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Abstract

In recent years, FPGAs have gained attention in HPC systems due to their high performance
and energy efficiency. Advances in HLS tools have made FPGA development more accessible
by enabling programming in languages like OpenCL C or C/C++. However, HLS introduces
abstraction layers that can have an effect on the synthesis results, increasing the impact
of the programming tools on the final application performance. Not only because of that,
comparing FPGAs only based on hardware resources often provides limited insight into the
overall achievable HLS application performance. At this point, no existing tool supports
comprehensive, empirical evaluation of FPGAs for HPC, especially with regards to emerging
multi-FPGA systems and inter-FPGA communication, which takes an important role in scaling
FPGA accelerated applications beyond single boards. A benchmark suite targeting FPGAs
in the HPC domain is essential not only for performance comparison between boards but also
for evaluating and advancing multi-FPGA systems as well as inter-FPGA communication
strategies and gaining a better understanding how this novel infrastructure can be utilized
best to further scale FPGA applications in context of HPC.

Within this work, we develop an OpenCL-based open-source benchmark suite for Intel and
Xilinx FPGAs, which includes a build infrastructure that automates the compilation and
synthesis of benchmarks based on configuration files to improve compatibility with the provided
synthesis tools. Our suite is the first one featuring carefully optimized implementations
of benchmark kernels that ensure comparable results across a broad spectrum of FPGA
accelerator boards from both major vendors without manual code modifications. As another
novelty, we also focus on multi-FPGA execution and inter-FPGA communication, going
beyond the scope of a single FPGA board to whole multi-FPGA systems. All benchmarks are
scalable within distributed memory systems using MPI, and we employ a flexible MPI/PCle
communication approach for inter-FPGA interactions. Additionally, we offer optimized
benchmark implementations based on existing inter-FPGA communication frameworks that
utilize the built-in networking ports of recent FPGA accelerator boards. Our benchmark suite
is the first supporting the parallelization of benchmark applications over multiple FPGAs
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up to complete multi-FPGA systems. With that, the suite is the first enabling the empirical
evaluation of whole multi-FPGA systems and offering new opportunities in acquisition
planning, application optimization, and the development of inter-FPGA communication
approaches.

Next to the benchmark suite, we also develop highly scalable and performant FPGA-accelerated
applications. Within the High Performance LINPACK (HPL) benchmark, we present one of
the fastest LU decomposition implementations for multi-FPGA systems, achieving over 48
TFLOP /s single-precision floating-point performance on 64 FPGAs in the Cygnus system, fully
utilizing one of the world’s largest academic multi-FPGA systems. Furthermore, we conduct a
detailed evaluation of inter-FPGA communication approaches using the ACCL communication
framework with our b_ eff benchmark, and we demonstrate our findings by porting a shallow
water simulation on unstructured meshes to Xilinx FPGAs. Our shallow water implementation
achieves the same per-FPGA performance while overcoming the scalability limitations of the
original implementation, exhibiting linear scaling across all 48 Xilinx FPGAs of the Noctua 2
system at PC=.

The evaluation of the benchmark suite demonstrates that the benchmarks effectively measure
important device characteristics across a diverse range of FPGAs. Consequently, the empirical
evaluation capabilities make our benchmark suite a valuable tool for acquisition planning and
system maintenance. Furthermore, we show that the provided benchmarks are instrumental
in evaluating current and future inter-FPGA communication frameworks, promoting broader
adoption and improved scalability of multi-FPGA applications in the context of HPC.



Zusammenfassung

In den letzten Jahren haben FPGAs aufgrund ihrer hohen Leistung und Energieeffizienz
vermehrt Einzug in HPC-Systemen erhalten und Fortschritte in den HLS-Werkzeugen haben
die FPGA-Entwicklung zugénglicher gemacht, indem sie die Programmierung in Sprachen
wie OpenCL C oder C/C++ erméglichen. HLS fithrt jedoch auch Abstraktionsebenen ein,
die sich auf die Syntheseergebnisse auswirken kénnen, wodurch die Nutzung dieser Pro-
grammierwerkzeuge die Ressourcennutzung erhohen und die Leistung der resultierenden
Anwendungen reduzieren kann. Nicht nur deshalb bietet ein Vergleich von FPGAs nur auf der
Grundlage von Hardwareressourcen oft nur begrenzte Einblicke in die insgesamt erreichbare
HLS-Anwendungsleistung. Insbesondere im Hinblick auf aktuelle Multi-FPGA-Systeme und
deren Infrastruktur fiir direkte Inter-FPGA-Kommunikation, die eine wichtige Rolle bei der
Skalierung FPGA-beschleunigter Anwendungen spielt, existiert momentan kein Werkzeug, das
eine umfassende, empirische Bewertung von FPGAs fiir HPC ermoglicht. Eine Benchmark-
Suite fiir FPGAs im HPC-Bereich ist nicht nur fiir den Leistungsvergleich zwischen verschiede-
nen FPGA-Karten unerlésslich, sondern auch fiir die Bewertung und Weiterentwicklung von
Multi-FPGA-Systemen und Inter-FPGA-Kommunikationsstrategien sowie fiir ein besseres
Verstindnis, wie diese neuartige Infrastruktur am besten fiir HPC Anwendungen genutzt
werden kann. Im Rahmen dieser Arbeit entwickeln wir eine OpenCL-basierte quelloffene
Benchmark-Suite fir Intel- und Xilinx-FPGAs, die Werkzeuge enthélt, welche die die Kom-
pilierung und Synthese von Benchmarks basierend auf Konfigurationsdateien automatisieren,
um die Kompatibilitdt mit diversen Synthesewerkzeugen zu verbessern. Unsere Suite ist die
erste mit sorgfiltig optimierten Implementierungen von Benchmark-Kerneln, die vergleichbare
Ergebnisse tiber ein breites Spektrum von FPGA-Beschleunigerkarten beider groer hersteller
ohne manuelle Codednderungen gewéhrleisten. Als weitere Neuheit konzentrieren wir uns auch
auf die Multi-FPGA-Ausfiihrung und die Inter-FPGA-Kommunikation und gehen dabei tiber
ein einzelnes FPGA-Board hinaus und skalieren die Ausfithrung unserer Benchmarks auf ganze
Multi-FPGA-Systeme. Alle Benchmarks sind innerhalb verteilter Speichersysteme mit MPI
skalierbar, und wir verwenden einen flexiblen MPI/PCle-Kommunikationsansatz fir Inter-
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FPGA-Interaktionen. Dartiber hinaus bieten wir optimierte Benchmark-Implementierungen
auf Basis bestehender Inter-FPGA-Kommunikationsframeworks an, die die integrierten Net-
zwerkports aktueller FPGA-Beschleunigerkarten nutzen. Unsere Benchmark-Suite ist die
erste, welche die Parallelisierung von Benchmark-Anwendungen iiber mehrere FPGAs bis hin
zu vollstandigen Multi-FPGA-Systemen unterstiitzt. Damit ist die Suite die erste, die die
empirische Bewertung ganzer Multi-FPGA-Systeme ermoglicht und neue Méglichkeiten bei
der Beschaffungsplanung, Anwendungsoptimierung und der Entwicklung von Inter-FPGA-
Kommunikationsansatzen bietet.

Neben der Benchmark-Suite entwickeln wir auch hoch skalierbare und leistungsfahige
FPGA-beschleunigte Anwendungen. Im Rahmen des High Performance LINPACK
(HPL)-Benchmarks présentieren wir eine der schnellsten LU-Zerlegungsimplementierungen
fiir Multi-FPGA-Systeme, die eine Gleitkommaleistung mit einfacher Genauigkeit von iiber
48 TFLOP/s auf 64 FPGAs erreicht und damit alle FPGAs eines der weltweit grofiten
akademischen Multi-FPGA-Systeme nutzt. Dartiber hinaus fiihren wir eine detaillierte
Bewertung von Inter-FPGA-Kommunikationsansatzen unter Verwendung des ACCL-
Kommunikationsframeworks mit unserem b eff-Benchmark durch und demonstrieren die
Niitzlichkeit unserer Ergebnisse, indem wir eine Flachwassersimulation auf unstrukturierten
Meshes auf Xilinx-FPGAs portieren. Unsere Flachwasserimplementierung erreicht die gleiche
Leistung pro FPGA und tiberwindet gleichzeitig die Skalierbarkeitsbeschrankungen der
urspriinglichen Implementierung. Sie weist eine lineare Skalierung iiber alle 48 Xilinx-FPGAs
des Noctua 2-Systems des PC? auf.

Unsere Evaluation der Benchmark-Suite zeigt, dass die Benchmarks wichtige Gerateeigen-
schaften tiber eine breite Palette von FPGAs hinweg effektiv messen. Die empirischen
Evaluierungsfunktionen machen unsere Benchmark-Suite daher zu einem wertvollen Werkzeug
fir die Beschaffungsplanung und Systemwartung. Dariiber hinaus zeigen wir, dass die
bereitgestellten Benchmarks bei der Bewertung aktueller und zukiinftiger Inter-FPGA-
Kommunikationsansatze von entscheidender Bedeutung sind und eine vereinfachte Nutzbarkeit
und verbesserte Skalierbarkeit von Multi-FPGA-Anwendungen im Kontext von HPC fordern.
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Introduction

Over recent years, Field Programmable Gate Arrays (FPGAs) have increasingly garnered
attention for their integration into High Performance Computing (HPC) systems, primarily due
to their notable performance and energy efficiency across various HPC applications. This trend
has been propelled by several key advancements in FPGA technology and tooling. Notably, the
refinement of High Level Synthesis (HLS) tools has simplified FPGA accelerator development
for software engineers by enabling the utilization of familiar programming languages such as
OpenCL C or C/C++. This addition to traditional hardware description languages like VHDL
or Verilog has significantly streamlined the development process, reducing time-to-market for
FPGA-accelerated applications. The high energy efficiency of FPGAs for various computation
tasks further strenghtens the interest within the HPC domain where an increasing demand
for compute resources leads to higher energy consumption and operation costs.

While HLS tooling accelerates development, it introduces additional abstraction layers that
impact synthesis results. Optimization discrepancies between tool versions mean that identical
source code may yield different hardware designs and performance. Mitigating this challenge
involves explicitly annotating code with optimization hints to guide compilers. Although
the major vendors use standardized programming models, code portability and seamless
deployment across different FPGA platforms are still a challenge. In addition, the FPGA
boards often come with a varying amount and type of logic resources as well as Digital Signal
Processors (DSPs) that are used to implement floating-point operations. By only looking
at the hardware resources, it is challenging to estimate the final performance of a specific
application or to compare two different boards with each other, as it would be useful i.e. in
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acquisition planning for new HPC systems. Until now, no tool exists to empirically evaluate
FPGAs in the context of HPC and that supports both major vendors and their HLS toolchains.
Either they only contain implementations specific to a single FPGA fabric or HLS toolchain,
the contained applications are not representative of typical workloads in the HPC domain, or
they are not scalable to properly utilize the available device resources.

Moreover, the integration of Quad Small Form-factor Pluggable (QSFP) ports into FPGA
boards has emerged as a significant advancement. These versatile ports facilitate direct FPGA
integration into networks, enabling efficient in-network data processing and inter-FPGA
communication. Various communication methodologies, ranging from circuit-switched to
packet-switched networks utilizing Ethernet and transport protocols like UDP or TCP, are
now viable options, further enhancing flexibility and scalability in FPGA-accelerated HPC
applications. These network stacks often rely on vendor Intellectual Property (IP) that
has to be integrated into the user design using Hardware Description Languages (HDLs),
again increasing the hurdle for application developers to make use of these features. Diverse
communication frameworks have been proposed in recent years that not only simplify the
accessibility of the networking features of the FPGAs but also provide higher-level communi-
cation abstractions and collective communication support to facilitate the parallelization of
applications over multiple FPGAs.

A FPGA benchmark suite for HPC also needs to be able to empirically evaluate the full
potential of multi-FPGA systems, their inter-FPGA connections, and HLS toolchains, to
provide a solid base for performance evaluation and further developments. Such a tool is
paramount in the further analysis of multi-FPGA systems and inter-FPGA communication
approaches.

1.1 Contributions

This thesis makes contributions in two areas: Firstly, we propose an OpenCL-based benchmark
suite specifically targeting FPGAs for the HPC domain compatible with a broad range of
FPGA devices. We use the suite to empirically evaluate the performance of a range of single
FPGASs boards as well as vendor software tools and go even beyond the scope of a single
FPGA by leveraging and evaluating existing communication frameworks for multi-FPGA
applications. Secondly, the collected results not only allow a better comparison of single
boards up to multi-FPGA systems in terms of performance of power efficiency but can also be
used to refine performance models of complex multi-FPGA simulations showing the impact
of different inter-FPGA communication approaches on application performance. In detail,
the main contributions of this work are the following:

1. We propose and implement an OpenCL benchmark suite for FPGA based on the well-
known High Performance Computing Challenge (HPCC) benchmark suite to create a
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cross-vendor performance measurement and evaluation tool for FPGAs. It is the first
HLS benchmark suite supporting devices of both major vendors without manual code
changes using the same source code and the first suite that is not only capable of scaling
its benchmarks over single FPGAs but also over whole multi-FPGA systems. Therefore,
we propose carefully optimized base implementations for each benchmark while also
supporting the use of custom implementations. One of the key features of the base
implementations is configurability such that they are capable of capturing the relevant
device properties of recent FPGA boards. Therefore, we provide FPGA-adapted Open
Compute Language (OpenCL) kernel implementations along with corresponding host
code for setup and measurements for all HPCC benchmark applications. All benchmarks
and the build system are open-source and publicly available on GitHub [2].

2. We use the benchmarks to measure the performance and power consumption on different
FPGA families and boards with Intel and Xilinx FPGAs and various types of global
memory including DDR and HBM2. Additionally, we evaluate varying floating-point
precisions on Intel and Xilinx FPGAs and show that the benchmarks can capture
significant differences in performance caused by the arithmetic units and the used DDR
or HBM2 global memory. Further, we show that the suite can also be used to evaluate
build tools and runtime environment behavior across tool versions and discuss the
impact of the build tools on the application performance.

3. For the multi-FPGA support of the benchmark suite, we implement and analyze diverse
inter-FPGA communication schemes ranging from naive approaches using PCle and host
Message Passing Interface (MPI) to FPGA-based communication frameworks making
use of dedicated network infrastructure. We show the scalability of our benchmarks by
executing them on production multi-FPGA systems and provide accurate performance
models for each benchmark. Using our benchmarks and the provided performance
models, we can show the potential impact of improved communication latency and
throughput on the overall application performance.

4. Within the benchmark suite, we also implemented a state-of-the-art multi-FPGA LU
decomposition within our High Performance LINPACK (HPL) implementation. The
base implementation with compatibility to many Xilinx and Intel FPGAs achieves
performance of more than 48 TFLOP /s for single-precision floating-point while also
showing linear scalability on one of the largest multi-FPGA systems in the academic
world with up to 64 FPGAs.

5. We use our benchmarks to execute an in-depth analysis of the ACCL communication
framework to accelerate HPC workloads. Therefore, we identify different communication
approaches that can be implemented within the framework and provide performance
models for communication latency and throughput for each of the approaches.

6. We port an existing OpenCL C code of a shallow water simulation for Intel FPGAs to
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Xilinx FPGAs and extend it with support for ACCL and communication via PCle and
MPI as used in HPCC FPGA. We use our benchmarks to show the impact of different
configuration options in the framework and network stacks on communication latency
and throughput. Our ported simulation shows the same performance as the original
implementation using custom circuit-switched networks but overcomes its scalability
limitations. It shows linear speedups in weak scaling scenarios with up to 48 FPGAs
while completely utilizing the Noctua 2 FPGA partition — again one of the largest FPGA
partitions available in academia. The limited scalability in strong scaling scenarios can be
precisely explained by our improved performance model considering the communication
latency and the results of our benchmark execution. With that, it is to our knowledge
the first scientific multi-FPGA HPC application that makes use of a communication
framework to scale over a complete FPGA partition.

1.2 Thesis Structure

The thesis is structured as follows: In Chapter 2, we will give an introduction to important
concepts when using FPGAs on an HPC system. Infrastructure and toolchains are discussed
and the current state of the FPGAs in HPC is described. In Chapter 3, we focus on the first
four benchmarks of the suite that come with different types of memory access patterns. We
describe the implementation of these benchmarks and their scalability on a single FPGA using
pre-defined configuration options for the base implementations. Additionally, we evaluate
the benchmarks on selected FPGAs with different kinds of global memory, floating-point
precision, and tool versions.

The implementation of the remaining benchmarks of the suite is discussed in Chapter 4. In
this chapter, we focus on base implementations that are scalable across multiple FPGAs and a
whole system. Therefore, we propose and implement a widely usable communication approach
using MPI and PCle and execute the benchmarks on two different systems to evaluate the
scaling behavior of the proposed base implementations. In addition, we provide an optimized
version for each benchmark that makes use of custom circuit-switched networks for direct
FPGA-to-FPGA communication based on Intel External Channel (IEC) and evaluate the
impact of improved communication on the benchmarks.

In Chapter 5, we further extend the benchmarks to not only support OpenCL but also Vitis
HLS and the Xilinx Runtime (XRT). Based on this extension, we evaluate the communication
latency and throughput of the framework ACCL in detail and identify different communication
approaches based on this framework. We then use our findings to port and optimize a
shallow water simulation originally implemented for Intel FPGAs and which is showing high
requirements for communication latency to Xilinx FPGAs and XRT.



FPGAs in HPC Systems

In recent years, FPGAs have gained significant attention as accelerator cards for HPC
workloads and networking tasks. In the following, we will give an overview of the commonly
used architecture of heterogeneous HPC systems equipped with FPGA boards as well as the
software tools and frameworks used to develop applications for these systems and to make
use of their communication capabilities.

2.1 Structure of FPGA PCle Accelerator Boards

Within the context of HPC, FPGAs are typically integrated into systems like Graphics
Processing Units (GPUs), as accelerator boards connected via PCle to the compute node.
GPUs are usually programmed based on the Single Instruction, Multiple Threads (SIMT)
paradigm and achieve high compute performance through the massively parallel execution of
threads over many compute cores. FPGAs on the other side support the implementation of
deep, customized compute pipelines (also referred to as dataflow architectures) in reconfigurable
hardware. Paralellism can be achieved by filling the pipeline with data such that every pipeline
stage is working on different data items at a single point in time and the data items are
flowing through the pipeline.

Most FPGA accelerator boards exhibit a similar, vendor-independent structure, as illustrated
in Figure 2.1. The contained FPGA is managed and programmed via the PCle connection
to the host using runtime drivers such as OpenCL, SYCL, or custom solutions. Next to the
PCle connection, many boards also come with a USB or JTAG connection that is used for

5



6 2.1. STRUCTURE OF FPGA PCIE ACCELERATOR BOARDS

administration purposes or to read out sensor data from the compute node. The FPGA
IC includes the actual FPGA fabric, which contains logic resources, DSPs for arithmetic
operations, and memory blocks. In addition to the FPGA IC itself, the board is equipped with
other essential components necessary for the FPGA’s basic functionality. These components
include clocks and flash memory, which are required to store the FPGA program and operate
the FPGA at the desired clock frequencies.

FPGA Board
i FPGA IC < Clocks
FP |  roooTpoTeooesseon
s 'BSP :
> iShelli User i &> Flash
Management| | otoftooooooooocs
f Controller d HBM ] PR DDR "
y i -
usB v ¢

UART |
'ﬂAG'_____1 P?e I

Host
CPU |

DDR H

Figure 2.1: Block diagram of a FPGA PCle board as it is used in HPC installations based on
3], [4].

The management controller provides sensor data such as voltages and temperatures to the
host baseboard management controller. Additionally, it is used to manage the power-on and
power-off sequences of the board.

All boards also come with a substantial amount of memory for application data. Often, this
is DDR memory installed on the board. The FPGA IC may also be equipped with High
Bandwidth Memory 2 (HBM2), which offers a significantly higher total bandwidth of several
hundreds of GB/s compared to DDR, which typically provides only tens of GB/s. Both types
of memory are usually organized in form of memory banks, where boards with DDR memory
usually come with two to four banks and boards with HBM2 with 32 banks.

Recent FPGA boards support HLS toolchains, facilitating implementation from high-level
languages such as C/C++ or OpenCL C. This high-level approach often provides additional
logic to manage user logic execution, data transfers, and commonly used interfaces to global
memory or PCle as a static partition. Depending on the vendor, this static partition is
referred to as a Board Support Package (BSP) or shell. This allows controlling the user
logic from the CPU using the OpenCL or vendor-specific Application Program Interfaces
(APIs) and drivers. The shell is flashed onto the FPGA, while user logic is separately flashed
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using partial reconfiguration into a so-called dynamic partition or user partition. The HLS
toolchains synthesize the user code into executable FPGA configurations (bitstreams) that
are downloaded to the FPGA before usage.

In addition to these basic components, the boards frequently feature versatile QSFP ports that
can be used for networking tasks. They can either be used to integrate FPGAs into networks
for passive compute-in-network tasks or to make the FPGA board directly addressable via the
network. Some boards — especially Intel-based FPGAs boards — include BSPs that incorporate
a network link layer for point-to-point communication based on Serial Lite III, which can be
directly utilized from HLS user kernels via provided APIs or OpenCL C extensions. On Xilinx
FPGA boards, the connectors to these QSFP ports are routed to the user logic, allowing
users to implement their network stacks independent of the used shell.

Therefore, direct FPGA-to-FPGA and host-to-FPGA communication can take place via
high-speed network connections of up to 100 Gbit/s per QSFP28 port on current generation
boards. Next-generation boards even offer up to 400 Gbit/s per port and come with (partially)
hardened Ethernet IPs [5], [6]. These developments in the past and present further strengthen
FPGAs and their networking capabilities in HPC systems.

2.2 HLS Toolchains and Their Opportunities for FPGAs

Before the widespread adoption of OpenCL C and HLS toolchains by major vendors like Intel
and Xilinx, developing applications for FPGAs required extensive knowledge of HDLs and
device-specific low-level details. This complexity hindered portability and slowed development,
especially due to the manual integration of common interfaces in HPC such as PCle. The
introduction of HLS toolchains, along with their shells and BSPs, has significantly accelerated
the development of FPGA-accelerated applications in HPC and allowed developers to focus
on algorithm implementation.

2.2.1 OpenCL Terminology for FPGA Boards

OpenCL [7] is a standard for programming heterogeneous systems that include CPUs, GPUs,
FPGAs, and other devices. It maintains a separation between the CPU (host) and the
accelerator (device), with the device code compiled for and executed on accelerators like GPUs
and FPGAs, but also itself are possible target devices. The host CPU code, implemented
using the OpenCL API and a chosen programming language, manages data movements and
the execution of the user logic in command queues. Tasks that are enqueued to the command
queues are executed sequentially. The device code that is executed on the accelerators is
referred to as kernel and is written in OpenCL C, a C-like programming language that is part
of the OpenCL standard.
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In OpenCL, two common programming models for kernel development are single work-item
kernels (single-threaded) and ND-range kernels (multi-threaded), with the former preferred
for FPGA programming due to its suitability for FPGA-specific optimizations [8]. The latter
is usually preferred for the development of kernels for GPUs because the programming model
better matches the hardware architecture of these devices.

For both major FPGA vendors, OpenCL terminology maps to hardware components as
shown in Figure 2.2 for a single work-item kernel. The global memory and constant memory
correspond to the DDR or HBM2 memory on the FPGA board, with data transferred from
the host memory to the global memory via the OpenCL API before kernel execution. On the
device side, global memory addresses are provided as kernel input parameters. Local memory
buffers, declared as fixed-length arrays in the code, are implemented in on-chip memory
blocks like Block RAM (BRAM), Ultra RAM (URAM), or registers, with resource mapping
done automatically by HLS tools. A compute unit is the hardware implementation of kernel
logic on the FPGA, and multiple compute units can be instantiated for a kernel to support
concurrent kernel executions.

Device

Host FPGA Compute Unit

DDR PCle BRAM/URAM
Host Memory

Local Memory

CPU |

DDR/HBM2
Global Memory, Constant Memory

Figure 2.2: The terminology of FPGA board components as OpenCL device, highlighting the
major memory regions commonly used in single work-item kernels.

2.2.2 Optimization of HLS Code for FPGAs

Several common programming patterns have emerged for implementing efficient hardware
using HLS [9], [10]. They are generally applicable to HLS code and the toolchains will
attempt to automatically apply many of the optimizations during synthesis. However, in
many situations, the programmer has to guide the tools to synthesize performant hardware
by applying modifications and compiler guidings in form of pragmas to the code. The three
most important transformations pipelining, unrolling, and memory optimizations are briefly
explained in the following.
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Pipelining Pipelining is essential for increasing parallelism on an FPGA. Loops in HLS
code are transformed into pipelines where iterations are processed sequentially. Depending
on data dependencies, new iterations can already begin after a few clock cycles while the
processing of the previous iteration is still ongoing in subsequent pipeline stages. The latency
that is required between the initiation of two loop iterations is referred to as the Initiation
Interval (IT). The total latency C of a pipeline with N iterations and a latency L to process a
single iteration is given by:

C=L+II-(N-1) (2.1)

This architecture utilizes hardware efficiently and increases throughput by keeping pipeline
stages occupied with different loop iterations. Strategies to optimize pipelining include loop
fusion and flattening of nested loops to create deep pipelines with low IIs and high occupancies,
thereby enhancing performance. As a result, the default goal of pipelining is to achieve a
pipeline with an I[I=1, which means that in every clock cycle, the processing of a new loop
iteration can be started and the overall utilization of the pipeline can be maximized.

Unrolling Operations can be vectorized through loop unrolling to further increase paral-
lelism by initiating multiple iterations simultaneously within a wider pipeline. This reduces
the overall execution latency, modeled as:

(N-U)

C—1+1I.
+ U

(2.2)

where U is the unrolling factor. Unrolling can be applied to loops through pragmas, attributes,
or automatically by the tools. In OpenCL C, the included vector data types can be used to
generate very similar hardware compared to unrolling via pragmas or attributes.

Memory Optimization Efficient memory utilization is crucial for high performance on
FPGAs. Global memory on recent FPGA boards can deliver 256-bit or 512-bit data per clock
cycle and memory bank at frequencies of 250-300 MHz. To maximize this bandwidth, burst
transfers must be used to aggregate data requests, requiring aligned and sequential global
memory accesses. Proper pipelining and loop unrolling are used to increase the spatial locality
of data accesses and ensure continuous data processing each clock cycle. Additionally, data
has to be distributed across multiple global memory banks to maximize the available memory
bandwidth, often necessitating compute pipeline replication to enhance the performance
of memory-bound applications. This gets even more important on recent HBM2-equipped
boards, offering high memory bandwidths of hundreds of GB/s distributed over up to 32
memory banks.
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Local memory, leveraging on-chip memory blocks with higher bandwidth, can cache data to
increase reuse. Techniques such as tiling create custom memory hierarchies from local memory;,
enhancing data reuse similar to CPU optimization strategies or enabling the efficient utilization
of burst transfers from global memory. Next to plain data caches and memory hierarchies,
specific programming patterns are detected by the tools and translated to specialized memory
architectures such as shift registers or sliding windows.

2.2.3 Cross-Vendor HLS Code Compatibility

HLS toolchains can facilitate to write less device-dependent code, improving portability
and simplifying library and framework development compared to HDLs. Many libraries
have emerged, covering areas like linear algebra [11]-[14], emulation and usability [15], and
communication frameworks [16]-[19]. However, although common optimization techniques
for HLS code exist, the toolchains of the major FPGA vendors often behave differently and
code annotations such as pragmas or attributes often differ across tools. However, these
code annotations are cruicial to efficiently make use of specific device features and resources,
ranging from the type and configuration of block memory, DSPs, and more.

With that, porting an OpenCL application from one vendor toolchain to the other remains
challenging and requires careful optimization [20]. This leads to the point that, despite using
C/C++ or OpenCL C, most libraries are typically compatible with only one of the two major
FPGA vendors. When compatible with both, such as hlslib, separate implementations for
different toolchains are usually provided.

2.3 Multi-FPGA Systems and inter-FPGA Networks

For the FPGAs of both vendors, no such standardized framework for communication similar to
MPI on CPUs exists. However, several frameworks for inter-FPGA communication emerged in
the previous years leveraging different kinds of infrastructure and concepts for communication.
Typically, FPGA nodes are installed similarly to the schematic shown in Figure 2.3. A compute
node consists of one or more CPUs that can communicate through dedicated interconnects.
Communication beyond the node is realized by one or more Network Interface Controllers
(NICs) connected via PCle together with one or more FPGA boards. The QSFP ports of
the FPGAs can be equipped with optical or electrical transceivers to form circuit-switched
or packet-switched networks. Because of this flexibility, the depicted interconnect must
not necessarily consist of a switch hierarchy. Instead, the QSFP ports can also be directly
connected peer-to-peer. It is also possible to use the same interconnect for the inter-CPU and
inter-FPGA communication to also allow direct communication of CPUs and FPGAs via the
network.

Overall, next to single FPGA boards, we executed our benchmarks and applications on
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Figure 2.3: Schematic view of multi-FPGA system consisting of multiple nodes with multiple
FPGA boards and CPUs per node. The CPUs communicate between nodes via one or more
NICs connected via PCle. FPGAs often form a dedicated network using their QSFP ports.

multi-FPGA systems with various configurations. These systems are described in more detail
in the following.

2.3.1 Noctual

A visualization of the topology of the FPGA nodes in the Noctua 1 system is given in
Figure 2.4. The FPGA partition of the Noctua 1 system was inaugurated at the Paderborn
Center for Parallel Computing (PC?) in 2019 and consists of 32 Nallatech/BittWare 520N
boards equipped with Intel Stratix 10 GX2800 FPGAs, where each of the 16 nodes is a
two-socket system equipped with Intel Xeon Gold 6148F CPUs, 192 GiB of DDR4-2666 main
memory, and two FPGAs connected via x16 PCle 3.0. With the provided BSP version, only
x8 PCle 3.0 is available for data transfers between host and device. Moreover, the nodes in
the cluster communicate over a hybrid network: The CPUs use an Intel Omni Path network
with 100 Gb/s per port, whereas the FPGAs can exchange data via the four QSFP+ ports
with up to 40 Gb/s per port. The serial interfaces are connected to a CALIENT S320 Optical
Circuit Switch (OCS) that allows the configuration of arbitrary full-duplex point-to-point
connections between the serial interfaces of the FPGAs. This functionality allows the creation
of arbitrary network topologies only limited by the number of QSFP+ ports installed on the
boards. The network topology is typically set up before running the application and stays
unchanged during execution.

The BSP comes in two different sub-versions with and without support for the external
channels. The HPC' sub-version offers no support for communication via the QSFP ports
and because of this missing functionality also a reduced resource utilization. With the MAX
sub-version, data can direclty be passed between FPGAs via their QSFP ports using an
implementation of the Serial Lite III protocol. To access the network interfaces from the
OpenCL C, Intel provides an OpenCL extension covered in more detail in Section 2.4. The
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CALIENT S320 Optical Circuit Switch (OCS)
QSFP+
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Figure 2.4: Topology of the Noctua 1 FPGA nodes. 16 nodes are connected to a single 100G
Omni Path switch and every node is equipped with two CPUs and two FPGA boards. All
four QSFP+ ports of each FPGA are connected to the OCS that allows the configuration of
arbitrary point-to-point connections between the QSFP+ ports. Every QSFP+ port offers
a maximum communication bandwidth of 40 Gbps. The OCS is typically configured once
before the execution of the benchmarks.

workload manager of the system is configured in a way to allow the selection of the used BSP
and SDK version during node allocation. This enables the user to define the tool version
that fits best to the current workload which would otherwise be impossible for the users
because the process usually requires a reboot of the node. A more detailed description of this
mechanism is given by Bauer, Kenter, Lass, et al. [21], where the functionality was ported
and further extended for the successor system Noctua 2.

2.3.2 Noctua 2

The FPGA partition of the Noctua 2 cluster [21] at the PC? contains one of the largest
FPGA installations in the academic HPC domain. All BittWare 520N boards and the OCS
of the Noctua 1 system were migrated to this system. Additionally, the FPGA partition was
extended with a total of 48 Alveo U280 FPGAs distributed over 16 nodes totalling to 32
FPGA accelerated compute nodes. All FPGAs are connected to the CALIENT S320 OCS
via their QSFP ports as given in Figure 2.5. In case of the BittWare 520N boards, these are
four QSFP+ ports per board whereas for the Alveo U280 each board is equipped with two
QSFP28 ports offering higher data rates of up to 100 Gb/s. The nodes are equipped with
two AMD EPYC 7713 CPUs and a total of 512 GiB of main memory.
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Figure 2.5: The Noctua 2 cluster consists of two node types: 16 nodes are equipped with two
BittWare 520N board that are migrated from Noctua 1 together with the OCS. Additionally,
16 nodes each equipped with three Alveo U280 are added to the system and the QSFP28 ports
of the FPGAs are also connected to the OCS. Another major extension of the inter-FPGA
network is the ethernet switch that is also directly connected to the OCS. With that, the
infrastructure supports circuit-switched as well as packet-switched inter-FPGA communication.
The compute nodes communicate via a separate Infiniband network.
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The OCS is protocol agnostic and can be used to physically connect arbitrary ports of the
switch to form direct point-to-point connections with minimal latency overhead. In addition,
a 128-port 100GE Huawei Cloudengine CE9860 Ethernet Switch (ES) is also connected to the
OCS. By configuring the OCS, this setup also allows the connection of FPGA ports to the
ethernet switch to form packet-switched networks. We use this setup in our evaluation to look
more deeply into the communication latencies introduced by packet-switched communication.
In this work, Vitis 2022.2, XRT 2.14, and the shell xilinx_u280_gen3x16_xdma_1_ 202211 1
are used for synthesis and execution of all applications, but similar to Noctua 1, the system
also comes with the ability to allow the users to change the runtime and shell version used
with the FPGAs during node allocation.

2.3.3 ETH HACC System

FPGA node FPGA node
PClIe Gen3 x16 PClIe Gen3 x16

Xeon Gold 6234 |~ Xeon Gold 6234 Xeon Gold 6234 (— Xeon Gold 6234

Xeon Gold 6234 |- Xeon Gold 6234 Xeon Gold 6234 (| Xeon Gold 6234
Alveo Alveo| | Alveo I I Alveo | |Alveo| [Alveo I I
U280 | |U280 | | U250 Nne | [ NIC U280 | U280 | | U250 Nne || NIe

QSFP28 QSFP28
Ethernet 100G

Figure 2.6: Topology of the used ETH Heterogeneous Accelerated Compute Clusters (HACC)
system nodes. Each node is connected to the 100G Ethernet switch via two NICs and is
equipped with four CPUs and two FPGA boards. The QSFP28 ports of the FPGA boards
are connected to the same ethernet switch than the NICs.

During our experiments, the HACC system at ETH Zurich contains four heterogeneous
nodes equipped with multiple types of FPGA boards [22]. The topology of the used nodes is
given in Figure 2.6. The visualization is simplified to only show the accelerator boards and
communication interfaces that are used for the benchmark execution. Each node also contains
an additional Alveo U250 board which is not used in the experiments. Next to that, each
node comes with three Alveo U280 boards and four Xeon 3234 CPUs. In contrast to the other
systems presented here, all FPGAs of the system are directly connected to an ethernet switch
via their QSFP ports. The NICs of the compute nodes are connected to the same ethernet
switch, allowing direct communication between CPU applications and FPGAs via the network.
This also emphasizes, that the networks depicted in Figure 2.3 not necessarily have to be two
separate networks and may not only be limited to pure inter-FPGA communication.
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2.3.4 Cygnus

The Albireo partition of the Cygnus system at the Center for Computational Sciences at the
University of Tsukuba contains 32 heterogeneous compute nodes with NVidia Tesla V100
GPUs and Nallatech/Bitt Ware 520N boards with Intel Stratix 10 GX2800 H-tile [23]. In
contrast to the FPGAs installed in the Noctua 1 and later migrated into the Noctua 2 system,
these FPGAs are equipped with QSFP28 modules supporting up to 100 Gb/s of throughput
per port. Each node consists of two Intel Xeon Gold 6126, four NVidida Tesla V100, and two
BittWare 520N. The topology of the nodes is given in Figure 2.7. The main memory consists
of 192 GiB and a Mellanox InfiniBand HDR100 network is used for communication.

Next to the Infiniband network, the FPGA boards are also connected in a circuit-switched
network forming a 8 x 8 2D torus using the QSFP28 ports of the boards. With that, the
system is different to the other presented systems in the fixed topology of the circuit-switched
inter-FPGA network. The network topology has to be taken to account when allocating
compute nodes and programming FPGAs with bistreams to correclty route data through the

network.

2D Torus Topology
QSFP28
3 BittWare BittWare 3 BittWare BittWare
2 520N 520N 2 520N 520N
o o
= =
= =2
< <
PCle Gen3 x16 PCle Gen3 x16
Nvidia V100 H Nvidia V100 Nvidia V100 H Nvidia V100
PCle Switch |H PCle Switch PCle Switch |- PCle Switch
[ [ x32 [ [
Xeon Gold Xeon Gold Xeon Gold Xeon Gold
6126 6126 6126 6126
NIC |[NIC [Nic | [NiC ] [NiC | [NIC | NIC |[NIC
I I I I
[ | [ [ | | [ [
Infiniband HDR100

Figure 2.7: Topology of the Cygnus Albireo nodes. Each node is connected to the Infiniband
network via four NICs and is equipped with two CPUs and two FPGA boards. The QSFP28
ports of the FPGA boards are used to form a fixed 8 x 8 2D torus.
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2.4 FPGA Network Stacks and Communication Frameworks

Similar to GPUs, FPGAs are emerging from a single-device accelerator to multi-device
accelerators with direct communication channels. In the GPU context, infrastructure and
tools are well advanced, where popular implementations are NVLink [24] for NVIDIA as
well as the Infinity Fabric (IF) for AMD GPUs. NVLink supports the usage of dedicated
switches to form large networks of interconnected GPUs with a bandwidth of hundreds of
GB/s whereas AMD IF comes with transport protocols to directly communicate between
components using PCle or other interfaces. This also supports direct communication of a
GPU to NICs as it is done within the supercomputer Frontier [25]. The NVSwitches also
come with dedicated hardware support for reductions. Implementation of the communication
can be done using Compute Unified Device Architecture (CUDA) or ROCm with support
for advanced MPI-like collectives provided by dedicated libraries for both vendors (Nvidia
Collective Communications Library (NCCL) and ROCm Communication Collectives Library
(RCCL)).

2.4.1 Network Stacks

Most existing communication frameworks for FPGA utilize dedicated networks for communi-
cation via the QSFP ports. Therefore, on the lower network layers, they utilize existing IPs
or open-source network stacks. Commonly used network stacks that support easy integration
into HLLS projects and that are compatible with the vendor-provided FPGA shells are given
in Table 2.1. Several frameworks are based on one of these network stacks and implement
collective communication and other features on top. Usually, the network stacks are only
compatible with either Intel or Xilinx FPGAs and their Software Development Kits (SDKs).

A dataflow architecture is often used for accelerators implemented on FPGAs where data is
streamed through deep pipelines to increase hardware utilization and throughput. This makes
streaming communication between FPGAs good candidates because it allows the seamless
distribution of compute pipelines across multiple FPGAs. Intel provides with TEC [26] a
tightly integrated network stack based on Serialliite III which is for some boards directly
integrated into the BSP. Data can be sent and received from remote FPGAs by utilizing the
channels/pipes API that is frequently used in HLS to represent AXI or Avalon streaming
interfaces between kernels. Intel provides an OpenCL C extension to direclty use the network
interfaces from openCL C code. This leads to a very similar way to implement inter-FPGA
communication as it would be done for inter-kernel communication. The major limitation of
this approach is that every channel is directly mapped to a physical QSFP port, thus limiting
the maximum number of communication pairs across FPGAs.

For Xilinx FPGAs, mainly Ethernet-based network stacks exist with open-source implementa-
tions of UDP or TCP-IP [19], [27]. The network stacks have to be manually integrated into
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the user project before they can be used. Afterwards, they can be connected to the user logic
via AXI streams and using the link configuration of the HLS toolchain. Another network
stack that finds use in communication frameworks is AlveoLink [28]. It uses RoCEv2 for
data exchange and can be interfaced using AXI streams, similar to the UDP and TCP-IP
implementation. However, at the time of writing, AlveoLink does only support Alveo Ub5c¢c
FPGA boards. The Aurora HLS project [29] aims to simplify the usage of the vendor-provided
Aurora IP by providing a ready-to-use kernel design that can be directly intergrated into HLS
projects. This enables the utilization of the QSFP ports via AXI stream interfaces from the
user design, similar to IEC for Intel FPGAs. However, the network stack is not part of the
shell and instead needs to be added to the project as a compute unit. This also gives the
opportunity to establish circuit-switched networks among Xilinx FPGAs by only using the
HLS toolchains. Currently, the network stack is only tested on Xilinx Alveo U280 FPGAs.

Table 2.1: Summary of commonly used network stacks with support for direct integration
into HLSS code.

‘Work Network Stack Vendor Support SDK
IEC [26] SerialLite III Intel OpenCL, oneAPI
VNx [27] Ethernet, UDP Xilinx XRT
TCP [19] Ethernet, TCP/IP Xilinx XRT
AlveoLink [28] RoCEv2, Ethernet Xilinx XRT
Aurora HLS [29] Aurora 64B/66B Xilinx XRT

2.4.2 Frameworks

On top of the discussed network stacks and also by implementing custom solutions, the
frameworks given in Table 2.2 implement advanced communication capabilities including
collective communication and collective computation. Similar to the network stacks, the
framework implementations are usually restricted to specific FPGA devices and part of custom
HLS toolchains or shells.

MVAPICH2-FPGA [18] makes use of the PCle interface and the host NIC to exchange data
between FPGAs. The host MPI installation is used to exchange the data via the host network
which results in a wide applicability of the approach on all FPGAs with an OpenCL runtime.
The data is first copied from the FPGA memory to the host memory via the OpenCL API
and then transferred via MPI. This requires only a few resources on the FPGA but usually
comes with a higher communication latency compared to frameworks that make use of the
QSFP ports because of the additional copy operations between FPGA and host memory. The
MVAPICH2 extension supports directly passing data buffers located on FPGA devices to
the MPI calls. Copy operations and MPI calls are then tiled and interleaved to improve the
communication throughput. Some runtimes support the direct access from the FPGA board
to the host memory to reduce the number of copy operations using Shared Virtual Memory
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(SVM). These approaches are good candidates to further improve the performance of this
communication framework. However, even with these features, communication latency can
still be a bottleneck compared to other communication approaches.

Table 2.2: Summary of MPI-like inter-FPGA Communication Frameworks.

SDK / Vendor
‘Work Interface  Network Stack Runtime Support
MVAPICH2-FPGA [18] PCle Host MPI OpenCL All OpenCL

devices
Galapagos [30], [31] QSFP Ethernet, TCP-IP  custom Xilinx
EasyNet [19] QSFP VNx, TCP OpenCL Xilinx
ACCL [32] QSFP VNx, TCP XRT Coyote  Xilinx
VCSN [33] QSFP Ethernet custom Intel
SMI [16] QSFP IEC OpenCL Intel
CIRCUS [17] QSFP custom SerialLite OpenCL Intel
111

TAPA-CS [34] QSFP AlveoLink XRT Xilinx

All other frameworks in this overview make use of the QSFP ports for data exchange. Some
of them make use of an IP core provided by Xilinx or Intel implementing Ethernet Media
Access Control (MAC) and in some cases also make additional use of transport protocols like
UDP or TCP. The hardware abstraction framework Galapagos for Xilinx FPGAs implements
a subset of MPI in its communication layer [30], [31]. It mainly targets cloud applications
and provides a complete framework including shell and host API to implement distributed
FPGA applications including collective communication on top of UDP or TCP.

EasyNet [19] is another attempt to make networking functionalities available for HLS user
applications. It offers point-to-point and collective communication implementations based on
a TCP network stack that can be included in a user HLS design via C++ header files. In this
case, the communication logic will only be instantiated in a design if the collective is used by
the user kernel but the flexibility of this approach is limited because collectives can not be
arbitrarily combined in the same design since they are occupying the input and output streams
of the network stack. Alveo Collective Communication Library (ACCL) [32] implements
dedicated hardware to execute arbitrary collectives without these limitations. The core of
this hardware is the Collective Communication Library Offload (CCLO) component which is
executing communication commands passed to it during runtime via an AXI stream. The
firmware executed by the CCLO contains implementations for point-to-point communication
and collectives that consist of a sequence of data move operations. This architecture facilitates
the execution of arbitrary communication without modifications in the hardware while still
supporting further optimizations through plugins and firmware updates. It comes with support
for UDP, TCP, and RDMA [35] as network layer and the whole framework is designed to be
highly adaptable to the intended use case. ACCL does not only allow to directly forward the
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communication data to the user logic using AXI streams but also to buffer and copy received
data in global memory. This flexible architecture enables versatile communication approaches
targeted to the specific use case in trade-off with a potentially higher resource utilization
compared to the on-demand implementation used within EasyNet. Both frameworks can be
used together with the official Xilinx shells and runtimes while ACCL also comes with support
for the Coyote shell. Overall, on the one hand, the implementation of complex network
stacks like TCP/IP and the implementation of collective communication and computation on
the FPGA requires a considerable amount of logic resources, which reduces the amount of
available resources for the user application. On the other hand, the application may profit
from high bandwidth and low latency communication as well as increased scalability.

TAPA-CS [34] is an extension of the TAPA framework [36]. The TAPA framework comes
with a programming model that aims to simplify the implementation of dataflow architectures
for Xilinx FPGAs. Another part of the used toolflow is AutoBridge [37], a tool to improve
the floor planning on the FPGA to increase the clock frequencies of the synthesized bitstream.
With TAPA-CS, TAPA is extended by the functionality of distributing a large design over
multiple FPGAs. Therefore, the design is automatically partitioned and communication
between the partitions is implemented based on RoCEv2 using AlveoLink [28]. This separates
the TAPA-CS approach from the other approaches discussed in the work, since the partitioning
is happening automatically and the communication between FPGAs remains implicit. With
all other discussed frameworks, communication has always to be explicitly implemented by
the programmer using the Single Program Multiple Data (SPMD) or other programming
models.

In contrast to the packet-switched communication frameworks discussed above, also frameworks
exist that make use of direct peer-to-peer communication and circuit-switched networks. SMI
[16] and CIRCUS [17] are making use of the SerialLiite III IP that is included in some version of
the BittWare BSPs and can be directly used from OpenCL C code through vendor extensions.
A circuit-switched network is formed among FPGAs by directly connecting the QSFP ports
while the frameworks take care of data routing. The frameworks usually show lower resource
utilization compared to the packet-switched counterparts because of the lower complexity of
the network stacks, but scalability and flexibility are reduced because the network topology
is often fixed and limited by the number of QSFP ports on a board. This limitation also
increases the communication latency in large networks since data has to be routed over
multiple FPGAs before reaching its destination. On the other side, these frameworks are
well suited for the streaming nature of FPGA data processing. Thus, a slightly different
approach is taken by the Virtual Circuit Switching Network (VCSN) [33] which implements
peer-to-peer networks on top of Ethernet. This approach aims to combine the flexibility of
a packet-switched network with the low complexity and high suitability of circuit-switched
networks for FPGA-typical dataflow architectures. Using an Ethernet switch, the physical
channels can be divided into multiple virtual channels to further increase the number of direct
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neighbors of a node in the network. As a downside, this abstraction can lead to an increase of
the communication latency [38] and individual virtual channels will show reduced bandwidth
because they share the same physical channel.

This huge variety of inter-FPGA communication frameworks facilitates the use of inter-
FPGA communication with various kinds of network infrastructures and multi-FPGA systems.
However, there is still limited insight into how and which of the different communication
concepts and network infrastructures is suited best for which kind of application. A direct
comparison of the existing frameworks is often non-trivial because porting of applications
between frameworks and toolchains requires major efforts and is rarely done. These problems
can be reduced and the comparison of communication frameworks can be simplified with the
use of standardized benchmarks that precisely define the application parameters, algorithms,
and the validation process.



Benchmarking Single FPGAs

In HPC, benchmarks are an important tool for performance comparison across systems. They
are designed to stress important system properties or generate workloads that are similar to
relevant applications for the user. Especially in acquisition planning, they can be used to
define the desired performance of the acquired system before it is built. Since it is a challenging
task to select a set of benchmarks to cover all relevant device properties, benchmark suites
can help by providing a pre-defined mix of applications and inputs, for example SPEC CPU
[39] and HPCC [40].

Therefore, we propose HPCC FPGA, an FPGA OpenCL benchmark suite for HPC using the
applications of the HPCC benchmark suite. The motivation for choosing HPCC is that it
is well-established for CPUs and covers a small set of applications that evaluate important
memory access and computing patterns that are frequently used in HPC applications. In this
chapter, we will describe the implementation and four benchmarks of the suite that target
different types of memory access patterns. We evaluate selected FPGA devices of the major
FPGA vendors in the HPC domain using the proposed benchmarks to show how HPCC
FPGA quantifies the impact of HBM2 high-bandwidth memory FPGAs in comparison to
FPGA boards with DDR memory. With the support for half and double precision variants,
the benchmark can also capture important differences in the arithmetic units of FPGA
architectures.

The contents of this chapter have been presented and published in the proceedings of the
International Workshop on Heterogeneous High-performance Reconfigurable Computing and
the International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies

21
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[41], [42]. Moreover, an in-depth evaluation was published as an article in the Journal of
Parallel and Distributed Computing [43]. All measurements results, scripts, and reports used
in this chapter are published via Zenodo [44].

3.1 HPCC Challenge for FPGAs

The HPCC benchmark suite [40] consists of seven benchmarks. Three of them are synthetic
benchmarks that measure the memory performance for successive accesses (STREAM [45])
and random updates (RandomAccess) as well as the effective network bandwidth of a system
(b__eff). Moreover, it contains four applications of varying complexity: Matrix transposition
(PTRANS), 1D Fast Fourier Transformation (FFT), matrix multiplication (GEMM), and
High Performance LINPACK (HPL).

A central concept of the HPCC benchmark suite is to characterize the performance of HPC
applications by their memory access patterns as it is shown in Figure 3.1. The applications
were chosen to represent border cases of spatial and temporal locality in memory accesses
such that the performance for all other applications can be estimated based on these border
cases. The achieved performance in CPU systems is thus highly dependent on the memory
and cache architecture. In this chapter we will focus on four of the benchmarks to represent
and discuss all four border cases: STREAM, RandomAccess, FF'T and GEMM. The three
remaining benchmarks are discussed in more detail in Chapter 4, when we move the focus
from memory access patterns to inter-FPGA communication.

PTRANS HPL
A STREAM GEMM
] o
=
g Applications
s
2| e ®
RandomAccess FFT

\ 4

temporal locality

Figure 3.1: Visualization of the spatial and temporal locality of memory accesses for the
HPCC benchmarks based on the illustration in [40].

When benchmarking FPGA boards with this concept, it is crucial to note that even for
a given board, the memory hierarchy is not fixed. While the off-chip memory itself and
typically parts of the memory controllers are fixed hardware components, local buffers or
caches, address generators, pre-fetchers, and data buses inside the FPGA are provided by
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the shell or generated by the SDK depending on the benchmark implementation. Thus,
in contrast to the CPU version of HPCC, HPCC FPGA does not only measure hardware
properties of a given memory interface but rather also the ability of the tools to optimize the
memory hierarchy and compute pipelines of a kernel for the specific pattern to provide good
performance of the calculation on an FPGA.

Another aspect of the HPCC benchmark suite is the distinction between two different runs:

e Base runs: done with the provided reference implementations.
e Optimized runs: done with implementations that use architecture-specific optimizations.

The goal of HPCC FPGA, as presented in this article, is to provide implementations for the
base runs that are reasonably optimized for Intel and Xilinx FPGAs and their SDKs. With
current FPGA execution models, such optimizations necessarily include adaptations to the
available resources, in particular the number of physical memory interfaces and configurable
local memory. Therefore, the base implementation exposes defined configuration parameters
for such customization, without pre-empting the full flexibility that is reserved for optimized
runs with manual code changes and target architecture- or SDK-specific designs. The presented
adjustable parameters for the base runs are a subject of discussion and might be changed
with the evolution of the FPGA architectures and toolchains.

In Table 3.1 the memory access patterns for the benchmarks contained in the first version
of HPCC FPGA are given for CPU and the FPGA base implementations proposed in this
paper. For FPGA, the memory is further divided into global and local memory representing
the on-chip and off-chip memory on the FPGA, respectively. In HPCC, the type of memory
accesses is categorized into spatial and temporal locality. Spatial locality is represented in
the table by the linear, strided, and random access pattern, where linear corresponds to
consecutive accesses and a high spacial locality whereas strided accesses can show medium to
low and random very low spacial locality. Temporal locality is increased for repeated accesses
to the same data, where also the time between the accesses is important for data caching.

Table 3.1: Memory Access Patterns for the first four benchmarks of HPCC.

FPGA
Benchmarlk CPU Global Memory Local Memory
STEAM linear linear linear
RandomAccess random random linear
FFT strided, repeated linear strided, repeated
GEMM strided/linear, repeated linear, repeated strided /linear, repeated

Similar to CPU architectures, the local memory of the FPGA can be used to form caches
and even cache hierarchies specifically optimized for the application. Therefore, FPGA
applications follow a similar memory optimization strategy compared to CPUs by moving
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the strided memory accesses with low spatial locality into the local memory and increase the
temporal locality if possible using blocked algorithms. The global memory is accessed in a
linear fashion similar to the access of complete cache lines in CPU architectures.

3.1.1 Common Build Setup

The HPCC FPGA benchmark suite is set up to create one host binary and FPGA bitstream
per benchmark, with source code structure, build process, and benchmark execution very
similar for all benchmarks. For usability, HPCC FPGA adopts the following approaches:

« Usage of the same build system for all benchmarks (CMake) offers a unified user
experience during the build process and for the modification of the configuration
parameters.

o Integrated tests allow checking the functional correctness of the configuration using
emulation before actual synthesis.

Every benchmark can be configured using several parameters that are specified during the
build configuration with CMake’s -D flag. They directly affect the performance of the kernel
and thus need to be given together with the benchmark results to allow a more meaningful
comparison. These parameters are summarized in Table 3.2 for all four benchmarks. An
essential parameter for all benchmarks is NUM_REPLICATIONS which allows to automatically
create copies of the kernels. It is heavily used by the four presented implementations to scale
the benchmarks to the available resources of the target boards.

During the development of the base implementation of the suite, we used a Continuous
Integration (CI) setup based on GitLab and Jacamar CI [46] that makes use of GitLab’s
custom executor model to schedule CI jobs on an HPC system via the system workload
manager. We implemented this setup on the Noctua 1 system at PC? and the GitLab instance
of Paderborn University. This setup enabled us to easily check the functionality of the
benchmark suite and the build infrastructure and simplified the optimization process for the
base implementations proposed in this chapter. We continuously checked the compatibility of
changes in the source code with selected target devices to prevent over-optimization for a
specific FPGA board. Similarly, this infrastructure could also be used to monitor the system
and tool performance over time to detect potential problems and changes in the tool behavior
early on.

Table 3.2: HPCC FPGA configuration parameters.

Parameter Description
All Benchmarks NUM_REPLICATIONS Replicates the benchark kernels the given number
of times.

STEAM DATA_TYPE Data type used for host and device code.
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Table 3.2: HPCC FPGA configuration parameters. (continued)

VECTOR_COUNT

GLOBAL_MEM_UNROLL

DEVICE_BUFFER_SIZE

RandomAccess DEVICE_BUFFER_SIZE

FFT LOG_FFT_SIZE

GEMM DATA_TYPE
BLOCK_SIZE
GEMM_SIZE

GLOBAL_MEM_UNROLL

If > 1, OpenCL vector types of the given size are
used in the device code instead of scalar values.
Can be used to increase the wdth of the pipeline to
better utilize the memory interfaces.

Loop unrolling factor for the inner loops in the
device code. Similar to VECTOR_COUNT it can be
used to increase the width of the compute pipeline.
Number of values that are stored in the local
memory. Implicitly affects size of global memory
bursts.

Number of values that are stored in the local
memory. Can be used to relax dependencies
between subsequent accesses to global memory in
trade-off with a higher error rate.

Logarithm of the FFT size that is calculated.
Higher FFT sizes will consume more resources but
achieve higher compute performance.

Data type used for host and device code.

Size of the symmetric matrix block that will be
stored in local memory. Should have a sufficient size
to allow full utilization of global memory read and
write bursts and the calculation pipeline.

Size of the symmetric matrix block that will be
stored in registers. This will affect the number of
DSPs used in the implementation and the actual
calculation performance.

Used to specify the amount of unrolling done in
loops that access the global memory to match the
width of the memory interface.

3.1.2 STREAM Benchmark

The goal of the STREAM benchmark is to measure the sustainable memory bandwidth in
GB/s of a device using four different vector operations: Copy, Scale, Add and Triad. All
kernels are taken from the STREAM benchmark! v5.10 and thus slightly differ from the kernels
proposed in the HPCC article [40]. The benchmark will sequentially execute the operations
given in Table 3.3. PCle Read and PCle Write are no OpenCL kernels but represent the
read and write of the arrays from the host to the device memory. The benchmark will output
the maximum, average, and minimum time measured for each of these operations. For the

Thttps://www.cs.virginia.edu/stream
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calculation of the memory bandwidth, the minimum time will be used.

Table 3.3: STREAM operations reported by the STREAM implementation for FPGA.

Operation Kernel Logic

PCle Write  write arrays from host to device memory

Copy Cli] = A[i]

Scale Bli] =j - CJi]

Add Cli] = Ali] + BJi]
Triad Ali] = j - C[i] + BJi]

PCIe Read read arrays from device memory to host

Listing 3.1 Simplified logic of the STREAM benchmark

for(uint i=0; i<array_size; i+=BUFFER_SIZE){

DATA_TYPE buffer [BUFFER_SIZE] ;

for (uint k=0; k<BUFFER_SIZE; k++)
buffer[k] = scalar * inl[i + k];

if (second_input)
for (uint k=0;k<BUFFER_SIZE; k++)

buffer[k] += in2[i + k];

for (uint k=0;k<BUFFER_SIZE; k++)

out[i + k] = buffer[k];

The arrays A, B, and C are initialized with a constant value over the whole array. This allows
us to validate the result by only recalculating the operations with scalar values. The error is
calculated for every value in the arrays and must be below the machine epsilon € > ||d — d'||
to pass the validation.

A simplified version of the code is given in Listing 3.1. The OpenCL kernel of the benchmark
combines all four described compute kernels in a single function. Since on FPGA the source
code is translated to spatial structures that take up resources on the device, a single combined
kernel yields the best reuse of those resources. The computation is split into blocks of a fixed
length, which requires that the array length is a multiple of the block size. In the first inner
loop, the input values of the first input array inl are loaded into a buffer located in the
local memory of the FPGA. While they are loaded, they are multiplied with a scaling factor
scalar, implementing the required logic for the Copy and Scale operation. In the case of
Copy, the scaling factor is set to 1.0. In the second loop, the second input in2 is only added
to the buffer, if a flag is set. Together with the first loop, this makes it possible to recreate
the behavior of the Add and Triad operation. In the third loop, the content of the buffer is
stored in the output array out located in global memory.
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DATA_TYPE and VECTOR_COUNT can be used to define the data type used within the kernel. If
VECTOR_COUNT is greater than 1, OpenCL vector types of the given length are used. Since
some of the STREAM operations show an asymmetry between reads and writes from global
memory, the best performance can be achieved if a single bank is used for all three arrays.
Simultaneous reads and writes to DDR or HBM2 banks would potentially destroy memory
bursts and thus reduce performance. By using a local memory buffer, each of the three loops
can fully utilize the available bandwidth of the global memory bank and the memory bursts.
This makes STREAM bandwidth bound by the global memory and also resource bound by
the BRAM. The kernel has to be replicated to fully utilize all available memory banks and at
the same time the local memory buffer size has to be increased to achieve larger burst sizes
and to decrease the impact of memory latency.

3.1.3 RandomAccess Benchmark

The random access benchmark measures the performance for non-consecutive memory accesses
expressed in the performance metric Giga Updates Per Second (GUPS). It updates values
in a data array d € Z" such that d; = d; ® a where a € Z is a value from a pseudo random
sequence. n is defined to be a power of two. As data type, 64 bit integers are used. Since only
operations in a finite field are used to update the values, the correctness of the updates can
easily be checked by executing a reference implementation on the host side on the resulting
data using the same pseudo random sequence. The incorrect items are counted, and the error
percentage is calculated with €°" - 100. An error of < 1% has to be accomplished to pass the
validation. Hence, update errors caused by concurrent data accesses are tolerated to some
degree. The performance of the implementation is mainly bound by the memory bandwidth
and latency. So the kernel should be replicated to utilize all available memory banks.

The benchmark requires 4 - n updates on the array of length n using two pipelines. The first
pipeline reads data items from global memory. Therefore, it uses a pseudo random sequence
generator that is implemented in every kernel replication. The index of the value will be
extracted from the random number. Since every replication of the kernel is in charge of a
distinct range of addresses that is placed in their memory bank, the kernel has to check if
the calculated address is actually within its range. Only then the value will be loaded from
global memory and stored in a local memory buffer whose size can be configured via the
DEVICE BUFFER_SIZE parameter. In the second pipeline, the data in local memory is written
back to global memory. With this approach, read after write dependencies will be ignored
for all values that are read into the local memory in the same iteration. Without the local
memory, the tools would correctly identify the read after write dependency and only start the
next read after the write is completed. Because of the benchmark rules, these kind of errors
are allowed to some degree, so changing the buffer size can be used as a trade-off between
exptected benchmark error and performance.
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Listing 3.2 Random Access simplified update loop

for(uint i=0; i<4#n; i+=BUFFER_SIZE){
ulong local address[BUFFER_SIZE];
ulong loaded_data[BUFFER_SIZE];
ulong update_val [BUFFER_SIZE] ;

//calc next address and load to local mem.
for (uint 1d=0; 1d<BUFFER_SIZE; 1d++){
ulong rand = next_rand();
update_val[ld] = rand;
local_address[1ld] = get_address(rand);
if (in_range(local_address([1d]))
loaded_datal[ld] = datal[local address[1d]];

//store the updated value back to global mem.
for (uint 1d=0; 1d<BUFFER_SIZE; 1ld++){
if (in_range(local_address([1d]))
datal[local address[1ld]] =
loaded_datal[ld] “update_vall[ld];

3.1.4 Fast Fourier Transformation Benchmark (FFT)

In the FFT benchmark, a batch of 1D FFTs of a predefined size — that can be specified using
the LOG_FFT_SIZE parameter — is calculated. A batch of FFTs is used to increase the overall
execution time of the benchmark, to decrease measurement errors, and to better utilize the
kernel pipeline. The benchmark kernel is based on a reference implementation for the Intel
OpenCL FPGA SDK included in version 19.4.0 and slightly modified to also allow execution
on Xilinx devices. The calculation is done with complex single-precision floating point values.
All stages of the FFT calculation are fully unrolled and the current data is stored in a shift
register that is shared between the stages. This allows the implementation of the algorithm
in a single pipeline but also limits the maximum size of the FFT by the available FPGA
resources and SDK capabilities. Larger FFT sizes require more DSPs for the calculations,
and more logic resources and BRAMs to implement the shift register. Since reads and writes
from global memory are symmetric, the kernel offers the best performance if the input and
output data can be stored in different memory banks. So the kernel replications should be
set at most to half of the available memory banks. Also, the best trade-off between kernel
replication and FFT size has to be used to achieve the best performance.
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For the performance metric GFLOP /s, the floating point operations of this benchmark are
calculated as 5-n-ld(n) for an FFT of dimension n. The result of the calculation is checked by
calculating the residual 'lfll;(‘i |)‘ where ¢ is the machine epsilon, d’ the result from the reference

implementation and n the FF'T size.

3.1.5 Matrix Multiplication Benchmark (GEMM)

The GEMM benchmark implements a matrix-matrix multiplication similar to the GEMM
routines in the BLAS library. It calculates C' = a-A- B + - C where A, B,C € R™"
and «a, 8 € R. For the performance metric GFLOP/s, the floating point operations of this
benchmark are calculated as 2-n3. The result is validated by calculating the normalized residual
ing‘,"; where € is the machine epsilon and C’ the result of the reference implementation.
The implementation is based on a matrix multiplication design for Intel Stratix 10 [47] and
simplified to make it compatible with a broader range of devices. The kernel creates a memory

hierarchy for the matrix multiplication A x B by doing the following data movements:

o A blocked matrix multiplication in global memory
A blocked matrix multiplication in local memory (BRAM)
o A fully unrolled matrix multiplication in registers

BLOCK_SIZE
GEMM_SIZE
n - \\_»
Registers
\\_/'
n <
Local
Memory
Global
Memory
load two blocks multiply
to local memory smaller blocks

Figure 3.2: Three-level data movement from global memory to compute logic in GEMM.

A visualization of the data movements is given in Figure 3.2. The matrices are divided
into blocks of a fixed size that can be specified with the BLOCK_SIZE parameter. The kernel
calculates the result of a single block in C' by sequentially executing two pipelines. In the first
pipeline, a single block of A and B is loaded into a local memory buffer. In the second pipeline
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the loaded blocks are used to calculate an intermediate result again with a blocked approach.
This time the block size is defined by the parameter GEMM_SIZE. The matrix multiplication
for this block is fully unrolled which allows to initiate the multiplication of a whole block

every clock cycle. Both pipelines will be executed sequentially to calculate the result of a
single block of A x B.

After the matrix multiplication is done, a third pipeline reads the block of matrix C' directly
from global memory and calculates the final result for a block of the output matrix. The number
of values that are read per clock cycle is configurable using the parameter GLOBAL_MEM_UNROLL.
The final result C' =« - A- B+ (- C is calculated for each value of C' and the result of the
matrix multiplication and direclty written back to the result matrix in global memory.

This means the data is loaded block-wise from global memory to local memory and from
there in smaller blocks to registers to perform the actual matrix multiplication. Writing the
data back to global memory and executing the addition and scaling in the third pipeline does
not have a huge impact on the overall performance for huge matrices because this just has to
be done every gr5-7 <775 iterations.

The host code divides the output matrix into rows of blocks of size BLOCK_SIZE and distributes
the calculation over all kernel replications. Since the kernel is compute-bound, the second
pipeline should be scaled as large as possible or the kernel should be replicated to increase
the parallelism of the calculation. This makes the implementation resource bound in terms
of DSPs for the calculation pipeline and BRAMs for the local memory buffer. Loading and
storing data from global memory just takes up a minor role in the implementation. Thus, the
kernel replications should be used to fill the FPGA instead of utilizing all memory banks.

3.2 Evaluation of Single FPGA Benchmarks

In the following, we synthesize and execute all four benchmarks, collect first benchmark results
for the proposed base implementations, and evaluate the results to performance models.

3.2.1 Evaluation Environment and Configuration

The benchmarks were synthesized and tested on four different boards: Nallatech/Bitt Ware
520N, BittWare 520n MX, Intel PAC' D5005 and Xilinx Alveo U280. The BittWare 520N
boards are connected to the host node via x8 PCle 3.0 and are equipped with Intel Stratix 10
GX2800 with access to four banks of DDR4 SDRAM x 72 bit with 8 GiB per bank and a
transfer rate of 2400 MT/s. With the BSP version 19.4.0 and SDK version 19.4.0 the most
recent versions available at the time of writing are used for synthesis and execution.

The BittWare 520N MX contains the Intel Stratix 10 MX2100 using 16 GiB of HBM2 memory.
For the host-device communication, x8 PCle 3.0 is used. BSP version 19.4.0 and SDK version
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20.4.0 were used to collect the measurement result.

The Intel PAC D5005 board hosts a Stratix 10 SX2800 FPGA and is connected to the host
with x16 PCle 3.0. The board contains a DDR4 memory infrastructure similar to the other
boards, which is not used for these experiments. Instead, a reference design BSP (18.1.2_svm)
was used, offering direct access to the host’s memory using SVM by building upon the Intel
Acceleration Stack (IAS) [48] version 1.2. The OpenCL kernel compilation was performed
with the SDK version 19.4.0.

The Alveo U280 boards are equipped with the XCU280 FPGA. The board is connected to an
Intel Xeon Gold 6234 CPU over x8 PCle 3.0 and equipped with two banks of DDR4 SDRAM
x 72 bit with 16 GiB per bank and a transfer rate of 2400 MT/s. Moreover, the FPGA is
equipped with 8 GiB of HBM2 split over 32 banks. Xilinx Vitis is used in version 2019.2 and
the shell version is 2019.2.3. The host code is compiled with GCC 7.4.0 and CMake 3.18 is
used for the configuration and build of the benchmarks. The CPU has access to 108 GiB of
main memory.

Table 3.4: Final synthesis configuration for all benchmarks.

520N U280 U280 PAC

Benchmark Parameter 520N MX DDR HBM2 SVM
STREAM NUM_REPLICATIONS 4 32 2 32 1
DATA_TYPE float float float float float
GLOBAL_MEM_UNROLL 1 1 1 1 1
VECTOR_COUNT 16 8 16 16 16
DEVICE_BUFFER_SIZE 4,096 4,096 16,384 2,048 1
RandomAccess NUM_REPLICATIONS 4 32 2 32 1
DEVICE_BUFFER_SIZE 1 1 1,024 1,024 1,024
FFT NUM_REPLICATIONS 2 16 1 15 1
LOG_FFT_SIZE 17 7 9 5 17
GEMM NUM_REPLICATIONS 5 4 3 3 5
DATA_TYPE float float float float float
GLOBAL_MEM_UNROLL 16 8 16 16 16
BLOCK_SIZE 512 256 256 256 512
GEMM_SIZE 8 8 8 8 8

For the Intel devices, the host node is a two-socket system equipped with an Intel Xeon Gold
6148F CPU and 192 GiB of DDR4-2666 main memory. The host codes are compiled with
GCC 8.3.0 and CMake 3.15.3 is used for the configuration and build of the benchmarks.
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Table 3.5: Resource

3.2. EVALUATION OF SINGLE FPGA BENCHMARKS

utilization of the synthesized benchmark kernels.

Frequency
Benchmark Board LUTs Registers BRAM DSPs [MHz]
STREAM 520N 176,396 449,231 4,029 128 316.67
(25%) (25%) (34%) (2%)
520N MX 261,485 721,211 3,634 512 400.00
(44%) (44%) (63%) (13%)
U280 DDR 20,832 39,002 558 160 300.00
(1.90%) (1.39%) (34.19%) (1.78%)
U280 HBM2 331,904 574,976 1,408 2,560 370.00
(20.69%) (27.24%) (77.70%) (28.38%)
PAC SVM 103,628 244,354 548 32 346.00
(12%) (12%) (5%) (<1%)
Random 520N 115,743 253,578 489 14 329.17
Access (18%) (18%) (4%) (<1%)
520N MX 212,838 608,321 1,970 112 477.78
(38%) (38%) (29%) (3%)
U280 DDR 7,256 11,716 38 14 446.00
(0.65%) (0.50%) (2.23%) (0.16%s)
U280 HBM2 116,096 187,456 608 224 450.00
(10.68%) (8.76%) (33.55%) (2.48%)
PAC SVM 103,397 225,293 535 0 322.00
(12%) (12%) (5%) (0%)
FFT 520N 276,676 724,790 4177 1,414 413.34
(36%) (36%) (36%) (25%)
520N MX 458,087 1,408,937 2,066 2,944 395.84
(78%) (78%) (30%) (74%s)
U280 DDR 83,494 168,150 39 672 248.00
(7.39%) (7.19%) (2.28%) (7.46%)
U280 HBM2 602,125 941,404 405 5,280 254.00
(54.13%) (42.18%) (22.35%) (58.58%)
PAC SVM 192,189 480,285 2,147 707 348.00
(22%) (22%) (18%) (12%)
GEMM 520N 275,754 861,277 8,860 3,398 160.42
(36%) (36%) (76%) (59%)
520N MX 213,337 600,546 2,388 2,654 240.00
(37%) (37%) (35%) (67%)
U280 DDR 568,558 441,602 666 7,683 100.00
(51.87%) (19.43%) (43.11%) (85.23%)
U280 HBM2 499,002 920,127 666 7,683 236.00
(42.64%) (38.70%) (36.71%) (85.18%)
PAC SVM 299,427 829,802 9,041 3,398 225.00

(33%) (33%) (77%) (59%)
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The used synthesis parameters for all benchmarks are given in Table 3.4 and the resulting
resource usage for each benchmark is given in Table 3.5. A straightforward comparison of
the resource usage between the FPGA boards is not possible because hardware and software
architectures are different. Nevertheless, in the table a general overview of the resource usage
is given by looking at the basic resource elements of an FPGA: The Look Up Table (LUT),
Registers, BRAM and DSP. The table only takes into account the resources directly used
for the kernels. Next to the absolute value, the percentage of the used resources relative to
the available resources is given. Absolute values and ratios of the resource usage are taken
directly from the reports generated by the HLS tools.

3.2.2 STREAM and RandomAccess

Table 3.6: Measurement results for all benchmarks.

Benchmark 520N 520N MX U280 HBM2 U280 DDR PAC SVM
STREAM Copy [GB/s] 67.01 308.35 377.42 33.94 20.15
STREAM Scale [GB/s] 67.24 308.24 365.80 33.92 20.04
STREAM Add [GB/s] 68.90 323.92 374.03 34.58 15.04
STREAM Triad [GB/s] 68.90 323.90 378.88 34.57 15.12
STREAM PCle read [GB/s]  6.41 6.34 6.66 5.68 -
STREAM PCle write [GB/s] 6.32 6.21 6.03 5.47 -
RandomAccess [MUOP /5] 245.0 469.8 128.1 40.3 0.5
RandomAccess Error 0.0099% 0.0106% 0.0106% 0.0106% 0.0106%
FFT [GFLOP/s] 349.45 713.95 576.20 78.26 119.66
FFT [GB/s] 65.78  326.38 368.77 27.83 22.54
FFT Error 7.1e-01 4.6e-01 5.4e-01 3.9e-01 7.1e-01
GEMM [GFLOP/s] 708.95 765.23 603.86 266.91 739.59
GEMM norm [GFLOP/s] 88.39 79.71 85.29 88.97 65.74
GEMM Error 6.0e-07 2.4e-07 2.0e-06 2.0e-06 6.0e-07

The measured performance results for all four benchmarks are given in Table 3.6. Single-
precision floating point numbers are used in the STREAM benchmark. For the size of the
STREAM data array, we used 2% items, which corresponds to 2 GiB of data per data array.
This is the largest power of two that fits into the 8 GiB HBM2 of the Alveo U280 board.

The theoretical peak performance for DDR memory is 19.2 GB/s per bank for both the 520N
and the U280 boards. That said, the STREAM benchmark achieves an efficiency between
87.2% and 90.1% of the theoretical peak performance for both devices for all four operations.
The HBM2 of the U280 board offers a theoretical peak bandwidth of 460 GB/s, so the
benchmark achieves an efficiency of 82.4% on this board. This is similar to the 520N MX,
where the efficiency is around 79.1%. One reason for the lower efficiency is the use of smaller
local memory buffers because of the high number of kernel replications. This will also lead to
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shorter read and write bursts which directly affect the memory bandwidth. Another reason is
the simultaneous scheduling of the kernels on the FPGA. For the execution of a single kernel
on the 520N MX, up to 11.18 GB/s can be measured. This is more than 87.3% efficiency for
a single HBM2 bank. Since the kernels will be scheduled sequentially over PCle, the host can
not fully prevent this effect since it will measure the execution time from starting the first
kernel to finishing the last kernel. With very short execution times, this can have a visible
effect on the measured performance for a high number of kernel replications.

The full-duplex PCle connection of the PAC SVM board eliminates the need for a large local
memory buffer. Instead, it is set to the same size as the unrolling (GLOBAL_MEM_UNROLL)
which fully unrolls the three inner read- and write- pipelines and results in a single pipeline
that allows to simultaneously read and write from global memory. For the Copy and Scale
operation the kernel achieves more than 20 GB/s. The Add and Triad operations need two
input parameters, which leads to the PCle read channel being the bottleneck and only half of
the write channel’s bandwidth can be utilized.

For the RandomAccess benchmark, a data array of 229 items, which is a total of 4 GiB, is
equally split onto the available memory banks. All kernels have to calculate all addresses
and only update the value if it is placed within the range of the data array they are assigned
to. This leads to a compute-bound implementation for a high number of kernel replications
since the pipeline stalls caused by memory accesses per kernel will decrease. Still, the amount
of random numbers that have to be generated stays the same. So the maximum achievable
updates per second are limited by the kernel frequency. The measured performance will
show a higher gap to the maximum performance for designs with only a small amount of
replications because the random memory accesses will consume a considerable amount of
time. The RandomAccess benchmark shows huge performance differences between the used
boards. One reason for that is the difference in the kernel design that allows the creation of
a single pipeline in the case of the 520N and 520N MX board using the Intel-specific ivdep
pragma. This optimization also slightly decreased the calculation error that is introduced by
the buffer. Nevertheless, for the PAC SVM tests this optimization had to be disabled because
with 98% the error drastically exceeds the allowed range because of the latency increase for
global mmeory accesses. For Xilinx toolchains there is to our knowledge no optimization flag
similar to wdep.

3.2.3 FFT

The FFT benchmark calculates the 1D FFT of different sizes specified in the configuration
in a batched manner. The batch size is chosen such that the total size of the data is 2 GiB.
This allows the kernel to fill the pipeline and hide the latency of the calculation. Eight values
are loaded and stored in global memory per clock cycle and the calculation is implemented
in a single pipeline. For every value, LOG_FFT_SIZE complex floating-point multiplications
are calculated, which corresponds to five single-precision floating-point operations per value.
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Eight values are loaded from global memory per clock cycle so the expected performance of
the kernel can be modeled with the Equation 3.1.

prrr =5-5-f-1r-8 (3.1)

where s is LOG_FFT_SIZE, r is NUM_REPLICATIONS and f the minimum of the kernel frequency
and the memory interface frequency.

The model shows, that the FFT size and the number of kernel replications have a similar
impact on the expected performance. Since every kernel exclusively needs two memory banks,
the kernel replications are chosen after the number of available memory banks on the FPGA.
In the second step, the FFT size is increased to fill the FPGA. The configuration for the
U280 board with DDR is an exception in this regard because it does not fully utilize the
FPGA resources which again shows a weakness of the current FFT implementation: The
implementation makes use of a large shift register to store and delay data that is read from
global memory. With the current Xilinx Vitis tools, the largest supported shift register size is
1024, which is too small for FFT sizes for 2'° and beyond. Also, the achieved kernel frequencies
are too low to fully utilize the memory on the U280 board which has to be considered when
comparing the results to STREAM.

Besides that, the kernel shows a high efficiency of more than 85% for all FPGA which is close
to the STREAM results. Also, the PAC board shows a very high memory bandwidth for the
FFT kernel compared to STREAM. This indicates that large memory bursts have a positive
impact on the achieved memory bandwidth when using SVM.

3.24 GEMM

Similar to STREAM and FFT, single-precision floating point is used as data type in GEMM
since it is well supported among all used devices. The GEMM benchmark uses 4096 x 4096
matrices for the calculation. This is the biggest matrix size that fits into a single HBM2 bank.
The actual calculation is done on 8 x 8 matrices for all boards defined by the GEMM_SIZE
parameter. So the kernel can initialize the calculation of 1024 floating-point multiplications
and additions per clock cycle. This is the largest value for GEMM_SIZE that fits on the FPGAs.
The kernel replications and BLOCK_SIZE is chosen to utilize the FPGA resources as much as
possible while still providing an acceptable kernel frequency.

Because the kernel contains three pipelines that are executed sequentially, the total execution
time of the kernel can be modeled by the sum of the three pipelines as given in Equation 3.2.

b? b3 b?
fone = n +— 3.9
u'fmem ggfk u'g'fmem ( )
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where b equals BLOCK_SIZE, r equals NUM_REPLICATIONS, u equals GLOBAL_MEM UNROLL, g
equals GEMM_SIZE.

Moreover, n is the total matrix size, f; is the kernel frequency and f,c., is the frequency of
the memory interface.

For the platforms with on-board memory resources (DDR and HBM), the measured perfor-
mance deviates not more than 1.8% from the model performance. Only the SVM platform
performs 23% slower than the model. Simultaneous memory accesses of the different kernel
replications as well as the decreased memory burst sizes caused by the blocked reads are
likely bottlenecks during the global memory access phases. However, due to the higher clock
frequency, the overall performance of the SVM design is still slightly higher than the very
similar design on 520N DDR.

Since the GEMM benchmark is computation-bound, the performance is highly dependent on
the kernel frequency and less on the memory interface. We also provide a performance result
normalized to 100 MHz and a single kernel replication in the table to make the performance
easier to compare between all boards. The normalized performance of the 520N and U280
is close together which shows that the tools for both boards can generate hardware from
the code with a similar performance — indepenedent of the final clock speed. For the U280
with DDR memory, we had to set the target frequency to 100 MHz to achieve a successful
synthesis. Reasons for that are routing problems and not satisfied timing constraints because
of the additional logic needed for the DDR memory interface. In contrast, when using HBM2,
the place and route of three replications worked seamlessly and resulted in a considerably
higher clock frequency.

3.3 Capturing Device Characteristics using Single-FPGA
Benchmarks

In the previous section, we presented benchmark measurements on different FPGA platforms,
with different shells and SDK versions and created simple performance models for the
benchmarks. Now, we go one step further and show how the benchmark suite allows capturing
specific characteristics of the used FPGA boards and tools.

3.3.1 Impact of Kernel Frequencies

An additional synthesis for the 520N board with an increased local buffer size to 16,384
resulted in the resource usage and performance given in Table 3.7. The high BRAM usage
eventually leads to a reduced kernel frequency of 280 MHz, which is 93.34% of the frequency
of the memory controller. At the same time, the benchmark achieves up to 92.15% of the
performance compared to the kernel running with more than 300 MHz, which correlates
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with the frequency reduction. This shows that the benchmark is also capable of measuring
the performance of the board and tools since the kernel frequency is not least dependent
on the place and route of the kernel components by the compiler. Another insight seen in
the measurement results is the difference in the performance of Copy/Scale and Add/ Triad.
Since the kernel has a lower frequency than the memory controller, the kernel itself becomes
the performance bottleneck. Execution overheads introduced by switching the pipelines now
directly affect the kernel performance and are no longer hidden by latencies of the slower
memory controller.

Table 3.7: STREAM benchmark results on the 520N board with 1 MiB local memory buffer.

Synthesis Execution

LUTs 203,607 Copy 63.48 GB/s
(26%)

FFs 436,516 Scale 63.49 GB/s
(26%)

BRAM 7,409 Add 58.96 GB/s
(63%)

DSPs 128 Triad 59.00 GB/s
(2%)

Freq. 280.00 PCle Write 6.40 GB/s
MHz

PCIE Read 6.32 GB/s

3.3.2 Impact of Data Type on the Benchmark Performance

As mentioned in Section 3.2, STREAM and GEMM can be configured to use Floating-Point
(FP) values of different precision. The format of these data types is defined in the OpenCL
specification [7]. Depending on the application scenario, on the one hand, it can be beneficial
to calculate results with higher accuracy by using 64 bit Double Precision (DP) FP. On the
other hand, a lower accuracy can be sufficient in other scenarios, so 16 bit Half Precision
(HP) FP numbers can be used. For FPGA, especially the latter can be beneficial since
it may also come with a resource reduction for the design. The higher amount of unused
resources is an advantage in the place and route phase to achieve higher clock frequencies
or allow further scaling of the design. To investigate the impact of varying FP precision, we
synthesized and executed STREAM and GEMM additionally in HP and DP on the 520N and
U280 boards. The configuration was modified for the three data types as shown in Table 3.8.
Since the OpenCL specification does not offer a vector data type for HP, the scalar type
and loop unrolling had to be used to match the memory interface width by increasing the
GLOBAL_MEM_UNROLL parameter. This change required additional changes in the STREAM
kernel to enable memory bursts on the Xilinx board. For an easier comparison of the results,
also the Single Precision (SP) results of the updated STREAM kernel and for GEMM are

given in this section.
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Table 3.8: Benchmark configurations for different floating-point types.

520N U280 HBM2
Benchmark Parameter HP SP DP HP SP DP
NUM_REPLICATIONS - 4 4 32 32 32
DATA_TYPE - float  double half float  double
STREAM GLOBAL_MEM_UNROLL - 1 1 32 1 8
VECTOR_COUNT - 16 8 1 16 1

DEVICE_BUFFER_SIZE

65,636 32,768 65,536 2,048 16,384

NUM_REPLICATIONS 2 5 2 3 3 6
DATA_TYPE half float  double half float  double
GEMM GLOBAL_MEM_UNROLL 32 16 8 32 16 8
BLOCK_SIZE 512 512 512 512 256 128
GEMM_SIZE 4 8 4 8 8 4

Not all features defined in the OpenCL specification for HP and DP are implemented in
the SDKs. With the used Intel SDK version it is not possible to pass a HP FP value as an
argument to the kernel. Instead, only pointers to global memory are allowed for this data
type. This restriction makes it impossible to synthesize the current base implementation of
the STREAM benchmark with HP because the kernel requires to pass the scalar value used
for the Scale and Triad kernel. A fix would require the modification of the kernel signature,
which is not allowed for the base implementation. The Xilinx tools do not support vector
types for DP. Instead, loop unrolling was used similar to the HP implementation.

The resource utilization of the resulting bitstreams is given in Table 3.9 and the measurement
results in Table 3.10. The HP version of STREAM for the U280 shows an increase in logic
resources and a decrease in DSP usage. Only the addition is implemented using DSP, where
still two DSP are utilized per addition. The tool heuristics favor the implementation of HP
multiplications purely in logic, which leads to an increased use of flip-flops and LUT. Overall,
the measured performance for the HP and DP versions is lower than the SP performance
although all versions use clock frequencies way above the 225 MHz which are necessary to
fully utilize the global memory interface. The performance measurements for STREAM on
the 520N only show small differences for both precisions. For the DP version, a smaller local

memory buffer is used because synthesis with a buffer of the same size as the SP version
failed.

In the case of GEMM, the resource-efficient implementation of floating-point operations is
more important. On the U280, the resource usage with the HP version decreases as expected.
Multiplications are implemented using DSPs which requires fewer logic resources. In the
case of DP, the number of required DSPs would exceed the number of available DSPs. To
fit the kernels on the FPGA, the GEMM_SIZE is reduced to 4 while increasing the number of
replications to 6. The high logic utilization prevents further scaling of the number of kernel
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replications for this design.
Table 3.9: Benchmark resource utilization for different floating-point precisions.
Frequency
Benchmark Board Precision LUTs Registers BRAM DSPs [MHz]
STREAM 520N SP 150,827 333,381 7,169 128 312.50
(20%) (20%) (61%) (2%)
DPp 182,213 423,430 3,841 128 322.50
(25%) (25%) (33%) (2%)
U280 HP 454,848 874,432 1,408 2,048 341.00
HBM2 (42.58%)  (41.43%)  (T7.70%)  (22.71%)
SP 297,472 574,976 1,408 2,560 360.00
(27.84%)  (27.24%)  (77.70%)  (28.38%)
DP 382,848 731,456 1,408 2,816 345.00
(35.84%)  (34.66%)  (T7.70%)  (31.22%)
GEMM 520N HP 420,188 879,834 3,657 286 208.63
(44%) (44%) (31%) (5%)
SP 275,754 861,277 8,860 3,398 160.42
(36%) (36%) (76%) (59%)
DP 497,462 1,094,926 6,381 495 216.68
(55%) (55%) (54%) (9%)
U280 HP 364,614 680,277 1,242 6,147 243.00
HBM2 (31.78%)  (29.11%)  (68.47%)  (68.15%)
SP 499,002 920,127 666 7,683 236.00
(42.64%)  (38.70%)  (36.71%)  (85.18%)
DP 553,260 957,318 758 4,230 241.00
(50.10%) (43.17%) (41.72%) (46.90%)

On the 520N, most of the floating-point operations are implemented in logic for both the HP
and DP versions because the DSPs in the Intel FPGAs are optimized for SP operations. This
results in similar, small configurations for HP and DP and with that to a heavily decreased
performance compared to the SP configuration. However, it has to be noted here that the
base implementation for single precision only makes use of 60% of the available DSP on the
Intel devices whereas for the Xilinx devices, it is above 85%. More optimized implementations
like [47] can achieve a higher resource utilization and also a higher performance for SP on
these devices of more than 1 TFLOP/s. This shows, that the DSP in the Xilinx FPGAs are
more adaptable to different precisions, but an optimized SP design has a higher potential to
achieve better performance on the Intel devices.
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Table 3.10: Benchmark results for different floating-point precisions.

520N U280 HBM2
Benchmark HP SP DP HP SP DP
STREAM Copy [GB/s] - 68.40 68.10 362.35 385.97 353.23
STREAM Scale [GB/s] - 68.40 68.11 363.80 386.67 354.70
STREAM Add [GB/s] - 69.80 69.58 367.19 389.24 358.22
STREAM Triad [GB/s] - 69.80 69.58 367.46 389.61 358.74
STREAM PCle read [GB/s] - 6.47 6.47 7.33 7.08 6.60
STREAM PCle write [GB/s] - 6.30 6.30 6.39 6.67 6.23
GEMM [GFLOP/s] 51.19 708.95 52.07 684.03 603.86 146.92
GEMM norm [GFLOP/s] 12.27 88.39 12.02 93.83 85.29 10.16
GEMM Error 9.6e-8 6.0e-7 5.7e-7 1.8e-5 2.0e-6 1.1e-6

3.3.3 Kernel Scheduling on the U280 with HBM2

In initial measurements, the U280 board showed a very low efficiency of below 30% for all
operations of the STREAM benchmark so we further investigated the kernel performance
with additional experiments. The STREAM benchmark measures the time from starting the
first kernel until the last kernel has finished execution to calculate the bandwidth. This is
similar to using the slowest runtime of all kernels to calculate the bandwidth. For a more
detailed look at the performance of the benchmark, we used the profiling information provided
by the OpenCL API to collect the execution times separately for every kernel during the
benchmark execution. The used profiling events are the kernel start and end times. The
observed kernel execution times for the Copy operations are given in Figure 3.3 in groups
of 15 kernels with regards to the chronological sequence they were enqueued for execution.
For this measurement, the kernels were enqueued sequentially in two different orders, and
the measurements were repeated 20 times. The second and third groups show approximately
double and three times the execution time of the first 15 kernels. This leads to the hypothesis
that only 15 kernel executions can be maintained simultaneously and that the reported kernel
execution time also contains the wait time until the kernel is started. With a modified Copy
kernel that uses two HBM2 banks, one for each array, we were able to measure 373 GB/s
using 15 kernel replications. At the same time, we experienced a similar performance drop for
the execution with 16 replications. Thus, the effect seems to be independent of the utilization
of the global memory.

This insight triggered further research into the kernel scheduler of the Xilinx OpenCL runtime
system, which actually contains three scheduler implementations. After disabling the two
scheduler variants ERT and KDS in a configuration file that at this time don’t support
more than 15 concurrent kernels, execution falls back to a scheduler that does not contain
these limitations. This insight illustrates the importance of a benchmark suite defined on the
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OpenCL level that measures not only the raw performance potential of FPGA hardware, but
also the impact of compilation and synthesis tools and, in this case, runtime environments.
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Figure 3.3: Kernel execution times for the Copy operation on the U280 board with HBM?2
memory using 32 kernel replications. The execution times are combined in blocks of 15 kernels
in the order they were enqueued for execution.

3.3.4 Power Measurements on FPGA and CPU

Another, increasingly important metric in HPC is power efficiency. By default, the presented
HPCC FPGA benchmarks do not measure the power consumption since there is no standard-
ized way to retrieve this data. Nevertheless, we created measurement scripts for each FPGA to
measure the power consumption of STREAM and GEMM to investigate the power efficiency
of recent FPGA boards during execution. The scripts measured the power consumption
during the benchmark execution in intervals of 100 ms, and we calculated the average over the
entire execution time. To reduce the FPGA idle time during the measurement, we increased
the array sizes to the biggest power of two that fit into the device’s memory and increased
the number of repetitions to 100 in the case of STREAM. For GEMM, the matrix width is
set to 23,040 to match the block sizes of the FPGA implementations. For the HBM2 boards,
the matrix size has to be reduced to the largest matrix that fits into a single memory bank.
In the case of the U280 with HBM2 this is 8,192 and for the 520N MX 11,264.

As a comparison, we executed STREAM v5.10 on the two-socket CPU system equipped with
Intel Xeon Gold 6148F which is also used as the host for the BittWare 520N and PAC D5005.
We measured the CPU 4+ DDR power consumption using Likwid in a 10 s interval during
execution. For the GEMM CPU implementation, we used the sgemm routine of Intel MKL
2020.2.254.
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Table 3.11: Power consumption vs benchmark results for the STREAM benchmark.

520N 520N MX U280 HBM2 U280 DDR PAC SVM 2x Xeon

Average [W] 68.82 54.93 41.44 36.15 54.43* 323.29
Peak [W] 76.78 73.8 59.98 47.09 55.21* 344.91
Performance per Watt 0.91 4.61 6.31 0.74 0.37* 0.53
[GB/(Ws)]

Copy [GB/s] 69.09 331.70 372.27 34.06 20.43 167.15
Scale [GB/s] 69.10 331.94 374.82 34.05 20.43 173.44
Add [GB/s] 70.08 340.34 378.51 34.67 15.10 183.99
Triad [GB/s] 70.02 340.41 378.55 34.66 15.12 183.40
PCle read [GB/s] 6.40 6.30 7.46 5.44 - -
PCle write [GB/s] 6.30 6.15 7.18 5.47 - -

* Additional power consumed by using host DDR memory not included

Table 3.12: Power consumption vs benchmark results for the GEMM benchmark.

520N 520N MX U280 HBM2 U280 DDR PAC SVM 2x Xeon

Average [W] 81.67 54.90 50.32 65.85 71.35%* 281.49
Peak [W] 87.38 64.73 71.48 72.42 80.39* 362.10
Performance per Watt 8.33 11.93 8.61 3.74 8.57* 12.57
[GFLOP/(Ws)]

GFLOP/s 727.58 771.99 615.14 270.87 689.31 4,552.19

*Additional power consumed by using host DDR memory not included

Table 3.11 presents the power consumption along with the benchmark performance of the
FPGA targets and CPU reference for STREAM. The power consumption of the benchmark
execution is given in the upper part of the table. The average power consumption is calculated
for the whole benchmark execution time. It needs to be noted that for all FPGA executions
except for the PAC SVM, this also includes buffer transfer times for every benchmark
repetition. During this time the FPGA is nearly idle and consumes less power. Therefore,
the performance per watt is calculated using the peak measured bandwidth divided by the
peak power consumption. This metric can be used to compare the power efficiency of the
devices during the execution of STREAM. FPGA platforms using on-board DDR memory
are up to 1.7x more power efficient than the CPU reference during this memory-intensive
benchmark, the FPGAs with HBM2 show a more than 8x higher performance per Watt than
the CPU reference.

The measurements for GEMM in Table 3.12 show a better power efficiency of the CPU
compared to all FPGAs. However, it has to be noted that this table compares a generalized
OpenCL implementation for Intel and Xilinx FPGAs with the highly optimized MKL library
for Intel CPUs that includes customized code paths for the AVX512 instruction set of the
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benchmarked CPU type. Especially for the Intel FPGAs the base version fails to fully utilize
the available DSPs. Implementations like [47] have shown that it is possible to achieve
considerably better performance with optimized kernels, which most likely also results in
better power efficiency.

3.4 Chapter Conclusion

In this chapter, we proposed HPC'C' FPGA, a novel FPGA OpenCL benchmark suite for
HPC. Therefore, we provide configurable OpenCL base implementations and host codes of
four selected benchmarks of the well-established HPCC benchmark suite. We showed that
the configuration options allow the generation of efficient benchmark kernels for Xilinx and
Intel FPGAs using the same source code without manual code modification. We executed
the benchmarks on four FPGA boards with three different memory setups including HBM2
variants for Intel and Xilinx FPGAs and compared the results with simple performance models.
The evaluation showed that, for most of the benchmarks, the measured performance is close
to the modeled peak performance under resource or global memory constraints of the FPGA
board. Additionally, the execution of two of the benchmarks with different floating-point
precisions gives insight into their support on the tested device families. In these cases, the
benchmarks can start to serve as a deployment criterion for FPGA accelerated systems.

Nevertheless, the evaluation also showed that some of the base implementations are unable
to fully utilize the available resources or produce low kernel frequencies because we were
not able to write code that works well on all tested devices. This can also be seen in the
power measurements, where the base implementations do not always succeed in achieving
a better power efficiency than the corresponding CPU implementation. However, the base
implementations are always a trade-off between compatibility with as many devices as possible
and performance. In these cases, it may be required to also provide optimized implementations
for specific devices that adhere to the benchmark rules to increase the significance of the
benchmark results. The benchmark suite comes with a code structure and build infrastructure
to support these implementations.

For now, scaling of the benchmarks is limited to a single FPGA board with emphasis on
the global memory systems and memory access patterns. However, to properly measure
other important characteristics of multi-FPGA systems, additional benchmarks are required
to allow the performance evaluation of parallel multi-FPGA applications and inter-FPGA
communication.
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A4

Multi-FPGA Benchmarking and inter-

FPGA Communication

In the previous chapter, we focused on the performance characterization of a single FPGA
mainly based on memory access patterns of the applications. However, the scalability of the
benchmarks is still limited to a single FPGA and some important benchmarks of the HPC
Challenge are missing in the proposed suite. To fully exploit the performance potential of
HPC systems, parallelization beyond a single node — or in our case FPGA board — is crucial.
Because of that, our benchmark suite is the first going one step further and natively supports
the parallel execution of all benchmarks on full multi-FPGA systems, utilizing inter-FPGA
communication. The benchmarks b__eff, a synthetic network bandwidth benchmark, a parallel
matrix transposition PTRANS, and HPL are good candidates to stress the communication
interfaces by scaling the workload even further beyond a single FPGA.

For inter-FPGA communication, there does not exist a standard comparable to MPI on CPUs
and multi-FPGA applications often implement custom network stacks specialized for the
communication pattern and the used network infrastructure. The serial interfaces of recent
FPGASs can be used to establish circuit-switched as well as packet-switched communication and
various network stacks and full communication frameworks range from link-level networking
IPs to highly complex frameworks with high-level APIs and collective communication support.
This high flexibility in the network architecture and functionality enables optimization
of the network stack and infrastructure for the specific application in the HPC domain.
However, as discussed in Section 2.3, existing multi-FPGA systems often come with a fixed
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infrastructure for inter-FPGA communication that is only compatible with a small set of
existing communication frameworks. Limiting the usage of communication frameworks for
our base implementations, this fact again shows the importance of the extensibility of our
benchmark suite to support framework-specific optimized benchmark implementations to
utilize the system-specific network infrastructure.

In this chapter, we will take a closer look into the landscape of inter-FPGA communication
approaches and their current state of the art for FPGA accelerated HPC applications by
further extending our existing benchmark suite and evaluating different communication
approaches. The design of our benchmark suite simplifies the extension with support for new
communication frameworks while taking advantage of the shared build pipeline and result
validation. With that, our benchmark suite sets the foundation for a common baseline for the
empirical evaluation of communication frameworks, independent of the FPGA vendor and
networking infrastructure.

The contents of this chapter have been published as an article in the ACM Transactions on
Reconfigurable Technology and Systems in 2023 [49]. All measurements results, scripts, and
reports used in this chapter are published via Zenodo [50].

4.1 Definition and Implementation of Multi-FPGA Bench-
marks

The existing benchmark kernels of HPCC FPGA are called base implementations and are
designed to provide good performance on different FPGA architectures. On the one hand, this
is achieved with configuration parameters that allow scaling the benchmark kernels and, on
the other hand, with code optimizations that apply to a broad range of FPGAs. This allows
the creation of efficient designs without manual code changes for different FPGA architectures.
The configuration parameter NUM_REPLICATIONS is supported by all benchmarks of the suite
and is used to replicate kernels to increase resource utilization. We also support this parameter
in the newly added benchmarks. A more detailed description of the build process is given in
Chapter 3 and in the online documentation.

Different hardware interfaces can be utilized for inter-FPGA communication with recent FPGA
boards. Direct inter-FPGA communication via the serial interfaces requires vendor-specific
extensions and libraries, which makes it impossible to create base implementations with this
approach. However, sending the data over the host via PCle and MPI can be implemented in
vendor-independent OpenCL code. Thus, we use this communication approach in the base
implementations.

Since we use the same structure for code organization and the build process as the existing
benchmarks in HPCC FPGA, the new benchmarks come with support for custom kernels.
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Figure 4.1: Improved architecture of the benchmark host code to increase extendability with
different OpenCL kernels. NetworkBenchmark is the host implementation of one of the new
benchmarks. It itself contains different implementations for the execution of the OpenCL
kernels on the FPGA that depend on the communication scheme. To extend a benchmark for
another communication scheme, only a new execution implementation needs to be added.

This allows easy extension of the benchmarks with additional OpenCL kernels. One restriction
is that the OpenCL kernels need to have the same kernel signature to work with the existing
host code. This means the types of input and output parameters of the kernels and their
ordering need to be the same. For some communication schemes and optimized designs, it
may be required to slightly change the kernel signature to pass additional information to the
kernels. We extended the host code architecture as shown in Figure 4.1 to also simplify the
extension of the benchmarks from the host side. The CommunicationType defines the different
communication schemes that are supported by the benchmark suite. Each benchmark inherits
from the HpccFpgaBenchmark class, so a substantial part of the host code is shared between
all benchmark host implementations. The actual OpenCL kernel execution is done in the
implementations of the ExecutionImplementation interface. This enables FPGA designs
with different numbers of OpenCL kernels or kernel signatures. During runtime, the execution
implementation is selected based on the CommunicationType which is determined by the
name of the bitstream file. Adding support for another FPGA design with different kernels
only requires an additional implementation of the execution interface as it is done for PCle
+ MPI and FExternal Channels in the class diagram. In this work, we use this feature to
implement optimized versions of the benchmarks for Intel FPGAs with direct inter-FPGA
communication via QSFP ports. The OpenCL extension that we use for this implementation
is called TEC.

For every benchmark, there has to be one MPI rank per FPGA, so the number of MPI ranks
needs to match the number of used FPGAs. Before every kernel execution on the FPGA, the
hosts synchronize using an MPI barrier to reduce the measurement error. Always the slowest
execution time among all FPGAs is reported for each repetition of the benchmark execution.
The best repetition is used to calculate the derived performance metric of the benchmark.
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In the following, we give a detailed description of the new benchmark implementations.

4.1.1 Effective Bandwidth Benchmark

In this benchmark, we use the rules of the Effective Bandwidth (b_ eff) benchmark given in
[51]. It is a synthetic benchmark that uses the derived metric effective bandwidth to combine
both — the network latency and bandwidth — into a single metric. The original benchmark
sends a total of 21 messages of sizes 29,2, ..., 2% byte to neighbor nodes in a ring topology.
The effective bandwidth is calculated from the measured bandwidth for the different message
sizes as shown in Equation 4.1.

beﬁ _ ZL(mafErezQJ(lb(L? T’@p))) (41)

where L are the message sizes, rep the repetitions of the execution and b(L, rep) the measured
bandwith for message size L during repetition rep.

The base implementation of this benchmark does not require a FPGA kernel because data is
transferred between the FPGAs solely by the host. The optimized version for Intel FPGAs is
configurable with the parameters given in Table 4.1. Next to the number of kernel replications,
it contains the width of the external channels in Bytes.

Table 4.1: Configuration parameters of the b_ eff benchmark.

Parameter Description

CHANNEL_WIDTH The width of a single external channel in bytes

4.1.1.1 Base Implementation

The base implementation exchanges the messages between the global memory of neighboring
FPGAs in the ring. Therefore, it reads a memory buffer representing the message using
the OpenCL directive c1EnqueueReadBuffer from FPGA to the host. In a second step, it
exchanges the buffer via MPI_Sendrecv with the node that contains the neighboring FPGA.
In the last step, the buffers are written to the global memory of the FPGAs with the
clEnqueueWriteBuffer OpenCL directive. These steps are executed for both directions in
the ring and for all message sizes.

The expected performance is limited by the required time to read (pcie_ read,) and to write
(pcie__write,) a message of the given size to the FPGA via PCle, plus the time required
to exchange the message between the nodes using MPI (mpi,). All three steps need to be
executed sequentially, so the expected bandwidth for a message size L can be modeled with
Equation 4.2.
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2-L
b, = — - : - (4.2)
pcie__write, + mpi, + pcie__read,

4.1.1.2 Intel External Channels Implementation

The Intel-optimized implementation requires OpenCL kernel code and consists of two different
kernel types: a send kernel and a receive kernel. During execution, they continuously send or
receive data over two external channels of the width specified in CHANNEL_WIDTH. A kernel
replication always consists of both kernels since a send kernel always requires a counterpart.
Because the message size might exceed the width of the channels, the messages are further
divided into data chunks that match the channel width. Thus, a message is streamed chunk-
wise over two channels to the receiver in a pipelined loop. At kernel start, the send kernel will
generate a message chunk that is filled with bytes of the value ld(m) mod 256. The message
chunk will be used continuously for sending and will be stored in global memory after the last
transmission. This allows verifying the correct transmission of the data chunk over the whole
range of repetitions.

Bi-directional
R
Send N channel Ly ecv
A
Exchange Exchange
channel channel
A
&
Recv ™ Send
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Figure 4.2: Data exchange of two kernel pairs over the external channels. The kernel pairs are
executed on two different FPGAs and communicate over the bi-directional external channels.
The kernel pairs are connected over an internal channel to forward the received data to the
send kernel for the next iteration.

A schematic view of the channel connections for the kernel implementation is given in
Figure 4.2. The kernels are connected to another kernel pair on a different FPGA. In the
Figure, the kernels form a small ring over two FPGAs and the topology can be arbitrarily
scaled by adding more FPGAs.

The arrows describe the path of a single data chunk through the kernels. A message chunk
will be repeatedly sent over the external channel until the sum of all sent chunks matches
the desired message size. Messages are sent in parallel in both directions. After a complete
message is sent, the message chunk is forwarded from the receive to the send kernel over the
internal channel. Only then, the next message is sent now using the message chunk received
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over the internal channel. The message chunk is stored in a global memory buffer after the
last message is exchanged and used for validation on the host side. A single send-receive
kernel pair will use two external channels in both directions.

Table 4.2: Characteristics of the serial channel IP of the BittWare 520N board taken from
the specification [52].

Parameter Description Value
Cn Number of external channels 4

q Latency of a channel 520 s
cr Frequency of a channel 156.25 MHz
Cuw Width of a channel 32 B

The performance metric of the benchmark combines latency and the total bandwidth of the
network. To model the performance, we need precise information about the latency and
bandwidth of the external channels as they are given in Table 4.2. Every kernel replication
can only make use of two external channels, which means that ¢/, = 2 and the total number
of external channels is utilized by using a replication count of 2. The execution time of a
kernel pair for a given message size can then be modeled with Equation 4.3 where L is the
used message size and ¢ is the number of messages that are sent.

L .
(%Tﬂ "t

- 4.
o +i-q (4.3)

tri=
For the bandwidth model, we insert the values for the IP core taken from Table 4.2 which
results in Equation 4.4.

2-L
by = — (4.4)
(515 - 6.4ns + 520ns

This equation models the bandwidth for a single send-receive kernel pair and is expected to
scale linearly with the number of kernel pairs.

4.1.2 Parallel Matrix Transposition

The parallel matrix transposition (PTRANS) benchmark computes the solution of C' = B+ AT
where A, B,C' € R™". The matrix A is transposed and added to another matrix B. The
result is stored in matrix C'. All matrices are divided into blocks, and the blocks are distributed
over multiple FPGAs using a PQ distribution scheme shown in Figure 4.3.
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Figure 4.3: Diagonal distribution of the 16 blocks of a 4 x 4 block matrix on four FPGAs
with P = (Q = 2. The original matrix is shown on the left. Colors equal the FPGA in which
global memory the data block of the matrix will reside at the beginning of the calculation.
On the right, the placement of the data on the different FPGAs is shown. The bold lines
represent the borders of the memory of a single FPGA.

Table 4.3: Configuration parameters of the PTRANS benchmark.

Parameter Description

BLOCK_SIZE Size of the matrix blocks that are buffered in local memory and also
distributed between the FPGAs.

CHANNEL_WIDTH Width of the channels in data items. Together with the used data type, the
width of the channel in bytes can be calculated.

DATA_TYPE Specifies the used data type for the calculation.

4.1.2.1 Base Implementation

The configuration parameters for the implementation are given in Table 4.3. The number of
kernel pairs can be defined with the NUM_REPLICATIONS parameter and the block size that
also defines the sizes of the local memory buffers can be set with BLOCK_SIZE. Moreover, the
width of the channel is defined by CHANNEL_WIDTH and DATA_TYPE. It should match the width
of the used communication channel. In the case of the base implementation, this is the width
of the global memory interface.

The implementation consists of a single OpenCL kernel that sequentially executes three
pipelines for every matrix block. In the first pipeline, a block of matrix A is read from global
memory and written into a buffer. The second pipeline reads the block of A transposed from
the buffer, reads a block of B from global memory, adds both blocks, and stores the result in
an additional buffer. The content of this buffer is written back to global memory in the last
pipeline.
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Every pipeline is reading or writing a single block of data from the global memory. This is a
similar approach as it is used for the STREAM benchmark in the suite and leads to efficient
use of the global memory bandwidth if the design is replicated for every memory bank. Before
the kernel can be executed, the matrix A needs to be exchanged by the host ranks using
MPI Sendrecv. After this operation, the matrix is blockwise transposed so the FPGA only
has to transpose the individual blocks.

With Equation 4.5, the expected execution time for a single matrix block is given. It consists
of the time required to exchange the blocks via MPI and write them into the global memory of
the FPGASs (typr) and the execution time of the OpenCL kernel. The kernel execution time
is based on the three pipelines that are executed sequentially, the block size b, the channel
width in number of values ¢,,, and the clock frequency of the used channel ¢;. Depending on
the number of kernel replications, the FPGA may be able to process multiple matrix blocks
simultaneously without interference.

2
tprrANS = typr + 3 - P (4.5)

w

For the verification of the data, the non-transposed blocks of matrix A are exchanged
by the hosts using MPI. Then, each host re-calculates the result using a CPU reference
implementation. The reported error is the maximum residual error between the FPGA and
CPU result.

4.1.2.2 Intel External Channels Implementation

The Intel-specific implementation comes with the restriction that P = . This allows setting
up a static circuit-switched network between the pairs of FPGAs and exchanging the matrix
blocks without additional routing. The FPGA logic is implemented in two kernels per external
channel, similar to the b_eff benchmark. For this implementation, the width of the channel
defined by CHANNEL _WIDTH and DATA_TYPE should match the width of the external channels.

One of the kernels reads a block of A into local memory. The size of this local memory buffer
can be defined with BLOCK_SIZE. The block of matrix A is then read transposed from local
memory and written into the external channel. Reading from global memory and writing to
the external channel is implemented in a single pipeline, double buffering the local memory
block.

The second kernel will receive chunks of a transposed block of A, add a block of B to it
and store it in global memory. In consequence, no local memory is needed in this kernel.
One major goal of this implementation is to continuously send and receive data over all
available external channels to utilize the available network bandwidth, which is most likely
the performance bottleneck. Nevertheless, the kernels may also suffer from low global memory
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bandwidth because they need to concurrently read and write to three different buffers for
every kernel replication.

This leads to a total required global memory bandwidth on a single FPGA given in Equa-
tion 4.6.

bglobal =37 Cy- Cy (46)

where 7 is the number of external channels per FPGA (or the number of kernel replications),
and ¢y and ¢, the frequency and the width of an external channel as defined in Table 4.2.
This means the required global memory bandwidth is three times higher than the network
bandwidth to keep the benchmark network bandwidth-bound. As a performance metric,
the Floating Point Operations (FLOPs) per second are calculated. For the calculation it
is assumed, that n? additions are required for the computation on matrices of width n.
Considering the characteristics of the external channels of the used BittWare 520N boards,
the maximum performance will be p =7 -r-32B - 156.25M H z for a sufficiently large matrix,
where 7 is the number of used FPGAs. Note, that the block size is not considered in this
performance model. It is used to allow larger memory bursts from global memory, which are
defined by the width of the block. This will lead to a higher efficiency of the global memory
accesses, but since the performance model covers the case where the network bandwidth is
the bottleneck, this parameter can be neglected. However, for very small block sizes, the
efficiency of the global memory may be reduced to the point that it becomes the bottleneck.

4.1.3 High Performance LINPACK

The HPL benchmark solves a large equation system A -x = b for x, where A € R"*" and
b,z € R™. This is done in two steps: First, the matrix A is decomposed into a lower matrix L
and an upper matrix U. In the second step, these matrices are used to first solve L -y = b and
finally U -z = y to get the result for the vector x. For the implementation of the benchmark on
FPGA, the rule set for the HPL-AI mixed-precision benchmark [53] was adopted, which defines
A to be a diagonally dominant matrix. Thus, the LU factorization does not require pivoting.
In contrast to the original benchmark, it is possible to choose between single-precision and
double-precision floating-point values. Since the benchmark suite is designed to only measure
the FPGA performance, no additional iterative method is used to refine the result if a lower
precision is used. Only the LU decomposition, which is the most compute-intensive step in
this calculation, is executed on the FPGAs. The number of FLOPs for this step is defined to
be ZT"S for a matrix A with width n in contrast to 2 - n? for solving the equation systems for
the LU-decomposed matrix. Only the performance of the LU factorization on the FPGA is
reported.
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LU Top

Left Inner

Figure 4.4: In every iteration of the algorithm, a single block in the matrix is decomposed
into a lower and upper matrix (green). The lower matrix is used to update all blocks on the
right of this block (blue) and the upper matrix to update all blocks below this block (orange).
The updated Top and Left blocks are then used to update all inner blocks (red) and the dark
red blocks need to be updated before the next communication phase can start.

4.1.3.1 Base Implementation

The base implementation uses a blocked, right-looking variant for the LU factorization as
described in [54]. Therefore, the matrix will be divided into sub-blocks with a width of
QBLOCK _SIZE_LOG elements. The exact size of the blocks is defined over a configuration
parameter. For the update of a single row and column of blocks, we need to perform four
different operations. A single iteration of the blocked LU decomposition is shown in Figure 4.4.
In every iteration, the LU factorization for a diagonal block of the matrix is calculated which
is marked green in the visualization. All grey-colored blocks on the left and top of this block
are already updated in previous iterations and will require no further processing. This is why
this approach is called right-looking since we will always update the blocks on the right of the
LU block. After the LU block is decomposed, the lower matrix block L is used to update
all blocks on the right of the LU block. Since they are the top-most blocks that still require
an update, they are in the following called top blocks. The upper matrix block U is used to
update all blocks below the current LU block. These are the left-most blocks that require
an update, so they are referred to as left blocks. The left and top blocks again are used to
update all inner blocks, which can efficiently be done using matrix multiplication. The design
contains a separate kernel for each of the four operations.

Additionally, a single iteration of the LU decomposition is split into two subsequent steps
in the design. In the communication phase, the LU, left, and top blocks are updated which
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also involves data exchange between kernels on the same FPGA and between the FPGAs. In
the update phase, the exchanged data is used to update all inner blocks locally using matrix
multiplication kernels.

Both phases can overlap as shown by the timeline of kernel executions in Figure 4.5 based
on the matrix given in Figure 4.4. The number of matrix multiplications required for a
single iteration of the algorithm increases quadratically with the matrix size. No data
dependency exists between the light red matrix multiplications and the operations of the next
communication phase, which allows the overlapping of the two phases. For large matrices, this
means that the performance of the implementation is limited by the aggregated performance
of the matrix multiplication kernels. During the communication phase, matrix blocks are
exchanged via the host using PCle and MPI.

update and next

communication phase communication phase
e

-

. Y R
LU
Top
Left
MM 1
MM 2
time
broadcast broadcast broadcast

Figure 4.5: Kernel executions over time for a single iteration of the LU decomposition in the
base implementation. During the communication phase, data needs to be exchanged two
times between FPGAs using MPI and PCle. The matrix multiplication kernels are executed
in the update phase. Communication and update phase of subsequent iterations can overlap,
so communication latency can partially be hidden.

4.1.3.2 Intel External Channels Implementation

Figure 4.6 shows connections between the kernels used in the communication phase. For
the execution over multiple FPGAs, the boards are arranged into a quadratic 2D torus of
variable size using point-to-point connections. Not all kernels need to be active on every
FPGA within a single iteration. Instead, data can also be received over the external channels
if it is computed on another FPGA. If the FPGA is in charge of calculating the LU block, the
LU kernel is executed and the decomposed L and U blocks are forwarded row and column-wise
to a network kernel. The network kernel forwards the data over the external channels to
neighboring FPGAs in the torus. The four possible directions are used for different types of
data as it is indicated by the red arrows. Moreover, the network kernel forwards the locally
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computed L and U blocks to the Left and Top kernel. The top and left kernels use the
data to update a block with the L. or U block and forward the updated block to the next
network kernels. Here, the input data is selected either from the internal or external channels
and data is forwarded over the external channels if required. Besides that, incoming data is
stored in global memory buffers for later use in the update phase. By splitting the network
communication into three kernels, it is possible to establish a cycle-free data path through
the torus during the communication phase. This reduces the impact of pipeline and channel
latencies during this phase.
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Figure 4.6: Data flow through the kernels of the communication phase on a single FPGA.
The kernels are connected over internal channels. Between the calculation kernels, network
kernels are used to select the correct input for the next kernel from the internal or external
channels. The network kernels for the top and left direction will also store incoming matrix
blocks as input for the matrix multiplication. The bold arrows represent the serial channels
and their direction in the 2D torus.

During the transfer from the left kernel to the network kernel, the left blocks are transposed.
This allows a simplified design of the matrix multiplication for the inner blocks since all input
matrices can be processed row-wise. Figure 4.7 shows a part of the execution of the kernels
over time for the iteration given in Figure 4.4. It can be seen that the LU kernel is only
executed once per communication phase. The lower and upper matrices are buffered by the left
and top kernels to allow the update of subsequent blocks. All network kernels are summarized
under Network in the graph. In the example, two matrix multiplication kernels are used, and
the blocks a redistributed between the two replications. The next communication phase starts

as soon as the first row and column of the inner blocks are updated, which is represented by
the dark red blocks.

A 2D torus is used to connect multiple FPGAs for the LU decomposition. Every FPGA is
programmed with the same bitstream and the host schedules the kernels in the required order
and configuration. Matrix blocks are distributed between the FPGAs using a PQ-grid of the
size of the torus. This allows balancing the load between the devices more evenly since the
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Figure 4.7: Kernel executions over time for a single iteration of the LU decomposition. During
the communication phase, the network kernels are active whereas during the update phase
the matrix multiplication kernel is executed. Communication and update phase of subsequent
iterations overlap.

matrix will get smaller with every iteration of the algorithm. In Figure 4.8 the active kernels
and the data exchange between FPGAs in a 3 x 3 torus is shown for a global matrix size of
more than 12 blocks so the FPGA has to update more than four blocks. In this case, only
the FPGA on the top left needs to execute all four compute kernels, but every FPGA will use
its matrix multiplication kernel.

The base implementation of the HPL benchmark uses a similar two-leveled blocked approach
to the GEMM benchmark described in Chapter 3. Thus, it uses two parameters to specify
the block sizes of the local memory buffers and of the compute units as described in Table 4.4.
Additionally, it is possible to specify the data type and specify the number of matrix multipli-
cation kernels using the NUM_REPLICATIONS parameter. The two-leveled blocked approach
is also used for the communication kernels and all kernels use the same first-level block
sizes. A main difference is the parallelism in the computation between communication kernels
and matrix multiplication. The matrix multiplication kernels unroll the computation in
three dimensions in the second level whereas the communication only uses a two-dimensional
unrolling. This means the parallel calculation increases cubically with the chosen register
block size for the matrix multiplications and only quadratically for the communication kernels.
It would also be possible to scale the second-level blocks differently between the two kernel
types. This has to be considered in further optimization steps.
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Figure 4.8: For the LU decomposition, the FPGAs use a 2D torus network topology to
exchange data. This example shows the active kernels during a single iteration in a 3 x 3
torus. The black boxes are the FPGAs, and the colors within the boxes indicate the active
kernels. The direction and type of data that is forwarded between the FPGAs is given by the
arrows. In every iteration of the algorithm this communication scheme shifts one FPGA to
the bottom-right in the torus.
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Table 4.4: Configuration parameters of the HPL benchmark.

Parameter Description

LOCAL_MEM_BLOCK_LOG Logarithm of the size of the matrix blocks that are buffered in local
memory and also distributed between the FPGAs.

REGISTER_BLOCK_LOG Logarithm of the size of the second level matrix blocks. The kernels

contain completely unrolled logic to start the computation of such a
sub-block every clock cycle.
DATA_TYPE Specifies the used data type for the calculation.

Only the LU factorization of matrix A is calculated on the FPGAs. After this step, the
equation system is solved using a distributed CPU reference implementation among all MPI
ranks. The input matrix was generated such that the resulting vector is a vector of all ones.
The reported error is the normalized maximum residual error calculated with n~||||glcw‘l|\‘e where n
is the width of matrix A and e the machine epsilon.

4.1.4 Extend Existing Benchmarks for Multi-FPGA Execution

In addition to the new benchmarks proposed in this chapter, we also extend the existing bench-
marks of Chapter 3 for the execution in a multi-FPGA environment. An essential configuration
parameter for all benchmarks is the specification of kernel replications NUM_REPLICATIONS.
These kernel replications are kernels with the same or very similar functionality to allow
higher utilization of the FPGA resources. The input data is then distributed between the
replicated kernels such that every kernel works on its own data set. Especially for devices
with HBM2 this step is crucial to make use of the high number of memory banks and the high
aggregated bandwidth. As a result, the existing implementations in HPCC FPGA already
handle the memory banks on a single FPGA like a distributed memory system. and changes
on the OpenCL kernels are not required for most of the legacy benchmarks. The extensions
focus on the host codes to trigger the distributed execution and support the validation and
result collection over multiple compute nodes using MPI.

The RandomAccess benchmark was not well scalable because it could at best update a single
data item per clock cycle even when scaled over multiple FPGAs. This is limited by the way
the pseudo-random numbers for the address calculation are generated. We now allow the
generation of multiple pseudo-random numbers per clock cycle to overcome this limitation
by replicating the Random Number Generator (RNG). This also changed the configuration
parameters of the benchmark as given in Table 4.5.

A single replication of the improved RandomAccess kernel is given in Figure 4.9. The RNGs
are initialized with different seeds to generate a sub-part of the random-number sequence. In
consequence, the same random number as with the old version is generated, only the order of



60 4.2. BENCHMARK EXECUTION AND EVALUATION

updates may vary. Every clock cycle, the RNG outputs a new random number. This number
is placed into a shift register if two conditions hold:

e The buffer address derived from the random number is in range of the kernel replication.
o The shift register does not already contain a valid random number at the position where
it should be inserted.

In the latter case, the RNG will stall until the random number can be placed into the shift
register. So in other terms, the produced random numbers are sequentialized by the shift
register for the input into the actual update logic. This approach increases the probability,
that the update logic processes a valid address for high numbers of kernel replications. Since
scaling over multiple FPGAs corresponds to increasing the number of kernel replications, this
also improves the performance in multi-FPGA execution.

Table 4.5: Configuration parameters of the RandomAccess benchmark.

Parameter Description
HPCC_FPGA_RA_DEVICE_BUFFER_SIZE_LOG Logarithm of the size of the data buffer that is
randomly updated in number of values.
HPCC_FPGA_RA_RNG_COUNT_LOG Logarithm of the number of RNGs that are created
per kernel replication.
HPCC_FPGA_RA_RNG_DISTANCE Distance between RNGs in the shift register.
RNG RNG RNG RNG
Data J Update
Valid

Figure 4.9: RandomAccess shift register used to connect the RNGs to the update logic. The
RNG will only put the generated number in the shift register if no valid number is at the
current position.

4.2 Benchmark Execution and Evaluation

In the following, we execute and evaluate the scaling behavior of the existing and the three
new benchmarks of the benchmark suite on two different multi-FPGA systems containing
Xilinx or Intel FPGAs.
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4.2.1 Evaluation Setup and Synthesis Results

For the evaluation of the benchmarks we used version 0.5.1 of the benchmark suite [2] and we
made all artifacts and code modifications for additional experiments publicly available [50].

We synthesized and executed the benchmarks on two multi-FPGA systems: The Noctua
1 system of PC? at Paderborn University and the Xilinx FPGA evaluation system of the
Systems Group at ETH Zurich. The systems are described in more detail in Section 2.3. For
the benchmark execution, the data is generated on the CPUs and moved to the DDR memory
on the FPGA boards. Results are copied back to the CPU memory from the DDR memory
for validation after the benchmark execution.

All benchmark kernels are designed to be independent of the number of used FPGAs, so
only a single synthesis for every benchmark and FPGA board is required for the evaluation.
With configuration parameters, it is possible to improve resource utilization and performance
of the benchmark kernels for a specific FPGA board before synthesis. For the benchmarks
STREAM, FFT, and GEMM, these configuration parameters were discussed in more detail in
Chapter 3. Table 4.6 contains the used configurations for each benchmark. The configuration
parameters are chosen to better utilize performance-relevant resources on the FPGA.

In Table 4.7 the resource usage of the synthesized benchmark kernels is given. Our updated
scalable implementation of the RandomAccess benchmark now requires additional logic and
BRAMs to implement the RNGs. We have chosen the number of RNGs in the configuration to
be the next larger power of two of the used FPGAs. This increases the probability, that a valid
number can be processed in every clock cycle by every FPGA. Further increasing the number
of RNGs may lead to lower clock frequencies, which will also have an impact on performance.
With the recent SDK version we were able to synthesize the GEMM benchmark with a
much higher clock frequency for the BittWare 520N, which promises a large performance
improvement. For the b_eff benchmark, only a single bitstream is synthesized. For the base
implementations, no bitstream is required since the data transfer is solely handled by the
host. Also resource consumption is not an issue with this synthetic benchmark because the
performance is mainly limited by the network bandwidth and latency.

PTRANS requires BRAM buffers that are used to block-wise transpose the matrix and store
intermediate results. A large block size will benefit large memory bursts but it is also important
to achieve a clock frequency close to 300 MHz to make best use of the memory bandwith.
For HPL it is — similar to GEMM — important to maximize the number of used DSPs for
matrix multiplications. In addition, mainly some extra BRAM is required to store the matrix
blocks for the kernels of the communication phase. As a result, the resource utilization is
very similar to GEMM. A significant difference is visible for the Alveo U280, where only 69%
of the DSPs can be utilized. We were not able to fit the communication kernels and three
matrix multiplication kernels on the FPGA because this would overutilize the DSPs. One
approach to make use of the remaining DSPs would be to reduce the parallelism for the third
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matrix multiplication kernel by setting REGISTER_BLOCK_LOG to 2 only for this replication.
However, the baseline version of the benchmark does not support this approach since the
kernel scheduling would need to account for slow and fast matrix multiplication kernels.

Table 4.6: Synthesis configurations of all benchmarks for multi-FPGA execution.

Benchmark Parameter 520N IEC 520N PClIe U280 PClIe
STREAM NUM_REPLICATIONS 4 4 2
DATA_TYPE float float float
GLOBAL_MEM_UNROLL 1 1 1
VECTOR_COUNT 16 16 16
DEVICE_BUFFER_SIZE 32,768 32,768 16,384
RandomAccess NUM_REPLICATIONS 4 4 2
RA_DEVICE_BUFFER_SIZE_LOG 0 0 10
HPCC_FPGA_RA_RNG_COUNT_LOG 5 5 3
HPCC_FPGA_RA_RNG_DISTANCE 5 5 1
FFT NUM_REPLICATIONS 2 2 1
LOG_FFT_SIZE 17 17 9
GEMM NUM_REPLICATIONS 5 5 3
DATA_TYPE float float float
GLOBAL_MEM_UNROLL 8 8 8
BLOCK_SIZE 512 512 256
GEMM_SIZE 8 8 8
b_eff NUM_REPLICATIONS 2 only host code required
CHANNEL_WIDTH 8 only host code required
PTRANS NUM_REPLICATIONS 4 4 2
DATA_TYPE float float float
CHANNEL_WIDTH 8 16 16
BLOCK_SIZE 512 512 256
HPL NUM_REPLICATIONS 5 5 2
DATA_TYPE float float float
LOCAL_MEM_BLOCK_LOG 9 9 8
REGISTER_BLOCK_LOG 3 3 3

The difference in DSPs between the base and optimized implementation for the BittWare 520N
is caused by the way, that the multiplication of the 8 x 8 matrices in registers is implemented.
In case of the IEC version, only multiply-adds are used consuming 512 DSPs in total per
replication. In the base implementation, the compiler created the same matrix multiplication
from 64 dot-products of size 8 followed by 64 additions. This slightly increases the DSP usage
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to 576 DSPs per replication but considerably reduces the logic and BRAM usage as it can be
seen in the resource utilization.

Besides the two bitstreams for the baseline and one for the vendor-specific implementation, we
also synthesized HPL with a block size of 256 elements for the 520N. This is the same block
size that is used on the U280 and allows a better comparison of the performance results of
both FPGA boards. The configuration requires considerably lesser logic and BRAM compared
to the version wih 512 element block width and achieves a higher clock frequency.

Table 4.7: Resource utilization of all synthesized benchmark kernels.

Frequency Comp.
Benchmark Board Logic BRAM DSPs [MHz] Time [h]
STREAM 520N 178,268 3,926 128 341.67 2.64
(19%) (33%) (2%)
U280 188,124 854 170 300.00 2.44
(14%) (42%) (2%)
RandomAccess 520N 222,405 602 14 325.00 3.50
(24%) (5%) (<1%)
U280 184,888 350 24 300.00 2.20
(14%) (17%) (<1%)
FFT 520N 280,105 1,811 1,560 400.00 4.10
(30%) (15%) (27%)
U280 375,069 342 682 286.00 6.94
(29%) (17%) (8%)
GEMM 520N 310,564 8,321 3,318 272.50 9.87
(33%) (71%) (58%)
U280 659,200 1,139 7,714 186.00 12.25
(51%) (57%) (85%)
b_eff 520N? 173,010 512 0 290.63 2.45
(19%) (4%) (0%)
520N* only host code required
U280! only host code required
PTRANS 520N?2 242,232 4,756 68 281.25 3.64
(26%) (41%) (1%)
520Nt 233,317 4,662 162 380.00 3.62
(25%) (40%) (3%)
U280t 283,028 598 96 283.00 4.07
(22%) (30%) (1%)
HPL 520N? 361,377 8,326 2,809 244.00 10.40

(39%) (71%) (49%)
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Table 3.5: Resource utilization of all synthesized benchmark kernels. (continued)

520N! 303,471 8,245 3,185 233.34 9.42
(33%) (70%) (55%)

520N13 276,546 2,587 3,185 280.00 6.08
(30%) (22%) (55%)

U280} 663,418 994 6,201 156.00 12.10
(51%) (49%) (69%)

! communication via MPI and PCle using the host network
2communication via Intel external channels (IEC) OpenCL extension
3version with a reduced block size of 256 elements

4.2.2 Evaluation of the Effective Bandwidth and PTRANS

The b_eff benchmark does not only report the derived metric effective bandwidth but also
the achieved bandwidth for all tested message sizes, which range from a single byte to 1 MiB.
A new message is only sent after the current message is received by the neighbor node.

The base implementation of the b_eff benchmark reads the data from the FPGA board
to the host using an OpenCL call, exchanges the data between the host CPUs using the
MPI_Sendrecv method, and writes the data back to the FPGA using OpenCL. This means,
in contrast to the optimized IEC implementation, no OpenCL device code is required for this
benchmark to work.

The measured total bandwidth over the message sizes is given in Figure 4.10 for two FPGAs
or CPU nodes respectively. We do not show the MPI-only performance for the Xilinx system
in this plot since it heavily overlaps with the measurements for the base implementations. The
maximum theoretical bandwidths for PCle, MPI via the Intel Omni Path 100Gbps interconnect,
and IEC are given by the black dashed lines in the plot. For the base implementations, the
bandwidth remains below 5 GB/s on both devices although the theoretical bandwidth of
PClIe and MPI are both much higher. The bandwidth gets limited by the additional copy
operations required to get the data from FPGA to CPU and back. Using Equation 4.2 and
the peak MPI and PCle bandwidths, the theoretical bandwidth of the baseline version is
given in Equation 4.7:

2

— = 6.06GB/s (4.7)

bmax = 1 T
12.5GB/s 8GB/s

However, the measurements with the MPI-only implementation of the benchmark show,
that the maximum message size of 1 MiB is not sufficiently large to utilize the MPI peak
performance on Noctua.
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The optimized IEC approach shows maximum bandwidths close to the theoretical peak for
1 MiB message sizes. Also, the measurements closely correlate to the model described in
Section 4.1.1.2 in Equation 4.4.

The linear scaling behavior for the derived effective bandwidth metric is visualized for all
implementations in Figure 4.11. All implementations show nearly perfect scaling with the
available network bandwidth as it is indicated by the extrapolation lines for each device.
Especially for the MPI-only and the MPI + PCle version, the performance on a single node is
considerably higher than the available network bandwidth because in these cases the data will
be transferred between the ranks using shared memory. We also observe a huge difference in
the effective bandwidth between the two MPI versions of Noctua and the Xilinx system. These
measurements have to be kept in mind when comparing the results of the base implementation
on the two systems, since the huge difference in MPI performance will also have an impact
on the PCle + MPI performance. The ability to add additional optimized implementations
of the benchmark kernels allows the generation of comparable results not only limited to
FPGAs but also for CPU or other accelerators. This only requires minor changes in the
existing code base and large amounts of the code can be reused including handling of input
parameters, input data generation and validation, calculation of derived metrics, and printing
of performance summaries.
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Figure 4.10: The aggregated bandwidth over different message sizes measured by the b_ eff
benchmark over two CPUs or FPGAs. Next to the measurements, the maximum performance
for the communication between FPGAs, CPUs, and between FPGAs and CPUs via PCle.

For the matrix transposition, the blocks of a matrix are distributed among the FPGAs in a PQ
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Figure 4.11: The measured effective bandwidth over the number of used FPGAs and CPUs.
A logarithmic scale is used for the ring size and the measured bandwidth. The colored lines
represent the perfect scaling based on measured effective bandwidth over two FPGAs or CPU
nodes.

distribution where P = (). A matrix of 32,768 elements is transposed using strong and weak
scaling. The resulting speedups for the different FPGAs are given in Figure 4.12. In the strong
scaling experiment, the base implementation on the BittWare 520N shows a better scaling
behavior than the optimized version using IEC. This is because the base implementation is
mainly bottlenecked by the PCle bandwidth for the exchange of the matrices. In contrast to
that, the optimized version shows a significant reduction of the speedup for a larger number
of FPGAs. This is caused by the compute pipeline on the FPGAs which can not be fully
utilized with the smaller matrix sizes.

In the weak scaling experiment, the matrix size per FPGA stays the same and the imple-
mentation achieves optimal speedup for up to 25 FPGAs. The base implementation shows
no significant differences for both FPGAs in strong and weak scaling. On the Xilinx Alveo
U280, the base implementation does not scale well. This is related to the low FPGA-to-FPGA
bandwidth that we also measured in the b eff benchmark. This means that this difference is
caused by the comparably low MPI performance on the Xilinx system and not by the FPGAs.
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Figure 4.12: Speedup of the PTRANS benchmark executed with a quadratic matrix of 16,384
elements over up to 25 FPGAs in a weak and strong scaling scenario.

4.2.3 Evaluation of HPL

In the first experiment, we measure the performance on a single FPGA for different matrix
sizes of up to 20,480 elements. The performance for four bitstreams on the two different
systems is given in Figure 4.13. To allow an easier comparison of the efficiency of the design
on the different platforms, the performance was normalized to a kernel frequency of 100 MHz
and a single kernel replication. So the normalized performance for a given matrix size should
be very similar on the different platforms. For small matrix sizes, the communication phase
can not be overlapped with the computation phase. Only for larger sizes of the matrix, both
phases overlap for most of the computation time and the performance converges to the matrix
multiplication performance. Still, significant differences between the different bitstreams can
be observed and are mainly caused by the chosen benchmark configuration parameters and
compiler flags. When comparing the base version and the vendor-specific version with Intel
external channels (IEC) used on the BittWare 520N board, the base version using PCle
for communication shows lower performance, although the same configuration parameters
are used. The base version of the benchmark failed to synthesize with memory interleaving
because additional Load Store Units (LSUs) are used for the communication and increase
the complexity of the memory system. Since only a single buffer is used to store matrix A,
this effectively reduces the global memory bandwidth and stalls of the matrix multiplication
kernels increase.

On the Xilinx Alveo U280 board, the largest block size that fits on the device is 256 elements
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in contrast to 512 element blocks for the 520N board. The reduced block size results in an
overlap of communication and computation for smaller matrix sizes but also reduces the
peak performance because the utilization of the matrix multiplication pipeline decreases. For
comparison, we synthesized a bitstream for the 520N with a block size of 256. It shows a
similar scaling behavior with regards to the matrix size but shows a slightly lower normalized
peak performance. The bitstream for the 520N achieves a nearly 80% higher frequency which
also increases the memory bandwidth utilization and leads to more frequent pipeline stalls,
which eventually leads to a lower normalized performance.
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Figure 4.13: Normalized performance of the HPL bitstreams on the target FPGAs for different
matrix sizes. The base versions of the benchmark are marked with PCle, referring to the path
of communication. For small matrices, the design is limited by the communication latency
until it can be efficiently hidden by matrix multiplications. Moreover, an additional execution
for the BittWare 520N with a block size of 256 is given for comparison with the Xilinx Alveo
U280.

Based on the measurements done with a single FPGA, we set the matrix size for the multi-
FPGA experiments to 24,576 elements, since all bitstreams will be close to their peak
performance for this size. We use this matrix size as a base for a weak scaling experiment,
where the matrix size increases with the width of the FPGA torus so the matrix size on a
single FPGA remains constant. Additionally, we execute a strong scaling experiment, where
the global matrix size remains constant while increasing the torus size. The measurement
results for the weak scaling experiment are given in Figure 4.14. It can be observed, that all
three implementations of the benchmark show a close to optimal scaling for up to 25 FPGAs.
Considering the differences in the network bandwidth that affected the PTRANS results, this
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also means, that the benchmark implementation is compute-bound on all FPGAs.

The results of the strong scaling experiment are given in Figure 4.15. Both benchmarks show
a much lower increase in performance for larger torus sizes. Based on the data of our single
FPGA scaling experiment shown in Figure 4.13, we created an extrapolation model for the
strong scaling experiment. It shows that performance per FPGA is tightly coupled to the size
of the local matrices on the FPGAs. The extrapolation for the Xilinx Alveo U280 shows a
better speedup in this strong scaling scenario because of the smaller block sizes. With this
very simple approach, it is already possible to model the performance depending on the total
matrix size and the number of FPGAs with high accuracy. The strong scaling experiment
shows that the overall performance in the torus is tightly coupled to the input size on a single
device for all implementations.
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Figure 4.14: Speedup of HPL with a matrix width of 24,576 elements over multiple FPGAs
in a weak scaling scenario.

The HPL implementation achieves a lower performance per FPGA than the existing GEMM
benchmark, although both get their performance from matrix multiplication. Also, the
configuration parameters are chosen similarly for both benchmarks, which results in a similar
expected performance. The main difference in performance is caused by the different clock
frequencies of the designs given in Table 4.7. The tools achieve higher clock frequencies for the
base implementation of the GEMM benchmark because the kernels of the HPL communication
phase consume additional resources. Also, the matrix multiplications work on smaller matrix
sizes of just a single block, which reduces the reuse of data in local memory.

Our HPL implementation achieves 14.3 TFLOP//s for the base version and 20.8 TFLOP/s for
the optimized version using IEC on 25 BittWare 520N FPGAs. The scaling experiments show,
that the two major reasons for the performance differences rely on the achieved frequencies
and a more efficient use of the global memory. Although the benchmark is computation-bound,
our optimized version using IEC still achieves higher performance by reducing the number of
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Figure 4.15: Speedup of HPL with a matrix width of 24,576 elements over multiple FPGAs
in a strong scaling scenario. Extrapolation models for the three different bitstreams are given
as colored lines. They are based on the measured single-FPGA performance per matrix size
in Figure 4.13.

LSUs. This allows further global memory optimizations and higher kernel frequencies that
improve the performance.

4.2.4 Evaluation of the Existing Benchmarks

For STREAM, FFT, and GEMM, the design did not change compared to the previous work.
All except RandomAccess are executed embarrassingly parallel, so every MPI rank works on a
local problem. MPIT is only used to exchange measurement and validation results. In the case
of RandomAccess, the data array is distributed among the FPGAs. This way, only scaling to
a power of two is allowed since the total size of the data array must be a power of two.

We executed the four benchmarks on up to 26 FPGAs to show their scaling performance. 4 GiB
arrays are used in STREAM, FFT calculates on 4,096 1d FFTs of 2!7 or 2° complex numbers,
and GEMM uses matrices with the width of 23,040 elements per FPGA. RandomAccess is
executed in a strong scaling scenario with 8 GiB data array. The normalized measurement
results are given in Figure 4.16. For STREAM, the measurements are normalized to a single
memory bank with a theoretical bandwidth of 19.2 GB/s. The benchmark shows a similar
scaling behavior on both devices. For GEMM, the results are normalized to a single kernel
replication running at 100 MHz with with an 8 x 8 x 8 matrix multiplication in registers. This
leads to a maximum theoretical performance of 102.4 GFLOP /s times the number of used
FPGAs. Also here, the base implementation shows a performance close to the theoretical
peak on both devices. Because of the comparably high clock frequency of our synthesized
design, we achieved more than 1.2 TFLOP/s per FPGA on the BittWare 520N.
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Although we used the same benchmark code on the FPGA side as in Chapter 3, we were not
able to execute the FFT benchmark on the Alveo U280. The benchmark required internal
channels or pipes between the kernels to forward data but support for pipes in OpenCL
kernel code was removed with XRT 2.9. This still allows synthesis of the benchmark, but

no execution. On the BittWare 520N, the benchmark scaled linearly. For FFT, we show the
absolute measured performance.
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Figure 4.16: Normalized performance of the four benchmarks without inter-FPGA commu-
nication. Data is normalized to a single memory bank and 300 MHz clock for STREAM.
For GEMM and RandomAccess, the results are normalized to a single kernel replication at

100 MHz to allow a better comparison of the performance efficiency of the baseline designs on
the two FPGA boards.

The RandomAccess results were also normalized to the number of memory banks and a kernel
frequency of 100 MHz. Because an update of a value requires one read and one write to the
memory bank, two clock cycles are required per update, which results in a theoretical peak
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performance of 50 MUOP /s per FPGA. On the BittWare 520N, the base implementation
gets close to this theoretical peak whereas on the Alveo U280, we only get roughly half of
this performance. One reason for that is the difference in the configuration: For the Alveo
U280, we need a small buffer to read and write multiple values subsequentially which partially
hides the latency of memory accesses and increases performance. As a trade-off, we see an
increased error rate, because we may overwrite values, that are already in the buffer. Still,
this approach requires iteration between two different pipelines that fill and empty the buffer.
Since these pipelines have a considerable latency because of memory accesses, this will also
reduce the performance because the pipelines have to be emptied frequently. If it would be
possible to ignore the dependency between reads and writes, the single-pipeline approach
could be used as it is done for the BittWare 520N.

4.2.5 Overall Benchmark Results

In the previous section, we have focused on the evaluation of the performance efficiency of the
proposed benchmark designs on Noctua and the HACC system. By normalizing the kernel
frequency or the number of memory banks and comparing the results to simple performance
models, we showed that the baseline versions of the benchmarks have a similar performance
efficiency on both tested devices. The absolute performance numbers obtained with the
benchmarks are given in Table 4.8. The first column contains the performance numbers
obtained from the HACC system using four FPGAs, the second and third columns contain
the numbers for 16 FPGAs on Noctua for the baseline version and the optimized version
using IEC. The results for STREAM, RandomAccess, FFT, and GEMM are only given for
the baseline version because they were not changed for the optimized runs.

Table 4.8: Multi-FPGA Benchmark results.

Benchmark Baseline Baseline IEC Baseline

ETH HACC Noctua Noctua CPU Noctua
STREAM Triad [GB/s] 33.9 67.8 - 75.9
RandomAccess [GUOP /s] 0.04 0.18 - 0.06
FFT [GFLOP/s] - 239.99 - 24.62
GEMM [GFLOP/s] 493.2 1,231.2 — 1,158.9
HPL [GFLOP/s] 568.6 9,552.3 13,326.6 5,848.7
PTRANS [GB/s] 2.55 11.48 293.45 2.43
b_eff [GB/s] 0.56 1.10 19.47 7.96
b__eff [us] 59.56 61.18 0.34 0.75

In the last column, we executed HPCC 1.5.0 over 16 CPUs on Noctua. The benchmark
suite was compiled with GCC 11.3.0, OpenMPI 4.1.1 and Intel MKL 2022.0.1. For basic
optimizations, we enabled OpenMP support and set the compilation flags -03 -march=native.
During execution, we set the number of OpenMP and MKL threads to 20, which matches the
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number of cores per CPU. Moreover, we bound the MPI ranks to sockets and configured the
benchmark suite to use the same input sizes we used for the FPGA execution.

We executed the Embarrassingly Parallel (EP) versions of the HPCC benchmarks because
our FPGA versions are based on their benchmarking rules. Still, there are some differences
between the CPU and FPGA benchmarks: STREAM, FFT, GEMM, PTRANS, and HPL are
executed in double-precision floating-point on the CPU, whereas single-precision is used on
FPGA. However, for STREAM and PTRANS this should have only a minimal impact on
the results since both benchmarks are very likely not compute-bound because of their low
arithmetic intensity and the performance is reported in GB/s. FFT is executing one large
FFT of size 227 instead of a batched execution of 4,096 x 27 FFTs per rank. This means that
the total number of FLOPs and the arithmetic intensity slightly differ between the execution
of FPGA and CPU. HPL makes use of partial pivoting within the LU factorization whereas
the FPGA implementation does not use pivoting. The results for all benchmarks are reported
as an average over all used FPGAs/CPUs as it is done in the original HPCC benchmark suite.
Only PTRANS and HPL output the total performance of the whole system.

The performance difference in STREAM for the two FPGA baseline versions is caused by
the number of DDR memory banks on the FPGAs. The U280 has two DDR memory banks
whereas the 520N has four which directly reflects in the measured bandwidth. The used CPU
is equipped with 6 memory banks and shows the highest bandwidth in this result. However,
HBM2 can be used on some FPGA boards like the Alveo U280 to considerably increase the
STREAM bandwidth as shown in Chapter 3.

For RandomAccess, the FPGA implementation used on Noctua without any local memory
buffers shows clear performance benefits compared to the cached version used on the ETH
HACC system and the CPU.

There is a considerable performance difference between the baseline version and the optimized
version of HPL on Noctua. As we have seen in Figure 4.13, the efficiency of the benchmark
design is reduced for the baseline version due to differences in the memory interface. In
addition, the clock frequency of the design is slightly lower than for the optimized design as
given in Table 4.7.

For PTRANS and b_eff, we can observe the largest performance difference between the
baseline and the optimized version on FPGA. For b_ eff, the communication latency and
bandwidth are reported for all systems. For the FPGA baseline versions, the communication
latency is very high compared to the CPU and the optimized FPGA version. The data is first
copied from the FPGA DDR memory to the CPU memory before it can be transferred via
MPI. These additional copies, the latency of the data transfer via PCle, and the additional
latencies introduced by the FPGA runtimes have a huge impact on the overall latency of
the baseline communication approach. As our experiments show in Figure 4.10, the b_ eff
benchmark included in the HPCC suite is not able to achieve a bandwidth close to the
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theoretical peak of 12.5 GB/s with the 2 MB message sizes used for this measurement. With
larger message sizes, bandwidths close to the theoretical peak may be achievable.

The proposed benchmarks are capable of reflecting the advantages of direct inter-FPGA
communication in terms of communication bandwidth and latency. The results also show that
direct inter-FPGA communication offers new opportunities for scaling FPGA applications
over multiple devices.

4.2.6 Scalability of the HPL Implementation

Table 4.9: Resource usage of HPL for BittWare 520N with 100 Gbps serial interfaces.

Logic 396,597  43%
BRAM 8,828 75%
DSP 2,809 49%
Frequency [MHz]  225.00
Compile time [h] 114

To demonstrate the compatibility of the benchmark with different compute systems as well
as the scalability of our LU decomposition implementation, we also executed our HPL
implementation on the Albireo nodes of the Cygnus system at the University of Tsukuba.
The compute nodes of the system are equipped with two Intel Xeon Gold 6126 and two
BittWare/Bitt Ware 520N boards. In contrast to the 520N boards used on the first evaluation
system, these boards are equipped with faster serial interfaces supporting up to 100Gbps per
interface. The serial interfaces of the 64 FPGAs are connected to a 8 x 8 torus.

For synthesis, the configuration in Table 4.6 is used and the results given in Table 4.9 are
very similar to the results in Table 4.7. Logic consumption is slightly higher because of the
differences in the serial interfaces. The higher logic consumption leads to a more challenging
placement and routing on the FPGA, which reduces the final kernel frequency. We executed
the benchmark two times with a small size of 3,072 -t and a large size of 24,576 - t where
t is the torus width. Results of the execution are given in Table 4.10. The single FPGA
performance is slightly lower compared to the previous experiment because of the reduced
clock frequency. Still, the scaling factor for the large size of 56.7 is very close to linear scaling
also for this large number of FPGAs. Thus, the scaling behavior is comparable to the previous
experiments, which shows that the benchmark achieves good performance and scaling behavior
also on this system.
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Table 4.10: Execution results of HPL on all 64 FPGAs of Cygnus.

Torus Size Small Size [TFLOP/s] Large Size [TFLOP /s]

1x1 0.18 0.86
8 x 8 8.48 48.78

4.3 Chapter Conclusion

In this chapter, we extended the HPCC FPGA benchmark suite with support for multi-
FPGA systems and their inter-FPGA communication interfaces. Therefore, we proposed
a scalable version of the RandomAccess benchmark and extended all existing benchmarks
with multi-FPGA support. Moreover, we added three new benchmarks, b eff, PTRANS,
and HPL, for Xilinx and Intel FPGAs that stress inter-FPGA communication and provided
baseline implementations making use of MPI and PCle for inter-FPGA communication. The
baseline implementations show similar normalized performance and scaling behavior on our
two evaluation systems with up to 26 BittWare 520N and four Xilinx Alveo U280 boards.
This makes our benchmark suite the first suite supporting the scaling and parallel execution
of all benchmarks over multiple-FPGAs and complete multi-FPGA systems.

To show the extendability of the benchmark suite with support for vendor-specific communica-
tion interfaces, we also provided optimized versions of the new benchmarks that make use of
the IEC OpenCL extension for direct point-to-point connections between FPGAs. Evaluation
of the vendor-specific and the baseline implementations revealed the advantages of direct
inter-FPGA communication over communication via MPI not only for the communication-
bandwidth-bound applications but also for computation-bound applications like HPL.

With HPL, we also proposed a well-scaling LU decomposition implementation in a 2D torus.
The evaluation showed that the performance of the implementation is limited by the aggregated
matrix multiplication performance of the used devices. With further architecture-specific
optimizations to increase the clock frequency of the implementation, more than 1 TFLOP/s
per FPGA on the BittWare 520N is within reach with the proposed design.
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5

Case Study: Shallow Water Simulation

In the previous chapters, we showed that the benchmarks of our HPCC FPGA suite enable
the analysis of performance differences across tool versions, floating-point accuracy, system
configuration, and system size.

In the following, we in more detail evaluate the performance of the communication framework
ACCL [32] and its network stacks for use in multi-FPGA applications and compare it to an
implementation using the host-side communication approach from the baseline versions of
our benchmarks in HPCC FPGA [49]. Therefore, we split this chapter into two parts.

In the first part in Section 5.1, we use synthetic benchmarks to measure the differences in
resource utilization, communication latency, and throughput for different ACCL configurations
and compare them to the communication approach taken by HPCC FPGA. Also, we provide
models for communication latency and discuss the limitations and opportunities for different
ACCL- and host-based communication approaches. Moreover, we discuss optimization options
for ACCL and its network stacks for the inter-FPGA network infrastructure of the Noctua 2
supercomputer, which contains one of the largest installations of FPGAs in the academic
HPC domain.

In the second part, in Section 5.2, we port a multi-FPGA shallow water simulation that operates
on unstructured meshes [55] and has strong requirements for low-latency communication
to Xilinx FPGAs. FPGAs in many cases show the best compute performance and power
efficiency compared to other accelerators like GPUs for small to medium sized problems
[56], [57]. This emphasizes the importance of low-latency communication for these devices,

7
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especially when scaling to high number of FPGAs. We use our findings from Section 5.1 to
identify the best ACCL configuration for this kind of application and communication pattern
and evaluate the scaling behavior of the application over up to 48 FPGAs compared to a
baseline version using host MPI for communication. In addition, we extend the existing
performance models of the shallow water simulation to also reflect communication latency to
show the effect of high communication latency on the application scalability.

The contents in this chapter have been presented at the International European Conference
on Parallel and Distributed Computing in 2024 and presented in the conference proceedings
[58].

5.1 Synthetic Benchmarking of ACCL Communication Ap-
proaches

The ACCL framework implements a versatile hardware architecture on the FPGA which can
be used for data exchange in various ways. In this section, we identify different communication
approaches that are possible with the ACCL architecture and evaluate the performance in
terms of communication latency.

5.1.1 ACCL Communication Approaches

ACCL offers two communication approaches: streaming and buffered communication. Buffered
communication is similar to the well-known blocking MPI communication, whereas streaming
communication supports the processing of incoming data before the transmission is complete.
This allows further overlapping of communication and computation. As an additional configu-
ration option, ACCL supports the scheduling of communication from the host side (offering
more flexibility), or directly from FPGA.

All communication primitives and collectives are implemented within the CCLO, which consists
of an CPU to execute the ACCL firmware. Within the firmware, all supported communication
primitives and collectives are implemented as a sequence of data move operations between
the ACCL components, the network stack, global memory, and user kernels. This approach
offers high flexibility also for the implementation of custom collective communication and
collective computation tasks. One core feature of ACCL is the plugin system, which supports
the extension of ACCL with additional components for specialized computations. With
that, the functionality can be extended to the application needs without major changes in
the architecture. In many cases, a modification of the firmware can be sufficient to further
optimize the communication for a given application. Streamed and buffered communication
are implemented by either passing data directly between the user kernels via AXI streams or
by moving the data to global memory first. These communication approaches can also be
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combined within the same application.
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Figure 5.1: Two examples of communication approaches using the ACCL framework.

Buffered communication with communication scheduling from the host side is visualized
in Figure 5.1a. Here, ACCL will transfer data from a buffer in global memory to another
buffer in the global memory of a remote FPGA. The compute kernel — the actual application
implemented on FPGA — can read the data from this global memory buffer afterwards. The
communication is controlled on the host via a C++ library which internally calls an HLS kernel
which will again pass the commands to the ACCL via AXI streams. Instead of exchanging
data between the compute kernel and the ACCL infrastructure indirectly via global memory,
it can also be directly forwarded using AXI streams. This approach is indicated in Figure 5.1b
as a green AXI stream between compute kernel and CCLO. A drawback of this approach
is, that the order of incoming messages can not be controlled by the receiving side because
received data is directly forwarded from ACCL to the AXI stream. If two FPGAs stream a
message to the same recipient, the contents of the message will be forwarded in the order of
arrival, which may also lead to a scattering of messages. The compute kernels need to be
extended to handle these situations.

The other configuration option builds upon the AXI stream interface that is used to issue
commands. In addition to the default host control kernel (Figure 5.1a) that requires a
dedicated kernel invocation for every communication request, it is also possible to implement
custom control kernels (Figure 5.1b). ACCL already comes with an API that can be used
from HLS kernels to implement this functionality. A custom control kernel implements the
communication pattern required by a specific compute kernel and thus can significantly reduce
the number of required kernel invocations. Compute kernel and custom control kernel can
also be combined into a single kernel.
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5.1.2 Latency and Throughput of PCle/MPI-based Communication

The measurements of the b_ eff baseline version on different multi-FPGA systems in Sec-
tion 4.2.2 showed that the CPU-centric communication via PCle and the CPU network only
achieves low throughput and high latency compared to CPU-only communication. This
observation doesn’t surprise since the CPU-only communication is only one of the multiple
steps involved in data movement. In general, data first has to be produced by the sending
FPGA and placed in the global memory where it can also be accessed by the host. The host
moves the data from the global memory to the host memory and from there to the memory of
the remote host. The host needs to be notified if the data in the global memory of the FPGA
is ready for transmission. The usual way to do this is by invoking a kernel that completes
execution as soon as the data is ready. Overall, the process of moving the data from one
FPGA to the other as it is done in the baseline implementation of the benchmark can be
divided into five sub-steps:

Invoke kernel and wait for completion

read from global memory on FPGA to host memory
transfer data via MPI

write data from host memory to global memory on FPGA
Invoke kernel to pass data into the compute pipeline

T W=

The measurements done in previous work accumulated the latencies for all these communication
steps when reporting the results. We extended the b__eff host code with additional execution
modes to only measure sub-steps of the communication. The measured latencies for each
sub-step are given in Figure 5.2. The kernel invocation shows the highest latency of more
than 29 ps on average. The kernel itself writes a single byte to the global memory which
should take less than one microsecond. The remaining latency is introduced by PCle data
transfers, shell, and host drivers.

MPI 1.39+0.16
Kernel Invocation 29.3£6.1
PCle Write 22.0+11.0
PCle Read 22.0+8.3
T T T T
0 10 20 30

Latency [us]

Figure 5.2: Latencies of data movement operations for a 1 Byte message measured individually.
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5.1.3 Resource Utilization of the Network Stack

We used the benchmark b eff from our HPCC FPGA benchmarks suite from Section 4.1.1
to evaluate the resource utilization of ACCL and the network stack on the FPGA. Therefore,
we extended the benchmark suite with support for the XRT C++ API, making the use of
OpenCL on the host side optional. In addition, we added support for C/C++-based kernels,
fully removing the mandatory OpenCL requirements for the benchmark suite [59].

b_eff is a synthetic benchmark where the FPGAs are arranged in a (virtual) ring topology to
exchange messages. The messages are sent for a given range of message sizes in a ping-ping
fashion between the neighbors in the ring and can be used to measure the latency and
throughput of the network. For our evaluation, we used the Xilinx Alveo U280 boards from
the Noctua 2 FPGA partition described in Section 2.3.
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Figure 5.3: Resource utilization of the network stack and ACCL on the Alveo U280. The
ACCL Minimal versions do not contain the compression and arithmetic plugins. The resource
utilization of ACCL (green boxes in Figure 5.1) is highlighted by black boxes. All further
resources are consumed by the network stack (blue boxes in Figure 5.1).

We extended the benchmark suite with support for ACCL and implemented ACCL-enabled
b__eff designs based on the implementation presented in Figure 5.1b, now further differentiating
between the TCP-IP and the UDP network stack. The resource utilization for different ACCL
configurations is given in Figure 5.3. Further variants are shown, because ACCL is extendable
by plugins which are included by default and provide extra functionality for data compression
and arithmetic operations used in collectives, such as reductions. These plugins can be removed
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from the ACCL configuration by setting build flags during synthesis. Since functionality is
not needed by b__eff, we also synthesized a minimal ACCL without unused plugins to save
additional resources. Moreover, to optimize the TCP throughput with the Ethernet switch,
we synthesized an optimized TCP stack configuration. We discuss these optimization steps
in more detail in Section 5.1.4. As expected, the TCP network stack consumes considerably
more resources compared to the UDP stack. Our minimal ACCL version saves more than half
of the logic resources and more than 83% of DSPs independent of the used network stack.

5.1.4 Modelling and Measurement of Throughput and Latency

We executed the b eff benchmark for the different communication approaches discussed in
Section 5.1.1 on two FPGAs. For the first experiment, we configured the optical switch to
create a direct connection between the FPGAs — bypassing the ethernet switch. Furthermore,
the HPCC FPGA version from the original benchmark without ACCL was used to retrieve
data for a purely CPU-based baseline. The two FPGAs are located on different nodes, such
that data transfers of the baseline version use the Infiniband network of the hosts via MPI.

The communication latencies over the message size are given for streaming and buffered
communication in Figure 5.4, each in combination with communication scheduling from the
host and with a custom control kernel from the FPGA (denoted here as Programmable Logic
(PL)). We also integrated a performance model for the different approaches as dashed lines in
the plot. As expected, the baseline communication approach shows the highest communication
latency over all message sizes with latencies of more than 120us for 64 Byte messages. Using
the buffered ACCL communication scheduled from the host side, the major limitation for
the latency becomes the kernel scheduling time. The ACCL host control kernel needs to be
executed two times for sending and receiving a message. We measured around 30ps of latency
for a single kernel invocation through the used XRT. In contrast, messages scheduled directly
from PL reach latencies below 3js.

We modeled the latency for buffered and streamed communication using the theoretical peak
throughput of the involved links as well as our measured kernel start overheads. For buffered
communication, this results in the model given in Equation 5.1, where [ is the time required
to schedule a command to ACCL, [, the latency to copy the message from the receive buffer
in global memory to the destination buffer on the receiving FPGA, and [. is the latency of
the communication link. For host-scheduled communication, [}, equals the kernel invocation
latency, whereas for PL scheduling it is reduced to a fraction of microseconds since it only
represents the time required by ACCL to process the command. We implemented a synthetic
benchmark to empirically determine /; for commands scheduled from custom control kernels
and refine our latency model [60].
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Figure 5.4: Full-duplex communication latencies using ACCL UDP and TCP network stacks
and the discussed communication approaches. The latencies for host-side scheduling are
modeled for buffered and streaming communication. All measurements are done with directly

connected FPGAs.



845.1. SYNTHETIC BENCHMARKING OF ACCL COMMUNICATION APPROACHES

For streaming, the model simplifies to [, + [., because only a single kernel invocation is
required per transmission. Also, there is no copy operation required since the data is directly
passed to the AXI stream of the user kernel. While [, is a constant overhead per ACCL
command, /. and [,, depend on the message size and overtake the equation for large message
sizes. The additional copy operation required in buffered communication thus leads to a
reduced theoretical peak throughput of (14GB/s ' +12.5GB/s ')~' = 6.6GB/s — only slightly
more than half of the peak throughput of the communication link.

5.1.5 Impact of Ethernet Switch and Noctua 2 Optimizations
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Figure 5.5: Latencies of the PL stream approach executed on two FPGAs with directly
connected QSFP links and connected via the Ethernet switch.

Additionally, we compared the communication latency of the network configuration with
direct optical links to the latency of connections via the ethernet switch. The measurements
via the ethernet switch for the optimized TCP and UDP stack are given in Figure 5.5. Overall,
the ethernet switch adds around 1us of latency for both network stacks resulting in latencies
of 2.5 to 5 ps for small 64 Byte messages. For the TCP stack, the throughput was at first
considerably reduced when using the Ethernet switch. Because of the increased communication
latency, the sending side has to stop transmission and wait for acknowledgments. In our
optimized TCP implementation, we enabled window scaling to overcome this issue, with a
minor impact on resource consumption as shown in Section 5.1.3. Moreover, we analyzed the
reduction of the overall protocol overhead by enabling jumbo frames on the ethernet switch
and increasing the maximum segment size for the TCP stack and the maximum packet size
in the ACCL firmware accordingly. These measurements are labeled with jumbo frames in
the plot. All changes together increased the throughput for large messages from initially
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8.5 GB/s with the TCP stack to 12.3 GB/s for both network stacks. However, it can also be
observed, that the use of jumbo frames harms the latency for small messages. Especially for
sizes between 2 KiB and 8 KiB we see an increase in latency with both network stacks when
using jumbo frames. This overlaps with the differences in frame size which is increased from
1460 Bytes to 8960 Bytes. Using the streaming communication approach, data is forwarded
to the user kernel as soon as it arrives on the receiving FPGA. In consequence, smaller frame-
and packet sizes can improve the overall communication latency for small messages because
the processing of the incoming data can overlap with the actual transmission. For large
messages with the size of hundreds of KB, the overlapping of communication and computation
using streaming communication can also efficiently take place with jumbo frames. However,
not using jumbo frames reduces the peak throughput in our experiments from 12.3 GB/s to
below 12 GB/s. This means when optimizing the network stack for a specific communication
pattern, adjusting the packet and frame size has to be considered to optimize throughput or
latency.

The measured ping-ping latency for ACCL with UDP or TCP stack and 64 Byte messages is
given in Figure 5.6. As discussed, there is also a considerable difference between streamed
and buffered communication because of the additional copy operation. Our Ethernet switch
adds an additional 1 ps latency to every configuration. Still, all configurations support
communication latencies in the microsecond range.
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Figure 5.6: 64B Ping-Ping Latencies for the different ACCL communication approaches using
the UDP or TCP stack. The latency for the host Infiniband network is given for reference.

5.2 Acceleration of Shallow Water Simulation using ACCL

Based on the results of Section 5.1, we ported a 2D shallow water simulation with high
communication constraints to Xilinx FPGAs and extended the implementation to support
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halo exchange via ACCL to improve the performance and scalability of the application.

5.2.1 Implementation

The evaluation of ACCL using synthetic benchmarks showed that low latency communication
in the order of a few s is possible. We applied the lessons learned to a full FPGA accelerated
HPC application: A discontinuous Galerkin shallow water simulation on unstructured meshes
which was originally implemented for Intel FPGAs [61] and was further extended for multi-
FPGA execution in custom circuit-switched communication networks [55].
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Figure 5.8: The mesh is partitioned as indi-
cated by the colors. Data has to be exchanged
between neighboring partitions in every simu-
lation time step in the form of the partition
halo. Based on Faj, Kenter, Faghih-Naini, et
al. [55], Fig. 4

Figure 5.7: Computational mesh consisting
of 1696 elements [55]. The boundary edges
represent the coastline (land edges) and the
border to the open sea (sea edges).

The simulation makes use of 2D shallow water equations which are derived from Navier-Strokes
equations. They are a classical model to simulate tides or tsunamis but also other kinds of
fluid or even atmospheric flows. The tidal flow of the bight of Abaco on Bahamas islands
is used as a simulation scenario as given in Figure 5.7. The water surface of the bay is
represented by an unstructured mesh. The borders of the mesh are either land or sea edges
which have to be handled differently in the simulation. For the execution over multiple
FPGAs, the mesh is partitioned into sub-meshes as visualized in Figure 5.8 for two partitions
indicated by different colors. The mesh partitions are distributed among the FPGAs, such
that every FPGA handles exactly one partition. In each simulation step, the halo around
the partition edges has to be exchanged between FPGAs storing neighboring partitions using
point-to-point communication. The halo consists of all mesh elements with boundary edges
to the neighboring partition.
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The designs in [61] and [55] support three types of polynomial discontinuous Galerkin
discretizations, however, it has been shown by Faj et al. [55] that the requirements for
communication latency are very similar for all three types of discretization. Thus, we will
only focus on the piecewise constant discretization in our evaluation. For communication, the
original implementation utilizes the QSFP ports of the FPGAs via IEC. Therefore, the FPGAs
form a circuit-switched network where FPGAs holding neighboring partitions in the mesh are
directly connected to exchange the halo regions via low-latency one-hop communication. This
setup restricts the maximum number of neighboring partitions to the number of QSFP ports
installed on the FPGA board. For a high number of FPGAs, finding an efficient partitioning
of the mesh under the given restrictions is challenging, effectively limiting the scalability of
the original implementation, where only at most 10 FPGAs are used.
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Figure 5.9: Dataflow schematic for shallow water simulation. Full overlap of compute kernels
across simulation time steps. The maximum communication latency is indicated by the red
arrow. If communication takes longer, the compute pipeline will stall until data is received.
Simplified dataflow based on Faj, Kenter, Faghih-Naini, et al. [55], Fig. 5

Figure 5.9 shows the dataflow graph over two simulation time steps for the compute pipeline
in a single FPGA. All simulation data is loaded into the local memory of the FPGA at the
beginning of the simulation so global memory accesses are only used during simulation to
write back intermediate results. The element kernel updates all entities of the unstructured
mesh element-wise. The L"2 projection is directly forwarded to the edge kernel which will
update all boundary and outer edges of the unstructured mesh. Afterwards, the boundary
edges between partitions of the unstructured mesh will be sent within the other kernels to
the remote FPGAs via ACCL. This data will be received at the end of the execution of the
element kernel in the next time step. To prevent pipeline stalls, the data has to arrive at the
remote FPGA within the latency indicated by the red arrow which is typically a few thousand
clock cycles. The overall latency between sending and receiving boundary elements depends
mainly on the number of core elements that will be updated by the element kernel in between.
Core elements are elements that are not located on a border of the local partition and which
do not require any data from remote FPGAs. This overall model is the same as in the original
implementation, but the impact of high communication latencies or a low number of core
elements per partition was not considered in the performance models and evaluation in [55].
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The data is streamed through the kernels element-wise as given in Figure 5.10. The mesh
partition will be updated on the local FPGA and all boundary elements are forwarded to a
communication kernel which has the task of passing this data to the compute pipeline on the
remote FPGA. In the baseline implementation, the communication kernel is invoked by the
host for every simulation step. It will write all received data into a buffer in global memory
and finish execution after all elements for one simulation step are written to notify the host
that the data is ready for sending via MPI. The remote host calls the communication kernel
again to read the data from global memory to the element kernel for the next simulation step.
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Figure 5.10: Remotely partitioned FPGA designs with two processing pipelines distributed
over two FPGAs with ACCL communication via AXI streams and communication scheduling
in PL.

For the ACCL-enabled version, the communication kernel converts the simulation data into a
generic 512-bit AXI stream used to directly pass the data into the ACCL communication stack.
This way, the actual simulation loop stays unchanged. In addition, we use a communication
scheduler kernel to issue the send and receive commands directly from PL. This massively
reduces the number of kernel invocations from the host side.

For a high number of partitions, there will be more than one neighboring partition and the
element kernel expects the remote elements from the communication kernel in a predefined
order. As a result, the incoming data has to be reordered on the receiver side before it can
be passed onto the simulation pipeline. Instead of creating our own logic for this task, we
make use of ACCL’s buffered communication feature. Therefore, we buffer received data
in global memory first and move the data from the global memory into the AXI stream
using the recv primitive as indicated by the red arrows in the figure. In the end, the
resulting communication scheme is a mixture of streaming communication on the sending
side and buffered communication on the receiving side. This approach slightly increases the
communication latency because data has to go through the global memory instead of passing
it directly to the communication kernel. As a main advantage, we have no strict upper limit
for the number of neighboring partitions since we can configure the number of receive buffers
during runtime.



CHAPTER 5. CASE STUDY: SHALLOW WATER SIMULATION 89

5.2.2 Performance Model

The port of the simulation to Vitis-compatible C++ code was possible without major changes
in the dataflow characteristics. This also means, that the performance models for the
simulation proposed by Faj, Kenter, Faghih-Naini, et al. [55] also hold for this implementation.
However, their throughput model does not consider the communication latency, which is
important for strong scaling scenarios and small local partition sizes, since the calculations on
the core elements may not be sufficient to hide the communication latency. Because of this,
we extended the existing throughput model as given in Equation 5.2 with the communication
latency Leomm representing the latency for the FPGA with the highest number of neighbors
according to the partition scheme and the largest number of sent or received elements per
simulation time step.

FLOPtotal
maw(Ecore + Dewta Lcomm) + Esend + Erecv + Lpipe

throughput = f - (5.2)

Additionally, we model the communication latency based on our latency measurements in
Section 5.1, our ACCL latency models, as well as mesh partitioning information as given in
Equation 5.3. As described in the previous section, to receive the data, it has to be read from
a buffer in global memory with a latency of /,,. The maximum number of neighbors N,,,, for
a partition scheme has a major effect on this read latency because the read commands have
to be scheduled for every neighbor. This adds [, to the overall communication latency for
every neighbor as given in Equation 5.1. The latency to process the commands in ACCL I,
has to be added for every send and receive command.

Esend + Erecv + 2. Nmam : lk + Nmax : lm
Lcomm = f + Lpingp’ing <53)

Also, the overall latency of the communication link has to be considered, introducing another
latency Lpingping, Which is the ping-ping latency of the largest message exchanged among
neighbors. For the total number of floating-point operations F'LO PSS, we use the simplified
model FFLOPS;1q1 = FLOPyy,, - Eiora without the additional operations required to calculate
the projection on the received elements. Instead, we calculate the FLOPs based on the total
number of elements in the mesh F,,,; and the number of floating point operations per element
FLOPS,,,,, independent of the partitioning to make scaling experiments better comparable.

5.2.3 Evaluation

We also synthesized the base and ACCL version of our shallow water simulation for the FPGA
partition on Noctua 2 as described in Section 2.3. For our application, we use the UDP
minimal and TCP minimal optimized configurations of ACCL as described in Section 5.1.3.
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The resulting resource utilization is given in Table 5.1 for the used configurations. The
increased resource utilization compared to the base version closely reflects the resource usage
of the ACCL stack. The implementation supports setting the maximum number of elements
per partition, which mainly affects the BRAM and URAM utilization since the whole partition
is stored in local memory. The baseline and UDP versions are synthesized with a partition
size of 8192 elements where larger sizes led to routing congestion because the URAMs holding
the local partition can not be easily distributed across multiple Sliced Logic Regions (SLRs).
For the ACCL TCP stack, we were only able to synthesize designs with half the partition
size, i.e. 4096 elements. Larger local partitions also failed because of routing congestion.

Table 5.1: Resource utilization of the shallow water simulation.

Freq. Synth.
Configuration LUTs Registers BRAM URAM DSPs [MHz] Time [h]
Base 126,646 182,015 265 188 1,218 256 4.1
(9.7%) (7.0%) (13.1%) (19.6%) (13.5%)
ACCL UDP 176,884 305,381 312 188 1,242 274 5.2
(13.6%) (11.7%) (15.5%) (19.6%) (13.8%)
ACCL TCP 334,225 586,847 344 101 1,242 252 15.1
(25.6%) (22.5%) (17.1%) (10.5%) (13.8%)
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Figure 5.11: Execution times for the weak scaling scenario with ~6000 elements per FPGA.
Due to a known issue in the current version of the TCP stack, we did not evaluate this
configuration beyond 16 devices.

We first executed a weak scaling experiment with the three design variants of the shallow
water simulation. The resulting performance compared to the modified performance model is
given in Figure 5.11. We used increasing mesh sizes with up to 312,000 elements to keep the
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Figure 5.12: Strong scaling scenario with selected mesh sizes with ACCL and UDP stack.
The numbers in the plot represent the maximum number of neighbors.

number of elements per partition between 6,000-7,000 elements. The base version annotated
as MPI+PCle first shows a reduced performance when scaling from one partition to two
partitions. When executed only on one partition, no communication is required, eliminating
compute pipeline stalls. Measurements with our synthetic benchmark given in Figure 5.4
showed an expected latency of 100-120ps for small messages of multiple KB size. This is
the expected size of the halo exchange messages sent by the shallow water simulation. The
simulation processes one element per clock cycle and sufficient core elements are required to
hide the communication latency as expressed in the maz term in Equation 5.2. Based on the
kernel frequency of the synthesized bitstream, the pipeline could process around 25,000 to
30,000 elements in this time frame, so for the given partitions, the pipeline stalls approximately
75-80% of the execution time. With their improved communication latency, the ACCL designs
with UDP and TCP stack can respectively avoid or reduce such stalls, which leads to higher
performance and better scalability, to up to 4.5 measured TFLOPs on 48 FPGAs with the
ACCL UDP design.

Furthermore, we executed strong scaling experiments with selected mesh sizes given in
Figure 5.12, which additionally depict the maximum number of communication neighbors.
The results show that this number has a high impact on the overall performance, because of
the additional latency introduced by command scheduling and global memory.

To get more precise input data for our model, we measured the latency [, and [,, using a
synthetic benchmark scheduling copy operations and no-ops from the PL to ACCL [60]. In
the first experiment, we repeatedly sent no-ops to the CCLO, which will decode the command
and send a return status back to the user kernel. This allows us to measure the minimal
ping-pong latency from the user kernel to CCLO for decoding a command and returning the
status. On average, we measured 0.24 us for a single command, which resembles 60 clock
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cycles. Additionally, we executed copy operations from global memory into an AXI stream to
measure the latencies for [,,, for buffer sizes of 100 elements, which resulted in 1.7 us.

When the local partitions become too small to cover the communication latency, there is no
performance improvement by adding further FPGAs. Indeed, the overall performance can
even degrade, because further partitioning of the mesh may introduce a higher maximum
number of neighbors, which in turn further increases the communication latency. This can
be observed for the 108K element mesh, where additional neighbors result in a step-wise
decrease in performance. The original implementation of Faj, Kenter, Faghih-Naini, et al. [55]
is limited to a maximum of four neighbors because of the number of QSFP ports installed
on the FPGA board and thus was limited to at most 10 FPGAs for the topology used in
their and our experiments. Our ACCL implementation overcomes this limitation, but we see
that in strong scaling scenarios, larger local partition sizes or custom message reordering in
local memory is required to hide the communication overheads introduced by the increasing
number of neighbors.

For the verification of our results, we chose a similar approach to previous work. We executed
the CPU reference implementation on the same mesh and compared the sea level and velocity
in x and y directions over time on pre-defined positions in the mesh that we refer to as stations.
Our shallow water simulation does report intermediate results for every simulation hour
whereas the reference implementation is doing this for every simulation step. Example results
of the sea level verification for a mesh with 217,088 elements executed over 48 FPGAs are
given in Figure 5.13. The results collected on the FPGAs are given as dots for four different
stations, and the matching CPU results are given as lines in the same color. As can be seen,
the FPGA results closely overlap with the results of the CPU reference implementation.

0.05
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® ACCLUDP

0.00 }—= — CPU Reference

Stations

ETA [m]

. Station 1

Station 2
. Station 3
T Station 4

-0.05 A

Simulation Time [h]

Figure 5.13: Verification of simulation results for the ACCL UDP implementation against a
CPU reference implementation with 217,088 elements over 48 FPGAs.
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5.3 Chapter Conclusion

In this chapter, we used our synthetic benchmark b_ eff to model the communication latency
of ACCL for different communication approaches. Our analysis of ACCL’s network stacks
showed, that fine-tuning the network stacks i.e. in terms of packet sizes can be used to either
optimize the throughput or latency of the communication on a per-application basis.

Based on our ACCL evaluation, we ported a OpenCL multi-FPGA shallow water simulation
to Vitis HLS and extended it with communication via ACCL. The scaling experiments showed
linear speedups in weak scaling scenarios with all 48 FPGAs of the Noctua 2 partition and
the same performance per partition but with much better scalability than an implementation
using custom circuit-switched networks. However, by evaluating the application with UDP
and TCP network stacks, we also showed, that the additional resource utilization of the
network stack and communication framework can lead to reduced application performance.
In the case of the TCP stack, further scaling of the application failed because of routing
congestion, eventually reducing the per-FPGA performance of the application. The flexibility
of recent FPGAs and multi-FPGA systems enable us to use the best-fitting network stack
or communication framework for an application depending on the targetted communication
patterns, throughput, latency, and resource utilization requirements. This makes it imperative
for a multi-FPGA communication framework to be configurable to the specific use case to
facilitate performant as well as portable multi-FPGA applications.
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5.3. CHAPTER CONCLUSION



Related Work

We split the contributions of this work into three areas: HLS-/ OpenCL-based benchmarks for
multi-FPGA systems, LU decomposition on multi-FPGA systems, and full FPGA-accelerated

applications making use of multi-FPGA systems and inter-FPGA communication to scale
workloads beyond a single FPGA.

6.1 FPGA Benchmarks for HLS toolchains and Multi-FPGA
systems

There already exist several benchmark suites for FPGA and their HLS frameworks. Most
OpenCL benchmark suites like Rodinia [62], OpenDwarfs [63] or SHOC [64] are originally
designed with GPUs in mind. Although both GPU and FPGA can be programmed using
OpenCL, the design of the compute kernels has to be changed and optimized specifically
for FPGA to achieve good performance. In the case of Rodinia, this was done for a subset
of the benchmark suite with a focus on different optimization patterns for the Intel FPGA
(then Altera) SDK for OpenCL [65]. In contrast, to port OpenDwarfs to FPGAs, Feng, Lin,
Scogland, et al. [63] employed a research OpenCL synthesis tool that instantiates GPU-like
architectures on FPGAs. With Rosetta [66], there also exists a benchmark suite that was
designed targeting FPGA using the Xilinx HLS tools from the start. It focuses on typical
FPGA streaming applications from the video processing and machine learning domains
and currently supports the Xilinx HLS framework. The CHO [67] benchmark targets more
fundamental FPGA functionality and includes kernels from media processing and cryptography
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and the low-level generation of floating-point arithmetic through OpenCL, using the Altera
SDK for OpenCL.

The mentioned benchmarks often cannot easily be adjusted to the target FPGA architecture.
Modifications have to be done manually in the kernel code, sometimes many different kernel
variants are proposed or the kernels are not optimized at all, making it difficult to compare
results for different FPGAs. A benchmark suite that takes a different approach is Spector
[68]. It makes use of several optimization parameters for every benchmark, which allows
modification and optimization of the kernels for a FPGA architecture. The kernel code does
not have to be manually changed, and optimization options are restricted by the defined
parameters. Nevertheless, the focus is more on the research of the design space than on
performance characterization.

Still, in some of the benchmarks, the investigated input sizes are small enough to fit into local
memory resources of a single FPGA. However, many HPC applications require more memory
for their calculations or need to be scalable, so these benchmark results only have limited
validity in this area.

Recent works targeting FPGAs in the HPC domain implement synthetic benchmarks in HLS
or OpenCL to generate empirical roofline models [69]-[71]. Similar to the use on CPUs and
GPUs, these roofline models can give an upper bound of the performance and optimization
guidance for FPGA-accelerated HPC applications. However, the interpretation of such a
roofline model for FPGAs is very complex because resource utilization and achieved kernel
frequencies affect the overall performance. Also, caching of data through the utilization of
local memory such as BRAM and ultra-RAM is usually not reflected by the benchmarks,
which is often essential for the performance of real applications.

Zeni, O’Brien, Blott, et al. [72] implemented the High Performance Conjugate Gradients
(HPCG) benchmark using OpenCL on Xilinx FPGAs, which is well a established benchmark
in the HPC domain. The benchmark is currently limited to Xilinx FPGAs and was only
evaluated on the Alveo U280. Similar to our work, it comes with multi-FPGA support using
the host MPI installation.

6.2 LU Decomposition on FPGAs

The most complex benchmark that we added to the benchmark suite is HPL, where the most
compute-intensive part is the LU decomposition. There already exist several implementations
for scalable, double-precision blocked LU decomposition implemented in HDL. A multi-FPGA
implementation of LU decomposition is proposed by Hauser, Dasu, Sudarsanam, et al. [73].
The implementation uses up to five Virtex-1I FPGAs for the calculation on a single matrix
arranged in a star topology. The FPGAs need to be reconfigured several times during
computation and calculate the LU decomposition of an 8192 x 8192 matrix with double
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precision complex numbers using 5 FPGAs in 1862.41 seconds and with that achieving up
to 197 MFLOP/s. Wu, Dou, Sun, et al. [74] propose a single FPGA implementation for
Virtex-5 FPGAs that reaches 8.5 GFLOP/s and that can be easily extended for multi-FPGA
execution. A double-precision implementation using HLS for the Xilinx Alveo U50 was done
by Kumar, Choudry, and Purini [75] and showed a peak performance of 128 GFLOP/s on a
single FPGA. Jaiswal and Chandrachoodan also propose a scalable double-precision block
LU decomposition implementation for Virtex-5 FPGAs [76] written in Verilog. They report
achieving more than 120 GFLOP /s when scaling over 8 FPGAs.

Turkington, Masselos, Constantinides, et al. [77] implement the LINPACK 1000 benchmark
in Handel-C and achieve more than 2.5 GFLOP/s on Stratix II. Wu, Dou, Lei, et al. [7§]
achieved more than 3.6 GFLOP /s with their HDL implementation of the same benchmark.
Both implementations also include pivoting. Since we are rather taking up on the rules
proposed for HPL-AI, pivoting is not part of our implementation.

Zohouri, Maruyama, Smith, et al. [65] implemented an OpenCL single-precision LU decom-
position without pivoting within the Rodinia FPGA benchmark suite. Execution on an
Intel Arria 10 FPGA with a matrix size of 8,192 elements resulted in a performance of
above 366.5 GFLOP/s. Our implementation requires much larger matrix sizes to achieve its
peak performance but already achieves 493.7 GFLOP/s on Stratix 10 with the given matrix
size. However, since our implementation is also scalable over multiple FPGAs, the overall
performance is not limited by the resources of a single FPGA.

None of the related work gets close to the measured peak performance of our implementation
exceeding 48 TFLOP/s.

6.3 Multi-FPGA Applications

This work in detail analyzes ACCL as an inter-FPGA communication framework for scaling
latency-sensitive applications. With that, it is the first work using ACCL within an applica-
tion but several multi-FPGA applications exist, using either other existing communication
frameworks or custom solutions.

Our HPCC FPGA benchmark suite [49] contains multi-FPGA implementations for LU factor-
ization and matrix transposition. Next to the baseline versions using the naive communication
approach via PCle and MPI, it also contains optimized versions of these benchmarks directly
utilizing the SerialLite network stack for communication in custom circuit-switched networks.
The baseline versions in many cases suffer from high communication latency and limited
throughput, making this communication approach unsuitable for most of the discussed ap-
plication scenarios. For many applications, FPGAs work best on small to medium problem
sizes. This, in comparison to GPUs or CPU, sets additional constraints on the communication
latency and throughput since overlapping of computation and communication can not be
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used as extensively. This is why most related work uses approaches that utilize the boards
QSFP ports which show lower latencies and higher throughput.

Most of the related work comes with custom solutions for inter-FPGA communication tailored
to the specific application. They often make use of low-level network layers which are tightly
integrated into the application design based on custom shells or BSPs. In the following, we
will give an incomplete selection of multi-FPGA applications from different domains to give
an overview of where multi-FPGA systems and inter-FPGA communication show promising
results in recent works.

Perdomo, Kropotov, Cano Ladino, et al. [79] implemented an emulation platform for RISC-V
designs scaling over multiple FPGA. In their evaluation, they use this platform to execute
an emulation using 32 Alveo U55¢ FPGAs making use of the QSFP28 ports for inter-FPGA
communication. They make use of several approaches for inter-FPGA communication: Firstly,
they use one of the QSFP ports for communication via Ethernet while the second QSFP
port is used for peer-to-peer communication using Aurora. Secondly, they implemented an
Ethernet-over-PCI driver solution which allows the communication among FPGAs on the
same node. With this setup, they are able to simulate large-scale RISC-V designs, exceeding
the logic resources of a single FPGA.

Fujita, Kobayashi, Yamaguchi, et al. [80] accelerate astrophysical simulations using FPGAs and
the inter-FPGA communication framework CIRCUS. They achieve a high parallel efficiency
with a weak scaling scenario on up to four FPGAs. Kobayashi, Fujita, Yamaguchi, et al. [81]
extends the work utilizing GPUs and FPGAs and using MPI and CIRCUS for communication.
The application showed linear speedups for weak scaling on up to two compute nodes or up to
two FPGAs, respectively. However, the scaling evaluation for this application is very limited.

Huthmann, Shin, Podobas, et al. [82] implemented an N-Body simulation using a custom
circuit-switched network. The implementation showed linear speedups in strong and weak
scaling scenarios over up to 8 FPGAs. Another N-Body simulation by Menzel, Plessl, and
Kenter [56] uses SerialLite via the OpenCL Intel External Channel extension to communicate
within a custom circuit-switched network and archives linear scaling in a strong scaling
scenario with up to 24 FPGAs. The implementation achieves sub-millisecond time step
durations.

A shallow water simulation on unstructured meshes by Faj, Kenter, Faghih-Naini, et al. [55]
similarly makes use of SerialLite within a custom circuit-switched network. The mesh is
therefore partitioned and distributed over the FPGAs. FPGAs holding neighboring partitions
are directly connected via the custom circuit-switched network for halo exchanges. Because of
that, the number of neighboring partitions is limited to the number of available ports on the
FPGA board. The implementation is scaled over up to 10 FPGAs and achieves high parallel
efficiency in strong scaling scenarios with a time step duration of only several microseconds.
These small time steps set high requirements on the communication latency, thus we picked
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this work for our evaluation within Chapter 5.

Sheng, Tong, Jiang, et al. [83] perform a molecular dynamics simulation on 64 Xilinx VU13P
FPGAs which are interconnected via 200 Gb/s links that form a 4 x 4 x 4 3d torus network.
With this custom system architecture, they outperform multi-GPU accelerated systems over a
wide range of simulation sizes. Similar to the NBody and shallow water simulation, low-latency
communication is crucial for scaling this kind of simulation over large systems.

Also for deep neural network inference, FPGAs are a promising candidate for acceleration
and gained more traction in recent years. However, the fast increase of neural network sizes
also increases the demand for more FPGA resources to sustain or even improve throughput.
Spreading the inference over multiple FPGA by utilizing direct inter-FPGA communication
leads to promising results using two FPGAs as shown by Alonso, Petrica, Ruiz, et al. [84]
and Jiang, Sha, Zhang, et al. [85].
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Conclusion

This chapter provides a concise summary of the thesis and its findings, followed by a discussion
on potential directions for future research based on these results.

7.1 Summary

This work proposed and evaluated a benchmark suite for FPGAs, addressing the need for
performance evaluation tools for FPGA-accelerated HPC systems, their development tools,
and communication infrastructure. We implemented an OpenCL benchmark suite based
on the HPC Challenge for CPUs, offering carefully optimized base implementations for all
benchmarks. A crucial selection criterion for the benchmarks was the memory access pattern.
We evaluated the benchmarks on four boards from different vendors, utilizing DDR, HBM2,
and host memory to store application data. The base implementations were written in
OpenCL C, ensuring compatibility with both major FPGA vendors using the same source
code without manual modifications. In our single-FPGA evaluations with four different
FPGAs of the two major vendors and three different types of global memory including HBM2
and DDR, the measured performance closely resembles the modeled peak performance under
resource and global memory bandwidth constraints for most of the benchmarks.

With that, we showed that the implementation of OpenCL C code resulting in performant
hardware with the toolchains of both major vendors can be achieved through careful optimiza-
tion. However, some of the benchmarks like GEMM were not always capable of utilizing a
sufficient amount of the hardware resources or the synthesis resulted in low kernel frequencies,
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leading to reduced performance. These cases showed the limitation of our base implementation
approach, where code optimizations could only be applied reluctantly to not negatively affect
the application performance with other HLS toolchains. Our evaluation showed, that our
benchmarks are capable of measuring differences in the FPGA architectures of Xilinx and
Intel FPGAs by configuring the benchmarks with different floating-point precisions. Moreover,
we detected changes and limitations in specific versions of the FPGA tools using our bench-
marks, helping us to solve performance issues caused by the kernel scheduler and document
modifications of toolchain features over time. This shows the relevance of our benchmark
suite not only for empirical performance evaluation but also for system maintenance.

We extended the benchmark suite’s applicability beyond single FPGA boards by providing
highly compatible implementations for multi-FPGA systems that leverage the host MPI in-
stallation for communication. These implementations can run on a wide range of multi-FPGA
systems without being restricted to a specific inter-FPGA communication infrastructure.
Additionally, we demonstrated the suite’s extendability by providing optimized benchmark im-
plementations for existing communication frameworks, dedicated inter-FPGA communication
infrastructure, and other HLS runtimes like XRT. The evaluation showed that using QSFP
ports for communication not only improves communication throughput and latency, and
with that enhancing application performance, but can also lead to performance degradation
because of the additional resource utilization of the network stacks. Our benchmark suite is
the first multi-FPGA benchmark suite supporting the parallel execution of benchmarks over
a complete multi-FPGA system, further establishing FPGA boards as first-class citizens in
HPC.

Furthermore, we implemented and optimized two complex applications with first-class multi-
FPGA support that show good scalability over complete multi-FPGA systems. Firstly, as part
of the benchmark suite, we developed a parallel LU decomposition within our HPL benchmark.
To our knowledge, it is the fastest LU decomposition implementation for FPGA, achieving over
48.7 TFLOP/s using single-precision floating-point values. Secondly, we ported a shallow water
simulation on unstructured meshes, with high requirements for low-latency communication,
to Xilinx FPGAs and extended it with support for the ACCL communication framework.
Therefore, we used our benchmarks to evaluate different communication approaches based on
ACCL and used our findings to select an apropiate approach to use within the application.
Moreover, we refined the performance model of the application based on our benchmark results
to accurately reflect the impact of communication latency on the application performance.
Our implementation matches the performance per FPGA of the original implementation using
SerialLite and a custom circuit-switched inter-FPGA network but overcomes the scalability
limitations of the original version. In our evaluation using all 48 Xilinx FPGAs of Noctua 2,
our simulation shows close to linear scaling in weak scaling scenarios and limited scalability
in strong scaling scenarios, which can be precisely explained by our improved performance
model considering the communication latency and number of communication peers per rank.
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Communication latency plays an important role for the scaling performance of multi-FPGA
applications especially for small to medium problem sizes. Our communication-latency models
are application-independent, supporting the integration into other application performance
models to analyze their scaling capabilities using the ACCL framework.

Our analysis of an existing communication framework for FPGA showed, that higher levels of
abstraction offer improved code portability independent of the lower layers of the network
stack while offering well optimized implementations for frequently used communication tasks.
As shown by our implementation of the shallow water simulation, a lower level of abstraction
is not always required to achieve the same performance with minimal resource overhead. This
indicates that existing concepts for communication frameworks for FPGAs have the potential
to accelerate the development of multi-FPGA applications in the future. However, currently
communication frameworks themselves often only support a limited set of devices and network
infrastructure. Also, many frameworks require the use of custom BSPs or shells instead of
the default vendor shells, increasing the hurdles for a broad adoption of the frameworks.
Nevertheless, because of the high compatability of our benchmark suite with various FPGA
boards of the mayor vendors, it provides a promising foundation to support the further
development of inter-FPGA communication frameworks.

7.2 Future Work

The benchmark suite achieved performance close to the expected bottlenecks for most
benchmarks and near the theoretical peak, making it valuable for HPC acquisition planning,
application optimization, and system maintenance. As discussed in Chapter 3 and Chapter 4,
the benchmarks can detect changes in tool behavior. Their relatively simple nature simplifies
debugging and detection of such changes because we provide performance models for every
benchmark. For system maintenance, the benchmarks can be used with CI to continuously
measure performance over time and across tool versions, identifying potential changes in tool
behavior and device performance. This allows developers to adapt to changes with reduced
debugging overhead for complex applications.

Future research should broaden the evaluation scope by assessing other communication frame-
works with diverse applications featuring varying communication characteristics, particularly
focusing on collective communication. Extending more benchmarks and multi-FPGA HPC
applications to support these frameworks will provide a comprehensive understanding of the
performance of communication approaches across a range of scenarios. Therefore the further
support for additional and next-generation HLS tools, such as SYCL and Intel’s oneAPI, are
valuable extensions of the becnhmark suite.

Our analysis of existing communication frameworks found that both circuit-switched and
packet-switched communication are advantageous depending on the scenario. However,
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as summarized in Chapter 2, current efforts, especially for Xilinx/AMD-based FPGAs,
are limited to packet-switched communication using complex and resource-heavy transport
protocols. A lightweight framework for these devices, with support for collectives similar
to SMI, would enhance their potential and allow better optimization of communication for
the target application and network infrastructure. We already set the foundation for such a
framework with the Aurora HLS project [29]. Another direction would be to integrate such a
network stack into existing communication frameworks like ACCL to reduce the complexity
for application developers to integrate new network stacks into their applications.

A current limitation of nearly all communication frameworks is the restriction to a single
FPGA vendor or even a single FPGA board. Future work should also cover cross-vendor inter-
FPGA communication — circuit-switched as well as packet-switched. Multi-vendor frameworks
will further increase the portability of FPGA-accelerated HPC applications and enable the
exploitation of architectural differences of the FPGAs like differences in DSPs, local memory;,
or logic resources to further optimize HPC workloads. Moreover, such a communication
framework would facilitate the development of improved base implementations of the HPCC
FPGA benchmarks that also utilize the QSFP ports of the boards.

A broadly compatible benchmark suite has huge potential to accelerate the development and
adoption of these future works by offering reference implementations and alowing standardized
performance comparisons. By addressing these future directions, we can further enhance
the utilization and performance of FPGA-accelerated HPC systems, driving innovation and
efficiency in FPGA-accelerated high-performance computing applications.
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ACCL Alveo Collective Communication Library
API Application Program Interface

BRAM Block RAM

BSP Board Support Package
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CUDA Compute Unified Device Architecture
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SPMD Single Program Multiple Data
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Shallow Water Simulation Mesh Data

Table A.1 and Table A.2 contain the relevant mesh properties that were used as input to our
model in Section 5.2. For partitioned meshes, the values for the partition with the highest
number of neighbors N,,,, and the largest number of F,.,q + E,cco are reported.

Table A.1: Mesh properties of the meshes and partitioning used for the weak scaling experi-
ments in Section 5.2.

#FPGAS Etotal Ecore Esend + Erecv Demt Lpipe Nmar
1 6784 6784 0 312 687 0
2 13568 6714 49 196 687 1
4 27136 6618 148 176 687 2
8 54272 6595 179 48 687 4

16 108544 6542 242 23 687 7
24 163840 6554 274 0 687 7
32 217088 6522 265 0 687 8
42 217088 4947 224 0 687 8
48 217088 4318 204 0 687 8
42 289792 6636 265 0 687 8
48 312320 6262 245 0 687 8
1 3392 3392 0 192 687 0
2 6784 3356 36 159 687 1
4 13568 3283 104 80 687 3
8 27136 3267 126 105 687 5
16 54272 3211 184 0 687 8
32 108544 3196 196 0 687 7
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#FPGAS Etotal Ecore Esend + Erecv Dezt Lpipe Nmaz
42 163840 3687 215 0 687 9

Table A.2: Mesh properties of the meshes and partitioning used for the strong scaling
experiments in Section 5.2.

#FPGAS Etotal Ecore Esend + Erecv Dext Lpipe Nmaw
1 6784 6784 0 312 687 0
2 6784 3356 36 164 687 1
4 6784 1621 74 83 687 2
6 6784 1061 74 38 687 4
4 27136 6618 148 164 687 2
6 27136 4383 140 74 687 4
9 27136 2874 141 19 687 4

12 27136 2128 135 0 687 6
9 54272 5862 169 60 687 5
12 54272 4341 183 30 687 7
15 54272 3420 201 0 687 7
24 54272 2116 147 0 687 9
15 108544 7004 233 47 687 6
24 108544 4318 209 0 687 6
33 108544 3108 181 0 687 7
42 108544 2422 163 0 687 7
48 108544 2100 161 0 687 8
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