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Kurzfassung

Der computergestiitzte Entwurf akustischer Sensoren setzt realitatsnahe
akustische Materialmodelle sowie die Kenntnis bzw. die Identifikation
der Materialparameter dieser Modelle im entsprechenden Frequenzbereich
voraus. Zunehmend finden fiir den Aufbau von Ultraschallsensoren auch
Kunststoffe Anwendung, z.B. als Anpassschicht oder fiir das Gehéuse. Da
es bisher kein standardisiertes Messverfahren gibt, ergibt sich eine unsichere
Datenlage mit unvollstandigen Datensétzen der Materialparameter. Daher
ist es erforderlich ein Messverfahren zu entwickeln, das auf der Grundlage
realistischer Materialmodelle geeignet ist, die betreffenden Materialparame-
ter zu bestimmen. Neben der Identifikation ideal-elastischer Materialmodel-
le, ist insbesondere bei Polymeren die Schallabsorption mit zu bestimmen,
da diese Materialien eine nicht mehr vernachlassigbare Dampfung der
sich ausbreitenden Schallwellen aufweisen. Um die Schallabsorption cha-
rakterisieren zu konnen, werden viskoelastische Materialmodelle benotigt.
Gegenstand dieser Arbeit ist die Entwicklung eines wellenleiterbasierten
Messverfahrens und die Realisierung eines Messsystems zur Bestimmung
vollstandiger, konsistenter Materialparametersatze fiir plattenférmige, ho-
mogene Kunststoffproben auf Basis eines inversen Verfahrens.






Abstract

The computer-aided design of acoustic sensors requires realistic acoustic
material models as well as the knowledge or identification of the material
parameters of these models in the corresponding frequency range. Plastics
are increasingly being used in the construction of ultrasonic sensors, e.g. as
a matching layer or for the housing. Since there is currently no standardized
measurement method, there is an uncertain data situation with incomplete
data sets of the material parameters. Therefore, it is necessary to develop
a measurement method which is suitable for determining the relevant
material parameters based on realistic material models. In addition to
identifying ideally elastic material models, sound absorption must also be
determined, especially in the case of polymers, since these materials do
not have a negligible attenuation of the propagating sound waves anymore.
In order to characterize sound absorption, viscoelastic material models are
required. The subject of this work is the development of a waveguide-based
measurement method and the realization of a measurement system for
determining complete, consistent material parameter sets for plate-shaped,
homogeneous plastic samples based on an inverse method.

vii






Inhaltsverzeichnis

Vorwort

Kurzfassung

Abstract

Verzeichnis der verwendeten Abkiirzungen und Symbole

1 Einleitung

1.1 Motivation . . . . . . .. ...
1.2 Problemstellung . . . . . . . ... ... ... ..

2 Akustische Wellen in Festkorpern

2.1 Grundbegriffe der Festkorpermechanik . . . . . .. ..
2.1.1 Verzerrungstensor . . . . . . . . ... ... ...
2.1.2  Spannungstensor . . .. .. .. ... .. .. ..
2.1.3 Ubergang zur Voigtschen Notation . . . .. ..
2.1.4 Ebener Verzerrungszustand . . . .. .. .. ..
2.2 Materialverhalten . . . . . ... ... 0.
2.2.1 Ideal-elastisches Materialverhalten . . . . . . . .
2.2.2 Viskoelastisches Materialverhalten . . . . . . . .
2.2.3 Makromechanische Dampfungsmodelle . . . . .
2.3 Akustische Plattenwellenleiter . . . . . . . . . ... ..
2.4 Finite-Elemente-Methode . . . . . . . . ... ... ...
2.4.1 Herleitung der Integralgleichung . . . . . . . ..
2.4.2 Rayleigh-Dampfungsmodell in der FEM . . . .

3 Stand des Wissens

3.1 Inverses Problem . . . . . . .. . . . .. ... ... ....

vii

XXi

—_

YO U W W W

25
25

3.2 Messverfahren zur akustischen Materialparameterbestimmung 27

3.2.1 Mechanische Messverfahren . . . . .. ... .. ..
3.2.2 Ultraschallbasierte Messverfahren . . . . . . . . ..

27

X



Inhaltsverzeichnis

3.3 Déampfungsmodelle . . . . . ... ... .. L. 31
3.3.1 Das fraktionale Zener-Modell zur Modellierung von
Polymeren . . . . . . . . ... 32
3.3.2 Fraktionales Zener-Modell fiir Kompressions- und
Scherbewegungen . . . . . .. ... 37
3.4  Wellenleitersimulationsverfahren . . . . . . . . ... .. .. 40
4 Inverses Verfahren zur Identifikation elastischer Materialpa-
rameter 45
4.1 Losungsansatz . . . . . . . . . ... oo 45
4.2 Vorwartsmodell . . . . . ..o 47
4.2.1 Vereinfachung fiir isotrope Werkstoffe . . . . . . .. 50
4.2.2  Validierung des Vorwartsmodells . . . . . . . . .. 50
4.2.3 Konvergenz . . . . . ... ..o 52
4.3 Funktionalitdt und Aufbau des Messsystems . . . . . . . . 54
4.3.1 Laser . . . .. .. ... 55
4.3.2 Ultraschallwandler . . . . .. ... ... ... ... 56
4.4 Experimentelle Vorgehensweise . . . .. .. .. ... ... 59
4.5 Validierung von Dispersionsabbildungen an FEM-Simulation 62
4.6 Signalvorverarbeitung . . . . . . . .. ... 64
4.7 Reproduzierbarkeit der Messung . . . . . .. .. ... ... 71
4.8 Sensitivitdt der Schallgeschwindigkeiten . . . . . . . . . .. 74
4.9 Startwerte . . . . ... 78
4.9.1 Startwertbestimmung im Zeit-Ortsbereich . . . . . 78
4.9.2 Startwertbestimmung im Frequenz-Wellenzahlbereich 79
4.9.3 Vergleich der Startwertbestimmung . . . . . . . .. 80
4.10 Zielfunktion . . . . . .. ..o 81
4.10.1 Mittelwert der Bildpunkte . . . . . . ... .. ... 81
4.10.2 Kreuzkorrelationskoeffizient . . . . . . . ... . .. 83
4.10.3 Vergleich der Zielfunktionen . . . . . . . ... ... 85
4.11 Optimierung . . . . . . . . . ... . 85
4.12 Unsicherheitsbetrachtung . . . . . . . .. .. .. ... ... 86
4.12.1 Modellierung der Unsicherheitsbeitrage . . . . . . . 86
4.12.2 Messunsicherheiten der Schallgeschwindigkeiten durch
Monte-Carlo-Simulation . . . . . .. ... .. ... 89
4.13 Ergebnisse . . . . . . ..o 91
4.13.1 Aluminium . . . ... ... 94
4.13.2 PEEK . . . . .. ... 95
4133 PA6 . . .. 96
4134 PET . . . ... 97



Inhaltsverzeichnis

4.14 Identifikation richtungsabhéngiger Materialparameter . . . 97
4.14.1 Vereinfachung fiir orthotrope Werkstoffe . . . . . . 103
4.14.2 Auswertung am Beispiel faserverstiarkter Kunststoffe 104

5 Inverses Verfahren zur ldentifikation viskoelastischer Mate-

rialparameter 115
5.1 Berticksichtigung von Dampfung im Vorwartsmodell . . . . 116
5.2  Konvergenz unter Berticksichtigung von Dampfung . . . . 117
5.3 Bestimmung der modalen Dampfung aus Messdaten . . . . 121
5.3.1 Validierung an FEM-Simulationen . . . . . . . . .. 125
5.3.2 Reproduzierbarkeit der Dampfungsmessung . . . . 129
5.4 Parameterstudie viskoelastischer Materialparameter . . . . 131
5.5 Startwerte fiir Dampfungsparameter . . . . . . . . . .. .. 140
5.6 Vergleich verschiedener Optimierungsstrategien . . . . . . 145
5.6.1 Aspekte der Optimierung . . . . . ... ... ... 145
5.6.2 Beschreibung der Optimierungsstrategien . . . . . . 148
5.6.3 Vergleich der Optimierungsergebnisse . . . . . . . . 164

5.7 Plausibilitatsprifung der Ergebnisse im Transmissionsmess-
verfahren. . . . . .. .. Lo oo 167
5.8 Anwendung des Verfahrens auf Polyamid 6 . . . . . . . .. 171
6 Zusammenfassung und Ausblick 177
6.1 Zusammenfassung . . . . .. .. ... 177
6.2 Ausblick . . . ... 178
Literaturverzeichnis 181
A Anhang 203
A.1 Ebener Spannungszustand . . . . . ... .. .. ... ... 203
A.2 Herleitung der Rayleigh-Lamb-Gleichung . . . . . . .. .. 203
A.3 Erginzende Abbildungen . . . . . .. ... 207
A.3.1 Erginzende Abbildungen zu Abschnitt 4.12 . . . . 207
A.3.2 Ergdnzende Abbildungen zu Abschnitt 5.4 . . . . . 211

xi






Abbildungsverzeichnis

2.1

2.2

2.3

24

2.5

2.6

2.7
2.8

3.1

3.2

3.3

3.4

4.1
4.2
4.3
4.4
4.5

4.6
4.7

Elementare Modelle der Makromechanik: Hook, Newton,
Maxwell, Kelvin-Voigt . . . . . .. ... ... ... ...,
Zener-Modell . . . . ... ..o
Relaxation und Retardation bzw. Kriechen eines viskoelas-
tischen Werkstoffs (Zener-Modell) bei sprungformiger Be-
lastung, nach [GS15] . . . ... ... ... L.
Querschnitt eines Plattenwellenleiter . . . . . . . . .. ..
Symmetrisch und asymmetrisch schwingende Lamb-Moden
nach [DPVO7] . . . . ... ... ..o
Kreisfrequenzen und Kreiswellenzahlen symmetrischer und
asymmetrischer Moden einer 1 mm dicken PTFE-Platte . .
Lineare und quadratische eindimensionale Ansatzfunktionen
2D-Dreieckselement nach [Ste98] . . . . . . .. .. ... ..

Ausbreitungsgeschwindigkeit und Absorption bei Variation
des Parameters d . . . . . .. ... ...
Ausbreitungsgeschwindigkeit und Absorption bei Variation

Ausbreitungsgeschwindigkeit und Absorption bei Variation
VOIL Tg  + o v e e e e e e e e e e e
Verlustfaktor bei Variation der Modellparameter . . . . . .

Konzept des inversen Messverfahrens . . . . . .. . .. ..
Modell eines Plattenwellenleiters . . . . . . . . . .. .. ..
Vergleich der berechneten Kreisfrequenzen mit Disperse
[LP13] . . .
Konvergenz am Beispiel einer 5,45 mm-dicken PEEK-Platte,
Polynomordnung 2 . . . .. ... ... oL
Dispersionsdiagramm einer 5,45 mm-dicken PEEK-Platte
mit 123 Knoten und unterschiedlicher Polynomordnung . .
Messsystem nach [CMB16] . . . . .. ... ... ... ...
Schematischer Aufbau des piezoelektrischen Empfangswand-

lers [JCF22; CMB16] . . . ... ... ... ... ......

17
18
19

xiil



Abbildungsverzeichnis

Xiv

4.8
4.9
4.10
4.11
4.12

4.13
4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

Ubertragungsverhalten des Schallwandlers . . . . . . . .. 58
Vorgehensweise beim Messvorgang . . . . . . . . ... ... 60
Zeit- und ortsabhangige Signalmatrix . . . . . . .. .. .. 61
2D-Fourier-Transformation der Messsignalmatrix (PEEK) . 62
Dispersionsabbildung aus den Rohsignalen der In-plane-
Auslenkungen . . . . ... 63
Unverarbeitete Dispersionsabbildung . . . . . . . ... .. 64
Dispersionsabbildung ohne und mit Fensterung jedoch mit
Anwendung einer Gamma-Korrektur . . . . .. .. ... 66
Dispersionsabbildung nach Entfernung der Spaltenmittelwerte 69
Dispersionsabbildung nach spaltenweiser Normierung . . . 70
Dispersionsabbildung nach allen Vorverarbeitungsschritten
[JCH21] . . . . 71
Vergleich der sich ausbreitenden Moden an drei Messungen
an PEEK mit RGB-Codierung . . . . . . ... ... ... .. 73
Dispersionsdiagramm bei Anderung der Longitudinalwel-
lengeschwindigkeit am Beispiel einer PEEK-Platte . . . . . 76
Dispersionsdiagramm bei Anderung der Transversalwellen-
geschwindigkeit am Beispiel einer PEEK-Platte . . . . . . 76
Sensitivitdt der Kreisfrequenzen der zehn Moden niedrigster
Ordnung von der Longitudinalwellengeschwindigkeit . . . . 77
Sensitivitat der Kreisfrequenzen der zehn Moden niedrigster
Ordnung von der Transversalwellengeschwindigkeit . . . . 77
Schatzung der Longitudinal- und Transversalwellengeschwin-
digkeit im Zeit-Ortsbereich . . . . . . . ... ... ... .. 79
Schétzung der Longitudinal- und Transversalwellengeschwin-
digkeit im Frequenz-Wellenzahl-Bereich . . . . . . . .. .. 80

Mittelwert der Matrixwerte (Dispersionsabbildung) als Kos-
tenfunktion in Abhangigkeit der Schallgeschwindigkeiten . 82
Mittelwert der Matrixwerte (Dispersionsabbildung) als Kos-
tenfunktion in Abhéngigkeit von Kompressions- und Scher-
modul . . ... 83
Kreuzkorrelationskoeffizient in Abhangigkeit der Schallge-
schwindigkeiten am Beispiel einer Messung an einer PEEK-
Platte . . . . . . . . 84
Relative Haufigkeit der Longitudinalwellengeschwindigkeit
(PEEK) . . .. 90
Relative Haufigkeit der Transversalwellengeschwindigkeit

(PEEK) . . . . 90



4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

5.1

2.2

2.3

5.4

2.5

2.6

Abbildungsverzeichnis

Dispersionsabbildung einer Aluminium-Platte und simulativ

berechnetes Dispersionsdiagramm . . . . . . .. ... ... 92
Dispersionsabbildung einer PEEK-Platte und simulativ be-
rechnetes Dispersionsdiagramm . . . . . . . . .. .. ... 92
Dispersionsabbildung einer PA6-Platte und simulativ be-
rechnetes Dispersionsdiagramm . . . . . .. .. ... ... 93
Dispersionsabbildung einer PET-Platte und simulativ be-
rechnetes Dispersionsdiagramm . . . . . .. .. ... ... 93
Rotation der Probe . . . . . . . .. ... . 98
Vergleich zweier typischer Webmuster [Ehr06; JDW18] . . 105

Dispersionsabbildungen und berechnetes Dispersiondiagramm

der Probe mit Leinwandbindung (50:50) bei einem Dreh-
winkel von 45° . . . . . ..o 106
Dispersionsabbildungen und berechnetes Dispersiondiagramm

der Proben mit Koperbindung bei einem Drehwinkel von 45° 106
Elastizitatskoeffizienten der Einzelmessungen und mittels
Gleichung 4.22 berechneter Verlauf der Elastizitdtskoeffizi-
enten der Leinwandbindung (Faserverteilung 50:50) . . . . 108
Elastizitédtskoeffizienten der Einzelmessungen und mittels
Gleichung 4.22 berechneter Verlauf der Elastizitatskoeffizi-
enten der Képerbindung (Faserverteilung 50:50) . . . . . . 109
Elastizitatskoeffizienten der Einzelmessungen und mittels
Gleichung 4.22 berechneter Verlauf der Elastizitdtskoeffizi-
enten der Képerbindung (Faserverteilung 80:50) . . . . . . 110
Berechnete Elastizitatskoeffizienten Cyy und Cas . . . . . . 111

Konvergenz der Kreiswellenzahl mit Polynomordnung 1 un-
ter Annahme frequenzabhéangiger, komplexer Materialpara-
meter. . . . . ... 118
Konvergenz der Dampfung mit Polynomordnung 1 unter
Annahme frequenzabhéngiger, komplexer Materialparameter 119
Konvergenz der Kreiswellenzahl mit Polynomordnung 2 un-
ter Annahme frequenzabhangiger, komplexer Materialpara-

Konvergenz der Démpfung mit Polynomordnung 2 unter
Annahme frequenzabhéangiger, komplexer Materialparameter 120
Schematische Darstellung der Aufteilung der Messdaten
entlang der Propagationsstrecke nach [JCH21] . . . . . . . 122

Approximierte Werte « fir jedes Frequenz-Wellenzahl-Paar 123

XV



Abbildungsverzeichnis

xXvi

5.7

0.8

2.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19
5.20

5.21

5.22

5.23

Approximierte Werte « fiir jedes Frequenz-Wellenzahl-Paar
mit Rechteck-Filterung um die ausbreitungsfihigen Moden 124
Dispersionsabbildungen der jeweiligen Abschnitte nach Ab-
bildung 5.5 bei verschiedenen mittleren Anregungspositionen

Aus transienter FEM-Simulation bestimmte Dampfung o . 127
Zugehorige Frequenz-Wellenzahl-Paare berechnet mit der
SAFE-Methode . . . . . . . . ... ... ... ... ... 127
Dispersionsabbildung und extrahierte Modenpunkte . . . . 128
Déampfung an den in Abbildung 5.11 extrahierte Moden-
punkte und den mittels SAFE berechneten Imaginérteilen

der Kreiswellenzahl . . . . . . .. ... ... ... ... . 128
Reproduzierbarkeit der modalen Dampfung dreier Messun-
genan PEEK . . .. ... oo o000 130
Imaginirteil der Kreiswellenzahl bei Anderung von
Kompressions- und Schermodul sowie der Verhéaltnisse der
Zeitkonstanten . . . . . ... ... 135
Imaginérteil der Kreiswellenzahl bei Anderung der Relaxa-
tionszeitkonstanten und Ableitungsordnungen . . . . . . . 136
Realteil der Kreiswellenzahl bei Anderung von Kompressions-

und Schermodul sowie der Zeitkonstanten-Verhéaltnisse . . 137
Verhéltnis von Imaginar- zu Realteil der Kreiswellenzahlen

bei Anderung von Kompressions- und Schermodul sowie der
Zeitkonstanten-Verhaltnisse . . . . .. . . .. ... .. .. 138
Verhéltnis Imaginérteil /Realteil der Kreiswellenzahl bei An-
derung der Relaxationszeitkonstanten und Ableitungsord-
NUNEEIL .« o v o e e e et e e e e e e e e 139
Detektierte Moden aus der Messung sowie deren Dampfung 143
Berechnete Dampfung unter Verwendung der optimalen Ma-
terialparameter nach Tabelle 5.6 im Vergleich zur Dampfung

aus der Messung . . . . . . ... 150
Berechneter Realteil der Kreiswellenzahlen unter Nutzung

der bestimmten Materialparameter nach dem letzten Opti-
mierungsschritt aus Tabelle 5.6 . . . . . .. ... ... .. 150
Konvergenz der Materialparameter bei schrittweiser Opti-
mierung der einzelnen Parameter . . . . . . .. .. .. .. 152
Dampfung aus Messung, Simulation unter Verwendung der
Startwerte und unter Verwendung der bestimmten Parame-

ter im ersten Iterationsschritt nach Tabelle 5.8 . . . . . . . 154



5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32
2.33
5.34
2.3
5.36

5.37

5.38

5.39

Al

A2

Abbildungsverzeichnis

Déampfung nach Optimierung der Scherparamter, Kosten-
funktion nach Gleichung 5.18 im Vergleich zum vorherigen
Optimierungssschritt und der Dampfung aus der Messung 155
Démpfung nach Optimierung von 74, und ax, Kostenfunk-
tion nach Gleichung 5.18 . . . . . . . . ... .. ... ... 156
Déampfung unter Nutzung der identifizierten Materialpara-
meter nach dem letzten Optimierungsschritt aus Tabelle 5.8 157
Realteil der Kreiswellenzahlen unter Nutzung der bestimm-
ten Materialparameter nach dem letzten Optimierungs-

schritt aus Tabelle 5.8 . . . . . .. ... ... ... ... 158
Konvergenz der Dampfungsparameter wahrend Optimie-
rungsverfahren 2 . . . . . ... 0oL 159

Déampfung unter Nutzung der resultierenden Materialpara-
meter nach dem letzten Optimierungsschritt aus Tabelle 5.10 161
Realteil der Kreiswellenzahlen unter Nutzung der resultie-
renden Materialparameter nach dem letzten Optimierungs-
schritt aus Tabelle 5.10 . . . . . .. .. ... .. ... ... 162
Konvergenz des zweiten und dritten Optimierungsschritts.
Die Konvergenz des ersten Optimierungsschritts ist Abbil-
dung 5.28a zu entnehmen. . . . . . .. ... ... 163
Frequenzabhéngige Schallgeschwindigkeit und Absorption
unter Annahme der Optimierungsergebnisse von PEEK . . 165

Aufbau des Transmissionsmessplatzes [Baul6] . . .. . .. 168
Blockschaltbild des Messsystems . . . . . . . .. .. .. .. 168
Normiertes Sendesignal . . . . . .. .. ... ... ... .. 169
Mess- und Simulationssignale unter Annahme der identifi-

zierten viskoelastischen Materialparameter . . . . . . . .. 170

Déampfung aus der Messung an PA6 und der Dampfung
berechnet unter Verwendung der identifizierten Materialpa-
rameter . ... L. L 172
Dispersionsabbildung der Messung an PA6, daraus extra-
hierte Moden und Dispersionsdiagramm berechnet unter

Verwendung der identifizierten Materialparameter . . . . . 172
Frequenzabhéngige Schallgeschwindigkeit und Absorption
unter Annahme des Optimierungsergebnisses von PA6 . . . 174

Relative Haufigkeit der Longitudinalwellengeschwindigkeit

von PAG . . . . .. 208
Relative Haufigkeit der Transversalwellengeschwindigkeit
von PAG . . . ... 208

xvii



Abbildungsverzeichnis

A3

A4

A5

A6

AT

xXviii

Relative Haufigkeit der Longitudinalwellengeschwindigkeit
von PET . . . . ..o o
Relative Haufigkeit der Transversalwellengeschwindigkeit
von PET . . . . .. . o
Relative Haufigkeit der Longitudinalwellengeschwindigkeit
von Aluminium . . . .. .. ...
Relative Haufigkeit der Transversalwellengeschwindigkeit
von Aluminium . . . . .. ... oL
Realteil der Kreiswellenzahl bei Anderung der Relaxations-
zeitkonstanten sowie der Ableitungsordnungen . . . . . . .



Tabellenverzeichnis

3.1

4.1
4.2

4.3

4.4

4.5

4.6

5.1

5.2

2.3
5.4

2.5

2.6

5.7

2.8

2.9

5.10

Segmente des Dispersionsverhaltens des fraktionalen Zener-
Modells nach [HN11] . . . .. ... ... ... . ... ...

Identifizierte effektive Schallgeschwindigkeiten . . . . . . .
Vergleich der identifizierten Schallgeschwindigkeiten von
Aluminium mit ausgewéhlten Literaturangaben . . . . . .
Vergleich der identifizierten Schallgeschwindigkeiten von
PEEK mit ausgewahlten Literaturangaben . . . . . . . ..
Vergleich der identifizierten Schallgeschwindigkeiten von
PA6 mit ausgewahlten Literaturangaben . . . . .. .. ..
Vergleich der identifizierten Schallgeschwindigkeiten von
PET mit ausgewahlten Literaturangaben . . . . . . . . ..
Identifizierte Elastizitdtskoeftizienten [JWD19] . . . . . ..

Arbeitspunkt der Konvergenzuntersuchung unter Annahme
eines fraktionalen Zener-Modells . . . . . . . . .. .. ...
In der FEM-Simulation (CFS++) angenommene viskoelas-
tische Materialparameter . . . . . . . . . . ... ... ...
Materialparameter im verwendeten Arbeitspunkt . . . . .
Auswirkungen bei Erhohung der Parameter auf die komple-
xen Kreiswellenzahlen . . . . .. .. ... ... ... ...
Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen und Moden bei Verfahren 1 . . . . . . . . ...
Identifizierte viskoelastische Materialparameter nach schritt-
weiser Optimierung aller Parameter (Verfahren 1) . . . . .
Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen bei Verfahren 2 . . . . . . . ... ... .. ...
Mittels Verfahren 2 identifizierte viskoelastische Material-
parameter . . . . . .. ..o Lo
Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen und Moden bei Verfahren 3 . . . . . .. .. ..
Mittels Verfahren 3 identifizierte viskoelastische Material-
parameter . . . . . .. ...

Xix



Tabellenverzeichnis

5.11 Zusammenfassung der identifizierten viskoelastischen Mate-

rialparameter . . . . . ... ...
5.12 Zusammenfassung der identifizierten viskoelastischen Mate-

rialparameter fir PA6 . . . . . . ...

XX



Verzeichnis der verwendeten
Abkiirzungen und Symbole

Abkiirzungen
Abkiirzung Bedeutung
BOBYQA Bound optimization by quadratic approximation
COBYLA Constrained optimization by linear approximation
DMA Dynamisch-Mechanische-Analyse
el Element
FT Fourier-Transformation
FEM Finite-Elemente-Methode
PAG6 Polyamid 6
PEEK Polyetheretherketon
PET Polyethylenterephthalat
PTFE Polytetrafluorethylen
SAFE Semi-analytische Finite-Elemente-Methode
SBFEM Scaled Boundary Finite-Elemente-Methode
SNR Signal-zu-Rausch-Verhéltnis (signal-to-noise ratio)
2D Zweidimensional

Mathematische Symbole und Konventionen

Symbol Bedeutung

argmin Argument zur Minimierung des Ausdrucks
cos (1) Kosinus von z

j Imaginare Einheit

lim Grenzwert

Re{z} Realteil der komplexen Grofle x

xxi



Verzeichnis der verwendeten Abkiirzungen und Symbole

Symbol Bedeutung

Im{x} Imaginarteil der komplexen Zahl x

sin () Sinus von x

tan (x) Tangens von x

T Matrix

[x] Tensor

! Hermite Matrix

xt Transponierte Matrix

x ! Inverse Matrix

zt Moore-Penrose-Pseudoinverse

x Stichprobenmittelwert

Tij Element in Zeile 4, Spalte j der Matrix a
#x Anzahl von z

T, & Erste bzw. zweite zeitliche Ableitung von x

Divergenz eines Vektorfeldes
Gradient eines Skalarfeldes

V X x, rot(z) Rotation eines Vektorfeldes
JAN Laplace-Operator

€ Ist Element aus

I1 Produkt

by Summe
Formelzeichen

Lateinische Buchstaben

Zeichen Einheit  Bedeutung

a Fraktionale Ableitungsordnung

ag Fraktionale Ableitungsordnung der Kom-
pressionskomponenten

ay, Fraktionale Ableitungsordnung der Scher-
komponenten

A kg s> Matrix ~ zum  Losen  des
Eigenwertproblems

Ay m? Amplitude des Sinusanteils des Skalarpoten-

tials

xxii



Zeichen Einheit Bedeutung

At m? Amplitude des Sinusanteils des Vektorpo-
tentials

b Beobachtungen/Wirkungen

bo Mes Unverarbeitete Messdaten (Beobachtung)

b es Verarbeitete Messdaten (Beobachtung)

bsim Modellausgang /Simulationsdaten

B kgms=?  Matrix zum  Losen des  SAFE-
Eigenwertproblems

B m~! Réaumliche Differentialoperatormatrix in der
FEM

B, m~! Réaumliche Differentialoperatormatrix ortho-
gonal zur Ausbreitungsrichtung (SAFE)

B Réaumliche Differentialoperatormatrix in
Ausbreitungsrichtung (SAFE)

By, m? Amplitude des Kosinusanteils des Skalarpo-
tentials

Br m? Amplitude des Kosinusanteils des Vektorpo-
tentials

C Pa Elastizitdtsmatrix

([C] Pa Elastizitédtstensor

C Pa Komplexe Elastizitatsmatrix

C Pa Vektor der Elastizitatskoeffizienten (Aniso-
tropie)

c ms? Schallgeschwindigkeit

Co ms ! Statische Schallgeschwindigkeit

Cy Pa Elastizitatsmatrix eines finiten Elements

CGr ms ! Gruppengeschwindigkeit

Cij Pa Elastizitatskoeffizient (Element der Elastizi-
tatsmatrix, Zeile i, Spalte j)

cL ms* Longitudinalwellengeschwindigkeit

CLo ms! Statische Longitudinalwellengeschwindig-
keit

ClLo. ms! Longitudinalwellengeschwindigkeit fiir f —
00

L ms~! Komplexe Longitudinalwellengeschwindig-

keit

xxiii



Verzeichnis der verwendeten Abkiirzungen und Symbole

Zeichen Einheit Bedeutung

éortho Pa Vektor der Elastizitatskoeffizienten (Ortho-
tropie)

CpPh ms! Phasengeschwindigkeit

Coio Pa Elastizitatsmatrix fiir den ebenen Span-
nungszustand

CR ms ! Rayleigh-Wellengeschwindigkeit

C.ot Pa Elastizitatsmatrix nach rdumlicher Rotation

Crot Pa Vektor der Elastizitatskoeffizienten (Aniso-
tropie) nach raumlicher Rotation im ebenen
Verzerrungszustand

Crot,ges Pa Vektor zusammengesetzt aus den Einzel-
vektoren mit Elastizitdtskoeffizienten nach
raumlicher Rotation unterschiedlicher Win-
kel 6

Crot,ortho Pa Vektor der rotierten Elastizitatskoeflizien-
ten (Orthotropie) im ebenen Verzerrungszu-
stand

Crotorthople  Pa Elastizitatsmatrix (orthotrop) nach raum-
licher Rotation im ebenen Verzerrungszu-
stand

Crot,ortho,ges Pa Enthalt die Vektoren Cpotortno fiir unter-
schiedliche Winkel 6

Clrotple Pa Elastizitdtsmatrix nach Rotation fir den
ebenen Verzerrungszustand

cr ms! Transversalwellengeschwindigkeit

Cr ms~! Komplexe Transversalwellengeschwindigkeit

cT, ms! Statische Transversalwellengeschwindigkeit

cT., ms? Transversalwellengeschwindigkeit fiir f —
00

d Zeitkonstanten-Verhaltnis

dg Zeitkonstanten-Verhaltnis der Kompressi-
onskomponenten

d, Zeitkonstanten-Verhéltnis der Scherkompo-
nenten

D Nsm™! Dampfungsmatrix

D, Nsm™* Dampfungsmatrix eines finiten Elements

D; Projektionsmatrix

XXiv



Zeichen Einheit Bedeutung

e Eulersche Zahl

E Pa Elastizitatsmodul

Ey, Es, Ey Pa Richtungsabhangiger Elastizitatsmodul

E71, Ezs Pa Elastizitdtsmodul (Zener-Modell)

Eg. Nm Elastische Dehnungsenergie (potenzielle
Energie)

By Nm Kinetische Energie

f Hz Frequenz

fab Hz Abtastfrequenz

fi Hz Resonanzfrequenz der i-ten Resonanzstelle

Iy Hz Nyquistfrequenz

Af Hz Frequenzschrittweite

Af; Hz Halbwertsbreite der i-ten Resonanzkurve

g (t) Impulsantwort

gev (1) Impulsantwort des Empfangsverstérkers

gew (t) Impulsantwort des Empfangsschallwandlers

gp (1) Impulsantwort der Probe

gsv (%) Impulsantwort des Sendeverstarkers

gsw (1) Impulsantwort des Sendeschallwandlers

Gsystem (1) Impulsantwort des Messsystems

G (t) Pa Relaxationsmodul

G’ Pa Speichermodul

G” Pa Verlustmodul

G (w Frequenzantwort

G (w) Pa Komplexer Modul

G7 (w) Pas Relaxationsmodul im Frequenzbereich

h(t) Sprungantwort

J (1) Pa~! Kriechnachgiebigkeit

J Jacobi-Matrix

k m~! Kreiswellenzahl (in Ausbreitungsrichtung)

k m ! Wellenzahl in Ausbreitungsrichtung (& =
Re{k}/ (2m))

K Pa Kompressionsmodul (statisch)

K Nm™2 Globale FEM-Steifigkeitsmatrix

K, Nm™ Globale SAFE-Steifigkeitsmatrix (Beschrei-

bung der Dickenrichtung)

XXV



Verzeichnis der verwendeten Abkiirzungen und Symbole

Zeichen Einheit Bedeutung

K, Nm™! Globale SAFE-Steifigkeitsmatrix (Beschrei-
bung der Kopplung zwischen Dicken- und
Ausbreitungsrichtung)

K N Globale SAFE-Steifigkeitsmatrix (Beschrei-
bung der Ausbreitungsrichtung)

Ko Pa Kompressionsmodul fiir w — oo

K Nm™2 Lokale FEM-Steifigkeitsmatrix eines finiten
Elements

K. Nm~—2 Lokale SAFE-Steifigkeitsmatrix eines fini-
ten Elements (Beschreibung der Dickenrich-
tung)

K, Nm™! Lokale SAFE-Steifigkeitsmatrix eines finiten
Elements (Beschreibung der Kopplung zwi-
schen Dicken- und Ausbreitungsrichtung)

K;. N Lokale SAFE-Steifigkeitsmatrix eines finiten
Elements (Beschreibung der Ausbreitungs-
richtung)

kt, m~! Ursprungsgerade im Dispersionsdiagramm (
kL = w / CL)

kLy, krL m~! Kreiswellenzahl in Ausbreitungsrichtung fir
Longitudinal- bzw. Transversalwellen

KMes m~! Kreiswellenzahl aus Messung

ksim m~! Kreiswellenzahl aus Simulation

L m Lénge eines finiten Elements

L m~! Ortliche Differentialoperatormatrix

Ly, m Abstand zwischen zwei Knoten

IKer m Lange der streifenformigen Piezokeramik

L,,. m~! Ortliche Differentialoperatormatrix fiir den
ebenen Verzerrungszustand (plane strain)

L, m~! Ortliche Differentialoperatormatrix fiir den
ebenen Spannungszustand (plane stress)

M kg Globale FEM-Massematrix

M, kg FEM-Massematrix eines finiten Elements

N; Zum Knoten i gehorige Ansatzfunktion

N Matrix der Ansatzfunktionen

N Anzahl

Ndisp Anzahl der Abschnitte

XXVI



Zeichen Einheit

Bedeutung

Ran,ges

Rort ho

Rort ho,ges

Ry

T

S m?N-!
Spl,a m2N—!

Polynomordnung der Ansatzfunktionen
(FEM)

Abkiirzung (Gleichung 2.17)
Parametervektor

Startwertvektor

Parameter im Arbeitspunkt
Parametervektor bei Iteration ¢
Parametervektor am Ende der Optimierung
Parametervektor der Kompressionsparame-
ter

Parametervektor der Dampfungsparameter
Parametervektor der Kompressionsparame-
ter

Eigenvektor zum Losen des SAFE-
Eigenwertproblems

Abbildungsvorschrift

Rotationsmatrix, beschreibt den Zusammen-
hang zwischen Elastizitatskoeffizienten nach
rdaumlicher Rotation im ebenen Verzerrungs-
zustand und den urspriinglichen Koeffizien-
ten der 6 x 6-Elastizitdtsmatrix unter An-
nahme von Anisotropie

Enthélt die Matrizen R,, fiir unterschiedli-
che Winkel 6 (Anisotropie)
Rotationsmatrix, beschreibt den Zusammen-
hang zwischen Elastizitatskoeffizienten im
ebenen Verzerrungszustand nach raumlicher
Rotation und den urspriinglichen Koeffizi-
enten der 6 x 6-Elastizitdtsmatrix unter An-
nahme von Orthotropie

Enthéalt die Matrizen R o fir unterschied-
liche Winkel 6 (Orthotropie)
Rotationsmatrix

Fensterparameter (Tukey)

Elastische Nachgiebigkeitsmatrix
Elastische Nachgiebigkeitsmatrix fiir den
ebenen Spannungszustand

XXVii



Verzeichnis der verwendeten Abkiirzungen und Symbole

Zeichen Einheit Bedeutung

SGauss A% Stichprobenstandardabweichung des additi-
ven Messrauschens

t S Zeit

th m Plattendicke

Thye, m Dicke der Piezokeramik

At s Zeitschrittweite

u \Y Elektrische Spannung

Uin, Mes A% Elektrische Eingangsspannung des Transmis-
sionsmesssystems (Sendesignal)

Uin,Sim \% Sendesignal in Simulation der Transmissi-
onsmesssystems

Uout, Mes A% Elektrische Ausgangsspannung des Trans-
missionsmesssystems (Empfangssignal)

U (w, k) Vsm Wert der 2D-Fouriertransformation

Up (w, k) Wert der verarbeiteten 2D-
Fouriertransformation

UGauss A% Stichprobenmittelwert der Rauschsignale

1% m? Volumen

Va m? Rechengebiet /Volumen eines finiten Ele-
ments

v; Eigenvektor i (der Elastizitatsmatrix)

WKer m Breite der streifenférmigen Piezokeramik

Wy m Ortliche Breite eines Auswerteintervalls

1, To, T3 Koordinaten

T, Y, 2 Koordinaten

Y m Ortskoordinate

Y, m Mittlere Position des i-ten Auswerteinter-
valls

Ym m Mittlere Position eines Auswerteintervalls

A Q Impedanz

Griechische Buchstaben

Zeichen Einheit  Bedeutung
« m~! Déampfung (o« = — Im{k})
Qg Dampfungsparameter

XXViil



Zeichen Einheit

af m
K S
QM g1
N

5

TK

T

Trep

FKor

) rad
tan o

5eT m
SEN m
€

€k

Eple

Epl,cr

€Im, €V

n

n Pas
9 o

L

K

A Pa
A m
)\La Pa
7 Pa
H12, K23, f431 Pa
Moo Pa
v

Bedeutung

Déampfung unter Freiraumbedingungen (Ab-
sorption)

Steifigkeitproportionaler Rayleigh-
Parameter

Massenproportionaler Rayleigh-Parameter
Anzahl der Knoten pro Wellenldnge
Dampfungsmodellterm
Démpfungsmodellterm der Kompressions-
komponenten

Déampfungsmodellterm der Scherkomponen-
ten

Gamma-Expansion Exponent (I'gy, > 1)
Gamma-Korrektur Exponent (I'gor < 1)
Verlustwinkel

Verlustfaktor

Testfunktion

Testfunktion

Mechanische Dehnung

Konstante mechanische Dehnung
Mechanischer Dehnungsvektor fiir den ebe-
nen Verzerrungszustand

Mechanischer Dehnungsvektor fiir den ebe-
nen Spannungszustand

Kostenfunktion /Zielfunktion

Lokale Variable

Dynamische Viskositat

Drehwinkel

Lokale Variable

Verhéltnis cr,/cr

Eigenwert der Elastizitatsmatrix
Wellenlénge

Erste Lamé-Konstante

Zweite Lamé-Konstante/ Schermodul
Richtungsabhéngiger Schermodul
Schermodul fiir w — 0o

Poissonzahl, Querkontraktionszahl (Isotro-

pie)

XXix



Verzeichnis der verwendeten Abkiirzungen und Symbole

Zeichen Einheit Bedeutung

Vij Poissonzahl mit x; als Beanspruchungsrich-
tung und z; als Querdehnungsrichtung

1S m Mechanische Verschiebung

3 m Vektor der mechanischen Verschiebungen

3 m Vektor der nodalen Verschiebungen je fini-
tem Element

= m Globaler Vektor der mechanischen Verschie-
bungen (FEM)

= m Globaler Amplitudenvektor mechanischen
Verschiebungen (SAFE)

Eole m Mechanische Verschiebung fiir den ebenen
Verzerrungszustand

Eolo m Mechanische Verschiebung fiir den ebenen
Spannungszustand

s Kreiszahl

w cos (0)

P kg m 3 Dichte

Pel kgm 3 Dichte eines finiten Elements

o Nm™2 Mechanische Spannung

o) Nm~2 Konstante mechanische Spannung

Ople Nm™ Mechanischer Spannungsvektor fiir den ebe-
nen Verzerrungszustand

Oplo Nm™2 Mechanischer Spannungsvektor fiir den ebe-
nen Spannungszustand

S sin (6)

T s Verschiebezeit

Te S Retardationszeitkonstante

Tex s Retardationszeitkonstante der Kompressi-
onskomponenten

Teo s Retardationszeitkonstante der Scherkompo-
nenten

Ty S Relaxationszeitkonstante

Tox s Relaxationszeitkonstante der Kompressions-
komponenten

o, S Relaxationszeitkonstante der Scherkompo-
nenten

T Sensitivitét

XXX



Zeichen Einheit Bedeutung

P m? Skalarpotential
U m? Vektorpotential
w Hz Kreisfrequenz

XXX1






1 Einleitung

1.1 Motivation

In dem Bestreben Designprozesse akustischer Komponenten nachhaltig
und ressourcenschonend zu gestalten (und auf den Bau von Prototypen zu
verzichten), werden zunehmend Simulationen eingesetzt. Voraussetzung fiir
realitdtsnahe Simulationen ist die Kenntnis akustischer Materialparameter
z.B. Schallgeschwindigkeiten oder die Koeffizienten der Elastizitatsma-
trix. Vollstandige Materialdatenséatze sind jedoch héaufig nicht verfiigbar.
Angegebene Materialdaten sind in der Regel quasistatisch bestimmt und
lassen sich nur bedingt auf den hoherfrequenten Bereich tibertragen, da die
Materialparameter eine Frequenzabhéngigkeit aufweisen und zusatzlich die
akustische Démpfung im Material berticksichtigt werden muss. Beides gilt
besonders fiir Polymere, wobei hier auch der Herstellungsprozess einen nicht
zu vernachlidssigenden Einfluss hat. Da Polymere z.B. als Anpassschichten
oder Vorlauf-Keile bei der Entwicklung akustisch aktiver Komponenten
zum Einsatz kommen, ist die Kenntnis der akustischen Materialparameter
im hoherfrequenten Bereich essenziell. Ein Messverfahren zur Bestimmung
der Materialparameter im hoherfrequenten Bereich ist daher notwendig.
Hier ermoglicht der Einsatz eines Messverfahrens basierend auf akustischer
Wellen zudem eine zerstorungsfreie Untersuchung des Materialverhaltens,
sodass zuséatzlich Eigenschaftsdnderungen beobachtet werden kénnen.

Im Rahmen dieser Arbeit wird ein solches Messverfahren basierend
auf gefithrten akustischen Wellen in Platten entwickelt, da Platten als
Halbzeug aus unterschiedlichen Werkstoffen leicht verfiigbar sind. Dabei
werden sowohl ideal-elastische Materialparameter bestimmt, als auch ein
Ansatz zur Bestimmung von Dampfungsparametern zur Beschreibung des
frequenzabhéngigen Verhaltens vorgestellt.

1.2 Problemstellung

Aufgrund der Uberlagerung von akustischen Longitudinal- und Transver-
salwellen in Festkorpern, und insbesondere durch die Randbedingungen in
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Platten, lasst sich aus den Messungen die Messgrofie nicht direkt ableiten.
Dazu wird ein inverses Verfahren benotigt, um mittels Optimierung die
Materialparameter zu variieren, um das Verhalten eines Simulationsmo-
dells an das reale System anzupassen. Die optimierten Materialparameter
stellen die Messergebnisse dar. Zur Realisierung des inversen Verfahrens
sind neben dem Experiment auch effiziente, numerische Simulationen sowie
der Einsatz geeigneter Optimierungsstrategien notwendig. Insbesondere
soll auf folgende Fragestellungen eingegangen werden:

I. Wie konnen akustische Wellen in Platten angeregt und detektiert
werden?

II. Wie miissen die Messsignale zur Analyse der sich ausbreitenden Wellen
verarbeitet werden?

III. Welche Methoden konnen zur effizienten Simulation der Wellenaus-
breitung in Platten verwendet werden?

IV. Wie konnen Mess- und Simulationsdaten quantitativ miteinander
verglichen werden?

V. Welche Optimierungsstrategie kann zur Bestimmung der elastischen
Materialparameter verwendet werden?

VI. Wie kann die Unsicherheit der resultierenden Materialparameter
bestimmt werden?

Insbesondere Polymere weisen eine hohe Démpfung und damit stark fre-
quenzabhédngige Materialeigenschaften auf. Das Messverfahren soll daher
zur Bestimmung der Parameter eines physikalisch motivierten, kausa-
len Dampfungsmodells erweitert werden. Im Kontext der Identifikation
der Dampfungsparameter sollen die folgenden Fragestellungen behandelt
werden:

VII. Wie kann die gedampfte, akustische Wellenausbreitung modelliert,
parametrisiert und simuliert werden?

VIII. Kann aus den Messsignalen auf die akustische Dampfung geschlossen
werden?

IX. Wie muss die Optimierungsstrategie zur Bestimmung von Dampfungs-
parametern erweitert werden?



2 Akustische Wellen in
Festkorpern

In diesem Kapitel werden die Grundlagen akustischer Wellenausbreitung
in Festkorpern dargelegt, die fiir das Verstandnis der aufzunehmenden
Messdaten wichtig sind. Zur Bestimmung von Materialparametern sind
diese zunéchst zu definieren. Eine realitdtsnahe Abbildung des Materialver-
haltens setzt ein physikalisch-basierendes mathematisches Materialmodell
voraus, welche je nach Material ideal- oder viskoelastisches Verhalten
aufweist. Zur numerischen Simulation der sich in Festkérpern ausbreiten-
den akustischen Wellen ist die Finite-Elemente-Methode weit verbreitet,
weshalb hier Einblick in dieses Verfahren gewédhrt wird.

2.1 Grundbegriffe der Festkorpermechanik

In diesem Abschnitt werden die elementaren Bestandteile des Hookschen
Gesetzes zundchst in Tensornotation definiert. Aufgrund der Mehrdimensio-
nalitdt, insbesondere des werkstoffcharakterisierenden Elastizitétstensors,
sowie der Symmetrien der Tensoren lassen sie sich einfacher als Vektoren
bzw. Matrizen schreiben. Die am meisten genutzte Variante ist die Voigt-
sche Notation. Alternativ sei noch die Mandel-Notation [Bral8] erwéihnt,
die hier nicht weiter betrachtet wird.

2.1.1 Verzerrungstensor

Die Deformation eines Festkorpers im Raum kann durch die mechanische
Teilchenverschiebung & ausgedriickt werden.
Die o6rtliche Anderung der Verschiebung wird als mechanische Dehnung
bzw. Verzerrung
_ 0§

€ii oz’
KA

ie{1,2,3} (2.1)

angegeben.



2 Akustische Wellen in Festkérpern

Neben den Dehnungen entlang der Hauptachsen treten im dreidimen-
sionalen Festkorper ebenfalls Schub- bzw. Scherdehnungen ¢;;, (i # j) auf:
[LSW09; Aul90b):

L9

ij 6:6, ’

Zusammengefasst ergibt sich der Verzerrungstensor nach [MH13; Aul90b]
Al

9&i
251‘]‘ = 5

P4 (2.2)

- €11 2e12 2¢e13
[e] = [V£+ (V§) } = | 2e01 €22 2e03| . (2.3)
2e31 2e32 €33

Mit Gleichung 2.2 ergibt sich, dass ¢;; = €;; gilt und somit der Verzerrungs-
tensor aus Gleichung 2.3 symmetrisch sein muss.

2.1.2 Spannungstensor

Der mechanische Spannungstensor

011 012 013
o] = [o21 022 02 (2.4)
031 032 033

ist unter Annahme linearer Elastizitidt mit dem Verzerrungstensor [g] iiber
den Elastizitatstensor [C] durch das Hookesche Gesetz

o] = [C][e] (2.5)

verbunden. Mithilfe des Momentengleichgewichts lasst sich die Symme-
trie des Spannungstensors beweisen [Raul2]. Somit ergibt sich tber Glei-
chung 2.5 der Elastizitdtstensor [C] als symmetrischer Tensor 4. Stufe.

2.1.3 Ubergang zur Voigtschen Notation

Aufgrund der Symmetrie des Verzerrungs- [€], Spannungs- [o] und Elastizi-
tatstensors [C] lassen sich die Tensoren kompakt als Vektoren und Matrix
schreiben. Die gebréuchlichste Schreibweise ist die Notation nach Voigt
[Voi66], mit der die Spannungs- und Verzerrungstensoren als Vektoren

T
0':<011 022 033 023 013 012 ) s (2-6)

T
62(511 €99 £33 2823 2513 2512 ) (27)



2.1 Grundbegriffe der Festkorpermechanik

sowie der Elastizitatstensor als Elastizitatsmatrix

Cll 012 013 014 C’15 C{16
C 29 C 23 024 025 026
CV33 CV34 035 036

C = 2.8
Cu Cis Cug (28)
sym. Css  Csg
Cés
dargestellt werden konnen. Die Inverse der Elastizitatsmatrix
S=cCc (2.9)

wird als Nachgiebigkeitsmatrix bezeichnet. Zur kompakten Darstellung von
Gleichung 2.3 in Voigtscher Notation kann eine Differentialoperatormatrix
L, die die ortlichen Ableitungen nach den jeweiligen Raumrichtungen x;
enthélt, definiert werden, sodass sich Gleichung 2.3 zu

&1 €11 8/8951 0 0
€2 £929 0 (9/(99(:2 0 f
€3 . €33 . 0 0 8/8x3 51 (2 10)
@23 - 2823 - 0 8/8$3 8/6@ 2 .
@13 2613 8/83?3 0 8/8;1:1 \Ei_,
O 219 0/0xy 0/0xy 0 3

€ L

ergibt [Ste98].

2.1.4 Ebener Verzerrungszustand

Beschrankt sich die Schwingungs- und Ausbreitungsrichtung der Wellen
auf eine zweidimensionale Ebene, wie es z.B. bei Lamb-Wellen in der
Querschnittsfliche der Platte (vgl. Abschnitt 2.3) der Fall ist, gibt es zwei
mogliche Vereinfachungen: Der ebene Verzerrungs- (plane strain) und der
ebene Spannungszustand (plane stress). Ersteres nimmt alle Verzerrungs-
komponenten in eine bestimmte Raumrichtung, die keinen Einfluss auf
die zu modellierende Wellenausbreitung haben, z.B. in x3-Richtung, zu
Null an, sodass ;3 = 0 Vi € {1,2,3} zu Null werden. Dies entspricht
der Annahme, dass der Korper in x3-Richtung gegentiber den anderen
Raumrichtungen sehr weit ausgedehnt [KHL07] wie beispielsweise bei der
Berechnung von Lamb- bzw. Lamb-artigen Moden ist. Das Hookesche
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Gesetz aus Gleichung 2.5 vereinfacht sich in Voigtscher Notation damit zu

o11 Cin Cia Cig €11
O22 | = Oy Oy €2 |, (2-11)
012 sym. Ces) \2¢c12

wahrend sich Gleichung 2.10 in diesem Fall zu

&1 £11 8/81’1 0 f
E9 = €929 = 0 8/8@ <§1> (212)
@12 2812 8/6932 0/8371 N 2 ,

——

€pl,e Lpl’£ gpl’&
vereinfacht. Der ebene Spannungszustand wird in dieser Arbeit nicht weiter
bendtigt, ist jedoch zur Vollstdndigkeit in Abschnitt A.1 beschrieben.

2.2 Materialverhalten

Bei Festkorpern wird zwischen ideal-elastischem, z.B. bei metallischen
Werkstoffen, und viskoelastischem Materialverhalten, z.B. bei Polymeren,
unterschieden. Im Gegensatz zu ideal-elastischen Medien, ist viskoelasti-
sches Verhalten abhéngig von vergangenen Zustédnden. Diese resultierende
Zeitabhangigkeit wird im Frequenzbereich mithilfe verschiedener, in der
Regel frequenzabhangiger, Dampfungsmodelle modelliert.

2.2.1 ldeal-elastisches Materialverhalten

Das akustische Materialverhalten wird im Wesentlichen durch die Elastizi-
tatsmatrix C' beschrieben. Die in Gleichung 2.8 angegebene Elastizitatsma-
trix beschreibt den allgemeinsten Fall linear-akustischen Materialverhaltens.
Aufgrund der Symmetrie enthélt diese 21 unabhéngige Konstanten, womit
sie ein triklines Kristallsystem beschreibt [RD96; Sut84]. Gewalzte Bleche,
Gewebe, Faser-Verbund-Kunststoffe weisen hingegen meist orthotropes
Materialverhalten auf [Nyel2].

Orthotrope Werkstoffe enthalten drei orthogonale Raumachsen, entlang
derer die Normaldehnungen von den Scherdehnungen entkoppelt sind. Dies
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fithrt dazu, dass die Elastizitdtsmatrix nicht vollstdndig besetzt ist:

Cll 012 013 0 0 O
C22 023 0 0 0
B Cys 0 0 0
C = Cu 0 0 (2.13)
sym. Css O
CY66

Fiir einen Vergleich der Parametersatze aus z.B. mechanischen Zugversu-
chen ergibt sich eine alternative Darstellung aus der Nachgiebigkeitsmatrix
S, wenn diese durch die richtungsabhéngigen Elastizitdtsmodule E; in
z;-Richtung, Poissonzahlen (Querkontraktionszahlen) v;;, mit z; als Bean-
spruchungsrichtung und z; als Querdehnungsrichtung und der Schub- bzw.
Schermodule yi;; zur Beschreibung der Schubbewegungen in der z;-z;-Ebene
ausgedriickt wird [Alt18]:

E% —1% -2 0 0 0
—22 & —IE%Q 0O 0 0
—ds =m0 0 0
— Ey Es Es
S=10" o 0o L 0o o (2.14)
K23
0 0 0o 0 - 0
©31
0 0 0 0o 0 =
H12
Aufgrund der Symmetrie gilt
Vij Vji .
— == Vi,j €{1,2, 3} 2.15
BB {1,2,3} (2.15)

Die Inversion der Nachgiebigkeitsmatrix ergibt die Elastizitatsmatrix

l—vo3v3a  wo1tw3ives  v31tv21vs2 0 0 0

E2FEsP FEsE3P ExFEsP
1-vi3v31 v32+V12V31 0 0 0

FE1E3P 1E1E3P
—Vi2V21 0 0 0

—1
C=8"'= BB, P (2.16)

sym. pes 00
p3r 0
H12
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mit [Alt18]

p— 1 — vio1o1 — Vaglse — V13V31 — 2U01V30013
EyEy By '

(2.17)

Wird das Material als eindimensionale Feder modelliert, entspricht der
Elastizitatsmodul E; der Federsteifigkeit. Im dreidimensionalen Modell
fithrt eine wirkende Kraft zu Verzerrungen in die anderen Raumrichtungen.
Verhalt sich das Material in zwei der drei Raumrichtungen z.B. in -
und z3-Richtung gleich beziiglich der mechanischen Eigenschaften, wird es
transversal isotrop genannt. Damit reduziert sich die Anzahl der unabhéngi-
gen Koeffizienten von neun auf fiinf. Die Ausbreitungsgeschwindigkeit einer
in x;-Richtung propagierenden Welle ergibt sich aus der entsprechenden
Komponente der Hauptdiagonalen der Elastizitdtsmatrix (Gleichung 2.13)
und der Dichte des Materials. Wahrend die ersten drei Elemente jeweils
die Longitudinalwellengeschwindigkeit cp; in den drei Raumrichtungen

beschreiben
[Cii )
Cr; = 7 Vi € {1,2,3}, (218)

lassen sich die jeweiligen Transversalwellengeschwindigkeiten aus den ver-
bliebenen drei Hauptdiagonalelementen bestimmen [Ros88; Aul90b:

1C

Cr23 = C1,32 = ﬁa (2'19>
P
1C

Cr13 = Cr31 = £7 (2-20)
p
C

Cr12 = Cr21 = |/ 7;6- (2.21)

Der erste numerische Index der Transversalwellengeschwindigkeit bezeich-
net die Ausbreitungsrichtung, der zweite die Schwingungsrichtung der
Welle.

Verhalt sich das Material in alle drei Raumrichtungen gleich, wird es
als isotrop bezeichnet [AL06]. In dem Fall kann die Elastizitdtsmatrix des
Materials durch nur zwei Parameter beschrieben werden z.B. die Lamé-
Konstanten Ap, und g oder Kompressions- und Schermodul K und p,
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sodass
4
CH = 022 = 033 :)\La + 2/L =K+ g,U/ (222)
2
012 = 013 = 023 :)\La =K — §/J, (223)
044 = 055 = C66 =Uu (224)

gilt. Neben der Darstellung mit Kompressions- und Schermodul oder Lamé-
Konstanten, findet sich am haufigsten die Darstellung mit Elastizitdtsmodul
E und Poissonzahl v, die bei einem isotropen Material richtungsunabhéngig
sind. Dafiir sind die Lamé-Konstanten durch

Ev
M = ) (- ) (2.25)
und g
= ST (2.26)

zu ersetzen. [MMDO09] Da die Elastizitatsmatrix C' eines isotropen, ideal-
elastischen Materials durch zwei Parameter vollstandig bestimmt ist, wird
zur vollstandigen Beschreibung des akustischen Materialverhaltens nur
zusatzlich die Dichte p zur akustischen Modellierung benétigt. Anstel-
le der bereits genannten Darstellungsarten, kann die Elastizitatsmatrix
eines isotropen Werkstoffs ebenfalls durch Longitudinal- und Transver-
salwellengeschwindigkeit durch umstellen und ineinander einsetzen von
Gleichung 2.18 bis 2.21 in Gleichung 2.22 bis 2.24 ausgedriickt werden.

2.2.2 Viskoelastisches Materialverhalten

Wird die Wellenausbreitung in einem viskoelastischen Medium betrach-
tet, verhalt sich das Medium wie ein gedéchtnisbehaftetes, zeitabhéngiges
System. Zur Systemcharakterisierung kann die Sprungantwort betrachtet
werden. Wird das System mit einem Spannungssprung belastet, zeigt sich
das Retardations-, bei einem Verzerrungssprung das Relaxationsverhalten.
Daher wird im 1D-Fall die Sprungantwort auf einen Verzerrungssprung mit
dem Relaxationsmodul G(t), die Sprungantwort auf einen Spannungssprung
mit der Retardations- bzw. der Kriechnachgiebigkeit J(t) bezeichnet. Der
Kehrwert der Kriechnachgiebigkeit wird als Kriech- bzw. Retardationsmo-
dul, der Kehrwert des Relaxationsmoduls als Relaxationsnachgiebigkeit,
bezeichnet. [Mail0]
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Bei bekanntem Relaxationsmodul G (), kann unter Annahme von Kau-
salitat die Systemantwort auf eine Verzerrung e (¢) mittels Boltzmannschem
Superpositionsprinzip [Hew60; Mail0; Bor09; CKKS88] berechnet werden:

o(t)=e(t=0")G )+ /0 tG(t —7) 858(:)617 (2.27)

mit der Verzerrungsrate 82—(:) und dem Anfangswert der Verzerrung bei

t = 0, der dem rechtsseitigen Grenzwert ¢ — 0 entspricht. Durch die Be-
riicksichtigung des Anfangswertes wird anders als beim Hookeschen Gesetz
der vorherige Systemzustand der mechanischen Belastung des Korpers
berticksichtigt.

Die Transformation des Faltungsintegrals aus Gleichung 2.27 in den
Fourier-Bereich ergibt bei vorausgesetzter Kausalitét

o (w) = jwG” (W) e (W) (2.28)
mit dem komplexen Modul
G, (W) = jwG” (W) = G' (W) +jG" (), (2.29)

bestehend aus Speichermodul G’ (w) und Verlustmodul G” (w).

Da es sich bereits beim Relaxationsmodul G(t) um die Systemantwort
auf einen Spannungssprung handelt, entspricht dessen zeitliche Ablei-
tung G (t) der Impulsantwort des Systems, wiahrend der komplexe Modul
G (w) im Fourier-Bereich dem Frequenzgang entspricht. Gemessen werden

kann der komplexe frequenzabhéangige Modul G (w) mittels Dynamisch-
Mechanischer-Analyse (DMA) [GS15]. Das Verhéltnis

"

= 9.
tan g el (2.30)

aus Verlust- und Speichermodul wird Verlustfaktor genannt, wahrend der
Winkel § als Verlustwinkel bezeichnet wird.

2.2.3 Makromechanische Dampfungsmodelle

Zur Beschreibung des frequenzabhéngigen Verhaltens werden im folgen-
den Abschnitt der Relaxationsmodul und die Kriechnachgiebigkeit ver-
schiedener Dampfungsmodelle, welche viskoelastisches Materialverhalten
repréasentieren, vorgestellt. Wahrend elastisches Verhalten durch eine Feder

10
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%n/ E n

Abbildung 2.1: Elementare Modelle der Makromechanik: Hook, Newton,
Maxwell, Kelvin-Voigt

Abbildung 2.2: Zener-Modell

mit dem Elastizitdtsmodul als Federsteifigkeit beschrieben wird, enthélt
das Newton-Modell zur Modellierung rein viskosen Materialverhaltens
(ideales Newtonsches Fluid), nur einen Démpfer (vgl. Abbildung 2.1). Die
Kombination aus Feder E und Dampfer 7’ fiihrt auf viskoelastisches Materi-
alverhalten. Aufgrund des Dampfers werden diese Modelle in der Literatur
auch als Dampfungsmodelle bezeichnet. Das Dampfungsmodell modelliert
die Dampfung der Welle bedingt durch das Material (Absorption), weshalb
dessen Parameter diesem als Materialparameter zugeordnet werden. Dabei
konnen Feder und Dampfer sowohl in Reihe (Maxwell-Modell) als auch
parallel zueinander (Kelvin-Voigt-Modell) angenommen werden. [MHM11;
WH02; MH13]

Wéhrend das Maxwell-Modell der Modellierung von Spannungsrelaxation
dient, jedoch keine Kriecheffekte beriicksichtigt, bildet das Kelvin-Voigt-
Modell exponentielle Kriechprozesse jedoch keine Spannungsrelaxation ab
[Mail0; Baul6]. Um sowohl Retardations- als auch Relaxationsverhalten
abzubilden, kénnen die elementaren Modelle aus Abbildung 2.1 kombiniert
werden z.B. zum Zener-Modell, das in Abbildung 2.2 dargestellt ist. Beim
Zener-Modell, auch als standard linear solid bezeichnet, ergibt sich

n . Ez + Ezy .

o(t) + 5,0 (t) = Epne(t) + B, (1). (2.31)

11
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Abbildung 2.3: Relaxation (links) und Retardation bzw. Kriechen (rechts)
eines viskoelastischen Werkstoffs (Zener-Modell) bei sprung-
formiger Belastung, nach [GS15]

Mit Substitution von

" Ez1 + Ezs
E=FEz;, 1,= T = ————— 2.32
71, T EZ2 T, EZQ n ( )
ergibt sich Gleichung 2.31 zu
o (t) + 1,0 (t) = Ee(t) + 1£(1). (2.33)

Der Relaxationsmodul G (t) und die Kriechnachgiebigkeit J (t) (Kehr-
wert des Kriechmoduls) lassen sich somit zu

To Te — To _t
t) = l—e 2.34
@) ET. * ET. ( ¢ ) (2:34)

Gt)=E+E=""¢ % (2.35)

bestimmen [Mail0].
In Gleichung 2.34 sind 7. die Retardationszeitkonstante und 7, die

12
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Relaxationszeitkonstante nach Gleichung 2.35 (jeweils im Exponenten). Der
Relaxationsmodul G (t) stellt physikalisch eine monoton fallende Funktion
iiber die Zeit dar, wihrend die Kriechnachgiebigkeit J () monoton steigt.
Aufgrund des Terms =="¢ in der Kriechnachgiebigkeit (Gleichung 2.34) und
im Relaxationsmodul (Glelchung 2.35) folgt mit dem Monotonieverhalten,
die Bedingung 7. > 7, > 0 fiir ein physikalisches Materialverhalten nach
dem Zener-Modell. Die damit resultierenden Sprungantworten fiir die
Relaxations- und Retardationsprozesse sind in Abbildung 2.3 dargestellt.
Im Frequenzbereich ergibt sich aus Gleichung 2.33 die Bezichung

]

g (W) 1 +jW7—0'

Wird das Modell auf den dreidimensionalen Fall iibertragen, wird das
Hookesche Gesetz aus Gleichung 2.5 zu

(2.36)

o(w)=C (w)e (w) (2.37)
mit ] L+ iwm,
C(w) = (W) C (2.38)

erweitert. Wahrend es sich bei C' um eine beliebig geartete Elastizitéts-
matrix (isotrop, orthotrop, triklin, monoklin) handelt, bleiben die Ab-
sorptionseigenschaften in alle Raumrichtungen identisch. Ein Ansatz zur
Berticksichtigung der richtungsabhéangigen Absorptionseigenschaften be-
ruht auf einer Eigenwertzerlegung der Elastizitdatsmatrix nach Theocaris
et al. [TS99]. Diese ergibt sich mit den jeweiligen Eigenwerten A; und den
zugehorigen Eigenvektoren v;:

6
C=> Avwv,. (2.39)

1=6

Die Verluste der sich ergebenden Eigenbewegungen konnen mit unterschied-
lichen viskoelastischen Modellen modelliert werden. So werden z.B. die
Verluste der Eigenbewegungen mithilfe des Zener-Modells mit

~ 0 1 ] £,1
i=1 1 + JWTO,Z'

modelliert.
Eine Verallgemeinerung des Zener-Modells stellt das fraktionale Zener-

13
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Modell dar, welches durch eine Ableitungsordnung a ergénzt wird. Fir
eine detaillierte Herleitung des fraktionalen Zener-Modells sei auf [Mai94]
verwiesen.

Im Frequenzbereich ergibt sich a als Exponent, sodass sich die viskoelas-
tische Elastizitatsmatrix mit

1+ (jwr.)* c

C = T+ Gor ) (2.41)
ergibt. Die fraktionale Ableitungsordnung liegt im Wertebereich von 0 <
a < 1, wahrend fiir die Zeitkonstanten weiterhin die Bedingung 7. > 7, > 0
des Zener-Modells gilt.

Das am weitesten verbreitete Dampfungsmodell ist das Rayleigh-Modell,
da es sich sehr leicht in jede Finite-Elemente-Berechnung integrieren lasst
(vgl. Unterabschnitt 2.4.2). Zwar geniigt es vielen Anwendungen der Mo-
dellierung, jedoch ist dieses Modell nicht physikalisch begriindet und es
konnte bereits von [Raul2] gezeigt werden, dass es nur unter bestimmten
Annahmen kausal ist. Aufgrund seiner Verbreitung in der Finiten-Elemente-
Methode, insbesondere in Zeitbereichssimulationen, erfolgt die Betrachtung

des Rayleigh-Modells in Unterabschnitt 2.4.2.

2.3 Akustische Plattenwellenleiter

An der Oberflaiche bzw. an der Grenzfliche zum Vakuum eines ansonsten
unendlich ausgedehnten Festkorpers konnen sich Rayleigh-Wellen ausbrei-
ten. Thre Geschwindigkeit ergibt sich im isotropen Festkorper nach [Berb4]

zu
0,87+ 1,2v

1+4+v
In einem Plattenwellenleiter werden Wellen, deren Wellenlénge in einem
ahnlichen Wertebereich wie die Plattendicke liegt, gefiihrt. Bewegen sich die
Teilchen einer Platte im Vakuum ausschliellich innerhalb des Querschnitts
(vgl. Abbildung 2.4) wird von Lamb-Wellen gesprochen. Thre Wellenlange
liegt in der gleichen Groflenordnung wie die Plattendicke. Da Lamb Ist die
dritte Dimension nicht unendlich ausgedehnt, bilden sich ebenso horizontal
schwingende Scherwellen sog. Shear-Horizontal-Wellen aus, die in dieser
Arbeit jedoch nicht weiter betrachtet werden, da nur Lamb- bzw. Lamb-
artige Wellen mit dem betrachteten Messsystem detektiert werden.
Handelt es sich um ein isotropes Material, werden die Wellen, deren
Teilchenbewegung nur in der Ebene der Querschnittsfliche der Platte

CR cr. (2.42)
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ty Wellenausbreitung

X
& R

Abbildung 2.4: Querschnitt eines Plattenwellenleiter

erfolgt, Lamb-Wellen genannt, da Lamb urspriinglich von einem solchen
ausging [Lam17]. Wahrend sich in Dickenrichtung eine Resonanz ausbildet,
propagiert die Welle entlang des Plattenquerschnitts orthogonal zu ihr. Ist
eine dhnliche Wellenform gemeint, das Material jedoch nicht isotrop oder
es befindet sich kein Vakuum an den Grenzflichen, wird von Lamb-artigen
Wellen gesprochen [KLT11; ZF21].

Im Folgenden wird die Dickenrichtung als z- und die Ausbreitungsrich-
tung als y-Richtung angenommen (vgl. Abbildung 2.4).

Sowohl in y-Richtung als auch in die dritte Raumrichtung (z-Richtung)
wird die Platte als unendlich ausgedehnt angenommen, sodass die Verschie-
bung unabhéngig von der z-Richtung ist (£, = 0, 9/0z = 0) und Spannungs-
freiheit orthogonal zum Rand der Platte herrscht. Die Unabhéngigkeit von
der z-Richtung entspricht der Annahme des ebenen Verzerrungszustands
aus Unterabschnitt 2.1.4. Damit leitete Lamb [Lam17] die Rayleigh-Lamb-
Frequenzgleichung aus der Wellengleichung (vgl. Gleichung A.2 im Anhang)
zu

+1
2 4k?
tan (kT,Lth/ ) _ k kL,LkT,LZ (243)
tan (kL,Lth/Q) (kgf,L _ k2)
mit ) )
Bo= =k und By = — K

L Cr
her. Fiir eine detaillierte Herleitung sei auf den Anhang oder [Ach76; Gra9l;
Aul90a] verwiesen. Bei bekannter Plattendicke ¢, und bekannten materi-
alabhéngigen Schallgeschwindigkeiten ¢, und cr enthélt Gleichung 2.43
die Kreiswellenzahl k& und Kreisfrequenz w als Unbekannte. [Ach76; Gra9l;
Aul90a]

Wird eines von beiden vorgegeben, kann das jeweils andere iiber eine
numerische Nullstellensuche berechnet werden. Losungen mit dem Expo-
nenten +1 beschreiben symmetrisch (S0, S1, S2 ...), Losungen mit dem
Exponenten —1 asymmetrisch schwingende Moden (A0, A1, A2 ...) bezogen
auf die Plattenmitte, wie sie z.B. in Abbildung 2.5 dargestellt sind.
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Abbildung 2.5: Symmetrisch und asymmetrisch schwingende Lamb-Moden
nach [DPV97]

Mithilfe der Rayleigh-Lamb-Frequenz-Gleichung (Gleichung 2.43) las-
sen sich die ausbreitungsfahigen Moden zu beliebigen Frequenzen bzw.
Wellenzahlen berechnen. Abbildung 2.6 zeigt diese Moden als Losung der
Rayleigh-Lamb-Frequenzgleichung am Beispiel einer 1 mm dicken Platte
aus Polytetrafluorethylen (PTFE).

Werden alle Verschiebungs-Vektoren des Plattenquerschnitts addiert,
ergibt sich bei symmetrischen Moden der Summenvektor in Ausbreitungs-
richtung, sodass diese Moden auch Longitudinalmoden genannt werden.
Bei asymmetrischen Moden hingegen, ergibt sich der Summenvektor in
Dickenrichtung der Platte, weshalb sie auch als Biegemoden bezeichnet
werden. [Ach76]

Wahrend sich eine Welle in einem unendlich ausgedehnten Medium mit
nahezu konstanter Geschwindigkeit ausbreitet, ist die Geschwindigkeit
einer Welle im Wellenleiter frequenzabhangig. Diese Frequenzabhangigkeit
der Ausbreitungsgeschwindigkeit wird Dispersion genannt. Die Steigung
der Moden in Abbildung 2.6 ergeben mit

Oow

= SRe(E] (2.44)

CGr

deren Gruppengeschwindigkeit, mit der sich die Wellenpakete ausbrei-
ten, sodass die Darstellung in Abbildung 2.6 Dispersionsdiagramm ge-
nannt wird. Der Wertebereich der Gruppengeschwindigkeiten ist nach oben
durch die Longitudinalwellengeschwindigkeit des Materials beschrankt.
Longitudinal-, Transversal- sowie die Rayleigh-Wellengeschwindigkeit einer
Oberflichenwelle (Gleichung 2.42) lassen sich im Dispersionsdiagramm
(Abbildung 2.6) als Steigung von Geraden ablesen [Aul90a]. Bei Betrach-
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Kreisfrequenz w / MHz
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Abbildung 2.6: Kreisfrequenzen und Kreiswellenzahlen symmetrischer und
asymmetrischer Moden einer 1 mm dicken PTFE-Platte
(e, =1350ms™!, cp = 550ms™!)

tung der Longitudinal- und Transversalwellengeschwindigkeiten cp,, cr
sowie der Rayleigh-Wellengeschwindigkeit cg in Abbildung 2.6 féllt auf,
dass sich die A0- und SO-Mode fiir grole Wellenzahlen mit der Rayleigh-
Wellengeschwindigkeit cg als Gruppengeschwindigkeit ausbreitet. Die Grup-
pengeschwindigkeit der Moden hoherer Ordnung l&uft fiir grole Wellen-
zahlen gegen die Transversalwellengeschwindigkeit cr.

2.4 Finite-Elemente-Methode

Das am weitesten verbreitete numerische Verfahren zur Lésung von Differen-
tialgleichungen bzw. Integralgleichungen ist die Finite-Elemente-Methode.
Bei dieser wird ein beliebiges Rechengebiet in verschiedene finite Elemen-
te unterteilt, sodass die Integralgleichung fiir jedes Element gelost und
schlieflich die Losung aller im Rechengebiet vorhandenen finiten Elemente
assembliert werden. Zur Losung wird die gesuchte Grofle, in der Festkorper-
mechanik meist die Teilchenauslenkung &, fiir jedes Element durch eine
gewichtete Summe dieser Grofle an den einzelnen Knoten &; ausgedriickt.
Der Bereich zwischen den Knoten wird durch einfache Polynome, den
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sogenannten Ansatzfunktionen Nj;, interpoliert:

ol = Zo:Ni&- (2.45)
=1

Je nach Grad der gewédhlten Ansatzfunktionen werden unterschiedlich
viele Knotenpunkte je Element bendtigt, um die Grofle eindeutig interpo-
lieren zu kénnen. Die Ansatzfunktionen sind in lokalen Koordinaten eines
finiten Elements definiert. Die am meisten verwendeten Ansatzfunktionen
sind Lagrange-Ansatzfunktionen.

Diese zeichnen sich dadurch aus, dass ihr Wert am zugeordneten Knoten
Eins und an allen anderen Knoten jeweils Null ist.

Fiir den 1D-Fall hangt die Elementauslenkung &, mit der nodalen Aus-
lenkung &, eines eindimensionalen Linienelements der Ordnung o mit o + 1
Knoten iiber die den Knoten zugeordneten Lagrangeschen Ansatzfunktio-
nen

N =T[=L"% i=o0.0 (2.46)
0 M=y
oy
mit —1 <7y <1 zusammen [VDO06]. Abbildung 2.7 zeigt beispielhaft lineare
und quadratische Lagrange-Ansatzfunktionen.

oL,

1 1
1 Ny
0,5 | 0,5
Ni 0 : : : ‘ Ni 0
-05 0 05 1
—0,6 1 n —0,5 !
(a) Ordnung o = 1 (b) Ordnung o = 2

Abbildung 2.7: Lineare und quadratische eindimensionale Lagrange-
Ansatzfunktionen

Da Lamb- bzw. Lamb-artige Wellen zweidimensionale, mechanische Ver-
schiebungen innerhalb des Plattenquerschnitts erzeugen, ist es fiir deren
Berechnung mittels FEM notwendig, diesen in zweidimensionale finite
Elemente zu zerlegen, um die Freiheitsgrade des Systems (z.B. die Ver-
schiebungen) in zwei Raumrichtungen abbilden zu kénnen. Dafiir eignen
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2.4 Finite-Elemente-Methode

K3($3793)

0,5 |

Ki(z1, 1) Ky (29, y2)
02 04 06 08 1 12 14

Ui

Abbildung 2.8: 2D-Dreieckselement nach [Ste98§]

sich verschiedene Arten von Elementen. Weit verbreitet sind z.B. dreie-
ckige Scheibenelemente, wie sie z.B. in Abbildung 2.8 skizziert sind. Die
Transformation von lokalen zu globalen Koordinaten erfolgt iiber die Eck-
punkte des Dreiecks und die gewéhlten Ansatzfunktionen NV; wie z.B. den
zweidimensionalen, linearen Ansatzfunktionen:

Ni(n,o)=1—-mn—1 (2.47)
Ny (,0) =1 (2.48)
N3 (n,t) =t (2.49)

Die Koordinatentransformation des Dreiecks ist tiber

X

Y1

T\ Ny 0 Ny 0 N3 O X2
<y>_<0 Ny, 0 Ny O N3> Y2 (2.50)

N(m,0) 3

Y3

definiert. Die Verschiebungen eines finiten Elements & lassen sich ebenfalls
mit der Matrix der Ansatzfunktionen IN und dem Vektor der nodalen
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Verschiebungen

SN:<€$1 €y1 512 £y2 §x3 £y3>T (251>

zu

£a = N&y (2.52)

berechnen. Zur Losung von Integralgleichungen (vgl. Unterabschnitt 2.4.1)
werden die Diffentialoperatoren in lokale Koordinaten mittels Jacobi-Matrix

J tiber R
de| a% S\ (dn
(dy>—(zz L) (i (2:53)
—_————

transformiert [Esll4]. Mit Gleichung 2.50 ergeben sich die Eintrdage der
Jacobi-Matrix, die nur von Ableitungen der Ansatzfunktionen N; (7, )
abhéngen [Zhal7].

Die mechanischen Dehnungen je Element ergeben sich mit Gleichung 2.10
und Gleichung 2.52 zu

wobei die ortliche Differentiation der Ansatzfunktionen LN héaufig als
FEM-Differentialoperatormatrix B zusammengefasst wird. Diese beschreibt
den Zusammenhang zwischen mechanischer nodaler Verschiebung in lo-
kalen Koordinaten und der Dehnung des finiten Elements in globalen
Koordinaten. Da die ¢rtlichen Abhéngigkeiten der Verschiebungen voll-
stdndig in der Matrix der Ansatzfunktionen IN steckt, kann die FEM-
Differentialoperatormatrix B leicht fiir jedes Element berechnet werden.

2.4.1 Herleitung der Integralgleichung

Fir FEM-Simulationen ist es notwendig, die Cauchysche Bewegungsglei-
chung in ihre schwache Form zu iiberfithren. Zur Modellierung von Lamb-
oder Lamb-artigen Wellen wird ein Plattenwellenleiter im Vakuum ange-
nommen, um dessen Eigenschwingungen zu berechnen. Somit wird davon
ausgegangen, dass keine dufleren mechanischen Spannungen auf die Platte
wirken. Daher ergibt sich die Bewegungsgleichung mit dem mechanischen
Spannungstensor [o] und dem Vektor der mechanischen Verschiebungen &
zu

p€ =V [o]. (2.55)
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2.4 Finite-Elemente-Methode

In Voigtscher Notation wird der Divergenzoperator durch die transponierte
Differentialoperatormatrix L™ (vgl. Gleichung 2.10) ersetzt:

p€=L". (2.56)

Mit dem Hookschen Gesetz in Voigtscher Notation o = Ce und Glei-
chung 2.10 lasst sich aus Gleichung 2.56 die Wellengleichung

p€ = L"CL¢ (2.57)

mit dem Vektor der mechanischen Verschiebungen &, dessen zweifache zeit-
liche Ableitung &, der Elastizitdtsmatrix C, der Differentialoperatormatrix
L (vgl. Gleichung 2.10) sowie deren Transponierte L herleiten [Kal07].

Die schwache Form der Gleichung zeichnet sich dadurch aus, dass die-
se nur noch einfache ortliche Ableitungen enthalt. Somit muss fiir eine
FEM-Berechnung nur gewéhrleistet sein, dass die Ansatzfunktionen nur
einmal differenzierbar sind. Zur Herleitung der schwachen Form wird Glei-
chung 2.57 mit einer beliebigen, unendlich oft differenzierbaren Testfunktion
6&" multipliziert und iiber ein Volumen V integriert:

/ SETPEAV = / SETLTCLEAV. (2.58)
14 14

Mithilfe des ersten Greenschen Integralsatzes [Gre28] wird Gleichung 2.58
in

/VéngédV:ygA (5¢") C’LgdA—/V(Lég)T CLEAV  (2.59)

iiberfiihrt, sodass die zweifache ortliche Ableitung der Verschiebungen ent-
fallt. Das Oberflachenintegral tiber die Volumenoberfliche wird aufgrund
der Randbedingungen der mechanischen Spannungsfreiheit (Neumann-
Randbedingungen) fiir einen Plattenwellenleiter im Vakuum zu Null. Zur
Losung der Integralgleichung wird diese fiir ein finites Element mit den Ma-
terialparametern p und C\}, dem Volumen V sowie seiner mechanischen
Verschiebung &, betrachtet. Die mechanischen Verschiebungen &, sowie
die Testfunktion 0¢T, welche physikalisch ebenfalls einer mechanischen
Verschiebung entspricht [Lin14; MO10], werden iiber die Knotenpunkte des
finiten Elements mit Gleichung 2.52 interpoliert. Damit sind die nodalen
Verschiebungen &y ortsunabhéngig, weil die Ortsabhéangigkeit vollsténdig
in den Ansatzfunktionen IN steckt. Somit ergibt sich die Integralgleichung
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2 Akustische Wellen in Festkérpern

fiir ein finites Element zu
/ SENNTpaNEGdV + / SEL(LIN)' CuLNEGAV =0, (2.60)
Va Vel

Wie bereits im vorherigen Abschnitt erwahnt, wird der Term LN in der
Regel zur FEM-Differentialoperatormatrix B zusammengefasst, die alle
ortlichen Ableitungsoperationen sowie die Ortlichen Ansatzfunktionen zur
Koordinatentransformation enthélt. Durch die Ortsunabhéngigkeit der
nodalen Verschiebung &y und der Testfunktion 6¢% koénnen diese vor das
Integral gezogen werden:

555/ NTpaNdV €y + 555/ BIC BdAV &y = 0. (2.61)
Vel Vel

M K

Da 6£3 eine beliebige, von Null verschiedene Funktion darstellt [Lin14],
ist Gleichung 2.61 nur Null, wenn die jeweiligen Integralausdriicke zu Null
werden, womit der Ausdruck 0£3 entfallen kann. Daher findet sich in
der Literatur [Esl14; Ste98; Bat96] zur Finiten-Elemente-Methode meist
Gleichung 2.61 fiir einen Festkérper im Vakuum in Form von

Koéy + M€y =0 (2.62)

vor. Aufgrund der Proportionalitat zur volumenbezogenen Masse, der
Dichte pe, wird M Element-Massematrix genannt, wihrend K, als
Element-Steifigkeitsmatrix bezeichnet wird. Assemblierung [Ste98; Lin14]
der einzelnen Element-Steifigkeits- und Element-Massematrizen K und
M, fithrt zur jeweiligen globalen Steifigkeits- und Massematrix K und M.
Dabei bezeichnet Assemblierung die Zuordnung der lokalen Elementkno-
ten zu den globalen Knoten. Ebenso werden die nodalen Verschiebungen
eines finiten Elements &y zum globalen nodalen Verschiebungsvektor =
zusammengefasst.

2.4.2 Rayleigh-Dampfungsmodell in der FEM

Formal kann Gleichung 2.62 in Analogie zur Differentialgleichung eines
Feder-Masse-Systems mit Federsteifigkeit K und der die volumenbezogene
Masse enthaltenden Massematrix M, betrachtet werden. Kommt ein
Dampfer hinzu, kann Gleichung 2.62 um einen Dampfungsterm mit einer
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2.4 Finite-Elemente-Methode

Dampfungsmatrix Dy ergdnzt werden:
K€y + Daéy + M€ = 0. (2.63)

Diese Dampfungsmatrix D, wird in allen géngigen FEM-Programmen mit

D = anMe + axKe (2.64)

angenommen, wodurch dem Material ein Dampfungsparameter ay; propor-
tional zur Masse (Dichte) und ein Parameter ak proportional zur Steifigkeit
zugeordnet werden [Bat96].

Da sowohl Masse- als auch Steifigkeitsmatrix zum Losen berechnet
werden miissen, lasst sich so die Dampfungsmatrix ohne hoheren Rechen-
aufwand bestimmen, weshalb dieses Modell [Ray85] weit verbreitet, jedoch
rein mathematisch begrindet ist.

Das Rayleigh-Dampfungsmodell kann durch Einsetzen der Dampfungs-
matrix D, aus Gleichung 2.64 in Gleichung 2.63 und anschliefender Fourier-
Transformation dieser in den Frequenzbereich iiberfithrt werden, um es fiir
harmonische Simulationen zu nutzen. Somit ergibt sich im Frequenzbereich
fiir jedes finite Element

(14 jwon) Ko — o (1= jonr/w) Ma] €9 =0, (2.65)

Gleichung 2.65 stellt eine Form von Gleichung 2.62 mit skalierter Elas-
tizitatsmatrix und Dichte dar. In der Regel wird jedoch wie in Unterab-
schnitt 2.2.3 die Elastizitatsmatrix angepasst und die reelle Dichte p des
Materials beibehalten. Somit ergibt sich mit Ersetzen von K. und M
Gleichung 2.65 zu

1+ jwaxk
1 —jen

Kel - WZMel] £N =0 (266)

.
[ /V BTWC’eleV —u? /V NT,OelNdV] Ex=0  (267)
el w el

mit einer komplexen, frequenzabhéngigen Elastizitdtsmatrix

~ 1+jWOéK
Calw) = T5ar

w

C. (2.68)

analog zu Unterabschnitt 2.2.3. Werden andere frequenzabhéngige Damp-
fungsmodelle verwendet, muss das Losen im Frequenzbereich erfolgen. Eine
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2 Akustische Wellen in Festkérpern

anschliefende Riicktransformation ermoglicht dennoch die Berechnung
zeitabhéngiger Signale.
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3 Stand des Wissens

Zur Bestimmung der mechanischen Parameter gibt es einige standardisierte
Messverfahren, die sich in der Regel auf einen kleinen Frequenzbereich be-
schranken. Daher werden zusatzlich Messverfahren im Ultraschall-Bereich
entwickelt, die sich durch verschiedene Arten der Anregung und Detektion
sowie der anschliefenden Auswertung unterscheiden. Die anschliefende
Bestimmung der Materialparameter im inversen Verfahren setzt geeignete
Materialmodelle voraus, die insbesondere bei Polymeren auch das fre-
quenzabhangige Dampfungsverhalten abbilden. Daher soll hier ein kurzer
Uberblick der gingigen Modelle gegeben werden. Unter Annahme eines
solchen Dampfungsmodells wird schliefSlich das meist numerische Vorwarts-
modell parametrisiert, um im inversen Verfahren dessen Eingangsparameter
zu optimieren.

3.1 Inverses Problem

Die meisten ultraschallbasierten Messverfahren beruhen auf inversen An-
satzen (vgl. Unterabschnitt 3.2.2). Wéhrend bei einem direkten Problem
die Wirkung b € B aus der Ursache p € P mit der Abbildung ¢ direkt

iiber
b=q(p) (3.1)

bestimmt wird, handelt es sich umgekehrt um ein inverses Problem. Da-
her wird Gleichung 3.1 als direktes Problem und die Abbildung ¢ als
Vorwéirtsmodell bezeichnet. [Rie03]

Bei Verfahren zur Materialcharakterisierung werden als Vorwartsmo-
dell analytische Ansédtze oder numerische Simulationsmodelle wie in Ab-
schnitt 3.4 genutzt, um den Modelleingangsparametervektor p aus der
Beobachtung b mit

p=q ' (b) (3.2)

zu bestimmen. [Rie03]
Zur Losung des inversen Problems werden die Modelleingangsparameter
p solange angepasst bis sie das Verhalten des Systems, was im Kontext der
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3 Stand des Wissens

Materialcharakterisierung dem Verhalten der Probe entspricht, reprasen-
tieren. Dazu wird davon ausgegangen, dass die Modelleingangsparameter
p das Systemverhalten am besten reprasentieren, die gleichzeitig die Ziel-
bzw. Kostenfunktion € (p) minimieren. Die Zielfunktion ist ein Maf fur
die Diskrepanz der Beobachtungen byes aus der Messung und dem Modell-
ausgang bsi, = ¢ (p). Als einfache Zielfunktion findet hiufig die fo-Norm
der quadratischen Differenz der Beobachtungen € (p) = ||bsim — byes |5
Anwendung.

Zur effizienten Suche des Minimums der Zielfunktion wird ein Optimie-
rungsalgorithmus verwendet. Dieser liefert mit

ploPt) — arg min € (byjes, bsim (P)) (3.3)
p

den besten Schétzwert fiir die Modelleingangsparameter p(°®"). Im Fall einer
Materialparameterbestimmung, handelt es sich bei dem besten Schatzwert
von p°Y um die gesuchten Materialparameter. Als Optimierungsalgo-
rithmus werden haufig lokale Optimierungsalgorithmen verwendet. Diese
suchen das Optimum in der Nédhe zuvor aus den Beobachtungen by ge-
schétzter Startwerte der Eingangsparameter p©). Besitzt die Zielfunktion
mehrere lokale Nebenminima, kann der Optimierungsalgorithmus in ein
solches abgelenkt werden, weshalb Startwerte in der Néhe des globalen
Minimums notwendig sind. Zudem reduzieren Startwerte in der Nahe
des Optimums die Anzahl der benotigten Iterationssschritte des Optimie-
rungsalgorithmus und somit die benétigte Rechenzeit. Beispiele fiir lokale
Optimierungsalgorithmen sind der Nelder-Mead-Simplex- [NM65] oder der
BOBYQA-Algorithmus. Das Akronym BOBYQA steht fiir bound optimi-
zation by quadratic approzimation [Pow09]. Wie der Name bereits sagt,
wird bei diesem Algorithmus die Zielfunktion als quadratische Funktion
approximiert und dessen Minimum gesucht, wobei wahrend der Suche
Parametergrenzen beriicksichtigt werden. Ahnlich zum BOBYQA ist der
COBYLA (constrained optimization by linear approzimation [Pow94]),
der die Zielfunktion linear interpoliert. Bei diesen handelt es sich um
ableitungsfreie Algorithmen, sodass diese geeignet sind fiir nicht stetig
differenzierbare Zielfunktionen.

Weiter verbreitet sind Gradienten-basierte Verfahren, die das Minimum
der Zielfunktion in Richtung des abfallenden Gradienten suchen. Dieser
wird meist numerisch tiber finite Differenzen approximiert, kann aber auch
durch algorithmisches Differenzieren [Marl9] berechnet werden.

Alternativen stellen globale Optimierungsalgorithmen wie genetische
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[Gol12] oder evolutiondre Algorithmen [PLS05] dar. Diese benétigen keine
Startwerte [Gol12], jedoch in der Regel eine deutlich hohere Anzahl Itera-
tionen, was zu einem hoheren Rechenaufwand fiihrt. Existieren statt eines
eindeutigen globalen Minimums eine Vielzahl gleichwertiger lokaler Mini-
ma, ist eine eindeutige Losung mittels globalen Optimierungsalgorithmus
ebenfalls nicht moglich.

3.2 Messverfahren zur akustischen
Materialparameterbestimmung

Neben den weit verbreiteten, meist zerstorenden, mechanischen Methoden,
existieren eine Vielzahl ultraschallbasierter, zerstorungsfreier Ansétze zur
Materialparameterbestimmung von Polymeren. Da fiir die meisten Verfah-
ren spezielle Priifkorper mit bestimmten Geometrien hergestellt werden
miissen, konnen die Ergebnisse nicht ohne weiteres auf andere Verfah-
ren iibertragen werden, weil die Materialeigenschaften einiger Kunststoff-
und Metallproben stark vom Herstellungsprozess selbst beeinflusst werden
[GS15]. Selbst wenn zum Vergleich die identische Probe verwendet wird,
erfassen mechanische Messverfahren das Materialverhalten im quasistati-
schen, ultraschallbasierte Methoden hingegen im hochfrequenten, dynami-
schen Frequenzbereich. Werden zudem unterschiedliche Materialmodelle
im nieder- und hochfrequenten Bereich genutzt, anstatt eines geeigneten
Materialmodells zur Beschreibung von sowohl quasistatischem wie auch
hoch dynamischem Bereich, ergeben sich zuséatzliche Diskrepanzen.

3.2.1 Mechanische Messverfahren

Das am weitesten verbreitete Verfahren zur zerstorenden Bestimmung
des statischen Elastizitdtsmoduls von Kunststoffen ist der Zugversuch
nach DIN EN ISO 527 [MHM11; DIN 527]. Dabei wird so lange an ei-
ner Probe gezogen, bis diese reifit, wahrend kontinuierlich die Zugkraft
gemessen wird. Wird diese auf die Querschnittsfliche der Probe bezogen,
ergibt sich die aufgebrachte Zugspannung. Uber die gemessene Langendin-
derung des Zugstabs wird die mechanische Dehnung ermittelt, sodass ein
Spannungs-Dehnungs-Verhalten gemessen wird. Der resultierende statische
Elastizitatsmodul wird als Sekantenmodul aus der Steigung einer Sekante
am Spannungs-Dehnungs-Diagramm im Bereich von 0,05 % und 0,25 % der
Dehnung bestimmt [GS15]. Da es sich um eine quasistatische Messung han-
delt, kann aus dem Zugversuch keine Aussage iiber das frequenzabhangige
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Verhalten getroffen werden.

Hierfiir stellt der Kriech- bzw. Retardationsversuch ein standardisier-
tes Prifverfahren nach DIN EN ISO 899 dar. Mittels definierter Masse
wird eine konstante mechanische Spannung o, aufgebracht und die zeit-
abhéngige Dehnungskurve ¢ (t) gemessen, welche mit J (t) = ¢ (t) /o, die
Kriechnachgiebigkeit J () liefert. [DIN 899] Da die Spannungsaufpragung
nicht als idealer Sprung realisiert werden kann, erfolgt die Messung der
Dehnungskurve um einige Sekunden verzogert [Lak04].

Analog zum Retardationsversuch, wird beim Relaxationsversuch [DIN
53441] eine konstante Dehnung €, aufgebracht und der resultierende Span-
nungsverlauf o (¢) aufgenommen, um tber G (t) = o (t) /ex den Rela-
xationsmodul G (f) zu bestimmen. Die Fouriertransformation des Span-
nungsverlaufs liefert schliefilich nach Gleichung 2.28 den Speicher- und
Verlustmodul. [Lak04] Retardations- und Relaxationsversuch eignen sich
fiir einen Frequenzbereich von unter 1 Hz, wohingegen sich Gerate zur
Dynamisch-Mechanischen-Analyse (DMA) nach DIN EN ISO 6721 [GS15]
fiir einen Frequenzbereich von bis zu 200 Hz eignen [Hit22; Tex|. Bei der
DMA mit erzwungenen Schwingungen wird ein streifenférmiger Probe-
korper mit einer sinusféormigen mechanischen Spannung angeregt und
die Dehnung gemessen. Die Aufzeichnung der Dehnung fiihrt dazu, dass
Phasenverschiebung 0 zwischen mechanischer Spannung und Dehnung
sowie der Betrag des komplexen Moduls durch Quotientenbildung nach
Gleichung 2.28 bestimmt werden kénnen [GS15; N23]. Die obere Grenze
im Frequenzbereich wird durch die Resonanzfrequenz des Probekorpers
gebildet [GS15], da sich in dem Bereich stehende Wellen iiberlagern.

Eine Moglichkeit die obere Frequenz-Barriere zu umgehen, ist das Aus-
nutzen des Zeit-Temperatur-Superpositions-Prinzips [Bon09b]. Dies setzt
voraus, dass sich die Einfliissse von Temperatur und Zeit ungestort iiberla-
gern. Allerdings beeinflusst ein starker Temperaturanstieg die Eigenschaften
der Probe z.B. durch Polymerkettenspaltung, sodass eine nachfolgende Mes-
sung bei niedrigerer Temperatur andere Ergebnisse liefert als eine Messung
bei zunéchst niedriger und anschlieBend hoher Temperatur [Lak04].

3.2.2 Ultraschallbasierte Messverfahren

Erginzend zu den quasistatischen, meist zerstorenden Priifverfahren, ge-
winnen ultraschallbasierte Priifverfahren zunehmend an Bedeutung. Neben
der Zerstorungsfreiheit ist insbesondere die Anwendbarkeit bei hoheren
Frequenzen als Erganzung zu den quasistatischen Verfahren notwendig, um
Kenntnisse der Materialparameter bei hoheren Frequenzen im Megahertz-
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Bereich z.B. zur Dimensionierung von Ultraschallsensoren zu erlangen.

Als direktes Messverfahren sind Laufzeitmessungen im Impuls-Echo oder
Transmissionsverfahren [BRF16], teilweise auch unter Wasser [MAT71] weit
verbreitet, wobei letzteres fiir viele Polymere aufgrund ihrer Wasserauf-
nahme eher ungeeignet ist. Bei bekannter Léange der Messstrecke lasst sich
durch Messung der Laufzeit der Welle deren Longitudinal bzw. Transversal-
wellengeschwindigkeit bestimmen. Dabei werden die Signale in der Regel
von direkt oder zum Teil auch luftgekoppelten Schallwandlern gesendet
und empfangen. [CHO1; CC96; KK86; DPV97; AC91|

Als breitbandige Schallquelle dienen direkt gekoppelte Phased Arrays
[BLB18] oder Impulslaser (i.d.R. Nd:YAG) [SML14; JJ01; PCR08; CPR10;
WL99]. Abhéngig von der Impulsenergie und den optischen sowie thermo-
elastischen Eigenschaften des Materials, werden letztere in der Regel zur
Anregung von Lamb-Wellen in Plattenwellenleitern eingesetzt.

Der Empfang von Plattenwellen erfolgt piezoelektrisch [CMB16] oder
mittels elektromagnetischer Wandler [DB10], wobei letztere auf leitfahige
Materialien als Messmedium beschrénkt sind. Zur beriihrungslosen Mes-
sung, sind zudem Laser-Doppler-Vibrometer zur Schwingungsdetektion
weit verbreitet [GVR13; CPR10; PB19; HN19; PKR19]. Die Detektierbar-
keit der mechanischen Auslenkung der Welle héangt in dem Fall von den
optischen Reflexionseigenschaften der Probe ab. In [CSG21] zeigt sich, dass
Laser-Doppler-Vibrometer Verschiebungen senkrecht zur Plattenoberflache
detektieren, wahrend der dort verwendete piezoelektrische Schallwandler
Verschiebungen parallel zur Plattenoberfliche aufnimmt. Durch Variation
des Abstands zwischen Anregung und Empfang liefert solch ein Messverfah-
ren zeit- und ortsaufgeloste Messsignale. Zur Auswertung dieser wird eine
zweidimensionale Fourier-Transformation durchgefiihrt. In der Darstellung
des Betrags der Fourier-Transformierten werden abhangig von Frequenz
und Wellenzahl die sich ausbreitenden Moden als Grate sichtbar [AC90;
AC91]. Aufgrund ihrer Ahnlichkeit zu Dispersionsdiagrammen wird diese
Darstellung im weiteren Verlauf der Arbeit auch als Dispersionsabbildung
bezeichnet.

Die Materialparameterbestimmung erfolgt dann im inversen Verfahren
(vgl. Abschnitt 3.1) durch Abgleich der Grate auf berechnete Dispersions-
kurven. Der Abgleich erfolgt mit einem Optimierungsalgorithmus, wobei
genetische Algorithmen [SDO08] sehr weit verbreitet sind [MM12; BLB18;
PB19]. Dazu werden die Moden aus den Messdaten extrahiert, um die Ab-
weichungen zwischen simulativ berechneten und detektierten Wellenzahlen
zu minimieren. Die Automatisierung des Messverfahrens setzt dementspre-
chend eine verlassliche, robuste Modendetektion voraus. Da die Qualitét
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der Messdaten stark von den viskoelastischen Eigenschaften der Probe
sowie weiteren Messartefakten abhangen, ist eine verldssliche Modende-
tektion insbesondere bei Materialproben mit hoher akustischer Dampfung
nicht immer gegeben. Die Berechnung der Dispersionskurven erfolgt in der
Regel numerisch durch halbanalytische FEM-Ansatze [SRM11; PB19] oder
eine numerische Nullstellensuche der Rayleigh-Lamb-Frequenzgleichung
[GBH18; CMB16; VKBO07]. Bei der Rayleigh-Lamb-Frequenzgleichung
wird eine homogene, isotrope Plattenstruktur angenommen, was das zu
identifizierende Materialmodell stark einschrankt.

Alternativen bieten verschiedene Transmissionsmessverfahren. So mes-
sen z.B. Castaings et al. [CHKO00] die Transmission ebener Wellen durch
eine Platte unter Wasser. Senden und Empfangen erfolgen dabei piezo-
elektrisch. Der winkel- und frequenzabhangige Transmissionsfaktor wird
mittels Thomson-Haskell-Methode [Tho50; Has53] zur Préadiktion des Emp-
fangsspektrums bestimmt. Dieses wird in einem inversen Verfahren mit
dem gemessenem Empfangsspektrum verglichen. Dabei werden sowohl
Real- als auch Imaginérteil der Koeffizienten der Elastizitdtsmatrix (Elas-
tizitatskoeffizienten) bestimmt, wobei die Unsicherheit der Imaginérteile
gegeniiber den Realteilen deutlich hoher ist [CHKO0O].

Beim dreidimensionalen Polar Scan wird mit einer breitbandigen Im-
pulsanregung Reflexion und Transmission durch eine Platte bei unter-
schiedlichen Winkeln gemessen [KMD16]. Der Aufbau unterscheidet sich
im Vergleich zu Castaings [CHKO00] durch eine zusatzliche Drehebene
der Platte. Zur besseren Ankopplung der Schallwandler wird wie bei
[CHKO00] unter Wasser gemessen. Durch Auswertung der Laufzeit werden
zundchst die ideal-elastischen, reellen Elastizitatskoeffizienten bestimmt,
wahrend die viskoelastischen, komplexen Elastizitdtskoeffizienten im zwei-
ten Schritt durch Auswertung der Amplitudeninformation im inversen
Verfahren bestimmt werden [MKD19]. Das Vorwartsmodell basiert auf
Losung der Christoffel-Gleichung. Als Optimierungsalgorithmus wird der
Particle Swarm-Algorithmus [PKBO07] genutzt. Durch das Eintauchen un-
ter Wasser sind die Verfahren von [CHKO00; MKD19; PKBO07] geeignet fir
metallische Werkstoffe und hydrophobe Polymere, wahrend sich die Eigen-
schaften hydrophiler Polymere durch dessen Wasseraufnahme verédndern.

Ein anderes Verfahren basierend auf Transmissionsmessungen nutzen
Bause et al. [BRF16]. In dem Aufbau werden zwei Kontakt-Piezokomposit-
Wandler fiir Transmissionsmessungen an zylinderférmigen Polymerproben
verwendet. Der Vergleich der Empfangssignale mit Simulationssignalen
des zylindrischen Wellenleiters erfolgt durch kleinste Fehlerquadrate im
Zeitbereich. Das Vorwartsmodell basiert auf Modaler Expansion, wobei
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3.3 Dampfungsmodelle

die Berechnung der Eigenschwingungen mittels Scaled Boundaray FEM
(SBFEM) [GBS14] erfolgt. Zudem wird nicht nur die komplexe Elastizi-
tatsmatrix im inversen Verfahren bestimmt, sondern iiber Messungen bei
mehreren Frequenzen ein frequenzabhéangiges fraktionales Zener-Modell
mittels BOBYQA-Algorithmus [Pow09] identifiziert.

3.3 Dampfungsmodelle

Besonders einfach lasst sich eine frequenzunabhangige Elastizitdtsmatrix
z.B. mit 3

in Simulationen nutzen. Zwar erhoht sich durch die komplexen Para-
meter die Rechenzeit, jedoch sind keine weiteren Modifikationen in der
Simulation notwendig. Genutzt wird es z.B. zur Beschreibung des Schwin-
gungsverhaltens von Piezokeramiken [FSC21], die eine schwache Dampfung
aufweisen. Um jedoch die Kausalitdtsbedingungen nach Kramers-Kronig
[Kra28; Kro26| zu erfiillen, muss jedes dissipative System notwendigerweise
auch dispersiv sein [Fel21], weshalb mehrere frequenzabhingige Mate-
rialmodelle existieren. Neben den elementaren Modellen wie Newton-,
Maxwell- oder dem Kelvin-Voigt-Modell, [Mail0; RDC11] ist das Rayleigh-
Modell [Ray85] am meisten verbreitet, weil es sich mathematisch besonders
leicht in eine Finite-Elemente-Simulation einbauen lasst (vgl. Unterab-
schnitt 2.4.2), sodass es in vielen kommerziellen FEM-Software-Tools ent-
halten ist. In Frequenzbereich-Berechnungen lésst es sich ebenfalls leicht mit
Gleichung 2.68 einbauen. Da die Dampfung sowohl fiir kleine als auch grofe
Frequenzen gegen unendlich lauft, verhélt es sich nicht kausal [Fel21]. Da-
mit beschrankt sich seine Giiltigkeit auf einen schmalbandigen Bereich um
einen Arbeitspunkt. Eine zu weite Entfernung vom Frequenz-Arbeitspunkt
fiihrt zu schlechteren Ubereinstimmungen mit Messergebnissen. Physika-
lisch begriindet hingegen ist das Zener-Modell (auch als standard linear
solid bekannt) [Z2S49], welches mit Gleichung 2.38 modelliert wird. Auf-
grund der Analogie zwischen akustischen und elektromagnetischen Wellen,
lasst es sich auch zur physikalisch begriindeten Modellierung dielektrischer
Relaxation nutzen [BRH98|. Bei Betrachtung der thermoelastischen Kopp-
lung fiihrt eine verallgemeinerte Form der Warmeleitungsgleichung nach
[Mai94; Mail0; Zen65; Pri96] zum fraktionalen Zener-Modell, welches durch
Gleichung 2.41 beschrieben wird. Die Berticksichtigung der fraktionalen
Ableitungsordnung beschrénkt sich nicht auf das fraktionale Zener-Modell,
sondern findet sich z.B. auch beim Maxwell-Modell [Rog83] wieder. Neben
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der Modellierung des viskoelastischen Verhaltens von z.B. Gehirngewe-
be [KSTO05], ist das fraktionale Zener-Modell geeignet zur Beschreibung
des breitbandigen, dynamischen Verhaltens von Polymeren [Pri03; BTS86;
BRF16]. Bause [Baul6] nutzt eine Abwandlung des fraktionalen Zener-
Modells zur Beschreibung des akustischen Verhaltens polymerer, extru-
dierter Hohlzylinder. Die transversal-isotrope Elastizitdtsmatrix zerlegt er
zuvor in seine Eigenwerte und Eigenvektoren nach Gleichung 2.39 [The00],
welche den Hauptenergierichtungen im Material entsprechen. Dabei erge-
ben sich vier Eigenwerte [The00]. Fiir das Dampfungsmodell fasst Bause
jedoch drei zusammen, die quasi eine reine Scherbewegung reprasentieren,
wahrend der tibrige Eigenwert Kompressionsbewegungen repréasentiert und
mit entsprechend anderen Modellparametern modelliert wird. Mit diesem
Modell und dem Messverfahren fiir hohlzylindrische Polymerproben ge-
lingt es Bause in [BRF16] Materialparameter zu identifizieren, die das
dynamische Verhalten realitatsnah abbilden.

3.3.1 Das fraktionale Zener-Modell zur Modellierung
von Polymeren

Aufgrund der einfachen Implementierung in einer FEM-Simulation (vgl.
Unterabschnitt 2.4.2) ist das Rayleigh-Modell weit verbreitet, jedoch nicht
physikalisch begriindet und auch im Allgemeinen nicht kausal. Das fraktio-
nale Zener-Modell hingegen ist physikalisch begriindet und somit kausal,
was sich mittels Kramer-Kronig-Beziehung [WMMO05] zeigen lasst. Zahlrei-
che Quellen [Pri03; BT86; Baul6] bestitigen die Eignung des fraktionalen
Zener-Modells zur Beschreibung des viskoelastischen Materialverhaltens
von Polymeren.

Daher werden zunéchst die Ausbreitungseigenschaften ebener Wellen
(Schallgeschwindigkeit und Absorption) bei Annahme eines fraktionalen
Zener-Modells nach Gleichung 2.41 betrachtet.

Als Absorption ap wird im Folgenden die akustische Démpfung ei-
ner Welle unter Freiraumbedingungen bezeichnet. Unter Annahme von
Freiraumbedingungen ergeben sich die jeweiligen Ausbreitungsgeschwin-
digkeiten und die akustische Absorption in Abhédngigkeit von der Relaxati-
onszeitkonstanten 7, der Retardationszeitkonstanten 7., der fraktionalen
Ableitungsordnung a und der (quasi)statischen Schallgeschwindigkeit ¢
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zu:

c(w)=co Re{ H(JWTE)Q} (3.5)

1+ (jwre)”
L w 1+ (jwr.)* !
ap (w) = T Im \J <1+(Ju)7'0)a> (3.6)

Im weiteren Verlauf der Arbeit wird die alternative Darstellung

c(w)=co Re{ m} = ¢ Re{ y(w)} (3.7)
o (W) = —:)Im MM) _ —:Im{ ”y(w)_l} (3.8)
mit

d — (Tf>a (3.9)

To
als Verhéltnis der Zeitkonstanten verwendet. Der Verlustfaktor ergibt sich
nach Gleichung 2.30 zu

(3.10)

Abbildung 3.1 bis 3.3 zeigen Ausbreitungsgeschwindigkeit und Absorpti-
on unter Freiraumbedingungen bei unterschiedlich parametrisierten fraktio-
nalen Zener-Modellen. Allgemein lassen sich die Verldufe in drei Bereiche
nach Tabelle 3.1 einteilen: Fiir kleine Frequenzen (w << 7.1) bleibt die
Ausbreitungsgeschwindigkeit nahezu beim statischen Wert bis sie im Be-
reich von 77! << w << 7! proportional zu w*? ansteigt, um im Bereich

w >> 71 den Endwert von co (1.751)"* = cov/d zu erreichen. Dabei fithrt
der Parameter d zu einer Skalierung des Endwertes und die Relaxationszeit
Te zu einer Verschiebung auf der Frequenzachse, wihrend die fraktionale
Ableitungsordnung die Steigung des mittleren Segments um den Wende-
punkt bestimmt. So fiithrt eine niedrige Ableitungsordnung in Abbildung 3.2
unterhalb des Wendepunkts zu einer hoheren, oberhalb des Wendepunkts
zu einer niedrigeren Ausbreitungsgeschwindigkeit c. Ahnliches gilt fiir den
Verlustfaktor in Abbildung 3.4: Die Relaxationszeitkonstante 7, verschiebt

den Verlustfaktor entlang der Frequenzachse, der Parameter d skaliert
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3 Stand des Wissens

Tabelle 3.1: Segmente des Dispersionsverhaltens des fraktionalen Zener-
Modells nach [HN11]

Segment Wellengeschwindigkeit Absorption
w<< =71 tde c(w) = ¢y arp (W) oc wlte
ml<<w<<r? c(w) oc w2 ap (w) oc wl™e/?
w>> 7,1 ¢ (w— 00) = co (e | arp (W) x w!™

dessen Maximum, wahrend die Ableitungsordnung a sowohl das Maximum
skaliert als auch die Steigung um die Wendepunkte. Dementsprechend
fiihrt eine kleinere Ableitungsordnung a zu einem kleineren Maximum,
gleichzeitig jedoch auch zu einem hoheren Verlustfaktor bei niedrigen und
und hohen Frequenzen. Die Absorption steigt fiir hohe Frequenzen, je
kleiner a, wahrend diese im niederfrequenten Bereich keine Auswirkungen
auf die Absorption hat (vgl. Abbildung 3.2).

Bei Variation des Parameters d zeigt sich in Abbildung 3.1 fiir die
Absorption gleiches Verhalten wie fiir die Ausbreitungsgeschwindigkeit.

Angesichts des Verlustfaktors in Abbildung 3.4 wére bei Variation der
Relaxationszeitkonstante 7, eine reine Verschiebung der Absorption entlang
der Frequenzachse, wie bei der Ausbreitungsgeschwindigkeit, zu erwarten.
Aufgrund der Parametrisierung nach Gleichung 3.8 fiihrt eine Erhohung
der Relaxationszeitkonstante 7, jedoch auch stets zu einer Erh6hung bzw.
Veringerung des Verlustmoduls und somit der Absorption.

1120 15
1100 .10 A
- z
—~ 1080 T
Q 3
1060 ‘ ‘ ‘ 0 ‘ | |
10° 10% 10° 10° 10 10% 106 10°
Frequenz f / Hz Frequenz f / Hz

Abbildung 3.1: Ausbreitungsgeschwindigkeit und Absorption bei Variation
des Parameters d: d = 1,07 (blau), d = 1,09 (orange),
d = 1,11 (griin), restliche Parameter: ¢y = 1061 ms™!,
To=006ps, a=1
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~ 1100 - 40
: z
1080 | =20
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Abbildung 3.2: Ausbreitungsgeschwindigkeit und Absorption bei Variation
von a: a = 0,8 (blau), a = 0,9 (orange), a = 1 (griin)
(ist gleichzeitig die obere physikalische Grenze), restliche
Parameter: ¢ = 1061ms~!, 7o = 0,6 1s, d = 1,09

9540 - 407
N 730+
; =
2520 — 20
™~ 3
Q g 10
2500 T T T 0 - \ \j T T
108 10° 10° 10%3 108 105 10° 103
Frequenz f / Hz Frequenz f / Hz

Abbildung 3.3: Ausbreitungsgeschwindigkeit und Absorption bei Variation
von Ty: 7o = 0,06 ps (blau), 7, = 0,6 ps (orange), 7, = 6118
(griin), restliche Parameter: ¢y = 1061ms™—!, d = 1,09,
a=1
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(a) \(;ariatllo ggvo(iind; 1’;7_(191? 11)17 (b) Variation von a: a = 0,8 (blau),
] 88) ¢ = 4 a = 0,9 (orange), a = 1 (griin)

(griin)
1072

W
!

2,

Verlustfaktor

O _
T T T
10° 10 105 10°
Frequenz f / Hz

(c) Variation von 74: 7, = 0,61s
(blau), 7 = 6 ps (orange), 7o =
60 ps (griin)
Abbildung 3.4: Verlustfaktor bei Variation der Modellparameter. Para-
meter, falls nicht anders angegeben: ¢y = 1061ms?,
o =006nps,d=1,09,a=1
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3.3 Dampfungsmodelle

3.3.2 Fraktionales Zener-Modell fiir Kompressions- und
Scherbewegungen

Zur Generalisierung auf alle Raumrichtungen fithrt Bause [Baul6] eine
Eigenwertzerlegung der Nachgiebigkeitsmatrix S nach [TS99] durch, womit
jede Hauptrichtung des Materials nach Gleichung 2.40 unterschiedliche
Absorption erfahren kann. Bause verwendet zylinderférmige, extrudierte
Proben und nimmt dafiir ein transversal-isotropes Materialmodell an. Bei
der Bestimmung effektiver, elastischer Materialparameter zeigt sich, dass
fiir homogene Polymerplatten bereits ein isotropes Materialmodell geeignet
ist.
Bei Zerlegung einer isotropen Elastizitatsmatrix

K +3p K—%u K—%u 00 0

K+35p K—gﬂ 000

B K+3p 000
C = 400 (3.11)

sym. w0

I

mit dem Kompressionsmodul K und dem Schermodul p ergeben sich nach
Gleichung 2.39 drei Eigenwerte A; mit den zugehérigen Projektionsmatri-
zen,
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die sich aus den jeweiligen Eigenvektoren D; = v;v} zusammen setzen
[Baul6]:
11100 0
111000
1111100 0
D, =310 0000 ol A = 3K, (3.12)
00 0O0O0OO
00 0O0O0OO
2 -1 -1.0 0 0
-1 2 -1 000
1f-1 =1 2 0 0 0
0O 0 0 00O
0O 0 0 00O
000O0O0O0
000O0O0O
000O0O0O
000010
000O0O0T1

Wie sich an den Matrix-Eintragen ablesen lasst, bildet der dritte Ei-
genwert reine Scherbewegungen ab, der erste Eigenwert eine reine Kom-
pressionshewegung, wahrend der zweite Eigenwert bzw. dessen zugehorige
Projektionsmatrix deren Kopplung abbildet. Werden der erste und der
zweite Eigenwert zu einer Longitudinalbewegung mit

——
Longitudinal Transversal

zusammengefasst, konnen Longitudinal- und Transversalwellen mit un-
terschiedlicher Parametrisierung modelliert werden. Bause [Baul6] wéhlt
jedoch mit

N—_—— — —m———
Kompression Scherung

die Zerlegung in Kompressions- und Scherbewegungen, um diese mit unter-
schiedlichen Parametern zu modellieren [Baul6]. Diese Zerlegung stellt eine
Analogie zur Aufteilung der Viskositiat in Volumen- und Scherviskositét
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bei Fliissigkeiten dar [CHB19; Sut84].

Als Eigenwerte ergeben sich dafiir Kompressions- und Schermodul, K
und g, mit den zugehorigen Projektionsmatrizen Dy, D und D3 aus
Gleichung 3.12 bis 3.14. Demnach ist eine Zerlegung nach Kompressions-
und Scherbewegungen moglich, um auf diese unterschiedliche Dampfungs-
modelle anzuwenden (vgl. Abschnitt 3.3 bzw. [Baul6]).

Bause [Baul6] schlagt bei Polymeren die Anwendung eines fraktionalen
Zener-Modells auf die jeweiligen Komponenten vor. Da es sowohl physi-
kalisch begriindet sowie kausal ist und es sich als gut geeignet zeigt, wird
in dieser Arbeit darauf zuriickgegriffen. Das resultierende Materialmodell
wird somit nach Gleichung 3.16 mit der komplexen frequenzabhéngigen
Elastizitatsmatrix

1+dy (jcm'%)au

1 4 dx (jwTe, )"
+ di (W7o N (2D, + Dy)  (3.17)
1+ (JWT%>

1 4 (jwTeg )™

C= 3KD; +

iiber insgesamt acht Materialparameter beschrieben, die zu identifizie-
ren sind. Dazu zdhlen der statische Kompressionsmodul K, der statische
Schermodul p, die Relaxationszeitkonstanten 75, und 7, die fraktiona-
len Ableitungsordnungen ax und a,, sowie der Parameter dx bzw. d,
der das Verhéltnis zwischen Retardations- und Relaxationszeitkonstante
beschreibt.

39



3 Stand des Wissens

3.4 Wellenleitersimulationsverfahren

Frequenzabhéngige Dampfungsmodelle lassen sich sehr leicht durch An-
nahme komplexer Materialparameter und Auswertung bei entsprechender
Frequenz in harmonische Frequenzbereichssimulationen einfiigen. Fiir FEM-
Simulationen im Zeitbereich miissen aufgrund der Faltungsoperation in
Gleichung 2.27 neben dem aktuellen Zeitschritt zusatzlich die Ergebnisse
vorheriger Zeitschritte gespeichert werden. Dies fiihrt zu einem enormen
Speicherbedarf und ist nicht praktikabel. Das Dilemma lésst sich bei Wellen-
leitern jedoch leicht mit Anséitzen der modalen Expansion [LMH; CWZ00]
losen. Dafiir werden zunachst im Frequenzbereich die Eigenschwingungen
berechnet und mithilfe eines Fourier-Reihen-Ansatzes das Zeitsignal appro-
ximiert. Zur Berechnung des zugrunde liegenden Dispersionsdiagramms
gibt es unterschiedliche Berechnungsansatze. Wahrend sich eine numerische
Nullstellensuche der Rayleigh-Lamb-Gleichung (vgl. Gleichung 2.43) auf
isotrope Plattenwellenleiter beschrankt [GBH18; VKB07; CMB16] gibt es
zahlreiche numerische Simulationstechniken. Der meist verbreitete Ansatz
dafiir ist die semi-analytische Finite-Elemente-Methode (SAFE) [BMDOG6].
Diese nimmt in Ausbreitungsrichtung eine ebene, harmonische Welle an,
wahrend die tibrigen Raumrichtungen mittels FEM diskretisiert werden.

Der zugrunde liegende Ansatz kann auf verschiedene Weisen z.B. als
Postprocessing aus Standard-FEM-Software abgeleitet [MDB05; SCG11;
MWGO06; Tre07] oder z.B. mittels Scaled Boundary FEM (SBFEM)[GMS13;
WS00] hergeleitet werden.

Der generelle Vorteil der Scaled Boundary FEM ist der, dass wie bei der
Randelementmethode (Boundary Element Method) nur der Rand diskre-
tisiert werden muss [WS00; Bes87; Gual0]. Dadurch verringert sich der
Rechenaufwand, simultan ergeben sich aber bei der Randelementmetho-
de anders als bei der FEM vollbesetzte Matrizen, was den verminderten
Speicherbedarf gegeniiber der geringeren Anzahl an Freiheitsgraden kom-
pensiert.

Gleichzeitig werden bei der SBFEM die Randelemente wie finite Elemen-
te behandelt. Die Dimension der finiten Randelemente ist um eins geringer
als bei gewohnlichen finiten Elementen, sodass sie die Vorteile der diinn
besetzten Matrizen finiter Elemente mit dem reduzierten Diskretisierungs-
aufwand der Randelementmethode verbindet [WS00].

Beispielsweise ergibt sich in kartesischen Koordinaten fiir eine sich in
y-Richtung ausbreitende Welle der semi-analytische FEM-Ansatz fir die
mechanischen Verschiebungen eines finiten Elements &, aus Gleichung 2.52
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zu

€= N (z,2) Egd*veb, (3.18)

mit den Ansatzfunktionen in N (z, z), der Basis der nodalen Verschiebun-
gen éN, der Kreiswellenzahl k sowie der Kreisfrequenz w [BMDO06; Ros04].
Wiéhrend bei dem herkémmlichen Finite-Elemente-Ansatz die ortlichen
Abhéngigkeiten vollstdndig in den Ansatzfunktionen N (z, z) enthalten
sind, ist die ortliche Abhéangigkeit der Ausbreitungsrichtung (y-Richtung)
nur in der Exponentialfunktion enthalten.

Unter der Annahme von Spannungsfreiheit am Rand der Platte wird
der semi-analytische FEM-Ansatz aus Gleichung 3.18 in Gleichung 2.59
eingesetzt. Gleichzeitig wird die Testfunktion transponiert und konjugiert
komplex zum Ansatz aus Gleichung 3.18 gewéhlt. Damit wird die Integral-
gleichung aus Gleichung 2.59 zu

82

o (@ 0gy) v

():/ 5EENTe*j(ky*wt)pelN
Vel

I

+ / (5§N)T (LN)" ek o LNeFv=D¢ dV (3.19)
Ve

el

Iz

modifiziert. Das erste Integral I vereinfacht sich zu

I, = —5&'1@;2 / NTpaNdV £y (3.20)
Vel

Mel

und ergibt dquivalent zur herkommlichen FEM die Element-Massematrix
M.

Mit Zusammenfassen der Differentialoperatormatrix L und der Matrix
der Ansatzfunktionen IN zur FEM-Differentialoperatormatrix B wie in
Gleichung 2.54 lésst sich das zweite Integral als

I, = 6&y / BT ity Belky— q V¢ (3.21)
Vel

schreiben. Da nur die Exponentialfunktion von der Ausbreitungsrichtung
y abhéangt, lasst sich die ortliche Ableitung in Ausbreitungsrichtung leicht
analytisch berechnen. Daher wird die FEM-Differentialoperatormatrix B
in eine FEM-Differentialoperatormatrix B, die nur Differentialoperatoren
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orthogonal zur Ausbreitungsrichtung enthélt, und in eine Matrix By, die nur
Ableitungsinformationen in Ausbreitungsrichtung enthélt, zerlegt. Somit
lasst sich Gleichung 3.21 zu

I, = 5§§ / (By — jkBy) e W=D (By + jkB,) B A VE
Vel

e

~T “
= 5€N / (Bl — JkB2)T Cel (Bl -+ JkBQ) d VéN
Vel

= 5é§/ [B?CelBl - jkBQTCelBl + jkB;rCelBQ + k2BgCele]dVéN
Vel
(3.22)

umformen. Wie bereits in Gleichung 2.61 konnen die einzelnen Summanden
kiirzer als Steifigkeitsmatrizen

K= / B{C.B,dV (3.23)
Vel

Ky = / B! CaB, — BCuB,|dV (3.24)
Vel

K= / B;C.B,dV (3.25)
Vel

e

geschrieben werden. Die Steifigkeitsmatrix K o enthalt die 6rtlichen Ab-
leitungsinformationen senkrecht zur Ausbreitungsrichtung y und beschreibt
somit das Dehnungsverhalten senkrecht zur Ausbreitungsrichtung, wahrend
K ;. das Dehnungsverhalten in Ausbreitungsrichtung beschreibt. Beide
Matrizen sind symmetrisch. Die Kopplung des Dehnungsverhaltens von
Ausbreitungsrichtung mit den anderen beiden Raumrichtungen beschreibt
K, ., da diese sowohl ortliche Ableitungsinformationen in Ausbreitungs-
richtung wie auch senkrecht dazu enthélt. [BMDO6]
Einsetzen der Masse- und Steifigkeitsmatrizen in Gleichung 3.19 ergibt

AT A
66n | K1 +jkKoa+ KKz —w'Mg| &y = 0. (3.26)

Kel

Wie bereits analog in Gleichung 2.61 ist 55? eine beliebig von Null
verschiedene Funktion [Linl4], sodass sich Gleichung 3.26 nach Assem-
blierung (Zusammensetzen der lokalen Masse- und Steifigkeitsmatrizen
zur jeweiligen globalen Masse- und Steifigkeitsmatrix durch Zuordnung
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der Knotenpunkte der einzelnen Elemente zu seinen globalen Knoten-
punkten (vgl. Abschnitt 2.4)) der lokalen Element-Masse- und Element-
Steifigkeitsmatrizen zur jeweiligen globalen Masse- und Steifigkeitsmatrix
zu

Ky + kK, + K K5 — w’M| & = (3.27)

ergibt. Gleichung 3.27 ist ein homogenes Eigenwertproblem. Unter Vorgabe
der Kreiswellenzahl k& koénnen die Eigenwerte w? und somit die Kreisfre-
quenzen w berechnet werden. Die Eigenvektoren = enthalten die jeweiligen
nodalen Auslenkungen. [BMDO06]

Wird das frequenzabhéngige Verhalten eines Systems untersucht, werden
in der Regel Frequenz f bzw. Kreisfrequenz w vorgegeben und die zugehori-
gen Kreiswellenzahlen &k berechnet. Dazu wird das lineare Eigenwertproblem
zweiter Ordnung aus Gleichung 3.27 in ein lineares Eigenwertproblem erster
Ordnung der Form

(A-—kB)Q =0 (3.28)
mit
A — 0 Kl—sz B— Kl—wQM 0
- Kl—sz JK2 ’ o 0 —Kg

sowie dem Figenvektor

@= (m)

tiberfithrt [BMDO06], welches leicht unter Vorgabe der Kreisfrequenz w mit
einem gewohnlichen Eigenwertloser gelost werden kann.
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4 Inverses Verfahren zur
Ildentifikation elastischer
Materialparameter

In diesem Kapitel wird ein inverses Messverfahren zur Bestimmung der
elastischen Materialparameter plattenférmiger Proben vorgestellt. Die
Auswertung erfolgt beispielhaft an isotropen Proben mithilfe von Lamb-
Wellen. Aufgrund der bereits erwahnten Charakterisitik, dass Lamb-Wellen
nur Freiheitsgrade innerhalb der Querschnittsfliche der Platte aufweisen,
wird ein zweidimensionales elastisches Materialmodell identifiziert, was
fiir isotrope Materialproben ausreichend ist, da deren ideal-elastische Elas-
tizitdtsmatrix bereits durch zwei Parameter vollstandig beschrieben ist.
Bei Werkstoffen mit richtungsabhédngigen Materialparametern wie z.B.
orthotropen Werkstoffen ist dies nicht der Fall. Trotzdem wird in diesem
Kapitel eine zusétzliche Methode zur Bestimmung der tibrigen Elastizitats-
koeffizienten durch eine winkelabhéngige Variation der Propagationsstrecke
im vorgestellten Messsystem vorgestellt.

4.1 Losungsansatz

Der Losungsansatz zur Bestimmung der elastischen Materialparameter
beruht auf den dispersiven akustischen Wellenleitereigenschaften platten-
formiger Proben. Ahnlich zu den Arbeiten von [BLB18; PCR08; GVR13]
aus Unterabschnitt 3.2.2 wird der Abstand zwischen Sender und Empfénger
variiert, um sowohl zeit- als auch ortsaufgeloste Messdaten zu erhalten.
Am Vorbild von Alleyne [AC90; AC91] wird diese zeit- und ortsabhéingige
Messsignalmatrix zweidimensional Fourier-transformiert. In der Visualisie-
rung der transformierten nun frequenz- und wellenzahlabhéngigen Matrix
(Dispersionsabbildung) werden die sich ausbreitenden Moden als Grate
sichtbar.

Ein Abgleich der im Vorwértsmodell berechneten Frequenz-Wellenzahl-
Paare durch Variation der Materialparameter bestimmt diese. Dabei wird
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

davon ausgegangen, dass die Modelleingangsparameter den Materialpara-
metern der Probe entsprechen bei denen simulativ berechnete Moden mit
den in der Messung sichtbaren Moden iibereinstimmen.

Die Lage der Moden im Dispersionsdiagramm (Abbildung 2.6) wird
durch die Geometrie und der effektiven, elastischen Materialparameter be-
stimmt. Allgemein sind mit effektiven, elastischen Materialparametern die
Koeffizienten der ideal-elastischen Elastizitdtsmatrix bei gegebener Dichte
gemeint. Fiir ein isotropes Material vereinfacht sich die Elastizitatsmatrix,
sodass diese nur noch von zwei unabhéangigen Parametern abhangt. Eine
alternative Materialmodelldarstellung fiir isotrope Werkstoffe kann iiber
die Schallgeschwindigkeiten erfolgen. Diese Darstellung hat den Vorteil,
dass das resultierende Dispersionsdiagramm unabhéangig von der Dichte
berechnet werden kann (vgl. Unterabschnitt 4.2.1). Dies zeigt sich bereits
in der Tatsache, dass sich Longitudinal- und Transversalwellengeschwindig-
keit naherungsweise im Dispersionsdiagramm ablesen lassen, was bereits
Abbildung 2.6 zeigt.

Das allgemeine Vorgehen im inversen Verfahren ist in Abbildung 4.1
dargestellt. Neben den zu bestimmenden akustischen Materialparametern,
enthalten im Parametervektor p, werden fiir das Vorwértsmodell (vgl.
Abschnitt 4.2) Dichte p und Plattendicke ¢, benétigt. Die Plattendicke
wird direkt mittels Mikrometerschraube gemessen, wahrend die Dichte
iiber das gemessene Plattenvolumen und die gravimetrisch bestimmte
Masse berechnet wird. Zur Sensitivitatssteigerung der Zielfunktion be-
ziiglich der sich ausbreitenden Moden und damit der Materialparameter
findet eine Signalvorverarbeitung der Messdaten (vgl. Abschnitt 4.6) statt.
Durch sie werden schwach ausgepréigte Moden fiir die nachfolgende Aus-
wertung der Zielfunktion starker gewichtet. Bevor der Modellausgang bg;,,
(Frequenz-Wellenzahl-Paare) auf die Messdaten byes (Dispersionsabbil-
dung) abgeglichen werden, werden aus den meist noch unverarbeiteten
Messdaten by res Startwerte p© (vgl. Abschnitt 4.9) fiir eine erste Initiali-
sierung des Vorwéartsmodells geschétzt. Ein Optimierungsalgorithmus (in
Abbildung 4.1 nur Optimierung genannt) variiert dann die Eingangspa-
rameter p des Vorwirtsmodells bis der Wert der Zielfunktion e (p(i))
minimal ist (vgl. Abschnitt 4.11). Die Modelleingangsparameter mit denen
die Ziel- bzw. Kostenfunktion e (p(i)) minimal ist, sind dann die gesuchten
Materialparameter.
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Abbildung 4.1: Konzept des inversen Messverfahrens

4.2 Vorwartsmodell

Da eine numerische Nullstellensuche der Rayleigh-Lamb-Gleichung (Glei-
chung 2.43) auf der Annahme eines isotropen Materials beschrankt ist,
ermoglicht ein halbanalytisches Modell basierend auf dem semi-analytischen
Finite-Elemente-Ansatz aus [BDF05] eine modale Analyse von sowohl iso-
tropen als auch nicht-isotropen Plattenwellenleitern. Zusatzlich lasst es
sich sehr leicht zu einem mehrschichtigen System erweitern. Werden im
Modell alle drei Raumrichtungen beriicksichtigt, kénnen sowohl Lamb-
bzw. Lamb-artige als auch SH-Moden berechnet werden. Da SH-Wellen
im Messsystem nicht detektiert werden, geniigt die Berechnung der Lamb-
bzw. Lamb-artigen Wellen. Daher werden die mechanischen Verschiebun-
gen und somit die Dehnungen in z-Richtung zu Null angenommen. Das
Hookesche Gesetz vereinfacht sich entsprechend der Annahme des ebenen
Verzerrungszustands nach Unterabschnitt 2.1.4, sodass sich die Dimension
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

und damit der Rechenaufwand um die Héalfte reduziert.

Die Modelldiskretisierung erfolgt wie in Abbildung 4.2 dargestellt.

n  Wellenausbreitung

X
05 2 y

Abbildung 4.2: Modell eines Plattenwellenleiters

In Ausbreitungsrichtung (y-Richtung) wird die Platte als unendlich
ausgedehnt sowie eine ebene, harmonische Welle angenommen, wihrend
die Dickenrichtung, welche im Modell der z-Richtung entspricht, mittels
eindimensionaler finiter Elemente diskretisiert wird. Unter Verwendung
linearer Ansatzfunktionen besteht ein finites Element aus zwei Knoten.
Nach Abbildung 2.7 und Gleichung 2.50 ergibt sich die Matrix der lokalen
Ansatzfunktionen IN mit den lokalen Ansatzfunktionen aus Gleichung 2.46
zu

Nz(A(;l ]81 ]XQ ]82>:<5(n0+ Y ;(n0+ 1) ;(770_ ! é(no— 1)>

mit der lokalen Variable 1— < n < 1. Da sich die lokale Koordinate n
entlang der z-Achse erstreckt, ergibt sich die Koordinatentransformation
des Differentialoperators analog zu Gleichung 2.50 und 2.53 mittels:

ox L
= Zdp== 4.1
dx and” 5, (4.1)

wobei L der Lénge des finiten Elements entspricht.

Somit ergeben sich die Dehnungen jeden finiten Elements mit Glei-
chung 4.1 und der Annahme des ebenen Verzerrungszustands nach Glei-
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chung 2.12 aus Gleichung 2.54 zu

gm _ 6096 o | (N 0 Ny 0 |&y pi(ky—wt)
L o BIL0 N0 Ny &,
Yy Oy Oz 52
Y

Lo Ll 0 0 0 0 g“” |
=0 0 0 Of|+jk[0 N 0 N, | eyt - (4.2)
0 Lo L Ny 0 Ny 0)| &
B1 B2 2

Mit der FEM-Differentialoperatormatrix senkrecht zur Ausbreitungsrich-
tung By und der FEM-Differentialoperatormatrix in Ausbreitungsrichtung
B, sowie Gleichung 4.1 werden aus Gleichung 3.23 bis Gleichung 3.25 die
SAFE-Steifigkeitsmatrizen je finitem Element berechnet:

1
L

Kia= [ BlCuB iy (4.3
-1
1 L

K2,61=/ {BlTCelBZ_B;fCeIBl §d77 (4-4)
-1
1 L

Ky — / BIC.B, dy (4.5)
-1

Die Massematrix je finitem Element ergibt sich analog mit

1

L

M, = / NTpelNEdn. (4.6)
—1

Nach Assemblierung der Masse- und Steifigkeitsmatrizen aller finiten
Elemente zur jeweiligen globalen Steifigkeits- und Massematrix ergibt sich
das Eigenwertproblem

K, +jkKy+ KKy — M| E = 0. (4.7)

Da die Ansatzfunktionen in IN und die Dichte p. grundsatzlich reell sind,
ist die Massematrix M eine reelle Diagonalmatrix. Fiir ein ideal-elastisches
Material ist die Elastizitatsmatrix C¢ reell, sodass die Steifigkeitsmatrizen
K und K3 ebenfalls reell sind. K beschreibt mit B; die Bewegungen
in Dickenrichtung, wiahrend K3 mit B, die Bewegungen in Ausbreitungs-
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

richtung enthalt. K5, welche die Kopplung beider Richtungen beschreibt,
ist hingegen komplex. [BMDO06] Die Eigenvektoren £ enthalten die mecha-
nischen Verschiebungen in den jeweiligen Knoten in x- und y-Richtung.
Da diese im Verlauf der Arbeit nicht benétigt werden, werden diese beim
Losen des Eigenwertproblems nicht mit berechnet.

4.2.1 Vereinfachung fiir isotrope Werkstoffe

Wie bereits in der Rayleigh-Lamb-Gleichung in Gleichung 2.43 erkennbar
ist, hangt das berechnete Dispersionsdiagramm isotroper Werkstoffe von
den Schallgeschwindigkeiten ab, jedoch nicht mehr von der Dichte. Dies lasst
sich auch anhand der Bewegungs- bzw. Wellengleichung aus Gleichung 2.57,
auf der sowohl Eigenwertgleichung (Gleichung 4.7) sowie die Rayleigh-
Lamb-Gleichung (Gleichung 2.43) basieren, im Folgenden zeigen.

Wird die Elastizitdtsmatrix eines isotropen Materials fiir den ebenen
Verzerrungszustand (vgl. Gleichung 2.11)

Cn Ci2 0 pCIQJ P (Ci - %c%) 0
C=|[Ca Cu 0 |=|p (c% - %c?r) pct 0 (4.8)
0 0 GCss 0 0 Je

mithilfe der Schallgeschwindigkeiten cp, und cr ausgedriickt, enthalt jeder
der Koeffizienten der Matrix ebenfalls die Dichte p, sodass diese aus der
Matrix herausgezogen werden kann.

Damit ergibt die Wellengleichung aus Gleichung 2.57

c% c% — éc% 0 .
Ly | — 3t i 0 | LE = p€. (4.9)
0 0 A

Unter der Annahme, dass die Dichte p # 0 ist, entfillt diese, wodurch die
resultierende Gleichung nur von den beiden Schallgeschwindigkeiten als
Materialparameter abhangt. Gleiches gilt analog fiir die daraus abgeleitete
Eigenwertgleichung (Gleichung 4.7).

4.2.2 Validierung des Vorwartsmodells

Ist das genutzte Materialmodell nicht frequenzabhéangig, wird das lineare
Eigenwertproblem in w? aus Gleichung 4.7 direkt unter Vorgabe gegebener
Kreiswellenzahlen gelost, um die Kreisfrequenzen der Eigenschwingungen
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4.2 Vorwartsmodell

zu berechnen. Da die Eigenwerte mit w? als quadratische Frequenz ein-
gehen, ergeben sich mit w = +v/w? als Losung des Eigenwertproblems
sowohl positive als auch negative Kreisfrequenzen, wobei es geniigt nur
eine der beiden Losungen zu betrachten. Ein Vergleich der berechneten
Eigenfrequenzen mit Disperse [LP13] zeigt in Abbildung 4.3 gute Uberein-
stimmungen am Beispiel einer 1 mm dicken PTFE-Platte (¢, = 1350 ms™,
cr = 550ms™1). Diese ist als Beispielmaterial in der Demo-Version von
Disperse [LP13] enthalten.

Kreisfrequenz w / MHz

— Disperse
o SAFE

0 r—— 11T 71T 71T 17 1T 71T 1
0 2 4 6 8 10 12 14 16 18

Kreiswellenzahl Re{k}/ mm™!

Abbildung 4.3: Vergleich der berechneten Kreisfrequenzen mit Disperse
[LP13]

Bei Vorgabe der Kreisfrequenzen w muss das Eigenwertproblem aus
Gleichung 4.7 in die Form von Gleichung 3.28 iiberfiihrt werden. Dadurch
verdoppelt sich die Dimension des zu lésenden Eigenwertproblems, was zu
einer deutlichen Erhohung der Rechenzeit fithrt. Soll jedoch ein bestimmter
Frequenzbereich untersucht oder sollen gar frequenzabhéngige Materialm-
odelle verwendet werden, ist es trotzdem notwendig die Dimension zu
verdoppeln und das Eigenwertproblem in der Form von Gleichung 3.28
zu 16sen. Ansonsten ist die Vorgabe der Kreiswellenzahl und Lésen von
Gleichung 4.7 aufgrund der geringeren Rechenzeit zu bevorzugen.
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

4.2.3 Konvergenz

Wie bei allen numerischen Berechnungsmethoden muss auf eine ausreichen-
de Diskretisierung geachtet werden, um hinreichend genaue Ergebnisse
zu erzielen. Fir elastische Probleme soll die Polynomordnung mindestens
o = 2 betragen [B&k02]. Als Faustregel fiir die Anzahl der Knoten wird
eine oOrtliche Diskretisierung von Sy = 10 Knoten pro Wellenldnge als
untere Grenze empfohlen [BDF05]. Andere Quellen [MJQ99] empfehlen zur
Sicherheit Sy = 20 Knoten pro Wellenldange. Am Beispiel einer 5,45 mm
dicken PEEK-Platte ergibt sich der Abstand zwischen zwei Knotenpunkten
>\min 21
Ly, By el 1 on (4.10)
der bei Elementen erster Ordnung der Elementlinge L entspricht. Bei einem
isotropen Material wird die Wellenlédnge einer Transversalwelle A\ = ¢/ f
als Abschétzung genutzt, um Moden bis zu einer maximalen Frequenz
fmax zu berechnen. Am Beispiel von PEEK mit einer Transversalwellen-
geschwindigkeit cr = 1110ms™! ergibt sich fiir Sy = 10 Knoten pro
Wellenlange und einer oberen Frequenz von f .. = 2,5 MHz somit eine
untere Knotenanzahl von
th 6Nthfmax N 10 - 5,45 mim - 2,5 MHz

K t p— p—
#knoten = 77 or 1110ms !

=123, (4.11)

Aufgrund des dispersiven Wellenleiterverhaltens ergeben sich trotzdem auch
kleinere Gruppen- und Phasengeschwindigkeiten als durch die Abschétzung
angenommen, weshalb weiterhin das Dispersionsdiagramm auf Anderungen
bei hoheren Diskretisierungen iiberpriift wird, um diese ggf. anzupassen.
Unter Verwendung von Knoten zweiter Ordnung zeigt Abbildung 4.4
am Beispiel einer 5,45 mm dicken PEEK-Platte, dass weit unterhalb der
Faustregel von 10 Knoten pro Wellenlédnge (entspricht 123 Knoten bei
einer 545 mm dicken PEEK-Platte), ndmlich bei 62 Knoten eine deutliche
Abweichung erkennbar ist, wohingegen ab 123 Knoten (10 Knoten je Wel-
lenlénge) quasi keine Abweichungen im Vergleich zur Verwendung weiterer
Knoten erkennbar sind. Fiir eine konservative Betrachtung wird daher
stets die Faustregel von Sy = 20 Knoten je Wellenldnge der Transversal-
welle wihrend des folgenden Optimierungsprozesses gewahlt. Neben der
Anzahl der Knoten und somit der Anzahl der Elemente, ist die Ordnung
der Ansatzfunktionen (vgl. Abschnitt 2.4) verdnderbar. In Abbildung 4.5
sind die Dispersionsdiagrame einer 5,45 mm dicken PEEK-Platte bei un-
terschiedlichen Ordnungen o der Ansatzfunktionen dargestellt. Um die
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Abbildung 4.4: Konvergenz am Beispiel einer 5,45 mm-dicken PEEK-
Platte, Polynomordnung 2
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Abbildung 4.5: Dispersionsdiagramm einer 5,45 mm-dicken PEEK-Platte
mit 123 Knoten und unterschiedlicher Polynomordnung
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

einzelnen Diagramme mit unterschiedlichen Ordnungen der Ansatzfunktio-
nen vergleichbar zu halten, werden alle Varianten mit der gleichen Anzahl
an Knoten (123) bei unterschiedlicher Ordnung und somit unterschied-
licher Anzahl an Elementen, die sich aus der Anzahl der Knoten sowie
Knotenordnung mit

#Elemente = #Knoi;en—l (4.12)
ergibt, diskretisiert. Damit bleibt die Anzahl der Knoten pro Wellenlénge
nach Gleichung 4.10 mit Sy = 10 gleich und es adndert sich neben der
Ordnung nur die Elementzugehorigkeit der Knoten. Der Einfluss der Kno-
tenordnung wird in Abbildung 4.5 deutlich, wo nur ein Unterschied von der
Knotenordnung eins zu den héheren Ordnungen erkennbar ist. Ab einer
Ordnung von o = 2 ist der Unterschied zu hoheren Ordnungen so marginal,
dass dieser im betrachteten Frequenz-Wellenzahlbereich vernachléssigbar
ist.

4.3 Funktionalitat und Aufbau des
Messsystems

In diesem Abschnitt wird die Funktionalitdt des Messsystems vorgestellt,
das in Abbildung 4.6 schematisch dargestellt ist. In dem Messsystem
werden kurze Laserpulse auf die Probenoberfliche fokussiert, um ther-
moelastisch Plattenwellen anzuregen, welche mit einem breitbandigen
Ultraschallwandler empfangen werden. Aufgrund der punktférmigen Fokus-
sierung der Laserstrahlung, wird diese mit einem Strahlaufweiter um den
Faktor 10 aufgeweitet, um dann tiber einen Oberflachenspiegel zur Zylin-
derlinse umgelenkt zu werden, damit diese den Strahl linienfoérmig (entlang
der z-Richtung) auf die Probenoberflache fokussiert, wo sich sowohl in
y- wie auch in z-Richtung ein gaufiférmiges Profil ausbildet. Durch die
Strahlaufweitung und der linienférmigen Fokussierung wird einerseits eine
Ablation der Probe vermieden, andererseits ergeben sich ebene, auf den
streifenférmigen Empfangswandler laufende Wellenfronten. Ein weiterer
Vorteil des Strahlaufweiters ist der resultierende Parallelstrahl, sodass
die spater in Abschnitt 5.3 betrachtete modale Dampfung nicht durch
optische Aufweitung der Laserstrahlung beeinflusst wird. Da die optischen
Komponenten (Oberflichenspiegel, Zylinderlinse) auf einer Linearachse
der X-LSM-E-Reihe von Zaber Technologies montiert sind, konnen sie in
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4.3 Funktionalitdt und Aufbau des Messsystems

kleinen Schritten mit £60 pm [Zab18] Abweichung von der Zielposition
iiber eine Strecke von 20 cm bewegt werden, sodass nacheinander in mehre-
ren dquidistanten Abstdnden zum Empfénger angeregt und die jeweiligen
Empfangssignale aufgenommen und gespeichert werden. Der Empfang der
sich ausbreitenden Wellen erfolgt mit einem Streifenkeramik-Schallwandler,
der tiber eine Kopplungsschicht direkt an die Probenoberfliche angekoppelt
und im Detail in Unterabschnitt 4.3.2 beschrieben wird. Die kontaktlose,
bewegliche Anregung hat den Vorteil, dass die Ankopplung des Schall-
wandlers bei jeder Anregungsposition identisch bleibt, sodass die Dicke der
Kopplungsschicht die spétere Berechnung der Dampfung in Abschnitt 5.3
nicht beeinflusst. Sowohl die Linearachse als auch der Laser werden iiber
eine RS232-Schnittstelle vom PC gesteuert. Zusétzlich triggert der La-
ser das USB-Ostzilloskop HS5, das nach dem Austritt des Laserpulses die
Signalaufnahme startet.

Die aufgenommenen Signale des Empfangswandlers werden mithilfe eines
Ladungsverstéarker verstarkt, mittels Oszilloskop erfasst und anschliefend
gespeichert. Dieser hat eine Bandbreite von 15 MHz und einen Verstarkungs-
faktor von 10V pC~! [Fem18]. Da der Empfangswandler sehr breitbandige
Signale empfangt, werden die Umgebungsgerausche mit einem einfachen
RC-Hochpass erster Ordnung mit einer Grenzfrequenz von

1 1

Jor = 5 TRE T 9050 Q150 F

~ 21 kHz (4.13)

aus den Empfangssignalen unterdriickt.

4.3.1 Laser

Bei dem im Aufbau verwendeten Laser Flare NX von Coherent handelt es
sich um einen diodengepumpten, passiv glitegeschalteten Festkorperlaser
mit einer spezifizierten Pulsenergie von 500 i1J und einer Pulsweite von
1,45 ns bei einer Wellenldnge von 1030 nm [Coh18]. Bei einer solch hohen
Pulsenergie wiirde die punktféormige Fokussierung der Laserstrahlung zur
Ablation an der Probenoberfliche fithren, weshalb der Strahlaufweiter
den 490 pm breiten Strahl auf das Zehnfache aufweitet. Als Strahlauf-
weiter wird der Scorpii Nd:YAG-Strahlaufweiter verwendet, der auf eine
optische Wellenldnge von 1064 nm ausgelegt ist, jedoch bei 1030 nm noch
sehr hohe optische Transmissionseigenschaften aufweist [Ed18]. Durch den
resultierenden Parallelstrahl bleibt die Anregungsenergie an allen Anre-
gungspositionen gleich. Die Schussfrequenz kann auf bis zu 2 kHz herauf
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Abbildung 4.6: Messsystem nach [CMB16]

gesetzt werden, was bei Proben mit hoher Absorption wie z.B. faserver-
starkten Kunststoffen eine vergleichsweise schnelle Messung ermoglicht. Da
der Trigger-Eingang des Lasers einen sehr hohen Jitter aufweist, wird mit
einem Erweiterungskit des Herstellers der Strahlaustritt beobachtet, um
entsprechend das USB-Oszilloskop zu triggern. Zur Messung von Proben,
die im infraroten Bereich optisch transparent erscheinen, steht ein weiteres
Messsystem mit einem Stickstofflaser (MNL100Meh Power) 7y Verfiigung,
Dieser emittiert Laserpulse mit einer Energie von 225 j1J bei einer Pulsweite
von 3ns und einer optischen Wellenldnge von 337 nm [LTB16]. Da dieser
einen kleinen Jitter aufweist, wird er direkt vom HS5 getriggert.

4.3.2 Ultraschallwandler

Als Empfangswandler wird der in Abbildung 4.7 schematisch dargestellte
Streifenkeramikwandler verwendet. Die aktive Fléche bildet eine streifen-
formige Piezokeramik aus Blei-Zirkonat-Titanat (PZT, Typ PIC255 [P120])
mit einer Lénge von lke, = 12 mm, einer Breite von wke, = 1 mm und einer
Dicke von ty,.. = 0,5mm. Aufgrund der Abmessungen der Keramik ergibt
sich eine ortliche Bandbreite [CGH92] durch das ortliche Nyquist-Kriterium
von

A > 2 WKer- (4.14)

o6



4.3 Funktionalitat und Aufbau des Messsystems

SMB-Verbinder

Dampfungsmasse
Kontaktierung

Edelstahlfolie

elektrisches Bezugspotential

Piezokeramik

Abbildung 4.7: Schematischer Aufbau des piezoelektrischen Empfangs-
wandlers [JCF22; CMB16]

Somit werden theoretisch Moden mit Kreiswellenzahlen bis zu
27 _m

Re{k} <
e{}_>\ WKer

=3142m™* (4.15)

ungedampft detektiert.[CMB16] Bei Betrachtung der Messergebnisse (z.B
in Abbildung 4.17 oder Abbildung 4.30 bis 4.33), zeigt sich, dass das ortli-
che Nyquist-Kriterium keine harte Grenze darstellt, da Kreiswellenzahlen
von bis zu Re{k} = 8000m~"' detektiert werden konnen, die nicht aus
ortlichem Aliasing resultieren. Dies zeigt sich beispielhaft an Aluminium

in Abbildung 4.30.

Zur Kontaktierung wird die Piezokeramik auf ein 50 pm dickes Edel-
stahlblech, welches sich entlang des gesamten Kunststoffgehéduses erstreckt,
geklebt. Als Kleber wird Epoxidharz mit Silberpartikeln gemischt, um eine
elektrisch leitfahige Kopplung herzustellen. An die riickseitige Elektrode der
Piezokeramik ist eine elektrische Leitung gelotet. Dazu wird ein spezielles
Niedertemperaturlot verwendet, um eine Depolarisation der Piezokeramik
zu vermeiden. Die Leitung fithrt zu einem SMB-Stecker, iiber den der
Wandler im Messaufbau kontaktiert wird. [CMB16] Da piezokeramische
Wandler lange nachschwingen, sind sie im Vergleich zu piezoelektrischen
Folienwandlern vergleichsweise schmalbandig um ihre Resonanz- (Senden)
oder Antiresonanzfrequenz (Empfangen) [Sch15]. Um ihre Sensitivitét iiber
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Abbildung 4.8: Ubertragungsverhalten des Schallwandlers

einen weiten Frequenzbereich zu erhéhen, muss dessen Schwingung durch
Aufbringen einer Dadmpfungsmasse geddmpft werden. Als Dampfungsmasse
wird ein Gemisch aus Wolframcarbid und Polyurethan (Mischungsverhélt-
nis 5/1) [BRH13] in das Gehéuse gegossen. Die Dampfungsmasse dampft
Resonanz- und Antiresonanzstellen des Schallwandlers, sodass sich ein
insgesamt gleichmafBigerer Impedanzverlauf ergibt, was zu einem breitban-
digen Empfangsverhalten fithrt. Als Sendeschallwandler ist dieser aufgrund
der starken Dampfung der Dickenschwingung daher nicht geeignet. Zur
Untersuchung des Ubertragungsverhaltens des Schallwandlers wird mit
der linienférmig fokussierten Laserstrahlung ein Strahlungsimpuls direkt
auf die Keramik gegeben, um durch das schlagartige Erhitzen der Kera-
mik die Sprungantwort des Schallwandlers aufzunchmen [CMB16]. Zur
Trennung des Ubertragungsverhaltens aller Komponenten erfolgt die Signal-
aufnahme ohne Hochpass und Verstéirker. Unter Annahme eines linearen,
zeitinvarianten Systems wird aus dessen Sprungantwort h (t) tiber

g(t) = gth (t) (4.16)

die Impulsantwort g (¢) bestimmt. Fourier-Transformation dieser ergibt
schliefllich die in Abbildung 4.8 dargestellte Frequenzantwort G (w). Dort
wird ersichtlich, dass der Schallwandler vergleichsweise breitbandig ist, mit
konstanter Empfindlichkeit bis 1 MHz. Bei hoheren Frequenzen zeigt sich
das verbleibende Resonanzverhalten bis die Frequenzantwort schliellich ab

o8



4.4 Experimentelle Vorgehensweise

20 MHz eine Tiefpasscharakteristik aufweist. Obwohl der Laser mit seinen
kurzen Impulsen eine hohere Bandbreite erreicht, konnen die Moden sehr
hoher Ordnung bei Frequenzen insbesondere tiber 10 MHz nur gedampft
empfangen werden. Hinzu kommt zusétzlich, dass die Moden hoherer
Ordnung, insbesondere bei Polymeren, durch das Material bereits stark
gedampft werden, was den Frequenzbereich der detektierbaren Moden auf
< 10 MHz beschrankt.

4.4 Experimentelle Vorgehensweise

Die experimentelle Vorgehensweise zur Untersuchung der akustischen Wel-
lenausbreitung und der grundséatzlichen Erzeugung von Dispersionsabbil-
dungen werden in diesem Abschnitt dargelegt. Zunéchst wird die Platten-
dicke, welche fiir die Modellierung der Plattenstruktur im Vorwértsmodell
benoétigt wird, mittels Mikrometerschraube gemessen.

Weiterhin werden Léange und Breite der Platte zur Volumenberechnung
erfasst, um mithilfe der Masse, die mit einer Analysewaage gemessen wird,
die Dichte berechnen zu kénnen. Dabei sei jedoch angemerkt, dass diese fiir
die spétere Bestimmung der Schallgeschwindigkeiten isotroper Werkstoffe
noch nicht benétigt wird (Begriindung siehe Unterabschnitt 4.2.1), aller-
dings fiir eine anschlieBende Berechnung alternativer Darstellungsformen
wie z.B. die Koeffizienten der Elastizitdtsmatrix oder der Lamé-Konstanten.

Nach Einlegen der Probenplatte in den Messplatz, wird der Empfangs-
wandler tiber eine Schicht Koppelgel auf die Platte kontaktiert. Um die
Qualitdt der Ankopplung des Schallwandlers zu gewéahrleisten, wird zu-
nachst testweise einmal mit dem Laser an einer Position in ca. 1 cm Abstand
vom Empfangswandler angeregt und das Empfangssignal aufgenommen.

Bei zufriedenstellender Ankopplung an den Schallwandler, werden an
i.d.R. 800 Anregungspositionen im Bereich von 0 bis 20 cm Wellen an-
geregt und die Empfangssignale aufgenommen. Zusammengefasst ist die
Vorgehensweise wihrend des Messvorgangs in Abbildung 4.9.

Die genauen Anregungspositionen kénnen je nach Groéfle der Probenplat-
te sowie deren Dampfung variieren. So ist es z.B. bei Proben mit sehr hoher
modaler Dampfung wenig sinnvoll sehr weit entfernt vom Empfangswandler
anzuregen, da die resultierenden Empfangssignale nur schwach ausgepragt
sein konnen. Zur Erhohung des Signal-Rausch-Abstands (SNR) werden pro
Anregungsposition 20 mal angeregt und die Empfangssignale aufgenommen,
iiber welche jeweils gemittelt wird. Zusatzlich wird die Umgebungstempera-
tur im Messplatz wahrend der gesamten Laserakustik-Messung von einem
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Abbildung 4.9: Vorgehensweise beim Messvorgang



4.4 Experimentelle Vorgehensweise

Temperatursensor MCP9808 [MT11] mit einer im Datenblatt angegebenen
Unsicherheit von 0,5 K aufgenommen.

Am Beispiel einer 5,45 mm dicken PEEK-Platte mit Anregungspositio-
nen 20 mm bis 120 mm wird die in Abbildung 4.10 dargestellte Signalmatrix
aufgenommen. Wird die Matrix der Rohsignale durch zweidimensiona-
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Abbildung 4.10: Zeit- und ortsabhéngige Signalmatrix

le Fourier-Transformation in den Frequenz-Wellenzahlbereich tiberfithrt
[AC90; ACI1], ergibt sich dessen Betrag in Abbildung 4.11 (Dispersi-
onsabbildung), wobei negative Frequenzen nicht mit dargestellt sind, da
diese lediglich die zusatzliche Spiegelung entlang der Wellenzahlachse und
somit keine zusatzlichen Informationen enthalten. Dort werden die sich
ausbreitenden Moden als Grate sichtbar. Grofie Werte |U (f, k) | bedeuten,
dass die entsprechenden Moden mehr Energie transportieren als schwécher
ausgepragte Moden. Dabei ist ersichtlich, dass die Dispersionsabbildung
im Vergleich zum Dispersionsdiagramm (vgl. z.B. Abbildung 4.3) nicht alle
ausbreitungsfahigen Moden enthélt. Dies liegt daran, dass gewisse Teile der
Moden nicht detektiert werden, weil die vom Empfangswandler detektierte
Komponente der Verschiebung beim entsprechenden Frequenz-Wellenzahl-
Paar gerade Null ist. Griinde hierfiir sind, dass die entsprechenden Moden
nicht angeregt oder zu stark gedampft sind. Die senkrechten periodischen
Streifen in Abbildung 4.11 sind auf den 6rtlichen Leakage-Effekt zuriickzu-
fithren. Ebenso ergeben sich durch den zeitlichen Leakage-Effekt waage-
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Kreiswellenzahl Re{k} / mm™!
|U (f7 k) ’FKor

0 02040608 1 121416 1,8 2
Frequenz f / MHz

Abbildung 4.11: 2D-Fourier-Transformation der Messsignalmatrix (PEEK)
(Gamma-Korrektur (I'ko, = 0,1) zur besseren Sichtbarkeit
fir die Darstellung)

rechte Streifen nahe einer Wellenzahl von Re{k} = 0, die in Abbildung 4.11
jedoch kaum bemerkbar sind. Wie dem entgegen zu wirken ist und wel-
che weiteren Signalverarbeitungssschritte helfen, um die Sichtbarkeit der
Moden zu erhéhen, wird anschliefend in Abschnitt 4.6 erldutert.

4.5 Validierung von Dispersionsabbildungen an
FEM-Simulation

Zur Validierung, ob die dargestellten Modenverlaufe der messtechnisch
erzeugten Dispersionsabbildung tatsachlich mit den im Vorwartsmodell be-
rechneten Modenverlaufen tibereinstimmen, wird die Wellenausbreitung in
einem zweidimensionalen FEM-Modell einer Platte mittels CFS++ [Kal07]
im Zeitbereich simuliert. Da die Messung der zeitabhéngigen Messsignale
ebenfalls im Zeitbereich erfolgt, ist eine Zeitbereichssimulation trotz des
hoheren Rechenaufwands aufgrund der Artefakte, die durch die Abtastung
im Zeitbereich, Leakage-Effekt, Fourier-Transformation etc. hinzu kommen,
ndher an den Messsignalen.
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4.5 Validierung von Dispersionsabbildungen an FEM-Simulation

Die Platte wird mit einer Dicke von 3 mm und einer Linge (Richtung
der Wellenausbreitung) von 20 cm angenommen, welche mit einem struk-
turierten Rechteckgitter diskretisiert wird. Aufgrund der Dicke und Lénge
der Platte erstreckt sie sich von x = 0 bis x = 3mm sowie von y = 0
bis y = 20cm. Als Plattenmaterial wird ein ideal-elastisches, isotropes
Materialmodell mit einem Elastizitatsmodul von £ = 4,76 GPa, einer Pois-
sonzahl von v = 0,38 und einer Dichte von p = 1300kg m—3 verwendet.
Angeregt wird mit einer mechanischen Verschiebung in z-Richtung auf
der Unterseite der Platte bei z = 0, y = 9,5cm in Form eines transienten
GauBlpulses mit einer Hohe von 1pm und zeitlichen Dauer von 3ns um
den Zeitpunkt ¢ = 5ns. Aufgenommen werden zu jedem Zeitschritt die
mechanischen Verschiebungen an der Oberseite der Platte bei x = 3mm
an 1000 dquidistanten Punkten zwischen, y = 10 cm und y = 20 cm.
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Abbildung 4.12: Dispersionsabbildung aus den Rohsignalen der In-plane-
Auslenkungen (Gamma-Korrektur (I'go, = 0,1) zur besse-
ren Sichtbarkeit fiir die Darstellung)

Da in [CSG21] bereits gezeigt werden konnte, dass eine Detektion mit-
tels Laser-Doppler-Vibrometer Verschiebungen senkrecht zu Plattenober-
flache (Out-of-plane-Komponenten), eine Detektion mittels Ultraschall-
wandler Verschiebungen in der Plattenoberflache (In-plane-Komponenten)
erfasst, ist in Abbildung 4.12 der Betrag der zweidimensionalen Fourier-
Transformation der y-Komponente §, (in-plane) der mechanischen Verschie-
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

bung und das mittels Vorwértsmodell berechnete Dispersionsdiagramm dar-
gestellt. Dabei werden vor der zweidimensionalen Fourier-Transformation
sowohl im Orts- als auch Zeitbereich Nullen an die Signale gehangen, um die
Dispersionsabbildung zu glatten. Im Vergleich mit den im Vorwéartsmodell
berechneten Modenverldufen, stimmen beide Simulationsergebnisse iiberein
und befinden sich dementsprechend bei den gleichen Frequenz-Wellenzahl-
Paaren. Da die In-plane-Komponente der mechanischen Verschiebung fiir
einige Frequenz-Wellenzahl-Paare der Moden zu Null wird, weil diese nur
eine Qut-of-plane-Komponente enthalten, oder einige Moden nicht angeregt
wurden, werden einige Bereiche der Moden bei hoheren Wellenzahlen in
der Dispersionsabbildung kaum sichtbar und koénnen folglich nicht weiter
ausgewertet werden.

4.6 Signalvorverarbeitung

Werden die Messdaten im Orts-Zeitbereich ohne weitere Signalverarbei-
tungsschritte zweidimensional Fourier-transformiert, ergibt sich die in
Abbildung 4.13 abgebildete Dispersionsabbildung als Betrag der zweidi-
mensionalen Fourier-Transformation, in der Moden nur schwach erkennbar
sind. Damit moglichst viele der propagierenden Moden in den Messdaten

\V} w =~ ot

—_

Kreiswellenzahl | Re{k}| / mm™!

e}

0 02040608 1 1214 16 1,8 2
Frequenz f / MHz

Abbildung 4.13: Unverarbeitete Dispersionsabbildung
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4.6 Signalvorverarbeitung

sichtbar werden, werden folgende Signalverarbeitungsschritte basierend
auf [JCW17] nach einer Mittelwertbefreiung der Zeitsignale nacheinander
durchgefiihrt:

Fensterung im Orts- und Zeitbereich

Wie bereits in Abbildung 4.11 ersichtlich war, ergdbe sich ohne Fensterung
im Ortsbereich ein Streifenmuster (wie in Abbildung 4.14a), welches durch
Verwendung eines Tukey-Fensters [Tuk67; Har78] mit der Fensterfunktion

%{1+cos(27” [y—%])}, 0<y<:
w(y) =11, s<y<l—3 (4.17)
%{1—1—005(27”{(7/—1—1—%})}, 1-7<y<1

[RM13; Mat| unterbunden wird (vgl. Abbildung 4.14b).

Die Tukey-Fensterfunktion lasst sich durch den Parameter r fiir diesen
Zweck gut parametrisieren. Wird r = 1 gewahlt, entspricht es einem Hann-
Fenster [BT58], fiir r = 0 einem Rechteck-Fenster [RM13]. Ein zu grofles r
fithrt zu einer hoheren Unschérfe der Fouriertransformierten, ein zu kleines
r fiihrt dazu, dass der Leakage-Effekt noch zu stark ausgepragt ist. Als
Kompromiss wird daher r = 0,2 (sowohl im Zeit- als auch im Ortsbereich),
sofern nicht anders angegeben, gewahlt.

Fehlende zeitliche Fensterung fithrt zu einem Streifen tiber alle Frequen-
zen bei kleinen Wellenzahlen. Dieser ist unproblematisch bei niedrigen
Frequenzen, da die Moden niedriger Ordnung hohe Intensitaten aufweisen
und damit deutlich zu erkennen sind, wohingegen Moden hoher Ordnung
bei hoheren Frequenzen aufgrund der frequenzabhéngigen Dampfung sehr
schwach oder kaum erkennbar sind. Um diese Moden hoher Ordnung detek-
tierbar zu machen, wird eine spéatere spaltenweise Normierung durchgefiihrt.
Dafiir ist es wichtig den zeitlichen Leakage-Effekt zuvor weitestgehend
zu unterdriicken, der andernfalls anstelle der sich ausbreitenden Moden
sichtbar wird.

Heruntertakten im Zeitbereich und Zero-Padding

Aufgrund der Linge der aufgenommenen Zeitsignale (2! Abtastwerte), ist
weiteres Zero-Padding im Zeitbereich, kaum praktikabel. Die Abtastfre-
quenz der Messsignale ist mit f,,; = 100 MHz deutlich iiber der doppelten
maximalen detektierbaren Frequenz der Wellenleitermoden.
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(b) Mit Fensterung im Orts- und Zeitbereich mit je r = 0,2

Abbildung 4.14: Dispersionsabbildung ohne und mit Fensterung und nach-
folgender Anwendung einer Gamma-Korrektur (siehe fol-
gende Abschnitte) mit ['k,, = 0,1 um den resultierenden
Effekt der Fensterung sichtbar werden zu lassen
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4.6 Signalvorverarbeitung

Da, insbesondere bei Polymeren, Moden hoher Ordnung teilweise so stark
gedampft werden, dass ab einer bestimmten Frequenz kaum Moden sichtbar
werden, wird eine obere Grenzfrequenz wahrend der Verarbeitung festgelegt.
Aufgrund der hohen Speicherverfiigbarkeit und zur Vorbeugung eines
Datenverlusts wird die Abtastfrequenz nicht wihrend der Messung, sondern
erst wahrend der Verarbeitung verringert, da es geniigt, die maximale
darstellbare Frequenz und somit die Abtast- bzw. Nyquistfrequenz auf
Basis der darstellbaren Wellenleitermoden zu wahlen. Bei Metallproben
ergeben sich héufig darstellbare Wellenleitermoden bis zu 10 MHz, bei
Polymeren bis zu 3 MHz, sodass bei letzterem die Abtastfrequenz deutlich
geringer gewahlt werden kann.

Nach dem Abtastheorem nach Shannon [Sha49] ergibt sich bei gegebener
oberer Grenzfrequenz fyy eine Mindestabtastfrequenz von fa, = 2 fxy = ﬁ,
sodass eine Vergroflerung des Zeitschritts At durch Verwerfen von Zwi-
schenwerten zu einer geringeren maximalen darstellbaren Frequenz fyy
und gleichzeitig zur Freigabe von Speicher fithrt, was anschlieSendes Zero-
Padding ermoglicht. Sind zuvor Signalanteile oberhalb dieser Frequenz ent-
halten, miissen die Messsignale vorher mit einem entsprechenden Tiefpass
gefiltert werden, um Aliasing zu vermeiden. Aufgrund des resultierenden ge-
ringeren Speicherbedarfs, konnen bei entsprechend geringer Abtastfrequenz
umso mehr Nullen an die Zeitsignale angehéngt werden (Zero-Padding),
um die Abbildung im Frequenzbereich resultierend durch eine kleinere
Frequenzschrittweite A f zu glitten. Nach weiterem Zero-Padding im Orts-
bereich zur Gliattung im Wellenzahlbereich, wird die zweidimensionale
Fourier-Transformation durchgefiihrt und auf die geforderte maximale
Frequenz und Wellenzahl zugeschnitten.

Zweidimensionale Fourier-Transformation

Durch die zweidimensionale Fourier-Transformation ergeben sich Signal-
anteile sowohl bei positiven Frequenzen und Wellenzahlen wie auch bei
negativen Frequenzen und Wellenzahlen. Bei Betrachtung des Betrags
der komplexen 2D-Fourier-Transformierten (Dispersionsabbildung) wer-
den bereits die sich ausbreitenden Moden als Grate sichtbar. Wihrend
die Moden bei positiven Wellenzahlen die Wellenausbreitung in negative
y-Richtung beschreiben, zeigen sich die in positive y-Richtung propagie-
renden Wellenleitermoden bei negativen Wellenzahlen. Weiterhin ergibt
sich jeweils eine periodische Fortsetzung durch die diskrete Verarbeitung.
Aufgrund der Achsen-Symmetrie von Dispersionsdiagrammen sowohl zur
Frequenz- als auch der Wellenzahl-Achse, ist es theoretisch unerheblich,
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welcher Quadrant (jeweils positive und negative Frequenzen bzw. Wellen-
zahlen) betrachtet wird, da die iibrigen keine zusétzlichen Informationen
enthalten. Daher gentigt eine einseitige Detektion der Wellenausbreitung,
was dazu fiihrt, dass nur im entsprechenden Quadranten Wellenleitermoden
enthalten sind. Die tibrigen sich ergebenden Quadranten werden durch
Zuschnitt der Daten entfernt, wobei Abbildung 4.13 bis 4.17 bereits nur
einen Quadranten zeigen.

Gamma-Korrektur

Wiéhrend die Moden niedriger Ordnung bereits schwach erkennbar sind,
werden weitere Schritte auf den Betrag der Fourier-Transformierten zur
einfacheren Erkennung der Moden héherer Ordnung notwendig. Ein ein-
faches Mittel der Bildverarbeitung zur Kontrasterhohung ist die Gamma-
Korrektur [Hab89], womit sich die Werte in der Dispersionsabbildung nach
der Fourier-Transformation |U (f, k)| zu

UFKor (f7 k) = |U (f7 k) ’FKor, O < FKOI‘ S 1 (418)

ergeben. Hier wird in der Regel I'k,, = 0,1 gewahlt, um kleine Werte
\U (f, k)|, wie an den Wellenzahl-Frequenzpaaren an denen sich Moden
hoher Ordnung zeigen, stark anzuheben, um deren Sichtbarkeit zu erhohen.

Entfernen der Spaltenmittelwerte

Durch duflere empfangene Storeinflissse wie Einstreuungen in bestimm-
ten Frequenzbéndern aus der Umgebung wahrend der Messung, kann es
zu spaltenweisen Offsets in den Matrixwerten der Dispersionsabbildung
kommen, welche subtraktiv entfernt werden. Dies reduziert zusatzlich den
nach der Fensterung verbliebenen Einfluss des ortlichen Leackage-Effekts,
da sich eine unzureichende ortliche Fensterung ebenfalls durch senkrechte
Linien (bei konstanter Frequenz und gleichzeitig allen Wellenzahlen) in der
Dispersionsabbildung zeigt. So lassen sich zusétzliche senkrechte Streifen
bei tiefen Frequenzen aus Abbildung 4.14 in Abbildung 4.15 entfernen.

Spaltenweise Normierung

Die sich ausbreitenden Moden hoherer Ordnung sind im Vergleich zu
Moden niedriger Ordnung weiterhin schwach ausgepragt. Allerdings sind
gerade die Moden hoher Ordnung sehr sensitiv auf die Materialparameter

(vgl. Abschnitt 4.8).
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Abbildung 4.15: Dispersionsabbildung nach Entfernung der Spaltenmittel-
werte

Um diese Moden starker zu gewichten und somit besser sichtbar werden
zu lassen, wird eine spaltenweise Normierung durch [Web21] zuséatzlich
eingefiihrt. Dabei wird bei jeder Frequenz auf den Maximalwert der je-
weiligen Spalte normiert, wodurch Moden héherer Ordnung pragnanter in
Abbildung 4.16 erkannt werden. Bei hohen Frequenzen fiihrt dies gleich-
zeitig zunachst zu dem Problem, dass der sonst eher verborgene zeitliche
Leakage-Effekt sichtbar wird, wenn auf die vorherige zeitliche Fensterung
verzichtet werden wiirde.

Gamma-Expansion

Aufgrund der spaltenweisen Normierung, werden sehr viele Moden auch bei
hohen Frequenzen aufgrund der entsprechend héheren Matrixwerte sichtbar,
die zum Teil jedoch so nah beieinander liegen, dass sie aufgrund ihrer Breite
fast ineinander iibergehen. Um kleine Werte in der Dispersionsabbildung
zwischen den Moden weiter zu verringern, erganzt [Web21| nach einer
Normierung auf den Maximalwert der Matrix, nochmal eine Gamma-
Korrektur, jedoch nun mit einem Wert von I'gy, > 1, id.R. I'ggp = 2,5
bei Polymeren. Aufgrund der resultierenden Stauchung der Zwischenwerte,
werden einzelne Moden somit deutlicher. Bei Metallproben hingegen sind
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Abbildung 4.16: Dispersionsabbildung nach spaltenweiser Normierung

die Grate bereits so schmal ausgepragt, dass eine Gamma-Expansion nicht
notwendig ist und gar die Konvergenz der nachfolgenden Optimierung
gefahrden kann.

Unterer Grenzwert

Eine weitere Hilfe, um Moden deutlicher erscheinen zu lassen, ist es, den
Mittelwert der Matrix zu bestimmen und alle Werte, die unter diesem
liegen, auf den Mittelwert zu setzen. Dies kann theoretisch beliebig oft
durchgefithrt werden, um Moden deutlicher hervorzuheben, jedoch fiihrt
eine zu héufige Anwendung zum Verlust von schwach sichtbaren Moden.
Daher wird es, hier wie in [JCW17], einmal angewandt und die resultierende
Matrix auf ihren Maximalwert normiert.

Das Ergebnis nach allen Verarbeitungsschritten ist in Abbildung 4.17 am
Beispiel einer 5,45 mm dicken PEEK-Platte dargestellt. Die in der Messung
angeregten Moden werden nun trotz modaler Dampfung deutlich als Grate
sichtbar.
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4.7 Reproduzierbarkeit der Messung

Kreiswellenzahl | Re{k}| / mm™*

0 02040608 1 1,214 16 1,8 2
Frequenz f / MHz

Abbildung 4.17: Dispersionsabbildung nach allen Vorverarbeitungsschrit-
ten [JCH21]

4.7 Reproduzierbarkeit der Messung

Zur Untersuchung der Reproduzierbarkeit werden mehrere Messungen
exemplarisch an PEEK durchgefiihrt, wobei jede neue Messung ebenfalls
eine neue Ankopplung der Probe an den Empfangswandler beinhaltet. Die
sonstigen Messparameter (vgl. Abschnitt 4.4) wie die Anregungspositionen
sowie die Parametrisierung der weiteren Verarbeitungsschritte der Messda-
ten (vgl. Abschnitt 4.6) werden identisch gewéahlt. Abbildung 4.18a zeigt
die sich ausbreitenden Moden dreier Messungen, die jeweils in Rot, Griin
und Blau dargestellt sind. Weitere Farben ergeben sich aus deren additiven
Uberlagerungen. Der Grofiteil der Moden erscheint weif3, d.h. dass sich
diese Modenbereiche in jeder der drei Messungen ausbreiten und detektiert
werden, sodass sich dort alle drei RGB-Farben tiberlagern. Bei steigender
Frequenz und Wellenzahl ergeben sich auch Uberlagerungen von lediglich
zwei Messungen oder gar Bereiche die nur in einer der drei Messungen
erscheinen. Die Ursache hierfiir liegt im Wesentlichen daran, dass die Be-
schaffenheit der Koppelschicht bei erneuter Ankopplung nicht identisch
reproduzierbar ist. Eine zu schwache Ankopplung des Empfangswandlers
fiihrt dazu, dass einige schwach ausgeprigte Modenabschnitte bei hohen
Frequenzen nicht mehr detektiert werden. Abbildung 4.18b zeigt dazu

71



4 Inverses Verfahren zur Identifikation elastischer Materialparameter

den Vergleich dreier Messungen bei jeweils gleicher Ankopplung an den
Empfangswandler. Dort zeigen sich keinerlei Unterschiede im Vergleich der
drei Messungen untereinander.

72



4.7 Reproduzierbarkeit der Messung

Kreiswellenzahl | Re{k}| / mm™!

Frequenz f / MHz

(a) Unterschiedliche Ankopplung

Kreiswellenzahl |Re{k}| / mm™!

0 02040608 1 121416 1,8 2
Frequenz f / MHz
(b) Gleiche Ankopplung

Abbildung 4.18: Vergleich der sich ausbreitenden Moden an drei Messun-
gen an PEEK mit RGB-Codierung: Messung 1 in Rot,
Messung 2 in Griin, Mesung 3 in Blau
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

4.8 Sensitivitat der Schallgeschwindigkeiten

Um den Einfluss der Materialparameter auf das Dispersionsdiagramm zu
untersuchen, wird die skalierte Sensitivitat

, ob;
o () o

der Ursache p; auf die Beobachtung b; an einem Arbeitspunkt p; ap [Hil00]
betrachtet. Die Ableitung wird numerisch durch den zentralen Differenzen-
quotient angenédhert. Generell hat die skalierte Sensitivitat den Vorteil, dass
diese durch die Skalierung mit den Parametern des Arbeitspunktes einhei-
tenlos wird. Gleichzeitig liegt die skalierte Sensitivitat, trotz moglicherweise
sehr stark unterschiedlicher Wertebereiche der Eingangsparameter p; als
Ursache, im gleichen Wertebereich, wodurch die Sensitivitaten der einzelnen
Parameter auf die entsprechende Beobachtung untereinander vergleichbar
sind.

Wird keine Frequenzabhangigkeit im Materialmodell berticksichtigt,
ist es effizienter die Kreisfrequenz w bei vorgegebener Kreiswellenzahl k
zu berechnen (vgl. Abschnitt 3.4). Daher dienen die jeweilgen Kreisfre-
quenzen w zu jeder Kreiswellenzahl k als Beobachtung b;, wahrend die
entsprechenden Schallgeschwindigkeiten als Ursache p; betrachtet werden.
Als Arbeitspunkt werden exemplarisch ¢, = 2528 ms™! als Longitudinal-
und cr = 1096 ms~! als Transversalwellengeschwindigkeit gewihlt. Als
Plattendicke wird beispielhaft 5,5mm angenommen. Um den Einfluss
des Diskretisierungsfehlers gering zu halten, wird eine sehr hohe Diskre-
tisierung genutzt. Mit 20 Knoten je Wellenldnge, einer maximalen Fre-
quenz von Wmax = 12MHz und einer Transversalwellengeschwindigkeit
von cp = 1096 ms™! ergibt sich nach Gleichung 4.11 eine untere Diskre-
tisierungsgrenze von 192 Knoten. Gewéahlt werden 500 Knoten mit einer
Ordnung von 3. Abbildung 4.19 zeigt die Dispersionsdiagramme bei ei-
ner Anderung der Longitudinalwellengeschwindigkeit um £5% um den
Arbeitspunkt. Dort zeigt sich, dass sich bei dessen Anderung vorwiegend
Anderungen bei kleinen Kreiswellenzahlen ergeben, was sich in der Sensiti-
vitat der Kreisfrequenzen in Abbildung 4.21 widerspiegelt. Die Sensitivitét
bei sehr groflen Kreiswellenzahlen tendiert hingegen zu Null. Die Maxima
der Sensitivitdt der einzelnen Moden befinden sich bei denjenigen Wel-
lenzahlen, die im Dispersionsdiagramm auf der Geraden ki, (w) = wi
liegen. Gleichzeitig befindet sich bei der Sensitivitdat der Transversalwel-
lengeschwindigkeit in Abbildung 4.22 an der gleichen Stelle ein Minimum.
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Daraus lasst sich schlussfolgern, dass die Moden an diesen Stellen eher
Longitudinalwelleneigenschaften besitzen.

Insgesamt ist in Abbildung 4.20 ersichtlich, dass eine Anderung der Trans-
versalwellengeschwindigkeit Auswirkungen auf alle Moden hat. Andert sich
jedoch die Longitudinalwellengeschwindigkeit, hat dies nur Auswirkungen
auf den Bereich der Wellenzahlen unterhalb der Geraden ki, (w) = wi.
Dies ist darauf zuriickzufiihren, dass eine Transversalwelle mit einer Schall-

geschwindigkeit von cp = \/g aus einer reinen Scherbewegung besteht,

K%/?’” sowohl Scher- als auch

wahrend eine Longitudinalwelle mit ¢, =

Kompressionsbewegungen enthélt (vgl. Abschnitt 3.3). Somit zeigt sich ein
Dispersionsdiagramm aus gekoppelten Longitudinal- und Transversalwel-
len bzw. aus gekoppelten Kompressions- und Scherbewegungen. Um dies
zu zeigen, vergleichen Uberall et. al [UHD94] das Dispersionsdiagramm
einer festen Schicht mit zwei Dispersionsdiagrammen von jeweils einer
fliissigen Schicht. Dabei setzen sie die Longitudinalwellengeschwindigkeit
der ersten Fliissigkeitsschicht gleich der Longitudinalwellengeschwindigkeit
des Festkorpers. Als Longitudinalwellengeschwindigkeit der zweiten Fliis-
sigkeitsschicht wird die Transversallwellengeschwindigkeit des Festkorpers
genutzt. Bei Betrachtung der drei Dispersionsdiagramme ergibt sich die
Beobachtung, dass sich die Moden der einzelnen Fliissigkeitsschichten an
einigen Stellen kreuzen. Werden beide jedoch verkoppelt z.B. als zwei Fliis-
sigkeitsschichten aber insbesondere auch innerhalb eines Festkorpers mit
entsprechender Longitudinal- und Transversalwellengeschwindigkeit, verlau-
fen die Moden aneinander vorbei anstatt sich zu kreuzen. Diese Verhalten
vermiedener Kreuzungen aufgrund der Kopplung von Longitudinal- und
Transversalwellen bzw. die Verkopplung von Kompressions- und Scherbe-

wegungen lasst sich insbesondere wieder entlang der Geraden ky, (w) = wi

in Abbildung 4.19 und Abbildung 4.20 beobachten. Oberhalb der Geraden,
ist das Verhalten der Moden nahezu unabhéngig von der Longitudinal-
wellengeschwindigkeit cr,. So sind die A0, SO sowie die A1-Mode nahezu
unabhéngig von cr,. Ein weiterer sehr sensitiver Bereich sind die Grenz-
frequenzen. Insgesamt ergibt sich im Dispersionsdiagramm jedoch eine
deutlich hohere Sensitivitat von der Transversalwellengeschwindigkeit im
Vergleich zur Longitudinalwellengeschwindigkeit, da die Sensitivitat der
Transversalwellengeschwindigkeit mit steigender Kreiswellenzahl weiterhin
ansteigt (Abbildung 4.22).
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Anderung der Longitudinalwel-

lengeschwindigkeit c¢;, am Beispiel einer 5,5mm dicken
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Abbildung 4.19: Dispersionsdiagramm bei

Anderung der Transversalwel-

lengeschwindigkeit ¢t am Beispiel einer 5,5mm dicken

PEEK

Kreisfrequenz w / MHz

-Platte

Abbildung 4.20: Dispersionsdiagramm bei
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Abbildung 4.21: Sensitivitdt der Kreisfrequenzen w der zehn Moden nied-
rigster Ordnung von der Longitudinalwellengeschwindig-
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Abbildung 4.22: Sensitivitat der Kreisfrequenzen w der zehn Moden nied-
rigster Ordnung von der Transversalwellengeschwindigkeit
cr
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

4.9 Startwerte

Wird im inversen Verfahren ein lokaler Optimierungsalgorithmus verwendet,
werden Startwerte fiir die Optimierungsparameter benotigt. Da ein lokaler
Optimierungsalgorithmus nur im Bereich um die Startwerte sucht, sollten
diese nicht zu weit von den gesuchten Werten abweichen. Im Gegensatz zu
den lokalen suchen globale Optimierungsalgorithmen hingegen in einem
sehr viel grofleren Bereich, benétigen entsprechend langere Rechenzeiten,
konnen aber zum Teil auf Startwerte verzichten. Aufgrund der langeren
Rechenzeit globaler Optimierungsalgorithmen wird im inversen Verfahren
ein lokaler Optimierungsalgorithmus verwendet, weshalb sich der folgende
Abschnitt mit der Schéitzung von Startwerten fiir die Longitudinal- und
Transversalwellengeschwindigkeit befasst.

4.9.1 Startwertbestimmung im Zeit-Ortsbereich

Eine Abschatzung der Schallgeschwindigkeit im Zeit-Ortsbereich erfolgt
iiber Strecke und Laufzeit der Wellenpakete. Im Gruppengeschwindigkeits-
Dispersionsdiagramm eines Wellenleiters ist die Longitudinalwellenge-
schwindigkeit die grofitmoglichste Gruppengeschwindigkeit. Dabei wird
die Gruppengeschwindigkeit der schnellsten Wellenfront als Schatzwert
fiir die Longitudinalwellengeschwindigkeit genommen. Daher wird eine
Gerade an die vorderste Wellenfront gelegt, wie in Abbildung 4.23 an-
hand der weiflen Gerade zu sehen ist. Die Wellenpakete zur Schétzung der
Transversalwellengeschwindigkeit werden anhand der héchsten Intensitat
bestimmt. Die AO-Mode, deren Gruppengeschwindigkeit fiir grofie Wel-
lenzahlen gegen die Rayleigh-Wellengeschwindigkeit strebt, zeichnet sich
in unbearbeiteten Messdaten sowohl im Zeit- als auch Frequenzbereich
aufgrund der asymmetrischen Anregung durch ihre hohe Intensitit aus.
Daher wird eine Gerade (rote Gerade in Abbildung 4.23) durch diese be-
tragsméaflig hohen Intensititen gelegt und deren Steigung als Schéatzwert
fiir die Transversalwellengeschwindigkeit angenommen. [JCW17] Da die
Rayleigh-Wellengeschwindigkeit nach Gleichung 2.42 abhéngig von der Pois-
sonzahl mit einem Faktor nahe 1 von der Transversalwellengeschwindigkeit
abhangt, werden Rayleigh-Wellengeschwindigkeit und Transversalwellenge-
schwindigkeit fiir eine erste Startwertschatzung als ndherungsweise gleich
betrachtet.
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Abbildung 4.23: Schétzung der Longitudinal- und Transversalwellenge-
schwindigkeit im Zeit-Ortsbereich

4.9.2 Startwertbestimmung im
Frequenz-Wellenzahlbereich

Wie in Abbildung 2.6 kénnen die Schallgeschwindigkeiten aus dem Di-
spersionsdiagramm geschétzt werden. Abbildung 4.24 zeigt eine stark
ausgepragte AO-Mode. Die Steigung dw/0k = 0f /0k der Moden gibt nach
Gleichung 2.44 deren Gruppengeschwindigkeit an (vgl. Gleichung 2.44).
Dabei ist & = Re{k}/(2m) analog zu f = w/(2m). Fir sehr grofie Wellen-
zahlen strebt die Gruppengeschwindigkeit der A0O- bzw. SO-Mode gegen die
Rayleigh-Wellengeschwindigkeit cg, sodass diese fiir groffe Wellenzahlen
iitber die Steigung der A0-Mode geschétzt werden kann. Abhéngig von
der Poissonzahl héngt diese iiber Gleichung 2.42 mit der Transversalwel-
lengeschwindigkeit zusammen. Aufgrund des beschrankten Wertebereichs
der Poissonzahl 0 < v < 0,5 liegt die Transversalwellengeschwindigkeit cp
im Bereich von 1,02cg < ¢ < 1,15¢g. Da der Wert nahe an 1 liegt, wird
die Rayleighwellengeschwindigkeit aus einer Steigungsgerade der AO-Mode
geschitzt und diese als Schatzwert fiir die Transversalwellengeschwindigkeit
cr verwendet. [JCH21|

Werden Moden hoherer Ordnung fiir hohe Wellenzahlen in den Mess-
daten deutlich erkennbar, kann deren Gruppengeschwindigkeit direkt als
Startwert der Transversalwellengeschwindigkeit bestimmt werden. Zur
Schatzung der Longitudinalwellengeschwindigkeit cp, werden die Bereiche,

79



4 Inverses Verfahren zur Identifikation elastischer Materialparameter

Frequenz f / MHz

0 100 200 300 400 500 600
Wellenzahl & / m~—!

Abbildung 4.24: Schétzung der Longitudinal- und Transversalwellenge-
schwindigkeit im Frequenz-Wellenzahl-Bereich

die die groite Steigung 0f/0k aufweisen, durch eine Gerade verbunden.
Idealerweise verbindet diese Gerade die Wendepunkte der Moden. Die
Steigung dieser Geraden wird als Schatzwert fiir die Longitudinalwellenge-
schwindigkeit ¢, verwendet.

4.9.3 Vergleich der Startwertbestimmung

Beide Startwertschétzer liefern zufriedenstellende Ergebnisse. Zwar wird
die Transversalwellengeschwindigkeit ¢t tendenziell unterschétzt, jedoch
ist die resultierende Abweichung so gering, dass sie zur Startwertbestim-
mung vernachléssigt werden kann. Sind sehr wenige Moden sichtbar, z.B.
aufgrund einer geringen Plattendicke oder hoher Dampfung, kann es vor-
kommen, dass die benotigten Abschnitte der Moden zur Schétzung der
Longitudinalwellengeschwindigkeit im Frequenz-Wellenzahl-Bereich kaum
sichtbar sind. In dem Fall kann eine Schétzung im Zeit-Ortsbereich leichter
sein. In der Regel werden die Messdaten durch die Verarbeitung nach Ab-
schnitt 4.6 so aufbereitet, dass selbst bei stark absorbierenden Werkstoffen
hinreichend Moden auswertbar sind. Somit konnen beide Startwertschatzer
grundsétzlich als gleichwertig angesehen werden.
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4.10 Zielfunktion

In diesem Abschnitt werden Varianten einer moglichen Kostenfunktion
bzw. Zielfunktionen verglichen. Die Kostenfunktion ist ein Maf} fir die
Ahnlichkeit zwischen Mess- und Simulationsdaten. Ziel ist, dass sich die
Moden des simulativ berechneten Dispersionsdiagramms moglichst bei den
gleichen Frequenz-Wellenzahl-Paaren befinden, wie die in der Messung
detektierten Moden. Die Elastizitatsmatrix eines isotropen Materials ist
bereits durch zwei akustische Materialparameter eindeutig beschrieben. Es
existieren dafiir verschiedene Parameterdarstellungen wie z.B. Elastizitéts-
modul und Poissonzahl, Kompressions- und Schermodul, Lamé-Konstanten
oder Schallgeschwindigkeiten. Da die Gruppengeschwindigkeiten bereits
als Steigung der Grate nach Gleichung 2.44 ins Dispersionsdiagramm
bzw. in die Dispersionsabbildung wie z.B. in Abbildung 4.24 eingehen, ist
das Dispersionsdiagramm nach Abschnitt 4.8 besonders sensitiv auf die
Schallgeschwindigkeiten. Ein weiterer Vorteil bei der Nutzung der Schall-
geschwindigkeiten als Optimierungsvariabeln besteht darin, dass sich beim
Losen der Eigenwertgleichung (Gleichung 3.27) im Vorwértsmodell in Ab-
hangigkeit der Schallgeschwindigkeiten die Dichte herauskiirzt und somit
keinen Beitrag zur Messunsicherheit liefert (vgl. Unterabschnitt 4.2.1).

4.10.1 Mittelwert der Bildpunkte

In der Simulation werden die Eigenkreisfrequenzen w; (k;) zu den vorgegebe-
nen Kreiswellenzahlen k; berechnet. Unter Beriicksichtigung frequenzabhén-
giger Materialparameter z.B. unter Verwendung eines frequenzabhangigen
Déampfungsmodells kénnen ebenfalls die Kreiswellenzahlen k; (w;) unter
Vorgabe der Kreisfrequenzen w; berechnet werden. In jedem Fall ergeben
sich Frequenz-Wellenzahl-Paare aus der Simulation. Diese diskreten Stellen
werden in der verarbeiteten Dispersionsabbildung aus der Messung gesucht
und der Mittelwert der Matrixwerte U (w, k) all dieser Stellen gebildet:

— 1 X
U= Nw% U (wj, Re{k;}) (4.20)

Je groBer der Mittelwert U desto gréfer ist die Ahnlichkeit zwischen Mes-
sung und Simulation, sodass die Modelleingangsparameter bei denen der
Mittelwert der Matrixwerte an den entsprechenden simulativ ausgewéahlten
Frequenz-Wellenzahl-Paaren maximal wird, den Materialparametern ent-
sprechen. Abbildung 4.25 zeigt den Verlauf der Funktion unter Variation
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der Longitudinal- und Transversalwellengeschwindigkeit am Beispiel einer
Messung an einer 5,45 mm dicken PEEK-Platte, welche ein eindeutiges
Maximum aufweist, an dem Messung und Simulation am dhnlichsten sind.
Idealerweise stimmen beim Maximum des Mittelwerts U die in der Simu-
lation berechneten Frequenz-Wellenzahl-Paare mit den aus der Messung
detektierten Frequenz-Wellenzahl-Paaren iiberein. [JCH21]
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Abbildung 4.25: Mittelwert der Matrixwerte (Dispersionsabbildung) U als
Kostenfunktion in Abhéngigkeit der Schallgeschwindig-

keiten am Beispiel einer Messung an einer PEEK-Platte
[JCF22]

Aufgrund der Normierung der Dispersionsabbildung in der Verarbeitung
nach Abschnitt 4.6 ergibt sich fiir U ein Wertebereich von U << 1. Bei
vollstandiger Ubereinstimmung ergibt sich theoretisch ein Wert von U —
1, wenn die messtechnisch erfasste Dispersionsabbildung alle theoretisch
ausbreitungsfahigen Moden mit maximaler normierter Intensitit enthélt.
Tatsachlich werden nicht alle Moden detektiert, da die entsprechende
detektierte mechanische Verschiebung bei bestimmten Modenbereichen
gerade zu Null wird und weil nicht alle Moden mit der gleichen Energie
angeregt /detektiert werden.

Alternativ zur Bestimmung der Schallgeschwindigkeiten ist die Kos-
tenfunktion in Abhédngigkeit von Kompressions- und Schermodul in Ab-
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Abbildung 4.26: Mittelwert der Matrixwerte (Dispersionsabbildung) U als
Kostenfunktion in Abhéngigkeit von Kompressions- und
Schermodul am Beispiel einer Messung an einer PEEK-
Platte

bildung 4.26 dargestellt. Da sich beide Darstellungen leicht ineinander
iiberfithren lassen, ergibt sich ein dhnlicher Verlauf.

4.10.2 Kreuzkorrelationskoeffizient

Eine weitere Moglichkeit, Mess- und Simulationsergebnisse zu vergleichen,
stellt der Korrelationskoeffizient dar. Ist dieser maximal, stimmen Mess-
und Simulationsergebnis tiberein. Um diesen zu berechnen, wird das simu-
lativ berechnete Dispersionsdiagramm zunéchst in eine Matrixform wie
die Messdaten tiberfithrt. Dazu wird eine Matrix mit Nullen in der Grofe
der Daten der zu vergleichenden Dispersionsabbildung erzeugt. Jede Zeile
entspricht dabei einer Wellenzahl, jede Spalte einer Frequenz, namlich
genau den entsprechenden Vektoren der Messdaten. Fiir jedes simulativ
berechnete Wellenzahl-Frequenz-Paar wird an entsprechender Stelle der
Wert der erzeugten Matrix zu eins gesetzt, um schliefllich den Korrelations-
koeffizienten der Matrix und der vorverarbeiteten Messdaten zu berechnen,
dessen Maximum die groftmogliche Ubereinstimmung angibt. [JCW17]
Abbildung 4.27 zeigt den Verlauf der Funktion des Korrelationskoeffizienten
in Abhéngigkeit der Longitudinal- und Transversalwellengeschwindigkeiten
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Abbildung 4.27: Kreuzkorrelationskoeffizient in Abhéangigkeit der Schall-
geschwindigkeiten am Beispiel einer Messung an einer
PEEK-Platte

am Beispiel einer Messung an einer 5,45 mm dicken PEEK-Platte. Der Ver-
lauf stimmt im Wesentlichen mit dem des Mittelwerts aus Abbildung 4.25
iiberein. Genau wie beim Mittelwert fiihrt eine ideale Ubereinstimmung
theoretisch zum maximalen Wert von eins, da sowohl die Werte in der
Dispersionsabbildung aus der Messung aufgrund der Normierung maximal
eins ergeben und die Werte, an denen sich Moden befinden in der simulativ
erzeugten Matrix ebenfalls auf den Wert eins gesetzt werden. Wird auf
eine Normierung der Messdaten verzichtet, kann der Wert der simulativ er-
zeugten Matrix, an den berechneten Frequenz-Wellenzahl-Paaren, auf den
maximalen Wert der Dispersionsabbildung aus der Messung gesetzt werden.
Trotzdem wird, wie bereits zuvor erlautert, nie der Wert von eins fiir den
Kreuzkorrelationskoeffizienten erreicht, weil dazu alle Moden ideal mit glei-
cher Energie angeregt und diese wiederum ungedampft detektiert werden
miissten. Aufgrund der spezifischen Sende- und Empfangseigenschaften
des Messsystems wird die messtechnisch erzeugte Dispersionsabbildung nie
vollstandig alle theoretisch ausbreitungsfahigen Moden enthalten. Gleich-
zeitig miissten alle (Bild-)Werte in der Dispersionsabbildung, die keine
Mode beschreiben, ideal zu null werden, sodass die weiteren Artefakte aus
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der Verarbeitung ideal unterdriickt und die Moden selbst ideal diinn wer-
den. Daher ist zwar der absolute Wert des Kreuzkorrelationskoeffizienten
in Abbildung 4.27 von eins weit entfernt, besitzt jedoch ein eindeutiges
Maximum, dessen Lage mit dem maximalen Mittelwert in Abbildung 4.25
iibereinstimmt. Daher eignet sich der Kreuzkorrelationskoeffizient ebenfalls
als geeignete Zielfunktion fiir eine Optimierung.

4.10.3 Vergleich der Zielfunktionen

Abbildung 4.25 und 4.27 weisen im Wesentlichen identische Verlaufe auf.
Beide Kostenfunktionen haben den Vorteil, dass keine Modenerkennung
auf den Messdaten notwendig ist. Das erleichtert die Automatisierung
sehr, da bei einer Modenerkennung héufig falsche Werte z.B. aufgrund
von Artefakten wie dem Leakage-Effekt mit erfasst werden. Da zur Be-
rechnung des Kreuzkorrelationskoeffizienten eine Matrix in der Grofle der
messtechnisch erzeugten Frequenz-Wellenzahl-Darstellung erstellt wird,
ist die Anwendung des Kreuzkorrelationskoeffizienten als Kostenfunkti-
on sehr rechenintensiv. Das liegt daran, dass die messtechnisch erzeugte
Frequenz-Wellenzahl-Darstellung aufgrund des Zero-Paddings zur Erho-
hung der Auflésung sehr viele Werte enthélt und somit zudem einen grofien
Speicherbedarf hat. Eine zweite Matrix gleicher Grofie wiirde den Speicher-
bedarf bereits verdoppeln. Daher wird im weiteren Verlauf der Mittelwert
der Bildwerte der Dispersionsabbildung als Ahnlichkeitsma$l zwischen der
messtechnisch erzeugten Frequenz-Wellenzahl-Darstellung (Dispersionsab-
bildung) und dem berechneten Dispersionsdiagramm genutzt.

4.11 Optimierung

Zur Maximumsuche der Kostenfunktion wird der Nelder-Mead Simplex
Algorithmus [NM65] als ein ableitungsfreier Algorithmus verwendet. Dieser
hat den Vorteil, dass die Kostenfunktion nicht mehrfach zur Gradienten-
berechnung ausgewertet werden muss. Alternativ eignen sich ebenfalls
weitere ableitungsfreie Algorithmen wie der BOBYQA (bound constrained
optimization by quadratic approzimization) [Pow09], aber auch gradienten-
basierte Verfahren sind aufgrund der glatten Zielfunktionen geeignet. Da
die in der Python-Bibliothek scipy [VGO20] bereits implementierten Op-
timierungsalgorithmen in der Regel nach einem Minimum suchen, wird
der negative Wert der jeweiligen Zielfunktion verwendet. Zur schnelleren
Konvergenz sind weitere Skalierungen der Zielfunktionen moglich. Da der
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

Wertebereich der Zielfunktionen wegen der Normierung der messtechnisch
erzeugten Dispersionsabbildung zwischen null und eins liegt, kann z.B.
durch den Kehrwert eine schnellere Konvergenz erreicht werden, da bei
kleinen Werten der Kehrwert zu einer deutlichen Vergroferung fithrt und
somit zu einem steileren Gradienten.

Durch Nutzung des Kehrwerts entsteht jedoch eine Unstetigkeitsstelle
bei einem Bildmittelwert bzw. Kreuzkorrelationskoeffizienten von null.
In dem Fall gibt es zunéchst keine Ubereinstimmungen zwischen Moden
des berechneten Dispersionsdiagramms und den Messdaten. Das fithrt
zu Problemen fiir den Fall, dass sehr wenige Moden angeregt oder z.B.
aufgrund zu hoher Dampfung kaum Moden detektiert oder die Startwerte
schlecht gewahlt worden sind.

Die Verwendung des negativen Bildmittelwerts bzw. des negativen Kreuz-
korrelationskoeffizienten fithrt zu einer weiterhin glatten Zielfunktion und
konvergiert hinreichend schnell. Daher wird dieser im weiteren Verlauf
der Arbeit minimiert und als Kostenfunktion bezeichnet, um elastische
Materialparameter zu identifizieren. Aufgrund des geringeren Rechen- und
Speicheraufwands wird als Zielfunktion der Mittelwert der Intensitatswerte
verwendet, sodass schliellich zur Identifikation elastischer Materialparame-
ter der negative Mittelwert der Intensitéitswerte als Kostenfunktion mittels
Nelder-Mead Simplex-Algorithmus minimiert wird.

4.12 Unsicherheitsbetrachtung

Die Unsicherheiten der identifizierten Schallgeschwindigkeiten ¢, und cr
werden mittels Monte-Carlo-Simulation nach dem guide to the expression
of uncertainty in measurement (GUM) [Poi08b] abgeschétzt. Neben den
Typ B-Unsicherheiten [Poi08a] der eingesetzten Geréte in der Laserakustik-
Messung wie Oszilloskop und Linearachse wird ebenfalls der Unsicher-
heitsbeitrag der gemessenen Plattendicke untersucht. Fiir letztere wird
ebenfalls die Typ B-Unsicherheit der zur Messung verwendeten Biigel-
messschraube betrachtet. Dafiir werden zunachst die Einfliisse aus dem
Messsystem modelliert, um die Unsicherheiten der Schallgeschwindigkeiten
zu bestimmen.

4.12.1 Modellierung der Unsicherheitsbeitrage

Im Folgenden werden die zu modellierenden Wahrscheinlichkeitsdichtefunk-
tionen der zu beriicksichtigenden Unsicherheitsbeitrige beschrieben.
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4.12 Unsicherheitsbetrachtung

Unsicherheitsbeitrag des additiven Messrauschens: Zunachst wird die
Wahrscheinlichkeitsdichteverteilung des additiven Messrauschens als Typ
A-Unsicherheit [Poi08a] betrachtet. Dafiir werden Signalanteile zeitlich vor
dem Empfang der angeregten Ultraschallwelle, aus Messsignalen an verschie-
denen Proben betrachtet. Bei jeder durchgefiithrten Messung wird weiterhin
fiir jede Anregungsposition N-mal angeregt und empfangen, sodass die
Empfangssignale bereits N-fach gemittelt wurden, was je nach betrachte-
ter Messung den Signal-zu-Rausch-Abstand (SNR) um den Faktor 1/v/N
verringert. Um diese Mittelung auf die Bestimmung des Messrauschens her-
auszurechnen, wird das Rauschlevel der gespeicherten Zeitsignale mit der
Anzahl der durchgefithrten Mittelungen N um den Faktor v/ N gewichtet.
Aus der Auswertung von 12740 000 zeitabhéngigen Signalverlédufen an ver-
schiedenen Metall- und Polymerproben ergibt sich eine Gaufiverteilung der
Rauschsignale mit einem Stichprobenmittelwert von Tgauss ~ 30 mV und
einer Stichprobenstandardabweichung von sgauss = 71 mV. Dabei sei ange-
merkt, dass ein additiver Gleichanteil aufgrund der Mittelwertbefreiung
der Messsignale (vgl. Abschnitt 4.6) keinen Unsicherheitsbeitrag leistet.

Unsicherheitsbeitrag des Oszilloskops: Die unsicherheitsbehaftete Zeit-
basis des Oszilloskops wird durch eine zuféllige Neuskalierung des gemes-
senen Zeitvektors nach [Cla21] modelliert. Deren Unsicherheit wird vom
Hersteller mit 1-107% angegeben [TP21]. Dementsprechend wird die Ska-
lierungsinderung mit einer Gleichverteilung von 1-107% der eingesetzten
Abtastfrequenz von 100 MHz modelliert. Dabei wird davon ausgegangen,
dass die Zeitbasis zwar unsicher ist, sich jedoch wahrend der Aufnahme
eines Messsignals nicht andert. Weiterhin wird davon ausgegangen, dass
sich alle Empfangssignale wahrend der Vermessung einer Probe, auf den
gleichen unsicheren Zeitvektor beziehen. Wiirde diese Annahme verletzt,
ware das Verfahren der 2D-FT nicht mehr moglich einzusetzen ohne die
Zeitvektoren auf eine gleiche Abtastrate zu bringen z.B. durch Interpolation
oder Verwerfen von Werten.

Der Trigger-Jitter des Oszilloskops wird durch ein zufalliges Verschieben
der Signale entlang der zeitlichen Achse modelliert. Da die Verschiebung
zufallig um +1 Wert erfolgt, werden die Signale mit einer Wahrscheinlichkeit
von 1/3 um jeweils einen Wert nach links, einen Wert nach rechts oder gar
nicht auf der zeitlichen Achse verschoben.

Unsicherheitsbeitrag der Linearachse: Ahnlich wird die Linearachse be-
trachtet. In dem Fall werden die Signale zuféllig entlang der 6rtlichen Achse

87



4 Inverses Verfahren zur Identifikation elastischer Materialparameter

verschoben. Vom Hersteller wird eine Positioniergenauigkeit von £60 pm
angegeben [Zab18], sodass diese bis zu 60 pm abweichend zur Zielposition
zu kurz oder zu weit verfahrt. Da die angegebene Abweichung der Position
in der Regel unterhalb der Schrittweite Ay liegt, wird diese mithilfe einer
Dreiecksverteilung mit einer halben Breite von 60 pm/Ay modelliert. Diese
wird in drei Abschnitte unterteilt. Befindet sich der Wert um 0 im Intervall
[—60/(2Ay);60/(2Ay)], werden die Signale nicht verschoben, liegt er im
unteren Drittel der Verteilung, im Intervall [—60/(Ay); —60/(2Ay)[ erfolgt
eine Signalverschiebung um einen Abtastwert nach links, liegt der Wert im
oberen Drittel in |60/(2Ay); 60/(Ay)] erfolgt eine Verschiebung um einen
Abtastwert nach rechts entlang der ortlichen Achse.

Unsicherheitsbeitrag der Plattendicke: Als Geometrie-Parameter geht
die Plattendicke ¢, direkt in die Simulation ein. Diese wird mit einer
Biigelmessschraube, deren absolute Messabweichung mit +2 pm [Mit21]
angegeben ist, gemessen. Demnach wird die Unsicherheit der Plattendicke ¢y,
durch eine Gleichverteilung im Bereich von [t;, —2 pm, t, + 2 pm| modelliert.

GroBen ohne Unsicherheitsbeitrag zu den Schallgeschwindigkeiten:
Offset- und Verstarkungsfehler durch den Verstirker haben aufgrund der
anschlieBenden Signalverarbeitung keinen Einfluss auf die Messung, da
zunachst alle Signale vom Mittelwert befreit werden und die absolute
Signalstérke selbst fiir die 2D-Fourier-Transformation unerheblich ist. Die
Qualitat der Koppelschicht am Empfangswandler beeinflusst das SNR, was
bereits in der Beriicksichtigung des Messrauschens enthalten ist. Ist z.B. zu
wenig Koppelgel aufgetragen worden, verringert sich die Signalstéirke der
empfangenen Wellen gegentiber dem Messrauschen. Weiterhin fiihrt eine
sehr dicke Koppelschicht zur zeitlichen Verzogerung der Signale. Da diese
jedoch aufgrund der gleichbleibenden Ankopplung fiir jede Anregungspo-
sition identisch ist, hat dies nach der Verarbeitung der Signale keinerlei
Einfluss auf die zu bestimmenden Materialparameter.

Bei der Bestimmung der Schallgeschwindigkeiten entfallt der Einfluss
der Dichte p im Vorwértsmodell nach Unterabschnitt 4.2.1. Sobald jedoch
eine andere Form der Elastizitatsmatrix, z.B. mittels Lamé-Konstanten,
berechnet wird, muss der Unsicherheitsbeitrag der Dichte mit bertick-
sichtigt werden. Dann kann diese z.B. aus einer Monte-Carlo-Simulation
der Unsicherheitsbeitrage der Geometrie- und Massenmessung bestimmt
werden.
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4.12 Unsicherheitsbetrachtung

4.12.2 Messunsicherheiten der Schallgeschwindigkeiten
durch Monte-Carlo-Simulation

Dem vorherigen Abschnitt zufolge werden bei der Bestimmung der Schallge-
schwindigkeiten die Typ B-Unsicherheitsbeitrédge der Zeitbasis des Oszillo-
skops, des Trigger-Jitters des Oszilloskops, der Genauigkeit der Zielposition
der Linearachse, der Plattendicke sowie die Typ A-Unsicherheit des Mess-
rauschens in einer Monte-Carlo-Simulation berticksichtigt.

Dazu werden die Messsignale mit den jeweiligen Unsicherheiten beauf-
schlagt und durch das inverse Verfahren propagiert. Als Startwerte fiir die
Schallgeschwindigkeiten werden die geschétzten Startwerte aus Tabelle 4.1
verwendet.

Die resultierenden relativen Héufigkeiten der Longitudinal- und Trans-
versalwellengeschwindigkeiten sind in Abbildung 4.28 und 4.29 beispielhaft
fiir PEEK dargestellt. Die relativen Haufigkeiten der anderen Proben be-
finden sich in Unterabschnitt A.3.1. Dort zeigen sich Longitudinal- und
Transversalwellengeschwindigkeit quasi Gauf}-verteilt. Die resultierenden
Unsicherheiten der Schallgeschwindigkeiten ergeben sich aus deren Stich-
probenstandardabweichungen bezogen auf deren Stichprobenmittelwert
und sind im néchsten Abschnitt in Tabelle 4.1 angegeben.
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Abbildung 4.28: Relative Haufigkeit der Longitudinalwellengeschwindigkeit
o, (PEEK) [JCF22]
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Abbildung 4.29: Relative Héufigkeit der Transversalwellengeschwindigkeit
cr (PEEK) [JCF22]
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4.13 Ergebnisse

Beispielhaft werden vier isotrope Proben ausgewertet. Als Beispiel fiir ein
Metall dient Aluminium, als Beispiele fiir Polymere dienen Polyetherether-
keton (PEEK), Polyamid 6 (PA6) und Polyethylenterephthalat (PET).
Aufgrund seines optischen Absorptionsspektrums [RFK12] erscheint PET
transparent im infraroten Wellenléngenbereich, sodass die Anregung auf
PET mit dem UV-Laser erfolgt, wahrend die dargestellten Messungen
an PEEK und Aluminium durch Anregung mittels IR-Laser aufgenom-
men werden (vgl. Unterabschnitt 4.3.1). Der PA6-Probe ist ein schwarzer
Farbstoff beigefiigt, sodass sich diese ebenfalls mit dem IR-Laser anregen
lasst. Die experimentelle Vorgehensweise richtet sich nach Abschnitt 4.4.
Wie dort bereits erwédhnt, wird aufgrund der Temperaturabhéngigkeit
der Materialparameter die Umgebungstemperatur im Messplatz wahrend
der Messungen von einem Temperatursensor MCP9808 [MT11] mit einer
Messabweichung von £0,5 K aufgenommen. Die Startwerte werden nach Un-
terabschnitt 4.9.2 im Frequenz-Wellenzahl-Bereich geschéatzt, wahrend die
Optimierung mittels Nelder-Mead Simplex Algorithmus, unter Verwendung
des negativen Mittelwerts nach Unterabschnitt 4.10.1 als Kostenfunktion,
bestimmt werden. Die Startwerte, die identifizierten Schallgeschwindigkei-
ten (Stichprobenmittelwert) sowie deren relativen Unsicherheiten sind in
Tabelle 4.1 angegeben, wihrend in Abbildung 4.30 bis 4.33 die verarbeiteten
Dispersionsabbildungen aus den Messungen zusammen mit den simulativ
berechneten Dispersionsdiagrammen unter Annahme der identifizierten
Materialparameter dargestellt sind.

Diese zeigen bei allen vier Messungen gute Ubereinstimmungen zwischen
Mess- und Simulationsergebnissen. Da Metalle in der Regel eine geringere
akustische Absorption im Vergleich zu Kunststoffen aufweisen, werden
Moden im Frequenzbereich bis 8 MHz in Abbildung 4.30 sichtbar. Die
Grate selbst sind im Verlgeich zu den Kunststoffmessungen sehr schmal,
sodass hier keine Gamma-Expansion (vgl. Abschnitt 4.6) notwendig ist. Zur
besseren Unterscheidbarkeit der Moden werden die Grate der Messungen
an Kunststoffen mittels Gamma-Expansion (I'gxp, = 2,5 vgl. Abschnitt 4.6)
kiinstlich schmaler gehalten. Ansonsten, idealerweise ohne Beeinflussung
der Grate z.B. durch Gamma-Expansion etc., ist die Breite der Moden
vergleichbar mit eine Art qualitativer Giite: Je breiter die Moden, desto
kleinere Werte weisen die Maxima, welche den Mittellinien der Grate
entsprechen, auf. Dementsprechend sind schmale Grate ein Indiz fiir eine
geringe akustische Dampfung, die bisher bei der Materialparameterbe-
stimmung noch nicht berticksichtigt wird. Neben der modalen Dampfung
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Kreiswellenzahl | Re{k}| / mm™!

[a=)
I

Frequenz f / MHz

Abbildung 4.30: Dispersionsabbildung einer 1,98 mm dicken Aluminium-

Kreiswellenzahl | Re{k}| / mm™!

Platte und simulativ berechnetes Dispersionsdiagramm
(weif)

0 02040608 1 121416 18 2

Frequenz f / MHz

Abbildung 4.31: Dispersionsabbildung einer 5,45 mm dicken PEEK-Platte
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0 02040608 1 1,214 1,6 1,8
Frequenz f / MHz

Kreiswellenzahl | Re{k}| / mm™!

Abbildung 4.32: Dispersionsabbildung einer 8 8 mm dicken PA6-Platte und
simulativ berechnetes Dispersionsdiagramm (weif})
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Kreiswellenzahl | Re{k}| / mm™!

0 0,5 1 1,5 2 2,5
Frequenz f / MHz

Abbildung 4.33: Dispersionsabbildung einer 4,08 mm dicken PET-Platte
und simulativ berechnetes Dispersionsdiagramm (weif3)
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Tabelle 4.1: Identifizierte effektive Schallgeschwindigkeiten

Alu | PEEK | PAG6 PET
Dichte / kgm™> 2556 1310 1145 1360
Messtemperatur / °C 20 20 21 22
Startwerte:
A/ mst 6525 | 2545 | 2692 | 2390
A&/ ms! 3175 | 1105 | 1080 | 968
Optimiert (Stichprobenmittelwert):
¢, / ms™! 6398,6 | 2558,8 | 2662,3 | 2407,8
or /[ ms™! 3161,3 | 1109,3 | 1084,6 | 986,7
Unsicherheit von
e | % 0,09 | 004 | 012 | 1,17
cr | % 0,07 | 011 | 022 | 054

beeinflusst die Anzahl der angeregten und detektierten Moden die Unsi-
cherheit. Dabei gilt je mehr Moden, insbesondere die sensitiven Bereiche
bei hohen Frequenzen und hohen Wellenzahlen, im inversen Verfahren
auswertbar sind, desto geringer die resultierende Messunsicherheit. Dies
auflert sich hier in einer hohen Messunsicherheit der PET-Probe (vgl. Ta-
belle 4.1). MaBnahmen zur Verringerung der Messunsicherheit bei Proben
mit hoher akustischer Absorption bzw. starker modaler Dampfung wéren
z.B. die Maximierung der absorbierten optischen Anregungsenergie. Dies
konnte erfolgen z.B. durch Aufbringen einer diinnen schwarzen Schicht
auf die Probe oder Beimischung eines schwarzen Farbstoffs (wie bei der
PA6-Probe) sowie die Wahl dicker Platten z.B. mit Plattendicken um
10 mm.

4.13.1 Aluminium

Die bestimmten Schallgeschwindigkeiten in Tabelle 4.1 liegen im gleichen
Wertebereich wie Literaturdaten (vgl. Tabelle 4.2). So werden z.B. in
[MWO05] Schallgeschwindigkeiten von ¢f, = 6360 ms™ und ¢t = 3130 ms™!
fir Aluminium angegeben. Weitere Anhaltswerte werden mit einem Elasti-
zitatsmodul im Bereich von 60 GPa bis 80 GPa und einer Poissonzahl von
v = 0,33 in [Lap12] angegeben. Unter Annahme eines ideal-elastischen Ma-
terialmodells ergeben sich mit der in Tabelle 4.1 angegebenen Dichte Schall-
geschwindigkeiten im Bereich von ¢;, = 5897ms~! bis ¢;, = 6810 ms~! und
cr = 2790ms™! bis ep = 3430m s,
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Tabelle 4.2: Vergleich der identifizierten Schallgeschwindigkeiten von Alu-
minium mit ausgewéahlten Literaturangaben

c, / ms~! cr /ms™' | p/kgm™3
Ergebnis 6398,6 3161,3 2556
Lip12] | 5897 bis 6810 | 2790 bis 3430
ILSWO9) 6420 3040 2700
4.13.2 PEEK

Polyetheretherketon (PEEK) ist ein teilkristalliner Thermoplast aus der
Gruppe der aromatischen Polyetherketone [DEE08]. PEEK weist einen
hohen Schmelzpunkt von 340 °C [PAE22] sowie eine hohe Glasiibergang-
stemperatur von bis zu 162 °C [HPP| auf. In der Akustik zeichnet PEEK
sich durch eine fiir einen Kunststoff vergleichsweise geringe Absorption
aus.

So werden in [FHA10] bei 5 MHz im Puls-Echo-Verfahren Schallgeschwin-
digkeiten von ¢, = 2536 ms~! und cr = 1252ms~! fiir PEEK bestimmt.
Ebenfalls im Puls-Echo-Verfahren bei 5 MHz und 10 MHz bestimmen Carl-
son et al. [CvS03] Schallgeschwindigkeiten frequenz- und temperaturab-
hingig im Bereich von 2554 ms~! bis 2625ms~! fiir Longitudinal- und im
Bereich von 1252ms™! bis 1300 ms™! fiir die Transversalwellengeschwin-
digkeit. Leicht geringere Schallgeschwindigkeiten von ¢, = 2470 ms™! &
30ms™ und er = 1060 ms~! + 30 ms~! werden in [MBGO04] mittels eindi-
mensionalem Stofitest gemessen, sodass die hier bestimmten Schallgeschwin-
digkeiten fiir PEEK in Tabelle 4.1 vergleichbar sind (vgl. Tabelle 4.3). Die
hier gravimetrisch bestimmte Dichte von PEEK liegt mit 1310kg m~3 eben-
falls im Bereich der tibrigen Literatur: 1286 kgm—3 [FHA10], 1252kg m ™3
bis 1300 kg m—2 [CvS03], 1311 kg m?[RBO07], 1300 kg m > [MBGO04].

Tabelle 4.3: Vergleich der identifizierten Schallgeschwindigkeiten von
PEEK mit ausgewéhlten Literaturangaben

c, / ms™! cr / ms™!
Ergebnis 2558.,8 1109,3
[FHA10] 2536 1252
[CvS03] | 2554 bis 2625 | 1252 bis 1300
[MBGO04] 2470 £ 30 1060 £ 30
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4.13.3 PAG6

Polyamid besteht aus sich regelméfig wiederholenden Amidgruppen, die aus
Kondensation einer Carbonsaure und eines Amins entstehen. Daher lassen
sich die Amingruppen wieder hydrolytisch spalten. Die Wasseraufnahme
bei Raumtemperatur (23 °C) betragt 9% bis 10 % [Dom12], wodurch ein
Einsatz von Immersionstechnik zur Messung der Schallgeschwindigkeiten als
Alternativverfahren ungeeignet ist. PA6 weist zudem eine hohe mechanische
Festigkeit sowie eine hohe Schwingungsddmpfung [Ku23] (Absorption) auf.
Letzteres lasst sich durch die vergleichsweise breit verlaufenden Grate in
der messtechnisch ermittelten Dispersionsabbildung in Abbildung 4.32
erkennen.

Die Schallgeschwindigkeiten werden in [MWO05] mit ¢;, = 2700 ms™! und
cr = 1120m s~ ! etwas grofier angegeben als die in Tabelle 4.1 bestimmten,
die Dichte mit p = 1120kgm~2 bis p = 1140kg m—3 etwas geringer (vgl.
Tabelle 4.4). Nach [Lap12] liegen Anhaltswerte des Elastizitdtsmoduls im
Bereich von EF = 1,5 GPa bis £ = 3,2 GPa, der Poissonzahl bei v = 0,33.
Mit der gemessenen Dichte von p = 1145kgm™2 ergeben sich unter An-
nahme eines ideal-elastischen Modells ein Bereich der Schallgeschwindig-
keiten von ¢, = 1369ms~! bis ¢;, = 2000ms~" und ¢ = 704ms~! bis
cr = 1029 ms~!, was jeweils deutlich unter den resultierenden Schallge-
schwindigkeiten in Tabelle 4.1 liegt (vgl. Tabelle 4.4). Diese Diskrepanz der
berechneten Schallgeschwindigkeiten anhand der Werte aus [Lap12] liegt
in der Annahme eines ideal-elastischen Materialmodells begriindet, das die
Viskoelastizitdt und somit die hohe akustische Absorption, die Polyamid
auszeichnet, nicht abbildet. Somit fiihrt die Berechnung auf zu kleine Werte
der Schallgeschwindigkeiten, wahrend Messungen der Schallgeschwindig-
keiten wie in [MWO5], die nicht auf Berechnungen aus statischen Werten
eines ideal-elastischen Modells beruhen, in einem dhnlichen Wertebereich
liegen wie die hier in Tabelle 4.1 bestimmten Werte.

Daher zeigt sich hier, dass zwar effektive Schallgeschwindigkeiten, die das
Dispersionsdiagramm wie in Tabelle 4.1 reprasentieren, bestimmt werden
konnen, allerdings représentieren die unter Annahme eines ideal-elastischen
Materialmodells berechneten statischen Parameter wie Elastizitatsmodul
und Poissonzahl nicht mehr das statische Verhalten des Werkstoffs. Hierfir
muss der viskoelastische Charakter des Materials beriicksichtigt werden.
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Tabelle 4.4: Vergleich der identifizierten Schallgeschwindigkeiten von PA6
mit ausgewahlten Literaturangaben

o, / ms™! cr [ ms™!
Ergebnis 2666,3 1084,6
IMWO5] 2700 1120
[Lap12] | 1369 bis 2000 | 704 bis 1029

4.13.4 PET

Tabelle 4.5: Vergleich der identifizierten Schallgeschwindigkeiten von PET
mit ausgewéhlten Literaturangaben

c, /Jms™! | er /msT!
Ergebnis 24078 986,7
IMWO5] | 2400 1150

Aufgrund seiner geringen Durchléssigkeit fiir Sauerstoff und Kohlendioxid
wird PET haufig als Verpackungsmaterial wie Getriankeflaschen verwendet.
[PET22] Die fiir PET bestimmten effektiven Schallgeschwindigkeiten und
die Dichte aus Tabelle 4.1 sind ebenfalls vergleichbar mit Literaturdaten
von ¢, = 2400ms~!, ¢y = 1150 ms~! sowie Dichten von p = 1330kgm—3
bis 1350 kg m™2 aus [MWO05] (vgl. Tabelle 4.5).

4.14 ldentifikation richtungsabhangiger
Materialparameter

Da Lamb-(artige) Wellen nur Teilchenverschiebungen in der Querschnitt-
sebene der Platte verursachen, wird fiir dessen Modellierung der ebene
Verzerrungszustand angenommen. Das fithrt dazu, dass alle Dehnungen in
die dritte Raumrichtung zu null angenommen werden. Somit vereinfacht
sich die Elastizitédtsmatrix von einer 6 x 6 auf eine 3 x 3 Matrix (vgl. Unter-
abschnitt 2.1.4), was dazu fithrt, dass lediglich die Elastizitatskoeffizienten
der Dickenrichtung der Platte sowie der Ausbreitungsrichtung der Welle bei
einer einzelnen Messung mit dem vorherigen Verfahren identifiziert werden
konnen. Fiir isotrope Werkstoffe ist dies vollkommen ausreichend, da sie sich
in alle Raumrichtungen gleich verhalten. Sind die Materialeigenschaften
jedoch richtungsabhéangig, fehlen die Elastizitatskoeffizienten der dritten
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HEDN

Querschnittsflache Plattendicke %y,

Abbildung 4.34: Rotation der Probe um den Winkel 6

Raumrichtung, sodass das mechanische Verhalten des Materials nicht voll-
stédndig beschrieben ist. Um die restlichen Elastizitatskoeffizienten ebenfalls
zu bestimmen, wird die Probe wiahrend der Messung um die x-Achse (vgl.
Abbildung 4.6), welche der x;-Richtung des Koordinatensystems der Platte
entspricht, um den Winkel 6 gedreht (vgl. Abbildung 4.34).

Die Drehung um die x;-Achse wird allgemein durch eine Rotationsmatrix

1 0 0 0 0O O
0 w? ¢2 2w-¢c 0 0
0 ¢2 w? —2w-¢ 0 0
Ry = 0 —w-¢ w-¢ w>—=¢2 0 0 (4.21)
0 0 0 0 w —C
0 0 0 0 S w
mit
w = cos ()
¢ =sin ()

beschrieben [LMH], sodass sich die Elastizitatsmatrix nach der Rotation

zu

C.. = RyCRy (4.22)
ergibt.

Wird die Elastizitatsmatrix C,. nach einer Rotation fiir den ebenen
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Verzerrungszustand nach Unterabschnitt 2.1.4 reduziert, ergibt sich

Cll,rot (0) CYl2,1rot (0) ClG,rot (0)
Crot,pl,s (0) = C'12,rot (6) C'22,rot (6) CQG,rot (6) (423)
C’16,rot (8) C’26,rot (8) C’66,rot (8)

mit
Chi ot (0) =C1a (4.24)
Ca2 rot (9) 2022w4 + 023W2C2

+ Oy (2w3§ + w2 + 2w + 2w3>

+ Cs3¢* + 4C34w¢° + 20w’ (4.25)
Cé6,rot (0) =C555° + Csew’s + Copw” (4.26)
Ca6 1ot (0) =Cys5w26 + Cow® + Cz56> + Caems?

+ 2c45w06% + 2C 5% (4.27)
Clﬁ,rot (9) =C156 + Cigw (4.28)
Clawor (0) =Chrow” + C136% + 2C145w. (4.29)

Die allgemein sechs Koeffizienten der Elastizitdtsmatrix fiir den ebenen
Verzerrungszustand Clo 1. héngen linear von den Koeffizienten der allge-
meinen Elastizitatsmatrix fiir den dreidimensionalen Fall aus Gleichung 2.8
ab, sodass der allgemeine Zusammenhang aus Gleichung 4.24 bis 4.29 tiber
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eine Matrix R,, mit

C’ll,rot

CQQ,rot

CGG,rot - R
CQG,rot o
C’16,1rot

C’12,rot

Erot

(4.30)

beschrieben werden kann. Entsprechend Gleichung 4.24 bis 4.29 ergibt sich
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R, zu
1 0 0 0 0 0
0 0 0 0 0 w?
0 0 0 0 0 2
0 0 0 0 0 2w
0 0 0 0 < 0
0 0 0 0 w 0
0 w? 0 0 0 0
0 w32 0 0 0 0
0 4w’c+ 2w+ w22 0 0 0 0
0 0 w3 0 0 0
R =10 0 0 = 0 0 (4.31)
0 ¢4 0 0 0 0
0 4¢3 0 0 0 0
0 0 0 ¢ 0 0
0 0 0 w2 0 0
0 2t02¢2 0 0 0 0
0 0 0 2wsz2 0 0
0 0 0 2w% 0 0
0 0 G2 0 0 0
0 0 w3 0 0 0
0 0 @ 0 0 0

Die Elastizitédtskoeffizienten fiir den ebenen Verzerrungszustand werden
fur mehrere Drehwinkel # um die z;-Achse nach dem Verfahren aus den
vorherigen Abschnitten identifiziert. Somit werden fiir jeden Winkel 6 sechs
winkelabhédngige Elastizitdtskoeffizienten bestimmt, aus denen wiederum
21 Koeffizienten berechnet werden sollen. Da demzufolge das Gleichungs-
system stark unterbestimmt ist, sind allgemein bei einem anisotropen
Probenmaterial Messungen unter mindestens N = 4 verschiedenen Win-
keln notwendig, damit das Gleichungssystem nicht mehr unterbestimmt ist.
Dabei ist jedoch darauf zu achten, dass die Gleichungen linear unabhéngig
sind. Das kann dadurch erreicht werden, indem z.B. nur ein Quadrant (mit
6 = 0° bis 90°, 90° bis 180°, 180° bis 270° oder 270° bis 360°) betrachtet
wird.

Damit ergibt sich das zu losende Gleichungssystem aus Gleichung 4.30
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

zu

6N x1 6N x21

grot,ges = Ran,gesc_;- (432)

Die Berechnung der insgesamt 21 Elastizitdtskoeffizienten erfolgt mithilfe
der Moore-Penrose-Pseudoinversen [PT55] R sodass Gleichung 4.30

an,ges’
nach den unrotierten Elastizitdtskoeffizienten umgestellt wird:

— . + 5
C _Ran,ges Crot,ges

= (RT Ran,ges)_1 RT aot,ges- (433>

an,ges an,ges

Werden demnach mindestens vier der Gleichungssysteme nach Gleichung
4.30 untereinander geschrieben, kénnen die Elastizitdtskoeffizienten der
unrotierten Platte in C' bestimmt werden, sofern die vier verwendeten
Gleichungssysteme linear unabhéngig sind. Aufgrund der Symmetrie der
Elastizitdtsmatrix miissen nicht alle Winkel zwischen 0° und 360° hinzuge-
zogen werden. Demzufolge geniigt es vier Winkel in einem Quadranten zu
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betrachten. [JDW1§]

4.14.1 Vereinfachung fiir orthotrope Werkstoffe

Fiir die meisten Materialien, wie faserverstiarkte Kunststoffe oder Metalle
mit richtungsabhangigen Materialparametern, geniigt in der Regel ein
orthotropes Materialmodell. In diesem Fall werden C'y4, C'5, Cig, Cas, Cos,
Cag, Cs4, C35, Csg, Cys, Cug, Cs6 zu Null, wodurch sich Gleichung 4.30 zu

CVll
012
C
C'11,1"01; 013
C2,p0t n
o = Rortho C123 (434)
C166,1"0‘5
O 033
12,rot C
—_——— 44
6rot,ortho 055
C166
——
éort}xo
mit
1 0 0 0 0 0 0 0 0
0 0 0 @ 20%2% ¢t 4w%2 0 0
Rortho— 0 0 0 0 0 0 0 §2 w2 (435>
0 @w? ¢2 0 0 0 0 0 0

vereinfacht. Da Gleichung 4.34 zur Berechnung der Elastizitéatskoeffizienten
in Gleichung 4.34 unterbestimmt ist, ergibt sich analog zu Gleichung 4.32
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

fiir ein orthotropes Material:

Cll
. C12
Crot,ortho (91) Rortho (61) 013
Erot,ortho (62) Rortho (‘92> 022
E;rot,ortho (03) = Rortho (‘93) 023
E;ot,ortho (94) Rortho (04) 033
: Cu
055
4N x1 4N X9
" " Coe
——

9x1

a"ot,ortho,ges = Rortho,gescortho- (436)

Genau wie in Gleichung 4.32, wird Gleichung 4.36 mittels Pseudoinverse
(vgl. Gleichung 4.33) gelost, um schlielich die neun in C.ino enthaltenen
Elastizitatskoeffizienten zu berechnen. Da in diesem Fall neun Koeffizien-
ten (éortho) aus jeweils vier Koeffizienten (Ciot ortho) pro Winkel bestimmt
werden sollen, sind fiir orthotrope Materialien mindestens drei Messungen
bei unterschiedlichen Rotationswinkeln notwendig, wobei es wieder gentigt
einen Quadranten zu betrachten. Gleichzeitig ist darauf zu achten, dass die
Gleichungssysteme moglichst linear unabhéngig sind. Werden insgesamt
hinreichend viele linear unabhéngige Gleichungen aufgestellt, konnen auch
zusatzliche Mehrfachmessungen bei gleichen Winkeln auftreten wie z.B.
Messungen bei § = +90° zur Validierung einzelner Messungen oder um die
Unsicherheit der Approximation des Vektors Coriho 710 verringern. [JDW18]

4.14.2 Auswertung am Beispiel faserverstarkter
Kunststoffe

Beispielhaft fiir eine orthotrope Platte werden drei glasfaserverstéirkte
Kunststoffproben untersucht, welche hier jeweils als homogene Schicht
angenommen werden. Alle drei Proben bestehen aus einer Polyamid 6
(PA6) Matrix, die durch Endlosglasfasern aus E-Glas, mit einem Volu-
menanteil von 47 %, verstarkt ist [Bon22a; Bon22b; Bon09a; SON]. Die
Endlosglasfasern sind jeweils orthogonal zueinander orientiert und bilden
jeweils eine Orthotropieachse. Dabei werden zwei Bindungsarten, welche
in Abbildung 4.35 dargestellt sind, verglichen: Die Leinwand- und Ko-
perbindung [Sch07; Ehr06]. Wahrend eine Probe mit Leinwandbindung
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Abbildung 4.35: Vergleich zweier typischer Webmuster: Leinwandbindung
(links) und Képerbindung (rechts) [Ehr06; JDW18| sowie
das angenommene Koordinatensystem.

und gleicher Faserverteilung je Richtung untersucht wird, werden zwei
Proben mit einer Képerbindung charakterisiert, davon eine mit gleicher
Faserverteilung je Richtung (50:50) und eine mit ungleicher Faserverteilung
in beide Raumrichtungen (80:20). Die Platten bestehen aus sechs Schichten
zu je 0,5 mm [Bon22a; Bon22b], sodass sich insgesamt eine Plattendicke
von 3mm ergibt. Als Dichte wird die im Datenblatt [Bon22a] angegebene
Dichte von p = 1800 kg m~2 [Bon22a; Bon22b; Bon09a; SON] angenommen.

Obwohl es geniigt einen Quadranten zu betrachten, werden die einzelnen
Platten in Winkeln von 15°-Schritten um die x;-Achse gedreht vermessen
und jeweils winkelabhéngig die ideal-elastische, orthotrope Elastizitatsma-
trix fiir den ebenen Verzerrungszustand identifiziert. Die Startwerte fiir die
einzelnen Messungen werden nach dem Verfahren im Frequenz-Wellenzahl-
Bereich aus Unterabschnitt 4.9.2 bestimmt. Unter Annahme eines zunéchst
isotropen Materialmodells wird die Elastizitdtsmatrix berechnet, deren
Koeffizienten als Startwerte dienen. Wahrend der Optimierung wird ein
orthotropes Materialmodell angenommen und der Vektor Cyot ortho dient als
Parametervektor in der Optimierung, um die winkelabhéngige, orthotrope
Elastiztiatsmatrix

Cll,rot (9) ClQ,rot (9) 0
Crot,ortho,pl,e = OlQ,rot (0) OQQ,rot (0) 0 (437)
0 0 CGG,rot (9)

fiir den ebenen Verzerrungszustand zu identifizieren. Die identifizierten
Elastizitétskoeffizienten der Einzelmessungen sind winkelabhéngig jeweils
rot in den Abbildungen 4.38 bis 4.40 dargestellt. Zur Validierung sind die
Dispersionsabbildungen mit den berechneten Dispersionsdiagrammen fiir
einen Winkel von 45° beispielhaft in den Abbildungen 4.36 und 4.37 darge-
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w

\)

Kreiswellenzahl
Re{k} / mm™!

0.0 0.2 0.4 0.6 0.8
Frequenz f / MHz

Abbildung 4.36: Dispersionsabbildungen und berechnetes Dispersiondia-
gramm der Probe mit Leinwandbindung (50:50) bei einem
Drehwinkel von 45°
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(a) Koperbindung (50:50) (b) Koperbindung (80:20)

Abbildung 4.37: Dispersionsabbildungen und berechnetes Dispersiondia-
gramm der Proben mit Képerbindung bei einem Drehwin-
kel von 45°
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stellt. Trotz der Annahme eines homogenen Materials und der wenigen sich
ausbreitenden Moden, stimmen Messung und Simulation zum grofiten Teil
iiberein. Mit steigender Frequenz steigen Abweichungen, was nicht verwun-
derlich ist, da es sich nicht, wie angenommen, um ein homogenes Material
handelt. Bei Betrachtung der Messung an der Probe mit Leinwandbindung
in Abbildung 4.36 fillt auf, dass sich die Steigung der als AO-Mode ange-
nommene Mode ab einer Frequenz von 0,4 MHz an einigen Stellen dndert.
Zwischen diesen Abschnitten ergeben sich Unterbrechungen in dem Grat.
Diese sind mit der Kopplung von Polymermatrix und Glasfasern sowie
der geschichteten Struktur der Proben zu begriinden: Werden allgemein
mehrere Plattenwellenleiter miteinander verkoppelt, ergibt sich simulativ
ein Dispersionsdiagramm, welches Anteile aus beiden Einzelschichten ent-
halt. Werden die Dispersionsdiagramme der ungekoppelten Einzelschichten
iibereinander gelegt, ergeben sich Frequenz-Wellenzahl-Paare an denen
sich die Dispersionskurven der einzelnen Schichten kreuzen. Eine Kopplung
beider Schichten fithrt zu einer Abstoffung der Moden in genau diesen
Punkten, an denen sich die Dispersionskurven der Einzelschichten kreuzen.
In Messungen wird dieser Effekt durch unterbrochene Moden und eine
Anderung der Steigung (und somit der Gruppengeschwindigkeiten) der
Moden im Dispersionsdiagramm sichtbar. [LJH19] Dabei werden meist nur
die Modenabschnitte sichtbar, die zu dem Dispersionsdiagramm der Schicht
mit der héheren Schallgeschwindigkeit gehoren, da sich die Wellen bevor-
zugt in dieser Schicht ausbreiten (vgl. [LJH19]). Um die Kopplungsstirke
beider Schichten zu quantifizieren, lasst sich entweder die Kriimmung der
Dispersionskurven um den Abstoungspunkt [NZL22] oder der Abstand
der Moden [ZJN21; ZCJ21] zueinander auswerten. Da sich die Moden der
jeweiligen Dispersionsdiagramme fiir den ungekoppelten Fall kreuzen, wenn
diese gleichzeitig in einer Abbildung dargestellt werden, steigt der Abstand
der Moden in diesen Punkten je starker die Schichten gekoppelt sind. Die
hier betrachteten glasfaserverstarkten Kunststoffe bestehen jeweils aus
sechs gewebten Schichten zu je 0,5 mm. Die Verkopplung beider Werkstoffe
erfolgt jedoch bereits innerhalb einer Schicht durch die Webung. Moglicher-
weise lasst sich die Kopplungsstarke der verwebten Stoffe bei Betrachtung
der Unterbrechungen der Grate, die in Abbildung 4.36 sichtbar werden,
nach [LJH19; NZL22; ZJN21; ZCJ21] untersuchen.

Werden aus den identifizierten, winkelabhangigen Koeffizienten mit
Gleichung 4.36 die neun Koeffizienten der Elastizitdtsmatrix in éortho
bestimmt, ergeben sich die Parameter in Tabelle 4.6. Die Berechnung einer
Rotation der identifizierten Elastizitdtsmatrix mit den Koeffizienten in
Tabelle 4.6 um den Winkel # fithrt mit Gleichung 4.22 zu den blauen
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Cll / GPa 022 / GPa

270° 270°

Abbildung 4.38: Elastizitatskoeffizienten der Einzelmessungen (rot) und
mittels Gleichung 4.22 berechneter Verlauf der Elastizitats-
koeffizienten (blau) der Leinwandbindung (Faserverteilung
50:50) [JWD19]

Kurven in den Abbildungen 4.38 bis 4.40.

Die Parameter C}3, C33 und Css sind nicht explizit dargestellt, weil sich
diese direkt tiber

Chs (0) = Ci (6 + 90°)
Cs3 (0) = Cay (6 + 90°)
055 (9) = 066 (6 + 900)

aus den Parametern Ciy, Cy und Cg ergeben [JWD19]. Da die Para-
meter C7; und Csy proportional zu den Elastizitdtsmoduln £y und Ej
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CH / GPa

270°

Abbildung 4.39: Elastizitatskoeffizienten der Einzelmessungen (rot) und
mittels Gleichung 4.22 berechneter Verlauf der Elastizitats-
koeffizienten (blau) der Koperbindung (Faserverteilung
50:50) [JWD19]

sind, entsprechen deren Verldufe qualitativ den Verlaufen bestimmter Elas-
tizitzdtsmoduln an anderen endlosfaserverstirkten Kunststoffen in der
Literatur [FHA10; Sch07; BO12]. Gleiches gilt fir die Schubmodule, die
den Parametern Cyy, Cs5 und Cgg entsprechen [Sch07].

Wiéhrend sich die Elastizitatskoeffizienten der Probe mit Leinwandbin-
dung in Abbildung 4.38 rotationssymmetrisch verhalten, ergibt sich fir
den Parameter Cy bei der Koperbindung mit gleichem Faserverhéltnis
in beide Raumrichtungen in Abbildung 4.39 bereits eine minimale, kaum
erkennbare, Abweichung. Bei der Probe mit Képerbindung und ungleichem
Faserverhéltnis ist in Abbildung 4.40 deutlich eine Vorzugsrichtung er-
kennbar. Wahrend die Festigkeit bzw. der Koeffizient Cy in der Richtung
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CH / GPa

OO

315°

270° 270°

Abbildung 4.40: Elastizitatskoeffizienten der Einzelmessungen (rot) und
mittels Gleichung 4.22 berechneter Verlauf der Elastizitats-
koeffizienten (blau) der Koperbindung (Faserverteilung
80:50) [JWD19]

in der die Mehrheit der Fasern verlauft (90° bzw. 270°) grofl wird, wird
der Parameter C}5 in genau dieser Richtung klein, wihrend er gréfler bei
einem Winkel von # = 0° bzw. § = 180° wird. Die Glasfasern sorgen fiir
eine hohe Steifigkeit unter Normalbelastungen, jedoch nicht bei Schub-
bewegungen wie der zusétzlich berechnete Koeffizient Cyy (Schubmodul)
in Abbildung 4.41 zeigt. Dieser ist maximal bei einem Rotationswinkel
von 6 = n - 45° zu den Fasern. Gleiches gilt fiir den Parameter Cy3. In
beiden Féllen zeigt sich die geringste Abweichung von der Isotropie bei
der Probe mit Leinwandbindung, die grofite bei der Képerbindung mit
ungleichem Faserverhéltnis, deren Parameter Cy3 und Cyy besonders klein
entlang der Fasern und gleichzeitig besonders grof abseits der Fasern wer-
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Abbildung 4.41: Berechnete Elastizitdatskoeffizienten Cyy und Chs: Lein-
wand (blau), Képer 50:50 (rot), Koéper 80:20 (braun)
[JWD19]

Tabelle 4.6: Identifizierte Elastizitatskoeffizienten [JWD19]

Parameter | Leinwand (50:50) Koper (50:50) Koper (80:20)
C1 / GPa 9,31 10,32 9,83
Cyy / GPa 27,84 28,15 20,29
Cs3 /| GPa 27,60 29,01 35,50
Cu /| GPa 9,13 7,50 5,66
Css |/ GPa 2,80 3,04 3,25
Css / GPa 2,80 3,26 2,83
Cy3 / GPa 4,57 3,75 2,83
Ci3 / GPa 5,86 5,96 5,71
Ciz / GPa 5,95 5,83 8,52

den (vgl. Abbildung 4.41). Bei Betrachtung der identifizierten Parameter
selbst in Tabelle 4.6 fallt auf, dass die Proben mit gleicher Faserverteilung,
insbesondere die Probe mit Leinwandbindung, durch Ci3 ~ C'5, Css ~ Cs3
und Cs; =~ Cgg Eigenschaften eines tetragonalen Kristallsystems aufweisen
[Sut84; JDW18]. Demnach konnte die Zahl der Modellparameter fiir diese
Probe von insgesamt neun auf sechs reduziert werden, sodass der gesuchte
Vektor C in Gleichung 4.30 bzw. éortho in Gleichung 4.34 nur noch sechs Ele-
mente enthélt. Das fithrt dazu, dass nur noch sechs Parameter in 60rtho aus
vier Parametern pro Winkel in ¢4 ortho bestimmt werden miissen. Dadurch
reduziert sich die minimal benétigte Anzahl winkelabhédngiger Messungen
zu zwei notwendigen Winkeln méglichst im gleichen Quadranten, um zwei
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linear unabhéngige Gleichungen zu erhalten (vgl. Gleichung 4.36). Dies
kann bei weiteren Untersuchungen der Materialien genutzt werden, um z.B.
Eigenschaftsénderungen durch z.B. Alterung zu untersuchen. Fir weitere
Anwendungen der hier vorgestellten Verfahren zur Untersuchung der Mate-
rialalterung sei auf [Web21] verwiesen. Zum Vergleich mit dem verfiigharen
Datenblatt der Probe mit Koperbindung und gleichem Faserverhéaltnis
(50:50) in beide Raumrichtungen werden fir diese Proben die Elastizitéts-
moduln F5 und FEs3 mithilfe von Gleichung 2.16 berechnet, welche sich zu
FEy = 24,9 GPa und E3 = 25,6 GPa ergeben. Damit liegen die bestimmten
Elastizitatsmodule nur leicht iiber der Angabe im Datenblatt von 23 GPa,
welches im quasistatischen Zugversuch geméfl ISO 527-4/5 bestimmt wurde.
Allerdings ist im Datenblatt keine Richtungsangabe enthalten. In einer
alteren Version des Datenblatts von 2009 [Bon09a] sind mehr Angaben
enthalten, die noch online unter [SON] verfiigbar sind. Dort sind kleinere
Elastizitdtsmodule in den beiden Raumrichtungen der Plattenebene (o
und z3) von 21,5 GPa und 22,4 GPa angegeben. Der Unterschied in den
Werten zwischen den Versionen der Datenblétter ist entweder in der Stich-
probenstreuung und/oder einer Anpassung des Herstellungsprozesses zu
begrinden. Die in [Bon09a; SON] ebenfalls angegebenen Poissonzahlen
von v = (0,17 weichen nur minimal von der hier berechneten Poissonzahl in
der xo-x3-Ebene (vgl. Abbildung 4.35) mit v93 = 0,18 ab. Bei Betrachtung
der Probe mit ungleicher Faserverteilung ergeben sich Elastizitatsmodule
in der Plattenebene von E, = 12,76 GPa und E3; = 31,83 GPa, wobei 80 %
der Fasern in x3-Richtung verlaufen. Insbesondere in x3-Richtung liegt die
Datenblattangabe (Zugversuch nach ISO 527-4/5) mit 32 GPa [Bon22b]
sehr nahe am ermittelten Wert. Die Angabe des Elastiztatsmoduls im Da-
tenblatt fir die xo-Richtung, in der 20 % der Fasern verlaufen, weicht mit
14 GPa [Bon22b| etwas starker ab, welches mit dem hoheren PA6-Anteils
und dessen viskoelastischen Verhalten, zu erklaren ist.

Da die viskoelastischen Eigenschaften des Matrixmaterials PA6 in der
Berechnung nicht berticksichtigt worden sind, ist ein hoherer Elastizitats-
modul gegeniiber den Werten aus den Datenblattern zu erwarten. Da Glas
im Vergleich zu Polymeren kaum viskoelastisches Verhalten zeigt, sind
die Abweichungen entlang der Richtung mit dem grofleren Glasfaseranteil
geringer.
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Fazit

Mithilfe eines kurzen Laserpulses im Nanosekundenbereich lassen sich breit-
bandige Ultraschallwellen in Plattenwellenleitern thermoelastisch anregen.
Die Detektion erfolgt mit einem piezoelektrischen Schallwandler. Die Damp-
fungsmasse (Backing) im Schallwandler sorgt zwar fir eine Dampfung der
Ultraschallwellen bei der Resonanzfrequenz der verwendeten Piezokeramik,
fithrt jedoch gleichzeitig dazu, dass alle Schallwellen bis ca. 10 MHz die glei-
che Dampfung erfahren, wodurch eine breitbandige Detektion ermoglicht
wird (Fragestellung I). Demzufolge, und aufgrund der in Polymeren auftre-
tenden akustischen Dampfung der Schallwellen, sind die empfangenen Ultra-
schallwellen nur schwach ausgepragt. Aufgrund der Verschiebung der Anre-
gung ergibt sich neben der zeitlichen eine zusatzliche 6rtliche Abhangigkeit
der Messsignale. Durch Fensterung im Orts- und Zeitbereich, Zero-Padding
sowie weiteren Bildverarbeitungsschritten im Frequenz-Wellenzahl-Bereich
nach der zweidimensionalen Fourier-Transformation lassen sich trotz schwa-
cher Eingangssignale die in der Dispersionabbildung sichtbar werdenden
Moden hinreichend gut auswerten (Fragestellung II). Die elastischen Mate-
rialparameter (Schallgeschwindigkeiten) lassen sich unter Annahme von
Isotropie anhand der Steigung der Wellenfronten im Orts-Zeitbereich oder
anhand der Steigung der Grate im Frequenz-Wellenzahlbereich (Disper-
sionsabbildung) schétzen. Neben einer numerischen Nullstellensuche der
Rayleigh-Lamb-Gleichung, ldsst sich die Wellenausbreitung effizient mit
einer semi-analytischen Finite-Elemente-Methode simulieren (Fragestel-
lung IIT). Zum Abgleich der Frequenz-Wellenzahl-Paare der detektierten
Moden mit den Simulationsdaten werden die elastischen Materialparameter
als Modelleingangsparameter variiert. Eine Bewertung der Ubereinstim-
mung der berechneten und messtechnisch ermittelten Frequenz-Wellenzahl-
Paaren liefert die Zielfunktion. Die hier vorgestellten Zielfunktionen ver-
zichten auf eine Extraktion der Moden reprasentierenden Grate aus der Di-
spersionsabbildung. Stattdessen gewichten sie Frequenz-Wellenzahl-Paare
mit hohen Betriagen der zweidimensionalen Fouriertransformation (Disper-
sionsabbildung) am starksten (Fragestellung IV). In Kombination mit der
vorherigen Verarbeitung ergibt sich eine glatte Zielfunktion und somit ein
robustes inverses Verfahren (Fragestellung IV). Dabei kénnen alle Model-
leingangsparameter gleichzeitig variiert werden, ohne dass eine spezielle
Optimierungsreihenfolge notwendig ist (Fragestellung V). Die Unsicherheit
der resultierenden Messgrofien (Schallgeschwindigkeiten) werden mittels
Monte-Carlo-Simulation bestimmt (Fragestellung VI).

Da sich die durch Lamb-Wellen erzeugten Verschiebungen auf die Plat-
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

tenebene beschranken, werden nur Materialparameter in zwei Raumrich-
tungen identifiziert, was fiir ein isotropes Materialmodell hinreichend ist.
Zur Identifikation eines richtungsabhangigen Materialmodells wird die
Platte im Messplatz gedreht und fiir jeden Rotationswinkel eine Identifi-
kation der Koeffizienten der Elastizitatsmatrix fiir den zweidimensionalen
Fall durchgefiithrt. Durch Zusammensetzen aller Einzelergebnisse in ein
Gleichungssystem werden durch dessen Losung alle Koeffizienten der Elas-
tizitatsmatrix (inklusive der dritten Raumrichtung) bestimmt.
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5 Inverses Verfahren zur
ldentifikation viskoelastischer
Materialparameter

Zur Identifikation viskoelastischer Materialparameter ist zuséitzlich zur
Lage der Moden im Dispersionsdiagramm (vgl. Kapitel 4) die modale
Déampfung von Bedeutung. Im vorherigen Kapitel war sie bereits dadurch
bemerkbar, dass einige Moden bei hoheren Frequenzen, trotz breitbandi-
ger Anregung, nur schwach detektierbar sind. Lésst sich die Ddmpfung
jedoch messen, wird diese zusétzliche Information in diesem Kapitel ge-
nutzt, um ein viskoelastisches Materialmodell zu identifizieren. Dazu wird
ein fraktionales Zener-Modell mit einer Zerlegung in Kompressions- und
Scherkomponenten nach Unterabschnitt 3.3.2 ausgewahlt sowie eine Para-
meterstudie, um die Auswirkungen der Modellparameter auf die komplexen
Wellenzahlen (Phase und Dampfung bzw. Real- und Imaginéarteil) zu un-
tersuchen, durchgefiihrt. Analog zum vorherigen Kapitel werden die Mate-
rialparameter in einem inversen Verfahren bestimmt, sodass Startwerte fiir
die viskoelastischen Modellparameter geschitzt werden. Ebenso wird eine
geeignete Kostenfunktion benétigt, da die simulativ berechnete modale
Dampfung bzw. Imaginarteil der Kreiswellenzahl zusétzlich zu deren simu-
lativ berechneten Realteil jeweils mit denen aus der Messung bestimmten
Real- und Imaginarteilen der Kreiswellenzahlen tibereinstimmen miissen.
Die hohere Anzahl an zu bestimmenden Modellparametern erh6ht die Kom-
plexitat ebenfalls deutlich. Zur Konvergenzuntersuchung der Optimierung
werden daher verschiedene Optimierungsstrategien miteinander verglichen.
Da PEEK fiir ein Polymer schwache viskoelastischen Eigenschaften auf-
weist, erleichtert es die Extraktion von Frequenz-Wellenzahl-Paaren aus
der Dispersionsabbildung, um das Auswertungsverfahren zu demonstrieren
und verschiedene Optimierungsstrategien exemplarisch zu untersuchen.
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

5.1 Beriicksichtigung von Dampfung im
Vorwartsmodell

Da der Grofiteil der Démpfungsmodelle eine Frequenzabhéngigkeit auf-
weist, werden bei Beriicksichtigung eines viskoelastischen Materials fiir
jede Kreisfrequenz w die Elastizitdtsmatrix C, (w) neu berechnet sowie
die Element-Steifigkeitsmatrizen bestimmt, um diese zu den globalen Stei-
figkeitsmatrizen K, Ky und K3 zu assemblieren (Zuordnung der lokalen
Elementknoten zu den globalen Knoten), um damit die Kreiswellenzahlen
nach Gleichung 3.28 zu berechnen. Dies ist insbesondere der Fall, wenn eine
Eigenwertzerlegung der Elastizitatsmatrix C durchgefiithrt wird [TS99],
um auf jede Hauptrichtung unterschiedliche Dampfungsparameter oder gar
ein anderes Dampfungsmodell anzuwenden (vgl. Gleichung 2.38). Erfahren
die Bewegungen in jede Hauptrichtung gleiche Dampfung, ergibt sich wie
in Gleichung 2.38 und 2.41 ein komplexer modellabhéngiger Vorfaktor,
sodass sich die komplexe frequenzabhéingige Elastizitatsmatrix allgemein
zu C (w) = 7 (w) C ergibt. In dem Fall kann der skalare frequenzabhéingige
Dampfungsfaktor v (w) bei Berechnung der Steifigkeitsmatrizen K o, Ko
und K3 in Gleichung 3.23 bis 3.25 vor das Integral gezogen werden. Han-
delt es sich um ein einschichtiges homogenes System, kann dies auch noch
nach der Assemblierung erfolgen, sodass nicht fiir jede Frequenz alle Mo-
dellmatrizen neu berechnet werden miissen. Das Eigenwertproblem nach
Gleichung 3.27 ergibt sich somit analog zu Gleichung 2.66 mit

7 () (K1 + kK> + K Ks5) — w?M| & =0, (5.1)

wobei 7y (w) einen beliebigen modell- und frequenzabhéngigen, jedoch orts-
unabhangigen Dampfungsfaktor bezeichnet. Beim Losen des resultierenden
Eigenwertproblems unter Vorgabe der Kreisfrequenz w ergeben sich paar-
weise komplexe Kreiswellenzahlen £k, die jeweils die Wellenausbreitung
in positive und negative y-Richtung in Abhéngigkeit der Kreisfrequenz
beschreiben. Ausgehend vom Ansatz aus Gleichung 3.18 lasst sich die nun
komplexe Kreiswellenzahl k jeder Mode in Real- und Imaginérteil zerlegen,
womit sich fiir die mechanische Verschiebung

(1

) ) — & () Rtk k)

© ®

w, k) el (Re{k}y)—wt) ,—TIm{k}y

(w, k) ol (Re{k}y—wt) jay (5.2)

Il
[t [op [
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5.2 Konvergenz unter Berticksichtigung von Dampfung

ergibt. Der Realteil Re{k} =  wird als Phase bezeichnet. Dementspre-
chend kann daraus mittels cpp, = w/f = w/ Re{k} die Phasengeschwindig-
keit der Mode berechnet werden. Der rein reelle Ausdruck e® beschreibt
das Abklingen der Amplitude = iiber den Ort y, weshalb der negative
Imaginarteil als Dampfung @ = —Im{k} bezeichnet wird. Je nachdem
ob sich die Welle in negative (Re{k} > 0) oder positive (Re{k} < 0)
y-Richtung ausbreitet ergibt sich jeweils a > 0 fiir eine in —y-Richtung
oder o < 0 fiir eine in 4y-Richtung laufende Welle.

Aufgrund der Dimensionsverdopplung des Eigenwertproblems zur Losung
bei vorgegebenen Frequenzen werden mit einer Diskretisierung von N Kno-
ten immer 4N Kreiswellenzahlen pro Kreisfrequenz berechnet. Je geringer
die Frequenz, desto weniger Moden sind ausbreitungsfahig, wodurch umso
mehr evaneszente (sehr schnell abklingende) Moden berechnet werden. Die-
se Moden, die lokale unmittelbar abklingende Schwingungen beschreiben,
konnen unter Verwendung eines ideal-elastischen Materialmodells leicht
aussortiert werden, indem nur Wellenzahlen mit Im{k} = 0 betrachtet
werden. In dem Fall ist es jedoch effizienter die Kreisfrequenzen aus den
Kreiswellenzahlen zu berechnen. Unter Verwendung eines viskoelastischen
Materialmodells hingegen werden alle Moden abklingend, was sich durch
komplexe Wellenzahlen duflert. Die ebenfalls im Modell berechneten, nicht
ausbreitungsfahigen Moden mit

| Im{k}| > | Re{k}| (5.3)

werden nicht berticksichtigt. Auf diese Weise werden alle Moden, die 6rtlich
nach einer Strecke, die ihrer eigenen Wellenldnge oder weniger entspricht,
abgeklungen sind, aussortiert. In den Messdaten treten diese Moden nicht
auf. Wahrend des spéateren Optimierungsprozesses konnten sie jedoch zu
einer falschen Zuordnung von simulativ berechneten Moden und den aus der
Messung extrahierten Moden fithren, was durch das Aussortieren vermieden
wird.

5.2 Konvergenz unter Beriicksichtigung von
Dampfung

Wird ein frequenzabhangiges Dampfungsmodell genutzt, erfolgt die Berech-

nung der komplexen Kreiswellenzahlen unter Vorgabe der Kreisfrequenzen

nach Gleichung 3.28. Als Beispiel dient eine 5,45 mm dicke PEEK-Platte,
deren Dampfungsverhalten durch das fraktionale Zener-Modell nach Glei-
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Tabelle 5.1: Arbeitspunkt der Konvergenzuntersuchung (Parametersatz
entspricht den Startwerten in Abschnitt 5.5) unter Annahme
eines fraktionalen Zener-Modells (Plattendicke 5,45 mm)

p/kgm™ K /GPa pu/GPa

1310 6,23 1,48
Tow / BS To, /BS To /PS Top /1S Gk Gy
0,2 0,59 0,21 0,65 1 1
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Abbildung 5.1: Konvergenz der Kreiswellenzahl (Re{k}) mit Polynomord-
nung 1 unter Annahme frequenzabhéngiger, komplexer
Materialparameter

chung 2.41 mit den Parametern in Tabelle 5.1 modelliert wird.

Analog zur vorherigen Konvergenzbetrachtung am Beispiel einer ideal-
elastischen Modellierung von PEEK in Unterabschnitt 4.2.3 wird der Ein-
fluss der Knotenanzahl auf die komplexe Kreiswellenzahl unter Verwendung
eines (fraktionalen) Zener-Modells untersucht.

Da Viskoelastizitat im Frequenzbereich durch einen frequenz- und mo-
dellabhangigen Vorfaktor z.B. vor der Elastizitdtsmatrix ausgedriickt wird,
ergibt sich in der Regel die frequenzabhéngige Transversalwellengeschwin-
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Abbildung 5.2: Konvergenz der Dampfung (Jo| = | Im{k}|) mit Polynom-
ordnung 1 unter Annahme frequenzabhéngiger, komplexer

Materialparameter
10
- 32 Knoten
& 41+ 64 Knoten
-128 Knoten
6 - |256 Knoten

Kreiswellenzahl Re{k} / mm™!

0

-512 Knoten

I I I I |
0204 0608 1 121416 1,8 2

Frequenz f / MHz

Abbildung 5.3: Konvergenz der Kreiswellenzahl (Re{k}) mit Polynomord-
nung 2 unter Annahme frequenzabhéingiger, komplexer
Materialparameter
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter
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Abbildung 5.4: Konvergenz der Dampfung (|| = | Im{k}|) mit Polynom-

ordnung 2 unter Annahme frequenzabhéngiger, komplexer
Materialparameter

digkeit nach Gleichung 2.19 bis Gleichung 2.21 zu

cr (w) = Re C“p(w) :\/ERe{ y(w)} Vi € 4,5,6, (5.4)

wobei der Faktor v (w) modellabhéngig ist. Unter Verwendung eines z.B.
(fraktionalen) Zener-Modells ergibt sich 7 (w) nach Gleichung 2.38 bzw.
2.41 abhangig von der Kreisfrequenz w, Retardationszeitkonstante 7., Re-
laxationszeitkonstante 7, und ggf. von der Ableitungsordnung a. Fir ein
physikalisches Materialverhalten muss am Beispiel des (fraktionalen) Zener-
Modells die Bedingung 7. > 7, erfiillt sein, wodurch sich Re{vy (w)} > 1
ergibt. Dementsprechend ist bei Verwendung eines (physikalischen) Damp-
fungsmodells die Schallgeschwindigkeit der Transversalwelle ¢ (w) bei einer
bestimmten Kreisfrequenz stets grofler als die statische Transversalwellen-
geschwindigkeit von ¢, = cr (w = 0), sodass letztere zur konservativen
Konvergenzabschatzung nach Gleichung 4.11 genutzt wird.

Fiir eine 5,45 mm dicke Platte, mit einer statischen Transversalwellenge-
schwindigkeit ct, = 1152ms™!, einer maximal betrachteten Frequenz von
2.5 MHz sowie einer Diskretisierung von Sy = 10 Knoten pro Wellenldnge
ergibt sich nach Gleichung 4.11 eine minimal notwendige Knotenanzahl von
128 Knoten. Bei einer Diskretisierung von Sy = 20 Knoten pro Wellenldnge
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5.3 Bestimmung der modalen Diampfung aus Messdaten

entsprechend 256 Knoten. Fiir diese und weitere Diskretisierungen ist unter
Verwendung einer Polynomordnung von 1 das Dispersionsdiagramm in
Abbildung 5.1 sowie die zugehorige Dampfung in Abbildung 5.2 dargestellt.

Abbildung 5.1 zeigt eine Anderung der Steigung der Moden bei hohen
Wellenzahlen sowie eine Verschiebung der Moden zu kleineren Frequen-
zen bzw. zu hoheren Wellenzahlen bei hoherer Knotenanzahl, wobei diese
im hoherfrequenten Bereich deutlich starker ausfillt. Ebenfalls ldsst sich
dieser Einfluss auf die Dédmpfung in Abbildung 5.2 beobachten: Mit ho-
herer Knotenanzahl verschieben sich die Dampfungskurven in Richtung
kleinerer Frequenzen. Insgesamt verschieben sich also sowohl Dispersions-
als auch Dampfungskurven in Richtung kleinerer Frequenzen mit hoherer
Disketisierung.

Unter Verwendung von Ansatz-Polynomen der Ordnung 2 in Abbil-
dung 5.3 und 5.4 fillt die Verschiebung deutlich geringer aus. Ab 128
Knoten ist diese kaum, ab 256 Knoten (fx = 20) bereits gar nicht mehr
erkennbar, sodass unter Beriicksichtigung von Viskoelastizitat analog zu
Abbildung 4.5 mindestens die Polynomordnung 2 mit Sy = 20 Knoten pro
Wellenlénge verwendet wird, um den numerischen Fehler méglichst gering
zu halten.

5.3 Bestimmung der modalen Dampfung aus
Messdaten

Im Wellenleiter kann eine sich ausbreitende akustische Welle durch Su-
perposition ihrer modalen Anteile ausgedriickt werden. Die Wellenzahlen
mit der sich die verlustbehafteten Wellenpakete ausbreiten sind nicht rein
reell. Deren Dampfung wird analog zu Gleichung 5.2 durch den negati-
ven Imaginarteil der Wellenzahl ausgedriickt. Um die Dampfung « jeder
Mode und dementsprechend fiir jedes Frequenz-Wellenzahl-Paar (wobei
hier der Realteil der Kreiswellenzahl gemeint ist) aus den Messdaten zu
berechnen, wird die Signalmatrix entlang der Ortsachse in ngis, Abschnitte
mit einer Breite von jeweils w, unterteilt, sodass bei insgesamt N aquidi-
stanten Anregungspositionen, jeweils N/ngsp, Zeitsignale zusammengefasst
werden, um durch zweidimensionale Fourier-Transformation jeweils eine
Dispersionsabbildung zu erzeugen.

Um die Werte in den Dispersionsabbildungen méglichst wenig zu verfal-
schen wird anders als in Abschnitt 4.6 nur ein Minimum an Signalverarbei-
tungsschritten durchgefiithrt. Dazu zahlen Heruntertakten im Zeitbereich
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

sowie Zero-Padding (vgl. Abschnitt 4.6) zur Erhohung der Auflésung und
einer ortlichen Fensterung zur Minderung des Leakage-Effekts. Schematisch
ist das Vorgehen beispielhaft fiir ngi, = 4 Abschnitte in Abbildung 5.5
dargestellt. Durch die Aufteilung im Ortsbereich ergibt sich eine gréflere

Detektion

x
; ; Yo  yr Y2 Y T—) Y
i i i i i ]

| Vi

" Anregung
Ay—

Abbildung 5.5: Schematische Darstellung der Aufteilung der Messdaten
entlang der Propagationsstrecke nach [JCH21]

Schrittweite der Phase  bzw. des Realteils der Kreiswellenzahl Re{k},
was wiederum durch Zero-Padding ausgeglichen wird. Die Fensterung im
Ortsbereich hilft die Auswirkungen des Leakage-Effekts in jeder Dispersi-
onsabbildung zu mindern, fiihrt jedoch auch zu einer groferen Unschérfe,
was eine optische Trennung der Moden erschwert (vgl. Abbildung 5.6).
Die mittlere Anregungsposition y,, des jeweiligen Abschnitts wird genutzt,
um tber den Abstand zum Empfangswandler und die Werte in jedem
Frequenz-Wellenzahl-Paar der Dispersionsabbildungen eine ortsabhéngige
Exponentialfunktion zu approximieren. Somit ergibt sich fiir die Intensitéat

bei ngisp, Abschnitten fir jedes Frequenz-Wellenzahl-Paar der Dispersions-
abbildung

Ui (w, Re{k}, ym,wy) = Uy (w, Re{k}, Yum,y, wy) €, (5.5)

sodass mithilfe der ngisp, Dispersionsabbildungen, die modale Dampfung «
durch die Approximation einer Exponentialfunktion tiber den Ort bestimmt
werden kann. [JCH21]

Abbildung 5.6 zeigt die approximierten Werte fiir v abhéngig von Fre-
quenz f und Realteil der Kreiswellenzahl Re{k} beispielhaft fiir eine
5,45 mm dicke PEEK-Platte. Da Abbildung 5.6 an eine Dispersionsabbil-
dung erinnert, jedoch die modale Démpfung als Farblegende enthalt, wird
diese Art von Abbildung im Folgenden auch als Ddmpfungsabbildung be-
zeichnet. Einige Moden werden durch betragsmafig grole Dampfungswerte
« sichtbar, insbesondere im Bereich von f = 0,5 MHz bis f = 1,5 MHz
und kleinen Wellenzahlen von Re{k} = 0mm™' bis Re{k} = 2mm™'. Da
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Abbildung 5.6: Approximierte Werte « fur jedes Frequenz-Wellenzahl-Paar
unter Verwendung von ngisp, = 4 Abschnitten im Ortsbe-
reich

Abbildung 5.6 aufgrund der hohen Unschérfe zunéchst schwer lesbar er-
scheint, konnen die Werte, die keine ausbreitungsfihige Mode beschreiben,
gefiltert werden. Relativ leicht gelingt dies mit einem Rechteck-Filter um
die theoretisch ausbreitungsfihigen Moden, welche mithilfe des Vorwérts-
modells unter Annahme effektiver, elastischer Materialparameter berechnet
werden.

Fiir die reine Position der Moden ohne Beriticksichtigung der Damp-
fung, geniigt die Kenntnis effektiver, elastischer Materialparameter, deren
Identifikation in Kapitel 4 beschrieben wird, denn die reine Modenver-
schiebung aufgrund der Dampfung lasst sich durch einen dquivalenten
ideal-elastischen Materialparametersatz beschreiben.

Nach Filterung der Daten aus Abbildung 5.6 mit einem Rechteckfil-
ter um die theoretisch ausbreitungsfihigen Moden ergibt sich schlielich
Abbildung 5.7. Dabei fallt direkt auf, dass einige Moden bei groflen Kreis-
wellenzahlen eine modale Dampfung von null aufweisen. Dafiir gibt es
hauptsichlich zwei mogliche Griinde. Entweder die Mode ist angeregt
worden und weist eine geringe modale Dampfung nahe null auf oder sie
ist nicht angeregt bzw. detektiert worden. Im letzteren Fall betragt die
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Abbildung 5.7: Approximierte modale Dampfung « fiir jedes Frequenz-
Wellenzahl-Paar unter Verwendung von ngisp, = 4 Abschnit-
ten im Ortsbereich und Rechteck-Filterung um die ausbrei-
tungsfahigen Moden

Ursprungsamplitude bereits null, sodass diese nicht weiter gedampft wird.
Gleichzeitig besteht jedoch auch die Moglichkeit, dass eine Mode zwar
angeregt wurde, jedoch bereits zu Beginn der Propagationsstrecke so stark
gedampft wird, dass eine Detektion nicht moglich ist.

Hilfreich dafiir ist die Betrachtung der Dispersionsabbildung wie in
Abbildung 4.17. Sind die entsprechenden Moden dort deutlich zu erkennen,
konnten diese zuvor angeregt und detektiert werden und es ist davon
auszugehen, dass die Dampfung in dem Fall tatsédchlich zu null wird. Ist die
Mode in der Dispersionsabbildung nicht erkennbar, ist es wahrscheinlich,
dass die Mode nicht detektiert wurde. In diesem Fall ist keine Aussage
iiber ihre modale Dampfung moglich.

In den hier betrachteten Abbildungen 5.6 und 5.7 handelt es sich bei
gleichzeitiger Betrachtung von Abbildung 4.17 bei den Moden bei grofien re-
ellen Kreiswellenzahlen daher um in der Messung nicht angeregte bzw. nicht
detektierte Moden, sodass keine Aussage tiber deren modaler Dampfung
moglich ist.
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5.3 Bestimmung der modalen Diampfung aus Messdaten
Tabelle 5.2: In der FEM-Simulation angenommene viskoelastische Materi-

alparameter (Parameter ahnlich zu denen von PEEK).

p/kgm? FE /GPa v ay /s ax /st
1300 4,76 0,38 11,4-10* 2,8-107°

5.3.1 Validierung an FEM-Simulationen

Zur Validierung des Messeffekts bzw. der Extraktion der Démpfung o
aus den Messdaten, wird eine transiente FEM-Simulation zur Erzeugung
von den Messdaten dhnlichen Signalen bei bekannten Materialparametern
herangezogen. Das Simulationsmodell ist identisch zu dem in Abschnitt 4.5,
jedoch mit einem Rayleigh-Modell als viskoelastisches Materialmodell.
Angenommen werden die Materialparameter in Tabelle 5.2. Durch orts-
abhangiges Aufteilen der berechneten Zeitsignale in ngy, = 4 Bereiche,
ergeben sich fiir jeden dieser Abschnitte die Dispersionsabbildungen in
Abbildung 5.8, welche wiederum fiir die Approximation einer Exponen-
tialfunktion, wie zuvor beschrieben, genutzt werden. Die daraus resul-
tierende Dampfung « ist in Abbildung 5.9 dargestellt. Ebenso sind die
entsprechenden Frequenz- und komplexen Kreiswellenzahl-Paare aus der
SAFE-Berechnung in Abbildung 5.10 dargestellt.

Sowohl Abbildung 5.9 als auch 5.10 sind mit der gleichen Farbskalierung
dargestellt, um sie direkt vergleichen zu koénnen. Dafiir sind in Abbil-
dung 5.10 nur die Dampfungswerte im Wertebereich von Abbildung 5.9
dargestellt. Betragsméflig grolere Werte werden in Abbildung 5.9 nicht
dargestellt, da eine zu stark gedampfte Welle nicht mehr messtechnisch
erfasst wird. Werden schliefflich Abbildung 5.9 und 5.10 iibereinander ge-
legt, verschwindet Abbildung 5.10 in 5.9, da diese quasi iibereinstimmen.
Damit zeigt sich, dass das beschriebene Verfahren zur Bestimmung der
Dampfung gut geeignet ist.

Fiir eine genauere Betrachtung der Dampfung der einzelnen Moden und
um einen leichteren Vergleich mit der mittels SAFE-Methode berechneten
modalen Démpfung zu ermoglichen, werden die detektierten Moden als Ma-
xima aus der verarbeiteten Dispersionsabbildung zunéichst extrahiert (vgl.
Abbildung 5.11) und die entsprechenden Stellen (Kreiswellenzahl-Frequenz-
Paare) in der Dampfungsabbildung in Abbildung 5.9 gesucht, um deren
modale Dampfung mit den mittels SAFE-berechneten nachstgelegenen
Simulationspaaren zu vergleichen.

Dabei werden zum Vergleich die Simulationspunkte verwendet, deren
Frequenz f und Realteile der Kreiswellenzahlen Re{k} am néchsten an
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Abbildung 5.8: Dispersionsabbildungen der jeweiligen Abschnitte nach Ab-
bildung 5.5 bei verschiedenen mittleren Anregungspositio-
nen Y,

den detektierten Moden liegen. Das Ergebnis dieses Vergleichs zeigt Abbil-
dung 5.12. Dort zeigt sich generell eine gute Ubereinstimmung zwischen der
Dampfung des gewohnlichen FEM-Modells, welches eine Messung durch die
transiente Berechnung moglichst realitatsgetreu nachbildet, und der mit-
tels semi-analytischer Finite-Elemente-Simulation berechneten Dampfung.
Insbesondere im niederfrequenten Bereich ist eine Art Schwingung auf
den Dampfungsverldufen aus der transient berechneten FEM-Simulation
erkennbar, welche sich auf Artefakte der 2D-Fourier-Transformation wie
z.B. den verbliebenen Leakage-Effekt zuriickfiihren lassen. Weiterhin ent-
stehen Abweichungen im hoéher-frequenten Bereich durch unterschiedli-
che ortliche Diskretisierungen des ortlich eindimensional diskretisierten
semi-analytischen und o6rtlich zweidimensional diskretisierten, transienten

FEM-Modells (CFS++).
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Abbildung 5.10: Zugehorige Frequenz-Wellenzahl-Paare (5 = Re{k}, a =
—Im{k}) berechnet mit der SAFE-Methode
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Abbildung 5.11: Dispersionsabbildung und extrahierte Modenpunkte
(Frequenz-Wellenzahl-Paare) (rot)
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Abbildung 5.12: Modale Dampfung an den in Abbildung 5.11 extrahierten
Modenpunkten (blau) und den mittels SAFE berechneten
Imaginarteilen der Kreiswellenzahl bzw. Dampfung (rot)
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5.3.2 Reproduzierbarkeit der Dampfungsmessung

Um die Reproduzierbarkeit der Dampfungsmessung zu untersuchen, werden
aus den Messdaten der jeweils ersten Messung der Reproduzierbarkeitsun-
tersuchung aus Abschnitt 4.7, die Abbildung 4.18a zugrunde liegt (rot),
die Moden extrahiert und die Dédmpfung an diesen Stellen bei den entspre-
chenden Frequenz-Kreiswellenzahl-Paaren der beiden anderen Messungen
in Abbildung 5.13a gegeniiber gestellt. Die Messungen wurden an PEEK
durchgefiihrt und unterscheiden sich untereinander nur durch die jeweilige
erneute Ankopplung des Schallwandlers.

Trotz einer gewissen Streuung stimmen die grofitenteils parabelformi-
gen Verldufe der modalen Dampfung in Abbildung 5.13a aller Messungen
iiberein. Die grofiten Unterschiede beziiglich den modalen Dampfung aus
den einzelnen Messungen ergeben sich im niederfrequenten Bereich. Da die
Déampfung aus den Werten mehrerer einzelner Dispersionsabbildungen, wie
in Abschnitt 5.3 beschrieben ist, approximiert wird, haben die insbesondere
im niederfrequenten Bereich auftretenden Artefakte in den Dispersionsab-
bildungen einen nicht unerheblichen Einfluss. Bereits in Abbildung 4.18a
zeigen sich die Artefakte bei kleinen Frequenzen und Kreiswellenzahlen,
wohingegen sich diese Artefakte bei Messung ohne erneute Ankopplung des
Empfangswandlers in den zugehorigen Dispersionsabbildungen (vgl. Abbil-
dung 4.18b) quasi gleich verhalten. Eine geringere Variation der Dampfung
zeigt sich bei jeweils gleicher Ankopplung des Empfangswandlers bei allen
drei Messungen in Abbildung 5.13b.

Insgesamt lasst sich daraus schlieflen, dass einzelne Dampfungswerte
je nach Ankopplung mehr oder weniger stark variieren kénnen. Trotz
einer gewissen Schwankungsbreite ist diese klein genug, um diese iiber den
gesamten Frequenzbereich hinweg zu vernachléssigen.
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Abbildung 5.13: Reproduzierbarkeit der Dampfung dreier Messungen an

PEEK: Messung 1 in Rot, Messung 2 in Griin, Messung
3 in Blau
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5.4 Parameterstudie viskoelastischer Materialparameter

5.4 Parameterstudie viskoelastischer
Materialparameter

Zur Entwicklung einer geeigneten Optimierungsstrategie ist es unerléss-
lich, die Anderungen der Dispersionscharakteristik in Abhingigkeit der
geanderten Parameter zu betrachten. Dazu werden die komplexen Kreis-
wellenzahlen in Real- und Imaginérteil sowie deren Verhaltnis zueinander
in einem Arbeitspunkt untersucht.

Tabelle 5.3: Materialparameter im verwendeten Arbeitspunkt

Modul i/GPa 7, /us d; a;

Kompressionskomponente (i = K) 6,23 0,2 1,03 1,0
Scherkomponente (i = ) 1,48 0,6 1,09 0,99

Als Arbeitspunkt fiir die Materialparameter werden beispielhaft die in
Tabelle 5.3 angegebenen Parameter unter Verwendung des fraktionalen
Zener-Modells jeweils fiir Kompressions- und Scherbewegungen nach Glei-
chung 3.17 betrachtet. Die Parameter werden jeweils um +5 % verandert.
Uberschreitet ein Parameter dabei seine physikalische Grenze (d > 1,
a < 1), wird dieser auf die jeweilige Grenze gesetzt.

Die resultierenden Anderungen im Realteil sind in Abbildung 5.16, des
Imaginérteils in Abbildung 5.14 und Abbildung 5.15 dargestellt. Zusétzlich
wird das Verhéltnis von Imaginér- zu Realteil in Abbildung 5.17 und 5.18
gezeigt.

Wie bereits in Abschnitt 4.8 zeigt sich im Realteil der Kreiswellenzahl
in Abbildung 5.16 erneut der Unterschied zwischen Kompressions- und
Scherparametern. Wéahrend die Scherparameter alle Moden beeinflussen,
wirken sich die Kompressionsparameter nur auf die Moden unterhalb
der Geraden kp, (w) = w/cp, aus, wenn der Realteil der nun komplexen
Kreiswellenzahl betrachtet wird. Dies ist darauf zurtickzufithren, dass der
Schermodul sowohl Longitudinal- als auch Transversalwellen beeinflusst,
wahrend der Kompressionsmodul nur Longitudinalwellen beeinflusst. Das
resultierende Dispersionsdiagramm besteht aus einer Verkopplung von
Longitudinal- und Transversalwellen. Die Unterscheidung der Moden lasst
sich demzufolge auch im Imaginéarteil der Kreiswellenzahl in Abbildung 5.14
und 5.15 beobachten. In dem Beispiel wirken sich die Scherkomponenten
grundsatzlich auf den Imaginarteil der Kreiswellenzahlen bzw. die Damp-
fung aller Moden aus. Insbesondere werden hier die Moden mit einer
Dampfung |a| = |Im{k}| > 60m~"! beeinflusst, welche kaum von den
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Kompressionsparametern abhangen. Hierbei handelt sich um die Moden
mit Re{k} > w/cp. Die Beeinflussung des Imaginérteils der Kreiswellenzahl
durch die Kompressionsparameter beschréankt sich im Wesentlichen auf Mo-
den mit [Im (k) | < 60m™', bei denen es sich um die Moden mit k& < w/cy,
handelt. Generell zeigt sich in Abbildung 5.14, dass der Imaginérteil der
Kreiswellenzahl sehr sensitiv auf die Verhéltnisse der Zeitkonstanten di
und d, ist. Der Einfluss auf den Imaginarteil ist dabei so grof}, dass sich der
Realteil der Kreiswellenzahl mit verdandert (vgl. Abbildung 5.16). Bereits
eine kleine prozentuale Anderung der Parameter d, und dx bewirkt eine
sehr groBe Anderung im Imagindrteil, sodass eine Erhohung dieser eine
groffere Dampfung mit sich zieht.

Ein groflerer Kompressions- bzw. Schermodul wirkt dem wiederum ent-
gegen. Zwar miussten Kompressions- bzw. Schermodul prozentual deutlich
starker erhoht werden, um die Auswirkungen der gréfleren Zeitkonstanten-
Verhéltnisse auf den Imaginarteil der Wellenzahlen auszugleichen, jedoch
ist dies auf den unterschiedlichen Wertebereich zuriickzufithren, welcher bei
den Moduln K und p bei einigen GPa liegt, wahrend die Zeitkonstanten-
Verhaltnisse dkx und d, nahe eins liegen.

Allerdings beeinflussen die Démpfungsparameter nicht ausschliellich
den Imaginarteil, sondern auch den Realteil der Wellenzahlen, sodass eine
Optimierung von statischen und Démpfungsparametern nicht getrennt
moglich ist.

Wird der Realteil der Kreiswellenzahl aus Abbildung 5.16 hinzugezogen,
zeigt sich, dass sich die Moduln und die Zeitkonstanten-Verhéltnisse zwar
im Imaginarteil entgegenwirken, den Realteil hingegen um einen &hnlichen
Prozentsatz verkleinern, wenn die Parameter um den gleichen Prozentsatz
erhoht werden.

Eine Vergroflerung der Relaxationszeitkonstanten fiithrt zu einer Verringe-
rung des Imaginarteils der Wellenzahlen. Demnach konnen sie grundséatzlich
einer Erhohung der Zeitkonstanten-Verhaltnisse entgegen wirken.

Absolut gesehen ist die Anderung der Relaxationszeitkonstanten wei-
terhin so klein, dass diese kaum Auswirkungen auf den Realteil hat (vgl.
Abbildung 5.16), was sich bei Anderungen der Zeitkonstanten um eine
Zehnerpotenz andert. Die Ableitungsordnungen weisen ebenfalls kaum
bis keinen Einfluss auf den Realteil der Wellenzahlen auf (vgl. Abbil-
dung A.7). Da beide Ableitungsordnungen in diesem Arbeitspunkt nahe
eins liegen, wirft das Beispiel die Frage auf, ob diese tiberhaupt notwen-
dig zu betrachten sind bzw. iiberhaupt bestimmt werden konnen, da die
Beeinflussung des Imaginéarteils ahnlich zu der durch die Relaxationszeit-
konstante liegt. Bei genauerer Betrachtung von Abbildung 5.15 féllt im
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5.4 Parameterstudie viskoelastischer Materialparameter

Tabelle 5.4: Auswirkungen bei Erhéhung der Parameter auf die komplexen
Kreiswellenzahlen: Die in Klammern gesetzten Pfeile, bedeu-
ten, dass sich die Auswirkungen nur marginal zeigen.

Re{k} Im{k} Im{k}/ Re{k}
K T ! )
1% { ! )
dg { T )
do | 1 1 T
Tox | (M) 1 ( ) )
1 (f < 0,3MIz
o | () v + f>0,3MHz
x| @ i @)
T (f <1MHz) 1 (f<0,8MHz)
o | B S iME, L f > 0.8 MHz

direkten Vergleich auf, z.B. am Beispiel der Kompressionskomponenten,
dass die Relaxationszeitkonstante 7,,, Moden im Bereich | Im{k}| < 60 m™"
und f > 1 MHz beeinflusst, wiahrend sich die Ableitungsordnung ak auf
den Bereich [Im{k}| < 60m~! und 0,5MHz < f < 1,5 MHz beschrénkt.

Die Scherparameter wirken sich im Gegensatz zu den Kompressionspa-
rametern ebenfalls auf die Moden mit | Im{k}| > 60m~" aus. Hier wirkt
sich die Ableitungsordnung kaum auf die Moden um 0,8 MHz aus. Bei
Moden mit f < 0,8 MHz, sorgt ein grofiere Ableitungsordnung a, dafiir,
dass Im{k} steigt. Im Bereich f > 0,8 MHz verringert sich Im{k}.

Zusammengefasst sind die Auswirkungen der Parameter auf Real- und
Imaginarteil in Tabelle 5.4.

Aufgrund der Verkopplung zwischen Real- und Imaginérteil wird in
Abbildung 5.17 und 5.18 das Verhéltnis von Imaginér- zu Realteil der Wel-
lenzahl dargestellt. Dabei zeigt sich, dass dieses Verhaltnis sensitiv auf die
Scherkomponenten ist. Hier zeigt sich der unterschiedliche Frequenzbereich
des Einflusses zwischen 7,, und a, signifikanter. Insbesondere das Verhalt-
nis Im{k}/ Re{k} der Grundmode wird stark von der Ableitungsordnung
a,, beeinflusst, welche sich in Messungen als besonders leicht detektierbar
zeigt.

Dabher ist eine Optimierung des Verhaltnisses Im{k}/ Re{k} zur Bestim-
mung der Dampfungsparameter sinnvoll. Wie bereits erwahnt sind die
Einfliisse sowohl der statischen als auch der Dampfungsparameter mitein-
ander verkoppelt. Leichter féllt jedoch eine Trennung der Modellparameter
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

zur Beschreibung des Scher- und Kompressionsverhaltens, da fiir die Opti-
mierung von letzteren nur Moden mit Re{k} < w/cy, betrachtet werden
miissen, wihrend dessen Einfluss auf die Moden mit Re{k} > w/cy, entféllt.
Somit konnen mit den Moden, die die Bedingung Re{k} > w/cy, erfil-
len, ausschlieBlich Modellparameter zur Beschreibung des Scherverhaltens
bestimmt werden.
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Abbildung 5.14: Imaginérteil der Kreiswellenzahl bei Anderung von
Kompressions- und Schermodul sowie der Verhéltnisse
der Zeitkonstanten
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Abbildung 5.15: Imaginérteil der Kreiswellenzahl bei Anderung der Rela-
xationszeitkonstanten und Ableitungsordnungen
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Abbildung 5.16: Realteil der Kreiswellenzahl bei Anderung von
Kompressions- und Schermodul sowie der Zeitkonstanten-
Verhéltnisse
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Abbildung 5.17: Verhéltnis von Imaginér- zu Realteil der Kreiswellenzahlen
bei Anderung von Kompressions- und Schermodul sowie
der Zeitkonstanten-Verhaltnisse
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Abbildung 5.18: Verhaltnis Imaginérteil/Realteil der Kreiswellenzahl bei
Anderung der Relaxationszeitkonstanten und Ableitungs-

ordnungen
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5.5 Startwerte fiir Dampfungsparameter

Die Identifikation der viskoelastischen Materialparameter erfolgt mit einem
lokalen Optimierungsverfahren, welches Startwerte benotigt. Aus Litera-
turdaten werden Startwerte fiir die statische Longitudinal- und Transver-
salwellengeschwindigkeit bzw. Kompressions- und Schermodul ermittelt.
Datenblitter enthalten in der Regel den Elastizitatsmodul E bestimmt
aus Zugversuchen. Der dazu benétigte Wert fiir die Poissonzahl v ist hin-
gegen weniger haufig zu finden. Da der Wertebereich der Poissonzahl bei
Kunststoffen im Bereich um ca. 0,4 liegt, kann dieser Wert als Schatzwert
bei Fehlen jeglicher Literaturdaten genutzt werden.

Weiterhin werden die effektiven Schallgeschwindigkeiten unter Annahme
eines elastischen Materialmodells nach Kapitel 4 bestimmt. Diese werden
als Schétzwerte der Schallgeschwindigkeiten fiir w — oo angenommen.

Da die Scherparameter, wie in Abschnitt 5.4 gezeigt, alle Moden beein-
flussen, wird zunéchst ein fraktionales Zener-Modell ohne Aufteilung nach
Kompressions- und Scherkomponenten, genutzt. Dabei werden nur die Pa-
rameter des Dampfungsmodells der Scherkomponenten verwendet. Aus dem
Modell ergibt sich durch Grenzwertbildung der Zusammenhang zwischen
statischer und dynamischer Schallgeschwindigkeit bei der Kreisfrequenz w
im Fall der Transversalwellengeschwindigkeit mit

d . . ap
or) =Ref - 1+ T ?j(ciC:T )) "
e 1+dy (ij%z o 1
1+ (jwre, ) [V p
=Re{\/7) g. (5.6)

Als Grenzwerte gelten ¢y (w — 0) = ¢p, und ér (w — 00) = \/dTLcT. Der
Schéatzwert fiir die Transversalwellengeschwindigkeit bei et (w — 00) = e,
und Longitudinalwellengeschwindigkeit cf, (w — 00) = ¢, wird aus der
Identifikation eines elastischen Materialmodells bestimmt (vgl. Kapitel 4).
Zusammen mit der statischen Transversalwellengeschwindigkeit cp, aus
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der Literatur, wird das Zeitkonstanten-Verhaltnis d, aus

2
dy = % (5.7)
Cct,
berechnet. Die Relaxationszeitkonstante 7,, und die Ableitungsordnung
a, werden anschlieend durch numerisches Losen der Rayleigh-Lamb-
Gleichung ermittelt. Dies hat den Vorteil, dass die in der Messung detek-
tierten Frequenzen und komplexen Wellenzahlen direkt in die Rayleigh-
Lamb-Gleichung eingesetzt werden konnen, wodurch diese direkt als Kos-
tenfunktion fungiert. Dazu werden zunéchst die Moden aus der Messung
extrahiert (vgl. Abbildung 5.19). Weiterhin wird die zugehorige Damp-
fung, welche dem negativen Imaginarteil der Kreiswellenzahl entspricht,
nach Abschnitt 5.3 bestimmt (vgl. Abbildung 5.19). Aufgrund von ver-
bliebenden Artefakten aus der Signalvorverarbeitung (vgl. Abschnitt 4.6)
in den Messdaten nahe des Koordinatenursprungs ist die Extraktion der
Frequenz-Wellenzahl-Paaren aus den Messdaten erschwert, weil Frequenz-
Wellenzahl-Paare erkannt werden, die keine Mode reprasentieren. Daher
werden aus Abbildung 5.19a nur Wellenzahlen oberhalb einer Frequenz
von 0,1 MHz berticksichtigt.

Zusammen mit dem extrahierten Realteil der Kreiswellenzahl ergeben
sich mit k = Re{k} — ja = Re{k} + jIm{k} die komplexen Kreiswellen-
zahlen zu den zugehorigen Kreisfrequenzen w, welche zusammen mit dem
Materialmodell in die Rayleigh-Lamb-Gleichung eingesetzt werden, um
diese zu minimieren. Dabei wird der Betrag der Rayleigh-Lamb-Gleichung
direkt als Kostenfunktion genutzt, da sie bei optimalem Parametersatz
an den eingesetzten komplexen Kreiswellenzahlen und Kreisfrequenzen
Nullstellen besitzt. Somit wird der Betrag der Rayleigh-Lamb-Gleichung
nach Gleichung 2.43 in der Form von

+1
th w2 19 2 w2 1.2 w2 19
tan(z Frwp ) . ik \/ " \/ Frr
th w2 1.2 w2 2 2
tan (2*‘ @) k ) (ET(M)Q 2k )

als Kostenfunktion minimiert, sodass dieser fiir alle detektierten Frequenz-
(komplexen) Wellenzahl-Paare méglichst klein (— 0) wird. Mit der Verwen-
dung eines globalen Suchalgorithmus wie der Differential Evolution [SP9T]
werden keine Startwerte benotigt. Als Materialmodell wird zur Schiatzung

(5.8)

€ =
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der Scherkomponenten ein fraktionales Zener-Modell mit

N L (jewre, )™

s— = Cv, (w 5.9
1+ (o)™ T (w) (5.9)
verwendet. Der Parameter d, wird bei der Schatzung der weiteren Para-
meter als fest angenommen, wiahrend die Relaxationszeitkonstante 75, und
die Ableitungsordnung a, variiert werden.

Da der frequenzabhéngige Term 7, (w) im Wesentlichen durch d,, be-
einflusst wird, haben kleine Anderungen von 7, . und a, nur geringen
Einfluss. Bei grofleren Anderungen beider Parameter haben diese trotzdem
Auswirkungen auf den Realteil der komplexen Kreiswellenzahl. Um diesen
jedoch gleich zu behalten, muss der Schermodul angepasst werden.

Daher wird der statische Schermodul wihrend der Variation von 75, und
a, iber

Ch. P

K= 2
Re{y/7 ()}

aktualisiert, wobei als Frequenz die groite in der Identifikation effektiver,
elastischer Parameter beriicksichtigte Frequenz angenommen wird. Um
zudem moglichst unabhéngig von den Kompressionsparametern zu sein,
werden nur die Moden oberhalb der in Abbildung 5.19 eingezeichneten roten
Geraden kp, (w) = w/cp,_, verwendet, da diese Bereiche der Moden nicht
von den Kompressionsparametern beeinflusst werden (vgl. Abschnitt 5.4).

Die Moden-Bereiche unterhalb der roten Geraden in Abbildung 5.19
werden nun fiir die anschlieBende Schétzung der Parameter des Dampfungs-
modells der Kompressionskomponenten genutzt. Diese erfolgt analog zu
denen der Scherkomponente, allerdings nun mit einem nach Kompressions-
und Scherbewegungen aufgeteilten fraktionalem Zener-Modell nach Glei-
chung 3.17. Die bereits zuvor verwendete statische Longitudinalwellen-
geschwindigkeit cr,, sowie die Longitudinalwellengeschwindigkeit cr, aus
der elastischen Identifikation dienen der Schatzung des Zeitkonstanten-
Verhaltnisses, wenn das Modell eine Zerlegung nach Longitdinal- und
Transversalbewegungen nutzt. Bei der hier verwendeten Zerlegung nach
Kompressions- und Scherbewegungen hingegen wird die Longitudinalwel-
lengeschwindigkeit ¢, in Kompressions- und Schereinfliisse zerlegt, sodass
sich aus

(5.10)

o () = Re J Kk (w) + 507 (W) (5.11)

P
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5.5 Startwerte fiir DAdmpfungsparameter
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Abbildung 5.19: Detektierte Moden aus der Messung sowie deren Damp-
fung
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

fiir w — oo

2 _ 4 d
dy = % (5.12)

ergibt. Relaxationszeitkonstante 75, und Ableitungsordnung ax werden
analog zu den Scherkomponenten durch Minimierung des Betrags der
Rayleigh-Lamb-Frequenz-Gleichung geschitzt. Wahrend der Schiatzung
wird der Kompressionsmodul mit den zuvor geschétzten Scherkomponenten
und Gleichung 5.11 durch

(5.13)

K Re{p(ﬁ}iw — 5H (W)}

VK (W)

aktualisiert. [JCH22]

Exemplarische Auswertung einer PEEK-Probe: Am Beispiel einer
PEEK-Probe ergeben sich mit einem Elastizitatsmodul von £ = 4,1 GPa
[CD21; RBOO07] und einer Poissonzahl von v = 0,39 [PPD21] aus der
Literatur sowie der messtechnisch ermittelten Dichte p = 1310kgm 2 die
statischen Schallgeschwindigkeiten

FE (1 — l/) -1
— — 2998 5.14
Jpaw)(l—zu) s G14)
E
=,/———— =1062ms* 5.15
“To 2(1+v)p ms - ( )

sowie der statische Kompressions- und Schermodul

K:L:6,21GPa, =

— 1,48 GPa. 1
T 48 GPa (5.16)

2(1+v)
Aus der Identifikation eines ideal-elastischen Modells nach Kapitel 4 wer-
den ¢ = 2558ms~! und cr, = 1110ms~! bestimmt. Daraus ergibt
sich mit Gleichung 5.7 das Zeitkonstanten-Verhéltnis der Scherkomponen-
te d, = C"Qroo / c%o = 1,09. Minimierung des Betrags der Rayleigh-Lamb-
Gleichung unter Verwendung der Moden oberhalb der roten Geraden in Ab-
bildung 5.19a und der zugehorigen modalen Dampfung liefern 75, = 0,59 ps
und ay, = 1. Der Schermodul bleibt quasi unverandert. Mit dem statischen
Kompressions- und Schermodul sowie den bestimmten Dampfungspara-
metern der Scherkomponenten ergibt sich dx = 1,03 aus Gleichung 5.12.
Die zugehorige Relaxationszeitkonstante 75, = 0,21 ps und Ableitungs-
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5.6 Vergleich verschiedener Optimierungsstrategien

ordnung ax = 1 ergeben sich durch die betragsméfliige Minimierung der
Rayleigh-Lamb-Frequenzgleichung unter Verwendung des Dampfungsmo-
dells nach Gleichung 3.17 und der Moden unterhalb der roten Gerade in
Abbildung 5.19a, wobei der Kompressionsmodul mittels Gleichung 5.13
zu K = 6,23 GPa aktualisiert wird. Damit ergibt sich eine gegeniiber
dem berechneten Literaturwert veranderte statische Longitudinalwellenge-

schwindigkeit von cr,, = 2502ms™".

5.6 Vergleich verschiedener
Optimierungsstrategien

Im folgenden Abschnitt werden verschiedene Optimierungsstrategien zur
Identifikation der Modellparameter eines fraktionalen Zener-Modells basie-
rend auf dem Dampfungsverhalten des Plattenwellenleiters am Beispiel von
Polyetheretherketon (PEEK) verglichen. Wéhrend in Abschnitt 4.10 zur
Identifikation der effektiven, elastischen Materialparameter die gesamte
Dispersionsabbildung der Messdaten genutzt wird, fithrt die Nutzung der
gesamten Dampfungsabbildung zu Problemen, da nicht zwischen Moden
mit einer modalen Dampfung von nahezu null und nicht detektierten bzw.
nicht angeregten Moden unterschieden werden kann. Darum werden die
Frequenz-Wellenzahl-Paare der Moden aus der Dispersionsabbildung, wie
bereits zur Startwertschitzung, mittels Maximumsuche extrahiert. Die zu-
gehorige Dampfung der Moden und somit der Imaginarteil der Wellenzahl
wird der Dampfungsabbildung (vgl. Abbildung 5.6) entnommen.

5.6.1 Aspekte der Optimierung

Die Verwendung des ableitungsfreien BOBYQA (Bound Optimization
BY Quadratic Approximation [Pow09]) als Optimierungsalgorithmus er-
moglicht die Berticksichtigung der physikalischen Parametergrenzen von
0 < ak,ay < 1 und dg,d, > 1, ohne dass Informationen iiber Diffe-
renzierbarkeit der Kostenfunktion notwendig sind. Fir die Kostenfunk-
tion ergeben sich allein aufgrund der Komplexwertigkeit der Wellenzah-
len verschiedene Varianten zur Bestimmung des Parametervektors p =
[K s s Tore> K, To, > Ay, AK, au}, welche im nachfolgenden Abschnitt beschrie-
ben werden.
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Kostenfunktionen

Da in Kapitel 4 eine Optimierung auf den Realteil der Kreiswellenzahl er-
folgt, liegt es nahe hier den Imaginéarteil zu betrachten, sodass zunéachst die
quadratische Differenz der Imaginérteile (Ddmpfung) aller N detektierten
Kreiswellenzahlen aus der Messung kyes und den simulativ berechneten
kem als Kostenfunktion

= [ Tm{Ksim, }

1 N
em = 77 2 1 Tm{Fnres; } 12Uy (wj, ki) (5.17)
=1

verwendet wird. Dabei werden die Betrage der Imaginérteile betrachtet, weil
das Vorzeichen die Ausbreitungsrichtung der Welle angibt. Dieses ist irrele-
vant, da die Abstrahlung der Wellen symmetrisch zur Anregungslinie erfolgt.
Der Faktor U, (wj, k;) entspricht dem Wert der Dispersionsabbildung (vgl.
Abbildung 4.17) an dem entsprechenden Frequenz-Wellenzahl-Paar und
dient der Regularisierung der Optimierung. Frequenz-Wellenzahl-Paare
mit hohen Werten U, (w;, k;) in der vorverarbeiteten Dispersionsabbildung
werden starker berticksichtigt als solche mit niedrigen. Dadurch wird die
Gewichtung falsch detektierter kleiner, lokaler Maxima in der Dispersions-
abbildung in Abbildung 5.19a, die keine Mode reprasentieren, geringer. Auf
den Verlauf der Kostenfunktion hat der Wert der Dispersionsabbildung
Up(wj, k;) als Regularisierungsfaktor dementsprechend kaum Einfluss, wenn
die Moden aus der Dispersionsabbildung leicht extrahiert werden kénnen.
Auch werden, aufgrund der spaltenweisen Normierung in der Vorverarbei-
tung (vgl. Abschnitt 4.6) zur Modendetektion, Moden hoherer Ordnung
nicht weniger gewichtet als Moden niedriger Ordnung, obwohl letztere in
den Rohdaten weitaus hohere Energien und somit héhere Werte |U (wj, k;) |
in der unverarbeiteten Dispersionsabbildung aufweisen. Damit wird die
héhere Sensitivitdt von Moden hoherer Ordnung auf die Materialparameter
nicht aufgehoben.

Alternativ konnen z.B. die Verhéltnisse Im{k}/ Re{k} miteinander ver-
glichen werden, um die Sensitivitat auf bestimmte Parameter z.B. der
Relaxationszeitkonstanten 74, zu erhohen. So ist eine Anderung der Rela-
xationszeitkonstanten 7,, um £5 % aufgrund ihres kleinen absoluten Wer-
tebereichs kaum in den detektierten Moden im niederfrequenten Bereich
bis 1 MHz bemerkbar (vgl. Abbildung 5.15 und 5.19), bei Betrachtung des
Verhéltnisses von Imaginér- zu Realteil jedoch schon (vgl. Abbildung 5.18).
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5.6 Vergleich verschiedener Optimierungsstrategien

In dem Fall dient mit

1 N
V_NZ;

Im{k?sjmi

Re{ ko | (5.18)

Im{k‘MeSi } _
Re{ k'Mesi }

die mittlere quadratische Differenz der Verhéltnisse als Kostenfunktion.
Auf den Wert der Dispersionsabbildung U, (wj, k;) als Faktor in der Kosten-
funktion wie in Gleichung 5.17 wird aufgrund des kleinen Wertebereichs in
Gleichung 5.18 verzichtet. Da alle Wellenzahlen mit Im{k;} > Re{k;} nicht
betrachtet werden (vgl. Gleichung 5.3), ergibt sich ein Wertebereich fiir das
Verhaltnis Im{k;}/ Re{k;} zwischen 0 und 1. Die Werte der verarbeiteten
Dispersionsabbildung U, (w;, k;) liegen aufgrund dessen Normierung eben-
falls im Wertebereich zwischen 0 und 1. Eine Multiplikation beider wiirde
die Werte der Kostenfunktion weiter verkleinern, was zu einer Verringerung
des Gradienten der Kostenfunktion fithren wiirde. Existieren im Bereich
abseits der Moden zu viele detektierte lokale Maxima, kann der Regulari-
sierungsfaktor U}, trotzdem hinzugezogen werden oder der Gradient durch
Multiplikation der Kostenfunktion mit einem Faktor > 1 vergroflert werden.
Aufgrund der Verwendung eines ableitungsfreien Optimierungsalgorithmus
ist dies jedoch nicht notwendig.

Aufteilung des Dispersionsdiagramms

Neben der Verwendung unterschiedlicher Kostenfunktionen kann der be-
trachtete Frequenz- und Wellenzahl-Bereich im Dispersionsdiagramm am
Vorbild der Startwertschiatzung aufgeteilt werden. Wie bereits bei der
Startwertschitzung wird in dem Fall der Bereich oberhalb der Geraden
kL = w/cr, (vgl. Abbildung 5.19a) genutzt, um zunéchst die Scherkompo-
nenten und der Bereich unterhalb dieser Geraden um die Kompressions-
komponenten, zu bestimmen.

Riickrechnung auf die statischen Parameter

Bisher enthélt der Parametervektor p acht Parameter, welche stark mit-
einander verkoppelt sind. Um die Anzahl der Optimierungsparameter
zu reduzieren gibt es zwei Moglichkeiten: Zum einen kann auf a priori
Wissen wie z.B. zusétzliche Messungen mit anderen Messverfahren oder
Literaturdaten zuriickgegriffen werden. Die (ausgewéhlten) Literaturdaten
sind jedoch nur Beispiele fiir Varianten eines Polymers. Die tatsachlichen
Eigenschaften und somit auch die Materialparameter des Polymers han-
gen stark vom jeweiligen Herstellungsprozess ab, was zu einem weiten
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Wertebereich der Materialparameter fithrt. Hinzu kommt zuséatzlich die
Temperaturabhangigkeit der Parameter.

Daher werden Kompressions- und Schermodul iiber die Schallgeschwin-
digkeiten aus der Identifikation des elastischen Modells (vgl. Kapitel 4) mit
Gleichung 5.10 und 5.13 in jedem Iterationsschritt in Abhéngigkeit des ak-
tuellen Parametervektors berechnet. Anders als bei der Startwertschétzung
fir dx und d, wird die angenommene Frequenz der Schallgeschwindigkeiten
L, (w) und c7 (w) nicht als Grenzwert w — oo angenommen, sondern bei
der hochsten in der elastischen Identifikation berticksichtigten Frequenz,
welche am Beispiel der PEEK-Probe f = 2,5 MHz entspricht. Somit ergibt
sich ein reduzierter Parametervektor von p, = {7};}(,dK,7'%,du,aK,au ,
welcher nur die Dampfungsparameter enthalt.

5.6.2 Beschreibung der Optimierungsstrategien

Im Folgenden werden drei unterschiedliche mehrstufige Optimierungsstrate-
gien am Beispiel einer 5,45 mm dicken PEEK-Platte betrachtet. Wéhrend
in Verfahren 1 sowohl Dampfungs- als auch statische Parameter optimiert
werden, nutzen Verfahren 2 und 3 jeweils die Approximation des stati-
schen Kompressions- und Schermoduls wéhrend des Optimierungsprozesses
am Vorbild der Startwertschatzung. Zusatzlich nutzen Verfahren 1 und
3 unterschiedliche Bereiche der Moden aus der Dispersionsabbildung zur
Bestimmung der Scher- und Kompressionsparameter, wihrend Verfahren 2
in jedem Iterationsschritt alle detektierten Moden berticksichtigt.

Verfahren 1: Optimierung ohne Approximation der statischen
Parameter

Aufgrund der vorausgesetzten Annahmen zur Berechnung der statischen
Parameter, ist es wiinschenswert, diese moglichst mit zu optimieren, was
jedoch die Komplexitat erhoht. Daher werden zur Sensitivitatssteigerung
alle Parameter einzeln nacheinander in der in Tabelle 5.5 aufgefiihrten
Reihenfolge optimiert. Als Kostenfunktion zur Bestimmung der Damp-
fungsparameter dient ey nach Gleichung 5.18. Zudem wird das Disper-
sionsdiagramm im betrachteten Frequenzbereich bis 1 MHz entlang der
Geraden kp, (w) = w/c aufgeteilt.

Frequenz-Wellenzahl-Paare mit Re{k} > w/cy,_ werden zur Identifikati-
on der Scherkomponenten, Frequenz-Wellenzahl-Paare mit Re{k} < w/cr,_
zur Identifikation der Kompressionskomponenten genutzt. Da sich die Scher-
komponenten auf alle Moden des Dispersionsdiagramms auswirken (vgl.
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5.6 Vergleich verschiedener Optimierungsstrategien

Abschnitt 4.8 und 5.4), werden diese als Erste bestimmt, wihrend die Kom-
pressionskomponenten abhéngig von den Scherkomponenten nachfolgend
optimiert werden. Auflerdem stellen die Zeitkonstanten-Verhéltnisse d, und
dk die sensitivsten Parameter der modalen Dampfung (vgl. Abbildung 5.14)
dar, weshalb diese zunédchst vor allen anderen Dampfungsparametern opti-
miert werden. Demzufolge ergibt sich aus Abbildung 5.14 bis 5.18 die in
Tabelle 5.5 angegebene Optimierungsreihenfolge.

Tabelle 5.5: Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen und Moden bei Verfahren 1

Schritt | Parameter | Kostenfunktion | Aufteilung Moden
1 dy, ey Re{k} > w/cL.,
2 [ Kapitel 4 -

3 dK €y Re{k;} S W/CLOO
4 K Kapitel 4 -
5 To, ev Re{k} > w/ecL,,
6 a, ey Re{k} > w/cL.,
7 L Kapitel 4 -
8 Tox ey Re{k} <w/ecr,
9 ak ey Re{k} <w/ecr,
10 K Kapitel 4 -

Gleichzeitig sei erwahnt, dass sich zwar die Aufteilung des Dispersi-
onsdiagramms anhand der Geraden ki, (w) = w/ecp auf den Realteil
der Kreiswellenzahl bezieht, die Kostenfunktion nutzt jedoch nach Glei-
chung 5.18 sowohl Imaginar- als auch Realteil der komplexen Kreiswellen-
zahl fiir die Optimierung der Dampfungsparameter. Die Optimierung von
Kompressions- und Schermodul nutzt das Verfahren aus Kapitel 4, welches
ausschlieBlich auf den Realteil der Kreiswellenzahl basiert, jedoch nun
unter Annahme eines komplexen, frequenzabhéngigen Materialmodells.

Die berechnete Dampfung unter Verwendung der bestimmten Material-
parameter aus Tabelle 5.6 ist in Abbildung 5.20 gezeigt.

Abgesehen von der S5-Mode, wird die Dampfung tendenziell unterschétzt.
Somit stimmen zwar insgesamt die modalen Verldufe iiberein, trotzdem
liegt die berechnete Dampfung immer leicht neben der der Messung, sodass
fiir eine genauere Beschreibung weitere Optimierungsschritte notwendig
sind. Anders als bei der Dampfung stimmt der Realteil der berechneten
Kreiswellenzahl mit den Moden aus der Messung in Abbildung 5.21 iiberein.
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Abbildung 5.20: Berechnete Dampfung (rot) unter Verwendung der opti-

malen Materialparameter nach Tabelle 5.6 im Vergleich
zur Dampfung aus der Messung (blau)
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Abbildung 5.21: Berechneter Realteil der Kreiswellenzahlen unter Nutzung
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der bestimmten Materialparameter nach dem letzten Op-
timierungsschritt aus Tabelle 5.6 (rot) im Vergleich zu
den detektierten Moden aus der Messung (weif3)



5.6 Vergleich verschiedener Optimierungsstrategien

Tabelle 5.6: Identifizierte viskoelastische Materialparameter nach schritt-
weiser Optimierung aller Parameter (Verfahren 1)

Optimierungsschritt 7., /ps 7o, /ps  dk dy, ax ay
Startwerte 0,20 0,59 1,034 1,093 1 1
Ergebnis 028 098 1,035 1063 1 1

Optimierungsschritt K / GPa pu / GPa ¢, /ms™! c¢p, / ms™
Startwerte 6,23 1,48 2502 1062
Ergebnis 6,19 1,52 2504 1076

Konvergenz von Verfahren 1 Die Konvergenz der einzelnen Material-
parameter lésst sich Abbildung 5.22 entnehmen. Abbildung 5.22 zeigt die
Optimierungsparameter p; normiert auf deren Startwert p; o im jeweiligen
Iterationsschritt. Aufgrund des kleinen absoluten Werts ergeben sich grofie
relative Anderungen der Relaxationszeitkonstanten Tox und 7g,. Trotz
der grofien relativen Anderungen konvergieren sie ebenso wie die tibri-
gen Parameter ziigig. Gleichzeitig zeigt Abbildung 5.22 die Verkopplung
der Parameter: Nachdem zu Beginn das Zeitkonstanten-Verhéaltnis der
Scherkomponenten d,, verringert wird, wird der Schermodul p entspre-
chend vergroBlert. Gleiches gilt fiir das Zeitkonstanten-Verhéltnis dx und
den Kompressionsmodul K, jedoch fallt hier die resultierende relative
Anderung geringer aus.
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Abbildung 5.22: Konvergenz der Materialparameter bei schrittweiser Opti-
mierung der einzelnen Parameter

Verfahren 2: Optimierung mit Berechnung der statischen Parameter
und ohne Aufteilung des Dispersionsdiagramms

Durch die Berechnung des Scher- und Kompressionsmoduls iiber Glei-
chung 5.10 und 5.13 wéihrend der Optimierung, entfallen diese als Opti-
mierungsparameter, sodass sich der Parametervektor zu
Py = {TGK, dk, T, dy, K, au} vereinfacht. In diesem mehrschrittigen Op-
timierungsverfahren werden im Gegensatz zur Startwertschitzung alle
Moden bis 1 MHz in jedem Optimierungsschritt berticksichtigt. Die nicht
enthaltenden statischen Module ¢ und K werden wéhrend des Optimie-
rungsprozesses unter Annahme der Dampfungsparameter des aktuellen
Optimierungsschritts tiber Gleichung 5.10 und 5.13 berechnet.

Demzufolge werden die Optimierungsschritte in Tabelle 5.7 durchgefiihrt.

Mit Annahme der in Abschnitt 5.5 berechneten Startwerte liefern die
Optimierungsschritte am Beispiel einer 5,45 mm dicken PEEK-Platte den
in Tabelle 5.8 angegebenen Parametersatz. Abbildung 5.23 zeigt die modale
Déampfung aus der Messung sowie die berechnete Dampfung unter Ver-
wendung sowohl der Startwerte als auch der im ersten Schritt optimierten
Parameter nach Tabelle 5.8.

Im Frequenzbereich bis 0,5 MHz zeigt sich eine bessere Ubereinstim-
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5.6 Vergleich verschiedener Optimierungsstrategien

Tabelle 5.7: Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen bei Verfahren 2

Schritt Parameter Kostenfunktion
1 Tox K, Toy, Ay, K, Gy €Im
2 Toy, Ay, Gy €y
3a Tox €y
3b aK €y
4 K, i Kapitel 4

mung zwischen Messung und Simulationsergebnis unter Verwendung der
Startwerte, da dieser Bereich im Wesentlichen von den Scherkomponenten
der Parameter beeinflusst wird. Zur Schatzung der Startwerte der Scher-
parameter wird ausschlieSlich dieser Bereich verwendet. Moden hoéherer
Ordnung mit Re{k} > w/cp_ werden in der Messung nicht detektiert (vgl.
Abbildung 5.19a). Die Dampfung der Moden unterhalb dieser Geraden
ndhern sich nach dem ersten Optimierungsschritt an die Messdaten an.
Die niederfrequenten Moden unter f < 0,5 MHz entfernen sich dadurch
jedoch von der Messung. Wéhrend die Dampfung unter Verwendung der
Startwerte im Bereich f > 0,5 MHz zu grof3 gegeniiber der Messung ist,
ergibt das Simulationsergebnis unter Verwendung der im ersten Schritt
optimierten Materialparameter eine zu geringe Dampfung entlang des ge-
samten Frequenzbereiches. Zuriickzufiihren ist dies im Wesentlichen auf
eine Verminderung des Parameters d,,.

Aufgrund ihres kleinen absoluten Wertebereichs ist eine Anderung der
Relaxationszeit 7, um #5 % im niederfrequenten Bereich bis 1 MHz auf
Basis der detektierten Moden kaum bemerkbar (vgl. Abbildung 5.15 und
5.19), bei Betrachtung des Verhéltnisses von Imaginér- zu Realteil jedoch
schon (vgl. Abbildung 5.18). Da die Dampfungsparameter untereinander
verkoppelt sind, werden im zweiten Schritt nur die Scherkomponenten
mit dem Parametervektor p, :ﬂ[ﬂ,u, dy, au} variiert. Als Kostenfunktion
dient mit ey die quadratische Differenz des Verhaltnisses von Imaginér- zu
Realteil gemafl Gleichung 5.18.

Abbildung 5.24 zeigt die akustische Dampfung unter Verwendung der
Déampfungsparameter mit den aktualisierten Scherparametern nach dem
zweiten Optimierungsschritt aus Tabelle 5.8 im Vergleich zum Ergebnis
des vorherigen Optimierungsschritts sowie den Messdaten. Es zeigt sich
eine bessere Anndherung an die Messdaten. Der niederfrequente Bereich
bis f = 0,5 MHz wird wesentlich besser représentiert als nach dem ersten
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Abbildung 5.23: Dédmpfung aus Messung (blau), Simulation unter Ver-
wendung der Startwerte (schwarz) bzw. der bestimmten
Parameter im ersten Iterationsschritt nach Tabelle 5.8
(rot)

Optimierungsschritt. Hier nahert sich das Ergebnis dem der Startwerte
an. Dies ergibt Sinn, da dieser Bereich sensitiv auf die Parameter der
Scherkomponenten ist, jedoch kaum auf die der Kompressionskomponenten.
Die dargestellten Moden hoherer Ordnung sind ebenfalls sensitiv auf die
Parameter der Scherkomponenten (vgl. Abschnitt 5.4) und wurden in
diesem Optimierungsschritt mit berticksichtigt. Diese ndhern sich weiter
der Messung. Bei einigen wenigen Moden zeigt sich jedoch auch eine
Uberanpassung, sodass die unterschéitzte Dampfung nach dem vorherigen
Optimierungsschritt nun zu einer Uberschitzung der Dampfung fiihrt.

Folglich ergibt sich als nachster Optimierungsschritt eine weitere Op-
timierung der Kompressionsparameter. Da der Parameter dx einen sehr
groflen Einfluss sowohl auf die Dampfung als auch auf die Riickrechnung
der statischen Materialparameter hat, fithren bereits kleine Parameterva-
riationen zu grofien Anderungen der Dampfung. Daher werden im nichsten,
dritten Schritt nur die Parameter 75, und ax nacheinander variiert, sodass
sich dieser Schritt in zwei Einzeloptimierungen unterteilt. Die Dampfung,
berechnet unter Annahme der Materialparameter nach diesem bzw. diesen
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Abbildung 5.24: Dédmpfung nach Optimierung der Scherparamter (rot),
Kostenfunktion nach Gleichung 5.18 im Vergleich zum
vorherigen Optimierungssschritt (schwarz) und der Damp-
fung aus der Messung (blau)

beiden Schritten (vgl. Tabelle 5.8), ist im Vergleich zum vorherigen Schritt
und der Messung in Abbildung 5.25 abgebildet. Wéahrend der niederfre-
quente Bereich erwartungsgeméafl unverdndert bleibt, verringert sich die
Dampfung im hoherfrequenten Bereich. Im Fall z.B. der S5- und A7-Mode
fithrt dies zu einer besseren Ubereinstimmung mit den Messdaten, wihrend
es gleichzeitig z.B. bei der A4-, S6- und A7-Mode zu einer leicht hoheren
Abweichung von den Messdaten fiihrt.

Da der statische Scher- und Kompressionsmodul, 4 und K, wahrend
der Optimierung mittels Gleichung 5.10 und 5.13 am Beispiel PEEK fiir
2,5 MHz berechnet worden sind, wird am Ende eine Optimierung des stati-
schen Kompressions- und Schermoduls, wie in Kapitel 4 unter Annahme
des viskoelastischen Modells mit den bestimmten Dampfungsparametern,
durchgefiihrt. Aufgrund des angenommenen frequenzabhangigen Materialm-
odells werden dafiir die komplexen Kreiswellenzahlen k (w) in Abhéngigkeit
der Kreisfrequenzen berechnet. Aufgrund der geringen Parameterdnderun-
gen (vgl. Tabelle 5.8) ruft dieser Schritt keine wesentlichen Anderungen
in der Dampfung hervor. Die Ubereinstimmung zwischen berechnetem
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Abbildung 5.25: Dampfung nach Optimierung von 75, und ax, Kosten-
funktion nach Gleichung 5.18

Dispersionsdiagramm unter Annahme der optimierten viskoelastischen
Materialparameter und der Dispersionsabbildung aus der Messung ist in
Abbildung 5.27 dargestellt. Die zugehorige Dampfung bzw. der Imaginér-
teil der Kreiswellenzahlen ist in Abbildung 5.26 dargestellt, welche gute
Ubereinstimmungen zwischen Messung und Simulation zeigt.
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5.6 Vergleich verschiedener Optimierungsstrategien

Tabelle 5.8: Mittels Verfahren 2 identifizierte viskoelastische Materialpara-

meter
Optimierungsschritt 75, / ps 75, /s dx d, ag  ay
Startwerte 0,2 0,59 1,034 1,093 1 1
Schritt 1 0,19 0,60 1,029 1,022 0,96 1
Schritt 2 ; 0,61 - 1,068 - 098
Schritt 3 0,19 - - - 0,88 -
Optimierungsschritt K / GPa pu / GPa ¢, /ms™! c¢p, / ms™!
Startwerte 6,23 1,48 2502 1062
Schritt 1 6,26 1,58 2527 1098
Schritt 2 & 3 6,27 1,51 2516 1075
Schritt 4 6,25 1,52 2515 1078
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Abbildung 5.26: Dampfung unter Nutzung der identifizierten Materialpa-
rameter nach dem letzten Optimierungsschritt aus Tabel-
le 5.8 (rot) sowie Dampfung aus der Messung (blau)
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Kreiswellenzahl |Re (k)| / mm™!
[\)

0 02040608 1 121416 1,8 2
Frequenz f / MHz

Abbildung 5.27: Realteil der Kreiswellenzahlen unter Nutzung der be-
stimmten Materialparameter nach dem letzten Optimie-
rungsschritt aus Tabelle 5.8 (rot), detektierte Moden aus
der Messung (weif})

Konvergenz: Die relative Anderung der Dampfungsparameter dieses
Optimierungsverfahrens ist in Abbildung 5.28 dargestellt. Dort zeigt sich
bereits im ersten Schritt aufgrund der Verkopplung der Parameter, dass
eine relative Anderung der Relaxationszeitkonstanten T, und 75, immer
eine Veranderung der Verhaltnisse der Zeitkonstanten dx und d,,, oder
umgekehrt, und im Fall der Scherkomponenten ebenfalls eine Anderung
der fraktionalen Ableitungsordnung a, nach sich zieht.
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Abbildung 5.28: Konvergenz der Dampfungsparameter wihrend Optimie-
rungsverfahren 2 (p;o entspricht in jedem Schritt den
Startwerten aus Tabelle 5.8)
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Verfahren 3: Optimierung mit Berechnung der statischen Parameter
und mit Segmentierung des Dispersionsdiagramms

Zusatzlich zur Verwendung unterschiedlicher Kostenfunktionen, wird der
Frequenzbereich am Vorbild der Startwertschéitzung aufgeteilt. Wie bereits
bei der Startwertschéitzung wird der Bereich oberhalb der Geraden ki, =
w/ecr,, (vgl. Abbildung 5.19a) genutzt, um zunéchst die Scherkomponenten,
der Bereich unterhalb dieser Geraden um die Kompressionskomponenten,
zu bestimmen. Der erste Optimierungsschritt aus Verfahren 2 mit der
Kostenfunktion ep,, nach Gleichung 5.17 und der Beriticksichtigung aller
aus der Messung extrahierter Moden, wird beibehalten, da dies zu besseren
Ubereinstimmungen nach den darauffolgenden Schritten fithrt. Demnach
ergeben sich die Optimierungsschritte in Tabelle 5.9.

Tabelle 5.9: Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen und Moden bei Verfahren 3

Schritt Parameter Kostenfunktion berticksichtigte
Moden
1 Tois Ak Tow dy, ax;, ay €Im alle
2 Tows Ay, Ay ev Re{k} > w/cr.,
3 Tox» AK, OK ey Re{k} <w/er,
4 K, p Kapitel 4 alle

Wie bereits im vorherigen Verfahren 2 werden die statischen Materi-
alparameter K und p tiber Gleichung 5.10 und Gleichung 5.13 in allen
Optimierungsschritten in Abhéngigkeit des aktuellen Parametervektors
berechnet.

Abbildung 5.29 zeigt die Dampfung unter Verwendung der bestimmten
Materialparameter aus Tabelle 5.10 nach dem letzten Optimierungsschritt.
Dort wird eine Unterschatzung der Dampfung unter Verwendung der opti-
mierten Materialparameter im Frequenzbereich von 0,5 MHz bis 0,7 MHz
sichtbar. Im héherfrequenten Bereich ab 0,7 MHz erscheint die berechnete
Dampfung gegeniiber der Messung entlang der Frequenzachse leicht ver-
schoben, was auf eine Diskrepanz des Kompressionsmoduls K hindeutet
(vgl. Abbildung 5.14).

Bei Betrachtung der Déampfungsparameter in Tabelle 5.10 fallt auf, dass
die Relaxationszeitkonstante 7, im Vergleich zu den Startwerten und der
Optimierung aus den vorherigen Abschnitten um mehr als das vierfache
erhoht ist. Gleichzeitig wird die Ableitungsordnung a, geringer, die in dem
Optimierungsprozess aus den vorherigen Abschnitten unangetastet blieb.
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5.6 Vergleich verschiedener Optimierungsstrategien

Tabelle 5.10: Mittels Verfahren 3 identifizierte viskoelastische Materialpa-

rameter
Optimierungsschritt 75, /ps 75, /s dx dy, aK  ay
Startwerte 0,2 0,091 1,034 1,093 1 1
Schritt 1 0,19 0,599 1,029 1,022 0,96 1
Schritt 2 - 2,64 - 1,13 - 0,87
Schritt 3 0,21 - 1,034 - 0,96 -
Optimierungsschritt K / GPa pu / GPa ¢, /ms™! c¢p, / ms™!
Startwerte 6,23 1,48 2502 1062
Schritt 1 6,26 1,58 2527 1098
Schritt 2 6,27 1,43 2498 1046
Schritt 3 6,23 1,43 2492 1043
Schritt 4 6,23 1,43 2492 1045
100 :
80 ;
o i A
g ;."' : :‘ ° * ;‘_'.-\‘
~ i .. : < { A Iy
z ¥ PR SPRLS R G
o0 SRR IR \a,
o0 3 : R T
Lol 1 VRN
Q, 15 i O \ b \
= ST YR\ Y. i
%= g Yt & o
D .g','- - ° *
I I I

T T T
04 06 08 1 12 14
Frequenz f / MHz

Abbildung 5.29: Dampfung unter Nutzung der resultierenden Materialpa-
rameter nach dem letzten Optimierungsschritt aus Tabel-
le 5.10 und Dampfung aus der Messung (blau)
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Kreiswellenzahl |Re (k)| / mm™!
[\)

0 02040608 1 121416 1,8 2
Frequenz f / MHz

Abbildung 5.30: Realteil der Kreiswellenzahlen unter Nutzung der be-
stimmten Materialparameter nach dem letzten Optimie-
rungsschritt aus Tabelle 5.10 und detektierte Moden aus
der Messung (weif)

Ebenso erhoht sich der Parameter d,,, welcher einen grofien Einfluss auf
das Dispersionsdiagramm und die Dampfung hat (vgl. Abbildung 5.14).
Dementsprechend fiihrt bereits eine Anderung in der ersten Nachkommas-
telle des Parameters d,, zu grofen Anderungen der modalen Dampfung.
Eine Vergroflerung von 74, fiihrt zu einer geringeren Dampfung der Moden
(Abbildung 5.15), eine Verringerung der Ableitungsordnung a, fithrt eben-
falls zu einer Verringerung der Démpfung (Abbildung 5.15), sodass sich
beide Effekte verstarken und zu einer Unterschatzung der Dampfung fiihren,
obwohl die gleichzeitige Erhohung des Parameters d, dem entgegen wirkt.
In dem Parameter d,, selbst wirkt sich die Erhohung aufgrund des Werte-
bereichs und der groflen Sensitivitit der Kostenfunktion auf diesen nur in
den Nachkommastellen aus. Zusammenfassend bewirkt die Anderung der
Relaxationszeitkonstanten 7, eine Verschiebung des Arbeitspunkts bzw.
des Maximums des Verlustfaktors des fraktionalen Zener-Modells bezogen
auf die Scherkomponenten zu kleinen Frequenzen (vgl. Abbildung 3.4).
Dies ergibt sich durch die ausschlieiliche Betrachtung niederfrequenter
Moden mit Re{k} > w/cr zur Bestimmung der Ddmpfungsparameter
der Scherkomponenten, da in diesem Wellenzahl-Bereich Moden hoéherer
Ordnung in der Messung nicht detektiert werden. Da dies aufgrund der
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Abbildung 5.31: Konvergenz des zweiten und dritten Optimierungsschritts.
Die Konvergenz des ersten Optimierungsschritts ist Ab-
bildung 5.28a zu entnehmen.

Parametrisierung des Modells zu einer geringen Dampfung fithrt (vgl. Ab-
bildung 3.3), gleichen die Erhéhung des Zeitkonstanten-Verhéltnisses d,,
und der fraktionalen Ableitungsordnung a, diesen Effekt aus.

Konvergenz: Wihrend der erste Optimierungsschritt identisch zum vor-
herigen Abschnitt ist (vgl. Abbildung 5.28a), zeigt Abbildung 5.31 die
Konvergenz der nachfolgenden Schritte. Obwohl die Relaxationszeitkonstan-
te 75, gegen einen vierfach hoheren Wert gegentiber ihrem Startwert strebt,
andern sich d, und a, vergleichsweise gering. Diese variieren aufgrund
ihrer Verkopplung miteinander in den jeweils gleichen Iterationsschritten,
jedoch unabhéngig von 75, . Ahnliches zeigt sich in dem darauffolgenden
Schritt bei den Kompressionsparametern. Sobald ein Parameter variiert
wird, folgen die anderen Parameter im ahnlichen oder entgegen gesetzten
MaB in den nachfolgenden Schritten. Aufgrund dieser starken Kopplung ist
es kaum moglich Optimierungen einzelner Parameter durchzufithren, ohne
die Anderungen der iibrigen. Das fiihrt moglicherweise zu uneindeutigen
Materialparametersitzen. Um die Eindeutigkeit zu erhéhen bzw. zu ge-
wahrleisten ist es entweder notwendig den zu betrachteten Frequenzbereich
zu erhohen oder die Anzahl der zu bestimmenden Modellparameter zu
verringern.
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Tabelle 5.11: Zusammenfassung aller identifizierten viskoelastischen Mate-
rialparameter fiir PEEK

Tox /1S To, /M8 dx  dy  ax  ay
Startwerte 0,2 0,59 1,034 1,093 1 1
Verfahren 1 0,28 0,98 1,035 1,063 1 1
Verfahren 2 0,19 0,61 1,029 1,068 0,88 0,98
Verfahren 3 0,21 2,64 1,034 1,13 0,96 0,87

Optimierungsschritt K / GPa pu / GPa ¢, /ms™' c¢p, / ms™!

Startwerte 6,23 1,48 2502 1062
Verfahren 1 6,19 1,52 2504 1076
Verfahren 2 6,25 1,52 2515 1078
Verfahren 3 6,23 1,43 2492 1045

5.6.3 Vergleich der Optimierungsergebnisse

Zum Vergleich sind die identifizierten Parameter in Tabelle 5.11 zusam-
mengefasst. Auffillig ist, dass sich die Ableitungsordnungen im ersten
Verfahren gegeniiber den Startwerten nicht verandern. Gleichzeitig ergibt
sich bei allen Verfahren, insbesondere bei denen, die eine Segmentierung
des betrachteten Dispersionsdiagramms nutzen, ein Anstieg der Relaxati-
onszeitkonstante 7, bei Verfahren 3 sogar um mehr als den vierfachen
Wert. Dies lasst sich durch die Segmentierung des Dispersionsdiagramms
erklaren: Da kaum Moden héherer Ordnung mit Re{k} > w/cp_ in der
Messung detektiert werden, beschréankt sich der berticksichtigte Frequenz-
bereich bei der Optimierung der Scherkomponenten auf unter 0,6 MHz,
sodass bei der Optimierungsstrategie 1 und 3 der Arbeitspunkt zu sehr
kleinen Frequenzen f =1/ (ZW\/m) =1/ (27’(7'%di/ (za“)) verschoben
wird. Die statischen Parameter in Tabelle 5.11 werden mafigeblich durch die
Zeitkonstanten-Verhéaltnisse d beeinflusst. Erhohen sich diese, verringern
sich die entsprechenden statischen Moduln K und pu.

Fiir eine Transversalwelle werden Schallgeschwindigkeit und Absorption
nach Gleichung 3.7 und 3.8 tiber

cr = o, Re{ o (w)} (5.19)
o, = _cho Im{ ” (w)_l} (5.20)

direkt berechnet. Zur Berechnung der Schallgeschwindigkeit und Absorpti-

164



5.6 Vergleich verschiedener Optimierungsstrategien

1400 A
T, 1300 - L 407
% 1200 e -
~ P 20 - T
11004 S 0 /s )
I T T T T T
' 105 10° 10t 100 10°
Frequenz f / Hz Frequenz f / Hz
30 A
~ 2540 / -
' !
; ‘ g 20
5 2520 1 2
A =10
¥ 2500 ° —
0 | .
T T T T T T
10t 10 10° 100 10° 10
Frequenz f / Hz Frequenz f / Hz

Abbildung 5.32: Frequenzabhéngige Schallgeschwindigkeit und Absorption
unter Annahme der Optimierungsergebnisse von PEEK
aus Tabelle 5.11, Startwerte (schwarz), Verfahren 1 (rot),
Verfahren 2 (orange), Verfahren 3 (griin)

on einer Longitudinalwelle wird der Dampfungsterm der Longitudinalwelle
7L (w) aus den Dampfungstermen der Kompressions- und Scherkomponen-
ten yk (w) und 7y, (w) bestimmt:

_ Kok + 50

5.21
K+ 3p (5.21)

L

Damit konnen analog zu den Gleichungen 5.19 und 5.20 Schallgeschwin-
digkeit und Absorption einer Longitudinalwelle berechnet werden. Sowohl
die frequenzabhangige Schallgeschwindigkeit als auch die Absorption einer
Longitudinal- und Transversalwelle sind fiir die Optimierungsergebnisse
der drei Verfahren aus Tabelle 5.11 in Abbildung 5.32 dargestellt.

Die zuvor genannte Verschiebung des Arbeitspunktes durch die grofie
Relaxationszeitkonstante in Verfahren 3 wird bei der Transversalwellenge-
schwindigkeit in Abbildung 5.32 deutlich, da dort der lineare Bereich zu
tieferen Frequenzen verschoben ist.
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Da die genaue Messfrequenz der effektiven Schallgeschwindigkeiten cr,_
und cr_ aufgrund der breitbandigen Messung nicht bekannt ist, wird die
maximale, in der Identifikation der effektiven, elastischen Schallgeschwin-
digkeiten beriicksichtigte Frequenz als Messfrequenz der Schallgeschwindig-
keiten angenommen, um wéhrend der Optimierung in Verfahren 2 und 3 die
statischen Schallgeschwindigkeiten bzw. Kompressions- und Schermodul
zu berechnen. Die Annahme der grofiten Frequenz bei der Bestimmung der
effektiven, elastischen Schallgeschwindigkeiten als Messfrequenz setzt fiir
eine gelingende Bestimmung viskoelastischer Materialparameter voraus,
dass die effektiven, elastischen Schallgeschwindigkeiten, den Endwerten
der frequenzabhéngigen Schallgeschwindigkeiten, wie sie in Abbildung 3.1
bis 3.3 bei hohen Frequenzen ab 1 MHz zu sehen sind, entsprechen.

Andernfalls hat die Annahme der Messfrequenz im mittleren, Segment in
Tabelle 3.1 einen grofien Einfluss auf die anzunehmenden Schallgeschwin-
digkeiten, da diese mit der Frequenz linear steigen und es somit zu grofien
Abweichungen kommt.

Im dritten Segment nach Tabelle 3.1 hingegen ergibt sich fiir diesen
Bereich z.B. eine Transversalwellengeschwindigkeit von cr (w — 00) =

cryy/dy, welche mit er, = e, /\/d, gerade der Naherung fir f — oo
entspricht (vgl. Tabelle 3.1). Fiir eine als bekannt angenommene Frequenz

entspricht diese Rechnung gerade ¢, = cr (w) / Re{ o (w)}, womit in
den Verfahren 2 und 3 die statische Transversalwellengeschwindigkeit und
auch analog der statische Schermodul mit 1 = pioo/ Re{7, (w)} und stati-
sche Kompressionsmodul mit K = K/ Re{vk (w)} berechnet werden. Als
Scher- und Kompressionsmodul i, und K, fiir w — oo wird jeweils der in
der ideal-elastischen Identifikation in Kapitel 4 identifizierte Kompressions-
und Schermodul, welcher sich jeweils unter Annahme eines ideal-elastischen
Materialmodells aus den effektiven, elastischen Schallgeschwindigkeiten
berechnen lasst, angenommen.

Diese Annahme sehr kleiner Anderungen der Schallgeschwindigkeiten
lasst sich in Abbildung 5.32 ablesen. Dort dndern sich die Schallgeschwin-
digkeiten ab einer Frequenz von 1 MHz nur geringfiigig.

Die leicht besseren Ubereinstimmungen der modalen Dampfung unter Be-
riicksichtigung der viskoelastischen Materialparameter aus Verfahren 2 und
3 gegeniiber Verfahren 1 (vgl. Abbildung 5.20, 5.26 und 5.29) scheinen diese
Annahmen zur Berechnung der statischen Parameter zur Vereinfachung
des Optimierungsproblems zu bestatigen.

Dies ist jedoch nur eine Annahme, die moglicherweise fur PEEK im
betrachteten Frequenzbereich giiltig ist, jedoch nicht fiir andere Polymere
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im gleichen Frequenzbereich gelten muss.

Zur Vermeidung dieser Annahme und gleichzeitig guten Ubereinstimmun-
gen zwischen berechneter Dédmpfung sowohl aus der Messung als auch dem
Simulationsmodell konnten z.B. ergdnzende Schallgeschwindigkeitsmessun-
gen bei einer bestimmten Frequenz, eine Dynamisch-Mechanische-Analyse
oder gar eine Bestimmung der statischen Parameter aus mechanischen
Messungen (bei zerstérenden Verfahren z.B. an Proben aus der selben
Charge) dienen. Somit kénnten die statischen Parameter als bekannt vor-
ausgesetzt werden, sodass diese weder optimiert noch iiber zusatzliche
Annahmen (Annahme kleiner Anderungen der Schallgeschwindigkeit vgl.
Unterabschnitt 3.3.1) berechnet werden missten.

Gleichzeitig dndern sich die Schallgeschwindigkeiten aus Verfahren 1
ebenfalls nur geringfiigig in Abbildung 5.32, obwohl die zuvor genannte
Annahme dort nicht getroffen wurde.

Insgesamt zeigt Abbildung 5.32 deutlich groflere Abweichungen der je-
weiligen Schallgeschwindigkeit und Absorption unter Freiraumbedingungen
als die Validierungen der modalen Dampfung in Abbildung 5.20, 5.26 und
5.29 vermuten lassen. Dies lasst darauf schlielen, dass die untersuchten
Moden nicht ausreichen, um die Modellparameter eindeutig zu identifizie-
ren. Demzufolge muss entweder das Dampfungsmodell vereinfacht werden
oder der untersuchte Frequenzbereich deutlich vergrofiert werden.

5.7 Plausibilitatspriifung der Ergebnisse im
Transmissionsmessverfahren

Zur Plausibilitatspriifung werden simulierte Zeitsignale unter Annahme der
identifizierten, viskoelastischen Materialparameter mit Messungen an einem
Transmissionsmessplatz nach [Raul2; Baul6] verglichen. Der prinzipielle
Aufbau ist in Abbildung 5.33 dargestellt. Uber den Sendeschallwandler wird
das verstarkte Sendesignal in die zylinderférmige Probe eingekoppelt. Nach
Passieren der Probe wird die Ultraschallwelle vom Empfangsschallwandler
empfangen. Das anschliefend verstiarkte Empfangssignal wird von einem
Handyscope HS5 [TP21] aufgenommen.

Unter Annahme eines linearen, zeitinvarianten Systems wird jede Kompo-
nente im System in Abbildung 5.34 tiber ihre Impulsantwort g (¢) charakte-
risiert. Wihrend das Ubertragungsverhalten der Verstiarker durch Messung
des Ausgangs- und Eingangsverhaltens bestimmt wird, basieren die Impul-
santworten der Schallwandler auf Impedanzmessungen und anschlieBender
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Empfanger

Probe

Sender

Abbildung 5.33: Aufbau des Transmissionsmessplatzes [Baul6]

in,Mes Sendeverstarker Sender R Probe
gsv (1) gsw (t) T gp(®)

Signalgenerator

Uout, Mes | Empfangsverstérker | | Empfanger |
gev (1) gew (1)

Oszilloskop

AN

Abbildung 5.34: Blockschaltbild des Messsystems
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Abbildung 5.35: Normiertes Sendesignal

Identifikation eines Mason-Modells [Mas64]. Somit wird mit bekannten
Modellparametern die Ubertragungsfunktion berechnet. Die akustischen
Koppelschichten werden mittels Siebdruck so diinn aufgetragen, dass ihr
Einfluss minimiert wird. Das Empfangssignal am Oszilloskop out ves (t)
ergibt sich nach Abbildung 5.34 aus dem Sendesignal i, pes (t) Tiber

Uout Mes (1) = UinMes () % gp (£) * [gsv (t) * gsw (t) * guw (£) guv (t)] . (5.22)

9gSystem

Die Probe wird im Vorwértsmodell, basierend auf einem halbanalytischen
FEM-Modell [IGD21], mit dem Sendesignal

Uin,Sim (t) = Uin,Mes (t) * gSystem <t> (523)

angeregt, um das Empfangssignal o sim (£) zu pradizieren. Als Anre-
gungssignal ui, ves Wird ein mit einer Sinusfunktion modulierter Gaufipuls
mit einer Mittenfrequenz von f = 1 MHz genutzt. Das aus Gleichung 5.23
resultierende Eingangssignal fiir die Simulation w;, gin, ist in Abbildung 5.35
dargestellt. Wird das Signal durch eine hohlzylindrische PEEK-Probe
(Lange 17,8 mm, Innendurchmesser 6,03 mm, Auflendurchmesser 19,08 mm)
transmittiert, wird das in Abbildung 5.36 blau abgebildete Signal gemessen.
[JCF22] Die andersfarbigen, gestrichelten Signalverlaufe in Abbildung 5.36
entsprechen den simulierten Empfangssignalen unter Annahme der zuvor
identifizierten viskoelastischen Materialparameter. Dort zeigen sich gleiche
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Abbildung 5.36: Mess- und Simulationssignale unter Annahme der identi-
fizierten viskoelastischen Materialparameter: Messsignal
(blau), identifizierte Parameter nach Verfahren 1 (rot),
identifizierte Parameter nach Verfahren 2 (orange), iden-
tifizierte Parameter nach Verfahren 3 (griin)

Zeitpunkte des Auftretens aller Extrema sowohl der Simulationssignale
als auch des Messsignals und somit tibereinstimmende Laufzeit bzw. ef-
fektive Schallgeschwindigkeiten zwischen allen Simulationssignalen und
Messsignal.

Wurde bei der Bestimmung der Materialparameter der betrachtete
Frequenz-Wellenzah-Bereich fiir die Optimierung wie in Verfahren 1 und
3 aufgeteilt, ergeben sich zu Beginn des hinteren Wellenpakets ab 15 ps
in Abbildung 5.36 betragsmafig leicht hohere Extremwerte in den Si-
gnalen, was auf eine kleinere Absorption der Transversalwelle bzw. der
Scherbewegungen (vgl. Abbildung 5.32) gegentiber der Messung schlieflen
lasst.

Der Verzicht auf die Aufteilung des Frequenz-/Wellenzahlbereichs bei
Verfahren 2 fithrt zu einer leicht grofferen Annédherung an das Messsignal
bei den zuvor genannten Stellen, die jedoch ab 16 s wieder abnimmt.
Dies legt nahe, dass es insgesamt sinnvoll ist, moglichst alle Moden in der
Optimierung zu berticksichtigen. Im ersten Wellenpaket zwischen 9 s und
13 ps stimmen alle drei Simulationssignale iiberein. Daher lasst sich zusam-
menfassen, dass bezogen auf das Zeitsignal alle drei Optimierungsvarianten
dhnliche Ergebnisse liefern. Die Unterschiede in den Materialparameter-
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sitzen der Verfahren untereinander sind im Zeitsignal kaum erkennbar.
Demzufolge ist es grundsatzlich unerheblich welche Optimierungsstrategie
tatséchlich genutzt wird.

Im globalen Minimum bei 10,8 ps sind alle Simulationssignale identisch
zum Messsignal. An den anderen Extrema im ersten Wellenpaket wird
die Messung von allen Simulationssignalen leicht iiber- bzw. unterschatzt.
Dies ist insgesamt nicht verwunderlich, denn zwar handelt es sich bei
der Zylinderprobe um das gleiche Grundmaterial (PEEK) wie die zuvor
untersuchte Platte, jedoch haben beide Proben einerseits unterschiedliche
Herstellungsprozesse erfahren, andererseits unterscheiden sich bereits die
Datenblatter beider Materialproben geringfiigig beim Elastizitdtsmodul.
Das Material der Zylinderprobe ist unter dem Handelsnamen Ketron 1000
bekannt [Baul6] und weist lauf Datenblatt [Qua] einen Elastizitdtsmodul
von F = 4,3 GPa auf, wiahrend sich das Datenblatt der plattenférmigen
Probe [Gmb] mit 4,4 GPa bereits geringfiigig unterscheidet. Aufgrund der
Verkopplung der statischen Parameter mit den Dampfungsparametern
sind daher ebenfalls Unterschiede bei den Dampfungsparametern zwischen

plattenférmiger und zylinderféormiger Probe zu erwarten, was bereits zu
Abweichungen bei den Zeitsignalen beider PEEK-Werkstoffe fiihrt.

5.8 Anwendung des Verfahrens auf Polyamid 6

Zur Schitzung von Startwerten viskoelastischer Parameter von PA6 nach
Abschnitt 5.5 wird ein Elastizitdtsmodul von E = 3,5 GPa [Pol] und ei-
ne Poissonzahl von v = 0,38 [MC] zugrunde gelegt. Nach Schitzung der
Startwerte fiir ein fraktionales Zener-Modell werden mithilfe von Optimie-
rungsverfahren 2 (vgl. Unterabschnitt 5.6.2) Modellparameter einer 8,8 mm
dicken PA6-Platte bestimmt. Sowohl Startwerte als auch die resultierenden
Parameter sind in Tabelle 5.12 angegeben.

Basierend auf den optimierten, statischen Parametern aus Tabelle 5.12
ergibt sich ein statischer Elastizitdtsmodul von £ = 3,2 GPa, welcher in
den in [Lap12] angegebenen Bereich von E = 1,5 GPa bis E = 3,2 GPa fillt
und eine Poissonzahl von v = 0,4, die ebenfalls mit dem in der Literatur
angegebenen Wertebereich tibereinstimmt. So geben z.B. Cerjak und Haider
[CH] einen Wertebereich fiir die Poissonzahl von v = 0,38 bis 0,42 an.

Wihrend Abbildung 5.38 gute Ubereinstimmungen zwischen Messung
und Simulation zeigt, stimmt die Dampfung aus Messung und Simulation
in Abbildung 5.37 nur fiir den niederfrequenten Bereich iiberein. Da die
Moden im niederfrequenten Bereich oberhalb von ky, (w) = w/cr, liegen,
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Abbildung 5.37: Dampfung aus der Messung an PA6 (blau) und der Dadmp-
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fung berechnet unter Verwendung der identifizierten Ma-
terialparameter in Tabelle 5.12 (rot)
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Abbildung 5.38: Dispersionsabbildung der Messung an PA6, daraus extra-
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5.8 Anwendung des Verfahrens auf Polyamid 6

Tabelle 5.12: Zusammenfassung der identifizierten viskoelastischen Materi-
alparameter fiir PA6

Tow / BS To, /1S dk dy, ax a,
Startwerte 010 092 1304 1,066 099 0,99
Ergebnis 1,37 0,95 1,141 1,224 1,0 0,96
Optimierungsschritt K / GPa pu / GPa ¢, /ms™! c¢p, / ms™
Startwerte 5,14 1,27 2502 1062
Ergebnis 5,48 1,14 2504 1076

lasst dies auf eine hinreichend gute Schétzung der Dampfungsparameter
der Scherkomponenten und damit der Absorption der Transversalwelle in
Abbildung 5.39 schlieflen.

Zudem nimmt die Qualitdt der Moden-Extraktion in Abbildung 5.38
mit steigender Frequenz ab. Gleichzeitig unterliegen die Werte fiir die aus
der Messung extrahierten Dampfung einer zunehmend mit der Frequenz
steigenden Streuung, was die optische Erkennung von modalen Verlaufen,
wie sie in der Simulation zu sehen ist, erschwert und somit die Bestimmung
der Modellparameter unsicher werden lasst. Daher sind hier insbesondere
in Abbildung 5.37 alle simulativ berechneten Moden mit dargestellt, um
die Dampfungskurven aus der Simulation erkennen zu koénnen. In den
entsprechenden Abbildungen zuvor in diesem Kapitel wurden hingegen
nur die simulativ berechneten Moden mit dargestellt, die auch in der
Optimierung berticksichtigt wurden.

Die aus den Parametersitzen aus Tabelle 5.12 berechneten Verlaufe
der Ausbreitungsgeschwindigkeit sowie der Dampfung von Longitudinal-
und Transversalwelle sind in Abbildung 5.39 dargestellt. Dabei fillt auf,
dass bei PA6 die Absorption ap, kleiner gegeniiber der Absorption der
Longitudinalwelle ap, bei PEEK (vgl. Abbildung 5.32) ist, wahrend ag,,
berechnet mit den Startwerten bei PA6 noch deutlich dariiber liegt.

Die berechnete Absorption der Transversalwelle ap, in Abbildung 5.39
unter Nutzung der optimierten Parameter aus Tabelle 5.12 ist hingegen
grofler geworden gegeniiber der Absorption unter Nutzung der Startwer-
te. Dabei liegt erstere im gleichen Wertebereich wie die entsprechende
Absorption ap, von PEEK.

Beides ist verwunderlich, da PEEK im Vergleich zu PA6 als schwach
absorbierender Kunststoff gilt. Auch der direkte Vergleich der Dispersions-
abbildungen spricht fiir eine hohere modale Démpfung bei PA6. Zusétzlich
stimmen modale Dampfung aus Simulation und Messung in Abbildung 5.37
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Abbildung 5.39: Frequenzabhéngige Schallgeschwindigkeit und Absorption
unter Annahme des Optimierungsergebnisses von PA6 aus
Tabelle 5.12 (blau) sowie der Startwerte (schwarz)

nur bedingt tiberein, woraus sich schlieflen lasst, dass die Optimierung fiir
PAG6 nicht optimal konvergiert und somit die bestimmten Materialparame-
ter das Materialverhalten nur bedingt repréasentieren.

Fazit

Aufgrund der Frequenzabhéngigkeit viskoelastischer Materialmodelle wer-
den zur modalen Analyse mit dem Vorwértsmodell aus Abschnitt 4.2 die
Kreiswellenzahlen unter Vorgabe der Kreisfrequenzen berechnet (Fragestel-
lung VII). Daraus resultierend, u.a. aufgrund der Komplexwertigkeit des
viskoelastischen Materialmodells, ergeben sich komplexe Kreiswellenzahlen,
deren Realteil im Zusammenhang mit den Kreisfrequenzen das Dispersi-
onsdiagramm reprasentiert. Der Imaginarteil stellt hingegen die modale
Dampfung dar. Aus den Messdaten kann durch eine 6rtliche Unterteilung
des Datensatzes und Approximation einer Exponentialfunktion die modale
Déampfung ermittelt werden (Fragestellung VIII). Beide konnen tiber eine
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5.8 Anwendung des Verfahrens auf Polyamid 6

Kostenfunktion z.B. eine (quadratische) Differenz miteinander verglichen
werden. Da der Realteil der Kreiswellenzahl durch das Materialmodell eben-
falls beeinflusst wird, ist es sinnvoll neben der Differenz der Dampfung bzw.
dem Imaginarteil der Kreiswellenzahlen auch jeweils das Verhaltnis von
Imaginér- zu Realteil zu betrachten. Wichtig dabei ist, dass die Dampfung
der in der Messung detektierten Mode mit der Dampfung der zugehorigen
Mode aus der Simulation verglichen wird. Die Zuordnung zur entsprechen-
den simulierten Mode erfolgt iiber den Realteil der Kreiswellenzahl. Die
Variation der Modellparameter, bis die Werte der modalen Dampfung der
jeweiligen Moden aus Simulation und Messung moglichst iibereinstimmen
(inverses Verfahren), liefert die viskoelastischen Materialparameter, die den
Modell-Eingangsparametern bei Ubereinstimmung entsprechen. Startwerte
fir die Dampfungsparameter werden u.a. durch numerisches Losen der
Rayleigh-Lamb-Gleichung unter Annahme komplexer Kreiswellenzahlen
geschatzt.

Dabei lassen sich die zu beriicksichtigenden (komplexen) Kreiswellenzahl-
Frequenz-Paare anhand der effektiven Longitudinalwellengeschwindigkeit
zur Schatzung von Scher- und Kompressionsparametern aufteilen. Diese
Aufteilung kann weiterhin in der Optimierungsstrategie fiir das inverse
Verfahren genutzt werden. Zudem finden unterschiedliche Varianten der
Kostenfunktion in den unterschiedlichen Optimierungsschritten Verwen-
dung, um die Sensitivitdt von einzelnen Parametern optimal zu nutzen.
Insgesamt zeigt sich, dass auch eine Optimierungsstrategie ohne Aufteilung
des Dispersionsdiagramms und mehrstufiger Optimierung der Parameter
gute Ubereinstimmungen der berechneten Dampfung aus Messung und
Simulation liefert (Fragestellung IX). Alle untersuchten Optimierungs-
strategien liefern dhnliche, jedoch leicht unterschiedliche Parametersétze,
wobei alle drei Verfahren gute Ubereinstimmungen mit der Messung lie-
fern. Bei Betrachtung von Zeitsignalen in einem Transmissionsmesssystem
unterscheiden sich die drei Verfahren kaum. Zur weiteren Bewertung der
Parametersitze und der Optimierungsstrategien untereinander miissten
daher weitere Moden untersucht werden.
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6 Zusammenfassung und
Ausblick

6.1 Zusammenfassung

In dieser Arbeit wurde ein Verfahren zur Bestimmung effektiver, akusti-
scher Materialparameter basierend auf Dispersionsmessungen von Platten-
wellenleitern entwickelt. Die optische Anregung mittels gepulstem Laser
ermdglicht eine reproduzierbare Anregung in unterschiedlichen Abstdnden
zum Empfanger, was in zeit- und ortsaufgelosten Messsignalen resultiert.
Durch 2D-Fourier-Transformation werden Moden in dann frequenz- und
wellenzahlaufgelosten Messdaten sichtbar. Dabei erhéhen speziell auf Poly-
mere abgestimmte Signalverarbeitungsschritte die auswertbare Bandbreite
der Messsignale. Die Fourier-transformierten Messdaten werden in einem
inversen Verfahren mit berechneten Dispersionsdiagrammen verglichen.
Die Eingangsparameter des semi-analytischen Finite-Elemente-Modells zur
Berechnung der Lamb-Moden werden solange variiert bis diese auf den
Moden der Messdaten liegen. Startwerte werden dafiir im Zeit-Orts-Bereich
oder Frequenz-Wellenzahl-Bereich geschétzt. Die verwendete Kostenfunk-
tion verzichtet dabei auf eine Extraktion der einzelnen Moden aus den
Messdaten, was die Robustheit bei stark verrauschten Messsignalen erhoht.

Beim semi-analytischen Finite-Elemente-Modell wird die Welle in Aus-
breitungsrichtung analytisch betrachtet, wahrend die Dickenrichtung der
Platte durch ein eindimensionales Finite-Elemente-Gitter diskretisiert wird,
wodurch eine effiziente Berechnung der Lamb-Moden erméglicht wird. Da-
durch, dass im Modell somit insgesamt nur zwei Raumrichtungen betrachtet
werden, vereinfacht sich die Elastizitdtsmatrix auf den zweidimensiona-
len ebenen Verzerrungszustand. Zur Bestimmung der effektiven Materi-
alparameter isotroper oder transversal-isotroper Materialproben ist dies
ausreichend. Die Bestimmung der Materialparameter der dritten Raum-
richtung von nicht-isotropen Werkstoffen ist durch Rotation der Probe
im Messplatz und winkelabhéngige Identifikation der Materialparameter
moglich. Abhéngig vom Grad der Anisotropie sind unterschiedlich viele
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winkelabhéangige Einzelmessungen notwendig. Die einzelnen identifizierten,
winkelabhéngigen Parametersatze werden im Anschluss zusammengefasst,
um mittels Moore-Penrose-Pseudoinverse schlieSlich die 6 x 6-grofle Elasti-
zitdtsmatrix zur Beschreibung der Probe fiir den dreidimensionalen Fall
zu identifizieren.

Die bis dahin unberiicksichtigt gebliebene Dampfung, wird durch eine
Aufteilung der Messsignale entlang der ortlichen Achse bestimmt. Dazu
wird fiir jeden der unterteilten Abschnitte durch 2D-Fourier-Transformation
die Dispersionsabbildung berechnet. Durch Approximation einer ortsabhén-
gigen Exponentialfunktion an allen Fourier-transformierten Signalwerten
wird als Exponent der Funktion die modale Dampfung bestimmt. Somit
kann nun zuséatzlich zum Realteil auch die Dampfung als Imaginérteil der
Kreiswellenzahl zur Identifikation eines viskoelastischen Materialmodells
genutzt werden. Bei der Validierung der Dampfungsbestimmung an einer
synthetisch mittels FEM im Zeitbereich erzeugten Dispersionsabildung
unter Beriicksichtigung von Rayleigh-Dampfung zeigen sich gute Uberein-
stimmungen zwischen der Extraktion der Dampfung und dem Imaginérteil
der komplexen Wellenzahl aus der entsprechenden SAFE-Simulation.

Nach einer Startwertschitzung basierend auf der Minimierung des Be-
trags der Rayleigh-Lamb-Gleichung werden mithilfe unterschiedlicher Op-
timierungsstrategien, die Parameter eines fraktionalen Zener-Modells, wie
es Bause [Baul6] nutzt, identifiziert und durch Transmissionsmessungen
nach [DIF21; Baul6; Raul2] verifiziert.

6.2 Ausblick

Waihrend bereits effektive Materialparameter fiir faserverstarkte Kunststof-
fe bestimmt werden konnen, sollte deren Viskoelastizitat mit beriicksichtigt
werden. Dazu ist das Verfahren zur Identifikation viskoelastischer Materi-
alparameter auf orthotrope Werkstoffe zu generalisieren z.B. am Beispiel
von Bause [Baul6] mittels Eigenwertzerlegung der Elastizitdtsmatrix or-
thotroper Materialien. Werden alle Eigenrichtungen mit einem eigenen
fraktionalen Zener-Modell modelliert, ergeben sich 6 x 3 Dampfungspa-
rameter zuséitzlich zu den neun Elastizitatskoeffizienten. Aufgrund der
hohen Anzahl an Parametern sollten Vereinfachungen des Modells in Be-
tracht gezogen werden. Trotzdem erhoht sich die Zahl der Parameter
deutlich, weshalb die Optimierungsstrategie und insbesondere die Kosten-
funktion anzupassen ist. Diese konnte so angepasst werden, dass Real-
und Imaginarteile der Wellenzahlen durch Gewichtung in einen gleichen
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Wertebereich gebracht werden, um beide gleichwertig berticksichtigen zu
konnen. Zuséatzlich gewahrleistet eine gezielte selektive Anregung sensitiver
Frequenz-Wellenzahl-Bereiche die Sensitivitit einzelner Modellparameter.
Auch die Resonanzfrequenzen bei Re{k} = 0 zeigen sich sensitiv auf die
Schallgeschwindigkeiten bei isotropen Werkstoffverhalten. Diese haben
weiterhin den Vorteil, dass in diesem Bereich die Ddmpfung besonders
hoch ist und sich somit leichter Dampfungsparameter auf Basis dieser
bestimmen lassen sollten, sofern die Mode in dem Bereich ausreichend
detektiert wird.
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A Anhang

A.1 Ebener Spannungszustand

Beim ebenen Spannungszustand werden die Spannungen in eine Raumrich-
tung, in der die Schicht als sehr diinn angenommen wird, z.B. x3 zu Null
angenommen [KHLO7|. Unter der Annahme, dass alle Spannungskompo-
nenten, die nicht in der x;-xo-Ebene liegen zu Null werden, ergibt sich fiir
den ebenen Spannungszustand

€11 St Sz Sie 011
€22 | = Si2 S 022 (A-l)
2812 sym. 566 012
€pl,o Spl,o Tpl,0

mit der elastischen Nachgiebigkeitsmatrix S}, . Inversion von Sy, ergibt
schlieflich die Elastizitatsmatrix C}, ¢ fiir den ebenen Spannungszustand,
wie sie z.B. in der Laminattheorie [Sch07] zur Modellierung von Faser-
verstarkten Kunststoffen verwendet wird.

A.2 Herleitung der Rayleigh-Lamb-Gleichung

Allgemein werden akustische Wellen in einem Festkorper iiber die Wel-
lengleichung (Gleichung 2.57) beschrieben. Ebenso nimmt Lamb [Lam17]
bei seiner Herleitung ein isotropes Materialmodell an, sodass sich Glei-
chung 2.57 zu )

pV2E 4 (ALa + 1) grad (div €) = p& (A.2)

vereinfacht, wobei die Lamé-Konstanten Ap,, 4 und die Dichte p Materi-
alparameter des Mediums sind. Gleichung A.2 wird nun fiir eine unend-
lich ausgedehnte Platte im Vakuum gelost. Dabei wird davon ausgegan-
gen, dass keinerlei mechanische Verschiebung in die z-Richtung auftritt
(&, = 0) und die sonstige Feldverteilung unabhéngig von der z-Koordinate
ist (0/0z = 0), was der Annahme eines ebenen Verzerrungszustands (vgl.
Unterabschnitt 2.1.4) entspricht.
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Die Randflachen der Platten liegen im Koordinatensystem bei z = +t;,/2,
wobei angenommen wird, dass sich eine Welle in y-Richtung ausbreitet. Da
sich die Platte im Vakuum befindet, wirkt keine mechanische Spannung
normal auf die Randflidche, sodass sich die entsprechenden Komponenten
des Spannungstensors zu Null ergeben:

ny|z::tth/2 = Uzz’x::ﬁ:th/Z = U:m:‘r::tth/2 = 0. (A3)

Losen lasst sich Gleichung A.2 mithilfe des Helmholtz Theorems. Dem-
nach lasst sich die Losung in ein Skalarpotential ® und ein Vektorpotential
U, wobei flir das Vektorpotential zusatzlich Quellenfreiheit gilt, zerlegen:

E=grad® +rot¥ mit ¥ =0. (A.4)

Mit den zuvor getroffenen Annahmen ergeben sich die x- und y-Komponenten
der mechanischen Verschiebungen zu

900U,

od 0V,

Demnach geniigt es die z-Komponente des Vektorpotentials sowie das
Skalarpotential zu kennen, welche den jeweiligen Wellengleichungen

1 0%*®

—— AP =0 AT
1 9%,
- — AV, =0 A8
& o2 (A.8)

geniigen miissen [Gra91; Ach76]. Wéhrend Gleichung A.7 eine Longitudinal-
welle beschreibt, handelt es sich in Gleichung A.8 um eine Transversalwelle

[Ach76]. Zur Losung der Wellengleichungen wird jeweils ein Exponential-
ansatz mit

O = Dy (z) e Iky=wt), (A.9)
U, = Uy (z) e k=t (A.10)

verwendet.

Durch Einsetzen von Gleichung A.9 in Gleichung A.7 bzw. Gleichung A.10
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A.2 Herleitung der Rayleigh-Lamb-Gleichung

in Gleichung A.8 ergeben sich die Differentialgleichungen zu

0? w?
0? w?
T

Da Gleichung A.11 @ (x) sowie dessen zweite Ableitung, jedoch nicht die
erste Ableitung enthalt, wird Gleichung A.11 durch eine trigonometrische
Funktionen gelost, was analog fir Gleichung A.12 mit ¥, (z) gilt:

(I)O (ZL’) = AL sin (kLLZE) + BL COS (]{JLLZL’) s (Al?))
\Ifo (.I') = AT sin (kT,Laj) + BT COS (kT,Laj) (A14)

mit

2 2

ki = — kK und  kpp = 5 — k2 (A.15)
S

w
ch

Zur Beriicksichtigung der Randbedingungen aus Gleichung A.3 werden
die relevanten Komponenten der mechanischen Spannung o unter Annahme
eines isotropen Mediums aus den Potentialen und den Lamé-Konstanten
mittels Hookeschem Gesetz (Gleichung 2.5) berechnet [Ach76]:

Ogy = (>\La + 2#) Exx T+ )\Lagyy

08« Iy
= 2 —= Al
(Ara +21) 52 + M oy (A.16)
Oy =2UEzy
06 | 0,
= . Al
w5+ %) (A1)

Nach den Randbedingungen aus Gleichung A.3 werden Gleichung A.16
und A.17 am Rand der Platte bei x = +t;,/2 zu Null, wihrend die dritte
Randbedingung 0. |y—+, /2 = 0 bereits durch die Annahme, dass die Feld-
verteilung nicht von der z-Komponente sowie deren Ableitungen abhéingt,
gegeben ist. Somit ergeben sich mit Gleichung A.16 und A.17 an den Stellen
x = £ty,/2 vier Bedingungen bzw. Gleichungen, von denen jedoch nur zwei
linear unabhéngig sind. Aufgrund der enthaltenen trigonometrischen Funk-
tionen lassen sich die Ansatzfunktionen der Potentiale (Gleichung A.13
und A.14) in Kosinuns-Anteile und Sinus-Anteile zerlegen, welche getrennt
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voneinander in Gleichung A.16 und A.17 eingesetzt werden [AchT76].
Werden dazu Gleichung A.5 und A.6 betrachtet, ergibt sich mit

CI)O = AL sin (kL,Ll') s (A18)
\IJ() = BT COS (k?T7LZE) s (Alg)

eingesetzt in Gleichung A.5
€, = [k AL cos (krpz) 4 j kBr cos (kppx)] e~ kv« (A.20)

eine rein symmetrische Verschiebung. Die y-Komponente (Ausbreitungs-
richtung) ergibt sich durch Gleichung A.6 aus rein asymmetrischen Kom-
ponenten zu

fy = [J kAL sin (kL,Lx) + kT,LBT sin (kTJ_ll')] eij(kyio')t). (A21)

Da die Verschiebung in Ausbreitungsrichtung nur asymmetrische Kompo-
nenten enthélt, werden die berechneten Moden als asymmetrische Moden
bezeichnet. Einsetzen von Gleichung A.20 und A.21 in Gleichung A.16
und A.17 sowie Auswertung am Rand der Platte bei z = +t;,/2, ermog-
licht die Bestimmung der Koeffizienten A;, und Br. Somit ergibt sich die
Rayleigh-Lamb-Frequenzgleichung fiir asymmetrische Moden zu

2 2 2
tan (kT’Lth/Q) _ (kT,L —k ) (A 22)
tan (kL’Lth/Q) N 4k2kL,LkT,L . '

Analog lassen sich die weiteren Koeffizienten By, und At bestimmen.
Mit

Oy =By, cos (kL) , (A.23)
\Ijz :AT sin (kT,Lx) (A24>

sowie Gleichung A.5 und A.6 enthélt die z-Komponente mit
gac = [_kL,LBL sin (l{?L7L£L') +J k’AT sin (kT7Lx>] 6_j(ky_Wt) (A25)

nur asymmetrische Elemente. Die y-Komponente als Ausbreitungsrichtung
enthélt mit

& = [j kB cos (kL pz) — kv, Ar cos (kr )] e I(ky—wt) (A.26)
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nur symmetrische Komponenten, weshalb diese Moden symmetrische Mo-
den genannt werden. Einsetzen der Komponenten (Gleichung A.25 und
A.26) in Gleichung A.16 und A.17, sowie Auswertung am Rand der Platte
x = £t,/2, liefert die Koeffizienten At und By,. [Ach76]
Demzufolge ergibt sich die Rayleigh-Lamb-Gleichung fiir symmetrische
Moden mit
tan (kTJ_,th/Q) . 4k2kL,LkT,L

tan (kLJ_lth/Q) N (k%L _ k2)2'

Zusammenfassend lassen sich Gleichung A.22 und A.27 schlieflich als die
bekannte Rayleigh-Lamb-Gleichung in Gleichung 2.43 schreiben.

(A.27)

A.3 Ergdnzende Abbildungen

A.3.1 Erganzende Abbildungen zu Abschnitt 4.12
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Abbildung A.2: Relative Haufigkeit der Transversalwellengeschwindigkeit
von PAG
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Relative Haufigkeit
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Abbildung A.5: Relative Haufigkeit der Longitudinalwellengeschwindigkeit
von Aluminium
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Abbildung A.6: Relative Haufigkeit der Transversalwellengeschwindigkeit
von Aluminium

210



A.3 Erganzende Abbildungen

A.3.2 Erganzende Abbildungen zu Abschnitt 5.4
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