
Scaling Static Whole-Program Analysis to
Modern C and C++ Software Development
Statically Analyzing C and C++ Software With PhASAR

Philipp Dominik Schubert

Doctoral Thesis
Submitted in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Advisors
Prof. Dr. Eric Bodden
JProf. Dr. Ben Hermann

Paderborn University
Faculty of Computer Science, Electrical Engineering and Mathematics
Bielefeld & Paderborn, July 24, 2024

Abstract

While static analysis originates in optimizing compilers, it is nowadays also heavily used
to automatically detect bugs and security breaches.

Static analyses that aim at detecting bugs and security breaches have to be precise and
inter-procedural, i.e., must span the whole program to compute results that are actually
useful to developers. Analyses run in a whole-program manner, however, oftentimes lead
to unsatisfactory performance. Unfortunately, traditional whole-program analysis also does
not match modern software development that is characterized by extensive library usage
and continuous integration/continuous deployment, which compromises performance to
the point at which it becomes practically infeasible. Analyzing C and C++ programs
complicates matters further, since these languages are notoriously hard to analyze statically.
Still, they are the de facto standard for embedded systems and various performance, safety
and security critical domains, which makes them a desirable target to analyze.

To address the challenging problem of making precise static whole-program analysis
scale, we exploit the fact that virtually all serious software projects are organized with help
of version control systems such as Git, Mercurial or Apache Subversion. Starting from a
“blank” repository that contains only the target source code, we enrich the repository with
additional, persisted static analysis information to make whole-program analysis actually
feasible in practice.

The first problem that needs to be addressed when analyzing C and C++ software is
that every non-trivial program, due to the preprocessor, is written in a mixed language and
represents a software product line that—in the worst case—comprises exponentially many
software products—analyzing them one by one thus cannot scale. We therefore present
VarAlyzer, a variability-aware static analysis approach that analyzes software product
lines as a whole.

To avoid unnecessary repeated reanalysis of library components that do not change from
one analysis run to another, we introduce ModAlyzer, a compositional analysis approach
that analyzes and summarizes library components. ModAlyzer persists analysis summaries
such they can be checked into the target project’s code repository, allowing anyone to
check out a specific commit together with a library’s up-to-date analysis summaries. These
summaries can then be employed while analyzing the actual application code to significantly
reduce analysis times.

To further avoid unnecessary reanalysis for parts of the code that do undergo frequent
changes, but whose static analysis results computed in a previous analysis run are still
valid, we present IncAlyzer. IncAlyzer exploits commit information provided by the target
project’s version control system to recompute analysis information only for the parts of
the code that actually changed. Since individual commits typically only introduce small
and local code changes, large portions of previously computed analysis results are still

i

Abstract

valid for a new commit, making this approach very effective. IncAlyzer, too, persists
analysis information through ModAlyzer, allowing one to keep the project’s code base in
synchronization with up-to-date static analysis information. This reduces analysis times—
even for deep, semantic analysis—to a minium.

We have implemented our approaches within PhASAR, our novel static analysis frame-
work that aims at making the analysis of real-world C and C++ programs feasible in practice
by matching precise whole-program analysis to modern software development. We show
that PhASAR—the host of VarAlyzer, ModAlyzer, and IncAlyzer—not only looks good
on paper, but is actually useful and helps solving real problems by discussing its applica-
tions in interesting projects from academia and its application in a large industry project
with a leading telecommunications company that shows how our infrastructure can solve
real problems such as software debloating, program comprehension and bug finding that
could not be addressed before.

ii

Zusammenfassung

Statische Programmanalyse hat seine Ursprünge in optimierenden Compilern, wird aber
heutzutage auch immer mehr zum automatisierten Auffinden von Bugs und Sicherheits-
lücken verwendet.

Statische Analysen mit dem Ziel Bugs und Sicherheitslücken zu finden, müssen prä-
zise und inter-prozedural, d.h. das gesamte Programm umfassend, sein, um Ergebnisse
berechnen zu können, die Entwickler:innen tatsächlich helfen. Analysen, die das gesamte
Programm überspannen, führen jedoch leider oftmals zu unzureichender Performanz. Tra-
ditionelle inter-prozedurale Analysen passen leider auch nicht mit den modernen Arbeits-
abläufen in der Softwareentwicklung zusammen, welche insbesondere durch die häufige
Verwendung von Bibliotheken und den Einsatz von continuous integration/continuous de-
ployment Ansätzen gekennzeichnet sind. Hierdurch wird die Performanz soweit reduziert,
dass solche Whole-Program-Analysen praktisch undurchführbar werden. Die Analyse von
C und C++ Programmen verkompliziert die Sache weiter, da diese Sprachen dafür bekannt
sind statisch schwierig analysierbar zu sein. Dennoch sind diese Sprachen der de facto Stan-
dard für eingebettete Systeme und die verschiedensten Performanz und sicherheitskritischen
Domänen, was sie zu attraktiven Analysezielen macht.

Um das herausfordernde Problem der Skalierbarkeit von präziser, statischer Whole-
Program-Analyse zu adressieren, machen wir uns den Umstand zu nutze, dass nahezu
jedes ernsthafte Softwareprojekt mit Hilfe eines Systems zur Versionsverwaltung wie etwa
Git, Mercurial oder Apache Subversion organisiert wird. Ausgehend von einem “rohen”
Repository, welches nur den zu analysierenden Source Code enthält, reichern wir dieses mit
zusätzlichen persistierten statischen Analyseinformation an, um Whole-Program-Analysen
in der Praxis doch zu ermöglichen.

Das erste Problem, welches bei der Analyse von C und C++ Software gelöst werden muss,
ist, dass jedes nicht-triviale Programm auf Grund des Präprozessors in einer gemischten
Sprache geschrieben ist und dadurch eine Software-Produktlinie darstellt. Im schlimms-
ten Fall enthält eine Software-Produktlinie exponentiell viele Softwareprodukte. Diese
einzeln, eine nach der anderen zu analysieren, kann nicht skalieren. Aus diesem Grund
präsentieren wir VarAlyzer, einen varabilitäts-bewussten statischen Analyseansatz, der
Software-Produktlinien stattdessen als Ganzes analysiert.

Um die unnötige wiederholte Analyse von Bibliothekskomponenten, die sich von einem
Analyselauf zum nächsten nicht ändern, zu vermeiden, führen wir ModAlyzer ein. ModA-
lyzer ist ein kompositionaler Analyseansatz, der Bibliothekskomponenten analysiert und
zusammenfasst. ModAlyzer persistiert die Analysezusammenfassung, sodass diese in das
Code Repository des Zielprojekts eingecheckt werden können. Dies erlaubt es einen spezi-
fischen Commit des Projekts mit den dazugehörigen, aktuellen Analysezusammenfassung

iii

Abstract

auszuchecken. Die Analysezusammenfassungen können dann eingesetzt werden, wenn die
eigentliche Anwendung analysiert wird, um die Analysezeiten siginifikant zu reduzieren.

Um weitere unnötige, wiederholte Analysen für Programmteile zu vermeiden, die häu-
figen Änderungen unterliegen, aber dessen statische Analyseinformationen, die in einem
vorherigen Analyselauf berechnet wurden, immer noch valide sind, stellen wir IncAlyzer
vor. IncAlyzer nutzt die Informationen zu den Commits eines Projekts aus, die durch die
Versions-Kontrollsysteme der Zielprojekte bereit gestellt werden. Mit diesen Informatio-
nen werden Analysen lediglich für die Programmteile erneut berechnet, die sich tatsächlich
geändert haben. Da einzelne Commits typischerweise nur kleine und lokale Änderungen
beinhalten, sind große Teile von zuvor berechneten Analyseinformationen immer noch gül-
tig, was diesen Ansatz sehr effektiv macht. IncAlyzer persistiert die Analyseinformationen
ebenfalls mit Hilfe von ModAlyzer und erlaubt damit die aktuellen Analyseinformationenen
mit der Codebasis des Projekts zu synchronisieren. Dies reduziert die Laufzeiten auch für
tiefe, semantische Programmanalysen auf ein Minimum.

Wir haben unsere Analyseansätze in PhASAR implementiert. PhASAR ist unser neues
statisches Analyserahmenwerk, welches auf die Analyse von real-welt C und C++ Pro-
grammen abzielt und dies ermöglicht, indem es präzise Gesammtprogrammanalysen auf
moderne Softwareentwicklung abstimmt. Wir zeigen, dass PhASAR—der Host von Va-
rAlyzer, ModAlyzer und IncAlyzer—nicht nur auf dem Papier gut assieht, sondern einen
tatsächlichen Nutzen aufweist und echte Probleme lösen kann. Dazu diskutieren wir PhA-
SAR’s Anwendungen in zwei interessanten Projekten aus dem akademischen Umfeld und
einem großen Industrieprojekt mit einem führenden Telekommunikationskonzern. Dies
zeigt, dass unsere Infrastruktur echte Probleme wie etwa Software Debloating, Programm-
verstehen und das Auffinden von komplexen Bugs und Sicherheitslücken lösen kann, die
zuvor nicht adressiert werden konnten.

iv

Acknowledgements

First, I would like to thank my beloved wife Irina, and my two daughters Amalia and
Nina for always supporting me. You have been my greatest motivators; without you, this
document would not exist. You always believe in my abilities even during times in which I
did not.

I would also like to express immense gratitude to my two advisors Eric Bodden and Ben
Hermann. Without them and their tremendous support, all of this would not have been
possible. Eric gave me all the academic freedom that one could have ever asked for. He
was always approachable and provided me with invaluable feedback on research ideas and
papers. Eric’s high standards allowed me to make a huge step forward in my professional
development. Similarly, I would like to thank Ben for our numerous discussions and his
helpful input on the various topics one needs to deal with as a researcher.

I, of course, also thank my colleagues from Paderborn University and Fraunhofer IEM.
In particular, I would like to mention my former colleagues with whom I shared an office
for several years: Johannes Geismann and Martin Mory, and for a brief period of time
Richard Leer. You were always open to discussing research problems and also listened
when I shared frustration about rejected papers and other academic endeavors that did not
go as planned. I think we had great fun and great chemistry. Then, I would like to thank
Stefan Krüger for patiently enduring my sometimes interesting humor and for all of our
satirical discussions on all kinds of matters. Huge kudos also to Lisa Nguyen Quang Do
who really helped to set me up for professional writing in academia.

Many thanks to Vera Meyer, Jürgen (Sammy) Maniera, and Nicole Graskamp for taking
care of all the organizational and technical matters that a research group is concerned with.
You have been always helpful when I faced an issue and helped me to address and resolve
it effectively and promptly.

Of course, I would like to thank the entire team of the Secure Software Engineering
research group that I have been a part of for six and a half years for the great time. It really
has been a pleasure to be part of this research group.

v

Abstract

vi

Contents

Abstract i

1 Introduction 1
1.1 A Motivating Example . 4
1.2 A Broader Perspective . 6
1.3 Contributions of This Thesis . 9
1.4 Structure of This Thesis . 11

Prior Publications . 12

2 Background 13
2.1 The Idea of Static Data-Flow Analysis 13

2.1.1 Procedure Boundaries and Context Sensitivity 15
2.1.2 The Zoo of Sensitivities . 16

Context Sensitivity . 16
Object Sensitivity . 16
Flow Sensitivity . 16
Field Sensitivity . 16
Path Sensitivity . 16

2.1.3 Distributive Data-Flow Analysis Problems 17
2.2 The IFDS and IDE Frameworks . 19
2.3 Helper Analyses for Precise Whole-Program Data-Flow Analysis 22

2.3.1 Control Flow and Callgraph Information 24
2.3.2 Points-to and Alias Information 25
2.3.3 Type Hierarchy Information . 25
2.3.4 Data-Flow Information and Client Analyses 25

2.4 Soundness and Completeness . 27
2.5 Precision and Performance . 29
2.6 Static Versus Dynamic Analysis . 29
2.7 The LLVM Compiler Infrastructure . 30

3 PhASAR 33
3.1 Introduction . 33
3.2 Related Work . 34
3.3 Architecture . 35
3.4 PhASAR’s Implementation . 38

3.4.1 Encoding an IFDS Analysis . 38
3.4.2 Encoding an IDE Analysis . 40

vii

Contents

3.4.3 Encoding an Analysis Within the Monotone Framework 41
3.4.4 Use PhASAR as a Library . 42
3.4.5 Handling of Intrinsic Functions and libc 42
3.4.6 A Note on PhASAR’s Soundness 43

3.5 Scalability . 43
3.6 The Need for Dedicated Debugging Capabilities 44

3.6.1 Instrumenting Static Analysis 45
3.6.2 Analysis Development Process 47
3.6.3 Implementation . 48
3.6.4 Experience Report . 48

Bug Finding and Detection of Anomalies 48
Performance Benchmarking for Optimizations 50

3.6.5 Related Work . 54
3.6.6 Conclusions . 54

3.7 The Burden of Correctly Handling Global Variables 55
3.7.1 Framework Support for Global Variables 55
3.7.2 Background and Problem Description 57

Globals in C and C++ . 57
Built-in Typed Global Variables 57
Class/Struct Typed Global Variables 57
Global Con-/Destructors 59

Representation in LLVM IR . 59
3.7.3 Modeling the Effects of Globals 60

Status Quo . 60
Control Flows . 61
Data Flows . 62

3.7.4 Implementation . 63
3.7.5 Case Study: Constant Propagation 63

An Analysis Writer’s Perspective 64
Global Variables in Real-World Programs 64
Experimental Setup . 64
𝑅𝑄1: Usages of Global Variables 65
𝑅𝑄2: Precision . 66
𝑅𝑄3: Performance . 66

3.7.6 Related Work . 66
3.7.7 Conclusions . 67

3.8 A Few Years Later: Designing Static Analysis Implementations 67
3.8.1 Experiences From Building a Static Analysis Framework 68
3.8.2 Background . 69

Parametrization and Configurations 69
Analysis Styles . 69

3.8.3 Lessons Learned . 70
Modularity and Encapsulation 70
Accessing Information 71

viii

Contents

Bugs and Debugging . 72
Parametrization, Configuration and Usability 72
Flexible Usage Modes 73
Analyzing C, C++, and LLVM IR 74
Build Systems . 75
LLVM IR Generation . 75
Contributing Guidelines 76

3.8.4 Related Work . 76
3.8.5 Conclusions . 77

3.9 Future Work . 77
3.10 Conclusions . 78

4 Variability 79
4.1 Introduction . 79
4.2 Motivating Example . 82
4.3 Analysis . 83

4.3.1 Transforming Preprocessor Directives 85
Phases of the Desugarer . 86

Parsing. 86
Type checking. 88
Rewriting. 90

Desugaring C Type Specifications 91
Desugaring Function Definitions 92
Limitations of the Transformation 93

4.3.2 Variational Data-flow Analysis 94
Automated Lifting of Edge Functions 95
Operations on Lifted Edge Functions 96

Join. 97
Composition. 97
Equality. 98
Evaluation. 99

Why IDE Is the Ideal Framework of Choice 99
4.4 Implementation . 99
4.5 Experiments . 100

4.5.1 Experimental Setup . 101
4.5.2 𝑅𝑄4: Analysis Correctness . 102
4.5.3 𝑅𝑄5: Analysis Efficiency . 104
4.5.4 𝑅𝑄6: Analysis Precision . 105

4.6 Related Work . 106
4.7 Conclusions . 108

5 Modularity 109
5.1 Introduction . 109
5.2 Motivating Example . 112

ix

Contents

5.3 Strategy . 114
5.3.1 Idea of the Algorithm . 114
5.3.2 Summary Generation . 116

Type Hierarchies . 116
Intra-Procedural Points-To Information 116
Callgraphs and Inter-Procedural Points-To Information 117
Data-Flow Information . 121

5.3.3 Merging Analysis Summaries 123
Type Hierarchies . 124
Callgraphs and Points-To Information 124
Fixed-Point Iteration for Callgraph and Points-To Graph 124
Data-Flow Information . 126
Analyzing the Main Application 127

5.3.4 Removing Dependencies Ahead of Time 127
5.4 Implementation . 128
5.5 Experiments . 132

5.5.1 Experimental Setup . 132
5.5.2 𝑅𝑄7: Precision . 134
5.5.3 𝑅𝑄8: Performance . 135
5.5.4 𝑅𝑄9: Shortcuts . 136

5.6 Limitations . 137
5.7 Related Work . 137
5.8 Conclusions . 139

6 Incrementality 141
6.1 Introduction . 141
6.2 Motivating Example . 144
6.3 Terminology and Notation . 147

6.3.1 Model of a Version Control System 147
6.3.2 Model of Analysis Information 147

6.4 Incremental Update Analysis . 147
6.4.1 Preparing Commit Metadata . 148
6.4.2 Change Scenarios . 148
6.4.3 Compute Whole Program Information 151
6.4.4 Compute Incremental Updates 151

Type Hierarchy Information 152
Points-to Information . 152
Callgraph Information 152
Data-Flow Information 153
Answering the Client Analysis 154

6.5 Implementation . 154
6.6 Evaluation . 158

6.6.1 Research Questions . 159

x

Contents

6.6.2 Experimental Setup . 159
Client analyses. 159
Experimental process. 160
Target Subject Selection. 160
Execution environment. 161

6.6.3 𝑅𝑄10: Performance . 161
6.6.4 𝑅𝑄13: Correctness . 162
6.6.5 𝑅𝑄11: Change Characteristics 162
6.6.6 𝑅𝑄12: Helper Analyses . 163

6.7 Threats to Validity . 164
Internal Validity. 164
External Validity. 164

6.8 Related Work . 165
6.9 Conclusions . 166
6.10 Incrementality: Data . 166

7 Applications of PhASAR 177
7.1 Combining Repository Mining and Static Code Analysis 177
7.2 Static Configuration-Logic Identification 178
7.3 White-Box Penetration Testing . 181

7.3.1 Running Example . 183
7.3.2 Overview of the Static Analysis Engine 187

Pre-Processing . 187
Taint Analysis . 188
Symbolic Execution . 189

7.3.3 Design and Implementation . 190
Taint Configurations . 190
Taint Analysis . 191
Path Sensitivity and Performance Optimizations 193
Symbolic Execution . 196

Path Constraints . 196
Symbolic Loop Finiteness Check 198
Symbolic Out-Of-Bound Buffer Access Check 199
Implementing Custom Symbolic Checks 200

7.3.4 Results and How to Access Them 200
Path Collection . 201
Emitting the Exploded Super-Graph 201
Emitting Analysis Coverage . 202
Emitting Full JSON Reports . 202

7.3.5 Insights and Lessons Learned 204
7.4 Conclusions . 206

8 Conclusions and Future Work 209

xi

Contents

Bibliography 213

xii

1 Introduction

Bugs and security vulnerabilities are a constant threat to all companies that produce their
own software products. Not only can they become financially expensive—even risking a
company’s success—but they can harm people, too. Examples for bugs and vulnerabilities
causing serious problems can be found plenty in the news. Apple’s FileVaultBug caused
the user’s password to be stored on hard drive in clear text [Pro12]. The iOS unicode
bug [iOS15] allowed one to crash iPhones by sending a carefully crafted text message
which caused system crashes and reboot errors due to errors in iOS’ unicode handling
code. OpenSSL’s heartbleed bug [Hea14] enabled anyone on the internet to read the
memory of systems “protected” by the vulnerable OpenSSL version. Attackers could craft
packets that trigger a buffer over-read and allowed them to read arbitrary sensitive materials
such as names and passwords of users, secret keys, actual content, etc. To disable a warning
message in valgrind [Ope08], a developer accidentally broke a random number generator
in a particular version of OpenSSL with what was though to be a fix. NASA’s mars climate
orbiter [Har23] caused a crater on Mars worth around 190 million USD due to confusing
the units in the computations for its trajectory. Boeing’s 737 Max software flaws [Tra19]
caused it to reject manual overrides of steering commands from the pilots for its automated
counteracting of “pitch up”, which has become necessary due to an engineering hack that
has been made to fit larger engines, leading to a disaster with 346 deaths. This list could be
extended virtually indefinitely.

Software tends to become increasingly larger and more complex [TG17,BBC+10]. Yet,
developers are expected to keep software quality and correctness up—an almost impossible
endeavor. While manual software walkthroughs, detailed code reviews or security audits
can be employed, they can only be applied to the most critical parts of an application
as they are too expensive to cover larger parts of an (existing) application, let alone the
whole application. Tests can certainly uncover undesired behaviors and help debugging
and hardening an application, and virtually all serious software projects employ (unit and
integration) tests to verify the correctness of individual functionalities. However, since
testing is a from of dynamic program analysis, it can only show behaviors emitted along
the paths that the tests actually cover.

Static program analysis, on the other hand, analyzes all possible execution paths of
the target program to make statements on a program’s properties. It therefore cannot
“overlook” possible program behavior. The majority of larger companies that develop
their own software products not only employ code reviews, extensive testing and other
dynamic program analysis techniques, but also employ their own static analyzers that are
tailored to their specific needs. Google, for instance, utilizes its Tricorder infrastruc-
ture [SvGJ+15], Meta (Facebook) develops and employs Infer [DFLO19], Oracle uses its
Parfait project [CKLS09], Amazon offers and uses CodeGuru [AWS22] for its AWS cloud

1

1 Introduction

services, and IBM maintains and uses its WALA infrastructure [Wal19]. Other companies
built complete businesses around static analysis and offer static program analyzers as a prod-
uct. Synopsys offers Coverity(-SAST) [CS18], GrammaTech offers CodeSonar [Cod18] and
Sonar (SonarSource) provides products like SonarQube [son23b] or SonarCloud [Son23a],
for instance. These static analysis tools are tremendously useful and help developers to
cope with large code bases by providing automated means to uncover software defects, bugs
and vulnerabilities, and eventually help to improve the software under analysis [BBC+10].

But even automated approaches such as precise whole-program analysis quickly reach
their limits when it comes to scalability, if being used in an unadept manner. Whereas
lightweight, syntax-based static analysis and simple program checkers can provide useful
results to developers in minutes, even for million-line programs, more heavyweight anal-
yses that reason about semantic properties of programs are hard to scale. The detailed
abstractions that are required to solve difficult semantic problems require large amounts of
memory and computational resources. In addition, statically predicting program behavior,
i.e., making statements on a program’s properties is generally undecidable unfortunately
and can be reduced to the halting problem [Ric53]. Every static analysis is thus necessarily
incomplete, unsound or undecidable, or multiple of these. Static analysis writers are there-
fore constantly “working around” an undecidable problem by finding adequate analysis
abstractions and algorithms that allow them to still compute meaningful information for a
given target program.

Targeting programs written in C or C++ complicates matters further. Not only must
analysis developers find adequate abstractions to deal with the oftentimes undecidable
problems of static analysis in general, but, in addition, deal with the unique challenges that
programming languages of the C family provide. In contrast to many other languages, C and
C++ come with a separate preprocessor, deliberately unsafe type system, unrestricted use of
pointers, address-of operator, and (for C++) virtual dispatch, making them notoriously hard
to analyze. Even though those languages are around and in widespread use for decades, it
took compiler writers many years to iron out most of the bugs in their implementations. The
C programming language has now been around for more than half a century (first appeared
1972) and C++ is in its late thirties now (first appeared 1985) and still, these languages are
the de facto standard for embedded systems and a variety of other performance, safety and
security critical domains [Str18, Pro18], which makes them a desirable target to analyze
statically to find bugs and vulnerabilities. Yet, scalable analysis frameworks that allow for
deep, semantic static analysis targeting these languages are practically non-existent.

The main concern of this thesis is thus to improve the scalability of inter-procedural, se-
mantic program analysis for the C and C++ programming languages. This will increase
the amount of more complex analyses that can be solved on larger software projects
and help finding bugs and vulnerabilities much earlier in the software development
lifecycle.

In this thesis, we exploit the characteristics of modern software development that—at a
first glance—seem to make program analysis particularly difficult to scale and instead, use
them to make static program analysis indeed more scalable. Modern software development

2

is characterized by its extensive library usage [Sof18]. The vast majority of software projects
also nowadays uses continuous integration and continuous deployment (CI/CD) techniques
and the code bases of virtually all serious software projects are therefore organized with
help of version control systems such as Git, Mercurial or Apache Subversion. The “unit”
that drives software development is commits. The LLVM [LA04] project, for instance,
usually receives more than 500 commits per week [LLV19]. Extrapolating the number of
per-week commits for the LLVM project results in 72 commits per day, on average. Thus,
a program analysis may not exceed a timeframe of 20 minutes if all commits of a day shall
undergo an analysis. A new whole-program analysis would be triggered for every change
made to the code that ignores all previously computed results. Depending on the size of the
program under analysis, it is hard to impossible to run a precise, heavyweight static analysis
within a few minutes. Instead, whole-program analyses are oftentimes postponed to the end
of the day and are run in batch style during the nightly build. In such a scenario, they may
not exceed the timeframe of eight hours [BBC+10]. Facebook recently reported that their
code basis changes so frequently that they have trouble keeping their analyses up with the
code changes such that the results are still relevant when being reported [HO18]. Several
companies including Google started following the approach of trunk-based development,
an approach that aims at getting the code to build and run correctly in the face of changing
assumptions and requirements [Win17]. Since the approach treats the latest revision of a
software project as the source of truth, it is highly advisable to obtain its analysis results as
quickly as possible.

Our approach assumes that the target project is organized with help of a version control
system. Initially, the target repository contains only the target source code and is “blank”
w.r.t. static analysis information. Our approach makes C and C++ programs analyzable
and transform the repository by amending it with static analysis information that is directly
checked into the target project’s code repository to make analysis information accessible to
other developers and to improve scalability of subsequent analyses.

Surprisingly, the target C or C++ code within the target repository is not actually analyz-
able as is if the complete code shall undergo analysis. This is because every non-trivial C or
C++ program represents an entire software product line that comprises exponentially many
individual software products. Programs written in C or C++ are, in fact, written in a mixed
(preprocessor and pure C or C++) language and each preprocessor # ifdef directive intro-
duces two software variants. It is clear that generating and analyzing all of the exponentially
many software products one by one cannot scale. VarAlyzer copes with the variability by
first transforming the code into pure C or C++ by replacing all preprocessor constructs with
semantically equivalent constructs in pure C or C++, effectively transforming compile-time
variability into runtime variability. It then solves any given distributive data-flow problem
in a variability-aware manner in a single analysis pass on the transformed code. This is a
big step towards making the analysis of full software product lines a reality.

To cope with the analysis of libraries whose unnecessary repeated re-analysis, due to
stability w.r.t. code changes, not only waste a lot of time, but also plenty of electrical
energy—questioning even environmental aspects—we developed ModAlyzer. ModAlyzer
allows one to analyze, summarize and persist parts of the code in a separate offline phase.
Parts of the code that change seldomly, i.e., libraries components, can hence be summarized

3

1 Introduction

and their persisted summaries can be directly checked into the targets project’s repository
for later use. Whenever a developer checks out a certain commit, they automatically obtain
the precomputed library summaries which can then be employed while analyzing the actual
application code that uses the respective libraries to massively reduce analysis times.

On top of ModAlyzer, we built IncAlyzer, an approach that is applicable to parts of
the target project that change frequently. It uses information on code deltas from one
commit to another provided by the target program’s version control system to make an
analysis incremental. IncAlyzer reduces analysis times by exploiting the fact that individual
commits typically only change small parts of the target code. It only recomputes analysis
information for parts of the code that have actually changed and updates the analysis results
as necessary and too persists them directly within the associated commit using the target
project’s version control system.

In the following, we will present an example that highlights the difficulties of analyzing
C and C++ programs, and explains the steps that we undertake to reduce analysis times to
a minium. We will see that even the analysis of seemingly small and simple C and C++
programs can become complex very quickly.

1.1 A Motivating Example

1 # inc lude < s t d i o . h>
2
3 i n t add (i n t i , i n t j) ;
4 i n t i d e n t i t y (i n t i) ;
5 void m a g i c _ i n i t i a l i z a t i o n (i n t ∗ i) ;
6
7 i n t (∗ f) (i n t) = &i d e n t i t y ;
8
9 i n t add (i n t i , i n t j) { re turn i + j ; }

10
11 i n t i d e n t i t y (i n t i) { re turn i ; }
12
13 void m a g i c _ i n i t i a l i z a t i o n (i n t ∗ i) { }
14
15 i n t main (i n t argc , char ∗∗argv) {
16 p r i n t f ("Hel lo , World ! \ n") ;
17 i n t i ;
18 m a g i c _ i n i t i a l i z a t i o n (& i) ;
19 i n t j = add (i , 42) ;
20 i n t k = f (j) ;
21 re turn k ;
22 }

Listing 1.1: A Hello, World! program in C. The program comprises undefined behavior.

The Hello, World! program in Listing 1.1 prints the string Hello, World! to the command
line and performs simple integer arithmetic. The program comprises undefined behavior
as the uninitialized local variable i is used to compute k’s value that is returned to the
operating system at the end of main.

4

1.1 A Motivating Example

This small example allows one to elaborate on numerous interesting facts. First, the
severity of static program analysis representing an undecidable problem is impressively
shown by the fact that even modern C compilers do not issue a warning or an error for
the obvious bug. This is because i’s address is taken using the address-of operator (&)
and passed to the magic_initialization function. To correctly reason about the status of i’s
initialization would require the compiler to compute precise points-to information which,
again, is generally undecidable and very expensive when precise points-to information is
desired. The compiler is thus not even trying to prove any properties on i’s initialization.
This shows that precise static analysis requires a multitude of information computed by
additional helper analyses such as points-to and call information to reason about a program.

Second, the compiler community and the program analysis community have very different
motivations and incentives. Whereas compiler writers would, of course, also like to detect
these kinds of bugs, they need to ensure that a program still compiles sufficiently fast to
the desired target language. Compilation of larger C and especially C++ projects already
requires a substantial amount of time. More sophisticated static program analyses would
exceed any acceptable time frame for compilation; they thus cannot be integrated into
the compiler [Bab18]. The static analysis community on the other hand, can generally
accept longer analysis times as long as an analysis is capable of finding real, actionable
bugs and vulnerabilities. And while static analysis that is used as a basis for compiler
optimization has to be sound, analyses that are used for finding bugs and vulnerabilities
may be unsound. But even this extended time frame and the relaxation of soundness has
its limits due to modern software development workflows. Users of CI/CD pipelines, for
instance, crucially require their pipelines to successfully pass, which typically includes
static analysis tools that need to approve the current state of the software, to continue with
the software development, e.g. merging of feature branches, deployment, etc. Facebook,
for instance, faces a real challenge to keep up with the analysis and report the results such
that they are still relevant and actionable when they are available [HO18]. Google has given
up on running expensive inter-procedural, i.e., whole-program analysis on every commit
that is made to their code base [Bab18]. Instead, they collect a whole bunch of code changes
and then run an expensive whole-program analysis in batch style at the end of the day.

Yet another, less obvious problem lurks hidden within the small Hello, World! program.
The program in Listing 1.1 does not actually show one program, but many programs.
This is due to the Hello, World! program’s include directives and becomes evident when
looking at the (partially) preprocessed version of the program. A brief inspection with
the Clang compiler uncovers that the “program” comprises 622 preprocessor symbols1,
92 # ifdef directives2 and (transitively) includes 16 header files3. Virtually every realistic
C or C++ program is actually a software product line that comprises various different
software products that can be generated. This is because C and C++ compilers are language
processing systems, and C and C++ programs are actually written in a mixed language
that comprises the preprocessor language and pure C or C++. If one wishes to analyze a

1$ clang -dM -E code.c
2$ clang -M -E code.c|grep -o -E "\.h"|wc -l
3$ clang -M -E code.c|grep -o -E "/.*\.h"|tr ’ ’ ’\n’|xargs grep -E "\#ifdef"|wc -l

5

1 Introduction

complete C or C++ software product line, one would first need to generate each and every
possible software product and then conduct a static analysis on each generated product.
Since the number of software products grows exponentially in the number of preprocessor
ifdef directives, it is clear that this cannot scale.

Even the single stdio .h include introduces a large number of (preprocessor) symbols and
various functionalities from the C standard library libc. Realistic programs include hun-
dreds of header files for C’s libc or C++’s standard template library (STL) and potentially
various other libraries. However, since the functionalities that these libraries provide are
only applied while developing the application, but not modified, analyzing them over and
over for each analysis run does waste lots of computing resources. Instead, it is desirable
to analyze these libraries only once and summarize their effects on the analysis. When
analyzing the actual application code, those summaries can then be integrated into the
analysis avoiding reanalysis of the unchanged library code. The amount of analysis results
that can be reused—rather than expensively recomputed—can be further increased when
one assumes that the Hello, World! program is developed using CI/CD. After running
an initial, inter-procedural, flow- and context-sensitive, alias-aware uninitialized variables
analysis that can easily uncover the missing initialization of variable i, a developer may
commit a fix that correctly initializes i in magic_initialization to 42. This change, recognized
and recorded by the project’s version control system, only affects a very small part of the
data-flow and points-to information required to answer an uninitialized variables analysis.
Information on control flows, type hierarchy, virtual function tables, and callgraph is not
affected at all. Besides avoiding unnecessary and potential expensive reanalysis for parts
of the code for which developers know that they do not change, it is thus advisable to
further make an analysis incremental to reduce the necessary computations for answering a
concrete client analysis to a minimum. Incrementalizing static analysis, however, requires
one to solve the challening problem of keeping the incremental analysis information in
synchronization with the code changes such that the computed results are equivalent to a
full reanalysis.

One can clearly see that even though traditional, precise whole-program analysis is
tremendously useful, it quickly runs into massive scalability issues even for small programs
and does not match modern software development that is characterized by an extensive use
of libraries and continuous integration/continuous deployment (CI/CD) when being run
naively for each change made to the target code.

Next, we describe important, existing analysis approaches that address scalability.

1.2 A Broader Perspective

Over the past decades, a vast amount of research has been conducted to improve the
scalability and precision of static whole-program analysis and to deal with the especially
complex languages from the C family.

General algorithmic data-flow analysis frameworks have been developed and evolved
from simple, yet powerful, concepts for intra-procedural analysis [KU77] to more and
more sophisticated algorithms that allow for inter-procedural analysis [PK13, SP78] and

6

1.2 A Broader Perspective

ones that exploit certain properties of the analysis problem to be solved [RHS95, SRH96,
RSJ03,Bod18] allowing for solving analysis problems more efficiently. Yet more advanced
approaches that build on top of these combine multiple instances of those frameworks to
further increase precision [SAB19a,LTKR08] and to allow for solving problems in a flow-,
fully context- and fully field-sensitive manner while avoiding undecidability [Rep00] for
many realistic programs.

Yet, finding infrastructure that implements the above concepts and allows for the anal-
ysis of C and C++ programs can only be found sparsely. The SVF [SX16b] framework
allows one to conduct inter-procedural static analysis targeting LLVM [LA04] intermediate
representation using spare value flow. GDFA [KSK09] is a generic data-flow solver for
GCC that implements traditional data-flow analysis [KU77] as a bit-vector framework.
LLVM’s front-end Clang for C-like languages offers infrastructure that allows one to for-
mulate lightweight syntactic analyses based on the abstract syntax tree (AST) of the target
program. Clang’s static analyzer [Cla18b] additionally offers checks that employ symbolic
execution to find common bugs in the target code. However, it struggles with scalability
when conducting inter-procedural analysis, since many checks require in the worst case ex-
ponential time to find bugs. It therefore can only be applied on a compilation-unit level and
not in a whole-program setting. And while LLVM, of course, offers general infrastructure
to formulate custom analysis and transformation (or optimization) passes, it does not offer
generic data-flow solvers. Instead, compiler passes that come with LLVM are individually
implemented and target program optimizations. The following quote from 2009, pointed
out by Scott Meyers, shows the severity of the problem:

Does anybody know a [...] refactoring tool for C++ that works ... with large
code bases [...]? I tried [...] again and again over the last years: [none] were at
all usable. [ADA09]

The question has been updated in March 2015:

By my opinion the answer to this question still is ’NO’. [ADA09]

A commenter of the Stack Overflow post “Clang Static Analyzer doesn’t find the most basic
problems” from March 2017 states:

I haven’t used this particular static analyser, but many others. As a rule of
thumb, always assume they are broken beyond repair. [Cod17]

Dozens of works try to deal with C and C++’s preprocessor and the software product lines
that the preprocessor’s directives effectively establish [KGR+11,GG12,KATS12,CEW12,
BRTB12,BTR+13,MDBW15,CCS+13,Dim16,GJ05,KOE12,KKHL10,Her20]. And yet,
the only available data-flow analysis capable of analyzing software product lines encoded
in C and C++ is intra-procedural only [LvRK+13, RLJ+18]. SPLlift [BTR+13] presents
a family-based approach that allows one to efficiently conduct inter-procedural data-flow
analysis. This approach, however, is restricted to analysis problems that can be expressed
using distributive flow functions and require a finite—and ideally small—analysis domain,
and is only available as a prototypically implementation for a seldom-used Java-dialect.

7

1 Introduction

Bugs such as Apple’s file vault bug [Pro12] show that maintaining and analyzing software
variability is still an issue—even for large companies of the computing industry.

The literature offers several approaches to make static program analysis composi-
tional [OPS92,CDG93,RR01,Dwy97,HR96,RRL99,GRS00,RMR04,XHN05,TWX+17,
CCP17]. Existing techniques for compositional static analysis typically focus on either
data-flow or points-to analysis only. Rountev et al. presented an approach to pre-analyze
Java libraries using Interprocedural Distributive Environments (IDE) [SRH96] to generate
reusable data-flow summaries. StubDroid [AB16] generates precise library models for
Interprocedural Finite Distributive Subset (IFDS) [RHS95]-based taint-analysis problems.
Both approaches, however, assume the existence of whole-program points-to and callgraph
information. Several works use partial summaries for points-to information computed using
context-free language (CFL-)reachability [WR99,LSXX13,SXX12]. IDEal [SAB17] is an
alias-aware extension to IDE [SRH96] that embeds the alias analysis Boomerang [SNAB16]
into the IDE solver implementation Heros [Bod12]. Averros [AL13] uses the separate
compilation assumption and Java’s constant pool [Jav18] to generate sound and precise
callgraphs without actually analyzing library code in order to generate a placeholder li-
brary. Klohs et al. described a situation that allows one to remove data-flow dependencies
without compromising precision [Klo08]. Tree-adjoining languages [TWZ+15] and Dyck
context-free language reachability [TWX+17,CCP17] can be used to increase the effective
library summarization by computing reasonable conditional summaries that potentially en-
able greater summary reuse. Early versions of Facebook’s Infer [CD11] used separation
logic to allow for the compositional analysis of heap-based programs. The approach com-
puted bottom-up summaries using bi-abductive inference [CDOY09,BGS18], which could
then be used in different calling contexts.

Yet other work attempts to make static analysis incremental. The line of research
conducted by Szabó et al. employs a declarative approach to make static data-flow analysis
incremental [SEV16, SVE17, Sza21, SBEV18]. These approaches, however, are currently
limited to intra-procedural analysis. Reviser [AB14] presents an incremental version of
the conceptual Interprocedural Finite Distributive (IFDS) [RHS95] and Interprocedural
Distributive Environments (IDE) [SRH96] frameworks that enables one to conduct flow-
and fully context-sensitive inter-procedural data-flow analysis. The Reviser approach,
however, is limited to incrementally compute data flows only. In particular, it cannot
incrementally compute information such as the (inter-procedural) control-flow graph that
are required by the IFDS/IDE frameworks. Other approaches aim at computing concrete
analysis problems like pointer analysis incrementally [LHR19,CNDE05].

This thesis takes a different approach at making precise, semantic static analysis scale
to large, real-world C and C++ programs. Instead of focussing on scaling individual
static analyses, we aim at scaling the whole static analysis stack that is required to answer
a concrete client analysis (such as the uninitialized variables analysis presented in Sec-
tion 1.1) for finding bugs and security vulnerabilities using an integrated approach. This
includes—besides data-flow information—information on pointers and aliasing, control
flows, callgraph, type hierarchy and virtual function tables. To achieve scalable, integrated
static analysis, we are using composition and distributivity. In summary, this thesis follows
the goal:

8

1.3 Contributions of This Thesis

Precise, inter-procedural static data-flow analysis can be scaled to large programs and
matched to modern software development through composition and summarization of
analysis information.

1.3 Contributions of This Thesis

In this thesis, we present PhASAR, a novel, open-source static program analysis framework.
PhASAR has been built on top of the LLVM compiler infrastructure [LA04] and allows
its users to solve arbitrary data-flow problems in a fully automated manner. It provides
various algorithms to compute all helper analyses that are required to conduct concrete
client analyses. PhASAR comprises, among others, a type hierarchy and virtual function
table as well as various pointer and callgraph analyses. On top, it provides various generic
data-flow solver implementations. The framework follows a clean structure and the various
different components of the static analysis stack are all modeled as interfaces. This allows
individual components to be easily replaced in a concrete analysis setup. A user only
needs to provide a description of the data-flow problem they wish to solve. This description
corresponds to a concrete implementation of an analysis problem interface, which is handed
over to the desired solver for computing data flows to answer a client analysis.

PhASAR’s functionalities can be accessed through its command-line tool phasar-llvm.
However, the framework can also be used as a library which allows its users to quickly build
or prototype new program analyzers on top of it. The framework is used to implement
and evaluate the new program analysis strategies and algorithms presented in this thesis.
Meanwhile, our open-source PhASAR framework, which is available on Github under the
permissive MIT license at https://github.com/secure-software-engineering/
phasar, has received quite some attention from other researches as well as practitioners as
its 922 stars and 140 forks4 on Github demonstrate.5

To deal with the “program explosion” caused by the infamous preprocessor # ifdef direc-
tives that developers use to encode multiple software variants in a common code base, this
thesis contributes VarAlyzer. The VarAlyzer approach lets its users conduct arbitrary
inter-procedural, distributive data-flow analyses on entire software product lines (SPLs).
Compared to the naive product-based approach, in which one would first generate each
and every software variant and then analyze each such variant individually, VarAlyzer is
a family-based approach. It avoids generating the exponentially many software products
and instead first transforms the software product line, replacing preprocessor directives
with semantically equivalent constructs in plain C, and then conducts a variability-aware
data-flow analysis that computes the results for all software products in a single analysis
run. VarAlyzer’s results are annotated with the presence conditions (feature constraints)
under which they hold. VarAlyzer for the first time allows one to conduct complex, inter-
procedural data-flow analysis with infinite lattices on SPLs written in the C programming
language. It avoids exponential runtime by design and its runtime requirements are not

4Probably by many other poor PhD students that fight the complexity dragon of static analysis for C and C++.
5As of 21pm July 23rd, 2024.

9

https://github.com/secure-software-engineering/phasar
https://github.com/secure-software-engineering/phasar

1 Introduction

affected by the number of preprocessor # ifdefs. VarAlyzer’s results coincide with those
produced by the product-based approach.

This thesis further contributes ModAlyzer, an approach that avoids repeated re-analysis
for parts of the target program that do not change frequently. While modern software
development heavily relies on libraries, these libraries would be unnecessarily re-analyzed
for each analysis run on a target program that uses them. ModAlyzer allows one to in-
dependently analyze certain parts of the code in a separate offline phase. In contrast to
previous works that mainly focus on making individual static analysis compositional, Mod-
Alyzer computes summaries for the complete static analysis stack that is required to solve
a concrete client analysis. This includes type hierarchy, points-to, control-flow and call-
graph and data-flow information. The approach then persists these summaries for later use.
While analyzing the actual application code, ModAlyzer consults the previously computed
summaries to avoid unnecessary reanalysis of the application’s library components. As our
evaluation shows, this strategy is quite effective and allows the analysis to finish 72% faster,
on average, while providing the same results as a matching whole program analysis.

To make whole program analysis fit modern continuous integration/continuous deploy-
ment (CI/CD) workflows, this thesis contributes IncAlyzer. The IncAlyzer approach enables
one to compute information (similar to ModAlyzer) for the complete static analysis stack
in an incremental manner. Individual commits typically only introduce small changes to a
code base making running an immediate whole-program analysis seem wasteful. IncAlyzer
exploits the fact that large parts of the analysis information computed on a revision 𝐶𝑖 of a
program is still valid in the next revision 𝐶𝑖+1. It hence uses commit information provided
by the target project’s version control system to determine changes made to the code from
one revision to another to invalidate and recompute analysis information only for the parts
of the program that actually changed. It then applies a final repropagation step and as a
result produces static analysis information that is equivalent to those of a matching whole
program analysis conducted on the latest revision of the target project.

Combining the approaches presented in this thesis enables interesting software develop-
ment workflows as the shown in Figure 1.1. We briefly explain this overview figure from
top to bottom. In this example, we assume that the target project comprises the actual
application code and a few additional libraries. The target project is made analyzable
with help of the VarAlyzer approach that enables analysis of software product lines as a
whole. Starting at a certain commit of the target project under version control, PhASAR
can be used to compute whole-program static analysis information. Any libraries used
by the project are summarized in this process using ModAlyzer. The resulting analysis
information can be persisted and directly checked into the project under analysis. Another
developer can check out this new commit together with the persisted analysis information.
PhASAR can parse the persisted information to instantly obtain the analysis information
of the code. Any interesting analysis findings such as bugs or potential (security) vulner-
abilities are therefore also instantly available and can be addressed by a developer. The
fixed code can then be incrementally reanalyzed by IncAlyzer and checked into the software
repository. Due to ModAlyzer, libraries require no reanalysis whatsoever as long as they
are not changed. Another developer might have worked on a separate feature branch to add
new functionalities to the project. The commits of the feature branch also come with their

10

1.4 Structure of This Thesis

main branch

feature
branch

co
mm
it
s

parse summaries

incremental update

merge information

initial analysis

Figure 1.1: An overview of an exemplary workflow that the analysis approaches presented
in this thesis enable.

corresponding persisted analysis information. When merging the feature branch back to the
main branch of the repository, IncAlyzer allows for efficiently merging analysis information
and recomputes outdated analysis information as necessary based on the delta in the code
that it obtains from the version control system of the target project.

In our final contribution, we present some of PhASAR’s applications. We first present
PhASAR’s applications in two larger academic projects to show some interesting problems
that our framework could help to address. We then further underline its usefulness by
presenting a large industry project that we conducted with one of the worlds leading
telecommunications companies to highlight the real-world challenges that we have been
facing while applying PhASAR and state-of-the-art static analysis to solve demanding
problems in today’s software development.

1.4 Structure of This Thesis

The remainder of this thesis is structured as follows: In Chapter 2, we give an introduction
to the necessary concepts that are used throughout the remainder of this thesis, including
the different forms of static (data-flow) analysis. Chapter 3 presents PhASAR, the analysis
infrastructure that we use to implement and evaluate our approaches that we describe in
the chapters thereafter. It also presents some interesting technical challenges and how we

11

1 Introduction

address them, and shares the experience that we gained from implementing static analysis
over the last years. In Chapter 4, we present our VarAlyzer approach that allows for
statically analyzing software product lines written in C in an inter-procedural manner. We
then describe how we scale precise static analysis to large and realistic C and C++ program
by making static analysis compositional in Chapter 5. In Chapter 6, we present how to
make an analysis fit for modern software development in which software undergoes frequent
changes. Both approaches, ModAlyzer and IncAlyzer improve an analysis’s scalability and
can be enabled together. Chapter 7 presents actual applications of our static analysis
framework PhASAR and the approaches we have built on top of it. This chapter presents
academic works that successfully utilize our infrastructure to obtain novel insights that could
have been hardly produced without PhASAR. We also present valuable insights that we
gained from applying PhASAR in industry and discuss areas in which data-flow analysis is
already quite successful and others which still need more attention from academia to allow
it to solve important and realistic problems that occur in practice. Lastly, we conclude in
Chapter 8.

Prior Publications The work on our analysis infrastructure described in Chapter 3 has
been originally published at the regular tool paper track of the 25th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2019) [SHB19]. The experiences and shortcomings of initial versions of PhASAR have
been shared, discussed and addressed in the 8th ACM SIGPLAN International Workshop on
the State Of the Art in Program Analysis (SOAP) [SLHB19] and at the engineering tack of
the 21st IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM) in [SLHB21] and [SSS+21], respectively. The work on variability-aware data-
flow analysis presented in Chapter 4 has been previously published in Automated Software
Engineering – An International Journal, Volume 29, Springer Nature (AUSE) [SGP+22]
and presented at Feature-Oriented Software Development (FOSD) meeting 2022 and as
part of the journal-first track at the 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2022). Our ModAlyzer approach to compositional static anal-
ysis presented in Chapter 5 has been previously published at the main research track of
the 35th European Conference on Object-Oriented Programming (ECOOP 2021) [SHB21].
This work has been awarded a distinguished paper award. The IncAlyzer approach that is
concerned with making static analysis incremental presented in Chapter 6 is currently being
prepared for submission. The author of this thesis has made significant contributions to
the applications that are presented in Section 7.1 and Section 7.2; the work on integrating
program analysis and repository mining presented in Section 7.1 has been published in
ACM Transactions on Software Engineering and Methodology (TOSEM) [SBS+23]. The
research on static configuration-logic identification has been published on arXiv.org and
is available at [ASR+23]. The experiences and insights from applying PhASAR in an
industrial context shared in Section 7.3 have been gained in a 15 months project with one
of the leading telecommunications corporations. In this industry project, the author of this
thesis was the project lead.

12

2 Background

In this chapter, we introduce the fundamentals of static analysis and present its aspects that
are relevant for this thesis.

2.1 The Idea of Static Data-Flow Analysis

In this section, we briefly discuss the fundamental idea of static data-flow analysis and then
present complementary aspects that are required to conduct precise, semantic data-flow
analysis.

Static data-flow analysis is—among symbolic execution, abstract interpretation, and type
and effect systems—one of the various static program analysis techniques that reasons about
a program’s properties without actually executing it. The goal of static data-flow analysis
is to make statements about a property of interest for a given target program. A concrete
data-flow analysis (implementation) answers a concrete question on a property of interest
by providing a client analysis with statically computed data flows. Information on the
property of interest can be used as a basis for compiler optimizations or to decide whether
a program possibly contains bugs or is vulnerable to certain attacks, for instance.

Static data-flow analysis propagates data-flow facts that capture information on the prop-
erty of interest through the target program’s control-flow graph. A program’s control-flow
graph that is amended with data-flow facts is sometimes also referred to as exploded graph.
Flow functions capture the effects of each program instruction on the data-flow facts and
therefore, the property of interest. In the simplest case, sets of data-flow facts of a data-flow
domain 𝐷 are propagated through the target program’s control-flow graph. Figure 2.1
depicts this situation. A set of data-flow facts 𝑋 is handed as input to a flow function 𝑓 for
an instruction 𝑖 which produces as an output a new set 𝑋 ′, thereby describing 𝑖’s effect on
the property of interest.

Each analysis needs to organize its data-flow domain 𝐷 using an underlying lattice L
that describes the “kind of information”. L can be represented graphically as a Hasse

𝑓⟦𝑖⟧(𝑋) ≜ 𝑋 ′
instruction 𝑖

𝑋

𝑋 ′

Figure 2.1: A flow function 𝑓 for an instruction 𝑖 and its effect on data-flow facts.

13

2 Background

𝑋 ⊓ 𝑋 ′ := 𝑋 ′′ ⊓
𝑋 𝑋 ′

𝑋 ′′

Figure 2.2: A merge operator and its effect on data-flow facts.

diagram. There are two special, commonly used lattice elements: bottom ⊥ and top ⊤ that
specify “no information” and “all information” (or “statically undecidable”), respectively.
A concrete analysis requires at least a semi-lattice, i.e., one that specifies a ⊤ element.

When analyzing a program that comprises branching, there are situations in which
control-flow edges of two (or more) different branches lead to a common successor instruc-
tion. In this situation, depicted in Figure 2.2, the possibly varying information computed
along different control-flow paths must be merged before the analysis can continue propa-
gating the resulting data-flow information further along the program’s control-flow graph.
Inputs of the merge operator are elements of the analysis’ lattice and its output is a single
lattice element that describes how information is merged. Whenever the analysis’ merge
operator is applied, the amount of analysis information described by the operation’s out-
put must grow monotonically, i.e., must be transferred higher up in the lattice—growing
towards ⊤, the most imprecise element of the lattice. This is to ensure termination.

The data-flow information is propagated through the control-flow graph and the flow
functions and merge operator are (re)applied in a traditional worklist algorithm until the
data-flow information stabilizes and is no longer changed. Once the analysis’ fixed-point
is reached, the solution can be read off by checking the data-flow facts at each instruction
that one is interested in.

This natural idea of basic data-flow analysis is known as Monotone Framework and
has been formalized by Kam and Ullman in 1977 in [KU77]. The monotone framework
describes a generic algorithm to solve any given data-flow problem that is specified with
the following five parameters:

i analysis direction ↑↓

ii analysis domain 𝐷

iii flow function(s) 𝑓

iv merge operator ⊓

v lattice L

The monotone framework has been designed to solve data-flow problems on individual
procedures. It is not suited for solving data-flow problems in an inter-procedural setting,
in particular when it comes to context-sensitivity. In the following, we therefore detail on
how to make static data-flow analysis inter-procedural.

14

2.1 The Idea of Static Data-Flow Analysis

2.1.1 Procedure Boundaries and Context Sensitivity

While most compiler optimization passes such as LLVM’s constant propagation imple-
ment a concrete instance of the monotone framework, they analyze functions only intra-
procedurally, i.e., they do not follow function calls within the analyzed function nor analyze
across the function’s procedure boundaries. This is partially because of speed, but also be-
cause of precision and soundness. More complex inter-procedural analyses are typically too
expensive to be integrated into the compiler [Bab18]. But even though LLVM implements
several inter-procedural analysis and optimization passes that aim at de-virtualizing function
calls or merging (global) constants, for instance, these analyses are very shallow and need to
back off as soon as the code comprises more complex constructs or uses dynamic features.
We discuss soundness separately in Section 2.4. When applying the monotone framework
in an inter-procedural setting, the set of data-flow facts can be mapped and propagated into
potential call targets at any given call site within the function under analysis. However,
at a callee’s exit points, i.e., return or throw instructions, an analysis formulated in the
(unmodified) monotone framework does not know to which of the potentially many return
sites of the callee the data-flow information has to be propagated, since it does not maintain
information on calling contexts. An analysis would need to propagate the information to
all possible return sites, which includes program paths that are infeasible at runtime. This
introduces so much imprecision that prevents the analysis from computing any meaningful
results.

To cope with the problem of distinguishing calling contexts, the individual data-flow
facts can be amended with so-called call-strings as presented in [SP78], for instance. The
call-strings approach amends each data-flow fact with a call stack. Whenever a data-flow
fact is mapped into a callee, the call site’s respective return site is pushed onto the fact’s
respective stack. When mapping a data-flow fact back to the caller at a callee’s exit point,
the stack is consulted to ensure that data-flow facts are only propagated to the matching
return site. To cope with recursive functions that would otherwise cause non-termination,
however, the call-strings must be limited in length. In practice, the call-strings approach is
typically 𝑘-limited with 𝑘 ∈ {1, 2, 3}, since larger 𝑘s massively impede scalability for larger
target programs. This is often referred to as 𝑘-context sensitivity. Propagating data-flow
facts down the program’s call stack deeper than 𝑘 causes the most recent return site to be put
onto the call stack while the oldest return site is discarded. When propagating a data-flow
fact upward the call stack, the flow facts are propagated to the return site on top of the call
stack before the return site is then removed from the stack. Once the call stack is empty and
a flow fact still needs to propagated further up the call stack, it is propagated to all possible
return sites context-insensitively.

Besides (calling-)context sensitivity, a static data-flow analysis can exhibit a variety of
sensitivities as discussed in the following.

15

2 Background

2.1.2 The Zoo of Sensitivities

In this section, we briefly explain the various sensitivities that a data-flow analysis can
exhibit. Generally, it holds that the more sensitivities an analysis exhibits, the more precise
data flows it can compute.

Context Sensitivity A context-sensitive analysis maintains and matches information on
calling contexts. Context-insensitive analyses do not distinguish between calling contexts
and hence propagate data-flow information back to all potential return sites after analyzing
a given callee function. An instantiation of the unmodified monotone framework in an
inter-procedural setting serves as an example for a context-insensitive analysis as described
in the above. Analyses formulated this way are typically too imprecise to compute useful
information for realistic data-flow problems.

Object Sensitivity An object-sensitive analysis distinguishes between different objects
of the same type and is relevant for call resolution and precise modelling of field accesses.
Object sensitivity can also be seen as an alternative to (calling-)context sensitivity. It
attaches information on the creation of data-flow facts rather than call sites at which they
have been passed into a call target to make an inter-procedural analysis context sensitive.
This is achieved by reusing information that has been computed for previous calls under
the same context. This approach to context-sensitive inter-procedural analysis is known as
value-based approach [PK13]. However, object-sensitive analysis too needs to be 𝑘-limiting
to avoid infinite field-access paths for recursive data structures such as linked lists.

Flow Sensitivity A flow-sensitive analysis respects the order of program instructions.
Each program instruction 𝑖 has its own input and output sets of data-flow facts that it
is associated with, i.e., hold before and after instruction 𝑖. Data flows that have been
computed in a flow-insensitive manner hold at all instructions of the program (or function,
in an intra-procedural setting) under analysis.

Field Sensitivity An analysis that is able to distinguish different fields of a user-defined
type typed or array typed variable is field sensitive, whereas analyses that merge all of
a variable’s fields are field insensitive. Similar to context sensitivity, the depth of fields
managed, i.e., distinguished by an analysis must be limited to avoid running into infinite
loops for recursive data structures such as linked lists.

Path Sensitivity The results of a data-flow analysis, as described in Section 2.1, is a
control-flow graph for which each node representing a program instruction 𝑖 is associated
with two sets of data-flow facts: one that holds before and one that holds after instruction
𝑖. Information on control-flow paths along which a certain data-flow fact has reached a
particular node in the control-flow graph is typically not recorded due to high computational
costs. Analyses that do record control-flow paths between the program point at which a
data-flow fact has been generated and the program points it has been propagated to until it is

16

2.1 The Idea of Static Data-Flow Analysis

killed, if it is killed at all, are path sensitive. Although path sensitivity is rather expensive,
it can yield very useful information as we will further examine in Section 7.3.

2.1.3 Distributive Data-Flow Analysis Problems

Next, we elaborate on data-flow problems whose flow functions distribute over the merge
operator. This property can be used to solve static data-flow analysis problems in an inter-
procedural manner using the summary-based approach [SP78]. This approach allows for
infinite (𝑘 = ∞) context sensitivity and was proposed by Sharir and Pnueli in [SP78] as
an alternative to the call-strings approach. It enables the efficient solving of data-flow
problems by making them compositional.

For analyses formulated in the monotone framework the following monotonicity holds

𝑓 (𝑥) ⊓ 𝑓 (𝑦) ⊑ 𝑓 (𝑥 ⊓ 𝑦), with 𝑥, 𝑦 ∈ 𝐷 (2.1)

When solving data-flow problems, one would ideally like to compute the optimal, i.e.,
most-precise so-called meet-over-all-paths (MOP) solution. The MOP solution is computed
by analyzing each control-flow path of the program separately and merging information
obtained along all possible program paths at the end (cf. 𝑓 (𝑥) ⊓ 𝑓 (𝑦)). The MOP solution
can be formally written as

∀𝑖 ∈ 𝑃 : MOP(𝑖) = ⊓{ 𝑓𝑝 (𝑣𝑖𝑛𝑖𝑡) | 𝑝 is a path from 𝑖0 to 𝑖} (2.2)

where 𝑓𝑝 is a composed “flow function” for path 𝑝 from program 𝑃’s entry point 𝑖0 to
instruction 𝑖 and 𝑣𝑖𝑛𝑖𝑡 ∈ 𝐷 is an initial value.

The MOP solution is, however, generally uncomputable, since every program whose
control-flow graph contains non-trivial loops comprises an infinite number of program
paths. Analyses formulated in the monotone framework thus compute the so-called maximal
fixed-point (MFP) (or merge-first) solution, instead. To obtain the MFP solution, data-flow
information is merged first (sometimes called “early”) at control-flow merge points, before
it is further propagated along the program’s control-flow graph and consumed by the
subsequent flow functions (cf. 𝑓 (𝑥 ⊓ 𝑦)). The MFP solution can be formally written as

MFP(𝑖0) = 𝑣𝑖𝑛𝑖𝑡 (2.3)
MFP(𝑖) = ⊓{ 𝑓ℎ (MFP(ℎ)) | ℎ ∈ 𝑝𝑟𝑒𝑑𝑠(𝑖)} (2.4)

The MFP solution is expressed in terms of predecessor relationships in the control-flow
graph and the merge of information takes place at control-flow merge points. The MFP
solution is a sound (and computable) overapproximation of the MOP solution, i.e., ∀𝑖 ∈
𝑃, MOP(𝑖) ⊑ MFP(𝑖). This is because because Equation (2.1) holds, if 𝑓 is monotone.

For distributive analysis problems it holds that

𝑓 (𝑥) ⊓ 𝑓 (𝑦) = 𝑓 (𝑥 ⊓ 𝑦), with 𝑥, 𝑦 ∈ 𝐷 (2.5)

For distributive analysis problems the MFP solution hence coincides with the most precise
and theoretically optimal MOP solution.

17

2 Background

Full constant propagation is a textbook example for an analysis that is not distributive.
Computing the maximal fixed-point solution for a full constant propagation on the program
shown in Listing 2.1 using the monotone framework [KU77] produces the exploded graph
shown in Figure 2.3. One can easily see that information obtained for the program variables
x and y is merged to ⊤ at the control-flow merge point to indicate that these variables no
longer carry constant values after the control-flow merge point. Therefore, z’s value cannot
be determined precisely and it is associated with ⊤ at instruction z = x + y. Computing
the meet-of-all-paths solution on the program shown in Listing 2.1 is decidable, since it’s
control-flow graph does not contain loops and yields the data-flow information x ↦→ ⊤,
y ↦→ ⊤ and z ↦→ 1 at instruction z = x + y. This example shows that for full constant
propagation the MOP solution is more precise than the MFP solution and is able to precisely
determine z’s value at the end of the function. This is because information is merged at the
end after data-flow information has been computed for each program path in separate. For
our example program, z’s value can be precisely determined as 1 at instruction z = x + y in
both program paths and the merge thus yields its associated value 1.

This example shows that Equation (2.5) is not satisfied and full constant propagation is
indeed not distributive.

Linear constant propagation, a variant of constant propagation that computes and propa-
gates variables that depend on constant values or linearly (𝑦 = 𝑎𝑥 + 𝑏, with 𝑎 and 𝑏 constant
literals) depend on constant variables can, however, be expressed using distributive flow
functions as we show in the next section.

1 i n t main (i n t argc , char ∗∗argv) {
2 i n t x ;
3 i n t y ;
4 i n t z ;
5 i f (argc > 1) {
6 x = 1;
7 y = 0;
8 } e l s e {
9 x = 0;

10 y = 1;
11 }
12 z = x + y ;
13 re turn z ;
14 }

Listing 2.1: An example program that requires non-distributive flow functions for solving
a constant propagation without loss of precision.

We will next show how distributive data-flow problems can be solved efficiently and in a
compositional manner using the algorithmic IFDS [RHS95] and IDE [SRH96] frameworks.
We will use these frameworks to compute data flows in our analysis approaches presented
in this thesis.

18

2.2 The IFDS and IDE Frameworks

int x;

int y;

int z;

x = 1;

y = 0;

x = 0;

y = 1;

⊓

z = x + y;

return z;

{𝑥 ↦→ ⊥}

{𝑥 ↦→ ⊥, 𝑦 ↦→ ⊥}

{𝑥 ↦→ ⊥, 𝑦 ↦→ ⊥, 𝑧 ↦→ ⊥} {𝑥 ↦→ ⊥, 𝑦 ↦→ ⊥, 𝑧 ↦→ ⊥}

{𝑥 ↦→ 1, 𝑦 ↦→ ⊥, 𝑧 ↦→ ⊥} {𝑥 ↦→ 0, 𝑦 ↦→ ⊥, 𝑧 ↦→ ⊥}

{𝑥 ↦→ 1, 𝑦 ↦→ 0, 𝑧 ↦→ ⊥} {𝑥 ↦→ 0, 𝑦 ↦→ 1, 𝑧 ↦→ ⊥}

{𝑥 ↦→ ⊤, 𝑦 ↦→ ⊤, 𝑧 ↦→ ⊥}

{𝑥 ↦→ ⊤, 𝑦 ↦→ ⊤, 𝑧 ↦→ ⊤}

Figure 2.3: Exploded graph for a full-constant propagation conducted on the program
shown in Listing 2.1.

2.2 The IFDS and IDE Frameworks

The algorithmic Interprocedural Finite Distributive Subset (IFDS) [RHS95] and Interpro-
cedural Distributive Environments (IDE) [SRH96] frameworks both follow the functional
approach [SP78,Bod18] to achieve flow- and fully context-sensitive, inter-procedural data-
flow analysis. IFDS and its generalization IDE compute fine-grained, per-fact, re-usable
procedure summaries, which allows them to solve data-flow problems efficiently and ele-
gantly.

Both frameworks solve distributive data-flow problems by constructing a so-called ex-
ploded super-graph (ESG) and solving a graph-reachability problem over that graph. If a
data-flow fact 𝑑 holds at instruction 𝑖, the ESG node (𝑖, 𝑑) in the ESG is reachable from a
special, tautological node Λ. The ESG is constructed for a given target program by replac-
ing every node in its inter-procedural control-flow graph (ICFG) (sometimes referred to as
super-graph) with the bipartite graph representation of the respective flow function. For
distributive data-flow problems, every flow function can be represented as a bipartite graph
without loss of precision. Bipartite graphs for the common flow functions identity, gen

19

2 Background

Λ•

��

𝑎•

��

𝑏•

��
• • •

(a) Identity

Λ•

�� ��

𝑎• 𝑏•

��
• • •

(b) Generate

Λ•

��

𝑎•

��

𝑏•

• • •

(c) Kill

Figure 2.4: Distributive flow functions and their bipartite graph representations.

𝑜𝑢𝑡 (𝑖) =
{
𝑖𝑛(𝑖) ∪ {𝑏} if 𝑓 ∈ 𝑖𝑛(𝑖)
𝑖𝑛(𝑖) otherwise

(a) An exemplary flow function. 𝑖𝑛(𝑖) and
𝑜𝑢𝑡 (𝑖) are the sets of data-flow facts that
hold before and after instruction 𝑖.

Λ•

��

𝑎•

�� ��

𝑏•

��
• • •

(b) The flow function’s respective bipartite
graph representation.

Figure 2.5: An exemplary flow function and its bipartite graph representation that shows
how IFDS/IDE allows one to conditionally generate data-flow facts.

(generate) and kill (remove) are presented in Figure 2.4. Hence all gen/kill problems such
as taint analysis, uninitialized variables, available expressions, etc. can be expressed within
IFDS/IDE. But not only those. In particular, IFDS/IDE allow one to conditionally generate
data-flow facts. The flow function shown in Figure 2.5a, for instance, can be represented
by the bipartite graph shown in Figure 2.5b. In this example, every fact is reachable if and
only if it was previously reachable, and 𝑏 is reachable if 𝑎 was reachable before.

An exemplary ESG for a taint analysis encoded in IFDS that showcases how bipartite
graphs can be used to represent flow functions is shown in Figure 2.6. A taint analysis
tracks tainted variables generated by so-called source functions through the program and
reports a potential security vulnerability whenever a tainted variable reaches a call to a sink
function. The function getPwd acts as a source in our example as it retrieves sensitive user
information and the print function presents a sink as sensitive information must not leak.
The taint analysis detects the potential leak at Line 7 in the program since the ESG node
(𝑖𝑛𝑠𝑡 : 7, p) is reachable from the tautological Λ fact.

To achieve fully context-sensitive, inter-procedural analysis, IFDS and IDE follow the
summary-based approach [SP78] and create procedure summaries that can be reused and
instantiated in subsequent calling contexts. Summaries are created by composing the flow
functions of adjacent instructions. The composition ℎ = 𝑔 ◦ 𝑓 of two flow functions 𝑓 and
𝑔, called jump function, can be obtained by combining their bipartite graph representations.
The graph of ℎ can be produced by merging the nodes of 𝑔 with the corresponding nodes
of the domain of 𝑓 . Once a summary 𝜓 for a complete procedure 𝑝 has been constructed,

20

2.2 The IFDS and IDE Frameworks

Λ•
��

�� ''

��

𝑝• 𝑠•
1: string p = getPwd();

•
��

•
��

•
2: string s = "data";

•
��

•
��

•
3: if (pred)

•
��

��

•

��

•
4: p = "safe";

•

��

• •
5: else

•
��

•
�� ''

•
6: s = p;

•
��

•
��

•
��7: printf ("%s", p);

• • •

Figure 2.6: An exemplary exploded super-graph for a taint analysis encoded in
IFDS [RHS95]. Individual flow functions are indicated with solid edges (→)
and flow function summaries (also known as jump functions) are indicated
with dashed edges (d).

it can be re-applied in any other context in which the procedure 𝑝 is called. Jump functions
are indicated using dashed arrows in Figure 2.6.

In IDE, the generalization of IFDS, the ESG edges carry additional distributive functions.
These so-called edge functions can be used to describe an additional value computation
problem over a value domain 𝑉 that is solved while performing the reachability check on
the ESG. The time complexity of both algorithms is O(|𝑁 | · |𝐷 |3), where 𝑁 is the set
of program instructions and 𝐷 is the data-flow domain, i.e., the set of data-flow facts.
Importantly, the complexity is independent of 𝑉 , which allows IDE to conduct efficient
computations using large or even infinite value domains (e.g., sets of states of larger state
machines in a typestate analysis or the set of natural numbers as required for constant
propagation). Attempts to encode such problems in IFDS will lead to state-space explosion
or even non-termination. While one can generally encode a linear constant propagation in
IFDS using 𝐷 = (𝑣, 𝑐), where 𝑣 ∈ V is the set of program variables and 𝑐 ∈ Z, i.e., with
tuples of program variables and associated integer values, this encoding drastically impedes
performance and without widening, will not even terminate. (Widening is a techniques
that causes the analysis to converge on a fixed-point that is a safe approximation.) This
is because IFDS was built to solve problems with finite domains but Z is infinite. Even
in cases where one bounds its size artificially, solving performance will be bad. A linear
constant propagation can be encoded much more efficiently instead in IDE, using 𝐷 = V
and 𝑉 = Z, such as to reduce the size of the data-flow domain and to utilize the edge

21

2 Background

Λ•

𝑒=⊥
��

��
𝑓 =𝜆𝑥.1

''

𝑖

��

𝑗

--

𝑘

..

𝑎•
1: int a = 1;

•
��

•
��2: if (p)

•
��

��

•
𝑔=𝜆𝑥.𝑥+2
��

��

3: a = a + 2;
•

��

•

��

4: else
•
��

•
ℎ=𝜆𝑥.𝑥+42��5: a = a + 42;

•
��

•
��6: printf ("%d", a);

• •

Figure 2.7: An exemplary exploded super-graph for a linear constant analysis encoded in
IDE [SRH96]. The ESG highlights the various operations that edge functions
must support. Those operations are described, in detail, in Section 4.3.2.
Identity edge functions have been omitted to avoid cluttering. Individual flow
functions have been indicated by solid edges (→) and jump functions have
been indicated by dotted (d) and dashed (d) edges.

functions’ value domain 𝑉—computing a variable’s value using the context-independent
edge functions. Since the complexity of IDE’s solving algorithm depends only on the size
of 𝐷 and not 𝑉 and therefore is independent of the infinite size of Z, such an encoding will
scale [SRH96]. An exemplary ESG for a linear constant propagation encoded in IDE is
shown in Figure 2.7. We explain this ESG in detail in Section 4.3.2.

2.3 Helper Analyses for Precise Whole-Program Data-Flow
Analysis

As pointed out in Section 1.1, to solve data-flow problems precisely, a variety of additional
information is required that must be computed by static helper analyses on the target
program. Even when solving the most basic intra-procedural, flow-sensitive data-flow
problems, information on control flows is required to guide the data-flow solver through the
target code. Client analyses that require information on inter-procedural data flows require
inter-procedural control-flow information, i.e., control-flow and callgraph information.

An overview on the complete analysis stack that is required to solve inter-procedural data-
flow problems precisely and its dependencies are shown in Figure 2.8. These dependencies
are imposed by many useful client analyses such that we assume them in our work in
Chapter 3, Chapter 5, Chapter 6 and Chapter 7.

22

2.3 Helper Analyses for Precise Whole-Program Data-Flow Analysis

Points-to (I)CFG Type hierarchy

Data-flow(s) ClientProgram Representation
(5)

(4)

(2)

(3)

(1)

Figure 2.8: Dependency model of a concrete client analysis. Numbered edges indicate in
which order information has to be computed on the target program’s
representation.

The IFDS and IDE solvers are always depending on the target program’s inter-procedural
control-flow graph (ICFG) that guides the solvers through the program, indicated by a
solid edge in Figure 2.8. In addition, they may depend on points-to and type hierarchy
information in case variables of pointer types are encountered which is indicated by dotted
edges in Figure 2.8. Depending on the desired precision, the ICFG, in turn, may depend
on points-to-, type-hierarchy, and virtual-function-table information. A cyclic dependency
is introduced due to the fact that precise points-to information also depends on ICFG
information [Bod18].

Information on the type hierarchy (and virtual function tables in object oriented lan-
guages) have no further dependencies. A client analysis is likely to transitively depend on
all of the above information.

Listing 2.2 shows a piece of code that contains a data leak which can be found with help
of a taint analysis. The information on control flows, pointers, type hierarchy and data flows
that are required to detect the undesired data flow are presented in the following sections.

1 # inc lude <iostream >
2
3 [[c lang : : annota te ("psr . source")]] i n t s e c r e t () ;
4
5 void l o g I n t e g e r ([[c lang : : annotate ("psr . s ink ")]] i n t i) {
6 s td : : cout << i << ’ \ n ’ ;
7 }
8
9 i n t i d e n t i t y (i n t i , i n t j) { re turn j ; }

10
11 s t r u c t A {
12 v i r t u a l ~A() = d e f a u l t ;
13 v i r t u a l i n t foo () { re turn 13; }
14 } ;
15
16 s t r u c t B : A {
17 ~B () overr ide = d e f a u l t ;
18 i n t foo () overr ide { re turn s e c r e t () ; }
19 } ;

23

2 Background

20
21 i n t main (i n t argc , char ∗∗argv) {
22 i n t i = 0 ;
23 i n t j = 0;
24 A ∗a ;
25 A ∗b ;
26 i f (argc > 1) {
27 a = new A; / / a l l o c a t i o n _ s i t e _ 1
28 } e l s e {
29 a = new B; / / a l l o c a t i o n _ s i t e _ 2
30 }
31 b = a ;
32 i = b−>foo () ;
33 j = i d e n t i t y (13 , i) ;
34 l o g I n t e g e r (j) ;
35 d e l e t e a ;
36 re turn 0;
37 }

Listing 2.2: An example program that contains a data leak to showcase the various static
helper analyses. We will discuss the purpose of the additional attribute
specifier sequences ([[]]) in Section 7.3.

2.3.1 Control Flow and Callgraph Information

The inter-procedural control-flow graph of the program presented in Listing 2.2, is shown
in Figure 2.9. Besides providing trivial information on intra-procedural control flows,
the ICFG also offers callgraph information on inter-procedural caller-callee relations. It
connects call sites with starting points of potential call targets as well as a callee’s exit
instructions with the callee’s respective return sites. While the targets of direct function
calls can be directly read off the code under analysis, an algorithm for callgraph construction
has to resolve indirect calls to function pointers or virtual function members whose values
are dynamically determined at runtime. The result of a callgraph construction algorithm is
a set of possible call targets for each indirect call site.

To resolve the virtual call at Line 32 in Listing 2.2, a callgraph algorithm may apply
various strategies. In the following, we detail on a few possible approaches with increasing
precision.

i A callgraph algorithm can use an (unsound) underapproximation and state that no
function is called, effectively ignoring the potential call targets of a call site.

ii It can treat all functions as potential call targets whose signature matches the one at
the call site.

iii It can use the type hierarchy and information on virtual function tables to determine
that an implementation of foo is being called and assume the implementations of the
declared type of the receiver object (variable b) or any of its subtypes can be called.

24

2.3 Helper Analyses for Precise Whole-Program Data-Flow Analysis

iv It can additionally use points-to information to determine possible allocation sites of
the pointer (or reference) to the receiver object to determine potential call targets.

2.3.2 Points-to and Alias Information

Points-to information describes to which abstract memory location(s) a pointer-typed vari-
able (or reference-typed variable in case of C++) can potentially point to. Pointer analysis
is often a component of more complex analyses and is desired to resolve indirect call sites
during callgraph construction and to model loads and stores in data-flow analysis. Alias
information answers the question whether an abstract memory location may be accessed
in more than one way. Two pointer variables do alias, if they point to the same memory
location.

Information on points-to relationships can be maintained using multiple different data
structures. The points-to sets for the program in Listing 2.2 at the end of the main function
look like follows:

pts(a) : {obj_1, obj_2}
pts(b) : {a, obj_1, obj_2}

However, pointer information can also be stored as graphs. The flow-insensitive pointer
assignment graph for the program in Listing 2.2 is shown in Figure 2.11. A pointer
assignment graph is constructed with help of the rules stated in Figure 2.10. We will use
pointer assignment graphs later on to maintain point-to information in a compositional
manner.

2.3.3 Type Hierarchy Information

In static analysis, information on a program’s type hierarchy and virtual function tables is
required to resolve virtual function calls during callgraph construction. This information
can be statically retrieved from the program under analysis and does not require special
analysis algorithms.

The type hierarchy and virtual function tables for the program shown in Listing 2.2 are
depicted in Figure 2.12. The program comprises two user-defined types that we denote as
𝜏A and 𝜏B. While in programming languages such as Java or C#, all function members are
virtual by default and hence potentially emit polymorphic behavior, C++ requires function
members to be explicitly marked using the virtual keyword to allow subtypes to override
their implementations. The virtual function tables for 𝜏A and 𝜏B both contain two entries:
one for their destructor implementation and one for their implementation of foo.

2.3.4 Data-Flow Information and Client Analyses

Based on the information provided by the helper analyses described in the previous sections,
precise data-flow information can be computed to answer a given client analysis.

While the taint flows required to detect the data leak in the program shown in Listing 2.2
can be computed in an inter-procedural manner using the call-strings approach, it can be

25

2 Background

int i = 0;

int j = 0;

A ∗a;

A ∗b;

if (argc > 1)

a = new A; a = new B

b = a;

i = b−>foo();

j = identity (13, i) ;

logInteger (j) ;

delete a;

return 0;
std ::cout << i ;

return j ;

return 13;

return secret () ;

Figure 2.9: Inter-procedural control-flow graph of the program shown in Listing 2.2.
Intra-procedural control flows are denoted with solid edges (→) and
inter-procedural control flows are denoted with dotted edges (d).

26

2.4 Soundness and Completeness

𝐴1→𝑥
{𝐴1}⊆𝑝𝑡𝑠 (𝑥)

(a) Memory allocation: x = new Obj; // A1

𝑦→𝑥

𝑝𝑡𝑠 (𝑦)⊆𝑝𝑡𝑠 (𝑥)

(b) Assignment: x = y;

𝑥→𝑦. 𝑓 , 𝑜∈𝑝𝑡𝑠 (𝑦)
𝑝𝑡𝑠 (𝑥)⊆𝑝𝑡𝑠 (𝑜. 𝑓)

(c) Store: y. f = x;

𝑦. 𝑓→𝑥, 𝑜∈𝑝𝑡𝑠 (𝑦)
𝑝𝑡𝑠 (𝑜. 𝑓)⊆𝑝𝑡𝑠 (𝑥)

(d) Load: x = y. f ;

Figure 2.10: Rules for the construction of pointer-assignment graphs.

A∗ : a

A∗ : b

A : obj_1

B : obj_2

Figure 2.11: Pointer assignment graph of Listing 2.2.

computed much more efficiently using IFDS [RHS95], since taint analysis can be expressed
using distributive flow functions.

The parts of the exploded super-graph that are relevant to correctly detect the undesired
taint flow are shown in Figure 2.13. The ESG carries the necessary data-flow information
to correctly identify the potential leak of sensitive information through the program Lines
32 – 34.

2.4 Soundness and Completeness

Static program analysis can be sound or unsound. Static analysis that is sound does not
“overlook” possible program behavior and instead, overapproximates situations in which it
can not compute information precisely.

Our analysis approaches presented in this thesis are unsound, since implementing an
analysis that computes a more complex property on realistic C and C++ programs in a
sound manner and in an inter-procedural, i.e., whole program setting is virtually impossible
or would introduce so much imprecision that it renders the analysis results practically
unusable [LSS+15]. Instead, our analysis approaches aim at soundiness [LSS+15], a well-
known term in static analysis. Soundy analyses apply sensible underapproximations to

𝜏A 0 : • A::~A

1 : • A::foo

𝜏B 0 : • B::~B

1 : • B::foo

Figure 2.12: Type hierarchy graph and respective virtual function tables of Listing 2.2.

27

2 Background

int main() int A::foo ()

Λ•
⊥��

��

𝑖• 𝑗• 𝑐• Λ•
⊥��

��

ret•
[...] return 13;

•

��

• • • • •
b = a; int B::foo ()

•

��

• • • Λ•
⊥��

�� ��

ret•
i = b−>foo(); return secret () ;

•

��

•

�� **

• • • •qq

j = identity (13, i) ; int identity (int i , int j)

•

��

•

��

•

��

((

• Λ•
⊥��

��

𝑖• 𝑗•

��

ret•
logInteger (j) ; return j ;

•

��

•

��

•

��

• • • • •

oo

delete a; void logInteger (int i)
•

��

•

��

•

��

• Λ•
⊥��

��

𝑖•
�
��return 0; std ::cout << i << ’n’;

• • • • • •

Figure 2.13: Excerpt of an exploded super-graph computed for an IFDS-based taint
analysis conducted on the program shown in Listing 2.2. Jump functions and
inter-procedural flow functions of Λ have been omitted for brevity. The leak
of potentially sensitive information is indicated with the bolt symbol (�).

28

2.5 Precision and Performance

compute meaningful results in an inter-procedural analysis setting and are widely accepted
in the static analysis community [LSS+15, TG17]. A soundy analysis, for instance, would
sanely assume that system calls and calls to libC behave as expected: calls to such functions
are not analyzed and instead, a summary that models their effects is consulted when they
have a relevant effect on the client analysis. This is also why virtually all static analyses
used for compiler optimization that aim at computing more complex properties are intra-
procedural only.

2.5 Precision and Performance

The previous sections show that answering a concrete client analysis not only requires a lot
of different analyses but these, in addition, can and must be heavily parameterized, too.

Each of the involved analyses can be typically parameterized to trade off precision versus
performance. For instance, limiting the amount of context-sensitivity in the call-strings
approach or the depth of field sensitivity are direct trade offs. But also the chosen callgraph
and points-to algorithms have a large impact on precision and performance. The situation
becomes even more complex, since the analyses oftentimes influence each other; oftentimes
in non-trivial manners [Bod18,SLHB21].

Whereas a less precise callgraph is generally faster to compute, the set of potentially call
targets at an indirect call site will grow (assuming that the analysis aims at soundness or
soundiness, i.e., overapproximates), which, in turn, requires many more propagations of
data-flow facts by the subsequent data-flow analysis. Spending more time on computing
precise information can actually make the overall client analysis faster, too. This, however,
is oftentimes unknown and needs to be evaluated for each analysis setup and target program,
given the fact that each target program oftentimes has slightly different characteristics.

2.6 Static Versus Dynamic Analysis

In contrast to static analysis that only “looks” at a given program and emulates an expert
analyzing the target code, dynamic program analysis analyzes a given program by executing
(parts of) it.

While (sound) static program analysis computes an overapproximation of the possible
behavior of the program under analysis, dynamic program analysis computes an under-
approximation, since it can only make statements based on the program behavior for the
program paths that have been executed. Static program analysis hence often suffers from
false positives, whereas dynamic program analysis suffers from false negatives. A diagram
that shows the relationship between the actual program behavior and the behavior computed
by a static and dynamic analysis is shown in Figure 2.14.

Combining static and dynamic program analysis to create hybrid analysis that enables one
to automatically verify static analysis findings by creating appropriate test cases for dynamic
validation to cope with false positives in an industrial context is subject of Section 7.3.

29

2 Background

Static Analysis

Actual Program Behavior

Static Analysis (unsound)

Dynamic Analysis

Figure 2.14: Relationship between the actual program behavior and the behaviors
computed by static and dynamic program analysis.

2.7 The LLVM Compiler Infrastructure

The LLVM compiler infrastructure [LA04] provides a modular and reusable library and
tool chain that contains all necessary parts to build compilers and associated tools. LLVM
is a very active open-source project with dozens of related projects. It is also used as
the production compiler infrastructure by major companies like Google, Oracle, Apple,
Facebook (Meta), Sony and many more [TL:18b].

One essential part of the LLVM infrastructure is its intermediate representation (IR).
The LLVM IR is a low-level, typed, three-address, assembly-like language in static single
assignment form. Control flows as well as data flows are explicit in the LLVM IR. The
IR is—in theory—expressive enough to encode arbitrary source languages. In a typical
compiler related workflow, a compiler front-end (i) compiles an input source language into
LLVM IR that is then (ii) analyzed and optimized, and finally (iii) a compiler back-end
may generate machine code. As we are currently only interested in analyzing the IR, we
can ignore step (iii). Clang is LLVM’s front-end for C-like languages (including C and
C++). Listing 2.3 shows Listing 2.2’s corresponding unoptimized LLVM IR produced
by the Clang compiler. LLVM IR is the program representation that will be eventually
analyzed by the automated analysis approaches presented in this thesis. Although LLVM’s
IR consists of 65 different instructions and around 315 LLVM intrinsic functions [TL:18a],
this small piece of code already shows some of the most important ones.1

1 %s t r u c t .A = type { i 32 (. . .) ∗∗ }
2 %s t r u c t . B = type { %s t r u c t .A }
3
4 ; Funct ion At t r s : n o i n l i n e norecurse optnone uwtable mustprogress
5 d e f i n e d s o _ l o c a l i 32 @main(i 32 %argc , i 8 ∗∗ %argv) #7 {
6 entry :
7 %r e t v a l = a l l o c a i32 , a l i g n 4
8 %argc . addr = a l l o c a i32 , a l i g n 4
9 %argv . addr = a l l o c a i 8 ∗∗ , a l i g n 8

1As of November 3rd, 2022.

30

2.7 The LLVM Compiler Infrastructure

10 %i = a l l o c a i32 , a l i g n 4
11 %j = a l l o c a i32 , a l i g n 4
12 %a = a l l o c a %s t r u c t .A∗ , a l i g n 8
13 %b = a l l o c a %s t r u c t .A∗ , a l i g n 8
14 s t o r e i 32 0 , i 32 ∗ %re tva l , a l i g n 4
15 s t o r e i 32 %argc , i 32 ∗ %argc . addr , a l i g n 4
16 s t o r e i 8 ∗∗ %argv , i 8 ∗∗∗ %argv . addr , a l i g n 8
17 s t o r e i 32 0 , i 32 ∗ %i , a l i g n 4
18 s t o r e i 32 0 , i 32 ∗ %j , a l i g n 4
19 %0 = load i32 , i 32 ∗ %argc . addr , a l i g n 4
20 %cmp = icmp s g t i 32 %0, 1
21 br i 1 %cmp , l a b e l %i f . then , l a b e l %i f . e l s e
22
23 i f . then : ; preds = %entry
24 %c a l l = c a l l n o a l i a s nonnul l i 8 ∗ @_Znwm(i64 8) #11
25 %1 = b i t c a s t i 8 ∗ %c a l l to %s t r u c t .A∗
26 c a l l vo id @_ZN1AC2Ev(%s t r u c t .A∗ nonnul l d e r e f e r enc eab l e (8) %1) #3
27 s t o r e %s t r u c t .A∗ %1, %s t r u c t .A∗∗ %a , a l i g n 8
28 br l a b e l %i f . end
29
30 i f . e l s e : ; preds = %entry
31 %c a l l 1 = c a l l n o a l i a s nonnul l i 8 ∗ @_Znwm(i64 8) #11
32 %2 = b i t c a s t i 8 ∗ %c a l l 1 to %s t r u c t . B∗
33 c a l l vo id @_ZN1BC2Ev(%s t r u c t . B∗ nonnul l d e r e f e r enc eab l e (8) %2) #3
34 %3 = b i t c a s t %s t r u c t . B∗ %2 to %s t r u c t .A∗
35 s t o r e %s t r u c t .A∗ %3, %s t r u c t .A∗∗ %a , a l i g n 8
36 br l a b e l %i f . end
37
38 i f . end : ; preds = %i f . e l s e , %i f . then
39 %4 = load %s t r u c t .A∗ , %s t r u c t .A∗∗ %a , a l i g n 8
40 s t o r e %s t r u c t .A∗ %4, %s t r u c t .A∗∗ %b , a l i g n 8
41 %5 = load %s t r u c t .A∗ , %s t r u c t .A∗∗ %b , a l i g n 8
42 %6 = b i t c a s t %s t r u c t .A∗ %5 to i32 (%s t r u c t .A∗)∗∗∗
43 %v t a b l e = load i32 (%s t r u c t .A∗) ∗∗ , i 32 (%s t r u c t .A∗)∗∗∗ %6, a l i g n 8
44 %vfn = ge t e l emen tp t r inbounds i32 (%s t r u c t .A∗) ∗ , i 32 (%s t r u c t .A∗)

∗∗ %vtab le , i 64 2
45 %7 = load i32 (%s t r u c t .A∗) ∗ , i 32 (%s t r u c t .A∗)∗∗ %vfn , a l i g n 8
46 %c a l l 2 = c a l l i 32 %7(%s t r u c t .A∗ nonnul l d e r e f e r enc eab l e (8) %5)
47 s t o r e i 32 %c a l l 2 , i 32 ∗ %i , a l i g n 4
48 %8 = load i32 , i 32 ∗ %i , a l i g n 4
49 %c a l l 3 = c a l l i 32 @_Z8 iden t i t y i i (i 32 13 , i 32 %8)
50 s t o r e i 32 %c a l l 3 , i 32 ∗ %j , a l i g n 4
51 %9 = load i32 , i 32 ∗ %j , a l i g n 4
52 c a l l vo id @_Z10logIntegeri (i 32 %9)
53 %10 = load %s t r u c t .A∗ , %s t r u c t .A∗∗ %a , a l i g n 8
54 %i s n u l l = icmp eq %s t r u c t .A∗ %10, n u l l
55 br i 1 %i s n u l l , l a b e l %d e l e t e . end , l a b e l %d e l e t e . n o t n u l l
56
57 d e l e t e . n o t n u l l : ; preds = %i f . end
58 %11 = b i t c a s t %s t r u c t .A∗ %10 to void (%s t r u c t .A∗)∗∗∗
59 %vtab l e4 = load void (%s t r u c t .A∗) ∗∗ , vo id (%s t r u c t .A∗)∗∗∗ %11,

a l i g n 8
60 %vfn5 = ge t e l emen tp t r inbounds void (%s t r u c t .A∗) ∗ , vo id (%s t r u c t .A

∗)∗∗ %vtable4 , i 64 1

31

2 Background

61 %12 = load void (%s t r u c t .A∗) ∗ , vo id (%s t r u c t .A∗)∗∗ %vfn5 , a l i g n 8
62 c a l l vo id %12(%s t r u c t .A∗ nonnul l d e r e f e r enc eab l e (8) %10) #3
63 br l a b e l %d e l e t e . end
64
65 d e l e t e . end : ; preds = %d e l e t e . no tnu l l , %i f . end
66 r e t i 32 0
67 }

Listing 2.3: An excerpt of the LLVM intermediate representation of the program shown in
Listing 2.2 produced by the Clang compiler.

Figure 2.15 shows the different scopes or building blocks in which the IR is organized.
A Module is able to represent a complete C or C++ compilation unit (or multiple linked
compilation units). This is what the Clang compiler produces when compiling a single C
or C++ file into the LLVM IR. The Module contains GlobalVariables and Function definitions
(or declarations). A Function, in turn, consists of one or more BasicBlocks which contain one
or more Instructions. Each scope of the aforementioned is modeled as a data type within
LLVM. One important thing to note is that LLVM follows a highly hierarchical structure.
One very important super-type is the LLVM Value that, for instance, the Function, BasicBlock
and Instruction subtype. Another relevant super-type for static analysis is the Instruction type.
All of the 65 different LLVM instructions are specializations of this type. A type relation or
cast can be checked or performed using LLVM’s custom runtime type information (RTTI)
system. We need to make use of the RTTI system when writing a concrete data-flow
analysis for the LLVM IR in order to inspect the different types of instructions and model
their effects on the static information accordingly.

In the following chapter, we present the LLVM-based PhASAR framework that we
implemented to account for the lack of static analyzers for C and C++ that implement the
concepts we described in the above. PhASAR provides implementations for the theory
and concepts described in this chapter. We use PhASAR’s infrastructure to implement and
evaluate our novel analysis approaches that we present in Chapter 4, Chapter 5, Chapter 6
and Chapter 7.

Figure 2.15: Scopes of the LLVM intermediate representation.

32

3 PhASAR

In this chapter, we describe the design and implementation of our LLVM-based static
analysis framework PhASAR. PhASAR allows data-flow problems to be solved in a
fully automated manner. It provides class hierarchy, control-flow (including callgraph),
points-to, and data-flow information, hence requiring analysis developers only to spec-
ify a definition of the data-flow problem to be solved. PhASAR thus hides the com-
plexity of static analysis behind high-level APIs, making static program analysis more
accessible and easy to use. PhASAR is entirely written in C++ and available as an
open-source project under the permissive MIT license at https://phasar.org/ and
https://github.com/secure-software-engineering/phasar.

We evaluate PhASAR’s scalability during whole-program analysis. Analyzing 12 real-
world programs using a taint analysis written in PhASAR, we found PhASAR’s abstractions
and their implementations to provide a whole-program analysis that scales well to small and
midsize real-world target programs. For target programs that comprise several million lines
of code and analyses that use complex data-flow domains, the frameworks starts running
into difficulties when conducting such analyses on ordinary consumer hardware.

After presenting PhASAR as our basic infrastructure, we present further improvements
of the framework and share our experience that we gained while developing static analyses
for C and C++ over the last few years. In the chapters thereafter, we detail on how to scale
static analysis to large programs, analysis problems with complex domains and modern
software development workflows.

3.1 Introduction

Programming languages from the C family are chosen as the implementation language in a
multitude of projects especially in cases where a direct interface with the operating system
or hardware components is of importance. Large portions of any operating system and
virtual machine (such as the Java VM) are written in C or C++. The reason for this is
oftentimes the amount of control the programmer has over many aspects that allow for the
creation of very efficient programs—but also comes with the obligation to use these features
correctly to avoid introducing bugs or opening the program to security vulnerabilities.

To aid developers in creating correct and secure software, a multitude of checks have been
included into compilers such as GCC [GCC18a] and Clang [Cla18a]. Various additional
tools such as Cppcheck [Cpp18], clang-tidy [Cla18c], or the Clang Static Analyzer [Cla18b]
provide additional means to check for unwanted behavior. Compiler-check passes and
additional checkers both use static program analysis to provide warnings to their users.
However, to create warnings in a timely fashion, these tools use comparatively simple

33

https://phasar.org/
https://github.com/secure-software-engineering/phasar

3 PhASAR

analyses that provide either only checks for simple properties, or suffer from a large number
of false or missed warnings, due to the imprecision or unsoundness of the used analysis.

For programs written in the Java programming language, program-analysis frameworks
like Soot [LBLH11], WALA [Wal19], and Doop [Doo18] are available which allow for
a more precise data-flow analysis to determine more intricate program problems. Fur-
thermore, algorithmic frameworks such as Interprocedural Finite Subset (IFDS) [RHS95],
Interprocedural Distributive Environments (IDE) [SRH96], or Weighted Pushdown Systems
(WPDS) [RSJ03] can be used to describe distributive data-flow problems and efficiently
compute their possible solutions.

So far, such implementations have not been openly available for programs written in
C or C++. This work thus presents the novel program-analysis framework PhASAR, an
extension to the LLVM compiler infrastructure [LA04]. In its inception, we used our
experience in developing previous such frameworks for JVM-based languages, namely
Soot [LBLH11] and OPAL [EH14], to design a flexible framework that can be adapted to
several different types of client analyses. Besides solving data-flow problems, PhASAR
can be used to achieve other related goals as well, for instance, callgraph construction, or
the computation of points-to information. Its features can be used independently and can
be included into other software.

PhASAR is intended to be used as a static analyzer. Therefore, it does not substitute but
complement features from the LLVM toolchain and provides also for analyses which during
compilation would be prohibitively expensive. While we did not design or implement the
analyses included in PhASAR to be a compiler pass, several parts might be used in such a
way.

This chapter makes the following contributions:

• It provides a user-centric description of PhASAR’s architecture, its infrastructure,
and data-flow solvers,

• it presents a case-study that shows PhASAR’s overall scalability as well as the precise
runtimes of a concrete static analysis, and

• it discusses our experience in developing static analyses for C and C++.

3.2 Related Work

There are several established and well-maintained tools and frameworks for the Java ecosys-
tems. Frameworks from academia include Soot [LBLH11], which is a static analysis frame-
work that allows callgraph construction, computation of points-to information and solving
of data-flow problems for Java and Android. Soot does not support inter-procedural data-
flow analyses directly. However, a user can solve such problems using the Heros [Bod12]
extension that implements an IFDS/IDE solver. The WALA [Wal19] framework provides
similar functionalities for Java bytecode, JavaScript and Python. OPAL [EH14] allows for
the implementation of abstract interpretations of Java bytecode. Also the manipulation
of bytecode is supported. A declarative approach is implemented by the Doop frame-
work [Doo18]. Doop uses a declarative rule set to encode an analysis and solves it using the

34

3.3 Architecture

logic-based Datalog solver. The framework allows for pointer analysis of Java programs
and implements a range of algorithms that can be used for context insensitive, call-site and
object sensitive analyses.

Tooling for C and C++ includes Cppcheck [Cpp18] which aims for a result without false
positives and allows to encode simple rules as well as the development of more powerful add-
ons. The clang-tidy tool [Cla18c] provides built-in checks for style validation, detection
of interface misuse as well as bug-finding using simple rules, but can be extended by
a user. Checks can be written on preprocessor level using callbacks or on AST level
using AST matchers that can be specified using an embedded domain specific language
(EDSL). The Clang Static Analyzer [Cla18b] uses symbolic execution and allows custom
checks to be written. The SVF [SX16b] framework computes points-to information for
constructing sparse value flow and memory static single assignment (SSA). Hence, it can
be used for analyses that rely on those information such as memory leak detection or null
pointer analysis. Additionally, more precise pointer analysis can be build on top of SVF’s
results. However, as the computation of memory SSA does require a significant amount of
computation, using SVF may not pay off for problems that can be encoded using distributive
frameworks, which allow fast, summary-based solutions.

There are also commercial, closed-source tools for static analysis such as CodeS-
onar [Cod18] and Coverity [CS18], both of which support analyses for C, C++, Java
and other languages. Whereas these products are attractive to industry as they provide
polished user interfaces, they are not usable for evaluating novel algorithms and ideas in
static-analysis research.

3.3 Architecture

As discussed in Chapter 2, precise data-flow analysis requires information from multiple
supporting analyses which are typically run earlier, such as class-hierarchy, callgraph, and
points-to analysis. Algorithmic frameworks like IFDS provide a generalized algorithm that
is then parameterized for each individual data-flow problem. The infrastructure provided by
these basic analyses and algorithmic frameworks is necessary to allow analysis designers to
efficiently concentrate on the goal of a data-flow analysis. PhASAR is the first framework to
provide such infrastructure for programs written in the C language family. Its infrastructure
is designed modularly, such that analysis developers can choose the components necessary
for their individual goals. Figure 3.1 presents the high-level architecture of the framework.

We allow PhASAR to be used in multiple ways. The first (and easiest) way is through its
command-line interface phasar-llvm. Its implementation can be seen as a blueprint to
create other tools which use PhASAR. The command-line interface provides the means to
execute basic analyses such as callgraph construction or pointer analysis or run pre-defined
IFDS/IDE-based analyses. The output of these analyses can then be processed using other
tooling or presented to the user directly.

Since PhASAR is completely open source and the organization of its source code follows
a modular structure, it is open to extension. Users of the framework are free to implement
their own points-to, callgraph, data-flow, etc. analysis which they can directly develop as

35

3 PhASAR

LLVM Application Programming Interface

LLVM Intermediate Representation

Project Database

Control FlowPoints-to Type hierarchy

(W)PDSIFDS/IDE Monotone Framework

phasar-llvm

· · ·

Analysis B

Analysis A

Tool A Tool B · · ·

Figure 3.1: PhASAR’s high-level architecture

36

3.3 Architecture

part of the framework and eventually contribute back to the project. Providers of novel
analyses need to create an implementation of a pre-defined C++ interface that then offers
the respective functionalities in a unified way.

PhASAR can also be included into other tools by using it as a library. This way of using
PhASAR provides the most flexibility as developers can freely select the components that
should be part of an analysis and can reuse even parts of the components provided by the
framework. Thus, the PhASAR framework can be used as a stand-alone application, as a
host for custom analysis for various tasks and as a library giving its users full control over
the analysis task to accomplish.

PhASAR allows analysis developers to specify arbitrary data-flow problems, which are
then solved in a fully-automated manner on the specified LLVM IR target code. Solving
a static analysis problem on the IR rather than the source language makes the analysis
generally easier. This is because it removes the dependency on the concrete source language,
as the IR is usually simpler since the IR involves no nesting and has fewer instructions.
Various compiler front-ends for a wide range of languages targeting LLVM IR exist. Hence,
PhASAR is able to analyze programs written in languages other than C or C++, too. The
framework computes all required information to perform an analysis such as points-to,
callgraph, type-hierarchy as well as additional parameterizable taint and typestate analyses.

PhASAR provides various capabilities and interfaces to compute data-flow problems or
aid other types of analyses. First, the framework contains interfaces and implementations
for the computation of an ICFG; we provide some parameterizable implementations for the
LLVM IR.

Next, PhASAR currently supports the computation of function-wise points-to infor-
mation using LLVM’s implementations of the Andersen-style [And94] or Steensgaard-
style [Ste96] algorithms. Points-to information and ICFG computation can be combined to
obtain more precise results. We discuss the quality of points-to information and our current
efforts to improve their quality in Section 3.9.

To resolve virtual function calls in C++, we provide means to construct a type hierarchy.
We construct the type hierarchy for composite types and reconstruct the virtual function
tables from the IR, which together with the hierarchy information allow PhASAR to resolve
potential call targets at a given call-site.

PhASAR provides implementations of IDE and IFDS solvers as described by Reps et
al. [RHS95] including the extensions of Naeem et al. [NLR10]. We implemented IFDS as
a specialization of IDE using a binary lattice only using a top and a bottom element much
alike the Heros implementation [Bod12]. Both solvers are accompanied by a corresponding
interface for problem definition. To solve a data-flow problem using the IDE or IFDS solver,
the data-flow problem must be encoded by implementing this interface. We present this in
detail in Section 3.4.

For non-distributive data-flow problems PhASAR provides an implementation of the
traditional monotone framework [KU77] which allows one to solve intra-procedural prob-
lems. The framework provides an inter-procedural version as well that uses a user-specified
context in order to differentiate calling-contexts. PhASAR provides a context interface
and implementations of this interface that realize the call-strings and value-based approach
VASCO [PK13], in which context-sensitivity is achieved by reusing information that has

37

3 PhASAR

been computed for previous calls under the same context. The framework also implements
a version of the context class to represent a null context. This context has the same effect as
applying the monotone framework directly in an inter-procedural setting. Both solvers are
accompanied by corresponding interfaces for problem descriptions which must be imple-
mented to encode a concrete data-flow problem. The details are provided in Section 3.4.

All of PhASAR’s data-flow solvers are implemented in a fully generic manner and heav-
ily make use of templates and interfaces. For instance, a solver follows a target program’s
control-flow that is specified through an implementation of either the CFG or the ICFG inter-
face. Analysis developers can parameterize a solver with an existing implementation or they
can provide their own custom implementation. They can run a forward or backward anal-
ysis depending on the direction of the chosen control-flow graph. Moreover, all data-flow
related functionality is hidden behind interfaces. A solver queries the required functionality
such as flow functions or merge operations for the underlying lattice whenever necessary.
We have specified problem interfaces on which the corresponding solver operates. Thus,
analysis developers encode their data-flow problem by providing an implementation for the
problem interface and provide this implementation to the accompanying solver. PhASAR
is able to solve a problem on other IRs when suitable implementations for the IR specific
parts such as the control-flow graphs and problem descriptions are provided by the analysis
developer.

3.4 PhASAR’s Implementation

Our goal with PhASAR is easing the formulation of a data-flow analysis such that an
analysis developer only needs to focus on the implementation of the problem description
rather than providing details how the problem is solved.

PhASAR achieves parts of its generalizability through template parameters. These
template parameters include, among others, N, D, F. They are consistently used throughout
the implementation of PhASAR. N denotes the type of a node in the ICFG, i.e., typically an
IR statement, D denotes the domain of the data-flow facts, and F is a placeholder for the type
of a method/function. When analyzing LLVM IR, N is always of type const llvm:: Instruction∗
and F is of type const llvm::Function∗, whereas D depends on the specific data-flow analysis
that the developer wants to encode. For our example using linear constant propagation
described in Chapter 2, D = std ::pair<const llvm::Value ∗, int> could be used to capture the
property of interest. LLVM’s Value type is quite useful as it is a super-type that is located
high in the type hierarchy. This allows an analysis developer to use values of all of Value’s
subtypes in the value domain, which makes it highly flexible.

3.4.1 Encoding an IFDS Analysis

Listing 3.1 shows the interface for an IFDS problem. An analysis developer has to define a
new type—the problem description—implementing the FlowFunctions interface.

1 t empla te <typename N, typename D, typename F> s t r u c t FlowFunct ions {
2 v i r t u a l ~ FlowFunctions () = d e f a u l t ;

38

3.4 PhASAR’s Implementation

3 v i r t u a l FlowFunction <D> ∗getNormalFlowFunction (N curr , N succ) =
0;

4 v i r t u a l FlowFunction <D> ∗ getCal lF lowFunct ion (N ca l lS tmt ,
5 F destMthd) = 0;
6 v i r t u a l FlowFunction <D> ∗getRetFlowFunct ion (N c a l l S i t e ,
7 F cal leeMthd ,
8 N exi tStmt ,
9 N r e t S i t e) = 0 ;

10 v i r t u a l FlowFunction <D> ∗
11 getCal lToRetFlowFunct ion (N c a l l S i t e , N r e t S i t e ,
12 s td : : s e t <F> c a l l e e s) = 0;
13 } ;

Listing 3.1: Interface for specifying flow functions in IFDS/IDE.

The flow function factories shown in Listing 3.1 handle the different types of flows. The
four factory functions each have an individual purpose:

• getNormalFlowFunction handles all intra-procedural flows.

• getCallFlowFunction handles inter-procedural flows at a call-site. Usually, the task of
this flow function factory is to map the data-flow facts that hold at a given call-site
into the callee method’s scope.

• getRetFlowFunction handles inter-procedural flows at an exit statement (e.g. a return
statement). This maps the callee’s return value, as well as data-flow facts that
may leave the function by reference or pointer parameters, back into the caller’s
context/scope.

• getCallToRetFlowFunction propagates all data-flow facts that are not involved in a call
along-side the call-site, typically stack-local data not referenced by parameters.

These flow function factories are automatically queried by the solver, based on the
inter-procedural control-flow graph.

The functions in Listing 3.1 are factories since they have to return small function objects
of type FlowFunction which is shown in Listing 3.2. As a FlowFunction is itself an interface,
an analysis developer has to provide a suitable implementation. The member function
computeTargets takes a value of a dataflow fact of type D and computes a set of new dataflow
facts of the same type. The solver automatically queries the respective flow function factory
for each statement and then calls the computeTargets implementation of the flow function on
each data-flow fact that holds before the instruction 𝑖 under analysis to determine the flow
facts that hold after instruction 𝑖. It thus specifies how the bipartite graph for the instruction
that represents the flow function is constructed and can be thought of an answer to the
question “What edges must be drawn?”.

1 t emplate <typename D> s t r u c t FlowFunction {
2 v i r t u a l ~FlowFunction () = d e f a u l t ;
3 v i r t u a l s td : : s e t <D> computeTargets (D source) = 0;
4 } ;

Listing 3.2: Interface for a flow function in IFDS/IDE

39

3 PhASAR

As flow function implementations often follow certain patterns, we provide implemen-
tations for the most common patterns as template classes. Many useful flow functions like
Gen, GenIf, Kill , KillAll , and Identity are already implemented and can be directly used.
Any number of flow functions can be easily combined using our implementations of the
Compose and Union flow functions. We also provide MapFactsToCallee and MapFactsToCaller
flow functions that automatically map parameters into a callee and back to a caller, since
this behavior is frequently desired. Flow functions which are stateless, e.g. Identity or
KillAll , are implemented as a thread-safe singleton.

3.4.2 Encoding an IDE Analysis

If an analysis developer wishes to encode their problem within IDE, they have to additionally
provide implementations for the edge functions. With help of the edge functions, an
analysis developer is able to specify a computation which is performed along the edges
of the exploded super-graph leading to the queried node (cf. Figure 2.7). The interface
for the edge function factories and their responsibilities are analogous to the flow function
factories in Listing 3.1.

Each edge function factory must return an edge function implementation: a small function
object similar to a flow function which has a computeTarget function, a compose, a merge,
and an equality-check operation. The EdgeFunction interface is shown in Listing 3.3.

1 t empla te <typename V> c l a s s EdgeFunction {
2 pub l i c :
3 v i r t u a l ~EdgeFunction () = d e f a u l t ;
4 v i r t u a l V computeTarget (V source) = 0;
5 v i r t u a l EdgeFunction <V> ∗
6 composeWith (EdgeFunction <V> ∗ secondFunct ion) = 0;
7 v i r t u a l EdgeFunction <V> ∗
8 jo inWith (EdgeFunction <V> ∗ otherFunct ion) = 0;
9 v i r t u a l bool equa l_ to (EdgeFunction <V> ∗ other) cons t = 0;

10 } ;

Listing 3.3: Interface for an edge function in IDE

As this interface is more complex than the flow function interface, we explain the purpose
of each function. The computeTarget function describes a computation over the value domain
𝑉 in terms of lambda calculus for an edge of the ESG.

The composeWith function encodes how to compose two edge functions. In most scenarios,
this function can be implemented as (𝑓 ◦ 𝑔) (𝑥) = 𝑓 (𝑔(𝑥)) by applying computeTarget of
one edge function to source and the computeTarget function of the other on the result. To
avoid additional boilerplate code, we provide an EdgeFunctionComposer class that performs
this job and can be used as a super class.

joinWith encodes how to join two edge functions at instructions where two control-flow
edges lead to the same successor instruction. Depending if a may or a must-analysis is
performed, implementations of this function typically check which edge function computes
a value that is higher up in the lattice, i.e., a more approximate value, and returns the
corresponding edge function. For our linear constant propagation, for instance, this function

40

3.4 PhASAR’s Implementation

would return one of the edge functions if both describe the same value computation, the
bottom edge function if both of them encode the ⊥ value and the edge function encoding
the top element otherwise. The intuition here is to always pick the element that is higher in
the lattice as it represents more information.

The equal_to interface function has to be implemented to return true if both edge functions
describe the same value computation, false otherwise.

A complete implementation of a linear constant propagation encoded within IDE can be
found along with PhASAR’s other examples at our website [Pha18].

3.4.3 Encoding an Analysis Within the Monotone Framework

If an analysis developer wishes to encode a problem that does not satisfy the distributivity
property, they have to make use of the monotone-framework implementation or its inter-
procedural variant. An excerpt of the interface for specifying an inter-procedural monotone
problem is shown in Listing 3.4. Similar to an IFDS/IDE problem, an analysis developer has
to specify flow functions for intra- and inter-procedural flows. But in contrast to IFDS/IDE,
these flow functions do not operate on single, distributive data-flow facts, but on sets of
data-flow facts instead. The data-flow facts in fact do not even need to be stored as sets but
the concrete container implementation is parameterizable using a template parameter. A
user thus can not only have the data-flow solver propagate sets of data-flow facts, but other
kinds of containers such as maps, etc., too. The solver calls the flow functions and provides
the container of data-flow facts which hold right before the current instruction. The return
value to be computed in the flow function is a container of data-flow facts that hold after the
effects of the current statement. The merge function specifies how information is merged
when two branches lead to a common successor statement. This is typically implemented as
set-union or set-intersection depending on whether a may or must-analysis has to be solved.
Algorithms from C++’s STL may be used here. Finally, the equal_to function must be
implemented to determine if two containers hold the same amount of information to check
if a fixed-point is reached. The context that is used for the inter-procedural analysis can be
specified by the analysis developer using the template parameter. An analysis developer can
provide a pre-defined context class in order to parameterize the analysis to be a call-strings
approach, a value-based approach, or they can define their own context to be used.

1 t emplate <typename N, typename D, typename F>
2 s t r u c t InterMonotoneProblem {
3 v i r t u a l ~ InterMonotoneProblem () = d e f a u l t ;
4 v i r t u a l s td : : s e t <D> merge (cons t s td : : s e t <D> &Lhs ,
5 cons t s td : : s e t <D> &Rhs) = 0;
6 v i r t u a l bool equa l_ to (cons t s td : : s e t <D> &Lhs ,
7 cons t s td : : s e t <D> &Rhs) = 0;
8 v i r t u a l s td : : s e t <D> normalFlow (N Stmt , cons t s td : : s e t <D> &In) = 0;
9 v i r t u a l s td : : s e t <D> ca l lF l ow (N C a l l S i t e , F Cal lee ,

10 cons t s td : : s e t <D> &In) = 0;
11 v i r t u a l s td : : s e t <D> returnFlow (N C a l l S i t e , F Cal lee , N RetStmt ,
12 N RetS i te ,
13 cons t s td : : s e t <D> &In) = 0;
14 v i r t u a l s td : : s e t <D> cal lToRetFlow (N C a l l S i t e , N RetS i t e ,

41

3 PhASAR

15 cons t s td : : s e t <D> &In) = 0;
16 } ;

Listing 3.4: An excepert of the interface for describing an inter-procedural problem for the
monotone framework.

3.4.4 Use PhASAR as a Library

Listing 3.5 demonstrates the use case of using PhASAR as a library. It shows that only
a few lines of code are necessary to set up and run a custom data-flow analysis. The
burden of providing the complete infrastructure such as class hierarchy, points-to, callgraph
information as well as various data-flow solvers is done by PhASAR.

1 i n t main (i n t argc , cons t char ∗∗argv) {
2 i f (argc < 2 ! s td : : f i l e s y s t e m : : e x i s t s (argv [1])
3 s td : : f i l e s y s t e m : : i s _ d i r e c t o r y (argv [1])) {
4 l lvm : : e r r s () << "A smal l PhASAR−based example program \ n \ n"
5 "Usage : myphasartool <LLVM IR f i l e > \n" ;
6 re turn 1;
7 }
8 psr : : ProjectIRDB DB({ argv [1] }) ;
9 s td : : s t r i n g EntryPoint = "main" ;

10 cons t auto ∗F = DB. g e t F u n c t i o n D e f i n i t i o n (EntryPoint) ;
11 i f (! F) {
12 l lvm : : e r r s ()
13 << " error : f i l e does not con ta in a ’main ’ func t i on ! \ n" ;
14 re turn 0;
15 }
16 psr : : LLVMTypeHierarchy H(DB) ;
17 psr : : LLVMPointsToSet P (DB) ;
18 psr : : LLVMBasedICFG I (DB, CallGraphAnalysisType : :OTF, { EntryPoint } ,
19 &H, &P) ;
20 l lvm : : out s () << "Running an IDE−based l i n ea r −cons tan t a n a l y s i s : \ n"

;
21 psr : : IDELinearConstantAnalys is L(&DB, &H, &I , &P , { EntryPoint }) ;
22 psr : : IDESolver S (L) ;
23 S . s o l v e () ;
24 S . dumpResults () ;
25 re turn 0;
26 }

Listing 3.5: Setting up an analysis run to solve a concrete data-flow analysis.

3.4.5 Handling of Intrinsic Functions and libc

LLVM currently has approximately 315 intrinsic functions. These functions are used
to describe semantics in the analysis and optimization phase and do not have an actual
implementation. Later-on in the compiler pipeline, the back-end is free to replace a call
to an intrinsic function with a software or a hardware implementation—if one exists for
the target architecture. Introducing new intrinsic functions is preferred over introducing

42

3.5 Scalability

novel instructions to LLVM since, when introducing a new instruction, all optimizations,
analyses, and tools built on top of LLVM have to be revisited to make them aware of the
new instruction. A call to an intrinsic function can be handled as an ordinary function call.

The functions contained in the libc standard library represent special targets as well as
these functions are used by virtually all practical C and C++1 programs. Moreover, the
functions contained in the standard library cannot be analyzed themselves as they are mostly
very thin wrappers around system calls and are often not available for the analysis. In many
cases, however, it is not necessary to analyze these functions when performing a data-flow
analysis. PhASAR models all of them as the identity function. An analysis developer
can change the default behavior and model different effects by using special summary
functions. The SpecialSummaries class can be used to register flow and edge functions other
than identity. This class is aware of all intrinsic and libc functions.

3.4.6 A Note on PhASAR’s Soundness

Livshits et al. have introduced the notion soundy analyses [LSS+15] as presented in Sec-
tion 2.4. Soundy analyses use sensible underapproximations to cope with certain language
features that would otherwise make an analysis impractically imprecise. Analyses in
PhASAR are currently soundy. For instance, PhASAR’s ICFG misses one control-flow
edge in the presence of setjmp/longjmp. Functions that are loaded dynamically from shared
object libraries using dlsym can not be analyzed either for obvious reasons. PhASAR’s
data-flow solvers treat calls to dynamically loaded libraries and libraries for which func-
tion definitions are missing using the identity transformation, unless the analysis developer
specifies otherwise. A sound handling would require setting all variables involved in such
calls to the most coarse grain element of the underlying lattice, which again, may lead to
so much imprecision that the analysis results become unusable.

3.5 Scalability

In this section, we present the runtime measurements for two concrete static analyses—
IFDS−SolverTest we name I and IFDSTaintAnalysis we name T—that are both implemented in
PhASAR. I is a trivial IFDS analysis which passes the tautological data-flow fact Λ through
the program. The analysis acts as a baseline as it is the most efficient IFDS/IDE analysis
that can possibly be implemented. T implements a taint analysis. A taint analysis tracks
values that have been tainted by one or more sources through the program and reports
whenever one of the tainted values reaches a sink, which can be functions or instructions.
Our taint analysis treats the command-line parameters argc and argv that are passed into
the main function as tainted. Functions that read values from the outside (e.g. fread) are
interpreted as sources. Functions that can leak tainted variables to the outside such as
printf or fwrite are considered sinks. As a potentially large amount of tainted values have
to be tracked through the program, analysis T will provide insights into the scalability of
PhASAR’s IFDS/IDE solver implementation.

1The compiler translates many of C++’s features into ordinary calls to libc.

43

3 PhASAR

Table 3.1 shows the programs that we analyzed. For each program, the IR’s lines of code,
number of statements, pointers, and allocation sites have been measured with PhASAR.
The LLVM IR has been compiled with the Clang compiler using production flags. The
figures give an intuition for the program’s complexity. The programs that we analyzed
comprise some C programs like some of the coreutils [Cor18] as well as two C++ programs
like PhASAR itself and a PhASAR-based tool MPT. In addition, it shows the runtimes of
the analyses I and T separated into different phases (in the format runtime I/runtime T). We
measured the runtimes for the construction of points-to information (PT), class hierarchy
(CH), callgraph (CG), data-flow information (DF), and the total runtime (Σ). We also
measured the number of function summaries 𝜓(𝑓) that could be reused while solving the
analysis. The latter one is a good indicator for the quality of the data-flow domain 𝐷, as
higher reuse indicates a more efficient analysis. #G and #K denote the number of facts that
have been generated or killed in the taint analysis, respectively.

We measured the runtimes by performing 15 runs for each analysis on a virtual machine
running on an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz machine with 128GB
memory. We removed the minimum and maximum values and computed the average of
the remaining 13 values for each of the four analysis steps and the total runtime. We used
an on-the-fly callgraph algorithm that uses points-to information for the coreutils. For
PhASAR and MPT, we used a declared type-analysis (DTA) callgraph algorithm in order
to reduce the amount of memory required to reproduce our results. In addition, we found
that DTA performed well enough on our C++ target programs.

With one exception, PhASAR is able to analyze a program from coreutils within a few
seconds. Analyzing cp using T takes around 13 minutes. This is because a large amount
of facts is generated which must then be propagated by the solver. This result shows the
cubic impact of the number of data-flow facts on IFDS/IDE’s complexity. Analyzing the
million-line programs PhASAR and MPT ranges from 7 to 18 minutes. As one can observe
for PhASAR, an analysis may destroy data-flow facts more often than it generates them.
This is caused by C++’s exceptional control-flow where the same fact is destroyed during
normal and exceptional flow.

We observed that the DF part of T actually runs faster than I for our C++ target programs.
This is because T should behave very similar to the solvertest for the C++ target programs,
as only very few facts are actually generated. Furthermore, T will take shortcuts whenever
it plugs in the desired effects at call-sites of source and sink functions. I in contrast, follows
these calls making it slower than T.

Analyzing all of the 97 coreutils, PhASAR, and MPT requires a total analysis time of of
30 minutes for I and 1 hour and 31 minutes for T. These measurements show that PhASAR
is capable of analyzing even a million-line program within minutes, even though PhASAR’s
algorithms and data structures have not yet undergone manual optimization.

3.6 The Need for Dedicated Debugging Capabilities

In this section, we elaborate on the difficulties of implementing static program analyses and
the essential need for debugging capabilities within static analysis frameworks.

44

3.6 The Need for Dedicated Debugging Capabilities

Table 3.1: Program’s characteristics and performance figures for analyses I/T

Program kLOC Stmts Ptrs Allocs CH [ms] PT [s] CG [s] DF [s] Σ [s] #𝜓(𝑓) #G #K
wc 132 63166 10644 396 24/24 1.0/1.0 0.1/0.1 0.2/11 2/13 119/125 10202 6830
ls 152 71712 13200 438 27/27 1.4/1.4 1.1/1.2 0.6/1.0 4/5 836/839 79 74
cat 130 62588 10584 391 24/24 1.0/1.0 0.0/0.0 0.1/1.3 2/3 21/22 2525 1262
cp 141 67097 11722 443 32/30 1.3/1.3 0.6/0.6 0.4/789 3/792 547/737 16999 12839
whoami 129 61860 10433 389 24/23 1.0/1.0 0.0/0.0 0.1/0.3 2/2 8/11 97 92
dd 137 65287 11150 408 25/25 1.1/1.0 0.2/0.2 0.2/37 2/40 164/176 14711 11058
fold 130 62201 10509 390 24/23 1.0/1.0 0.0/0.0 0.1/0.3 2/2 17/22 107 102
join 134 64196 11042 402 24/24 1.0/1.0 0.0/0.0 0.1/0.5 2/3 91/95 104 94
kill 130 62304 10527 394 24/24 1.0/1.0 0.0/0.0 0.1/0.1 2/2 24/24 22 4
uniq 131 62663 10650 396 24/24 1.0/1.0 0.0/0.0 0.1/0.4 2/2 50/53 96 90
MPT 3514 1351735 755567 176540 906/903 22/22 8.8/8.8 458/379 519/439 12531/12532 20 9
PhASAR 3554 1368297 763796 178486 962/946 23/23 24/24 987/917 1064/993 25778/25782 56 77

The development of a high-quality data-flow analysis—one that is precise and scalable—
is a challenging task. A concrete client analysis not only requires data-flow but, as discussed
in Chapter 1 and Chapter 2, type-hierarchy, points-to, and callgraph information, all of
which need to be obtained by wisely chosen and correctly parameterized algorithms.

Therefore, many static analysis frameworks have been developed that provide analysis
writers with generic data-flow solvers as well as those additional pieces of information.
Such frameworks ease the development of an analysis by requiring only a description of
the data-flow problem to be solved and a set of framework parameters.

Yet, analysis writers2 often struggle when an analysis does not behave as expected on
real-world code. It is usually not apparent what causes a failure due to the complex interplay
of the various different algorithms and the client analysis code within such frameworks.

This section thus presents some of the insights we gained by instrumenting PhASAR and
shows the broad area of applications at which flexible instrumentation supports analysis
and framework developers.

We present five cases in which instrumentation gave us valuable insights to debug and
improve both, the concrete analyses and the underlying PhASAR framework.

3.6.1 Instrumenting Static Analysis

There are several reasons why the development of a precise and scalable data-flow analysis
is difficult. Concrete client analyses often need additional helper analyses to provide
them with type-hierarchy, points-to, and callgraph information in order to provide precise
results [Bod18].

However, writing a client analysis and all required helper analyses from scratch is im-
practical. For this reason, many different static analysis frameworks have been developed
to ease that process. Frameworks from academia, among others, include Soot [LBLH11],
Doop [BS09], Wala [Wal19], OPAL [EH14], Soufflé [JSS16], and PhASAR [SHB19].
Those frameworks provide implementations for the helper analyses and generic data-flow

2This includes the author of this thesis.

45

3 PhASAR

solvers that are able to solve a given user-specified data-flow problem in a fully automated
manner. Thus, an analysis writer can focus on specifying the actual analysis problem.

Encoding an analysis is still challenging as an analysis developer has to perform a
tremendous amount of complex tasks. Encoding an analysis in a general purpose language,
for instance, as required by frameworks such as Soot, Wala, or PhASAR still requires an
analysis developer to write several hundred to thousand lines of code that comprise the
problem description [TG17]. Choosing the parameters for their analysis is also non-trivial
as the parameters have to be chosen according to an analysis’s requirements and the target
program’s characteristics to trade off precision and scalability.

The complexity further increases for frameworks that use analyses encoded in gen-
eral purpose languages as they often use distributive frameworks like (IFDS) [RHS95],
IDE [SRH96], or Weighted Pushdown Systems (WPDS) [RSJ03] to achieve a decent scal-
ability [Bod18]. Those data-flow frameworks, in turn, solve a problem in a multi-step
process. In general, an internal representation, e.g. exploded super-graph or pushdown
system, is constructed first and then, the problem is solved on that representation in a second
step. A buggy analysis might withstand the construction of the internal representation, but
still fail the actual solving process.

Eventually, an analysis developer has encoded their analysis successfully with respect
to a micro-benchmark that has been used to develop it (c.f. Section 3.6.2). Applying
the analysis to real-world software, however, they will frequently observe their analysis
to fail [TG17]. The reasons for such a failure can be manifold and oftentimes hide in
the complex interplay of the involved algorithms and the complex nature of the analysis
description.

Debugging analysis failures is non-trivial as it requires knowledge of algorithms, solvers,
executing system, target programs, and intermediate representations. Detecting the cause
of the failure with help of a standard debugger is usually a tedious to impossible task as
the analysis developer needs to debug through large amounts of non-analysis code; it might
be not helpful at all if the analysis is correct but the executing operating system causes
an analysis run to fail, e.g. if the system runs out of memory. The work of Nguyen et
al. [NKH+18] presents a special debugger for static analysis which shows the severity of the
problem. The use of logging techniques produces log files that are too large to effectively
debug failure on real-world code or slows down the analysis execution to a point that is not
acceptable.

In this section, we show how a flexible instrumentation of a static analysis framework
is able to aid the understanding of concrete analysis runs. Using an instrumentation in
combination with a post-processing step of the recorded data allows to spot anomalies
and root causes of analysis failures that would otherwise remain hard to detect when
analyzing real-world software. In addition, an extensive instrumentation allows for detailed
performance benchmarks which, in turn, allow for spotting bottle-necks and fine-tuning an
analysis. Different algorithms can be assessed based on their performance on the target
code and a framework user is able to precisely determine how much time of an analysis run
is spend in which parts of a framework.

In summary, this section makes the following contributions:

46

3.6 The Need for Dedicated Debugging Capabilities

• It presents our highly flexible instrumentation of the PhASAR framework [SHB19]
called PAMM,

• and an experience report that presents five cases in which the instrumentation provided
us with valuable insights into concrete analysis runs that we used for debugging and
optimizations.

3.6.2 Analysis Development Process

In this section, we briefly explain a commonly used process to develop a client data-flow
analysis.

A static analysis framework such as PhASAR provides the required infrastructure such
as data structures, algorithms, and analysis pipelines with the goal to ease the process of
developing a concrete client analysis. Figure 3.2 shows an overview of how an analysis
framework is used to run an analysis. The gray boxes indicate the parts that require work
from the analysis writer.

The most labor-intensive task involved in this process is crafting the description of
the analysis problem. Depending on the static analysis framework that has been chosen,
a developer needs to implement flow functions or specify rules in order to model the
interaction of a program’s statements with the data-flow facts that the developer is interested
in.

The creation of an analysis description is an incremental process. In order to evaluate
the correctness and the level of precision, a developer starts specifying their analysis
to handle the basic language features and tests it on small example programs. The results
reported by the analysis on the example programs are checked and compared to the expected
results. Once the quality of the results suffices for the initial example programs, some more
advanced example programs are written. These example programs form a micro benchmark
that allows a developer to evaluate the quality and completeness of their analysis description.
The example programs, that act as test cases, and the analysis code are alternately enhanced
until the analysis is able to cope with all common language features and obtains the desired
precision. Several micro benchmarks such as DroidBench [Dro19], SecuriBench [Sec19],
DaCapo [BGH+06], or the Toyota ITC benchmark [SMM15] have been established to
evaluate the quality of an analysis which shows that the development process described
here is common practice.

When the complexity of the programs of the micro benchmark has risen to a certain level,
another part of the development process becomes relevant: the framework’s parametriza-
tion. Many frameworks allow for the construction of the type hierarchy, callgraph and
points-to information which become necessary depending on the complexity of the test
programs and the desired precision of the analysis when eventually run on real-world soft-
ware. For instance, for the construction of callgraph and points-to information developers
can choose from a variety of algorithms such as CHA, DTA, VTA, Spark for callgraphs, or
Andersen [And94] or Steensgard [Ste96]-style algorithms for points-to information. Com-
putations can be chosen to be performed in a full analysis mode or an on-demand manner.
Finding the best or at least suitable parameters, however, is challenging. While heavyweight

47

3 PhASAR

IR

Front-end

Framework

Parametrization

Analysis Description

Findings

Figure 3.2: A typical pipeline of a static analysis framework

algorithms may produce precise results on the small test programs, they are oftentimes too
slow to be used on larger real-world code. Finding the optimal point between scalability
and precision is key and an ongoing challenge [Bod18,LTMS18,BBC+10].

3.6.3 Implementation

While designing PAMM we opt for a ready-to-use mechanism to collect different measures
related to static analysis. Three basic types of measures turned out to be useful in practice:
timer, counter, and histogram. We provide code to start, pause, stop and reset different
timers, increase and decrease counters by a given value, and add data points to histograms.
All measures used are identified by user-specified IDs and must be registered before use.
This allows us to detect and minimize exceptional measurements caused by flawed code
instrumentations, e.g. a misspelled ID. We implemented PAMM as a singleton to minimize
boilerplate for the construction and destruction of PAMM. Each instrumentation instruction
is wrapped into a corresponding preprocessor macro to hide implementation details. This
also allows a user to disable PAMM without removing any code instrumentation manually,
and thus, guaranteeing zero overhead during non-evaluation runs of PhASAR. However,
recompilation is necessary to enable or disable PAMM.

Since code instrumentation is tedious and oftentimes requires a profound knowledge of
PhASAR’s internal structure, we provide a default instrumentation for all parts of PhASAR
relevant to static analysis. Multiple measures can be grouped which allows a user to only
collect the data of analysis runs that they are currently interested in. A user is able to
instrument their own analysis code and register their instrumentation in a new group to
record their client measures without using the default (full) framework instrumentation.
Our instrumentation of the core group, for instance, comprises, among other measures,
runtime information for each step of an analysis run and statistics of the analyzed program.

3.6.4 Experience Report

In this section, we discuss five cases in which PAMM provided valuable insights for
debugging and optimizations.

Bug Finding and Detection of Anomalies

The GNU core utility programs (coreutils) [Cor18] are frequently used as a subject for eval-
uations on real-world C programs (e.g. in [LWWX16,YMX+10,BS16,MKK07,FHJ+06]).

48

3.6 The Need for Dedicated Debugging Capabilities

To check the capabilities of the PhASAR framework to handle real-world code, we bench-
marked it on the coreutils using several different analyses encoded in IFDS. We found that
some of the analysis runs caused a segmentation fault. The backtracing capability of the
GNU debugger GDB gave no useful clues what might have caused the segmentation fault.
The Valgrind [NS07] tool for dynamic debugging memory issues was not usable while
analyzing the coreutils as it slowed down the execution too much in the order of days.
Unfortunately, it also did not report any errors using the micro-benchmarks that have been
used to develop the analyses. As we used PAMM to record the analysis runs of the different
coreutils and visualized the results, we found a correlation between lines of code, number
of call-sites of the programs and the occurrences of segmentation faults. The plot is shown
in figure Figure 3.3. The analysis of coreutils with more than 240k lines of code has led to
segmentation faults and with more than 20k call sites have been likely to crash. Based on
the recorded data, we assumed that the recursive nature of our IFDS/IDE solver implemen-
tation could be troublesome due to the operating system’s default stack limit for processes.
Increasing the stack limit indeed solved the problem and almost all programs of the coreutils
could be successfully analyzed using a larger stack limit. The exceeded stack limit has been
confirmed with help of the Linux kernel’s ring buffer, too.3 A small number of coreutils
still caused segmentation faults regardless of the chosen analysis. That suggested that either
the framework or all analyses did not cope with an infrequently used language feature. The
backtracing capabilities of GDB revealed the segmentation fault to be caused by the flow
function that handled function calls. A manual inspection uncovered that the failure was
caused by C-style variadic functions which have not been handled by the analyses yet. At
call sites that call variadic functions, the number of actual and formal parameters may not
match. After adjusting the responsible flow functions to under-approximate that language
feature in the analyses, all analysis runs could be executed successfully. Our handling of
variadic functions is unsound. However, it retains an acceptable level of precision whereas
a sound handling would lead to impractically imprecise results (cf. Section 2.4).

In a different scenario, we inspected the distribution of data-flow facts generated by an
analysis. That is, we wanted to know the sizes of the sets of data-flow facts generated
by the flow functions. For that reason, we instrumented PhASAR’s IFDS/IDE solver to
record the number of data-flow facts (ESG edges) generated at each statement. With the
help of that information, we aimed at optimizing for the container type used to store the
data-flow facts. Our initial implementation used STL’s std::set which implements a
red-black tree [Bay72]. In order to optimize for the container type, we measured the
occurrences of different set sizes for an IFDS taint analysis which are shown in Figure 3.4.
Figure 3.4 confirms that the vast majority of sets only contain very few elements. Therefore,
we might wanted to switch to an implementation that is better suited for small sets such
as Boost’s flatset implementation which uses a sorted vector and a binary search to
allow for logarithmic lookups. Interestingly, however, some sets contained an exceptionally
large amount of facts caused by what is called “overtainting” [SB09]. We revisited the
implementation of the taint analysis and found a place at which all context-insensitive
aliases have been accidentally tainted when a tainted value has been stored to a memory

3The kernel stores a certain number of (error) log messages in a ring buffer.

49

3 PhASAR

Figure 3.3: Number of analysis runs that executed (un)successfully and corresponding
number of call sites and instructions of the program under analysis.

address. We could change the responsible flow function to only generate the relevant
aliases. We will continue the discussion of the set implementations in terms of performance
in Section 3.6.4.

Performance Benchmarking for Optimizations

Let us revise our assumption from Section 3.6.4 that the more compact boost:: flatset
implementation might be more efficient than the standard STL implementation in our case.
In order to determine which implementation is better suited to hold the flow facts, we
created a separate git branch in which we replaced the usages of std :: set by boost:: flatset .
Since we initially already heavily instrumented PhASAR, we did not need to change any of
the code other than specifying the container type to be used. We evaluated the performance
by performing some analysis runs on the coreutils and some tools of the LevelDB project
using a compile of PhASAR that uses std :: set and compared the runtimes of various IFDS
data-flow analyses with the figures obtained using a compile of the novel branch that uses
the flatset implementation. Figure 3.5 shows a plot of the performance figures that we
produced. In general, the difference in performance is negligible. The IFDS/IDE solver
uses the sets to communicate with the analysis’s description only. And in those cases, the
compiler applies the return-value optimization (RVO) to directly construct the respective
sets in the caller avoiding copying the set at the callee function’s return instruction. Much
more copying or accessing of those sets would be needed to cause a larger difference in
performance. We thus sticked to C++’s STL std :: set implementation for convenience.

50

3.6 The Need for Dedicated Debugging Capabilities

Figure 3.4: Occurrences of the different sizes of sets generated during ESG construction
for several target programs.

51

3 PhASAR

Figure 3.5: Runtimes using std :: set versus boost:: flatset in seconds for different programs
and analysis runs.

The C++11 standard introduced novel types for smart pointers that can be used to
automatically deallocate heap memory that is no longer in use. std ::unique_ptr can be used
to handle memory that is limited to only one user; it is deallocated when the pointer goes
out of scope unless ownership is explicitly transferred to another scope. Another type of
smart pointer is std :: shared_ptr that can be used if a piece of heap memory has more than
one owner. It uses reference counting to determine at which point the memory can be
deallocated. Our IFDS, IDE and WPDS solver implementations query the client analysis’s
code for flow and edge functions for each statement of the target program. The analysis code
provides the respective solver with suitable implementations of these small function objects
by returning a shared pointer. Shared pointers entail some amount of overhead due to the
additional code that maintains the references and their larger size in memory. Using PAMM
we were able to compare the initial implementation of PhASAR using smart pointers to
an implementation that uses raw pointers. Figure 3.6 shows the comparison of smart and
raw pointers in terms of runtimes. It can be observed that the use of shared pointers slows
down each analysis run. We mitigated the noticeable slowdown due to the use of shared
pointers as described in the following. Since the use of raw pointers in application code
is considered bad style, we introduced a manager class that exclusively owns the shared
pointers to flow and edge function objects following a recommended pattern: the manager
class is able to hand out raw pointers to users that are “only looking” at the object; and
eventually deallocates all objects it owns once its lifetime ends. Thus, the more expensive
copying of shared pointers can be avoided which prevents the slowdown.

52

3.6 The Need for Dedicated Debugging Capabilities

Figure 3.6: Runtimes using smart versus raw pointers in seconds for different programs
and analysis runs.

53

3 PhASAR

Figure 3.7: Runtime spent in different parts of an analysis.

In Section 3.6.2, we discussed that parameterizing an analysis framework is challenging.
Always using the most precise algorithms wherever possible may lead to great precision
but also to unsatisfactory performance for larger target programs. We do not want to
rely on choosing an algorithms’ parameters based on experience only. Depending on
the target program under analysis the experience from analyzing one project might lead
to false assumptions for another project. Therefore, we used PAMM to instrument all
parts of PhASAR that are involved to perform a full analysis run. Thus, we are able to
reveal the analysis runtime distribution of a concrete analysis run. Figure 3.7 shows such
a distribution. Using that knowledge, one can then start adjusting specific parameters to
speed up certain computations to cope with larger programs while comparing the precision
based on the results obtained for the micro-benchmarks.

3.6.5 Related Work

The setup of a static analysis, encoding it in a framework, and finding a suitable parametriza-
tion, is a demanding task. Several works have been dedicated to reduce and ease the work
that needs to be accomplished by analysis developers.

Lerch et al. developed an approach that follows the principle of separation of con-
cerns [LH15]. They propose an approach that effectively separates different aspects and
implementations to allow for better maintainability, testability, and reuse of individual
components.

A special debugging environment for static analysis called VisuFlow [NKH+18] has been
developed by Nguyen et al. for the Java ecosystem. It allows for a direct debugging of the
analysis code in Soot without having to step through any of the framework code which
makes the process of debugging an analysis feasible in practice.

3.6.6 Conclusions

In this section, we presented the design and implementation of a flexible mechanism for
instrumenting PhASAR called PAMM. We presented five scenarios in which it provides
us with valuable insights that help us to understand what a concrete static analysis run on

54

3.7 The Burden of Correctly Handling Global Variables

real-world code actually does. In general, we find that PAMM can be used in addition
to or whenever standard debugging techniques are unable to track down the cause of an
analysis failure. We advocate for integrating ready-to-use mechanisms that aid analysis un-
derstanding and debugging into the analysis frameworks to support developers, rather than
burdening them with yet additional work. The data collected by the fine-grain instrumen-
tation in combination with a suitable visualization allows for a gaze into concrete analysis
runs. Thus, it enables us to spot anomalies and implausible figures. With these insights,
we are able to determine how an analysis performs and where it goes wrong helping us to
solve issues in a user’s analysis code and the PhASAR analysis framework.

3.7 The Burden of Correctly Handling Global Variables

In this section, we present how one can provide framework support for handling global
variables as required for precise data-flow analysis. Previously, global variables have been
oftentimes either ignored or had to be tediously and explicitly modeled by an analysis writer.

Global variables make software systems hard to maintain and debug, and break local
reasoning.

They also impose a non-trivial challenge to static analysis which needs to model its
effects to obtain sound analysis results.

However, global variable initialization, codes of corresponding constructors and destruc-
tors as well as dynamic library code executed during load and unload not only affect control
flows but data flows, too.

The PhASAR static data-flow analysis framework previously did not handle these special
cases and also did not provide any functionalities to model the effects of globals. Analysis
writers were forced to model the desired effects in an ad-hoc manner increasing an analysis’
complexity and imposing an additional repetitive task.

This section presents the challenges of modeling globals, elaborate on the impact they
have on analysis information, and present a suitable model to capture their effects, allowing
for an easier development of global-aware static data-flow analyses.

We present an implementation of our model within the PhASAR framework and show
its usefulness for an IDE-based linear-constant propagation that crucially requires correct
modeling of globals for correctness and precision.

3.7.1 Framework Support for Global Variables

Global variables are best avoided. Not only do they increase the complexity of debugging
and maintaining software systems but they also break local reasoning [WS73]. Global
variables are used nonetheless to communicate information when using shared memory
parallelism, to implement singletons, and to pass state across multiple functions without
parameter passing.

Global variables are not only memory locations that can be accessed at all points in a
program but they also come with code for initialization and de-initialization that is executed
“before” and “after” main—the actual program. The situation gets more complex as there

55

3 PhASAR

are a multitude of different (de-)initializations depending on various conditions. Built-in
types such as int , long, double are (de-)initialized differently than user-defined types, for
instance. In addition, there is code that is executed whenever a shared library is loaded or
unloaded which must be modeled, too.

A client data-flow analysis that verifies some property on a given target program does
not only require data-flow information, but, in addition, information from various helper
analyses such as callgraph and points-to. Depending on the complexity of the client analysis,
it even requires information of additional data-flow analyses. Global (de-)initializers may
affect all of these different analysis representations.

Static analyses are typically parameterized with a set of entry points that specify where
in the program the analysis must start. Interestingly, the global (de-)initialization code is
not explicitly connected with the program’s actual entry point(s) such as main. If a user
specifies the main function as an entry point to their analysis in a whole program analysis
setup, the analysis still misses all of the global code that is executed “before” and “after”
main.

PhASAR [SHB19] did not provide framework support for modeling the effects of global
variables and associated code prior to this work. Other currently existing analysis imple-
mentations model globals in an ad-hoc manner or not at all. The effects of global code is
modeled by repurposing flow-function implementations making the analysis code unnec-
essary complex and degrading analysis’ performance. It is also unlikely that an ad-hoc
handling of globals covers all possible scenarios and leads to sound analysis implementa-
tions.

While an unsound handling of globals may be reasonable for analyses such as uninitialized
variables, which can safely ignore global variables as those are automatically zero-initialized
in C and C++ if a programmer does not provide an initial value, many others crucially depend
on a sound and precise handling of globals.

In this section, we thus present a structured overview on how global variables and
associated (de-)initialization code are used in C and C++. We explain how these usages are
represented in LLVM’s [LA04] intermediate representation (LLVM IR) that is the target
of PhASAR [SHB19] and many other analysis tools for C and C++. We elaborate on how
to precisely model global effects for sound data-flow analysis and present an extension
that we implemented for PhASAR [SHB19] to provide framework support. We show the
usefulness of our model and its implementation by presenting a linear-constant propagation
that crucially depends on correctly handling globals.

In summary, this section makes the following contributions:

• A comprehensive overview on the possible usages of global variables and global
code in C and C++.

• A model and its open-source implementation in PhASAR [SHB19] that allows static-
analysis writers to easily and soundly encode global effects into their analysis.

• A case study and an empirical evaluation that assesses the importance of correctly
handling globals [Art21].

56

3.7 The Burden of Correctly Handling Global Variables

3.7.2 Background and Problem Description

In the following, we first present the various possible usages of global variables in C and
C++ and describe their varying semantics depending on the situation they are being used.
Then, we explain how the different semantics are represented in LLVM IR. We use these
insights to design suitable abstractions that allow for precisely modeling the effects of
globals in static data-flow analysis in Section 3.7.3.

Globals in C and C++

We present the different usages of global variables and their associated (de-)initialization
code that is executed “before” and “after” the actual main program, respectively, by going
through the code of Figure 3.8 line by line. We annotated the code to improve readability.

Built-in Typed Global Variables Line 2 declares a global variable that can be used across
one or more compilation units as long as they contain a declaration of i. The variable i
needs to be defined in exactly one compilation unit in which it is then automatically zero
initialized as no explicit initial value is specified (cf. Line 15). The linker refers all users of
i to this definition. In C and C++, all global variables are initialized with zero at compile
time if no value is provided by the user as this does not entail any runtime costs.

Since C++17, the C++ standard allows for static inline definitions of global objects, i.e.,
functions and variables in header files (cf. Line 3). Due to the inline keyword this does not
constitute a violation of the one definition rule (ORD). The one definition rule prescribes
that non-inline objects (since C++17) and non-inline functions cannot have more than one
definition in the entire program. Violations of that rule that span translation units are not
required to be diagnosed and result in undefined behavior. Defining objects in header files
using the inline keyword may produce multiple but equal definitions of the global object
and therefore, it does not matter which definition the linker eventually arbitrarily picks and
puts into the globals section of the final binary.

Line 6 and Line 7 depict analogous situations for class or struct types. Line 6 declares
a global variable c that is part of the Point type. Similarly to the aforementioned situation,
it must be defined in exactly one compilation unit (cf. Line 19). Consequently, the inline
keyword allows for a definition in a header file without breaking ODR.

Line 16 defines the variable k that can be accessed globally but only within the compilation
unit it is defined in. Line 18 shows an analogous situation using C++’s anonymous
namespaces. The variable l is available across multiple compilation units within the
namespace ns.

Class/Struct Typed Global Variables Line 20 defines the global variable p. Its con-
structor runs “at startup” before the C runtime starts the program’s execution at main. Its
destructor is called before exiting the program at the end of main. An analogous situation
is depicted in Line 28. The function getSingletonPoint implements a thread-safe singleton,
sometimes referred to as Scott-Meyers-Singleton, of type Point. The variable is initialized

57

3 PhASAR

1 / / Header
2 Global var
3 Global var
4
5 Class member
6 S t a t i c c l a s s member
7 S t a t i c c l a s s member
8 Class d e f a u l t c t o r
9 Class c t o r

10 Class dtor
11
12
13 / / Implementat ion
14
15 Global var
16 S t a t i c i n i t
17 Global in namespace
18 Anonymous namespace
19 S t a t i c c l a s s member
20 Global c l a s s var
21 Class d e f a u l t c t o r
22
23
24 Class c t o r
25
26 Class dtor
27
28 Local s t a t i c
29
30
31
32 Global c t o r
33
34 Global dtor
35
36
37
38

ex tern i n t i ;
s t a t i c i n l i n e i n t j = 1024;
s t r u c t Po int {

i n t a , b ;
s t a t i c i n t c ;
s t a t i c i n l i n e i n t d = 73;
Po int () ;
Po int (i n t a , i n t b) ;
~ Po int () ;

} ;
Po int &g e t S i n g l e t o n P o i n t () ;

i n c lude "overview−g l o b a l s . h"
i n t i ;
s t a t i c i n t k = 42;
namespace ns { i n t l = 13; }
namespace { i n t m = 9000; }
i n t Po in t : : c = 2;
Po int p (42 , 13) ;
Po int : : Po int () : a (0) , b (0) {

p r i n t f ("%d−%d" , a , b) ;
}
Po int : : Po int (i n t a , i n t b)

: a (a) , b (b) { p r i n t f ("%d−%d" , a , b) ; }
Po int : : ~ Po int () { p r i n t f ("%d" , d) ; }
Po int &g e t S i n g l e t o n P o i n t () {

s t a t i c Po in t s (11 , 22) ;
re turn s ;

}
_ _ a t t r i b u t e _ _ ((c on s t ruc t o r))
vo id onLoad () { i = 9001; }
_ _ a t t r i b u t e _ _ ((d e s t r u c t o r))
vo id onUnload () { i = 0 ; }
i n t main () {

Po int &q = g e t S i n g l e t o n P o i n t () ;
re turn 0;

}

Figure 3.8: An exemplary header and implementation file. The column on the left-hand
side provides comments to ease readability of the code.

58

3.7 The Burden of Correctly Handling Global Variables

exactly once when getSingletonPoint is called for the first time. Its destructor is called before
the program exits.

Global Con-/Destructors The definition of onLoad in Line 32 presents a global construc-
tor. Function definitions that are annotated with the constructor attribute are executed while
the compilation unit that defines these functions is loaded by the loader or the dynamic
linker. Functions that are annotated with the destructor attribute present global destructors
and are executed before the program exists. Line 34 shows an example for such a function.
Even though the global constructor/destructor mechanism is currently not part of the C++
standard, it is often used in the context of shared libraries and therefore, should be supported
by an analysis. Shared libraries may define several global con- and/or destructors that are
executed when a shared library is explicitly loaded by another program using dlopen or dlsym
and dlclose , respectively. In combination, this mechanism is used to implement plugins that
(de-)register themselves within some other application that uses them.

Representation in LLVM IR

All types of global variables presented in the previous section can be found in the LLVM IR
as well. Global variables whose access is restricted to the compilation unit or the function
they are defined in are marked as internal global. Global built-in data types such as int , char
or double are automatically initialized with zero.

Global variables of user-defined types are statically initialized with zero, too. Seman-
tically, all data members of the given type are initialized with zero. Constructors and
destructors come into play later.

LLVM provides two special global array variables llvm. global_ctors and llvm.global_dtors
that carry information on the con- and destructors of global variables of user-defined types
as well as global con- and destructors. The functions referenced by these arrays will be
called in ascending order of priority, i.e., lowest first when the module is (un-)loaded by the
loader or the dynamic linker. The order of functions with the same priority is not defined.
Programs that introduce dependencies between global variables whose (de-)initialization
code has the same priority are invalid.

When our module in Figure 3.8 is loaded, onLoad is executed. After onLoad has been
executed, or before—in our case the priorities are equal, a special function responsible
for executing the initialization code of all global, user-defined type variables is executed.
Such a function is emitted for each compilation unit, if necessary. The linker handles
merging these functions whenever modules are linked. The function itself calls other
automatically generated functions each of which is responsible for initializing an individual
global variable of a user-defined type. In our example, the function calls p’s constructor to
correctly initialize it at the program’s startup. It also registers p’s destructor to be called
using the C runtime’s __cxa_atexit function. The global variables’ constructors are called in
order of definition. Their destructors are called in reverse order once the program exits or
the module is unloaded. Global destructors such as our onUnload function are registered in
the llvm.global_dtors variable in an analogous way.

59

3 PhASAR

The Point singleton, like the other global variables, is zero initialized. Its initialization
takes place at the very first call to getSingletonPoint. Depending if a compiler generated guard
variable has been set atomically, its constructor is called and its destructor is registered in
the C runtime. In case the guard variable is already set, this step is skipped and a reference
to the initialized instance is returned directly.

3.7.3 Modeling the Effects of Globals

In this section, we present how global variables are currently handled by analysis writers
and how one can model the behavior of global variables in a more stringent manner.

Status Quo

Current analyses that come with Soot [VRCG+99] or PhASAR [SHB19] (prior to this
work) either ignore global variables completely or they repurpose an analysis’ flow-function
implementations to model their effects.

1 FlowFunctionPtrType getNormalFlowFunction (N Curr , N Succ) {
2 s t a t i c bool I n i t G l o b a l s = f a l s e ;
3 i f (! I n i t G l o b a l s && I n i t i a l S e e d s . count (Curr)) {
4 I n i t G l o b a l s = true ;
5 s td : : s e t <D> ToGenerate ;
6 f o r (auto &Global : ge tG loba l s ()) {
7 i f (Global . i sCons tan t ()) {
8 ToGenerate . i n s e r t (&Global) ;
9 }

10 }
11 auto GlobalsFF = s td : : make_shared <GenAll <D>>(ToGenerate ,

ZeroValue) ;
12 / / Compute the f low f u n c t i o n f o r the a c t u a l s t a t e m e n t whose

a n a l y s i s
13 / / we i n t e r c e p t e d in the p r e v i o u s l i n e s .
14 auto CurrFF = getNormalFlowFunction (Curr , Succ) ;
15 re turn s td : : make_shared <Union<D> >({ GlobalsFF , CurrFF }) ;
16 }
17 / / . . . code . . .
18 }

Listing 3.6: An excerpt of global-variable-handling code using an
IFDS [RHS95]/IDE [SRH96] normal flow function implementation.

The current scheme for modeling global variables that is often found in practice is shown
in Listing 3.6. The scheme uses the flow function implementation by adding additional
code that is executed once at the very beginning of an analysis. Because this scheme uses a
call to the flow function that would normally be used to model the intra-procedural effects
of the Curr statement, the query for Curr must be performed within the global-handling
code and its result must be combined with the flow function that describes the effects of
the global variables (cf. Line 15). The scheme as is, besides increasing the analysis’
complexity, ignores code for (de-)initializing global variables. This handling is also not

60

3.7 The Burden of Correctly Handling Global Variables

𝐶0 · · · 𝐶𝑢𝑑
𝑖

· · · 𝐶𝑛

Built-in Init main 𝐸1 · · ·

𝐷1𝐷0 · · · 𝐷𝑢𝑑
𝑚

𝐼

𝐶

𝐷

← initial seeds ← artificial control-flow edge

Figure 3.9: Schematic overview of a global-aware ICFG.

quite correct as it would not work if non-intra-procedural, i.e., non-normal, statements are
chosen as entry points. One would therefore need to replicate the global-handling code in
the flow functions that handle call and return flows, too.

We next describe how the most laborsome parts of modeling globals can be shifted to an
analysis framework.

Control Flows

To conduct an inter-procedural, i.e., whole program analysis, an inter-procedural control-
flow graph (ICFG) is required. An ICFG must be parameterized with one or more entry
points 𝐸0, . . . , 𝐸𝑛. In case one wishes to conduct a whole program analysis, main is usually
chosen as an entry point. However, by choosing main as an entry point, the ICFG misses
lots of control flows that may be crucially important to the client analysis since a lot of
functionalities involved in (de-)initialization are executed “before” and “after” main.

To produce a sound ICFG that supports whole program analysis, an ICFG algorithm must
respect and analyze the global constructors. While analyzing the transitively reachable
functions it must also register all functions that are registered to the C runtime using
__cxa_atexit and retain their order. Only then an ICFG algorithm may analyze the control
flows starting at main. Once the control flows of main—the main program, and transitively
reachable functions have been computed, the algorithm must continue analysis in the global
destructors and also the destructors that have been previously registered using __cxa_atexit
in reverse order until all control flows have been analyzed and a complete model of the
program under analysis has been constructed.

A schematic overview of an ICFG that respects global variables and global code for
a given target program is shown in Figure 3.9. First, a global-aware ICFG must respect
the primary initialization of global variables in order of appearance in the code indicated
by the box labeled 𝐼. Note that these initializations are not bundled in a function and do

61

3 PhASAR

not represent instructions in LLVM IR. After considering the global variables, an artificial
control-flow edge to the first global constructor 𝐶0 must be introduced. The ICFG must
determine the registered global constructors using the special @llvm.global_ctors variable,
sort the functions according to their priority, analyze them, and introduce artificial control-
flow edges between them. The return instructions of the first 𝑛 − 1 global constructors
conceptually transfer control to the next global constructor. As the behavior is not defined
whenever two global constructors have the same priority, it does not matter in which order
the ICFG organizes them; user code is not allowed to depend on initialization order in
that case. We denote global constructors as 𝐶𝑖 in Figure 3.9. Global constructors and
destructors can call arbitrary functions of the program, however, we do not represent that
fact in Figure 3.9 to avoid cluttering. 𝐶𝑈𝐷 denotes the special function, introduced by
the compiler, that calls the constructors and registers the respective destructors of global
variables of user-defined types. Once all global constructors have been analyzed, the
control flow is artificially transferred to the actual user-defined entry point(s), i.e., main
(and potentially a set of other entry points 𝐸𝑖). After constructing the control flows for the
main program, an artificial control flow edge to the first global destructor 𝐷0 are introduced.
Similar to the constructors, the destructors are also chained according to their priority. The
last global destructor transfers control flow to box that we denote as 𝐷𝑢𝑑 in Figure 3.9.
𝐷𝑢𝑑 is the sequence of calls to the destructors of global variables of user-defined types that
have been registered in the C runtime. The 𝐷𝑢𝑑 destructors are called in reverse order of
registration.

Data Flows

Similar to an ICFG algorithm that needs to be parameterized with a set of entry points,
a data-flow solver needs to start at some program location(s). In the Soot [VRCG+99]
and PhASAR [SHB19] frameworks, these program location(s) are referred to as initial
seeds. Both frameworks allow analysis writers to specify the initial seeds by implementing
a function of the appropriate problem interface that represents the analysis problem to be
solved. The initial seeds mechanism allows analysis writers to not only specify the program
locations but also data-flow facts that initially hold at these locations. The initial seeds
implementation returns a mapping from start locations to a set of data-flow facts that hold
initially.

Rather than using the flow-function implementations as described in Section 3.7.3, the
initial seeds can be used to model the effects of the primary initialization denoted by the 𝐼

box in Figure 3.9. In addition to the ordinary initial seeds that an analysis writer specifies
for their analysis, they can iterate the global variables and their primary initializations in
order of occurrence and model the effects by creating a set of data-flow facts that represents
the behavior according to their concrete analysis problem. The propagation of this set of
data-flow facts that represents the global variables is then started at the beginning, i.e., the
first statement, of𝐶0. Due to the artificial control-flow edges introduced in the global-aware
ICFG, the flow facts are made available to the global constructors and the behavior of those
constructors can be modeled soundly. After the solver propagated the flow facts through
the code in the box labeled 𝐶, they now capture the effects of any initializing code and can

62

3.7 The Burden of Correctly Handling Global Variables

then safely propagated into main (and potential other user-defined initial seeds 𝐸𝑖). At the
end of main, the global variables are propagated through the chain of global destructors and
destructors of global variables of user-defined types 𝐷𝑢𝑑 as indicated by the box labeled 𝐷.

To make the global variables available for analysis as data-flow facts at all statements,
they are propagated into any potential call target at a given call site and propagated back
to the caller at the callee’s respective exit site(s). Data-flow facts that represent global
variables must be killed at call-to-return flows to make the effects of callees visible to
the subsequent program. In case only function declarations are available as call targets
at a given call site, global variables are automatically killed by the call flow and instead
must be propagated along the call-to-return flow. Otherwise, the globals would, again, not
be available to the subsequent program. We discovered this special case while using the
scheme presented here in a complex data-flow analysis we recently implemented.

3.7.4 Implementation

We implemented the scheme presented in Section 3.7.3 within PhASAR [SHB19]. We
extended the existing LLVM-based ICFG implementation with functionalities that allow
analysis writers to easily retrieve the global constructors and destructors. We also added
an additional option to the ICFG’s constructor to allow for ICFG construction that respects
the functions that are called “before” and “after” the user-specified entry points, e.g. main,
and correctly reflects the actual semantics of global variables and their (de-)initializers. If
enabled, the global initializers 𝐶𝑖 and 𝐶𝑢𝑑 are analyzed first and registered destructors 𝐷𝑢𝑑

are recorded. The ICFG then adds artificial control-flow edges to the actual user-defined
entry points. From the exit sites of the user-defined entry point functions artificial control-
flow edges to the global destructors 𝐷𝑖 and registered destructors 𝐷𝑢𝑑 are added as shown
in Figure 3.9.

We also generalized the initialSeeds implementation which, until now, has been shared
across the IFDS [RHS95] and IDE [SRH96] problem interfaces. This, however, prevented
analysis writers from specifying data-flow facts with initial values other than ⊥ in IDE
problems making it impossible to encode the effects of primary global initializations within
the initialSeeds implementation. Our generalization now also allows for arbitrary initial
edge functions in IDE [SRH96].

PhASAR’s pre-defined flow function implementations for automated parameter mapping
for call and return flows have also been extended. We added additional parameters to the
respective flow functions that allow for automatically handling the data flows of global
variables as described in Section 3.7.3.

3.7.5 Case Study: Constant Propagation

We demonstrate the usefulness of our PhASAR extension G+ by presenting how the new
functionalities can be used to add global variable support to PhASAR’s existing linear-
constant propagation encoded within the IDE [SRH96] framework. We then present a
quantitative evaluation that assesses the importance of correctly handling global variables
(and code).

63

3 PhASAR

An Analysis Writer’s Perspective

When constructing the target program’s ICFG to conduct a global-aware whole program
analysis, we specify main as an entry point and, in addition, turn on the option for global (de-
)initializer awareness. The ICFG implementation then automatically analyzes the global
code and introduces artificial control flows.

To capture the primary initialization (cf. 𝐼-labeled box Figure 3.9) we make use of the
initialSeeds . We iterate the global variables using LLVM’s standard API and create 𝐺 a set
of pairs of variables and associated edge functions describing their initialization. The set,
among others, includes 𝑘 ↦→ 𝜆𝑥.42, 𝑗 ↦→ 𝜆𝑥.1024 for the program shown in Figure 3.8.
We query the ICFG for 𝐶0 and return as initial seeds a mapping from 𝐶0’s first statement to
𝐺. We use the extended flow functions for automated handling of inter-procedural flows,
i.e., call, return, call-to-return, and enable the option allowing for automated handling
of global variables. The correct propagation is then automatically handled by PhASAR’s
solver implementation which propagates the data-flow facts according to the global-aware
ICFG.

Global Variables in Real-World Programs

Our empirical evaluation addresses the research questions:

𝑅𝑄1 To what extend are global variables used in real-world programs?

𝑅𝑄2 How much precision does an analysis gain by making it global-aware?

𝑅𝑄3 What is the runtime cost of making an analysis global-aware?

To address 𝑅𝑄1, we counted the number of global variables for each benchmark program,
recorded their respective types and determined their users by following their def-use chains.
To address 𝑅𝑄2, we ran a global-oblivious as well as a global-aware IDE [SRH96]-based
linear-constant analysis that has been independently implemented in PhASAR on each
benchmark target and compared the data-flow facts that have been generated and propagated
by the analyses. We measured the analysis’ running times to be able to comment on the
expense that propagating the additional (global) variables incurs (𝑅𝑄3).

Experimental Setup

We have evaluated our framework extension G+ using as benchmark subjects 23 C/C++
programs that we obtained from Github. We compiled the programs to LLVM IR using
WLLVM and subjected the resulting bitcode files to a linear-constant propagation, once
using a global-oblivious G− and once using a global-aware G+ version of the analysis. The
target programs’ corresponding LLVM IR ranges from 2,357 to 684,202 lines of code. We
measured the running times for the experiments on an dual socket system with 2x Intel(R)
Xeon(R) CPU E5-2630v4@2.20GHz CPUs and 256GB main memory, running Debian

64

3.7 The Burden of Correctly Handling Global Variables

Table 3.2: Results for the IDE-based linear-constant analysis.

program #g #u #gen #ntvas #ntvae runtime [s]

G+ G− G+ G− G+ G−

bison 1,806 7,130 113 113 0 113 78 2582 2295
brotli 163 272 0 0 0 0 0 143 142
curl 1,880 2,119 17 17 0 17 8 730 698
file 168 267 5 5 0 4 0 1 1
gravity 1,194 3,333 17 17 0 16 10 60586 60482
grep 415 978 60 60 0 60 46 290 256
gzip 351 2,007 97 97 0 96 15 63 47
htop 1,521 2,355 44 44 0 41 20 632 596
libjpeg 184 346 0 19780 19989
libpng 454 560 0 97 114
libssh 1,853 1,997 7 1232 1301
libtiff 1,309 1,422 1 560 645
libvpx𝑑 1,372 2,778 19 19 0 19 0 10645 10160
libvpx𝑒 1,682 3,191 21 21 0 21 1 12558 11974
libxml2 4,969 8,475 92 28555 29689
libzmq 1,191 3,154 0 1866 2481
lrzip 782 1,415 4 4 0 4 4 250 252
lz4 396 1,189 13 13 0 13 5 115 108
openssl 1,835 1,899 14 1642 2005
openvpn 4,343 4,893 41 41 0 0 0 21979 21994
opus 467 606 2 415 516
tmux 5,193 5,916 40 40 0 0 0 22246 22333
xz 455 932 48 48 0 46 35 33 26

10. We ran each experiment ten times and computed the mean time it took to execute the
analysis. The mean relative standard deviation for all projects is 1.1%. Table 3.2 shows
our results. The columns of the table present (from left to right) for each target subject the
number of global variables, the number of their users, the number of global integer-typed
variables that the analysis can potentially track, the number of constant variables that hold
at the start of main and the number of constant variables that hold at the end of main—once
using a globals-aware (G+) and once using the plain, unmodified constant analysis (G−)—
as well as the running times in seconds. Our benchmark programs, the raw as well as the
processed data produced in our evaluation are available in our artifact [Art21].

𝑅𝑄1: Usages of Global Variables

Table 3.2 shows that all of our real-world target programs make use of global variables.
The amount of global variables used ranges from 163 to 5,193 with an average of 1,478.

65

3 PhASAR

These global variables, on average, have 2,580 users. Global con- and destructors using
the __annotate__ keyword are used by two projects (libssh and libzmq) and thus seem to
be used less frequently.

Global variables are frequently used throughout all of our target subjects. Hence, it is
important for an analysis to model them correctly if a sound analysis is desired.

𝑅𝑄2: Precision

Our results for G+ show that most of the integer-typed global variables that are constant
at the beginning of main remain constant or linearly depending on constants throughout
the whole main function, i.e., the program. The openvpn and tmux programs present two
exceptions where none of these variables remains constant. However, the results for G−
shows the necessity of handling global variables. Since global variable initialization is not
taken into account by G−, it cannot find constant global variables at the beginning of main.
As the amount of constant globals at the end of main indicates, there seem to be a few stores
of constant values (or literals) to some of these globals. Still, the number of constant global
variables at the end of the program lacks far behind G+.
While ignoring global variables might be acceptable for analyses that are used for bug
finding, especially analyses that are concerned with software security or are used as a
basis for program optimizations cannot afford to ignore these variables (and respective
code of global (de)initializers).

𝑅𝑄3: Performance

As our results in Table 3.2 show, analyzing global variables impedes performances. This
is because global variables need to be propagated through the complete program under
analysis to represent the fact that they can be accessed (and modified) at any point in
the program. Surprisingly, libraries benefit from our model. This is because PhASAR’s
points-to-based ICFG implementation and the global-oblivious analysis cause expensive
repropagations when no dedicated main function (or 𝐶 and 𝐷 control flows cf. Figure 3.9)
is present and global variables are discovered. Besides the implementation effort, this
behavior can be mitigated in which case we expect G− to be slightly less expensive than
G+ similar to the non-library target subjects.

Supporting global variables impedes an analysis’ performance. Making the IDE-based
linear-constant analysis global-aware causes a performance hit of 7.5 % for ordinary
programs and a performance gain of 12.6 % for libraries.

3.7.6 Related Work

Modeling the effects of global variables in static analysis is a demanding task. Doing so in a
sound manner is virtually impossible for many realistic target programs. However, current

66

3.8 A Few Years Later: Designing Static Analysis Implementations

analysis frameworks such as Soot [VRCG+99] and PhASAR [SHB19] do not provide any
framework support for modeling global variables.

Unfortunately, the compiler community does not provide solutions for comprehensive
data-flow analysis of globals either. Optimizing compilers have to be rather conservative
when it comes to performing code transformations, of course. While LLVM provides some
optimizations w.r.t. global variables such as globalsmodref, constmerge, globalopt,
and internalize, these are all rather simple analyses that back off as soon as a global
variable’s address is taken or its initialization is more complex. LLVM’s implementations
for (inter-procedural) constant propagation and constant folding does not optimize code that
involves non-immutable globals with non-trivial (primary) initializers, and does not to aim
to proof any properties for such variables or their users.

3.7.7 Conclusions

In the above, we have presented an overview on the complex semantics of global variables
in C and C++ and how they map to LLVM’s intermediate representation. Based on our
observations, we presented a scheme that can be used to soundly model the effects of global
variables in data-flow analysis. We extended the PhASAR [SHB19] framework and imple-
mented new functionalities that allow analysis writers to model globals in an easier and more
structured manner. We presented a possible usage of the proposed scheme and showed its
usefulness by extending PhASAR’s current IDE-based linear-constant propagation adding
support for global variables. Using the proposed scheme allows one to trivially add sound,
full-global support to any data-flow analysis. We already have successfully integrated this
scheme with a non-trivial analysis that crucially depends on a sound handling of globals,
which we discuss in Section 7.1. Handling global variables correctly and soundly is an
important task that must be dealt with in order to build solid analysis implementations,
which, in turn, serve as a basis for further advanced analyses.

3.8 A Few Years Later: Designing Static Analysis
Implementations

In this section, we share our general experience in analyzing real-world C and C++ programs
that we gained over the last few years. In particular, we report on the challenges of
implementing static analysis toolboxes and what can make this task less cumbersome.

While traditional static analysis—albeit its complexity—is a topic that is well understood,
we especially struggle when it comes to implementing its concepts. Designing and modeling
software that implements static analysis is a challenging task.

However, developing usable static analysis implementations and providing toolboxes to
researchers and practitioners is key to advance the overall progress in this field.

This section reports on the lessons learned from developing the PhASAR static data-flow
analysis framework. We present some of the key mistakes of our first implementations of
PhASAR and their corrections. From those corrections we distill guidelines that will be
helpful to static analysis developers and their users.

67

3 PhASAR

In our work, we identified modularity as the key guiding principle supported—directly
or indirectly—by virtually all other guidelines.

3.8.1 Experiences From Building a Static Analysis Framework

We implemented the PhASAR framework [SHB19] and open-sourced it in 2018 due to the
lack of open-source data-flow analysis implementations for C and C++ that suited our needs.
The analysis of C and C++ programs is notoriously hard, as this family of languages presents
some unique properties that are seldom found in other languages. These properties include
its low-levelness, arbitrary pointers to memory (including void∗), its deliberately unsafe type
system, multiple inheritance, possession of a preprocessor, and language features such as
const_cast and setjmp/longjmp—to list only a few. Yet, these languages are heavily used in
practice making them relevant analysis targets.

While there are relatively lightweight analysis approaches that conduct syntactic checks
on a given target program, and which are able to analyze even million lines of code in
minutes, analysis approaches that compute semantic properties of a program are more
heavyweight. Many interesting static analysis problems, such as data-flow-, shape, or type-
state analysis require detailed, inter-procedural semantic program information. To solve
these kinds of analysis problems, detailed abstractions are required that involve complex
data-flow solvers, complex analysis domains, and oftentimes multiple different, potentially
interleaving, helper analyses, forming an “analysis blend” that eventually provides useful
results. This paper focuses on such semantic analyses.

For many real-world sized target programs, detailed abstractions that are necessary
to solve those more heavyweight analysis problems lead to high runtime and memory
requirements. This makes it almost impossible to integrate such analyses into software
development processes, let alone compilers [Bab18]. Actual solutions to analysis problems
are often undecidable, forcing analysis developers to resort to approximations. In addition,
the complex concepts and algorithms that are required to solve analyses that reason about
semantic properties of a program are one of the (many) reasons that lead to a restricted
supply of static-analysis implementations that are able to solve those kinds of analysis
problems.

Because there is no reference implementation, guide, or any form of advice on how to
build a static data-flow analysis framework for C and C++, we initially borrowed several
design decisions from the Soot framework [VRCG+99, LBLH11], and LLVM [LA04].
We built PhASAR on top of LLVM as it provides a usable, industrial-strength compiler
infrastructure that offers an intermediate representation (IR) and, in addition, provides
compilation of target programs into IR and all basic functionalities for inspection and
transformation of the IR. Although we were able to use existing, static-analysis toolboxes
and compiler infrastructures that allowed us to avoid repeating engineering mistakes others
made before, such as (accidentally) introducing tight coupling, we still encountered various
difficulties and had to learn many lessons the hard way.

In this section, we thus report on our findings of what makes the development of such
frameworks easier. We present the basic concepts of static data-flow analysis in a nutshell
and report on the key mistakes and design flaws of early implementations of PhASAR for

68

3.8 A Few Years Later: Designing Static Analysis Implementations

which we drew several design ideas from Soot [VRCG+99] and LLVM [LA04]. From their
corrections and PhASAR’s partial redesign we elaborate guidelines on how to model and
implement static analysis that is usable in practice.

We found that the dominating overall design principle that static analysis implementations
must follow is modularity. A modular design greatly counters complexity and allows one to
build further abstractions on top of basic building blocks. Modularity is involved—directly
or indirectly—in six of our eight major guidelines that we distilled from our experience.

In summary, this section makes the following contributions:

• It presents a report on the key mistakes and their corrections in designing and
implementing the concepts of static data-flow analysis within the PhASAR [SHB19]
framework,

• and shows guidelines derived from the corrections that will be useful to static analysis
developers and their users.

3.8.2 Background

In this section, we briefly present the basic parametrization options of static analysis that
need to be taken into account when modeling and implementing a static data-flow analysis
framework.

Parametrization and Configurations

Virtually every algorithm that computes a piece of static analysis information can be heavily
parameterized; oftentimes to trade off precision and scalability [HP00]. Depending on the
concrete client analysis and given target program, some parametrizations may be more
preferable than others.

In addition to the parametrization of individual analysis algorithms that even affect each
others’ properties, several configuration options may be applied that can be considered
global. Those global configuration options apply to entire analysis runs, i.e., they apply
to every entity involved in the dependency model presented in Section 2.3. Some of the
configuration options are implementation independent. For instance, one could model
soundness as a global option that may carry one of the values sound, soundy [LSS+15],
or unsound. That option uniformly applies to all analyses required by a client and is
independent of any concrete implementation. Other configuration options such as logging,
export of results, etc. are global but implementation-dependent.

Analysis Styles

On top of the analysis setup presented above, various analysis styles or strategies may
be used to conduct an analysis. Those styles include, among others, whole program,
incremental, demand-driven, and compositional analysis. All these analysis styles require
the same static-analysis information but each style requires them in a slightly different
form. Demand-driven analysis, for instance, requires information on forward and backward

69

3 PhASAR

control flows [JKC20]. Incremental update analysis even requires additional communication
between those different pieces of information.

3.8.3 Lessons Learned

In this section, we elaborate on implementation mistakes and design flaws we made and had
to fix in PhASAR’s initial implementations, respectively. We consider it a mistake whenever
changes in the code or design have been necessary that required a disproportionate amount
of time when building novel (analysis) abstractions on top of existing ones.

Modularity and Encapsulation To allow for efficient inter-procedural analysis, we built
our initial implementation of PhASAR starting from a generic and parameterizable IFD-
S/IDE solver implementation similar to the Heros [Bod12] data-flow solver frequently used
with Soot.

From our experience on Soot we knew that modularity is a key element when it comes
to designing an analysis framework. Many of Soot’s important data types are implemented
as singletons that make it easy to globally access information wherever needed, but also
break modularity and local reasoning. When requiring callgraph information, for example,
a user sets up an instance of a callgraph type using its constructor. Especially novice users,
however, cannot possibly know that there are additional setup possibilities using a singleton
configuration object, as there is no direct connection between the type’s interface and its
setup. Those singletons also prevent several important use cases as it prevents loading
multiple target programs into a single analysis process, for instance.

We borrowed several design decisions regarding the modeling of the solver interfaces
from Soot. Thus, the solver operates on a “problem” interface whose implementations
correspond to concrete analysis problems. The problem interface’s constructor takes an
implementation of the ICFG interface that guides the solver through the program. The client
problem is also free to use the information provided by the ICFG. PhASAR manages the
underlying target code using the ProjectIRDB type. One may thus conclude that providing an
ICFG implementation that computes control flows on the code managed by the ProjectIRDB
to the analysis “problem” would be sufficient.

While this design allowed us to implement and debug the solver, and generally allows
to specify and solve basic inter-procedural client analysis problems, it oversimplifies the
concepts of static analysis. For instance, the existence of points-to or type-hierarchy
information is not mentioned at all, making it unusable for more complex client analyses.

Because of our modular design and missing capabilities to globally access information,
it led to several severe code smells such as passing points-to information via the concrete
ICFG implementation to the client problem and eventually prevented us from building
further abstractions on top without completely breaking modularity and encapsulation, and
thus losing control over the complexity.

Hence, we improved on our model and implemented it according to Section 2.3. We
modeled each entity as an individual interface that can be separately used from all others.

We employ the type system to match our model shown in Figure 2.8 and express intent:
an analysis problem always needs an ICFG implementation that guides the solver through

70

3.8 A Few Years Later: Designing Static Analysis Implementations

the program and is passed as a reference, and may uses additional information which we
pass as pointers. These pointers can be nullptrs to indicate information not available/used.
As the client analysis is potentially provided with all information on the helper analyses, it
can, in turn, spawn additional (helper) data-flow analyses itself, if required.

Modularity and Encapsulation: Modularity and encapsulation are key to keep complexity
manageable which has been impressively shown by the LLVM project [LA04], too.
Design a model that is expressive enough to capture all interactions of the different
analysis algorithms that are interesting to you, explicitly. Implement each entity of your
model such that it can be used (and tested) individually.

Accessing Information Depending on what needs to be computed, the various involved
algorithms will need to share lots of information.

Due to our prior experience with stateful singletons in Soot that not only decrease its
maintainability but are also particularly bad for thread-parallelism, we could avoid large
collections of information that are shared globally. Whenever possible we make information
available using uniform parametrization across all entities of a certain type. For instance,
we offer uniform constructors for all types of data-flow problems: call strings, IFDS, IDE,
etc.—they all accept equal parameter lists.

This allows us to build further abstractions on top of our model shown in Figure 2.8. We
recently started implementing an analysis strategy concept as presented in Section 3.8.2. It
enables users to set up entire analysis runs that use one of the presented strategies in only a
few lines of code.

To allow for an exchange of information for strategies that not only need to share but also
update depending information like incremental update analysis, we use a special ReviseInfo
type. We modeled the type to carry information on which kind of information needs updates
and what pieces of code are affected. The corresponding strategy implementation has been
built on top of the ReviseInfo type and controls the actual exchange of information using
a mediator pattern. By using this model, we can keep a strict modular design and avoid
making every piece of information globally available. We detail on how we use this model
to make static analysis incremental in Chapter 6. Similar to the above, Helm et al. present a
novel approach that allows for modular, collaborative program analysis by using so-called
blackboard systems in [HKR+20].

Even the information that is general to all respective algorithms, such as the level of
soundness that we implemented as suggested in Section 3.8.2, is managed separately for
each analysis run. Modeling this information as global variables would forbid us from
running individual analyses concurrently: a functionality that is often needed by more
complex analyses that need to spawn additional helper analyses.

In our experience, the only information that can be shared globally safely is implementation-
specific information that does not affect the semantics of an analysis. Thus, we implemented
the constant global implementation-specific information about the system as a special
thread-safe singleton configuration type that allows one to access this information.

71

3 PhASAR

Accessing Information: Avoid weakening interface boundaries that counteract modularity
and encapsulation. If needed, rather than giving individual unrelated components access
to each other, exchange information with help of proxy exchange types which are handled
by a mediator. Provide unified interfaces to access information to ease building novel
abstractions on top of existing ones.

Bugs and Debugging Once we solved analysis problems with a first version of the
basic analysis infrastructure, we frequently observed crashes, strange program behavior,
and incorrect analysis results.

Finding the root causes of bugs in static analysis is a challenging and time-consuming task,
as many different analyses are involved while performing a concrete analysis run [SLHB19].
Standard debugging techniques such as debuggers are hard to use, as one needs to step
through a tremendous amount of non-related solver code when debugging a client analysis.
Complex analysis domains make it hard to even display interesting pieces of information
in a meaningful way as we described in detail in Section 3.6.

For that reason in a subsequent revision we instrumented the entire framework. Each
piece of code involved in solving a concrete analysis run has been instrumented using
logging techniques and functionalities to record data that is relevant to static analysis like
number of callgraph edges per call-site, data-flow facts generated per statement, etc. After
post-processing the recorded data, we are able to gain insights about the undesired program
behavior that eventually let us track down bugs.

Nguyen et al. built a specialized debugger called VisuFlow [NKH+18] to ease the
debugging process. Unfortunately, this approach is currently only applicable to the Java
ecosystem.

Extending on Lerch and Hermann’s insights [LH15], we additionally follow a test-driven
approach in PhASAR. We frequently observed that when implementing novel features,
other seemingly unrelated parts of the framework broke; bringing us back to the problem
described in this section. Those bugs would, without corresponding unit tests, either
provoke further undesired behavior causing time-consuming debugging sessions, or—even
worse—produce bugs that remain undetected and may corrupt critical analysis users. As
a consequence, we now use test-driven development to implement all major parts of the
framework.

Bugs and Debugging: Integrate means to allow for debugging especially complex parts,
e.g. using instrumentation. Implement individual components using test-driven develop-
ment to ensure their correctness and retain the ability to check correctness continuously
in an automated manner.

Parametrization, Configuration and Usability The large amount of parametrization
and setup options decrease overall usability, especially for novices.

In a first implementation of the IR-managing ProjectIRDB type, we offered a broad variety
of functionalities, many of which could be accessed through public member functions,
which in some instances required a distinct order of function calls, e.g. certain IR annotation

72

3.8 A Few Years Later: Designing Static Analysis Implementations

passes needed to be run before being used by other functionalities. This design turned out
to be error prone and difficult to use as it is too easy to introduce mistakes by confusing the
order of calls.

To make it more difficult to use the ProjectIRDB class in an incorrect manner, we thus
revised large parts and moved lots of tasks directly into constructors. Based on the experi-
ence gained from Soot we avoided separating a type’s interface and its setup. To reduce the
amount of configuration needed, for non-essential parameters and configuration options we
chose sensible default parameters. Whenever possible we reduced the number of parameters
even further. For instance, a callgraph based on points-to information can be constructed
by specifying the enumerator option CallGraphAnalysisType::OTF in the LLVMBasedICFG
constructor’s parameter list. This specific callgraph option requires additional points-to
information. However, if no additional points-to information are provided by a user of that
type, the required information is constructed on-the-fly rather than reporting an error to the
user.

Parametrization, Configuration and Usability: Model entities from static analysis as types
and couple a type’s setup directly to its interface. If possible, avoid complex setup
mechanisms, use simple constructors instead. For novice users, make it sufficiently hard
to misuse a type. Reduce the amount of essential parameters to a minimum by providing
suitable default parameters. Compute missing information on-the-fly rather than aborting
with an error message.

Flexible Usage Modes Initially, we implemented PhASAR as a command-line tool.
However, we received many requests to also allow for further use cases. We extended the
framework to allow for the usage of a plugin mechanism. Users can thus ignore most of the
framework’s infrastructure and focus on specific details they are interested in without the
need for modification and costly recompilation of PhASAR’s code base. C++ compilation
times are typically relatively long compared to C or Java, even for incremental builds.
Reasons for that include the hundreds or even thousands of header files that need to be
(re)processed for every compilation unit, the monolithic linking process, complex parsing
of the complex syntax, code generated by templates, and optimizations. We counteract the
compilation times with potent build machines.

Due to the framework’s modularity, we could also offer individual functionalities as
libraries. Thus, users are free to only choose whatever functionalities they are interested in
and can integrate these parts in their own tools. We added full CMake support to PhASAR
which eases using it as a library and building tools on top of it.

Since the removal of the aforementioned restrictions of the usages, we noticed that the
number of people interested in the framework increased. We could observe a growing
number of users and recently received several valuable performance optimizations for our
callgraph algorithms from a company that uses our callgraph construction functionalities
in their software product.

73

3 PhASAR

Flexible Usage Modes: Provide flexible use cases unless you have good reason to apply
restrictions. Do not make any assumptions on the users’s workflows because people will
come up with usages that you did not think of.

Analyzing C, C++, and LLVM IR Although the LLVM IR is expressive enough to capture
arbitrary source languages, we found that the characteristics and complexity of the source
language propagate into the IR. Observe the following call site in LLVM IR: %retval = call
i32 %fptr(%class.S∗ dereferenceable(4) %ptr, i32 5), assuming C to be the source language,

a plain function pointer is called. If C++ is the source language, we can not be sure
whether a function pointer or a virtual member function of class S is called. Depending on
the source language and the translation of its features into LLVM IR there could be even
more possibilities which have to be checked to find a solution. This is the reason why we
observed that the analysis runtime for C++ target programs is usually much higher than for
C programs.

For more complex languages like C++ we also have to keep track of special member
functions. These functions are mapped into ordinary LLVM IR functions that Clang places
in a well-defined order in the generated IR. For some analyses like the declared-type analysis
(DTA) callgraph algorithm, we need to be aware of these special member functions in order
to preserve high precision.

We also found that even a well-debugged analysis that has been hardened on a large
variety of test programs may still fail on production code as some corner cases have not
been thought of. The large amount of information available to an analysis run makes
debugging errors hard. A standard debugger does not suffice because an analysis writer
has to step through a lot of code that is not relevant for them. For Java, a special dedicated
debugger for static analysis has been developed [NKH+18] which shows the relevance of
the problem.

Depending on the optimization passes that have been applied to code in LLVM IR before
it is handed over to the analysis, it may have very different characteristics. Although
optimization passes are required to have no impact on the semantics, the structure of the IR
code changes. In our experience, it is helpful to start developing an analysis on small test
programs that are translated into IR without optimization passes, and cover as many cases
as the analysis should find. Once an analysis handles these test cases correctly or with the
desired precision, optimization passes should be applied to the test cases. After rerunning
the analysis the results should be checked against their unoptimized version. When applying
an analysis to production code, the code should be compiled using production flags in order
to analyze code that is as close as possible to what actually runs on the machine.

We found that the usage of debug symbols is helpful. The Clang compiler’s -g flag can
be added to propagate the debug symbols into the IR. Those can then be queried using
LLVM’s corresponding API. However, the debug symbols may not always present, which
is why an analysis should not rely on them.

Analyzing C, C++, and LLVM IR: Take the characteristics of the input source language
into account when analyzing the compiler’s IR. If possible, use debug information to

74

3.8 A Few Years Later: Designing Static Analysis Implementations

provide extra information to the analysis that would be otherwise difficult or impossible
to retrieve.

Build Systems The earliest versions of PhASAR used Makefile as a build system. This
worked as long as PhASAR comprised only a few source files, but after a few months we
realized that this harmed the project’s maintainability. The monolithic Makefile made it
difficult to organize the project in suitable subcomponents, to integrate other libraries, and
to allow for cross-platform support.

At the point at which only the initial creator of the Makefile could maintain it, we
stopped and replaced the build system with CMake. CMake is an open-source, cross-
platform, modular tool chain that is designed to build, test and package software. It is
now also the de-facto standard for many modern C and C++ open-source projects. Due
to its modularity it allows for an easy integration with other software projects—a property
that makes it suitable especially for research projects that often need to combine multiple
projects to create a prototypical implementation quickly.

Build Systems: Choose a build system that suites the project’s needs and integrates well
with others in advance. Think ahead and assume that the project will grow not only in
terms of its code base but also its number of users.

LLVM IR Generation Following Section 3.8.3, we develop small micro benchmarks
comprising several single-file programs that are used to test certain aspects of an analysis
implementation.

While LLVM IR can be obtained for individual compilation units by running the clang
compiler with the -emit-llvm flag, it is difficult to obtain LLVM IR for larger, more
complex projects. However, that is exactly what analysis writers wish to do in order to
evaluate an analysis’ scalability and ability to deal with real-world code. C and C++
neither have a real module system nor a standardized build mechanism. Instead, individual
compilation units are compiled into object files that are eventually linked to (hopefully)
produce the desired binary. Preprocessor macros and other important flags passed to the
compiler can change the semantics and correctness of the final binary. To produce LLVM
bitcode for a given real-world project, one needs to extract the exact compile and link
commands encoded in the build system used by the project. Doing so manually is an
infeasible task if one recalls the multitude of different build systems such as Makefile,
CMake, Bazel, etc.—if the project uses a build system at all.

Luckily, compiler wrappers such as WLLVM [WLL21] and (a faster implementation in
Go) GLLVM [GLL21] have been developed. These tool chains interrupt the compiler and
extract the compile command to produce LLVM bitcode for the compilation unit under
processing. The path to the LLVM bitcode is stored in an artificial section in the resulting
object code. Linker commands are interrupted as well, and, in addition to the ordinary
linking job, the bitcode paths of the object codes that are linked are collected and placed in
an artificial section of the resulting binary. To produce whole program LLVM IR, the paths

75

3 PhASAR

to the bitcode files that constitute the binary can be automatically extracted and linked, and
finally subjected to a whole program analysis.

LLVM IR Generation: Use WLLVM [WLL21] and GLLVM [GLL21] to build whole
program LLVM bitcode files from unmodified C and C++ projects.

Contributing Guidelines We are still affected by having failed to provide contributing
guidelines in the early days. Initially, we did not provide suitable contributing guidelines
and coding standards, and after we did, we did not enforce them at first. Due to the various
contributions from students and practitioners that the project received over time, it has
picked up different coding styles and code of varying quality.

A unification of coding styles and overall improvement of code quality using automated
analysis and transformation tools such as clang-tidy was not directly possible due to
various corner cases that those automated approaches cannot handle. Manual unification
was very expensive and underwent an incremental process. We updated pieces of code that
are adjacent to new features to ensure software evolution over time. It finally allowed us to
remove those corner cases and to employ automated tooling.

Contributing Guidelines: Provide contributing guidelines and documentation at the be-
ginning of the project. Assume that the framework has multiple users and developers
that provide contributions, which is what eventually will happen. Use tools for automated
analysis and transformation to retain a uniform and high-quality code base. Take measures
to support community building and communication.

3.8.4 Related Work

There are several mature program-analysis frameworks from academia like Soot [VRCG+99],
Opal [EH14], WALA [Wal19], or Doop [Doo18], there is very little advice on how to ac-
tually design and implement the underlying theory.

Some insights on good design of static analysis frameworks, provided by Soot’s main-
tainers [LBLH11], refer to avoiding redundant re-computations by using incremental or
reactive computation, and quasiquoting for easily generating code from templates. Allow-
ing to independently release framework extensions without having them included in the
main distribution also greatly benefits the tool and its community.

Experience reports on applying static analysis tools in commercial context emphasise
the importance of low false positive rates and clear error messages to overcome warn-
ing blindness of tool users [SAE+18]. Additionally, tools must handle real-world code:
resilience and robustness is vital when coping with large code bases and peculiar code
constructs [BBC+10].

An extensive experience report on how to employ distributive, summary-based static
analysis to benefit analysis precision and performance is given by Bodden [Bod18]. The
report presents practical design tricks for data-flow analysis.

We present an approach that modularly computes and summarizes all pieces of static
analysis information required to answer queries of a concrete client analysis as shown in

76

3.9 Future Work

Figure 2.8 in Chapter 5. This approach shows that modularity not only eases implementation
but also improves flexibility and counters the complexity of static analysis itself.

3.8.5 Conclusions

In the above, we reported on major design flaws and implementation mistakes that we
detected in our first implementations of the PhASAR framework. From those incidents,
for which we had to provide corrections in order to keep the complexity manageable, we
distilled guidelines that we think are useful to static analysis writers and its users.

As shown in this section, even when using knowledge of the past and falling back to
design ideas of existing frameworks one may still suffer from design decisions that turn
out to be not advisable. Applying those guidelines helped us to improve PhASAR’s overall
quality. It reduced complexity, made its usage less error prone and eased building novel
abstractions, eventually advancing the progress in this field.

3.9 Future Work

In this section, we briefly summarize our plans for future improvements.
It would be interesting to evaluate the use of PhASAR for analyzing different intermediate

representations. One type of IR might come with advantages over others, depending on the
analysis problem to be solved. We plan to additionally support the GENERIC, GIMPLE and
RTL [Mer03, gcc18b] as well as the Multi-Level IR [MLI23] intermediate representations
from the GCC and MLIR projects.

Other interesting frameworks for solving distributive data-flow analysis problems are
Pushdown Systems [EHRS00] (PDS) and Weighted Pushdown Systems [RSJ03, SAB19a]
(WPDS). Both, PDS and WPDS are able to solve data-flow analysis problems using stack
automata. PDS and WPDS allow for more compact data structures, the generation of
witnesses, as well as precise queries specifying paths of interest using regular expressions.
Späth et al. opens up a new line of research by synchronizing two separate pushdown systems
to allow for solving distributive data-flow problems in a flow-, ∞-field- and ∞-context-
sensitive manner [SAB19b] to the extend that is theoretically possible [Rep00]. Späth et al.
implemented their Synchronized Pushdown Systems [SAB19b] (SPDS) approach on top of
Soot [LBLH11] for the Java ecosystem. We plan to support PDS, WPDS and SPDS in future
versions of PhASAR. However, we have already identified several conceptual challenges
when trying to apply SPDS directly to languages from the C family, which would make this
an interesting and challenging piece of research.

Checking the correctness of an IFDS/IDE analysis is complex, since checking the correct-
ness of the underlying exploded super-graph is tedious and time consuming. A high-quality
visualization is likely to help reducing the amount of time spent debugging an analysis. In
addition, a graphical user interface will reduce the amount of knowledge that is required to
use the framework.

Since the flow (and, in case of IDE, edge) functions have to be implemented in a general
purpose programming language, they require some amount of boilerplate code. The Clang

77

3 PhASAR

compiler’s ASTMatcher [AST23] library contains a small, yet powerful embedded domain-
specific language (EDSL) that allows one to specify sophisticated AST-based analyses and
transformations using expressions that can be read like English sentences. It remains
an open question, if one could design a non-Turing-complete EDSL with a library like
boost::proto [Boo18], for instance, which simplifies the task of encoding data-flow
problems in PhASAR.

PhASAR currently uses LLVM’s points-to information, which is rather imprecise, unfor-
tunately. We plan to integrate a more precise pointer analysis with PhASAR to support more
precise callgraph construction and client data-flow analyses that require precise points-to
information by adapting the demand-driven Boomerang approach presented in [SNAB16]
to PhASAR.

3.10 Conclusions

In this chapter, we presented our implementation of a static analysis framework for programs
written in C and C++ named PhASAR. We presented its architecture and implementation
from a user’s perspective to make practical static analysis more accessible. We presented
experiments which have shown PhASAR’s scalability and discussed the runtimes of the
key parts of two concrete client analyses. We further presented valuable extensions that
make developing static program anlaysis easier and shared the experience that we gained
over the last few years.

With PhASAR we strive toward the goals of providing a framework for static analysis
targeting (but not limited to) C and C++, a base for quickly evaluating novel ideas and
applications, and a suitable way of handling the complexity. PhASAR is open-source and
available under the permissive MIT licence, and therefore, open for contributions, feedback
and use. PhASAR has already received tremendous support in the research community and
from practitioners as indicated by the respective statistics on Github.

Since with PhASAR we now have a toolbox and the basic building blocks for statically
analyzing C and C++ code by automatically inspecting the LLVM compiler’s intermediate
representation, we next discuss how to make C and C++ target programs, which in each non-
trivial case actually represent software product lines, analyzable in practice and show how
precise whole-program analysis can be scaled to large, real-world programs and modern
software development workflows.

78

4 Variability

Following our goal of making the analysis of large, unmodified, real-world C and C++
projects feasible and scalable in practice, we next detail on how to make C and C++
code bases analyzable using distributive data-flow solvers such as IFDS [RHS95] and
IDE [SRH96].

Many critical codebases are written in C, and most of them use preprocessor directives
to encode variability, effectively encoding software product lines. These preprocessor
directives, however, challenge any static code analysis.

SPLlift, a previously presented approach for analyzing software product lines, is limited
to Java programs that use a rather simple feature encoding and to analysis problems with
a finite and ideally small domain. Other approaches that allow the analysis of real-world
C software product lines use special-purpose analyses, preventing the reuse of existing
analysis infrastructures and ignoring the progress made by the static analysis community.

This chapter presents VarAlyzer, a novel static analysis approach for software product
lines. VarAlyzer first transforms preprocessor constructs to plain C while preserving
their variability and semantics. It then solves any given distributive analysis problem on
transformed product lines in a variability-aware manner. VarAlyzer’s analysis results are
annotated with feature constraints that encode in which configurations each result holds.

Our experiments with 95 compilation units of OpenSSL show that applying VarAlyzer
enables one to conduct inter-procedural, flow-, field- and context-sensitive data-flow analy-
ses on entire product lines for the first time, outperforming the product-based approach for
highly-configurable systems.

4.1 Introduction

Software product lines (SPLs) enable software developers to encode a set of software prod-
ucts in a common code base. The different variations, so-called configurations, are typically
described with the help of static conditionals, so-called features, that enable conditional
compilation. In the programming languages C and C++, developers typically use the pre-
processor’s functionalities, particularly the well-known # ifdef directives, to establish SPLs.
The preprocessor’s static conditionals allow developers to check the presence of a symbol or
its value—an integer or a string literal. At compile time, the preprocessor transforms every
compilation unit according to the given set of symbols (and their respective values), before
the preprocessed compilation unit is handed over to the actual compiler. The compiler
thus only compiles the code that has been included by the preprocessor, which allows it
to produce efficient object code. This also means that in the worst case an SPL induces a
number of software products that is exponential in the number of static conditionals.

79

4 Variability

Static data-flow analysis is not only used as a basis for compiler optimizations [Onl18,
ICC18], but also for bug finding [CS18,Cod18] and software hardening [ARF+14,KNR+17,
LL05, HREM15, HHL+17]. However, previous software vulnerabilities such as Apple’s
FileVault vulnerability [Pro12] show that program analysis of configurable systems is
crucial. The FileVault vulnerability was caused by accidentally shipping a Mac OS X
version with logging code enabled that stored the user login passwords in clear text. Such
a vulnerability might have been detected early, had Apple had the capability to analyze
FileVault’s codebase with respect to all possible configurations.

The problem with traditional static analysis techniques, however, is that they cannot
be applied to software product lines directly. Instead, one must first generate a concrete
software product by preprocessing the common code base and then analyze the resulting
plain C or C++ program. Due to the possibly exponential number of software products
in practice, this process becomes prohibitively expensive even when analyzing only a few
variants, let alone all possible software products.

SPLlift [BTR+13] was proposed to analyze an entire SPL as a whole, a so-called family-
based approach [TA12], which avoids generating all potential software products. While
doing so, it avoids an exponential blowup through a time and memory efficient encoding
of feature constraints in distributive flow functions. However, SPLlift is restricted to
Interprocedural Finite Distributive Subset (IFDS) [RHS95] problems, which include simple
problems such as taint analysis, but exclude problems with large or potentially infinite
domains such as constant propagation [SRH96] or typestate analysis [Str83, SY86]. More
importantly, it is a prototype for a seldom-used product-line dialect of Java [KTS+09] and
thus cannot be applied to real-world SPLs, particularly not those that use the C preprocessor.

Existing techniques that are able to analyze real-world SPLs written in C operate on
un-preprocessed C code and include new or modified algorithms for parsing [KGR+11,
GG12,GJ05], data-flow analysis [LvRK+13,RLJ+18], type checking [KOE12], and rewrit-
ing [IMD+17]. The only available data-flow analysis [LvRK+13, RLJ+18], however, is
intra-procedural only. In addition, all those techniques are special-purpose analyses, mak-
ing it infeasible to reuse existing state-of-the-art static analysis infrastructures. The situation
becomes even more complicated when looking at the long term. While the research on
“variability-oblivious” program analysis marches on, those variability-aware toolchains
must be maintained in parallel, doubling the engineering effort, which explains why none
of the above approaches have been maintained in the long term. Other works proposed
new preprocessors [MB05, Käs10]. Language adoption, however, is a notoriously slow
development. And even if those new preprocessors get adopted over time, one cannot
expect that millions of lines of existing legacy code will be rewritten. Despite C’s known
issues, it is the most popular programming language according to the TIOBE programming
index.1

In this work, we present the design and implementation of VarAlyzer, a novel static
data-flow analysis approach built on top of SuperC [GG12] and PhASAR [SHB19]. The idea
is to revoke the preprocessor’s special role by first transforming preprocessor directives into
ordinary C code. Preprocessor conditionals are replaced with C conditionals, preprocessor

1As of March, 2021, TIOBE programming index https://www.tiobe.com/tiobe-index/

80

https://www.tiobe.com/tiobe-index/

4.1 Introduction

macros are replaced with C variables, and the existence of declarations is controlled via
C expressions that use these declarations. The transformation uses a configuration-aware
type checker which supports static behaviors at runtime that could not be implemented
before, e.g. type errors caused by infeasible configurations are expressed as runtime calls
to an error function. VarAlyzer allows one to automatically make any existing (or new)
distributive data-flow analysis on real-world C software product lines variability-aware
which it then solves in a single analysis run on the transformed software product line.

On top, and in contrast to SPLlift, VarAlyzer does not just support analyses encoded
in IFDS [RHS95] but also in Interprocedural Distributive Environments (IDE) [SRH96],
which includes problems with infinite domains. As a result, VarAlyzer outputs the
fully context- and flow-sensitive data-flow facts along with a feature constraint describing
the product configurations for which they hold. This allows developers to find bugs
and vulnerabilities much earlier in the development process, requiring no product to be
generated. Whereas previously developers of highly-configurable software had to identify
vulnerabilities separately for each concretely preprocessed variant, using VarAlyzer they
can exclude such vulnerabilities in all relevant configurations ahead of time.

We evaluate VarAlyzer’s effectiveness by conducting a typestate analysis [Str83,SY86]
that checks for the correct usages of OpenSSL’s Envelope (EVP) APIs on 95 compilation
units. Typestate analysis belongs to an important class of analyses whose efficient encoding,
due to the internal state, requires IDE [SRH96] or equally expressive frameworks such as
weighted pushdown systems [RSJ03]. The IFDS-based SPLlift approach thus could not
solve such an analysis on realistic programs. The (hand-)written compilation units in C
comprise realistic uses of EVP’s APIs for message digest (MD), encryption/decryption
(CIPHER), and message authentication codes (MAC). The compilation units, ranging from
8 to 219 lines of code, comprise preprocessor conditionals and valid as well as invalid API
usages. For this work, we have to restrict ourselves to evaluating our approach on individual
compilation units because several fundamental challenges that are beyond the scope of
this paper currently prevent us from evaluating VarAlyzer on full SPLs. Large-scale
projects not only encode variability in the preprocessor but also in other parts of the system
software toolchain. To support full SPLs, an approach would additionally need to solve the
difficult problem of supporting variability-aware linking and build automation. VarAlyzer
provides full support for application configurations. However, system configuration macros
provide yet another challenge. Not only would an approach need to support platform-
dependent header file differences, but would also require one to construct a superset of all
C variations. We detail on these challenges in Section 4.3.1.

The implementation of VarAlyzer is available as open source. VarAlyzer’s transfor-
mation parts are part of the SuperC project and can be found at https://github.com/
appleseedlab/superc. Its variational-aware analysis is available as part of PhASAR
and can be found at https://github.com/secure-software-engineering/phasar.
VarAlyzer’s implementation is available under the permissive MIT license. All accom-
panying artifacts of this paper, including processed analysis targets and result data, are
available as supplemental material [Art21].

In summary, this chapter makes the following contributions:

81

https://github.com/appleseedlab/superc
https://github.com/appleseedlab/superc
https://github.com/secure-software-engineering/phasar

4 Variability

• A novel end-to-end variability-aware static analysis approach that enables variational
analysis of C software product lines. The approach transforms software product
lines to ordinary C code while preserving the complete preprocessor semantics and
performs an automated lifting that allows one to solve arbitrary distributive data-flow
problems in a variability-aware manner.

• An open-source implementation based on SuperC [GG12] and PhASAR [SHB19].

• An experimental evaluation of VarAlyzer, which assesses its effectiveness in solving
general IDE [SRH96] problems on 95 compilation units that use OpenSSL.

• An assessment of the further challenges that need to be overcome to make static
analysis of arbitrary C applications a reality.

4.2 Motivating Example

To motivate the need for variability-aware analyses, we show an example using typestate
analysis on a software product line. Most APIs are required to be called in a particular order
or pattern. The valid sequences of operations can be encoded using state machines. A type-
state analysis [Str83, SY86] or protocol analysis is a static analysis that tracks variables of
a certain type and their associated states through the program. Typestates define sequences
of operations that may be performed upon a variable. The state information associated with
each variable is used to determine—at compile-time—the validity of operations invoked
upon variables. Existing analysis techniques for SPLs that rely on special-purpose analyses
formulated for variability-preserving ASTs cannot solve this problem class.

The state machine shown in Figure 4.1 describes the valid usages of OpenSSL’s EVP
message digest (MD) API. An SPL that performs a message digest using OpenSSL’s EVP
message digest (MD) API is shown Listing 4.1. The SPL comprises a debugging feature
encoded with the symbol DEBUG. When this symbol is enabled in the preprocessor, and
therefore debugging is enabled at runtime, MD’s API protocol is violated as the call to
EVP_DigestFinal_ex at Line 21 is omitted—a potential security threat. Even variability-
aware intra-procedural data-flow analysis cannot properly solve this analysis problem in
our example program because the variable MDCTX that carries the state information is
processed across multiple different functions.

Traditional techniques would first generate a particular variant (and all variants we are
interested in, possibly all of them) of the SPL, and then uncover this problem in a static
analysis of that particular variant. A brief inspection of our example SPL using the GCC
compiler shows that it comprises 6,946 preprocessor macros and (transitively) includes 221
different header files. 261 of those 6,946 macros are used in preprocessor conditionals.
Therefore, traditional analysis techniques can not scale. Instead, it is desirable to analyze all
potential configurations, i.e., feature combinations, at the same time. By transforming the
preprocessor directives into ordinary C code, our approach allows to employ any existing
C analysis tools to analyze the entire SPL as a whole. PhASAR’s traditional typestate
analysis, for instance, would be able to detect the protocol breach caused by the missing

82

4.3 Analysis

𝑞0start

𝑞𝑎 𝑞𝑖 𝑞𝑢

𝑞 𝑓 𝑞𝑑

EVP_MD_CTX_new

EVP_DigestInit_ex

EVP_DigestUpdate

EVP_DigestUpdate

EVP_DigestFinal_ex

EVP_MD_CTX_free

Figure 4.1: State machine that describes the correct usages of the OpenSSL EVP message
digest (MD) API.

call to EVP_DigestFinal_ex. In more complex scenarios, however, it would also report a
large number of false positives because the results are valid across all configurations,
making any findings virtually impossible to debug. Traditional analysis would need to
merge information at control-flow merge points even for branches that originate from static
preprocessor conditionals, which is impossible in practice. Therefore, it is desirable to
have an analysis that can handle preprocessor variability to produce results that are actually
useful to the analysis users.

4.3 Analysis

In this section, we detail our approach to statically analyzing C software product lines.
An overview on the various possible workflows that allow for analyzing software product
lines is shown in Figure 4.2. VarAlyzer consists of two phases. First, it transforms
software product lines into an intermediate representation (IR). Second, it applies a novel
data-flow solver that enables variational analysis of arbitrary distributive analysis problems
and produces precise results for all variants of a software product line in a single analysis
run.

SPL

SuperC

SugarC

AST analysis

Desugared C

#F-aware

Clang

clang-tidy

Desugared IR

#F-aware

VarAlyzer

PhASAR #F+Variability-aware#F-aware

(a)

(b)

(c)

Figure 4.2: Overview on the various SPL analysis workflows. Our approach allows for the
workflow denoted by the double arrows (⇒). The dashed arrows (d) denote
alternative workflows that our approach enables as a by-product. Analysis
results produced by workflow (a) and (b) are valid across all possible
configuration. Workflow (c) produces results that are variability-aware.

83

4 Variability

1 # inc lude < s t d i o . h>
2 # inc lude < s t r i n g . h>
3
4 # inc lude < opens s l / crypto . h>
5 # inc lude < opens s l / evp . h>
6
7 void d iges tMessage (EVP_MD_CTX ∗MDCTX,
8 cons t unsigned char ∗Msg ,
9 s i z e _ t MsgLen ,

10 unsigned char ∗∗Dgst ,
11 unsigned i n t ∗DgstLen) {
12 EVP_DigestIn i t_ex (MDCTX, EVP_sha256 () , NULL) ;
13 EVP_DigestUpdate (MDCTX, Msg , MsgLen) ;
14 # i f d e f DEBUG
15 cons t char DebugHash [] = "Hello , Hash ! " ;
16 ∗DgstLen = s i z e o f (DebugHash) ;
17 ∗Dgst = OPENSSL_malloc (s i z e o f (DgstLen)) ;
18 s t rncpy ((char ∗)∗Dgst , DebugHash , ∗DgstLen) ;
19 # e l s e
20 ∗Dgst = OPENSSL_malloc (EVP_MD_size (EVP_sha256 ())) ;
21 EVP_DigestFinal_ex (MDCTX, ∗Dgst , DgstLen) ;
22 # end i f
23 }
24
25 i n t main () {
26 cons t char ∗Data = "My s e c r e t data . " ;
27 unsigned char ∗Dgst ;
28 unsigned i n t DgstLen ;
29 EVP_MD_CTX ∗MDCTX = EVP_MD_CTX_new() ;
30 diges tMessage (MDCTX,
31 (cons t unsigned char ∗) Data ,
32 s t r l e n (Data) ,
33 &Dgst ,
34 &DgstLen) ;
35 # i f d e f DEBUG
36 p r i n t f ("hashed data : %s \ n" , Dgst) ;
37 # end i f
38 EVP_MD_CTX_free (MDCTX) ;
39 OPENSSL_free (Dgst) ;
40 re turn 0;
41 }

Listing 4.1: An SPL using OpenSSL’s EVP message digest (MD) functionalities. Error
handling code has been omitted for brevity.

84

4.3 Analysis

1 # i f d e f M1
2 ex tern void
3 f (i n t x) ;
4 # end i f
5 # i f d e f M2
6 s t a t i c vo id
7 f (i n t x) { }
8 # end i f
9 void g () {

10 f (1 0) ;
11 }

(a) Before

1 cons t bool M1, M2;
2 ex tern void
3 __f_1 (i n t x) ;
4 s t a t i c vo id
5 __f_2 (i n t x) { }
6 void g () {
7 i f (M1 && !M2) __f_1 (1 0) ;
8 i f (M2 && !M1) __f_2 (1 0) ;
9 i f (M1 && M2 | | ! M1 && !M2)

10 __type_error () ;
11 }

(b) After

Figure 4.3: Desugaring a variational function definition, adapted from Linux v4.18
kernel/sched/sched.h.

1 # i f d e f MACRO
2 i f (cond)
3 i = 31;
4 e l s e
5 # end i f
6 i = −32;
7

(a) Before

1 cons t bool MACRO;
2 i f (MACRO) {
3 i f (cond)
4 i = 31;
5 e l s e
6 i = −32;
7 } e l s e
8 i = −32;

(b) After

Figure 4.4: Desugaring a variational if statement, adapted from Linux v2.6.33.3
drivers/input/mousdev.c.

4.3.1 Transforming Preprocessor Directives

The main idea of VarAlyzer’s transformation is that the static preprocessor conditionals
are automatically replaced with runtime C conditionals. The key challenge is that prepro-
cessor conditionals may appear around any arbitrary set of C tokens, irrespective of C’s
syntax [EBN02, LKA11], while C conditionals may only appear around complete state-
ments. For instance, in Figure 4.3a, preprocessor conditionals appear around a declaration
(Lines 2–3) and a function definition (Lines 6–7) of the same name. While the preprocessor
technically has a language distinct from pure C, we take the view that unpreprocessed C files
are effectively written in a single, mixed language. To preserve the encoding of variability
in unpreprocessed C, VarAlyzer desugars source files into ordinary C, which is a subset
of the mixed language.

The preprocessor performs macro evaluation, header inclusion, and conditional compi-
lation to generate C code at compile-time. With conditional compilation, the preprocessor
selects which parts of the source code to send to the compiler by evaluating the values of

85

4 Variability

configuration macros passed into the preprocessor at compile-time. Developers use these
preprocessor conditionals to encode variability.

Developers may wrap these conditionals around any fragment of the C code. Common
patterns in real-world code include putting conditionals around entire functions, declara-
tions, and even individual C tokens. Since preprocessing happens before parsing in the
compiler, these conditionals do not need to respect C’s syntax. Developers may even
wrap them around incomplete C constructs, so-called “undisciplined” uses [LKA11]. Fig-
ure 4.4a is an example of this usage, where a preprocessor conditional surrounds all but the
else-branch body of an if-then-else statement (Lines 2–4).

Since our goal is to preserve the behavior of these preprocessor conditionals, we need
to consider their meaning when they interact with C constructs. While a preprocessor
conditional has simple semantics (i.e., it conditionally includes or excludes the contained C
fragment), its effect on C program behavior depends on what C constructs it surrounds. For
instance, it is illegal in C’s semantics to write multiple declarations of the same variable
to vary its type. By surrounding these declarations with mutually-exclusive preprocessor
conditionals, it is “legalized”: the preprocessor only chooses one declaration to send to the
C compiler. The only way to allow such multiple declarations in C is to use unique variable
names. In contrast, a preprocessor conditional around a C statement behaves much like a
C conditional, except that the preprocessor does not respect C’s scoping rules and it takes
configuration macros instead of C variables.

Phases of the Desugarer

VarAlyzer takes unpreprocessed C code, such as that in Figure 4.4a, and produces an
equivalent C program using run-time conditionals to preserve variability (Figure 4.4b).
There are three phases in VarAlyzer’s desugarer: (1) parsing, (2) type checking, and (3)
rewriting. Parsing takes the unpreprocessed C code and produces an AST that preserves all
preprocessor behavior. Type checking collects symbols and their types across all variations
of the SPL. Rewriting emits ordinary C code that corresponds to the unpreprocessed C
constructs.

Parsing. For parsing, we reuse an existing parser, SuperC [GG12]. Unlike the standard
C preprocessor and parser, SuperC solves the problem of parsing all variations of a C
file. It provides a complete solution to parsing C syntax even when mixed with any
combinations of preprocessor usage. Eschewing incomplete heuristics, SuperC’s parsing
formalism enables comprehensive parsing of unpreprocessed C, supporting complicated and
even pathological cases, such as conditionally-defined macros and headers, macros with
incomplete C syntax, stringification and token-pasting combined with ifdefs, and more.
Listing 4.2 and Listing 4.3 present two more complex examples that use a combination of
some of these features. The specifics of this parser can be found in [GG12]. An overview
of the possible interactions between the C preprocessor and C’s language features is shown
in Table 4.1. SuperC’s output is a C AST that has special “static conditional” nodes that
capture every possible variation of the syntax of the input source file. The parsing algorithm
ensures that conditional nodes are guaranteed to appear around complete C syntactic units,

86

4.3 Analysis

Table 4.1: Interactions between C preprocessor and language features. Reproduced
from [GG12].

Language
Construct

Implemen-
tation

Surrounded
by Condi-

tionals

Contain
Condition-

als

Contain
Multiply-
Defined
Macros

Other

Lexer

Layout Annotate
tokens

Preprocessor

Macro
(Un)Definition

Use
conditional
macro table

Add
multiple
entries to

macro table

Do not
expand
until

invocation

Trim
infeasible
entries on

redefinition

Object-
Like Macro
Invocations

Expand all
definitions

Ignore
infeasible
definitions

Expand
nested
macros

Get ground
truth for
built-ins

from
compiler

Function-
Like Macro
Invocations

Expand all
definitions

Ignore
infeasible
definitions

Host condi-
tionals
around

invocations

Expand
nested
macros

Support
differing
argument
numbers

and
variadics

Token
Pasting &
Stringifica-
tion

Apply pasting & stringification
Host conditionals around

token pasting &
stringification

File In-
cludes

Include and
preprocess

files

Preprocess
under

presence
conditions

Hoist con-
ditionals
around
includes

Reinclude
when guard

macro is
not false

Static Con-
ditionals

Preprocess
all

branches
Conjoin presence conditions

Ignore
infeasible
definitions

Conditional
Expres-
sions

Evaluate
presence

conditions

Hoist con-
ditionals
around

expressions

Preserve
order for

non-
boolean

expressions

Error Di-
rectives Ignore erroneous branches

Line,
Warning,
Pragma
Directives

Treat as
layout

Parser

C Con-
structs

Use FMLR
Parser Fork and merge subparsers

Typedef
Names

Use
conditional

symbol
table

Add
multiple
entries to
symbol
table

Fork
subparsers

on
ambiguous

names

87

4 Variability

1 # inc lude < a s s e r t . h>
2 # inc lude < s t d i o . h>
3
4 # i f DEBUG && WARN_LEVEL == 0
5 # d e f i n e WARN_IF(EXP) \
6 do { \
7 a s s e r t (! (EXP)) ; \
8 } whi l e (0)
9 # e l i f DEBUG && WARN_LEVEL > 0

10 # d e f i n e WARN_IF(EXP) \
11 do { \
12 i f (EXP) \
13 f p r i n t f (s tderr , "Warning : " #EXP " \ n") ; \
14 } whi l e (0)
15 # e l s e
16 # d e f i n e WARN_IF(EXP) whi l e (0)
17 # end i f
18
19 i n t main () {
20 i n t x = 2;
21 WARN_IF(x == 2) ;
22 re turn x ;
23 }

Listing 4.2: A combination of stringification (or stringizing) of expressions, (function-like)
macros and ifdefs. Modified example reproduced from [Onl21].

even when the unpreprocessed input file does not, by duplicating any tokens needed to
comphrehensively represent all variations of the nearest ancestor construct. For instance,
Figure 4.4a’s AST will have a static conditional node with two branches, one for MACRO
and the other for !MACRO. The former branch will contain a complete if-then-else statement
with no other static conditionals inside and the latter will have a single assignment statement.

Type checking. Traditionally, type checking ensures the absence of type errors at run-
time. VarAlyzer, however, relies on the type checking phase to enable desugaring. To
emit C code equivalent to the unpreprocessed C, the desugarer needs to know what variables
have been declared (or left undeclared) in all the variations of the source code. As with
typical C type checking, we maintain a symbol table and apply C type checking rules with
semantic actions during parsing. A symbol’s entry in the table, however, depends on what
variation we are analyzing. For instance, in Figure 4.3a, declarations of f (Lines 3 and 7)
have incompatible type qualifiers (extern and static). However, these two declarations can
never appear in the same variation. VarAlyzer’s type checker needs to track both types
throughout the source file.

The symbol table binds a symbol to all of its possible types across all variations of the
source code. The binding is akin to a “variational set” [WKE+14], where each type element
is tagged with configuration information. The set also includes special entries to record
the conditions under which the symbol is undeclared or has a type error in its declaration.

88

4.3 Analysis

1 # inc lude < s t d i o . h>
2 # inc lude < s t r i n g . h>
3
4 / / c o n t e n t s o f s t a t e . d e f
5 / / # i f n d e f STATE_SELECT
6 / / # d e f i n e STATE_SELECT(NAME, VALUE)
7 / / # e n d i f
8 / / STATE_SELECT(" F i r s t " , F i r s t)
9 / / STATE_SELECT(" Second " , Second)

10 / / STATE_SELECT(" Third " , Third)
11 / / STATE_SELECT(" Fourth " , Fourth)
12 / / # undef STATE_SELECT
13
14 enum s t a t e {
15 # d e f i n e STATE_SELECT(NAME, VALUE) VALUE,
16 # inc lude " s t a t e . def"
17 I n v a l i d
18 } ;
19
20 enum s t a t e s t rToS ta t e (cons t char ∗ s t r) {
21 # d e f i n e STATE_SELECT(NAME, VALUE) \
22 i f (strncmp (s t r , NAME, s t r l e n (NAME)) == 0) { \
23 re turn VALUE; \
24 }
25 # inc lude " s t a t e . def"
26 re turn I n v a l i d ;
27 }
28
29 char ∗ s t a t eToS t r (enum s t a t e s) {
30 sw i t ch (s) {
31 # d e f i n e STATE_SELECT(NAME, VALUE) \
32 case VALUE: \
33 re turn NAME; \
34 break ;
35 # inc lude " s t a t e . def"
36 case I n v a l i d :
37 re turn " i n v a l i d s t a t e ! " ;
38 break ;
39 }
40 }
41
42 i n t main () {
43 enum s t a t e s = s t rToS ta t e (" F i r s t ") ;
44 p r i n t f ("%s \ n" , s t a t eToS t r (s)) ;
45 p r i n t f ("%s \ n" , s t a t eToS t r (Second)) ;
46 re turn 0;
47 }

Listing 4.3: Code generation using the preprocessor as often used in C++ to preserve type
safety when dealing with enumerations.

89

4 Variability

This is necessary because a typical type checker will use the absence of a binding to
mean undeclared and will simply halt on a type error. When desugaring, only some of
the variations of the source file may have an undeclared symbol or other type errors. We
continue to desugar any valid configurations instead of halting. Our type checker, in effect,
tracks types in all variations of the source code simultaneously.

For instance, the symbol table entry for f in Figure 4.3a contains a set with four elements,
one for each possible variation of this source code. f is undeclared if both M1 and M2 are
undefined. f is a redeclaration type error if both M1 and M2 are defined. There are two
more entries for the valid type declarations, which happen when only one of M1 and M2 is
defined, but not both. The resulting symbol table entry for f is as follows:

f ↦→


extern void if M1 ∧ ¬M2

static void if ¬M1 ∧M2

<ERROR> if M1 ∧M2

<UNDECLARED> if ¬M1 ∧ ¬M2

Rewriting. The rewriting phase produces ordinary C code that preserves the behavior
of the unpreprocessed source file. The underlying parser of VarAlyzer ensures static
conditionals are lifted around only complete C syntax, i.e., syntactic lifting, but our rewriter
still needs to consider the behavior of static conditionals on those C constructs. When a
static condition surrounds a construct, VarAlyzer lifts the construct’s semantic value to
the nearest ancestor that is a statement, declaration, or function definition, if not already
one of these. This step ensures that VarAlyzer will output valid C code by only inserting
C conditional around complete statements.

The rewriting rules depend on what C construct a preprocessor conditional surrounds:
statements, declarations, etc. In general, statements are surrounded by a C conditional
and configuration macros are transformed to C constant variables. Figure 4.4b shows the
result of desugaring Figure 4.4a. Recall that the parser ensures that the static conditionals
appear around a complete if-then-else statement and a complete assignment statement.
The desugarer declares a new C constant called MACRO on Line 1, and then emits a C
conditional that uses this variable around the two complete C constructs. Notice that any
tokens shared by the two complete constructs are duplicated under the C conditional, which
provides guarantees of “disciplined” uses of conditionals.

Declarations and function definitions cannot be desugared by surrounding them with
a C conditional, since they are not statements. VarAlyzer handles multiply-declared
symbols by emitting all declarations unconditionally, resolving name clashes by renaming
the symbols. VarAlyzer preserves variability at runtime by instead emitting C conditionals
where the symbols are used in statements. In Figure 4.3b, VarAlyzer creates fresh
identifiers for the two declarations (Lines 3 and 5). The usage of the symbol f is replaced
with a C conditional (Lines 7–8) and the mutual exclusion of the two declarations in different
configurations is preserved in Lines 9–10.

The type checking phase is instrumental in VarAlyzer. It records all variations of
the original symbol, which enables VarAlyzer to assign a fresh name to each of the

90

4.3 Analysis

1 s t r u c t {
2 i n t x ;
3 # i f d e f MACRO
4 i n t y ;
5 # end i f
6 } var ;
7 var . y ;
8
9

(a) Before

1 cons t bool MACRO;
2 s t r u c t {
3 i n t x ;
4 i n t y ;
5 } var ;
6 i f (MACRO) {
7 var . y ;
8 } e l s e {
9 __type_error () ;

10 }

(b) After

Figure 4.5: Desugaring variational if statement. Adapted from Linux v2.6.33.3
drivers/input/mousdev.c.

variational set’s entries, e.g., __f_1 and __f_2 in Figure 4.3b. In addition, the type checker
records which configurations have type errors. Type errors are normally emitted at compile-
time. VarAlyzer, however, cannot halt with such errors when only some variations have
them. Instead, it preserves type errors as runtime errors, by transforming them into calls
to a specially-defined __type_error function that always halts. In Figure 4.3b, VarAlyzer
preserves the type error with Line 10, reflecting the fact that there is no declaration of f
when macros M1 and M2 are both undefined and a conflicting declaration if both macros are
defined. The subsequent analysis can then rule out invalid configurations as unreachable
code, avoiding the imprecision by analyzing these configurations.

Desugaring C Type Specifications

While duplicating multiply-declared symbols is sufficient for variables and functions, C
also supports user-defined types via typedefs, structs, unions, and enums. The latter three
can also appear within declarations. The declaration in Figure 4.5a declares var to be a new
type struct s. Structs and unions contain field declarations which themselves may contain
struct and union definitions. A naive desugaring could take all combinations of struct/union
definitions and emit each one as a separate declaration in the output C program. Real-world
SPLs, however, may have highly-configurable structs, where some fields only appear in
certain variations. Struct fields may also be declared using highly-configurable structs,
further exploding the possible combinations of declarations.

In addition, C allows forward references to type definitions under certain conditions,
which originally made one-pass compilation possible. A struct, for instance, may be
referenced in a declaration of a variable before the struct itself is defined, at least in the
global scope. Handling forward references would require multiple passes of the AST,
making a complete desugaring not possible in a single pass.

To solve these problems, VarAlyzer handles type definitions separately from variable
and function declarations. In addition to storing type declarations in the symbol table, as
with typical C type checking, we maintain a separate table for struct, union, and enum type

91

4 Variability

definitions. This table collects all possible field variations (or enumerators) for each type
definition, regardless of where in the scope they are defined. As with the symbol table, we
are tagging each field definition with a logic formula describing which variations contain
the particular field. Then, before emitting the desugared contents of each static scope,
we emit a single declaration of the struct, union, or enum containing all possible fields or
enumerators. When a struct variable accesses its field, we emit runtime checks for type
errors.

For instance, in Figure 4.5b, the resulting desugared struct definition contains both the
x and y fields, because there is no language construct in pure C for defining conditionally-
defined structs. But y is only meant to be defined under configurations that have MACRO
enabled. Since the desugarer’s struct symbol table tracks the configurations under which
each field is defined, the desugarer accounts for the configuration where fields are ac-
cessed, rather than where they are defined. For example, in Figure 4.5b the desugarer has
transformed the access of field y to a C conditional (Lines 6–10) that covers both possible
variations of the struct. The first branch of this conditional covers configurations where
MACRO is enabled and therefore the field y exists (Line 7). The else branch accounts for all
other configurations, where accesses to y are type errors, since the field is not defined those
configurations. The desugarer preserves this type error as a run-time error with a call to a
specially-defined function on Line 9.

Forward references to structs, unions, and enums require further special handling in
order to desugar in a single pass. Since VarAlyzer does not know yet what all fields or
enumerators of the type will be, it instead emits a fresh type name for the forward reference.
Once it has collected all fields for a given type at the end of the static scope, it emits a
definition of the fresh forward reference type that contains a field for each definition of the
type symbol.

Desugaring Function Definitions

C function definitions combine a type declaration of the function name with a compound
statement for its body, so VarAlyzer needs to both preserve all variations of the function
in its symbol table and emit all variations of the function’s body. VarAlyzer uses its
variation-preserving symbol table to hold function symbols, while the function body is
transformed like any other compound statement using C conditionals to preserve variations
in statements.

As with declarations, a function with multiple variations of its type is desugared into
multiple function definitions to reflect each variation. Any calls to the original function
name are replaced by all renamed variations of the function, as long as the function type
matches the type at the call site. All top-level declaration and definitions in a C file are
global and externally-linked by default, unless specified otherwise with the static keyword.
Therefore, any renaming at the global scope affects the symbols exported for linking by the
compiler. Since C does not provide language constructs for defining modules, it relies on
the underlying system’s object file format, linker, and build system to coordinate interfaces
between C source files. In this work, we focus on desugaring variability encoded by the

92

4.3 Analysis

preprocessor within a C file and leave the support for build system and linker variability as
future work.

Instead, we assume a project only exports one type per global symbol, emitting a type
warning when a global symbol has multiple, incompatible type declarations. Each C file
that uses functions defined externally needs a copy of the external functions’ declarations,
typically provided in a shared header file that developers copy into the source file using a
preprocessor #include directive. It is then up to the compiler to produce an object file with a
linker table that maps global functions and variables to either their addresses in the object
file or to a placeholder. The linker can then automatically match undefined symbols from
one object file with its definition in another, as long as the developer has properly defined
the build sequence with, for instance, a Makefile.

If a globally-defined symbol’s declaration depends on what variation of the program
is being compiled, i.e., it is affected by preprocessor conditionals, then preserving all
variations of the SPL requires modeling the behavior of the linker across all variations.
Such a variation-preserving linker would need to record all renamings of multiply-declared
global symbols and resolve these across all C files that comprise the project. This resolution,
in turn, depends on knowing what C files are to be linked during the build of the project,
information that is only captured in Makefiles or whatever build automation, if any, a project
uses. In this work, we focus on desugaring variability encoded by the preprocessor in C
files and instead assume a project only exports one type per global symbol, emitting a type
warning when a global symbol has multiple, incompatible type declarations.

Limitations of the Transformation

VarAlyzer’s transformation part is generally complete and supports the full (mixed) C
language. However, we discuss some fundamental challenges that we discovered while
pursuing this research in what follows.

While VarAlyzer translates variability encoded in the preprocessor, large-scale projects
also encode variability in other parts of the system software toolchain. All top-level
declaration and definitions in a C file are global and externally-linked by default, unless
specified otherwise with the static keyword. Object files act as modules that import and
export these external symbols used in other object files. The definitions of these external
symbols can vary based on configuration options, which introduces variability in the linking
process. VarAlyzer leaves the difficult problem of supporting variability-aware linking
and build automation to future work and focuses on the variability within C files.

Real-world software often includes dozens or hundreds of header files for the C stan-
dard and additional libraries. As shown in Section 4.2, such headers may add hundreds
or thousands of function declarations and macro definitions to a C file. These function
declarations and macro definitions have to be processed over and over again for each C
file that includes the respective headers. Since these header files themselves also encode
variability to support different operating systems, various compiler versions, and program-
ming languages (C vs. C++), they currently still pose a scalability challenge to VarAlyzer.
Tackling this scalability issue for the transformation requires numerous technical details and
implementation tricks that are out of scope for this piece of research and require thorough

93

4 Variability

Table 4.2: Preliminary transformation times for transformations that use partially
preprocessed system headers.

Program Runtime in seconds #Source files #Configuration variables
axTLS 302 28 94
Toybox 586 230 316
BusyBox 484 554 998

descriptions on their own. One particular compelling idea is to partially preprocess system
headers for specific system configurations to counteract unnecessary processing of these
headers at each place they are included. In another branch of research, we have started to
implement this idea and have since then be able to successfully transform larger programs
such as BusyBox, Toybox and axTLS. Table 4.2 shows some preliminary results for these
programs and should give a first impression in which order of magnitude realistic programs
can be transformed.

We support variability across application configurations, but assume a single system
configuration. System configuration macros provide several challenges for desugaring
variability; they require supporting the header file differences between multiple operating
systems, multiple (versions of the same) compiler(s), multiple versions of system libraries,
etc. These differences not only cause the number of possible configurations to explode,
even when the application code’s behavior does not depend on them, but they also impose
foundational challenges. VarAlyzer cannot leave these system configuration macros
unresolved during transformation since the transformed code could then not be compiled to
an intermediate representation for analysis. However, resolving these system configuration
macros requires information on all possible operating systems, system libraries, etc. which
can hardly be obtained, if at all. And even if it could be, a software product line could not be
compiled to an intermediate representation since the environment and the compiler used to
produce the intermediate representation of the machine on which the transformation takes
place are fixed. In addition, SuperC’s underlying parser is based on one particular version
of C as implemented by GCC. Supporting multiple versions of compilers would require
constructing a superset of all C variations, a daunting and potentially infeasible task.

4.3.2 Variational Data-flow Analysis

We next explain how VarAlyzer makes the analysis variability-aware. This allows one
to compute, for all configurations at the same time, results that pinpoint under which
configurations they are valid.

VarAlyzer accepts as an input any given distributive data-flow problem encoded within
IFDS [RHS95] or IDE [SRH96], and transforms it into a variational version of the problem
which can then be solved on an SPL that has been desugared according to Section 4.3.1.
Because IFDS problems can be encoded within IDE by using edge functions that operate
on the binary lattice 𝑉 =⊤⊥ [SRH96], we continue by presenting how we model general IDE
problems in a variability-aware manner.

94

4.3 Analysis

VarAlyzer builds on SPLlift’s idea to make use of IDE’s edge functions to encode
all variants of possible data flows a SPL might induce. SPLlift, however, only allowed
“lifting” IFDS-based analyses. As mentioned earlier, this precludes an efficient encoding
of any problem with a large or even infinite abstract domain, e.g., typestate analysis and
constant propagation. To efficiently compute on such large (or infinite) domains, we must
instead encode the computation within the edge functions of the IDE framework, but it
means that the value computation already occupies the edge functions. Therefore, we then
cannot use the edge functions (directly) to capture an SPL’s variability information. To
be able to solve general IDE problems that already use the edge functions for computing
while still capturing an SPL’s variability, we need to solve two different value computation
problems using IDE’s edge functions.

VarAlyzer thus lifts edge functions of the user-defined IDE problem by extending their
value domain 𝑉𝑢 to produce lifted edge functions that operate on the cartesian product
domain 𝑉𝑙 = 𝐶 × 𝑉𝑢, where 𝐶 is the domain of feature constraints used to describe the
variability induced by the preprocessor. This enables VarAlyzer to solve both value
computation problems at once, relating analysis results to the exact feature constrains under
which they hold. A lifted edge function 𝑒 : 𝐶 ↦→ 𝑉𝑢 is thus a mapping from edge functions
that describe the feature constraints to the respective user-defined edge functions that specify
the value computation problem that is valid under the associated constraint. Whenever a
reachability check is performed on the exploded super-graph that has been produced by
the lifted analysis problem 𝑃𝑙, the analysis computes the values specified by the user edge
functions and the corresponding constraints that are associated with those values. The result
for each reachability check of an ESG node (𝑠, 𝑑) for a given statement 𝑠 and data-flow
fact 𝑑, i.e., the evaluation of a lifted edge function, is a mapping from feature constraints
to their corresponding value {𝑐𝑖 ↦→ 𝑣𝑖}. In the following, we describe this lifting in more
detail. Note that our solution is fully transparent: VarAlyzer can automatically lift any
IFDS/IDE analysis problem pre-defined for C programs to software product Lines without
having to change a single line of code.

Automated Lifting of Edge Functions

The IDE algorithm is guided through the program using its inter-procedural control-flow
graph (ICFG). VarAlyzer operates on a variability-aware version of the control-flow
graph 𝐼𝐶𝐹𝐺𝑣 . The 𝐼𝐶𝐹𝐺𝑣 respects the encoding of preprocessor directives as presented
in Section 4.3.1. Preprocessor symbols are modeled as extern global variables that follow a
special naming convention. An 𝐼𝐶𝐹𝐺𝑣 can be queried for those global variables and their
usages. Any statement that directly interacts with one of those global variables through a
def-use chain has been artificially introduced by the code transformation. This allows us to
distinguish between any ordinary statement 𝑠𝑢 that originates from the user program and
any statement 𝑠𝑝 that is generated by VarAlyzer transformation parts, originating from
preprocessor directives (PPDs).

Initially, i.e., at lifting-time, a lifted edge function 𝑒 maps exactly one edge function that
describes a feature constraint to an edge function that, in turn, represents a (user-defined)
value computation for a given statement under analysis. The lifting process is depicted

95

4 Variability

Λ•
��

𝑖•
𝜆𝑐.𝑐 ↦→𝜆𝑥.𝑥+42
��i=i+42;

• •

Λ•
��

𝑖•
𝜆𝑐.𝑐∧𝐹 ↦→𝜆𝑥.𝑥��

𝜆𝑐.𝑐∧!𝐹 ↦→𝜆𝑥.𝑥

xx

ifdef F
• •

...

• •

Figure 4.6: Lifting of edge functions for an ordinary user statement 𝑠𝑢 (left) and a
branching statement 𝑠𝑏𝑝 that originates from a preprocessor directive (right).
For the statement 𝑠𝑢, the user edge function is queried and results in 𝜆𝑥.𝑥 + 42.
Because the statement has no effects on the preprocessor constraints, the edge
function for the constraint domain is modeled as identity. For 𝑠𝑏𝑝, the user edge
function is modeled as identity because it has no effects on the user’s value
computation. However, it extends the domain with edge functions that add the
preprocessor feature-constraints 𝐹 and !𝐹, respectively.

in Figure 4.6. Ordinary statements 𝑠𝑢 have no effect on the presence of a certain feature.
VarAlyzer thus lifts its user-defined edge function 𝑒𝑢 to 𝑒 := (𝜆𝑐.𝑐) ↦→ 𝑒𝑢. Here, the
identity edge function 𝜆𝑐.𝑐 over constraints expresses that the feature constraint is not
altered. The statement’s original flow function (opposed to edge function) remains as is.

For statements 𝑠𝑝 that are generated from the preprocessor directives, the analysis can
safely ignore the non-branching statements since they have been artificially introduced by
the transformation and must have no effect on the user-defined value computation. For these
statements, VarAlyzer applies the identity flow and edge function. For each generated
branching statement 𝑠𝑏𝑝 that originates from a preprocessor directive, VarAlyzer produces
the corresponding edge function 𝑒 by conjoining the feature constraint 𝐹 specified by the
respective preprocessor conditional with the incoming constraint 𝑐, i.e., 𝑒 := (𝜆𝑐. 𝑐∧𝐹) ↦→
(𝜆𝑥.𝑥). Here on the right-hand side, we use the identity edge function 𝜆𝑥.𝑥 because the
statement does not influence the user-defined value computation.

Operations on Lifted Edge Functions

To allow for the construction of the exploded super-graph, edge functions need to support
the following four operations:

The composition operation (◦) composes two edge functions 𝑒 and 𝑓 . This operation is
used to extend an edge function 𝑒 and is required to construct the so-called jump functions
(summaries) that describe the effects of sequences of code. An example is shown in
Figure 2.7. The edge functions 𝑒, 𝑓 , and 𝑔 can be composed to produce the jump function
𝑖 = 𝑔 ◦ (𝑓 ◦ 𝑒) = 𝜆𝑥.𝑥 + 2 ◦ (𝜆𝑥.1 ◦ ⊥) = 𝜆𝑥.3, which describes the value computation
problem for variable 𝑎 from Line 1 to after Line 3.

The join (⊔) operation is applied when two paths in the exploded super-graph lead to a
common ESG node and the respective edge functions must be combined, for instance, as a
result of branching. Consider the example in Figure 2.7: the two jump functions 𝑖 and 𝑗 are
joined to produce the new function 𝑘 = 𝑖 ⊔ 𝑗 that describes the value computation problem

96

4.3 Analysis

for variable 𝑎 from Lines 1 to 5. An equals (=) operation, comparing two edge functions
for equality, is required to update jump functions efficiently within the IDE algorithm, and
to ensure termination.

Once an ESG, i.e., all jump functions, is constructed, the value computation problem
that is specified by the jump functions can be solved for any given ESG node by simply
applying these jump functions. Practical implementations usually do not construct and store
the complete ESG but rather only maintain the essential jump functions. To determine
the possible value that may be printed in Line 6 of Figure 2.7, one evaluates (↩→) the
respective jump function 𝑘 . The analysis finds that any value may be printed as a result of
↩→ 𝑘 = 𝑖 ⊔ 𝑗 = ⊤.

We next show how to define these four operations for the lifted edge functions that operate
on the extended user domain 𝑉𝑙 = 𝐶 ×𝑉𝑢 such that a transformed problem 𝑃𝑙 can be solved
by the IDE algorithm.

Join. To join information that is obtained along two (or more) different paths in the ESG,
a binary join operation is required, see Definition 1. An example of the join operation is
shown in Figure 4.7. When joining, we wish to join also user-defined edge functions for
such constraints that are equal along both branches, as these cases relate to identical feature
configurations. Hence the edge functions 𝑐1, 𝑐2 that describe the constraints of the lifted
edge functions to be joined are compared pair-wise. If 𝑐1 = 𝑐2, their corresponding user
edge functions 𝑢1 and 𝑢2 are joined. This situation is depicted in the left-hand side graph
of Figure 4.7. Else if 𝑐1 ≠ 𝑐2, both results are simply joined by set union, retaining all
information about the varying constraints. The latter situation is shown in the right-hand
side graph of Figure 4.7.

Definition 1. ⊔: Let 𝑒 = {𝑐𝑖𝑒 ↦→ 𝑢𝑖𝑒}𝑛𝑖=0 and 𝑓 = {𝑐 𝑗

𝑓
↦→ 𝑢

𝑗

𝑓
}𝑚
𝑗=0 be two lifted edge functions.

We define the join operation as:

𝑒 ⊔ 𝑓 :=
⋃

(𝑐𝑒 ↦→𝑢𝑒) ∈𝑒̂,
(𝑐 𝑓 ↦→𝑢 𝑓) ∈ 𝑓

{
{𝑐𝑒 ↦→ 𝑢𝑒 ⊔ 𝑢 𝑓 } if 𝑐𝑒 = 𝑐 𝑓

{𝑐𝑒 ↦→ 𝑢𝑒, 𝑐 𝑓 ↦→ 𝑢 𝑓 } otherwise

Composition. Definition 2 defines the composition operator for lifted edge functions.
The program’s control can flow only along the two functions’ respective program statements
when the preprocessor directives that guard these statements are both enabled. Hence, the
compose operator conjoins the respective feature constraints. The user-defined edge func-
tions meanwhile are composed using their own original composition operator. Whenever
the composition operator is applied, one of those edge functions comprises exactly one map
entry and the other one may comprise one or more map entries due to potential prior appli-
cations of the join operation. Those two possible situations for the composition operation
are shown in Figure 4.8. The left-hand side graph of Figure 4.8 shows the composition of
lifted edge functions for non-branching code. In this case, the edge functions 𝑐1, 𝑐2 that
describe the constraints and the user edge functions 𝑢1, 𝑢2 must be composed with each

97

4 Variability

𝑑•
�� ��

{𝑐 ↦→𝑢1⊔𝑢2}
xx

•
{𝑐 ↦→𝑢1} ��

•
{𝑐 ↦→𝑢2}��

•

𝑑•
�� ��

{𝑐1 ↦→𝑢1,𝑐2 ↦→𝑢2}
xx

•
{𝑐1 ↦→𝑢1} ��

•
{𝑐2 ↦→𝑢2}��

•

Figure 4.7: Join of lifted edge functions that have been computed along different
control-flow edges. Individual edge functions are denoted by straight arrows
(→). Jump functions are denoted by dashed arrows (d). The graph on the left
depicts the situation when two lifted edge functions must be merged whose
constraints are equal. In this case, their user edge functions must be joined. In
case the constraints are not equal, they must be left unmerged as two separate
pairs of edge functions.

𝑑•
{𝑐1 ↦→𝑢1} ��

{𝑐1∧𝑐2 ↦→𝑢1◦𝑢2}
��
•

{𝑐2 ↦→𝑢2} ��
•

𝑑•
�� ��

{𝑐1 ↦→𝑢1,𝑐2 ↦→𝑢2}

vv {𝑐1∧𝑐3 ↦→𝑢1◦𝑢3,𝑐2∧𝑐3 ↦→𝑢2◦𝑢3}

vv

•
��
•
��
•

{𝑐3 ↦→𝑢3} ��
•

Figure 4.8: Composition of lifted edge functions. The left-hand side graph shows the
composition of lifted edge functions for non-branching code. The join of two
lifted edge functions at merge points may produce a new edge function that
comprise multiple edge function pairs that need to be composed with the edge
function of the next common successor statement. This situation is depicted in
the right-hand side graph.

other. As the join of two lifted edge functions at merge points may produce a new edge
function that comprises multiple map entries {𝑐1 ↦→ 𝑢1, 𝑐2 ↦→ 𝑢2} that need to be com-
posed with the lifted edge function {𝑐3 ↦→ 𝑢3} of the next common successor statement,
a pairwise composition must be applied. This situation is depicted in the right-hand side
graph of Figure 4.8.

Definition 2. ◦: Let 𝑒 = {𝑐𝑖𝑒 ↦→ 𝑢𝑖𝑒}𝑛𝑖=0 and 𝑓 = {𝑐 𝑗

𝑓
↦→ 𝑢

𝑗

𝑓
}𝑚
𝑗=0 be two lifted edge functions.

We define the compose operator as:

𝑓 ◦ 𝑒 :=
⋃

(𝑐𝑒 ↦→𝑢𝑒) ∈𝑒̂, (𝑐 𝑓 ↦→𝑢 𝑓) ∈ 𝑓

{𝑐𝑒 ∧ 𝑐 𝑓 ↦→ 𝑢 𝑓 ◦ 𝑢𝑒}

Equality. In addition, the IDE algorithm needs to be able to check for equality of two
edge functions. Since we maintain the feature constraints in normalized form, we are able
to define two edge functions to be equal if they are equal structurally.

98

4.4 Implementation

Evaluation. Once an exploded super-graph has been constructed, the solver evaluates the
value-computation problems described by the jump functions. The value for each ESG node
(𝑠, 𝑑) that is reachable from the tautological Λ fact is computed by evaluating its associated
jump function. We define the unary evaluate operation in Definition 3. The evaluation
operation of a jump function applies the constraint and user edge-function components
of each map entry to the tautological constraint 𝑡𝑟𝑢𝑒 and the bottom element ⊥ of the
user-defined problem, respectively. The result is a map of values that the data-flow fact 𝑑
can assume, each of which is associated with the feature constraint that encodes the set of
configurations under which 𝑑 holds.

Definition 3. ↩→: Let 𝑒 = {𝑐𝑒 ↦→ 𝑢𝑒}𝑛𝑖=0 a lifted jump function. We define the unary
evaluate operator ↩→ as:

↩→ 𝑒 := { 𝑐𝑖𝑒 (𝑡𝑟𝑢𝑒) ↦→ 𝑢𝑖𝑒 (⊥) }𝑛𝑖=0

Why IDE Is the Ideal Framework of Choice

While VarAlyzer supports IDE, and not only IFDS, IDE still has the restriction that
flow functions and edge functions must distribute over the merge operator. The advantage
of using such a distributive analysis framework to solve data-flow problems on SPLs
is that this allows merging variability information directly at each control-flow merge
point, without loss of precision. This is because for any flow function 𝑓 and any two
abstract domain values 𝑥 and 𝑦 of a distributive analysis problem, by definition it holds that
𝑓 (𝑥) ⊔ 𝑓 (𝑦) = 𝑓 (𝑥⊔ 𝑦). As a result, the meet-over-all-paths solution, which is undecidable
in general, can be efficiently computed within such frameworks through the maximal-fixed-
point solution [Bod18]. This solution is the most precise solution possible. The use of IDE
thus is guaranteed to retain full precision w.r.t. a product-based analysis on pure C code,
and it guarantees an efficient handling of feature constraints because they are merged and
simplified at the earliest opportunity. In result, IDE is the most expressive framework that
one can choose without jeopardizing efficiency.

Our idea of capturing variability by using a transparent extension of the user’s analysis
domain could theoretically also be applied to non-distributive problems. However, this
would sacrifice precision and, due to missing summarization capabilities, would likely be
prohibitively expensive for any real-world application.

4.4 Implementation

We implemented VarAlyzer on top of the SuperC [GG12] parser and the PhASAR [SHB19]
static analysis framework. SuperC supports Bison-style grammars [Bis20] for implement-
ing language processors, and automatically parses all variations of a SPL. C constructs with
multiple variations due to # ifdefs are combined with a static choice tree node that captures
each variation and its condition as represented with a logical formula.

VarAlyzer uses SuperC’s existing C grammar and implements the desugarer using
semantic actions. A semantic action defines a snippet of code to be executed after each

99

4 Variability

language construct and produces a semantic value for that construct. VarAlyzer records
all variations of a construct’s desugaring transformation, along with each static condition,
as the semantic value of the grammar production. The semantic actions are executed
bottom-up, and VarAlyzer gradually constructs the complete, desugared version of the
input program by combining the desugared child constructs into larger constructs until
reaching the top of the grammar.

VarAlyzer preserves semantic preprocessor information using calls to artificial func-
tion headers. Type errors, caused by invalid configurations, are transformed into runtime
function calls. VarAlyzer makes the information on symbol renaming available by intro-
ducing a symbol table. For each compilation unit, it emits a definition of a static initializer
function that specifies the renaming using a function call for each renamed symbol. The
static initializer function can be thought of the compilation unit’s initializer, because it
has no other runtime behavior. The static conditional variables are declared as global
boolean variables, since preprocessor macros have no scope and are project-wide. We
model preprocessor conditionals using logic formulas and emit a mapping that associates
the conditional variables with their respective textual Z3 [dMB08] solver representation
using function calls within the initializer function.

VarAlyzer implements the variational analysis presented in Section 4.3.2 on top of the
PhASAR [SHB19] framework. VarAlyzer provides a wrapper type that can be wrapped
around any of PhASAR’s IFDS and IDE analyses. The wrapper type wraps the regular user-
defined edge functions in a special variability-aware edge function that supports the required
operations as described in Section 4.3.2. Before VarAlyzer starts the actual analysis at the
given entry points on the given target code, it analyzes the aforementioned static initializer
function and retrieves the symbol table as well as the preprocessor conditionals. It then
decodes the textual Z3 [dMB08] solver representations of the preprocessor conditionals into
their corresponding in-memory z3::expr representations, which the analysis uses as part of
its lifted edge-function domain. After construction, the variability-aware edge functions are
passed to the data-flow solver. The solver follows the control flow of a variability-aware,
LLVM-based ICFG implementation that is able to distinguish ordinary instructions from
instructions that originate from the preprocessor and have been artificially generated by
VarAlyzer’s SPL-transformation part. Once the exploded super-graph is built, the IDE
solver solves the value-computation problems, thereby also collecting and computing the
feature constraints that are associated with each of the original user-defined edge functions
and their respective evaluations.

4.5 Experiments

Our empirical evaluation addresses the following research questions:

𝑅𝑄4 Does VarAlyzer produce results that are identical with these of a product-
based analysis?

𝑅𝑄5 How efficient is VarAlyzer compared to a product-based analysis?

100

4.5 Experiments

𝑅𝑄6 To what degree is variational analysis necessary to solve semantic anal-
yses on VarAlyzer-transformed code?

To address 𝑅𝑄4 and 𝑅𝑄5, we compiled each of our 95 benchmark subjects once using
VarAlyzer’s conditional compilation approach and once exhaustively using the standard
compilation approach for all software products. We then subjected the resulting com-
piles to VarAlyzer’s variability-aware analysis and a traditional product-based analysis
that analyzes each individual software product, respectively. Our benchmark comprises
95 compilation units that make use of OpenSSL’s EVP library. For each software product
line, we compared the analysis results obtained by VarAlyzer to the results obtained by the
product-based approach. We ran each compilation and analysis step five times to account
for variance. To address 𝑅𝑄6 and to answer the question whether variability awareness
is necessary, we ran a traditional variability-oblivious inter-procedural typestate analysis
encoded in IDE using PhASAR on VarAlyzer-transformed code. We parameterized the
typestate analysis for three different APIs of OpenSSL’s EVP library. We discuss the pre-
cision of the results produced by the traditional variability-oblivious analysis and comment
on the reusability of existing static analysis infrastructure on the desugared code.

Unfortunately, comparisons of the VarAlyzer approach to existing tools such as Type-
Chef [KKHL10] or Hercules [Her20] are either not possible or not very meaningful as the
implementations of previous works are not maintained or use different analysis techniques
that do not allow one to solve more complex, inter-procedural data-flow analysis problems.

4.5.1 Experimental Setup

We have evaluated VarAlyzer using benchmark subjects consisting of 95 hand-written
C compilation units ranging from 8 to 219 lines of source code that comprise correct
as well as incorrect usages of OpenSSL’s EVP library parts. These compilation units
comprise between zero and eleven features and comprise intra- as well as inter-prodcedural
usages of the EVP library. We also included compilations units with zero features to
assess the potential overhead of VarAlyzer’s conditional compilation and variability-
aware data-flow analysis. To obtain correct API uses, we used the code examples presented
in OpenSSL’s wiki.2 To ensure that our benchmark programs comprise realistic API usages,
we mined 15 SPLs on GitHub using the advanced search and aimed for high-stared and
popular projects that make use of OpenSSL’s EVP library parts.3 We then extracted the
compilation units that comprise usages of the EVP library and used these to help modeling
our benchmark. Surprisingly, several of the real-world API usages completely omit error
handling. We thus also omitted error handling code in our benchmark subjects to allow for
easier debugging of our transformation and analysis. We then introduced different kinds of
protocol breaches, some of them unconditionally and some of them depending on certain
(invalid) configurations.

To evaluate VarAlyzer, we used a client typestate analysis T that had been indepen-
dently implemented using PhASAR’s implementation of the IDE framework. To allow

2OpenSSL Wiki https://wiki.openssl.org/
3Github advanced search https://github.com/search/advanced

101

https://wiki.openssl.org/
https://github.com/search/advanced

4 Variability

the analysis to validate useful typestate properties w.r.t. OpenSSL, we parameterized it for
the OpenSSL EVP APIs message digests T𝑀𝐷 , encryption/decryption (cipher) T𝐶𝑃𝑅, and
message authentication codes T𝑀𝐴𝐶 . OpenSSL’s EVP functionalities provide a high-level
interface to OpenSSL’s cryptographic functions that are commonly used by projects that
require such cryptographic functionalities.

We set up the parameterized typestate analyses to run both in a traditional, variability-
oblivious manner using plain PhASAR, which we denote as T 𝑃𝑆𝑅, and in a variability-
aware manner, which we denote as T𝑉𝐴𝑅. For 𝑅𝑄4 and 𝑅𝑄5, we exhaustively sampled
and compiled all concrete software products for each SPL of our benchmark to LLVM
intermediate representation (LLVM IR) to run the traditional, variability-oblivious typestate
analysis T 𝑃𝑆𝑅. To be able to run VarAlyzer’s variability-aware analysis T𝑉𝐴𝑅, we
desugared each SPL using VarAlyzer’s transformation and then compiled the transformed
C code to LLVM IR. We used the standard Clang compiler to produce LLVM IR. For each
matching analysis pair, e.g. T 𝑃𝑆𝑅

𝑀𝐷
(variability-oblivious typestate analysis parameterized

for the message digest API) and T𝑉𝐴𝑅
𝑀𝐷

(variability-aware typestate analysis parameterized
for the message digest API), we automatically checked if the data-flow results produced by
T𝑉𝐴𝑅 coincide with all sampled results produced by T 𝑃𝑆𝑅, to evaluate the correctness
of VarAlyzer’s lifted analysis (𝑅𝑄4). The running times and memory usages of the
two approaches are compared in 𝑅𝑄5. For 𝑅𝑄6, we ran the traditional feature-oblivious
typestate analysis T 𝑃𝑆𝑅 on VarAlyzer-transformed code and compared with its results
with the variability-aware analysis T𝑉𝐴𝑅 to assess T 𝑃𝑆𝑅’s precision.

We measured the running times and memory usages for the experiments on an Intel i7-
5600U CPU@2.60GHz machine running Ubuntu 16.04 with 16GB main memory. We ran
each experiment five times, removed the minimum and maximum measuring and computed
the average of the remaining three values. We determined the runtimes and peak memory
usages of the experiments using the UNIX time tool. We measured the lines of code of the
compilation units using the UNIX wc tool. We formatted the code using the clang-format
tool and its default settings to allow for a fair comparison of the lines of code measurement.
Our benchmark programs, the raw as well as the processed data produced in our evaluation
is available in our artifact [Art21].

4.5.2 𝑅𝑄4: Analysis Correctness

The PhASAR framework comprises a variety of unit tests for various different parametriza-
tions of the typestate analysis to assess its correctness. It contains tests for parametrizations
for C’s file API(s) that are concerned with the type FILE, OpenSSL’s secure heap and
secure memory APIs as well as OpenSSL’s EVP key derivation API. We developed the
typestate parametrizations for OpenSSL’s EVP message digest (MD), encryption/decryp-
tion (CIPHER), and message authentication codes (MAC) and manually checked their
correctness on individually software products that we derived from our benchmark targets.
Hence, we can ensure the correctness of the variability-oblivious typestate analysis for the
parametrizations T 𝑃𝑆𝑅

𝑀𝐷
, T 𝑃𝑆𝑅

𝐶𝐼𝑃𝐻𝐸𝑅
, T 𝑃𝑆𝑅

𝑀𝐴𝐶
w.r.t. derived programs they have been tested

with.

102

4.5 Experiments

cii.
c

ci.c
cie

1.c
cie

2.c
cie

3.c
cie

4.c
cie

5.c
cie

6.c
cie

7.c
ciis

1.c
ciis

2.c
ciis

3.c
ciis

5.c
ciis

e1
.c

ciis
e3

.c
ciis

e4
.c

cis
1.c

cis
2.c

cis
3.c

cis
4.c

cis
e1

.c
cis

e2
.c

cis
e3

.c
cis

e6
.c

ciis
4.c

ciis
e2

.c
ciis

e5
.c

cis
e4

.c
cis

e5
.c

cis
e7

.c
ciis

6.c
ciis

7.c
ciis

8.c
ciis

e6
.c

ciis
9.c

ciis
e7

.c

10
1

10
0

10
1

10
2

Runtime in seconds
Ru

nt
im

e
Pr

od
uc

t-B
as

ed
 C

om
pi

la
tio

n
[s

]
Ru

nt
im

e
Pr

od
uc

t-B
as

ed
 A

na
ly

sis
 [s

]
Ru

nt
im

e
Va

rA
ly

ze
r D

es
ug

ar
in

g
an

d
Co

m
pi

la
tio

n
[s

]
Ru

nt
im

e
Va

rA
ly

ze
r A

na
ly

sis
 [s

]
Nu

m
be

r o
f F

ea
tu

re
s

0246810

#Features

0
0

0
0

0
0

0
0

0

Fi
gu

re
4.

9:
A

na
ly

si
se

ffi
ci

en
cy

on
th

e
be

nc
hm

ar
k

pr
og

ra
m

st
ha

tu
se

O
pe

nS
SL

’s
EV

P
C

IP
H

ER
A

PI
.N

am
in

g
sc

he
m

e
of

th
e

be
nc

hm
ar

k
ta

rg
et

s:
c{

’i’
-i

nt
ra

-,
’ii

’i
nt

er
-p

ro
ce

du
ra

l}
{’

s’
-s

of
tw

ar
e

pr
od

uc
tl

in
e,

’_
’-

no
so

ftw
ar

e
pr

od
uc

tl
in

e}
{’

e’
-e

rr
on

eo
us

A
PI

us
ag

e,
’_

’-
co

rr
ec

tA
PI

us
ag

e}
.

103

4 Variability

VarAlyzer’s process of lifting IFDS- and IDE-based analysis has been designed to be
fully transparent, i.e., it does not modify the semantics of the analysis that is lifted but
instead lifts its domain to make it variability-aware—allowing it to distinguish between
data-flow facts that have been computed under different feature constraints.

To show that not only theoretically but also in practice VarAlyzer-lifted analyses re-
tain precision compared to their un-lifted, product-based counterpart and also compute
the results of all possible software products in a single analysis run, we wrote an auto-
mated comparison tool. The comparison tool ran our variational analysis T𝑉𝐴𝑅 on each
benchmark subject and then ran its variability-oblivious counterpart T 𝑃𝑆𝑅 on all of the
exhaustively sampled concrete software products, performing an in-memory comparison of
the results. The tool found that the results of T𝑉𝐴𝑅 included the results produced by each
analysis run of T 𝑃𝑆𝑅. All results, i.e., protocol breaches—on a data-flow fact-level—for
each analysis run of T 𝑃𝑆𝑅 on a sampled software product can be found in the mapping
from feature constraints to data-flow facts produced by T𝑉𝐴𝑅 for the respective feature
constraints that describes the software product. Besides that, T𝑉𝐴𝑅 does not introduce
spurious data-flow facts that cannot be found in the results of T 𝑃𝑆𝑅 run on any concrete
software product and hence, VarAlyzer’s results in fact coincide with the results produced
by a product-based analysis.

Our variability-aware analysis approach produces results that coincide with the results
computed using a corresponding variability-oblivious product-based analysis.

4.5.3 𝑅𝑄5: Analysis Efficiency

Section 4.5.1 presents the results concerning VarAlyzer’s efficiency. Due to space restric-
tions we can only include the data for the analysis of the 36 benchmark programs that use
the OpenSSL EVP encryption/decryption (CIPHER) API and report on the accumulated
data for the remaining ones. We have made the complete results available [Art21].

Our experiments show that the standard Clang compiler requires between 0.07 and
188.1 seconds to exhaustively compile all concrete software products of a software product
line in our benchmark set. VarAlyzer’s two-step desugaring compilation (comprising
desugaring and compilation of the desugared code) is, on average, 7.1 times faster, ranging
between 0.6 and 1.6 seconds. Running the variability-aware analysis T𝑉𝐴𝑅 on a complete
SPL is, on average, 8.0 times faster than analyzing the target software product line using the
product-based approach T 𝑃𝑆𝑅 that needs to analyze each software product in separate. In
total, the complete variability-aware T𝑉𝐴𝑅 pipeline that includes variational compilation
and variability-aware analysis is, on average, 7.5 times faster than compiling and analyzing
each concrete software product derived from a SPL, while the analysis’s memory usage
increases by a factor of 1.17.

Section 4.5.1 shows the number of features on a linear scale (the y axis at the bottom),
and the accumulated compilation and analysis times of a product-based approach using
plain PhASAR for analyzing all sampled concrete software products and VarAlyzer per
target program concerning OpenSSL’s CIPHER API on a logarithmic scale (the y axis
at the top). For the benchmark targets that comprise no variability, the running times

104

4.5 Experiments

of VarAlyzer are generally higher than those of the product-based approach. For most
of the compilation units that do comprise variability, the variability-aware approach runs
faster than the products-based one as soon as the target comprises more than four features
with only one exception. This trend is particularly clear on programs with more features
(e.g., ciis9.c and ciise7.c in Section 4.5.1). On two occasions (cise4, cise7), however,
VarAlyzer’s variability-aware data-flow analysis runs significantly slower than expected.
We manually checked the SPLs’ source code and found that they use preprocessor integer
arithmetic which in our current implementation translates to a relatively long and complex
Z3 constraint that slows down the analysis during constraint simplification. The running
times of VarAlyzer, apart from the aforementioned two exceptions, generally remain
in the same order of magnitude while those of the product-based approach clearly grow
exponentially in the number of features reflecting the fact that a software product line may
comprise up to 2#features individual software products.

In terms of code size, VarAlyzer’s desugarer causes an increase in lines of code by a
factor of 9.2, on average. This is mainly because the desugarer emits artificial function
declarations and definitions to preserve the preprocessor’s semantics. The definition of
the static initializer function, which encodes the symbol table for the renamings applied by
VarAlyzer and the preprocessor conditionals in Z3’s textual representation as described in
Section 4.4, is the main cause for the increase in code size. Each renamed symbol leads to
an additional line of code, and each preprocessor conditional leads to at least one more line
of code. Nevertheless, because the static initializer function is not called within the program
but is only used to describe semantics, it does not affect traditional variability-oblivious
static analyzers.

VarAlyzer outperforms the product-based approach in all cases that comprise more
than four features except for one which the current implementation cannot yet handle
efficiently. The results would favor the variability-aware analysis even more with an
increasing number of features. While the product-based approach requires one to compile
and analyze each product, VarAlyzer only requires a single desugaring-compilation and
analysis pass.

4.5.4 𝑅𝑄6: Analysis Precision

By comparing the results obtained from running the traditional variability-oblivious analysis
T 𝑃𝑆𝑅 on VarAlyzer-transformed code, we can assess the precision gained by making the
analysis variability-aware. We manually checked the results produced by these analysis
runs for the 95 benchmark subjects and observed that the over-approximation leads to
great imprecision that renders the results practically unusable. This is because the analysis
incorrectly introduces interaction between data flows computed within different features
that—according to the preprocessor’s semantics—cannot happen in any concrete product.
We find that whenever an API’s respective context variable is modified across multiple
features that cannot actually be enabled together, the typestate analysis T 𝑃𝑆𝑅 directly
associates those variables with an error state. We can observe that T 𝑃𝑆𝑅 returns the most
coarse-grain analysis element for the context variables for all 68 compilation units that do

105

4 Variability

comprise variability and whose features differ in the modifications made to the context
variable.

Existing analysis approaches presented in literature such as the one by Iosif-Lazar et al.
[IMD+17] only employ code transformations to enable the (re)use of existing, unmodified
feature-oblivious static analyzers for software product lines. However, information on
variability is not preserved and even if it would be, cannot be understood by existing
feature-oblivious analyzers. While this generally allows one to apply existing analyzers to
entire software product lines, their results are unusable for semantic program analysis as
our manual inspection of the results produced by T 𝑃𝑆𝑅 on VarAlyzer-transformed code
shows. And while simpler, syntax-based analyses may report bugs, it is hard to impossible
to account them to a specific feature combination in order to validate and action on them.

For more complex semantic analyses, variability awareness is essential to allow one to
distinguish information that is obtained along different mutually exclusive features. To
produce useful analysis results on software product lines, one not only requires variability
awareness for the transformation, but also the analysis parts.

4.6 Related Work

Several previous approaches address, in part, the difficult problem of statically analyzing
real-world software product lines [KGR+11, GG12, KATS12, CEW12, BRTB12, BTR+13,
MDBW15, CCS+13, Dim16]. Prior work either created new analyses that had to account
for the semantics of the static conditions [KGR+11, GG12, GJ05, KOE12, KKHL10] or
performed limited syntactic transformations from the preprocessor into C and used off-
the-shelf tools [IMD+17]. The works that lift the analysis [KGR+11,GG12,GJ05,KOE12,
KKHL10] must work on the combined preprocessor/C languages which makes those harder
to implement. This causes these approaches to resort to simpler analyses. The approach
presented by Iosif-Lazar et al. [IMD+17] misses preprocessor semantics which passes the
problem to downstream analyses. The only available data-flow analysis for software product
lines written in C [LvRK+13,BRTB12] is intra-procedural only. To employ precise, inter-
procedural static analysis the transformation of the preprocessor directives into ordinary
C must be able to handle all of the preprocessor’s constructs and, in addition, preserve
full information on static preprocessor conditionals. The latter requirement is necessary to
make this information available to downstream analysis to avoid a loss in precision.

SPLlift [BTR+13] avoids generating all potential software products by analyzing the
entire SPL as a whole. This so-called family-based approach encodes feature constraints in
distributive flow functions. SPLlift solves IFDS [RHS95] problems on SPLs using IFDS’s
generalization IDE [SRH96]. However, SPLlift can only solve data-flow problems with
the small and finite domains, limited by IFDS. SPLlift is a prototype for a seldom-used
product-line dialect of Java [KTS+09] and thus cannot be applied to real-world product
lines, especially not those that use the C preprocessor.

SuperC [GG12] presents a configuration-preserving lexer, preprocessor, and parser. Its
preprocessor resolves includes and macros while leaving static conditionals intact to pre-

106

4.6 Related Work

serve its variability. A configuration-preserving parser then generates an abstract syntax
tree (AST) that is additionally amended with static choice nodes to represent the static
conditionals. SuperC uses a performant fork-merge parsing: it forks subparsers whenever a
choice node is encountered and merges after the conditionals. The approach explores how
to perform syntactic analysis of C code while preserving its variability. SuperC provides
detailed insights on preprocessor usages and interactions of preprocessor usages of software
product lines.

TypeChef [KKHL10] is another variability-aware parser and type-checker for product
lines written in C and allows for detecting variability-induced bugs in configurable systems.
It avoids combinatorial explosion by parsing the entire source code in a variability-aware
fashion without preprocessing. Similar to SuperC, it produces an AST that captures the
variability using static choice nodes. Based on TypeChef’s AST, a variability-aware type
system has been developed that type-checks C code with compile-time configurations.
While it is possible to implement static program analyses that operate on variability-aware
ASTs, those analyses would still only be syntax based and, in addition, would still need to
encode the variability themselves (e.g., [LvRK+13, BRTB12]). Variability-aware control-
flow and syntax-based data-flow analysis can also be implemented on top of TypeChef.
However, this requires the development of syntactic AST-based analyses from scratch for
the preprocessor/C language. Instead, our approach does not need to capture the static
behavior. This allows us to build on existing, sophisticated program analyses; we use
PhASAR and our variability-aware extension VarAlyzer.

Hercules [Her20], a rewriting and refactoring engine built on top of TypeChef, is a
source-code transformation tool similar to the goal of SugarC. It transforms compile-
time variability into runtime variability. It no longer relies solely on syntactic analysis
only but also allows for more difficult semantic analyses as well. Hercules, however,
relies on TypeChef’s variability-aware parsing and analysis infrastructure which limits the
application to code that is type-error-free, a requirement that real-world code does not
hold. Our approach is able to pass all information of static preprocessor conditionals to
our downstream analysis. This allows for more precise subsequent analyses. For instance,
it expresses type errors as ordinary function calls, which allows its subsequent analysis to
collect type errors while analyzing the program without the need to exit immediately.

Iosif-Lazar et al. [IMD+17] created C Reconfigurator that translates product lines
into single programs by replacing compile-time variability with run-time variability. The
resulting programs can be analyzed using traditional off-the-shelf analysis tools such as
clang-tidy [Cla18c] or Frama-C [CKK+12]. However, C Reconfigurator does not
preserve information on the origin of a static conditional, making the results produced by
the off-the-shelf tools on the transformed code variability-unaware. Instead, our approach
preserves full information on the preprocessor’s semantics and can compute the analysis
results and their respective variants on-the-fly in a single analysis run. C Reconfigurator
also does not include feasible but invalid configurations in the transformed program, making
the bugs caused by these configuration impossible to detect.

Le et al. [LP14] presented the Hydrogen framework that introduced multiversion inter-
procedural control-flow graphs (MVICFGs). MVICFGs represent the control flows of
multiple versions of a program in a single graph whose edges are annotated with the

107

4 Variability

version(s) under which a control flow is feasible. MVICFGs can be used for incremental
update analysis and for determining the bug/patch impact for multiple program releases.
The ICFGs of VarAlyzer-transformed programs can be viewed as MVICFGs with the
difference that VarAlyzer’s ICFGs represent all possible variants of a software product
line instead of (potentially) all versions of an individual software product. While Hydrogen
employs a demand-driven symbolic analysis whose queries must be parameterized with a
specific version for which to compute results, VarAlyzer’s lifted distributive data-flow
analyzes compute the results for all possible software products in a single analysis run and
accounts them to the constraints under which they are valid.

4.7 Conclusions

We have presented the design and implementation of VarAlyzer. VarAlyzer allows one
to produce a configuration-preserving encoding off all variability in regular C code which
it then subjects to a variability-aware, context- and flow-sensitive data-flow analysis. It
enables computing precise results on entire software product lines, annotated with feature
constraints that encode in which product configurations each result is valid. Our empirical
study using 95 compilation units that make use of OpenSSL shows that this approach
outperforms a traditional product-by-product analysis as soon as more than four products
need to be analyzed. As a result, for the first time VarAlyzer allows one to conduct an
effective static data-flow analysis of software product lines on real-world C code. This has
the great potential to allow developers to find bugs and vulnerabilities much earlier in the
development process. For instance, whereas previously developers using OpenSSL had to
identify vulnerabilities separately for each concretely preprocessed variant of OpenSSL,
using VarAlyzer now has the potential to allow the OpenSSL maintainers to detect such
vulnerabilities for all relevant configurations ahead of time.

While now being able to inter-procedurally analyze and deal with software product lines
written in C that would otherwise present an exponentially hard barrier to data-flow analysis,
we next explain how we reduce analysis times to a minimum for C and C++ projects that
use libraries and are organized with help of version control systems.

108

5 Modularity

In this chapter, we elaborate on how we scale complex static analysis to large projects that
make use of libraries and are maintained under version control. In particular, we show how
one can employ summarization to avoid expensive and unnecessary reanalysis of software
components that do not change from one analysis run to another.

Whole-program analysis (WPA) can yield high precision, however causes long analysis
times and thus, does not match common software-development workflows, making it often
impractical to use for large, real-world applications.

This chapter hence presents the design and implementation of ModAlyzer, a novel static-
analysis approach that aims at accelerating whole-program analysis by making the analysis
modular and compositional. It shows how to compute lossless, persisted summaries for
callgraph, points-to and data-flow information, and it reports under which circumstances
this function-level compositional analysis outperforms WPA.

We implemented ModAlyzer as an extension to LLVM and PhASAR, and applied it to 12
real-world C and C++ applications. At analysis time, ModAlyzer modularly and losslessly
summarizes the analysis effect of the library code those applications share, hence avoiding
its repeated re-analysis. The experimental results show that the reuse of these summaries
can save, on average, 72% of analysis time over WPA. Moreover, because it is lossless, the
module-wise analysis fully retains precision and recall. Surprisingly, as our results show,
it sometimes even yields precision superior to WPA. The initial summary generation, on
average, takes about 3.67 times as long as WPA.

5.1 Introduction

Static analysis plays an important role in modern software development. While intra-
procedural static data-flow analysis might only be useful in a limited number of use-
cases, inter-procedural analysis is a powerful building block for bug finding [Cod18,
CS18,EHMG15], compiler optimization [Onl18,ICC18] and software hardening [ARF+14,
KNR+17,LL05,HREM15,HHL+17].

Static analysis is known to be an undecidable problem [Ric53], which challenges static-
analysis designers to define analyses that are both precise (yielding little to no approxi-
mate information) and efficient. To obtain good precision, static program analyses need
to be inter-procedural, i.e., cross procedure boundaries, and also must be context sensi-
tive [SBL11]. Moreover, they must be based on precise points-to analyses [Bod18].

Such inter-procedural analysis, however, especially if implemented as a whole-program
analysis (WPA), is notorious for causing problems with scalability in both runtime and
memory consumption. The memory consumption required for larger programs to keep the

109

5 Modularity

complete program representation as well as all of the data structures required to perform the
analyses and optimizations in memory can easily grow to a large two-digit GB figure [Thi18,
TG17]. Analysis times can amount to several hours, impeding development processes even
in cases where the analysis is deployed as nightly build [LTMS18,BBC+10,SKB14].

There are application scenarios for which one can yield useful results with intra-
procedural analyses that are simple enough to scale. The clang-tidy tool [Cla18c] and
Cppcheck [Cpp18] use syntactic analyses that are able to analyze software comprising a
million lines of code within minutes. Many semantic program analyses, however, such as
data-flow [Kil73], typestate [Str83,SY86] or shape analyses [WSR00], for instance, require
detailed program representations that incorporate the effects of procedure calls, yet are
virtually impossible to scale if computed for the whole program at once. This precludes
important application scenarios, for instance, IDE integration or the automated scanning of
frequently changing software. As mentioned in Chapter 1, Facebook, for instance, reports
that its code base changes so frequently that it has become a real challenge to design anal-
ysis tools such that they can report errors quickly enough so that they are still relevant and
actionable when reported [HO18].

In this work, we aim to scale static context-, flow-, and field-sensitive inter-procedural
program analysis using a compositional computation of analysis information. The effec-
tivity of this compositional program analysis depends on the number of reusable parts of
an application, e.g., program parts that constitute frameworks or libraries, or for parts that
simply do not change from one analysis run to the next. A recent study by Black Duck
(Synopsis) has shown that more than 96% percent of the applications they scan contain
open-source components and that those components now make up, on average, 57% of
the code [Sof18]. As those dependencies are updated much less frequently than applica-
tion code, compositional analysis can potentially accelerate the analysis of applications by
reusing analysis results from previous runs.

Previous work on compositional program analysis has been restricted to certain types of
data-flow analysis only. Reviser [AB14], for instance, allows for the ahead-of-time compu-
tation of reusable taint-analysis summaries for Java libraries. Reviser builds on concepts by
Rountev et al. [RSX08], who showed how to obtain reusable libraries for general distribu-
tive data-flow problems. Both those previous approaches, however, have two significant
limitations: First, they only apply to Java, making it unclear which concepts carry over to
other languages, particularly C and C++, which allow more liberal pointer accesses to the
stack and heap. Second, they only apply to data-flow analysis and leave out the composition
of points-to and callgraph information. Especially the latter is a serious practical limita-
tion: when composing a library summary with application code, these approaches again
perform an expensive whole-program points-to and callgraph analysis, which in itself can
take several minutes if not hours to complete. In result, these approaches incrementalize
only the tip of the proverbial iceberg. Addressing this limitation is complex as callgraph,
points-to, and data-flow information are inter-dependent. A core conceptual contribution of
this chapter is therefore also a mechanism for analysis dependency management for a fully
compositional analysis. This mechanism automatically triggers updates whenever novel
information becomes available that affects existing information.

110

5.1 Introduction

An important practical factor impacting the scalability of compositional analysis is the
mechanism to persist summaries. While the approach by Rountev et al. [RSX08] computes
summaries, they are not persisted at all [Rou14] but rather discarded at analysis shutdown,
which completely defeats their purpose. Reviser [AB14] does persist summaries, but its
summary format is only applicable to taint analysis that uses a binary lattice ⊤⊥. Finding an
efficient summary format that is able to persist general data-flow information is challenging
due to arbitrarily complex lattices used by more advanced analyses. However, efficient and
generalized persistence of summaries is key to effective compositional analysis.

This chapter presents ModAlyzer, a novel approach to compositional analysis that in
contrast to earlier approaches performs an integrated compositional analysis for callgraph,
points-to and context-sensitive data-flow information in a module-wise fashion. ModAlyzer
allows the compositional pre-computation of all three pieces of information for individual
C or C++ modules, such as libraries and frameworks. Information precomputed this way
is then efficiently persisted, and later-on merged into larger analysis scopes. Merging
analysis information efficiently is an integral part of any compositional analysis approach
as combining analysis information computed on individual pieces of code is required to
produce overall analysis results.

As our experiments show, this frequently helps to achieve a more efficient analysis of
entire applications (compared to WPA) while retaining the same level of precision and
recall of a matching WPA.

Interestingly, as this paper shows, merge operations on different types of analysis in-
formation can be modelled in a common way by defining merge operations on their re-
spective graph representations. ModAlyzer thus conducts its compositional computation
of callgraph, points-to, and data-flow information using those graph operations. While
ModAlyzer compositionally computes all these kinds of information, it also manages the
dependencies among them, and updates dependent information as required. ModAlyzer
creates summaries for callgraph and points-to analysis, and for data-flow analyses expressed
in the IFDS [RHS95] and IDE [SRH96] frameworks. Those frameworks support data-flow
analyses whose flow functions distribute over the meet operator, which in turn allows for
an efficient and—as we also show empirically—lossless summarization. ModAlyzer does
not lose any information and also does not have to overapproximate missing information.
Instead, it leaves gaps that will be eventually filled-in during summary application resulting
in the same information that would have been obtained by a matching whole program anal-
ysis. Many useful data-flow analyses, among others taint analysis as well as all Gen/Kill
problems, can be encoded in those distributive frameworks. ModAlyzer also allows for the
computation of more expressive analyses in the monotone framework [KU77]. While one
generally cannot create data-flow summaries for such analyses (an undecidable problem),
these analyses nonetheless can benefit from summaries for points-to and callgraph informa-
tion. This still allows to greatly accelerate analysis computations even for non-distributive
analysis problems.

We have implemented ModAlyzer on top of PhASAR [SHB19] and LLVM [LA04].
We show the improvements of ModAlyzer’s compositional analysis over traditional whole-
program analysis by analyzing 12 real-world C and C++ applications of various sizes,
reaching from 129,000 to 1,400,000 lines of code. For each application, we perform two

111

5 Modularity

Main.cpp

Sanitizer.cpp

DbgSanitizer.cpp

cc

cc

cc

Main.o

Sanitizer.o

DbgSanitizer.o

ln P.exe

Figure 5.1: C and C++’s compilation model. cc is the C or C++ compiler. ln is the linker.

client analyses (uninitialized-variables analysis and taint analysis), once in whole-program
mode and once using library summaries pre-computed by ModAlyzer. We compare the
resulting running times and client reports to validate the equivalence in precision and
recall, and to assess analysis time. Our experiments show that ModAlyzer can decrease
the analyses’ runtimes between 28% and 91% while keeping the initial one-time runtime
overhead for summarization of library parts at 3.67 times as long as the cost of a whole-
program analysis.

The implementation of ModAlyzer is available as open source under the permissive MIT
license as part of the PhASAR framework. All accompanying artifacts of this paper, includ-
ing the processed target applications, their modularizations, and result data are available
online under the MIT license [Art21].

In summary, this chapter makes the following contributions: it presents

• the first integrated compositional analysis for callgraph, points-to and context-
sensitive data-flow information with appropriate summarization techniques and sum-
mary formats,

• ModAlyzer, an open-source C++ implementation within the PhASAR [SHB19]
framework, allowing the full module-wise computation of arbitrary distributive static
analysis problems (and module-wise computation of points-to and callgraph infor-
mation for non-distributive analysis problems),

• and an experimental evaluation of ModAlyzer, which shows that not just in theory
but also in practice precision and recall are retained, and which assesses under which
circumstances the reuse of summaries can decrease the overall analysis time.

5.2 Motivating Example

C and C++ programs are usually organized in several files that provide some limited form
of modularity. An implementation and its corresponding header file are often referred to
as a compilation unit or module. The compiler translates each module separately and thus,
has only knowledge about the information contained within the module that is currently
compiled. The resulting object file contains executable program code, which may, however,
contain unresolved references. The linker resolves these references across two or more
object files and may adds links to external libraries. The result after the linkage step is an
executable program. Figure 5.1 depicts the corresponding mechanism.

112

5.2 Motivating Example

1 i n t main (i n t argc , char ∗∗argv) {
2 auto ∗con = driver −>connect (/∗ connec t i on p r o p e r t i e s ∗ /) ;
3 auto ∗ stmt = con−>crea t eS ta t ement () ;
4 s td : : s t r i n g q = "SELECT name FROM studen t s where id=" ;
5 s td : : s t r i n g input = argv [1] ;
6 s td : : s t r i n g san in = a p p l y S a n i t i z e r (input) ;
7 auto ∗ re s = stmt−>executeQuery (q + san in) ;
8 res −>b e f o r e F i r s t () ;
9 i f (! res −>rowsCount ()) {

10 s td : : cout << "no record found \ n" ;
11 }
12 whi le (res −>next ()) {
13 s td : : cout << res −>g e t S t r i n g ("name") << ’ \ n ’ ;
14 }
15 d e l e t e stmt ; d e l e t e re s ; d e l e t e con ;
16 re turn 0;
17 }

Listing (5.1) Main— Contains the main application code.

1 s t r u c t S a n i t i z e r {
2 v i r t u a l ~ S a n i t i z e r () = d e f a u l t ;
3 v i r t u a l s td : : s t r i n g s a n i t i z e (s td : : s t r i n g &in) {
4 i f (i s M a l i c i o u s (in)) { in = /∗ a c t u a l s a n i t i z a t i o n ∗ / ; }
5 re turn in ;
6 }
7 bool i s M a l i c i o u s (s td : : s t r i n g &in) { re turn /∗ check i f ma l i c i ou s ∗ / ;

}
8 } ;
9 s td : : s t r i n g a p p l y S a n i t i z e r (s td : : s t r i n g &in) {

10 S a n i t i z e r ∗ s = getGlobalSan () ;
11 s td : : s t r i n g out = s−>s a n i t i z e (in) ;
12 re turn out ;
13 }

Listing (5.2) Sanitizer— A module of the sanitization library.

1 s t r u c t DbgSani t i zer : S a n i t i z e r {
2 bool d i s a b l e = true ;
3 ~ DbgSan i t i zer () overr ide = d e f a u l t ;
4 s td : : s t r i n g s a n i t i z e (s td : : s t r i n g &in) overr ide {
5 i f (! d i s a b l e && i s M a l i c i o u s (in)) { throw ma l i c i ou s_ inpu t (" : ’ (") ;

}
6 re turn in ;
7 }
8 } ;
9 S a n i t i z e r ∗getGlobalSan () {

10 s t a t i c S a n i t i z e r ∗ s = new DbgSani t i zer ;
11 re turn s ;
12 }

Listing (5.3) DbgSanitizer— A module of the sanitization library.

Figure 5.2: Modular example program

113

5 Modularity

The vast majority of modern software is not written from scratch, but rather uses libraries,
which enable code reuse, faster development and is less error prone [Syn18,TG17]. Thus,
only a small amount of a program is actual application code and large parts are library code.
Once a library has been introduced as a dependency it is rarely changed compared to the
application code that uses it.

Our example program is comprised of three compilation units (CUs)—often called
modules in the C and C++ context—Main, Sanitizer, and DbgSanitizer shown in
Listing 5.1, 5.2, and 5.3. We omit the header files for brevity of presentation. The example
program is built according to the compilation model presented in Figure 5.1.

Let us assume that Sanitizer and DbgSanitizer form a library for sanitization tasks
called libsan. In C and C++, a library is a collection of one or more object files that have
been compiled in form of an archive or shared object file. We further assume that Main
represents the user application that makes use of the libsan library. We use the example
program shown in Figure 5.2 as a running example to detail on our module-wise analysis
(MWA) approach.

As a client analysis we use a taint analysis which is able to detect potential SQL injections
in programs. A taint analysis tracks values that have been tainted by one or more sources
through the program and reports a leak, if a tainted value reaches a sink. The analysis
considers all user inputs of a program which potentially contain malicious data as tainted,
e.g. the parameters argc and argv that are passed into the main function in our example
program presented in Listing 5.1. The function Statement::executeQuery serves as a sink in
this scenario. Without sanitization, a malicious user of the program could carefully craft
the string "1 OR TRUE;" and pass it as the program’s second command-line argument. As
the input string is just concatenated the database server will return the names of all students
not just the one where the id matches. By crafting such malicious inputs, a user can leak
or alter the data stored in the database. A tainted value may be sanitized in our scenario
by using the Sanitizer :: sanitize function (Listing 5.2) that clears malicious contents, and
therefore un-taints a value. The client analysis T aims to find flows of (unsanitized) tainted
values to sinks and reports a potential SQL injection vulnerability whenever it finds such
an illegal flow.

5.3 Strategy

In this section, we elaborate on our compositional, module-wise analysis. We first present
the idea of the algorithm in a nutshell and continue with our concept of summary generation.
We then explain the steps we take for result merging and optimizations. As summaries are
always depending on assumptions made, we discuss them at the end of this section.

5.3.1 Idea of the Algorithm

We have built our module-wise analysis approach following C and C++’s compilation
model. To determine a program property of interest, a concrete data-flow analysis, the
client, may require information from other analyses as shown in the dependency graph

114

5.3 Strategy

in Figure 2.8 as elaborated in Section 2.3. The numbered edges in Figure 2.8 determine
computation order. Since many useful static analyses can be encoded using this dependency
model, we will assume such a scenario in this chapter and in Chapter 6.

To achieve fully compositional analysis information for all levels of information as shown
in Figure 2.8, we must be able to (i) compute all information required for a client analysis
on a function level (except the type hierarchy, which is always computed on a module level)
and summarize them, (ii) merge the information and (iii) perform an update if a merge
reveals new information that affect the current results. The merge operation combines
static analysis summaries computed on two individual modules into a novel summary such
that it reflects the information that would have been obtained by linking those modules
first and then computing the static analysis information afterwards. In such an MWA-
style analysis library modules would be analyzed separately. Their computed summaries
would be merged whenever necessary while analyzing a program which uses those library
modules.

As mentioned in Section 5.1, the compositional approaches to static data-flow analysis
presented by Rountev et al. [RSX08] and Reviser [AB14] only apply to Java. In that regard,
ModAlyzer can take advantage of C’s and C++’s language characteristics, which are quite
different from Java. The ModAlyzer approach merges summaries for each function per
compilation unit. The intuition is that related source code often resides within the same
compilation unit. Because C and C++ are often used to implement performance-critical
applications [Str18,Pro18], developers have a great interest in making as much information
available to the compiler as possible within an individual compilation unit. Otherwise,
the compiler would not be able to perform inlining and other important optimizations in
an ordinary (i.e., non-WPA) compilation setup [Mey05,Mey14]. Additionally, whereas all
function members (or methods) in Java are virtual, function members are non-virtual by
default in C++. It generally seems that C++ programs make use of dynamic dispatch less
frequently to avoid performance penalties [DH96,CG94,AH96], a property that ModAlyzer,
again, uses to our advantage. Summaries computed for C and C++ code are thus more
expressive and less likely to contain gaps due to missing information. While ModAlyzer,
in general, is applicable to other languages as well it might work better for C and C++
programs than for programs written in Java or C#, for instance, which use virtual calls all
over the place. For those languages, the portion of partial summaries will increase and
the overall performance of ModAlyzer will degrade as more gaps need to be closed while
analyzing the “main application”. Previous works by Rountev show that summarization
techniques nonetheless can greatly improve running times for large Java applications, even
when restricted to data-flow analysis only. We elaborate on that in detail in Section 5.5.

In the following, we show that merge operations on analysis information can be mod-
elled in a common way through merge operations performed on their respective graph
representations. However, special care must be taken to update the dependent information
accordingly if new information becomes available due to merging two module summaries.
This makes it crucial to keep particularly the callgraph up to date, as all other information
except the type hierarchy depend on it.

115

5 Modularity

5.3.2 Summary Generation

In the following, we will explain the steps of our analysis based on the example presented
in Section 5.2. The assumption is that Main changes frequently, and libsan only once in a
while. For presentation here we start our library pre-analysis by analyzing the Sanitizer
module, although the analysis algorithm does not make any assumptions about module
order.

Type Hierarchies

Our approach first computes the type hierarchy as it is the most robust structure in the sense
that the amount of information can only grow monotonically. We use 𝜏t to denote the type
of a class or struct t and we use 𝑇C to denote the type hierarchy for a module C. In addition,
the type hierarchy maintains information on the virtual function tables (call targets) for
C++’s struct or class types that declare virtual functions.

Example 5.3.1. The analysis will find that the type hierarchy for the Sanitizer module
consists of a graph containing a single node representing the type 𝜏Sanitizer . The call target
for 𝜏Sanitizer contains two entries, { Sanitizer ::~ Sanitizer , Sanitizer :: sanitize }.1 The (partial)
type hierarchy for the Sanitizer module is shown in Figure 5.3

𝜏Sanitizer 0 : • Sanitizer ::~ Sanitizer

1 : • Sanitizer :: sanitize

Figure 5.3: Type hierarchy and respective virtual function table(s) of the Sanitizer
module.

Intra-Procedural Points-To Information

In the next step, the analysis computes function-wise, intra-procedural, never-invalidating2

points-to information using an Andersen [And94] or Steensgaard [Ste96]-style algorithm.
The points-to information computed is flow-insensitive, and we store it as graphs. These
function-wise pointer-assignment graphs (PAGs) are used to resolve potential call targets at
dynamic call sites. We merge those intra-procedural PAGs later to obtain inter-procedural
pointer information while constructing the callgraph. We use 𝜋C::f to denote a pointer-
assignment graph for function f in module C. We use ΠC to denote a pointer-assignment
graph containing all pointer-assignment graphs for module C.

Example 5.3.2. For each function definition contained in the Sanitizer module a
PAG is computed and added to the graph Π Sanitizer . The Π Sanitizer graph containing

1If a C++ type is meant to be used polymorphically, its destructor has to be declared virtual . Otherwise, if
the static type of an object to be deleted differs from its dynamic type, the behavior is undefined.

2Intra-procedural points-to information is, by definition, never invalidated by additional program information
from other procedures.

116

5.3 Strategy

𝜋 Sanitizer ::~ Sanitizer , 𝜋 Sanitizer :: sanitize , 𝜋 Sanitizer :: isMalicious , 𝜋 Sanitizer :: applySanitizer
is shown in Figure 5.4. Inter-procedural points-to relations are not followed and thus,
formal pointer-typed parameters and calls to functions that return a pointer value remain
unresolved and represent boundaries to the respective PAG. For instance, the pointer s in
the applySanitizer function points to the return value of getGlobalSan which is indicated by a
special node in the respective PAG (cf. Figure 5.4d).

∅
(a) 𝜋Sanitizer ::~ Sanitizer

∅
(b) 𝜋Sanitizer :: isMalicious

in 𝑓0

⟨𝑟𝑒𝑡⟩

(c) 𝜋Sanitizer :: sanitize ; 𝑓0 denotes the first
formal parameter and ⟨𝑟𝑒𝑡⟩ the return
value of the isMalicious function.

in 𝑓0

s ⟨𝑟𝑒𝑡⟩

(d) 𝜋Sanitizer :: applySanitizer ; 𝑓0 denotes
the first formal parameter and ⟨𝑟𝑒𝑡⟩ the
return value of the getGlobalSan
function.

Figure 5.4: ΠSanitizer containing all pointer-assignment graphs of Sanitizer.

Callgraphs and Inter-Procedural Points-To Information

After having computed the function-wise pointer assignment graphs, the callgraph is con-
structed according to Algorithm 1, Algorithm 2 and its resolver routine shown in Al-
gorithm 3. The same algorithm also computes points-to information across procedure
boundaries. Since one cannot know upfront what library functions a user is going to call,
the callgraph algorithm has to consider every externally visible function definition as a
possible entry point [REH+16] (cf. Line 54 of Algorithm 1). We use 𝐶𝐺C to denote a
(partial) callgraph of a module C. The algorithm starts at an arbitrary externally visible
function 𝑓 of module C. It then iterates through all call sites 𝑐𝑠 of 𝑓 (cf. Line 43).
We denote a call site as 𝑐𝑠𝑖 where 𝑖 represents the line number at which the call site is
found. In the following, we write 𝑐𝑠𝑖 for a static call site and 𝑐𝑠𝑖 for a dynamic call site
at which a function pointer or virtual function member is called. In case a static call site
has been detected, the algorithm adds a new callgraph edge (Line 45). In addition, for the
pointer analysis, the algorithm connects the caller’s actual pointer parameters and pointer
return value with their corresponding formal parameters and return value of the call target
using a stitch operation (Line 63), thus promoting (intra-procedural) pointer information to
inter-procedural information. We formally define the stitch operation in Definition 4 and
then discuss its use. In the latter case (Line 47), the algorithm uses points-to information
provided by ΠC to resolve potential call targets of 𝑐𝑠𝑖 according to Algorithm 3. Starting
from the function pointer that is invoked or the pointer variable of the receiver that the
virtual member function is being called on at 𝑐𝑠𝑖 , we search in ΠC for reachable functions

117

5 Modularity

in case of function pointer calls (Line 76) or allocation sites in case of virtual member
function calls (Line 87), respectively.

In this process, two situation may occur along with different levels of completeness of
points-to information which dictate what (missing) dependencies must be tracked: Incom-
plete or partially complete information: If no functions or allocation sites are reachable
yet, the reachable pointers at the function boundaries (i.e., formal pointer parameters or
pointer return value of a function whose definition is missing) are marked as dependencies
of 𝑐𝑠𝑖 (Line 79 and Line 86). The dependencies are maintained in a bidirectional map
from dependent pointer parameters to the respective unresolved call site and vice versa.
If only some functions or allocation sites are reachable but also there are some reachable
pointers at function boundaries as well, then pointers at function boundaries are added to
the dependencies of 𝑐𝑠𝑖 and reachable functions are added as potential call targets to the
callgraph (Line 97 and 49). The edges of the callgraph are annotated with 𝑐𝑠𝑖 . For virtual
member function calls, the call targets of the allocated types at reachable allocation sites
are inspected to find the potential targets (Line 95) which are then added to the callgraph.
Complete information: If no boundary pointers but only functions or allocation sites are
reachable starting from the pointer at 𝑐𝑠𝑖 , then no dependencies must be tracked.

During the construction of the callgraph we can have situations where a pointer-
assignment graph will be amended with new information. To this end, we define a first
graph operation which we call stitch and which we use to combine pointer information at
call sites.

Definition 4. Stitch: Let 𝐺 = (𝑉, 𝐸) be a (directed) graph containing vertices {𝑢, 𝑣} ⊆ 𝑉

with 𝑢 ≠ 𝑣 and 𝑒 = (𝑢, 𝑣) ∉ 𝐸 . The stitch of 𝑢 and 𝑣 is a new graph 𝐺′ = (𝑉 ′, 𝐸 ′),
where 𝑉 ′ = 𝑉 and 𝐸 ′ = 𝐸 ∪ (𝑢, 𝑣). For convenience, we additionally define the function
𝑠𝑡𝑖𝑡𝑐ℎ : 𝐺 ×𝐺′ × 𝑃→ 𝐺′′ that maps the (directed) graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸 ′),
and 𝑃 a set of pairs of vertices (𝑢, 𝑣) with 𝑢 ∈ 𝐺 and 𝑣 ∈ 𝐺′ that shall be stitched
together to a new graph 𝐺′′. The stitch function 𝑠𝑡𝑖𝑡𝑐ℎ(𝐺,𝐺′, 𝑃) produces 𝐺′′ such that
𝐺′′ = (𝑉 ∪𝑉 ′, 𝐸 ∪ 𝐸 ′ ∪ 𝑃).

For each target function C::g that could be successfully resolved, the algorithm stitches
𝑐𝑠𝑖 to 𝜋C::g (cf. Line 63): Actual pointer parameters are connected with the corresponding
formal parameters of the callee function C::g. If C::g returns a pointer parameter, it is
connected as well. All edges are annotated with the corresponding call site.

If this graph stitch affects a pointer that is listed in the dependency map, the algorithm
recursively continues resolving the affected call sites. Otherwise, the algorithm recursively
continues resolving call sites in the resolved target functions. The algorithms for the
interwoven points-to, callgraph computation are shown in Algorithm 1, Algorithm 2, and
Algorithm 3. We use the symbol 𝑐𝑠 in a call to the function 𝑠𝑡𝑖𝑡𝑐ℎ(𝐺,𝐺′, 𝑐𝑠) as shorthand
for {(𝑎𝑖 , 𝑓𝑖)}, the set of pairs of left-hand-site pointer variable/actual pointer parameters and
pointer return value/formal pointer parameters of the callee at 𝑐𝑠 that are stitched together.

118

5.3 Strategy

38 directed graph: 𝐶𝐺𝐶 = ∅, 𝑇 = computeTypeHierarchy(); undirected graph:
Π𝐶 = ∅; bidirectional map: 𝐷 = ∅; set: 𝑉 = ∅;

39 Function constructionWalk(𝑓):
40 if 𝑓 ∈ 𝑉 | | isDeclaration(𝑓) then
41 return;
42 𝑉∪ = 𝑓 ;
43 foreach callsite 𝑐𝑠 ∈ 𝑓 do
44 if 𝑐𝑠 is static then
45 𝐶𝐺𝐶∪ =< 𝑐𝑠,getCallee(𝑐𝑠)>;
46 updatePointerInfo(𝑓 , getCallee(𝑐𝑠));
47 else
48 𝑐𝑎𝑙𝑙𝑒𝑒𝑠 = resolveIndirectCallSite(𝑐𝑠);
49 foreach 𝑐𝑎𝑙𝑙𝑒𝑒 ∈ 𝑐𝑎𝑙𝑙𝑒𝑒𝑠 do
50 𝐶𝐺𝐶∪ =< 𝑐𝑠, 𝑐𝑎𝑙𝑙𝑒𝑒 >;
51 updatePointerInfo(𝑓 , 𝑐𝑎𝑙𝑙𝑒𝑒);
52 return;
53 Function constructCallGraph():
54 foreach 𝑓 ∈ 𝐶 do
55 if !isDeclaration(𝑓) then
56 Π𝐶∪ = computePointsToGraph(𝑓);
57 foreach 𝑓 ∈ 𝐶 \ {𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠} do
58 if 𝑓 ∉ 𝑉∧ !isDeclaration(𝑓) then
59 𝐶𝐺𝐶∪ = 𝑓 ;
60 constructionWalk (𝑓);
61 return;

Algorithm 1: Callgraph construction algorithm

62 Function updatePointerInfo(𝑓 , 𝑐𝑎𝑙𝑙𝑒𝑒):
63 Π𝐶 = 𝑠𝑡𝑖𝑡𝑐ℎ(Π𝐶 [𝑓],Π𝐶 [𝑐𝑎𝑙𝑙𝑒𝑒], 𝑐𝑠);
64 𝑚𝑜𝑑𝑝𝑡𝑟𝑠 =

getVerticesInvolvedInGraphOp(𝑠𝑡𝑖𝑡𝑐ℎ,Π𝐶 [𝑓],Π𝐶 [𝑐𝑎𝑙𝑙𝑒𝑒], 𝑐𝑠);
65 foreach 𝑝𝑡𝑟 ∈ 𝑚𝑜𝑑𝑝𝑡𝑟𝑠 do
66 if 𝑝𝑡𝑟 ∈ 𝐷 then
67 𝑓 𝑚𝑜𝑑 =getFunctionContaining(𝐷 [𝑝𝑡𝑟]);
68 𝑉 = 𝑉 \ 𝑓 𝑚𝑜𝑑;
69 constructionWalk(𝑓 𝑚𝑜𝑑);
70 constructionWalk(𝑐𝑎𝑙𝑙𝑒𝑒);
71 return;

Algorithm 2: Procedure for updating the pointer information

119

5 Modularity

72 Function resolveIndirectCallSite(𝑐𝑠):
73 𝑐𝑎𝑙𝑙𝑒𝑒𝑠 = ∅;
74 if isFunctionPtrCall(𝑐𝑠) then
75 𝑓 𝑝𝑡𝑟 = getCalledPtr(𝑐𝑠);
76 𝑟 𝑓 𝑝𝑡𝑟𝑠 = getReachablePtrs(𝑓 𝑝𝑡𝑟);
77 foreach 𝑓 𝑝𝑡𝑟 ′ ∈ 𝑟 𝑓 𝑝𝑡𝑟𝑠 do
78 if isBoundaryPtr(𝑓 𝑝𝑡𝑟 ′) then
79 𝐷 [𝑐𝑠] ∪ = 𝑓 𝑝𝑡𝑟 ′;
80 𝑐𝑎𝑙𝑙𝑒𝑒𝑠 ∪ = getReachableFunctions(𝑓 𝑝𝑡𝑟);
81 else
82 𝑎𝑝𝑡𝑟 = getAllocationPtr(𝑐𝑠);
83 𝑟𝑎𝑝𝑡𝑟𝑠 = getReachablePtrs(𝑎𝑝𝑡𝑟𝑠);
84 foreach 𝑎𝑝𝑡𝑟 ′ ∈ 𝑟𝑎𝑝𝑡𝑟𝑠 do
85 if isBoundary(𝑎𝑝𝑡𝑟 ′) then
86 𝐷 [𝑐𝑠] ∪ = 𝑎𝑝𝑡𝑟 ′;
87 𝑎𝑙𝑙𝑜𝑐𝑠 = getReachableAllocSites(𝑎𝑝𝑡𝑟);
88 foreach 𝑎𝑙𝑙𝑜𝑐 ∈ 𝑎𝑙𝑙𝑜𝑐𝑠 do
89 𝜏 = getAllocatedType(𝑎𝑙𝑙𝑜𝑐);
90 𝑣𝜏 = getVTable(𝑇 , 𝜏);
91 if ! 𝑣𝜏 then
92 𝐷 [𝜏] ∪ = 𝑐𝑠;
93 else
94 𝑖 = getVCallIndex(cs);
95 𝑐𝑎𝑙𝑙𝑒𝑒 = getVTableEntry(𝑣𝜏 , 𝑖);
96 𝑐𝑎𝑙𝑙𝑒𝑒𝑠 ∪ = 𝑐𝑎𝑙𝑙𝑒𝑒;
97 return 𝑐𝑎𝑙𝑙𝑒𝑒𝑠;

Algorithm 3: Procedure for resolving dynamic call sites

Example 5.3.3. The callgraph algorithm starts analyzing the function Sanitizer :: sanitize .
At the call site 𝑐𝑠4, the actual parameter is stitched to the formal parameter of Sanitizer ::
isMalicious and the algorithm proceeds in Sanitizer :: isMalicious. Since Sanitizer :: isMalicious
has now already been visited, the next function to be analyzed is applySanitizer .

applySanitizer contains two interesting call sites. 𝑐𝑠10 is a static call to getGlobalSan
. However, its definition is currently not available and thus, a callgraph node which is
marked as a declaration is added to the callgraph. Note that the function causes incomplete
points-to information as it returns a pointer value that is stored in variable s (cf. Figure 5.4d).

Furthermore, a virtual function member is called at 𝑐𝑠11 on the receiver pointer variable
s of type Sanitizer ∗. Due to dynamic dispatch we have incomplete information on the
possibly called functions and are not able to resolve this call, because we cannot yet
determine the allocation sites that are reachable through s. The algorithm marks this call
site as incomplete and keeps track of the dependent pointer variable s. The call site has
to be updated as further information might be discovered later on. For instance, if the
definition of getGlobalSan becomes available that provides the required additional points-to

120

5.3 Strategy

information. The partial callgraph that can be computed individually on the Sanitizer
module is shown in Figure 5.5.

Sanitizer :: sanitize

Sanitizer :: isMalicious

applySanitizer

getGlobalSan𝑑

Sanitizer ::~ Sanitize

∗:: sanitize 𝑑

Figure 5.5: Callgraph for Sanitizer: 𝐶𝐺 Sanitizer . 𝑓𝑑 denotes the declaration of a
function 𝑓 .

Data-Flow Information

In the next step, the analysis computes the possibly partial data-flow information using
IFDS/IDE [RHS95,SRH96,NLR10] according to the description of the data-flow problem
to be solved for the available function definitions. Importantly, because the flow functions
are assumed to distribute over the merge operator, this summarization is known to be
lossless [RHS95]. IFDS/IDE problems can thus be solved with full precision, without
the need for approximation. In contrast to the information computed before, the data-
flow information depends on the configuration of the client analysis because data-flow
information is never general and always depending on a specific definition.

We use the flow and edge functions of the client analysis to construct the partial exploded
super-graph of the library to be summarized. The partial callgraph is traversed in a depth-
first bottom-up manner to maximize the number of functions that can be summarized
completely. For a library function 𝑓 that does not make any calls, the summary information
is computed by applying the client’s flow and edge functions to each node 𝑛 of the control-
flow graph. The resulting exploded super-graph edges are then combined using composition
and meet to construct the jump functions 𝜓(𝑓) that summarize the complete function. For
each incoming data-flow fact 𝑑𝑖 , its respective jump function 𝜙𝑖 (𝑓) describes the effect of
the analyzed function on 𝑑𝑖 .

In case a function 𝑓 contains call sites 𝑐𝑠𝑖 , the IFDS/IDE algorithm computes a partial
data-flow summary from 𝑓 ’s entry node to the first call-site node 𝑐𝑠1, 𝜓

𝑒𝑛𝑡𝑟 𝑦
𝑐𝑠1 (𝑓). It

then computes the summary of the called function 𝑓 ′, 𝜓(𝑓 ′), (if not already computed)
and composes it with the partial summary 𝜓

𝑒𝑛𝑡𝑟 𝑦
𝑐𝑠1 (𝑓) to obtain 𝜓

𝑒𝑛𝑡𝑟 𝑦
𝑟𝑠1 (𝑓). The algorithm

proceeds successively until the complete summary𝜓(𝑓) = 𝜓
𝑒𝑛𝑡𝑟 𝑦

𝑒𝑥𝑖𝑡
(𝑓) has been constructed.

However, in case a library function 𝑓 contains call sites that are depending on user
code, for instance, because of callbacks or incomplete points-to information, a complete
summary 𝜓(𝑓) cannot be computed. In this case, ModAlyzer computes a set of partial
summary functions 𝜓𝑛

𝑚, where 𝑛 is a function’s entry point or some return site (𝑟𝑠) and 𝑚 is
a function’s exit statement or some call site (𝑐𝑠) whose call targets are not or only partially
known. This results in gaps in the exploded super-graph that represent the unresolved
effects of the missing call targets.

121

5 Modularity

Λ•
⊤��

��

𝜙16
17

��

𝑖𝑛•

��

𝑟𝑒𝑡•
16: if (isMalicious (in))

Λ•

��

𝑖𝑛• 𝑟𝑒𝑡•
16a: in = /∗ sanitization ∗/;

Λ•

��

𝑖𝑛• 𝑟𝑒𝑡•
17: return in;

Λ• 𝑖𝑛• 𝑟𝑒𝑡•

(a) Exploded super-graph for
Sanitizer :: sanitize

Λ•
⊤��

��
𝜙19

19 ��

𝑖𝑛•

��
𝜙19

19

19: return /∗ if malicious ∗/;

Λ• 𝑖𝑛•

(b) Exploded super-graph for
Sanitizer :: isMalicious

Λ•
⊤��

��

��

𝜙22
22

𝑖𝑛•

��
𝜙22

22
vv

𝑜𝑢𝑡• 𝑟𝑒𝑡•
22: Sanitizer ∗s = getGlobalSan();

Λ•

�� ��

𝑖𝑛•

�� ��

𝑜𝑢𝑡• 𝑟𝑒𝑡•
23: string out = s−>sanitize(in) ;

Λ•

��
𝜙24

24

𝑖𝑛•

��

𝑜𝑢𝑡•

�� ��
𝜙24

24 ��

𝜙24
24

��

𝑟𝑒𝑡•
24: return out;

Λ• 𝑖𝑛• 𝑜𝑢𝑡• 𝑟𝑒𝑡•

(c) Exploded super-graph for applySanitizer

Figure 5.6: Exploded super-graphs for the Sanitizer module.

Example 5.3.4. The data-flow information computed for the Sanitizer module is shown
in Figure 5.6. Individual flow/edge functions are denoted by solid (→) and jump functions
by dashed (d) arrows. Analyzing applySanitizer leads to an incomplete ESG, because
the callgraph for the Sanitizer module is only partially complete. The definition of
getGlobalSan is not yet available and the dynamic call site at Line 11 cannot be resolved with
the information available within the Sanitizer module.

The call to the unresolved function getGlobalSan does not interact directly with the data-
flow information as it receives no arguments, its return type differs from the type of the
data-flow domain (strings), and the string which the variable in refers to is not global as no
global declarations are present. Therefore it cannot be modified by the call and one can
safely use the identity function here. We will further elaborate on that in Section 5.3.4.

The call to ∗:: sanitize results in a gap in the ESG. In Figure 5.6c gaps in the ESG are
indicated with squiggled arrows ({). We pass in and out as identity after the gap and also
generate other variables, such as the implicit return variable, that depend on out. Later
on, after the merging process, the missing targets of the call site at Line 11 will have been
determined and their data-flow summaries can be inserted. Then, the analysis will check
whether 𝑖𝑛, 𝑜𝑢𝑡, and 𝑟𝑒𝑡 are reachable from Λ, and determine if those variables are tainted.

122

5.3 Strategy

The ESGs for the Sanitizer :: sanitize and Sanitizer :: isMalicious functions are shown in
Figure 5.6a and Figure 5.6b, respectively. For our example analysis we assume that Sanitizer
:: isMalicious checks whether the variable in contains malicious data and the function does
not modify the data-flow facts. Sanitizer :: sanitize checks if the string referred to by variable
in contains malicious data—is tainted—and, if so, replaces it with a sanitized version.
Again, to keep our example analysis simple, we assume that the analysis is aware of the
special semantics of Sanitizer :: isMalicious and thus, kills the variable in in both branches.

After having computed the data-flow summaries for the Sanitizer module, we have
determined any information we need on Sanitizer as an individual module. We denote
the combination of the partial type-hierarchy graph (and call targets) in Figure 5.3, partial
points-to in Figure 5.4 and callgraph in Figure 5.5 and the partial data-flow summaries for
Sanitizer in Figure 5.6 as ΞSanitizer.

5.3.3 Merging Analysis Summaries

To complete the picture, we next combine the information obtained by analyzingSanitizer
and DbgSanitizer with an analysis of the client application Main.

For this we need to define a new operation on graphs which we call contraction. We
use the contraction operation when new information becomes available during a merge,
to replace placeholder nodes (that indicate missing information) of a graph by their coun-
terparts that represent the actual information. We apply this operation to combine partial
type hierarchy- and callgraphs. For instance, we combine callgraphs by contracting away
function declaration nodes with their respective definition counterpart nodes: the nodes
representing function declarations are removed and all former incoming edges now lead
to the corresponding definition nodes. We formally define the contraction operation as
follows:

Definition 5. Contraction: Let 𝐺 = (𝑉, 𝐸) be a (directed) graph containing vertices
{𝑢, 𝑣} ⊆ 𝑉 with 𝑢 ≠ 𝑣. Let 𝑓 be a function that maps every vertex in 𝑉 \ {𝑢, 𝑣} to itself,
and otherwise, maps it to a new vertex 𝑤. The contraction of 𝑢 and 𝑣 is a new graph
𝐺′ = (𝑉 ′, 𝐸 ′), where 𝑉 ′ = (𝑉 \ {𝑢, 𝑣}) ∪ {𝑤}, 𝐸 ′ = 𝐸 \ {𝑒 = (𝑢, 𝑣)}, and for every
𝑥 ∈ 𝑉 , the vertex 𝑥′ = 𝑓 (𝑥) ∈ 𝑉 ′ is incident to an edge 𝑒′ ∈ 𝐸 ′, iff the corresponding
edge 𝑒 ∈ 𝐸 is incident to 𝑥 in 𝐺 (reproduced from [Ray14]). For convenience, we
additionally define the function 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 : 𝐺 × 𝐺′ × 𝑃 → 𝐺′′ that maps the (directed)
graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸 ′), and 𝑃 a set of pairs of vertices 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 ′
that shall be contracted to a new graph 𝐺′′. The contraction function 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝐺,𝐺′, 𝑃)
contracts the pairs of vertices 𝑢𝑖 and 𝑣𝑖 and produces a new (directed) graph 𝐺′′ =

((𝑉 ∪𝑉 ′) \ {𝑢𝑖}, (((𝐸 ∪𝐸 ′) \ {(𝑡 𝑗 , 𝑢𝑖)}) \ {(𝑢𝑖 , 𝑣𝑖)}) ∪ {(𝑡 𝑗 , 𝑣𝑖)}), where all edges incident
to 𝑢𝑖 with their origin in some vertex 𝑡 𝑗 are replaced by edges from 𝑡 𝑗 to 𝑣𝑖 contracting
away 𝑢𝑖 . We use 𝑓 in 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝐺,𝐺′, 𝑓) as shorthand for {(𝑓𝑑𝑒𝑐𝑙, 𝑓)}, the set of function
declaration/definition pairs and 𝜏 in 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝐺,𝐺′, 𝜏) as shorthand for {(𝜏𝑑𝑒𝑐𝑙 , 𝜏)}, the
set of type declaration/definition pairs.

Our merge procedure for two module summaries Ξ𝑖 and Ξ 𝑗 is shown in Algorithm 4. In
the following, we present all involved steps for each piece of analysis information.

123

5 Modularity

Type Hierarchies

The analysis first merges the type-hierarchy graphs using vertex contraction (cf. Line 102),
to remove redundant definitions of the same type. The redundancy is caused by including a
type’s definition (which usually resides in a corresponding header file) in multiple modules
that require a type’s exact data layout (e.g. for allocation or subtyping).

Example 5.3.5. While performing the contraction, the analysis finds that Sanitizer’s
type 𝜏Sanitizer is sub-typed by 𝜏DbgSanitizer. The contraction has no immediate effect on the
callgraph analysis: As the callgraph uses points-to information to resolve indirect calls, no
immediate update is required at this point, because the new type-hierarchy information is
not used before new pointer information becomes available. The type hierarchy needs to be
queried if a new allocation site has been found. For each newly discovered allocation site,
the type hierarchy is used to retrieve the entry of the allocated type’s virtual function table.

Callgraphs and Points-To Information

The analysis merges the callgraphs by using the vertex contraction operation introduced
before (Line 109). A contraction is used to remove function-declaration nodes and replace
them with their corresponding definition nodes, now linking calls to callees. While perform-
ing the contraction on the callgraphs, the corresponding partial pointer-assignment graphs
are not contracted but stitched together (cf. Definition 4); through the stitch (Line 113) no
nodes of the pointer-assignment graph are replaced to keep information on the parameter
mapping. Actual pointer parameters at a call site as well as pointer return values at the
respective return site are connected with the corresponding formal parameters of the called
function and the left-hand side variables, respectively. The information on the contracted
callgraph nodes is used in the next step when repropagating data-flows.

Example 5.3.6. The callgraph contraction of the modules Sanitizer and DbgSanitizer
is indicated in Figure 5.7. The callgraph contraction triggers the corresponding stitching
of PAGs. For instance, the points-to graphs 𝜋 Sanitizer :: applySanitizer and 𝜋getGlobalSan
are stitched together at 𝑐𝑠10 as indicated in Figure 5.8. Through the stitch, the analysis
recognizes that the previously marked pointer variable s gets new inputs from the resolved
callee function getGlobalSan. As s is now able to reach getGlobalSan’s variable s of allocated
type 𝜏DbgSanitizer and the receiver object s in applySanitizer has no other unresolved depen-
dencies, the possible call targets are updated in the callgraph such that DbgSanitizer :: sanitize
is now the only possible target for the dynamic call site at Line 11. The pointer-assignment
graph of the newly discovered callee at Line 11 is stitched to the call site 𝑐𝑠11.

Fixed-Point Iteration for Callgraph and Points-To Graph

Note that there are cases in which the stitch (of two PAGs) of a resolved callee function
changes the points-to information in such a way that previously partially resolved indirect
call sites must be revised again (cf. Line 63 for summarization, and Line 113 for merges).
In these cases, the analysis loops in updating callgraph and points-to information until the

124

5.3 Strategy

98 Function merge(𝐶𝐺𝐶 , 𝑇𝐶 , Π𝐶 , 𝐷𝐶 , 𝑉𝐶 , 𝐶𝐺𝐶′ , 𝑇𝐶′ , Π𝐶′ , 𝐷𝐶′ , 𝑉𝐶′ ,):
99 𝐷𝐶∪ = 𝐷𝐶′ ;

100 𝑉𝐶∪ = 𝑉𝐶′ ;
101 Π𝐶∪ = Π𝐶′ ;
102 𝑇𝐶 = 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝑇𝐶 , 𝑇𝐶′ , 𝜏);
103 𝑚𝑜𝑑𝑡𝑦𝑝𝑒𝑠 = getVerticesInvolvedInGraphOp(𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡, 𝑇𝐶 , 𝑇𝐶′ , 𝜏);
104 foreach 𝜏 ∈ 𝑚𝑜𝑑𝑡𝑦𝑝𝑒𝑠 do
105 if 𝜏 ∈ 𝐷 then
106 𝑓 =getFunctionContaining(𝐷 [𝜏]);
107 𝑉 = 𝑉 \ 𝑓 ;
108 constructionWalk(𝑓);
109 𝐶𝐺𝐶 = 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝐶𝐺𝐶 , 𝐶𝐺𝐶′ , 𝑓);
110 {⟨𝑐𝑠, 𝑓 ⟩} =

getVertexPairsInvolvedInGraphOp(𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡, 𝐶𝐺𝐶 , 𝐶𝐺𝐶′ , 𝑓);
111 foreach ⟨𝑐𝑠, 𝑓 ⟩ do
112 𝑓 ′ =getFunctionContaining(𝑐𝑠);
113 Π𝐶 = 𝑠𝑡𝑖𝑡𝑐ℎ(Π𝐶 [𝑓 ′],Π𝐶 [𝑓], 𝑐𝑠);
114 𝑚𝑜𝑑𝑝𝑡𝑟𝑠 =

getVerticesInvolvedInGraphOp(𝑠𝑡𝑖𝑡𝑐ℎ,Π𝐶 [𝑓 ′],Π𝐶 [𝑓], 𝑐𝑠);
115 foreach 𝑝𝑡𝑟 ∈ 𝑚𝑜𝑑𝑝𝑡𝑟𝑠 do
116 if 𝑝𝑡𝑟 ∈ 𝐷 then
117 𝑓 =getFunctionContaining(𝐷 [𝑝𝑡𝑟]);
118 𝑉 = 𝑉 \ 𝑓 ;
119 constructionWalk(𝑓);

Algorithm 4: Merge procedure for callgraphs

1 void (∗ f) () ;
2 void bar () { }
3 void foo () { f = &bar ; }
4 void i n i t (vo id (∗ f) ()) { f = &foo ; }
5 i n t main () {
6 i n i t (f) ;
7 f () ; / / <−− i n d i r e c t c a l l s i t e
8 re turn 0;
9 }

Listing 5.4: Example in which the update of points-to- invalidates callgraph information.

125

5 Modularity

Sanitizer DbgSanitizer contracting contracted

applySanitizer

getGlobalSan𝑑

∗:: sanitize 𝑑

𝑐𝑠10

𝑐𝑠11

getGlobalSan

DbgSanitizer:: sanitize

applySanitizer

getGlobalSan𝑑

∗:: sanitize 𝑑

getGlobalSan

DbgSanitizer:: sanitize

=

=
applySanitizer

getGlobalSan

DbgSanitizer:: sanitize
𝑐𝑠11

𝑐𝑠10

Figure 5.7: Excerpt of the vertex contraction for callgraphs of Sanitizer and
DbgSanitizer. 𝑓𝑑 denotes the declaration of a function 𝑓 .

applySanitizer getGlobalSan 𝑠𝑡𝑖𝑡𝑐ℎ(applySanitizer, getGlobalSan, 𝑐𝑠10)

in 𝑓0

s ⟨𝑟𝑒𝑡⟩ ⟨𝑜𝑏 𝑗𝐷𝑏𝑔𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑒𝑟 ⟩

s ⟨𝑟𝑒𝑡⟩

in 𝑓0⟨𝑜𝑏 𝑗𝐷𝑏𝑔𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑒𝑟 ⟩

s ⟨𝑟𝑒𝑡⟩ s
𝑐𝑠10

Figure 5.8: Excerpt of the vertex stitch of the PAG’s for applySanitizer and getGlobalSan

callgraph and points-to information stabilize. A constructed yet expressive example of the
aforementioned for function pointers is shown in Listing 5.4. When the callgraph algorithm
resolves the indirect call to the function pointer f using points-to information, it determines
foo as the call target. However, foo manipulates the points-to information such that bar
becomes a feasible target as well. Thus, the indirect call site has to be revisited and bar has
to be added as a possible target as well. When analyzing bar the callgraph and points-to
information stabilize and the algorithm terminates.

Data-Flow Information

Once a callgraph has been updated by a merge, the data-flow information has to be repop-
ulated in order to reflect the changes. Whenever two callgraphs are merged, new function
definitions and their respective data-flow summaries become available which have been
previously unknown to the other module’s data-flow information. The merge procedure for
the callgraphs shown in Algorithm 4 issues the contracted nodes (function declarations)
and their respective call sites. This information and the newly available function definitions
and accompanying data-flow summaries are used to close potential gaps in the ESG. The
analysis visits all sub-graphs that have undergone the callgraph contraction procedure in a
depth-first bottom-up manner, filling in the newly available data-flow summaries.

Suppose a function 𝑓 contains a previously unresolved or only partially resolved call
site 𝑐𝑠 and therefore, a pair of partial summaries 𝜓𝑒𝑛𝑡𝑟 𝑦

𝑐𝑠 (𝑓) and 𝜓𝑟𝑠
𝑒𝑥𝑖𝑡
(𝑓). If the callgraph

126

5.3 Strategy

contraction reveals the call target 𝑓 ′ and its respective data-flow summary, 𝜓𝑒𝑛𝑡𝑟 𝑦
𝑐𝑠 (𝑓) and

𝜓𝑟𝑠
𝑒𝑥𝑖𝑡
(𝑓) are composed with 𝜓(𝑓 ′) to produce a complete summary of 𝑓 , 𝜓𝑒𝑛𝑡𝑟 𝑦

𝑒𝑥𝑖𝑡
(𝑓) =

𝜓𝑟𝑠
𝑒𝑥𝑖𝑡
(𝑓) ◦ 𝜓(𝑓 ′) ◦ 𝜓𝑒𝑛𝑡𝑟 𝑦

𝑐𝑠 (𝑓). The summary 𝜓
𝑒𝑛𝑡𝑟 𝑦

𝑒𝑥𝑖𝑡
(𝑓) may need to be merged with any

existing jump functions that have been obtained along other paths, for instance, call-free-
paths (cf. flows for Λ in Figure 5.6c) or paths for other call targets of 𝑐𝑠 that have been
available for analysis already. The complete summary 𝜓(𝑓) is used to successively fill in
potential other gaps in the ESG.

In case a target library to be summarized is depending on code of its user(s) because it
uses features such as callbacks, for instance, the static analysis summaries Ξ even for the
complete library code will contain gaps. Those gaps are eventually closed once the main
application is available, analyzed and merged with the precomputed library summaries to
produce the final analysis results.

Example 5.3.7. As the function definition of DbgSanitizer :: sanitize becomes now accessible
to applySanitizer , its respective data-flow summary can now be plugged into the current
gap of applySanitizer to obtain a complete IFDS/IDE summary for it. The sub-graphs that
undergo the contraction procedure are visited in a depth-first, bottom-up manner and the
data-flow summary for DbgSanitizer :: sanitize is inserted into applySanitizer . The analysis
therefore finds that the values passed as a reference parameter into DbgSanitizer :: sanitize ()
and the value returned by it are indeed tainted. Therefore, the return value of applySanitizer
is tainted as well. The pre-analysis of the library is now complete and the obtained results
can be used by any potential client to the library.

Analyzing the Main Application

When analyzing the application program Main the analysis first constructs Main’s type
hierarchy, function-wise pointer-assignment and callgraph (cf. Algorithm 1). The type
hierarchy-, call- and pointer-assignment graphs for Main are merged with the library’s
respective graphs (cf. Algorithm 4). The data-flow analysis can then start at the entry point
main. As the data-flow analysis recognizes the call to applySanitizer it can directly use the
(complete) pre-computed summary and thus keeps the return value as well as the actual
reference parameter input marked as tainted. Finally, the client analysis is able to query the
results and finds that the tainted variable sanin leaks at the call to Statement::executeQuery.

5.3.4 Removing Dependencies Ahead of Time

While computing the data-flow information for an individual module, information at dy-
namic call sites or static call sites, where the callee definitions are not available, will be
incomplete. However, by using the following shortcuts, ModAlyzer is able to compute
a complete and precise data-flow summary nonetheless. We already observed such a
situation while computing the data-flow information for applySanitizer in the Sanitizer
module. Because the call to getGlobalSan at Line 10 does not have a direct impact on the
data-flow information (as described in Example 5.3.4), we can model it using the identity
flow function. Note, however, that the call still has an indirect impact since the function is
able to change what function is being called in the next line. When our analysis recognizes

127

5 Modularity

a function 𝑓 that misses information on potential callees, but where we can ensure that the
missing information has no direct or indirect impact on the data-flow information, we can
nevertheless compute a complete and precise summary for 𝑓 using the identity shortcut
denoted as

id
↩→ and thus fully remove any dependencies on the missing callees. To determine

if
id
↩→ can be applied, different predicates may be applied, depending on the client analysis,

e.g. pass and return by value. For instance, if a function receives its arguments by value
they are copied into the callee. Thus, we can be sure that it cannot modify its arguments
even if information on the callee’s definition is missing.

1 s td : : s t r i n g foo (bool p) {
2 re turn p ? s a n i t i z e (in) : in ;
3 }

Listing 5.5: Code allowing the
⊤
↩→ 𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡.

Another example of a situation in which a data-flow analysis can perform such an
optimization is shown in Listing 5.5. Such a treatment for summarization of incomplete
data-flow analysis has also been presented in [Klo08]. While analyzing foo we assume
the information ⊤ for the variable in, i.e., in is tainted. foo sanitizes in only in one of
the branches (depending on an unknown predicate). Hence, if we assume that we are
conducting a may-taint analysis, then it holds that in may be tainted at the end of foo no
matter what the call to sanitize does. It follows that ⊤ will always be associated with in. In
this case, we can compute a complete summary even with incomplete information by using
the ⊤ shortcut

⊤
↩→. This is always true for may-analyses that use set union as the merge

operator, which for instance in IFDS is always the case.
In the presence of global variables, ModAlyzer applies shortcuts only if they can be

proven sound, which ModAlyzer manages easily if only module-internal global variables
are involved. Global variables are often declared as static (in case of C) or within anonymous
namespaces (in case of C++) making them internal to the module that declares them.
ModAlyzer’s shortcuts are not applied if externally visible global variables are involved in
the situation, i.e., variables that are used across multiple modules.

Due to C and C++’s modular compilation model, an analysis frequently encounters
situations as presented above, in which it can use these shortcuts to compute data-flow
information. Functions where these shortcut summaries are used do not need to be revisited,
thus, the analysis is able to work more efficiently. Therefore, when summarizing a module,
it is desirable to remove as many data-flow dependencies as possible using the

id
↩→ and

⊤
↩→

shortcuts.

5.4 Implementation

We have implemented the strategy described in Section 5.3 in a tool called ModAlyzer, as
an extension to PhASAR [SHB19], a static-analysis framework that has been implemented
on top of LLVM [LA04]. PhASAR allows to solve arbitrary monotone data-flow problems
on the LLVM intermediate representation (LLVM IR) and also provides IFDS/IDE solver
implementations.

128

5.4 Implementation

We extended the existing IDE solver as well as the other infrastructure for type hierarchy,
points-to, and callgraph computation and added the necessary summarize, merge, and
update functionalities respectively.

ModAlyzer persists the summary results by using a document-oriented store in which
it saves the graphs along with the code the analysis is conducted on with help of LLVM’s
metadata capabilities. LLVM allows for a key-based introduction of custom metadata.
Each function that is defined in a module is annotated with its function-wise summaries
for the different pieces of static analysis information, i.e., its points-to and exploded super-
graph. A module carries the module-wise information that is obtained by merging all
information of its enclosed functions as well as type hierarchy and callgraph information.
Those module-wise summaries are referred to using the module flags section of the LLVM
IR.

For the persistence, we created a bidirectional mapping from LLVM’s in-memory rep-
resentation to a textual representation allowing us to store the graphs comprising pointer
values to LLVM IR records as graphs that use the text-encoded version. Additionally, we
implemented import and export functionalities for each graph type that enable us to manage
loads and stores of encoded graphs along with the LLVM IR.

An excerpt of an analysis summary created by ModAlyzer for a simplified taint analysis,
that has been conducted on module M shown in Listing 5.6, is shown in Listing 5.7. The
simplified taint analysis considers the integer literal 13 as source and therefore, taints
variables to which the literal has been assigned to. Parts of the summary that are too large
for presentation here have been abbreviated through [...] markers. Each instruction is
annotated with a unique id as our textual representation uses an id-based encoding. For
instance, the store instruction in Line 8 of Listing 5.7 carries a piece of metadata using
the key psr. id which refers to the metadata entry !3 in Line 32. That entry, in turn, stores
the instruction’s id 1. Each function that is defined in M is annotated with its function-wise
summaries for the different pieces of static analysis information. The taint function is
analogously annotated with its points-to and exploded super-graph using the keys psr.pt
and psr.df (cf. Line 6).3 The module carries the module-wise information that is obtained
by merging the information of its enclosed functions. Those module-wise summaries are
referred to using the llvm.module.flags in Line 27.

1 i n t ∗ t a i n t (i n t ∗v) {
2 ∗v = 13;
3 re turn v ;
4 }
5
6 i n t main () {
7 i n t x = 42;
8 i n t ∗y = t a i n t (&x) ;
9 re turn 0;

10 }

Listing 5.6: Example module M

3C++ compilers mangle the names of user-defined functions using a scheme that reflects the types of its
parameter list to allow for function overloading and thus, taint appears as _Z5taintPi in Listing 5.7.

129

5 Modularity

1 ; ModuleID = ’Module_M . cpp ’
2 source_ f i l ename = "Module_M . cpp"
3 t a r g e t da ta l ayou t = "e−m: e−i 64 :64− f80 :128−n8 :16:32:64 − S128"
4 t a r g e t t r i p l e = "x86_64−unknown−l inux−gnu"
5 ; Funct ion At t r s : n o i n l i n e nounwind optnone uwtable
6 d e f i n e i 32 ∗ @_Z5taintPi (i 32 ∗) #0 ! psr . pt !19 ! psr . df !20 {
7 %2 = a l l o c a i32 ∗ , a l i g n 8 , ! psr . id !2
8 s t o r e i 32 ∗ %0, i32 ∗∗ %2, a l i g n 8 , ! psr . id !3
9 %3 = load i32 ∗ , i 32 ∗∗ %2, a l i g n 8 , ! psr . id !4

10 s t o r e i 32 13 , i 32 ∗ %3, a l i g n 4 , ! psr . id !5
11 %4 = load i32 ∗ , i 32 ∗∗ %2, a l i g n 8 , ! psr . id !6
12 r e t i 32 ∗ %4, ! psr . id !7
13 }
14 ; Funct ion At t r s : n o i n l i n e norecurse nounwind optnone uwtable
15 d e f i n e i 32 @main () #1 ! psr . pt !21 ! psr . df !22 {
16 %1 = a l l o c a i32 , a l i g n 4 , ! psr . id !8
17 %2 = a l l o c a i32 , a l i g n 4 , ! psr . id !9
18 %3 = a l l o c a i32 ∗ , a l i g n 8 , ! psr . id !10
19 s t o r e i 32 0 , i 32 ∗ %1, a l i g n 4 , ! psr . id !11
20 s t o r e i 32 42 , i 32 ∗ %2, a l i g n 4 , ! psr . id !12
21 %4 = c a l l i 32 ∗ @_Z5taintPi (i 32 ∗ %2) , ! psr . id !13
22 s t o r e i 32 ∗ %4, i32 ∗∗ %3, a l i g n 8 , ! psr . id !14
23 r e t i 32 0 , ! psr . id !15
24 }
25 a t t r i b u t e s #0 = { n o i n l i n e nounwind optnone uwtable [. . .] }
26 a t t r i b u t e s #1 = { n o i n l i n e norecurse nounwind optnone uwtable [. . .]

}
27 ! l lvm . module . f l a g s = ! { ! 0 , ! 16 , ! 17 , ! 18 }
28 ! l lvm . i d en t = ! { ! 1 }
29 !0 = ! { i 32 1 , ! "wchar_s ize" , i 32 4}
30 !1 = ! { ! " c lang ver s i on 5 . 0 . 1 (t ag s / RELEASE_501 / f i n a l 341448)"}
31 !2 = ! { ! "0"}
32 !3 = ! { ! "1"}
33 [. . .]
34 !15 = ! { ! "13"}
35 !16 = ! { i 32 5 , ! "psr . th" , ! "graph G {} "}
36 !17 = ! { i 32 5 , ! "psr . pt" , ! "graph G {
37 0[l a b e l =" _Z5ta in tP i . 0 "] ;
38 1[l a b e l ="4"] ;
39 2[l a b e l ="6"] ;
40 3[l a b e l ="9"] ;
41 4[l a b e l ="13"] ;
42 0−−1 [l a b e l =""] ;
43 0−−2 [l a b e l =""] ;
44 1−−2 [l a b e l =""] ;
45 3−−4 [l a b e l ="13"] ;
46 }"}
47 !18 = ! { i 32 5 , ! "psr . cg" , ! "graph G {
48 0[l a b e l =main] ;
49 1[l a b e l = _Z5 ta in tP i] ;
50 0−>1 [l a b e l ="13"] ;
51 }"}
52 !19 = ! { ! "graph G {

130

5.4 Implementation

53 0[l a b e l =" _Z5ta in tP i . 0 "] ;
54 1[l a b e l ="4"] ;
55 2[l a b e l ="6"] ;
56 0−−1 [l a b e l =""] ;
57 0−−2 [l a b e l =""] ;
58 1−−2 [l a b e l =""] ;
59 }"}
60 !20 = ! { ! "{
61 <2 ; lambda ; 7 ; lambda ; TOP>
62 }"}
63 !21 = ! { ! "graph G {
64 0[l a b e l ="9"] ;
65 1[l a b e l ="13"] ;
66 0−−1 [l a b e l =""] ;
67 }"}
68 !22 = ! { ! "{
69 <8 ; lambda ; 15 ; lambda ; TOP>
70 }"}

Listing 5.7: Simplified ModAlyzer summary of module M shown in Listing 5.6.

LLVM’s metadata mechanism does not restrict the type of data for annotations. Thus,
arbitrary data structures and encodings may be used to persist the analysis information. We
use the capabilities of the Boost Graph Library (BGL) [SLL02] to manage type hierarchy,
points-to, and callgraph information. The BGL offers of-the-shelf textual import and ex-
port functionalities and allows for implementing custom reader/writer concepts. We use
the default Graphivz [Gra19] format to store the graphs in metadata records. As PhASAR’s
IFDS/IDE solver implementation works by incrementally constructing two tables to repre-
sent flow functions/jump functions of ever longer sequences of code (c.f. [SHB19,NLR10]),
we use the following sets of quintuples for the data-flow summary representation of a func-
tion 𝜓(𝑓) := {⟨𝑛𝑖 , 𝑑𝑥 , 𝑛 𝑗 , 𝑑𝑦 , 𝑙⟩}, where a quintuple represents a jump function (or an edge
in the ESG) from data-flow fact 𝑑𝑥 to 𝑑𝑦 with the corresponding edge function 𝑙 that sum-
marizes parts of the effects of the region of code that is enclosed by the statements 𝑛𝑖 and 𝑛 𝑗 .
The concrete (partial) data-flow summary for the applySanitizer function (cf. Figure 5.6c)
looks as shown in Table 5.1.

Table 5.1: Data-flow summary for the applySanitizer function.
⟨ 22 Λ 24 Λ ⊤ ⟩
⟨ 22 𝑖𝑛 22 𝑖𝑛 ⊤ ⟩
⟨ 24 𝑖𝑛 24 𝑖𝑛 ⊤ ⟩
⟨ 24 𝑜𝑢𝑡 24 𝑜𝑢𝑡 ⊤ ⟩
⟨ 24 𝑜𝑢𝑡 24 𝑟𝑒𝑡 ⊤ ⟩

Note that for IFDS we can use the simple encoding of the binary lattice and the edge
functions. We handle the persistence of the difficult-to-handle, general IDE edge functions
by creating a record to keep track which edge functions are composed and meet for each
jump function while constructing them. We finally persist the record using the extensive

131

5 Modularity

Boost Serialization library [Boo19]. On load, the record can be replayed to (re)construct
the actual jump functions.

5.5 Experiments

Our empirical evaluation aims to answer the following research questions:

𝑅𝑄7 Does the use of a module-wise static analysis incur a precision loss when
compared to a whole program analysis? If so, what causes this loss in
precision?

𝑅𝑄8 Compared to conducting a whole-program analysis, what speed-up can
one achieve when applying MWA using pre-computed summaries for
type-hierarchy, callgraph, points-to and data-flow information?

𝑅𝑄9 How frequently can the data-flow shortcuts
id
↩→ and

⊤
↩→ be applied in

MWA?

To address 𝑅𝑄7, we compare the analysis results of a whole program analysis with the
results obtained by a module-wise analysis. Ideally, the results of both analyses should be
identical. To address 𝑅𝑄8, we measure and compare the runtimes of a client analysis using
pre-computed summaries and a version that computes everything on-the-fly. To address
𝑅𝑄9, we extend PhASAR’s IFDS/IDE solver implementation and measure how frequently
it makes use of both shortcuts for different client analyses.

5.5.1 Experimental Setup

We have evaluated ModAlyzer using as benchmark subjects the C coreutils (version
8.28) [Cor18] and the PhASAR framework itself.

The GNU core utilities are a collection of C programs that share a common core,
providing a library that consists of 251 files. Each coreutil program itself only consists
of a small number of C source files that provides the program’s entry point, manages the
command-line, and makes suitable calls into the common core in order to achieve the
desired task. For our evaluation we prepared and analyzed 97 of the coreutils and chose 10
of them at random which to present in this paper in more detail. (However, the figures for
the remaining 87 coreutils can be found online [Art21].)

PhASAR is written in C++ and is similarly structured. To provide flexible, reusable
software components, the main functionalities of the different components are implemented
as libraries. The front-ends (or drivers) themselves represent only a relatively small amount
of “glue code” and large amounts of their runtime is spent in library code. Using PhASAR
we defined two benchmark subjects: First PhASAR’s own command-line client and the
PhASAR-based tool MPT, a exemplary client that uses PhASAR as a library, both of which
can be found alongside PhASAR’s examples [Pha18].

We chose those subjects because they have a relatively high amount of virtual calls.
This stresses ModAlyzer’s points-to based callgraph algorithm. We observed that C++

132

5.5 Experiments

Table 5.2: Number of compilation units, library/application code ratio, number of
statements, pointer variables and allocation sites of the analyzed (completely
linked) programs.

Program Compilation Units 𝐼𝑅 𝐿𝑂𝐶 𝑙𝑖𝑏
𝐼𝑅 𝐿𝑂𝐶 𝑎𝑝𝑝

Statements Pointers Allocation Sites
wc 252 41.2 63,166 10,644 396
ls 253 5.9 71,712 13,200 438
cat 252 66.3 62,588 10,584 391
cp 256 10.5 67,097 11,722 443
whoami 252 335.7 61,860 10,433 389
dd 252 16.8 65,287 11,150 408
fold 252 105.8 62,201 10,509 390
join 252 24.9 64,196 11,042 402
kill 253 88.2 62,304 10,527 394
uniq 252 60.1 62,663 10,650 396
MPT 156 13.8 1,351,735 755,567 176,540
PhASAR (driver) 156 56.4 1,368,297 763,796 178,486

developers generally try to minimize the amount of indirect calls to avoid indirect jumps,
which degrade performance, especially when implementing performance critical software
systems [AH96]. The chosen subjects hence set a relatively high bar when it comes to
evaluating analysis performance. The raw as well as the processed data produced in our
evaluation is available online [Art21].

All programs and their characteristics are shown in Table 5.2. We prepared all programs
presented for analysis with the PhASAR framework by compiling them into LLVM IR with
production flags using the Clang compiler. The numbers in Table 5.2 are based on LLVM
IR.

We used an uninitialized-variables analysisU and a taint analysis T as two concrete client
analyses that both impose the information dependencies as shown in Figure 2.8. U and T
are both implemented in IFDS within PhASAR.

Uninitialized-variables analysis U: U is an analysis that finds potentially uninitialized
variables and tracks them through the program. If the analysis finds an uninitialized variable
to be read from, it reports an illegal use of that variable. Uninitialized variables propagate
through computations and thus, the analysis tracks those as well. U also tracks the variables
across function boundaries making it an inter-procedural analysis.

Taint analysis T: T is a parameterizable taint analysis that tracks tainted values through
the program and reports potential leaks whenever it finds a tainted value that may flows into
a sink function (or operation). Sources and sinks are parameterizable. We used PhASAR’s
default parametrization that treats the command-line arguments passed into main as tainted.
All standard input functions (e.g., fread, fgets) are treated as sources as well. All output
functions (e.g., fwrite, printf) are treated as sinks.

For each target program shown in Table 5.2 we computed the library and application
code ratio based on lines of LLVM IR code. If a module is used by more than one
application, we consider it to be part of the library, whereas modules that are only used
by one application are considered as application code. We also measured runtimes and

133

5 Modularity

number of leaks/uninitialized variables that each of the analyses reported in a WPA setup
as well as an MWA setup. The measurements for MWA are split into a summarization and
an actual analysis step. The PhASAR framework implements a reporting system which
we use to compare the actual reports to make sure that the findings are identical. We also
recorded the number of callgraph updates #𝐶𝐺 ⟳ that had to be performed in the MWA
setup, i.e., we counted the number of callgraph edges that have been introduced during
the merge process. This is a good indicator of the expense of a merge, as the introduction
of a new callgraph edge causes the points-to and data-flow information to be updated as
well. In addition, we measured the number of shortcuts that a data-flow analysis was able
to use. We measured the runtimes by performing 5 runs for each analysis in each setup on
a virtual machine running on an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz machine
with 128GB memory. We removed the minimum and maximum values and computed the
average of the remaining 3 values. Table 5.3 shows the results. The first column comprises
the programs under analysis, the second column contains the WPA runtimes, column three
contains the required runtime for summarization, column four the actual analysis time of
MWA. The differences of the runtimes and reports of WPA and MWA are shown in column
five. Column six, seven, and eight contain the respective number of callgraph updates,
identity shortcuts, and ⊤ shortcuts, respectively. The number of callgraph updates are
equal for both analysis as the callgraph information is not affected by the concrete client
analyses.

5.5.2 𝑅𝑄7: Precision

As the points-to and therefore, call- and control-flow graphs guide an analysis through a
program, they may heavily influence the reported results. Therefore, we compared the
callgraph obtained in an MWA setting with the one obtained in a WPA setting. We found
that the callgraphs only differ at call-sites at which a static function pointer is called. In
those cases, our MWA callgraph implementation turns out to be more precise as it does not
consider every function of the complete program that matches the pointer’s signature as a
possible target, but only the ones reachable within the module whose address can actually
be taken.4 This reduces the number of infeasible call targets while retaining soundness.

We compared the client analyses precision and recall of WPA and MWA using PhASAR’s
reporting capabilities. Column Δ in Table 5.3 shows how many result entries differ from
a WPA to an MWA setup for each client analysis. We only observed a difference in the
reports for the “dd” program while performing the taint analysis. In this case, the analysis
in WPA mode reports three leaks in a library function 𝑓𝐿 , whereas the analysis in MWA
reports none. We investigated the cause of this difference and found that this is actually a
false positive in the WPA. The leaking function 𝑓𝐿 is not called within the “dd” program.
However, “dd” defines a static global function pointer 𝑝 in the application code and the
WPA analysis safely assumes that 𝑓𝐿 , which matches the function pointers signature, might
be called. When the application code that defines the static function pointer is analyzed
in MWA mode, the analysis does not find a declaration of 𝑓𝐿 within the application code

4Reducing the set of feasible function pointer targets in WPA mode can be easily implemented.

134

5.5 Experiments

Table 5.3: Runtimes and findings WPA vs. MWA for the taint analysis T (first half) and
uninitialized variables U (second half).

T: Program WPA [s] Σ𝑚∈𝑙𝑖𝑏 [s] MWA [s] Δ runtimes / (Δ reports) #
CG
⟳ #

id
↩→ #

⊤
↩→

wc 2.3 5.7 0.5 -1.8 / (0) 47 8,052 78
ls 4.8 5.7 1.3 -3.5 / (0) 166 13,470 11
cat 1.9 5.7 0.2 -1.7 / (0) 21 2,117 269
cp 4.4 5.7 1.8 -2.6 / (0) 197 19,712 1077
whoami 2.0 5.7 0.4 -1.6 / (0) 4 6,065 11
dd 8.1 5.7 5.5 -2.6 / (-3) 58 48,747 90
fold 2.1 5.8 0.4 -1.7 / (0) 12 6,695 11
join 2.4 5.7 0.6 -1.8 / (0) 58 8,979 11
kill 1.9 5.7 0.2 -1.7 / (0) 14 2,079 11
uniq 2.2 5.7 0.4 -1.8 / (0) 29 7,281 11
MPT 2,306 42,847 1,516 -809 / (0) 41 29,061 0
PhASAR 7,176 42,876 598 -6578 / (0) 3 47,736 0

U: Program WPA [s] Σ𝑚∈𝑙𝑖𝑏 [s] MWA [s] Δ runtimes / (Δ reports) #
CG
⟳ #

id
↩→ #

⊤
↩→

wc 2.6 5.9 0.6 -2.0 / (0) 47 2,413 162
ls 8.4 6.0 3.3 -5.1 / (0) 166 7,173 184
cat 2.0 6.0 0.3 -1.7 / (0) 21 845 12
cp 5.2 5.9 2.2 -3.0 / (0) 197 6,684 1122
whoami 2.0 5.9 0.3 -1.7 / (0) 4 535 0
dd 3.1 5.9 0.9 -2.2 / (0) 58 2,522 16
fold 2.1 6.0 0.4 -1.7 / (0) 12 895 0
join 2.8 6.0 0.5 -2.3 / (0) 58 2,582 171
kill 2.2 6.0 0.4 -1.8 / (0) 14 793 12
uniq 2.5 5.9 0.5 -2.0 / (0) 29 1,433 17
MPT 3,811 53,703 2,958 -826 / (0) 41 137,722 8,136
PhASAR 10,160 53,348 968 -9,192 / (0) 3 210,032 24,446

and therefore, its address cannot possibly be taken, preventing it to be a call target of 𝑝.
While one could adapt the WPA to be equally precise, the MWA obtains this precision
automatically.

Since ModAlyzer does not need to overapproximate information it does indeed also
preserve recall. The ModAlyzer approach has been designed to obtain this property by
construction. Besides the differing result entries that are caused by the differences in the
callgraph, both the results of ModAlyzer and WPA coincide.

The module-wise analysis generally yields the same precision as the whole-program
analysis, in some cases even exceeds it.

5.5.3 𝑅𝑄8: Performance

Table 5.2 shows that the library/application ratio ranges from 5.9 to 5675.6 and therefore,
that the actual application code only comprises a small fraction of the complete program.
One expects the MWA runtime to pay off better with increasing code ratios, since more
pre-computed summaries can be (re)used for a program’s library parts. The runtimes of

135

5 Modularity

both analyses measured in the WPA and MWA setup live up to that expectation. Looking
at the programs with an especially advantageous library/application ratio such as whoami,
fold, kill, cat, PhASAR, the use of pre-computed summaries saves between 81% and
91% of the analysis time. On average, MWA saves 72% of analysis time compared
to WPA while MWA’s initial one-time summarization step is, on average, 3.67 times
as expensive than the corresponding run in a WPA setup. Thus, computing the initial
summarization of the library (or infrequently changing) parts of a program is more expensive
that performing a whole program analysis. Computing summaries will always be more
expensive compared to computing plain WPA due to the additional overhead required for
organizing and maintaining the summaries. In addition, many of PhASAR’s critical analysis
parts have undergone tremendous amounts of manual optimization while ModAlyzer’s
implementation for summary generation has not yet been optimized manually. As a concrete
example, analyzing PhASAR in an MWA setup outperforms WPA with the seventh run using
the taint analysis and after the sixth run for the uninitialized variables analysis—assuming
an initial summary must be computed and no changes in PhASAR’s library occur after
summarization. For the MPT program, that has a larger number of callgraph updates to
be performed, MWA pays off with the 54th run for the taint analysis and 64th run for the
uninitialized variables analysis, respectively.

In case of PhASAR, runtime savings of 92% can be achieved as the application merely
consists of few calls into the library code. This is underlined by the three callgraph updates
that are necessary. We manually inspected the program and confirmed that, although
the amount of front-end code is certainly large, it performs only very few calls into the
corresponding library. A controller class, which is part of the library, is used to dispatch
the different tasks to solve into calls to the adequate library functionalities. This shifts large
parts of the computation to the offline MWA summarization phase.

The size of the persisted summaries that are stored along with the library code increase
a library, on average, by a factor of five in size. The code and summaries for PhASAR
require approx. 2.8 GB of memory for persistence and 30 MB for the core utils.

Summaries for static callgraph, points-to and data-flow analysis can be used to capture the
analysis effects of libraries. After a one-time pre-computation effort, this allows a runtime
reduction of 72%, on average, compared to the runtimes in whole-program mode.

5.5.4 𝑅𝑄9: Shortcuts

The number of
id
↩→ shortcuts taken by an analysis is parameterized by a predicate as described

in Section 5.3.4. For the analysesU and Twe used the predicate return type is void and uses
pass-by-value. However, different predicates might be useful for other analyses, depending
on the specific assumptions that can be made on an analysis’s domain. The results in
Table 5.3 show that both shortcuts can be frequently applied during analysis. The

id
↩→

shortcut can be applied between 535 and 210,032 times depending on the client data-flow
analysis that is performed. The

⊤
↩→ shortcut can be applied between 0 and 24,446 times.

We are confident that the number of
⊤
↩→ shortcuts could be further increased, if one adjusts

136

5.6 Limitations

PhASAR’s data-flow solvers to favour analyzing branches first that contains fewer (or no)
function calls.

Shortcuts can be frequently applied. Hence, to decrease the number of data-flow depen-
dencies and to increase the amount of complete summaries that can be pre-computed
offline, it is advisable to make use of shortcuts whenever possible.

5.6 Limitations

In this section, we briefly discuss the limitations of ModAlyzer. ModAlyzer needs to
summarize the different pieces of information presented in Figure 2.8 to be able to construct
effective module-wise summaries for a given concrete client analysis. Hence, ModAlyzer
requires analysis algorithms that produce summarizable results such as IFDS [RHS95],
IDE [SRH96] or Weighted Pushdown Systems (WPDS) [RSJ03].

For problems that are distributive, hence fit into these frameworks, the summarization
is lossless. It is generally also possible to use ModAlyzer to solve non-distributive client
analysis problems. As mentioned in Section 5.1, one cannot generally compute summaries
for non-distributive data-flow problems. In that case, the approach can only make use of the
summaries for type-hierarchy, points-to, and callgraph information, which may still lead to
large performance increases as we present in Section 5.5.

We use never-invalidating points-to information computed using an Andersen [And94]
or Steensgaard-style [Ste96] algorithm to be able to produce effective summaries. Again,
computing more precise inter-procedural, context-, and flow-sensitive points-to information
is a non-distributive problem for which no effective summaries can be computed. However,
Späth et al. showed how flow- and context-sensitive pointer analysis can be decomposed into
multiple analysis problems each of which, in turn, can be expressed within a distributive
framework [SNAB16]—making the overall problem distributive. ModAlyzer’s current
points-to algorithm could therefore also be replaced by an adjusted version the distributive
Bommerang approach proposed by Späth et al. The Boomerang approach—as is—
operates in an on-demand manner and does not compute reusable summaries nor does it
persist results. It is interesting to see the performance of ModAlyzer with an improved
Boomerang-style points-to algorithm, that reuses summaries, presented in [SNAB16], but
we consider it as future work.

As described in Section 5.5, ModAlyzer’s overall effectiveness degrades with the num-
ber of updates that must be performed while merging summaries with the application
code. Therefore, ModAlyzer’s performance increase may not apply to programs that make
excessive use of callbacks.

5.7 Related Work

Several previous approaches address, in part, the difficult problem of compositional static
program analysis [OPS92,CDG93,RR01,Dwy97,HR96,RRL99,GRS00,RMR04,XHN05,
TWX+17,CCP17]. However, existing techniques for compositional static analysis typically

137

5 Modularity

focus on data-flow or points-to analysis only. As advocated in this paper, a concrete compo-
sitional data-flow analysis client requires at the very least a combination of compositional
callgraph, points-to and data-flow analysis.

Compositional data-flow techniques rely on the functional approach [SP78] allowing to
solve distributive data-flow problems by using summary-based, inherently compositional
frameworks such as IFDS [RHS95], IDE [SRH96], or WPDS [RSJ03]. Rountev et al.
used IDE data-flow summaries to summarize large object-oriented libraries [RSX08] and
showed that a significant amount of time can be saved when using pre-computed summaries.
The approach presented by Rountev et al., however, omits to tackle the challenging task of
persisting general IDE summaries but rather discards the summaries at analysis shutdown.
StubDroid [AB16] is a fully automated approach to generate precise library models for
taint-analysis problems for the Android Framework, effectively preventing the re-analysis
of the Android Framework for the analysis of different Android apps. Both Rountev’s
approach and StubDroid assume the existence of whole-program points-to and callgraph
information.

Several works use partial points-to information in from of function-local summaries
computed using context-free language (CFL-)reachability [WR99,LSXX13,SXX12]. The
summaries can be used in various scenarios allowing, among others, for on-demand points-
to analysis, pre-analysis, and pointer analysis of partial programs using different sensitiv-
ities. These works present individual solutions to individual problems, while this paper
presents the first integrated approach and shows its effectiveness on real-world C and C++
applications.

The IDEal [SAB17] approach developed by Späth et al. is an alias-aware extension to
the IDE [SRH96] framework. IDEal embeds the alias analysis Boomerang [SNAB16]
into the IDE solver implementation HEROS [Bod12] to automatically resolve alias queries
on-demand at analysis time while solving a given distributive data-flow analysis problem.
However, it does not compute (persisted,) reusable summaries but rather computes analysis
queries on-demand and still requires external callgraph graph information.

AVERROES [AL13] uses the separate compilation assumption and Java’s constant
pool [Jav18] to generate sound and precise callgraphs without actually analyzing library
code in order to generate a placeholder library. Existing whole-program callgraph con-
struction algorithms can use the replacement to obtain a sound and precise application
callgraph. AVERROES supports callgraph construction only. Its summaries cannot be
used for precise pointer analysis, nor for precise data-flow analysis.

Other techniques try to improve the scalability of inter-procedural static analysis by
using sparse propagation of data-flow facts along def-use chains [SX16b] or demand-
driven analysis that only analyze parts of a program that a user is currently interested
in [SX16a,SNAB16]. Sparseness is a concept orthogonal to the ones proposed here. Both
could be used in combination.

Some tools, including clang-tidy [Cla18c] and CppCheck [Cpp18], trade off scalability
for reduced complexity. Thus, they only apply syntactic analysis to retrieve information on
the property of interest. Precise, fully-fledged static analysis is replaced by much simpler
checks that are capable of analyzing even million lines of code in minutes. However, these
checks are often too imprecise to check for interesting properties.

138

5.8 Conclusions

Klohs et al. described the situation for may-analysis in which⊤, representing all informa-
tion, is obtained along one path in the control-flow graph, and thus, the other path does not
have to be analyzed. This allows to remove data-flow dependencies ahead of time [Klo08].
The approach presented here adopts this insight.

ModAlyzer computes the module-level summaries in a completely unrestricted way and
does not make any assumptions about missing code. Yet, it may be advisable to compute
summaries based on various sensible assumptions in scenarios where the summarization
step can be performed ahead of time, e.g. for library pre-analysis. Tree-adjoining lan-
guages [TWZ+15] and Dyck context-free language reachability [TWX+17,CCP17] can be
used to increase the effective library summarization by computing reasonable conditional
summaries that enable greater summary reuse under certain premises checked at analysis
time of the application code. Such a strategy allows for more computations to be performed
on a module-level. During the merge, the analysis can check whether an assumption that
has been made holds and, if so, directly use the corresponding summary that may be much
more expressive than one that has been computed without any assumptions about missing
code, effectively reducing the amount of work that needs to be done while merging sum-
maries with the application code. ModAlyzer currently does not use such a conditional
summarization, however, it provides all required infrastructure to easily integrate the ap-
proach. Unfortunately, one cannot rely on programmers specifying pointer or reference
parameters as constants using the const keyword because C and C++’s type system pro-
vides several mechanisms to circumvent constant declarations (e.g. const_cast and mutable
in case of C++). Although writes through const are possible, they are used sparingly in
real-world software as shown by Eyolfson and Lam [EL16]. Therefore, one reasonable
assumption may be const means const. Especially const-qualified pointer parameters then
represent hard inter-procedural boundaries and a data-flow analysis is not concerned with
those parameters.

Early versions of Facebook’s Infer [CD11] used separation logic to allow for the compo-
sitional analysis of heap-based programs. The approach computed bottom-up summaries
using bi-abductive inference [CDOY09,BGS18], which could then be used in different call-
ing contexts. Using Infer, one could thus formulate compositional static analyses that are
evaluated using abstract interpretation. These analyses, however, were largely restricted to
finding cases of memory corruption. Since about 2019—reportedly due to a lack of general
applicability and extensibility—Infer thus does not use abductive inference for most of its
analyses any longer, and now instead bases its implementation on data-flow analysis using
abstract interpretation. This analysis is no longer compositional.

5.8 Conclusions

In this chapter, we presented ModAlyzer, a compositional approach to speeding up static
analysis using persisted summaries for callgraph, points-to and data-flow information. We
have presented an integrated strategy based on the dependencies as shown in Figure 2.8
that manages all those information and their dependencies, which many useful, concrete
client analyses impose to provide precise results. ModAlyzer allows one to compute

139

5 Modularity

static analysis summaries on individual parts of a program without the need to make any
assumptions on the missing code. These pre-computed summaries can then be (re)used
later on, effectively shifting large parts of the computational effort to an offline phase. In
particular, the pre-computed summaries can be persisted using a document-oriented store
that then be checked into the software repository of the target project. This has the great
benefit of allowing developers to share analysis information that would otherwise require
expensive recomputation. In such a scenario, any developer can check out a specific version
of the target project along with the already summarized static analysis information of the
project’s library parts, which can then be directly integrated into an analysis of the actual
application code.

Our experiments confirm the finding by previous works that actual application code
often only constitutes only a small fraction of the complete program. Thus, ModAlyzer
outperforms traditional whole program analysis in both runtime and flexibility.

Until now, we described how to improve static analysis’ scalability by exploiting the fact
that large portions of a project typically do not change frequently. We will next present
how to further adjust static analysis to cope with parts of the code that do undergo frequent
changes in a continuous integration/continuous deployment setup, for instance. This will
enable us to reduce the computations that must be conducted to produce up-to-date analysis
information from one analysis run to another to a minimum.

140

6 Incrementality

In this chapter, we detail on how to efficiently analyze software projects that are maintained
with help of version control systems and developed in a continuous integration/continu-
ous deployment (CI/CD) manner. While a software project’s library components can be
efficiently handled using ModAlyzer, its non-library components are known to change fre-
quently and hence require special treatment. The changes of individual commits in CI/CD
workflows, however, are relatively small and local as this chapter will reveal—a key fact
that we are going to exploit.

Many modern software projects are developed incrementally using continuous integration
and continuous deployment. Traditional static whole program analysis does not match
this development workflow as it has to be rerun for every change made to the code.
Hence, various incremental analysis approaches have been developed that reuse previously
computed analysis results for code that did not change since the last revision. These
approaches allow for more scalable analysis by avoiding unnecessary (re)computations.
Yet, existing incremental static analysis approaches do not take advantage of information
provided by version control systems that are used in continuous integration. In this work,
we present IncAlyzer, a novel program analysis approach that integrates version control
system information and deep incremental static analysis. IncAlyzer not only allows for
efficiently reusing previously computed analysis results, but also makes static analysis fit
for CI/CD workflows. This has great potential to allow developers to check-in persisted
analysis results alongside the respective code revision the analysis has been conducted
on, making up-to-date analysis results available to, and allowing their reuse by anyone
who checks-out the project. We implemented IncAlyzer as an extension to LLVM, VaRA,
PhASAR, and ModAlyzer. We applied it to five real-world C projects hosted on Github
and analyzed the past 50 commits of each project. Our experiments show that IncAlyzer
outperforms traditional whole program analysis, on average, by a factor of 6.99 in runtime
without any loss of precision or soundness and that its results are from-scratch consistent.

This chapter presents the design and implementation of IncAlyzer, a novel integrated
static analysis approach that computes analysis information incrementally and applies to
code that undergoes frequent changes.

6.1 Introduction

Static analysis becomes increasingly important in modern software development. Since
many years, static analysis is not only used to aid compiler optimization [Onl18,ICC18], but
also to detect bugs [CS18,Cod18, son23b,Son23a] and security breaches [KNR+17,LL05]
in software.

141

6 Incrementality

However, as we pointed out in the previous chapters, many inter-procedural static anal-
yses, i.e., whole-program analyses that reason about semantic properties of a program,
require detailed abstractions of the target program and additional helper analyses to serve
a concrete client analysis [Bod18, SLHB21]. Those detailed abstractions allow for very
precise analyses, but, in turn, impede scalability [BBC+10,TG17]. Thus, traditional precise
whole program analysis becomes prohibitively expensive for frequently changing code.

Modern application development, however, often uses continuous integration and version
control systems (VCS) such as Git [Git19], Mercurial [Hg19], or SVN [SVN19] to organize
and maintain code bases. CI/CD-style development is notorious for causing frequently
changing code. The LLVM project, for instance, usually receives more than 500 commits
per week [LLV19]. Extrapolating the number of per-week commits for the LLVM project
results in 72 commits per day, on average. Thus, a program analysis, on average, may
not exceed a timeframe of 20 minutes if all commits of a day shall undergo an analysis.
Traditionally, for every change made to the code, a whole-program analysis would be
triggered that ignores all previously computed results. Depending on the size of the
program under analysis, it is hard to impossible to run a precise, heavyweight static analysis
within a few minutes. Whole program analyses are oftentimes postponed to the end of the
day and are run in batch style during the nightly build. In such a scenario they may not
exceed the timeframe of eight hours [BBC+10]. Facebook reported that their code basis
changes so frequently that they have trouble keeping their analyses up with the code changes
such that the results are still relevant when being reported [HO18].

Summarization techniques as presented by [SHB21,AB14,RSX08] are able to summarize
libraries and parts of the code that do not change frequently. Those pre-computed summaries
can then be used while analyzing the actual application code and may decrease the analysis
time by a large factor. Tree-adjoining languages [TWZ+15] and Dyck context-free language
reachability [TWX+17, CCP17] are able to increase the amount of useful summaries by
computing reasonable conditional summaries for libraries from which the appropriate one is
chosen while analyzing the actual application code that uses those libraries. Summarization
itself is very expensive, however, which is why it is most effectively applied to parts of a
program that do not change frequently [SHB21].

Making static analysis incremental can help to improve its scalability for frequently
changing code as presented by a large number of previous works [MR14, SVE17, AB14,
Ryd83, CNDE05, LHR19]. The idea of incremental analysis is that changes made to a
program are usually small [Swa76,HL08,BCSD14] and thus, should only cause invalidation
of a small amount of the analysis results, allowing one to reuse large parts of previously
computed analysis results. Incrementality has been proven to speed up computations by
magnitudes as shown by [BWR+11,SAIM08].

Yet, existing incremental static analysis techniques ignore the information provided by
VCSs and are only concerned with data-flow information [AB14, CD11, SEV16, SVE17].
The Reviser [AB14] approach, for instance, assesses the parts of the data-flow results that
can be reused based on the inter-procedural control-flow graph. Since the computation of
precise callgraph information also requires points-to information and vice versa [Bod18], the
information for control-flow, callgraph, and points-to needs to be recomputed from scratch
for each increment and thus, the approach only allows for a limited form of incrementality.

142

6.1 Introduction

The computation of precise control-flow, callgraph, and points-to information can take
minutes if not hours to compute on their own. Previous versions of Facebook’s Infer [CD11]
used separation logic to allow for the compositional analysis of heap-based programs.
The approach computed bottom-up summaries using bi-abductive inference [CDOY09,
BGS18], which can be used in different calling contexts. However, the approach aims at
the verification of memory safety of C and C++ code and is restricted to this use case and
has been replaced because of the lack of general application. The IncA [SEV16] approach
allows for efficient incremental program analysis using graph patterns and incremental
matching algorithms. IncA, however, is restricted to intra-procedural analysis.

In this chapter, we present IncAlyzer, an incremental static analysis approach that uses
version control system information to precisely determine what code has changed from
one version to another. Using the variability-aware VaRA framework [Sat23, SBS+23] for
detecting interactions between code regions that convey a semantic meaning, e.g. detecting
blocks of code that belong to a specific commit of a VCS, allows us to propagate the changes
made to the source code into the underlying intermediate representation (IR) and access
them at the IR level on which the static analysis is conducted on. After an initial computation
of whole-program analysis information for the complete analysis stack (cf. Section 2.3)
using the PhASAR framework, we are able to use ModAlyzer [SHB21] to persist all required
information to conduct a concrete client data-flow analysis, i.e., control-flow, callgraph,
points-to, class-hierarchy (in case of C++), and data-flow information [Bod18,SLHB21].

In each subsequent analysis run, IncAlyzer uses VCS information prepared by VaRA to
precisely determine what piece of code has changed, and therefore, what analysis informa-
tion must be recomputed and potentially repropagated. Contrary to the Reviser [AB14]
approach, which only considers the data-flow parts of a client analysis for its incremental
analysis and computes the code delta based on the inter-procedural control-flow graphs,
our approach makes the complete client analysis stack (control-flow, callgraph, points-to,
type-hierarchy and data-flow information) incremental and uses VCS information to ob-
tain the code delta directly. If IncAlyzer recognizes that a code change has no impact on
the semantics of the program while producing commit-annotated IR, it concludes that no
(re)analysis is required at all—a situation that occurs more often than one might think as we
will show in our evaluation. IncAlyzer has great potential to allow developers to check-in
persisted static analysis results directly to the VCS managed code repository for each com-
mit of a project which can then be both kept in sync throughout the continuous integration
development of the project (cf. Section 1.3 and Figure 1.1). This has the advantage that
each revision only needs to be analyzed once. Any developer can check-out a code revision
accompanied by its respective up-to-date analysis results allowing them to check and reuse
them for (incremental) analysis locally.

This further allows static analysis information for its corresponding commit to be viewed
as a “certificate” that can be checked instantly for each given commit, depending on the
precision and capabilities of the underlying client analysis, of course. One may even
bind those “certificates” to the code using cryptographic hashing, to avoid accidental or
intentional manipulation.

In summary, this chapter makes the following contributions:

143

6 Incrementality

• An incremental static analysis approach that utilizes version control information
to analyze projects, that use continuous integration, with minimal effort from one
increment to another.

• A C++-based implementation of IncAlyzer within the PhASAR [SHB19], ModA-
lyzer [SHB21], VaRA [Sat23, SBS+23], and LLVM [LA04] frameworks allowing
one to incrementally analyze C and C++ projects managed with Git [Git19] using
client analyses that can be expressed using distributive data-flow frameworks (e.g.
IFDS [RHS95] or IDE [SRH96]).

• An experimental evaluation of our approach that shows its usefulness and effective-
ness on real-world software projects.

6.2 Motivating Example

In the following, we present a motivating example which we use to showcase the challenges
when statically analyzing projects that are developed using a CI/CD workflow and version
control systems.

An excerpt of an exemplary project that uses a VCS is shown in Listing 6.1, Listing 6.2,
and Listing 6.3. The project follows the common git flow conventions [Dri10] and its
branching model is depicted as a graph in Figure 6.1. The project comprises a development
branch named develop that consists of the commits 𝐷1 and 𝐷2. In addition, it comprises
a feature branch named sanitize that consists of the two commits 𝐹1 and 𝐹2.

The commit 𝐷1 shown in Listing 6.1 adds code that implements a small command-line
application that retrieves student names associated with an id from a database and prints
them to the command line. The id is passed as a command-line parameter to the application
and is used to construct the SQL query in Line 15 which is send to a database. The
application, however, is vulnerable to SQL injections because the command-line argument
argv[1], which may contain malicious contents, is not checked but directly concatenated
to the string q. Carefully crafted malicious user inputs such as 10 OR TRUE; DROP TABLE
name; may have serious consequences and can alter the database in an undesired manner.

The feature branch sanitize is used to implement a fix such that the program is no
longer vulnerable to SQL injections. Listing 6.2 shows the commit 𝐹1 that provides parts
of a fix by passing the string input to the sanitize() function—an implementation
stub that aims at sanitizing user inputs. The commit 𝐹2 shown in Listing 6.3 eventually
provides a concrete implementation for the sanitization function and therefore, disperses
the vulnerability. (A realistic SQL sanitization function would be much more complex but
has been omitted for brevity.) To avoid cluttering, Listing 6.2 and Listing 6.3 only show
excerpts of the respective diffs.

A static analysis that aims at analyzing projects developed in a CI/CD style incrementality
needs to perform a full analysis run on a certain commit first and then has to update the
analysis results for each subsequent commit. In order to update the analysis results, an
incremental approach needs to determine the changes made to the code, recompute the static
analysis information for control-flow, callgraph, points-to, type hierarchy, and data-flow that

144

6.2 Motivating Example

has been invalidated and finally, needs to re-propagate those updated analysis information
to obtain the final results. For a concrete client analysis, we assume the dependencies shown
in Figure 2.8 that many realistic analyses impose. When implementing such an approach
we face two challenges:

1. We need to update code and corresponding analysis information and keep them in
sync for each subsequent commit such as 𝐷1 → 𝐷2 or 𝐹1 → 𝐹2.

2. We need to efficiently handle merges of different branches in which code and corre-
sponding analysis information drifted further apart than in two subsequent commits.
Figure 6.1 contains a merge of the two branches 𝐷1 and 𝐹2: 𝐹2↘

𝐷1↗𝐷2.

Note that branching can be modeled as two individual subsequent commits.
To detect the vulnerability in Listing 6.1, a taint analysis shall be performed. In the

following, we sketch our approach by describing an analysis scenario along the route
𝐷1 → 𝐹1 ↘

𝐷1↘
𝐹2↗ 𝐷2. Initially, no static analysis information for the project under analysis is

available. Starting at commit 𝐷1, a full whole-program analysis run is performed in which
all analysis information that is required to answer a concrete client analysis, i.e., control-
flow, callgraph, points-to, type hierarchy, and data-flow information, is computed. Next, the
subsequent commit 𝐹1 (c.f. Listing 6.2) introduces a new function sanitize () . In addition,
we can observe that the main() function has been altered: the call to Statement::executeQuery()
in Line 15 is replaced by Lines 29–31 in which the user input is passed to sanitize () and is
then concatenated to q after which the resulting new string variable qi is passed to Statement
::executeQuery(). By default, IncAlyzer invalidates analysis information on a function level.
However, it can be parameterized to operate on an instruction or basic-block level instead.
As 𝐹1 changed instructions in main(), its analysis information must be invalidated. main()’s
pointer information is recomputed and outgoing callgraph edges of the node representing
main() are updated, such that a new call edge representing the call to sanitize () is introduced.
When discovering the novel call to sanitize () , its points-to information is computed, too.
Data-flow information is invalidated for main() and data-flows are repropagated along the
previously updated callgraph.

The next commit 𝐹2, whose diff is shown in Listing 6.3, replaces the todo comment
in the sanitize () function with an actual implementation that we assume—for the sake of
brevity—to sanitize the string referred to by the parameter s. Its pointer information is
invalidated and updated. The callgraph node representing sanitize () has no outgoing edges
that need to be followed. However, there is an incoming edge at Line 29. Incoming edges
to modified functions tell the data-flow analysis where repropagation is necessary. The
analysis detects that the flow fact representing s is now killed in the updated version of
sanitize () . This new insight is now further propagated until the analysis detects the call to
the sink Statement::execute() at which point there are no tainted variables. The propagation of
data-flow facts could, in theory, stop as soon as the analysis detects data-flow facts that are
a more coarse-grain representation of the facts of interest or in other words that are located
higher up in the underlying lattice. While this would retain soundness of the analysis, it
would—over time—introduce an unsustainable amount of imprecision and therefore, false
positives: in the example, the analysis would still report a leak at Line 31. The data-flow

145

6 Incrementality

facts are hence propagated until the analysis finds that the facts are killed or until it detects
merge points that bring data-flow facts on the same level (or higher up) of the lattice.

At last, the commits 𝐷1 and 𝐹2 are merged to produce 𝐷2.
The analysis strategy is described in detail in Section 6.4.

develop sanitize

𝐷1

𝐷2

𝐹1

𝐹2

Ξ𝐷1

Ξ𝐷2

Ξ𝐹1

Ξ𝐹2

Figure 6.1: An exemplary git flow that shows a project’s development and one of its
feature branches develop and sanitize, respectively. Each increment of the
project is accompanied by its static analysis information Ξ to answer a
concrete client analysis.

1 i n t main (i n t argc , char ∗∗argv) {
2 / / check command−l i n e parame te r s
3 t ry {
4 Driver ∗ dr iv er ;
5 Connection ∗con ;
6 Statement ∗ stmt ;
7 Resu l tSe t ∗ re s ;
8 dr iv er = g e t _ d r i v e r _ i n s t a n c e () ;
9 con = driver −>connect (" tcp : / / 1 2 7 . 0 . 0 . 1 : 3 3 0 6 " ,

10 " roo t " , getPassword ()) ;
11 con−>setSchema ("MyDatabase") ;
12 stmt = con−>crea t eS ta t ement () ;
13 s t r i n g q = "SELECT name FROM studen t s WHERE id=" ;
14 s t r i n g input = argv [1] ;
15 re s = stmt−>executeQuery (q + input) ;
16 res −>b e f o r e F i r s t () ;
17 whi le (res −>next ()) {
18 cout << res −>g e t S t r i n g ("name") ;
19 }
20 d e l e t e r e s ;
21 d e l e t e stmt ;
22 d e l e t e con ;
23 } ca tch (SQLException &e) {
24 / / handle e x c e p t i o n
25 }
26 re turn 0;
27 }

Listing 6.1: Commit 𝐷1

146

6.3 Terminology and Notation

28 − re s = stmt−>executeQuery (q + input) ;
29 + s a n i t i z e (input) ;
30 + s t r i n g q i = q + input ;
31 + re s = stmt−>executeQuery (q i) ;
32
33 + void s a n i t i z e (s t r i n g &s) {
34 + /∗ TODO ∗ /
35 + }

Listing 6.2: Commit 𝐹1

36 − /∗ TODO ∗ /
37 + rep l a c e (s . begin () , s . end () , ’ \ ’ ’ , ’ ’) ;

Listing 6.3: Commit 𝐹2

6.3 Terminology and Notation

In the following, we introduce some terminology and notations that we use to describe our
incremental analysis approach.

6.3.1 Model of a Version Control System

We use𝐶𝑖 to denote a commit of a project 𝑃, where𝐶0 represents the initial and𝐶𝑛 the most
recent commit of the project. We use Δ

𝑐𝑖+1
𝑐𝑖 (𝑃) = {⟨𝑖𝑘 , 𝑚⟩}, where 𝑚 ∈ {+,−} to denote

the set of instructions in the source code that did undergo changes from commit 𝐶𝑖 to 𝐶𝑖+1.
An instruction 𝑖𝑘 might have been added or deleted. The modification of a instruction is
modeled in terms of deletion and addition similar to version control systems’ semantics.

6.3.2 Model of Analysis Information

The complete static analysis information is denoted as Ξ and thus Ξ𝐶𝑖
represents the static

analysis information at the commit 𝐶𝑖 . Note that due to IncAlyzer’s use of IFDS [RHS95]
and IDE [SRH96] as well as ModAlyzer’s [SHB21] compositional representations, we are
able to express all static analysis information as graphs. Hence, we useΔ𝑐𝑖+1

𝑐𝑖 (Ξ) = {⟨𝑒𝑘 , 𝑚⟩}
to denote the difference in the static analysis information that hold at commit 𝐶𝑖 and 𝐶𝑖+1
in terms of graph edges 𝑒𝑘 that have been added or removed.

6.4 Incremental Update Analysis

In this section, we present our approach to VCS-based incremental update analysis in detail.

147

6 Incrementality

6.4.1 Preparing Commit Metadata

State-of-the-art compiler and analysis frameworks do not have repository metadata at their
disposal. Hence, before we can utilize repository meta data in our analysis framework, we
first need to mine it from the target repository and second, need to integrate it with the
intermediate representation (IR) that the static analysis is conducted on.

We achieve this by modifying the compiler such that during the construction of the
IR, repository metadata, in the form of commit hashes, is mined from the repository and
attached to the corresponding IR. In detail, the modified compiler determines the last
change, i.e., commit for each source-code line by accessing repository metadata using git-
blame, 1 for instance, and then annotates the commit hash to the respective IR instruction.
This allows one to determine, for every IR instruction, the commit that introduced or last
modified the corresponding source code. Furthermore, we can aggregate this information
to determine the last commit which modified a function, by selecting the oldest commit
that is not an ancestor of any other commit in the function.

6.4.2 Change Scenarios

Code changes constantly during software development, new source code gets added, existing
code is changed or deleted. These code changes, however, often only partially invalidate
previously computed analysis results. To reuse these previously computed results, we need
to determine which parts of the analysis results can be reused safely and which need to
be recomputed. We define four different change scenarios (CS) that trigger a (partial)
reevaluation of the analysis results:

• CS1: New code is added to the code base. In this case, we spawn the analysis at
newly added functions. For all other functions, we compute the commit hash that
most recently modified each function and reanalyze functions if the commit is newer
than the one we stored during the previous analysis run. An example that depicts this
situation is shown in Listing 6.4.

• CS2: Existing code is changed. For changes to existing code, we use the same
detection as with CS1, by computing for every function the commit hash which most
recently modified it. This situation is shown in Listing 6.5.

• CS3: Code is deleted that had data-flow connections to code that still exists in the
new revision. Listing 6.6 highlights this situation in which the complete definition
for variable y is removed. However, code that made use of y is also modified and y’s
usages are removed which allows us to detect this type of deletion. Compared to the
previous two cases, deletions, in general, cannot be directly detected by computing
the commit hash because the instructions corresponding to the original code are no
longer present. However, if there are other instructions that previously depended on
the deleted code, their data flows change, which (transitively) causes their commit

1Git-blame is a tool that annotates each line with the commit that last modified it.

148

6.4 Incremental Update Analysis

hash to change, too. This allows us to identify and reanalyze all functions whose
commit hash changed.

• CS4: Code is deleted that had no direct data-flow relations to other instructions. In
Listing 6.7, the entire definition for variable z is removed. This time, however, z had no
direct users. Compared to the previous deletion case CS3, we cannot obtain updated
commit hashes based on other instructions. We detect this case by combining commit
information with the number of instructions generated for each function. If the most
recent commit hash did not change, but the number of instructions of a function did
change, we know that code was deleted and we need to reanalyze this function. Note
that simply using the number of instructions does not work, since changed code can
lead to the same amount of instructions with different semantics. Only by combining
the number of instructions with the commit hash we can be certain that code was
deleted. Hypothetically, a compiler bug could generate a function with different
semantics but identical commit hash and number of instructions which would not
be reanalyzed, resulting in partially incorrect analysis result. However, this problem
exists regardless of our approach.

1 / / ===−−− Rev i s i on C_i −−−−−−−−−−−=== / /
2 # inc lude <iostream > / / > 3 e8882e
3 / / > 3 e8882e
4 void foo () { / / > 3 e8882e
5 s td : : cout << "Hello , World ! \ n" ; / / > 3 e8882e
6 } / / > 3 e8882e
7 / / ===−−− Rev i s i on C_i+1 −−−−−−−−−=== / /
8 # inc lude <iostream > / / > 3 e8882e
9 / / > 3 e8882e

10 void foo () { / / > 3 e8882e
11 s td : : cout << "Hello , World ! \ n" ; / / > 3 e8882e
12 } / / > 3 e8882e
13 / / > ea8426c
14 i n t add (i n t i , i n t j) { / / > ea8426c
15 re turn i + j ; / / > ea8426c
16 } / / > ea8426c

Listing 6.4: Change scenario CS1

149

6 Incrementality

17 / / ===−−− Rev i s i on C_i −−−−−−−−−−−=== / /
18 i n t getValue (i n t i) { / / > c4d9b1a
19 i f (i > 2) { / / > c4d9b1a
20 re turn 42; / / > c4d9b1a
21 } / / > c4d9b1a
22 re turn 13; / / > c4d9b1a
23 } / / > c4d9b1a
24 / / > c4d9b1a
25 i n t main (i n t argc , char ∗∗argv) { / / > c4d9b1a
26 i n t x = getValue (argc) ; / / > c4d9b1a
27 re turn 0; / / > c4d9b1a
28 } / / > c4d9b1a
29 / / ===−−− Rev i s i on C_i+1 −−−−−−−−−=== / /
30 i n t getValue (i n t i) { / / > c4d9b1a
31 i f (i > 9001) { / / > 0872 f49
32 re turn 42; / / > c4d9b1a
33 } / / > c4d9b1a
34 re turn 13; / / > c4d9b1a
35 } / / > c4d9b1a
36 / / > c4d9b1a
37 i n t main (i n t argc , char ∗∗argv) { / / > c4d9b1a
38 i n t x = getValue (argc) ; / / > c4d9b1a
39 re turn x ; / / > 0872 f49
40 } / / > c4d9b1a

Listing 6.5: Change scenario CS2

41 / / ===−−− Rev i s i on C_i −−−−−−−−−−−=== / /
42 i n t main (i n t argc , char ∗∗argv) { / / > 5 ba132e
43 i n t x = 42; / / > 5 ba132e
44 i n t y = x ∗ 2 + argc ; / / > 5 ba132e
45 i n t z = y + 9001; / / > 5 ba132e
46 z += 441; / / > 5 ba132e
47 re turn z ; / / > 5 ba132e
48 } / / > 5 ba132e
49 / / ===−−− Rev i s i on C_i+1 −−−−−−−−−=== / /
50 i n t main (i n t argc , char ∗∗argv) { / / > 5 ba132e
51 i n t x = 42; / / > 5 ba132e
52 i n t z = x + 9001; / / > 9 fc62a4
53 z += 441; / / > 5 ba132e
54 re turn z ; / / > 5 ba132e
55 } / / > 5 ba132e

Listing 6.6: Change scenario CS3

150

6.4 Incremental Update Analysis

56 / / ===−−− Rev i s i on C_i −−−−−−−−−−−=== / /
57 i n t main (i n t argc , char ∗∗argv) { / / > 74 ed397
58 i n t x = 42; / / > 74 ed397
59 i n t y = x ∗ 2 + argc ; / / > 74 ed397
60 i n t z = 9001; / / > 74 ed397
61 z += 441; / / > 74 ed397
62 re turn y ; / / > 74 ed397
63 } / / > 74 ed397
64 / / ===−−− Rev i s i on C_i+1 −−−−−−−−−=== / /
65 i n t main (i n t argc , char ∗∗argv) { / / > 74 ed397
66 i n t x = 42; / / > 74 ed397
67 i n t y = x ∗ 2 + argc ; / / > 74 ed397
68 re turn y ; / / > 74 ed397
69 } / / > 74 ed397

Listing 6.7: Change scenario CS4

6.4.3 Compute Whole Program Information

IncAlyzer aims at computing all static analysis information that is required to serve a con-
crete client data-flow analysis incrementally such as to avoid unnecessary re-computations
as much as possible. For the IncAlyzer approach we too assume the dependency model
presented in Section 2.3 and shown in Figure 2.8, which many realistic client analyses
impose and that also has been successfully applied by [SHB21,SLHB21].

Initially, there is no static analysis information for the project under analysis. Thus, Inc-
Alyzer needs to compute and potentially persist, if desired, the static analysis information
Ξ𝐶𝑖

for a given commit 𝐶𝑖 that shall serve as the point of initialization of static analy-
sis information using whole program analysis. IncAlyzer uses the ModAlyzer approach
presented in Chapter 5 to modularly compute analysis information.

ModAlyzer produces, as a result, a modular function- and module-level in-memory,
graph-based summary representation of the complete static analysis stack Ξ𝐶𝑖

. These sum-
maries (that can also be persisted for later use) are typically pre-computed for a program’s
library parts and then applied while analyzing the actual application code allowing for
significant performance improvements. IncAlyzer uses these graph-based summaries to
make the full static analysis stack incremental.

6.4.4 Compute Incremental Updates

We next describe how IncAlyzer computes incremental updates for a subsequent commit
𝐶𝑖+1 based on the static analysis information Ξ𝐶𝑖

. In order to make the analysis run incre-
mentally, IncAlyzer first computes the change set 𝐼 = Δ

𝐶𝑖+1
𝑐𝑖 (𝑃) using VaRA as described

in Section 6.4.1 and Section 6.4.2. Using 𝐼, we effectively need to map the changes made
to the code to the changes in terms of static analysis information in order to compute Ξ𝐶𝑖+1
while reusing as much information of Ξ𝐶𝑖

as possible. IncAlyzer computes Ξ𝐶𝑖+1 with help
of 𝐼 and Ξ𝐶𝑖

using an (i) invalidate – (ii) recompute – (iii) update strategy.

151

6 Incrementality

To assess 𝐼’s effects on the concrete client analysis and to compute Ξ𝐶𝑖+1 , we need to
make suitable updates to the data-flow information to answer the client analysis a static
analysis user is eventually interested in. As the IFDS/IDE frameworks compute the data-
flow information by building an exploded super-graph that is based on the inter-procedural
control-flow graph, we need to compute the diff of the inter-procedural control-flow graphs
of 𝐶𝑖 and 𝐶𝑖+1 to be able to decide what pieces of information need to be invalidated and
recomputed. To determine the unknown inter-procedural control-flow graph of 𝐶𝑖+1, we
need to make suitable updates to 𝐶𝑖’s callgraph. This requires information on points-to
graphs as per ModAlyzer’s compositional representation. To update the points-to graphs,
we need information on the source code that is provided by 𝐼. We describe IncAlyzer’s
strategy in what follows.

Type Hierarchy Information First, IncAlyzer iterates 𝐼, the set of modified instructions
and identifies instructions that allocate types previously unknown in𝐶𝑖 . The types that have
been introduced in 𝐶𝑖+1 are added to the type hierarchy. Virtual function tables are updated
according to instructions whose hosting virtual function 𝑓𝑖 has been added or removed in
𝐶𝑖+1. Indirect callsites that depend on 𝑓𝑖 must be invalidated according to the dependencies
maintained by ModAlyzer.

Points-to Information Next, 𝐼, the set of modified instructions, is iterated and all
function-wise pointer assignment graphs that correspond to the individual functions 𝑓𝑖
that did undergo changes, i.e, that include at least one 𝑖𝑘 ∈ 𝐼, are invalidated and recom-
puted. The points-to information that is based on those pointer-assignment graphs (PAGs)
is recomputed anew, too.

Callgraph Information Since modifications made to one piece of analysis information
may heavily influence other pieces of analysis information, which, in turn, may influence
further information and so on, IncAlyzer computes the incremental update for the various
helper analyses using a worklist algorithm that follows the invalidate, recompute, update
strategy. The worklist algorithm is shown in Algorithm 5. Once the worklist is empty
and the algorithm’s fixed point is reached, the helper analyses are up-to-date and represent
the state of 𝐶𝑖+1. Information exchange between the various types of helper analyses is
implemented using a mediator pattern [Gur23]. The worklist algorithm uses a mediator
that triggers invalidation, recomputation, and updates for the type hierarchy, points-to, and
callgraph analyses, respectively and uses a revise info type 𝑅 := 𝐼 × 𝑇 for communication.
Instances of 𝑅 carry information about an instruction 𝑖𝑘 ∈ 𝐼 and its type of information
𝑇 := TypeHierarchy, PointsTo,Callgraph,All that must be invalidated and recomputed.
The worklist is initialized with {𝑖𝑘 ,All}, the set of all modified instructions invalidating all
previously computed information for these instructions except data flows. The algorithm
then removes an element ⟨𝑖𝑘 , 𝑡𝑖⟩ from the worklist and triggers the respective helper analyses
specified by 𝑡𝑖 to invalidate and update information on 𝑖𝑘 . Since updated information may
also invalidate other analysis information, the algorithms queries each helper analysis for
further revise infos to determine what else might have been invalidated through the update.

152

6.4 Incremental Update Analysis

Any potential revise infos obtained by queries to the helper analyses are then added to the
worklist, again.

120 Function updateHelperAnalyses(𝐶𝑖 , 𝐶𝑖+1, 𝑇 , 𝑃, 𝐶):
121 𝑆 = computeDelta (𝐶𝑖 , 𝐶𝑖+1);
122 𝑅 = makeReviseInfos (𝑆);
123 while 𝑅 ! = ∅ do
124 ⟨𝑖𝑘 , 𝑡𝑘⟩ = 𝑅.𝑝𝑜𝑝();
125 if 𝑡𝑘 == 𝑇𝑦𝑝𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 | | 𝑡𝑘 == 𝐴𝑙𝑙 then
126 𝑇.invalidateAndRecompute(𝑖𝑘);
127 𝑅 ∪ = 𝑇.invalidates();
128 if 𝑡𝑘 == 𝑃𝑜𝑖𝑛𝑡𝑠𝑇𝑜 | | 𝑡𝑘 == 𝐴𝑙𝑙 then
129 𝑃.invalidateAndRecompute(𝑖𝑘);
130 𝑅 ∪ = 𝑃.invalidates();
131 if 𝑡𝑘 == 𝐶𝑎𝑙𝑙𝑔𝑟𝑎𝑝ℎ | | 𝑡𝑘 == 𝐴𝑙𝑙 then
132 𝐶.invalidateAndRecompute(𝑖𝑘);
133 𝑅 ∪ = 𝐶.invalidates();

Algorithm 5: Worklist algorithm that employs the mediator pattern [Gur23] to incre-
mentally update the helper analyses.

Data-Flow Information Once IncAlyzer computed the incremental update of the helper
analyses using the fixed-point algorithm shown in Algorithm 5, it updates data flows
by applying the Reviser approach for incrementally updating IFDS/IDE-based data-flow
analysis presented by Arzt et al. [AB14]. The algorithms for incrementally computing data
flows are shown in Algorithm 6, Algorithm 7, Algorithm 8, and Algorithm 9.

Reviser’s general idea is to consider all ICFG nodes that are transitively reachable from
a changed node as affected. The data-flow information for all affected nodes must be
updated to reflect the new software revision 𝐶𝑖+1. Algorithm 6 shows the entry point and
initialization of the incremental data-flow computation.

First, all path edges (also known as jump functions) of the ESG that correspond to ICFG
nodes that have been removed in 𝐶𝑖+1 are cleared, along with their corresponding value.
Also any summary for a node 𝑛 ∈ 𝑁− is cleared (cf. Lines 137 – 140). In the event that no
control-flow edges have been altered for the software increment from 𝐶𝑖 to 𝐶𝑖+1, data-flow
computation can stop here.

In case an ICFG predecessor node 𝑛1 of a modified control flow is part of a loop, the pre-
decessor node of the loops entry point is chosen as a safe overapproximation. Otherwise, 𝑛1
is added to the set of affected nodes 𝑁 (cf. lines 149 – 153). Next, the forwardTabulateSLRPs
subroutine is called in update mode to process a worklist of path edges that contain affected
nodes (cf. Lines 156 – 161). For efficiency reasons, forwardTabulateSLRPs propagates
and clears outdated IDE information for changed nodes in one step, instead of running in
two individual analysis passes. Once IDE information has been cleared for all modified
ICFG nodes and transitively reachable affected nodes, a worklist is scheduled to spawn

153

6 Incrementality

recomputation of data flows starting from the predecessors of changed nodes 𝑛, which is
then processed by another call to forwardTabulateSLRPs in compute mode, which represents
the original IDE iterations (cf. Lines 162 – 168). At this point, all path edges (or jump
functions) affected by the code changes Δ

𝐶𝑖+1
𝐶𝑖

are up-to-date and represent the effects of
𝐶𝑖+1.

As a last step, their respective evaluations are cleared (cf. 169 – 172) and their values are
recomputed using the original phase II of the IDE algorithm as indicated in Algorithm 6
Lines 173 – 173 and shown in Algorithm 9.

Answering the Client Analysis Once the data flows have been updated according to
the incremental IDE algorithm described above, IncAlyzer has computed the full update
Ξ𝐶𝑖+1 for 𝐶𝑖’s subsequent commit 𝐶𝑖+1. These information can now be used to answer
client queries. For the commit 𝐹2 in our motivating example in Listing 6.1, Listing 6.2, and
Listing 6.3 a taint analysis would find that variable qi is no longer tainted. Ξ𝐶𝑖+1 can also
be persisted using ModAlyzer and checked into the target program’s repository to make the
analysis information available to anyone who checks out 𝐶𝑖+1. This enables the workflow
that has been described in Section 1.3.

6.5 Implementation

We implemented IncAlyzer on top of PhASAR [SHB19], ModAlyzer [SHB21], VaRA [Sat23,
SBS+23], and LLVM [LA04].

The VaRA framework [Sat23, SBS+23] has been built for making commit information
of a given target project available at the LLVM IR level. The VaRA project is essentially
a fork of LLVM that not only integrates repository metadata in form of commits into the
compiler’s IR, but also provides a modified version of the Clang compiler (Vlang), which
automatically adds a project’s Git-blame information to the IR using LLVM’s metadata
mechanism. Git blame provides information on which commit last modified each line of
a source file checked into a Git repository. Vlang collects this information and adds it as
custom AST nodes into compiler’s internal representation. During code generation, VaRA
adds the git-blame information to the respective LLVM IR instructions.

For conducting static program analysis on the commit-annotated LLVM IR, we use
PhASAR, which provides its users with all required infrastructure to implement deep static
program analyses and offers various analyses for computing (inter-procedural) control-flow
graphs, callgraphs, type hierarchy, and points-to information. The incremental IDE solver
has been implemented by extending PhASAR’s existing IFDS [RHS95]/IDE [SRH96] im-
plementations; it is essentially a slightly modified version of the implementation presented
by Arzt et al. in [AB14].

We implemented the new incremental helper analyses by providing appropriate overrides
for the type hierarchy, points-to and (inter-procedural) control-flow graph, and callgraph
interfaces. Most of PhASAR’s analysis type implemented for LLVM IR directly operate
on LLVM IR types. To make our new implementations incremental, we introduced special
updatable wrapper types that allow for exchanging the actual underlying LLVM entity. This

154

6.5 Implementation

134 Function computeIncrementalUpdate(𝐶𝑖 , 𝐶𝑖+1):
135 𝑆 = Δ

𝐶𝑖+1
𝑐𝑖 (𝑃);

136 𝐹 = getModifiedFunctions (𝑆);
137 forall 𝑛 ∈ 𝑁−; 𝑑1, 𝑑2 ∈ 𝐷; 𝑣 ∈ 𝑉 do
138 𝑃𝑎𝑡ℎ𝐸𝑑𝑔𝑒 := 𝑃𝑎𝑡ℎ𝐸𝑑𝑔𝑒 \ ⟨𝑑1, 𝑛, 𝑑2⟩;
139 𝑣𝑎𝑙 := 𝑣𝑎𝑙 \ ⟨𝑛, 𝑑1, 𝑣⟩;
140 𝐸𝑛𝑑𝑆𝑢𝑚 [⟨𝑛, 𝑑1⟩] = ∅;
141 if 𝐸+ ∪ 𝐸− = ∅ then
142 return;
143 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑜𝑑𝑒𝑠 := ∅;
144 𝑐ℎ𝑔𝐸𝑛𝑑𝑆𝑢𝑚𝑠 := ∅;
145 𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡 := ∅;
146 𝑎𝑙𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑠 := ∅;
147 𝑜𝑙𝑑𝐸𝑆 := 𝐸𝑛𝑑𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠;
148 forall ⟨𝑛1, 𝑛2⟩ ∈ (𝐸+ ∪ 𝐸− ∪ 𝐸#) do
149 if 𝑖𝑠𝑃𝑎𝑟𝑡𝑂 𝑓 𝐿𝑜𝑜𝑝(𝑛1) then
150 𝑙𝑠 := 𝑔𝑒𝑡𝐿𝑜𝑜𝑝𝑆𝑡𝑎𝑟𝑡 (𝑛1);
151 𝑁 := 𝑔𝑒𝑡𝑃𝑟𝑒𝑑𝑠𝑂 𝑓 (𝑙𝑠);
152 else
153 𝑁 := {𝑛1};
154 forall 𝑛 ∈ 𝑁, 𝑑1, 𝑑2 : (𝑑1, 𝑛, 𝑑2) ∈ 𝑃𝑎𝑡ℎ𝐸𝑑𝑔𝑒 do
155 𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡 := 𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡 ∪ {⟨𝑑1, 𝑛, 𝑑2⟩};
156 forwardTabulateSLRPs(𝑈𝑝𝑑𝑎𝑡𝑒, 𝑐𝑛𝑒𝑤);
157 if ∃𝑒𝑝 ∈ 𝑒𝑝𝑟𝑜𝑐 (𝑑2) : 𝑒𝑝 ∈ (𝑁+ ∪ 𝑁−) ∨ ∃𝑑1 ∈ 𝐷, 𝑠𝑝 ∈ 𝑠𝑝𝑟𝑜𝑐 (𝑑2) :

𝑜𝑙𝑑𝐸𝑆[⟨𝑠𝑝, 𝑑1⟩] ≠ 𝐸𝑛𝑑𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠[⟨𝑠𝑝, 𝑑1⟩] then
158 forall 𝑐 ∈ 𝑐𝑎𝑙𝑙𝑆𝑖𝑡𝑒(𝑝𝑟𝑜𝑐(𝑑2)), 𝑑 ∈ 𝑠𝑢𝑐𝑐𝑠(𝑐) do
159 𝐸# = 𝐸# ∪ ⟨𝑐, 𝑑⟩;
160 𝑎𝑙𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑠 = 𝑎𝑙𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑠 ∪ 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑜𝑑𝑒𝑠;
161 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑜𝑑𝑒𝑠 = ∅;
162 forall 𝑛 ∈ 𝑎𝑙𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑠 do
163 𝑝𝑟𝑒𝑑𝑠 := {𝑚 : 𝑚 → 𝑛 ∈ 𝑐𝑛𝑒𝑤};
164 if |𝑝𝑟𝑒𝑑𝑠 | ≥ 2 then
165 forall 𝑚 ∈ 𝑝𝑟𝑒𝑑𝑠 do
166 forall 𝑑1, 𝑑2 : (𝑑1, 𝑚𝑑2) ∈ 𝑃𝑎𝑡ℎ𝐸𝑑𝑔𝑒 do
167 𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡 := 𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡 ∪ {⟨𝑑1, 𝑚𝑑2⟩};
168 forwardTabulateSLRPs(𝐶𝑜𝑚𝑝𝑢𝑡𝑒, 𝑐 𝑓 𝑔);
169 forall 𝑛1 ∈ 𝑎𝑙𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑠 do
170 forall 𝑛𝑖 : ∃𝑛1, · · · , 𝑛𝑖 ∈ 𝑁;∀𝑖 : 𝑛𝑖 → 𝑛𝑖+1 ∈ 𝑐 𝑓 𝑔 do
171 forall 𝑑 ∈ 𝐷; 𝑣𝑎𝑙 (𝑛, 𝑑) ≠ ∅ do
172 𝑣𝑎𝑙 (𝑛, 𝑑) = ∅;
173 forall 𝑛1 ∈ 𝑎𝑙𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑠 do

; // run original Phase II for (𝑛, 𝑑) – Algorithm 9,
see [SRH96], page 149

Algorithm 6: Modified IFDS/IDE algorithm for computing data flows (phase I of the
IDE algorithm) incrementally. Reproduced from [AB14].

155

6 Incrementality

174 Function forwardTabulateSLRPs(𝑚𝑜𝑑𝑒, 𝑐 𝑓 𝑔):
175 while 𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡 ≠ ∅ do
176 Select and remove an edge ⟨𝑠𝑝, 𝑑1⟩ → ⟨𝑛, 𝑑2⟩ from 𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡;
177 switch 𝑛 do
178 case 𝑛 ∈ 𝐶𝑎𝑙𝑙𝑝 do
179 if 𝑑2 = 𝜖 then
180 maybeClearAndPropagate(⟨𝑑1, 𝑟𝑒𝑡𝑆𝑖𝑡𝑒(𝑛), 𝜖⟩);
181 continue;
182 forall 𝑑3 ∈ 𝑝𝑎𝑠𝑠𝐴𝑟𝑔𝑠(⟨𝑛, 𝑑2⟩) do
183 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒(⟨𝑑3, 𝑠𝑐𝑎𝑙𝑙𝑒𝑑𝑃𝑟𝑜𝑐 (𝑛) , 𝑑3⟩);
184 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔[⟨𝑠𝑐𝑎𝑙𝑙𝑒𝑑𝑃𝑟𝑜𝑐 (𝑛) , 𝑑3⟩]∪ := ⟨𝑛, 𝑑2⟩;
185 forall ⟨𝑒𝑝, 𝑑4⟩ ∈ 𝐸𝑛𝑑𝑆𝑢𝑚 [⟨𝑠𝑐𝑎𝑙𝑙𝑒𝑒 (𝑛) , 𝑑3⟩] do
186 forall 𝑑5 ∈ 𝑟𝑒𝑡𝑉𝑎𝑙 (⟨𝑒𝑝, 𝑑4⟩, ⟨𝑛, 𝑑2⟩) do
187 maybeClearAndPropagate(⟨𝑑1, 𝑟𝑒𝑡𝑆𝑖𝑡𝑒(𝑛), 𝑑5⟩);
188 if 𝑟𝑒𝑡𝑉𝑎𝑙 (⟨𝑒𝑝, 𝑑4⟩, ⟨𝑛, 𝑑2⟩) = ∅ ∧ 𝑚𝑜𝑑𝑒 = 𝑈𝑝𝑑𝑎𝑡𝑒 then
189 maybeClearAndPropagate(⟨𝑑1, 𝑟𝑒𝑡𝑆𝑖𝑡𝑒(𝑛), 𝜖⟩);
190 case 𝑛 ∈ 𝑒𝑝 do
191 if 𝑚𝑜𝑑𝑒 = 𝑈𝑝𝑑𝑎𝑡𝑒 then
192 if ⟨𝑠𝑝, 𝑑1⟩ ∉ 𝑐ℎ𝑔𝐸𝑛𝑑𝑆𝑢𝑚𝑠 then
193 𝑐ℎ𝑔𝐸𝑛𝑑𝑠𝑢𝑚𝑠 =

𝑐ℎ𝑔𝐸𝑛𝑑𝑆𝑢𝑚𝑠 ∪ ⟨𝑠𝑝, 𝑑1⟩ 𝐸𝑛𝑑𝑆𝑢𝑚 [⟨𝑠𝑝, 𝑑1⟩] := ∅;
194 if 𝑑2 ≠ 𝜖 then
195 𝐸𝑛𝑑𝑆𝑢𝑚 [⟨𝑠𝑝, 𝑑1⟩] := 𝐸𝑛𝑑𝑆𝑢𝑚 [⟨𝑠𝑝, 𝑑1⟩] ∪ ⟨𝑒𝑝, 𝑑2⟩;
196 if 𝑚𝑜𝑑𝑒 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 then
197 forall ⟨𝑐, 𝑑4⟩ ∈ 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔[⟨𝑠𝑝, 𝑑1⟩] do
198 if 𝑑2 = 𝜖 then
199 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒(⟨𝑑1, 𝑟𝑒𝑡𝑆𝑖𝑡𝑒(𝑐), 𝜖⟩);
200 continue;
201 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑠 = 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 (⟨𝑒𝑝, 𝑑2⟩, ⟨𝑐, 𝑑4⟩);
202 forall 𝑑5 ∈ 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑠, 𝑑3 : ⟨𝑠𝑝𝑟𝑜𝑐𝑂 𝑓 (𝑐) , 𝑑3⟩ → ⟨𝑐, 𝑑4⟩ ∈

𝑃𝑎𝑡ℎ𝐸𝑑𝑔𝑒 do
203 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒(⟨𝑑3, 𝑟𝑒𝑡𝑆𝑖𝑡𝑒(𝑛), 𝑑5⟩);
204 case 𝑛 ∈ (𝑁𝑝 \ 𝐶𝑎𝑙𝑙𝑝 \ {𝑒𝑝}) do
205 if 𝑑2 = 𝜖 then
206 forall 𝑚 : 𝑛→ 𝑚 ∈ 𝑐𝑛𝑒𝑤 do
207 maybeClearAndPropagate(⟨𝑑1, 𝑚, 𝜖⟩);
208 continue;
209 𝑠𝑢𝑐𝑐𝑠 = {⟨𝑚, 𝑑3⟩ : 𝑛→ 𝑚 ∈ 𝑐 𝑓 𝑔 ∧ 𝑑3 ∈ 𝑓 𝑙𝑜𝑤(⟨𝑛, 𝑑2⟩, 𝜋)};
210 forall ⟨𝑚, 𝑑3⟩ ∈ 𝑠𝑢𝑐𝑐𝑠 do
211 maybeClearAndPropagate((⟨𝑑1, 𝑚, 𝑑3⟩));
212 if |𝑠𝑢𝑐𝑐𝑠 | = 0 ∧ 𝑚𝑜𝑑𝑒 = 𝑈𝑝𝑑𝑎𝑡𝑒 then
213 maybeClearAndPropagate(⟨𝑑1, 𝑚, 𝜖⟩);

Algorithm 7: Incremental IDE iterations. Reproduced from [AB14].

156

6.5 Implementation

214 Function maybeClearAndPropagate(𝑒 := ⟨𝑑1, 𝑛, 𝑑2⟩):
215 if 𝑚𝑜𝑑𝑒 = 𝑈𝑝𝑑𝑎𝑡𝑒 then
216 if 𝑛 ∉ 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑜𝑑𝑒𝑠 then
217 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑜𝑑𝑒𝑠 := 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ∪ {𝑛};
218 forall 𝑑3 ∈ 𝐷 : (𝑑1, 𝑛, 𝑑3) ∈ 𝑃𝑎𝑡ℎ𝐸𝑑𝑔𝑒 do
219 𝑃𝑎𝑡ℎ𝐸𝑑𝑔𝑒 := 𝑃𝑎𝑡ℎ𝐸𝑑𝑔𝑒 \ (𝑑1, 𝑛, 𝑑3);
220 if 𝑑2 ≠ 𝜖 then
221 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒(𝑒);

Algorithm 8: Incremental IDE’s clear and propagate procedure. Reproduced
from [AB14].

222 Function computeValues():
/* phase II(i) */

223 foreach 𝑛 ∈ 𝑁# do
224 𝑣𝑎𝑙 (𝑛) = ⊤;
225 𝑣𝑎𝑙 (⟨𝑠𝑚𝑎𝑖𝑛,Λ⟩) = ⊤;
226 𝑁𝑜𝑑𝑒𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡 = {⟨𝑠𝑚𝑎𝑖𝑛,Λ⟩};
227 while 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ≠ ∅ do
228 Select and remove an exploded-graph node ⟨𝑛, 𝑑⟩ from 𝑁𝑜𝑑𝑒𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡;
229 switch 𝑛 do
230 case 𝑛 is the start node of 𝑝 do
231 foreach 𝑐 that is a call node inside 𝑝 do
232 foreach 𝑑′ such that 𝑓 ′ = 𝐽𝑢𝑚𝑝𝐹𝑛(⟨𝑛, 𝑑⟩ → ⟨𝑐, 𝑑′⟩) ≠ 𝜆𝑙.⊤ do
233 propagateValue(⟨𝑐, 𝑑′⟩, 𝑓 ′(𝑣𝑎𝑙 (⟨𝑠𝑝, 𝑑⟩)));
234 case 𝑛 is callnode in 𝑝, calling procedure 𝑞 do
235 foreach 𝑑′ such that ⟨𝑛, 𝑑⟩ → ⟨𝑠𝑞, 𝑑′⟩ ∈ 𝐸# do
236 propagateValue(⟨𝑠𝑞, 𝑑′⟩, 𝐸𝑑𝑔𝑒𝐹𝑛(⟨𝑛, 𝑑⟩ →

⟨𝑠𝑞, 𝑑′⟩)(𝑣𝑎𝑙 (⟨𝑛, 𝑑⟩)));
/* phase II(ii) */

237 foreach 𝑛 in a procedure 𝑝, that is not a call or start node do
238 foreach 𝑑′, 𝑑 such that 𝑓 ′ = 𝐽𝑢𝑚𝑝𝐹𝑛(⟨𝑠𝑝, 𝑑′⟩ → ⟨𝑛, 𝑑⟩) ≠ 𝜆𝑙.⊤ do
239 𝑣𝑎𝑙 (⟨𝑛, 𝑑⟩) = 𝑣𝑎𝑙 (⟨𝑛, 𝑑⟩) ⊓ 𝑓 ′(𝑣𝑎𝑙 (⟨𝑠𝑝, 𝑑′⟩));
240 Function propagateValue(𝑛, 𝑣):
241 𝑣′ = 𝑣 ⊓ 𝑣𝑎𝑙 (𝑛);
242 if 𝑣′ ≠ 𝑣𝑎𝑙 (𝑛) then
243 𝑣𝑎𝑙 (𝑛) = 𝑣′;
244 Insert 𝑛 into 𝑁𝑜𝑑𝑒𝑊𝑜𝑟𝑘𝐿𝑖𝑠𝑡;

Algorithm 9: IDE’s original value computation procedure (phase II of the IDE algo-
rithm). Reproduced from [SRH96].

157

6 Incrementality

1 c l a s s Rev i sab l e {
2 pub l i c :
3 s td : : vec tor <Rev i seInfo > Rev i s e In f o s ;
4 v i r t u a l ~ Rev i sab l e () = d e f a u l t ;
5 v i r t u a l vo id i n v a l i d a t e (Upda tab l e In s t ruc t i on) = 0;
6 v i r t u a l vo id i n v a l i d a t e (UpdatableBas icBlock) = 0;
7 v i r t u a l vo id i n v a l i d a t e (UpdatableFunct ion) = 0;
8 v i r t u a l i n l i n e s td : : vec tor <Rev i seInfo > r e v i s e () {
9 auto ReviseInfosCpy = Rev i s e In f o s ;

10 Rev i s e In f o s . c l e a r () ;
11 re turn ReviseInfosCpy ;
12 }
13 } ;

Listing 6.8: Interface for updating helper analyses.

is required to keep the graph-based information that did not change from one commit to
another valid. In that case, when updating to a new commit, we only need to map the
wrappers’ underlying LLVM pointers to the counterpart of the new IR. Graph nodes of the
various involved analyses that did undergo changes is updated by the respective analysis. To
model the algorithm Algorithm 5, we added the new Revisable interface that we additionally
implemented for all of the above helper analyses. The interface is shown in Listing 6.8 and is
used to implement the mediator pattern [Gur23] via the exchange of ReviseInfo objects. The
mediator triggers invalidation and update computations for pieces of code that did undergo
changes and communicates the status of the incremental update to the helper analyses. Other
pieces of code that are, in turn, invalidated by an update computation are communicated
back to the mediator using the revise function. This function returns instances of the
ReviseInfo type that carries information about the pieces of code and their concrete type of
helper analyses (potentially all of them) that have been affected by the update and need to be
revised. The revise infos are then added back to the worklist by the mediator and iteration
continues until a fixed-point is reached. This algorithm is guaranteed to terminate and in
the worst case, all previously computed analysis information is invalidated and recomputed
from scratch.

6.6 Evaluation

IncAlyzer extends PhASAR and ModAlyzer, and enables client analyses to be run incre-
mentally, reducing the time to analyze a subsequent version of a project. We demonstrate
the usefulness of this approach by running three different client analyses on 50 subsequent
revisions of five open-source projects to determine analysis speed and precision compared
to a traditional matching whole-program analysis.

158

6.6 Evaluation

6.6.1 Research Questions

IncAlyzer aims at reducing the analysis times for continuously running static analysis, like
in a continuous integration environment, without compromising correctness. To evaluate
and explore the capabilities of our approach, we propose the following research questions:

𝑅𝑄10 How much analysis time can be saved by running an analysis incremen-
tally?

𝑅𝑄11 What impact do change characteristics have on the applicability of our
incremental approach?

𝑅𝑄12 How much do the underlying helper analyses benefit from being run
incrementally?

𝑅𝑄13 Are the results produced by IncAlyzer equivalent to those of a matching
traditional whole-program analysis?

We answer these questions in the following sections: 𝑅𝑄10 by comparing the running times
of IncAlyzer with those of a matching WPA for three different static client analyses. 𝑅𝑄11
by a manual investigation of the various project revisions and associated code changes, and
by relating those to the analysis times of the corresponding IncAlyzer runs. To answer
𝑅𝑄12, we analyze separately the running times of each analysis involved in the complete
static analysis stack and determine how much each of them can benefit from being run
incrementally. We answer 𝑅𝑄13 by performing an in-memory comparison between the
client analyses’ reports issued by IncAlyzer run and those of a matching WPA.

6.6.2 Experimental Setup

In order to evaluate our research questions, we use the following experimental setup. We
run three different client analyses on 50 subsequent commits for each of the five different
projects, once using the traditional whole-program approach and once using IncAlyzer. We
then compare the results and the time it took to analyze each commit. To select 50 commits
for each project, we used the most recent commit 𝐶𝑖 of each project’s corresponding main
branch and the 49 commits that precede 𝐶𝑖 . These commits hence may also contain merge
commits. The commits that we chose, their commit hash’s fingerprint as well as a brief
description of their nature are shown in Table 6.4, Table 6.5, Table 6.6, Table 6.7, and
Table 6.8.

Client analyses. We selected three different types of client analyses commonly used
with PhASAR:

• Typestate: An IDE based typestate analysis [Str83, SY86]—a typestate analysis or
protocol analysis is a static analysis that tracks variables of a certain type and their
associated states through the program. Typestates define sequences of operations
that may be performed upon a variable. The state information associated with each

159

6 Incrementality

variable is used to determine—at compile-time—the validity of operations invoked
upon variables.

• Taint: An IFDS based taint analysis—a taint analysis tracks variables through the
program that have been tainted by one or more so-called sources and reports a leak
whenever it detects that a tainted variable is used by a sink. Sources and sinks can
be parameterized and may be functions or instructions.

• LCA: An IDE based linear constant analysis—a linear constant analysis track constant
variable or variables that linearly (𝑓 (𝑥) = 𝑎𝑥+𝑏, with 𝑎 and 𝑏 constant literals) depend
on constant values and their respective values through the program.

Besides the IFDS-based taint analysis, we also include two IDE-based analyses that
crucially utilize IDE’s value domain. This stresses IncAlyzer’s implementation of the
incremental IDE solver for computing data flows since bugs in IDE’s complex edge function
components would be directly uncovered when comparing the analyses’ result reports.

Experimental process. In general, the goal of our experiments is to determine whether
IncAlyzer can produce equivalent results in a shorter time compared to the standard WPA
approach. Therefore, our experiments need to run each client analysis once as WPA and
once incrementally based on program changes.

In more detail, for each commit 𝐶𝑖 , we run the client analysis as WPA on the previous
revision 𝐶𝑖−1 and the current revision 𝐶𝑖 . This produces the base line analysis results and
running time measurements for the change introduced by 𝐶𝑖 . Afterwards, we run the client
analysis with IncAlyzer, starting from the correct analysis result of the previous revision
and computing the new result for the change (new revision 𝐶𝑖) incrementally. By that,
we produce the incremental analysis results and running time measurements, which we
compare to the base line produced by the traditional matching whole-program analysis. For
the 2nd to the 50th commit, we base each incremental analysis on the results of the previous
whole-program results.2

We automatically compare the analysis results produced by IncAlyzer with those pro-
duced by a matching WPA using an in-memory comparison. For each entry in a client
analysis’ result report, we check whether the findings computed by IncAlyzer and the
matching WPA coincide.

The idea behind this experimental process is similar to an inductive proof. We know, by
selecting a working client analysis, that we can correctly analyze a single revision. We then,
similar to an induction step, show that if we have a correct analysis result for the previous
revision, we can produce an equivalent result for the new revision.

Target Subject Selection. We evaluate IncAlyzer on five open-source C projects of
various program sizes. Table 6.1 provides an overview of the different projects along with
their relevant characteristics.

2This is because of a current limitation in the implementation of our evaluation setup.

160

6.6 Evaluation

Table 6.1: Evaluation Targets. Data on lines of code of the software repository’s
respective main branch and number of commits as of June 9th, 2023. Lines of
code measured with Unix’ cloc.

Program Domain LOC Commits Samples
brotli Compression 56,377 1,074 50
curl Web 264,914 30,518 50
gzip Compression 8,909 691 50
htop Visualization 31,445 2,958 50
xz Compression 63,874 2,547 50

It is important to note here that the size and characteristics of the change set of two
subsequent project revisions are likely having a high impact on how an incremental analysis
performs. Since it was initially completely unclear which characteristics influence the
analysis by how much, we selected change sets of 50 consecutive commits for each of the
five projects. The commit hashes’ fingerprints as well as a brief description of their nature
are shown in Table 6.4, Table 6.5, Table 6.6, Table 6.7, and Table 6.8 in Section 6.6.

Execution environment. We measured our experiments on an AMD Ryzen 9 7950X 16-
Core Processor machine with 128GB main memory running Ubuntu 22.04. We measured
each analysis run 3 times and computed the average to determine the time it took to execute
the analysis.

6.6.3 𝑅𝑄10: Performance

We address 𝑅𝑄10 by comparing the analysis times of each client analysis run with IncAlyzer
to baseline measurements from running a matching WPA. For each change, i.e., commit,
we measured the time it took to analyze the specific commit and aggregate the results for
each project by computing the mean analysis time.

Table 6.2 depicts the aggregated mean analysis times for each target project and client
analysis. In Section 6.10, we show the detailed running times of the five projects for each
of the 50 respective target commits in Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5, and
Figure 6.6. With these results, we get a good overview on what an IncAlyzer run does on
average in terms of running time and see that analysis times are approximately two and a half
times slower (0.43 speedup) in the worst case and up to 44 times faster than a matching WPA
run. Interestingly, IncAlyzer appears to slow down client analyses on smaller projects with
particularly small data-flow domains. The typestate analysis’ runtime performance suffers
for three projects except the larger CURL project while it behaves neutral to XZ. Similarly,
IncAlyzer’s performance degrades for the relatively small BROTLI project for all client
analyses except taint analysis which is known for its notorious large data-flow domain. For
larger target programs and client analyses with large data-flow domains, however, IncAlyzer
starts to excel and is able to speed up analysis times. IncAlyzer achieves a speedup of almost
44 times when conducting a taint analysis on XZ.

161

6 Incrementality

Table 6.2: Overview of the average running times and relative speed-ups achieved by
running the three client analyses as WPA and with IncAlyzer. All running
times in milliseconds.

Taint LCA Typestate
WPA INC Speedup WPA INC Speedup WPA INC Speedup

BROTLI 1,305 589 2.22 255 344 0.74 130 310 0.43
CURL 12,929,961 882,396 14.65 16,159 3,467 4.66 4,065 979 4.15
GZIP 6,537,968 948,513 6.89 8,501 1,798 4.73 223 360 0.62
HTOP 2,492,921 266,313 9.36 27,372 5,891 4.65 498 581 0.86
XZ 1,812,858 41,349 43.84 2,981 497 6.00 390 375 1.04

While XZ’s set of target commits contain only very few commits that change the code di-
rectly, one cannot simply thoughtlessly exempt them from analysis entirely. Projects written
in C and C++ frequently use code that is generated at build time, for instance, to populate
versioning information. Thus, even commits that do not modify source files directly, might
still modify the code that is generated—LLVM IR in our case—and eventually analyzed.

To answer 𝑅𝑄10, we can summarize that IncAlyzer allows one to greatly speed up client
analyses that would otherwise require vast resources when run using WPA (for the commits
shown in Table 6.4, Table 6.5, Table 6.6, Table 6.7, and Table 6.8).

6.6.4 𝑅𝑄13: Correctness

Each of the client analyses’ implementations contains a dedicated data structure that is used
to accumulate the relevant analysis results. It is used as an analysis report that will be
eventually reported to the user. The typestate analysis, for instance, keeps track of protocol
violations for the parametrizable type(s) of interest. While conducting the experiments
to answer 𝑅𝑄10, we additionally performed an in-memory comparison of these client
analyses’ result reports to answer 𝑅𝑄13. Luckily, we could indeed confirm that the results
produced by IncAlyzer coincide with those produced by the corresponding analysis run in
whole-program mode: In every instance, the analysis reports computed in whole-program
mode are identical to those computed by IncAlyzer, which indicates correctness and full
precision. IncAlyzer results are hence from-scratch consistent [SCS24].

6.6.5 𝑅𝑄11: Change Characteristics

The changes made to a project can have a significant influence on how many analysis
results computed in a previous run can be reused, potentially impacting the usefulness of
IncAlyzer. 𝑅𝑄11 aims at answering in detail the incremental gains of IncAlyzer and how
they correspond with the nature of a commit. We manually analyzed the size and nature of
each of the 50 commits for each of the five target subjects.

Our manual investigation of the commits shown in Table 6.4, Table 6.5, Table 6.6,
Table 6.7, and Table 6.8 in Section 6.10 shows that most commits are typically small and
local, so small, in fact, that they frequently do not change the source code at all or at least

162

6.6 Evaluation

not directly. Injecting code that is generated at build time is common pattern in C and C++
and hence, even an empty commit might still change the compiled code and thus also the
analyzed LLVM IR code. The commits we analyzed typically revolved around a handful
of functions at most. Changes to pointer variables are rare and even caller-callee relations,
i.e., callgraph information, are changed rather infrequently. Merge commits might bring
larger source code changes, however, do not occur frequently in our set of target commits.
Our manual investigation was able to confirm the results produced in previous works by
Swanson [Swa76], Hattori et al. [HL08], and Brindescu et al. [BCSD14] that showed that
a program typically only undergoes small changes from one revision to the next. The
IncAlyzer approach leverages this to avoid unnecessary repeated re-analysis. However,
commits can sometimes also change a large amount of files of the target code base [HL08].
We have been able to confirm that the performance improvements that IncAlyzer provides
degrade with the number of functions being changed and their role in the program. If a
function that is called several times in the program does change, the performance naturally
starts to degrade. We did not encounter the situation frequently in our set of target commits,
but if functions that are called many times and under various calling contexts are being
changed, IncAlyzer’s performance can degrade to a point at which it is eventually cheaper
to run a full whole-program analysis (cf. Section 6.10). Still, IncAlyzer has proven highly
beneficial in reducing analysis times for the overwhelming majority of commits.

6.6.6 𝑅𝑄12: Helper Analyses

As visualized in Figure 2.8, each analysis actually comprises different helper analyses,
which are commonly reused by different client analyses. The IncAlyzer approach also
makes each of the different helper analyses incremental, potentially reducing their analysis
time. However, it is unclear which helper analyses profit from being run incrementally and
contribute to the overall gains we saw in Table 6.2. Furthermore, since the helper analyses
are reused by many different client analyses, it is interesting to see which analysis actually
profits and by how much. This gives us an indication how much other client data-flow
analyses could profit from IncAlyzer.

We investigate 𝑅𝑄12 by analyzing the speed-up distributions of the helper analyses. We
added a fine-grain instrumentation using our approach developed in [SLHB19] allowing
us to measure the running times of the individual helper analyses. We collected the
measurements together with the overall running times of 𝑅𝑄10.

However, since the behavior of the helper analyses is not influenced by the concrete client
analysis, we took the average across the measures for the three different client analyses for
all commits of a project and computed the running time difference between the WPA and
IncAlyzer runs as a percentage. The data is shown in Table 6.3.

The data shows that managing the code in an IncAlyzer setup does come with an
overhead. This is because the implementation for the program representation and code
management (IRDB) is responsible for determining the code delta by calling into the
VaRA framework [Sat23] and for remapping the intermediate representation of the old
revision that is not affected by a code change to the intermediate representation of the new
revision. The computations of the programs’ type hierarchies remain unaffected since the

163

6 Incrementality

Table 6.3: Running time differences between WPA and IncAlyzer for the various helper
analyses: code management (IRDB), computation of type hierarchy (TH),
points-to information (PT), inter-procedural control-flow graph (ICFG).

Helper Analysis IRDB TH PT ICFG
BROTLI +627% 0% -71% -79%
CURL +664% 0% -88% -76%
GZIP +589% 0% -79% -72%
HTOP +671% 0% -83% -69%
XZ +624% 0% -89% -87%

target programs are all written in C and there is nothing to compute for the type hierarchy
analysis. Points-to and callgraph analyses, however, seem to heavily benefit from being run
in an incremental manner. Again, most commits only apply minor code modifications and
rarely change pointer variables or caller-callee relationships. This is especially beneficial
when it comes to points-to information which is notoriously expensive to compute.

6.7 Threats to Validity

Internal Validity. The correct invalidation of static analysis information computed in
a previous analysis run is depending on the accuracy and correctness of the mapping
of commit metadata and the correct handling of the change scenarios. To ensure that
IncAlyzer maps the commits correctly to the corresponding intermediate representation,
we implemented an alternative approach that recomputes the commit metadata from debug
metadata, provided by the compiler. We determined that our commit mapping is as precise
as the compilers own debug metadata. Furthermore, to ensure IncAlyzer handles the
commit mapping and the change scenarios correctly, we checked that the static analysis
results produced by IncAlyzer are equivalent to the results produced by traditional WPA
approach. Our results show that the precision of all evaluated client analyses is not harmed
by IncAlyzer, since they produce equivalent results as if they had been run with a matching
WPA approach.

External Validity. In our evaluation, we utilized IncAlyzer to run three different client
analyses on five real-world open-source projects, analyzing in total 50 changes. We cannot
guarantee that the speedups seen in our evaluation generalize to all software projects
and to any kind of change. However, our data and the results of previous work of the
mining software repositories (MSR) community suggests that there is a high likelihood that
IncAlyzer can speed up analysis times in many cases, especially for larger projects.

In addition, we cannot be sure that IncAlyzer’s speedups generalize to all client analyses.
We used three different client analyses that vary in complexity and our evaluation shows
that not every client analysis does profit from being run in an incremental way with IncA-
lyzer. 𝑅𝑄12 shows that the particularly expensive helper analysis that computes points-to

164

6.8 Related Work

information profits from being run incrementally. This also matches our observation that
client analyses with large data-flow domains benefit from IncAlyzer.

6.8 Related Work

An approach that uses path abstraction is presented in [MR14]. The approach encodes
program paths as sets of constraints encoded as boolean formulars which are solved using a
SAT solver. The satisfiability is used to drive the analysis further. After an initial analysis of
the complete source code, the approach manages a mapping of the boolean input constraints
to the SAT solver results. If constraints have already been solved in subsequent analysis
runs, the results can be used directly. The approach aims at improving the abstraction used
for analysis in order to reduce the amount of recomputation necessary for an incremental
update.

The DRed𝐿 algorithm presented by Szabo et al. [SBEV18] supports incremental main-
tenance of recursive lattice-value aggregation in Datalog. It hence lifts the expressiveness
of incremental analysis in Datalog by allowing fix points to be computed over lattices
other than the powerset lattice. DRed𝐿 has been evaluated for intra-procedural analyses
formulated for Java only.

Arzt et al. developed an analysis approach called Reviser. The work formulates an
algorithm for incremental updates following a "clear-and-propagate" philosophy based on
the inter-procedural control-flow graph [AB14]. The approach clears analysis information
of statements that have been changed and statements that are reachable from such modified
statements and then, re-propagates analysis information. Reviser’s algorithm is formulated
as an extension to the IDE framework which allows to solve distributive inter-procedural
data-flow problems. However, Reviser is only concerned with data-flow information, it
assumes a somehow existing call-graph and points-to information. Call-graph and points-
to information still need complete re-computation for each change made to the code. In
addition, the Reviser approach omits the challenging task of persisting analysis information.
The analysis information are discarded after analysis shutdown and thus, the approach
cannot be applied directly to compute incremental updates in a real-world setting. IncAlyzer
utilizes a modified version of the Reviser approach to compute data flows incrementally.

Conway et al. presents incremental algorithms for the inter-procedural analysis of safety
properties [CNDE05]. They use simple incremental automaton-based program analysis
to react to changes made to the code. The algorithms, which are incremental versions of
standard model checking algorithms, maintain a derivation graph to record the analysis.
The graph is successively "repaired" with the incremental changes.

An incremental approach that uses a parallelized algorithm to compute points-to informa-
tion is presented in [LHR19]. Similar to our approach, the approach presented in [LHR19]
uses pointer-assignment graphs. However, it has been implement using the WALA [Wal19]
framework and is applicable only for Java programs. Interestingly, our "incrementalized"
pointer analysis achieves similar speedups for C and C++ programs.

In contrast to related works, our IncAlyzer approach is concerned with making the whole
static analysis stack that is required to answer concrete client analyses incremental.

165

6 Incrementality

6.9 Conclusions

In this chapter, we have presented IncAlyzer, a novel approach to incremental static program
analysis that is concerned with speeding up the whole analysis stack. We have shown that
it can massively reduce analysis times for software projects that follow a CI/CD workflow
and utilize version control systems, while providing its users with analysis results that are
identical to those of a matching whole program analysis.

Since IncAlyzer’s analysis results can also be persisted using the infrastructure described
in Chapter 5, they can too be checked into the target project’s software repository. Combin-
ing the analysis approaches described in this thesis opens up a combined development and
analysis workflow as sketched in Section 1.3. A developer hence can not only check out the
code of a specific commit and its respective static analysis summaries for the library parts
of a target projects, but the analysis information for the full software project.

And while the analysis summaries for the non-library parts will be at least partially
invalidated at the moment the developer starts making changes to the code, the analysis
summaries for the full project can be used to initialize IncAlyzer such that it computes
incremental updates from this very state without having to first conduct an initial whole-
program analysis. Any local changes made to the code are then handled by IncAlyzer to
update the static analysis information accordingly.

Once a new revision is added to the version control system of the project under analysis,
the current, up-to-date analysis information can be persisted and checked into the version
control system. By keeping code and results of static code analysis synchronized, developers
can directly pick up where they left without massive delays caused by long analysis times. In
such a scenario, analysis results are always available and accessible as quickly as possible.

Next, we present two projects from academia and one large industry project that underline
PhASAR’s actual usefulness and relevance for solving real-world problems that could
hardly, if at all, be addressed before.

6.10 Incrementality: Data

This section contains the data that is too large to be directly included in the previous
sections.

166

6.10 Incrementality: Data

Table 6.4: BROTLI’s target commits used as evaluation targets. 𝐶𝑖 denotes the initial
analysis run and 𝐶𝑖+𝑛 (1 ≤ 𝑛 ≤ 49) the subsequent revisions that are analyzed
incrementally based on the analysis results computed in the previous run.

Program Commit Brief description
BROTLI
𝐶𝑖 f168456 fix typo in java variable name
𝐶𝑖+1 5692e42 change several header and implementation files
𝐶𝑖+2 2a51a85 update readme
𝐶𝑖+3 63be8a9 change python file
𝐶𝑖+4 2f9277f update CI pipeline
𝐶𝑖+5 bbe5d72 update java files and add branch in encoder function
𝐶𝑖+6 f8c6717 improve decoder performance and update several java files
𝐶𝑖+7 bdcfb12 update comment in header file
𝐶𝑖+8 0a3944c use VLA arrays at two places
𝐶𝑖+9 ce222e3 update cmake
𝐶𝑖+10 630b508 update several header and implementation files
𝐶𝑖+11 19d86fb merge-in larger shared directory feature
𝐶𝑖+12 68f1b90 smaller update to few header and implementation files
𝐶𝑖+13 0e42caf small update to header file
𝐶𝑖+14 a10269c update readme
𝐶𝑖+15 698e3a7 update readme
𝐶𝑖+16 62662f8 huge update on how to include header files
𝐶𝑖+17 8376f72 midsize update of several header and implementation files
𝐶𝑖+18 27dd726 tiny update to implementation file
𝐶𝑖+19 4ec6703 tiny update to implementation file merge
𝐶𝑖+20 e83c7b8 update cmake
𝐶𝑖+21 f4153a0 update setup file
𝐶𝑖+22 c9eb856 update bootstrap file
𝐶𝑖+23 f09b255 update bootstrap file
𝐶𝑖+24 9801a2c update cmake
𝐶𝑖+25 6d03dfb change a function’s signature
𝐶𝑖+26 388d0d5 update toml file
𝐶𝑖+27 a8f5813 large update involving large amount of header and implementation files
𝐶𝑖+28 ae212a7 update bootstrap file
𝐶𝑖+29 f842c1b update cmake
𝐶𝑖+30 3914999 fix type in code comment
𝐶𝑖+31 641bec0 update cmake and test shell script
𝐶𝑖+32 9b53703 update cmake
𝐶𝑖+33 c48ebca update java build files
𝐶𝑖+34 3152d99 update yml file
𝐶𝑖+35 a7b7839 update git ignore
𝐶𝑖+36 81dc1c8 update cmake and lua files
𝐶𝑖+37 509d441 small update in brotli.c file
𝐶𝑖+38 c8df4b3 update python bindings in implementation file
𝐶𝑖+39 a2cc451 update yml workflows
𝐶𝑖+40 81181ec update yml
𝐶𝑖+41 0ff6073 update documentation
𝐶𝑖+42 ce92c95 update python file
𝐶𝑖+43 0ea4603 tiny update to implementation file
𝐶𝑖+44 e3ea91d update java files
𝐶𝑖+45 71fe6ca tiny update implementation file
𝐶𝑖+46 36533a8 small internal change
𝐶𝑖+47 1e61e97 exchange function implementation in header file
𝐶𝑖+48 04f294b tiny update in implementation file
𝐶𝑖+49 b2c86d1 mid-size update of several header and implementation files

167

6 Incrementality

Table 6.5: CURL’s target commits used as evaluation targets. 𝐶𝑖 denotes the initial
analysis run and 𝐶𝑖+𝑛 (1 ≤ 𝑛 ≤ 49) the subsequent revisions that are analyzed
incrementally based on the analysis results computed in the previous run.

Program Commit Brief description
CURL
𝐶𝑖 a1730b6 update perl file
𝐶𝑖+1 0807fd7 small update several header and implementation files
𝐶𝑖+2 9496d32 update yml file
𝐶𝑖+3 5a02393 update configure-related file
𝐶𝑖+4 1041399 update few macro definitions
𝐶𝑖+5 4efa0b5 update pm file
𝐶𝑖+6 6d45b9c update several implementation files’ error handling e.g., calls to helpf/notef, etc.
𝐶𝑖+7 741f7ed update header and implementation files re outputting errors
𝐶𝑖+8 6661bd5 continuing on outputting errors
𝐶𝑖+9 1f85420 small changes to header and implementation files
𝐶𝑖+10 bfa7006 tiny update to implementation file
𝐶𝑖+11 10d8404 update to macros in implementation file
𝐶𝑖+12 ec70d14 update readme
𝐶𝑖+13 d45b76e update readme
𝐶𝑖+14 310eb47 small update of macro definitions in header file
𝐶𝑖+15 93df713 add branch in function’s implementation
𝐶𝑖+16 e054a16 update log statement in presence of verbose option
𝐶𝑖+17 f4b5c88 change function’s implementation
𝐶𝑖+18 8cf4189 update unrelated test files
𝐶𝑖+19 fff6555 tiny update to header and implementation files
𝐶𝑖+20 6854b6c update release notes
𝐶𝑖+21 ba669d0 update function’s implementation
𝐶𝑖+22 c78a185 update cmake
𝐶𝑖+23 9ad23c3 tiny update header and implementation files
𝐶𝑖+24 0a75964 several very small update to header and implementation files
𝐶𝑖+25 b832cab update code comment
𝐶𝑖+26 73022b5 add several branches to function’s implementation
𝐶𝑖+27 acc0a92 update perl script
𝐶𝑖+28 4317c55 update perl script
𝐶𝑖+29 78d8bc4 update unrelated test files
𝐶𝑖+30 296baf4 update unrelated test files
𝐶𝑖+31 51c22af update perl file
𝐶𝑖+32 d454af4 update perl file
𝐶𝑖+33 f24b4b9 update perl file
𝐶𝑖+34 6e4fede update perl and test files
𝐶𝑖+35 cd18e5c update gitignore
𝐶𝑖+36 0e339b9 update example code
𝐶𝑖+37 e812473 update example code
𝐶𝑖+38 3f8fc25 update large number of implementation files
𝐶𝑖+39 c6d97bc update unrelated test files
𝐶𝑖+40 92d7dd3 update perl file
𝐶𝑖+41 44296dc update release notes
𝐶𝑖+42 78886af add const to several implementation files
𝐶𝑖+43 7af151d update runner file
𝐶𝑖+44 7d62f0d small update of implementation file
𝐶𝑖+45 3c9256c mid-size update to implementation file
𝐶𝑖+46 c72edfa update docs
𝐶𝑖+47 4894ca6 update code examples
𝐶𝑖+48 67e9e90 update code examples
𝐶𝑖+49 dacd258 add new branch in function’s implementation

168

6.10 Incrementality: Data

Table 6.6: GZIP’s target commits used as evaluation targets. 𝐶𝑖 denotes the initial analysis
run and 𝐶𝑖+𝑛 (1 ≤ 𝑛 ≤ 49) the subsequent revisions that are analyzed
incrementally based on the analysis results computed in the previous run.

Program Commit Brief description
GZIP
𝐶𝑖 dc9740d update build file
𝐶𝑖+1 d74a30d update build files
𝐶𝑖+2 c99f320 update build file
𝐶𝑖+3 6543c09 update news file
𝐶𝑖+4 0e2d07f update build file
𝐶𝑖+5 5e1fc8b update build files
𝐶𝑖+6 9d32487 update build files
𝐶𝑖+7 8000635 update news file
𝐶𝑖+8 e617ae3 update post-release files
𝐶𝑖+9 938c4f5 update build files
𝐶𝑖+10 83c65d1 update build file
𝐶𝑖+11 85e0910 small update in implementation files
𝐶𝑖+12 4b58eee tiny update in implementation files
𝐶𝑖+13 3e32e3c update news file
𝐶𝑖+14 2353361 update build file
𝐶𝑖+15 83ce5eb bump gnulib
𝐶𝑖+16 2801aa3 update build file
𝐶𝑖+17 fa8fac4 bump gnulib
𝐶𝑖+18 430edac update gitignore
𝐶𝑖+19 dc90550 update docs
𝐶𝑖+20 42efd45 tiny update header and implementation files
𝐶𝑖+21 8ae183f tiny update in implementation file
𝐶𝑖+22 96cd660 mid-size update to several implementation files
𝐶𝑖+23 d8425fc mid-size update of implementation files without effect on behavior
𝐶𝑖+24 bcbb260 tiny update of implementation file
𝐶𝑖+25 46ef963 update a function’s signature
𝐶𝑖+26 13dab42 update readmes
𝐶𝑖+27 784dddc update build files
𝐶𝑖+28 9c3f23b update readme
𝐶𝑖+29 bf5f3ba update readme
𝐶𝑖+30 114a6bd remove unnecessary includes
𝐶𝑖+31 a04838d update build files
𝐶𝑖+32 d3ae215 bump gnulib
𝐶𝑖+33 b9b57fe update build files
𝐶𝑖+34 3c01cac update build file
𝐶𝑖+35 f5f931a small update of print functions
𝐶𝑖+36 b00fcb9 update thanks file
𝐶𝑖+37 00f4ade update function’s implementation
𝐶𝑖+38 7553200 update build file
𝐶𝑖+39 7e6214b update copyright dates
𝐶𝑖+40 f3267b5 bump gnulib
𝐶𝑖+41 ebe613c update copyright dates
𝐶𝑖+42 e64e499 update build files
𝐶𝑖+43 2640ce5 update build file
𝐶𝑖+44 54d039e update docs
𝐶𝑖+45 75dac03 small update exit status broken pipe
𝐶𝑖+46 55890dd update build files
𝐶𝑖+47 6990880 update unrelated files
𝐶𝑖+48 54042d4 update unrelated files
𝐶𝑖+49 156d0e1 replace function call

169

6 Incrementality

Table 6.7: HTOP’s target commits used as evaluation targets. 𝐶𝑖 denotes the initial
analysis run and 𝐶𝑖+𝑛 (1 ≤ 𝑛 ≤ 49) the subsequent revisions that are analyzed
incrementally based on the analysis results computed in the previous run.

Program Commit Brief description
HTOP
𝐶𝑖 c66f99b update code comment
𝐶𝑖+1 11318b5 remove function and corresponding call
𝐶𝑖+2 c803ec6 improve readability by adding constants
𝐶𝑖+3 e207c8a improve readability by adding constants
𝐶𝑖+4 a5c4650 update macro definition
𝐶𝑖+5 f66f04e update code comment
𝐶𝑖+6 b618c37 update function’s implementation, complex case
𝐶𝑖+7 ab49f3f rename variables
𝐶𝑖+8 61e7cb1 switch variable
𝐶𝑖+9 c707b0e remove branch
𝐶𝑖+10 45b334c changes to vector-set that is frequently used
𝐶𝑖+11 79364ac further updates to vector
𝐶𝑖+12 c8a6185 update build file
𝐶𝑖+13 e7f447b larger update of many header and implementation files
𝐶𝑖+14 14da84f small update on outputting information
𝐶𝑖+15 c878343 update code indentation
𝐶𝑖+16 da255cb code formatting
𝐶𝑖+17 ccf745e update several branches
𝐶𝑖+18 467bb78 update variables/function calls
𝐶𝑖+19 7a7c693 update code comment and single statement
𝐶𝑖+20 ed7eac5 update function’s implementation, complex case
𝐶𝑖+21 1b640df implement static assert in header file
𝐶𝑖+22 b2ada27 use constants rather than literals
𝐶𝑖+23 b29b33e several mid-size updates to multiple implementation files
𝐶𝑖+24 0c8df5f update code comment and header include
𝐶𝑖+25 71f5a80 several small changes
𝐶𝑖+26 71f2e66 add code comment and branch
𝐶𝑖+27 f50944c add additional statement
𝐶𝑖+28 8a8df71 fix typo
𝐶𝑖+29 e4ebe18 change several statements
𝐶𝑖+30 0bdade1 large update that spans multiple header and implementation files
𝐶𝑖+31 72235d8 massive update of various header and implementation files
𝐶𝑖+32 290ddba small update on implementation logic, i.e., branching
𝐶𝑖+33 ab0f68c minor renaming of types
𝐶𝑖+34 e40daf9 minor renaming of types
𝐶𝑖+35 508d9ce minor renaming
𝐶𝑖+36 e05a203 syntax-only change
𝐶𝑖+37 1f308b1 update variable names
𝐶𝑖+38 148dfc0 minor variable renaming
𝐶𝑖+39 a393066 minor change of three statements
𝐶𝑖+40 1de7a2b minor renaming of variables
𝐶𝑖+41 f77ea80 update docs
𝐶𝑖+42 3fc2862 changes in configuration file
𝐶𝑖+43 87db379 add max iterations logic
𝐶𝑖+44 dc883b2 minor update to retain changes
𝐶𝑖+45 4227fbd update keyboard shortcut
𝐶𝑖+46 f0a7a78 merge
𝐶𝑖+47 b810678 syntax-only change
𝐶𝑖+48 0fb0d75 minor fix task counter
𝐶𝑖+49 d8fe027 remove duplicate zeroing

170

6.10 Incrementality: Data

Table 6.8: XZ’s target commits used as evaluation targets. 𝐶𝑖 denotes the initial analysis
run and 𝐶𝑖+𝑛 (1 ≤ 𝑛 ≤ 49) the subsequent revisions that are analyzed
incrementally based on the analysis results computed in the previous run.
Program Commit Brief description
XZ
𝐶𝑖 509157c update build files
𝐶𝑖+1 0007394 update build files
𝐶𝑖+2 5e57e33 update gitignore
𝐶𝑖+3 0cc3313 update build files
𝐶𝑖+4 75c9ca4 update cmake
𝐶𝑖+5 133cf55 update build files
𝐶𝑖+6 76e2315 update bash script
𝐶𝑖+7 8b2f600 update cmake
𝐶𝑖+8 b473a92 update documentation
𝐶𝑖+9 5a7b930 update documentation
𝐶𝑖+10 af4925e update news file
𝐶𝑖+11 f0c580c update news file
𝐶𝑖+12 dfe1710 update minor statement
𝐶𝑖+13 5a5bd7f update build configuration
𝐶𝑖+14 3b8890a update thanks
𝐶𝑖+15 53cc475 update build configuration
𝐶𝑖+16 8be136f update build configuration
𝐶𝑖+17 2c1a830 update cmake
𝐶𝑖+18 b089168 update cmake
𝐶𝑖+19 0ba234f update cmake
𝐶𝑖+20 116e81f update build file
𝐶𝑖+21 ddfe164 update cmake
𝐶𝑖+22 cf3d1f1 update bash script
𝐶𝑖+23 4fabdb2 update bash script
𝐶𝑖+24 20cd905 update git workflow
𝐶𝑖+25 4d7fac0 update cmake
𝐶𝑖+26 2cb6028 update cmake
𝐶𝑖+27 8be5cc3 update bash script
𝐶𝑖+28 d0faa85 update bash script
𝐶𝑖+29 6549df8 update readme
𝐶𝑖+30 537c6cd update readme
𝐶𝑖+31 fb9c50f update thanks
𝐶𝑖+32 0fbb2b8 update security
𝐶𝑖+33 2a89670 remove unused function
𝐶𝑖+34 3938718 update code comment
𝐶𝑖+35 7062348 update preprocessor ifdefs
𝐶𝑖+36 f41df2a update header includes
𝐶𝑖+37 78ccd93 update thanks
𝐶𝑖+38 16b81a0 update bash script
𝐶𝑖+39 2cf5ae5 update git workflow
𝐶𝑖+40 44c0c5e update preprocessor ifdefs
𝐶𝑖+41 6be460d update preprocessor ifdefs
𝐶𝑖+42 9ad64bd update preprocessor ifdefs
𝐶𝑖+43 713e15e update build file
𝐶𝑖+44 77050b7 update news file
𝐶𝑖+45 c247d06 update news file
𝐶𝑖+46 d0f33d6 replace test construct by macro
𝐶𝑖+47 8f23657 smaller changes to header and implementation files (branches)
𝐶𝑖+48 3374a53 add lzmd-nothrow annotation
𝐶𝑖+49 f36ca79 update code comment

171

6 Incrementality

f1
68

45
6

56
92

e4
2

2a
51

a8
5

63
be

8a
9

2f
92

77
f

bb
e5

d7
2

f8
c6

71
7

bd
cfb

12
0a

39
44

c
ce

22
2e

3
63

0b
50

8
19

d8
6f

b
68

f1
b9

0
0e

42
ca

f
a1

02
69

c
69

8e
3a

7
62

66
2f

8
83

76
f7

2
27

dd
72

6
4e

c6
70

3
e8

3c
7b

8
f4

15
3a

0
c9

eb
85

6
f0

9b
25

5
98

01
a2

c
6d

03
df

b
38

8d
0d

5
a8

f5
81

3
ae

21
2a

7
f8

42
c1

b
39

14
99

9
64

1b
ec

0
9b

53
70

3
c4

8e
bc

a
31

52
d9

9
a7

b7
83

9
81

dc
1c

8
50

9d
44

1
c8

df
4b

3
a2

cc
45

1
81

18
1e

c
0f

f6
07

3
ce

92
c9

5
0e

a4
60

3
e3

ea
91

d
71

fe
6c

a
36

53
3a

8
1e

61
e9

7
04

f2
94

b
b2

c8
6d

1

Target revision [commit]

400

600

800

1000

1200

1400

1600

Ru
nn

in
g

tim
e

[m
s]

brotli Taint Analysis

(a) BROTLI — Taint analysis

f1
68

45
6

56
92

e4
2

2a
51

a8
5

63
be

8a
9

2f
92

77
f

bb
e5

d7
2

f8
c6

71
7

bd
cfb

12
0a

39
44

c
ce

22
2e

3
63

0b
50

8
19

d8
6f

b
68

f1
b9

0
0e

42
ca

f
a1

02
69

c
69

8e
3a

7
62

66
2f

8
83

76
f7

2
27

dd
72

6
4e

c6
70

3
e8

3c
7b

8
f4

15
3a

0
c9

eb
85

6
f0

9b
25

5
98

01
a2

c
6d

03
df

b
38

8d
0d

5
a8

f5
81

3
ae

21
2a

7
f8

42
c1

b
39

14
99

9
64

1b
ec

0
9b

53
70

3
c4

8e
bc

a
31

52
d9

9
a7

b7
83

9
81

dc
1c

8
50

9d
44

1
c8

df
4b

3
a2

cc
45

1
81

18
1e

c
0f

f6
07

3
ce

92
c9

5
0e

a4
60

3
e3

ea
91

d
71

fe
6c

a
36

53
3a

8
1e

61
e9

7
04

f2
94

b
b2

c8
6d

1

Target revision [commit]

250

300

350

400

450

500

Ru
nn

in
g

tim
e

[m
s]

brotli Linear Constant Propagation

(b) BROTLI — LCA

f1
68

45
6

56
92

e4
2

2a
51

a8
5

63
be

8a
9

2f
92

77
f

bb
e5

d7
2

f8
c6

71
7

bd
cfb

12
0a

39
44

c
ce

22
2e

3
63

0b
50

8
19

d8
6f

b
68

f1
b9

0
0e

42
ca

f
a1

02
69

c
69

8e
3a

7
62

66
2f

8
83

76
f7

2
27

dd
72

6
4e

c6
70

3
e8

3c
7b

8
f4

15
3a

0
c9

eb
85

6
f0

9b
25

5
98

01
a2

c
6d

03
df

b
38

8d
0d

5
a8

f5
81

3
ae

21
2a

7
f8

42
c1

b
39

14
99

9
64

1b
ec

0
9b

53
70

3
c4

8e
bc

a
31

52
d9

9
a7

b7
83

9
81

dc
1c

8
50

9d
44

1
c8

df
4b

3
a2

cc
45

1
81

18
1e

c
0f

f6
07

3
ce

92
c9

5
0e

a4
60

3
e3

ea
91

d
71

fe
6c

a
36

53
3a

8
1e

61
e9

7
04

f2
94

b
b2

c8
6d

1

Target revision [commit]

150

200

250

300

350

Ru
nn

in
g

tim
e

[m
s]

brotli Typestate Analysis

(c) BROTLI — Typestate analysis

Figure 6.2: Running times for BROTLI. Running times for WPA analysis runs are
indicated by a red diamond and running times for IncAlyzer runs are indicated
by a green square.

172

6.10 Incrementality: Data

a1
73

0b
6

08
07

fd
7

94
96

d3
2

5a
02

39
3

10
41

39
9

4e
fa

0b
5

6d
45

b9
c

74
1f

7e
d

66
61

bd
5

1f
85

42
0

bf
a7

00
6

10
d8

40
4

ec
70

d1
4

d4
5b

76
e

31
0e

b4
7

93
df

71
3

e0
54

a1
6

f4
b5

c8
8

8c
f4

18
9

fff
65

55
68

54
b6

c
ba

66
9d

0
c7

8a
18

5
9a

d2
3c

3
0a

75
96

4
b8

32
ca

b
73

02
2b

5
ac

c0
a9

2
43

17
c5

5
78

d8
bc

4
29

6b
af

4
51

c2
2a

f
d4

54
af

4
f2

4b
4b

9
6e

4f
ed

e
cd

18
e5

c
0e

33
9b

9
e8

12
47

3
3f

8f
c2

5
c6

d9
7b

c
92

d7
dd

3
44

29
6d

c
78

88
6a

f
7a

f1
51

d
7d

62
f0

d
3c

92
56

c
c7

2e
df

a
48

94
ca

6
67

e9
e9

0
da

cd
25

8

Target revision [commit]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ru

nn
in

g
tim

e
[m

s]

1e7 curl Taint Analysis

(a) CURL — Taint analysis

a1
73

0b
6

08
07

fd
7

94
96

d3
2

5a
02

39
3

10
41

39
9

4e
fa

0b
5

6d
45

b9
c

74
1f

7e
d

66
61

bd
5

1f
85

42
0

bf
a7

00
6

10
d8

40
4

ec
70

d1
4

d4
5b

76
e

31
0e

b4
7

93
df

71
3

e0
54

a1
6

f4
b5

c8
8

8c
f4

18
9

fff
65

55
68

54
b6

c
ba

66
9d

0
c7

8a
18

5
9a

d2
3c

3
0a

75
96

4
b8

32
ca

b
73

02
2b

5
ac

c0
a9

2
43

17
c5

5
78

d8
bc

4
29

6b
af

4
51

c2
2a

f
d4

54
af

4
f2

4b
4b

9
6e

4f
ed

e
cd

18
e5

c
0e

33
9b

9
e8

12
47

3
3f

8f
c2

5
c6

d9
7b

c
92

d7
dd

3
44

29
6d

c
78

88
6a

f
7a

f1
51

d
7d

62
f0

d
3c

92
56

c
c7

2e
df

a
48

94
ca

6
67

e9
e9

0
da

cd
25

8

Target revision [commit]

0

2500

5000

7500

10000

12500

15000

17500

Ru
nn

in
g

tim
e

[m
s]

curl Linear Constant Propagation

(b) CURL — LCA

a1
73

0b
6

08
07

fd
7

94
96

d3
2

5a
02

39
3

10
41

39
9

4e
fa

0b
5

6d
45

b9
c

74
1f

7e
d

66
61

bd
5

1f
85

42
0

bf
a7

00
6

10
d8

40
4

ec
70

d1
4

d4
5b

76
e

31
0e

b4
7

93
df

71
3

e0
54

a1
6

f4
b5

c8
8

8c
f4

18
9

fff
65

55
68

54
b6

c
ba

66
9d

0
c7

8a
18

5
9a

d2
3c

3
0a

75
96

4
b8

32
ca

b
73

02
2b

5
ac

c0
a9

2
43

17
c5

5
78

d8
bc

4
29

6b
af

4
51

c2
2a

f
d4

54
af

4
f2

4b
4b

9
6e

4f
ed

e
cd

18
e5

c
0e

33
9b

9
e8

12
47

3
3f

8f
c2

5
c6

d9
7b

c
92

d7
dd

3
44

29
6d

c
78

88
6a

f
7a

f1
51

d
7d

62
f0

d
3c

92
56

c
c7

2e
df

a
48

94
ca

6
67

e9
e9

0
da

cd
25

8

Target revision [commit]

1000

2000

3000

4000

5000

6000

Ru
nn

in
g

tim
e

[m
s]

curl Typestate Analysis

(c) CURL — Typestate analysis

Figure 6.3: Running times for CURL. Running times for WPA analysis runs are indicated
by a red diamond and running times for IncAlyzer runs are indicated by a
green square.

173

6 Incrementality

dc
97

40
d

d7
4a

30
d

c9
9f

32
0

65
43

c0
9

0e
2d

07
f

5e
1f

c8
b

9d
32

48
7

80
00

63
5

e6
17

ae
3

93
8c

4f
5

83
c6

5d
1

85
e0

91
0

4b
58

ee
e

3e
32

e3
c

23
53

36
1

83
ce

5e
b

28
01

aa
3

fa
8f

ac
4

43
0e

da
c

dc
90

55
0

42
ef

d4
5

8a
e1

83
f

96
cd

66
0

d8
42

5f
c

bc
bb

26
0

46
ef

96
3

13
da

b4
2

78
4d

dd
c

9c
3f

23
b

bf
5f

3b
a

11
4a

6b
d

a0
48

38
d

d3
ae

21
5

b9
b5

7f
e

3c
01

ca
c

f5
f9

31
a

b0
0f

cb
9

00
f4

ad
e

75
53

20
0

7e
62

14
b

f3
26

7b
5

eb
e6

13
c

e6
4e

49
9

26
40

ce
5

54
d0

39
e

75
da

c0
3

55
89

0d
d

69
90

88
0

54
04

2d
4

15
6d

0e
1

Target revision [commit]

0

1

2

3

4

5

6

7

Ru
nn

in
g

tim
e

[m
s]

1e6 gzip Taint Analysis

(a) GZIP — Taint analysis

dc
97

40
d

d7
4a

30
d

c9
9f

32
0

65
43

c0
9

0e
2d

07
f

5e
1f

c8
b

9d
32

48
7

80
00

63
5

e6
17

ae
3

93
8c

4f
5

83
c6

5d
1

85
e0

91
0

4b
58

ee
e

3e
32

e3
c

23
53

36
1

83
ce

5e
b

28
01

aa
3

fa
8f

ac
4

43
0e

da
c

dc
90

55
0

42
ef

d4
5

8a
e1

83
f

96
cd

66
0

d8
42

5f
c

bc
bb

26
0

46
ef

96
3

13
da

b4
2

78
4d

dd
c

9c
3f

23
b

bf
5f

3b
a

11
4a

6b
d

a0
48

38
d

d3
ae

21
5

b9
b5

7f
e

3c
01

ca
c

f5
f9

31
a

b0
0f

cb
9

00
f4

ad
e

75
53

20
0

7e
62

14
b

f3
26

7b
5

eb
e6

13
c

e6
4e

49
9

26
40

ce
5

54
d0

39
e

75
da

c0
3

55
89

0d
d

69
90

88
0

54
04

2d
4

15
6d

0e
1

Target revision [commit]

0

2000

4000

6000

8000

10000

Ru
nn

in
g

tim
e

[m
s]

gzip Linear Constant Propagation

(b) GZIP — LCA

dc
97

40
d

d7
4a

30
d

c9
9f

32
0

65
43

c0
9

0e
2d

07
f

5e
1f

c8
b

9d
32

48
7

80
00

63
5

e6
17

ae
3

93
8c

4f
5

83
c6

5d
1

85
e0

91
0

4b
58

ee
e

3e
32

e3
c

23
53

36
1

83
ce

5e
b

28
01

aa
3

fa
8f

ac
4

43
0e

da
c

dc
90

55
0

42
ef

d4
5

8a
e1

83
f

96
cd

66
0

d8
42

5f
c

bc
bb

26
0

46
ef

96
3

13
da

b4
2

78
4d

dd
c

9c
3f

23
b

bf
5f

3b
a

11
4a

6b
d

a0
48

38
d

d3
ae

21
5

b9
b5

7f
e

3c
01

ca
c

f5
f9

31
a

b0
0f

cb
9

00
f4

ad
e

75
53

20
0

7e
62

14
b

f3
26

7b
5

eb
e6

13
c

e6
4e

49
9

26
40

ce
5

54
d0

39
e

75
da

c0
3

55
89

0d
d

69
90

88
0

54
04

2d
4

15
6d

0e
1

Target revision [commit]

200

250

300

350

400

450

500

550

Ru
nn

in
g

tim
e

[m
s]

gzip Typestate Analysis

(c) GZIP — Typestate analysis

Figure 6.4: Running times for GZIP. Running times for WPA analysis runs are indicated
by a red diamond and running times for IncAlyzer runs are indicated by a
green square.

174

6.10 Incrementality: Data

c6
6f

99
b

11
31

8b
5

c8
03

ec
6

e2
07

c8
a

a5
c4

65
0

f6
6f

04
e

b6
18

c3
7

ab
49

f3
f

61
e7

cb
1

c7
07

b0
e

45
b3

34
c

79
36

4a
c

c8
a6

18
5

e7
f4

47
b

14
da

84
f

c8
78

34
3

da
25

5c
b

cc
f7

45
e

46
7b

b7
8

7a
7c

69
3

ed
7e

ac
5

1b
64

0d
f

b2
ad

a2
7

b2
9b

33
e

0c
8d

f5
f

71
f5

a8
0

71
f2

e6
6

f5
09

44
c

8a
8d

f7
1

e4
eb

e1
8

0b
da

de
1

72
23

5d
8

29
0d

db
a

ab
0f

68
c

e4
0d

af
9

50
8d

9c
e

e0
5a

20
3

1f
30

8b
1

14
8d

fc0
a3

93
06

6
1d

e7
a2

b
f7

7e
a8

0
3f

c2
86

2
87

db
37

9
dc

88
3b

2
42

27
fb

d
f0

a7
a7

8
b8

10
67

8
0f

b0
d7

5
d8

fe
02

7

Target revision [commit]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ru

nn
in

g
tim

e
[m

s]

1e6 htop Taint Analysis

(a) HTOP — Taint analysis

c6
6f

99
b

11
31

8b
5

c8
03

ec
6

e2
07

c8
a

a5
c4

65
0

f6
6f

04
e

b6
18

c3
7

ab
49

f3
f

61
e7

cb
1

c7
07

b0
e

45
b3

34
c

79
36

4a
c

c8
a6

18
5

e7
f4

47
b

14
da

84
f

c8
78

34
3

da
25

5c
b

cc
f7

45
e

46
7b

b7
8

7a
7c

69
3

ed
7e

ac
5

1b
64

0d
f

b2
ad

a2
7

b2
9b

33
e

0c
8d

f5
f

71
f5

a8
0

71
f2

e6
6

f5
09

44
c

8a
8d

f7
1

e4
eb

e1
8

0b
da

de
1

72
23

5d
8

29
0d

db
a

ab
0f

68
c

e4
0d

af
9

50
8d

9c
e

e0
5a

20
3

1f
30

8b
1

14
8d

fc0
a3

93
06

6
1d

e7
a2

b
f7

7e
a8

0
3f

c2
86

2
87

db
37

9
dc

88
3b

2
42

27
fb

d
f0

a7
a7

8
b8

10
67

8
0f

b0
d7

5
d8

fe
02

7

Target revision [commit]

0

5000

10000

15000

20000

25000

30000

Ru
nn

in
g

tim
e

[m
s]

htop Linear Constant Propagation

(b) HTOP — LCA

c6
6f

99
b

11
31

8b
5

c8
03

ec
6

e2
07

c8
a

a5
c4

65
0

f6
6f

04
e

b6
18

c3
7

ab
49

f3
f

61
e7

cb
1

c7
07

b0
e

45
b3

34
c

79
36

4a
c

c8
a6

18
5

e7
f4

47
b

14
da

84
f

c8
78

34
3

da
25

5c
b

cc
f7

45
e

46
7b

b7
8

7a
7c

69
3

ed
7e

ac
5

1b
64

0d
f

b2
ad

a2
7

b2
9b

33
e

0c
8d

f5
f

71
f5

a8
0

71
f2

e6
6

f5
09

44
c

8a
8d

f7
1

e4
eb

e1
8

0b
da

de
1

72
23

5d
8

29
0d

db
a

ab
0f

68
c

e4
0d

af
9

50
8d

9c
e

e0
5a

20
3

1f
30

8b
1

14
8d

fc0
a3

93
06

6
1d

e7
a2

b
f7

7e
a8

0
3f

c2
86

2
87

db
37

9
dc

88
3b

2
42

27
fb

d
f0

a7
a7

8
b8

10
67

8
0f

b0
d7

5
d8

fe
02

7

Target revision [commit]

475

500

525

550

575

600

625

650

675

Ru
nn

in
g

tim
e

[m
s]

htop Typestate Analysis

(c) HTOP — Typestate analysis

Figure 6.5: Running times for HTOP. Running times for WPA analysis runs are indicated
by a red diamond and running times for IncAlyzer runs are indicated by a
green square.

175

6 Incrementality

50
91

57
c

00
07

39
4

5e
57

e3
3

0c
c3

31
3

75
c9

ca
4

13
3c

f5
5

76
e2

31
5

8b
2f

60
0

b4
73

a9
2

5a
7b

93
0

af
49

25
e

f0
c5

80
c

df
e1

71
0

5a
5b

d7
f

3b
88

90
a

53
cc

47
5

8b
e1

36
f

2c
1a

83
0

b0
89

16
8

0b
a2

34
f

11
6e

81
f

dd
fe

16
4

cf3
d1

f1
4f

ab
db

2
20

cd
90

5
4d

7f
ac

0
2c

b6
02

8
8b

e5
cc

3
d0

fa
a8

5
65

49
df

8
53

7c
6c

d
fb

9c
50

f
0f

bb
2b

8
2a

89
67

0
39

38
71

8
70

62
34

8
f4

1d
f2

a
78

cc
d9

3
16

b8
1a

0
2c

f5
ae

5
44

c0
c5

e
6b

e4
60

d
9a

d6
4b

d
71

3e
15

e
77

05
0b

7
c2

47
d0

6
d0

f3
3d

6
8f

23
65

7
33

74
a5

3
f3

6c
a7

9

Target revision [commit]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ru
nn

in
g

tim
e

[m
s]

1e6 xz Taint Analysis

(a) XZ — Taint analysis

50
91

57
c

00
07

39
4

5e
57

e3
3

0c
c3

31
3

75
c9

ca
4

13
3c

f5
5

76
e2

31
5

8b
2f

60
0

b4
73

a9
2

5a
7b

93
0

af
49

25
e

f0
c5

80
c

df
e1

71
0

5a
5b

d7
f

3b
88

90
a

53
cc

47
5

8b
e1

36
f

2c
1a

83
0

b0
89

16
8

0b
a2

34
f

11
6e

81
f

dd
fe

16
4

cf3
d1

f1
4f

ab
db

2
20

cd
90

5
4d

7f
ac

0
2c

b6
02

8
8b

e5
cc

3
d0

fa
a8

5
65

49
df

8
53

7c
6c

d
fb

9c
50

f
0f

bb
2b

8
2a

89
67

0
39

38
71

8
70

62
34

8
f4

1d
f2

a
78

cc
d9

3
16

b8
1a

0
2c

f5
ae

5
44

c0
c5

e
6b

e4
60

d
9a

d6
4b

d
71

3e
15

e
77

05
0b

7
c2

47
d0

6
d0

f3
3d

6
8f

23
65

7
33

74
a5

3
f3

6c
a7

9

Target revision [commit]

500

1000

1500

2000

2500

3000

3500

Ru
nn

in
g

tim
e

[m
s]

xz Linear Constant Propagation

(b) XZ — LCA

50
91

57
c

00
07

39
4

5e
57

e3
3

0c
c3

31
3

75
c9

ca
4

13
3c

f5
5

76
e2

31
5

8b
2f

60
0

b4
73

a9
2

5a
7b

93
0

af
49

25
e

f0
c5

80
c

df
e1

71
0

5a
5b

d7
f

3b
88

90
a

53
cc

47
5

8b
e1

36
f

2c
1a

83
0

b0
89

16
8

0b
a2

34
f

11
6e

81
f

dd
fe

16
4

cf3
d1

f1
4f

ab
db

2
20

cd
90

5
4d

7f
ac

0
2c

b6
02

8
8b

e5
cc

3
d0

fa
a8

5
65

49
df

8
53

7c
6c

d
fb

9c
50

f
0f

bb
2b

8
2a

89
67

0
39

38
71

8
70

62
34

8
f4

1d
f2

a
78

cc
d9

3
16

b8
1a

0
2c

f5
ae

5
44

c0
c5

e
6b

e4
60

d
9a

d6
4b

d
71

3e
15

e
77

05
0b

7
c2

47
d0

6
d0

f3
3d

6
8f

23
65

7
33

74
a5

3
f3

6c
a7

9

Target revision [commit]

360

370

380

390

400

410

420

430

440

Ru
nn

in
g

tim
e

[m
s]

xz Typestate Analysis

(c) XZ — Typestate analysis

Figure 6.6: Running times for XZ. Running times for WPA analysis runs are indicated by a
red diamond and running times for IncAlyzer runs are indicated by a green
square.

176

7 Applications of PhASAR

This chapter presents two projects from academia and one large industry project that we
conducted over a time frame of 15 months with one of the world’s largest telecommu-
nications companies. This underlines that PhASAR indeed helps opening up new and
interesting fields of research and allows for solving actual, real-world problems that could
hardly be addressed before.

7.1 Combining Repository Mining and Static Code Analysis

The theory of socio-technical systems (STS) has been developed by Eric Trist, Ken Bam-
forth, and Fred Emery [Tri81]. It is an approach to complex organizational work design that
recognizes the interaction between humans and technology. Socio-technical refers to the
interrelatedness of social and technical aspects of an organization or a (software) system.
The development of a deep understanding of a technical system—with a particular focus
on how people interact with it—is one of the theory’s main aspects to provide guidance on
joint optimization.

Sattler et al. integrate program analysis techniques with the socio-technical inner work-
ings of software by combining high-level information on software projects obtained by
repository mining with precise, low-level static data-flow information [SBS+23].

The approach obtains high-level socio-technical information for a given target project
using relatively lightweight repository mining techniques. This socio-technical information
is then handed over to and is processed by a modified compiler front-end for the program-
ming language that the target software is written in. The customized compiler front-end
attaches the information to the compiler’s intermediate representation during IR (code)
generation. The result is a version of the target project in the compiler’s IR that is amended
with additional socio-technical information. This enriched IR is then placed at the disposal
for further heavyweight, semantic program analysis techniques. A downstream analysis
tool can analyze the IR and access the attached socio-technical (meta) data, allowing it to
produce attributed results that can provide novel insights.

The approach is formally defined as a conceptual framework called VaRA [SBS+23,
Sat23]. Its concrete implementation has been built on top of LLVM and PhASAR. The
source of socio-technical information as well as the source of the program analysis informa-
tion are fully parameterizable and can be specified by VaRA’s users. A concrete instance
of the VaRA framework that shows its potential is presented in what follows.

The author of this thesis contributed to this piece of research a special-purpose data-flow
analysis encoded within the Interprocedural Distributive Environments (IDE) [SRH96]
framework. The analysis has been implemented in PhASAR and allows one to exhaustively

177

7 Applications of PhASAR

compute data flows for all program variables of the project under analysis. The data-flow
analysis aims at finding interactions between program instructions. Whenever an instruction
modifies a piece of memory, i.e., a variable, it becomes associated with this memory. If two
or more instructions operate on the same piece of memory, they are considered to interact
with each other. When parameterizing VaRA to use information on commits obtained by git
blame as the source of socio-technical information, each LLVM IR instruction is annotated
(by the customized compiler front-end) with the commit hash of the source code line from
which it originates. The git blame command shows author information of each line of a
project’s source file that last modified it. This information includes author name, e-mail,
commit hash, time stamp, etc. Making this information available to the special-purpose
data-flow analysis allows one to automatically determine which of the target project’s
commits interact with each other on the data-flow level. If a taint analysis is chosen as
the downstream static analysis, for instance, it can report potential (security) vulnerabilities
found within the target project. Using information on the commit interactions computed
by the exhaustive data-flow analysis allows one to attribute the taint analysis’ findings to
a specific project version, author(s), or development team. This opens up the opportunity
to determine the authors of the program paths along which the undesired taint flow has
been propagated, for instance. In practice, static analysis—especially if conducted in a
whole-program manner—might produce lots of potential findings, many of which may be
false positives [BBC+10, HO18] such that it has become a real challenge to prioritize and
check them. Being able to access commit information at a fine-grained data-flow level
enables one to report the analysis’ findings directly to the respective authors, who are most
familiar with the code for which an issues has been found.

Being able to compute these kinds of information also opens up new opportunities
for automating code reviews, for instance. Bugs and security vulnerabilities can be di-
rectly and automatically reported to the author who introduced them accidentally (or on
purpose [mei22]).

The VaRA approach allows one to obtain novel insights on software projects that were
previously locked away and has the great potential to change how we think about software
projects and code as it opens up a large variety of useful applications. For more details
and a variety of further interesting example parametrizations and applications of the VaRA
framework, we refer to reader to [SBS+23].

7.2 Static Configuration-Logic Identification

In another piece of research that is currently under submission [ASR+23], Alhanahnah et
al. shows that programs can oftentimes be divided into two parts: a part that configures
the program according to the user’s parametrization and another part that comprises the
program’s main computations. Such a program point that separates those two parts not
only exists for command-line applications, but for configuration-file programs and server
applications, too.

Alhanahnah et al. denotes the program point that separates a program into configura-
tion logic and actual computation as Boundary. A scaled down version of the UNIX wc

178

7.2 Static Configuration-Logic Identification

utility program is shown in Listing 7.1. The program shows that wc comprises a configu-
ration part that parses the configuration information provided by the user—here using the
command-line arguments—via main’s argv variable. The program transforms these exter-
nal configuration information into an internal format by assigning initial (or new) values
to certain program-internal configuration variables. These configuration variables are then
used to determine which parts of the actual program computations execute.

1 # inc lude < s t d i o . h>
2
3 i n t count_chars = 0;
4 i n t c o u n t _ l i n e s = 0;
5
6 i n t t o t a l _ c h a r s = 0;
7 i n t t o t a l _ l i n e s = 0;
8
9 i n t main (i n t argc , char ∗∗argv) {

10 f o r (i n t i = 1 ; i < argc ; ++ i) {
11 i f (argv [i] [0] == ’− ’) {
12 sw i t ch (argv [0] [1]) {
13 case ’ c ’ :
14 count_chars = 1;
15 break ;
16 case ’ l ’ :
17 c o u n t _ l i n e s = 1;
18 break ;
19 d e f a u l t :
20 p r i n t f (" I n v a l i d f l a g %s" , argv [i]) ;
21 }
22 }
23 }
24 / / −−−−−−−−−− Boundary −−−−−−−−−−
25 char bu f f e r [1 0 2 4] ;
26 whi le (f g e t s (buf fer , 1024 , s t d i n)) {
27 i f (count_chars) {
28 t o t a l _ c h a r s += s i z e o f (bu f f e r) ;
29 }
30 i f (c o u n t _ l i n e s) {
31 t o t a l _ l i n e s ++;
32 }
33 }
34 i f (count_chars) {
35 p r i n t f (" Tota l chars = %d \ n" , t o t a l _ c h a r s) ;
36 }
37 i f (c o u n t _ l i n e s) {
38 p r i n t f (" Tota l l i n e s = %d \ n" , t o t a l _ l i n e s) ;
39 }
40 re turn 0;
41 }

Listing 7.1: A scaled down version of the wc utility. The boundary between configuration
logic and main logic has been depicted using // −−− Boundary −−−.

179

7 Applications of PhASAR

The analysis of program configurations enables one to understand under which circum-
stances execution may fail or to apply partial evaluation with the goal of speeding up
execution or decreasing a program’s size. Alhanahnah et al. shows that information on a
program’s Boundary enables one to solve various software engineering problems. Besides
providing useful information for program comprehension to developers, it enables one to
conduct software debloating in a fully automated manner. Software debloating aims at au-
tomatically removing parts of a program that are not actually required to correctly execute
in a certain—user specified—configuration. The scaled down wc program in Listing 7.1,
for instance, allows one to compute the number of characters and the number of lines of the
input provided using stdin. If a user, however, is only interested in counting the lines of the
input, wc can be debloated with respect to the -l option to produce a specialized version
of the program shown in Listing 7.2. Program debloating provides several advantages
as it reduces a program’s size and therefore oftentimes also its attack surface, and may
leads to improved performance as the compiler’s optimizer can perform more aggressive
optimizations.

1 # inc lude < s t d i o . h>
2
3 i n t t o t a l _ l i n e s = 0;
4
5 i n t main (i n t argc , char ∗∗argv) {
6 char bu f f e r [1 0 2 4] ;
7 whi le (f g e t s (buf fer , 1024 , s t d i n)) {
8 t o t a l _ l i n e s ++;
9 }

10 p r i n t f (" Tota l l i n e s = %d \ n" , t o t a l _ l i n e s) ;
11 re turn 0;
12 }

Listing 7.2: A specialized version of the program shown in Listing 7.1 that only counts the
lines of a given input.

Previously, a program’s Boundary location had to be identified manually to enable soft-
ware debloating. This manually identified Boundary can then be used to automatically
debloat a program using a tool like LMCAS [AJR+22]. LMCAS performs partial evalu-
ation [JGS93] with respect to the values of the configuration-hosting variables, which are
correctly set up and initialized at a program’s Boundary location. The approach abstractly
operates as follows (reproduced from [ASR+23]):

𝑃(𝑥, 𝑦) = let 𝑡 = translate(𝑥) in 𝑔(𝑡, 𝑦) (7.1)
→ 𝑃𝑥 (𝑦) = 𝑔𝑡 (𝑦) (7.2)

𝑃 is a two-argument program, 𝑃(𝑥, 𝑦). 𝑃𝑥 (𝑦) is a version of 𝑃(𝑥, 𝑦) that is specialized
on the specific value of 𝑥. The body of 𝑃𝑥 (𝑦) is obtained by finding and evaluating
𝑡 = translate(𝑥), and then running a partial evaluator on 𝑔 with static input 𝑡 to create 𝑔𝑡 (𝑦),
which is a version of 𝑔(𝑡, 𝑦) specialized on the value of 𝑡.

180

7.3 White-Box Penetration Testing

A manual field study conducted by Alhanahnah et al. identified the following relevant
properties to identify a program’s Boundary:

1. Configuration-hosting variables are data dependent or control dependent on argv.

2. The Boundary should be located after at least one loop.

3. The Boundary represents an articulation point in the program’s control-flow graph.

4. The Boundary should be reachable from the entry point and execute only once.

More formally, this problem can be defined as finding an articulation point (basic block)
𝐵 of the target program’s ICFG 𝐺 that is reachable from 𝑣entry, and is (i) located after a
loop, (ii) post-dominates every assignment to a member of𝐶host, and (iii) for each 𝑐 ∈ 𝐶host,
all paths from 𝐵 to 𝑣exit are free of definitions to 𝑐. If multiple program locations satisfy
these conditions, the program location 𝐵 that is closest—in terms of control-flow edges—to
the entry is identified as the Boundary. 𝐶host is the set of configuration-hosting variables.
𝑣entry is the ICFG node that represents the target program’s entry point and 𝑣exit is the ICFG
node that represents the program’s exit point.

The author of this thesis helped identify these properties, and formalized and implemented
an algorithm to automatically find a program location that satisfies these properties. The
automated Boundary identification algorithm has been implemented in C++ in a tool called
SLASH using PhASAR and LLVM. SLASH can automatically identify the Boundary for
up to 96% of the 23 target programs used for its evaluation and is able to analyze all of
them in 8.5 minutes and with a maximum memory consumption of 4.4 GB.

SLASH can be integrated with the state-of-the-art debloating tool LMCAS [AJR+22]
and eliminates the requirement for user-annotated Boundary locations without breaking
its functionality. This for the first time allows for a fully automated debloating pipeline.
For further details we refer the reader to [ASR+23].

7.3 White-Box Penetration Testing

We next detail how we designed and implemented a PhASAR-based static analyzer to find
bugs and (security) vulnerabilities in low-level C and C++ code that runs on routers and
embedded systems. This industry project has been conducted with one of the world’s largest
telecommunications companies. We first present our approach and solution to find bugs
and vulnerabilities in low-level C and C++ using white-box penetration testing. Then, we
present the insights that we gained in this 15 month project and the challenges that we faced
during the project. In the following, we refer to the PhASAR-based static analyzer as static
analysis engine (SAE) and to the industry partner as AnonymousCompany.

The overarching goal of this white-box penetration test project was to combine the
strengths of static and dynamic program analysis while eliminating their weaknesses (to
the extend possible). On the one hand, static program analysis inspects all paths of a
program, but frequently suffers from an unduly high false positive rate. This can lower the
acceptance rate for developers to use respective tooling to the point at which they reject

181

7 Applications of PhASAR

it [BBC+10]. To account for a potentially high amount of false positive findings reported
by static analysis, fuzzing can be used to generate test cases that aim at dynamically
confirming (or disconfirming) the static analysis findings. This automated validation of
static analysis findings reduces the workload put onto developers. On the other hand,
the findings computed using static analysis provide valuable information to guide a fuzzer
towards potentially interesting program locations. Since a fuzzer on its own would otherwise
generate random test cases, a combined hybrid approach can make software testing much
more efficient. In this project, we developed a PhASAR-based static analyzer that is
intended to be used with a fuzzing engine developed by AnonymousCompany.

Techniques for white-box penetration testing include manual code reviews, automated
code reviews, and fuzz testing. Manual code reviews, however, do not scale and are
tedious and expensive when being applied to large-scale software projects. Hence, they
are oftentimes only applied to particularly interesting and especially critical parts of the
target software. Automated code reviews counteract these scalability issues by employing
automated static analysis tools that aim at detecting suspicious patterns in the source code.
These findings are then manually inspected and confirmed or disconfirmed by an expert.

Fuzz testing (or fuzzing) is a technique to automatically detect undesired behaviors and
to find potential (security) vulnerabilities in software. Fuzz testing works by generating
a plethora of test cases that run the software under analysis on random inputs to provoke
interesting program behaviors. In case of white-box penetration testing, the complete
source code is known and available for analysis. Hence, additional static program analysis
techniques may be used to improve fuzz testing by augmenting the fuzzing algorithm with
information computed by static analysis. This improves the fuzzer’s effectiveness and makes
it less random by targeting potentially interesting program locations identified by the static
analysis. The fuzzer, on the other hand, also counteracts one of the great weaknesses of
static analysis: false positives. Instead of having the findings computed by a static analysis
manually checked by an expert, the fuzzer allows for automated confirmation of findings,
which helps developers to endure the noise generated by false positives.

To determine interesting test inputs for the fuzzer, the static taint analysis first computes
program slices for program variables and program locations of interest. Whenever the taint
analysis detects an undesired data flow for a given variable, the respective program slices
that may cause this undesired data flow are analyzed in detail using a subsequent symbolic
execution. Analyzing the program slices using a symbolic execution aims at detecting
concrete vulnerabilities and yields path condition(s) that must be satisfied to cause these
undesired data flow(s) at runtime. Instead of employing symbolic execution only, we use
a relatively lightweight upstream static data-flow analysis that records paths to counteract
the well-known problem of path explosion. The symbolic execution only gets to analyze
the paths reported by the upstream data-flow analysis. The path conditions computed by
the symbolic execution are eventually provided to the downstream fuzzer to automatically
generate test cases that confirm or disconfirm the undesired data flow(s) and to show their
absence once the bug or vulnerability has been fixed.

SAE’s implementation is based on PhASAR [SHB19], LLVM [LA04] and Z3 [dMB08],
and comprises, besides various (static) helper analyses, two main static analysis compo-
nents: a precise, parameterizable taint analysis and an extensible symbolic execution. We

182

7.3 White-Box Penetration Testing

built our implementation on PhASAR since it is the only LLVM-based infrastructure that
allows the detailed static analysis of programs written in C and C++, and provides all means
to develop and solve sophisticated state-of-the-art static data-flow analyses.

Taint analysis, the first main component of SAE, is a very prominent client data-flow
analysis that can be used to solve a multitude of analysis problems, depending on the
concrete parametrization of sources and sinks. It can be used to find all kinds of code
injection vulnerabilities such as SQL or XSS (cross site scripting) injections, for instance,
but it can also be used to find memory leaks. In this project, a path-sensitive taint analysis
is used to find undesired data flows of sensitive program variables. It produces as a result
program slices that are interesting for further analysis by a downstream symbolic execution.

Symbolic execution, the second major component of the analysis engine, is a static
analysis technique that reasons about a program path by path. As the number of pro-
gram paths grows exponentially with every conditional, symbolic execution oftentimes
becomes prohibitively expensive for real-world applications. This is also the reason why
dedicated tools that implement symbolic executions techniques, such as the Clang Static
Analyzer [Cla18b], analyze code inter-procedurally but not across translation units. In this
project, we aim at statically analyzing the whole program, which is one of the reasons why
an additional upstream taint analysis is necessary to compute program slices in order to
reduce the symbolic execution’s analysis space. Whenever a runtime value, i.e., a value
whose assignment is unknown at compile time, is being processed, symbolic execution
assigns a symbolic value. These symbolic values are propagated through the program and
modifications made to them as well as comparisons (in conditional branches) are expressed
as (path) constraints using logic formulas. The formulas can be simplified and in some
cases even (re)solved to constant values using Satisfiability Modulo Theories SMT solvers
such as Z3 [dMB08]. This allows one to reason about the exact path conditions that must
be satisfied to reach a certain point in the target program at runtime.

We also employ symbolic execution to implement custom bug checkers that reason about
(i) potential out-of-bounds buffer accesses and (ii) the finiteness of loops to the extend
that is theoretically decidable and practically feasible. The result of these symbolic checks
are findings of potential programming mistakes and potential vulnerabilities along with
their respective data-flow paths and associated path constraints along which they may be
triggered at runtime. The (simplified) path constraints for the data flows that lead to
potential vulnerabilities issued by the symbolic checks can be subjected to a downstream
fuzzer. This allows a fuzzer to create target-oriented test cases. SAE’s symbolic checks are
extensible: additional checks that aim at finding different kinds of bugs or vulnerabilities
can be added to and integrated with SAE.

7.3.1 Running Example

In the following, we present a modified and truncated version of one of the C test programs
provided by AnonymousCompany as a running example. The program shown in Listing 7.3
and Listing 7.4, however, still realistically demonstrates the type of bugs and vulnerabilities
that AnonymousCompany faces when developing low-level C and C++ code. We use this
example to detail on the design, implementation and possible usages of SAE.

183

7 Applications of PhASAR

Listing 7.3 introduces various macro definitions as well as definitions of the data types
MailBlock, MailEnvelope, and SubMail and function declarations that are used in Listing 7.4.
The code shown in Listing 7.4 implements different handlers that process instances of these
types. Some of these handlers comprise vulnerabilities. An overview of the handlers and
their respective vulnerabilities is shown in Table 7.1. The goal of SAE is to automatically
detect these vulnerabilities and issue the respective path constraints.

Table 7.1: Overview of the various handlers implemented in Listing 7.4 and their
respective vulnerability, if any.

Handler Vulnerabilities Vulnerability Location
handler_1 out-of-bound Line 12
handler_2 out-of-bound Line 23
handler_3 out-of-bound Line 36
handler_4 none
handler_5 infinite loop Line 59

1 # i f n d e f COMMON_H
2 # d e f i n e COMMON_H
3 # d e f i n e SUB_MAIL_ENV_SIZE 255
4 # d e f i n e INDEX_DIVIDER 4
5 # d e f i n e MAX_CONTENT_SIZE 1024
6 # d e f i n e SUB_LOOP_OFFSET 20
7 t ypede f s t r u c t MailEnvelope {
8 unsigned i n t mailType ;
9 unsigned i n t sendId ;

10 unsigned i n t recId ;
11 [[c lang : : annota te (" psr " , "SizeGuard " , "MailBlock : : Contents ")]]
12 unsigned i n t c o n t e n t S i z e ;
13 } MailEnvelope ;
14
15 t ypede f s t r u c t MailBlock {
16 MailEnvelope enve lope ;
17 unsigned i n t mai lB lockS ize ;
18 [[c lang : : annota te (" psr " , "SizeGuard " , "MailBlock : : Contents ")]]
19 unsigned char con ten t [] ;
20 } MailBlock ;
21
22 t ypede f s t r u c t SubMail {
23 [[c lang : : annota te (" psr " , "SizeGuard " , "SubMail : : SubMailEnvelope ")]]
24 unsigned char subMailEnvelope [SUB_MAIL_ENV_SIZE] ;
25 unsigned i n t subContentS ize ;
26 unsigned char subContent [] ;
27 } SubMail ;
28
29 t ypede f void (∗ MailHdlFuncPtr) (MailBlock ∗) ;
30 # end i f / / COMMON_H

Listing 7.3: Header file defining the data types required by Listing 7.4.

184

7.3 White-Box Penetration Testing

1 # inc lude < s t d i o . h>
2 # inc lude < s t d l i b . h>
3 # inc lude "common . h"
4
5 void handler_1 (MailBlock ∗mail_p) {
6 i n t t o t a l S i z e = mail_p−>enve lope . c o n t e n t S i z e ;
7 unsigned char ∗ content_p = mail_p−>con ten t ;
8 SubMail ∗subMail_p = (SubMail ∗) content_p ;
9 whi le ((t o t a l S i z e > 0) && (subMail_p != NULL)) {

10 t o t a l S i z e = t o t a l S i z e − s i z e o f (SubMail) − (subMail_p−>
subContentS ize) ;

11 / / VUL: no check of t o t a l S i z e be fore a c c e s s i n g next message body
12 content_p += s i z e o f (SubMail) + subMail_p−>subContentS ize ;
13 subMail_p = (SubMail ∗) content_p ;
14 }
15 re turn ;
16 }
17
18 void handler_2 (MailBlock ∗mail_p) {
19 unsigned i n t i ;
20 f o r (i = 0 ; i < mail_p−>enve lope . c o n t e n t S i z e ; i ++) {
21 / / VUL: no check of array index be fore a c c e s s i n g
22 unsigned i n t index = (i + mail_p−>enve lope . mailType) /

INDEX_DIVIDER;
23 unsigned char va lue = mail_p−>conten t [index] ;
24 }
25 re turn ;
26 }
27
28 void handler_3 (MailBlock ∗mail_p) {
29 unsigned i n t i ;
30 f o r (i = 0 ; i < mail_p−>enve lope . c o n t e n t S i z e ; i ++) {
31 unsigned i n t index = (i + mail_p−>enve lope . mailType) /

INDEX_DIVIDER;
32 / / VUL: wrong p r e t e c t i o n
33 i f (index > MAX_CONTENT_SIZE) {
34 break ;
35 }
36 unsigned char va lue = mail_p−>conten t [index] ;
37 / / do something
38 }
39 re turn ;
40 }
41
42 void handler_4 (MailBlock ∗mail_p) {
43 unsigned i n t i ;
44 f o r (i = 0 ; i < mail_p−>enve lope . c o n t e n t S i z e ; i ++) {
45 unsigned i n t index = (i + mail_p−>enve lope . mailType) /

INDEX_DIVIDER;
46 / / Correct p r o t e c t i o n
47 i f (index >= mail_p−>enve lope . c o n t e n t S i z e) {
48 break ;
49 }

185

7 Applications of PhASAR

50 unsigned char va lue = mail_p−>con ten t [index] ;
51 }
52 re turn ;
53 }
54
55 void handler_5 (MailBlock ∗mail_p) {
56 SubMail ∗subMail_p = (SubMail ∗) mail_p−>con ten t ;
57 unsigned char ∗subContent_p = subMail_p−>subContent ;
58 unsigned i n t l en = 0;
59 whi le (l en < subMail_p−>subContentS ize) {
60 unsigned char subLoopSize = ∗ (subContent_p + SUB_LOOP_OFFSET) ;
61 / / VUL: could be i n f i n i t e loop i f subLoopSize i s zero
62 l en += subLoopSize ;
63 subContent_p += subLoopSize ;
64 }
65 re turn ;
66 }
67
68 / / Find message handler
69 MailHdlFuncPtr f indMailHdl (MailBlock ∗mail_p) {
70 i f (mail_p == NULL) {
71 re turn NULL;
72 }
73 / / Complex l o g i c to r e t r i e v e and return the s u i t a b l e handler
74 re turn mailHdlTable [i] ;
75 }
76
77 / / Post incoming message to i t s handler
78 void postMai l (MailBlock ∗mail_p) {
79 MailHdlFuncPtr myMailHdl_p = findMailHdl (mail_p) ;
80 i f (myMailHdl_p != NULL) {
81 (∗ myMailHdl_p) (mail_p) ;
82 }
83 }
84
85 / / Test message handler c a l l b a c k s
86 void t e s t (MailBlock ∗mail_p) {
87 / / Further complex l o g i c
88 postMai l (mail_p) ;
89 }
90
91 i n t main (i n t argc , [[c lang : : annotate (" psr . source ")]] char ∗∗argv) {
92 p r i n t f (" I n i t i a l i z i n g . . . \ n") ;
93 / / De t a i l ed se tup of func t i on po in t e r t ab l e s , i n i t i a l i z a t i o n , e t c .
94 [[c lang : : annota te (" psr . source ")]] MailBlock ∗mail_p =
95 (MailBlock ∗) (argv [1]) ;
96 mail_p−>enve lope . mailType = s t r t o l (argv [1] , NULL, 10) ;
97 t e s t (mail_p) ;
98 re turn 0;
99 }

Listing 7.4: One of the target program provided by AnonymousCompany that implements
various (erroneous) handlers.

186

7.3 White-Box Penetration Testing

7.3.2 Overview of the Static Analysis Engine

In this section, we give an overview of SAE’s workflow and its individual components. A
schematic of the analysis engine is shown in Figure 7.1.

In the following, we refer to analysis concepts that we implemented (as types, i.e., C++
classes) within SAE by typesetting them using this source code highlighting .

15,43 5,65 5,65 15,43

BC compilation

.bc

Fuzzer
Generator/Mutator

Verifier

TH

ICFG Taint Analysis

PTlibc model

Data-Flow Analysis

Taint-config.json
Target Project

.c /
.cpp
.h /

.hpp

CMakeLists.txt

.c /
.cpp
.h /

.hpp

…

User
Interface/API

Symbolic
Execution

Results

Custom Compiler
Annotations

Figure 7.1: Overview of the Static Analysis Engine. TH denotes type hierarchy
information, PT denotes points-to information and ICFG denotes information
on inter-procedural control flows (which includes callgraph information).

Pre-Processing

SAE has been built on top of PhASAR and therefore analyzes LLVM’s intermediate repre-
sentation. To produce LLVM IR (sometimes called LLVM bitcode) for real-world projects,
one needs to extract the exact compile and link commands encoded in the build system
that is used by the target project. Doing this manually is an infeasible task due to the
multitude of different build systems such as Makefile, CMake, Bazel, etc. As explained in
Section 3.8.3, a solution to produce whole-program LLVM IR is to use compiler wrappers
such as WLLVM [WLL21] and GLLVM [GLL21].

Since the various analyses that are part of SAE all operate on LLVM IR, their raw results
are expressed on LLVM IR level, too. However, based on the analysis results we eventually
wish to make statements on the target project under analysis that are useful and clear to
developers. Therefore, SAE needs to ensure that the results on LLVM IR level can be
mapped back to source code level to provide meaningful insights to its users. To ensure that
a re-mapping of the results is possible, SAE requires the source code to be compiled using
the -g compiler flag to enable debugging information. By enabling debug information, the
compiler preserves information on original variable names, line numbers, columns, etc.,
which are required for mapping the results back to source code level. PhASAR provides

187

7 Applications of PhASAR

APIs to access this information and to map IR constructs to their respective counterparts
on the source code level.

Taint Analysis

In this section, we are giving an overview of SAE’s taint analysis. For SAE’s taint analysis
we assume the dependencies and helper analyses as shown in Section 2.3.

We need to base SAE’s taint analysis on a highly precise, inter-procedural control-
flow graph. This is because the target program (cf. Listing 7.4) makes use of indirect
function calls in form of calls to function pointers. Other test programs provided by
AnonymousCompany are written in C++ and contain (indirect) calls to virtual function
members. To compute precise ICFGs, we require additional points-to information to resolve
function pointers and allocated types of receiver objects upon which virtual functions are
being called. Fortunately, the indirect function calls in the test programs provided by
AnonymousCompany can be successfully resolved using the points-to information provided
by PhASAR and LLVM.

Since the target programs are written in low-level C and C++, an analysis has to deal
with lots of calls to the C runtime. When analyzing LLVM IR, calls to the C runtime, i.e.,
libc functions, such as malloc, free or printf are left unresolved. These functions are only
available as declarations within the respective IR. This is because their implementations are
usually not available, and even if they would be, these functions are typically implemented
in low-level C or assembly making them particularly hard to analyze. LLVM models
many of libc’s functions that are particularly low-level such as memcpy or memmove as so-
called intrinsic functions. LLVM’s intrinsic functions only describe the semantics of a
function albeit there is no actual implementation for that function. LLVM’s code generator
decides at code generation time how to implement calls to intrinsic functions for the given
target architecture. It may even use a hardware implementation to correctly handle the
semantics, if available. In this project, we use PhASAR’s extensible mechanism described
in Section 3.4.5 that precisely models, i.e., summarizes the semantics of the libc and LLVM
intrinsic functions to be able to capture the target program’s behavior. This summary model
directly affects the points-to and data-flow analysis and indirectly affects all other pieces of
static analysis information.

In this project, we designed and implemented IDEExtendedTaintAnalysis to compute pro-
gram slices for variables of interest such as array typed variables that may not overflow.
Whenever the analysis detects an interesting (or illegal) data flow, the paths that lead from
the source to the very sink at which the leak is detected are extracted for further, more
detailed analysis using symbolic execution.

Since the target software is implemented in C and C++, it represents a particularly
hard-to-analyze target and we have to take great care to avoid what is known as overtaint-
ing [SAB10], which prevents the analysis to compute any useful results. A taint analysis
that is based on imprecise points-to information, for instance, may generate a large amount
of tainted variables when being set up to overapproximate information. This often results in
virtually all program variables being marked as tainted, which does not provide any helpful
information. To compute precise data-flow (or taint-flow) paths, the analysis has to be

188

7.3 White-Box Penetration Testing

flow-, context-, field- and path-sensitive. Generally, precise, inter-procedural, and context-
sensitive data-flow analyses are notoriously hard to scale for large applications. However,
since taint analysis can be expressed using distributive flow functions [Bod18], it can be
encoded within distributive data-flow frameworks, e.g., IFDS [RHS95], IDE [SRH96]
or W(PDS) [RSJ03]. We thus implemented IDEExtendedTaintAnalysis as an IDE [SRH96]-
based analysis that obtains its flow- and context-sensitivity due to IDE [SRH96] and models
(𝑘-limiting) field-sensitivity explicitly.

Taint analysis requires a configuration that specifies sources, sinks, and sanitizers. Our
taint analysis is configurable in two ways as described in the following: (i) a configuration
file in JSON format allows one to specify functions and their parameters and/or return val-
ues as sources, sinks or sanitizers. In addition, we support (ii) custom compiler annotations
that can be used to specify sources, sinks, and sanitizers directly in the target application
code. Custom compiler annotations are introduced with [[clang::annotate()]] as shown in
Listing 7.3 and Listing 7.4. The compiler annotations made to the source code are auto-
matically preserved and made available for analysis in LLVM’s IR with help of LLVM’s
Clang compiler. Custom compiler annotations present an additional source of information
for code analysis, but other than that have no effect on a program’s semantics. In partic-
ular, they do not affect the target program’s performance. The support for the compiler
annotations is implemented in Annotation. SAE’s taint analysis recognizes these compiler
annotations while the software can still be compiled in production without modifying the
behavior of the resulting executable. The taint configuration is managed by the TaintConfig
type.

The interesting data flows computed by the taint analysis are subjected to a subsequent
symbolic execution to retrieve information on potential vulnerabilities and their respective
path constraints. The program slices are computed using PathSensitivityManager.

Symbolic Execution

In the following, we give an overview of the symbolic execution that we use to determine
detailed information on the path constraints that lead to the data leaks computed by the taint
analysis.

Symbolic execution assigns symbolic values to the input variables and variables whose
values cannot be determined statically at compile time, and computes information on how
they are being manipulated and used along the various execution paths of the program
under analysis. This, however, is exactly why symbolic execution does not scale well:
since it reasons about the program path by path, and the number of paths in a program
grows exponentially in the number of conditional branches. We counteract this scalability
issue by analyzing only the relevant paths that comprise the interesting program slices
that have been overapproximated by the comparably more lightweight taint analysis. To
compute constraints to be fed into AnonymousCompany’s downstream fuzzer, we are mainly
interested in the path constraints that the symbolic execution yields. These constraints are
logic formulas describing the conditions that must be satisfied in order to reach a certain
point in the program. The accumulated path constraints can be solved and simplified using
satisfiability (SAT) solvers and satisfiability modulo theories (SMT) solvers. We use the

189

7 Applications of PhASAR

SMT solver implementation Z3 [dMB08] to determine concrete input values that trigger the
execution path(s) that cause the data-flow paths of interest determined by the taint analysis.
SAE implements a symbolic execution engine with help of Z3 [dMB08]. The generation
and handling of path constraints are implemented in LLVMPathConstraints.

Besides being able to compute the path constraints for the data-flow paths issued by the
taint analysis, SAE’s symbolic analysis also provides a mechanism to implement custom
symbolic checks. In this project, we implemented checks that allow one to detect potentially
infinite loops and potential out-of-bounds buffer-access vulnerabilities. The checks are
implemented in LoopGuardCheck and SizeGuardCheck, respectively.

The solved and/or simplified path constraints computed by SAE’s symbolic execution
engine for the illegal data flows that may trigger a potential vulnerability as determined by
the symbolic checks constitute the result of SAE. These constraints are meant to be used
by AnonymousCompany’s fuzzer. However, SAE’s findings can also be helpful on their
own. In particular, the paths issued for a potential vulnerability allow software developers
to manually check the finding and makes the finding explainable.

7.3.3 Design and Implementation

Next, we elaborate on the design and implementation of SAE in more detail (cf. Engine).
We use our running example from Section 7.3.1 to discuss the various usages modes of
SAE.

Taint Configurations

SAE’s taint analysis has two purposes in this project. First, it allows one to compute ordinary
taint flows that represent undesired data flows—so-called leaks—in the traditional sense
as described in Section 2.2 and Section 7.3.2. Second, it can also be used to compute
program slices that lead from the target program’s entry point(s) to potential vulnerabilities
detected by SAE’s symbolic analyses. SAE implements two symbolic analyses (or checks)
to detect the vulnerabilities shown in Table 7.1: LoopGuard, a symbolic analysis that aims
at proving finiteness of program loops and SizeGuard, a symbolic analysis that aims at
detecting out-of-bounds buffer accesses. We next detail on how the taint analysis must be
configured to run the usage modes:

1. Taint mode,

2. LoopGuard mode,

3. SizeGuard mode,

or any combination of these.
An overview of the connection between SAE’s taint analysis and symbolic execution

parts as well as the symbolic checks is shown in Figure 7.2.

190

7.3 White-Box Penetration Testing
15,43 5,65 5,65 15,43

Sources (& Sinks)
or Entry Points

Taint Analysis

Leaks Trigger Point

Data-Flow Paths Path Constraints

Loop Guard

Analysis

Size Guard

Analysis

Vulnerabilities

Solution for

Path Constraints

…

Analysis

Figure 7.2: Overview of the interaction of SAE’s taint analysis and symbolic analysis
components.

Taint Analysis

Although the terms sources, sinks, tainted and sanitized originate from traditional taint
analysis that is designed to find privacy leaks, a taint analysis can be parametrized to find
any potentially interesting data flow from a given set of sources to a set of sinks. In the
context of this project, our taint analysis can also be configured to compute program slices
for potential out-of-bounds buffer accesses and infinite loops.

To support the ordinary Taint mode in the traditional sense, SAE’s taint analysis uses
the description of sources, sinks, and sanitizers as specified using a JSON configuration
file or the compiler annotations as described in Section 7.3.2. In our running example in
Listing 7.4, the taint analysis would treat the pointer typed variable argv in the main function
that is annotated using a custom compiler annotation as a source and thus, spawn a taint
analysis at Line 92 to track argv through the program. The taint analysis propagates this
variable through the program and once the taint analysis encounters that the tainted variable
(directly or transitively) reaches a call to a function whose parameters have been annotated
as sinks, the analysis reports a leak.

To avoid overtainting as described in Section 7.3.2, the taint analysis has been imple-
mented to be as precise as technically feasible. Therefore, SAE’s taint analysis has been
implemented to be flow-, context-, field- and path-sensitive. It has been implemented as
a distributive data-flow problem within PhASAR and is solved within the IDE [SRH96]
framework which enables unbounded flow- and context sensitivity by design.

Field sensitivity has been explicitly implemented using the k-limited field-access paths
approach. The analysis hence does not propagate plain values, i.e., variables as data-flow
facts, but larger structures that represent abstract memory locations more precisely. In
this project, we modeled an abstract memory location as a base value, e.g. an instance
variable of type MailBlock and a vector of byte offsets that are applied to the base value in

191

7 Applications of PhASAR

order to reach the tainted value that is represented by this abstract memory location. The
byte offsets are separated by memory loads and allow one to distinguish between different
fields of struct or array typed variables. Let us observe the field access mail_p−>content,
for instance. Its base value is mail_p which is of type MailBlock. To reach the field content,
its byte offset must be added to the base pointer mail_p. In this case, the byte offset is
sizeof (MailEnvelope) which is 16 bytes (assuming, an unsigned int is represented using four
bytes) plus four bytes for the mailBlockSize field (assuming no padding between the fields has
been added). After adding the byte offset, the value at this memory location can be loaded.
As no further pointer arithmetic is applied, the value that is loaded is an integer, and the next
byte offset is 0. (Otherwise, more entries for representing byte offsets would be added to the
vector component of the data-flow fact.) The taint analysis would thus propagate the field-
access path ⟨mail_p | 20, 0⟩ to model the memory location mail_p−>content. Similarly, for
mail_p−>envelope.contentSize, the analysis computes the access path ⟨mail_p | 12, 0⟩, which
does not overlap with the array’s contents as this representation shows. Hence, the analysis
is able to distinguish mail_p−>envelope.contentSize from mail_p−>content[index], for instance.
The abstract memory locations are implemented in AbstractMemoryLocation.

The length of the access paths, however, must be limited to a constant value k, which is
3 by default in our setting, to ensure termination. When field-accesses lead to access paths
longer than k, the analysis applies an overapproximation and considers the whole “remaining
struct” that exceeds three field accesses as tainted. The k-limiting field-access paths are
precise enough to handle all of AnonymousCompany’s test examples. While maintaining
full context-, flow- and field-sensitivity at the same time is generally undecidable [Rep00],
a k-limiting approach for modelling field-sensitivity can still produce precise data-flow
results for realistic programs.

To compute the data-flow path(s) along which a data flow may occur, we implemented
a PathSensitivityManager that allows one to record the individual flow functions and corre-
sponding instructions. The PathSensitivityManager is integrated with PhASAR’s IDE solver
implementation and records flow functions while the client data-flow analysis problem,
i.e., the taint analysis, is being solved. By integrating the functionalities for path recording
directly with PhASAR’s generic IDE solver, we enabled PhASAR’s users to compute the
precise data-flow paths for all IFDS- and IDE-based analysis problems. Our implementa-
tion also offers an interface to query the data-flow paths for any combination of instructions
and data-flow facts that have been computed.

To compute program slices in LoopGuard and SizeGuard mode, the taint analysis is
parameterized in a special manner. The symbolic checks for detecting dedicated program
vulnerabilities are required to provide a special callback function that identifies what we
call trigger points (cf. Figure 7.2). Trigger points represent points in the program, i.e.,
instructions, that may cause a vulnerability and should be inspected in more detail using
symbolic execution. The checks’ callback functions are registered to the TaintConfig type
that describes a concrete taint configuration and are treated as sinks by the taint analysis.
Thus, whenever the taint analysis finds a data flow that reaches a trigger point, a leak—or
in this case, a trigger—is detected that will be used to spawn symbolic analyses that aim at
confirming the vulnerabilities that the taint analysis found.

192

7.3 White-Box Penetration Testing

The LoopGuard check tries to prove finiteness for all loops in the target program.
Therefore, the LoopGuard check uses the taint analysis and specifies the tautological Λ
data-flow fact (also known as zero value cf. Section 2.2) as a source value and propagates
it through the program starting at all specified entry points. This allows the taint analysis
to compute all reachable paths from the target program’s entry points to the LoopGuard
check’s respective trigger points. The LoopGuard check considers as trigger points all
LLVM IR instructions that introduce loops.

The SizeGuard check aims at detecting out-of-bounds buffer accesses. It uses as sources
for the taint analysis all buffer variables that SAE’s users have marked as a source. In
the example in Listing 7.4, the mail_p variable would be considered as a source and the
taint analysis would propagate it through the program. The SizeGuard check requires a
second input, i.e., an annotation that describes the buffer and its respective size that is to
be “guarded”. Line 19 and Line 12 in Listing 7.3 represent such SizeGuard annotations
for the array typed variable content and its respective size that is kept track of with help of
the contentSize variable. These size guard annotations allow the SAE to detect all places in
the code that use annotated arrays. The SizeGuard analysis treats all places at which an
annotated array is dereferenced as trigger points, since they may cause a vulnerability when
the respective index is not in the interval [0, contentSize− 1]. Array dereferences hence act
as sinks in SizeGuard mode and are communicated as such to the taint analysis. This way,
it can compute the respective program slices of interest.

Path Sensitivity and Performance Optimizations

The taint analysis described in Section 7.3.3 produces as a result a set of leaks—or data
flows of interest—which may be ordinary leaks (mode 1) or trigger points for the symbolic
checks (mode 2 and 3) (cf. Figure 7.2).

To enable verification of the findings reported by the taint analysis and the symbolic
checks that are conducted in the subsequent steps, the exact data-flow paths are required.
Functionalities to record paths have been implemented in PathSensitivityManager as part of
PhASAR’s IDE solver implementation as described in Section 7.3.2.

Unfortunately, recording data-flow paths is hard to scale to large target programs. SAE
implements a suitable solution based on the approach presented in [LHBM14], which uses
a sparse representation for data-flow paths to counteract path explosion. We sketch our
solution for computing the paths by presenting an example in what follows.

Figure 7.3 shows an exemplary C (or C++) program and its respective ICFG that serves
as a target for a taint analysis. We assume that the taint analysis generates variables x and y
as data-flow facts and propagates them through the program.

Our path sensitivity implementation works in several stages: first, each edge in the ex-
ploded super-graph (ESG) constructed by PhASAR’s IDE [RHS95] solver implementation
is recorded explicitly. We use the sparse graph representation described in [LHBM14] to
keep the memory consumption low. For any leak detected by the taint analysis, we locate
the corresponding node in the sparse ESG (that represents the program point at which the
leak ocurred and the leaked value) and follow all edges in backward direction until we reach
the source that initially generated the leaked value. In our example, the tainted variable y is

193

7 Applications of PhASAR

1 i n t compute (i n t i) {
2 i n t r = i ;
3 re turn r ;
4 }
5
6 i n t main (i n t argc ,
7 char ∗argv []) {
8 i n t x = source () ;
9 i n t y = source () ;

10 i f (argc > 1) {
11 x = 42;
12 } e l s e {
13 y = compute (x) ;
14 }
15 i n t r = x + y ;
16 s ink (y) ;
17 re turn 0;
18 }

1: x = source() ;

2: y = source() ;

5: r = i ;

6: return r;

7: y = compute(x);3: x = 42;

⊓

7: r = x + y;

8: sink(y);

9: return 0;

Figure 7.3: An exemplary program and its ICFG. Each node of the ICFG is labeled with
an id for later reference. Solid edges (→) denote intra-procedural and dashed
edges (d) denote inter-procedural control flows.

leaked at statement 8. The corresponding ESG computed by the taint analysis is shown in
Figure 7.4. Red edges denote the paths that the path-sensitive query traverses for the leak
at statement 8. Due to the merge point at statement 7, there are two possible program paths
that potentially cause the leak. The ESG nodes for statements 7 and 8 are collapsed for
each data-flow fact, because they do not represent (conditional) branches.

During the traversal of the ESG, we build a new data structure: a directed acyclic graph
(DAG). This DAG contains the visited parts of the ESG in an even more condensed manner.
Consecutive ESG nodes that do not contain branch instructions are merged into a single
node. While traversing the exemplary ESG, the DAG shown in Figure 7.5 is built and
represents the same set of paths in a much more compact way. The edges and partial paths
of the DAG nodes are in reverse direction of control-flow. This is because the ESG was
traversed backwards w.r.t. the program’s control flow.

For each loop in the program’s (inter-procedural) control-flow graph, the ESG contains
a cycle for each data-flow fact that holds within the loop, making it difficult to traverse.
Hence, we construct the DAG while ensuring that instructions within loop structures along
the data-flow paths are not overlooked. For each loop, we compute two paths: One path that
skips the loop and another path that visits the loop’s body exactly once. This way, we do
not miss any program instructions, but are able to build a loop-free sub-graph of the ESG.
Since we are only considering single loop iterations, we potentially introduce unsoundness
to the path constraints. However, we need to apply some bound if we wish to avoid

194

7.3 White-Box Penetration Testing

1: Λ

2: Λ 2: x

3: Λ 3: x 3: y

4: Λ 4: x 4: y

5: i5,6: Λ

6: i 6: r

4: Λ 4: x 4: y

7,8: Λ 7, 8: x 7, 8: y

Figure 7.4: Example ESG for the C (or C++) program shown in Figure 7.3. Red edges
denote the leaking paths, solid edges (→) denote intra-procedural and dashed
edges (d) denote inter-procedural data flows.

195

7 Applications of PhASAR

{2, 1}

{3} {4, 6, 5, 4}

{7, 8, 9}

Figure 7.5: Example DAG for the leak at statement 8 (sink(y);) in the C (or C++)
program shown in Figure 7.3.

introducing sound constraints that would likely prevent us from computing results that are
actually useful. The Clang Static Analyzer’s symbolic execution implementation [Cla18b],
for instance, will analyze a loop at most four times in its default setting.

Symbolic Execution

SAE’s symbolic execution parts analyze the data-flow paths issued by the taint analysis
for every interesting finding and creates their corresponding constraints as Z3 [dMB08]
expressions. The Z3 expressions obtained this way describe the constraints under which the
different paths execute at runtime. These constraints can be fed into AnonymousCompany’s
downstream fuzzing infrastructure. In addition, (parts of) the constraints can be used to
further manipulate fuzzing inputs to allow for diving deep into the target program.

Path Constraints Similar to statically finding all program paths that may lead to a vulner-
ability, analyzing and solving the associated path constraints is computationally expensive,
too. It is essential to use an affordable representation when performing operations on paths.
We hence use the DAG-based representation obtained by the ESG transformation described
in Section 7.3.3 for efficient path extraction.

We reverse the direction of the DAG’s edges such that the edges now point in direction
of control flow, again, before we then extract the Z3 constraints 𝑥𝑛 for each node 𝑛 in the
DAG from the LLVM IR branch instructions in 𝑛. In addition, we collect the constraints
𝑦𝑛 for each DAG node under which the vulnerability location is reachable from that node.
This is done by combining the constraints 𝑦 from all successor nodes using disjunction
(∨) in a bottom-up fashion and conjoining them with 𝑥𝑛. For each node 𝑛 with successors
𝑠𝑛,1, . . . 𝑠𝑛,𝑘 the reachability constraint is computed as shown in Equation (7.3).

𝑦𝑛 = 𝑥𝑛 ∧ (
𝑘∨
𝑖=1

𝑦𝑠𝑛,𝑖) (7.3)

196

7.3 White-Box Penetration Testing

In case the condition 𝑦𝑛 is contradictory, we remove the node 𝑛 from the DAG. The
collection of constraints is still path insensitive and therefore, very fast as we incrementally
combine constraints from incoming edges using disjunction.

To achieve path sensitivity, we need to collect the constraints per path without merging
them at control-flow merge points. We thus traverse the DAG in a depth-first-search manner.
This way, the stack of nodes ⟨𝑛1, . . . , 𝑛𝑘⟩ that are currently visited represents the exact path
we are “looking at”, which is a prefix of one or more paths leading to the vulnerability
location. While recursively descending towards the vulnerability location, we perform
multiple filtering steps to reduce the number of feasible paths as quickly as possible such
as to avoid state space explosion to the extend possible. Our previously conducted taint
analysis based on the Interprocedural Distributive Environments (IDE) [SRH96] framework
is context-sensitive, but the computed ESG on its own is context insensitive. To retrieve
context-sensitivity for the computed paths, we check call- and return sites on the fly and
discard a path early whenever call and return sites do not match. Furthermore, we collect the
previously computed constraint 𝑥𝑛 for the currently visited DAG node 𝑛 and incrementally
combine it with the constraints of the other nodes 𝑛1, . . . , 𝑛𝑘 of the current path-prefix using
conjunction; hence, the tentative constraint 𝑐𝑛 is computed as shown in Equation (7.4).

𝑐𝑛 = 𝑥𝑛 ∧ (
𝑘∧
𝑖=1

𝑥𝑛𝑖) (7.4)

This allows us to incrementally build the constraint for the complete current path. 𝑐𝑛’s
definition differs from 𝑦𝑛’s definition, because 𝑐𝑛 is path-sensitive while 𝑦𝑛 is not. For each
node 𝑛 that we add to the path that is currently explored, we query Z3 to check whether the
path prefix that is currently explored has contradictory constraints. In this case, we discard
the infeasible path early. If we would not call Z3 at all to decide whether we can drop
an infeasible path, we would start enumerating the constraints for all possible paths which
would seriously impact SAE’s performance in terms of both, running time and memory
consumption.

Calling the Z3 solver for each step in the DAG traversal, on the other hand, adds a
significant amount of overhead to the computations. Therefore, we use a heuristic to decide
whether it is worth calling the Z3 solver. The heuristic makes use of the fact that assuming a
single constraint 𝑥𝑛 is satisfiable, the conjunction of several satisfiable constraints can only
become unsatisfiable if some atoms (i.e., Z3 expressions for single variables) are repeated
across different 𝑥 parts of the conjunction. If a new constraint of a node 𝑥𝑛 only consists of
atoms that do not occur in the rest of the path constraints’ 𝑥𝑛1 , . . . , 𝑥𝑛𝑘 satisfiability cannot
change and hence, SAE does not need to call the Z3 solver again.

Finally, whenever the DAG traversal reaches the vulnerability location, we save the path
⟨𝑛1, . . . , 𝑛𝑘 , 𝑛⟩ with its constraint 𝑐𝑛 and Z3’s solution model such that we can forward it to
AnonymousCompany’s fuzzer. Note that although a DAG node 𝑛 can be visited multiple
times during the depth-first-search, the path constraint 𝑐𝑛 might differ every time, since it
depends on the complete path that leads to 𝑛.

Using the algorithm described in the above, our path-sensitive symbolic execution is
significantly more scalable compared to our earlier implementations that did not discard

197

7 Applications of PhASAR

paths with contradictory constraints early. However, the number of paths that need to be
explored in the final depth-first-traversal is still exponential in the number of branches in
the program slice(s) of interest. We therefore implemented two additional measures to keep
the running times manageable for larger programs.

First, we offer the option to limit the depth of the DAG. If SAE’s command-line option
–path-length-threshold is set, we cut off the DAG such that its depth is limited
by a user-specified threshold. This optimization is unlikely to miss any important path
constraints as—in the common scenarios we observed in the test programs—the reachability
of a vulnerability location is determined by the program parts that are “close” in terms of
control-flow distance. Yet, a residual risk in missing path constraints remains.

Second, we offer a fallback solution, which applies a path-insensitive symbolic execution
whenever the number of nodes in the DAG exceeds the threshold value provided by the
command-line option –path-insensitivity-fallback-threshold. When computing
path constraints in an path-insensitive manner, we are still able to report a Z3 constraint (the
ORed 𝑦𝑛 constraints for all starting points of the analysis) with its corresponding solution
model in a reasonable amount of time. This optimization is guaranteed to provide a sound
overapproximation of the path constraints. If one of these two parameters is not specified
explicitly by the user, the parameters are set to a reasonable default that we determined with
help of the test programs provided by AnonymousCompany.

Additionally, we also provide the command-line option –path-count-threshold to
limit the total number of reported paths for a vulnerability location to a constant threshold
that is set to 1000 by default. However, we discovered that this threshold is less useful
when using a sensible parametrization of the DAG depth and the path-insensitivity fallback
threshold. Thus, limiting the depth and specifying a fallback threshold should be the
primary points of interaction for SAE’s users.

Next, we detail on how we designed the symbolic checkers that aim at proving finiteness
of loop constructs and detecting out-of-bounds buffer accesses.

Symbolic Loop Finiteness Check It is generally undecidable to automatically deter-
mine whether a loop will terminate or not. However, in parsing code such as provided in
the running example in Listing 7.4 loops have the following properties that we exploit to
attempt proofs of termination (or non-termination): First, the loop condition consists of
relational operators that compare a loop-variant and a loop-invariant value. Second, the
loop-variant value is monotonic, that is, in every loop iteration it changes only towards one
direction, if it changes at all.

Consider the while loop in handler_5 in Listing 7.4. In its condition len is the
loop-variant value and subMail_p->subContentSize is the loop-invariant value.

For proving the loop’s finiteness, one first needs to check whether these conditions are
met. We consider a variable loop invariant if and only if it is not changed during loop
execution. This is the case if no store in the loop alters the variable directly or indirectly via
an aliasing pointer. For the loop-variant variable in the loop condition, we recursively define
a Z3 function that describes the effects of the loop to this variable. Then, we compose
the inner-loop operations for the loop-variant condition variable. For any non-invariant

198

7.3 White-Box Penetration Testing

operand in inner-loop operations for the loop-variant condition variable, we introduce an
opaque Z3 function and introduce constraints for its domain.

With this recursive function defined we query Z3 to prove its monotonicity. These proofs
are done indirectly: we query Z3 to check whether the negation of the claim is satisfiable. If
that is the case, then Z3 provides a possible valuation which constitutes a counterexample.
Otherwise, the claim is proved.

For the while loop in handler_5 monotonic growth for len is proved, as every loop
iteration adds the unsigned value subLoopSize to it.

Monotonicity direction is determined by the operator. For <, <=, >=, >, we choose
the direction that eventually allows the condition not to be fulfilled anymore. For !=, we
determine for both directions whether they are feasible.

If monotonicity is successfully proven, we proceed to prove strict monotonicity. That is,
the loop-variant variable cannot be the same for two loop iterations. If that condition is
met, termination of the loop is guaranteed. The proof query is similar to the proof query
for non-strict monotonicity, except equality is not allowed.

For the while loop in handler_5 a counterexample against strict monotonicity for
len is found: if subLoopSize == 0, len remains unchanged and no progress is made,
showing that this loop is possibly infinite.

Checking loop finiteness is implemented as a symbolic analysis in LoopGuardCheck. Since
SAE targets LLVM intermediate representation, LoopGuardCheck does not only consider
plain while loops as shown in the above, but loops with irregular loop termination via
break, return, and goto, too.

Symbolic Out-Of-Bound Buffer Access Check Out-of-bounds buffer accesses present
a frequently occurring programming error in low-level C and C++ that may cause undefined
behavior and can lead to serious (security) vulnerabilities. Especially in the C programming
language, there is no dedicated array type and thus, arrays are managed as a pointer to a
contiguous block of memory and its respective size. Since the pointer and the size are two
separate entities, chances are high that an incorrect size is being used while processing an
array.

To statically check if a memory access is within valid bounds, we developed the SizeGuard
symbolic analysis in SizeGuardCheck. Besides requiring a specification of the variable whose
memory accesses should be protected or guarded (cf. Line 95 in Listing 7.4), this check
requires an additional piece of information. To be able to check if buffer accesses are indeed
within valid bounds, it must be parameterized with the array that is to be protected (cf.
Line 19 in Listing 7.4) and the array’s respective size (cf. Line 12 in Listing 7.4). This is
done by compiler annotations that qualify the pointer-size pairs as relevant to the SAE and
assigns a unique id to them, MailBlock::Contents in the running example. Note that without
a size-guard annotation, there is no reliable way in recognizing a connection between a
buffer and its respective size. Such connections could potentially be inferred by means of
machine learning and AI techniques, both of which are out-of-scope for this project.

Whenever an annotated array is accessed in the program, this access comprises a trigger
point for the SizeGuard check. Once the taint analysis propagated all variables to be

199

7 Applications of PhASAR

protected through the program under analysis and all trigger points have been collected, a
SizeGuard check is spawned for each trigger point to verify that the memory access is within
valid bounds. The symbolic analysis considers the path constraints along all paths that lead
to the trigger point under analysis to create an environment that represents a situation similar
to the one that is established at runtime once this program point is reached. The analysis
then aims at constructing a logical expression using Z3 that expresses the pointer offset. If
the offset comprises more complex computations, these are modeled, too, to the extend that
is technically feasible. Once all available information for a certain trigger point has been
collected as a Z3 expression, the vulnerability condition that states that the memory access
is not within valid bounds is checked. If the Z3 solver finds that the constructed solver
instance comprising the collected constraints is actually solvable, a potential out-of-bound
access has been found and a respective solution that states the actual constraints that may
enable the program paths that lead to and trigger the vulnerability at runtime is issued.

Checking out-of-bounds buffer accesses is implemented as a symbolic analysis in
SizeGuardCheck.

Implementing Custom Symbolic Checks We designed and implemented SAE such
that it is open to extension for further symbolic checks as indicated by the dotted box
... Analysis and dotted edges shown in Figure 7.2.

A custom symbolic check must fullfil the following requirements to be integrated with
SAE: It must implement a trigger, i.e., a callback that is used by the taint analysis to
determine if a particular data flow is of interest to the symbolic check. The callback that
communicates trigger points to the taint analysis must have the function signature std :: set<
llvm::Value const ∗>(llvm::Instruction const ∗) const. The taint analysis will call this callback
function for each instruction of the program and will check if one or more data-flow facts
that it computed can be found within the set of values returned by the callback. If the taint
analysis detects that a data-flow fact occurs in the returned set, it will treat this instruction
as a trigger point. The taint analysis will query the analysis engine to compute (possibly all)
program slices (depending on SAE’s configuration) and their respective path constraints
that lead from the analysis’ starting points to the trigger point in question.

It will then use this information and query the symbolic check’s second requirement: an
implementation of analyze(llvm:: Instruction const ∗, LLVMPathConstraintsBase &) to spawn
the actual symbolic check. The symbolic check then symbolically analyzes the instruction
of interest and is free to use the information on path constraints that is provided by SAE
and made available in form of the reference typed parameter LLVMPathConstraintsBase
. The symbolic check’s analyze function has to return the result of its analysis. The
SizeGuardCheck, for instance, returns a Z3 expression and the LoopGuardCheck returns an
enum to communicate the loop’s finiteness, but other return values are possible, too.

7.3.4 Results and How to Access Them

The static analysis engine provides various APIs to query different pieces of analysis
information. These APIs are already integrated in the command-line tool sa-engine and
are accessible using the command-line parameters. SAE can thus be used as a library and

200

7.3 White-Box Penetration Testing

as a command-line parameterizable static analyzer. In the following, we briefly discuss
SAE’s most important parameters and their output.

Path Collection

The IDESolver provides access to path information via a rich interface. It provides direct
access to the raw data-flow analysis results via the SolverResults getSolverResults () function.
Via the SolverResults type, a PathBuilder object can be created using the PathBuilder pathBuilder
(LLVMPathConstraintsBase ∗) function.

The PathBuilder provides various customization options. In particular, the optimization
thresholds explained in Section 7.3.3. Each customization option returns a new copy of
the PathBuilder object with the corresponding option enabled. The PathBuilder type offers
the functions FlowPathSequence pathsTo(n_t, d_t) and MaybeFlowPathSeq pathsOrConstraintTo(
n_t, d_t) that provide their callers with the paths that lead to the queried ESG node. The
ESG node and hence also the program location of interest is specified as LLVM IR in-
struction (n_t) and data-flow fact (d_t). Only n_t-d_t pairs are valid that have been obtained
via the getAllLeaks(const SolverResults &) function of the IDEExtendedTaintAnalysis. Depend-
ing whether a path-(in)sensitive computation of constraints is desired, pathsTo(n_t, d_t)
or pathsOrConstraintTo(n_t, d_t) can be used, respectively. When the fallback option is set,
pathsOrConstraintTo(n_t, d_t) is being called, since it is able to return either a FlowPathSequence
or the constraints in form of a single z3::expr. Otherwise, pathsTo(n_t, d_t) is used to indicate
that such a fallback to path-insensitive analysis is disallowed. Details can be found in the
implementation of the PathSensitivityManager type.

Emitting the Exploded Super-Graph

SAE allows one to export the exploded super-graph (ESG) that is constructed on-the-fly
while solving the taint analysis problem using PhASAR’s IDE solver. As output format,
we support the DOT format.

The respective command-line flag –emit-esg-as-dot expects as a parameter a file
path to which the DOT output should be written to. SAE’s C++ API provides a member
function void printAsDot(std::ostream &) that serves the same purpose in IDESolver.h.

Emitting the Inter-Procedural Control-Flow Graph

Similar to the ESG, the inter-procedural control-flow graph (ICFG) can be exported to a
file. As output format, SAE supports an incidence-list in JSON.

The respective command-line option –emit-icfg accepts the output-file path as argu-
ment. For the C++ API, the LLVMBasedICFG (declared in LLVMBasedICFG.h) provides a
member function nlohmann::json exportICFGAsJson(), which returns the JSON incidence-list
representation for the receiver ICFG object.

Each edge in the JSON is represented as JSON object with two elements, from and
to which are either LLVM IR instructions or more complex JSON objects modeling the
source-code location. An example of the JSON with IR instructions is shown in Listing 7.5.

201

7 Applications of PhASAR

1 [
2 {
3 "from ": "%i . addr = a l l o c a i32 , a l i g n 4 | ID : 5" ,
4 " to ": " s t o r e i 32 %i , i 32 ∗ %i . addr , a l i g n 4 | ID : 6"
5 } ,
6 {
7 "from ": " s t o r e i 32 %i , i 32 ∗ %i . addr , a l i g n 4 | ID : 6" ,
8 " to ": "%i . addr1 = b i t c a s t i 32 ∗ %i . addr to i 8 ∗ | ID : 8"
9 } ,

10 . . .
11]

Listing 7.5: Format of the inter-procedural control-flow graph.

Emitting Analysis Coverage

SAE supports emitting information on file coverage and instruction coverage by the static
analysis. The coverage information is output in YAML representation.

On the command line, the file path can be specified using the –analysis-coverage-
output-file option. Otherwise, the standard output stream is used by default. The
options –emitanalysis-file-coverage and –emit-analysis-inst-coverage en-
able the output of file and instruction coverage, respectively. Listing 7.6 shows an example
in which both, file and instruction coverage options are enabled.

1 F i l e s covered by the a n a l y s i s :
2 − " demo_ pa th s en s i t i v i t y / demo_04 . cpp"
3 Number of f i l e s covered by the a n a l y s i s : 1
4 Number of t o t a l f i l e s in the p r o j e c t : 1
5 Amount o f f i l e s covered by the a n a l y s i s [%]: 100 .00
6 Number of i n s t r u c t i o n s covered by the a n a l y s i s : 10
7 Tota l number of i n s t r u c t i o n s in the p r o j e c t : 46
8 Amount o f i n s t r u c t i o n s covered by the a n a l y s i s [%]: 21 .74

Listing 7.6: File and instruction coverage reported by static analysis engine.

The coverage information can be retrieved by calling
std :: vector<std:: string> getSourceFilesCoveredByAnalysis() and
size_t getNumInstructionsCoveredByAnalysis() defined as part of the ExplicitESG type, when
using the corresponding C++ APIs. To compute relative coverage numbers, the total files
and instructions in the project under analysis can be retrieved by calling std :: vector<std::
string> getAllSourceFiles () and size_t getNumInstructions() defined as part of the ProjectIRDB
type in ProjectIRDB.h.

Emitting Full JSON Reports

SAE outputs detailed information on the analysis results to the command-line. However,
sometimes a plain command-line output is not desired. The command-line output can be
disabled using the –silent command-line flag. All analysis results can also be written to
a file in JSON format. An example of such a JSON report is shown in Listing 7.7.

202

7.3 White-Box Penetration Testing

1 {
2 " V u l n e r a b i l i t i e s ": [
3 {
4 " V u l n e r ab i l i t y L oc a t i o n ": {
5 " I n s t r u c t i o n I d ": "39" ,
6 "LLVMInstruction ": " c a l l vo id @_Z5printi (i 32 %3) , !

dbg !89 , ! psr . id !90 | ID : 39" ,
7 "Paths ": [
8 {
9 " PathConstra int ": {

10 " Cons tra in t ": ";
11 (s e t−i n f o : s t a t u s unknown)
12 (dec lare−fun argc () In t)
13 (a s s e r t
14 (not (<= argc 1)))
15 (check−s a t) " ,
16 "Model ": "(de f ine−fun argc () In t 2) "
17 } ,
18 "ProgramSlice ": [
19 "main − i n t main (i n t argc , char ∗∗argv)

{" ,
20 "main − i n t a = 42;" ,
21 "main − i n t b = a ;" ,
22 "main − i n t c = b ;" ,
23 "main − i n t a = 42;" ,
24 "main − i f (argc > 1) {" ,
25 "main − a = getPasswd () ;" ,
26 "main − } e l s e {" ,
27 "main − i n t b = a ;" ,
28 "main − i n t c = b ;" ,
29 "main − pr in t (c) ;"
30]
31 }
32] ,
33 "SourceCodeInformation ": {
34 "Column": 3 ,
35 "Line ": 17 ,
36 "SourceCodeFilename ": "demo \ _03 . cpp " ,
37 "SourceCodeFunctionName ": "main " ,
38 "SourceCodeLine ": " pr in t (c) ;"
39 } ,
40 " SourceFi l e sCovered ": [
41 "demo \ _03 . cpp"
42]
43 } ,
44 " Vulnerab i l i t yType ": "ordinary l eak "
45 }
46]
47 }

Listing 7.7: Exemplary report in json format generated by SAE.

203

7 Applications of PhASAR

The JSON output can be enabled via the –emit-json-report command-line option
which accepts a file path. The output is structured as follows: At the top-level, there
is a JSON object containing a single key Vulnerabilities that maps to an array of JSON
objects representing all vulnerabilities of a specific vulnerability category, respectively. A
vulnerability object consists of two JSON keys, VulnerabilityType and VulnerabilityLocation.
The VulnerabilityType specifies the kind of vulnerability found, i.e., “ordinary leak”, “out-of-
bounds access” or “infinite loop” as described in Section 7.3.3. In VulnerabilityLocation, the
concrete vulnerability is represented as JSON object with keys describing the vulnerability
location as well as the paths, path constraints and file coverage in detail. Most importantly,
it contains the keys Paths and SourceCodeInformation. The SourceCodeInformation contains
details on the coordinates in the source code at which the potential vulnerability has been
identified. The Paths consists of an array of JSON objects each of which represents a path
leading to the vulnerability location. Each path consists of two parts: the covered program
slice and the corresponding path constraint in SMT2 format. The program slice is stored
as JSON array of strings and each string is split by the − character into two parts: the first
part is the function that hosts the statement and the second part is the program statement.

7.3.5 Insights and Lessons Learned

We next detail the key insights and experiences that we made throughout this 15-month
industry project.

Developers of static program analyzers know that virtually all algorithms involved in static
program analysis can be heavily parameterized and that these parameterized algorithms even
affect each others results and running times in non-trivial manners [SLHB21, SLHB19,
Bod18]. Therefore, it is clear that static analysis developers implement the respective
algorithms in a highly parameterizable manner. The more information on a given target
project the users of static analyzers provide, the more qualified parameters can be chosen for
the algorithms and the better the findings reported by those analyzers. During this project,
however, we quickly learned that—from a user’s perspective—the opposite is desired. Users
from industry, even when being expert-level developers, most often do not know how static
analysis conceptually works and thus, even when desired additional information on the
target project is theoretically available, cannot provide it to the analyzer in a way that is
useful to improve its results. Static analysis writers hence rather need to provide sensible
default parameters, if possible and otherwise should implement lightweight pre-analysis to
determine suitable parameters for the analysis algorithms. Even non-optimal parameters
determined by a heuristic are still better than inputs of uninformed analysis users.

Specifying sources and sinks to parameterize a taint analysis, for instance, is necessary
to run SAE. Ideally, however, sources and sinks could be determined automatically. Several
research approaches aim at automating the sensible selection of sources and sinks [PDB19,
RAB14] to relief analysis users from this burden. The same holds for specifying buffer-size
pairs for our symbolic SizeGuard checker. In the C programming language, there are no
dedicated array types (that carry an array’s size) and instead, an array is usually resembled
by a pointer to the first element and a separate entity that (hopefully) carries its correct
respective size. Due to the definition of this project and its time schedule, we require

204

7.3 White-Box Penetration Testing

SAE’s users to manually specify sources and sinks, and the arrays to be protected and their
respective variables that carry the sizes. In future work, it would be intriguing to check to
what extend buffer-size pairs can be automatically mined from a software project written
in C or C++.

When requiring manual user inputs for a static analyzer, communication between de-
velopers and analysis setup is necessary. Initially, we implemented the taint configuration
as well as the configuration of buffer-size pairs for the symbolic check of buffer overflows
as source code annotations. Modern compilers oftentimes allow for custom source code
annotations that can be used and examined downstream in the compiler pipeline. The
Clang compiler, used to generate the LLVM IR that PhASAR is targeting, for instance,
allows developers to use custom source code annotations. While code annotations using
implementation-defined language extensions have been available in the major compilers for
years, attribute specifier sequences provide the unified standard syntax and are officially
part of C since C23 and C++ since C++11. This enables developers to pass additional in-
formation to a downstream analysis tool. Clang’s code generator preserves this information
when generating LLVM IR and an analysis tool can then consume the parametrization as
part of the code analysis. This approach follows the “code is documentation” principal and
generally allows developers to communicate additional information precisely and clearly to
a program analyzer. For some critical pieces of the target software, however, such source
code annotations are undesired or even prohibited by company policy as we learned in this
project. This required us to provide an additional option for an external parametrization;
we choose configuration files in JSON format. It is hence advisable to provide several
sensible configuration options for the various analysis parametrizations, depending on the
requirements for the target source code.

Another aspect that cannot be overstated is the cognitive complexity involved in devel-
oping such analyzers based on state-of-the-art static analysis concepts. We can confirm the
many horrors static analysis writers face when building industrial-strength static analyzers
as described by Toman and Grossman [TG17]. Not only are the textbook implementations
of IFDS [RHS95], IDE [SRH96] or WPDS [RSJ03] data-flow solvers and symbolic exe-
cution hard to get right, they do not suffice to solve actual analysis problems in industry
when being used in their plain vanilla version. We had to apply various implementation
tricks to get SAE running on the test programs provided by the industry partner within
the given time and memory budgets. A few of such optimizations for path sensitivity and
symbolic execution have been described in Section 7.3.3. Additionally, we had to heavily
optimize the data-flow domain to encode field sensitivity as efficiently as possible such as
to generate as little data-flow facts as possible. Since the time complexity of IFDS/IDE is
O(|𝑁 | · |𝐷 |3), when exhaustively computing all source-to-sink data flows—where 𝑁 is the
set of nodes of the target program’s ICFG and 𝐷 is the data-flow domain—it is advisable
to keep the size of 𝐷 as small as possible. The exploded super-graph built by IFDS/IDE
is bounded in size by O(|𝑁 | · |𝐷 |). This, again, required us to take great care to keep the
number of data-flow facts small and use as few bytes as possible to represent an abstract
memory location as a data-flow fact (cf. Section 7.3.3) to avoid running out-of-memory
during analysis of larger programs. Each byte—also due to potential padding—quickly
adds up and can significantly increase the memory requirements of an analysis. Running

205

7 Applications of PhASAR

times are affected as well by the size of the data-flow facts because of hardware caching of
the machine the analysis is running on.

The complexity could be (at least) partially tamed by assigning members of our team
to the individual components and making them the experts of those components during
the project. With help of clean interfaces we defined strict bounds of the various complex
analysis algorithms involved such that each team member could mainly concentrate on their
own analysis algorithms and topics. While the cognitive complexity could be managed
within the team this way, we encountered difficulties while shipping the project. Since the
result of our project is not a piece of ready-to-use, end-user software, but rather a piece
of complex special static analysis infrastructure, it required a lot of time to sort out issues
on how to use and parameterize SAE and to explain its internals to the customer such
that is could be integrated with AnonymousCompany’s internal fuzzing infrastructure. In
future projects, we will allocate a sufficiently large and dedicated amount of project time to
provide support for the roll-out of such analyzers at the customer’s site.

7.4 Conclusions

In this chapter, we presented two projects from academia and a large industry project all of
which used PhASAR as a major component to solve interesting and relevant problems.

In Section 7.1, we showed that by combining high-level information obtained by repos-
itory mining with information obtained by low-level data-flow analysis opens up a variety
of novel applications. Both fields, repository mining and static analysis, which have been
previously successful on their own, can benefit from another and when combined, pro-
vide new interesting insights on software projects. Without the infrastructure provided by
the PhASAR framework, our work on integrating program analysis and repository mining
would not have been possible, since there are no alternative inter-procedural data-flow
analysis frameworks targeting C and C++ that could have been used. And building a static
data-flow analysis framework from scratch for the sole purpose of using it for implementing
a single new research approach is too expensive.1

PhASAR could also benefit the research on static configuration-logic identification as
described in Section 7.2. In this research project, we were able to use a variety of PhASAR’s
features to compute callgraphs and data-flow information to eventually implement a novel
algorithm that computes Boundary locations that separate a program’s configuration logic
from its main logic that is responsible for the actual computations. This ultimately al-
lows for fully automating software debloating approaches like LMCAS [AJR+22] or the
temporal-specialization tool [GPMP20], for instance. Previously, these approaches
could only be used in a semi-automated manner and required its users to manually specify
the target program’s Boundary location. Again, this work would too be virtually infeasible
without the static analysis toolbox provided by the PhASAR project.

Lastly, we could successfully apply PhASAR in an industry project to find real buffer
overflows and infinite loop vulnerabilities in router software written in low-level C and C++
as described in Section 7.3. We used PhASAR to implement a precise, parameterizable,

1. . . and requires a PhD thesis on its own as this documents shows.

206

7.4 Conclusions

inter-procedural, context-, flow-, field- and path-sensitive taint analysis that serves as a filter
for a subsequent symbolic analysis that we implemented with help of Z3 [dMB08]. The
PhASAR-based taint analysis represents a major part of the SAE analyzer that we developed
within this project.

All of the applications presented in this section show that PhASAR is a framework that
can indeed be used to solve demanding problems in both, academia and industry.

207

8 Conclusions and Future Work

Static program analysis can help to find bugs and (security) vulnerabilities, but only if
being used in a precise and inter-procedural setup. Traditional static analysis offers a
range of scalable approaches and algorithms for computing points-to, callgraph and data-
flow information. However, even though these approaches can scale relatively well up
to midsize programs, they are rendered unusable when being directly applied—in whole-
program mode—to modern software development that is characterized by extensive library
usage and frequent code changes, or to target programs that comprise several million lines
of code. Existing approaches are also only concerned with computing individual pieces
of static analysis information such as points-to, callgraph or data-flow information. All
this becomes an issue when trying to conduct concrete client analyses that aim at finding
complex bugs and (security) vulnerabilities in modern software development workflows
and require a multitude of different analysis information.

In this thesis, we have presented PhASAR, the tremendous engineering efforts that
have been necessary to develop this infrastructure, and the VarAlyzer, ModAlyzer and
IncAlyzer approaches built on top of PhASAR that address these issues.

PhASAR is a core element of this work and provides the main building blocks to
implement complex static analysis approaches. It allows its users to implement concrete
client analyses, hack on existing analysis implementations or prototype completely new tools
and analyzers. PhASAR provides its users with implementations for all algorithms that
are required to conduct precise, inter-procedural static analysis. Besides having provided a
detailed description of the PhASAR analysis framework, we also elaborated on poor design
choices we made in early version of PhASAR and detailed on how we have overcome
them. We also shared important lessons learned and presented particular difficult design
and implementation challenges.

Our VarAlyzer approach, the second contribution of this thesis, for the first time
enables one to analyze software product lines written in C using inter-procedural data-flow
analysis. It extends the class of data-flow problems that can be efficiently solved on software
product lines by enabling its users to solve general, distributive problems formulated in
the Interprocedural Distributive Environments framework. We have further shown how
an existing, complex typestate analysis, which can only be efficiently formulated within
IDE, can now be solved in a variability-aware manner using VarAlyzer. VarAlyzer’s
analysis time is only affected by the size of the target program, but not its features, whereas
the analysis time of the product-based approach grows exponentially in the number of
features. Our empirical evaluation shows that VarAlyzer’s results coincide with the
results computed by the product-based approach. We were also able to identify several
fundamental challenges that still must be overcome to make the analysis of full software
product lines in C a reality and provided ideas on how to address these remaining challenges.

209

8 Conclusions and Future Work

ModAlyzer, another contribution of this thesis, is an integrated approach that aims
at speeding up concrete client analyses by summarizing parts of the code that do not
change frequently. It computes analysis summaries for all the various pieces of information
required to solve a concrete client analysis, mediates their mutual interactions and persists
these summaries. These summaries can be computed in a separate offline phase and can
then be loaded at analysis time to massively speed up the analysis of the actual application
code by avoiding expensive and unnecessary reanalysis of the program parts previously
summarized. Our empirical evaluation confirms that the greater the parts of the program
that can be analyzed and summarized upfront, the greater the speedup that can be achieved
using ModAlyzer. This can bring analysis times down to the point at which they can be
integrated into a project’s build pipeline. Our approach is only effective, however, if the
target project contains parts that do not change frequently, of course. We also showed that
ModAlyzer provides the same results as a matching whole-program analysis that computes
everything from scratch.

In our final contribution, we made static analysis incremental with help of IncAlyzer.
IncAlyzer is built on top of ModAlyzer and helps to further reduce analysis times by
incrementally analyzing the parts of a program that do change frequently. Like ModAlyzer,
IncAlyzer’s results are equal to those computed by a matching whole-program analysis that
ignores information already computed in previous analysis runs. The IncAlyzer approach
has the potential to bring analysis times of deep, inter-procedural static analysis to sub-build-
pipeline levels, allowing them to be potentially run on a developer’s machine to compute
analysis findings within a few minutes or even seconds, depending on the extend of the
changes made to the code. The combination of ModAlyzer and IncAlyzer also allows for
new software development workflows in which static analysis information is attached to and
persisted with the program code under analysis. This capability can potentially save lots of
analysis time and thus also electrical energy by avoiding unnecessary repeated reanalysis
of the same code across different machines.

All of our contributions help to make static program analysis more accessible in practice
by simplifying the task of writing a static analysis and by providing new integrated analysis
strategies that match modern software development workflows.

Finally, we closed out the thesis by highlighting two research projects and one large
industry project that PhASAR made possible. The author of this thesis selected these
particular projects for presentation here, since he was heavily involved with these projects.
As Github’s data on PhASAR suggests, there are a lot more interesting projects built on top
of PhASAR and we hope that we could help the corresponding authors of these projects.

Precise, semantic whole-program analysis can be designed to fit modern software
development in the 21th century and scaled to large, real-world software.

However, there are further directions that seem worth to be looked at in the future. One of
these directions targets a summary format for more precise points-to information. Pointer
analysis unfortunately cannot be expressed as a distributive data-flow problem. And while
flow-insensitive points-to information can still be summarized using pointer-assignment
graphs, flow-sensitive points-to information is difficult to handle. Several previous works

210

aim at decomposing pointer analysis into smaller problems that can then be expressed
in distributive data-flow frameworks, again. It would be intriguing to evaluate possible
summary formats for these approaches to potentially enable integration with the ModAlyzer
and IncAlyzer approaches and evaluate the effects of more precise points-to information
on the whole analysis stack and therefore also on the client analysis to be solved. Our
approaches have been designed such that individual parts of the analysis stack can be easily
changed and replaced. Another direction for future work concerns link-time variability
of software product lines. While VarAlyzer is able to successfully conduct variability-
aware, inter-procedural data-flow analysis, the build system and linking steps of a project
can introduce further variability, which is currently not considered by our approach. To
be able to consider these additional two sources of variability, one would first require a
generic model of a project’s build system. Second, one would need to design and construct
a variability-aware symbol table that exceeds compilation times of individual translation
units and instead, mediates information on symbols in a variability-aware manner until the
program is completely linked.

211

8 Conclusions and Future Work

212

Bibliography

[AB14] Steven Arzt and Eric Bodden. Reviser: Efficiently updating ide-/ifds-based
data-flow analyses in response to incremental program changes. In Proceed-
ings of the 36th International Conference on Software Engineering, ICSE
2014, pages 288–298, New York, NY, USA, 2014. ACM.

[AB16] Steven Arzt and Eric Bodden. Stubdroid: Automatic inference of precise
data-flow summaries for the android framework. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 725–735,
New York, NY, USA, 2016. ACM.

[ADA09] RED SOFT ADAIR. Is there a working c refactoring tool?,
September 2009. https://stackoverflow.com/questions/1388469/
is-there-a-working-c-refactoring-tool.

[AH96] Gerald Aigner and Urs Hölzle. Eliminating virtual function calls in c++
programs. In Pierre Cointe, editor, ECOOP ’96 — Object-Oriented Program-
ming, pages 142–166, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[AJR+22] Mohannad Alhanahnah, Rithik Jain, Vaibhav Rastogi, Somesh Jha, and
Thomas Reps. Lightweight, multi-stage, compiler-assisted application spe-
cialization. In 2022 IEEE 7th European Symposium on Security and Privacy
(EuroSP), pages 251–269, 2022.

[AL13] Karim Ali and Ondřej Lhoták. Averroes: Whole-program analysis without
the whole program. In Proceedings of the 27th European Conference on
Object-Oriented Programming, ECOOP’13, pages 378–400, Berlin, Heidel-
berg, 2013. Springer-Verlag.

[And94] Lars Ole Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, May 1994. https://www.cs.cornell.edu/
courses/cs711/2005fa/papers/andersen-thesis94.pdf.

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’14, pages 259–269, New York, NY, USA, 2014. ACM.

213

https://stackoverflow.com/questions/1388469/is-there-a-working-c-refactoring-tool
https://stackoverflow.com/questions/1388469/is-there-a-working-c-refactoring-tool
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf

Bibliography

[Art21] Artifacts. Supplementary material, 2021. https://drive.google.
com/drive/folders/1ESiSu5iKsFTrM2XqN3Oj4fhIqVfdQ93W?usp=
sharing.

[ASR+23] Mohannad Alhanahnah, Philipp Schubert, Thomas Reps, Somesh Jha, and
Eric Bodden. slash: A technique for static configuration-logic identification,
October 2023. https://arxiv.org/abs/2310.06758.

[AST23] AST Matcher Reference, January 2023. https://clang.llvm.org/docs/
LibASTMatchersReference.html.

[AWS22] Amanzon aws codeguru reviewer, 2022. https://aws.amazon.com/
codeguru/.

[Bab18] Personal communication with domagoj babic, google, 2018.

[Bay72] Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance
algorithms. Acta Informatica, 1(4):290–306, Dec 1972.

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A
few billion lines of code later: Using static analysis to find bugs in the real
world. Commun. ACM, 53(2):66–75, February 2010.

[BCSD14] Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig.
How do centralized and distributed version control systems impact software
changes? In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, page 322–333, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery.

[BGH+06] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In OOPSLA ’06: Pro-
ceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, pages 169–190, New
York, NY, USA, October 2006. ACM Press.

[BGS18] Dirk Beyer, Sumit Gulwani, and David A Schmidt. Combining model check-
ing and data-flow analysis. In Handbook of Model Checking, pages 493–540.
Springer, 2018.

[Bis20] Gnu bison, 2020. https://www.gnu.org/software/bison/.

[Bod12] Eric Bodden. Inter-procedural data-flow analysis with ifds/ide and soot. In
Proceedings of the ACM SIGPLAN International Workshop on State of the
Art in Java Program Analysis, SOAP ’12, pages 3–8, New York, NY, USA,
2012. ACM.

214

https://drive.google.com/drive/folders/1ESiSu5iKsFTrM2XqN3Oj4fhIqVfdQ93W?usp=sharing
https://drive.google.com/drive/folders/1ESiSu5iKsFTrM2XqN3Oj4fhIqVfdQ93W?usp=sharing
https://drive.google.com/drive/folders/1ESiSu5iKsFTrM2XqN3Oj4fhIqVfdQ93W?usp=sharing
https://arxiv.org/abs/2310.06758
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://aws.amazon.com/codeguru/
https://aws.amazon.com/codeguru/
https://www.gnu.org/software/bison/

Bibliography

[Bod18] Eric Bodden. The secret sauce in efficient and precise static analysis: The
beauty of distributive, summary-based static analyses (and how to master
them). In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops,
ISSTA ’18, pages 85–93, New York, NY, USA, 2018. ACM.

[Boo18] Boost proto, August 2018. https://www.boost.org/doc/libs/1_68_0/
doc/html/proto.html.

[Boo19] Boost serialization, August 2019. https://www.boost.org/doc/libs/
1_70_0/libs/serialization/doc/.

[BRTB12] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, and Paulo Borba. Intrapro-
cedural dataflow analysis for software product lines. In Proceedings of the
11th Annual International Conference on Aspect-Oriented Software Develop-
ment, AOSD ’12, page 13–24, New York, NY, USA, 2012. Association for
Computing Machinery.

[BS09] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specifica-
tion of sophisticated points-to analyses. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 243–262, New York, NY, USA, 2009.
ACM.

[BS16] George Balatsouras and Yannis Smaragdakis. Structure-sensitive points-to
analysis for c and c++. In International Static Analysis Symposium, pages
84–104. Springer, 2016.

[BTR+13] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba,
and Mira Mezini. Spllift: Statically analyzing software product lines in min-
utes instead of years. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, pages
355–364, New York, NY, USA, 2013. ACM.

[BWR+11] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar,
and Rafael Pasquin. Incoop: Mapreduce for incremental computations. In
Proceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC ’11,
pages 7:1–7:14, New York, NY, USA, 2011. ACM.

[CCP17] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. Op-
timal dyck reachability for data-dependence and alias analysis. Proc. ACM
Program. Lang., 2(POPL):30:1–30:30, December 2017.

[CCS+13] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans,
Axel Legay, and Jean-Francois Raskin. Featured transition systems: Foun-
dations for verifying variability-intensive systems and their application to ltl
model checking. IEEE Trans. Softw. Eng., 39(8):1069–1089, August 2013.

215

https://www.boost.org/doc/libs/1_68_0/doc/html/proto.html
https://www.boost.org/doc/libs/1_68_0/doc/html/proto.html
https://www.boost.org/doc/libs/1_70_0/libs/serialization/doc/
https://www.boost.org/doc/libs/1_70_0/libs/serialization/doc/

Bibliography

[CD11] Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier
for memory safety of c programs. In NASA Formal Methods Symposium,
pages 459–465. Springer, 2011.

[CDG93] Michael Codish, Saumya K. Debray, and Roberto Giacobazzi. Composi-
tional analysis of modular logic programs. In Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’93, pages 451–464, New York, NY, USA, 1993. ACM.

[CDOY09] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’09, pages 289–300, New York, NY, USA,
2009. ACM.

[CEW12] Sheng Chen, Martin Erwig, and Eric Walkingshaw. An error-tolerant type
system for variational lambda calculus. In Proceedings of the 17th ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’12, page
29–40, New York, NY, USA, 2012. Association for Computing Machinery.

[CG94] Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in
c++ programs. In Proceedings of the 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’94, pages 397–408,
New York, NY, USA, 1994. ACM.

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-c: A software analysis perspective.
In Proceedings of the 10th International Conference on Software Engineering
and Formal Methods, SEFM’12, page 233–247, Berlin, Heidelberg, 2012.
Springer-Verlag.

[CKLS09] Cristina Cifuentes, Nathan Keynes, Lian Li, and Bernhard Scholz. Program
analysis for bug detection using parfait: Invited talk. In Proceedings of the
2009 ACM SIGPLAN Workshop on Partial Evaluation and Program Manip-
ulation, PEPM ’09, page 7–8, New York, NY, USA, 2009. Association for
Computing Machinery.

[Cla18a] Clang: a c language family frontend for llvm, July 2018. http://clang.
llvm.org/.

[Cla18b] Clang static analyzer, August 2018. https://clang-analyzer.llvm.
org/.

[Cla18c] Clang-tidy, August 2018. http://clang.llvm.org/extra/
clang-tidy/.

216

http://clang.llvm.org/
http://clang.llvm.org/
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
http://clang.llvm.org/extra/clang-tidy/
http://clang.llvm.org/extra/clang-tidy/

Bibliography

[CNDE05] Christopher L. Conway, Kedar S. Namjoshi, Dennis Dams, and Stephen A.
Edwards. Incremental algorithms for inter-procedural analysis of safety prop-
erties. In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided
Verification, pages 449–461, Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[Cod17] CodeMonkey. Clang static analyzer doesn’t find the most basic problems,
March 2017. https://stackoverflow.com/questions/42696759/
clang-static-analyzer-doesnt-find-the-most-basic-problems.

[Cod18] Grammatech codesonar, December 2018. https://www.grammatech.com/
products/codesonar.

[Cor18] Coreutils - gnu core utilities, July 2018. https://www.gnu.org/
software/coreutils/coreutils.html.

[Cpp18] Cppcheck - a tool for static c/c++ code analysis, August 2018. http://
cppcheck.sourceforge.net/.

[CS18] Coverity-(SAST). Coverity static application security testing (sast), December
2018.

[DFLO19] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W.
O’Hearn. Scaling static analyses at facebook. Commun. ACM, 62(8):62–70,
jul 2019.

[DH96] Karel Driesen and Urs Hölzle. The direct cost of virtual function calls in c++.
In Proceedings of the 11th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’96, page
306–323, New York, NY, USA, 1996. Association for Computing Machinery.

[Dim16] Aleksandar S. Dimovski. Symbolic game semantics for model checking pro-
gram families. In Dragan Bošnački and Anton Wĳs, editors, Model Checking
Software, pages 19–37, Cham, 2016. Springer International Publishing.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[Doo18] Doop, August 2018. http://doop.program-analysis.org/.

[Dri10] Vincent Driessen. A successful git branching model, January 2010. https:
//nvie.com/posts/a-successful-git-branching-model/.

[Dro19] Droidbench, April 2019. https://github.com/
secure-software-engineering/DroidBench.

217

https://stackoverflow.com/questions/42696759/clang-static-analyzer-doesnt-find-the-most-basic-problems
https://stackoverflow.com/questions/42696759/clang-static-analyzer-doesnt-find-the-most-basic-problems
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.gnu.org/software/coreutils/coreutils.html
https://www.gnu.org/software/coreutils/coreutils.html
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://doop.program-analysis.org/
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench

Bibliography

[Dwy97] M. B. Dwyer. Modular flow analysis for concurrent software. In Proceedings
of the 12th International Conference on Automated Software Engineering
(Formerly: KBSE), ASE ’97, pages 264–, Washington, DC, USA, 1997.
IEEE Computer Society.

[EBN02] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analysis of c prepro-
cessor use. IEEE Transactions on Software Engineering, 28(12):1146–1170,
2002.

[EH14] Michael Eichberg and Ben Hermann. A software product line for static
analyses: The opal framework. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis,
SOAP ’14, pages 1–6, New York, NY, USA, 2014. ACM.

[EHMG15] Michael Eichberg, Ben Hermann, Mira Mezini, and Leonid Glanz. Hidden
truths in dead software paths. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, pages 474–484,
New York, NY, USA, 2015. ACM.

[EHRS00] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Ef-
ficient algorithms for model checking pushdown systems. In International
Conference on Computer Aided Verification, pages 232–247. Springer, 2000.

[EL16] Jon Eyolfson and Patrick Lam. C++ const and Immutability: An Empirical
Study of Writes-Through-const. In Shriram Krishnamurthi and Benjamin S.
Lerner, editors, 30th European Conference on Object-Oriented Programming
(ECOOP 2016), volume 56 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 8:1–8:25, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[FHJ+06] Ansgar Fehnker, Ralf Huuck, Patrick Jayet, Michel Lussenburg, and Felix
Rauch. Goanna—a static model checker. In International Workshop on
Parallel and Distributed Methods in Verification, pages 297–300. Springer,
2006.

[GCC18a] Gcc, the gnu compiler collection, July 2018. https://gcc.gnu.org/.

[gcc18b] Gnu compiler collection (gcc) internals, July 2018. https://gcc.gnu.org/
onlinedocs/gccint/.

[GG12] Paul Gazzillo and Robert Grimm. Superc: parsing all of C by taming the
preprocessor. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’12, Beĳing, China - June 11 - 16, 2012, pages 323–334. ACM, 2012.

[Git19] git –fast-version-control, April 2019. https://git-scm.com/.

218

https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gccint/
https://gcc.gnu.org/onlinedocs/gccint/
https://git-scm.com/

Bibliography

[GJ05] Alejandra Garrido and Ralph Johnson. Analyzing multiple configurations of a
c program. In Proceedings of the 21st IEEE International Conference on Soft-
ware Maintenance, ICSM ’05, page 379–388, USA, 2005. IEEE Computer
Society.

[GLL21] Gllvm: Whole program llvm in go, March 2021. https://github.com/
SRI-CSL/gllvm.

[GPMP20] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Poly-
chronakis. Temporal system call specialization for attack surface reduction.
In Proceedings of the 29th USENIX Conference on Security Symposium,
SEC’20, USA, 2020. USENIX Association.

[Gra19] Graphviz, August 2019. https://www.graphviz.org/.

[GRS00] Sanjay Ghemawat, Keith H. Randall, and Daniel J. Scales. Field analysis:
Getting useful and low-cost interprocedural information. In Proceedings of
the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, PLDI ’00, pages 334–344, New York, NY, USA, 2000. ACM.

[Gur23] Refactoring Guru. Mediator pattern, 2023. https://refactoring.guru/
design-patterns/mediator.

[Har23] Ajay Harish. When nasa lost a spacecraft due to a metric math mis-
take, November 2023. https://www.simscale.com/blog/2017/12/
nasa-mars-climate-orbiter-metric/.

[Hea14] HeartBleedBug. Heartbleed: a serious vulnerability in the popular openssl
cryptographic software library. https://heartbleed.com/, 2014.

[Her20] Hercules, June 2020. https://github.com/joliebig/Hercules.

[Hg19] Mercurial, April 2019. https://www.mercurial-scm.org/.

[HHL+17] P. Holzinger, B. Hermann, J. Lerch, E. Bodden, and M. Mezini. Hardening
java’s access control by abolishing implicit privilege elevation. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 1027–1040, May 2017.

[HKR+20] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira
Mezini. Modular collaborative program analysis in opal. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, page 184–196, New York, NY, USA, 2020. Association for Computing
Machinery.

[HL08] Lile P. Hattori and Michele Lanza. On the nature of commits. In 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering -
Workshops, pages 63–71, 2008.

219

https://github.com/SRI-CSL/gllvm
https://github.com/SRI-CSL/gllvm
https://www.graphviz.org/
https://refactoring.guru/design-patterns/mediator
https://refactoring.guru/design-patterns/mediator
https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/
https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/
https://heartbleed.com/
https://github.com/joliebig/Hercules
https://www.mercurial-scm.org/

Bibliography

[HO18] Mark Harman and Peter O’Hearn. From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis. In 2018 IEEE 18th
International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 1–23. IEEE, 2018.

[HP00] Michael Hind and Anthony Pioli. Which pointer analysis should i use? In
Proceedings of the 2000 ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA ’00, page 113–123, New York, NY, USA,
2000. Association for Computing Machinery.

[HR96] Mary Jean Harrold and Gregg Rothermel. Separate computation of alias
information for reuse. IEEE Trans. Softw. Eng., 22(7):442–460, July 1996.

[HREM15] Ben Hermann, Michael Reif, Michael Eichberg, and Mira Mezini. Getting to
know you: Towards a capability model for java. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 758–769, New York, NY, USA, 2015. ACM.

[ICC18] ICCOptimizeOptions. Intel® c++ compiler 19.0 developer guide and refer-
ence: Interprocedural optimization (ipo), December 2018.

[IMD+17] Alexandru Florin Iosif-Lazar, Jean Melo, Aleksandar S. Dimovski, Claus
Brabrand, and Andrzej Wasowski. Effective analysis of C programs by rewrit-
ing variability. CoRR, abs/1701.08114, 2017.

[iOS15] iOSUnicodeBug. Bug in ios unicode handling crashes iphones with
a simple text. https://appleinsider.com/articles/15/05/26/
bug-in-ios-notifications-handling-crashes-iphones-with-a-simple-text/,
2015.

[Jav18] Java virtual machine specification: The constant pool, December
2018. https://docs.oracle.com/javase/specs/jvms/se10/html/
jvms-4.html#jvms-4.4.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, Inc., USA, 1993.

[JKC20] Swati Jaiswal, Uday P. Khedker, and Supratik Chakraborty. Bidirectionality
in flow-sensitive demand-driven analysis. Science of Computer Programming,
190:102391, 2020.

[JSS16] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthe-
sis of program analyzers. In International Conference on Computer Aided
Verification, pages 422–430. Springer, 2016.

[Käs10] Christian Kästner. Virtual separation of concerns: toward preprocessors 2.0.
PhD thesis, Otto von Guericke University Magdeburg, 2010.

220

https://appleinsider.com/articles/15/05/26/bug-in-ios-notifications-handling-crashes-iphones-with-a-simple-text/
https://appleinsider.com/articles/15/05/26/bug-in-ios-notifications-handling-crashes-iphones-with-a-simple-text/
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-4.html#jvms-4.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-4.html#jvms-4.4

Bibliography

[KATS12] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. Type check-
ing annotation-based product lines. ACM Trans. Softw. Eng. Methodol., 21(3),
July 2012.

[KGR+11] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg,
Klaus Ostermann, and Thorsten Berger. Variability-aware parsing in the
presence of lexical macros and conditional compilation. In Proceedings of
the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’11, page 805–824, New
York, NY, USA, 2011. Association for Computing Machinery.

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In Pro-
ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’73, pages 194–206, New York, NY, USA,
1973. ACM.

[KKHL10] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. Typechef:
Toward type checking #ifdef variability in c. In Proceedings of the 2Nd
International Workshop on Feature-Oriented Software Development, FOSD
’10, pages 25–32, New York, NY, USA, 2010. ACM.

[Klo08] Karsten Klohs. A summary function model for the validation of interproce-
dural analysis results. In Proceedings of the 7th International Workshop on
Compiler Optimization meets Compiler Verification, COCV’08, 2008.

[KNR+17] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bod-
den, Florian Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, and
Ram Kamath. Cognicrypt: Supporting developers in using cryptography. In
Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pages 931–936, Piscataway, NJ, USA,
2017. IEEE Press.

[KOE12] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A variability-
aware module system. In Proceedings of the ACM International Confer-
ence on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, page 773–792, New York, NY, USA, 2012. Association for
Computing Machinery.

[KSK09] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis:
Theory and Practice. CRC Press, Inc., USA, 1st edition, 2009.

[KTS+09] Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas
Leich, Fabian Wielgorz, and Sven Apel. Featureide: A tool framework
for feature-oriented software development. In 2009 IEEE 31st International
Conference on Software Engineering, pages 611–614. IEEE, 2009.

[KU77] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7(3):305–317, Sep 1977.

221

Bibliography

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation framework for life-
long program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and
Runtime Optimization, CGO ’04, pages 75–, Washington, DC, USA, 2004.
IEEE Computer Society.

[LBLH11] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. The Soot
framework for Java program analysis: a retrospective. In Cetus Users and
Compiler Infrastructure Workshop (CETUS 2011), October 2011.

[LH15] Johannes Lerch and Ben Hermann. Design your analysis: A case study
on implementation reusability of data-flow functions. In Proceedings of the
4th ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, SOAP 2015, pages 26–30, New York, NY, USA, 2015. ACM.

[LHBM14] Johannes Lerch, Ben Hermann, Eric Bodden, and Mira Mezini. Flowtwist:
Efficient context-sensitive inside-out taint analysis for large codebases. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE 2014, page 98–108, New York, NY,
USA, 2014. Association for Computing Machinery.

[LHR19] Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. Rethinking incremental
and parallel pointer analysis. ACM Trans. Program. Lang. Syst., 41(1):6:1–
6:31, March 2019.

[LKA11] Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of
preprocessor annotations in 30 million lines of c code. In Proceedings of
the Tenth International Conference on Aspect-Oriented Software Develop-
ment, AOSD ’11, page 191–202, New York, NY, USA, 2011. Association for
Computing Machinery.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in
java applications with static analysis. In Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, SSYM’05, pages 18–18, Berkeley,
CA, USA, 2005. USENIX Association.

[LLV19] Llvm git commit activity, May 2019. https://github.com/llvm/
llvm-project/graphs/commit-activity.

[LP14] Wei Le and Shannon D. Pattison. Patch verification via multiversion inter-
procedural control flow graphs. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, page 1047–1058, New
York, NY, USA, 2014. Association for Computing Machinery.

[LSS+15] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták,
J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker,
Anders Møller, and Dimitrios Vardoulakis. In defense of soundiness: A
manifesto. Commun. ACM, 58(2):44–46, January 2015.

222

https://github.com/llvm/llvm-project/graphs/commit-activity
https://github.com/llvm/llvm-project/graphs/commit-activity

Bibliography

[LSXX13] Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. An incremental points-to
analysis with cfl-reachability. In Proceedings of the 22Nd International Con-
ference on Compiler Construction, CC’13, pages 61–81, Berlin, Heidelberg,
2013. Springer-Verlag.

[LTKR08] Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas Reps. Interprocedural
analysis of concurrent programs under a context bound. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 282–298, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[LTMS18] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Scalability-first
pointer analysis with self-tuning context-sensitivity. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, pages 129–140, New York, NY, USA, 2018. ACM.

[LvRK+13] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre,
and Christian Lengauer. Scalable analysis of variable software. In Bertrand
Meyer, Luciano Baresi, and Mira Mezini, editors, Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, pages 81–91. ACM, 2013.

[LWWX16] Hongliang Liang, Lei Wang, Dongyang Wu, and Jiuyun Xu. Mlsa: a static
bugs analysis tool based on llvm ir. In 2016 17th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), pages 407–412. IEEE, 2016.

[MB05] Bill McCloskey and Eric Brewer. Astec: A new approach to refactoring c.
In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE-13, page 21–30, New York, NY, USA,
2005. Association for Computing Machinery.

[MDBW15] Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wa-
sowski. Systematic derivation of correct variability-aware program analyses.
Sci. Comput. Program., 105:145–170, 2015.

[mei22] meĳer. Researchers introducing [linux] kernel bugs on purpose, November
2022. https://www.reddit.com/r/programming/comments/mvek9m/
researches_introducing_linux_kernel_bugs_on/.

[Mer03] Jason Merrill. Generic and gimple: A new tree representation for entire
functions. In in Proc. GCC Developers Summit, 2003, pages 171–180, 2003.

[Mey05] Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs
and Designs (3rd Edition). Addison-Wesley Professional, 2005.

223

https://www.reddit.com/r/programming/comments/mvek9m/researches_introducing_linux_kernel_bugs_on/
https://www.reddit.com/r/programming/comments/mvek9m/researches_introducing_linux_kernel_bugs_on/

Bibliography

[Mey14] Scott Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use
of C++11 and C++14. O’Reilly Media, Inc., 1st edition, 2014.

[MKK07] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static
analysis for malware detection. In Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007), pages 421–430. IEEE, 2007.

[MLI23] Multi-level ir compiler framework, January 2023.

[MR14] Rashmi Mudduluru and Murali Krishna Ramanathan. Efficient incremental
static analysis using path abstraction. In Stefania Gnesi and Arend Rensink,
editors, Fundamental Approaches to Software Engineering, pages 125–139,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[NKH+18] Lisa Nguyen, Stefan Krüger, Patrick Hill, Karim Ali, and Eric Bodden. Visu-
flow, a debugging environment for static analyses. In International Conference
for Software Engineering (ICSE), Tool Demonstrations Track, 1 January 2018.

[NLR10] Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical ex-
tensions to the ifds algorithm. In Proceedings of the 19th Joint European
Conference on Theory and Practice of Software, International Conference on
Compiler Construction, CC’10/ETAPS’10, pages 124–144, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’07, pages 89–100, New York, NY, USA, 2007. ACM.

[Onl18] GCC Onlinedocs. Options that control optimization, December 2018. https:
//gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

[Onl21] GCC Onlinedocs. Cpp 3.4 stringizing, November 2021. https:
//gcc.gnu.org/onlinedocs/gcc-11.2.0/cpp/Stringizing.html#
Stringizing.

[Ope08] OpenSSLRandomNumberGeneratorBug. Dsa-1571-1 openssl – predictable
random number generator. https://www.debian.org/security/2008/
dsa-1571/, 2008.

[OPS92] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. Making type
inference practical. In Ole Lehrmann Madsen, editor, ECOOP ’92 Euro-
pean Conference on Object-Oriented Programming, pages 329–349, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

[PDB19] Goran Piskachev, Lisa Nguyen Quang Do, and Eric Bodden. Codebase-
adaptive detection of security-relevant methods. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis,

224

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/cpp/Stringizing.html#Stringizing
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/cpp/Stringizing.html#Stringizing
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/cpp/Stringizing.html#Stringizing
https://www.debian.org/security/2008/dsa-1571/
https://www.debian.org/security/2008/dsa-1571/

Bibliography

ISSTA 2019, page 181–191, New York, NY, USA, 2019. Association for
Computing Machinery.

[Pha18] Phasar, July 2018. https://phasar.org.

[PK13] Rohan Padhye and Uday P. Khedker. Interprocedural data flow analysis in soot
using value contexts. In Proceedings of the 2Nd ACM SIGPLAN International
Workshop on State Of the Art in Java Program Analysis, SOAP ’13, pages
31–36, New York, NY, USA, 2013. ACM.

[Pro12] Emil Protalinski. Apple security blunder exposes lion login pass-
words in clear text, May 2012. https://www.zdnet.com/article/
apple-security-blunder-exposes-lion-login-passwords-in-clear-text/.

[Pro18] The programming languages beacon, December 2018. https://www.
mentofacturing.com/vincent/implementations.html.

[RAB14] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning
approach for classifying and categorizing android sources and sinks. In NDSS,
volume 14, page 1125, 2014.

[Ray14] Santanu Saha Ray. Graph Theory with Algorithms and Its Applications: In
Applied Science and Technology. Springer Publishing Company, Incorpo-
rated, 2014.

[REH+16] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira
Mezini. Call graph construction for java libraries. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pages 474–486, New York, NY, USA, 2016. ACM.

[Rep00] Thomas Reps. Undecidability of context-sensitive data-dependence analysis.
ACM Trans. Program. Lang. Syst., 22(1):162–186, jan 2000.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’95, pages 49–61, New York, NY, USA, 1995. ACM.

[Ric53] H. G. Rice. Classes of recursively enumerable sets and their decision prob-
lems. Transactions of the American Mathematical Society, 1953, 74, 2, 358,
1953.

[RLJ+18] Alexander Von Rhein, JöRG Liebig, Andreas Janker, Christian Kästner, and
Sven Apel. Variability-aware static analysis at scale: An empirical study.
ACM Trans. Softw. Eng. Methodol., 27(4), November 2018.

[RMR04] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for
testing of polymorphism in java software. IEEE Transactions on Software
Engineering, 30(6):372–387, June 2004.

225

https://phasar.org
https://www.zdnet.com/article/apple-security-blunder-exposes-lion-login-passwords-in-clear-text/
https://www.zdnet.com/article/apple-security-blunder-exposes-lion-login-passwords-in-clear-text/
https://www.mentofacturing.com/vincent/implementations.html
https://www.mentofacturing.com/vincent/implementations.html

Bibliography

[Rou14] Personal communication with atanas (nasko) rountev, 2014.

[RR01] Atanas Rountev and Barbara G. Ryder. Points-to and side-effect analyses
for programs built with precompiled libraries. In Reinhard Wilhelm, editor,
Compiler Construction, pages 20–36, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

[RRL99] Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow analysis
of program fragments. In Oscar Nierstrasz and Michel Lemoine, editors,
Software Engineering — ESEC/FSE ’99, pages 235–252, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

[RSJ03] Thomas Reps, Stefan Schwoon, and Somesh Jha. Weighted pushdown systems
and their application to interprocedural dataflow analysis. In Proceedings of
the 10th International Conference on Static Analysis, SAS’03, pages 189–213,
Berlin, Heidelberg, 2003. Springer-Verlag.

[RSX08] Atanas Rountev, Mariana Sharp, and Guoqing Xu. Ide dataflow analysis in the
presence of large object-oriented libraries. In Proceedings of the Joint Euro-
pean Conferences on Theory and Practice of Software 17th International Con-
ference on Compiler Construction, CC’08/ETAPS’08, pages 53–68, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Ryd83] Barbara G. Ryder. Incremental data flow analysis. In Proceedings of the 10th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL ’83, pages 167–176, New York, NY, USA, 1983. ACM.

[SAB10] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 2010 IEEE symposium on Security
and privacy, pages 317–331. IEEE, 2010.

[SAB17] Johannes Späth, Karim Ali, and Eric Bodden. Ideal: Efficient and precise
alias-aware dataflow analysis. Proc. ACM Program. Lang., 1(OOPSLA),
October 2017.

[SAB19a] Johannes Späth, Karim Ali, and Eric Bodden. Context-, flow-, and field-
sensitive data-flow analysis using synchronized pushdown systems. Proc.
ACM Program. Lang., 3(POPL), jan 2019.

[SAB19b] Johannes Späth, Karim Ali, and Eric Bodden. Context-, flow-, and field-
sensitive data-flow analysis using synchronized pushdown systems. Proc.
ACM Program. Lang., 3(POPL):48:1–48:29, January 2019.

[SAE+18] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and
Ciera Jaspan. Lessons from building static analysis tools at google. Commun.
ACM, 61(4):58–66, March 2018.

226

Bibliography

[SAIM08] Ozgur Sumer, Umut Acar, Alexander T. Ihler, and Ramgopal R. Mettu. Ef-
ficient bayesian inference for dynamically changing graphs. In J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Infor-
mation Processing Systems 20, pages 1441–1448. Curran Associates, Inc.,
2008.

[Sat23] Florian Sattler. Vara: a variational region analyzer, 2023. https://github.
com/se-sic/vara-llvm-project/.

[SB09] Asia Slowinska and Herbert Bos. Pointless tainting: Evaluating the practical-
ity of pointer tainting. In Proceedings of the 4th ACM European Conference
on Computer Systems, EuroSys ’09, pages 61–74, New York, NY, USA, 2009.
ACM.

[SBEV18] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter.
Incrementalizing lattice-based program analyses in datalog. Proc. ACM Pro-
gram. Lang., 2(OOPSLA), oct 2018.

[SBL11] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your
contexts well: Understanding object-sensitivity. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 17–30, New York, NY, USA, 2011. ACM.

[SBS+23] Florian Sattler, Sebastian Böhm, Philipp Dominik Schubert, Norbert Sieg-
mund, and Sven Apel. Seal: Integrating program analysis and repository
mining. ACM Trans. Softw. Eng. Methodol., 32(5), July 2023.

[SCS24] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. Interactive abstract
interpretation with demanded summarization. ACM Trans. Program. Lang.
Syst., 46(1), March 2024.

[Sec19] Securibench, April 2019. https://suif.stanford.edu/~livshits/
work/securibench/intro.html.

[SEV16] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. Inca: A dsl for the defi-
nition of incremental program analyses. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016,
page 320–331, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[SGP+22] Philipp Dominik Schubert, Paul Gazzillo, Zach Patterson, Julian Braha,
Fabian Schiebel, Ben Hermann, Shiyi Wei, and Eric Bodden. Static data-flow
analysis for software product lines in c. Automated Software Engineering,
29(1):35, Mar 2022.

[SHB19] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Phasar: An
inter-procedural static analysis framework for c/c++. In Tomáš Vojnar and

227

https://github.com/se-sic/vara-llvm-project/
https://github.com/se-sic/vara-llvm-project/
https://suif.stanford.edu/~livshits/work/securibench/intro.html
https://suif.stanford.edu/~livshits/work/securibench/intro.html

Bibliography

Lĳun Zhang, editors, Tools and Algorithms for the Construction and Analysis
of Systems, pages 393–410, Cham, 2019. Springer International Publishing.

[SHB21] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Lossless, Per-
sisted Summarization of Static Callgraph, Points-To and Data-Flow Analysis.
In Anders Møller and Manu Sridharan, editors, 35th European Conference
on Object-Oriented Programming (ECOOP 2021), volume 194 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 2:1–2:31, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[SKB14] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspec-
tive analysis: Context-sensitivity, across the board. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’14, pages 485–495, New York, NY, USA, 2014. ACM.

[SLHB19] Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric Bodden.
Know your analysis: How instrumentation aids understanding static analysis.
In Proceedings of the 8th ACM SIGPLAN International Workshop on State Of
the Art in Program Analysis, SOAP 2019, pages 8–13, New York, NY, USA,
2019. ACM.

[SLHB21] Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric Bodden.
Into the woods: Experiences from building a dataflow analysis framework for
c/c++. In 2021 IEEE 21st International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 18–23, 2021.

[SLL02] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph
Library - User Guide and Reference Manual. C++ in-depth series. Pearson /
Prentice Hall, 2002.

[SMM15] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. Test suites for
benchmarks of static analysis tools. In Proceedings of the 2015 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops (ISSREW),
ISSREW ’15, pages 12–15, Washington, DC, USA, 2015. IEEE Computer
Society.

[SNAB16] Johannes Späth, Lisa Nguyen, Karim Ali, and Eric Bodden. Boomerang:
Demand-driven flow- and context-sensitive pointer analysis for java. In Eu-
ropean Conference on Object-Oriented Programming (ECOOP), 17 - 22 July
2016.

[Sof18] Black Duck Software. 2018 open source security and risk analysis.
https://www.synopsys.com/content/dam/synopsys/sig-assets/
reports/2018-ossra.pdf, 2018.

[Son23a] SonarCloud. clean code in your cloud workflow with sonarcloud, November
2023. https://www.sonarsource.com/products/sonarcloud/.

228

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://www.sonarsource.com/products/sonarcloud/

Bibliography

[son23b] sonarqube. clean code for teams and enterprises with sonarqube, November
2023. https://www.sonarsource.com/products/sonarqube/.

[SP78] M Sharir and A Pnueli. Two approaches to interprocedural data flow analysis.
New York Univ. Comput. Sci. Dept., New York, NY, 1978.

[SRH96] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural
dataflow analysis with applications to constant propagation. Theor. Comput.
Sci., 167(1-2):131–170, October 1996.

[SSS+21] Philipp Dominik Schubert, Florian Sattler, Fabian Schiebel, Ben Hermann,
and Eric Bodden. Modeling the effects of global variables in data-flow analysis
for c/c++. In 2021 IEEE 21st International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 12–17, 2021.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’96, pages 32–41, New York, NY, USA, 1996. ACM.

[Str83] Robert E. Strom. Mechanisms for compile-time enforcement of security. In
Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’83, pages 276–284, New York, NY, USA,
1983. ACM.

[Str18] C++ applications, December 2018. https://www.stroustrup.com/
applications.html.

[SVE17] Tamas Szabo, Markus Volter, and Sebastian Erdweg. Incal: A dsl for incre-
mental program analysis with lattices. In International Workshop on Incre-
mental Computing (IC), 2017., 2017.

[SvGJ+15] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and
Collin Winter. Tricorder: Building a program analysis ecosystem. In Pro-
ceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, page 598–608. IEEE Press, 2015.

[SVN19] Subversion, April 2019. https://subversion.apache.org/.

[Swa76] E. Burton Swanson. The dimensions of maintenance. In Proceedings of
the 2nd International Conference on Software Engineering, ICSE ’76, page
492–497, Washington, DC, USA, 1976. IEEE Computer Society Press.

[SX16a] Yulei Sui and Jingling Xue. On-demand strong update analysis via value-flow
refinement. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, pages 460–
473, New York, NY, USA, 2016. ACM.

229

https://www.sonarsource.com/products/sonarqube/
https://www.stroustrup.com/applications.html
https://www.stroustrup.com/applications.html
https://subversion.apache.org/

Bibliography

[SX16b] Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow analysis
in llvm. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, pages 265–266, New York, NY, USA, 2016. ACM.

[SXX12] Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-
based points-to analysis. In Proceedings of the Tenth International Symposium
on Code Generation and Optimization, CGO ’12, pages 264–274, New York,
NY, USA, 2012. ACM.

[SY86] R E Strom and S Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):157–171,
January 1986.

[Syn18] Synk. The state of open source security, December 2018. https://snyk.
io/stateofossecurity/.

[Sza21] Tamás Szabó. Incrementalizing Static Analyses in Datalog. PhD thesis,
University of Mainz, Germany, 2021.

[TA12] Thomas Thüm and Sven Apel. Analysis strategies for software prod-
uct lines. none, 2012. https://www.cs.cmu.edu/~ckaestne/pdf/tr_
analysis12.pdf.

[TG17] John Toman and Dan Grossman. Taming the Static Analysis Beast. In
Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi, editors, 2nd
Summit on Advances in Programming Languages (SNAPL 2017), volume 71
of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–
18:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[Thi18] Thinlto: Scalable and incremental lto, July 2018. http://blog.llvm.org/
2016/06/thinlto-scalable-and-incremental-lto.html.

[TL:18a] Llvm language reference manual, July 2018. http://llvm.org/docs/
LangRef.html.

[TL:18b] Llvm users, July 2018. http://llvm.org/Users.html.

[Tra19] Gregory Travis. How the boeing 737 max disaster looks to a
software developer, April 2019. https://spectrum.ieee.org/
how-the-boeing-737-max-disaster-looks-to-a-software-developer.

[Tri81] Eric L Trist. The evolution of socio-technical systems, volume 2. Ontario
Quality of Working Life Centre Toronto, 1981.

[TWX+17] Hao Tang, Di Wang, Yingfei Xiong, Lingming Zhang, Xiaoyin Wang, and
Lu Zhang. Conditional dyck-cfl reachability analysis for complete and efficient
library summarization. In Hongseok Yang, editor, Programming Languages

230

https://snyk.io/stateofossecurity/
https://snyk.io/stateofossecurity/
https://www.cs.cmu.edu/~ckaestne/pdf/tr_analysis12.pdf
https://www.cs.cmu.edu/~ckaestne/pdf/tr_analysis12.pdf
http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://llvm.org/Users.html
https://spectrum.ieee.org/how-the-boeing-737-max-disaster-looks-to-a-software-developer
https://spectrum.ieee.org/how-the-boeing-737-max-disaster-looks-to-a-software-developer

Bibliography

and Systems, pages 880–908, Berlin, Heidelberg, 2017. Springer Berlin Hei-
delberg.

[TWZ+15] Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong
Mei. Summary-based context-sensitive data-dependence analysis in presence
of callbacks. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, pages 83–
95, New York, NY, USA, 2015. ACM.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vĳay Sundaresan. Soot - a java bytecode optimization framework. In
Proceedings of the 1999 Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’99, page 13. IBM Press, 1999.

[Wal19] Wala, April 2019. http://wala.sourceforge.net/wiki/index.php/
Main_Page.

[Win17] Titus Winters. C++ as "live at head" language. https://www.youtube.
com/watch?v=tISy7EJQPzI&ab_channel=CppCon, 2017.

[WKE+14] Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric
Bodden. Variational data structures: Exploring tradeoffs in computing with
variability. In Andrew P. Black, Shriram Krishnamurthi, Bernd Bruegge, and
Joseph N. Ruskiewicz, editors, Onward! 2014, Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, part of SPLASH ’14, Portland, OR, USA, October
20-24, 2014, pages 213–226. ACM, 2014.

[WLL21] Wllvm: Whole program llvm, March 2021. https://github.com/
travitch/whole-program-llvm.

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape analysis
for java programs. In Proceedings of the 14th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’99, page 187–206, New York, NY, USA, 1999. Association for
Computing Machinery.

[WS73] W. Wulf and Mary Shaw. Global variable considered harmful. SIGPLAN
Not., 8(2):28–34, February 1973.

[WSR00] Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. Shape analysis. In
Proceedings of the 9th International Conference on Compiler Construction,
CC ’00, pages 1–17, London, UK, UK, 2000. Springer-Verlag.

[XHN05] Jingling Xue and Phung Hua Nguyen. Completeness analysis for incomplete
object-oriented programs. volume 3443, pages 271–286, 04 2005.

231

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://www.youtube.com/watch?v=tISy7EJQPzI&ab_channel=CppCon
https://www.youtube.com/watch?v=tISy7EJQPzI&ab_channel=CppCon
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

Bibliography

[YMX+10] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy. Sherlog: Error diagnosis by connecting clues from run-
time logs. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XV,
pages 143–154, New York, NY, USA, 2010. ACM.

232

	Abstract
	Introduction
	A Motivating Example
	A Broader Perspective
	Contributions of This Thesis
	Structure of This Thesis
	Prior Publications

	Background
	The Idea of Static Data-Flow Analysis
	Procedure Boundaries and Context Sensitivity
	The Zoo of Sensitivities
	Context Sensitivity
	Object Sensitivity
	Flow Sensitivity
	Field Sensitivity
	Path Sensitivity

	Distributive Data-Flow Analysis Problems

	The IFDS and IDE Frameworks
	Helper Analyses for Precise Whole-Program Data-Flow Analysis
	Control Flow and Callgraph Information
	Points-to and Alias Information
	Type Hierarchy Information
	Data-Flow Information and Client Analyses

	Soundness and Completeness
	Precision and Performance
	Static Versus Dynamic Analysis
	The LLVM Compiler Infrastructure

	PhASAR
	Introduction
	Related Work
	Architecture
	PhASAR's Implementation
	Encoding an IFDS Analysis
	Encoding an IDE Analysis
	Encoding an Analysis Within the Monotone Framework
	Use PhASAR as a Library
	Handling of Intrinsic Functions and libc
	A Note on PhASAR's Soundness

	Scalability
	The Need for Dedicated Debugging Capabilities
	Instrumenting Static Analysis
	Analysis Development Process
	Implementation
	Experience Report
	Bug Finding and Detection of Anomalies
	Performance Benchmarking for Optimizations

	Related Work
	Conclusions

	The Burden of Correctly Handling Global Variables
	Framework Support for Global Variables
	Background and Problem Description
	Globals in C and C++
	Built-in Typed Global Variables
	Class/Struct Typed Global Variables
	Global Con-/Destructors

	Representation in LLVM IR

	Modeling the Effects of Globals
	Status Quo
	Control Flows
	Data Flows

	Implementation
	Case Study: Constant Propagation
	An Analysis Writer's Perspective
	Global Variables in Real-World Programs
	Experimental Setup
	rq:1RQ1: Usages of Global Variables
	rq:2RQ2: Precision
	rq:3RQ3: Performance

	Related Work
	Conclusions

	A Few Years Later: Designing Static Analysis Implementations
	Experiences From Building a Static Analysis Framework
	Background
	Parametrization and Configurations
	Analysis Styles

	Lessons Learned
	Modularity and Encapsulation
	Accessing Information
	Bugs and Debugging
	Parametrization, Configuration and Usability
	Flexible Usage Modes
	Analyzing C, C++, and LLVM IR
	Build Systems
	LLVM IR Generation
	Contributing Guidelines

	Related Work
	Conclusions

	Future Work
	Conclusions

	Variability
	Introduction
	Motivating Example
	Analysis
	Transforming Preprocessor Directives
	Phases of the Desugarer
	Parsing.
	Type checking.
	Rewriting.

	Desugaring C Type Specifications
	Desugaring Function Definitions
	Limitations of the Transformation

	Variational Data-flow Analysis
	Automated Lifting of Edge Functions
	Operations on Lifted Edge Functions
	Join.
	Composition.
	Equality.
	Evaluation.

	Why IDE Is the Ideal Framework of Choice

	Implementation
	Experiments
	Experimental Setup
	rq:4RQ4: Analysis Correctness
	rq:5RQ5: Analysis Efficiency
	rq:6RQ6: Analysis Precision

	Related Work
	Conclusions

	Modularity
	Introduction
	Motivating Example
	Strategy
	Idea of the Algorithm
	Summary Generation
	Type Hierarchies
	Intra-Procedural Points-To Information
	Callgraphs and Inter-Procedural Points-To Information
	Data-Flow Information

	Merging Analysis Summaries
	Type Hierarchies
	Callgraphs and Points-To Information
	Fixed-Point Iteration for Callgraph and Points-To Graph
	Data-Flow Information
	Analyzing the Main Application

	Removing Dependencies Ahead of Time

	Implementation
	Experiments
	Experimental Setup
	rq:7RQ7: Precision
	rq:8RQ8: Performance
	rq:9RQ9: Shortcuts

	Limitations
	Related Work
	Conclusions

	Incrementality
	Introduction
	Motivating Example
	Terminology and Notation
	Model of a Version Control System
	Model of Analysis Information

	Incremental Update Analysis
	Preparing Commit Metadata
	Change Scenarios
	Compute Whole Program Information
	Compute Incremental Updates
	Type Hierarchy Information
	Points-to Information
	Callgraph Information
	Data-Flow Information
	Answering the Client Analysis

	Implementation
	Evaluation
	Research Questions
	Experimental Setup
	Client analyses.
	Experimental process.
	Target Subject Selection.
	Execution environment.

	rq:10RQ10: Performance
	rq:13RQ13: Correctness
	rq:11RQ11: Change Characteristics
	rq:12RQ12: Helper Analyses

	Threats to Validity
	Internal Validity.
	External Validity.

	Related Work
	Conclusions
	Incrementality: Data

	Applications of PhASAR
	Combining Repository Mining and Static Code Analysis
	Static Configuration-Logic Identification
	White-Box Penetration Testing
	Running Example
	Overview of the Static Analysis Engine
	Pre-Processing
	Taint Analysis
	Symbolic Execution

	Design and Implementation
	Taint Configurations
	Taint Analysis
	Path Sensitivity and Performance Optimizations
	Symbolic Execution
	Path Constraints
	Symbolic Loop Finiteness Check
	Symbolic Out-Of-Bound Buffer Access Check
	Implementing Custom Symbolic Checks

	Results and How to Access Them
	Path Collection
	Emitting the Exploded Super-Graph
	Emitting Analysis Coverage
	Emitting Full JSON Reports

	Insights and Lessons Learned

	Conclusions

	Conclusions and Future Work
	Bibliography

