) & (vt < Mt) dann
δf ′

δf (us, vs) = 1

sonst
δf ′

δf (us, vs) = 0

return δf ′

δf

6.4. Rückwärtswarp
Beim Rückwärtswarp haben sich im Rahmen dieser Arbeit drei mögliche Interpolations-
verfahren angeboten, welche im Folgenden kurz vorgestellt werden.

6.4.1. Nächster-Nachbar-Interpolation (NNI)

Auch beim Rückwärtswarp kann die NNI verwendet werden.

6.4.1.1. Vorwärtsdurchlauf

Die NNI beim Rückwärtswarp kann folgendermaßen in Gleichungsform beschrieben
werden:

f ′(u, v) =
{

f (bue, bve) u ∈ U , v ∈ V
0 sonst (6.6)

Hierbei ist f der Grauwert an der Pixelposition u, v. b· · · e entspricht der Gaußklammer
als Rundungsoperation. Durch die Fallunterscheidung erzeugen Pixel außerhalb des
Quellbildes einen Interpolationswert von 0.

Um die Interpolationswerte für das Warping zu bestimmen, werden für jedes Pixel
im Kamerabild nun zunächst die radiale Entfernung und Geschwindigkeit im Radar-
Koordinatensystem bestimmt. Eine Beschreibung hierzu wurde bereits in Gleichung 5.27
gegeben. Durch das Einsetzen der RD-Gitter-Pixelposition pr(p) =

[

ur(p), vr(p)
]T

in
Gleichung 6.6 ergibt sich schließlich der Helligkeitswert für das Kamerapixel p zu

UC [p] =
{

U[bur(p)e,bvr(p)e] 0 ≤ ur < Ur , 0 ≤ vr < Vr
0 sonst (6.7)
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wobei Ur und Vr die Dimensionen des RD-maps sind. Wir verwenden RDC nun als
Synonym für das in das Kamerabild gewarpte RD-map.

Ein stellvertretendes Beispiel für das Warping mittels NNI ist in Abbildung 6.4
dargestellt.

0 5 10 15 20 25 30 35 40 45 50 55 60

SNR in dB →

(a) RD-map

0 5 10 15 20 25 30 35 40 45 50 55 60

SNR in dB →

(b) Gewarptes RD-map auf Kamerabild

Abbildung 6.4.: Warping des RD-map auf Kamerabild mittels NNI: Die RD-map
auf der linken Seite, wurde durch Anwendung der Interpolation in das
Kamerabild gewarpt. Die Positionen in der RD-map ergeben sich aus
der zuvor berechneten relativen Entfernung und Geschwindigkeit der
Kamerapixel, transformiert in das Radarkoordinatensystem. Pixel im
Kamerabild außerhalb des Radar FoV wurden genullt.

Zu erkennen ist in Abbildung 6.4 b), dass den parkenden Fahrzeugen hohe Leis-
tungswerte aus der RD-map zugewiesen wurden. Deutlich geringe Leistung wurde der
Fahrbahnoberfläche zugewiesen. Beides wird als plausibel empfunden (vgl. Unterab-
schnitt 2.1.1). Deutlich zu erkennen ist außerdem eine Blockbildung der Intensitätswerte
in Abbildung 6.4 b), z.B. mittig links am parkenden Fahrzeug. Als Blockbildung wird
hierbei verstanden, dass benachbarte Pixel exakt die gleiche Intensität aufweisen. Dieser
Effekt wird in der Literatur auch als „Mosaik Phänomen“ oder „Mosaik Effekt“ (engl.:
„mosaic phenomen“) bezeichnet [Han13] und häufig im Zusammenhang mit der NNI
genannt.

6.4.1.2. Rückwärtsdurchlauf

Analog wie bei max-pooling-Schichten [SMB10] aus NN, gilt bei der NNI das „winner
takes it all“ Prinzip. Anders als beim max-pooling entscheidet dabei jedoch nicht
der Wert der Neuronenaktivierung, sondern die Pixeldistanz in der Nachbarschaft,
welches Pixel bzw. dessen Inhalt weiter im Vorwärtsdurchlauf berücksichtigt wird. Im
Rückwärtsdurchlauf wird der Fehlergradient dementsprechend auch ausschließlich für
das siegreiche Pixel propagiert. Es ergibt sich folgender Gradient über die NNI Schicht:

∂f ′

∂f =
{

1 u = bue, v = bve
0 sonst . (6.8)
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6.4.2. Bilineare Interpolation
Bei der NNI wurden Pixel aus dem Kamerabild immer auf das Gitter des RD-maps
gerundet, wodurch sich Blockbildungen im interpolierten Bild ergaben. Als eine mögliche
Alternative benennt die Literatur die bilineare-Interpolation (BI) [Han13]. Hiermit
lassen sich Zwischenwerte im zweidimensionalen Gitter interpolieren. Dabei wird der
Grauwertgradient zwischen Pixelnachbarn ermittelt und basierend darauf Zwischenwerte
approximiert.

6.4.2.1. Vorwärtsdurchlauf

Nach [Han13] lässt sich die Interpolation in folgende Gleichung überführen

f ′(u, v) =
[

1 – u′ u′
]
[

f (buc, bvc) f (due, bvc)
f (buc, dve) f (due, dve)

]

︸ ︷︷ ︸

Grauwertnachbarschaft

[

1 – v′

v′

]

(6.9)

=
f (buc, bvc)(1 – u′)(1 – v′) + f (due, bvc)(1 – u′)v′

+f (buc, dve)u′(1 – v′) + f (due, dve)u′v′, (6.10)

wobei b· · · c und d· · · e die Gaußklammern als Operator für Ab- und Aufrunden sind.
Der gesuchte Zielwert befindet sich an der Stelle u, v. Die Parameter u′ = u – buc und
v′ = v – bvc sind die Dezimalwerte der Pixelposition. Das in das Kamerabild gewarpte
RD-map ergibt sich mittels BI zu

UC [p] =
[

1 – u′ u′
]
[

U[buc,bvc] U[due,bvc]
U[buc,dve] U[due,dve]

] [

1 – v′

v′

]

. (6.11)

Ein stellvertretendes Beispiel für das Warping mittels BI ist in Abbildung 6.5 darge-
stellt.

Im Vergleich zu Abbildung 6.4 ist kein „Mosaik-Effekt“ mehr zu erkennen und der
Helligkeitsverlauf im gewarpten RD-map ist kontinuierlich. Wie zuvor auch wurden
Pixel außerhalb des FoV des Radars genullt.

6.4.2.2. Rückwärtsdurchlauf

Der Gradient ∂f ′

∂f kann über Gleichung 6.10 abgeleitet werden zu

∂f ′

∂f =













δf ′

δf (buc,bvc)
δf ′

δf (due,bvc)
δf ′

δf (buc,dve)
δf ′

δf (due,dve)













=









(1 – u′)(1 – v′)
(1 – u′)v′

u′(1 – v′)
u′v′









. (6.12)

Anders als bei der NNI ergibt sich bei der BI ein Gradient für alle beteiligten Pixel.
Hieraus ergibt sich möglicherweise ein praktischer Vorteil gegenüber NNI, denn wenn
die Warpingparameter (Szenenfluss und Entfernung) marginal fehlerhaft sind, kann das
tatsächliche Pixel im RD-Gitter durch BI dennoch getroffen und somit trainiert werden.
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0 5 10 15 20 25 30 35 40 45 50 55 60

SNR in dB →

(a) RD-map

0 5 10 15 20 25 30 35 40 45 50 55 60

SNR in dB →

(b) Gewarptes RD-map auf Kamerabild

Abbildung 6.5.: Warping des RD-map auf Kamerabild mittels BI: Die RD-map
auf der linken Seite, wurde durch Anwendung der Interpolation in das
Kamerabild gewarpt. Die Positionen in der RD-map ergeben sich aus
der zuvor berechneten relativen Entfernung und Geschwindigkeit der
Kamerapixel, transformiert in das Radarkoordinatensystem. Pixel im
Kamerabild außerhalb des Radar FoV wurden genullt.

6.4.3. Trilineare Interpolation

In Unterunterabschnitt 2.1.5.2 wurde gezeigt, dass bei Verwendung mehrerer Antennen
neben dem RD-Gitter noch eine weitere Auflösungsdimension ermittelt werden kann. Es
ergibt sich der RAD-Raum. Um auch hieraus Werte in das Kamerabild warpen zu können,
lässt sich die BI trivial zur trilinearen-Interpolation (TI) um eine Dimension erweitern.
Vorwärts- und Rückwärtsdurchlauf der TI Schicht können analog zur BI hergeleitet
werden. Da hierbei jedoch 8 Pixel berücksichtigt werden müssen, verzichten wir aus
Gründen der Übersicht auf die Darstellung von Vorwärts- und Rückwärtsdurchlauf der
Schicht.

Ein stellvertretendes Beispiel für das Warping mittels TI ist in Abbildung 6.6 darge-
stellt.

Wie auch bei der BI, Abbildung 6.5 sind keine Blockbildungen zu beobachten. Wei-
terhin fällt auf, dass in Regionen mit niedrigerem SNR, z.B. der Straße, geringere
Helligkeiten erreicht wurden als bei der BI. Dieser Effekt ergibt sich durch den SNR
Gewinn des angewendeten Beamformers.

Ebenfalls fällt auf, dass die Leistung im Bereich des hinteren Fahrzeuges linksseitig in
Abbildung 6.6 fokussierter ist, als an gleicher Position in Abbildung 6.5. Die Leistung
konzentriert sich dabei mehr auf die eigentliche Position des Fahrzeuges und etwas we-
niger auf umliegende Pixel (Straße) mit vergleichbarer Entfernung und Geschwindigkeit.
Da nun der Einfallswinkel im Radarspektrum berücksichtigt wird, ist diese Beobachtung
plausibel.

Obwohl der Unterschied zwischen bi- und trilinearer Interpolation hier subjektiv
kaum bemerkbar ist, erhofft sich der Autor, dass bei zukünftigen Radargenerationen mit
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0 5 10 15 20 25 30 35 40 45 50 55 60

SNR in dB →

(a) RD-map

0 5 10 15 20 25 30 35 40 45 50 55 60

SNR in dB →

(b) Gewarptes RAD-map auf Kamerabild

Abbildung 6.6.: Warping des RD-map auf Kamerabild mittels TI: Die RD-map
auf der linken Seite, wurde durch Anwendung der Interpolation in das
Kamerabild gewarpt. Die Positionen in der RD-map ergeben sich aus
der zuvor berechneten relativen Entfernung und Geschwindigkeit der
Kamerapixel, transformiert in das Radarkoordinatensystem. Pixel im
Kamerabild außerhalb des Radar FoV wurden genullt.

verbessertem Azimut-Nebenkeulendämpfung (engl.: „sidelobe level“)2 ein merklicher
Unterschied bemerkbar sein wird.

6.5. Subjektive Bewertung
Nachdem die drei Interpolationsmethoden vorgestellt und die Differenzierbarkeit der
Warping-Schichten nachgewiesen wurde, wollen wir nun eine Bewertung vornehmen.
In [Han13] fand eine Bewertung der Verfahren anhand von Bildrekonstruktion künstlich
verkleinerter Bilder statt. Es wurde also ein Bild verkleinert und anschließend durch die
Interpolationsverfahren wieder auf die Originalgröße skaliert, anschließend die Grauwerte
des originalen Bildes mit skalierten Bildern verglichen und ein SNR gebildet. Dieses
Vorgehen war nur möglich, weil der Zielwert durch das originale Bild gegeben ist.
In unserem Fall ist dies leider nicht möglich, weil der Zielwert im Kamerabild nicht
bekannt ist. Statt eines quantitativen Vergleichs wollen wir in diesem Abschnitt die
offensichtlichen Unterschiede und Probleme diskutieren.

Im Vergleich zur BI ergaben sich bei der NNI deutliche Artefakte durch Blockbildung.
Diese Artefakte entstehen ausschließlich durch die Interpolationsmethode und sind
auch in anderen Anwendungen bekannt [Han13]. Da die Artefakte bei der BI und
TI nicht zu beobachten sind, sind diese beiden Verfahren aus Sicht des Autors zu
präferieren. Ein weiterer bereits genannter theoretischer Vorteil von BI und TI ist, dass
sich der Helligkeitswert eines Pixels im Kamerabild aus 4 bzw. 8 benachbarten Pixeln
im RD bzw. RAD-Gitter zusammensetzt. Bei marginalen Fehlern in der Bestimmung
der Warpingparameter (Szenenflusss und Entfernung) ergibt sich eine erhöhte Chance,

2Charakteristika zur Antennenspezifikation
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das tatsächliche Pixel aus dem RD bzw. RAD-Gitter zu treffen. Dieser Effekt mag einen
praktischen Vorteil beim Training von NN ergeben, wird aber nicht weiter untersucht.

Unter Bijektivität bzw. Eineindeutigkeit versteht man in der Mengenlehre eine Abbil-
dung, welche eindeutig zwischen Ursprungsmenge und abgebildeter Menge assoziiert. In
unserem Fall ist das RD-Gitter die Ursprungsmenge und das ins Kamerabild gewarpte
RD-Gitter die abgebildete Menge. Meist kann die Kamera einzelne Ziele aufgrund
hoher Auflösung in einzelne Pixel trennen, im Radar fallen diese Bereiche jedoch noch
in gemeinsame Zellen. Eine Bijektion ist dann nicht mehr gegeben. Mit den verwen-
deten Interpolationsverfahren hat dies zur Folge, dass die Leistungssumme in RDC
nun nicht mehr der ursprünglichen Leistungssumme aus RD entspricht. Elektrische
Beiträge einzelner Pixel im Kamerabild werden somit sicher nicht korrekt abgebildet.
Das fällt beispielsweise auf, wenn man die Leistungsprojektion der parkenden Fahrzeuge
in Abbildung 6.7 betrachtet. Die Regionen, in welchen eine hohe Leistung in RDC
vorhanden ist, aber aufgrund schwacher Reflektoren nicht zu erwarten ist, wurden hier
rot markiert.

0 5 10 15 20 25 30 35 40 45 50 55 60

SNR in dB →

Abbildung 6.7.: Kennzeichnung unplausibler Leistungswerte nach Warping des
RD-map auf Kamerabild mittels TI: Regionen, in denen eine
unerwartet hohe Leistung vorhanden ist, wurden rot markiert.

Nach Sichtung der Daten ist aufgefallen, dass die Kamerapixel in den rot markierten
Zonen häufig auf gleiche Pixel in der RD-map verweisen und somit vom Radar nicht in
einzelne Pixel aufgelöst wurden. Fällt in diese nicht aufgelösten Pixel dann noch ein
starker Reflektor, wie beispielsweise ein Fahrzeug, so wird durch die nicht vorhandene
Bijektion der Projektion die Leistung des starken Reflektors in angrenzende Regionen
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im Kamerabild projiziert. Auch bei Punktzielen, welche eine kleinere geometrische
und kinematische Ausdehnung haben, als es der Radarsensor auflösen kann, gibt es
Leistungsverteilungen im RD-map, bedingt durch z.B. Signalimperfektionen, Leakage
bzw. Fensterungseffekte. Für die in Abbildung 6.7 rot markierten Bereiche genügt es
also bereits, in einer direkten Pixelnachbarschaft im RD-map zu einem starken Reflektor
zu liegen. Im Vergleich von BI und TI ergab sich bei TI eine verbesserte Fokussierung
der Leistung auf das zweite parkende Fahrzeug und etwas weniger Leistungsprojektion
auf die umliegende Straße. Kamerapixel, die bei der BI noch auf ein gleiches RD-Pixel
verwiesen haben, verweisen nun auf unterschiedliche Pixel im RAD-Gitter.

6.6. Zusammenfassung
Mit dem in diesem Kapitel vorgestellten Warping wurden Werte aus RD oder RAD-
Gitter in das Kamerabild projiziert. Zum einen lassen sich die Werte damit in einer
anschaulichen Anordnung im Kamerabild visualisieren. Zum anderen lassen sich dadurch
aber auch Annotationen im Kamerabild für das Training von ML-basierten Verfahren
verwenden. Ein Nachweis für dieses Training wird in Kapitel 7 erbracht.

Beim Warping wurde festgestellt, dass durch die fehlende Bijektivität des Warpings
teilweise unplausibel hohe Leistungen in Kamerapixeln beobachtet wurden. Dies ist
technisch damit zu begründen, dass die Leistung aus RD und RAD-Gitter mehrfach
auf unterschiedliche Kamerapixel zugeordnet wurde. Bei einem verbesserten Warping
müsste sich die beobachtete Leistung eines RD oder RAD-Pixels auf die Kamerapixel
verteilen. Im Idealfall würde dabei eine Verteilung entsprechend der elektrischen Beiträge
der Kamerapixel erfolgen. Leider geben die Messwerte aus der Referenzsensorik keinen
Rückschluss auf diese elektrischen Beiträge, so dass vorerst mit der vorgestellten Warping-
Operation ausgekommen werden muss. Im weiteren Verlauf dieser Arbeit werden weitere
Untersuchungen durchgeführt, um die elektrischen Beiträge weiter zu identifizieren
(Unterabschnitt 7.3.2) und gar auf Kameradaten zu schätzen (Abschnitt 7.5). Als
Synonym für die Rückwärts- bzw. Vorwärtswarp wird fortlaufend folgende Notation
verwendet:

xcam = ηBW

(

xRD-grid; ṙ , r
)

(6.13)

xRD-grid = ηFW

(

xcam; ṙ , r
)

, (6.14)

wobei xRD-grid eine Variable im RD-Gitter ist und xcam die entsprechend ins Kame-
rabild gewarpte Variable. η ist Warpingfunktion und ṙ und r sind relative radiale
Geschwindigkeit und Abstand.
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In den vorangegangenen Kapiteln wurden aus den Daten der Referenzsensorik durch
Signalverarbeitung eine Tiefenvervollständigung und Szenenefluss geschätzt. Anschlie-
ßend wurden damit die Pixel aus RD oder RAD-Gitter in das Kamerabild gewarpt,
vor dem Hintergrund, diese mit Annotationen im Kamerabild vergleichen zu können.
In diesem Kapitel werden wir diese Annotationen nutzen und nachweisen, dass damit
eine NN-basierte Signalverarbeitung von Daten im RD-Gitter trainiert werden kann.
Begonnen wird dabei mit der Vorstellung des eingefahrenen Datensatzes (Abschnitt 7.1).
Anschließend werden NN zur Schätzung von Einfallswinkel (Abschnitt 7.2), Zieldetektion
(Abschnitt 7.3) und semantischen Segmentierung (Abschnitt 7.4) untersucht. Als zusätz-
liche Untersuchung werden wir die in Abbildung 6.2 dargestellte Trainingshierarchie
(Lehrer vs. Student) umkehren und die Daten aus Radar als Annotation verwenden, um
ein NN operierend auf Kameradaten zu trainieren (Abschnitt 7.5).

7.1. Datensatz
Für die Akquise von realen Sensordaten wurde das in Kapitel 3 vorgestellte Fahrzeug samt
Sensorik verwendet. Bei einer durchgehenden Fahrt durch Lippstadt, siehe Abbildung 5.7,
wurden die Sensorsignale aufgezeichnet. Die Fahrt beinhaltete einen geringen Anteil von
Szenen im Hella-Werk, viele Szenen auf öffentlicher Stadtstraße, Szenen auf öffentlicher
Stadtautobahn sowie Szenen auf einem Parkplatzgelände. Insgesamt wurden Daten aus
etwas mehr als 1 h Aufnahmelänge akquiriert. Dabei wurden etwa 36000 Frames a 10
FPS aufgezeichnet und dabei ungefähr 7 · 109 Datenpunkte auf Pixelebene der Kamera
eingefahren.

7.1.1. Datensplit
Für das Training und die Validierung der nachfolgenden Algorithmen wurde der akqui-
rierte Datensatz in 10 s lange Sequenzen a 100 Frames geteilt. Diese Sequenzen wurden
zufällig in Trainings-, Evaluations- und Testdatenmengen geordnet. Der Datensplit
betrug in etwa 70%, 15%, 15%. Durch die zeitliche Trennung der Sequenzen soll erreicht
werden, dass statistisch unabhängige Beispiele in Trainings und Testdaten vorhanden
sind und eine generalisierbare Aussagekraft der Auswertung entsteht.

7.1.2. Manuelle Annotation der Daten
Obschon die in den vorangegangenen Abschnitten vorgestellte Methodik zur automa-
tischen Annotation der Daten dem Stand der Wissenschaft entsprechen mag, so sind
Fehler bei der Annotation keineswegs auszuschließen. So wurde z.B. in Tabelle 5.2 fest-
gehalten, dass Fehler im Szenenfluss bei etwa 30% der Objekte größer als die Auflösung
des Radars waren. Dieser Wert wurde in Parkplatzszenen mit starker Überdeckung der
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Objekte ermittelt. Bei einfacheren Szenarien kann der Fehlerwert also niedriger ausfallen.
Gleichzeitig ergeben sich aber noch weitere Fehlermöglichkeiten, durch z.B. Fehler in
der Instanzsegmentierung, welche durch diesen empirisch ermittelten Fehlerwert nicht
berücksichtigt wurden und die Qualität der Labels des Datensatzes degradieren können.
Diese Labelfehler haben einen negativen Einfluss auf die quantitative Größe der Be-
wertung der Verfahren. Nach manueller Durchsicht der Daten wurden im Wesentlichen
drei verschiedene Fehlerbilder beobachtet, welche nachfolgend als Anomalien bezeichnet
werden. Diese waren:

1. wenn ein stationäres Objekt fälschlicherweise als bewegtes Objekt erkannt wurde

2. Eine erhebliche Menge der Leistung aus der RD-map nicht in das Kamerabild
projiziert wurde RDC

3. Fehlerhafte Segmentierung der Punktwolke, was zu einer unplausiblen Ausdehnung
der geometrischen Signatur im RD-Gitter führt RD.

Beispiele zu den Fehlerfällen sind in Abbildung 7.1 dargestellt.

RGB + M RDC RD

Abbildung 7.1.: Beispiele von Anomalien im Datensatzlabeling: Von links nach
rechts: Kamerabild mit eingezeichneter Instanzsegmentierung (Rot:
Fußgänger; Grün: Fahrzeug) im FoV der Radars, auf das Kamerabild
gewarpte RD-map und RD-map mit projizierter Instanzmaske, sowie
manuell eingezeichneter Anomaliemasken (weiße Boxen). Die orangen
Pfeile deuten korrespondierende Regionen zwischen Kamerabild und
RD-map an. In den ersten beiden Zeilen wurden parkende Objekte,
aufgrund fehlerhafter Szenenflussschätzung, fälschlicherweise als bewegt
detektiert (Fehlertyp 1). In der unteren Zeile ist eine fehlerhafte Instanz-
segmentierung eingezeichnet. Dabei wurden Pixel des Hintergrundes
als Fußgänger klassifiziert, was in einer unplausiblen geometrischen
Ausdehnung in der RD-map resultiert (Fehlertyp 3). Nach [EB6].

In der ersten Spalte der Abbildung sind Kamerabilder mit den farblich eingezeichneten
Masken für bewegte Fußgänger (rot) und bewegte Fahrzeuge (grün) dargestellt. In der
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zweiten Spalte ist die ins Kamerabild projizierte Leistung aus der RD-map dargestellt. In
der letzten Spalte ist die RD-map sowie die Signatur der bewegten Objekte dargestellt.
Ebenfalls dargestellt sind die manuell erstellten Anomaliemasken, welche Regionen mit
Labelfehlern kennzeichnen.

In der obersten Reihe ist zu erkennen, dass das Fahrzeug am linken Bildrand als
bewegt identifiziert wurde, obwohl es sich hierbei um ein parkendes Fahrzeug handelte.
Es wurde also offensichtlich eine falsche Geschwindigkeit des Fahrzeuges geschätzt. Bei
genauer Betrachtung des RD-maps ist zu erkennen, dass die Signatur des entsprechenden
Fahrzeuges nur wenige Pixel in Doppler-Richtung von der stationären Bebauung abweicht.
Die Geschwindigkeitsabweichung ist also nur marginal. Trotzdem wurde in diesem
Beispiel die Region als fehlerhaft markiert und aus dem Testdatensatz ausgeschlossen.
Eine ähnliche Beobachtung wurde bei dem Objekt am linken Bildrand aus der zweiten
Bildreihe gemacht. In der letzten Bildreihe ist zu erkennen, dass die Signatur des
Fußgängers (rot) in der RD-map eine unplausibel große geometrische Ausdehnung
aufweist. Umgerechnet entspräche dies einer mehrere Meter langen radialen Ausdehnung.
Zur Maskierung der Anomalie wurde die Box über die als fehlerhaft identifizierte Region
in der RD-map gezeichnet.

Glücklicherweise sind diese Anomalien durch einen menschlichen Beobachter leicht
zu identifizieren und manuell zu markieren. Diese manuelle Annotation der Anoma-
lien wurde für den gesamten Testdatensatz durchgeführt. Dem Labeler1 wurden die
Daten analog zur Abbildung 7.1 im Labelingframework [Tzu15] präsentiert. Die Frames
wurden einzeln in der Reihenfolge der Aufzeichnung dargestellt. Der Labeler konnte
mit Tastaturbefehlen schnell zwischen benachbarten Frames dirigieren, um ein besseres
Verständnis der Szenendynamik zu erlangen. So war es z.B. einfacher nachzuvollziehen,
welche Objekte geparkt waren und wie sich die Labels über die Frames entwickelten.
Wurde eine Anomalie erkannt, so wurde manuell eine Box in Kamerabild oder RD-map
eingetragen. Die Größe der Box wurde so gewählt, dass die fehlerfreien Daten des Frames
erhalten blieben, jedoch keine fehlerhaften Labels verblieben. Wurden diese Masken
eingezeichnet, so wurden die entsprechenden Regionen im Testdatensatz exkludiert.

In Summe wurde bei den etwa 10800 Frames des Testdatensatzes in etwa 20.3%
der Frames mindestens eine Anomalie erkannt. Die durchschnittliche Zeit zum Labeln
eines Frames betrug etwa 5 s. Durch die Verwendung der in dieser Arbeit vorgestellten
Verfahren wurde ausschließlich das manuelle Labeln von Anomalien durchgeführt. Die
Labelingaufgabe beschränkte sich somit auf eine binäre Klassifikation, bei welcher der
menschliche Labeler entscheiden musste, ob das vorgeschlagene Label plausibel oder
fehlerhaft ist. Ohne diese Methodik hätte beispielsweise für jedes Pixel in der RD-map
ein Label, beispielsweise für Winkelschätzung, manuell vorgegeben werden müssen. Es
ist anzunehmen, dass durch das vorgestellte Verfahren eine erhebliche Reduktion des
manuellen Aufwandes erreicht werden konnte.

Es sei wiederholt, dass Anomaliemasken ausschließlich für den Testdatensatz ge-
zeichnet wurden. Das im Nachfolgenden beschriebene Training der NN wurde auf den
Trainingsdaten durchgeführt.

In Abbildung 6.7 wurden weitere Fehler, verursacht durch die Warpingschicht, dar-
gestellt. Diese wurden bei der manuellen Anotation nicht berücksichtigt und werden
stattdessen bei der Auswertung Beachtung finden.

1Der Begriff Labeler wurde hier als Synonym für den Autor dieser Arbeit verwendet.
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7.2. DoA Schätzung
In erster Anwendung wird das Training eines NNes zur Azimutwinkelschätzung von
Reflexionen in den RD-Gittern durchgeführt. Es handelt sich dabei um eine Regressions-
aufgabe, bei der eine kontinuierliche Zielvariable zu schätzen ist. In diesem Abschnitt
werden wir die Eingangsdaten (Unterabschnitt 7.2.1), die Zielwerte (Unterabschnitt 7.2.2)
und Netzwerkarchitekturen (Unterabschnitt 7.2.3) diskutieren, danach die Fehlermetrik
definieren (Unterabschnitt 7.2.4 - 7.3.7), die Initialisierung (Unterabschnitt 7.2.8) und
den Optimierer des NN (Unterabschnitt 7.2.9) aufzeigen. Abschließend werden der
Trainingsprozess (Unterabschnitt 7.2.10) und die Ergebnisse unter Testdaten ermittelt
und diskutiert (Unterabschnitt 7.2.11).

7.2.1. Eingangsdaten
Das NN zur Winkelschätzung operiert auf den Eingangsdaten Γ , welche aus den
Frequenzspektren des Radars bestehen. Dazu wurden drei Receiver (Rx)-Kanäle in
Frequenzraumdarstellung {Srd,1, Srd,2, Srd,3} des Radarsensors mit nicht äquidistantem
Antennenabstand wie folgt aufbereitet, bevor sie in das NN eingespeist wurden.

Γ =








RD
∠

(

Srd,2, Srd,1
)

∠

(

Srd,3, Srd,2
)








(7.1)

Der erste Eingangskanal ist die RD-map, wohingegen als zweiter und dritter Eingangs-
kanal die Differenzen der Phasenspektren ∠

(

Srd,i, Srd,i-1
)

zwischen den benachbarten
Antennenpaaren ist.

7.2.2. Zielwerte
Für das Training des NNes zur Winkelschätzung müssen neben den Eingangsdaten
ebenfalls die Zielwerte bereitgestellt werden. Das NN wird dann so optimiert, dass es
versucht, diese Zielwerte aus den Eingangsdaten zu prädizieren.

Bei der Winkelschätzung ist der Einfallswinkel der Reflexionen zu schätzen, siehe
bspw. Abbildung 2.7. Um den Einfallswinkel als Zielwert automatisch aus den Daten
der Referenzsensorik zu ermitteln, interpretieren wir nun jedes Pixel im Kamerabild
als Reflexion. Mit Hilfe von Gleichung 5.20 lässt sich aus den Pixelpositionen und
Tiefeninformationen im Kamerakoordinatensystem eine 3D-Punktwolke bilden. Diese
Punktwolke wird nun in das Radarkoordinatensystem transformiert, um die Perspektive
des Radars nachzustellen, siehe Gleichung 3.33. Der Einfallswinkel in Azimutrichtung
wird nun aus der Position in Radarkoordinaten bestimmt zu

φlabel(p) = arctan




xR[y][p]
xR[x][p]



 . (7.2)

Ebenso kann der Einfallswinkel in Elevationsrichtung ermittelt werden. Als Nachweis
für die Funktionsfähigkeit des überwachten Trainings der in dieser Arbeit vorgestell-
ten Pipeline genügt uns die erste Winkelrichtung, so dass φlabel(p) die Zielwerte der
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Winkelschätzaufgabe ausmachen.

7.2.3. Netzwerkarchitektur
Als Netzwerk wurde ein CNN aufgebaut, welches die drei Eingangskanäle entgegennimmt
und dann sukzessive in den Netzwerkschichten verarbeitet. Die Dimension der Kanäle
wurde über die Netzwerkschichten konstant gehalten, jedoch die Anzahl der Kanäle in
den Zwischenschichten variiert. Als Schrittweite (engl.: „stride“) und Füllung (engl.:
„padding“) wurde der Einheitsschritt bzw. Gleichfüllung (engl.: „same“) verwendet.
In den Zwischenschichten wurden als Aktivierungen LeakyReLUs verwendet. In der
letzten Netzwerkschicht wurde eine Tangens-hyperbolicus-Aktivierungsfunktion mit
Skalierung auf den Zielwertebereich [–90, 90]◦ angewendet. Eine grafische Übersicht der
NN-Architektur ist in Abbildung 7.2 dargestellt.
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Abbildung 7.2.: CNN Struktur für Winkelschätzung: Die Übersicht der Schichten.
In jeder Schicht (convNin,Nout,K×K + F) werden Faltung der Nin Ein-
gangskanäle auf Nout Zielkanäle durchgeführt. Dabei werden K × K
Kernel verwendet. Abschließend die mit F spezifizierte Aktivierungs-
funktion angewendet.

Wir definieren die Übertragungsfunktion des NN zur Winkelprädiktion als

φpredict, RD-grid = φ-Net(Γ ). (7.3)

Das oben definierte Netzwerk zur Winkelprädiktion hat ausgehend von einem Pixel
aus der RD-map mit einer Größe von etwa 0.25 m × 0.25 m s–1 ein rezeptives Feld
von etwa 3.75 m × 3.75 m s–1. Bei der Faltung über die Eingangsdaten wird die NN
Prädiktion jedes Pixels also durch die in dem rezeptiven Feld definierte Nachbarschaft
an Pixeln beeinflusst. Um zu testen, ob diese Nachbarschaft einen positiven Einfluss auf
die Winkelprädiktion hat, wurde zum Vergleich das oben definierte Netzwerk ebenfalls
mit 1× 1 anstelle von 3× 3 Faltungskernen gebaut. Das rezeptive Feld des zweiten NNes
beschränkt sich dabei auf ein Pixel der Eingangsdaten, womit die Prädiktion unabhängig
von den Werten der Pixelnachbarschaft erfolgt, analog zu den klassischen Verfahren
aus Unterabschnitt 2.1.5. Um die Parameteranzahl beider NN-Architekturen identisch
zu halten, wird die Kanalzahl des 1 × 1 NN in den Zwischenschichten verdreifacht
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(Schichtmodifizierer: t = 3). Die in Abbildung 7.2 dargestellte Architektur entspricht
also dem 3× 3 NN. Das 1× 1 NN ist analog aufgebaut, jedoch mit anderer Kanalzahl.
Auf eine analoge Darstellung wird an dieser Stelle verzichtet. Eine Übersicht der NN
Architekturen ist in Tabelle 7.1 dargestellt.

Tabelle 7.1.: NN Architekturen für Winkelschätzung: Übersicht der Parameter
der Netzwerke.

Name Größe der Faltungskerne Schichtmodifizierer (t) Parameterzahl
NN (1x1) 1× 1 3 ≈ 195k
NN (3x3) 3× 3 1 ≈ 195k

7.2.4. Assoziation von Prädiktion und Label durch Warping

Da Prädiktion im RD-Gitter durchgeführt wurde, die Zielwerte jedoch im Format des
Kamerabildes vorliegen, werden die Prädiktionen für den Vergleich in das Kamerabild
projiziert

φpredict, cam(p) = ηBW

(

φpredict, RD-grid; vr(p), |xr(p)|
)

. (7.4)

Zur Projektion der Prädiktionen in das Kamerabild wurde die 2D-bilineare Interpo-
lation verwendet. Die 3D-trilineare Interpolation wurde nicht verwendet, weil eine
Winkelschätzung basierend auf den Phasendifferenzen der Antennenpaare gewollt war.

7.2.5. Messung der Abweichung

Durch die Projektion der Prädiktion liegen die Schätzwerte nun im Kamerabild vor
und können nun pixelweise direkt mit den Zielwerten verglichen werden. Als Metrik für
die Abweichung zum Zielwert wird die Charbonnier-Abweichung (siehe bspw. [Bar19])
bestimmt

lDOA(p) =
√

(φlabel(p) – φpredict, cam(p))2 + 10–6. (7.5)

Die Charbonnier-Abweichung ist eine differenzierbare Approximation der Betragsab-
weichung und bestraft Abweichung quasi linear. Sie wurde gewählt, da kein statistisches
Modell des Winkelfehlers vorhanden war, welches eine andere Wahl begründet hätte.

7.2.6. Selektion der Pixelmenge

Bedingt durch unterschiedliche FoVs von Kamera und Radar dürfen für die Optimierung
der Kosten aus Gleichung 7.5 nicht alle Pixel aus Kamera und RD-map verwendet
werden. Es gilt vorab zu entscheiden, welche Reflexionen in beiden Sensoren sichtbar
sind. Dafür wurde eine Selektion anhand von geometrischen Bedingungen aus den Daten
der Referenzsensorik durchgeführt. Daneben wird eine zusätzliche Selektion anhand des
SNRs aus der RD-map getestet. Motivation dafür ist, dass viele Pixel in der RD-map
Rauschpixel sind und das Training des NN stören können.
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7.2.6.1. Selektion anhand von Daten aus Referenzsensorik

Für die Optimierung der Kosten aus Gleichung 7.5 werden die Abweichungen für die
Pixel berücksichtigt, welche folgende Bedingungen erfüllen:

1. Keine Ego-Reflexion: Aufgrund der unterschiedlichen Einbauposition von Ka-
mera und Radar bildet die Kamera das Ego-Fahrzeug wesentlich deutlicher ab, als
es der Radarsensor tun würde. Es werden daher alle zum Ego-Fahrzeug gehören-
den Pixel aus der Optimierungsschleife entfernt. Praktisch wurde dazu manuell
eine stationäre Maske PEgo gezeichnet, welche diese Pixelmenge beinhaltet. Ein
Beispiel dieser Maske ist in Abbildung 7.3a zu sehen, wobei die dunkel gefärbten
Pixel den maskierten Pixeln entsprechen.

2. Sichtbar im Radar FoV: Das FoV von Kamera und Radar unterscheiden sich
deutlich, so dass ausschließlich Pixel in der Optimierung berücksichtigt werden,
welche potenziell im FoV des Radars liegen würden. Dazu wurden zunächst
die Azimut (vgl. Gleichung 7.2) und Elevationswinkel sowie die Entfernungen
sämtlicher Pixel im Radarkorrdinatensystem berechnet. Anschließend wurden die
Pixel maskiert, welche außerhalb der Radarkeule liegen. Die Antennenkeule wurde
hier mit einem Azimuth- und Elevationsöffnungswinkel von ±70◦ und ±10◦, die
maximale Reichweite mit 25 m parametriert. Diese Parameter ergeben sich aus der
Konfiguration des hier verwendeten Radarsensors. Ein Beispiel dieser Maske PFoV
ist in Abbildung 7.3b zu sehen, wobei die dunkel gefärbten Pixel den maskierten
Pixeln entsprechen.

3. Keine Ausreißer bei DBSCAN-Methode: Bei den Instanzenmasken im Ka-
merabild kommt es häufig vor, dass die Pixel der Tiefenschätzung Werte aus
dahinter liegenden Objekten beinhalten, bspw. die Instanzenmaske eines Fußgän-
gers beinhaltet fälschlicherweise ein paar Pixel des Gehwegs. Werden diese Pixel
in die RD-map projiziert, führt das zu einer Überschätzung der geometrischen
Ausdehnung. Die fehlerhaft segmentierten Pixel weisen möglicherweise auch eine
falsche Doppler-Schätzung auf, so dass diese Pixel an die falsche Doppler-Position
im RD-Gitter projiziert werden. Die Pixel der Instanzenmaske werden zusätzlich
mit der Tiefenschätzung durch den DBSCAN-Algorithmus segmentiert (engl.:
„geclustert“). Die Cluster mit der nicht maximalen Größe werden als Ausreißer be-
handelt und aus der Instanzenmaske entfernt. Ein Beispiel dieser Maske PDBSCAN
ist in Abbildung 7.3c zu sehen, wobei die dunkel gefärbten Pixel den maskierten
Pixeln entsprechen.
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(a) Ego Maske (b) FoV Maske (c) DBSCAN Maske (d) Gesamtmaske

Abbildung 7.3.: Masken zur Selektion der Pixel: Beispiele der Masken (gelb dar-
gestellt) zur Selektion der Pixelmenge der Optimierungsläufe. Spal-
tenweise: Die Pixelmaske zur Maskierung des Ego-Fahrzeuges, Pixel
außerhalb des Radar FoVs, DBSCAN Ausreißer und die kombinierte
Maske. Zeilenweise: Beispiele für beide Kameras.

Durch die Reduktion der Pixelmenge werden Pixel aus den Gesamtkosten entfernt,
welche den Trainingsprozess degradieren würden, da sie fehlerhafte Zielwerte aufweisen.
Ein Beispiel der sich ergebenen Gesamtmaske ist in Abbildung 7.3d zu sehen, wobei die
dunkel gefärbten Pixel den maskierten Pixeln entsprechen.

Wir führen die drei Masken zu einer Schnittmenge zusammen

Pall = PEgo ∩ PFoV ∩ PDBSCAN, (7.6)

als Menge aller Pixel, die bei der Optimierung berücksichtigt werden.

7.2.6.2. Pixelselektion anhand von SNR

Wir unterteilen die Pixelmenge in der RD-map in die zwei Klassen: Hintergrundrauschen
und Signalreflexion. Die erste Klasse soll alle Pixel beinhalten, bei denen der Rauschanteil
überwiegt. Bei der zweiten Klasse hingegen sollen Pixel beschrieben werden, bei denen
eine Reflexion aus der Umgebung wahrscheinlich ist bzw. bei denen der Signalanteil
überwiegt. Für deren Identifikation wird zunächst die Häufigkeitsverteilung des SNRs
aller Pixel im Trainingsdatensatz dargestellt, siehe rot gezeichnete Linie in Abbildung 7.4.
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Abbildung 7.4.: SNR Häufigkeitsverteilung: Die Probenverteilung des Trainingsda-
tensatzes ist rot gezeichnet dargestellt. Die identifizierten Mischanteile
des Rauschens und der Signalreflexion sind als grün und blau gezeich-
nete Polygonzüge dargestellt. Zusätzlich wurden die Mischanteile als
Gauß Wahrscheinlichkeitsdichtefunktion (WDF) (schwarz gestrichelt)
und Chi-Quadrat (pink gestrichelt) approximiert. Nach [EB6].

Analog zur oben beschriebenen Klassifizierung wird angenommen, dass es sich bei der
dargestellten Häufigkeitsverteilung um eine Mischverteilung aus Gauß- und Chi-Quadrat-
Verteilung handelt. Motiviert wurde die Annahme damit, dass sich Rauscheffekte gemäß
dem zentralen Grenzwertsatz über Gaußverteilungen [Dur19] der Form

P(x,µ,σ) = 1
√

(2πσ2)
exp

{

–(x – µ)2

2σ2

}

(7.7)

äußern. Radarreflexionen mit dominierender Reflexionsquelle lassen sich z.B. über ein
Swerling-Typ-3-Modell beschreiben [Mes06], welches eine Chi-Quadrat-Verteilung (vier
Freiheitsgrade) der Form aufweist

P(x,σavg.,µ) = 4(x – µ)
(σavg. – µ)2 exp

{

–2(x – µ)
(σavg. – µ)

}

. (7.8)

Zur Identifikation der Mischanteile wurde zunächst die Probenverteilung des Rauschens
identifiziert. Dazu wurde der Verlauf der gesamten Häufigkeitsverteilung linksseitig des
globalen Maximums nach rechts gespiegelt. Dabei wurde angenommen, dass das globale
Maximum dem Mittelwert der Gaußverteilung entspricht. Der resultierende Verlauf ist
in Abbildung 7.4 als grün gezeichneter Polygonzug dargestellt. Die Probenverteilung der
Reflexionssignale wurde identifiziert, indem die zuvor identifizierte Probenverteilung des
Rauschens von der gesamten Probenverteilung subtrahiert wurde. Die Probenverteilung
der Signalreflexionen ist in Abbildung 7.4 als blau gezeichneter Polygonzug dargestellt.

Zu erkennen ist, dass sich die grüne und die schwarz gestrichelte bzw. die blaue und die
pink gestrichelte Linien nahezu kongruent sind. Es ist also eine hohe Übereinstimmung
der eingepassten Verteilungsfunktionen mit den Mischanteilen und kein offensichtlicher
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Einwand gegen die oben gemachte Klassifikation zu beobachten.
Damit Rauschpixel bzw. Pixel aus dem linken Mischanteil den Trainingsprozess der

NNen nicht stören, werden diese aus der Trainingsmenge entfernt. Die Wahrscheinlichkeit,
entsprechende Pixel zu ziehen, beträgt bei 10dBSNR bereits weniger als 0.1%. Oberhalb
von 10dBSNR werden maßgeblich Pixel aus dem rechten Mischanteil beobachtet. Damit
definieren wir die weitere Pixelmenge

Ptrain := {p | p ∈ Pradar ∧RDC (p) > 10dBSNR}. (7.9)

Einhergehend wird untersucht, ob sich diese Selektion vorteilhaft auf die Qualität
der Winkelschätzung auswirkt. Dazu werden NNen nach den in Tabelle 7.2 gezeigten
Parametrierungen trainiert. Es werden also zwei Netwerkarchitekturen (1× 1 und 3× 3)
jeweils mit oder ohne diese Pixelselektion getestet.

Tabelle 7.2.: NN Architekturen und Konfigurationen mit Pixelselektion nach
Leistung.
Name Faltungskern (t) SNR Selektion
NN0 1× 1 -
NN1 1× 1 RDC > 10dB
NN4 3× 3 -
NN5 3× 3 RDC > 10dB

7.2.7. Gesamtkosten

Die Gesamtkosten ergeben sich als Mittelwert der Abweichungen über die Pixel zu

lDOA, all = 1
|Pall ∩ Ptrain|

∑

p∈Pall∩Ptrain

lDOA(p). (7.10)

Wie durch Tabelle 7.2 beschrieben, findet die Selektion der Pixelmenge anhand von
SNR nicht für alle Konfigurationen statt, so dass die Menge Ptrain in den Kosten
teilweise entfällt.

7.2.8. Initialisierung der Parameter

Die Initialisierung der Netzwerkparameter erfolgte für Schichten mit Sigmoid oder
Tangens-hyperbolicus-Aktivierungsfunktionen gemäß der Xavier-Methode [GB10]. Für
Schichten mit ReLU-Aktivierungsfunktion gemäß der Kaiming-Methode [HZRS15].

7.2.9. Optimierer

Zur Optimierung der Netzwerkparameter wurde ADAM [KB15] mit einer initialen
Schrittweite von 10–4 und „early stopping“ verwendet.
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7.2.10. Trainingsprozess
In jedem Trainingsschritt wird aus dem Trainingsdatensatz ein beliebiges Beispiel
gezogen. Die Ziehung von Frame und Kameraindex erfolgt aus Gleichverteilung. Dieses
Beispiel wird dem NN zugeführt, Inferenz ausgeführt, die Abweichung vom Zielwert
ermittelt und die Netzwerkparameter aktualisiert. Ein Training wurde jedoch nur
durchgeführt, wenn das Ego-Fahrzeug in Bewegung (vx = [0, 30]m s–1) war und stationäre
Ziele somit in Dopplerdimension besser voneinander getrennt sind. Der Verlauf der
Kosten im Trainingsprozess ist in Abbildung 7.5 dargestellt.
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Abbildung 7.5.: Verlauf des Trainingsprozesses der Winkelnetzwerke: Die Kosten
während des Trainings konvergieren bereits nach einigen Trainingsbei-
spielen.

Die Winkelnetzwerke wurden für eine Epoche trainiert. Es ist zu beobachten, dass
sämtliche NNe nach etwa 1000 Trainingsschritten den größten Teil der Optimierung
erfahren haben und augenscheinliche Konvergenz eingetreten ist. Dies entspricht etwa
einem Zwanzigstel der gesamten Trainingsmenge. Ursächlich für die schnelle Konvergenz
kann die Wahl der Schrittweite, aber auch die EfÏzienz der Annotation sein. Durch eine
noch kleinere Schrittweite des Optimierens könnte die Konvergenz verzögert und gegebe-
nenfalls eine bessere Inferenz ermöglicht werden. Als positives Merkmal der vorgestellten
automatischen Annotation wird deren EfÏzienz angesehen. Pro Frame werden etwa 3·105

Kamera-Pixel-Trainingsbeispiele bereitgestellt. Die 1000 Trainingsbeispiele entsprechen
bei kontinuierlicher Aufnahme mit 10 FPS einer Länge von weniger als 2 min Aufnahme
und bilden dementsprechend etwa 3 · 108 annotierten Eingangs-Ausgangsverknüpfungen
des NN dar.

Nach den in Tabelle 7.2 aufgeführten Parametern wurden unterschiedliche Kosten-
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funktionen für die NNen festgelegt, wodurch sich die unterschiedlichen Konvergenzwerte
in Abbildung 7.5 begründen lassen. Ein Vergleich der NN Schätzgenauigkeit kann basie-
rend auf diesen Trainingskosten nicht vorgenommen werden. Dieser Vergleich wird im
folgenden Abschnitt bei identischer Metrik durchgeführt.

7.2.11. Ergebnis
7.2.11.1. Referenzverfahren

Als Referenzverfahren für die Bewertung der Winkelschätzgenauigkeit aus dem NN wird
der PM Winkelschätzer (siehe Unterunterabschnitt 2.1.5.1) sowie der Bartlett BF (siehe
Unterunterabschnitt 2.1.5.2) aus der klassischen Radar-Signalverarbeitung verwendet.

7.2.11.2. Beschreibung der Metriken

In Abs. 2.1.5 wurden aus dem Modell einer einzelnen reflektierten EM-Welle und
der daraus resultierenden Phasendifferenz ∆Φ verschiedene Winkelschätzverfahren
abgeleitet. Dies ist stark vereinfacht und in der Praxis strahlen meist EM-Wellen
aus unterschiedlichen Winkelbereichen in den Radarsensor ein. Eine Trennung der
Wellen/Reflektoren entsprechend des Einfallswinkels ist nicht immer möglich. Sowohl
das hier vorgestellte NN zur Winkelschätzung als auch der PM-Winkelschätzer liefern
einen einzigen Winkelschätzwert pro Zelle im RD-Gitter (sog. „Punktschätzer“). Wird
dieser Schätzwert in das Kamerabild projiziert, so wird der einzelne Schätzwert, wie in
Abschnitt 6.5 beschrieben, mehreren Kamerapixeln in gleicher Weise zugeordnet. Daraus
ergibt sich, dass die projizierte Winkelschätzung gegen ein Ensemble an Zielwerten
der zugehörigen Kamerapixel verglichen werden muss. Die Streuung der Zielwerte
kann gering ausfallen, wenn es sich um Nachbarpixel im Kamerabild handelt. Sind
die Pixel im Kamerabild jedoch weiter gestreut, so können die Zielwerte über einige
Winkelgrad streuen. Als Beispiel beider Fälle sei auf Abbildung 6.7 verwiesen. Der erste
Fall wurde beim links parkenden Fahrzeug durch die rot markierte Zone hervorgehoben.
Der zweite Fall wird durch die weiteren, rot markierten, zur XZ Ebene (im Ego-KOOS)
spiegelsymmetrischen Zonen markiert.

Für den Fall, dass einer RD-Gitter-Zelle mehrere Kamerapixel zugeordnet werden,
kann basierend auf den Sensordaten nicht festgestellt werden, welches der Kamerapixel
bzw. welche Kombination zum Radarsignal geführt hat. Zur Veranschaulichung dieses
Dilemmas ist in Abbildung 7.6 ein fiktives Beispiel dargestellt. Im linken Drittel der
Abbildung sind zehn komplexe Vektoren (schwarz dargestellt) zu erkennen, welche
die sich komplex überlagernden Wellen unterschiedlicher Reflexionspunkte darstellen
sollen. Die Winkel der Vektoren gegenüber den Achskoordinaten sollen die einzelnen
Phasendifferenzen ∆Φ der Wellenanteile beschreiben. Die Länge der Vektoren die Am-
plitude der Wellenanteile. Durch die komplexe Summation der Vektoren ergibt sich ein
resultierender Vektor (rot dargestellt) mit entsprechend resultierenden Phasendifferenz
(grün eingezeichnet), welcher die Messung in der RD-Gitter-Zelle darstellt. Die Länge der
schwarzen Vektoren bestimmt somit die Wichtung der einzelnen Vektorwinkel auf den
Gesamtphasenwinkel. Aus den Daten der Referenzsensorik kann nun zwar der Einfalls-
winkel der Reflexionspunkte, nicht jedoch deren Amplitude gemessen werden. Im ersten
Bild wurde naiv angenommen, dass alle Reflexionspunkte die gleiche Wellenamplitude
aufweisen, und der resultierende Summenvektor eingezeichnet.
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Abbildung 7.6.: Winkelsynthese bei mehreren Reflektoren: Links: Zehn komplexe
Einzelvektoren (schwarz) gleicher Länge und unterschiedlichem Win-
kel gegenüber den Koordinatenachsen wurden zu einem resultierenden
Vektor (rot) addiert. Die vom Radar gemessene Phasendifferenz ∆Φ
ist in grün eingezeichnet. Mitte: Die Länge der Einzelvektoren wurde
einmalig aus einer Gleichverteilung gezogen bestimmt. Die Winkel der
Vektoren entsprechen denen der vorigen Vektoren. Der resultierende
Vektor variiert im Vergleich zum ersten Beispiel und somit auch die
Phasendifferenz. Rechts: Die Länge der Einzelvektoren wurde mehr-
mals gezogen und jeweils die resultierenden Vektoren eingetragen. Das
Ensemble der resultierenden Vektoren erstreckt sich über einen weiten
Winkelbereich, dargestellt über den blauen Kreissektor. Nicht einge-
zeichnet ist die entsprechende Streuung der Phasendifferenzen.

Um die unbekannten elektromagnetischen Reflexionseigenschaften beispielhaft zu si-
mulieren, wurde die Länge der Vektoren aus einer Verteilungsfunktion (Gleichverteilung)
gezogen (mittleres Drittel der Abbildung). Die Wichtung der einzelnen Vektoren fällt
damit unterschiedlich aus, und der resultierende Vektor hat einen leicht unterschiedlichen
Zielwinkel gegenüber der naiven Variante. Da die Länge der Vektoren unbekannt ist – die
elektromagnetischen Reflexionseigenschaften sind aus den Daten der Referenzsensorik
ja nicht bekannt –, kann der resultierende Vektor natürlich eine Vielzahl an möglichen
Richtungen annehmen. Im letzten Drittel der Abbildung sind deshalb eine Vielzahl
an möglichen resultierenden Vektoren dargestellt. Der kleinste Winkel des resultieren-
den Vektors ergibt sich aus dem kleinsten Winkel aller Einzelvektoren, nämlich dann,
wenn die Vektorlänge aller anderen Einzelvektoren gerade Null ist. Der größte Winkel
umgekehrt aus dem größten Winkel eines Einzelvektors.

Für die Evaluation bedeutet das, dass, wenn ein Winkelschätzer einen Einfallswinkel
schätzt, der im Intervall zwischen kleinstem und größtem Winkelwert der assoziierten
Kamerapixel liegt, der Schätzwert ohne weitere Kenntnis der elektromagnetischen
Reflexionseigenschaften damit durchaus valide ist und in einer Evaluationsmetrik nicht
als möglicher Fehler angezeigt werden darf. Zum Vergleich: Bei dem Training des NN
wurde aufgrund der zuvor genannten technischen Limitierung keine Gewichtung der
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Einfallsrichtungen in Gl. 7.10 vorgenommen und somit die naive Variante nachgebaut.
Um die Evaluationsmetrik mathematisch auszudrücken, definieren wir vorab die

Menge aller Kamerapixel, welche auf das gleiche Pixel pRD im RD-Gitter zeigen, als

PCam(pRD) :=
{

p
∣
∣
∣
∣p ∈ Pradar ∧ pr(p) = pRD

}

. (7.11)

Zur Erinnerung: Hier ist PCam die Menge aller Kamerapixel im Radar FoV, siehe
Gleichung 5.3. pr (p) = pRD schneidet diese Menge, indem nur Kamerapixel selektiert
werden, welche auf das Radarpixel pRD zeigen.

Nun definieren wir die Grenzen des Winkelintervalls zu

φlabel,min(pRD) = min
∀p∈PCam(pRD)

φlabel(p) (7.12)

und
φlabel,max(pRD) = max

∀p∈PCam(pRD)
φlabel(p). (7.13)

Liegt die Prädiktion nun außerhalb des möglichen Winkelintervalls, so wird die
Abweichung zu den Intervallgrenzen betragsmäßig festgehalten:

qDoA(pRD) =







|φpredict(pRD) – φlabel,min(pRD)| φpredict(pRD) < φlabel,min(pRD)
|φpredict(pRD) – φlabel,max(pRD)| φpredict(pRD) > φlabel,max(pRD)
0 sonst

(7.14)
und für alle Pixel pRD ∈ PRD des RD-maps gemittelt zu

QDoA =
∑

pRD∈PRD qDoA(pRD)
|PRD| . (7.15)

Die in Gleichung 7.15 dargestellte Metrik kann also als MAE mit optimaler2 Assozia-
tion von Kamera- und Radarpixel interpretiert werden.

Es sei zusätzlich bemerkt, dass hier nur ein einfacher Winkelschätzer trainiert wurde.
Für eine mögliche Anwendung mit Winkeltrennung über ein zu schätzendes Azimut-
spektrum kann die Metrik analog angewendet werden. Allerdings bleibt auch dabei ein
unterschiedliches Auflösungsvermögen von Referenzsensorsytsem und Radar bestehen,
so dass weiterhin keine bijektive Abbildung entsteht. Jedoch verbessert sich durch
Hinzunahme einer weiteren Dimension die Eindeutigkeit, so dass die Menge PCam(pRD)
kleiner ausfallen würde.

7.2.11.3. Quantitative Auswertung

Zur Veranschaulichung der Schätzqualität wurden die Metrik nach Gleichung 7.15 für alle
Winkelschätzer auf den Daten des Testdatensatzes ermittelt. Da die Schätzqualität in
der Regel stark vom SNR abhängig ist, wurden die Metriken über das SNR aufgetragen.
Die erreichten Werte der Winkelschätzer sind in Abbildung 7.7 dargestellt.

2Optimal in der Hinsicht der minimalen Winkelabweichung.
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Abbildung 7.7.: Qualitätsmaße der Winkelschätzer über SNR: Die mittlere abso-
lute Abweichung der Winkelschätzer über SNR. Vergrößert dargestellt
sind jeweils ein Bereich niedrigen SNRs, mittleren SNRs und hohen
SNRs.

In Abbildung 7.7 ist zu erkennen, dass der MAE bei allen Schätzern mit steigendem
SNR fällt. Dieses Verhalten ist plausibel, da bei steigendem SNR der Rauschanteil
gegenüber dem Signalanteil weniger stark ausgeprägt ist und entsprechend die Schätzung
weniger beeinflusst.

Da es bei der Menge an Winkelschätzern visuell schwierig ist, den Unterschied zwischen
den NNen nach Tabelle 7.2 ausfindig zu machen, wurden die Schätzer in Tabelle 7.3 an
drei SNR-Punkten entsprechend der erreichten MAE hierarchisch eingeordnet. Diese
gewählten drei SNR Punkte liegen äquidistant zueinander und repräsentieren niedriges,
mittleres und hohes SNR.

Tabelle 7.3.: Hierarchische Einordnung der Schätzer entsprechend erreichter
MAE.

M
A

E
→

SNR 5 dB SNR 20 dB SNR 35 dB
NN0 NN0 NN0
PM NN1 NN1
NN1 PM NN4
BF NN4 PM

NN5 NN5 NN5
NN4 BF BF

Aus der Tabelle lässt sich nun identifizieren, welche Parameter der NN-Konfiguration
einen Einfluss auf die Schätzgenauigkeit gehabt haben. Beginnend beim ersten Parameter,
der SNR-Selektion nach Unterunterabschnitt 7.2.6.2, welche bei den ungeraden NNen
aktiv war, muss also das MAE der NN-Paare NN0 vs. NN1 und NN4 vs. NN5 verglichen
werden. Bei SNR 20 dB und SNR 35 dB haben alle NNen mit aktivierter SNR-basierter
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Pixelselektion ein verbessertes MAE erreicht als ihre Partner. Bei SNR 5 dB ist dieses
Bild genau umgedreht, was daran zu begründen ist, dass die Pixelselektion keine Beispiele
unterhalb von 10 dB SNR für das Training bereitgestellt hat. Da aber auch hier die
NNen mit aktivierter Pixelselektion ähnliche MAE Werte erreicht haben, deutet dies
auf eine gute Generalisierung der Schätzer hin.

Nun werden die Unterschiede zwischen NNen mit 1 × 1 und 3 × 3 Filterkernen
verglichen. Gemäß Tabelle 7.2 sind dazu die NN-Paare NN0 vs. NN4 und NN1 vs. NN5
zu vergleichen. Aus Tabelle 7.3 ist ersichtlich, dass in allen SNR-Bereichen die NNen
mit 3 × 3 Filterkernen eine geringere MAE erreichen als die analogen 1 × 1 NNen.
Daraus wird gedeutet, dass das Einbeziehen der Pixelnachbarschaft im RD-Gitter einen
positiven Einfluss auf die Winkelschätzung hat.

Im Vergleich zu den klassischen Winkelschätzern erreichen die besten NNen, NN5 und
NN4, in Abbildung 7.7 bis etwa 10 dB SNR ein geringeres MAE, danach ein ähnliches
MAE. Es ist festzuhalten, dass es sich beim BF um ein Verfahren mit Winkeltrennfä-
higkeit handelt, wohingegen die NNen nur auf Punktschätzung des Winkels trainiert
wurden. Beim klassischen PM handelt es sich um einen vergleichbaren Punktschätzer,
welche allerdings in allen SNR-Regionen dem BF und den beiden NNen unterlegen ist.

Um eventuelle Winkelinhomogenitäten der Winkelschätzer aufzudecken, wurden in
Abbildung 7.8 die Metriken aller Schätzer gegenüber SNR und Einfallswinkel dargestellt.
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Abbildung 7.8.: 2D MAE Histogramme: Darstellung der Abhängigkeit von MAE
gegenüber von SNR und Einfallswinkel. Nach [EB6].
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Gut zu erkennen sind nun die Winkelbereiche, bei denen die Parameter der NN
einen merklichen Unterschied verursacht haben. So kann bei allen NNen mit aktivierter
Pixelselektion eine erhebliche Reduktion des MAEs an den äußeren Winkelbereichen
beobachtet werden. Man vergleiche dazu Abb. 7.8a vs. 7.8b und 7.8c vs. 7.8d.

Ebenfalls kann beobachtet werden, dass durch die Verwendung von 3 × 3 anstelle
von 1× 1 Filterkernen der CNNs eine weitere Verringerung der Winkelinhomogenität
erreicht werden konnte. Man vergleiche dazu Abb. 7.8a vs. 7.8c und 7.8b vs. 7.8d.

Im Vergleich zu den klassischen Verfahren (PM und BF) erreichen die besten NNen
(NN5 und NN4) im Allgemeinen ein geringeres MAE im Winkelintervall [–40◦, 40◦]. In
den Randbereichen des FoV erreichen die klassischen Winkelschätzer verringerte MAE.
Da es sich bei den NNen um überwachte Lernverfahren handelt, wäre es denkbar, dass
die NNen gelernt haben, diese Randbereiche aufgrund geringerer Auftretenswahrschein-
lichkeiten zu vernachlässigen. Weitere Anpassungen der Kostenfunktionen, um diese
Winkelinhomogenität der NN-basierten Schätzer auszugleichen, sind für die Zukunft
vorstellbar, werden im Zuge dieser Arbeit aber nicht weiter verfolgt.

7.2.11.4. Qualitative Auswertung

Um einen subjektiven Eindruck der Winkelschätzung zu bekommen, sind in Abbil-
dung 7.9 die Winkelschätzung von NN5 und PM dargestellt.

In der linken Spalte sind die Zielwerte des Winkels farblich kodiert über dem Kame-
rabild dargestellt. Die Farbkodierung des Winkels ist in der Farblegende am unteren
Rand der Abbildung zu entnehmen. In zweiter und dritter Spalte sind die Prädiktionen
von NN und PM basierter Schätzung ins Kamerabild projiziert. Die Farbhelligkeit
wurde entsprechend der Signalleistung in der RD-map skaliert, so dass Rauschbereiche
unterdrückt und Signalbereiche hervorgehoben werden. In vierter und fünfter Spalte
sind die Prädiktionen analog farblich codiert im RD-map eingetragen. In den letzten
beiden Spalten sind die Winkelschätzungen RD-map gegeben. Dabei wurde eine andere
Farbkodierung gewählt und die Helligkeit nicht entsprechend des SNRs skaliert.

Zu sehen ist, dass die Winkelschätzer die Zielwerte aus der Referenzsensorik meist
gut repräsentieren. Auffällig ist, dass bei der NN basierten Schätzung die Winkel von
benachbarten Zellen in der RD-map (rechten Spalten in Abbildung 7.9) erheblich glattere
Verläufe aufweisen als bei der PM basierten Schätzung. Daraus wird geschlossen, dass
das NN statistische Zusammenhänge zwischen den Winkeln benachbarten Zellen im
RD-map gelernt hat.

7.2.11.5. Laufzeitanalyse

Bisher wurden die Winkelschätzer nur anhand ihrer Schätzgenauigkeit verglichen. Wir
werden den Vergleich nun mit einer Analyse der Laufzeitkomplexitäten3 abschließen.
Dazu wird die Anzahl der Fließkommaoperationen ermittelt.

Für den PM-Schätzer ergibt sich die Anzahl Fließkommaoperationen aus den einzelnen
Termen in Gleichung 2.47. Mit der Anzahl der Antennenpaaren M ergibt sich so eine
Operationszahl der Einzelterme wie in Tab 7.4 gelisteten.

3Hierbei wird in der Informatik die Anzahl der Rechenschritte zur Lösung eines Problems verstanden
[Wik23]
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Zielwerte:
Prädiktionen
(3× 3) NN:
(warped)

Prädiktionen
PM:

(warped)

Prädiktionen
(3× 3) NN:

Prädiktionen
PM:

Prädiktionen
(3× 3) NN:

Prädiktionen
PM:

Azimutwinkel in Grad Azimutwinkel in Grad

–90◦ 90◦0◦ –90◦ 90◦0◦

Abbildung 7.9.: Qualitative Ergebnisse der DoA-Schätzung auf Testdaten. Von
links nach rechts: Referenz-Azimutwinkel, prädizierter Azimutwinkel
(Helligkeit entspricht der vom Radar empfangenen Leistung) ind Ka-
merabild und RD-map. Prädizierter Winkel in Graustufen (Farbe ent-
spricht dem Azimutwinkel). In den Kamerabildern wurden nur Pixel
im Radar-FoV visualisiert. Während des Netzwerktrainings werden die
Pixelwerte der gewarpten Prädiktion mit denen der Referenz verglichen
und die Prädiktion entsprechend trainiert. Nach [EB6].

Tabelle 7.4.: Anzahl der Operation für PM Verfahren:
Mathematische Operation Anzahl der Operationen
A 3M
B 4M
B+ = BT B M + (M – 1)
A+ = BT A M + (M – 1)
()–1 1
B+A+ 1
arcsin() 1

Mit der Anzahl der Pixel in der RD-map N ergibt sich die Summe der Operationen
zu N ∗ ((3M ) + (4M ) + (M + (M – 1)) + (M + (M – 1)) + 1 + 1 + 1) bzw. hier zu
128 ∗ 96 ∗ ((3 ∗ 2) + (4 ∗ 2) + (2 + (2 – 1)) + (2 + (2 – 1)) + 1 + 1 + 1) = 282624.

Für den Beamformer ergibt sich die Anzahl der Operationen aus der Anzahl der
Pixel in der RD-map und der Anzahl der Operationen der Fast-Fourier-Transformation
(FFT)-Engine. Wir verwenden hier beispielhaft die „split-radix“ Methode [JF07], dessen
Operationszahl mit 4L log2(L) – 6L + 8 skaliert. Bei einer gewählten FFT-Länge von
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L = 64 ergibt sich die Anzahl der Operationen zu N ∗ 1160 = 128 ∗ 96 ∗ 1160 = 14254080.
Die Fließkommaoperationen in den NNen wurden mit Hilfe einer automatischen

Operationszählung [eLa21] ermittelt und zur besseren Übersicht in Tabelle 7.5 dargestellt.

Tabelle 7.5.: Anzahl der Operation für DoA Verfahren:
Algorithmus Anzahl der Operationen geschätzte Laufzeit bei 300 MHz
PM 282624 0.94 ms
BF 14254080 47.5 ms
NN 4785438700 16 s

Bei Verwendung einer CPU mit einer Taktfrequenz von 300 MHz wurden grob geschätz-
te Laufzeiten ermittelt (Anzahl der Operationen / Taktfrequenz) und in Tabelle 7.5
eingetragen. Diese Laufzeitabschätzung vernachlässigt von der Implementierung und
Architektur abhängige Details, wie z.B. zusätzlichen Operationsaufwand durch Spei-
cheraufwand oder Parallelisierung. Unter Annahme, dass die geforderte Framerate des
Radarsensors 20 FPS ist, würde sich das hier dargestellte NN aufgrund der deutlich zu
langen Inferenzdauer disqualifizieren. Die verbesserte Genauigkeit der Winkelschätzung
durch BF oder NN gegenüber PM wurde durch eine erheblich gesteigerte Rechenkom-
plexität erkauft. Für die Inferenz auf einem Radarsensor mit typischer Prozessoraus-
stattung sollte die Architektur des NN deutlich vereinfacht werden. Ebenfalls würde
sich eine NN-Implementierung mit Ganzzahl-Datentypen (Integer) im Vergleich zur
Fließkommazahl-Datentypen (Float) anbieten. Dadurch würde sicherlich die Inferenz
beschleunigt, aber insbesondere auch der Speicherbedarf reduziert.

Da der Datenbedarf für das Training eines NN im Allgemeinen mit der Größe des NN
steigt, wurde absichtlich eine NN-Architektur gewählt, die dementsprechend schwieriger
zu trainieren ist und die hohe Laufzeit des NN somit absichtlich in Kauf genommen. Da
die hier verwendeten NNen während des Trainings schnell konvergiert sind, gibt es aus
Sicht des Autors wenig Zweifel am Erfolg eines Trainingsprozesses kleinerer NNen mit
ausreichend schneller Inferenz für typische Radarsensoren. Ein Laufzeitvorteil durch die
Verwendung von NNen gegenüber klassischen Winkelschätzern bzw. Winkeltrennverfah-
ren wurde bereits in [GFFW18,FWG19b,FWG19a] beschrieben und ist deshalb kein
weiterer Bestandteil dieser Arbeit.

7.2.11.6. Weitere Analyse

Zusätzlich wurde in A.1 eine Untersuchung zur Reduktion des Einflusses von Labelnoise
auf das NN-Training durchgeführt. Die darin vorgeschlagene Methode führte jedoch
nicht zu gewünschtem Ergebnis und ist deshalb nicht in dem Hauptteil dieser Arbeit
dokumentiert.

7.3. Zieldetektion
In diesem Abschnitt wird ein mögliches Vorgehen zum überwachten Training eines
Zieldetektors mittels NN vorgestellt. Bei der Winkelschätzaufgabe kann über die 3D-
Position der Pixel der Zielwert des Einfallswinkels und somit das Label bestimmt
werden. Da Referenzsensorik und Radarsensor auf unterschiedlichen EM-Wellenlängen
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operieren, unterscheidet sich deren Sensitivität gegenüber der Sensorumgebung. Für
die Aufgabe der Zieldetektion kann deshalb kein nativer Zielwert aus den Daten der
Referenzsensorik verwendet werden. In diesem Abschnitt werden stattdessen die Zielwerte
für die Zieldetektionsaufgabe automatisch aus den Daten der Referenzsensorik geschätzt
und anschließend ein NN zur Prädiktion dieser Zielwerte auf den Radardaten trainiert.

7.3.1. Eingangsdaten

Analog zur klassischen CFAR-Methode soll auch das NN exklusiv auf dem Leistungsspek-
trum bzw. RD-map arbeiten. Als einziger Eingangskanal des NNs wird dementsprechend
die RD-map bereitgestellt. Wir definieren die Eingangsdaten des NNs als

ΓTD = RD. (7.16)

7.3.2. Zielwerte

Für die Winkelschätzung wurde ausschließlich der Einfallswinkel der Reflexionen be-
trachtet, welcher sich aus der geometrischen Position eines Punktes in der Umgebung
ergibt. Mit Kenntnis dieser Position konnte der Zielwert für den Winkelschätzer mit der
nativen Messfähigkeit4 der Referenzsensorik nachgestellt werden. Bei den Zielwerten
für die Zieldetektion ist dies nicht so einfach möglich. Ursächlich dafür ist, dass sich
EM-Reflexionseigenschaften bzw. die Streuung mit der Wellenlänge ganz wesentlich
ändern können. Man vergleiche dazu die relativen Reflexionsamplituden nach Fresnel
in Gleichung 2.4, in denen die relativen Reflexionsamplituden im Wesentlichen vom
Aspektwinkel und den Brechungsindices der Materialien abhängen. Die Brechungsin-
dices sind eine Funktion der Wellenlänge und können somit die Reflexionsantwort der
Sensoren beeinflussen. Für die Aufgabe der Zieldetektion bedeutet das, dass der Radar
(ca. 3.54 mm Wellenlänge) nicht automatisch alle Punkte sehen kann, welche z.B. der
Lidar sieht (ca. 905 nm Wellenlänge). Folglich wurden mögliche Ziele aus den Daten der
Referenzsensorik heuristisch geschätzt.

7.3.2.1. Einflussparameter der Reflexionsamplitude

In Unterabschnitt 2.1.1 wurde bereits beschrieben, wie sich relative Reflexionsampli-
tuden von EM-Wellen nach physikalischer Optik an Grenzflächen verhalten. Für die
Zieldetektion mittels NN muss nun festgelegt werden, (a) wo diese Grenzflächen in der
Szene positioniert sind und (b) welche Eigenschaften die Grenzflächen aufweisen müssen,
um für den Radar überhaupt wahrnehmbar zu sein.

In der Literatur wird häufig zwischen Spiegelreflektoren und diffusen Reflektoren
unterschieden, siehe z.B. [Jud88]. Bei Spiegelreflektoren ergeben sich ausschließlich
Transmission in das Material und Reflexion nach Fresnel, wobei der Ausfallswinkel der
Welle dem Einfallswinkel gespiegelt an der Oberflächennormalen entspricht. Weisen die
Grenzflächen geometrische Imperfektionen (raue Oberfläche) auf, wird das eintreffende
Signalbündel in viele Richtungen gestreut. Man spricht von der diffusen Reflexion.
Das Rayleigh-Kriterium [Woo06] beschreibt den Zusammenhang von Transmission
und Reflexion an rauen Oberflächen in Abhängigkeit von der Wellenlänge. Es wird

4Der Lidar misst bereits die Position.
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beschrieben, dass Material bei kürzerer Wellenlänge eher als diffus wahrgenommen wird.
Verlängert sich die Wellenlänge, so verringert sich die Signalstreuung und es kommt eher
zur spiegelnden Reflexion. Eine diffuse Reflexion sorgt dafür, dass ein Objekt nahezu
unabhängig vom Betrachtungswinkel wahrgenommen werden kann. Demnach sorgt die
deutlich kürzere Wellenlänge der Referenzsensorik (Lidar 905 nm) dafür, dass Grenzflä-
chen eher diffus wahrgenommen werden und dementsprechend nahezu unabhängig vom
Einfallswinkel wahrgenommen werden können, als es für den Radar mit der größeren
Wellenlänge (ca. 3.54 mm) der Fall ist. Nur unter Berücksichtigung der Wellenlänge sollte
die Referenzsensorik also in der Lage sein, alle Grenzflächen im Szenario wahrzunehmen,
welche auch beim Radarsensor zu einer möglichen Signalreflexion zum Sensor führen
würden.

Motiviert durch Gleichung 2.4 wird der Aspektwinkel als eine bedeutsame Größe
der Reflexionsamplitude interpretiert. Zwar wird die Reflexionsamplitude auch durch
verbleibende Terme in Gleichung 2.4 beeinflusst, welche die Materialeigenschaften der
Medien beschreiben. Im Folgenden werden wir jedoch eine automatische Annotation der
Zielwerte für die Zieldetektion ausschließlich anhand des Aspektwinkels untersuchen.
Begründet wird diese Simplifikation damit, dass der Aspektwinkel sich relativ einfach
aus den Daten der Referenzsensorik ermitteln lässt. Eine Schätzung der (frequenzabhän-
gigen) Materialeigenschaften aus den Daten der Referenzsensorik ist vermutlich deutlich
aufwendiger und wird daher für mögliche weiterführende Untersuchungen zurückgestellt.
Es sei noch einmal erwähnt, dass der Aspektwinkel in Gleichung 2.4 als Multiplikator
eingebettet ist und damit für alle Materialeigenschaften einen erheblichen Einfluss auf
die Reflexionsamplitude hat. Diese Eigenschaft wird z.B. auch in [Mes06,YLZL06] durch
Simulation und Messung bestätigt.

7.3.2.2. Schätzung des Aspektwinkels

Zur Bestimmung des Aspektwinkels an den Grenzflächen wurden in Abschnitt 4.2 be-
reits die Oberflächennormalen nC = N bestimmt. Da für den Radar der Aspektwinkel,
bezogen auf das Radarkoordinatensystem, relevant ist, werden die Oberflächennorma-
len, gegeben im Kamerakoordinatensystem, zunächst in das Radarkoordinatensystem
transformiert. Der Ursprung des Normalenvektors entspricht gerade Koordinaten im
Kamerakoordinatensystem xC und ist nach Gleichung 3.22 für jedes Kamerapixel zu
bestimmen. Die Normalenvektoren stellen Richtungsvektoren dar. Wir definieren deren
Start- und Endpunkt als xC ,n,start = xC und xC ,n,end = xC +nC . Wie in Gleichung 3.33
beschrieben, werden diese beiden Punkte in das Radarkoordinatensystem transformiert
und bilden so den Start- und Endpunkt (xR,n,start bzw. xR,n,end) des Richtungsvektors
in Radarkoordinaten ab,

xR,n,start = R(C RxC ,n,start + R(C t (7.17)

und
xR,n,end = R(C RxC ,n,end + R(C t. (7.18)

Der Ortsvektor der Oberflächennormalen ergibt sich nun wiederum als Differenz
xR = xR,n,end – xR,n,start = R(C Rnc. Damit kann der Aspektwinkel aus der Oberflä-
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chennormalen xr und dem Einfallsvektor xR,n,start berechnet werden, zu

∠

(

xR,n,start, nR
)

= cos–1
(

xR,n,start · nR
‖xR,n,start‖‖nR(p)‖

)

. (7.19)

7.3.2.3. Statistische Untersuchung zum Aspektwinkel

Da in Gleichung 2.4 die Winkelterme ausschließlich über die Cosinus-Funktion skaliert
werden, werden wir nachfolgend den Term cos

(

∠

(

xr ,n,start, nr
))

mit dem Synonym
„Aspektwinkelwert“ verwenden. Dieser Wert und die in das Kamerabild projizierte Leis-
tung/SNR aus Radar sind zur Veranschaulichung in Abbildung 7.10 für ein Kameraframe
dargestellt.

–20 0 20 40

SNR in dB →

0 0.2 0.4 0.6 0.8 1

Aspektwinkelwert →

Abbildung 7.10.: SNR vs. Aspektwinkel: Links: Projiziertes SNR im Kamerabild.
Rechts: Aspektwinkelwert im Kamerbild.

Zu erkennen ist in Abbildung 7.10, dass im Bereich der Gebäudewand, im linken
Bildbereich, ein hoher Aspektwinkelwert geschätzt wurde. An gleicher Stelle ist das
projizierte SNR aus der RD-map ebenfalls hoch. Ebenso ähnlich verhalten sich die
Abbildungen von SNR und Aspektwinkelwert im Bereich des parkenden Fahrzeuges,
des Fußgängers und größtenteils auch im Bereich der Straße. Die Straße verlief nahezu
glatt und wies keine erkennbaren Oberflächenfehler auf. In weiten Teilen der Straße ist
der geschätzte Aspektwinkelwert plausibel, da er als niedrig und homogen geschätzt
wurde. Im Bereich des Ego-Fahrzeuges ist der geschätzte Aspektwinkelwert der Fahrbahn
inhomogen und von hoher Varianz. Das ist unplausibel und lässt sich technisch durch die
im Bereich des Ego-Fahrzeuges spärlichere Tiefenabtastung begründen, welche zu einem
höheren Fehler der dichten Tiefenmaske führt, vgl. Abbildung 4.1. Eine Verbesserung
der dichten Tiefenmaske und damit einhergehend der Aspektwinkelmaske wäre für
die Zukunft wünschenswert, ist aber kein Bestandteil dieser Arbeit. Basierend auf
diesem Bild lässt sich ein statistischer Zusammenhang zwischen Aspektwinkelmaske
und SNR-Maske durchaus erahnen. Um diese subjektiv wahrgenommene Abhängigkeit
anhand einer größeren Datenbasis zu festigen, wurde die Korrelation als Maß der
(linearen) Abhängigkeit zwischen den Aspektwinkelwerten und den projizierten SNR-
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Werten über den Pearson’s KorrelationskoefÏzient [FPP07] berechnet. Dabei ergab sich
ein KorrelationskoefÏzient von 0.5, was als moderate lineare Abhängigkeit gedeutet
werden kann. Die Verteilung der Datenpunkte ist in Abbildung 7.11 in Form eines
2D-Histogramms dargestellt. Der Farbwert entspricht der Kombinationshäufigkeit und
ist der dargestellten Farblegende zu entnehmen. Da die meisten Kombinationen im
Bereich des Hintergundrauschens, gekennzeichnet durch niedriges SNR, entstanden
sind, wurde die Helligkeit logarithmisch skaliert, so dass andere Bereiche visuell noch
wahrnehmbar bleiben.
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Abbildung 7.11.: Häufigkeitsverteilung von SNR vs. Aspektwinkelwert: Die
Häufigkeiten sind logarithmisch skaliert.

Wie oben bereits erwähnt, ist eine große Häufung von Kombinationen im Bereich
um SNR 0 dB zu erkennen, welche sich vermutlich aus dem Hintergundrauschen in
der RD-map ergibt. Dann ist im oberen rechten Bereich eine Ansammlung von Pixeln
mit hohem SNR und Aspektwinkel zu erkennen. Diese ersten beiden Ansammlungen
stimmen dem hier zugrunde gelegten Modell für die automatische Bestimmung von
Zielwerten über Aspektwinkelwerte zu. Dann ergeben sich noch Ansammlungen von
Bereichen, bei denen

• das SNR hoch ist und der Aspektwinkelwert gering (hervorgehoben durch pinkfar-
biges Rechteck)

• oder das SNR gering und der Aspektwinkelwert hoch ist (hervorgehoben durch
orangefarbiges Rechteck).

Die entsprechenden Bereiche wurden in Abbildung 7.11 durch farbige Rechtecke ge-
kennzeichnet. Für die Ursachenforschung dieser Anomalien wurden die RD-Zellen zu
den Kombinationen entsprechend farblich kodiert im Kamerabild gekennzeichnet. Ein
repräsentatives Beispiel ist in Abbildung 7.12 zu sehen, weitere Beispiele in Anh. A.2.
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Abbildung 7.12.: Gegenüberstellung von Aspektwinkel und SNR: Links: Proji-
ziertes SNR; Mitte: Aspektwinkelwert; Rechts: Projiziertes SNR und
farblich markiert (pink, orange) Abweichungen von der Modellbeschrei-
bung.

In Abbildung 7.12 ist links sowie rechts das projizierte SNR im Kamerabild und
mittig der Aspektwinkelwert im Kamerabild gezeichnet. Zusätzlich sind im rechten Bild
die oben genannten Anomalien markiert. Zu beobachten ist, dass die orange markierten
Bereiche hauptsächlich dort zu finden sind, in denen der Aspektwinkel unplausibel ist.
Dies kann leicht durch die hier verwendete Methode zur Tiefenvervollständigung und
Oberflächennormalenschätzung hervorgerufen werden. Bessere Methoden zur Oberflä-
chennormalenschätzung würden hier wahrscheinlich Abhilfe schaffen, sind jedoch nicht
Bestandteil dieser Untersuchung und werden daher nicht getestet. Die pink markier-
ten Bereiche sind in der Regel benachbart zu Bereichen mit hohem SNR und hohem
Aspektwinkelwert. In der RD-map sind diese Pixel Nachbarzellen zum lokalen Maxi-
mum, welchem bedingt durch z.B. begrenzte Abtastung und Fensterung ebenfalls ein
hoher Leistungswert zugeordnet wurde, der deutlich über dem Rauschlevel liegt. Es
kann vermutet werden, dass diese Nachbarzellen zu den pink markierten Bereichen in
Abbildung 7.12 führen. Es wird festgehalten, dass die Anomalien in der Statistik häufig
durch fehlerhaft geschätzte Aspektwinkelwerte und ausgedehnte Leistungssignaturen im
RD-map hervorgerufen werden.

Für die automatische Ermittlung der Zielwerte werden Kamerapixel mit einem Aspekt-
winkelwert ≥ 0.7 als positives Ziel und Pixel mit einem Wert < 0.7 als negatives Beispiel
gewählt. Dieser Schwellwert ergab sich nach Sicht der stochastischen Verteilung aus
Abbildung 7.11 als subjektiv plausibel. Die Zielmaske ergibt sich somit zu

ΩGT(p) =







1 | cos
(

∠

(

xr ,n,start(p), nr(p)
))

| ≥ 0.7
0 sonst

(7.20)

Dieses Modell zur automatischen Identifikation von signifikanten Reflexionen/Grenzflä-
chen, basierend auf Daten der Referenzsensorik, berücksichtigt nur den Aspektwinkelwert.
Ein statistischer Zusammenhang zwischen Aspektwinkelwert und Reflexionsleistung
wurde theoretisch durch die Fresnelschen Gleichungen motiviert und durch reale Mes-
sungen hier wahrgenommen. Weitere Merkmale, wie z.B. geschätzte Materialeigenschaft,
wurden in dieser Arbeit zur Zielwertschätzung nicht berücksichtigt, können aus Sicht
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7.3. Zieldetektion

des Autors aber relevante und interessante weitere wissenschaftliche Fragestellungen
ergeben.

7.3.3. Netzwerkarchitektur

Für die Zieldetektion wurde die Netzwerkarchitektur aus der Winkelschätzung, siehe
Unterabschnitt 7.2.3, leicht adaptiert. Änderungen sind, dass nur ein Eingangskanal
vorhanden ist, siehe Unterabschnitt 7.3.1, und in der letzten Schicht die Sigmoid-
Aktivierungsfunktion verwendet wurde. Die Änderung der Aktivierungsfunktion wurde
vorgenommen, damit die Prädiktion der Zielwerte im Intervall [0, 1] geschätzt wird. Eine
visuelle Übersicht der Netzwerkarchitektur ist in Abbildung 7.13 dargestellt.
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Abbildung 7.13.: CNN Struktur für Zieldetektion: Die Übersicht der Schichten.

Wir definieren die Übertragungsfunktion des NN zur Zieldetektion als

TDpredict, RD-grid = TD-Net(ΓTD). (7.21)

7.3.4. Assoziation von Prädiktion und Label durch Warping

Da auch bei der Zieldetektion die Zielwerte im Kamerabild definiert wurden, wird
analog zur Winkelschätzung aus Unterabschnitt 7.2.4 das Warping der Prädiktionen
vom RD-Gitter in das Kamerabild durchgeführt

TDpredict, cam(p) = ηBW

(

TDpredict, RD-grid; vr(p), |xr(p)|
)

. (7.22)

Da die Zieldetektion auf dem zweidimensionalen RD-map durchgeführt werden sollte,
wurde die 2D-Interpolation verwendet.

7.3.5. Messung der Abweichung

Die Zieldetektion wird als binärer Entscheider abgebildet. Es wird entschieden, ob
es sich bei einem Pixel in der RD-map entweder um ein Ziel oder Rauschen handelt.
Es handelt sich also um eine sogenannte „Multiclass-Classification“. Nach Wahl der
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7. Evaluation

Sigmoid-Aktivierungsfunktion der letzten Netzwerkschicht wird hier der gängigen Praxis
gefolgt und die Kreuzentropie als Maß für die Abweichung der Prädiktion verwendet.

lTD(p) = –ΩGT(p) log
(

TDpredict, cam(p)
)

–
(
1 – ΩGT(p)

)
log
(

1 – TDpredict, cam(p)
)

(7.23)

7.3.6. Allgemeine Selektion der Pixelmenge
Die Auswahl der Pixelmenge für die Optimierung wurde entsprechend Unterunterab-
schnitt 7.2.6.1 übernommen.

7.3.7. Gesamtkosten
Die Gesamtkosten ergeben sich als Mittelwert der Abweichungen über alle Skalierungs-
ebenen und Pixel.

lTD, all = 1
|Pall|

∑

p∈Pall

lTD(p). (7.24)

7.3.8. Initialisierung der Parameter
Die Initialisierung der Netzwerkparameter erfolgte analog der Beschreibung aus Unter-
abschnitt 7.2.8.

7.3.9. Optimierer
Die Optimierung der Netzwerkparameter erfolgte analog der Beschreibung aus Unterab-
schnitt 7.2.9.

Da der Trainingsprozess bei der Winkelprädiktion bereits nach wenigen Trainings-
schritten konvergierte, wurde bei der Zieldetektion die initiale Schrittweite für die
Optimierungen von 10–4 auf 10–5 reduziert.

7.3.10. Trainingsprozess
Der Verlauf der Kosten während des Trainings ist in Abbildung 7.14 dargestellt.

Es ist zu beobachten, dass das NN nach etwa 10000 Trainingsschritten größtenteils
konvergiert ist und keine signifikante Änderung im Verlauf der Trainingskosten zu
beobachten ist.

7.3.11. Ergebnis
Nach dem Training des NN wird nun die Schätzqualität ermittelt und gegenüber einem
Referenzverfahren bewertet.

7.3.11.1. Referenzverfahren

Als Referenzverfahren für die Bewertung der Zieldetektion aus dem NN wird ein CFAR-
Zieldetektor (siehe Unterabschnitt 2.1.4) aus der klassischen Radarsignalverarbeitung
verwendet.
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Abbildung 7.14.: Verlauf des Trainingsprozesses Zieldetektor Netzwerk: Die
Kosten während des Trainings konvergieren bereits nach einigen Trai-
ningsbeispielen. Grün: Trainingskosten je Beispiel. Blau: Geglätteter
Verlauf der Trainingskosten

7.3.11.2. Beschreibung der Metriken

Für die automatische Berechnung der Prädiktionsgenauigkeit der Zieldetektion definieren
wir eine passende Metrik. Dafür müssen sowohl Zielwerte als auch Prädiktoren als binäre
Klassifikationen dargestellt sein. Durch Verwendung der Sigmoid-Aktivierungsfunktion
erfolgt die Prädiktion jedoch im Intervall [0, 1]. Zur Binärisierung definieren wir eine
Netwerkausgabe ≥ 0.5 als Prädiktion eines Ziels und entsprechend < 0.5 als Prädiktion
von Rauschen. Es ergeben sich vier mögliche Fälle beim Vergleich von Zielwert ΩGT(p)
und Prädiktion TDpredict, cam(p):

• Richtig-positiv: T P =
{

p ∈ Pall

∣
∣
∣
∣ΩGT(p) = 1, TDpredict, cam(p) ≥ 0.5

}

• Falsch-negativ: FN =
{

p ∈ Pall

∣
∣
∣
∣ΩGT(p) = 1, TDpredict, cam(p) < 0.5

}

• Falsch-positiv: FP =
{

p ∈ Pall

∣
∣
∣
∣ΩGT(p) = 0, TDpredict, cam(p) ≥ 0.5

}

• Richtig-negativ: T N =
{

p ∈ Pall

∣
∣
∣
∣ΩGT(p) = 0, TDpredict, cam(p) < 0.5

}

.

Bei der Fallunterscheidung werden ausschließlich Kamerapixel aus Pall, siehe Unter-
unterabschnitt 7.2.6.1, berücksichtigt.

Zusätzlich definieren wir die Menge aller richtigen Klassifikationen zu CC = T P ∪ T N .
Mit Hilfe dieser Mengendefinition berechnen wir die Klassifikationsgenauigkeit als die
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Summe aller richtigen Entscheidungen, normiert über die Summe aller Entscheidungen
zu

Accuracy = |CC|
|Pall|

. (7.25)

7.3.11.3. Quantitative Auswertung

Bei der Winkelschätzung ergeben sich die Zielwerte durch die native Auflösung der
Referenzsensorik, insbesondere jener Winkelauflösung der Kamera. Für die Anwendung
der Zieldetektion wurden die Zielwerte über die Modellbeschreibung des Aspektwin-
kels geschätzt. Dabei hat sich in Unterabschnitt 7.3.2 gezeigt, dass diese automatisch
ermittelten Zielwerte, maßgeblich bedingt durch Fehler in der Apsketwinkelschätzung,
teilweise unplausibel erscheinen. Beispielsweise ergaben sich hohe Aspektwinkelwerte auf
geraden Flächen, siehe Abbildung 7.12. Es ist zu erwarten, dass diese Unplausibilität der
Zielwerte sich als Rauschen in den Datenpunkten für Gleichung 7.25 bemerkbar machen
und einen Vergleich der beiden Verfahren zur Zieldetektion erschweren wird. Dieses
„Label noise“5 wurde bereits in Unterabschnitt 7.3.2 deutlich und könnte in Zukunft
durch den Einsatz einer verbesserten Aspektwinkelschätzung in der Signalverarbeitung
der Referenzsensorik verbessert werden. Wir wollen uns daher primär der Fragestel-
lung widmen, ob überhaupt ein zielführendes Training einer Zieldetektion mittels der
Zielwertdefinition über Aspektwinkel erreicht werden kann.

Die in Gleichung 7.25 definierte Metrik wurde für sämtliche Frames im Testdatensatz
berechnet. Eine Übersicht der Datenpunkte ist in Abbildung 7.15 dargestellt.

Für jedes Kamerabild, bestehend aus einer großen Menge an Pixeln, wurde die
mittlere Abweichung von Prädiktion und Zielwert nach Gleichung 7.25 ermittelt. Durch
die Mittlung über die Pixelmenge ergibt sich pro Kamerabild eine Genauigkeit zwischen
0% und 100%, welche als Datenpunkt in die linke Seite von Abbildung 7.15 eingetragen
wurde. Für den CFAR Detektor wurden diese Punkte rot dargestellt, für die NN
basierte Prädiktion grün. Die Bildpunkte wurden auf der rechten Bildseite in Form
eines Histogramms gesammelt. In dem Histogramm ist zu sehen, dass die NN basierte
Prädiktion (grün) tendenziell eine höhere Klassifikationsgenauigkeit erreicht als der
CFAR Detektor. Dies ist nicht verwunderlich, da die NN-basierte Prädiktion explizit auf
den vorhandenen Daten (Trainingsdatensatz) optimiert wurde. Gleichzeitig fällt auf, dass
die Streuung der Genauigkeit im Histogramm sehr stark ist, besonders bei der CFAR-
Prädiktion über den gesamten Wertebereich erfolgt. Es ist denkbar, dass ein Teil der
Streuung durch das in Unterunterabschnitt 7.3.2.3 beschriebene „label-noise“ verursacht
wurde.

Aufgrund der starken Streuung fällt es schwer, einen klaren Favoriten bei der Ziel-
detektion hervorzuheben. Die wesentliche wissenschaftliche Fragestellung für diesen
Versuch war aber ohnehin nicht, ob ein NN eine bessere Zieldetektion erreichen kann
als ein klassischer Zieldetektor, sondern die fundamentalen Fragestellungen, (a) ob mit
dem vorgestellten Warping auch eine Zieldetektion trainiert werden kann und (b), ob
sich der Aspektwinkel zum Trainieren eines NN für die Anwendung der Zieldetektion
eignet. Da bei der Zieldetektion mittels CFAR-Detektor ausschließlich das SNR für

5Im Kontext des maschinellen Lernens wird bei fehlerhaften und verrauschten Zielwerten auch von
„Label Noise“ gesprochen
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Abbildung 7.15.: Genauigkeit: Die Abweichung der Prädiktion gegenüber den au-
tomatisch generierten Labeln für alle Bilder im Testdatensatz. Rot:
Abweichungen für CFAR; Grün: Abweichungen für NN Prädiktion.

die Bestimmung von Zielen verwendet wird und bereits in Unterabschnitt 7.3.2 eine
mindestens moderate lineare Abhängigkeit zwischen SNR und Aspektwinkel identifiziert
wurde, überrascht es nicht, dass CFAR und NN-Detektoren bei der oben genannten
Metrik vergleichbare Ergebnisse erzielen konnten.

7.3.11.4. Qualitative Auswertung

Zur Veranschaulichung der Zieldetektion sind in Abbildung 7.16 die annotierten Zielwerte
über Aspektwinkel und die Prädiktionen aus NN und CFAR sowohl im Kamerabild als
auch RD-map dargestellt.

In Bildregionen mit Fahrzeugen oder Häuserwänden scheinen hohe Aktivierungen
vorzuliegen. In Bildregionen mit flachem Einstrahlwinkel, wie der Fahrbahn, scheint
bei beiden Verfahren tendenziell eher niedrige Aktivierung sichtbar zu sein. Die Bei-
spiele beider Detektoren scheinen plausibel zu sein. Im oben und unten dargestellten
Parkszenario sind die Aktivierungen aus NN etwas fokussierter auf den Fahrzeugober-
flächen, wohingegen die Aktivierungen mit CFAR auch bei den dazwischenliegenden
leeren Flächen hoch sind. Dieser Unterschied könnte mit einer statistischen Optimierung
des CFAR-Detektors gegen die Zielwerte vermutlich verringert werden und somit die
Schätzungen beider Detektoren weiter angeglichen werden.

Um Unterschiede zwischen CFAR und NN-basierter Zieldetektion zu finden, wurden
in Anh. A.2.1 weitere Untersuchungen angestellt.

Analog zu den Ergebnissen aus der quantitativen Auswertung ergeben sich auch bei
der qualitativen Bewertung der Prädiktionen nur marginale Unterschiede. Aus Sicht des
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Zielwerte: Prädiktionen:
(warped)

CFAR:
(warped)

Prädiktionen: CFAR: RD-map:

Aktivierung in %

0% 100%

Abbildung 7.16.: Beispiele der Zieldetektion aus dem Testdatensatz. Von links
nach rechts: RGB-Bild mit farbkodierten Zielen, RGB-Bild mit farb-
kodierten Prädiktionen aus NN, RGB-Bild mit farbkodierten Prädik-
tionen aus CFAR, RD-map mit farbkodierten Prädiktionen aus NN,
RD-map mit farbkodierten Prädiktionen aus CFAR, RD-map.

Autors ein weiteres Indiz dafür, dass die automatische Annotation der Zielwerte für die
Zieldetektion mittels Aspektwinkelwert eine valide Methode ist.

7.3.11.5. Laufzeitanalyse

Zur Bewertung der Laufzeit beider Detektionsverfahren wurde die Anzahl der Opera-
tionen geschätzt und in Tabelle 7.6 eingetragen. Die Operationszahl für den CFAR-
Algorithmus skaliert mit der Operationszahl zur Berechnung des adaptiven Referenz-
wertes im 11× 11 Fenster (11 · 11 = 121 Additionsoperationen) und der Pixelzahl in der
RD-map (128× 96 = 12288). Als Produkt ergab sich eine gesamte Operationszahl von
1486848.

Die Anzahl der Operationen für das NN wurde, wie in Unterunterabschnitt 7.2.11.5
beschrieben, ermittelt.

Die resultierenden Laufzeiten der beiden Verfahren unterscheiden sich um mehrere
Zehnerpotenzen. Alle in Unterunterabschnitt 7.2.11.5 gemachten Bewertungen gelten
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Tabelle 7.6.: Anzahl der Operation für TD Verfahren:
Algorithmus Anzahl der Operationen geschätzte Laufzeit bei 300 MHz
CA-CFAR 1486848 5 ms
NN 4785438700 16 s

auch für diesen Abschnitt.

7.3.11.6. Antwort zur wissenschaftlichen Hypothese

Bei den Untersuchungen zur Zieldetektion wurde die Antwort auf folgende Fragestellun-
gen gesucht:

• Kann eine Zieldetektion mittels vorgestelltem Warping trainiert werden?

• Ist der Aspektwinkel ein valides Maß für die automatische Bestimmung von
Zielwerten für die Zieldetektion?

Da die trainierte Zieldetektion vergleichbare Ergebnisse zum klassischen CFAR-
Detektor erreicht, können beide Fragestellungen bejaht werden. Aus Sicht des Autors
wird aber empfohlen, die Qualität der Aspektwinkelschätzung weiter zu verbessern.

In Abschnitt 7.5 wird außerdem noch ein datenbasierter Schätzer vorgestellt, welcher
die Leistungsbeiträge der individuellen Kamerapixel schätzt. Es ist möglich, dass dieser
in Zukunft auch anstelle der (modellbasierten) Aspektwinkelschätzung für die Zielwert-
bestimmung bei Detektionsaufgaben verwendet werden kann. Hierdurch ergäbe sich der
Vorteil, dass nicht nur geometrische Eigenschaften der Objekte berücksichtigt werden,
sondern evtl. auch andere physikalische Eigenschaften, wie z.B. Materialeigenschaften.

7.4. Semantische Segmentierung
Als natürliche Erweiterung zur Zieldetektion wird in diesem Abschnitt die semanti-
sche Segmentierung der RD-maps durchgeführt. Bei der semantischen Segmentierung
handelt es sich um die Klassifikation der einzelnen Zellen/Pixel in der RD-map. Die
Klassifikation wird hier in die Zielklassen „Fußgänger“, „Fahrzeuge“und „stationäre
Ziele“ vorgenommen. Zum einen kommen diese Objektklassen im Straßenverkehr häufig
vor. Zum anderen weisen diese Objekte im Messraum aber auch spezifische Signaturen
auf, so dass eine Trennung über die vorhandenen Radardaten technisch möglich ist.
Diese spezifischen Signaturen werden nachfolgend kurz beschrieben.

Bei den stationären Zielen handelt es sich um geostationäre Reflexionen, also Re-
flexionen, deren Dopplersignatur nur durch die Bewegung des Radarsensors bzw. des
Ego-Fahrzeuges über Grund bestimmt ist.

Als Fußgänger bezeichnen wir Menschen in Bewegung. Durch den speziellen Bewe-
gungsapparat und das Bewegungsmuster ergeben sich aus Sicht des Radars spezifische
Dopplersignaturen. Der bewegte menschliche Körper kann als Mehrkörpermodell angese-
hen werden. Durch die oszillierende Bewegung der Extremitäten ergeben sich ausgedehnte
Dopplersignaturen in der RD-Map, welche maßgeblich in Abhängigkeit von der Schritt-
weite, Schrittfrequenz und Schrittphase variieren und als „Mikro-Doppler“ bekannt sind,
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siehe z.B. [vDG08]. Der Torso des Menschen liefert die in Doppler nahezu konstante
Reflexion, den „Makro-Doppler“.

Als letzte Klasse betrachten wir alle Reflexionen von typischen Fahrzeugen wie PKW,
LKW und Motorrad, welche nicht geostationär sind. Sich also durch Bewegung über
Grund auszeichnen.

Wie bei der Zieldetektion auch, liefert die Referenzsensorik keine native Annotation
für diese Aufgabe. Basierend auf den Daten der Referenzsensorik wird diese Annotation
nachfolgend automatisch mittels einer Instanzsegmentierung auf den Kamerabildern
geschätzt.

7.4.1. Eingangsdaten

Die semantische Segmentierung soll unter anderem zwischen geostationären Reflexionen
und bewegten Reflexionen diskriminieren können. Diese Diskrimination wird in der
Literatur häufig als Moving-Target-Indication (MTI) bezeichnet und kann mittels
Kenntnis der Eigenbewegung und des Einfallswinkels der Reflexionen über klassische
Methoden mit guter Genauigkeit vorgenommen werden, siehe beispielsweise [EB1,
EB2,EB3,EB5]. Darüber hinaus wurde z.B. in [EB4] eine Erweiterung der klassischen
MTI mit einem Recurrent-Neural-Network (RNN) vorgenommen, bei welchem einzelne
Detektionen des Radars geclustert und über ein RNN klassifiziert wurden.

Das hier verwendete NN wird mit zwei Eingangskanälen ausgestattet und versorgt.
In dem ersten Eingangskanal wird die RD-map RD eingespeist. In dem zweiten Ein-
gangskanal wird die Prädiktion einer klassischen MTI (MTI) eingespeist

ΓM =
[

RD
MTI

]

. (7.26)

Für die Berechnung von MTI wird eine Adaption der MTI aus [EB3] verwendet. Bei
der Implementierung aus [EB3] handelt es sich um einen Hypothesentest mit harter
Schwellwertentscheidung, welche eine binäre Entscheidung erzwingt. Grundlage dafür
ist die Definition der relativen Bewegung nach Gleichung 2.6.

Wie zuvor erwähnt, kann ein Radarsensor nur die relative radiale Geschwindigkeit
vermessen und auflösen, welche sich für geostationären Reflektoren aus der ersten Zeile
von Gleichung 2.6 ergibt zu

vr,stat. = – cos(φaz) cos(φel)
δp[x]
δt –sin(φaz) cos(φel)

δp[y]
δt –sin(φel)

δp[z]
δt = –

db[x]
dt . (7.27)

Zu beachten ist, dass in Gleichung 2.6 die Bewegung eines Punktes im Radarkoordina-
tensystem beschrieben wurde. Da nun die Geschwindigkeit des Sensors verwendet wird,
muss entsprechend das Vorzeichen der Bewegungen umgekehrt werden, wodurch der
Vorzeichenwechsel gegenüber Gleichung 2.6 zu erklären ist. Damit kann durch Einsetzen
der vom Radar gemessenen Einfallswinkel und der über DGPS-INS gemessenen Sensor-
geschwindigkeit ein Schätzwert für die radiale Geschwindigkeit einer Reflexion unter
der Annahme von Geostationarität berechnet werden. Ist die Differenz µE aus dieser
geschätzten Geschwindigkeit und der vom Radar gemessenen Radialgeschwindigkeit
hinreichend groß

µE = vr – vr,stat., (7.28)
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so kann mit hoher Wahrscheinlichkeit davon ausgegangen werden, dass es sich bei einer
untersuchten Reflexion nicht um ein stationäres Ziel handelt. Die Berücksichtigung von
Ungenauigkeiten in Winkel- und Geschwindigkeitsschätzung wurde in [EB3] beschrie-
ben, kann in ähnlicher Form aber auch vergleichbaren Veröffentlichungen entnommen
werden, z.B. [Kel17]. Diese Ungenauigkeit fassen wir durch σE zusammen. Anstelle der
binären Entscheidung wird eine Transformation über eine Gauß-Aktivierungsfunktion
vorgenommen

Prcmoving = exp







–
µ2

E
(

σE ·Q–1 (α/2
))2







. (7.29)

Wobei Prcmoving eine Pseudowahrscheinlichkeit der Klassenzugehörigkeit angibt. Eine
niedrige Aktivierung bedeutet, dass es sich beim untersuchten Signal wahrscheinlich
nicht um einen geostationären Reflektor handelt. Bei hoher Aktivierung kann es sich
weiterhin um einen geostationären Reflektor handeln.

Im Gegensatz zur harten Entscheidung (engl.: „hardstep“) ist die
Gauß-Aktivierungsfunktion differenzierbar und etwaige Fehler in der MTI könnten
vollständig zurückpropagiert werden. Des Weiteren ergeben sich aus der MTI mit-
tels Gauß-Aktivierungsfunktion kontinuierliche Werte, anstelle der binären Werte beim
„Hardstep“. Die Motivation dahinter ist also: a) Fehler in der MTI könnten beim Training
ermittelt, durch die MTI-Schicht propagiert werden und schließlich die Winkelschätzung
optimiert werden. Und b) durch die kontinuierliche Variable kann das NN die Signaldy-
namik eigenständig erlernen. Untersuchungen zu diesen Hypothesen werden in dieser
Arbeit jedoch nicht durchgeführt.

Ein Beispiel der MTI ist in Abbildung 7.17 dargestellt. In der ersten Spalte ist das Sze-
nario aus Sicht der nach hinten aus dem Egofahrzeug gerichteten Kamera dargestellt. Das
Ego-Fahrzeug fährt auf einer Straße und wird von einem Paketdienstfahrzeug verfolgt.
Das korrespondierende RD-map ist rechts daneben dargestellt. In der dritten Spalte ist
das Ergebnis der MTI in der RD-map (Prcmoving) dargestellt. Die gelben Regionen zeigen
Bereiche hoher Werte von Prcmoving und entsprechend bewegte Reflexionen an. Dunkle
Regionen zeigen hingegen niedrige Werte von Prcmoving und mögliche geostationäre
Reflexionen an. Durch die Anordnung im RD-Gitter kann die MTI-Prädiktion über
Gleichung 6.14 in das Kamerabild projiziert werden. Das Ergebnis der Projektion ist
rechts dargestellt. Es ist zu sehen, dass die Pixel an der Position des Paketdienstfahr-
zeuges mit hoher Konfidenz als bewegte Ziele erkannt wurden. Die verbleibenden Pixel
im Kamerabild sind geostationär und weisen entsprechend eine geringe Konfidenz für
bewegte Reflexion auf.

Wir definieren die Menge der Pseudowahscheinlichkeiten für sämtliche Pixel im
RD-Gitter als MTI.

7.4.2. Zielwerte

Für die semantische Segmentierung wird eine Einteilung der Kamerapixel in die gesuchten
Klassen vorgenommen. Für die Klassifikation der Pixel in geostationäre Pixel wird die
aus dem Szenenfluss geschätzte kartesische Geschwindigkeit mit der aus dem DGPS-
INS gelesenen Ego-Geschwindigkeit im Kamera-Koordinatensystem kompensiert. Diese
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RGB RD MTI

0 30 60

SNR in dB →

Stationär Bewegt

Klassifikation →

Stationär Bewegt

Klassifikation →

Abbildung 7.17.: Beispiel für eine Bewegtzielerkennung. Dargestellt ist ein Sze-
nario, in welchem sich das Ego-Fahrzeug bewegt, während der Pa-
ketdienstwagen folgt. Links dargestellt ist das Kamerabild. Rechts
daneben die RD-map. Wiederum rechts daneben die Bewegtzielerken-
nung in der RD-map. Rechts die Bewegtzielerkennung projiziert in das
Kamerabild.

entspricht gerade der Vordergrundbewegung ξfg aus Gleichung 5.5. Anschließend wird
diese Relativgeschwindigkeit in das Radarkoordinatensystem zu ξfg,radar transformiert.
Die Transformation wird analog zu Gleichung 5.26 vorgenommen

ξfg,radar(p) = R(C Rξfg(p). (7.30)

Da der Radarsensor nur die Radialgeschwindigkeit messen kann, wird die Geschwin-
digkeit ξfg,radar außerdem als relative Radialgeschwindigkeit aus Sicht des Radarsensors
dargestellt. Diese Berechnung erfolgt analog zu Gleichung 5.25 als

vr, fg.(p) = xR(p)T

|xR(p)| ξfg,radar(p). (7.31)

Der Betrag von vr, fg. definiert nun die Abweichung der Radialgeschwindigkeit von sta-
tionären Reflexionen. Da die Geschwindigkeitsschätzung imperfekt ist, werden alle Pixel
als geostationär klassifiziert, deren Betrag von vr, fg. innerhalb eines Toleranzbereiches
∆v,stationär = 0.2 m s–1 liegt. Die Wahl des Schwellwertes erfolgte unter Berücksichtigung
der Geschwindigkeitsauflösung des verwendeten Radarsensors sowie des ermittelten
mittleren Schätzfehlers der Geschwindigkeit nach Tabelle 5.2. Die Maske für stationäre
Ziele ΨSS, stat. ergibt sich somit zu

ΨSS, stat.(p) =







1
∣
∣
∣vr, fg.(p)

∣
∣
∣ < ∆v,stationär

0 sonst
(7.32)

Aus den Instanzmaske aus Abschnitt 4.3 berechnen sich die Zielmasken für Fußgänger
und Fahrzeuge als Schnittmenge der bewegten Pixel zu

ΨSS, ped. = MPed. ∩ ΨSS, stat. (7.33)
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und
ΨSS, veh. = MVeh. ∩ ΨSS, stat.. (7.34)

Beispiele der Zielmasken werden später (Abbildung 7.21) gezeigt.

7.4.3. Netzwerkarchitektur

Für die semantische Segmentierung wurde die Netzwerkarchitektur aus der Zieldetektion,
siehe Unterabschnitt 7.3.3, adaptiert. Änderungen sind, dass die Eingangskanäle über
separierte Pfade vorprozessiert werden und in der letzten Schicht drei Ausgangskanäle,
je einer pro Klasse, vorhanden sind. Die Aktivierung der Ausgangskanäle wird über eine
Softmax vorgenommen. Daraus ergibt sich eine „multi-class“ Prädiktion, bei welcher die
Summe der Netzwerkausgabe eins ergibt und eine Klassifikation in eine einzelne Klasse
gewollt ist. Alternativ ließe sich auch über die Entkopplung der letzten Schicht über
z.B. die Sigmoid-Aktivierungsfunktion eine „multi-label“ Prädiktion vornehmen, bei
welcher mehrere Klassen parallel hohe Aktivierungen aufweisen dürften.

Da die MTI nach Ansicht des Autors bereits gute Ergebnisse liefert, bestand kein
Bedarf, davon wesentlich abzuweichen. Es wurde analog zu „Residual neural net-
work“ [HZRS16] eine „skip connection“ der Eingangsdaten durchgeführt. Im Pfad der
„skip connection“ wurde eine inverse Sigmoid-Funktion (sig–1(x) = log

(
x

1–x
)

) verwendet,
um aus den MTI Netzwerkaktivierungen zu simulieren.

Eine visuelle Übersicht der Netzwerkarchitektur ist in Abbildung 7.18 dargestellt.
Wir definieren die Übertragungsfunktion des NN zur semantischen Segmentierung als

Mpredict, RD-grid = M-Net(ΨM). (7.35)

7.4.4. Assoziation von Prädiktion und Label durch Warping

Wie bei der Winkel- und Zieldetektion findet für die Assoziation von Prädiktion und
Zielwert ein Warping der Prädiktion in das Kamerabild, analog zu Unterabschnitt 7.2.4,
statt. Für ein Pixel p ergibt sich die Projektion zu

Mpredict, cam(p) = ηBW

(

Mpredict, RD-grid; vr(p), |xr(p)|
)

. (7.36)

7.4.5. Messung der Abweichung

7.4.5.1. Skalierungsraum

Analog zur Winkelschätzung, siehe Abschnitt A.1, wurde auch bei der semantischen
Segmentierung ein Skalierungsraum der Kosten erstellt, um so den Einfluss von fehler-
hafter Geschwindigkeits- und Tiefenschätzung in den Referenzdaten zu verringern. Die
Skalierungskosten ergeben sich zu:

Mprediction, scaled(u, v, s) =
∑s

us=–s
∑s

vs=–s Mprediction(u + us, v + vs)(RD(u + us, v + vs) – RDmin)
(2s + 1)2∑s

us=–s
∑s

vs=–s(RD(u + us, v + vs) – RDmin)
. (7.37)
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Abbildung 7.18.: CNN Struktur für semantische Segmentierung: Die Übersicht
der Schichten.

Die Prädiktion im Kamerabild ergibt sich somit zu

Mpredict, cam, scaled(p) = ηBW

(

Mpredict, scaled; vr(p), |xr(p)|
)

. (7.38)

7.4.5.2. Abweichung

Wie in Unterabschnitt 7.4.3 beschrieben, wird bei der semantischen Segmentierung eine
„multi-class“ Prädiktion durchgeführt. Ein praktisches Problem beim Training des NN
ergab sich durch stark unausgewogene Klassenhäufigkeiten (engl.: „class-imbalance“)
des Datensatzes. Ein Großteil der Pixel ist der Klasse geostationärerer Reflexionen
zugeordnet, nur ein Bruchteil den Klassen Fußgänger und Fahrzeug. Dies repräsentiert
durchaus die statische Verteilung realer Fahrszenarien, kann beim Training eines NN
jedoch dazu führen, dass eine einzelne Klasse favorisiert wird. Es könnte also passieren,
dass das trainierte NN ausschließlich geostationäre Pixel detektiert. Um diesen Effekt
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7.4. Semantische Segmentierung

zu vermeiden und die Klassenimbalance zu berücksichtigen, wird hier mittels „Focal-
Loss“ [LGG+20] Kostenfunktion optimiert. Dabei handelt es sich um eine Erweiterung
der Kreuzentropie, bei der die Kosten mit der Konfidenz der Prädiktion gewichtet
werden. Hierdurch wird der Fokus von einfacher Entscheidung hin zu schwierigeren
Entscheidungen verlagert.

Zum übersichtlichen Vergleich von Kreuzentropie und Focal-Loss sind die Definitionen
aus [LGG+20] nachfolgend dargestellt

CE(pt) = –αt log (pt) (7.39)

und
FL(pt) = –(1 – pt)γαt log (pt) , (7.40)

wobei pt die Netzwerkprädiktion ist, αt der Zielwerte und γ ≥ 0 der Fokussierungspara-
meter. Bei der Wahl γ = 0 wird Focal-Loss zur Kreuzentropie. Bei steigendem γ werden
die einfachen bzw. eindeutigen Klassifikationen mit sinkender Größe gewichtet.

Unter Einführung von αM, einer von der Klasse abhängigen Skalierung für die
Positivbeispiele, ergibt sich die Kostenfunktion für die semantische Segmentierung zu

lM(p, s) = –αM
(

1 – Mpredict,scaled(p, s)
)γ
ΨM(p) log

(

Mpredict,scaled(p, s)
)

–
(

Mpredict,scaled(p, s)
)γ (

1 – ΨM(p)
)

log
(

1 – Mpredict,scaled(p, s)
)

. (7.41)

Die Wahl der Parameter der Kostenfunktion (αM, γ, s) für die Optimierung hat einen
Einfluss auf die trainierten NN-Parameter. Da keine Anhaltspunkte für diese Werte
vorhanden waren, wurden mehrere NNen mit unterschiedlicher Parameterwahl trainiert.
Eine Übersicht der Parameterwahl ist in Tabelle 7.7 zu finden.

Tabelle 7.7.: Parameterwahl für das Training des NN für die semantischen
Segmentierung.

Name γ αM(Fußgänger) Skalierungsebenen s
NN0 0 10 0
NN1 0 10 2
NN2 0 100 0
NN3 0 100 2
NN4 2 10 0
NN5 2 10 2
NN6 2 100 0
NN7 2 100 2

Für die Anwendung der Winkelschätzung wurde durch die Anwendung der Skalie-
rungsebenen eher ein Nachteil in der Winkelschätzqualität festgestellt, siehe Unterun-
terabschnitt 7.2.11.3. Es wird vermutet, dass Fehler in der Szenenflussschätzung bei der
semantischen Segmentierung größere Auswirkungen haben als bei der Winkelschätzung,
weil hier speziell gegen bewegte Objekte trainiert wird. Bei der Winkelschätzung wurde
gegen alle Pixel trainiert, unter denen geostationäre Pixel dominant sind, welche einen
deutlich geringeren Schätzfehler des Szenenflusses aufweisen und daher weniger häufig
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Label-Noise aufweisen. Es soll daher noch einmal getestet werden, ob die Anwendung
der Skalierungsebenen für die semantische Segmentierung vorteilhaft sein kann.

Durch die Verwendung der „Focal-Loss“ Kostenfunktion und des Fokussierungspara-
meters wird die Klassenimbalance bekämpft, was der Prädiktion dynamischer Objekte
zu Gute kommen sollte. Für Objekte der Klasse Fußgänger soll zusätzlich eine manuelle
Skalierung über den Parameter αM(Fußgänger) getestet werden, da hier eine deutlich
geringere Repräsentation im Datensatz erwartet wurde.

Um die Klassenimbalance über die angepasste Kostenfunktion hinaus zu berücksichti-
gen, fand das Training ausschließlich in Frames statt, bei denen mindestens ein Objekt
der Klasse Fußgänger oder Fahrzeug erkannt wurde. Der Trainingsdatensatz reduzierte
sich dadurch auf etwa 2000 Beispiele.

7.4.6. Selektion der Pixelmenge
Zur Selektion der Pixelmenge wird die Zielmaske ΩGT(p) aus Unterunterabschnitt 7.3.2.3
verwendet. Das NN soll somit ausschließlich gegen Pixel trainiert werden, welche anhand
der Daten der Referenzsensorik als mögliche Ziele identifiziert wurden. Die Maske dieser
Ziele sei definiert als

SR =
{

p ∈ Pall

∣
∣
∣
∣ΩGT(p) > 0.5

}

. (7.42)

7.4.7. Gesamtkosten
Die Gesamtkosten ergeben sich als Mittelwert der Abweichungen über alle Skalierungs-
ebenen nach (Gleichung 7.41) und Pixeln zu

LM =
∑3

s=0
∑

p∈SR lM(u, v, s)
∑3

s=0 |SR|
. (7.43)

7.4.8. Initialisierung der Parameter
Die Initialisierung der Netzwerkparameter erfolgte analog zur Beschreibung aus Unter-
abschnitt 7.2.8.

7.4.9. Optimierer
Die Optimierung der Netzwerkparameter erfolgte analog zur Beschreibung aus Unterab-
schnitt 7.3.9.

7.4.10. Trainingsprozess
Der Verlauf der Kosten über den gesamten Trainingsprozess ist für alle Netzwerkkonfi-
gurationen aus Tabelle 7.7 in Abbildung 7.19 dargestellt.

Zu erkennen ist, dass eine Reduktion der Kosten über die Trainingsbeispiele bei allen
NNen vorhanden ist, ein Training im Grundsatz also erfolgreich war. Außerdem ist
zu erkennen, dass sich die Trainingskosten für die unterschiedlichen Parameter stark
unterscheiden, was durch die unterschiedliche Wahl der Skalierungsparameter αM und
γ zu erklären ist. Anhand der Trainingskosten kann nicht prognostiziert werden, welche
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Abbildung 7.19.: Verlauf des Trainingsprozesses der semantischen Segmentie-
rung: Die Kosten während des Trainings konvergieren bereits nach
einigen Trainingsbeispielen.

NN Wahl die beste Genauigkeit bei der semantischen Segmentierung erreicht. Diese
Analyse wird im nachfolgenden Abschnitt durchgeführt.

7.4.11. Ergebnis
7.4.11.1. Beschreibung der Metriken

Für die Bewertung der per-Pixel-Klassifikationsgenauigkeit bei der semantischen Seg-
mentierung, wird die Mean-Intersection-over-Union (MIoU)-Metrik verwendet, welche
u.a. in [GOO+17] dokumentiert ist und folgende Form hat

MIoU = 1
K

K∑

i=1

pii
∑K

j=1 pij +∑K
j=1 pji – pii

. (7.44)

Darin ist K die Anzahl der unterschiedlichen Klassen, im vorliegenden Fall
K = |{Stationär, Fußgänger, Fahrzeug }| = 3. Die Werte pii und pij zählen die Anzahl
der Pixel, bei denen die Klasse des Labels und der Prädiktion identisch sind bzw. die
Anzahl der Pixel, bei denen sich die Klassen unterscheiden. Der Index ij bedeutet, dass
das Label der Klasse i entspricht, die Prädiktion der Klasse j.

Die MIoU nimmt Werte im Intervall [0, 1] an, wobei höhere Werte einer besseren
Klassifikation entsprechen.

Die MIoU mittelt über alle Klassen und fasst somit alle Datenpunkte in einer Metrik
zusammen. Nachteilig dabei ist, dass keine klassenspezifische Aussage durchgeführt
werden kann. Neben der MIoU wird deshalb auch noch die Konfusionsmatrix [Faw06]
über die Klassen ermittelt.

7.4.11.2. Quantitative Auswertung

Die Metriken aller Frames des Testdatensatzes und NN-Parametrierungen wurden
berechnet und sind in Abbildung 7.20 in Form von Histogrammen dargestellt. Jeder
Eintrag im Histogramm entspricht einem Frame. Die MIoU wurde dabei also für alle
Pixel im Kamerabild berechnet und die Verteilung der MIoU in allen Kameraframes
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dargestellt. Da die Frames im Datensatz unterschiedliche Szenen abgebildet haben und
die Klassifikationsgenauigkeit entsprechend beeinflusst wird, ergibt sich daraus eine
Verteilung der MIoU.

NN0

NN1

NN2

NN3

NN4

NN5

NN6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NN7

MIoU →

0 200 400 600 800 1,000 1,200 1,400

Häufigkeit →

Abbildung 7.20.: Klassifikationsgenauigkeit der semantischen Segmentierung:
Die MIoU wurde für alle Frames des Testdatensatzen und Netzwerk-
parametrieriserungen berechnet und dargestellt. Zu sehen ist mitunter
eine hohe Fluktuation der Metrik über alle Frames.

Für alle NN-Parametrierungen sind hellere Farbwerte bzw. große Häufigkeiten bei
größeren MIoU zu beobachten. Leicht zu beobachten sind Unterschiede der Farbverteilung
zwischen den NN-Parametrierungen.

Die Konfusionmatrizen aller NN-Parametrierungen sind in Anh. A.3 dargestellt. Die
Diagonalelemente der Konfusionsmatrizen sind in Tabelle 7.8 dargestellt und beschreiben
die relative Häufigkeit korrekter Klassifikationen in Abhängigkeit der Klasse.

In Tabelle 7.8 ist zu sehen, dass die Klassifikationsrate für die Klasse „Stationär“ für
alle NN Parametrierungen oberhalb von 90% liegt. Die Aktivierung dieser Klasse wird
wesentlich durch die „skip-connection“ , zu sehen in Abbildung 7.18, definiert. Unterschie-
de in der Klassifikationsgenauigkeit für stationäre Ziele zwischen den Parametrierungen
ergeben sich somit ausschließlich über die Aktivierungen der Klassen Fußgänger und
Fahrzeug, welche die Netzwerkausgabe durch die Softmax-Aktivierungsfunktion skalie-
ren. Die Klassifikationsrate für Fahrzeuge und Fußgänger fällt merklich schlechter aus.
Durch Sichtung der Konfusionsmatrizen aus Anh. A.3 kann festgestellt werden, dass bei
allen Parametrierungen Pixel vom Typ Fußgänger häufig (39.6 – 60.12%) als stationäre
Pixel prädiziert wurden. Diese Art der Falschklassifikation ist durchaus wahrscheinlich
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Tabelle 7.8.: Übersicht der Klassifikationsraten und MIoU für die Parameter-
sets: Angaben in %

Name Stationär Fußgänger Fahrzeug MIoU
NN0 97.66 32.30 74.97 99.89
NN1 96.17 47.28 57.21 99.94
NN2 94.19 59.57 59.86 99.00
NN3 95.67 48.99 36.02 99.46
NN4 96.16 49.28 47.31 99.82
NN5 95.53 53.17 65.93 99.66
NN6 91.36 53.00 66.42 86.43
NN7 91.14 42.60 42.24 96.47

und plausibel, weil Fußgänger in der Regel eine langsame Geschwindigkeit aufweisen
und somit über Doppler kaum von stationären Zielen getrennt werden können. Möglich
ist, dass die separate Prozessierung durch MTI bzw. die Parametrierung hier nicht aus-
reicht, um eine bessere Klassifikationsrate für Fußgänger zu erreichen. Auch Fahrzeuge
wurden teilweise falsch als stationär klassifiziert, eine größere Menge (5.53 – 45.05%) der
Fahrzeuge wurde jedoch falsch als Fußgänger klassifiziert. Für die drei Klassen konnten
Klassifikationsraten, deutlich besser als Zufallsziehungen (33.3%)erreicht werden. Sinn-
volle Änderungen, um die Klassifikationsrate zu verbessern, könnten beispielsweise sein,
(a) die MTI Klassifikation zu optimieren oder wegzulassen und (b) die Klassifikation
über ganze Sequenzen von RD-maps durchzuführen, so dass der Klassifikator zeitlich
variierende Merkmale extrahieren kann6. Da das Augenmerk dieser Arbeit jedoch nicht
auf der Optimierung der semantischen Segmentierung liegt, wird diese Untersuchung
für mögliche Folgearbeiten aufgespart.

Anhand der hier ermittelten Klassifikationsraten kann keine unmittelbare Tendenz
für die Optimierung mit Skalierungsebenen oder Fokussierungsparametern beobachtet
werden. Für den qualitativen Vergleich wird das Parameterset NN5 gewählt, da es
vergleichsweise hohe Klassifikationsgenauigkeiten für alle Klassen aufweist.

7.4.11.3. Qualitative Auswertung

Eine repräsentative Übersicht der Prädiktionen für die Anwendung der semantischen
Segmentierung ist in Abbildung 7.21 dargestellt. Wie zuvor beschrieben, wird bei
der Prädiktion die Netzwerkausgabe von NN5 verwendet. In der linken Spalte ist die
semantische Maske ΨM eingetragen, welche die Zielwerte für das NN-Training darstellt.

In der zweiten Spalte wurden die semantischen Masken Mpredict, cam dargestellt. Zur
besseren Übersicht wurden Pixel, welche durch das NN zur Zieldetektion als Hintergrund
detektiert wurden (TDpredict, cam(p) < 0.5) ausgeblendet. In der letzten Spalte sind die
Prädiktionen in der RD-map gezeigt. In allen Spalten wurden die Pixel entsprechend
der Klassifikation, siehe Farblegende, eingefärbt.

In Abbildung 7.21 sind unterschiedliche Szenarien mit bewegten Objekten der Klasse
Fußgänger und Fahrzeug dargestellt. In der oberen Zeile ist auf der linken Bildseite

6Der Benefit einer Zuführung zeitlicher Merkmale für die Klassifikation von Radarzielen wurde u.a.
in [Heu13] und [Sau16] nachgewiesen
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ein Fußgänger und in der Bildmitte ein Fahrzeug zu sehen. Diese wurden automatisch
entsprechend in der Zielmaske eingefärbt. Das NN konnte ausschließlich das Fahrzeug
korrekt klassifizieren. In der zweiten Zeile im linken Bildbereich sind zwei Fußgänger zu
sehen. Im rechten Bildbereich zwei weitere, welche sich jedoch außerhalb des Radars
FoV befinden. Die linken Fußgänger wurden folgerichtig automatisch gelabelt und durch
das NN ebenfalls korrekt klassifiziert. In der dritten Zeile ist ein bewegtes Fahrzeug zu
erkennen, welches durch das NN erfolgreich klassifiziert wurde. In der letzten Zeile ist
ein Fußgänger zu erkennen, welcher ebenfalls erfolgreich klassifiziert wurde. In allen
Szenarien wurden Pixel zu stationären Reflexionen zuverlässig eingefärbt. Einige Pixel
wurden durch das NN fälschlicherweise als Fußgänger klassifiziert, obwohl die Pixel
stationäre Objekte abbilden.

In Abbildung 7.21 wurden Pixel entsprechend der größten Netzwerkausgabe ein-
gefärbt. Zur weiteren Analyse der Inferenz sind in Abbildung 7.22 die vollständigen
Netzwerkausgaben der semantischen Segmentierung für die Klassen dargestellt. In der
oberen Zeile sind Kamerabilder und RD-map dargestellt. In der zweiten Zeile sind die
Netzwerkausgaben für die Klassen projiziert in das Kamerabild (Kamera 2) dargestellt.
Es fällt auf, dass die Prädiktion von stationären Zielen, dem Fußgänger und einem
fehlenden Fahrzeug plausibel ist. Besonders interessant ist die unterste Zeile. Dort sind
die Netzwerkausgaben im RD-Gitter dargestellt. Die Aktivierung für stationäre Ziele
wird primär durch die MTI außerhalb des NN festgelegt, siehe Unterabschnitt 7.4.3. Zu
beobachten ist, dass Pixelregionen in der näheren Umgebung von stationären Klassi-
fikationen als Fußgänger klassifiziert werden. Weiter entfernte Pixel werden dagegen
ausschließlich als Fahrzeug klassifiziert. Das NN scheint entsprechend gelernt zu haben,
dass Fußgänger wahrscheinlich niedrigere Geschwindigkeiten aufweisen als Fahrzeuge.
Nach Ansicht des Autors ist so eine Annahme durchaus plausibel.

Weitere Beispiele der semantischen Segmentierung inklusive Szenenbeschreibung und
Beobachtungen sind in Anh. A.4 zu finden.

7.4.11.4. Antwort zur wissenschaftlichen Hypothese

Nach Bewertung der Beobachtungen aus quantitativer und qualitativer Analyse kann
gesagt werden, dass das Training eines NN zur semantischen Segmentierung von RD-maps
gegen die automatisch ermittelten Zielwerte aus der Referenzsensorik in Kombination
mit der zugeführten MTI deutlich bessere Klassifikationsraten als ein Zufallsklassifikator
hervorgebracht hat. Die beobachteten Beispiele der Inferenz waren im Wesentlichen
plausibel und attestierten ein erfolgreiches Training. Weitere Verbesserungsmöglichkeiten
(bessere MTI, Klassifikation über zeitliche Sequenz) der Netzwerkarchitektur wurden
vorgeschlagen, sind aber kein weiterer Bestandteil dieser Arbeit.
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Label:
(ΨM)

Prädiktion:
(Mpredict, cam)

Prädiktion:
(Mpredict, RD-grid)

Klasse

Stationär Fußgänger Fzg. Hintergrund

Abbildung 7.21.: Beispiele der semantischen Segmentierung durch Radar. Von
links-nach-rechts: RGB Bild mit Zielwerten der semantischen Segmen-
tierung, RGB Bild mit Prädiktionen der semantischen Segmentierung
und RD-map mit Prädiktionen der semantischen Segmentierung. Alle
Pixel wurden entsprechend der größten Klassenzugehörigkeit einge-
färbt. Die Farblegende ist am unteren Bildrand zu erkennen.
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Abbildung 7.22.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben für die Klassen
„Stationär“, „Fußgänger“ und „Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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7.5. Empfangsleistungsschätzung über das Kamerabild

In Abbildung 6.2 wurde die Pipeline zum überwachten Training einer Signalverarbei-
tung auf Radardaten vorgestellt. Diese wurde gegen Zielwerte kommend von einer
Referenzsensorik trainiert. In den vorangegangenen Abschnitten wurde das Training an
den Beispielen der Winkelschätzung, Zieldetektion und semantischen Segmentierung
demonstriert. Dass es technisch möglich ist, auch eine Signalverarbeitung der Kame-
radaten gegen die Radardaten zu trainieren, wird in diesem Abschnitt gezeigt. Die
allgemeine Struktur der Pipeline zum überwachten Training muss dafür, wie in Abbil-
dung 7.23 gezeigt, nur leicht verändert werden. Das NN7 prozessiert nun die Kamera-
und Lidardaten. Die Radardaten werden über die Warpingschicht in das Pixelgitter der
Kamera projiziert. Danach wird die Abweichung der NN-Ausgabe und der projizierten
Radardaten ermittelt und das NN durch Fehlerrückführung („error backpropagation“)
optimiert.

Radar
Rückwärts

Warp
Neural

Network

Lidar &

Kamera

Szenenfluss- &

Tiefenschätzung

−

Fehlerrückführung

Neuronales

Netzwerk

(a) Training mit Rückwärtswarp

Radar
Vorwärts

Warp
Neural

Network

Lidar &

Kamera

Szenenfluss- &

Tiefenschätzung

−

Fehlerrückführung

Neuronales

Netzwerk

(b) Training mit Vorwärtswarp

Abbildung 7.23.: Übersicht der vorgestellten Systeme zum überwachtem Trai-
ning von Signalverarbeitungen der Kamera- und Lidardaten:
Lidar und Kamera stellen Sensordaten für das NN bereit. Im NN wird
für jedes Pixel eine Leistungsschätzung durchgeführt. Nach [EB7]. (a)
Durch die Rückwärtswarp-Schicht, werden die Zielwerte in das Gitter
des Kamerabildes gewarpt und dort mit den Prädiktionen verglichen.
Abweichung werden unmittelbar in das NN (b) Durch die Vorwärts-
warp Schicht, werden die Leistungswerte auf das Gitter des RD-maps
gewarpt und dort mit der RD-map des Radars verglichen. Abweichun-
gen werden gemessen und durch die Warping-Schicht zurück in das
NN propagiert.

7Andere trainierbare Algorithmen sind hier nicht ausgeschlossen.
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Motiviert wird dieses Vorgehen insbesondere auch aus dem Wunsch, die
EM-Leistungsbeiträge der einzelnen Kamerapixel zu schätzen und für das Training
und die Auswertung der bereits vorgestellten Verfahren zur Verfügung zu stellen. Eine
Kurzübersicht des hier vorgestellten Verfahrens wurde in [EB7] veröffentlicht.

Ein wesentlicher Unterschied der beiden in Abbildung 7.23 gezeigten Strukturen ist,
dass bei der oberen Struktur mögliche Fehler im Warping nicht durch das NN gelernt
und kompensiert werden können. In Abschnitt 6.5 wurde als systematischer Fehler durch
das Rückwärtswarp die mehrfache Zuordnung der Leistung eines RD-map-Pixels zu
verschiedenen Kamerapixeln identifiziert. In diesem Abschnitt werden beide Strukturen
trainiert und deren Prädiktionen gegenübergestellt. Dabei wird dieser systematische
Fehler noch einmal offensichtlich gemacht.

7.5.1. Eingangsdaten
Als Eingangswerte zur Leistungsschätzung erhält das NN das Kamerabild RGB0, die
Tiefenmaske D0, die semantische Instanzmaske M0 und Maske der geschätzten Aspekt-
winkel N0

ΓPo =









RGB0

D0

M0

N0









. (7.45)

Kamerabild und Instanzmaske wurden ausgewählt, damit das NN selbst Informationen
aus den optischen Daten extrahieren kann, die Tiefenmaske, weil die Empfangsleistung
des Radars gemäß der Radargrundgleichung, siehe Gleichung 2.25, reziprok zur vierten
Ordnung davon abhängt. Aspektwinkel wurden bereitgestellt, weil sie nach Gleichung 2.4
unter anderem die relativen Amplituden der Reflexion beeinflussen.

7.5.2. Zielwerte
Das NN soll versuchen, die Leistungswerte aus der RD-map RD des Radars zu schätzen.
Die Zielwerte werden also direkt durch den Radarsensor erstellt und bereitgestellt.

7.5.3. Netzwerkarchitektur
Für die Leistungsschätzung wurde die Netzwerkarchitektur aus der Winkelschätzung,
siehe Unterabschnitt 7.2.3, leicht adaptiert. Änderungen sind, dass nun vier Eingangs-
kanäle bereitgestellt werden, siehe Unterabschnitt 7.5.1 und in der letzten Schicht keine
Aktivierungsfunktion verwendet wird, da hier eine Regressionsaufgabe durchgeführt
wird. Eine visuelle Übersicht der Netzwerkarchitektur ist in Abbildung 7.24 dargestellt.

Wir definieren die Übertragungsfunktion des NN zur Leistungsschätzung als

Popredict, cam = Po-Net(ΓP). (7.46)

7.5.4. Assoziation von Prädiktion und Label durch Warping
In diesem Kapitel werden wir Untersuchungen von Vorwärts- und Rückwärtswarp aus
Kapitel 6 machen. In beiden Fällen liegt die Netzwerkausgabe Popredict, cam im Gitter
des Kamerabildes vor.
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Abbildung 7.24.: CNN Struktur für Leistungsschätzung: Die Übersicht der Schich-
ten. Nach [EB7].

7.5.4.1. Vorwärtswarp

Anders als bei den Anwendungen der Winkel-, Ziel- und Semantikschätzung findet
die Inferenz hier nicht im Pixelgitter des RD-maps statt, sondern bereits im Gitter
des Kamerabildes. Die Pixelwerte werden nun durch Vorwärtswarp in das Gitter des
RD-maps gebracht. Die Transformation der Inferenz sei wie folgt durchgeführt:

Popredict, RD(pRD) = ηFW
(

Popredict, cam; vr(p), |xr(p)|
)

, (7.47)

wobei Popredict, RD die in das RD-Gitter gewarpten Schätzwerte sind.

7.5.4.2. Rückwärtswarp

Beim Rückwärtswarp bleiben die Werte der Inferenz im Pixelgitter der Kamera. Statt-
dessen werden die Zielwerte der Leistung vom RD-map in das Kamerabild gewarpt.
Die Zielwerte wurden somit bereits in Kapitel 6 als RDC definiert und entsprechende
Beispiele gezeigt.

7.5.5. Messung der Abweichung

Zur Messung der Abweichung der Leistungsschätzung gegenüber Radar wird angenom-
men, dass sich die Reflexionen der Objekte nach „Swerling Typ 1“ [Mes06] überlagern.
Dabei wird angenommen, dass Objekte durch eine Vielzahl kleinerer Reflektoren mit un-
terschiedlichem Abstand modelliert werden können. Durch die Überlagerung der Wellen
der einzelnen Reflektoren ergibt sich eine Verteilungsdichte des RCS nach Chi-Quadrat
mit DoF= 2 (m = 1) und dem mittleren RCS σ:

p(σ|σ) = 1
σ

e– σ

σ . (7.48)

Die Empfangsleistung des Radars und somit der Grauwert des RD-maps skaliert nach
Gleichung 2.25 mit dem RCS. Wir bestimmen eine passende Kostenfunktion für die
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Optimierung des Leistungsschätzers als Maximum-Likelihood-Schätzer für σ. Die Log-
Likelihood Funktion zu Gleichung 7.48 ergibt sich zu

log
(
L (σ)

)
= log





N∏

i

1
σ

e– σi
σ



 = N log
(

1
σ

)

– 1
σ

N∑

i
σi , (7.49)

wobei hier die Verteilung einer Beobachtungsfolge eingesetzt wurde. Die Ableitung
ergibt sich zu

∂ log
(
L(σ)

)

∂σ
= –N

σ
+ 1
σ2

N∑

i
σi . (7.50)

Der zugehörige Maximum-Likelihood-Schätzer kann durch Nullsetzen der Log-Likelihood
Funktion hergeleitet werden zu

∂ log
(
L(σ)

)

∂σ
= 0 = Nσ –

N∑

i
σi =

N∑

i
(σ – σi)⇒ σ(ML) =

∑
σi

N . (7.51)

In Gleichung 7.51 ist zu erkennen, dass zur Optimierung die Differenz aus gezogenem
und beobachtetem RCS, σi und σ, berechnet werden kann.

7.5.5.1. Vorwärtswarp

Für den Vorwärtswarp ergibt sich daraus eine mögliche Kostenfunktion nach

lPo,FW (pRD) = |Popredict, RD(pRD) – RD[pRD]|. (7.52)

Damit der „gradient descent “ Optimierer konvergiert, wurden hier Betragsklammern
eingeführt.

7.5.5.2. Rückwärtswarp

Für den Rückwärtswarp ergibt sich daraus eine mögliche Kostenfunktion nach

lPo,BW (p) = |Popredict, cam(p) – RDC ,[p]|. (7.53)

Wie beim Vorwärtswarp, wurden auch hier Betragsklammern verwendet.

7.5.6. Selektion der Pixelmenge

Wie für die anderen Trainingsanwendungen, wird beim Training eine Untermenge
der Kamerapixel verwendet, um beispielsweise das FoV zwischen Kamera und Radar
abzugleichen und detektierte Anomalien auszugrenzen.

7.5.6.1. Vorwärtswarp

Die Auswahl der Pixelmenge für die Optimierung wurde entsprechend Unterunterab-
schnitt 7.2.6.1 übernommen. Da die Kosten im Pixelgitter des RD-maps akkumuliert
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werden, werden die validen Pixel via Vorwärtswarp auf das RD-Gitter projiziert:

Pall, RD(pRD) = ηFW

(

Pall; vr(p), |xr(p)|
)

. (7.54)

7.5.6.2. Rückwärtswarp

Die Auswahl der Pixelmenge für die Optimierung wurde entsprechend Unterunterab-
schnitt 7.2.6.1 übernommen.

7.5.7. Gesamtkosten
7.5.7.1. Vorwärtswarp

Durch Akkumulation der Abweichungen nach Gleichung 7.52 über die Pixelmenge
Pall, RD ergeben sich die Gesamtkosten beim Vorwärtswarp zu

LPo,FW = 1
|Pall, RD|

∑

p∈Pall, RD

lPo,FW (p). (7.55)

Beim Vorwärtswarp werden die Kosten über die validen Pixel im RD-Gitter ermittelt
und akkumuliert.

7.5.7.2. Rückwärtswarp

Durch Akkumulation der Abweichungen nach Gleichung 7.53 über die Pixelmenge Pall
ergeben sich die Gesamtkosten beim Vorwärtswarp zu

LPo,BW = 1
|Pall|

∑

p∈Pall

lPo,BW (p). (7.56)

Beim Rückwärtswarp werden die Kosten über die validen Pixel im Kamerabild
ermittelt und akkumuliert.

7.5.8. Initialisierung der Parameter
Die Initialisierung der Netzwerkparameter erfolgt analog zur Beschreibung aus Unterab-
schnitt 7.2.8.

7.5.9. Optimierer
Die Optimierung der Netzwerkparameter erfolgte analog zur Beschreibung aus Unterab-
schnitt 7.2.9.

7.5.10. Trainingsprozess
Der Verlauf der Kosten während des Trainings für Vorwärts- und Rückwärtswarp ist in
Abbildung 7.25 dargestellt.

Zu erkennen ist, dass bei beiden Schätzern der Trainingsverlauf abflacht. Für den
Schätzer mit Vorwärtswarp passiert die Reduktion der Trainingskosten zunächst deutlich
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Abbildung 7.25.: Verlauf des Trainingsprozesses der Leistungsschätzung im
Kamerabild: Für Rückwärtswarp („BW“) und Vorwärtswarp („FW“).
Die Kosten während des Trainings konvergieren bereits nach einigen
Trainingsbeispielen. Nach [EB7].

schneller als für den Schätzer mit Rückwärtswarp. Insgesamt scheinen die Schätzfehler
beim Vorwärtswarp weniger Fluktuationen aufzuweisen als die vom Rückwärtswarp.

Wie zuvor beschrieben, wird erwartet, dass durch Rückwärtswarp die Leistung im
Kamerabild überschätzt wird. Es werden je nach Szenario also systematische Fehler
induziert, welche das NN-Lernen erschweren. Dies ist beim Vorwärtswarp nicht der
Fall. Damit sind nach Ansicht des Autors die schnellere Konvergenz und die geringeren
Fluktuationen beim Vorwärtswarp im Schätzfehler also plausibel.

7.5.11. Ergebnis

Nach dem Training der NNen werden nun die Schätzqualitäten im Testdatensatz ermittelt
und bewertet.

7.5.11.1. Beschreibung der Metriken

Als Referenz für die Leistung stellt der Radar die RD-map bereit. Dieses fasst nach
Abschnitt 2.1 die Empfangsleistung der Reflexionen aus der Szene zusammen. Dabei ist
zu beachten, dass das FoV des Radars begrenzt ist und keine Reflexionen von außerhalb
erwartet werden. Bedingt durch die unterschiedlichen FoVs von Kamera und Lidar muss
folglich die Auswertung der Leistungsschätzung auf das FoV des Radars beschränkt
werden. Bereits in Gleichung 7.55 wurden die Abweichungen der Leistung im RD-Gitter
gemessen und über valide Pixel im FoV des Radars gemittelt. Für die quantitative
Auswertung werden also analog die Schätzfehler für Vorwärts- und Rückwärtswarp nach
Gleichung 7.55 im Testdatensatz ermittelt und können somit verglichen werden. Zu
beachten ist, dass der Schätzer mit Vorwärtswarp bereits nach dieser Metrik optimiert
wurde und folglich bessere Ergebnisse zu erwarten sind. Um einen Eindruck davon zu
bekommen, ob die Schätzergebnisse biasfrei sind, werden ebenfalls die Residuen, wie
Gleichung 7.55 jedoch ohne Betrag, ermittelt.

158



7.5. Empfangsleistungsschätzung über das Kamerabild

7.5.11.2. Quantitative Auswertung

In Abbildung 7.26 sind die erreichten Metriken von Vorwärts- und Rückwärtswarp für
die Leistungsschätzung auf Kameradaten dargestellt. Die Metriken wurden für alle
Bildindices des Testdatensatzes dargestellt, um einen Eindruck über die Fluktuation
aller Testbeispiele zu ermöglichen.

In der oberen Zeile sind die mittleren Abweichungen dargestellt, in der unteren Zeile
die mittleren absoluten Abweichungen. Zu beobachten ist, dass beim Rückwärtswarp
die mittleren Abweichungen durchweg positiv sind, wohingegen beim Vorwärtswarp
die Residuen um 0dB schwanken. Die Leistung wurde beim Rückwärtswarp also, wie
erwartet, immer überschätzt.

Der Rückwärtswarp führt also definitiv nicht zu einem biasfreien Schätzer. Beim
Vorwärtswarp ist kein offensichtlicher Bias zu beobachten.

Entsprechend fällt bei Beobachtung der Betragsabweichung auf, dass der Vorwärtswarp
geringe Fluktuationen in der Testmetrik aufweist, ein Indikator dafür, dass das NN hier
besser die Leistungsschätzung generalisieren kann.
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Abbildung 7.26.: Metriken der Leistungsschätzung: Oben: Residuen für Vorwärts-
und Rückwärtswarp. Unten: Betragsabweichungen. Nach [EB7].

Die in Abbildung 7.26 dargestellten Metriken wurden außerdem gemittelt und in
Tabelle 7.9 dargestellt.

In den ersten beiden Zeilen sind die Mittelwerte von Residuen und der Betrag der
Residuen dargestellt. Wie oben beschrieben, hat der Rückwärtswarp einen empirischen
Bias von knapp 35dB. Beim Vorwärtswarp beträgt der empirische Bias etwa –2.4dB.
In den unteren beiden Zeilen sind die Varianz der Residuen und die Varianz der
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Tabelle 7.9.: Metiken der Leistungsschätzung auf Testdatensatz

Metrik Rückwärtswarp Vorwärtswarp
Residues 34.62 -2.36
|Residues| 34.98 9.59

Var(Residues) 4.45 3.96
Var(|Residues|) 4.34 1.71

Betragsresiduen dargestellt. Wie oben beobachtet, weist Vorwärtswarp eine deutlich
verringerte Varianz der Schätzgenauigkeit auf.

7.5.11.3. Qualitative Auswertung

Um einen Eindruck von der Leistungsprädiktion zu bekommen, werden wir uns nun ein
paar ausgewählte Beispiele aus dem Testdatensatz ansehen. Bei der Selektion wurden
Beispiele ausgewählt, in welchen nach Ansicht des Autors interessante Objekte bzw.
Reflektoren abgebildet sind. Ein vollständiges Beispiel mit Kamerabild, RD-map, Masken
zu den validen Pixeln, NN-Prädiktion der Leistung in Kamera und RD-Gitter sowie
Abweichungen der Prädiktion gegenüber RD-map ist in Abbildung 7.27 dargestellt.

In der ersten Zeile sind Kamerabilder und RD-maps der Szene dargestellt. Darunter
die validen Pixel Pall und Pall, RD. Die Prädiktion der Leistung von Rückwärts- und
Vorwärtswarp ist in Zeile drei zu sehen.

In der vierten, die nicht validen Pixel nach Pall maskiert.
In Zeile fünf sind die Prädiktionen nach dem Warp in das RD-Gitter dargestellt. In

der letzten Zeile sind die Abweichungen der gewarpten Prädiktion gegenüber RD-map
zu erkennen.

Bei der Szene handelt es sich um ein Parkplatzszenario mit ein paar parkenden Autos
am linken Rand des Kamerabildes. Am rechten Rand sind komplexe Gebäudestrukturen
zu erkennen. Die Prädiktionen der Leistung (Zeile drei) zwischen Rückwärts- und Vor-
wärtswarp unterscheiden sich ganz offensichtlich. Die Grauwerte beim Rückwärtswarp
scheinen homogen und gefiltert zu sein. Bei Vorwärtswarp sind die Grauwerte heteroge-
ner verteilt und es sind schärfere Übergänge zwischen den Pixeln zu erkennen. Beim
Vorwärtswarp erscheinen die vertikalen Pfosten des Zauns am rechten Bildrand deutlich
intensiver als beim Rückwärtswarp.

Bei Betrachtung der Residuen aus der letzten Zeile fällt noch die Überschätzung
der Leistung durch den Rückwärtswarp besonders auf. Beim Vorwärtswarp sind die
Residuen mal positiv, mal negativ.

Weitere Beispiele der Inferenz sind in Abbildung 7.28 dargestellt. Um Platz einzuspa-
ren, wurden hier nur die Kamerabilder, RD-maps sowie die Prädiktionen dargestellt. Die
Beispiele wurden manuell ausgewählt. Dabei wurden folgende Beobachtungen gemacht.

Beim Beispiel aus der ersten Zeile sind im linken Bildbereich Kettenpfosten zu er-
kennen. Insbesondere beim Verfahren nach Vorwärtswarp wurde dort eine erhöhte
Reflexionsleistung prädiziert. Nach Ansicht des Autors ist das plausibel, da die Ketten-
pfosten aus Metall bestehen.

Im Beispiel aus der zweiten Zeile ist im linken Bildbereich die Spiegelung eines
Fahrzeuges im Fenster eines Geschäfts zu sehen. Die Prädiktoren schätzen hier erhöhte
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Empfangsleistung, was unplausibel ist.
Im Beispiel aus der dritten Zeile wurden bei beiden Prädiktoren die Stellen der

Bordsteinkante prädiziert. Die Signatur der Bordsteinkante ist auch in der RD-map zu
erkennen und daher plausibel.

Im Beispiel aus der vierten Zeile ist eine Leitplanke zu erkennen. In der RD-map
ergibt sich insbesondere bei den Leitplankenpfosten erhöhte Leistung. Die Leitplanke
an sich scheint aufgrund spiegelnder Reflexion nur geringe Leistung in der RD-map her-
vorzubringen. Insbesondere beim Prädiktor nach Vorwärtswarp scheint dieses Verhalten
(Pfosten hohe Leistung, Leitplanke geringe Leistung) korrekt abgebildet zu werden.

Im Beispiel aus der fünften Zeile ist im linken Bildbereich ein Baum zu sehen. In der
RD-map ist die Signatur des Baumes klar zu erkennen. Auch die Prädiktoren weisen
dem Baum erhöhte Reflexionsleistung zu.

Im Beispiel aus der sechsten Zeile sind zwei Fahrzeuge dargestellt. In der RD-map
sind entsprechend zwei Punkte mit erhöhter Leistung zu erkennen. Die Prädiktoren
weisen den Fahrzeugen ebenfalls erhöhte Leistung zu.

Im Beispiel aus der siebten Zeile ist im linken Bildbereich ein Fahrzeug eines Glaser-
unternehmens abgebildet. Insbesondere das Verfahren nach Vorwärtswarp erkennt die
feinen Strukturen der seitlichen Ladefläche und weist diesen, je nach Aspektwinkel, eine
erhöhte Leistung zu. Unplausibel erscheint, dass im Bereich der Fahrerkabine deutlich
höhere Leistung prädiziert wurde als im Bereich der Ladefläche.

Im Beispiel aus der achten Zeile ist ein Metallpfosten abgebildet. In der RD-map
ist dieser durch eine punktförmige Signatur abgebildet. Beide Prädiktoren prädizieren
an dieser Stelle eine erhöhte Leistung gegenüber der Umgebung. Auch dieses Szenario
wurde plausibel prädiziert.

7.5.11.4. Antwort zur wissenschaftlichen Hypothese

In diesem Abschnitt wurde ein Schätzer der Empfangsleistung eines Radars basierend
auf Kameradaten vorgestellt. Nach Wertung des Autors erscheinen die Prädiktionen
der Leistung durchaus plausibel. Es wurde gezeigt, dass durch Verwendung von Rück-
wärtswarp eine systematische Überschätzung der Leistung entsteht, und diese wurde
technisch begründet. Durch Verwendung von Vorwärtswarp wurde diese systematische
Überschätzung eliminiert bzw. zumindest deutlich reduziert.

Bei der quantitativen Auswertung aus Unterunterabschnitt 7.5.11.2 wurde die Szene
global ausgewertet. Die Metriken bilden also ein Mittel aus allen möglichen Objektklassen
ab. Für zukünftige Auswertungen ist eine dezidierte Auswertung, bezogen auf einzelne
Objektklassen, durchaus interessant, um mögliche systematische Fehler der Prädiktion
aufzudecken.
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Abbildung 7.27.: Beispiel der Leistungsschätzung: 1. Zeile: Kamerabild und RD-
map. 2. Zeile: Valide Pixel in Kamerabild und RD-map. 3. Zeile:
Prädikation durch NN Trainiert via Rückwärts- bzw. Vorwärtswarp.
4. Zeile: Wie 3. Zeile, aber nur valide Pixel. 5. Zeile: Prädiktionen pro-
jiziert mittels Vorwärtswarp in das RD-Gitter. 6. Zeile: Abweichungen
von Prädiktionen im RD-Gitter gegenüber RD-map. Nach [EB7].
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Abbildung 7.28.: Weitere Beispiele der Leistungsschätzung: Von links nach rechts:
Kamerabild, RD-map, Prädiktion via Rückwärtswarp, Prädiktion via
Vorwärtswarp. Verwendet wurde eine „viridis“ Farbcodierung wobei
hellere Farbwerte eine höhere Empfangsleistung darstellen. Nach [EB7].
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7.6. Zusammenfassung
In diesem Kapitel wurde das in dieser Arbeit vorgestellte Verfahren zum überwachten
Training einer NN basierten Radarsignalverarbeitung mittels Warping auf bzw. von Ka-
merabildern validiert. Die Vielfältigkeit des Verfahrens wurde für die unterschiedlichen
Anwendungen der Winkelschätzung, Zieldetektion und Klassifikation von Radardaten, so-
wie der Radarleistungsschätzung aus Kameradaten demonstriert. In allen Anwendungen
konnten plausible Ergebnisse erzielt werden. In den Anwendungen der Winkelschätzung
und Zieldetektion wurden die Leistungsfähigkeit der resultierenden Schätzer gegenüber
klassischen Schätzern anhand von umfangreichen Echtweltaufnahmen quantifiziert.
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8.1. Zusammenfassung
Der Wunsch nach immer leistungsfähigeren Advanced-Driver-Assistance-Systems (ADAS)
treibt die Entwicklung beteiligter Systeme wie automatische Perzeption, Bewegungs-
planung und Aktorik immer weiter an. Für die Perzeption bieten sich eine Vielzahl
verschiedener Sensoren an, die ein möglichst genaues Abbild der Fahrzeugumgebung
schaffen und ein semantisch automatisiertes Verständnis der Szene ermöglichen. Einer
der etablierten Sensortypen sind automotive Radarsysteme. Diese lassen sich aufgrund
ihrer Bau- und Wirkweise versteckt hinter beispielsweise Stoßfänger oder Schweller
integrieren, ohne dabei den Ausbreitungspfad der ausgesendeten und an der Umgebung
reflektierten EM-Wellen zu blockieren. Der Sensor besteht neben der Hardware, welche
beispielsweise Radom, Gehäuse, Antennendesign und Schaltkreise einschließt, auch
aus Software. In dieser werden die Reflexionen der Umgebung ausgewertet. Gängige
Algorithmen für diese Verarbeitung wurden in Abschnitt 2.1 vorgestellt.

Um dem Wunsch nach leistungsfähiger Perzeption nachzukommen, ist eine Weiterent-
wicklung der Algorithmen denkbar und wahrscheinlich sogar notwendig. Im Rahmen
dieser Arbeit wurde untersucht, inwieweit sich NNe zur Umsetzung dieser Algorithmen
eignen und welchen statistischen Leistungsvorteil diese erreichen können. Das Training
von NNen nach dem Prinzip der Fehlerrückführung (engl.: „error-backpropagation“)
erfordert dabei annotierte Trainingsdaten. Zur Annotation der Trainingsdaten in größe-
rer Menge wurde zunächst ein Versuchsfahrzeug mit Referenzsensorik, bestehend aus
Kamera, Lidar und DGPS-INS, aufgebaut (Kapitel 3). Die Daten der Referenzsensorik
wurden fusioniert und verarbeitet, so dass der wesentliche Messraum des Radarsensors,
bestehend aus den Zuständen Entfernung, Radialgeschwindigkeit und Einfallswinkel,
abgedeckt werden konnte. Einen wesentlichen Beitrag stellt dabei die Szenenflussschät-
zung aus Kapitel 5 dar, bei welcher durch Fusion aller Sensoren eine verbesserte und am
Radar ausgerichtete Geschwindigkeitsschätzung der Umgebung realisiert werden konnte.

In Kapitel 6 wurde gezeigt, wie Radardaten aus einem RAD-Gitter mittels differen-
zierbarer Warpingschicht in Kamerabilder projiziert werden können. Analog wurde eine
Warpingschicht demonstriert, bei welcher Daten aus dem Pixelgitter der Kamera in das
RAD-Gitter des Radars projiziert werden können. Durch die Projektion zwischen den
Pixelgittern von Kamera und Radar und der damit verbundenen Assoziation der Pixel
lassen sich die automatisiert generierten Annotationen der Kamera nutzen, um ein über-
wachtes Training einer NN-basierten Signalverarbeitung zu ermöglichen. In Kapitel 7
wurde dies ausgiebig an Beispielen wie einer Winkelschätzung, einer Zieldetektion und
semantischen Segmentierung von RD-Spektren demonstriert. Es wurde gezeigt, dass
die NN-basierte Signalverarbeitung mindestens ebenbürtige Schätzgenauigkeiten gegen-
über klassischen Signalverarbeitungsverfahren unter realistischen Umgebungsszenarien
erreichen kann.

Die Assoziation von Radar- und Kamerapixeln erlaubt darüber hinaus das Trainieren
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einer NN-Signalverarbeitung der Kameradaten mit Hilfe der Annotationen aus dem
RAD-Gitter. Dies wurde am Beispiel einer Leistungsschätzung demonstriert, bei welcher
ein NN die Radarempfangsleistung aus den Kameradaten prädiziert. Die Ergebnisse
sind vielversprechend und in Summe biasfrei, wenn auch nicht immer plausibel.

Der CUDA und PyTorch basierte Code für den Vorwärtswarp wurde unter
https://github.com/ChrGri/Forward-Warp veröffentlicht.

8.2. Ausblick
Insbesondere bei der Prädiktion der Radarempfangsleistung aus Kamerabildern ergibt
sich nach Empfinden des Autors großes Entwicklungspotential. Die Leistungsschätzung
könnte tiefere Einblicke in die Wahrnehmung durch den Radar ermöglichen und bei
der Auswertung zum Beispiel bei der Simulation von anderen Radarkonfigurationen
nützlich sein. Ebenfalls nützlich könnte die Leistungsschätzung für die Validierung von
Radarperzeptionsalgorithmen sein, da sie einen Einblick in das liefert, was für den Radar
potenziell sichtbar oder unsichtbar ist.

Beim vorgestellten Leistungsschätzer wurde eine kohärente Summation der reellwerti-
gen Kamerapixel durchgeführt. Es ist denkbar, hier noch die Phasenlagen der Wellen
zu schätzen. Außerdem könnte eine Raytracing-Schicht entwickelt werden, welche Mehr-
wegereflexionen nachbildet. Durch beides könnte das zu schätzende Verhalten durch
teilweise „white box engineering“ stückweise vorgegeben und das Schätzproblem des
NN so vereinfacht werden.
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A.1. Untersuchungen zum Umgang mit Labelnoise durch
Optimierung im Skalierungsraum

Beim Warping der Netzwerkprädiktionen vom RD-Gitter in das Kamerabild kann es
durch fehlerhafte Schätzung der Warpingparameter (Entfernung, Geschwindigkeit und
Winkel) zu einer fehlerhaften Positionierung im Kamerabild kommen. Durch die falsche
Positionierung im Kamerabild werden die Netzwerkprädiktionen im Trainingsprozess
mit falschen Zielwerten verglichen, im Allgemeinen auch „Label-noise“ genannt, wodurch
eine Degradation des Trainingsprozesses möglich ist. Es wird daher zusätzlich untersucht,
ob es vorteilhaft ist, die Auflösung des Radars virtuell zu reduzieren, um somit die
Anforderung an die Warpingparameter zu reduzieren und den Einfluss fehlerhafter
Warpingparameter auf den Trainingsprozess zu reduzieren.

Um das Auflösungsvermögen des Radars virtuell zu reduzieren, wird auf die Netz-
werkprädiktion im RD-Gitter ein 2D-Mittelwertfilter angewendet. Zwar bleibt damit
die Dimension des RD-Gitters konstant, jedoch werden die Netzwerkprädiktionen in
umliegende Pixelnachbarschaften übertragen und bilden mit der Pixelnachbarschaft eine
Linearkombination, welche den Wert der gefilterten Prädiktion bestimmt. Nun wird nicht
die ursprüngliche Prädiktion in das Kamerabild gewarpt, siehe Unterabschnitt 7.2.4,
sondern die mittelwertgefilterte Prädiktion. Führen fehlerhafte Warpingparameter beim
Training nun dazu, dass nicht das korrekte Pixel aus dem RD-Gitter in das Kamerabild
gewarpt wird, sondern eins aus seiner Pixelnachbarschaft, so steckt in dieser Pixelnach-
barschaft auch die Prädiktion der korrekt gewarpten Pixels. Wird im Trainingsprozess
die Pixelabweichung für ein Kamerapixel berechnet, so hat das Parameterupdate für
alle RD-Gitter-Pixel aus der Pixelnachbarschaft Folge.

Durch die Mittelwertfilterung der Prädiktion werden leider auch Prädiktionen von
RD-Gitter-Pixel trainiert, welche möglicherweise gar nicht zum Kamerapixel passen.
Um diese ungewollten Trainingspfade zu blockieren bzw. abzuschwächen, wird kein
klassisches Mittelwertfilter verwendet, sondern eine gewichtete Mittelung anhand der
Leistung aus der RD-map. Die Wichtung berücksichtigt die Leistung im RD-Gitter, so
dass Pixel mit höherer Intensität größeren Einfluss haben:

φprediction, scaled(u, v, s) =
∑s

us=–s
∑s

vs=–s φprediction(u + us, v + vs)(RD[u+us,v+vs] – RDmin)
(2s + 1)2∑s

us=–s
∑s

vs=–s(RD[u+us,v+vs] – RDmin)
. (A.1)

Hier entspricht RD[(u,v] – RDmin der Leistungsdifferenz des Pixels und der global mi-
nimalen Leistung, so dass ausschließlich positive Gewichtungen auftreten. Der Parameter
s bestimmt die Fenstergröße der Faltung, welche zu 2s + 1 festgelegt wurde.
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Die Prädiktion φprediction, scaled(u, v, s) soll sich somit automatisch an die Position der
Leistungssignatur in der RD-map angleichen und mögliche Fehler im Bereich der Größe
des Faltungskerns in der Positionierung ausgleichen. Das Ergebnis dieser Skalierung ist
in Abbildung A.1 an simulierten Daten für s = 0 und s = 2 dargestellt.
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SNR in dB →

Φpred.,scaled(s = 0) = –11.2◦

Φpred.,scaled(s = 2) = 1◦

–50 0 50

φpred. in
◦
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Abbildung A.1.: Beispiel für die Prädiktion im Skalierungsraum: Links: Aus-
schnitt einer simulierten RD-maps. Rechts: Winkelschätzungen für
jedes Pixel. In roten Kästen dargestellt, sind die nach Gleichung A.1
gemittelten Winkelschätzungen für s = 0 und s = 2. Der Zielwert des
Winkels für die Signalanteile beträgt 0◦. Für das Hintergrundrauschen
wurde der Winkel aus einer Gleichverteilung gezogen. Zu erkennen ist,
dass bei s = 2 der prädizierte Winkel nur um 1◦, statt zuvor 11.2◦ vom
Zielwert 0◦ abweicht.

Eine fehlerhafte Geschwindigkeitsschätzung der Referenzsensorik wurde simuliert, in
der nicht ein lokales Maximum selektiert wurde, sondern ein horizontal dazu versetztes
Pixel, hervorgehoben durch das kleine rot dargestellte Kästchen. Als Zielwinkel für alle
Ziele wurde 0◦ eingestellt und der Winkel aller Pixel mit einem zusätzlichen Winkel
aus einer Gleichverteilung beaufschlagt, um überlagertes Rauschverhalten nachzustellen.
Nun wurde der gemittelte Winkel für s = 0 (kleine rote Kästchen) und s = 2 (größere
rote Kästchen) gemäß Gleichung A.1 berechnet und entsprechend in die Abbildung
eingetragen. Zu erkennen ist, dass der gemittelte Winkel für s = 0 etwa –11.2◦ entspricht,
was gegenüber dem Zielwert von 0◦ einer ebenso großen Abweichung entspricht. Der
gemittelte Winkel bei s = 2 entspricht dagegen 1◦, was einer deutlich geringeren
Abweichung entspricht. Durch die geringe Abweichung zum Zielwert wird eine geringere
Anpassung der Netzwerkparameter während des Trainings erzwungen. Dieser Effekt ist
erwünscht, da die Abweichung zum Zielwert hier primär durch fehlerhafte Assoziation
von Zielwerten und Prädiktionen zwischen Kamerabild und RD-Gitter entstanden ist.

Da die optimale Wahl von s nicht bekannt ist, werden mehrere gemittelte Netz-

168



A.1. Untersuchungen zum Umgang mit Labelnoise durch Optimierung im
Skalierungsraum

werkprädiktionen aus dem Wertebereich S = [0, 1, 2] parallel ermittelt, für jede die
Abweichung gegenüber den Zielwerten ermittelt und wiederum gewichtet gemittelt.

Bei Anwendung des Skalierungsparameters s sind die gewarpte Prädiktion, die Pixel-
kosten und die Gesamtkosten folgendermaßen zu adaptieren:

φpredict, cam(p, s) = ηBW

(

φprediction, scaled(s); vr(p), |xr(p)|
)

. (A.2)

lDOA(p, s) =
√

(φlabel(p) – φpredict, cam(p, s)2 + 10–6. (A.3)

lDOA, all =
S∑

s=0

1
|Pall ∩ Ptrain|

∑

p∈Pall∩Ptrain

lDOA(p, s). (A.4)

Es wird nun untersucht, wie sich das Training im Skalierungsraum nach dem oben
genannten Vorgehen auf die Qualität der Inferenz für Winkelschätzung auswirkt. Dazu
werden die in Tabelle A.1 spezifizierten NN Parametrierungen trainiert. Es werden also
zwei Netwerkarchitekturen (1× und 3× 3) jeweils mit oder ohne diese Pixelselektion
getestet.

Tabelle A.1.: NN Architekturen und Konfigurationen mit Skalierungsräumen
der Prädiktionen.

Name Faltungskern Schichtmodifizierer (t) Skalierungsebenen
NN2 1× 1 3 0
NN3 1× 1 3 2
NN6 3× 3 1 0
NN7 3× 3 1 2

A.1.1. Trainingsprozess

Analog zu Unterabschnitt 7.2.10 wurde da Training für die NN nach Tabelle A.1
durchgeführt. Der Verlauf der Trainingskosten ist in Abbildung A.2 gezeigt.

Auch hier ist eine Konvergenz der Schätzer nach wenigen Beispielen zu beobachten.

A.1.1.1. Quantitative Auswertung

Analog zu Unterunterabschnitt 7.2.11.3 ist eine quantitative Auswertung vorgenommen
worden. Das erreichte MAE der Schätzer ist in Abbildung A.3 über das SNR aufgetragen.
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Abbildung A.2.: Verlauf des Trainingsprozesses der Winkelnetzwerke: Die Kos-
ten während des Trainings konvergieren bereits nach einigen Trainings-
beispielen.
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Abbildung A.3.: Qualitätsmaße der Winkelschätzer über SNR: Die mittlere abso-
lute Abweichung der Winkelschätzer über SNR. Vergrößert dargestellt
sind jeweils ein Bereich niedrigen SNRs, mittleren SNRs und hohen
SNRs.
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Wie zuvor auch, ist die bessere Schätzgenauigkeit bei steigendem SNR zu beobachten.
Zur besseren Übersicht wurden die Schätzer an drei Stützstellen entsprechend erreichtem
MAE hierarchisch in Tabelle A.2 aufgelistet.

Tabelle A.2.: Hierarchische Einordnung der Schätzer entsprechend erreichter
MAE.

M
A

E
→

SNR 5 dB SNR 20 dB SNR 35 dB
NN0 NN0 NN0
PM NN2 NN2
NN3 NN3 NN3
NN1 NN1 NN1
NN2 PM NN6
BF NN6 NN4

NN5 NN4 PM
NN7 NN5 NN5
NN4 BF NN7
NN6 NN7 BF

Zur Untersuchung des Einflusses mit der Optimierung der NN im Skalierungsraum
sind gemäß Tabelle A.2 die NN Paare NN0 vs. NN2, NN1 vs. NN3, NN4 vs. NN6 und
NN5 vs. NN7 zu vergleichen. In Tabelle 7.3 zeichnet sich kein klarer Unterschied zwischen
NNen mit oder ohne Skalierungsraumoptimierung ab. Bei den über den größten Teil
des SNR-Bereichs am besten verhaltenden NNen, NN5 und NN7, handelt es sich um
ein oberes Paar mit und ohne Skalierungsraumoptimierung. Das Paar erreicht durchweg
ein nahezu identisches MAE. Es wird geschlussfolgert, dass die hier implementierte
Art der Skalierungsraumoptimierung keinen signifikanten Einfluss auf die Qualität der
Winkelschätzer beim verwendeten Datensatz hat.

Um auch hier eventuelle Winkelinhomogenitäten aufzudecken, wurde in Abbildung A.4
das erreichte MAE über Einfallswinkel und SNR aufgetragen.

Für die NN mit Optimierung im Skalierungsraum (NN2, NN3, NN6 und NN7) sehen
die Abbildungen unwesentlich anders aus gegenüber den Abbildungen der regulären NN
(NN0, NN1, NN4 und NN5).

A.1.1.2. Zusammenfassung

Bei der quantitativen Analyse konnten keine signifikanten Unterschiede durch die
Anwendung der Optimierung mit Skalierungsebenen beobachtet werden. Es wird daher
geschlussfolgert, dass die Optimierung mit Skalierungsebenen hier keinen signifikanten
Einfluss auf die Qualität der Winkelschätzgenauigkeit hat.
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Abbildung A.4.: 2D MAE Histogramme: Darstellung der Abhängigkeit von MAE
gegenüber von SNR und Einfallswinkel.
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A.2. Gegenüberstellung von Aspektwinkel und SNR für
Zieldetektion

In Unterunterabschnitt 7.3.2.3 wurde eine statistische Untersuchung von Aspektwin-
kel und SNR durchgeführt. Es wurden automatisch Bildregionen markiert, welche
dem eingeführten Modell widersprechen. In Abbildung A.5 sind weitere Beispielframes
dargestellt.
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Abbildung A.5.: Gegenüberstellung von Aspektwinkel und SNR: Links: Proji-
ziertes SNR; Mitte: Aspektwinkel-Wert; Rechts: Projiziertes SNR und
farblich markiert (pink, orange) Abweichungen von der Modellbeschrei-
bung.

A.2.1. Gegenüberstellung NN und CFAR Prädiktion für Zieldetektion

Um die Unterschiede zwischen den Detektoren weiter zu analysieren, wurden die Bi-
närmasken1 der Zieldetektoren miteinander verglichen, um so etwaige Unterschiede
untereinander ausfindig zu machen. Für diesen Vergleich wurden die Binärmasken aus

1Als Binärmaske wird die Klassifikation der Pixel der RD-map bezeichnet
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allen Frames mittels des aus der Bildverarbeitung bekannten Verfahrens Structural-
Similarity-Index (SSIM) nach [WBSS04] in Bezug gebracht. Beim SSIM werden die
Leuchtdichte, der Kontrast und die Struktur der Bilder miteinander verglichen und in
Form eines Skalars im Intervall [0, 1] angegeben. Höhere Werte werden bei sich stärker
ähnelnden Bildern erzeugt. Eine tiefere Beschreibung der Metrik würde den Rahmen
dieser Arbeit sprengen. Der interessierte Leser sei deshalb auf oben genannte Literatur
verwiesen.

Sicherlich sind auch andere Metriken zum Vergleich der Bildinhalte verwendbar.
Aufgrund der Popularität wurde sich für SSIM entschieden. Die SSIM-Metrik ist für
sämtliche Bildindizes aus dem Testdatensatz in Abbildung A.6 dargestellt.
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·104
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Bildindex →
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IM
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Abbildung A.6.: Structual Similarity der Detektionen aus CFAR und NN: Zum
automatischen Identifikation der sich am stärksten und am schwächsten
ähnelnden Detektionen, wurde der SSIM für alle Frames berechnet.

In Abbildung A.6 ist zu erkennen, dass der SSIM zwischen NN-basierter Detektion
und CFAR-Detektion hier immer Werte oberhalb von 0.5 annimmt und größtenteils
oberhalb von 0.8 liegt. Die SSIM-Werte ermöglichen nun das Sortieren der Binärmasken
entsprechend dieser automatisch ermittelten Ähnlichkeit und somit das AufÏnden
von Beispielen, bei denen CFAR und NN besonders ähnliche oder unterschiedliche
Detektionen erreicht haben. Anhand des SSIM wurden automatisch die fünf Frames
mit der geringsten Übereinstimmung ausgewählt und in Abbildung A.7 dargestellt.
Die fünf Frames mit der größten Übereinstimmung wurden analog in Abbildung A.8
dargestellt. Bei den Frames mit der größten Übereinstimmung ist, wie zu erwarten, nur
ein geringer optischer Unterschied zwischen NN und CFAR-Prädiktion auszumachen.
Aus Sicht des Autors ist es hier nicht möglich, eines der beiden Verfahren zu präferieren.
In den Beispielen mit der geringsten Übereinstimmung dagegen scheint die Prädiktion
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des NN eine bessere Segmentierung der RD-maps durchgeführt zu haben. Der Detektor
schlägt in Bereichen erhöhter Leistung häufiger an als der CFAR-Detektor, erzeugt
aber keine offensichtlichen Falschdetektionen. Nach Meinung des Autors könnte dieser
Unterschied durch eine statistische Optimierung des CFAR-Detektors angepasst bzw.
minimiert werden. Aus den Beispielen kann jedoch geschlossen werden, dass der NN-
basierte Detektor plausible Entscheidungen trifft und das Training mittels Aspektwinkel
erfolgreich durchgeführt werden konnte.
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Abbildung A.7.: Optischer Vergleich der Detektoren (niedrige Übereinstim-
mung): Detektionen mit größter SSIM Abweichung. Von links nach
rechts: RD-map, NN Prädiktion TDpredict, RD-grid, TDpredict, RD-grid >
0.5, CFAR Prädiktion
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Abbildung A.8.: Optischer Vergleich der Detektoren (hohe Übereinstimmung):
Detektionen mit größter SSIM Ähnlichkeit. Von links nach rechts:
RD-map, NN Prädiktion TDpredict, RD-grid, TDpredict, RD-grid > 0.5,
CFAR Prädiktion
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A.3. Konfusionsmatritzen
Bei der Bewertung der semantischen Segmentierung wurden die Klassifikationsraten der
Schätzer herangezogen. Die Klassifikationsrate ist die Wahrscheinlichkeit, mit welcher
die Klasse der Objekte korrekt geschätzt wurde. Da neben der korrekten Klassifikation
auch die Analyse der Falschklassifikationen interessant sein mag, sind in Tabelle A.3 -
A.10 die Konfusionsmatrizen der Schätzer dargestellt.

In den Konfusionsmatrizen sind zeilenweise die tatsächlichen Klassen der Objekte
gesammelt, spaltenweise die Prädiktionen zu diesen Klassen. In der ersten Zeile sind
somit Objekte vom Typ „Stationär“ gesammelt und die Wahrscheinlichkeiten, mit
welchen diese entsprechend als „Stationär“, „Fußgänger“ oder „Fahrzeug“ klassifiziert
wurden.

Zu erkennen ist, dass je nach Parametersatz die Klassifikationsraten der Schätzer
für die jeweiligen Klassen beeinflusst werden. Zum Beispiel wurde für Paremeterset 4
nur eine Klassifikationsrate für Fahrzeuge von etwa 36% erreicht. Im Vergleich dazu
wurde bei Parameterset 1 eine Klassifikationsrate von etwa 75% erreicht. Die Wahl der
Parameter hat also einen erheblichen Einfluss auf Klassifikation und kann somit als
Werkzeug für das Tuning der selbigen verstanden werden. Die Wahl der Tuningparameter
hängt vom Fokus der Echtweltanwendung ab und wird deshalb im Rahmen dieser Arbeit
nicht weiter spezifiziert.

Tabelle A.3.: Konfusionsmatrix für semantische Segmentierung: Angaben in %,
Parameterset 1

Prädiktion
Stationär Fussgänger Fahrzeug

W
ah

re
K

la
ss

e Stationär 97.66 2.11 0.23
Fußgänger 60.12 32.2 7.69
Fahrzeug 19.5 5.53 74.97

Tabelle A.4.: Konfusionsmatrix für semantische Segmentierung: Angaben in %,
Parameterset 2

Prädiktion
Stationär Fussgänger Fahrzeug

W
ah

re
K

la
ss

e Stationär 96.17 3.8 0.02
Fußgänger 50.38 47.28 2.33
Fahrzeug 19.09 23.7 57.21
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Tabelle A.5.: Konfusionsmatrix für semantische Segmentierung: Angaben in %,
Parameterset 3

Prädiktion
Stationär Fußgänger Fahrzeug

W
ah

re
K

la
ss

e Stationär 94.19 5.77 0.04
Fußgänger 39.6 59.57 0.82
Fahrzeug 16.98 23.15 59.86

Tabelle A.6.: Konfusionsmatrix für semantische Segmentierung: Angaben in %,
Parameterset 4

Prädiktion
Stationär Fußgänger Fahrzeug

W
ah

re
K

la
ss

e Stationär 95.67 4.3 0.03
Fußgänger 50.52 48.99 0.48
Fahrzeug 18.93 45.05 36.02

Tabelle A.7.: Konfusionsmatrix für semantische Segmentierung: Angaben in %,
Parameterset 5

Prädiktion
Stationär Fußgänger Fahrzeug

W
ah

re
K

la
ss

e Stationär 96.16 3.82 0.02
Fußgänger 50.64 49.28 0.08
Fahrzeug 19.25 33.44 47.31

Tabelle A.8.: Konfusionsmatrix für semantische Segmentierung: Angaben in %,
Parameterset 6

Prädiktion
Stationär Fußgänger Fahrzeug

W
ah

re
K

la
ss

e Stationär 95.53 4.39 0.08
Fußgänger 43.92 53.17 2.91
Fahrzeug 16.5 17.57 65.93

Tabelle A.9.: Konfusionsmatrix für semantische Segmentierung: Angaben in %,
Parameterset 7

Prädiktion
Stationär Fußgänger Fahrzeug

W
ah

re
K

la
ss

e Stationär 91.36 8.6 0.05
Fußgänger 40.43 53 6.57
Fahrzeug 17.18 16.39 66.42
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Tabelle A.10.: Konfusionsmatrix für semantische Segmentierung: Angaben in %,
Parameterset 8

Prädiktion
Stationär Fußgänger Fahrzeug

W
ah

re
K

la
ss

e Stationär 91.14 8.82 0.04
Fußgänger 43.51 56.37 0.12
Fahrzeug 15.16 42.6 42.24

A.4. Beispiele der semantischen Segmentierung
Nachfolgend sind einige zusätzliche Beispiele der semantischen Segmentierung dargestellt.
In Abbildung A.9 ist ein Szenario mit bewegtem Ego-Fahrzeug zu sehen. Das Ego-
Fahrzeug wird von einem Kleintransporter verfolgt. Dieser wird korrekt durch das NN
als bewegtes Fahrzeug klassifiziert. Der gehende Fußgänger im linken Bildbereich von
Kamera 2 wurde fälschlicherweise als stationär klassifiziert.
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Abbildung A.9.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben für die Klassen
„Stationär“, „Fußgänger“ und „Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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In Abbildung A.10 ist ein Szenario mit bewegtem Ego-Fahrzeug zu sehen. Im linken
Bildbereich von Kamera 2 ist ein Fußgänger zu sehen, welcher neben einem parkenden
Fahrrad steht. Dieser wurde korrekt als stationär klassifiziert.
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Abbildung A.10.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben für die Klassen
„Stationät“, „Fußgänger“ und „Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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In Abbildung A.11 ist ein Szenario mit stehendem Ego-Fahrzeug zu sehen. Im Bild
von Kamera 2 sind ein weiteres stationäres Fahrzeug sowie ein sich bewegendes Fahrrad
samt Fahrer zu sehen. Fahrzeug und Fahrrad wurden korrekt als stationär und Vehikel
klassifiziert.
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Abbildung A.11.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben für die Klassen
„Stationät“, „Fußgänger“ und „Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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In Abbildung A.12 ist ein Szenario mit fahrendem Ego-Fahrzeug zu sehen. Im Bild
von Kamera 2 sind parkende Fahrzeuge zu sehen. Diese wurden korrekt als stationär
erkannt.
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Abbildung A.12.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben für die Klassen
„Stationät“, „Fußgänger“ und „Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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In Abbildung A.13 ist ein Szenario mit fahrendem Ego-Fahrzeug zu sehen. Die
Umgebung ist stationär und wurde folgerichtig als stationär klassifiziert.
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Abbildung A.13.: Beispiel der semantischen Segmentierung: Oben: Die zwei Ka-
merabilder und die RD-map. Mitte: Netzwerkausgaben für die Klassen
„Stationät“, „Fußgänger“ und „Fahrzeug“ gewarpt in das Kamerabild.
Unten: Netzwerkausgaben im RD-Gitter.
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Akronyme

ADAS Advanced-Driver-Assistance-Systems.

ADU Analog-Digital-Umsetzer.

BBox Bounding-Box.

BF Beamforming.

BI bilineare-Interpolation.

CA-CFAR Cell Averaging Constant False Alarm Rate.

CAD Computer-Aided-Design.

CFAR Constant-False-Alarm-Rate.

CNN Convolutional-Neural-Network.

CS Chirp-Sequence.

DBSCAN Density-Based-Spatial-Clustering-of-Applications-with-Noise.

DFT Diskrete-Fourier-Transformation.

DGPS Differential-GPS.

DGPS-INS Differential-GPS-with-Inertial-Navigation-System.

DNN Deep-Neural-Network.

DoA Direction-of-Arrival.

DRISF Deep-Rigid-Instance-Scene-Flow.

DRISFwR Deep-Rigid-Instance-Scene-Flow-with-Radar.

EM elektromagnetische.

FFT Fast-Fourier-Transformation.

FMCW Frequency-Modulated-Continuous-Wave.

FoV Field-of-View.

FPS Frames-Per-Second.
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Akronyme

FT Fourier-Transformation.

GAN Generative-Adversarial-Network.

GN Gauß-Newton.

GPS Global-Positioning-System.

GPU Graphics-Processing-Unit.

ICP Iterative-Closest-Points.

KOOS Koordinatensystem.

LKW Lastkraftwagen.

MAE Mean-Absolute-Error.

MIoU Mean-Intersection-over-Union.

ML Machine-Learning.

MTI Moving-Target-Indication.

NN neuronale Netzwerke.

NNI Nächster-Nachbar-Interpolation.

PC Personal-Computer.

PCA Prinicipal-Component-Analysis.

PKW Personenkraftwagen.

PM Phase-comparison-Monopulse.

RA range-Azimuth.

RAD range-azimuth-Doppler.

RAED range-azimuth-elevation-Doppler.

RCS Radar-Cross-Section.

RD range-Doppler.

RGB Red-Green-Blue.

RNN Recurrent-Neural-Network.

Rx Receiver.

SAR Synthetic-Aperture-Radar.
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SNR Signal-to-noise-ratio.

SSIM Structural-Similarity-Index.

STFT Short-Time-Fourier-Transformation.

TI trilineare-Interpolation.

UAV Unmanned-Aerial-Vehicle.

UDP User-Datagram-Protocol.

ULA Uniform-Linear-Array.

VAE Variational-Autoencoder.

WDF Wahrscheinlichkeitsdichtefunktion.
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Notationen und Symbole

Notationen
Zur einheitlichen Darstellung in dieser Arbeit werden folgende Notationen verwendet:

• Zur Unterscheidung von Skalaren, Vektoren und Matrizen werden Kleinbuchstaben,
Kleinbuchstaben in Fett und Großbuchstaben in Fett verwendet, z.B. x, x und ,
X.

• Zur Darstellung von Mengen, wird die kalligrafische Darstellung verwendet, z.B.
X .

• Zusatzinformationen wie Koordinatensystem, Namen, Indices werden als Klein-
buchstaben an die Variable angehängt, z.B. xi . Zur Indexierung von Matrixelemen-
ten, z.B. Zeilen- und Spaltenindex, werden diese tiefgestellt in eckige Klammern
notiert, z.B. Xp[ij].

• Zeitliche Kennzeichnung von Symbolen werden durch hochgestellte, in runden
Klammern notierte Ziffern notiert, z.B. x(i).

• Als Dezimaltrennzeichen bei Zahlenangaben wird ein Punkt verwendet, z.B. so
dass N1.23 dem Wert „ein Euro dreiundzwanzig Cent“ entspricht.

• Komplexe Konjugation wird durch hochgestelltes Sternchen X∗ gekennzeichnet.

Symbole
Kapitel 2
φaz . . . . . . . . . . . . . . . . . . . Azimutwinkel der Reflexion
φel . . . . . . . . . . . . . . . . . . . Elevationswinkel der Reflexion
b̂ . . . . . . . . . . . . . . . . . . . . . Position des Reflektors in Reflektorkoordinaten
r̂ . . . . . . . . . . . . . . . . . . . . . Position des Reflektors in Radarkoordinaten
r . . . . . . . . . . . . . . . . . . . . . Relativer Abstand des Reflektors
λ . . . . . . . . . . . . . . . . . . . . Wellenlänge
Srd . . . . . . . . . . . . . . . . . . . komplexwertiges Range Doppler FFT Spektrum
RD . . . . . . . . . . . . . . . . . . RD-map
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Kapitel 3

xJ . . . . . . . . . . . . . . . . . . . 3D Koordinaten im Koordinatensystem J in Vektorschreibweise
I(J R . . . . . . . . . . . . . . . . . Rotationsmatrix zur Drehung vom Ursprungskoordinatensystem J

in das Zielkoordinatensystem I
I(J t . . . . . . . . . . . . . . . . . . Translationsvektor zur Verschiebung der Koordinaten vom Ur-

sprungskoordinatensystem J in das Zielkoordinatensystem I

Kapitel 4

RGB . . . . . . . . . . . . . . . . . Kamerabild mit RGB Farbkanälen
Dsparse . . . . . . . . . . . . . . . Spärliche Tiefenmaske
D . . . . . . . . . . . . . . . . . . . . Dichte Tiefenmaske
N . . . . . . . . . . . . . . . . . . . . Maske der Oberflächennormalen
M . . . . . . . . . . . . . . . . . . . . Maske der semantische Instanz-Segmentierung
MVeh. . . . . . . . . . . . . . . . . Instanz-Maske für Fahrzeuge
MPed. . . . . . . . . . . . . . . . . Instanz-Maske für Fußgänger
F . . . . . . . . . . . . . . . . . . . . Maske des optischen Flusses
PDBSCAN . . . . . . . . . . . . Menge der durch DBSCAN geclusterten Pixel

Kapitel 5

Pfg . . . . . . . . . . . . . . . . . . . Menge aller Pixel der Klassen Fußgänger oder Fahrzeug
Pradar . . . . . . . . . . . . . . . . Menge aller Pixel im Radar FoV
Pi . . . . . . . . . . . . . . . . . . . . Schnittmenge aller Pixel aus Radar FoV und verfeinerter Instanz-

Segmentierung via DBSCAN
ξ . . . . . . . . . . . . . . . . . . . . . Szenenfluss eines Pixels (R3×1)
ξbg . . . . . . . . . . . . . . . . . . . Szenenfluss induziert durch Bewegung der Kamera über Grund

(R3×1)
ξfg . . . . . . . . . . . . . . . . . . . Szenenfluss induziert durch Bewegung von Aktoren über Grund

(R3×1)
p = [u, v]t . . . . . . . . . . . . Pixel im Kamerabild (N2×1)
pr = [ur , vr ]t . . . . . . . . . Pixel in der RD-map (N2×1)
ṙ(ξradar) . . . . . . . . . . . . . Radiale Geschwindigkeit eines Punktes im Radarkoordinatensystem
ξradar6 . . . . . . . . . . . . . . . Kartesische Geschwindigkeit eines Punktes im Radarkoordinatensys-

tem
RC ,bg . . . . . . . . . . . . . . . . Rotationsmatrix zur Aufprägung der Drehung bedingt durch Ego-

Bewegung, für Punkte gegeben im Kamera-Koordinatensystem
tC ,bg . . . . . . . . . . . . . . . . . Translationsvektor zur Aufprägung der Translation bedingt durch

Ego-Bewegung, für Punkte gegeben im Kamera-Koordinatensystem
ξradar . . . . . . . . . . . . . . . . Szenenfluss eines Pixels (R3×1 im Radarkoordinatensystem)
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Kapitel 6
RDC . . . . . . . . . . . . . . . . . Auf das Pixelgitter des Kamerabildes projizierte RD-map
ηBW

(

xRD-grid; ṙ , r
)

. . Rückwärtswarp Operation

ηFW

(

xcam; ṙ , r
)

. . . . . Vorwärtswarp Operation
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1.1. Übersicht über die Trainingspipeline zum überwachten Lernen
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durch Fehlerrückführung durch die Schichten propagiert und entsprechend
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und Tiefenschätzung im Kamerabild unterstützt. Nach [EB6]. . . . . . . 7
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elementaren Verarbeitungsschritte bei CS Modulation. . . . . . . . . . . 15
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Links: Kameraabbildungen rechts aus dem Fahrzeug heraus, sowie nach
hinten gerichtet. Rechts: RD-map der Szene. Bildhelligkeit verhält sich
proportional zur Leistung. Szeneninhalt im Kamerabild und RD-map
wurden durch farbige Rechtecke verbunden. . . . . . . . . . . . . . . . . 17

2.6. Zieldetektion mittels CFAR: Links: Typisches RD-map aus Fahrszene.
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der CFAR-Detektion. Heller Bildbereiche entsprechen Bewertung nach
H1 Hypothese. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7. Phasenlage der reflektierten Welle an Empfangsantennen: Lage
EM-Wellen strahlen in lineares Antennenarray. In rot gezeichnet sind
beispielhafte Wellenfronten. Durch die unterschiedliche Position der An-
tennen ergeben sich unterschiedliche Phasenlagen der Wellen. . . . . . . 20

3.1. Qualitative Darstellung und Ausrichtung der Koordinatensys-
teme: Rot: Fahrzeug-KOOS; Grün: Lidar-KOOS; Blau: DGPS-KOOS;
Lila: Kamera-KOOS; Orange: Radar-KOOS. Nach [EB6]. . . . . . . . . 28
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3.2. Horizontierung der Bodenreflexionen aus Lidarsensor: Links:
Die schwarzen Punkte markieren die als Boden detektierten Punkte,
die roten Punkte entsprechend Ausreißer bei der RANSAC-Schätzung.
Ebenfalls eingetragen sind qualitative Darstellungen der identifizierten
Oberflächennormalen nsurf., der Zielausrichtung der Oberflächennormalen
nvert. und der Drehachse nquat.. Rechts: Darstellung der Bodenreflexionen
(schwarz) und Ausreißer (rot) nach der Rotation. . . . . . . . . . . . . . 31

3.3. Verfolgung wichtiger keystones in der Lidar-Punktwolke: Links:
Darstellung der nicht in der Fahrbahnebene liegenden Punktwolke sowie
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nach Geradeausfahrt des Fahrzeuges. Die Tracks verlaufen im Winkel γ2
zur Bildhorizontalen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4. Rektifizierung des Kamerabildes: Links: unbearbeitetes Bild RGBdist..
Rechts: Bild nach Rektifizierung RGBrect.. Die Verzerrung durch die Ka-
meralinse führt zu einer Verzerrung gerader Objekte im Kamerabild,
bspw. den Längsträgern an der Decke. Nach der Rektifizierung liegt der
Längsträger auch im Bild in einer Flucht, mit der eingezeichneten gelben
Linie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5. Lochkameramodel: Projektion eines Punktes aus Kamerakoordinaten
in Bildkoordinaten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6. Kalibriermuster für Identifikation der intrinsischen Kamera
Parameter: Darstellung der verwendeten Kalibriermuster für die intrin-
sische Kalibrierung der Kameras. . . . . . . . . . . . . . . . . . . . . . . 37

3.7. CAD-Modell der Kamera- und Lidar-Halterung: Lidar und Ka-
meras (gelb dargestellt) werden über Halter (grün bzw. blau dargestellt)
an einem Vierkantprofil (schwarz dargestellt) verschraubt. . . . . . . . . 38

3.8. Nahaufnahme der Kamera und Lidar-Halterung: Die Kameras sind
fest am Ständer des hinteren Lidarsensors montiert. Die Lidarsensoren
sind verstellbar über Winkelplatten am Fahrzeug montiert. . . . . . . . 39

3.9. Abtastdiagram der Sensoren: Die Sensoren tasten zu unterschiedli-
chen Zeitpunkten und mit unterschiedlichen Frequenzen ab. Radar und
Kamera tasten das gesamte FoV gleichzeitig ab, wohingegen Lidar rollend
abtastet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10. Vergleich von projizierten Lidar-Pings auf Kamerabild, vor
und nach Ego-Bewegungs Korrektur: Die Lidar-Pings sind farblich
entsprechend der gemessenen Entfernung codiert. Im oberen Bild ist eine
schlechte Kongruenz, z.B. am linksseitigen Baum, zu erkennen, welche
durch die Ego-Bewegungs Korrektur im unteren Bild behoben wurde. . . 44

4.1. Abdeckung der Szene durch Lidarmessungen: Die Abtastungen
der Lidarsensoren sind rot (Sensor 1) und grün (Sensor 2) hervorgehoben.
Durch Verkippung der Lidarsensoren zueinander wird der Bildinhalt größ-
tenteils dicht vermessen. Es verbleiben jedoch Bildregionen mit geringer
Tiefeninformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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4.2. Markov-Zufallsfeld zur Tiefenvervollständigung: Das Markov Zu-
fallsfeld zur Tiefenvervollständigung aus [DT06]. Die blauen Punkte
entsprechen den Tiefenmessungen durch Lidar. Die gelben Punkte ent-
sprechen den geschätzten Tiefen. Die rosafarbenen Punkte entsprechen
den Bildgradienten. Die grünen Punkte entsprechen den Bildpixeln. Die
lilafarbenen Punkte entsprechen dem Tiefengradienten. . . . . . . . . . 46

4.3. Beispiele der Tiefenvervollständigung: Links: Kamerabilder; Mit-
te: Spärliche Tiefeninformation aus Lidarsensoren; Rechts: Verdichtete
Tiefeninformation aus Kamerabild. . . . . . . . . . . . . . . . . . . . . . 47

4.4. Beispiele der Oberflächennormalenschätzung: Links: Kamerabil-
der; Mitte: dichte Tiefenmaske; Rechts: geschätzte Oberflächennormalen-
ausrichtung. Die Koordinaten der Oberflächennormalen wurden in die
RGB-Kanäle eingetragen. Rote Pixel entsprechen Oberflächennormalen
mit hauptsächlich horizontaler Ausrichtung. Grün entsprechend vertikaler
Ausrichtung. Blau entsprechend Ausrichtung orthogonal zur Bildebene. . 49

4.5. Semantische Instanz-Segmentierung: Beispielhafte Ergebnisse der
automatischen semantischen Instanz-Segmentierung. . . . . . . . . . . . 50

4.6. Beispiel des optischen Flusses: Links und Mitte: Zwei aufeinander
folgende Kamerabilder. Rechts; Resultierender optischer Fluss zwischen
den Kamerabildern. Unten: Farblegende zum optischen Fluss mit Angabe
in Pixeln. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1. Übersicht von DRISFwR (adaptiert aus [MWH+19]): Die origi-
nale Verarbeitung durch DRISF ist im unteren gestrichelten Rechteck
dargestellt. Es werden zunächst aus Stereokamera-Bildpaaren der optische
Fluss, Instanzsegmentierung und Tiefenmaske geschätzt. Anschließend
wird für die detektierten Instanzen der Szenenfluss mittels Gauß-Newton-
Schätzer bestimmt. Darüber ist die Erweiterung zu DRISFwR dargestellt.
Nach jeder Iteration wird eine zusätzliche Objektmaske aus der RD-map
extrahiert und für die nächste Iteration des Optimierers verwendet. Dieser
versucht, Objektmasken entsprechend den Vorgaben durch Variation des
Szenenflusses zu extrahieren. . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2. Maske zur Selektion valider Pixel: Beispiele valider Pixel (gelb) für
alle Objekte nach Pi, dargestellt für beide Kameras. . . . . . . . . . . . 59

5.3. Geschwindigkeit nach Ackermann Prinzip: Das Fahrzeug rotiert
um einen Punkt R mit den Giergeschwindigkeiten ω. Für jede Posi-
tion auf dem ausgedehnten Fahrzeugkörper ergibt sich aufgrund der
unterschiedlichen Verbindungsvektoren zu R eine unterschiedliche Ge-
schwindigkeitskomponente. Fahrzeugkontur nach [ARFssN16]. . . . . . . 61

5.4. Beobachtete Geschwindigkeiten aus Sicht des Ego-Fahrzeuges:
Zwei beispielhafte Punkte auf dem beobachteten Fahrzeug bewegen sich
aus Sicht des Ego-Fahrzeuges mit unterschiedlicher Geschwindigkeit. Zu
beachten ist die unterschiedliche Ausrichtung der Geschwindigkeitsvekto-
ren an Fahrzeugfront und -heck. Fahrzeugkontur nach [ARFssN16]. . . . 64
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5.5. Automatische Ausrichtung vom Szenenfluss in der RD-map:
Blaue Box: Kamerabild und RD-map einer typischen Fahrszene. Rot
gekennzeichnet sind zwei dem Ego-Fahrzeug folgende Fahrzeuge. Gelbe
Box: Eine ungefähre Projektion eines der Fahrzeuge wurde unten links
(m = 0) im RD-map eingetragen. An der Stelle der Projektion weist die
Projektion kein lokales Leistungsmaximum auf und wird durch DRISFwR
linksseitig im RD-map verschoben (m = 1, m = 100). Zur Steigerung der
Robustheit gegenüber lokalen Maxima wurden Skalierungsebenen des RD-
map mit unterschiedlicher Filterung verwendet. Graue Box: Projektion
der Leistungen aus RD-map in Kamerabild. Es ist zu erkennen, dass nach
m = 100 DRISFwR Iterationen eine erhöhte Leistung der Fahrzeugpixel
zu beobachten ist. Nach [EB6]. . . . . . . . . . . . . . . . . . . . . . . . 69

5.6. Skalierungsebenen auf der RD-map zur Vergrößerung des Fang-
bereichs: Das originale RD-map (oben links), wird durch zweifaches
Anwenden von Gauß-Filter, Max-Pooling und bilinearer-Interpolation
verschmiert. Durch die Vierschmierung flacht der Bildgradient ab, dehnt
sich jedoch über einen weiteren Bildbereich aus. Die zu den Skalierungen
gehörenden Bildgradienten sind rechts dargestellt. Die Farbskalierung
ist blau für negative Gradienten, gelb für positive Gradienten und grün
für neutrale Gradienten. Man beachte hierbei insbesondere die erwähnte
Ausdehnung der Bildgradienten über die Skalierungsebenen. Zur Ver-
deutlichung wurden rote gestrichelte Hilfslinien für einen ausgewählten
Bereich der Gradienten eingezeichnet. Deutlich zu erkennen ist, wie sich
die Hilfslinien voneinander distanzieren. . . . . . . . . . . . . . . . . . . 79

5.7. Gefahrene Trajektorie des Datensatzes: Bei der Akquise wurde
etwa 1 h lang durch Lippstadt gefahren. Die Aufzeichnung erfolgte konti-
nuierlich. Dabei wurden typisch Szenarien aus Stadtverkehr, Autobahn,
Landstraße und Parkplatz aufgezeichnet. Vergrößert dargestellt, ist die
Fahrtrajektorie aus dem Parkplatzszenario für die Evaluierung der Sze-
nenflussschätzung. Nach [EB6]. . . . . . . . . . . . . . . . . . . . . . . . 81

5.8. Szenenbeispiele des Datensatzes zur Szenenfluss Evaluierung:
Dargestellt sind einige repräsentative Beispiele aus dem Datensatz zur
Szenenfluss Evaluierung. In der oberen Reihe sind die Beispiele der ersten
Kamera dargestellt, in der unteren Reihe, der zweiten Kamera. In den
Farbbildern sind die Instanzmasken farblich überlagert hervorgehoben. 82

5.9. MAE, gemittelt über alle Bildpixel: Oben dargestellt ist das erreich-
te MAE nach Gleichung 5.60. Niedrigere Werte entsprechen einer besseren
Schätzung. Unten dargestellt ist die MAE-Differenz der Verfahren ge-
genüber der MAE aus dem hier vorgestellten DRISFwR. Positive Werte
entsprechen einem Benefit durch DRISFwR. Negative Werte bedeuten
eine Verschlechterung durch die Verwendung von DRISFwR. . . . . . . 86

5.10. MAE, gemittelt über alle Bildpixel: Dargestellt ist das erreichte
MAE nach Gleichung 5.60 in Form eines Histogramms. . . . . . . . . . 87
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5.11. Mittlere Fehlerrate pro Bild: Oben dargestellt ist die erreichte Feh-
lerrate nach Gleichung 5.61. Niedrigere Werte entsprechen einer besseren
Schätzung. Unten dargestellt ist die Fehlerrate der Verfahren gegenüber
der Fehlerrate aus dem hier vorgestellten DRISFwR. Positive Werte ent-
sprechen einem Benefit durch DRISFwR. Negative Werte bedeuten eine
Verschlechterung durch die Verwendung von DRISFwR. . . . . . . . . . 88

5.12. MAE des Szenenflusses aller Objekte: Oben dargestellt ist das
erreichte MAE per Instanz nach Gleichung 5.62. Niedrigere Werte ent-
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ferenz der Verfahren gegenüber der MAE aus dem hier vorgestellten
DRISFwR. Positive Werte entsprechen einem Benefit durch DRISFwR.
Negative Werte bedeuten eine Verschlechterung durch die Verwendung
von DRISFwR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.13. MAE, gemittelt über alle Bildpixel: Dargestellt ist das erreichte
MAE nach Gleichung 5.64 in Form eines Histogramms. . . . . . . . . . . 90

5.14. Mittlere Fehlerrate pro Bild: Oben dargestellt ist das erreichte Feh-
lerrate nach Gleichung 5.64. Niedrigere Werte entsprechen einer besseren
Schätzung. Unten dargestellt ist das Fehlerrate der Verfahren gegenüber
der Fehlerrate aus dem hier vorgestellten DRISFwR. Positive Werte ent-
sprechen einem Benefit durch DRISFwR. Negative Werte bedeuten eine
Verschlechterung durch die Verwendung von DRISFwR. . . . . . . . . . 91

5.15. Vergleich von Szenenflussreferenz und -schätzung: Von links nach
rechts: RGB Kamerabild mit hervorgehobenen Instanzen, Referenzszenen-
fluss, Szenenflusschätzung und daraus ermittelter Abweichung nach Glei-
chung 5.60. Von oben nach unten: 10%-, 50%-, 70%- und 90%-Perzentil
sortiert nach Szenenflussabweichung. . . . . . . . . . . . . . . . . . . . . 92

5.16. Vergleich von Szenenflussreferenz und -schätzung: Von links nach
rechts: RGB Kamerabild mit hervorgehobenene Instanzen, Referenzsze-
nenfluss, Szenenflusschätzung und daraus ermittelter Abweichung nach
Gleichung 5.60.Von oben nach unten: 95%-, 97%-, 99%- und 100%-
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6.1. Warping des RD-maps in ein Kamerabild: Als Beispiel der Warping-
Operation wird die Intensität des RD-maps in das Kamerabild RGB pro-
jiziert. Dazu werden die radiale Entfernung, die radiale Geschwindigkeit
und die korrespondierende Intensität in der RD-map bestimmt. Dieser
Intensitätswert wird anschließend in das Gitter des Kamerbildes RDC
eingetragen. Dieser Prozess ist für zwei beispielhafte Kamerapixel (pin-
ke und orangene Boxen) hervorgehoben. Zu beachten ist, dass in RDC
ausschließlich die Pixel im FoV des Radars gewarpt wurden, dargestellt
durch die nicht-weißen Pixel in RDC . Nach [EB6]. . . . . . . . . . . . . 95
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6.2. Übersicht des vorgestellten Systems zum überwachtem Trai-
ning von Radar Signalverarbeitungen: Lidar und Kamera stellen
Sensordaten an das optische Modell (engl.: „vision model“) bereit, wel-
ches automatisch Annotationen im Kamerabild generiert. Gleichzeitig
werden die vom Radar bereitgestellten Spektren durch ein NN prozes-
siert und durch die Warping-Schicht in die Domäne des Kamerabildes
gewarpt. Die Abweichung zwischen generierter Annotation und gewarpter
NN Prädiktion wird berechnet und über die Warping-Schicht zurück in
das NN propagiert (grüner Pfeil). Die Warping-Schicht benötigt dichten
Szenenfluss und Tiefenschätzung im Kamerabild, welche durch Lidar,
Kamera und Radardaten bestimmt werden. Die unteren Bilder zeigen
Beispiele einer semantischen Segmentierung an. Von links nach rechts:
Kamerabild, semantische Referenzmaske (nur relevante Pixel angezeigt),
gewarpte Prädiktion der semantischen Maske, prädizierte semantische
Maske im RD-Gitter, RD-map. Nach [EB6]. . . . . . . . . . . . . . . . . 96
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image“) transformiert und der Pixelinhalt entsprechend einer Interpola-
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wärtswarp wird ausgehend von jedem Zielbildpixel das entsprechende
Pixel im Quellbild berechnet und dessen Wert ins Zielpixel eingetragen.
Zeigt die assoziative Verbindungslinie auf eine Position außerhalb des
Bildbereiches, wird das Pixel im Zielbild nicht befüllt. Nach [EB7]. . . . 98

6.4. Warping des RD-map auf Kamerabild mittels NNI: Die RD-map
auf der linken Seite, wurde durch Anwendung der Interpolation in das
Kamerabild gewarpt. Die Positionen in der RD-map ergeben sich aus
der zuvor berechneten relativen Entfernung und Geschwindigkeit der
Kamerapixel, transformiert in das Radarkoordinatensystem. Pixel im
Kamerabild außerhalb des Radar FoV wurden genullt. . . . . . . . . . . 102

6.5. Warping des RD-map auf Kamerabild mittels BI: Die RD-map
auf der linken Seite, wurde durch Anwendung der Interpolation in das
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