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Zusammenfassung

Die Inbetriebnahme von Steuerungen und Regelungen stellt sicher, dass ein mechatro-
nisches System ordnungsgemif3 funktioniert und den Anforderungen gerecht wird. Der
modellbasierte Entwurf basiert auf einem genauen Simulationsmodell. Allerdings ist die-
ser klassische Weg bei komplexen Systemen oft nicht praktikabel, da die analytische
Modellierung zu kompliziert und zeitaufwendig ist. Diese Forschungsliicke wird durch
Verfahren adressiert, die eine effiziente und sichere Inbetriebnahme ermdéglichen. Diese
Verfahren kombinieren Regelungstechnik und Reinforcement Learning und nutzen vor-
handenes Wissen iiber die Regelungsaufgabe, um Korrekturen basierend auf Messdaten
und der probabilistischen GauB3-Prozess-Regression vorzunehmen. Das Vorwissen kann
als teilweise bekanntes physikalisches Modell oder als Steuerungsfunktion vorliegen.

Anwendungsbeispiele sind der Ultraschalldrahtbondprozess, verschiedene Pendelsyste-
me und ein Hexapod. Eine angepasste Bayessche Optimierung wird zur Identifikation
einer Steuerparametrisierung fiir das Ultraschallbonden eingesetzt. Aulerdem wird ei-
ne hybride Optimalsteuerung fiir das Doppelpendel auf einem Wagen entwickelt und er-
folgreich validiert. Fiir einen Hexapod zur Fahrzeugachspriifung wird eine hybride Zu-
standslinearisierung formuliert und ein Funktionsnachweis im Rahmen einer Simulati-
on erbracht. Die Einhaltung technischer Rahmenbedingungen und stabiles Systemverhal-
ten werden durch probabilistische Pradiktionen gewihrleistet. In allen Anwendungsféllen
wird eine Steigerung der Effizienz und Giite erzielt.

Abstract

The commissioning of control systems ensures that a mechatronic system functions pro-
perly and meets the requirements. Model-based design is based on a precise simulation
model. However, this classic approach is often impractical for complex systems, as ana-
lytical modeling is too complicated and time-consuming. This research gap is addressed
by methods that enable efficient and safe commissioning. These methods combine con-
trol engineering and reinforcement learning and use existing knowledge about the control
task to make corrections based on measurement data and probabilistic Gaussian process
regression. The prior knowledge can be available as a partially known physical model or
as a control function.

Application examples include the ultrasonic wire bonding process, various pendulum sys-
tems and a hexapod. An adapted Bayesian optimization is used to identify a control para-
meterization for ultrasonic bonding. In addition, a hybrid optimal control for the double
pendulum on a cart is developed and successfully validated. A hybrid state linearization
is formulated for a hexapod for vehicle axle testing and a proof of concept is provided in a
simulation. Compliance with technical framework conditions and stable system behavior
are ensured by probabilistic predictions. An increase in efficiency and quality is achieved
in all use cases.
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1 Einleitung und Motivation

Im Allgemeinen ist die Inbetriebnahme ein Prozess, welcher sicherstellt, dass ein tech-
nisches System ordnungsgemif funktioniert, sowie den vorhergehenden Anforderungen
und Erwartungen gerecht wird. Der Fokus der vorliegenden Arbeit liegt im Speziellen
auf mechatronischen Systemen, welche durch ein enges synergetisches Zusammenwir-
ken der Fachdisziplinen Maschinenbau, Elektrotechnik und Informatik gekennzeichnet
sind. Mechatronische Systeme besitzen zudem Sensorik und Aktorik, womit {iber eine in-
formationsverarbeitende Einheit eine gewiinschte Beeinflussung des Systems vorgenom-
men wird. Hierfiir sind Steuerungs- und Regelungsalgorithmen notwendig, welche bei
der Inbetriebnahme erstmalig erprobt und ordnungsgemal eingestellt werden miissen. Im
Rahmen dieser Arbeit werden die dabei auftretenden Probleme benannt, die sich daraus
ableitende Konsequenz und die Forschungsliicke identifiziert und weiterfiihrend konkre-
te Losungsansitze vorgelegt. Die Losungsansitze werden in Form von zielgerichteten
Verfahren anhand von passenden Anwendungsbeispielen erldutert und basieren im Kern
auf der Kombination von bewihrter klassischer Regelungstechnik mit den modernen Me-
thoden des Reinforcement Learning (RL). Die Grundidee dieses Ansatzes und die zu-
grundeliegenden beiden Fachdisziplinen werden in Unterabschnitt[I.2] weiter besprochen.
Zunichst wird die Problematik bei der Inbetriebnahme von Steuerungen und Regelungen

anhand des regelungstechnischen Entwurfsprozesses ndher beschrieben und erklért.

1.1 Einfihrung in den regelungstechnischen Entwurfsprozess

Die Regelungstechnik ist eine ingenieurtechnische und wissenschaftliche Disziplin, deren
iibergeordneten Aufgabe es ist, einer Ausgangsgrofle eines technischen Systems durch die
StellgroBe ein bestimmtes Sollverhalten, d. h. ein gewiinschtes Verhalten, aufzupriigen,
und zwar gegen den Einfluss einer Storgrofe, die nur unvollstidndig bekannt ist [FKL*22].
Die Dynamik des Systems, also dessen zeitliches Verhalten, und ihre gezielte Beeinflus-
sung sind daher von zentraler Bedeutung in der Regelungstechnik. Eine Charakterisierung
erfolgt liber den Zustand des Systems, welcher dieses zeitlich eindeutig beschreibt. Im
Fall eines mechanischen Systems setzt sich der Zustand beispielsweise aus den Positionen
und Geschwindigkeiten der verschiedenen Massen zusammen. Der Zustand spiegelt die
Wirkung der Stell- und Storgrofle auf die Dynamik wider. Soll das System von einem be-
stimmten Zustand in einen anderen iiberfiihrt werden, dann ist dazu die passende Vorgabe
der Stellgrofle notwendig. Ist diese in Form einer vorab bekannten Steuerung gefunden,
ist dies nicht zwangsliufig ausreichend, um den Zielzustand zu erreichen, denn die unbe-
kannte Storgrofle wirkt sich negativ aus und bringt das System von seinem vorgesehenen

Kurs - der Soll-Trajektorie - ab. Um diese Problematik zu l6sen, wird der Zustand durch



2 1 Einleitung und Motivation

Verifikation

Anforderungs- Validierung &
erhebung Ubergabe

N\ /

. D System-Integration &
Systemarchitektur Verfikation

AN /

Implementierung der
Systemelemente

Disziplintibergreifende Modellierung & Analyse

Bild 1-1: Vorgehensmodell fiir den Entwurf eines mechatronischen Systems nach
VDI/VDE 2206 [GMO?2|].

die Sensorik des Systems laufend erfasst und auf Basis dieser Information eine Korrektur
der StellgroBe durch eine Regelung vorgenommen. Dieser Losungsweg ist erfolgreich,
da sich die Storung indirekt im gemessenen Zustand bemerkbar macht und die Regelung

somit eine Kompensation vornehmen kann.

Der Regelungstechnikelﬂ steht neben der ganzheitlichen Konzipierung und Konstrukti-
on des mechatronischen Gesamtsystems auch vor etwaigen Herausforderungen, welche
die Entwicklung der Steuerung und Regelung betreffen. Zur Erlduterung dieser Heraus-
forderungen wird als Ausgangspunkt des regelungstechnischen Entwurfsprozesses das
Vorgehensmodell (kurz V-Modell) nach Richtlinie VDI 2206 [GMO02] (s. Bild [I-1]) her-
angezogen. Im friihen Entwicklungsstadium erfolgt eine Anforderungserhebung, in der
beispielsweise die technischen Rahmenbedingungen geklirt werden, und die Festlegung
der ilibergeordneten Systemarchitektur. Anschlieend erfolgt die Implementierung der
Systemelemente, wobei die physikalischen Wirkungszusammenhénge definiert und mit-
einander verkniipft werden. Innerhalb der spiten Entwicklungsphase wird die System-
integration, also die reale Umsetzung des Entwurfs, umgesetzt und eine ausgiebige Vali-
dierung vorgenommen. Eine besondere Charakteristik des V-Modells ist die fortlaufende
Verifikation mit den friiheren Entwicklungsschritten, wodurch sich insgesamt ein itera-
tives Vorgehen ergibt. Das V-Modell ldsst somit die Riickkehr zu einem friiheren Schritt
zu, um Entwurfsfehler oder Verbesserungen vorzunehmen. Eine weitere Charakteristik ist
die diszipliniibergreifende Modellierung, Simulation und Analyse, welche parallel zu den
bereits genannten Schritten durchgefiihrt wird und das V-Modell absichert. Die Imple-
mentierung einer Simulationsumgebung erscheint zunichst kosten- und zeitaufwindig,
fiihrt in der Gesamtbetrachtung jedoch zu einem positiven Ergebnis, auch beziiglich die-

ser beiden ZielgroBen. Mit Hilfe des Simulationsmodells lassen sich bereits vor der rea-

'Aus Griinden der besseren Lesbarkeit wird auf die gleichzeitige Verwendung der Sprachformen
mannlich, weiblich und divers verzichtet. Samtliche Personenbezeichnungen gelten gleicher-
maf3en fir alle Geschlechter.
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Bild 1-2: Modellbasierter Steuerungs- und Regelungsentwurf

len Umsetzung ausgiebige Auswertungen, welche beispielsweise die Dynamik betreffen,
vornehmen. Auf diese Weise kann der Ingenieur weitere konstruktive MaBnahmen vor-
nehmen, die fiir das Verhalten des Prototypen als sinnvoll erachtet werden. Des Weiteren
wird anhand des Modells bereits der Steuerungs- und Regelungsentwurf vorgenommen.
Fiir bestimmte Regelungskonzepte stellt das Simulationsmodell nicht nur eine geeignete
Testumgebung dar, sondern ist ein essentieller Bestandteil des Konzeptes selbst. Aus den
genannten Griinden ist die diszipliniibergreifende Modellierung und Analyse ein wesent-
liches und hilfreiches Element des V-Modells.

Das Hauptaugenmerk der vorliegenden Arbeit liegt auf dem letzten Entwicklungsschritt,
bzw. der Validierung. In diesem Schritt findet die Inbetriebnahme der Steuerung oder Re-
gelung statt. Bild stellt den modellbasierten Entwurf genauer dar. Im Rahmen des
V-Modells wird davon ausgegangen, dass das reale System erst am Ende des Entwick-
lungsprozesses existiert. Neben diesem Szenario kann der Regelungstechniker auch vor
der Aufgabe stehen, dass es bereits ein existierendes System gibt, wofiir der Entwurf
durchgefiihrt werden soll. Unabhingig vom betrachteten Szenario ist der erste Schritt die
Modellbildung auf der Grundlage von physikalischen GesetzmaiBigkeiten. Ein wesentli-
cher Punkt ist hierbei die Frage nach dem Detaillierungsgrad der Modellierung, welcher
in Hinblick auf die Komplexitidt der Anwendung bzw. Aufgabe optimal gewihlt werden
sollte. Ein zu geringer Grad kann das reale System womoglich nicht genau genug be-
schreiben, womit die durchgefiihrten Analysen und Auswertungen unbrauchbar werden.
Ein zu hoher Grad ist in dieser Metrik mutmaBlich geeigneter, hat allerdings den Nach-
teil, dass er zu zeit- und kostenintensiv ist und damit den gesamten Entwicklungspro-
zess verzogern kann. Die angesprochenen Vorteile des modellbasierten Entwurfs wiirden
auf diese Weise revidiert werden. Nach der Aufstellung des Modells erfolgt die System-
analyse. Der Regelungstechniker erhilt hierbei tiefere Einsichten in die Eigenschaften
des Systems bspw. in Bezug auf dessen Stabilitdt oder Steuer- und Beobachtbarkeit. An-
schliefend wird das passende Regelungskonzept ausgewihlt und, anhand von festgeleg-

ten Giitekriterien und technischen Nebenbedingungen, ausgelegt. Uber eine weitere Si-
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mulation, in welcher das Modell des Systems mit der entwickelten Regelung angesteuert
wird, resultiert eine bestimmte Erwartung des Regelungstechnikers an das dynamische
Verhalten des realen Systems. Mit dieser Erwartungshaltung wird die Erprobung und In-
betriebnahme durchgefiihrt, wobei das bisher verwendete Simulationsmodell durch das
reale System ersetzt wird. Bei der Erprobung wird das wahre dynamische Verhalten ge-
messen, so dass riickblickend ein Vergleich zur Erwartung gezogen und eine Bewertung

vorgenommen werden kann.

An diesen Punkt angelangt, zeigt sich eine mogliche Problematik des modellbasierten
Entwurfs, welche den Hauptgegenstand dieser Arbeit bildet. Stimmen das gemessene und
erwartete dynamische Verhalten nicht iiberein, spiegelt sich dies in der Qualitét der Re-
gelung wider. Die Regelung kann in diesem Fall von einem suboptimalen Ergebnis bis
hin zum kompletten Fehlschlag durch instabiles Verhalten fiihren. Der ausschlaggebende
Punkt ist die Voraussetzung mit welcher der modellbasierte Entwurf durchgefiihrt wird:
Das aufgestellte Modell bildet das reale System genau genug nach. Wenn diese Vorausset-
zung nicht erfiillt ist, kommt es zu der angesprochenen Problematik. Der Regelungstech-
niker steht entsprechend vor der Herausforderung, den rein theoretischen Entwurf mit der
Wirklichkeit des realen Versuchs, also der Praxis, in Einklang zu bringen. Die /IEEE Con-
trol Society greift unter anderem diese Herausforderung in [AAA™23|] auf und verweist
auf die immer komplexer werdenden mechatronischen Systeme, sowie deren zunehmende
Funktionalitédt und dafiir notwendigen Regelalgorithmen. Die Probleme bei der Inbetrieb-
nahme miissen entsprechend durch geeignete regelungstechnische Werkzeuge adressiert
werden, welche die aufklaffende Liicke zwischen Theorie und Praxis iiberbriicken. Als
gedanklicher AnstoB3 wird in [AAA*23|] dazu das folgende Zitat angefiihrt:

,The gap between theory and practice is a lot bigger

in practice than in theory.“

Objektiv betrachtet, sollte die Liicke aus beiden Perspektiven im Grunde gleich weit ent-
fernt sein. Wihrend der Inbetriebnahme ist die subjektive Wahrnehmung des Regelungs-
technikers jedoch eine andere, so dass die Umsetzung deutlich schwieriger erscheint als
sie es nach den theoretischen Voriiberlegungen normalerweise sein diirfte. Als Fazit bleibt
an dieser Stelle festzuhalten, dass die Problematiken bei der Inbetriebnahme bereits beim
theoretischen Entwurfsprozess beriicksichtigt werden miissen, um ein zufriedenstellendes

Endergebnis erzielen zu kdnnen.
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Bild 1-3: Humanoider Roboter (© Boston Dynamics) (links), © SpaceX Rakete (rechts).

Bild [I-3| zeigt beispielhaft zwei aktuell medienprisente Systeme, die die Schwierigkeiten
bei der Inbetriebnahme verdeutlichen sollen. Das erste Beispiel bezieht sich auf die huma-
noiden Roboter des Unternehmens Boston Dynamics, die sowohl fiir Forschungszwecke
als auch industrielle Anwendungen gedacht sind. Aufmerksamkeit erhilt das Unterneh-
men durch seine mittlerweile zahlreichen Videos, in denen die Roboter Parkour-dhnliche
Bewegungsabfolgen (u. a. Riickwértssaltos) ausfiihren. Aufgrund der zahlreichen (und
z. T. schweren) Massen, sowie der hohen Dynamik der Mandver, sind hierfiir prizise
Steuerungs- und Regelungsvorgaben notwendig. In begleitenden Dokumentationen wird
gezeigt, wie viel Aufwand fiir die Inbetriebnahme der Bewegungsabfolgen erforderlich
ist. Der erfolgreichen Umsetzungen gehen eine Vielzahl von Fehlschligen voraus, bei
denen einzelne Systemkomponenten teilweise stark beschidigt werden und es zu erhebli-
chen Leckagen des Hydraulikols kommt. Jede fehlerhafte Erprobung geht daher mit auf-
wendigen Reparaturarbeiten einher, fiir die ein gro3es Team von spezialisierten Ingenieu-
ren unerldsslich ist. Das zweite Beispiel sind die wiederverwendbaren Raketen des Unter-
nehmens SpaceX. Die Zielsetzung ist es, die gleiche Rakete sowohl fiir den Start als auch
die Landung zu nutzen, um die Kosten gegeniiber von herkdommlichen Raumfahrtmissio-
nen deutlich zu senken. Im Jahr 2006 wurden die ersten Erprobungen der anspruchsvollen
Start- und Landungs-Trajektorien durchgefiihrt, welche sich bis ins Jahr 2015 erstreckten.
Im Dezember 2015 konnte die erfolgreiche Landung zum ersten Mal realisiert werden.
Die vorhergehenden Misserfolge sind jedoch mit z. T. enormen Explosionen verbunden
gewesen, wobei die Kosten fiir eine Erprobung bis zu mehrere Milliarden US-Dollar be-
trugen. Die beiden angefiihrten Beispiele verdeutlichen, dass ein iteratives Vorgehen, wie
es auch durch das V-Modell vorgegeben wird, unabdingbar fiir die Inbetriebnahme ist. Die
gesammelten Erfahrungen und Messdaten, welche bei jedem Versuch akkumuliert wer-
den, tragen zum letztendlichen Erfolg der Inbetriebnahme bei. Nichtsdestotrotz zeigen

die angefiihrten Beispiele, dass die Inbetriebnahme ein komplizierter Prozess ist und die
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Bild 1-4: Doppelpendel auf einem Wagen (© Heinz Nixdorf Institut) (links), Ultraschall-
drahtbondprozess (© Hesse Mechatronics) (rechts).

Anzahl der Versuche so gering wie moglich gehalten werden sollte, um Zeit und Kosten

bzgl. Verschleil3, Reparaturen und Arbeitseinsatz einzusparen.

Zwei weitere Beispiele sollen die Problematiken bei der Inbetriebnahme niher erldautern.
In Bild [T-4] sind hierzu das Doppelpendel auf einem Wagen und der Ultraschalldraht-
bondprozess abgebildet, welche in dieser Arbeit als Anwendungsbeispiele herangezogen
werden. Das Doppelpendel auf einem Wagen ist ein beliebtes System, an welchem sich
die regelungstechnischen Zusammenhinge in der Lehre sehr gut erklédren lassen und wel-
ches zudem besonders geeignet fiir Forschungszwecke sowie die Erprobung neuartiger
Regelungskonzepte ist. An einem Linearmotor (Wagen), welcher sich lediglich horizontal
verfahren ldsst, sind zwei rotatorische Pendelarme befestigt. Das Regelungsziel ist es, die
beiden anfangs nach unten hingenden Pendelarme durch eine passende Ansteuerung des
Linearmotors aufzuschwingen und zu stabilisieren. Bei diesem Manover bewegt sich das
System aus seiner unteren stabilen in seine obere instabile Ruhelage. Eine Besonderheit
des Doppelpendels ist sein chaotisches Bewegungsverhalten, welches sich in einer ho-
hen Sensitivitit bzgl. verschiedener Einflussfaktoren widerspiegelt, und damit nur schwer

vorhersagbar ist.

Wird der modellbasierte Regelungsentwurf fiir das Doppelpendel auf einem Wagen durch-
gefiihrt, so erhilt man mit verhdltnisméBig wenig Aufwand iiber die Anwendung des
Lagrange-Formalismus ein einfaches mechanisches Simulationsmodell des Systems. Mit
Hilfe des Modells lédsst sich anschliefend ein Optimalsteuerungsentwurf fiir das Auf-
schwungmanover durchfiihren. Alleine mit der berechneten Steuerung lédsst sich am rea-
len System bzw. dem Priifstand der Aufschwung jedoch nicht realisieren. Ausschlagge-
bend hierfiir sind die dueren Storeinfliisse und insbesondere die vorhandenen Modell-
fehler, deren Auswirkungen vor dem Hintergrund der chaotischen Dynamik besonders
ausgepragt sind. Ein Losungsweg zur erfolgreichen Realisierung ist die Hinzunahme einer
Regelung, deren Ziel es ist, den Aufschwung entlang der Trajektorie zu stabilisieren, bzw.

auf Kurs zu halten. Im Allgemeinen funktioniert dieses Vorgehen robust und reproduzier-
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bar. Durch die Wahl der Optimierungsziele ist es moglich, verschiedene Aufschwung-
mandover fiir das System zu berechnen [Tim13]. Fiir einen Teil dieser Trajektorien, ins-
besondere solche mit einer langen (Priadiktions-)Dauer, ist der oben beschriebene Ansatz
jedoch nicht umsetzbar. Die Modellfehler, welche beispielsweise die Reibungseffekte in
den Pendelgelenken oder zwischen dem Linearmotor und dem Verfahrweg betreffen, sind
zu signifikant, wodurch eine zeit- und kostenintensive Nachmodellierung notwendig wird.
Bei dieser Modellierung wird das bestehende einfache mechanische Modell ausdetailliert
und mit weiteren physikalischen Effekten verbessert. AnschlieBend wird eine Neuberech-
nung der Steuerung und Regelung vorgenommen und fiihrt idealerweise zum erwiinschten
Ergebnis. Je nach Komplexitit des System ist dieses Vorgehen fiir den Regelungstechni-
ker allerdings nicht praktikabel und unter Umstdnden gar nicht durchfiihrbar. Dies liegt
in der Tatsache begriindet, dass der Aufwand fiir immer detailliertere Modelle sehr rasch
ansteigt und im Besonderen mechatronische Systeme sich durch eine Vielzahl von unter-
schiedlichsten Komponenten zusammensetzen, fiir deren jeweilige Modellierung ein ei-
gener Fachexperte notwendig ist. Stellt die Verbesserung der Modellbildung daher keine
Option dar, befindet sich der Regelungstechniker mangels Alternativen in einer Situation,
in der keine weiteren Entwicklungspfade verfiigbar sind. Wiinschenswert wire in diesem
Szenario ein regelungstechnisches Werkzeug in Form eines Verfahrens, das trotz des un-
ausgereiften Modells eine Strategie vorgibt, um die entwickelte Steuerung oder Regelung

dennoch in Betrieb nehmen zu kdnnen.

Ein weiteres Anwendungsbeispiel dieser Arbeit stellt der Ultraschalldrahtbondprozess
[Har10], auch Drahtbonden genannt, dar (BildE], rechts). Dies ist eine Verbindungstech-
nik bei der elektrische Bauteile iiber diinne Drihte miteinander verbunden werden. Das
Verfahren ist u. a. im Bereich der Mikroelektronik angesiedelt und nutzt hochfrequente
Schwingungen eines Piezoaktors, um eine KaltschweiBung durchzufiihren, bei welcher
die Schmelztemperatur der Verbindungspartner nicht iiberschritten wird. Ein aktuelles
Anwendungsgebiet ist die Verbindung von mehreren Batteriepackungen fiir Elektrofahr-
zeuge. Die Stellgrolen des Systems sind die elektrische Spannung, mit welcher der Pie-
zoaktor angesteuert und in Schwingung versetzt wird, und eine vertikal wirkende Kraft,
die das sogenannte Bondwerkzeug auf die Verbindungsfliache driickt. Das Steuerungsziel
besteht darin, die passenden Verlaufe der StellgroBen zu finden, um eine moglichst zu-
verldssige Verbindung, die robust gegeniiber dulleren Einwirkungen ist, zu erhalten. Eine
wesentliche Herausforderung dabei ist, dass das richtige Mal} an eingebrachter Energie
gefunden werden muss. Ein zu niedriger Eintrag fiihrt dazu, dass die Festigkeit der Ver-
bindung zu gering ausfillt, wohingegen ein zu hoher Eintrag zwar die Festigkeit stark
erhoht, aber gleichzeitig auch die Gefahr von sogenannten Werkzeugaufsetzern erhoht.

Werkzeugaufsetzer gilt es unbedingt zu verhindern, denn sie beschiddigen nicht nur die
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Werkzeugspitze, sondern auch den empfindlichen Untergrund, womit das Bauteil insge-

samt unbrauchbar wird.

Aus regelungstechnischer Sicht wire es ideal, einen beschrinkten Optimalsteuerungs-
entwurf, bei dem die technischen Rahmenbedingungen Berticksichtigung finden, fiir das
System umzusetzen. Ebenso wie im Falle des Doppelpendels ist hierfiir jedoch ein ge-
naues Modell notwendig. Zwar lassen sich unterschiedlich komplexe Modelle fiir das
System aufstellen, allerdings sind diese fiir den Entwurf ungeeignet. Einfache physika-
lische Modelle erkldren die Zusammenhinge des Systems zwar nachvollziehbar, lassen
sich allerdings schlecht mit realen Messungen validieren und weisen daher eine sehr
geringe Pridiktionsfahigkeit fiir verschiedene Ansteuerungen auf. Detailliertere Modelle
konnen iiber die Finite Elemente Methode (FEM) aufgestellt werden, besitzen allerdings
den Nachteil, dass sie eine lange Berechnungsdauer aufgrund ihrer hohen Komplexitét
benotigen. Erschwerend kommt hinzu, dass eine gewisse Unklarheit dariiber herrscht,
wie die Zustidnde des Systems genau zu definieren sind, da der Bondprozess auf mikro-
skopischer Ebene abliuft und sich daher mit der klassischen Mechanik nur schwer be-
schreiben ldsst. Unter der theoretischen Voraussetzung, dass die Zustdnde klar definiert
sind, ist ein weiteres Problem, dass es keine geeignete Sensorik gibt, die einen Zugang zu
diesen Zustidnden ermoglichen wiirde. Die Identifikation der Parameter des zugehdrigen
Modells und der Einsatz einer stabilisierenden (vom Zustand abhingigen) Regelung (wie
sie beim Doppelpendel auf einem Wagen genutzt wird) sind damit nicht umsetzbar. In
Bezug auf die Inbetriebnahme einer Steuerung fiir den Ultraschalldrahtbondprozess steht
der Regelungstechniker damit vor der Problematik diese ohne ein Modell, und damit oh-
ne einem grofen Teil des regelungstechnischen Methodenspektrums, durchzufiihren. Als
Folge dessen muss die Steuerung direkt am realen System entworfen werden, was oh-
ne das Vorhandensein von geeigneten Verfahren zu langen Entwicklungszeiten und sub-

optimalen Ergebnissen fiihrt.

Als Fazit ldsst sich feststellen, dass die Inbetriebnahme von Steuerungen und Regelun-
gen einen entscheidenden Entwicklungsschritt darstellt und sowohl die theoretischen Vor-
iiberlegungen als auch die Realitdt der praktischen Umsetzung miteinander verbinden
muss. Vor diesem Hintergrund verdeutlichen die vorgestellten Beispiele, dass die Inbe-
triecbnahme je nach betrachtetem System mitunter aufwindig sein kann und daher so
effizient wie moglich gestaltet werden sollte. Kommt es beim modellbasierten Entwurf
zu einer Diskrepanz zwischen erwartetem und gemessenem dynamischen Verhalten (vgl.
Bild [I-2)), so fehlen in vielen Fillen die regelungstechnischen Werkzeuge, bzw. Verfah-
ren und Methodiken, um eine erfolgreiche Realisierung zu erreichen. In der vorliegenden

Arbeit wird dieser Sachverhalt daher als vorhandene Problematik bei der Inbetriebnahme
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Bild 1-5: Schematischer Aufbau in der Regelungstechnik (links) und beim Reinforcement
Learning (rechts).

diagnostiziert und im nachfolgenden Abschnitt hieraus die Forschungsliicke abgeleitet,

sowie Losungsansitze und Zielsetzungen formuliert.

1.2 Identifikation der Forschungsliicke und Zielsetzung

Eine Moglichkeit, die Probleme bei der Inbetriebnahme zu adressieren, bietet das RL,
welches dem Bereich des maschinellen Lernens zugeordnet wird und sich mit intelli-
genten Algorithmen befasst, die eigenstindig Entscheidungen treffen und zielorientiert
ausfiihren. Die grundlegende Vorgehensweise, welche jeder RL-Algorithmus nutzt, ist
die des Trial-and-Error Prinzips. Bei dieser heuristischen Methode werden verschiedene
angestrebte Losungsmoglichkeiten nach und nach ausprobiert, bis das {ibergeordnete Ziel
erreicht wird. Ein wesentlicher Baustein ist dabei die Riickfiihrung von Informationen
in Form eines Feedbacks, wodurch eine Bewertung der ausgefiihrten Entscheidungen in

Bezug auf die Zielsetzung erfolgen kann.

An dieser Stelle wird erneut Bezug auf den Entwurf am Doppelpendel als anschauli-
ches Beispiel genommen. Wie bereits erwihnt, steht mit dem RL eine Alternative zum
herkommlichen modellbasierten Entwurf zur Verfiigung. In [HTHT18|] wurde beispiels-
weise der Aufschwung durch einen lernfahigen Algorithmus namens Probabilistic Infe-
rence for Learning COntrol (kurz PILCO) realisiert, wobei kein besonderes doménen-
spezifisches Expertenwissen genutzt wurde. Durch die Interaktion mit dem realen System
sammelt der Algorithmus Messdaten, mit denen ein rein datengetriebenes Dynamikmo-
dell gelernt wird. Das Dynamikmodell verwendet das Verfahren wiederum, um eine pa-
rameterabhingige Regelung innerhalb eines Optimierungsproblems zu berechnen. Nach
jedem neuen Versuch am Priifstand liegen neue Messdaten vor, die den bestehenden Mess-
daten hinzugefiigt und womit das Dynamikmodell, sowie die zugehorige Regelung, ak-

tualisiert werden. Nach einer bestimmten Anzahl von Erprobungen kann die Regelungs-
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aufgabe nach diesem Vorgehen erfolgreich gelost und die Inbetriebnahme als erfolgreich
abgeschlossen werden. Als Fazit wird festgehalten, dass das RL ein Potential bietet, um
die Inbetriebnahme zu verbessern, indem aufgenommene Messdaten stirker in den Fo-
kus geriickt und aus ihnen zusitzliche Informationen zum Erfiillen des Regelungsziels

gezogen werden.

Nachfolgend wird ein Vergleich zwischen den beiden Herangehensweisen des regelungs-
technischen Entwurfs und des RLs aufgestellt und die inhdrente Forschungsliicke defi-
niert. Bild zeigt hierfiir den schematischen Aufbau beider Disziplinen. Es fillt auf,
dass sich der Aufbau stark dhnelt und im Zentrum die Beeinflussung des dynamischen
Systems bzw. der Umwelt durch den Regler bzw. den Agenten steht. Vor dem Hinter-
grund der gleichen Aufgabe und unter der Voraussetzung eines abgeschlossenen Lernvor-
gangs stellen die jeweiligen Begriffe damit lediglich Synonyme dar. Das Grundprinzip
der Riickkopplung von Informationen ist zudem beiden Disziplinen immanent. Die Rege-
lungstechnik ist grundsitzlich technisch und praxisorientiert geprigt, sodass die Begriffe
Aktorik und Sensorik explizit als Bausteine auftauchen; wohingegen sie beim RL ent-
fallen. Das RL ist insgesamt allgemeiner gefasst und kann sich unter anderem auch auf
Spiele, wie bspw. Schach oder Go, beziehen. Das liegt vor allem darin begriindet, dass
das RL in der Informatik und Psychologie angesiedelt ist und der Lernvorgang des Agen-
ten im Vordergrund der Entwicklung und Untersuchung steht. Diese beiden Prigungen
werden auch durch die beiden Eingangsbeispiele aus der mafigeblichen Standardlite-
ratur [FKL*22] und [SB18] deutlich. Wihrend in [FKL*22|] die regelungstechnischen
Zusammenhinge an einem Servomotor erldutert werden, wird in [SB18|] zunichst das
Spiel Tic-Tac-Toe herangezogen. Weiterfiihrend ist ein wesentlicher Untersuchungsge-
genstand der Regelungstechnik die Gewdhrleistung der Sicherheit eines technischen Sys-
tems durch Stabilititsuntersuchungen und interpretierbare Schlussfolgerungen. Das The-
mengebiet der Wahrscheinlichkeitstheorie spielt (mit Ausnahme des Beobachterentwurfs)
nur selten eine Rolle. Im Gegensatz dazu, baut das RL sehr wesentlich auf der Wahr-
scheinlichkeitstheorie auf, da der Lernprozess zusammenfassend eine kontinuierliche Ent-
scheidungsfindung unter Unsicherheit der Umwelt darstellt. Hinzu tritt das Exploitation-
Exploration-Dilemma [SB18]], welches die Findung eines Kompromisses zwischen ver-
muteten bestmoglichen und ausprobierenden Entscheidungen beschreibt. In vielen Féllen
wird das Dilemma iiber wahrscheinlichkeitstheoretische Ansitze adressiert mit denen

u. a. Beweise zum Konvergenzverhalten des lernenden Agenten gefiihrt werden.

Im konkreten Bezug auf die Inbetriebnahme von Steuerungen und Regelungen gibt es aus
der Regelungstechnik heraus kaum Handlungsanweisungen fiir die Behebung von auftre-
tenden Problemen. Ein mutmaBlicher Grund hierfiir konnte sein, dass die auftretenden

Probleme sehr vielseitig sind und Losungen immer auf das individuelle System abge-
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stimmt sein miissen. Daher erscheint es schwierig allgemeingiiltige Handlungsanweisun-
gen auszusprechen. Ein weiterer Grund ist die bereits praxisorientierte Theorie der Re-
gelungstechnik. Unvorhergesehene Storungen sind die Hauptmotivation fiir den Einsatz
einer Regelungen, welche immer in der Lage sein muss, vorhandene Abweichungen und
Ungenauigkeiten zu kompensieren. Das behandelte Szenario dieser Arbeit geht jedoch
davon aus, dass es bei der Inbetriebnahme zu tieferliegenden Problemen kommen kann,
die im Rahmen einer Regelung nicht durch diese ausgeglichen werden konnen. Ein Indi-
kator fiir mangelnde Verfahren zur effizienten Inbetriebnahme findet sich zudem in dem
regelungstechnischen Standardwerk [Adal4], in welchem eine Vielzahl von nichtlinearen
Regelungsverfahren ausfiihrlich besprochen werden. Zwar findet eine theoretische Aufar-
beitung statt, allerdings wird im Bezug auf die reale Umsetzung bzw. die Inbetriebnahme
in den meisten Féllen auf das rudimentire ” Ausprobieren” verwiesen. Aus Perspektive der
Regelungstechnik zeigt sich somit eine vorhandene Forschungsliicke, welche die Proble-
me des modellbasierten Entwurfs bei der Inbetriebnahme umfasst und mit geeigneten re-
gelungstechnischen Werkzeugen in Form von intelligenten Verfahren addquat adressiert.
Die Grundideen und Methoden des RL bieten hierbei grof3es Potential, um solche Verfah-
ren zu entwickeln, die schlussendlich eine Kombination beider Disziplinen darstellen und
in dieser Arbeit, aufgrund ihrer teils physikalisch geprigten und teils daten-getriebenen

Ansitze, als hybrid bezeichnet werden.

Als Gegenstiick kann die bereits angefiihrte Forschungsliicke auch aus der Perspektive des
RL definiert, bzw. betrachtet werden. Das RL gilt im Allgemeinen als daten-ineffizient,
wenn es um die Anwendung auf reale Systeme geht. Die Ineffizienz ist besonders pro-
blematisch, da sie sich in einem enormen Zeitaufwand fiir die Generierung der Daten
bemerkbar macht und die meisten RL Verfahren damit unpraktisch, bzw. unmoglich um-
setzbar sind. Der angesprochene PILCO Algorithmus stellt eine Ausnahme dar und wird
dem sogenannten modellbasierten RL zugeordnet. Das heif3t, dass die Strategie des Agen-
ten anhand eines gelernten Modells der Umwelt optimiert wird. Die Strategie wird also
nur indirekt fiir die Umwelt entworfen, indem in einer dhnlichen Simulationsumgebung
ein GroBteil der Interaktion stattfindet. Wie beim RL iiblich, wird das Modell alleine auf
der Basis von Messdaten vom realen System gelernt, wobei die Herausforderung darin
besteht, aus einer ggf. geringen Datenmenge das dynamische Verhalten zu verallgemei-
nern. Ein spezielles Vorwissen (a-priori der Datenaufnahme) iiber die Dynamik wird in
der Regel nicht beriicksichtigt. Hierfiir gibt es zwei Griinde. Zum einen wird von ei-
nem RL Algorithmus eingefordert, dass er ohne menschliche Hilfestellung funktionieren
kann, um ggf. als kiinstliche Intelligenz (KI) bezeichnet werden zu konnen. Der zentrale
Forschungsgegenstand des RL ist der Lernvorgang des Agenten, welcher aus Sichtwei-
se der Informatik und Psychologie mdglichst unvoreingenommen sein sollte. Zum an-

deren ist das niitzliche Vorwissen unter Umstinden nicht vorhanden. Die Beschreibung
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dynamischer, bzw. physikalischer Effekte spielt in den genannten Fachdisziplinen eine
untergeordnete Rolle, sodass auf dieses Fachwissen nicht zuriickgegriffen werden kann.
Vor dem Hintergrund der Inbetriebnahme deuten diese Punkte ebenfalls die bearbeitete
Forschungsliicke an, wobei das RL zwar ein michtiges Werkzeug fiir eine flexible In-
betriebnahme darstellt, jedoch die zielgerichtete Einbringung von physikalischem, bzw.

regelungstechnischem Vorwissen bislang wenig bis keine Beriicksichtigung findet.

Zusammenfassend fehlen in der Regelungstechnik geeignete Ansitze und Verfahren, um
den Prozess der Inbetriebnahme zu unterstiitzen, bzw. bei auftretenden Problemen allge-
meingiiltige Losungsmoglichkeiten aufzuzeigen. Ein Potential, diese Liicke von fehlen-
den regelungstechnischen Werkzeugen zu schlieen, bieten die Ideen und Verfahren des
primér datenbasierten RLs. Im Zusammenhang mit mechatronischen Systemen und deren
Sensorik stehen die Daten unkompliziert zur Verfiigung und enthalten bereits inhédrent die
notwendigen Ein-Ausgangsdatenpaare, wenn es um das Erlernen des dynamischen Sys-
temverhaltens geht. Eine Erweiterung der bestehenden regelungstechnischen Verfahren
mit Hilfe von RL ist daher besonders sinnvoll und bietet die erforderliche Flexibilitit,
um eine breite Klasse von (nichtlinearen) Systemen zu adressieren. Diese libergeordnete
Zielsetzung kann alternativ auch aus der Perspektive des RL betrachtet werden, indem die
Verfahren durch regelungstechnisches Fachwissen tiber die zu l6sende Steuerungs- oder
Regelungsaufgabe erweitert werden, um in Folge dessen die Effizienz von RL Methoden
bei der Anwendung auf reale Systeme deutlich zu steigern. Bereits in [SB98]] wird hierzu
die enge Verwandtschaft beider Fachgebiete thematisiert und ein Ausblick auf hybride

Entwicklungsmethoden geschaffen:

,One of the larger trends of which reinforcement learning is a part is that
toward greater contact between artificial intelligence and other engineering
disciplines. Not all that long ago, artificial intelligence was viewed as almost
entirely separate from control theory and statistics. ... Over the last decades
this view has gradually eroded. Modern artificial intelligence researchers ac-
cept statistical and control algorithms, for example, as relevant competing
methods or simply as tools of their trade. The previously ignored areas lying
between artifical intelligence and conventional engineering are now among
the most active, including new fields such as neural networks, intelligent con-

trol, and our topic, reinforcement learning.” [SB9S, S. 5]

Die Zielsetzung der vorliegenden Arbeit ist damit, hybride Verfahren zur Inbetriebnahme
von Steuerungen und Regelungen zu entwickeln, die sowohl die Regelungstechnik, als
auch das RL miteinander in Verbindung setzen. Auf diese Weise lassen sich die Vorteile
beider Disziplinen ausnutzen und sich ihre Nachteile, in gewissen Grenzen, gegensei-

tig kompensieren. Konkret bedeutet dies, die Méngel des modellbasierten Entwurfs fiir
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bspw. schwer zu modellierende Systeme durch den flexiblen datengetriebenen Grundge-
danken des RL zu beseitigen. Auf der anderen Seite sind RL Ergebnisse fiir den Menschen
nur sehr schwer interpretierbar und damit vor dem Hintergrund von sicherheitskritischen
technischen Systemen duflerst risikobehaftet. Die Einbringung von regelungstechnischem
Wissen, welches durch nachvollziehbare Stabilititsuntersuchungen geprégt ist und damit
fiir den Menschen deutlich einfacher verstanden werden kann, bietet die Moglichkeit RL
Verfahren nicht nur transparenter zu machen, sondern auch die Effizienz in Bezug auf
die notwendige Datenlage wesentlich zu steigern. Die Begriindung hierfiir ist, dass bspw.
das dynamische Verhalten des Systems nicht von Grund auf erlernt, sondern nur par-
tiell korrigiert werden muss. Des Weiteren kann davon ausgegangen werden, dass das
a-priori physikalische Modell deutlich bessere Extrapolationseigenschaften aufweist, als
eine untrainierte rein datengetriebene Variante. Um der Zielsetzung im geeigneten Ma-
Be zu begegnen, werden im Folgenden verschiedene Aspekte aufgelistet und bestimmte

Anforderungen fiir die entwickelten Verfahren erldutert.

Einheitliche mathematische und begriffliche Formulierung

Wie bereits angemerkt, weisen die Regelungstechnik und das RL einige Unterschiede
und Gemeinsamkeiten auf. Jede Disziplin wird in Verbindung mit ihrer ganz eigenen
mathematischen Formulierung beziiglich der Deklaration von Variablen und Funktionen
gebracht. So wird in der Regelungstechnik bspw. der Buchstabe @ fiir den Zustandsvek-
tor eines dynamischen Systems benutzt, wohingegen im RL der gleiche Buchstabe fiir
den Eingang in eine Regressionsfunktion, bzw. die zugehorigen Trainingsdaten, fungiert.
Ein Ziel dieser Arbeit ist es daher, einen einheitlichen Rahmen fiir hybride Methoden zu
schaffen, der eine Konsistenz beziiglich der Benennung von mathematischen Ausdriicken
aufweist. Aulerdem gilt es, bestimmte Zusammenhédnge im jeweils anderen Kontext zu
betrachten. Ein Beispiel ist hierfiir die Parameteridentifikation fiir ein dynamisches Mo-
dell in der Regelungstechnik, welche im engen Zusammenhang mit dem Training von
Gewichtungen eines kiinstlichen neuronalen Netzes steht. In beiden Fillen wird zur Be-
stimmung ein Mehrzieloptimierungsproblem geldst, wobei ein Kompromiss zwischen der
genauen Nachbildung der Daten und der Verallgemeinerungsfihigkeit bzgl. noch unbeob-
achteter Zustinde/Daten gefunden wird. Dieses Problem ist im Machine Learning (ML)
unter den Begriffen Over- und Underfitting [B1s06] bekannt und spielt somit auch in der
Regelungstechnik eine wesentliche Rolle, obwohl hier fiir das zugrundeliegende Problem

keine speziellen Begriffe definiert sind.

Beriicksichtigung von Vorwissen iiber die Steuerungs-/Regelungsaufgabe
Im Allgemeinen werden beim maschinellen Lernen keine Angaben iiber moglicherweise
vorhandenes Vorwissen getitigt; auch wenn dieses unter Umstinden zur Verfiigung stehen

wiirde. Der Grund hierfiir liegt in der Tatsache begriindet, dass dies gegen den Grundge-
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danken einer KI gerichtet wire. Denn autonomes Lernen setzt ein Entscheiden auf der
Grundlage von gesammelten Daten und eigenen Erfahrungen voraus. Auch wenn dies im
Rahmen des ML eine valide Herangehensweise darstellt, um den Lernprozess als solchen
zu untersuchen und moglichst allgemeingiiltige Algorithmen zu entwickeln, so ist die
Nichtberiicksichtigung von Vorwissen im Zusammenhang mit einer regelungstechnischen
Aufgabe kontraproduktiv. Jegliches Vorwissen bietet nicht nur das Potenzial zumindest
einen Teil der Losung fiir den Menschen interpretierbar, im Sinne eines White- und Black-
Box-Modells, zu machen, sondern kann auch den Lernvorgang als solchen beschleunigen
und effizienter gestalten. Dieser Punkt steht in enger Verbindung mit dem Ziel einer effizi-
enten Ausnutzung der Daten und wird im néchsten Abschnitt ndher erlidutert. Dariiber hin-
aus besitzt ein hybrides Modell, welches sich aus dem urspriinglich aufgestellten physika-
lischen Modell und einem erweiternden flexiblen datengetriebenen Teil zusammensetzt,
vorteilhafte Eigenschaften in Hinblick auf die Priddiktionsgenauigkeit. Datengetriebene
Modelle alleine betrachtet, sind in der Regel in der Nidhe der Trainingsdaten zuverléssig
und konnen diese gut nachbilden, weisen allerdings Defizite auf, wenn sie in unbekannten
Gebieten Vorhersagen treffen sollen. Ihre Extrapolations-, sind damit im Gegensatz zu ih-
ren Interpolationseigenschaften, als schwach einzustufen. Ein hybrides Modell kann hier-
bei bessere Ergebnisse erzielen, da dem physikalischen Modellteil vergleichsweise eine
gute Extrapolation zuzuschreiben ist und gleichzeitig die guten Interpolationseigenschaf-
ten des datengetriebenen Teils erhalten bleiben. Neben der Modellbetrachtung, bietet die
Regelungstechnik eine Vielzahl von moglichen Regelungsstrukturen, die auf bestimm-
te Systemklassen zugeschnitten sind und damit besondere Eigenschaften ausnutzen. Die
klare Struktur grenzt dabei verschiedene Aufgaben einer Regelung voneinander ab und
macht es dem Menschen damit einfacher sie nachzuvollziehen und auftretende Probleme
leichter beheben zu konnen. Dieses Wissen kann in der richtigen Kombination mit einer
RL Methode die Regelgiite und dessen Interpretierbarkeit signifikant verbessern, womit

die Berticksichtigung von Vorwissen ein wesentliches Ziel dieser Arbeit darstellt.

Dateneffizienz

Im Kontext eines mechatronischen Systems werden Daten durch die Messeinrichtungen
bereitgestellt. Diese Daten konnen ohne grofleren Aufwand direkt wiahrend des regulédren
Betriebs aufgenommen und fiir den Lernalgorithmus verwendet werden. In diesem Szena-
rio spielt die Dateneffizienz eine untergeordnete Rolle. Soll jedoch eine neu entwickelte
Regelung in Betrieb genommen werden und sind dafiir Erprobungen und Experimente
notwendig, dann ist aus Zeit- und Kostengriinden eine hohe Dateneffizienz erforderlich.
Je weniger Experimente und damit weniger Messdaten fiir das Erfiillen der Regelungsauf-
gabe benotigt werden, desto schneller kann die Inbetriebnahme erfolgreich abgeschlossen
werden. Jedes zusitzliche weitere Experiment, welches als Absicht hat, die Datenmenge

zu erhohen, ist nicht nur mit einem Zeitaufwand fiir den Regelungstechniker verbunden,
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sondern verhindert auch, dass das System in einem wirtschaftlichen Sinne genutzt werden
kann. Hiermit sind insbesondere Produktionsanlagen gemeint. Zudem nimmt die Bean-
spruchung der Systemkomponenten und der Verschleifl der Bauteile iiber die Zeit zu, was
einen weiteren Kostenfaktor darstellt. Die in dieser Arbeit entwickelten Verfahren haben
daher eine hohe Dateneffizienz wihrend der Inbetriebnahme als Ziel, so dass die Anzahl
der bendtigten Experimente und Daten minimiert und der Informationsgewinn aus ihnen

maximiert wird.

Flexibilitit und Verstindlichkeit bei der Anwendung

Mechatronische Systeme weisen ein dhnliches Grundprinzip auf, unterscheiden sich z. B.
jedoch klar in ihren Eigenschaften. Das passende Regelungskonzept muss daher fiir je-
des System sorgfiltig abgewigt und realisierbar umgesetzt werden. Da ML Ansitze im
Allgemeinen als flexibel eingestuft und sie oftmals nur in Abhingigkeit von Daten for-
muliert werden, soll dieser Ansatz gleichermallen auf die hybriden Methoden dieser Ar-
beit libertragen werden. Die Verfahren sollen dabei auf eine breite Klasse von Systemen
anwendbar sein und moglichst wenig Voraussetzungen haben. Auf diese Weise bieten
die Verfahren ein hohes Maf} an Praxisrelevanz, und stellen Werkzeuge dar, welche fiir
die Inbetriebnahme vieler Regeleinrichtungen in Erwédgung gezogen werden konnen. Vor
diesem Hintergrund spielt auch die Verstindlichkeit der Verfahren eine Rolle. Der An-
wender muss nachvollziehen konnen, wie ein Lernalgorithmus arbeitet, welchen Prin-
zipien er folgt und wie seine Wirkungszusammenhinge sind. Dies trigt dazu bei, dass
der Anwender die Entscheidungen des Algorithmus bzgl. der verschiedenen Experimente
versteht und ihren Zweck richtig einordnen kann. Im Idealfall kann der Anwender inter-
aktiv Einfluss auf die ansonsten gewissermallen automatisierte Inbetriebnahme nehmen,
und so weiteres Expertenwissen iliber das System und die Regelungsaufgabe einbringen.
Die Voraussetzung hierfiir ist, dass der Lernalgorithmus, sein genereller Aufbau und seine

Vorgehensweise bei der Inbetriebnahme leicht nachvollzogen werden kann.

Robustheit und Konvergenzverhalten

Zusitzlich zu den bereits angefiihrten Anforderungen sollen sich die Algorithmen durch
eine hohe Robustheit und ein schnelles stabiles Konvergenzverhalten auszeichnen. Hier-
bei sollen Storeinfliisse eine moglichst geringe (und im Idealfall keine) Auswirkung auf
den Lernprozess an sich und das Lernergebnis haben. Als Beispiel sei dabei das Messrau-
schen genannt, wodurch die aufgenommenen Daten mit unterschiedlicher Auspriagung
verfilscht werden. Der Lernalgorithmus muss sich dem Messrauschen gegeniiber robust
verhalten, kann das Rauschniveau identifizieren und nach Moglichkeit aus den Daten
entfernen, bzw. herausrechnen. Neben dem Messrauschen ist auch eine Robustheit ge-
geniiber verschiedenen Rahmenbedingungen gefordert. Die Aufnahme der Daten und die

Durchfiihrung der Inbetriebnahme sind als stochastische Prozesse zu betrachten, die nur
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schwerlich genau zu reproduzieren sind. Diese Schwankungen bzgl. leicht abweichender
Anfangsbedingungen oder einer etwas anderen Position der Daten im Zustandsraum sol-
len den Lernvorgang nur geringfiigig beeinflussen. Infolgedessen soll das Regelungsziel
zuverldssig erfiillt werden und sich in einem stabilen ziigigen Konvergenzverhalten wi-
derspiegeln. Dies kann wiederum durch die bereits angesprochene Dateneffizienz und das
bereitgestellte Vorwissen erreicht werden. Dennoch impliziert das Vorwissen bereits die
Tatsache, dass es sich nicht um vollstindiges Wissen handelt, womit die Regelungsauf-
gabe direkt gelost werden konnte. Es beinhaltet teilweise fehlerhafte oder gar nicht vor-
handene Terme im Bezug auf das mathematische Dynamikmodell. Die hybriden Lernver-
fahren miissen dementsprechend ebenso eine Robustheit gegeniiber eben diesen potentiell
moglichen Modellen und Formen von Vorwissen haben. Die letztendliche Losung, welche
wihrend der Inbetriebnahme entwickelt wird, soll eindeutig und stabil gefunden werden

und soll nicht vom verwendeten Vorwissen abhéngen.

Gewihrleistung der Sicherheit

Der Ingenieur muss sich bereits vor der Inbetriebnahme intensiv Gedanken iiber die Si-
cherheitsaspekte machen, um potenzielle menschliche und maschinelle Schiaden zu ver-
meiden. Bei der Inbetriecbnahme spielt die Unsicherheit iiber das Systemverhalten ei-
ne groBe Rolle, da sie andernfalls nicht notwendig wire aufgrund eines idealen Mo-
dells. Um die Sicherheit zu gewihrleisten, miissen bestimmte Zustands- und Stellgroen-
beschrinkungen eingehalten werden. Diese konnen durch manuell implementierte Abfra-
gen von Sensorsignalen iiberwacht werden. Diese Sicherheitsvorkehrungen stehen iiber
dem automatisierten Lernvorgang und konnen von ihm nicht beeinflusst werden. Im Fal-
le einer Verletzung der Bedingungen, wird der Lernvorgang oder das Experiment ab-
gebrochen und das System in einen sicheren Zustand (bspw. Stillstand) tiberfiihrt. Die
wihrenddessen aufgezeichneten Messdaten konnen jedoch im Rahmen des Lernalgorith-
mus weiter verarbeitet und fiir zukiinftige Experimente beriicksichtigt werden. In der Re-
gel konnen Beschrinkungen auch bereits als Vorwissen in den Lernprozess integriert wer-
den. Es gibt jedoch Anwendungen, in denen die Grenzen erst durch Testlaufe ermittelt
werden miissen, sodass eine Beriicksichtigung im Vorfeld nicht moglich ist. Probabilisti-
sche Modelle erweisen sich hier als besonders hilfreich, da sie mit wahrscheinlichkeits-
basierten Angaben arbeiten und damit die Unsicherheit zumindest quantifizieren konnen.
Mit dieser Information kann der Einrichter besser abschitzen, wie erfolgversprechend ein
Experiment ist, ob eine Verletzung der Sicherheitsbeschrinkungen zu erwarten ist und
wann diese wihrend des Experiments eintritt. AuBerdem sind im Zusammenhang mit
dem RL probabilistische Modelle nicht nur erforderlich, um das erwihnte Exploitation-
Exploration-Dilemma zu bewiltigen, sondern auch, um die Dateneffizienz und Robustheit
zu erhohen. Vor diesem Hintergrund ist allerdings wichtig zu beachten, dass die Angaben

zur Sicherheit immer nur so zuverlissig sind, wie die Vorhersagequalitit des (hybriden)
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Modells. Obwohl probabilistische Modelle darauf abzielen, Modellfehler angemessen zu
beriicksichtigen, unterliegen auch sie bestimmten Annahmen. Diese Annahmen konnen
die Vorhersagequalitidt negativ beeinflussen, dienen jedoch gleichzeitig der praktischen
Anwendbarkeit, beispielsweise in Bezug auf die Berechnungskomplexitidt. Daher ist es
entscheidend, dass der Entwurfsingenieur die Sicherheitsangaben stets im Zusammen-

hang mit dem Modell und den Sicherheitsvorkehrungen kritisch bewertet.

Die formulierten Anforderungen werden bei der Erarbeitung der Lernverfahren bertick-
sichtigt. Die Vision sind daten-effiziente flexible, sowie robuste und sicherere Algorith-
men zur Unterstiitzung bei der Inbetriebnahme eines Steuerungs- und/oder Regelungs-
konzepts. Im nachfolgenden Abschnitt werden die entwickelten Verfahren vorgestellt und

den Kapiteln dieser Arbeit zugeordnet.

1.3 Aufbau der Arbeit

Zum besseren Verstindnis der Hauptkapitel werden in Kapitel 2] zundchst die mathemati-
schen Grundlagen vorgestellt. Hierbei wird eine ausfiihrliche Einfiihrung in die regelungs-
technischen Zusammenhinge (2.1), die Begrifflichkeiten und Regeln der Wahrscheinlich-
keitstheorie (2.2) und das maschinelle Lernen durch die GauB-Prozess-Regression (2.4)
gegeben. Neben den formalen Definitionen, wird das Grundlagenkapitel durch einfache
Anwendungsbeispiele und Uberlegungen zur praktischen Implementierung abgerundet.
Dadurch soll eine Verbindung der unterschiedlichen Fachdisziplinen untereinander ent-

stehen, welche in den nachfolgenden Hauptkapiteln vertiefend ausdetailliert wird.

In Kapitel [3|wird das Verfahren der Bayesschen Optimierung vorgestellt, welches im Kon-
text der Regelungstechnik zum Steuerungsentwurf eingesetzt wird. Hierbei wird eine pa-
rametrisierte Steuerung vorausgesetzt, welche durch die Bayessche Optimierung effizient
und direkt am realen System entworfen wird. Dieser Ansatz ist besonders geeignet, wenn
der herkdmmliche modellbasierte Steuerungsentwurf aufgrund einer zu schwierigen oder
praktisch unmoglichen physikalischen Modellbildung an seine Grenzen st68t. Die Bayes-
sche Optimierung wird vor diesem Hintergrund ausfiihrlich eingefiihrt und im weite-
ren Verlauf des Kapitels ein breiter Uberblick zum Stand der Forschung gegeben (3.2)).
Hierbei wird insbesondere ein Fokus auf bestehende Veroffentlichungen gelegt, welche
die Bayessche Optimierung innerhalb eines regelungstechnischen Kontextes verwenden.
Hierauf aufbauend wird eine angepasste Variante der Bayesschen Optimierung entwor-
fen, welche fiir den komplizierten Steuerungsentwurf eines Ultraschalldrahtbondprozes-
ses ausgelegt ist. Im Vorhinein findet in Unterkapitel [3.3] eine Einfiihrung zum Ultra-
schalldrahtbonden statt, welche anschlieBend durch eine Vorstellung des physikalischen
Modellbildungsprozesses abgerundet wird. Basierend auf der Modellbildung kann

dann der Einsatz der Bayesschen Optimierung weiter motiviert werden. Nach der Ent-
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wicklung des Verfahrens in Abschnitt findet eine detaillierte Validierung am realen
System statt (3.6). Das erste Hauptkapitel wird durch einen Ausblick zu weiterfiihrenden

Themengebieten abgeschlossen.

Die Bayesschen Optimierung ist ein geeignetes Werkzeug fiir komplexe mechatronische
Systeme, deren Zustand nicht eindeutig definiert werden kann oder es kein Sensorkon-
zept gibt, um Zustandsdaten aufnehmen zu konnen. Die zwei weiteren Hauptkapitel kon-
zentrieren sich auf Szenarien, in denen diese Rahmenbedingungen nicht vorliegen. In
Kapitel 4 wird vor diesem Hintergrund die hybride Optimalsteuerung fiir die Inbetrieb-
nahme eines nur teilweise unbekannten Systems vorgestellt. Dabei wird die Grundidee
verfolgt, die vorhandenen Modellfehler durch aufgenommene Messdaten und die Gaul3-
Prozess-Regression zu kompensieren, um so einen erweiterten modellbasierten Optimal-
steuerungsentwurf durchfiihren zu konnen. Als Anwendungsbeispiel werden in diesem
Kapitel Pendelsysteme betrachtet, welche in Form einer Modellbildung fiir das Doppel-
pendel auf einem Wagen in Abschnitt 4.2| auszugsweise behandelt werden. Im Anschluss
wird die Auswirkung eines unvollstindigen modellbasierten Steuerungsentwurfs gezeigt
und ein rein datengetriebenes Verfahren zur Losung vorgestellt (4.3)). Das datengetriebene
Verfahren dient als Referenz und ermdglicht in den nachfolgenden Betrachtungen einen
Vergleich zum entwickelten hybriden Optimalsteuerungsverfahren. Das Ziel ist es, den
positiven Einfluss von vorhandenen Vorwissen in Form des teilweise bekannten physika-
lischen Modells genauer zu verifizieren. Hierzu wird der Stand der Forschung erldutert
und sowohl simulationsgestiitzte als auch reale Untersuchungen an einem Doppelpendel-

priifstand vorgenommen (4.5]).

Das letzte Hauptkapitel (5)) beschiftigt sich mit der Herleitung eines hybriden Konzepts
zur klassischen Zustandslinearisierung, welche ein nichtlineares System in ein lineares
tiberfiihrt. Hierfiir muss die Voraussetzung gelten, dass es sich um ein eingangsaffines
System mit separierten Nichtlinearititen handelt. Die Voraussetzung und die weiteren
Zusammenhinge, sowie die Problematik eines fehlerbehafteten Modells werden in Unter-
abschnitt[5.T|erldutert. Hierauf aufbauend wird die hybride Zustandslinearisierung fiir all-
gemeine mechanische Systeme entwickelt (5.2). Des Weiteren wird das Konzept anhand
eines hydraulischen Hexapoden erlidutert und ein simulationsbasierter Funktionsnachweis
fiir ein Ersatzmodell erbracht (5.3). Zum Abschluss der Arbeit wird in Kapitel [f] eine
umfingliche Zusammenfassung gegeben. Zudem wird ein Ausblick fiir weiterfiihrende

Forschungsfragen beschrieben.
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2 Mathematische Grundlagen

In diesem Kapitel werden die Grundlagen, die fiir das Verstindnis der weiteren Kapitel
und die zugehorigen Verfahren notwendig sind, erldutert. Da davon ausgegangen wird,
dass der Leser einen regelungstechnischen Hintergrund besitzt, werden zunéchst in Ab-
schnitt in verkiirzter Weise die wesentlichen Begriffe der Regelungstechnik definiert.
Damit wird ein einheitlicher Rahmen fiir die nachfolgenden Abschnitte geschaffen. Der
anvisierte Fokus liegt auf den Grundlagen der Wahrscheinlichkeitstheorie und des ma-
schinellen Lernens. In Abschnitt werden daher schwerpunktmiBig die Grundbegrif-
fe Zufallsvariable, Wahrscheinlichkeitsverteilung und Erwartungswertoperator, sowie di-
verse Rechenregeln eingefiihrt. Zur Verdeutlichung der Zusammenhénge in einem rege-
lungstechnischen Kontext dienen einfache Anwendungsbeispiele in Form von Pendelsys-
temen. Das Ziel ist den herkommlichen deterministischen Modellbegriff um probabilis-
tische Uberlegungen zu erweitern. Hierbei werden Fragen geklirt, wie eine Unsicherheit
bzgl. der Parametrierung durch Wahrscheinlichkeitsverteilungen abgebildet werden kann
oder sich eine probabilistische Zustandspridiktion (auch Zustandspropagation genannt)
berechnen lédsst. Den Abschluss bildet Unterkapitel [2.4] Hierin wird die fiir diese Ar-
beit wesentliche GauB3-Prozesse-Regression behandelt. Diese stellt ein auBBerordentliches
maschinelles Lernverfahren dar, womit die Unsicherheit iiber eine gesuchte Funktion al-
leine auf der Basis von Messdaten quantifiziert werden kann. Hierfiir wird die Schétzung
der gesuchten Funktion als parameterabhingige Zufallsvariable aufgefasst und ihr Ver-
lauf mittels der Bayesschen Regel bestimmt. Im Kontext der Inbetriebnahme lassen sich
so Unsicherheitsfaktoren genau abbilden und drauf aufbauend geeignete Mallnahmen fiir

die erfolgreiche Umsetzung vornehmen.

2.1 Regelungstechnik

Ein allgemeines nichtlineares dynamisches System wird durch mehrere Differentialglei-

chungen erster Ordnung beschrieben mit

(t) = f(a(t), u(t); p), (-1

wobei ¢ € R die Zeit, (t) € R" den Systemzustand, u(t) € R"™ den Stelleingang
und p € R™ die Parametrierung der Dynamikfunktion f : R™* x R™ +— R"™* darstellen.
Eine explizite Abhidngigkeit zwischen f und ¢ wird in dieser Arbeit nicht betrachtet. Der
Vollstindigkeit halber wird (2-1)) in der Regelungstechnik iiblicherweise zusammen mit
der Ausgangsgleichung y(t) = g(x(t)) genannt, welche bspw. die Abbildung des Zu-

stands auf die Messungen oder Regelgroflen beschreibt. Wenn nicht weiter angegeben,
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Bild 2-1: Zwei-Freiheitsgrade-Regelungsstruktur

soll in dieser Arbeit davon ausgegangen werden, dass der Zustand vollstindig gemessen,
bzw. durch einfache Ansitze berechnet werden kann. Aus diesem Grund wird die Aus-

gangsgleichung vernachléssigt.

Soll das dynamische System (2-1)) kontrolliert werden, ist dazu eine geeignete Steuerung
bzw. Regelung, welche gleich der Stellgrofe w(t) gesetzt wird, notwendig. Ein allgemei-

ner Ansatz hierfiir lautet
u(t) = r(t, z(t), w(t);0), (2-2)

wobei das Regelgesetz r : R x R™ x R™ +— R"™ neben der Zeit und dem Zustand
auch von der Soll- oder Fiihrungsgrofie w(t) € R™ und einer Parametrisierung 8 € R
abhédngt. Werden fiir alle Zustinde gewisse Sollgroen (n,, = n,) vorgegeben, handelt
es sich um eine vollstandige Zustandsregelung. Entféllt die Abhingigkeit vom zuriick-
gefiihrten Ist-Zustand x(¢) und den Sollwerten w(t), dann handelt es sich bei 7 um eine

reine Steuerung, die keine Anpassungen bzgl. dgulerer Storungen vornehmen kann.

Bild[2-T]zeigt beispielhaft den klassischen Aufbau einer Zwei-Freiheitsgrade-Regelungsstruktur
[FKL*22], welche sich aus einem Steuerungs- (us(t)) und Regelungs-Zweig (ug(t)) zu-

sammensetzt. Gegeben dieser Struktur, ldsst sich (2-2) genauer spezifizieren zu
r(t,x(t), w(t); 0) = us(t) + ur(x(t), w(t); 0),

wodurch die additive Trennung ersichtlich wird. Des Weiteren ldsst sich der Anteil der

Regelung bspw. mit einen zeitinvarianten linearen Regler der Form

up(x(t), w(t); 8) = K(6)(w(t) — x(t)),
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ausdriicken, wobei die Verstirkungsmatrix K (0) € R™*"= in diesem Fall von einer

Parametrisierung @ abhingt, welche die Elemente der Matrix betrifft.

Fiir die Simulation von (2-1) mit gegebenenfalls (2-2) ist eine zeitliche Diskretisierung
erforderlich. Hierzu wird beispielhaft das dquidistante Diskretisierungsgitter

T ={ty =kAt |k=0,..,H e N, At e R},

mit H Zeitschritten und At als konstanter Schrittweite definiert, woraus sich die gesam-
te Simulationsdauer 7' € R, durch HAt ausdriicken léasst. AnschlieBend wird entlang
7 ein Integrationsverfahren ® bzgl. (2-1) angewandt, sodass sich fir ¢, = x(kAt),
ur = u(kAt) und wy, = w(kAt) die diskretisierten Gleichungen

Up = T(tkawkawk;e)v

mit z. B. ®(f(xy, uy; p), At) = f(xy, ug; p) fiir das explizite Euler-Verfahren, erge-

ben.

Aktuiertes Pendel als Einfiihrungsbeispiel

Um die Zusammenhinge von tiefergehend zu erldutern und weitere relevante Be-
griffe aus der Regelungstechnik einzufiihren, wird im Folgenden ein im Gelenk aktuiertes
Pendel betrachtet. Der Zustand des Systems wird durch den zweidimensionalen Vektor
x = [11, 22]7 = [, |7, welcher den Winkel ¢ und die zugehorige Winkelgeschwindig-
keit ¢ beinhaltet, beschrieben. Die Dynamik folgt der nichtlinearen Zustandsraumglei-

chung

T2

& = f(x,u;p) = > (2-4)

—Isin(z1) — “Sm0 + —5u
wobel u das einstellbare Drehmoment, welches im Gelenk wirkt, darstellt. Des Weiteren
wird das Pendel durch die mechanische Parametrierung p = [I,m, d, g|*, mit [ und m
als Liange und Masse des Pendels, dem Reibungskoeffizienten d und der Gravitationskon-

stanten g, charakterisiert.

Bild zeigt die Phasenebene inkl. durch induziertem Vektorfeld (blaue Pfeile)
des Pendels. Auf der linken Seite gilt fiir die StellgroBBe « = 0, wohingegen auf der rech-
ten Seite ein linearer Zustandsregler nach v = K (w — x) mit dem konstanten Sollwert
w = [m,0]7 verwendet wird. Die schwarzen Linien zeigen beispielhaft zwei Trajekto-

rien, wobei die schwarzen Punkte den Anfangszustand andeuten. Die farbigen Kreuze
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Bild 2-2: Phasenebene der Pendeldynamik (2-4). Freies unaktuiertes (links) und linear
geregeltes System (rechts).

kennzeichnen die verschiedenen Ruhelagen bzw. Fixpunkte des Systems. Alle Ruhelage

liegen unter der Voraussetzung von

tr = f(xg,ug) =0

vor. Gegeben up = 0, folgen die Ruhelagen des Pendels dem Zusammenhang
xr = [nm,0]7 mit n € Z. Eine Charakterisierung findet anhand ihrer Stabilitit statt.
Nach der Definition von Ljapunov [Adal4]], heiBt eine Ruhelage stabil, wenn es zu jeder

e-Umgebung
U.={x e R™ | ||| < e}, eined-Umgebung U;={x € R" | ||z| <} (2-5)

gibt, sodass alle Trajektorien des Systems, die in der J-Umgebung beginnen, d. h.
x(t = 0) € Us, in ihrem weiteren Verlauf in der e-Umgebung bleiben, d. h. z(t) € U.
fiir t > 0. Asymptotische Stabilitit liegt vor, wenn aulerdem die Trajektorien in die Ru-

helage streben. Im Spezialfall eines linearen dynamischen Systems
T = Ax + Bu,

kann die Stabilitdt anhand der Eigenwerte \;,7 = 1,...,n, der Dynamikmatrix A be-

stimmt werden. Ist mindestens ein \; grofler als null, so ist das System instabil.

Fiir das betrachtete Beispiel des Pendels kann neben dem Stabilititsnachweis nach Ljapu-
nov alternativ eine Linearisierung in den Ruhelagen durchgefiihrt werden und die lokale
Stabilitdt anhand der zugehorigen Eigenwerte abgelesen werden. Die roten Kreuze in Bild
[2-2|deuten hierzu instabile Ruhelagen an, wohingegen griine Kreuze fiir stabile Fixpunkte
stehen. Anhand der gezeigten Trajektorie wird ersichtlich, dass sich das System zeitlich

zunéchst entlang einer Mannigfaltigkeit auf die instabile Ruhelage zubewegt, dann aber
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von dieser abgestoen wird und letztendlich in die benachbarte stabile untere Ruhela-
ge verlduft. Im rechten Bild kommt ein linearer Regler zum Einsatz. Dadurch wird dem
System eine neue Dynamik aufgeprigt, die an der Verinderung des Vektorfelds ersicht-
lich wird. Die urspriinglich instabile Ruhelage wird durch den Regler stabilisiert, sodass
sich das System nun ausgehend von dem gleichen Startzustand der linken Seite auf sie

zubewegt und dort gehalten wird.

2.2 Wahrscheinlichkeitstheorie

Die Wahrscheinlichkeitstheorie befasst sich formal mit der Untersuchung des Zufalls und
der Unsicherheit von bestimmten Ereignissen. Sie bietet einen Rahmen fiir die quanti-
tative Analyse von probabilistischen Phinomenen und spielt eine entscheidende Rolle
in verschiedenen Bereichen, bspw. dem Finanzwesen und der Naturwissenschaften. In
Hinblick auf das Thema dieser Arbeit, der Inbetriebnahme einer Steuerung oder Rege-
lung, eroffnet die Wahrscheinlichkeitstheorie eine systematische Sichtweise auf die mit
Unsicherheit behafteten Gegebenheiten. Dies kann sowohl die Ungenauigkeiten des Dy-
namikmodells betreffen, als auch die Gefahr einer moglichen Instabilitit des Systems
wihrend des Betriebs oder des Inbetriebnahmeprozesses. In diesem Zusammenhang lie-
fert die Wahrscheinlichkeitstheorie, die notwendigen formalen Begriffe und zugehdrigen
Rechenregeln zur Beschreibung und adiquaten Behandlung der auftretenden Vorgénge.
Im Folgenden werden daher hilfreiche stochastische Werkzeuge eingefiihrt und in Bezug
zur Regelungstechnik erldutert. Das Ziel ist es, den herkommlichen deterministischen
Modellbegriff durch probabilistische Uberlegungen zu erweitern, sodass er im Rahmen

der Inbetriebnahme gewinnbringend eingesetzt werden kann.

2.2.1 Diskrete und kontinuierliche Zufallsvariablen

Zunichst wird der Begriff der Zufallsvariable eingefiihrt. Hierbei wird zwischen dem
diskreten und kontinuierlichen Fall unterschieden. Anhand des diskreten Falls werden
anschaulich die grundlegenden Zusammenhinge bei der Behandlung von Zufallsvaria-
blen verdeutlicht und anschliefend auf den kontinuierlichen Fall iibertragen. Die nach-
folgenden Erlduterungen dieses Unterkapitels lehnen an die Darstellungen in [B1s06] und
[DFO20]] an. Formal ist eine Zufallsvariable eine Abbildung der Form X : Q — A, wobei
(2 den sogenannten Ereignisraum und A die Realisierungen der Zufallsvariable darstellen.
Die Eintrittswahrscheinlichkeit der Realisierungen wird iiber die Funktion P : A +— [0, 1]

beschrieben. Zusammen bilden (€2, A, P) den Wahrscheinlichkeitsraum.

Bild [2-3] (oben, links) zeigt den zufilligen Beschuss einer Platte mit N = 25 Kugeln. Die

Treffer werden bestimmten Gebieten auf der Platte zugeordnet. Das Beispiel soll dazu
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Bild 2-3: Beispiel fiir eine zweidimensionale diskrete Wahrscheinlichkeitsverteilung

dienen die Begriffe der Wahrscheinlichkeitstheorie einzufiihren, wobei die zugrundelie-
genden Axiome und Rechenregeln im Anschluss besprochen werden. Die Koordinaten

(X,Y) der Felder stellen in diesem Beispiel zwei Zufallsvariablen dar, welche mit

O, ={z;=i|i=1,...,5}, Q,={y;=7jlj=12}

nur bestimmte diskrete Werte aus ihrem jeweiligen Ereignisraumen (€2, (2, ) annehmen
konnen. Die Ereignisriume und die Realisierungen sind fiir dieses Beispiel identisch.
Die Zufallsvariablen (X,Y") beschreiben damit Realisierungen (x,y), welche einer be-
stimmten Eintrittswahrscheinlichkeit P(X = z,Y = y) : Q, x Q, — [0, 1] folgen.
Der Ereignisraum stellt in diesem Zusammenhang einen Bezug zu den Werten her, wel-
che von der Zufallsvariable eingenommen werden konnen. Im Beispiel stellt eine Ku-
gel eine Realisierung der beiden Zufallsvariablen dar, womit jede Kugel nur ein be-
stimmtes Gebiet auf der Platte zugeordnet werden kann und die Realisierung somit je-
weils einen Wert aus (2, und €2, zugeordnet ist. In der Wahrscheinlichkeitstheorie be-
steht das groBte Interesse in der Angabe von Wahrscheinlichkeiten, mit denen bestimm-
te Ereignisse eintreten. Genauer ausgedriickt, wird die sogenannte Wahrscheinlichkeits-
verteilung in Abhéngigkeit der Zufallsvariablen gesucht. Im vorliegenden Fall kann die
(Verbund-)Wahrscheinlichkeitsverteilung
P(X =2,Y =y,) = =L,
durch das Zihlen der Kugeln n;; in einem bestimmten Feld und Division durch die

Gesamtanzahl N angegeben werden. Diese Grofe wird auch gemeinsame Wahrschein-
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lichkeitsverteilung genannt, da sie jedem moglichen Ereignispaar eine bestimmte Wahr-
scheinlichkeit zuordnet. Im Bezug auf Bildlauten alsobspw. P(X =1,V =1) = 2—35
und P(X =2,V = 1) = £ = 0 fiir die ersten zwei Felder. In diesem Zusammenhang
sind zwei Axiome der Wahrscheinlichkeitstheorie wesentlich und stellen strikte Anforde-

rungen an die Verteilungsfunktion P(-, ) dar. Das erste Axiom lautet
0<P(X =ux,Y =y;) <1,

und schliet negative und unplausible Wahrscheinlichkeiten aus. Das zweite Axiom defi-

niert die Summe iiber alle Eintrittswahrscheinlichkeiten auf den Wert 1,

2| |92y

DY PX =u,Y =y;) =1,

i=1 j=1

sodass als Konsequenz immer mindestens ein Ereignis aus dem Raum aller Moglichkeiten
eintreten muss. Diese Axiome sind fiir den Fall von zwei Zufallsvariablen allgemeingiiltig,
konnen auf mehrere Zufallsvariablen verallgemeinert werden und sind nicht nur vor dem

Hintergrund des Beispiels zu betrachten.

Neben der Verbundverteilung stellt die Marginal-/Randverteilung fiir einen Teil der Zu-

fallsvariablen, bzw. eine bestimmte Zufallsvariable

P(X:xi):Zp(X:xi,Y:yj): .;V )

J=1

eine wichtige Grofle dar. Dieser Zusammenhang wird als Summenregel (Marginalisie-
rung) bezeichnet und findet insbesondere dann Anwendung, wenn nicht alle Zufallsva-
riablen benotigt oder vernachléssigbar sind. In Bild unten links und oben rechts sind
diese Verteilungen P(X) und P(Y') durch die Summation iiber die entsprechend andere
Zufallsvariable abgebildet. Weiterfiihrend kann aus den bereits eingefiihrten Verteilungen

die bedingte Wahrscheinlichkeitsverteilung iiber

P(X =z,,Y =y;) Ny

— Y% PR

angegeben werden, wobei auf die Anzahl der Kugeln in den Bereichen des fixierten Sub-
index j normiert wird, um dem zweiten Axiom der Wahrscheinlichkeitstheorie (Summe
iber alle Wahrscheinlichkeiten ergibt 1) gerecht zu werden. Diese Regel wird Produktre-
gel genannt. In Bild [2-3| unten rechts ist die bedingte Verteilung P(X =z; |Y =1) zu
sehen, wobei die spezielle Wahrscheinlichkeit P(X = 2 | Y = 1) mit 0 angegeben ist, da

sich im zweiten Feld keine Kugel befindet.
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Ein Spezialfall liegt vor, wenn die Verbundwahrscheinlichkeit {iber die Marginalvertei-

lungen der Zufallsvariablen

angegeben werden kann bzw. die bedingte Wahrscheinlichkeitsverteilung mit der Mar-
ginalverteilung iibereinstimmt. Dann sind die Zufallsvariablen unabhingig voneinander
und das Wissen iiber den Wert einer Zufallsvariable birgt keine Informationen iiber die
andere Zufallsvariable. Fiir das anschauliche Beispiel aus Bild [2-3| kann diese Aussage
jedoch verneint werden. Besonders deutlich wird dies durch das zweite Feld, welches
keine Kugel besitzt, und das genau dariiber liegende Feld, welches zumindest eine Kugel
aufweist. Die Kenntnis {iber Y hat damit also direkten Einfluss auf die bedingte Wahr-
scheinlichkeitsverteilung fiir X. Ein weiterer Spezialfall ergibt sich bei der Betrachtung
von mindestens drei Zufallsvariablen (X, Y, Z). Dabei kann es zu einer bedingten Un-

abhingigkeit kommen, die sich formal mit
PX=u2,Y=yj|Z=2)=PX=u;|Z=2)PY =vy; | Z=2)

beschreiben lésst. Ein beliebtes Beispiel hierfiir ist, dass das Ereignis X das Wetter in Ber-
lin, das Ereignis Y das Wetter in Miinchen darstellen und das Ereignis Z das Eintreten
eines Hochdruckgebiets ist. X und Y konnten unter der Bedingung des Hochdruckgebiets
bedingt unabhiingig sein, da das Wetter in Berlin nicht direkt das Wetter in Miinchen be-
einflusst, wenn bereits bekannt ist, dass ein Hochdruckgebiet existiert. Zur Vereinfachung
wird in der Wahrscheinlichkeitstheorie hdufig keine explizite Unterscheidung zwischen
der Zufallsvariable und ihrer annehmbaren Werte gemacht. In der Regel erschlie3t sich
diese Formalitiit aus dem Kontext, sodass beim Ubergang (X,Y) — (z,y) verkiirzt fiir

die Wahrscheinlichkeitsverteilungen
P(z,y), Px) und P(z|y),

geschrieben wird. Die hier vorgestellten Grundregeln der Wahrscheinlichkeitstheorie sind
dquivalent fiir P(y) und P(y | ) anwendbar. Des Weiteren sind sie gleichermafien auf

den Fall mit mehr als zwei Zufallsvariablen iibertragbar.

Beim Ubergang zu kontinuierlichen Zufallsvariablen =,y € R bleiben die elementaren

Zusammenhinge des diskreten Falls erhalten. Allerdings treten an die Stellen der Sum-
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men nun Integrale und die urspriinglichen Wahrscheinlichkeitsverteilungen werden durch
Wahrscheinlichkeitsdichteverteilungen (Probability Density Function (PDF))

p(mvy) :RXRHRJM

ersetzt. Die Wahrscheinlichkeitsdichteverteilungen gibt damit nicht mehr direkt die Wahr-
scheinlichkeit fiir ein Ereignispaar an, sondern ist als Wahrscheinlichkeit pro Einheit der
Zufallsvariablen zu interpretieren. Fiir den kontinuierlichen Fall lauten die beiden Axio-

me
p(xz,y) >0  und / / p(x,y)drdy = 1. (2-6)

Da es sich um eine Dichte handelt, kann die Verteilungsfunktion im Vergleich zum dis-
kreten Fall nun auch Werte oberhalb von 1 annehmen. Aus diesem Grund wird zur Un-
terscheidbarkeit der Kleinbuchstabe p anstelle von P fiir die Verteilung benutzt. Konkrete
Wahrscheinlichkeiten P werden mit einer Integration iiber ein bestimmtes Intervall be-

rechnet
Yr Tr
P ol e i) = [ [ pladsdy,
Y z

wobei [ fiir die linke und r fiir die rechte Grenze stehen. Abschlieend ergeben sich die

Summen- und Produktregel zu

= p(z,y

pa) = [ iy, wd gl y) =20, )
o p(y)

Die Uberlegungen zur (bedingten) Unabhingigkeit sind weiterhin giiltig. Soweit nicht

weiter angegeben, wird in dieser Arbeit weitestgehend von kontinuierlichen Zufallsvaria-

blen ausgegangen. Die nachfolgenden Abschnitte vertiefen die Handhabung von Zufalls-

variablen und zugehorigen PDFs.

2.2.2 Erwartungswert und Varianz

In diesem Unterkapitel wird der Erwartungswertoperator definiert und weitere GréBen,
die sich hieraus ableiten. Mit Hilfe dieses Operators lassen sich bestimmte Kennwerte, die
in der Wahrscheinlichkeitstheorie einen wichtigen Stellenwert haben, angeben. Zunichst
wird auf den eindimensionalen Fall mit z € R eingegangen und danach der mehrdimen-

sionale Fall x € R" besprochen.
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Der Erwartungswertoperator ist fiir beliebige Funktionen f(x) definiert und lautet

E.(f(0) = [ " f@)pla)da,

und bildet damit formal die Kurzschreibweise fiir ein Integral iiber das Produkt der Funk-
tion f(x) und der Verteilung der Zufallsvariable p(z). Es gelten daher auch die gleichen
Rechenregeln, die auf Integrale zutreffen, also beispielsweise solche, die sich aus der Li-
nearitdt ergeben. Der Subindex des Operators gibt an, beziiglich welcher Zufallsvariable
das Integral gebildet wird. Dies ist hilfreich und triagt dem Verstdndnis bei, wenn es meh-
rere Zufallsvariablen gibt. Er wird in vielen Fillen jedoch vereinfachend weggelassen,
wenn sich die Operation aus dem Kontext ergibt. Einige Funktionen f(x) sind von beson-
derer Bedeutung. Fiir die Identitiit f(z) = x folgt der sogenannte Mittelwert, oder auch

Erwartungswert y; iiber

Bl = [ aple)ds = .
welcher auch als Moment erster Ordnung bezeichnet wird. Entsprechend folgen fiir

f(x) = 2™, n € Z,~1 die hoheren Momente n-ter Ordnung. Weiterfiihrend kann eine Ver-
kettung des Erwartungswertoperators vorgenommen und eine weitere wichtige Kennzahl
iiber die Funktion f(x) = (x — u)? abgeleitet werden: die Varianz o2, bzw. zentrales Mo-
ment zweiter Ordnung aufgrund der Zentrierung durch den Mittelwert. Fiir die Varianz

wird im Rahmen dieser Arbeit ein eigener Operator V|-| definiert iiber

wobei dieser auf das Moment zweiter Ordnung und den quadratischen Mittelwert zuriick-
zufiihren ist und hierbei die Eigenschaft der Linearitit ausgenutzt wurde. Anschaulich
gibt die Varianz damit an, wie weit die Realisierungen der Zufallsvariablen um ihren Mit-
telwert herum streuen bzw. wie weit sie von diesem entfernt liegen. Sie kann daher einen
quantitativen Aufschluss dariiber liefern, wie es um die Genauigkeit, Prazision und Ro-
bustheit eines Prozesses, bspw. einer Pick-and-Place Aufgabe in der Robotik, bestellt ist.
Neben der Varianz wird héufig auch die sogenannte Standardabweichung iiber o angege-

ben, da diese die gleiche Einheit wie die Zufallsvariable besitzt.

Der Ubergang zu einer vektoriellen Zufallsvariable € R™ kann als Verbund mehrerer

skalarer Zufallsvariablen x;,7 = 1, ..., n interpretiert werden, womit fiir die Wahrschein-
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lichkeitsdichtefunktion die Kurzschreibweise p(x) = p(xy,...,z,) gilt. Der vorherige

Erwartungswert wird zum Erwartungsvektor und wird komponentenweise liber

E[z,]

E[x] = /OO- o /OO xp(x)dr, ... dr, = : =pu, (2-8)
o B

gebildet. Die eindimensionale Varianz o2 wird im mehrdimensionalen Fall zur
(Ko-)Varianzmatrix ¥ der Dimension n x n und besitzt die Eigenschaften, positiv de-

finit und symmetrisch zu sein. Die Berechnungsvorschrift lautet
V[z] = E[(xz — p)(x — p)'] = Elzx’] — pu” = X,. (2-9)

Ausgehend von zwei Zufallsvektoren € R™*, y € R™ ist zudem der Begriff der Kovari-
anz, bzw. Kreuz-Kovarianz C[-, -] von Bedeutung. Formal wird diese, &hnlich zur Varianz,

angegeben mit

Clz,y] = Eoyl(x — p,)(y — 1,)"] = Euy[zy”] — popl, = oy

Die Kreuz-Kovarianzmatrix X, hat dabei die Dimension n, x n,. Aufgrund der Symme-
trieeigenschaft gilt auBerdem C[x, y] = Cly, x]T. Bei alleiniger Betrachtung der Zufalls-
variable  kann die (Ko-)Varianzmatrix ebenfalls iiber den Kreuz-Kovarianz-Operator

angegeben werden mit

Viz1]  Clzy,zo] ... Clzy,x,]
S, = Vi) = C[x%,xl] V[‘l’g] C[x%,xn] |
(C[x;, 1] (C[L;, To] . V[wn]
mit V]z;] = C[z;, z;],7 = 1,...,n als eindimensionale Varianzen.

Die eingefiihrten Operatoren bilden wichtige Werkzeuge innerhalb der Wahrscheinlich-
keitstheorie. Neben ihrer Definition, ist es hilfreich zwei bestimmte Rechenregeln fiir die
Umformung von wiederkehrenden Ausdriicken zu kennen. Zum einen liegen hiufig zwei

Zufallsvektoren x, y gleicher Dimension vor, an deren Summe z = x-+¥ man interessiert
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ist oder genauer nur an dem Erwartungsvektor p, und der Varianzmatrix X,. In diesem

Szenario konnen die Beziehungen

p. = Elz] = Elz + y| = E[z] + E[y]
=, + Hy,

3. =Vlz] =V[z +y| = V[z] + V]y] + Clz, y] + Cly, x|
S SHEED SHEED SHANES S

(2-10)

angegeben werden [DFO20]]. Zum anderen kann oft ein linearer Zusammenhang zwischen
den Zufallsvariablen « und y iiber y = Ax + b mit A € R™*"* und b € R™ zugrunde
gelegt werden. Sind die Momente (u,,3,) des Eingangs a bekannt, so lassen sich die

Momente des Ausgangs y direkt angeben tiber [DFO20]

p, = Ely] =E[Ax + b] = AE[x| + b= Ap, + b,
3, = V[y] = V[Azx + b] = AV[z]AT = AZ, A"

Y

(2-11)

2.2.3 Transformationssatz und Bayessche Regel

Die lineare Abhingigkeit zweier Zufallsvariablen x, y aus stellt einen besonderen
Spezialfall dar. Fiir den allgemeineren Fall eines nichtlinearen Zusammenhangs

x = g(y) : R™ — R™ ist der Transformationssatz [Bis06] ein Hilfsmittel, um die Wahr-
scheinlichkeitsdichtefunktion einer Variablen durch die Wahrscheinlichkeitsdichtefunkti-

on der anderen Variablen auszudriicken. Die zugehorige Vorschrift lautet

da dg(y)
. _ , 2-12
Py(Y) = pa(T) iy z7(g(y))‘ iy (2-12)
wobei | - | die Determinante und dx/dy die Jacobimatrix sind. Die Determinante stellt

einen Skalierungsfaktor dar, welcher sicherstellt, dass bei der Verdnderung der Variable
die Axiome der Wahrscheinlichkeitstheorie (2-6) weiterhin eingehalten werden. Eine bei-
spielhafte Anwendung des Transformationssatzes fiir die Bewegungsgleichung eines Pen-
dels wurde dem Anhang hinzugefiigt (s. (AT-T))).

Zuletzt wird die Bayessche Regel [Bis06|], auch Satz von Bayes genannt, erldutert. Diese
ist ein grundlegendes Werkzeug in der Stochastik und ermdéglicht es, Wahrscheinlichkei-
ten auf der Basis von weiteren Informationen zu aktualisieren. Sie ist damit fiir zahlreiche

Anwendungsfelder relevant, insbesondere wenn es um die kontinuierliche Datenverarbei-
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tung von unsicheren Ereignissen geht. Formal ergibt sich der Satz von Bayes als Konse-

quenz aus den bereits eingefiihrten Produkt- und Summenregeln (2-7) zu:

Likelihood Prior

——
p(y | z)p(x) (2-13)

plx | yp(y) =ply [2)p(x) < ple|y) =
Posterior p(y | w)p(w)dw

J/

vV
Evidence

Aufgrund ihres hohen Stellwerts haben die einzelnen Komponenten ihre eigenen Bezeich-
nungen (Prior, Likelihood, Posterior, Evidence) erhalten. Im Grunde bietet die Bayessche
Regel die Moglichkeit bedingte Wahrscheinlichkeitsverteilungen ineinander umzurech-
nen, weswegen in diesem Kontext hdufig auch von einer Inversion der Verteilungen ge-
sprochen wird. Eine besondere Bedeutung kommt den einzelnen Bestandteilen im Zu-
sammenhang mit dem maschinellen Lernen zu. Der Prior p(x) beinhaltet das Vorwissen
iiber die Zufallsvariable x, bevor etwaige Beobachtungen iiber die Zufallsvariable y ge-
macht wurden. Beim maschinellen Lernen stellt  bspw. den Parametervektor 6 eines
kiinstlichen neuronalen Netzes dar. y steht dann fiir die Trainingsdaten D), mit deren
Hilfe die Parameter bestimmt werden sollen. Der Likelihood-Ausdruck p(D | ) gibt
somit indirekt an, wie hoch die Wahrscheinlichkeit fiir die gegebenen Daten unter der
Voraussetzung fiir einen bestimmten Parametervektor ist. Zusammen mit dem Prior p(6),
welcher das Vorwissen iiber die Parameter des kiinstlichen neuronalen Netzes beschreibt,
wird iiber die Bayessche Regel die Posterior-Verteilung p(6 | D) berechnet. Die Evidenz
bzw. der Nenner fiihrt dabei zur Normalisierung, wodurch das erste Axiom eingehalten
wird. Der Posterior spiegelt die Beriicksichtigung der beobachteten Daten wider und wird

daher als Update fiir den Prior angesehen.

2.2.4 Univariate und multivariate Normalverteilung

In der Wahrscheinlichkeitstheorie gibt es zahlreiche nennenswerte Wahrscheinlichkeits-
dichtefunktionen p(x), die von besonderer Bedeutung sind. Die mit Abstand bedeutends-
te Verteilung stellt die Normal- oder auch GauBverteilung dar. Ihren hohen Stellenwert
erhilt sie dadurch, dass sie bei vielen natiirlichen Prozessen auftritt, so unter anderem
auch beim Messrauschen von Sensorsignalen eines mechatronischen Systems. Des Wei-
teren sind ihre charakteristischen Parameter, die ihre nominale Gestalt festlegen, fiir den

Menschen intuitiv interpretierbar und damit leicht nachvollziehbar.
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-2 0 2 4
i

Bild 2-4: Multivariate (links) und (bedingte) univariate Normalverteilung (rechts).

Bild [2-4] zeigt beispielhaft die Form der PDF fiir den ein- und zweidimensionalen Fall. Im

eindimensionalen Fall € R wird die univariate Normalverteilung iiber

1

2w o2

v~ No(p,0%) = eXp(—%(fE - 1)?)

angegeben, wobei das ”~”-Symbol bedeutet, dass die Zufallsvariable der Verteilung auf
der rechten Seite folgt. Alternativ wird auch geschrieben p(z) = N(u,o0?). Die Ver-
teilung wird eindeutig durch den Erwartungswert z und die Varianz o2 charakterisiert,
welche ihre Parameter darstellen. Thren hohen Rang erhilt die Normalverteilung unter
anderem aufgrund der Tatsache und Besonderheit, dass die Parameter (11, %) mit den Be-
rechnungen fiir die Momente (E[z], V[z]) libereinstimmen. Dies ist fiir andere bekannte
Verteilungen nicht der Fall. Die Verallgemeinerung fiir den hoher-/mehrdimensionalen

Fall € R"™ lautet formal

1 1 Ty—1
z~ Ny (1, %) = WGXP (—5(93 —p)E (x - H)) ; (2-14)

wobei von der multivariaten Normalverteilung gesprochen wird. Der Exponent

(x — pu)'S 7 (x — p) wird als quadratisches Mahalanobis DistanzmaR [DFO20] bezeich-
net und definiert im zweidimensionalen Fall eine ellipsenformige Darstellung iiber die
Hohenlinien der Verteilungsfunktion. Mit den Dimensionen g € R” und 3 € R™*" er-
2”++(”+1), da die Kovarianzmatrix symmetrisch
und positiv definit ist. Wie im eindimensionalen Fall stimmen die Parameter mit den ers-
ten beiden Momenten iiberein. In Hinblick auf Bild 2-4] wird ersichtlich, dass sich das

Maximum der PDF immer beim Erwartungswert befindet und sich die Dichte nach au3en

gibt sich die Anzahl der Parameter zu

hin kontinuierlich gegen den Wert null verringert. Die Abfallrate wird dabei durch den
Wert der Varianz bestimmt. Je grofler die Varianz, desto weitreichender das Gebiet, wel-
ches durch einen signifikanten Wert der PDF abgedeckt wird. In Bild 2-4] (links) wird ein
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formaler Zusammenhang zwischen der zweidimensionalen und eindimensionalen Nor-
malverteilung angedeutet, welcher erst im Abschnitt niher erldutert wird.

Fiir einige Anwendungen ist es notwendig, die Ableitung der stochastischen Variable x

de  dx
dp’ d3

malverteilung, zu kennen. Hierfiir ist der sogenannte Reparametrisierungstrick [DFO20]

nach der Parametrierung der zugrundeliegenden PDF, d. h. fiir den Fall einer Nor-
ein wichtiges Hilfsmittel. Ausgehend von einer Standardnormalverteilung y ~ N (0, I,,),
mit I,, als Einheitsmatrix der Dimension n, gilt fiir die betrachtete Zufallsvariable x der

Zusammenhang
x=p+Ly, =~NuX), mit LL"=X. (2-15)

Das Produkt LL" stellt die Cholesky-Zerlegung dar. Auf diese Weise lisst sich der sto-
chastische Gradient (bzgl. der Parametrierung) auf eine deterministische Betrachtungs-

weise zuriickfiihren und entsprechend einfach berechnen.

2.2.5 Numerische Approximation

Ebenso wie in anderen mathematischen Themengebieten, werden auch in der Wahrschein-
lichkeitstheorie numerische Approximationsverfahren eingesetzt, um komplizierte Aus-
driicke fiir die eine analytische Herleitung zu aufwendig oder gar unmoglich aufzustellen
ist, zumindest ndherungsweise berechenbar zu machen. Von der Vielzahl von Verfahren
wird an dieser Stelle die Monte-Carlo (MC) Methode [DFO20] vorgestellt. Das Grund-
prinzip besteht darin, die Approximation auf der Grundlage von generierten Zufallszahlen
vorzunehmen. Dabei gilt der Zusammenhang, dass die Anzahl der verwendeten Zufalls-
zahlen die Giite der Approximation bestimmt. Zwei sehr hiufig anfallende Ausdriicke
involvieren die Berechnung des Erwartungswertoperators und die Integration iiber eine
Zufallsvariable (bspw. zur Marginalisierung). Die statistische Schétzung fiir den Erwar-

tungswert fiir eine Funktion f(x) und die Zufallsvariable x lautet

1
E[f(z)] ~ - > fl@), @ ~px)
5 =1
wobei ns die Anzahl der Zufallszahlen, welche auch Partikel oder Sample genannt wer-

den, angibt und der zugrundeliegenden PDF p(x) folgen. Die Schitzung der Approxima-

tion ist asymptotisch konsistent, da

i Z fa) = [ Hep@iz,
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gilt und sich die Summe dem Integral fiir zunehmende Partikelanzahl annéhert [DFO20].
AuBerdem ist der Schitzer unverzerrt (unbiased) von bspw. einem konstanten Storfaktor,
der den Wert der Approximation negativ beeinflussen wiirde. Neben der Approximation
des Erwartungsoperators, wird der MC Ansatz auch fiir die Integration iiber eine Zufalls-

variable (Marginalisierung) tiber z. B.

p(z) = /p(w | y)p(y)dy =~ nisi:p(w ly.), v ~py),

benutzt.

Offen bleibt die Frage nach der Berechnung der Zufallszahlen mittels eines determinis-
tisch arbeitenden Rechners, welcher keinen Zugang zu einem stochastischen natiirlichen
Prozess, wie dem Rauschen eines Sensorsignals, hat. In diesem Fall generiert der Rechner
Pseudo-Zufallszahlen auf der Basis einer geeigneten Iterationsvorschrift, deren Vorhersa-
ge anhand der Zahlen idealerweise schwer vorhersagbar ist. Die Simulation eines Dop-
pelpendels bietet sich z. B. fiir eine solche Vorschrift an, da das chaotische Verhalten des
Systems die Zufilligkeit der Zahlenfolge begiinstigt. An dieser Stelle zeigt sich eine inter-
essante Querverbindung von dynamischen Systemen und der Wahrscheinlichkeitstheorie,
welche nicht nur bei der Erzeugung von Zufallszahlen auftritt, sondern auch bei anderen
Fragestellungen von Bedeutung ist. Eine andere moderne Anwendung findet sich bei der
Generierung von hoch dimensionalen Zufallszahlen, welche von der Posterior-Verteilung
im Rahmen der Bayesschen Regel (vgl. (2-13)) stammen. Hierbei wird der sogenann-
te Hamilton-Markov-Chain-Monte-Carlo (HMCMC) Ansatz [[Betl/|] verwendet, welcher
die gleichnamige hamiltonsche Physik ausnutzt, um sich zu stabilisierende Iterationsvor-
schriften fiir die Erzeugung von Partikeln der Posterior-Verteilung zu bestimmen. Dabei
wird die Folge von Zufallszahlen wie ein dynamisches System mit einer bestimmten Tra-
jektorie aufgefasst, welche sich auf einem konstanten Energieniveau aufhélt. Im Rahmen
dieser Arbeit wird dieser Ansatz nicht verwendet, bietet jedoch einige interessante wei-
terfiihrende Fragestellungen und Forschungsansitze, um die hier behandelten Verfahren

zu verbessern und weiterzuentwickeln.

Des Weiteren sind fiir die Praxis der empirische Erwartungsvektor f& und die empirische

Kovarianzmatrix X hochst relevant,

Elxz] ~ — ) x; = f,
(2-16)
Vizg] ~ —» (2; —E[z])(2; —E[z])" = %,
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wobei fiir die Berechnung der empirischen Kovarianzmatrix in der Regel nicht der wahre
Erwartungsvektor E[x] zur Verfiigung steht und durch den empirischen Erwartungsvektor
[ ausgetauscht werden muss. In diesem Fall ist die Schitzung allerdings verzerrt (biased)
und muss fiir die Konsistenz durch den Vorfaktor ﬁ anstelle von nis fiir ng, > 1 korri-

giert werden [B1s06].

2.3 Anwendung der Wahrscheinlichkeitstheorie auf
Pendeldynamik

Um die bereits eingefiihrten Begrifflichkeiten und Rechenregeln besser nachvollziehen
zu konnen und einen Transfer zur Regelungstechnik herzustellen, wird als néchstes die
Wahrscheinlichkeitstheorie auf bestimmte regelungstechnische Fragestellungen angewen-
det. Auf diese Weise konnen die entwickelten Verfahren zur Inbetriebnahme innerhalb der

Hauptkapitel fiir den Leser besser nachvollzogen werden.

2.3.1 Parameteridentifikation mittels Bayesscher linearer Regression

Im Rahmen des modellbasierten Reglerentwurfs und der damit verbundenen physikali-
schen Modellbildung wird eine Parameteridentifikation fiir das Dynamikmodell durch-
gefiihrt. Dabei wird in dhnlicher Weise zum maschinellen Lernen anhand von gemesse-
nen Zustandsdaten die Parametrierung iiber die Losung eines Optimierungsproblems be-
stimmt. Die zugehorige Zielfunktion wird dabei so formuliert, dass eine robuste Parame-
trierung resultiert, die das dynamische Verhalten bestmoglich verallgemeinert und nicht
nur fiir den Bereich, in welchem die Daten aufgenommen wurden, geeignet ist. Die Bayes-
sche Regel bietet in Verbindung mit der linearen Regression ein michtiges Werk-
zeug fiir eine erweiterte Parameteridentifikation. Der Vorteil gegeniiber einer regulidren
linearen Regression ist, dass sich die Unsicherheit liber die nominalen Parameterwerte
angeben lassen und ihr Einfluss auf Vorhersagen beriicksichtigt werden kann. Illustrativ
wird der Ansatz der Bayesschen linearen Regression [B1s06] zur Parameteridentifkation
fiir ein unaktuiertes Pendel vorgestellt. Den Ausgangspunkt bildet die Bewegungsglei-

chung des Systems

. . d . 1 |w
o =— g sin(yp) — — P = [— sin(ep) —<p] ! , (2-17)
) ml Wa
=w R h _¢‘r )T g

wobei vereinfachend die Substitutionen w; = g/l und wy := d/(mi?) fiir die zu identi-
fizierenden Parameter eingefiihrt wurde. Die Riickrechnung auf /, d mit bekanntem g, m
ist iber I = g/w; und d = wo/(mi?) = (wow?)/(mg?) mdglich. Die Zielsetzung bei den

nachfolgenden Ausfiihrungen ist es, keine exakte Parametrierung fiir w anhand von Zu-
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standsmessungen zu identifizieren, sondern eine Wahrscheinlichkeitsverteilung p(w) auf
der Grundlage der Bayesschen Regel abzuleiten. Hiermit wird es dem Regelungstechni-
ker ermoglicht eine Aussage dariiber zu treffen, wie das Ergebnis der Identifikation zu
bewerten ist und ob weitere Messungen notwendig sind, um die Genauigkeit zu erhéhen

bzw. die Unsicherheit in Bezug auf die Parametrierung zu verringern.

Zunichst wird im Sinne des maschinellen Lernens der Eingang bzw. Zustand als
x = [p,o|" und der Ausgang bzw. Beschleunigung mit ¢(xz; w) = ¢(x)"w definiert.
Dementsprechend werden die aufgenommenen Messdaten (n, an der Zahl) iiber die Ein-
gangsmatrix X = [®y,...,®,,] € R"™*" und den zugehorigen Ausgangsvektor
Y = [y1, ..., Yn,|" € R™ angegeben. Aus der Definition des Ausgangs, bzw. der Bewe-
gungsgleichung des Systems folgt die Basisfunktion mit ¢(x) : R"* — R, mit
¢i(x) : R™ — R, i = 1,...,ny, wobei fiir den hier beschriebenen Fall n, = 2 gilt.
Da von nicht ideal aufgenommenen Messdaten ausgegangen werden soll, wird von einem
normalverteilten mittelwertfreien Messrauschen mit einer Varianz von o2 am Ausgang
ausgegangen. Damit lautet die weitere Annahme y; = @(x;; w) + €, €; ~ N(0,02), bzw.
unter Beriicksichtigung von (2-15)) die zugehorige PDF:

ply | w) = N(g(z;w), 07).
Fiir die Gesamtheit aller Ausgangsdaten Y ergibt sich somit der Ansatz fiir die Like-
lihoodfunktion aus (2-13) zu

ng
p(Y | w) = [[N (@) w,07) = N(® w,071,,). (2-18)
i=1
mit der Gramschen Matrix ® = [¢p(x1), ..., d(x,,)]T € R"*™, welche die Transfor-

mation der Eingangsdaten iiber die Basisfunktionen beschreibt. Die Likelihood-Verteilung
ordnet damit jeder Parametrisierung einen bestimmten Wahrscheinlichkeitsdichtewert zu.
Da es sich bei (2-18) insbesondere fiir grofie 14 um ein Produkt von ggf. kleinen Zahl-
werten nahe null handelt und dies zu numerischen Problemen auf einem Rechner fiihren

kann, wird anstelle der Likelihood iiblicherweise die logarithmische Likelihood

log p(Y | w) = ———(V — dw)"(V — dw) — " log(2m07?) (2-19)

2
On

betrachtet. Auf diese Weise wird aus dem Produkt eine Summe, die vorteilhaft bei der

numerischen Umsetzung ist.
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Eine Moglichkeit die Parameter nun zu bestimmen, ist iiber die Maximierung der loga-

rithmischen Likelihood (ML), wobei die analytische Losung aus %glw) = 0 zu dem
Ergebnis
wy = (T®)'eTY (2-20)

fiihrt. Dies entspricht der Losung der kleinsten Fehlerquadrate, welche normalerweise
beim klassischen modellbasierten Entwurf zum Einsatz kommt. Der hier vorgestellte An-
satz der Bayesschen linearen Regression ist damit konsistent zum herkdmmlichen Vorge-

hen und erweitert ihn damit um probabilistische Uberlegungen.

Fiir die Anwendung der Bayesschen Regel wird die Parametrierung w als Zufallsvektor
definiert und eine Prior-Verteilung p(w) = N (u,,, 3,,) eingefiihrt. Die Prior-Verteilung
beinhaltet das Vorwissen, welches vor der Aufnahme der Daten bekannt ist, und wird
tiber die Festlegung des Erwartungsvektors p,,, also der bestmdglichen Schitzung fiir die
Parameter, und der Kovarianzmatrix 3:,,, womit die Unsicherheit iiber die Parametrisie-
rung ausgedriickt wird, aufgestellt. Die Anwendung von unter Vernachldssigung
des Nenners p(Y") fiihrt anschlieBend auf

p(w | Y) o p(Y | w)p(w) = N(Pw, 07 L0 )N (thy, Boo).

Die Evidenz p(Y') ist die Integrationskonstante zur Erfiillung des zweiten Axioms der
Wahrscheinlichkeitstheorie (2-6)) und erschlief3t sich aus der Tatsache, dass das Produkt
zweier Normalverteilungen wiederum auf eine Normalverteilung fiihrt (vgl. im
Anhang), deren Normalisierungsfaktor aus der bekannten Form einer Normalverteilung
(2-14) bestimmbar ist. Die analytische Losung der Posterior-Verteilung kann dementspre-

chend kompakt mit

p(w | Y) = N(I“’w\Ya Ew|Y)a
oy = By (B3 0, + 5 7Y, (2-21)
Suy = (3, + 2T e) 7

angegeben werden [Bis06]]. Fiir einen nicht informativen Prior, der eine unendliche ho-
he Unsicherheit aufweist 3,, — oo, folgt aus der Posterior-Gleichung die Losung des

Maximum Likelihood Ansatzes p,,y, — wz, womit die Konsistenz gegeben ist.

Vor dem Hintergrund eines online lernfihigen Algorithmus oder dem Lernen auf kontinu-
ierlichen Datenstromen bietet das Rahmenwerk der Bayesschen linearen Regression eine
intuitive Interpretationsmoglichkeit. Ausgehend von einer aktuell bekannten Posterior-

Verteilung kann diese fiir neue erfasste Daten als Prior-Verteilung fiir eine weitere An-



38 2 Mathematische Grundlagen

wendung der Bayesschen Regel verwendet werden. Auf diese Weise ergibt sich insge-
samt ein iteratives Vorgehen, wobei neue Daten zu einem Update des Posteriors fiihren.
Fiir die praktische Anwendung ist es notwendig, dass der Prior nicht zu restriktiv fiir zu-
mindest theoretisch mogliche Werte von w ist. Sind beispielsweise die Funktionswerte
des Prior in einem bestimmten Gebiet, welches jedoch durch die Daten abgedeckt wird,
zu gering, so wird das Update iiber die Bayessche Regel sehr viele Daten benétigen, um
die fehlerhafte Annahme zu korrigieren. Im Extremfall weist der Prior fiir das Gebiet
keine Wahrscheinlichkeitsdichte (entspricht theoretisch unmoglich) auf, sodass durch die
Anwendung der Bayesschen Regel ausgeschlossen ist, dass der Posterior eine bestimm-
te Dichte in dem Gebiet erhilt. Dies ist auf die multiplikative Vorschrift der Bayesschen
Regel zuriickzufiihren. Grundsitzlich ldsst sich zudem festhalten, dass je mehr Daten vor-
liegen, desto irrelevanter wird der Einfluss des Priors (und umgekehrt). Des Weiteren ist es
entscheidend, welcher formale Ansatz fiir die Likelihoodfunktion und den Prior gemacht
werden. Im obigen Beispiel wurde fiir beide eine Normalverteilung angenommen, was je
nach Anwendungsfall und Datenbeschaffenheit nicht der Fall sein muss und ggf. durch
andere Verteilungen besser abgebildet werden kann. Dementsprechend kann allerdings
auch die analytische Berechenbarkeit verloren gehen, was zu aufwendigeren Berechnun-

gen liber numerische Approximationen fiihrt.

Die Einfiihrung des Parametervektors w als Zufallsvariable bietet im Zusammenhang mit
dem Posterior die Moglichkeit die Auswirkung auf die urspriingliche Bewegungsglei-
chung zu untersuchen. Hierzu wird die sogenannte pridiktive Verteilung [B1s06]]
der Ausgangsgrofle bzw. Winkelbeschleunigung

Py | Y) = / Py | Y, w)p(w | Y)dw
- / N (B(@; ), 02N (g Sy ) (2:22)
= N(¢($)Tﬂww> é + d)(w)T2w|Y¢(:1:))

gebildet, wobei iiber die normalverteilte Parametrierung integriert wird (s. (AI-3))). Die
Vereinfachung p(y | Y, w) = p(y | w) ist dabei zulissig, da keine Abhéngigkeit zu den
Daten besteht. Zur Veranschaulichung der Zusammenhiénge dient Bild Im oberen,
linken Teilbild ist die Phasenebene des Pendels abgebildet. Die Farbe des Hintergrunds
gibt die Hohe der Winkelbeschleunigung an (vgl. und Bild 2-2). AuBlerdem ist
in schwarz eine Trajektorie des Systems zu sehen, von welcher die roten Messpunkte
ausgewdhlt wurden. Anhand dieser Messpunkte wird die Bayessche lineare Regression
durchgefiihrt. Hierzu wird der Prior im oberen, rechten Teilbild als Vorwissen eingefiihrt.
Der rote Diamant kennzeichnet die wahre Parametrierung des Systems (beim maschinel-

len Lernen wird hierfiir der Begriff Ground Truth benutzt). Es ist gut erkennbar, dass der
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Trajektorie ) Prior p(w)
-2 0 2 5 10
¥ w1
Posterior p(w|Y) Prédiktion p(y|Y)

5 10 15 -2 0 2
w1 (%2

Bild 2-5: Probabilistische Parameteridentifikation fiir das Pendel mittels Bayesscher li-
nearer Regression.

Mittelwert des Priors noch nicht mit dem Ground Truth iibereinstimmt und die Varianz
eine hohe Unsicherheit ausdriickt. Durch Anwendung von (2-21)) und Beriicksichtigung
der Messdaten ergibt sich das untere, linke Teilbild fiir die Posterior-Verteilung. Der Er-
wartungswert stimmt nun fast mit dem Ground Truth iliberein und die Unsicherheit ist
groftenteils verschwunden, sodass der Schitzung vertraut werden kann. Das untere, rech-
te Teilbild zeigt die Funktion der Bewegungsgleichung (2-17) fiir die Fixierung ¢ = 0
(aus Darstellungsgriinden) in griin, sowie ihre Pridiktion (2-22)) in Form des Erwartungs-
wertes (blaue Linie) und der dreifachen Standardabweichung (blaue Fliche). In Bezug
auf die Identifikationsaufgabe steht dem Regelungstechniker nun nicht nur eine nominale
Schitzung der Parametrierung (représentiert durch p,,y-) zur Verfiigung, sondern auch
ein Mal} (in Form der Varianz) zur Beurteilung der Aussagekraft. Damit kann entschie-
den werden, ob die Anzahl der Daten ausreichend ist oder ob weitere Daten fiir eine ge-
nauere Identifikation erforderlich sind. Des Weiteren kann iiber die pridiktive Verteilung
direkt die Auswirkung der Parametrierung auf die Dynamik des Systems abgeschitzt wer-
den und diese bei nachfolgenden Stabilititsuntersuchungen und dem Regelungsentwurf
einbezogen werden. Bisher wurde nur die Parametrierung eines dynamischen Systems
als Zufallsvariable aufgefasst, allerdings zeigt sich durch die direkte Abhéngigkeit, dass
damit gleichermaflen auch der Zustand als Zufallsvariable betrachtet werden muss. In
diesem Fall ist momentan unklar, wie eine Simulation bzw. Langzeitpridiktion mit dem

probabilistischen Modell durchgefiihrt werden kann. Im nichsten Abschnitt wird diese
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Fragestellung behandelt und der Einfachheit und Ubersicht halber nur von einer Wahr-
scheinlichkeitsverteilung fiir den Zustand ausgegangen und die unsichere Parametrierung

vernachlissigt.

2.3.2 Zustandspropagation mittels Moment Matching, Linearisierung und
Unscented Transform

Die nachfolgenden Uberlegungen werden weiterhin am Beispiel des Pendels mit dem
nichtlinearen Zustandsraummodell
T2

T = f(x,u) = , 2-23
f( ) —aqi sin(xl) — dJJZQ + JZU, ( )

vorgestellt, wobei zusitzlich eine StellgroBe u beriicksichtigt wird. Zur besseren Ubersicht
wurden die Substitutionen g; :== g/l,d; = d/(ml?) und J; = 1/(ml?) eingefiihrt. Des
Weiteren wird zur Simulation des Systems das Euler-Integrationsschema mit

Tpy1 = T + At f (g, up) (2-24)

vorausgesetzt, womit ausgehend von einem Anfangszustand und bekannten Steuerungs-
grofen eine deterministische Langzeitpriadiktion durchgefiihrt werden kann. Das Ziel
dieses Abschnitts ist verschiedene Iterationsvorschriften zur probabilistischen Langzeit-
pradiktion kennen zu lernen. Genau genommen handelt es sich bei den Verfahren um
eindeutige Berechnungsgleichungen, dhnlich zu (2-24)), die damit als deterministisch be-
zeichnet werden miissten. Zur Kenntlichmachung des Kontextes und weil sie den wahr-
scheinlichkeitsbasierten Uberlegungen zugeordnet sind, werden sie im Rahmen dieser
Arbeit allerdings als probabilistisch bezeichnet. Die Ausgangssituation bildet ein normal-

verteilter Zustandsvektor (im Zeitschritt k)
L ~ N<m:vk7 S:Bk)a

mit Zustandserwartungsvektor m,, und Zustandskovarianzmatrix S, . Zur besseren Un-
terscheidung werden die Parameter der Normalverteilung, wenn sie sich auf einen Zu-
stand beziehen, mit (m, S) anstelle von (g, 32) beschrieben. Die StellgroBe uy, bleibt wei-
terhin deterministisch, sodass fiir sie keine Verteilung angenommen wird. Eine dquivalente
Betrachtung ist u;, ~ N (m,,,0). Der Grund hierfiir ist, dass die StellgréBe durch die
Steuereinheit dem System eindeutig vorgegeben werden kann und damit keine Unsicher-
heit iiber ihren Wert beinhaltet. In der Praxis konnten bspw. Fehler des Aktors zu einer
Unsicherheit der StellgroBe fiihren, allerdings sollen solche Fille in dieser Arbeit nicht

betrachtet werden. Ausgehend von einem unsicheren aktuellen Zustand xy, stellt sich die
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Frage nach der zugehorigen Folgezustandsverteilung p(x,1). Da es sich bei (2-23) um
einen nichtlinearen Ausdruck handelt, miisste fiir die Berechnung der Transformations-
satz aus (2-12)) angewendet werden. Aufgrund der beinhaltenden Terme ist die Berech-
nung allerdings analytisch als auch numerisch bereits fiir einfache Nichtlinearitéiten auf-
wendig. AuBerdem wird das Ergebnis der Folgezustandsverteilung keiner formal definier-
ten Verteilung folgen, sondern eine beliebige Verteilung sein, welche schwierig fiir den
Menschen interpretierbar ist. Es wird zudem kompliziert sein mit dieser Verteilung die
darauffolgende Folgezustandsverteilung p(xx,2) zu berechnen und eine effiziente Lang-
zeitpradiktion fiir weitere Zeitschritte aufzustellen. Eine gingige Alternative stellt daher
der sogenannte (exakte) Moment Matching (MM) Ansatz dar [DFR15]]. Dabei wird die

Folgezustandsverteilung bestmoglich durch eine Normalverteilung approximiert

p(wk+1) ~ N(mkarl’ S$k+1)>

womit die Nachteile der exakten Berechnung behoben werden. Aufgrund der Tatsache,
dass die Normalverteilung unimodal ist, bzw. nur ein einziges Maximum besitzt, kann
durch diesen Approximationsansatz eine multimodale Zustandsverteilung nicht abgebil-
det werden, welche insbesondere bei probabilistischen Langzeitpriadiktionen oft ausge-
prégt ist (vgl. Abschnitt[2.3.3)). In Bezug auf die Langzeitpradiktionen (in diesem Kontext
auch Zustandspropagation genannt) bietet das MM jedoch einen wesentlichen Vorteil,
da die Klasse der Normalverteilungen fiir alle Zeitschritte nie verlassen wird und da-
mit der Berechnungsaufwand konstant bleibt. Speziell im Zusammenhang mit Optimie-
rungsproblemen, welche direkt auf der Zustandspropagation aufbauen, spielt dies eine
entscheidende Rolle bei der praktischen Realisierbarkeit auf einem Rechner. Des Weite-
ren wird sich der Regelungstechniker bei der Auswertung der probabilistischen Simula-
tion in der Regel nur am Erwartungswert und der Varianz des Zustands orientieren, um
eine Einschitzung des dynamischen (geregelten) Systemverhaltens zu erhalten. Multimo-
dale Zustandsverteilung sind vor diesem Hintergrund nicht zweckméfig und wiirden in
den meisten Fillen auf eine nicht funktionierende Steuerung/Regelung hindeuten, welche
auch durch die Gré8e der Zustandsvarianz alleine beschrieben wird. Eine tiefer gehende
Auseinandersetzung mit diesem Thema wird in den Hauptkapiteln dieser Arbeit vorge-

nommen.

Nachfolgend werden drei Moglichkeiten beschrieben, um die Parametrierung der normal-
verteilten Folgezustandsverteilung (m,, ,,, S, ,,) zu berechnen. Die erste Moglichkeit

ist die (exakte) analytische Berechnung iiber die eingefiihrten Definitionen zum Erwar-
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tungsvektor (2-8) und der Varianzmatrix (2-9). Beispielhaft fiir das betrachtete Pendel-
system (2-23) ergibt sich der Zustandserwartungsvektor zu

miﬁf = E[xy1]
E[ZL‘(Q)]
= Elzy] + At oy 2)
—gE[sin(z, )] — djE[z;”] + Jiug (2-25)
e
=m, + At ’ ,
§ —q exp(—%S&’l)) Sin(m;(vlk)) — dym + Jiuy,

wobei die Zahlen in den hochgestellten Klammern auf das Vektorelement referenzieren.
Da es sich um das exakte Moment handelt, wird zudem das hochgestellte MM verwen-
det. Anhand der Gleichung ist erkennbar, dass die Entwicklung des Erwartungsvektors
nicht nur vom vorherigen Erwartungsvektor m,, abhéngt, sondern auch von der Kova-
rianzmatrix S, . Insgesamt unterscheidet sich die Vorschrift nicht sonderlich von jener
im deterministischen Fall. Im Grunde kommt lediglich der Vorfaktor exp(—%S&’l)) hin-
zu. Eine Interpretation dieses Faktors ldsst die Limes-Betrachtung zu. Fiir den Spezialfall
S&’l) — 0, in welchem es keinerlei Unsicherheit iiber den Zustand des Pendels gibt, strebt
der Faktor exp(—%Sg(ci’l)) — 1, womit letztendlich die bekannte deterministische Euler-
Integrationsgleichung zuriickerhalten wird (vgl. (2-24))). (2-23) stellt damit eine Erweite-
rung des herkdmmlichen Modellbegriffs um eine probabilistische Betrachtungsweise dar.
Diese Ansicht ldsst sich somit unmittelbar in die regelungstechnischen Zusammenhénge
einbinden, welche in den Hauptkapiteln ausgefiihrt wird. Das andere Extrem der Limes-
Untersuchung ist S&’l) — 00 mit exp(—%Sﬁ’l)) = 0. Dies bedeutet, dass sich das Pendel
iberall im Zustandsraum gleichermaBen hédufig aufhilt und somit die Multiplikation mit
dem Vorfaktor zur Vernachlédssigung der Gravitationskraft fiihrt. Anschaulich lédsst sich
dieser Fall interpretieren, wenn man sich unendlich viele Realisierungen des Zustands
(und damit des Pendels) vorstellt. Aufgrund von S&’l) — oo sind die Pendel iiber den
ganzen Zustandsraum gleichmifBig verteilt, sodass sich zumindest in der Erwartungswert-
betrachtung die Gravitationskraft aller Pendel gegenseitig autheben wiirde, wodurch der
entsprechende Term in (2-23)) entfillt. Die Zustandskovarianzmatrix ldsst sich tiber (2-10)
und folgendermaBen berechnen

SMM = V[mk+1]

= V[ap] +A8 V[ f (@r, wi)]| +AL (Cla, f (2, wr)] +Clag, f (@, wr)]").
N——" N’ N —~ ”

Die Ausdriicke wurden analytisch geldst und aufgrund ihrer Linge dem Anhang hinzu-
gefiigt. An ihnen wird ersichtlich, dass die Berechnung bereits fiir das einfache Pendel-

beispiel zu aufwendig ist und damit fiir die Praxis und beliebige mechatronische Systeme
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ungeeignet ist. Die beiden nachfolgenden Ansitze bieten im Bezug auf diesen Aspekt

eine effizientere Alternative.

Als Nichstes wird die Zustandspropagation mittels Linearisierung [S1im06] erldutert. Die
Grundidee ist die bereits bekannte Gleichung direkt anwendbar zu machen, wobei
die lineare Transformation einer Normalverteilung wiederum auf eine Normalverteilung
fiihrt. Fiir den Folgezustand wird dafiir eine Taylorreihen-Entwicklung erster Ordnung

beim Erwartungswertvektor des aktuellen Zustands vorgenommen

d
oris o Atfma )+ (Lot A ) )
a::mzk
df df

AnschlieBend lassen sich die ersten beiden Momente kostengiinstig iiber (2-11]) berech-

nen:

mrl = Am,, +b=my+ Atf(m,,, u),

Th+1

st =AS, A"

Tr41

Im direkten Vergleich zur analytischen Berechnung aus (2-25)) fillt auf, dass der bespro-
chene Vorfaktor exp(—%&gﬂ’l)) beim Ansatz der Linearisierung verloren geht. Die Appro-
ximationsgenauigkeit ist damit als schlechter einzustufen, wird jedoch durch die geringe
Berechnungskomplexitit ausgeglichen. Der Ansatz der Linearisierung ist in der Rege-
lungstechnik nicht unbekannt, sondern erfihrt beispielsweise weitverbreitete Anwendung
beim Beobachterentwurf mittels des Extended Kalman Filters (EKF) [Sim06; |Adal4|.
Das Beobachtungsgesetz des EKF lisst sich in diesem Zusammenhang auch aus der
Bayesschen Regel herleiten [Murl3]], womit es eine interessante Querverbindung zwi-
schen der Regelungstechnik, der Wahrscheinlichkeitstheorie und dem maschinellem Ler-

nen gibt.

Das nichste Verfahren lehnt hieran an und bezieht sich auf den artverwandten Unscented
Kalman Filter (UKF) [S1mO6]. Dieser stellt einen Spezialfall des iibergeordneten Parti-
kelfilter (PF) dar, welcher sich auf den Uberlegungen zur numerischen Approximation der
Momente aus Abschnitt [2.2.5] stiitzt. Die Grundidee ist die Momente, dhnlich zu (2-16),
iiber eine finite Anzahl von sogenannten Partikeln, d. h. wahrscheinlichen Realisierun-
gen der Zufallsvariable, abzuschitzen. Der UKF nutzt vor diesem Hintergrund eine stark
begrenzte Anzahl von Partikeln, deren Verortung im Zustandsraum anhand der resultie-

renden Approximationsgiite bestmoglich gewihlt ist. Es handelt sich damit um eine ef-
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fiziente Variante des PF. Die Partikel werden in diesem Zusammenhang Sigma-Punkte

genannt und berechnen sich wie folgt:

f:;c = My, + ( (’i + nz)szk)z;)a 1= 17 ey Ny,
2= ma, — (512080 = et Lo 20, (2-26)
wg,Zl?erl) = My,

wobei der Ausdruck ( (k+ nx)Sxk) (i) die i-te Zeile der Matrixwurzel darstellt und
iiber die Cholesky-Zerlegung berechnet wird. Die Variable « ist ein Entwurfsparameter,
welcher vom Anwender in Abhingigkeit vom System gewihlt wird. Die 2n, + 1 Sig-
ma Punkte werden anschlieBend iiber die Dynamikgleichung transformiert, bzw. auf den
Folgezustand abgebildet

SZH sk+Atf( sk,uk) i=1,...,2n, + 1. (2-27)

Danach werden die Momente iiber

2n,+1
z) (%)
$k+1 Z W 8 k410
in—f—l
ur mU7T (@) UT \T
Skarl Z W S k+1 :EkJrl)(mSJ{:—}—l - mkarl) ) (2'28)
. . ) (nlJm) 1=1,...,2n,,
mit Gewichtungsfaktoren W = ¢
n;&-m’ 1=2n, + 1,

approximiert. Wobei die Herleitung der Gewichtungsfaktoren auf einer bestmoglichen
Approximation der Momente basiert und die begrenzte Anzahl von Partikeln ausgleicht
[SimO6[]. Durch die symmetrische Anordnung der Sigma-Punkte um den Erwartungsvek-
tor des aktuellen Zustands bzw. den wahrscheinlichsten Zustand werden die Folgemo-
mente effektiv erfasst, sodass sich insgesamt ein leicht berechenbares Verfahren mit einer
hohen Giite ergibt. Das beschriebene Vorgehen wird als Unscented Transform (UT) be-
zeichnet und bietet sich vor allem bei stark nichtlinearen Systemen an, weswegen es in
vielen Beobachtern umgesetzt wird. Im direkten Vergleich zum EKF wird beim UKF nicht
die zugrundeliegende Dynamikfunktion linearisiert, sondern viel eher die Wahrschein-
lichkeitsverteilung des Zustands selbst, wodurch die hohe Approximationsgiite nachvoll-

zogen werden kann [[Sim06].

Bild[2-6]zeigt beispielhaft zwei probabilistische Simulationen fiir das Pendel (2-23)) (links:
freie, unkontrollierte Schwingung und rechts: Bewegung mit konstant-wirkendem Dreh-
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Bild 2-6: Probabilistische Simulation eines im Gelenk aktuierten Pendels. Ge-
geniiberstellung der Verfahren zur Zustandspropagation iiber mehrere Zeit-
schritte (Griin: Exaktes Moment Matching, rot: Linearisierung und blau: Un-
scented Transform).

moment), welche mit den drei vorgestellten Verfahren berechnet wurden. Die Mittellinie
ist jeweils der Erwartungswert des Zustands und das umliegende Band deutet die Unsi-
cherheit in Form der zweifachen Standardabweichung, kurz 20, an. Die Kovarianz ist in
dieser Darstellung nicht enthalten, sondern nur die Marginalverteilungen fiir die einzelnen
Zustinde. Im ersten Szenario wird fiir das Pendel eine Zustandsverteilung vorgegeben, de-
ren Dichte sich groBtenteils in der Nihe der oberen Ruhelage befindet. Gut erkennbar ist,
wie sich nicht nur die Mittelwerte schwingend verhalten, sondern auch die zugehorige Va-
rianz Zunahmen und Abnahmen erfihrt. Die kleinste Unsicherheit tritt in der Regel kurz
vor einem Umkehrpunkt des Pendels auf. Durch die dissipative Reibung im System fallen
die Amplituden erwartungsgemil3 mit der Zeit ab. Tatsédchlich strebt die Verteilung fiir
t — oo auf die untere Ruhelage zu, sodass die Varianz komplett verschwindet S, — 0,
da sich bildlich gesprochen alle moglichen Pendelrealisierungen aufgrund der Reibung
nur in der unteren Ruhelage befinden und alle anderen Zustinde komplett ausgeschlossen
werden konnen. Des Weiteren ist gut erkennbar, dass die drei besprochenen Verfahren
direkt hintereinander liegen und trotz ihrer verschiedenen Ansédtze zum gleichen Ergeb-
nis fiihren. Im zweiten Szenario wird ein konstantes Drehmoment von v = 9.81 Nm
angelegt, so dass das Pendel anfingt, sich zu iiberschlagen. Nach einem kurzweiligen
Beschleunigungsvorgang nimmt die Zustandsverteilung eine gleichbleibende Form an,
wobei der Erwartungswert des Winkels zwar weiter anwéchst; die zugehorige Varianz al-
lerdings nicht weiter zunimmt. Offensichtlich unterscheiden sich die drei Verfahren fiir
dieses Szenario in ihrer Qualitit. Da der Moment Matching Ansatz auf einer exakten
analytischen Berechnung der Momente basiert, weist er die best-moglichste Qualitét auf

und kann als Referenz fiir die beiden anderen Verfahren dienen. Die UT kommt sehr nah
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an das Ergebnis des MM, unterliegt jedoch gewissen Schwankungen in Bezug auf die
Winkelgeschwindigkeit. Dies kann auf die Nichtlinearitdt des Pendels zuriickzufiihren
sein und macht sich aufgrund der Integratorstruktur weniger deutlich im Verlauf des
Pendelwinkels bemerkbar. Die Linearisierung fiihrt auf das schlechteste Ergebnis. Dies
ist darauf zuriickzufiihren, dass sich das anliegende Drehmoment und die Gewichtskraft
des Pendels ausgleichen und die Linearisierung ungefihr auf eine Einheitsmatrix fiihrt,
sodass es durch die Zustandspropagation zu einer gleichbleibenden Zustandsverteilung
kommt. Bei der Anwendung der Verfahren sind solche Effekte zu beriicksichtigen und
miissen - je nach System und vorhandenen Nichtlinearitéiten - gegeneinander abgewogen
werden. Weiterfithrend wird die Zustandspropagation in Kapitel [4] fiir die hybride Op-
timalsteuerung verwendet, um moglicherweise vorhandene Modellfehler beim Entwurf
zu beriicksichtigen. Als Fazit der hier besprochenen Ergebnisse wird festgehalten, dass
die UT der anderen Verfahren vorzuziehen ist, da sie einen guten Kompromiss zwischen

Genauigkeit und Berechnungsaufwand darstellt.

2.3.3 Annaherung an exakte Folgezustandsverteilung

Im vorherigen Abschnitt wurde davon ausgegangen, dass die Folgezustandsverteilung
als normalverteilt angenihert werden kann. Diese Annahme ist sinnvoll, da im Hinblick
auf Langzeitpridiktionen die Klasse der Normalverteilung nie verlassen wird und kos-
tengiinstig berechenbar bleibt. Nachteilig ist, dass die Normalverteilung nur ein grobes
Bild iiber die Positionierung des Zustands wiedergibt und beispielsweise die Aussagekraft
einer moglicherweise multimodalen Verteilung verloren geht. Fiir die meisten Anwendun-
gen ist eine genaue Berechnung der Zustandsverteilung nicht zweckméBig und zu aufwen-
dig. Der Vollstiandigkeit halber und vor dem Hintergrund besonderer Spezialfille soll an
dieser Stelle eine genauere numerische Approximation fiir die Folgezustandsverteilung
vorgestellt werden. Die exakte Verteilung kann durch den MC Ansatz aus Abschnitt[2.2.5]
angendhert werden. Dabei wird, wie beim PF, vorab eine finite Anzahl von Partikeln be-
stimmt und gleichermaflen zum deterministischen Fall eine Vorwirtsintegration fiir alle
Partikel durchgefiihrt. Das Ergebnis dieses Ansatzes fiir das Pendel ist in Bild Zu se-
hen. Die Anfangsverteilung startet zu einem groB3en Teil in der Nihe der oberen instabilen
Ruhelage. Von dieser Verteilung werden die Partikel durch zufélliges Sampling berech-
net, wobei der Zusammenhang gilt: je mehr Partikel eingesetzt werden desto hoher ist die
Approximationsgiite. AnschlieBend werden die Partikel iiber die Systemdynamik trans-
formiert. Nach 5 Zeitschritten ergibt sich das mittlere Teilbild. Es ist gut zu erkennen,
dass die Verteilung stellvertretend fiir eine unendliche Anzahl von Pendeln steht, die sich
aus der oberen Ruhelage entfernen und an Geschwindigkeit aufnehmen. Nach 100 Zeit-

schritten hat sich die anfiangliche Normalverteilung in zwei separate Grenzschwingungen
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p(er, or), k=0 p(or, or), k=5 p(er, ¢x), k = 100

Pk Pk Pk

Bild 2-7: Zeitliche Entwicklung der Zustandsverteilung des frei schwingenden Pendels
(2-23) (Links: normalverteilte Anfangsverteilung, mittig: Verteilung nach 5 Zeit-
schritten, rechts: Verteilung nach 100 Zeitschritten).

um die untere Ruhelage (um 27 versetzt) aufgespalten. Diese feine Zustandsverteilung
wire mit dem Moment Matching Ansatz nur grob abgebildet worden und konnte ohne
vorhandenes Fachwissen falsch interpretiert werden. Der Erwartungsvektor der Vertei-
lung wiirde sich beispielsweise in der Mitte der Schwingungen befinden bzw. genau in der
oberen Ruhelage liegen. Tatsdchlich befindet sich keines der Pendel zu diesem Zeitpunkt
mehr in dieser Position. Hierbei wird eine besondere Eigenschaft des Erwartungswerts of-
fensichtlich - er stellt lediglich ein MaB} zur Beschreibung einer Verteilung dar und muss
zwangsldufig nicht Teil einer Menge von plausiblen Realisierungen sein. Des Weiteren
wiirde sich die Varianz iiber den gesamten Bereich der Schwingungen erstrecken und kei-
ne genaue Verortung der Pendel zulassen. Je nach Anwendungsfall ist in der Praxis also
abzuwégen, ob die Approximation mittels einer Normalverteilung ausreichend oder die

komplexere MC Simulation notwendig ist.

24 Maschinelles Lernen mittels GauB-Prozess-Regression

Das maschinelle Lernen befasst sich im Allgemeinen mit der Gewinnung von Erkennt-
nissen und Mustern, die auf der Grundlage von datenbasierten Lernalgorithmen und nicht
durch eine explizite menschliche Programmierung erlangt werden. In diesem Rahmen
wird auch der Begriff einer KI verwendet. Fiir die in dieser Arbeit besprochene Aufga-
benstellung wird das maschinelle Lernen dazu eingesetzt, um den regelungstechnischen
Entwicklungsprozess unterstiitzend zu erweitern und zu vereinfachen. Insbesondere geht
es dabei darum, aus vorhandenen gemessenen Systemdaten, welche beispielsweise den
Zustand betreffen, gewinnbringende Erkenntnisse auszunutzen. Hierfiir wurde innerhalb
der Einleitung der Begriff der hybriden Modellierung eingefiihrt, welche einen anpas-
sungsfahigen, flexiblen und datengetriebenen Teil besitzt, der auf der Basis des maschi-

nellen Lernens bestimmt wird. Das ML bildet insgesamt betrachtet ein breites Spektrum



48 2 Mathematische Grundlagen

von Aufgaben und Losungsmoglichkeiten ab. Es eroffnet damit eine Vielzahl von An-
kniipfungspunkten zur Regelungstechnik, um den methodischen Werkzeugkasten niitzlich
zu erweitern und zu verbessern. In Hinblick auf die Inbetriebnahme wird sich im Rahmen
dieser Arbeit nur auf einige Ankniipfungspunkte fokussiert, die den hochsten Stellenwert
fiir die Thematik haben und daher intensiv aufgearbeitet werden. Hierzu werden die Grun-
dideen des ML, wie der datenzentrierte Ansatz, die Riickkopplung von Informationen (aus
dem RL) und das Konzept der Generalisierung, um neuen unvorhergesehenen Situationen
zu begegnen, im regelungstechnischen Kontext betrachtet. Ein magebendes Instrument
ist hierfiir die bereits eingefiihrte Wahrscheinlichkeitstheorie, die die Unsicherheit tiber
bestimmte Vorgidnge quantifizierbar macht, so unter anderem die Variabilitdt der Trai-

ningsdaten als auch die Bestimmung von Parametern einer ML-Ansatzfunktion.

Eine beliebte Klasse von Funktionen, die im ML haufig eingesetzt werden, stellen die
kiinstlichen neuronalen Netze dar. Der Grund hierfiir liegt in ihrer ausgezeichneten Ver-
allgemeinerungsfahigkeit und ihrem leichten Aufbau, der je nach Anwendungsfall fle-
xibel anpassbar ist. Mittlerweile gibt es daher eine schiere Menge von Netzvariationen,
die bildlich gesprochen hiufig auch als ”Zoo” bezeichnet wird. Fiir einen Laien ist es oft-
mals schwer, das richtige Netz fiir seinen Anwendungsfall auszuwéhlen und anschlie3end
geeignet zu trainieren. Dies stellt einen Nachteil bei dem Einsatz von kiinstlichen neuro-
nalen Netzen dar und wird durch die Wahl der passenden Netzgrofle weiter verstirkt.
Die Grofle geht einher mit der Anzahl von Parametern des Netzes. Ist die Anzahl zu ge-
ring, kann die Aufgabenstellung womoglich nicht gelost werden und das Netz neigt zur
Unteranpassung, wodurch bestimmte Nuancen nicht abgebildet werden konnen. Ist die
Anzahl auf der anderen Seite zu groB, ist das zugrundeliegende Optimierungsproblem zur
Bestimmung der Parameter unter Umstédnden nur schwer 19sbar und es besteht die Ge-
fahr der Uberanpassung, womit die Generalisierung verloren geht und ggf. Rauscheffekte
unbeabsichtigt nachgebildet werden. Aus diesem Grund wird beim ML zwischen alea-
torischer und epistemischer Unsicherheit unterschieden [HW21]]. Die aleatorische Unsi-
cherheit wird auch als Zufallsunsicherheit bezeichnet und resultiert aus den natiirlichen
Schwankungen des betrachteten Prozesses. Diese sind im Allgemeinen unvermeidlich
und dem Prozess intrinsisch. Ein Beispiel ist das Messrauschen eines Sensors. Episte-
mische Unsicherheit ist hingegen auf das begrenzte und unvollstiindige Wissen iiber ein
System zuriickzufiihren, welches bspw. durch diverse Modellannahmen verursacht wird.
Im Gegensatz zur aleatorischen Unsicherheit kann die epistemische Unsicherheit durch
zusitzliches Wissen, bspw. in Form einer gro3eren Datenmenge, verringert werden. Eine
Moglichkeit den angesprochenen Gegebenheiten und Problematiken zu begegnen, bietet
die Klasse der nicht-parametrischen ML-Modelle. Hierzu zéhlt das Verfahren der Gaul3-
Prozess-Regression, welches in diesem Unterabschnitt detailliert eingefiihrt wird und die

Basis fiir alle entwickelten Verfahren dieser Arbeit darstellt. Die Besonderheit ist, dass
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vom Anwender keine feste Anzahl von Parametern vorgegeben werden muss, sondern
das Modell auf natiirliche Weise mit der Anzahl der Trainingsdaten verkniipft ist und ent-
sprechend mit ihnen anwéchst und somit an Komplexitidt zunimmt. Damit geht die Ein-
schrinkung einher, dass ohne besondere Anpassung, das Verfahren nur fiir relativ kleine
Datenmengen geeignet ist. Vor dem Anwendungsgebiet der Regelungstechnik, in welcher
einfach handhabbare Modelle erstrebenswert und sogar vorteilhaft in Hinblick auf bspw.
Echtzeitfahigkeit und Interpretierbarkeit sind, stellt dies keinen erheblichen Nachteil dar.
Weiterfiihrend handelt es sich um ein probabilistisches Verfahren, welches insbesondere
darauf ausgelegt ist, die Unsicherheit iiber die gesuchte Funktion in Form einer Varianz-
angabe auszudriicken. Zusammen mit dem bereits eingefiihrten erweiterten (probabilisti-
schen) Modellbegriff stellt die GauB3-Prozess-Regression ein ideales Hilfsmittel dar, um
innerhalb eines hybriden Modells, die a-priori unbekannten Modellfehler zu identifizieren
und zu kompensieren. Die Schnittstelle des physikalischen und datenbasierten Modellteils

stellt somit also die Wahrscheinlichkeitstheorie dar.

2.4.1 Partitionierung einer multivariaten GauBverteilung

Im Folgenden wird die Herleitung der Gaul3-Prozess-Regression nach einer Kombination
von [Ras06}; Bis06; [Murl3] besprochen. Den Ausgangspunkt stellt eine allgemeine mul-
tivariate Normal- bzw. GauBverteilung nach © ~ N (p, X) mit x € R" (vgl. Abschnitt
dar. AuBerdem wird eine Partitionierung der Form = = [z, zl]T, £, € R™,

s € R™ mit ny = n — n; und

Y1 Yo
o1 Yap

231
Mo

B = ) )

angenommen. Zur besseren Ubersicht wird die Prizisionsmatrix

A A
Aoi Asp

A=Y=

definiert, welche die Elemente der inversen Kovarianzmatrix besitzt, die im Folgenden
hdufig verwendet werden. Von dieser Situation ausgehend, wird ein Ausdruck fiir die
bedingte Wahrscheinlichkeitsverteilung p(x; | x2) gesucht, welche die Grundlage der
GauB3-Prozess-Regression darstellt. Hierfiir wird die Produktregel aus angewandt

und fiihrt als Zwischenergebnis auf

p(whﬂ?z) = p(wl | 1132)1?(582)- (2-29)
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Da es sich bei der linken Seite um eine Normalverteilung handelt und p(x2) die Marginal-
verteilung bzgl. der Variable x- darstellt, liegt die Schlussfolgerung nahe, dass es sich bei
p(x1 | o) ebenfalls um eine Normalverteilung handeln muss (vgl. (AT-2)). Fiir die ge-
suchte bedingte Verteilung wird daher der Ansatz p(x; | ©2) = N (py)9, X1)2) getroffen.
Durch einen Koeffizientenvergleich der quadratischen Terme innerhalb der Exponential-

funktionen folgt fiir die Kovarianzmatrix zunéchst

T L Tyl _oa-l

Weiterfiihrend werden die linearen Terme ausgewertet, womit der Erwartungsvektor zu

! _
—2a] (Ayapy — Aro(xs — py)) = —2wip21|§u1|2,
= MKy = My — Af&Alz(wQ — )

bestimmt ist. Es bleibt die Frage nach den Elementen der Prizisionsmatrix A offen.
Hierfiir wird das Theorem zur Bestimmung der Inverse einer partitionierten Matrix (A1-6))

genutzt. Damit folgen fiir die gesuchten Elemente die Zusammenhinge

Ay = (B11 — Z1o55580,) 7
Aip=—(311— 21722£%E{2)_121722£%,

sodass sich die Elemente der Inversen auf die Elemente der urspriinglichen Kovarianz-
matrix zuriickfiihren lassen. Als resultierendes Endergebnis leiten sich die geschlossenen
Ausdriicke

Mo = My + 21,222_5(5'32 — M),

e (2-30)
Y =11 — X053,

ab. Der Vollstindigkeit halber fiihrt dieses Ergebnis auBerdem in Bezug auf auf
die Marginalverteilung p(x2) = N (py, X22). kann so interpretiert werden, dass
die Kenntnis eines Teils eines normalverteilten Zufallsvektors zu einer bedingten Wahr-
scheinlichkeitsverteilung fiir den anderen Teil fiihrt, welcher wiederum normalverteilt ist.
Bedingungen und auch Marginalisierungen fiihren somit fiir den Spezialfall einer Nor-
malverteilung wieder auf die selbe Klasse zuriick. Diese Tatsache stellt einen bedeuten-
den Aspekt der GauB3-Prozess-Regression dar, wobei die Klasse der Normalverteilungen
im gesamten Verfahren nie verlassen wird. Eine visuelle Erklidrung liefert zudem Bild
in welchem der Wert fiir Y = —1 als bekannt angenommen wird und sich ausgehend von
der zwei- wiederum eine (bedingte) eindimensionale Normalverteilung fiir p(x | y = —1)
ergibt, welche mit Hilfe von berechnet wird.
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2.4.2 Losung der Regressionsaufgabe

Bei einer Regressionsaufgabe geht es darum, eine Funktion f(x) : R"™ — R zu fin-
den, bzw. diese bestmoglich anzundhern [B1s06]]. Hierfiir liegen Ein- und Ausgangsdaten
der Form x;,y; = f(x;) + €,1 = 1,...,n4,6; ~ N(0,02) vor, die durch ein gewisses
Rauschen verfilscht wurden. Dabei wird in den meisten Fillen vereinfacht angenommen,
dass es sich um ein normalverteiltes Rauschen handelt. Die Gesamtheit aller Daten wird
verkiirzt durch die beiden Matrizen X = [zy,...,@,,]  und Y = [y, ..., yn,]" be-
schrieben. Eine Losungsmoglichkeit kann mit Hilfe von GauB3-Prozessen (GPs) [Ras06]
erzielt werden. Ein GP ist die Verallgemeinerung der bekannten multivariaten Normal-
verteilung auf unendlich viele Zufallsvariablen, deren gesamtheitliche Betrachtung auch
als Funktion oder parameterabhiingige Zufallsvariable interpretiert werden kann. Ein GP
ist vollstdndig und eindeutig durch eine Mittelwertfunktion m(x) = E[f(2)] und eine
Kovarianzfunktion (auch Kernel genannt) k(x, ') = C[f(x), f(z')], die symmetrisch

und positiv semi-definit ist, definiert. Formal wird geschrieben
f(x) ~ GP(m(z), k(z,z')),

womit  den kontinuierlichen Parameter und f die parameterabhingige (ebenfalls konti-
nuierliche) Zufallsvariable darstellen. Nach der Definition kann der GP nun an beliebigen
Stellen x ausgewertet werden. Eine Auswertung an den Stellen der Eingangsdaten fiihrt

beispielsweise auf die multivariate Normalverteilung

F ~N(pp,Xr),
pp=[m(x),... ,m(mnd)]T,
k(xy,21) ... k(z1,x,,)
Yp= : : )
k(xn,, 1) ... k(zn,Tn,)

mit f; = f(x;),F = [fi,..., [n,]T. Die Verteilung ist als Marginalverteilung fiir die
beschriebenen Funktionswerte anzusehen, wobei iiber die restlichen (unendlichen vielen)
anderen Funktionswerte (f(x) | * # x;,i = 1,...,n4) mit Bezug zu integriert
worden ist [Ras06]. Das Rauschen der Ausgangsdaten kann als iibergeordneter Prozess

verstanden werden, der einer Integration iiber die wahren Funktionswerte iiber

p(Y) = / p(Y | F)p(F)dF
- / N(F,0* 1, )N (p, Bp)dF

= N(MF? ZF + 0727,Ind)7
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mit ptyy = ppund Xy = g + aiInd, bedarf (s. (A1-3)). Zur Losung der Regressions-
aufgabe wird nun ein fiktiver (frei wéhlbarer) Funktionswert f (x) der GP-Auswertung
hinzugefiigt. Insgesamt ergibt sich somit die erweiterte multivariate Normalverteilung

Y
[f(m)] ~N(pj(m), (),

pi(@) = [py, m(@)]",
k(xy,x)
Yy :
Pylw) = k(x,,, x)
k(x,zy) -+ k(z,xn,) k(x,x)

Ersichtlich ist die partitionierte Struktur, womit die bekannten Gleichungen aus Abschnitt
[2.4.1)zur Anwendung gebracht werden diirfen, um die bekannten Ausgangsdaten der ge-
suchten (verrauschten) Funktion als bekannt vorauszusetzen. Fiir die bedingte Verteilung

ergeben sich somit die zentralen Gleichungen der GauB3-Prozess-Regression zu

p(f(il?) 'Y) = N(Mﬂy(w)a Ef|y<m>)a

piy (@) = m(@) + k(@ X)2 (Y - py), (2-31)
Ef\Y(w) = k(m7 .’B) - k(wa X)Z}_/lk(wa X)Ta
worin die verkiirzende Definition k(x, X ) = [k(x,x1),. .., k(x, x,, )] eingefiihrt wur-

de. Diese Gleichungen konnen alternativ auch iiber die Bayessche Regel (2-13)) hergeleitet
werden, wobei sie dann entsprechend den Posterior darstellen. Aus der Mittelwertglei-
chung wird ersichtlich, dass dieser sich aus dem urspriinglich angenommenen Mittelwert
m(z) und einem additiven Korrekturterm k(x, X)X (Y — ) zusammensetzt. Die
Korrektur hingt wiederum von der Abweichung zwischen gemessenen Daten und der
Annahme ab (Y — py-) und wird iiber die sogenannte Kalman-Verstirkung k(z, X )3,
(gleichermaBen zum regelungstechnischen Beobachterentwurf [Adal4]]) passend skaliert.
Die Varianzgleichung ist ebenfalls gut nachvollziehbar. Sie setzt sich aus einer Grun-
dunsicherheit k(x, ) und einem mindernden (negativen) Term zusammen. Aufgrund der
positiven Definitheit von Xy, gilt fiir den hinteren Term k(x, X)Xy k(z, X)T > 0,
wodurch die Unsicherheit lediglich sinken kann. Tatsdchlich kann der Beweis gefiihrt
werden, dass mehr Daten die Unsicherheit immer weiter reduzieren und niemals steigern
konnen [Viv98]. Dies ist zu den Uberlegungen zur Bayesschen Regel aus Abschnitt[2.3.1
konsistent (vgl. auch Bild 2-3).

Bild [2-8] zeigt die Zusammenhinge bei der GauB3-Prozess-Regression fiir ein einfaches

eindimensionales Beispiel. Auf der linken Seite ist der Fall dargestellt, in welchem noch
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Bild 2-8: Visuelle Darstellung der Gauf3-Prozess-Regression fiir ein eindimensionales
Beispiel. Die griine Linie zeigt die gesuchte Funktion (Ground Truth), welche
anhand der schwarzen Datenpunkte durch den GP (blau) nachgebildet werden
soll.

keine Daten tiber die gesuchte Funktion vorliegen. Als Annahmen fiir den GP wurde eine
lineare (steigende) Mittelwertfunktion (blaue, gestrichelte Linie) ausgewihlt. Die exak-
te Kovarianzfunktion ist fiir das betrachtete Beispiel nicht relevant, bewirkt jedoch ein
konstantes Unsicherheitsband um den sich veridndernden Mittelwert. Die induzierte Nor-
malverteilung wird beispielhaft an zwei unterschiedlichen Stellen (z = 5 und z = 10)
ausgewertet und ist durch die orangen Linien reprisentiert. Da es sich um Verteilungen
bzgl. der Funktion f handelt, sind diese nicht horizontal, sondern vertikal abgebildet. Die
hohe Unsicherheit aufgrund des Nichtvorhandenseins von Daten spiegelt sich durch ihre
Flachheit (hohe Varianz) wider. Im rechten Teilbild wird nun davon ausgegangen, dass
drei Messpunkte (symbolisiert durch die schwarzen Punkte) aufgezeichnet wurden. Die
Daten liegen nicht exakt auf der griinen Linie, da ein gewisses Messrauschen bei diesem
Beispiel beriicksichtigt wurde. Auf Grundlage der Messdaten wird ausgewertet
und entsprechend die a-priori Verteilung der linken Seite zum Posterior aktualisiert. Der
Posterior ist an die Messdaten angepasst und spiegelt diese durch das Durchlaufen dieser
mit dem verschobenen Mittelwert wider. Des Weiteren variiert die vorher konstante Vari-
anz nun in Abhéngigkeit der Entfernung zu den Messdaten. Je ndher die Messdaten, desto
niedriger die Varianz bzw. Unsicherheit. Die Unsicherheit nimmt bei den Messpunkten
jedoch nicht vollstindig ab, denn das Rauschen verbleibt an diesen Stellen. Da die Daten
sich groBtenteils auf der linken Seite befinden, wird hier die gesuchte zugrundeliegende
Funktion bereits sehr gut durch die Posterior-Verteilung wiedergegeben. Die rechte Seite
ist weiterhin durch ein hohes Maf} an Unsicherheit geprigt und strebt aufgrund der Kon-
struktion der Gaul3-Prozess-Regression im Mittel zuriick auf die angenommene a-priori
Mittelwertfunktion. Weiterfiihrend sind auBBerdem die beiden bedingten Wahrscheinlich-

keitsverteilungen an den Stellen (z = 5 und x = 10) explizit gezeigt. Es ist gut erkennbar,
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wie sich die urspriingliche Flachheit veridndert und nun durch eine engere Verteilungen re-

préisentiert ist.

2.4.3 Kovarianzfunktion und Hyperparameter

Der angesetzte GP hingt von einer Mittelwert- m () und einer Kovarianzfunktion k(x, )
ab. Hierin wird das Vorwissen, welches iiber die Regressionsaufgabe vorhanden ist, in
das Verfahren eingefiigt. Die Bedeutung der Mittelwertfunktion ist intuitiv leicht nach-
vollziehbar. Durch den Bayesschen Charakter des Verfahrens konnen moglicherweise un-
passende Funktionen durch die beobachteten Daten ausgeglichen werden (vgl. Bild
und stellen somit kein sonderlich groes Problem dar. Ein legitimer (oft verwendeter)
Ansatz ist daher fiir die Mittelfunktion m(x) = 0 den konstanten Wert null anzusetzen,
was keine Einschrinkung im Bezug auf die Regressionsfahigkeit des GPs darstellt. In den
meisten Fillen wird dariiber das nicht vorhandene Vorwissen ausgedriickt. Des Weiteren
ist eine geeignete Kovarianzfunktion k(x, «’) fiir die vollstindige Definition des GPs aus-
zuwihlen. In diesem Zusammenhang beschreibt die Kovarianzfunktion bzw. der Kernel,
die Eigenschaften der gesuchten Funktion in Bezug auf ihre Glattheit und den Grad ih-
rer Differenzierbarkeit. AuBerdem kann iiber sie eine bestimmte Periodizitit ausgedriickt
werden [Ras06]]. Entsprechend lisst sich iiber den Kernel erweitertes Vorwissen im Ver-

gleich zur rudimentédren Mittelwertfunktion einbeziehen.

Der gingigste Ansatz ist der sogenannte Squared Exponential (SE) Kernel, welcher die

Form
ksp(x,a';0) = o exp(—(z — ') W (z — 2)), (2-32)

mit Gewichtungsmatrix W = diag((7,...,l2 ), welche als Elemente die sogenannten
Lengthscale-Parameter besitzt, sowie der Signalvarianz UJ%, hat. Der Kernel ist durch
physikalische Prozesse motiviert und bedeutet im Grunde, dass zwei nahe beieinander-
liegende Eingangspaare (x,x’) stark korrelieren, wohingegen weit auseinanderliegen-
de Paare keine Korrelation aufweisen. Dieser Ansatz spiegelt sich in vielen physikali-
schen Ablidufen wider, und besagt, dass kleine Anderungen auch nur zu kleinen Wir-
kungsédnderungen fiihren. Dementsprechend werden durch die Kovarianzfunktion glatte,
nicht sprungfihige Funktionen beschrieben [Ras06]. Die parametrische Abhédngigkeit ist
gewollt, um dem GP eine gewisse Flexibilitidt einzurdumen und damit er sich auf un-
terschiedliche Rahmenbedingungen anpassen kann. Vor diesem Hintergrund werden die
sogenannten Hyperparameter tiber 0 = [ly,... 1, ,0;,0,]7 € R™2 eingefiihrt, die
fiir die vollstandige Definition des GPs notwendig sind. Die eingangs erwihnte nicht-

parametrische Eigenschaft der GauB3-Prozess-Regression mag aufgrund der eingefiihrten



2.5 Erginzende theoretische und praktische Aspekte 55

Hyperparameter irrefiihrend erscheinen, hat jedoch weiterhin ihre Berechtigung. Im Ver-
gleich zu einem kiinstlichen neuronalen Netz, welches je nach Anwendung eine Vielzahl
von Parametern benotigt, ist die Anzahl der Hyperparameter stark begrenzt und skaliert
nur mit der Dimension der Eingangsdaten und nicht mit der Anzahl von Trainingsdaten

bzw. der Komplexitit der gesuchten Funktion.

Eine Moglichkeit die Hyperparameter automatisiert zu bestimmen, besteht in der Opti-
mierung anhand einer geeigneten Giitefunktion. Hierfiir kann dhnlich zu (2-19) die loga-

rithmische Likelihood maximiert werden

0. =argmaxlogp(Y |0), 6;>0, i=1,...,n,+2,
0 (2-33)
logp(Y | 0) = —3(Y — puy)"S31(Y — py) — 5 log [Ey| — 5t log 2,

die auf der Basis der gemessenen Daten ausgewertet wird und die Berechnung der De-
terminante | Xy | der Ausgangsdatenmatrix beinhaltet [Ras06]. Die Einfiihrung der log-
Funktion ist fiir die numerische Stabilitdt notwendig und verdndert den nominalen Wert
der optimierten Hyperparameter @, nicht. In der Praxis wird die Optimierung mittels eines

gradientenbasierten Verfahrens durchgefiihrt, wofiir der Gradient iiber

d¥y
do;

dlogp(Y [6) 1 T -1
) = 2Spur (aa’ —337)

), =37 (Y —py)  (2-34)
ausgewertet wird. Hierin zeigt sich, dass der Gradient auf die Ableitung der Kovarianz-
matrix und damit auf die des Kernels zuriickzufiihren ist. Eine beispielhafte Berechnung
fiir den SE-Kernel ist dem Anhang beigefiigt (s. (A1-7)).

2.5 Erganzende theoretische und praktische Aspekte

Neben den eingefiihrten grundlegenden Gleichungen der GauB3-Prozess-Regression sol-
len weiterfiihrend einige erginzende theoretische und praktische Aspekte vorgestellt wer-
den. Diese sollen sowohl das Verstidndnis fiir den Umgang mit GPs vertiefen als auch
vor dem Hintergrund der Regelungstechnik fachspezifische Uberlegungen aufgreifen und

erldutern.

2.5.1 Matérn und Piecewise Squared Exponential Kernel

Die Kovarianzfunktion stellt einen entscheidenden Einflussfaktor bei der Arbeit mit einem
GP dar. Neben dem bereits eingefiihrten SE-Kernel aus (2-32) gibt es eine ganze Reihe
weiterer Kernelfunktionen [Ras06]], die je nach Anwendungsgebiet ausgewéhlt werden.
Der SE-Kernel représentiert besondere Glattheitsanforderungen. Dies wird dadurch aus-

gedriickt, dass er unendlich mal differenzierbar kgp (-, -) € C'™ ist. Fiir viele physikalische
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Squared Exponential (SE) Matérn Piecewise SE
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Bild 2-9: Gauf3-Prozess-Regression mit verschiedenen Kovarianzfunktionen zur Abbil-
dung eine Sprungfunktion (griin).

Vorginge, die iiber einen GP beschrieben werden sollen, ist der SE-Kernel eine geeignete
Wahl. Um eine breite Klasse von Funktionen abbilden zu konnen, hat sich neben dem SE-
Kernel, der sogenannte Matérn-Kernel als beliebter Ansatz bewéhrt. In seiner 32-Variante

lautet er folgendermalien:

k:M(a:w 0) = 0(1+\/_)exp( \/_)

(2-35)
d(z,2';0) = (z —a/)' W (z — &),

und stellt mit ky/(-,-) € C? weniger restriktive Glattheitsanforderungen dar. Aufgrund
dieser Tatsache wird im Vergleich zum SE-Kernel allerdings auch eine groere Menge
an Daten benotigt, um die Unsicherheit iiber die Funktion gleichermallen zu reduzieren.
Fiir die Praxis ebenfalls relevant ist eine Spezialvariante des SE-Kernel - der sogenannte
Piecewise-SE-Kernel [B1j18]]. Fiir die Anwendung dieses Kernels ist es notwendig, den

Eingangsraum R"~ in disjunkte Mengen D, = 1, ..., ng4 zu unterteilen, z. B. liber
el D, mit D;ND;=0j=1,.. ngi#]j

Den Mengen entsprechend lésst sich anschlieBend der Kernel stiickweise iiber den Zu-

sammenhang

olexp(—(x — ') "W Hx — ), x o €D,
o oarg) | =T =)
0, sonst,

beschreiben, wobei die beiden Eingangspaare aus der gleichen Teilmenge stammen miissen,
um einen Effekt auf die Korrelation zu haben. Der Vorteil dieses Ansatzes wird bei der

Betrachtung des nachfolgenden Beispiels deutlich.

Bild zeigt die GauB3-Prozess-Regression fiir den Fall einer unbekannten Sprungfunk-

tion (Ground Truth). In der Regelungstechnik sind Sprungfunktionen hédufig im Zusam-
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menhang mit Systemen mit Haftreibung anzutreffen, deren Verhalten sich abrupt bei ei-
nem Vorzeichenwechsel der Geschwindigkeit dndert. Der griine Verlauf zeigt die gesuch-
te Sprungfunktion. Die schwarzen Punkte stellen die gemessenen Daten dar. Die Gaul3-
Prozess-Regression wurde mit drei verschiedenen Kerneln durchgefiihrt. Das linke Teil-
bild zeigt das Ergebnis fiir den SE-Kernel, wobei gut zu erkennen ist, dass der Sprung
aufgrund der hohen Glattheitsanforderungen nicht zufriedenstellend wiedergegeben wer-
den kann. Der zugrundeliegende GP weist ein zu hohes Rauschen auf, sodass der Verlauf
insgesamt eine hohe Varianz hat. Der Sprung wird bei diesem Kernel féalschlicherweise als
Messrauschen interpretiert. Die Anwendung des Matérn-Kernels aus dem mittleren Teil-
bild kann zumindest an den Datenpunkten eine niedrigere Unsicherheit kennzeichnen.
An den anderen Stellen ist die Varianz allerdings weiterhin zu grof3, was unter anderem
auf ungeeignete Hyperparameter zuriickzufiihren ist. Das beste Ergebnis wird im rech-
ten Teilbild erzielt, in dem der PSE-Kernel mit den disjunkten Mengen D; = (—o0,0)
und Dy = [0, 00) verwendet wird. In diesem Fall wird die gesuchte Funktion mit duferst
geringer Unsicherheit wiedergegeben und das Messrauschen wird richtig identifiziert. In
Bezug auf haftende Systeme ist der PSE-Kernel somit sehr hilfreich und einfach anzu-
wenden, da die Sprungstelle a-priori bereits bekannt ist und nicht aufwendig bestimmt

werden muss.

2.5.2 Interpretation als radiales Basisfunktionen-Netz

Die GauB-Prozess-Regression gehort zu der Klasse der nicht-parametrischen Verfahren,
da sie, mit Ausnahme der wenigen Hyperparameter, keine aufwendige Parameteridentifi-
kation benotigt, sondern mit der Anzahl der Trainingsdaten auf natiirliche Weise mitwéchst
(vgl. (2-31))). Damit hat sie zunéchst einen bedeutenden Vorteil bspw. gegeniiber parame-
trischen kiinstlichen neuronalen Netzen, da diese bei einer vergleichbaren Grofle deut-
lich mehr zu bestimmende Parameter besitzen. Des Weiteren konnen bspw. durch den
SE-Kernel beliebig oft differenzierbare Funktionen beschrieben werden, was bei einem
kiinstlichen neuronalen Netz mit einer begrenzten Grofle nicht der Fall ist. Um diese
Tatsache besser einsehen zu konnen, besteht die Moglichkeit den GP in ein radiales
Basisfunktionen-Netz (RBF) umzuformen, wodurch eine bessere Vergleichbarkeit zwi-

schen einem nicht-parametrischen und parametrischen Ansatz entsteht.

Zunichst wird die Mittelwertfunktion des Posterior (2-31)) wie folgt betrachtet:

iy (@) = m(@) + ksp(e, X) 5y (Y - py)

=

na (2-36)
=m(x) + Z%kSE(HCL‘ — XiH%/V—l)‘

i=1
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Diese wird als additive Kombination des Prior Mittelwerts und einer gewichteten Sum-
me umgeschrieben. Bei der gewichteten Summe zeigt sich die Struktur eines RBF, durch
die konstanten Gewichtungsfaktoren «; und die durch den SE-Kernel induzierten Basis-
funktionen. Es wird deutlich, dass sich die Zentren des RBF bei einem jeden Datenpunkt
befinden und sich das Netz mit jedem weiteren Datenpunkt um ein zusitzliches Zentrum

automatisch vergroBert [Ras06].

Um die Beschreibungsfihigkeit des GPs zu bestimmen, wird dieser in seine parametrische
Form tiberfiihrt. Hierzu wird die Mittelwertfunktion durch den gingigen parametrischen
Ansatz y(x) = ¢(x)"w (vgl. Ausfiihrungen zur Bayesschen linearen Regression in Ab-
schnitt[2.3.1) ausgedriickt, indem der Verbindungsansatz w = ®” «v eingefiihrt wird. Aus
der Riickrechnung folgt der bekannte Zusammenhang aus (2-36)):

(z) + p(x) [d(X1), ..., d( X, )] ZF (Y — py) (2-37)

worin die Basisfunktion ¢(x) noch als unbekannt gilt. Zunichst ist jedoch eine Anmer-
kung beziiglich der Berechnungskomplexitit der beiden Darstellungen anzufiihren. Das
Training des GPs ist auf die Bestimmung der Hyperparameter aufgrund der Maximie-
rung der Likelihoodfunktion zuriickzufiihren. Dafiir muss in (2-33)) eine ny x ng grofe
Kovarianzmatrix ¥y invertiert werden. Fiir den parametrischen Ansatz und die Bestim-
mung der Gewichte kann (2-20) als Losung herangezogen werden, woraus ersichtlich
wird, dass fiir die Losung eine Matrix mit Dimension n,, X n,, invertiert werden muss.
Je nach Anwendungsfall und zur Verfiigung stehender Rechenkapazitit kann daher eine
passende Auswahl zwischen parametrischen und nicht-parametrischen Ansitzen getrof-
fen werden. In Bezug auf die effiziente Inbetriebnahme und die formulierten Anforde-
rungen soll im Rahmen dieser Arbeit von einer geringen Datenmenge und einer hohen
Beschreibungsfihigkeit zur Abbildung einer breiten Klasse von unbekannten Funktionen
ausgegangen werden. Fiir die Themenstellung dieser Arbeit gilt somit n,, > ng4, wo-
mit die GauB3-Prozess-Regression vor dem Hintergrund der Berechnungskomplexitit ein
geeignetes ML-Werkzeug fiir die Inbetriebnahme darstellt.

Als Nichstes wird die in (2-37) beinhaltete Basisfunktion ¢ () ndher untersucht. Es liegt
nahe, hierfiir die Kovarianzfunktion als inneres Produkt [Ras06] iiber den Ansatz

k(z,z') = p(x) ('), (2-38)
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zu definieren, wodurch die beiden Eingangspaare funktional voneinander getrennt wer-
den. Insbesondere der SE-Kernel weist in diesem Zusammenhang eine interessante Ei-
genschaft auf, auf die im Speziellen weiter eingegangen werden soll. Hierfiir wird ver-
einfachend a]% = lund W~ = I, gesetzt. Durch die Umformung der beinhaltenden

Exponentialfunktion als unendliche Summe folgt

ksp(x,x') = exp(—%(m — ) (x —x))

= exp(—232) exp(x” @) exp(— 252 (2-39)
0 T .\
Tz (CL' € ) T
= exp(—*3%) Z ol exp(—*5%).
n=0 )

Die dufleren Faktoren weisen somit bereits die gewiinschte Struktur von (2-38]|) auf. Fiir
die mittlere Summe gilt, dass sie einen weiteren bekannten Kernel darstellt. Es handelt

sich dabei um die monomiale Kovarianzfunktion [Ras06]], welche mit

kv (x, ') = (me/)n = ¢Mn(w)T¢Mn<wl)

angegeben wird. Der Exponent n € Nj gibt hierbei die Ordnung an. Fiir n = 2 und

x, ' € R? folgt beispielsweise
ke (2, 53/) =( Twl)z = [1'%7 \/5951332; 373] [xlfv \/537/1555733/22]T = ¢M2<w)T¢M2(wl)'
Die unendliche Summe aus (2-39) ldsst sich somit weiter umformulieren zu

/

bs(e, ) = exp(~%%) (Z %mm(w)%m(ww—%) exp(—5%)
n=0

= ¢5E(5’3>T¢SE(5U/)>
T

Psp(T) = eXp(‘”Tw) [¢’M0(33)T> S \/%(f’Moo@)T] )

womit der SE-Kernel in der gesuchten Form eines inneren Produkts dargestellt ist. An-
hang der letzten Gleichung wird ersichtlich, dass der SE-Kernel unendlich viele Basis-
funktionen impliziert und damit in Bezug auf ein parametrisches Modell eine Identifika-
tion von unendlich vielen Parametern benotigen wiirde. Diese Eigenschaft spiegelt sich
bei der Anwendung des GP so wider, indem er beziiglich seiner Beschreibungsfahigkeit
nicht begrenzt ist und damit beliebige Funktionen aus C'*° (in Abhéngigkeit der Datenla-
ge) genau beschreiben kann. In dieser Hinsicht ist er damit vergleichbaren parametrischen

Ansitzen iiberlegen und fiir die Anwendungen dieser Arbeit besonders geeignet.
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2.5.3 Details zur Anwendung und Implementierung

Abschlieend sollen noch einige weitere Details angefiihrt werden, welche die grund-
legenden Prinzipien der GauB3-Prozess-Regression umfassender erldutern. Dabei geht es
sowohl um die praktische Anwendung als auch um einige erginzende Einzelheiten zur
programmiertechnischen Implementierung des Verfahrens. Diese Aspekte sind relevant,
da sie die Zusammenhinge und ggf. Problematiken in den Hauptkapiteln verstiandlicher

machen, womit die gefundenen Losungsvorschldge nachvollziehbarer werden.

Uber- und Unteranpassung

Der erste Aspekt umfasst das allumfassende maschinelle Lernproblem der Uber- und Un-
teranpassung des ausgewihlten Modellansatzes. Dieses Problem wird hdufig mit dem Be-
grift Ockhams Rasiermesser beschrieben und besagt, dass einfache gegeniiber komple-
xeren Theorien oder Modellen vorzuziehen sind, sofern sie denselben Sachverhalt glei-
chermallen gut beschreiben. Die Einfachheit bezieht sich hierbei auf die Anzahl von Va-
riablen und moglichen Modellhypothesen, die zusammen gesehen in einer klaren und
logischen Beziehung zueinander stehen. Fiir das maschinelle Lernen bedeutet dies, dass
die Komplexitit der Ansatzfunktion geeignet zur Problemstellung gewéhlt werden muss
und keine Uber- bzw. Unteranpassung an die Trainingsdaten aufweisen darf. In Bezug
zur Gaul3-Prozess-Regression wird dieser maf3geblich durch die Wahl der Hyperparame-
ter bestimmt. Diese werden wiederum anhand der Likelihoodfunktion aus iden-
tifiziert. Unter der Vernachldssigung der Prior Mittelwertfunktion m(x) = 0, bzw. des

Ausgangsdatenvektors p,- = 0 lautet das zugrundeliegende Optimierungsproblem

minlogp(Y | 0) x YIEJ'Y + log|Zy| +nglog2m, (2-40)
0 ——— —_———
Datenanpassung  Modellkomplexitit Konstante

worin bereits auf natiirliche Weise eine Losung fiir das Problem der Uber- und Unter-
anpassung in Form einer Mehrzieloptimierung auftaucht. Der erste Term steht dabei fiir
die Anpassung an die Datenlage, wohingegen der zweite Term fiir die Modellkomple-
xitdt steht. Ein zu stark angepasster GP kann zwar die Daten gut nachbilden, weist ggf.
aber auch eine zu hohe Komplexitit auf und versagt daher bei der Generalisierung in Be-
zug auf unvorhergesehene Eingangsdaten. Entgegengesetzt ist eine zu schwache Daten-
anpassung (bspw. in Form einer linearen Ausgleichsgerade) nicht aussagekriftig genug.

Hieraus folgt die Forderung nach einem Kompromiss zwischen diesen beiden Zielen.

Nachfolgend wird der Fokus auf eine eindimensionale SE-Kovarianzfunktion mit

ksg(z,2';1) = exp(—(x — 2')?/1?), bzw. 6 = [, gelegt, um die Wirkungsweise der bei-
den Terme zur Datenanpassung und Modellkomplexitit besser einordnen zu konnen. Fiir
[ — O strebt ¥y — I,,, und der Datenterm nimmt sein Minimum Y'Y an, gleichzeitig

nimmt log |Xy| = log [[ A\; = log 1 = 0 jedoch ein Maximum an, wobei \;,i = 1,...,ny
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Bild 2-10: Auswirkung des Lengthscale-Hyperparameters inkl. der Darstellung der zu-
grundeliegenden Basisfunktionen (gestrichelt grau) und Gewichtungsfaktoren
im unteren Balkendiagramm.

die Eigenwerte der Datenmatrix sind. Hieraus folgt eine Uberanpassung, da die Funkti-
onswerte weitestgehend unkorreliert sind und sich insgesamt eine flexible, zu stark an-
gepasste Regressionsfunktion ergibt. Fiir den entgegengesetzten Fall von [ — oo strebt
¥y — 1,,, wobei genau ein Eigenwert \; = ny4 und die iibrigen Eigenwerte gleich
0 sind. Dementsprechend strebt YTE;IY gegen oo (das Maximum des Terms) und
log |2y | = log0 = —oo stellt wiederum ein Minimum dar. Es resultiert die Unteranpas-
sung, denn die Funktionswerte sind stark korreliert (zusammenhingend) und es folgt eine
nahezu lineare Funktion als Losung der Regressionsaufgabe. Die beschriebene Wirkungs-
weise ist in Bild [2-10|anhand eines eindimensionalen Beispiels visualisiert. Die griine Li-
nie zeigt den Ground Truth, von welchem die 5 schwarzen Datenpunkte als Grundlage fiir
die Regression genutzt wurden. Vereinfachend wird von den GPs nur die Posterior Mittel-
wertfunktion durch die blauen Linien gezeigt. Des Weiteren zeigen die grauen gestrichel-
ten Linien die Basisfunktionen (normiert auf o) aus der RBF-Darstellung. Entsprechend
zeigen die unteren Diagramme die dazugehorigen Gewichtungsfaktoren o, 2 = 1,...,5
(vgl. (2-36)). Der Lengthscale-Parameter nimmt von links nach rechts ab, sodass der Ef-
fekt dieses Parameters gut erkennbar ist. Das linke Bild zeigt die Unteranpassung (durch
einen nahezu linearen Funktionsverlauf) und das rechte Bild die Uberanpassung, wobei
die Basisfunktionen eine impulsformige Gestalt annehmen. Im mittleren Bild ist das Er-
gebnis der Optimierung mit einem passenden Hyperparameter zu sehen. Dabei wird ein
guter Kompromiss zwischen den beiden Extremféllen gefunden und der Ground Truth

durch den GP genau nachgebildet.

Fiir den Fall einer hoherdimensionalen Regression bieten die dimensionsabhingigen
Lengthscale-Parameter (s. (2-32))) in diesem Zusammenhang eine praktische Moglichkeit,

die Sensitivitit bzgl. der einzelnen Eingangsdimensionen auszuwerten. Dies ist unter dem
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Begriff Automatic Relevance Determination (ARD) in der Literatur [Ras06] bekannt und
verweist auf die Groenordnung der optimierten Hyperparameter, welche eine nichtlinea-
re Sensitivitidtsanalyse ermoglichen. Je hoher der bestimmte Lengthscale-Parameter, de-
sto irrelevanter ist die zugehorige Eingangsdimension fiir die Regression. Niedrige Werte
weisen hingegen auf eine starke Abhédngigkeit und hohe Relevanz hin. Fiir die Praxis be-
deutet dies, dass die Eingangsdimension sukzessive verringert werden kann, sobald die
Hyperparameter einen Anlass dazu geben, wodurch die GauB3-Prozess-Regression insge-
samt an Effektivitit dazugewinnt. Diesen Unterabschnitt abschlieend, sollen neben der
Lengthscale auch die zwei weiteren Hyperparameter kurz erldautert werden. Die Varianz
der AusgangsgroBe V[y(x)] = k(x,x) = o} + o). setzt sich aus der Summe der Si-
gnalvarianz und der Varianz des Rauschprozesses zusammen, womit der GP als ganzes
durch zwei Unsicherheitsquellen (aleatorische und epistemische Unsicherheit [HW21]])
beeinflusst wird. Im Allgemeinen stellt sich daher durch die Bestimmung der Hyper-
parameter ein Kompromiss zwischen diesen beiden Quellen ein, der die Rauschvarianz
nicht tiberbewertet und die Signalvarianz korrekt abschitzt. Zur Orientierung kann hier-
bei festgehalten werden, dass 95% der Funktionswerte sich in einem 420 s-Band um den

Mittelwert herum befinden.

Unbeschrinkte Optimierung der Hyperparameter

Der néchste Punkt betrifft das Optimierungsproblem aus (2-33)), wobei es sich um ei-
ne Optimierung unter Nebenbedingungen handelt. Fiir die Hyperparameter 6, > 0 mit
1 = 1,...,n, + 2 gilt, dass sie keine negativen Werte annehmen diirfen, um konsis-
tent zu sein. Um die Optimierung zu vereinfachen und die Beschrinkungen zu umgehen,
wird in der Praxis eine Transformation der Hyperparameter angestrebt. Genauer lautet die
Transformationsvorschrift 8 = log 6, wobei der monotone Anstieg und der positive De-
finitionsbereich der log-Funktion zum Tragen kommt. Das Optimierungsproblem #ndert

sich dadurch folgendermal3en:
log 0, = argmaxlog p(Y | exp(8)),
6

wobei der Gradient aus (2-34)) durch den Zusammenhang

Ologp(Y | exp(9)) _ dlogp(Y | 6)
dlog 0; 00;

9i7

angepasst werden muss. Auf diesem Weg konnen die einfacheren unbeschrankten Opti-

mierungsverfahren im Rahmen der Hyperparameterbestimmung genutzt werden.

Numerische Stabilitat
Die numerische Stabilitit spielt eine wichtige Rolle bei der Realisierung eines Verfah-

rens innerhalb eines Computerprogramms. Die Gaul3-Prozess-Regression weist vor die-
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sem Hintergrund einige Besonderheiten auf. MaB3geblich fiir das Verfahren ist die Inver-
sion der Datenmatrix 3.y, die sich unter bestimmten Voraussetzungen als problematisch
herausstellen kann. Als MaB fiir die numerische Instabilitit wird in diesem Zusammen-
hang die Konditionszahl Kk = 42/ Amin [Han09] herangezogen, welche sich aus dem
groften und kleinsten Eigenwert der betrachteten Matrix zusammensetzt. Optimalerwei-
se liegt die Konditionsmatrix bei 1. Eine unzureichende Stabilitét ist fiir den Fall x > 1
gegeben. Vor diesem Hintergrund ist zunédchst im Zusammenhang mit der Gaul3-Prozess-
Regression eine auf die Signalvarianz normierte Schreibweise der inversen Datenmatrix

iiber
0'2 = _1
2)_/1 - (EF + U?LInd)_l = ULQ <U_£2F + Ind> )

sinnvoll. Von dieser Form ausgehend, bietet der Satz von Gerschgorin [Han09] die Moglich-
keit, den Bereich, in welchem sich die Eigenwerte befinden, zumindest ansatzweise ab-
zuschitzen. Durch die Anwendung des Satzes folgt fiir den Wertebereich der Eigenwerte
A€ [1,0%ny+ 1] mit o, = Z—{ als Signal-Rausch-Verhiltnis. Im schlechtesten Fall be-
deutet dies einen kleinsten Eigenwert von \,,,;;, = 1, sowie einen groten Eigenwert von

Mnaz = afnd + 1. Hieraus folgt wiederum eine Konditionszahl von

)\max

2
K= =o0,ng+ 1,

Amin
die eine lineare Abhéngigkeit bzgl. der Anzahl der Daten und eine quadratisch Abhéngig-
keit bzgl. des Signal-Rausch-Verhiltnisses aufweist. Unter der Voraussetzung einer kon-
stanten Signalvarianz ist somit ein gewisses Rauschen innerhalb der Daten hilfreich und
tragt zur numerischen Stabilitit des Verfahrens bei. Aus diesem Grund wird in der Praxis
die Unsicherheit kiinstlich durch einen geringen additiven Term erhoht

Sy = S+ (02 +0),) T oo~
sodass die numerische Stabilitdt gefordert wird. Des Weiteren zeigt die Gleichung der
Konditionszahl, dass sich eine geringe Anzahl von Daten positiv auswirken kann. Dies
geht mit der allgemeinen Betrachtungsweise einher, dass sich die Gaul3-Prozess-Regression
besonders fiir kleine Datenmengen auszeichnet und fiir diese ein geeignetes maschinel-
les Lernverfahren darstellt. AuBBerdem kann festgestellt werden, dass 3\ r — I, und
Amaz/Amin — 1 gilt, wenn die Eingangsdaten der Matrix X weit auseinander liegen un-
d/oder der Lengthscale-Parameter besonders klein ist. Diese Ausgangssituation ist somit
besonders wiinschenswert. Auf der anderen Seite kann 3 7 — Lo, 20 Npaa / Amin — 00

fiihren, wenn die Eingangsdaten nah beieinander liegen und/oder der Lengthscalepara-
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meter besonders grof ist. Dieser Fall sollte nach Moglichkeit verhindert werden, um die
Leistungsfihigkeit des Verfahrens nicht zu beeintrichtigen. Praktischerweise ist eine An-
passung des Optimierungsproblems (2-40) hierzu hilfreich, wobei Strafterme eingefiihrt
werden, die bspw. zu hohen Lengthscale-Parameter oder einem zu hohen Signal-Rausch-
Verhiltnis entgegenwirken, jedoch gleichzeitig das Mehrzieloptimierungsproblem schwe-

rer 16sbar machen.
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3 Steuerungsentwurf mittels Bayesscher Optimierung

Der Entwurf einer Steuerung fiir ein dynamisches System spielt eine zentrale Rolle inner-
halb der Regelungstechnik. Die Anwendungsgebiete umfassen die Automatisierungs-, so-
wie die Luft-, Raum- und Fahrzeugtechnik. Des Weiteren werden Steuerungen im indus-
triellen Umfeld und insbesondere in der Verfahrenstechnik eingesetzt. Das iibergeordnete
Ziel einer Steuerung ist, das Systemverhalten iiber die Stellgrofe so zu beeinflussen, dass
sich daraus eine gewiinschte Systemantwort ergibt. Je nach Komplexitéit des dynamischen
Systems kann sich der Entwurf einer Steuerung unterschiedlich schwer gestalten. Liegt
ein linearer Zusammenhang zwischen der Stellgro3e und den Zustdnden vor, lédsst sich
eine geeignete Steuerung rasch ermitteln. Gibt es hingegen nichtlineare Abhéngigkeiten
oder komplizierte Wechselwirkungen, gestaltet sich ein Steuerungsentwurf in der Regel
schwierig. Typischerweise erfolgt der Entwurf auf der Basis eines physikalisch gepréigten
Simulationsmodells, welches durch den Ingenieur im Rahmen eines Modellbildungspro-
zesses aufgestellt wird. Die Grundidee der modellbasierten Vorgehensweise ist, eine ge-
eignete Steuerung fiir das Simulationsmodell zu entwerfen und diese dann gleicherma-
Ben fiir das reale System zu verwenden. Ein wesentliches Qualititsmerkmal ist dabei die
Pradiktionsgenauigkeit des aufgestellten Modells. Bildet das Modell die Realitét nicht
genau genug ab, funktioniert die entwickelte Steuerung fiir das reale System nicht, so-
dass liblicherweise in erster Linie eine Verbesserung des Modells angestrebt wird. Vor
dem Hintergrund komplexer mechatronischer Systeme, welche schwierig zu beschrei-
bende physikalische Effekte beinhalten, ist diese herkommliche Herangehensweise al-
lerdings kompliziert umzusetzen und damit fiir die Praxis in der Regel kein moglicher
Losungsweg. Aus diesem Grund wird in diesem Kapitel der Einsatz eines maschinellen
Lernverfahrens - der sogenannten Bayesschen Optimierung (BO) - fiir den Steuerungsent-
wurf vorgestellt. Die BO basiert zu einem grof3en Teil auf der eingefiihrten Gau3-Prozess-
Regression und nutzt deren probabilistischen Aspekte fiir eine gezielte bzw. effiziente

Identifikation einer parametrisierten Steuerung.

Das Kapitel ist folgendermafien aufgebaut: Zunichst wird in Abschnitt [3.1] die Aufgabe
des Steuerungsentwurfs erldutert und den Einsatz der BO weiter motiviert. Danach wird
in(3.2|die BO grundlegend eingefiihrt und vor dem Hintergrund des regelungstechnischen
Entwurfs betrachtet. Im Rahmen dieses Abschnitts wird zudem der Stand der Forschung
ausfiihrlich erldutert. AnschlieBend wird in [3.3] ein komplexes mechatronisches System
- das Ultraschalldrahtbonden - als Anwendungsbeispiel vorgestellt und die Problematik
beim zugehorigen Steuerungsentwurf besprochen. Dies steht in enger Verbindung zum
Folgeabschnitt [3.4] in welchem die physikalische Modellbildung mit verschiedenen Tie-
fen thematisiert wird. In [3.5] erfolgt die Verkniipfung von der BO und dem Ultraschall-
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drahtbonden, wobei eine speziell auf den Prozess angepasste Variante der BO entwickelt
wird. Den Abschluss dieses Kapitels bildet worin die Anwendung und die Ergebni-
sanalyse erldutert werden. In wird abschliefend ein ausfiihrlicher Ausblick zu wei-

terfiihrenden Forschungsthemen gegeben.

3.1 Aufgabenstellung des parametrisierten Steuerungsentwurfs

Den Ausgangspunkt der Betrachtung stellt ein beliebiges diskretes dynamisches System

mit
Tp = f(xr, ur), (3-1)

mit einem bekannten Anfangszustand @, und einer finiten Anzahl von Zeitschritten
k =0,..., H dar. Fiir das System soll eine Steuerung ausgelegt werden, wobei noch zu
kldren ist, welche Ziele dabei zu erfiillen sind. Zunéchst wird weiterfithrend davon ausge-

gangen, dass fiir die Steuerung eine passende Ansatzfunktion mit
U = uk(tk; 9) (3'2)

zur Verfiigung steht, welche von einer bestimmten Parametrisierung 8 € R™ abhéngt. In
diesem Zusammenhang wird in der Regelungstechnik der Begriff einer parametrisierten
Steuerung verwendet. Grundsétzlich kann an dieser Stelle auch von einer parametrisierten
Regelung mit u, = ui(xy; @) ausgegangen werden, allerdings wird vor dem Hintergrund
des Anwendungsbeispiels weiterhin ausschlieBlich eine parametrisierte Steuerung be-
trachtet. Die Aufgabe besteht nun darin, eine passende Parametrisierung auszuwihlen, so-
dass das Steuerungsziel erreicht wird. Bisher noch unbekannt ist, nach welchem Kriterium
eine Bewertung von unterschiedlichen Parametrisierungen vorgenommen werden kann.
Hierzu wird beispielhaft das quadratisch gewichtete Giitekriterium J(0) : R™ — R,

tiber

H
min J(6) = At D (@ — z6) Walm — 26) + uf W, (3-3)
k=0

eingefiihrt. Hierin ist & der geforderte Zielzustand, welcher iiber die parametrisierte
Steuerung erreicht werden soll, At ist die zeitliche Schrittweite und W, € R"=*"=,

W, € R™*™ gind vorgebbare Gewichtungsmatrizen. Anhand des GiitemaBes konnen
verschiedene Parametrisierungen ihrer Wertigkeit nach geordnet und miteinander vergli-
chen werden. Das Ziel besteht darin, das Optimierungsproblem (3-3) unter den Nebenbe-

dingungen von (3-1)) und (3-2)) zu 16sen und diejenige Parametrisierung 8" zu bestimmen,
welche den kleinsten Giitefunktionswert liefert. Als Beispiel wird in [GTZ07|] der Auf-
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schwung eines Doppelpendels auf einem Wagen (s. Bild [I-4)) realisiert, indem als Ansatz
fiir die Steuerung des Wagens eine Cosinusreihe mit vier Parametern verwendet wird.
Der Einsatz der Cosinusreihe wird damit begriindet, dass sie die natiirliche Bewegung
des Doppelpendels beriicksichtigt und sie gleichzeitig dafiir sorgt, dass der Wagen wieder
an seine Anfangsposition in der Mitte der Wagenstrecke zuriickkehrt. Die Wahl der An-
satzfunktion ist daher fiir diese Form des Steuerungsentwurfs entscheidend und erfordert

moglicherweise besonderes Expertenwissen iiber das betrachtete System.

Um (3-3) zu 16sen, wird beim modellbasierten Entwurf (vgl. Bild SO vorgegan-
gen, dass zunichst ein physikalisches Dynamikmodell zum realen System auf-
gestellt wird. Da es sich um eine moglicherweise unvollstindige bzw. fehlerbehaftete
Beschreibung handelt, wird fiir das Modell die Schreibweise f (dhnlich zu einer Zu-
standsschitzung eines Beobachters) benutzt. AnschlieBend kann durch eine Simulation
weiterfithrend auch eine Schitzung der Giitefunktion J umgesetzt werden, womit eine
Losung des Optimierungsproblems ohne Verwendung des realen Systems berechnet wer-
den kann. Das Problem bei diesem Ansatz ist, dass dabei angenommen wird, dass das
aufgestellte Dynamikmodell keine zu gro3e Abweichung zum realen System aufweist
und dieses genau genug beschreibt. Ist die Abweichung zu groB3, so kann die gefundene
Parametrisierung der Steuerung zwar fiir das Modell qualitativ hochwertige Ergebnisse
liefern, aber am realen System unter Umstidnden versagen und unbefriedigende Resultate
erzeugen. Besonders ausgeprigt ist dieses Phianomen fiir komplexe, schwierig zu model-
lierende Systeme, fiir die gegebenenfalls nur eine simplifizierte Modellbildung angesetzt
werden kann. In diesem Fall sto3t der beschriebe modellbasierte Entwurfsprozess an seine
Grenzen und kann moglicherweise nicht weiterverfolgt werden. Von so einem Szenario
soll an dieser Stelle weiterfithrend ausgegangen werden. Als Ansatz fiir eine erfolgrei-
che Realisierung wird die Verwendung der BO vorgeschlagen, da sie als maschinelles
Lernverfahren direkt mit dem realen System in Interaktion tritt und eine erweiterte Ausle-
gung auf der Basis von Messdaten erfolgt. Im nichsten Abschnitt wird dieser Losungsweg

niher erldutert.

3.2 Bayessche Optimierung als Losungsansatz

Die BO ist ein ML-Verfahren zur effizienten und automatisierten Suche von optimalen
Parametern. Ihr Ansatz basiert auf dem Bayesschen Theorem (2-13)), um Unsicherheiten
zu beschreiben und Riickschliisse aus bereits gesammelten Daten zu ziehen. Das Ver-
fahren ist darauf ausgelegt, einen Kompromiss zum Exploration-Exploitation-Dilemma
zu finden und wird damit den globalen Optimierungsverfahren zugeordnet. Es ist somit,
im Gegensatz zu gradientenbasierten Verfahren, in der Lage, die Konvergenz zu lokalen

Optima zu unterbinden. Ein weiterer Vorteil ist, dass keine Kenntnis iiber den Gradien-
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ten bzgl. der Giitefunktion vorhanden sein muss. Lediglich die punktuelle Auswertung
der Giitefunktion, welche ggf. durch einen Rauschprozess verfilscht sein kann, ist eine

Voraussetzung fiir die Anwendbarkeit.

Die Grundidee des Verfahrens ist, die Zielfunktion als datenbasierten GP zu modellie-
ren und anhand seiner probabilistischen Vorhersagen eine Auswahl geeigneter Gebiete
im Parameterraum zu bestimmen, an welchen die optimalen Parameter zu finden sind.
Der GP wird iterativ durch die Hinzunahme von neuen Beobachtungen aktualisiert, die
durch die Auswertung der Giitefunktion an den erfolgversprechendsten Stellen gewon-
nen werden. Die BO hat sich insgesamt als niitzliches Werkzeug in Situationen erwiesen,
in denen die Evaluierung der Zielfunktion teuer und/oder zeitaufwendig ist, wie z. B.
bei der Optimierung von Hyperparametern eines tiefen kiinstlichen neuronalen Netzes.
Durch ihre Fihigkeit, ressourceneffizient zu sein und sich auf die vielversprechendsten
Bereiche des Parameterraums zu konzentrieren, hat die BO in verschiedenen praktischen
Anwendungsgebieten Einzug gehalten. Darunter fallen die explorativen Bohrungen, um
neue Olreserven zu erschliefen, sowie die aufwendigen Experimente und Studien, die
im Zusammenhang mit der Entwicklung von neuartigen Medikamenten im Bereich der
Pharmazie notwendig sind [SSW™*16].

Die BO wird hiufig mit anderen alternativen Losungsmoglichkeiten verglichen. Dazu
zihlen die zufillige, die gitterbasierte und die manuelle Suche. Die zufillige Suche wihlt
ithrem Namen nach in jedem Iterationsschritt eine zufillige Parametrierung aus, wodurch
ihre Effizienz als besonders schlecht einzustufen ist. Die manuelle Suche, welche vom
menschlichen Anwender vorgenommen wird, stellt im Allgemeinen eine bessere Alter-
native als die zufillige Suche dar. Diese wird daher hédufig eingesetzt, ist jedoch stark von
den Fihigkeiten des Anwenders und dessen Expertise in Bezug auf das Optimierungs-
problem abhingig. Aulerdem gibt es deutliche Einschriankungen, welche die Anzahl der
Parameter betreffen. Fiir niedrigdimensionale Probleme ist es fiir den Menschen machbar,
einen Uberblick iiber die bereits ausprobierten und moglicherweise geeigneten Parameter-
Kandidaten zu behalten, wohingegen hoherdimensionale Probleme im Allgemeinen ei-
ne Herausforderung darstellen und eine vorher festgelegte Systematik moglicherweise
nur mit Miihe eingehalten werden kann. Des Weiteren stellt die gitterbasierte Suche ein
gingiges Losungsverfahren dar. Hierbei wird der Suchraum in einer geeigneten Weise
diskretisiert und dann nach und nach ausgewertet. Unter Umsténden sind in bestimmten
Gebieten feinere Diskretisierungsschritte notwendig, um eine gewiinschte Genauigkeit zu
erreichen. Ebenso wie bei der manuellen Suche, hat dieser Ansatz jedoch das Problem,
fiir hoherdimensionale Optimierungen schlechte Skalierungseigenschaften aufzuweisen.
In diesem Zusammenhang wird auch vom Fluch der Dimensionalitdt [B1s06] gesprochen,

welcher den zugrundeliegenden Effekt beschreibt. Bei einer gleichmifBigen Diskretisie-
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rung des Suchraums nimmt mit der Dimension die Anzahl der bendtigten Diskretisie-
rungspunkte exponentiell zu, wodurch der Speicherbedarf und der Rechenaufwand im-
mens ansteigen. Im direkten Vergleich stellt die BO im Allgemeinen, aufgrund ihres sich
sukzessiv verbessernden Charakters, die Beste der genannten Losungsmoglichkeiten dar

und ist diesen daher vorzuziehen.

Im Nachfolgenden wird die BO [SSW™16] formal bzw. mathematisch beschrieben. Die
Basis bildet die GauB-Prozess-Regression (s.[2.4), wobei die Schitzung der Giitefunktion

(3-3) tiber eine parameterabhingige Zufallsvariable nach
J(8) ~ GP(m(6), k(6,6';1)), (3-4)

definiert wird. Unter der Voraussetzung eines vorhandenen Datensatzes, bestehend aus
Dy =10,,...,0,,)" € R und D; = [Jy, ..., J,,)T € R", werden die Hyperpara-
meter 7 € R™2 der Kovarianzfunktion k(-, -) standardméBig iiber die Maximierung der
logarithmischen Likelihoodfunktion (vgl. (2-33))

n, = arg max log(p(D))
! (3-5)
= arg mgx—%(DJ —mp) K(n)"(D; — mp) — log(det K(n)),

bestimmt, mit mp = [m(60,),...,m(6,,)]" und symmetrischer und positiv definiter
Gram-Matrix K (n) € R"¢*" mit den Elementen K, ; = k(0,,0;;m),i,j = 1,...,n4.
Die Maximierung wird auch als Training des GP bezeichnet. Nach der Identifikation der

Hyperparameter liefern die Posteriorgleichungen des GP (vgl. (2-31))

p(J(0) | Dy) = N (1(6),0%(8)),
1(0) =m(0) + kL(0)K ' (D, — mp), (3-6)
0*(0) = k(0,0) — kp(60)K 'kp(6),

mit kp(0) = [k(0,0:;m,),...,k(0,0,,;n,)]", eine probabilistische Schitzung iiber die
Gestalt der Giitefunktion, wobei die Schitzung alle bisher bekannten Datenpunkte be-
riicksichtigt. Das iterative Vorgehen der BO ergibt sich danach durch eine kontinuierliche
Erweiterung des Datensatzes Dy < {Dy, 0,1}, D; < {D}, J,,11}, wodurch die

Schitzung in jeder Iteration weiter verbessert wird.

Bisher unklar ist, wie anhand des GP die néchste Parametrierung 6,,,, bestimmt bzw.
nach welchem Kriterium das néchste Experiment am realen System festgelegt wird. Hierfiir
wird im Rahmen der BO eine sogenannte Akquisitionsfunktion «(€) : R™ +— R [SSW*16],
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welche von der aktuellen Schitzung bzgl. der Giitefunktion des GP (3-6) abhingig ist, be-

nutzt und ein unterlagertes Optimierungsproblem
041 = arg max a(6), (3-7)

automatisiert gelost. Mittlerweile gibt es ein breites Spektrum von moglichen Funktionen,
die je nach Anwendungsfall besser oder schlechter geeignet sind. Einige wichtige Akqui-

sitionsfunktionen werden fiir einen Uberblick im Nachfolgenden genauer vorgestellt.

Das erste Kriterium lautet Probability of Improvement (PI) [Kus64] und ist iiber

ar1(6) = P(I(6) < &) = 20(6)). 1(6) = 10
definiert. Hierbei ist £ ein a-priori festgelegter Grenzwert, der erreicht werden soll, oder
alternativ der aktuell beste Giitefunktionswert aus den bestehenden Beobachtungen, wel-
cher bei jeder auftretenden Verbesserung entsprechend ersetzt wird. Die Wahrscheinlich-
keit einer Verbesserung kann besonders vorteilhaft durch die Verwendung eines GP ana-
lytisch bestimmt werden, sodass ®(-) in diesem Zusammenhang die Standardverteilungs-
funktion einer Normalverteilung darstellt. Ein Problem dieses Ansatzes ist, dass sich die
Optimierung ggf. zu stark auf einen bestimmten Bereich im Suchraum fokussiert und

diesen nicht mehr verlédsst bzw. die Suche gewissermalen stagniert.

Das nichste Kriterium lautet Expected Improvement (El) [Moc74] und folgt der Grundi-
dee, die Groe der Verbesserung weiter zu quantifizieren. Hierfiir wird der Erwartungs-

wert im Bezug auf die Dichte, die unter dem Grenzwert liegt, mit

ap(8) = Emax(0,&; — J(0))]

(3-8)
= 0(0)(7(8)®(+(9))) + ¢(7(0))

herangezogen. Hierin ist ¢(-) die Standardnormalverteilung. Innerhalb vieler BO Imple-
mentierungen stellt diese Akquisitionsfunktion den Standard dar, da sie sich in zahlrei-
chen Veroffentlichungen als robust herausgestellt hat. In [NH18|] wird eine geringfiigig
abgewandelte Variante vorgeschlagen, welche eine Skalierung mit Hilfe der Varianz bzw.

Standardabweichung vornimmt und iiber

1

aspr(0) = Emax(0,&; — J(0))]V[max(0,&; — J(0))] 2
= apr(0)(0*(0)(7(0)* + 1)2(0) +(8)p((0))) — am(ﬂ)?)’%,

beschrieben wird. Aufgrund der zusitzlichen Skalierung wird sie als Scaled Expected

Improvement (SEI) bezeichnet. Im Rahmen der Verdffentlichung wurden mit ihr gute Er-
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gebnisse bzgl. verschiedener Testfunktionen erzielt. In Verbindung mit dem Anwendungs-
beispiel der vorliegenden Arbeit konnte jedoch keine Uberlegenheit zu der unskalierten
Variante festgestellt werden, sodass sich ihre Anwendbarkeit zunédchst noch durch weitere

unabhiéngige Veroffentlichungen herausstellen muss.

Der Vollstindigkeit halber wird als letzte Akquisitionsfunktion der Lower Confidence
Bound (LCB) [SKKS12] Ansatz genannt, welcher formal

arop(0) = —u(0) + ko (0)),

lautet. Dabei stellt x > 0 einen Explorationsparameter dar, der nicht notwendigerweise
konstant sein muss, sondern sich iiber die Iterationen hinweg verdndern kann. Sinnvoll
ist bspw. ein Ansteigen des Wertes, um den Suchraum weiter zu erforschen und lokalen
Optima zu entkommen. Sofern eine rasche Konvergenz beabsichtigt ist, kann es jedoch
auch vorteilhaft sein den Wert langsam gegen null konvergieren zu lassen, um ein be-
stimmtes Optimum zu fokussieren. Vorteilhaft ist, dass gegeniiber den anderen Akqui-
sitionsfunktion kein Grenzwert bendtigt wird und fiir bestimmte iterationsabhédngige x-
Funktionen obere Schranken, die den Worst-Case beschreiben, hergeleitet werden konnen
[SKKS12].

Algorithmus 1 Bayessche Optimierung

1: Eingabe: Initiale Datenbasis (Dy, D ;) aus n;,; Experimenten, Iterationsbudget
Npudgets GP Mittelwert- und Kovarianzfunktion (m(0), k(0,0")), ggf. Grenzwert ;
bzw. Explorationsfaktor «.

2: Wiederhole bis das Iterationsbudget 14, q44¢: aufgebraucht ist:

3:  Aktualisiere Gau-Prozess bzw. Hyperparameter 1 nach (3-5).

4:  Evaluiere bei 8, = arg maxp «(0) und erhalte .J,,.

5:  Erweitere Datenmenge (Dy, D ;) < (Dy U 6,,D; U J,).

6: Ausgabe: Optimale Parameter 6;, 7 = index min; Df]i),i =1,..., Ninit + Nbudget-

Algorithmus [1| fasst die wesentlichen Schritte der BO iibersichtlich zusammen. In der
1. Zeile erfolgt die Initialisierung, wobei die initiale Datenmenge in der Regel durch
zufdllige Experimente bestimmt wird. Das Iterationsbudget legt die Anzahl der zur Ver-
fligung stehenden Experimente fest und ist tiblicherweise auf zeitliche Rahmenbedingun-
gen zurilickzufiihren. Alternativ kann auch ein Konvergenzkriterium angesetzt werden.
Die Mittelwert- und Kovarianzfunktion bestimmen die grundsitzlichen Annahmen, die
tiber den GP getroffen werden. Hinzu kommen gegebenentalls libergeordnete Parame-
ter, die die Akquisitionsfunktion betreffen. In jeder Iteration wird zunichst der GP durch
die bestehende Datenmenge aktualisiert und eine Anpassung der Hyperparameter anhand
von vorgenommen (Zeile 3). Anschlieend erfolgt die Losung des unterlagerten Op-
timierungsproblems (3-7)), welches die gewihlte Akquisitionsfunktion umfasst (Zeile 4).
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Abschlieend wird in der 5. Zeile ein neues Experiment ausgefiihrt und das gesammelte
Datenpaar den bestehenden Daten hinzugefiigt. Nach dem Erreichen des Iterationsbud-
gets wird diejenige Parametrisierung ausgewihlt, die dem kleinsten Giitefunktionswert
zugeordnet ist (Zeile 6). Um eine mogliche Verfilschung durch etwaiges Rauschen in
den Daten zu beriicksichtigen, besteht auch die Moglichkeit den Mittelwert des Poste-
riors (@) (3-6) im Rahmen eines weiteren Optimierungsproblems zu minimieren und

die dabei gefundene Losung als optimale Parametrisierung auszugeben.

Stand der Forschung

Dieser Abschnitt beschiftigt sich mit allgemeinen und regelungstechnisch spezifischen
Veroftentlichungen, in denen die BO zur Losung genutzt wird. Bei den Veroffentlichungen
mit einem regelungstechnischen Hintergrund wird zwischen Arbeiten unterschieden, die
eine bestimmte Form von Vorwissen iiber das technische System oder die Steuerung bzw.
Regelung beinhalten, und solchen Arbeiten, die keine besondere Vorkenntnis ausnutzen.
Weiterfiihrend wird hierauf der Beitrag der vorliegenden Arbeit erldutert und eingeord-

net.

Einen gesamtheitlichen Uberblick iiber die Verwendung der BO anstelle des manuellen
Einstellens bietet [SSW™16], worin insbesondere noch einmal die Unterschiede der vor-
gestellten Akquisitionsfunktionen behandelt und verschiedene Optimierungsroutinen zur
Losung der unterlagerten Probleme vorgestellt werden. In [SLA12]] werden hierzu pas-
send weiterfiihrende Analysen vorgenommen, die sich auf praktische Aspekte fokussie-
ren. Unter anderem werden der SE- (2-32)) und der Matern-Kernel gegeniibergestellt
und die zu hohen Glattheitsanforderungen des SE-Kernels fiir praktische Anwendungen
kritisiert. Bei den Anwendungsbeispielen dieser Arbeit konnte die Kritik jedoch nicht
bestdtigt werden, sodass der SE-Kernel in allen Féllen zufriedenstellende Ergebnisse lie-
ferte. Die hohen Glattheitsanforderungen miissen daher grundsétzlich nicht als negativ

erachtet werden und schaffen ggf. eine weitere Ebene, um Vorwissen einzubringen.

Der Einsatz der BO fiir regelungstechnische Fragestellungen wird vielseitig in der Litera-
tur untersucht. In [[CVS720] wird eine umfassende Zusammenfassung zu den moglichen
Schnittstellen zwischen der Regelungstechnik und verschiedenen maschinellen Lernver-
fahren gegeben. Die Schnittstellen werden bei dem Dynamikmodell, der Steuerung oder
Regelung und der Giitefunktion gesehen. Innerhalb einer hierarchisch aufgestellten Struk-
tur, wird die BO dabei auf der Ebene der Giitefunktion eingeordnet, wodurch eine unterge-
ordnete Korrektur eines fehlerbehafteten Dynamikmodells umgangen wird. Dies ist unter
anderem besonders vorteilhaft, wenn unklar ist, wie die Zustinde eines Systems genau
definiert sind oder sie schwierig, durch entsprechende Sensorik, erfasst werden konnen.

Die Autoren fiihren zudem verschiedene Wege zur Einbringung von Vorwissen an, so
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kann bspw. eine gewisse Struktur oder Ansatzfunktion fiir die Steuerung bekannt sein

oder eine moglicherweise vorhandene Parametrisierung bereits eingegrenzt werden.

Spezifische Anwendungsfille, in denen die BO zur Bestimmung von Parametern in einem
regelungstechnischen Kontext eingesetzt wird, jedoch kein besonderes Vorwissen iiber
die Aufgabe ausgenutzt wird, sind in [SKOT13; CHJA18};|CSPD16; NMST20; MHB™*16;
RWL19; Bij18; ZBP21; SAA20; FKDZ19] zu finden. Die erstgenannten Publikationen
[SKOT13]] und [[CHJA18|] konzentrieren sich auf den Beobachterentwurf und die automa-
tisierte Bestimmung der beinhalteten Parameter mittels BO. Im Falle eines UKF, welcher
auf den Transformationsgleichungen der UT (2-26)-(2-28)) basiert, wird bspw. der Ent-
wurfsparameter ~, der die Entfernung der Sigma-Punkte um den Erwartungsvektor steu-
ert, optimal in Bezug auf die Nichtlinearititen des Systems ausgelegt. Auf diese Weise
kann die Qualitét der Verteilungsapproximation gesteigert werden. Als Motivation fiir die
Verwendung der BO wird in diesen Arbeiten angefiihrt, dass kein spezifisches Fachwis-
sen iiber die Beobachterstruktur, das dynamsiche System und dessen zugrundeliegenden

Terme benotigt und so die aufwendige manuelle Suche umgangen wird.

In den anderen aufgefiihrten Veroffentlichungen wird Bezug zum Steuerungs- bzw. Re-
gelungsentwurf genommen. In [[CSPD16] wird ein Regler, welcher als Zustandsautomat
realisiert ist und gewisse Umschaltzeiten als Parameter besitzt, mit Hilfe der BO fiir
einen Laufroboter ausgelegt. Im direkten Vergleich mit anderen Losungsmoglichkeiten
zeichnet sich die BO hierbei als duflerst effizient aus, was in Hinblick auf mogliche
Beschidigungen aufgrund eines instabilen Laufvorgangs ein besonders wichtiges Kri-
terium darstellt. Hervorzuheben ist, dass dabei kein Vorwissen iiber die Laufdynamik
des Roboters genutzt wurde. Die Autoren begriinden dies mit der schwierigen Modell-
bildung aufgrund der niedrigen Qualitit der verbauten Komponenten, die das Gesamtsys-
tem sehr schwingungsanfillig machen. In [MHB™16] wird die BO fiir den Entwurf eines
linear-quadratischen Reglers verwendet. Allerdings werden nicht direkt die Parameter des
linearen Reglers als Optimierungsvariablen definiert, sondern die Elemente der Gewich-
tungsmatrizen des riccatischen GiitemaBes (vgl. (3-3)). Der Grund hierfiir ist, dass die BO
somit nur im Raum stabiler Regler arbeitet und mégliche Selektierungen, die zu einem
instabilen Verhalten fiihren wiirden, ausgeschlossen sind. Ahnlich zum modellbasierten
Entwurf ist diese Schlussfolgerung allerdings nur so gut wie die Priadiktionsqualitit des
linearen Dynamikmodells auf dessen Berechnung das riccatische Giitemal basiert. In den
Arbeiten [NMST20], [B1j18] und [RWL19] wird die BO tiefergehend im industriellen
Kontext und fiir die Auslegung von einfachen Reglern untersucht. Die betrachteten Sys-
teme sind dabei ein Steuerungsventil, welches zur Komprimierung von Gasen eingesetzt
wird, eine Windrand zur Stromerzeugung und ein mechanisches Positionierungssystem.

In allen Féllen wird hochstens ein lineares Modell als Vorwissen verwendet. Ein komple-



74 3 Steuerungsentwurf mittels Bayesscher Optimierung

xerer Regelungsansatz wird in den Arbeiten [SAA20] und [ZBP21], reprisentiert durch
eine modellpréadiktive Regelung (MPC), verwendet. Dabei wird bspw. der Stellhorizont
der MPC fiir das betrachtete System durch die BO optimiert. Zuletzt sei auch die Arbeit
von [FKDZ19] zu erwidhnen, worin die Parameter eines kiinstlichen neuronalen Netzes,
welches den Regler darstellt, mittels BO bestimmt werden. Da die Anzahl der Parameter
zu den vorherigen Anwendungsfillen vergleichsweise hoch ist, wird allerdings eine Di-
mensionsreduktion mit Hilfe eines Principle Component Analysis (PCA) Ansatzes dem
BO Algorithmus hinzugefiigt. Auf diese Weise kann der Suchraum deutlich reduziert und
der Einsatz der BO, welche grundsitzlich besser fiir niedrig dimensionale Probleme ge-

eignet ist, ermoglicht werden.

Die Veroffentlichungen des vorhergehenden Abschnitts erzielen insgesamt gute Ergeb-
nisse bei der Verwendung der BO im regelungstechnischen Kontext. Etwaiges Vorwissen
wird jedoch nur rudimentér genutzt, groBtenteils in Form von linearen Dynamikmodel-
len. Unklar bleibt dabei, wie sich komplexeres Vorwissen, moglicherweise vorliegend als
nichtlineares analytisches oder Black-Box Modell, im Rahmen der BO einfiigen l&sst.
Hierfiir bieten sich unter anderem die angenommene Mittelwert- und Kovarianzfunkti-
on des GPs (s. (3-4)) an. Ublicherweise werden hierfiir aufgrund eines nicht vorhandenen
oder unklaren Vorwissens die Ansitze m(0) = Ound k(+,-) = ksg(+, -) getroffen. Da sich
die BO an die Datenbasis anpasst, stellen diese Ansitze keine Einschrinkung an das Ver-
fahren dar, bieten jedoch ein Verbesserungspotential in Bezug auf die Effizienz bei der In-
betriebnahme. Komplexere Funktionen, die ein bestimmtes Fachwissen ausnutzen, wirken
sich im Rahmen der BO so aus, dass bestimmte Gebiete im Suchraum ggf. ausgeschlos-
sen werden konnen und durch die BO nicht aufwendig exploriert werden miissen. Die BO
kann sich somit direkt auf die Gebiete fokussieren, die die besten Giitefunktionswerte ge-

nerieren und das zur Verfiigung stehende Iterationsbudget dort zweckmiBiger nutzen.

Zwei Veroffentlichungen, die die Schnittstelle der Kovarianzfunktion zur Einbringung
von Fachwissen explizit ausnutzen, sind [RAMA19] und [MBH"17]. Die Schnittstelle
wird dabei sehr unterschiedlich verwendet. In [RAMA19] wird ein im Kreis laufender
Roboter betrachtet, dessen Steuerungsparameter ausgelegt werden sollen. Die Autoren

nutzen fiir diesen Fall eine eigene Variante des SE-Kernel, welche iiber

krse(0, 0'; n) = kse(¢(0), ¢(9,)§ n),

beschrieben wird und als Zusatz den Buchstaben [ fiir Informed trigt. Hierin ist ¢(8)
eine Transformation der Parametrisierung, die als Basis das vorhandene Vorwissen ei-
nes mechanischen Dynamikmodells nutzt. Es werden verschiedene Moglichkeiten fiir
die Transformation vorgeschlagen. Eine Moglichkeit ist die simulierte Trajektorie, wel-

che durch die Verwendung eines fixierten 6 entsteht, zu verwenden. Im Zuge dessen
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wird bzgl. der SE-Berechnungsvorschrift kein Vergleich zwischen Parameterwerten vor-
genommen, sondern ein Vergleich zwischen Trajektorien. Fiir besonders sensitive Sys-
teme wie den Laufroboter ist dieser Ansatz sinnvoll, da zwei dhnliche Parametrisierun-
gen ohne die Transformation zu einer hohen Kovarianz fiihren wiirden, allerdings nicht
die moglicherweise ginzlich unterschiedlichen Trajektorien widerspiegeln. Mit Hilfe der
Transformation gelingt es somit, die Parametrisierungen in einen geeigneten Raum fiir
einen Vergleich zu iiberfiihren und das vorhandene Vorwissen zu beriicksichtigen. Um
die Dimension dieses Raums deutlich zu reduzieren und damit Berechnungszeit einzu-
sparen, schlagen die Autoren vor, vorab (offline) eine ausreichend grofle Datenbank von
simulierten Trajektorien zu erstellen und eine niedrig dimensionale Transformation iiber
eine lernfdhige Autoencoder-Struktur zu erlernen. AnschlieBend wird online die BO unter

Verwendung des Autoencoders zur Identifikation der Parametrisierung ausgefiihrt.

In [MBH™17] wird die Schnittstelle zur Kovarianzfunktion ebenfalls genutzt, um ein dy-
namisches Modell einflieBen zu lassen. Dafiir wird ein sogenannter Multisource GP de-
finiert, welcher mehrere verschiedene Informationsquellen vorsieht. Zunichst wird ein
erweiterter Parametervektor mit 6 := (67, 5] eingefiihrt, wobei § € {0,1} eine binre
Variable darstellt, die angibt, ob es sich um einen simulierten oder real gemessenen Da-

tenpunkt handelt. Der Kernel wird demnach iiber den Ausdruck
5(0,0) = kyim(0,0') + ks (5,5 kurr (0,8

angesetzt und setzt sich somit additiv aus einem Term fiir die Simulation und einem Kor-
rekturterm zusammen. Fir kg, (¢, ) und ke, (-, -) kann bspw. der SE-Kernel verwendet
werden. Das Verbindungselement stellt ks(-,-) € {0,1} dar, womit iiberpriift wird, ob
beide Eingaben vom realen System stammen. Nur in diesem Fall ist der korrektive Fehler-
term aktiv und wird im Rahmen der GauB3-Prozess-Regression berticksichtigt. Der Ansatz
verfolgt die Grundidee, dass simulierte Daten nur einen Teil der wahren Giitefunktion
erkldaren konnen. Dementsprechend sinkt die Unsicherheit bei den ausgewerteten Stellen
des Parameterraums nur geringfiigig im Vergleich zu einer Auswertung am realen Sys-

tem, wobei die Unsicherheit (abgesehen vom Messrauschen) vollstindig verschwindet.

Bild zeigt beispielhaft die Wirkungsweise des eingesetzten GPs in [MBH™17]. Die
griine durchgezogene Linie zeigt den Ground Truth bzw. die unbekannte wahre Giite-
funktion. Der linke (schwarze) Datenpunkt stellt ein Experiment am realen System dar
und stammt somit vom Ground Truth. Der rechte Datenpunkt wurde anhand des Simu-
lationsmodells erzeugt und befindet sich abseits des Ground Truth, um die Auswirkung
von vorhandenen Modellfehlern anzudeuten. Die griine gestrichelte Linie wird somit dem

Simulationsmodell zugeordnet. In der linken Bildhilfte stimmen Realitit und Modell gut
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10

Gutefunktionswert J

Parametrisierung 6

Bild 3-1: Visuelle Darstellung eines Multisource Gauf3-Prozesses (blau, rot), welcher auf
zwei verschiedenen Informationsquellen basiert. Die griine durchgezogene Linie
zeigt die wahre Giitefunktion und die griine gestrichelte Linie eine modellbasier-
te Schditzung.

miteinander iiberein, wohingegen es auf der rechten Seite deutliche Unterschiede gibt, der
(steigende) Trend tendenziell aber stimmt. Die blauen Verldufe gehoren zur vollstindigen
Kovarianzfunktion, also inkl. dem Korrekturterm, und kennzeichnen den Mittelwert und
die zweifache Standardabweichung. Gut erkennbar ist, dass die Varianz beim realen Da-
tenpunkt stark reduziert ist, wohingegen der fiktive Datenpunkt der Simulation die Un-
sicherheit nur geringfiigig beeinflusst. Die roten Verldufe werden der Simulation zuge-
ordnet und weisen das gegenteilige Verhalten auf. Hierbei fiihrt der fiktive Datenpunkt
zu einer deutlichen Reduktion der Varianz und der reale Datenpunkt hat nur eine ge-
ringe Auswirkung. Die BO-Routine enthilt aufgrund des erweiterten GP-Ansatzes ei-
ne zusitzliche Abfrage, ob ein reales oder fiktives (simuliertes) Experiment ausgefiihrt
werden soll. Dies geschieht anhand eines weiteren Kriteriums, welches durch bestimm-
te vorab festgelegte Grenzwerte bestimmt ist. In dieses Kriterium flieBen die Grundsitze
ein, dass ein simuliertes Experiment zeitlich deutlich schneller durchgefiihrt werden kann
als ein reales, dafiir jedoch weniger Informationen beinhaltet und damit vergleichsweise
als minderwertiger anzusehen ist. Aufgrund dieser Erweiterung wihlt die BO automati-
siert zwischen realen und simulativen Auswertungen und wechselt, je nach festgelegten
Kriterien, zwischen diesen hin und her. Im Kern beriicksichtigt somit zwar
a-priori-Wissen liber die Regelungsaufgabe, macht allerdings auch darauf aufmerksam,
dass dieses Wissen unvollstiandig bzw. nicht perfekt sein kann und daher nur bedingt und

mit einer gewissen Unsicherheit, ausgenutzt werden sollte.

Die genannten Arbeiten haben gemeinsam, dass die Mittelwertfunktion m(-) des GP als
Schnittstelle vernachldssigt wird, obwohl diese den intuitiv einfachsten Weg darstellt, um
Expertenwissen einzubinden. In wird dieser Aspekt innerhalb einer kritischen
Analyse ihres Ansatzes aufgegriffen. Der Umweg iliber den Multisource-GP ist dann be-

sonders niitzlich, wenn das Vorwissen relativ ungenau ist und nur eine grundsitzliche
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Tendenz in Hinblick auf die Giitefunktion beinhaltet. Andernfalls sehen die Autoren die
Mittelwertfunktion als besser geeignete Schnittstelle an, da iiber sie keine Generierung
von Datenpunkten notwendig ist. Das gesamte Simulationsmodell ist demnach direkt bei
der Auswertung einer bestimmten Stelle € vorhanden und nicht nur partiell an den Stellen,
die durch die BO ausgewihlt wurden. Vor dem Hintergrund der Berechnungskomplexitit
ist die Verwendung der Mittelwertfunktion ebenfalls vorzuziehen, da die fiktiven Daten
der Simulation die Datenmenge rasch ansteigen lassen und damit gleichermaf3en die Be-
rechnungsdauer zunimmt. Problematisch an der Verwendung der Mittelwertfunktion als
Schnittstelle ist lediglich die Einbindung von zu stark fehlerbehafteten Annahmen. In
[Sch19] wurde hierzu bspw. ein einfaches Pendelsystem betrachtet und die Effizienz der
BO bzgl. verschiedener mechanischer Parametrierungen untersucht. Als Ergebnis wur-
de folgender Zusammenhang herausgearbeitet: Je groler die Abweichung der Parame-
trierung zum realen System, desto niedriger die Effizienz des Verfahrens. Ab einer ge-
wissen Grenze konnte sogar eine Verschlechterung gegeniiber dem Fall ohne Vorwissen,
d. h. m(-) = 0, beobachtet werden. Anschaulich kann dieser Fall so interpretiert werden,
dass die wahre Giitefunktion eine Sinusschwingung darstellt und als Mittelwertfunktion
der Cosinus benutzt wird. Dabei benétigt die BO zahlreiche (zusitzliche) Auswertungen,
um den Fehler, welcher durch die Mittelwertfunktion induziert wird, auszugleichen, so-
dass insgesamt die Effizienz deutlich sinkt. Letztendlich steht der Anwender der BO vor
der Frage, in wie weit das vorhandene Vorwissen eingebunden werden soll bzw. wel-
che Priadiktionsfihigkeit es besitzt. Insgesamt betrachtet ist die Mittelwertfunktion in den
tiberwiegenden Fillen vorzuziehen. Dies wird bspw. durch die Arbeit in [DFE20] moti-
viert. Hierin wird explizit die Rolle der Mittelwertfunktion im Rahmen der BO umfassend
durch ein breites Spektrum von géngigen Testfunktionen untersucht und ein positives Fa-

zit fiir die Verwendung ausgesprochen.

Das Ziel dieses vorliegenden Kapitels ist, die BO fiir die Inbetriebnahme eines komplexen
Anwendungsbeispiels - dem Ultraschalldrahtbonden - auszulegen. Sowohl eine theoreti-
sche als auch praktische Umsetzung dieses Konzepts wurde in der Literatur bisher nicht
beschrieben und stellt daher eine neuartige Entwicklung dar. Es soll eine optimale Para-
metrisierung einer vorab festgelegten Ansatzfunktion fiir die Steuerung direkt am realen
System identifiziert werden. Der Ultraschalldrahtbondprozess zeichnet sich dadurch aus,
dass ein modellbasierter Entwurf nach momentanen Stand der Forschung aufgrund der
schwierigen Modellbildung nicht realisierbar ist. Die vorliegende Arbeit setzt hier mit
der Verwendung der BO an und ermdglicht somit eine effiziente und praktische Ausle-
gung der Steuerung. Um dieses Ziel zu erreichen, ist es notwendig eine an das System
angepasste Variante der BO zu entwickeln, die die Besonderheiten in Hinblick auf die
Entwurfskriterien addquat berticksichtigt. Zudem wird zur Effizienzsteigerung das vor-

handene Expertenwissen bestmoglich ausgenutzt. Um das entwickelte Verfahren zu va-
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Bild 3-2: Schematischer Aufbau und Komponenten [SKHS21|] des Ultraschalldrahtbond-
prozesses (links) und zwei exemplarische Aufnahmen einer Aluminimum Bond-
verbindung aus der Draufsicht mittels Lichtmikroskops (rechts).

lidieren, werden verschiedene Versuchsreihen am Bondautomaten durchgefiihrt und die
allgemein vorteilhaften Eigenschaften der BO bewertet. Nachfolgend wir zunichst eine

vollstdndige Einfilhrung in den Ultraschalldrahtbondprozess gegeben.

3.3 Anwendungsbeispiel: Ultraschalldrahtbondprozess

Ultraschalldrahtbonden ist ein Festkorperfiigeprozess [Har10; [HSB*20]. Dabei handelt
es sich um eine Standardtechnologie fiir die Herstellung elektrischer Verbindungen in

der Mikro- und Leistungselektronik und wird zudem auch in der Batterieproduktion im
Rahmen der Elektromobilitit verwendet. Bild [3-2] zeigt die Hauptkomponenten eines
Ultraschalldrahtbondprozesses. Eine oszillierende Relativbewegung zwischen Draht und
Substrat (Untergrund) wird durch eine Wechselspannung Us(¢) mit Ultraschallfrequen-
zen, iiblicherweise im Bereich von 40 bis 150 kHz, induziert, die auf einen piezoelektri-
schen Wandler (Transducer) angelegt ist. Der Transducer wandelt die elektrische Anre-
gung in mechanische Vibrationen um, die iiber ein Bondwerkzeug in die Verbindungszo-
ne iibertragen wird. Das Bondwerkzeug driickt den Draht mit einer Normalkraft Fy ()
auf das Substrat. Die beiden metallischen Partner, z. B. Aluminiumdraht auf einem gold-
beschichteten Substrat, werden durch Interdiffusion und Bildung von intermetallischen
Verbindungen kalt zusammengeschweif3t. Die Vibration wird fiir eine Prozesszeit von un-
gefdhr 300 ms in Abhéngigkeit des Drahtdurchmessers erzeugt. In der Regel wird der
Transducer wihrend der Prozessdauer durch einen zugrundeliegenden Frequenzregler in
Resonanz gehalten, um die maximale Amplitude des Werkzeugs zu erhalten. Im Rah-
men dieser Arbeit wird davon ausgegangen, dass dieser Frequenzregler vorhanden und
passend eingestellt ist bzw. keiner weiteren Optimierung bedarf. Nach der Erzeugung
der ersten Bondverbindung wird in einem herkdommlichen Prozess eine Drahtschleife zu

einem zweiten Ort gezogen. An der zweiten Stelle wird der Draht ebenfalls mit dem Un-
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Bild 3-3: Exemplarischer Verlauf der parametrisierten Steuerung fiir den Ultraschall-
drahtbondprozess.

tergrund verbunden und daraufhin durch ein Messer abgeschnitten. Fiir diese Arbeit ist
die Betrachtung der ersten Verbindung ausreichend, sodass der Draht direkt im Anschluss
an die erste Verbindungsstelle abgeschnitten wird. Bild [3-2] zeigt hierzu auf der rechten
Seite zwei verschiedene Bondverbindungen an deren rechter Seite der scharfe Schnitt des

Messers erkennbar ist.

Die Steuerung des Prozesses ist durch die Normalkraft Fy(¢) und die Spannungsam-
plitude Ug(t) definiert. In Bild ist die vorgeschlagene parametrisierte Steuerfunkti-
on u(t; @) = [Fn(t;8), Us(t; 8)]7 fiir die beiden Eingiinge dargestellt. Die genaue Form
der Steuerung wird durch @ = [Fy, Fy, Fy, Uy, Uy, T1, Ty)7 € R7 charakterisiert. Die
Ubergangszeiten (Rampenlingen) werden auf 25% der jeweiligen Gesamtphasenzeit 77, Th
eingestellt. Der formelméafige Zusammenhang der Steuerung ist im Anhang unter (A3-1))
angegeben. Die Steuerung basiert auf dem Expertenwissen verschiedener Einrichter des
Prozesses und hat sich bereits iiber mehrere Jahre hinweg als besonders zuverldssig und

geeignet erwiesen, um qualitativ hochwertige Bondverbindungen zu erzeugen.

Physikalisch gesehen, besteht der Bondprozess aus vier Phasen, wobei eine kontinuier-
liche Uberlappung zwischen den letzten drei stattfindet [Gei09; LTW17]): In der ersten
Vordeformations-Phase wird der Draht zunédchst ohne Vibrationseinbringung auf das Sub-
strat gedriickt und verformt. Wenn das Bondwerkzeug zu vibrieren beginnt, wird eine
Relativbewegung zwischen Draht und Substrat verursacht. Dies entfernt Verunreinigun-
gen wie Staubpartikel oder Oxidschichten und reduziert zudem die Rauheit beider Ober-
flachen. Die Phase dient somit der Reinigung und Aktivierung. Danach folgt eine Phase
der groBeren plastischen Verformung des Drahtes, unterstiitzt durch den ultraschallbe-
dingten Erweichungseffekt [USA™14]. In der abschlieBenden Diffusions-Phase nimmt die
Kontaktflache zu und beide Kontaktpartner diffundieren ineinander bis zum Ende des Pro-

zesses, was letztendlich zu einer soliden (Bond-)Verbindung fiihrt. Eine geeignete Steuer-
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funktion zur Erzeugung stabiler Bondverbindungen unterstiitzt die Bildung dieser physi-
kalischen Phasen, muss sie jedoch nicht direkt in ihren Parametern widerspiegeln. Basie-
rend auf Expertenerfahrung hat die Steuerfunktion daher drei Phasen. Die erste Phase ist
die Vordeformationsphase mit der initialen Kraft F{y. Die Dauer dieser Phase ist irrelevant,
sollte allerdings ausreichend sein, um eine anfdangliche Kontaktfliche hervorzurufen. Die
zweite Steuerphase, mit den Parametern (77, F7, Ul), deckt die physikalischen Prozesse
der Reinigung und Aktivierung, sowie die erste Verformung und Interdiffusion grob ab.
Die letzte Steuerphase enthilt die Parameter (73, F5, Ug) und ist fiir den groBten Teil der

Verformung und fiir die finale VerschweiBung verantwortlich.

Es gibt mehrere Kriterien, die die Qualitét einer Verbindung definieren. Gemafl [DVS17]]
werden insbesondere die Scherfestigkeit und optische Kriterien, wie die schidliche Kol-
lision des Werkzeugs mit dem Substrat, beriicksichtigt. Die Scherfestigkeit einer Verbin-
dung wird mit einer Kraftmessdose in Kombination mit einem Schermeiflel gemessen.
Der Meiflel bewegt sich liber die Verbindung in einer bestimmten geringen Hohe iiber
dem Substrat, wihrend gleichzeitig die maximale Kraft Fs bis zum Bruch der Verbin-
dung gemessen wird. Es handelt sich dabei also um eine zerstorende Messmethode, die
pro Bondverbindung nur einmal durchgefiihrt werden kann. Ein Kontakt zwischen Werk-
zeug und Substrat kann auftreten, wenn die verwendete Steuerung zu viel Energie in das
System einfiihrt. In diesem Fall verformt sich der Draht zu stark und die Kanten des Bond-
werkzeugs kollidieren mit dem Substrat, wodurch beide Komponenten méglicherweise
beschédigt werden. Dieses Szenario muss, insbesondere beim Bonden auf empfindlichen
rissanfélligen Substraten wie Halbleiterplatten, wihrend des Betriebs vermieden werden.
Beim Steuerungsentwurf ist es unerwiinscht, aber zur Exploration zulédssig. Aufgetretene
Kollisionen kénnen mit einem optischen Mikroskop nach dem Prozess erkannt werden.
Bild zeigt hierzu auf der rechten Seite eine Verbindung ohne (oben) und mit (unten)

einem Werkzeugaufsetzer.

Der Prozessfihigkeitsindex C, ist ein wichtiges statistisches Mal in der Industrie und
wird in diesem Kontext verwendet, um die Qualitit des Bondprozesses zu quantifizie-
ren. Er hiangt vom Mittelwert und der Varianz der Scherkraft ab, die durch Prozess-
und Messrauschen negativ beeinflusst wird. Daher ist die Scherkraft als eine Zufalls-
variable mit dem Mittelwert E[Fs(0)] und der Varianz V[F(8)] aufzufassen. Der Pro-
zessfahigkeitsindex [DVS17]] wird dann definiert durch

E[Fs(6)] — LSL

N ()

; (3-9)

wobei LSL (Lower Specification Limit) die untere Spezifikationsgrenze ist. Sie bestimmt

die minimale Scherkraft, die erreicht werden soll, und wird je nach Anwendungsfall und
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Materialpaarung von einem Experten ausgewihlt. Um den C)x-Wert zu berechnen, wird

der Mittelwert und die Varianz empirisch durch

Nrep
1

B[Fs(0)] ~ — > Fy'(6) = iy (6),
VIESO)) ~ =g D (F(0)  pr (0))* = F,(6),

=1

approximiert, wobei n,., > 1 (Repetition) separate Bonds mit derselben zugrundeliegen-
den Steuerung erzeugt werden, was zu den Messdaten Fs(i)(e),i = 1,...,n, fihrt.
Werkzeugkollisionen und andere optische Kriterien werden durch die binédre Variable
g(0) erfasst, wobei 0 eine gute Verbindung und 1 eine Verbindung mit einem optischen
Mangel reprisentieren. Genauer gesagt, wenn mindestens eine der n,., Verbindungen

einen optischen Mangel aufweist, wird g(8) auf 1 gesetzt.

Der Entwurf der parametrisierten Steuerung fiir den Ultraschalldrahtbondprozess wird

dann mathematisch als das folgende restringierte Optimierungsproblem formuliert:
0. = arg max Cox(0), uB.v. ¢(0)=0. (3-10)

Dieses Problem wird in der Praxis in der Regel durch manuelles Ausprobieren gelost, da
es bisher keine automatisierte Losungsstrategie in der Industrie gibt. Das Optimierungs-
problem héngt von vielféltigen Rahmenbedingungen ab, womit es nicht ausreicht es ein-
malig zu 16sen. In der Praxis treten bspw. unterschiedliche Materialpaarungen auf, die ei-
ne Anpassung der Steuerungsparameter erfordern. Aulerdem kann die genaue Geometrie
des Substrats oder der Drahtdurchmesser einen Einfluss auf die optimale Parametrisierung
haben. Aus diesen Griinden muss das Optimierungsproblem je nach Anwendungsfall auf-
wendig neu durch einen Einrichter gelost werden. Das Ziel dieser Arbeit ist, das Pro-
blem mittels BO zu 16sen und damit vom menschlichen Anwender grofitenteils zu ent-
koppeln. Die Vorteile dieser Vorgehensweise sind vielfiltig, werden aber vor allem in
einer Zeit- und Kostenersparnis gesehen. Des Weiteren wird durch den Einsatz der BO
die Moglichkeit geschaffen, einen Steuerungsentwurf im Sinne der Regelungstechnik
durchzufiihren. Dieser Entwurf ist gegeniiber der manuellen Auslegung von Vorteil, da
er nicht auf einer subjektiven Einschidtzung des menschlichen Einrichters basiert, sondern
nach objektiven Kriterien der BO bewertet wird. Der Ansatz dieser Arbeit ist es jedoch
nicht das Expertenwissen unberiicksichtigt zu lassen, sondern iiber die erwidhnten GP-
Schnittstellen anderweitig einzubeziehen. In diesem Zuge ist die bereits erlduterte Wahl

der Steuerungsfunktion aus Bild [3-3| eine Form der Einbringung von Fachwissen. Durch
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thre Wahl wird der Suchraum an moglichen Steuerungsverldufen drastisch eingeschrinkt

und trigt somit zu einer Effizienzsteigerung bei.

Den Schlussfolgerungen aus dem Abschnitt zum Stand der Forschung folgend, ist die
Mittelwertfunktion m (@) des GP eine einfache und nachvollziehbare Moglichkeit, um
Vorwissen iiber die Steuerungsaufgabe innerhalb der BO aufzugreifen. Mit der
Kenntnis eines simplen Simulationsmodells konnte hierbei eine Auswertung des Cx-
Werts vorgenommen werden, welche wiederum als geeignete Mittelwertfunktion einge-
setzt werden konnte. Im Grunde ist bereits eine Schitzung der Scherfestigkeit Fs ausrei-
chend, da der C),-Wert im wesentlich von diesem abhéngt und fiir die Varianz V[F§] der
Einfachheit halber ein konstanter Faktor angesetzt werden kann (s. (3-9)). Das nichste
Kapitel widmet sich daher der Aufstellung eines geeigneten Simulationsmodells fiir den
Ultraschalldrahtbondprozess, welches auf der Grundlage von physikalischen Gesetzmi3ig-

keiten hergeleitet wird.

3.4 Physikalische Modellbildung fiir das
Ultraschalldrahtbonden

Die physikalische Modellbildung des Ultraschalldrahtbondprozesses wird innerhalb der
Literatur vielseitig diskutiert. Die Modelltiefen unterscheiden sich dabei deutlich und rei-
chen von einfachen Einmassenschwingern mit besonderen Reibcharakteristiken bis hin zu
komplexen (FEM-)Modellen. Im Rahmen dieses Unterkapitels sollen einige der Modelle
vorgestellt und ihre Vor- bzw. Nachteile erldautert werden. Des Weiteren soll ihre Eignung
als Vorwissen im Rahmen der BO besprochen werden. Bild zeigt auf der linken Sei-
te einen klassischen mechanischen Modellansatz, welcher sich aus einer Verkettung von
Massen und Feder-Dampfer-Elementen zusammensetzt, und auf der rechte Seite ein hoch
diskretisiertes FEM-Modell, wobei die Druckverteilung in der Kontaktfliche hervorge-
hoben ist [[Ungl7]. Im Nachfolgenden werden diese und verwandte Modellierungsarten
ndher beschrieben. Dabei verfolgen alle Modelle das Ziel, die zeitliche Entwicklung der

Scherfestigkeit Fi5(t) genau wiederzugeben bzw. vorherzusagen.

Ein erster einfacher Modellierungsansatz besteht darin, nur die Drahtmasse mit einer ge-
federten Verbindung zum Untergrund zu betrachten. Das Masse-Feder-System auf der
linken Seite von Bild wird hierzu als Anschauung verwendet. Genauer genommen,
wird nur die Masse (Draht) auf der ganz rechten Seite betrachtet, welche durch eine par-

allele Feder-Anordnung mit dem Substrat verbunden ist. Der gesamte linke Teil wird also
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Bild 3-4: Ansditze zur physikalischen Modellierung des Ultraschalldrahtbondprozes-
ses [|{Ungl7]. Mehrmassenschwinger mit Jenkins-Element (links) und Finite-
Elemente-Methode zur Beschreibung der Kontaktfliche (rechts).

zunichst vernachléssigt. Das beschriebene Modell lédsst sich durch die Differentialglei-
chungen (angelehnt an [Ung17; SKHS21])

t1(t) = $p(t),
1

(1) = 50(0) = - (FL (D) epslt) — Fo(0).

ia(0) = Foft) = essp(0)1 = 11 + senin(0 o) |l

i4(0) = W) = §FA03p(0)(1 -+ sign(sp (O (1) | o s
mathematisch beschreiben. Darin reprisentiert @ = [sp, ép, Fy, W,]7 den Zustand des

Systems, welcher wiederum aus der Wagenposition sp des Drahts, seiner Geschwindig-
keit sp, einer internen Kraftkomponente F; und der geleisteten Reibungsenergie W,
besteht. Die Einginge in das System werden mit Hilfe der wirkenden Normalkraft Fy
und der Tangentialkraft F7-, welche horizontal am Wagen bzw. Draht wirkt, beschrieben.
Zur Vereinfachung wird zunéchst die Tangentialkraft als Ursache fiir die Vibration der
Drahtmasse angesehen. Um einen Zusammenhang zur angelegten elektrischen Spannung
Us, welche den eigentlichen Eingang darstellt, herzustellen, kann eine Proportionalitit
mit /r o< Ug angenommen werden. Des Weiteren enthalten die Differentialgleichun-
gen spezifische mechanische Parameter: cp, c; sind Federsteifigkeiten und (W, (t)) ein
energieabhédngiger Reibungswert, welcher die Stiarke der Anbindung représentiert.
beschreibt auf einfache Weise die Relativbewegung zwischen dem Draht und dem Un-
tergrund. Die Besonderheit des Modells ist die Verwendung des sogenannten Jenkins-
Elements (s. Bild in Kombination mit einer Evolutionsgleichung [[Ungl17]], welches
den Haft- und Gleitreibungszustand charakterisiert und den Ubergang kontinuierlich flie-
Bend abbildet. Die Differentialgleichung bzgl. F; beschreibt in diesem Zusammenhang

verschiedene Fille, die das Element annehmen kann. Unter anderem muss die Normal-
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kraft Fy einen passenden Wert annehmen, da ansonsten keine Reibungsenergie erzeugt
wird. Ist die Kraft zu gering, gleitet der Draht wirkungslos iiber den Untergrund. Ist die
Kraft hingegen zu grof}, wird der Draht so stark auf den Untergrund gedriickt, dass er
sich elastisch mit dem Untergrund bewegt bzw. an diesem haftet und keine wirksame
Reibung entstehen kann. Neben der Normalkraft ist die Tangentialkraft /7 ein weiterer
Steuereingang, durch die eine sinusformige Schwingung des Drahtes vorgegeben wird.
Eine optimale Ansteuerung wird im Rahmen des Modells durch das Integratorverhalten
der gesamten eingetragenen Reibungsenergie W, beschrieben, welche sich proportional
zur Scherkraft F's verhilt und somit im Idealfall ein kontinuierliches Anwachsen wider-

spiegeln sollte.

Das auf diesem Wege hergeleitete Modell beschreibt den Bondprozess physika-
lisch und fiir den Menschen nachvollziehbar. In Hinblick auf das reale System und die
schematische Darstellung in Bild [3-2]lésst sich das Modell auf der ausgewihlten Model-
lierungstiefe folgendermaBen erweitern: In Bild sind weitere Massen fiir das Bond-
werkzeug und den Wandler vorgesehen. Die Verbindung der Massen erfolgt durch Feder-
Déampfer-Elemente, die insgesamt betrachtet zu eigenen (Ein-)Schwingvorgingen fiihren.
Des Weiteren deutet der vertikale Balken die elektro-mechanische Verbindung der Piezo-
elektronik an, die durch ein Hebelgesetz definiert wird. Somit ldsst sich anstelle der ein-
gefiihrten Tangentialkraft /77 die urspriingliche elektrische Spannung Ug am Transducer
als StellgroBe fiir das erweiterte Modell verwenden. Das erweiterte Modell zeichnet sich
dadurch aus, dass es neben der Drahtdynamik die Bewegungen der anderen Komponen-
ten miteinbezieht und deren Schwingungs- bzw. Resonanzverhalten. Vor dem Hintergrund
des Steuerungsentwurfs ist dieser jedoch komplizierter geworden, da nun die komplexere

Wirkungskette vom Wandler bis hin zum Substrat zu beriicksichtigen ist.

Das komplexe FEM-Modell [Ung17], welches auf der rechten Seite von Bild [3-4] zu se-
hen ist, kann auf der Basis des bereits erlduterten Modellansatzes nachvollzogen werden.
Die Grundidee ist, die Kontaktfliche zwischen Draht und Untergrund gleichmiBig zu dis-
kretisieren und fiir jedes finite Element die Differentialgleichungen aus bzw. die
des Jenkins-Elements anzusetzen. Unter der Annahme einer parabelférmigen Druckver-
teilung, die durch die wirkende Normalkraft und die elastische Verformung des Drahtes
entlang der vertikalen Richtung hervorgerufen wird, werden die einzelnen Diskretisie-
rungspunkte unterschiedlich angeregt. Die elastische Verformung wird dabei iiber ein un-
terlagertes FEM-Modell fiir das Materialverhalten des Drahtes verwendet. Aufgrund der
feinen Diskretisierung wichst in jedem Element die Reibungsenergie auf unterschied-
liche Weise an, sodass sich lokal voneinander differenzierbare Scherkrifte beobachten
lassen. Reprisentativ ist dies durch die Farben fiir die Druckverteilung in Bild [3-4] darge-

stellt. Demnach wachsen die lokalen Scherkrifte ellipsenformig von innen nach auf3en an.
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Die Scherkraft des Gesamtmodells wird nach Prozessende iiber eine gewichtete Summe
iiber alle Elemente gebildet. Zusammengenommen ist das komplexe FEM-Modell dafiir
geeignet, um die lokalen Effekte innerhalb der Kontaktfliche wiederzugeben. Dieser Ge-
nauigkeitszuwachs wird jedoch durch eine deutlich erhohte Berechnungszeit im Vergleich
zum einfacheren Masse-Feder-System kompensiert und bietet vor dem Hintergrund des
Giitemales bzw. der resultierenden Scherfestigkeit keine signifikanten neuen Informatio-
nen. Grundsitzlich ldsst sich das Simulationsergebnis des Masse-Feder-Systems als die
gewichtete Summe iiber die lokalen Scherfestigkeiten des FEM-Modells auffassen. Die
Tauglichkeit des FEM-Modells fiir die Verwendung im Rahmen der BO als Vorwissen
iiber den Prozess ist damit bereits in Frage zu stellen. Die lokalen Effekte sind im Rahmen
des Steuerungsentwurfs nicht von Bedeutung, sodass das einfachere Modell vorzuziehen

ist.

Ein wesentlicher Nachteil der bisher vorgestellten Modellierungsansitze stellt zudem die
Berechnungszeit dar. Das FEM-Modell benotigt beispielsweise eine Berechnungsdauer in
der GroBenordnung von einer Stunde fiir die Simulation von den erwihnten 300 ms, die
der Prozess fiir die Erzeugung einer Bondverbindung braucht. Die Ursache hierfiir kann
bei dem Diskretisierungsgrad des FEM-Modells gesehen werden, ist jedoch nicht maB3-
geblich. Das Hauptproblem liegt vor allem bei der zeitlichen Schrittweite des zugrundelie-
genden Integrationsverfahrens. Das aufgeschaltete Steuersignal fiir die elektrische Span-
nung besitzt eine Frequenz von mehreren Kilohertz, womit die zeitliche Schrittweite in
einem dhnlichen Bereich fiir eine stabile numerische Simulation liegen muss. Die notwen-
dige und sehr geringe Schrittweite ist daher der Hauptgrund fiir die lange Berechnungszeit
der bisher vorgestellten Modelle. In Hinblick auf den BO-Algorithmus [[Jund die 4. Zeile,
in welcher die Akquisitionsfunktion optimiert wird, ist eine lange Berechnungszeit der
a-Priori-Mittelwertfunktion besonders unpraktikabel. Die Akquisitionsfunktion besitzt in
der Regel viele lokale Optima, die vor dem Hintergrund einer globalen Optimierungsstra-
tegie eine liberméfBig hohe Anzahl von Funktionsauswertungen erfordert. Diese Anforde-

rung konnen die bisherigen Ansitze nicht erfiillen.

Die angesprochene Problematik motiviert den Einsatz von einfacheren Modellen, die
nicht auf der Ebene der Drahtbewegung agieren, sondern auf einer hoheren Modellie-
rungstiefe angesiedelt sind. Eine Variante besteht darin, nicht die exakte hochfrequente
Schwingung zu betrachten, sondern sich nur auf ihre Amplitude zu fokussieren. Dadurch
ist fiir die Simulation eine zeitliche Diskretisierung der Amplitudenverldufe vorzuneh-

men fiir die vergleichsweise eine betrachtlich grolere Schrittweite ausreichend und damit
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zielfiihrender ist (vgl. Bild . In [SAS*18; SSH™20; SKHS21] schlagen die Autoren

zwel verkniipfte und fallabhiingige Differentialgleichungen iiber

cyP(t) Fir0 < ~(t) <1, (1) = cy(t)P(t) Fir P(t) > P,

0 sonst, 0 sonst,

1) =

vor. Hierin stellt v den Reinigungsgrad innerhalb der Kontaktflache dar und 7 ist mit der
Scherfestigkeit gleichzusetzen. Des Weiteren ist P die eingetragene Reibleistung, welche
durch die Steuerungsgroflen hervorgerufen wird. Der Reinigungsgrad v verlduft zwischen
den Grenzen 0 (ungereinigt) und 1 (vollstédndig gereinigt), kann aufgrund der Konstrukti-
on nur monoton steigen und beinhaltet einen prozessabhiingigen Skalierungsfaktor c,. Um
einen Einfluss auf die Scherkraft zu haben, wird ein bestimmtes Mindestmal} an Leistung,
durch die Einfiihrung eines Schwellwerts Fy, gefordert. Wird diese Grenze iiberschritten,
nimmt der Scherkraftzuwachs 7 proportional zum Reinigungsgrad -y iiber den Parameter
¢, zu. Dieser Ansatz zeichnet sich durch seinen einfachen und leicht nachvollziehbaren
Aufbau aus und beschreibt sehr gut das Sattigungsverhalten der Reinigung und Scherkraft
am Ende der Prozessdauer. Zudem werden nur wenige Parameter benétigt, um das Modell
vollstindig zu definieren. Ein Nachteil des Modells ist, dass es nur bedingt aussagekriftig

und in seiner Priadiktionsfahigkeit bzgl. der Scherkraft stark eingeschrénkt ist.

Eine etwas detailliertere Sichtweise auf der Beschreibungsebene der Amplituden wird in

[Gau09] vorgeschlagen. Der Bondvorgang wird darin iiber die Gleichungen

360 = ka(0)+ (Falt) = () = G0 ) 2(0) — e (o
ta(t) = L5 a0,
£2(6) = 35 c110x Pt tn = ) (0,

ausgedriickt. Die resultierende Scherkraft ldsst sich bei diesem Modell iiber den Zusam-
menhang Fs = 7A bestimmen, wobei v wiederum den Reinigungsgrad darstellt und A
die Anbindungsfliche im Kontakt wiedergibt. Das Modell héingt von etwaigen (mecha-
nischen) Parametern ab. So gehen neben der Schwingungsfrequenz f, auch die Stei-
figkeit der Verbindung c und spezifische Reibungswerte fiir die Oxid- p,, und metalli-
sche i, Schicht ein. Des Weiteren stellt 5, die Amplitude des Drahtes im unbelaste-
ten frei-schwingenden Fall dar, welche durch die zunehmende Belastung durch die An-
bindung vermindert wird. Eine besondere Charakteristik des Modells ist die quadrati-
sche Abhidngigkeit bzgl. v. Dieser Ansatz wird in [Gau09] durch verschiedene experi-

mentelle Messreihen begriindet und basiert daher nicht direkt auf physikalsichen Ge-
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Bild 3-5: Zusammenfassung der Validierungsergebnisse aus [|[Her20]. Gegeniiberstellung
von Messung und Simulation in Bezug auf eine zeitliche Entwicklung des
Scherkraft fiir eine bestimmte Steuerparametrisierung (rechts) und gesamtheit-
liche Betrachtung der gemessenen und simulierten Scherkrdfte am Prozessende

(links).

setzmiBigkeiten. Der gro3e Vorteil dieses Modells ist, dass es eine Balance zwischen
Genauigkeit und Berechnungsdauer herstellt. Unter der Voraussetzung eines konstanten
Wertes fiir A muss lediglich eine Differentialgleichung erster Ordnung ausgewertet wer-
den, wodurch die Auswertung fiir eine bestimmte Parametrisierung sehr schnell vorge-
nommen werden kann. An dieser Stelle ist auBerdem die aktuelle Arbeit aus [vBS*20] zu
erwihnen, in welcher der Ansatz aus [Gau(9] aufgegriffen und durch weitere Effekte und
Annahmen ergénzt wird. Darunter fallen bspw. die Drahthohenabnahme, die wihrend des
Schweilvorgangs durch das Einsinken des Drahtes in das Substrat stattfindet und eine
parabelformige Druckverteilung in der Kontaktfliche. Durch den zusitzlichen Detaillie-
rungsgrad steigt allerdings auch die Anzahl der Differentialgleichungen des Zustands-
raummodells auf drei, wodurch der Einsatz des Modells innerhalb der BO, welche eine

schnelle Auswertung des Modells erfordert, wiederum in Frage gestellt wird.

Einen detaillierteren Uberblick und eine vollstindige Analyse des Modells aus [Gau09]
wurde in der studentischen Arbeit [Her20|], welche zu einem groB3en Anteil auf den Vor-
arbeiten des Autoren dieser Arbeit basiert, ausgearbeitet. Auf dieser Grundlage wurde
ein eigenes Simulationsmodell hergeleitet, das den Anforderungen fiir den Einsatz der
BO bestmoglich begegnet. Unter anderem wurde darauf geachtet, dass das Modell we-
nige Parameter besitzt, um den Identifikationsaufwand auf ein Minimum zu reduzieren
und vergleichsweise schnell bzgl. verschiedener Parametrisierungen ausgewertet werden
kann. Die Ergebnisse der Studienarbeit sind in Bild dargestellt. Das linke Teilbild vi-
sualisiert die Scherkraft-Trajektorien einer Messung und der zugehorigen Simulation. Die
zeitliche Messung der Scherkraft ist in der Praxis duflerst aufwendig, da fiir jeden Diskre-
tisierungspunkt ein eigener Bond erzeugt werden muss und der Prozess an dem passenden

Zeitpunkt abgebrochen werden muss, um die aktuelle Scherkraft an dieser Stelle iiber das
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zerstorerische Abscheren ermitteln zu konnen. Mit Hilfe des Modells wird der gemessene
Verlauf sehr gut wiedergegeben, wobei zu beriicksichtigen ist, dass dem Verlauf lediglich
eine gewisse Parametrisierung zugrunde liegt. Da im Rahmen der BO die Scherfestig-
keit am Ende des Prozesses bzw. der Trajektorie von entscheidender Bedeutung ist, reicht
es aus, die Endergebnisse aus Messung und Simulation miteinander zu vergleichen. Das
Teilbild auf der rechten Seite zeigt hierzu die Auswertung eines Datensatzes, welcher
240 separate Einzelmessungen enthélt. Das bedeutet, dass hinter jedem blauen Daten-
punkt eine eigene Bonderzeugung mit einer bestimmten Parametrisierung steht. Fiir die
Simulation wurde die selbe Parametrisierung benutzt, sodass das Diagramm insgesamt
die Pradiktionsgenauigkeit des entwickelten Modells widerspiegelt. Im Idealfall sollten
sich die Punkte genau auf der diagonalen (grauen) Linie befinden, um eine hohe Genau-
igkeit des Modells anzugeben. Tatsdchlich reflektiert die hohe Streuung der Daten das
genaue Gegenteil. Das Modell ist demnach zwar in der Lage, eine einzige Scherkraft-
Trajektorie (vgl. Bild links) gut wiederzugeben, versagt jedoch bei der Generalisie-
rung fiir unterschiedliche Steuerungen (rechts). In den erwédhnten Veroffentlichungen fin-
det diesbeziiglich keine Auswertung auf einen vergleichbar gro3en Datensatz statt, sodass
nach aktuellem Stand der Forschung kein Modellansatz in der Lage ist, das Generalisie-

rungsproblem geeignet zu adressieren.

Aufgrund dieser Tatsache ist die Einbindung von Vorwissen in Form eines Dynamikmo-
dells des Ultraschalldrahtbondprozesses im Rahmen der BO als problematisch einzustu-
fen. Die Anforderungen, um fiir die BO gewinnbringend eingesetzt werden zu konnen,
sind nach aktuellem Stand nicht mit der komplizierten und miithsamen Modellbildung in
Einklang zu bringen. Etwaige Voruntersuchungen haben in diesem Zuge gezeigt, dass das
aufgestellte Modell aus Bild zu keiner Effizienzsteigerung der BO beitragen konn-
te. Abseits der Genauigkeit des Modells gibt es weitere Aspekte, die nur schwerlich iiber
physikalische GesetzmiBigkeiten abzubilden sind. Zum einen kann in Bezug zu (3-9)) fest-
gehalten werden, dass es sich bei dem Bondprozess um einen sensitiven und hochgradig
stochastischen Ablauf handelt. Ein Simulationsmodell ist vor diesem Hintergrund zwar
in der Lage eine Aussage iiber die resultierende Scherkraft zu machen, jedoch nicht iiber
die zugehorige Streuung bzw. Varianz. Um diese GroBe abbilden zu konnen, miisste eine
weitaus umfassendere Modellierung auf der Grundlage von stochastischen Differential-
gleichungen unternommen werden. Des Weiteren tritt in der Praxis unter Umstinden das
sogenannte Uberbonden auf, wobei zu viel Energie in die Bondverbindung eingebracht
wird. Das monotone Anwachsen der Scherkraft muss daher relativ zu den Modellannah-
men betrachtet werden, denn beim Uberbonden kann die Kraft mit zunehmender Zeit auch
wieder abnehmen und die Bondqualitit mindern. Keines der Literatur bekannten physi-
kalischen Modelle kann diesen Effekt im Ansatz beschreiben. Gesamtheitlich betrachtet

ist das Ultraschalldrahtbonden daher ein Beispiel fiir ein schwierig zu modellierendes
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System, wobei selbst mit erheblichen Aufwand kein ausreichend gutes Modell aufgestellt
werden kann, welches einen modellbasierten Steuerungsentwurf ermoglichen wiirde. Die
BO stellt in diesem Zusammenhang eine ideale Moglichkeit dar, um die komplizierte Mo-
dellbildung zu umgehen und dennoch einen adiquaten Steuerungsentwurf durchfiihren zu
konnen. Ein wesentlicher Vorteil ist dabei, dass dem stochastischen Charakter des Sys-
tems bereits durch den eingesetzten GP und der Konstruktion des Verfahrens begegnet
wird. Dessen ungeachtet, benétigt die Standardroutine der BO (s. Algorithmus|[I)) diver-
se Anpassungen, um fiir den Steuerungsentwurf beim Ultraschallbonden eingesetzt zu
werden. Im nachfolgenden Abschnitt werden diese Anpassungen erldutert, wobei darauf
geachtet wird, moglichst viele Vorkenntnisse {iber den Prozess in das Verfahren einzubin-

den.

3.5 Angepasste Bayessche Optimierung fur den
Steuerungsentwurf beim Ultraschalldrahtbonden

In diesem Unterkapitel wird die angepasste Variante der BO vorgestellt. Das Entwurfs-
ziel besteht darin, dass Optimierungsproblem am realen System durch direkte In-
teraktion zu losen. Dabei wird die Parametrisierung bzw. Steuerung identifiziert, welche
den hochsten Prozessfahigkeitsindex liefert und gleichzeitig keine Schidigung in Form
von Werkzeugaufsetzern herbeifiihrt. Die Grundidee ist, drei GPs sowohl fiir den Mittel-
wert, als auch fiir die Standardabweichung der Scherkraft und fiir die Nebenbedingung
bzgl. Werkzeugaufsetzer einzusetzen (vgl. (3-10)), wobei die nachfolgenden a-priori und

a-posteriori Annahmen getroffen werden:

firs(8) ~ GP(m,.(0),k,(6.6")), p(iirs(0) | D) = N (11,,(6), 07,(8)),
a-Fs(e) ~ gP(mU(e)v kc(eﬂ 0l>>7 p(a-Fs<0> | DO’) = N(:UJU(G)?O-g(e))’ (3-12)
9(0) ~ GP(my(0), k4(6,6")), p(3(8) | Dyg) = N (11y(0),05(8)).

Fiir die Versuchsreihen der eigenen vorhergehenden Veréffentlichung [HHTT22|] und die-
ser Arbeit wurde der Matérn-Kernel aus fiir alle Kovarianzfunktionen verwendet.
Obwohl derselbe Kernel fiir alle Kovarianzfunktionen verwendet wurde, unterscheiden
sie sich dennoch in ihrer exakten Gestalt, da andere Hyperparameter gemif (3-3)) fiir jede
Kovarianzfunktion festgelegt werden. Die Mittelwertfunktionen in Bezug auf die Vari-
anz der Scherkraft op, und die Einschrinkung g wurden auf konstante Werte gesetzt:
me = 60 cN, my, = 0. Im Fall der Einschrinkung entspricht diese Annahme einer op-
timistischen Initialisierung, da angenommen wird, dass die Einschrinkung im gesamten
Parameterbereich nicht verletzt wird. Fiir die Mittelfunktion in Bezug auf 1, werden
zwei Fille betrachtet. Im ersten Fall wird m, = LSL = 2500 cN ebenfalls konstant
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gesetzt, und es wird angenommen, dass kein besonderes weiteres Vorwissen vorhan-
den ist. Im zweiten Fall wird anstelle einer konstanten, eine quadratische Funktion mit
m,(0) = 67 AG+b" 0+ c verwendet, wobei die GroBen A, b, c iiber eine Least-Squares-
Regression an einen bestehenden Datensatz angepasst wurden. Dieser Ansatz wird im
Laufe dieses Unterkapitels noch niher erldutert und repréasentiert eine Reverse Enginee-

ring Strategie und soll stellvertretend fiir ein physikalisches Ersatzmodell stehen.

Um den Prozessfihigkeitsindex zu optimieren, wird eine Schitzung zu (3-9) mit

. jin(8) —LSL
OZJK(O) - B&Fs (9) )

vorgenommen, wofiir die zugehorigen GPs fiir /i, und 6, miteinander kombiniert wer-
den miissen. Da épK nichtlinear von diesen Grofen abhingt, ist die zugehorige Wahr-
scheinlichkeitsdichteverteilung p(ép & ) nicht mehr gauBférmig. Dennoch kann die genaue
Verteilung analytisch berechnet werden [DR13]]. Im Allgemeinen ist sie stark gewdlbt und
weist keine Momente auf. Die Form kann unimodal, bimodal, symmetrisch oder asym-
metrisch sein. Die Autoren von [DR13]] schlagen jedoch eine Normalapproximation iiber

die Beziehung

p(Corc) = N (nc(8), 04(8)),
t, — LSL

:U’C(e) = 3,“0 ) (3_13)

- () (=)

vor, welche fiir o, /1, < 0.1 giiltig ist und eine hohe Approximationsgiite aufweist. Fiir
das betrachtete Anwendungsbeispiel wurde in vorldaufigen Untersuchungen festgestellt,
dass der Grenzwert im schlechtesten Fall nicht signifikant iiberschritten wird und damit

die Normalapproximation angenommen werden darf.

Zur besseren Verstidndlichkeit der nachfolgenden Erkldrungen wird auf Bild und Al-
gorithmus [2] verwiesen, welche die Schritte der angepassten BO-Implementierung zusam-
menfassen. Der Begriff Batch-Element wird spiter an entsprechender Stelle erldutert und
kann fiir den Moment mit der identifizierten Parametrisierung gleichgesetzt werden, wo-
bei npaen, = 1 gilt. Bild @] zeigt die Beziehungen der involvierten Funktionen wéhrend
einer Iteration anhand eines fiktiven eindimensionalen Beispiels (¢ € R). Es wird ange-
nommen, dass bereits fiinf Auswertungen der realen unbekannten Funktionen vorliegen
(initiale Datenbasis aus Zeile 1), welche durch die blauen und roten Kreise im oberen Bild
dargestellt sind. Zusitzlich sind die wahre C,x(6)-Funktion und die Nebenbedingung

g(0) bzgl. Werkzeugaufsetzern durch die durchgezogene und gestrichelte griine Linie re-
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Algorithmus 2 Bayessche Optimierung fiir Ultraschalldrahtbonden

1:

Eingabe: Initiale Datenbasis (Dy, D,,, D,, D,) aus n;,;; Experimenten, Iterations-
budget npyqget, Anzahl der Batch-Elemente 144401, GP Mittelwert- und Kovarianz-
funktionen (m,,, m,, mgy, k., ks, ky), Grenzwerte {¢, &, LSL.

2: Wiederhole bis das Iterationsbudget 74,,44¢; aufgebraucht ist:
3:  Aktualisiere GauB-Prozesse bzw. Hyperparameter (1,,,7,,n,) nach (3-5).
4:  Berechne Batch-Elemente 0((11)) = argmaxg aprg(0;0,),b=1,... Npaen B-17).
5:  Evaluiere bei ng) und erhalte ( ,ugf) ” U}bj’ ” géb)) > Experiment(e) reales System
6:  Erweitere Datenmenge
b b b
(Dy,D,,,D,,D,) + (Dy U 6", D, U 1Y) .D, U ol D, U g).
: (6) _
7. Berechne Prozessfihigkeitsindex D(é) = D“?’D#,i = 1,.. ., Ninit + Nbudget-
8: Ausgabe: Optimale Parametrisierung 6,
j = index man7Dgyj:() DC,j)j = 1, cee s Mymat + Npudget-
Corc (6) 90)  ——p(Cx(6)) - = P(3(0) > &)
® Daten Dc O Daten D, 1. Experiment 0" 2. Experiment 6.
= E ]
~ éo 2
£5
£ g
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£ 2
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o
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Bild 3-6: Anschauliche Darstellung fiir eine Iteration der entwickelten BO-Methode im

eindimensionalen Fall mit einem Steuerungsparameter. Eine detaillierte Er-
kldrung der Zusammenhdnge wird im Fliefitext gegeben.
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prasentiert (Ground Truth). Beziiglich der ZielgroBe ist zudem die aktuelle Schitzung
des GP in Blau dargestellt. Hierbei stellt die durchgezogene Linie den Mittelwert ¢ (6)
dar und der schattierte Bereich entspricht der Standardabweichung o (6) (s. (3-12)) und
(3-13)). Es wird davon ausgegangen, dass die Aktualisierung der GPs (Zeile 3) stattge-
funden hat.

Ein wesentlicher Bestandteil aus Zeile 4 ist die Akquisitionsfunktion «(6), die das unterla-
gerte Optimierungsproblem definiert. Die Akquisitionsfunktion wird benétigt, um die Pa-
rametrisierung des nichsten Experiments aus den verfiigbaren Informationsquellen der in-
volvierten GPs abzuleiten. Es wird das EI-Kriterium avg;(6) = E[max(0, Cox (8) — £¢)]
nach der Berechnungsvorschrift aus (3-8)) eingesetzt. Im unteren Teil von Abbildung [3-6]
erfolgt die Auswertung des GPs bzgl. der Giitefunktion. Die durchgezogene, hellblaue
Linie reprisentiert die Akquisitionsfunktion fiir die erwartete Verbesserung gemif (3-8).
Der zugehorige Schwellenwert & ist auf 1 festgelegt. Daher zeigt die Funktion in einem
Bereich um den Parameterwert von 0.5 einen Wert von nahezu (. Das Maximieren die-
ser Funktion wiirde dazu fiihren, dass die realen Funktionen aus der oberen Abbildung in
der Néhe des ganz linken Datenpunkts ausgewertet wiirden. Dieser Punkt entspricht dem
globalen Maximum. Jedoch wird die einzuhaltende Nebenbedingung in diesem Bereich
nicht erfiillt (g(¢) = 1fird € (0.1,0.4)). Daher ist eine Auswertung an dieser Stelle
nicht gewiinscht und sollte im Rahmen der BO automatisiert als ungeeignet identifiziert
werden. Im Nachfolgenden wird eine solche Automatisierung besprochen und anhand des

eindimensionalen Beispiels weiter erldutert.

Durch die Beriicksichtigung der Werkzeugkollisionen und die Einfiihrung eines eige-
nen GPs (vgl. (3-12))) gehort das entwickelte BO-Verfahren zu der iibergeordneten Ka-
tegorie des Safe Reinforcement Learnings. Hierbei handelt es sich um spezielle Verfah-
ren, die eine gewisse Form von Sicherheit beim Entwurf fordern. In der Kombination
mit der BO und regelungstechnischen Anwendungen wird der Sicherheitsaspekt in den
Veroffentlichungen rund um [BKS23; BG20; MBK*21; WHB*21]] besprochen. Dabei ist
ein Ansatz, von einem sicheren bzw. stabilen Gebiet zu starten und dieses allmihlich
zu vergroBern. Die Exploration findet daher nur an Réndern des zuverlissigen Gebietes
statt. Fiir Anwendungen fiir welche die Einhaltung von sicherheitskritischen Aspekten
duBerst wichtig und als strikt aufzufassen ist, ist der Ansatz des sukzessiven Explorierens
iiberaus geeignet. Vor dem Hintergrund des Ultraschalldrahtbondens ist eine Verletzung
der Nebenbedingung wihrend der Lernphase nicht als sonderlich kritisch zu beurteilen.
Abgesehen von einer Zunahme des Verschleifles wird der Prozess nicht merklich nega-
tiv durch Kollisionen beeinflusst. Entscheidend ist das Endresultat und die identifizier-
te Steuerung, welche am Ende der Optimierung durch den BO-Algorithmus ausgegeben

wird. Von ihr wird eingefordert, dass sie den bestmoglichen Prozesstihigkeitsindex unter
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der zuverldssigen Vermeidung von Kollisionen erzeugt. Aus diesem Grund sind auftre-
tende Kollisionen wihrend der Optimierung zwangsldufig nicht hinderlich, sondern tra-
gen zum Informationszuwachs iiber ungeeignete Gebiete bei. Dementsprechend muss die
Nebenbedingung nicht hart eingehalten und mit dem oberen Ansatz einer Gebietserwei-
terung berticksichtigt werden. Zumal die Gebietserweiterung die grundsitzliche Effizienz
der BO relativiert und als eher langsam aufgrund der beschriankten Explorationsfihigkeit

einzustufen ist.

Aus diesem Grund wird in dieser Arbeit der Ansatz verfolgt, die Nebenbedingung durch
einen Strafterm innerhalb der Giitefunktion bzw. Akquisitionsfunktion zu beriicksichtigen.
Hierfiir wurde in (3-12) die Annahme getroffen, dass es sich bei der binidren Markierung
g um eine Variable handelt, die kontinuierliche Werte annehmen kann. Formal gesehen,
ist dies eine Ungenauigkeit, da korrekterweise ein klassifizierender GP [Ras06]] verwen-
det werden miisste. Im Gegensatz zu der kontinuierlichen GP-Variante sind hierfiir je-
doch diverse Approximationen notwendig (bspw. Laplace-Approximation oder Erwar-
tungswertpropagationsverfahren, welche in [Ras06] ausfiihrlich behandelt werden), um
die zugrundeliegende Berechnungskomplexitit zu reduzieren. Bei den Untersuchungen
dieser Arbeit hat sich gezeigt, dass der Mehraufwand durch die Einfiihrung eines solchen
GPs nicht gerechtfertigt ist und zu keinerlei Verbesserung fiihrt. Zudem kam es bei man-
chen Experimenten zu numerischen Problemen, die auf die notwendigen Approximatio-
nen zuriickzufiihren sind. Insgesamt betrachtet, unterscheidet sich die Ausgabe des konti-
nuierlichen nicht besonders von der des klassifizierenden GPs. In beiden Fillen liefert der
GP eine Wahrscheinlichkeitsaussage iiber den Wert der Nebenbedingung. Diesbeziiglich
liefern beide Ansitze keine scharfe Gebietsgrenze, an welcher die Nebenbedingung ihren
Wert abrupt dndert, sondern berechnen stattdessen einen glatten und kontinuierlichen
Ubergang. Dieser Ubergang stellt die Unsicherheit des maschinellen Lernverfahrens iiber
den Wert dar und spiegelt das stochastische Verhalten des Ultraschalldrahtbondens in ge-

eigneter Weise wider.

Innerhalb dieses Kontexts ist die Wahrscheinlichkeitsdichtefunktion fiir die Nebenbedin-
gung definiert als p(§(0) | Dy) = N(1y(6),02(0)) (vel. (3-12)). Im Gegensatz zur
ZielgroBe liegt das Interesse hier nicht am konkreten Wert der Einschrinkung, sondern
vielmehr an der Wahrscheinlichkeit des Auftretens einer Werkzeugkollision. Daher er-
folgt eine Integration iiber die Wahrscheinlichkeitsdichtefunktion ab einem bestimmten

Grenzwert £ :

P(§(6) > &) = | N(6),0}(6)dg = (1 + er (f—ﬁ)) (3-14)
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mit erf(-) als Fehlerfunktion. Nachfolgend wird ¢g(f) = 0 als eine weiche Einschrinkung
behandelt und dementsprechend mit der Akquisitionsfunktion (3-8)) multipliziert, wobei

die Gegenwahrscheinlichkeitswert von (3-14)) zu verwenden ist:

apr(0) = ap(0) (1 — P(4(6) > gg)). (3-15)

Auf diese Weise lassen sich Bereiche im Parameterraum beriicksichtigen, in denen die
Wahrscheinlichkeit fiir eine Werkzeugkollision hoch ist, jedoch auch hohe Werte fiir
den Prozessfihigkeitsindex zu erwarten sind. Diese Explorationseigenschaft ist beson-
ders wichtig fiir die friihen Iterationen der BO, in denen nur eine geringe Datenmenge

verfiigbar ist und der GP beziiglich der Nebenbedingung ungenaue Vorhersagen liefert.

Die gestrichelte rote Linie im oberen Bild von Abbildung [3-6] zeigt die Wahrscheinlich-
keit einer Werkzeugkollision nach (3-14). Der Schwellenwert £, wurde auf 0.5 festgelegt.
Es ist zu erkennen, dass die Wahrscheinlichkeit einer Werkzeugkollision auf der rechten
Seite nahezu null ist, wihrend die Wahrscheinlichkeit auf der linken Seite glatt zu einem
Wert von eins fiir die einzige beobachtete Werkzeugkollision iibergeht. Fiir abnehmende
Werte von 6 in Richtung null féllt die Wahrscheinlichkeit erneut ab, da hier extrapoliert
wird und eine optimistische Mittelwertfunktion von null gewéhlt wurde. Die gestrichelte
orangefarbene Linie im unteren Bild zeigt die Gewichtung der Akquisitionsfunktion fiir
die erwartete Verbesserung mit der Gegenwahrscheinlichkeit fiir eine Werkzeugkollision
(vgl. (3-13)). Der linke Bereich wird abgewertet, sodass das neue Maximum auf der rech-
ten Seite angenommen wird und an der Stelle des gelben Kreuzes als niichstes ausgewertet

wird.

Bis zu diesem Punkt wurde in jeder Iteration lediglich ein Experiment angenommen. Im
Rahmen des Ultraschallbondens besteht eine Auswertung darin, eine leere Substratplatte
in die Bondmaschine einzufiihren und diese automatisch mit der ausgewihlten Parame-
trisierung mit Bondverbindungen zu bestiicken. Anschlielend wird die Substratplatte aus
der Bondmaschine entfernt und in den Scherkraftpriifer platziert, wo der Scherwiderstand
gemessen wird. Die resultierenden Werte werden dann manuell in die Datenbank einge-
tragen, auf der der BO-Algorithmus operiert. Aufgrund der vergleichsweise schnellen und
automatisierten Durchfiihrung von Bonden und Scheren ist es sinnvoll, mehrere Parame-
trisierungssitze direkt in einer BO-Iteration zu berechnen und parallel zu bewerten. Diese
simultanen Bewertungen werden als Batch bezeichnet, wobei der Ansatz aus [GDHL135]
fiir die Implementierung aufgegriffen wird. Um die Anwendung einer Batch-Berechnung
weiter zu begriinden, erfolgt eine Betrachtung der spezifischen Zeit, die fiir eine Iteration
benotigt wird. Diese Zeit setzt sich aus der BO-Berechnung ¢4, der Vorbereitungszeit
des Experiments ?,,¢pqre und der eigentlichen Auswertungszeit ., zusammen. Die Ge-

samtzeit summiert sich dann zu Ty;ngc = (Lcatc + tprepare + tevat) = Niter, WObEL Ny, die
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Anzahl der Iterationen ist. Bei n44, Batchelementen ergibt sich eine Gesamtzeit von
Toateh = (Mbatenteate + prepare T Mbatchleval) - ﬁ Diese Berechnung geht von einer kon-
stanten Vorbereitungszeit und linear skalierenden Zeiten fiir Berechnung und Auswertung
aus, was in den meisten Fillen eine eher pessimistische Annahme ist. Fiir die experimen-
telle Konfiguration dieser Arbeit lassen sich die nachfolgenden Zeiten grob abschitzen
mit: tege = 108, Eprepare = 100 8, Lepar = 50 s. Bei njye, = 100 und npeeep, = 6 ergeben
sich Gesamtzeiten von 7y, = 4 Stunden und T}40p, = 1.9 Stunden, was einer Reduzie-
rung von mehr als 50% entspricht. Diese Reduzierung geht jedoch mit einer verringerten
Effizienz einher, da alle identifizierten Batchelemente auf demselben GP basieren und

daher erst nach der Bewertung aller Batchelemente und nicht einzeln aktualisiert wird.

Um mehrere Parametrisierungen bzw. Experimente zu beriicksichtigen, muss die gewich-
tete Akquisitionsfunktion ag; , weiter angepasst werden. Der Ansatz in [GDHL15] sieht

vor, eine lokale Straffunktion einzufiihren mit

£(0,0,) = Sert (= (202(0,)) F (1G], 110 = 0,]1, — € + e (6,))).

: dpc(0)
bei G = ————
WwO00€1 a0

(3-16)
angesetzt wird.
0=,

Diese Straffunktion hingt von der Parametrisierung 6 und einer spezifischen Stelle 8, ab,
welche das zuvor ausgewihlte Batchelement repréisentiert. Die Stirke der Strafe hingt
von der Norm des Gradienten der Posterior-Mittelwertfunktion ||G ||, multipliziert mit
dem Abstand zwischen den betrachteten Parametern und dem vorherigen Batchelement
|0 — 8,]|, ab. Weitere Komponenten sind der Posterior-Mittelwert ;i (6,) und die Vari-
anz 02(0,), die am vorherigen Batchelement ausgewertet werden, sowie der Schwellen-
wert ¢-. Die Grundidee besteht darin, fiir jedes berechnete Batchelement einen Strafbe-
trag zu verwenden und das nédchste Batchelement durch das Produkt der eingeschréinkten
Akquisitionsfunktion und aller lokalen Strafterme zu bestimmen:

) aEI,g(O) b= 1,
0,” = argmax (3-17)

" s, (0) T2 0(6,09) b=2,... nyusen.

Zusammengefasst werden die einzelnen unterlagerten Optimierungsprobleme nach-
einander gelost, bis alle ny,., Batchelemente berechnet wurden. Anschliefend werden
alle Batchelemente am realen System getestet. Bild [3-6] veranschaulicht dieses Konzept
durch die schwarze durchgezogene Linie, die den lokalen Strafbetrag (-, -) am Ort
des gelben Kreuzes (1. Batchelement 0((]1)) repréasentiert. Das Produkt der schwarzen Linie
und der gestrichelten orangefarbenen Linie ergibt die gestrichelte magentafarbene Linie,

deren maximaler Wert sich an der Position des tiirkisfarbenen Kreuzes (2. Batchelement
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9&2) ) befindet (vgl. (3-17)). Fiir dieses anschauliche Beispiel betridgt die Gesamtanzahl
der Batchelemente zwei, sodass als néichstes die Auswertung an den berechneten Stellen
stattfinden wiirde. In diesem Beispiel liegen die Batchelemente relativ nah beieinander,
was im Allgemeinen nicht der Fall ist, sodass sich die Batchelemente oftmals im Parame-

terraum auf unterschiedliche Optima verteilen, um diese zu explorieren.

Der entwickelte BO-Algorithmus [2] welcher speziell fiir den Entwurf einer optimalen
Steuerung fiir das Ultraschalldrahtbonden aufgestellt wurde, ist an dieser Stelle vollstindig
erldutert worden. In einem direkten Vergleich zum Standardverfahren der BO (s. Algorith-
mus [I)) zeigt sich, dass er um zusitzliche GPs fiir unterschiedliche Zielsetzungen erwei-
tert wurde. So werden fiir den Prozessfihigkeitsindex zwei und fiir die Nebenbedingung
ein GP(s) eingesetzt. Des Weiteren wird innerhalb einer Iteration nicht nur ein Experi-
ment durchgefiihrt, sondern direkt mehrere gleichzeitig, um die automatisierte Bonder-
zeugung auszunutzen und eine zeitliche Effizienzsteigerung zu erreichen. Damit erfiillt
die BO die praktischen Anforderungen und bietet eine alternative Losungsmoglichkeit
zum herkdmmlichen manuellen Einstellen. Im folgenden Abschnitt wird die BO am rea-

len System validiert und ihre Ergebnisse ausgewertet.

3.6 Anwendung und Ergebnisanalyse

In den durchgefiihrten Experimenten wurde ein automatischer Drahtbonder (Typ BJ955)
der Firma Hesse Mechatronics verwendet. Als Substratmaterial dienten Aluminium-
Dibond-Platten. Der Draht bestand ebenfalls aus Aluminium und wies einen Durchmes-
ser von 500 um auf. Die Scherfestigkeiten wurden mithilfe eines Xyztec Sigma-Priifgerits
gemessen. Dieses Setup stellt einen typischen Aufbau aus der industriellen Praxis dar. Im
Hinblick auf den in Algorithmus [2] dargestellten Ablauf wurde die Anzahl der initialen
Experimente n;,;; auf 10, die Anzahl der Batchelemente 1., auf 6, das Iterationsbud-
get Npydger auf 15 (was einer Begrenzung der Experimente auf 7,54 + NpatenMbudger = 100
entspricht), sowie die Grenzwerte {c auf 2 und §, auf 0.5 festgelegt. Die untere Spezifika-
tionsgrenze LSL betrdgt 2500 cN und die Anzahl der Verbindungen pro Parametrisierung
Nyep belduft sich auf 10. Der Suchraum fiir die Parametrisierung ist auf der Grundlage
von Expertenwissen eingeschrinkt, wobei die untere Grenze mit 8y, (Lower) und die obe-
re Grenze mit 0., (Upper Bound) definiert und Tabelle zu entnehmen sind.

Tabelle 3-1: Beschrdankungen fiir die Parametrisierung

Fy[eN] | Fy [eN] | Fy [eN] | Uy [V] | Uz [V] | T3 [ms] | Ty [ms]
0, 300 375 375 43.3 7.75 5.5 29.5
0., | 900 1125 1125 80.6 | 54.25 38.5 206.5
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Alle eingesetzten GPs gehen von der Matérn-Kovarianzfunktion aus. Um die be-
stimmten Hyperparameter zu vergleichen, wurden die Eingabewerte iiber die unteren und
oberen Grenzen aus Tabelle 3-1] auf das Einheitsintervall normiert. Die damit verbun-
dene Auswertung wird am Ende dieses Unterkapitels besprochen. Der entwickelte BO-
Algorithmus 2| wurde in der Programmierumgebung MATLAB [Mat24]] implementiert.
Die Optimierung der Akquisitionsfunktion erfolgt in zwei Schritten mittels einer Zufalls-
suche mit einer Million Kandidaten, um dem erwartbaren Auftreten von mehreren loka-
len Optima zu begegnen. Der beste Kandidat wird als initiale Ausgangsschitzung (In-
itial Guess) fiir eine anschlieBende verfeinernde Optimierung mit der integrierten Routi-
ne fiminsearch, welche auf dem gradientenfreien Nelder-Mead-Verfahren [GKO2] basiert,
verwendet. Die enorme Anzahl von Auswertungen der Akquisitionsfunktion ist unproble-
matisch, da ithre Rechenkomplexitit nach Konstruktion gering ist und sie vergleichsweise

schnell berechnet werden kann.
Es erfolgt ein Vergleich von vier verschiedenen Losungsansitzen fiir (3-10):

» Zufallssuche (Random Search): Fiir jedes Experiment wird eine zuféllige Parame-
trisierung aus der Gleichverteilung @ ~ U(0y, 0,,;,) ausgewihlt. Dieser Fall dient
als Referenz fiir die anderen Verfahren und wird aufgrund der Dimension des Pro-

blems als ungeeignete Losungsstrategie fiir die Praxis angesehen.

* Manuelle Einstellung (Manual Tuning): Ein Nicht-Experte, der mit dem Pro-
zess und seinen physikalischen Effekten vertraut ist, bestimmt die optimale Pa-
rametrisierung manuell. Die Person muss in jeder Iteration 6 Parametrisierungen
auswihlen, die dann parallel bewertet werden. Dies entspricht dem Vorgehen des
BO-Algorithmus 2| Alle bisherigen Experimente konnen jederzeit eingesehen wer-

den, um Schlussfolgerungen fiir die nachsten Parametrisierungen zu ziehen.

* BO mit konstanter Prior-Mittelwertfunktion: Dies ist das Basisszenario, in wel-
chem keine spezifischen a-priori Kenntnisse iiber die Prozessdynamik verfiigbar
sind. Daher werden die Prior-Mittelwertfunktionen fiir die mittlere Scherkraft und
die Standardabweichung auf konstante Werte gesetzt, also m, = 2500 cN und
m, = 60 cN, was zu einer eher pessimistischen Initialisierung mit einem Pro-

zessfihigkeitsindexwert von 0 fiihrt.

* BO mit quadratischer Prior-Mittelwertfunktion: Dies ist ein Referenzszena-
rio, bei dem eine quadratische anstelle einer konstanten Prior-Mittelwertfunktion
m,(0) = 07 A0 +b" 0 + c fiir die mittlere Scherkraft verwendet wird. Die mittlere
Funktion fiir die Standardabweichung bleibt konstant (s. 0.). Die Groen A, b, ¢
werden durch die Methode der kleinsten Quadrate an alle Daten angepasst, die aus
den anderen drei Losungsansitzen gesammelt wurden. Die Wahl dieser Ansatz-
funktion wird durch den physikalischen Effekt des Uberbonden [Har10] begriindet,
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welcher dafiir verantwortlich ist, dass die Scherkraft bei einem zu hohen Energie-

eintrag mit der Zeit nach dem Erreichen des Maximums wieder absinken kann.

In Abbildung (links) ist der Verlauf des Prozessfihigkeitsindex iiber die Anzahl der
Experimente/Iterationen dargestellt. Konstante Plateaus deuten darauf hin, dass in den
entsprechenden Experimenten keine Verbesserung erfolgt ist. Es ist zu beachten, dass ein
Anstieg im Zielwert nur auftritt, wenn der C,x-Wert hoher ist als in allen vorherigen
Experimenten und die Nebenbedingung beziiglich optischer Kriterien erfiillt ist. Allen
Ansitzen wurden dieselben 10 anfinglichen Experimente zugewiesen, sodass sich die

Verldufe anfangs nicht voneinander unterscheiden.

Entwicklung der Giitefunktion
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(a) Fortschritt der verschiedenen (b) Ausgewertete Stellen in einem
Losungsverfahren. Eine Verbesserung reduzierten Parameterraum. Die
findet nur statt, wenn eine getestete Helligkeit der Farbe gibt die aktuelle
Parametrisierung zu einem hoheren Iteration an, je heller desto friiher. Die
Prozessfihigkeitsindex fiihrt und es keinen Sterne kennzeichnen den Ort der besten
Werkzeugaufsetzer gegeben hat. gefunden Losung jedes Verfahrens.

Bild 3-7: Ergebnisse der experimentellen Validierung der Bayesschen Optimierung am
Bondautomaten

Fiir industrielle Prozesse ist iiblicherweise ein Mindest-C,x-Wert im Bereich von 1.33
bis 1.67 erforderlich [DVS17] (schwarze gestrichelte Linie). Die Zufallssuche (blau) ver-
harrt schnell nahe dem Wert 1, ohne signifikante Verbesserungen zu erzielen. Basierend
auf diesen Beobachtungen, deutet sich an, dass die Zielfunktion in einem groBen Teil des
Suchraums relativ flach verlauft. Die manuelle Einstellung (rot) fiihrt zu einer gewissen
Effizienzsteigerung. Nach etwa 50 Experimenten kann jedoch keine weitere Verbesse-
rung festgestellt werden. Im Gegensatz dazu findet die BO mit einem konstanten Prior
(griin) eine deutlich bessere Parametrisierung, obwohl sie zuvor auf dem gleichen Niveau
wie die manuelle Einstellung verharrt. Das anfangliche, zufalls-dhnliche Verhalten wird
auf die urspriingliche Exploration des Suchraums zuriickgefiihrt, wobei sich zeigt, dass
dieses Verhalten fiir die spéteren Iterationen von Nutzen ist. Die BO mit einem quadrati-

schen Prior (tiirkis) liefert die besten Ergebnisse im Vergleich zu allen anderen Ansétzen.
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Mehrere Experimente sind erforderlich, um diese Parametrisierung zu identifizieren, was
darauf hindeutet, dass der quadratische Prior trotz seiner breiten Datenbasis noch eini-
ge Abweichungen zu der realen Zielgrofle aufweist. Dennoch lenkt die Exploration in
eine Region potenziell hochwertiger Parametrisierungen, was insgesamt betrachtet zu ei-
ner hohen Effizienz fiihrt. Dieser Fall verdeutlicht, wie eine geeignete, wenn auch nicht
zwangsldufig perfekte Prior-Mittelwertfunktion den Fortschritt der BO verbessert. An-
stelle des hier verwendeten datengetriebenen ML-Modells konnte ein physikalisches Mo-
dell des Prozesses in Betracht gezogen werden, um die Leistungsfihigkeit zu steigern.
Wie jedoch in Abschnitt [3.4] gezeigt wurde, ist bisher kein fiir die BO geeignetes phy-
sikalisches Modell bekannt. Die identifizierte quadratische Ansatzfunktion konnte hier
dazu eingesetzt werden, um im Sinne einer Reverse Engineering Strategie, ein geeigne-
tes Modell aufzustellen, welches im Rahmen der BO gewinnbringend eingesetzt werden
kann. Ein entscheidender Effekt konnte dabei das Uberbonden [Har10] sein, welches fiir
eine Abnahme der Scherkraft im Zusammenhang mit falsch gewihlten Eingangsgro3en
und einem zu hohen Energieeintrag steht. Eine Weiterentwicklung dieses Ansatzes wird
als Ausblick auf zukiinftige Forschung offen gelassen und bietet ein grofes Potential,
um den Bondprozess physikalisch besser beschreiben zu konnen. Ergiinzend wurde der
BO-Algorithmus neben Aluminimum auch mit den Materialien Kupfer und Nickel vali-
diert. Im Bild des Anhangs sind hierzu die Ergebnisse gezeigt. Ein rascher Anstieg
des Prozessfihigkeitsindex ldsst sich auch hier beobachten, sodass hieraus geschlossen
werden kann, dass keine besondere Abhingigkeit zwischen der BO-Performanz und der

Materialpaarung besteht.

In der folgenden Analyse wird der Fortschritt im Parameterraum behandelt, wie in Bild [3-7]
(rechts) dargestellt. Eine Visualisierung aller 7 Parameter durch mehrere Schnittebenen
des 7-dimensionalen Raums ist aufgrund der Komplexitit nicht iibersichtlich, daher wur-
den die Daten mittels einer Hauptkomponentenanalyse (PCA) in einen 2-dimensionalen
Raum transformiert. Hierzu wurde eine Singuldrwertzerlegung (SVD) der Datenmatrix
durchgefiihrt, die aus simtlichen Parameterwerten aller Experimente besteht. Anschlie-
Bend wurden die Parameterwerte in einen 2-dimensionalen Raum transformiert, indem
die ersten beiden Spalten der Matrix mit den linken Singulidrvektoren verwendet wurden,
die den beiden groften Singuldrwerten zugeordnet werden. Die Parameterwerte im Kon-
text der Zufallssuche zeigen, wie erwartet, eine breite Diversifikation. Auffillig ist die
Konzentration roten Punkte in einem bestimmten Gebiet. Dieser Bereich wurde vom ma-
nuellen Einsteller lokal erkundet, da die resultierenden Werte der Zielfunktion relativ gut
waren und die Einschriankung erfiillt wurde. Dieses Vorgehen kann als sichere Explora-
tion betrachtet werden, bei der der Bereich getesteter Parameter iterativ erweitert wird.
Dieses Verhalten dhnelt dem Safe Reinforcement Learning Ansatz aus dem Abschnitt

zum Stand der Forschung und kann daher auf diese Weise interpretiert werden. Es wurde
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Simulierte Entwicklung der Giitefunktion
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Bild 3-8: Fortschritt des Prozessfdhigkeitsindex in der Simulationsumgebung. Die durch-
gezogenen Linien zeigen den Mittelwert und die transparenten Flichen die Stan-
dardabweichung fiir mehrere verschiedene Identifikationen. Die gestrichelten
Linien deuten die Endergebnisse aus der Validierung am realen Prozess an.

zudem festgestellt, dass der Uberblick des Anwenders iiber die vorherigen Experimente
bei etwa 30 bis 40 Experimenten verloren ging, was den mangelnden Fortschritt bei der
Zielfunktion in Bild (links) erklért. Im Gegensatz dazu, erkundet die BO besonders
die Grenzen des Suchraums und konzentriert sich relativ rasch auf die Region, in der die
hochsten C),x-Werte gefunden wurden. Aus Griinden der Vertraulichkeit gegeniiber dem
Industriepartner diirfen die optimalen Parameter im Rahmen dieser Arbeit nicht offenge-

legt werden.

Simulationsbasierte Ergebnisse zur Untersuchung der Robustheit

Aufgrund der zeit- und kostenintensiven Experimente am realen System war es nicht
moglich, den Einfluss der initialen Experimente und somit die Robustheit jeder Me-
thode umfassend zu untersuchen. Aus diesem Grund wurden GPs auf der Basis von
samtlichen bisher gesammelten Daten trainiert, um das reale System realititsnah simu-
lieren zu konnen. Die Vorhersagen dieser virtuellen Umgebung (im nachfolgenden auch
Referenz-GPs genannt) sind daher vergleichsweise prizise. Dies ermdglicht es, die ver-
wendeten Methoden - mit Ausnahme der manuellen Abstimmung - fiir verschiedene An-
fangsexperimente zu testen. Bild zeigt in diesem Zusammenhang die zugehorigen
Ergebnisse fiir 50 verschiedene separate Durchldufe. Zunéchst ist zu erkennen, dass die
Durchldufe beziiglich des realen Systems verniinftig sind, da sie mit den simulierten
Durchldufen groftenteils iibereinstimmen (vgl. zu Bild [3-7). Dariiber hinaus iibertrifft
die verwendete BO-Methode robust die Zufallssuche und konvergiert zu hohen Werten
der ZielgroBe. Die Tatsache, dass das globale Maximum aus den Messungen (gestriche-
ne tiirkisfarbene Linie) von der quadratischen Prior-BO nicht erreicht wird, konnte mit

der Regularisierung der Referenz-GPs zusammenhingen. Die Mittelwertfunktion des GP
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Tabelle 3-2: Identifizierte Hyperparameter der trainierten Gauf3-Prozesse. Hervorzuhe-
bende hohe bzw. niedrige Werte sind rot und blau markiert.
977 O'J2c lFo lF1 ZFQ lUl lU2 lTl lT2 0,
frg(0) | 44-10° [ 137 2 | 1.9 | 1.7 |14 (29|26 | 1.6-10°
org(0) | 1.7-10° | 1.3 | 1.9/02/09 |09 |23 0.8 335
§(0) 0.3 3 10711105105 1 |1.3 0.05

2

kann in diesem Fall die Extremwerte der Messungen nicht genau abbilden. Die gefun-
denen optimalen Parameter sind jedoch identisch zu denen der Messung. Zusammenge-
fasst zeigt sich anhand dieser Ergebnisse, dass die BO eine hohe Robustheit gegeniiber
verschiedenen Anfangsexperimenten aufweist. Als Fazit zu den realen und simulierten
Resultaten ist festzustellen, dass der Einsatz der BO fiir den Steuerungsentwurf am Ultra-
schalldrahtbondprozess duferst geeignet und eine Alternative zum herkdmmlichen mo-
dellbasierten Steuerungsentwurf auf der Basis eines physikalischen Modells ist. Sofern
ein hinreichend prizises physikalisches Modell bekannt ist, muss dieses zwangsldufig bei
der Anwendung der BO nicht verworfen werden, sondern kann tiber die Prior-Mittelwert-
funktion eingebunden werden. Hierzu hat der Reverse Engineering Grundgedanke iiber
die quadratische Ansatzfunktion gezeigt, dass die Beriicksichtigung von Vorwissen eine
deutliche Effizienzsteigerung herbeifiihrt. Neben dem modellbasierten Entwurf stellt die
BO zudem eine echte Alternative zum praktischen manuellen Einstellen dar, wobei die
Suche nach den optimalen Parametern teil-automatisiert wird und anhand von objektiven
Giitekriterien interaktiv vorgenommen wird. Auf diese Weise wird fiir die Einrichtung
des Prozesses kein Expertenwissen mehr bendétigt, sondern kann auch von Nicht-Experten
vorgenommen werden. Diverse Fehlerquellen, wie die subjektive Wahrnehmung des Ein-
richters oder bspw. die beobachtete zu rasche Fokussierung auf ein lokales Optima (vgl.
Bild , konnen damit ausgeschlossen werden.

Ergianzende Auswertung der Hyperparameter

Neben der Erprobung der Algorithmen innerhalb einer simulierten Umgebung, bieten die
trainierten GPs die Moglichkeit, die erlernten Hyperparameter 7, genauer zu untersu-
chen und damit weitere Einsichten in den Prozess zu erhalten. Insbesondere die erlernten
Lingenskalen [, die den einzelnen Eingangsdimensionen zugeordnet werden, zeigen die
Relevanz einer bestimmten Parameterdimension fiir die Ausgabe. Dies wird in der Litera-
tur als automatische Relevanzbestimmung (Automatic Relevance Determination (ARD))
bezeichnet [Ras06]. Die Hyperparameter sind in Tabelle [3-2]aufgefiihrt. Eine direkte Ver-
gleichbarkeit ist moglich, da die Parameterdimensionen auf das Einheitsintervall standar-
disiert wurden. Der Einfluss eines bestimmten Parameters wird durch den Wert der Skala [
bestimmt, wobei hohere Werte auf einen geringeren Einfluss hindeuten (vgl. hierzu auch
Bild 2-10). In Bezug auf die mittlere Scherkraft /iy (@) und das Label §(0) zeigt sich,
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dass die Normalkraft der Vorverformungsphase F{ im Vergleich zur Standardabweichung
01, (0) weniger relevant ist. Dies ist plausibel, da eine ausreichende Anfangskontaktfliche
durch einen breiten Bereich von Normalkraftwerten gebildet wird. Andererseits haben
die Werte der Ultraschallspannungen (U 1 Ug) einen vergleichsweise hohen Einfluss auf
die mittlere Scherkraft. Gleiches gilt fiir die Standardabweichung der Scherkraft 65, (6).
Jedoch zeigt sich, dass die Kraft F;, und die Zeit T, der zweiten Phase den groften Ein-
fluss haben, was bedeutet, dass diese Werte mit hoher Genauigkeit korrekt gewéhlt wer-
den miissen, um eine geringe Standardabweichung zu erzielen. Die Werte fiir die Signal-
und Rauschvarianz (0/2[, 02) stimmen mit den Beobachtungen wiihrend der Experimente

tiberein.

Fazit der Untersuchungen

Die Ergebnisse aus der realen Welt und den Simulationen zeigen, dass die Anwendung
der BO fiir den Steuerungsentwurf des Ultraschalldrahtbondens sehr geeignet ist. Der
vorgeschlagene Ansatz iibertrifft die zuféllige Suche und die manuelle Abstimmung hin-
sichtlich Effizienz und Robustheit. Des Weiteren wurde gezeigt, dass die Einbeziehung
einer quadratischen Prior-Mittelfunktion vorteilhaft ist und die Leistung verbessert. Die-
ses Ergebnis wird als Leitfaden fiir weitere Forschung betrachtet, bei der die quadratische
Prior-Mittelfunktion durch ein physikalisches Simulationsmodell des Bondprozesses er-
setzt wird. Die vorliegende Arbeit legt dafiir die Grundlage, da sie auf zahlreichen Mes-
sungen mit einer Vielzahl von Steuersignalen bzw. Parametrisierungen basiert und somit
gut validiert ist. Ergidnzend wurden die Hyperparameter der trainierten GPs untersucht,
wobei festgestellt wurde, dass die Aufsetzkraft wiahrend der Vorverformungsphase wenig
Einfluss auf die Bindungsqualitit hat. Die mittlere Scherkraft reagiert empfindlich auf die
Amplitudenwerte der Spannung, wihrend die Varianz am stérksten auf die Normalkraft

in der zweiten Phase und deren Dauer reagiert.

3.7  Weiterfuhrender Entwurf mit Bayesscher Optimierung

Im Nachfolgenden soll ein Uberblick iiber mogliche Erweiterungen und Verbesserungen
fiir die BO im regelungstechnischen Kontext gegeben werden. Ein erster Ansatzpunkt
wird bei der Wahl der Akquisitionsfunktion gesehen. Hierfiir wurde der Ansatz des EI
(3-8)) genutzt, welcher innerhalb der Literatur als eine Standardwahl angesehen wird. Ne-
ben ihm existieren allerdings auch komplexere Ansitze, die sich nicht an dem nomina-
len Wert der Giitefunktion orientieren, sondern sich auf den Informationsgehalt eines je-
den Experiments fokussieren. Das nichste Experiment soll bei dieser Grundidee an einer
Stelle im Parameterraum durchgefiihrt werden, die einen verhédltnisméiBig hohen Infor-
mationszuwachs in Bezug zum gesuchten globalen Optimum darstellt. In [HS12] wird,

dieser Idee folgend, die sogenannte Entropy Search (ES) als Akquisitionsfunktion vorge-
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schlagen. Als MaB fiir den Informationsgehalt einer kontinuierlichen Verteilungsfunktion
p(J(0)) wird die differentielle Entropie iiber

~

H(p) = E[-log(p)] = — /plog(p)dJ,

angegeben, wobei sich bspw. fiir den Fall einer eindimensionalen Normalverteilung die
analytische Form H (N (u, 0)) = 3 (14log(2m0?)) ergibt. Eine Verteilung mit einer hohen
Varianz weist dementsprechend eine hohe Entropie auf, sodass eine Auswertung einen
gleichermaflen hohen Informationsgewinn verspricht. Entgegengesetzt weisen Verteilun-
gen mit einer niedrigen Varianz keinen allzu groflen Informationszuwachs auf, da der Wert
der zugrundeliegenden Zufallsvariable bereits gut abgeschitzt werden kann. Der Grundi-
dee von [HS12] weiter folgend, wird die ES-Akquisitionsfunktion iiber den Ausdruck

aps(8) = H(p(0. | D)) —E, 6, p,)[H(p(B. | D; U6, T(6)}))],

angegeben. Hierin stellt p(é* | D) eine Verteilung fiir die optimale Parametrisierung dar,
welche auf der Grundlage des GP bzgl. p(J(8) | D) abgeleitet wird. Zur Bestimmung
sind aufwendige Approximationen durch MC-Verfahren notwendig. In diesem Zusam-
menhang gibt der vordere Term H (p(8, | D)) den Informationsgehalt dieser Verteilung
an und wird mit dem hinteren Term E,, 54| p [H(p(6, | D;U{6,.J(6)}))] in Relation
gesetzt. Dieser gibt an, wie stark sich der Informationsgehalt andern wiirde, wenn an der
Stelle @ ein Experiment durchgefiihrt werden wiirde. Anstelle des wahren Funktionswer-
tes wird die Wahrscheinlichkeitsverteilung des GP p(.J(0) | D ) verwendet, wodurch der
Einsatz des Erwartungswertoperators notwendig wird. Fiir niedrig dimensionale Proble-
me, z. B. ng < 3, weist die ES-Akquisitionsfunktion vorteilhafte Eigenschaften auf und
ist den anderen Funktionen im Allgemeinen iiberlegen. Ein grof3es Problem ist allerdings
ihre schlechtere Skalierbarkeit und damit schwere Anwendbarkeit auf hoher dimensiona-
le Probleme. Der Grund hierfiir sind die numerisch rechenintensiven Approximationen,
die bspw. fiir den hinteren Term und den Erwartungswertoperator aufeinander aufbauen

und damit bei der Berechnungskomplexitit besonders zum Tragen kommen.

Eine Folgearbeit ist [WJ17], worin das grundsitzliche Problem darin gesehen wird, dass
die Suche bzw. Approximation im Raum der Parametrisierung stattfindet. Es wird da-
her vorgeschlagen, nicht den Informationsinhalt bzgl. der optimalen Parametrisierung
0. zu erkunden, sondern bzgl. des optimalen Funktionswertes J,, da dieser eine skala-
re GroBe darstellt. Die umgeformte Akquisitionsfunktion heil3t Maximum-Value Entropy
Search (MES) und wird mit

anps(0) = H(p(j(@) | D)) — ]Ep(j* |DJ)[H(p(j(9) | Dy U j*))]
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ausgedriickt, wobei die Verteilung der optimalen Giitefunktionswerte p(J, | D) eine
zentrale Rolle spielt. Diese Verteilung muss gleichermafen zu p(é* | D) anhand des
GP approximiert werden, ist allerdings deutlich giinstiger bzgl. der Berechnung, da

dim(J) =1<ny gilt. In diesem Zusammenhang stellt die hintere Verteilung

p(J(0) | D;U J,) keine herkémmliche Normalverteilung mehr dar, sondern ist durch
die angenommene Kenntnis iiber das globale Optimum J, nach oben hin abgeschnitten,
woraus sich eine sogenannte truncated (gekiirzte) Normalverteilung ergibt. Eine analy-
tische Berechnung der differentiellen Entropie ist mit dieser Verteilung moglich, sodass
sich hieraus insgesamt eine berechnungseffiziente Akquisitionsfunktion ergibt. Im direk-
ten Vergleich zum EI (3-8)) ist ein wesentlicher Vorteil, dass kein Grenzwert £ fiir die
Berechnung von o/ g5(-) notwendig ist, sondern eine automatisierte Abschitzung auf der
Basis des GPs getroffen wird. Die Anwendung dieses Ansatzes ist daher besonders ge-
eignet, wenn a-priori kein Grenzwert bekannt ist und iiber den zugrundeliegenden Steue-
rungsentwurf kaum Vorwissen vorhanden ist. Im Falle des Ultraschalldrahtbondens und
der durchgefiihrten Experimente konnte jedoch zuverlissig ein relativ genauer Grenzwert
angegeben werden, sodass ein Einsatz der MES-Akquisitionsfunktion nicht notwendig
war. Als Ausblick fiir weitere regelungstechnische Anwendungsgebiete der BO stellt die

MES-Akquisitionsfunktion allerdings einen klaren Mehrwert dar.

Einen weiteren Punkt zur Verbesserung bietet die Bestimmung der Hyperparameter. Dafiir
wurde bisher die Maximierung der Log-Likelihood (s. (2-33)) vorgeschlagen, bei deren
Optimierung ein sogenannter Point Estimate der Hyperparameter identifiziert wird. Da-
mit ist gemeint, dass lediglich ein bestimmter zahlenmafiger Vektor zur Definition des
GP bzw. der Kernelfunktion verwendet wird. Ein préziserer Ansatz wire es, die Unsi-
cherheit iiber die Hyperparameter explizit zu beriicksichtigen, indem sie als Zufallsva-
riablen definiert und mit Hilfe der Bayesschen Regel angegeben werden. Fiir die
Prior-Verteilung lieBe sich wiederum eine Normalverteilung verwenden und ein gewisses
Vorwissen im Sinne der ARD durch ihre Parametrierung vorgeben. Als Folge fiir die BO
ist die Akquisitionsfunktion nun von der Hyperparametrierung abhéngig, wodurch der

Erwartungswert iiber

Ns

a(6) = Epy | 0y [(8;m)] = /a(9; mp(n | D;)dn ~ ni > a(6;m,),m; ~p(n | D)

S =1

einzufiihren ist. Hierbei wird der Erwartungswert iiber ng Realisierungen der Posterior-
Verteilung der Hyperparameter p(n | D ;) approximiert, wobei der Markov-Chain Monte
Carlo (MCMC) aus z. B. [Kuf06] verwendet werden kann. Die Einbeziehung der Unsi-

cherheit iiber die Hyperparameter ist dann besonders sinnvoll, wenn die Datenlage noch
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Bild 3-9: Identifikation einer Paretofront mit Expected Hypervolume Improvement

sehr gering ausfillt, also fiir die frithen Iterationen der BO. Bei einer ausreichend groflen
Datenmenge kann dieser Freiheitsgrad entfallen und auf die herkommliche Maximierung

der logarithmischen Likelihood zuriickgegriffen werden.

Als letzter Punkt ist eine Erweiterung auf eine Mehrzieloptimierung zu nennen. Im Zu-
sammenhang mit dem Ultraschalldrahtbonden gibt es dazu diverse Ankniipfungspunkte.
So setzt sich bspw. der Prozessfihigkeitsindex bereits aus dem Mittelwert und der Stan-
dardabweichung der Scherkraft zusammen, wofiir separate GPs angesetzt worden sind,
die zwei bestimmte Zielwerte darstellen. Bei der Mehrzieloptimierung steht nicht mehr
eine gewisse optimale Parametrisierung im Vordergrund, sondern die Paretofront P, die
durch mehrere verschiedene optimale Parametrisierungen aufgespannt wird. Der Einrich-
ter des Bondprozesses erhilt nach der Ausfiihrung der BO damit die Moglichkeit, einen
fiir ihn passenden Punkt auf der Paretofront auszuwihlen. Das Ziel der BO ist, in jeder
Iteration die Paretofront nach und nach zu erweitern und neue dominante Punkte hinzu-
zufiigen. Ein Ansatz hierzu wird in [ED18; [YEDB19] vorgestellt, wobei das sogenannte
Hypervolume (HV), welches durch die Paretofront und einen Referenzpunkt aufgespannt
wird, betrachtet wird. Die zugehorige Akquisitionsfunktion fiir die BO lautet Expected
Hypervolume Improvement (EHVI) mit

iy 1(0) = / (HV(P U J(8)) — HV(P)p(F(8) | D,)d, (3-18)

und beriicksichtigt die Unsicherheit iiber die verschiedenen Giitefunktionswerte, wel-
che durch die gelernten GPs ausgedriickt wird. Bild [3-9] verdeutlicht hierzu visuell die
grundsitzlichen Zusammenhinge anhand eines Beispiels mit den Giitefunktionswerten
J1(0) und J5(0). Der hellgraue Bereich zeigt die aktuell bekannte Paretofront bzw. das
Hypervolumen in Form einer Fliche im zweidimensionalen Fall, welche durch die bis-
herigen dominanten Messpunkte (schwarz) aufgespannt wird. In blau ist die multivariate

Normalverteilung der zugrundeliegenden GPs fiir eine bestimmte Parametrisierung darge-
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stellt. Zudem sind die marginalen Verteilungen an den Seiten in hellgrau visualisiert. Auf
der Basis von wird entsprechend die Parametrisierung als nédchstes durch den BO-
Algorithmus ausgewihlt, die zu einer Maximierung des Hypervolumens im Erwartungs-
wert fiihrt. Die Verbesserung in dieser Metrik ist durch das dunkelgraue Gebiet angedeu-
tet, sodass eine Auswertung bei der Parametrisierung des roten Punktes durchgefiihrt wird
und die Paretofront somit an dieser Stelle ein Update erhilt. In der studentischen Arbeit
[Rei23]] wurde der Ansatz des EHVI fiir den Ultraschalldrahtbondprozess erprobt. Dabei
wurden der Prozessfahigkeitsindex und die Prozesszeit als Optimierungsziele ausgewihlt.
Erwartungsgemal} verschlechtert sich der Prozessfihigkeitsindex fiir geringer werdende
Prozesszeiten, wodurch sich der typische Verlauf einer Paretofront ausbildet. Insgesamt

wurden auch im Rahmen dieser Arbeit gute Ergebnisse mit dem BO-Ansatz erzielt.
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4 Hybride Optimalsteuerung dynamischer Systeme

Die Optimalsteuerungstheorie ist ein Zweig der mathematischen Optimierung, der sich
damit befasst, eine Steuerung fiir ein dynamisches System iiber einen bestimmten Zeit-
raum zu finden, sodass ein Funktional unter Beriicksichtigung von gewissen Nebenbe-
dingungen optimiert wird [Bet10; [PLB12]. Sie hat zahlreiche Anwendungen im wissen-
schaftlichen und industriellen Umfeld. Zum Beispiel kann das dynamische System ein
Roboterarm sein, dessen Steuerung der Vorgabe der passenden Momente in seinen Ge-
lenken entspricht. Das Ziel konnte hierbei sein, eine Position so schnell wie moglich mit
minimalem Energieaufwand zu erreichen. Diese Aufgabe wird in der Regel durch die
Entwicklung eines mathematischen Modells des realen Systems, basierend auf der An-
wendung physikalischer Gesetze, geldst und einem anschlieBenden Entwurfsprozess, der
optimale Steuersignale im Hinblick auf das Modell angibt. Die resultierende Steuerung
wird dann auf das reale System angewendet, wobei eine wesentliche Annahme ist, dass
das etablierte Modell das reale System ausreichend genau beschreibt. Ist diese Annahme
verletzt, ist der Optimalsteuerungsentwurf hinfillig und muss auf einem anderen Wege
durchgefiihrt werden. Der nachfolgende Abschnitt erldutert diesen Zusammenhang ma-
thematisch detaillierter und ordnet die hybride Optimalsteuerung in den Gesamtkontext
ein. Dabei wird Bezug zur modellbasierten Inbetriecbnahme genommen und eine andere
Ausgangssituation als im letzten Kapitel, welche den Einsatz der BO motivierte, zugrunde

gelegt.

4.1 Klassischer modellbasierter Optimalsteuerungsentwurf

Den Ausgangspunkt der Betrachtung stellt ein nichtlineares diskretes dynamisches Sys-

tem in der Zustandsraumdarstellung

Lp41 = f(mlﬁ uk)7

mit dem Zustand x € R"* und der StellgroBe © € R™* dar. Die Zeit wird durch eine
dquidistante Diskretisierung der Form 7 == {t;, = kAt |k =0,...,H € N, At € R, }
ausgedriickt. Die Aufgabe des Optimalsteuerungsentwurfs besteht nun darin, das System
aus einem (initialen) Anfangszustand x; zum Zeitpunkt ¢ = 0 s in der Zeit T' = AtH
in einen gewiinschten Zielzustand x durch die passende Wahl des StellgroBenverlaufs

ui, k = 0,..., H zu liberfiihren. Eine Bewertung der aufgeschalteten Stellgréen findet
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dabei anhand einer Giitefunktion J statt. Beispielhaft wird hierfiir wiederum das riccati-

sche Giitemall mit

H
J (@, uy) = At Z(a:k - mg)TWx(a:k —xg) + u{Wuuk

k=0

angenommen. Diese Wahl entspricht einer Mehrzieloptimierung, wobei der Abstand zum
Zielzustand (x, — xg) so schnell wie moglich verkleinert und gleichzeitig der quadra-
tische Energieaufwand uj w;, klein gehalten werden soll. Das GiitemaB ist so konstru-
iert, dass es iiber einen Skalarisierungsansatz mit den Gewichtungsmatrizen W, und
W, einen Kompromiss zwischen den beiden Zielen darstellt. Neben der Optimierung
der Giitefunktion, ist ein weiteres Entwurfsziel die Einhaltung von Nebenbedingungen.
Diese hingen mit dem Anwendungsfall und dem zugrundeliegenden System bzw. des-
sen Zustdnden und Stellgroen zusammen. Im einfachsten Fall miissen dafiir lediglich
Beschrinkungen der Form || || < @0, und ||ug|| < Wpnq, eingehalten werden. Zusam-
mengefasst kann hierfiir eine Funktion mit g(-) < 0 angesetzt werden, die alle Bedingun-
gen beriicksichtigt. Weiterfiihrend wird davon ausgegangen, dass eine physikalische Mo-
dellbildung fiir das dynamische System durchgefiihrt worden ist und eine Approximation
f =~ f vorhanden ist. Anhand des Modells wird nun ein Optimierungsproblem formuliert,
welches vollkommen entkoppelt vom realen System zu betrachten ist. Fiir die Losung des
Optimierungsproblems gibt es verschiedene Ansitze [Bet10; PLB12]. Im Rahmen dieser
Arbeit sind insbesondere die sogenannten Schielverfahren (Shooting Methods) |Kell7]]
von besonderer Bedeutung. Dabei wird zwischen dem Single- und Multiple-Shooting un-

terschieden.

Das zum Single-Shooting zugehorige Optimierungsproblem lautet

rrlltikn J(ug), uB.wv. g(uy) <0, k=1,... H, (4-1)
und beinhaltet die Minimierung der Giitefunktion durch die richtige Wahl des Stellgrofen-
verlaufs unter der Einhaltung der erwihnten technischen Nebenbedingungen. Die Stell-
grofle jedes einzelnen Zeitschritts stellt im Verbund den Optimierungsvektor dar. In dieser
Darstellung steckt das aufgestellte Modell implizit in der Berechnung der Giitefunktion
und Gleichheitsnebenbedingung, da fiir ihre Auswertungen eine Integration iiber das Zeit-
gitter 7 mit dem ausgewihlten StellgroBenverlauf erforderlich ist. Die exakte Einhaltung
der Modelldynamik ist somit bei jeder Iteration des Optimierungssolvers sichergestellt.
Die Evaluierung eines bestimmten StellgroBenverlaufs gleicht, bildlich gesprochen, ei-
nem SchieBvorgang, welcher den Zielzustand x; erreichen soll. Hiernach leitet sich der

entsprechende Name des Verfahrens ab. Ein dhnlicher Ansatz zum Single- wird beim



4.1 Klassischer modellbasierter Optimalsteuerungsentwurf 109

Multiple-Shooting gewihlt. Das zugehdrige Optimierungsproblem lautet in seiner voll-
diskretisierten Form
min J(xg, ug), uwB.v. g(xg, ug) <0, k=1,...,H,
LTk, Uk
h(a:k,uk) = Tg1 —f(a:k,uk) :0, k= 1,...,H— 1,
(4-2)

wobei die Modelldynamik nun explizit als Gleichheitsnebenbedingung h(-) = 0 auf-
taucht und neben den Stellgré6Ben nun auch die Zustandsvektoren eines jeden Schrittes
als Optimierungsvariablen vertreten sind. Im Gegensatz zum Single- wird beim Multiple-
Shooting jeder Zeitschritt als ein SchieBvorgang angesehen. Es gibt allerdings auch Ab-
stufungen des Verfahrens, die nicht jeden Zeitschritt als Schuss annehmen, sondern meh-
rere Zeitschritte zusammenfassen und damit eine geringere Komplexitidt aufweisen bzw.
sich eher in Richtung des Single-Shootings orientieren. Im Allgemeinen sind die Kon-
vergenzeigenschaften des Multiple-Shooting als besser zu bewerten, wodurch es hiaufiger
fiir schwierigere Optimalsteuerungsprobleme bzw. komplexere Systeme angewandt wird
[Bet9g]].

Durch eine computergestiitzte Losung der Optimierungsprobleme erhilt der Anwender
den zur Aufgabe passenden Steuerungsverlauf. Dieser ist jedoch relativ zum aufgestellten
Modell zu sehen und hingt daher stark von dessen Pradiktionsqualitit ab. Der Steuerungs-
verlauf kann daher bei der Anwendung am realen System aufgrund von Modellfehlern
ein anderes Verhalten hervorrufen, als es durch die Simulation zu erwarten gewesen wére
(vgl. Bild [I-2). Um dieser Problematik bei der Inbetriebnahme zu begegnen, wird ein
hybrider Modellierungsansatz vorgeschlagen. Hierbei werden Messdaten, die vom realen
System stammen, als Grundlage fiir eine Korrektur der Dynamikgleichungen verwendet.
Als maschinelles Lernverfahren werden wiederum GPs eingesetzt, die die Unsicherheit
tiber die Dynamik quantifizieren und im Entwurfsprozess berticksichtigen. Das Optimal-
steuerungsproblem (4-2) wird dahingehend mit dem hybriden Modell formuliert und die
Modellunsicherheiten explizit einbezogen. Das Ziel dieses Hauptkapitels ist es ein hy-
brides Optimalsteuerungsverfahren aufzustellen, welches eine erweiterte Inbetriebnahme
fiir partiell bekannte Systemdynamiken ermoglicht und das Problem der herkommlichen

Vorgehensweise adressiert.

Im Gegensatz zum vorherigen Kapitel 3| bzw. dem Entwurf mittels der BO, wird im Rah-
men dieses Kapitels davon ausgegangen, dass das System soweit identifizierbar ist, dass
eine Klarheit dariiber herrscht, was die Zustinde des Systems genau sind und wie sie
mathematisch definiert sind. Auerdem soll vorausgesetzt werden, dass die Zustinde in

Form einer Messung, Berechnung oder Beobachtung zugénglich sind. Beide Vorausset-
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zungen waren beim Ultraschalldrahtbondprozess nicht gegeben, sodass eine Korrektur
auf der Ebene der Dynamikgleichung praktisch nicht umsetzbar war. In diesem Zusam-
menhang stellte die BO eine Moglichkeit dar, um einen Steuerungsentwurf auf der Basis
der Giitefunktion durchzufiihren, wobei die genutzten GPs nicht als Korrektur fiir die

Dynamik, sondern als Anpassung auf der Ebene der Giitefunktion fungierten.

4.2 Mehrfachpendel auf einem Wagen als Anwendungsbeispiel

Eine interessante Systemklasse stellen Mehrfachpendel auf einem Wagen dar. Thre Eigen-
schaften in einem wissenschaftlichen Kontext innerhalb der Regelungstechnik sind fiir
die Erforschung und Entwicklung neuartiger Steuerungs- und Regelungskonzepte vor-
teilhaft. Sie sind durch einen einfachen Aufbau gekennzeichnet und lassen sich somit
vergleichsweise einfach als Priifstand realisieren. So steht dieser Arbeit ebenfalls ein
Priifstand (s. Bild zur Verfiigung, an welchem das entwickelte hybride Optimal-
steuerungsverfahren und Erweiterungen getestet werden. Das akademisch geprigte Sys-
tem besteht aus einem Wagen, welcher sich ausschlie3lich horizontal bewegen kann, und
einem oder mehreren nacheinander angeordneten Pendelarmen. Die Pendelarme sind da-
bei rotatorisch miteinander verbunden. Der FuBpunkt dieser Konfiguration wird an dem
Wagen, ebenfalls rotatorisch, befestigt. Mogliche Aufgabenstellungen, die an Pendelsys-
teme gekniipft sind, sind der Aufschwung aus der unteren stabilen in die obere instabi-
le Ruhelage, sowie das Balancieren in der oberen Ruhelage. Um den Zielzustand (die
obere Ruhelage) durch die Bewegung des Wagens zu erreichen und beizubehalten, ist ei-
ne komplizierte Steuerabfolge erforderlich, die selbst fiir einen Menschen im Sinne des
manuellen Einstellens nur duerst schwer zu identifizieren ist. Dies liegt unter anderem
an den Eigenschaften, die diese Systeme charakterisieren, bspw. den trigonometrischen
Zusammenhingen, welche die Bewegung beschreiben. Eine genaue Darstellung wird in
diesem Unterkapitel durch eine physikalische Modellbildung gegeben. Das System zihlt
auBerdem zu der Klasse der unteraktuierten Systeme, da jeweils die Anzahl der Freiheits-
grade groBer als die Anzahl der Steuereinginge ist. Die Pendelarme konnen nur indi-
rekt iiber den Wagen beeinflusst werden. Das Doppelpendel weist zudem ein chaotisches,
sensitives Bewegungsverhalten auf. Kleine Anderungen der Ausgangssituation bzw. des
Steuerungssignals fiihren dabei rasch zu groBer werdenden Abweichungen des Bewe-
gungsablaufs. Insbesondere fiir die praktische Umsetzung miissen beim Steuerungs- und
Regelungsentwurf Zustandsbeschrinkungen, in Form von Weg-, Geschwindigkeit- und

Beschleunigungs-Begrenzungen, beriicksichtigt werden.

Am Lehrstuhl fiir Regelungstechnik und Mechatronik der Universitit Paderborn wur-
de ein Doppelpendel-Priifstand konzipiert und realisiert (s. Bild [I-4). Die Pendelarme
wurden dabei modular ausgelegt, sodass ein schneller Umbau zum Einfach- oder Drei-
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u(t)

s

Bild 4-1: Prinzipskizze des Doppelpendels auf einem Wagen (vgl. Bild .

fachpendel vorgenommen werden kann. Die Antriebseinheit besteht aus dem Linearmo-
tor LKL 20-85 Bosch Rexroth und einem Frequenzumrichter, der in einem kraft- oder
geschwindigkeitsgeregelten Modus betrieben werden kann. Aufgrund der Rahmenkon-
struktion ist der Weg des Linearantriebs auf +0.6 m begrenzt. Des Weiteren konnen eine
maximale Geschwindigkeit von 5 7 und eine maximale Beschleunigung von £100
gestellt werden. Die Zustandserfassung erfolgt durch optische, hochauflésende Winkel-
encoder, die 20.000 Striche pro Umdrehung besitzen. Die Winkelgeschwindigkeiten der
Pendelarme werden auf der Recheneinheit niherungsweise iiber eine Finite-Differenzen-
Approximation bestimmt. Die digitale Signalverarbeitung wird von einer dSPACE Echt-

zeithardware durchgefiihrt, die mit einer Abtastfrequenz von 1kHz arbeitet.

Modellbildung fiir das Doppelpendel auf einem Wagen

Die Modellbildung fiir das Doppelpendel auf einem Wagen orientiert sich an [TKOT11}
Tim13]] und wird nach dem Lagrange-Formalismus durchgefiihrt. Bild zeigt das phy-
sikalische Ersatzbild des Priifstands mit den fiir die Dynamik relevanten mechanischen
Parametern und Koordinaten. Das Mehrkorpersystem besteht aus drei starren Korpern.
Der Wagen besitzt die Masse my und die Pendelarme die Massen m; mit ¢ = 1,2.
Zudem weisen die Pendelarme eine Lénge von /; und ein Trdgheitsmoment von J; auf
— ihr Abstand vom FuBBpunkt zum Schwerpunkt betrigt jeweils a;. Die horizontal ver-
laufende Koordinate y(¢) wird dem Wagen zugeordnet und die beiden Winkelkoordina-
ten ;(t),7 = 1,2 den Pendelarmen. Die Winkel werden, ausgehend von der vertikalen
Nulllage, positiv gegen den Uhrzeigersinn gezihlt. Zunichst soll die am Wagen wirken-
de Kraft als Systemeingang ur(t) betrachtet werden. Etwaige Reibungseffekte zwischen
dem Linearantrieb und der Wagenstrecke werden vernachlissigt, da sie durch die interne
Geschwindigkeitsregelung des Linearmotors kompensiert werden. Die Reibung der ro-

tatorischen Gelenke wird jedoch iiber lineare Ansitze mit den Dimpfungskonstanten d;
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beriicksichtigt. Weitere Storeinfliisse, wie bspw. Schwingungen der Rahmenkonstruktion,

werden nicht modelliert.

Der Lagrange-Formalismus setzt zunédchst die Bestimmung der Orts- bzw. Schwerpunkts-

koordinaten (V) = [xgi), xg) 17,4 = 0,1, 2, durch die generalisierten Koordinaten (i1, @9, )

voraus. Hierzu werden die Vektoren

4 I
0

definiert. Mit dieser Charakterisierung werden die gesamte kinetische Energie V' und die

20 —

Y

y—a Sin(%)] e

y — Iy sin(pq) — ag sin(ys)
ay cos(p1)

L cos(p1) + az cos(ip)

gesamte potentielle Energie U des Systems aufgestellt.

2 2 2
1 2 .92 (4)
V:§<;mi 2+;Jigﬁi ), U:;mig% . (4-3)

Dabei bezeichnet |-||, die euklidische Norm und g die Gravitationskonstante mit dem

2

Wert 9.81 35. Fiir die dissipativen Reibmomente in den Pendelgelenken werden lineare
Ansitze mit F} = dy(pa — ¢1) — dipy und Fy = dy (1 — p9) verwendet. Zu den Reib-
momenten tritt die am Wagen angreifende Kraft F hinzu, welche gleichzeitig die einzige
Eingangsgrofe up(t) in das System darstellt. Die Lagrangeschen Gleichungen zweiter

Art [Sko18] fiir das betrachtete System in Indexschreibweise lauten:

d 9L(q,q) 0OL(q.q)
dt g 9qi

=F, i=0,1,2. 4-4)

Darin ist L(q,q) = V(q,q) — U(q) die sogenannte Lagrangefunktion, die sich aus der
Differenz aus kinetischer Energie V' und potentieller Energie U (s. (4-3))) zusammensetzt.
In dem Vektor ¢ = [q1,q2, 0]* = [p1, 92, y]T werden die verallgemeinerten Lageko-
ordinaten und in dem Vektor ¢ = [y, ¥, y]* die verallgemeinerten Geschwindigkeiten
zusammengefasst. Die einzelnen Bestandteile der Gleichungen fiihren auf das nach-

folgende nichtlineare System von Differentialgleichungen (DGL) zweiter Ordnung:

M(q)G = F(q.q) + Bur, (4-5)
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mit der Matrix

2X2 2x1
MZD - MG

3x3
[ Ty + admy + By azlima cos (p1 — w2)  (lyma — aymy) cos (¢1)
= | aslymycos (o1 — ©2) Jo + azmsy —aymy cos () ,
_(l1m2 — alml) COS ((,01) —Qa9Ms9 COS ((pg) mi + Mo + My
(4-6)

und den Vektoren

]:1(2><1)
FHD = (1x1)

2

d2(§0'2 — (,01) — d1g0.1 — a2l1m2 sin <§01 — @2)90.22 + g(a1m1 + l1m2) Sil’l((pl)
= dg(gbl — (,02) — Ggllmg sin(apl — @2)@12 -+ qgasmmeo Sil’l(gOQ)

(llmg - a1m1) sin(gpl)go'12 — A2M3 Sin(902)¢22

B = 10,0,1]7.

(4-7)

Die symmetrische Matrix M wird Massenmatrix genannt und der Vektor F fasst Coriolis-
Zentrifugal-, sowie dissipative Krifte zusammen. Durch den Eingangsvektor B ist gut zu
erkennen, dass sich nur die dritte DGL direkt durch die Aktorkraft uy(t) beeinflussen
lasst. Aufgrund der Geschwindigkeitsregelung des Linearantriebs bietet es sich an, eine
partielle Zustandslinearisierung [Tim13]] durchzufiihren, sodass anstelle der Aktorkraft F{
die Wagenbeschleunigung § als Eingangsgrofe u,(t) betrachtet wird. Die generalisierten
Koordinaten g = [q,, ¢2]7 werden zuniichst in die passiven (g, = |1, @»]?) Freiheitsgra-
de und den aktiven (g2 = y) Freiheitsgrad unterteilt. Diese Art der Partitionierung wurde
bereits in (4-0)), angedeutet und fiihrt auf die Darstellung

MG, + MG = F,
Mo i1G, + Maogo = Fo + up.

(4-8)

Die obere Gleichung wird nun nach dem passiven Anteil umgestellt. Diese Umformung
ist moglich, da M positiv definit ist, und die Inverse Mf% somit existiert. AnschlieBend
wird die umgeformte obere in die untere Gleichung eingesetzt und nach der Eingangskraft

aufgelost:

Up = M2,1M1_&-7:1 + (Mg — M2,1M1_7%M1,2)C'1'2 — F. 4-9)

I
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Bild 4-2: Simulierte Paretofront und zugehorige Priifstandsmessungen fiir das Dreifach-
pendel auf einem Wagen.

Die entstandene Gleichung (4-9) fiir ux(g2) motiviert die Einfithrung einer fiktiven Riick-
fithrung der Wagenbeschleunigung §j, sodass die untere Gleichung in (#-8)) vollstandig
kompensiert wird. Ubrig bleibt ein reduziertes System mit der Beschleunigung des Wa-

gens als neuen Systemeingang

Ml,lfh =F — M1,2uy7

G2 = Uy,

(4-10)

welches eine geringere Berechnungszeit im Vergleich zum Originalsystem (4-5)) benotigt.

Abweichung zwischen Simulation und Realitit am Beispiel der Paretofront eines
Dreifachpendels auf einem Wagen

Eine Erweiterung des Doppelpendels stellt das Dreifachpendel auf einem Wagen dar.
Fiir die Realisierung wird am Priifstand lediglich ein weiterer Pendelarm an das Ende
des duBeren Pendelarms montiert. Die grundsétzlichen Eigenschaften dndern sich durch
diesen Aufbau nicht, sondern werden in gewisser Weise verstirkt. Das chaotische und
sensitive Bewegungsverhalten bleibt erhalten, allerdings wird es durch den zusétzlichen
Pendelarm erhoht, sodass die Pridiktionsfidhigkeit eines zugehorigen Modells generell
abnimmt. Um die Effekte eines nicht idealen Modells zu verdeutlichen, wurden am Drei-
fachpendel verschiedene Studien durchgefiihrt. Hierzu ist insbesondere die studentische
Arbeit [[sm18] zu nennen, in welcher der Aufschwung und die Stabilisierung nach dem
Vorgehen in [Tim13]] erfolgreich umgesetzt werden konnte. Die Inbetriebnahme gestal-
tete sich jedoch duBerst schwierig aufgrund der erwihnten Problematik in Bezug auf die
genaue Modellbildung des Systems. Ein besonders aussagekriftiges Ergebnis ist im Zu-
sammenhang mit der Paretofront des Optimalsteuerungsentwurfs entstanden. In Bild 4-2]

ist hierzu die Auswertung der simulierten Paretofront dargestellt. Als Ziele wurden hier-
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bei der Energieaufwand und die Aufschwungzeit betrachtet. Durch die Verdnderung der
jeweiligen Gewichtung kann die in blau dargestellte Paretofront abgetastet werden. Die
Abtastpunkte sind durch die blauen Punkte visualisiert. In der Simulation prigt sich der
typische Verlauf einer Paretofront aus, wobei entlang der Kurve nur dominante Punk-
te miteinander verbunden werden. Die den blauen Punkten zugehorige Optimalsteue-
rung wurde gleichermaflen am Priifstand erprobt. Die rote Kurve stellt die gemessenen
Ergebnisse dar. Dabei wird deutlich, dass der Energieaufwand insgesamt hoher ausfillt
als es durch die Simulation prognostiziert wurde. Der Grund hierfiir ist die Verwendung
der Zwei-Freiheitsgrade-Regelungsstruktur (s. Bild 2-1]), wobei die eingesetzte Optimal-
steuerung um einen Reglereingriff erweitert wird, um etwaige Modellfehler bzw. dullere
Storungen zu kompensieren. Der Reglereingriftf ist notwendig, da sich das System an-
sonsten zu stark von der Soll-Trajektorie entfernt und den geforderten Zielzustand nicht
erreichen kann. Der zusitzliche Energieaufwand ist dabei fiir die einzelnen Punkte der
Paretofront nicht konstant, sondern héngt von der Aufschwungzeit ab. Je ldnger der Auf-
schwung, desto mehr Energie wird fiir die Einhaltung der Trajektorie gebraucht. Dies ist
nachvollziehbar, da die Pridiktionsfdahigkeit mit der Zeit abnimmt und sich bestehende
Modellfehler entsprechend zeitlich aufsummieren. Neben diesem Sachverhalt sind aufer-
dem zu einigen blauen keine zugehdorigen roten Punkte zu beobachten (so bei 7' = 2.25 s
und 7" = 2.8 s). Dies liegt daran, dass zu diesen Punkten kein erfolgreicher Aufschwung
am Priifstand umgesetzt werden konnte. In diesen Fillen war der Reglereingriff zu groB,
sodass das System instabil wurde und die technischen Rahmenbedingungen verletzt wur-
den. Dieses Ergebnis ist dahingehend interessant, da sich die benachbarten Paretopunkte
bzw. ihre Trajektorien nicht allzu stark von den instabilen Fillen unterscheiden und daher
kein besonderer Grund angegeben werden kann, warum eine Realisierung nicht moglich
war. Insgesamt ergibt sich damit ein Bild, welches eine ideale Paretofront aus der Si-
mulation zeigt, welche allerdings in der Realitit nicht gleichermaen umgesetzt werden
kann. Die in rot dargestellte reale Paretofront weicht dabei von der Simulation ab, und
kann daher im Grunde nicht mehr als Paretofront bzgl. des realen System bezeichnet wer-
den, da sie einige Punkte (am rechten Rand) enthilt, die von anderen Punkten dominiert
werden. Dieser Sachverhalt verdeutlicht die Schwierigkeiten, welche sich bei der Inbe-
triebnahme durch einen modellbasierten Entwurf ergeben und motiviert den Einsatz von
hybriden Verfahren, welche die Informationsquelle der Messdaten nutzen, um den mo-
dellbasierten Optimalsteuerungsentwurf zu verbessern. Bevor der hybride Ansatz niher
besprochen wird, soll zunichst ein rein datengetriebenes Verfahren vorgestellt werden
und dessen Vor- und Nachteile erldutert werden. Auf diese Weise lésst sich die hybride
Optimalsteuerung besser in den Gesamtkontext einordnen und im weiteren Verlauf des
Kapitels ein Vergleich zwischen einem Ansatz ohne und mit Vorwissen gezogen werden.

Im Rahmen des modellbasierten RLs und im Zusammenhang mit der Regelungstechnik
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ist hierzu der PILCO-Ansatz zu nennen, welcher im ndchsten Abschnitt detailliert mit der

Anwendung auf das Doppelpendel auf einem Wagen erklért wird.

4.3 Probabilistic Inference for Learning Control

In diesem Unterkapitel wird der PILCO-Algorithmus nach [Dei1l0; [DRF12; DEPF14;
DFR15] vorgestellt. PILCO ist ein modellbasiertes RL-Verfahren zur Losung von Re-
gelungsaufgaben. Das Verfahren setzt dabei wenig Vorwissen iiber die Regelungsaufgabe
voraus und beinhaltet das Erlernen eines dynamischen Modells auf der Grundlage von
Messungen am betrachteten realen System. Zudem zeichnet sich PILCO durch seine hohe
Effizienz im Hinblick auf die Auswertung vorhandener Messdaten und die Nutzung von
Rechenkapazititen aus. Aus diesem Grund wird PILCO in der Literatur als ein State-of-
the-Art RL-Algorithmus fiir die kontinuierliche Regelung von realen dynamischen Syste-

men angesehen.

Eine physikalische Modellbildung wird im Kontext von RL als Expertenwissen bezeich-
net, welches fiir die Anwendung von PILCO nicht vorausgesetzt wird. Aus diesem Grund
wird bei PILCO die Systemdynamik mittels GauB3-Prozess-Regression nachgebildet. Ge-
nauer betrachtet, wird fiir jede Zustandsdimension ein eigener GP angesetzt. Aulerdem
wird die Annahme getroffen, dass die GPs voneinander unabhéngig sind, sich also gegen-
seitig nicht beeinflussen konnen. Diese Annahme stellt keine Einschrinkung dar, da jede
Lernaufgabe in Hinblick auf ihre Zustandsdimension separat voneinander betrachtet wer-
den kann. Eine Verkniipfung der einzelnen Gleichungen kommt nur durch die zeitliche
Entwicklung bzw. Integration des Zustandsvektors (Zustandspropagation, s. Abschnitt
zustande, jedoch nicht durch den zugehorigen GP selbst. Durch den probabilis-
tischen Charakter eines GP wird iiber ihn die Unsicherheit iiber die Dynamikfunktion
ausgedriickt. Erst durch die Aufnahme von Messdaten und die Bildung des Posterior fiir
jeden GP wird diese Unsicherheit in bestimmten Bereichen des Zustandsraums reduziert,
wodurch ein kontinuierlicher Lernvorgang der Dynamik des Systems angestofen wird.
Der probabilistische Charakter steht daher im engen Zusammenhang mit dem Kompro-
miss zwischen einem explorativen und exploitativen Verhalten des PILCO-Algorithmus
und ist essentiell wichtig fiir den Erfolg des Verfahrens. Unter anderem wurde in [DFR15]]
durch diverse Versuche gezeigt, dass die Einbringung der Wahrscheinlichkeitstheorie fiir
das erfolgreiche Lernen notwendig ist, denn der Austausch der probabilistischen GPs mit
einem vergleichbaren deterministischen Modellansatz fiihrte fiir die betrachteten Anwen-
dungsbeispiele zum Misserfolg. Ein Einfluss einer stochastischen Komponente, welche
das Ergebnis negativ beeinflussen konnte, wird iiber die mehrfache Wiederholung der

Experimente ausgeschlossen.
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Algorithmus 3 Probabilistic Inference for Learning Control (PILCO)

1: Initialisierung: Wihle eine zufillige Reglerparametrisierung 6. Schalte dem System
die Regelungsstrategie (x; @) auf und sammle erste initiale Messdaten.

2: Wiederhole bis die Regelungsaufgabe erfiillt ist:

3:  Lerne die Systemdynamik mittels GP anhand der vorhandenen Messdaten.

4:  Wiederhole bis ein Konvergenzkriterium erreicht ist:

5 Berechne die Gesamtkosten /() auf Basis des gelernten GP-Modells.

6 Fiihre eine gradientenbasierte Verbesserung der Reglerparametrisierung durch
und erhalte 6*.

Schalte dem System die Regelungsstrategie r(x; 8*) auf und sammle parallel

weitere Messdaten, die den bestehenden Messdaten hinzugefiigt werden.

~

Das iibergeordnete Ziel bei PILCO ist es, einen parametrisierten Regler u = r(x; 6) zu

finden, der die erwarteten Langzeitkosten bzw. das Giitemal3

J(6) =) Ele(zp)] € R, @y ~ N (g, To), (4-11)

tiber H+1 Zeitschritte minimiert. Dabei ist ¢(xy ) eine momentane Kostenfunktion, die je-
den Zustand x; anhand eines Zielzustandes x bewertet. Zudem wird der Erwartungswert
der Kosten betrachtet, da die Zustidnde x; aufgrund der GP-Modellierung nur mit einer
bestimmten Wahrscheinlichkeitsverteilung vorliegen. Die Minimierung der Gesamtkos-
ten (@-11) wird mittels gradientenbasierten Optimierungssolvern durchgefiihrt. Die Op-
timierungsvariablen sind dabei die Elemente der Parametrisierung 6, durch die der Reg-
ler und dessen Qualitit beeinflusst wird. Wihrend der Optimierung wird mehrfach eine
Langzeitpradiktion der Form p(xq | ) — p(x1 | 0) — ... — p(xy | ) mit Hilfe des GP-
Modells berechnet, um die Langzeitkosten (4-11)) auszuwerten und eine kontinuierliche
Verbesserung des Reglers vorzunehmen. Eine Besonderheit dabei ist, dass die Zustands-
verteilungen iiber den Moment Matching Ansatz als Normalverteilungen approximiert
werden. Bei der Verwendung des SE-Kernels fiir die einzelnen GPs kann in [DFR135]] ge-
zeigt werden, dass die Berechnung fiir den Erwartungsvektor und die Kovarianzmatrix
des Zustands analytisch aufgestellt werden kann. Das hat den Vorteil, dass die zugehorige
Berechnung relativ giinstig ist und gleichermallen der Gradient fiir die Optimierung ana-

lytisch abgeleitet werden kann.

Algorithmus[3|fasst die wesentlichen Schritte zusammen, welche im Nachfolgenden naher
erldutert werden. PILCO beinhaltet eine Initialisierungsphase (Zeile 1), sowie eine du3ere
(Zeile 2-7) und eine innere (Zeile 4-6) Schleife. In der Initialisierungsphase wird dem
System eine zufillige Steuerfolge aufgeschaltet. Dabei werden erste Messdaten bzw. Zu-
standsiiberginge des Systems aufgenommen. Anschlieend wird die du3ere Schleife von
PILCO ausgefiihrt. Die Schleife beginnt mit dem Training eines GP-Modells, welches die
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Systemdynamik abbilden soll. Training bedeutet in diesem Zusammenhang, dass die Hy-
perparameter der zugehorigen GPs iiber einen Optimierungssolver variiert werden, sodass
die Likelihoodfunktion maximiert wird. Das Training wird anhand der bestehenden Mess-
daten durchgefiihrt. Im Anschluss erfolgt die Optimierung der Reglerparametrisierung 6
(innere Schleife). Auf Grundlage des gelernten GP-Modells wird hierbei das Systemver-
halten laufend mit unterschiedlichen Reglerparametrisierungen simuliert, bis eine opti-
male Parameterkonfiguration 8, gefunden wurde und die Optimierung konvergiert. Im
Anschluss an die Reglerparameteroptimierung wird dem System die aktuelle Regelungs-
strategie r(x; 6,) aufgeschaltet und parallel neue Messdaten aufgenommen. Die neuen
Messdaten werden den bestehenden Messdaten hinzugefiigt und die duflere Schleife er-
neut ausgefiihrt. Dem GP-Training stehen dabei weitere Messdaten zur Verfiigung, wo-
durch sich ein genaueres Modell des Systems ergibt. Durch die Veridnderung des Modells
fiihrt die Optimierung innerhalb der inneren Schleife zu einer besseren Losung 6. Die
duBere Schleife wird solange ausgefiihrt, bis die Regelungsaufgabe erfiillt wurde. Das
Ergebnis von PILCO ist ein optimierter Regler, der einen gewiinschten Zielzustand er-
reicht und stabilisiert. Zusitzlich steht am Ende des Verfahrens das trainierte ML-Modell
zur Verfiigung, welches bspw. fiir einen weiterfilhrenden Beobachterentwurf verwendet
werden kann [DHHO9].

PILCO setzt eine parametrisierbare Ansatzfunktion mit 7(x; @) : R"* — R™ fiir die Dar-
stellung des Reglers voraus. Dabei steht n,, fiir die Anzahl der ZustandsgréBen und n,, fiir
die Anzahl der StellgroBen. Da in dieser Arbeit Systeme mit einer Stellgrofe betrachtet
werden, gelten die nachfolgenden Betrachtungen fiir den Spezialfall n,, = 1. Bei PILCO
wird fiir jede Stellgroe der Ansatz

r(@;0) = k(M,z)" K(M, M) 'v=>_k(m;,z)q, (4-12)
~ i=1
mit M = [my,...,m,, | € R"™*"" gewihlt, wobei n,, fiir die Anzahl der Basisfunk-

tionen steht. Bei formaler Betrachtung von (4-12) fllt auf, dass es sich um die Posterior-
Gleichung fiir den Mittelwert eines GP handelt (vgl. (2-31))). Die Ansatzfunktion fiir die
StellgroBe entspricht daher einem GP mit der SE-Kovarianzfunktion. Fiir die Posterior-
Varianz wurde keine Gleichung angegeben, da diese im Kontext einer Regelung identisch
null gesetzt wird. Es handelt sich daher um einen deterministischen GP, der keine Un-
sicherheiten aufweist. Jedem Zustand wird somit eine eindeutige Stellgrofle zugeordnet.
Um den GP-Regler vollstindig zu definieren, miissen Ein-, Ausgangsdaten und Hyperpa-
rameter festgelegt werden. Anders als bei der Modellierung mittels GP, handelt es sich
bei den Ein- und Ausgangsdaten des GP-Reglers um fiktive Daten, die unter anderem die
Optimierungsvariablen des PILCO-Algorithmus darstellen. In der Matrix M aus
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werden die Eingangsdaten m; € R"*,7 =1, ..., n,, und in dem Vektor v € R"™ die Aus-
gangsdaten zusammengefasst. Mit der Variable a wird das Produkt aus K (M, M)~! und
v abgekiirzt. Die Hyperparameter der SE-Kovarianzfunktion lauten o7, o, und I3, . .., I .
Die Parameter UJ% und o2 sind nach [DFR15] mit den Werten 1 und 0.01 fest vorgegeben.
Die restlichen Hyperparameter [? werden den Optimierungsvariablen zugeordnet. Insge-

samt ergibt sich somit der Parametervektor 8 = [m? ..., mI o7 [, ... 1, ]" aus

dem Raum R"="m*tmm+n " der simtliche Optimierungsvariablen des GP-Reglers beinhal-
tet. Als momentane Kostenfunktion wird bei PILCO ein begrenzt quadratischer Ansatz

mit
o) =1—exp(—i(x—xc)" W' (x — x¢)) € [0,1], (4-13)

eingefiihrt. Uber die symmetrische und positiv definite Matrix W, kann eine Gewichtung
der unterschiedlichen Zustandsdimensionen eingestellt werden. Ist das System noch sehr
weit von seinem Zielzustand entfernt, werden die maximalen Kosten von 1 zugewiesen,
wohingegen das Erreichen und die Stabilisierung des Zielzustands mit den minimalen

momentanen Kosten von 0 belohnt werden.

In der eigenen Veroffentlichung [HTHT18] wurde der PILCO-Algorithmus zum ersten
Mal auf ein reales Doppelpendel auf einem Wagen angewandt und der Aufschwung, sowie
die Stabilisierung der oberen Ruhelage erfolgreich umgesetzt. Eine wesentliche Voraus-
setzung dabei war, dass die technischen Rahmenbedingungen, die durch die Priifstands-
konstruktion (s. Bild[T-4) vorgegeben waren, eingehalten wurden. Hierfiir musste die be-
stehende Kostenfunktion (4-13)) geeignet erweitert werden. Um die Nebenbedingungen
des Wagens zu beriicksichtigen wurde die sogenannte doppelseitige Hingefunktion ¢y, (+)
eingefiihrt und additiv an die bestehenden Kosten bzgl. des Zielzustands gekniipft. Insge-

samt ergibt sich somit eine Gesamtkostenfunktion von

H Ty — 202l <)
J(0) = > Eley(m) + > en(@)], mit en(@?) = 20— 2y 2 > 2l
k=0 i=1
0 , sonst,
(4-14)

wodurch Zustandsiiberschreitungen der i-ten Zustandsdimension durch eine lineare Zu-

nahme der Kosten bestraft werden.

Bild[-3|zeigt auszugsweise die Zustandsverldufe aus der 10. und 27. (finalen) Lerniterati-
on des Verfahren Im Bild sind in blau die probabilistischen Priadikationen des aktuellen

2Ein  Video der experimentellen Validierung ist unter dem nachfolgenden Link
https://youtu.be/N-yrQu9zuOI?si=zyQimHCXLdfv9a7_|zu finden.


https://youtu.be/N-yrQu9zuOI?si=zyQjmHCXLdfv9a7_
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10. Iteration 27. Iteration

Bild 4-3: Anwendung von PILCO auf ein reales Doppelpendel auf einem Wagen. Darstel-
lung der 10. und 27. Lerniteration des Verfahrens.

GP-Modells dargestellt, sowie die real gemessenen Verldufe (rot) bei der Anwendung des
gleichen Reglers. Die ersten Iterationen sind durch eine hohe Unsicherheit bzw. Zustands-
varianz gekennzeichnet. In den ersten 2 s im 10. Versuch ist das Verhalten des Systems gut
vorhergesagt, wird jedoch zum Ende der Trajektorie, wegen der Anniherung an die in-
stabile Ruhelage, schlechter, sodass es noch eine deutliche Abweichung zum Zielzustand
gibt. Auch wenn das System in dieser Iteration noch nicht im Zielzustand stabilisiert wer-
den kann, ist bereits die Erreichung des Zustands bei etwa 2 s ein wesentlicher Schritt zur
Erfiillung des Regelungsziels, denn die dabei aufgenommenen Messdaten haben einen
bedeutenden Wert fiir das zugrundeliegende ML-Modell. Anhand dieser Daten kann das
Verhalten in der Néhe des Zielzustands besser vorhergesagt werden, wohingegen die ers-
ten Iterationen durch eine fehleranféllige Extrapolation des Modells geprigt war. Im Lau-
fe der nédchsten Iterationen wird der Regler bzw. die Parametrisierung weiter verbessert
und der Stellhorizont bei der Einhaltung gewisser Grenzwerte sukzessive erweitert. Nach
27 Lerniterationen wurde das Ziel durch PILCO erreicht, wobei die gesamte Systemdy-
namik alleine auf der Grundlage von gemessenen Zustandsdaten abgebildet wurde und

keinerlei physikalische Zusammenhénge ausgenutzt wurden.

Die Arbeit in [HTHT18|] verdeutlicht daher die praktische Anwendbarkeit von Rein-
forcement Learning Algorithmen in einem regelungstechnischen Kontext und adressiert
die Problematik einer fehlerbehafteten Modellbildung durch ein rein datengetriebenes
Vorgehen. Die geloste Aufgabe stellt dabei eine anspruchsvolle Herausforderung dar, wel-
che selbst mit den klassischen bewihrten regelungstechnischen Herangehensweisen nur
schwerlich erfolgreich umgesetzt werden kann (s. Ausfiihrungen zu Bild B-2). Trotz der

sehr guten Ergebnisse in Bezug auf das komplexe Anwendungsbeispiel muss der PILCO-
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Algorithmus allerdings auch in bestimmten Punkten kritisch beurteilt werden. Ein Punkt
ist die Dauer des Lernvorgangs. Zwar ist die reine Interaktionszeit, welche PILCO fiir
die Erprobung einer neu gefundenen Regelung benotigt, dulerst gering mit etwa 2 s pro
Iteration, dennoch ist auch die Offline-Berechnung bzw. die Losung des Optimierungs-
problems zu beriicksichtigen. Aufgrund der hohen Komplexitit des Reglers (die Anzahl
der Parameter liegt bei etwa 1.000), welcher fiir das Doppelpendel erforderlich ist, be-
trigt die Losung eines Optimierungsproblems innerhalb einer Iteration etwa 2 Stunden.
Bei den 27 durchgefiihrten Iterationen betrigt die gesamte Berechnungszeit damit in etwa
zwei Tage. Im Vergleich zu einem herkdommlichen physikalischen Ansatz, welcher idea-
lerweise direkt nach einer addquaten Identifikation der Modellparameter funktioniert, ist
der Lernvorgang damit als dufBerst lang zu bezeichnen. Ein Grund hierfiir ist, dass das
Dynamikmodell von Grund auf gelernt werden muss und dafiir erst eine entsprechende
Datenlage geschaffen werden muss. Selbst ein einfaches Modell in Form eines linearen
Zustandsraummodells um die untere Ruhelage, welches relativ einfach aufgestellt werden
konnte, findet bei der Standardvariante des PILCO-Verfahrens keine Verwendung.

Stand der Forschung

In den Folgearbeiten zu [DFR15] bzw. PILCO wurde daher die Einbindung von Vorwis-
sen iliber die Systemdynamik bearbeitet. Hierbei sind insbesondere [BNv*14]] und [[CH15]
zu nennen. In [BNv™14]] wird die Einbindung eines linearen Modells behandelt und als
Anwendungsbeispiel ein Greifroboter, welcher einen Becher aufheben soll, angefiihrt.
Die Einbindung erfolgt dabei iiber die Mittelwertfunktion des GP-Modells, wobei wieder-
um eine analytische Berechnung erhalten bleibt. Die Autoren in [CH15] sind daran inter-
essiert, nichtlineares Vorwissen in den PILCO-Algorithmus zu integrieren. Es wird eben-
falls die Prior-Mittelwertfunktion benutzt, allerdings nicht direkt die nichtlineare Dyna-
mikfunktion dariiber eingebunden. Die Begriindung hierfiir ist, dass die analytische Bere-
chenbarkeit verloren geht. In [CH15]] wird deswegen ein Vorgehen auf der Grundlage von
simulierten Daten des Vorwissens vorgeschlagen. Die simulierten Messdaten werden dann
im Rahmen von weiteren zusitzlichen GPs genutzt und zum Training dieser verwendet.
Die Posterior-Mittelwertfunktionen der trainierten GPs werden dann iiber den Prior der
urspriinglichen PILCO-GPs eingebunden. Als Vorteil bleibt somit zwar die analytische
Berechenbarkeit, insbesondere des Gradienten bzgl. der Giitefunktion, erhalten, allerdings
wird das Vorwissen auch nur indirekt iiber die simulierten Daten eingebunden. Auf diese
Weise geht der grofte Vorteil des Vorwissens verloren - die Extrapolationseigenschaft - in
Zustandsgebieten, in denen (noch) keine Messdaten vorliegen. Ergénzend sind an dieser
Stelle auch die Folgearbeiten zu PILCO von [DNM™17; EPDP13; GMR16; ADA*22] und
[MR17] zu nennen. In [DNM*17] wird nicht die {ibliche deterministische GP-Regelung
(4-12) eingesetzt, sondern ein in der Regelungstechnik gidngiger PID-Regler optimiert.
[EPDP13]] erweitert PILCO fiir den Fall des sogenannten Imitation Learning, wobei der
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menschliche Anwender eine Soll-Trajektorie manuell vorgibt und die Regelungsaufga-
be darin besteht dieser Trajektorie bestmoglich zu folgen. Als Anwendungsbeispiel wird
ein Roboterarm zum Spielen von Tischtennis betrachtet. Des Weiteren wird in [MR17]]
die Nutzung des GP-Dynamikmodells im Rahmen eines parallelen Beobachterentwurfs
erforscht. Bei der Regleroptimierung wird dabei die Filterung durch den Beobachter ex-
plizit beriicksichtigt. Durch dieses Vorgehen lassen sich selbst Systeme, die ein starkes
Messrauschen aufweisen, durch die gelernte Regelung stabilisieren. Die weiteren genann-
ten Arbeiten untersuchen PILCO im Zusammenhang mit anderen probabilistischen ma-
schinellen Lernverfahren und tauschen den GP-Ansatz entsprechend aus. Im Grundsatz
unterscheiden sich die entwickelten Verfahren daher nicht zum urspriinglichen PILCO-
Verfahren, weisen jedoch im Bezug auf die Skalierbarkeit und die Verallgemeinerung auf

komplexere Zustandsverteilungen bessere Eigenschaften auf.

Neben den bereits erwihnten Kritikpunkten, ist ein weiterer Punkt in Bezug zum Re-
gelungsansatz anzumerken. Es handelt sich hierbei um eine komplexe Ansatz-
funktion, die sich durch eine gewisse Anzahl von Parametern kennzeichnet. Die An-
zahl der Parameter und damit auch die Komplexitit der Regelung wird vom Anwender
a-priori festgelegt. Wihrend des Verfahrens ist nicht vorgesehen, dass sich der Regler
diesbeziiglich verdndert. Das Problem besteht darin, dass die Anzahl passend zur Rege-
lungsaufgabe bzw. dem System ausgewihlt werden muss. Ist die Komplexitit des Reg-
lers zu gering, so kann die Aufgabe nicht gelost werden und es stellt sich eine Stagna-
tion im Laufe der Lerniterationen ein. Auf der anderen Seite ist eine zu hohe Komple-
xitdt ebenfalls kontraproduktiv, da die Losung der Regelungsaufgabe damit grundsitzlich
ermOglicht wird, andererseits aber das zugrundeliegende Optimierungsproblem immer
schwieriger zu bewiltigen ist und suboptimale Parametrisierungen wahrscheinlicher wer-
den. Hinzu kommt, dass die Dauer des Lernvorgangs insgesamt unter Umstdnden we-
sentlich zunimmt. Des Weiteren kann die GP-Regelung vor dem Hintergrund der Zwei-
Freiheitsgrade-Regelungsstruktur (s. Bild betrachtet werden. Wihrend die klassi-
sche Regelungsstruktur eine eindeutige Unterscheidung zwischen dem Steuerungs- und
Regelungsanteil des Stellsignals liefert, ist die GP-Regelung (4-12) dahingehend nicht
analysierbar. In Bezug auf das Doppelpendel-Anwendungsbeispiel ist die gelernte Rege-
lung lediglich fiir die Aufschwung-Trajektorie zulidssig und enthélt damit den Charakter
einer Steuerung. Dennoch gleicht sie kleinere Stérungen, die entlang der Aufschwung-
Trajektorie auftreten konnen, aus, sodass sie von der Wirkungsweise dhnlich zum An-
satz der Zwei-Freiheitsgrade-Regelungsstruktur stabilisierend funktioniert. Die Auftei-
lung des Stellsignals und eine damit verbundene Interpretierbarkeit der gelernten Rege-

lung ist jedoch nicht moglich.
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Daher passen [KD18|] und [HLZ18; HKZ17] PILCO in die Richtung eines Optimal-
steuerungsproblems an und behandeln die Stellgroflen eines jeden Zeitschritts di-
rekt als Optimierungsvariablen. Die Autoren aus [KD18]] konzentrieren sich dabei auf
ein autonomes Lernszenario (keine vorherige Annahme iiber Wissen) und konnen Opti-
malitdtsbedingungen ableiten, indem sie das Maximum-Prinzip von Pontryagin [PLB12]
unter der einschrinkenden Annahme, dass der GP einen SE-Kernel hat, anwenden. Sie
erzielen gute Ergebnisse in zustands- und stellgroBenbeschrinkten simulationsgestiitzten
Testexperimenten im Vergleich zu PILCO, da diese Einschriankungen innerhalb des Opti-
malsteuerungsproblems natiirlich durch fest einzuhaltende Nebenbedingungen behandelt
werden konnen und nicht iiber einen Strafterm innerhalb der Giitefunktion beriicksichtigt
werden miissen (vgl. @-14)). [HLZ18; [HKZ17] sind dhnlich zu [KD18] im Sinne der
Verwendung von GPs, diskutieren jedoch zusitzlich verschiedene Approximationen fiir
die Zustandspropagation unter Unsicherheit, mit Ausnahme der UT (s. Abschnitt [2.3.2).
Da beide Veroffentlichungen die Steuerungen als einzige Optimierungsvariablen definie-
ren, wird ihr Ansatz als Single-Shooting klassifiziert. Als Regelungskonzept wird in bei-
den Fillen ein modellpridiktiver Ansatz (MPC) vorgeschlagen, der jedoch in der Praxis
schwer umgesetzt werden kann aufgrund der hohen Echtzeitanforderungen, die sich durch
die Losung des komplexen Optimierungsproblems in jedem Zeitschritt ergeben. Diese
Anmerkung gilt insbesondere fiir das Anwendungsbeispiel dieses Kapitels aufgrund sei-

ner hohen Dynamik und notwendigerweise niedrigen Abtastzeit.

Beitrag und Prinzipien der hybriden Optimalsteuerung

Der Beitrag der vorliegen Arbeit vor dem Hintergrund des Stands der Forschung ist viel-
seitig. Zunichst kann anhand der aufgelisteten Veroffentlichungen und den eigenen Er-
gebnissen im Zusammenhang mit PILCO geschlussfolgert werden, dass sich das proba-
bilistische Rahmenwerk und der iterative Lernvorgang erfolgversprechend in die Rege-
lungstechnik und die Inbetriebnahme integrieren lassen. Durch das direkte Lernen auf der
Basis von Messdaten vom realen System wird die Problematik der unzureichenden Mo-
dellbildung adressiert. Dabei bleibt eine gewisse Flexibilitit im Bezug auf das betrachtete
System erhalten und geht mit einer zeitlichen Einsparung hinsichtlich einer aufwendi-
geren Modellierungsarbeit einher. Als Grundprinzip wird das Vorgehen von PILCO und
die Verwendung von probabilistischen GPs daher zur Durchfiihrung einer besseren und
effizienteren Inbetriebnahme einer Optimalsteuerung iibernommen. Die wahrscheinlich-
keitsbasierte Komponente ist dabei vorteilhaft, um gewisse Unsicherheiten iiber die Dy-
namikfunktion einzubeziehen und so Vorkommnisse am realen Prozess, bspw. die Ver-
letzung von technischen Rahmenbedingungen oder ein instabiles Systemverhalten, bes-
ser vorhersagen zu konnen. Im Vergleich zu den vorhergehenden Arbeiten wird dabei
die Einbindung von Vorwissen explizit bei der Entwicklung des damit hybriden Optimal-

steuerungsverfahrens beriicksichtigt. Das Ziel ist es, beliebige nichtlineare Dynamikfunk-
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tionen als Annahme zuzulassen und diese durch die aufgestellten GPs und den PILCO-
dhnlichen Lernvorgang korrigieren zu lassen. Die UT stellt hierbei ein wesentliches Hilfs-
mittel dar, um die Zustandspropagation des hybriden Modells abzubilden. Ein weiterer
Vorteil der Nutzung der UT ist, dass sie nicht nur den Einsatz einer nichtlinearen Dy-
namikfunktion ermdglicht, sondern auch eine freie Wahl der Kovarianzfunktion des GPs
beinhaltet. Vergleichbare Arbeiten sind nur auf den SE-Kernel beschrinkt. Ein weite-
rer entscheidender Punkt ist in Bezug auf das Losungsverfahren des Optimalsteuerungs-
problems zu nennen. Anstelle des Single- wird in dieser Arbeit das Multiple-Shooting
eingesetzt, da es fiir komplexere Anwendungsfille, wie dem Mehrfachpendel auf einem
Wagen, robustere bzw. zuverlédssigere Ergebnisse liefert. Neben dem reinen Optimalsteue-
rungsentwurf wird in diesem Kapitel auch die Entwicklung einer zugehorigen Regelung
besprochen. Hierzu wurde bei PILCO das Problem der fehlenden Interpretierbarkeit an-
gefiihrt. Anstelle eines modellpradiktiven Ansatzes, welcher in der Praxis nur schwerlich
umgesetzt werden kann, insbesondere fiir ein hochdynamisches Doppelpendel, wird auf
die Zwei-Freiheitsgrade-Regelungsstruktur zuriickgegriffen und ein zeitvarianter Riccati-
Regler auf der Basis des hybriden Modells aufgestellt. Eine Validierung des entwickelten
Verfahrens findet an einem simulierten vollaktuierten Doppelpendel und einem realen

Doppelpendel auf einem Wagen statt.

4.4 Entwicklung der hybriden Optimalsteuerung und Erprobung
an einem simulierten voll-aktuierten Doppelpendel

Den Ausgangspunkt bilden Messdaten in Form eines Tripels mit (x, wx, 1) nach je-
dem Versuch bzw. Experiment am realen System, die in den nachfolgenden Matrizen

gesammelt werden:
Xk, Xk+1 € Rnxxnd7 U, € Rnuxnd7 (4-15)

wobei ny die Anzahl der vorhandenen Datenpunkte ist. Die Anzahl der Datenpunkte
wichst mit jeder Lerniteration und somit auch diese Matrizen. Dariiber hinaus kénnen
sie durch Messrauschen verfilscht sein. Fiir jeden Datenpunkt wird der Fehler Ax;. 1 im

Hinblick auf das physikalische Modell f ,  iiber

phy
AXY) = X0 — (X UD), i=1,.. 0, (4-16)

berechnet. Diese Modellfehler werden im Rahmen des Verfahrens als Zufallsvariablen

behandelt und fiir jede Zustandsdimension mit einem separaten GP modelliert:

Azl ~ GP; (0, k(=) 5n,), G=1,... 0.,
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mit Nullmittelwert und Kovarianzfunktion (-, -; ), Hyperparametern n; und abkiirzender
Schreibweise ¥ = [z}, u!]|". Der Mittelwert ist null, da die Modellfehler unbekannt
sind und bereits alles Vorwissen iiber die Dynamik vom physikalischen Modell erfasst
wird. Die Kovarianzfunktion kodiert allgemeine Annahmen, wie den Grad der Glatt-
heit oder Periodizitit der zugehorigen Modellfehlerfunktion. Optimale Hyperparameter
n; werden durch den Ansatz der maximalen marginalen logarithmischen Likelihood be-

stimmt.

Unter Verwendung der Daten in (4-15]), (4-16)) und der optimalen Hyperparameter wird
die (priadiktive) Posterior-Verteilung iiber den Satz von Bayes berechnet, welche per De-

finition erneut eine Normalverteilung ist:

p(Az) | AX Y)Y = N(Apy (=), Ac?(x})),
- NT
Apy(af) = kxy (@) K AX (4-17)

Ao (af) = klaf afsm) — ey () K ke ().

wobei AX ,(jﬁ die j-te Zeile von AX,; ist, sowie die vektorielle Definition gilt

u u (1) * u (n ) * naXng .
kyv(xp) = k(xy, X0 5ms), o k(e X )] K. € R"*" ist die symme-
trische und positiv definite Gram-Matrix mit den Eintrigen

K(T,C) — k(Xg(r)’X]g(C),’r’*)7 rr’yc = 17_ .. ’nd’

n; J

mit X} = [X},U7]", wobei der zusitzliche Subindex die verwendete Spalte angibt.
Unter Verwendung der Standardannahme [DFR135], dass die dimensionszugehorigen GPs
unabhiingig von einander sind, lautet das gesamte datengetriebene Modell damit formal
(AT | AX 1) = N(Ap(a}), AZ(x})),
Ap(ay) = [Ap (), ., A, ()] (4-18)
AX(zY) = diag([Aci(zy), ..., Adc? (z})]).

ez

Entsprechend zu [KD18]] wird fiir das gesamte datengetriebene Modell eine Kurzschreib-

weise durch
fgp(wkn uk) = [Aﬂ'v AE]? (4'19)

mit der Abbildung f , : R" X R™ — R" x R"**"= eingefiihrt.

Bis zu diesem Punkt wurden deterministische Grofen als Eingang fiir den GP angenom-

men. Fiir die Beriicksichtigung der Zustandspropagation wird nun ein normalverteilter
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Zustand x;, ~ N (my, S)) angenommen. GeméB der Definition in (#-16) lautet der An-
satz des Hybridmodells

Tpr1 = Fony (T, ur) + Azppr (T, up).- (4-20)

Die Momente der Verteilung des Nachfolgezustands werden berechnet, indem das Gesetz

der totalen Erwartung

M1 = Euy [Easy,, [@ri1]] = B [Fony] + Eay [Ap], (4-21)
und das Gesetz der totalen Varianz

Sit1 = Eoy [Vav [@en]] + Vo, [Bagy,, [#r4]] @2
= Efﬁk [AE] + ka [«fphy] + V!Ek [AIJ’] + ka [fphya AM’] + ka [fphy? AIJ’]Tv

verwendet werden. Sofern keine analytische Berechnung fiir die einzelnen Terme moglich
ist, wird im Rahmen dieser Arbeit der Einsatz der UT zur Approximation verwendet. Die
Erwartung und Varianz beziiglich f,,, werden iiber die UT-Zusammenhinge aus (2-26)),
(2-27) und (2-28) berechnet, woraus my,, =~ E, [f,,,]und Sy, =~ V, [f . ] folgen.

Eine dhnliche Approximation wird in [VG135] betrachtet, wobei die Herleitung jedoch aus

den kontinuierlichen DGLn des physikalischen Modells aufgestellt und kein zusitzliches
datengetriebenes Modell beriicksichtigt wird. Fiir die verbleibenden, vom GP abhingigen

GroBen, wird erneut die UT angewendet:

Ap ASD) = £ (@l w), i=1,...,2n, + 1,
2n,+1

E., [Ap] ~ Z W Ap,s = may,

2nx+1
E,, [AZ] ~ WOARO
3 Z (4-23)
2nz+1
V., [Ap] ~ Z WO (ARD — ma)(Ap? —ma,)T,
2nz+1
(C phy’ Z W T, k+1 mfphz,)(ANS) - mAu)Ta

wobei dieselben Sigma-Punkte und Gewichtungsfaktoren wie in und ver-
wendet werden. Ein dhnliches Berechnungsverfahren wurde in [KKFHO7] verwendet,
um einen rein datengetriebenen GP-UKF-Beobachter zu entwerfen, wobei jedoch die-
selbe Varianz AZS) Vi angenommen wurde und daher die Varianz der Approximati-

on unterschitzt wird. Zu beachten ist dabei, dass trotz der diagonalen Struktur der GP-
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Kovarianzmatrix bzw. der Unabhiéngigkeitsannahme, die Dimensionen des Nach-
folgezustands fiir eine unsichere Eingabeverteilung kovariieren konnen. Die gleiche Be-
obachtung wird auch fiir den analytischen MM-Ansatz in [DFR15]] gemacht, sodass der
hier gewihlte numerische Ansatz diesbeziiglich konsistent ist. Die Gleichungen aus (4-21)),
und werden zusammen als eine mathematische Funktion definiert. Diese

Funktion wird mit

[Mei1, Skia] = Frgp (M, Sk, ur), (4-24)

beschrieben, wobei die aktuelle Zustandsverteilung zusammen mit der StellgroB3e auf die
nichste Zustandsverteilung abgebildet werden. Im Gegensatz zum rein physikalischen
Modell gleicht das hybride Modell Fehler iiber den GP-Teil aus, abhédngig von der Menge
der aufgezeichneten Daten. Dariiber hinaus beriicksichtigt die probabilistische Formulie-
rung die Unsicherheit iiber Fehler bei Langzeitvorhersagen und verhindert so die soge-
nannte Modellverzerrung, die fiir ein schlechteres Explorationsverhalten verantwortlich

ist.

Eine typische ZielgroBe, die in der Regelungstechnik und im Zusammenhang mit einer

Optimalsteuerung oft verwendet wird, ist wie folgt definiert

H

H
J(0) = ALY " wi(k) (@, — za) Walzs — a) + ALY uf W,
k=0

k=0 (4-25)

N J/
-~

::Jw(:ck) :5Ju(uk)

die einen Term fiir die Distanz zum Zielzustand (x; — x) und einen Term fiir die ver-
brauchte Energie enthélt. W, > 0 und W, > 0 sind Gewichtungsmatrizen. w(k) € [0, 1]
steigt monoton an und gibt somit ein hoheres Gewicht fiir Abweichungen, die in einem
spiteren Verlauf der Trajektorie auftreten. Da der Zustand normalverteilt ist, wird der
Erwartungswert in dieser Arbeit als eigentliche ZielgroBe verwendet. Fiir die Approxi-
mation des Erwartungswerts kann erneut die UT genutzt werden. Dies wiirde wieder-
um die Einbindung beliebiger ZielgroBen J(6) ermdglichen. Zur Vereinfachung wird in
diesem Kontext die Verwendung von fortgesetzt und die analytische Losung aus
[DFO20]

H

E., [J(0)] = At Z wy (k) (Spur(S,W,) + (my, — xg)" Wo(my, — zg)) + ui Wuy,
k=0

(4-26)

genutzt. Im Folgenden werden die Einschriankungen diskutiert. Steuerungsbeschrankungen

aufgrund von technischen Rahmenbedingungen kénnen auf herkommliche Weise durch
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Umin < Up < U, beriicksichtigt werden. Zustandsbeschrankungen konnen durch den
Erwartungswert eingebunden werden, z. B. liber &,,;,, < My < &jqq, Was jedoch auf-
grund der Vernachldssigung der Varianz nicht besonders zuverlidssig wire. Daher wird ein
wahrscheinlichkeitsbasierter Ansatz weiterverfolgt, der in Hinblick auf die Inbetriebnah-
me geeigneter ist. Die Wahrscheinlichkeit, die Zustandsbeschriankungen unter der konser-

vativen Annahme, dass die Dimensionen unabhéngig sind, zu erfiillen, wird durch

(i) (i) (1) (%)
_ | | Tmax —My _ Lonin Mg
N (I)< () ) (I)< g1 ) 2 P,
i=1 k k

ausgedriickt, wobei ®(-) die Verteilungsfunktion der Standardnormalverteilung ist und

(4-27)

P, € (0, 1] ein vordefinierter Wahrscheinlichkeitsgrenzwert ist. Die Zustandsbeschrink-
ungen sind in der Regel mit sicherheitskritischen Aspekten verbunden. Aus diesem Grund
sollte der Wert von P, relativ grofl gewihlt werden, damit die Zustandsbeschrinkungen
konservativ eingehalten werden. Da sie jedoch nur auf dem Modell und seiner Vorhersa-
gegenauigkeit basieren, miissen sie nicht mit der festgelegten Wahrscheinlichkeit fiir das
reale System erfiillt sein. Aus diesem Grund sollte fiir praktische Anwendungen immer
ein zusitzlicher Puffer an den Zustandsgrenzen und Sicherheitsmechanismen vorgesehen

werden.

An dieser Stelle wird das vollstindige hybride Optimalsteuerungsproblem, mit welchem

die Inbetriebnahme durchgefiihrt wird, definiert

minE,,[J()] uBy. h(6)=0, g(6)<0,

[mk+1ask+1] :fhyb(mkaskauk)a k:()a"'>H_17

mo—my, So— S,

Px - P<wmzn S L S wmax)a
g(0) = (4-28)

U — Umaz, Umin — Uk, kZO,...7H,

mit einer initialen Zustandsverteilung ; ~ N (my, S7). Ahnlich dem Ansatz des Multi-
ple Shooting fiir deterministische dynamische Modelle (4-2) erzwingen die Gleichheits-
beschriankungen h(6), dass die probabilistischen Dynamikgleichungen des hybriden Mo-
dells fiir alle diskreten Zeitschritte erfiillt sind. Dies erfordert, dass die propagier-

ten Momente f, ,(my, Si) mit den néchsten Momenten (11, S 1) libereinstimmen,
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bei gegebener Steuerung uy. Der Optimierungsvektor setzt sich damit aus den folgenden
GroBen zusammen:

0= [mf L g uf....mly LL ; uf]” e R i) (1) 0 @2)

wobei die Cholesky-Zerlegung mit
S, = Lka, LA j, = nonzeros(Ly,),

verwendet wird. Die Funktion nonzeros(-) bildet dabei die Elemente der unteren Drei-
ecksmatrix von Ly, auf einen Spaltenvektor L ;, € Rz(Mi+n2) ab. Die Formulierung iiber
die Cholesky-Zerlegung erzwingt implizit eine weitere Nebenbedingung, bei der Symme-

trie und positive Definitheit der Matrizen der Zustandsvarianzen erzwungen werden.

Im direkten Vergleich zur Single-Shooting-Formulierung, bei der die Dynamikgleichun-
gen durch Vorwirtsintegration implizit exakt erfiillt sind und nur die Steuervariablen
die Optimierungsvariablen reprisentieren (dim(6) = n,(H + 1)), enthélt der Multiple-
Shooting-Ansatz wesentlich mehr Optimierungsvariablen und wirkt daher komplexer bzw.
aufwendiger. Der Multiple-Shooting-Ansatz bietet jedoch mehrere Vorteile, welche die
Anzahl der Optimierungsvariablen in Relation setzen. Im Allgemeinen wird die SQP-
Methode [NWO06; (GKO02] (s. fiir eine Einfiihrung des Verfahrens) verwendet, um das
hybride Optimalsteuerungsproblem numerisch zu 16sen. Dies erfordert insbesondere die
Ableitungen der Funktionen in nach (4-29), wodurch die Dimensionen iiber

VE,,[J()] € R™, Vh() € Remtn)Tixm  gg(g) ¢ REmAIFDUE Xm0

mit der Substitution ny = dim(@), angegeben werden konnen. Aufgrund der Definition
sind diese Ableitungen einfach und schnell zu berechnen, weil die Jakobimatri-
zen eine diinnbesetzte Struktur aufweisen, bei der nur Elemente in der Nihe der Dia-
gonalen ausgefiillt sind. Dies trifft nicht auf das Single-Shooting zu, was insbesondere
fiir (4-26) und (@-27) offensichtlich ist. Aufgrund der mehrfachen aufeinanderfolgenden

Ausfiihrung der Zustandspropagation werden die Eintrdge der Ableitungen mit zuneh-

menden Zeitschritten immer komplexer und aufwendiger zu berechnen. Ein weiterer Vor-
teil des Multiple- gegeniiber dem Single-Shooting lésst sich im Zusammenhang mit dem
SQP-Verfahren erkliren. Die zugrundeliegenden Lagrange-Multiplikatoren, die fiir die
probabilistischen Zustandsbeschrinkungen in (4-28)) verwendet werden, gewéihren dem
Optimierungssolver eine gewisse Flexibilitdt, damit er von den genauen Trajektorien ab-
weichen und bessere Losungen fiir das hybride Optimalsteuerungsproblem finden kann.
Dies konnte eine Erkldrung fiir die, im Allgemeinen bekannten besseren Konvergenzei-

genschaften des Multiple- im Vergleich zum Single-Shooting sein, welche auch bei den
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Algorithmus 4 Hybride Optimalsteuerung

1: Initialisierung: Berechne Optimalsteuerung {w;} }/. nach auf Basis des phy-
sikalischen Modells f,;, und teste sie am realen System, wobei initiale Messdaten
gesammelt werden.

2: Wiederhole bis ein Konvergenzkriterium oder ein Iterationsbudget erreicht ist:

3:  Lerne Modellfehler tiber GPs auf Basis der vorhandenen Daten (4-16).

4:  Wiederhole die nachfolgenden Schritte im Rahmen einer SQP-Optimierung

5 Berechne den Gradienten VEE[.J(0)] und die Jacobimatrizen der

Nebenbedingungen Vh(0), Vg(0) > Automatische Differenzierung (CasADi)

6: Aktualisiere den Optimierungsvektor 8 und die zugehorigen

Lagrange-Multiplikatoren (A, p).

7. Erprobe die erhaltene Optimalsteuerung {u} } 7, am realen System und nehme

weitere Messdaten auf, die den bestehenden Daten hinzugefiigt werden.

phy

Experimenten dieser Arbeit zu beobachten war. Obwohl die Ableitungen VE,, [J(0)],
Vh(6) und Vg(0) mit entsprechendem Aufwand analytisch aufgestellt werden konnten,
werden sie im Rahmen dieser Arbeit mit dem automatischen Differenzierungswerkzeug
CasADi [AGH™19] berechnet. AuBerdem wird als Programmierumgebung MATLAB ver-
wendet und dessen integrierte Implementierung der SQP-Methode (Algorithmus [6) inner-
halb des fmincon-Solvers [Mat24] genutzt.

Der Gesamtalgorithmus der hybriden Optimalsteuerung ist in Algorithmus 4{ zusammen-
gefasst. Aus einer iibergeordneten Perspektive verwendet die Methodik einen konven-
tionellen Trial-and-Error Ansatz. Der Prozess beginnt mit der Losung des Optimalsteue-
rungsproblems, das ausschlielich auf dem etablierten physikalischen Modell basiert. An-
schlieBend wird die aktuelle optimale Steuersequenz auf das reale System angewendet
und dabei Zustandsdaten aufgezeichnet und gesammelt (Zeile 1). Nachfolgend wird eine
Zwei-Schritt-Schleife ausgefiihrt (Zeilen 2-7 und 4-6). Die duflere Schleife beginnt mit
dem Erlernen der Modellfehler im Zusammenhang mit dem physikalischen Modellteil
unter Verwendung der Gaul3-Prozess-Regression und aller verfiigbaren Daten (Zeile 3).
Danach wird die innere Schleife ausgelost und das hybride Optimalsteuerungsproblem
basierend auf dem hybriden Modell bis zur Konvergenz gelost (Zeilen 4-6). Dies beinhal-
tet die wiederholte Berechnung der Ableitungen sowie die Aktualisierung der Optimie-
rungsvariablen und vorhandener Lagrange-Multiplikatoren. Die neu berechnete optimale
Steuersequenz wird dann auf das reale System angewendet, wobei mit jeder Iteration die
Datenmenge zunimmt. Der sich abwechselnde Lern-, Verbesserungs- und Interaktionszy-

klus wird wiederholt, bis die Optimalsteuerungsaufgabe erfolgreich abgeschlossen ist.
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Anwendung auf ein simuliertes voll-aktuiertes Doppelpendel

Im Folgenden wird die Anwendung von Algorithmus @] zur Trajektorienplanung eines
simulierten vollstindig aktuierten Doppelpendels illustriert. Die Ergebnisseﬁ] sind eben-
falls in der Vorveroffentlichung [HTT23] enthalten. Das System besteht aus n, = 4
Zustinden, T = [©1, o, 91, 2|7 und n,, = 2 Steuerungseingiingen u = [uy, up]?, wel-
che die Drehmomente in den Gelenken repriasentieren. Das Szenario beinhaltet eine zeit-
liche Diskretisierung von At = 0.05 s mit H = 40 Zeitschritten, sodass die Gesamtzeit
T = AtH = 2 s betridgt. Die Aufgabe besteht darin, die optimale Steuerungsabfolge
{u;}H_, zu finden, sodass der obere instabile Zielzustand ¢ = x(t = T) = 0, ausge-
hend von dem unteren stabilen Gleichgewichtszustand x(t = 0) = m; = [r,7,0,0]7,
am Ende der Trajektorie erreicht wird. Die Steuerungs- und Zustandsbeschriankungen lau-

ten

Upin = [~10 Nm, =10 Nm]" < w < [10 Nm, 10 Nm]" = w00,
Tmin = [—1rad, —1 rad, —4 rad/s, —4 rad/s|” < & < T a0, (4-30)
Tmaz = |4 1ad, 4 rad, 2 rad/s, 2 rad /s]”

und miissen wihrend des Ubergangs erfiillt sein. Die anfingliche Zustandsvarianz
St = 10731 wird als gering angenommen. Die Gewichtungen W, = diag([25, 25,1, 1]),
e3Atk 1

W, = 10721, wi(k) = Sxer—; und der Wahrscheinlichkeitsgrenzwert P, = 95% defi-
nieren das hybride Optimalsteuerungsproblem (4-28)) vollstindig.

Die Bewegungsgleichungen fiir das mechanische System werden in allgemeiner Form

iiber

M(q)G +C(q.9)q + G(q) = F(q, u), (4-31)

angegeben, mit dem Positionsvektor ¢ = [y, ©o]T

M € R"*" dem Kraftvektor F' € R"¢ (der eine lineare Dampfung fiir die Reibung

€ R", n, = 2, der Massenmatrix

und die steuerbaren Drehmomente enthilt), der Zentrifugalmatrix C' € R"**"¢ und dem
Gravitationsvektor G' € R"s. Die Gleichungen konnen unter Verwendung des Lagrange-
Formalismus dhnlich zu (4-5)) aufgestellt werden. Eine Prinzipskizze des Systems ist in
[HTT23]] enthalten. Die mechanischen Parameter sind identisch zu denen in [TKOT11]],
jedoch mit einen um den Faktor 10 hoheren Reibungskonstanten. Eine Simulation von
(@-31) wird als Reprisentation fiir das reale System verwendet. Im Folgenden werden
zwel Anwendungsfille unterschieden. Im ersten Fall erfolgt das Lernen mit Vorwissen,
bei dem nur bestimmte Terme von a-priori bekannt sind (partielle Systemkenntnis)

3Der zugehdrige Code ist unter https: //github.com/mh510/Hybrid-Optimal-Control
zur Verfligung gestellt.


https://github.com/mh510/Hybrid-Optimal-Control
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und im zweiten Fall erfolgt das Lernen ohne dieses spezielle Expertenwissen, bei dem die
gesamte Dynamik datengetrieben erlernt werden muss. Das Ziel ist es, die Auswirkung
des Expertenwissens auf den Lernfortschritt und das Endresultat auszuwerten, sowie Er-

kenntnisse fiir die Inbetriebnahme abzuleiten.

Als Nichstes wird das Vorwissen des ersten Falls genauer erldutert. Es wird angenommen,

dass das physikalische Dynamikmodell mit

qy,

h\ Lk, W) = Ty, A _
¥ phy( ) At MY (q,)(F(dy, uxr) — G(qy,))

, (4-32)

und x, = [q},q;]", aufgestellt wurde. Im Vergleich zu wird deutlich, dass die
Zentrifugalkrifte fehlen, die im Rahmen dieser Erprobung als Modellfehler definiert wer-
den. Der fehlende Term ist nicht trivial, da er die Inversion der Massenmatrix (dhnlich
zu (@-6))) beinhaltet. Aufgrund des Modellfehlers kann der gewiinschte Zielzustand nicht
allein durch das Losen eines Optimalsteuerungsproblems auf Grundlage von (4-32) er-
reicht werden bzw. die Anwendung von Zeile 1 in Algorithmus [4] ist nicht ausreichend
zur Erfiillung der Steuerungsaufgabe. Aus diesem Grund werden die weiteren Schritte
der hybriden Optimalsteuerung ausgefiihrt und zunichst der GP-Modellteil gelernt, wo-
bei weiteres Systemwissen ausgenutzt werden kann. Die ersten n, Gleichungen in (#-32))
spiegeln das Integratorverhalten des Systems mit g, ; = q,, + At g, wider und erfordern
keine Korrektur durch den GP-Modellteil. Integratorverhalten ist vielen technischen (ins-
besondere mechanischen) Systemen inhdrent und kann daher als bekannte Struktur ausge-
nutzt werden. Die zugehorige Reduzierung des Lernproblems wird durch die Einfiihrung

einer Kopplungsmatrix 5,4, umgesetzt

T
LTpr1 = fphy(wk?uk) + By Az (), mit By, = |:an7 Inq] )

wobei zudem berticksichtigt wird, dass die Zentrifugalkrifte nicht vom Steuereingang
abhingen. Die GP-Abbildung wird somit von R x R™ R x R*Ma*2nq
auf R"* +— R™ x R™*™ reduziert, wodurch der Berechnungsaufwand gesenkt und die
Effektivitit des Verfahrens erh6ht wird. In Hinblick auf (4-21)) und (4-22)) miissen der
Mittelwert und die Varianz des nichsten Zeitschritts geméf der linearen Transformation

von Normalverteilungen folgendermallen angepasst werden

my41 = E[fphy} + ng]E[A“’]’
Sky1 = ng]E[AE]BZ + V[fphy] + B-‘WV[A“]BZP—'—

P

C[-fphy? AN]BZp + ngC[fphy, AM]T,
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Bild 4-4: Fortschritt in der Zustands- und Energiezielgrofie (logarithmische Skala) fiir
den vorgestellten hybriden Optimalsteuerungsentwurf mit (blau) und ohne (rot)
Einbeziehung von physikalischen Vorwissen (Prior).

um die Dimension des physikalischen Modellteils zu erhalten. Fiir einen zulidssigen Ver-
gleich wurde bei den nachfolgenden Untersuchungen zumindest das angesprochene Inte-

gratorverhalten, fiir den Fall mit fehlendem physikalischen Vorwissen spezifiziert.

Als Nichstes werden die Ergebnisse vorgestellt. Bild zeigt hierzu zunéchst den Fort-
schritt bzgl. der Teilziele J, und J, (s. (4-23)) fiir 10 Lerniterationen. Im oberen Dia-
gramm wird die Vorhersage (Pridiktion) des hybriden Modells vor dem Experiment mit
der tatsdchlich gemessenen Trajektorie vom realen System (Realitdt) verglichen.
Die Pridiktion der Giitefunktion ist fiir den Fall mit Vorwissen (Prior) in den ersten Itera-
tionen zu optimistisch, aufgrund der vergleichsweise niedrigen Werte. Als Begriindung
kann angefiihrt werden, dass die Datenlage in den ersten Iterationen noch zu gering
ist, um die Unsicherheit iiber den Modellfehler korrekt beschreiben zu konnen und die
grundsitzlich zu optimistischen Schétzungen auf das bereits bekannte Dynamikmodell
(4-32) zurtickzufiihren sind. Wie erwartet, fiihrt jedoch die Beriicksichtigung von Vorwis-
sen dazu, dass in weniger Lerniterationen eine optimale Steuerung fiir das System gefun-
den wird. Trotz der anfangs vorhandenen Modellfehler ist das Konvergenzverhalten stabil
und die Steuerungsaufgabe wird bereits in der 4. Lerniteration gelost. Die Anwendung
ohne Prior bendtigt hierzu 3 weitere Experimente und der endgiiltige Energieverbrauch
ist zudem hoher, was auf eine Konvergenz zu einer geringfiigig suboptimalen Steuerung

hindeutet.

Dies zeigt sich auch in Bild in dem die tatsdchlichen Trajektorien der 4. Iteration
dargestellt sind. Die vordefinierten Zustandsbeschrénkungen aus (4-30) sind in der linken
Spalte ausgeschopft, werden jedoch vollstindig eingehalten, wihrend sie auf der rechten

Seite unvorhergesehen am Ende der Trajektorie immer noch tiberschritten werden. Beide
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Mit Prior Ohne Prior
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Bild 4-5: Gegeniiberstellung von prddizierter (blau) und (fiktiv) gemessener (rot) Zu-
standstrajektorie aus der 4. Lerniteration der hybriden Optimalsteuerung. Die
linke Spalte zeigt den Fall mit und die rechte ohne physikalisches Vorwissen
(Prior). Die ideale (Ground Truth) Losung ist in griin dargestellt. Die blau-
en Ellipsen deuten die multivariaten Normalverteilungen des Zustands in je-
dem Zeitschritt an, wobei jeweils 86% der Gesamtwahrscheinlichkeitsdichte ab-
deckt wird. Die schwarzen gestrichelten Linien reprdisentieren die Zustandsbe-
schrdnkungen.
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Mit Prior Ohne Prior
g
Z.,
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Bild 4-6: Entwicklung der gefundenen optimalen Steuerungen. Das Farbspektrum dndert
sich allmdhlich von Grau fiir die ersten Iterationen zu Rot fiir die letzten Ite-
rationen. Die hellroten Linien zeigen entsprechend die Steuerung in der letzten
bzw. 10. Lerniteration. Gestrichelte schwarze Linien reprdsentieren die Stell-
groflenbeschrinkung. Die dick gedruckten griinen Linien zeigen den Ground
Truth.

Trajektorien haben gemeinsam, dass ihre Zustandsvarianz im Laufe der Zeit und beson-
ders in der Nihe der oberen instabilen Ruhelage zunimmt, was nachvollziehbar ist, da
mehrere Zustinde, die durch die Zustandsverteilung reprédsentiert werden, nicht mit nur
einer bestimmten StellgroB3e stabilisiert werden konnen. Obwohl die Varianz am Ende der
Trajektorie relativ grof ist, folgt die tatsdchliche Trajektorie genau der wahrscheinlichsten
vorhergesagten Trajektorie, die durch den Mittelwert ausgedriickt wird (Zentrum der El-
lipsen). Auf der rechten Seite (ohne Prior) zeigt sich ein anderes Bild, denn die reale Tra-
jektorie verldsst fiir die hohen Winkelgeschwindigkeiten ihren Korridor der Préadiktion,
was zeigt, dass die Zentrifugalkrifte fiir die optimale Steuerung des Systems entscheidend
sind. Wie bereits erwihnt, zeigt dies aulerdem, dass die gegebene Wahrscheinlichkeits-
begrenzung des Zustands nur so zuverldssig ist, wie die Qualitit des verwendeten
Modells. Bild 4-6] zeigt die Variationen der berechneten Steuersignale in jeder Lernitera-
tion. Die Verdnderungen sind von Iteration zu Iteration fiir den Fall mit Vorwissen signi-
fikant kleiner und somit hinsichtlich der Vorhersagbarkeit des Systemverhaltens und der
praktischen Anwendbarkeit giinstiger. Die urspriingliche Steuerung, welche nur auf der
Basis des physikalischen Modells berechnet wurde, wird nur geringfiigig an einigen Stel-
len des Verlaufs partiell korrigiert, bspw. bei ¢ = 0.35 s fiir up oder ¢ = 1.25 s fiir u;. Der
Regelungstechniker kann wihrend des Inbetriebnahmeprozesses somit besser abschitzen,

wie sich das reale System verhalten wird. In dem Fall ohne Vorwissen ist dies deutlich
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Bild 4-7: Vergleich von Multiple und Single Shooting hinsichtlich der benotigten Be-
rechnungsdauer fiir die automatische Differentiation von VE,, [J(0)]), Vh(0),
Vg(0) und die Optimierung mit dem SQP-Verfahren.

schwieriger, da die Steuerungen beider Aktoren sich in den ersten Iterationen zum Teil

deutlich voneinander unterscheiden.

Abschliefend wurde die benétigte Berechnungszeit fiir den Multiple und Single Shoo-
ting Ansatz gemessen und untersucht, siehe Bild Beide Methoden fiihren zu beina-
he identischen Trajektorien und Zielfunktionswerten innerhalb jeder Iteration, allerdings
benotigt der Multiple Shooting Ansatz trotz seiner hoheren Komplexitiit insgesamt we-
niger Rechenzeit, sowohl fiir die automatische Differenzierung mittels Casadi, als auch
die SQP-Optimierung. Dabei ist vorteilhaft, dass die Losung der vorherigen Lerniteration
als Initialisierung fiir die nidchste Optimierung verwendet wurde. Eine Ausnahme stellt
die Initialisierung dar, in welcher das Single Shooting vergleichsweise schnell zu einer
Losung fiihrt. Ein Grund hierfiir ist, dass dem Multiple Shooting Ansatz eine einfache In-
itialisierung mit Einheitsmatrizen fiir die Zustandsvarianzmatrizen vorgeben wurde und
es daher lange dauert, bis die vorgegebene Genauigkeit der Nebenbedingungen erreicht
wird. Ein interessantes Verbesserungspotential besteht darin, das Multiple Shooting mit
der Losung des Single Shootings zu initialisieren, um die gesamte Berechnungsdauer in

Hinblick auf Algorithmus @] weiter zu senken.

4.5 Erweiterung um Zwei-Freiheitsgrade-Regelungsstruktur und
Validierung am Doppelpendel auf einem Wagen

Um einen gesamtheitlichen Entwurf zu ermoglichen, wird Algorithmus @] zur hybriden
Optimalsteuerung in diesem Abschnitt um eine Zwei-Freiheitsgrade-Regelungsstruktur
(s. Bild erweitert. Zur Losung der Steuerungsaufgabe beim voll-aktuierten Doppel-

pendel war im vorherigen Abschnitt eine reine Steuerung ausreichend. Abgesehen von
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dem Modellfehler bzgl. der Zentrifugalkrifte, wurden keine weiteren Storungen innerhalb
der Simulationsumgebung betrachtet, sodass keine zusitzliche Regelung erforderlich war.
In der Praxis treten jedoch unvorhergesehene duflere Storungen, u. a. in Form von System-
und Messrauschen, auf, welche das System von seiner geforderten Soll-Trajektorie ab-
bringen. Zudem unterliegt das gelernte hybride Modell gewissen Annahmen, bspw. durch
die angesetzte Kovarianzfunktion des GPs, sodass es kein ideales Abbild des betrachteten
Systems darstellt. Der Einsatz der Zwei-Freiheitsgrade-Regelungsstruktur sorgt in diesem
Zusammenhang fiir eine Stabilisierung der gewiinschten Soll-Trajektorie und wirkt den
angesprochenen Storungen adédquat entgegen. Der nachfolgende Abschnitt hat das Ziel
einen erweiterten hybriden Optimalsteuerungsentwurf allgemein zu formulieren und am
realen Doppelpendelpriifstand (s. Bild (links)) auf der Grundlage eines nur partiell
bekannten Modells zu realisieren. Der anvisierte Fokus liegt damit auf der Einbindung
von Vorwissen zur Losung der anspruchsvollen Aufgabe des optimalen Aufschwungs
und stabilen Trajektorienfolgeregelung. Auf diese Weise lisst sich das vorhergehende
Ergebnis von PILCO (vgl. Abschnitt mit denen des in dieser Arbeit entwickelten
Verfahrens vergleichen und ein Riickschluss bzgl. der Effizienz und Praktikabilitét fiir
die Inbetriebnahme ziehen. Die grundsitzliche Ausgangssituation ist dabei identisch zu
jener des voll-aktuierten Doppelpendels. Es soll von einem physikalischen Modell ausge-
gangen werden, welches die fundamental wichtigen Zentrifugalkrifte nicht enthalt (vgl.
(4-31)), sodass sie durch das ML-Modell ausgeglichen werden miissen. Die Entwicklung
und Validierung des Verfahrens sind Teil der Vorveroffentlichung [HSTT24].

Eine erste notwendige Anpassung ist in Bezug auf das Optimierungsproblem (#-28) zu
nennen. Hierbei wurde bisher nicht der Zielzustand x4 als explizite Nebenbedingungen
beriicksichtigt. In den durchgefiihrten Experimenten am Doppelpendelpriifstand hat sich
beispielsweise gezeigt, dass eine solche Nebenbedingung aufgrund der hohen Sensitivitit
des Systems fiir eine erfolgreiche Realisierung des Aufschwungs notwendig ist. Da es
sich bei (4-28)) um eine probabilistische Formulierung handelt, liegt der Endzustand x
nicht eindeutig vor, sondern in Form einer Normalverteilung N (m;, ). Ahnlich zum
deterministischen Fall des Multiple Shootings erscheint es im ersten Moment sinnvoll,
eine Nebenbedingung bzgl. der Zustandsverteilung zu formulieren. Hierbei ist jedoch un-
klar, wie eine solche Ziel-Verteilung in Hinblick auf die Varianz gewihlt werden sollte.
Eine exakte Einhaltung ist zudem dufBerst unwahrscheinlich hinsichtlich der probabilisti-
schen Langzeitpradiktion. Eine andere Moglichkeit besteht darin, die Endzustandsvertei-
lung nicht iiber die Gleichheits- h(-) sondern iiber die Ungleichheitsnebenbedingungen
g(+) zu beriicksichtigen, wobei die Endverteilung mit einer gewiinschten Verteilung iiber
die Berechnung der Kullback-Leibler-Distanz [BisO6]] unter einem bestimmten Grenz-
wert gehalten wird. Somit wiirde die strikte Einhaltung entschérft und der Optimierung

mehr Flexibilitdt eingerdumt werden, sodass eine zielfiihrende und plausible Losung er-
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reicht wird. Im Rahmen dieser Arbeit konnten allerdings keine zufriedenstellenden Er-
gebnisse mit den angefiihrten Ansitzen erzielt werden. Aus diesem Grund wurde als
praktikabler Kompromiss nur die Einhaltung des Mittelwertes der Endzustandsverteilung
my —x¢ = 0 iiber eine weitere Gleichheitsnebenbedingung gefordert und h(-) in (4-28))

dementsprechend erweitert.

Als Nichstes wird die Regelung der Soll-Trajektorie erldutert. In jeder Iteration des Ver-
fahrens liegt vor dem Experiment am realen System eine Losung der Form {m}, S;, u}}
mit £ = 0,...,H vor. Da die Zwei-Freiheitsgrade-Regelungsstruktur eingesetzt wer-
den soll, wird im Folgenden ein Unterschied zwischen dem zugehorigen Steuerungs- und
Regelungsanteil vorgenommen. Das StellgroBBensignal aus der Optimierung lautet somit
uj, — ug,. Zunichst ist die Frage zu kldren, auf welchen Sollwert eine Regelung erfol-
gen soll, denn im Gegensatz zum deterministischen Fall ist nur eine Zustandsverteilung
bekannt und bei der Regelung am realen System muss zu jedem Zeitpunkt eine exakte
Wahl des Sollwerts vorliegen. Am naheliegendsten ist die Regelung auf der Trajektorie,
welche durch das hybride Modell am wahrscheinlichsten erscheint. Diese wird durch den
Verlauf des Zustandsmittelwerts m;, reprisentiert. Der Anteil der Regelung wird durch
einen zeitvarianten Riccati-Regler [F6194]] (in Anlehnung an das modellbasierte Rege-

lungskonzept aus [TKOT11] fiir das betrachtete Anwendungsbeispiel) mit
uri(r) = Ki(mj, — x), (4-33)

realisiert, sodass sich die gesamte Stellgrofe zu uy, = ug ,+ur  ergibt. Die Verstirkungs-
matrix K € R"» " stellt hierbei einen linearen Zusammenhang zwischen der Regeldif-

ferenz und der StellgroBe her und wird nach Riccati mit
K, =(W,+ B, P,B,) 'B; P, Ay, (4-34)

berechnet. Hierin stellt P, € R™*"= die Riccati-Matrix zum Zeitschritt & dar, welche
mittels zeitlicher Riickwirtsintegration der riccatischen Differentialgleichung bestimmt
wird [Fol94]]. In einer bereits diskretisierten Form nach [RT10] lautet der Zusammen-

hang
P,=W,+ A Py 1Ay — A P11 (B(W, + B Pi11B)) 'B[P1) Ay, (4-35)

k= H —1,...,0, wobei sich die Anfangs- bzw. Endbedingung Py aus der Losung
der statischen Riccatigleichung ergibt und W, > 0 € R"**" und W, > 0 € R"=*"
Gewichtungsmatrizen bzgl. des Zustands und der StellgroBBe darstellen. Des Weiteren sind
Ay, € R"™*" und B, € R"**"™ die Dynamik- und Eingangsmatrix, welche sich aus

einer Linearisierung des hybriden Modells ergeben. Aufgrund der gewihlten additiven
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Zusammensetzung des hybriden Modells (4-20) lassen sich die entsprechen Ableitungen

des physikalischen und datengetriebenen Modellteils separat voneinander bilden tiber
A, — df phy dAp B, — A phy dAp
d:ck

R .
Tp=mj, dxy, |ze=mj, duy, |ze=mj, duy, |ze=mj,
UR=U;, UR=Uj, UR=u, UR=uj,

Bei den in dieser Arbeit eingesetzten Kernelfunktionen lisst sich der Posterior des GPs
analytisch ableiten. Eine detaillierte Darstellung ist im Anhang [AT] unter dem Abschnitt
- Ableitung des GP-Posterior-Erwartungsvektors nach dem erweiterten Zustand - zu fin-
den. In Bezug auf Algorithmus 4| ist die Berechnung des Reglers nach Zeile 6 und vor
7 einzuordnen. Der Regelungstechniker steht dementsprechend vor dem Experiment am
Priifstand der Frage gegeniiber, ob nur die reine Steuerung u; = ug, oder die Zwei-
Freiheitsgrade-Regelungsstruktur u;, = wug; + upg; mit einem moglicherweise insta-
bilen und unsicheren Verhalten verwendet werden soll. Hierfiir liegt in Verbindung mit
der Steuerung u; die probabilistische Langzeitpradiktion {t;, m}, S} } aus der Losung
des hybriden Optimalsteuerungsproblems vor, anhand derer eine Bewertung vorgenom-
men werden kann. Um zusitzlich den Einsatz der Regelung bewerten zu konnen, ist eine
dhnliche Pradiktion fiir das geregelte System wiinschenswert. Aus diesem Grund wird vor
dem Experiment eine weitere Simulation berechnet, wobei iiber die UT der geschlosse-
ne Regelkreis am hybriden Modell getestet wird. Fiir das Verstdndnis der nachfolgenden
Punkte ist es daher notwendig, eine Unterscheidung zwischen der Pridiktion des offe-
nen (mj, Sy) — (m;, .S, ) und dem geschlossenen Regelkreis (my ., , S, ., ) ein-
zufiihren und die Zuordnung zum Zustand kenntlich zu machen.

Eine Besonderheit bei der Berechnung des geschlossenen Regelkreises ist, dass die Stell-
groBe uy(xy) tiber das Regelgesetz (@-33)) nun vom Zustand abhéngt und diese damit als
Zufallsvariable zu betrachten ist. Entsprechend induziert die Zustandsverteilung eine Un-
sicherheit in die Stellgrofe, wobei durch die lineare Abhingigkeit und iiber (2-10), (2-11])
geschlussfolgert wird, dass

U ~ N(muk7 Suk)a
my, = ugy, + Ki(mg,, —mgs,), (4-36)

S., = KiS,.. K},

gilt. Die Varianz der StellgroBe S, ist ein hilfreiches MaB, um abschitzen zu konnen,
wie sehr sich die Unsicherheit iiber die Dynamik des Systems im Regelkreis bemerkbar
macht. Eine geringe Varianz weist darauf hin, dass die Modellfehler durch das GP-Modell
gut abgebildet werden und ausreichend Daten vorhanden sind. Des Weiteren ldsst sich
an dieser Stelle der klassische regelungstechnische Stabilitatsbegriff (bspw. nach Ljapu-

nov (2-3)) um eine wahrscheinlichkeitsbasierte Sichtweise erweitern. Grundsitzlich wird
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sich der Regler bei der Zustandspropagation so bemerkbar machen, dass er die Varianz
des Zustands deutlich reduziert. Das liegt daran, dass er die Zustidnde, die abseits der
gewiinschten Trajektorie liegen, auf ihren Pfad zuriickfiihrt und sich damit insbesonde-
re fiir das sensitive Doppelpendel das Bewegungsverhalten insgesamt besser vorhersagen
lasst. Fiir den Fall der reinen Steuerung ist die vergleichsweise hohe Zustandsvarianz dar-
in begriindet, dass sich mehrere unterschiedliche Zustinde, welche durch die Zustands-
verteilung reprisentiert werden, in der ndhe der oberen instabilen Ruhelage nicht durch
eine einzige StellgroBe stabilisieren lassen. Der Regler stellt in diesem Zusammenhang
zu jedem Zustand, der sich abseits der Soll-Trajektorie befindet, eine passende Stell-
groBe her. Per Definition bzw. Konstruktion des Verfahrens sollte der berechnete Riccati-
Regler bzgl. des hybriden Modells immer stabil sein [F6194]. Fiir die Inbetriebnahme ist
die Stabilitit bzgl. des Modells allerdings nicht entscheidend, sondern nur die Stabilitit
bzgl. des realen Systems (vgl. Bild@-2)). Die Zustandspropagation des geschlossenen Re-
gelkreises ermoglicht es, die Auswirkung der Unsicherheit {iber die Systemdynamik zu
beriicksichtigen. Die Fortpflanzung von Modellfehlern, welche sich in einer hohen Va-
rianz des GP-Modellteils duBert, sorgt iiber (4-36) zu einer anwachsenden Zustandsvari-
anz, welche sich gegebenenfalls immer weiter verstirken kann. Ahnlich zum deterministi-
schen Fall, ergibt sich somit unter Umsténden ein instabiles Regelungsverhalten, welches
auf die Tatsache zuriickzufiihren ist, dass der eingefiihrte Riccati-Regler nicht die Unsi-
cherheit des Modells beriicksichtigt. Eine Moglichkeit, diese Information beim Entwurf
nutzbar zu machen, wire es indem die Verstirkungsmatrix K eine Abhingigkeit von
der Zustandsvarianz S, aufweisen wiirde. Bspw. konnte die Einflussnahme des Reg-
lers bei einer zu hohen Zustandsvarianz reduziert werden, wodurch sich ein instabiles
Verhalten verhindern lieBe. Im Rahmen dieser Arbeit wurde dieser Ansatz nicht weiter
erforscht, wird jedoch als sehr vielversprechend eingestuft, sodass er ein Potential fiir
weiterfilhrende Arbeiten bietet. Eine Orientierung innerhalb der Literatur konnte hierzu
[EM23]] bereitstellen, worin eine probabilistische Betrachtungsweise des Riccati-Reglers
behandelt wird.

Ausgehend von der urspriinglichen Fragestellung, welche den Einsatz der Regelung am
Priifstand behandelt, bietet die Zustandspropagation des geschlossenen Regelkreises durch
die Zustandsvarianz einen Anhaltspunkt dariiber, wie sich das reale System verhalten
wird. Eine rasch anwachsende Zustandsvarianz deutet dabei ein instabiles Verhalten am
Priifstand an, sodass dem Anwender iiber diese Information ein objektives Bewertungs-
kriterium zur Verfiigung steht. Eine Automatisierung lésst sich durch die Einfiihrung einer
Grenzwertmatrix S,,., € R"**" herstellen, welche die Zustandsvarianz der einzelnen
Dimensionen iiberpriift und unter Umstinden mit den geforderten technischen Rahmen-

bedingungen abgleicht. Algorithmus [5] fasst die Schritte der erweiterten hybriden Opti-
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Algorithmus 5 Erweiterte Hybride Optimalsteuerung

1: Initialisierung: Berechne Optimalsteuerung {w;} }/. nach auf Basis des phy-
sikalischen Modells f,;, und teste sie am realen System, wobei initiale Messdaten
gesammelt werden.

2: Wiederhole bis ein Konvergenzkriterium oder ein Iterationsbudget erreicht ist:

3:  Lerne Modellfehler tiber GPs auf Basis der vorhandenen Daten (4-16).

4:  Wiederhole die nachfolgenden Schritte im Rahmen einer SQP-Optimierung

5 Berechne den Gradienten VEE[.J(0)] und die Jacobimatrizen der

Nebenbedingungen Vh(0), Vg(0) > Automatische Differenzierung (CasADi)

6: Aktualisiere den Optimierungsvektor 8 und die zugehorigen

Lagrange-Multiplikatoren (A, p).
7: Erhalte Optimalsteuerung und Pridiktion (offener Rk) {m , , S, . ,us .
8:  Berechne zeitvarianten Riccati-Regler { K.}, nach (-34), und
Pridiktion fiir den geschlossenen Regelkreis {m, ., S, 2, , Mo, , Su, HL,.

phy

9:  Falls S\ < 8% k=0,...,H,i=1,...,n, dann > Uberpriife Stabilitit
setze uy < uy, + Kp(m;, — ),
sonst

setze uy < Ug,.
10:  Erprobe u; am realen System und nehme weitere Messdaten auf, die den
bestehenden Daten hinzugefiigt werden.

malsteuerung zusammen und erginzt Algorithmus 4] um einen zusitzlichen Regelungs-

entwurf (Zeile 8), sowie einer automatisierten Uberprl‘ifung der Stabilitit (Zeile 9).

Anwendung auf ein reales Doppelpendel auf einem Wagen

In diesem Abschnitt werden die Ergebnisse der hybriden Optimalsteuerung mit dem er-
weiterten Regelungskonzept fiir das Doppelpendel auf einem Wagen vorgestellt. In Unter-
kapitel 4.2) wurde hierzu die physikalische Modellbildung mittels Lagrange-Formalismus
fiir das System erldutert. Ahnlich zu den Experimenten am simulierten voll-aktuierten
Doppelpendel, soll von einem unvollstindigen Modell als Vorwissen ausgegangen wer-
den. Vor dem Hintergrund des Priifstands stellt jedes Modell nur eine Annéherung dar,
sodass selbst das hier vorgestellte Gesamtmodell als unvollstindig zu bezeichnen ist. Um
die Wirkungsweise der hybriden Optimalsteuerung besser erldutern zu konnen und ein
anspruchsvolleres Szenario zu schaffen, wurden die hoch relevanten Zentrifugalkrifte als
unbekannt angenommen. Ohne diese Krifte im Modell ist eine erfolgreiche Inbetrieb-
nahme am Priifstand nach dem klassischen Vorgehen nicht méglich, sodass ein Szenario
geschaffen wurde, in welchem die hybride Optimalsteuerung fiir den Regelungstechni-
ker ein geeignetes Werkzeug darstellt. Des Weiteren ist durch die Vernachlidssigung der
Zentrifugalkrifte sichergestellt, dass sich in den aufgenommenen Messdaten ein syste-

matischer und damit fiir das GP-Teilmodell lernbarer Fehler befindet. Der prognostizierte
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Modellfehler bzgl. der partiell zustandslinearisierten Form des Modells (4-10) lautet so-

mit
Appiq = _AtM;,%(QOk)Cl,l(Soka br);

wobei er auf der Ebene der Winkelgeschwindigkeiten ¢ = [1, |7 definiert ist und die
enthaltenen Teilmatrizen durch

[ T+ a2my 4 Pmy aslym cos (o1 —
Mii(p) = ' e o S (2 1 g )
_agllmg cos (1 — p2) Jo + azms 4-37)
) _—a251m2 sin (@1 — @2)ga?
Cl,l(soa 90) = . 210
_—a2l1m2 sin(p1 — v2)¢1

beschrieben werden. Anhand dieser Gleichungen bzw. der Inversion der Teilmassenma-
trix M ; und der Querverbindung beider separaten Zentrifugalkréfte untereinander wird
ersichtlich, dass es sich bei dem angenommenen Modellfehler um keinen trivialen Term
handelt, sondern dieser einen groen Einfluss auf die Bewegung des Systems nimmit.
Dies macht sich insbesondere fiir hohe Winkelgeschwindigkeiten bemerkbar, welche fiir
den Aufschwung des Doppelpendels unabdingbar sind. Da von der partiell zustandslinea-
risierten Form ausgegangen wird, findet keine Korrektur der zugehorigen Gleichungen
der Wagengeschwindigkeit statt, da diese bei einer ausreichend schnellen Geschwindig-
keitsregelung als einfacher Integrator modelliert wird. Die zugrundeliegende Geschwin-
digkeitsregelung wird hier als eine weitere Art des Vorwissens betrachtet, da sich die-
se unabhingig vom Doppelpendel auf dem klassischen Entwurfsweg auslegen ldsst. Am
Priifstand sorgt die Geschwindigkeitsregelung dafiir, dass sich die Krifte, welche durch
die Bewegung der Pendelarme erzeugt werden, nur geringfiigig auf das Verhalten des
Wagens auswirken. Diese Kopplung findet in der partiell zustandslinearisierten Form kei-
ne Beriicksichtigung, sodass das Integratorverhalten des Wagens keine Abhéngigkeit von
den Zustidnden der Winkel hat. Fiir das hybride Modell und die Zustandspropagation be-
deutet dies, dass sich die Zustandsvarianz nur auf die Zustinde der Winkel auswirkt. Die
Dynamik des Wagens bleibt bei der Verwendung einer eindeutig vorgegebenen Steuerung
deterministisch. Bei der Verwendung der Regelung ist dies nicht mehr der Fall, da iiber
das Regelgesetz und die damit verbundene probabilistische StellgroBle (4-36) eine
Abhingigkeit besteht. Aus diesem Grund pflanzt sich die Unsicherheit der Pendelarme
tiber die StellgroBe in die Wagenbewegung fort.

Das betrachtete Szenario beinhaltet eine zeitliche Diskretisierung von At = 0.01 s mit ei-
ner fest vorgegebenen Aufschwungzeit von 7' = 2 s. Das System startet aus dem Anfangs-

zustand m; = [—m, —,0]7, S; = 107314 und soll zum Zielzustand x¢ = 0 iiberfiihrt
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werden. Um die technischen Rahmenbedingungen mit einem ausreichend grofen Sicher-

heitsabstand zu adressieren, werden die Nebenbedingungen mit
ly| <0.5m, [y <3 ? lul = ]ij| < 50 ?2 und P, = 95% (4-38)

beriicksichtigt. Die Gewichtungen des Optimalsteuerungsproblems (4-28)) haben die Wer-

te

625Atk -1
W, = diag(100,100,250,0), W, =1, w,(k)=

Bevor der Algorithmus am realen System erprobt worden ist, wurde eine unabhéngige
Analyse in einer Simulationsumgebung durchgefiihrt. Hierbei wurde das Gesamtmodell
des Doppelpendels auf einem Wagen, d. h. inkl. Zentrifugalkrifte, stellvertretend fiir das
reale System verwendet und an fiktiven Messdaten gelernt. In der Simulation zeigte sich,
dass mit Hilfe des unvollstindigen (physikalischen) Modells kein Aufschwung des Ge-
samtmodells realisiert werden konnte. Auch eine zusétzliche Regelung war nicht in der
Lage, das System entlang der vorgeschlagenen Aufschwungtrajektorie zu stabilisieren
und fiihrte in allen Untersuchungen zur Instabilitdt. Dieser Ausgangspunkt entspricht der
Initialisierung der hybriden Optimalsteuerung bzw. Zeile 1 in Algorithmus[5] Um den Mo-
dellfehler zu korrigieren und den Aufschwung zu realisieren, waren insgesamt lediglich

zweil Lerniterationen bzw. weitere fiktive Experimente am Gesamtmodell erforderlich.

Weiterfiihrend werden die Ergebnisse am Doppelpendelpriifstand erldutert. Im Vergleich
zum Lernen am Simulationsmodell, ist am Priifstand ein schwierigerer Inbetriebnahme-
prozess zu erwarten, denn es muss von anderweitigen Modellierungsfehlern und Storungen
ausgegangen werden. In der Simulation fand bspw. keine Berticksichtigung von Rausch-
prozessen durch die Sensorik statt. Diese ist nicht nur in Hinblick auf die Messdaten
negativ zu bewerten, sondern auch in Bezug auf die Regelung, denn diese setzt einen
vollstindig bekannten Zustandsvektor voraus. Am Priifstand werden allerdings nur die
Positionen durch verschiedene Sensoren erfasst, sodass die Geschwindigkeiten durch Fini-
te-Differenzen-Berechnungen approximiert werden miissen. Das vorhandene Messrau-
schen wird dabei verstidrkt. Eine bessere Abschitzung stellt die Verwendung eines Beob-
achters dar, welcher dem Rauschprozess entgegenwirkt und ihn unterdriickt. Allerdings
ergibt sich durch den Einsatz eines Beobachters eine weitere Fehlerquelle, welche im
Zusammenhang mit der Regelung und dem hybriden Modell gegebenenfalls schwierig zu
analysieren ist. Um diese Fehlerquelle auszuschlieBen, wurde die Approximation iiber die
Finite-Differenzen-Methode beibehalten. Ein weiterer Grund ist, dass die GauB3-Prozess-
Regression bereits durch ihre Herleitung eine natiirliche Handhabung von Messrauschen

in Form des zugehdrigen Hyperparameters o2 vornimmt. Das Messrauschen ist, unter der
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Bild 4-8: Ergebnisse der Initialisierung der erweiterten hybriden Optimalsteuerung am
Doppelpendel auf einem Wagen. Die probabilistische Prddiktion ist in Blau und
die Priifstandsmessung in Rot dargestellt.

Voraussetzung einer ausreichend groen Datenmenge, damit als unproblematisch zu be-
werten. Des Weiteren soll der hier entwickelte Ansatz mit dem PILCO-Verfahren und des-
sen Ergebnissen am Priifstand verglichen werden (s. Abschnitt [4.3). Dabei wurde eben-
falls auf den Einsatz eines Beobachters verzichtet, sodass ein fairer Vergleich unter den

gleichen Voraussetzungen stattfinden kann.

Bild [4-8] zeigt die zeitlichen Verldufe der initialen Erprobung. Die blauen Verldufe re-
préasentieren die Zustandspridiktion, welche alleine auf der Basis des physikalischen Mo-
dells berechnet wurde. Die mittlere durchgezogene Linie steht fiir den Erwartungswert,
wohingegen die helleren Fliachen die zweifache Standardabweichung reprisentieren. Die
roten Verldufe zeigen in diesem Zusammenhang die Messung am Priifstand, wobei die
gleiche Steuerung der Pridiktion eingesetzt wird. Neben den sechs ZustandsgroBen, ist
der StellgroBenverlauf (unten, links) und der Modellfehler bzgl. der beiden Winkelge-
schwindigkeiten (unten, mittig und rechts) zu sehen. Die schwarz-gestrichelten Linien
stehen fiir die technischen Beschrinkungen (4-38]) und miissen wihrend des Aufschwung-
mandvers unbedingt eingehalten werden. Da bei der initialen Berechnung noch keine
Messdaten vorliegen und damit auch kein GP, ist die einzige Unsicherheit die des An-
fangszustands (my, S;). Aus diesem Grund nimmt die Zustandsvarianz durch die Zu-
standspropagation mit der Zeit zu. Insbesondere zum Ende der Trajektorie, nimmt die
Unsicherheit stark zu, denn die instabile obere Ruhelage sorgt fiir das Auseinanderdrif-
ten der moglichen Systemzustinde. Da das physikalische Modell noch keinen probabi-
listischen Anteil iiber die beinhaltenden Fehler enthilt, ist die Priadiktion insgesamt zu

optimistisch. Dies driickt sich in der relativ niedrigen Zustandsvarianz bis etwa 1.5 s
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Bild 4-9: Ergebnisse der 1. Lerniteration der erweiterten hybriden Optimalsteuerung am
Doppelpendel auf einem Wagen. Die Prddiktion des offenen Regelkreises ist in
Blau, die des geschlossenen in Tiirkis und die Priifstandsmessung in Rot darge-
stellt. Zudem ist die Vorhersage des Modellfehlers in Grau abgebildet.

aus. Die zeitlichen Verldufe, welche dem Wagen zugeordnet sind, weisen in diesem Zu-
sammenhang, wie erldutert, einen eindeutig definierten Ablauf auf. Thre deterministische
Préadiktion stimmt nahezu ideal mit der Messung iiberein und kann daher vor dem Ex-
periment gut durch den Ingenieur eingeschitzt werden. Bei den Winkeln zeichnet sich
hingegen ein anderes Bild ab, wobei die Pridiktion bereits nach wenigen Zeitschritten
ithre Giiltigkeit verliert und das reale Systemverhalten relativ unvorhergesehen erscheint.
Anhand der zeitlichen Verldufe der gemessenen Modellfehler wird ersichtlich, dass die
ersten 0.5 s nur durch geringe Abweichungen geprigt sind. Innerhalb dieser Zeitspanne
werden die Pendelarme aus der ruhenden Position durch den Wagen in Bewegung ver-
setzt. Aufgrund der quadratischen Abhédngigkeit der Zentrifugalkrifte von den Winkelge-
schwindigkeiten nehmen die Fehler nach etwa 1 s rasch zu und wechseln gleichermal3en
schnell ihre Richtung angesichts der trigonometrischen Terme in (4-37). Basierend auf
diesen ersten Priifstandsmessungen wird die 1. Iteration von Algorithmus [5] ausgefiihrt

und der datengetriebene GP-Modellteil zur Fehlerkompensation aufgestellt.

Das Ergebnis der 1. Lerniteration ist in Bild [4-9] zu sehen. Neben den schon bespro-
chenen Verldufen, treten nach der Initialisierung zwei weitere Verldufe hinzu. Zum einen
wird in der 1. Iteration die zeitvariante Riccati-Regelung berechnet, woraus sich iiber eine
nachtrigliche Simulation des geschlossenen Regelkreises eine weitere Zustandspridiktion
(tirkisfarbene Gebiete) ergibt. Anhand der Winkelverldufe wird hierbei besonders deut-
lich, dass der Eingrift der Regelung im Vergleich zur reinen Steuerung eine Reduzierung

der Zustandsvarianz bewirkt. Insgesamt betrachtet, sinkt zwar die Varianz in Bezug auf
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die Winkel, jedoch wird durch die Regelung eine zusitzliche Unsicherheit in die Stell-
grofle und die Wagendynamik induziert. Des Weiteren sind in den Diagrammen bzgl. der
Modellfehler zwei neue graue Gebiete hinzugekommen, welche die Vorhersage des ge-
lernten GP-Modells iiber den Fehler widerspiegeln. Die Vorhersage wird im Anschluss
an das Experiment auf der Basis der neu aufgenommenen Daten berechnet. Im Allge-
meinen sind die neuen Daten nicht Teil der bestehenden Datenlage und damit fiir den
momentan bekannten GP als unbekannt einzustufen. Die Auswertung des GPs an den
Stellen der neuen Daten liefert somit eine Pridiktion iiber die noch ungesehenen Daten
und entspricht damit in den iiberwiegenden Fillen einer Extrapolation. Diese Pridiktion
wird mit den neuen Messdaten verglichen, um einen Eindruck iiber die Qualitit des da-
tengetriebenen Modellteils bzgl. der Modellfehler zu erhalten. Obwohl die Pradiktion des
geschlossenen Regelkreises als stabil zu werten ist, wurde sich zunéchst dafiir entschie-
den, die Regelung am Priifstand nicht zu verwenden und weiterhin nur die reine Steue-
rung auszuprobieren. Eine Begriindung hierfiir ist, dass die Menge an Daten noch relativ
gering ist und dementsprechend dem datengetriebenen Teil noch nicht zu viel Vertrauen
entgegengebracht werden sollte. Das Verfahren befindet sich noch in einer explorativen
Phase, in welcher ein friihzeitig instabiles Verhalten am Priifstand hinderlich wére. Ein
Indiz hierfiir liefert zudem die Préadiktion in Bezug auf die Wagenposition y. Am Ende
der Trajektorie ist die zugehorige Varianz relativ grof3, sodass nicht sichergestellt ist, dass
die Wagenbeschrinkungen eingehalten wird. Ein verféilschter Eindruck kann zudem auf
die Approximation mittels UT zuriickgefiihrt werden. Um ein genaueres Bild zu bekom-
men, wurde nachtrédglich eine komplexere MC-Simulation des geschlossenen Regelkrei-
ses nach dem Vorgehen in [2.3.3] durchgefiihrt. Die Ergebnisse wurden dem Anhang unter
hinzugefiigt und zeigen im Gegensatz zur UT ein instabiles Systemverhalten.

Bei der Erprobung der Steuerung am Priifstand wurden die roten Verldufe aufgezeich-
net. Im direkten Vergleich zu Bild #-§ bzw. dem initialen Experiment zeigt sich, dass die
Préadiktion deutlich linger mit dem realen Bewegungsverhalten iibereinstimmt. Der Pfad
der Pradiktion wird erst beim Erreichen eines kritischen Punktes innerhalb der Trajektorie
verlassen. Dieser Punkt befindet sich bei etwa 1.25 s, wobei die Winkelgeschwindigkeiten
ihr kurzzeitiges Maximum anstreben. Erwartungsgemif reagiert das chaotische System
besonders stark an dieser Stelle auf kleinste Modellfehler, die beim modellbasierten Ent-
wurf nicht beriicksichtigt wurden, sodass das weitere Verhalten in Anbetracht der probabi-
listischen Pridiktion als relativ unwahrscheinlich erscheint. Abseits des anspruchsvollen
Systems wurden im Rahmen der GauB3-Prozess-Regression und der Zustandspropagation
verschiedenartige Annahmen getroffen, die bei der Inbetriebnahme gegeneinander ab-
gewigt werden miissen. Zum einen spielt die Bestimmung der GP-Hyperparameter hier-
bei eine wichtige Rolle, welche aufgrund der geringen Datenlage als nicht perfekt anzu-

sehen ist. Eine entsprechende korrekte Einstufung der Unsicherheit liber die Systemdyna-
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Bild 4-10: Ergebnisse der 3. Lerniteration der erweiterten hybriden Optimalsteuerung am
Doppelpendel auf einem Wagen. Die Prddiktion des offenen Regelkreises ist
in Blau, die des geschlossenen in Tiirkis und die Priifstandsmessung in Rot
dargestellt. Zudem ist die Vorhersage des Modellfehlers in Grau abgebildet.

mik ist damit innerhalb der ersten Iteration des Verfahrens in Frage gestellt. Zum anderen
basiert die Zustandspropagation auf der UT und stellt damit lediglich eine Approximation
an die wahre zugrundeliegende Zustandsverteilung dar. Die Approximationsfehler eines
jeden Zeitschritts summieren sich entsprechend auf und verfidlschen somit das Ergebnis
zum Ende der Trajektorie. Dies sind die Griinde dafiir, dass sich das reale System nicht auf
den wahrscheinlichsten Trajektorien, welche durch das hybride Modell berechnet wurden,
aufgehalten hat. Vor diesem Hintergrund bieten jedoch die Diagramme bzgl. der Modell-
fehler tiefere Einblicke. Nur anhand der Daten aus dem initialen Experiment ist der GP
bereits sehr gut in der Lage den Modellfehler aus dem néchsten Experiment wiederzu-
geben. Bis auf wenige Ausnahmen stimmt der Mittelwert mit den Messungen iiberein.
Die hohe Varianz nach etwa 1.6 s deutet jedoch an, dass gewisse Bereiche innerhalb des
Zustandsraums noch unbekannt sind. Weiterfiihrend werden die neuen Messdaten dafiir
genutzt, um die Pradiktionsgenauigkeit des GP weiter zu steigern, woraufhin die nichste

Lerniteration angestoflen wird.

Die Ergebnisse der 2. sind dhnlich zu denen der 1. Iteration, sodass sie keine neuen Er-
kenntnisse beinhalten und iibersprungen werden. Eine merkliche Verinderung ist erst in
der 3. Iteration zu beobachten, welche in Bild 4-10|dargestellt ist. Eindeutig zu erkennen
ist, dass die Zustandspropagation des geschlossenen Regelkreises bei etwa 1.6 s instabil
wird, in dem die Zustandsvarianz sprunghaft stark zunimmt. Zu diesem Zeitpunkt befin-
det sich das System wiederum an der kritischen Stelle des Aufschwungmanovers mit den

hohen Winkelgeschwindigkeiten. Aus dieser Perspektive betrachtet, ist die Instabilitét da-
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her nachvollziehbar und plausibel. Aufgrund der hoheren Datenmenge ist das GP-Modell
in der Lage, die Unsicherheit tiber die fehlenden Zentrifugalkrifte qualitativ besser aus-
zudriicken, woraus die instabile Vorhersage resultiert. Hier sei nochmals darauf hinge-
wiesen, dass der Riccati-Regler aufgrund seiner Herleitung bzgl. des hybriden Modells
entlang der Trajektorie theoretisch stabil sein sollte. Bei dem herkdmmlichen determinis-
tischen Entwurf wiirde der Regelungstechniker also falschlicherweise von einem stabilen
Systemverhalten ausgehen. Die probabilistisch berechnete Instabilitit kann daher nur das
Resultat eines nicht vollstidndig bekannten realen Systems sein und ist fiir den Entwurfs-
ingenieur ein wichtiges Hilfsmittel, um das Verhalten am Priifstand vor dem Experiment
besser einschitzen zu konnen. Dabei gibt die Simulation nicht nur Aufschluss dariiber, ob
das reale System instabil wird, sondern auch, zu welchem Zeitpunkt hochstwahrscheinlich
mit einer Instabilitdt gerechnet werden kann. Tatsdchlich hat sich bei verschiedenen se-
paraten Experimenten gezeigt, dass die erwéhnte kritische Stelle der Trajektorie dafiir
verantwortlich ist, dass es zu einem Fehlversuch am Priifstand kommt. Auf der Basis der
Préadiktionen bzgl. des offenen und geschlossenen Regelkreises hat der Ingenieur nun die
Moglichkeit weiterhin nur die Optimalsteuerung zu testen oder zusétzlich die Regelung
bis zum Zeitpunkt ¢ = 1.6 s dazuzuschalten und das Aufschwungmanéver dort vorzeitig
zu beenden und ggf. ein anschlieBendes sicheres Abschwungmandver in die untere sta-
bile Ruhelage einzuleiten. Die Stabilitit des Abschwungmandvers miisste entsprechend
separat iiberpriift werden und kann unter Umsténden zu weiterfiihrenden Problemstellun-
gen fiihren. Des Weiteren herrscht bereits eine gewisse Sicherheit tiber die Trajektorie vor
t = 1.6 s, sodass der Informationsgewinn aus den zugehorigen Daten eher gering wiire.
Zwar konnten nach diesem Vorgehen informationsreiche Daten im Bereich der kritischen
Stelle gesammelt werden, jedoch erscheint es fiir die Praxis sinnvoll, einen gewissen Si-
cherheitszeitraum, z. B. von 0.1 s, einzufiihren, sodass geniligend Abstand zur Instabilitit
besteht. Das Dilemma ist in diesem Zusammenhang, dass die wertvollsten Daten gera-
de innerhalb des Sicherheitszeitraums aufgenommen werden und das System somit nicht
in die Niéhe des informationsreichen Gebiets kommt. Schlussendlich ist hier das Exper-
tenwissen des Regelungstechnikers entscheidend, sodass eine Abwidgung immer vor dem
Hintergrund des betrachteten Systems getroffen werden sollte. Aufgrund der hohen Emp-
findlichkeit des Doppelpendels und der noch vergleichsweise geringen Datenlage wurde
in dieser Iteration entschieden, das System weiterhin nur mit einer reinen Steuerung zu
betreiben. Ein weiterer Grund hierfiir war, dass bei der Verwendung der Steuerung die
vollen 2 s fiir die Zustandsmessung zur Verfiigung stehen und damit innerhalb der Lern-
iteration mehr Daten aufgenommen werden. Die Auswertung der gemessenen Verldufe
zeigt, dass das hybride Modell weiterhin keine vollstindige Korrektur der Zentrifugal-
krifte enthilt. Sowohl der Mittelwert, als auch die hohe Standardabweichung der beiden

Modellfehlerverldufe ist hierfiir ein deutliches Indiz. Im direkten Vergleich zur 1. Iterati-
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Bild 4-11: Ergebnisse der 5. bzw. letzten Lerniteration der erweiterten hybriden Op-
timalsteuerung am Doppelpendel auf einem Wagen. Die Prddiktion des of-
fenen Regelkreises ist in Blau, die des geschlossenen in Tiirkis und die
Priifstandsmessung in Rot dargestellt. Zudem ist die Vorhersage des Modell-
fehlers in Grau abgebildet.

on sind die neu aufgenommenen Daten damit jedoch als wertvoller anzusehen und tragen

dazu bei, die Vorhersagequalitit in Hinblick auf die nichste Iteration zu erhdhen.

Die Ergebnisse in der 4. dhneln jenen aus der 1. Iteration. Ein deutlicher Unterschied
ist beziiglich der kritischen Stelle zu nennen. Am Priifstand wird diese Stelle das erste
Mal erfolgreich liberwunden und stimmt mit der Vorhersage iiberein, obwohl das Sys-
tem nur gesteuert wurde. Im niheren Vergleich zur Aufschwungtrajektorie aus der 3. Ite-
ration féllt auf, dass sich die Bewegungen voneinander unterscheiden, wenn auch nur
geringfiigig. Die 3. Iteration kann somit der Exploration des Zustandsraums zugeordnet
werden, wobei sich das Verfahren im Sinne eines lernfihigen Algorithmus eigenstdndig
dafiir entschieden hat, das urspriingliche Aufschwungmandver aus der 1. Iteration weiter
zu fokussieren. Bild #-1T] zeigt die Ergebnisse der 5. und damit letzten Iteration des Ver-
fahrens. In dieser Iteration wurde die Regelungsaufgabe erfiillt, in dem das Aufschwung-
mandver in die obere Ruhelage am Priifstand realisiert worden ist und der Zielzustand
durch die Regelung iiber den Zeitpunkt von 2 s hinaus stabil eingehalten wurde. Die Zu-
standspréddiktion des geschlossenen Regelkreises ist durch ein schmales Varianzband um
die geforderte Soll-Trajektorie gekennzeichnet. Dies zeigt auch eine komplexere MC-
Simulation, welche dem Anhang [A3] hinzugefiigt wurde. Dementsprechend wurde das
Risiko fiir eine Instabilitdt am Priifstand als gering eingestuft. Um ein automatisiertes Vor-
gehen umzusetzen, wurde a-priori ein gewisser Grenzwert fiir die Varianz aller Zustinde

eingefiihrt, welcher bei einer Unterschreitung auf die mogliche Verwendung der Rege-
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lung am Priifstand hinweist. Bei den anderen Iterationen wurde dieser Grenzwert noch
nicht unterschritten. Ausschlaggebend ist hier vor allem die Varianz der Wagenposition,
welche nur innerhalb der 5. Iteration gering ist und einen gewissen Sicherheitsabstand zu
den Enden der Strecke aufweist. Anhand des StellgroBBenverlaufs ist ersichtlich, dass ein
GroBteil des Aufschwungs auf die Steuerung zuriickzufiihren ist und die Regelung nur
eine geringfiigige aber wirksame Korrektur vornimmt. Infolgedessen kann geschlussfol-
gert werden, dass das hybride Modell im Rahmen des Optimalsteuerungsproblems einen
qualitativ hochwertigen Ersatz fiir den Priifstand darstellt. Dies zeigt sich zudem in den
Verldaufen der Modellfehler, welche nach dem Experiment durch das GP-Modell nahe-
zu ideal wiedergegeben werden und eine vernachlédssigbar kleine Standardabweichung
beinhalten. Unter anderem die Zentrifugalkréfte sind damit durch die Messdaten vom GP
zufriedenstellend abgebildet worden. Abschlieend ist die Inbetriebnahme am Doppel-
pendel auf einem Wagen damit als erfolgreich abgeschlossen zu betrachten.

Fazit zu der Validierung am Doppelpendelpriifstand und kritische Analyse

Die hybride Optimalsteuerung mit dem erweiterten Regelungsentwurf stellt ein hilfrei-
ches Werkzeug fiir die Inbetriebnahme von anspruchsvollen Systemen dar, welche eine
exakte mathematische Beschreibung der Dynamik bendtigen. Das Doppelpendel auf ei-
nem Wagen ist in diesem Zusammenhang gesondert hervorzuheben, denn es zeichnet sich
durch ein empfindliches chaotisches Bewegungsverhalten aus, wodurch eine realistische
Pridiktion nur auf der Basis eines genauen Modells berechnet werden kann. Kleinste Feh-
ler innerhalb der zugrundeliegenden Gleichungen haben dementsprechend einen grof3en
Effekt auf den Prozess der Inbetriebnahme und sind daher entscheidend fiir den Erfolg
und Misserfolg des regelungstechnischen Entwurfs. Die entwickelte hybride Optimal-
steuerung setzt bei dieser Problemstellung an und zeichnet sich durch eine hohe Relevanz
fiir die Praxis aus. Die Validierung am Doppelpendel hat gezeigt, dass die Einfiihrung ei-
ner wahrscheinlichkeitsbasierten Sichtweise die Inbetriebnahme fiir den Ingenieur besser
einschitzbar macht. Hierzu ist insbesondere der neu eingefiihrte Begriff der probabilis-
tischen Stabilitit zu nennen, der den herkdmmlichen Stabilititsbegriff in Bezug auf ein
funktionierendes Regelungskonzept erweitert und einen direkten Bezug zum realen Sys-
tem herstellt. Uber die Zustandsvarianz lisst sich das Verhalten am Priifstand a-priori
deutlich besser abschitzen, sodass entsprechende Sicherheitsmalnahmen vor dem Expe-
riment vorgenommen werden konnen. Ein weiterer Vorteil ist die Einbeziehung von Vor-
wissen in Form einer partiell bekannten Dynamik und einer nachvollziehbaren bzw. inter-
pretierbaren Regelungsstruktur. Bei dem rein datengetriebenen PILCO-Verfahren wurden
hierfiir keine Schnittstellen vorgesehen, wohingegen die erweiterte hybride Optimalsteue-
rung solche Schnittstellen besitzt. Im Endergebnis wurden mit PILCO dementsprechend
weitaus mehr Iterationen fiir den erfolgreichen Aufschwung bendtigt. Insgesamt ergibt

sich durch die Einbringung des Vorwissens damit eine Einsparung von knapp iiber 80%
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bzgl. der erforderlichen Experimente am Priifstand. Dies verdeutlicht bereits die enor-
me Effizienzsteigerung, welche durch die hybride Optimalsteuerung erzielt werden kann.
Ein besonderes Potenzial wird hier vor allem bei Systemen gesehen, fiir welche die Aus-
wertung eines Experiments aufwendiger und kostenintensiver ausfillt. Abseits der Zeit
fiir ein Experiment, ist auch die Zeit fiir die Berechnung des nichsten Experiments zu
beurteilen. Da hierzu keine Echtzeitanforderungen eingehalten werden miissen bzw. die
Berechnungen offline durchgefiihrt werden, ist die benotigte Zeit nur ein sekundires Kri-
terium. Nichtsdestotrotz wurde bei PILCO fiir eine Iteration in etwa eine Berechnungs-
zeit von 2 Stunden bendtigt, welche ein Resultat des angesetzten hoch parametrisierten
GP-Reglers ist und auf die Tatsache zuriickzufiihren ist, dass keine Kenntnis iiber eine
Regelungsstruktur vorgegeben wurde. Eine vergleichbare Iteration der erweiterten hybri-
den Optimalsteuerung dauerte lediglich 10 Minuten, wobei diese Zeitangabe nicht nur
die Losung des Optimierungsproblems umfasst, sondern auch die Zustandspropagation
des geschlossenen Regelkreises. In dieser Metrik liegt der Zeitgewinn bei etwa 98% und

ist damit besonders bzgl. der Einsparung von Ressourcen hervorzuheben.

Ein Kritikpunkt des entwickelten Verfahrens ist in Bezug auf die Skalierbarkeit auf grof3ere
Datenmengen, welche unter Umstédnden fiir Systeme mit vielen Zustands- und Stell-
groflendimensionen erforderlich sind, zu nennen. Das Training eines GPs, also die Be-
stimmung der Hyperparameter, benétigt die Invertierung der Datenmatrix K (1) € R
(vgl. (3-3)), wobei ny die Anzahl der Daten ist, in jedem Optimierungsschritt. Die Be-
rechnungskomplexitit des Trainings betrigt damit O(n3). Des Weiteren skaliert eine an-
schlieBende Auswertung der GP-Posterior-Gleichungen @-17) mit O(n?2). Eine prakti-
sche Anwendbarkeit fiir groBe Datenmengen ist damit in Frage gestellt. Eine anwen-
dungsorientierte Losungsmoglichkeit besteht darin, die Datenmenge durch Clustering-
Methoden geeignet zu reduzieren und damit einen Genauigkeitsverlust zu akzeptieren,
wobei jedoch das grundsitzliche Problem der schlechten Skalierbarkeit bestehen bleibt.
Vor diesem Hintergrund ist ein besserer Losungsweg ein probabilistisches ML-Verfahren
mit besseren Skalierungseigenschaften zu verwenden. Im Ausblick dieser Arbeit (Kap.
) werden hierzu diverse Kandidaten genannt. Unter der Voraussetzung einer normal-
verteilten Pradiktion eines anderen ML-Verfahrens fiir den datengetriebenen Modellteil
behalten die Gleichungen der hybriden Optimalsteuerung ihre Giiltigkeit. Zudem bleibt
das grundsitzliche Vorgehen in Bezug auf Algorithmus [5|unverindert und die bei der In-
betriebnahme besprochenen Zusammenhinge bleiben bestehen. Ein weiterer Kritikpunkt
betrifft Systeme, die abrupte Anderungen ihrer Dynamik aufweisen, wie sie beispielswei-
se bei Systemen mit Haftreibung oder hartem Kontakt beobachtet werden konnen. Ohne
eine entsprechende Anpassung der GauB3-Prozess-Regression kann es bei diesen Syste-
men zu einem Versagen des Verfahrens kommen. Eine beispielhafte Darstellung dieser
Problematik wurde im Grundlagenkapitel unter Abschnitt[2.5.T|erldutert, wobei die hohen
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Glattheitsanforderungen der SE-Kovarianzfunktion zu einer fehlerhaften Abbildung der
gesuchten Sprungfunktion gefiihrt haben. Dementsprechend ist in diesem Fall eine An-
passung der Kernelfunktion (z. B. stiickweise) aufgrund des Expertenwissens des Rege-
lungstechnikers notwendig. Im Gegensatz zu vergleichbaren Veroffentlichungen (s. Stand
der Forschung) sind durch die Verwendung der UT fiir die Zustandspropagation beliebige
Kernelfunktion einsetzbar, womit die hybride Optimalsteuerung auch fiir die angespro-
chene Systemklasse anwendbar bleibt. Eine Voraussetzung ist jedoch, dass anstelle des
SQP-Verfahrens, welches auf kontinuierlichen Funktionen basiert, ein Solver aus dem

Bereich der nicht glatten Optimierung [GKO2] zur Losung eingesetzt wird.
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5 Hybride Zustandslinearisierung fiir mechanische
Mehrkorpersysteme

Der Regelungsentwurf nach dem Verfahren der Zustandslinearisierung ist ein géngiger
regelungstechnischer Ansatz, welcher nur unter besonderen Voraussetzungen angewen-
det werden kann [Adal4]]. Die Methode zielt darauf ab, ein nichtlineares System durch
eine geeignete Wahl der StellgroBe, als ein lineares System zu behandeln. Hierbei werden
die vorhandenen Nichtlinearititen im Idealfall vollstindig kompensiert - eine Linearisie-
rung durch eine Taylorreihenentwicklung findet dabei nicht statt, sodass das System im
gesamten Zustandsraum als linear betrachtet werden darf. Dies hat den groen Vorteil,
dass die Methoden der linearen Regelungstechnik zum Entwurf und Analyse angewandt
werden diirfen und entsprechend ein linearer Zustandsregler zur Stabilisierung und Soll-
wertfolge ausreichend ist. Damit die Methodik anwendbar ist, muss die Voraussetzung
gelten, dass es sich um ein eingangsaffines System handelt, d. h. dass die StellgroBe li-
near in die Systemgleichungen eingeht. Diese Voraussetzung ist fiir viele technische Sys-
teme erfiillt, da physikalische GesetzméBigkeiten hdufig auf einem solchen Zusammen-
hang beruhen. Um die Kompensation der Nichtlinearitdten zu erreichen, ist die passende
Wahl der StellgroBe am realen System erforderlich. Die Stellgroe héingt hierbei von be-
stimmten Modelltermen ab, welche die Nichtlinearititen des realen Systems genau genug
wiedergeben miissen. Entsprechend der Grundidee, werden die Terme tiber die Stellgrofle
dem realen System so aufgeschaltet, sodass sie invers zur realen Systemdynamik wirken
und sich bei einer gesamtheitlichen Betrachtung moglichst ideal kompensieren. Weist das
Modell dahingehend Ungenauigkeiten auf, so wirken sich diese iiber das aufgestellte Re-
gelgesetz direkt auf die Regelgiite aus. Unter Umstidnden werden durch das ungenaue
Modell zusitzliche unerwiinschte Nichtlinearititen eingebracht, welche negative Effekte,
wie Grenzzyklen oder Instabilitdten, nach sich ziehen konnen. Das Ziel dieses Kapitels
ist, eine hybride Zustandslinearisierung zu entwickeln, welche die angesprochenen Un-
genauigkeiten auf der Basis von Messdaten und der GauB3-Prozess-Regression korrigiert.
In diesem Szenario ist ein teilweise unvollstindiges physikalisches Modell zuldssig, auf
dessen Grundlage eine ideale Kompensation nicht funktioniert. Der Fokus dieses Kapi-
tels liegt auf mechanischen Systemen, da diese die Forderung nach einer linear wirkenden
Stellgrofe erfiillen und eine breite Klasse innerhalb der Mechatronik darstellen. Des Wei-
teren wird die hybride Zustandslinearisierung anhand eines Hexapoden beispielhaft er-
probt. Zur besseren Einordnung und Ubersicht wird die klassische Zustandslinearisierung

im ndchsten Abschnitt zundchst mathematisch ndher formalisiert.
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5.1 Klassischer Regelungsentwurf durch
Zustandslinearisierung

Um das Grundprinzip nachvollziehen zu konnen, ist die Betrachtung eines eindimensio-
nalen Systems mit dem Zustand z(¢) € R und der Stellgrofe u(t) € R zunichst aus-
reichend. In den nachfolgenden Abschnitten erfolgt die Verallgemeinerung auf mehrdi-
mensionale Systeme. Das betrachtete eingangsaffine System in zeitkontinuierlicher Form

lautet
T =a(r)+ p(z) u, (5-1)

worin a(z) und B(z) die erwihnten separierten Nichtlinearitdten darstellen, welche le-
diglich von der Zustandsgroe abhiingen. Der Grundidee folgend, wird das Regelungsge-

setz

1
up(e, w) = =—(=a(r) + K(w - x)),
p(z)
so angesetzt, dass sich die Nichtlinearititen des realen Systems (a(z), 5(z)) und der Stell-
groBe (a(z), i (x)) bzw. des Modells gegenseitig aufheben. Bei einer Gleichsetzung von
u = ug(w, x) ergibt sich somit fiir das geregelte Gesamtsystem eine Dynamik von

@d(x) + wK(w —x), (5-2)

E T @)

wobei unter der Voraussetzung eines genauen Modells &(z) — a(z) und 8(x)/3(x) = 1
gelten wiirde, was dem Idealfall einer vollstaindigen Kompensation entspricht. Fiir die
nachgelagerte Regelung wurde beispielhaft ein linearer Regler mit der Verstarkung /& und
dem Sollwert w angesetzt. Dieser bleibt nach der Konstruktion des Verfahrens innerhalb
der Differentialgleichung bestehen und sorgt fiir die Stabilisierung bzw. Sollwerteinhal-
tung. Anhand von wird zudem ersichtlich, dass selbst kleinste Ungenauigkeiten des
Modells dazu fiihren konnen, dass eine Kompensation nicht vollstindig stattfindet und
unter Umstédnden unerwiinschte nichtlineare Effekte in das Gesamtsystem eingebracht
werden. Im Nachfolgenden soll davon ausgegangen werden, dass eben solche Ungenauig-
keiten vorhanden sind, sodass der Einsatz der hybriden Zustandslinearisierung motiviert
wird. Zunichst wird die hybride Zustandslinearisierung dhnlich zur hybriden Optimal-
steuerung formal entwickelt und anschlieend an dem ausgewéhlten Anwendungsbeispiel

des Hexapoden simulativ erprobt.
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5.2 Herleitung der hybriden Zustandslinearisierung

Den Ausgangspunkt der Herleitung stellt ein klassisches mechanisches System mit dem

Positionsvektor g(t) € R" dar, welches in seiner allgemeinen Darstellung iiber

M(q)§+C(4.9)q +G(q) = J(q)"u

& 4= M@ @) u—M(@)(Cld,9d + Cla)) )

=06(q) =a(q,9)

beschrieben wird. Hierin sind M (q) € R"*" die Massenmatrix, C(q,q) € R"*"
die Matrix der Zentrifugal- und Corioliskrifte, G(gq) € R der Vektor der Gewichts-
krifte und J(gq) € R"™*™ die geometrische Jacobimatrix, welche die kinematische
Wirkung der StellgroBBen u € R™ auf die Beschleunigungsgrolen g definiert. Anhand
der Aquivalenzumformung in wird ersichtlich, dass das mechanische System in die
gewiinschte Form fiir eine Zustandslinearisierung gebracht werden kann. Hierbei handelt
es sich im Vergleich zu (5-1)) jedoch um den mehrdimensionalen Fall mit den Nichtli-
nearititen a(q, ¢) : R" x R" s R" und B(q) : R" s R"*"«_Fiir den Ubergang zur
Zustandsraumdarstellung wird der Zustandsvektor iiber = [g”, (jT]T € R?"a eingefiihrt,

sodass sich insgesamt

= f(x,u)= q , 5-4
o] S 54

ergibt, wobei zur Verallgemeinerung eine zusitzliche Abhingigkeit zwischen 3 und ¢
angenommen wurde (vgl. (5-3)). Die ersten n, Gleichungen reprisentieren ein Integra-
torverhalten beziiglich ¢ und ¢. Das Regelungsgesetz wird nun entsprechend zu (5-2))

iber
up(x, w) = B(z)" (—a(z) + K(w — x)),

beschrieben, wobei fiir den Fall von n, # n, bzw. eines nicht voll-aktuierten Systems

die Pseudoinverse von 3(x) bendtigt wird. Eine separate Aufstellung der Differential-

gleichungen aus (5-3)

Gi = Pra(@ui + ... + Brn, (@)Un, +a(q, q),
(5-5)

q'nq = 5nq,1(Q)U1 +...F Bnq,nu(q)unu + anq (qa q)7
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zeigt, dass es sich im Kontext des maschinellen Lernens um n, unabhingige Regressi-
onsprobleme bzgl. der Beschleunigungen ¢;,7 = 1, ..., n, handelt. Dabei gilt es, die ein-
zelnen Funktionen o, 5, 5,7 = 1,...,n4,5 = 1,...,n, bzw. deren Abweichung zu den
bereits bekannten Funktionen des bestehenden physikalischen Modells zu identifizieren.
Eine Herausforderung bei der Losung der Regressionsprobleme (5-3) wird bei der Be-
trachtung der zugehdrigen Messdaten (&, «, u), welche am realen System aufgezeichnet
werden, ersichtlich. Basierend auf den Messdaten sollen die einzelnen nichtlinearen Funk-
tionen o (x), f; ; () identifiziert werden, wobei jedoch unklar ist wie sich die Beschleu-
nigungen ¢; geeignet zerlegen lassen. Die gesuchten Funktionen o;(x), §; j(x) konnen
nicht ohne Weiteres direkt gemessen werden, sondern sind additiv im Messsignal von ¢

enthalten und miissen entsprechend (5-53)) separiert werden.

Die Autoren aus [UBKHI17; [UH20] stellen hierzu ein Konzept auf der Basis der Gaul3-
Prozess-Regression vor. Hierfiir nutzen sie zwei verschiedene Eigenschaften von GPs aus.
Zum einen fiihrt die Summe von mehreren GPs wiederum auf einen GP und zum anderen
fiihrt das Produkt eines GPs mit einer bekannten Funktion gleichermaBlen auf einen GP.
In diesem Zusammenhang werden fiir den eindimensionalen Fall (vgl. (5-1)) fiir o und 5
zwel separate GPs angesetzt, welche iiber die erwihnten Eigenschaften miteinander ver-
bunden werden konnen und iiber die eine Aufspaltung der Messungen zugénglich wird.
Die Grundidee aus [UBKH17; UH20] wird im Rahmen dieser Arbeit aufgegriffen und im
Kontext der Themenstellung erweitert. Im nachfolgenden Abschnitt wird dazu das Kon-
zept auf den mehrdimensionalen Fall {ibertragen, sodass es auf das betrachtete Anwen-
dungsbeispiel angewendet werden kann. Im Gegensatz zu der rein theoretischen Arbeit
in [UBKH17; UH20] wird damit die praktische Anwendbarkeit der hybriden Zustandsli-
nearisierung hervorgehoben. Zudem werden die Mittelwertfunktionen der einzelnen GPs
nicht zu null angenommen, sondern bilden die Schnittstellen zu dem vorhanden dynami-
schen Vorwissen, welche sich aus den Uberlegungen zu (5-3)) beriicksichtigen ldsst. Damit
wird sowohl die Effizienz in Hinblick auf ein iteratives Vorgehen dhnlich zu PILCO und
der hybriden Optimalsteuerung erhoht, als auch die Extrapolationseigenschaften im Ver-
gleich zu einem rein datengetriebenen Ansatz verbessert. Des Weiteren wird in dieser
Arbeit die Auswirkung der probabilistischen GPs auf das Regelgesetz und die StellgroB3e
ausformuliert. Erwartungsgemal lassen sich so wéhrend des Betriebs des Systems mit
dem entwickelten Regelungskonzept Aussagen dariiber treffen, wie zuverlassig der Reg-
ler in Bezug zu seiner Stellgrofle und vor dem Hintergrund von moglicherweise vorhan-
denen Modellfehlern ist. Weiterfiihrend lassen sich somit Handlungsanweisungen fiir die
Aufnahme zusitzlicher Daten ableiten und mogliche Instabilititen, die auf die Regelung
zuriickzufiihren sind, frithzeitig erkennen (dhnlich zum Fall in Bild 4-10).
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Da fiir alle n, Differentialgleichungen in (5-3) die gleiche GauB-Prozess-Regression an-
gesetzt wird, wird im Folgenden lediglich die i-te Gleichung mit ¢ > n, + 1 aus der
Zustandsraumdarstellung (5-4))

b= B+ o+ f (), + (),

betrachtet. Zur besseren Ubersicht wird der Index i weggelassen. Den Ausgangspunkt des
Verfahrens bilden die ny aufgenommenen bzw. berechneten Datenpaare (&, «, u), welche
mit dem standardméiBigen Ansatz fiir das Messrauschen €,, ~ A (0, 02) additiv verfilscht
sind und in den nachfolgenden Matrizen und dem Ausgangsdatenvektor zusammengefasst

werden:

X =[zW, ... "] e R,
U; = diag(u", ... ,u\") e Rrxme =1 n,
Y= [;U(l) + 5;1)7 o ’;'E(nd) + 6;”d)]T c R,

Der Grundidee folgend, werden die gesuchten Funktionen fiir die Zustandslinearisierung

als Zufallsvariablen, die von einem jeweiligen GP stammen, {iber

a(z) ~ GP(ma(x), ka(z, 2')),

(5-6)
Bi(x) ~ GP(mg,(x), ks, (z, '), j=1,...,n,

definiert. Ein moglicherweise vorhandenes Vorwissen kann hierbei iiber die Mittelwert-
funktionen m,(x) und mg, () beriicksichtigt werden. Fiir die Kovarianzfunktionen wird
standardmifBig der SE-Kernel angesetzt, sofern iiber die Gestalt der Dynamikfunktionen
keine anderweitigen Informationen vorliegen. Es wird nun ein Zustand x* eingefiihrt, an
welchem die Funktionen ausgewertet werden sollen. Zusammen mit den Ausgangsdaten,

lasst sich durch die Definition als GPs fiir die Prior-Verteilung folgern, dass

a(x*) M (") K 0 0 e k!
By () mg, () 0 K, 0 e k;gl Ut
: ~N : | : - :
B () ma, (@) L0 0 e kg kUL
oy | my | ke Uiks - Unks, K, |

gilt, mit k7 (z") = k¢)(x", "), k() (z") = [key (2, 2M), .. ke (x*, 2™))])T € R

und wobei die erwidhnten Regeln zur Addition und Produktbildung von GPs angewandt
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wurden. Dadurch ergeben sich insbesondere fiir die Ausgangsdaten der Erwartungsvektor

und die Kovarianzmatrix zu

my, =m.(X)+Umg (X)+...+U,,mgs, (X), und
K,=K,+U{KuU,+...4+U} KyU,, +0.1,,

mit my(X) = [my (D), ..., m)(z"))]7 € R™ und Ky € R"*" mit den Ele-
menten K();; = k¢ (x®,x),i,j = 1,...,n4. Es handelt sich hierbei nicht um die
Verstarkungsmatrix des Reglers. Auf der Grundlage der Prior-Verteilung werden die be-

dingten bzw. Posterior-Verteilungen nach

a(@") |y ~ N(pa(a), o0 (x")),
pa(@") = ma(x) + ko () K (y —m,),
al@”) = ko(@") — ko () K a(@),

Bi(a”) |y ~ N(pg; (x%), 05 (")), j=1,...,04

pg, (") = mg, (x") + ki (2 )UTK Ny —my),

o5, (") = ki, (x7) — ki (") U] K, 'U kg, (),
bestimmt. Es liegt somit eine probabilistische Schitzung in Form einer eindimensiona-
len Normalverteilung fiir jede der gesuchten Funktionen der Zustandslinearisierung vor.

Das Training der GPs wird durch die Identifikation der Hyperparameter vorgenommen.

Beispielsweise wird fiir alle GPs der SE-Kernel als Kovarianzfunktion mit

b o - (2 — af)?
ka(wawun)_aaexp (ZT@J )

i=1
Nz 7\2
2 (2; — x7) :
ks, (x,x';m) = 0, exXp (Z —1%2 : > s J=1
i=1 Bj
angesetzt. Der Hyperparametervektor umfasst dann jeden einzelnen GP aus (5-6)) iiber
n= [loz,b lﬂl,b s 7l6nu,17 st vla,nm? lﬂhn.rv R lﬁnu,nmv
2 2 2 21T e+ 1) (nu+1)+1
0o, 05, ’Uﬂnu’an] e Rt (nut1)+

und wird standardmiBig liber die Maximierung der logarithmischen Likelihoodfunkti-

on

n* = arg max log p(y | m)

= argmgx—%(y —m,) K, '(y —m,) — ;log|K,| — % log 2w



5.2 Herleitung der hybriden Zustandslinearisierung 159

eindeutig bestimmt (vgl. (2-33)).

Die beschriebene Methode wird fiir alle n, Differentialgleichungen (5-5)) gleichermaBen
durchgefiihrt, sodass eine Zusammenfiihrung aller Posterior-Mittelwerte kurz iiber

Hay (CC) Iuﬁl’l(w) Ce Hﬁl,nu (.’B)
“a(m) = € R™ uﬁ(a)) = € RMa*nu

/’Lanq ($> /’Lﬂnq,l <w> U Mﬂnq,nu (w)

beschrieben wird. Diese Grofen stellen, auf der Basis des Vorwissens und der Datenla-
ge, die beste Schitzung fiir die gesuchten Funktionen dar. Aus diesem Grund wird hin-
sichtlich der Anwendung am realen System das Regelungsgesetz iiber diese Schitzungen

mit
un(@, w) = py(@) " (o (@) + K(w — ) = p,(@) (5-7)

definiert, sodass zu jedem Zeitpunkt eine eindeutige StellgroBe bekannt ist. Die Bildung
der (Pseudo-)Inversen kann unter Umstinden zu Problemen bei der Berechnung der Stell-
grofe filhren. Im Zusammenhang mit der GauB3-Prozess-Regression wurde kein Mecha-
nismus dafiir vorgesehen, dass die Matrix pg(x) fiir beliebige = gut gestellt bzw. kon-
ditioniert ist. Eine mogliche Singularitit kann daher nicht ausgeschlossen werden. Bei
den bisherigen Erprobungen des entwickelten Verfahrens konnten jedoch keine Proble-
me in Bezug auf das Invertieren der Matrix festgestellt werden. Ein moglicher Grund
hierfiir konnte sein, dass in den iliberwiegenden Fillen ein bestimmtes Vorwissen iiber
mg(x) beriicksichtigt wurde, sodass sich im Vergleich zu einem rein datengetriebenen
Ansatz eine gute Konditionierung der Matrix tendenziell eher einstellt. Im Rahmen die-
ser Arbeit wurde abseits der experimentellen Erprobung die Konditionierung nicht weiter
untersucht, sodass die Fragestellung als Ausblick fiir weiterfiihrende Forschungsarbeiten
offen bleibt.

Vor dem Hintergrund von ist ersichtlich, dass die Varianzangabe bzgl. der einzelnen
Funktionen nicht im Regelgesetz enthalten ist und als weitere Informationsquelle bisher
nicht genutzt wird. Da es sich bei ae(x) und 3(x), nach der hier eingefiihrten Definition,
um Zufallsvariablen handelt, induzieren sie eine Unsicherheit in die Stellgrof3e, wodurch
diese ebenfalls als Zufallsvariable zu betrachten ist. Ahnlich zum MM-Ansatz im Be-
zug auf die Zustandsverteilung, kann eine Approximation der StellgroBenverteilung mit
p(u) ~ N(u,,o?) eingefiihrt werden. Dies ermdglicht tiefere Einsichten in den Regler,
sodass sein Verhalten besser abgeschiitzt werden kann. Fiir die Praxis und den Betrieb des
realen Systems bedeutet dies, dass weiterhin das Regelgesetz aus eingesetzt wird,
jedoch zur Laufzeit parallel die Varianz der StellgroBe o2 ausgewertet wird, #hnlich zu
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dem Verhalten eines Zustandsbeobachters. Die Varianz o2 bildet in diesem Zusammen-
hang die Unsicherheit des Reglers aufgrund der (noch) vorhandenen Modellfehler ab und
kann als Maf} dafiir benutzt werden, um einzuschitzen ob ein sicheres Systemverhalten
zu erwarten ist oder im Bereich des aktuellen Systemzustands « weitere Messdaten auf-

genommen werden sollten.

Im eindimensionalen Fall o(x), 5(x) € R ldsst sich die Varianz, dhnlich zu (3-13),

tiber

(—ta(z) + K(w — x))?05(x)
p15(x)

abschitzen, wobei wiederum die Bedingung o3/pus < 0.1 zu beriicksichtigen ist, damit
die Approximation ihre Giiltigkeit behilt. Fiir den iiberwiegenden hoherdimensionalen
Fall, erscheint ein MC-Ansatz als geeignet. Dabei werden ng Realisierungen der Stell-

)

grofle ugi .t =1,...,ns erzeugt, welche dem Zusammenhang

ul) ~ (py(@) + 05(2) 0 €)' (— o (@) — 00 (@) 0 €0 + K (w — ),

folgen, wobei o die elementweise Multiplikation darstellt. Des Weiteren sind die Matrizen

der Standardabweichungen

Oay (w) 01,1 (m) T OB, (m)

O'a(il?) = € R", 0'5(37) = € R ™

Tan, () Ty (T) - 0,0, (T)

enthalten, sowie die GroBen €;, € R" und €;53 € R"*"™ mit den normalverteilten

Elementen

i)
s,

€ ,Egz’g)w./\/’(o,l), izlj,,_7nq’j:1"..7nu'

Nach der Generierung der StellgroBenrealisierungen wird die zugehorige Varianz empi-

risch mittels

1 ) )
ol — Y (ul) —p,)(wl) —p,)", (5-8)

=1

approximiert. Analog zu den Uberlegungen der hybriden Optimalsteuerung, liegen vor
der Erprobung des Regelgesetzes (5-7) am realen System iiber die gelernten o;;(x), 3; ; ()
miti =1,...,n4,7 = 1,...,n, nicht nur ein hybrides probabilistisches Dynamikmodell,

sondern auch ein probabilistischer Regler vor. Dementsprechend kann bereits vor der Er-
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probung eine probabilistische Langzeitpriadiktion (¢, ., (t), 3. (¢), p, (t), o%(t)) anhand
eines gewiinschten Sollwertverlaufs w(¢) berechnet werden, die dem Entwurfsingenieur
die Moglichkeit eroffnet, das System tiefergehend zu untersuchen und die Auswirkungen
der moglicherweise noch vorhandenen Modellfehler besser abschitzen zu konnen. Zudem
kann die probabilistische Stabilitit des Gesamtsystems auf der Basis der Zustandsvarianz
3., (t) untersucht werden. Da diese Zusammenhinge bereits vor dem Hintergrund der
hybriden Optimalsteuerung mit dem erweiterten Riccati-Regelungsentwurf und den Er-
gebnissen am Doppelpendelpriifstand erldutert wurden, wird die detaillierte Aufstellung
einer Zustandspropagation nicht weitergehend vertieft. Im néichsten Abschnitt wird die
Anwendung der hybriden Zustandslinearisierung fiir ein praxisbezogenes System vorge-
stellt.

5.3 Konzeptionierung einer Regelung flr einen Hexapod mittels
hybrider Zustandslinearisierung

Ein bedeutender Priifstand fiir die Forschung an aktiven Fahrzeugachsen, der am Lehr-
stuhl fiir Regelungstechnik und Mechatronik der Universitidt Paderborn entwickelt wurde,
ist in Bild[5-T]zu sehen und kann Straflenbedingungen realititsnah in allen sechs Freiheits-
graden nachbilden und arbeitet unter Echtzeitbedingungerﬂ Um dies zu erreichen, wird
unter anderem ein hochdynamisch geregelter Hexapod als Anregungseinheit eingesetzt.
Um ein vollstindiges Fahrzeugverhalten in einer Hardware-in-the-Loop(HiL)-Simulation
nachzubilden, werden neben der Fahrzeugdynamik auch die StraBle und die Réder auf
einem Echtzeitsystem synchron mitberechnet. Die notwendige Sensorik umfasst unter
anderem sechs Weg- und Druckaufnehmer sowie einen Winkelsensor. Zusitzlich wer-
den zwolf Ventilschieberwegsensoren und ein Kraftmessrad verwendet, um die Krifte
und Momente zwischen Hexapod und aktiver Fahrzeugachse zu erfassen. Des Weiteren
werden sechs Steuerspannungen fiir die Servoventile ausgegeben. Der Hexapod selbst
gehort zur Gruppe der Parallelkinematiken [Koh20|]. Anders als bei seriellen Kinemati-
ken, die man beispielsweise bei Industrierobotern findet, sind hier alle Antriebe direkt
mit dem Endeffektor verbunden. Dadurch entsteht eine komplexe, koordinierte Bewe-
gung, bei der die sechs Hydraulikzylinder gleichzeitig agieren, um den Endeffektor in
allen sechs rdumlichen Freiheitsgraden zu bewegen. Der Hexapod wird durch insgesamt
sechs Hydraulikzylinder aktuiert. Jeder Zylinder ist am unteren Ende iiber ein Kardan-
gelenk, das mit einer Olzufuhr ausgestattet ist, mit der Bodenplatte verbunden, wihrend
das obere Ende iiber ein Kugelgelenk mit der Arbeitsplattform des Hexapoden gekoppelt
ist. Diese Struktur ermdglicht dem Priifstand unter der Hinzunahme einer Positionsre-

gelung, vielféltige Fahrbahnbedingungen prizise nachzubilden. Das Gesamtsystem wird

4Unter https://youtu.be/cN7_Epprgeg?si=4tkjlw-TLf00Apqx ist der Betrieb gezeigt.


https://youtu.be/cN7_Epprgeg?si=4tkjlw-TLf0OApqx
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Bild 5-1: Fahrzeugachspriifstand mit hydraulischem Hexapod (© Heinz Nixdorf Institut)

dazu eingesetzt, um aktive Fahrzeugachsen zu testen und hinsichtlich ihrer Regelgiite
bzw. Komforts fiir den Fahrzeuginsassen zu bewerten. Des Weiteren kann die Betriebs-
festigkeit der Achse iiberpriift werden. Das Regelungskonzept des Achspriifstands kann
auf mehreren unterschiedlich hierarchischen Ebenen betrachtet werden. Bspw. wird je-
der Hydraulikzylinder durch seine eigene Kraftregelung angesteuert. Unterlagert werden
hierzu die Steuerspannungen fiir die Servoventile der hydraulischen Pumpen vorgegeben.
Die Sollwerte fiir die Krifte der Hydraulikzylinder wird durch eine hierarchisch hohere
Positionsregelung festgelegt. Auf dieser Positionsregelung liegt der anvisierte Fokus die-
ses Unterkapitels. Sie sorgt dafiir, dass das vorgegebene Straenprofil bestmoglich nach-
gebildet wird und hat damit als Ziel, die Position der Endeffektor-Plattform einzuregeln.
Die Position ist hierbei durch die riumlichen Koordinaten und die Orientierung im Raum
definiert. Da es sich bei dem Hexapod um ein klassisches mechanisches System handelt,
wird fiir die Positionsregelung der beschriebene Ansatz der hybriden Zustandslinearisie-
rung (vgl. (5-3)) eingesetzt, wobei insbesondere fiir hochdynamische Sollwertverldufe
bzw. Fahrbahnprofile mit einem hochfrequenten Anteil ein exaktes Modell des Systems
notwendig ist, um eine hohe Regelgiite erreichen zu konnen. Da es sich bei dem Achs-
priifstand um ein hoch komplexes System mit vielen Komponenten aus verschiedenen
Disziplinen handelt und damit eine Modellierung als umsténdlich und schwierig einzu-
stufen ist, bietet sich, auf der Grundlage des umfassenden Sensorkonzepts, der Einsatz

der hybriden Zustandslinearisierung besonders an.



5.3 Konzeptionierung einer Regelung fiir einen Hexapod mittels hybrider Zustandslinearisierung 163

Bild 5-2: Prinzipskizze des Hexapod-Ersatzmodells nach [Koh20]. Der Schwerpunkt wird
durch S und der Tool Center Point mit T reprdisentiert.

Der Beitrag der vorliegenden Arbeit ist, in diesem Zusammenhang eine erste Konzep-
tionierung fiir die Anwendung der hybriden Zustandslinearisierung vorzunehmen. Hierzu
wird der dreidimensionale Hexapod in ein dquivalentes zweidimensionales System sim-
plifiziert und eine entsprechende Simulationsumgebung implementiert. Das zweidimen-
sionale System ist dabei eine Abstraktion, welche die gleichen Eigenschaften wie der drei-
dimensionale Hexapod aufweist, jedoch weniger Zustandsgrofen beinhaltet. Im Rahmen
dieser Simulationsumgebung erfolgt dann die Erprobung der entwickelten Positionsrege-
lung auf der Basis der hybriden Zustandslinearisierung. Diesbeziiglich wird ein Modell
als Ground Truth und Ersatz fiir das reale System definiert und ein weiteres verdndertes
Modell zur Repriésentation des vorhandenen Vorwissens eingefiihrt. Bild zeigt den
schematischen Aufbau des betrachteten Ersatzsystems. Die Herleitung der Bewegungs-
gleichungen ist dem Anhang der Arbeit [Koh20] zu entnehmen und wurde nach dem Prin-
zip von Jourdain durchgefiihrt. Der Positionsvektor wird iiber g(t) = [r,(t), r.(¢), a(t)]"
beschrieben und enthilt zwei translatorische Koordinaten, sowie die Verkippung der obe-
ren Plattform. Die StellgroBe u(t) = [Fq(l)(t), F? (1), £ (t)]T setzt sich aus den drei
Kriften, die an den Kolben der Hydraulikzylinder wirken, zusammen. Entsprechend der

Herleitung ergibt sich das System dann in nichtlinearer Zustandsraumdarstellung tiber

q

&= fhe.(@, u;p) = M(q)—l(J(q)_T'u, —F4(q) — C(q,9)q9),

mit dem Zustandsvektor = [¢”,¢"]” € R® und dem linearen Dimpfungskraftvektor
F,;=d,r,,d.r,, dad]T. Die Gewichtskraft wurde dabei vernachléssigt, damit keine kon-
stante Kompensation durch die Stellgrofle vorgenommen werden muss, um das System

auf einer gewissen Hohe halten zu kénnen. Insgesamt wird das System durch elf mecha-
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nische Parameter beschrieben, welche in dem Vektor p = [Iy,...,ls,m, [, d,, d.,d,]"
zusammengefasst werden. Darin sind /() geometrische Lingen, m die Masse der Platt-
form, I das Trigheitsmoment um den Schwerpunkt S und d.) die Ddmpfungskonstanten
zur vereinfachten Nachbildung der Reibungseffekte. Des Weiteren wird eine realititsnahe
StellgroBenbeschrinkung von w,,,, = 250 N m beriicksichtigt. Im Gegensatz zu den bis-
herigen Beispielen, wird in diesem Szenario kein Modellfehler durch vernachlissigte Ter-
me angenommen, sondern in Form einer fehlerbehafteten Parametrierung p dargestellt.
Auf diese Weise sind alle Terme in einem gewissen Umfang mit einem Fehler versehen,
der durch den hybriden Ansatz ausgeglichen werden muss. Ausgehend von zwei unter-

schiedlichen Parametrierungen p, und p, lautet der zu lernende Modellfehler somit

Az = fhex(w7u;p1> - fhem<w7u;p2)>

wobei p; dem unbekannten Ground Truth Modell zuzuordnen ist. In Bezug auf die /;-
Norm betrigt die Abweichung ||p; — p,||; / ||p: ||, zwischen den Parametrisierungen un-

gefidhr 15% und ist damit als relativ gering einzustufen.

Simulationsergebnisse

Nachfolgend werden die exemplarischen Simulationsergebnisse besprochen, welche die
Anwendung der hybriden Zustandslinearisierung fiir das zwei-dimensionale Hexapod-
Ersatzsystem darstellen. Der Hexapod befindet sich zum Start der Simulation in der An-
fangsposition q(t = 0) = [0.05 m, 0.44 m, 0]”. Die Simulationszeit betrigt 7' = 5 s und
die zeitliche Schrittweite At = 0.02 s. Der zeitabhingige Sollwert fiir den Zustands-
vektor lautet w(t) = [gg,y(t),0,0,0]", wobei fiir die Soll-Positionen sprungférmige
Verldaufe angenommen werden. Fiir jedes der nachfolgenden Szenarien wird die gleiche
Verstirkungsmatrix K = [100 I3, 17 I'3] € R3*S fiir die zugrundeliegende Zustandsre-
gelung verwendet. Des Weiteren wird zur Einhaltung der StellgroBenbeschrinkung der

ausgegebene Wert der Regelung nach oben bzw. unten hin begrenzt.

Bild zeigt die Zustands- und Stellgro3enverldufe des Hexapod-Ersatzmodells fiir ver-
schiedene Szenarien. Die griinen Linien stellen den geforderten sprungférmingen Soll-
wertverlauf der Positionen dar. Eine Anderung erfolgt dabei schrittweise und nur fiir eine
Zustandsgrofle. Aufgrund der Kopplung der Bewegungsgleichungen untereinander, wir-
ken sich Anderungen innerhalb eines Zustands jedoch auch auf die anderen Zustiinde aus
und konnen somit zu negativen Abweichungen zum Sollwert dieser Zustéinde fiihren. Der
orangefarbene gepunktete Verlauf stellt den gewiinschten idealen Fall dar, in welchem
die Zustandslinearisierung anhand des Ground Truth Modells vorgenommen wird. Dieses
Szenario dient als Vergleich zu den anderen Szenarien und représentiert die bestmdogliche
Regelgiite, die erreicht werden kann. Da die Kompensation der Nichtlinearititen exakt ist,

werden die Sollwerte rasch eingeregelt und lediglich durch das Integratorverhalten leicht
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Bild 5-3: Dynamisches Verhalten des Hexapod-Ersatzmodells unter Verwendung ver-
schiedener Regelungskonzepte.

verzogert. Des Weiteren sorgen die préizisen Stellgroflen dieses Szenarios dafiir, dass die
Kopplung der Zustinde aufgehoben wird und sich eine Anderung in einem Zustand nicht
auf die anderen Zustidnde auswirkt. Die roten gestrichelten Linien gehoren zu einer Zu-
standslinearisierung, die alleine auf der Basis des verfilschten Modells (Vorwissen), wel-
ches der Parametrierung p, zuzuordnen ist, durchgefiihrt wird. Im Hinblick auf die Praxis
stellt dies den rein physikalisch basierten Modellteil dar, welche unter Umstéinden signifi-
kante Modellfehler enthalten kann. Die Sollwerte stellen sich fiir dieses Szenario zwar mit
der Zeit ein, jedoch ist die Regelgiite insgesamt als schlecht zu bewerten, da die Kompen-
sation aufgrund der abweichenden Parametrierung deutliche Méngel aufweist. Auffillig
ist insbesondere die verbleibende Wechselwirkung zwischen den Zusténden, als auch die
schlechte Sollwertfolge des Winkels « innerhalb von ¢ € [2 s, 3 s]. Trotz der Verwendung
der gleichen Verstarkungsmatrix K strebt das System hier nur sehr langsam auf seinen
Sollwert zu und weist einen zu stark geddmpften Verlauf auf. Der Grund hierfiir ist, dass
fiir eine rasche Anderung nicht genug Energie durch die StellgroBen bzw. die Regelung
bereitgestellt wird. Vor dem Hintergrund des eindimensionalen Falls (vgl. (3-1))), wird der
nominale Wert der Nichtlinearitit 8 in diesem Zustandsbereich durch das Modell als zu
grof} angenommen. Beziiglich (5-2) kann damit argumentiert werden, dass das Verhiltnis
B(z)/B(x) (idealerweise 1) kleiner als 1 ist und der Reglereingriff somit insgesamt abge-
schwiicht wird. Ausgehend von dem roten Szenario, ist die Zielsetzung nun die Regelgiite
zu verbessern. In der Praxis wiirde nun oftmals eine Verbesserung der Zustandslineari-
sierung durch eine genauere physikalische Modellierung oder ein manuelles Einstellen

der Verstiarkungsfaktoren K;;,% = 1,...,n,,j = 1,...,n, angestrebt werden. Beide
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Bild 5-4: Dynamisches Verhalten des Hexapod-Ersatzmodells fiir einen verdnderten Soll-
wertverlauf.

Losungsansitze sind in der Regel mit einem hohen Zeitaufwand verbunden. Zudem 10st
das manuelle Einstellen der Reglerparameter nicht das grundlegende Problem einer feh-
lerbehafteten Kompensation der Nichtlinearititen. Eine bessere Losung stellt die entwi-
ckelte hybride Zustandslinearisierung dar. Die fiktiven Messdaten des roten Verlaufs und
das bereits bekannte Dynamikmodell werden dabei im Rahmen des GP-Trainings aus-
genutzt. Die Ergebnisse des hybriden Ansatzes sind in blau dargestellt. Die Regelgiite
kommt sehr nah an die der idealen Referenz heran, sodass die Zustandsverldufe fast
vollstdndig ilibereinanderliegen. Geringe Abweichungen sind nur fiir die Hohenposition
r.(t) im Bereich um ¢ = 2 s festzustellen. Hier macht sich die relativ groBe Verinderung
des Winkels weiterhin geringfiigig bemerkbar. Fiir einen objektiven Vergleich der erreich-
ten Regelgiiten, wird ein Giitekriterium tiber J = ftio | qsou(t) — q(t)||5 dt ausgewertet,
welches die zeitlich gemittelte quadratische Regelabweichung darstellt. Die Regelung des
Vorwissens kommt hierbei auf einen Wert von 0.055, wohingegen die hybride Regelung
0.031 erzielt, was einer Verbesserung von 44% entspricht. In Bezug auf die einzelnen
StellgroBen u;, 7 = 1,2,3 wurde fiir den hybriden Ansatz zudem die Auswertung der
Varianz nach (3-8)) vorgenommen. Um den Mittelwert der StellgroBen wurde das 95%-
Konfidenzintervall abgebildet, jedoch ist dieses so gering, dass es kaum erkennbar ist. Die
niedrige StellgroBBenvarianz ist eine Folge dessen, dass das GP-Training anhand der Daten
durchgefiihrt wurde, welche im Bereich um den Sollwertverlauf liegen. Fiir die Praxis be-
deutet dies, dass von einer hohen Sicherheit der gelernten Regelung ausgegangen werden
kann und sich der gewiinschte Sollwertverlauf trotz der fehlerbehafteten Parametrierung

des physikalischen Modellteils gut einregeln ldsst.
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Im Allgemeinen sollte davon ausgegangen werden, dass sich das Regelverhalten beim
Verlassen des Bereichs, in welchem die Daten vorliegen, wieder verschlechtert. In die-
sem Zusammenhang stellt sich die Frage, wie es um die Extrapolationseigenschaften des
hybriden Reglers bestellt ist. Zur Beantwortung dieser Frage wurde eine weitere Simu-
lation durchgefiihrt. Im Vergleich zu wurde der Sollwertverlauf fiir die horizontale
Position r,(t) gedndert, in dem der Sprung im mittleren Bereich anstelle von —0.1 m
auf —0.2 m erfolgt. Der Hexapod befindet sich somit in einem Gebiet im Zustandsraum,
in welchem noch keine Daten vorliegen. Die erzielten Ergebnisse der besprochenen Re-
gelungen sind in Bild [5-4] zu sehen. Selbst die ideale Regelung kann nun fiir die neue
Hohe r,(t) um ¢ = 1.8 s keine exakte Entkopplung mehr herstellen und fiihrt hier zu
einer groBeren Abweichung zum Sollwert. Der Grund hierfiir ist das Erreichen der Stell-
groflenbeschrinkung. Die roten Verldufe und die damit verbundene inkorrekte Zustands-
linearisierung ist weiterhin als vergleichsweise schlecht zu bewerten. Demgegeniiber ist
die Performance des hybriden Ansatzes deutlich besser, hat sich aber im direkten Ver-
gleich zu Bild leicht verschlechtert. Dies entspricht der urspriinglichen Erwartung
und zeigt sich ebenfalls durch das objektive Giitekriterium. Die Regelung des Vorwissens
erreicht einen Wert von 0.078, wihrend die hybride Regelung 0.047 realisiert, was dem
gleichen Wert der idealen Regelung entspricht. Die Verbesserung betrigt damit 40%. Eine
signifikante Verdanderung ist in Bezug zu den StellgroB3en festzustellen. Hier ist die Vari-
anz der StellgroBen im mittleren Zeitbereich deutlich erhoht und weist darauf hin, dass
sich der Regler fiir die jeweiligen Zustidnde duflerst unsicher iiber seine StellgroBe ist. Ein
sicheres und stabiles Regelverhalten kann daher nicht vollstindig gewihrleistet werden.
Bei einem herkdmmlichen deterministischen Entwurf stiinde diese Information nicht zur
Verfiigung, sodass eine vergleichbare Bewertung der Regelung entsprechend nicht statt-
finden konnte. Aus den Zustandsverldufen, welche in diesem Fall lediglich zur Verfiigung
stehen wiirden, konnte aufgrund der hohen Ubereinstimmung mit dem Sollwert nicht ge-
schlussfolgert werden, dass eine hohe Unsicherheit bzgl. der StellgréBen vorherrscht.
Durch die Kenntnis der Stellgroenvarianz konnen bereits zur Laufzeit (online) geeig-
nete Maflnahmen ergriffen werden, um ein unerwartetes Systemverhalten zu verhindern.
Bspw. kann bei der Uberschreitung eines Grenzwertes die Reglerverstirkung reduziert
werden, damit sich insgesamt eine hohere Stabilitdtsreserve einstellt. Weiterfiihrend liegt
es nahe, die Varianzangabe dafiir zu nutzen, um einen weiteren Lernvorgang anzustof3en.
Hierbei wird dhnlich zu den bisher vorgestellten Lernverfahren die Datenbasis durch die
neuen Daten erweitert, um so einen groeren Bereich des Zustandsraums abzudecken. In
diesem Zusammenhang muss das Training nicht zwangsldufig offline und in bestimmten
Iterationen durchgefiihrt werden, sondern kann zur Laufzeit, wihrend des Betriebs und

parallel zur Regelung, automatisiert vorgenommen werden.
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Die durchgefiihrten Simulationen sind ein erster Funktionsnachweis der hybriden Zu-
standslinearisierung fiir den Hexapod. Eine Adaption fiir das reale dreidimensionale Sys-
tem ist durch die allgemeingiiltige Formulierung des Ansatzes mit einem geringen Auf-
wand moglich. Die Ergebnisse am zweidimensionalen Hexapod-Ersatzmodell zeigen,
dass bereits geringfiigige Modellfehler einen groBen Einfluss auf die Regelgiite haben
konnen. Fiir das reale System, welches aufgrund der Vielzahl an Komponenten eine deut-
lich komplexere (nicht nur mechanische) Modellierung erfordert, ist die Wahrscheinlich-
keit fiir Fehler besonders erhoht. In Verbindung mit dem ausgiebigen Sensorkonzept des
Priifstands bietet sich der Einsatz der hybriden Zustandslinearisierung fiir die Inbetrieb-
nahme speziell an. Der hier erbrachte prinzipielle Funktionsnachweis stellt eine entspre-

chend solide Grundlage fiir weiterfiihrende Arbeiten dar.
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6 Zusammenfassung und Ausblick

Durch die Inbetriebnahme von Steuerungen und Regelungen wird sicherstellt, dass ein
mechatronisches System ordnungsgemélf funktioniert und den Anforderungen, sowie Er-
wartungen gerecht wird. In diesem Zusammenhang wurde in Kapitel |1 die Anwendung
des V-Modells und des modellbasierten Entwurfs als bewihrte Vorgehensweise in der
Regelungstechnik vorgestellt. Der Entwurf basiert dabei auf der Herleitung eines ausrei-
chend genauen Simulationsmodells. Insbesondere vor dem Hintergrund von komplexen
mechatronischen Systemen oder anspruchsvollen Regelungsaufgaben ist die klassische
Vorgehensweise des modellbasierten Entwurfs allerdings nur begrenzt einsetzbar, da eine
analytische Modellierung in vielen Fillen zu kompliziert, zeitaufwendig und unter gewis-
sen Umstéinden nicht praktikabel umsetzbar ist. Ein Beispiel hierfiir ist der besprochene
Ultraschalldrahtbondprozess, dessen komplizierte Modellierung in Abschnitt [3.4] behan-
delt wurde. Im Rahmen der Regelungstechnik und des modellbasierten Entwurfs gibt es
kaum Handlungsanweisungen fiir den Fall, dass eine Modellbildung fiir das betrachtete
System nicht oder nur eingeschrankt durchfiihrbar ist. Dieser Sachverhalt wurde in dieser
Arbeit als vorhandene Forschungsliicke identifiziert, welche auf die Abweichungen zwi-
schen theoretischen Uberlegungen und der praxisnahen Inbetriebnahme zuriickzufiihren
ist. Das Ziel der Arbeit bestand darin, die Forschungsliicke zu untersuchen und geeignete
Verfahren (im Kontext der Arbeit auch als regelungstechnische Werkzeuge bezeichnet) zu
entwickeln, welche eine effiziente und sichere Inbetriebnahme einer Steuerung oder Re-
gelung zum Ziel haben. Hierfiir wurden im einfiihrenden Kapitel[T|diverse Anforderungen
formuliert, wie bspw. eine rasche Realisierung, um den Verschleifl und die Beanspruchung
des betrachteten Systems zu reduzieren. Um das Ziel zu erreichen, wurde im Rahmen der
Arbeit die Grundidee verfolgt, eine Kombination von Regelungstechnik und ML bzw.
RL herzustellen, welche das gesamte Vorwissen iiber die Regelungsaufgabe ausnutzt und
Korrekturen auf der Basis von Messdaten und der probabilistischen GP-Regression vor-
nimmt. Das Vorwissen kann dabei als partiell bekanntes physikalisches Modell oder in
Form einer geeigneten Steuerungsfunktion bzw. Regelungsstruktur vorliegen. Die Ein-
haltung von technischen Rahmenbedingungen und stabilen Systemverhalten bei der In-
betriebnahme wird dabei iiber probabilistische Pridiktionen beriicksichtigt. Als konkrete
Anwendungsbeispiele dienten der Ultraschalldrahtbondprozess, verschiedene Pendelsys-

teme und ein Hexapod zur Fahrzeugachspriifung.

Nachdem in Kapitel [2| die mathematischen Grundlagen erlidutert worden sind, wurde in
Kapitel [3| zundchst der Steuerungsentwurf mittels BO behandelt. Die BO ist ein iterati-

ves Lernverfahren aus dem Bereich des modellbasierten RL, welches der globalen Op-
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timierung zugeordnet wird. Im Kontext des Steuerungsentwurfs hat sie zum Ziel, eine
optimale Parametrisierung zu identifizieren. Hierfiir werden nach und nach Experimente
am realen System durchgefiihrt, um Messdaten zu sammeln. Die Messdaten werden wie-
derum dafiir genutzt, um ein probabilistisches GP-Modell zu aktualisieren, welches zur
Abbildung der Giitefunktion dient. In jeder Iteration wird das nédchste Experiment durch
eine Auswertung des Erwartungswertes und der Varianz bzgl. des Giitefunktionswert be-
stimmt. Vor dem Hintergrund des Ultraschalldrahtbondprozesses wurde als Giitefunktion
der Prozessfahigkeitsindex betrachtet. Eine klassische modellbasierte Optimalsteuerung
nach dem Vorgehen aus Kapitel {]ist fiir dieses System praktisch nicht umsetzbar, da sich
die physikalische Modellierung zum einen als schwierig herausgestellt hat (s. Kapitel
und zum anderen die Anforderungen zur Anwendung der Optimalsteuerungsmetho-
den nicht erfiillt sind. Bspw. ist eine hohe zeitliche Diskretisierung erforderlich, da sich
die Dynamik des Systems im Kilohertzbereich bewegt. Des Weiteren sind Messungen des
Zustands aufgrund fehlender Sensorik nicht moglich. In diesem Anwendungsfall stehen
somit nur Daten der Giitefunktion zur Verfiigung, womit die BO ein geeignetes Werk-
zeug zur Inbetriebnahme darstellt. Das Vorwissen wurde bei diesem Beispiel iiber die
Definition des Steuerungsverlaufs beriicksichtigt, welches sich aus stiickweise definierten
linearen Funktionen fiir die Spannung und Normalkraft zusammensetzt. Die Ansatzfunk-
tion der Steuerung basiert auf Expertenwissen und hat sich als besonders niitzlich fiir das
Ultraschalldrahtbonden herausgestellt. In Kapitel [3.5] wurde das Standardverfahren der
BO aufgegriffen und etwaige Anpassungen fiir die Inbetriebnahme des Bondprozesses
eingefiihrt. Unter anderem galt es, Werkzeugaufsetzer, welche die beiden Verbindungs-
partner schiadigen, zu vermeiden. Hierfiir wurde ein weiterer GP eingefiihrt, der das Auf-
treten solcher Aufsetzer durch eine Wahrscheinlichkeitsangabe wiedergibt. Des Weiteren
wurde das Verfahren um Batchelemente erweitert, sodass in einer Iteration mehrere Ex-
perimente parallel durchgefiihrt werden und so der Automatisierungsgrad des Prozesses
vollstidndig ausgenutzt wird. Im Rahmen der Validierung am realen System wurde der ent-
wickelte BO-Algorithmus mit der herkommlichen manuellen Identifikation der Parame-
trisierung verglichen. Die BO konnte bei einem gleichen Iterationsbudget doppelt so ho-
he Prozessfihigkeitswerte erzielen und damit eine bessere Parametrisierung bestimmen.
Nach einer kurzen Explorationsphase fokussierte sich das Verfahren dabei auf Gebiete im
Suchraum, welche die hochsten Giitefunktionswerte erzielten. Die manuelle Suche des
Einrichters stagnierte hingegen in einem vermeintlichen lokalen Optimum, was auf die
Dimension des Suchraums zuriickzufiihren ist. Diese betrug 7 und stellt fiir den Men-
schen daher eine Herausforderung aufgrund der zahlreichen Kombinationsmoglichkeiten
und Wechselwirkungen mit dem komplexen Prozess dar. Als Fazit zu den Untersuchungen
wurde festgehalten, dass die BO fiir das betrachtete Anwendungsbeispiel einen Mehrwert

darstellt, da es vor den Untersuchungen kein geeignetes regelungstechnisches Verfahren
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gab, mit dessen Hilfe der Steuerungsentwurf durchgefiihrt werden konnte. Die Besonder-
heit dieses Ansatzes ist, dass er auf der gedanklichen Ebene der Giitefunktion angesiedelt
ist und als Voraussetzung fiir das Verfahren nur die Auswertung der Giitefunktion er-
forderlich ist. Ublicherweise wird in der Regelungstechnik auf der Ebene der Zustinden

gearbeitet, die jedoch im Falle des Ultraschalldrahtbondens nicht zugénglich ist.

In den nachfolgenden Kapiteln 4 und [5| wurde der Fall untersucht, bei dem die Zusténde
des Systems vollstidndig definiert sind und gemessen bzw. berechnet werden konnen. In
diesem Szenario werden die zugehorigen Messdaten fiir eine Korrektur auf der Ebene
der Dynamikgleichungen verwendet. Ausgehend von einem partiell bekannten System
bzw. einem unvollstindigen Simulationsmodell werden die beinhaltenden Modellfehler
durch ein ML-Verfahren nachgebildet. Als ML-Verfahren wurde hierfiir wiederum die
GP-Regression eingesetzt, welche eine Quantifizierung des Fehlers im Sinne der Wahr-
scheinlichkeitstheorie vornimmt. Das hybride Gesamtmodell setzt sich additiv aus einem
vorab identifizierten physikalischen und einem rein datengetriebenen Modellteil zusam-
men. Um die Anforderungen bei der Inbetriebnahme zu adressieren, wurde das Modell
probabilistisch formuliert. In der giingigen deterministischen Betrachtungsweise, mit wel-
cher iiblicherweise in der Regelungstechnik gearbeitet wird, werden keine Unsicherheiten
in Bezug auf die Zustandsiibergiinge des Systems berticksichtigt. Vor dem Hintergrund ei-
nes unvollstindigen Modells und der Inbetriebnahme ist es allerdings hilfreich, gewisse
Unsicherheiten mit einzubeziehen. Zum einen konnen auf diese Weise sicherheitskriti-
sche Uberschreitungen deutlich besser abgeschiitzt werden und zum anderen kann ein
exploratives Verhalten erzeugt werden. In diesem Zusammenhang wird der Prozess der
Inbetriebnahme als Lernvorgang im Sinne des RL aufgefasst, wobei bei jedem neuen
Experiment eine explorative oder exploitative Entscheidung getroffen werden muss. Die
probabilistische Betrachtungsweise des Modells ist hierfiir zielfiihrend. Zur Realisierung
einer probabilistischen Langzeitpriadiktion wurde das Verfahren der UT genutzt, wobei die
Zustinde des Systems als normalverteilt angenommen werden. Fiir eine gegebene Steue-
rung lassen sich so die Auswirkungen der Modellfehler iiber einen gewissen Zeithorizont
untersuchen und es kann abgeschitzt werden, wo sich das System mit welcher Wahr-
scheinlichkeit befindet. In Kapitel 4{ wurde die Verwendung des hybriden Modellansatzes
im Rahmen eines Optimalsteuerungsentwurf behandelt. Die konventionellen Gleichun-
gen des zugrundeliegenden Optimalsteuerungsproblems wurden fiir das probabilistische
Modell mit Hilfe des Multiple Shooting Ansatzes formuliert und ein lernfdhiger Algorith-
mus entwickelt. Dieser arbeitet dhnlich zur BO und nihert sich iterativ durch Interakti-
on mit dem realen System dem Erfiillen der Steuerungsaufgabe an. Eine erste Untersu-
chung wurde an einem voll-aktuierten Doppelpendel durchgefiihrt. Dabei wurde der Ein-
fluss des Vorwissens verdeutlicht. Das Vorwissen bewirkt eine Effizienzsteigerung, sodass

die optimale Steuerung in kiirzerer Zeit bzw. in weniger Experimenten bestimmt wird.
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Des Weiteren war ein deutlicher Unterschied bei der Entwicklung der Steuerung iiber
die Iterationen hinweg zu beobachten. Durch die Hinzunahme von Vorwissen wird der
Steuerungsverlauf von Iteration zu Iteration nur geringfiigig angepasst und es werden nur
leichte Korrekturen vorgenommen, wohingegen bei dem Fall ohne Vorwissen ein breites
Spektrum von Steuerungen ausprobiert wird. Fiir die praktische Inbetriebnahme ist dieses
Verhalten problematisch, da von dem Entwurfsingenieur nur schwer abgeschitzt werden
kann, was am realen System tatsdchlich passiert. Dementsprechend sorgt das Einbringen
von Vorwissen nicht nur fiir eine Effizienzsteigerung, sondern auch fiir eine Erh6hung der
Sicherheit wihrend der Inbetriebnahme. Weiterfiihrend wurde die hybride Optimalsteue-
rung um einen zusitzlichen Regelungsentwurf erweitert. Hierfiir wurde im speziellen die
Zwei-Freiheitsgrade Regelung mit einem zeitvarianten Riccati-Regler betrachtet, welcher
auf der Basis des hybriden Modells abgeleitet wird. Die Verwendung dieser Struktur ent-
spricht einer weiteren Moglichkeit, Vorwissen iiber die Aufgabe einzubringen, da durch
sie eine geeignete Zusammensetzung des Stellsignals vorgegeben wird, welche durch
einen rein datengetriecben Ansatz erst aufwendig gelernt werden miisste. Als Beispiel
wurde hierfiir das modellbasierte RL Verfahren PILCO angefiihrt, dessen resultierendes
Steuersignal fiir den Menschen nicht im Sinne der Zwei-Freiheitsgrade Regelung, also ei-
nem Steuerungs- und Regelungsanteil, interpretiert werden kann. In diesem Zusammen-
hang fand eine weitere Validierung am Doppelpendel auf einem Wagen statt, welche sich
durch ein chaotisches und anspruchsvolles Systemverhalten auszeichnet und daher fiir
viele RL Methoden schwer zu 16sen ist. Dennoch konnte das PILCO-Verfahren die Re-
gelungsaufgabe nach 27 Iterationen erfolgreich abschlieen, wofiir insgesamt jedoch eine
gesamte Berechnungsdauer von 2 Tagen erforderlich war. Gleichermallen wurde das ent-
wickelte hybride Verfahren am Priifstand getestet, wobei ein Teil der Dynamik als bekannt
vorausgesetzt wurde und die wesentlichen Zentrifugalkrifte gelernt werden sollten. Das
Vorwissen iiber die Dynamik und die Regelungsstruktur fiihrte zu einer deutlichen Verbes-
serung des Lernvorgangs. So wurden insgesamt 80% weniger Experimente und zugleich
98% weniger Berechnungszeit benotigt. Zudem konnte das Systemverhalten in Bezug auf
die Stabilitdt und damit die Sicherheit am Priifstand qualitativ gut vorhergesagt werden.
Ein Grund hierfiir ist, dass die Unsicherheit iiber die vorhandenen Modellfehler explizit
im Entwurfsverfahren beriicksichtigt wurden. Die gezielte Einbringungen von Vorwis-
sen iiber die Regelungsstruktur wurde in Kapitel [5] fortgesetzt. Fiir die Klasse der ein-
gangsaffinen Systeme bietet sich der Einsatz einer Zustandslinearisierung an, wobei die
nichtlinearen Funktionen der Dynamik iiber ein Modell invers durch die Stellgrofle auf-
geschaltet werden, sodass eine Kompensation stattfindet und das Gesamtsystem als linear
betrachtet werden darf. Modellfehler konnen die Regelgiite jedoch stark mindern, sodass
eine hybride Zustandslinearisierung hergeleitet wurde, welche in der Lage ist, Modellun-

genauigkeiten auszugleichen. Die GP-Regression lédsst hierzu eine gezielte Identifikation
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der einzelnen nichtlinearen Terme aus einem Datensatz zu, indem das Vorwissen iiber
die Systemstruktur innerhalb der angenommenen Kernelfunktion vorgegeben wird. Als
anschauliches Anwendungsbeispiel wurde die hybride Zustandslinearisierung an einem
Hexapod bzw. einem abstrakten zweidimensionalen Simulationsmodell getestet. Anhand
des Beispiels wurde gezeigt, dass ein ungenaues Modell problematisch fiir die Regelung
ist und der hybride Ansatz eine deutliche Verbesserung herbeifiihrt. Aufgrund des proba-
bilistischen Charakters der GP-Regression kann wihrend des Betriebs eine Varianzangabe
tiber die Stellgroe berechnet werden. Dartiber lassen sich weiterfithrend Gebiete im Zu-
standsraum angeben, fiir welche eine sichere Funktionsweise nicht gewihrleistet werden
kann bzw. weitere Messdaten aufgenommen werden sollten, um die Unsicherheit iiber die
verbliebenen Modellfehler zu beseitigen. Zudem wurde durch die Erprobung ein Funkti-
onsnachweis erbracht, um eine weiterfilhrende Entwicklung fiir den realen dreidimensio-
nalen Hexapod vorzunehmen. Die BO, eine hybride Optimalsteuerung mit erweitertem
Regelungsentwurf und die hybride Zustandslinearisierung haben gezeigt, wie sich das
maschinelle Lernen gewinnbringend innerhalb der Regelungstechnik bzw. wéhrend der
Inbetriebnahme einsetzen ldsst. Der Fokus wurde dabei auf die Einbringung von Vorwis-
sen liber die Regelungsaufgabe und die Quantifizierung von Modellfehlern durch probabi-
listische Angaben gelegt. Fiir die Beriicksichtigung des Vorwissens wurden verschiedene
Schnittstellen betrachtet, so unter anderem die Mittelwert- und Kovarianzfunktion des
GP seitens des maschinellen Lernverfahrens, als auch eine partiell bekannte Systemdyna-
mik oder geeignete Regelungsstruktur bzw. Steuerungsansatzfunktion. Insgesamt haben
die Anwendungsbeispiele gezeigt, dass die Einbringung von Vorwissen einen positiven
Effekt auf die Inbetriebnahme nimmt und die Effizienz, Robustheit und die Interpretier-
barkeit steigert. Aufgrund des probabilistischen Charakters der Verfahren, welche durch
das Themengebiet des RL motiviert ist, kann zudem die Sicherheit wihrend der Inbetrieb-
nahme trotz moglicherweise vorhandener Modellfehler besser eingeschitzt werden. Des
Weiteren ergibt sich ein inhdrentes exploratives Verhalten der Lernalgorithmen, welches

darauf ausgelegt ist, eine erfolgreiche Realisierung zu ermoglichen.

Ausblick

Der Ausblick dieser Arbeit weist auf Potenziale fiir weiterfiihrende Forschungsthemen
hin. Ein primires Themenfeld betrifft die Weiterentwicklung der vorgestellten Verfah-
ren und deren Kombination auf verschiedenen hierarchischen Ebenen, wobei sie entwe-
der sequenziell oder parallel wihrend der Inbetriebnahme zum Einsatz kommen konnen.
Zur Veranschaulichung wird das Beispiel eines Doppelpendels auf einem Wagen und die
Realisierung des Aufschwungs herangezogen. Im Rahmen der Validierung wurde ein
unterlagerter Geschwindigkeitsregler fiir den Wagen verwendet, der auf einem Entwurf
des Herstellers basiert. Eine alternative Herangehensweise wire die eigenstindige Aus-

legung des Geschwindigkeitsreglers gewesen, wofiir die hybride Zustandslinearisierung
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geeignet ist. Dieser Ansatz bildet die Basis, auf der die nachfolgenden Schritte aufbau-
en. Nach erfolgreicher Implementierung einer funktionsfahigen Geschwindigkeitsrege-
lung des Wagens nach der hybriden Zustandslinearisierung wird die hybride Optimal-
steuerung angewendet, wobei geeignete Gewichtungsmatrizen in Bezug auf (4-28) aus-
gewdihlt werden miissten. Die Flexibilitit der BO ermdglicht nicht nur die Identifikation
von Steuerungs- oder Regelungsparametrisierungen, sondern konnte auch fiir die Anpas-
sung der Gewichtungsmatrizen in diesem Szenario genutzt werden. Ein dhnlicher Ansatz
wird in [MHB™16] verfolgt, wobei die Gewichtungen eines Riccati-Reglers als Optimie-
rungsvariablen betrachtet und optimal an das reale System angepasst werden. Demnach
besteht der angestrebte Ansatz darin, die Gewichtungsmatrizen der hybriden Optimal-
steuerung durch die BO automatisiert anzupassen, um eine realisierbare Trajektorie fiir
das reale System zu finden (vgl. Anmerkungen zu Bild 4-2). Insgesamt betrachtet, befin-
den sich die drei verschiedenen Verfahren also auf unterschiedlichen gedanklichen Ebe-
nen, wobei die unterlagerte Geschwindigkeitsregelung auf der hybriden Zustandslineari-
sierung, die Steuerung des Aufschwungs auf der hybriden Optimalsteuerung und die Ge-
wichtungsmatrizen des zugehorigen Optimierungsproblems auf der BO basieren wiirden.
In diesem Zusammenhang wire es von Interesse, zu untersuchen, wie sich die Verfahren
gegenseitig beeinflussen und welche Synergien, beispielsweise beziiglich Datenmengen

und Formen des Vorwissens, genutzt werden konnten.

Ein weiterer Aspekt des Ausblicks betrifft das hybride Modell. Hierbei gibt es sowohl
im physikalischen, als auch im datengetriebenen Teil verschiedene Moglichkeiten, um
weitere Fille zu betrachten. Im Grofteil dieser Arbeit wurde der Zustand als normalver-
teilte Zustandsvariable definiert. Wie jedoch in Abschnitt [2.3.1] gezeigt wurde, ldsst sich
das physikalische Modell auch durch weitere Unsicherheiten beschreiben. So konnte bei-
spielsweise die Parametrierung des Modells als zusétzliche Zufallsvariable definiert und
dies entsprechend beim Entwurf beriicksichtigt werden. Fiir geometrische Lingen ist die-
se Unsicherheit in den meisten Fillen als sehr gering abzuschitzen, wiahrend insbesondere
Parameter, welche die Reibung betreffen, oft nicht ein eindeutiger Werte zugeordnet wer-
den kann. Neben dem Zustand und der Parametrierung kann zudem auch die StellgroBe als
Zufallsvariable aufgefasst werden, um dariiber eine nicht ideale Aktorik zu beschreiben.
Diese Definitionen sind allerdings je nach Anwendungsfall abzuwigen, sodass es sinnvoll
sein kann, einen Mix aus probabilistischen und deterministischen Variablen einzufiihren.
Des Weiteren bietet die Wahrscheinlichkeitstheorie ein breites Spektrum von Wahrschein-
lichkeitsverteilungen, die im Rahmen dieser Arbeit noch nicht betrachtet wurden. Uber
andere Verteilungen konnten, je nach Anwendung, unterschiedliche Effekte abgebildet
werden. So konnten beispielsweise die harten Anschlige des Wagens vom Doppelpen-
delpriifstand als begrenzte Zufallsvariablen definiert werden, wobei sich der Einsatz einer

beidseitig beschnittenen Normalverteilung [B1s06] anbietet. Die komplexere Wahrschein-
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lichkeitsverteilung sorgt allerdings gleichzeitig dafiir, dass die nachfolgenden Berechnun-
gen schwieriger werden und mehr Zeit in Anspruch nehmen. Es ist daher ein geeigneter
Kompromiss zwischen Genauigkeit und Praktikabilitit herzustellen, wie es fiir die An-
wendungsbeispiele dieser Arbeit gezeigt wurde. Auerdem wurde bisher angenommen,
dass sich die Stirke des Messrauschens nicht verdndert und sich stationér verhélt. In man-
chen Fillen kann das Messrauschen allerdings auch nicht-stationér sein und sich iiber den
Zustandsraum (oder auch der Zeit) unterschiedlich stark ausprigen. Dementsprechend
miisste eine Anpassung der angenommenen Wahrscheinlichkeitsverteilung im Zusam-
menhang mit der Bayesschen Regel vorgenommen werden. Des Weiteren wurde
im Rahmen dieser Arbeit ein Fokus auf die GP-Regression gelegt, wobei sich auch der
Einsatz anderer maschineller Lernverfahren anbieten wiirde, um komplexere Phinomene
bei der Inbetriebnahme abbilden zu konnen. Eine Erweiterung des herkommlichen GP-
Ansatzes wird als Sparse GP [SGO3[| bezeichnet und erhélt seinen Namen dadurch, dass
die urspriingliche Datenmenge komprimiert wird und dabei die Pradiktionsgenauigkeit
bestmoglich erhalten bleibt. Der Vorteil dieses Ansatzes ist, dass er bessere Skalierungs-
eigenschaften besitzt und eine Auswertung deutlich schneller berechnet werden kann.
Fiir Systeme mit vielen Zustdnden und einer grolen Datenmenge ist dieser Ansatz da-
her besonders gut geeignet. Eine weitere Variante nennt sich Deep GP [DL13]] und leitet
sich von den gleichnamigen tiefen neuronalen Netzen ab. Die Grundidee ist es, mehrere
GPs hintereinander zu verkniipfen und damit die Beschreibungsfihigkeit der Préadiktion
zu steigern. Auf diese Weise ist es beispielsweise moglich, das erwihnte nicht-stationédre
Rauschen oder andere Verteilungen als die Normalverteilung abzubilden. Eine @hnliche
Fahigkeit besitzen die Bayesschen neuronalen Netze [Gall6], welche sich im Gegensatz
zu einem herkdmmlichen neuronalen Netz dadurch auszeichnen, dass ihre Gewichtungs-
werte als Zufallsvariablen definiert werden und somit eine probabilistische Préidiktion
erlauben. Die Parameter der zugrundeliegenden Wahrscheinlichkeitsverteilung der Ge-
wichte werden iiber die Bayessche Regel trainiert, womit das Verfahren der Bayesschen
nichtlinearen Regression (vgl. Abschnitt zugeordnet wird. Zuletzt sei auch der
Koopman-Operator [BBKK?22] erwihnt, zu dem es in der Regelungstechnik in den letz-
ten Jahren viele Forschungsarbeiten gab. Der Koopman-Operator wird innerhalb der Re-
gelungstechnik verwendet, um die Dynamik eines nichtlinearen Systems zu beschreiben,
indem er es in einen hoherdimensionalen Raum abbildet, in dem die Dynamik linear ist.
Durch die Transformation in diesen Raum kénnen nichtlineare Systeme mit linearen Me-
thoden analysiert und geregelt werden. Im Zusammenhang mit Gleichung und der
Zustandspropagation wird ersichtlich, dass eine lineare Dynamik bzw. die des Koopman-
Operators dafiir besonders gut geeignet ist. Unter der Voraussetzung eines normalver-
teilten Zustands wird die Klasse der Normalverteilungen auf diese Weise inhérent nicht

verlassen, sodass es sich vor dem Hintergrund des MM nicht mehr um eine Approxima-
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tion, sondern eine genaue Berechnung handelt. Die Zustandspropagation ldsst sich somit
besonders schnell fiir ein nichtlineares System berechnen. Weiterfiihrend liee sich so das
komplexe hybride Optimalsteuerungsproblem (4-28)) vereinfachen und eine Realisierung
als modellpradiktive Regelung [Adal4], auch fiir Systeme mit einer schnellen Dynamik,

realisieren.
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A1 Mathematischer Anhang

Beispielhafte Anwendung des Transformationssatzes fiir Pendeldynamik
Dieser Abschnitt dient dazu eine beispielhafte Anwendung des Transformationssatzes
(2-12) vorzustellen. Den Ausgangspunkt stellt eine einfache Pendeldynamik in der nicht-

linearen Zustandsraumdarstellung mit

= fla)= [—gl sin(x) — djxj ’

dar. Hierin ist z;1 = ¢ der Winkel, xz, = ¢ die Winkelgeschwindigkeit und g;, d; sind
systemspezifische Parameter. Fiir die weitere Betrachtung wird ein normalverteilter Zu-
standsvektor  ~ N(m,S) = p,(x) angenommen. Die Aufgabe besteht darin, die
Verteilung der zeitlichen Ableitung p(&) zu bestimmen. Um diese Verteilung exakt zu
bestimmen, wird der Transformationssatz angewandt, welcher in diesem Fall mit

df (@)

pi(®) = po(x = fH(2)) ' - (A1-1)

angegeben wird. Fiir die Berechnung wird dementsprechend die Umkehrfunktion £~ der
nichtlinearen Dynamikfunktion benétigt, welche aufgrund der trigonometrischen Funkti-

on mehrere Losungen

T
7T+arcsinw + 27k, x} =1,

w = f (i, k) = [ ( ) .

[27?]{; — arcsin(d"ﬁ%), xl] =2,

keZ, —1< dﬂ;—lm < 1, beinhaltet und daher mit einer Fallunterscheidung i = 1,2 und

einem Index %k angegeben wird. Hieraus kann die Determinante der Jacobimatrix mit

1

= ) (dJ:bl—i_:t?)Q 7égl27
\/‘(djxl +$2)2 — 912’

df ()
di

angegeben werden. Das Einsetzen der berechneten Grofen in (AI-I) liefert die exakte

Verteilung

i,k
Z Z (€); 4, k)

i=1 k=—o0 \/‘ dJ:rl—i-a:Q) —gl‘

der zeitlichen Ableitung des Zustandsvektors.
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Produkt und Integration zweier Normalverteilungen
Die nachfolgenden Zusammenhinge [KuB306|] gelten fiir die Groen , a, b € R" und die
Kovarianzmatrizen A, B € R"*". Fiir das Produkt zweier Normalverteilung kann dann

geschlussfolgert werden, dass es proportional zu einer weiteren Normalverteilung nach
Nz(a, A) N(b,B) = z N,(¢,C), (A1-2)

ist, wobei der Erwartungsvektor ¢ € R" und die Kovarianzmatrix C' € R™*" mit
C=A"'+B"Y)! und ¢=C(A'a+ B 'b)

angegeben werden. Die Normalisierungskonstante z € R beinhaltet auerdem die Form

einer Normalverteilung und lautet

1

z=(2m) 2 |ABC'| Fexp(—3(a"A'a+b"B'b—c"C'¢)).

1
2

Fiir die Integration iiber zwei Normalverteilungen gilt ein dhnlicher Zusammenhang
/ N(a, AW, (b, B)da = N,(b, A + B), (A1-3)

wobei das Ergebnis wiederum einer Normalverteilung entspricht. Zu beachten ist dabei,
dass die zweite angegebene Normalverteilung nicht fiir die Zufallsvariable x, sondern fiir

a definiert ist.

Berechnungen zur Zustandsvarianzmatrix fiir das Pendelbeispiel

In Abschnitt wurde der Moment Matching Ansatz fiir ein Pendel vorgestellt, wobei
die ersten beiden Momente exakt berechnet werden konnen. Der Erwartungsvektor m,,
wurde im Hauptteil der Arbeit iibersichtlich angegeben, wohingegen die Berechnung der

Zustandsvarianzmatrix S mehr Platz bendtigt und daher dem Anhang hinzugefiigt

Tk+1
wurde. Die Grundlage zur vollstindigen Berechnung stellt die aufgestellte Gleichung fiir
die Zustandsvarianzmatrix des Zeitschritts &£ + 1 mit

Sl = Sy + APVIf (g, wp)] + At (Clay, f (2k, wr)] + Clay, f (2, wi)]"),

Th+1

dar. Nachfolgend werden die einzelnen Bestandteile dieser Gleichung weiter aufgeschliisselt.

Fiir die Varianz der Dynamikfunktion folgt:

\Y LYy (1,2)
VIf(xr, up)) = [f(wk;Uk)] Vggzjzzﬁ(zg) ’ (A1-4)



190 A1 Mathematischer Anhang

wobei das x-Element aus der Symmetrie folgt und sich die anderen Elemente der Matrix

Zu

Vf (r, ue) Y =852,

VIS (@, ur)]®? =g? (Efsin(z(")?] — E[sin(2{")]?)+
252 1 2gd; (Efsin(z))2] — Efsin(z}”)E[z>])

=g; (3(1 - eXp(—QS L1) )cos(2m(1))) — (exp(— éSxi 1)) sm(m(lk)))2)+
d?,S (2.2) 4 291dJ(eXp( ;Sxil )(S (2,1) cos(m (1 )) +m( )sm( (lk)))—
exp( éSwil )sm( (1))m;k))
V[f(mk,uk)](l’Q) =—q exp( ;S& D)S )COS( (1)) dJS:g?),

ergeben. Des Weiteren wird die Kreuz-Kovarianz zwischen dem aktuellen Zustand und

der Dynamikfunktion benétigt:

Clk, f(r, up)] = Elzp f(zr, ur)'| — Elzi] E[f (zh, ur)]"
Elz)2], —gElz)’ sm(xﬁj))] — dJE[m,i”x,? |+ JouE[zy”]
Ez],  —gE?sin((")] - d/Efe®’] + JuE[r”)]

mb Ele”] mb) (—gElsin())] - dyE[#] + Ja)
mElz?] m) (—gElsin(zy))] — dyElz?] + Ja)

) —grexp(— 5SS cos(mlV) — d, SV
SEH —grexp (= 3557) 857 cos(mt)) - d, 857
(A1-5)

Theorem fiir die Inverse einer partitionierten Matrix
Die Beschreibung der nachfolgenden Theorems folgt derer in [Murl3|]. Betrachtet wird

eine partitionierte Matrix

B
= ) (A1-6)
C D

deren Inverse P! gesucht wird. Zur Bestimmung wird als Grundidee der Ansatz verfolgt,
nach welchem P zunichst in Diagonalform gebracht und anschlieBend invertiert wird. Als

Erstes wird dafiir die Matrixmultiplikation

)

I -BD'|\|A B| |A-BD'C 0
0o I C D| C D

=X =P
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eingefiihrt. Im zweiten Schritt erfolgt eine weitere Matrixmultiplikation von der rechten

Seite iiber den Zusammenhang

[A—Bch 0” I Ol_lA—Bch' 0]'

C D||-D'c 1| 0 D

~~

:3(, P =7 ::;V
Aufgrund ihrer Diagonalform ist die Inverse der Matrix W = X P Z leicht zu bestimm-
bar. Es folgt weiterfiihrend

W'l=(XPZ)'=Z'P'X' & Pl'=zZWX,

womit sich die gesuchte Inverse zu

s _[aB]"_[ 1 o|[a-BDC o] [1 -BD"
|c D] |-D'C 1 0 D| |0 I

[ M M 'BD!
_—D—ch—l D'+ D'CcM'BD!

ergibt und die Definition des sogenannten Schur-Komplements [Mur13|] von P mit Bezug
auf D iiber M == A — BD'C genutzt wurde.

Ableitung der Kovarianzmatrix nach den Hyperparametern des SE-Kernels

Fiir die Optimierung der Hyperparameter wird im Rahmen der Gaul3-Prozess-Regression
die logarithmische Likelihoodfunktion (2-33)) maximiert. Eine Moglichkeit dieses Opti-
mierungsproblem effizient zu 10sen, bietet die Klasse der gradientenbasierten Optimierer.
Hierzu ist allerdings die Kenntnis der partiellen Ableitungen notwendig. Fiir den
SE-Kernel (2-32) soll die analytische Berechnung in diesem Abschnitt beispielhaft durch-

gefiihrt werden. Im Folgenden wird von der SE-Kovarianzfunktion in der Darstellung
k(z,a';0) = of exp(—3(x — /)W (z - x)) + oz, x'),

ausgegangen, wobei der Rauschterm an dieser Stelle vereinfachend zum SE-Kernel hinzu-
gezihlt und die Diracfunktion ¢ benutzt wird. Es gilt ¢, &’ € R", W = diag(I3,...,[2 )
und 0 == [ly,...,ly,,0p,0,)7 € R"™ 2 Des Weiteren liegen die Eingangsdaten iiber die
Matrix X = [x1,...,x,,] € R"*" vor. Die eingangsdatenbasierte Kovarianzmatrix

lautet somit
k(xy,x1;0) ... k(z,x,,;0)
K(0) = : : € Rnaxme,
k(x,,, x1;0) ... k(x,,, Tn,;0)
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sodass jedes Element von der Hyperparametrierung abhingt. In Hinblick auf (2-34) wird

die Ableitung dieser Matrix

stalt ist somit ein Tensor mit

nach den Hyperparametern bendtigt. Die grundsitzliche Ge-

8’6171 8k‘l,n
0, 0
dK — . c Rnd XngX(nz+2) (A1-7)
. )
de aknd,l aknd,nd
90 20, |
wonach die einzelnen Teilmatrizen ¢ = 1, ..., n,+ 2 die partiellen Ableitungen der Kova-

rianzfunktion nach dem spezifischen Hyperparameter beinhalten. Zur besseren Ubersicht

wurde k; ; = k(x;, x;;0) miti,j = 1,...,ng eingefiihrt.

Weiterfiihrend wird stellvertretend fiir alle relevanten Elemente dieses Tensors der (i, j)-te

Eintrag betrachtet und zunichst die Ableitung nach dem k-ten Lengthscale-Parameter

ausgewertet. Es gilt

fire,j=1,...,ngund k = 1,..., n,. Insgesamt folgt somit im Zusammenhang mit der

Kovarianzmatrix und in Hinblick auf eine effiziente Implementierung:

0

0K
Ol

(l'z,k - $1,k)2

l

_(%d,k - xl,k>2

($1,k - 962,k)2 (901,1@ - %d,k)Q

0
® (K - aiInd).

2

(Ind,k - I2,k)
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Die restlichen Ableitungen bzgl. der Hyperparameter o; und o, sind vergleichsweise
einfach zu berechnen und lassen sich kompakt angebe mit
oK 2

K
— = —(K — 2In d =2 nIn .
aa_f O_f( On d) un aa_n 0. d

Ableitung des GP-Posterior-Erwartungsvektors nach dem erweiterten Zustand

In wird der GP-Posterior-Erwartungsvektor Ap(x*) € R" zur Abbildung der
vorhandenen Modellfehler aufgestellt. In diesem Abschnitt wird die Ableitung nach dem
erweiterten Zustand % = [z7, u’]! € R™= " vorgestellt. Ziel ist es, die Jacobimatrix

d d

dmuA[J,(ZEu) = daxt [A,lh(a?u), . A[/,nl (mu)]T = [14A7 BA] c RTLxX(Nx+7’Lu)

und damit die Teilmatrizen Ay € R™*" und B € R"**"™_ welche fiir eine Linearisie-

rung notwendig sind, aufzustellen. Zunédchst wird der Gradient der i-ten Zeile iiber

d
= Ap(x*) =
T pi(x")

d A eul)

Takxy (@ K 1AXk+1 :Z@k(@“ X5 )ay,
ﬁ_/ 1

berechnet. Dementsprechend muss die verwendete Kovarianzfunktion nach dem erwei-

terten Zustand abgeleitet werden. Im Folgenden wird diese Ableitung beispielhaft fiir den

SE-Kernel (2-32]) berechnet:

d
dxv

(@, X{") = —otep(~(@" - X)W @' - X{))

= (@ - X W @ - X{) kss(e, X])

Eine effiziente Berechnung des Gradienten wird tiber

d .
A Z oWz — XYV kgp(z*, XU)a,

1
k:SE(az“, XkU( ))Oél
—ow ! e - xPY e x P :

~ ~~ 4 u (na)
_XV ksp(a®, Xi " )an,

erreicht. AnschlieBend setzt sich die Jacobimatrix aus den einzelnen Gradienten mit

1=1,...,n, zusammen.
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A2  Sequentielle Quadratische Programmierung

Fiir die Losung des hybriden Optimalsteuerungsproblems (4-28) wird im Rahmen dieser
Arbeit das SQP-Verfahren [[GKO02; PLB12; NWO06] verwendet, welches in diesem Ab-
schnitt auszugsweise vorgestellt werden soll. Zur Erlduterung wird von einem allgemei-

nen nichtlinearen Optimierungsproblem der Form
min f(x), uB.v. g(x) <0, h(x)=0,

mit der skalaren Zielfunktion f(x): R™ — R und Ungleichheitsnebenbedingungen
g(x) : R™ — R", sowie Gleichheitsnebenbedingungen h(x) : R"* — R"», welche von
dem Optimierungsvektor € R"* abhiingen, ausgegangen. Eine Losung des Problems

muss die sogenannten Karush-Kuhn-Tucker-(KKT)-Bedingungen, welche formal mit

V.L(x, A\, p) =0,
h(z) =0, (A2-1)
gz(m) Sov )\Z 207 )\Zgz(m) :Oa L= 17"'7”97

angegeben werden, erfiillen. Hierin ist L die Lagrangefunktion, welche iiber die zugehorigen

Lagrangemultiplikatoren A € R"s und p € R™* berechnet wird, und iiber
g h
Liz A p) = f(@) + ) Aigi(@) + ) uhy(),
i=1 j=1

definiert ist.

Algorithmus 6 SQP-Verfahren fiir restringierte Optimierungsprobleme nach [GKO02]

1: Eingabe: Initiale Schitzung x(, Ao, pt, und H ), Iterationsindex k& = 0.

2: Wiederhole bis (x, Ax, pt;,) ein KKT-Punkt nach (A2-1)) ist:

3:  Berechne eine Losung Ax;, des quadratischen Teilproblems mit
zugehorigen Lagrangemultiplikatoren (Aj 1, py ).

Setze xp,1 = xp + Axy, wihle Hy 1 (z. B. BEGS) und inkrementiere k < k& + 1.
: Ausgabe: Optimal Losung x* und zugehorige Lagrangemultiplikatoren (X*, p*).

woe
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Algorithmus|6|fasst die wesentlichen Schritte des SQP-Verfahrens zusammen. Die Grund-
idee ist es, sich iterativ der optimalen Losung anzunihern, indem in jeder Iteration das

exakte Optimierungsproblem durch ein quadratisches Teilproblem

niinvzf(azk)TAzc + 1Az"H Az, uB.v.

gi(xx) + Vegi(zp) Az <0, i=1,...,n,, (A2-2)
hj(a:k) + V;th(a:k)TAa: = 0, j = 1, .o, Ny,

approximiert wird. Dabei wird die Zielfunktion durch eine quadratische Anniherung
und die Nebenbedingungen durch lineare Approximationen beschrieben. Zur Losung des
quadratischen Teilproblems werden weitere Verfahren eingebunden, bspw. die Strategie
der aktiven Menge fiir quadratische Programme, welche zur Bestimmung einer initia-
len zuldssigen Losung wiederum auf der Losung eines linearen Programms aufgebaut ist
[GKO2]. Des Weiteren wird aufgrund der meist aufwendigen Berechnung nicht die exak-
te Hessematrix H = V2 _f(x) fiir die quadratische Approximation der Zielfunktion ver-
wendet, sondern eine initiale Schitzung H  (oftmals Einheitsmatrix I,, ) in Kombination
mit einer geeigneten Aufdatierungsvorschrift, bspw. nach Broyden—Fletcher—Goldfarb-
Shanno (BFGS).
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A3

Parametrisierte Steuerung

Details zu Experimenten

Die Stellgrofien des Ultraschalldrahtbondprozesses sind die Normalkraft Fy(¢) und die

elektrische Spannung Ug(t). Die Spannung wird durch eine hochfrequente Schwingung

iiber Ug(t) = Ug(t) sin(wt) beschrieben. Im Rahmen der Experimente dieser Arbeit wur-

de eine parametrisierte Ansatzfunktion fiir die Groen (Fy(t;0), Us(t;8)), welche auf

Expertenwissen basiert, mit

(

Fy(t:0) = § Fy+ 220t —

Us(t:6) = § 0y + =L (¢ -

\

t <0,

0<t<Ty,

T <t <Ti+1Tsp,
T+ Top <t < T+ T,

sonst,
(A3-1)
0 S t < Tl,R7

T'r<t<T,
T <t <Ti+Tsp,
T1+T27R §t<T1+T2,

sonst,

definiert. Diese stiickweise definierte Funktion orientiert sich an den Verbindungsphasen

beim Bondprozess (vgl. Bild [3-3).
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| —— Aluminium (USG = 2500 cN)
——Kupfer (USG = 3500 cN)
Nickel (USG = 2500 cN)

—
» o o

Prozessfahigkeitsindex
N

0 20 40 60 80
Anzahl der Experimente

Bild A3-1: Anwendung der Bayesschen Optimierung zur Identifikation einer parametri-
sierten Steuerung beim Ultraschalldrahtbonden. Erweiterte Auswertung fiir
die Materialien Kupfer und Nickel.

Ergebnisse zu weiteren Materialien

Bild[A3-T|zeigt eine erweiterte Auswertung der Bayesschen Optimierung (Algorithmus [2).
Hierbei wurden die Materialien Kupfer und Nickel als Verbindungspartner verwendet. Als
Referenz dient der blaue Verlauf der Aluminium-Experimente des Hauptkapitels (s. Bild
3-7). Die durchgezogenen Linien reprisentieren die Experimente, in denen eine Verbesse-
rung stattgefunden hat. Hierfiir muss sich der Prozessfahigkeitsindex erhohen und es darf
zu keinen Werkzeugaufsetzern gekommen sein. Diesbeziiglich stellen die Punkte jedes
einzelne Experimente dar, wobei ein schwarzer Punkt innerhalb des Kreises dafiir steht,

dass es zu einer Werkzeugkollision gekommen ist.
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MC-Simulationen zur hybriden Optimalsteuerung am Doppelpendelpriifstand

Um die Stabilitdt des geschlossenen Regelkreises besser bewerten zu konnen, wurden
ergianzende Zustandspropagationen berechnet. Dabei wurde anstelle der UT das genauere
MC-Verfahren mit 100 Partikeln eingesetzt. Die Bilder [A3-2] und [A3-3] zeigen die ver-

schiedenen MC-Trajektorien in grau und zum Vergleich in tiirkis die UT-Propagation.

In Bezug zu der 1. Iteration ist erkennbar, dass einige Trajektorien nach ungefihr 1.5 s
instabil werden und ein sicherer Betrieb der Regelung daher nicht gewéhrleistet werden

kann.
= 5 = o
£ 0 = £
-, !
S .5 \ S5
0 1 2 0
Zeit ¢ [s]
= 20 = 20
=) { <‘¢J! = {
. W
S--20 \Y *S- =20
0 1 2 0
Zeit ¢ [s]
iy
g 0 P
30 ===== \—\“
0 1 2
Zeit ¢ [s]

Bild A3-2: Ergdnzende Monte-Carlo-Simulation des geschlossenen Regelkreises der 1.

Lerniteration.
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Bild A3-3: Ergdnzende Monte-Carlo-Simulation des geschlossenen Regelkreises der 5.
Lerniteration.
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Die Inbetriebnahme von Steuerungen und Regelungen stellt sicher, dass
ein mechatronisches System ordnungsgemaf funktioniert und den An-
forderungen gerecht wird. Der modellbasierte Entwurf basiert auf einem
genauen Simulationsmodell. Allerdings ist dieser klassische Weg bei
komplexen Systemen oft nicht praktikabel, da die analytische Modellie-
rung zu kompliziert und zeitaufwendig ist. Diese Forschungsliicke wird
durch Verfahren adressiert, die eine effiziente und sichere Inbetrieb-
nahme ermoglichen. Diese Verfahren kombinieren Regelungstechnik
und Reinforcement Learning und nutzen vorhandenes Wissen {iber die
Regelungsaufgabe, um Korrekturen basierend auf Messdaten und der
probabilistischen Gauf3-Prozess-Regression vorzunehmen. Das Vorwis-
sen kann als teilweise bekanntes physikalisches Modell oder als Steue-
rungsfunktion vorliegen.

Anwendungsbeispiele sind der Ultraschalldrahtbondprozess, verschie-
dene Pendelsysteme und ein Hexapod. Eine angepasste Bayessche
Optimierung wird zur ldentifikation einer Steuerparametrisierung fiir
das Ultraschallbonden eingesetzt. Auferdem wird eine hybride Optimal-
steuerung fiir das Doppelpendel auf einem Wagen entwickelt und erfolg-
reich validiert. Fiir einen Hexapod zur Fahrzeugachspriifung wird eine
hybride Zustandslinearisierung formuliert und ein Funktionsnachweis im
Rahmen einer Simulation erbracht. Die Einhaltung technischer Rahmen-
bedingungen und ein stabiles Systemverhalten werden durch probabilis-
tische Pradiktionen gewdhrleistet. In allen Anwendungsféllen wird eine
Steigerung der Effizienz und Giite erzielt.
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