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sitätsbibliothek Paderborn.

Satz und Gestaltung: Michael Hesse

http://dnb.ddb.de


Interaktive Inbetriebnahme von Steuerungen und Regelungen
für partiell bekannte dynamische Systeme mittels

Gauß-Prozess-Regression

zur Erlangung des akademischen Grades
DOKTOR DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

der Fakultät für Maschinenbau
der Universität Paderborn

genehmigte
DISSERTATION

von
Michael Hesse, M. Sc.

aus Bünde

Tag des Kolloquiums: 7. Oktober 2024
Referentin: Dr.-Ing. Julia Timmermann
Korreferent: Prof. Dr. Eyke Hüllermeier
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tatkräftige Unterstützung von Martin Leibenger und Jörg Schaffrath bei Problemen an
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Zusammenfassung

Die Inbetriebnahme von Steuerungen und Regelungen stellt sicher, dass ein mechatro-
nisches System ordnungsgemäß funktioniert und den Anforderungen gerecht wird. Der
modellbasierte Entwurf basiert auf einem genauen Simulationsmodell. Allerdings ist die-
ser klassische Weg bei komplexen Systemen oft nicht praktikabel, da die analytische
Modellierung zu kompliziert und zeitaufwendig ist. Diese Forschungslücke wird durch
Verfahren adressiert, die eine effiziente und sichere Inbetriebnahme ermöglichen. Diese
Verfahren kombinieren Regelungstechnik und Reinforcement Learning und nutzen vor-
handenes Wissen über die Regelungsaufgabe, um Korrekturen basierend auf Messdaten
und der probabilistischen Gauß-Prozess-Regression vorzunehmen. Das Vorwissen kann
als teilweise bekanntes physikalisches Modell oder als Steuerungsfunktion vorliegen.

Anwendungsbeispiele sind der Ultraschalldrahtbondprozess, verschiedene Pendelsyste-
me und ein Hexapod. Eine angepasste Bayessche Optimierung wird zur Identifikation
einer Steuerparametrisierung für das Ultraschallbonden eingesetzt. Außerdem wird ei-
ne hybride Optimalsteuerung für das Doppelpendel auf einem Wagen entwickelt und er-
folgreich validiert. Für einen Hexapod zur Fahrzeugachsprüfung wird eine hybride Zu-
standslinearisierung formuliert und ein Funktionsnachweis im Rahmen einer Simulati-
on erbracht. Die Einhaltung technischer Rahmenbedingungen und stabiles Systemverhal-
ten werden durch probabilistische Prädiktionen gewährleistet. In allen Anwendungsfällen
wird eine Steigerung der Effizienz und Güte erzielt.

Abstract

The commissioning of control systems ensures that a mechatronic system functions pro-
perly and meets the requirements. Model-based design is based on a precise simulation
model. However, this classic approach is often impractical for complex systems, as ana-
lytical modeling is too complicated and time-consuming. This research gap is addressed
by methods that enable efficient and safe commissioning. These methods combine con-
trol engineering and reinforcement learning and use existing knowledge about the control
task to make corrections based on measurement data and probabilistic Gaussian process
regression. The prior knowledge can be available as a partially known physical model or
as a control function.

Application examples include the ultrasonic wire bonding process, various pendulum sys-
tems and a hexapod. An adapted Bayesian optimization is used to identify a control para-
meterization for ultrasonic bonding. In addition, a hybrid optimal control for the double
pendulum on a cart is developed and successfully validated. A hybrid state linearization
is formulated for a hexapod for vehicle axle testing and a proof of concept is provided in a
simulation. Compliance with technical framework conditions and stable system behavior
are ensured by probabilistic predictions. An increase in efficiency and quality is achieved
in all use cases.
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Constrained Bayesian Optimization for Ultrasonic Wire Bonding
Feed-Forward Control Design. Proceedings of the 11th International Con-

ference on Pattern Recognition, Applications and Methods (ICPRAM). 2022,
S. 383–394.

[HTT23] HESSE, M.; TIMMERMANN, J.; TRÄCHTLER, A.: Hybrid Optimal Control
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1

1 Einleitung und Motivation

Im Allgemeinen ist die Inbetriebnahme ein Prozess, welcher sicherstellt, dass ein tech-
nisches System ordnungsgemäß funktioniert, sowie den vorhergehenden Anforderungen
und Erwartungen gerecht wird. Der Fokus der vorliegenden Arbeit liegt im Speziellen
auf mechatronischen Systemen, welche durch ein enges synergetisches Zusammenwir-
ken der Fachdisziplinen Maschinenbau, Elektrotechnik und Informatik gekennzeichnet
sind. Mechatronische Systeme besitzen zudem Sensorik und Aktorik, womit über eine in-
formationsverarbeitende Einheit eine gewünschte Beeinflussung des Systems vorgenom-
men wird. Hierfür sind Steuerungs- und Regelungsalgorithmen notwendig, welche bei
der Inbetriebnahme erstmalig erprobt und ordnungsgemäß eingestellt werden müssen. Im
Rahmen dieser Arbeit werden die dabei auftretenden Probleme benannt, die sich daraus
ableitende Konsequenz und die Forschungslücke identifiziert und weiterführend konkre-
te Lösungsansätze vorgelegt. Die Lösungsansätze werden in Form von zielgerichteten
Verfahren anhand von passenden Anwendungsbeispielen erläutert und basieren im Kern
auf der Kombination von bewährter klassischer Regelungstechnik mit den modernen Me-
thoden des Reinforcement Learning (RL). Die Grundidee dieses Ansatzes und die zu-
grundeliegenden beiden Fachdisziplinen werden in Unterabschnitt 1.2 weiter besprochen.
Zunächst wird die Problematik bei der Inbetriebnahme von Steuerungen und Regelungen
anhand des regelungstechnischen Entwurfsprozesses näher beschrieben und erklärt.

1.1 Einführung in den regelungstechnischen Entwurfsprozess

Die Regelungstechnik ist eine ingenieurtechnische und wissenschaftliche Disziplin, deren
übergeordneten Aufgabe es ist, einer Ausgangsgröße eines technischen Systems durch die
Stellgröße ein bestimmtes Sollverhalten, d. h. ein gewünschtes Verhalten, aufzuprägen,
und zwar gegen den Einfluss einer Störgröße, die nur unvollständig bekannt ist [FKL+22].
Die Dynamik des Systems, also dessen zeitliches Verhalten, und ihre gezielte Beeinflus-
sung sind daher von zentraler Bedeutung in der Regelungstechnik. Eine Charakterisierung
erfolgt über den Zustand des Systems, welcher dieses zeitlich eindeutig beschreibt. Im
Fall eines mechanischen Systems setzt sich der Zustand beispielsweise aus den Positionen
und Geschwindigkeiten der verschiedenen Massen zusammen. Der Zustand spiegelt die
Wirkung der Stell- und Störgröße auf die Dynamik wider. Soll das System von einem be-
stimmten Zustand in einen anderen überführt werden, dann ist dazu die passende Vorgabe
der Stellgröße notwendig. Ist diese in Form einer vorab bekannten Steuerung gefunden,
ist dies nicht zwangsläufig ausreichend, um den Zielzustand zu erreichen, denn die unbe-
kannte Störgröße wirkt sich negativ aus und bringt das System von seinem vorgesehenen
Kurs - der Soll-Trajektorie - ab. Um diese Problematik zu lösen, wird der Zustand durch
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Bild 1-1: Vorgehensmodell für den Entwurf eines mechatronischen Systems nach
VDI/VDE 2206 [GM02].

die Sensorik des Systems laufend erfasst und auf Basis dieser Information eine Korrektur
der Stellgröße durch eine Regelung vorgenommen. Dieser Lösungsweg ist erfolgreich,
da sich die Störung indirekt im gemessenen Zustand bemerkbar macht und die Regelung
somit eine Kompensation vornehmen kann.

Der Regelungstechniker1 steht neben der ganzheitlichen Konzipierung und Konstrukti-
on des mechatronischen Gesamtsystems auch vor etwaigen Herausforderungen, welche
die Entwicklung der Steuerung und Regelung betreffen. Zur Erläuterung dieser Heraus-
forderungen wird als Ausgangspunkt des regelungstechnischen Entwurfsprozesses das
Vorgehensmodell (kurz V-Modell) nach Richtlinie VDI 2206 [GM02] (s. Bild 1-1) her-
angezogen. Im frühen Entwicklungsstadium erfolgt eine Anforderungserhebung, in der
beispielsweise die technischen Rahmenbedingungen geklärt werden, und die Festlegung
der übergeordneten Systemarchitektur. Anschließend erfolgt die Implementierung der
Systemelemente, wobei die physikalischen Wirkungszusammenhänge definiert und mit-
einander verknüpft werden. Innerhalb der späten Entwicklungsphase wird die System-
integration, also die reale Umsetzung des Entwurfs, umgesetzt und eine ausgiebige Vali-
dierung vorgenommen. Eine besondere Charakteristik des V-Modells ist die fortlaufende
Verifikation mit den früheren Entwicklungsschritten, wodurch sich insgesamt ein itera-
tives Vorgehen ergibt. Das V-Modell lässt somit die Rückkehr zu einem früheren Schritt
zu, um Entwurfsfehler oder Verbesserungen vorzunehmen. Eine weitere Charakteristik ist
die disziplinübergreifende Modellierung, Simulation und Analyse, welche parallel zu den
bereits genannten Schritten durchgeführt wird und das V-Modell absichert. Die Imple-
mentierung einer Simulationsumgebung erscheint zunächst kosten- und zeitaufwändig,
führt in der Gesamtbetrachtung jedoch zu einem positiven Ergebnis, auch bezüglich die-
ser beiden Zielgrößen. Mit Hilfe des Simulationsmodells lassen sich bereits vor der rea-

1Aus Gründen der besseren Lesbarkeit wird auf die gleichzeitige Verwendung der Sprachformen
männlich, weiblich und divers verzichtet. Sämtliche Personenbezeichnungen gelten gleicher-
maßen für alle Geschlechter.
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Bild 1-2: Modellbasierter Steuerungs- und Regelungsentwurf

len Umsetzung ausgiebige Auswertungen, welche beispielsweise die Dynamik betreffen,
vornehmen. Auf diese Weise kann der Ingenieur weitere konstruktive Maßnahmen vor-
nehmen, die für das Verhalten des Prototypen als sinnvoll erachtet werden. Des Weiteren
wird anhand des Modells bereits der Steuerungs- und Regelungsentwurf vorgenommen.
Für bestimmte Regelungskonzepte stellt das Simulationsmodell nicht nur eine geeignete
Testumgebung dar, sondern ist ein essentieller Bestandteil des Konzeptes selbst. Aus den
genannten Gründen ist die disziplinübergreifende Modellierung und Analyse ein wesent-
liches und hilfreiches Element des V-Modells.

Das Hauptaugenmerk der vorliegenden Arbeit liegt auf dem letzten Entwicklungsschritt,
bzw. der Validierung. In diesem Schritt findet die Inbetriebnahme der Steuerung oder Re-
gelung statt. Bild 1-2 stellt den modellbasierten Entwurf genauer dar. Im Rahmen des
V-Modells wird davon ausgegangen, dass das reale System erst am Ende des Entwick-
lungsprozesses existiert. Neben diesem Szenario kann der Regelungstechniker auch vor
der Aufgabe stehen, dass es bereits ein existierendes System gibt, wofür der Entwurf
durchgeführt werden soll. Unabhängig vom betrachteten Szenario ist der erste Schritt die
Modellbildung auf der Grundlage von physikalischen Gesetzmäßigkeiten. Ein wesentli-
cher Punkt ist hierbei die Frage nach dem Detaillierungsgrad der Modellierung, welcher
in Hinblick auf die Komplexität der Anwendung bzw. Aufgabe optimal gewählt werden
sollte. Ein zu geringer Grad kann das reale System womöglich nicht genau genug be-
schreiben, womit die durchgeführten Analysen und Auswertungen unbrauchbar werden.
Ein zu hoher Grad ist in dieser Metrik mutmaßlich geeigneter, hat allerdings den Nach-
teil, dass er zu zeit- und kostenintensiv ist und damit den gesamten Entwicklungspro-
zess verzögern kann. Die angesprochenen Vorteile des modellbasierten Entwurfs würden
auf diese Weise revidiert werden. Nach der Aufstellung des Modells erfolgt die System-
analyse. Der Regelungstechniker erhält hierbei tiefere Einsichten in die Eigenschaften
des Systems bspw. in Bezug auf dessen Stabilität oder Steuer- und Beobachtbarkeit. An-
schließend wird das passende Regelungskonzept ausgewählt und, anhand von festgeleg-
ten Gütekriterien und technischen Nebenbedingungen, ausgelegt. Über eine weitere Si-
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mulation, in welcher das Modell des Systems mit der entwickelten Regelung angesteuert
wird, resultiert eine bestimmte Erwartung des Regelungstechnikers an das dynamische
Verhalten des realen Systems. Mit dieser Erwartungshaltung wird die Erprobung und In-
betriebnahme durchgeführt, wobei das bisher verwendete Simulationsmodell durch das
reale System ersetzt wird. Bei der Erprobung wird das wahre dynamische Verhalten ge-
messen, so dass rückblickend ein Vergleich zur Erwartung gezogen und eine Bewertung
vorgenommen werden kann.

An diesen Punkt angelangt, zeigt sich eine mögliche Problematik des modellbasierten
Entwurfs, welche den Hauptgegenstand dieser Arbeit bildet. Stimmen das gemessene und
erwartete dynamische Verhalten nicht überein, spiegelt sich dies in der Qualität der Re-
gelung wider. Die Regelung kann in diesem Fall von einem suboptimalen Ergebnis bis
hin zum kompletten Fehlschlag durch instabiles Verhalten führen. Der ausschlaggebende
Punkt ist die Voraussetzung mit welcher der modellbasierte Entwurf durchgeführt wird:
Das aufgestellte Modell bildet das reale System genau genug nach. Wenn diese Vorausset-
zung nicht erfüllt ist, kommt es zu der angesprochenen Problematik. Der Regelungstech-
niker steht entsprechend vor der Herausforderung, den rein theoretischen Entwurf mit der
Wirklichkeit des realen Versuchs, also der Praxis, in Einklang zu bringen. Die IEEE Con-

trol Society greift unter anderem diese Herausforderung in [AAA+23] auf und verweist
auf die immer komplexer werdenden mechatronischen Systeme, sowie deren zunehmende
Funktionalität und dafür notwendigen Regelalgorithmen. Die Probleme bei der Inbetrieb-
nahme müssen entsprechend durch geeignete regelungstechnische Werkzeuge adressiert
werden, welche die aufklaffende Lücke zwischen Theorie und Praxis überbrücken. Als
gedanklicher Anstoß wird in [AAA+23] dazu das folgende Zitat angeführt:

”The gap between theory and practice is a lot bigger

in practice than in theory.“

Objektiv betrachtet, sollte die Lücke aus beiden Perspektiven im Grunde gleich weit ent-
fernt sein. Während der Inbetriebnahme ist die subjektive Wahrnehmung des Regelungs-
technikers jedoch eine andere, so dass die Umsetzung deutlich schwieriger erscheint als
sie es nach den theoretischen Vorüberlegungen normalerweise sein dürfte. Als Fazit bleibt
an dieser Stelle festzuhalten, dass die Problematiken bei der Inbetriebnahme bereits beim
theoretischen Entwurfsprozess berücksichtigt werden müssen, um ein zufriedenstellendes
Endergebnis erzielen zu können.
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Bild 1-3: Humanoider Roboter (© Boston Dynamics) (links), © SpaceX Rakete (rechts).

Bild 1-3 zeigt beispielhaft zwei aktuell medienpräsente Systeme, die die Schwierigkeiten
bei der Inbetriebnahme verdeutlichen sollen. Das erste Beispiel bezieht sich auf die huma-
noiden Roboter des Unternehmens Boston Dynamics, die sowohl für Forschungszwecke
als auch industrielle Anwendungen gedacht sind. Aufmerksamkeit erhält das Unterneh-
men durch seine mittlerweile zahlreichen Videos, in denen die Roboter Parkour-ähnliche
Bewegungsabfolgen (u. a. Rückwärtssaltos) ausführen. Aufgrund der zahlreichen (und
z. T. schweren) Massen, sowie der hohen Dynamik der Manöver, sind hierfür präzise
Steuerungs- und Regelungsvorgaben notwendig. In begleitenden Dokumentationen wird
gezeigt, wie viel Aufwand für die Inbetriebnahme der Bewegungsabfolgen erforderlich
ist. Der erfolgreichen Umsetzungen gehen eine Vielzahl von Fehlschlägen voraus, bei
denen einzelne Systemkomponenten teilweise stark beschädigt werden und es zu erhebli-
chen Leckagen des Hydrauliköls kommt. Jede fehlerhafte Erprobung geht daher mit auf-
wendigen Reparaturarbeiten einher, für die ein großes Team von spezialisierten Ingenieu-
ren unerlässlich ist. Das zweite Beispiel sind die wiederverwendbaren Raketen des Unter-
nehmens SpaceX. Die Zielsetzung ist es, die gleiche Rakete sowohl für den Start als auch
die Landung zu nutzen, um die Kosten gegenüber von herkömmlichen Raumfahrtmissio-
nen deutlich zu senken. Im Jahr 2006 wurden die ersten Erprobungen der anspruchsvollen
Start- und Landungs-Trajektorien durchgeführt, welche sich bis ins Jahr 2015 erstreckten.
Im Dezember 2015 konnte die erfolgreiche Landung zum ersten Mal realisiert werden.
Die vorhergehenden Misserfolge sind jedoch mit z. T. enormen Explosionen verbunden
gewesen, wobei die Kosten für eine Erprobung bis zu mehrere Milliarden US-Dollar be-
trugen. Die beiden angeführten Beispiele verdeutlichen, dass ein iteratives Vorgehen, wie
es auch durch das V-Modell vorgegeben wird, unabdingbar für die Inbetriebnahme ist. Die
gesammelten Erfahrungen und Messdaten, welche bei jedem Versuch akkumuliert wer-
den, tragen zum letztendlichen Erfolg der Inbetriebnahme bei. Nichtsdestotrotz zeigen
die angeführten Beispiele, dass die Inbetriebnahme ein komplizierter Prozess ist und die
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Bild 1-4: Doppelpendel auf einem Wagen (© Heinz Nixdorf Institut) (links), Ultraschall-
drahtbondprozess (© Hesse Mechatronics) (rechts).

Anzahl der Versuche so gering wie möglich gehalten werden sollte, um Zeit und Kosten
bzgl. Verschleiß, Reparaturen und Arbeitseinsatz einzusparen.

Zwei weitere Beispiele sollen die Problematiken bei der Inbetriebnahme näher erläutern.
In Bild 1-4 sind hierzu das Doppelpendel auf einem Wagen und der Ultraschalldraht-
bondprozess abgebildet, welche in dieser Arbeit als Anwendungsbeispiele herangezogen
werden. Das Doppelpendel auf einem Wagen ist ein beliebtes System, an welchem sich
die regelungstechnischen Zusammenhänge in der Lehre sehr gut erklären lassen und wel-
ches zudem besonders geeignet für Forschungszwecke sowie die Erprobung neuartiger
Regelungskonzepte ist. An einem Linearmotor (Wagen), welcher sich lediglich horizontal
verfahren lässt, sind zwei rotatorische Pendelarme befestigt. Das Regelungsziel ist es, die
beiden anfangs nach unten hängenden Pendelarme durch eine passende Ansteuerung des
Linearmotors aufzuschwingen und zu stabilisieren. Bei diesem Manöver bewegt sich das
System aus seiner unteren stabilen in seine obere instabile Ruhelage. Eine Besonderheit
des Doppelpendels ist sein chaotisches Bewegungsverhalten, welches sich in einer ho-
hen Sensitivität bzgl. verschiedener Einflussfaktoren widerspiegelt, und damit nur schwer
vorhersagbar ist.

Wird der modellbasierte Regelungsentwurf für das Doppelpendel auf einem Wagen durch-
geführt, so erhält man mit verhältnismäßig wenig Aufwand über die Anwendung des
Lagrange-Formalismus ein einfaches mechanisches Simulationsmodell des Systems. Mit
Hilfe des Modells lässt sich anschließend ein Optimalsteuerungsentwurf für das Auf-
schwungmanöver durchführen. Alleine mit der berechneten Steuerung lässt sich am rea-
len System bzw. dem Prüfstand der Aufschwung jedoch nicht realisieren. Ausschlagge-
bend hierfür sind die äußeren Störeinflüsse und insbesondere die vorhandenen Modell-
fehler, deren Auswirkungen vor dem Hintergrund der chaotischen Dynamik besonders
ausgeprägt sind. Ein Lösungsweg zur erfolgreichen Realisierung ist die Hinzunahme einer
Regelung, deren Ziel es ist, den Aufschwung entlang der Trajektorie zu stabilisieren, bzw.
auf Kurs zu halten. Im Allgemeinen funktioniert dieses Vorgehen robust und reproduzier-
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bar. Durch die Wahl der Optimierungsziele ist es möglich, verschiedene Aufschwung-
manöver für das System zu berechnen [Tim13]. Für einen Teil dieser Trajektorien, ins-
besondere solche mit einer langen (Prädiktions-)Dauer, ist der oben beschriebene Ansatz
jedoch nicht umsetzbar. Die Modellfehler, welche beispielsweise die Reibungseffekte in
den Pendelgelenken oder zwischen dem Linearmotor und dem Verfahrweg betreffen, sind
zu signifikant, wodurch eine zeit- und kostenintensive Nachmodellierung notwendig wird.
Bei dieser Modellierung wird das bestehende einfache mechanische Modell ausdetailliert
und mit weiteren physikalischen Effekten verbessert. Anschließend wird eine Neuberech-
nung der Steuerung und Regelung vorgenommen und führt idealerweise zum erwünschten
Ergebnis. Je nach Komplexität des System ist dieses Vorgehen für den Regelungstechni-
ker allerdings nicht praktikabel und unter Umständen gar nicht durchführbar. Dies liegt
in der Tatsache begründet, dass der Aufwand für immer detailliertere Modelle sehr rasch
ansteigt und im Besonderen mechatronische Systeme sich durch eine Vielzahl von unter-
schiedlichsten Komponenten zusammensetzen, für deren jeweilige Modellierung ein ei-
gener Fachexperte notwendig ist. Stellt die Verbesserung der Modellbildung daher keine
Option dar, befindet sich der Regelungstechniker mangels Alternativen in einer Situation,
in der keine weiteren Entwicklungspfade verfügbar sind. Wünschenswert wäre in diesem
Szenario ein regelungstechnisches Werkzeug in Form eines Verfahrens, das trotz des un-
ausgereiften Modells eine Strategie vorgibt, um die entwickelte Steuerung oder Regelung
dennoch in Betrieb nehmen zu können.

Ein weiteres Anwendungsbeispiel dieser Arbeit stellt der Ultraschalldrahtbondprozess
[Har10], auch Drahtbonden genannt, dar (Bild 1-4, rechts). Dies ist eine Verbindungstech-
nik bei der elektrische Bauteile über dünne Drähte miteinander verbunden werden. Das
Verfahren ist u. a. im Bereich der Mikroelektronik angesiedelt und nutzt hochfrequente
Schwingungen eines Piezoaktors, um eine Kaltschweißung durchzuführen, bei welcher
die Schmelztemperatur der Verbindungspartner nicht überschritten wird. Ein aktuelles
Anwendungsgebiet ist die Verbindung von mehreren Batteriepackungen für Elektrofahr-
zeuge. Die Stellgrößen des Systems sind die elektrische Spannung, mit welcher der Pie-
zoaktor angesteuert und in Schwingung versetzt wird, und eine vertikal wirkende Kraft,
die das sogenannte Bondwerkzeug auf die Verbindungsfläche drückt. Das Steuerungsziel
besteht darin, die passenden Verläufe der Stellgrößen zu finden, um eine möglichst zu-
verlässige Verbindung, die robust gegenüber äußeren Einwirkungen ist, zu erhalten. Eine
wesentliche Herausforderung dabei ist, dass das richtige Maß an eingebrachter Energie
gefunden werden muss. Ein zu niedriger Eintrag führt dazu, dass die Festigkeit der Ver-
bindung zu gering ausfällt, wohingegen ein zu hoher Eintrag zwar die Festigkeit stark
erhöht, aber gleichzeitig auch die Gefahr von sogenannten Werkzeugaufsetzern erhöht.
Werkzeugaufsetzer gilt es unbedingt zu verhindern, denn sie beschädigen nicht nur die
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Werkzeugspitze, sondern auch den empfindlichen Untergrund, womit das Bauteil insge-
samt unbrauchbar wird.

Aus regelungstechnischer Sicht wäre es ideal, einen beschränkten Optimalsteuerungs-
entwurf, bei dem die technischen Rahmenbedingungen Berücksichtigung finden, für das
System umzusetzen. Ebenso wie im Falle des Doppelpendels ist hierfür jedoch ein ge-
naues Modell notwendig. Zwar lassen sich unterschiedlich komplexe Modelle für das
System aufstellen, allerdings sind diese für den Entwurf ungeeignet. Einfache physika-
lische Modelle erklären die Zusammenhänge des Systems zwar nachvollziehbar, lassen
sich allerdings schlecht mit realen Messungen validieren und weisen daher eine sehr
geringe Prädiktionsfähigkeit für verschiedene Ansteuerungen auf. Detailliertere Modelle
können über die Finite Elemente Methode (FEM) aufgestellt werden, besitzen allerdings
den Nachteil, dass sie eine lange Berechnungsdauer aufgrund ihrer hohen Komplexität
benötigen. Erschwerend kommt hinzu, dass eine gewisse Unklarheit darüber herrscht,
wie die Zustände des Systems genau zu definieren sind, da der Bondprozess auf mikro-
skopischer Ebene abläuft und sich daher mit der klassischen Mechanik nur schwer be-
schreiben lässt. Unter der theoretischen Voraussetzung, dass die Zustände klar definiert
sind, ist ein weiteres Problem, dass es keine geeignete Sensorik gibt, die einen Zugang zu
diesen Zuständen ermöglichen würde. Die Identifikation der Parameter des zugehörigen
Modells und der Einsatz einer stabilisierenden (vom Zustand abhängigen) Regelung (wie
sie beim Doppelpendel auf einem Wagen genutzt wird) sind damit nicht umsetzbar. In
Bezug auf die Inbetriebnahme einer Steuerung für den Ultraschalldrahtbondprozess steht
der Regelungstechniker damit vor der Problematik diese ohne ein Modell, und damit oh-
ne einem großen Teil des regelungstechnischen Methodenspektrums, durchzuführen. Als
Folge dessen muss die Steuerung direkt am realen System entworfen werden, was oh-
ne das Vorhandensein von geeigneten Verfahren zu langen Entwicklungszeiten und sub-
optimalen Ergebnissen führt.

Als Fazit lässt sich feststellen, dass die Inbetriebnahme von Steuerungen und Regelun-
gen einen entscheidenden Entwicklungsschritt darstellt und sowohl die theoretischen Vor-
überlegungen als auch die Realität der praktischen Umsetzung miteinander verbinden
muss. Vor diesem Hintergrund verdeutlichen die vorgestellten Beispiele, dass die Inbe-
triebnahme je nach betrachtetem System mitunter aufwändig sein kann und daher so
effizient wie möglich gestaltet werden sollte. Kommt es beim modellbasierten Entwurf
zu einer Diskrepanz zwischen erwartetem und gemessenem dynamischen Verhalten (vgl.
Bild 1-2), so fehlen in vielen Fällen die regelungstechnischen Werkzeuge, bzw. Verfah-
ren und Methodiken, um eine erfolgreiche Realisierung zu erreichen. In der vorliegenden
Arbeit wird dieser Sachverhalt daher als vorhandene Problematik bei der Inbetriebnahme
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Bild 1-5: Schematischer Aufbau in der Regelungstechnik (links) und beim Reinforcement
Learning (rechts).

diagnostiziert und im nachfolgenden Abschnitt hieraus die Forschungslücke abgeleitet,
sowie Lösungsansätze und Zielsetzungen formuliert.

1.2 Identifikation der Forschungslücke und Zielsetzung

Eine Möglichkeit, die Probleme bei der Inbetriebnahme zu adressieren, bietet das RL,
welches dem Bereich des maschinellen Lernens zugeordnet wird und sich mit intelli-
genten Algorithmen befasst, die eigenständig Entscheidungen treffen und zielorientiert
ausführen. Die grundlegende Vorgehensweise, welche jeder RL-Algorithmus nutzt, ist
die des Trial-and-Error Prinzips. Bei dieser heuristischen Methode werden verschiedene
angestrebte Lösungsmöglichkeiten nach und nach ausprobiert, bis das übergeordnete Ziel
erreicht wird. Ein wesentlicher Baustein ist dabei die Rückführung von Informationen
in Form eines Feedbacks, wodurch eine Bewertung der ausgeführten Entscheidungen in
Bezug auf die Zielsetzung erfolgen kann.

An dieser Stelle wird erneut Bezug auf den Entwurf am Doppelpendel als anschauli-
ches Beispiel genommen. Wie bereits erwähnt, steht mit dem RL eine Alternative zum
herkömmlichen modellbasierten Entwurf zur Verfügung. In [HTHT18] wurde beispiels-
weise der Aufschwung durch einen lernfähigen Algorithmus namens Probabilistic Infe-

rence for Learning COntrol (kurz PILCO) realisiert, wobei kein besonderes domänen-
spezifisches Expertenwissen genutzt wurde. Durch die Interaktion mit dem realen System
sammelt der Algorithmus Messdaten, mit denen ein rein datengetriebenes Dynamikmo-
dell gelernt wird. Das Dynamikmodell verwendet das Verfahren wiederum, um eine pa-
rameterabhängige Regelung innerhalb eines Optimierungsproblems zu berechnen. Nach
jedem neuen Versuch am Prüfstand liegen neue Messdaten vor, die den bestehenden Mess-
daten hinzugefügt und womit das Dynamikmodell, sowie die zugehörige Regelung, ak-
tualisiert werden. Nach einer bestimmten Anzahl von Erprobungen kann die Regelungs-
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aufgabe nach diesem Vorgehen erfolgreich gelöst und die Inbetriebnahme als erfolgreich
abgeschlossen werden. Als Fazit wird festgehalten, dass das RL ein Potential bietet, um
die Inbetriebnahme zu verbessern, indem aufgenommene Messdaten stärker in den Fo-
kus gerückt und aus ihnen zusätzliche Informationen zum Erfüllen des Regelungsziels
gezogen werden.

Nachfolgend wird ein Vergleich zwischen den beiden Herangehensweisen des regelungs-
technischen Entwurfs und des RLs aufgestellt und die inhärente Forschungslücke defi-
niert. Bild 1-5 zeigt hierfür den schematischen Aufbau beider Disziplinen. Es fällt auf,
dass sich der Aufbau stark ähnelt und im Zentrum die Beeinflussung des dynamischen
Systems bzw. der Umwelt durch den Regler bzw. den Agenten steht. Vor dem Hinter-
grund der gleichen Aufgabe und unter der Voraussetzung eines abgeschlossenen Lernvor-
gangs stellen die jeweiligen Begriffe damit lediglich Synonyme dar. Das Grundprinzip
der Rückkopplung von Informationen ist zudem beiden Disziplinen immanent. Die Rege-
lungstechnik ist grundsätzlich technisch und praxisorientiert geprägt, sodass die Begriffe
Aktorik und Sensorik explizit als Bausteine auftauchen; wohingegen sie beim RL ent-
fallen. Das RL ist insgesamt allgemeiner gefasst und kann sich unter anderem auch auf
Spiele, wie bspw. Schach oder Go, beziehen. Das liegt vor allem darin begründet, dass
das RL in der Informatik und Psychologie angesiedelt ist und der Lernvorgang des Agen-
ten im Vordergrund der Entwicklung und Untersuchung steht. Diese beiden Prägungen
werden auch durch die beiden Eingangsbeispiele aus der maßgeblichen Standardlite-
ratur [FKL+22] und [SB18] deutlich. Während in [FKL+22] die regelungstechnischen
Zusammenhänge an einem Servomotor erläutert werden, wird in [SB18] zunächst das
Spiel Tic-Tac-Toe herangezogen. Weiterführend ist ein wesentlicher Untersuchungsge-
genstand der Regelungstechnik die Gewährleistung der Sicherheit eines technischen Sys-
tems durch Stabilitätsuntersuchungen und interpretierbare Schlussfolgerungen. Das The-
mengebiet der Wahrscheinlichkeitstheorie spielt (mit Ausnahme des Beobachterentwurfs)
nur selten eine Rolle. Im Gegensatz dazu, baut das RL sehr wesentlich auf der Wahr-
scheinlichkeitstheorie auf, da der Lernprozess zusammenfassend eine kontinuierliche Ent-
scheidungsfindung unter Unsicherheit der Umwelt darstellt. Hinzu tritt das Exploitation-

Exploration-Dilemma [SB18], welches die Findung eines Kompromisses zwischen ver-
muteten bestmöglichen und ausprobierenden Entscheidungen beschreibt. In vielen Fällen
wird das Dilemma über wahrscheinlichkeitstheoretische Ansätze adressiert mit denen
u. a. Beweise zum Konvergenzverhalten des lernenden Agenten geführt werden.

Im konkreten Bezug auf die Inbetriebnahme von Steuerungen und Regelungen gibt es aus
der Regelungstechnik heraus kaum Handlungsanweisungen für die Behebung von auftre-
tenden Problemen. Ein mutmaßlicher Grund hierfür könnte sein, dass die auftretenden
Probleme sehr vielseitig sind und Lösungen immer auf das individuelle System abge-
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stimmt sein müssen. Daher erscheint es schwierig allgemeingültige Handlungsanweisun-
gen auszusprechen. Ein weiterer Grund ist die bereits praxisorientierte Theorie der Re-
gelungstechnik. Unvorhergesehene Störungen sind die Hauptmotivation für den Einsatz
einer Regelungen, welche immer in der Lage sein muss, vorhandene Abweichungen und
Ungenauigkeiten zu kompensieren. Das behandelte Szenario dieser Arbeit geht jedoch
davon aus, dass es bei der Inbetriebnahme zu tieferliegenden Problemen kommen kann,
die im Rahmen einer Regelung nicht durch diese ausgeglichen werden können. Ein Indi-
kator für mangelnde Verfahren zur effizienten Inbetriebnahme findet sich zudem in dem
regelungstechnischen Standardwerk [Ada14], in welchem eine Vielzahl von nichtlinearen
Regelungsverfahren ausführlich besprochen werden. Zwar findet eine theoretische Aufar-
beitung statt, allerdings wird im Bezug auf die reale Umsetzung bzw. die Inbetriebnahme
in den meisten Fällen auf das rudimentäre ”Ausprobieren” verwiesen. Aus Perspektive der
Regelungstechnik zeigt sich somit eine vorhandene Forschungslücke, welche die Proble-
me des modellbasierten Entwurfs bei der Inbetriebnahme umfasst und mit geeigneten re-
gelungstechnischen Werkzeugen in Form von intelligenten Verfahren adäquat adressiert.
Die Grundideen und Methoden des RL bieten hierbei großes Potential, um solche Verfah-
ren zu entwickeln, die schlussendlich eine Kombination beider Disziplinen darstellen und
in dieser Arbeit, aufgrund ihrer teils physikalisch geprägten und teils daten-getriebenen
Ansätze, als hybrid bezeichnet werden.

Als Gegenstück kann die bereits angeführte Forschungslücke auch aus der Perspektive des
RL definiert, bzw. betrachtet werden. Das RL gilt im Allgemeinen als daten-ineffizient,
wenn es um die Anwendung auf reale Systeme geht. Die Ineffizienz ist besonders pro-
blematisch, da sie sich in einem enormen Zeitaufwand für die Generierung der Daten
bemerkbar macht und die meisten RL Verfahren damit unpraktisch, bzw. unmöglich um-
setzbar sind. Der angesprochene PILCO Algorithmus stellt eine Ausnahme dar und wird
dem sogenannten modellbasierten RL zugeordnet. Das heißt, dass die Strategie des Agen-
ten anhand eines gelernten Modells der Umwelt optimiert wird. Die Strategie wird also
nur indirekt für die Umwelt entworfen, indem in einer ähnlichen Simulationsumgebung
ein Großteil der Interaktion stattfindet. Wie beim RL üblich, wird das Modell alleine auf
der Basis von Messdaten vom realen System gelernt, wobei die Herausforderung darin
besteht, aus einer ggf. geringen Datenmenge das dynamische Verhalten zu verallgemei-
nern. Ein spezielles Vorwissen (a-priori der Datenaufnahme) über die Dynamik wird in
der Regel nicht berücksichtigt. Hierfür gibt es zwei Gründe. Zum einen wird von ei-
nem RL Algorithmus eingefordert, dass er ohne menschliche Hilfestellung funktionieren
kann, um ggf. als künstliche Intelligenz (KI) bezeichnet werden zu können. Der zentrale
Forschungsgegenstand des RL ist der Lernvorgang des Agenten, welcher aus Sichtwei-
se der Informatik und Psychologie möglichst unvoreingenommen sein sollte. Zum an-
deren ist das nützliche Vorwissen unter Umständen nicht vorhanden. Die Beschreibung
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dynamischer, bzw. physikalischer Effekte spielt in den genannten Fachdisziplinen eine
untergeordnete Rolle, sodass auf dieses Fachwissen nicht zurückgegriffen werden kann.
Vor dem Hintergrund der Inbetriebnahme deuten diese Punkte ebenfalls die bearbeitete
Forschungslücke an, wobei das RL zwar ein mächtiges Werkzeug für eine flexible In-
betriebnahme darstellt, jedoch die zielgerichtete Einbringung von physikalischem, bzw.
regelungstechnischem Vorwissen bislang wenig bis keine Berücksichtigung findet.

Zusammenfassend fehlen in der Regelungstechnik geeignete Ansätze und Verfahren, um
den Prozess der Inbetriebnahme zu unterstützen, bzw. bei auftretenden Problemen allge-
meingültige Lösungsmöglichkeiten aufzuzeigen. Ein Potential, diese Lücke von fehlen-
den regelungstechnischen Werkzeugen zu schließen, bieten die Ideen und Verfahren des
primär datenbasierten RLs. Im Zusammenhang mit mechatronischen Systemen und deren
Sensorik stehen die Daten unkompliziert zur Verfügung und enthalten bereits inhärent die
notwendigen Ein-Ausgangsdatenpaare, wenn es um das Erlernen des dynamischen Sys-
temverhaltens geht. Eine Erweiterung der bestehenden regelungstechnischen Verfahren
mit Hilfe von RL ist daher besonders sinnvoll und bietet die erforderliche Flexibilität,
um eine breite Klasse von (nichtlinearen) Systemen zu adressieren. Diese übergeordnete
Zielsetzung kann alternativ auch aus der Perspektive des RL betrachtet werden, indem die
Verfahren durch regelungstechnisches Fachwissen über die zu lösende Steuerungs- oder
Regelungsaufgabe erweitert werden, um in Folge dessen die Effizienz von RL Methoden
bei der Anwendung auf reale Systeme deutlich zu steigern. Bereits in [SB98] wird hierzu
die enge Verwandtschaft beider Fachgebiete thematisiert und ein Ausblick auf hybride
Entwicklungsmethoden geschaffen:

”One of the larger trends of which reinforcement learning is a part is that

toward greater contact between artificial intelligence and other engineering

disciplines. Not all that long ago, artificial intelligence was viewed as almost

entirely separate from control theory and statistics. ... Over the last decades

this view has gradually eroded. Modern artificial intelligence researchers ac-

cept statistical and control algorithms, for example, as relevant competing

methods or simply as tools of their trade. The previously ignored areas lying

between artifical intelligence and conventional engineering are now among

the most active, including new fields such as neural networks, intelligent con-

trol, and our topic, reinforcement learning.“ [SB98, S. 5]

Die Zielsetzung der vorliegenden Arbeit ist damit, hybride Verfahren zur Inbetriebnahme
von Steuerungen und Regelungen zu entwickeln, die sowohl die Regelungstechnik, als
auch das RL miteinander in Verbindung setzen. Auf diese Weise lassen sich die Vorteile
beider Disziplinen ausnutzen und sich ihre Nachteile, in gewissen Grenzen, gegensei-
tig kompensieren. Konkret bedeutet dies, die Mängel des modellbasierten Entwurfs für
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bspw. schwer zu modellierende Systeme durch den flexiblen datengetriebenen Grundge-
danken des RL zu beseitigen. Auf der anderen Seite sind RL Ergebnisse für den Menschen
nur sehr schwer interpretierbar und damit vor dem Hintergrund von sicherheitskritischen
technischen Systemen äußerst risikobehaftet. Die Einbringung von regelungstechnischem
Wissen, welches durch nachvollziehbare Stabilitätsuntersuchungen geprägt ist und damit
für den Menschen deutlich einfacher verstanden werden kann, bietet die Möglichkeit RL
Verfahren nicht nur transparenter zu machen, sondern auch die Effizienz in Bezug auf
die notwendige Datenlage wesentlich zu steigern. Die Begründung hierfür ist, dass bspw.
das dynamische Verhalten des Systems nicht von Grund auf erlernt, sondern nur par-
tiell korrigiert werden muss. Des Weiteren kann davon ausgegangen werden, dass das
a-priori physikalische Modell deutlich bessere Extrapolationseigenschaften aufweist, als
eine untrainierte rein datengetriebene Variante. Um der Zielsetzung im geeigneten Ma-
ße zu begegnen, werden im Folgenden verschiedene Aspekte aufgelistet und bestimmte
Anforderungen für die entwickelten Verfahren erläutert.

Einheitliche mathematische und begriffliche Formulierung
Wie bereits angemerkt, weisen die Regelungstechnik und das RL einige Unterschiede
und Gemeinsamkeiten auf. Jede Disziplin wird in Verbindung mit ihrer ganz eigenen
mathematischen Formulierung bezüglich der Deklaration von Variablen und Funktionen
gebracht. So wird in der Regelungstechnik bspw. der Buchstabe x für den Zustandsvek-
tor eines dynamischen Systems benutzt, wohingegen im RL der gleiche Buchstabe für
den Eingang in eine Regressionsfunktion, bzw. die zugehörigen Trainingsdaten, fungiert.
Ein Ziel dieser Arbeit ist es daher, einen einheitlichen Rahmen für hybride Methoden zu
schaffen, der eine Konsistenz bezüglich der Benennung von mathematischen Ausdrücken
aufweist. Außerdem gilt es, bestimmte Zusammenhänge im jeweils anderen Kontext zu
betrachten. Ein Beispiel ist hierfür die Parameteridentifikation für ein dynamisches Mo-
dell in der Regelungstechnik, welche im engen Zusammenhang mit dem Training von
Gewichtungen eines künstlichen neuronalen Netzes steht. In beiden Fällen wird zur Be-
stimmung ein Mehrzieloptimierungsproblem gelöst, wobei ein Kompromiss zwischen der
genauen Nachbildung der Daten und der Verallgemeinerungsfähigkeit bzgl. noch unbeob-
achteter Zustände/Daten gefunden wird. Dieses Problem ist im Machine Learning (ML)
unter den Begriffen Over- und Underfitting [Bis06] bekannt und spielt somit auch in der
Regelungstechnik eine wesentliche Rolle, obwohl hier für das zugrundeliegende Problem
keine speziellen Begriffe definiert sind.

Berücksichtigung von Vorwissen über die Steuerungs-/Regelungsaufgabe
Im Allgemeinen werden beim maschinellen Lernen keine Angaben über möglicherweise
vorhandenes Vorwissen getätigt; auch wenn dieses unter Umständen zur Verfügung stehen
würde. Der Grund hierfür liegt in der Tatsache begründet, dass dies gegen den Grundge-
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danken einer KI gerichtet wäre. Denn autonomes Lernen setzt ein Entscheiden auf der
Grundlage von gesammelten Daten und eigenen Erfahrungen voraus. Auch wenn dies im
Rahmen des ML eine valide Herangehensweise darstellt, um den Lernprozess als solchen
zu untersuchen und möglichst allgemeingültige Algorithmen zu entwickeln, so ist die
Nichtberücksichtigung von Vorwissen im Zusammenhang mit einer regelungstechnischen
Aufgabe kontraproduktiv. Jegliches Vorwissen bietet nicht nur das Potenzial zumindest
einen Teil der Lösung für den Menschen interpretierbar, im Sinne eines White- und Black-

Box-Modells, zu machen, sondern kann auch den Lernvorgang als solchen beschleunigen
und effizienter gestalten. Dieser Punkt steht in enger Verbindung mit dem Ziel einer effizi-
enten Ausnutzung der Daten und wird im nächsten Abschnitt näher erläutert. Darüber hin-
aus besitzt ein hybrides Modell, welches sich aus dem ursprünglich aufgestellten physika-
lischen Modell und einem erweiternden flexiblen datengetriebenen Teil zusammensetzt,
vorteilhafte Eigenschaften in Hinblick auf die Prädiktionsgenauigkeit. Datengetriebene
Modelle alleine betrachtet, sind in der Regel in der Nähe der Trainingsdaten zuverlässig
und können diese gut nachbilden, weisen allerdings Defizite auf, wenn sie in unbekannten
Gebieten Vorhersagen treffen sollen. Ihre Extrapolations-, sind damit im Gegensatz zu ih-
ren Interpolationseigenschaften, als schwach einzustufen. Ein hybrides Modell kann hier-
bei bessere Ergebnisse erzielen, da dem physikalischen Modellteil vergleichsweise eine
gute Extrapolation zuzuschreiben ist und gleichzeitig die guten Interpolationseigenschaf-
ten des datengetriebenen Teils erhalten bleiben. Neben der Modellbetrachtung, bietet die
Regelungstechnik eine Vielzahl von möglichen Regelungsstrukturen, die auf bestimm-
te Systemklassen zugeschnitten sind und damit besondere Eigenschaften ausnutzen. Die
klare Struktur grenzt dabei verschiedene Aufgaben einer Regelung voneinander ab und
macht es dem Menschen damit einfacher sie nachzuvollziehen und auftretende Probleme
leichter beheben zu können. Dieses Wissen kann in der richtigen Kombination mit einer
RL Methode die Regelgüte und dessen Interpretierbarkeit signifikant verbessern, womit
die Berücksichtigung von Vorwissen ein wesentliches Ziel dieser Arbeit darstellt.

Dateneffizienz
Im Kontext eines mechatronischen Systems werden Daten durch die Messeinrichtungen
bereitgestellt. Diese Daten können ohne größeren Aufwand direkt während des regulären
Betriebs aufgenommen und für den Lernalgorithmus verwendet werden. In diesem Szena-
rio spielt die Dateneffizienz eine untergeordnete Rolle. Soll jedoch eine neu entwickelte
Regelung in Betrieb genommen werden und sind dafür Erprobungen und Experimente
notwendig, dann ist aus Zeit- und Kostengründen eine hohe Dateneffizienz erforderlich.
Je weniger Experimente und damit weniger Messdaten für das Erfüllen der Regelungsauf-
gabe benötigt werden, desto schneller kann die Inbetriebnahme erfolgreich abgeschlossen
werden. Jedes zusätzliche weitere Experiment, welches als Absicht hat, die Datenmenge
zu erhöhen, ist nicht nur mit einem Zeitaufwand für den Regelungstechniker verbunden,
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sondern verhindert auch, dass das System in einem wirtschaftlichen Sinne genutzt werden
kann. Hiermit sind insbesondere Produktionsanlagen gemeint. Zudem nimmt die Bean-
spruchung der Systemkomponenten und der Verschleiß der Bauteile über die Zeit zu, was
einen weiteren Kostenfaktor darstellt. Die in dieser Arbeit entwickelten Verfahren haben
daher eine hohe Dateneffizienz während der Inbetriebnahme als Ziel, so dass die Anzahl
der benötigten Experimente und Daten minimiert und der Informationsgewinn aus ihnen
maximiert wird.

Flexibilität und Verständlichkeit bei der Anwendung
Mechatronische Systeme weisen ein ähnliches Grundprinzip auf, unterscheiden sich z. B.
jedoch klar in ihren Eigenschaften. Das passende Regelungskonzept muss daher für je-
des System sorgfältig abgewägt und realisierbar umgesetzt werden. Da ML Ansätze im
Allgemeinen als flexibel eingestuft und sie oftmals nur in Abhängigkeit von Daten for-
muliert werden, soll dieser Ansatz gleichermaßen auf die hybriden Methoden dieser Ar-
beit übertragen werden. Die Verfahren sollen dabei auf eine breite Klasse von Systemen
anwendbar sein und möglichst wenig Voraussetzungen haben. Auf diese Weise bieten
die Verfahren ein hohes Maß an Praxisrelevanz, und stellen Werkzeuge dar, welche für
die Inbetriebnahme vieler Regeleinrichtungen in Erwägung gezogen werden können. Vor
diesem Hintergrund spielt auch die Verständlichkeit der Verfahren eine Rolle. Der An-
wender muss nachvollziehen können, wie ein Lernalgorithmus arbeitet, welchen Prin-
zipien er folgt und wie seine Wirkungszusammenhänge sind. Dies trägt dazu bei, dass
der Anwender die Entscheidungen des Algorithmus bzgl. der verschiedenen Experimente
versteht und ihren Zweck richtig einordnen kann. Im Idealfall kann der Anwender inter-
aktiv Einfluss auf die ansonsten gewissermaßen automatisierte Inbetriebnahme nehmen,
und so weiteres Expertenwissen über das System und die Regelungsaufgabe einbringen.
Die Voraussetzung hierfür ist, dass der Lernalgorithmus, sein genereller Aufbau und seine
Vorgehensweise bei der Inbetriebnahme leicht nachvollzogen werden kann.

Robustheit und Konvergenzverhalten
Zusätzlich zu den bereits angeführten Anforderungen sollen sich die Algorithmen durch
eine hohe Robustheit und ein schnelles stabiles Konvergenzverhalten auszeichnen. Hier-
bei sollen Störeinflüsse eine möglichst geringe (und im Idealfall keine) Auswirkung auf
den Lernprozess an sich und das Lernergebnis haben. Als Beispiel sei dabei das Messrau-
schen genannt, wodurch die aufgenommenen Daten mit unterschiedlicher Ausprägung
verfälscht werden. Der Lernalgorithmus muss sich dem Messrauschen gegenüber robust
verhalten, kann das Rauschniveau identifizieren und nach Möglichkeit aus den Daten
entfernen, bzw. herausrechnen. Neben dem Messrauschen ist auch eine Robustheit ge-
genüber verschiedenen Rahmenbedingungen gefordert. Die Aufnahme der Daten und die
Durchführung der Inbetriebnahme sind als stochastische Prozesse zu betrachten, die nur
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schwerlich genau zu reproduzieren sind. Diese Schwankungen bzgl. leicht abweichender
Anfangsbedingungen oder einer etwas anderen Position der Daten im Zustandsraum sol-
len den Lernvorgang nur geringfügig beeinflussen. Infolgedessen soll das Regelungsziel
zuverlässig erfüllt werden und sich in einem stabilen zügigen Konvergenzverhalten wi-
derspiegeln. Dies kann wiederum durch die bereits angesprochene Dateneffizienz und das
bereitgestellte Vorwissen erreicht werden. Dennoch impliziert das Vorwissen bereits die
Tatsache, dass es sich nicht um vollständiges Wissen handelt, womit die Regelungsauf-
gabe direkt gelöst werden könnte. Es beinhaltet teilweise fehlerhafte oder gar nicht vor-
handene Terme im Bezug auf das mathematische Dynamikmodell. Die hybriden Lernver-
fahren müssen dementsprechend ebenso eine Robustheit gegenüber eben diesen potentiell
möglichen Modellen und Formen von Vorwissen haben. Die letztendliche Lösung, welche
während der Inbetriebnahme entwickelt wird, soll eindeutig und stabil gefunden werden
und soll nicht vom verwendeten Vorwissen abhängen.

Gewährleistung der Sicherheit
Der Ingenieur muss sich bereits vor der Inbetriebnahme intensiv Gedanken über die Si-
cherheitsaspekte machen, um potenzielle menschliche und maschinelle Schäden zu ver-
meiden. Bei der Inbetriebnahme spielt die Unsicherheit über das Systemverhalten ei-
ne große Rolle, da sie andernfalls nicht notwendig wäre aufgrund eines idealen Mo-
dells. Um die Sicherheit zu gewährleisten, müssen bestimmte Zustands- und Stellgrößen-
beschränkungen eingehalten werden. Diese können durch manuell implementierte Abfra-
gen von Sensorsignalen überwacht werden. Diese Sicherheitsvorkehrungen stehen über
dem automatisierten Lernvorgang und können von ihm nicht beeinflusst werden. Im Fal-
le einer Verletzung der Bedingungen, wird der Lernvorgang oder das Experiment ab-
gebrochen und das System in einen sicheren Zustand (bspw. Stillstand) überführt. Die
währenddessen aufgezeichneten Messdaten können jedoch im Rahmen des Lernalgorith-
mus weiter verarbeitet und für zukünftige Experimente berücksichtigt werden. In der Re-
gel können Beschränkungen auch bereits als Vorwissen in den Lernprozess integriert wer-
den. Es gibt jedoch Anwendungen, in denen die Grenzen erst durch Testläufe ermittelt
werden müssen, sodass eine Berücksichtigung im Vorfeld nicht möglich ist. Probabilisti-
sche Modelle erweisen sich hier als besonders hilfreich, da sie mit wahrscheinlichkeits-
basierten Angaben arbeiten und damit die Unsicherheit zumindest quantifizieren können.
Mit dieser Information kann der Einrichter besser abschätzen, wie erfolgversprechend ein
Experiment ist, ob eine Verletzung der Sicherheitsbeschränkungen zu erwarten ist und
wann diese während des Experiments eintritt. Außerdem sind im Zusammenhang mit
dem RL probabilistische Modelle nicht nur erforderlich, um das erwähnte Exploitation-
Exploration-Dilemma zu bewältigen, sondern auch, um die Dateneffizienz und Robustheit
zu erhöhen. Vor diesem Hintergrund ist allerdings wichtig zu beachten, dass die Angaben
zur Sicherheit immer nur so zuverlässig sind, wie die Vorhersagequalität des (hybriden)
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Modells. Obwohl probabilistische Modelle darauf abzielen, Modellfehler angemessen zu
berücksichtigen, unterliegen auch sie bestimmten Annahmen. Diese Annahmen können
die Vorhersagequalität negativ beeinflussen, dienen jedoch gleichzeitig der praktischen
Anwendbarkeit, beispielsweise in Bezug auf die Berechnungskomplexität. Daher ist es
entscheidend, dass der Entwurfsingenieur die Sicherheitsangaben stets im Zusammen-
hang mit dem Modell und den Sicherheitsvorkehrungen kritisch bewertet.

Die formulierten Anforderungen werden bei der Erarbeitung der Lernverfahren berück-
sichtigt. Die Vision sind daten-effiziente flexible, sowie robuste und sicherere Algorith-
men zur Unterstützung bei der Inbetriebnahme eines Steuerungs- und/oder Regelungs-
konzepts. Im nachfolgenden Abschnitt werden die entwickelten Verfahren vorgestellt und
den Kapiteln dieser Arbeit zugeordnet.

1.3 Aufbau der Arbeit

Zum besseren Verständnis der Hauptkapitel werden in Kapitel 2 zunächst die mathemati-
schen Grundlagen vorgestellt. Hierbei wird eine ausführliche Einführung in die regelungs-
technischen Zusammenhänge (2.1), die Begrifflichkeiten und Regeln der Wahrscheinlich-
keitstheorie (2.2) und das maschinelle Lernen durch die Gauß-Prozess-Regression (2.4)
gegeben. Neben den formalen Definitionen, wird das Grundlagenkapitel durch einfache
Anwendungsbeispiele und Überlegungen zur praktischen Implementierung abgerundet.
Dadurch soll eine Verbindung der unterschiedlichen Fachdisziplinen untereinander ent-
stehen, welche in den nachfolgenden Hauptkapiteln vertiefend ausdetailliert wird.

In Kapitel 3 wird das Verfahren der Bayesschen Optimierung vorgestellt, welches im Kon-
text der Regelungstechnik zum Steuerungsentwurf eingesetzt wird. Hierbei wird eine pa-
rametrisierte Steuerung vorausgesetzt, welche durch die Bayessche Optimierung effizient
und direkt am realen System entworfen wird. Dieser Ansatz ist besonders geeignet, wenn
der herkömmliche modellbasierte Steuerungsentwurf aufgrund einer zu schwierigen oder
praktisch unmöglichen physikalischen Modellbildung an seine Grenzen stößt. Die Bayes-
sche Optimierung wird vor diesem Hintergrund ausführlich eingeführt und im weite-
ren Verlauf des Kapitels ein breiter Überblick zum Stand der Forschung gegeben (3.2).
Hierbei wird insbesondere ein Fokus auf bestehende Veröffentlichungen gelegt, welche
die Bayessche Optimierung innerhalb eines regelungstechnischen Kontextes verwenden.
Hierauf aufbauend wird eine angepasste Variante der Bayesschen Optimierung entwor-
fen, welche für den komplizierten Steuerungsentwurf eines Ultraschalldrahtbondprozes-
ses ausgelegt ist. Im Vorhinein findet in Unterkapitel 3.3 eine Einführung zum Ultra-
schalldrahtbonden statt, welche anschließend durch eine Vorstellung des physikalischen
Modellbildungsprozesses (3.4) abgerundet wird. Basierend auf der Modellbildung kann
dann der Einsatz der Bayesschen Optimierung weiter motiviert werden. Nach der Ent-
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wicklung des Verfahrens in Abschnitt 3.5, findet eine detaillierte Validierung am realen
System statt (3.6). Das erste Hauptkapitel wird durch einen Ausblick zu weiterführenden
Themengebieten abgeschlossen.

Die Bayesschen Optimierung ist ein geeignetes Werkzeug für komplexe mechatronische
Systeme, deren Zustand nicht eindeutig definiert werden kann oder es kein Sensorkon-
zept gibt, um Zustandsdaten aufnehmen zu können. Die zwei weiteren Hauptkapitel kon-
zentrieren sich auf Szenarien, in denen diese Rahmenbedingungen nicht vorliegen. In
Kapitel 4 wird vor diesem Hintergrund die hybride Optimalsteuerung für die Inbetrieb-
nahme eines nur teilweise unbekannten Systems vorgestellt. Dabei wird die Grundidee
verfolgt, die vorhandenen Modellfehler durch aufgenommene Messdaten und die Gauß-
Prozess-Regression zu kompensieren, um so einen erweiterten modellbasierten Optimal-
steuerungsentwurf durchführen zu können. Als Anwendungsbeispiel werden in diesem
Kapitel Pendelsysteme betrachtet, welche in Form einer Modellbildung für das Doppel-
pendel auf einem Wagen in Abschnitt 4.2 auszugsweise behandelt werden. Im Anschluss
wird die Auswirkung eines unvollständigen modellbasierten Steuerungsentwurfs gezeigt
und ein rein datengetriebenes Verfahren zur Lösung vorgestellt (4.3). Das datengetriebene
Verfahren dient als Referenz und ermöglicht in den nachfolgenden Betrachtungen einen
Vergleich zum entwickelten hybriden Optimalsteuerungsverfahren. Das Ziel ist es, den
positiven Einfluss von vorhandenen Vorwissen in Form des teilweise bekannten physika-
lischen Modells genauer zu verifizieren. Hierzu wird der Stand der Forschung erläutert
und sowohl simulationsgestützte als auch reale Untersuchungen an einem Doppelpendel-
prüfstand vorgenommen (4.5).

Das letzte Hauptkapitel (5) beschäftigt sich mit der Herleitung eines hybriden Konzepts
zur klassischen Zustandslinearisierung, welche ein nichtlineares System in ein lineares
überführt. Hierfür muss die Voraussetzung gelten, dass es sich um ein eingangsaffines
System mit separierten Nichtlinearitäten handelt. Die Voraussetzung und die weiteren
Zusammenhänge, sowie die Problematik eines fehlerbehafteten Modells werden in Unter-
abschnitt 5.1 erläutert. Hierauf aufbauend wird die hybride Zustandslinearisierung für all-
gemeine mechanische Systeme entwickelt (5.2). Des Weiteren wird das Konzept anhand
eines hydraulischen Hexapoden erläutert und ein simulationsbasierter Funktionsnachweis
für ein Ersatzmodell erbracht (5.3). Zum Abschluss der Arbeit wird in Kapitel 6 eine
umfängliche Zusammenfassung gegeben. Zudem wird ein Ausblick für weiterführende
Forschungsfragen beschrieben.
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2 Mathematische Grundlagen

In diesem Kapitel werden die Grundlagen, die für das Verständnis der weiteren Kapitel
und die zugehörigen Verfahren notwendig sind, erläutert. Da davon ausgegangen wird,
dass der Leser einen regelungstechnischen Hintergrund besitzt, werden zunächst in Ab-
schnitt 2.1 in verkürzter Weise die wesentlichen Begriffe der Regelungstechnik definiert.
Damit wird ein einheitlicher Rahmen für die nachfolgenden Abschnitte geschaffen. Der
anvisierte Fokus liegt auf den Grundlagen der Wahrscheinlichkeitstheorie und des ma-
schinellen Lernens. In Abschnitt 2.2 werden daher schwerpunktmäßig die Grundbegrif-
fe Zufallsvariable, Wahrscheinlichkeitsverteilung und Erwartungswertoperator, sowie di-
verse Rechenregeln eingeführt. Zur Verdeutlichung der Zusammenhänge in einem rege-
lungstechnischen Kontext dienen einfache Anwendungsbeispiele in Form von Pendelsys-
temen. Das Ziel ist den herkömmlichen deterministischen Modellbegriff um probabilis-
tische Überlegungen zu erweitern. Hierbei werden Fragen geklärt, wie eine Unsicherheit
bzgl. der Parametrierung durch Wahrscheinlichkeitsverteilungen abgebildet werden kann
oder sich eine probabilistische Zustandsprädiktion (auch Zustandspropagation genannt)
berechnen lässt. Den Abschluss bildet Unterkapitel 2.4. Hierin wird die für diese Ar-
beit wesentliche Gauß-Prozesse-Regression behandelt. Diese stellt ein außerordentliches
maschinelles Lernverfahren dar, womit die Unsicherheit über eine gesuchte Funktion al-
leine auf der Basis von Messdaten quantifiziert werden kann. Hierfür wird die Schätzung
der gesuchten Funktion als parameterabhängige Zufallsvariable aufgefasst und ihr Ver-
lauf mittels der Bayesschen Regel bestimmt. Im Kontext der Inbetriebnahme lassen sich
so Unsicherheitsfaktoren genau abbilden und drauf aufbauend geeignete Maßnahmen für
die erfolgreiche Umsetzung vornehmen.

2.1 Regelungstechnik

Ein allgemeines nichtlineares dynamisches System wird durch mehrere Differentialglei-
chungen erster Ordnung beschrieben mit

ẋ(t) = f(x(t),u(t);p), (2-1)

wobei t ∈ R die Zeit, x(t) ∈ Rnx den Systemzustand, u(t) ∈ Rnu den Stelleingang
und p ∈ Rnp die Parametrierung der Dynamikfunktion f : Rnx × Rnu 7→ Rnx darstellen.
Eine explizite Abhängigkeit zwischen f und t wird in dieser Arbeit nicht betrachtet. Der
Vollständigkeit halber wird (2-1) in der Regelungstechnik üblicherweise zusammen mit
der Ausgangsgleichung y(t) = g(x(t)) genannt, welche bspw. die Abbildung des Zu-
stands auf die Messungen oder Regelgrößen beschreibt. Wenn nicht weiter angegeben,



20 2 Mathematische Grundlagen

Bild 2-1: Zwei-Freiheitsgrade-Regelungsstruktur

soll in dieser Arbeit davon ausgegangen werden, dass der Zustand vollständig gemessen,
bzw. durch einfache Ansätze berechnet werden kann. Aus diesem Grund wird die Aus-
gangsgleichung vernachlässigt.

Soll das dynamische System (2-1) kontrolliert werden, ist dazu eine geeignete Steuerung
bzw. Regelung, welche gleich der Stellgröße u(t) gesetzt wird, notwendig. Ein allgemei-
ner Ansatz hierfür lautet

u(t) = r(t,x(t),w(t);θ), (2-2)

wobei das Regelgesetz r : R × Rnx × Rnw 7→ Rnu neben der Zeit und dem Zustand
auch von der Soll- oder Führungsgröße w(t) ∈ Rnw und einer Parametrisierung θ ∈ Rnθ

abhängt. Werden für alle Zustände gewisse Sollgrößen (nw = nx) vorgegeben, handelt
es sich um eine vollständige Zustandsregelung. Entfällt die Abhängigkeit vom zurück-
geführten Ist-Zustand x(t) und den Sollwerten w(t), dann handelt es sich bei r um eine
reine Steuerung, die keine Anpassungen bzgl. äußerer Störungen vornehmen kann.

Bild 2-1 zeigt beispielhaft den klassischen Aufbau einer Zwei-Freiheitsgrade-Regelungsstruktur
[FKL+22], welche sich aus einem Steuerungs- (uS(t)) und Regelungs-Zweig (uR(t)) zu-
sammensetzt. Gegeben dieser Struktur, lässt sich (2-2) genauer spezifizieren zu

r(t,x(t),w(t);θ) = uS(t) + uR(x(t),w(t);θ),

wodurch die additive Trennung ersichtlich wird. Des Weiteren lässt sich der Anteil der
Regelung bspw. mit einen zeitinvarianten linearen Regler der Form

uR(x(t),w(t);θ) = K(θ)(w(t)− x(t)),
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ausdrücken, wobei die Verstärkungsmatrix K(θ) ∈ Rnu×nx in diesem Fall von einer
Parametrisierung θ abhängt, welche die Elemente der Matrix betrifft.

Für die Simulation von (2-1) mit gegebenenfalls (2-2) ist eine zeitliche Diskretisierung
erforderlich. Hierzu wird beispielhaft das äquidistante Diskretisierungsgitter

τ := {tk = k∆t | k = 0, ..., H ∈ N, ∆t ∈ R+},

mit H Zeitschritten und ∆t als konstanter Schrittweite definiert, woraus sich die gesam-
te Simulationsdauer T ∈ R+ durch H∆t ausdrücken lässt. Anschließend wird entlang
τ ein Integrationsverfahren Φ bzgl. (2-1) angewandt, sodass sich für xk = x(k∆t),
uk = u(k∆t) und wk = w(k∆t) die diskretisierten Gleichungen

xk+1 = xk +∆t Φ(f(xk,uk;p),∆t),

uk = r(tk,xk,wk;θ),
(2-3)

mit z. B. Φ(f(xk,uk;p),∆t) = f(xk,uk;p) für das explizite Euler-Verfahren, erge-
ben.

Aktuiertes Pendel als Einführungsbeispiel
Um die Zusammenhänge von (2-3) tiefergehend zu erläutern und weitere relevante Be-
griffe aus der Regelungstechnik einzuführen, wird im Folgenden ein im Gelenk aktuiertes
Pendel betrachtet. Der Zustand des Systems wird durch den zweidimensionalen Vektor
x = [x1, x2]

T = [φ, φ̇]T , welcher den Winkel φ und die zugehörige Winkelgeschwindig-
keit φ̇ beinhaltet, beschrieben. Die Dynamik folgt der nichtlinearen Zustandsraumglei-
chung

ẋ = f(x, u;p) =

[
x2

−g
l
sin(x1)− d

ml2
x2 +

1
ml2

u

]
, (2-4)

wobei u das einstellbare Drehmoment, welches im Gelenk wirkt, darstellt. Des Weiteren
wird das Pendel durch die mechanische Parametrierung p = [l,m, d, g]T , mit l und m

als Länge und Masse des Pendels, dem Reibungskoeffizienten d und der Gravitationskon-
stanten g, charakterisiert.

Bild 2-2 zeigt die Phasenebene inkl. durch (2-4) induziertem Vektorfeld (blaue Pfeile)
des Pendels. Auf der linken Seite gilt für die Stellgröße u ≡ 0, wohingegen auf der rech-
ten Seite ein linearer Zustandsregler nach u = K(w − x) mit dem konstanten Sollwert
w = [π, 0]T verwendet wird. Die schwarzen Linien zeigen beispielhaft zwei Trajekto-
rien, wobei die schwarzen Punkte den Anfangszustand andeuten. Die farbigen Kreuze
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Bild 2-2: Phasenebene der Pendeldynamik (2-4). Freies unaktuiertes (links) und linear
geregeltes System (rechts).

kennzeichnen die verschiedenen Ruhelagen bzw. Fixpunkte des Systems. Alle Ruhelage
liegen unter der Voraussetzung von

ẋR = f(xR, uR) = 0

vor. Gegeben uR = 0, folgen die Ruhelagen des Pendels dem Zusammenhang
xR = [nπ, 0]T mit n ∈ Z. Eine Charakterisierung findet anhand ihrer Stabilität statt.
Nach der Definition von Ljapunov [Ada14], heißt eine Ruhelage stabil, wenn es zu jeder
ε-Umgebung

Uε = {x ∈ Rnx | ∥x∥ < ε}, eine δ-Umgebung Uδ = {x ∈ Rnx | ∥x∥ < δ} (2-5)

gibt, sodass alle Trajektorien des Systems, die in der δ-Umgebung beginnen, d. h.
x(t = 0) ∈ Uδ, in ihrem weiteren Verlauf in der ε-Umgebung bleiben, d. h. x(t) ∈ Uε

für t > 0. Asymptotische Stabilität liegt vor, wenn außerdem die Trajektorien in die Ru-
helage streben. Im Spezialfall eines linearen dynamischen Systems

ẋ = Ax+Bu,

kann die Stabilität anhand der Eigenwerte λi, i = 1, . . . , nx der Dynamikmatrix A be-
stimmt werden. Ist mindestens ein λi größer als null, so ist das System instabil.

Für das betrachtete Beispiel des Pendels kann neben dem Stabilitätsnachweis nach Ljapu-
nov alternativ eine Linearisierung in den Ruhelagen durchgeführt werden und die lokale
Stabilität anhand der zugehörigen Eigenwerte abgelesen werden. Die roten Kreuze in Bild
2-2 deuten hierzu instabile Ruhelagen an, wohingegen grüne Kreuze für stabile Fixpunkte
stehen. Anhand der gezeigten Trajektorie wird ersichtlich, dass sich das System zeitlich
zunächst entlang einer Mannigfaltigkeit auf die instabile Ruhelage zubewegt, dann aber
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von dieser abgestoßen wird und letztendlich in die benachbarte stabile untere Ruhela-
ge verläuft. Im rechten Bild kommt ein linearer Regler zum Einsatz. Dadurch wird dem
System eine neue Dynamik aufgeprägt, die an der Veränderung des Vektorfelds ersicht-
lich wird. Die ursprünglich instabile Ruhelage wird durch den Regler stabilisiert, sodass
sich das System nun ausgehend von dem gleichen Startzustand der linken Seite auf sie
zubewegt und dort gehalten wird.

2.2 Wahrscheinlichkeitstheorie

Die Wahrscheinlichkeitstheorie befasst sich formal mit der Untersuchung des Zufalls und
der Unsicherheit von bestimmten Ereignissen. Sie bietet einen Rahmen für die quanti-
tative Analyse von probabilistischen Phänomenen und spielt eine entscheidende Rolle
in verschiedenen Bereichen, bspw. dem Finanzwesen und der Naturwissenschaften. In
Hinblick auf das Thema dieser Arbeit, der Inbetriebnahme einer Steuerung oder Rege-
lung, eröffnet die Wahrscheinlichkeitstheorie eine systematische Sichtweise auf die mit
Unsicherheit behafteten Gegebenheiten. Dies kann sowohl die Ungenauigkeiten des Dy-
namikmodells betreffen, als auch die Gefahr einer möglichen Instabilität des Systems
während des Betriebs oder des Inbetriebnahmeprozesses. In diesem Zusammenhang lie-
fert die Wahrscheinlichkeitstheorie, die notwendigen formalen Begriffe und zugehörigen
Rechenregeln zur Beschreibung und adäquaten Behandlung der auftretenden Vorgänge.
Im Folgenden werden daher hilfreiche stochastische Werkzeuge eingeführt und in Bezug
zur Regelungstechnik erläutert. Das Ziel ist es, den herkömmlichen deterministischen
Modellbegriff durch probabilistische Überlegungen zu erweitern, sodass er im Rahmen
der Inbetriebnahme gewinnbringend eingesetzt werden kann.

2.2.1 Diskrete und kontinuierliche Zufallsvariablen

Zunächst wird der Begriff der Zufallsvariable eingeführt. Hierbei wird zwischen dem
diskreten und kontinuierlichen Fall unterschieden. Anhand des diskreten Falls werden
anschaulich die grundlegenden Zusammenhänge bei der Behandlung von Zufallsvaria-
blen verdeutlicht und anschließend auf den kontinuierlichen Fall übertragen. Die nach-
folgenden Erläuterungen dieses Unterkapitels lehnen an die Darstellungen in [Bis06] und
[DFO20] an. Formal ist eine Zufallsvariable eine Abbildung der Form X : Ω 7→ A, wobei
Ω den sogenannten Ereignisraum undA die Realisierungen der Zufallsvariable darstellen.
Die Eintrittswahrscheinlichkeit der Realisierungen wird über die Funktion P : A 7→ [0, 1]

beschrieben. Zusammen bilden (Ω,A, P ) den Wahrscheinlichkeitsraum.

Bild 2-3 (oben, links) zeigt den zufälligen Beschuss einer Platte mit N = 25 Kugeln. Die
Treffer werden bestimmten Gebieten auf der Platte zugeordnet. Das Beispiel soll dazu
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Bild 2-3: Beispiel für eine zweidimensionale diskrete Wahrscheinlichkeitsverteilung

dienen die Begriffe der Wahrscheinlichkeitstheorie einzuführen, wobei die zugrundelie-
genden Axiome und Rechenregeln im Anschluss besprochen werden. Die Koordinaten
(X, Y ) der Felder stellen in diesem Beispiel zwei Zufallsvariablen dar, welche mit

Ωx = {xi = i | i = 1, . . . , 5}, Ωy = {yj = j | j = 1, 2},

nur bestimmte diskrete Werte aus ihrem jeweiligen Ereignisräumen (Ωx,Ωy) annehmen
können. Die Ereignisräume und die Realisierungen sind für dieses Beispiel identisch.
Die Zufallsvariablen (X, Y ) beschreiben damit Realisierungen (x, y), welche einer be-
stimmten Eintrittswahrscheinlichkeit P (X = x, Y = y) : Ωx × Ωy 7→ [0, 1] folgen.
Der Ereignisraum stellt in diesem Zusammenhang einen Bezug zu den Werten her, wel-
che von der Zufallsvariable eingenommen werden können. Im Beispiel stellt eine Ku-
gel eine Realisierung der beiden Zufallsvariablen dar, womit jede Kugel nur ein be-
stimmtes Gebiet auf der Platte zugeordnet werden kann und die Realisierung somit je-
weils einen Wert aus Ωx und Ωy zugeordnet ist. In der Wahrscheinlichkeitstheorie be-
steht das größte Interesse in der Angabe von Wahrscheinlichkeiten, mit denen bestimm-
te Ereignisse eintreten. Genauer ausgedrückt, wird die sogenannte Wahrscheinlichkeits-
verteilung in Abhängigkeit der Zufallsvariablen gesucht. Im vorliegenden Fall kann die
(Verbund-)Wahrscheinlichkeitsverteilung

P (X = xi, Y = yj) =
nij

N
,

durch das Zählen der Kugeln nij in einem bestimmten Feld und Division durch die
Gesamtanzahl N angegeben werden. Diese Größe wird auch gemeinsame Wahrschein-
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lichkeitsverteilung genannt, da sie jedem möglichen Ereignispaar eine bestimmte Wahr-
scheinlichkeit zuordnet. Im Bezug auf Bild 2-3 lauten also bspw. P (X = 1, Y = 1) = 3

25

und P (X = 2, Y = 1) = 0
25

= 0 für die ersten zwei Felder. In diesem Zusammenhang
sind zwei Axiome der Wahrscheinlichkeitstheorie wesentlich und stellen strikte Anforde-
rungen an die Verteilungsfunktion P (·, ·) dar. Das erste Axiom lautet

0 ≤ P (X = xi, Y = yj) ≤ 1,

und schließt negative und unplausible Wahrscheinlichkeiten aus. Das zweite Axiom defi-
niert die Summe über alle Eintrittswahrscheinlichkeiten auf den Wert 1,

|Ωx|∑
i=1

|Ωy |∑
j=1

P (X = xi, Y = yj) = 1,

sodass als Konsequenz immer mindestens ein Ereignis aus dem Raum aller Möglichkeiten
eintreten muss. Diese Axiome sind für den Fall von zwei Zufallsvariablen allgemeingültig,
können auf mehrere Zufallsvariablen verallgemeinert werden und sind nicht nur vor dem
Hintergrund des Beispiels zu betrachten.

Neben der Verbundverteilung stellt die Marginal-/Randverteilung für einen Teil der Zu-
fallsvariablen, bzw. eine bestimmte Zufallsvariable

P (X = xi) =

|Ωy |∑
j=1

p(X = xi, Y = yj) =

∑
j nij

N
,

eine wichtige Größe dar. Dieser Zusammenhang wird als Summenregel (Marginalisie-
rung) bezeichnet und findet insbesondere dann Anwendung, wenn nicht alle Zufallsva-
riablen benötigt oder vernachlässigbar sind. In Bild 2-3 unten links und oben rechts sind
diese Verteilungen P (X) und P (Y ) durch die Summation über die entsprechend andere
Zufallsvariable abgebildet. Weiterführend kann aus den bereits eingeführten Verteilungen
die bedingte Wahrscheinlichkeitsverteilung über

P (X = xi | Y = yj) =
P (X = xi, Y = yj)

P (Y = yi)
=

nij∑
i nij

,

angegeben werden, wobei auf die Anzahl der Kugeln in den Bereichen des fixierten Sub-
index j normiert wird, um dem zweiten Axiom der Wahrscheinlichkeitstheorie (Summe
über alle Wahrscheinlichkeiten ergibt 1) gerecht zu werden. Diese Regel wird Produktre-
gel genannt. In Bild 2-3 unten rechts ist die bedingte Verteilung P (X = xi | Y = 1) zu
sehen, wobei die spezielle Wahrscheinlichkeit P (X = 2 | Y = 1) mit 0 angegeben ist, da
sich im zweiten Feld keine Kugel befindet.
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Ein Spezialfall liegt vor, wenn die Verbundwahrscheinlichkeit über die Marginalvertei-
lungen der Zufallsvariablen

P (X = xi, Y = yj) = P (X = xi) P (Y = yj) oder P (X = xi | Y = yj) = P (X = xi),

angegeben werden kann bzw. die bedingte Wahrscheinlichkeitsverteilung mit der Mar-
ginalverteilung übereinstimmt. Dann sind die Zufallsvariablen unabhängig voneinander
und das Wissen über den Wert einer Zufallsvariable birgt keine Informationen über die
andere Zufallsvariable. Für das anschauliche Beispiel aus Bild 2-3 kann diese Aussage
jedoch verneint werden. Besonders deutlich wird dies durch das zweite Feld, welches
keine Kugel besitzt, und das genau darüber liegende Feld, welches zumindest eine Kugel
aufweist. Die Kenntnis über Y hat damit also direkten Einfluss auf die bedingte Wahr-
scheinlichkeitsverteilung für X . Ein weiterer Spezialfall ergibt sich bei der Betrachtung
von mindestens drei Zufallsvariablen (X, Y, Z). Dabei kann es zu einer bedingten Un-
abhängigkeit kommen, die sich formal mit

P (X = xi, Y = yj | Z = zk) = P (X = xi | Z = zk) P (Y = yj | Z = zk)

beschreiben lässt. Ein beliebtes Beispiel hierfür ist, dass das Ereignis X das Wetter in Ber-
lin, das Ereignis Y das Wetter in München darstellen und das Ereignis Z das Eintreten
eines Hochdruckgebiets ist. X und Y könnten unter der Bedingung des Hochdruckgebiets
bedingt unabhängig sein, da das Wetter in Berlin nicht direkt das Wetter in München be-
einflusst, wenn bereits bekannt ist, dass ein Hochdruckgebiet existiert. Zur Vereinfachung
wird in der Wahrscheinlichkeitstheorie häufig keine explizite Unterscheidung zwischen
der Zufallsvariable und ihrer annehmbaren Werte gemacht. In der Regel erschließt sich
diese Formalität aus dem Kontext, sodass beim Übergang (X, Y ) → (x, y) verkürzt für
die Wahrscheinlichkeitsverteilungen

P (x, y), P (x) und P (x | y),

geschrieben wird. Die hier vorgestellten Grundregeln der Wahrscheinlichkeitstheorie sind
äquivalent für P (y) und P (y | x) anwendbar. Des Weiteren sind sie gleichermaßen auf
den Fall mit mehr als zwei Zufallsvariablen übertragbar.

Beim Übergang zu kontinuierlichen Zufallsvariablen x, y ∈ R bleiben die elementaren
Zusammenhänge des diskreten Falls erhalten. Allerdings treten an die Stellen der Sum-
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men nun Integrale und die ursprünglichen Wahrscheinlichkeitsverteilungen werden durch
Wahrscheinlichkeitsdichteverteilungen (Probability Density Function (PDF))

p(x, y) : R× R 7→ R+,

ersetzt. Die Wahrscheinlichkeitsdichteverteilungen gibt damit nicht mehr direkt die Wahr-
scheinlichkeit für ein Ereignispaar an, sondern ist als Wahrscheinlichkeit pro Einheit der
Zufallsvariablen zu interpretieren. Für den kontinuierlichen Fall lauten die beiden Axio-
me

p(x, y) ≥ 0 und
∫ ∞

−∞

∫ ∞

−∞
p(x, y)dxdy = 1. (2-6)

Da es sich um eine Dichte handelt, kann die Verteilungsfunktion im Vergleich zum dis-
kreten Fall nun auch Werte oberhalb von 1 annehmen. Aus diesem Grund wird zur Un-
terscheidbarkeit der Kleinbuchstabe p anstelle von P für die Verteilung benutzt. Konkrete
Wahrscheinlichkeiten P werden mit einer Integration über ein bestimmtes Intervall be-
rechnet

P (x ∈ [xl, xr], y ∈ [yl, yr]) =

∫ yr

yl

∫ xr

xl

p(x, y)dxdy,

wobei l für die linke und r für die rechte Grenze stehen. Abschließend ergeben sich die
Summen- und Produktregel zu

p(x) =

∫ ∞

−∞
p(x, y)dy, und p(x | y) = p(x, y)

p(y)
. (2-7)

Die Überlegungen zur (bedingten) Unabhängigkeit sind weiterhin gültig. Soweit nicht
weiter angegeben, wird in dieser Arbeit weitestgehend von kontinuierlichen Zufallsvaria-
blen ausgegangen. Die nachfolgenden Abschnitte vertiefen die Handhabung von Zufalls-
variablen und zugehörigen PDFs.

2.2.2 Erwartungswert und Varianz

In diesem Unterkapitel wird der Erwartungswertoperator definiert und weitere Größen,
die sich hieraus ableiten. Mit Hilfe dieses Operators lassen sich bestimmte Kennwerte, die
in der Wahrscheinlichkeitstheorie einen wichtigen Stellenwert haben, angeben. Zunächst
wird auf den eindimensionalen Fall mit x ∈ R eingegangen und danach der mehrdimen-
sionale Fall x ∈ Rn besprochen.
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Der Erwartungswertoperator ist für beliebige Funktionen f(x) definiert und lautet

Ex[f(x)] =

∫ ∞

−∞
f(x)p(x)dx,

und bildet damit formal die Kurzschreibweise für ein Integral über das Produkt der Funk-
tion f(x) und der Verteilung der Zufallsvariable p(x). Es gelten daher auch die gleichen
Rechenregeln, die auf Integrale zutreffen, also beispielsweise solche, die sich aus der Li-
nearität ergeben. Der Subindex des Operators gibt an, bezüglich welcher Zufallsvariable
das Integral gebildet wird. Dies ist hilfreich und trägt dem Verständnis bei, wenn es meh-
rere Zufallsvariablen gibt. Er wird in vielen Fällen jedoch vereinfachend weggelassen,
wenn sich die Operation aus dem Kontext ergibt. Einige Funktionen f(x) sind von beson-
derer Bedeutung. Für die Identität f(x) = x folgt der sogenannte Mittelwert, oder auch
Erwartungswert µ über

E[x] =
∫ ∞

−∞
xp(x)dx =: µx,

welcher auch als Moment erster Ordnung bezeichnet wird. Entsprechend folgen für
f(x) = xn, n ∈ Zn>1 die höheren Momente n-ter Ordnung. Weiterführend kann eine Ver-
kettung des Erwartungswertoperators vorgenommen und eine weitere wichtige Kennzahl
über die Funktion f(x) = (x−µ)2 abgeleitet werden: die Varianz σ2, bzw. zentrales Mo-
ment zweiter Ordnung aufgrund der Zentrierung durch den Mittelwert. Für die Varianz
wird im Rahmen dieser Arbeit ein eigener Operator V[·] definiert über

V[x] = E[(x− µ)2] =

∫ ∞

−∞
(x− µ)2p(x)dx = E[x2]− µ2 =: σ2

x,

wobei dieser auf das Moment zweiter Ordnung und den quadratischen Mittelwert zurück-
zuführen ist und hierbei die Eigenschaft der Linearität ausgenutzt wurde. Anschaulich
gibt die Varianz damit an, wie weit die Realisierungen der Zufallsvariablen um ihren Mit-
telwert herum streuen bzw. wie weit sie von diesem entfernt liegen. Sie kann daher einen
quantitativen Aufschluss darüber liefern, wie es um die Genauigkeit, Präzision und Ro-
bustheit eines Prozesses, bspw. einer Pick-and-Place Aufgabe in der Robotik, bestellt ist.
Neben der Varianz wird häufig auch die sogenannte Standardabweichung über σ angege-
ben, da diese die gleiche Einheit wie die Zufallsvariable besitzt.

Der Übergang zu einer vektoriellen Zufallsvariable x ∈ Rn kann als Verbund mehrerer
skalarer Zufallsvariablen xi, i = 1, . . . , n interpretiert werden, womit für die Wahrschein-
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lichkeitsdichtefunktion die Kurzschreibweise p(x) = p(x1, . . . , xn) gilt. Der vorherige
Erwartungswert wird zum Erwartungsvektor und wird komponentenweise über

E[x] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
xp(x)dx1 . . . dxn =


E[x1]

...
E[xn]

 =: µx (2-8)

gebildet. Die eindimensionale Varianz σ2 wird im mehrdimensionalen Fall zur
(Ko-)Varianzmatrix Σ der Dimension n × n und besitzt die Eigenschaften, positiv de-
finit und symmetrisch zu sein. Die Berechnungsvorschrift lautet

V[x] = E[(x− µ)(x− µ)T ] = E[xxT ]− µµT =: Σx. (2-9)

Ausgehend von zwei Zufallsvektoren x ∈ Rnx ,y ∈ Rny ist zudem der Begriff der Kovari-
anz, bzw. Kreuz-Kovarianz C[·, ·] von Bedeutung. Formal wird diese, ähnlich zur Varianz,
angegeben mit

C[x,y] = Ex,y[(x− µx)(y − µy)
T ] = Ex,y[xy

T ]− µxµ
T
y =: Σxy.

Die Kreuz-Kovarianzmatrix Σxy hat dabei die Dimension nx×ny. Aufgrund der Symme-
trieeigenschaft gilt außerdem C[x,y] = C[y,x]T . Bei alleiniger Betrachtung der Zufalls-
variable x kann die (Ko-)Varianzmatrix ebenfalls über den Kreuz-Kovarianz-Operator
angegeben werden mit

Σx = V[x] =


V[x1] C[x1, x2] . . . C[x1, xn]

C[x2, x1] V[x2] . . . C[x2, xn]
...

... . . . ...
C[xn, x1] C[xn, x2] . . . V[xn]

 ,

mit V[xi] = C[xi, xi], i = 1, . . . , n als eindimensionale Varianzen.

Die eingeführten Operatoren bilden wichtige Werkzeuge innerhalb der Wahrscheinlich-
keitstheorie. Neben ihrer Definition, ist es hilfreich zwei bestimmte Rechenregeln für die
Umformung von wiederkehrenden Ausdrücken zu kennen. Zum einen liegen häufig zwei
Zufallsvektoren x,y gleicher Dimension vor, an deren Summe z = x+y man interessiert
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ist oder genauer nur an dem Erwartungsvektor µz und der Varianzmatrix Σz. In diesem
Szenario können die Beziehungen

µz = E[z] = E[x+ y] = E[x] + E[y]

= µx + µy,

Σz = V[z] = V[x+ y] = V[x] + V[y] + C[x,y] + C[y,x]

= Σx +Σy +Σxy +Σyx

(2-10)

angegeben werden [DFO20]. Zum anderen kann oft ein linearer Zusammenhang zwischen
den Zufallsvariablen x und y über y = Ax+ b mit A ∈ Rny×nx und b ∈ Rny zugrunde
gelegt werden. Sind die Momente (µx,Σx) des Eingangs x bekannt, so lassen sich die
Momente des Ausgangs y direkt angeben über [DFO20]

µy = E[y] = E[Ax+ b] = AE[x] + b = Aµx + b,

Σy = V[y] = V[Ax+ b] = AV[x]AT = AΣxA
T .

(2-11)

2.2.3 Transformationssatz und Bayessche Regel

Die lineare Abhängigkeit zweier Zufallsvariablen x,y aus (2-11) stellt einen besonderen
Spezialfall dar. Für den allgemeineren Fall eines nichtlinearen Zusammenhangs
x = g(y) : Rny → Rnx ist der Transformationssatz [Bis06] ein Hilfsmittel, um die Wahr-
scheinlichkeitsdichtefunktion einer Variablen durch die Wahrscheinlichkeitsdichtefunkti-
on der anderen Variablen auszudrücken. Die zugehörige Vorschrift lautet

py(y) = px(x)

∣∣∣∣dxdy
∣∣∣∣ = px(g(y))

∣∣∣∣dg(y)dy

∣∣∣∣, (2-12)

wobei | · | die Determinante und dx/dy die Jacobimatrix sind. Die Determinante stellt
einen Skalierungsfaktor dar, welcher sicherstellt, dass bei der Veränderung der Variable
die Axiome der Wahrscheinlichkeitstheorie (2-6) weiterhin eingehalten werden. Eine bei-
spielhafte Anwendung des Transformationssatzes für die Bewegungsgleichung eines Pen-
dels wurde dem Anhang hinzugefügt (s. (A1-1)).

Zuletzt wird die Bayessche Regel [Bis06], auch Satz von Bayes genannt, erläutert. Diese
ist ein grundlegendes Werkzeug in der Stochastik und ermöglicht es, Wahrscheinlichkei-
ten auf der Basis von weiteren Informationen zu aktualisieren. Sie ist damit für zahlreiche
Anwendungsfelder relevant, insbesondere wenn es um die kontinuierliche Datenverarbei-
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tung von unsicheren Ereignissen geht. Formal ergibt sich der Satz von Bayes als Konse-
quenz aus den bereits eingeführten Produkt- und Summenregeln (2-7) zu:

p(x | y)p(y) = p(y | x)p(x) ⇔ p(x | y)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(y | x)

Prior︷︸︸︷
p(x)∫

p(y | x)p(x)dx︸ ︷︷ ︸
Evidence

. (2-13)

Aufgrund ihres hohen Stellwerts haben die einzelnen Komponenten ihre eigenen Bezeich-
nungen (Prior, Likelihood, Posterior, Evidence) erhalten. Im Grunde bietet die Bayessche
Regel die Möglichkeit bedingte Wahrscheinlichkeitsverteilungen ineinander umzurech-
nen, weswegen in diesem Kontext häufig auch von einer Inversion der Verteilungen ge-
sprochen wird. Eine besondere Bedeutung kommt den einzelnen Bestandteilen im Zu-
sammenhang mit dem maschinellen Lernen zu. Der Prior p(x) beinhaltet das Vorwissen
über die Zufallsvariable x, bevor etwaige Beobachtungen über die Zufallsvariable y ge-
macht wurden. Beim maschinellen Lernen stellt x bspw. den Parametervektor θ eines
künstlichen neuronalen Netzes dar. y steht dann für die Trainingsdaten D, mit deren
Hilfe die Parameter bestimmt werden sollen. Der Likelihood-Ausdruck p(D | θ) gibt
somit indirekt an, wie hoch die Wahrscheinlichkeit für die gegebenen Daten unter der
Voraussetzung für einen bestimmten Parametervektor ist. Zusammen mit dem Prior p(θ),
welcher das Vorwissen über die Parameter des künstlichen neuronalen Netzes beschreibt,
wird über die Bayessche Regel die Posterior-Verteilung p(θ |D) berechnet. Die Evidenz
bzw. der Nenner führt dabei zur Normalisierung, wodurch das erste Axiom eingehalten
wird. Der Posterior spiegelt die Berücksichtigung der beobachteten Daten wider und wird
daher als Update für den Prior angesehen.

2.2.4 Univariate und multivariate Normalverteilung

In der Wahrscheinlichkeitstheorie gibt es zahlreiche nennenswerte Wahrscheinlichkeits-
dichtefunktionen p(x), die von besonderer Bedeutung sind. Die mit Abstand bedeutends-
te Verteilung stellt die Normal- oder auch Gaußverteilung dar. Ihren hohen Stellenwert
erhält sie dadurch, dass sie bei vielen natürlichen Prozessen auftritt, so unter anderem
auch beim Messrauschen von Sensorsignalen eines mechatronischen Systems. Des Wei-
teren sind ihre charakteristischen Parameter, die ihre nominale Gestalt festlegen, für den
Menschen intuitiv interpretierbar und damit leicht nachvollziehbar.



32 2 Mathematische Grundlagen

Bild 2-4: Multivariate (links) und (bedingte) univariate Normalverteilung (rechts).

Bild 2-4 zeigt beispielhaft die Form der PDF für den ein- und zweidimensionalen Fall. Im
eindimensionalen Fall x ∈ R wird die univariate Normalverteilung über

x ∼ Nx(µ, σ
2) =

1√
2πσ2

exp
(
− 1

2σ2
(x− µ)2

)
angegeben, wobei das ”∼”-Symbol bedeutet, dass die Zufallsvariable der Verteilung auf
der rechten Seite folgt. Alternativ wird auch geschrieben p(x) = N (µ, σ2). Die Ver-
teilung wird eindeutig durch den Erwartungswert µ und die Varianz σ2 charakterisiert,
welche ihre Parameter darstellen. Ihren hohen Rang erhält die Normalverteilung unter
anderem aufgrund der Tatsache und Besonderheit, dass die Parameter (µ, σ2) mit den Be-
rechnungen für die Momente (E[x],V[x]) übereinstimmen. Dies ist für andere bekannte
Verteilungen nicht der Fall. Die Verallgemeinerung für den höher-/mehrdimensionalen
Fall x ∈ Rn lautet formal

x ∼ Nx(µ,Σ) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2-14)

wobei von der multivariaten Normalverteilung gesprochen wird. Der Exponent
(x− µ)TΣ−1(x− µ) wird als quadratisches Mahalanobis Distanzmaß [DFO20] bezeich-
net und definiert im zweidimensionalen Fall eine ellipsenförmige Darstellung über die
Höhenlinien der Verteilungsfunktion. Mit den Dimensionen µ ∈ Rn und Σ ∈ Rn×n er-
gibt sich die Anzahl der Parameter zu 2n+n(n+1)

2
, da die Kovarianzmatrix symmetrisch

und positiv definit ist. Wie im eindimensionalen Fall stimmen die Parameter mit den ers-
ten beiden Momenten überein. In Hinblick auf Bild 2-4 wird ersichtlich, dass sich das
Maximum der PDF immer beim Erwartungswert befindet und sich die Dichte nach außen
hin kontinuierlich gegen den Wert null verringert. Die Abfallrate wird dabei durch den
Wert der Varianz bestimmt. Je größer die Varianz, desto weitreichender das Gebiet, wel-
ches durch einen signifikanten Wert der PDF abgedeckt wird. In Bild 2-4 (links) wird ein
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formaler Zusammenhang zwischen der zweidimensionalen und eindimensionalen Nor-
malverteilung angedeutet, welcher erst im Abschnitt 2.4.1 näher erläutert wird.

Für einige Anwendungen ist es notwendig, die Ableitung der stochastischen Variable x

nach der Parametrierung der zugrundeliegenden PDF, d. h. dx
dµ
, dx
dΣ

für den Fall einer Nor-
malverteilung, zu kennen. Hierfür ist der sogenannte Reparametrisierungstrick [DFO20]
ein wichtiges Hilfsmittel. Ausgehend von einer Standardnormalverteilung y ∼ N (0, In),
mit In als Einheitsmatrix der Dimension n, gilt für die betrachtete Zufallsvariable x der
Zusammenhang

x = µ+Ly, x ∼ N (µ,Σ), mit LLT = Σ. (2-15)

Das Produkt LLT stellt die Cholesky-Zerlegung dar. Auf diese Weise lässt sich der sto-
chastische Gradient (bzgl. der Parametrierung) auf eine deterministische Betrachtungs-
weise zurückführen und entsprechend einfach berechnen.

2.2.5 Numerische Approximation

Ebenso wie in anderen mathematischen Themengebieten, werden auch in der Wahrschein-
lichkeitstheorie numerische Approximationsverfahren eingesetzt, um komplizierte Aus-
drücke für die eine analytische Herleitung zu aufwendig oder gar unmöglich aufzustellen
ist, zumindest näherungsweise berechenbar zu machen. Von der Vielzahl von Verfahren
wird an dieser Stelle die Monte-Carlo (MC) Methode [DFO20] vorgestellt. Das Grund-
prinzip besteht darin, die Approximation auf der Grundlage von generierten Zufallszahlen
vorzunehmen. Dabei gilt der Zusammenhang, dass die Anzahl der verwendeten Zufalls-
zahlen die Güte der Approximation bestimmt. Zwei sehr häufig anfallende Ausdrücke
involvieren die Berechnung des Erwartungswertoperators und die Integration über eine
Zufallsvariable (bspw. zur Marginalisierung). Die statistische Schätzung für den Erwar-
tungswert für eine Funktion f(x) und die Zufallsvariable x lautet

E[f(x)] ≈ 1

ns

ns∑
i=1

f(xi), xi ∼ p(x),

wobei ns die Anzahl der Zufallszahlen, welche auch Partikel oder Sample genannt wer-
den, angibt und der zugrundeliegenden PDF p(x) folgen. Die Schätzung der Approxima-
tion ist asymptotisch konsistent, da

lim
ns→∞

1

ns

ns∑
i=1

f(xi) =

∫
f(x)p(x)dx,
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gilt und sich die Summe dem Integral für zunehmende Partikelanzahl annähert [DFO20].
Außerdem ist der Schätzer unverzerrt (unbiased) von bspw. einem konstanten Störfaktor,
der den Wert der Approximation negativ beeinflussen würde. Neben der Approximation
des Erwartungsoperators, wird der MC Ansatz auch für die Integration über eine Zufalls-
variable (Marginalisierung) über z. B.

p(x) =

∫
p(x | y)p(y)dy ≈ 1

ns

ns∑
i=1

p(x | yi), yi ∼ p(y),

benutzt.

Offen bleibt die Frage nach der Berechnung der Zufallszahlen mittels eines determinis-
tisch arbeitenden Rechners, welcher keinen Zugang zu einem stochastischen natürlichen
Prozess, wie dem Rauschen eines Sensorsignals, hat. In diesem Fall generiert der Rechner
Pseudo-Zufallszahlen auf der Basis einer geeigneten Iterationsvorschrift, deren Vorhersa-
ge anhand der Zahlen idealerweise schwer vorhersagbar ist. Die Simulation eines Dop-
pelpendels bietet sich z. B. für eine solche Vorschrift an, da das chaotische Verhalten des
Systems die Zufälligkeit der Zahlenfolge begünstigt. An dieser Stelle zeigt sich eine inter-
essante Querverbindung von dynamischen Systemen und der Wahrscheinlichkeitstheorie,
welche nicht nur bei der Erzeugung von Zufallszahlen auftritt, sondern auch bei anderen
Fragestellungen von Bedeutung ist. Eine andere moderne Anwendung findet sich bei der
Generierung von hoch dimensionalen Zufallszahlen, welche von der Posterior-Verteilung
im Rahmen der Bayesschen Regel (vgl. (2-13)) stammen. Hierbei wird der sogenann-
te Hamilton-Markov-Chain-Monte-Carlo (HMCMC) Ansatz [Bet17] verwendet, welcher
die gleichnamige hamiltonsche Physik ausnutzt, um sich zu stabilisierende Iterationsvor-
schriften für die Erzeugung von Partikeln der Posterior-Verteilung zu bestimmen. Dabei
wird die Folge von Zufallszahlen wie ein dynamisches System mit einer bestimmten Tra-
jektorie aufgefasst, welche sich auf einem konstanten Energieniveau aufhält. Im Rahmen
dieser Arbeit wird dieser Ansatz nicht verwendet, bietet jedoch einige interessante wei-
terführende Fragestellungen und Forschungsansätze, um die hier behandelten Verfahren
zu verbessern und weiterzuentwickeln.

Des Weiteren sind für die Praxis der empirische Erwartungsvektor µ̂ und die empirische
Kovarianzmatrix Σ̂ höchst relevant,

E[x] ≈ 1

ns

ns∑
i=1

xi =: µ̂,

V[x] ≈ 1

ns

ns∑
i=1

(xi − E[x])(xi − E[x])T =: Σ̂,

(2-16)
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wobei für die Berechnung der empirischen Kovarianzmatrix in der Regel nicht der wahre
Erwartungsvektor E[x] zur Verfügung steht und durch den empirischen Erwartungsvektor
µ̂ ausgetauscht werden muss. In diesem Fall ist die Schätzung allerdings verzerrt (biased)
und muss für die Konsistenz durch den Vorfaktor 1

ns−1
anstelle von 1

ns
für ns > 1 korri-

giert werden [Bis06].

2.3 Anwendung der Wahrscheinlichkeitstheorie auf
Pendeldynamik

Um die bereits eingeführten Begrifflichkeiten und Rechenregeln besser nachvollziehen
zu können und einen Transfer zur Regelungstechnik herzustellen, wird als nächstes die
Wahrscheinlichkeitstheorie auf bestimmte regelungstechnische Fragestellungen angewen-
det. Auf diese Weise können die entwickelten Verfahren zur Inbetriebnahme innerhalb der
Hauptkapitel für den Leser besser nachvollzogen werden.

2.3.1 Parameteridentifikation mittels Bayesscher linearer Regression

Im Rahmen des modellbasierten Reglerentwurfs und der damit verbundenen physikali-
schen Modellbildung wird eine Parameteridentifikation für das Dynamikmodell durch-
geführt. Dabei wird in ähnlicher Weise zum maschinellen Lernen anhand von gemesse-
nen Zustandsdaten die Parametrierung über die Lösung eines Optimierungsproblems be-
stimmt. Die zugehörige Zielfunktion wird dabei so formuliert, dass eine robuste Parame-
trierung resultiert, die das dynamische Verhalten bestmöglich verallgemeinert und nicht
nur für den Bereich, in welchem die Daten aufgenommen wurden, geeignet ist. Die Bayes-
sche Regel (2-13) bietet in Verbindung mit der linearen Regression ein mächtiges Werk-
zeug für eine erweiterte Parameteridentifikation. Der Vorteil gegenüber einer regulären
linearen Regression ist, dass sich die Unsicherheit über die nominalen Parameterwerte
angeben lassen und ihr Einfluss auf Vorhersagen berücksichtigt werden kann. Illustrativ
wird der Ansatz der Bayesschen linearen Regression [Bis06] zur Parameteridentifkation
für ein unaktuiertes Pendel vorgestellt. Den Ausgangspunkt bildet die Bewegungsglei-
chung des Systems

φ̈ = − g

l︸︷︷︸
=:w1

sin(φ)− d

ml2︸︷︷︸
=:w2

φ̇ =
[
− sin(φ) −φ̇

]
︸ ︷︷ ︸

=:ϕ(x)T

[
w1

w2

]
, (2-17)

wobei vereinfachend die Substitutionen w1 := g/l und w2 := d/(ml2) für die zu identi-
fizierenden Parameter eingeführt wurde. Die Rückrechnung auf l, d mit bekanntem g,m

ist über l = g/w1 und d = w2/(ml2) = (w2w
2
1)/(mg2) möglich. Die Zielsetzung bei den

nachfolgenden Ausführungen ist es, keine exakte Parametrierung für w anhand von Zu-
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standsmessungen zu identifizieren, sondern eine Wahrscheinlichkeitsverteilung p(w) auf
der Grundlage der Bayesschen Regel abzuleiten. Hiermit wird es dem Regelungstechni-
ker ermöglicht eine Aussage darüber zu treffen, wie das Ergebnis der Identifikation zu
bewerten ist und ob weitere Messungen notwendig sind, um die Genauigkeit zu erhöhen
bzw. die Unsicherheit in Bezug auf die Parametrierung zu verringern.

Zunächst wird im Sinne des maschinellen Lernens der Eingang bzw. Zustand als
x := [φ, φ̇]T und der Ausgang bzw. Beschleunigung mit φ̈(x;w) = ϕ(x)Tw definiert.
Dementsprechend werden die aufgenommenen Messdaten (nd an der Zahl) über die Ein-
gangsmatrix X = [x1, . . . ,xnd

] ∈ Rnx×nd und den zugehörigen Ausgangsvektor
Y = [y1, ..., ynd

]T ∈ Rnd angegeben. Aus der Definition des Ausgangs, bzw. der Bewe-
gungsgleichung des Systems (2-17) folgt die Basisfunktion mit ϕ(x) : Rnx 7→ Rnb , mit
ϕi(x) : Rnx 7→ R, i = 1, . . . , nb, wobei für den hier beschriebenen Fall nb = 2 gilt.
Da von nicht ideal aufgenommenen Messdaten ausgegangen werden soll, wird von einem
normalverteilten mittelwertfreien Messrauschen mit einer Varianz von σ2

n am Ausgang
ausgegangen. Damit lautet die weitere Annahme yi = φ̈(xi;w)+ ϵi, ϵi ∼ N (0, σ2

n), bzw.
unter Berücksichtigung von (2-15) die zugehörige PDF:

p(y | w) = N (φ̈(x;w), σ2
n).

Für die Gesamtheit aller Ausgangsdaten Y ergibt sich somit der Ansatz für die Like-
lihoodfunktion aus (2-13) zu

p(Y | w) =

nd∏
i=1

N (ϕ(xi)
Tw, σ2

n) = N (Φ w, σ2
nInd

), (2-18)

mit der Gramschen Matrix Φ := [ϕ(x1), . . . ,ϕ(xnd
)]T ∈ Rnd×nb , welche die Transfor-

mation der Eingangsdaten über die Basisfunktionen beschreibt. Die Likelihood-Verteilung
ordnet damit jeder Parametrisierung einen bestimmten Wahrscheinlichkeitsdichtewert zu.
Da es sich bei (2-18) insbesondere für große nd um ein Produkt von ggf. kleinen Zahl-
werten nahe null handelt und dies zu numerischen Problemen auf einem Rechner führen
kann, wird anstelle der Likelihood üblicherweise die logarithmische Likelihood

log p(Y | w) = − 1

2σ2
n

(Y −Φw)T (Y −Φw)− nd

2
log(2πσ2

n) (2-19)

betrachtet. Auf diese Weise wird aus dem Produkt eine Summe, die vorteilhaft bei der
numerischen Umsetzung ist.
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Eine Möglichkeit die Parameter nun zu bestimmen, ist über die Maximierung der loga-
rithmischen Likelihood (ML), wobei die analytische Lösung aus d log p(Y |w)

dw

!
= 0 zu dem

Ergebnis

wML = (ΦTΦ)−1ΦTY (2-20)

führt. Dies entspricht der Lösung der kleinsten Fehlerquadrate, welche normalerweise
beim klassischen modellbasierten Entwurf zum Einsatz kommt. Der hier vorgestellte An-
satz der Bayesschen linearen Regression ist damit konsistent zum herkömmlichen Vorge-
hen und erweitert ihn damit um probabilistische Überlegungen.

Für die Anwendung der Bayesschen Regel wird die Parametrierung w als Zufallsvektor
definiert und eine Prior-Verteilung p(w) = N (µw,Σw) eingeführt. Die Prior-Verteilung
beinhaltet das Vorwissen, welches vor der Aufnahme der Daten bekannt ist, und wird
über die Festlegung des Erwartungsvektors µw, also der bestmöglichen Schätzung für die
Parameter, und der Kovarianzmatrix Σw, womit die Unsicherheit über die Parametrisie-
rung ausgedrückt wird, aufgestellt. Die Anwendung von (2-13) unter Vernachlässigung
des Nenners p(Y ) führt anschließend auf

p(w | Y ) ∝ p(Y | w)p(w) = N (Φw, σ2
nInd

)N (µw,Σw).

Die Evidenz p(Y ) ist die Integrationskonstante zur Erfüllung des zweiten Axioms der
Wahrscheinlichkeitstheorie (2-6) und erschließt sich aus der Tatsache, dass das Produkt
zweier Normalverteilungen wiederum auf eine Normalverteilung führt (vgl. (A1-2) im
Anhang), deren Normalisierungsfaktor aus der bekannten Form einer Normalverteilung
(2-14) bestimmbar ist. Die analytische Lösung der Posterior-Verteilung kann dementspre-
chend kompakt mit

p(w | Y ) = N (µw|Y ,Σw|Y ),

µw|Y = Σw|Y (Σ
−1
w µw + 1

σ2
n
ΦTY ),

Σw|Y = (Σ−1
w + 1

σ2
n
ΦTΦ)−1,

(2-21)

angegeben werden [Bis06]. Für einen nicht informativen Prior, der eine unendliche ho-
he Unsicherheit aufweist Σw → ∞, folgt aus der Posterior-Gleichung die Lösung des
Maximum Likelihood Ansatzes µw|Y → wML, womit die Konsistenz gegeben ist.

Vor dem Hintergrund eines online lernfähigen Algorithmus oder dem Lernen auf kontinu-
ierlichen Datenströmen bietet das Rahmenwerk der Bayesschen linearen Regression eine
intuitive Interpretationsmöglichkeit. Ausgehend von einer aktuell bekannten Posterior-
Verteilung kann diese für neue erfasste Daten als Prior-Verteilung für eine weitere An-
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wendung der Bayesschen Regel verwendet werden. Auf diese Weise ergibt sich insge-
samt ein iteratives Vorgehen, wobei neue Daten zu einem Update des Posteriors führen.
Für die praktische Anwendung ist es notwendig, dass der Prior nicht zu restriktiv für zu-
mindest theoretisch mögliche Werte von w ist. Sind beispielsweise die Funktionswerte
des Prior in einem bestimmten Gebiet, welches jedoch durch die Daten abgedeckt wird,
zu gering, so wird das Update über die Bayessche Regel sehr viele Daten benötigen, um
die fehlerhafte Annahme zu korrigieren. Im Extremfall weist der Prior für das Gebiet
keine Wahrscheinlichkeitsdichte (entspricht theoretisch unmöglich) auf, sodass durch die
Anwendung der Bayesschen Regel ausgeschlossen ist, dass der Posterior eine bestimm-
te Dichte in dem Gebiet erhält. Dies ist auf die multiplikative Vorschrift der Bayesschen
Regel zurückzuführen. Grundsätzlich lässt sich zudem festhalten, dass je mehr Daten vor-
liegen, desto irrelevanter wird der Einfluss des Priors (und umgekehrt). Des Weiteren ist es
entscheidend, welcher formale Ansatz für die Likelihoodfunktion und den Prior gemacht
werden. Im obigen Beispiel wurde für beide eine Normalverteilung angenommen, was je
nach Anwendungsfall und Datenbeschaffenheit nicht der Fall sein muss und ggf. durch
andere Verteilungen besser abgebildet werden kann. Dementsprechend kann allerdings
auch die analytische Berechenbarkeit verloren gehen, was zu aufwendigeren Berechnun-
gen über numerische Approximationen führt.

Die Einführung des Parametervektors w als Zufallsvariable bietet im Zusammenhang mit
dem Posterior die Möglichkeit die Auswirkung auf die ursprüngliche Bewegungsglei-
chung (2-17) zu untersuchen. Hierzu wird die sogenannte prädiktive Verteilung [Bis06]
der Ausgangsgröße bzw. Winkelbeschleunigung

p(y | Y ) =

∫
p(y | Y ,w)p(w | Y )dw

=

∫
N (φ̈(x;w), σ2

n)N (µw|Y ,Σw|Y )dw

= N (ϕ(x)Tµw|Y ,
1
σ2
n
+ ϕ(x)TΣw|Yϕ(x))

(2-22)

gebildet, wobei über die normalverteilte Parametrierung integriert wird (s. (A1-3)). Die
Vereinfachung p(y | Y ,w) = p(y | w) ist dabei zulässig, da keine Abhängigkeit zu den
Daten besteht. Zur Veranschaulichung der Zusammenhänge dient Bild 2-5. Im oberen,
linken Teilbild ist die Phasenebene des Pendels abgebildet. Die Farbe des Hintergrunds
gibt die Höhe der Winkelbeschleunigung an (vgl. (2-17) und Bild 2-2). Außerdem ist
in schwarz eine Trajektorie des Systems zu sehen, von welcher die roten Messpunkte
ausgewählt wurden. Anhand dieser Messpunkte wird die Bayessche lineare Regression
durchgeführt. Hierzu wird der Prior im oberen, rechten Teilbild als Vorwissen eingeführt.
Der rote Diamant kennzeichnet die wahre Parametrierung des Systems (beim maschinel-
len Lernen wird hierfür der Begriff Ground Truth benutzt). Es ist gut erkennbar, dass der



2.3 Anwendung der Wahrscheinlichkeitstheorie auf Pendeldynamik 39

Bild 2-5: Probabilistische Parameteridentifikation für das Pendel mittels Bayesscher li-
nearer Regression.

Mittelwert des Priors noch nicht mit dem Ground Truth übereinstimmt und die Varianz
eine hohe Unsicherheit ausdrückt. Durch Anwendung von (2-21) und Berücksichtigung
der Messdaten ergibt sich das untere, linke Teilbild für die Posterior-Verteilung. Der Er-
wartungswert stimmt nun fast mit dem Ground Truth überein und die Unsicherheit ist
größtenteils verschwunden, sodass der Schätzung vertraut werden kann. Das untere, rech-
te Teilbild zeigt die Funktion der Bewegungsgleichung (2-17) für die Fixierung φ̇ = 0

(aus Darstellungsgründen) in grün, sowie ihre Prädiktion (2-22) in Form des Erwartungs-
wertes (blaue Linie) und der dreifachen Standardabweichung (blaue Fläche). In Bezug
auf die Identifikationsaufgabe steht dem Regelungstechniker nun nicht nur eine nominale
Schätzung der Parametrierung (repräsentiert durch µw|Y ) zur Verfügung, sondern auch
ein Maß (in Form der Varianz) zur Beurteilung der Aussagekraft. Damit kann entschie-
den werden, ob die Anzahl der Daten ausreichend ist oder ob weitere Daten für eine ge-
nauere Identifikation erforderlich sind. Des Weiteren kann über die prädiktive Verteilung
direkt die Auswirkung der Parametrierung auf die Dynamik des Systems abgeschätzt wer-
den und diese bei nachfolgenden Stabilitätsuntersuchungen und dem Regelungsentwurf
einbezogen werden. Bisher wurde nur die Parametrierung eines dynamischen Systems
als Zufallsvariable aufgefasst, allerdings zeigt sich durch die direkte Abhängigkeit, dass
damit gleichermaßen auch der Zustand als Zufallsvariable betrachtet werden muss. In
diesem Fall ist momentan unklar, wie eine Simulation bzw. Langzeitprädiktion mit dem
probabilistischen Modell durchgeführt werden kann. Im nächsten Abschnitt wird diese
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Fragestellung behandelt und der Einfachheit und Übersicht halber nur von einer Wahr-
scheinlichkeitsverteilung für den Zustand ausgegangen und die unsichere Parametrierung
vernachlässigt.

2.3.2 Zustandspropagation mittels Moment Matching, Linearisierung und

Unscented Transform

Die nachfolgenden Überlegungen werden weiterhin am Beispiel des Pendels mit dem
nichtlinearen Zustandsraummodell

ẋ = f(x,u) =

[
x2

−gl sin(x1)− dJx2 + Jiu

]
, (2-23)

vorgestellt, wobei zusätzlich eine Stellgröße u berücksichtigt wird. Zur besseren Übersicht
wurden die Substitutionen gl := g/l, dJ := d/(ml2) und Ji := 1/(ml2) eingeführt. Des
Weiteren wird zur Simulation des Systems das Euler-Integrationsschema mit

xk+1 = xk +∆tf(xk,uk) (2-24)

vorausgesetzt, womit ausgehend von einem Anfangszustand und bekannten Steuerungs-
größen eine deterministische Langzeitprädiktion durchgeführt werden kann. Das Ziel
dieses Abschnitts ist verschiedene Iterationsvorschriften zur probabilistischen Langzeit-
prädiktion kennen zu lernen. Genau genommen handelt es sich bei den Verfahren um
eindeutige Berechnungsgleichungen, ähnlich zu (2-24), die damit als deterministisch be-
zeichnet werden müssten. Zur Kenntlichmachung des Kontextes und weil sie den wahr-
scheinlichkeitsbasierten Überlegungen zugeordnet sind, werden sie im Rahmen dieser
Arbeit allerdings als probabilistisch bezeichnet. Die Ausgangssituation bildet ein normal-
verteilter Zustandsvektor (im Zeitschritt k)

xk ∼ N (mxk
,Sxk

),

mit Zustandserwartungsvektor mxk
und Zustandskovarianzmatrix Sxk

. Zur besseren Un-
terscheidung werden die Parameter der Normalverteilung, wenn sie sich auf einen Zu-
stand beziehen, mit (m,S) anstelle von (µ,Σ) beschrieben. Die Stellgröße uk bleibt wei-
terhin deterministisch, sodass für sie keine Verteilung angenommen wird. Eine äquivalente
Betrachtung ist uk ∼ N (muk

,0). Der Grund hierfür ist, dass die Stellgröße durch die
Steuereinheit dem System eindeutig vorgegeben werden kann und damit keine Unsicher-
heit über ihren Wert beinhaltet. In der Praxis könnten bspw. Fehler des Aktors zu einer
Unsicherheit der Stellgröße führen, allerdings sollen solche Fälle in dieser Arbeit nicht
betrachtet werden. Ausgehend von einem unsicheren aktuellen Zustand xk, stellt sich die
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Frage nach der zugehörigen Folgezustandsverteilung p(xk+1). Da es sich bei (2-23) um
einen nichtlinearen Ausdruck handelt, müsste für die Berechnung der Transformations-
satz aus (2-12) angewendet werden. Aufgrund der beinhaltenden Terme ist die Berech-
nung allerdings analytisch als auch numerisch bereits für einfache Nichtlinearitäten auf-
wendig. Außerdem wird das Ergebnis der Folgezustandsverteilung keiner formal definier-
ten Verteilung folgen, sondern eine beliebige Verteilung sein, welche schwierig für den
Menschen interpretierbar ist. Es wird zudem kompliziert sein mit dieser Verteilung die
darauffolgende Folgezustandsverteilung p(xk+2) zu berechnen und eine effiziente Lang-
zeitprädiktion für weitere Zeitschritte aufzustellen. Eine gängige Alternative stellt daher
der sogenannte (exakte) Moment Matching (MM) Ansatz dar [DFR15]. Dabei wird die
Folgezustandsverteilung bestmöglich durch eine Normalverteilung approximiert

p(xk+1) ≈ N (mxk+1
,Sxk+1

),

womit die Nachteile der exakten Berechnung behoben werden. Aufgrund der Tatsache,
dass die Normalverteilung unimodal ist, bzw. nur ein einziges Maximum besitzt, kann
durch diesen Approximationsansatz eine multimodale Zustandsverteilung nicht abgebil-
det werden, welche insbesondere bei probabilistischen Langzeitprädiktionen oft ausge-
prägt ist (vgl. Abschnitt 2.3.3). In Bezug auf die Langzeitprädiktionen (in diesem Kontext
auch Zustandspropagation genannt) bietet das MM jedoch einen wesentlichen Vorteil,
da die Klasse der Normalverteilungen für alle Zeitschritte nie verlassen wird und da-
mit der Berechnungsaufwand konstant bleibt. Speziell im Zusammenhang mit Optimie-
rungsproblemen, welche direkt auf der Zustandspropagation aufbauen, spielt dies eine
entscheidende Rolle bei der praktischen Realisierbarkeit auf einem Rechner. Des Weite-
ren wird sich der Regelungstechniker bei der Auswertung der probabilistischen Simula-
tion in der Regel nur am Erwartungswert und der Varianz des Zustands orientieren, um
eine Einschätzung des dynamischen (geregelten) Systemverhaltens zu erhalten. Multimo-
dale Zustandsverteilung sind vor diesem Hintergrund nicht zweckmäßig und würden in
den meisten Fällen auf eine nicht funktionierende Steuerung/Regelung hindeuten, welche
auch durch die Größe der Zustandsvarianz alleine beschrieben wird. Eine tiefer gehende
Auseinandersetzung mit diesem Thema wird in den Hauptkapiteln dieser Arbeit vorge-
nommen.

Nachfolgend werden drei Möglichkeiten beschrieben, um die Parametrierung der normal-
verteilten Folgezustandsverteilung (mxk+1

,Sxk+1
) zu berechnen. Die erste Möglichkeit

ist die (exakte) analytische Berechnung über die eingeführten Definitionen zum Erwar-
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tungsvektor (2-8) und der Varianzmatrix (2-9). Beispielhaft für das betrachtete Pendel-
system (2-23) ergibt sich der Zustandserwartungsvektor zu

mMM
xk+1

= E[xk+1]

= E[xk] + ∆t

[
E[x(2)

k ]

−glE[sin(x(1)
k )]− dJE[x(2)

k ] + Jiuk

]

= mxk
+∆t

[
m

(2)
xk

−gl exp(−1
2
S
(1,1)
xk ) sin(m

(1)
xk )− dJm

(2)
xk + Jiuk

]
,

(2-25)

wobei die Zahlen in den hochgestellten Klammern auf das Vektorelement referenzieren.
Da es sich um das exakte Moment handelt, wird zudem das hochgestellte MM verwen-
det. Anhand der Gleichung ist erkennbar, dass die Entwicklung des Erwartungsvektors
nicht nur vom vorherigen Erwartungsvektor mxk

abhängt, sondern auch von der Kova-
rianzmatrix Sxk

. Insgesamt unterscheidet sich die Vorschrift nicht sonderlich von jener
im deterministischen Fall. Im Grunde kommt lediglich der Vorfaktor exp(−1

2
S
(1,1)
xk ) hin-

zu. Eine Interpretation dieses Faktors lässt die Limes-Betrachtung zu. Für den Spezialfall
S
(1,1)
xk → 0, in welchem es keinerlei Unsicherheit über den Zustand des Pendels gibt, strebt

der Faktor exp(−1
2
S
(1,1)
xk ) → 1, womit letztendlich die bekannte deterministische Euler-

Integrationsgleichung zurückerhalten wird (vgl. (2-24)). (2-25) stellt damit eine Erweite-
rung des herkömmlichen Modellbegriffs um eine probabilistische Betrachtungsweise dar.
Diese Ansicht lässt sich somit unmittelbar in die regelungstechnischen Zusammenhänge
einbinden, welche in den Hauptkapiteln ausgeführt wird. Das andere Extrem der Limes-
Untersuchung ist S(1,1)

xk →∞mit exp(−1
2
S
(1,1)
xk ) = 0. Dies bedeutet, dass sich das Pendel

überall im Zustandsraum gleichermaßen häufig aufhält und somit die Multiplikation mit
dem Vorfaktor zur Vernachlässigung der Gravitationskraft führt. Anschaulich lässt sich
dieser Fall interpretieren, wenn man sich unendlich viele Realisierungen des Zustands
(und damit des Pendels) vorstellt. Aufgrund von S

(1,1)
xk → ∞ sind die Pendel über den

ganzen Zustandsraum gleichmäßig verteilt, sodass sich zumindest in der Erwartungswert-
betrachtung die Gravitationskraft aller Pendel gegenseitig aufheben würde, wodurch der
entsprechende Term in (2-25) entfällt. Die Zustandskovarianzmatrix lässt sich über (2-10)
und (2-11) folgendermaßen berechnen

SMM
xk+1

= V[xk+1]

= V[xk]︸ ︷︷ ︸
=Sxk

+∆t2V[f(xk,uk)]︸ ︷︷ ︸
(A1-4)

+∆t
(
C[xk,f(xk,uk)]︸ ︷︷ ︸

(A1-5)

+C[xk,f(xk,uk)]
T
)
.

Die Ausdrücke wurden analytisch gelöst und aufgrund ihrer Länge dem Anhang hinzu-
gefügt. An ihnen wird ersichtlich, dass die Berechnung bereits für das einfache Pendel-
beispiel zu aufwendig ist und damit für die Praxis und beliebige mechatronische Systeme



2.3 Anwendung der Wahrscheinlichkeitstheorie auf Pendeldynamik 43

ungeeignet ist. Die beiden nachfolgenden Ansätze bieten im Bezug auf diesen Aspekt
eine effizientere Alternative.

Als Nächstes wird die Zustandspropagation mittels Linearisierung [Sim06] erläutert. Die
Grundidee ist die bereits bekannte Gleichung (2-11) direkt anwendbar zu machen, wobei
die lineare Transformation einer Normalverteilung wiederum auf eine Normalverteilung
führt. Für den Folgezustand wird dafür eine Taylorreihen-Entwicklung erster Ordnung
beim Erwartungswertvektor des aktuellen Zustands vorgenommen

xk+1 ≈mxk
+∆tf(mxk

,uk) +

(
Inx +∆t

df

dx

∣∣∣∣
x=mxk

)
(xk −mxk

)

=

(
Inx +∆t

df

dx

∣∣∣∣
x=mxk

)
︸ ︷︷ ︸

=:A

xk +∆t

(
f(mxk

,uk)−
df

dx

∣∣∣∣
x=mxk

mxk

)
︸ ︷︷ ︸

=:b

.

Anschließend lassen sich die ersten beiden Momente kostengünstig über (2-11) berech-
nen:

mL
xk+1

= Amxk
+ b = mk +∆tf(mxk

,uk),

SL
xk+1

= ASxk
AT .

Im direkten Vergleich zur analytischen Berechnung aus (2-25) fällt auf, dass der bespro-
chene Vorfaktor exp(−1

2
S
(1,1)
xk ) beim Ansatz der Linearisierung verloren geht. Die Appro-

ximationsgenauigkeit ist damit als schlechter einzustufen, wird jedoch durch die geringe
Berechnungskomplexität ausgeglichen. Der Ansatz der Linearisierung ist in der Rege-
lungstechnik nicht unbekannt, sondern erfährt beispielsweise weitverbreitete Anwendung
beim Beobachterentwurf mittels des Extended Kalman Filters (EKF) [Sim06; Ada14].
Das Beobachtungsgesetz des EKF lässt sich in diesem Zusammenhang auch aus der
Bayesschen Regel herleiten [Mur13], womit es eine interessante Querverbindung zwi-
schen der Regelungstechnik, der Wahrscheinlichkeitstheorie und dem maschinellem Ler-
nen gibt.

Das nächste Verfahren lehnt hieran an und bezieht sich auf den artverwandten Unscented

Kalman Filter (UKF) [Sim06]. Dieser stellt einen Spezialfall des übergeordneten Parti-
kelfilter (PF) dar, welcher sich auf den Überlegungen zur numerischen Approximation der
Momente aus Abschnitt 2.2.5 stützt. Die Grundidee ist die Momente, ähnlich zu (2-16),
über eine finite Anzahl von sogenannten Partikeln, d. h. wahrscheinlichen Realisierun-
gen der Zufallsvariable, abzuschätzen. Der UKF nutzt vor diesem Hintergrund eine stark
begrenzte Anzahl von Partikeln, deren Verortung im Zustandsraum anhand der resultie-
renden Approximationsgüte bestmöglich gewählt ist. Es handelt sich damit um eine ef-
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fiziente Variante des PF. Die Partikel werden in diesem Zusammenhang Sigma-Punkte

genannt und berechnen sich wie folgt:

x
(i)
s,k = mxk

+
(√

(κ+ nx)Sxk

)T
(i,:)

, i = 1, . . . , nx,

x
(i)
s,k = mxk

−
(√

(κ+ nx)Sxk

)T
(i,:)

, i = nx + 1, . . . , 2nx,

x
(2nx+1)
s,k = mxk

,

(2-26)

wobei der Ausdruck
(√

(κ+ nx)Sxk

)T
(i,:)

die i-te Zeile der Matrixwurzel darstellt und
über die Cholesky-Zerlegung berechnet wird. Die Variable κ ist ein Entwurfsparameter,
welcher vom Anwender in Abhängigkeit vom System gewählt wird. Die 2nx + 1 Sig-
ma Punkte werden anschließend über die Dynamikgleichung transformiert, bzw. auf den
Folgezustand abgebildet

x
(i)
s,k+1 = x

(i)
s,k +∆tf(x

(i)
s,k,uk), i = 1, . . . , 2nx + 1. (2-27)

Danach werden die Momente über

mUT
xk+1

=
2nx+1∑
i=1

W (i)x
(i)
s,k+1,

SUT
xk+1

=
2nx+1∑
i=1

W (i)(x
(i)
s,k+1 −mUT

xk+1
)(x

(i)
s,k+1 −mUT

xk+1
)T ,

mit Gewichtungsfaktoren W (i) =

 1
2(nx+κ)

, i = 1, ..., 2nx,

κ
nx+κ

, i = 2nx + 1,

(2-28)

approximiert. Wobei die Herleitung der Gewichtungsfaktoren auf einer bestmöglichen
Approximation der Momente basiert und die begrenzte Anzahl von Partikeln ausgleicht
[Sim06]. Durch die symmetrische Anordnung der Sigma-Punkte um den Erwartungsvek-
tor des aktuellen Zustands bzw. den wahrscheinlichsten Zustand werden die Folgemo-
mente effektiv erfasst, sodass sich insgesamt ein leicht berechenbares Verfahren mit einer
hohen Güte ergibt. Das beschriebene Vorgehen wird als Unscented Transform (UT) be-
zeichnet und bietet sich vor allem bei stark nichtlinearen Systemen an, weswegen es in
vielen Beobachtern umgesetzt wird. Im direkten Vergleich zum EKF wird beim UKF nicht
die zugrundeliegende Dynamikfunktion linearisiert, sondern viel eher die Wahrschein-
lichkeitsverteilung des Zustands selbst, wodurch die hohe Approximationsgüte nachvoll-
zogen werden kann [Sim06].

Bild 2-6 zeigt beispielhaft zwei probabilistische Simulationen für das Pendel (2-23) (links:
freie, unkontrollierte Schwingung und rechts: Bewegung mit konstant-wirkendem Dreh-
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Bild 2-6: Probabilistische Simulation eines im Gelenk aktuierten Pendels. Ge-
genüberstellung der Verfahren zur Zustandspropagation über mehrere Zeit-
schritte (Grün: Exaktes Moment Matching, rot: Linearisierung und blau: Un-
scented Transform).

moment), welche mit den drei vorgestellten Verfahren berechnet wurden. Die Mittellinie
ist jeweils der Erwartungswert des Zustands und das umliegende Band deutet die Unsi-
cherheit in Form der zweifachen Standardabweichung, kurz 2σ, an. Die Kovarianz ist in
dieser Darstellung nicht enthalten, sondern nur die Marginalverteilungen für die einzelnen
Zustände. Im ersten Szenario wird für das Pendel eine Zustandsverteilung vorgegeben, de-
ren Dichte sich größtenteils in der Nähe der oberen Ruhelage befindet. Gut erkennbar ist,
wie sich nicht nur die Mittelwerte schwingend verhalten, sondern auch die zugehörige Va-
rianz Zunahmen und Abnahmen erfährt. Die kleinste Unsicherheit tritt in der Regel kurz
vor einem Umkehrpunkt des Pendels auf. Durch die dissipative Reibung im System fallen
die Amplituden erwartungsgemäß mit der Zeit ab. Tatsächlich strebt die Verteilung für
t → ∞ auf die untere Ruhelage zu, sodass die Varianz komplett verschwindet Sxk

→ 0,
da sich bildlich gesprochen alle möglichen Pendelrealisierungen aufgrund der Reibung
nur in der unteren Ruhelage befinden und alle anderen Zustände komplett ausgeschlossen
werden können. Des Weiteren ist gut erkennbar, dass die drei besprochenen Verfahren
direkt hintereinander liegen und trotz ihrer verschiedenen Ansätze zum gleichen Ergeb-
nis führen. Im zweiten Szenario wird ein konstantes Drehmoment von u = 9.81 Nm

angelegt, so dass das Pendel anfängt, sich zu überschlagen. Nach einem kurzweiligen
Beschleunigungsvorgang nimmt die Zustandsverteilung eine gleichbleibende Form an,
wobei der Erwartungswert des Winkels zwar weiter anwächst; die zugehörige Varianz al-
lerdings nicht weiter zunimmt. Offensichtlich unterscheiden sich die drei Verfahren für
dieses Szenario in ihrer Qualität. Da der Moment Matching Ansatz auf einer exakten
analytischen Berechnung der Momente basiert, weist er die best-möglichste Qualität auf
und kann als Referenz für die beiden anderen Verfahren dienen. Die UT kommt sehr nah
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an das Ergebnis des MM, unterliegt jedoch gewissen Schwankungen in Bezug auf die
Winkelgeschwindigkeit. Dies kann auf die Nichtlinearität des Pendels zurückzuführen
sein und macht sich aufgrund der Integratorstruktur weniger deutlich im Verlauf des
Pendelwinkels bemerkbar. Die Linearisierung führt auf das schlechteste Ergebnis. Dies
ist darauf zurückzuführen, dass sich das anliegende Drehmoment und die Gewichtskraft
des Pendels ausgleichen und die Linearisierung ungefähr auf eine Einheitsmatrix führt,
sodass es durch die Zustandspropagation zu einer gleichbleibenden Zustandsverteilung
kommt. Bei der Anwendung der Verfahren sind solche Effekte zu berücksichtigen und
müssen - je nach System und vorhandenen Nichtlinearitäten - gegeneinander abgewogen
werden. Weiterführend wird die Zustandspropagation in Kapitel 4 für die hybride Op-
timalsteuerung verwendet, um möglicherweise vorhandene Modellfehler beim Entwurf
zu berücksichtigen. Als Fazit der hier besprochenen Ergebnisse wird festgehalten, dass
die UT der anderen Verfahren vorzuziehen ist, da sie einen guten Kompromiss zwischen
Genauigkeit und Berechnungsaufwand darstellt.

2.3.3 Annäherung an exakte Folgezustandsverteilung

Im vorherigen Abschnitt wurde davon ausgegangen, dass die Folgezustandsverteilung
als normalverteilt angenähert werden kann. Diese Annahme ist sinnvoll, da im Hinblick
auf Langzeitprädiktionen die Klasse der Normalverteilung nie verlassen wird und kos-
tengünstig berechenbar bleibt. Nachteilig ist, dass die Normalverteilung nur ein grobes
Bild über die Positionierung des Zustands wiedergibt und beispielsweise die Aussagekraft
einer möglicherweise multimodalen Verteilung verloren geht. Für die meisten Anwendun-
gen ist eine genaue Berechnung der Zustandsverteilung nicht zweckmäßig und zu aufwen-
dig. Der Vollständigkeit halber und vor dem Hintergrund besonderer Spezialfälle soll an
dieser Stelle eine genauere numerische Approximation für die Folgezustandsverteilung
vorgestellt werden. Die exakte Verteilung kann durch den MC Ansatz aus Abschnitt 2.2.5
angenähert werden. Dabei wird, wie beim PF, vorab eine finite Anzahl von Partikeln be-
stimmt und gleichermaßen zum deterministischen Fall eine Vorwärtsintegration für alle
Partikel durchgeführt. Das Ergebnis dieses Ansatzes für das Pendel ist in Bild 2-7 zu se-
hen. Die Anfangsverteilung startet zu einem großen Teil in der Nähe der oberen instabilen
Ruhelage. Von dieser Verteilung werden die Partikel durch zufälliges Sampling berech-
net, wobei der Zusammenhang gilt: je mehr Partikel eingesetzt werden desto höher ist die
Approximationsgüte. Anschließend werden die Partikel über die Systemdynamik trans-
formiert. Nach 5 Zeitschritten ergibt sich das mittlere Teilbild. Es ist gut zu erkennen,
dass die Verteilung stellvertretend für eine unendliche Anzahl von Pendeln steht, die sich
aus der oberen Ruhelage entfernen und an Geschwindigkeit aufnehmen. Nach 100 Zeit-
schritten hat sich die anfängliche Normalverteilung in zwei separate Grenzschwingungen
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Bild 2-7: Zeitliche Entwicklung der Zustandsverteilung des frei schwingenden Pendels
(2-23) (Links: normalverteilte Anfangsverteilung, mittig: Verteilung nach 5 Zeit-
schritten, rechts: Verteilung nach 100 Zeitschritten).

um die untere Ruhelage (um 2π versetzt) aufgespalten. Diese feine Zustandsverteilung
wäre mit dem Moment Matching Ansatz nur grob abgebildet worden und könnte ohne
vorhandenes Fachwissen falsch interpretiert werden. Der Erwartungsvektor der Vertei-
lung würde sich beispielsweise in der Mitte der Schwingungen befinden bzw. genau in der
oberen Ruhelage liegen. Tatsächlich befindet sich keines der Pendel zu diesem Zeitpunkt
mehr in dieser Position. Hierbei wird eine besondere Eigenschaft des Erwartungswerts of-
fensichtlich - er stellt lediglich ein Maß zur Beschreibung einer Verteilung dar und muss
zwangsläufig nicht Teil einer Menge von plausiblen Realisierungen sein. Des Weiteren
würde sich die Varianz über den gesamten Bereich der Schwingungen erstrecken und kei-
ne genaue Verortung der Pendel zulassen. Je nach Anwendungsfall ist in der Praxis also
abzuwägen, ob die Approximation mittels einer Normalverteilung ausreichend oder die
komplexere MC Simulation notwendig ist.

2.4 Maschinelles Lernen mittels Gauß-Prozess-Regression

Das maschinelle Lernen befasst sich im Allgemeinen mit der Gewinnung von Erkennt-
nissen und Mustern, die auf der Grundlage von datenbasierten Lernalgorithmen und nicht
durch eine explizite menschliche Programmierung erlangt werden. In diesem Rahmen
wird auch der Begriff einer KI verwendet. Für die in dieser Arbeit besprochene Aufga-
benstellung wird das maschinelle Lernen dazu eingesetzt, um den regelungstechnischen
Entwicklungsprozess unterstützend zu erweitern und zu vereinfachen. Insbesondere geht
es dabei darum, aus vorhandenen gemessenen Systemdaten, welche beispielsweise den
Zustand betreffen, gewinnbringende Erkenntnisse auszunutzen. Hierfür wurde innerhalb
der Einleitung der Begriff der hybriden Modellierung eingeführt, welche einen anpas-
sungsfähigen, flexiblen und datengetriebenen Teil besitzt, der auf der Basis des maschi-
nellen Lernens bestimmt wird. Das ML bildet insgesamt betrachtet ein breites Spektrum
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von Aufgaben und Lösungsmöglichkeiten ab. Es eröffnet damit eine Vielzahl von An-
knüpfungspunkten zur Regelungstechnik, um den methodischen Werkzeugkasten nützlich
zu erweitern und zu verbessern. In Hinblick auf die Inbetriebnahme wird sich im Rahmen
dieser Arbeit nur auf einige Anknüpfungspunkte fokussiert, die den höchsten Stellenwert
für die Thematik haben und daher intensiv aufgearbeitet werden. Hierzu werden die Grun-
dideen des ML, wie der datenzentrierte Ansatz, die Rückkopplung von Informationen (aus
dem RL) und das Konzept der Generalisierung, um neuen unvorhergesehenen Situationen
zu begegnen, im regelungstechnischen Kontext betrachtet. Ein maßgebendes Instrument
ist hierfür die bereits eingeführte Wahrscheinlichkeitstheorie, die die Unsicherheit über
bestimmte Vorgänge quantifizierbar macht, so unter anderem die Variabilität der Trai-
ningsdaten als auch die Bestimmung von Parametern einer ML-Ansatzfunktion.

Eine beliebte Klasse von Funktionen, die im ML häufig eingesetzt werden, stellen die
künstlichen neuronalen Netze dar. Der Grund hierfür liegt in ihrer ausgezeichneten Ver-
allgemeinerungsfähigkeit und ihrem leichten Aufbau, der je nach Anwendungsfall fle-
xibel anpassbar ist. Mittlerweile gibt es daher eine schiere Menge von Netzvariationen,
die bildlich gesprochen häufig auch als ”Zoo” bezeichnet wird. Für einen Laien ist es oft-
mals schwer, das richtige Netz für seinen Anwendungsfall auszuwählen und anschließend
geeignet zu trainieren. Dies stellt einen Nachteil bei dem Einsatz von künstlichen neuro-
nalen Netzen dar und wird durch die Wahl der passenden Netzgröße weiter verstärkt.
Die Größe geht einher mit der Anzahl von Parametern des Netzes. Ist die Anzahl zu ge-
ring, kann die Aufgabenstellung womöglich nicht gelöst werden und das Netz neigt zur
Unteranpassung, wodurch bestimmte Nuancen nicht abgebildet werden können. Ist die
Anzahl auf der anderen Seite zu groß, ist das zugrundeliegende Optimierungsproblem zur
Bestimmung der Parameter unter Umständen nur schwer lösbar und es besteht die Ge-
fahr der Überanpassung, womit die Generalisierung verloren geht und ggf. Rauscheffekte
unbeabsichtigt nachgebildet werden. Aus diesem Grund wird beim ML zwischen alea-
torischer und epistemischer Unsicherheit unterschieden [HW21]. Die aleatorische Unsi-
cherheit wird auch als Zufallsunsicherheit bezeichnet und resultiert aus den natürlichen
Schwankungen des betrachteten Prozesses. Diese sind im Allgemeinen unvermeidlich
und dem Prozess intrinsisch. Ein Beispiel ist das Messrauschen eines Sensors. Episte-
mische Unsicherheit ist hingegen auf das begrenzte und unvollständige Wissen über ein
System zurückzuführen, welches bspw. durch diverse Modellannahmen verursacht wird.
Im Gegensatz zur aleatorischen Unsicherheit kann die epistemische Unsicherheit durch
zusätzliches Wissen, bspw. in Form einer größeren Datenmenge, verringert werden. Eine
Möglichkeit den angesprochenen Gegebenheiten und Problematiken zu begegnen, bietet
die Klasse der nicht-parametrischen ML-Modelle. Hierzu zählt das Verfahren der Gauß-
Prozess-Regression, welches in diesem Unterabschnitt detailliert eingeführt wird und die
Basis für alle entwickelten Verfahren dieser Arbeit darstellt. Die Besonderheit ist, dass
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vom Anwender keine feste Anzahl von Parametern vorgegeben werden muss, sondern
das Modell auf natürliche Weise mit der Anzahl der Trainingsdaten verknüpft ist und ent-
sprechend mit ihnen anwächst und somit an Komplexität zunimmt. Damit geht die Ein-
schränkung einher, dass ohne besondere Anpassung, das Verfahren nur für relativ kleine
Datenmengen geeignet ist. Vor dem Anwendungsgebiet der Regelungstechnik, in welcher
einfach handhabbare Modelle erstrebenswert und sogar vorteilhaft in Hinblick auf bspw.
Echtzeitfähigkeit und Interpretierbarkeit sind, stellt dies keinen erheblichen Nachteil dar.
Weiterführend handelt es sich um ein probabilistisches Verfahren, welches insbesondere
darauf ausgelegt ist, die Unsicherheit über die gesuchte Funktion in Form einer Varianz-
angabe auszudrücken. Zusammen mit dem bereits eingeführten erweiterten (probabilisti-
schen) Modellbegriff stellt die Gauß-Prozess-Regression ein ideales Hilfsmittel dar, um
innerhalb eines hybriden Modells, die a-priori unbekannten Modellfehler zu identifizieren
und zu kompensieren. Die Schnittstelle des physikalischen und datenbasierten Modellteils
stellt somit also die Wahrscheinlichkeitstheorie dar.

2.4.1 Partitionierung einer multivariaten Gaußverteilung

Im Folgenden wird die Herleitung der Gauß-Prozess-Regression nach einer Kombination
von [Ras06; Bis06; Mur13] besprochen. Den Ausgangspunkt stellt eine allgemeine mul-
tivariate Normal- bzw. Gaußverteilung nach x ∼ N (µ,Σ) mit x ∈ Rn (vgl. Abschnitt
2.2.4) dar. Außerdem wird eine Partitionierung der Form x = [xT

1 ,x
T
2 ]

T , x1 ∈ Rn1 ,
x2 ∈ Rn2 mit n2 = n− n1 und

µ =

[
µ1

µ2

]
, Σ =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
,

angenommen. Zur besseren Übersicht wird die Präzisionsmatrix

Λ := Σ−1 =

[
Λ1,1 Λ1,2

Λ2,1 Λ2,2

]

definiert, welche die Elemente der inversen Kovarianzmatrix besitzt, die im Folgenden
häufig verwendet werden. Von dieser Situation ausgehend, wird ein Ausdruck für die
bedingte Wahrscheinlichkeitsverteilung p(x1 | x2) gesucht, welche die Grundlage der
Gauß-Prozess-Regression darstellt. Hierfür wird die Produktregel aus (2-7) angewandt
und führt als Zwischenergebnis auf

p(x1,x2) = p(x1 | x2)p(x2). (2-29)
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Da es sich bei der linken Seite um eine Normalverteilung handelt und p(x2) die Marginal-
verteilung bzgl. der Variable x2 darstellt, liegt die Schlussfolgerung nahe, dass es sich bei
p(x1 | x2) ebenfalls um eine Normalverteilung handeln muss (vgl. (A1-2)). Für die ge-
suchte bedingte Verteilung wird daher der Ansatz p(x1 | x2) = N (µ1|2,Σ1|2) getroffen.
Durch einen Koeffizientenvergleich der quadratischen Terme innerhalb der Exponential-
funktionen folgt für die Kovarianzmatrix zunächst

xT
1Λ1,1x1

!
= xT

1Σ
−1
1|2x1 ⇒ Σ1|2 = Λ−1

1,1.

Weiterführend werden die linearen Terme ausgewertet, womit der Erwartungsvektor zu

−2xT
1 (Λ1,1µ1 −Λ1,2(x2 − µ2))

!
= −2xT

1Σ
−1
1|2µ1|2,

⇒ µ1|2 = µ1 −Λ−1
1,1Λ1,2(x2 − µ2)

bestimmt ist. Es bleibt die Frage nach den Elementen der Präzisionsmatrix Λ offen.
Hierfür wird das Theorem zur Bestimmung der Inverse einer partitionierten Matrix (A1-6)
genutzt. Damit folgen für die gesuchten Elemente die Zusammenhänge

Λ1,1 = (Σ1,1 −Σ1,2Σ
−1
2,2Σ

T
1,2)

−1,

Λ1,2 = −(Σ1,1 −Σ1,2Σ
−1
2,2Σ

T
1,2)

−1Σ1,2Σ
−1
2,2,

sodass sich die Elemente der Inversen auf die Elemente der ursprünglichen Kovarianz-
matrix zurückführen lassen. Als resultierendes Endergebnis leiten sich die geschlossenen
Ausdrücke

µ1|2 = µ1 +Σ1,2Σ
−1
2,2(x2 − µ2),

Σ1|2 = Σ1,1 −Σ1,2Σ
−1
2,2Σ

T
1,2,

(2-30)

ab. Der Vollständigkeit halber führt dieses Ergebnis außerdem in Bezug auf (2-29) auf
die Marginalverteilung p(x2) = N (µ2,Σ2,2). (2-30) kann so interpretiert werden, dass
die Kenntnis eines Teils eines normalverteilten Zufallsvektors zu einer bedingten Wahr-
scheinlichkeitsverteilung für den anderen Teil führt, welcher wiederum normalverteilt ist.
Bedingungen und auch Marginalisierungen führen somit für den Spezialfall einer Nor-
malverteilung wieder auf die selbe Klasse zurück. Diese Tatsache stellt einen bedeuten-
den Aspekt der Gauß-Prozess-Regression dar, wobei die Klasse der Normalverteilungen
im gesamten Verfahren nie verlassen wird. Eine visuelle Erklärung liefert zudem Bild 2-4,
in welchem der Wert für Y = −1 als bekannt angenommen wird und sich ausgehend von
der zwei- wiederum eine (bedingte) eindimensionale Normalverteilung für p(x | y = −1)
ergibt, welche mit Hilfe von (2-30) berechnet wird.
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2.4.2 Lösung der Regressionsaufgabe

Bei einer Regressionsaufgabe geht es darum, eine Funktion f(x) : Rnx 7→ R zu fin-
den, bzw. diese bestmöglich anzunähern [Bis06]. Hierfür liegen Ein- und Ausgangsdaten
der Form xi, yi = f(xi) + ϵi, i = 1, . . . , nd, ϵi ∼ N (0, σ2

n) vor, die durch ein gewisses
Rauschen verfälscht wurden. Dabei wird in den meisten Fällen vereinfacht angenommen,
dass es sich um ein normalverteiltes Rauschen handelt. Die Gesamtheit aller Daten wird
verkürzt durch die beiden Matrizen X = [x1, . . . ,xnd

]T und Y = [y1, ..., ynd
]T be-

schrieben. Eine Lösungsmöglichkeit kann mit Hilfe von Gauß-Prozessen (GPs) [Ras06]
erzielt werden. Ein GP ist die Verallgemeinerung der bekannten multivariaten Normal-
verteilung auf unendlich viele Zufallsvariablen, deren gesamtheitliche Betrachtung auch
als Funktion oder parameterabhängige Zufallsvariable interpretiert werden kann. Ein GP
ist vollständig und eindeutig durch eine Mittelwertfunktion m(x) := E[f(x)] und eine
Kovarianzfunktion (auch Kernel genannt) k(x,x′) := C[f(x), f(x′)], die symmetrisch
und positiv semi-definit ist, definiert. Formal wird geschrieben

f(x) ∼ GP(m(x), k(x,x′)),

womit x den kontinuierlichen Parameter und f die parameterabhängige (ebenfalls konti-
nuierliche) Zufallsvariable darstellen. Nach der Definition kann der GP nun an beliebigen
Stellen x ausgewertet werden. Eine Auswertung an den Stellen der Eingangsdaten führt
beispielsweise auf die multivariate Normalverteilung

F ∼ N (µF ,ΣF ),

µF = [m(x1), . . . ,m(xnd
)]T ,

ΣF =


k(x1,x1) . . . k(x1,xnd

)
... . . . ...

k(xnd
,x1) . . . k(xnd

,xnd
)

 ,

mit fi = f(xi),F = [f1, ..., fnd
]T . Die Verteilung ist als Marginalverteilung für die

beschriebenen Funktionswerte anzusehen, wobei über die restlichen (unendlichen vielen)
anderen Funktionswerte (f(x) | x ̸= xi, i = 1, . . . , nd) mit Bezug zu (2-7) integriert
worden ist [Ras06]. Das Rauschen der Ausgangsdaten kann als übergeordneter Prozess
verstanden werden, der einer Integration über die wahren Funktionswerte über

p(Y ) =

∫
p(Y | F )p(F )dF

=

∫
N (F , σ2

nInd
)N (µF ,ΣF )dF

= N (µF ,ΣF + σ2
nInd

),
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mit µY = µF und ΣY = ΣF + σ2
nInd

, bedarf (s. (A1-3)). Zur Lösung der Regressions-
aufgabe wird nun ein fiktiver (frei wählbarer) Funktionswert f̂(x) der GP-Auswertung
hinzugefügt. Insgesamt ergibt sich somit die erweiterte multivariate Normalverteilung[

Y

f̂(x)

]
∼ N (µf̂ (x),Σf̂ (x)),

µf̂ (x) = [µT
Y ,m(x)]T ,

Σf̂ (x) =

 ΣY

k(x1,x)
...

k(xnd
,x)

k(x,x1) · · · k(x,xnd
) k(x,x)

 .

Ersichtlich ist die partitionierte Struktur, womit die bekannten Gleichungen aus Abschnitt
2.4.1 zur Anwendung gebracht werden dürfen, um die bekannten Ausgangsdaten der ge-
suchten (verrauschten) Funktion als bekannt vorauszusetzen. Für die bedingte Verteilung
ergeben sich somit die zentralen Gleichungen der Gauß-Prozess-Regression zu

p(f̂(x) | Y ) = N (µf̂ |Y (x),Σf̂ |Y (x)),

µf̂ |Y (x) = m(x) + k(x,X)Σ−1
Y (Y − µY ),

Σf̂ |Y (x) = k(x,x)− k(x,X)Σ−1
Y k(x,X)T ,

(2-31)

worin die verkürzende Definition k(x,X) := [k(x,x1), . . . , k(x,xnd
)] eingeführt wur-

de. Diese Gleichungen können alternativ auch über die Bayessche Regel (2-13) hergeleitet
werden, wobei sie dann entsprechend den Posterior darstellen. Aus der Mittelwertglei-
chung wird ersichtlich, dass dieser sich aus dem ursprünglich angenommenen Mittelwert
m(x) und einem additiven Korrekturterm k(x,X)Σ−1

Y (Y − µY ) zusammensetzt. Die
Korrektur hängt wiederum von der Abweichung zwischen gemessenen Daten und der
Annahme ab (Y −µY ) und wird über die sogenannte Kalman-Verstärkung k(x,X)Σ−1

Y

(gleichermaßen zum regelungstechnischen Beobachterentwurf [Ada14]) passend skaliert.
Die Varianzgleichung ist ebenfalls gut nachvollziehbar. Sie setzt sich aus einer Grun-
dunsicherheit k(x,x) und einem mindernden (negativen) Term zusammen. Aufgrund der
positiven Definitheit von ΣY , gilt für den hinteren Term k(x,X)Σ−1

Y k(x,X)T ≥ 0,
wodurch die Unsicherheit lediglich sinken kann. Tatsächlich kann der Beweis geführt
werden, dass mehr Daten die Unsicherheit immer weiter reduzieren und niemals steigern
können [Viv98]. Dies ist zu den Überlegungen zur Bayesschen Regel aus Abschnitt 2.3.1
konsistent (vgl. auch Bild 2-5).

Bild 2-8 zeigt die Zusammenhänge bei der Gauß-Prozess-Regression für ein einfaches
eindimensionales Beispiel. Auf der linken Seite ist der Fall dargestellt, in welchem noch
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Bild 2-8: Visuelle Darstellung der Gauß-Prozess-Regression für ein eindimensionales
Beispiel. Die grüne Linie zeigt die gesuchte Funktion (Ground Truth), welche
anhand der schwarzen Datenpunkte durch den GP (blau) nachgebildet werden
soll.

keine Daten über die gesuchte Funktion vorliegen. Als Annahmen für den GP wurde eine
lineare (steigende) Mittelwertfunktion (blaue, gestrichelte Linie) ausgewählt. Die exak-
te Kovarianzfunktion ist für das betrachtete Beispiel nicht relevant, bewirkt jedoch ein
konstantes Unsicherheitsband um den sich verändernden Mittelwert. Die induzierte Nor-
malverteilung wird beispielhaft an zwei unterschiedlichen Stellen (x = 5 und x = 10)
ausgewertet und ist durch die orangen Linien repräsentiert. Da es sich um Verteilungen
bzgl. der Funktion f handelt, sind diese nicht horizontal, sondern vertikal abgebildet. Die
hohe Unsicherheit aufgrund des Nichtvorhandenseins von Daten spiegelt sich durch ihre
Flachheit (hohe Varianz) wider. Im rechten Teilbild wird nun davon ausgegangen, dass
drei Messpunkte (symbolisiert durch die schwarzen Punkte) aufgezeichnet wurden. Die
Daten liegen nicht exakt auf der grünen Linie, da ein gewisses Messrauschen bei diesem
Beispiel berücksichtigt wurde. Auf Grundlage der Messdaten wird (2-31) ausgewertet
und entsprechend die a-priori Verteilung der linken Seite zum Posterior aktualisiert. Der
Posterior ist an die Messdaten angepasst und spiegelt diese durch das Durchlaufen dieser
mit dem verschobenen Mittelwert wider. Des Weiteren variiert die vorher konstante Vari-
anz nun in Abhängigkeit der Entfernung zu den Messdaten. Je näher die Messdaten, desto
niedriger die Varianz bzw. Unsicherheit. Die Unsicherheit nimmt bei den Messpunkten
jedoch nicht vollständig ab, denn das Rauschen verbleibt an diesen Stellen. Da die Daten
sich größtenteils auf der linken Seite befinden, wird hier die gesuchte zugrundeliegende
Funktion bereits sehr gut durch die Posterior-Verteilung wiedergegeben. Die rechte Seite
ist weiterhin durch ein hohes Maß an Unsicherheit geprägt und strebt aufgrund der Kon-
struktion der Gauß-Prozess-Regression im Mittel zurück auf die angenommene a-priori
Mittelwertfunktion. Weiterführend sind außerdem die beiden bedingten Wahrscheinlich-
keitsverteilungen an den Stellen (x = 5 und x = 10) explizit gezeigt. Es ist gut erkennbar,
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wie sich die ursprüngliche Flachheit verändert und nun durch eine engere Verteilungen re-
präsentiert ist.

2.4.3 Kovarianzfunktion und Hyperparameter

Der angesetzte GP hängt von einer Mittelwert- m(x) und einer Kovarianzfunktion k(x,x′)

ab. Hierin wird das Vorwissen, welches über die Regressionsaufgabe vorhanden ist, in
das Verfahren eingefügt. Die Bedeutung der Mittelwertfunktion ist intuitiv leicht nach-
vollziehbar. Durch den Bayesschen Charakter des Verfahrens können möglicherweise un-
passende Funktionen durch die beobachteten Daten ausgeglichen werden (vgl. Bild 2-8)
und stellen somit kein sonderlich großes Problem dar. Ein legitimer (oft verwendeter)
Ansatz ist daher für die Mittelfunktion m(x) ≡ 0 den konstanten Wert null anzusetzen,
was keine Einschränkung im Bezug auf die Regressionsfähigkeit des GPs darstellt. In den
meisten Fällen wird darüber das nicht vorhandene Vorwissen ausgedrückt. Des Weiteren
ist eine geeignete Kovarianzfunktion k(x,x′) für die vollständige Definition des GPs aus-
zuwählen. In diesem Zusammenhang beschreibt die Kovarianzfunktion bzw. der Kernel,
die Eigenschaften der gesuchten Funktion in Bezug auf ihre Glattheit und den Grad ih-
rer Differenzierbarkeit. Außerdem kann über sie eine bestimmte Periodizität ausgedrückt
werden [Ras06]. Entsprechend lässt sich über den Kernel erweitertes Vorwissen im Ver-
gleich zur rudimentären Mittelwertfunktion einbeziehen.

Der gängigste Ansatz ist der sogenannte Squared Exponential (SE) Kernel, welcher die
Form

kSE(x,x
′;θ) = σ2

f exp(−(x− x′)TW−1(x− x′)), (2-32)

mit Gewichtungsmatrix W = diag(l21, . . . , l
2
nx
), welche als Elemente die sogenannten

Lengthscale-Parameter besitzt, sowie der Signalvarianz σ2
f , hat. Der Kernel ist durch

physikalische Prozesse motiviert und bedeutet im Grunde, dass zwei nahe beieinander-
liegende Eingangspaare (x,x′) stark korrelieren, wohingegen weit auseinanderliegen-
de Paare keine Korrelation aufweisen. Dieser Ansatz spiegelt sich in vielen physikali-
schen Abläufen wider, und besagt, dass kleine Änderungen auch nur zu kleinen Wir-
kungsänderungen führen. Dementsprechend werden durch die Kovarianzfunktion glatte,
nicht sprungfähige Funktionen beschrieben [Ras06]. Die parametrische Abhängigkeit ist
gewollt, um dem GP eine gewisse Flexibilität einzuräumen und damit er sich auf un-
terschiedliche Rahmenbedingungen anpassen kann. Vor diesem Hintergrund werden die
sogenannten Hyperparameter über θ := [l1, . . . , lnx , σf , σn]

T ∈ Rnx+2 eingeführt, die
für die vollständige Definition des GPs notwendig sind. Die eingangs erwähnte nicht-
parametrische Eigenschaft der Gauß-Prozess-Regression mag aufgrund der eingeführten
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Hyperparameter irreführend erscheinen, hat jedoch weiterhin ihre Berechtigung. Im Ver-
gleich zu einem künstlichen neuronalen Netz, welches je nach Anwendung eine Vielzahl
von Parametern benötigt, ist die Anzahl der Hyperparameter stark begrenzt und skaliert
nur mit der Dimension der Eingangsdaten und nicht mit der Anzahl von Trainingsdaten
bzw. der Komplexität der gesuchten Funktion.

Eine Möglichkeit die Hyperparameter automatisiert zu bestimmen, besteht in der Opti-
mierung anhand einer geeigneten Gütefunktion. Hierfür kann ähnlich zu (2-19) die loga-
rithmische Likelihood maximiert werden

θ∗ = argmax
θ

log p(Y | θ), θi > 0, i = 1, . . . , nx + 2,

log p(Y | θ) = −1
2
(Y − µY )

TΣ−1
Y (Y − µY )− 1

2
log |ΣY | − nd

2
log 2π,

(2-33)

die auf der Basis der gemessenen Daten ausgewertet wird und die Berechnung der De-
terminante |ΣY | der Ausgangsdatenmatrix beinhaltet [Ras06]. Die Einführung der log-
Funktion ist für die numerische Stabilität notwendig und verändert den nominalen Wert
der optimierten Hyperparameter θ∗ nicht. In der Praxis wird die Optimierung mittels eines
gradientenbasierten Verfahrens durchgeführt, wofür der Gradient über

∂ log p(Y | θ)
∂θi

=
1

2
Spur

(
(ααT −Σ−1

Y )
dΣY

dθi

)
, α := Σ−1

Y (Y − µY ) (2-34)

ausgewertet wird. Hierin zeigt sich, dass der Gradient auf die Ableitung der Kovarianz-
matrix und damit auf die des Kernels zurückzuführen ist. Eine beispielhafte Berechnung
für den SE-Kernel ist dem Anhang beigefügt (s. (A1-7)).

2.5 Ergänzende theoretische und praktische Aspekte

Neben den eingeführten grundlegenden Gleichungen der Gauß-Prozess-Regression sol-
len weiterführend einige ergänzende theoretische und praktische Aspekte vorgestellt wer-
den. Diese sollen sowohl das Verständnis für den Umgang mit GPs vertiefen als auch
vor dem Hintergrund der Regelungstechnik fachspezifische Überlegungen aufgreifen und
erläutern.

2.5.1 Matérn und Piecewise Squared Exponential Kernel

Die Kovarianzfunktion stellt einen entscheidenden Einflussfaktor bei der Arbeit mit einem
GP dar. Neben dem bereits eingeführten SE-Kernel aus (2-32) gibt es eine ganze Reihe
weiterer Kernelfunktionen [Ras06], die je nach Anwendungsgebiet ausgewählt werden.
Der SE-Kernel repräsentiert besondere Glattheitsanforderungen. Dies wird dadurch aus-
gedrückt, dass er unendlich mal differenzierbar kSE(·, ·) ∈ C∞ ist. Für viele physikalische
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Bild 2-9: Gauß-Prozess-Regression mit verschiedenen Kovarianzfunktionen zur Abbil-
dung eine Sprungfunktion (grün).

Vorgänge, die über einen GP beschrieben werden sollen, ist der SE-Kernel eine geeignete
Wahl. Um eine breite Klasse von Funktionen abbilden zu können, hat sich neben dem SE-
Kernel, der sogenannte Matérn-Kernel als beliebter Ansatz bewährt. In seiner 32-Variante
lautet er folgendermaßen:

kM(x,x′;θ) = σ2
f

(
1 +
√
3d) exp(−

√
3d
)
,

d(x,x′;θ) := (x− x′)TW−1(x− x′),
(2-35)

und stellt mit kM(·, ·) ∈ C2 weniger restriktive Glattheitsanforderungen dar. Aufgrund
dieser Tatsache wird im Vergleich zum SE-Kernel allerdings auch eine größere Menge
an Daten benötigt, um die Unsicherheit über die Funktion gleichermaßen zu reduzieren.
Für die Praxis ebenfalls relevant ist eine Spezialvariante des SE-Kernel - der sogenannte
Piecewise-SE-Kernel [Bij18]. Für die Anwendung dieses Kernels ist es notwendig, den
Eingangsraum Rnx in disjunkte Mengen Di, i = 1, . . . , nd zu unterteilen, z. B. über

x ∈
⋃

Di, mit Di ∩Dj = ∅, j = 1, . . . , nd, i ̸= j.

Den Mengen entsprechend lässt sich anschließend der Kernel stückweise über den Zu-
sammenhang

kPSE(x,x
′;θ) =

σ2
f exp(−(x− x′)TW−1(x− x′)), x,x′ ∈ Di

0, sonst,

beschreiben, wobei die beiden Eingangspaare aus der gleichen Teilmenge stammen müssen,
um einen Effekt auf die Korrelation zu haben. Der Vorteil dieses Ansatzes wird bei der
Betrachtung des nachfolgenden Beispiels deutlich.

Bild 2-9 zeigt die Gauß-Prozess-Regression für den Fall einer unbekannten Sprungfunk-
tion (Ground Truth). In der Regelungstechnik sind Sprungfunktionen häufig im Zusam-
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menhang mit Systemen mit Haftreibung anzutreffen, deren Verhalten sich abrupt bei ei-
nem Vorzeichenwechsel der Geschwindigkeit ändert. Der grüne Verlauf zeigt die gesuch-
te Sprungfunktion. Die schwarzen Punkte stellen die gemessenen Daten dar. Die Gauß-
Prozess-Regression wurde mit drei verschiedenen Kerneln durchgeführt. Das linke Teil-
bild zeigt das Ergebnis für den SE-Kernel, wobei gut zu erkennen ist, dass der Sprung
aufgrund der hohen Glattheitsanforderungen nicht zufriedenstellend wiedergegeben wer-
den kann. Der zugrundeliegende GP weist ein zu hohes Rauschen auf, sodass der Verlauf
insgesamt eine hohe Varianz hat. Der Sprung wird bei diesem Kernel fälschlicherweise als
Messrauschen interpretiert. Die Anwendung des Matérn-Kernels aus dem mittleren Teil-
bild kann zumindest an den Datenpunkten eine niedrigere Unsicherheit kennzeichnen.
An den anderen Stellen ist die Varianz allerdings weiterhin zu groß, was unter anderem
auf ungeeignete Hyperparameter zurückzuführen ist. Das beste Ergebnis wird im rech-
ten Teilbild erzielt, in dem der PSE-Kernel mit den disjunkten Mengen D1 = (−∞, 0)

und D2 = [0,∞) verwendet wird. In diesem Fall wird die gesuchte Funktion mit äußerst
geringer Unsicherheit wiedergegeben und das Messrauschen wird richtig identifiziert. In
Bezug auf haftende Systeme ist der PSE-Kernel somit sehr hilfreich und einfach anzu-
wenden, da die Sprungstelle a-priori bereits bekannt ist und nicht aufwendig bestimmt
werden muss.

2.5.2 Interpretation als radiales Basisfunktionen-Netz

Die Gauß-Prozess-Regression gehört zu der Klasse der nicht-parametrischen Verfahren,
da sie, mit Ausnahme der wenigen Hyperparameter, keine aufwendige Parameteridentifi-
kation benötigt, sondern mit der Anzahl der Trainingsdaten auf natürliche Weise mitwächst
(vgl. (2-31)). Damit hat sie zunächst einen bedeutenden Vorteil bspw. gegenüber parame-
trischen künstlichen neuronalen Netzen, da diese bei einer vergleichbaren Größe deut-
lich mehr zu bestimmende Parameter besitzen. Des Weiteren können bspw. durch den
SE-Kernel beliebig oft differenzierbare Funktionen beschrieben werden, was bei einem
künstlichen neuronalen Netz mit einer begrenzten Größe nicht der Fall ist. Um diese
Tatsache besser einsehen zu können, besteht die Möglichkeit den GP in ein radiales
Basisfunktionen-Netz (RBF) umzuformen, wodurch eine bessere Vergleichbarkeit zwi-
schen einem nicht-parametrischen und parametrischen Ansatz entsteht.

Zunächst wird die Mittelwertfunktion des Posterior (2-31) wie folgt betrachtet:

µf̂ |Y (x) = m(x) + kSE(x,X)Σ−1
Y (Y − µY )︸ ︷︷ ︸

=:α

= m(x) +

nd∑
i=1

αikSE
(
∥x−X i∥2W−1

)
.

(2-36)
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Diese wird als additive Kombination des Prior Mittelwerts und einer gewichteten Sum-
me umgeschrieben. Bei der gewichteten Summe zeigt sich die Struktur eines RBF, durch
die konstanten Gewichtungsfaktoren αi und die durch den SE-Kernel induzierten Basis-
funktionen. Es wird deutlich, dass sich die Zentren des RBF bei einem jeden Datenpunkt
befinden und sich das Netz mit jedem weiteren Datenpunkt um ein zusätzliches Zentrum
automatisch vergrößert [Ras06].

Um die Beschreibungsfähigkeit des GPs zu bestimmen, wird dieser in seine parametrische
Form überführt. Hierzu wird die Mittelwertfunktion durch den gängigen parametrischen
Ansatz y(x) = ϕ(x)Tw (vgl. Ausführungen zur Bayesschen linearen Regression in Ab-
schnitt 2.3.1) ausgedrückt, indem der Verbindungsansatz w = ΦTα eingeführt wird. Aus
der Rückrechnung folgt der bekannte Zusammenhang aus (2-36):

y(x) = m(x) + ϕ(x)Tw

= m(x) + ϕ(x)TΦTα

= m(x) + ϕ(x)T [ϕ(X1), . . . ,ϕ(Xnd
)]︸ ︷︷ ︸

=:k(x,X)

Σ−1
Y (Y − µY )

= m(x) + k(x,X)Σ−1
Y (Y − µY ),

(2-37)

worin die Basisfunktion ϕ(x) noch als unbekannt gilt. Zunächst ist jedoch eine Anmer-
kung bezüglich der Berechnungskomplexität der beiden Darstellungen anzuführen. Das
Training des GPs ist auf die Bestimmung der Hyperparameter aufgrund der Maximie-
rung der Likelihoodfunktion zurückzuführen. Dafür muss in (2-33) eine nd × nd große
Kovarianzmatrix ΣY invertiert werden. Für den parametrischen Ansatz und die Bestim-
mung der Gewichte kann (2-20) als Lösung herangezogen werden, woraus ersichtlich
wird, dass für die Lösung eine Matrix mit Dimension nw × nw invertiert werden muss.
Je nach Anwendungsfall und zur Verfügung stehender Rechenkapazität kann daher eine
passende Auswahl zwischen parametrischen und nicht-parametrischen Ansätzen getrof-
fen werden. In Bezug auf die effiziente Inbetriebnahme und die formulierten Anforde-
rungen soll im Rahmen dieser Arbeit von einer geringen Datenmenge und einer hohen
Beschreibungsfähigkeit zur Abbildung einer breiten Klasse von unbekannten Funktionen
ausgegangen werden. Für die Themenstellung dieser Arbeit gilt somit nw ≫ nd, wo-
mit die Gauß-Prozess-Regression vor dem Hintergrund der Berechnungskomplexität ein
geeignetes ML-Werkzeug für die Inbetriebnahme darstellt.

Als Nächstes wird die in (2-37) beinhaltete Basisfunktion ϕ(x) näher untersucht. Es liegt
nahe, hierfür die Kovarianzfunktion als inneres Produkt [Ras06] über den Ansatz

k(x,x′) = ϕ(x)Tϕ(x′), (2-38)
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zu definieren, wodurch die beiden Eingangspaare funktional voneinander getrennt wer-
den. Insbesondere der SE-Kernel weist in diesem Zusammenhang eine interessante Ei-
genschaft auf, auf die im Speziellen weiter eingegangen werden soll. Hierfür wird ver-
einfachend σ2

f = 1 und W−1 = Inx gesetzt. Durch die Umformung der beinhaltenden
Exponentialfunktion als unendliche Summe folgt

kSE(x,x
′) = exp(−1

2
(x− x′)T (x− x′))

= exp(−xTx
2
) exp(xTx′) exp(−x′Tx′

2
)

= exp(−xTx
2
)

∞∑
n=0

(xTx′)n

n!
exp(−x′Tx′

2
).

(2-39)

Die äußeren Faktoren weisen somit bereits die gewünschte Struktur von (2-38) auf. Für
die mittlere Summe gilt, dass sie einen weiteren bekannten Kernel darstellt. Es handelt
sich dabei um die monomiale Kovarianzfunktion [Ras06], welche mit

kMn(x,x
′) = (xTx′)n = ϕMn(x)

TϕMn(x
′)

angegeben wird. Der Exponent n ∈ N0 gibt hierbei die Ordnung an. Für n = 2 und
x,x′ ∈ R2 folgt beispielsweise

kM2(x,x
′) = (xTx′)2 =

[
x2
1,
√
2x1x2, x

2
2

][
x′2
1 ,
√
2x′

1x
′
2, x

′2
2

]T
= ϕM2(x)

TϕM2(x
′).

Die unendliche Summe aus (2-39) lässt sich somit weiter umformulieren zu

kSE(x,x
′) = exp

(
−xTx

2

)( ∞∑
n=0

1√
n!
ϕMn(x)

TϕMn(x
′) 1√

n!

)
exp(−x′Tx′

2
)

= ϕSE(x)
TϕSE(x

′),

ϕSE(x) := exp(−xTx
2
)
[
ϕM0(x)

T , . . . , 1√
∞!

ϕM∞(x)T
]T
,

womit der SE-Kernel in der gesuchten Form eines inneren Produkts dargestellt ist. An-
hang der letzten Gleichung wird ersichtlich, dass der SE-Kernel unendlich viele Basis-
funktionen impliziert und damit in Bezug auf ein parametrisches Modell eine Identifika-
tion von unendlich vielen Parametern benötigen würde. Diese Eigenschaft spiegelt sich
bei der Anwendung des GP so wider, indem er bezüglich seiner Beschreibungsfähigkeit
nicht begrenzt ist und damit beliebige Funktionen aus C∞ (in Abhängigkeit der Datenla-
ge) genau beschreiben kann. In dieser Hinsicht ist er damit vergleichbaren parametrischen
Ansätzen überlegen und für die Anwendungen dieser Arbeit besonders geeignet.
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2.5.3 Details zur Anwendung und Implementierung

Abschließend sollen noch einige weitere Details angeführt werden, welche die grund-
legenden Prinzipien der Gauß-Prozess-Regression umfassender erläutern. Dabei geht es
sowohl um die praktische Anwendung als auch um einige ergänzende Einzelheiten zur
programmiertechnischen Implementierung des Verfahrens. Diese Aspekte sind relevant,
da sie die Zusammenhänge und ggf. Problematiken in den Hauptkapiteln verständlicher
machen, womit die gefundenen Lösungsvorschläge nachvollziehbarer werden.

Über- und Unteranpassung
Der erste Aspekt umfasst das allumfassende maschinelle Lernproblem der Über- und Un-
teranpassung des ausgewählten Modellansatzes. Dieses Problem wird häufig mit dem Be-
griff Ockhams Rasiermesser beschrieben und besagt, dass einfache gegenüber komple-
xeren Theorien oder Modellen vorzuziehen sind, sofern sie denselben Sachverhalt glei-
chermaßen gut beschreiben. Die Einfachheit bezieht sich hierbei auf die Anzahl von Va-
riablen und möglichen Modellhypothesen, die zusammen gesehen in einer klaren und
logischen Beziehung zueinander stehen. Für das maschinelle Lernen bedeutet dies, dass
die Komplexität der Ansatzfunktion geeignet zur Problemstellung gewählt werden muss
und keine Über- bzw. Unteranpassung an die Trainingsdaten aufweisen darf. In Bezug
zur Gauß-Prozess-Regression wird dieser maßgeblich durch die Wahl der Hyperparame-
ter bestimmt. Diese werden wiederum anhand der Likelihoodfunktion aus (2-33) iden-
tifiziert. Unter der Vernachlässigung der Prior Mittelwertfunktion m(x) = 0, bzw. des
Ausgangsdatenvektors µY = 0 lautet das zugrundeliegende Optimierungsproblem

min
θ

log p(Y | θ) ∝ Y TΣ−1
Y Y︸ ︷︷ ︸

Datenanpassung

+ log |ΣY |︸ ︷︷ ︸
Modellkomplexität

+nd log 2π︸ ︷︷ ︸
Konstante

, (2-40)

worin bereits auf natürliche Weise eine Lösung für das Problem der Über- und Unter-
anpassung in Form einer Mehrzieloptimierung auftaucht. Der erste Term steht dabei für
die Anpassung an die Datenlage, wohingegen der zweite Term für die Modellkomple-
xität steht. Ein zu stark angepasster GP kann zwar die Daten gut nachbilden, weist ggf.
aber auch eine zu hohe Komplexität auf und versagt daher bei der Generalisierung in Be-
zug auf unvorhergesehene Eingangsdaten. Entgegengesetzt ist eine zu schwache Daten-
anpassung (bspw. in Form einer linearen Ausgleichsgerade) nicht aussagekräftig genug.
Hieraus folgt die Forderung nach einem Kompromiss zwischen diesen beiden Zielen.

Nachfolgend wird der Fokus auf eine eindimensionale SE-Kovarianzfunktion mit
kSE(x, x

′; l) = exp(−(x− x′)2/l2), bzw. θ = l, gelegt, um die Wirkungsweise der bei-
den Terme zur Datenanpassung und Modellkomplexität besser einordnen zu können. Für
l → 0 strebt ΣY → Ind

und der Datenterm nimmt sein Minimum Y TY an, gleichzeitig
nimmt log |ΣY | = log

∏
λi = log 1 = 0 jedoch ein Maximum an, wobei λi, i = 1, . . . , nd
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Bild 2-10: Auswirkung des Lengthscale-Hyperparameters inkl. der Darstellung der zu-
grundeliegenden Basisfunktionen (gestrichelt grau) und Gewichtungsfaktoren
im unteren Balkendiagramm.

die Eigenwerte der Datenmatrix sind. Hieraus folgt eine Überanpassung, da die Funkti-
onswerte weitestgehend unkorreliert sind und sich insgesamt eine flexible, zu stark an-
gepasste Regressionsfunktion ergibt. Für den entgegengesetzten Fall von l → ∞ strebt
ΣY → 1nd

, wobei genau ein Eigenwert λ1 = nd und die übrigen Eigenwerte gleich
0 sind. Dementsprechend strebt Y TΣ−1

Y Y gegen ∞ (das Maximum des Terms) und
log |ΣY | = log 0 = −∞ stellt wiederum ein Minimum dar. Es resultiert die Unteranpas-
sung, denn die Funktionswerte sind stark korreliert (zusammenhängend) und es folgt eine
nahezu lineare Funktion als Lösung der Regressionsaufgabe. Die beschriebene Wirkungs-
weise ist in Bild 2-10 anhand eines eindimensionalen Beispiels visualisiert. Die grüne Li-
nie zeigt den Ground Truth, von welchem die 5 schwarzen Datenpunkte als Grundlage für
die Regression genutzt wurden. Vereinfachend wird von den GPs nur die Posterior Mittel-
wertfunktion durch die blauen Linien gezeigt. Des Weiteren zeigen die grauen gestrichel-
ten Linien die Basisfunktionen (normiert auf σf ) aus der RBF-Darstellung. Entsprechend
zeigen die unteren Diagramme die dazugehörigen Gewichtungsfaktoren αi, i = 1, . . . , 5

(vgl. (2-36)). Der Lengthscale-Parameter nimmt von links nach rechts ab, sodass der Ef-
fekt dieses Parameters gut erkennbar ist. Das linke Bild zeigt die Unteranpassung (durch
einen nahezu linearen Funktionsverlauf) und das rechte Bild die Überanpassung, wobei
die Basisfunktionen eine impulsförmige Gestalt annehmen. Im mittleren Bild ist das Er-
gebnis der Optimierung mit einem passenden Hyperparameter zu sehen. Dabei wird ein
guter Kompromiss zwischen den beiden Extremfällen gefunden und der Ground Truth
durch den GP genau nachgebildet.

Für den Fall einer höherdimensionalen Regression bieten die dimensionsabhängigen
Lengthscale-Parameter (s. (2-32)) in diesem Zusammenhang eine praktische Möglichkeit,
die Sensitivität bzgl. der einzelnen Eingangsdimensionen auszuwerten. Dies ist unter dem
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Begriff Automatic Relevance Determination (ARD) in der Literatur [Ras06] bekannt und
verweist auf die Größenordnung der optimierten Hyperparameter, welche eine nichtlinea-
re Sensitivitätsanalyse ermöglichen. Je höher der bestimmte Lengthscale-Parameter, de-
sto irrelevanter ist die zugehörige Eingangsdimension für die Regression. Niedrige Werte
weisen hingegen auf eine starke Abhängigkeit und hohe Relevanz hin. Für die Praxis be-
deutet dies, dass die Eingangsdimension sukzessive verringert werden kann, sobald die
Hyperparameter einen Anlass dazu geben, wodurch die Gauß-Prozess-Regression insge-
samt an Effektivität dazugewinnt. Diesen Unterabschnitt abschließend, sollen neben der
Lengthscale auch die zwei weiteren Hyperparameter kurz erläutert werden. Die Varianz
der Ausgangsgröße V[y(x)] = k(x,x) = σ2

f + σ2
n setzt sich aus der Summe der Si-

gnalvarianz und der Varianz des Rauschprozesses zusammen, womit der GP als ganzes
durch zwei Unsicherheitsquellen (aleatorische und epistemische Unsicherheit [HW21])
beeinflusst wird. Im Allgemeinen stellt sich daher durch die Bestimmung der Hyper-
parameter ein Kompromiss zwischen diesen beiden Quellen ein, der die Rauschvarianz
nicht überbewertet und die Signalvarianz korrekt abschätzt. Zur Orientierung kann hier-
bei festgehalten werden, dass 95% der Funktionswerte sich in einem ±2σf -Band um den
Mittelwert herum befinden.

Unbeschränkte Optimierung der Hyperparameter
Der nächste Punkt betrifft das Optimierungsproblem aus (2-33), wobei es sich um ei-
ne Optimierung unter Nebenbedingungen handelt. Für die Hyperparameter θi > 0 mit
i = 1, . . . , nx + 2 gilt, dass sie keine negativen Werte annehmen dürfen, um konsis-
tent zu sein. Um die Optimierung zu vereinfachen und die Beschränkungen zu umgehen,
wird in der Praxis eine Transformation der Hyperparameter angestrebt. Genauer lautet die
Transformationsvorschrift θ̃ := log θ, wobei der monotone Anstieg und der positive De-
finitionsbereich der log-Funktion zum Tragen kommt. Das Optimierungsproblem ändert
sich dadurch folgendermaßen:

log θ∗ = argmax
θ̃

log p(Y | exp(θ̃)),

wobei der Gradient aus (2-34) durch den Zusammenhang

∂ log p(Y | exp(θ̃))
∂ log θi

=
∂ log p(Y | θ)

∂θi
θi,

angepasst werden muss. Auf diesem Weg können die einfacheren unbeschränkten Opti-
mierungsverfahren im Rahmen der Hyperparameterbestimmung genutzt werden.

Numerische Stabilität
Die numerische Stabilität spielt eine wichtige Rolle bei der Realisierung eines Verfah-
rens innerhalb eines Computerprogramms. Die Gauß-Prozess-Regression weist vor die-
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sem Hintergrund einige Besonderheiten auf. Maßgeblich für das Verfahren ist die Inver-
sion der Datenmatrix ΣY , die sich unter bestimmten Voraussetzungen als problematisch
herausstellen kann. Als Maß für die numerische Instabilität wird in diesem Zusammen-
hang die Konditionszahl κ = λmax/λmin [Han09] herangezogen, welche sich aus dem
größten und kleinsten Eigenwert der betrachteten Matrix zusammensetzt. Optimalerwei-
se liegt die Konditionsmatrix bei 1. Eine unzureichende Stabilität ist für den Fall κ ≫ 1

gegeben. Vor diesem Hintergrund ist zunächst im Zusammenhang mit der Gauß-Prozess-
Regression eine auf die Signalvarianz normierte Schreibweise der inversen Datenmatrix
über

Σ−1
Y = (ΣF + σ2

nInd
)−1 = 1

σ2
n

(
σ2
f

σ2
n
Σ̃F + Ind

)−1

,

sinnvoll. Von dieser Form ausgehend, bietet der Satz von Gerschgorin [Han09] die Möglich-
keit, den Bereich, in welchem sich die Eigenwerte befinden, zumindest ansatzweise ab-
zuschätzen. Durch die Anwendung des Satzes folgt für den Wertebereich der Eigenwerte
λ ∈ [1, σ2

rnd + 1] mit σr :=
σf

σn
als Signal-Rausch-Verhältnis. Im schlechtesten Fall be-

deutet dies einen kleinsten Eigenwert von λmin = 1, sowie einen größten Eigenwert von
λmax = σ2

rnd + 1. Hieraus folgt wiederum eine Konditionszahl von

κ =
λmax

λmin

= σ2
rnd + 1,

die eine lineare Abhängigkeit bzgl. der Anzahl der Daten und eine quadratisch Abhängig-
keit bzgl. des Signal-Rausch-Verhältnisses aufweist. Unter der Voraussetzung einer kon-
stanten Signalvarianz ist somit ein gewisses Rauschen innerhalb der Daten hilfreich und
trägt zur numerischen Stabilität des Verfahrens bei. Aus diesem Grund wird in der Praxis
die Unsicherheit künstlich durch einen geringen additiven Term erhöht

Σ̂
−1

Y = (ΣF + (σ2
n + σ2

ϵ )Ind
)−1, σϵ ≈ σn

100
,

sodass die numerische Stabilität gefördert wird. Des Weiteren zeigt die Gleichung der
Konditionszahl, dass sich eine geringe Anzahl von Daten positiv auswirken kann. Dies
geht mit der allgemeinen Betrachtungsweise einher, dass sich die Gauß-Prozess-Regression
besonders für kleine Datenmengen auszeichnet und für diese ein geeignetes maschinel-
les Lernverfahren darstellt. Außerdem kann festgestellt werden, dass Σ̃F → Ind

und
λmax/λmin → 1 gilt, wenn die Eingangsdaten der Matrix X weit auseinander liegen un-
d/oder der Lengthscale-Parameter besonders klein ist. Diese Ausgangssituation ist somit
besonders wünschenswert. Auf der anderen Seite kann Σ̃F → 1nd

zu λmax/λmin →∞
führen, wenn die Eingangsdaten nah beieinander liegen und/oder der Lengthscalepara-
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meter besonders groß ist. Dieser Fall sollte nach Möglichkeit verhindert werden, um die
Leistungsfähigkeit des Verfahrens nicht zu beeinträchtigen. Praktischerweise ist eine An-
passung des Optimierungsproblems (2-40) hierzu hilfreich, wobei Strafterme eingeführt
werden, die bspw. zu hohen Lengthscale-Parameter oder einem zu hohen Signal-Rausch-
Verhältnis entgegenwirken, jedoch gleichzeitig das Mehrzieloptimierungsproblem schwe-
rer lösbar machen.
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3 Steuerungsentwurf mittels Bayesscher Optimierung

Der Entwurf einer Steuerung für ein dynamisches System spielt eine zentrale Rolle inner-
halb der Regelungstechnik. Die Anwendungsgebiete umfassen die Automatisierungs-, so-
wie die Luft-, Raum- und Fahrzeugtechnik. Des Weiteren werden Steuerungen im indus-
triellen Umfeld und insbesondere in der Verfahrenstechnik eingesetzt. Das übergeordnete
Ziel einer Steuerung ist, das Systemverhalten über die Stellgröße so zu beeinflussen, dass
sich daraus eine gewünschte Systemantwort ergibt. Je nach Komplexität des dynamischen
Systems kann sich der Entwurf einer Steuerung unterschiedlich schwer gestalten. Liegt
ein linearer Zusammenhang zwischen der Stellgröße und den Zuständen vor, lässt sich
eine geeignete Steuerung rasch ermitteln. Gibt es hingegen nichtlineare Abhängigkeiten
oder komplizierte Wechselwirkungen, gestaltet sich ein Steuerungsentwurf in der Regel
schwierig. Typischerweise erfolgt der Entwurf auf der Basis eines physikalisch geprägten
Simulationsmodells, welches durch den Ingenieur im Rahmen eines Modellbildungspro-
zesses aufgestellt wird. Die Grundidee der modellbasierten Vorgehensweise ist, eine ge-
eignete Steuerung für das Simulationsmodell zu entwerfen und diese dann gleicherma-
ßen für das reale System zu verwenden. Ein wesentliches Qualitätsmerkmal ist dabei die
Prädiktionsgenauigkeit des aufgestellten Modells. Bildet das Modell die Realität nicht
genau genug ab, funktioniert die entwickelte Steuerung für das reale System nicht, so-
dass üblicherweise in erster Linie eine Verbesserung des Modells angestrebt wird. Vor
dem Hintergrund komplexer mechatronischer Systeme, welche schwierig zu beschrei-
bende physikalische Effekte beinhalten, ist diese herkömmliche Herangehensweise al-
lerdings kompliziert umzusetzen und damit für die Praxis in der Regel kein möglicher
Lösungsweg. Aus diesem Grund wird in diesem Kapitel der Einsatz eines maschinellen
Lernverfahrens - der sogenannten Bayesschen Optimierung (BO) - für den Steuerungsent-
wurf vorgestellt. Die BO basiert zu einem großen Teil auf der eingeführten Gauß-Prozess-
Regression und nutzt deren probabilistischen Aspekte für eine gezielte bzw. effiziente
Identifikation einer parametrisierten Steuerung.

Das Kapitel ist folgendermaßen aufgebaut: Zunächst wird in Abschnitt 3.1 die Aufgabe
des Steuerungsentwurfs erläutert und den Einsatz der BO weiter motiviert. Danach wird
in 3.2 die BO grundlegend eingeführt und vor dem Hintergrund des regelungstechnischen
Entwurfs betrachtet. Im Rahmen dieses Abschnitts wird zudem der Stand der Forschung
ausführlich erläutert. Anschließend wird in 3.3 ein komplexes mechatronisches System
- das Ultraschalldrahtbonden - als Anwendungsbeispiel vorgestellt und die Problematik
beim zugehörigen Steuerungsentwurf besprochen. Dies steht in enger Verbindung zum
Folgeabschnitt 3.4, in welchem die physikalische Modellbildung mit verschiedenen Tie-
fen thematisiert wird. In 3.5 erfolgt die Verknüpfung von der BO und dem Ultraschall-
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drahtbonden, wobei eine speziell auf den Prozess angepasste Variante der BO entwickelt
wird. Den Abschluss dieses Kapitels bildet 3.6, worin die Anwendung und die Ergebni-
sanalyse erläutert werden. In 3.7 wird abschließend ein ausführlicher Ausblick zu wei-
terführenden Forschungsthemen gegeben.

3.1 Aufgabenstellung des parametrisierten Steuerungsentwurfs

Den Ausgangspunkt der Betrachtung stellt ein beliebiges diskretes dynamisches System
mit

xk+1 = f(xk,uk), (3-1)

mit einem bekannten Anfangszustand x0 und einer finiten Anzahl von Zeitschritten
k = 0, . . . , H dar. Für das System soll eine Steuerung ausgelegt werden, wobei noch zu
klären ist, welche Ziele dabei zu erfüllen sind. Zunächst wird weiterführend davon ausge-
gangen, dass für die Steuerung eine passende Ansatzfunktion mit

uk = uk(tk;θ) (3-2)

zur Verfügung steht, welche von einer bestimmten Parametrisierung θ ∈ Rnθ abhängt. In
diesem Zusammenhang wird in der Regelungstechnik der Begriff einer parametrisierten
Steuerung verwendet. Grundsätzlich kann an dieser Stelle auch von einer parametrisierten
Regelung mit uk = uk(xk;θ) ausgegangen werden, allerdings wird vor dem Hintergrund
des Anwendungsbeispiels weiterhin ausschließlich eine parametrisierte Steuerung be-
trachtet. Die Aufgabe besteht nun darin, eine passende Parametrisierung auszuwählen, so-
dass das Steuerungsziel erreicht wird. Bisher noch unbekannt ist, nach welchem Kriterium
eine Bewertung von unterschiedlichen Parametrisierungen vorgenommen werden kann.
Hierzu wird beispielhaft das quadratisch gewichtete Gütekriterium J(θ) : Rnθ 7→ R+

über

min
θ

J(θ) = ∆t
H∑
k=0

(xk − xG)
TW x(xk − xG) + uT

kW uuk (3-3)

eingeführt. Hierin ist xG der geforderte Zielzustand, welcher über die parametrisierte
Steuerung erreicht werden soll, ∆t ist die zeitliche Schrittweite und W x ∈ Rnx×nx ,
W u ∈ Rnu×nu sind vorgebbare Gewichtungsmatrizen. Anhand des Gütemaßes können
verschiedene Parametrisierungen ihrer Wertigkeit nach geordnet und miteinander vergli-
chen werden. Das Ziel besteht darin, das Optimierungsproblem (3-3) unter den Nebenbe-
dingungen von (3-1) und (3-2) zu lösen und diejenige Parametrisierung θ∗ zu bestimmen,
welche den kleinsten Gütefunktionswert liefert. Als Beispiel wird in [GTZ07] der Auf-
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schwung eines Doppelpendels auf einem Wagen (s. Bild 1-4) realisiert, indem als Ansatz
für die Steuerung des Wagens eine Cosinusreihe mit vier Parametern verwendet wird.
Der Einsatz der Cosinusreihe wird damit begründet, dass sie die natürliche Bewegung
des Doppelpendels berücksichtigt und sie gleichzeitig dafür sorgt, dass der Wagen wieder
an seine Anfangsposition in der Mitte der Wagenstrecke zurückkehrt. Die Wahl der An-
satzfunktion ist daher für diese Form des Steuerungsentwurfs entscheidend und erfordert
möglicherweise besonderes Expertenwissen über das betrachtete System.

Um (3-3) zu lösen, wird beim modellbasierten Entwurf (vgl. Bild 1-2) so vorgegan-
gen, dass zunächst ein physikalisches Dynamikmodell zum realen System (3-1) auf-
gestellt wird. Da es sich um eine möglicherweise unvollständige bzw. fehlerbehaftete
Beschreibung handelt, wird für das Modell die Schreibweise f̂ (ähnlich zu einer Zu-
standsschätzung eines Beobachters) benutzt. Anschließend kann durch eine Simulation
weiterführend auch eine Schätzung der Gütefunktion Ĵ umgesetzt werden, womit eine
Lösung des Optimierungsproblems ohne Verwendung des realen Systems berechnet wer-
den kann. Das Problem bei diesem Ansatz ist, dass dabei angenommen wird, dass das
aufgestellte Dynamikmodell keine zu große Abweichung zum realen System aufweist
und dieses genau genug beschreibt. Ist die Abweichung zu groß, so kann die gefundene
Parametrisierung der Steuerung zwar für das Modell qualitativ hochwertige Ergebnisse
liefern, aber am realen System unter Umständen versagen und unbefriedigende Resultate
erzeugen. Besonders ausgeprägt ist dieses Phänomen für komplexe, schwierig zu model-
lierende Systeme, für die gegebenenfalls nur eine simplifizierte Modellbildung angesetzt
werden kann. In diesem Fall stößt der beschriebe modellbasierte Entwurfsprozess an seine
Grenzen und kann möglicherweise nicht weiterverfolgt werden. Von so einem Szenario
soll an dieser Stelle weiterführend ausgegangen werden. Als Ansatz für eine erfolgrei-
che Realisierung wird die Verwendung der BO vorgeschlagen, da sie als maschinelles
Lernverfahren direkt mit dem realen System in Interaktion tritt und eine erweiterte Ausle-
gung auf der Basis von Messdaten erfolgt. Im nächsten Abschnitt wird dieser Lösungsweg
näher erläutert.

3.2 Bayessche Optimierung als Lösungsansatz

Die BO ist ein ML-Verfahren zur effizienten und automatisierten Suche von optimalen
Parametern. Ihr Ansatz basiert auf dem Bayesschen Theorem (2-13), um Unsicherheiten
zu beschreiben und Rückschlüsse aus bereits gesammelten Daten zu ziehen. Das Ver-
fahren ist darauf ausgelegt, einen Kompromiss zum Exploration-Exploitation-Dilemma
zu finden und wird damit den globalen Optimierungsverfahren zugeordnet. Es ist somit,
im Gegensatz zu gradientenbasierten Verfahren, in der Lage, die Konvergenz zu lokalen
Optima zu unterbinden. Ein weiterer Vorteil ist, dass keine Kenntnis über den Gradien-
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ten bzgl. der Gütefunktion vorhanden sein muss. Lediglich die punktuelle Auswertung
der Gütefunktion, welche ggf. durch einen Rauschprozess verfälscht sein kann, ist eine
Voraussetzung für die Anwendbarkeit.

Die Grundidee des Verfahrens ist, die Zielfunktion als datenbasierten GP zu modellie-
ren und anhand seiner probabilistischen Vorhersagen eine Auswahl geeigneter Gebiete
im Parameterraum zu bestimmen, an welchen die optimalen Parameter zu finden sind.
Der GP wird iterativ durch die Hinzunahme von neuen Beobachtungen aktualisiert, die
durch die Auswertung der Gütefunktion an den erfolgversprechendsten Stellen gewon-
nen werden. Die BO hat sich insgesamt als nützliches Werkzeug in Situationen erwiesen,
in denen die Evaluierung der Zielfunktion teuer und/oder zeitaufwendig ist, wie z. B.
bei der Optimierung von Hyperparametern eines tiefen künstlichen neuronalen Netzes.
Durch ihre Fähigkeit, ressourceneffizient zu sein und sich auf die vielversprechendsten
Bereiche des Parameterraums zu konzentrieren, hat die BO in verschiedenen praktischen
Anwendungsgebieten Einzug gehalten. Darunter fallen die explorativen Bohrungen, um
neue Ölreserven zu erschließen, sowie die aufwendigen Experimente und Studien, die
im Zusammenhang mit der Entwicklung von neuartigen Medikamenten im Bereich der
Pharmazie notwendig sind [SSW+16].

Die BO wird häufig mit anderen alternativen Lösungsmöglichkeiten verglichen. Dazu
zählen die zufällige, die gitterbasierte und die manuelle Suche. Die zufällige Suche wählt
ihrem Namen nach in jedem Iterationsschritt eine zufällige Parametrierung aus, wodurch
ihre Effizienz als besonders schlecht einzustufen ist. Die manuelle Suche, welche vom
menschlichen Anwender vorgenommen wird, stellt im Allgemeinen eine bessere Alter-
native als die zufällige Suche dar. Diese wird daher häufig eingesetzt, ist jedoch stark von
den Fähigkeiten des Anwenders und dessen Expertise in Bezug auf das Optimierungs-
problem abhängig. Außerdem gibt es deutliche Einschränkungen, welche die Anzahl der
Parameter betreffen. Für niedrigdimensionale Probleme ist es für den Menschen machbar,
einen Überblick über die bereits ausprobierten und möglicherweise geeigneten Parameter-
Kandidaten zu behalten, wohingegen höherdimensionale Probleme im Allgemeinen ei-
ne Herausforderung darstellen und eine vorher festgelegte Systematik möglicherweise
nur mit Mühe eingehalten werden kann. Des Weiteren stellt die gitterbasierte Suche ein
gängiges Lösungsverfahren dar. Hierbei wird der Suchraum in einer geeigneten Weise
diskretisiert und dann nach und nach ausgewertet. Unter Umständen sind in bestimmten
Gebieten feinere Diskretisierungsschritte notwendig, um eine gewünschte Genauigkeit zu
erreichen. Ebenso wie bei der manuellen Suche, hat dieser Ansatz jedoch das Problem,
für höherdimensionale Optimierungen schlechte Skalierungseigenschaften aufzuweisen.
In diesem Zusammenhang wird auch vom Fluch der Dimensionalität [Bis06] gesprochen,
welcher den zugrundeliegenden Effekt beschreibt. Bei einer gleichmäßigen Diskretisie-
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rung des Suchraums nimmt mit der Dimension die Anzahl der benötigten Diskretisie-
rungspunkte exponentiell zu, wodurch der Speicherbedarf und der Rechenaufwand im-
mens ansteigen. Im direkten Vergleich stellt die BO im Allgemeinen, aufgrund ihres sich
sukzessiv verbessernden Charakters, die Beste der genannten Lösungsmöglichkeiten dar
und ist diesen daher vorzuziehen.

Im Nachfolgenden wird die BO [SSW+16] formal bzw. mathematisch beschrieben. Die
Basis bildet die Gauß-Prozess-Regression (s. 2.4), wobei die Schätzung der Gütefunktion
(3-3) über eine parameterabhängige Zufallsvariable nach

Ĵ(θ) ∼ GP(m(θ), k(θ,θ′;η)), (3-4)

definiert wird. Unter der Voraussetzung eines vorhandenen Datensatzes, bestehend aus
Dθ = [θ1, . . . ,θnd

]T ∈ Rnd×nθ und DJ = [J1, ..., Jnd
]T ∈ Rnd , werden die Hyperpara-

meter η ∈ Rnθ+2 der Kovarianzfunktion k(·, ·) standardmäßig über die Maximierung der
logarithmischen Likelihoodfunktion (vgl. (2-33))

η∗ = argmax
η

log(p(DJ))

= argmax
η
−1

2
(DJ −mD)

TK(η)−1(DJ −mD)− 1
2
log(detK(η)),

(3-5)

bestimmt, mit mD = [m(θ1), . . . ,m(θnd
)]T und symmetrischer und positiv definiter

Gram-Matrix K(η) ∈ Rnd×nd mit den Elementen Ki,j = k(θi,θj;η), i, j = 1, . . . , nd.
Die Maximierung wird auch als Training des GP bezeichnet. Nach der Identifikation der
Hyperparameter liefern die Posteriorgleichungen des GP (vgl. (2-31))

p(Ĵ(θ) |Dy) = N (µ(θ), σ2(θ)),

µ(θ) = m(θ) + kT
D(θ)K

−1(Dy −mD),

σ2(θ) = k(θ,θ)− kT
D(θ)K

−1kD(θ),

(3-6)

mit kD(θ) = [k(θ,θ1;η∗), . . . , k(θ,θnd
;η∗)]

T , eine probabilistische Schätzung über die
Gestalt der Gütefunktion, wobei die Schätzung alle bisher bekannten Datenpunkte be-
rücksichtigt. Das iterative Vorgehen der BO ergibt sich danach durch eine kontinuierliche
Erweiterung des Datensatzes Dθ ← {Dθ,θnd+1}, DJ ← {DJ , Jnd+1}, wodurch die
Schätzung in jeder Iteration weiter verbessert wird.

Bisher unklar ist, wie anhand des GP die nächste Parametrierung θnd+1 bestimmt bzw.
nach welchem Kriterium das nächste Experiment am realen System festgelegt wird. Hierfür
wird im Rahmen der BO eine sogenannte Akquisitionsfunktion α(θ) : Rnθ 7→ R [SSW+16],
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welche von der aktuellen Schätzung bzgl. der Gütefunktion des GP (3-6) abhängig ist, be-
nutzt und ein unterlagertes Optimierungsproblem

θnd+1 = argmax
θ

α(θ), (3-7)

automatisiert gelöst. Mittlerweile gibt es ein breites Spektrum von möglichen Funktionen,
die je nach Anwendungsfall besser oder schlechter geeignet sind. Einige wichtige Akqui-
sitionsfunktionen werden für einen Überblick im Nachfolgenden genauer vorgestellt.

Das erste Kriterium lautet Probability of Improvement (PI) [Kus64] und ist über

αPI(θ) = P (Ĵ(θ) ≤ ξJ) = Φ(γ(θ)), γ(θ) =
ξJ − µ(θ)

σ(θ)

definiert. Hierbei ist ξJ ein a-priori festgelegter Grenzwert, der erreicht werden soll, oder
alternativ der aktuell beste Gütefunktionswert aus den bestehenden Beobachtungen, wel-
cher bei jeder auftretenden Verbesserung entsprechend ersetzt wird. Die Wahrscheinlich-
keit einer Verbesserung kann besonders vorteilhaft durch die Verwendung eines GP ana-
lytisch bestimmt werden, sodass Φ(·) in diesem Zusammenhang die Standardverteilungs-
funktion einer Normalverteilung darstellt. Ein Problem dieses Ansatzes ist, dass sich die
Optimierung ggf. zu stark auf einen bestimmten Bereich im Suchraum fokussiert und
diesen nicht mehr verlässt bzw. die Suche gewissermaßen stagniert.

Das nächste Kriterium lautet Expected Improvement (EI) [Moc74] und folgt der Grundi-
dee, die Größe der Verbesserung weiter zu quantifizieren. Hierfür wird der Erwartungs-
wert im Bezug auf die Dichte, die unter dem Grenzwert liegt, mit

αEI(θ) = E[max(0, ξJ − Ĵ(θ))]

= σ(θ)(γ(θ)Φ(γ(θ))) + ϕ(γ(θ))
(3-8)

herangezogen. Hierin ist ϕ(·) die Standardnormalverteilung. Innerhalb vieler BO Imple-
mentierungen stellt diese Akquisitionsfunktion den Standard dar, da sie sich in zahlrei-
chen Veröffentlichungen als robust herausgestellt hat. In [NH18] wird eine geringfügig
abgewandelte Variante vorgeschlagen, welche eine Skalierung mit Hilfe der Varianz bzw.
Standardabweichung vornimmt und über

αSEI(θ) = E[max(0, ξJ − Ĵ(θ))]V[max(0, ξJ − Ĵ(θ))]
−1
2

= αEI(θ)(σ
2(θ)(γ(θ)2 + 1)Φ(θ) + γ(θ)ϕ(γ(θ)))− αEI(θ)

2)−
1
2 ,

beschrieben wird. Aufgrund der zusätzlichen Skalierung wird sie als Scaled Expected

Improvement (SEI) bezeichnet. Im Rahmen der Veröffentlichung wurden mit ihr gute Er-
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gebnisse bzgl. verschiedener Testfunktionen erzielt. In Verbindung mit dem Anwendungs-
beispiel der vorliegenden Arbeit konnte jedoch keine Überlegenheit zu der unskalierten
Variante festgestellt werden, sodass sich ihre Anwendbarkeit zunächst noch durch weitere
unabhängige Veröffentlichungen herausstellen muss.

Der Vollständigkeit halber wird als letzte Akquisitionsfunktion der Lower Confidence

Bound (LCB) [SKKS12] Ansatz genannt, welcher formal

αLCB(θ) = −µ(θ) + κσ(θ)),

lautet. Dabei stellt κ > 0 einen Explorationsparameter dar, der nicht notwendigerweise
konstant sein muss, sondern sich über die Iterationen hinweg verändern kann. Sinnvoll
ist bspw. ein Ansteigen des Wertes, um den Suchraum weiter zu erforschen und lokalen
Optima zu entkommen. Sofern eine rasche Konvergenz beabsichtigt ist, kann es jedoch
auch vorteilhaft sein den Wert langsam gegen null konvergieren zu lassen, um ein be-
stimmtes Optimum zu fokussieren. Vorteilhaft ist, dass gegenüber den anderen Akqui-
sitionsfunktion kein Grenzwert benötigt wird und für bestimmte iterationsabhängige κ-
Funktionen obere Schranken, die den Worst-Case beschreiben, hergeleitet werden können
[SKKS12].

Algorithmus 1 Bayessche Optimierung

1: Eingabe: Initiale Datenbasis (Dθ,DJ) aus ninit Experimenten, Iterationsbudget
nbudget, GP Mittelwert- und Kovarianzfunktion (m(θ), k(θ,θ′)), ggf. Grenzwert ξJ
bzw. Explorationsfaktor κ.

2: Wiederhole bis das Iterationsbudget nbudget aufgebraucht ist:
3: Aktualisiere Gauß-Prozess bzw. Hyperparameter η nach (3-5).
4: Evaluiere bei θq = argmaxθ α(θ) und erhalte Jq.
5: Erweitere Datenmenge (Dθ,DJ)← (Dθ ∪ θq,DJ ∪ Jq).
6: Ausgabe: Optimale Parameter θi, i = indexminiD

(i)
J , i = 1, . . . , ninit + nbudget.

Algorithmus 1 fasst die wesentlichen Schritte der BO übersichtlich zusammen. In der
1. Zeile erfolgt die Initialisierung, wobei die initiale Datenmenge in der Regel durch
zufällige Experimente bestimmt wird. Das Iterationsbudget legt die Anzahl der zur Ver-
fügung stehenden Experimente fest und ist üblicherweise auf zeitliche Rahmenbedingun-
gen zurückzuführen. Alternativ kann auch ein Konvergenzkriterium angesetzt werden.
Die Mittelwert- und Kovarianzfunktion bestimmen die grundsätzlichen Annahmen, die
über den GP getroffen werden. Hinzu kommen gegebenenfalls übergeordnete Parame-
ter, die die Akquisitionsfunktion betreffen. In jeder Iteration wird zunächst der GP durch
die bestehende Datenmenge aktualisiert und eine Anpassung der Hyperparameter anhand
von (3-5) vorgenommen (Zeile 3). Anschließend erfolgt die Lösung des unterlagerten Op-
timierungsproblems (3-7), welches die gewählte Akquisitionsfunktion umfasst (Zeile 4).
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Abschließend wird in der 5. Zeile ein neues Experiment ausgeführt und das gesammelte
Datenpaar den bestehenden Daten hinzugefügt. Nach dem Erreichen des Iterationsbud-
gets wird diejenige Parametrisierung ausgewählt, die dem kleinsten Gütefunktionswert
zugeordnet ist (Zeile 6). Um eine mögliche Verfälschung durch etwaiges Rauschen in
den Daten zu berücksichtigen, besteht auch die Möglichkeit den Mittelwert des Poste-
riors µ(θ) (3-6) im Rahmen eines weiteren Optimierungsproblems zu minimieren und
die dabei gefundene Lösung als optimale Parametrisierung auszugeben.

Stand der Forschung
Dieser Abschnitt beschäftigt sich mit allgemeinen und regelungstechnisch spezifischen
Veröffentlichungen, in denen die BO zur Lösung genutzt wird. Bei den Veröffentlichungen
mit einem regelungstechnischen Hintergrund wird zwischen Arbeiten unterschieden, die
eine bestimmte Form von Vorwissen über das technische System oder die Steuerung bzw.
Regelung beinhalten, und solchen Arbeiten, die keine besondere Vorkenntnis ausnutzen.
Weiterführend wird hierauf der Beitrag der vorliegenden Arbeit erläutert und eingeord-
net.

Einen gesamtheitlichen Überblick über die Verwendung der BO anstelle des manuellen
Einstellens bietet [SSW+16], worin insbesondere noch einmal die Unterschiede der vor-
gestellten Akquisitionsfunktionen behandelt und verschiedene Optimierungsroutinen zur
Lösung der unterlagerten Probleme vorgestellt werden. In [SLA12] werden hierzu pas-
send weiterführende Analysen vorgenommen, die sich auf praktische Aspekte fokussie-
ren. Unter anderem werden der SE- (2-32) und der Matern-Kernel (2-35) gegenübergestellt
und die zu hohen Glattheitsanforderungen des SE-Kernels für praktische Anwendungen
kritisiert. Bei den Anwendungsbeispielen dieser Arbeit konnte die Kritik jedoch nicht
bestätigt werden, sodass der SE-Kernel in allen Fällen zufriedenstellende Ergebnisse lie-
ferte. Die hohen Glattheitsanforderungen müssen daher grundsätzlich nicht als negativ
erachtet werden und schaffen ggf. eine weitere Ebene, um Vorwissen einzubringen.

Der Einsatz der BO für regelungstechnische Fragestellungen wird vielseitig in der Litera-
tur untersucht. In [CVS+20] wird eine umfassende Zusammenfassung zu den möglichen
Schnittstellen zwischen der Regelungstechnik und verschiedenen maschinellen Lernver-
fahren gegeben. Die Schnittstellen werden bei dem Dynamikmodell, der Steuerung oder
Regelung und der Gütefunktion gesehen. Innerhalb einer hierarchisch aufgestellten Struk-
tur, wird die BO dabei auf der Ebene der Gütefunktion eingeordnet, wodurch eine unterge-
ordnete Korrektur eines fehlerbehafteten Dynamikmodells umgangen wird. Dies ist unter
anderem besonders vorteilhaft, wenn unklar ist, wie die Zustände eines Systems genau
definiert sind oder sie schwierig, durch entsprechende Sensorik, erfasst werden können.
Die Autoren führen zudem verschiedene Wege zur Einbringung von Vorwissen an, so
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kann bspw. eine gewisse Struktur oder Ansatzfunktion für die Steuerung bekannt sein
oder eine möglicherweise vorhandene Parametrisierung bereits eingegrenzt werden.

Spezifische Anwendungsfälle, in denen die BO zur Bestimmung von Parametern in einem
regelungstechnischen Kontext eingesetzt wird, jedoch kein besonderes Vorwissen über
die Aufgabe ausgenutzt wird, sind in [SKOT13; CHJA18; CSPD16; NMST20; MHB+16;
RWL19; Bij18; ZBP21; SAA20; FKDZ19] zu finden. Die erstgenannten Publikationen
[SKOT13] und [CHJA18] konzentrieren sich auf den Beobachterentwurf und die automa-
tisierte Bestimmung der beinhalteten Parameter mittels BO. Im Falle eines UKF, welcher
auf den Transformationsgleichungen der UT (2-26)-(2-28) basiert, wird bspw. der Ent-
wurfsparameter κ, der die Entfernung der Sigma-Punkte um den Erwartungsvektor steu-
ert, optimal in Bezug auf die Nichtlinearitäten des Systems ausgelegt. Auf diese Weise
kann die Qualität der Verteilungsapproximation gesteigert werden. Als Motivation für die
Verwendung der BO wird in diesen Arbeiten angeführt, dass kein spezifisches Fachwis-
sen über die Beobachterstruktur, das dynamsiche System und dessen zugrundeliegenden
Terme benötigt und so die aufwendige manuelle Suche umgangen wird.

In den anderen aufgeführten Veröffentlichungen wird Bezug zum Steuerungs- bzw. Re-
gelungsentwurf genommen. In [CSPD16] wird ein Regler, welcher als Zustandsautomat
realisiert ist und gewisse Umschaltzeiten als Parameter besitzt, mit Hilfe der BO für
einen Laufroboter ausgelegt. Im direkten Vergleich mit anderen Lösungsmöglichkeiten
zeichnet sich die BO hierbei als äußerst effizient aus, was in Hinblick auf mögliche
Beschädigungen aufgrund eines instabilen Laufvorgangs ein besonders wichtiges Kri-
terium darstellt. Hervorzuheben ist, dass dabei kein Vorwissen über die Laufdynamik
des Roboters genutzt wurde. Die Autoren begründen dies mit der schwierigen Modell-
bildung aufgrund der niedrigen Qualität der verbauten Komponenten, die das Gesamtsys-
tem sehr schwingungsanfällig machen. In [MHB+16] wird die BO für den Entwurf eines
linear-quadratischen Reglers verwendet. Allerdings werden nicht direkt die Parameter des
linearen Reglers als Optimierungsvariablen definiert, sondern die Elemente der Gewich-
tungsmatrizen des riccatischen Gütemaßes (vgl. (3-3)). Der Grund hierfür ist, dass die BO
somit nur im Raum stabiler Regler arbeitet und mögliche Selektierungen, die zu einem
instabilen Verhalten führen würden, ausgeschlossen sind. Ähnlich zum modellbasierten
Entwurf ist diese Schlussfolgerung allerdings nur so gut wie die Prädiktionsqualität des
linearen Dynamikmodells auf dessen Berechnung das riccatische Gütemaß basiert. In den
Arbeiten [NMST20], [Bij18] und [RWL19] wird die BO tiefergehend im industriellen
Kontext und für die Auslegung von einfachen Reglern untersucht. Die betrachteten Sys-
teme sind dabei ein Steuerungsventil, welches zur Komprimierung von Gasen eingesetzt
wird, eine Windrand zur Stromerzeugung und ein mechanisches Positionierungssystem.
In allen Fällen wird höchstens ein lineares Modell als Vorwissen verwendet. Ein komple-
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xerer Regelungsansatz wird in den Arbeiten [SAA20] und [ZBP21], repräsentiert durch
eine modellprädiktive Regelung (MPC), verwendet. Dabei wird bspw. der Stellhorizont
der MPC für das betrachtete System durch die BO optimiert. Zuletzt sei auch die Arbeit
von [FKDZ19] zu erwähnen, worin die Parameter eines künstlichen neuronalen Netzes,
welches den Regler darstellt, mittels BO bestimmt werden. Da die Anzahl der Parameter
zu den vorherigen Anwendungsfällen vergleichsweise hoch ist, wird allerdings eine Di-
mensionsreduktion mit Hilfe eines Principle Component Analysis (PCA) Ansatzes dem
BO Algorithmus hinzugefügt. Auf diese Weise kann der Suchraum deutlich reduziert und
der Einsatz der BO, welche grundsätzlich besser für niedrig dimensionale Probleme ge-
eignet ist, ermöglicht werden.

Die Veröffentlichungen des vorhergehenden Abschnitts erzielen insgesamt gute Ergeb-
nisse bei der Verwendung der BO im regelungstechnischen Kontext. Etwaiges Vorwissen
wird jedoch nur rudimentär genutzt, größtenteils in Form von linearen Dynamikmodel-
len. Unklar bleibt dabei, wie sich komplexeres Vorwissen, möglicherweise vorliegend als
nichtlineares analytisches oder Black-Box Modell, im Rahmen der BO einfügen lässt.
Hierfür bieten sich unter anderem die angenommene Mittelwert- und Kovarianzfunkti-
on des GPs (s. (3-4)) an. Üblicherweise werden hierfür aufgrund eines nicht vorhandenen
oder unklaren Vorwissens die Ansätze m(θ) = 0 und k(·, ·) = kSE(·, ·) getroffen. Da sich
die BO an die Datenbasis anpasst, stellen diese Ansätze keine Einschränkung an das Ver-
fahren dar, bieten jedoch ein Verbesserungspotential in Bezug auf die Effizienz bei der In-
betriebnahme. Komplexere Funktionen, die ein bestimmtes Fachwissen ausnutzen, wirken
sich im Rahmen der BO so aus, dass bestimmte Gebiete im Suchraum ggf. ausgeschlos-
sen werden können und durch die BO nicht aufwendig exploriert werden müssen. Die BO
kann sich somit direkt auf die Gebiete fokussieren, die die besten Gütefunktionswerte ge-
nerieren und das zur Verfügung stehende Iterationsbudget dort zweckmäßiger nutzen.

Zwei Veröffentlichungen, die die Schnittstelle der Kovarianzfunktion zur Einbringung
von Fachwissen explizit ausnutzen, sind [RAMA19] und [MBH+17]. Die Schnittstelle
wird dabei sehr unterschiedlich verwendet. In [RAMA19] wird ein im Kreis laufender
Roboter betrachtet, dessen Steuerungsparameter ausgelegt werden sollen. Die Autoren
nutzen für diesen Fall eine eigene Variante des SE-Kernel, welche über

kISE(θ,θ
′;η) = kSE(ϕ(θ), ϕ(θ

′);η),

beschrieben wird und als Zusatz den Buchstaben I für Informed trägt. Hierin ist ϕ(θ)
eine Transformation der Parametrisierung, die als Basis das vorhandene Vorwissen ei-
nes mechanischen Dynamikmodells nutzt. Es werden verschiedene Möglichkeiten für
die Transformation vorgeschlagen. Eine Möglichkeit ist die simulierte Trajektorie, wel-
che durch die Verwendung eines fixierten θ entsteht, zu verwenden. Im Zuge dessen
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wird bzgl. der SE-Berechnungsvorschrift kein Vergleich zwischen Parameterwerten vor-
genommen, sondern ein Vergleich zwischen Trajektorien. Für besonders sensitive Sys-
teme wie den Laufroboter ist dieser Ansatz sinnvoll, da zwei ähnliche Parametrisierun-
gen ohne die Transformation zu einer hohen Kovarianz führen würden, allerdings nicht
die möglicherweise gänzlich unterschiedlichen Trajektorien widerspiegeln. Mit Hilfe der
Transformation gelingt es somit, die Parametrisierungen in einen geeigneten Raum für
einen Vergleich zu überführen und das vorhandene Vorwissen zu berücksichtigen. Um
die Dimension dieses Raums deutlich zu reduzieren und damit Berechnungszeit einzu-
sparen, schlagen die Autoren vor, vorab (offline) eine ausreichend große Datenbank von
simulierten Trajektorien zu erstellen und eine niedrig dimensionale Transformation über
eine lernfähige Autoencoder-Struktur zu erlernen. Anschließend wird online die BO unter
Verwendung des Autoencoders zur Identifikation der Parametrisierung ausgeführt.

In [MBH+17] wird die Schnittstelle zur Kovarianzfunktion ebenfalls genutzt, um ein dy-
namisches Modell einfließen zu lassen. Dafür wird ein sogenannter Multisource GP de-
finiert, welcher mehrere verschiedene Informationsquellen vorsieht. Zunächst wird ein
erweiterter Parametervektor mit θ̃ := [θT , δ]T eingeführt, wobei δ ∈ {0, 1} eine binäre
Variable darstellt, die angibt, ob es sich um einen simulierten oder real gemessenen Da-
tenpunkt handelt. Der Kernel wird demnach über den Ausdruck

k(θ̃, θ̃
′
) = ksim(θ,θ

′) + kδ(δ, δ
′)kerr(θ̃, θ̃

′
)

angesetzt und setzt sich somit additiv aus einem Term für die Simulation und einem Kor-
rekturterm zusammen. Für ksim(·, ·) und kerr(·, ·) kann bspw. der SE-Kernel verwendet
werden. Das Verbindungselement stellt kδ(·, ·) ∈ {0, 1} dar, womit überprüft wird, ob
beide Eingaben vom realen System stammen. Nur in diesem Fall ist der korrektive Fehler-
term aktiv und wird im Rahmen der Gauß-Prozess-Regression berücksichtigt. Der Ansatz
verfolgt die Grundidee, dass simulierte Daten nur einen Teil der wahren Gütefunktion
erklären können. Dementsprechend sinkt die Unsicherheit bei den ausgewerteten Stellen
des Parameterraums nur geringfügig im Vergleich zu einer Auswertung am realen Sys-
tem, wobei die Unsicherheit (abgesehen vom Messrauschen) vollständig verschwindet.

Bild 3-1 zeigt beispielhaft die Wirkungsweise des eingesetzten GPs in [MBH+17]. Die
grüne durchgezogene Linie zeigt den Ground Truth bzw. die unbekannte wahre Güte-
funktion. Der linke (schwarze) Datenpunkt stellt ein Experiment am realen System dar
und stammt somit vom Ground Truth. Der rechte Datenpunkt wurde anhand des Simu-
lationsmodells erzeugt und befindet sich abseits des Ground Truth, um die Auswirkung
von vorhandenen Modellfehlern anzudeuten. Die grüne gestrichelte Linie wird somit dem
Simulationsmodell zugeordnet. In der linken Bildhälfte stimmen Realität und Modell gut
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Bild 3-1: Visuelle Darstellung eines Multisource Gauß-Prozesses (blau, rot), welcher auf
zwei verschiedenen Informationsquellen basiert. Die grüne durchgezogene Linie
zeigt die wahre Gütefunktion und die grüne gestrichelte Linie eine modellbasier-
te Schätzung.

miteinander überein, wohingegen es auf der rechten Seite deutliche Unterschiede gibt, der
(steigende) Trend tendenziell aber stimmt. Die blauen Verläufe gehören zur vollständigen
Kovarianzfunktion, also inkl. dem Korrekturterm, und kennzeichnen den Mittelwert und
die zweifache Standardabweichung. Gut erkennbar ist, dass die Varianz beim realen Da-
tenpunkt stark reduziert ist, wohingegen der fiktive Datenpunkt der Simulation die Un-
sicherheit nur geringfügig beeinflusst. Die roten Verläufe werden der Simulation zuge-
ordnet und weisen das gegenteilige Verhalten auf. Hierbei führt der fiktive Datenpunkt
zu einer deutlichen Reduktion der Varianz und der reale Datenpunkt hat nur eine ge-
ringe Auswirkung. Die BO-Routine enthält aufgrund des erweiterten GP-Ansatzes ei-
ne zusätzliche Abfrage, ob ein reales oder fiktives (simuliertes) Experiment ausgeführt
werden soll. Dies geschieht anhand eines weiteren Kriteriums, welches durch bestimm-
te vorab festgelegte Grenzwerte bestimmt ist. In dieses Kriterium fließen die Grundsätze
ein, dass ein simuliertes Experiment zeitlich deutlich schneller durchgeführt werden kann
als ein reales, dafür jedoch weniger Informationen beinhaltet und damit vergleichsweise
als minderwertiger anzusehen ist. Aufgrund dieser Erweiterung wählt die BO automati-
siert zwischen realen und simulativen Auswertungen und wechselt, je nach festgelegten
Kriterien, zwischen diesen hin und her. Im Kern berücksichtigt [MBH+17] somit zwar
a-priori-Wissen über die Regelungsaufgabe, macht allerdings auch darauf aufmerksam,
dass dieses Wissen unvollständig bzw. nicht perfekt sein kann und daher nur bedingt und
mit einer gewissen Unsicherheit, ausgenutzt werden sollte.

Die genannten Arbeiten haben gemeinsam, dass die Mittelwertfunktion m(·) des GP als
Schnittstelle vernachlässigt wird, obwohl diese den intuitiv einfachsten Weg darstellt, um
Expertenwissen einzubinden. In [MBH+17] wird dieser Aspekt innerhalb einer kritischen
Analyse ihres Ansatzes aufgegriffen. Der Umweg über den Multisource-GP ist dann be-
sonders nützlich, wenn das Vorwissen relativ ungenau ist und nur eine grundsätzliche
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Tendenz in Hinblick auf die Gütefunktion beinhaltet. Andernfalls sehen die Autoren die
Mittelwertfunktion als besser geeignete Schnittstelle an, da über sie keine Generierung
von Datenpunkten notwendig ist. Das gesamte Simulationsmodell ist demnach direkt bei
der Auswertung einer bestimmten Stelle θ vorhanden und nicht nur partiell an den Stellen,
die durch die BO ausgewählt wurden. Vor dem Hintergrund der Berechnungskomplexität
ist die Verwendung der Mittelwertfunktion ebenfalls vorzuziehen, da die fiktiven Daten
der Simulation die Datenmenge rasch ansteigen lassen und damit gleichermaßen die Be-
rechnungsdauer zunimmt. Problematisch an der Verwendung der Mittelwertfunktion als
Schnittstelle ist lediglich die Einbindung von zu stark fehlerbehafteten Annahmen. In
[Sch19] wurde hierzu bspw. ein einfaches Pendelsystem betrachtet und die Effizienz der
BO bzgl. verschiedener mechanischer Parametrierungen untersucht. Als Ergebnis wur-
de folgender Zusammenhang herausgearbeitet: Je größer die Abweichung der Parame-
trierung zum realen System, desto niedriger die Effizienz des Verfahrens. Ab einer ge-
wissen Grenze konnte sogar eine Verschlechterung gegenüber dem Fall ohne Vorwissen,
d. h. m(·) = 0, beobachtet werden. Anschaulich kann dieser Fall so interpretiert werden,
dass die wahre Gütefunktion eine Sinusschwingung darstellt und als Mittelwertfunktion
der Cosinus benutzt wird. Dabei benötigt die BO zahlreiche (zusätzliche) Auswertungen,
um den Fehler, welcher durch die Mittelwertfunktion induziert wird, auszugleichen, so-
dass insgesamt die Effizienz deutlich sinkt. Letztendlich steht der Anwender der BO vor
der Frage, in wie weit das vorhandene Vorwissen eingebunden werden soll bzw. wel-
che Prädiktionsfähigkeit es besitzt. Insgesamt betrachtet ist die Mittelwertfunktion in den
überwiegenden Fällen vorzuziehen. Dies wird bspw. durch die Arbeit in [DFE20] moti-
viert. Hierin wird explizit die Rolle der Mittelwertfunktion im Rahmen der BO umfassend
durch ein breites Spektrum von gängigen Testfunktionen untersucht und ein positives Fa-
zit für die Verwendung ausgesprochen.

Das Ziel dieses vorliegenden Kapitels ist, die BO für die Inbetriebnahme eines komplexen
Anwendungsbeispiels - dem Ultraschalldrahtbonden - auszulegen. Sowohl eine theoreti-
sche als auch praktische Umsetzung dieses Konzepts wurde in der Literatur bisher nicht
beschrieben und stellt daher eine neuartige Entwicklung dar. Es soll eine optimale Para-
metrisierung einer vorab festgelegten Ansatzfunktion für die Steuerung direkt am realen
System identifiziert werden. Der Ultraschalldrahtbondprozess zeichnet sich dadurch aus,
dass ein modellbasierter Entwurf nach momentanen Stand der Forschung aufgrund der
schwierigen Modellbildung nicht realisierbar ist. Die vorliegende Arbeit setzt hier mit
der Verwendung der BO an und ermöglicht somit eine effiziente und praktische Ausle-
gung der Steuerung. Um dieses Ziel zu erreichen, ist es notwendig eine an das System
angepasste Variante der BO zu entwickeln, die die Besonderheiten in Hinblick auf die
Entwurfskriterien adäquat berücksichtigt. Zudem wird zur Effizienzsteigerung das vor-
handene Expertenwissen bestmöglich ausgenutzt. Um das entwickelte Verfahren zu va-
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Bild 3-2: Schematischer Aufbau und Komponenten [SKHS21] des Ultraschalldrahtbond-
prozesses (links) und zwei exemplarische Aufnahmen einer Aluminimum Bond-
verbindung aus der Draufsicht mittels Lichtmikroskops (rechts).

lidieren, werden verschiedene Versuchsreihen am Bondautomaten durchgeführt und die
allgemein vorteilhaften Eigenschaften der BO bewertet. Nachfolgend wir zunächst eine
vollständige Einführung in den Ultraschalldrahtbondprozess gegeben.

3.3 Anwendungsbeispiel: Ultraschalldrahtbondprozess

Ultraschalldrahtbonden ist ein Festkörperfügeprozess [Har10; HSB+20]. Dabei handelt
es sich um eine Standardtechnologie für die Herstellung elektrischer Verbindungen in
der Mikro- und Leistungselektronik und wird zudem auch in der Batterieproduktion im
Rahmen der Elektromobilität verwendet. Bild 3-2 zeigt die Hauptkomponenten eines
Ultraschalldrahtbondprozesses. Eine oszillierende Relativbewegung zwischen Draht und
Substrat (Untergrund) wird durch eine Wechselspannung US(t) mit Ultraschallfrequen-
zen, üblicherweise im Bereich von 40 bis 150 kHz, induziert, die auf einen piezoelektri-
schen Wandler (Transducer) angelegt ist. Der Transducer wandelt die elektrische Anre-
gung in mechanische Vibrationen um, die über ein Bondwerkzeug in die Verbindungszo-
ne übertragen wird. Das Bondwerkzeug drückt den Draht mit einer Normalkraft FN(t)

auf das Substrat. Die beiden metallischen Partner, z. B. Aluminiumdraht auf einem gold-
beschichteten Substrat, werden durch Interdiffusion und Bildung von intermetallischen
Verbindungen kalt zusammengeschweißt. Die Vibration wird für eine Prozesszeit von un-
gefähr 300 ms in Abhängigkeit des Drahtdurchmessers erzeugt. In der Regel wird der
Transducer während der Prozessdauer durch einen zugrundeliegenden Frequenzregler in
Resonanz gehalten, um die maximale Amplitude des Werkzeugs zu erhalten. Im Rah-
men dieser Arbeit wird davon ausgegangen, dass dieser Frequenzregler vorhanden und
passend eingestellt ist bzw. keiner weiteren Optimierung bedarf. Nach der Erzeugung
der ersten Bondverbindung wird in einem herkömmlichen Prozess eine Drahtschleife zu
einem zweiten Ort gezogen. An der zweiten Stelle wird der Draht ebenfalls mit dem Un-
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Bild 3-3: Exemplarischer Verlauf der parametrisierten Steuerung für den Ultraschall-
drahtbondprozess.

tergrund verbunden und daraufhin durch ein Messer abgeschnitten. Für diese Arbeit ist
die Betrachtung der ersten Verbindung ausreichend, sodass der Draht direkt im Anschluss
an die erste Verbindungsstelle abgeschnitten wird. Bild 3-2 zeigt hierzu auf der rechten
Seite zwei verschiedene Bondverbindungen an deren rechter Seite der scharfe Schnitt des
Messers erkennbar ist.

Die Steuerung des Prozesses ist durch die Normalkraft FN(t) und die Spannungsam-
plitude ÛS(t) definiert. In Bild 3-3 ist die vorgeschlagene parametrisierte Steuerfunkti-
on u(t;θ) = [FN(t;θ), ÛS(t;θ)]

T für die beiden Eingänge dargestellt. Die genaue Form
der Steuerung wird durch θ = [F0, F1, F2, Û1, Û2, T1, T2]

T ∈ R7 charakterisiert. Die
Übergangszeiten (Rampenlängen) werden auf 25% der jeweiligen Gesamtphasenzeit T1, T2

eingestellt. Der formelmäßige Zusammenhang der Steuerung ist im Anhang unter (A3-1)
angegeben. Die Steuerung basiert auf dem Expertenwissen verschiedener Einrichter des
Prozesses und hat sich bereits über mehrere Jahre hinweg als besonders zuverlässig und
geeignet erwiesen, um qualitativ hochwertige Bondverbindungen zu erzeugen.

Physikalisch gesehen, besteht der Bondprozess aus vier Phasen, wobei eine kontinuier-
liche Überlappung zwischen den letzten drei stattfindet [Gei09; LTW17]: In der ersten
Vordeformations-Phase wird der Draht zunächst ohne Vibrationseinbringung auf das Sub-
strat gedrückt und verformt. Wenn das Bondwerkzeug zu vibrieren beginnt, wird eine
Relativbewegung zwischen Draht und Substrat verursacht. Dies entfernt Verunreinigun-
gen wie Staubpartikel oder Oxidschichten und reduziert zudem die Rauheit beider Ober-
flächen. Die Phase dient somit der Reinigung und Aktivierung. Danach folgt eine Phase
der größeren plastischen Verformung des Drahtes, unterstützt durch den ultraschallbe-
dingten Erweichungseffekt [USA+14]. In der abschließenden Diffusions-Phase nimmt die
Kontaktfläche zu und beide Kontaktpartner diffundieren ineinander bis zum Ende des Pro-
zesses, was letztendlich zu einer soliden (Bond-)Verbindung führt. Eine geeignete Steuer-
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funktion zur Erzeugung stabiler Bondverbindungen unterstützt die Bildung dieser physi-
kalischen Phasen, muss sie jedoch nicht direkt in ihren Parametern widerspiegeln. Basie-
rend auf Expertenerfahrung hat die Steuerfunktion daher drei Phasen. Die erste Phase ist
die Vordeformationsphase mit der initialen Kraft F0. Die Dauer dieser Phase ist irrelevant,
sollte allerdings ausreichend sein, um eine anfängliche Kontaktfläche hervorzurufen. Die
zweite Steuerphase, mit den Parametern (T1, F1, Û1), deckt die physikalischen Prozesse
der Reinigung und Aktivierung, sowie die erste Verformung und Interdiffusion grob ab.
Die letzte Steuerphase enthält die Parameter (T2, F2, Û2) und ist für den größten Teil der
Verformung und für die finale Verschweißung verantwortlich.

Es gibt mehrere Kriterien, die die Qualität einer Verbindung definieren. Gemäß [DVS17]
werden insbesondere die Scherfestigkeit und optische Kriterien, wie die schädliche Kol-
lision des Werkzeugs mit dem Substrat, berücksichtigt. Die Scherfestigkeit einer Verbin-
dung wird mit einer Kraftmessdose in Kombination mit einem Schermeißel gemessen.
Der Meißel bewegt sich über die Verbindung in einer bestimmten geringen Höhe über
dem Substrat, während gleichzeitig die maximale Kraft FS bis zum Bruch der Verbin-
dung gemessen wird. Es handelt sich dabei also um eine zerstörende Messmethode, die
pro Bondverbindung nur einmal durchgeführt werden kann. Ein Kontakt zwischen Werk-
zeug und Substrat kann auftreten, wenn die verwendete Steuerung zu viel Energie in das
System einführt. In diesem Fall verformt sich der Draht zu stark und die Kanten des Bond-
werkzeugs kollidieren mit dem Substrat, wodurch beide Komponenten möglicherweise
beschädigt werden. Dieses Szenario muss, insbesondere beim Bonden auf empfindlichen
rissanfälligen Substraten wie Halbleiterplatten, während des Betriebs vermieden werden.
Beim Steuerungsentwurf ist es unerwünscht, aber zur Exploration zulässig. Aufgetretene
Kollisionen können mit einem optischen Mikroskop nach dem Prozess erkannt werden.
Bild 3-2 zeigt hierzu auf der rechten Seite eine Verbindung ohne (oben) und mit (unten)
einem Werkzeugaufsetzer.

Der Prozessfähigkeitsindex CpK ist ein wichtiges statistisches Maß in der Industrie und
wird in diesem Kontext verwendet, um die Qualität des Bondprozesses zu quantifizie-
ren. Er hängt vom Mittelwert und der Varianz der Scherkraft ab, die durch Prozess-
und Messrauschen negativ beeinflusst wird. Daher ist die Scherkraft als eine Zufalls-
variable mit dem Mittelwert E[FS(θ)] und der Varianz V[FS(θ)] aufzufassen. Der Pro-
zessfähigkeitsindex [DVS17] wird dann definiert durch

CpK(θ) =
E[FS(θ)]− LSL
3
√

V[FS(θ)]
, (3-9)

wobei LSL (Lower Specification Limit) die untere Spezifikationsgrenze ist. Sie bestimmt
die minimale Scherkraft, die erreicht werden soll, und wird je nach Anwendungsfall und
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Materialpaarung von einem Experten ausgewählt. Um den CpK-Wert zu berechnen, wird
der Mittelwert und die Varianz empirisch durch

E[FS(θ)] ≈
1

nrep

nrep∑
i=1

F
(i)
S (θ) =: µFS

(θ),

V[FS(θ)] ≈
1

nrep − 1

nrep∑
i=1

(F
(i)
S (θ)− µFS

(θ))2 =: σ2
FS
(θ),

approximiert, wobei nrep > 1 (Repetition) separate Bonds mit derselben zugrundeliegen-
den Steuerung erzeugt werden, was zu den Messdaten F

(i)
S (θ), i = 1, . . . , nrep führt.

Werkzeugkollisionen und andere optische Kriterien werden durch die binäre Variable
g(θ) erfasst, wobei 0 eine gute Verbindung und 1 eine Verbindung mit einem optischen
Mangel repräsentieren. Genauer gesagt, wenn mindestens eine der nrep Verbindungen
einen optischen Mangel aufweist, wird g(θ) auf 1 gesetzt.

Der Entwurf der parametrisierten Steuerung für den Ultraschalldrahtbondprozess wird
dann mathematisch als das folgende restringierte Optimierungsproblem formuliert:

θ∗ = argmax
θ

CpK(θ), u.B.v. g(θ) = 0. (3-10)

Dieses Problem wird in der Praxis in der Regel durch manuelles Ausprobieren gelöst, da
es bisher keine automatisierte Lösungsstrategie in der Industrie gibt. Das Optimierungs-
problem hängt von vielfältigen Rahmenbedingungen ab, womit es nicht ausreicht es ein-
malig zu lösen. In der Praxis treten bspw. unterschiedliche Materialpaarungen auf, die ei-
ne Anpassung der Steuerungsparameter erfordern. Außerdem kann die genaue Geometrie
des Substrats oder der Drahtdurchmesser einen Einfluss auf die optimale Parametrisierung
haben. Aus diesen Gründen muss das Optimierungsproblem je nach Anwendungsfall auf-
wendig neu durch einen Einrichter gelöst werden. Das Ziel dieser Arbeit ist, das Pro-
blem mittels BO zu lösen und damit vom menschlichen Anwender größtenteils zu ent-
koppeln. Die Vorteile dieser Vorgehensweise sind vielfältig, werden aber vor allem in
einer Zeit- und Kostenersparnis gesehen. Des Weiteren wird durch den Einsatz der BO
die Möglichkeit geschaffen, einen Steuerungsentwurf im Sinne der Regelungstechnik
durchzuführen. Dieser Entwurf ist gegenüber der manuellen Auslegung von Vorteil, da
er nicht auf einer subjektiven Einschätzung des menschlichen Einrichters basiert, sondern
nach objektiven Kriterien der BO bewertet wird. Der Ansatz dieser Arbeit ist es jedoch
nicht das Expertenwissen unberücksichtigt zu lassen, sondern über die erwähnten GP-
Schnittstellen anderweitig einzubeziehen. In diesem Zuge ist die bereits erläuterte Wahl
der Steuerungsfunktion aus Bild 3-3 eine Form der Einbringung von Fachwissen. Durch
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ihre Wahl wird der Suchraum an möglichen Steuerungsverläufen drastisch eingeschränkt
und trägt somit zu einer Effizienzsteigerung bei.

Den Schlussfolgerungen aus dem Abschnitt zum Stand der Forschung folgend, ist die
Mittelwertfunktion m(θ) des GP eine einfache und nachvollziehbare Möglichkeit, um
Vorwissen über die Steuerungsaufgabe (3-10) innerhalb der BO aufzugreifen. Mit der
Kenntnis eines simplen Simulationsmodells könnte hierbei eine Auswertung des CpK-
Werts vorgenommen werden, welche wiederum als geeignete Mittelwertfunktion einge-
setzt werden könnte. Im Grunde ist bereits eine Schätzung der Scherfestigkeit FS ausrei-
chend, da der CpK-Wert im wesentlich von diesem abhängt und für die Varianz V[FS] der
Einfachheit halber ein konstanter Faktor angesetzt werden kann (s. (3-9)). Das nächste
Kapitel widmet sich daher der Aufstellung eines geeigneten Simulationsmodells für den
Ultraschalldrahtbondprozess, welches auf der Grundlage von physikalischen Gesetzmäßig-
keiten hergeleitet wird.

3.4 Physikalische Modellbildung für das
Ultraschalldrahtbonden

Die physikalische Modellbildung des Ultraschalldrahtbondprozesses wird innerhalb der
Literatur vielseitig diskutiert. Die Modelltiefen unterscheiden sich dabei deutlich und rei-
chen von einfachen Einmassenschwingern mit besonderen Reibcharakteristiken bis hin zu
komplexen (FEM-)Modellen. Im Rahmen dieses Unterkapitels sollen einige der Modelle
vorgestellt und ihre Vor- bzw. Nachteile erläutert werden. Des Weiteren soll ihre Eignung
als Vorwissen im Rahmen der BO besprochen werden. Bild 3-4 zeigt auf der linken Sei-
te einen klassischen mechanischen Modellansatz, welcher sich aus einer Verkettung von
Massen und Feder-Dämpfer-Elementen zusammensetzt, und auf der rechte Seite ein hoch
diskretisiertes FEM-Modell, wobei die Druckverteilung in der Kontaktfläche hervorge-
hoben ist [Ung17]. Im Nachfolgenden werden diese und verwandte Modellierungsarten
näher beschrieben. Dabei verfolgen alle Modelle das Ziel, die zeitliche Entwicklung der
Scherfestigkeit FS(t) genau wiederzugeben bzw. vorherzusagen.

Ein erster einfacher Modellierungsansatz besteht darin, nur die Drahtmasse mit einer ge-
federten Verbindung zum Untergrund zu betrachten. Das Masse-Feder-System auf der
linken Seite von Bild 3-4 wird hierzu als Anschauung verwendet. Genauer genommen,
wird nur die Masse (Draht) auf der ganz rechten Seite betrachtet, welche durch eine par-
allele Feder-Anordnung mit dem Substrat verbunden ist. Der gesamte linke Teil wird also
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Bild 3-4: Ansätze zur physikalischen Modellierung des Ultraschalldrahtbondprozes-
ses [Ung17]. Mehrmassenschwinger mit Jenkins-Element (links) und Finite-
Elemente-Methode zur Beschreibung der Kontaktfläche (rechts).

zunächst vernachlässigt. Das beschriebene Modell lässt sich durch die Differentialglei-
chungen (angelehnt an [Ung17; SKHS21])

ẋ1(t) = ṡD(t),

ẋ2(t) = s̈D(t) =
1

mD

(FT (t)− cDsD(t)− FJ(t)),

ẋ3(t) = ḞJ(t) = cJ ṡD(t)(1− 1
2
(1 + sign(ṡD(t)FJ(t)))

∣∣∣∣ FJ(t)

µ(Wµ(t))FN(t)

∣∣∣∣,
ẋ4(t) = Ẇµ(t) =

1
2
FJ(t)ṡD(t)(1 + sign(ṡD(t)FJ(t))

∣∣∣∣ FJ(t)

µ(Wµ(t))FN(t)

∣∣∣∣,
(3-11)

mathematisch beschreiben. Darin repräsentiert x = [sD, ṡD, FJ ,Wµ]
T den Zustand des

Systems, welcher wiederum aus der Wagenposition sD des Drahts, seiner Geschwindig-
keit ṡD, einer internen Kraftkomponente FJ und der geleisteten Reibungsenergie Wµ

besteht. Die Eingänge in das System werden mit Hilfe der wirkenden Normalkraft FN

und der Tangentialkraft FT , welche horizontal am Wagen bzw. Draht wirkt, beschrieben.
Zur Vereinfachung wird zunächst die Tangentialkraft als Ursache für die Vibration der
Drahtmasse angesehen. Um einen Zusammenhang zur angelegten elektrischen Spannung
US , welche den eigentlichen Eingang darstellt, herzustellen, kann eine Proportionalität
mit FT ∝ US angenommen werden. Des Weiteren enthalten die Differentialgleichun-
gen spezifische mechanische Parameter: cD, cJ sind Federsteifigkeiten und µ(Wµ(t)) ein
energieabhängiger Reibungswert, welcher die Stärke der Anbindung repräsentiert. (3-11)
beschreibt auf einfache Weise die Relativbewegung zwischen dem Draht und dem Un-
tergrund. Die Besonderheit des Modells ist die Verwendung des sogenannten Jenkins-
Elements (s. Bild 3-4) in Kombination mit einer Evolutionsgleichung [Ung17], welches
den Haft- und Gleitreibungszustand charakterisiert und den Übergang kontinuierlich flie-
ßend abbildet. Die Differentialgleichung bzgl. ḞJ beschreibt in diesem Zusammenhang
verschiedene Fälle, die das Element annehmen kann. Unter anderem muss die Normal-
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kraft FN einen passenden Wert annehmen, da ansonsten keine Reibungsenergie erzeugt
wird. Ist die Kraft zu gering, gleitet der Draht wirkungslos über den Untergrund. Ist die
Kraft hingegen zu groß, wird der Draht so stark auf den Untergrund gedrückt, dass er
sich elastisch mit dem Untergrund bewegt bzw. an diesem haftet und keine wirksame
Reibung entstehen kann. Neben der Normalkraft ist die Tangentialkraft FT ein weiterer
Steuereingang, durch die eine sinusförmige Schwingung des Drahtes vorgegeben wird.
Eine optimale Ansteuerung wird im Rahmen des Modells durch das Integratorverhalten
der gesamten eingetragenen Reibungsenergie Wµ beschrieben, welche sich proportional
zur Scherkraft FS verhält und somit im Idealfall ein kontinuierliches Anwachsen wider-
spiegeln sollte.

Das auf diesem Wege hergeleitete Modell (3-11) beschreibt den Bondprozess physika-
lisch und für den Menschen nachvollziehbar. In Hinblick auf das reale System und die
schematische Darstellung in Bild 3-2 lässt sich das Modell auf der ausgewählten Model-
lierungstiefe folgendermaßen erweitern: In Bild 3-4 sind weitere Massen für das Bond-
werkzeug und den Wandler vorgesehen. Die Verbindung der Massen erfolgt durch Feder-
Dämpfer-Elemente, die insgesamt betrachtet zu eigenen (Ein-)Schwingvorgängen führen.
Des Weiteren deutet der vertikale Balken die elektro-mechanische Verbindung der Piezo-
elektronik an, die durch ein Hebelgesetz definiert wird. Somit lässt sich anstelle der ein-
geführten Tangentialkraft FT die ursprüngliche elektrische Spannung US am Transducer
als Stellgröße für das erweiterte Modell verwenden. Das erweiterte Modell zeichnet sich
dadurch aus, dass es neben der Drahtdynamik die Bewegungen der anderen Komponen-
ten miteinbezieht und deren Schwingungs- bzw. Resonanzverhalten. Vor dem Hintergrund
des Steuerungsentwurfs ist dieser jedoch komplizierter geworden, da nun die komplexere
Wirkungskette vom Wandler bis hin zum Substrat zu berücksichtigen ist.

Das komplexe FEM-Modell [Ung17], welches auf der rechten Seite von Bild 3-4 zu se-
hen ist, kann auf der Basis des bereits erläuterten Modellansatzes nachvollzogen werden.
Die Grundidee ist, die Kontaktfläche zwischen Draht und Untergrund gleichmäßig zu dis-
kretisieren und für jedes finite Element die Differentialgleichungen aus (3-11) bzw. die
des Jenkins-Elements anzusetzen. Unter der Annahme einer parabelförmigen Druckver-
teilung, die durch die wirkende Normalkraft und die elastische Verformung des Drahtes
entlang der vertikalen Richtung hervorgerufen wird, werden die einzelnen Diskretisie-
rungspunkte unterschiedlich angeregt. Die elastische Verformung wird dabei über ein un-
terlagertes FEM-Modell für das Materialverhalten des Drahtes verwendet. Aufgrund der
feinen Diskretisierung wächst in jedem Element die Reibungsenergie auf unterschied-
liche Weise an, sodass sich lokal voneinander differenzierbare Scherkräfte beobachten
lassen. Repräsentativ ist dies durch die Farben für die Druckverteilung in Bild 3-4 darge-
stellt. Demnach wachsen die lokalen Scherkräfte ellipsenförmig von innen nach außen an.
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Die Scherkraft des Gesamtmodells wird nach Prozessende über eine gewichtete Summe
über alle Elemente gebildet. Zusammengenommen ist das komplexe FEM-Modell dafür
geeignet, um die lokalen Effekte innerhalb der Kontaktfläche wiederzugeben. Dieser Ge-
nauigkeitszuwachs wird jedoch durch eine deutlich erhöhte Berechnungszeit im Vergleich
zum einfacheren Masse-Feder-System kompensiert und bietet vor dem Hintergrund des
Gütemaßes bzw. der resultierenden Scherfestigkeit keine signifikanten neuen Informatio-
nen. Grundsätzlich lässt sich das Simulationsergebnis des Masse-Feder-Systems als die
gewichtete Summe über die lokalen Scherfestigkeiten des FEM-Modells auffassen. Die
Tauglichkeit des FEM-Modells für die Verwendung im Rahmen der BO als Vorwissen
über den Prozess ist damit bereits in Frage zu stellen. Die lokalen Effekte sind im Rahmen
des Steuerungsentwurfs nicht von Bedeutung, sodass das einfachere Modell vorzuziehen
ist.

Ein wesentlicher Nachteil der bisher vorgestellten Modellierungsansätze stellt zudem die
Berechnungszeit dar. Das FEM-Modell benötigt beispielsweise eine Berechnungsdauer in
der Größenordnung von einer Stunde für die Simulation von den erwähnten 300 ms, die
der Prozess für die Erzeugung einer Bondverbindung braucht. Die Ursache hierfür kann
bei dem Diskretisierungsgrad des FEM-Modells gesehen werden, ist jedoch nicht maß-
geblich. Das Hauptproblem liegt vor allem bei der zeitlichen Schrittweite des zugrundelie-
genden Integrationsverfahrens. Das aufgeschaltete Steuersignal für die elektrische Span-
nung besitzt eine Frequenz von mehreren Kilohertz, womit die zeitliche Schrittweite in
einem ähnlichen Bereich für eine stabile numerische Simulation liegen muss. Die notwen-
dige und sehr geringe Schrittweite ist daher der Hauptgrund für die lange Berechnungszeit
der bisher vorgestellten Modelle. In Hinblick auf den BO-Algorithmus 1 und die 4. Zeile,
in welcher die Akquisitionsfunktion optimiert wird, ist eine lange Berechnungszeit der
a-Priori-Mittelwertfunktion besonders unpraktikabel. Die Akquisitionsfunktion besitzt in
der Regel viele lokale Optima, die vor dem Hintergrund einer globalen Optimierungsstra-
tegie eine übermäßig hohe Anzahl von Funktionsauswertungen erfordert. Diese Anforde-
rung können die bisherigen Ansätze nicht erfüllen.

Die angesprochene Problematik motiviert den Einsatz von einfacheren Modellen, die
nicht auf der Ebene der Drahtbewegung agieren, sondern auf einer höheren Modellie-
rungstiefe angesiedelt sind. Eine Variante besteht darin, nicht die exakte hochfrequente
Schwingung zu betrachten, sondern sich nur auf ihre Amplitude zu fokussieren. Dadurch
ist für die Simulation eine zeitliche Diskretisierung der Amplitudenverläufe vorzuneh-
men für die vergleichsweise eine beträchtlich größere Schrittweite ausreichend und damit
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zielführender ist (vgl. Bild 3-3). In [SAS+18; SSH+20; SKHS21] schlagen die Autoren
zwei verknüpfte und fallabhängige Differentialgleichungen über

γ̇(t) =

cγP (t) Für 0 < γ(t) ≤ 1,

0 sonst,
τ̇(t) =

cτγ(t)P (t) Für P (t) ≥ P0,

0 sonst,

vor. Hierin stellt γ den Reinigungsgrad innerhalb der Kontaktfläche dar und τ ist mit der
Scherfestigkeit gleichzusetzen. Des Weiteren ist P die eingetragene Reibleistung, welche
durch die Steuerungsgrößen hervorgerufen wird. Der Reinigungsgrad γ verläuft zwischen
den Grenzen 0 (ungereinigt) und 1 (vollständig gereinigt), kann aufgrund der Konstrukti-
on nur monoton steigen und beinhaltet einen prozessabhängigen Skalierungsfaktor cγ . Um
einen Einfluss auf die Scherkraft zu haben, wird ein bestimmtes Mindestmaß an Leistung,
durch die Einführung eines Schwellwerts P0, gefordert. Wird diese Grenze überschritten,
nimmt der Scherkraftzuwachs τ proportional zum Reinigungsgrad γ über den Parameter
cτ zu. Dieser Ansatz zeichnet sich durch seinen einfachen und leicht nachvollziehbaren
Aufbau aus und beschreibt sehr gut das Sättigungsverhalten der Reinigung und Scherkraft
am Ende der Prozessdauer. Zudem werden nur wenige Parameter benötigt, um das Modell
vollständig zu definieren. Ein Nachteil des Modells ist, dass es nur bedingt aussagekräftig
und in seiner Prädiktionsfähigkeit bzgl. der Scherkraft stark eingeschränkt ist.

Eine etwas detailliertere Sichtweise auf der Beschreibungsebene der Amplituden wird in
[Gau09] vorgeschlagen. Der Bondvorgang wird darin über die Gleichungen

γ̇(t) = k1(t) +

(
k2(t)− k1(t)−

dA(t)

dt

1

A(t)

)
γ(t)− k2(t)γ(t)

2,

k1(t) =
4fµoxFN(t)

A(t)
(ŝ0 − cµoxFN(t)),

k2(t) =
4f

A(t)
(cµOxFN(t))(µox − µmet)FN(t),

ausgedrückt. Die resultierende Scherkraft lässt sich bei diesem Modell über den Zusam-
menhang FS = γA bestimmen, wobei γ wiederum den Reinigungsgrad darstellt und A

die Anbindungsfläche im Kontakt wiedergibt. Das Modell hängt von etwaigen (mecha-
nischen) Parametern ab. So gehen neben der Schwingungsfrequenz f , auch die Stei-
figkeit der Verbindung c und spezifische Reibungswerte für die Oxid- µox und metalli-
sche µmet Schicht ein. Des Weiteren stellt ŝ0 die Amplitude des Drahtes im unbelaste-
ten frei-schwingenden Fall dar, welche durch die zunehmende Belastung durch die An-
bindung vermindert wird. Eine besondere Charakteristik des Modells ist die quadrati-
sche Abhängigkeit bzgl. γ. Dieser Ansatz wird in [Gau09] durch verschiedene experi-
mentelle Messreihen begründet und basiert daher nicht direkt auf physikalsichen Ge-
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Bild 3-5: Zusammenfassung der Validierungsergebnisse aus [Her20]. Gegenüberstellung
von Messung und Simulation in Bezug auf eine zeitliche Entwicklung des
Scherkraft für eine bestimmte Steuerparametrisierung (rechts) und gesamtheit-
liche Betrachtung der gemessenen und simulierten Scherkräfte am Prozessende
(links).

setzmäßigkeiten. Der große Vorteil dieses Modells ist, dass es eine Balance zwischen
Genauigkeit und Berechnungsdauer herstellt. Unter der Voraussetzung eines konstanten
Wertes für A muss lediglich eine Differentialgleichung erster Ordnung ausgewertet wer-
den, wodurch die Auswertung für eine bestimmte Parametrisierung sehr schnell vorge-
nommen werden kann. An dieser Stelle ist außerdem die aktuelle Arbeit aus [vBS+20] zu
erwähnen, in welcher der Ansatz aus [Gau09] aufgegriffen und durch weitere Effekte und
Annahmen ergänzt wird. Darunter fallen bspw. die Drahthöhenabnahme, die während des
Schweißvorgangs durch das Einsinken des Drahtes in das Substrat stattfindet und eine
parabelförmige Druckverteilung in der Kontaktfläche. Durch den zusätzlichen Detaillie-
rungsgrad steigt allerdings auch die Anzahl der Differentialgleichungen des Zustands-
raummodells auf drei, wodurch der Einsatz des Modells innerhalb der BO, welche eine
schnelle Auswertung des Modells erfordert, wiederum in Frage gestellt wird.

Einen detaillierteren Überblick und eine vollständige Analyse des Modells aus [Gau09]
wurde in der studentischen Arbeit [Her20], welche zu einem großen Anteil auf den Vor-
arbeiten des Autoren dieser Arbeit basiert, ausgearbeitet. Auf dieser Grundlage wurde
ein eigenes Simulationsmodell hergeleitet, das den Anforderungen für den Einsatz der
BO bestmöglich begegnet. Unter anderem wurde darauf geachtet, dass das Modell we-
nige Parameter besitzt, um den Identifikationsaufwand auf ein Minimum zu reduzieren
und vergleichsweise schnell bzgl. verschiedener Parametrisierungen ausgewertet werden
kann. Die Ergebnisse der Studienarbeit sind in Bild 3-5 dargestellt. Das linke Teilbild vi-
sualisiert die Scherkraft-Trajektorien einer Messung und der zugehörigen Simulation. Die
zeitliche Messung der Scherkraft ist in der Praxis äußerst aufwendig, da für jeden Diskre-
tisierungspunkt ein eigener Bond erzeugt werden muss und der Prozess an dem passenden
Zeitpunkt abgebrochen werden muss, um die aktuelle Scherkraft an dieser Stelle über das
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zerstörerische Abscheren ermitteln zu können. Mit Hilfe des Modells wird der gemessene
Verlauf sehr gut wiedergegeben, wobei zu berücksichtigen ist, dass dem Verlauf lediglich
eine gewisse Parametrisierung zugrunde liegt. Da im Rahmen der BO die Scherfestig-
keit am Ende des Prozesses bzw. der Trajektorie von entscheidender Bedeutung ist, reicht
es aus, die Endergebnisse aus Messung und Simulation miteinander zu vergleichen. Das
Teilbild auf der rechten Seite zeigt hierzu die Auswertung eines Datensatzes, welcher
240 separate Einzelmessungen enthält. Das bedeutet, dass hinter jedem blauen Daten-
punkt eine eigene Bonderzeugung mit einer bestimmten Parametrisierung steht. Für die
Simulation wurde die selbe Parametrisierung benutzt, sodass das Diagramm insgesamt
die Prädiktionsgenauigkeit des entwickelten Modells widerspiegelt. Im Idealfall sollten
sich die Punkte genau auf der diagonalen (grauen) Linie befinden, um eine hohe Genau-
igkeit des Modells anzugeben. Tatsächlich reflektiert die hohe Streuung der Daten das
genaue Gegenteil. Das Modell ist demnach zwar in der Lage, eine einzige Scherkraft-
Trajektorie (vgl. Bild 3-5, links) gut wiederzugeben, versagt jedoch bei der Generalisie-
rung für unterschiedliche Steuerungen (rechts). In den erwähnten Veröffentlichungen fin-
det diesbezüglich keine Auswertung auf einen vergleichbar großen Datensatz statt, sodass
nach aktuellem Stand der Forschung kein Modellansatz in der Lage ist, das Generalisie-
rungsproblem geeignet zu adressieren.

Aufgrund dieser Tatsache ist die Einbindung von Vorwissen in Form eines Dynamikmo-
dells des Ultraschalldrahtbondprozesses im Rahmen der BO als problematisch einzustu-
fen. Die Anforderungen, um für die BO gewinnbringend eingesetzt werden zu können,
sind nach aktuellem Stand nicht mit der komplizierten und mühsamen Modellbildung in
Einklang zu bringen. Etwaige Voruntersuchungen haben in diesem Zuge gezeigt, dass das
aufgestellte Modell aus Bild 3-5 zu keiner Effizienzsteigerung der BO beitragen konn-
te. Abseits der Genauigkeit des Modells gibt es weitere Aspekte, die nur schwerlich über
physikalische Gesetzmäßigkeiten abzubilden sind. Zum einen kann in Bezug zu (3-9) fest-
gehalten werden, dass es sich bei dem Bondprozess um einen sensitiven und hochgradig
stochastischen Ablauf handelt. Ein Simulationsmodell ist vor diesem Hintergrund zwar
in der Lage eine Aussage über die resultierende Scherkraft zu machen, jedoch nicht über
die zugehörige Streuung bzw. Varianz. Um diese Größe abbilden zu können, müsste eine
weitaus umfassendere Modellierung auf der Grundlage von stochastischen Differential-
gleichungen unternommen werden. Des Weiteren tritt in der Praxis unter Umständen das
sogenannte Überbonden auf, wobei zu viel Energie in die Bondverbindung eingebracht
wird. Das monotone Anwachsen der Scherkraft muss daher relativ zu den Modellannah-
men betrachtet werden, denn beim Überbonden kann die Kraft mit zunehmender Zeit auch
wieder abnehmen und die Bondqualität mindern. Keines der Literatur bekannten physi-
kalischen Modelle kann diesen Effekt im Ansatz beschreiben. Gesamtheitlich betrachtet
ist das Ultraschalldrahtbonden daher ein Beispiel für ein schwierig zu modellierendes
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System, wobei selbst mit erheblichen Aufwand kein ausreichend gutes Modell aufgestellt
werden kann, welches einen modellbasierten Steuerungsentwurf ermöglichen würde. Die
BO stellt in diesem Zusammenhang eine ideale Möglichkeit dar, um die komplizierte Mo-
dellbildung zu umgehen und dennoch einen adäquaten Steuerungsentwurf durchführen zu
können. Ein wesentlicher Vorteil ist dabei, dass dem stochastischen Charakter des Sys-
tems bereits durch den eingesetzten GP und der Konstruktion des Verfahrens begegnet
wird. Dessen ungeachtet, benötigt die Standardroutine der BO (s. Algorithmus 1) diver-
se Anpassungen, um für den Steuerungsentwurf beim Ultraschallbonden eingesetzt zu
werden. Im nachfolgenden Abschnitt werden diese Anpassungen erläutert, wobei darauf
geachtet wird, möglichst viele Vorkenntnisse über den Prozess in das Verfahren einzubin-
den.

3.5 Angepasste Bayessche Optimierung für den
Steuerungsentwurf beim Ultraschalldrahtbonden

In diesem Unterkapitel wird die angepasste Variante der BO vorgestellt. Das Entwurfs-
ziel besteht darin, dass Optimierungsproblem (3-10) am realen System durch direkte In-
teraktion zu lösen. Dabei wird die Parametrisierung bzw. Steuerung identifiziert, welche
den höchsten Prozessfähigkeitsindex liefert und gleichzeitig keine Schädigung in Form
von Werkzeugaufsetzern herbeiführt. Die Grundidee ist, drei GPs sowohl für den Mittel-
wert, als auch für die Standardabweichung der Scherkraft und für die Nebenbedingung
bzgl. Werkzeugaufsetzer einzusetzen (vgl. (3-10)), wobei die nachfolgenden a-priori und
a-posteriori Annahmen getroffen werden:

µ̂FS
(θ) ∼ GP(mµ(θ), kµ(θ,θ

′)), p(µ̂FS
(θ) |Dµ) = N (µµ(θ), σ

2
µ(θ)),

σ̂FS
(θ) ∼ GP(mσ(θ), kσ(θ,θ

′)), p(σ̂FS
(θ) |Dσ) = N (µσ(θ), σ

2
σ(θ)),

ĝ(θ) ∼ GP(mg(θ), kg(θ,θ
′)), p(ĝ(θ) |Dg) = N (µg(θ), σ

2
g(θ)).

(3-12)

Für die Versuchsreihen der eigenen vorhergehenden Veröffentlichung [HHTT22] und die-
ser Arbeit wurde der Matérn-Kernel aus (2-35) für alle Kovarianzfunktionen verwendet.
Obwohl derselbe Kernel für alle Kovarianzfunktionen verwendet wurde, unterscheiden
sie sich dennoch in ihrer exakten Gestalt, da andere Hyperparameter gemäß (3-5) für jede
Kovarianzfunktion festgelegt werden. Die Mittelwertfunktionen in Bezug auf die Vari-
anz der Scherkraft σFS

und die Einschränkung g wurden auf konstante Werte gesetzt:
mσ = 60 cN,mg = 0. Im Fall der Einschränkung entspricht diese Annahme einer op-
timistischen Initialisierung, da angenommen wird, dass die Einschränkung im gesamten
Parameterbereich nicht verletzt wird. Für die Mittelfunktion in Bezug auf µFS

werden
zwei Fälle betrachtet. Im ersten Fall wird mµ = LSL = 2500 cN ebenfalls konstant
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gesetzt, und es wird angenommen, dass kein besonderes weiteres Vorwissen vorhan-
den ist. Im zweiten Fall wird anstelle einer konstanten, eine quadratische Funktion mit
mµ(θ) = θTAθ+bTθ+c verwendet, wobei die Größen A, b, c über eine Least-Squares-

Regression an einen bestehenden Datensatz angepasst wurden. Dieser Ansatz wird im
Laufe dieses Unterkapitels noch näher erläutert und repräsentiert eine Reverse Enginee-

ring Strategie und soll stellvertretend für ein physikalisches Ersatzmodell stehen.

Um den Prozessfähigkeitsindex zu optimieren, wird eine Schätzung zu (3-9) mit

ĈpK(θ) =
µ̂FS

(θ)− LSL
3σ̂FS

(θ)
,

vorgenommen, wofür die zugehörigen GPs für µ̂FS
und σ̂FS

miteinander kombiniert wer-
den müssen. Da ĈpK nichtlinear von diesen Größen abhängt, ist die zugehörige Wahr-
scheinlichkeitsdichteverteilung p(ĈpK) nicht mehr gaußförmig. Dennoch kann die genaue
Verteilung analytisch berechnet werden [DR13]. Im Allgemeinen ist sie stark gewölbt und
weist keine Momente auf. Die Form kann unimodal, bimodal, symmetrisch oder asym-
metrisch sein. Die Autoren von [DR13] schlagen jedoch eine Normalapproximation über
die Beziehung

p(ĈpK) ≈ N (µC(θ), σ
2
C(θ)),

µC(θ) =
µµ − LSL

3µσ

,

σ2
C(θ) =

(
σσ

σµ

)2((
σµ

3σσ

)2

+

(
µµ − LSL

3µσ

)2) (3-13)

vor, welche für σσ/µσ ≤ 0.1 gültig ist und eine hohe Approximationsgüte aufweist. Für
das betrachtete Anwendungsbeispiel wurde in vorläufigen Untersuchungen festgestellt,
dass der Grenzwert im schlechtesten Fall nicht signifikant überschritten wird und damit
die Normalapproximation angenommen werden darf.

Zur besseren Verständlichkeit der nachfolgenden Erklärungen wird auf Bild 3-6 und Al-
gorithmus 2 verwiesen, welche die Schritte der angepassten BO-Implementierung zusam-
menfassen. Der Begriff Batch-Element wird später an entsprechender Stelle erläutert und
kann für den Moment mit der identifizierten Parametrisierung gleichgesetzt werden, wo-
bei nbatch = 1 gilt. Bild 3-6 zeigt die Beziehungen der involvierten Funktionen während
einer Iteration anhand eines fiktiven eindimensionalen Beispiels (θ ∈ R). Es wird ange-
nommen, dass bereits fünf Auswertungen der realen unbekannten Funktionen vorliegen
(initiale Datenbasis aus Zeile 1), welche durch die blauen und roten Kreise im oberen Bild
dargestellt sind. Zusätzlich sind die wahre CpK(θ)-Funktion und die Nebenbedingung
g(θ) bzgl. Werkzeugaufsetzern durch die durchgezogene und gestrichelte grüne Linie re-
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Algorithmus 2 Bayessche Optimierung für Ultraschalldrahtbonden

1: Eingabe: Initiale Datenbasis (Dθ,Dµ,Dσ,Dg) aus ninit Experimenten, Iterations-
budget nbudget, Anzahl der Batch-Elemente nbatch, GP Mittelwert- und Kovarianz-
funktionen (mµ,mσ,mg, kµ, kσ, kg), Grenzwerte ξC , ξg,LSL.

2: Wiederhole bis das Iterationsbudget nbudget aufgebraucht ist:
3: Aktualisiere Gauß-Prozesse bzw. Hyperparameter (ηµ,ησ,ηg) nach (3-5).
4: Berechne Batch-Elemente θ(b)

q = argmaxθ αEI,g(θ;θq), b = 1, . . . , nbatch (3-17).
5: Evaluiere bei θ(b)

q und erhalte (µ
(b)
Fs,q

, σ
(b)
Fs,q

, g
(b)
q ) ▷ Experiment(e) reales System

6: Erweitere Datenmenge
(Dθ,Dµ,Dσ,Dg)← (Dθ ∪ θ(b)

q ,Dµ ∪ µ
(b)
Fs,q

,Dσ ∪ σ
(b)
Fs,q

,Dg ∪ g
(b)
q ).

7: Berechne Prozessfähigkeitsindex D
(i)
C =

D
(i)
µ − LSL

3D
(i)
σ

, i = 1, . . . , ninit + nbudget.
8: Ausgabe: Optimale Parametrisierung θj ,

j = indexmaxj,Dg,j=0DC,j, j = 1, . . . , ninit + nbudget.

Bild 3-6: Anschauliche Darstellung für eine Iteration der entwickelten BO-Methode im
eindimensionalen Fall mit einem Steuerungsparameter. Eine detaillierte Er-
klärung der Zusammenhänge wird im Fließtext gegeben.
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präsentiert (Ground Truth). Bezüglich der Zielgröße ist zudem die aktuelle Schätzung
des GP in Blau dargestellt. Hierbei stellt die durchgezogene Linie den Mittelwert µC(θ)

dar und der schattierte Bereich entspricht der Standardabweichung σC(θ) (s. (3-12) und
(3-13)). Es wird davon ausgegangen, dass die Aktualisierung der GPs (Zeile 3) stattge-
funden hat.

Ein wesentlicher Bestandteil aus Zeile 4 ist die Akquisitionsfunktion α(θ), die das unterla-
gerte Optimierungsproblem definiert. Die Akquisitionsfunktion wird benötigt, um die Pa-
rametrisierung des nächsten Experiments aus den verfügbaren Informationsquellen der in-
volvierten GPs abzuleiten. Es wird das EI-Kriterium αEI(θ) = E[max(0, ĈpK(θ)− ξC)]

nach der Berechnungsvorschrift aus (3-8) eingesetzt. Im unteren Teil von Abbildung 3-6
erfolgt die Auswertung des GPs bzgl. der Gütefunktion. Die durchgezogene, hellblaue
Linie repräsentiert die Akquisitionsfunktion für die erwartete Verbesserung gemäß (3-8).
Der zugehörige Schwellenwert ξC ist auf 1 festgelegt. Daher zeigt die Funktion in einem
Bereich um den Parameterwert von 0.5 einen Wert von nahezu 0. Das Maximieren die-
ser Funktion würde dazu führen, dass die realen Funktionen aus der oberen Abbildung in
der Nähe des ganz linken Datenpunkts ausgewertet würden. Dieser Punkt entspricht dem
globalen Maximum. Jedoch wird die einzuhaltende Nebenbedingung in diesem Bereich
nicht erfüllt (g(θ) = 1 für θ ∈ (0.1, 0.4)). Daher ist eine Auswertung an dieser Stelle
nicht gewünscht und sollte im Rahmen der BO automatisiert als ungeeignet identifiziert
werden. Im Nachfolgenden wird eine solche Automatisierung besprochen und anhand des
eindimensionalen Beispiels weiter erläutert.

Durch die Berücksichtigung der Werkzeugkollisionen und die Einführung eines eige-
nen GPs (vgl. (3-12)) gehört das entwickelte BO-Verfahren zu der übergeordneten Ka-
tegorie des Safe Reinforcement Learnings. Hierbei handelt es sich um spezielle Verfah-
ren, die eine gewisse Form von Sicherheit beim Entwurf fordern. In der Kombination
mit der BO und regelungstechnischen Anwendungen wird der Sicherheitsaspekt in den
Veröffentlichungen rund um [BKS23; BG20; MBK+21; WHB+21] besprochen. Dabei ist
ein Ansatz, von einem sicheren bzw. stabilen Gebiet zu starten und dieses allmählich
zu vergrößern. Die Exploration findet daher nur an Rändern des zuverlässigen Gebietes
statt. Für Anwendungen für welche die Einhaltung von sicherheitskritischen Aspekten
äußerst wichtig und als strikt aufzufassen ist, ist der Ansatz des sukzessiven Explorierens
überaus geeignet. Vor dem Hintergrund des Ultraschalldrahtbondens ist eine Verletzung
der Nebenbedingung während der Lernphase nicht als sonderlich kritisch zu beurteilen.
Abgesehen von einer Zunahme des Verschleißes wird der Prozess nicht merklich nega-
tiv durch Kollisionen beeinflusst. Entscheidend ist das Endresultat und die identifizier-
te Steuerung, welche am Ende der Optimierung durch den BO-Algorithmus ausgegeben
wird. Von ihr wird eingefordert, dass sie den bestmöglichen Prozessfähigkeitsindex unter
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der zuverlässigen Vermeidung von Kollisionen erzeugt. Aus diesem Grund sind auftre-
tende Kollisionen während der Optimierung zwangsläufig nicht hinderlich, sondern tra-
gen zum Informationszuwachs über ungeeignete Gebiete bei. Dementsprechend muss die
Nebenbedingung nicht hart eingehalten und mit dem oberen Ansatz einer Gebietserwei-
terung berücksichtigt werden. Zumal die Gebietserweiterung die grundsätzliche Effizienz
der BO relativiert und als eher langsam aufgrund der beschränkten Explorationsfähigkeit
einzustufen ist.

Aus diesem Grund wird in dieser Arbeit der Ansatz verfolgt, die Nebenbedingung durch
einen Strafterm innerhalb der Gütefunktion bzw. Akquisitionsfunktion zu berücksichtigen.
Hierfür wurde in (3-12) die Annahme getroffen, dass es sich bei der binären Markierung
g um eine Variable handelt, die kontinuierliche Werte annehmen kann. Formal gesehen,
ist dies eine Ungenauigkeit, da korrekterweise ein klassifizierender GP [Ras06] verwen-
det werden müsste. Im Gegensatz zu der kontinuierlichen GP-Variante sind hierfür je-
doch diverse Approximationen notwendig (bspw. Laplace-Approximation oder Erwar-
tungswertpropagationsverfahren, welche in [Ras06] ausführlich behandelt werden), um
die zugrundeliegende Berechnungskomplexität zu reduzieren. Bei den Untersuchungen
dieser Arbeit hat sich gezeigt, dass der Mehraufwand durch die Einführung eines solchen
GPs nicht gerechtfertigt ist und zu keinerlei Verbesserung führt. Zudem kam es bei man-
chen Experimenten zu numerischen Problemen, die auf die notwendigen Approximatio-
nen zurückzuführen sind. Insgesamt betrachtet, unterscheidet sich die Ausgabe des konti-
nuierlichen nicht besonders von der des klassifizierenden GPs. In beiden Fällen liefert der
GP eine Wahrscheinlichkeitsaussage über den Wert der Nebenbedingung. Diesbezüglich
liefern beide Ansätze keine scharfe Gebietsgrenze, an welcher die Nebenbedingung ihren
Wert abrupt ändert, sondern berechnen stattdessen einen glatten und kontinuierlichen
Übergang. Dieser Übergang stellt die Unsicherheit des maschinellen Lernverfahrens über
den Wert dar und spiegelt das stochastische Verhalten des Ultraschalldrahtbondens in ge-
eigneter Weise wider.

Innerhalb dieses Kontexts ist die Wahrscheinlichkeitsdichtefunktion für die Nebenbedin-
gung definiert als p(ĝ(θ) | Dg) = N (µg(θ), σ

2
g(θ)) (vgl. (3-12)). Im Gegensatz zur

Zielgröße liegt das Interesse hier nicht am konkreten Wert der Einschränkung, sondern
vielmehr an der Wahrscheinlichkeit des Auftretens einer Werkzeugkollision. Daher er-
folgt eine Integration über die Wahrscheinlichkeitsdichtefunktion ab einem bestimmten
Grenzwert ξg:

P (ĝ(θ) > ξg) =

∫ ∞

ξg

N (µg(θ), σ
2
g(θ))dĝ = 1

2

(
1 + erf

(
ξg−µg(θ)√

2σ2
g(θ)

))
, (3-14)
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mit erf(·) als Fehlerfunktion. Nachfolgend wird g(θ) = 0 als eine weiche Einschränkung
behandelt und dementsprechend mit der Akquisitionsfunktion (3-8) multipliziert, wobei
die Gegenwahrscheinlichkeitswert von (3-14) zu verwenden ist:

αEI,g(θ) = αEI(θ)
(
1− P (ĝ(θ) > ξg)

)
. (3-15)

Auf diese Weise lassen sich Bereiche im Parameterraum berücksichtigen, in denen die
Wahrscheinlichkeit für eine Werkzeugkollision hoch ist, jedoch auch hohe Werte für
den Prozessfähigkeitsindex zu erwarten sind. Diese Explorationseigenschaft ist beson-
ders wichtig für die frühen Iterationen der BO, in denen nur eine geringe Datenmenge
verfügbar ist und der GP bezüglich der Nebenbedingung ungenaue Vorhersagen liefert.

Die gestrichelte rote Linie im oberen Bild von Abbildung 3-6 zeigt die Wahrscheinlich-
keit einer Werkzeugkollision nach (3-14). Der Schwellenwert ξg wurde auf 0.5 festgelegt.
Es ist zu erkennen, dass die Wahrscheinlichkeit einer Werkzeugkollision auf der rechten
Seite nahezu null ist, während die Wahrscheinlichkeit auf der linken Seite glatt zu einem
Wert von eins für die einzige beobachtete Werkzeugkollision übergeht. Für abnehmende
Werte von θ in Richtung null fällt die Wahrscheinlichkeit erneut ab, da hier extrapoliert
wird und eine optimistische Mittelwertfunktion von null gewählt wurde. Die gestrichelte
orangefarbene Linie im unteren Bild zeigt die Gewichtung der Akquisitionsfunktion für
die erwartete Verbesserung mit der Gegenwahrscheinlichkeit für eine Werkzeugkollision
(vgl. (3-15)). Der linke Bereich wird abgewertet, sodass das neue Maximum auf der rech-
ten Seite angenommen wird und an der Stelle des gelben Kreuzes als nächstes ausgewertet
wird.

Bis zu diesem Punkt wurde in jeder Iteration lediglich ein Experiment angenommen. Im
Rahmen des Ultraschallbondens besteht eine Auswertung darin, eine leere Substratplatte
in die Bondmaschine einzuführen und diese automatisch mit der ausgewählten Parame-
trisierung mit Bondverbindungen zu bestücken. Anschließend wird die Substratplatte aus
der Bondmaschine entfernt und in den Scherkraftprüfer platziert, wo der Scherwiderstand
gemessen wird. Die resultierenden Werte werden dann manuell in die Datenbank einge-
tragen, auf der der BO-Algorithmus operiert. Aufgrund der vergleichsweise schnellen und
automatisierten Durchführung von Bonden und Scheren ist es sinnvoll, mehrere Parame-
trisierungssätze direkt in einer BO-Iteration zu berechnen und parallel zu bewerten. Diese
simultanen Bewertungen werden als Batch bezeichnet, wobei der Ansatz aus [GDHL15]
für die Implementierung aufgegriffen wird. Um die Anwendung einer Batch-Berechnung
weiter zu begründen, erfolgt eine Betrachtung der spezifischen Zeit, die für eine Iteration
benötigt wird. Diese Zeit setzt sich aus der BO-Berechnung tcalc, der Vorbereitungszeit
des Experiments tprepare und der eigentlichen Auswertungszeit teval zusammen. Die Ge-
samtzeit summiert sich dann zu Tsingle = (tcalc + tprepare + teval) · niter, wobei niter die
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Anzahl der Iterationen ist. Bei nbatch Batchelementen ergibt sich eine Gesamtzeit von
Tbatch = (nbatchtcalc+ tprepare+nbatchteval) · niter

nbatch
. Diese Berechnung geht von einer kon-

stanten Vorbereitungszeit und linear skalierenden Zeiten für Berechnung und Auswertung
aus, was in den meisten Fällen eine eher pessimistische Annahme ist. Für die experimen-
telle Konfiguration dieser Arbeit lassen sich die nachfolgenden Zeiten grob abschätzen
mit: tcalc = 10 s, tprepare = 100 s, teval = 50 s. Bei niter = 100 und nbatch = 6 ergeben
sich Gesamtzeiten von Tsingle = 4 Stunden und Tbatch = 1.9 Stunden, was einer Reduzie-
rung von mehr als 50% entspricht. Diese Reduzierung geht jedoch mit einer verringerten
Effizienz einher, da alle identifizierten Batchelemente auf demselben GP basieren und
daher erst nach der Bewertung aller Batchelemente und nicht einzeln aktualisiert wird.

Um mehrere Parametrisierungen bzw. Experimente zu berücksichtigen, muss die gewich-
tete Akquisitionsfunktion αEI,g weiter angepasst werden. Der Ansatz in [GDHL15] sieht
vor, eine lokale Straffunktion einzuführen mit

φ(θ,θq) =
1
2
erf
(
− (2σ2

C(θq))
− 1

2

(
∥G∥2 ∥θ − θq∥2 − ξC + µC(θq)

))
,

wobei G :=
dµC(θ)

dθ

∣∣∣∣
θ=θq

angesetzt wird.
(3-16)

Diese Straffunktion hängt von der Parametrisierung θ und einer spezifischen Stelle θq ab,
welche das zuvor ausgewählte Batchelement repräsentiert. Die Stärke der Strafe hängt
von der Norm des Gradienten der Posterior-Mittelwertfunktion ∥G∥2 multipliziert mit
dem Abstand zwischen den betrachteten Parametern und dem vorherigen Batchelement
∥θ − θq∥2 ab. Weitere Komponenten sind der Posterior-Mittelwert µC(θq) und die Vari-
anz σ2

C(θq), die am vorherigen Batchelement ausgewertet werden, sowie der Schwellen-
wert ξC . Die Grundidee besteht darin, für jedes berechnete Batchelement einen Strafbe-
trag zu verwenden und das nächste Batchelement durch das Produkt der eingeschränkten
Akquisitionsfunktion und aller lokalen Strafterme zu bestimmen:

θ(b)
q = argmax

θ


αEI,g(θ) b = 1,

αEI,g(θ)
∏b−1

i=1 φ(θ,θ
(i)
q ) b = 2, . . . , nbatch.

(3-17)

Zusammengefasst werden die einzelnen unterlagerten Optimierungsprobleme (3-17) nach-
einander gelöst, bis alle nbatch Batchelemente berechnet wurden. Anschließend werden
alle Batchelemente am realen System getestet. Bild 3-6 veranschaulicht dieses Konzept
durch die schwarze durchgezogene Linie, die den lokalen Strafbetrag φ(·, ·) (3-16) am Ort
des gelben Kreuzes (1. Batchelement θ(1)

q ) repräsentiert. Das Produkt der schwarzen Linie
und der gestrichelten orangefarbenen Linie ergibt die gestrichelte magentafarbene Linie,
deren maximaler Wert sich an der Position des türkisfarbenen Kreuzes (2. Batchelement
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θ(2)
q ) befindet (vgl. (3-17)). Für dieses anschauliche Beispiel beträgt die Gesamtanzahl

der Batchelemente zwei, sodass als nächstes die Auswertung an den berechneten Stellen
stattfinden würde. In diesem Beispiel liegen die Batchelemente relativ nah beieinander,
was im Allgemeinen nicht der Fall ist, sodass sich die Batchelemente oftmals im Parame-
terraum auf unterschiedliche Optima verteilen, um diese zu explorieren.

Der entwickelte BO-Algorithmus 2, welcher speziell für den Entwurf einer optimalen
Steuerung für das Ultraschalldrahtbonden aufgestellt wurde, ist an dieser Stelle vollständig
erläutert worden. In einem direkten Vergleich zum Standardverfahren der BO (s. Algorith-
mus 1) zeigt sich, dass er um zusätzliche GPs für unterschiedliche Zielsetzungen erwei-
tert wurde. So werden für den Prozessfähigkeitsindex zwei und für die Nebenbedingung
ein GP(s) eingesetzt. Des Weiteren wird innerhalb einer Iteration nicht nur ein Experi-
ment durchgeführt, sondern direkt mehrere gleichzeitig, um die automatisierte Bonder-
zeugung auszunutzen und eine zeitliche Effizienzsteigerung zu erreichen. Damit erfüllt
die BO die praktischen Anforderungen und bietet eine alternative Lösungsmöglichkeit
zum herkömmlichen manuellen Einstellen. Im folgenden Abschnitt wird die BO am rea-
len System validiert und ihre Ergebnisse ausgewertet.

3.6 Anwendung und Ergebnisanalyse

In den durchgeführten Experimenten wurde ein automatischer Drahtbonder (Typ BJ955)
der Firma Hesse Mechatronics verwendet. Als Substratmaterial dienten Aluminium-
Dibond-Platten. Der Draht bestand ebenfalls aus Aluminium und wies einen Durchmes-
ser von 500 µm auf. Die Scherfestigkeiten wurden mithilfe eines Xyztec Sigma-Prüfgeräts
gemessen. Dieses Setup stellt einen typischen Aufbau aus der industriellen Praxis dar. Im
Hinblick auf den in Algorithmus 2 dargestellten Ablauf wurde die Anzahl der initialen
Experimente ninit auf 10, die Anzahl der Batchelemente nbatch auf 6, das Iterationsbud-
get nbudget auf 15 (was einer Begrenzung der Experimente auf ninit + nbatchnbudget = 100

entspricht), sowie die Grenzwerte ξC auf 2 und ξg auf 0.5 festgelegt. Die untere Spezifika-
tionsgrenze LSL beträgt 2500 cN und die Anzahl der Verbindungen pro Parametrisierung
nrep beläuft sich auf 10. Der Suchraum für die Parametrisierung ist auf der Grundlage
von Expertenwissen eingeschränkt, wobei die untere Grenze mit θlb (Lower) und die obe-
re Grenze mit θub (Upper Bound) definiert und Tabelle 3-1 zu entnehmen sind.

Tabelle 3-1: Beschränkungen für die Parametrisierung

F0 [cN] F1 [cN] F2 [cN] Û1 [V] Û2 [V] T1 [ms] T1 [ms]

θlb 300 375 375 43.3 7.75 5.5 29.5

θub 900 1125 1125 80.6 54.25 38.5 206.5



3.6 Anwendung und Ergebnisanalyse 97

Alle eingesetzten GPs gehen von der Matérn-Kovarianzfunktion (2-35) aus. Um die be-
stimmten Hyperparameter zu vergleichen, wurden die Eingabewerte über die unteren und
oberen Grenzen aus Tabelle 3-1 auf das Einheitsintervall normiert. Die damit verbun-
dene Auswertung wird am Ende dieses Unterkapitels besprochen. Der entwickelte BO-
Algorithmus 2 wurde in der Programmierumgebung MATLAB [Mat24] implementiert.
Die Optimierung der Akquisitionsfunktion erfolgt in zwei Schritten mittels einer Zufalls-
suche mit einer Million Kandidaten, um dem erwartbaren Auftreten von mehreren loka-
len Optima zu begegnen. Der beste Kandidat wird als initiale Ausgangsschätzung (In-

itial Guess) für eine anschließende verfeinernde Optimierung mit der integrierten Routi-
ne fminsearch, welche auf dem gradientenfreien Nelder-Mead-Verfahren [GK02] basiert,
verwendet. Die enorme Anzahl von Auswertungen der Akquisitionsfunktion ist unproble-
matisch, da ihre Rechenkomplexität nach Konstruktion gering ist und sie vergleichsweise
schnell berechnet werden kann.

Es erfolgt ein Vergleich von vier verschiedenen Lösungsansätzen für (3-10):

• Zufallssuche (Random Search): Für jedes Experiment wird eine zufällige Parame-
trisierung aus der Gleichverteilung θ ∼ U(θlb,θub) ausgewählt. Dieser Fall dient
als Referenz für die anderen Verfahren und wird aufgrund der Dimension des Pro-
blems als ungeeignete Lösungsstrategie für die Praxis angesehen.

• Manuelle Einstellung (Manual Tuning): Ein Nicht-Experte, der mit dem Pro-
zess und seinen physikalischen Effekten vertraut ist, bestimmt die optimale Pa-
rametrisierung manuell. Die Person muss in jeder Iteration 6 Parametrisierungen
auswählen, die dann parallel bewertet werden. Dies entspricht dem Vorgehen des
BO-Algorithmus 2. Alle bisherigen Experimente können jederzeit eingesehen wer-
den, um Schlussfolgerungen für die nächsten Parametrisierungen zu ziehen.

• BO mit konstanter Prior-Mittelwertfunktion: Dies ist das Basisszenario, in wel-
chem keine spezifischen a-priori Kenntnisse über die Prozessdynamik verfügbar
sind. Daher werden die Prior-Mittelwertfunktionen für die mittlere Scherkraft und
die Standardabweichung auf konstante Werte gesetzt, also mµ = 2500 cN und
mσ = 60 cN, was zu einer eher pessimistischen Initialisierung mit einem Pro-
zessfähigkeitsindexwert von 0 führt.

• BO mit quadratischer Prior-Mittelwertfunktion: Dies ist ein Referenzszena-
rio, bei dem eine quadratische anstelle einer konstanten Prior-Mittelwertfunktion
mµ(θ) = θTAθ+bTθ+ c für die mittlere Scherkraft verwendet wird. Die mittlere
Funktion für die Standardabweichung bleibt konstant (s. o.). Die Größen A, b, c

werden durch die Methode der kleinsten Quadrate an alle Daten angepasst, die aus
den anderen drei Lösungsansätzen gesammelt wurden. Die Wahl dieser Ansatz-
funktion wird durch den physikalischen Effekt des Überbonden [Har10] begründet,
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welcher dafür verantwortlich ist, dass die Scherkraft bei einem zu hohen Energie-
eintrag mit der Zeit nach dem Erreichen des Maximums wieder absinken kann.

In Abbildung 3-7 (links) ist der Verlauf des Prozessfähigkeitsindex über die Anzahl der
Experimente/Iterationen dargestellt. Konstante Plateaus deuten darauf hin, dass in den
entsprechenden Experimenten keine Verbesserung erfolgt ist. Es ist zu beachten, dass ein
Anstieg im Zielwert nur auftritt, wenn der CpK-Wert höher ist als in allen vorherigen
Experimenten und die Nebenbedingung bezüglich optischer Kriterien erfüllt ist. Allen
Ansätzen wurden dieselben 10 anfänglichen Experimente zugewiesen, sodass sich die
Verläufe anfangs nicht voneinander unterscheiden.

(a) Fortschritt der verschiedenen
Lösungsverfahren. Eine Verbesserung

findet nur statt, wenn eine getestete
Parametrisierung zu einem höheren

Prozessfähigkeitsindex führt und es keinen
Werkzeugaufsetzer gegeben hat.

(b) Ausgewertete Stellen in einem
reduzierten Parameterraum. Die

Helligkeit der Farbe gibt die aktuelle
Iteration an, je heller desto früher. Die
Sterne kennzeichnen den Ort der besten

gefunden Lösung jedes Verfahrens.

Bild 3-7: Ergebnisse der experimentellen Validierung der Bayesschen Optimierung am
Bondautomaten

Für industrielle Prozesse ist üblicherweise ein Mindest-CpK-Wert im Bereich von 1.33

bis 1.67 erforderlich [DVS17] (schwarze gestrichelte Linie). Die Zufallssuche (blau) ver-
harrt schnell nahe dem Wert 1, ohne signifikante Verbesserungen zu erzielen. Basierend
auf diesen Beobachtungen, deutet sich an, dass die Zielfunktion in einem großen Teil des
Suchraums relativ flach verläuft. Die manuelle Einstellung (rot) führt zu einer gewissen
Effizienzsteigerung. Nach etwa 50 Experimenten kann jedoch keine weitere Verbesse-
rung festgestellt werden. Im Gegensatz dazu findet die BO mit einem konstanten Prior
(grün) eine deutlich bessere Parametrisierung, obwohl sie zuvor auf dem gleichen Niveau
wie die manuelle Einstellung verharrt. Das anfängliche, zufalls-ähnliche Verhalten wird
auf die ursprüngliche Exploration des Suchraums zurückgeführt, wobei sich zeigt, dass
dieses Verhalten für die späteren Iterationen von Nutzen ist. Die BO mit einem quadrati-
schen Prior (türkis) liefert die besten Ergebnisse im Vergleich zu allen anderen Ansätzen.
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Mehrere Experimente sind erforderlich, um diese Parametrisierung zu identifizieren, was
darauf hindeutet, dass der quadratische Prior trotz seiner breiten Datenbasis noch eini-
ge Abweichungen zu der realen Zielgröße aufweist. Dennoch lenkt die Exploration in
eine Region potenziell hochwertiger Parametrisierungen, was insgesamt betrachtet zu ei-
ner hohen Effizienz führt. Dieser Fall verdeutlicht, wie eine geeignete, wenn auch nicht
zwangsläufig perfekte Prior-Mittelwertfunktion den Fortschritt der BO verbessert. An-
stelle des hier verwendeten datengetriebenen ML-Modells könnte ein physikalisches Mo-
dell des Prozesses in Betracht gezogen werden, um die Leistungsfähigkeit zu steigern.
Wie jedoch in Abschnitt 3.4 gezeigt wurde, ist bisher kein für die BO geeignetes phy-
sikalisches Modell bekannt. Die identifizierte quadratische Ansatzfunktion könnte hier
dazu eingesetzt werden, um im Sinne einer Reverse Engineering Strategie, ein geeigne-
tes Modell aufzustellen, welches im Rahmen der BO gewinnbringend eingesetzt werden
kann. Ein entscheidender Effekt könnte dabei das Überbonden [Har10] sein, welches für
eine Abnahme der Scherkraft im Zusammenhang mit falsch gewählten Eingangsgrößen
und einem zu hohen Energieeintrag steht. Eine Weiterentwicklung dieses Ansatzes wird
als Ausblick auf zukünftige Forschung offen gelassen und bietet ein großes Potential,
um den Bondprozess physikalisch besser beschreiben zu können. Ergänzend wurde der
BO-Algorithmus neben Aluminimum auch mit den Materialien Kupfer und Nickel vali-
diert. Im Bild A3-1 des Anhangs sind hierzu die Ergebnisse gezeigt. Ein rascher Anstieg
des Prozessfähigkeitsindex lässt sich auch hier beobachten, sodass hieraus geschlossen
werden kann, dass keine besondere Abhängigkeit zwischen der BO-Performanz und der
Materialpaarung besteht.

In der folgenden Analyse wird der Fortschritt im Parameterraum behandelt, wie in Bild 3-7
(rechts) dargestellt. Eine Visualisierung aller 7 Parameter durch mehrere Schnittebenen
des 7-dimensionalen Raums ist aufgrund der Komplexität nicht übersichtlich, daher wur-
den die Daten mittels einer Hauptkomponentenanalyse (PCA) in einen 2-dimensionalen
Raum transformiert. Hierzu wurde eine Singulärwertzerlegung (SVD) der Datenmatrix
durchgeführt, die aus sämtlichen Parameterwerten aller Experimente besteht. Anschlie-
ßend wurden die Parameterwerte in einen 2-dimensionalen Raum transformiert, indem
die ersten beiden Spalten der Matrix mit den linken Singulärvektoren verwendet wurden,
die den beiden größten Singulärwerten zugeordnet werden. Die Parameterwerte im Kon-
text der Zufallssuche zeigen, wie erwartet, eine breite Diversifikation. Auffällig ist die
Konzentration roten Punkte in einem bestimmten Gebiet. Dieser Bereich wurde vom ma-
nuellen Einsteller lokal erkundet, da die resultierenden Werte der Zielfunktion relativ gut
waren und die Einschränkung erfüllt wurde. Dieses Vorgehen kann als sichere Explora-
tion betrachtet werden, bei der der Bereich getesteter Parameter iterativ erweitert wird.
Dieses Verhalten ähnelt dem Safe Reinforcement Learning Ansatz aus dem Abschnitt
zum Stand der Forschung und kann daher auf diese Weise interpretiert werden. Es wurde
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Bild 3-8: Fortschritt des Prozessfähigkeitsindex in der Simulationsumgebung. Die durch-
gezogenen Linien zeigen den Mittelwert und die transparenten Flächen die Stan-
dardabweichung für mehrere verschiedene Identifikationen. Die gestrichelten
Linien deuten die Endergebnisse aus der Validierung am realen Prozess an.

zudem festgestellt, dass der Überblick des Anwenders über die vorherigen Experimente
bei etwa 30 bis 40 Experimenten verloren ging, was den mangelnden Fortschritt bei der
Zielfunktion in Bild 3-7 (links) erklärt. Im Gegensatz dazu, erkundet die BO besonders
die Grenzen des Suchraums und konzentriert sich relativ rasch auf die Region, in der die
höchsten CpK-Werte gefunden wurden. Aus Gründen der Vertraulichkeit gegenüber dem
Industriepartner dürfen die optimalen Parameter im Rahmen dieser Arbeit nicht offenge-
legt werden.

Simulationsbasierte Ergebnisse zur Untersuchung der Robustheit
Aufgrund der zeit- und kostenintensiven Experimente am realen System war es nicht
möglich, den Einfluss der initialen Experimente und somit die Robustheit jeder Me-
thode umfassend zu untersuchen. Aus diesem Grund wurden GPs auf der Basis von
sämtlichen bisher gesammelten Daten trainiert, um das reale System realitätsnah simu-
lieren zu können. Die Vorhersagen dieser virtuellen Umgebung (im nachfolgenden auch
Referenz-GPs genannt) sind daher vergleichsweise präzise. Dies ermöglicht es, die ver-
wendeten Methoden - mit Ausnahme der manuellen Abstimmung - für verschiedene An-
fangsexperimente zu testen. Bild 3-8 zeigt in diesem Zusammenhang die zugehörigen
Ergebnisse für 50 verschiedene separate Durchläufe. Zunächst ist zu erkennen, dass die
Durchläufe bezüglich des realen Systems vernünftig sind, da sie mit den simulierten
Durchläufen größtenteils übereinstimmen (vgl. zu Bild 3-7). Darüber hinaus übertrifft
die verwendete BO-Methode robust die Zufallssuche und konvergiert zu hohen Werten
der Zielgröße. Die Tatsache, dass das globale Maximum aus den Messungen (gestriche-
ne türkisfarbene Linie) von der quadratischen Prior-BO nicht erreicht wird, könnte mit
der Regularisierung der Referenz-GPs zusammenhängen. Die Mittelwertfunktion des GP
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Tabelle 3-2: Identifizierte Hyperparameter der trainierten Gauß-Prozesse. Hervorzuhe-
bende hohe bzw. niedrige Werte sind rot und blau markiert.
GP σ2

f lF0 lF1 lF2 lU1 lU2 lT1 lT2 σ2
n

µ̂FS
(θ) 4.4 · 105 13.7 2 1.9 1.7 1.4 2.9 2.6 1.6 · 103

σ̂FS
(θ) 1.7 · 103 1.3 1.9 0.2 0.9 0.9 2.3 0.8 335

ĝ(θ) 0.3 3 0.7 1.1 0.5 0.5 1 1.3 0.05

kann in diesem Fall die Extremwerte der Messungen nicht genau abbilden. Die gefun-
denen optimalen Parameter sind jedoch identisch zu denen der Messung. Zusammenge-
fasst zeigt sich anhand dieser Ergebnisse, dass die BO eine hohe Robustheit gegenüber
verschiedenen Anfangsexperimenten aufweist. Als Fazit zu den realen und simulierten
Resultaten ist festzustellen, dass der Einsatz der BO für den Steuerungsentwurf am Ultra-
schalldrahtbondprozess äußerst geeignet und eine Alternative zum herkömmlichen mo-
dellbasierten Steuerungsentwurf auf der Basis eines physikalischen Modells ist. Sofern
ein hinreichend präzises physikalisches Modell bekannt ist, muss dieses zwangsläufig bei
der Anwendung der BO nicht verworfen werden, sondern kann über die Prior-Mittelwert-
funktion eingebunden werden. Hierzu hat der Reverse Engineering Grundgedanke über
die quadratische Ansatzfunktion gezeigt, dass die Berücksichtigung von Vorwissen eine
deutliche Effizienzsteigerung herbeiführt. Neben dem modellbasierten Entwurf stellt die
BO zudem eine echte Alternative zum praktischen manuellen Einstellen dar, wobei die
Suche nach den optimalen Parametern teil-automatisiert wird und anhand von objektiven
Gütekriterien interaktiv vorgenommen wird. Auf diese Weise wird für die Einrichtung
des Prozesses kein Expertenwissen mehr benötigt, sondern kann auch von Nicht-Experten
vorgenommen werden. Diverse Fehlerquellen, wie die subjektive Wahrnehmung des Ein-
richters oder bspw. die beobachtete zu rasche Fokussierung auf ein lokales Optima (vgl.
Bild 3-7), können damit ausgeschlossen werden.

Ergänzende Auswertung der Hyperparameter
Neben der Erprobung der Algorithmen innerhalb einer simulierten Umgebung, bieten die
trainierten GPs die Möglichkeit, die erlernten Hyperparameter η∗ genauer zu untersu-
chen und damit weitere Einsichten in den Prozess zu erhalten. Insbesondere die erlernten
Längenskalen l, die den einzelnen Eingangsdimensionen zugeordnet werden, zeigen die
Relevanz einer bestimmten Parameterdimension für die Ausgabe. Dies wird in der Litera-
tur als automatische Relevanzbestimmung (Automatic Relevance Determination (ARD))
bezeichnet [Ras06]. Die Hyperparameter sind in Tabelle 3-2 aufgeführt. Eine direkte Ver-
gleichbarkeit ist möglich, da die Parameterdimensionen auf das Einheitsintervall standar-
disiert wurden. Der Einfluss eines bestimmten Parameters wird durch den Wert der Skala l
bestimmt, wobei höhere Werte auf einen geringeren Einfluss hindeuten (vgl. hierzu auch
Bild 2-10). In Bezug auf die mittlere Scherkraft µ̂FS

(θ) und das Label ĝ(θ) zeigt sich,
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dass die Normalkraft der Vorverformungsphase F0 im Vergleich zur Standardabweichung
σ̂FS

(θ) weniger relevant ist. Dies ist plausibel, da eine ausreichende Anfangskontaktfläche
durch einen breiten Bereich von Normalkraftwerten gebildet wird. Andererseits haben
die Werte der Ultraschallspannungen (Û1, Û2) einen vergleichsweise hohen Einfluss auf
die mittlere Scherkraft. Gleiches gilt für die Standardabweichung der Scherkraft σ̂FS

(θ).
Jedoch zeigt sich, dass die Kraft F2 und die Zeit T2 der zweiten Phase den größten Ein-
fluss haben, was bedeutet, dass diese Werte mit hoher Genauigkeit korrekt gewählt wer-
den müssen, um eine geringe Standardabweichung zu erzielen. Die Werte für die Signal-
und Rauschvarianz (σ2

f , σ2
n) stimmen mit den Beobachtungen während der Experimente

überein.

Fazit der Untersuchungen
Die Ergebnisse aus der realen Welt und den Simulationen zeigen, dass die Anwendung
der BO für den Steuerungsentwurf des Ultraschalldrahtbondens sehr geeignet ist. Der
vorgeschlagene Ansatz übertrifft die zufällige Suche und die manuelle Abstimmung hin-
sichtlich Effizienz und Robustheit. Des Weiteren wurde gezeigt, dass die Einbeziehung
einer quadratischen Prior-Mittelfunktion vorteilhaft ist und die Leistung verbessert. Die-
ses Ergebnis wird als Leitfaden für weitere Forschung betrachtet, bei der die quadratische
Prior-Mittelfunktion durch ein physikalisches Simulationsmodell des Bondprozesses er-
setzt wird. Die vorliegende Arbeit legt dafür die Grundlage, da sie auf zahlreichen Mes-
sungen mit einer Vielzahl von Steuersignalen bzw. Parametrisierungen basiert und somit
gut validiert ist. Ergänzend wurden die Hyperparameter der trainierten GPs untersucht,
wobei festgestellt wurde, dass die Aufsetzkraft während der Vorverformungsphase wenig
Einfluss auf die Bindungsqualität hat. Die mittlere Scherkraft reagiert empfindlich auf die
Amplitudenwerte der Spannung, während die Varianz am stärksten auf die Normalkraft
in der zweiten Phase und deren Dauer reagiert.

3.7 Weiterführender Entwurf mit Bayesscher Optimierung

Im Nachfolgenden soll ein Überblick über mögliche Erweiterungen und Verbesserungen
für die BO im regelungstechnischen Kontext gegeben werden. Ein erster Ansatzpunkt
wird bei der Wahl der Akquisitionsfunktion gesehen. Hierfür wurde der Ansatz des EI
(3-8) genutzt, welcher innerhalb der Literatur als eine Standardwahl angesehen wird. Ne-
ben ihm existieren allerdings auch komplexere Ansätze, die sich nicht an dem nomina-
len Wert der Gütefunktion orientieren, sondern sich auf den Informationsgehalt eines je-
den Experiments fokussieren. Das nächste Experiment soll bei dieser Grundidee an einer
Stelle im Parameterraum durchgeführt werden, die einen verhältnismäßig hohen Infor-
mationszuwachs in Bezug zum gesuchten globalen Optimum darstellt. In [HS12] wird,
dieser Idee folgend, die sogenannte Entropy Search (ES) als Akquisitionsfunktion vorge-
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schlagen. Als Maß für den Informationsgehalt einer kontinuierlichen Verteilungsfunktion
p(Ĵ(θ)) wird die differentielle Entropie über

H(p) = E[− log(p)] = −
∫

p log(p)dĴ,

angegeben, wobei sich bspw. für den Fall einer eindimensionalen Normalverteilung die
analytische Form H(N (µ, σ)) = 1

2
(1+log(2πσ2)) ergibt. Eine Verteilung mit einer hohen

Varianz weist dementsprechend eine hohe Entropie auf, sodass eine Auswertung einen
gleichermaßen hohen Informationsgewinn verspricht. Entgegengesetzt weisen Verteilun-
gen mit einer niedrigen Varianz keinen allzu großen Informationszuwachs auf, da der Wert
der zugrundeliegenden Zufallsvariable bereits gut abgeschätzt werden kann. Der Grundi-
dee von [HS12] weiter folgend, wird die ES-Akquisitionsfunktion über den Ausdruck

αES(θ) = H(p(θ̂∗ |DJ))− Ep(Ĵ(θ) | DJ )
[H(p(θ̂∗ |DJ ∪ {θ, Ĵ(θ)}))],

angegeben. Hierin stellt p(θ̂∗ |DJ) eine Verteilung für die optimale Parametrisierung dar,
welche auf der Grundlage des GP bzgl. p(Ĵ(θ) | DJ) abgeleitet wird. Zur Bestimmung
sind aufwendige Approximationen durch MC-Verfahren notwendig. In diesem Zusam-
menhang gibt der vordere Term H(p(θ̂∗ |DJ)) den Informationsgehalt dieser Verteilung
an und wird mit dem hinteren Term Ep(Ĵ(θ) | DJ )

[H(p(θ̂∗ |DJ ∪ {θ, Ĵ(θ)}))] in Relation
gesetzt. Dieser gibt an, wie stark sich der Informationsgehalt ändern würde, wenn an der
Stelle θ ein Experiment durchgeführt werden würde. Anstelle des wahren Funktionswer-
tes wird die Wahrscheinlichkeitsverteilung des GP p(Ĵ(θ) |DJ) verwendet, wodurch der
Einsatz des Erwartungswertoperators notwendig wird. Für niedrig dimensionale Proble-
me, z. B. nθ ≤ 3, weist die ES-Akquisitionsfunktion vorteilhafte Eigenschaften auf und
ist den anderen Funktionen im Allgemeinen überlegen. Ein großes Problem ist allerdings
ihre schlechtere Skalierbarkeit und damit schwere Anwendbarkeit auf höher dimensiona-
le Probleme. Der Grund hierfür sind die numerisch rechenintensiven Approximationen,
die bspw. für den hinteren Term und den Erwartungswertoperator aufeinander aufbauen
und damit bei der Berechnungskomplexität besonders zum Tragen kommen.

Eine Folgearbeit ist [WJ17], worin das grundsätzliche Problem darin gesehen wird, dass
die Suche bzw. Approximation im Raum der Parametrisierung stattfindet. Es wird da-
her vorgeschlagen, nicht den Informationsinhalt bzgl. der optimalen Parametrisierung
θ∗ zu erkunden, sondern bzgl. des optimalen Funktionswertes J∗, da dieser eine skala-
re Größe darstellt. Die umgeformte Akquisitionsfunktion heißt Maximum-Value Entropy

Search (MES) und wird mit

αMES(θ) = H(p(Ĵ(θ) |DJ))− Ep(Ĵ∗ | DJ )
[H(p(Ĵ(θ) |DJ ∪ Ĵ∗))]
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ausgedrückt, wobei die Verteilung der optimalen Gütefunktionswerte p(Ĵ∗ | DJ) eine
zentrale Rolle spielt. Diese Verteilung muss gleichermaßen zu p(θ̂∗ | DJ) anhand des
GP approximiert werden, ist allerdings deutlich günstiger bzgl. der Berechnung, da
dim(J) = 1 ≤ nθ gilt. In diesem Zusammenhang stellt die hintere Verteilung
p(Ĵ(θ) |DJ ∪ Ĵ∗) keine herkömmliche Normalverteilung mehr dar, sondern ist durch
die angenommene Kenntnis über das globale Optimum Ĵ∗ nach oben hin abgeschnitten,
woraus sich eine sogenannte truncated (gekürzte) Normalverteilung ergibt. Eine analy-
tische Berechnung der differentiellen Entropie ist mit dieser Verteilung möglich, sodass
sich hieraus insgesamt eine berechnungseffiziente Akquisitionsfunktion ergibt. Im direk-
ten Vergleich zum EI (3-8) ist ein wesentlicher Vorteil, dass kein Grenzwert ξJ für die
Berechnung von αMES(·) notwendig ist, sondern eine automatisierte Abschätzung auf der
Basis des GPs getroffen wird. Die Anwendung dieses Ansatzes ist daher besonders ge-
eignet, wenn a-priori kein Grenzwert bekannt ist und über den zugrundeliegenden Steue-
rungsentwurf kaum Vorwissen vorhanden ist. Im Falle des Ultraschalldrahtbondens und
der durchgeführten Experimente konnte jedoch zuverlässig ein relativ genauer Grenzwert
angegeben werden, sodass ein Einsatz der MES-Akquisitionsfunktion nicht notwendig
war. Als Ausblick für weitere regelungstechnische Anwendungsgebiete der BO stellt die
MES-Akquisitionsfunktion allerdings einen klaren Mehrwert dar.

Einen weiteren Punkt zur Verbesserung bietet die Bestimmung der Hyperparameter. Dafür
wurde bisher die Maximierung der Log-Likelihood (s. (2-33)) vorgeschlagen, bei deren
Optimierung ein sogenannter Point Estimate der Hyperparameter identifiziert wird. Da-
mit ist gemeint, dass lediglich ein bestimmter zahlenmäßiger Vektor zur Definition des
GP bzw. der Kernelfunktion verwendet wird. Ein präziserer Ansatz wäre es, die Unsi-
cherheit über die Hyperparameter explizit zu berücksichtigen, indem sie als Zufallsva-
riablen definiert und mit Hilfe der Bayesschen Regel (2-13) angegeben werden. Für die
Prior-Verteilung ließe sich wiederum eine Normalverteilung verwenden und ein gewisses
Vorwissen im Sinne der ARD durch ihre Parametrierung vorgeben. Als Folge für die BO
ist die Akquisitionsfunktion nun von der Hyperparametrierung abhängig, wodurch der
Erwartungswert über

α(θ) = Ep(η | DJ )[α(θ;η)] =

∫
α(θ;η)p(η |DJ)dη ≈

1

ns

ns∑
i=1

α(θ;ηi),ηi ∼ p(η |DJ)

einzuführen ist. Hierbei wird der Erwartungswert über ns Realisierungen der Posterior-
Verteilung der Hyperparameter p(η |DJ) approximiert, wobei der Markov-Chain Monte

Carlo (MCMC) aus z. B. [Kuß06] verwendet werden kann. Die Einbeziehung der Unsi-
cherheit über die Hyperparameter ist dann besonders sinnvoll, wenn die Datenlage noch
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Bild 3-9: Identifikation einer Paretofront mit Expected Hypervolume Improvement

sehr gering ausfällt, also für die frühen Iterationen der BO. Bei einer ausreichend großen
Datenmenge kann dieser Freiheitsgrad entfallen und auf die herkömmliche Maximierung
der logarithmischen Likelihood zurückgegriffen werden.

Als letzter Punkt ist eine Erweiterung auf eine Mehrzieloptimierung zu nennen. Im Zu-
sammenhang mit dem Ultraschalldrahtbonden gibt es dazu diverse Anknüpfungspunkte.
So setzt sich bspw. der Prozessfähigkeitsindex bereits aus dem Mittelwert und der Stan-
dardabweichung der Scherkraft zusammen, wofür separate GPs angesetzt worden sind,
die zwei bestimmte Zielwerte darstellen. Bei der Mehrzieloptimierung steht nicht mehr
eine gewisse optimale Parametrisierung im Vordergrund, sondern die Paretofront P , die
durch mehrere verschiedene optimale Parametrisierungen aufgespannt wird. Der Einrich-
ter des Bondprozesses erhält nach der Ausführung der BO damit die Möglichkeit, einen
für ihn passenden Punkt auf der Paretofront auszuwählen. Das Ziel der BO ist, in jeder
Iteration die Paretofront nach und nach zu erweitern und neue dominante Punkte hinzu-
zufügen. Ein Ansatz hierzu wird in [ED18; YEDB19] vorgestellt, wobei das sogenannte
Hypervolume (HV), welches durch die Paretofront und einen Referenzpunkt aufgespannt
wird, betrachtet wird. Die zugehörige Akquisitionsfunktion für die BO lautet Expected

Hypervolume Improvement (EHVI) mit

αEHV I(θ) =

∫
(HV (P ∪ Ĵ(θ))−HV (P))p(Ĵ(θ) |DJ)dĴ , (3-18)

und berücksichtigt die Unsicherheit über die verschiedenen Gütefunktionswerte, wel-
che durch die gelernten GPs ausgedrückt wird. Bild 3-9 verdeutlicht hierzu visuell die
grundsätzlichen Zusammenhänge anhand eines Beispiels mit den Gütefunktionswerten
J1(θ) und J2(θ). Der hellgraue Bereich zeigt die aktuell bekannte Paretofront bzw. das
Hypervolumen in Form einer Fläche im zweidimensionalen Fall, welche durch die bis-
herigen dominanten Messpunkte (schwarz) aufgespannt wird. In blau ist die multivariate
Normalverteilung der zugrundeliegenden GPs für eine bestimmte Parametrisierung darge-
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stellt. Zudem sind die marginalen Verteilungen an den Seiten in hellgrau visualisiert. Auf
der Basis von (3-18) wird entsprechend die Parametrisierung als nächstes durch den BO-
Algorithmus ausgewählt, die zu einer Maximierung des Hypervolumens im Erwartungs-
wert führt. Die Verbesserung in dieser Metrik ist durch das dunkelgraue Gebiet angedeu-
tet, sodass eine Auswertung bei der Parametrisierung des roten Punktes durchgeführt wird
und die Paretofront somit an dieser Stelle ein Update erhält. In der studentischen Arbeit
[Rei23] wurde der Ansatz des EHVI für den Ultraschalldrahtbondprozess erprobt. Dabei
wurden der Prozessfähigkeitsindex und die Prozesszeit als Optimierungsziele ausgewählt.
Erwartungsgemäß verschlechtert sich der Prozessfähigkeitsindex für geringer werdende
Prozesszeiten, wodurch sich der typische Verlauf einer Paretofront ausbildet. Insgesamt
wurden auch im Rahmen dieser Arbeit gute Ergebnisse mit dem BO-Ansatz erzielt.
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4 Hybride Optimalsteuerung dynamischer Systeme

Die Optimalsteuerungstheorie ist ein Zweig der mathematischen Optimierung, der sich
damit befasst, eine Steuerung für ein dynamisches System über einen bestimmten Zeit-
raum zu finden, sodass ein Funktional unter Berücksichtigung von gewissen Nebenbe-
dingungen optimiert wird [Bet10; PLB12]. Sie hat zahlreiche Anwendungen im wissen-
schaftlichen und industriellen Umfeld. Zum Beispiel kann das dynamische System ein
Roboterarm sein, dessen Steuerung der Vorgabe der passenden Momente in seinen Ge-
lenken entspricht. Das Ziel könnte hierbei sein, eine Position so schnell wie möglich mit
minimalem Energieaufwand zu erreichen. Diese Aufgabe wird in der Regel durch die
Entwicklung eines mathematischen Modells des realen Systems, basierend auf der An-
wendung physikalischer Gesetze, gelöst und einem anschließenden Entwurfsprozess, der
optimale Steuersignale im Hinblick auf das Modell angibt. Die resultierende Steuerung
wird dann auf das reale System angewendet, wobei eine wesentliche Annahme ist, dass
das etablierte Modell das reale System ausreichend genau beschreibt. Ist diese Annahme
verletzt, ist der Optimalsteuerungsentwurf hinfällig und muss auf einem anderen Wege
durchgeführt werden. Der nachfolgende Abschnitt erläutert diesen Zusammenhang ma-
thematisch detaillierter und ordnet die hybride Optimalsteuerung in den Gesamtkontext
ein. Dabei wird Bezug zur modellbasierten Inbetriebnahme genommen und eine andere
Ausgangssituation als im letzten Kapitel, welche den Einsatz der BO motivierte, zugrunde
gelegt.

4.1 Klassischer modellbasierter Optimalsteuerungsentwurf

Den Ausgangspunkt der Betrachtung stellt ein nichtlineares diskretes dynamisches Sys-
tem in der Zustandsraumdarstellung

xk+1 = f(xk,uk),

mit dem Zustand x ∈ Rnx und der Stellgröße u ∈ Rnu dar. Die Zeit wird durch eine
äquidistante Diskretisierung der Form τ := {tk = k∆t | k = 0, . . . , H ∈ N, ∆t ∈ R+}
ausgedrückt. Die Aufgabe des Optimalsteuerungsentwurfs besteht nun darin, das System
aus einem (initialen) Anfangszustand xI zum Zeitpunkt t = 0 s in der Zeit T = ∆tH

in einen gewünschten Zielzustand xG durch die passende Wahl des Stellgrößenverlaufs
uk, k = 0, . . . , H zu überführen. Eine Bewertung der aufgeschalteten Stellgrößen findet
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dabei anhand einer Gütefunktion J statt. Beispielhaft wird hierfür wiederum das riccati-
sche Gütemaß mit

J(xk,uk) = ∆t

H∑
k=0

(xk − xG)
TW x(xk − xG) + uT

kW uuk

angenommen. Diese Wahl entspricht einer Mehrzieloptimierung, wobei der Abstand zum
Zielzustand (xk − xG) so schnell wie möglich verkleinert und gleichzeitig der quadra-
tische Energieaufwand uT

kuk klein gehalten werden soll. Das Gütemaß ist so konstru-
iert, dass es über einen Skalarisierungsansatz mit den Gewichtungsmatrizen W x und
W u einen Kompromiss zwischen den beiden Zielen darstellt. Neben der Optimierung
der Gütefunktion, ist ein weiteres Entwurfsziel die Einhaltung von Nebenbedingungen.
Diese hängen mit dem Anwendungsfall und dem zugrundeliegenden System bzw. des-
sen Zuständen und Stellgrößen zusammen. Im einfachsten Fall müssen dafür lediglich
Beschränkungen der Form ∥xk∥ ≤ xmax und ∥uk∥ ≤ umax eingehalten werden. Zusam-
mengefasst kann hierfür eine Funktion mit g(·) ≤ 0 angesetzt werden, die alle Bedingun-
gen berücksichtigt. Weiterführend wird davon ausgegangen, dass eine physikalische Mo-
dellbildung für das dynamische System durchgeführt worden ist und eine Approximation
f̂ ≈ f vorhanden ist. Anhand des Modells wird nun ein Optimierungsproblem formuliert,
welches vollkommen entkoppelt vom realen System zu betrachten ist. Für die Lösung des
Optimierungsproblems gibt es verschiedene Ansätze [Bet10; PLB12]. Im Rahmen dieser
Arbeit sind insbesondere die sogenannten Schießverfahren (Shooting Methods) [Kel17]
von besonderer Bedeutung. Dabei wird zwischen dem Single- und Multiple-Shooting un-
terschieden.

Das zum Single-Shooting zugehörige Optimierungsproblem lautet

min
uk

J(uk), u.B.v. g(uk) ≤ 0, k = 1, . . . , H, (4-1)

und beinhaltet die Minimierung der Gütefunktion durch die richtige Wahl des Stellgrößen-
verlaufs unter der Einhaltung der erwähnten technischen Nebenbedingungen. Die Stell-
größe jedes einzelnen Zeitschritts stellt im Verbund den Optimierungsvektor dar. In dieser
Darstellung steckt das aufgestellte Modell implizit in der Berechnung der Gütefunktion
und Gleichheitsnebenbedingung, da für ihre Auswertungen eine Integration über das Zeit-
gitter τ mit dem ausgewählten Stellgrößenverlauf erforderlich ist. Die exakte Einhaltung
der Modelldynamik ist somit bei jeder Iteration des Optimierungssolvers sichergestellt.
Die Evaluierung eines bestimmten Stellgrößenverlaufs gleicht, bildlich gesprochen, ei-
nem Schießvorgang, welcher den Zielzustand xG erreichen soll. Hiernach leitet sich der
entsprechende Name des Verfahrens ab. Ein ähnlicher Ansatz zum Single- wird beim
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Multiple-Shooting gewählt. Das zugehörige Optimierungsproblem lautet in seiner voll-
diskretisierten Form

min
xk,uk

J(xk,uk), u.B.v. g(xk,uk) ≤ 0, k = 1, . . . , H,

h(xk,uk) := xk+1 − f̂(xk,uk) = 0, k = 1, . . . , H − 1,

(4-2)

wobei die Modelldynamik nun explizit als Gleichheitsnebenbedingung h(·) = 0 auf-
taucht und neben den Stellgrößen nun auch die Zustandsvektoren eines jeden Schrittes
als Optimierungsvariablen vertreten sind. Im Gegensatz zum Single- wird beim Multiple-
Shooting jeder Zeitschritt als ein Schießvorgang angesehen. Es gibt allerdings auch Ab-
stufungen des Verfahrens, die nicht jeden Zeitschritt als Schuss annehmen, sondern meh-
rere Zeitschritte zusammenfassen und damit eine geringere Komplexität aufweisen bzw.
sich eher in Richtung des Single-Shootings orientieren. Im Allgemeinen sind die Kon-
vergenzeigenschaften des Multiple-Shooting als besser zu bewerten, wodurch es häufiger
für schwierigere Optimalsteuerungsprobleme bzw. komplexere Systeme angewandt wird
[Bet98].

Durch eine computergestützte Lösung der Optimierungsprobleme erhält der Anwender
den zur Aufgabe passenden Steuerungsverlauf. Dieser ist jedoch relativ zum aufgestellten
Modell zu sehen und hängt daher stark von dessen Prädiktionsqualität ab. Der Steuerungs-
verlauf kann daher bei der Anwendung am realen System aufgrund von Modellfehlern
ein anderes Verhalten hervorrufen, als es durch die Simulation zu erwarten gewesen wäre
(vgl. Bild 1-2). Um dieser Problematik bei der Inbetriebnahme zu begegnen, wird ein
hybrider Modellierungsansatz vorgeschlagen. Hierbei werden Messdaten, die vom realen
System stammen, als Grundlage für eine Korrektur der Dynamikgleichungen verwendet.
Als maschinelles Lernverfahren werden wiederum GPs eingesetzt, die die Unsicherheit
über die Dynamik quantifizieren und im Entwurfsprozess berücksichtigen. Das Optimal-
steuerungsproblem (4-2) wird dahingehend mit dem hybriden Modell formuliert und die
Modellunsicherheiten explizit einbezogen. Das Ziel dieses Hauptkapitels ist es ein hy-
brides Optimalsteuerungsverfahren aufzustellen, welches eine erweiterte Inbetriebnahme
für partiell bekannte Systemdynamiken ermöglicht und das Problem der herkömmlichen
Vorgehensweise adressiert.

Im Gegensatz zum vorherigen Kapitel 3 bzw. dem Entwurf mittels der BO, wird im Rah-
men dieses Kapitels davon ausgegangen, dass das System soweit identifizierbar ist, dass
eine Klarheit darüber herrscht, was die Zustände des Systems genau sind und wie sie
mathematisch definiert sind. Außerdem soll vorausgesetzt werden, dass die Zustände in
Form einer Messung, Berechnung oder Beobachtung zugänglich sind. Beide Vorausset-
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zungen waren beim Ultraschalldrahtbondprozess nicht gegeben, sodass eine Korrektur
auf der Ebene der Dynamikgleichung praktisch nicht umsetzbar war. In diesem Zusam-
menhang stellte die BO eine Möglichkeit dar, um einen Steuerungsentwurf auf der Basis
der Gütefunktion durchzuführen, wobei die genutzten GPs nicht als Korrektur für die
Dynamik, sondern als Anpassung auf der Ebene der Gütefunktion fungierten.

4.2 Mehrfachpendel auf einem Wagen als Anwendungsbeispiel

Eine interessante Systemklasse stellen Mehrfachpendel auf einem Wagen dar. Ihre Eigen-
schaften in einem wissenschaftlichen Kontext innerhalb der Regelungstechnik sind für
die Erforschung und Entwicklung neuartiger Steuerungs- und Regelungskonzepte vor-
teilhaft. Sie sind durch einen einfachen Aufbau gekennzeichnet und lassen sich somit
vergleichsweise einfach als Prüfstand realisieren. So steht dieser Arbeit ebenfalls ein
Prüfstand (s. Bild 1-4) zur Verfügung, an welchem das entwickelte hybride Optimal-
steuerungsverfahren und Erweiterungen getestet werden. Das akademisch geprägte Sys-
tem besteht aus einem Wagen, welcher sich ausschließlich horizontal bewegen kann, und
einem oder mehreren nacheinander angeordneten Pendelarmen. Die Pendelarme sind da-
bei rotatorisch miteinander verbunden. Der Fußpunkt dieser Konfiguration wird an dem
Wagen, ebenfalls rotatorisch, befestigt. Mögliche Aufgabenstellungen, die an Pendelsys-
teme geknüpft sind, sind der Aufschwung aus der unteren stabilen in die obere instabi-
le Ruhelage, sowie das Balancieren in der oberen Ruhelage. Um den Zielzustand (die
obere Ruhelage) durch die Bewegung des Wagens zu erreichen und beizubehalten, ist ei-
ne komplizierte Steuerabfolge erforderlich, die selbst für einen Menschen im Sinne des
manuellen Einstellens nur äußerst schwer zu identifizieren ist. Dies liegt unter anderem
an den Eigenschaften, die diese Systeme charakterisieren, bspw. den trigonometrischen
Zusammenhängen, welche die Bewegung beschreiben. Eine genaue Darstellung wird in
diesem Unterkapitel durch eine physikalische Modellbildung gegeben. Das System zählt
außerdem zu der Klasse der unteraktuierten Systeme, da jeweils die Anzahl der Freiheits-
grade größer als die Anzahl der Steuereingänge ist. Die Pendelarme können nur indi-
rekt über den Wagen beeinflusst werden. Das Doppelpendel weist zudem ein chaotisches,
sensitives Bewegungsverhalten auf. Kleine Änderungen der Ausgangssituation bzw. des
Steuerungssignals führen dabei rasch zu größer werdenden Abweichungen des Bewe-
gungsablaufs. Insbesondere für die praktische Umsetzung müssen beim Steuerungs- und
Regelungsentwurf Zustandsbeschränkungen, in Form von Weg-, Geschwindigkeit- und
Beschleunigungs-Begrenzungen, berücksichtigt werden.

Am Lehrstuhl für Regelungstechnik und Mechatronik der Universität Paderborn wur-
de ein Doppelpendel-Prüfstand konzipiert und realisiert (s. Bild 1-4). Die Pendelarme
wurden dabei modular ausgelegt, sodass ein schneller Umbau zum Einfach- oder Drei-
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Bild 4-1: Prinzipskizze des Doppelpendels auf einem Wagen (vgl. Bild 1-4).

fachpendel vorgenommen werden kann. Die Antriebseinheit besteht aus dem Linearmo-
tor LKL 20-85 Bosch Rexroth und einem Frequenzumrichter, der in einem kraft- oder
geschwindigkeitsgeregelten Modus betrieben werden kann. Aufgrund der Rahmenkon-
struktion ist der Weg des Linearantriebs auf ±0.6 m begrenzt. Des Weiteren können eine
maximale Geschwindigkeit von ±5 m

s
und eine maximale Beschleunigung von ±100 m

s2

gestellt werden. Die Zustandserfassung erfolgt durch optische, hochauflösende Winkel-
encoder, die 20.000 Striche pro Umdrehung besitzen. Die Winkelgeschwindigkeiten der
Pendelarme werden auf der Recheneinheit näherungsweise über eine Finite-Differenzen-
Approximation bestimmt. Die digitale Signalverarbeitung wird von einer dSPACE Echt-
zeithardware durchgeführt, die mit einer Abtastfrequenz von 1kHz arbeitet.

Modellbildung für das Doppelpendel auf einem Wagen
Die Modellbildung für das Doppelpendel auf einem Wagen orientiert sich an [TKOT11;
Tim13] und wird nach dem Lagrange-Formalismus durchgeführt. Bild 4-1 zeigt das phy-
sikalische Ersatzbild des Prüfstands mit den für die Dynamik relevanten mechanischen
Parametern und Koordinaten. Das Mehrkörpersystem besteht aus drei starren Körpern.
Der Wagen besitzt die Masse m0 und die Pendelarme die Massen mi mit i = 1, 2.
Zudem weisen die Pendelarme eine Länge von li und ein Trägheitsmoment von Ji auf
– ihr Abstand vom Fußpunkt zum Schwerpunkt beträgt jeweils ai. Die horizontal ver-
laufende Koordinate y(t) wird dem Wagen zugeordnet und die beiden Winkelkoordina-
ten φi(t), i = 1, 2 den Pendelarmen. Die Winkel werden, ausgehend von der vertikalen
Nulllage, positiv gegen den Uhrzeigersinn gezählt. Zunächst soll die am Wagen wirken-
de Kraft als Systemeingang uF (t) betrachtet werden. Etwaige Reibungseffekte zwischen
dem Linearantrieb und der Wagenstrecke werden vernachlässigt, da sie durch die interne
Geschwindigkeitsregelung des Linearmotors kompensiert werden. Die Reibung der ro-
tatorischen Gelenke wird jedoch über lineare Ansätze mit den Dämpfungskonstanten di
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berücksichtigt. Weitere Störeinflüsse, wie bspw. Schwingungen der Rahmenkonstruktion,
werden nicht modelliert.

Der Lagrange-Formalismus setzt zunächst die Bestimmung der Orts- bzw. Schwerpunkts-
koordinaten x(i) = [x

(i)
1 , x

(i)
2 ]T , i = 0, 1, 2, durch die generalisierten Koordinaten (φ1, φ2, y)

voraus. Hierzu werden die Vektoren

x(0) =

[
y

0

]
, x(1) =

[
y − a1 sin(φ1)

a1 cos(φ1)

]
, x(2) =

[
y − l1 sin(φ1)− a2 sin(φ2)

l1 cos(φ1) + a2 cos(φ2)

]
,

definiert. Mit dieser Charakterisierung werden die gesamte kinetische Energie V und die
gesamte potentielle Energie U des Systems aufgestellt.

V =
1

2

(
2∑

i=0

mi

∥∥∥ẋ(i)
∥∥∥2
2
+

2∑
i=1

Jiφ̇i
2

)
, U =

2∑
i=0

migx
(i)
2 . (4-3)

Dabei bezeichnet ∥·∥2 die euklidische Norm und g die Gravitationskonstante mit dem
Wert 9.81 m

s2
. Für die dissipativen Reibmomente in den Pendelgelenken werden lineare

Ansätze mit F1 = d2(φ̇2 − φ̇1) − d1φ̇1 und F2 = d2(φ̇1 − φ̇2) verwendet. Zu den Reib-
momenten tritt die am Wagen angreifende Kraft F0 hinzu, welche gleichzeitig die einzige
Eingangsgröße uF (t) in das System darstellt. Die Lagrangeschen Gleichungen zweiter
Art [Sko18] für das betrachtete System in Indexschreibweise lauten:

d

dt

∂L(q, q̇)

∂q̇i
− ∂L(q, q̇)

∂qi
= Fi, i = 0, 1, 2. (4-4)

Darin ist L(q, q̇) = V (q, q̇) − U(q) die sogenannte Lagrangefunktion, die sich aus der
Differenz aus kinetischer Energie V und potentieller Energie U (s. (4-3)) zusammensetzt.
In dem Vektor q = [q1, q2, q0]

T = [φ1, φ2, y]
T werden die verallgemeinerten Lageko-

ordinaten und in dem Vektor q̇ = [φ̇1, φ̇2, ẏ]
T die verallgemeinerten Geschwindigkeiten

zusammengefasst. Die einzelnen Bestandteile der Gleichungen (4-4) führen auf das nach-
folgende nichtlineare System von Differentialgleichungen (DGL) zweiter Ordnung:

M(q)q̈ = F(q, q̇) +B uF , (4-5)
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mit der Matrix

M(3×3) =

[
M(2×2)

1,1 M(2×1)
1,2

M(1×2)
2,1 M(1×1)

2,2

]

=

 J1 + a21m1 + l21m2 a2l1m2 cos (φ1 − φ2) (l1m2 − a1m1) cos (φ1)

a2l1m2 cos (φ1 − φ2) J2 + a22m2 −a2m2 cos (φ2)

(l1m2 − a1m1) cos (φ1) −a2m2 cos (φ2) m1 +m2 +m0

 ,

(4-6)

und den Vektoren

F (3×1) =

[
F (2×1)

1

F (1×1)
2

]

=

d2(φ̇2 − φ̇1)− d1φ̇1 − a2l1m2 sin (φ1 − φ2)φ̇2
2 + g(a1m1 + l1m2) sin(φ1)

d2(φ̇1 − φ̇2)− a2l1m2 sin(φ1 − φ2)φ̇1
2 + ga2m2 sin(φ2)

(l1m2 − a1m1) sin(φ1)φ̇1
2 − a2m2 sin(φ2)φ̇2

2

 ,

B(3×1) = [0, 0, 1]T .

(4-7)

Die symmetrische Matrix M wird Massenmatrix genannt und der Vektor F fasst Coriolis-
Zentrifugal-, sowie dissipative Kräfte zusammen. Durch den Eingangsvektor B ist gut zu
erkennen, dass sich nur die dritte DGL direkt durch die Aktorkraft uF (t) beeinflussen
lässt. Aufgrund der Geschwindigkeitsregelung des Linearantriebs bietet es sich an, eine
partielle Zustandslinearisierung [Tim13] durchzuführen, sodass anstelle der Aktorkraft F0

die Wagenbeschleunigung ÿ als Eingangsgröße uy(t) betrachtet wird. Die generalisierten
Koordinaten q = [q1, q2]

T werden zunächst in die passiven (q1 = [φ1, φ2]
T ) Freiheitsgra-

de und den aktiven (q2 = y) Freiheitsgrad unterteilt. Diese Art der Partitionierung wurde
bereits in (4-6), (4-7) angedeutet und führt auf die Darstellung

M1,1q̈1 +M1,2q̈2 = F1,

M2,1q̈1 +M2,2q̈2 = F2 + uF .
(4-8)

Die obere Gleichung wird nun nach dem passiven Anteil umgestellt. Diese Umformung
ist möglich, da M positiv definit ist, und die Inverse M−1

1,1 somit existiert. Anschließend
wird die umgeformte obere in die untere Gleichung eingesetzt und nach der Eingangskraft
aufgelöst:

uF = M2,1M−1
1,1F1 + (M2,2 −M2,1M−1

1,1M1,2)q̈2 −F2. (4-9)
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Bild 4-2: Simulierte Paretofront und zugehörige Prüfstandsmessungen für das Dreifach-
pendel auf einem Wagen.

Die entstandene Gleichung (4-9) für uF (q̈2) motiviert die Einführung einer fiktiven Rück-
führung der Wagenbeschleunigung ÿ, sodass die untere Gleichung in (4-8) vollständig
kompensiert wird. Übrig bleibt ein reduziertes System mit der Beschleunigung des Wa-
gens als neuen Systemeingang

M1,1q̈1 = F1 −M1,2uy,

q̈2 = uy,
(4-10)

welches eine geringere Berechnungszeit im Vergleich zum Originalsystem (4-5) benötigt.

Abweichung zwischen Simulation und Realität am Beispiel der Paretofront eines
Dreifachpendels auf einem Wagen
Eine Erweiterung des Doppelpendels stellt das Dreifachpendel auf einem Wagen dar.
Für die Realisierung wird am Prüfstand lediglich ein weiterer Pendelarm an das Ende
des äußeren Pendelarms montiert. Die grundsätzlichen Eigenschaften ändern sich durch
diesen Aufbau nicht, sondern werden in gewisser Weise verstärkt. Das chaotische und
sensitive Bewegungsverhalten bleibt erhalten, allerdings wird es durch den zusätzlichen
Pendelarm erhöht, sodass die Prädiktionsfähigkeit eines zugehörigen Modells generell
abnimmt. Um die Effekte eines nicht idealen Modells zu verdeutlichen, wurden am Drei-
fachpendel verschiedene Studien durchgeführt. Hierzu ist insbesondere die studentische
Arbeit [Ism18] zu nennen, in welcher der Aufschwung und die Stabilisierung nach dem
Vorgehen in [Tim13] erfolgreich umgesetzt werden konnte. Die Inbetriebnahme gestal-
tete sich jedoch äußerst schwierig aufgrund der erwähnten Problematik in Bezug auf die
genaue Modellbildung des Systems. Ein besonders aussagekräftiges Ergebnis ist im Zu-
sammenhang mit der Paretofront des Optimalsteuerungsentwurfs entstanden. In Bild 4-2
ist hierzu die Auswertung der simulierten Paretofront dargestellt. Als Ziele wurden hier-
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bei der Energieaufwand und die Aufschwungzeit betrachtet. Durch die Veränderung der
jeweiligen Gewichtung kann die in blau dargestellte Paretofront abgetastet werden. Die
Abtastpunkte sind durch die blauen Punkte visualisiert. In der Simulation prägt sich der
typische Verlauf einer Paretofront aus, wobei entlang der Kurve nur dominante Punk-
te miteinander verbunden werden. Die den blauen Punkten zugehörige Optimalsteue-
rung wurde gleichermaßen am Prüfstand erprobt. Die rote Kurve stellt die gemessenen
Ergebnisse dar. Dabei wird deutlich, dass der Energieaufwand insgesamt höher ausfällt
als es durch die Simulation prognostiziert wurde. Der Grund hierfür ist die Verwendung
der Zwei-Freiheitsgrade-Regelungsstruktur (s. Bild 2-1), wobei die eingesetzte Optimal-
steuerung um einen Reglereingriff erweitert wird, um etwaige Modellfehler bzw. äußere
Störungen zu kompensieren. Der Reglereingriff ist notwendig, da sich das System an-
sonsten zu stark von der Soll-Trajektorie entfernt und den geforderten Zielzustand nicht
erreichen kann. Der zusätzliche Energieaufwand ist dabei für die einzelnen Punkte der
Paretofront nicht konstant, sondern hängt von der Aufschwungzeit ab. Je länger der Auf-
schwung, desto mehr Energie wird für die Einhaltung der Trajektorie gebraucht. Dies ist
nachvollziehbar, da die Prädiktionsfähigkeit mit der Zeit abnimmt und sich bestehende
Modellfehler entsprechend zeitlich aufsummieren. Neben diesem Sachverhalt sind außer-
dem zu einigen blauen keine zugehörigen roten Punkte zu beobachten (so bei T = 2.25 s

und T = 2.8 s). Dies liegt daran, dass zu diesen Punkten kein erfolgreicher Aufschwung
am Prüfstand umgesetzt werden konnte. In diesen Fällen war der Reglereingriff zu groß,
sodass das System instabil wurde und die technischen Rahmenbedingungen verletzt wur-
den. Dieses Ergebnis ist dahingehend interessant, da sich die benachbarten Paretopunkte
bzw. ihre Trajektorien nicht allzu stark von den instabilen Fällen unterscheiden und daher
kein besonderer Grund angegeben werden kann, warum eine Realisierung nicht möglich
war. Insgesamt ergibt sich damit ein Bild, welches eine ideale Paretofront aus der Si-
mulation zeigt, welche allerdings in der Realität nicht gleichermaßen umgesetzt werden
kann. Die in rot dargestellte reale Paretofront weicht dabei von der Simulation ab, und
kann daher im Grunde nicht mehr als Paretofront bzgl. des realen System bezeichnet wer-
den, da sie einige Punkte (am rechten Rand) enthält, die von anderen Punkten dominiert
werden. Dieser Sachverhalt verdeutlicht die Schwierigkeiten, welche sich bei der Inbe-
triebnahme durch einen modellbasierten Entwurf ergeben und motiviert den Einsatz von
hybriden Verfahren, welche die Informationsquelle der Messdaten nutzen, um den mo-
dellbasierten Optimalsteuerungsentwurf zu verbessern. Bevor der hybride Ansatz näher
besprochen wird, soll zunächst ein rein datengetriebenes Verfahren vorgestellt werden
und dessen Vor- und Nachteile erläutert werden. Auf diese Weise lässt sich die hybride
Optimalsteuerung besser in den Gesamtkontext einordnen und im weiteren Verlauf des
Kapitels ein Vergleich zwischen einem Ansatz ohne und mit Vorwissen gezogen werden.
Im Rahmen des modellbasierten RLs und im Zusammenhang mit der Regelungstechnik
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ist hierzu der PILCO-Ansatz zu nennen, welcher im nächsten Abschnitt detailliert mit der
Anwendung auf das Doppelpendel auf einem Wagen erklärt wird.

4.3 Probabilistic Inference for Learning Control

In diesem Unterkapitel wird der PILCO-Algorithmus nach [Dei10; DRF12; DEPF14;
DFR15] vorgestellt. PILCO ist ein modellbasiertes RL-Verfahren zur Lösung von Re-
gelungsaufgaben. Das Verfahren setzt dabei wenig Vorwissen über die Regelungsaufgabe
voraus und beinhaltet das Erlernen eines dynamischen Modells auf der Grundlage von
Messungen am betrachteten realen System. Zudem zeichnet sich PILCO durch seine hohe
Effizienz im Hinblick auf die Auswertung vorhandener Messdaten und die Nutzung von
Rechenkapazitäten aus. Aus diesem Grund wird PILCO in der Literatur als ein State-of-

the-Art RL-Algorithmus für die kontinuierliche Regelung von realen dynamischen Syste-
men angesehen.

Eine physikalische Modellbildung wird im Kontext von RL als Expertenwissen bezeich-
net, welches für die Anwendung von PILCO nicht vorausgesetzt wird. Aus diesem Grund
wird bei PILCO die Systemdynamik mittels Gauß-Prozess-Regression nachgebildet. Ge-
nauer betrachtet, wird für jede Zustandsdimension ein eigener GP angesetzt. Außerdem
wird die Annahme getroffen, dass die GPs voneinander unabhängig sind, sich also gegen-
seitig nicht beeinflussen können. Diese Annahme stellt keine Einschränkung dar, da jede
Lernaufgabe in Hinblick auf ihre Zustandsdimension separat voneinander betrachtet wer-
den kann. Eine Verknüpfung der einzelnen Gleichungen kommt nur durch die zeitliche
Entwicklung bzw. Integration des Zustandsvektors (Zustandspropagation, s. Abschnitt
2.3.2) zustande, jedoch nicht durch den zugehörigen GP selbst. Durch den probabilis-
tischen Charakter eines GP wird über ihn die Unsicherheit über die Dynamikfunktion
ausgedrückt. Erst durch die Aufnahme von Messdaten und die Bildung des Posterior für
jeden GP wird diese Unsicherheit in bestimmten Bereichen des Zustandsraums reduziert,
wodurch ein kontinuierlicher Lernvorgang der Dynamik des Systems angestoßen wird.
Der probabilistische Charakter steht daher im engen Zusammenhang mit dem Kompro-
miss zwischen einem explorativen und exploitativen Verhalten des PILCO-Algorithmus
und ist essentiell wichtig für den Erfolg des Verfahrens. Unter anderem wurde in [DFR15]
durch diverse Versuche gezeigt, dass die Einbringung der Wahrscheinlichkeitstheorie für
das erfolgreiche Lernen notwendig ist, denn der Austausch der probabilistischen GPs mit
einem vergleichbaren deterministischen Modellansatz führte für die betrachteten Anwen-
dungsbeispiele zum Misserfolg. Ein Einfluss einer stochastischen Komponente, welche
das Ergebnis negativ beeinflussen könnte, wird über die mehrfache Wiederholung der
Experimente ausgeschlossen.
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Algorithmus 3 Probabilistic Inference for Learning Control (PILCO)
1: Initialisierung: Wähle eine zufällige Reglerparametrisierung θ. Schalte dem System

die Regelungsstrategie r(x;θ) auf und sammle erste initiale Messdaten.
2: Wiederhole bis die Regelungsaufgabe erfüllt ist:
3: Lerne die Systemdynamik mittels GP anhand der vorhandenen Messdaten.
4: Wiederhole bis ein Konvergenzkriterium erreicht ist:
5: Berechne die Gesamtkosten J(θ) auf Basis des gelernten GP-Modells.
6: Führe eine gradientenbasierte Verbesserung der Reglerparametrisierung durch

und erhalte θ∗.
7: Schalte dem System die Regelungsstrategie r(x;θ∗) auf und sammle parallel

weitere Messdaten, die den bestehenden Messdaten hinzugefügt werden.

Das übergeordnete Ziel bei PILCO ist es, einen parametrisierten Regler u = r(x;θ) zu
finden, der die erwarteten Langzeitkosten bzw. das Gütemaß

J(θ) =
H∑
k=0

E[c(xk)] ∈ R, x0 ∼ N (µ0,Σ0), (4-11)

über H+1 Zeitschritte minimiert. Dabei ist c(xk) eine momentane Kostenfunktion, die je-
den Zustand xk anhand eines Zielzustandes xG bewertet. Zudem wird der Erwartungswert
der Kosten betrachtet, da die Zustände xk aufgrund der GP-Modellierung nur mit einer
bestimmten Wahrscheinlichkeitsverteilung vorliegen. Die Minimierung der Gesamtkos-
ten (4-11) wird mittels gradientenbasierten Optimierungssolvern durchgeführt. Die Op-
timierungsvariablen sind dabei die Elemente der Parametrisierung θ, durch die der Reg-
ler und dessen Qualität beeinflusst wird. Während der Optimierung wird mehrfach eine
Langzeitprädiktion der Form p(x0 | θ) 7→ p(x1 | θ) 7→ . . . 7→ p(xH | θ) mit Hilfe des GP-
Modells berechnet, um die Langzeitkosten (4-11) auszuwerten und eine kontinuierliche
Verbesserung des Reglers vorzunehmen. Eine Besonderheit dabei ist, dass die Zustands-
verteilungen über den Moment Matching Ansatz als Normalverteilungen approximiert
werden. Bei der Verwendung des SE-Kernels für die einzelnen GPs kann in [DFR15] ge-
zeigt werden, dass die Berechnung für den Erwartungsvektor und die Kovarianzmatrix
des Zustands analytisch aufgestellt werden kann. Das hat den Vorteil, dass die zugehörige
Berechnung relativ günstig ist und gleichermaßen der Gradient für die Optimierung ana-
lytisch abgeleitet werden kann.

Algorithmus 3 fasst die wesentlichen Schritte zusammen, welche im Nachfolgenden näher
erläutert werden. PILCO beinhaltet eine Initialisierungsphase (Zeile 1), sowie eine äußere
(Zeile 2-7) und eine innere (Zeile 4-6) Schleife. In der Initialisierungsphase wird dem
System eine zufällige Steuerfolge aufgeschaltet. Dabei werden erste Messdaten bzw. Zu-
standsübergänge des Systems aufgenommen. Anschließend wird die äußere Schleife von
PILCO ausgeführt. Die Schleife beginnt mit dem Training eines GP-Modells, welches die
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Systemdynamik abbilden soll. Training bedeutet in diesem Zusammenhang, dass die Hy-
perparameter der zugehörigen GPs über einen Optimierungssolver variiert werden, sodass
die Likelihoodfunktion maximiert wird. Das Training wird anhand der bestehenden Mess-
daten durchgeführt. Im Anschluss erfolgt die Optimierung der Reglerparametrisierung θ

(innere Schleife). Auf Grundlage des gelernten GP-Modells wird hierbei das Systemver-
halten laufend mit unterschiedlichen Reglerparametrisierungen simuliert, bis eine opti-
male Parameterkonfiguration θ∗ gefunden wurde und die Optimierung konvergiert. Im
Anschluss an die Reglerparameteroptimierung wird dem System die aktuelle Regelungs-
strategie r(x;θ∗) aufgeschaltet und parallel neue Messdaten aufgenommen. Die neuen
Messdaten werden den bestehenden Messdaten hinzugefügt und die äußere Schleife er-
neut ausgeführt. Dem GP-Training stehen dabei weitere Messdaten zur Verfügung, wo-
durch sich ein genaueres Modell des Systems ergibt. Durch die Veränderung des Modells
führt die Optimierung innerhalb der inneren Schleife zu einer besseren Lösung θ∗. Die
äußere Schleife wird solange ausgeführt, bis die Regelungsaufgabe erfüllt wurde. Das
Ergebnis von PILCO ist ein optimierter Regler, der einen gewünschten Zielzustand er-
reicht und stabilisiert. Zusätzlich steht am Ende des Verfahrens das trainierte ML-Modell
zur Verfügung, welches bspw. für einen weiterführenden Beobachterentwurf verwendet
werden kann [DHH09].

PILCO setzt eine parametrisierbare Ansatzfunktion mit r(x;θ) : Rnx 7→ Rnu für die Dar-
stellung des Reglers voraus. Dabei steht nx für die Anzahl der Zustandsgrößen und nu für
die Anzahl der Stellgrößen. Da in dieser Arbeit Systeme mit einer Stellgröße betrachtet
werden, gelten die nachfolgenden Betrachtungen für den Spezialfall nu = 1. Bei PILCO
wird für jede Stellgröße der Ansatz

r(x;θ) = k(M ,x)T K(M ,M )−1v︸ ︷︷ ︸
:=α

=
nm∑
i=1

k(mi,x)αi, (4-12)

mit M = [m1, . . . ,mnm ] ∈ Rnx×nm gewählt, wobei nm für die Anzahl der Basisfunk-
tionen steht. Bei formaler Betrachtung von (4-12) fällt auf, dass es sich um die Posterior-
Gleichung für den Mittelwert eines GP handelt (vgl. (2-31)). Die Ansatzfunktion für die
Stellgröße entspricht daher einem GP mit der SE-Kovarianzfunktion. Für die Posterior-
Varianz wurde keine Gleichung angegeben, da diese im Kontext einer Regelung identisch
null gesetzt wird. Es handelt sich daher um einen deterministischen GP, der keine Un-
sicherheiten aufweist. Jedem Zustand wird somit eine eindeutige Stellgröße zugeordnet.
Um den GP-Regler vollständig zu definieren, müssen Ein-, Ausgangsdaten und Hyperpa-
rameter festgelegt werden. Anders als bei der Modellierung mittels GP, handelt es sich
bei den Ein- und Ausgangsdaten des GP-Reglers um fiktive Daten, die unter anderem die
Optimierungsvariablen des PILCO-Algorithmus darstellen. In der Matrix M aus (4-12)
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werden die Eingangsdaten mi ∈ Rnx , i = 1, . . . , nm und in dem Vektor v ∈ Rnm die Aus-
gangsdaten zusammengefasst. Mit der Variable α wird das Produkt aus K(M ,M)−1 und
v abgekürzt. Die Hyperparameter der SE-Kovarianzfunktion lauten σ2

f , σ
2
w und l21, . . . , l

2
nx

.
Die Parameter σ2

f und σ2
w sind nach [DFR15] mit den Werten 1 und 0.01 fest vorgegeben.

Die restlichen Hyperparameter l2i werden den Optimierungsvariablen zugeordnet. Insge-
samt ergibt sich somit der Parametervektor θ := [mT

1 , . . . ,m
T
nm

,vT , l1, . . . , lnx ]
T aus

dem Raum Rnxnm+nm+nx , der sämtliche Optimierungsvariablen des GP-Reglers beinhal-
tet. Als momentane Kostenfunktion wird bei PILCO ein begrenzt quadratischer Ansatz
mit

cq(x) = 1− exp (−1
2
(x− xG)

TW−1
x (x− xG)) ∈ [0, 1], (4-13)

eingeführt. Über die symmetrische und positiv definite Matrix W x kann eine Gewichtung
der unterschiedlichen Zustandsdimensionen eingestellt werden. Ist das System noch sehr
weit von seinem Zielzustand entfernt, werden die maximalen Kosten von 1 zugewiesen,
wohingegen das Erreichen und die Stabilisierung des Zielzustands mit den minimalen
momentanen Kosten von 0 belohnt werden.

In der eigenen Veröffentlichung [HTHT18] wurde der PILCO-Algorithmus zum ersten
Mal auf ein reales Doppelpendel auf einem Wagen angewandt und der Aufschwung, sowie
die Stabilisierung der oberen Ruhelage erfolgreich umgesetzt. Eine wesentliche Voraus-
setzung dabei war, dass die technischen Rahmenbedingungen, die durch die Prüfstands-
konstruktion (s. Bild 1-4) vorgegeben waren, eingehalten wurden. Hierfür musste die be-
stehende Kostenfunktion (4-13) geeignet erweitert werden. Um die Nebenbedingungen
des Wagens zu berücksichtigen wurde die sogenannte doppelseitige Hingefunktion ch(·)
eingeführt und additiv an die bestehenden Kosten bzgl. des Zielzustands geknüpft. Insge-
samt ergibt sich somit eine Gesamtkostenfunktion von

J(θ) =
H∑
k=0

E
[
cq(xk) +

nx∑
i=1

ch(x
(i)
k )
]
, mit ch(x

(i)) =


x
(i)
min − x(i) , x(i) < x

(i)
min,

x(i) − x
(i)
max , x(i) > x

(i)
max,

0 , sonst,

(4-14)

wodurch Zustandsüberschreitungen der i-ten Zustandsdimension durch eine lineare Zu-
nahme der Kosten bestraft werden.

Bild 4-3 zeigt auszugsweise die Zustandsverläufe aus der 10. und 27. (finalen) Lerniterati-
on des Verfahrens2. Im Bild sind in blau die probabilistischen Prädikationen des aktuellen

2Ein Video der experimentellen Validierung ist unter dem nachfolgenden Link
https://youtu.be/N-yrQu9zuOI?si=zyQjmHCXLdfv9a7_ zu finden.

https://youtu.be/N-yrQu9zuOI?si=zyQjmHCXLdfv9a7_
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Bild 4-3: Anwendung von PILCO auf ein reales Doppelpendel auf einem Wagen. Darstel-
lung der 10. und 27. Lerniteration des Verfahrens.

GP-Modells dargestellt, sowie die real gemessenen Verläufe (rot) bei der Anwendung des
gleichen Reglers. Die ersten Iterationen sind durch eine hohe Unsicherheit bzw. Zustands-
varianz gekennzeichnet. In den ersten 2 s im 10. Versuch ist das Verhalten des Systems gut
vorhergesagt, wird jedoch zum Ende der Trajektorie, wegen der Annäherung an die in-
stabile Ruhelage, schlechter, sodass es noch eine deutliche Abweichung zum Zielzustand
gibt. Auch wenn das System in dieser Iteration noch nicht im Zielzustand stabilisiert wer-
den kann, ist bereits die Erreichung des Zustands bei etwa 2 s ein wesentlicher Schritt zur
Erfüllung des Regelungsziels, denn die dabei aufgenommenen Messdaten haben einen
bedeutenden Wert für das zugrundeliegende ML-Modell. Anhand dieser Daten kann das
Verhalten in der Nähe des Zielzustands besser vorhergesagt werden, wohingegen die ers-
ten Iterationen durch eine fehleranfällige Extrapolation des Modells geprägt war. Im Lau-
fe der nächsten Iterationen wird der Regler bzw. die Parametrisierung weiter verbessert
und der Stellhorizont bei der Einhaltung gewisser Grenzwerte sukzessive erweitert. Nach
27 Lerniterationen wurde das Ziel durch PILCO erreicht, wobei die gesamte Systemdy-
namik alleine auf der Grundlage von gemessenen Zustandsdaten abgebildet wurde und
keinerlei physikalische Zusammenhänge ausgenutzt wurden.

Die Arbeit in [HTHT18] verdeutlicht daher die praktische Anwendbarkeit von Rein-
forcement Learning Algorithmen in einem regelungstechnischen Kontext und adressiert
die Problematik einer fehlerbehafteten Modellbildung durch ein rein datengetriebenes
Vorgehen. Die gelöste Aufgabe stellt dabei eine anspruchsvolle Herausforderung dar, wel-
che selbst mit den klassischen bewährten regelungstechnischen Herangehensweisen nur
schwerlich erfolgreich umgesetzt werden kann (s. Ausführungen zu Bild 4-2). Trotz der
sehr guten Ergebnisse in Bezug auf das komplexe Anwendungsbeispiel muss der PILCO-
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Algorithmus allerdings auch in bestimmten Punkten kritisch beurteilt werden. Ein Punkt
ist die Dauer des Lernvorgangs. Zwar ist die reine Interaktionszeit, welche PILCO für
die Erprobung einer neu gefundenen Regelung benötigt, äußerst gering mit etwa 2 s pro
Iteration, dennoch ist auch die Offline-Berechnung bzw. die Lösung des Optimierungs-
problems zu berücksichtigen. Aufgrund der hohen Komplexität des Reglers (die Anzahl
der Parameter liegt bei etwa 1.000), welcher für das Doppelpendel erforderlich ist, be-
trägt die Lösung eines Optimierungsproblems innerhalb einer Iteration etwa 2 Stunden.
Bei den 27 durchgeführten Iterationen beträgt die gesamte Berechnungszeit damit in etwa
zwei Tage. Im Vergleich zu einem herkömmlichen physikalischen Ansatz, welcher idea-
lerweise direkt nach einer adäquaten Identifikation der Modellparameter funktioniert, ist
der Lernvorgang damit als äußerst lang zu bezeichnen. Ein Grund hierfür ist, dass das
Dynamikmodell von Grund auf gelernt werden muss und dafür erst eine entsprechende
Datenlage geschaffen werden muss. Selbst ein einfaches Modell in Form eines linearen
Zustandsraummodells um die untere Ruhelage, welches relativ einfach aufgestellt werden
könnte, findet bei der Standardvariante des PILCO-Verfahrens keine Verwendung.

Stand der Forschung
In den Folgearbeiten zu [DFR15] bzw. PILCO wurde daher die Einbindung von Vorwis-
sen über die Systemdynamik bearbeitet. Hierbei sind insbesondere [BNv+14] und [CH15]
zu nennen. In [BNv+14] wird die Einbindung eines linearen Modells behandelt und als
Anwendungsbeispiel ein Greifroboter, welcher einen Becher aufheben soll, angeführt.
Die Einbindung erfolgt dabei über die Mittelwertfunktion des GP-Modells, wobei wieder-
um eine analytische Berechnung erhalten bleibt. Die Autoren in [CH15] sind daran inter-
essiert, nichtlineares Vorwissen in den PILCO-Algorithmus zu integrieren. Es wird eben-
falls die Prior-Mittelwertfunktion benutzt, allerdings nicht direkt die nichtlineare Dyna-
mikfunktion darüber eingebunden. Die Begründung hierfür ist, dass die analytische Bere-
chenbarkeit verloren geht. In [CH15] wird deswegen ein Vorgehen auf der Grundlage von
simulierten Daten des Vorwissens vorgeschlagen. Die simulierten Messdaten werden dann
im Rahmen von weiteren zusätzlichen GPs genutzt und zum Training dieser verwendet.
Die Posterior-Mittelwertfunktionen der trainierten GPs werden dann über den Prior der
ursprünglichen PILCO-GPs eingebunden. Als Vorteil bleibt somit zwar die analytische
Berechenbarkeit, insbesondere des Gradienten bzgl. der Gütefunktion, erhalten, allerdings
wird das Vorwissen auch nur indirekt über die simulierten Daten eingebunden. Auf diese
Weise geht der größte Vorteil des Vorwissens verloren - die Extrapolationseigenschaft - in
Zustandsgebieten, in denen (noch) keine Messdaten vorliegen. Ergänzend sind an dieser
Stelle auch die Folgearbeiten zu PILCO von [DNM+17; EPDP13; GMR16; ADA+22] und
[MR17] zu nennen. In [DNM+17] wird nicht die übliche deterministische GP-Regelung
(4-12) eingesetzt, sondern ein in der Regelungstechnik gängiger PID-Regler optimiert.
[EPDP13] erweitert PILCO für den Fall des sogenannten Imitation Learning, wobei der
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menschliche Anwender eine Soll-Trajektorie manuell vorgibt und die Regelungsaufga-
be darin besteht dieser Trajektorie bestmöglich zu folgen. Als Anwendungsbeispiel wird
ein Roboterarm zum Spielen von Tischtennis betrachtet. Des Weiteren wird in [MR17]
die Nutzung des GP-Dynamikmodells im Rahmen eines parallelen Beobachterentwurfs
erforscht. Bei der Regleroptimierung wird dabei die Filterung durch den Beobachter ex-
plizit berücksichtigt. Durch dieses Vorgehen lassen sich selbst Systeme, die ein starkes
Messrauschen aufweisen, durch die gelernte Regelung stabilisieren. Die weiteren genann-
ten Arbeiten untersuchen PILCO im Zusammenhang mit anderen probabilistischen ma-
schinellen Lernverfahren und tauschen den GP-Ansatz entsprechend aus. Im Grundsatz
unterscheiden sich die entwickelten Verfahren daher nicht zum ursprünglichen PILCO-
Verfahren, weisen jedoch im Bezug auf die Skalierbarkeit und die Verallgemeinerung auf
komplexere Zustandsverteilungen bessere Eigenschaften auf.

Neben den bereits erwähnten Kritikpunkten, ist ein weiterer Punkt in Bezug zum Re-
gelungsansatz (4-12) anzumerken. Es handelt sich hierbei um eine komplexe Ansatz-
funktion, die sich durch eine gewisse Anzahl von Parametern kennzeichnet. Die An-
zahl der Parameter und damit auch die Komplexität der Regelung wird vom Anwender
a-priori festgelegt. Während des Verfahrens ist nicht vorgesehen, dass sich der Regler
diesbezüglich verändert. Das Problem besteht darin, dass die Anzahl passend zur Rege-
lungsaufgabe bzw. dem System ausgewählt werden muss. Ist die Komplexität des Reg-
lers zu gering, so kann die Aufgabe nicht gelöst werden und es stellt sich eine Stagna-
tion im Laufe der Lerniterationen ein. Auf der anderen Seite ist eine zu hohe Komple-
xität ebenfalls kontraproduktiv, da die Lösung der Regelungsaufgabe damit grundsätzlich
ermöglicht wird, andererseits aber das zugrundeliegende Optimierungsproblem immer
schwieriger zu bewältigen ist und suboptimale Parametrisierungen wahrscheinlicher wer-
den. Hinzu kommt, dass die Dauer des Lernvorgangs insgesamt unter Umständen we-
sentlich zunimmt. Des Weiteren kann die GP-Regelung vor dem Hintergrund der Zwei-
Freiheitsgrade-Regelungsstruktur (s. Bild 2-1) betrachtet werden. Während die klassi-
sche Regelungsstruktur eine eindeutige Unterscheidung zwischen dem Steuerungs- und
Regelungsanteil des Stellsignals liefert, ist die GP-Regelung (4-12) dahingehend nicht
analysierbar. In Bezug auf das Doppelpendel-Anwendungsbeispiel ist die gelernte Rege-
lung lediglich für die Aufschwung-Trajektorie zulässig und enthält damit den Charakter
einer Steuerung. Dennoch gleicht sie kleinere Störungen, die entlang der Aufschwung-
Trajektorie auftreten können, aus, sodass sie von der Wirkungsweise ähnlich zum An-
satz der Zwei-Freiheitsgrade-Regelungsstruktur stabilisierend funktioniert. Die Auftei-
lung des Stellsignals und eine damit verbundene Interpretierbarkeit der gelernten Rege-
lung ist jedoch nicht möglich.
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Daher passen [KD18] und [HLZ18; HKZ17] PILCO in die Richtung eines Optimal-
steuerungsproblems (4-1) an und behandeln die Stellgrößen eines jeden Zeitschritts di-
rekt als Optimierungsvariablen. Die Autoren aus [KD18] konzentrieren sich dabei auf
ein autonomes Lernszenario (keine vorherige Annahme über Wissen) und können Opti-
malitätsbedingungen ableiten, indem sie das Maximum-Prinzip von Pontryagin [PLB12]
unter der einschränkenden Annahme, dass der GP einen SE-Kernel hat, anwenden. Sie
erzielen gute Ergebnisse in zustands- und stellgrößenbeschränkten simulationsgestützten
Testexperimenten im Vergleich zu PILCO, da diese Einschränkungen innerhalb des Opti-
malsteuerungsproblems natürlich durch fest einzuhaltende Nebenbedingungen behandelt
werden können und nicht über einen Strafterm innerhalb der Gütefunktion berücksichtigt
werden müssen (vgl. (4-14)). [HLZ18; HKZ17] sind ähnlich zu [KD18] im Sinne der
Verwendung von GPs, diskutieren jedoch zusätzlich verschiedene Approximationen für
die Zustandspropagation unter Unsicherheit, mit Ausnahme der UT (s. Abschnitt 2.3.2).
Da beide Veröffentlichungen die Steuerungen als einzige Optimierungsvariablen definie-
ren, wird ihr Ansatz als Single-Shooting klassifiziert. Als Regelungskonzept wird in bei-
den Fällen ein modellprädiktiver Ansatz (MPC) vorgeschlagen, der jedoch in der Praxis
schwer umgesetzt werden kann aufgrund der hohen Echtzeitanforderungen, die sich durch
die Lösung des komplexen Optimierungsproblems in jedem Zeitschritt ergeben. Diese
Anmerkung gilt insbesondere für das Anwendungsbeispiel dieses Kapitels aufgrund sei-
ner hohen Dynamik und notwendigerweise niedrigen Abtastzeit.

Beitrag und Prinzipien der hybriden Optimalsteuerung
Der Beitrag der vorliegen Arbeit vor dem Hintergrund des Stands der Forschung ist viel-
seitig. Zunächst kann anhand der aufgelisteten Veröffentlichungen und den eigenen Er-
gebnissen im Zusammenhang mit PILCO geschlussfolgert werden, dass sich das proba-
bilistische Rahmenwerk und der iterative Lernvorgang erfolgversprechend in die Rege-
lungstechnik und die Inbetriebnahme integrieren lassen. Durch das direkte Lernen auf der
Basis von Messdaten vom realen System wird die Problematik der unzureichenden Mo-
dellbildung adressiert. Dabei bleibt eine gewisse Flexibilität im Bezug auf das betrachtete
System erhalten und geht mit einer zeitlichen Einsparung hinsichtlich einer aufwendi-
geren Modellierungsarbeit einher. Als Grundprinzip wird das Vorgehen von PILCO und
die Verwendung von probabilistischen GPs daher zur Durchführung einer besseren und
effizienteren Inbetriebnahme einer Optimalsteuerung übernommen. Die wahrscheinlich-
keitsbasierte Komponente ist dabei vorteilhaft, um gewisse Unsicherheiten über die Dy-
namikfunktion einzubeziehen und so Vorkommnisse am realen Prozess, bspw. die Ver-
letzung von technischen Rahmenbedingungen oder ein instabiles Systemverhalten, bes-
ser vorhersagen zu können. Im Vergleich zu den vorhergehenden Arbeiten wird dabei
die Einbindung von Vorwissen explizit bei der Entwicklung des damit hybriden Optimal-
steuerungsverfahrens berücksichtigt. Das Ziel ist es, beliebige nichtlineare Dynamikfunk-
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tionen als Annahme zuzulassen und diese durch die aufgestellten GPs und den PILCO-
ähnlichen Lernvorgang korrigieren zu lassen. Die UT stellt hierbei ein wesentliches Hilfs-
mittel dar, um die Zustandspropagation des hybriden Modells abzubilden. Ein weiterer
Vorteil der Nutzung der UT ist, dass sie nicht nur den Einsatz einer nichtlinearen Dy-
namikfunktion ermöglicht, sondern auch eine freie Wahl der Kovarianzfunktion des GPs
beinhaltet. Vergleichbare Arbeiten sind nur auf den SE-Kernel beschränkt. Ein weite-
rer entscheidender Punkt ist in Bezug auf das Lösungsverfahren des Optimalsteuerungs-
problems zu nennen. Anstelle des Single- wird in dieser Arbeit das Multiple-Shooting
eingesetzt, da es für komplexere Anwendungsfälle, wie dem Mehrfachpendel auf einem
Wagen, robustere bzw. zuverlässigere Ergebnisse liefert. Neben dem reinen Optimalsteue-
rungsentwurf wird in diesem Kapitel auch die Entwicklung einer zugehörigen Regelung
besprochen. Hierzu wurde bei PILCO das Problem der fehlenden Interpretierbarkeit an-
geführt. Anstelle eines modellprädiktiven Ansatzes, welcher in der Praxis nur schwerlich
umgesetzt werden kann, insbesondere für ein hochdynamisches Doppelpendel, wird auf
die Zwei-Freiheitsgrade-Regelungsstruktur zurückgegriffen und ein zeitvarianter Riccati-
Regler auf der Basis des hybriden Modells aufgestellt. Eine Validierung des entwickelten
Verfahrens findet an einem simulierten vollaktuierten Doppelpendel und einem realen
Doppelpendel auf einem Wagen statt.

4.4 Entwicklung der hybriden Optimalsteuerung und Erprobung
an einem simulierten voll-aktuierten Doppelpendel

Den Ausgangspunkt bilden Messdaten in Form eines Tripels mit (xk,uk,xk+1) nach je-
dem Versuch bzw. Experiment am realen System, die in den nachfolgenden Matrizen
gesammelt werden:

Xk,Xk+1 ∈ Rnx×nd ,U k ∈ Rnu×nd , (4-15)

wobei nd die Anzahl der vorhandenen Datenpunkte ist. Die Anzahl der Datenpunkte
wächst mit jeder Lerniteration und somit auch diese Matrizen. Darüber hinaus können
sie durch Messrauschen verfälscht sein. Für jeden Datenpunkt wird der Fehler ∆xk+1 im
Hinblick auf das physikalische Modell f phy über

∆X
(i)
k+1 = X

(i)
k+1 − f phy(X

(i)
k ,U

(i)
k ), i = 1, . . . , nd, (4-16)

berechnet. Diese Modellfehler werden im Rahmen des Verfahrens als Zufallsvariablen
behandelt und für jede Zustandsdimension mit einem separaten GP modelliert:

∆x
(j)
k+1 ∼ GPj(0, k(x

u
k ,x

u
k
′;ηj)), j = 1, . . . , nx,
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mit Nullmittelwert und Kovarianzfunktion k(·, ·;η), Hyperparametern ηj und abkürzender
Schreibweise xu

k := [xT
k ,u

T
k ]

T . Der Mittelwert ist null, da die Modellfehler unbekannt
sind und bereits alles Vorwissen über die Dynamik vom physikalischen Modell erfasst
wird. Die Kovarianzfunktion kodiert allgemeine Annahmen, wie den Grad der Glatt-
heit oder Periodizität der zugehörigen Modellfehlerfunktion. Optimale Hyperparameter
η∗
j werden durch den Ansatz der maximalen marginalen logarithmischen Likelihood be-

stimmt.

Unter Verwendung der Daten in (4-15), (4-16) und der optimalen Hyperparameter wird
die (prädiktive) Posterior-Verteilung über den Satz von Bayes berechnet, welche per De-
finition erneut eine Normalverteilung ist:

p(∆x
(j)
k+1 | ∆X

(j,:)
k+1) = N (∆µj(x

u
k),∆σ2

j (x
u
k)),

∆µj(x
u
k) = kXU

k
(xu

k)
TK−1

η∗j
∆X

(j,:)
k+1

T
,

∆σ2
j (x

u
k) = k(xu

k ,x
u
k ;η

∗
j)− kXU

k
(xu

k)
TK−1

η∗j
kXU

k
(xu

k),

(4-17)

wobei ∆X
(j,:)
k+1 die j-te Zeile von ∆Xk+1 ist, sowie die vektorielle Definition gilt

kXU
k
(xu

k) = [k(xu
k ,X

U
k

(1)
;η∗

j), . . . , k(x
u
k ,X

U
k

(nd);η∗
j)]

T . Kη∗j
∈ Rnd×nd ist die symme-

trische und positiv definite Gram-Matrix mit den Einträgen

K
(r,c)
η∗j

= k(XU
k

(r)
,XU

k

(c)
;η∗

j), r, c = 1, . . . , nd,

mit XU
k := [XT

k ,U
T
k ]

T , wobei der zusätzliche Subindex die verwendete Spalte angibt.
Unter Verwendung der Standardannahme [DFR15], dass die dimensionszugehörigen GPs
unabhängig von einander sind, lautet das gesamte datengetriebene Modell damit formal

p(∆xk+1 | ∆Xk+1) = N (∆µ(xu
k),∆Σ(xu

k)),

∆µ(xu
k) = [∆µ1(x

u
k), . . . ,∆µnx(x

u
k)]

T ,

∆Σ(xu
k) = diag([∆σ2

1(x
u
k), . . . ,∆σ2

nx
(xu

k)]).

(4-18)

Entsprechend zu [KD18] wird für das gesamte datengetriebene Modell eine Kurzschreib-
weise durch

f gp(xk,uk) := [∆µ,∆Σ], (4-19)

mit der Abbildung f gp : Rnx × Rnu 7→ Rnx × Rnx×nx eingeführt.

Bis zu diesem Punkt wurden deterministische Größen als Eingang für den GP angenom-
men. Für die Berücksichtigung der Zustandspropagation wird nun ein normalverteilter
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Zustand xk ∼ N (mk,Sk) angenommen. Gemäß der Definition in (4-16) lautet der An-
satz des Hybridmodells

xk+1 = f phy(xk,uk) + ∆xk+1(xk,uk). (4-20)

Die Momente der Verteilung des Nachfolgezustands werden berechnet, indem das Gesetz
der totalen Erwartung

mk+1 = Exk
[E∆xk+1

[xk+1]] = Exk
[f phy] + Exk

[∆µ], (4-21)

und das Gesetz der totalen Varianz

Sk+1 = Exk
[V∆xk+1

[xk+1]] + Vxk
[E∆xk+1

[xk+1]]

= Exk
[∆Σ] + Vxk

[f phy] + Vxk
[∆µ] + Cxk

[f phy,∆µ] + Cxk
[f phy,∆µ]T ,

(4-22)

verwendet werden. Sofern keine analytische Berechnung für die einzelnen Terme möglich
ist, wird im Rahmen dieser Arbeit der Einsatz der UT zur Approximation verwendet. Die
Erwartung und Varianz bezüglich fphy werden über die UT-Zusammenhänge aus (2-26),
(2-27) und (2-28) berechnet, woraus mfphy ≈ Exk

[f phy] und Sfphy ≈ Vxk
[f phy] folgen.

Eine ähnliche Approximation wird in [VG15] betrachtet, wobei die Herleitung jedoch aus
den kontinuierlichen DGLn des physikalischen Modells aufgestellt und kein zusätzliches
datengetriebenes Modell berücksichtigt wird. Für die verbleibenden, vom GP abhängigen
Größen, wird erneut die UT angewendet:

[∆µ(i)
s ,∆Σ(i)

s ] = f gp(x
(i)
s,k,uk), i = 1, . . . , 2nx + 1,

Exk
[∆µ] ≈

2nx+1∑
i=1

W (i)∆µ(i)
s =: m∆µ,

Exk
[∆Σ] ≈

2nx+1∑
i=1

W (i)∆Σ(i)
s ,

Vxk
[∆µ] ≈

2nx+1∑
i=1

W (i)(∆µ(i)
s −m∆µ)(∆µ(i)

s −m∆µ)
T ,

Cxk
[f phy,∆µ] ≈

2nx+1∑
i=1

W (i)(x
(i)
s,k+1 −mfphy)(∆µ(i)

s −m∆µ)
T ,

(4-23)

wobei dieselben Sigma-Punkte und Gewichtungsfaktoren wie in (2-26) und (2-28) ver-
wendet werden. Ein ähnliches Berechnungsverfahren wurde in [KKFH07] verwendet,
um einen rein datengetriebenen GP-UKF-Beobachter zu entwerfen, wobei jedoch die-
selbe Varianz ∆Σ(i)

s ∀i angenommen wurde und daher die Varianz der Approximati-
on unterschätzt wird. Zu beachten ist dabei, dass trotz der diagonalen Struktur der GP-
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Kovarianzmatrix (4-18) bzw. der Unabhängigkeitsannahme, die Dimensionen des Nach-
folgezustands für eine unsichere Eingabeverteilung kovariieren können. Die gleiche Be-
obachtung wird auch für den analytischen MM-Ansatz in [DFR15] gemacht, sodass der
hier gewählte numerische Ansatz diesbezüglich konsistent ist. Die Gleichungen aus (4-21),
(4-22) und (4-23) werden zusammen als eine mathematische Funktion definiert. Diese
Funktion wird mit

[mk+1,Sk+1] = fhyb(mk,Sk,uk), (4-24)

beschrieben, wobei die aktuelle Zustandsverteilung zusammen mit der Stellgröße auf die
nächste Zustandsverteilung abgebildet werden. Im Gegensatz zum rein physikalischen
Modell gleicht das hybride Modell Fehler über den GP-Teil aus, abhängig von der Menge
der aufgezeichneten Daten. Darüber hinaus berücksichtigt die probabilistische Formulie-
rung die Unsicherheit über Fehler bei Langzeitvorhersagen und verhindert so die soge-
nannte Modellverzerrung, die für ein schlechteres Explorationsverhalten verantwortlich
ist.

Eine typische Zielgröße, die in der Regelungstechnik und im Zusammenhang mit einer
Optimalsteuerung oft verwendet wird, ist wie folgt definiert

J(θ) = ∆t
H∑
k=0

wt(k)(xk − xG)
TW x(xk − xG)︸ ︷︷ ︸

=:Jx(xk)

+∆t
H∑
k=0

uT
kW uuk︸ ︷︷ ︸

=:Ju(uk)

,
(4-25)

die einen Term für die Distanz zum Zielzustand (xk − xG) und einen Term für die ver-
brauchte Energie enthält. W x ≻ 0 und W u ⪰ 0 sind Gewichtungsmatrizen. wt(k) ∈ [0, 1]

steigt monoton an und gibt somit ein höheres Gewicht für Abweichungen, die in einem
späteren Verlauf der Trajektorie auftreten. Da der Zustand normalverteilt ist, wird der
Erwartungswert in dieser Arbeit als eigentliche Zielgröße verwendet. Für die Approxi-
mation des Erwartungswerts kann erneut die UT genutzt werden. Dies würde wieder-
um die Einbindung beliebiger Zielgrößen J(θ) ermöglichen. Zur Vereinfachung wird in
diesem Kontext die Verwendung von (4-25) fortgesetzt und die analytische Lösung aus
[DFO20]

Exk
[J(θ)] = ∆t

H∑
k=0

wt(k)(Spur(SkW x) + (mk − xG)
TW x(mk − xG)) + uT

kW uuk,

(4-26)

genutzt. Im Folgenden werden die Einschränkungen diskutiert. Steuerungsbeschränkungen
aufgrund von technischen Rahmenbedingungen können auf herkömmliche Weise durch
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umin ≤ uk ≤ umax berücksichtigt werden. Zustandsbeschränkungen können durch den
Erwartungswert eingebunden werden, z. B. über xmin ≤ mk ≤ xmax, was jedoch auf-
grund der Vernachlässigung der Varianz nicht besonders zuverlässig wäre. Daher wird ein
wahrscheinlichkeitsbasierter Ansatz weiterverfolgt, der in Hinblick auf die Inbetriebnah-
me geeigneter ist. Die Wahrscheinlichkeit, die Zustandsbeschränkungen unter der konser-
vativen Annahme, dass die Dimensionen unabhängig sind, zu erfüllen, wird durch

P (xmin ≤ xk ≤ xmax) ≈
nx∏
i=1

P (x
(i)
min ≤ x

(i)
k ≤ x(i)

max)

=
nx∏
i=1

Φ

(
x
(i)
max−m

(i)
k√

S
(i,i)
k

)
− Φ

(
x
(i)
min−m

(i)
k√

S
(i,i)
k

)
≥ Px,

(4-27)

ausgedrückt, wobei Φ(·) die Verteilungsfunktion der Standardnormalverteilung ist und
Px ∈ (0, 1] ein vordefinierter Wahrscheinlichkeitsgrenzwert ist. Die Zustandsbeschränk-
ungen sind in der Regel mit sicherheitskritischen Aspekten verbunden. Aus diesem Grund
sollte der Wert von Px relativ groß gewählt werden, damit die Zustandsbeschränkungen
konservativ eingehalten werden. Da sie jedoch nur auf dem Modell und seiner Vorhersa-
gegenauigkeit basieren, müssen sie nicht mit der festgelegten Wahrscheinlichkeit für das
reale System erfüllt sein. Aus diesem Grund sollte für praktische Anwendungen immer
ein zusätzlicher Puffer an den Zustandsgrenzen und Sicherheitsmechanismen vorgesehen
werden.

An dieser Stelle wird das vollständige hybride Optimalsteuerungsproblem, mit welchem
die Inbetriebnahme durchgeführt wird, definiert

min
θ

Exk
[J(θ)] u.B.v. h(θ) = 0, g(θ) ≤ 0,

h(θ) =

[mk+1,Sk+1] = fhyb(mk,Sk,uk), k = 0, . . . , H − 1,

m0 −mI , S0 − SI ,

g(θ) =

Px − P (xmin ≤ xk ≤ xmax),

uk − umax, umin − uk, k = 0, . . . , H,
(4-28)

mit einer initialen Zustandsverteilung xI ∼ N (mI ,SI). Ähnlich dem Ansatz des Multi-
ple Shooting für deterministische dynamische Modelle (4-2) erzwingen die Gleichheits-
beschränkungen h(θ), dass die probabilistischen Dynamikgleichungen des hybriden Mo-
dells (4-24) für alle diskreten Zeitschritte erfüllt sind. Dies erfordert, dass die propagier-
ten Momente fhyb(mk,Sk) mit den nächsten Momenten (mk+1,Sk+1) übereinstimmen,
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bei gegebener Steuerung uk. Der Optimierungsvektor setzt sich damit aus den folgenden
Größen zusammen:

θ := [mT
0 ,L

T
△,0,u

T
0 , . . . ,m

T
H ,L

T
△,H ,u

T
H ]

T ∈ R
(

1
2
n2
x+

3
2
nx+nu

)(
H+1
)
, (4-29)

wobei die Cholesky-Zerlegung mit

Sk = LkL
T
k , L△,k = nonzeros(Lk),

verwendet wird. Die Funktion nonzeros(·) bildet dabei die Elemente der unteren Drei-
ecksmatrix von Lk auf einen Spaltenvektor L△,k ∈ R 1

2
(n2

x+nx) ab. Die Formulierung über
die Cholesky-Zerlegung erzwingt implizit eine weitere Nebenbedingung, bei der Symme-
trie und positive Definitheit der Matrizen der Zustandsvarianzen erzwungen werden.

Im direkten Vergleich zur Single-Shooting-Formulierung, bei der die Dynamikgleichun-
gen durch Vorwärtsintegration implizit exakt erfüllt sind und nur die Steuervariablen
die Optimierungsvariablen repräsentieren (dim(θ) = nu(H + 1)), enthält der Multiple-
Shooting-Ansatz wesentlich mehr Optimierungsvariablen und wirkt daher komplexer bzw.
aufwendiger. Der Multiple-Shooting-Ansatz bietet jedoch mehrere Vorteile, welche die
Anzahl der Optimierungsvariablen in Relation setzen. Im Allgemeinen wird die SQP-
Methode [NW06; GK02] (s. A2 für eine Einführung des Verfahrens) verwendet, um das
hybride Optimalsteuerungsproblem numerisch zu lösen. Dies erfordert insbesondere die
Ableitungen der Funktionen in (4-28) nach (4-29), wodurch die Dimensionen über

∇Exk
[J(θ)] ∈ Rnθ , ∇h(θ) ∈ R( 1

2
n2
x+

3
2
nx)(H+1)×nθ , ∇g(θ) ∈ R(2nu+H+1)(H+1)×nθ ,

mit der Substitution nθ := dim(θ), angegeben werden können. Aufgrund der Definition
(4-29) sind diese Ableitungen einfach und schnell zu berechnen, weil die Jakobimatri-
zen eine dünnbesetzte Struktur aufweisen, bei der nur Elemente in der Nähe der Dia-
gonalen ausgefüllt sind. Dies trifft nicht auf das Single-Shooting zu, was insbesondere
für (4-26) und (4-27) offensichtlich ist. Aufgrund der mehrfachen aufeinanderfolgenden
Ausführung der Zustandspropagation werden die Einträge der Ableitungen mit zuneh-
menden Zeitschritten immer komplexer und aufwendiger zu berechnen. Ein weiterer Vor-
teil des Multiple- gegenüber dem Single-Shooting lässt sich im Zusammenhang mit dem
SQP-Verfahren erklären. Die zugrundeliegenden Lagrange-Multiplikatoren, die für die
probabilistischen Zustandsbeschränkungen in (4-28) verwendet werden, gewähren dem
Optimierungssolver eine gewisse Flexibilität, damit er von den genauen Trajektorien ab-
weichen und bessere Lösungen für das hybride Optimalsteuerungsproblem finden kann.
Dies könnte eine Erklärung für die, im Allgemeinen bekannten besseren Konvergenzei-
genschaften des Multiple- im Vergleich zum Single-Shooting sein, welche auch bei den



130 4 Hybride Optimalsteuerung dynamischer Systeme

Algorithmus 4 Hybride Optimalsteuerung

1: Initialisierung: Berechne Optimalsteuerung {u∗
k}Hk=0 nach (4-2) auf Basis des phy-

sikalischen Modells f phy und teste sie am realen System, wobei initiale Messdaten
gesammelt werden.

2: Wiederhole bis ein Konvergenzkriterium oder ein Iterationsbudget erreicht ist:
3: Lerne Modellfehler über GPs (4-19) auf Basis der vorhandenen Daten (4-16).
4: Wiederhole die nachfolgenden Schritte im Rahmen einer SQP-Optimierung (A2)
5: Berechne den Gradienten∇E[J(θ)] und die Jacobimatrizen der

Nebenbedingungen∇h(θ),∇g(θ) ▷ Automatische Differenzierung (CasADi)
6: Aktualisiere den Optimierungsvektor θ und die zugehörigen

Lagrange-Multiplikatoren (λ,µ).
7: Erprobe die erhaltene Optimalsteuerung {u∗

k}Hk=0 am realen System und nehme
weitere Messdaten auf, die den bestehenden Daten hinzugefügt werden.

Experimenten dieser Arbeit zu beobachten war. Obwohl die Ableitungen ∇Exk
[J(θ)],

∇h(θ) und ∇g(θ) mit entsprechendem Aufwand analytisch aufgestellt werden könnten,
werden sie im Rahmen dieser Arbeit mit dem automatischen Differenzierungswerkzeug
CasADi [AGH+19] berechnet. Außerdem wird als Programmierumgebung MATLAB ver-
wendet und dessen integrierte Implementierung der SQP-Methode (Algorithmus 6) inner-
halb des fmincon-Solvers [Mat24] genutzt.

Der Gesamtalgorithmus der hybriden Optimalsteuerung ist in Algorithmus 4 zusammen-
gefasst. Aus einer übergeordneten Perspektive verwendet die Methodik einen konven-
tionellen Trial-and-Error Ansatz. Der Prozess beginnt mit der Lösung des Optimalsteue-
rungsproblems, das ausschließlich auf dem etablierten physikalischen Modell basiert. An-
schließend wird die aktuelle optimale Steuersequenz auf das reale System angewendet
und dabei Zustandsdaten aufgezeichnet und gesammelt (Zeile 1). Nachfolgend wird eine
Zwei-Schritt-Schleife ausgeführt (Zeilen 2-7 und 4-6). Die äußere Schleife beginnt mit
dem Erlernen der Modellfehler im Zusammenhang mit dem physikalischen Modellteil
unter Verwendung der Gauß-Prozess-Regression und aller verfügbaren Daten (Zeile 3).
Danach wird die innere Schleife ausgelöst und das hybride Optimalsteuerungsproblem
basierend auf dem hybriden Modell bis zur Konvergenz gelöst (Zeilen 4-6). Dies beinhal-
tet die wiederholte Berechnung der Ableitungen sowie die Aktualisierung der Optimie-
rungsvariablen und vorhandener Lagrange-Multiplikatoren. Die neu berechnete optimale
Steuersequenz wird dann auf das reale System angewendet, wobei mit jeder Iteration die
Datenmenge zunimmt. Der sich abwechselnde Lern-, Verbesserungs- und Interaktionszy-
klus wird wiederholt, bis die Optimalsteuerungsaufgabe erfolgreich abgeschlossen ist.
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Anwendung auf ein simuliertes voll-aktuiertes Doppelpendel
Im Folgenden wird die Anwendung von Algorithmus 4 zur Trajektorienplanung eines
simulierten vollständig aktuierten Doppelpendels illustriert. Die Ergebnisse3 sind eben-
falls in der Vorveröffentlichung [HTT23] enthalten. Das System besteht aus nx = 4

Zuständen, x = [φ1, φ2, φ̇1, φ̇2]
T und nu = 2 Steuerungseingängen u = [u1, u2]

T , wel-
che die Drehmomente in den Gelenken repräsentieren. Das Szenario beinhaltet eine zeit-
liche Diskretisierung von ∆t = 0.05 s mit H = 40 Zeitschritten, sodass die Gesamtzeit
T := ∆tH = 2 s beträgt. Die Aufgabe besteht darin, die optimale Steuerungsabfolge
{u∗

k}Hk=0 zu finden, sodass der obere instabile Zielzustand xG = x(t = T ) = 0, ausge-
hend von dem unteren stabilen Gleichgewichtszustand x(t = 0) = mI = [π, π, 0, 0]T ,
am Ende der Trajektorie erreicht wird. Die Steuerungs- und Zustandsbeschränkungen lau-
ten

umin = [−10 Nm,−10 Nm]T ≤ u ≤ [10 Nm, 10 Nm]T = umax,

xmin = [−1 rad,−1 rad,−4 rad/s,−4 rad/s]T ≤ x ≤ xmax,

xmax = [4 rad, 4 rad, 2 rad/s, 2 rad/s]T

(4-30)

und müssen während des Übergangs erfüllt sein. Die anfängliche Zustandsvarianz
SI = 10−3I4 wird als gering angenommen. Die Gewichtungen W x = diag([25, 25, 1, 1]),
W u = 10−2I2, wt(k) =

e3∆tk−1
e3∆tH−1

und der Wahrscheinlichkeitsgrenzwert Px = 95% defi-
nieren das hybride Optimalsteuerungsproblem (4-28) vollständig.

Die Bewegungsgleichungen für das mechanische System werden in allgemeiner Form
über

M (q)q̈ +C(q, q̇)q̇ +G(q) = F (q̇,u), (4-31)

angegeben, mit dem Positionsvektor q = [φ1, φ2]
T ∈ Rnq , nq = 2, der Massenmatrix

M ∈ Rnq×nq , dem Kraftvektor F ∈ Rnq (der eine lineare Dämpfung für die Reibung
und die steuerbaren Drehmomente enthält), der Zentrifugalmatrix C ∈ Rnq×nq und dem
Gravitationsvektor G ∈ Rnq . Die Gleichungen können unter Verwendung des Lagrange-
Formalismus ähnlich zu (4-5) aufgestellt werden. Eine Prinzipskizze des Systems ist in
[HTT23] enthalten. Die mechanischen Parameter sind identisch zu denen in [TKOT11],
jedoch mit einen um den Faktor 10 höheren Reibungskonstanten. Eine Simulation von
(4-31) wird als Repräsentation für das reale System verwendet. Im Folgenden werden
zwei Anwendungsfälle unterschieden. Im ersten Fall erfolgt das Lernen mit Vorwissen,
bei dem nur bestimmte Terme von (4-31) a-priori bekannt sind (partielle Systemkenntnis)

3Der zugehörige Code ist unter https://github.com/mh510/Hybrid-Optimal-Control
zur Verfügung gestellt.

https://github.com/mh510/Hybrid-Optimal-Control
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und im zweiten Fall erfolgt das Lernen ohne dieses spezielle Expertenwissen, bei dem die
gesamte Dynamik datengetrieben erlernt werden muss. Das Ziel ist es, die Auswirkung
des Expertenwissens auf den Lernfortschritt und das Endresultat auszuwerten, sowie Er-
kenntnisse für die Inbetriebnahme abzuleiten.

Als Nächstes wird das Vorwissen des ersten Falls genauer erläutert. Es wird angenommen,
dass das physikalische Dynamikmodell mit

f phy(xk,uk) = xk +∆t

[
q̇k

M−1(qk)(F (q̇k,uk)−G(qk))

]
, (4-32)

und xk = [qT
k , q̇

T
k ]

T , aufgestellt wurde. Im Vergleich zu (4-31) wird deutlich, dass die
Zentrifugalkräfte fehlen, die im Rahmen dieser Erprobung als Modellfehler definiert wer-
den. Der fehlende Term ist nicht trivial, da er die Inversion der Massenmatrix (ähnlich
zu (4-6)) beinhaltet. Aufgrund des Modellfehlers kann der gewünschte Zielzustand nicht
allein durch das Lösen eines Optimalsteuerungsproblems auf Grundlage von (4-32) er-
reicht werden bzw. die Anwendung von Zeile 1 in Algorithmus 4 ist nicht ausreichend
zur Erfüllung der Steuerungsaufgabe. Aus diesem Grund werden die weiteren Schritte
der hybriden Optimalsteuerung ausgeführt und zunächst der GP-Modellteil gelernt, wo-
bei weiteres Systemwissen ausgenutzt werden kann. Die ersten nq Gleichungen in (4-32)
spiegeln das Integratorverhalten des Systems mit qk+1 = qk +∆t q̇k wider und erfordern
keine Korrektur durch den GP-Modellteil. Integratorverhalten ist vielen technischen (ins-
besondere mechanischen) Systemen inhärent und kann daher als bekannte Struktur ausge-
nutzt werden. Die zugehörige Reduzierung des Lernproblems wird durch die Einführung
einer Kopplungsmatrix Bgp umgesetzt

xk+1 = f phy(xk,uk) +Bgp∆xk+1(xk), mit Bgp =
[
0nq , Inq

]T
,

wobei zudem berücksichtigt wird, dass die Zentrifugalkräfte nicht vom Steuereingang
abhängen. Die GP-Abbildung (4-19) wird somit von Rnx × Rnu 7→ R2nq × R2nq×2nq

auf Rnx 7→ Rnq × Rnq×nq reduziert, wodurch der Berechnungsaufwand gesenkt und die
Effektivität des Verfahrens erhöht wird. In Hinblick auf (4-21) und (4-22) müssen der
Mittelwert und die Varianz des nächsten Zeitschritts gemäß der linearen Transformation
von Normalverteilungen folgendermaßen angepasst werden

mk+1 = E[f phy] +BgpE[∆µ],

Sk+1 = BgpE[∆Σ]BT
gp + V[f phy] +BgpV[∆µ]BT

gp+

C[f phy,∆µ]BT
gp +BgpC[f phy,∆µ]T ,
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Bild 4-4: Fortschritt in der Zustands- und Energiezielgröße (logarithmische Skala) für
den vorgestellten hybriden Optimalsteuerungsentwurf mit (blau) und ohne (rot)
Einbeziehung von physikalischen Vorwissen (Prior).

um die Dimension des physikalischen Modellteils zu erhalten. Für einen zulässigen Ver-
gleich wurde bei den nachfolgenden Untersuchungen zumindest das angesprochene Inte-
gratorverhalten, für den Fall mit fehlendem physikalischen Vorwissen spezifiziert.

Als Nächstes werden die Ergebnisse vorgestellt. Bild 4-4 zeigt hierzu zunächst den Fort-
schritt bzgl. der Teilziele Jx und Ju (s. (4-25)) für 10 Lerniterationen. Im oberen Dia-
gramm wird die Vorhersage (Prädiktion) des hybriden Modells vor dem Experiment mit
der tatsächlich gemessenen Trajektorie vom realen System (4-31) (Realität) verglichen.
Die Prädiktion der Gütefunktion ist für den Fall mit Vorwissen (Prior) in den ersten Itera-
tionen zu optimistisch, aufgrund der vergleichsweise niedrigen Werte. Als Begründung
kann angeführt werden, dass die Datenlage in den ersten Iterationen noch zu gering
ist, um die Unsicherheit über den Modellfehler korrekt beschreiben zu können und die
grundsätzlich zu optimistischen Schätzungen auf das bereits bekannte Dynamikmodell
(4-32) zurückzuführen sind. Wie erwartet, führt jedoch die Berücksichtigung von Vorwis-
sen dazu, dass in weniger Lerniterationen eine optimale Steuerung für das System gefun-
den wird. Trotz der anfangs vorhandenen Modellfehler ist das Konvergenzverhalten stabil
und die Steuerungsaufgabe wird bereits in der 4. Lerniteration gelöst. Die Anwendung
ohne Prior benötigt hierzu 3 weitere Experimente und der endgültige Energieverbrauch
ist zudem höher, was auf eine Konvergenz zu einer geringfügig suboptimalen Steuerung
hindeutet.

Dies zeigt sich auch in Bild 4-5, in dem die tatsächlichen Trajektorien der 4. Iteration
dargestellt sind. Die vordefinierten Zustandsbeschränkungen aus (4-30) sind in der linken
Spalte ausgeschöpft, werden jedoch vollständig eingehalten, während sie auf der rechten
Seite unvorhergesehen am Ende der Trajektorie immer noch überschritten werden. Beide
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Bild 4-5: Gegenüberstellung von prädizierter (blau) und (fiktiv) gemessener (rot) Zu-
standstrajektorie aus der 4. Lerniteration der hybriden Optimalsteuerung. Die
linke Spalte zeigt den Fall mit und die rechte ohne physikalisches Vorwissen
(Prior). Die ideale (Ground Truth) Lösung ist in grün dargestellt. Die blau-
en Ellipsen deuten die multivariaten Normalverteilungen des Zustands in je-
dem Zeitschritt an, wobei jeweils 86% der Gesamtwahrscheinlichkeitsdichte ab-
deckt wird. Die schwarzen gestrichelten Linien repräsentieren die Zustandsbe-
schränkungen.
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Bild 4-6: Entwicklung der gefundenen optimalen Steuerungen. Das Farbspektrum ändert
sich allmählich von Grau für die ersten Iterationen zu Rot für die letzten Ite-
rationen. Die hellroten Linien zeigen entsprechend die Steuerung in der letzten
bzw. 10. Lerniteration. Gestrichelte schwarze Linien repräsentieren die Stell-
größenbeschränkung. Die dick gedruckten grünen Linien zeigen den Ground
Truth.

Trajektorien haben gemeinsam, dass ihre Zustandsvarianz im Laufe der Zeit und beson-
ders in der Nähe der oberen instabilen Ruhelage zunimmt, was nachvollziehbar ist, da
mehrere Zustände, die durch die Zustandsverteilung repräsentiert werden, nicht mit nur
einer bestimmten Stellgröße stabilisiert werden können. Obwohl die Varianz am Ende der
Trajektorie relativ groß ist, folgt die tatsächliche Trajektorie genau der wahrscheinlichsten
vorhergesagten Trajektorie, die durch den Mittelwert ausgedrückt wird (Zentrum der El-
lipsen). Auf der rechten Seite (ohne Prior) zeigt sich ein anderes Bild, denn die reale Tra-
jektorie verlässt für die hohen Winkelgeschwindigkeiten ihren Korridor der Prädiktion,
was zeigt, dass die Zentrifugalkräfte für die optimale Steuerung des Systems entscheidend
sind. Wie bereits erwähnt, zeigt dies außerdem, dass die gegebene Wahrscheinlichkeits-
begrenzung (4-27) des Zustands nur so zuverlässig ist, wie die Qualität des verwendeten
Modells. Bild 4-6 zeigt die Variationen der berechneten Steuersignale in jeder Lernitera-
tion. Die Veränderungen sind von Iteration zu Iteration für den Fall mit Vorwissen signi-
fikant kleiner und somit hinsichtlich der Vorhersagbarkeit des Systemverhaltens und der
praktischen Anwendbarkeit günstiger. Die ursprüngliche Steuerung, welche nur auf der
Basis des physikalischen Modells berechnet wurde, wird nur geringfügig an einigen Stel-
len des Verlaufs partiell korrigiert, bspw. bei t = 0.35 s für u2 oder t = 1.25 s für u1. Der
Regelungstechniker kann während des Inbetriebnahmeprozesses somit besser abschätzen,
wie sich das reale System verhalten wird. In dem Fall ohne Vorwissen ist dies deutlich
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Bild 4-7: Vergleich von Multiple und Single Shooting hinsichtlich der benötigten Be-
rechnungsdauer für die automatische Differentiation von∇Exk

[J(θ)]),∇h(θ),
∇g(θ) und die Optimierung mit dem SQP-Verfahren.

schwieriger, da die Steuerungen beider Aktoren sich in den ersten Iterationen zum Teil
deutlich voneinander unterscheiden.

Abschließend wurde die benötigte Berechnungszeit für den Multiple und Single Shoo-
ting Ansatz gemessen und untersucht, siehe Bild 4-7. Beide Methoden führen zu beina-
he identischen Trajektorien und Zielfunktionswerten innerhalb jeder Iteration, allerdings
benötigt der Multiple Shooting Ansatz trotz seiner höheren Komplexität insgesamt we-
niger Rechenzeit, sowohl für die automatische Differenzierung mittels Casadi, als auch
die SQP-Optimierung. Dabei ist vorteilhaft, dass die Lösung der vorherigen Lerniteration
als Initialisierung für die nächste Optimierung verwendet wurde. Eine Ausnahme stellt
die Initialisierung dar, in welcher das Single Shooting vergleichsweise schnell zu einer
Lösung führt. Ein Grund hierfür ist, dass dem Multiple Shooting Ansatz eine einfache In-
itialisierung mit Einheitsmatrizen für die Zustandsvarianzmatrizen vorgeben wurde und
es daher lange dauert, bis die vorgegebene Genauigkeit der Nebenbedingungen erreicht
wird. Ein interessantes Verbesserungspotential besteht darin, das Multiple Shooting mit
der Lösung des Single Shootings zu initialisieren, um die gesamte Berechnungsdauer in
Hinblick auf Algorithmus 4 weiter zu senken.

4.5 Erweiterung um Zwei-Freiheitsgrade-Regelungsstruktur und
Validierung am Doppelpendel auf einem Wagen

Um einen gesamtheitlichen Entwurf zu ermöglichen, wird Algorithmus 4 zur hybriden
Optimalsteuerung in diesem Abschnitt um eine Zwei-Freiheitsgrade-Regelungsstruktur
(s. Bild 2-1) erweitert. Zur Lösung der Steuerungsaufgabe beim voll-aktuierten Doppel-
pendel war im vorherigen Abschnitt eine reine Steuerung ausreichend. Abgesehen von
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dem Modellfehler bzgl. der Zentrifugalkräfte, wurden keine weiteren Störungen innerhalb
der Simulationsumgebung betrachtet, sodass keine zusätzliche Regelung erforderlich war.
In der Praxis treten jedoch unvorhergesehene äußere Störungen, u. a. in Form von System-
und Messrauschen, auf, welche das System von seiner geforderten Soll-Trajektorie ab-
bringen. Zudem unterliegt das gelernte hybride Modell gewissen Annahmen, bspw. durch
die angesetzte Kovarianzfunktion des GPs, sodass es kein ideales Abbild des betrachteten
Systems darstellt. Der Einsatz der Zwei-Freiheitsgrade-Regelungsstruktur sorgt in diesem
Zusammenhang für eine Stabilisierung der gewünschten Soll-Trajektorie und wirkt den
angesprochenen Störungen adäquat entgegen. Der nachfolgende Abschnitt hat das Ziel
einen erweiterten hybriden Optimalsteuerungsentwurf allgemein zu formulieren und am
realen Doppelpendelprüfstand (s. Bild 1-4 (links)) auf der Grundlage eines nur partiell
bekannten Modells zu realisieren. Der anvisierte Fokus liegt damit auf der Einbindung
von Vorwissen zur Lösung der anspruchsvollen Aufgabe des optimalen Aufschwungs
und stabilen Trajektorienfolgeregelung. Auf diese Weise lässt sich das vorhergehende
Ergebnis von PILCO (vgl. Abschnitt 4.3) mit denen des in dieser Arbeit entwickelten
Verfahrens vergleichen und ein Rückschluss bzgl. der Effizienz und Praktikabilität für
die Inbetriebnahme ziehen. Die grundsätzliche Ausgangssituation ist dabei identisch zu
jener des voll-aktuierten Doppelpendels. Es soll von einem physikalischen Modell ausge-
gangen werden, welches die fundamental wichtigen Zentrifugalkräfte nicht enthält (vgl.
(4-31)), sodass sie durch das ML-Modell ausgeglichen werden müssen. Die Entwicklung
und Validierung des Verfahrens sind Teil der Vorveröffentlichung [HSTT24].

Eine erste notwendige Anpassung ist in Bezug auf das Optimierungsproblem (4-28) zu
nennen. Hierbei wurde bisher nicht der Zielzustand xG als explizite Nebenbedingungen
berücksichtigt. In den durchgeführten Experimenten am Doppelpendelprüfstand hat sich
beispielsweise gezeigt, dass eine solche Nebenbedingung aufgrund der hohen Sensitivität
des Systems für eine erfolgreiche Realisierung des Aufschwungs notwendig ist. Da es
sich bei (4-28) um eine probabilistische Formulierung handelt, liegt der Endzustand xH

nicht eindeutig vor, sondern in Form einer Normalverteilung N (mH ,SH). Ähnlich zum
deterministischen Fall des Multiple Shootings erscheint es im ersten Moment sinnvoll,
eine Nebenbedingung bzgl. der Zustandsverteilung zu formulieren. Hierbei ist jedoch un-
klar, wie eine solche Ziel-Verteilung in Hinblick auf die Varianz gewählt werden sollte.
Eine exakte Einhaltung ist zudem äußerst unwahrscheinlich hinsichtlich der probabilisti-
schen Langzeitprädiktion. Eine andere Möglichkeit besteht darin, die Endzustandsvertei-
lung nicht über die Gleichheits- h(·) sondern über die Ungleichheitsnebenbedingungen
g(·) zu berücksichtigen, wobei die Endverteilung mit einer gewünschten Verteilung über
die Berechnung der Kullback-Leibler-Distanz [Bis06] unter einem bestimmten Grenz-
wert gehalten wird. Somit würde die strikte Einhaltung entschärft und der Optimierung
mehr Flexibilität eingeräumt werden, sodass eine zielführende und plausible Lösung er-
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reicht wird. Im Rahmen dieser Arbeit konnten allerdings keine zufriedenstellenden Er-
gebnisse mit den angeführten Ansätzen erzielt werden. Aus diesem Grund wurde als
praktikabler Kompromiss nur die Einhaltung des Mittelwertes der Endzustandsverteilung
mH−xG

!
= 0 über eine weitere Gleichheitsnebenbedingung gefordert und h(·) in (4-28)

dementsprechend erweitert.

Als Nächstes wird die Regelung der Soll-Trajektorie erläutert. In jeder Iteration des Ver-
fahrens liegt vor dem Experiment am realen System eine Lösung der Form {m∗

k,S
∗
k,u

∗
k}

mit k = 0, . . . , H vor. Da die Zwei-Freiheitsgrade-Regelungsstruktur eingesetzt wer-
den soll, wird im Folgenden ein Unterschied zwischen dem zugehörigen Steuerungs- und
Regelungsanteil vorgenommen. Das Stellgrößensignal aus der Optimierung lautet somit
u∗

k → u∗
S,k. Zunächst ist die Frage zu klären, auf welchen Sollwert eine Regelung erfol-

gen soll, denn im Gegensatz zum deterministischen Fall ist nur eine Zustandsverteilung
bekannt und bei der Regelung am realen System muss zu jedem Zeitpunkt eine exakte
Wahl des Sollwerts vorliegen. Am naheliegendsten ist die Regelung auf der Trajektorie,
welche durch das hybride Modell am wahrscheinlichsten erscheint. Diese wird durch den
Verlauf des Zustandsmittelwerts m∗

k repräsentiert. Der Anteil der Regelung wird durch
einen zeitvarianten Riccati-Regler [Föl94] (in Anlehnung an das modellbasierte Rege-
lungskonzept aus [TKOT11] für das betrachtete Anwendungsbeispiel) mit

uR,k(xk) = Kk(m
∗
k − xk), (4-33)

realisiert, sodass sich die gesamte Stellgröße zu uk = u∗
S,k+uR,k ergibt. Die Verstärkungs-

matrix Kk ∈ Rnx×nu stellt hierbei einen linearen Zusammenhang zwischen der Regeldif-
ferenz und der Stellgröße her und wird nach Riccati mit

Kk = (W u +BT
kP kBk)

−1BT
kP kAk, (4-34)

berechnet. Hierin stellt P k ∈ Rnx×nx die Riccati-Matrix zum Zeitschritt k dar, welche
mittels zeitlicher Rückwärtsintegration der riccatischen Differentialgleichung bestimmt
wird [Föl94]. In einer bereits diskretisierten Form nach [RT10] lautet der Zusammen-
hang

P k = W x +AT
kP k+1Ak −AT

kP k+1(Bk(W u +BT
kP k+1Bk)

−1BT
kP k+1)Ak, (4-35)

k = H − 1, . . . , 0, wobei sich die Anfangs- bzw. Endbedingung PH aus der Lösung
der statischen Riccatigleichung ergibt und W x ≥ 0 ∈ Rnx×nx und W u > 0 ∈ Rnu×nu

Gewichtungsmatrizen bzgl. des Zustands und der Stellgröße darstellen. Des Weiteren sind
Ak ∈ Rnx×nx und Bk ∈ Rnx×nu die Dynamik- und Eingangsmatrix, welche sich aus
einer Linearisierung des hybriden Modells ergeben. Aufgrund der gewählten additiven
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Zusammensetzung des hybriden Modells (4-20) lassen sich die entsprechen Ableitungen
des physikalischen und datengetriebenen Modellteils separat voneinander bilden über

Ak =
df phy

dxk

∣∣∣∣xk=m∗
k,

uk=u∗
k

+
d∆µ

dxk

∣∣∣∣xk=m∗
k,

uk=u∗
k

, Bk =
df phy

duk

∣∣∣∣xk=m∗
k,

uk=u∗
k

+
d∆µ

duk

∣∣∣∣xk=m∗
k,

uk=u∗
k

.

Bei den in dieser Arbeit eingesetzten Kernelfunktionen lässt sich der Posterior des GPs
analytisch ableiten. Eine detaillierte Darstellung ist im Anhang A1 unter dem Abschnitt
- Ableitung des GP-Posterior-Erwartungsvektors nach dem erweiterten Zustand - zu fin-
den. In Bezug auf Algorithmus 4 ist die Berechnung des Reglers nach Zeile 6 und vor
7 einzuordnen. Der Regelungstechniker steht dementsprechend vor dem Experiment am
Prüfstand der Frage gegenüber, ob nur die reine Steuerung uk = u∗

S,k oder die Zwei-
Freiheitsgrade-Regelungsstruktur uk = uS,k + uR,k mit einem möglicherweise insta-
bilen und unsicheren Verhalten verwendet werden soll. Hierfür liegt in Verbindung mit
der Steuerung u∗

k die probabilistische Langzeitprädiktion {tk,m∗
k,S

∗
k} aus der Lösung

des hybriden Optimalsteuerungsproblems vor, anhand derer eine Bewertung vorgenom-
men werden kann. Um zusätzlich den Einsatz der Regelung bewerten zu können, ist eine
ähnliche Prädiktion für das geregelte System wünschenswert. Aus diesem Grund wird vor
dem Experiment eine weitere Simulation berechnet, wobei über die UT der geschlosse-
ne Regelkreis am hybriden Modell getestet wird. Für das Verständnis der nachfolgenden
Punkte ist es daher notwendig, eine Unterscheidung zwischen der Prädiktion des offe-
nen (m∗

k,S
∗
k) → (m∗

o,xk
,S∗

o,xk
) und dem geschlossenen Regelkreis (mg,xk

,Sg,xk
) ein-

zuführen und die Zuordnung zum Zustand kenntlich zu machen.

Eine Besonderheit bei der Berechnung des geschlossenen Regelkreises ist, dass die Stell-
größe uk(xk) über das Regelgesetz (4-33) nun vom Zustand abhängt und diese damit als
Zufallsvariable zu betrachten ist. Entsprechend induziert die Zustandsverteilung eine Un-
sicherheit in die Stellgröße, wobei durch die lineare Abhängigkeit und über (2-10), (2-11)
geschlussfolgert wird, dass

uk ∼ N (muk
,Suk

),

muk
= u∗

S,k +Kk(m
∗
o,xk
−mg,xk

),

Suk
= KkSg,xk

KT
k ,

(4-36)

gilt. Die Varianz der Stellgröße Suk
ist ein hilfreiches Maß, um abschätzen zu können,

wie sehr sich die Unsicherheit über die Dynamik des Systems im Regelkreis bemerkbar
macht. Eine geringe Varianz weist darauf hin, dass die Modellfehler durch das GP-Modell
gut abgebildet werden und ausreichend Daten vorhanden sind. Des Weiteren lässt sich
an dieser Stelle der klassische regelungstechnische Stabilitätsbegriff (bspw. nach Ljapu-
nov (2-5)) um eine wahrscheinlichkeitsbasierte Sichtweise erweitern. Grundsätzlich wird
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sich der Regler bei der Zustandspropagation so bemerkbar machen, dass er die Varianz
des Zustands deutlich reduziert. Das liegt daran, dass er die Zustände, die abseits der
gewünschten Trajektorie liegen, auf ihren Pfad zurückführt und sich damit insbesonde-
re für das sensitive Doppelpendel das Bewegungsverhalten insgesamt besser vorhersagen
lässt. Für den Fall der reinen Steuerung ist die vergleichsweise hohe Zustandsvarianz dar-
in begründet, dass sich mehrere unterschiedliche Zustände, welche durch die Zustands-
verteilung repräsentiert werden, in der nähe der oberen instabilen Ruhelage nicht durch
eine einzige Stellgröße stabilisieren lassen. Der Regler stellt in diesem Zusammenhang
zu jedem Zustand, der sich abseits der Soll-Trajektorie befindet, eine passende Stell-
größe her. Per Definition bzw. Konstruktion des Verfahrens sollte der berechnete Riccati-
Regler bzgl. des hybriden Modells immer stabil sein [Föl94]. Für die Inbetriebnahme ist
die Stabilität bzgl. des Modells allerdings nicht entscheidend, sondern nur die Stabilität
bzgl. des realen Systems (vgl. Bild 4-2). Die Zustandspropagation des geschlossenen Re-
gelkreises ermöglicht es, die Auswirkung der Unsicherheit über die Systemdynamik zu
berücksichtigen. Die Fortpflanzung von Modellfehlern, welche sich in einer hohen Va-
rianz des GP-Modellteils äußert, sorgt über (4-36) zu einer anwachsenden Zustandsvari-
anz, welche sich gegebenenfalls immer weiter verstärken kann. Ähnlich zum deterministi-
schen Fall, ergibt sich somit unter Umständen ein instabiles Regelungsverhalten, welches
auf die Tatsache zurückzuführen ist, dass der eingeführte Riccati-Regler nicht die Unsi-
cherheit des Modells berücksichtigt. Eine Möglichkeit, diese Information beim Entwurf
nutzbar zu machen, wäre es indem die Verstärkungsmatrix Kk eine Abhängigkeit von
der Zustandsvarianz Sxk

aufweisen würde. Bspw. könnte die Einflussnahme des Reg-
lers bei einer zu hohen Zustandsvarianz reduziert werden, wodurch sich ein instabiles
Verhalten verhindern ließe. Im Rahmen dieser Arbeit wurde dieser Ansatz nicht weiter
erforscht, wird jedoch als sehr vielversprechend eingestuft, sodass er ein Potential für
weiterführende Arbeiten bietet. Eine Orientierung innerhalb der Literatur könnte hierzu
[EM23] bereitstellen, worin eine probabilistische Betrachtungsweise des Riccati-Reglers
behandelt wird.

Ausgehend von der ursprünglichen Fragestellung, welche den Einsatz der Regelung am
Prüfstand behandelt, bietet die Zustandspropagation des geschlossenen Regelkreises durch
die Zustandsvarianz einen Anhaltspunkt darüber, wie sich das reale System verhalten
wird. Eine rasch anwachsende Zustandsvarianz deutet dabei ein instabiles Verhalten am
Prüfstand an, sodass dem Anwender über diese Information ein objektives Bewertungs-
kriterium zur Verfügung steht. Eine Automatisierung lässt sich durch die Einführung einer
Grenzwertmatrix Smax ∈ Rnx×nx herstellen, welche die Zustandsvarianz der einzelnen
Dimensionen überprüft und unter Umständen mit den geforderten technischen Rahmen-
bedingungen abgleicht. Algorithmus 5 fasst die Schritte der erweiterten hybriden Opti-
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Algorithmus 5 Erweiterte Hybride Optimalsteuerung

1: Initialisierung: Berechne Optimalsteuerung {u∗
k}Hk=0 nach (4-2) auf Basis des phy-

sikalischen Modells f phy und teste sie am realen System, wobei initiale Messdaten
gesammelt werden.

2: Wiederhole bis ein Konvergenzkriterium oder ein Iterationsbudget erreicht ist:
3: Lerne Modellfehler über GPs (4-19) auf Basis der vorhandenen Daten (4-16).
4: Wiederhole die nachfolgenden Schritte im Rahmen einer SQP-Optimierung (A2)
5: Berechne den Gradienten∇E[J(θ)] und die Jacobimatrizen der

Nebenbedingungen∇h(θ),∇g(θ) ▷ Automatische Differenzierung (CasADi)
6: Aktualisiere den Optimierungsvektor θ und die zugehörigen

Lagrange-Multiplikatoren (λ,µ).
7: Erhalte Optimalsteuerung und Prädiktion (offener Rk) {m∗

o,xk
,S∗

o,xk
,u∗

S,k}Hk=0.
8: Berechne zeitvarianten Riccati-Regler {Kk}Hk=0 nach (4-34), (4-35) und

Prädiktion für den geschlossenen Regelkreis {mg,xk
,Sg,xk

,muk
,Suk

}Hk=0.
9: Falls S(i,i)

g,xk ≤ S
(i,i)
max, k = 0, . . . , H, i = 1, . . . , nx dann ▷ Überprüfe Stabilität

setze uk ← u∗
S,k +Kk(m

∗
o,xk
− xk),

sonst
setze uk ← u∗

S,k.
10: Erprobe uk am realen System und nehme weitere Messdaten auf, die den

bestehenden Daten hinzugefügt werden.

malsteuerung zusammen und ergänzt Algorithmus 4 um einen zusätzlichen Regelungs-
entwurf (Zeile 8), sowie einer automatisierten Überprüfung der Stabilität (Zeile 9).

Anwendung auf ein reales Doppelpendel auf einem Wagen
In diesem Abschnitt werden die Ergebnisse der hybriden Optimalsteuerung mit dem er-
weiterten Regelungskonzept für das Doppelpendel auf einem Wagen vorgestellt. In Unter-
kapitel 4.2 wurde hierzu die physikalische Modellbildung mittels Lagrange-Formalismus
für das System erläutert. Ähnlich zu den Experimenten am simulierten voll-aktuierten
Doppelpendel, soll von einem unvollständigen Modell als Vorwissen ausgegangen wer-
den. Vor dem Hintergrund des Prüfstands stellt jedes Modell nur eine Annäherung dar,
sodass selbst das hier vorgestellte Gesamtmodell als unvollständig zu bezeichnen ist. Um
die Wirkungsweise der hybriden Optimalsteuerung besser erläutern zu können und ein
anspruchsvolleres Szenario zu schaffen, wurden die hoch relevanten Zentrifugalkräfte als
unbekannt angenommen. Ohne diese Kräfte im Modell ist eine erfolgreiche Inbetrieb-
nahme am Prüfstand nach dem klassischen Vorgehen nicht möglich, sodass ein Szenario
geschaffen wurde, in welchem die hybride Optimalsteuerung für den Regelungstechni-
ker ein geeignetes Werkzeug darstellt. Des Weiteren ist durch die Vernachlässigung der
Zentrifugalkräfte sichergestellt, dass sich in den aufgenommenen Messdaten ein syste-
matischer und damit für das GP-Teilmodell lernbarer Fehler befindet. Der prognostizierte



142 4 Hybride Optimalsteuerung dynamischer Systeme

Modellfehler bzgl. der partiell zustandslinearisierten Form des Modells (4-10) lautet so-
mit

∆φ̇k+1 = −∆tM−1
1,1(φk)C1,1(φk, φ̇k),

wobei er auf der Ebene der Winkelgeschwindigkeiten φ̇ = [φ̇1, φ̇2]
T definiert ist und die

enthaltenen Teilmatrizen durch

M1,1(φ) =

[
J1 + a21m1 + l21m2 a2l1m2 cos (φ1 − φ2)

a2l1m2 cos (φ1 − φ2) J2 + a22m2

]
,

C1,1(φ, φ̇) =

[
−a2l1m2 sin (φ1 − φ2)φ̇2

2

−a2l1m2 sin(φ1 − φ2)φ̇1
2

]
,

(4-37)

beschrieben werden. Anhand dieser Gleichungen bzw. der Inversion der Teilmassenma-
trix M1,1 und der Querverbindung beider separaten Zentrifugalkräfte untereinander wird
ersichtlich, dass es sich bei dem angenommenen Modellfehler um keinen trivialen Term
handelt, sondern dieser einen großen Einfluss auf die Bewegung des Systems nimmt.
Dies macht sich insbesondere für hohe Winkelgeschwindigkeiten bemerkbar, welche für
den Aufschwung des Doppelpendels unabdingbar sind. Da von der partiell zustandslinea-
risierten Form ausgegangen wird, findet keine Korrektur der zugehörigen Gleichungen
der Wagengeschwindigkeit statt, da diese bei einer ausreichend schnellen Geschwindig-
keitsregelung als einfacher Integrator modelliert wird. Die zugrundeliegende Geschwin-
digkeitsregelung wird hier als eine weitere Art des Vorwissens betrachtet, da sich die-
se unabhängig vom Doppelpendel auf dem klassischen Entwurfsweg auslegen lässt. Am
Prüfstand sorgt die Geschwindigkeitsregelung dafür, dass sich die Kräfte, welche durch
die Bewegung der Pendelarme erzeugt werden, nur geringfügig auf das Verhalten des
Wagens auswirken. Diese Kopplung findet in der partiell zustandslinearisierten Form kei-
ne Berücksichtigung, sodass das Integratorverhalten des Wagens keine Abhängigkeit von
den Zuständen der Winkel hat. Für das hybride Modell und die Zustandspropagation be-
deutet dies, dass sich die Zustandsvarianz nur auf die Zustände der Winkel auswirkt. Die
Dynamik des Wagens bleibt bei der Verwendung einer eindeutig vorgegebenen Steuerung
deterministisch. Bei der Verwendung der Regelung ist dies nicht mehr der Fall, da über
das Regelgesetz (4-33) und die damit verbundene probabilistische Stellgröße (4-36) eine
Abhängigkeit besteht. Aus diesem Grund pflanzt sich die Unsicherheit der Pendelarme
über die Stellgröße in die Wagenbewegung fort.

Das betrachtete Szenario beinhaltet eine zeitliche Diskretisierung von ∆t = 0.01 s mit ei-
ner fest vorgegebenen Aufschwungzeit von T = 2 s. Das System startet aus dem Anfangs-
zustand mI = [−π,−π,0]T ,SI = 10−3I6 und soll zum Zielzustand xG = 0 überführt
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werden. Um die technischen Rahmenbedingungen mit einem ausreichend großen Sicher-
heitsabstand zu adressieren, werden die Nebenbedingungen mit

|y| ≤ 0.5 m, |ẏ| ≤ 3
m

s
, |u| = |ÿ| ≤ 50

m

s2
, und Px = 95% (4-38)

berücksichtigt. Die Gewichtungen des Optimalsteuerungsproblems (4-28) haben die Wer-
te

W x = diag(100, 100, 250,0), Wu = 1, wt(k) =
e25∆tk − 1

e25Hk − 1
.

Bevor der Algorithmus am realen System erprobt worden ist, wurde eine unabhängige
Analyse in einer Simulationsumgebung durchgeführt. Hierbei wurde das Gesamtmodell
des Doppelpendels auf einem Wagen, d. h. inkl. Zentrifugalkräfte, stellvertretend für das
reale System verwendet und an fiktiven Messdaten gelernt. In der Simulation zeigte sich,
dass mit Hilfe des unvollständigen (physikalischen) Modells kein Aufschwung des Ge-
samtmodells realisiert werden konnte. Auch eine zusätzliche Regelung war nicht in der
Lage, das System entlang der vorgeschlagenen Aufschwungtrajektorie zu stabilisieren
und führte in allen Untersuchungen zur Instabilität. Dieser Ausgangspunkt entspricht der
Initialisierung der hybriden Optimalsteuerung bzw. Zeile 1 in Algorithmus 5. Um den Mo-
dellfehler zu korrigieren und den Aufschwung zu realisieren, waren insgesamt lediglich
zwei Lerniterationen bzw. weitere fiktive Experimente am Gesamtmodell erforderlich.

Weiterführend werden die Ergebnisse am Doppelpendelprüfstand erläutert. Im Vergleich
zum Lernen am Simulationsmodell, ist am Prüfstand ein schwierigerer Inbetriebnahme-
prozess zu erwarten, denn es muss von anderweitigen Modellierungsfehlern und Störungen
ausgegangen werden. In der Simulation fand bspw. keine Berücksichtigung von Rausch-
prozessen durch die Sensorik statt. Diese ist nicht nur in Hinblick auf die Messdaten
negativ zu bewerten, sondern auch in Bezug auf die Regelung, denn diese setzt einen
vollständig bekannten Zustandsvektor voraus. Am Prüfstand werden allerdings nur die
Positionen durch verschiedene Sensoren erfasst, sodass die Geschwindigkeiten durch Fini-
te-Differenzen-Berechnungen approximiert werden müssen. Das vorhandene Messrau-
schen wird dabei verstärkt. Eine bessere Abschätzung stellt die Verwendung eines Beob-
achters dar, welcher dem Rauschprozess entgegenwirkt und ihn unterdrückt. Allerdings
ergibt sich durch den Einsatz eines Beobachters eine weitere Fehlerquelle, welche im
Zusammenhang mit der Regelung und dem hybriden Modell gegebenenfalls schwierig zu
analysieren ist. Um diese Fehlerquelle auszuschließen, wurde die Approximation über die
Finite-Differenzen-Methode beibehalten. Ein weiterer Grund ist, dass die Gauß-Prozess-
Regression bereits durch ihre Herleitung eine natürliche Handhabung von Messrauschen
in Form des zugehörigen Hyperparameters σ2

n vornimmt. Das Messrauschen ist, unter der
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Bild 4-8: Ergebnisse der Initialisierung der erweiterten hybriden Optimalsteuerung am
Doppelpendel auf einem Wagen. Die probabilistische Prädiktion ist in Blau und
die Prüfstandsmessung in Rot dargestellt.

Voraussetzung einer ausreichend großen Datenmenge, damit als unproblematisch zu be-
werten. Des Weiteren soll der hier entwickelte Ansatz mit dem PILCO-Verfahren und des-
sen Ergebnissen am Prüfstand verglichen werden (s. Abschnitt 4.3). Dabei wurde eben-
falls auf den Einsatz eines Beobachters verzichtet, sodass ein fairer Vergleich unter den
gleichen Voraussetzungen stattfinden kann.

Bild 4-8 zeigt die zeitlichen Verläufe der initialen Erprobung. Die blauen Verläufe re-
präsentieren die Zustandsprädiktion, welche alleine auf der Basis des physikalischen Mo-
dells berechnet wurde. Die mittlere durchgezogene Linie steht für den Erwartungswert,
wohingegen die helleren Flächen die zweifache Standardabweichung repräsentieren. Die
roten Verläufe zeigen in diesem Zusammenhang die Messung am Prüfstand, wobei die
gleiche Steuerung der Prädiktion eingesetzt wird. Neben den sechs Zustandsgrößen, ist
der Stellgrößenverlauf (unten, links) und der Modellfehler bzgl. der beiden Winkelge-
schwindigkeiten (unten, mittig und rechts) zu sehen. Die schwarz-gestrichelten Linien
stehen für die technischen Beschränkungen (4-38) und müssen während des Aufschwung-
manövers unbedingt eingehalten werden. Da bei der initialen Berechnung noch keine
Messdaten vorliegen und damit auch kein GP, ist die einzige Unsicherheit die des An-
fangszustands (mI ,SI). Aus diesem Grund nimmt die Zustandsvarianz durch die Zu-
standspropagation mit der Zeit zu. Insbesondere zum Ende der Trajektorie, nimmt die
Unsicherheit stark zu, denn die instabile obere Ruhelage sorgt für das Auseinanderdrif-
ten der möglichen Systemzustände. Da das physikalische Modell noch keinen probabi-
listischen Anteil über die beinhaltenden Fehler enthält, ist die Prädiktion insgesamt zu
optimistisch. Dies drückt sich in der relativ niedrigen Zustandsvarianz bis etwa 1.5 s
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Bild 4-9: Ergebnisse der 1. Lerniteration der erweiterten hybriden Optimalsteuerung am
Doppelpendel auf einem Wagen. Die Prädiktion des offenen Regelkreises ist in
Blau, die des geschlossenen in Türkis und die Prüfstandsmessung in Rot darge-
stellt. Zudem ist die Vorhersage des Modellfehlers in Grau abgebildet.

aus. Die zeitlichen Verläufe, welche dem Wagen zugeordnet sind, weisen in diesem Zu-
sammenhang, wie erläutert, einen eindeutig definierten Ablauf auf. Ihre deterministische
Prädiktion stimmt nahezu ideal mit der Messung überein und kann daher vor dem Ex-
periment gut durch den Ingenieur eingeschätzt werden. Bei den Winkeln zeichnet sich
hingegen ein anderes Bild ab, wobei die Prädiktion bereits nach wenigen Zeitschritten
ihre Gültigkeit verliert und das reale Systemverhalten relativ unvorhergesehen erscheint.
Anhand der zeitlichen Verläufe der gemessenen Modellfehler wird ersichtlich, dass die
ersten 0.5 s nur durch geringe Abweichungen geprägt sind. Innerhalb dieser Zeitspanne
werden die Pendelarme aus der ruhenden Position durch den Wagen in Bewegung ver-
setzt. Aufgrund der quadratischen Abhängigkeit der Zentrifugalkräfte von den Winkelge-
schwindigkeiten nehmen die Fehler nach etwa 1 s rasch zu und wechseln gleichermaßen
schnell ihre Richtung angesichts der trigonometrischen Terme in (4-37). Basierend auf
diesen ersten Prüfstandsmessungen wird die 1. Iteration von Algorithmus 5 ausgeführt
und der datengetriebene GP-Modellteil zur Fehlerkompensation aufgestellt.

Das Ergebnis der 1. Lerniteration ist in Bild 4-9 zu sehen. Neben den schon bespro-
chenen Verläufen, treten nach der Initialisierung zwei weitere Verläufe hinzu. Zum einen
wird in der 1. Iteration die zeitvariante Riccati-Regelung berechnet, woraus sich über eine
nachträgliche Simulation des geschlossenen Regelkreises eine weitere Zustandsprädiktion
(türkisfarbene Gebiete) ergibt. Anhand der Winkelverläufe wird hierbei besonders deut-
lich, dass der Eingriff der Regelung im Vergleich zur reinen Steuerung eine Reduzierung
der Zustandsvarianz bewirkt. Insgesamt betrachtet, sinkt zwar die Varianz in Bezug auf
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die Winkel, jedoch wird durch die Regelung eine zusätzliche Unsicherheit in die Stell-
größe und die Wagendynamik induziert. Des Weiteren sind in den Diagrammen bzgl. der
Modellfehler zwei neue graue Gebiete hinzugekommen, welche die Vorhersage des ge-
lernten GP-Modells über den Fehler widerspiegeln. Die Vorhersage wird im Anschluss
an das Experiment auf der Basis der neu aufgenommenen Daten berechnet. Im Allge-
meinen sind die neuen Daten nicht Teil der bestehenden Datenlage und damit für den
momentan bekannten GP als unbekannt einzustufen. Die Auswertung des GPs an den
Stellen der neuen Daten liefert somit eine Prädiktion über die noch ungesehenen Daten
und entspricht damit in den überwiegenden Fällen einer Extrapolation. Diese Prädiktion
wird mit den neuen Messdaten verglichen, um einen Eindruck über die Qualität des da-
tengetriebenen Modellteils bzgl. der Modellfehler zu erhalten. Obwohl die Prädiktion des
geschlossenen Regelkreises als stabil zu werten ist, wurde sich zunächst dafür entschie-
den, die Regelung am Prüfstand nicht zu verwenden und weiterhin nur die reine Steue-
rung auszuprobieren. Eine Begründung hierfür ist, dass die Menge an Daten noch relativ
gering ist und dementsprechend dem datengetriebenen Teil noch nicht zu viel Vertrauen
entgegengebracht werden sollte. Das Verfahren befindet sich noch in einer explorativen
Phase, in welcher ein frühzeitig instabiles Verhalten am Prüfstand hinderlich wäre. Ein
Indiz hierfür liefert zudem die Prädiktion in Bezug auf die Wagenposition y. Am Ende
der Trajektorie ist die zugehörige Varianz relativ groß, sodass nicht sichergestellt ist, dass
die Wagenbeschränkungen eingehalten wird. Ein verfälschter Eindruck kann zudem auf
die Approximation mittels UT zurückgeführt werden. Um ein genaueres Bild zu bekom-
men, wurde nachträglich eine komplexere MC-Simulation des geschlossenen Regelkrei-
ses nach dem Vorgehen in 2.3.3 durchgeführt. Die Ergebnisse wurden dem Anhang unter
A3 hinzugefügt und zeigen im Gegensatz zur UT ein instabiles Systemverhalten.

Bei der Erprobung der Steuerung am Prüfstand wurden die roten Verläufe aufgezeich-
net. Im direkten Vergleich zu Bild 4-8 bzw. dem initialen Experiment zeigt sich, dass die
Prädiktion deutlich länger mit dem realen Bewegungsverhalten übereinstimmt. Der Pfad
der Prädiktion wird erst beim Erreichen eines kritischen Punktes innerhalb der Trajektorie
verlassen. Dieser Punkt befindet sich bei etwa 1.25 s, wobei die Winkelgeschwindigkeiten
ihr kurzzeitiges Maximum anstreben. Erwartungsgemäß reagiert das chaotische System
besonders stark an dieser Stelle auf kleinste Modellfehler, die beim modellbasierten Ent-
wurf nicht berücksichtigt wurden, sodass das weitere Verhalten in Anbetracht der probabi-
listischen Prädiktion als relativ unwahrscheinlich erscheint. Abseits des anspruchsvollen
Systems wurden im Rahmen der Gauß-Prozess-Regression und der Zustandspropagation
verschiedenartige Annahmen getroffen, die bei der Inbetriebnahme gegeneinander ab-
gewägt werden müssen. Zum einen spielt die Bestimmung der GP-Hyperparameter hier-
bei eine wichtige Rolle, welche aufgrund der geringen Datenlage als nicht perfekt anzu-
sehen ist. Eine entsprechende korrekte Einstufung der Unsicherheit über die Systemdyna-
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Bild 4-10: Ergebnisse der 3. Lerniteration der erweiterten hybriden Optimalsteuerung am
Doppelpendel auf einem Wagen. Die Prädiktion des offenen Regelkreises ist
in Blau, die des geschlossenen in Türkis und die Prüfstandsmessung in Rot
dargestellt. Zudem ist die Vorhersage des Modellfehlers in Grau abgebildet.

mik ist damit innerhalb der ersten Iteration des Verfahrens in Frage gestellt. Zum anderen
basiert die Zustandspropagation auf der UT und stellt damit lediglich eine Approximation
an die wahre zugrundeliegende Zustandsverteilung dar. Die Approximationsfehler eines
jeden Zeitschritts summieren sich entsprechend auf und verfälschen somit das Ergebnis
zum Ende der Trajektorie. Dies sind die Gründe dafür, dass sich das reale System nicht auf
den wahrscheinlichsten Trajektorien, welche durch das hybride Modell berechnet wurden,
aufgehalten hat. Vor diesem Hintergrund bieten jedoch die Diagramme bzgl. der Modell-
fehler tiefere Einblicke. Nur anhand der Daten aus dem initialen Experiment ist der GP
bereits sehr gut in der Lage den Modellfehler aus dem nächsten Experiment wiederzu-
geben. Bis auf wenige Ausnahmen stimmt der Mittelwert mit den Messungen überein.
Die hohe Varianz nach etwa 1.6 s deutet jedoch an, dass gewisse Bereiche innerhalb des
Zustandsraums noch unbekannt sind. Weiterführend werden die neuen Messdaten dafür
genutzt, um die Prädiktionsgenauigkeit des GP weiter zu steigern, woraufhin die nächste
Lerniteration angestoßen wird.

Die Ergebnisse der 2. sind ähnlich zu denen der 1. Iteration, sodass sie keine neuen Er-
kenntnisse beinhalten und übersprungen werden. Eine merkliche Veränderung ist erst in
der 3. Iteration zu beobachten, welche in Bild 4-10 dargestellt ist. Eindeutig zu erkennen
ist, dass die Zustandspropagation des geschlossenen Regelkreises bei etwa 1.6 s instabil
wird, in dem die Zustandsvarianz sprunghaft stark zunimmt. Zu diesem Zeitpunkt befin-
det sich das System wiederum an der kritischen Stelle des Aufschwungmanövers mit den
hohen Winkelgeschwindigkeiten. Aus dieser Perspektive betrachtet, ist die Instabilität da-



148 4 Hybride Optimalsteuerung dynamischer Systeme

her nachvollziehbar und plausibel. Aufgrund der höheren Datenmenge ist das GP-Modell
in der Lage, die Unsicherheit über die fehlenden Zentrifugalkräfte qualitativ besser aus-
zudrücken, woraus die instabile Vorhersage resultiert. Hier sei nochmals darauf hinge-
wiesen, dass der Riccati-Regler aufgrund seiner Herleitung bzgl. des hybriden Modells
entlang der Trajektorie theoretisch stabil sein sollte. Bei dem herkömmlichen determinis-
tischen Entwurf würde der Regelungstechniker also fälschlicherweise von einem stabilen
Systemverhalten ausgehen. Die probabilistisch berechnete Instabilität kann daher nur das
Resultat eines nicht vollständig bekannten realen Systems sein und ist für den Entwurfs-
ingenieur ein wichtiges Hilfsmittel, um das Verhalten am Prüfstand vor dem Experiment
besser einschätzen zu können. Dabei gibt die Simulation nicht nur Aufschluss darüber, ob
das reale System instabil wird, sondern auch, zu welchem Zeitpunkt höchstwahrscheinlich
mit einer Instabilität gerechnet werden kann. Tatsächlich hat sich bei verschiedenen se-
paraten Experimenten gezeigt, dass die erwähnte kritische Stelle der Trajektorie dafür
verantwortlich ist, dass es zu einem Fehlversuch am Prüfstand kommt. Auf der Basis der
Prädiktionen bzgl. des offenen und geschlossenen Regelkreises hat der Ingenieur nun die
Möglichkeit weiterhin nur die Optimalsteuerung zu testen oder zusätzlich die Regelung
bis zum Zeitpunkt t = 1.6 s dazuzuschalten und das Aufschwungmanöver dort vorzeitig
zu beenden und ggf. ein anschließendes sicheres Abschwungmanöver in die untere sta-
bile Ruhelage einzuleiten. Die Stabilität des Abschwungmanövers müsste entsprechend
separat überprüft werden und kann unter Umständen zu weiterführenden Problemstellun-
gen führen. Des Weiteren herrscht bereits eine gewisse Sicherheit über die Trajektorie vor
t = 1.6 s, sodass der Informationsgewinn aus den zugehörigen Daten eher gering wäre.
Zwar könnten nach diesem Vorgehen informationsreiche Daten im Bereich der kritischen
Stelle gesammelt werden, jedoch erscheint es für die Praxis sinnvoll, einen gewissen Si-
cherheitszeitraum, z. B. von 0.1 s, einzuführen, sodass genügend Abstand zur Instabilität
besteht. Das Dilemma ist in diesem Zusammenhang, dass die wertvollsten Daten gera-
de innerhalb des Sicherheitszeitraums aufgenommen werden und das System somit nicht
in die Nähe des informationsreichen Gebiets kommt. Schlussendlich ist hier das Exper-
tenwissen des Regelungstechnikers entscheidend, sodass eine Abwägung immer vor dem
Hintergrund des betrachteten Systems getroffen werden sollte. Aufgrund der hohen Emp-
findlichkeit des Doppelpendels und der noch vergleichsweise geringen Datenlage wurde
in dieser Iteration entschieden, das System weiterhin nur mit einer reinen Steuerung zu
betreiben. Ein weiterer Grund hierfür war, dass bei der Verwendung der Steuerung die
vollen 2 s für die Zustandsmessung zur Verfügung stehen und damit innerhalb der Lern-
iteration mehr Daten aufgenommen werden. Die Auswertung der gemessenen Verläufe
zeigt, dass das hybride Modell weiterhin keine vollständige Korrektur der Zentrifugal-
kräfte enthält. Sowohl der Mittelwert, als auch die hohe Standardabweichung der beiden
Modellfehlerverläufe ist hierfür ein deutliches Indiz. Im direkten Vergleich zur 1. Iterati-
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Bild 4-11: Ergebnisse der 5. bzw. letzten Lerniteration der erweiterten hybriden Op-
timalsteuerung am Doppelpendel auf einem Wagen. Die Prädiktion des of-
fenen Regelkreises ist in Blau, die des geschlossenen in Türkis und die
Prüfstandsmessung in Rot dargestellt. Zudem ist die Vorhersage des Modell-
fehlers in Grau abgebildet.

on sind die neu aufgenommenen Daten damit jedoch als wertvoller anzusehen und tragen
dazu bei, die Vorhersagequalität in Hinblick auf die nächste Iteration zu erhöhen.

Die Ergebnisse in der 4. ähneln jenen aus der 1. Iteration. Ein deutlicher Unterschied
ist bezüglich der kritischen Stelle zu nennen. Am Prüfstand wird diese Stelle das erste
Mal erfolgreich überwunden und stimmt mit der Vorhersage überein, obwohl das Sys-
tem nur gesteuert wurde. Im näheren Vergleich zur Aufschwungtrajektorie aus der 3. Ite-
ration fällt auf, dass sich die Bewegungen voneinander unterscheiden, wenn auch nur
geringfügig. Die 3. Iteration kann somit der Exploration des Zustandsraums zugeordnet
werden, wobei sich das Verfahren im Sinne eines lernfähigen Algorithmus eigenständig
dafür entschieden hat, das ursprüngliche Aufschwungmanöver aus der 1. Iteration weiter
zu fokussieren. Bild 4-11 zeigt die Ergebnisse der 5. und damit letzten Iteration des Ver-
fahrens. In dieser Iteration wurde die Regelungsaufgabe erfüllt, in dem das Aufschwung-
manöver in die obere Ruhelage am Prüfstand realisiert worden ist und der Zielzustand
durch die Regelung über den Zeitpunkt von 2 s hinaus stabil eingehalten wurde. Die Zu-
standsprädiktion des geschlossenen Regelkreises ist durch ein schmales Varianzband um
die geforderte Soll-Trajektorie gekennzeichnet. Dies zeigt auch eine komplexere MC-
Simulation, welche dem Anhang A3 hinzugefügt wurde. Dementsprechend wurde das
Risiko für eine Instabilität am Prüfstand als gering eingestuft. Um ein automatisiertes Vor-
gehen umzusetzen, wurde a-priori ein gewisser Grenzwert für die Varianz aller Zustände
eingeführt, welcher bei einer Unterschreitung auf die mögliche Verwendung der Rege-
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lung am Prüfstand hinweist. Bei den anderen Iterationen wurde dieser Grenzwert noch
nicht unterschritten. Ausschlaggebend ist hier vor allem die Varianz der Wagenposition,
welche nur innerhalb der 5. Iteration gering ist und einen gewissen Sicherheitsabstand zu
den Enden der Strecke aufweist. Anhand des Stellgrößenverlaufs ist ersichtlich, dass ein
Großteil des Aufschwungs auf die Steuerung zurückzuführen ist und die Regelung nur
eine geringfügige aber wirksame Korrektur vornimmt. Infolgedessen kann geschlussfol-
gert werden, dass das hybride Modell im Rahmen des Optimalsteuerungsproblems einen
qualitativ hochwertigen Ersatz für den Prüfstand darstellt. Dies zeigt sich zudem in den
Verläufen der Modellfehler, welche nach dem Experiment durch das GP-Modell nahe-
zu ideal wiedergegeben werden und eine vernachlässigbar kleine Standardabweichung
beinhalten. Unter anderem die Zentrifugalkräfte sind damit durch die Messdaten vom GP
zufriedenstellend abgebildet worden. Abschließend ist die Inbetriebnahme am Doppel-
pendel auf einem Wagen damit als erfolgreich abgeschlossen zu betrachten.

Fazit zu der Validierung am Doppelpendelprüfstand und kritische Analyse
Die hybride Optimalsteuerung mit dem erweiterten Regelungsentwurf stellt ein hilfrei-
ches Werkzeug für die Inbetriebnahme von anspruchsvollen Systemen dar, welche eine
exakte mathematische Beschreibung der Dynamik benötigen. Das Doppelpendel auf ei-
nem Wagen ist in diesem Zusammenhang gesondert hervorzuheben, denn es zeichnet sich
durch ein empfindliches chaotisches Bewegungsverhalten aus, wodurch eine realistische
Prädiktion nur auf der Basis eines genauen Modells berechnet werden kann. Kleinste Feh-
ler innerhalb der zugrundeliegenden Gleichungen haben dementsprechend einen großen
Effekt auf den Prozess der Inbetriebnahme und sind daher entscheidend für den Erfolg
und Misserfolg des regelungstechnischen Entwurfs. Die entwickelte hybride Optimal-
steuerung setzt bei dieser Problemstellung an und zeichnet sich durch eine hohe Relevanz
für die Praxis aus. Die Validierung am Doppelpendel hat gezeigt, dass die Einführung ei-
ner wahrscheinlichkeitsbasierten Sichtweise die Inbetriebnahme für den Ingenieur besser
einschätzbar macht. Hierzu ist insbesondere der neu eingeführte Begriff der probabilis-
tischen Stabilität zu nennen, der den herkömmlichen Stabilitätsbegriff in Bezug auf ein
funktionierendes Regelungskonzept erweitert und einen direkten Bezug zum realen Sys-
tem herstellt. Über die Zustandsvarianz lässt sich das Verhalten am Prüfstand a-priori
deutlich besser abschätzen, sodass entsprechende Sicherheitsmaßnahmen vor dem Expe-
riment vorgenommen werden können. Ein weiterer Vorteil ist die Einbeziehung von Vor-
wissen in Form einer partiell bekannten Dynamik und einer nachvollziehbaren bzw. inter-
pretierbaren Regelungsstruktur. Bei dem rein datengetriebenen PILCO-Verfahren wurden
hierfür keine Schnittstellen vorgesehen, wohingegen die erweiterte hybride Optimalsteue-
rung solche Schnittstellen besitzt. Im Endergebnis wurden mit PILCO dementsprechend
weitaus mehr Iterationen für den erfolgreichen Aufschwung benötigt. Insgesamt ergibt
sich durch die Einbringung des Vorwissens damit eine Einsparung von knapp über 80%
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bzgl. der erforderlichen Experimente am Prüfstand. Dies verdeutlicht bereits die enor-
me Effizienzsteigerung, welche durch die hybride Optimalsteuerung erzielt werden kann.
Ein besonderes Potenzial wird hier vor allem bei Systemen gesehen, für welche die Aus-
wertung eines Experiments aufwendiger und kostenintensiver ausfällt. Abseits der Zeit
für ein Experiment, ist auch die Zeit für die Berechnung des nächsten Experiments zu
beurteilen. Da hierzu keine Echtzeitanforderungen eingehalten werden müssen bzw. die
Berechnungen offline durchgeführt werden, ist die benötigte Zeit nur ein sekundäres Kri-
terium. Nichtsdestotrotz wurde bei PILCO für eine Iteration in etwa eine Berechnungs-
zeit von 2 Stunden benötigt, welche ein Resultat des angesetzten hoch parametrisierten
GP-Reglers ist und auf die Tatsache zurückzuführen ist, dass keine Kenntnis über eine
Regelungsstruktur vorgegeben wurde. Eine vergleichbare Iteration der erweiterten hybri-
den Optimalsteuerung dauerte lediglich 10 Minuten, wobei diese Zeitangabe nicht nur
die Lösung des Optimierungsproblems umfasst, sondern auch die Zustandspropagation
des geschlossenen Regelkreises. In dieser Metrik liegt der Zeitgewinn bei etwa 98% und
ist damit besonders bzgl. der Einsparung von Ressourcen hervorzuheben.

Ein Kritikpunkt des entwickelten Verfahrens ist in Bezug auf die Skalierbarkeit auf größere
Datenmengen, welche unter Umständen für Systeme mit vielen Zustands- und Stell-
größendimensionen erforderlich sind, zu nennen. Das Training eines GPs, also die Be-
stimmung der Hyperparameter, benötigt die Invertierung der Datenmatrix K(η) ∈ Rnd×nd

(vgl. (3-5)), wobei nd die Anzahl der Daten ist, in jedem Optimierungsschritt. Die Be-
rechnungskomplexität des Trainings beträgt damit O(n3

d). Des Weiteren skaliert eine an-
schließende Auswertung der GP-Posterior-Gleichungen (4-17) mit O(n2

d). Eine prakti-
sche Anwendbarkeit für große Datenmengen ist damit in Frage gestellt. Eine anwen-
dungsorientierte Lösungsmöglichkeit besteht darin, die Datenmenge durch Clustering-
Methoden geeignet zu reduzieren und damit einen Genauigkeitsverlust zu akzeptieren,
wobei jedoch das grundsätzliche Problem der schlechten Skalierbarkeit bestehen bleibt.
Vor diesem Hintergrund ist ein besserer Lösungsweg ein probabilistisches ML-Verfahren
mit besseren Skalierungseigenschaften zu verwenden. Im Ausblick dieser Arbeit (Kap.
6) werden hierzu diverse Kandidaten genannt. Unter der Voraussetzung einer normal-
verteilten Prädiktion eines anderen ML-Verfahrens für den datengetriebenen Modellteil
behalten die Gleichungen der hybriden Optimalsteuerung ihre Gültigkeit. Zudem bleibt
das grundsätzliche Vorgehen in Bezug auf Algorithmus 5 unverändert und die bei der In-
betriebnahme besprochenen Zusammenhänge bleiben bestehen. Ein weiterer Kritikpunkt
betrifft Systeme, die abrupte Änderungen ihrer Dynamik aufweisen, wie sie beispielswei-
se bei Systemen mit Haftreibung oder hartem Kontakt beobachtet werden können. Ohne
eine entsprechende Anpassung der Gauß-Prozess-Regression kann es bei diesen Syste-
men zu einem Versagen des Verfahrens kommen. Eine beispielhafte Darstellung dieser
Problematik wurde im Grundlagenkapitel unter Abschnitt 2.5.1 erläutert, wobei die hohen
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Glattheitsanforderungen der SE-Kovarianzfunktion zu einer fehlerhaften Abbildung der
gesuchten Sprungfunktion geführt haben. Dementsprechend ist in diesem Fall eine An-
passung der Kernelfunktion (z. B. stückweise) aufgrund des Expertenwissens des Rege-
lungstechnikers notwendig. Im Gegensatz zu vergleichbaren Veröffentlichungen (s. Stand
der Forschung) sind durch die Verwendung der UT für die Zustandspropagation beliebige
Kernelfunktion einsetzbar, womit die hybride Optimalsteuerung auch für die angespro-
chene Systemklasse anwendbar bleibt. Eine Voraussetzung ist jedoch, dass anstelle des
SQP-Verfahrens, welches auf kontinuierlichen Funktionen basiert, ein Solver aus dem
Bereich der nicht glatten Optimierung [GK02] zur Lösung eingesetzt wird.
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5 Hybride Zustandslinearisierung für mechanische
Mehrkörpersysteme

Der Regelungsentwurf nach dem Verfahren der Zustandslinearisierung ist ein gängiger
regelungstechnischer Ansatz, welcher nur unter besonderen Voraussetzungen angewen-
det werden kann [Ada14]. Die Methode zielt darauf ab, ein nichtlineares System durch
eine geeignete Wahl der Stellgröße, als ein lineares System zu behandeln. Hierbei werden
die vorhandenen Nichtlinearitäten im Idealfall vollständig kompensiert - eine Linearisie-
rung durch eine Taylorreihenentwicklung findet dabei nicht statt, sodass das System im
gesamten Zustandsraum als linear betrachtet werden darf. Dies hat den großen Vorteil,
dass die Methoden der linearen Regelungstechnik zum Entwurf und Analyse angewandt
werden dürfen und entsprechend ein linearer Zustandsregler zur Stabilisierung und Soll-
wertfolge ausreichend ist. Damit die Methodik anwendbar ist, muss die Voraussetzung
gelten, dass es sich um ein eingangsaffines System handelt, d. h. dass die Stellgröße li-
near in die Systemgleichungen eingeht. Diese Voraussetzung ist für viele technische Sys-
teme erfüllt, da physikalische Gesetzmäßigkeiten häufig auf einem solchen Zusammen-
hang beruhen. Um die Kompensation der Nichtlinearitäten zu erreichen, ist die passende
Wahl der Stellgröße am realen System erforderlich. Die Stellgröße hängt hierbei von be-
stimmten Modelltermen ab, welche die Nichtlinearitäten des realen Systems genau genug
wiedergeben müssen. Entsprechend der Grundidee, werden die Terme über die Stellgröße
dem realen System so aufgeschaltet, sodass sie invers zur realen Systemdynamik wirken
und sich bei einer gesamtheitlichen Betrachtung möglichst ideal kompensieren. Weist das
Modell dahingehend Ungenauigkeiten auf, so wirken sich diese über das aufgestellte Re-
gelgesetz direkt auf die Regelgüte aus. Unter Umständen werden durch das ungenaue
Modell zusätzliche unerwünschte Nichtlinearitäten eingebracht, welche negative Effekte,
wie Grenzzyklen oder Instabilitäten, nach sich ziehen können. Das Ziel dieses Kapitels
ist, eine hybride Zustandslinearisierung zu entwickeln, welche die angesprochenen Un-
genauigkeiten auf der Basis von Messdaten und der Gauß-Prozess-Regression korrigiert.
In diesem Szenario ist ein teilweise unvollständiges physikalisches Modell zulässig, auf
dessen Grundlage eine ideale Kompensation nicht funktioniert. Der Fokus dieses Kapi-
tels liegt auf mechanischen Systemen, da diese die Forderung nach einer linear wirkenden
Stellgröße erfüllen und eine breite Klasse innerhalb der Mechatronik darstellen. Des Wei-
teren wird die hybride Zustandslinearisierung anhand eines Hexapoden beispielhaft er-
probt. Zur besseren Einordnung und Übersicht wird die klassische Zustandslinearisierung
im nächsten Abschnitt zunächst mathematisch näher formalisiert.
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5.1 Klassischer Regelungsentwurf durch
Zustandslinearisierung

Um das Grundprinzip nachvollziehen zu können, ist die Betrachtung eines eindimensio-
nalen Systems mit dem Zustand x(t) ∈ R und der Stellgröße u(t) ∈ R zunächst aus-
reichend. In den nachfolgenden Abschnitten erfolgt die Verallgemeinerung auf mehrdi-
mensionale Systeme. Das betrachtete eingangsaffine System in zeitkontinuierlicher Form
lautet

ẋ = α(x) + β(x) u, (5-1)

worin α(x) und β(x) die erwähnten separierten Nichtlinearitäten darstellen, welche le-
diglich von der Zustandsgröße abhängen. Der Grundidee folgend, wird das Regelungsge-
setz

uR(x,w) =
1

β̂(x)
(−α̂(x) +K(w − x)),

so angesetzt, dass sich die Nichtlinearitäten des realen Systems (α(x), β(x)) und der Stell-
größe (α̂(x), β̂(x)) bzw. des Modells gegenseitig aufheben. Bei einer Gleichsetzung von
u = uR(w, x) ergibt sich somit für das geregelte Gesamtsystem eine Dynamik von

ẋ = α(x)− β(x)

β̂(x)
α̂(x) +

β(x)

β̂(x)
K(w − x), (5-2)

wobei unter der Voraussetzung eines genauen Modells α̂(x)→ α(x) und β(x)/β̂(x) = 1

gelten würde, was dem Idealfall einer vollständigen Kompensation entspricht. Für die
nachgelagerte Regelung wurde beispielhaft ein linearer Regler mit der Verstärkung K und
dem Sollwert w angesetzt. Dieser bleibt nach der Konstruktion des Verfahrens innerhalb
der Differentialgleichung bestehen und sorgt für die Stabilisierung bzw. Sollwerteinhal-
tung. Anhand von (5-2) wird zudem ersichtlich, dass selbst kleinste Ungenauigkeiten des
Modells dazu führen können, dass eine Kompensation nicht vollständig stattfindet und
unter Umständen unerwünschte nichtlineare Effekte in das Gesamtsystem eingebracht
werden. Im Nachfolgenden soll davon ausgegangen werden, dass eben solche Ungenauig-
keiten vorhanden sind, sodass der Einsatz der hybriden Zustandslinearisierung motiviert
wird. Zunächst wird die hybride Zustandslinearisierung ähnlich zur hybriden Optimal-
steuerung formal entwickelt und anschließend an dem ausgewählten Anwendungsbeispiel
des Hexapoden simulativ erprobt.
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5.2 Herleitung der hybriden Zustandslinearisierung

Den Ausgangspunkt der Herleitung stellt ein klassisches mechanisches System mit dem
Positionsvektor q(t) ∈ Rnq dar, welches in seiner allgemeinen Darstellung über

M(q)q̈ +C(q̇, q)q̇ +G(q) = J(q)−Tu

⇔ q̈ = M (q)−1J(q)−T︸ ︷︷ ︸
=:β(q)

u−M (q)−1(C(q̇, q)q̇ +G(q))︸ ︷︷ ︸
=:α(q,q̇)

(5-3)

beschrieben wird. Hierin sind M (q) ∈ Rnq×nq die Massenmatrix, C(q, q̇) ∈ Rnq×nq

die Matrix der Zentrifugal- und Corioliskräfte, G(q) ∈ Rnq der Vektor der Gewichts-
kräfte und J(q) ∈ Rnq×nu die geometrische Jacobimatrix, welche die kinematische
Wirkung der Stellgrößen u ∈ Rnu auf die Beschleunigungsgrößen q̈ definiert. Anhand
der Äquivalenzumformung in (5-3) wird ersichtlich, dass das mechanische System in die
gewünschte Form für eine Zustandslinearisierung gebracht werden kann. Hierbei handelt
es sich im Vergleich zu (5-1) jedoch um den mehrdimensionalen Fall mit den Nichtli-
nearitäten α(q, q̇) : Rnq × Rnq 7→ Rnq und β(q) : Rnq 7→ Rnq×nu . Für den Übergang zur
Zustandsraumdarstellung wird der Zustandsvektor über x = [qT , q̇T ]T ∈ R2nq eingeführt,
sodass sich insgesamt

ẋ = f(x,u) =

[
q̇

α(x) + β(x)u

]
, (5-4)

ergibt, wobei zur Verallgemeinerung eine zusätzliche Abhängigkeit zwischen β und q̇

angenommen wurde (vgl. (5-3)). Die ersten nq Gleichungen repräsentieren ein Integra-
torverhalten bezüglich q und q̇. Das Regelungsgesetz wird nun entsprechend zu (5-2)
über

uR(x,w) = β(x)−1(−α(x) +K(w − x)),

beschrieben, wobei für den Fall von nq ̸= nu bzw. eines nicht voll-aktuierten Systems
die Pseudoinverse von β(x) benötigt wird. Eine separate Aufstellung der Differential-
gleichungen aus (5-3)

q̈1 = β1,1(q)u1 + . . .+ β1,nu(q)unu + α1(q, q̇),

...

q̈nq = βnq ,1(q)u1 + . . .+ βnq ,nu(q)unu + αnq(q, q̇),

(5-5)



156 5 Hybride Zustandslinearisierung für mechanische Mehrkörpersysteme

zeigt, dass es sich im Kontext des maschinellen Lernens um nq unabhängige Regressi-
onsprobleme bzgl. der Beschleunigungen q̈i, i = 1, . . . , nq handelt. Dabei gilt es, die ein-
zelnen Funktionen αi, βi,j, i = 1, . . . , nq, j = 1, . . . , nu bzw. deren Abweichung zu den
bereits bekannten Funktionen des bestehenden physikalischen Modells zu identifizieren.
Eine Herausforderung bei der Lösung der Regressionsprobleme (5-5) wird bei der Be-
trachtung der zugehörigen Messdaten (ẋ,x,u), welche am realen System aufgezeichnet
werden, ersichtlich. Basierend auf den Messdaten sollen die einzelnen nichtlinearen Funk-
tionen αi(x), βi,j(x) identifiziert werden, wobei jedoch unklar ist wie sich die Beschleu-
nigungen q̈i geeignet zerlegen lassen. Die gesuchten Funktionen αi(x), βi,j(x) können
nicht ohne Weiteres direkt gemessen werden, sondern sind additiv im Messsignal von q̈

enthalten und müssen entsprechend (5-5) separiert werden.

Die Autoren aus [UBKH17; UH20] stellen hierzu ein Konzept auf der Basis der Gauß-
Prozess-Regression vor. Hierfür nutzen sie zwei verschiedene Eigenschaften von GPs aus.
Zum einen führt die Summe von mehreren GPs wiederum auf einen GP und zum anderen
führt das Produkt eines GPs mit einer bekannten Funktion gleichermaßen auf einen GP.
In diesem Zusammenhang werden für den eindimensionalen Fall (vgl. (5-1)) für α und β

zwei separate GPs angesetzt, welche über die erwähnten Eigenschaften miteinander ver-
bunden werden können und über die eine Aufspaltung der Messungen zugänglich wird.
Die Grundidee aus [UBKH17; UH20] wird im Rahmen dieser Arbeit aufgegriffen und im
Kontext der Themenstellung erweitert. Im nachfolgenden Abschnitt wird dazu das Kon-
zept auf den mehrdimensionalen Fall übertragen, sodass es auf das betrachtete Anwen-
dungsbeispiel angewendet werden kann. Im Gegensatz zu der rein theoretischen Arbeit
in [UBKH17; UH20] wird damit die praktische Anwendbarkeit der hybriden Zustandsli-
nearisierung hervorgehoben. Zudem werden die Mittelwertfunktionen der einzelnen GPs
nicht zu null angenommen, sondern bilden die Schnittstellen zu dem vorhanden dynami-
schen Vorwissen, welche sich aus den Überlegungen zu (5-3) berücksichtigen lässt. Damit
wird sowohl die Effizienz in Hinblick auf ein iteratives Vorgehen ähnlich zu PILCO und
der hybriden Optimalsteuerung erhöht, als auch die Extrapolationseigenschaften im Ver-
gleich zu einem rein datengetriebenen Ansatz verbessert. Des Weiteren wird in dieser
Arbeit die Auswirkung der probabilistischen GPs auf das Regelgesetz und die Stellgröße
ausformuliert. Erwartungsgemäß lassen sich so während des Betriebs des Systems mit
dem entwickelten Regelungskonzept Aussagen darüber treffen, wie zuverlässig der Reg-
ler in Bezug zu seiner Stellgröße und vor dem Hintergrund von möglicherweise vorhan-
denen Modellfehlern ist. Weiterführend lassen sich somit Handlungsanweisungen für die
Aufnahme zusätzlicher Daten ableiten und mögliche Instabilitäten, die auf die Regelung
zurückzuführen sind, frühzeitig erkennen (ähnlich zum Fall in Bild 4-10).
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Da für alle nq Differentialgleichungen in (5-5) die gleiche Gauß-Prozess-Regression an-
gesetzt wird, wird im Folgenden lediglich die i-te Gleichung mit i ≥ nq + 1 aus der
Zustandsraumdarstellung (5-4)

ẋ = β1(x)u1 + . . .+ βnu(x)unu + α(x),

betrachtet. Zur besseren Übersicht wird der Index i weggelassen. Den Ausgangspunkt des
Verfahrens bilden die nd aufgenommenen bzw. berechneten Datenpaare (ẋ,x,u), welche
mit dem standardmäßigen Ansatz für das Messrauschen ϵn ∼ N (0, σ2

n) additiv verfälscht
sind und in den nachfolgenden Matrizen und dem Ausgangsdatenvektor zusammengefasst
werden:

X = [x(1), . . . ,x(nd)] ∈ Rnx×nd ,

U j = diag(u(1)
j , . . . , u

(nd)
j ) ∈ Rnd×nd , j = 1, . . . , nu,

y = [ẋ(1) + ϵ(1)n , . . . , ẋ(nd) + ϵ(nd)
n ]T ∈ Rnd .

Der Grundidee folgend, werden die gesuchten Funktionen für die Zustandslinearisierung
als Zufallsvariablen, die von einem jeweiligen GP stammen, über

α(x) ∼ GP(mα(x), kα(x,x
′)),

βj(x) ∼ GP(mβj
(x), kβj

(x,x′)), j = 1, . . . , nu,
(5-6)

definiert. Ein möglicherweise vorhandenes Vorwissen kann hierbei über die Mittelwert-
funktionen mα(x) und mβj

(x) berücksichtigt werden. Für die Kovarianzfunktionen wird
standardmäßig der SE-Kernel angesetzt, sofern über die Gestalt der Dynamikfunktionen
keine anderweitigen Informationen vorliegen. Es wird nun ein Zustand x∗ eingeführt, an
welchem die Funktionen ausgewertet werden sollen. Zusammen mit den Ausgangsdaten,
lässt sich durch die Definition als GPs für die Prior-Verteilung folgern, dass

α(x∗)

β1(x
∗)

...
βnu(x

∗)

y


∼ N





mα(x
∗)

mβ1(x
∗)

...
mβnu

(x∗)

my


,



k∗
α 0 0 · · · kT

α

0 k∗
β1

0 · · · kT
β1
UT

1
...

... . . . · · · ...
0 0 · · · k∗

βnu
kT
βnu

UT
nu

kα U 1kβ1 · · · Unukβnu
Ky




gilt, mit k∗

(·)(x
∗) = k(·)(x

∗,x∗),k(·)(x
∗) = [k(·)(x

∗,x(1)), . . . , k(·)(x
∗,x(nd))]T ∈ Rnd

und wobei die erwähnten Regeln zur Addition und Produktbildung von GPs angewandt
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wurden. Dadurch ergeben sich insbesondere für die Ausgangsdaten der Erwartungsvektor
und die Kovarianzmatrix zu

my = mα(X) +U 1mβ1(X) + . . .+Unumβnu
(X), und

Ky = Kα +UT
1Kβ1U 1 + . . .+UT

nu
Kβ2Unu + σ2

nInd
,

mit m(·)(X) = [m(·)(x
(1)), . . . ,m(·)(x

(nd))]T ∈ Rnd und K(·) ∈ Rnd×nd mit den Ele-
menten K(·),i,j = k(·)(x

(i),x(j)), i, j = 1, . . . , nd. Es handelt sich hierbei nicht um die
Verstärkungsmatrix des Reglers. Auf der Grundlage der Prior-Verteilung werden die be-
dingten bzw. Posterior-Verteilungen nach

α(x∗) | y ∼ N (µα(x
∗), σ2

α(x
∗)),

µα(x
∗) = mα(x

∗) + kT
α(x

∗)K−1
y (y −my),

σ2
α(x

∗) = k∗
α(x

∗)− kT
α(x

∗)K−1
y kα(x

∗),

βj(x
∗) | y ∼ N (µβj

(x∗), σ2
βj
(x∗)), j = 1, . . . , nu,

µβj
(x∗) = mβj

(x∗) + kT
βj
(x∗)UT

j K
−1
y (y −my),

σ2
βj
(x∗) = k∗

βj
(x∗)− kT

βj
(x∗)UT

j K
−1
y U jkβj

(x∗),

bestimmt. Es liegt somit eine probabilistische Schätzung in Form einer eindimensiona-
len Normalverteilung für jede der gesuchten Funktionen der Zustandslinearisierung vor.
Das Training der GPs wird durch die Identifikation der Hyperparameter vorgenommen.
Beispielsweise wird für alle GPs der SE-Kernel als Kovarianzfunktion mit

kα(x,x
′;η) = σ2

α exp

(
nx∑
i=1

(xi − x′
i)
2

−2l2α,i

)
,

kβj
(x,x′;η) = σ2

βj
exp

(
nx∑
i=1

(xi − x′
i)
2

−2l2βj ,i

)
, j = 1, . . . , nu,

angesetzt. Der Hyperparametervektor umfasst dann jeden einzelnen GP aus (5-6) über

η = [lα,1, lβ1,1, . . . , lβnu ,1, . . . , lα,nx , lβ1,nx , . . . , lβnu ,nx ,

σ2
α, σ

2
β1
, . . . , σ2

βnu
, σ2

n]
T ∈ R(nx+1)(nu+1)+1

und wird standardmäßig über die Maximierung der logarithmischen Likelihoodfunkti-
on

η∗ = argmax
η

log p(y | η)

= argmax
η
−1

2
(y −my)

TK−1
y (y −my)− 1

2
log |Ky| − nd

2
log 2π
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eindeutig bestimmt (vgl. (2-33)).

Die beschriebene Methode wird für alle nq Differentialgleichungen (5-5) gleichermaßen
durchgeführt, sodass eine Zusammenführung aller Posterior-Mittelwerte kurz über

µα(x) =


µα1(x)

...
µαnq

(x)

 ∈ Rnq µβ(x) =


µβ1,1(x) · · · µβ1,nu

(x)
... . . . ...

µβnq,1
(x) · · · µβnq,nu

(x)

 ∈ Rnq×nu ,

beschrieben wird. Diese Größen stellen, auf der Basis des Vorwissens und der Datenla-
ge, die beste Schätzung für die gesuchten Funktionen dar. Aus diesem Grund wird hin-
sichtlich der Anwendung am realen System das Regelungsgesetz über diese Schätzungen
mit

uR(x,w) = µβ(x)
−1(−µα(x) +K(w − x)) =: µu(x) (5-7)

definiert, sodass zu jedem Zeitpunkt eine eindeutige Stellgröße bekannt ist. Die Bildung
der (Pseudo-)Inversen kann unter Umständen zu Problemen bei der Berechnung der Stell-
größe führen. Im Zusammenhang mit der Gauß-Prozess-Regression wurde kein Mecha-
nismus dafür vorgesehen, dass die Matrix µβ(x) für beliebige x gut gestellt bzw. kon-
ditioniert ist. Eine mögliche Singularität kann daher nicht ausgeschlossen werden. Bei
den bisherigen Erprobungen des entwickelten Verfahrens konnten jedoch keine Proble-
me in Bezug auf das Invertieren der Matrix festgestellt werden. Ein möglicher Grund
hierfür könnte sein, dass in den überwiegenden Fällen ein bestimmtes Vorwissen über
mβ(x) berücksichtigt wurde, sodass sich im Vergleich zu einem rein datengetriebenen
Ansatz eine gute Konditionierung der Matrix tendenziell eher einstellt. Im Rahmen die-
ser Arbeit wurde abseits der experimentellen Erprobung die Konditionierung nicht weiter
untersucht, sodass die Fragestellung als Ausblick für weiterführende Forschungsarbeiten
offen bleibt.

Vor dem Hintergrund von (5-7) ist ersichtlich, dass die Varianzangabe bzgl. der einzelnen
Funktionen nicht im Regelgesetz enthalten ist und als weitere Informationsquelle bisher
nicht genutzt wird. Da es sich bei α(x) und β(x), nach der hier eingeführten Definition,
um Zufallsvariablen handelt, induzieren sie eine Unsicherheit in die Stellgröße, wodurch
diese ebenfalls als Zufallsvariable zu betrachten ist. Ähnlich zum MM-Ansatz im Be-
zug auf die Zustandsverteilung, kann eine Approximation der Stellgrößenverteilung mit
p(u) ≈ N (µu,σ

2
u) eingeführt werden. Dies ermöglicht tiefere Einsichten in den Regler,

sodass sein Verhalten besser abgeschätzt werden kann. Für die Praxis und den Betrieb des
realen Systems bedeutet dies, dass weiterhin das Regelgesetz aus (5-7) eingesetzt wird,
jedoch zur Laufzeit parallel die Varianz der Stellgröße σ2

u ausgewertet wird, ähnlich zu
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dem Verhalten eines Zustandsbeobachters. Die Varianz σ2
u bildet in diesem Zusammen-

hang die Unsicherheit des Reglers aufgrund der (noch) vorhandenen Modellfehler ab und
kann als Maß dafür benutzt werden, um einzuschätzen ob ein sicheres Systemverhalten
zu erwarten ist oder im Bereich des aktuellen Systemzustands x weitere Messdaten auf-
genommen werden sollten.

Im eindimensionalen Fall α(x), β(x) ∈ R lässt sich die Varianz, ähnlich zu (3-13),
über

σ2
u(x) =

1

µ2
β(x)

(
σ2
α(x) +

(−µα(x) +K(w − x))2σ2
β(x)

µ2
β(x)

)

abschätzen, wobei wiederum die Bedingung σβ/µβ ≤ 0.1 zu berücksichtigen ist, damit
die Approximation ihre Gültigkeit behält. Für den überwiegenden höherdimensionalen
Fall, erscheint ein MC-Ansatz als geeignet. Dabei werden ns Realisierungen der Stell-
größe u

(i)
s , i = 1, . . . , ns erzeugt, welche dem Zusammenhang

u(i)
s ∼ (µβ(x) + σβ(x) ◦ ϵs,β)−1(−µα(x)− σα(x) ◦ ϵs,α +K(w − x)),

folgen, wobei ◦ die elementweise Multiplikation darstellt. Des Weiteren sind die Matrizen
der Standardabweichungen

σα(x) =


σα1(x)

...
σαnq

(x)

 ∈ Rnq , σβ(x) =


σβ1,1(x) · · · σβ1,nu

(x)
... . . . ...

σβnq,1
(x) · · · σβnq,nu

(x)

 ∈ Rnq×nu ,

enthalten, sowie die Größen ϵs,α ∈ Rnq und ϵs,β ∈ Rnq×nu mit den normalverteilten
Elementen

ϵ(i)s,α, ϵ
(i,j)
s,β ∼ N (0, 1), i = 1, . . . , nq, j = 1, . . . , nu.

Nach der Generierung der Stellgrößenrealisierungen wird die zugehörige Varianz empi-
risch mittels

σ2
u ≈

1

ns

ns∑
i=1

(u(i)
s − µu)(u

(i)
s − µu)

T , (5-8)

approximiert. Analog zu den Überlegungen der hybriden Optimalsteuerung, liegen vor
der Erprobung des Regelgesetzes (5-7) am realen System über die gelernten αi(x), βi,j(x)

mit i = 1, . . . , nq, j = 1, . . . , nu nicht nur ein hybrides probabilistisches Dynamikmodell,
sondern auch ein probabilistischer Regler vor. Dementsprechend kann bereits vor der Er-
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probung eine probabilistische Langzeitprädiktion (t,µx(t),Σx(t),µu(t),σ
2
u(t)) anhand

eines gewünschten Sollwertverlaufs w(t) berechnet werden, die dem Entwurfsingenieur
die Möglichkeit eröffnet, das System tiefergehend zu untersuchen und die Auswirkungen
der möglicherweise noch vorhandenen Modellfehler besser abschätzen zu können. Zudem
kann die probabilistische Stabilität des Gesamtsystems auf der Basis der Zustandsvarianz
Σx(t) untersucht werden. Da diese Zusammenhänge bereits vor dem Hintergrund der
hybriden Optimalsteuerung mit dem erweiterten Riccati-Regelungsentwurf und den Er-
gebnissen am Doppelpendelprüfstand erläutert wurden, wird die detaillierte Aufstellung
einer Zustandspropagation nicht weitergehend vertieft. Im nächsten Abschnitt wird die
Anwendung der hybriden Zustandslinearisierung für ein praxisbezogenes System vorge-
stellt.

5.3 Konzeptionierung einer Regelung für einen Hexapod mittels
hybrider Zustandslinearisierung

Ein bedeutender Prüfstand für die Forschung an aktiven Fahrzeugachsen, der am Lehr-
stuhl für Regelungstechnik und Mechatronik der Universität Paderborn entwickelt wurde,
ist in Bild 5-1 zu sehen und kann Straßenbedingungen realitätsnah in allen sechs Freiheits-
graden nachbilden und arbeitet unter Echtzeitbedingungen4. Um dies zu erreichen, wird
unter anderem ein hochdynamisch geregelter Hexapod als Anregungseinheit eingesetzt.
Um ein vollständiges Fahrzeugverhalten in einer Hardware-in-the-Loop(HiL)-Simulation
nachzubilden, werden neben der Fahrzeugdynamik auch die Straße und die Räder auf
einem Echtzeitsystem synchron mitberechnet. Die notwendige Sensorik umfasst unter
anderem sechs Weg- und Druckaufnehmer sowie einen Winkelsensor. Zusätzlich wer-
den zwölf Ventilschieberwegsensoren und ein Kraftmessrad verwendet, um die Kräfte
und Momente zwischen Hexapod und aktiver Fahrzeugachse zu erfassen. Des Weiteren
werden sechs Steuerspannungen für die Servoventile ausgegeben. Der Hexapod selbst
gehört zur Gruppe der Parallelkinematiken [Koh20]. Anders als bei seriellen Kinemati-
ken, die man beispielsweise bei Industrierobotern findet, sind hier alle Antriebe direkt
mit dem Endeffektor verbunden. Dadurch entsteht eine komplexe, koordinierte Bewe-
gung, bei der die sechs Hydraulikzylinder gleichzeitig agieren, um den Endeffektor in
allen sechs räumlichen Freiheitsgraden zu bewegen. Der Hexapod wird durch insgesamt
sechs Hydraulikzylinder aktuiert. Jeder Zylinder ist am unteren Ende über ein Kardan-
gelenk, das mit einer Ölzufuhr ausgestattet ist, mit der Bodenplatte verbunden, während
das obere Ende über ein Kugelgelenk mit der Arbeitsplattform des Hexapoden gekoppelt
ist. Diese Struktur ermöglicht dem Prüfstand unter der Hinzunahme einer Positionsre-
gelung, vielfältige Fahrbahnbedingungen präzise nachzubilden. Das Gesamtsystem wird

4Unter https://youtu.be/cN7_Epprgeg?si=4tkjlw-TLf0OApqx ist der Betrieb gezeigt.

https://youtu.be/cN7_Epprgeg?si=4tkjlw-TLf0OApqx
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Bild 5-1: Fahrzeugachsprüfstand mit hydraulischem Hexapod (© Heinz Nixdorf Institut)

dazu eingesetzt, um aktive Fahrzeugachsen zu testen und hinsichtlich ihrer Regelgüte
bzw. Komforts für den Fahrzeuginsassen zu bewerten. Des Weiteren kann die Betriebs-
festigkeit der Achse überprüft werden. Das Regelungskonzept des Achsprüfstands kann
auf mehreren unterschiedlich hierarchischen Ebenen betrachtet werden. Bspw. wird je-
der Hydraulikzylinder durch seine eigene Kraftregelung angesteuert. Unterlagert werden
hierzu die Steuerspannungen für die Servoventile der hydraulischen Pumpen vorgegeben.
Die Sollwerte für die Kräfte der Hydraulikzylinder wird durch eine hierarchisch höhere
Positionsregelung festgelegt. Auf dieser Positionsregelung liegt der anvisierte Fokus die-
ses Unterkapitels. Sie sorgt dafür, dass das vorgegebene Straßenprofil bestmöglich nach-
gebildet wird und hat damit als Ziel, die Position der Endeffektor-Plattform einzuregeln.
Die Position ist hierbei durch die räumlichen Koordinaten und die Orientierung im Raum
definiert. Da es sich bei dem Hexapod um ein klassisches mechanisches System handelt,
wird für die Positionsregelung der beschriebene Ansatz der hybriden Zustandslinearisie-
rung (vgl. (5-3)) eingesetzt, wobei insbesondere für hochdynamische Sollwertverläufe
bzw. Fahrbahnprofile mit einem hochfrequenten Anteil ein exaktes Modell des Systems
notwendig ist, um eine hohe Regelgüte erreichen zu können. Da es sich bei dem Achs-
prüfstand um ein hoch komplexes System mit vielen Komponenten aus verschiedenen
Disziplinen handelt und damit eine Modellierung als umständlich und schwierig einzu-
stufen ist, bietet sich, auf der Grundlage des umfassenden Sensorkonzepts, der Einsatz
der hybriden Zustandslinearisierung besonders an.
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Bild 5-2: Prinzipskizze des Hexapod-Ersatzmodells nach [Koh20]. Der Schwerpunkt wird
durch S und der Tool Center Point mit T repräsentiert.

Der Beitrag der vorliegenden Arbeit ist, in diesem Zusammenhang eine erste Konzep-
tionierung für die Anwendung der hybriden Zustandslinearisierung vorzunehmen. Hierzu
wird der dreidimensionale Hexapod in ein äquivalentes zweidimensionales System sim-
plifiziert und eine entsprechende Simulationsumgebung implementiert. Das zweidimen-
sionale System ist dabei eine Abstraktion, welche die gleichen Eigenschaften wie der drei-
dimensionale Hexapod aufweist, jedoch weniger Zustandsgrößen beinhaltet. Im Rahmen
dieser Simulationsumgebung erfolgt dann die Erprobung der entwickelten Positionsrege-
lung auf der Basis der hybriden Zustandslinearisierung. Diesbezüglich wird ein Modell
als Ground Truth und Ersatz für das reale System definiert und ein weiteres verändertes
Modell zur Repräsentation des vorhandenen Vorwissens eingeführt. Bild 5-2 zeigt den
schematischen Aufbau des betrachteten Ersatzsystems. Die Herleitung der Bewegungs-
gleichungen ist dem Anhang der Arbeit [Koh20] zu entnehmen und wurde nach dem Prin-
zip von Jourdain durchgeführt. Der Positionsvektor wird über q(t) = [ry(t), rz(t), α(t)]

T

beschrieben und enthält zwei translatorische Koordinaten, sowie die Verkippung der obe-
ren Plattform. Die Stellgröße u(t) = [F

(1)
q (t), F

(2)
q (t), F

(3)
q (t)]T setzt sich aus den drei

Kräften, die an den Kolben der Hydraulikzylinder wirken, zusammen. Entsprechend der
Herleitung ergibt sich das System dann in nichtlinearer Zustandsraumdarstellung über

ẋ = fhex(x,u;p) =

[
q̇

M(q)−1(J(q)−Tu− F d(q̇)−C(q̇, q)q̇),

]

mit dem Zustandsvektor x = [qT , q̇T ]T ∈ R6 und dem linearen Dämpfungskraftvektor
F d = [dyṙy, dz ṙz, dαα̇]

T . Die Gewichtskraft wurde dabei vernachlässigt, damit keine kon-
stante Kompensation durch die Stellgröße vorgenommen werden muss, um das System
auf einer gewissen Höhe halten zu können. Insgesamt wird das System durch elf mecha-
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nische Parameter beschrieben, welche in dem Vektor p = [l1, . . . , l6,m, I, dy, dz, dα]
T

zusammengefasst werden. Darin sind l(·) geometrische Längen, m die Masse der Platt-
form, I das Trägheitsmoment um den Schwerpunkt S und d(·) die Dämpfungskonstanten
zur vereinfachten Nachbildung der Reibungseffekte. Des Weiteren wird eine realitätsnahe
Stellgrößenbeschränkung von umax = 250 Nm berücksichtigt. Im Gegensatz zu den bis-
herigen Beispielen, wird in diesem Szenario kein Modellfehler durch vernachlässigte Ter-
me angenommen, sondern in Form einer fehlerbehafteten Parametrierung p dargestellt.
Auf diese Weise sind alle Terme in einem gewissen Umfang mit einem Fehler versehen,
der durch den hybriden Ansatz ausgeglichen werden muss. Ausgehend von zwei unter-
schiedlichen Parametrierungen p1 und p2 lautet der zu lernende Modellfehler somit

∆ẋ = fhex(x,u;p1)− fhex(x,u;p2),

wobei p1 dem unbekannten Ground Truth Modell zuzuordnen ist. In Bezug auf die l1-
Norm beträgt die Abweichung ∥p1 − p2∥1 / ∥p1∥1 zwischen den Parametrisierungen un-
gefähr 15% und ist damit als relativ gering einzustufen.

Simulationsergebnisse
Nachfolgend werden die exemplarischen Simulationsergebnisse besprochen, welche die
Anwendung der hybriden Zustandslinearisierung für das zwei-dimensionale Hexapod-
Ersatzsystem darstellen. Der Hexapod befindet sich zum Start der Simulation in der An-
fangsposition q(t = 0) = [0.05 m, 0.44 m, 0]T . Die Simulationszeit beträgt T = 5 s und
die zeitliche Schrittweite ∆t = 0.02 s. Der zeitabhängige Sollwert für den Zustands-
vektor lautet w(t) = [qSoll(t), 0, 0, 0]

T , wobei für die Soll-Positionen sprungförmige
Verläufe angenommen werden. Für jedes der nachfolgenden Szenarien wird die gleiche
Verstärkungsmatrix K = [100 I3, 17 I3] ∈ R3×6 für die zugrundeliegende Zustandsre-
gelung verwendet. Des Weiteren wird zur Einhaltung der Stellgrößenbeschränkung der
ausgegebene Wert der Regelung nach oben bzw. unten hin begrenzt.

Bild 5-3 zeigt die Zustands- und Stellgrößenverläufe des Hexapod-Ersatzmodells für ver-
schiedene Szenarien. Die grünen Linien stellen den geforderten sprungförmingen Soll-
wertverlauf der Positionen dar. Eine Änderung erfolgt dabei schrittweise und nur für eine
Zustandsgröße. Aufgrund der Kopplung der Bewegungsgleichungen untereinander, wir-
ken sich Änderungen innerhalb eines Zustands jedoch auch auf die anderen Zustände aus
und können somit zu negativen Abweichungen zum Sollwert dieser Zustände führen. Der
orangefarbene gepunktete Verlauf stellt den gewünschten idealen Fall dar, in welchem
die Zustandslinearisierung anhand des Ground Truth Modells vorgenommen wird. Dieses
Szenario dient als Vergleich zu den anderen Szenarien und repräsentiert die bestmögliche
Regelgüte, die erreicht werden kann. Da die Kompensation der Nichtlinearitäten exakt ist,
werden die Sollwerte rasch eingeregelt und lediglich durch das Integratorverhalten leicht
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Bild 5-3: Dynamisches Verhalten des Hexapod-Ersatzmodells unter Verwendung ver-
schiedener Regelungskonzepte.

verzögert. Des Weiteren sorgen die präzisen Stellgrößen dieses Szenarios dafür, dass die
Kopplung der Zustände aufgehoben wird und sich eine Änderung in einem Zustand nicht
auf die anderen Zustände auswirkt. Die roten gestrichelten Linien gehören zu einer Zu-
standslinearisierung, die alleine auf der Basis des verfälschten Modells (Vorwissen), wel-
ches der Parametrierung p2 zuzuordnen ist, durchgeführt wird. Im Hinblick auf die Praxis
stellt dies den rein physikalisch basierten Modellteil dar, welche unter Umständen signifi-
kante Modellfehler enthalten kann. Die Sollwerte stellen sich für dieses Szenario zwar mit
der Zeit ein, jedoch ist die Regelgüte insgesamt als schlecht zu bewerten, da die Kompen-
sation aufgrund der abweichenden Parametrierung deutliche Mängel aufweist. Auffällig
ist insbesondere die verbleibende Wechselwirkung zwischen den Zuständen, als auch die
schlechte Sollwertfolge des Winkels α innerhalb von t ∈ [2 s, 3 s]. Trotz der Verwendung
der gleichen Verstärkungsmatrix K strebt das System hier nur sehr langsam auf seinen
Sollwert zu und weist einen zu stark gedämpften Verlauf auf. Der Grund hierfür ist, dass
für eine rasche Änderung nicht genug Energie durch die Stellgrößen bzw. die Regelung
bereitgestellt wird. Vor dem Hintergrund des eindimensionalen Falls (vgl. (5-1)), wird der
nominale Wert der Nichtlinearität β in diesem Zustandsbereich durch das Modell als zu
groß angenommen. Bezüglich (5-2) kann damit argumentiert werden, dass das Verhältnis
β(x)/β̂(x) (idealerweise 1) kleiner als 1 ist und der Reglereingriff somit insgesamt abge-
schwächt wird. Ausgehend von dem roten Szenario, ist die Zielsetzung nun die Regelgüte
zu verbessern. In der Praxis würde nun oftmals eine Verbesserung der Zustandslineari-
sierung durch eine genauere physikalische Modellierung oder ein manuelles Einstellen
der Verstärkungsfaktoren Ki,j, i = 1, . . . , nu, j = 1, . . . , nx angestrebt werden. Beide
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Bild 5-4: Dynamisches Verhalten des Hexapod-Ersatzmodells für einen veränderten Soll-
wertverlauf.

Lösungsansätze sind in der Regel mit einem hohen Zeitaufwand verbunden. Zudem löst
das manuelle Einstellen der Reglerparameter nicht das grundlegende Problem einer feh-
lerbehafteten Kompensation der Nichtlinearitäten. Eine bessere Lösung stellt die entwi-
ckelte hybride Zustandslinearisierung dar. Die fiktiven Messdaten des roten Verlaufs und
das bereits bekannte Dynamikmodell werden dabei im Rahmen des GP-Trainings aus-
genutzt. Die Ergebnisse des hybriden Ansatzes sind in blau dargestellt. Die Regelgüte
kommt sehr nah an die der idealen Referenz heran, sodass die Zustandsverläufe fast
vollständig übereinanderliegen. Geringe Abweichungen sind nur für die Höhenposition
rz(t) im Bereich um t = 2 s festzustellen. Hier macht sich die relativ große Veränderung
des Winkels weiterhin geringfügig bemerkbar. Für einen objektiven Vergleich der erreich-
ten Regelgüten, wird ein Gütekriterium über J =

∫ T

t=0
∥qSoll(t)− q(t)∥22 dt ausgewertet,

welches die zeitlich gemittelte quadratische Regelabweichung darstellt. Die Regelung des
Vorwissens kommt hierbei auf einen Wert von 0.055, wohingegen die hybride Regelung
0.031 erzielt, was einer Verbesserung von 44% entspricht. In Bezug auf die einzelnen
Stellgrößen ui, i = 1, 2, 3 wurde für den hybriden Ansatz zudem die Auswertung der
Varianz nach (5-8) vorgenommen. Um den Mittelwert der Stellgrößen wurde das 95%-
Konfidenzintervall abgebildet, jedoch ist dieses so gering, dass es kaum erkennbar ist. Die
niedrige Stellgrößenvarianz ist eine Folge dessen, dass das GP-Training anhand der Daten
durchgeführt wurde, welche im Bereich um den Sollwertverlauf liegen. Für die Praxis be-
deutet dies, dass von einer hohen Sicherheit der gelernten Regelung ausgegangen werden
kann und sich der gewünschte Sollwertverlauf trotz der fehlerbehafteten Parametrierung
des physikalischen Modellteils gut einregeln lässt.
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Im Allgemeinen sollte davon ausgegangen werden, dass sich das Regelverhalten beim
Verlassen des Bereichs, in welchem die Daten vorliegen, wieder verschlechtert. In die-
sem Zusammenhang stellt sich die Frage, wie es um die Extrapolationseigenschaften des
hybriden Reglers bestellt ist. Zur Beantwortung dieser Frage wurde eine weitere Simu-
lation durchgeführt. Im Vergleich zu 5-3 wurde der Sollwertverlauf für die horizontale
Position ry(t) geändert, in dem der Sprung im mittleren Bereich anstelle von −0.1 m

auf −0.2 m erfolgt. Der Hexapod befindet sich somit in einem Gebiet im Zustandsraum,
in welchem noch keine Daten vorliegen. Die erzielten Ergebnisse der besprochenen Re-
gelungen sind in Bild 5-4 zu sehen. Selbst die ideale Regelung kann nun für die neue
Höhe rz(t) um t = 1.8 s keine exakte Entkopplung mehr herstellen und führt hier zu
einer größeren Abweichung zum Sollwert. Der Grund hierfür ist das Erreichen der Stell-
größenbeschränkung. Die roten Verläufe und die damit verbundene inkorrekte Zustands-
linearisierung ist weiterhin als vergleichsweise schlecht zu bewerten. Demgegenüber ist
die Performance des hybriden Ansatzes deutlich besser, hat sich aber im direkten Ver-
gleich zu Bild 5-3 leicht verschlechtert. Dies entspricht der ursprünglichen Erwartung
und zeigt sich ebenfalls durch das objektive Gütekriterium. Die Regelung des Vorwissens
erreicht einen Wert von 0.078, während die hybride Regelung 0.047 realisiert, was dem
gleichen Wert der idealen Regelung entspricht. Die Verbesserung beträgt damit 40%. Eine
signifikante Veränderung ist in Bezug zu den Stellgrößen festzustellen. Hier ist die Vari-
anz der Stellgrößen im mittleren Zeitbereich deutlich erhöht und weist darauf hin, dass
sich der Regler für die jeweiligen Zustände äußerst unsicher über seine Stellgröße ist. Ein
sicheres und stabiles Regelverhalten kann daher nicht vollständig gewährleistet werden.
Bei einem herkömmlichen deterministischen Entwurf stünde diese Information nicht zur
Verfügung, sodass eine vergleichbare Bewertung der Regelung entsprechend nicht statt-
finden könnte. Aus den Zustandsverläufen, welche in diesem Fall lediglich zur Verfügung
stehen würden, könnte aufgrund der hohen Übereinstimmung mit dem Sollwert nicht ge-
schlussfolgert werden, dass eine hohe Unsicherheit bzgl. der Stellgrößen vorherrscht.
Durch die Kenntnis der Stellgrößenvarianz können bereits zur Laufzeit (online) geeig-
nete Maßnahmen ergriffen werden, um ein unerwartetes Systemverhalten zu verhindern.
Bspw. kann bei der Überschreitung eines Grenzwertes die Reglerverstärkung reduziert
werden, damit sich insgesamt eine höhere Stabilitätsreserve einstellt. Weiterführend liegt
es nahe, die Varianzangabe dafür zu nutzen, um einen weiteren Lernvorgang anzustoßen.
Hierbei wird ähnlich zu den bisher vorgestellten Lernverfahren die Datenbasis durch die
neuen Daten erweitert, um so einen größeren Bereich des Zustandsraums abzudecken. In
diesem Zusammenhang muss das Training nicht zwangsläufig offline und in bestimmten
Iterationen durchgeführt werden, sondern kann zur Laufzeit, während des Betriebs und
parallel zur Regelung, automatisiert vorgenommen werden.
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Die durchgeführten Simulationen sind ein erster Funktionsnachweis der hybriden Zu-
standslinearisierung für den Hexapod. Eine Adaption für das reale dreidimensionale Sys-
tem ist durch die allgemeingültige Formulierung des Ansatzes mit einem geringen Auf-
wand möglich. Die Ergebnisse am zweidimensionalen Hexapod-Ersatzmodell zeigen,
dass bereits geringfügige Modellfehler einen großen Einfluss auf die Regelgüte haben
können. Für das reale System, welches aufgrund der Vielzahl an Komponenten eine deut-
lich komplexere (nicht nur mechanische) Modellierung erfordert, ist die Wahrscheinlich-
keit für Fehler besonders erhöht. In Verbindung mit dem ausgiebigen Sensorkonzept des
Prüfstands bietet sich der Einsatz der hybriden Zustandslinearisierung für die Inbetrieb-
nahme speziell an. Der hier erbrachte prinzipielle Funktionsnachweis stellt eine entspre-
chend solide Grundlage für weiterführende Arbeiten dar.
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6 Zusammenfassung und Ausblick

Durch die Inbetriebnahme von Steuerungen und Regelungen wird sicherstellt, dass ein
mechatronisches System ordnungsgemäß funktioniert und den Anforderungen, sowie Er-
wartungen gerecht wird. In diesem Zusammenhang wurde in Kapitel 1 die Anwendung
des V-Modells und des modellbasierten Entwurfs als bewährte Vorgehensweise in der
Regelungstechnik vorgestellt. Der Entwurf basiert dabei auf der Herleitung eines ausrei-
chend genauen Simulationsmodells. Insbesondere vor dem Hintergrund von komplexen
mechatronischen Systemen oder anspruchsvollen Regelungsaufgaben ist die klassische
Vorgehensweise des modellbasierten Entwurfs allerdings nur begrenzt einsetzbar, da eine
analytische Modellierung in vielen Fällen zu kompliziert, zeitaufwendig und unter gewis-
sen Umständen nicht praktikabel umsetzbar ist. Ein Beispiel hierfür ist der besprochene
Ultraschalldrahtbondprozess, dessen komplizierte Modellierung in Abschnitt 3.4 behan-
delt wurde. Im Rahmen der Regelungstechnik und des modellbasierten Entwurfs gibt es
kaum Handlungsanweisungen für den Fall, dass eine Modellbildung für das betrachtete
System nicht oder nur eingeschränkt durchführbar ist. Dieser Sachverhalt wurde in dieser
Arbeit als vorhandene Forschungslücke identifiziert, welche auf die Abweichungen zwi-
schen theoretischen Überlegungen und der praxisnahen Inbetriebnahme zurückzuführen
ist. Das Ziel der Arbeit bestand darin, die Forschungslücke zu untersuchen und geeignete
Verfahren (im Kontext der Arbeit auch als regelungstechnische Werkzeuge bezeichnet) zu
entwickeln, welche eine effiziente und sichere Inbetriebnahme einer Steuerung oder Re-
gelung zum Ziel haben. Hierfür wurden im einführenden Kapitel 1 diverse Anforderungen
formuliert, wie bspw. eine rasche Realisierung, um den Verschleiß und die Beanspruchung
des betrachteten Systems zu reduzieren. Um das Ziel zu erreichen, wurde im Rahmen der
Arbeit die Grundidee verfolgt, eine Kombination von Regelungstechnik und ML bzw.
RL herzustellen, welche das gesamte Vorwissen über die Regelungsaufgabe ausnutzt und
Korrekturen auf der Basis von Messdaten und der probabilistischen GP-Regression vor-
nimmt. Das Vorwissen kann dabei als partiell bekanntes physikalisches Modell oder in
Form einer geeigneten Steuerungsfunktion bzw. Regelungsstruktur vorliegen. Die Ein-
haltung von technischen Rahmenbedingungen und stabilen Systemverhalten bei der In-
betriebnahme wird dabei über probabilistische Prädiktionen berücksichtigt. Als konkrete
Anwendungsbeispiele dienten der Ultraschalldrahtbondprozess, verschiedene Pendelsys-
teme und ein Hexapod zur Fahrzeugachsprüfung.

Nachdem in Kapitel 2 die mathematischen Grundlagen erläutert worden sind, wurde in
Kapitel 3 zunächst der Steuerungsentwurf mittels BO behandelt. Die BO ist ein iterati-
ves Lernverfahren aus dem Bereich des modellbasierten RL, welches der globalen Op-
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timierung zugeordnet wird. Im Kontext des Steuerungsentwurfs hat sie zum Ziel, eine
optimale Parametrisierung zu identifizieren. Hierfür werden nach und nach Experimente
am realen System durchgeführt, um Messdaten zu sammeln. Die Messdaten werden wie-
derum dafür genutzt, um ein probabilistisches GP-Modell zu aktualisieren, welches zur
Abbildung der Gütefunktion dient. In jeder Iteration wird das nächste Experiment durch
eine Auswertung des Erwartungswertes und der Varianz bzgl. des Gütefunktionswert be-
stimmt. Vor dem Hintergrund des Ultraschalldrahtbondprozesses wurde als Gütefunktion
der Prozessfähigkeitsindex betrachtet. Eine klassische modellbasierte Optimalsteuerung
nach dem Vorgehen aus Kapitel 4 ist für dieses System praktisch nicht umsetzbar, da sich
die physikalische Modellierung zum einen als schwierig herausgestellt hat (s. Kapitel
3.4) und zum anderen die Anforderungen zur Anwendung der Optimalsteuerungsmetho-
den nicht erfüllt sind. Bspw. ist eine hohe zeitliche Diskretisierung erforderlich, da sich
die Dynamik des Systems im Kilohertzbereich bewegt. Des Weiteren sind Messungen des
Zustands aufgrund fehlender Sensorik nicht möglich. In diesem Anwendungsfall stehen
somit nur Daten der Gütefunktion zur Verfügung, womit die BO ein geeignetes Werk-
zeug zur Inbetriebnahme darstellt. Das Vorwissen wurde bei diesem Beispiel über die
Definition des Steuerungsverlaufs berücksichtigt, welches sich aus stückweise definierten
linearen Funktionen für die Spannung und Normalkraft zusammensetzt. Die Ansatzfunk-
tion der Steuerung basiert auf Expertenwissen und hat sich als besonders nützlich für das
Ultraschalldrahtbonden herausgestellt. In Kapitel 3.5 wurde das Standardverfahren der
BO aufgegriffen und etwaige Anpassungen für die Inbetriebnahme des Bondprozesses
eingeführt. Unter anderem galt es, Werkzeugaufsetzer, welche die beiden Verbindungs-
partner schädigen, zu vermeiden. Hierfür wurde ein weiterer GP eingeführt, der das Auf-
treten solcher Aufsetzer durch eine Wahrscheinlichkeitsangabe wiedergibt. Des Weiteren
wurde das Verfahren um Batchelemente erweitert, sodass in einer Iteration mehrere Ex-
perimente parallel durchgeführt werden und so der Automatisierungsgrad des Prozesses
vollständig ausgenutzt wird. Im Rahmen der Validierung am realen System wurde der ent-
wickelte BO-Algorithmus mit der herkömmlichen manuellen Identifikation der Parame-
trisierung verglichen. Die BO konnte bei einem gleichen Iterationsbudget doppelt so ho-
he Prozessfähigkeitswerte erzielen und damit eine bessere Parametrisierung bestimmen.
Nach einer kurzen Explorationsphase fokussierte sich das Verfahren dabei auf Gebiete im
Suchraum, welche die höchsten Gütefunktionswerte erzielten. Die manuelle Suche des
Einrichters stagnierte hingegen in einem vermeintlichen lokalen Optimum, was auf die
Dimension des Suchraums zurückzuführen ist. Diese betrug 7 und stellt für den Men-
schen daher eine Herausforderung aufgrund der zahlreichen Kombinationsmöglichkeiten
und Wechselwirkungen mit dem komplexen Prozess dar. Als Fazit zu den Untersuchungen
wurde festgehalten, dass die BO für das betrachtete Anwendungsbeispiel einen Mehrwert
darstellt, da es vor den Untersuchungen kein geeignetes regelungstechnisches Verfahren
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gab, mit dessen Hilfe der Steuerungsentwurf durchgeführt werden konnte. Die Besonder-
heit dieses Ansatzes ist, dass er auf der gedanklichen Ebene der Gütefunktion angesiedelt
ist und als Voraussetzung für das Verfahren nur die Auswertung der Gütefunktion er-
forderlich ist. Üblicherweise wird in der Regelungstechnik auf der Ebene der Zuständen
gearbeitet, die jedoch im Falle des Ultraschalldrahtbondens nicht zugänglich ist.

In den nachfolgenden Kapiteln 4 und 5 wurde der Fall untersucht, bei dem die Zustände
des Systems vollständig definiert sind und gemessen bzw. berechnet werden können. In
diesem Szenario werden die zugehörigen Messdaten für eine Korrektur auf der Ebene
der Dynamikgleichungen verwendet. Ausgehend von einem partiell bekannten System
bzw. einem unvollständigen Simulationsmodell werden die beinhaltenden Modellfehler
durch ein ML-Verfahren nachgebildet. Als ML-Verfahren wurde hierfür wiederum die
GP-Regression eingesetzt, welche eine Quantifizierung des Fehlers im Sinne der Wahr-
scheinlichkeitstheorie vornimmt. Das hybride Gesamtmodell setzt sich additiv aus einem
vorab identifizierten physikalischen und einem rein datengetriebenen Modellteil zusam-
men. Um die Anforderungen bei der Inbetriebnahme zu adressieren, wurde das Modell
probabilistisch formuliert. In der gängigen deterministischen Betrachtungsweise, mit wel-
cher üblicherweise in der Regelungstechnik gearbeitet wird, werden keine Unsicherheiten
in Bezug auf die Zustandsübergänge des Systems berücksichtigt. Vor dem Hintergrund ei-
nes unvollständigen Modells und der Inbetriebnahme ist es allerdings hilfreich, gewisse
Unsicherheiten mit einzubeziehen. Zum einen können auf diese Weise sicherheitskriti-
sche Überschreitungen deutlich besser abgeschätzt werden und zum anderen kann ein
exploratives Verhalten erzeugt werden. In diesem Zusammenhang wird der Prozess der
Inbetriebnahme als Lernvorgang im Sinne des RL aufgefasst, wobei bei jedem neuen
Experiment eine explorative oder exploitative Entscheidung getroffen werden muss. Die
probabilistische Betrachtungsweise des Modells ist hierfür zielführend. Zur Realisierung
einer probabilistischen Langzeitprädiktion wurde das Verfahren der UT genutzt, wobei die
Zustände des Systems als normalverteilt angenommen werden. Für eine gegebene Steue-
rung lassen sich so die Auswirkungen der Modellfehler über einen gewissen Zeithorizont
untersuchen und es kann abgeschätzt werden, wo sich das System mit welcher Wahr-
scheinlichkeit befindet. In Kapitel 4 wurde die Verwendung des hybriden Modellansatzes
im Rahmen eines Optimalsteuerungsentwurf behandelt. Die konventionellen Gleichun-
gen des zugrundeliegenden Optimalsteuerungsproblems wurden für das probabilistische
Modell mit Hilfe des Multiple Shooting Ansatzes formuliert und ein lernfähiger Algorith-
mus entwickelt. Dieser arbeitet ähnlich zur BO und nähert sich iterativ durch Interakti-
on mit dem realen System dem Erfüllen der Steuerungsaufgabe an. Eine erste Untersu-
chung wurde an einem voll-aktuierten Doppelpendel durchgeführt. Dabei wurde der Ein-
fluss des Vorwissens verdeutlicht. Das Vorwissen bewirkt eine Effizienzsteigerung, sodass
die optimale Steuerung in kürzerer Zeit bzw. in weniger Experimenten bestimmt wird.
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Des Weiteren war ein deutlicher Unterschied bei der Entwicklung der Steuerung über
die Iterationen hinweg zu beobachten. Durch die Hinzunahme von Vorwissen wird der
Steuerungsverlauf von Iteration zu Iteration nur geringfügig angepasst und es werden nur
leichte Korrekturen vorgenommen, wohingegen bei dem Fall ohne Vorwissen ein breites
Spektrum von Steuerungen ausprobiert wird. Für die praktische Inbetriebnahme ist dieses
Verhalten problematisch, da von dem Entwurfsingenieur nur schwer abgeschätzt werden
kann, was am realen System tatsächlich passiert. Dementsprechend sorgt das Einbringen
von Vorwissen nicht nur für eine Effizienzsteigerung, sondern auch für eine Erhöhung der
Sicherheit während der Inbetriebnahme. Weiterführend wurde die hybride Optimalsteue-
rung um einen zusätzlichen Regelungsentwurf erweitert. Hierfür wurde im speziellen die
Zwei-Freiheitsgrade Regelung mit einem zeitvarianten Riccati-Regler betrachtet, welcher
auf der Basis des hybriden Modells abgeleitet wird. Die Verwendung dieser Struktur ent-
spricht einer weiteren Möglichkeit, Vorwissen über die Aufgabe einzubringen, da durch
sie eine geeignete Zusammensetzung des Stellsignals vorgegeben wird, welche durch
einen rein datengetrieben Ansatz erst aufwendig gelernt werden müsste. Als Beispiel
wurde hierfür das modellbasierte RL Verfahren PILCO angeführt, dessen resultierendes
Steuersignal für den Menschen nicht im Sinne der Zwei-Freiheitsgrade Regelung, also ei-
nem Steuerungs- und Regelungsanteil, interpretiert werden kann. In diesem Zusammen-
hang fand eine weitere Validierung am Doppelpendel auf einem Wagen statt, welche sich
durch ein chaotisches und anspruchsvolles Systemverhalten auszeichnet und daher für
viele RL Methoden schwer zu lösen ist. Dennoch konnte das PILCO-Verfahren die Re-
gelungsaufgabe nach 27 Iterationen erfolgreich abschließen, wofür insgesamt jedoch eine
gesamte Berechnungsdauer von 2 Tagen erforderlich war. Gleichermaßen wurde das ent-
wickelte hybride Verfahren am Prüfstand getestet, wobei ein Teil der Dynamik als bekannt
vorausgesetzt wurde und die wesentlichen Zentrifugalkräfte gelernt werden sollten. Das
Vorwissen über die Dynamik und die Regelungsstruktur führte zu einer deutlichen Verbes-
serung des Lernvorgangs. So wurden insgesamt 80% weniger Experimente und zugleich
98% weniger Berechnungszeit benötigt. Zudem konnte das Systemverhalten in Bezug auf
die Stabilität und damit die Sicherheit am Prüfstand qualitativ gut vorhergesagt werden.
Ein Grund hierfür ist, dass die Unsicherheit über die vorhandenen Modellfehler explizit
im Entwurfsverfahren berücksichtigt wurden. Die gezielte Einbringungen von Vorwis-
sen über die Regelungsstruktur wurde in Kapitel 5 fortgesetzt. Für die Klasse der ein-
gangsaffinen Systeme bietet sich der Einsatz einer Zustandslinearisierung an, wobei die
nichtlinearen Funktionen der Dynamik über ein Modell invers durch die Stellgröße auf-
geschaltet werden, sodass eine Kompensation stattfindet und das Gesamtsystem als linear
betrachtet werden darf. Modellfehler können die Regelgüte jedoch stark mindern, sodass
eine hybride Zustandslinearisierung hergeleitet wurde, welche in der Lage ist, Modellun-
genauigkeiten auszugleichen. Die GP-Regression lässt hierzu eine gezielte Identifikation
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der einzelnen nichtlinearen Terme aus einem Datensatz zu, indem das Vorwissen über
die Systemstruktur innerhalb der angenommenen Kernelfunktion vorgegeben wird. Als
anschauliches Anwendungsbeispiel wurde die hybride Zustandslinearisierung an einem
Hexapod bzw. einem abstrakten zweidimensionalen Simulationsmodell getestet. Anhand
des Beispiels wurde gezeigt, dass ein ungenaues Modell problematisch für die Regelung
ist und der hybride Ansatz eine deutliche Verbesserung herbeiführt. Aufgrund des proba-
bilistischen Charakters der GP-Regression kann während des Betriebs eine Varianzangabe
über die Stellgröße berechnet werden. Darüber lassen sich weiterführend Gebiete im Zu-
standsraum angeben, für welche eine sichere Funktionsweise nicht gewährleistet werden
kann bzw. weitere Messdaten aufgenommen werden sollten, um die Unsicherheit über die
verbliebenen Modellfehler zu beseitigen. Zudem wurde durch die Erprobung ein Funkti-
onsnachweis erbracht, um eine weiterführende Entwicklung für den realen dreidimensio-
nalen Hexapod vorzunehmen. Die BO, eine hybride Optimalsteuerung mit erweitertem
Regelungsentwurf und die hybride Zustandslinearisierung haben gezeigt, wie sich das
maschinelle Lernen gewinnbringend innerhalb der Regelungstechnik bzw. während der
Inbetriebnahme einsetzen lässt. Der Fokus wurde dabei auf die Einbringung von Vorwis-
sen über die Regelungsaufgabe und die Quantifizierung von Modellfehlern durch probabi-
listische Angaben gelegt. Für die Berücksichtigung des Vorwissens wurden verschiedene
Schnittstellen betrachtet, so unter anderem die Mittelwert- und Kovarianzfunktion des
GP seitens des maschinellen Lernverfahrens, als auch eine partiell bekannte Systemdyna-
mik oder geeignete Regelungsstruktur bzw. Steuerungsansatzfunktion. Insgesamt haben
die Anwendungsbeispiele gezeigt, dass die Einbringung von Vorwissen einen positiven
Effekt auf die Inbetriebnahme nimmt und die Effizienz, Robustheit und die Interpretier-
barkeit steigert. Aufgrund des probabilistischen Charakters der Verfahren, welche durch
das Themengebiet des RL motiviert ist, kann zudem die Sicherheit während der Inbetrieb-
nahme trotz möglicherweise vorhandener Modellfehler besser eingeschätzt werden. Des
Weiteren ergibt sich ein inhärentes exploratives Verhalten der Lernalgorithmen, welches
darauf ausgelegt ist, eine erfolgreiche Realisierung zu ermöglichen.

Ausblick
Der Ausblick dieser Arbeit weist auf Potenziale für weiterführende Forschungsthemen
hin. Ein primäres Themenfeld betrifft die Weiterentwicklung der vorgestellten Verfah-
ren und deren Kombination auf verschiedenen hierarchischen Ebenen, wobei sie entwe-
der sequenziell oder parallel während der Inbetriebnahme zum Einsatz kommen können.
Zur Veranschaulichung wird das Beispiel eines Doppelpendels auf einem Wagen und die
Realisierung des Aufschwungs herangezogen. Im Rahmen der Validierung wurde ein
unterlagerter Geschwindigkeitsregler für den Wagen verwendet, der auf einem Entwurf
des Herstellers basiert. Eine alternative Herangehensweise wäre die eigenständige Aus-
legung des Geschwindigkeitsreglers gewesen, wofür die hybride Zustandslinearisierung
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geeignet ist. Dieser Ansatz bildet die Basis, auf der die nachfolgenden Schritte aufbau-
en. Nach erfolgreicher Implementierung einer funktionsfähigen Geschwindigkeitsrege-
lung des Wagens nach der hybriden Zustandslinearisierung wird die hybride Optimal-
steuerung angewendet, wobei geeignete Gewichtungsmatrizen in Bezug auf (4-28) aus-
gewählt werden müssten. Die Flexibilität der BO ermöglicht nicht nur die Identifikation
von Steuerungs- oder Regelungsparametrisierungen, sondern könnte auch für die Anpas-
sung der Gewichtungsmatrizen in diesem Szenario genutzt werden. Ein ähnlicher Ansatz
wird in [MHB+16] verfolgt, wobei die Gewichtungen eines Riccati-Reglers als Optimie-
rungsvariablen betrachtet und optimal an das reale System angepasst werden. Demnach
besteht der angestrebte Ansatz darin, die Gewichtungsmatrizen der hybriden Optimal-
steuerung durch die BO automatisiert anzupassen, um eine realisierbare Trajektorie für
das reale System zu finden (vgl. Anmerkungen zu Bild 4-2). Insgesamt betrachtet, befin-
den sich die drei verschiedenen Verfahren also auf unterschiedlichen gedanklichen Ebe-
nen, wobei die unterlagerte Geschwindigkeitsregelung auf der hybriden Zustandslineari-
sierung, die Steuerung des Aufschwungs auf der hybriden Optimalsteuerung und die Ge-
wichtungsmatrizen des zugehörigen Optimierungsproblems auf der BO basieren würden.
In diesem Zusammenhang wäre es von Interesse, zu untersuchen, wie sich die Verfahren
gegenseitig beeinflussen und welche Synergien, beispielsweise bezüglich Datenmengen
und Formen des Vorwissens, genutzt werden könnten.

Ein weiterer Aspekt des Ausblicks betrifft das hybride Modell. Hierbei gibt es sowohl
im physikalischen, als auch im datengetriebenen Teil verschiedene Möglichkeiten, um
weitere Fälle zu betrachten. Im Großteil dieser Arbeit wurde der Zustand als normalver-
teilte Zustandsvariable definiert. Wie jedoch in Abschnitt 2.3.1 gezeigt wurde, lässt sich
das physikalische Modell auch durch weitere Unsicherheiten beschreiben. So könnte bei-
spielsweise die Parametrierung des Modells als zusätzliche Zufallsvariable definiert und
dies entsprechend beim Entwurf berücksichtigt werden. Für geometrische Längen ist die-
se Unsicherheit in den meisten Fällen als sehr gering abzuschätzen, während insbesondere
Parameter, welche die Reibung betreffen, oft nicht ein eindeutiger Werte zugeordnet wer-
den kann. Neben dem Zustand und der Parametrierung kann zudem auch die Stellgröße als
Zufallsvariable aufgefasst werden, um darüber eine nicht ideale Aktorik zu beschreiben.
Diese Definitionen sind allerdings je nach Anwendungsfall abzuwägen, sodass es sinnvoll
sein kann, einen Mix aus probabilistischen und deterministischen Variablen einzuführen.
Des Weiteren bietet die Wahrscheinlichkeitstheorie ein breites Spektrum von Wahrschein-
lichkeitsverteilungen, die im Rahmen dieser Arbeit noch nicht betrachtet wurden. Über
andere Verteilungen könnten, je nach Anwendung, unterschiedliche Effekte abgebildet
werden. So könnten beispielsweise die harten Anschläge des Wagens vom Doppelpen-
delprüfstand als begrenzte Zufallsvariablen definiert werden, wobei sich der Einsatz einer
beidseitig beschnittenen Normalverteilung [Bis06] anbietet. Die komplexere Wahrschein-
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lichkeitsverteilung sorgt allerdings gleichzeitig dafür, dass die nachfolgenden Berechnun-
gen schwieriger werden und mehr Zeit in Anspruch nehmen. Es ist daher ein geeigneter
Kompromiss zwischen Genauigkeit und Praktikabilität herzustellen, wie es für die An-
wendungsbeispiele dieser Arbeit gezeigt wurde. Außerdem wurde bisher angenommen,
dass sich die Stärke des Messrauschens nicht verändert und sich stationär verhält. In man-
chen Fällen kann das Messrauschen allerdings auch nicht-stationär sein und sich über den
Zustandsraum (oder auch der Zeit) unterschiedlich stark ausprägen. Dementsprechend
müsste eine Anpassung der angenommenen Wahrscheinlichkeitsverteilung im Zusam-
menhang mit der Bayesschen Regel (2-13) vorgenommen werden. Des Weiteren wurde
im Rahmen dieser Arbeit ein Fokus auf die GP-Regression gelegt, wobei sich auch der
Einsatz anderer maschineller Lernverfahren anbieten würde, um komplexere Phänomene
bei der Inbetriebnahme abbilden zu können. Eine Erweiterung des herkömmlichen GP-
Ansatzes wird als Sparse GP [SG05] bezeichnet und erhält seinen Namen dadurch, dass
die ursprüngliche Datenmenge komprimiert wird und dabei die Prädiktionsgenauigkeit
bestmöglich erhalten bleibt. Der Vorteil dieses Ansatzes ist, dass er bessere Skalierungs-
eigenschaften besitzt und eine Auswertung deutlich schneller berechnet werden kann.
Für Systeme mit vielen Zuständen und einer großen Datenmenge ist dieser Ansatz da-
her besonders gut geeignet. Eine weitere Variante nennt sich Deep GP [DL13] und leitet
sich von den gleichnamigen tiefen neuronalen Netzen ab. Die Grundidee ist es, mehrere
GPs hintereinander zu verknüpfen und damit die Beschreibungsfähigkeit der Prädiktion
zu steigern. Auf diese Weise ist es beispielsweise möglich, das erwähnte nicht-stationäre
Rauschen oder andere Verteilungen als die Normalverteilung abzubilden. Eine ähnliche
Fähigkeit besitzen die Bayesschen neuronalen Netze [Gal16], welche sich im Gegensatz
zu einem herkömmlichen neuronalen Netz dadurch auszeichnen, dass ihre Gewichtungs-
werte als Zufallsvariablen definiert werden und somit eine probabilistische Prädiktion
erlauben. Die Parameter der zugrundeliegenden Wahrscheinlichkeitsverteilung der Ge-
wichte werden über die Bayessche Regel trainiert, womit das Verfahren der Bayesschen
nichtlinearen Regression (vgl. Abschnitt 2.3.1) zugeordnet wird. Zuletzt sei auch der
Koopman-Operator [BBKK22] erwähnt, zu dem es in der Regelungstechnik in den letz-
ten Jahren viele Forschungsarbeiten gab. Der Koopman-Operator wird innerhalb der Re-
gelungstechnik verwendet, um die Dynamik eines nichtlinearen Systems zu beschreiben,
indem er es in einen höherdimensionalen Raum abbildet, in dem die Dynamik linear ist.
Durch die Transformation in diesen Raum können nichtlineare Systeme mit linearen Me-
thoden analysiert und geregelt werden. Im Zusammenhang mit Gleichung (2-11) und der
Zustandspropagation wird ersichtlich, dass eine lineare Dynamik bzw. die des Koopman-
Operators dafür besonders gut geeignet ist. Unter der Voraussetzung eines normalver-
teilten Zustands wird die Klasse der Normalverteilungen auf diese Weise inhärent nicht
verlassen, sodass es sich vor dem Hintergrund des MM nicht mehr um eine Approxima-
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tion, sondern eine genaue Berechnung handelt. Die Zustandspropagation lässt sich somit
besonders schnell für ein nichtlineares System berechnen. Weiterführend ließe sich so das
komplexe hybride Optimalsteuerungsproblem (4-28) vereinfachen und eine Realisierung
als modellprädiktive Regelung [Ada14], auch für Systeme mit einer schnellen Dynamik,
realisieren.
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A1 Mathematischer Anhang

Beispielhafte Anwendung des Transformationssatzes für Pendeldynamik
Dieser Abschnitt dient dazu eine beispielhafte Anwendung des Transformationssatzes
(2-12) vorzustellen. Den Ausgangspunkt stellt eine einfache Pendeldynamik in der nicht-
linearen Zustandsraumdarstellung mit

ẋ = f(x) =

[
x2

−gl sin(x1)− dJx2

]
,

dar. Hierin ist x1 = φ der Winkel, x2 = φ̇ die Winkelgeschwindigkeit und gl, dJ sind
systemspezifische Parameter. Für die weitere Betrachtung wird ein normalverteilter Zu-
standsvektor x ∼ N (m,S) = px(x) angenommen. Die Aufgabe besteht darin, die
Verteilung der zeitlichen Ableitung p(ẋ) zu bestimmen. Um diese Verteilung exakt zu
bestimmen, wird der Transformationssatz angewandt, welcher in diesem Fall mit

pẋ(ẋ) = px(x = f−1(ẋ))

∣∣∣∣df−1(ẋ)

dẋ

∣∣∣∣ (A1-1)

angegeben wird. Für die Berechnung wird dementsprechend die Umkehrfunktion f−1 der
nichtlinearen Dynamikfunktion benötigt, welche aufgrund der trigonometrischen Funkti-
on mehrere Lösungen

x = f−1(ẋ; i, k) =


[
π + arcsin

(
dJ ẋ1+ẋ2

gl

)
+ 2πk, ẋ1

]T
, i = 1,[

2πk − arcsin
(
dJ ẋ1+ẋ2

gl

)
, ẋ1

]T
, i = 2,

k ∈ Z,−1 ≤ dJ ẋ1+ẋ2

gl
≤ 1, beinhaltet und daher mit einer Fallunterscheidung i = 1, 2 und

einem Index k angegeben wird. Hieraus kann die Determinante der Jacobimatrix mit∣∣∣∣df−1(ẋ)

dẋ

∣∣∣∣ = 1√∣∣(dJ ẋ1 + ẋ2)2 − g2l
∣∣ , (dJ ẋ1 + ẋ2)

2 ̸= g2l ,

angegeben werden. Das Einsetzen der berechneten Größen in (A1-1) liefert die exakte
Verteilung

pẋ(ẋ) =
2∑

i=1

∞∑
k=−∞

px(f
−1(ẋ); i, k)√∣∣(dJ ẋ1 + ẋ2)2 − g2l

∣∣ ,
der zeitlichen Ableitung des Zustandsvektors.
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Produkt und Integration zweier Normalverteilungen
Die nachfolgenden Zusammenhänge [Kuß06] gelten für die Größen x,a, b ∈ Rn und die
Kovarianzmatrizen A,B ∈ Rn×n. Für das Produkt zweier Normalverteilung kann dann
geschlussfolgert werden, dass es proportional zu einer weiteren Normalverteilung nach

Nx(a,A) Nx(b,B) = z Nx(c,C), (A1-2)

ist, wobei der Erwartungsvektor c ∈ Rn und die Kovarianzmatrix C ∈ Rn×n mit

C = (A−1 +B−1)−1 und c = C(A−1a+B−1b)

angegeben werden. Die Normalisierungskonstante z ∈ R+ beinhaltet außerdem die Form
einer Normalverteilung und lautet

z = (2π)−
n
2

∣∣ABC−1
∣∣− 1

2 exp
(
− 1

2
(aTA−1a+ bTB−1b− cTC−1c)

)
.

Für die Integration über zwei Normalverteilungen gilt ein ähnlicher Zusammenhang∫
Nx(a,A)Na(b,B)da = Nx(b,A+B), (A1-3)

wobei das Ergebnis wiederum einer Normalverteilung entspricht. Zu beachten ist dabei,
dass die zweite angegebene Normalverteilung nicht für die Zufallsvariable x, sondern für
a definiert ist.

Berechnungen zur Zustandsvarianzmatrix für das Pendelbeispiel
In Abschnitt 2.3.2 wurde der Moment Matching Ansatz für ein Pendel vorgestellt, wobei
die ersten beiden Momente exakt berechnet werden können. Der Erwartungsvektor mxk+1

wurde im Hauptteil der Arbeit übersichtlich angegeben, wohingegen die Berechnung der
Zustandsvarianzmatrix Sxk+1

mehr Platz benötigt und daher dem Anhang hinzugefügt
wurde. Die Grundlage zur vollständigen Berechnung stellt die aufgestellte Gleichung für
die Zustandsvarianzmatrix des Zeitschritts k + 1 mit

SMM
xk+1

= Sxk
+∆t2V[f(xk,uk)] + ∆t

(
C[xk,f(xk,uk)] + C[xk,f(xk,uk)]

T
)
,

dar. Nachfolgend werden die einzelnen Bestandteile dieser Gleichung weiter aufgeschlüsselt.
Für die Varianz der Dynamikfunktion folgt:

V[f(xk,uk)] =

[
V[f(xk,uk)]

(1,1) V[f(xk,uk)]
(1,2)

⋆ V[f(xk,uk)]
(2,2)

]
, (A1-4)
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wobei das ⋆-Element aus der Symmetrie folgt und sich die anderen Elemente der Matrix
zu

V[f(xk,uk)]
(1,1) =S(2,2)

xk
,

V[f(xk,uk)]
(2,2) =g2l

(
E[sin(x(1)

k )2]− E[sin(x(1)
k )]2

)
+

d2JS
(2,2)
xk

+ 2gldJ
(
E[sin(x(1)

k )x
(2)
k ]− E[sin(x(1)

k )]E[x(2)
k ]
)

=g2l
(
1
2
(1− exp(−2S(1,1)

xk
) cos(2m(1)

xk
))− (exp

(
−1

2
S(1,1)
xk

)
sin(m(1)

xk
))2
)
+

d2JS
(2,2)
xk

+ 2gldJ
(
exp
(
−1

2
S(1,1)
xk

)
(S(2,1)

xk
cos(m(1)

xk
) +m(2)

xk
sin(m(1)

xk
))−

exp
(
−1

2
S(1,1)
xk

)
sin(m(1)

xk
)m(2)

xk

)
,

V[f(xk,uk)]
(1,2) =− gl exp

(
−1

2
S(1,1)
xk

)
S(2,1)
xk

cos(m(1)
xk
)− dJS

(2,2)
xk

,

ergeben. Des Weiteren wird die Kreuz-Kovarianz zwischen dem aktuellen Zustand und
der Dynamikfunktion benötigt:

C[xk,f(xk,uk)] = E[xkf(xk,uk)
T ]− E[xk]E[f(xk,uk)]

T

=

[
E[x(1)

k x
(2)
k ], −glE[x(1)

k sin(x
(1)
k )]− dJE[x(1)

k x
(2)
k ] + JiukE[x(1)

k ]

E[x(2)
k

2
], −glE[x(2)

k sin(x
(1)
k )]− dJE[x(2)

k

2
] + JiukE[x(2)

k ]

]

−

[
m

(1)
xk E[x

(2)
k ] m

(1)
xk (−glE[sin(x

(1)
k )]− dJE[x(2)

k ] + Jiuk)

m
(2)
xk E[x

(2)
k ] m

(2)
xk (−glE[sin(x

(1)
k )]− dJE[x(2)

k ] + Jiuk)

]

=

[
S
(2,1)
xk −gl exp

(
−1

2
S
(1,1)
xk

)
S
(1,1)
xk cos(m

(1)
xk )− dJS

(2,1)
xk

S
(2,2)
xk −gl exp

(
− 1

2
S
(1,1)
xk

)
S
(2,1)
xk cos(m

(1)
xk )− dJS

(2,2)
xk

]
(A1-5)

Theorem für die Inverse einer partitionierten Matrix
Die Beschreibung der nachfolgenden Theorems folgt derer in [Mur13]. Betrachtet wird
eine partitionierte Matrix

P =

[
A B

C D

]
, (A1-6)

deren Inverse P−1 gesucht wird. Zur Bestimmung wird als Grundidee der Ansatz verfolgt,
nach welchem P zunächst in Diagonalform gebracht und anschließend invertiert wird. Als
Erstes wird dafür die Matrixmultiplikation[

I −BD−1

0 I

]
︸ ︷︷ ︸

:=X

[
A B

C D

]
︸ ︷︷ ︸

=P

=

[
A−BD−1C 0

C D

]
,
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eingeführt. Im zweiten Schritt erfolgt eine weitere Matrixmultiplikation von der rechten
Seite über den Zusammenhang[

A−BD−1C 0

C D

]
︸ ︷︷ ︸

=XP

[
I 0

−D−1C I

]
︸ ︷︷ ︸

:=Z

=

[
A−BD−1C 0

0 D

]
︸ ︷︷ ︸

:=W

.

Aufgrund ihrer Diagonalform ist die Inverse der Matrix W = XPZ leicht zu bestimm-
bar. Es folgt weiterführend

W−1 = (XPZ)−1 = Z−1P−1X−1 ⇔ P−1 = ZW−1X,

womit sich die gesuchte Inverse zu

P−1 =

[
A B

C D

]−1

=

[
I 0

−D−1C I

][
A−BD−1C 0

0 D

]−1 [
I −BD−1

0 I

]

=

[
M−1 −M−1BD−1

−D−1CM−1 D−1 +D−1CM−1BD−1

]

ergibt und die Definition des sogenannten Schur-Komplements [Mur13] von P mit Bezug
auf D über M := A−BD−1C genutzt wurde.

Ableitung der Kovarianzmatrix nach den Hyperparametern des SE-Kernels
Für die Optimierung der Hyperparameter wird im Rahmen der Gauß-Prozess-Regression
die logarithmische Likelihoodfunktion (2-33) maximiert. Eine Möglichkeit dieses Opti-
mierungsproblem effizient zu lösen, bietet die Klasse der gradientenbasierten Optimierer.
Hierzu ist allerdings die Kenntnis der partiellen Ableitungen (2-34) notwendig. Für den
SE-Kernel (2-32) soll die analytische Berechnung in diesem Abschnitt beispielhaft durch-
geführt werden. Im Folgenden wird von der SE-Kovarianzfunktion in der Darstellung

k(x,x′;θ) = σ2
f exp(−1

2
(x− x′)TW−1(x− x

′
)) + σ2

nδ(x,x
′),

ausgegangen, wobei der Rauschterm an dieser Stelle vereinfachend zum SE-Kernel hinzu-
gezählt und die Diracfunktion δ benutzt wird. Es gilt x,x′ ∈ Rnx , W = diag(l21, . . . , l

2
nx
)

und θ := [l1, . . . , lnx , σf , σn]
T ∈ Rnx+2. Des Weiteren liegen die Eingangsdaten über die

Matrix X = [x1, . . . ,xnd
] ∈ Rnx×nd vor. Die eingangsdatenbasierte Kovarianzmatrix

lautet somit

K(θ) =


k(x1,x1;θ) . . . k(x1,xnd

;θ)
... . . . ...

k(xnd
,x1;θ) . . . k(xnd

,xnd
;θ)

 ∈ Rnd×nd ,
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sodass jedes Element von der Hyperparametrierung abhängt. In Hinblick auf (2-34) wird
die Ableitung dieser Matrix nach den Hyperparametern benötigt. Die grundsätzliche Ge-
stalt ist somit ein Tensor mit

dK

dθ
=


∂k1,1
∂θi

. . .
∂k1,nd

∂θi
... . . . ...

∂knd,1

∂θi
. . .

∂knd,nd

∂θi


i

∈ Rnd×nd×(nx+2), (A1-7)

wonach die einzelnen Teilmatrizen i = 1, . . . , nx+2 die partiellen Ableitungen der Kova-
rianzfunktion nach dem spezifischen Hyperparameter beinhalten. Zur besseren Übersicht
wurde ki,j := k(xi,xj;θ) mit i, j = 1, . . . , nd eingeführt.

Weiterführend wird stellvertretend für alle relevanten Elemente dieses Tensors der (i, j)-te
Eintrag betrachtet und zunächst die Ableitung nach dem k-ten Lengthscale-Parameter
ausgewertet. Es gilt

∂ki,j
∂lk

=
∂

∂lk
(σ2

f exp(−1
2
(xi − xj)

TW−1(xi − xj)) + σ2
nδ(xi,xj))

= σ2
f

∂

∂lk
exp

(
−1

2

nx∑
d=1

(xi,d − xj,d)
2W−1

d,d

)
= σ2

f

∂

∂lk
exp

(
−(xi,k − xj,k)

2

2l2k
−

nx∑
d=1,d ̸=k

(xi,d − xj,d)
2

2l2d

)

= σ2
f exp

(
−

nx∑
d=1,d̸=k

(xi,d − xj,d)
2

2l2d

)
(xi,k − xj,k)

2

l3k
exp

(
−(xi,k − xj,k)

2

2l2k

)
=

(xi,k − xj,k)
2

l3k
σ2
f exp(−1

2
(xi − xj)

TW−1(xi − xj))

=
(xi,k − xj,k)

2

l3k
(k(xi,xj)− σ2

nδ(xi,xj)),

für i, j = 1, . . . , nd und k = 1, . . . , nx. Insgesamt folgt somit im Zusammenhang mit der
Kovarianzmatrix und in Hinblick auf eine effiziente Implementierung:

∂K

∂lk
=

1

l3k


0 (x1,k − x2,k)

2 . . . (x1,k − xnd,k)
2

(x2,k − x1,k)
2 0 . . .

...
...

... . . . ...
(xnd,k − x1,k)

2 (xnd,k − x2,k)
2 . . . 0

⊙ (K − σ2
nInd

).
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Die restlichen Ableitungen bzgl. der Hyperparameter σf und σn sind vergleichsweise
einfach zu berechnen und lassen sich kompakt angebe mit

∂K

∂σf

=
2

σf

(K − σ2
nInd

) und
∂K

∂σn

= 2σnInd
.

Ableitung des GP-Posterior-Erwartungsvektors nach dem erweiterten Zustand
In (4-18) wird der GP-Posterior-Erwartungsvektor ∆µ(xu) ∈ Rnx zur Abbildung der
vorhandenen Modellfehler aufgestellt. In diesem Abschnitt wird die Ableitung nach dem
erweiterten Zustand xu = [xT ,uT ]T ∈ Rnx+nu vorgestellt. Ziel ist es, die Jacobimatrix

d

dxu
∆µ(xu) =

d

dxu
[∆µ1(x

u), . . .∆µnx(x
u)]T = [A∆,B∆] ∈ Rnx×(nx+nu)

und damit die Teilmatrizen A∆ ∈ Rnx×nx und B∆ ∈ Rnx×nu , welche für eine Linearisie-
rung notwendig sind, aufzustellen. Zunächst wird der Gradient der i-ten Zeile über

d

dxu
∆µi(x

u) =
d

dxu
kXU

k
(xu)T K−1

η∗i
∆X

(i,:)
k+1

T︸ ︷︷ ︸
=:α

=

nd∑
j=1

d

dxu
k(xu,XU

k

(j)
)αj,

berechnet. Dementsprechend muss die verwendete Kovarianzfunktion nach dem erwei-
terten Zustand abgeleitet werden. Im Folgenden wird diese Ableitung beispielhaft für den
SE-Kernel (2-32) berechnet:

d

dxu
kSE(x

u,XU
k

(j)
) =

d

dxu
σ2
f exp(−(xu −XU

k

(j)
)TW−1(xu −XU

k

(j)
))

=
d

dxu

(
−(xu −XU

k

(j)
)TW−1(xu −XU

k

(j)
)
)
kSE(x

u,XU
k

(j)
)

= 2W−1(xu −XU
k

(j)
)kSE(x

u,XU
k

(j)
).

Eine effiziente Berechnung des Gradienten wird über

d

dxu
∆µi(x

u) =

nd∑
j=1

2W−1(xu −XU
k

(j)
)kSE(x

u,XU
k

(j)
)αj

= 2W−1
[
xu −XU

k

(1)
. . . xu −XU

k

(nd)
]

︸ ︷︷ ︸
=:X̃U

k


kSE(x

u,XU
k

(1)
)α1

...

kSE(x
u,XU

k

(nd))αnd


= 2W−1X̃U

k (kSE,XU
k
(xu; X̃U

k )⊙α),

erreicht. Anschließend setzt sich die Jacobimatrix aus den einzelnen Gradienten mit
i = 1, . . . , nx zusammen.
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A2 Sequentielle Quadratische Programmierung

Für die Lösung des hybriden Optimalsteuerungsproblems (4-28) wird im Rahmen dieser
Arbeit das SQP-Verfahren [GK02; PLB12; NW06] verwendet, welches in diesem Ab-
schnitt auszugsweise vorgestellt werden soll. Zur Erläuterung wird von einem allgemei-
nen nichtlinearen Optimierungsproblem der Form

min
x

f(x), u.B.v. g(x) ≤ 0, h(x) = 0,

mit der skalaren Zielfunktion f(x) : Rnx 7→ R und Ungleichheitsnebenbedingungen
g(x) : Rnx 7→ Rng , sowie Gleichheitsnebenbedingungen h(x) : Rnx 7→ Rnh , welche von
dem Optimierungsvektor x ∈ Rnx abhängen, ausgegangen. Eine Lösung des Problems
muss die sogenannten Karush-Kuhn-Tucker-(KKT)-Bedingungen, welche formal mit

∇xL(x,λ,µ) = 0,

h(x) = 0,

gi(x) ≤ 0, λi ≥ 0, λigi(x) = 0, i = 1, . . . , ng,

(A2-1)

angegeben werden, erfüllen. Hierin ist L die Lagrangefunktion, welche über die zugehörigen
Lagrangemultiplikatoren λ ∈ Rng und µ ∈ Rnh berechnet wird, und über

L(x,λ,µ) := f(x) +

ng∑
i=1

λigi(x) +

nh∑
j=1

µjhj(x),

definiert ist.

Algorithmus 6 SQP-Verfahren für restringierte Optimierungsprobleme nach [GK02]
1: Eingabe: Initiale Schätzung x0,λ0,µ0 und H0, Iterationsindex k = 0.
2: Wiederhole bis (xk,λk,µk) ein KKT-Punkt nach (A2-1) ist:
3: Berechne eine Lösung ∆xk des quadratischen Teilproblems (A2-2) mit

zugehörigen Lagrangemultiplikatoren (λk+1,µk+1).
4: Setze xk+1 = xk+∆xk, wähle Hk+1 (z. B. BFGS) und inkrementiere k ← k+1.
5: Ausgabe: Optimal Lösung x∗ und zugehörige Lagrangemultiplikatoren (λ∗,µ∗).
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Algorithmus 6 fasst die wesentlichen Schritte des SQP-Verfahrens zusammen. Die Grund-
idee ist es, sich iterativ der optimalen Lösung anzunähern, indem in jeder Iteration das
exakte Optimierungsproblem durch ein quadratisches Teilproblem

min
∆x
∇xf(xk)

T∆x+ 1
2
∆xTHk∆x, u.B.v.

gi(xk) +∇xgi(xk)
T∆x ≤ 0, i = 1, . . . , ng,

hj(xk) +∇xhj(xk)
T∆x = 0, j = 1, . . . , nh,

(A2-2)

approximiert wird. Dabei wird die Zielfunktion durch eine quadratische Annäherung
und die Nebenbedingungen durch lineare Approximationen beschrieben. Zur Lösung des
quadratischen Teilproblems werden weitere Verfahren eingebunden, bspw. die Strategie
der aktiven Menge für quadratische Programme, welche zur Bestimmung einer initia-
len zulässigen Lösung wiederum auf der Lösung eines linearen Programms aufgebaut ist
[GK02]. Des Weiteren wird aufgrund der meist aufwendigen Berechnung nicht die exak-
te Hessematrix H = ∇2

xxf(x) für die quadratische Approximation der Zielfunktion ver-
wendet, sondern eine initiale Schätzung H0 (oftmals Einheitsmatrix Inx) in Kombination
mit einer geeigneten Aufdatierungsvorschrift, bspw. nach Broyden–Fletcher–Goldfarb-

Shanno (BFGS).
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A3 Details zu Experimenten

Parametrisierte Steuerung
Die Stellgrößen des Ultraschalldrahtbondprozesses sind die Normalkraft FN(t) und die
elektrische Spannung US(t). Die Spannung wird durch eine hochfrequente Schwingung
über US(t) = ÛS(t) sin(ωt) beschrieben. Im Rahmen der Experimente dieser Arbeit wur-
de eine parametrisierte Ansatzfunktion für die Größen (FN(t;θ), ÛS(t;θ)), welche auf
Expertenwissen basiert, mit

FN(t;θ) =



F0, t < 0,

F1, 0 ≤ t < T1,

F1 +
F2−F1

T2,R
(t− T1), T1 ≤ t < T1 + T2,R,

F2, T1 + T2,R ≤ t < T1 + T2,

0, sonst,

ÛS(t;θ) =



Û1

T1,R
t, 0 ≤ t < T1,R,

Û1, T1,R ≤ t < T1,

Û1 +
Û2−Û1

T2,R
(t− T1), T1 ≤ t < T1 + T2,R,

Û2, T1 + T2,R ≤ t < T1 + T2,

0, sonst,

(A3-1)

definiert. Diese stückweise definierte Funktion orientiert sich an den Verbindungsphasen
beim Bondprozess (vgl. Bild 3-3).
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Bild A3-1: Anwendung der Bayesschen Optimierung zur Identifikation einer parametri-
sierten Steuerung beim Ultraschalldrahtbonden. Erweiterte Auswertung für
die Materialien Kupfer und Nickel.

Ergebnisse zu weiteren Materialien
Bild A3-1 zeigt eine erweiterte Auswertung der Bayesschen Optimierung (Algorithmus 2).
Hierbei wurden die Materialien Kupfer und Nickel als Verbindungspartner verwendet. Als
Referenz dient der blaue Verlauf der Aluminium-Experimente des Hauptkapitels (s. Bild
3-7). Die durchgezogenen Linien repräsentieren die Experimente, in denen eine Verbesse-
rung stattgefunden hat. Hierfür muss sich der Prozessfähigkeitsindex erhöhen und es darf
zu keinen Werkzeugaufsetzern gekommen sein. Diesbezüglich stellen die Punkte jedes
einzelne Experimente dar, wobei ein schwarzer Punkt innerhalb des Kreises dafür steht,
dass es zu einer Werkzeugkollision gekommen ist.
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MC-Simulationen zur hybriden Optimalsteuerung am Doppelpendelprüfstand
Um die Stabilität des geschlossenen Regelkreises besser bewerten zu können, wurden
ergänzende Zustandspropagationen berechnet. Dabei wurde anstelle der UT das genauere
MC-Verfahren mit 100 Partikeln eingesetzt. Die Bilder A3-2 und A3-3 zeigen die ver-
schiedenen MC-Trajektorien in grau und zum Vergleich in türkis die UT-Propagation.
In Bezug zu der 1. Iteration ist erkennbar, dass einige Trajektorien nach ungefähr 1.5 s

instabil werden und ein sicherer Betrieb der Regelung daher nicht gewährleistet werden
kann.

Bild A3-2: Ergänzende Monte-Carlo-Simulation des geschlossenen Regelkreises der 1.
Lerniteration.

Bild A3-3: Ergänzende Monte-Carlo-Simulation des geschlossenen Regelkreises der 5.
Lerniteration.
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Die Inbetriebnahme von Steuerungen und Regelungen stellt sicher, dass 
ein mechatronisches System ordnungsgemäß funktioniert und den An-
forderungen gerecht wird. Der modellbasierte Entwurf basiert auf einem 
genauen Simulationsmodell. Allerdings ist dieser klassische Weg bei 
komplexen Systemen oft nicht praktikabel, da die analytische Modellie-
rung zu kompliziert und zeitaufwendig ist. Diese Forschungslücke wird 
durch Verfahren adressiert, die eine effiziente und sichere Inbetrieb-
nahme ermöglichen. Diese Verfahren kombinieren Regelungstechnik 
und Reinforcement Learning und nutzen vorhandenes Wissen über die 
Regelungsaufgabe, um Korrekturen basierend auf Messdaten und der 
probabilistischen Gauß-Prozess-Regression vorzunehmen. Das Vorwis-
sen kann als teilweise bekanntes physikalisches Modell oder als Steue-
rungsfunktion vorliegen.

Anwendungsbeispiele sind der Ultraschalldrahtbondprozess, verschie-
dene Pendelsysteme und ein Hexapod. Eine angepasste Bayessche 
Optimierung wird zur Identifikation einer Steuerparametrisierung für 
das Ultraschallbonden eingesetzt. Außerdem wird eine hybride Optimal-
steuerung für das Doppelpendel auf einem Wagen entwickelt und erfolg-
reich validiert. Für einen Hexapod zur Fahrzeugachsprüfung wird eine 
hybride Zustandslinearisierung formuliert und ein Funktionsnachweis im 
Rahmen einer Simulation erbracht. Die Einhaltung technischer Rahmen-
bedingungen und ein stabiles Systemverhalten werden durch probabilis-
tische Prädiktionen gewährleistet. In allen Anwendungsfällen wird eine 
Steigerung der Effizienz und Güte erzielt.
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