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Kurzfassung
Der computergestützte Entwurf akustischer Sensoren setzt realitätsnahe
akustische Materialmodelle sowie die Kenntnis bzw. die Identifikation
der Materialparameter dieser Modelle im entsprechenden Frequenzbereich
voraus. Zunehmend finden für den Aufbau von Ultraschallsensoren auch
Kunststoffe Anwendung, z.B. als Anpassschicht oder für das Gehäuse. Da
es bisher kein standardisiertes Messverfahren gibt, ergibt sich eine unsichere
Datenlage mit unvollständigen Datensätzen der Materialparameter. Daher
ist es erforderlich ein Messverfahren zu entwickeln, das auf der Grundlage
realistischer Materialmodelle geeignet ist, die betreffenden Materialparame-
ter zu bestimmen. Neben der Identifikation ideal-elastischer Materialmodel-
le, ist insbesondere bei Polymeren die Schallabsorption mit zu bestimmen,
da diese Materialien eine nicht mehr vernachlässigbare Dämpfung der
sich ausbreitenden Schallwellen aufweisen. Um die Schallabsorption cha-
rakterisieren zu können, werden viskoelastische Materialmodelle benötigt.
Gegenstand dieser Arbeit ist die Entwicklung eines wellenleiterbasierten
Messverfahrens und die Realisierung eines Messsystems zur Bestimmung
vollständiger, konsistenter Materialparametersätze für plattenförmige, ho-
mogene Kunststoffproben auf Basis eines inversen Verfahrens.
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Abstract
The computer-aided design of acoustic sensors requires realistic acoustic
material models as well as the knowledge or identification of the material
parameters of these models in the corresponding frequency range. Plastics
are increasingly being used in the construction of ultrasonic sensors, e.g. as
a matching layer or for the housing. Since there is currently no standardized
measurement method, there is an uncertain data situation with incomplete
data sets of the material parameters. Therefore, it is necessary to develop
a measurement method which is suitable for determining the relevant
material parameters based on realistic material models. In addition to
identifying ideally elastic material models, sound absorption must also be
determined, especially in the case of polymers, since these materials do
not have a negligible attenuation of the propagating sound waves anymore.
In order to characterize sound absorption, viscoelastic material models are
required. The subject of this work is the development of a waveguide-based
measurement method and the realization of a measurement system for
determining complete, consistent material parameter sets for plate-shaped,
homogeneous plastic samples based on an inverse method.
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1 Einleitung

1.1 Motivation
In dem Bestreben Designprozesse akustischer Komponenten nachhaltig
und ressourcenschonend zu gestalten (und auf den Bau von Prototypen zu
verzichten), werden zunehmend Simulationen eingesetzt. Voraussetzung für
realitätsnahe Simulationen ist die Kenntnis akustischer Materialparameter
z.B. Schallgeschwindigkeiten oder die Koeffizienten der Elastizitätsma-
trix. Vollständige Materialdatensätze sind jedoch häufig nicht verfügbar.
Angegebene Materialdaten sind in der Regel quasistatisch bestimmt und
lassen sich nur bedingt auf den höherfrequenten Bereich übertragen, da die
Materialparameter eine Frequenzabhängigkeit aufweisen und zusätzlich die
akustische Dämpfung im Material berücksichtigt werden muss. Beides gilt
besonders für Polymere, wobei hier auch der Herstellungsprozess einen nicht
zu vernachlässigenden Einfluss hat. Da Polymere z.B. als Anpassschichten
oder Vorlauf-Keile bei der Entwicklung akustisch aktiver Komponenten
zum Einsatz kommen, ist die Kenntnis der akustischen Materialparameter
im höherfrequenten Bereich essenziell. Ein Messverfahren zur Bestimmung
der Materialparameter im höherfrequenten Bereich ist daher notwendig.
Hier ermöglicht der Einsatz eines Messverfahrens basierend auf akustischer
Wellen zudem eine zerstörungsfreie Untersuchung des Materialverhaltens,
sodass zusätzlich Eigenschaftsänderungen beobachtet werden können.
Im Rahmen dieser Arbeit wird ein solches Messverfahren basierend

auf geführten akustischen Wellen in Platten entwickelt, da Platten als
Halbzeug aus unterschiedlichen Werkstoffen leicht verfügbar sind. Dabei
werden sowohl ideal-elastische Materialparameter bestimmt, als auch ein
Ansatz zur Bestimmung von Dämpfungsparametern zur Beschreibung des
frequenzabhängigen Verhaltens vorgestellt.

1.2 Problemstellung
Aufgrund der Überlagerung von akustischen Longitudinal- und Transver-
salwellen in Festkörpern, und insbesondere durch die Randbedingungen in

1



1 Einleitung

Platten, lässt sich aus den Messungen die Messgröße nicht direkt ableiten.
Dazu wird ein inverses Verfahren benötigt, um mittels Optimierung die
Materialparameter zu variieren, um das Verhalten eines Simulationsmo-
dells an das reale System anzupassen. Die optimierten Materialparameter
stellen die Messergebnisse dar. Zur Realisierung des inversen Verfahrens
sind neben dem Experiment auch effiziente, numerische Simulationen sowie
der Einsatz geeigneter Optimierungsstrategien notwendig. Insbesondere
soll auf folgende Fragestellungen eingegangen werden:

I. Wie können akustische Wellen in Platten angeregt und detektiert
werden?

II. Wie müssen die Messsignale zur Analyse der sich ausbreitenden Wellen
verarbeitet werden?

III. Welche Methoden können zur effizienten Simulation der Wellenaus-
breitung in Platten verwendet werden?

IV. Wie können Mess- und Simulationsdaten quantitativ miteinander
verglichen werden?

V. Welche Optimierungsstrategie kann zur Bestimmung der elastischen
Materialparameter verwendet werden?

VI. Wie kann die Unsicherheit der resultierenden Materialparameter
bestimmt werden?

Insbesondere Polymere weisen eine hohe Dämpfung und damit stark fre-
quenzabhängige Materialeigenschaften auf. Das Messverfahren soll daher
zur Bestimmung der Parameter eines physikalisch motivierten, kausa-
len Dämpfungsmodells erweitert werden. Im Kontext der Identifikation
der Dämpfungsparameter sollen die folgenden Fragestellungen behandelt
werden:

VII. Wie kann die gedämpfte, akustische Wellenausbreitung modelliert,
parametrisiert und simuliert werden?

VIII. Kann aus den Messsignalen auf die akustische Dämpfung geschlossen
werden?

IX. Wie muss die Optimierungsstrategie zur Bestimmung von Dämpfungs-
parametern erweitert werden?
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2 Akustische Wellen in
Festkörpern

In diesem Kapitel werden die Grundlagen akustischer Wellenausbreitung
in Festkörpern dargelegt, die für das Verständnis der aufzunehmenden
Messdaten wichtig sind. Zur Bestimmung von Materialparametern sind
diese zunächst zu definieren. Eine realitätsnahe Abbildung des Materialver-
haltens setzt ein physikalisch-basierendes mathematisches Materialmodell
voraus, welche je nach Material ideal- oder viskoelastisches Verhalten
aufweist. Zur numerischen Simulation der sich in Festkörpern ausbreiten-
den akustischen Wellen ist die Finite-Elemente-Methode weit verbreitet,
weshalb hier Einblick in dieses Verfahren gewährt wird.

2.1 Grundbegriffe der Festkörpermechanik
In diesem Abschnitt werden die elementaren Bestandteile des Hookschen
Gesetzes zunächst in Tensornotation definiert. Aufgrund der Mehrdimensio-
nalität, insbesondere des werkstoffcharakterisierenden Elastizitätstensors,
sowie der Symmetrien der Tensoren lassen sie sich einfacher als Vektoren
bzw. Matrizen schreiben. Die am meisten genutzte Variante ist die Voigt-
sche Notation. Alternativ sei noch die Mandel-Notation [Bra18] erwähnt,
die hier nicht weiter betrachtet wird.

2.1.1 Verzerrungstensor
Die Deformation eines Festkörpers im Raum kann durch die mechanische
Teilchenverschiebung ξ ausgedrückt werden.

Die örtliche Änderung der Verschiebung wird als mechanische Dehnung
bzw. Verzerrung

εii = ∂ξi
∂xi

, i ∈ {1, 2, 3} (2.1)

angegeben.
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2 Akustische Wellen in Festkörpern

Neben den Dehnungen entlang der Hauptachsen treten im dreidimen-
sionalen Festkörper ebenfalls Schub- bzw. Scherdehnungen εij, (i 6= j) auf:
[LSW09; Aul90b]:

2εij = ∂ξi
∂xj

+ ∂ξj
∂xi

, i 6= j (2.2)

Zusammengefasst ergibt sich der Verzerrungstensor nach [MH13; Aul90b]
zu

[ε] =
[
∇ξ + (∇ξ)T

]
=



ε11 2ε12 2ε13
2ε21 ε22 2ε23
2ε31 2ε32 ε33


 . (2.3)

Mit Gleichung 2.2 ergibt sich, dass εij = εji gilt und somit der Verzerrungs-
tensor aus Gleichung 2.3 symmetrisch sein muss.

2.1.2 Spannungstensor
Der mechanische Spannungstensor

[σ] =



σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


 (2.4)

ist unter Annahme linearer Elastizität mit dem Verzerrungstensor [ε] über
den Elastizitätstensor [C] durch das Hookesche Gesetz

[σ] = [C][ε] (2.5)

verbunden. Mithilfe des Momentengleichgewichts lässt sich die Symme-
trie des Spannungstensors beweisen [Rau12]. Somit ergibt sich über Glei-
chung 2.5 der Elastizitätstensor [C] als symmetrischer Tensor 4. Stufe.

2.1.3 Übergang zur Voigtschen Notation
Aufgrund der Symmetrie des Verzerrungs- [ε], Spannungs- [σ] und Elastizi-
tätstensors [C] lassen sich die Tensoren kompakt als Vektoren und Matrix
schreiben. Die gebräuchlichste Schreibweise ist die Notation nach Voigt
[Voi66], mit der die Spannungs- und Verzerrungstensoren als Vektoren

σ =
(
σ11 σ22 σ33 σ23 σ13 σ12

)T
, (2.6)

ε =
(
ε11 ε22 ε33 2ε23 2ε13 2ε12

)T
(2.7)
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2.1 Grundbegriffe der Festkörpermechanik

sowie der Elastizitätstensor als Elastizitätsmatrix

C =




C11 C12 C13 C14 C15 C16
C22 C23 C24 C25 C26

C33 C34 C35 C36
C44 C45 C46

sym. C55 C56
C66




(2.8)

dargestellt werden können. Die Inverse der Elastizitätsmatrix

S = C−1 (2.9)

wird als Nachgiebigkeitsmatrix bezeichnet. Zur kompakten Darstellung von
Gleichung 2.3 in Voigtscher Notation kann eine Differentialoperatormatrix
L, die die örtlichen Ableitungen nach den jeweiligen Raumrichtungen xi
enthält, definiert werden, sodass sich Gleichung 2.3 zu




ε1
ε2
ε3

Θ23
Θ13
Θ12




=




ε11
ε22
ε33
2ε23
2ε13
2ε12




︸ ︷︷ ︸
ε

=




∂/∂x1 0 0
0 ∂/∂x2 0
0 0 ∂/∂x3
0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1
∂/∂x2 ∂/∂x1 0




︸ ︷︷ ︸
L



ξ1
ξ2
ξ3




︸ ︷︷ ︸
ξ

(2.10)

ergibt [Ste98].

2.1.4 Ebener Verzerrungszustand
Beschränkt sich die Schwingungs- und Ausbreitungsrichtung der Wellen
auf eine zweidimensionale Ebene, wie es z.B. bei Lamb-Wellen in der
Querschnittsfläche der Platte (vgl. Abschnitt 2.3) der Fall ist, gibt es zwei
mögliche Vereinfachungen: Der ebene Verzerrungs- (plane strain) und der
ebene Spannungszustand (plane stress). Ersteres nimmt alle Verzerrungs-
komponenten in eine bestimmte Raumrichtung, die keinen Einfluss auf
die zu modellierende Wellenausbreitung haben, z.B. in x3-Richtung, zu
Null an, sodass εi3 = 0 ∀i ∈ {1, 2, 3} zu Null werden. Dies entspricht
der Annahme, dass der Körper in x3-Richtung gegenüber den anderen
Raumrichtungen sehr weit ausgedehnt [KHL07] wie beispielsweise bei der
Berechnung von Lamb- bzw. Lamb-artigen Moden ist. Das Hookesche
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2 Akustische Wellen in Festkörpern

Gesetz aus Gleichung 2.5 vereinfacht sich in Voigtscher Notation damit zu


σ11
σ22
σ12


 =



C11 C12 C16

C22 C26
sym. C66






ε11
ε22
2ε12


 , (2.11)

während sich Gleichung 2.10 in diesem Fall zu


ε1
ε2

Θ12


 =



ε11
ε22
2ε12




︸ ︷︷ ︸
εpl,ε

=



∂/∂x1 0

0 ∂/∂x2
∂/∂x2 ∂/∂x1




︸ ︷︷ ︸
Lpl,ε

(
ξ1
ξ2

)

︸ ︷︷ ︸
ξpl,ε

(2.12)

vereinfacht. Der ebene Spannungszustand wird in dieser Arbeit nicht weiter
benötigt, ist jedoch zur Vollständigkeit in Abschnitt A.1 beschrieben.

2.2 Materialverhalten

Bei Festkörpern wird zwischen ideal-elastischem, z.B. bei metallischen
Werkstoffen, und viskoelastischem Materialverhalten, z.B. bei Polymeren,
unterschieden. Im Gegensatz zu ideal-elastischen Medien, ist viskoelasti-
sches Verhalten abhängig von vergangenen Zuständen. Diese resultierende
Zeitabhängigkeit wird im Frequenzbereich mithilfe verschiedener, in der
Regel frequenzabhängiger, Dämpfungsmodelle modelliert.

2.2.1 Ideal-elastisches Materialverhalten

Das akustische Materialverhalten wird im Wesentlichen durch die Elastizi-
tätsmatrix C beschrieben. Die in Gleichung 2.8 angegebene Elastizitätsma-
trix beschreibt den allgemeinsten Fall linear-akustischen Materialverhaltens.
Aufgrund der Symmetrie enthält diese 21 unabhängige Konstanten, womit
sie ein triklines Kristallsystem beschreibt [RD96; Šut84]. Gewalzte Bleche,
Gewebe, Faser-Verbund-Kunststoffe weisen hingegen meist orthotropes
Materialverhalten auf [Nye12].

Orthotrope Werkstoffe enthalten drei orthogonale Raumachsen, entlang
derer die Normaldehnungen von den Scherdehnungen entkoppelt sind. Dies
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2.2 Materialverhalten

führt dazu, dass die Elastizitätsmatrix nicht vollständig besetzt ist:

C =




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym. C55 0
C66




(2.13)

Für einen Vergleich der Parametersätze aus z.B. mechanischen Zugversu-
chen ergibt sich eine alternative Darstellung aus der Nachgiebigkeitsmatrix
S, wenn diese durch die richtungsabhängigen Elastizitätsmodule Ei in
xi-Richtung, Poissonzahlen (Querkontraktionszahlen) νij, mit xi als Bean-
spruchungsrichtung und xj als Querdehnungsrichtung und der Schub- bzw.
Schermodule µij zur Beschreibung der Schubbewegungen in der xi-xj-Ebene
ausgedrückt wird [Alt18]:

S =




1
E1

−ν21
E2
−ν31

E3
0 0 0

−ν12
E1

1
E2

−ν32
E2

0 0 0
−ν13

E1
−ν23

E2
1
E3

0 0 0
0 0 0 1

µ23
0 0

0 0 0 0 1
µ31

0
0 0 0 0 0 1

µ12




(2.14)

Aufgrund der Symmetrie gilt
νij
Ei

= νji
Ej

∀i, j ∈ {1, 2, 3}. (2.15)

Die Inversion der Nachgiebigkeitsmatrix ergibt die Elastizitätsmatrix

C = S−1 =




1−ν23ν32
E2E3P

ν21+ν31ν23
E2E3P

ν31+ν21ν32
E2E3P

0 0 0
1−ν13ν31
E1E3P

ν32+ν12ν31
E1E3P

0 0 0
1−ν12ν21
E1E2P

0 0 0
sym. µ23 0 0

µ31 0
µ12




(2.16)
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2 Akustische Wellen in Festkörpern

mit [Alt18]

P = 1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13

E1E2E3
. (2.17)

Wird das Material als eindimensionale Feder modelliert, entspricht der
Elastizitätsmodul Ei der Federsteifigkeit. Im dreidimensionalen Modell
führt eine wirkende Kraft zu Verzerrungen in die anderen Raumrichtungen.
Verhält sich das Material in zwei der drei Raumrichtungen z.B. in x2-
und x3-Richtung gleich bezüglich der mechanischen Eigenschaften, wird es
transversal isotrop genannt. Damit reduziert sich die Anzahl der unabhängi-
gen Koeffizienten von neun auf fünf. Die Ausbreitungsgeschwindigkeit einer
in xi-Richtung propagierenden Welle ergibt sich aus der entsprechenden
Komponente der Hauptdiagonalen der Elastizitätsmatrix (Gleichung 2.13)
und der Dichte des Materials. Während die ersten drei Elemente jeweils
die Longitudinalwellengeschwindigkeit cLi in den drei Raumrichtungen
beschreiben

cLi =
√
Cii
ρ
∀i ∈ {1, 2, 3}, (2.18)

lassen sich die jeweiligen Transversalwellengeschwindigkeiten aus den ver-
bliebenen drei Hauptdiagonalelementen bestimmen [Ros88; Aul90b]:

cT,23 = cT,32 =
√
C44

ρ
, (2.19)

cT,13 = cT,31 =
√
C55

ρ
, (2.20)

cT,12 = cT,21 =
√
C66

ρ
. (2.21)

Der erste numerische Index der Transversalwellengeschwindigkeit bezeich-
net die Ausbreitungsrichtung, der zweite die Schwingungsrichtung der
Welle.

Verhält sich das Material in alle drei Raumrichtungen gleich, wird es
als isotrop bezeichnet [AL06]. In dem Fall kann die Elastizitätsmatrix des
Materials durch nur zwei Parameter beschrieben werden z.B. die Lamé-
Konstanten λLa und µ oder Kompressions- und Schermodul K und µ,
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2.2 Materialverhalten

sodass

C11 = C22 = C33 =λLa + 2µ = K + 4
3µ (2.22)

C12 = C13 = C23 =λLa = K − 2
3µ (2.23)

C44 = C55 = C66 =µ (2.24)

gilt. Neben der Darstellung mit Kompressions- und Schermodul oder Lamé-
Konstanten, findet sich am häufigsten die Darstellung mit Elastizitätsmodul
E und Poissonzahl ν, die bei einem isotropen Material richtungsunabhängig
sind. Dafür sind die Lamé-Konstanten durch

λLa = Eν

(1 + ν) (1− 2ν) (2.25)

und
µ = E

2 (1 + ν) (2.26)

zu ersetzen. [MMD09] Da die Elastizitätsmatrix C eines isotropen, ideal-
elastischen Materials durch zwei Parameter vollständig bestimmt ist, wird
zur vollständigen Beschreibung des akustischen Materialverhaltens nur
zusätzlich die Dichte ρ zur akustischen Modellierung benötigt. Anstel-
le der bereits genannten Darstellungsarten, kann die Elastizitätsmatrix
eines isotropen Werkstoffs ebenfalls durch Longitudinal- und Transver-
salwellengeschwindigkeit durch umstellen und ineinander einsetzen von
Gleichung 2.18 bis 2.21 in Gleichung 2.22 bis 2.24 ausgedrückt werden.

2.2.2 Viskoelastisches Materialverhalten
Wird die Wellenausbreitung in einem viskoelastischen Medium betrach-
tet, verhält sich das Medium wie ein gedächtnisbehaftetes, zeitabhängiges
System. Zur Systemcharakterisierung kann die Sprungantwort betrachtet
werden. Wird das System mit einem Spannungssprung belastet, zeigt sich
das Retardations-, bei einem Verzerrungssprung das Relaxationsverhalten.
Daher wird im 1D-Fall die Sprungantwort auf einen Verzerrungssprung mit
dem RelaxationsmodulG(t), die Sprungantwort auf einen Spannungssprung
mit der Retardations- bzw. der Kriechnachgiebigkeit J(t) bezeichnet. Der
Kehrwert der Kriechnachgiebigkeit wird als Kriech- bzw. Retardationsmo-
dul, der Kehrwert des Relaxationsmoduls als Relaxationsnachgiebigkeit,
bezeichnet. [Mai10]
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2 Akustische Wellen in Festkörpern

Bei bekanntem Relaxationsmodul G (t), kann unter Annahme von Kau-
salität die Systemantwort auf eine Verzerrung ε (t) mittels Boltzmannschem
Superpositionsprinzip [Hew60; Mai10; Bor09; CKK88] berechnet werden:

σ (t) = ε
(
t = 0+

)
G (t) +

ˆ t

0
G (t− τ) ∂ε (τ)

∂τ
dτ (2.27)

mit der Verzerrungsrate ∂ε(τ)
∂τ

und dem Anfangswert der Verzerrung bei
t = 0, der dem rechtsseitigen Grenzwert t→ 0 entspricht. Durch die Be-
rücksichtigung des Anfangswertes wird anders als beim Hookeschen Gesetz
der vorherige Systemzustand der mechanischen Belastung des Körpers
berücksichtigt.
Die Transformation des Faltungsintegrals aus Gleichung 2.27 in den

Fourier-Bereich ergibt bei vorausgesetzter Kausalität

σ (ω) = jωGF (ω) ε (ω) (2.28)

mit dem komplexen Modul

G+ (ω) = jωGF (ω) = G′ (ω) + jG′′ (ω) , (2.29)

bestehend aus Speichermodul G′ (ω) und Verlustmodul G′′ (ω).
Da es sich bereits beim Relaxationsmodul G(t) um die Systemantwort

auf einen Spannungssprung handelt, entspricht dessen zeitliche Ablei-
tung Ġ(t) der Impulsantwort des Systems, während der komplexe Modul
G+(ω) im Fourier-Bereich dem Frequenzgang entspricht. Gemessen werden
kann der komplexe frequenzabhängige Modul G+(ω) mittels Dynamisch-
Mechanischer-Analyse (DMA) [GS15]. Das Verhältnis

tan δ = G′′

G′
(2.30)

aus Verlust- und Speichermodul wird Verlustfaktor genannt, während der
Winkel δ als Verlustwinkel bezeichnet wird.

2.2.3 Makromechanische Dämpfungsmodelle
Zur Beschreibung des frequenzabhängigen Verhaltens werden im folgen-
den Abschnitt der Relaxationsmodul und die Kriechnachgiebigkeit ver-
schiedener Dämpfungsmodelle, welche viskoelastisches Materialverhalten
repräsentieren, vorgestellt. Während elastisches Verhalten durch eine Feder
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E η′
E

η′ E η′

Abbildung 2.1: Elementare Modelle der Makromechanik: Hook, Newton,
Maxwell, Kelvin-Voigt

EZ2

η′
EZ1

Abbildung 2.2: Zener-Modell

mit dem Elastizitätsmodul als Federsteifigkeit beschrieben wird, enthält
das Newton-Modell zur Modellierung rein viskosen Materialverhaltens
(ideales Newtonsches Fluid), nur einen Dämpfer (vgl. Abbildung 2.1). Die
Kombination aus Feder E und Dämpfer η′ führt auf viskoelastisches Materi-
alverhalten. Aufgrund des Dämpfers werden diese Modelle in der Literatur
auch als Dämpfungsmodelle bezeichnet. Das Dämpfungsmodell modelliert
die Dämpfung der Welle bedingt durch das Material (Absorption), weshalb
dessen Parameter diesem als Materialparameter zugeordnet werden. Dabei
können Feder und Dämpfer sowohl in Reihe (Maxwell-Modell) als auch
parallel zueinander (Kelvin-Voigt-Modell) angenommen werden. [MHM11;
WH02; MH13]

Während das Maxwell-Modell der Modellierung von Spannungsrelaxation
dient, jedoch keine Kriecheffekte berücksichtigt, bildet das Kelvin-Voigt-
Modell exponentielle Kriechprozesse jedoch keine Spannungsrelaxation ab
[Mai10; Bau16]. Um sowohl Retardations- als auch Relaxationsverhalten
abzubilden, können die elementaren Modelle aus Abbildung 2.1 kombiniert
werden z.B. zum Zener-Modell, das in Abbildung 2.2 dargestellt ist. Beim
Zener-Modell, auch als standard linear solid bezeichnet, ergibt sich

σ (t) + η′

EZ2
σ̇ (t) = EZ1ε(t) + EZ1 + EZ2

EZ2
η′ε̇(t). (2.31)
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Abbildung 2.3: Relaxation (links) und Retardation bzw. Kriechen (rechts)
eines viskoelastischenWerkstoffs (Zener-Modell) bei sprung-
förmiger Belastung, nach [GS15]

Mit Substitution von

E = EZ1; τσ = η′

EZ2
; τε = EZ1 + EZ2

EZ2
η′ (2.32)

ergibt sich Gleichung 2.31 zu

σ (t) + τσσ̇ (t) = Eε(t) + τεε̇(t). (2.33)

Der Relaxationsmodul G (t) und die Kriechnachgiebigkeit J (t) (Kehr-
wert des Kriechmoduls) lassen sich somit zu

J(t) = τσ
Eτε

+ τε − τσ
Eτε

(
1− e−

t
τε

)
(2.34)

G(t) = E + E
τε − τσ
τσ

e−
t
τσ (2.35)

bestimmen [Mai10].
In Gleichung 2.34 sind τε die Retardationszeitkonstante und τσ die
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Relaxationszeitkonstante nach Gleichung 2.35 (jeweils im Exponenten). Der
Relaxationsmodul G (t) stellt physikalisch eine monoton fallende Funktion
über die Zeit dar, während die Kriechnachgiebigkeit J (t) monoton steigt.
Aufgrund des Terms τε−τσ

τσ
in der Kriechnachgiebigkeit (Gleichung 2.34) und

im Relaxationsmodul (Gleichung 2.35) folgt mit dem Monotonieverhalten,
die Bedingung τε > τσ ≥ 0 für ein physikalisches Materialverhalten nach
dem Zener-Modell. Die damit resultierenden Sprungantworten für die
Relaxations- und Retardationsprozesse sind in Abbildung 2.3 dargestellt.
Im Frequenzbereich ergibt sich aus Gleichung 2.33 die Beziehung

σ (ω)
ε (ω) = E

(
1 + jωτε
1 + jωτσ

)
. (2.36)

Wird das Modell auf den dreidimensionalen Fall übertragen, wird das
Hookesche Gesetz aus Gleichung 2.5 zu

σ (ω) = C̃ (ω) ε (ω) (2.37)

mit
C̃ (ω) =

(
1 + jωτε
1 + jωτσ

)
C (2.38)

erweitert. Während es sich bei C um eine beliebig geartete Elastizitäts-
matrix (isotrop, orthotrop, triklin, monoklin) handelt, bleiben die Ab-
sorptionseigenschaften in alle Raumrichtungen identisch. Ein Ansatz zur
Berücksichtigung der richtungsabhängigen Absorptionseigenschaften be-
ruht auf einer Eigenwertzerlegung der Elastizitätsmatrix nach Theocaris
et al. [TS99]. Diese ergibt sich mit den jeweiligen Eigenwerten Λi und den
zugehörigen Eigenvektoren vi:

C =
6∑

i=6
Λiviv

T
i . (2.39)

Die Verluste der sich ergebenden Eigenbewegungen können mit unterschied-
lichen viskoelastischen Modellen modelliert werden. So werden z.B. die
Verluste der Eigenbewegungen mithilfe des Zener-Modells mit

C̃ =
6∑

i=1

1 + jωτε,i
1 + jωτσ,i

Λiviv
T
i (2.40)

modelliert.
Eine Verallgemeinerung des Zener-Modells stellt das fraktionale Zener-
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2 Akustische Wellen in Festkörpern

Modell dar, welches durch eine Ableitungsordnung a ergänzt wird. Für
eine detaillierte Herleitung des fraktionalen Zener-Modells sei auf [Mai94]
verwiesen.

Im Frequenzbereich ergibt sich a als Exponent, sodass sich die viskoelas-
tische Elastizitätsmatrix mit

C̃ = 1 + (jωτε)a

1 + (jωτσ)aC (2.41)

ergibt. Die fraktionale Ableitungsordnung liegt im Wertebereich von 0 ≤
a ≤ 1, während für die Zeitkonstanten weiterhin die Bedingung τε > τσ ≥ 0
des Zener-Modells gilt.

Das am weitesten verbreitete Dämpfungsmodell ist das Rayleigh-Modell,
da es sich sehr leicht in jede Finite-Elemente-Berechnung integrieren lässt
(vgl. Unterabschnitt 2.4.2). Zwar genügt es vielen Anwendungen der Mo-
dellierung, jedoch ist dieses Modell nicht physikalisch begründet und es
konnte bereits von [Rau12] gezeigt werden, dass es nur unter bestimmten
Annahmen kausal ist. Aufgrund seiner Verbreitung in der Finiten-Elemente-
Methode, insbesondere in Zeitbereichssimulationen, erfolgt die Betrachtung
des Rayleigh-Modells in Unterabschnitt 2.4.2.

2.3 Akustische Plattenwellenleiter
An der Oberfläche bzw. an der Grenzfläche zum Vakuum eines ansonsten
unendlich ausgedehnten Festkörpers können sich Rayleigh-Wellen ausbrei-
ten. Ihre Geschwindigkeit ergibt sich im isotropen Festkörper nach [Ber54]
zu

cR = 0,87 + 1,2ν
1 + ν

cT. (2.42)

In einem Plattenwellenleiter werden Wellen, deren Wellenlänge in einem
ähnlichen Wertebereich wie die Plattendicke liegt, geführt. Bewegen sich die
Teilchen einer Platte im Vakuum ausschließlich innerhalb des Querschnitts
(vgl. Abbildung 2.4) wird von Lamb-Wellen gesprochen. Ihre Wellenlänge
liegt in der gleichen Größenordnung wie die Plattendicke. Da Lamb Ist die
dritte Dimension nicht unendlich ausgedehnt, bilden sich ebenso horizontal
schwingende Scherwellen sog. Shear-Horizontal-Wellen aus, die in dieser
Arbeit jedoch nicht weiter betrachtet werden, da nur Lamb- bzw. Lamb-
artige Wellen mit dem betrachteten Messsystem detektiert werden.
Handelt es sich um ein isotropes Material, werden die Wellen, deren

Teilchenbewegung nur in der Ebene der Querschnittsfläche der Platte
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x

y∞∞
th Wellenausbreitung

Abbildung 2.4: Querschnitt eines Plattenwellenleiter

erfolgt, Lamb-Wellen genannt, da Lamb ursprünglich von einem solchen
ausging [Lam17]. Während sich in Dickenrichtung eine Resonanz ausbildet,
propagiert die Welle entlang des Plattenquerschnitts orthogonal zu ihr. Ist
eine ähnliche Wellenform gemeint, das Material jedoch nicht isotrop oder
es befindet sich kein Vakuum an den Grenzflächen, wird von Lamb-artigen
Wellen gesprochen [KLT11; ZF21].

Im Folgenden wird die Dickenrichtung als x- und die Ausbreitungsrich-
tung als y-Richtung angenommen (vgl. Abbildung 2.4).

Sowohl in y-Richtung als auch in die dritte Raumrichtung (z-Richtung)
wird die Platte als unendlich ausgedehnt angenommen, sodass die Verschie-
bung unabhängig von der z-Richtung ist (ξz = 0, ∂/∂z = 0) und Spannungs-
freiheit orthogonal zum Rand der Platte herrscht. Die Unabhängigkeit von
der z-Richtung entspricht der Annahme des ebenen Verzerrungszustands
aus Unterabschnitt 2.1.4. Damit leitete Lamb [Lam17] die Rayleigh-Lamb-
Frequenzgleichung aus der Wellengleichung (vgl. Gleichung A.2 im Anhang)
zu

tan (kT,Lth/2)
tan (kL,Lth/2) = −




4k2kL,LkT,L(
k2

T,L − k2
)2




±1

(2.43)

mit
k2

L,L = ω2

c2
L
− k2 und k2

T,L = ω2

c2
T
− k2

her. Für eine detaillierte Herleitung sei auf den Anhang oder [Ach76; Gra91;
Aul90a] verwiesen. Bei bekannter Plattendicke th und bekannten materi-
alabhängigen Schallgeschwindigkeiten cL und cT enthält Gleichung 2.43
die Kreiswellenzahl k und Kreisfrequenz ω als Unbekannte. [Ach76; Gra91;
Aul90a]

Wird eines von beiden vorgegeben, kann das jeweils andere über eine
numerische Nullstellensuche berechnet werden. Lösungen mit dem Expo-
nenten +1 beschreiben symmetrisch (S0, S1, S2 ...), Lösungen mit dem
Exponenten −1 asymmetrisch schwingende Moden (A0, A1, A2 ...) bezogen
auf die Plattenmitte, wie sie z.B. in Abbildung 2.5 dargestellt sind.

15
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λ

Ausbreitungsrichtung

Teilchen-bewegung

λ

Abbildung 2.5: Symmetrisch und asymmetrisch schwingende Lamb-Moden
nach [DPV97]

Mithilfe der Rayleigh-Lamb-Frequenz-Gleichung (Gleichung 2.43) las-
sen sich die ausbreitungsfähigen Moden zu beliebigen Frequenzen bzw.
Wellenzahlen berechnen. Abbildung 2.6 zeigt diese Moden als Lösung der
Rayleigh-Lamb-Frequenzgleichung am Beispiel einer 1 mm dicken Platte
aus Polytetrafluorethylen (PTFE).
Werden alle Verschiebungs-Vektoren des Plattenquerschnitts addiert,

ergibt sich bei symmetrischen Moden der Summenvektor in Ausbreitungs-
richtung, sodass diese Moden auch Longitudinalmoden genannt werden.
Bei asymmetrischen Moden hingegen, ergibt sich der Summenvektor in
Dickenrichtung der Platte, weshalb sie auch als Biegemoden bezeichnet
werden. [Ach76]

Während sich eine Welle in einem unendlich ausgedehnten Medium mit
nahezu konstanter Geschwindigkeit ausbreitet, ist die Geschwindigkeit
einer Welle im Wellenleiter frequenzabhängig. Diese Frequenzabhängigkeit
der Ausbreitungsgeschwindigkeit wird Dispersion genannt. Die Steigung
der Moden in Abbildung 2.6 ergeben mit

cGr = ∂ω

∂ Re{k} (2.44)

deren Gruppengeschwindigkeit, mit der sich die Wellenpakete ausbrei-
ten, sodass die Darstellung in Abbildung 2.6 Dispersionsdiagramm ge-
nannt wird. Der Wertebereich der Gruppengeschwindigkeiten ist nach oben
durch die Longitudinalwellengeschwindigkeit des Materials beschränkt.
Longitudinal-, Transversal- sowie die Rayleigh-Wellengeschwindigkeit einer
Oberflächenwelle (Gleichung 2.42) lassen sich im Dispersionsdiagramm
(Abbildung 2.6) als Steigung von Geraden ablesen [Aul90a]. Bei Betrach-
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Abbildung 2.6: Kreisfrequenzen und Kreiswellenzahlen symmetrischer und
asymmetrischer Moden einer 1 mm dicken PTFE-Platte
(cL = 1350 m s−1, cT = 550 m s−1)

tung der Longitudinal- und Transversalwellengeschwindigkeiten cL, cT
sowie der Rayleigh-Wellengeschwindigkeit cR in Abbildung 2.6 fällt auf,
dass sich die A0- und S0-Mode für große Wellenzahlen mit der Rayleigh-
Wellengeschwindigkeit cR als Gruppengeschwindigkeit ausbreitet. Die Grup-
pengeschwindigkeit der Moden höherer Ordnung läuft für große Wellen-
zahlen gegen die Transversalwellengeschwindigkeit cT.

2.4 Finite-Elemente-Methode
Das am weitesten verbreitete numerische Verfahren zur Lösung von Differen-
tialgleichungen bzw. Integralgleichungen ist die Finite-Elemente-Methode.
Bei dieser wird ein beliebiges Rechengebiet in verschiedene finite Elemen-
te unterteilt, sodass die Integralgleichung für jedes Element gelöst und
schließlich die Lösung aller im Rechengebiet vorhandenen finiten Elemente
assembliert werden. Zur Lösung wird die gesuchte Größe, in der Festkörper-
mechanik meist die Teilchenauslenkung ξel, für jedes Element durch eine
gewichtete Summe dieser Größe an den einzelnen Knoten ξi ausgedrückt.
Der Bereich zwischen den Knoten wird durch einfache Polynome, den
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2 Akustische Wellen in Festkörpern

sogenannten Ansatzfunktionen Ni, interpoliert:

ξel =
o∑

i=1
Niξi. (2.45)

Je nach Grad der gewählten Ansatzfunktionen werden unterschiedlich
viele Knotenpunkte je Element benötigt, um die Größe eindeutig interpo-
lieren zu können. Die Ansatzfunktionen sind in lokalen Koordinaten eines
finiten Elements definiert. Die am meisten verwendeten Ansatzfunktionen
sind Lagrange-Ansatzfunktionen.

Diese zeichnen sich dadurch aus, dass ihr Wert am zugeordneten Knoten
Eins und an allen anderen Knoten jeweils Null ist.

Für den 1D-Fall hängt die Elementauslenkung ξel mit der nodalen Aus-
lenkung ξi eines eindimensionalen Linienelements der Ordnung o mit o+ 1
Knoten über die den Knoten zugeordneten Lagrangeschen Ansatzfunktio-
nen

Ni (η) =
o∏

j=0
j 6=i

= η − ηj
ηi − ηj

, i = 0...o (2.46)

mit −1 ≤ η ≤ 1 zusammen [VD06]. Abbildung 2.7 zeigt beispielhaft lineare
und quadratische Lagrange-Ansatzfunktionen.
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−0,5

0

0,5

1
N1 N2

η

Ni

(a) Ordnung o = 1

−0,5 0 0,5 1
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0,5

1
N1 N2

N3

η

Ni

(b) Ordnung o = 2

Abbildung 2.7: Lineare und quadratische eindimensionale Lagrange-
Ansatzfunktionen

Da Lamb- bzw. Lamb-artige Wellen zweidimensionale, mechanische Ver-
schiebungen innerhalb des Plattenquerschnitts erzeugen, ist es für deren
Berechnung mittels FEM notwendig, diesen in zweidimensionale finite
Elemente zu zerlegen, um die Freiheitsgrade des Systems (z.B. die Ver-
schiebungen) in zwei Raumrichtungen abbilden zu können. Dafür eignen
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Abbildung 2.8: 2D-Dreieckselement nach [Ste98]

sich verschiedene Arten von Elementen. Weit verbreitet sind z.B. dreie-
ckige Scheibenelemente, wie sie z.B. in Abbildung 2.8 skizziert sind. Die
Transformation von lokalen zu globalen Koordinaten erfolgt über die Eck-
punkte des Dreiecks und die gewählten Ansatzfunktionen Ni wie z.B. den
zweidimensionalen, linearen Ansatzfunktionen:

N1 (η, ι) = 1− η − ι (2.47)
N2 (η, ι) = η (2.48)
N3 (η, ι) = ι. (2.49)

Die Koordinatentransformation des Dreiecks ist über

(
x
y

)
=
(
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

)

︸ ︷︷ ︸
N(η,ι)




x1
y1
x2
y2
x3
y3




(2.50)

definiert. Die Verschiebungen eines finiten Elements ξel lassen sich ebenfalls
mit der Matrix der Ansatzfunktionen N und dem Vektor der nodalen
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2 Akustische Wellen in Festkörpern

Verschiebungen

ξN =
(
ξx1 ξy1 ξx2 ξy2 ξx3 ξy3

)T
(2.51)

zu
ξel = NξN (2.52)

berechnen. Zur Lösung von Integralgleichungen (vgl. Unterabschnitt 2.4.1)
werden die Diffentialoperatoren in lokale Koordinaten mittels Jacobi-Matrix
J über (

dx
d y

)
=
(∂x
∂η

∂x
∂ι

∂y
∂η

∂y
∂ι

)

︸ ︷︷ ︸
J

(
d η
d ι

)
(2.53)

transformiert [Esl14]. Mit Gleichung 2.50 ergeben sich die Einträge der
Jacobi-Matrix, die nur von Ableitungen der Ansatzfunktionen Ni (η, ι)
abhängen [Zha17].

Die mechanischen Dehnungen je Element ergeben sich mit Gleichung 2.10
und Gleichung 2.52 zu

εel = LNξN = BξN, (2.54)

wobei die örtliche Differentiation der Ansatzfunktionen LN häufig als
FEM-Differentialoperatormatrix B zusammengefasst wird. Diese beschreibt
den Zusammenhang zwischen mechanischer nodaler Verschiebung in lo-
kalen Koordinaten und der Dehnung des finiten Elements in globalen
Koordinaten. Da die örtlichen Abhängigkeiten der Verschiebungen voll-
ständig in der Matrix der Ansatzfunktionen N steckt, kann die FEM-
Differentialoperatormatrix B leicht für jedes Element berechnet werden.

2.4.1 Herleitung der Integralgleichung
Für FEM-Simulationen ist es notwendig, die Cauchysche Bewegungsglei-
chung in ihre schwache Form zu überführen. Zur Modellierung von Lamb-
oder Lamb-artigen Wellen wird ein Plattenwellenleiter im Vakuum ange-
nommen, um dessen Eigenschwingungen zu berechnen. Somit wird davon
ausgegangen, dass keine äußeren mechanischen Spannungen auf die Platte
wirken. Daher ergibt sich die Bewegungsgleichung mit dem mechanischen
Spannungstensor [σ] und dem Vektor der mechanischen Verschiebungen ξ
zu

ρξ̈ = ∇ [σ] . (2.55)
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2.4 Finite-Elemente-Methode

In Voigtscher Notation wird der Divergenzoperator durch die transponierte
Differentialoperatormatrix LT (vgl. Gleichung 2.10) ersetzt:

ρξ̈ = LTσ. (2.56)

Mit dem Hookschen Gesetz in Voigtscher Notation σ = Cε und Glei-
chung 2.10 lässt sich aus Gleichung 2.56 die Wellengleichung

ρξ̈ = LTCLξ (2.57)

mit dem Vektor der mechanischen Verschiebungen ξ, dessen zweifache zeit-
liche Ableitung ξ̈, der Elastizitätsmatrix C, der Differentialoperatormatrix
L (vgl. Gleichung 2.10) sowie deren Transponierte LT herleiten [Kal07].

Die schwache Form der Gleichung zeichnet sich dadurch aus, dass die-
se nur noch einfache örtliche Ableitungen enthält. Somit muss für eine
FEM-Berechnung nur gewährleistet sein, dass die Ansatzfunktionen nur
einmal differenzierbar sind. Zur Herleitung der schwachen Form wird Glei-
chung 2.57 mit einer beliebigen, unendlich oft differenzierbaren Testfunktion
δξT multipliziert und über ein Volumen V integriert:

ˆ
V

δξTρξ̈ dV =
ˆ
V

δξTLTCLξ dV. (2.58)

Mithilfe des ersten Greenschen Integralsatzes [Gre28] wird Gleichung 2.58
in ˆ

V

δξTρξ̈ dV =
˛
∂A

(
δξT

)
CLξ dA−

ˆ
V

(Lδξ)TCLξ dV (2.59)

überführt, sodass die zweifache örtliche Ableitung der Verschiebungen ent-
fällt. Das Oberflächenintegral über die Volumenoberfläche wird aufgrund
der Randbedingungen der mechanischen Spannungsfreiheit (Neumann-
Randbedingungen) für einen Plattenwellenleiter im Vakuum zu Null. Zur
Lösung der Integralgleichung wird diese für ein finites Element mit den Ma-
terialparametern ρel und Cel, dem Volumen Vel sowie seiner mechanischen
Verschiebung ξel betrachtet. Die mechanischen Verschiebungen ξel sowie
die Testfunktion δξT, welche physikalisch ebenfalls einer mechanischen
Verschiebung entspricht [Lin14; MÖ10], werden über die Knotenpunkte des
finiten Elements mit Gleichung 2.52 interpoliert. Damit sind die nodalen
Verschiebungen ξN ortsunabhängig, weil die Ortsabhängigkeit vollständig
in den Ansatzfunktionen N steckt. Somit ergibt sich die Integralgleichung
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2 Akustische Wellen in Festkörpern

für ein finites Element zuˆ
Vel

δξT
NN

TρelNξ̈N dV +
ˆ
Vel

δξT
N (LN )TCelLNξN dV = 0. (2.60)

Wie bereits im vorherigen Abschnitt erwähnt, wird der Term LN in der
Regel zur FEM-Differentialoperatormatrix B zusammengefasst, die alle
örtlichen Ableitungsoperationen sowie die örtlichen Ansatzfunktionen zur
Koordinatentransformation enthält. Durch die Ortsunabhängigkeit der
nodalen Verschiebung ξN und der Testfunktion δξT

N können diese vor das
Integral gezogen werden:

δξT
N

ˆ
Vel

NTρelN dV
︸ ︷︷ ︸

Mel

ξ̈N + δξT
N

ˆ
Vel

BTCelB dV
︸ ︷︷ ︸

Kel

ξN = 0. (2.61)

Da δξT
N eine beliebige, von Null verschiedene Funktion darstellt [Lin14],

ist Gleichung 2.61 nur Null, wenn die jeweiligen Integralausdrücke zu Null
werden, womit der Ausdruck δξT

N entfallen kann. Daher findet sich in
der Literatur [Esl14; Ste98; Bat96] zur Finiten-Elemente-Methode meist
Gleichung 2.61 für einen Festkörper im Vakuum in Form von

KelξN +M elξ̈N = 0 (2.62)

vor. Aufgrund der Proportionalität zur volumenbezogenen Masse, der
Dichte ρel, wird M el Element-Massematrix genannt, während Kel als
Element-Steifigkeitsmatrix bezeichnet wird. Assemblierung [Ste98; Lin14]
der einzelnen Element-Steifigkeits- und Element-Massematrizen Kel und
M el führt zur jeweiligen globalen Steifigkeits- und MassematrixK undM .
Dabei bezeichnet Assemblierung die Zuordnung der lokalen Elementkno-
ten zu den globalen Knoten. Ebenso werden die nodalen Verschiebungen
eines finiten Elements ξN zum globalen nodalen Verschiebungsvektor Ξ
zusammengefasst.

2.4.2 Rayleigh-Dämpfungsmodell in der FEM

Formal kann Gleichung 2.62 in Analogie zur Differentialgleichung eines
Feder-Masse-Systems mit FedersteifigkeitKel und der die volumenbezogene
Masse enthaltenden Massematrix M el betrachtet werden. Kommt ein
Dämpfer hinzu, kann Gleichung 2.62 um einen Dämpfungsterm mit einer
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Dämpfungsmatrix Del ergänzt werden:

KelξN +Delξ̇N +M elξ̈ = 0. (2.63)

Diese Dämpfungsmatrix Del wird in allen gängigen FEM-Programmen mit

Del = αMM el + αKKel (2.64)
angenommen, wodurch dem Material ein Dämpfungsparameter αM propor-
tional zur Masse (Dichte) und ein Parameter αK proportional zur Steifigkeit
zugeordnet werden [Bat96].
Da sowohl Masse- als auch Steifigkeitsmatrix zum Lösen berechnet

werden müssen, lässt sich so die Dämpfungsmatrix ohne höheren Rechen-
aufwand bestimmen, weshalb dieses Modell [Ray85] weit verbreitet, jedoch
rein mathematisch begründet ist.

Das Rayleigh-Dämpfungsmodell kann durch Einsetzen der Dämpfungs-
matrixDel aus Gleichung 2.64 in Gleichung 2.63 und anschließender Fourier-
Transformation dieser in den Frequenzbereich überführt werden, um es für
harmonische Simulationen zu nutzen. Somit ergibt sich im Frequenzbereich
für jedes finite Element

[
(1 + jωαK)Kel − ω2 (1− jαM/ω)M el

]
ξN = 0. (2.65)

Gleichung 2.65 stellt eine Form von Gleichung 2.62 mit skalierter Elas-
tizitätsmatrix und Dichte dar. In der Regel wird jedoch wie in Unterab-
schnitt 2.2.3 die Elastizitätsmatrix angepasst und die reelle Dichte ρel des
Materials beibehalten. Somit ergibt sich mit Ersetzen von Kel und M el
Gleichung 2.65 zu

[
1 + jωαK

1− jαM
ω

Kel − ω2M el

]
ξN = 0 (2.66)

[ˆ
Vel

BT 1 + jωαK

1− jαM
ω

CelBdV − ω2
ˆ
Vel

NTρelNdV

]
ξN = 0 (2.67)

mit einer komplexen, frequenzabhängigen Elastizitätsmatrix

C̃el (ω) = 1 + jωαK

1− jαM
ω

Cel (2.68)

analog zu Unterabschnitt 2.2.3. Werden andere frequenzabhängige Dämp-
fungsmodelle verwendet, muss das Lösen im Frequenzbereich erfolgen. Eine

23



2 Akustische Wellen in Festkörpern

anschließende Rücktransformation ermöglicht dennoch die Berechnung
zeitabhängiger Signale.
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3 Stand des Wissens
Zur Bestimmung der mechanischen Parameter gibt es einige standardisierte
Messverfahren, die sich in der Regel auf einen kleinen Frequenzbereich be-
schränken. Daher werden zusätzlich Messverfahren im Ultraschall-Bereich
entwickelt, die sich durch verschiedene Arten der Anregung und Detektion
sowie der anschließenden Auswertung unterscheiden. Die anschließende
Bestimmung der Materialparameter im inversen Verfahren setzt geeignete
Materialmodelle voraus, die insbesondere bei Polymeren auch das fre-
quenzabhängige Dämpfungsverhalten abbilden. Daher soll hier ein kurzer
Überblick der gängigen Modelle gegeben werden. Unter Annahme eines
solchen Dämpfungsmodells wird schließlich das meist numerische Vorwärts-
modell parametrisiert, um im inversen Verfahren dessen Eingangsparameter
zu optimieren.

3.1 Inverses Problem
Die meisten ultraschallbasierten Messverfahren beruhen auf inversen An-
sätzen (vgl. Unterabschnitt 3.2.2). Während bei einem direkten Problem
die Wirkung b ∈ B aus der Ursache p ∈ P mit der Abbildung q direkt
über

b = q (p) (3.1)
bestimmt wird, handelt es sich umgekehrt um ein inverses Problem. Da-
her wird Gleichung 3.1 als direktes Problem und die Abbildung q als
Vorwärtsmodell bezeichnet. [Rie03]

Bei Verfahren zur Materialcharakterisierung werden als Vorwärtsmo-
dell analytische Ansätze oder numerische Simulationsmodelle wie in Ab-
schnitt 3.4 genutzt, um den Modelleingangsparametervektor p aus der
Beobachtung b mit

p = q−1 (b) (3.2)
zu bestimmen. [Rie03]

Zur Lösung des inversen Problems werden die Modelleingangsparameter
p solange angepasst bis sie das Verhalten des Systems, was im Kontext der
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Materialcharakterisierung dem Verhalten der Probe entspricht, repräsen-
tieren. Dazu wird davon ausgegangen, dass die Modelleingangsparameter
p das Systemverhalten am besten repräsentieren, die gleichzeitig die Ziel-
bzw. Kostenfunktion ε (p) minimieren. Die Zielfunktion ist ein Maß für
die Diskrepanz der Beobachtungen bMes aus der Messung und dem Modell-
ausgang bSim = q (p). Als einfache Zielfunktion findet häufig die `2-Norm
der quadratischen Differenz der Beobachtungen ε (p) = ||bSim − bMes||22
Anwendung.

Zur effizienten Suche des Minimums der Zielfunktion wird ein Optimie-
rungsalgorithmus verwendet. Dieser liefert mit

p(opt) = arg min
p

ε (bMes, bSim (p)) (3.3)

den besten Schätzwert für die Modelleingangsparameter p(opt). Im Fall einer
Materialparameterbestimmung, handelt es sich bei dem besten Schätzwert
von p(opt) um die gesuchten Materialparameter. Als Optimierungsalgo-
rithmus werden häufig lokale Optimierungsalgorithmen verwendet. Diese
suchen das Optimum in der Nähe zuvor aus den Beobachtungen bMes ge-
schätzter Startwerte der Eingangsparameter p(0). Besitzt die Zielfunktion
mehrere lokale Nebenminima, kann der Optimierungsalgorithmus in ein
solches abgelenkt werden, weshalb Startwerte in der Nähe des globalen
Minimums notwendig sind. Zudem reduzieren Startwerte in der Nähe
des Optimums die Anzahl der benötigten Iterationssschritte des Optimie-
rungsalgorithmus und somit die benötigte Rechenzeit. Beispiele für lokale
Optimierungsalgorithmen sind der Nelder-Mead-Simplex- [NM65] oder der
BOBYQA-Algorithmus. Das Akronym BOBYQA steht für bound optimi-
zation by quadratic approximation [Pow09]. Wie der Name bereits sagt,
wird bei diesem Algorithmus die Zielfunktion als quadratische Funktion
approximiert und dessen Minimum gesucht, wobei während der Suche
Parametergrenzen berücksichtigt werden. Ähnlich zum BOBYQA ist der
COBYLA (constrained optimization by linear approximation [Pow94]),
der die Zielfunktion linear interpoliert. Bei diesen handelt es sich um
ableitungsfreie Algorithmen, sodass diese geeignet sind für nicht stetig
differenzierbare Zielfunktionen.

Weiter verbreitet sind Gradienten-basierte Verfahren, die das Minimum
der Zielfunktion in Richtung des abfallenden Gradienten suchen. Dieser
wird meist numerisch über finite Differenzen approximiert, kann aber auch
durch algorithmisches Differenzieren [Mar19] berechnet werden.
Alternativen stellen globale Optimierungsalgorithmen wie genetische
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3.2 Messverfahren zur akustischen Materialparameterbestimmung

[Gol12] oder evolutionäre Algorithmen [PLS05] dar. Diese benötigen keine
Startwerte [Gol12], jedoch in der Regel eine deutlich höhere Anzahl Itera-
tionen, was zu einem höheren Rechenaufwand führt. Existieren statt eines
eindeutigen globalen Minimums eine Vielzahl gleichwertiger lokaler Mini-
ma, ist eine eindeutige Lösung mittels globalen Optimierungsalgorithmus
ebenfalls nicht möglich.

3.2 Messverfahren zur akustischen
Materialparameterbestimmung

Neben den weit verbreiteten, meist zerstörenden, mechanischen Methoden,
existieren eine Vielzahl ultraschallbasierter, zerstörungsfreier Ansätze zur
Materialparameterbestimmung von Polymeren. Da für die meisten Verfah-
ren spezielle Prüfkörper mit bestimmten Geometrien hergestellt werden
müssen, können die Ergebnisse nicht ohne weiteres auf andere Verfah-
ren übertragen werden, weil die Materialeigenschaften einiger Kunststoff-
und Metallproben stark vom Herstellungsprozess selbst beeinflusst werden
[GS15]. Selbst wenn zum Vergleich die identische Probe verwendet wird,
erfassen mechanische Messverfahren das Materialverhalten im quasistati-
schen, ultraschallbasierte Methoden hingegen im hochfrequenten, dynami-
schen Frequenzbereich. Werden zudem unterschiedliche Materialmodelle
im nieder- und hochfrequenten Bereich genutzt, anstatt eines geeigneten
Materialmodells zur Beschreibung von sowohl quasistatischem wie auch
hoch dynamischem Bereich, ergeben sich zusätzliche Diskrepanzen.

3.2.1 Mechanische Messverfahren
Das am weitesten verbreitete Verfahren zur zerstörenden Bestimmung
des statischen Elastizitätsmoduls von Kunststoffen ist der Zugversuch
nach DIN EN ISO 527 [MHM11; DIN 527]. Dabei wird so lange an ei-
ner Probe gezogen, bis diese reißt, während kontinuierlich die Zugkraft
gemessen wird. Wird diese auf die Querschnittsfläche der Probe bezogen,
ergibt sich die aufgebrachte Zugspannung. Über die gemessene Längenän-
derung des Zugstabs wird die mechanische Dehnung ermittelt, sodass ein
Spannungs-Dehnungs-Verhalten gemessen wird. Der resultierende statische
Elastizitätsmodul wird als Sekantenmodul aus der Steigung einer Sekante
am Spannungs-Dehnungs-Diagramm im Bereich von 0,05 % und 0,25 % der
Dehnung bestimmt [GS15]. Da es sich um eine quasistatische Messung han-
delt, kann aus dem Zugversuch keine Aussage über das frequenzabhängige
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Verhalten getroffen werden.
Hierfür stellt der Kriech- bzw. Retardationsversuch ein standardisier-

tes Prüfverfahren nach DIN EN ISO 899 dar. Mittels definierter Masse
wird eine konstante mechanische Spannung σ0 aufgebracht und die zeit-
abhängige Dehnungskurve ε (t) gemessen, welche mit J (t) = ε (t) /σ0 die
Kriechnachgiebigkeit J (t) liefert. [DIN 899] Da die Spannungsaufprägung
nicht als idealer Sprung realisiert werden kann, erfolgt die Messung der
Dehnungskurve um einige Sekunden verzögert [Lak04].
Analog zum Retardationsversuch, wird beim Relaxationsversuch [DIN

53441] eine konstante Dehnung εk aufgebracht und der resultierende Span-
nungsverlauf σ (t) aufgenommen, um über G (t) = σ (t) /εk den Rela-
xationsmodul G (t) zu bestimmen. Die Fouriertransformation des Span-
nungsverlaufs liefert schließlich nach Gleichung 2.28 den Speicher- und
Verlustmodul. [Lak04] Retardations- und Relaxationsversuch eignen sich
für einen Frequenzbereich von unter 1 Hz, wohingegen sich Geräte zur
Dynamisch-Mechanischen-Analyse (DMA) nach DIN EN ISO 6721 [GS15]
für einen Frequenzbereich von bis zu 200 Hz eignen [Hit22; Tex]. Bei der
DMA mit erzwungenen Schwingungen wird ein streifenförmiger Probe-
körper mit einer sinusförmigen mechanischen Spannung angeregt und
die Dehnung gemessen. Die Aufzeichnung der Dehnung führt dazu, dass
Phasenverschiebung δ zwischen mechanischer Spannung und Dehnung
sowie der Betrag des komplexen Moduls durch Quotientenbildung nach
Gleichung 2.28 bestimmt werden können [GS15; N23]. Die obere Grenze
im Frequenzbereich wird durch die Resonanzfrequenz des Probekörpers
gebildet [GS15], da sich in dem Bereich stehende Wellen überlagern.
Eine Möglichkeit die obere Frequenz-Barriere zu umgehen, ist das Aus-

nutzen des Zeit-Temperatur-Superpositions-Prinzips [Bon09b]. Dies setzt
voraus, dass sich die Einflüsse von Temperatur und Zeit ungestört überla-
gern. Allerdings beeinflusst ein starker Temperaturanstieg die Eigenschaften
der Probe z.B. durch Polymerkettenspaltung, sodass eine nachfolgende Mes-
sung bei niedrigerer Temperatur andere Ergebnisse liefert als eine Messung
bei zunächst niedriger und anschließend hoher Temperatur [Lak04].

3.2.2 Ultraschallbasierte Messverfahren
Ergänzend zu den quasistatischen, meist zerstörenden Prüfverfahren, ge-
winnen ultraschallbasierte Prüfverfahren zunehmend an Bedeutung. Neben
der Zerstörungsfreiheit ist insbesondere die Anwendbarkeit bei höheren
Frequenzen als Ergänzung zu den quasistatischen Verfahren notwendig, um
Kenntnisse der Materialparameter bei höheren Frequenzen im Megahertz-
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3.2 Messverfahren zur akustischen Materialparameterbestimmung

Bereich z.B. zur Dimensionierung von Ultraschallsensoren zu erlangen.
Als direktes Messverfahren sind Laufzeitmessungen im Impuls-Echo oder

Transmissionsverfahren [BRF16], teilweise auch unter Wasser [MA71] weit
verbreitet, wobei letzteres für viele Polymere aufgrund ihrer Wasserauf-
nahme eher ungeeignet ist. Bei bekannter Länge der Messstrecke lässt sich
durch Messung der Laufzeit der Welle deren Longitudinal bzw. Transversal-
wellengeschwindigkeit bestimmen. Dabei werden die Signale in der Regel
von direkt oder zum Teil auch luftgekoppelten Schallwandlern gesendet
und empfangen. [CH01; CC96; KK86; DPV97; AC91]
Als breitbandige Schallquelle dienen direkt gekoppelte Phased Arrays

[BLB18] oder Impulslaser (i.d.R. Nd:YAG) [SML14; JJ01; PCR08; CPR10;
WL99]. Abhängig von der Impulsenergie und den optischen sowie thermo-
elastischen Eigenschaften des Materials, werden letztere in der Regel zur
Anregung von Lamb-Wellen in Plattenwellenleitern eingesetzt.

Der Empfang von Plattenwellen erfolgt piezoelektrisch [CMB16] oder
mittels elektromagnetischer Wandler [DB10], wobei letztere auf leitfähige
Materialien als Messmedium beschränkt sind. Zur berührungslosen Mes-
sung, sind zudem Laser-Doppler-Vibrometer zur Schwingungsdetektion
weit verbreitet [GVR13; CPR10; PB19; HN19; PKR19]. Die Detektierbar-
keit der mechanischen Auslenkung der Welle hängt in dem Fall von den
optischen Reflexionseigenschaften der Probe ab. In [CSG21] zeigt sich, dass
Laser-Doppler-Vibrometer Verschiebungen senkrecht zur Plattenoberfläche
detektieren, während der dort verwendete piezoelektrische Schallwandler
Verschiebungen parallel zur Plattenoberfläche aufnimmt. Durch Variation
des Abstands zwischen Anregung und Empfang liefert solch ein Messverfah-
ren zeit- und ortsaufgelöste Messsignale. Zur Auswertung dieser wird eine
zweidimensionale Fourier-Transformation durchgeführt. In der Darstellung
des Betrags der Fourier-Transformierten werden abhängig von Frequenz
und Wellenzahl die sich ausbreitenden Moden als Grate sichtbar [AC90;
AC91]. Aufgrund ihrer Ähnlichkeit zu Dispersionsdiagrammen wird diese
Darstellung im weiteren Verlauf der Arbeit auch als Dispersionsabbildung
bezeichnet.
Die Materialparameterbestimmung erfolgt dann im inversen Verfahren

(vgl. Abschnitt 3.1) durch Abgleich der Grate auf berechnete Dispersions-
kurven. Der Abgleich erfolgt mit einem Optimierungsalgorithmus, wobei
genetische Algorithmen [SD08] sehr weit verbreitet sind [MM12; BLB18;
PB19]. Dazu werden die Moden aus den Messdaten extrahiert, um die Ab-
weichungen zwischen simulativ berechneten und detektierten Wellenzahlen
zu minimieren. Die Automatisierung des Messverfahrens setzt dementspre-
chend eine verlässliche, robuste Modendetektion voraus. Da die Qualität

29
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der Messdaten stark von den viskoelastischen Eigenschaften der Probe
sowie weiteren Messartefakten abhängen, ist eine verlässliche Modende-
tektion insbesondere bei Materialproben mit hoher akustischer Dämpfung
nicht immer gegeben. Die Berechnung der Dispersionskurven erfolgt in der
Regel numerisch durch halbanalytische FEM-Ansätze [SRM11; PB19] oder
eine numerische Nullstellensuche der Rayleigh-Lamb-Frequenzgleichung
[GBH18; CMB16; VKB07]. Bei der Rayleigh-Lamb-Frequenzgleichung
wird eine homogene, isotrope Plattenstruktur angenommen, was das zu
identifizierende Materialmodell stark einschränkt.
Alternativen bieten verschiedene Transmissionsmessverfahren. So mes-

sen z.B. Castaings et al. [CHK00] die Transmission ebener Wellen durch
eine Platte unter Wasser. Senden und Empfangen erfolgen dabei piezo-
elektrisch. Der winkel- und frequenzabhängige Transmissionsfaktor wird
mittels Thomson-Haskell-Methode [Tho50; Has53] zur Prädiktion des Emp-
fangsspektrums bestimmt. Dieses wird in einem inversen Verfahren mit
dem gemessenem Empfangsspektrum verglichen. Dabei werden sowohl
Real- als auch Imaginärteil der Koeffizienten der Elastizitätsmatrix (Elas-
tizitätskoeffizienten) bestimmt, wobei die Unsicherheit der Imaginärteile
gegenüber den Realteilen deutlich höher ist [CHK00].
Beim dreidimensionalen Polar Scan wird mit einer breitbandigen Im-

pulsanregung Reflexion und Transmission durch eine Platte bei unter-
schiedlichen Winkeln gemessen [KMD16]. Der Aufbau unterscheidet sich
im Vergleich zu Castaings [CHK00] durch eine zusätzliche Drehebene
der Platte. Zur besseren Ankopplung der Schallwandler wird wie bei
[CHK00] unter Wasser gemessen. Durch Auswertung der Laufzeit werden
zunächst die ideal-elastischen, reellen Elastizitätskoeffizienten bestimmt,
während die viskoelastischen, komplexen Elastizitätskoeffizienten im zwei-
ten Schritt durch Auswertung der Amplitudeninformation im inversen
Verfahren bestimmt werden [MKD19]. Das Vorwärtsmodell basiert auf
Lösung der Christoffel-Gleichung. Als Optimierungsalgorithmus wird der
Particle Swarm-Algorithmus [PKB07] genutzt. Durch das Eintauchen un-
ter Wasser sind die Verfahren von [CHK00; MKD19; PKB07] geeignet für
metallische Werkstoffe und hydrophobe Polymere, während sich die Eigen-
schaften hydrophiler Polymere durch dessen Wasseraufnahme verändern.
Ein anderes Verfahren basierend auf Transmissionsmessungen nutzen

Bause et al. [BRF16]. In dem Aufbau werden zwei Kontakt-Piezokomposit-
Wandler für Transmissionsmessungen an zylinderförmigen Polymerproben
verwendet. Der Vergleich der Empfangssignale mit Simulationssignalen
des zylindrischen Wellenleiters erfolgt durch kleinste Fehlerquadrate im
Zeitbereich. Das Vorwärtsmodell basiert auf Modaler Expansion, wobei
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die Berechnung der Eigenschwingungen mittels Scaled Boundaray FEM
(SBFEM) [GBS14] erfolgt. Zudem wird nicht nur die komplexe Elastizi-
tätsmatrix im inversen Verfahren bestimmt, sondern über Messungen bei
mehreren Frequenzen ein frequenzabhängiges fraktionales Zener-Modell
mittels BOBYQA-Algorithmus [Pow09] identifiziert.

3.3 Dämpfungsmodelle
Besonders einfach lässt sich eine frequenzunabhängige Elastizitätsmatrix
z.B. mit

C̃ = C (1 + jα0) (3.4)
in Simulationen nutzen. Zwar erhöht sich durch die komplexen Para-
meter die Rechenzeit, jedoch sind keine weiteren Modifikationen in der
Simulation notwendig. Genutzt wird es z.B. zur Beschreibung des Schwin-
gungsverhaltens von Piezokeramiken [FSC21], die eine schwache Dämpfung
aufweisen. Um jedoch die Kausalitätsbedingungen nach Kramers-Kronig
[Kra28; Kro26] zu erfüllen, muss jedes dissipative System notwendigerweise
auch dispersiv sein [Fel21], weshalb mehrere frequenzabhängige Mate-
rialmodelle existieren. Neben den elementaren Modellen wie Newton-,
Maxwell- oder dem Kelvin-Voigt-Modell, [Mai10; RDC11] ist das Rayleigh-
Modell [Ray85] am meisten verbreitet, weil es sich mathematisch besonders
leicht in eine Finite-Elemente-Simulation einbauen lässt (vgl. Unterab-
schnitt 2.4.2), sodass es in vielen kommerziellen FEM-Software-Tools ent-
halten ist. In Frequenzbereich-Berechnungen lässt es sich ebenfalls leicht mit
Gleichung 2.68 einbauen. Da die Dämpfung sowohl für kleine als auch große
Frequenzen gegen unendlich läuft, verhält es sich nicht kausal [Fel21]. Da-
mit beschränkt sich seine Gültigkeit auf einen schmalbandigen Bereich um
einen Arbeitspunkt. Eine zu weite Entfernung vom Frequenz-Arbeitspunkt
führt zu schlechteren Übereinstimmungen mit Messergebnissen. Physika-
lisch begründet hingegen ist das Zener-Modell (auch als standard linear
solid bekannt) [ZS49], welches mit Gleichung 2.38 modelliert wird. Auf-
grund der Analogie zwischen akustischen und elektromagnetischen Wellen,
lässt es sich auch zur physikalisch begründeten Modellierung dielektrischer
Relaxation nutzen [BRH98]. Bei Betrachtung der thermoelastischen Kopp-
lung führt eine verallgemeinerte Form der Wärmeleitungsgleichung nach
[Mai94; Mai10; Zen65; Pri96] zum fraktionalen Zener-Modell, welches durch
Gleichung 2.41 beschrieben wird. Die Berücksichtigung der fraktionalen
Ableitungsordnung beschränkt sich nicht auf das fraktionale Zener-Modell,
sondern findet sich z.B. auch beim Maxwell-Modell [Rog83] wieder. Neben
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der Modellierung des viskoelastischen Verhaltens von z.B. Gehirngewe-
be [KST05], ist das fraktionale Zener-Modell geeignet zur Beschreibung
des breitbandigen, dynamischen Verhaltens von Polymeren [Pri03; BT86;
BRF16]. Bause [Bau16] nutzt eine Abwandlung des fraktionalen Zener-
Modells zur Beschreibung des akustischen Verhaltens polymerer, extru-
dierter Hohlzylinder. Die transversal-isotrope Elastizitätsmatrix zerlegt er
zuvor in seine Eigenwerte und Eigenvektoren nach Gleichung 2.39 [The00],
welche den Hauptenergierichtungen im Material entsprechen. Dabei erge-
ben sich vier Eigenwerte [The00]. Für das Dämpfungsmodell fasst Bause
jedoch drei zusammen, die quasi eine reine Scherbewegung repräsentieren,
während der übrige Eigenwert Kompressionsbewegungen repräsentiert und
mit entsprechend anderen Modellparametern modelliert wird. Mit diesem
Modell und dem Messverfahren für hohlzylindrische Polymerproben ge-
lingt es Bause in [BRF16] Materialparameter zu identifizieren, die das
dynamische Verhalten realitätsnah abbilden.

3.3.1 Das fraktionale Zener-Modell zur Modellierung
von Polymeren

Aufgrund der einfachen Implementierung in einer FEM-Simulation (vgl.
Unterabschnitt 2.4.2) ist das Rayleigh-Modell weit verbreitet, jedoch nicht
physikalisch begründet und auch im Allgemeinen nicht kausal. Das fraktio-
nale Zener-Modell hingegen ist physikalisch begründet und somit kausal,
was sich mittels Kramer-Kronig-Beziehung [WMM05] zeigen lässt. Zahlrei-
che Quellen [Pri03; BT86; Bau16] bestätigen die Eignung des fraktionalen
Zener-Modells zur Beschreibung des viskoelastischen Materialverhaltens
von Polymeren.

Daher werden zunächst die Ausbreitungseigenschaften ebener Wellen
(Schallgeschwindigkeit und Absorption) bei Annahme eines fraktionalen
Zener-Modells nach Gleichung 2.41 betrachtet.
Als Absorption αF wird im Folgenden die akustische Dämpfung ei-

ner Welle unter Freiraumbedingungen bezeichnet. Unter Annahme von
Freiraumbedingungen ergeben sich die jeweiligen Ausbreitungsgeschwin-
digkeiten und die akustische Absorption in Abhängigkeit von der Relaxati-
onszeitkonstanten τσ, der Retardationszeitkonstanten τε, der fraktionalen
Ableitungsordnung a und der (quasi)statischen Schallgeschwindigkeit c0
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zu:

c (ω) = c0 Re
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Im weiteren Verlauf der Arbeit wird die alternative Darstellung
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mit
d =

(
τε
τσ

)a
(3.9)

als Verhältnis der Zeitkonstanten verwendet. Der Verlustfaktor ergibt sich
nach Gleichung 2.30 zu

tan δ = Im{γ (ω)}
Re{γ (ω)} . (3.10)

Abbildung 3.1 bis 3.3 zeigen Ausbreitungsgeschwindigkeit und Absorpti-
on unter Freiraumbedingungen bei unterschiedlich parametrisierten fraktio-
nalen Zener-Modellen. Allgemein lassen sich die Verläufe in drei Bereiche
nach Tabelle 3.1 einteilen: Für kleine Frequenzen (ω << τ−1

ε ) bleibt die
Ausbreitungsgeschwindigkeit nahezu beim statischen Wert bis sie im Be-
reich von τ−1

ε << ω << τ−1
σ proportional zu ωa/2 ansteigt, um im Bereich

ω >> τ−1
σ den Endwert von c0 (τετ−1

σ )a/2 = c0
√
d zu erreichen. Dabei führt

der Parameter d zu einer Skalierung des Endwertes und die Relaxationszeit
τσ zu einer Verschiebung auf der Frequenzachse, während die fraktionale
Ableitungsordnung die Steigung des mittleren Segments um den Wende-
punkt bestimmt. So führt eine niedrige Ableitungsordnung in Abbildung 3.2
unterhalb des Wendepunkts zu einer höheren, oberhalb des Wendepunkts
zu einer niedrigeren Ausbreitungsgeschwindigkeit c. Ähnliches gilt für den
Verlustfaktor in Abbildung 3.4: Die Relaxationszeitkonstante τσ verschiebt
den Verlustfaktor entlang der Frequenzachse, der Parameter d skaliert
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Tabelle 3.1: Segmente des Dispersionsverhaltens des fraktionalen Zener-
Modells nach [HN11]

Segment Wellengeschwindigkeit Absorption
ω << τ−1

ε = τ−1
σ d−1/a c (ω) ≈ c0 αF (ω) ∝ ω1+a

τ−1
ε << ω << τ−1

σ c (ω) ∝ ωa/2 αF (ω) ∝ ω1−a/2

ω >> τ−1
σ c (ω →∞) = c0 (τετ−1

σ )a/2 αF (ω) ∝ ω1−a

dessen Maximum, während die Ableitungsordnung a sowohl das Maximum
skaliert als auch die Steigung um die Wendepunkte. Dementsprechend
führt eine kleinere Ableitungsordnung a zu einem kleineren Maximum,
gleichzeitig jedoch auch zu einem höheren Verlustfaktor bei niedrigen und
und hohen Frequenzen. Die Absorption steigt für hohe Frequenzen, je
kleiner a, während diese im niederfrequenten Bereich keine Auswirkungen
auf die Absorption hat (vgl. Abbildung 3.2).
Bei Variation des Parameters d zeigt sich in Abbildung 3.1 für die

Absorption gleiches Verhalten wie für die Ausbreitungsgeschwindigkeit.
Angesichts des Verlustfaktors in Abbildung 3.4 wäre bei Variation der

Relaxationszeitkonstante τσ eine reine Verschiebung der Absorption entlang
der Frequenzachse, wie bei der Ausbreitungsgeschwindigkeit, zu erwarten.
Aufgrund der Parametrisierung nach Gleichung 3.8 führt eine Erhöhung
der Relaxationszeitkonstante τσ jedoch auch stets zu einer Erhöhung bzw.
Veringerung des Verlustmoduls und somit der Absorption.
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Abbildung 3.1: Ausbreitungsgeschwindigkeit und Absorption bei Variation
des Parameters d: d = 1,07 (blau), d = 1,09 (orange),
d = 1,11 (grün), restliche Parameter: c0 = 1061 m s−1,
τσ = 0,6 µs, a = 1
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Abbildung 3.2: Ausbreitungsgeschwindigkeit und Absorption bei Variation
von a: a = 0,8 (blau), a = 0,9 (orange), a = 1 (grün)
(ist gleichzeitig die obere physikalische Grenze), restliche
Parameter: c0 = 1061 m s−1, τσ = 0,6 µs, d = 1,09
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Abbildung 3.3: Ausbreitungsgeschwindigkeit und Absorption bei Variation
von τσ: τσ = 0,06 µs (blau), τσ = 0,6 µs (orange), τσ = 6 µs
(grün), restliche Parameter: c0 = 1061 m s−1, d = 1,09,
a = 1
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Abbildung 3.4: Verlustfaktor bei Variation der Modellparameter. Para-
meter, falls nicht anders angegeben: c0 = 1061 m s−1,
τσ = 0,6 µs, d = 1,09, a = 1
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3.3.2 Fraktionales Zener-Modell für Kompressions- und
Scherbewegungen

Zur Generalisierung auf alle Raumrichtungen führt Bause [Bau16] eine
Eigenwertzerlegung der Nachgiebigkeitsmatrix S nach [TS99] durch, womit
jede Hauptrichtung des Materials nach Gleichung 2.40 unterschiedliche
Absorption erfahren kann. Bause verwendet zylinderförmige, extrudierte
Proben und nimmt dafür ein transversal-isotropes Materialmodell an. Bei
der Bestimmung effektiver, elastischer Materialparameter zeigt sich, dass
für homogene Polymerplatten bereits ein isotropes Materialmodell geeignet
ist.
Bei Zerlegung einer isotropen Elastizitätsmatrix

C =




K + 4
3µ K − 2

3µ K − 2
3µ 0 0 0

K + 4
3µ K − 2

3µ 0 0 0
K + 4

3µ 0 0 0
µ 0 0

sym. µ 0
µ




(3.11)

mit dem Kompressionsmodul K und dem Schermodul µ ergeben sich nach
Gleichung 2.39 drei Eigenwerte Λi mit den zugehörigen Projektionsmatri-
zen,
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3 Stand des Wissens

die sich aus den jeweiligen Eigenvektoren Di = viv
T
i zusammen setzen

[Bau16]:

D1 =1
3




1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




; Λ1 = 3K, (3.12)

D2 =1
3




2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




; Λ2 = 2µ, (3.13)

D3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




; Λ3 = µ. (3.14)

Wie sich an den Matrix-Einträgen ablesen lässt, bildet der dritte Ei-
genwert reine Scherbewegungen ab, der erste Eigenwert eine reine Kom-
pressionsbewegung, während der zweite Eigenwert bzw. dessen zugehörige
Projektionsmatrix deren Kopplung abbildet. Werden der erste und der
zweite Eigenwert zu einer Longitudinalbewegung mit

C = (3KD1 + 2µD2)︸ ︷︷ ︸
Longitudinal

+ µD3︸ ︷︷ ︸
Transversal

(3.15)

zusammengefasst, können Longitudinal- und Transversalwellen mit un-
terschiedlicher Parametrisierung modelliert werden. Bause [Bau16] wählt
jedoch mit

C = 3KD1︸ ︷︷ ︸
Kompression

+µ (2D2 +D3)︸ ︷︷ ︸
Scherung

(3.16)

die Zerlegung in Kompressions- und Scherbewegungen, um diese mit unter-
schiedlichen Parametern zu modellieren [Bau16]. Diese Zerlegung stellt eine
Analogie zur Aufteilung der Viskosität in Volumen- und Scherviskosität

38



3.3 Dämpfungsmodelle

bei Flüssigkeiten dar [CHB19; Šut84].
Als Eigenwerte ergeben sich dafür Kompressions- und Schermodul, K

und µ, mit den zugehörigen Projektionsmatrizen D1, D2 und D3 aus
Gleichung 3.12 bis 3.14. Demnach ist eine Zerlegung nach Kompressions-
und Scherbewegungen möglich, um auf diese unterschiedliche Dämpfungs-
modelle anzuwenden (vgl. Abschnitt 3.3 bzw. [Bau16]).

Bause [Bau16] schlägt bei Polymeren die Anwendung eines fraktionalen
Zener-Modells auf die jeweiligen Komponenten vor. Da es sowohl physi-
kalisch begründet sowie kausal ist und es sich als gut geeignet zeigt, wird
in dieser Arbeit darauf zurückgegriffen. Das resultierende Materialmodell
wird somit nach Gleichung 3.16 mit der komplexen frequenzabhängigen
Elastizitätsmatrix

C̃ = 1 + dK (jωτσK)aK

1 + (jωτσK)aK 3KD1 +
1 + dµ

(
jωτσµ

)aµ

1 +
(
jωτσµ

)aµ µ (2D2 +D3) (3.17)

über insgesamt acht Materialparameter beschrieben, die zu identifizie-
ren sind. Dazu zählen der statische Kompressionsmodul K, der statische
Schermodul µ, die Relaxationszeitkonstanten τσK und τσµ , die fraktiona-
len Ableitungsordnungen aK und aµ, sowie der Parameter dK bzw. dµ,
der das Verhältnis zwischen Retardations- und Relaxationszeitkonstante
beschreibt.
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3 Stand des Wissens

3.4 Wellenleitersimulationsverfahren

Frequenzabhängige Dämpfungsmodelle lassen sich sehr leicht durch An-
nahme komplexer Materialparameter und Auswertung bei entsprechender
Frequenz in harmonische Frequenzbereichssimulationen einfügen. Für FEM-
Simulationen im Zeitbereich müssen aufgrund der Faltungsoperation in
Gleichung 2.27 neben dem aktuellen Zeitschritt zusätzlich die Ergebnisse
vorheriger Zeitschritte gespeichert werden. Dies führt zu einem enormen
Speicherbedarf und ist nicht praktikabel. Das Dilemma lässt sich bei Wellen-
leitern jedoch leicht mit Ansätzen der modalen Expansion [LMH; CWZ00]
lösen. Dafür werden zunächst im Frequenzbereich die Eigenschwingungen
berechnet und mithilfe eines Fourier-Reihen-Ansatzes das Zeitsignal appro-
ximiert. Zur Berechnung des zugrunde liegenden Dispersionsdiagramms
gibt es unterschiedliche Berechnungsansätze. Während sich eine numerische
Nullstellensuche der Rayleigh-Lamb-Gleichung (vgl. Gleichung 2.43) auf
isotrope Plattenwellenleiter beschränkt [GBH18; VKB07; CMB16] gibt es
zahlreiche numerische Simulationstechniken. Der meist verbreitete Ansatz
dafür ist die semi-analytische Finite-Elemente-Methode (SAFE) [BMD06].
Diese nimmt in Ausbreitungsrichtung eine ebene, harmonische Welle an,
während die übrigen Raumrichtungen mittels FEM diskretisiert werden.

Der zugrunde liegende Ansatz kann auf verschiedene Weisen z.B. als
Postprocessing aus Standard-FEM-Software abgeleitet [MDB05; SCG11;
MWG06; Tre07] oder z.B. mittels Scaled Boundary FEM (SBFEM)[GMS13;
WS00] hergeleitet werden.

Der generelle Vorteil der Scaled Boundary FEM ist der, dass wie bei der
Randelementmethode (Boundary Element Method) nur der Rand diskre-
tisiert werden muss [WS00; Bes87; Gua10]. Dadurch verringert sich der
Rechenaufwand, simultan ergeben sich aber bei der Randelementmetho-
de anders als bei der FEM vollbesetzte Matrizen, was den verminderten
Speicherbedarf gegenüber der geringeren Anzahl an Freiheitsgraden kom-
pensiert.

Gleichzeitig werden bei der SBFEM die Randelemente wie finite Elemen-
te behandelt. Die Dimension der finiten Randelemente ist um eins geringer
als bei gewöhnlichen finiten Elementen, sodass sie die Vorteile der dünn
besetzten Matrizen finiter Elemente mit dem reduzierten Diskretisierungs-
aufwand der Randelementmethode verbindet [WS00].
Beispielsweise ergibt sich in kartesischen Koordinaten für eine sich in

y-Richtung ausbreitende Welle der semi-analytische FEM-Ansatz für die
mechanischen Verschiebungen eines finiten Elements ξel aus Gleichung 2.52
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3.4 Wellenleitersimulationsverfahren

zu
ξel = N (x, z) ξ̂Nej(ky−ωt). (3.18)

mit den Ansatzfunktionen in N (x, z), der Basis der nodalen Verschiebun-
gen ξ̂N, der Kreiswellenzahl k sowie der Kreisfrequenz ω [BMD06; Ros04].
Während bei dem herkömmlichen Finite-Elemente-Ansatz die örtlichen
Abhängigkeiten vollständig in den Ansatzfunktionen N (x, z) enthalten
sind, ist die örtliche Abhängigkeit der Ausbreitungsrichtung (y-Richtung)
nur in der Exponentialfunktion enthalten.
Unter der Annahme von Spannungsfreiheit am Rand der Platte wird

der semi-analytische FEM-Ansatz aus Gleichung 3.18 in Gleichung 2.59
eingesetzt. Gleichzeitig wird die Testfunktion transponiert und konjugiert
komplex zum Ansatz aus Gleichung 3.18 gewählt. Damit wird die Integral-
gleichung aus Gleichung 2.59 zu

0 =
ˆ
Vel

δξ̂
T
NN

Te−j(ky−ωt)ρelN
∂2

∂t2

(
ej(ky−ωt)ξ̂N

)
dV

︸ ︷︷ ︸
I1

+
ˆ
Vel

(
δξ̂N

)T
(LN )T e−j(ky−ωt)CelLNej(ky−ωt)ξ̂N dV

︸ ︷︷ ︸
I2

(3.19)

modifiziert. Das erste Integral I1 vereinfacht sich zu

I1 = −δξ̂T
Nω

2
ˆ
Vel

NTρelNdV
︸ ︷︷ ︸

Mel

ξ̂N (3.20)

und ergibt äquivalent zur herkömmlichen FEM die Element-Massematrix
M el.
Mit Zusammenfassen der Differentialoperatormatrix L und der Matrix

der Ansatzfunktionen N zur FEM-Differentialoperatormatrix B wie in
Gleichung 2.54 lässt sich das zweite Integral als

I2 = δξ̂
T
N

ˆ
Vel

BTe−j(ky−ωt)CelBej(ky−ωt) dV ξ̂N (3.21)

schreiben. Da nur die Exponentialfunktion von der Ausbreitungsrichtung
y abhängt, lässt sich die örtliche Ableitung in Ausbreitungsrichtung leicht
analytisch berechnen. Daher wird die FEM-Differentialoperatormatrix B
in eine FEM-Differentialoperatormatrix B1, die nur Differentialoperatoren
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3 Stand des Wissens

orthogonal zur Ausbreitungsrichtung enthält, und in eine Matrix B2, die nur
Ableitungsinformationen in Ausbreitungsrichtung enthält, zerlegt. Somit
lässt sich Gleichung 3.21 zu

I2 = δξ̂
T
N

ˆ
Vel

(B1 − jkB2)T e−j(ky−ωt)Cel (B1 + jkB2) ej(ky−ωt) dV ξ̂N

= δξ̂
T
N

ˆ
Vel

(B1 − jkB2)TCel (B1 + jkB2) dV ξ̂N

= δξ̂
T
N

ˆ
Vel

[BT
1CelB1 − jkBT

2CelB1 + jkBT
1CelB2 + k2BT

2CelB2]dV ξ̂N

(3.22)

umformen. Wie bereits in Gleichung 2.61 können die einzelnen Summanden
kürzer als Steifigkeitsmatrizen

K1,el =
ˆ
Vel

BT
1CelB1dV (3.23)

K2,el =
ˆ
Vel

[
BT

1 Cel B2 −BT
2CelB1

]
dV (3.24)

K3,el =
ˆ
Vel

BT
2CelB2dV (3.25)

geschrieben werden. Die Steifigkeitsmatrix K1,el enthält die örtlichen Ab-
leitungsinformationen senkrecht zur Ausbreitungsrichtung y und beschreibt
somit das Dehnungsverhalten senkrecht zur Ausbreitungsrichtung, während
K3,el das Dehnungsverhalten in Ausbreitungsrichtung beschreibt. Beide
Matrizen sind symmetrisch. Die Kopplung des Dehnungsverhaltens von
Ausbreitungsrichtung mit den anderen beiden Raumrichtungen beschreibt
K2,el, da diese sowohl örtliche Ableitungsinformationen in Ausbreitungs-
richtung wie auch senkrecht dazu enthält. [BMD06]

Einsetzen der Masse- und Steifigkeitsmatrizen in Gleichung 3.19 ergibt

δξ̂
T
N


K1,el + jkK2,el + k2K3,el︸ ︷︷ ︸

Kel

−ω2M el


 ξ̂N = 0. (3.26)

Wie bereits analog in Gleichung 2.61 ist δξ̂T
N eine beliebig von Null

verschiedene Funktion [Lin14], sodass sich Gleichung 3.26 nach Assem-
blierung (Zusammensetzen der lokalen Masse- und Steifigkeitsmatrizen
zur jeweiligen globalen Masse- und Steifigkeitsmatrix durch Zuordnung
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3.4 Wellenleitersimulationsverfahren

der Knotenpunkte der einzelnen Elemente zu seinen globalen Knoten-
punkten (vgl. Abschnitt 2.4)) der lokalen Element-Masse- und Element-
Steifigkeitsmatrizen zur jeweiligen globalen Masse- und Steifigkeitsmatrix
zu [

K1 + jkK2 + k2K3 − ω2M
]
Ξ̂ = 0 (3.27)

ergibt. Gleichung 3.27 ist ein homogenes Eigenwertproblem. Unter Vorgabe
der Kreiswellenzahl k können die Eigenwerte ω2 und somit die Kreisfre-
quenzen ω berechnet werden. Die Eigenvektoren Ξ enthalten die jeweiligen
nodalen Auslenkungen. [BMD06]

Wird das frequenzabhängige Verhalten eines Systems untersucht, werden
in der Regel Frequenz f bzw. Kreisfrequenz ω vorgegeben und die zugehöri-
gen Kreiswellenzahlen k berechnet. Dazu wird das lineare Eigenwertproblem
zweiter Ordnung aus Gleichung 3.27 in ein lineares Eigenwertproblem erster
Ordnung der Form

(A− kB)Q = 0 (3.28)
mit

A =
(

0 K1 − ω2M
K1 − ω2M jK2

)
, B =

(
K1 − ω2M 0

0 −K3

)

sowie dem Eigenvektor

Q =
(

Ξ̂
kΞ̂

)

überführt [BMD06], welches leicht unter Vorgabe der Kreisfrequenz ω mit
einem gewöhnlichen Eigenwertlöser gelöst werden kann.
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4 Inverses Verfahren zur
Identifikation elastischer
Materialparameter

In diesem Kapitel wird ein inverses Messverfahren zur Bestimmung der
elastischen Materialparameter plattenförmiger Proben vorgestellt. Die
Auswertung erfolgt beispielhaft an isotropen Proben mithilfe von Lamb-
Wellen. Aufgrund der bereits erwähnten Charakterisitik, dass Lamb-Wellen
nur Freiheitsgrade innerhalb der Querschnittsfläche der Platte aufweisen,
wird ein zweidimensionales elastisches Materialmodell identifiziert, was
für isotrope Materialproben ausreichend ist, da deren ideal-elastische Elas-
tizitätsmatrix bereits durch zwei Parameter vollständig beschrieben ist.
Bei Werkstoffen mit richtungsabhängigen Materialparametern wie z.B.
orthotropen Werkstoffen ist dies nicht der Fall. Trotzdem wird in diesem
Kapitel eine zusätzliche Methode zur Bestimmung der übrigen Elastizitäts-
koeffizienten durch eine winkelabhängige Variation der Propagationsstrecke
im vorgestellten Messsystem vorgestellt.

4.1 Lösungsansatz
Der Lösungsansatz zur Bestimmung der elastischen Materialparameter
beruht auf den dispersiven akustischen Wellenleitereigenschaften platten-
förmiger Proben. Ähnlich zu den Arbeiten von [BLB18; PCR08; GVR13]
aus Unterabschnitt 3.2.2 wird der Abstand zwischen Sender und Empfänger
variiert, um sowohl zeit- als auch ortsaufgelöste Messdaten zu erhalten.
Am Vorbild von Alleyne [AC90; AC91] wird diese zeit- und ortsabhängige
Messsignalmatrix zweidimensional Fourier-transformiert. In der Visualisie-
rung der transformierten nun frequenz- und wellenzahlabhängigen Matrix
(Dispersionsabbildung) werden die sich ausbreitenden Moden als Grate
sichtbar.

Ein Abgleich der im Vorwärtsmodell berechneten Frequenz-Wellenzahl-
Paare durch Variation der Materialparameter bestimmt diese. Dabei wird

45



4 Inverses Verfahren zur Identifikation elastischer Materialparameter

davon ausgegangen, dass die Modelleingangsparameter den Materialpara-
metern der Probe entsprechen bei denen simulativ berechnete Moden mit
den in der Messung sichtbaren Moden übereinstimmen.
Die Lage der Moden im Dispersionsdiagramm (Abbildung 2.6) wird

durch die Geometrie und der effektiven, elastischen Materialparameter be-
stimmt. Allgemein sind mit effektiven, elastischen Materialparametern die
Koeffizienten der ideal-elastischen Elastizitätsmatrix bei gegebener Dichte
gemeint. Für ein isotropes Material vereinfacht sich die Elastizitätsmatrix,
sodass diese nur noch von zwei unabhängigen Parametern abhängt. Eine
alternative Materialmodelldarstellung für isotrope Werkstoffe kann über
die Schallgeschwindigkeiten erfolgen. Diese Darstellung hat den Vorteil,
dass das resultierende Dispersionsdiagramm unabhängig von der Dichte
berechnet werden kann (vgl. Unterabschnitt 4.2.1). Dies zeigt sich bereits
in der Tatsache, dass sich Longitudinal- und Transversalwellengeschwindig-
keit näherungsweise im Dispersionsdiagramm ablesen lassen, was bereits
Abbildung 2.6 zeigt.

Das allgemeine Vorgehen im inversen Verfahren ist in Abbildung 4.1
dargestellt. Neben den zu bestimmenden akustischen Materialparametern,
enthalten im Parametervektor p, werden für das Vorwärtsmodell (vgl.
Abschnitt 4.2) Dichte ρ und Plattendicke th benötigt. Die Plattendicke
wird direkt mittels Mikrometerschraube gemessen, während die Dichte
über das gemessene Plattenvolumen und die gravimetrisch bestimmte
Masse berechnet wird. Zur Sensitivitätssteigerung der Zielfunktion be-
züglich der sich ausbreitenden Moden und damit der Materialparameter
findet eine Signalvorverarbeitung der Messdaten (vgl. Abschnitt 4.6) statt.
Durch sie werden schwach ausgeprägte Moden für die nachfolgende Aus-
wertung der Zielfunktion stärker gewichtet. Bevor der Modellausgang bSim
(Frequenz-Wellenzahl-Paare) auf die Messdaten bMes (Dispersionsabbil-
dung) abgeglichen werden, werden aus den meist noch unverarbeiteten
Messdaten b0,Mes Startwerte p(0) (vgl. Abschnitt 4.9) für eine erste Initiali-
sierung des Vorwärtsmodells geschätzt. Ein Optimierungsalgorithmus (in
Abbildung 4.1 nur Optimierung genannt) variiert dann die Eingangspa-
rameter p(i) des Vorwärtsmodells bis der Wert der Zielfunktion ε

(
p(i)

)

minimal ist (vgl. Abschnitt 4.11). Die Modelleingangsparameter mit denen
die Ziel- bzw. Kostenfunktion ε

(
p(i)

)
minimal ist, sind dann die gesuchten

Materialparameter.
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Messung
der akus-
tischen

Wellenaus-
breitung

Signalvorverarbeitung

Startwerte Modellinitialisierung

Masse und
Geometrie
der Probe

Optimierung

Vorwärtsmodell

Zielfunktion

pend = argmin (ε (p))

b0,Mes

b0,Mes

p(0)

ρ, th

p(i)

bSim
(
p(i)

)

bMes

ε
(
p(i)

)

Messung
Farblegende:

Modell

Inverses
Verfahren

Abbildung 4.1: Konzept des inversen Messverfahrens

4.2 Vorwärtsmodell
Da eine numerische Nullstellensuche der Rayleigh-Lamb-Gleichung (Glei-
chung 2.43) auf der Annahme eines isotropen Materials beschränkt ist,
ermöglicht ein halbanalytisches Modell basierend auf dem semi-analytischen
Finite-Elemente-Ansatz aus [BDF05] eine modale Analyse von sowohl iso-
tropen als auch nicht-isotropen Plattenwellenleitern. Zusätzlich lässt es
sich sehr leicht zu einem mehrschichtigen System erweitern. Werden im
Modell alle drei Raumrichtungen berücksichtigt, können sowohl Lamb-
bzw. Lamb-artige als auch SH-Moden berechnet werden. Da SH-Wellen
im Messsystem nicht detektiert werden, genügt die Berechnung der Lamb-
bzw. Lamb-artigen Wellen. Daher werden die mechanischen Verschiebun-
gen und somit die Dehnungen in z-Richtung zu Null angenommen. Das
Hookesche Gesetz vereinfacht sich entsprechend der Annahme des ebenen
Verzerrungszustands nach Unterabschnitt 2.1.4, sodass sich die Dimension
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und damit der Rechenaufwand um die Hälfte reduziert.

Die Modelldiskretisierung erfolgt wie in Abbildung 4.2 dargestellt.

x

y∞∞
η Wellenausbreitung

Abbildung 4.2: Modell eines Plattenwellenleiters

In Ausbreitungsrichtung (y-Richtung) wird die Platte als unendlich
ausgedehnt sowie eine ebene, harmonische Welle angenommen, während
die Dickenrichtung, welche im Modell der x-Richtung entspricht, mittels
eindimensionaler finiter Elemente diskretisiert wird. Unter Verwendung
linearer Ansatzfunktionen besteht ein finites Element aus zwei Knoten.
Nach Abbildung 2.7 und Gleichung 2.50 ergibt sich die Matrix der lokalen
Ansatzfunktionen N mit den lokalen Ansatzfunktionen aus Gleichung 2.46
zu

N =
(
N1 0 N2 0
0 N1 0 N2

)
=
(1

2 (η + 1) 0 1
2 (η − 1) 0

0 1
2 (η + 1) 0 1

2 (η − 1)

)

mit der lokalen Variable 1− ≤ η ≤ 1. Da sich die lokale Koordinate η
entlang der x-Achse erstreckt, ergibt sich die Koordinatentransformation
des Differentialoperators analog zu Gleichung 2.50 und 2.53 mittels:

dx = ∂x

∂η
dη = L

2 dη, (4.1)

wobei L der Länge des finiten Elements entspricht.

Somit ergeben sich die Dehnungen jeden finiten Elements mit Glei-
chung 4.1 und der Annahme des ebenen Verzerrungszustands nach Glei-
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chung 2.12 aus Gleichung 2.54 zu



εxx
εyy
εxy


 =




∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x



(
N1 0 N2 0
0 N1 0 N2

)



ξ̂1x
ξ̂1y
ξ̂2x
ξ̂2y



ej(ky−ωt)

=







1
L

0 1
L

0
0 0 0 0
0 1

L
0 1

L




︸ ︷︷ ︸
B1

+jk




0 0 0 0
0 N1 0 N2
N1 0 N2 0




︸ ︷︷ ︸
B2







ξ̂1x
ξ̂1y
ξ̂2x
ξ̂2y



ej(ky−ωt). (4.2)

Mit der FEM-Differentialoperatormatrix senkrecht zur Ausbreitungsrich-
tung B1 und der FEM-Differentialoperatormatrix in Ausbreitungsrichtung
B2 sowie Gleichung 4.1 werden aus Gleichung 3.23 bis Gleichung 3.25 die
SAFE-Steifigkeitsmatrizen je finitem Element berechnet:

K1,el =
ˆ 1

−1
BT

1CelB1
L

2 dη (4.3)

K2,el =
ˆ 1

−1

[
BT

1 Cel B2 −BT
2CelB1

] L
2 dη (4.4)

K3,el =
ˆ 1

−1
BT

2CelB2
L

2 dη (4.5)

Die Massematrix je finitem Element ergibt sich analog mit

M el =
ˆ 1

−1
NTρelN

L

2 dη. (4.6)

Nach Assemblierung der Masse- und Steifigkeitsmatrizen aller finiten
Elemente zur jeweiligen globalen Steifigkeits- und Massematrix ergibt sich
das Eigenwertproblem

[
K1 + jkK2 + k2K3 − ω2M

]
Ξ̂ = 0. (4.7)

Da die Ansatzfunktionen inN und die Dichte ρel grundsätzlich reell sind,
ist die MassematrixM eine reelle Diagonalmatrix. Für ein ideal-elastisches
Material ist die Elastizitätsmatrix Cel reell, sodass die Steifigkeitsmatrizen
K1 und K3 ebenfalls reell sind. K1 beschreibt mit B1 die Bewegungen
in Dickenrichtung, während K3 mit B2 die Bewegungen in Ausbreitungs-
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richtung enthält. K2, welche die Kopplung beider Richtungen beschreibt,
ist hingegen komplex. [BMD06] Die Eigenvektoren Ξ̂ enthalten die mecha-
nischen Verschiebungen in den jeweiligen Knoten in x- und y-Richtung.
Da diese im Verlauf der Arbeit nicht benötigt werden, werden diese beim
Lösen des Eigenwertproblems nicht mit berechnet.

4.2.1 Vereinfachung für isotrope Werkstoffe
Wie bereits in der Rayleigh-Lamb-Gleichung in Gleichung 2.43 erkennbar
ist, hängt das berechnete Dispersionsdiagramm isotroper Werkstoffe von
den Schallgeschwindigkeiten ab, jedoch nicht mehr von der Dichte. Dies lässt
sich auch anhand der Bewegungs- bzw. Wellengleichung aus Gleichung 2.57,
auf der sowohl Eigenwertgleichung (Gleichung 4.7) sowie die Rayleigh-
Lamb-Gleichung (Gleichung 2.43) basieren, im Folgenden zeigen.
Wird die Elastizitätsmatrix eines isotropen Materials für den ebenen

Verzerrungszustand (vgl. Gleichung 2.11)

C =



C11 C12 0
C12 C22 0
0 0 C66


 =




ρc2
L ρ

(
c2

L − 4
3c

2
T

)
0

ρ
(
c2

L − 4
3c

2
T

)
ρc2

L 0
0 0 ρc2

T


 (4.8)

mithilfe der Schallgeschwindigkeiten cL und cT ausgedrückt, enthält jeder
der Koeffizienten der Matrix ebenfalls die Dichte ρ, sodass diese aus der
Matrix herausgezogen werden kann.
Damit ergibt die Wellengleichung aus Gleichung 2.57

LTρ




c2
L c2

L − 4
3c

2
T 0

c2
L − 4

3c
2
T c2

L 0
0 0 c2

T


Lξ = ρξ̈. (4.9)

Unter der Annahme, dass die Dichte ρ 6= 0 ist, entfällt diese, wodurch die
resultierende Gleichung nur von den beiden Schallgeschwindigkeiten als
Materialparameter abhängt. Gleiches gilt analog für die daraus abgeleitete
Eigenwertgleichung (Gleichung 4.7).

4.2.2 Validierung des Vorwärtsmodells
Ist das genutzte Materialmodell nicht frequenzabhängig, wird das lineare
Eigenwertproblem in ω2 aus Gleichung 4.7 direkt unter Vorgabe gegebener
Kreiswellenzahlen gelöst, um die Kreisfrequenzen der Eigenschwingungen
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4.2 Vorwärtsmodell

zu berechnen. Da die Eigenwerte mit ω2 als quadratische Frequenz ein-
gehen, ergeben sich mit ω = ±

√
ω2 als Lösung des Eigenwertproblems

sowohl positive als auch negative Kreisfrequenzen, wobei es genügt nur
eine der beiden Lösungen zu betrachten. Ein Vergleich der berechneten
Eigenfrequenzen mit Disperse [LP13] zeigt in Abbildung 4.3 gute Überein-
stimmungen am Beispiel einer 1 mm dicken PTFE-Platte (cL = 1350 m s−1,
cT = 550 m s−1). Diese ist als Beispielmaterial in der Demo-Version von
Disperse [LP13] enthalten.
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Abbildung 4.3: Vergleich der berechneten Kreisfrequenzen mit Disperse
[LP13]

Bei Vorgabe der Kreisfrequenzen ω muss das Eigenwertproblem aus
Gleichung 4.7 in die Form von Gleichung 3.28 überführt werden. Dadurch
verdoppelt sich die Dimension des zu lösenden Eigenwertproblems, was zu
einer deutlichen Erhöhung der Rechenzeit führt. Soll jedoch ein bestimmter
Frequenzbereich untersucht oder sollen gar frequenzabhängige Materialm-
odelle verwendet werden, ist es trotzdem notwendig die Dimension zu
verdoppeln und das Eigenwertproblem in der Form von Gleichung 3.28
zu lösen. Ansonsten ist die Vorgabe der Kreiswellenzahl und Lösen von
Gleichung 4.7 aufgrund der geringeren Rechenzeit zu bevorzugen.

51



4 Inverses Verfahren zur Identifikation elastischer Materialparameter

4.2.3 Konvergenz
Wie bei allen numerischen Berechnungsmethoden muss auf eine ausreichen-
de Diskretisierung geachtet werden, um hinreichend genaue Ergebnisse
zu erzielen. Für elastische Probleme soll die Polynomordnung mindestens
o = 2 betragen [Bäk02]. Als Faustregel für die Anzahl der Knoten wird
eine örtliche Diskretisierung von βN = 10 Knoten pro Wellenlänge als
untere Grenze empfohlen [BDF05]. Andere Quellen [MJQ99] empfehlen zur
Sicherheit βN = 20 Knoten pro Wellenlänge. Am Beispiel einer 5,45 mm
dicken PEEK-Platte ergibt sich der Abstand zwischen zwei Knotenpunkten

LAb = λmin

βN
= 2π

Re{kmax}βN
, (4.10)

der bei Elementen erster Ordnung der Elementlänge L entspricht. Bei einem
isotropen Material wird die Wellenlänge einer Transversalwelle λT = cT/f
als Abschätzung genutzt, um Moden bis zu einer maximalen Frequenz
fmax zu berechnen. Am Beispiel von PEEK mit einer Transversalwellen-
geschwindigkeit cT = 1110 m s−1 ergibt sich für βN = 10 Knoten pro
Wellenlänge und einer oberen Frequenz von fmax = 2,5 MHz somit eine
untere Knotenanzahl von

#Knoten = th
LAb

= βNthfmax

cT
= 10 · 5,45 mm · 2,5 MHz

1110 m s−1 = 123. (4.11)

Aufgrund des dispersiven Wellenleiterverhaltens ergeben sich trotzdem auch
kleinere Gruppen- und Phasengeschwindigkeiten als durch die Abschätzung
angenommen, weshalb weiterhin das Dispersionsdiagramm auf Änderungen
bei höheren Diskretisierungen überprüft wird, um diese ggf. anzupassen.
Unter Verwendung von Knoten zweiter Ordnung zeigt Abbildung 4.4

am Beispiel einer 5,45 mm dicken PEEK-Platte, dass weit unterhalb der
Faustregel von 10 Knoten pro Wellenlänge (entspricht 123 Knoten bei
einer 5,45 mm dicken PEEK-Platte), nämlich bei 62 Knoten eine deutliche
Abweichung erkennbar ist, wohingegen ab 123 Knoten (10 Knoten je Wel-
lenlänge) quasi keine Abweichungen im Vergleich zur Verwendung weiterer
Knoten erkennbar sind. Für eine konservative Betrachtung wird daher
stets die Faustregel von βN = 20 Knoten je Wellenlänge der Transversal-
welle während des folgenden Optimierungsprozesses gewählt. Neben der
Anzahl der Knoten und somit der Anzahl der Elemente, ist die Ordnung
der Ansatzfunktionen (vgl. Abschnitt 2.4) veränderbar. In Abbildung 4.5
sind die Dispersionsdiagrame einer 5,45 mm dicken PEEK-Platte bei un-
terschiedlichen Ordnungen o der Ansatzfunktionen dargestellt. Um die
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Abbildung 4.4: Konvergenz am Beispiel einer 5,45 mm-dicken PEEK-
Platte, Polynomordnung 2
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53



4 Inverses Verfahren zur Identifikation elastischer Materialparameter

einzelnen Diagramme mit unterschiedlichen Ordnungen der Ansatzfunktio-
nen vergleichbar zu halten, werden alle Varianten mit der gleichen Anzahl
an Knoten (123) bei unterschiedlicher Ordnung und somit unterschied-
licher Anzahl an Elementen, die sich aus der Anzahl der Knoten sowie
Knotenordnung mit

#Elemente = #Knoten− 1
o

(4.12)

ergibt, diskretisiert. Damit bleibt die Anzahl der Knoten pro Wellenlänge
nach Gleichung 4.10 mit βN = 10 gleich und es ändert sich neben der
Ordnung nur die Elementzugehörigkeit der Knoten. Der Einfluss der Kno-
tenordnung wird in Abbildung 4.5 deutlich, wo nur ein Unterschied von der
Knotenordnung eins zu den höheren Ordnungen erkennbar ist. Ab einer
Ordnung von o = 2 ist der Unterschied zu höheren Ordnungen so marginal,
dass dieser im betrachteten Frequenz-Wellenzahlbereich vernachlässigbar
ist.

4.3 Funktionalität und Aufbau des
Messsystems

In diesem Abschnitt wird die Funktionalität des Messsystems vorgestellt,
das in Abbildung 4.6 schematisch dargestellt ist. In dem Messsystem
werden kurze Laserpulse auf die Probenoberfläche fokussiert, um ther-
moelastisch Plattenwellen anzuregen, welche mit einem breitbandigen
Ultraschallwandler empfangen werden. Aufgrund der punktförmigen Fokus-
sierung der Laserstrahlung, wird diese mit einem Strahlaufweiter um den
Faktor 10 aufgeweitet, um dann über einen Oberflächenspiegel zur Zylin-
derlinse umgelenkt zu werden, damit diese den Strahl linienförmig (entlang
der z-Richtung) auf die Probenoberfläche fokussiert, wo sich sowohl in
y- wie auch in z-Richtung ein gaußförmiges Profil ausbildet. Durch die
Strahlaufweitung und der linienförmigen Fokussierung wird einerseits eine
Ablation der Probe vermieden, andererseits ergeben sich ebene, auf den
streifenförmigen Empfangswandler laufende Wellenfronten. Ein weiterer
Vorteil des Strahlaufweiters ist der resultierende Parallelstrahl, sodass
die später in Abschnitt 5.3 betrachtete modale Dämpfung nicht durch
optische Aufweitung der Laserstrahlung beeinflusst wird. Da die optischen
Komponenten (Oberflächenspiegel, Zylinderlinse) auf einer Linearachse
der X-LSM-E-Reihe von Zaber Technologies montiert sind, können sie in
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kleinen Schritten mit ±60 µm [Zab18] Abweichung von der Zielposition
über eine Strecke von 20 cm bewegt werden, sodass nacheinander in mehre-
ren äquidistanten Abständen zum Empfänger angeregt und die jeweiligen
Empfangssignale aufgenommen und gespeichert werden. Der Empfang der
sich ausbreitenden Wellen erfolgt mit einem Streifenkeramik-Schallwandler,
der über eine Kopplungsschicht direkt an die Probenoberfläche angekoppelt
und im Detail in Unterabschnitt 4.3.2 beschrieben wird. Die kontaktlose,
bewegliche Anregung hat den Vorteil, dass die Ankopplung des Schall-
wandlers bei jeder Anregungsposition identisch bleibt, sodass die Dicke der
Kopplungsschicht die spätere Berechnung der Dämpfung in Abschnitt 5.3
nicht beeinflusst. Sowohl die Linearachse als auch der Laser werden über
eine RS232-Schnittstelle vom PC gesteuert. Zusätzlich triggert der La-
ser das USB-Oszilloskop HS5, das nach dem Austritt des Laserpulses die
Signalaufnahme startet.

Die aufgenommenen Signale des Empfangswandlers werden mithilfe eines
Ladungsverstärker verstärkt, mittels Oszilloskop erfasst und anschließend
gespeichert. Dieser hat eine Bandbreite von 15 MHz und einen Verstärkungs-
faktor von 10 V pC−1 [Fem18]. Da der Empfangswandler sehr breitbandige
Signale empfängt, werden die Umgebungsgeräusche mit einem einfachen
RC-Hochpass erster Ordnung mit einer Grenzfrequenz von

fGr = 1
2π ·RC = 1

2π · 50Ω150 nF ≈ 21 kHz (4.13)

aus den Empfangssignalen unterdrückt.

4.3.1 Laser

Bei dem im Aufbau verwendeten Laser Flare NX von Coherent handelt es
sich um einen diodengepumpten, passiv gütegeschalteten Festkörperlaser
mit einer spezifizierten Pulsenergie von 500 µJ und einer Pulsweite von
1,45 ns bei einer Wellenlänge von 1030 nm [Coh18]. Bei einer solch hohen
Pulsenergie würde die punktförmige Fokussierung der Laserstrahlung zur
Ablation an der Probenoberfläche führen, weshalb der Strahlaufweiter
den 490 µm breiten Strahl auf das Zehnfache aufweitet. Als Strahlauf-
weiter wird der Scorpii Nd:YAG-Strahlaufweiter verwendet, der auf eine
optische Wellenlänge von 1064 nm ausgelegt ist, jedoch bei 1030 nm noch
sehr hohe optische Transmissionseigenschaften aufweist [Ed18]. Durch den
resultierenden Parallelstrahl bleibt die Anregungsenergie an allen Anre-
gungspositionen gleich. Die Schussfrequenz kann auf bis zu 2 kHz herauf
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Abbildung 4.6: Messsystem nach [CMB16]

gesetzt werden, was bei Proben mit hoher Absorption wie z.B. faserver-
stärkten Kunststoffen eine vergleichsweise schnelle Messung ermöglicht. Da
der Trigger-Eingang des Lasers einen sehr hohen Jitter aufweist, wird mit
einem Erweiterungskit des Herstellers der Strahlaustritt beobachtet, um
entsprechend das USB-Oszilloskop zu triggern. Zur Messung von Proben,
die im infraroten Bereich optisch transparent erscheinen, steht ein weiteres
Messsystem mit einem Stickstofflaser (MNL100High Power) zur Verfügung.
Dieser emittiert Laserpulse mit einer Energie von 225 µJ bei einer Pulsweite
von 3 ns und einer optischen Wellenlänge von 337 nm [LTB16]. Da dieser
einen kleinen Jitter aufweist, wird er direkt vom HS5 getriggert.

4.3.2 Ultraschallwandler
Als Empfangswandler wird der in Abbildung 4.7 schematisch dargestellte
Streifenkeramikwandler verwendet. Die aktive Fläche bildet eine streifen-
förmige Piezokeramik aus Blei-Zirkonat-Titanat (PZT, Typ PIC255 [PI20])
mit einer Länge von lKer = 12 mm, einer Breite von wKer = 1 mm und einer
Dicke von thKer = 0,5 mm. Aufgrund der Abmessungen der Keramik ergibt
sich eine örtliche Bandbreite [CGH92] durch das örtliche Nyquist-Kriterium
von

λ ≥ 2 · wKer. (4.14)
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Abbildung 4.7: Schematischer Aufbau des piezoelektrischen Empfangs-
wandlers [JCF22; CMB16]

Somit werden theoretisch Moden mit Kreiswellenzahlen bis zu

Re{k} ≤ 2π
λ

= π

wKer
= 3142 m−1 (4.15)

ungedämpft detektiert.[CMB16] Bei Betrachtung der Messergebnisse (z.B
in Abbildung 4.17 oder Abbildung 4.30 bis 4.33), zeigt sich, dass das örtli-
che Nyquist-Kriterium keine harte Grenze darstellt, da Kreiswellenzahlen
von bis zu Re{k} = 8000 m−1 detektiert werden können, die nicht aus
örtlichem Aliasing resultieren. Dies zeigt sich beispielhaft an Aluminium
in Abbildung 4.30.
Zur Kontaktierung wird die Piezokeramik auf ein 50 µm dickes Edel-

stahlblech, welches sich entlang des gesamten Kunststoffgehäuses erstreckt,
geklebt. Als Kleber wird Epoxidharz mit Silberpartikeln gemischt, um eine
elektrisch leitfähige Kopplung herzustellen. An die rückseitige Elektrode der
Piezokeramik ist eine elektrische Leitung gelötet. Dazu wird ein spezielles
Niedertemperaturlot verwendet, um eine Depolarisation der Piezokeramik
zu vermeiden. Die Leitung führt zu einem SMB-Stecker, über den der
Wandler im Messaufbau kontaktiert wird. [CMB16] Da piezokeramische
Wandler lange nachschwingen, sind sie im Vergleich zu piezoelektrischen
Folienwandlern vergleichsweise schmalbandig um ihre Resonanz- (Senden)
oder Antiresonanzfrequenz (Empfangen) [Sch15]. Um ihre Sensitivität über
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Abbildung 4.8: Übertragungsverhalten des Schallwandlers

einen weiten Frequenzbereich zu erhöhen, muss dessen Schwingung durch
Aufbringen einer Dämpfungsmasse gedämpft werden. Als Dämpfungsmasse
wird ein Gemisch aus Wolframcarbid und Polyurethan (Mischungsverhält-
nis 5/1) [BRH13] in das Gehäuse gegossen. Die Dämpfungsmasse dämpft
Resonanz- und Antiresonanzstellen des Schallwandlers, sodass sich ein
insgesamt gleichmäßigerer Impedanzverlauf ergibt, was zu einem breitban-
digen Empfangsverhalten führt. Als Sendeschallwandler ist dieser aufgrund
der starken Dämpfung der Dickenschwingung daher nicht geeignet. Zur
Untersuchung des Übertragungsverhaltens des Schallwandlers wird mit
der linienförmig fokussierten Laserstrahlung ein Strahlungsimpuls direkt
auf die Keramik gegeben, um durch das schlagartige Erhitzen der Kera-
mik die Sprungantwort des Schallwandlers aufzunehmen [CMB16]. Zur
Trennung des Übertragungsverhaltens aller Komponenten erfolgt die Signal-
aufnahme ohne Hochpass und Verstärker. Unter Annahme eines linearen,
zeitinvarianten Systems wird aus dessen Sprungantwort h (t) über

g (t) = ∂

∂t
h (t) (4.16)

die Impulsantwort g (t) bestimmt. Fourier-Transformation dieser ergibt
schließlich die in Abbildung 4.8 dargestellte Frequenzantwort G (ω). Dort
wird ersichtlich, dass der Schallwandler vergleichsweise breitbandig ist, mit
konstanter Empfindlichkeit bis 1 MHz. Bei höheren Frequenzen zeigt sich
das verbleibende Resonanzverhalten bis die Frequenzantwort schließlich ab
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20 MHz eine Tiefpasscharakteristik aufweist. Obwohl der Laser mit seinen
kurzen Impulsen eine höhere Bandbreite erreicht, können die Moden sehr
hoher Ordnung bei Frequenzen insbesondere über 10 MHz nur gedämpft
empfangen werden. Hinzu kommt zusätzlich, dass die Moden höherer
Ordnung, insbesondere bei Polymeren, durch das Material bereits stark
gedämpft werden, was den Frequenzbereich der detektierbaren Moden auf
≤ 10 MHz beschränkt.

4.4 Experimentelle Vorgehensweise
Die experimentelle Vorgehensweise zur Untersuchung der akustischen Wel-
lenausbreitung und der grundsätzlichen Erzeugung von Dispersionsabbil-
dungen werden in diesem Abschnitt dargelegt. Zunächst wird die Platten-
dicke, welche für die Modellierung der Plattenstruktur im Vorwärtsmodell
benötigt wird, mittels Mikrometerschraube gemessen.

Weiterhin werden Länge und Breite der Platte zur Volumenberechnung
erfasst, um mithilfe der Masse, die mit einer Analysewaage gemessen wird,
die Dichte berechnen zu können. Dabei sei jedoch angemerkt, dass diese für
die spätere Bestimmung der Schallgeschwindigkeiten isotroper Werkstoffe
noch nicht benötigt wird (Begründung siehe Unterabschnitt 4.2.1), aller-
dings für eine anschließende Berechnung alternativer Darstellungsformen
wie z.B. die Koeffizienten der Elastizitätsmatrix oder der Lamé-Konstanten.

Nach Einlegen der Probenplatte in den Messplatz, wird der Empfangs-
wandler über eine Schicht Koppelgel auf die Platte kontaktiert. Um die
Qualität der Ankopplung des Schallwandlers zu gewährleisten, wird zu-
nächst testweise einmal mit dem Laser an einer Position in ca. 1 cm Abstand
vom Empfangswandler angeregt und das Empfangssignal aufgenommen.

Bei zufriedenstellender Ankopplung an den Schallwandler, werden an
i.d.R. 800 Anregungspositionen im Bereich von 0 bis 20 cm Wellen an-
geregt und die Empfangssignale aufgenommen. Zusammengefasst ist die
Vorgehensweise während des Messvorgangs in Abbildung 4.9.

Die genauen Anregungspositionen können je nach Größe der Probenplat-
te sowie deren Dämpfung variieren. So ist es z.B. bei Proben mit sehr hoher
modaler Dämpfung wenig sinnvoll sehr weit entfernt vom Empfangswandler
anzuregen, da die resultierenden Empfangssignale nur schwach ausgeprägt
sein können. Zur Erhöhung des Signal-Rausch-Abstands (SNR) werden pro
Anregungsposition 20 mal angeregt und die Empfangssignale aufgenommen,
über welche jeweils gemittelt wird. Zusätzlich wird die Umgebungstempera-
tur im Messplatz während der gesamten Laserakustik-Messung von einem
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Abbildung 4.9: Vorgehensweise beim Messvorgang
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Temperatursensor MCP9808 [MT11] mit einer im Datenblatt angegebenen
Unsicherheit von ±0,5 K aufgenommen.
Am Beispiel einer 5,45 mm dicken PEEK-Platte mit Anregungspositio-

nen 20 mm bis 120 mm wird die in Abbildung 4.10 dargestellte Signalmatrix
aufgenommen. Wird die Matrix der Rohsignale durch zweidimensiona-
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Abbildung 4.10: Zeit- und ortsabhängige Signalmatrix

le Fourier-Transformation in den Frequenz-Wellenzahlbereich überführt
[AC90; AC91], ergibt sich dessen Betrag in Abbildung 4.11 (Dispersi-
onsabbildung), wobei negative Frequenzen nicht mit dargestellt sind, da
diese lediglich die zusätzliche Spiegelung entlang der Wellenzahlachse und
somit keine zusätzlichen Informationen enthalten. Dort werden die sich
ausbreitenden Moden als Grate sichtbar. Große Werte |U (f, k) | bedeuten,
dass die entsprechenden Moden mehr Energie transportieren als schwächer
ausgeprägte Moden. Dabei ist ersichtlich, dass die Dispersionsabbildung
im Vergleich zum Dispersionsdiagramm (vgl. z.B. Abbildung 4.3) nicht alle
ausbreitungsfähigen Moden enthält. Dies liegt daran, dass gewisse Teile der
Moden nicht detektiert werden, weil die vom Empfangswandler detektierte
Komponente der Verschiebung beim entsprechenden Frequenz-Wellenzahl-
Paar gerade Null ist. Gründe hierfür sind, dass die entsprechenden Moden
nicht angeregt oder zu stark gedämpft sind. Die senkrechten periodischen
Streifen in Abbildung 4.11 sind auf den örtlichen Leakage-Effekt zurückzu-
führen. Ebenso ergeben sich durch den zeitlichen Leakage-Effekt waage-
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Abbildung 4.11: 2D-Fourier-Transformation der Messsignalmatrix (PEEK)
(Gamma-Korrektur (ΓKor = 0,1) zur besseren Sichtbarkeit
für die Darstellung)

rechte Streifen nahe einer Wellenzahl von Re{k} = 0, die in Abbildung 4.11
jedoch kaum bemerkbar sind. Wie dem entgegen zu wirken ist und wel-
che weiteren Signalverarbeitungssschritte helfen, um die Sichtbarkeit der
Moden zu erhöhen, wird anschließend in Abschnitt 4.6 erläutert.

4.5 Validierung von Dispersionsabbildungen an
FEM-Simulation

Zur Validierung, ob die dargestellten Modenverläufe der messtechnisch
erzeugten Dispersionsabbildung tatsächlich mit den im Vorwärtsmodell be-
rechneten Modenverläufen übereinstimmen, wird die Wellenausbreitung in
einem zweidimensionalen FEM-Modell einer Platte mittels CFS++ [Kal07]
im Zeitbereich simuliert. Da die Messung der zeitabhängigen Messsignale
ebenfalls im Zeitbereich erfolgt, ist eine Zeitbereichssimulation trotz des
höheren Rechenaufwands aufgrund der Artefakte, die durch die Abtastung
im Zeitbereich, Leakage-Effekt, Fourier-Transformation etc. hinzu kommen,
näher an den Messsignalen.
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Die Platte wird mit einer Dicke von 3 mm und einer Länge (Richtung
der Wellenausbreitung) von 20 cm angenommen, welche mit einem struk-
turierten Rechteckgitter diskretisiert wird. Aufgrund der Dicke und Länge
der Platte erstreckt sie sich von x = 0 bis x = 3 mm sowie von y = 0
bis y = 20 cm. Als Plattenmaterial wird ein ideal-elastisches, isotropes
Materialmodell mit einem Elastizitätsmodul von E = 4,76 GPa, einer Pois-
sonzahl von ν = 0,38 und einer Dichte von ρ = 1300 kg m−3 verwendet.
Angeregt wird mit einer mechanischen Verschiebung in x-Richtung auf
der Unterseite der Platte bei x = 0, y = 9,5 cm in Form eines transienten
Gaußpulses mit einer Höhe von 1 µm und zeitlichen Dauer von 3 ns um
den Zeitpunkt t = 5 ns. Aufgenommen werden zu jedem Zeitschritt die
mechanischen Verschiebungen an der Oberseite der Platte bei x = 3 mm
an 1000 äquidistanten Punkten zwischen, y = 10 cm und y = 20 cm.
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Abbildung 4.12: Dispersionsabbildung aus den Rohsignalen der In-plane-
Auslenkungen (Gamma-Korrektur (ΓKor = 0,1) zur besse-
ren Sichtbarkeit für die Darstellung)

Da in [CSG21] bereits gezeigt werden konnte, dass eine Detektion mit-
tels Laser-Doppler-Vibrometer Verschiebungen senkrecht zu Plattenober-
fläche (Out-of-plane-Komponenten), eine Detektion mittels Ultraschall-
wandler Verschiebungen in der Plattenoberfläche (In-plane-Komponenten)
erfasst, ist in Abbildung 4.12 der Betrag der zweidimensionalen Fourier-
Transformation der y-Komponente ξy (in-plane) der mechanischen Verschie-
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

bung und das mittels Vorwärtsmodell berechnete Dispersionsdiagramm dar-
gestellt. Dabei werden vor der zweidimensionalen Fourier-Transformation
sowohl im Orts- als auch Zeitbereich Nullen an die Signale gehangen, um die
Dispersionsabbildung zu glätten. Im Vergleich mit den im Vorwärtsmodell
berechneten Modenverläufen, stimmen beide Simulationsergebnisse überein
und befinden sich dementsprechend bei den gleichen Frequenz-Wellenzahl-
Paaren. Da die In-plane-Komponente der mechanischen Verschiebung für
einige Frequenz-Wellenzahl-Paare der Moden zu Null wird, weil diese nur
eine Out-of-plane-Komponente enthalten, oder einige Moden nicht angeregt
wurden, werden einige Bereiche der Moden bei höheren Wellenzahlen in
der Dispersionsabbildung kaum sichtbar und können folglich nicht weiter
ausgewertet werden.

4.6 Signalvorverarbeitung
Werden die Messdaten im Orts-Zeitbereich ohne weitere Signalverarbei-
tungsschritte zweidimensional Fourier-transformiert, ergibt sich die in
Abbildung 4.13 abgebildete Dispersionsabbildung als Betrag der zweidi-
mensionalen Fourier-Transformation, in der Moden nur schwach erkennbar
sind. Damit möglichst viele der propagierenden Moden in den Messdaten
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Abbildung 4.13: Unverarbeitete Dispersionsabbildung
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4.6 Signalvorverarbeitung

sichtbar werden, werden folgende Signalverarbeitungsschritte basierend
auf [JCW17] nach einer Mittelwertbefreiung der Zeitsignale nacheinander
durchgeführt:

Fensterung im Orts- und Zeitbereich

Wie bereits in Abbildung 4.11 ersichtlich war, ergäbe sich ohne Fensterung
im Ortsbereich ein Streifenmuster (wie in Abbildung 4.14a), welches durch
Verwendung eines Tukey-Fensters [Tuk67; Har78] mit der Fensterfunktion

w (y) =





1
2{1 + cos

(
2π
r

[
y − r

2

])
}, 0 ≤ y < r

2
1, r

2 ≤ y < 1− r
2

1
2{1 + cos

(
2π
r

[
y − 1 + r

2

])
}, 1− r

2 ≤ y ≤ 1
(4.17)

[RM13; Mat] unterbunden wird (vgl. Abbildung 4.14b).
Die Tukey-Fensterfunktion lässt sich durch den Parameter r für diesen
Zweck gut parametrisieren. Wird r = 1 gewählt, entspricht es einem Hann-
Fenster [BT58], für r = 0 einem Rechteck-Fenster [RM13]. Ein zu großes r
führt zu einer höheren Unschärfe der Fouriertransformierten, ein zu kleines
r führt dazu, dass der Leakage-Effekt noch zu stark ausgeprägt ist. Als
Kompromiss wird daher r = 0,2 (sowohl im Zeit- als auch im Ortsbereich),
sofern nicht anders angegeben, gewählt.

Fehlende zeitliche Fensterung führt zu einem Streifen über alle Frequen-
zen bei kleinen Wellenzahlen. Dieser ist unproblematisch bei niedrigen
Frequenzen, da die Moden niedriger Ordnung hohe Intensitäten aufweisen
und damit deutlich zu erkennen sind, wohingegen Moden hoher Ordnung
bei höheren Frequenzen aufgrund der frequenzabhängigen Dämpfung sehr
schwach oder kaum erkennbar sind. Um diese Moden hoher Ordnung detek-
tierbar zu machen, wird eine spätere spaltenweise Normierung durchgeführt.
Dafür ist es wichtig den zeitlichen Leakage-Effekt zuvor weitestgehend
zu unterdrücken, der andernfalls anstelle der sich ausbreitenden Moden
sichtbar wird.

Heruntertakten im Zeitbereich und Zero-Padding

Aufgrund der Länge der aufgenommenen Zeitsignale (214 Abtastwerte), ist
weiteres Zero-Padding im Zeitbereich, kaum praktikabel. Die Abtastfre-
quenz der Messsignale ist mit fabt = 100 MHz deutlich über der doppelten
maximalen detektierbaren Frequenz der Wellenleitermoden.

65



4 Inverses Verfahren zur Identifikation elastischer Materialparameter

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2
0

1

2

3

4

5

Frequenz f / MHz

K
re

isw
el

le
nz

ah
l|

R
e{

k
}|

/
m

m
−

1

(a) Ohne Fensterung, entspricht Rechtecktfenster (r = 0)
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(b) Mit Fensterung im Orts- und Zeitbereich mit je r = 0,2

Abbildung 4.14: Dispersionsabbildung ohne und mit Fensterung und nach-
folgender Anwendung einer Gamma-Korrektur (siehe fol-
gende Abschnitte) mit ΓKor = 0,1 um den resultierenden
Effekt der Fensterung sichtbar werden zu lassen
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4.6 Signalvorverarbeitung

Da, insbesondere bei Polymeren, Moden hoher Ordnung teilweise so stark
gedämpft werden, dass ab einer bestimmten Frequenz kaum Moden sichtbar
werden, wird eine obere Grenzfrequenz während der Verarbeitung festgelegt.
Aufgrund der hohen Speicherverfügbarkeit und zur Vorbeugung eines
Datenverlusts wird die Abtastfrequenz nicht während der Messung, sondern
erst während der Verarbeitung verringert, da es genügt, die maximale
darstellbare Frequenz und somit die Abtast- bzw. Nyquistfrequenz auf
Basis der darstellbaren Wellenleitermoden zu wählen. Bei Metallproben
ergeben sich häufig darstellbare Wellenleitermoden bis zu 10 MHz, bei
Polymeren bis zu 3 MHz, sodass bei letzterem die Abtastfrequenz deutlich
geringer gewählt werden kann.

Nach dem Abtastheorem nach Shannon [Sha49] ergibt sich bei gegebener
oberer Grenzfrequenz fNy eine Mindestabtastfrequenz von fAb = 2fNy = 1

∆t ,
sodass eine Vergrößerung des Zeitschritts ∆t durch Verwerfen von Zwi-
schenwerten zu einer geringeren maximalen darstellbaren Frequenz fNy
und gleichzeitig zur Freigabe von Speicher führt, was anschließendes Zero-
Padding ermöglicht. Sind zuvor Signalanteile oberhalb dieser Frequenz ent-
halten, müssen die Messsignale vorher mit einem entsprechenden Tiefpass
gefiltert werden, um Aliasing zu vermeiden. Aufgrund des resultierenden ge-
ringeren Speicherbedarfs, können bei entsprechend geringer Abtastfrequenz
umso mehr Nullen an die Zeitsignale angehängt werden (Zero-Padding),
um die Abbildung im Frequenzbereich resultierend durch eine kleinere
Frequenzschrittweite ∆f zu glätten. Nach weiterem Zero-Padding im Orts-
bereich zur Glättung im Wellenzahlbereich, wird die zweidimensionale
Fourier-Transformation durchgeführt und auf die geforderte maximale
Frequenz und Wellenzahl zugeschnitten.

Zweidimensionale Fourier-Transformation

Durch die zweidimensionale Fourier-Transformation ergeben sich Signal-
anteile sowohl bei positiven Frequenzen und Wellenzahlen wie auch bei
negativen Frequenzen und Wellenzahlen. Bei Betrachtung des Betrags
der komplexen 2D-Fourier-Transformierten (Dispersionsabbildung) wer-
den bereits die sich ausbreitenden Moden als Grate sichtbar. Während
die Moden bei positiven Wellenzahlen die Wellenausbreitung in negative
y-Richtung beschreiben, zeigen sich die in positive y-Richtung propagie-
renden Wellenleitermoden bei negativen Wellenzahlen. Weiterhin ergibt
sich jeweils eine periodische Fortsetzung durch die diskrete Verarbeitung.
Aufgrund der Achsen-Symmetrie von Dispersionsdiagrammen sowohl zur
Frequenz- als auch der Wellenzahl-Achse, ist es theoretisch unerheblich,
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

welcher Quadrant (jeweils positive und negative Frequenzen bzw. Wellen-
zahlen) betrachtet wird, da die übrigen keine zusätzlichen Informationen
enthalten. Daher genügt eine einseitige Detektion der Wellenausbreitung,
was dazu führt, dass nur im entsprechenden Quadranten Wellenleitermoden
enthalten sind. Die übrigen sich ergebenden Quadranten werden durch
Zuschnitt der Daten entfernt, wobei Abbildung 4.13 bis 4.17 bereits nur
einen Quadranten zeigen.

Gamma-Korrektur

Während die Moden niedriger Ordnung bereits schwach erkennbar sind,
werden weitere Schritte auf den Betrag der Fourier-Transformierten zur
einfacheren Erkennung der Moden höherer Ordnung notwendig. Ein ein-
faches Mittel der Bildverarbeitung zur Kontrasterhöhung ist die Gamma-
Korrektur [Hab89], womit sich die Werte in der Dispersionsabbildung nach
der Fourier-Transformation |U (f, k) | zu

UΓKor (f, k) = |U (f, k) |ΓKor , 0 < ΓKor ≤ 1 (4.18)

ergeben. Hier wird in der Regel ΓKor = 0,1 gewählt, um kleine Werte
|U (f, k) |, wie an den Wellenzahl-Frequenzpaaren an denen sich Moden
hoher Ordnung zeigen, stark anzuheben, um deren Sichtbarkeit zu erhöhen.

Entfernen der Spaltenmittelwerte

Durch äußere empfangene Störeinflüsse wie Einstreuungen in bestimm-
ten Frequenzbändern aus der Umgebung während der Messung, kann es
zu spaltenweisen Offsets in den Matrixwerten der Dispersionsabbildung
kommen, welche subtraktiv entfernt werden. Dies reduziert zusätzlich den
nach der Fensterung verbliebenen Einfluss des örtlichen Leackage-Effekts,
da sich eine unzureichende örtliche Fensterung ebenfalls durch senkrechte
Linien (bei konstanter Frequenz und gleichzeitig allen Wellenzahlen) in der
Dispersionsabbildung zeigt. So lassen sich zusätzliche senkrechte Streifen
bei tiefen Frequenzen aus Abbildung 4.14 in Abbildung 4.15 entfernen.

Spaltenweise Normierung

Die sich ausbreitenden Moden höherer Ordnung sind im Vergleich zu
Moden niedriger Ordnung weiterhin schwach ausgeprägt. Allerdings sind
gerade die Moden hoher Ordnung sehr sensitiv auf die Materialparameter
(vgl. Abschnitt 4.8).

68



4.6 Signalvorverarbeitung

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2
0

1

2

3

4

5

Frequenz f / MHz

K
re

isw
el

le
nz

ah
l|

R
e{

k
}|

/
m

m
−

1

Abbildung 4.15: Dispersionsabbildung nach Entfernung der Spaltenmittel-
werte

Um diese Moden stärker zu gewichten und somit besser sichtbar werden
zu lassen, wird eine spaltenweise Normierung durch [Web21] zusätzlich
eingeführt. Dabei wird bei jeder Frequenz auf den Maximalwert der je-
weiligen Spalte normiert, wodurch Moden höherer Ordnung prägnanter in
Abbildung 4.16 erkannt werden. Bei hohen Frequenzen führt dies gleich-
zeitig zunächst zu dem Problem, dass der sonst eher verborgene zeitliche
Leakage-Effekt sichtbar wird, wenn auf die vorherige zeitliche Fensterung
verzichtet werden würde.

Gamma-Expansion

Aufgrund der spaltenweisen Normierung, werden sehr viele Moden auch bei
hohen Frequenzen aufgrund der entsprechend höheren Matrixwerte sichtbar,
die zum Teil jedoch so nah beieinander liegen, dass sie aufgrund ihrer Breite
fast ineinander übergehen. Um kleine Werte in der Dispersionsabbildung
zwischen den Moden weiter zu verringern, ergänzt [Web21] nach einer
Normierung auf den Maximalwert der Matrix, nochmal eine Gamma-
Korrektur, jedoch nun mit einem Wert von ΓExp > 1, id.R. ΓExp = 2,5
bei Polymeren. Aufgrund der resultierenden Stauchung der Zwischenwerte,
werden einzelne Moden somit deutlicher. Bei Metallproben hingegen sind
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Abbildung 4.16: Dispersionsabbildung nach spaltenweiser Normierung

die Grate bereits so schmal ausgeprägt, dass eine Gamma-Expansion nicht
notwendig ist und gar die Konvergenz der nachfolgenden Optimierung
gefährden kann.

Unterer Grenzwert

Eine weitere Hilfe, um Moden deutlicher erscheinen zu lassen, ist es, den
Mittelwert der Matrix zu bestimmen und alle Werte, die unter diesem
liegen, auf den Mittelwert zu setzen. Dies kann theoretisch beliebig oft
durchgeführt werden, um Moden deutlicher hervorzuheben, jedoch führt
eine zu häufige Anwendung zum Verlust von schwach sichtbaren Moden.
Daher wird es, hier wie in [JCW17], einmal angewandt und die resultierende
Matrix auf ihren Maximalwert normiert.

Das Ergebnis nach allen Verarbeitungsschritten ist in Abbildung 4.17 am
Beispiel einer 5,45 mm dicken PEEK-Platte dargestellt. Die in der Messung
angeregten Moden werden nun trotz modaler Dämpfung deutlich als Grate
sichtbar.
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Abbildung 4.17: Dispersionsabbildung nach allen Vorverarbeitungsschrit-
ten [JCH21]

4.7 Reproduzierbarkeit der Messung
Zur Untersuchung der Reproduzierbarkeit werden mehrere Messungen
exemplarisch an PEEK durchgeführt, wobei jede neue Messung ebenfalls
eine neue Ankopplung der Probe an den Empfangswandler beinhaltet. Die
sonstigen Messparameter (vgl. Abschnitt 4.4) wie die Anregungspositionen
sowie die Parametrisierung der weiteren Verarbeitungsschritte der Messda-
ten (vgl. Abschnitt 4.6) werden identisch gewählt. Abbildung 4.18a zeigt
die sich ausbreitenden Moden dreier Messungen, die jeweils in Rot, Grün
und Blau dargestellt sind. Weitere Farben ergeben sich aus deren additiven
Überlagerungen. Der Großteil der Moden erscheint weiß, d.h. dass sich
diese Modenbereiche in jeder der drei Messungen ausbreiten und detektiert
werden, sodass sich dort alle drei RGB-Farben überlagern. Bei steigender
Frequenz und Wellenzahl ergeben sich auch Überlagerungen von lediglich
zwei Messungen oder gar Bereiche die nur in einer der drei Messungen
erscheinen. Die Ursache hierfür liegt im Wesentlichen daran, dass die Be-
schaffenheit der Koppelschicht bei erneuter Ankopplung nicht identisch
reproduzierbar ist. Eine zu schwache Ankopplung des Empfangswandlers
führt dazu, dass einige schwach ausgeprägte Modenabschnitte bei hohen
Frequenzen nicht mehr detektiert werden. Abbildung 4.18b zeigt dazu
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

den Vergleich dreier Messungen bei jeweils gleicher Ankopplung an den
Empfangswandler. Dort zeigen sich keinerlei Unterschiede im Vergleich der
drei Messungen untereinander.
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(a) Unterschiedliche Ankopplung

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2
0

1

2

3

4

5

Frequenz f / MHz

K
re

isw
el

le
nz

ah
l|

R
e{

k
}|

/
m

m
−

1

(b) Gleiche Ankopplung

Abbildung 4.18: Vergleich der sich ausbreitenden Moden an drei Messun-
gen an PEEK mit RGB-Codierung: Messung 1 in Rot,
Messung 2 in Grün, Mesung 3 in Blau
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

4.8 Sensitivität der Schallgeschwindigkeiten

Um den Einfluss der Materialparameter auf das Dispersionsdiagramm zu
untersuchen, wird die skalierte Sensitivität

Υbj
pi

=
(
∂bj
∂pi

)
pi,AP (4.19)

der Ursache pi auf die Beobachtung bj an einem Arbeitspunkt pi,AP [Hil00]
betrachtet. Die Ableitung wird numerisch durch den zentralen Differenzen-
quotient angenähert. Generell hat die skalierte Sensitivität den Vorteil, dass
diese durch die Skalierung mit den Parametern des Arbeitspunktes einhei-
tenlos wird. Gleichzeitig liegt die skalierte Sensitivität, trotz möglicherweise
sehr stark unterschiedlicher Wertebereiche der Eingangsparameter pi als
Ursache, im gleichen Wertebereich, wodurch die Sensitivitäten der einzelnen
Parameter auf die entsprechende Beobachtung untereinander vergleichbar
sind.
Wird keine Frequenzabhängigkeit im Materialmodell berücksichtigt,

ist es effizienter die Kreisfrequenz ω bei vorgegebener Kreiswellenzahl k
zu berechnen (vgl. Abschnitt 3.4). Daher dienen die jeweilgen Kreisfre-
quenzen ω zu jeder Kreiswellenzahl k als Beobachtung bi, während die
entsprechenden Schallgeschwindigkeiten als Ursache pi betrachtet werden.
Als Arbeitspunkt werden exemplarisch cL = 2528 m s−1 als Longitudinal-
und cT = 1096 m s−1 als Transversalwellengeschwindigkeit gewählt. Als
Plattendicke wird beispielhaft 5,5 mm angenommen. Um den Einfluss
des Diskretisierungsfehlers gering zu halten, wird eine sehr hohe Diskre-
tisierung genutzt. Mit 20 Knoten je Wellenlänge, einer maximalen Fre-
quenz von ωmax = 12 MHz und einer Transversalwellengeschwindigkeit
von cT = 1096 m s−1 ergibt sich nach Gleichung 4.11 eine untere Diskre-
tisierungsgrenze von 192 Knoten. Gewählt werden 500 Knoten mit einer
Ordnung von 3. Abbildung 4.19 zeigt die Dispersionsdiagramme bei ei-
ner Änderung der Longitudinalwellengeschwindigkeit um ±5% um den
Arbeitspunkt. Dort zeigt sich, dass sich bei dessen Änderung vorwiegend
Änderungen bei kleinen Kreiswellenzahlen ergeben, was sich in der Sensiti-
vität der Kreisfrequenzen in Abbildung 4.21 widerspiegelt. Die Sensitivität
bei sehr großen Kreiswellenzahlen tendiert hingegen zu Null. Die Maxima
der Sensitivität der einzelnen Moden befinden sich bei denjenigen Wel-
lenzahlen, die im Dispersionsdiagramm auf der Geraden kL (ω) = ω 1

cL
liegen. Gleichzeitig befindet sich bei der Sensitivität der Transversalwel-
lengeschwindigkeit in Abbildung 4.22 an der gleichen Stelle ein Minimum.

74



4.8 Sensitivität der Schallgeschwindigkeiten

Daraus lässt sich schlussfolgern, dass die Moden an diesen Stellen eher
Longitudinalwelleneigenschaften besitzen.

Insgesamt ist in Abbildung 4.20 ersichtlich, dass eine Änderung der Trans-
versalwellengeschwindigkeit Auswirkungen auf alle Moden hat. Ändert sich
jedoch die Longitudinalwellengeschwindigkeit, hat dies nur Auswirkungen
auf den Bereich der Wellenzahlen unterhalb der Geraden kL (ω) = ω 1

cL
.

Dies ist darauf zurückzuführen, dass eine Transversalwelle mit einer Schall-
geschwindigkeit von cT =

√
µ
ρ
aus einer reinen Scherbewegung besteht,

während eine Longitudinalwelle mit cL =
√

K+4/3µ
ρ

sowohl Scher- als auch
Kompressionsbewegungen enthält (vgl. Abschnitt 3.3). Somit zeigt sich ein
Dispersionsdiagramm aus gekoppelten Longitudinal- und Transversalwel-
len bzw. aus gekoppelten Kompressions- und Scherbewegungen. Um dies
zu zeigen, vergleichen Überall et. al [ÜHD94] das Dispersionsdiagramm
einer festen Schicht mit zwei Dispersionsdiagrammen von jeweils einer
flüssigen Schicht. Dabei setzen sie die Longitudinalwellengeschwindigkeit
der ersten Flüssigkeitsschicht gleich der Longitudinalwellengeschwindigkeit
des Festkörpers. Als Longitudinalwellengeschwindigkeit der zweiten Flüs-
sigkeitsschicht wird die Transversallwellengeschwindigkeit des Festkörpers
genutzt. Bei Betrachtung der drei Dispersionsdiagramme ergibt sich die
Beobachtung, dass sich die Moden der einzelnen Flüssigkeitsschichten an
einigen Stellen kreuzen. Werden beide jedoch verkoppelt z.B. als zwei Flüs-
sigkeitsschichten aber insbesondere auch innerhalb eines Festkörpers mit
entsprechender Longitudinal- und Transversalwellengeschwindigkeit, verlau-
fen die Moden aneinander vorbei anstatt sich zu kreuzen. Diese Verhalten
vermiedener Kreuzungen aufgrund der Kopplung von Longitudinal- und
Transversalwellen bzw. die Verkopplung von Kompressions- und Scherbe-
wegungen lässt sich insbesondere wieder entlang der Geraden kL (ω) = ω 1

cL
in Abbildung 4.19 und Abbildung 4.20 beobachten. Oberhalb der Geraden,
ist das Verhalten der Moden nahezu unabhängig von der Longitudinal-
wellengeschwindigkeit cL. So sind die A0, S0 sowie die A1-Mode nahezu
unabhängig von cL. Ein weiterer sehr sensitiver Bereich sind die Grenz-
frequenzen. Insgesamt ergibt sich im Dispersionsdiagramm jedoch eine
deutlich höhere Sensitivität von der Transversalwellengeschwindigkeit im
Vergleich zur Longitudinalwellengeschwindigkeit, da die Sensitivität der
Transversalwellengeschwindigkeit mit steigender Kreiswellenzahl weiterhin
ansteigt (Abbildung 4.22).
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Abbildung 4.19: Dispersionsdiagramm bei Änderung der Longitudinalwel-
lengeschwindigkeit cL am Beispiel einer 5,5 mm dicken
PEEK-Platte
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Abbildung 4.20: Dispersionsdiagramm bei Änderung der Transversalwel-
lengeschwindigkeit cT am Beispiel einer 5,5 mm dicken
PEEK-Platte
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4.8 Sensitivität der Schallgeschwindigkeiten
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Abbildung 4.21: Sensitivität der Kreisfrequenzen ω der zehn Moden nied-
rigster Ordnung von der Longitudinalwellengeschwindig-
keit cL
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Abbildung 4.22: Sensitivität der Kreisfrequenzen ω der zehn Moden nied-
rigster Ordnung von der Transversalwellengeschwindigkeit
cT
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

4.9 Startwerte

Wird im inversen Verfahren ein lokaler Optimierungsalgorithmus verwendet,
werden Startwerte für die Optimierungsparameter benötigt. Da ein lokaler
Optimierungsalgorithmus nur im Bereich um die Startwerte sucht, sollten
diese nicht zu weit von den gesuchten Werten abweichen. Im Gegensatz zu
den lokalen suchen globale Optimierungsalgorithmen hingegen in einem
sehr viel größeren Bereich, benötigen entsprechend längere Rechenzeiten,
können aber zum Teil auf Startwerte verzichten. Aufgrund der längeren
Rechenzeit globaler Optimierungsalgorithmen wird im inversen Verfahren
ein lokaler Optimierungsalgorithmus verwendet, weshalb sich der folgende
Abschnitt mit der Schätzung von Startwerten für die Longitudinal- und
Transversalwellengeschwindigkeit befasst.

4.9.1 Startwertbestimmung im Zeit-Ortsbereich

Eine Abschätzung der Schallgeschwindigkeit im Zeit-Ortsbereich erfolgt
über Strecke und Laufzeit der Wellenpakete. Im Gruppengeschwindigkeits-
Dispersionsdiagramm eines Wellenleiters ist die Longitudinalwellenge-
schwindigkeit die größtmöglichste Gruppengeschwindigkeit. Dabei wird
die Gruppengeschwindigkeit der schnellsten Wellenfront als Schätzwert
für die Longitudinalwellengeschwindigkeit genommen. Daher wird eine
Gerade an die vorderste Wellenfront gelegt, wie in Abbildung 4.23 an-
hand der weißen Gerade zu sehen ist. Die Wellenpakete zur Schätzung der
Transversalwellengeschwindigkeit werden anhand der höchsten Intensität
bestimmt. Die A0-Mode, deren Gruppengeschwindigkeit für große Wel-
lenzahlen gegen die Rayleigh-Wellengeschwindigkeit strebt, zeichnet sich
in unbearbeiteten Messdaten sowohl im Zeit- als auch Frequenzbereich
aufgrund der asymmetrischen Anregung durch ihre hohe Intensität aus.
Daher wird eine Gerade (rote Gerade in Abbildung 4.23) durch diese be-
tragsmäßig hohen Intensitäten gelegt und deren Steigung als Schätzwert
für die Transversalwellengeschwindigkeit angenommen. [JCW17] Da die
Rayleigh-Wellengeschwindigkeit nach Gleichung 2.42 abhängig von der Pois-
sonzahl mit einem Faktor nahe 1 von der Transversalwellengeschwindigkeit
abhängt, werden Rayleigh-Wellengeschwindigkeit und Transversalwellenge-
schwindigkeit für eine erste Startwertschätzung als näherungsweise gleich
betrachtet.
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Abbildung 4.23: Schätzung der Longitudinal- und Transversalwellenge-
schwindigkeit im Zeit-Ortsbereich

4.9.2 Startwertbestimmung im
Frequenz-Wellenzahlbereich

Wie in Abbildung 2.6 können die Schallgeschwindigkeiten aus dem Di-
spersionsdiagramm geschätzt werden. Abbildung 4.24 zeigt eine stark
ausgeprägte A0-Mode. Die Steigung ∂ω/∂k = ∂f/∂–k der Moden gibt nach
Gleichung 2.44 deren Gruppengeschwindigkeit an (vgl. Gleichung 2.44).
Dabei ist –k = Re{k}/(2π) analog zu f = ω/(2π). Für sehr große Wellen-
zahlen strebt die Gruppengeschwindigkeit der A0- bzw. S0-Mode gegen die
Rayleigh-Wellengeschwindigkeit cR, sodass diese für große Wellenzahlen
über die Steigung der A0-Mode geschätzt werden kann. Abhängig von
der Poissonzahl hängt diese über Gleichung 2.42 mit der Transversalwel-
lengeschwindigkeit zusammen. Aufgrund des beschränkten Wertebereichs
der Poissonzahl 0 ≤ ν ≤ 0,5 liegt die Transversalwellengeschwindigkeit cT
im Bereich von 1,02cR ≤ cT ≤ 1,15cR. Da der Wert nahe an 1 liegt, wird
die Rayleighwellengeschwindigkeit aus einer Steigungsgerade der A0-Mode
geschätzt und diese als Schätzwert für die Transversalwellengeschwindigkeit
cT verwendet. [JCH21]
Werden Moden höherer Ordnung für hohe Wellenzahlen in den Mess-

daten deutlich erkennbar, kann deren Gruppengeschwindigkeit direkt als
Startwert der Transversalwellengeschwindigkeit bestimmt werden. Zur
Schätzung der Longitudinalwellengeschwindigkeit cL werden die Bereiche,
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Abbildung 4.24: Schätzung der Longitudinal- und Transversalwellenge-
schwindigkeit im Frequenz-Wellenzahl-Bereich

die die größte Steigung ∂f/∂–k aufweisen, durch eine Gerade verbunden.
Idealerweise verbindet diese Gerade die Wendepunkte der Moden. Die
Steigung dieser Geraden wird als Schätzwert für die Longitudinalwellenge-
schwindigkeit cL verwendet.

4.9.3 Vergleich der Startwertbestimmung

Beide Startwertschätzer liefern zufriedenstellende Ergebnisse. Zwar wird
die Transversalwellengeschwindigkeit cT tendenziell unterschätzt, jedoch
ist die resultierende Abweichung so gering, dass sie zur Startwertbestim-
mung vernachlässigt werden kann. Sind sehr wenige Moden sichtbar, z.B.
aufgrund einer geringen Plattendicke oder hoher Dämpfung, kann es vor-
kommen, dass die benötigten Abschnitte der Moden zur Schätzung der
Longitudinalwellengeschwindigkeit im Frequenz-Wellenzahl-Bereich kaum
sichtbar sind. In dem Fall kann eine Schätzung im Zeit-Ortsbereich leichter
sein. In der Regel werden die Messdaten durch die Verarbeitung nach Ab-
schnitt 4.6 so aufbereitet, dass selbst bei stark absorbierenden Werkstoffen
hinreichend Moden auswertbar sind. Somit können beide Startwertschätzer
grundsätzlich als gleichwertig angesehen werden.
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4.10 Zielfunktion
In diesem Abschnitt werden Varianten einer möglichen Kostenfunktion
bzw. Zielfunktionen verglichen. Die Kostenfunktion ist ein Maß für die
Ähnlichkeit zwischen Mess- und Simulationsdaten. Ziel ist, dass sich die
Moden des simulativ berechneten Dispersionsdiagramms möglichst bei den
gleichen Frequenz-Wellenzahl-Paaren befinden, wie die in der Messung
detektierten Moden. Die Elastizitätsmatrix eines isotropen Materials ist
bereits durch zwei akustische Materialparameter eindeutig beschrieben. Es
existieren dafür verschiedene Parameterdarstellungen wie z.B. Elastizitäts-
modul und Poissonzahl, Kompressions- und Schermodul, Lamé-Konstanten
oder Schallgeschwindigkeiten. Da die Gruppengeschwindigkeiten bereits
als Steigung der Grate nach Gleichung 2.44 ins Dispersionsdiagramm
bzw. in die Dispersionsabbildung wie z.B. in Abbildung 4.24 eingehen, ist
das Dispersionsdiagramm nach Abschnitt 4.8 besonders sensitiv auf die
Schallgeschwindigkeiten. Ein weiterer Vorteil bei der Nutzung der Schall-
geschwindigkeiten als Optimierungsvariabeln besteht darin, dass sich beim
Lösen der Eigenwertgleichung (Gleichung 3.27) im Vorwärtsmodell in Ab-
hängigkeit der Schallgeschwindigkeiten die Dichte herauskürzt und somit
keinen Beitrag zur Messunsicherheit liefert (vgl. Unterabschnitt 4.2.1).

4.10.1 Mittelwert der Bildpunkte
In der Simulation werden die Eigenkreisfrequenzen ωj (ki) zu den vorgegebe-
nen Kreiswellenzahlen ki berechnet. Unter Berücksichtigung frequenzabhän-
giger Materialparameter z.B. unter Verwendung eines frequenzabhängigen
Dämpfungsmodells können ebenfalls die Kreiswellenzahlen ki (ωj) unter
Vorgabe der Kreisfrequenzen ωj berechnet werden. In jedem Fall ergeben
sich Frequenz-Wellenzahl-Paare aus der Simulation. Diese diskreten Stellen
werden in der verarbeiteten Dispersionsabbildung aus der Messung gesucht
und der Mittelwert der Matrixwerte U (ω, k) all dieser Stellen gebildet:

U = 1
N

N∑

ωj ,ki

U (ωj,Re{ki}) (4.20)

Je größer der Mittelwert U desto größer ist die Ähnlichkeit zwischen Mes-
sung und Simulation, sodass die Modelleingangsparameter bei denen der
Mittelwert der Matrixwerte an den entsprechenden simulativ ausgewählten
Frequenz-Wellenzahl-Paaren maximal wird, den Materialparametern ent-
sprechen. Abbildung 4.25 zeigt den Verlauf der Funktion unter Variation
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der Longitudinal- und Transversalwellengeschwindigkeit am Beispiel einer
Messung an einer 5,45 mm dicken PEEK-Platte, welche ein eindeutiges
Maximum aufweist, an dem Messung und Simulation am ähnlichsten sind.
Idealerweise stimmen beim Maximum des Mittelwerts U die in der Simu-
lation berechneten Frequenz-Wellenzahl-Paare mit den aus der Messung
detektierten Frequenz-Wellenzahl-Paaren überein. [JCH21]
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Abbildung 4.25: Mittelwert der Matrixwerte (Dispersionsabbildung) U als
Kostenfunktion in Abhängigkeit der Schallgeschwindig-
keiten am Beispiel einer Messung an einer PEEK-Platte
[JCF22]

Aufgrund der Normierung der Dispersionsabbildung in der Verarbeitung
nach Abschnitt 4.6 ergibt sich für U ein Wertebereich von U << 1. Bei
vollständiger Übereinstimmung ergibt sich theoretisch ein Wert von U →
1, wenn die messtechnisch erfasste Dispersionsabbildung alle theoretisch
ausbreitungsfähigen Moden mit maximaler normierter Intensität enthält.
Tatsächlich werden nicht alle Moden detektiert, da die entsprechende
detektierte mechanische Verschiebung bei bestimmten Modenbereichen
gerade zu Null wird und weil nicht alle Moden mit der gleichen Energie
angeregt/detektiert werden.
Alternativ zur Bestimmung der Schallgeschwindigkeiten ist die Kos-

tenfunktion in Abhängigkeit von Kompressions- und Schermodul in Ab-
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Abbildung 4.26: Mittelwert der Matrixwerte (Dispersionsabbildung) U als
Kostenfunktion in Abhängigkeit von Kompressions- und
Schermodul am Beispiel einer Messung an einer PEEK-
Platte

bildung 4.26 dargestellt. Da sich beide Darstellungen leicht ineinander
überführen lassen, ergibt sich ein ähnlicher Verlauf.

4.10.2 Kreuzkorrelationskoeffizient
Eine weitere Möglichkeit, Mess- und Simulationsergebnisse zu vergleichen,
stellt der Korrelationskoeffizient dar. Ist dieser maximal, stimmen Mess-
und Simulationsergebnis überein. Um diesen zu berechnen, wird das simu-
lativ berechnete Dispersionsdiagramm zunächst in eine Matrixform wie
die Messdaten überführt. Dazu wird eine Matrix mit Nullen in der Größe
der Daten der zu vergleichenden Dispersionsabbildung erzeugt. Jede Zeile
entspricht dabei einer Wellenzahl, jede Spalte einer Frequenz, nämlich
genau den entsprechenden Vektoren der Messdaten. Für jedes simulativ
berechnete Wellenzahl-Frequenz-Paar wird an entsprechender Stelle der
Wert der erzeugten Matrix zu eins gesetzt, um schließlich den Korrelations-
koeffizienten der Matrix und der vorverarbeiteten Messdaten zu berechnen,
dessen Maximum die größtmögliche Übereinstimmung angibt. [JCW17]
Abbildung 4.27 zeigt den Verlauf der Funktion des Korrelationskoeffizienten
in Abhängigkeit der Longitudinal- und Transversalwellengeschwindigkeiten
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Abbildung 4.27: Kreuzkorrelationskoeffizient in Abhängigkeit der Schall-
geschwindigkeiten am Beispiel einer Messung an einer
PEEK-Platte

am Beispiel einer Messung an einer 5,45 mm dicken PEEK-Platte. Der Ver-
lauf stimmt im Wesentlichen mit dem des Mittelwerts aus Abbildung 4.25
überein. Genau wie beim Mittelwert führt eine ideale Übereinstimmung
theoretisch zum maximalen Wert von eins, da sowohl die Werte in der
Dispersionsabbildung aus der Messung aufgrund der Normierung maximal
eins ergeben und die Werte, an denen sich Moden befinden in der simulativ
erzeugten Matrix ebenfalls auf den Wert eins gesetzt werden. Wird auf
eine Normierung der Messdaten verzichtet, kann der Wert der simulativ er-
zeugten Matrix, an den berechneten Frequenz-Wellenzahl-Paaren, auf den
maximalen Wert der Dispersionsabbildung aus der Messung gesetzt werden.
Trotzdem wird, wie bereits zuvor erläutert, nie der Wert von eins für den
Kreuzkorrelationskoeffizienten erreicht, weil dazu alle Moden ideal mit glei-
cher Energie angeregt und diese wiederum ungedämpft detektiert werden
müssten. Aufgrund der spezifischen Sende- und Empfangseigenschaften
des Messsystems wird die messtechnisch erzeugte Dispersionsabbildung nie
vollständig alle theoretisch ausbreitungsfähigen Moden enthalten. Gleich-
zeitig müssten alle (Bild-)Werte in der Dispersionsabbildung, die keine
Mode beschreiben, ideal zu null werden, sodass die weiteren Artefakte aus
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der Verarbeitung ideal unterdrückt und die Moden selbst ideal dünn wer-
den. Daher ist zwar der absolute Wert des Kreuzkorrelationskoeffizienten
in Abbildung 4.27 von eins weit entfernt, besitzt jedoch ein eindeutiges
Maximum, dessen Lage mit dem maximalen Mittelwert in Abbildung 4.25
übereinstimmt. Daher eignet sich der Kreuzkorrelationskoeffizient ebenfalls
als geeignete Zielfunktion für eine Optimierung.

4.10.3 Vergleich der Zielfunktionen
Abbildung 4.25 und 4.27 weisen im Wesentlichen identische Verläufe auf.
Beide Kostenfunktionen haben den Vorteil, dass keine Modenerkennung
auf den Messdaten notwendig ist. Das erleichtert die Automatisierung
sehr, da bei einer Modenerkennung häufig falsche Werte z.B. aufgrund
von Artefakten wie dem Leakage-Effekt mit erfasst werden. Da zur Be-
rechnung des Kreuzkorrelationskoeffizienten eine Matrix in der Größe der
messtechnisch erzeugten Frequenz-Wellenzahl-Darstellung erstellt wird,
ist die Anwendung des Kreuzkorrelationskoeffizienten als Kostenfunkti-
on sehr rechenintensiv. Das liegt daran, dass die messtechnisch erzeugte
Frequenz-Wellenzahl-Darstellung aufgrund des Zero-Paddings zur Erhö-
hung der Auflösung sehr viele Werte enthält und somit zudem einen großen
Speicherbedarf hat. Eine zweite Matrix gleicher Größe würde den Speicher-
bedarf bereits verdoppeln. Daher wird im weiteren Verlauf der Mittelwert
der Bildwerte der Dispersionsabbildung als Ähnlichkeitsmaß zwischen der
messtechnisch erzeugten Frequenz-Wellenzahl-Darstellung (Dispersionsab-
bildung) und dem berechneten Dispersionsdiagramm genutzt.

4.11 Optimierung
Zur Maximumsuche der Kostenfunktion wird der Nelder-Mead Simplex
Algorithmus [NM65] als ein ableitungsfreier Algorithmus verwendet. Dieser
hat den Vorteil, dass die Kostenfunktion nicht mehrfach zur Gradienten-
berechnung ausgewertet werden muss. Alternativ eignen sich ebenfalls
weitere ableitungsfreie Algorithmen wie der BOBYQA (bound constrained
optimization by quadratic approximization) [Pow09], aber auch gradienten-
basierte Verfahren sind aufgrund der glatten Zielfunktionen geeignet. Da
die in der Python-Bibliothek scipy [VGO20] bereits implementierten Op-
timierungsalgorithmen in der Regel nach einem Minimum suchen, wird
der negative Wert der jeweiligen Zielfunktion verwendet. Zur schnelleren
Konvergenz sind weitere Skalierungen der Zielfunktionen möglich. Da der
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Wertebereich der Zielfunktionen wegen der Normierung der messtechnisch
erzeugten Dispersionsabbildung zwischen null und eins liegt, kann z.B.
durch den Kehrwert eine schnellere Konvergenz erreicht werden, da bei
kleinen Werten der Kehrwert zu einer deutlichen Vergrößerung führt und
somit zu einem steileren Gradienten.
Durch Nutzung des Kehrwerts entsteht jedoch eine Unstetigkeitsstelle

bei einem Bildmittelwert bzw. Kreuzkorrelationskoeffizienten von null.
In dem Fall gibt es zunächst keine Übereinstimmungen zwischen Moden
des berechneten Dispersionsdiagramms und den Messdaten. Das führt
zu Problemen für den Fall, dass sehr wenige Moden angeregt oder z.B.
aufgrund zu hoher Dämpfung kaum Moden detektiert oder die Startwerte
schlecht gewählt worden sind.

Die Verwendung des negativen Bildmittelwerts bzw. des negativen Kreuz-
korrelationskoeffizienten führt zu einer weiterhin glatten Zielfunktion und
konvergiert hinreichend schnell. Daher wird dieser im weiteren Verlauf
der Arbeit minimiert und als Kostenfunktion bezeichnet, um elastische
Materialparameter zu identifizieren. Aufgrund des geringeren Rechen- und
Speicheraufwands wird als Zielfunktion der Mittelwert der Intensitätswerte
verwendet, sodass schließlich zur Identifikation elastischer Materialparame-
ter der negative Mittelwert der Intensitätswerte als Kostenfunktion mittels
Nelder-Mead Simplex-Algorithmus minimiert wird.

4.12 Unsicherheitsbetrachtung
Die Unsicherheiten der identifizierten Schallgeschwindigkeiten cL und cT
werden mittels Monte-Carlo-Simulation nach dem guide to the expression
of uncertainty in measurement (GUM) [Poi08b] abgeschätzt. Neben den
Typ B-Unsicherheiten [Poi08a] der eingesetzten Geräte in der Laserakustik-
Messung wie Oszilloskop und Linearachse wird ebenfalls der Unsicher-
heitsbeitrag der gemessenen Plattendicke untersucht. Für letztere wird
ebenfalls die Typ B-Unsicherheit der zur Messung verwendeten Bügel-
messschraube betrachtet. Dafür werden zunächst die Einflüsse aus dem
Messsystem modelliert, um die Unsicherheiten der Schallgeschwindigkeiten
zu bestimmen.

4.12.1 Modellierung der Unsicherheitsbeiträge
Im Folgenden werden die zu modellierenden Wahrscheinlichkeitsdichtefunk-
tionen der zu berücksichtigenden Unsicherheitsbeiträge beschrieben.
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Unsicherheitsbeitrag des additiven Messrauschens: Zunächst wird die
Wahrscheinlichkeitsdichteverteilung des additiven Messrauschens als Typ
A-Unsicherheit [Poi08a] betrachtet. Dafür werden Signalanteile zeitlich vor
dem Empfang der angeregten Ultraschallwelle, aus Messsignalen an verschie-
denen Proben betrachtet. Bei jeder durchgeführten Messung wird weiterhin
für jede Anregungsposition N -mal angeregt und empfangen, sodass die
Empfangssignale bereits N -fach gemittelt wurden, was je nach betrachte-
ter Messung den Signal-zu-Rausch-Abstand (SNR) um den Faktor 1/

√
N

verringert. Um diese Mittelung auf die Bestimmung des Messrauschens her-
auszurechnen, wird das Rauschlevel der gespeicherten Zeitsignale mit der
Anzahl der durchgeführten Mittelungen N um den Faktor

√
N gewichtet.

Aus der Auswertung von 12 740 000 zeitabhängigen Signalverläufen an ver-
schiedenen Metall- und Polymerproben ergibt sich eine Gaußverteilung der
Rauschsignale mit einem Stichprobenmittelwert von uGauss ≈ 30 mV und
einer Stichprobenstandardabweichung von sGauss = 71 mV. Dabei sei ange-
merkt, dass ein additiver Gleichanteil aufgrund der Mittelwertbefreiung
der Messsignale (vgl. Abschnitt 4.6) keinen Unsicherheitsbeitrag leistet.

Unsicherheitsbeitrag des Oszilloskops: Die unsicherheitsbehaftete Zeit-
basis des Oszilloskops wird durch eine zufällige Neuskalierung des gemes-
senen Zeitvektors nach [Cla21] modelliert. Deren Unsicherheit wird vom
Hersteller mit 1 · 10−6 angegeben [TP21]. Dementsprechend wird die Ska-
lierungsänderung mit einer Gleichverteilung von 1 · 10−6 der eingesetzten
Abtastfrequenz von 100 MHz modelliert. Dabei wird davon ausgegangen,
dass die Zeitbasis zwar unsicher ist, sich jedoch während der Aufnahme
eines Messsignals nicht ändert. Weiterhin wird davon ausgegangen, dass
sich alle Empfangssignale während der Vermessung einer Probe, auf den
gleichen unsicheren Zeitvektor beziehen. Würde diese Annahme verletzt,
wäre das Verfahren der 2D-FT nicht mehr möglich einzusetzen ohne die
Zeitvektoren auf eine gleiche Abtastrate zu bringen z.B. durch Interpolation
oder Verwerfen von Werten.

Der Trigger-Jitter des Oszilloskops wird durch ein zufälliges Verschieben
der Signale entlang der zeitlichen Achse modelliert. Da die Verschiebung
zufällig um±1 Wert erfolgt, werden die Signale mit einer Wahrscheinlichkeit
von 1/3 um jeweils einen Wert nach links, einen Wert nach rechts oder gar
nicht auf der zeitlichen Achse verschoben.

Unsicherheitsbeitrag der Linearachse: Ähnlich wird die Linearachse be-
trachtet. In dem Fall werden die Signale zufällig entlang der örtlichen Achse
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

verschoben. Vom Hersteller wird eine Positioniergenauigkeit von ±60 µm
angegeben [Zab18], sodass diese bis zu 60 µm abweichend zur Zielposition
zu kurz oder zu weit verfährt. Da die angegebene Abweichung der Position
in der Regel unterhalb der Schrittweite ∆y liegt, wird diese mithilfe einer
Dreiecksverteilung mit einer halben Breite von 60 µm/∆y modelliert. Diese
wird in drei Abschnitte unterteilt. Befindet sich der Wert um 0 im Intervall
[−60/(2∆y); 60/(2∆y)], werden die Signale nicht verschoben, liegt er im
unteren Drittel der Verteilung, im Intervall [−60/(∆y);−60/(2∆y)[ erfolgt
eine Signalverschiebung um einen Abtastwert nach links, liegt der Wert im
oberen Drittel in ]60/(2∆y); 60/(∆y)] erfolgt eine Verschiebung um einen
Abtastwert nach rechts entlang der örtlichen Achse.

Unsicherheitsbeitrag der Plattendicke: Als Geometrie-Parameter geht
die Plattendicke th direkt in die Simulation ein. Diese wird mit einer
Bügelmessschraube, deren absolute Messabweichung mit ±2 µm [Mit21]
angegeben ist, gemessen. Demnach wird die Unsicherheit der Plattendicke th
durch eine Gleichverteilung im Bereich von [th−2 µm, th +2 µm] modelliert.

Größen ohne Unsicherheitsbeitrag zu den Schallgeschwindigkeiten:
Offset- und Verstärkungsfehler durch den Verstärker haben aufgrund der
anschließenden Signalverarbeitung keinen Einfluss auf die Messung, da
zunächst alle Signale vom Mittelwert befreit werden und die absolute
Signalstärke selbst für die 2D-Fourier-Transformation unerheblich ist. Die
Qualität der Koppelschicht am Empfangswandler beeinflusst das SNR, was
bereits in der Berücksichtigung des Messrauschens enthalten ist. Ist z.B. zu
wenig Koppelgel aufgetragen worden, verringert sich die Signalstärke der
empfangenen Wellen gegenüber dem Messrauschen. Weiterhin führt eine
sehr dicke Koppelschicht zur zeitlichen Verzögerung der Signale. Da diese
jedoch aufgrund der gleichbleibenden Ankopplung für jede Anregungspo-
sition identisch ist, hat dies nach der Verarbeitung der Signale keinerlei
Einfluss auf die zu bestimmenden Materialparameter.
Bei der Bestimmung der Schallgeschwindigkeiten entfällt der Einfluss

der Dichte ρ im Vorwärtsmodell nach Unterabschnitt 4.2.1. Sobald jedoch
eine andere Form der Elastizitätsmatrix, z.B. mittels Lamé-Konstanten,
berechnet wird, muss der Unsicherheitsbeitrag der Dichte mit berück-
sichtigt werden. Dann kann diese z.B. aus einer Monte-Carlo-Simulation
der Unsicherheitsbeiträge der Geometrie- und Massenmessung bestimmt
werden.
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4.12 Unsicherheitsbetrachtung

4.12.2 Messunsicherheiten der Schallgeschwindigkeiten
durch Monte-Carlo-Simulation

Dem vorherigen Abschnitt zufolge werden bei der Bestimmung der Schallge-
schwindigkeiten die Typ B-Unsicherheitsbeiträge der Zeitbasis des Oszillo-
skops, des Trigger-Jitters des Oszilloskops, der Genauigkeit der Zielposition
der Linearachse, der Plattendicke sowie die Typ A-Unsicherheit des Mess-
rauschens in einer Monte-Carlo-Simulation berücksichtigt.
Dazu werden die Messsignale mit den jeweiligen Unsicherheiten beauf-

schlagt und durch das inverse Verfahren propagiert. Als Startwerte für die
Schallgeschwindigkeiten werden die geschätzten Startwerte aus Tabelle 4.1
verwendet.

Die resultierenden relativen Häufigkeiten der Longitudinal- und Trans-
versalwellengeschwindigkeiten sind in Abbildung 4.28 und 4.29 beispielhaft
für PEEK dargestellt. Die relativen Häufigkeiten der anderen Proben be-
finden sich in Unterabschnitt A.3.1. Dort zeigen sich Longitudinal- und
Transversalwellengeschwindigkeit quasi Gauß-verteilt. Die resultierenden
Unsicherheiten der Schallgeschwindigkeiten ergeben sich aus deren Stich-
probenstandardabweichungen bezogen auf deren Stichprobenmittelwert
und sind im nächsten Abschnitt in Tabelle 4.1 angegeben.
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Abbildung 4.28: Relative Häufigkeit der Longitudinalwellengeschwindigkeit
cL (PEEK) [JCF22]
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Abbildung 4.29: Relative Häufigkeit der Transversalwellengeschwindigkeit
cT (PEEK) [JCF22]
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4.13 Ergebnisse
Beispielhaft werden vier isotrope Proben ausgewertet. Als Beispiel für ein
Metall dient Aluminium, als Beispiele für Polymere dienen Polyetherether-
keton (PEEK), Polyamid 6 (PA6) und Polyethylenterephthalat (PET).
Aufgrund seines optischen Absorptionsspektrums [RFK12] erscheint PET
transparent im infraroten Wellenlängenbereich, sodass die Anregung auf
PET mit dem UV-Laser erfolgt, während die dargestellten Messungen
an PEEK und Aluminium durch Anregung mittels IR-Laser aufgenom-
men werden (vgl. Unterabschnitt 4.3.1). Der PA6-Probe ist ein schwarzer
Farbstoff beigefügt, sodass sich diese ebenfalls mit dem IR-Laser anregen
lässt. Die experimentelle Vorgehensweise richtet sich nach Abschnitt 4.4.
Wie dort bereits erwähnt, wird aufgrund der Temperaturabhängigkeit
der Materialparameter die Umgebungstemperatur im Messplatz während
der Messungen von einem Temperatursensor MCP9808 [MT11] mit einer
Messabweichung von±0,5 K aufgenommen. Die Startwerte werden nach Un-
terabschnitt 4.9.2 im Frequenz-Wellenzahl-Bereich geschätzt, während die
Optimierung mittels Nelder-Mead Simplex Algorithmus, unter Verwendung
des negativen Mittelwerts nach Unterabschnitt 4.10.1 als Kostenfunktion,
bestimmt werden. Die Startwerte, die identifizierten Schallgeschwindigkei-
ten (Stichprobenmittelwert) sowie deren relativen Unsicherheiten sind in
Tabelle 4.1 angegeben, während in Abbildung 4.30 bis 4.33 die verarbeiteten
Dispersionsabbildungen aus den Messungen zusammen mit den simulativ
berechneten Dispersionsdiagrammen unter Annahme der identifizierten
Materialparameter dargestellt sind.

Diese zeigen bei allen vier Messungen gute Übereinstimmungen zwischen
Mess- und Simulationsergebnissen. Da Metalle in der Regel eine geringere
akustische Absorption im Vergleich zu Kunststoffen aufweisen, werden
Moden im Frequenzbereich bis 8 MHz in Abbildung 4.30 sichtbar. Die
Grate selbst sind im Verlgeich zu den Kunststoffmessungen sehr schmal,
sodass hier keine Gamma-Expansion (vgl. Abschnitt 4.6) notwendig ist. Zur
besseren Unterscheidbarkeit der Moden werden die Grate der Messungen
an Kunststoffen mittels Gamma-Expansion (ΓExp = 2,5 vgl. Abschnitt 4.6)
künstlich schmaler gehalten. Ansonsten, idealerweise ohne Beeinflussung
der Grate z.B. durch Gamma-Expansion etc., ist die Breite der Moden
vergleichbar mit eine Art qualitativer Güte: Je breiter die Moden, desto
kleinere Werte weisen die Maxima, welche den Mittellinien der Grate
entsprechen, auf. Dementsprechend sind schmale Grate ein Indiz für eine
geringe akustische Dämpfung, die bisher bei der Materialparameterbe-
stimmung noch nicht berücksichtigt wird. Neben der modalen Dämpfung
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Abbildung 4.30: Dispersionsabbildung einer 1,98 mm dicken Aluminium-
Platte und simulativ berechnetes Dispersionsdiagramm
(weiß)
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Abbildung 4.31: Dispersionsabbildung einer 5,45 mm dicken PEEK-Platte
und simulativ berechnetes Dispersionsdiagramm (weiß)
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Abbildung 4.32: Dispersionsabbildung einer 8,8 mm dicken PA6-Platte und
simulativ berechnetes Dispersionsdiagramm (weiß)
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Abbildung 4.33: Dispersionsabbildung einer 4,08 mm dicken PET-Platte
und simulativ berechnetes Dispersionsdiagramm (weiß)
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

Tabelle 4.1: Identifizierte effektive Schallgeschwindigkeiten

Alu PEEK PA6 PET
Dichte / kg m−3 2556 1310 1145 1360

Messtemperatur / °C 20 20 21 22
Startwerte:
c

(0)
L / m s−1 6525 2545 2692 2390
c

(0)
T / m s−1 3175 1105 1080 968

Optimiert (Stichprobenmittelwert):
cL / m s−1 6398,6 2558,8 2662,3 2407,8
cT / m s−1 3161,3 1109,3 1084,6 986,7

Unsicherheit von
cL / % 0,09 0,04 0,12 1,17
cT / % 0,07 0,11 0,22 0,54

beeinflusst die Anzahl der angeregten und detektierten Moden die Unsi-
cherheit. Dabei gilt je mehr Moden, insbesondere die sensitiven Bereiche
bei hohen Frequenzen und hohen Wellenzahlen, im inversen Verfahren
auswertbar sind, desto geringer die resultierende Messunsicherheit. Dies
äußert sich hier in einer hohen Messunsicherheit der PET-Probe (vgl. Ta-
belle 4.1). Maßnahmen zur Verringerung der Messunsicherheit bei Proben
mit hoher akustischer Absorption bzw. starker modaler Dämpfung wären
z.B. die Maximierung der absorbierten optischen Anregungsenergie. Dies
könnte erfolgen z.B. durch Aufbringen einer dünnen schwarzen Schicht
auf die Probe oder Beimischung eines schwarzen Farbstoffs (wie bei der
PA6-Probe) sowie die Wahl dicker Platten z.B. mit Plattendicken um
10 mm.

4.13.1 Aluminium
Die bestimmten Schallgeschwindigkeiten in Tabelle 4.1 liegen im gleichen
Wertebereich wie Literaturdaten (vgl. Tabelle 4.2). So werden z.B. in
[MW05] Schallgeschwindigkeiten von cL = 6360 m s−1 und cT = 3130 m s−1

für Aluminium angegeben. Weitere Anhaltswerte werden mit einem Elasti-
zitätsmodul im Bereich von 60 GPa bis 80 GPa und einer Poissonzahl von
ν = 0,33 in [Läp12] angegeben. Unter Annahme eines ideal-elastischen Ma-
terialmodells ergeben sich mit der in Tabelle 4.1 angegebenen Dichte Schall-
geschwindigkeiten im Bereich von cL = 5897 m s−1 bis cL = 6810 m s−1 und
cT = 2790 m s−1 bis cT = 3430 m s−1.
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4.13 Ergebnisse

Tabelle 4.2: Vergleich der identifizierten Schallgeschwindigkeiten von Alu-
minium mit ausgewählten Literaturangaben

cL / m s−1 cT / m s−1 ρ / kg m−3

Ergebnis 6398,6 3161,3 2556
[Läp12] 5897 bis 6810 2790 bis 3430
[LSW09] 6420 3040 2700

4.13.2 PEEK
Polyetheretherketon (PEEK) ist ein teilkristalliner Thermoplast aus der
Gruppe der aromatischen Polyetherketone [DEE08]. PEEK weist einen
hohen Schmelzpunkt von 340 °C [PAE22] sowie eine hohe Glasübergang-
stemperatur von bis zu 162 °C [HPP] auf. In der Akustik zeichnet PEEK
sich durch eine für einen Kunststoff vergleichsweise geringe Absorption
aus.

So werden in [FHA10] bei 5 MHz im Puls-Echo-Verfahren Schallgeschwin-
digkeiten von cL = 2536 m s−1 und cT = 1252 m s−1 für PEEK bestimmt.
Ebenfalls im Puls-Echo-Verfahren bei 5 MHz und 10 MHz bestimmen Carl-
son et al. [CvS03] Schallgeschwindigkeiten frequenz- und temperaturab-
hängig im Bereich von 2554 m s−1 bis 2625 m s−1 für Longitudinal- und im
Bereich von 1252 m s−1 bis 1300 m s−1 für die Transversalwellengeschwin-
digkeit. Leicht geringere Schallgeschwindigkeiten von cL = 2470 m s−1 ±
30 m s−1 und cT = 1060 m s−1 ± 30 m s−1 werden in [MBG04] mittels eindi-
mensionalem Stoßtest gemessen, sodass die hier bestimmten Schallgeschwin-
digkeiten für PEEK in Tabelle 4.1 vergleichbar sind (vgl. Tabelle 4.3). Die
hier gravimetrisch bestimmte Dichte von PEEK liegt mit 1310 kg m−3 eben-
falls im Bereich der übrigen Literatur: 1286 kg m−3 [FHA10], 1252 kg m−3

bis 1300 kg m−3 [CvS03], 1311 kg m−3[RBO07], 1300 kg m−3 [MBG04].

Tabelle 4.3: Vergleich der identifizierten Schallgeschwindigkeiten von
PEEK mit ausgewählten Literaturangaben

cL / m s−1 cT / m s−1

Ergebnis 2558,8 1109,3
[FHA10] 2536 1252
[CvS03] 2554 bis 2625 1252 bis 1300
[MBG04] 2470± 30 1060± 30
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

4.13.3 PA6
Polyamid besteht aus sich regelmäßig wiederholenden Amidgruppen, die aus
Kondensation einer Carbonsäure und eines Amins entstehen. Daher lassen
sich die Amingruppen wieder hydrolytisch spalten. Die Wasseraufnahme
bei Raumtemperatur (23 °C) beträgt 9 % bis 10 % [Dom12], wodurch ein
Einsatz von Immersionstechnik zur Messung der Schallgeschwindigkeiten als
Alternativverfahren ungeeignet ist. PA6 weist zudem eine hohe mechanische
Festigkeit sowie eine hohe Schwingungsdämpfung [Ku23] (Absorption) auf.
Letzteres lässt sich durch die vergleichsweise breit verlaufenden Grate in
der messtechnisch ermittelten Dispersionsabbildung in Abbildung 4.32
erkennen.

Die Schallgeschwindigkeiten werden in [MW05] mit cL = 2700 m s−1 und
cT = 1120 m s−1 etwas größer angegeben als die in Tabelle 4.1 bestimmten,
die Dichte mit ρ = 1120 kg m−3 bis ρ = 1140 kg m−3 etwas geringer (vgl.
Tabelle 4.4). Nach [Läp12] liegen Anhaltswerte des Elastizitätsmoduls im
Bereich von E = 1,5 GPa bis E = 3,2 GPa, der Poissonzahl bei ν = 0,33.
Mit der gemessenen Dichte von ρ = 1145 kg m−3 ergeben sich unter An-
nahme eines ideal-elastischen Modells ein Bereich der Schallgeschwindig-
keiten von cL = 1369 m s−1 bis cL = 2000 m s−1 und cT = 704 m s−1 bis
cT = 1029 m s−1, was jeweils deutlich unter den resultierenden Schallge-
schwindigkeiten in Tabelle 4.1 liegt (vgl. Tabelle 4.4). Diese Diskrepanz der
berechneten Schallgeschwindigkeiten anhand der Werte aus [Läp12] liegt
in der Annahme eines ideal-elastischen Materialmodells begründet, das die
Viskoelastizität und somit die hohe akustische Absorption, die Polyamid
auszeichnet, nicht abbildet. Somit führt die Berechnung auf zu kleine Werte
der Schallgeschwindigkeiten, während Messungen der Schallgeschwindig-
keiten wie in [MW05], die nicht auf Berechnungen aus statischen Werten
eines ideal-elastischen Modells beruhen, in einem ähnlichen Wertebereich
liegen wie die hier in Tabelle 4.1 bestimmten Werte.

Daher zeigt sich hier, dass zwar effektive Schallgeschwindigkeiten, die das
Dispersionsdiagramm wie in Tabelle 4.1 repräsentieren, bestimmt werden
können, allerdings repräsentieren die unter Annahme eines ideal-elastischen
Materialmodells berechneten statischen Parameter wie Elastizitätsmodul
und Poissonzahl nicht mehr das statische Verhalten des Werkstoffs. Hierfür
muss der viskoelastische Charakter des Materials berücksichtigt werden.
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Tabelle 4.4: Vergleich der identifizierten Schallgeschwindigkeiten von PA6
mit ausgewählten Literaturangaben

cL / m s−1 cT / m s−1

Ergebnis 2666,3 1084,6
[MW05] 2700 1120
[Läp12] 1369 bis 2000 704 bis 1029

4.13.4 PET

Tabelle 4.5: Vergleich der identifizierten Schallgeschwindigkeiten von PET
mit ausgewählten Literaturangaben

cL / m s−1 cT / m s−1

Ergebnis 2407,8 986,7
[MW05] 2400 1150

Aufgrund seiner geringen Durchlässigkeit für Sauerstoff und Kohlendioxid
wird PET häufig als Verpackungsmaterial wie Getränkeflaschen verwendet.
[PET22] Die für PET bestimmten effektiven Schallgeschwindigkeiten und
die Dichte aus Tabelle 4.1 sind ebenfalls vergleichbar mit Literaturdaten
von cL = 2400 m s−1, cT = 1150 m s−1 sowie Dichten von ρ = 1330 kg m−3

bis 1350 kg m−3 aus [MW05] (vgl. Tabelle 4.5).

4.14 Identifikation richtungsabhängiger
Materialparameter

Da Lamb-(artige) Wellen nur Teilchenverschiebungen in der Querschnitt-
sebene der Platte verursachen, wird für dessen Modellierung der ebene
Verzerrungszustand angenommen. Das führt dazu, dass alle Dehnungen in
die dritte Raumrichtung zu null angenommen werden. Somit vereinfacht
sich die Elastizitätsmatrix von einer 6×6 auf eine 3×3 Matrix (vgl. Unter-
abschnitt 2.1.4), was dazu führt, dass lediglich die Elastizitätskoeffizienten
der Dickenrichtung der Platte sowie der Ausbreitungsrichtung der Welle bei
einer einzelnen Messung mit dem vorherigen Verfahren identifiziert werden
können. Für isotrope Werkstoffe ist dies vollkommen ausreichend, da sie sich
in alle Raumrichtungen gleich verhalten. Sind die Materialeigenschaften
jedoch richtungsabhängig, fehlen die Elastizitätskoeffizienten der dritten
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Plattendicke thQuerschnittsfläche

x2

x1

x3

θ

Abbildung 4.34: Rotation der Probe um den Winkel θ

Raumrichtung, sodass das mechanische Verhalten des Materials nicht voll-
ständig beschrieben ist. Um die restlichen Elastizitätskoeffizienten ebenfalls
zu bestimmen, wird die Probe während der Messung um die x-Achse (vgl.
Abbildung 4.6), welche der x1-Richtung des Koordinatensystems der Platte
entspricht, um den Winkel θ gedreht (vgl. Abbildung 4.34).

Die Drehung um die x1-Achse wird allgemein durch eine Rotationsmatrix

Rθ =




1 0 0 0 0 0
0 $2 ς2 2$ · ς 0 0
0 ς2 $2 −2$ · ς 0 0
0 −$ · ς $ · ς $2 − ς2 0 0
0 0 0 0 $ −ς
0 0 0 0 ς $




(4.21)

mit

$ = cos (θ)
ς = sin (θ)

beschrieben [LMH], sodass sich die Elastizitätsmatrix nach der Rotation
zu

Crot = RθCR
T
θ (4.22)

ergibt.

Wird die Elastizitätsmatrix Crot nach einer Rotation für den ebenen
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Verzerrungszustand nach Unterabschnitt 2.1.4 reduziert, ergibt sich

Crot,pl,ε (θ) =



C11,rot (θ) C12,rot (θ) C16,rot (θ)
C12,rot (θ) C22,rot (θ) C26,rot (θ)
C16,rot (θ) C26,rot (θ) C66,rot (θ)


 (4.23)

mit

C11,rot (θ) =C11 (4.24)
C22,rot (θ) =C22$

4 + C23$
2ς2

+ C24
(
2$3ς +$2ς2 + 2$3ς + 2$3

)

+ C33ς
4 + 4C34$ς

3 + 2C44$
2ς2 (4.25)

C66,rot (θ) =C55ς
2 + C56$

2ς + C66$
2 (4.26)

C26,rot (θ) =C25$
2ς + C26$

3 + C35ς
3 + C36$ς

2

+ 2c45$ς
2 + 2C46$

2ς (4.27)
C16,rot (θ) =C15ς + C16$ (4.28)
C12,rot (θ) =C12$

2 + C13ς
2 + 2C14ς$. (4.29)

Die allgemein sechs Koeffizienten der Elastizitätsmatrix für den ebenen
Verzerrungszustand Crot,pl,ε hängen linear von den Koeffizienten der allge-
meinen Elastizitätsmatrix für den dreidimensionalen Fall aus Gleichung 2.8
ab, sodass der allgemeine Zusammenhang aus Gleichung 4.24 bis 4.29 über
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eine Matrix Ran mit




C11,rot
C22,rot
C66,rot
C26,rot
C16,rot
C12,rot




︸ ︷︷ ︸
~crot

= Ran




C11
C12
C13
C14
C15
C16
C22
C23
C24
C25
C26
C33
C34
C35
C36
C44
C45
C46
C55
C56
C66




︸ ︷︷ ︸
~C

(4.30)

beschrieben werden kann. Entsprechend Gleichung 4.24 bis 4.29 ergibt sich
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Ran zu

RT
an =




1 0 0 0 0 0
0 0 0 0 0 $2

0 0 0 0 0 ς2

0 0 0 0 0 2ς$
0 0 0 0 ς 0
0 0 0 0 $ 0
0 $4 0 0 0 0
0 $2ς2 0 0 0 0
0 4$3ς + 2$3 +$2ς2 0 0 0 0
0 0 $2ς 0 0 0
0 0 0 $3 0 0
0 ς4 0 0 0 0
0 4$ς3 0 0 0 0
0 0 0 ς3 0 0
0 0 0 $ς2 0 0
0 2$2ς2 0 0 0 0
0 0 0 2$ς2 0 0
0 0 0 2$2ς 0 0
0 0 ς2 0 0 0
0 0 $2ς 0 0 0
0 0 $2 0 0 0




. (4.31)

Die Elastizitätskoeffizienten für den ebenen Verzerrungszustand werden
für mehrere Drehwinkel θ um die x1-Achse nach dem Verfahren aus den
vorherigen Abschnitten identifiziert. Somit werden für jeden Winkel θ sechs
winkelabhängige Elastizitätskoeffizienten bestimmt, aus denen wiederum
21 Koeffizienten berechnet werden sollen. Da demzufolge das Gleichungs-
system stark unterbestimmt ist, sind allgemein bei einem anisotropen
Probenmaterial Messungen unter mindestens N = 4 verschiedenen Win-
keln notwendig, damit das Gleichungssystem nicht mehr unterbestimmt ist.
Dabei ist jedoch darauf zu achten, dass die Gleichungen linear unabhängig
sind. Das kann dadurch erreicht werden, indem z.B. nur ein Quadrant (mit
θ = 0° bis 90°, 90° bis 180°, 180° bis 270° oder 270° bis 360°) betrachtet
wird.

Damit ergibt sich das zu lösende Gleichungssystem aus Gleichung 4.30
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

zu




~crot (θ1)
~crot (θ2)
~crot (θ3)
~crot (θ4)

...




︸ ︷︷ ︸
6N×1

=




Ran (θ1)
Ran (θ2)
Ran (θ3)
Ran (θ4)

...




︸ ︷︷ ︸
6N×21




C11
C12
C13
C14
C15
C16
C22
C23
C24
C25
C26
C33
C34
C35
C36
C44
C45
C46
C55
C56
C66




︸ ︷︷ ︸
21×1

~crot,ges = Ran,ges ~C. (4.32)

Die Berechnung der insgesamt 21 Elastizitätskoeffizienten erfolgt mithilfe
der Moore-Penrose-Pseudoinversen [PT55] R+

an,ges, sodass Gleichung 4.30
nach den unrotierten Elastizitätskoeffizienten umgestellt wird:

~C =R+
an,ges~crot,ges

=
(
RT

an,gesRan,ges
)−1

RT
an,ges~crot,ges. (4.33)

Werden demnach mindestens vier der Gleichungssysteme nach Gleichung
4.30 untereinander geschrieben, können die Elastizitätskoeffizienten der
unrotierten Platte in ~C bestimmt werden, sofern die vier verwendeten
Gleichungssysteme linear unabhängig sind. Aufgrund der Symmetrie der
Elastizitätsmatrix müssen nicht alle Winkel zwischen 0° und 360° hinzuge-
zogen werden. Demzufolge genügt es vier Winkel in einem Quadranten zu
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4.14 Identifikation richtungsabhängiger Materialparameter

betrachten. [JDW18]

4.14.1 Vereinfachung für orthotrope Werkstoffe

Für die meisten Materialien, wie faserverstärkte Kunststoffe oder Metalle
mit richtungsabhängigen Materialparametern, genügt in der Regel ein
orthotropes Materialmodell. In diesem Fall werden C14, C15, C16, C24, C25,
C26, C34, C35, C36, C45, C46, C56 zu Null, wodurch sich Gleichung 4.30 zu




C11,rot
C22,rot
C66,rot
C12,rot




︸ ︷︷ ︸
~crot,ortho

= Rortho




C11
C12
C13
C22
C23
C33
C44
C55
C66




︸ ︷︷ ︸
~Cortho

(4.34)

mit

Rortho =




1 0 0 0 0 0 0 0 0
0 0 0 $4 2$2ς2 ς4 4$2ς2 0 0
0 0 0 0 0 0 0 ς2 $2

0 $2 ς2 0 0 0 0 0 0


 (4.35)

vereinfacht. Da Gleichung 4.34 zur Berechnung der Elastizitätskoeffizienten
in Gleichung 4.34 unterbestimmt ist, ergibt sich analog zu Gleichung 4.32
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für ein orthotropes Material:




~crot,ortho (θ1)
~crot,ortho (θ2)
~crot,ortho (θ3)
~crot,ortho (θ4)

...




︸ ︷︷ ︸
4N×1

=




Rortho (θ1)
Rortho (θ2)
Rortho (θ3)
Rortho (θ4)

...




︸ ︷︷ ︸
4N×9




C11
C12
C13
C22
C23
C33
C44
C55
C66




︸ ︷︷ ︸
9×1

~crot,ortho,ges = Rortho,ges ~Cortho. (4.36)

Genau wie in Gleichung 4.32, wird Gleichung 4.36 mittels Pseudoinverse
(vgl. Gleichung 4.33) gelöst, um schließlich die neun in ~Cortho enthaltenen
Elastizitätskoeffizienten zu berechnen. Da in diesem Fall neun Koeffizien-
ten (~Cortho) aus jeweils vier Koeffizienten (~crot,ortho) pro Winkel bestimmt
werden sollen, sind für orthotrope Materialien mindestens drei Messungen
bei unterschiedlichen Rotationswinkeln notwendig, wobei es wieder genügt
einen Quadranten zu betrachten. Gleichzeitig ist darauf zu achten, dass die
Gleichungssysteme möglichst linear unabhängig sind. Werden insgesamt
hinreichend viele linear unabhängige Gleichungen aufgestellt, können auch
zusätzliche Mehrfachmessungen bei gleichen Winkeln auftreten wie z.B.
Messungen bei θ = ±90° zur Validierung einzelner Messungen oder um die
Unsicherheit der Approximation des Vektors ~Cortho zu verringern. [JDW18]

4.14.2 Auswertung am Beispiel faserverstärkter
Kunststoffe

Beispielhaft für eine orthotrope Platte werden drei glasfaserverstärkte
Kunststoffproben untersucht, welche hier jeweils als homogene Schicht
angenommen werden. Alle drei Proben bestehen aus einer Polyamid 6
(PA6) Matrix, die durch Endlosglasfasern aus E-Glas, mit einem Volu-
menanteil von 47 %, verstärkt ist [Bon22a; Bon22b; Bon09a; SON]. Die
Endlosglasfasern sind jeweils orthogonal zueinander orientiert und bilden
jeweils eine Orthotropieachse. Dabei werden zwei Bindungsarten, welche
in Abbildung 4.35 dargestellt sind, verglichen: Die Leinwand- und Kö-
perbindung [Sch07; Ehr06]. Während eine Probe mit Leinwandbindung
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x1

x2

x2

x3

Abbildung 4.35: Vergleich zweier typischer Webmuster: Leinwandbindung
(links) und Köperbindung (rechts) [Ehr06; JDW18] sowie
das angenommene Koordinatensystem.

und gleicher Faserverteilung je Richtung untersucht wird, werden zwei
Proben mit einer Köperbindung charakterisiert, davon eine mit gleicher
Faserverteilung je Richtung (50:50) und eine mit ungleicher Faserverteilung
in beide Raumrichtungen (80:20). Die Platten bestehen aus sechs Schichten
zu je 0,5 mm [Bon22a; Bon22b], sodass sich insgesamt eine Plattendicke
von 3 mm ergibt. Als Dichte wird die im Datenblatt [Bon22a] angegebene
Dichte von ρ = 1800 kg m−3 [Bon22a; Bon22b; Bon09a; SON] angenommen.

Obwohl es genügt einen Quadranten zu betrachten, werden die einzelnen
Platten in Winkeln von 15°-Schritten um die x1-Achse gedreht vermessen
und jeweils winkelabhängig die ideal-elastische, orthotrope Elastizitätsma-
trix für den ebenen Verzerrungszustand identifiziert. Die Startwerte für die
einzelnen Messungen werden nach dem Verfahren im Frequenz-Wellenzahl-
Bereich aus Unterabschnitt 4.9.2 bestimmt. Unter Annahme eines zunächst
isotropen Materialmodells wird die Elastizitätsmatrix berechnet, deren
Koeffizienten als Startwerte dienen. Während der Optimierung wird ein
orthotropes Materialmodell angenommen und der Vektor ~crot,ortho dient als
Parametervektor in der Optimierung, um die winkelabhängige, orthotrope
Elastiztiätsmatrix

Crot,ortho,pl,ε =



C11,rot (θ) C12,rot (θ) 0
C12,rot (θ) C22,rot (θ) 0

0 0 C66,rot (θ)


 (4.37)

für den ebenen Verzerrungszustand zu identifizieren. Die identifizierten
Elastizitätskoeffizienten der Einzelmessungen sind winkelabhängig jeweils
rot in den Abbildungen 4.38 bis 4.40 dargestellt. Zur Validierung sind die
Dispersionsabbildungen mit den berechneten Dispersionsdiagrammen für
einen Winkel von 45° beispielhaft in den Abbildungen 4.36 und 4.37 darge-
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Abbildung 4.36: Dispersionsabbildungen und berechnetes Dispersiondia-
gramm der Probe mit Leinwandbindung (50:50) bei einem
Drehwinkel von 45°

0 0,2 0,4 0,6 0,8
0

2

4

Frequenz f / MHz

K
re

isw
el

le
nz

ah
l

R
e{

k
}

/
m

m
−

1

(a) Köperbindung (50:50)
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(b) Köperbindung (80:20)

Abbildung 4.37: Dispersionsabbildungen und berechnetes Dispersiondia-
gramm der Proben mit Köperbindung bei einem Drehwin-
kel von 45°
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4.14 Identifikation richtungsabhängiger Materialparameter

stellt. Trotz der Annahme eines homogenen Materials und der wenigen sich
ausbreitenden Moden, stimmen Messung und Simulation zum größten Teil
überein. Mit steigender Frequenz steigen Abweichungen, was nicht verwun-
derlich ist, da es sich nicht, wie angenommen, um ein homogenes Material
handelt. Bei Betrachtung der Messung an der Probe mit Leinwandbindung
in Abbildung 4.36 fällt auf, dass sich die Steigung der als A0-Mode ange-
nommene Mode ab einer Frequenz von 0,4 MHz an einigen Stellen ändert.
Zwischen diesen Abschnitten ergeben sich Unterbrechungen in dem Grat.
Diese sind mit der Kopplung von Polymermatrix und Glasfasern sowie
der geschichteten Struktur der Proben zu begründen: Werden allgemein
mehrere Plattenwellenleiter miteinander verkoppelt, ergibt sich simulativ
ein Dispersionsdiagramm, welches Anteile aus beiden Einzelschichten ent-
hält. Werden die Dispersionsdiagramme der ungekoppelten Einzelschichten
übereinander gelegt, ergeben sich Frequenz-Wellenzahl-Paare an denen
sich die Dispersionskurven der einzelnen Schichten kreuzen. Eine Kopplung
beider Schichten führt zu einer Abstoßung der Moden in genau diesen
Punkten, an denen sich die Dispersionskurven der Einzelschichten kreuzen.
In Messungen wird dieser Effekt durch unterbrochene Moden und eine
Änderung der Steigung (und somit der Gruppengeschwindigkeiten) der
Moden im Dispersionsdiagramm sichtbar. [LJH19] Dabei werden meist nur
die Modenabschnitte sichtbar, die zu dem Dispersionsdiagramm der Schicht
mit der höheren Schallgeschwindigkeit gehören, da sich die Wellen bevor-
zugt in dieser Schicht ausbreiten (vgl. [LJH19]). Um die Kopplungsstärke
beider Schichten zu quantifizieren, lässt sich entweder die Krümmung der
Dispersionskurven um den Abstoßungspunkt [NZL22] oder der Abstand
der Moden [ZJN21; ZCJ21] zueinander auswerten. Da sich die Moden der
jeweiligen Dispersionsdiagramme für den ungekoppelten Fall kreuzen, wenn
diese gleichzeitig in einer Abbildung dargestellt werden, steigt der Abstand
der Moden in diesen Punkten je stärker die Schichten gekoppelt sind. Die
hier betrachteten glasfaserverstärkten Kunststoffe bestehen jeweils aus
sechs gewebten Schichten zu je 0,5 mm. Die Verkopplung beider Werkstoffe
erfolgt jedoch bereits innerhalb einer Schicht durch die Webung. Möglicher-
weise lässt sich die Kopplungsstärke der verwebten Stoffe bei Betrachtung
der Unterbrechungen der Grate, die in Abbildung 4.36 sichtbar werden,
nach [LJH19; NZL22; ZJN21; ZCJ21] untersuchen.
Werden aus den identifizierten, winkelabhängigen Koeffizienten mit

Gleichung 4.36 die neun Koeffizienten der Elastizitätsmatrix in ~Cortho
bestimmt, ergeben sich die Parameter in Tabelle 4.6. Die Berechnung einer
Rotation der identifizierten Elastizitätsmatrix mit den Koeffizienten in
Tabelle 4.6 um den Winkel θ führt mit Gleichung 4.22 zu den blauen
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Abbildung 4.38: Elastizitätskoeffizienten der Einzelmessungen (rot) und
mittels Gleichung 4.22 berechneter Verlauf der Elastizitäts-
koeffizienten (blau) der Leinwandbindung (Faserverteilung
50:50) [JWD19]

Kurven in den Abbildungen 4.38 bis 4.40.
Die Parameter C13, C33 und C55 sind nicht explizit dargestellt, weil sich

diese direkt über

C13 (θ) = C12 (θ + 90°)
C33 (θ) = C22 (θ + 90°)
C55 (θ) = C66 (θ + 90°)

aus den Parametern C12, C22 und C66 ergeben [JWD19]. Da die Para-
meter C11 und C22 proportional zu den Elastizitätsmoduln E1 und E2
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Abbildung 4.39: Elastizitätskoeffizienten der Einzelmessungen (rot) und
mittels Gleichung 4.22 berechneter Verlauf der Elastizitäts-
koeffizienten (blau) der Köperbindung (Faserverteilung
50:50) [JWD19]

sind, entsprechen deren Verläufe qualitativ den Verläufen bestimmter Elas-
tizitzätsmoduln an anderen endlosfaserverstärkten Kunststoffen in der
Literatur [FHA10; Sch07; BO12]. Gleiches gilt für die Schubmodule, die
den Parametern C44, C55 und C66 entsprechen [Sch07].
Während sich die Elastizitätskoeffizienten der Probe mit Leinwandbin-

dung in Abbildung 4.38 rotationssymmetrisch verhalten, ergibt sich für
den Parameter C22 bei der Köperbindung mit gleichem Faserverhältnis
in beide Raumrichtungen in Abbildung 4.39 bereits eine minimale, kaum
erkennbare, Abweichung. Bei der Probe mit Köperbindung und ungleichem
Faserverhältnis ist in Abbildung 4.40 deutlich eine Vorzugsrichtung er-
kennbar. Während die Festigkeit bzw. der Koeffizient C22 in der Richtung
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Abbildung 4.40: Elastizitätskoeffizienten der Einzelmessungen (rot) und
mittels Gleichung 4.22 berechneter Verlauf der Elastizitäts-
koeffizienten (blau) der Köperbindung (Faserverteilung
80:50) [JWD19]

in der die Mehrheit der Fasern verläuft (90° bzw. 270°) groß wird, wird
der Parameter C12 in genau dieser Richtung klein, während er größer bei
einem Winkel von θ = 0° bzw. θ = 180° wird. Die Glasfasern sorgen für
eine hohe Steifigkeit unter Normalbelastungen, jedoch nicht bei Schub-
bewegungen wie der zusätzlich berechnete Koeffizient C44 (Schubmodul)
in Abbildung 4.41 zeigt. Dieser ist maximal bei einem Rotationswinkel
von θ = n · 45° zu den Fasern. Gleiches gilt für den Parameter C23. In
beiden Fällen zeigt sich die geringste Abweichung von der Isotropie bei
der Probe mit Leinwandbindung, die größte bei der Köperbindung mit
ungleichem Faserverhältnis, deren Parameter C23 und C44 besonders klein
entlang der Fasern und gleichzeitig besonders groß abseits der Fasern wer-
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Abbildung 4.41: Berechnete Elastizitätskoeffizienten C44 und C23: Lein-
wand (blau), Köper 50:50 (rot), Köper 80:20 (braun)
[JWD19]

Tabelle 4.6: Identifizierte Elastizitätskoeffizienten [JWD19]

Parameter Leinwand (50:50) Köper (50:50) Köper (80:20)
C11 / GPa 9,31 10,32 9,83
C22 / GPa 27,84 28,15 20,29
C33 / GPa 27,60 29,01 35,50
C44 / GPa 9,13 7,50 5,66
C55 / GPa 2,80 3,04 3,25
C66 / GPa 2,80 3,26 2,83
C23 / GPa 4,57 3,75 2,83
C13 / GPa 5,86 5,96 5,71
C12 / GPa 5,95 5,83 8,52

den (vgl. Abbildung 4.41). Bei Betrachtung der identifizierten Parameter
selbst in Tabelle 4.6 fällt auf, dass die Proben mit gleicher Faserverteilung,
insbesondere die Probe mit Leinwandbindung, durch C13 ≈ C12, C22 ≈ C33
und C55 ≈ C66 Eigenschaften eines tetragonalen Kristallsystems aufweisen
[Šut84; JDW18]. Demnach könnte die Zahl der Modellparameter für diese
Probe von insgesamt neun auf sechs reduziert werden, sodass der gesuchte
Vektor ~C in Gleichung 4.30 bzw. ~Cortho in Gleichung 4.34 nur noch sechs Ele-
mente enthält. Das führt dazu, dass nur noch sechs Parameter in ~Cortho aus
vier Parametern pro Winkel in crot,ortho bestimmt werden müssen. Dadurch
reduziert sich die minimal benötigte Anzahl winkelabhängiger Messungen
zu zwei notwendigen Winkeln möglichst im gleichen Quadranten, um zwei
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linear unabhängige Gleichungen zu erhalten (vgl. Gleichung 4.36). Dies
kann bei weiteren Untersuchungen der Materialien genutzt werden, um z.B.
Eigenschaftsänderungen durch z.B. Alterung zu untersuchen. Für weitere
Anwendungen der hier vorgestellten Verfahren zur Untersuchung der Mate-
rialalterung sei auf [Web21] verwiesen. Zum Vergleich mit dem verfügbaren
Datenblatt der Probe mit Köperbindung und gleichem Faserverhältnis
(50:50) in beide Raumrichtungen werden für diese Proben die Elastizitäts-
moduln E2 und E3 mithilfe von Gleichung 2.16 berechnet, welche sich zu
E2 = 24,9 GPa und E3 = 25,6 GPa ergeben. Damit liegen die bestimmten
Elastizitätsmodule nur leicht über der Angabe im Datenblatt von 23 GPa,
welches im quasistatischen Zugversuch gemäß ISO 527-4/5 bestimmt wurde.
Allerdings ist im Datenblatt keine Richtungsangabe enthalten. In einer
älteren Version des Datenblatts von 2009 [Bon09a] sind mehr Angaben
enthalten, die noch online unter [SON] verfügbar sind. Dort sind kleinere
Elastizitätsmodule in den beiden Raumrichtungen der Plattenebene (x2
und x3) von 21,5 GPa und 22,4 GPa angegeben. Der Unterschied in den
Werten zwischen den Versionen der Datenblätter ist entweder in der Stich-
probenstreuung und/oder einer Anpassung des Herstellungsprozesses zu
begründen. Die in [Bon09a; SON] ebenfalls angegebenen Poissonzahlen
von ν = 0,17 weichen nur minimal von der hier berechneten Poissonzahl in
der x2-x3-Ebene (vgl. Abbildung 4.35) mit ν23 = 0,18 ab. Bei Betrachtung
der Probe mit ungleicher Faserverteilung ergeben sich Elastizitätsmodule
in der Plattenebene von E2 = 12,76 GPa und E3 = 31,83 GPa, wobei 80 %
der Fasern in x3-Richtung verlaufen. Insbesondere in x3-Richtung liegt die
Datenblattangabe (Zugversuch nach ISO 527-4/5) mit 32 GPa [Bon22b]
sehr nahe am ermittelten Wert. Die Angabe des Elastiztätsmoduls im Da-
tenblatt für die x2-Richtung, in der 20 % der Fasern verlaufen, weicht mit
14 GPa [Bon22b] etwas stärker ab, welches mit dem höheren PA6-Anteils
und dessen viskoelastischen Verhalten, zu erklären ist.

Da die viskoelastischen Eigenschaften des Matrixmaterials PA6 in der
Berechnung nicht berücksichtigt worden sind, ist ein höherer Elastizitäts-
modul gegenüber den Werten aus den Datenblättern zu erwarten. Da Glas
im Vergleich zu Polymeren kaum viskoelastisches Verhalten zeigt, sind
die Abweichungen entlang der Richtung mit dem größeren Glasfaseranteil
geringer.
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4.14 Identifikation richtungsabhängiger Materialparameter

Fazit
Mithilfe eines kurzen Laserpulses im Nanosekundenbereich lassen sich breit-
bandige Ultraschallwellen in Plattenwellenleitern thermoelastisch anregen.
Die Detektion erfolgt mit einem piezoelektrischen Schallwandler. Die Dämp-
fungsmasse (Backing) im Schallwandler sorgt zwar für eine Dämpfung der
Ultraschallwellen bei der Resonanzfrequenz der verwendeten Piezokeramik,
führt jedoch gleichzeitig dazu, dass alle Schallwellen bis ca. 10 MHz die glei-
che Dämpfung erfahren, wodurch eine breitbandige Detektion ermöglicht
wird (Fragestellung I). Demzufolge, und aufgrund der in Polymeren auftre-
tenden akustischen Dämpfung der Schallwellen, sind die empfangenen Ultra-
schallwellen nur schwach ausgeprägt. Aufgrund der Verschiebung der Anre-
gung ergibt sich neben der zeitlichen eine zusätzliche örtliche Abhängigkeit
der Messsignale. Durch Fensterung im Orts- und Zeitbereich, Zero-Padding
sowie weiteren Bildverarbeitungsschritten im Frequenz-Wellenzahl-Bereich
nach der zweidimensionalen Fourier-Transformation lassen sich trotz schwa-
cher Eingangssignale die in der Dispersionabbildung sichtbar werdenden
Moden hinreichend gut auswerten (Fragestellung II). Die elastischen Mate-
rialparameter (Schallgeschwindigkeiten) lassen sich unter Annahme von
Isotropie anhand der Steigung der Wellenfronten im Orts-Zeitbereich oder
anhand der Steigung der Grate im Frequenz-Wellenzahlbereich (Disper-
sionsabbildung) schätzen. Neben einer numerischen Nullstellensuche der
Rayleigh-Lamb-Gleichung, lässt sich die Wellenausbreitung effizient mit
einer semi-analytischen Finite-Elemente-Methode simulieren (Fragestel-
lung III). Zum Abgleich der Frequenz-Wellenzahl-Paare der detektierten
Moden mit den Simulationsdaten werden die elastischen Materialparameter
als Modelleingangsparameter variiert. Eine Bewertung der Übereinstim-
mung der berechneten und messtechnisch ermittelten Frequenz-Wellenzahl-
Paaren liefert die Zielfunktion. Die hier vorgestellten Zielfunktionen ver-
zichten auf eine Extraktion der Moden repräsentierenden Grate aus der Di-
spersionsabbildung. Stattdessen gewichten sie Frequenz-Wellenzahl-Paare
mit hohen Beträgen der zweidimensionalen Fouriertransformation (Disper-
sionsabbildung) am stärksten (Fragestellung IV). In Kombination mit der
vorherigen Verarbeitung ergibt sich eine glatte Zielfunktion und somit ein
robustes inverses Verfahren (Fragestellung IV). Dabei können alle Model-
leingangsparameter gleichzeitig variiert werden, ohne dass eine spezielle
Optimierungsreihenfolge notwendig ist (Fragestellung V). Die Unsicherheit
der resultierenden Messgrößen (Schallgeschwindigkeiten) werden mittels
Monte-Carlo-Simulation bestimmt (Fragestellung VI).

Da sich die durch Lamb-Wellen erzeugten Verschiebungen auf die Plat-
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4 Inverses Verfahren zur Identifikation elastischer Materialparameter

tenebene beschränken, werden nur Materialparameter in zwei Raumrich-
tungen identifiziert, was für ein isotropes Materialmodell hinreichend ist.
Zur Identifikation eines richtungsabhängigen Materialmodells wird die
Platte im Messplatz gedreht und für jeden Rotationswinkel eine Identifi-
kation der Koeffizienten der Elastizitätsmatrix für den zweidimensionalen
Fall durchgeführt. Durch Zusammensetzen aller Einzelergebnisse in ein
Gleichungssystem werden durch dessen Lösung alle Koeffizienten der Elas-
tizitätsmatrix (inklusive der dritten Raumrichtung) bestimmt.
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5 Inverses Verfahren zur
Identifikation viskoelastischer
Materialparameter

Zur Identifikation viskoelastischer Materialparameter ist zusätzlich zur
Lage der Moden im Dispersionsdiagramm (vgl. Kapitel 4) die modale
Dämpfung von Bedeutung. Im vorherigen Kapitel war sie bereits dadurch
bemerkbar, dass einige Moden bei höheren Frequenzen, trotz breitbandi-
ger Anregung, nur schwach detektierbar sind. Lässt sich die Dämpfung
jedoch messen, wird diese zusätzliche Information in diesem Kapitel ge-
nutzt, um ein viskoelastisches Materialmodell zu identifizieren. Dazu wird
ein fraktionales Zener-Modell mit einer Zerlegung in Kompressions- und
Scherkomponenten nach Unterabschnitt 3.3.2 ausgewählt sowie eine Para-
meterstudie, um die Auswirkungen der Modellparameter auf die komplexen
Wellenzahlen (Phase und Dämpfung bzw. Real- und Imaginärteil) zu un-
tersuchen, durchgeführt. Analog zum vorherigen Kapitel werden die Mate-
rialparameter in einem inversen Verfahren bestimmt, sodass Startwerte für
die viskoelastischen Modellparameter geschätzt werden. Ebenso wird eine
geeignete Kostenfunktion benötigt, da die simulativ berechnete modale
Dämpfung bzw. Imaginärteil der Kreiswellenzahl zusätzlich zu deren simu-
lativ berechneten Realteil jeweils mit denen aus der Messung bestimmten
Real- und Imaginärteilen der Kreiswellenzahlen übereinstimmen müssen.
Die höhere Anzahl an zu bestimmenden Modellparametern erhöht die Kom-
plexität ebenfalls deutlich. Zur Konvergenzuntersuchung der Optimierung
werden daher verschiedene Optimierungsstrategien miteinander verglichen.
Da PEEK für ein Polymer schwache viskoelastischen Eigenschaften auf-
weist, erleichtert es die Extraktion von Frequenz-Wellenzahl-Paaren aus
der Dispersionsabbildung, um das Auswertungsverfahren zu demonstrieren
und verschiedene Optimierungsstrategien exemplarisch zu untersuchen.
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

5.1 Berücksichtigung von Dämpfung im
Vorwärtsmodell

Da der Großteil der Dämpfungsmodelle eine Frequenzabhängigkeit auf-
weist, werden bei Berücksichtigung eines viskoelastischen Materials für
jede Kreisfrequenz ω die Elastizitätsmatrix Cel (ω) neu berechnet sowie
die Element-Steifigkeitsmatrizen bestimmt, um diese zu den globalen Stei-
figkeitsmatrizen K1,K2 und K3 zu assemblieren (Zuordnung der lokalen
Elementknoten zu den globalen Knoten), um damit die Kreiswellenzahlen
nach Gleichung 3.28 zu berechnen. Dies ist insbesondere der Fall, wenn eine
Eigenwertzerlegung der Elastizitätsmatrix C durchgeführt wird [TS99],
um auf jede Hauptrichtung unterschiedliche Dämpfungsparameter oder gar
ein anderes Dämpfungsmodell anzuwenden (vgl. Gleichung 2.38). Erfahren
die Bewegungen in jede Hauptrichtung gleiche Dämpfung, ergibt sich wie
in Gleichung 2.38 und 2.41 ein komplexer modellabhängiger Vorfaktor,
sodass sich die komplexe frequenzabhängige Elastizitätsmatrix allgemein
zu C̃ (ω) = γ (ω)C ergibt. In dem Fall kann der skalare frequenzabhängige
Dämpfungsfaktor γ (ω) bei Berechnung der SteifigkeitsmatrizenK1,el,K2,el
und K3,el in Gleichung 3.23 bis 3.25 vor das Integral gezogen werden. Han-
delt es sich um ein einschichtiges homogenes System, kann dies auch noch
nach der Assemblierung erfolgen, sodass nicht für jede Frequenz alle Mo-
dellmatrizen neu berechnet werden müssen. Das Eigenwertproblem nach
Gleichung 3.27 ergibt sich somit analog zu Gleichung 2.66 mit

[
γ (ω)

(
K1 + jkK2 + k2K3

)
− ω2M

]
Ξ̂ = 0, (5.1)

wobei γ (ω) einen beliebigen modell- und frequenzabhängigen, jedoch orts-
unabhängigen Dämpfungsfaktor bezeichnet. Beim Lösen des resultierenden
Eigenwertproblems unter Vorgabe der Kreisfrequenz ω ergeben sich paar-
weise komplexe Kreiswellenzahlen ±k, die jeweils die Wellenausbreitung
in positive und negative y-Richtung in Abhängigkeit der Kreisfrequenz
beschreiben. Ausgehend vom Ansatz aus Gleichung 3.18 lässt sich die nun
komplexe Kreiswellenzahl k jeder Mode in Real- und Imaginärteil zerlegen,
womit sich für die mechanische Verschiebung

Ξ = Ξ̂ (ω, k) ej(ky−ωt) = Ξ̂ (ω, k) ej((Re{k}+j Im{k})y−ωt)

= Ξ̂ (ω, k) ej(Re{k}y)−ωt)e− Im{k}y

= Ξ̂ (ω, k) ej(Re{k}y−ωt)eαy (5.2)
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5.2 Konvergenz unter Berücksichtigung von Dämpfung

ergibt. Der Realteil Re{k} = β wird als Phase bezeichnet. Dementspre-
chend kann daraus mittels cPh = ω/β = ω/Re{k} die Phasengeschwindig-
keit der Mode berechnet werden. Der rein reelle Ausdruck eαy beschreibt
das Abklingen der Amplitude Ξ̂ über den Ort y, weshalb der negative
Imaginärteil als Dämpfung α = − Im{k} bezeichnet wird. Je nachdem
ob sich die Welle in negative (Re{k} > 0) oder positive (Re{k} < 0)
y-Richtung ausbreitet ergibt sich jeweils α > 0 für eine in −y-Richtung
oder α < 0 für eine in +y-Richtung laufende Welle.

Aufgrund der Dimensionsverdopplung des Eigenwertproblems zur Lösung
bei vorgegebenen Frequenzen werden mit einer Diskretisierung von N Kno-
ten immer 4N Kreiswellenzahlen pro Kreisfrequenz berechnet. Je geringer
die Frequenz, desto weniger Moden sind ausbreitungsfähig, wodurch umso
mehr evaneszente (sehr schnell abklingende) Moden berechnet werden. Die-
se Moden, die lokale unmittelbar abklingende Schwingungen beschreiben,
können unter Verwendung eines ideal-elastischen Materialmodells leicht
aussortiert werden, indem nur Wellenzahlen mit Im{k} = 0 betrachtet
werden. In dem Fall ist es jedoch effizienter die Kreisfrequenzen aus den
Kreiswellenzahlen zu berechnen. Unter Verwendung eines viskoelastischen
Materialmodells hingegen werden alle Moden abklingend, was sich durch
komplexe Wellenzahlen äußert. Die ebenfalls im Modell berechneten, nicht
ausbreitungsfähigen Moden mit

| Im{k}| > |Re{k}| (5.3)

werden nicht berücksichtigt. Auf diese Weise werden alle Moden, die örtlich
nach einer Strecke, die ihrer eigenen Wellenlänge oder weniger entspricht,
abgeklungen sind, aussortiert. In den Messdaten treten diese Moden nicht
auf. Während des späteren Optimierungsprozesses könnten sie jedoch zu
einer falschen Zuordnung von simulativ berechneten Moden und den aus der
Messung extrahierten Moden führen, was durch das Aussortieren vermieden
wird.

5.2 Konvergenz unter Berücksichtigung von
Dämpfung

Wird ein frequenzabhängiges Dämpfungsmodell genutzt, erfolgt die Berech-
nung der komplexen Kreiswellenzahlen unter Vorgabe der Kreisfrequenzen
nach Gleichung 3.28. Als Beispiel dient eine 5,45 mm dicke PEEK-Platte,
deren Dämpfungsverhalten durch das fraktionale Zener-Modell nach Glei-
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Tabelle 5.1: Arbeitspunkt der Konvergenzuntersuchung (Parametersatz
entspricht den Startwerten in Abschnitt 5.5) unter Annahme
eines fraktionalen Zener-Modells (Plattendicke 5,45 mm)

ρ / kg m−3 K / GPa µ / GPa
1310 6,23 1,48

τσK / µs τσµ / µs τεK / µs τεµ / µs aK aµ
0,2 0,59 0,21 0,65 1 1
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Abbildung 5.1: Konvergenz der Kreiswellenzahl (Re{k}) mit Polynomord-
nung 1 unter Annahme frequenzabhängiger, komplexer
Materialparameter

chung 2.41 mit den Parametern in Tabelle 5.1 modelliert wird.

Analog zur vorherigen Konvergenzbetrachtung am Beispiel einer ideal-
elastischen Modellierung von PEEK in Unterabschnitt 4.2.3 wird der Ein-
fluss der Knotenanzahl auf die komplexe Kreiswellenzahl unter Verwendung
eines (fraktionalen) Zener-Modells untersucht.

Da Viskoelastizität im Frequenzbereich durch einen frequenz- und mo-
dellabhängigen Vorfaktor z.B. vor der Elastizitätsmatrix ausgedrückt wird,
ergibt sich in der Regel die frequenzabhängige Transversalwellengeschwin-
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Abbildung 5.2: Konvergenz der Dämpfung (|α| = | Im{k}|) mit Polynom-
ordnung 1 unter Annahme frequenzabhängiger, komplexer
Materialparameter
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Abbildung 5.3: Konvergenz der Kreiswellenzahl (Re{k}) mit Polynomord-
nung 2 unter Annahme frequenzabhängiger, komplexer
Materialparameter

119



5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter
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Abbildung 5.4: Konvergenz der Dämpfung (|α| = | Im{k}|) mit Polynom-
ordnung 2 unter Annahme frequenzabhängiger, komplexer
Materialparameter

digkeit nach Gleichung 2.19 bis Gleichung 2.21 zu

cT (ω) = Re





√√√√C̃ii (ω)
ρ





=
√
µ

ρ
Re
{√

γ (ω)
}
∀i ∈ 4, 5, 6, (5.4)

wobei der Faktor γ (ω) modellabhängig ist. Unter Verwendung eines z.B.
(fraktionalen) Zener-Modells ergibt sich γ (ω) nach Gleichung 2.38 bzw.
2.41 abhängig von der Kreisfrequenz ω, Retardationszeitkonstante τε, Re-
laxationszeitkonstante τσ und ggf. von der Ableitungsordnung a. Für ein
physikalisches Materialverhalten muss am Beispiel des (fraktionalen) Zener-
Modells die Bedingung τε > τσ erfüllt sein, wodurch sich Re{γ (ω)} > 1
ergibt. Dementsprechend ist bei Verwendung eines (physikalischen) Dämp-
fungsmodells die Schallgeschwindigkeit der Transversalwelle cT (ω) bei einer
bestimmten Kreisfrequenz stets größer als die statische Transversalwellen-
geschwindigkeit von cT0 = cT (ω = 0), sodass letztere zur konservativen
Konvergenzabschätzung nach Gleichung 4.11 genutzt wird.

Für eine 5,45 mm dicke Platte, mit einer statischen Transversalwellenge-
schwindigkeit cT0 = 1152 m s−1, einer maximal betrachteten Frequenz von
2,5 MHz sowie einer Diskretisierung von βN = 10 Knoten pro Wellenlänge
ergibt sich nach Gleichung 4.11 eine minimal notwendige Knotenanzahl von
128 Knoten. Bei einer Diskretisierung von βN = 20 Knoten pro Wellenlänge
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5.3 Bestimmung der modalen Dämpfung aus Messdaten

entsprechend 256 Knoten. Für diese und weitere Diskretisierungen ist unter
Verwendung einer Polynomordnung von 1 das Dispersionsdiagramm in
Abbildung 5.1 sowie die zugehörige Dämpfung in Abbildung 5.2 dargestellt.

Abbildung 5.1 zeigt eine Änderung der Steigung der Moden bei hohen
Wellenzahlen sowie eine Verschiebung der Moden zu kleineren Frequen-
zen bzw. zu höheren Wellenzahlen bei höherer Knotenanzahl, wobei diese
im höherfrequenten Bereich deutlich stärker ausfällt. Ebenfalls lässt sich
dieser Einfluss auf die Dämpfung in Abbildung 5.2 beobachten: Mit hö-
herer Knotenanzahl verschieben sich die Dämpfungskurven in Richtung
kleinerer Frequenzen. Insgesamt verschieben sich also sowohl Dispersions-
als auch Dämpfungskurven in Richtung kleinerer Frequenzen mit höherer
Disketisierung.
Unter Verwendung von Ansatz-Polynomen der Ordnung 2 in Abbil-

dung 5.3 und 5.4 fällt die Verschiebung deutlich geringer aus. Ab 128
Knoten ist diese kaum, ab 256 Knoten (βN = 20) bereits gar nicht mehr
erkennbar, sodass unter Berücksichtigung von Viskoelastizität analog zu
Abbildung 4.5 mindestens die Polynomordnung 2 mit βN = 20 Knoten pro
Wellenlänge verwendet wird, um den numerischen Fehler möglichst gering
zu halten.

5.3 Bestimmung der modalen Dämpfung aus
Messdaten

Im Wellenleiter kann eine sich ausbreitende akustische Welle durch Su-
perposition ihrer modalen Anteile ausgedrückt werden. Die Wellenzahlen
mit der sich die verlustbehafteten Wellenpakete ausbreiten sind nicht rein
reell. Deren Dämpfung wird analog zu Gleichung 5.2 durch den negati-
ven Imaginärteil der Wellenzahl ausgedrückt. Um die Dämpfung α jeder
Mode und dementsprechend für jedes Frequenz-Wellenzahl-Paar (wobei
hier der Realteil der Kreiswellenzahl gemeint ist) aus den Messdaten zu
berechnen, wird die Signalmatrix entlang der Ortsachse in ndisp Abschnitte
mit einer Breite von jeweils wy unterteilt, sodass bei insgesamt N äquidi-
stanten Anregungspositionen, jeweils N/ndisp Zeitsignale zusammengefasst
werden, um durch zweidimensionale Fourier-Transformation jeweils eine
Dispersionsabbildung zu erzeugen.

Um die Werte in den Dispersionsabbildungen möglichst wenig zu verfäl-
schen wird anders als in Abschnitt 4.6 nur ein Minimum an Signalverarbei-
tungsschritten durchgeführt. Dazu zählen Heruntertakten im Zeitbereich
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

sowie Zero-Padding (vgl. Abschnitt 4.6) zur Erhöhung der Auflösung und
einer örtlichen Fensterung zur Minderung des Leakage-Effekts. Schematisch
ist das Vorgehen beispielhaft für ndisp = 4 Abschnitte in Abbildung 5.5
dargestellt. Durch die Aufteilung im Ortsbereich ergibt sich eine größere

Detektion

Anregung
∆y

y0 y1 y2 y3 y

x

Abbildung 5.5: Schematische Darstellung der Aufteilung der Messdaten
entlang der Propagationsstrecke nach [JCH21]

Schrittweite der Phase β bzw. des Realteils der Kreiswellenzahl Re{k},
was wiederum durch Zero-Padding ausgeglichen wird. Die Fensterung im
Ortsbereich hilft die Auswirkungen des Leakage-Effekts in jeder Dispersi-
onsabbildung zu mindern, führt jedoch auch zu einer größeren Unschärfe,
was eine optische Trennung der Moden erschwert (vgl. Abbildung 5.6).
Die mittlere Anregungsposition ym des jeweiligen Abschnitts wird genutzt,
um über den Abstand zum Empfangswandler und die Werte in jedem
Frequenz-Wellenzahl-Paar der Dispersionsabbildungen eine ortsabhängige
Exponentialfunktion zu approximieren. Somit ergibt sich für die Intensität
bei ndisp Abschnitten für jedes Frequenz-Wellenzahl-Paar der Dispersions-
abbildung

Ui (ω,Re{k}, ymi
wy) = U0 (ω,Re{k}, ym0 , wy) eαy, (5.5)

sodass mithilfe der ndisp Dispersionsabbildungen, die modale Dämpfung α
durch die Approximation einer Exponentialfunktion über den Ort bestimmt
werden kann. [JCH21]

Abbildung 5.6 zeigt die approximierten Werte für α abhängig von Fre-
quenz f und Realteil der Kreiswellenzahl Re{k} beispielhaft für eine
5,45 mm dicke PEEK-Platte. Da Abbildung 5.6 an eine Dispersionsabbil-
dung erinnert, jedoch die modale Dämpfung als Farblegende enthält, wird
diese Art von Abbildung im Folgenden auch als Dämpfungsabbildung be-
zeichnet. Einige Moden werden durch betragsmäßig große Dämpfungswerte
α sichtbar, insbesondere im Bereich von f = 0,5 MHz bis f = 1,5 MHz
und kleinen Wellenzahlen von Re{k} = 0 mm−1 bis Re{k} = 2 mm−1. Da
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Abbildung 5.6: Approximierte Werte α für jedes Frequenz-Wellenzahl-Paar
unter Verwendung von ndisp = 4 Abschnitten im Ortsbe-
reich

Abbildung 5.6 aufgrund der hohen Unschärfe zunächst schwer lesbar er-
scheint, können die Werte, die keine ausbreitungsfähige Mode beschreiben,
gefiltert werden. Relativ leicht gelingt dies mit einem Rechteck-Filter um
die theoretisch ausbreitungsfähigen Moden, welche mithilfe des Vorwärts-
modells unter Annahme effektiver, elastischer Materialparameter berechnet
werden.

Für die reine Position der Moden ohne Berücksichtigung der Dämp-
fung, genügt die Kenntnis effektiver, elastischer Materialparameter, deren
Identifikation in Kapitel 4 beschrieben wird, denn die reine Modenver-
schiebung aufgrund der Dämpfung lässt sich durch einen äquivalenten
ideal-elastischen Materialparametersatz beschreiben.
Nach Filterung der Daten aus Abbildung 5.6 mit einem Rechteckfil-

ter um die theoretisch ausbreitungsfähigen Moden ergibt sich schließlich
Abbildung 5.7. Dabei fällt direkt auf, dass einige Moden bei großen Kreis-
wellenzahlen eine modale Dämpfung von null aufweisen. Dafür gibt es
hauptsächlich zwei mögliche Gründe. Entweder die Mode ist angeregt
worden und weist eine geringe modale Dämpfung nahe null auf oder sie
ist nicht angeregt bzw. detektiert worden. Im letzteren Fall beträgt die
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Abbildung 5.7: Approximierte modale Dämpfung α für jedes Frequenz-
Wellenzahl-Paar unter Verwendung von ndisp = 4 Abschnit-
ten im Ortsbereich und Rechteck-Filterung um die ausbrei-
tungsfähigen Moden

Ursprungsamplitude bereits null, sodass diese nicht weiter gedämpft wird.
Gleichzeitig besteht jedoch auch die Möglichkeit, dass eine Mode zwar
angeregt wurde, jedoch bereits zu Beginn der Propagationsstrecke so stark
gedämpft wird, dass eine Detektion nicht möglich ist.

Hilfreich dafür ist die Betrachtung der Dispersionsabbildung wie in
Abbildung 4.17. Sind die entsprechenden Moden dort deutlich zu erkennen,
konnten diese zuvor angeregt und detektiert werden und es ist davon
auszugehen, dass die Dämpfung in dem Fall tatsächlich zu null wird. Ist die
Mode in der Dispersionsabbildung nicht erkennbar, ist es wahrscheinlich,
dass die Mode nicht detektiert wurde. In diesem Fall ist keine Aussage
über ihre modale Dämpfung möglich.

In den hier betrachteten Abbildungen 5.6 und 5.7 handelt es sich bei
gleichzeitiger Betrachtung von Abbildung 4.17 bei den Moden bei großen re-
ellen Kreiswellenzahlen daher um in der Messung nicht angeregte bzw. nicht
detektierte Moden, sodass keine Aussage über deren modaler Dämpfung
möglich ist.
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5.3 Bestimmung der modalen Dämpfung aus Messdaten

Tabelle 5.2: In der FEM-Simulation angenommene viskoelastische Materi-
alparameter (Parameter ähnlich zu denen von PEEK).

ρ / kg m−3 E / GPa ν αM / s αK / s−1

1300 4,76 0,38 11,4 · 104 2,8 · 10−9

5.3.1 Validierung an FEM-Simulationen
Zur Validierung des Messeffekts bzw. der Extraktion der Dämpfung α
aus den Messdaten, wird eine transiente FEM-Simulation zur Erzeugung
von den Messdaten ähnlichen Signalen bei bekannten Materialparametern
herangezogen. Das Simulationsmodell ist identisch zu dem in Abschnitt 4.5,
jedoch mit einem Rayleigh-Modell als viskoelastisches Materialmodell.
Angenommen werden die Materialparameter in Tabelle 5.2. Durch orts-
abhängiges Aufteilen der berechneten Zeitsignale in ndisp = 4 Bereiche,
ergeben sich für jeden dieser Abschnitte die Dispersionsabbildungen in
Abbildung 5.8, welche wiederum für die Approximation einer Exponen-
tialfunktion, wie zuvor beschrieben, genutzt werden. Die daraus resul-
tierende Dämpfung α ist in Abbildung 5.9 dargestellt. Ebenso sind die
entsprechenden Frequenz- und komplexen Kreiswellenzahl-Paare aus der
SAFE-Berechnung in Abbildung 5.10 dargestellt.

Sowohl Abbildung 5.9 als auch 5.10 sind mit der gleichen Farbskalierung
dargestellt, um sie direkt vergleichen zu können. Dafür sind in Abbil-
dung 5.10 nur die Dämpfungswerte im Wertebereich von Abbildung 5.9
dargestellt. Betragsmäßig größere Werte werden in Abbildung 5.9 nicht
dargestellt, da eine zu stark gedämpfte Welle nicht mehr messtechnisch
erfasst wird. Werden schließlich Abbildung 5.9 und 5.10 übereinander ge-
legt, verschwindet Abbildung 5.10 in 5.9, da diese quasi übereinstimmen.
Damit zeigt sich, dass das beschriebene Verfahren zur Bestimmung der
Dämpfung gut geeignet ist.

Für eine genauere Betrachtung der Dämpfung der einzelnen Moden und
um einen leichteren Vergleich mit der mittels SAFE-Methode berechneten
modalen Dämpfung zu ermöglichen, werden die detektierten Moden als Ma-
xima aus der verarbeiteten Dispersionsabbildung zunächst extrahiert (vgl.
Abbildung 5.11) und die entsprechenden Stellen (Kreiswellenzahl-Frequenz-
Paare) in der Dämpfungsabbildung in Abbildung 5.9 gesucht, um deren
modale Dämpfung mit den mittels SAFE-berechneten nächstgelegenen
Simulationspaaren zu vergleichen.
Dabei werden zum Vergleich die Simulationspunkte verwendet, deren

Frequenz f und Realteile der Kreiswellenzahlen Re{k} am nächsten an
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(a) ym0 = 14,94 mm
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(b) ym1 = 44,98 mm
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(c) ym2 = 75,02 mm
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(d) ym3 = 105,06 mm

Abbildung 5.8: Dispersionsabbildungen der jeweiligen Abschnitte nach Ab-
bildung 5.5 bei verschiedenen mittleren Anregungspositio-
nen ymi

den detektierten Moden liegen. Das Ergebnis dieses Vergleichs zeigt Abbil-
dung 5.12. Dort zeigt sich generell eine gute Übereinstimmung zwischen der
Dämpfung des gewöhnlichen FEM-Modells, welches eine Messung durch die
transiente Berechnung möglichst realitätsgetreu nachbildet, und der mit-
tels semi-analytischer Finite-Elemente-Simulation berechneten Dämpfung.
Insbesondere im niederfrequenten Bereich ist eine Art Schwingung auf
den Dämpfungsverläufen aus der transient berechneten FEM-Simulation
erkennbar, welche sich auf Artefakte der 2D-Fourier-Transformation wie
z.B. den verbliebenen Leakage-Effekt zurückführen lassen. Weiterhin ent-
stehen Abweichungen im höher-frequenten Bereich durch unterschiedli-
che örtliche Diskretisierungen des örtlich eindimensional diskretisierten
semi-analytischen und örtlich zweidimensional diskretisierten, transienten
FEM-Modells (CFS++).
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Abbildung 5.9: Aus transienter FEM-Simulation bestimmte Dämpfung α
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Abbildung 5.10: Zugehörige Frequenz-Wellenzahl-Paare (β = Re{k}, α =
− Im{k}) berechnet mit der SAFE-Methode
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Abbildung 5.11: Dispersionsabbildung und extrahierte Modenpunkte
(Frequenz-Wellenzahl-Paare) (rot)
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Abbildung 5.12: Modale Dämpfung an den in Abbildung 5.11 extrahierten
Modenpunkten (blau) und den mittels SAFE berechneten
Imaginärteilen der Kreiswellenzahl bzw. Dämpfung (rot)
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5.3 Bestimmung der modalen Dämpfung aus Messdaten

5.3.2 Reproduzierbarkeit der Dämpfungsmessung
Um die Reproduzierbarkeit der Dämpfungsmessung zu untersuchen, werden
aus den Messdaten der jeweils ersten Messung der Reproduzierbarkeitsun-
tersuchung aus Abschnitt 4.7, die Abbildung 4.18a zugrunde liegt (rot),
die Moden extrahiert und die Dämpfung an diesen Stellen bei den entspre-
chenden Frequenz-Kreiswellenzahl-Paaren der beiden anderen Messungen
in Abbildung 5.13a gegenüber gestellt. Die Messungen wurden an PEEK
durchgeführt und unterscheiden sich untereinander nur durch die jeweilige
erneute Ankopplung des Schallwandlers.
Trotz einer gewissen Streuung stimmen die größtenteils parabelförmi-

gen Verläufe der modalen Dämpfung in Abbildung 5.13a aller Messungen
überein. Die größten Unterschiede bezüglich den modalen Dämpfung aus
den einzelnen Messungen ergeben sich im niederfrequenten Bereich. Da die
Dämpfung aus den Werten mehrerer einzelner Dispersionsabbildungen, wie
in Abschnitt 5.3 beschrieben ist, approximiert wird, haben die insbesondere
im niederfrequenten Bereich auftretenden Artefakte in den Dispersionsab-
bildungen einen nicht unerheblichen Einfluss. Bereits in Abbildung 4.18a
zeigen sich die Artefakte bei kleinen Frequenzen und Kreiswellenzahlen,
wohingegen sich diese Artefakte bei Messung ohne erneute Ankopplung des
Empfangswandlers in den zugehörigen Dispersionsabbildungen (vgl. Abbil-
dung 4.18b) quasi gleich verhalten. Eine geringere Variation der Dämpfung
zeigt sich bei jeweils gleicher Ankopplung des Empfangswandlers bei allen
drei Messungen in Abbildung 5.13b.
Insgesamt lässt sich daraus schließen, dass einzelne Dämpfungswerte

je nach Ankopplung mehr oder weniger stark variieren können. Trotz
einer gewissen Schwankungsbreite ist diese klein genug, um diese über den
gesamten Frequenzbereich hinweg zu vernachlässigen.
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(a) Erneute Ankopplung des Empfangswandlers
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(b) Gleiche Ankopplung des Empfangswandlers

Abbildung 5.13: Reproduzierbarkeit der Dämpfung dreier Messungen an
PEEK: Messung 1 in Rot, Messung 2 in Grün, Messung
3 in Blau
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5.4 Parameterstudie viskoelastischer Materialparameter

5.4 Parameterstudie viskoelastischer
Materialparameter

Zur Entwicklung einer geeigneten Optimierungsstrategie ist es unerläss-
lich, die Änderungen der Dispersionscharakteristik in Abhängigkeit der
geänderten Parameter zu betrachten. Dazu werden die komplexen Kreis-
wellenzahlen in Real- und Imaginärteil sowie deren Verhältnis zueinander
in einem Arbeitspunkt untersucht.

Tabelle 5.3: Materialparameter im verwendeten Arbeitspunkt

Modul i/GPa τσi / µs di ai
Kompressionskomponente (i = K) 6,23 0,2 1,03 1,0

Scherkomponente (i = µ) 1,48 0,6 1,09 0,99

Als Arbeitspunkt für die Materialparameter werden beispielhaft die in
Tabelle 5.3 angegebenen Parameter unter Verwendung des fraktionalen
Zener-Modells jeweils für Kompressions- und Scherbewegungen nach Glei-
chung 3.17 betrachtet. Die Parameter werden jeweils um ±5 % verändert.
Überschreitet ein Parameter dabei seine physikalische Grenze (d ≥ 1,
a ≤ 1), wird dieser auf die jeweilige Grenze gesetzt.

Die resultierenden Änderungen im Realteil sind in Abbildung 5.16, des
Imaginärteils in Abbildung 5.14 und Abbildung 5.15 dargestellt. Zusätzlich
wird das Verhältnis von Imaginär- zu Realteil in Abbildung 5.17 und 5.18
gezeigt.
Wie bereits in Abschnitt 4.8 zeigt sich im Realteil der Kreiswellenzahl

in Abbildung 5.16 erneut der Unterschied zwischen Kompressions- und
Scherparametern. Während die Scherparameter alle Moden beeinflussen,
wirken sich die Kompressionsparameter nur auf die Moden unterhalb
der Geraden kL (ω) = ω/cL aus, wenn der Realteil der nun komplexen
Kreiswellenzahl betrachtet wird. Dies ist darauf zurückzuführen, dass der
Schermodul sowohl Longitudinal- als auch Transversalwellen beeinflusst,
während der Kompressionsmodul nur Longitudinalwellen beeinflusst. Das
resultierende Dispersionsdiagramm besteht aus einer Verkopplung von
Longitudinal- und Transversalwellen. Die Unterscheidung der Moden lässt
sich demzufolge auch im Imaginärteil der Kreiswellenzahl in Abbildung 5.14
und 5.15 beobachten. In dem Beispiel wirken sich die Scherkomponenten
grundsätzlich auf den Imaginärteil der Kreiswellenzahlen bzw. die Dämp-
fung aller Moden aus. Insbesondere werden hier die Moden mit einer
Dämpfung |α| = | Im{k}| ≥ 60 m−1 beeinflusst, welche kaum von den
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Kompressionsparametern abhängen. Hierbei handelt sich um die Moden
mit Re{k} > ω/cL. Die Beeinflussung des Imaginärteils der Kreiswellenzahl
durch die Kompressionsparameter beschränkt sich im Wesentlichen auf Mo-
den mit | Im (k) | < 60 m−1, bei denen es sich um die Moden mit k ≤ ω/cL
handelt. Generell zeigt sich in Abbildung 5.14, dass der Imaginärteil der
Kreiswellenzahl sehr sensitiv auf die Verhältnisse der Zeitkonstanten dK
und dµ ist. Der Einfluss auf den Imaginärteil ist dabei so groß, dass sich der
Realteil der Kreiswellenzahl mit verändert (vgl. Abbildung 5.16). Bereits
eine kleine prozentuale Änderung der Parameter dµ und dK bewirkt eine
sehr große Änderung im Imaginärteil, sodass eine Erhöhung dieser eine
größere Dämpfung mit sich zieht.

Ein größerer Kompressions- bzw. Schermodul wirkt dem wiederum ent-
gegen. Zwar müssten Kompressions- bzw. Schermodul prozentual deutlich
stärker erhöht werden, um die Auswirkungen der größeren Zeitkonstanten-
Verhältnisse auf den Imaginärteil der Wellenzahlen auszugleichen, jedoch
ist dies auf den unterschiedlichen Wertebereich zurückzuführen, welcher bei
den Moduln K und µ bei einigen GPa liegt, während die Zeitkonstanten-
Verhältnisse dK und dµ nahe eins liegen.

Allerdings beeinflussen die Dämpfungsparameter nicht ausschließlich
den Imaginärteil, sondern auch den Realteil der Wellenzahlen, sodass eine
Optimierung von statischen und Dämpfungsparametern nicht getrennt
möglich ist.

Wird der Realteil der Kreiswellenzahl aus Abbildung 5.16 hinzugezogen,
zeigt sich, dass sich die Moduln und die Zeitkonstanten-Verhältnisse zwar
im Imaginärteil entgegenwirken, den Realteil hingegen um einen ähnlichen
Prozentsatz verkleinern, wenn die Parameter um den gleichen Prozentsatz
erhöht werden.

Eine Vergrößerung der Relaxationszeitkonstanten führt zu einer Verringe-
rung des Imaginärteils der Wellenzahlen. Demnach können sie grundsätzlich
einer Erhöhung der Zeitkonstanten-Verhältnisse entgegen wirken.
Absolut gesehen ist die Änderung der Relaxationszeitkonstanten wei-

terhin so klein, dass diese kaum Auswirkungen auf den Realteil hat (vgl.
Abbildung 5.16), was sich bei Änderungen der Zeitkonstanten um eine
Zehnerpotenz ändert. Die Ableitungsordnungen weisen ebenfalls kaum
bis keinen Einfluss auf den Realteil der Wellenzahlen auf (vgl. Abbil-
dung A.7). Da beide Ableitungsordnungen in diesem Arbeitspunkt nahe
eins liegen, wirft das Beispiel die Frage auf, ob diese überhaupt notwen-
dig zu betrachten sind bzw. überhaupt bestimmt werden können, da die
Beeinflussung des Imaginärteils ähnlich zu der durch die Relaxationszeit-
konstante liegt. Bei genauerer Betrachtung von Abbildung 5.15 fällt im

132



5.4 Parameterstudie viskoelastischer Materialparameter

Tabelle 5.4: Auswirkungen bei Erhöhung der Parameter auf die komplexen
Kreiswellenzahlen: Die in Klammern gesetzten Pfeile, bedeu-
ten, dass sich die Auswirkungen nur marginal zeigen.

Re{k} Im{k} Im{k}/Re{k}
K ↑ ↓ ↑
µ ↓ ↓ ↑
dK ↓ ↑ ↑
dµ ↓ ↑ ↑
τσK (↓) ↓ (↓)
τσµ (↓) ↓ ↓ (f < 0,3 MHz)

↑ f > 0,3 MHz
aK (↓) ↑ (↑)
aµ (↓) ↑ (f < 1 MHz)

↓ f > 1 MHz
↑ (f < 0,8 MHz)
↓ f > 0,8 MHz

direkten Vergleich auf, z.B. am Beispiel der Kompressionskomponenten,
dass die Relaxationszeitkonstante τσK Moden im Bereich | Im{k}| < 60 m−1

und f > 1 MHz beeinflusst, während sich die Ableitungsordnung aK auf
den Bereich | Im{k}| < 60 m−1 und 0,5 MHz < f < 1,5 MHz beschränkt.
Die Scherparameter wirken sich im Gegensatz zu den Kompressionspa-

rametern ebenfalls auf die Moden mit | Im{k}| ≥ 60 m−1 aus. Hier wirkt
sich die Ableitungsordnung kaum auf die Moden um 0,8 MHz aus. Bei
Moden mit f < 0,8 MHz, sorgt ein größere Ableitungsordnung aµ dafür,
dass Im{k} steigt. Im Bereich f > 0,8 MHz verringert sich Im{k}.
Zusammengefasst sind die Auswirkungen der Parameter auf Real- und

Imaginärteil in Tabelle 5.4.
Aufgrund der Verkopplung zwischen Real- und Imaginärteil wird in

Abbildung 5.17 und 5.18 das Verhältnis von Imaginär- zu Realteil der Wel-
lenzahl dargestellt. Dabei zeigt sich, dass dieses Verhältnis sensitiv auf die
Scherkomponenten ist. Hier zeigt sich der unterschiedliche Frequenzbereich
des Einflusses zwischen τσµ und aµ signifikanter. Insbesondere das Verhält-
nis Im{k}/Re{k} der Grundmode wird stark von der Ableitungsordnung
aµ beeinflusst, welche sich in Messungen als besonders leicht detektierbar
zeigt.

Daher ist eine Optimierung des Verhältnisses Im{k}/Re{k} zur Bestim-
mung der Dämpfungsparameter sinnvoll. Wie bereits erwähnt sind die
Einflüsse sowohl der statischen als auch der Dämpfungsparameter mitein-
ander verkoppelt. Leichter fällt jedoch eine Trennung der Modellparameter
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

zur Beschreibung des Scher- und Kompressionsverhaltens, da für die Opti-
mierung von letzteren nur Moden mit Re{k} ≤ ω/cL betrachtet werden
müssen, während dessen Einfluss auf die Moden mit Re{k} > ω/cL entfällt.
Somit können mit den Moden, die die Bedingung Re{k} > ω/cL erfül-
len, ausschließlich Modellparameter zur Beschreibung des Scherverhaltens
bestimmt werden.
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Abbildung 5.14: Imaginärteil der Kreiswellenzahl bei Änderung von
Kompressions- und Schermodul sowie der Verhältnisse
der Zeitkonstanten
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Abbildung 5.15: Imaginärteil der Kreiswellenzahl bei Änderung der Rela-
xationszeitkonstanten und Ableitungsordnungen
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Abbildung 5.16: Realteil der Kreiswellenzahl bei Änderung von
Kompressions- und Schermodul sowie der Zeitkonstanten-
Verhältnisse
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Abbildung 5.17: Verhältnis von Imaginär- zu Realteil der Kreiswellenzahlen
bei Änderung von Kompressions- und Schermodul sowie
der Zeitkonstanten-Verhältnisse

138



5.4 Parameterstudie viskoelastischer Materialparameter

0 0,5 1 1,5 2
0

2

4

6

8

·10−2

Frequenz f / MHz

Ve
rh

äl
tn

is
|I

m
(k

)/
R

e(
k
)| 0,95τAP

σK

1,05τAP
σK

0 0,5 1 1,5 2
0

2

4

6

8

·10−2

Frequenz f / MHz

Ve
rh

äl
tn

is
|I

m
(k

)/
R

e(
k
)| 0,95τAP

σµ

1,05τAP
σµ

0 0,5 1 1,5 2
0

2

4

6

8

·10−2

Frequenz f / MHz

Ve
rh

äl
tn

is
|I

m
(k

)/
R

e(
k
)| 0,95aAP

K
1,0aAP

K

0 0,5 1 1,5 2
0

2

4

6

8

·10−2

Frequenz f / MHz

Ve
rh

äl
tn

is
|I

m
(k

)/
R

e(
k
)| 0,95aAP

µ

1aµ

Abbildung 5.18: Verhältnis Imaginärteil/Realteil der Kreiswellenzahl bei
Änderung der Relaxationszeitkonstanten und Ableitungs-
ordnungen
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

5.5 Startwerte für Dämpfungsparameter

Die Identifikation der viskoelastischen Materialparameter erfolgt mit einem
lokalen Optimierungsverfahren, welches Startwerte benötigt. Aus Litera-
turdaten werden Startwerte für die statische Longitudinal- und Transver-
salwellengeschwindigkeit bzw. Kompressions- und Schermodul ermittelt.
Datenblätter enthalten in der Regel den Elastizitätsmodul E bestimmt
aus Zugversuchen. Der dazu benötigte Wert für die Poissonzahl ν ist hin-
gegen weniger häufig zu finden. Da der Wertebereich der Poissonzahl bei
Kunststoffen im Bereich um ca. 0,4 liegt, kann dieser Wert als Schätzwert
bei Fehlen jeglicher Literaturdaten genutzt werden.

Weiterhin werden die effektiven Schallgeschwindigkeiten unter Annahme
eines elastischen Materialmodells nach Kapitel 4 bestimmt. Diese werden
als Schätzwerte der Schallgeschwindigkeiten für ω →∞ angenommen.

Da die Scherparameter, wie in Abschnitt 5.4 gezeigt, alle Moden beein-
flussen, wird zunächst ein fraktionales Zener-Modell ohne Aufteilung nach
Kompressions- und Scherkomponenten, genutzt. Dabei werden nur die Pa-
rameter des Dämpfungsmodells der Scherkomponenten verwendet. Aus dem
Modell ergibt sich durch Grenzwertbildung der Zusammenhang zwischen
statischer und dynamischer Schallgeschwindigkeit bei der Kreisfrequenz ω
im Fall der Transversalwellengeschwindigkeit mit

cT (ω) = Re





√√√√√
1 + dµ

(
jωτσµ

)aµ

1 +
(
jωτσµ

)aµ




cT0

= Re





√√√√√
1 + dµ

(
jωτσµ

)aµ

1 +
(
jωτσµ

)aµ





√
µ

ρ

= Re
{√

γµ
}√µ

ρ
. (5.6)

Als Grenzwerte gelten cT (ω → 0) = cT0 und c̃T (ω →∞) =
√
dµcT. Der

Schätzwert für die Transversalwellengeschwindigkeit bei cT (ω →∞) = cT∞

und Longitudinalwellengeschwindigkeit cL (ω →∞) = cL∞ wird aus der
Identifikation eines elastischen Materialmodells bestimmt (vgl. Kapitel 4).
Zusammen mit der statischen Transversalwellengeschwindigkeit cT0 aus
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5.5 Startwerte für Dämpfungsparameter

der Literatur, wird das Zeitkonstanten-Verhältnis dµ aus

dµ = c2
T∞

c2
T0

(5.7)

berechnet. Die Relaxationszeitkonstante τσµ und die Ableitungsordnung
aµ werden anschließend durch numerisches Lösen der Rayleigh-Lamb-
Gleichung ermittelt. Dies hat den Vorteil, dass die in der Messung detek-
tierten Frequenzen und komplexen Wellenzahlen direkt in die Rayleigh-
Lamb-Gleichung eingesetzt werden können, wodurch diese direkt als Kos-
tenfunktion fungiert. Dazu werden zunächst die Moden aus der Messung
extrahiert (vgl. Abbildung 5.19). Weiterhin wird die zugehörige Dämp-
fung, welche dem negativen Imaginärteil der Kreiswellenzahl entspricht,
nach Abschnitt 5.3 bestimmt (vgl. Abbildung 5.19). Aufgrund von ver-
bliebenden Artefakten aus der Signalvorverarbeitung (vgl. Abschnitt 4.6)
in den Messdaten nahe des Koordinatenursprungs ist die Extraktion der
Frequenz-Wellenzahl-Paaren aus den Messdaten erschwert, weil Frequenz-
Wellenzahl-Paare erkannt werden, die keine Mode repräsentieren. Daher
werden aus Abbildung 5.19a nur Wellenzahlen oberhalb einer Frequenz
von 0,1 MHz berücksichtigt.

Zusammen mit dem extrahierten Realteil der Kreiswellenzahl ergeben
sich mit k = Re{k} − jα = Re{k} + j Im{k} die komplexen Kreiswellen-
zahlen zu den zugehörigen Kreisfrequenzen ω, welche zusammen mit dem
Materialmodell in die Rayleigh-Lamb-Gleichung eingesetzt werden, um
diese zu minimieren. Dabei wird der Betrag der Rayleigh-Lamb-Gleichung
direkt als Kostenfunktion genutzt, da sie bei optimalem Parametersatz
an den eingesetzten komplexen Kreiswellenzahlen und Kreisfrequenzen
Nullstellen besitzt. Somit wird der Betrag der Rayleigh-Lamb-Gleichung
nach Gleichung 2.43 in der Form von

ε =

∣∣∣∣∣∣∣∣∣

tan
(
th
2

√
ω2

c̃T(ω)2 − k2
)

tan
(
th
2

√
ω2

c̃L(ω)2 − k2
) +




4k2
√

ω2

c̃L(ω)2 − k2
√

ω2

c̃T(ω)2 − k2

(
ω2

c̃T(ω)2 − 2k2
)2




±1∣∣∣∣∣∣∣∣∣
(5.8)

als Kostenfunktion minimiert, sodass dieser für alle detektierten Frequenz-
(komplexen) Wellenzahl-Paare möglichst klein (→ 0) wird. Mit der Verwen-
dung eines globalen Suchalgorithmus wie der Differential Evolution [SP97]
werden keine Startwerte benötigt. Als Materialmodell wird zur Schätzung
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

der Scherkomponenten ein fraktionales Zener-Modell mit

C̃ (ω) = C
1 + dµ

(
jωτσµ

)aµ

1 +
(
jωτσµ

)aµ = Cγµ (ω) (5.9)

verwendet. Der Parameter dµ wird bei der Schätzung der weiteren Para-
meter als fest angenommen, während die Relaxationszeitkonstante τσµ und
die Ableitungsordnung aµ variiert werden.
Da der frequenzabhängige Term γµ (ω) im Wesentlichen durch dµ be-

einflusst wird, haben kleine Änderungen von τσµ und aµ nur geringen
Einfluss. Bei größeren Änderungen beider Parameter haben diese trotzdem
Auswirkungen auf den Realteil der komplexen Kreiswellenzahl. Um diesen
jedoch gleich zu behalten, muss der Schermodul angepasst werden.

Daher wird der statische Schermodul während der Variation von τσµ und
aµ über

µ = c2
T∞ρ

Re
{√

γµ (ω)
}2 (5.10)

aktualisiert, wobei als Frequenz die größte in der Identifikation effektiver,
elastischer Parameter berücksichtigte Frequenz angenommen wird. Um
zudem möglichst unabhängig von den Kompressionsparametern zu sein,
werden nur die Moden oberhalb der in Abbildung 5.19 eingezeichneten roten
Geraden kL (ω) = ω/cL∞ verwendet, da diese Bereiche der Moden nicht
von den Kompressionsparametern beeinflusst werden (vgl. Abschnitt 5.4).

Die Moden-Bereiche unterhalb der roten Geraden in Abbildung 5.19
werden nun für die anschließende Schätzung der Parameter des Dämpfungs-
modells der Kompressionskomponenten genutzt. Diese erfolgt analog zu
denen der Scherkomponente, allerdings nun mit einem nach Kompressions-
und Scherbewegungen aufgeteilten fraktionalem Zener-Modell nach Glei-
chung 3.17. Die bereits zuvor verwendete statische Longitudinalwellen-
geschwindigkeit cL0 sowie die Longitudinalwellengeschwindigkeit cL∞ aus
der elastischen Identifikation dienen der Schätzung des Zeitkonstanten-
Verhältnisses, wenn das Modell eine Zerlegung nach Longitdinal- und
Transversalbewegungen nutzt. Bei der hier verwendeten Zerlegung nach
Kompressions- und Scherbewegungen hingegen wird die Longitudinalwel-
lengeschwindigkeit cL∞ in Kompressions- und Schereinflüsse zerlegt, sodass
sich aus

cL (ω) = Re





√√√√KγK (ω) + 4
3µγµ (ω)

ρ





(5.11)
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für ω →∞
dK =

c2
L∞ρ− 4

3µdµ
K

(5.12)

ergibt. Relaxationszeitkonstante τσK und Ableitungsordnung aK werden
analog zu den Scherkomponenten durch Minimierung des Betrags der
Rayleigh-Lamb-Frequenz-Gleichung geschätzt. Während der Schätzung
wird der Kompressionsmodul mit den zuvor geschätzten Scherkomponenten
und Gleichung 5.11 durch

K = Re
{
ρc2

L∞ − 4
3µγµ (ω)

γK (ω)

}
(5.13)

aktualisiert. [JCH22]

Exemplarische Auswertung einer PEEK-Probe: Am Beispiel einer
PEEK-Probe ergeben sich mit einem Elastizitätsmodul von E = 4,1 GPa
[CD21; RBO07] und einer Poissonzahl von ν = 0,39 [PPD21] aus der
Literatur sowie der messtechnisch ermittelten Dichte ρ = 1310 kg m−3 die
statischen Schallgeschwindigkeiten

cL0 =

√√√√ E (1− ν)
ρ (1 + ν) (1− 2ν) = 2998 m s−1 (5.14)

cT0 =
√

E

2 (1 + ν) ρ = 1062 m s−1, (5.15)

sowie der statische Kompressions- und Schermodul

K = E

3 (1− 2ν) = 6,21 GPa, µ = E

2 (1 + ν) = 1,48 GPa. (5.16)

Aus der Identifikation eines ideal-elastischen Modells nach Kapitel 4 wer-
den cL∞ = 2558 m s−1 und cT∞ = 1110 m s−1 bestimmt. Daraus ergibt
sich mit Gleichung 5.7 das Zeitkonstanten-Verhältnis der Scherkomponen-
te dµ = c2

T∞/c
2
T0 = 1,09. Minimierung des Betrags der Rayleigh-Lamb-

Gleichung unter Verwendung der Moden oberhalb der roten Geraden in Ab-
bildung 5.19a und der zugehörigen modalen Dämpfung liefern τσµ = 0,59 µs
und aµ = 1. Der Schermodul bleibt quasi unverändert. Mit dem statischen
Kompressions- und Schermodul sowie den bestimmten Dämpfungspara-
metern der Scherkomponenten ergibt sich dK = 1,03 aus Gleichung 5.12.
Die zugehörige Relaxationszeitkonstante τσK = 0,21 µs und Ableitungs-
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ordnung aK = 1 ergeben sich durch die betragsmäßige Minimierung der
Rayleigh-Lamb-Frequenzgleichung unter Verwendung des Dämpfungsmo-
dells nach Gleichung 3.17 und der Moden unterhalb der roten Gerade in
Abbildung 5.19a, wobei der Kompressionsmodul mittels Gleichung 5.13
zu K = 6,23 GPa aktualisiert wird. Damit ergibt sich eine gegenüber
dem berechneten Literaturwert veränderte statische Longitudinalwellenge-
schwindigkeit von cL0 = 2502 m s−1.

5.6 Vergleich verschiedener
Optimierungsstrategien

Im folgenden Abschnitt werden verschiedene Optimierungsstrategien zur
Identifikation der Modellparameter eines fraktionalen Zener-Modells basie-
rend auf dem Dämpfungsverhalten des Plattenwellenleiters am Beispiel von
Polyetheretherketon (PEEK) verglichen. Während in Abschnitt 4.10 zur
Identifikation der effektiven, elastischen Materialparameter die gesamte
Dispersionsabbildung der Messdaten genutzt wird, führt die Nutzung der
gesamten Dämpfungsabbildung zu Problemen, da nicht zwischen Moden
mit einer modalen Dämpfung von nahezu null und nicht detektierten bzw.
nicht angeregten Moden unterschieden werden kann. Darum werden die
Frequenz-Wellenzahl-Paare der Moden aus der Dispersionsabbildung, wie
bereits zur Startwertschätzung, mittels Maximumsuche extrahiert. Die zu-
gehörige Dämpfung der Moden und somit der Imaginärteil der Wellenzahl
wird der Dämpfungsabbildung (vgl. Abbildung 5.6) entnommen.

5.6.1 Aspekte der Optimierung

Die Verwendung des ableitungsfreien BOBYQA (Bound Optimization
BY Quadratic Approximation [Pow09]) als Optimierungsalgorithmus er-
möglicht die Berücksichtigung der physikalischen Parametergrenzen von
0 ≤ aK, aµ ≤ 1 und dK, dµ ≥ 1, ohne dass Informationen über Diffe-
renzierbarkeit der Kostenfunktion notwendig sind. Für die Kostenfunk-
tion ergeben sich allein aufgrund der Komplexwertigkeit der Wellenzah-
len verschiedene Varianten zur Bestimmung des Parametervektors p =[
K,µ, τσK , dK, τσµ , dµ, aK, aµ

]
, welche im nachfolgenden Abschnitt beschrie-

ben werden.
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Kostenfunktionen

Da in Kapitel 4 eine Optimierung auf den Realteil der Kreiswellenzahl er-
folgt, liegt es nahe hier den Imaginärteil zu betrachten, sodass zunächst die
quadratische Differenz der Imaginärteile (Dämpfung) aller N detektierten
Kreiswellenzahlen aus der Messung kMes und den simulativ berechneten
ksim als Kostenfunktion

εIm = 1
N

N∑

i=1
|| Im{kMesi}| − | Im{kSimi

}||2Up (ωj, ki) (5.17)

verwendet wird. Dabei werden die Beträge der Imaginärteile betrachtet, weil
das Vorzeichen die Ausbreitungsrichtung der Welle angibt. Dieses ist irrele-
vant, da die Abstrahlung der Wellen symmetrisch zur Anregungslinie erfolgt.
Der Faktor Up(ωj, ki) entspricht dem Wert der Dispersionsabbildung (vgl.
Abbildung 4.17) an dem entsprechenden Frequenz-Wellenzahl-Paar und
dient der Regularisierung der Optimierung. Frequenz-Wellenzahl-Paare
mit hohen Werten Up (ωj, ki) in der vorverarbeiteten Dispersionsabbildung
werden stärker berücksichtigt als solche mit niedrigen. Dadurch wird die
Gewichtung falsch detektierter kleiner, lokaler Maxima in der Dispersions-
abbildung in Abbildung 5.19a, die keine Mode repräsentieren, geringer. Auf
den Verlauf der Kostenfunktion hat der Wert der Dispersionsabbildung
Up(ωj, ki) als Regularisierungsfaktor dementsprechend kaum Einfluss, wenn
die Moden aus der Dispersionsabbildung leicht extrahiert werden können.
Auch werden, aufgrund der spaltenweisen Normierung in der Vorverarbei-
tung (vgl. Abschnitt 4.6) zur Modendetektion, Moden höherer Ordnung
nicht weniger gewichtet als Moden niedriger Ordnung, obwohl letztere in
den Rohdaten weitaus höhere Energien und somit höhere Werte |U (ωj, ki) |
in der unverarbeiteten Dispersionsabbildung aufweisen. Damit wird die
höhere Sensitivität von Moden höherer Ordnung auf die Materialparameter
nicht aufgehoben.

Alternativ können z.B. die Verhältnisse Im{k}/Re{k} miteinander ver-
glichen werden, um die Sensitivität auf bestimmte Parameter z.B. der
Relaxationszeitkonstanten τσµ zu erhöhen. So ist eine Änderung der Rela-
xationszeitkonstanten τσµ um ±5 % aufgrund ihres kleinen absoluten Wer-
tebereichs kaum in den detektierten Moden im niederfrequenten Bereich
bis 1 MHz bemerkbar (vgl. Abbildung 5.15 und 5.19), bei Betrachtung des
Verhältnisses von Imaginär- zu Realteil jedoch schon (vgl. Abbildung 5.18).
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In dem Fall dient mit

εV = 1
N

N∑

i=1

∣∣∣∣∣

∣∣∣∣∣
Im{kMesi}
Re{kMesi}

∣∣∣∣∣−
∣∣∣∣∣
Im{kSimi

}
Re{kSimi

}

∣∣∣∣∣

∣∣∣∣∣

2

(5.18)

die mittlere quadratische Differenz der Verhältnisse als Kostenfunktion.
Auf den Wert der Dispersionsabbildung Up (ωj, ki) als Faktor in der Kosten-
funktion wie in Gleichung 5.17 wird aufgrund des kleinen Wertebereichs in
Gleichung 5.18 verzichtet. Da alle Wellenzahlen mit Im{ki} > Re{ki} nicht
betrachtet werden (vgl. Gleichung 5.3), ergibt sich ein Wertebereich für das
Verhältnis Im{ki}/Re{ki} zwischen 0 und 1. Die Werte der verarbeiteten
Dispersionsabbildung Up (ωj, ki) liegen aufgrund dessen Normierung eben-
falls im Wertebereich zwischen 0 und 1. Eine Multiplikation beider würde
die Werte der Kostenfunktion weiter verkleinern, was zu einer Verringerung
des Gradienten der Kostenfunktion führen würde. Existieren im Bereich
abseits der Moden zu viele detektierte lokale Maxima, kann der Regulari-
sierungsfaktor Up trotzdem hinzugezogen werden oder der Gradient durch
Multiplikation der Kostenfunktion mit einem Faktor > 1 vergrößert werden.
Aufgrund der Verwendung eines ableitungsfreien Optimierungsalgorithmus
ist dies jedoch nicht notwendig.

Aufteilung des Dispersionsdiagramms

Neben der Verwendung unterschiedlicher Kostenfunktionen kann der be-
trachtete Frequenz- und Wellenzahl-Bereich im Dispersionsdiagramm am
Vorbild der Startwertschätzung aufgeteilt werden. Wie bereits bei der
Startwertschätzung wird in dem Fall der Bereich oberhalb der Geraden
kL = ω/cL∞ (vgl. Abbildung 5.19a) genutzt, um zunächst die Scherkompo-
nenten und der Bereich unterhalb dieser Geraden um die Kompressions-
komponenten, zu bestimmen.

Rückrechnung auf die statischen Parameter

Bisher enthält der Parametervektor p acht Parameter, welche stark mit-
einander verkoppelt sind. Um die Anzahl der Optimierungsparameter
zu reduzieren gibt es zwei Möglichkeiten: Zum einen kann auf a priori
Wissen wie z.B. zusätzliche Messungen mit anderen Messverfahren oder
Literaturdaten zurückgegriffen werden. Die (ausgewählten) Literaturdaten
sind jedoch nur Beispiele für Varianten eines Polymers. Die tatsächlichen
Eigenschaften und somit auch die Materialparameter des Polymers hän-
gen stark vom jeweiligen Herstellungsprozess ab, was zu einem weiten

147



5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Wertebereich der Materialparameter führt. Hinzu kommt zusätzlich die
Temperaturabhängigkeit der Parameter.

Daher werden Kompressions- und Schermodul über die Schallgeschwin-
digkeiten aus der Identifikation des elastischen Modells (vgl. Kapitel 4) mit
Gleichung 5.10 und 5.13 in jedem Iterationsschritt in Abhängigkeit des ak-
tuellen Parametervektors berechnet. Anders als bei der Startwertschätzung
für dK und dµ wird die angenommene Frequenz der Schallgeschwindigkeiten
cL (ω) und cT (ω) nicht als Grenzwert ω →∞ angenommen, sondern bei
der höchsten in der elastischen Identifikation berücksichtigten Frequenz,
welche am Beispiel der PEEK-Probe f = 2,5 MHz entspricht. Somit ergibt
sich ein reduzierter Parametervektor von pα =

[
τσK , dK, τσµ , dµ, aK, aµ

]
,

welcher nur die Dämpfungsparameter enthält.

5.6.2 Beschreibung der Optimierungsstrategien
Im Folgenden werden drei unterschiedliche mehrstufige Optimierungsstrate-
gien am Beispiel einer 5,45 mm dicken PEEK-Platte betrachtet. Während
in Verfahren 1 sowohl Dämpfungs- als auch statische Parameter optimiert
werden, nutzen Verfahren 2 und 3 jeweils die Approximation des stati-
schen Kompressions- und Schermoduls während des Optimierungsprozesses
am Vorbild der Startwertschätzung. Zusätzlich nutzen Verfahren 1 und
3 unterschiedliche Bereiche der Moden aus der Dispersionsabbildung zur
Bestimmung der Scher- und Kompressionsparameter, während Verfahren 2
in jedem Iterationsschritt alle detektierten Moden berücksichtigt.

Verfahren 1: Optimierung ohne Approximation der statischen
Parameter

Aufgrund der vorausgesetzten Annahmen zur Berechnung der statischen
Parameter, ist es wünschenswert, diese möglichst mit zu optimieren, was
jedoch die Komplexität erhöht. Daher werden zur Sensitivitätssteigerung
alle Parameter einzeln nacheinander in der in Tabelle 5.5 aufgeführten
Reihenfolge optimiert. Als Kostenfunktion zur Bestimmung der Dämp-
fungsparameter dient εV nach Gleichung 5.18. Zudem wird das Disper-
sionsdiagramm im betrachteten Frequenzbereich bis 1 MHz entlang der
Geraden kL (ω) = ω/cL∞ aufgeteilt.

Frequenz-Wellenzahl-Paare mit Re{k} > ω/cL∞ werden zur Identifikati-
on der Scherkomponenten, Frequenz-Wellenzahl-Paare mit Re{k} ≤ ω/cL∞

zur Identifikation der Kompressionskomponenten genutzt. Da sich die Scher-
komponenten auf alle Moden des Dispersionsdiagramms auswirken (vgl.
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Abschnitt 4.8 und 5.4), werden diese als Erste bestimmt, während die Kom-
pressionskomponenten abhängig von den Scherkomponenten nachfolgend
optimiert werden. Außerdem stellen die Zeitkonstanten-Verhältnisse dµ und
dK die sensitivsten Parameter der modalen Dämpfung (vgl. Abbildung 5.14)
dar, weshalb diese zunächst vor allen anderen Dämpfungsparametern opti-
miert werden. Demzufolge ergibt sich aus Abbildung 5.14 bis 5.18 die in
Tabelle 5.5 angegebene Optimierungsreihenfolge.

Tabelle 5.5: Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen und Moden bei Verfahren 1

Schritt Parameter Kostenfunktion Aufteilung Moden
1 dµ εV Re{k} > ω/cL∞

2 µ Kapitel 4 -
3 dK εV Re{k} ≤ ω/cL∞

4 K Kapitel 4 -
5 τσµ εV Re{k} > ω/cL∞

6 aµ εV Re{k} > ω/cL∞

7 µ Kapitel 4 -
8 τσK εV Re{k} ≤ ω/cL∞

9 aK εV Re{k} ≤ ω/cL∞

10 K Kapitel 4 -

Gleichzeitig sei erwähnt, dass sich zwar die Aufteilung des Dispersi-
onsdiagramms anhand der Geraden kL (ω) = ω/cL∞ auf den Realteil
der Kreiswellenzahl bezieht, die Kostenfunktion nutzt jedoch nach Glei-
chung 5.18 sowohl Imaginär- als auch Realteil der komplexen Kreiswellen-
zahl für die Optimierung der Dämpfungsparameter. Die Optimierung von
Kompressions- und Schermodul nutzt das Verfahren aus Kapitel 4, welches
ausschließlich auf den Realteil der Kreiswellenzahl basiert, jedoch nun
unter Annahme eines komplexen, frequenzabhängigen Materialmodells.

Die berechnete Dämpfung unter Verwendung der bestimmten Material-
parameter aus Tabelle 5.6 ist in Abbildung 5.20 gezeigt.

Abgesehen von der S5-Mode, wird die Dämpfung tendenziell unterschätzt.
Somit stimmen zwar insgesamt die modalen Verläufe überein, trotzdem
liegt die berechnete Dämpfung immer leicht neben der der Messung, sodass
für eine genauere Beschreibung weitere Optimierungsschritte notwendig
sind. Anders als bei der Dämpfung stimmt der Realteil der berechneten
Kreiswellenzahl mit den Moden aus der Messung in Abbildung 5.21 überein.
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Abbildung 5.20: Berechnete Dämpfung (rot) unter Verwendung der opti-
malen Materialparameter nach Tabelle 5.6 im Vergleich
zur Dämpfung aus der Messung (blau)
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Abbildung 5.21: Berechneter Realteil der Kreiswellenzahlen unter Nutzung
der bestimmten Materialparameter nach dem letzten Op-
timierungsschritt aus Tabelle 5.6 (rot) im Vergleich zu
den detektierten Moden aus der Messung (weiß)
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5.6 Vergleich verschiedener Optimierungsstrategien

Tabelle 5.6: Identifizierte viskoelastische Materialparameter nach schritt-
weiser Optimierung aller Parameter (Verfahren 1)

Optimierungsschritt τσK / µs τσµ / µs dK dµ aK aµ
Startwerte 0,20 0,59 1,034 1,093 1 1
Ergebnis 0,28 0,98 1,035 1,063 1 1

Optimierungsschritt K / GPa µ / GPa cL0 / m s−1 cT0 / m s−1

Startwerte 6,23 1,48 2502 1062
Ergebnis 6,19 1,52 2504 1076

Konvergenz von Verfahren 1 Die Konvergenz der einzelnen Material-
parameter lässt sich Abbildung 5.22 entnehmen. Abbildung 5.22 zeigt die
Optimierungsparameter pi normiert auf deren Startwert pi,0 im jeweiligen
Iterationsschritt. Aufgrund des kleinen absoluten Werts ergeben sich große
relative Änderungen der Relaxationszeitkonstanten τσK und τσµ . Trotz
der großen relativen Änderungen konvergieren sie ebenso wie die übri-
gen Parameter zügig. Gleichzeitig zeigt Abbildung 5.22 die Verkopplung
der Parameter: Nachdem zu Beginn das Zeitkonstanten-Verhältnis der
Scherkomponenten dµ verringert wird, wird der Schermodul µ entspre-
chend vergrößert. Gleiches gilt für das Zeitkonstanten-Verhältnis dK und
den Kompressionsmodul K, jedoch fällt hier die resultierende relative
Änderung geringer aus.
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Abbildung 5.22: Konvergenz der Materialparameter bei schrittweiser Opti-
mierung der einzelnen Parameter

Verfahren 2: Optimierung mit Berechnung der statischen Parameter
und ohne Aufteilung des Dispersionsdiagramms

Durch die Berechnung des Scher- und Kompressionsmoduls über Glei-
chung 5.10 und 5.13 während der Optimierung, entfallen diese als Opti-
mierungsparameter, sodass sich der Parametervektor zu
pα =

[
τσK , dK, τσµ , dµ, aK, aµ

]
vereinfacht. In diesem mehrschrittigen Op-

timierungsverfahren werden im Gegensatz zur Startwertschätzung alle
Moden bis 1 MHz in jedem Optimierungsschritt berücksichtigt. Die nicht
enthaltenden statischen Module µ und K werden während des Optimie-
rungsprozesses unter Annahme der Dämpfungsparameter des aktuellen
Optimierungsschritts über Gleichung 5.10 und 5.13 berechnet.

Demzufolge werden die Optimierungsschritte in Tabelle 5.7 durchgeführt.
Mit Annahme der in Abschnitt 5.5 berechneten Startwerte liefern die

Optimierungsschritte am Beispiel einer 5,45 mm dicken PEEK-Platte den
in Tabelle 5.8 angegebenen Parametersatz. Abbildung 5.23 zeigt die modale
Dämpfung aus der Messung sowie die berechnete Dämpfung unter Ver-
wendung sowohl der Startwerte als auch der im ersten Schritt optimierten
Parameter nach Tabelle 5.8.
Im Frequenzbereich bis 0,5 MHz zeigt sich eine bessere Übereinstim-
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5.6 Vergleich verschiedener Optimierungsstrategien

Tabelle 5.7: Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen bei Verfahren 2

Schritt Parameter Kostenfunktion
1 τσK , dK, τσµ , dµ, aK, aµ εIm
2 τσµ , dµ, aµ εV
3a τσK εV
3b aK εV
4 K, µ Kapitel 4

mung zwischen Messung und Simulationsergebnis unter Verwendung der
Startwerte, da dieser Bereich im Wesentlichen von den Scherkomponenten
der Parameter beeinflusst wird. Zur Schätzung der Startwerte der Scher-
parameter wird ausschließlich dieser Bereich verwendet. Moden höherer
Ordnung mit Re{k} > ω/cL∞ werden in der Messung nicht detektiert (vgl.
Abbildung 5.19a). Die Dämpfung der Moden unterhalb dieser Geraden
nähern sich nach dem ersten Optimierungsschritt an die Messdaten an.
Die niederfrequenten Moden unter f < 0,5 MHz entfernen sich dadurch
jedoch von der Messung. Während die Dämpfung unter Verwendung der
Startwerte im Bereich f ≥ 0,5 MHz zu groß gegenüber der Messung ist,
ergibt das Simulationsergebnis unter Verwendung der im ersten Schritt
optimierten Materialparameter eine zu geringe Dämpfung entlang des ge-
samten Frequenzbereiches. Zurückzuführen ist dies im Wesentlichen auf
eine Verminderung des Parameters dµ.
Aufgrund ihres kleinen absoluten Wertebereichs ist eine Änderung der

Relaxationszeit τσµ um ±5 % im niederfrequenten Bereich bis 1 MHz auf
Basis der detektierten Moden kaum bemerkbar (vgl. Abbildung 5.15 und
5.19), bei Betrachtung des Verhältnisses von Imaginär- zu Realteil jedoch
schon (vgl. Abbildung 5.18). Da die Dämpfungsparameter untereinander
verkoppelt sind, werden im zweiten Schritt nur die Scherkomponenten
mit dem Parametervektor pµ =

[
τσµ , dµ, aµ

]
variiert. Als Kostenfunktion

dient mit εV die quadratische Differenz des Verhältnisses von Imaginär- zu
Realteil gemäß Gleichung 5.18.
Abbildung 5.24 zeigt die akustische Dämpfung unter Verwendung der

Dämpfungsparameter mit den aktualisierten Scherparametern nach dem
zweiten Optimierungsschritt aus Tabelle 5.8 im Vergleich zum Ergebnis
des vorherigen Optimierungsschritts sowie den Messdaten. Es zeigt sich
eine bessere Annäherung an die Messdaten. Der niederfrequente Bereich
bis f = 0,5 MHz wird wesentlich besser repräsentiert als nach dem ersten
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Abbildung 5.23: Dämpfung aus Messung (blau), Simulation unter Ver-
wendung der Startwerte (schwarz) bzw. der bestimmten
Parameter im ersten Iterationsschritt nach Tabelle 5.8
(rot)

Optimierungsschritt. Hier nähert sich das Ergebnis dem der Startwerte
an. Dies ergibt Sinn, da dieser Bereich sensitiv auf die Parameter der
Scherkomponenten ist, jedoch kaum auf die der Kompressionskomponenten.
Die dargestellten Moden höherer Ordnung sind ebenfalls sensitiv auf die
Parameter der Scherkomponenten (vgl. Abschnitt 5.4) und wurden in
diesem Optimierungsschritt mit berücksichtigt. Diese nähern sich weiter
der Messung. Bei einigen wenigen Moden zeigt sich jedoch auch eine
Überanpassung, sodass die unterschätzte Dämpfung nach dem vorherigen
Optimierungsschritt nun zu einer Überschätzung der Dämpfung führt.
Folglich ergibt sich als nächster Optimierungsschritt eine weitere Op-

timierung der Kompressionsparameter. Da der Parameter dK einen sehr
großen Einfluss sowohl auf die Dämpfung als auch auf die Rückrechnung
der statischen Materialparameter hat, führen bereits kleine Parameterva-
riationen zu großen Änderungen der Dämpfung. Daher werden im nächsten,
dritten Schritt nur die Parameter τσK und aK nacheinander variiert, sodass
sich dieser Schritt in zwei Einzeloptimierungen unterteilt. Die Dämpfung,
berechnet unter Annahme der Materialparameter nach diesem bzw. diesen
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Abbildung 5.24: Dämpfung nach Optimierung der Scherparamter (rot),
Kostenfunktion nach Gleichung 5.18 im Vergleich zum
vorherigen Optimierungssschritt (schwarz) und der Dämp-
fung aus der Messung (blau)

beiden Schritten (vgl. Tabelle 5.8), ist im Vergleich zum vorherigen Schritt
und der Messung in Abbildung 5.25 abgebildet. Während der niederfre-
quente Bereich erwartungsgemäß unverändert bleibt, verringert sich die
Dämpfung im höherfrequenten Bereich. Im Fall z.B. der S5- und A7-Mode
führt dies zu einer besseren Übereinstimmung mit den Messdaten, während
es gleichzeitig z.B. bei der A4-, S6- und A7-Mode zu einer leicht höheren
Abweichung von den Messdaten führt.

Da der statische Scher- und Kompressionsmodul, µ und K, während
der Optimierung mittels Gleichung 5.10 und 5.13 am Beispiel PEEK für
2,5 MHz berechnet worden sind, wird am Ende eine Optimierung des stati-
schen Kompressions- und Schermoduls, wie in Kapitel 4 unter Annahme
des viskoelastischen Modells mit den bestimmten Dämpfungsparametern,
durchgeführt. Aufgrund des angenommenen frequenzabhängigen Materialm-
odells werden dafür die komplexen Kreiswellenzahlen k (ω) in Abhängigkeit
der Kreisfrequenzen berechnet. Aufgrund der geringen Parameteränderun-
gen (vgl. Tabelle 5.8) ruft dieser Schritt keine wesentlichen Änderungen
in der Dämpfung hervor. Die Übereinstimmung zwischen berechnetem
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Abbildung 5.25: Dämpfung nach Optimierung von τσK und aK, Kosten-
funktion nach Gleichung 5.18

Dispersionsdiagramm unter Annahme der optimierten viskoelastischen
Materialparameter und der Dispersionsabbildung aus der Messung ist in
Abbildung 5.27 dargestellt. Die zugehörige Dämpfung bzw. der Imaginär-
teil der Kreiswellenzahlen ist in Abbildung 5.26 dargestellt, welche gute
Übereinstimmungen zwischen Messung und Simulation zeigt.
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5.6 Vergleich verschiedener Optimierungsstrategien

Tabelle 5.8: Mittels Verfahren 2 identifizierte viskoelastische Materialpara-
meter

Optimierungsschritt τσK / µs τσµ / µs dK dµ aK aµ
Startwerte 0,2 0,59 1,034 1,093 1 1
Schritt 1 0,19 0,60 1,029 1,022 0,96 1
Schritt 2 - 0,61 - 1,068 - 0,98
Schritt 3 0,19 - - - 0,88 -

Optimierungsschritt K / GPa µ / GPa cL0 / m s−1 cT0 / m s−1

Startwerte 6,23 1,48 2502 1062
Schritt 1 6,26 1,58 2527 1098

Schritt 2 & 3 6,27 1,51 2516 1075
Schritt 4 6,25 1,52 2515 1078
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Abbildung 5.26: Dämpfung unter Nutzung der identifizierten Materialpa-
rameter nach dem letzten Optimierungsschritt aus Tabel-
le 5.8 (rot) sowie Dämpfung aus der Messung (blau)
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Abbildung 5.27: Realteil der Kreiswellenzahlen unter Nutzung der be-
stimmten Materialparameter nach dem letzten Optimie-
rungsschritt aus Tabelle 5.8 (rot), detektierte Moden aus
der Messung (weiß)

Konvergenz: Die relative Änderung der Dämpfungsparameter dieses
Optimierungsverfahrens ist in Abbildung 5.28 dargestellt. Dort zeigt sich
bereits im ersten Schritt aufgrund der Verkopplung der Parameter, dass
eine relative Änderung der Relaxationszeitkonstanten τσµ und τσK immer
eine Veränderung der Verhältnisse der Zeitkonstanten dK und dµ, oder
umgekehrt, und im Fall der Scherkomponenten ebenfalls eine Änderung
der fraktionalen Ableitungsordnung aµ nach sich zieht.
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Abbildung 5.28: Konvergenz der Dämpfungsparameter während Optimie-
rungsverfahren 2 (pi,0 entspricht in jedem Schritt den
Startwerten aus Tabelle 5.8)
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Verfahren 3: Optimierung mit Berechnung der statischen Parameter
und mit Segmentierung des Dispersionsdiagramms

Zusätzlich zur Verwendung unterschiedlicher Kostenfunktionen, wird der
Frequenzbereich am Vorbild der Startwertschätzung aufgeteilt. Wie bereits
bei der Startwertschätzung wird der Bereich oberhalb der Geraden kL =
ω/cL∞ (vgl. Abbildung 5.19a) genutzt, um zunächst die Scherkomponenten,
der Bereich unterhalb dieser Geraden um die Kompressionskomponenten,
zu bestimmen. Der erste Optimierungsschritt aus Verfahren 2 mit der
Kostenfunktion εIm nach Gleichung 5.17 und der Berücksichtigung aller
aus der Messung extrahierter Moden, wird beibehalten, da dies zu besseren
Übereinstimmungen nach den darauffolgenden Schritten führt. Demnach
ergeben sich die Optimierungsschritte in Tabelle 5.9.

Tabelle 5.9: Optimierungsreihenfolge sowie jeweilige verwendete Kosten-
funktionen und Moden bei Verfahren 3

Schritt Parameter Kostenfunktion berücksichtigte
Moden

1 τσK , dK, τσµ , dµ, aK, aµ εIm alle
2 τσµ , dµ, aµ εV Re{k} > ω/cL∞

3 τσK , dK, aK εV Re{k} ≤ ω/cL∞

4 K, µ Kapitel 4 alle

Wie bereits im vorherigen Verfahren 2 werden die statischen Materi-
alparameter K und µ über Gleichung 5.10 und Gleichung 5.13 in allen
Optimierungsschritten in Abhängigkeit des aktuellen Parametervektors
berechnet.

Abbildung 5.29 zeigt die Dämpfung unter Verwendung der bestimmten
Materialparameter aus Tabelle 5.10 nach dem letzten Optimierungsschritt.
Dort wird eine Unterschätzung der Dämpfung unter Verwendung der opti-
mierten Materialparameter im Frequenzbereich von 0,5 MHz bis 0,7 MHz
sichtbar. Im höherfrequenten Bereich ab 0,7 MHz erscheint die berechnete
Dämpfung gegenüber der Messung entlang der Frequenzachse leicht ver-
schoben, was auf eine Diskrepanz des Kompressionsmoduls K hindeutet
(vgl. Abbildung 5.14).

Bei Betrachtung der Dämpfungsparameter in Tabelle 5.10 fällt auf, dass
die Relaxationszeitkonstante τσµ im Vergleich zu den Startwerten und der
Optimierung aus den vorherigen Abschnitten um mehr als das vierfache
erhöht ist. Gleichzeitig wird die Ableitungsordnung aµ geringer, die in dem
Optimierungsprozess aus den vorherigen Abschnitten unangetastet blieb.
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5.6 Vergleich verschiedener Optimierungsstrategien

Tabelle 5.10: Mittels Verfahren 3 identifizierte viskoelastische Materialpa-
rameter

Optimierungsschritt τσK / µs τσµ / µs dK dµ aK aµ
Startwerte 0,2 0,591 1,034 1,093 1 1
Schritt 1 0,19 0,599 1,029 1,022 0,96 1
Schritt 2 - 2,64 - 1,13 - 0,87
Schritt 3 0,21 - 1,034 - 0,96 -

Optimierungsschritt K / GPa µ / GPa cL0 / m s−1 cT0 / m s−1

Startwerte 6,23 1,48 2502 1062
Schritt 1 6,26 1,58 2527 1098
Schritt 2 6,27 1,43 2498 1046
Schritt 3 6,23 1,43 2492 1043
Schritt 4 6,23 1,43 2492 1045
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Abbildung 5.29: Dämpfung unter Nutzung der resultierenden Materialpa-
rameter nach dem letzten Optimierungsschritt aus Tabel-
le 5.10 und Dämpfung aus der Messung (blau)
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Abbildung 5.30: Realteil der Kreiswellenzahlen unter Nutzung der be-
stimmten Materialparameter nach dem letzten Optimie-
rungsschritt aus Tabelle 5.10 und detektierte Moden aus
der Messung (weiß)

Ebenso erhöht sich der Parameter dµ, welcher einen großen Einfluss auf
das Dispersionsdiagramm und die Dämpfung hat (vgl. Abbildung 5.14).
Dementsprechend führt bereits eine Änderung in der ersten Nachkommas-
telle des Parameters dµ zu großen Änderungen der modalen Dämpfung.
Eine Vergrößerung von τσµ führt zu einer geringeren Dämpfung der Moden
(Abbildung 5.15), eine Verringerung der Ableitungsordnung aµ führt eben-
falls zu einer Verringerung der Dämpfung (Abbildung 5.15), sodass sich
beide Effekte verstärken und zu einer Unterschätzung der Dämpfung führen,
obwohl die gleichzeitige Erhöhung des Parameters dµ dem entgegen wirkt.
In dem Parameter dµ selbst wirkt sich die Erhöhung aufgrund des Werte-
bereichs und der großen Sensitivität der Kostenfunktion auf diesen nur in
den Nachkommastellen aus. Zusammenfassend bewirkt die Änderung der
Relaxationszeitkonstanten τσµ eine Verschiebung des Arbeitspunkts bzw.
des Maximums des Verlustfaktors des fraktionalen Zener-Modells bezogen
auf die Scherkomponenten zu kleinen Frequenzen (vgl. Abbildung 3.4).
Dies ergibt sich durch die ausschließliche Betrachtung niederfrequenter
Moden mit Re{k} > ω/cL∞ zur Bestimmung der Dämpfungsparameter
der Scherkomponenten, da in diesem Wellenzahl-Bereich Moden höherer
Ordnung in der Messung nicht detektiert werden. Da dies aufgrund der
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Abbildung 5.31: Konvergenz des zweiten und dritten Optimierungsschritts.
Die Konvergenz des ersten Optimierungsschritts ist Ab-
bildung 5.28a zu entnehmen.

Parametrisierung des Modells zu einer geringen Dämpfung führt (vgl. Ab-
bildung 3.3), gleichen die Erhöhung des Zeitkonstanten-Verhältnisses dµ
und der fraktionalen Ableitungsordnung aµ diesen Effekt aus.

Konvergenz: Während der erste Optimierungsschritt identisch zum vor-
herigen Abschnitt ist (vgl. Abbildung 5.28a), zeigt Abbildung 5.31 die
Konvergenz der nachfolgenden Schritte. Obwohl die Relaxationszeitkonstan-
te τσµ gegen einen vierfach höheren Wert gegenüber ihrem Startwert strebt,
ändern sich dµ und aµ vergleichsweise gering. Diese variieren aufgrund
ihrer Verkopplung miteinander in den jeweils gleichen Iterationsschritten,
jedoch unabhängig von τσµ . Ähnliches zeigt sich in dem darauffolgenden
Schritt bei den Kompressionsparametern. Sobald ein Parameter variiert
wird, folgen die anderen Parameter im ähnlichen oder entgegen gesetzten
Maß in den nachfolgenden Schritten. Aufgrund dieser starken Kopplung ist
es kaum möglich Optimierungen einzelner Parameter durchzuführen, ohne
die Änderungen der übrigen. Das führt möglicherweise zu uneindeutigen
Materialparametersätzen. Um die Eindeutigkeit zu erhöhen bzw. zu ge-
währleisten ist es entweder notwendig den zu betrachteten Frequenzbereich
zu erhöhen oder die Anzahl der zu bestimmenden Modellparameter zu
verringern.
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Tabelle 5.11: Zusammenfassung aller identifizierten viskoelastischen Mate-
rialparameter für PEEK

τσK / µs τσµ / µs dK dµ aK aµ
Startwerte 0,2 0,59 1,034 1,093 1 1
Verfahren 1 0,28 0,98 1,035 1,063 1 1
Verfahren 2 0,19 0,61 1,029 1,068 0,88 0,98
Verfahren 3 0,21 2,64 1,034 1,13 0,96 0,87

Optimierungsschritt K / GPa µ / GPa cL0 / m s−1 cT0 / m s−1

Startwerte 6,23 1,48 2502 1062
Verfahren 1 6,19 1,52 2504 1076
Verfahren 2 6,25 1,52 2515 1078
Verfahren 3 6,23 1,43 2492 1045

5.6.3 Vergleich der Optimierungsergebnisse

Zum Vergleich sind die identifizierten Parameter in Tabelle 5.11 zusam-
mengefasst. Auffällig ist, dass sich die Ableitungsordnungen im ersten
Verfahren gegenüber den Startwerten nicht verändern. Gleichzeitig ergibt
sich bei allen Verfahren, insbesondere bei denen, die eine Segmentierung
des betrachteten Dispersionsdiagramms nutzen, ein Anstieg der Relaxati-
onszeitkonstante τσµ , bei Verfahren 3 sogar um mehr als den vierfachen
Wert. Dies lässt sich durch die Segmentierung des Dispersionsdiagramms
erklären: Da kaum Moden höherer Ordnung mit Re{k} > ω/cL∞ in der
Messung detektiert werden, beschränkt sich der berücksichtigte Frequenz-
bereich bei der Optimierung der Scherkomponenten auf unter 0,6 MHz,
sodass bei der Optimierungsstrategie 1 und 3 der Arbeitspunkt zu sehr
kleinen Frequenzen f = 1/

(
2π√τεµτσµ

)
= 1/

(
2πτσµd

1/(2aµ)
µ

)
verschoben

wird. Die statischen Parameter in Tabelle 5.11 werden maßgeblich durch die
Zeitkonstanten-Verhältnisse d beeinflusst. Erhöhen sich diese, verringern
sich die entsprechenden statischen Moduln K und µ.

Für eine Transversalwelle werden Schallgeschwindigkeit und Absorption
nach Gleichung 3.7 und 3.8 über

cT = cT0 Re
{√

γµ (ω)
}

(5.19)

αFT = − ω

cT0

Im
{√

γµ (ω)−1
}

(5.20)

direkt berechnet. Zur Berechnung der Schallgeschwindigkeit und Absorpti-
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Abbildung 5.32: Frequenzabhängige Schallgeschwindigkeit und Absorption
unter Annahme der Optimierungsergebnisse von PEEK
aus Tabelle 5.11, Startwerte (schwarz), Verfahren 1 (rot),
Verfahren 2 (orange), Verfahren 3 (grün)

on einer Longitudinalwelle wird der Dämpfungsterm der Longitudinalwelle
γL (ω) aus den Dämpfungstermen der Kompressions- und Scherkomponen-
ten γK (ω) und γµ (ω) bestimmt:

γL =
KγK + 4

3µγµ

K + 4
3µ

(5.21)

Damit können analog zu den Gleichungen 5.19 und 5.20 Schallgeschwin-
digkeit und Absorption einer Longitudinalwelle berechnet werden. Sowohl
die frequenzabhängige Schallgeschwindigkeit als auch die Absorption einer
Longitudinal- und Transversalwelle sind für die Optimierungsergebnisse
der drei Verfahren aus Tabelle 5.11 in Abbildung 5.32 dargestellt.
Die zuvor genannte Verschiebung des Arbeitspunktes durch die große

Relaxationszeitkonstante in Verfahren 3 wird bei der Transversalwellenge-
schwindigkeit in Abbildung 5.32 deutlich, da dort der lineare Bereich zu
tieferen Frequenzen verschoben ist.
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5 Inverses Verfahren zur Identifikation viskoelastischer Materialparameter

Da die genaue Messfrequenz der effektiven Schallgeschwindigkeiten cL∞

und cT∞ aufgrund der breitbandigen Messung nicht bekannt ist, wird die
maximale, in der Identifikation der effektiven, elastischen Schallgeschwin-
digkeiten berücksichtigte Frequenz als Messfrequenz der Schallgeschwindig-
keiten angenommen, um während der Optimierung in Verfahren 2 und 3 die
statischen Schallgeschwindigkeiten bzw. Kompressions- und Schermodul
zu berechnen. Die Annahme der größten Frequenz bei der Bestimmung der
effektiven, elastischen Schallgeschwindigkeiten als Messfrequenz setzt für
eine gelingende Bestimmung viskoelastischer Materialparameter voraus,
dass die effektiven, elastischen Schallgeschwindigkeiten, den Endwerten
der frequenzabhängigen Schallgeschwindigkeiten, wie sie in Abbildung 3.1
bis 3.3 bei hohen Frequenzen ab 1 MHz zu sehen sind, entsprechen.

Andernfalls hat die Annahme der Messfrequenz im mittleren, Segment in
Tabelle 3.1 einen großen Einfluss auf die anzunehmenden Schallgeschwin-
digkeiten, da diese mit der Frequenz linear steigen und es somit zu großen
Abweichungen kommt.

Im dritten Segment nach Tabelle 3.1 hingegen ergibt sich für diesen
Bereich z.B. eine Transversalwellengeschwindigkeit von cT (ω →∞) =
cT0

√
dµ, welche mit cT0 = cT∞/

√
dµ gerade der Näherung für f → ∞

entspricht (vgl. Tabelle 3.1). Für eine als bekannt angenommene Frequenz
entspricht diese Rechnung gerade cT0 = cT (ω) /Re

{√
γµ (ω)

}
, womit in

den Verfahren 2 und 3 die statische Transversalwellengeschwindigkeit und
auch analog der statische Schermodul mit µ = µ∞/Re{γµ (ω)} und stati-
sche Kompressionsmodul mit K = K∞/Re{γK (ω)} berechnet werden. Als
Scher- und Kompressionsmodul µ∞ und K∞ für ω →∞ wird jeweils der in
der ideal-elastischen Identifikation in Kapitel 4 identifizierte Kompressions-
und Schermodul, welcher sich jeweils unter Annahme eines ideal-elastischen
Materialmodells aus den effektiven, elastischen Schallgeschwindigkeiten
berechnen lässt, angenommen.
Diese Annahme sehr kleiner Änderungen der Schallgeschwindigkeiten

lässt sich in Abbildung 5.32 ablesen. Dort ändern sich die Schallgeschwin-
digkeiten ab einer Frequenz von 1 MHz nur geringfügig.

Die leicht besseren Übereinstimmungen der modalen Dämpfung unter Be-
rücksichtigung der viskoelastischen Materialparameter aus Verfahren 2 und
3 gegenüber Verfahren 1 (vgl. Abbildung 5.20, 5.26 und 5.29) scheinen diese
Annahmen zur Berechnung der statischen Parameter zur Vereinfachung
des Optimierungsproblems zu bestätigen.
Dies ist jedoch nur eine Annahme, die möglicherweise für PEEK im

betrachteten Frequenzbereich gültig ist, jedoch nicht für andere Polymere
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5.7 Plausibilitätsprüfung der Ergebnisse im Transmissionsmessverfahren

im gleichen Frequenzbereich gelten muss.
Zur Vermeidung dieser Annahme und gleichzeitig guten Übereinstimmun-

gen zwischen berechneter Dämpfung sowohl aus der Messung als auch dem
Simulationsmodell könnten z.B. ergänzende Schallgeschwindigkeitsmessun-
gen bei einer bestimmten Frequenz, eine Dynamisch-Mechanische-Analyse
oder gar eine Bestimmung der statischen Parameter aus mechanischen
Messungen (bei zerstörenden Verfahren z.B. an Proben aus der selben
Charge) dienen. Somit könnten die statischen Parameter als bekannt vor-
ausgesetzt werden, sodass diese weder optimiert noch über zusätzliche
Annahmen (Annahme kleiner Änderungen der Schallgeschwindigkeit vgl.
Unterabschnitt 3.3.1) berechnet werden müssten.
Gleichzeitig ändern sich die Schallgeschwindigkeiten aus Verfahren 1

ebenfalls nur geringfügig in Abbildung 5.32, obwohl die zuvor genannte
Annahme dort nicht getroffen wurde.

Insgesamt zeigt Abbildung 5.32 deutlich größere Abweichungen der je-
weiligen Schallgeschwindigkeit und Absorption unter Freiraumbedingungen
als die Validierungen der modalen Dämpfung in Abbildung 5.20, 5.26 und
5.29 vermuten lassen. Dies lässt darauf schließen, dass die untersuchten
Moden nicht ausreichen, um die Modellparameter eindeutig zu identifizie-
ren. Demzufolge muss entweder das Dämpfungsmodell vereinfacht werden
oder der untersuchte Frequenzbereich deutlich vergrößert werden.

5.7 Plausibilitätsprüfung der Ergebnisse im
Transmissionsmessverfahren

Zur Plausibilitätsprüfung werden simulierte Zeitsignale unter Annahme der
identifizierten, viskoelastischen Materialparameter mit Messungen an einem
Transmissionsmessplatz nach [Rau12; Bau16] verglichen. Der prinzipielle
Aufbau ist in Abbildung 5.33 dargestellt. Über den Sendeschallwandler wird
das verstärkte Sendesignal in die zylinderförmige Probe eingekoppelt. Nach
Passieren der Probe wird die Ultraschallwelle vom Empfangsschallwandler
empfangen. Das anschließend verstärkte Empfangssignal wird von einem
Handyscope HS5 [TP21] aufgenommen.

Unter Annahme eines linearen, zeitinvarianten Systems wird jede Kompo-
nente im System in Abbildung 5.34 über ihre Impulsantwort g (t) charakte-
risiert. Während das Übertragungsverhalten der Verstärker durch Messung
des Ausgangs- und Eingangsverhaltens bestimmt wird, basieren die Impul-
santworten der Schallwandler auf Impedanzmessungen und anschließender
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17,8 mm

Abbildung 5.33: Aufbau des Transmissionsmessplatzes [Bau16]

Signalgenerator
uin,Mes Sendeverstärker

gSV (t)
Sender
gSW (t)

Probe
gP (t)

Empfänger
gEW (t)

Empfangsverstärker
gEV (t)Oszilloskop

uout,Mes

Abbildung 5.34: Blockschaltbild des Messsystems
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Abbildung 5.35: Normiertes Sendesignal

Identifikation eines Mason-Modells [Mas64]. Somit wird mit bekannten
Modellparametern die Übertragungsfunktion berechnet. Die akustischen
Koppelschichten werden mittels Siebdruck so dünn aufgetragen, dass ihr
Einfluss minimiert wird. Das Empfangssignal am Oszilloskop uout,Mes (t)
ergibt sich nach Abbildung 5.34 aus dem Sendesignal uin,Mes (t) über

uout,Mes (t) = uin,Mes (t)∗gP (t)∗ [gSV (t) ∗ gSW (t) ∗ gEW (t) gEV (t)]︸ ︷︷ ︸
gSystem

. (5.22)

Die Probe wird im Vorwärtsmodell, basierend auf einem halbanalytischen
FEM-Modell [IGD21], mit dem Sendesignal

uin,Sim (t) = uin,Mes (t) ∗ gSystem (t) (5.23)

angeregt, um das Empfangssignal uout,Sim (t) zu prädizieren. Als Anre-
gungssignal uin,Mes wird ein mit einer Sinusfunktion modulierter Gaußpuls
mit einer Mittenfrequenz von f = 1 MHz genutzt. Das aus Gleichung 5.23
resultierende Eingangssignal für die Simulation uin,Sim ist in Abbildung 5.35
dargestellt. Wird das Signal durch eine hohlzylindrische PEEK-Probe
(Länge 17,8 mm, Innendurchmesser 6,03 mm, Außendurchmesser 19,08 mm)
transmittiert, wird das in Abbildung 5.36 blau abgebildete Signal gemessen.
[JCF22] Die andersfarbigen, gestrichelten Signalverläufe in Abbildung 5.36
entsprechen den simulierten Empfangssignalen unter Annahme der zuvor
identifizierten viskoelastischen Materialparameter. Dort zeigen sich gleiche
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Abbildung 5.36: Mess- und Simulationssignale unter Annahme der identi-
fizierten viskoelastischen Materialparameter: Messsignal
(blau), identifizierte Parameter nach Verfahren 1 (rot),
identifizierte Parameter nach Verfahren 2 (orange), iden-
tifizierte Parameter nach Verfahren 3 (grün)

Zeitpunkte des Auftretens aller Extrema sowohl der Simulationssignale
als auch des Messsignals und somit übereinstimmende Laufzeit bzw. ef-
fektive Schallgeschwindigkeiten zwischen allen Simulationssignalen und
Messsignal.
Wurde bei der Bestimmung der Materialparameter der betrachtete

Frequenz-Wellenzah-Bereich für die Optimierung wie in Verfahren 1 und
3 aufgeteilt, ergeben sich zu Beginn des hinteren Wellenpakets ab 15 µs
in Abbildung 5.36 betragsmäßig leicht höhere Extremwerte in den Si-
gnalen, was auf eine kleinere Absorption der Transversalwelle bzw. der
Scherbewegungen (vgl. Abbildung 5.32) gegenüber der Messung schließen
lässt.
Der Verzicht auf die Aufteilung des Frequenz-/Wellenzahlbereichs bei

Verfahren 2 führt zu einer leicht größeren Annäherung an das Messsignal
bei den zuvor genannten Stellen, die jedoch ab 16 µs wieder abnimmt.
Dies legt nahe, dass es insgesamt sinnvoll ist, möglichst alle Moden in der
Optimierung zu berücksichtigen. Im ersten Wellenpaket zwischen 9 µs und
13 µs stimmen alle drei Simulationssignale überein. Daher lässt sich zusam-
menfassen, dass bezogen auf das Zeitsignal alle drei Optimierungsvarianten
ähnliche Ergebnisse liefern. Die Unterschiede in den Materialparameter-
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5.8 Anwendung des Verfahrens auf Polyamid 6

sätzen der Verfahren untereinander sind im Zeitsignal kaum erkennbar.
Demzufolge ist es grundsätzlich unerheblich welche Optimierungsstrategie
tatsächlich genutzt wird.

Im globalen Minimum bei 10,8 µs sind alle Simulationssignale identisch
zum Messsignal. An den anderen Extrema im ersten Wellenpaket wird
die Messung von allen Simulationssignalen leicht über- bzw. unterschätzt.
Dies ist insgesamt nicht verwunderlich, denn zwar handelt es sich bei
der Zylinderprobe um das gleiche Grundmaterial (PEEK) wie die zuvor
untersuchte Platte, jedoch haben beide Proben einerseits unterschiedliche
Herstellungsprozesse erfahren, andererseits unterscheiden sich bereits die
Datenblätter beider Materialproben geringfügig beim Elastizitätsmodul.
Das Material der Zylinderprobe ist unter dem Handelsnamen Ketron 1000
bekannt [Bau16] und weist lauf Datenblatt [Qua] einen Elastizitätsmodul
von E = 4,3 GPa auf, während sich das Datenblatt der plattenförmigen
Probe [Gmb] mit 4,4 GPa bereits geringfügig unterscheidet. Aufgrund der
Verkopplung der statischen Parameter mit den Dämpfungsparametern
sind daher ebenfalls Unterschiede bei den Dämpfungsparametern zwischen
plattenförmiger und zylinderförmiger Probe zu erwarten, was bereits zu
Abweichungen bei den Zeitsignalen beider PEEK-Werkstoffe führt.

5.8 Anwendung des Verfahrens auf Polyamid 6
Zur Schätzung von Startwerten viskoelastischer Parameter von PA6 nach
Abschnitt 5.5 wird ein Elastizitätsmodul von E = 3,5 GPa [Pol] und ei-
ne Poissonzahl von ν = 0,38 [MC] zugrunde gelegt. Nach Schätzung der
Startwerte für ein fraktionales Zener-Modell werden mithilfe von Optimie-
rungsverfahren 2 (vgl. Unterabschnitt 5.6.2) Modellparameter einer 8,8 mm
dicken PA6-Platte bestimmt. Sowohl Startwerte als auch die resultierenden
Parameter sind in Tabelle 5.12 angegeben.
Basierend auf den optimierten, statischen Parametern aus Tabelle 5.12

ergibt sich ein statischer Elastizitätsmodul von E = 3,2 GPa, welcher in
den in [Läp12] angegebenen Bereich von E = 1,5 GPa bis E = 3,2 GPa fällt
und eine Poissonzahl von ν = 0,4, die ebenfalls mit dem in der Literatur
angegebenen Wertebereich übereinstimmt. So geben z.B. Cerjak und Haider
[CH] einen Wertebereich für die Poissonzahl von ν = 0,38 bis 0,42 an.
Während Abbildung 5.38 gute Übereinstimmungen zwischen Messung

und Simulation zeigt, stimmt die Dämpfung aus Messung und Simulation
in Abbildung 5.37 nur für den niederfrequenten Bereich überein. Da die
Moden im niederfrequenten Bereich oberhalb von kL (ω) = ω/cL∞ liegen,
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Abbildung 5.37: Dämpfung aus der Messung an PA6 (blau) und der Dämp-
fung berechnet unter Verwendung der identifizierten Ma-
terialparameter in Tabelle 5.12 (rot)
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Abbildung 5.38: Dispersionsabbildung der Messung an PA6, daraus extra-
hierte Moden (weiß) und Dispersionsdiagramm berechnet
unter Verwendung der identifizierten Materialparameter
in Tabelle 5.12 (rot)
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Tabelle 5.12: Zusammenfassung der identifizierten viskoelastischen Materi-
alparameter für PA6

τσK / µs τσµ / µs dK dµ aK aµ
Startwerte 0,10 0,92 1,304 1,066 0,99 0,99
Ergebnis 1,37 0,95 1,141 1,224 1,0 0,96

Optimierungsschritt K / GPa µ / GPa cL0 / m s−1 cT0 / m s−1

Startwerte 5,14 1,27 2502 1062
Ergebnis 5,48 1,14 2504 1076

lässt dies auf eine hinreichend gute Schätzung der Dämpfungsparameter
der Scherkomponenten und damit der Absorption der Transversalwelle in
Abbildung 5.39 schließen.

Zudem nimmt die Qualität der Moden-Extraktion in Abbildung 5.38
mit steigender Frequenz ab. Gleichzeitig unterliegen die Werte für die aus
der Messung extrahierten Dämpfung einer zunehmend mit der Frequenz
steigenden Streuung, was die optische Erkennung von modalen Verläufen,
wie sie in der Simulation zu sehen ist, erschwert und somit die Bestimmung
der Modellparameter unsicher werden lässt. Daher sind hier insbesondere
in Abbildung 5.37 alle simulativ berechneten Moden mit dargestellt, um
die Dämpfungskurven aus der Simulation erkennen zu können. In den
entsprechenden Abbildungen zuvor in diesem Kapitel wurden hingegen
nur die simulativ berechneten Moden mit dargestellt, die auch in der
Optimierung berücksichtigt wurden.
Die aus den Parametersätzen aus Tabelle 5.12 berechneten Verläufe

der Ausbreitungsgeschwindigkeit sowie der Dämpfung von Longitudinal-
und Transversalwelle sind in Abbildung 5.39 dargestellt. Dabei fällt auf,
dass bei PA6 die Absorption αFL kleiner gegenüber der Absorption der
Longitudinalwelle αFL bei PEEK (vgl. Abbildung 5.32) ist, während αFL ,
berechnet mit den Startwerten bei PA6 noch deutlich darüber liegt.

Die berechnete Absorption der Transversalwelle αFT in Abbildung 5.39
unter Nutzung der optimierten Parameter aus Tabelle 5.12 ist hingegen
größer geworden gegenüber der Absorption unter Nutzung der Startwer-
te. Dabei liegt erstere im gleichen Wertebereich wie die entsprechende
Absorption αFT von PEEK.

Beides ist verwunderlich, da PEEK im Vergleich zu PA6 als schwach
absorbierender Kunststoff gilt. Auch der direkte Vergleich der Dispersions-
abbildungen spricht für eine höhere modale Dämpfung bei PA6. Zusätzlich
stimmen modale Dämpfung aus Simulation und Messung in Abbildung 5.37
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Abbildung 5.39: Frequenzabhängige Schallgeschwindigkeit und Absorption
unter Annahme des Optimierungsergebnisses von PA6 aus
Tabelle 5.12 (blau) sowie der Startwerte (schwarz)

nur bedingt überein, woraus sich schließen lässt, dass die Optimierung für
PA6 nicht optimal konvergiert und somit die bestimmten Materialparame-
ter das Materialverhalten nur bedingt repräsentieren.

Fazit
Aufgrund der Frequenzabhängigkeit viskoelastischer Materialmodelle wer-
den zur modalen Analyse mit dem Vorwärtsmodell aus Abschnitt 4.2 die
Kreiswellenzahlen unter Vorgabe der Kreisfrequenzen berechnet (Fragestel-
lung VII). Daraus resultierend, u.a. aufgrund der Komplexwertigkeit des
viskoelastischen Materialmodells, ergeben sich komplexe Kreiswellenzahlen,
deren Realteil im Zusammenhang mit den Kreisfrequenzen das Dispersi-
onsdiagramm repräsentiert. Der Imaginärteil stellt hingegen die modale
Dämpfung dar. Aus den Messdaten kann durch eine örtliche Unterteilung
des Datensatzes und Approximation einer Exponentialfunktion die modale
Dämpfung ermittelt werden (Fragestellung VIII). Beide können über eine
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5.8 Anwendung des Verfahrens auf Polyamid 6

Kostenfunktion z.B. eine (quadratische) Differenz miteinander verglichen
werden. Da der Realteil der Kreiswellenzahl durch das Materialmodell eben-
falls beeinflusst wird, ist es sinnvoll neben der Differenz der Dämpfung bzw.
dem Imaginärteil der Kreiswellenzahlen auch jeweils das Verhältnis von
Imaginär- zu Realteil zu betrachten. Wichtig dabei ist, dass die Dämpfung
der in der Messung detektierten Mode mit der Dämpfung der zugehörigen
Mode aus der Simulation verglichen wird. Die Zuordnung zur entsprechen-
den simulierten Mode erfolgt über den Realteil der Kreiswellenzahl. Die
Variation der Modellparameter, bis die Werte der modalen Dämpfung der
jeweiligen Moden aus Simulation und Messung möglichst übereinstimmen
(inverses Verfahren), liefert die viskoelastischen Materialparameter, die den
Modell-Eingangsparametern bei Übereinstimmung entsprechen. Startwerte
für die Dämpfungsparameter werden u.a. durch numerisches Lösen der
Rayleigh-Lamb-Gleichung unter Annahme komplexer Kreiswellenzahlen
geschätzt.

Dabei lassen sich die zu berücksichtigenden (komplexen) Kreiswellenzahl-
Frequenz-Paare anhand der effektiven Longitudinalwellengeschwindigkeit
zur Schätzung von Scher- und Kompressionsparametern aufteilen. Diese
Aufteilung kann weiterhin in der Optimierungsstrategie für das inverse
Verfahren genutzt werden. Zudem finden unterschiedliche Varianten der
Kostenfunktion in den unterschiedlichen Optimierungsschritten Verwen-
dung, um die Sensitivität von einzelnen Parametern optimal zu nutzen.
Insgesamt zeigt sich, dass auch eine Optimierungsstrategie ohne Aufteilung
des Dispersionsdiagramms und mehrstufiger Optimierung der Parameter
gute Übereinstimmungen der berechneten Dämpfung aus Messung und
Simulation liefert (Fragestellung IX). Alle untersuchten Optimierungs-
strategien liefern ähnliche, jedoch leicht unterschiedliche Parametersätze,
wobei alle drei Verfahren gute Übereinstimmungen mit der Messung lie-
fern. Bei Betrachtung von Zeitsignalen in einem Transmissionsmesssystem
unterscheiden sich die drei Verfahren kaum. Zur weiteren Bewertung der
Parametersätze und der Optimierungsstrategien untereinander müssten
daher weitere Moden untersucht werden.
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6 Zusammenfassung und
Ausblick

6.1 Zusammenfassung
In dieser Arbeit wurde ein Verfahren zur Bestimmung effektiver, akusti-
scher Materialparameter basierend auf Dispersionsmessungen von Platten-
wellenleitern entwickelt. Die optische Anregung mittels gepulstem Laser
ermöglicht eine reproduzierbare Anregung in unterschiedlichen Abständen
zum Empfänger, was in zeit- und ortsaufgelösten Messsignalen resultiert.
Durch 2D-Fourier-Transformation werden Moden in dann frequenz- und
wellenzahlaufgelösten Messdaten sichtbar. Dabei erhöhen speziell auf Poly-
mere abgestimmte Signalverarbeitungsschritte die auswertbare Bandbreite
der Messsignale. Die Fourier-transformierten Messdaten werden in einem
inversen Verfahren mit berechneten Dispersionsdiagrammen verglichen.
Die Eingangsparameter des semi-analytischen Finite-Elemente-Modells zur
Berechnung der Lamb-Moden werden solange variiert bis diese auf den
Moden der Messdaten liegen. Startwerte werden dafür im Zeit-Orts-Bereich
oder Frequenz-Wellenzahl-Bereich geschätzt. Die verwendete Kostenfunk-
tion verzichtet dabei auf eine Extraktion der einzelnen Moden aus den
Messdaten, was die Robustheit bei stark verrauschten Messsignalen erhöht.
Beim semi-analytischen Finite-Elemente-Modell wird die Welle in Aus-

breitungsrichtung analytisch betrachtet, während die Dickenrichtung der
Platte durch ein eindimensionales Finite-Elemente-Gitter diskretisiert wird,
wodurch eine effiziente Berechnung der Lamb-Moden ermöglicht wird. Da-
durch, dass im Modell somit insgesamt nur zwei Raumrichtungen betrachtet
werden, vereinfacht sich die Elastizitätsmatrix auf den zweidimensiona-
len ebenen Verzerrungszustand. Zur Bestimmung der effektiven Materi-
alparameter isotroper oder transversal-isotroper Materialproben ist dies
ausreichend. Die Bestimmung der Materialparameter der dritten Raum-
richtung von nicht-isotropen Werkstoffen ist durch Rotation der Probe
im Messplatz und winkelabhängige Identifikation der Materialparameter
möglich. Abhängig vom Grad der Anisotropie sind unterschiedlich viele

177



6 Zusammenfassung und Ausblick

winkelabhängige Einzelmessungen notwendig. Die einzelnen identifizierten,
winkelabhängigen Parametersätze werden im Anschluss zusammengefasst,
um mittels Moore-Penrose-Pseudoinverse schließlich die 6× 6-große Elasti-
zitätsmatrix zur Beschreibung der Probe für den dreidimensionalen Fall
zu identifizieren.
Die bis dahin unberücksichtigt gebliebene Dämpfung, wird durch eine

Aufteilung der Messsignale entlang der örtlichen Achse bestimmt. Dazu
wird für jeden der unterteilten Abschnitte durch 2D-Fourier-Transformation
die Dispersionsabbildung berechnet. Durch Approximation einer ortsabhän-
gigen Exponentialfunktion an allen Fourier-transformierten Signalwerten
wird als Exponent der Funktion die modale Dämpfung bestimmt. Somit
kann nun zusätzlich zum Realteil auch die Dämpfung als Imaginärteil der
Kreiswellenzahl zur Identifikation eines viskoelastischen Materialmodells
genutzt werden. Bei der Validierung der Dämpfungsbestimmung an einer
synthetisch mittels FEM im Zeitbereich erzeugten Dispersionsabildung
unter Berücksichtigung von Rayleigh-Dämpfung zeigen sich gute Überein-
stimmungen zwischen der Extraktion der Dämpfung und dem Imaginärteil
der komplexen Wellenzahl aus der entsprechenden SAFE-Simulation.
Nach einer Startwertschätzung basierend auf der Minimierung des Be-

trags der Rayleigh-Lamb-Gleichung werden mithilfe unterschiedlicher Op-
timierungsstrategien, die Parameter eines fraktionalen Zener-Modells, wie
es Bause [Bau16] nutzt, identifiziert und durch Transmissionsmessungen
nach [DIF21; Bau16; Rau12] verifiziert.

6.2 Ausblick
Während bereits effektive Materialparameter für faserverstärkte Kunststof-
fe bestimmt werden können, sollte deren Viskoelastizität mit berücksichtigt
werden. Dazu ist das Verfahren zur Identifikation viskoelastischer Materi-
alparameter auf orthotrope Werkstoffe zu generalisieren z.B. am Beispiel
von Bause [Bau16] mittels Eigenwertzerlegung der Elastizitätsmatrix or-
thotroper Materialien. Werden alle Eigenrichtungen mit einem eigenen
fraktionalen Zener-Modell modelliert, ergeben sich 6 × 3 Dämpfungspa-
rameter zusätzlich zu den neun Elastizitätskoeffizienten. Aufgrund der
hohen Anzahl an Parametern sollten Vereinfachungen des Modells in Be-
tracht gezogen werden. Trotzdem erhöht sich die Zahl der Parameter
deutlich, weshalb die Optimierungsstrategie und insbesondere die Kosten-
funktion anzupassen ist. Diese könnte so angepasst werden, dass Real-
und Imaginärteile der Wellenzahlen durch Gewichtung in einen gleichen
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Wertebereich gebracht werden, um beide gleichwertig berücksichtigen zu
können. Zusätzlich gewährleistet eine gezielte selektive Anregung sensitiver
Frequenz-Wellenzahl-Bereiche die Sensitivität einzelner Modellparameter.
Auch die Resonanzfrequenzen bei Re{k} = 0 zeigen sich sensitiv auf die
Schallgeschwindigkeiten bei isotropen Werkstoffverhalten. Diese haben
weiterhin den Vorteil, dass in diesem Bereich die Dämpfung besonders
hoch ist und sich somit leichter Dämpfungsparameter auf Basis dieser
bestimmen lassen sollten, sofern die Mode in dem Bereich ausreichend
detektiert wird.
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A Anhang

A.1 Ebener Spannungszustand
Beim ebenen Spannungszustand werden die Spannungen in eine Raumrich-
tung, in der die Schicht als sehr dünn angenommen wird, z.B. x3 zu Null
angenommen [KHL07]. Unter der Annahme, dass alle Spannungskompo-
nenten, die nicht in der x1-x2-Ebene liegen zu Null werden, ergibt sich für
den ebenen Spannungszustand



ε11
ε22
2ε12




︸ ︷︷ ︸
εpl,σ

=



S11 S12 S16

S12 S26
sym. S66




︸ ︷︷ ︸
Spl,σ



σ11
σ22
σ12




︸ ︷︷ ︸
σpl,σ

(A.1)

mit der elastischen Nachgiebigkeitsmatrix Spl,σ. Inversion von Spl,σ ergibt
schließlich die Elastizitätsmatrix Cpl,σ für den ebenen Spannungszustand,
wie sie z.B. in der Laminattheorie [Sch07] zur Modellierung von Faser-
verstärkten Kunststoffen verwendet wird.

A.2 Herleitung der Rayleigh-Lamb-Gleichung
Allgemein werden akustische Wellen in einem Festkörper über die Wel-
lengleichung (Gleichung 2.57) beschrieben. Ebenso nimmt Lamb [Lam17]
bei seiner Herleitung ein isotropes Materialmodell an, sodass sich Glei-
chung 2.57 zu

µ∇2ξ + (λLa + µ) grad (div ξ) = ρξ̈ (A.2)
vereinfacht, wobei die Lamé-Konstanten λLa, µ und die Dichte ρ Materi-
alparameter des Mediums sind. Gleichung A.2 wird nun für eine unend-
lich ausgedehnte Platte im Vakuum gelöst. Dabei wird davon ausgegan-
gen, dass keinerlei mechanische Verschiebung in die z-Richtung auftritt
(ξz = 0) und die sonstige Feldverteilung unabhängig von der z-Koordinate
ist (∂/∂z = 0), was der Annahme eines ebenen Verzerrungszustands (vgl.
Unterabschnitt 2.1.4) entspricht.
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Die Randflächen der Platten liegen im Koordinatensystem bei x = ±th/2,
wobei angenommen wird, dass sich eine Welle in y-Richtung ausbreitet. Da
sich die Platte im Vakuum befindet, wirkt keine mechanische Spannung
normal auf die Randfläche, sodass sich die entsprechenden Komponenten
des Spannungstensors zu Null ergeben:

σxy|x=±th/2 = σxz|x=±th/2 = σxx|x=±th/2 = 0. (A.3)

Lösen lässt sich Gleichung A.2 mithilfe des Helmholtz Theorems. Dem-
nach lässt sich die Lösung in ein Skalarpotential Φ und ein Vektorpotential
Ψ, wobei für das Vektorpotential zusätzlich Quellenfreiheit gilt, zerlegen:

ξ = grad Φ + rot Ψ mit Ψ = 0. (A.4)

Mit den zuvor getroffenen Annahmen ergeben sich die x- und y-Komponenten
der mechanischen Verschiebungen zu

ξx = ∂Φ
∂x

+ ∂Ψz

∂y
, (A.5)

ξy = ∂Φ
∂y
− ∂Ψz

∂x
. (A.6)

Demnach genügt es die z-Komponente des Vektorpotentials sowie das
Skalarpotential zu kennen, welche den jeweiligen Wellengleichungen

1
c2

L

∂2Φ
∂t2
−4Φ = 0, (A.7)

1
c2

T

∂2Ψz

∂t2
−4Ψz = 0 (A.8)

genügen müssen [Gra91; Ach76]. Während Gleichung A.7 eine Longitudinal-
welle beschreibt, handelt es sich in Gleichung A.8 um eine Transversalwelle
[Ach76]. Zur Lösung der Wellengleichungen wird jeweils ein Exponential-
ansatz mit

Φ = Φ0 (x) e− j(ky−ωt), (A.9)
Ψz = Ψ0 (x) e− j(ky−ωt) (A.10)

verwendet.
Durch Einsetzen von Gleichung A.9 in Gleichung A.7 bzw. Gleichung A.10
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in Gleichung A.8 ergeben sich die Differentialgleichungen zu

∂2

∂x2 Φ0 (x) =
(
ω2

c2
L
− k2

)
Φ0, (A.11)

∂2

∂x2 Ψ0 (x) =
(
ω2

c2
T
− k2

)
Ψ0. (A.12)

Da Gleichung A.11 Φ0 (x) sowie dessen zweite Ableitung, jedoch nicht die
erste Ableitung enthält, wird Gleichung A.11 durch eine trigonometrische
Funktionen gelöst, was analog für Gleichung A.12 mit Ψ0 (x) gilt:

Φ0 (x) = AL sin (kL,Lx) +BL cos (kL,Lx) , (A.13)
Ψ0 (x) = AT sin (kT,Lx) +BT cos (kT,Lx) (A.14)

mit

kL,L = ω2

c2
L
− k2 und kT,L = ω2

c2
T
− k2. (A.15)

Zur Berücksichtigung der Randbedingungen aus Gleichung A.3 werden
die relevanten Komponenten der mechanischen Spannung σ unter Annahme
eines isotropen Mediums aus den Potentialen und den Lamé-Konstanten
mittels Hookeschem Gesetz (Gleichung 2.5) berechnet [Ach76]:

σxx = (λLa + 2µ) εxx + λLaεyy

= (λLa + 2µ) ∂ξx

∂x
+ λLa

∂ξy

∂y
, (A.16)

σxy =2µεxy

=µ
(
∂ξx
∂y

+ ∂ξy
∂x

)
. (A.17)

Nach den Randbedingungen aus Gleichung A.3 werden Gleichung A.16
und A.17 am Rand der Platte bei x = ±th/2 zu Null, während die dritte
Randbedingung σxz|x=±th/2 = 0 bereits durch die Annahme, dass die Feld-
verteilung nicht von der z-Komponente sowie deren Ableitungen abhängt,
gegeben ist. Somit ergeben sich mit Gleichung A.16 und A.17 an den Stellen
x = ±th/2 vier Bedingungen bzw. Gleichungen, von denen jedoch nur zwei
linear unabhängig sind. Aufgrund der enthaltenen trigonometrischen Funk-
tionen lassen sich die Ansatzfunktionen der Potentiale (Gleichung A.13
und A.14) in Kosinuns-Anteile und Sinus-Anteile zerlegen, welche getrennt
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voneinander in Gleichung A.16 und A.17 eingesetzt werden [Ach76].

Werden dazu Gleichung A.5 und A.6 betrachtet, ergibt sich mit

Φ0 = AL sin (kL,Lx) , (A.18)
Ψ0 = BT cos (kT,Lx) , (A.19)

eingesetzt in Gleichung A.5

ξx = [kL,LAL cos (kL,Lx) + j kBT cos (kT,Lx)] e− j(ky−ωt) (A.20)

eine rein symmetrische Verschiebung. Die y-Komponente (Ausbreitungs-
richtung) ergibt sich durch Gleichung A.6 aus rein asymmetrischen Kom-
ponenten zu

ξy = [j kAL sin (kL,Lx) + kT,LBT sin (kT,Lx)] e− j(ky−ωt). (A.21)

Da die Verschiebung in Ausbreitungsrichtung nur asymmetrische Kompo-
nenten enthält, werden die berechneten Moden als asymmetrische Moden
bezeichnet. Einsetzen von Gleichung A.20 und A.21 in Gleichung A.16
und A.17 sowie Auswertung am Rand der Platte bei x = ±th/2, ermög-
licht die Bestimmung der Koeffizienten AL und BT. Somit ergibt sich die
Rayleigh-Lamb-Frequenzgleichung für asymmetrische Moden zu

tan (kT,Lth/2)
tan (kL,Lth/2) = −

(
k2

T,L − k2
)2

4k2kL,LkT,L
. (A.22)

Analog lassen sich die weiteren Koeffizienten BL und AT bestimmen.
Mit

Φ0 =BL cos (kL,Lx) , (A.23)
Ψz =AT sin (kT,Lx) (A.24)

sowie Gleichung A.5 und A.6 enthält die x-Komponente mit

ξx = [−kL,LBL sin (kL,Lx) + j kAT sin (kT,Lx)] e− j(ky−ωt) (A.25)

nur asymmetrische Elemente. Die y-Komponente als Ausbreitungsrichtung
enthält mit

ξy = [j kBL cos (kL,Lx)− kT,LAT cos (kT,Lx)] e− j(ky−ωt) (A.26)
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nur symmetrische Komponenten, weshalb diese Moden symmetrische Mo-
den genannt werden. Einsetzen der Komponenten (Gleichung A.25 und
A.26) in Gleichung A.16 und A.17, sowie Auswertung am Rand der Platte
x = ±th/2, liefert die Koeffizienten AT und BL. [Ach76]

Demzufolge ergibt sich die Rayleigh-Lamb-Gleichung für symmetrische
Moden mit

tan (kT,Lth/2)
tan (kL,Lth/2) = − 4k2kL,LkT,L(

k2
T,L − k2

)2 . (A.27)

Zusammenfassend lassen sich Gleichung A.22 und A.27 schließlich als die
bekannte Rayleigh-Lamb-Gleichung in Gleichung 2.43 schreiben.

A.3 Ergänzende Abbildungen
A.3.1 Ergänzende Abbildungen zu Abschnitt 4.12
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Abbildung A.1: Relative Häufigkeit der Longitudinalwellengeschwindigkeit
von PA6
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Abbildung A.2: Relative Häufigkeit der Transversalwellengeschwindigkeit
von PA6
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Abbildung A.3: Relative Häufigkeit der Longitudinalwellengeschwindigkeit
von PET
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Abbildung A.4: Relative Häufigkeit der Transversalwellengeschwindigkeit
von PET
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Abbildung A.5: Relative Häufigkeit der Longitudinalwellengeschwindigkeit
von Aluminium
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Abbildung A.6: Relative Häufigkeit der Transversalwellengeschwindigkeit
von Aluminium
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A.3.2 Ergänzende Abbildungen zu Abschnitt 5.4
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Abbildung A.7: Realteil der Kreiswellenzahl bei Änderung der Relaxati-
onszeitkonstanten sowie der Ableitungsordnungen
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