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Kurzfassung

In der Quanteninformationstheorie ist eine präzise Kontrolle über Quantenzustände von
entscheidender Bedeutung. Phänomene wie Verschränkung, Superposition und Interferenz
von Quantenteilchen ermöglichen die Darstellung und Manipulation von Quantenbits
(Qubits), die fundamental für Quantencomputing, Quantenkryptographie und fortschrittli-
che Quantenkommunikationstechnologien sind. Wenig-Photonen-Emitter spielen dabei
eine entscheidende Rolle, da sie die Erzeugung solcher Zustände mit hoher Güte ermög-
lichen, was für die Entwicklung skalierbarer und robuster Quanteninformationssysteme
unerlässlich ist.

Diese Arbeit untersucht die theoretische Erzeugung von Wenig-Photonen-Zuständen mit-
hilfe von Halbleiterquantenpunkten und optischen Resonatoren für Anwendungen in der
Quanteninformationsverarbeitung. Quantenpunkte sind nanoskopische Halbleiterstruktu-
ren und hervorragende Photonenquellen, da sie durch die dreidimensionale Einschränkung
der Ladungsträger diskrete Energiestrukturen ausbilden, insbesondere Exzitonen, Biexzit-
onen und Trionen. Diese Energiekonfigurationen ermöglichen die Emission von Photonen,
die sowohl optisch als auch elektronisch präzise kontrolliert werden können, was sie zu idea-
len Kandidaten für Quantentechnologien macht. Es werden drei Hauptthemen untersucht:
Zunächst wird das Anregungsproblem bei der resonanten Anregung von Quantenpunkten
in Resonatoren umgangen, indem ein nicht-resonantes System angeregt und mittels ultra-
schneller elektrischer Steuerung der Energien durch den Quantum-Confined-Stark-Effekt
in Resonanz gebracht wird, was die Qualität der emittierten Photonen maximiert. An-
schließend ermöglicht ein spektral breiter zirkularer Bragg-Resonator die Erzeugung von
Photonen, die sowohl ununterscheidbar als auch verschränkt sind. Abschließend wird die
Erzeugung eindimensionaler linearer Clusterzustände durch Emission von Photonenketten
aus gestapelten Quantenpunkten mittels Spin-Hole-Trionen untersucht, was numerisch
mit hoher Güte realisierbar und essenziell für zahlreiche Protokolle im Quantencomputing
ist. Die numerische Auswertung der Systemdynamiken erfolgt mithilfe der von Neumann
Gleichung, der Polaron-Master Gleichung und der Pfadintegralmethode. Durch Berücksich-
tigung idealer und realistischer Parameter, einschließlich Verluste und Dephasierung, wird
die Robustheit der Methoden demonstriert. Die Ergebnisse dieser Arbeit bieten wertvolle
Einblicke in die Optimierung von Quantenpunkt-Emittern und in die Entwicklung von
Wenig-Photonen-Quantenzuständen für zukünftige Quantentechnologien.
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Abstract

In quantum information theory, precise control over quantum states is essential. Phenomena
such as entanglement, superposition, and interference of quantum particles enable the
representation and manipulation of quantum bits in quantum computing, cryptography,
and advanced communication technologies. Few-photon emitters play a critical role in
achieving this control by allowing for the high-fidelity generation, manipulation, and
detection of photonic quantum states. These states are fundamental for the development of
scalable and robust quantum information systems.

This study investigates the theoretical generation of few-photon states utilizing semicon-
ductor quantum dots, with selective integration of optical cavities, for quantum information
processing applications. Quantum dots are nanoscale structures and excellent candidates
due to the discrete energy configurations arising from the three-dimensional confinement
of charge carriers, specifically excitons, biexcitons, and trions. These energy configurations
allow for the emission of photons that can be precisely manipulated both optically and
electronically, making them highly relevant for quantum technologies. This research ad-
dresses three key challenges in generating few-photon quantum states. First, the excitation
of quantum dots states, where conventional resonant excitation is hindered by spectral
overlap with cavity modes, is augmented by employing ultrafast electric control of energy
levels via the quantum confined Stark effect. This decouples the excitation process from
the emission, restoring optimal photon emission characteristics. Second, a spectrally broad
circular Bragg cavity is introduced to mediate the production of photons from biexcitons
that are both indistinguishable and entangled, overcoming the typical trade-off between
these two properties while ensuring the practicability of the resonator. Third, the creation
of one-dimensional linear cluster states is investigated by emitting trains of photons from
stacked quantum dots using spin-hole trions. These cluster states, essential for quantum
computing protocols, are numerically generated with high fidelity, even in the presence of
losses. The numerical evaluation and theoretical validation of the dynamics of the systems
are performed by solving the von Neumann equation using the Polaron Master Equation
and Path Integral methods. By considering both ideal and realistic conditions - including
radiative losses, pure dephasing, and electron-phonon coupling - the robustness of the
results in practical scenarios and their implementability is demonstrated. The findings
provide valuable insights into optimizing quantum dot emitter devices and show how cavity
resonators enhance the production of high-fidelity photonic quantum states. This work
lays a solid foundation for future advancements in quantum information technologies.
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Introduction 1
Classical information processing is integral to modern life, driving devices such as comput-
ers, smartphones, and various electronic appliances. These devices often connect to the
internet, forming the Internet of Things (IoT). In classical information processing, binary
units known as bits - represented as 0s and 1s - are used to encode information. Although
bits can be managed electronically or mechanically, the information content of a single bit
is inherently limited by its binary nature.

Typically, electrons are used in the form of electric currents to control electronic transistors,
which serve as the fundamental units of classical information processing. These transistors
can be switched on or off, corresponding to logical 1s or 0s, respectively. Extensive research
has focused on making these transistors faster, smaller, and more energy-efÏcient [1].
However, as transistors shrink in size, they approach physical limits imposed by quantum
mechanics.

In recent decades, various theoretical limits have been proposed for the minimum size
of transistor-based electronics [2, 3]. Estimates suggest that this limit could be as large
as 10 nm. Despite these predictions, technological advancements have pushed the size of
transistors into the single-digit nanometer range [4, 5]. However, when transistors become
extremely small, quantum effects such as electron tunneling dominate, rendering these
components impractical for conventional use [3].

In response to these limitations, quantum information processing (QIP) has gained significant
interest and relevance in the scientific community over the past few decades [6–10]. Unlike
classical communication systems that rely on binary bits to represent information, quantum
information processing utilizes quantum particles as information carriers. These quantum
carriers are not restricted to binary states but can encode and exchange information in a
far more complex manner, as visualized in Fig. 1.1, panel (a).

The primary objective of quantum information processing is to achieve rapid and reli-
able data transfer over long distances, facilitating communication between disparate data
sources and processing units. Beyond communication, quantum information processing ex-
tends to various other critical fields, including quantum computing [11–17], quantum key
distribution [18, 19], and quantum cryptography [20–22]. These fields impose stringent
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1 Introduction

requirements on the quantum information carriers, necessitating highly precise and reliable
emitters to ensure the integrity and security of data transmission and processing.

0

1

|0〉

|1〉

Figure 1.1: Classical bit vs photonic quantum bit (a) A classical bit, represented by
a system being either in the zero (“0”) or one (“1”) state (orange dots), is compared to a
quantum bit, where the superposition of two states |0〉 and |1〉 is used to encode information.
This enables the quantum bit to carry significantly more information than its classical
counterpart, indicated by the blurred arrows. (b-f) Various quality aspects of the photon
emitter source are depicted. In an ideal scenario, the photons are identical, coherent, and
thus indistinguishable, achieving 100% brightness and unity purity. Inspired by Michler,
Quantum dots for quantum information technologies, [23].

Numerous approaches exist for creating emitters in quantum information processing, each
exploiting different quantum phenomena such as superposition of quantum states and
quantum entanglement. These methods involve various physical systems [24, 25], including
atoms [26], trapped ions [27], superconducting circuits for single-photon detection [28–
30], nanowires [31, 32], color centers and vacancies [33], and quantum dots [23, 34–41].
Each system offers a unique set of advantages and challenges, making the selection of
an appropriate emitter a critical aspect of quantum information processing. Quantum
dots, in particular, are promising due to the discrete energy levels arising from the three-
dimensional confinement of charge carriers, scalability, and compatibility with existing
semiconductor technology, allowing for deterministic photon emission and precise control
over quantum states.

Advancements in this field involve exploring materials, timescales, interaction strengths,
and scalability to optimize the performance of quantum information carriers [23, 42]. These
efforts aim to enable and enhance the capabilities of quantum technologies, ensuring
practical and efÏcient methods for real-world applications. This study focuses on a specific
aspect of this research landscape by investigating quantum dots as sources for photon
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1 Introduction

generation, which then serve as quantum information carriers. In the following sections,
the properties of photons relevant to quantum information processing will be discussed,
followed by an exploration of semiconductor systems used for their generation.

1.1 Photons as Quantum Information Carriers

Classically, light is perceived as a vector field characterized by its intensity, phase, and
other macroscopic properties, such as the vectorial polarization. A deeper investigation
into the nature of light reveals that it is composed of individual particles called photons.
For classical light, the number of photons is Poisson-distributed around a given intensity
maximum. Initially, the framework of intensity remains applicable, but as the investigation
progresses into the quantum realm with fewer photons, it enters the domain of few-photon
physics, where only a small number of countable photons exist [43].

In the few-photon regime, photon states exhibit distinct quantum properties such as purity,
indistinguishability, and entanglement, which are critical for quantum applications. Purity,
for instance, measures how effectively photons behave as individual single photons. When
photons cluster together, known as bunching, they resemble classical light and exhibit
lower purity [18, 39, 44–46]. Conversely, when photons are completely separated, known
as antibunching, their purity reaches unity, indicating the presence of true single photons.
Achieving high photon purity is essential for quantum information processing applications
[47–49], ensuring that the emitter produces well-defined, single-photon states.

Indistinguishability is another crucial property that measures the similarity of photons
emitted by a source [13, 50, 51]. High indistinguishability indicates that photons are nearly
identical in terms of emission frequency and coherence [52–54], enabling interference
between multiple photons [55]. This property is vital for implementing quantum gates,
which are the building blocks of quantum circuits, as well as for applications in quantum
computing, cryptography, and communication technologies [11, 12, 14, 20–22, 42, 56–58].
Experimentally, sources capable of producing highly indistinguishable and pure photons
have been successfully implemented [46].

In certain scenarios, generating more than one photon is desirable, particularly when two
photons can be quantum mechanically entangled [59, 60]. Quantum entanglement is a
phenomenon in which two or more particles become correlated such that the quantum state
of each particle cannot be described independently of the state of the others, even when
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1 Introduction

the particles themselves are separated, for example by distance. This intrinsic correlation
means that measurements performed on one particle are directly related to measurements
on the other(s), reflecting the inseparable nature of their shared quantum state. Entangled
photons are essential for numerous quantum technologies, including quantum teleportation
[61], entanglement swapping for quantum repeaters [62, 63], quantum key distribution [56,
64, 65], quantum error correction [66, 67], and superdense coding [68].

Quantum teleportation, for example, enables the transfer of quantum information between
different locations without physically moving the particle. This process involves entangling
two particles, with one particle sent to the receiving location. A joint measurement is
performed on the particle to be teleported and one member of the entangled pair, effectively
transferring the state of the particle to the second entangled particle at the receiving
location. This protocol is foundational for quantum communication and the development
of a quantum internet.

In quantum key distribution, entanglement is employed to ensure secure communication.
Entangled photon pairs can be used to generate shared, random cryptographic keys between
distant parties. Any attempt to intercept the communication disturbs the entanglement,
making the eavesdropping detectable and providing a level of security unattainable with
classical cryptography [56, 65, 69].

Entanglement is also critical in quantum error correction, which safeguards quantum
information from decoherence and other quantum noise [10, 67]. Quantum error correction
codes rely on the creation of highly entangled states among multiple photonic qubits,
allowing errors to be detected and corrected without directly measuring the qubits. This
preserves the quantum information and enables reliable quantum computation. Entangled
states are also essential for quantum algorithms such as Shor’s algorithm for integer
factorization [70, 71] and Grover’s search algorithm [72], offering exponential speedup for
specific problems.

The significance of entangled photons is further underscored by their ideal properties
as quantum information carriers. Photons are robust against decoherence and can travel
long distances with minimal loss, even at non-zero temperatures [73]. The generation,
manipulation, and detection of entangled photons are thus central to the advancement of
quantum information technologies. Techniques to create entangled photon pairs, such as
spontaneous parametric down-conversion, four-wave mixing, or deterministic two-photon
emission, are fundamental to these applications [73].
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1 Introduction

Achieving high degrees of entanglement often compromises photon indistinguishability and
purity, since the intrinsic multi-photon requirements for entanglement introduce complexi-
ties that degrade these properties [51, 74]. Addressing these challenges remains a significant
focus of research [75–80], with the generation of indistinguishable and entangled photons
being crucial for realizing quantum gates, making high-quality photons indispensable [81].
Achieving unity values in photon properties, as visualized in Fig. 1.1, panel (b), is essential
for classifying photon sources in terms of reliability and efÏciency.

Quantum dots have emerged as a leading candidate for the generation of high quality
photons due to their ability to deterministically produce single or few-photon states [34, 82,
83] on demand [84–86], with precise control over the emission properties [84, 87–91]. Their
versatility, combined with compatibility for integration into telecommunications systems
[92–97], makes them a critical component in the advancement of quantum information
processing technologies.

The next section introduces quantum dots as photon emitters, focusing on the electronic
states within these structures. Understanding the emerging energy configurations and how
they facilitate controlled photon emission provides a foundation for leveraging quantum
dots in advanced quantum information protocols.

1.2 Electronic States in Semiconductor Quantum Dots

The energy landscape emerging from a given arrangement of semiconductor material can
be determined by analyzing the system’s =-dimensional density of states (DOS), generally
given by DOS(�)= =

1
+

∑#
8=1 X (� − �8), with energy �, volume + and particle number #

[98, 99]. The density of states is a function that describes the number of available quantum
states at each energy in a material and is strongly dependent on the energy dispersion
of the system. The transition from macroscopic structures to the microscopic regime is
elucidated using this metric and is visualized in Fig. 1.2, assuming parabolic free-particle
energy dispersion.

In three dimensions, commonly associated with a macroscopic, bulk material, the electronic
energy of the system is proportional to the square of the density of states, with �3D ∝ DOS2

[101]. With rising expansion of the material, the energy landscape becomes more complex,
resulting in a characteristic band structure for the energy distribution. When the system
is reduced to a two dimensional surface, the total electronic energy is proportional to
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Figure 1.2: Schematic representation of the reduction process from 3D to 0Dmateri-
als using the Density of States. (a-d) depict the spatial confinement of the material, resulting
from the lower band gap energy in the orange material vs the blue material. The black
arrows indicate the dimensions of confinement. (e-h) depict a schematic representation of
the DOS for the confinements depicted above. Inspired by [100].

a constant value after a threshold DOS is exceeded, with �2D ∝ DOS. Further reducing
the dimensionality to one, such as in the case of a linear atomic or molecular chain, the
electronic energy scales with the reciprocal square of the DOS, such that �1D ∝ DOS−2.
Finally, in the limit of zero dimensions, only a small set of states is available, leading to
discrete energy levels. As true zero-dimensional objects are not practical for real-world
implementations, a quasi-zero-dimensional object only a few nanometers in size is consid-
ered, retaining characteristics from higher-dimensional systems with confinement strong
enough to predominantly localize the energies [102, 103]. These structures are referred to
as quantum dots (QDs) in the following discussion.

Quantum dots are microscopic, nanometer sized structures composed of semiconductor
materials, such as Gallium Arsenide (GaAs) [104, 105], Indium Arsenide (InAs) [75, 106–
108] or similar materials [109–111], and are commonly embedded into a semiconductor
environment. These materials exhibit band gaps that span from just under one to several
electronvolts, encompassing the near-infrared [18, 112], visible, and ultraviolet regions of
the spectrum of light [113, 114].Quantum dots operating in the near-infrared are particularly
interesting for telecommunication applications [18], where wavelengths around the telecom
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1 Introduction

bands of 1550 nm are optimal to minimize losses within the optical fibers used for data
transmission [92–96]. Common fabrication methods include using advanced etching [115–
117] or epitaxial growth [117, 118] techniques, where layers of material are precisely
deposited to form the desired nanostructures. Common methods include the Stranski-
Krastanov growth, where the formation of quantum dots is driven by strain-induced
islanding on a lattice-mismatched substrate [107, 111]. Other methods include colloidal
synthesis [119–121] and droplet epitaxy [118, 122], each offering unique advantages for
specific applications such as control over size, shape and density of the dots.
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Figure 1.3: Schematic parabolic electronic dispersion for a bulk semiconductor such
as GaAs or InAs in panel (a) with no light-heavy-hole splitting. The split-off band, offset
by Δso, emerges intrinsically due to disturbances in the material, including internal stress,
spin-orbit interactions, other exchange mechanisms of particles, or external influences such
as electric or magnetic fields. The energy differences between the bands depends strongly on
the semiconductor material. In a true zero-dimensional structure, this dispersion vanishes,
leaving only discrete energy levels �6 and �ℎ . Panel (b) shows a schematic representation
of Wannier-Mott excitons within a semiconductor lattice and panel (c) a Frenkel exciton
within an organic lattice.

Within the zero-dimensional quantum dot, negatively charged electrons can be separated
from their host atoms by optical or vibrational means, leaving behind positively charged
holes. In higher-dimensional structures, such as bulk semiconductors, these charge carriers
are free to move and exhibit continuous energy bands following a parabolic dispersion rela-
tion, as visualized in Fig. 1.3, panel (a). However, in quantum dots, strong three-dimensional
confinement leads to quantization of energy levels, resulting in discrete energies. Due to
Coulomb interactions between the electrons and holes, an electron can remain bound to a
hole in s- or p-type orbits, forming an electron-hole pair known as an exciton quasi-particle.
Excitons are composite bosons with energies determined by the band gap of the material
and the exciton binding energy [34]. In the inorganic semiconductor materials referenced
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in this work, the distance between the electron and the hole is usually much larger than
a single unit cell inside the semiconductor lattice, forming a Wannier-Mott exciton. In
contrast, for organic materials, both the electron and hole typically remain localized at a
single lattice site, forming a Frenkel exciton. Both exciton types are visualized in Fig. 1.3,
panels (b,c). Optical transitions in excitons necessitate a change in angular momentum
of Δ" = 1. Excitons with |" | ≠ 1 are optically inactive and are termed dark excitons. In
contrast, excitons with |" | = 1, referred to as bright excitons, can couple directly to pho-
tonic fields via their electronic transition dipole [123–125], rendering them optically active.
These bright excitons, capable of absorbing and emitting light, are central to applications
in quantum information processing and related technologies and will be discussed and
explored in the following.

Two Level Configuration of the Exciton

An effective approach tomodel an exciton is through a two-level systemwith distinct energy
states, as depicted in Fig. 1.4, panel (a). In a true zero-dimensional quantum dot, exciton
dispersion is absent, allowing for a simplified model using discrete energy levels. This basic
description omits more complex effects, such as higher-order excited states, delocalization,
and direct environmental interactions. However, these effects can be reintroduced into the
numerical description.

Ground State 

Exciton State 

Ground State 

H State
V State

Biexciton State 

-
+

-
+

-
+

(a) (b)

Figure 1.4: Two level system of the exciton and four level system of the biexciton
with optical transitions indicated by the red and blue arrows. (a) The exciton is composed of
a single electron (red), bound to a hole (orange), leading to a two-level energy configuration.
(b) The biexciton is composed of two excitons, where attractive Coulomb interactions
between the excitons result in a bound state. The attractive Coulomb interactions overcome
the repulsion of like-charged particles and result in an energy configuration resembling a
diamond. Each of the transitions, marked by the arrows, can be driven by either absorbing
(red) or emitting (blue) a photon.
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The system is characterized by the ground state |G〉 and the excited state |X〉, where the
excited state represents the presence of an exciton. Typically, the ground state energy is
set to zero, with �G = 0 while the excited state energy �X depends on the semiconductor
material. In this model, the quantum dot is treated as a true zero-dimensional structure,
allowing the system to be described solely by the configuration of the lowest energy levels.
Transitions between the ground and excited states are governed by the operators |G〉〈X|
and |X〉〈G|, which function as electronic annihilation and creation operators, respectively.
These transitions can be driven optically, where the absorption of a photon results in the
creation of an exciton. Conversely, the exciton can re-emit a photon upon annihilation of
the excited state, making it an ideal source for single-photon emission. Further details on
the theoretical treatment of excitons are provided in Chapter 2.

Despite its simplicity, this two-level model effectively describes and predicts numerous
quantum experiments. This model is particularly useful for high-fidelity measurements and
the generation of very pure and indistinguishable single photons [126–129]. The ability to
generate single photons with such precision is crucial for many applications in quantum
information processing, including quantum computing, cryptography, and communication
technologies. The high purity and indistinguishability of the photons ensure that quantum
protocols operate reliably [130], which is fundamental to the development of advanced
quantum systems. Different methods for the generation and manipulation of these photons
are addressed in Chapters 5 to 7.

Four Level Configuration of the Biexciton

Two excitons can bind into a coupled state through Coulomb interaction, leading to the
formation of a biexciton. Despite the repulsive Coulomb forces between like-charged
particles (two electrons or two holes), the mixing of one electron with two holes and vice
versa can result in an attractive interaction between the excitons. This interaction forms
a stable biexciton, as illustrated by the diamond-shaped energy configuration in Fig. 1.4,
panel (b). The energy of the biexciton is reduced by the binding energy [109]. Typically,
this binding energy is positive. Although anti-bonding biexcitons with negative binding
energies also exist, they are not considered in this study. To form a stable biexciton, the two
excitons typically occupy states with orthogonal polarizations, conventionally labeled as
|XH〉 and |XV〉, representing horizontal (H) and vertical (V) polarization, respectively.

New selection rules for optical transitions emerge from the biexciton system, as shown
in Fig. 1.4, panel (b). Both excitons can be individually excited from the ground state |G〉
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by photon absorption, and further excited into the biexciton state |B〉 by absorbing an
additional photon. A total of two photonsmust be absorbed or emitted to create or annihilate
a biexciton, respectively [108, 131, 132], enabling the generation of entangled photon pairs
[75, 88, 133–135], which are crucial for advanced quantum communication protocols
[136, 137] and quantum computing. Due to asymmetries in the underlying quantum dot,
the individual excitons display slight energy mismatches, commonly referred to as the
fine structure splitting energy [133, 138–140], modifying the exciton energies such that
�H/V = �X ± �fsp/2. This splitting is known to reduce the entanglement of emitted photons
by adding which-path information to the emission [141]. Despite its potential for generating
entangled twin photons, the biexciton emission process often results in photons with low
indistinguishability, primarily due to the sequential decay of the excitons, as discussed
in Chapter 6. However, the interaction between exciton and biexciton states provides
important insights into light-matter interactions, offering significant opportunities for
applications in quantum information theory.

Three Level Configuration of the Trion

Further structures in quantum dot systems include V-type andΛ-type energy configurations,
illustrated in Fig. 1.5, which are comparable to the upper and lower parts of the biexciton
energy structure. These configurations arise when considering systems with three charged
particles, either two holes and one electron, or two electrons and one hole. Again, the
individual particles are bound through the Coulomb interactions and single transitions can
be driven by or emit a single photon.

Ground State

Excited State 

Excited State 

Ground State

(a) (b)
Excited State 

Ground State 

-
+

-
++

-

Figure 1.5: Trion states in a V-type configuration indicating a negatively charged trion in
panel (a) as well as a Λ-type configuration indicating a positively charged trion in panel
(b). The naming convention here is excited state, because these excited fermionic states are
not necessarily limited to excitons.

In these scenarios, the resulting quasi-particles are known as trions, characterized by their
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total electric charge. A positive trion consists of two holes and one electron, while a negative
trion consists of two electrons and one hole. These trions can be viewed as extensions of
the exciton and biexciton systems, where the additional charge alters the energy landscape
and interaction dynamics.

A positively charged spin-hole trion, for example, is prominently featured in Chapter 7.
This system is characterized by the interaction between a single electron and two holes.
Similar to the biexciton, trions exhibit distinct selection rules for optical transitions and can
generate photons with specific polarization characteristics. In V-type and Λ-type systems,
the transitions between states are governed by similar principles as those seen in biexcitons.
The energy levels can be manipulated to achieve the desired quantum states, facilitating the
emission of high-quality photons with specific properties. These configurations expand the
toolkit available for quantum information processing, allowing for more sophisticated ma-
nipulation of quantum states, and further facilitating the generation of advanced photonic
states.

1.3 The Quantum Resonator

In the quantum realm, an optical resonator functions similarly to the resonating chamber
in a classical sound resonator. When a steel string is plucked, it oscillates and produces
a sound that is relatively quiet on its own. However, when this string is positioned near
a resonating chamber, the sound is significantly amplified and potentially altered. This
analogy is illustrated in Fig. 1.6, panel (a). This principle of resonance and amplification finds
analogous application at the quantum mechanical scale, where it involves the interaction
of photon and electronic wave functions within a resonating chamber recognized as an
optical cavity [38, 50, 89, 142, 143].

Optical cavities typically consist of two or more mirrors that confine photons, allowing
them to bounce back and forth to form a standing wave inside the cavity. This confinement
amplifies the interaction between photons and the wave functions of the quantum dot states
positioned inside the cavity [87, 143, 144]. By modifying the properties of the light field,
the quantum resonator selectively amplifies certain wavelengths while suppressing others,
thereby controlling the emission characteristics of the quantum dot [84]. These cavities
are typically fabricated using semiconductor materials similar to those used for quantum
dots [95]. This resonant enhancement and selective amplification are crucial for optimizing
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QD

(Sound)

Emission
(a) (b)

Oscilla�ng
String

Figure 1.6: Classical and quantum oscillator (a) Schematic representation of a guitar
using a single steel string, forming a classical oscillator (blue) coupled to a resonance
chamber (orange), which amplifies the sound emission. (b) Quantum resonator, depicted
schematically using mirrors (orange), the lightfield of which is coupled to the electronic
states of a quantum dot (blue). The quantum dot hosts the electronic systems, specifically
illustrated here for a biexciton, exciton, and a generic trion (from left to right). When the
quantum dot states decay, they emit photons either into the cavity, which are then emitted
at rate ^ , or into a non-cavity mode with rate Wrad. The strength of the coupling is mediated
by the coupling constant 6. The quantum dot may further couple to its semiconductor
environment, resulting in dephasing of the quantum states at rate Wdep.

the performance of quantum dot emitters in applications such as quantum information
processing and communication technologies [89].

The cavity enhances the spontaneous emission of photons from the quantum dot through
the Purcell effect [93]. The photon number inside the cavity =̂ interacts with the electronic
transitions, boosting the emission rate. By carefully designing the cavity to match the
emission wavelength of the quantum dot, the interaction between the electronic states of
the quantum dot and the photonic field inside the cavity is intensified. This interaction
is described by the Hamiltonian formalism, a theoretical framework in both classical and
quantum mechanics that captures the total energy of a system, including kinetic and
potential components, and governs its evolution over time [98, 99, 145]. In the context of
this work, the Hamiltonian captures the energy exchange between the electronic dipole
transitions and the photonic field within the cavity. This interaction underlies phenomena
such as Rabi oscillations and the Purcell effect, which modifies the spontaneous emission
rate of the quantum dot. The temporal dynamics governed by the central Hamiltonian will
be explored in later sections.

Cavities can take various forms, such as Fabry-Pérot resonators with two parallel mirrors,
or photonic crystal cavities where periodic dielectric structures create a photonic band gap
that traps light [129]. Other designs include circular periodic cavities [89, 93, 146], such
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as the one featured in Chapter 6. In all cases, the objective is to confine light in a small
volume and increase the interaction strength between the light and the matter inside the
cavity, as shown in Fig. 1.6, panel (b). Here, the coupling between the quantum dot states
and the cavity light field is characterized by the light-matter coupling constant 6. This
enhanced interaction is highly beneficial for quantum information processing applications,
as it allows for efÏcient single-photon sources [13], quantum gates, and other components
critical to developing scalable quantum technologies.

By understanding and controlling these light-matter interactions, quantum devices that
exploit the coupling between electronic and photonic states can be designed and optimized.
This is a central theme explored in Chapters 5 and 6, where high-quality single and twin
photons with optimal properties are numerically generated.

1.4 Outline and Current Points of Interest

After establishing the foundational concepts of excitons, biexcitons, and other charged
particles and their interplay within quantum dots and optical cavities, it is crucial to explore
current developments and ongoing research in this dynamic field, as the intricate behaviors
and properties of these quantum systems open numerous avenues for technological advance-
ments and scientific inquiry. Accordingly, the following chapter provides a comprehensive
theoretical framework for the dynamics of electronic quantum dot states inside photonic
quantum cavities, introducing the general Hamiltonian for an N-level system with arbitrary
coupling between the electronic levels, followed by a theoretical description of the photonic
oscillator, or cavity. The fundamental system dynamics are discussed, elaborating on the
theoretical framework employed, and the temporal dynamics of the system are evaluated
using the von Neumann equation, providing insights into the evolution of quantum states
over time. The concept of coupling to the semiconductor environment is also explored,
highlighting various loss effects that can occur due to coupling between the system and
the semiconductor environment, including vibrational fluctuations known as phonons
[147–149]. A detailed explanation of the numerical methods used to describe phonons is
provided to ensure a thorough understanding of their impact on the system. Moreover, the
dynamics of the predominantly utilized biexciton emission are established to provide a
baseline for reference before proceeding to the results derived from the foundational work,
which focuses on three main topics:
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Enhancing the Quantum Dot Excitation Using Ultrafast Electric Control

One crucial aspect of working with quantum dot excitons, biexcitons, or any further
fermionic excited state is the excitation process, typically achieved using optical pulses
[150–154] or continuous wave pumping from a laser [155]. The elementary setup involves
using a laser whose frequency matches the frequency of the electronic transition desired for
the excitation. For an isolated exciton, this method works quite effectively. In experiments,
filtering out the laser light can be accomplished by employing different polarizations for
the excitation and emission processes [142]. However, practical implementation is often
more complex, especially when a cavity mediates a rapid decay of the electronic states.
Consequently, various excitation schemes have been developed [54, 80]. One approach
is off-resonant excitation [94], optionally leveraging electron-phonon coupling [148, 149,
156, 157], while others include dichromatic excitation using two pulses [126, 150, 158],
chirped laser pulses through the adiabatic rapid passage [127, 152, 159, 160] or the recently
developed SUPER excitation scheme [161–166].

In Chapter 5, the excitation problem for quantum dot excitons and biexcitons within an
optical cavity is addressed using a novel approach. The electronic states of interest are
excited resonantly, but they are initially off-resonant with the cavity. Subsequently, the
electronic state is moved into resonance with the cavity to trigger the emission of the
photon(s). This strategy allows for tunable, high fidelity excitation of the electronic states
and subsequent photon emission. A detailed examination of these interactions offers a
new perspective on excitation dynamics in quantum dot systems. Notably, tunability is
crucial for achieving broad applicability of devices in quantum information processing[80,
118, 167–169], and this approach aligns directly with that requirement. The preliminary
work that forms the foundation of the results shown in Chapter 5 has been thoroughly
established in Bauch et al., Ultrafast electric control of cavity mediated single-photon and
photon-pair generation with semiconductor quantum dots, [145].

Achieving Simultaneous Indistinguishability and Entanglement in Two Photon
Emission

Single photon indistinguishability is crucial for certain aspects of quantum information
processing, such as reliability and reproducibility. Moreover, entanglement is mandatory
for implementing many quantum protocols. Generating entangled photon pairs, where
each photon is indistinguishable, presents a significant challenge since only a few emitters
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are suitable for producing such photons. One of the most promising sources for these types
of photons is the biexciton two-photon emission from a quantum dot [170].

In Chapter 6, a cavity is used around the biexciton-to-exciton transition to significantly
enhance the decay rate of the biexciton state. This results in the production of highly
indistinguishable photons while preserving a high degree of entanglement. By leveraging
the enhanced emission properties provided by the cavity, the photons meet the stringent
requirements necessary for advanced quantum information processing applications. Ad-
ditionally, the emitter generates photons at telecom frequencies [89, 171, 172], offering
optimal conditions for quantum information processing applications [94, 173]. The un-
derlying studies that support the findings illustrated in Chapter 6 are explored in Bauch
et al., On-demand indistinguishable and entangled photons using tailored cavity designs, [174],
which was featured on the cover of the Advanced Quantum Technologies journal.

Generating One-Dimensional Linear Cluster States Through the Emission of
Photon Trains

The final challenge addressed in Chapter 7 is the generation and classification of large
photonic states with many entangled photonic information carriers. These states are crucial
for many applications in quantum computing [175, 176]. In this scenario, photons are
emitted from a spin-hole trion without the presence of a cavity [177]. The photons are
emitted at discrete time intervals, with each photon being entangled in time with its
preceding and succeeding photon [178–183]. This sequential entanglement forms what is
known as a linear cluster state [175, 184].

The focus is on investigating the generation of these linear cluster states and elaborating
on the classification of their entanglement properties. Understanding and accurately classi-
fying the entanglement aspect is essential for leveraging these states in practical quantum
computing applications, ensuring that they meet the necessary criteria for complex quan-
tum operations. Here, the expectation values of stabilizer generator expressions are used to
assess the entanglement [185, 186]. The groundwork for Chapter 7 has been published in
Bauch et al., Time-bin entanglement in the deterministic generation of linear photonic cluster
states, [187].

Finally, a comprehensive conclusion and outlook are presented to complete this work.
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Part I

Theoretical Framework
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Hamiltonian and Time

Evolution 2
The temporal evolution of quantum systems interacting with electromagnetic fields is
fundamentally governed by the Hamiltonian. This operator describes the energy eigenstates
of both the electronic states within a quantum dot and the photonic modes within an
optical cavity. The interaction between the electronic and photonic states is captured by
the coupling terms in the Hamiltonian.

Transitions between electronic states in a quantum dot are modeled as oscillating electric
dipoles [103, 188], which behave similarly to harmonic oscillators. These oscillators couple
to other oscillators, such as the photonic modes within a cavity. In this framework, second
quantization is employed to represent the photonic field via the photon number operator
n̂ = b̂†b̂, where 〈n̂〉 denotes the average photon number in the cavity. The creation and
annihilation of photons are governed by the operators b̂† and b̂, satisfying the commutation
relations [b̂, b̂†] = 1 and [b̂, b̂] = [b̂†, b̂†] = 0. For the electronic states within the quantum
dot, the limited number of discrete energy levels justify the direct use of bra-ket notation,
where transitions between the ground and excited states for a given configuration of
electronic states are represented by operators such as |G〉〈X| and |X〉〈G|. These transitions
correspond to the creation and annihilation of the excited state, respectively.

Electronic state operators, represented in bra-ket notation as |8〉〈8 |. Due to the limited Hilbert
space of the quantum dot states, these operators are expressed in matrix form, with a single
unit entry on the main diagonal, corresponding to the occupation of state 8 . Operators
describing transitions between these states, such as |8〉〈 9 | for 8 ≠ 9 , are characterized by
their off-diagonal non-zero entries. Similarly, the cavity occupation number operator, n̂2 ,
is diagonal with integer values representing the photon count in the cavity mode. This
formalism supports efÏcient numerical evaluation using matrix-vector or matrix-matrix
multiplication techniques, which is detailed in Appendix A.4.
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2 Hamiltonian and Time Evolution

The resulting Hamiltonian governing the electronic and photonic state energies reads

Equation 2.1

H0 =

∑
8∈S

�8 |8〉〈8 |
︸       ︷︷       ︸
exciton states

+
∑
c∈M

�cn̂c

︸   ︷︷   ︸
cavity modes

.

Here, �8 denotes the energy associated with the electronic state 8 , and ( is the set of all
electronic states. The ground state energy is typically re-normalized to zero, such that
�G = 0. Similarly, �c represents the energy corresponding to the cavity mode c, where
" is the set of all cavity modes. These energies can be converted into frequencies l8 via
�8 = ℏl8 , or into wavelengths _8 using �8 = ℏE2

2c_8
, where E2 is the speed of light. The partial

Hamiltonian H0 describes the energy of the uncoupled system, limited to the independent
oscillators without interactions. Section 2.3 elaborates on the analytical treatment of this
contribution.

Inter-State Transitions and Cavity Coupling

The interaction between the quantum dot electronic dipole and the photonic field in the
cavity is described by the coupling Hamiltonian. The dipole moment is defined as ®3 = −@®A ,
where @ is the electric charge and ®A is the displacement of the charged particle, interacting
with the cavity electric field ®� ( ®') at position ®'. The interaction Hamiltonian is thus given by
H1 ≡ − ®3 · ®� ( ®') [188]. The interaction strength is linearly proportional to the magnitude of
this interaction. The resulting interaction Hamiltonian for the quantum dot-cavity system,
incorporating exciton-photon interactions and external driving interactions, is given by

Equation 2.2

H1 =

∑
8≠9∈S
c∈M

|8〉〈 9 | ℏ68, 9,cb̂c︸          ︷︷          ︸
exciton-photon

+ |8〉〈 9 | Ω8, 9 (C)︸        ︷︷        ︸
exciton-pulse

+ Ωc(C)b̂c︸  ︷︷  ︸
pulse-photon

+ Δ(C) |8〉〈8 |︸     ︷︷     ︸
shift

+ H.c.

The first term in Eq. (2.2) describes the interaction between the electronic states in the
quantum dot and the cavity mode, where |8〉〈 9 | represents the electronic transition operators,
and b̂c denotes the annihilation operator for the cavity mode c. The coupling strength
between the electronic states and the cavity mode is denoted by68, 9,c. This coupling constant
is typically assumed to be real, and thus symmetric, such that 68, 9,c = 6∗8, 9,c. This part of the
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interaction Hamiltonian captures the interplay between the electronic oscillators and the
cavity oscillators, including the creation and annihilation of cavity photons through the
modulation of electronic state populations. Notably, since no restrictions are placed on the
indices 8 and 9 , even non-energy conserving processes are included in this term, which will
be addressed later in Section 2.3.1. The second term in Eq. (2.2) models the direct driving of
the electronic transitions using an external oscillator, typically describing optical driving
using laser pulses. This aspect will be further elaborated in Section 2.4.

It is possible to incorporate many more physically allowed processes in this framework,
such as the direct coupling of the external oscillator with the cavity light field operators,
as well as time-dependent shifts of the electronic states, highlighted in gray in Eq. (2.2),
respectively. While the former is not utilized in this work and serves only as an illustrative
example, the latter will be actively studied in Chapter 5. Further additional processes not
described in this work may include intra-cavity coupling, where photons from different
cavities interact.

The total Hamiltonian describing the system is then constructed by the sum of all the
sub-Hamiltonians, with

H =

∑
8

H8 = H0 + H1 +
∑
8>1

H8 , (2.3)

where components with 8 > 1 represent extensions of the quantum-dot-cavity system,
including electron-phonon coupling, which is described in Chapter 3. The following section
presents a detailed exploration and derivation of the von Neumann equation used to
evaluate the temporal dynamics of the system defined by the Hamiltonian Eq. (2.3).

2.1 Von Neumann Equation of Motion

The state of the system at any given time is represented by the density matrix d . In quantum
mechanics, the time evolution of a pure state is governed by the Schrödinger equation

iℏ mΨ
mC

= iℏ
.
Ψ = HΨ . (2.4)

However, for mixed states and open quantum systems, which are influenced by interactions
with the surrounding environment, the density matrix formalism more generally describes
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their time evolution. For the given electronic system and cavity modes, the density matrix
can be written as

d =

∑
8∈(,c∈"

|8〉 ⊗ |c〉 〈8 | ⊗ 〈c| =
∑
<,=

|<〉〈= | . (2.5)

Here, < and = denote each possible state in the total Hilbert space, including both the
electronic and photonic states.

To describe the time evolution of the density matrix, the time evolution operator, or propa-
gator, Û(C0, C1), is introduced. This operator transforms the initial density matrix d (C0) into
the density matrix at a later time C1 via d (C1) = Û(C0, C1)d (C0)Û†(C0, C1). The propagator
is expressed as Û(C0, C1) = T exp

[
− i

ℏ

∫ C1

C0
H(C)dC

]
, where T denotes the time-ordering

operator. Expanding this propagator yields the Dyson series [98, 189]

Û(C0, C1) = 1 +
∞∑
==1

(
1

iℏ

)= ∫ C1

C0

dC2

∫ C2

C0

dC3 . . .

∫ C=−1

C0

dC=T
=∏
8=1

H(C8) . (2.6)

The Dyson series provides a systematic method to compute the time evolution operator for
time-dependent Hamiltonians. In cases where [H (C1),H(C2)] = 0 for C1 ≠ C2, the propagator
simplifies, and the time-ordering operator T becomes trivial. By considering the derivative
of the time-dependent density operator in this formalism, the von Neumann equation is
derived, governing the time evolution of the density matrix, with

m

mC
d (C) = .

d (C) =
.
Û(C)d (0)Û†(C)︸              ︷︷              ︸

=− i
ℏ
� (C )d (C )

+ Û(C) .d (0)Û†(C)︸              ︷︷              ︸
=0 since .d (0)=0

+ Û(C)d (0)
.
Û

†
(C)︸              ︷︷              ︸

=
i
ℏ
d (C )� (C )

, (2.7)

which simplifies into the von Neumann equation [98, 99, 190]

Equation 2.8

md

mC
= L[C] = − i

ℏ
[H (C), d (C)] +

∑
Ô

Lenv
Ô [d (C)] .

The von Neumann equation offers a practical framework for numerically evaluating the
time evolution of the density matrix, particularly when using adaptive time-stepping
methods such as the DP-45 method to explicitly integrate the von Neumann equation.
This is further discussed in Appendix A.4.1. In this equation, the Liouvillian operator
L[C] describes the time evolution of the density matrix, while the additional terms Lenv

Ô
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represent environmental interactions modeled via Lindblad operators [190, 191]. These
terms phenomenologically account for losses and dephasing, further elaborated upon in
Section 2.2.

The von Neumann equation is particularly advantageous due to the straightforward method
in calculating expectation values, which can be expressed as [191]

〈
Ô
〉
= Tr

{
d (C)Ô

}
=

∑
8

〈8 | d (C)Ô |8〉 . (2.9)

This allows for efÏcient calculation of expectation values from the density matrix, ensuring
that all relevant observables are derived using the matrix trace Tr{◦} without significantly
increasing computational complexity.

All simulations are conducted until m
mC

∑
= 〈= | d (C) |=〉 = 0 for all C > Cmax. This property

ensures that simulations continue until the occupation of each state stabilizes, signaling
that all relevant temporal dynamics have concluded. The value of Cmax is adjusted based on
the system and simulation parameters, ensuring proper evaluation in each scenario.

2.2 Open Quantum System - Environmental Coupling

Here, the various possible Lenv
Ô

terms from Eq. (2.8) are elaborated upon. The quantum
dot and the cavity can both couple to the environment in several ways, defined solely by
their respective creation and annihilation operators. To incorporate the phenomenological
dissipative behavior of any of these system operators, Lindbladian rate contributions are
used. The Lindbladian for a given system operator Ô is expressed as

LÔ [d] =
1

2

(
2ÔdÔ† − Ô†Ôd − dÔ†Ô

)
, (2.10)

commonly referred to as the Lindblad super operator. This formalism allows for the inclusion
of various phenomenological processes, such as the decay and dephasing of states, while
preserving the trace of the density matrix. Consequently, the time evolution of the density
matrix is no longer fully unitary, indicating the system is an open quantum system. This
framework provides a comprehensive description of how the system interacts with its
environment, modeling the non-unitary evolution due to dissipative processes that cannot
be captured by the von Neumann equation alone [191].
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2.2.1 Electronic State Decay and Dephasing

Focusing first on the electronic operators, consider Ô =
√
Wrad,8 9 |8〉〈 9 | with � 9 > �8 , which

represents an electronic annihilation operator, and thus an electronic transition, scaled
with the loss rate Wrad,8 9 . Applying Eq. (2.10), the resulting Lindbladian for radiative decay
of the electronic states is given by

Lrad [d] =
∑
8, 9∈(

8≠9,�8<� 9

Wrad,8 9L |8 〉〈 9 | [d]

=

∑
8, 9∈(

8≠9,�8<� 9

Wrad,8 9

2
(2 |8〉〈 9 | d | 9〉〈8 | − | 9〉〈 9 | d − d | 9〉〈 9 |) . (2.11)

Expression Eq. (2.11) describes the radiative decay of the electronic states into free, non-
cavity optical modes with a rate Wrad,8 9 . If not otherwise stated, Wrad,8 9 =: Wrad is independent
on the state indices 8, 9 . Emissions through this mechanism are only traceable using the
emission probability of the respective transition and are usually considered as losses to the
cavity modes. Typically, the radiative lifetime grad = 1/Wrad of quantum dot states ranges
from a few hundred picoseconds to a few nanoseconds [106, 118].

For Ô =
√
Wdep,8 9 ( | 9〉〈 9 | − |8〉〈8 |) with � 9 > �8 , which represents an electronic inversion

operator and is directly connected to the state population, applying Eq. (2.10) yields

Ldep [d] =
∑
8, 9∈(

8≠9,�8<� 9

Wdep,8 9L | 9 〉〈 9 |− |8 〉〈8 | [d]

=

∑
8, 9∈(

8≠9,�8<� 9

Wdep,8 9

2
| 9〉〈 9 | d |8〉〈8 | . (2.12)

Expression Eq. (2.12) describes the dephasing of the state population, resulting in the decay
of state coherences with rate Wdep,8 9 . Again, if not otherwise stated, Wdep,8 9 =: Wdep. A small
dephasing rate can be used to simulate electron-phonon induced dephasing, resulting in
what is known as the zero-phonon line [192], or pure dephasing. Typically, Wdep ≈ 1µeV · T,
scales linearly with low temperatures [110, 193]. However, this method is often shown to be
unfavorable since electron-phonon coupling can be included directly, and the Lindbladian
rate can greatly exaggerate the influence of the zero phonon line. Therefore, while useful
for initial approximations, more accurate models are necessary for detailed simulations of
electron-phonon interactions [194]. Nevertheless, this Lindblad contribution also describes

24



2 Hamiltonian and Time Evolution

other sources of dephasing, and is used to include spin dephasing in Chapter 7.

The general temporal behavior for both loss mechanisms is illustrated in Fig. 2.1. Radiative
decay leads to the excited state populations approaching zero, whereas dephasing results
in a maximally mixed state with equal occupations for all states involved.
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Figure 2.1: Impact of the decay and dephasing mechanisms for the toy model from
Eq. (2.16) representing a two-level system coupled to a single mode cavity with �� = �X =

1 eV and ℏ6 = 50µeV. The inversion |X〉〈X| − |G〉〈G| is displayed on the y-axis. All panels
depict the dynamics of an initially fully populated excited state |X〉. Panel (a) depicts the
influences of cavity losses ^ . Panel (b) shows the same results for radiative loss Wrad instead.
Notably, when the rate of decay for the electronic states or cavity photons is equal, the
resulting dynamics are almost identical. Panel (c) presents the electronic states experiencing
dephasing using Wdep, resulting in a maximally mixed state.

2.2.2 Resonator Losses and Purcell Enhancement

For the photonic operators, a similar approach is applied as with the electronic operators.
Using Ô =

√
^2 b̂2 , the Lindbladian for the cavity mode c is given by

LCav [d] =
∑
2∈"

^2Lb̂2 [d]

=

∑
2∈"

^2

2

(
2b̂2d b̂

†
2 − n̂†2d − dn̂2

)
(2.13)

Expression 2.13 indicates that the cavity population n̂2 = b̂†2 b̂2 decays with a rate ^2 . If not
stated otherwise, loss rates for different cavity modes are assumed to be equal with ^2 =: ^ .
The cavity photons suffer from losses due to imperfect mirrors in the resonator structure,
a feature often desired for efÏcient photon extraction. The loss of photon population
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2 Hamiltonian and Time Evolution

effectively lowers the lifetime g = 1/^ of the cavity photon field. Typical values for the
cavity losses range from ^ ≈ 6 (strong coupling) to many times the cavity coupling with
^ � 6 (weak coupling).

From the cavity loss rate ^ , additional figures of merit can be calculated to characterize the
cavity. One such metric is the cavity Q-factor, defined as

Q =
lc
^
, (2.14)

where lc = �c/ℏ is the cavity frequency and ^ is the respective cavity loss rate. High
Q-factors translate into low loss rates ^ and thus, long lifetimes of the cavity photons.
High absolute coupling values 6 may be overshadowed by even larger loss rates ^ , yielding
low Q-factors even though the raw light-matter coupling is strong. This is exploited in
Chapter 6 for advanced photon generation.

Additionally, the cavity-induced enhancement, referred to as the Purcell enhancement [93,
195, 196], can be calculated using

Wcavity

Wrad
=

262

Wrad^︸︷︷︸
F%

Purcell
Enhancement

· ^2

(Δ�/ℏ)2 − ^2︸           ︷︷           ︸
≤1

Spectral
Detuning

·

��� ®� (®A )������ ®�max

���︸︷︷︸
≤1

Spatial
Mismatch

·
(
®3 · ®� (®A )
3�

)2
︸        ︷︷        ︸

≤1
Polarization
Selective

. (2.15)

The ratio of the cavity decay rate Wcavity and the radiative decay Wrad represents the radiation
emitted from an electric point dipole inside the cavity compared to the radiation emitted
in an infinite, homogeneous bulk material. For simplicity, it is assumed that there is no
spatial detuning and no polarization selection, meaning these components are grayed-out
in Eq. (2.15), indicating they are not used in the formula. Purcell enhancement is used as a
figure of merit in Chapter 6, providing a crucial measure of the efÏciency and effectiveness
of the cavity in enhancing the emission properties of the quantum dot system.

In an anticipatory manner, consider a simple two-level system coupled to a single mode
cavity

H = �X |X〉〈X| + �c=̂︸             ︷︷             ︸
H0

+
(
ℏ6 |X〉〈G| b̂ + H.c.︸                ︷︷                ︸

H1

)
, (2.16)

which is commonly referred to as the Jaynes-Cummings Model (JCM) [197–199]. Here, the
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2 Hamiltonian and Time Evolution

states are limited to a two level system, modeling a single exciton, and a single optical
cavity, optionally with large numbers of photons. The ground state energy is set to zero
with �G = 0.

For this system, when 6 § ^, Rabi oscillations occur [104, 108, 200], which is displayed
in Fig. 2.1 (green dotted lines). The amplitude and frequency of the Rabi oscillations is
determined by the coupling strength and detuning between the quantum dot and the cavity
mode. This coupling results in periodic energy exchange between the two systems with a
frequency given by Ω' =

√
62 + Δ2, where 6 is the coupling constant and Δ = (�X − �c)/ℏ

is the detuning between the quantum dot state and the cavity. The Rabi oscillations exhibit
a sinusoidal behavior in the excited state population [200]. With rising detuning, the
frequency of oscillation rises while the amplitude diminishes. When cavity losses are non-
zero, damping of these oscillations is observed at various rates, as visualized in Fig. 2.1.
Here, the numerical effects of pure dephasing of the quantum dot states as well as radiative
decay of the states is also visualized using the same toy model from Eq. (2.16). When ^ � 6,
the system experiences over-damping, leading to the disappearance of oscillations.

2.3 Interaction Picture Transformation

The analytical treatment of the previously described Hamiltonian requires further prepara-
tion. First, consider the complete time evolution operator of Eq. (2.22) obtained using the
Schrödinger equation [98, 201] from Eq. (2.4) with

Û(C) = T4−i/ℏ
∫ C

0
H(C )dC . (2.17)

The transformation is split into time-independent operators H0 and time-dependent oper-
ators H8 . Typically, H0 includes high-frequency components, which can be analytically
addressed by applying a unitary transformation based on H0. This approach bypasses the
need for the high numerical precision that would otherwise be required to capture the
rapid dynamics induced byH0. The self-adjoined transformation into the interaction frame
is then given by

ÛI(C) = 4−i/ℏH0C . (2.18)

Because the Hamiltonian describing the energy landscape of the system is time independent
with H0(C1) = H0(C2), and therefore [H0(C1),H0(C2)] = 0, Eq. (2.18) can be calculated
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analytically. An operator in the interaction frame is then defined by its corresponding
transformed operator in the Schrödinger frame, with

ÔI(C) = Û†(C)ÔSÛ(C) . (2.19)

Evaluating Eq. (2.19) for electronic and photonic operators yields

|8〉〈 9 |I (C) = |8〉〈 9 | 4 i(l8−l 9 )C and (2.20)

b̂I(C) = b̂4 ilC , (2.21)

which are then used to build the transformed Hamiltonian. Furthermore, applying this
transformation to the Lindbladians Eqs. (2.11) to (2.13) reveals that they remain unchanged
in the interaction frame. From this point onward, the subscript is dropped, as all operators
are assumed to be in the interaction frame in respect to H0 unless noted otherwise. The
time evolution through H1 is then calculated by iteratively integrating the von Neumann
equation Eq. (2.8). Due to the unitarity of the transformation, the expectation values remain
the same in both the interaction and Schrödinger picture.

2.3.1 Rotating Wave Approximation

As previously introduced, the Hamiltonian typically contains high-frequency components,
which are treated analytically using the interaction picture transformation. This same
transformation can be applied again to remove additional high-frequency components
that are not relevant to the current analysis because they occur on different time scales or
violate conservation laws.

Consider the simple interaction Hamiltonian for a two-level system

H = �X |X〉〈X|︸     ︷︷     ︸
H0

+
(
Ω0 cos (l0C) |X〉〈G| + H.c.︸                           ︷︷                           ︸

H1

)
, (2.22)

where Ω0 is a constant describing the coupling between the ground state |G〉 and the
excited state |X〉 via a generic oscillator with frequency l0. At this point, the source of the
oscillating term is arbitrary. Possible sources of the oscillation include light fields induced
by a laser or a cavity. The energy difference of the ground and excited state is given by
�X = ℏlX.
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2 Hamiltonian and Time Evolution

Performing the interaction picture transformation for H1 using the time independent
Hamiltonian emerging from the electronic states H0 yields

H1 ∼
(
4−il0C + 4 il0C

)
4−ilXC |X〉〈G| + H.c.

=

(
4−i(l0+lX )C + 4−i(lX−l0 )

)
|X〉〈G| + H.c. . (2.23)

This transformation yields two frequency components, namely the sum of frequencies
lX + l0, and the difference of frequencies lX − l0. The difference of frequencies is easily
resolvable and will naturally be of high amplitude. In contrast, the sum of frequencies is
difÏcult to resolve due to the small time step required and is typically of low amplitude.
Moreover, the sum frequency component tends to average out over time when larger fre-
quencies are considered, which is depicted in Fig. 2.2, where the dynamics of the interaction
picture transformation are also shown. Consequently, this component is omitted from the
Hamiltonian, which is then transformed back into the Schrödinger frame.

The resulting Hamiltonian for the example given then reads

H1 ≈ Ω04
il0C |X〉〈G| + H.c. . (2.24)

A similar transformation can be applied when investigating the cavity coupling operator by
transforming the product |8〉〈 9 | b̂ for all combinations of the electronic state indices 8 and 9 .
Within this transformation, the corresponding to sum frequencies are removed. In general,
this method is referred to as the Rotating Wave Approximation (RWA) [202]. The omitted
terms can be interpreted as representing non-physical processes, such as the simultaneous
creation of photons and excitation of the quantum state, or the simultaneous annihilation
of photons and relaxation of the state. These processes do not conserve energy and are
generally not allowed, but they can occur over very short timescales due to the Heisenberg
uncertainty principle.

Avoiding the RWA can reveal important physical effects that may be otherwise overlooked.
These effects become particularly significant in systems that are either strongly driven or
strongly coupled, where the coupling or driving strength Ω0 approaches or exceeds the
transition frequency lX. In such cases, a more comprehensive treatment that does not
depend on the RWA is required to accurately describe the temporal dynamics of the system
[203, 204]. Nevertheless, within the scope of this work, the coupling strengths are generally
low enough to validate the use of the RWA.

In the context of the complete system Hamiltonian in Eq. (2.2), this approach means
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G ~

|G〉

|X〉

G ~

|G〉

|X〉

Figure 2.2: State dynamics using the rotating wave approximation and interaction
picture transformation for a simple two-level system, illustrated on the Bloch sphere.
Rabi oscillations between two states |G〉 and |X〉 are shown for frequencies lX = 5Hz
(orange line), lX = 50Hz (blue line), and lX � 50Hz (red line). Simulations utilizing the
interaction picture without the rotating wave approximation are depicted in panel (a), while
the same simulations without the interaction picture transformation are shown in panel
(b). In the latter, only a single transition from the ground to the excited state is shown.

imposing restrictions on the order of the components, specifically setting �8 > � 9 for the
electronic operators. Because the results presented in this work use weak driving of the
electronic states and weak coupling to photonic cavities, the RWA is always applied.

2.4 External Oscillator - Laser Driving

In this section, the methods for optically driving the system using external lasers are briefly
introduced. All systems are driven with a central frequency l and rely on the rotating
wave approximation with

Ω(C) = Ω0(C)4−il0 (C−C0 ) , (2.25)

where Ω0(C) is the temporal envelope. Once more, the toy Hamiltonian from Eq. (2.24) is
used. The methods for driving the system utilized in this work vary only in their envelopes,
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specifically

Ω0(C) = �0 (CW / Constant Envelope), (2.26)

Ω0(C) = �0exp
[
−0.5

( C − C0
g

)2·? ]
(Gaussian Envelope) and (2.27)

Ω0(C) = �0sech
[( C − C0

g

)? ]
(Sechant Envelope) . (2.28)

Here, �0 = ℏl0 denotes the pulse amplitude. For continuous wave (CW) driving, Ω0(C) is
constant at all times. For pulsed driving, Ω0(C) can take various forms, including Gaussian
or hyperbolic secant (sech) shaped envelopes. For finite envelopes, the pulse width g
determines the temporal broadness of the pulse. For the reference materials used in this
work. the width is typically limited to a few pico seconds [205].
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Figure 2.3: Pulse envelopes and their respective Fourier transformations. (a) Tem-
poral profiles for continuous wave (CW), Gaussian, and sech (hyperbolic secant) envelopes.
The sech is treatable analytically. (b) Fourier Transforms of the respective envelope func-
tions, illustrating their spectral characteristics.

The steepness of the envelope can be controlled using the exponential scaling ? . Increasing
? results in a flat top envelope. Notably, with ? > 1, the spectral width of the envelopes
remains the same while the spectrum starts to adopt the tails of the CW envelope. This is
because the overall width of the envelope does not change with increasing ? , and thus sets
a limit on the spectral width. The envelopes and their respective spectra are visualized in
Fig. 2.3 for ? = 1, which is used throughout this work.

Furthermore, the term bandwidth is introduced to characterize the envelope of a pulse,
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defined as the reciprocal of the pulse length f = 1/g . In the case of a CW pulse, the
bandwidth is zero, ideally targeting only a single frequency.

The sech pulses have the advantage of being analytically treatable. While Gaussian pulses
are predominantly used in this work, sech pulses are explicitly employed in Chapter 7.
Depending on the method to generate pulsed lasers in an optical setup, experimental results
for the pulse envelopes may also deviate significantly from an idealized Gaussian envelope
[206].

Ground State 

Excited State 

Figure 2.4: Laser dressed state model and spectral intensity for the toy Hamiltonian
with �0 = 0.1meV, illustrated in panel (a), with the corresponding spectral intensity shown
in panel (b). A Fourier transform is applied to analyze the emission spectrum, revealing
side peaks at |� − �0 | = 2�0. During the presence of the laser pulse, the electronic states
shift in linear proportion to the laser amplitude, leading to the formation of the Mollow
triplet. The emission at �0 ± 2�0 is highlighted in blue and red, respectively. To achieve
a smooth spectrum, Wrad = 5µeV is used. The shaded areas in panel (b) correspond to the
colored transitions depicted in panel (a).

The amplitude of the pulse�0 is typically measured in units of energy. Because this measure
is not very descriptive, the pulse is often characterized further by introducing the pulse
area, defined as

A =

∫ ∞

−∞
Ω(C)dC . (2.29)

By setting the pulse area to A = 2=c , the parameters required to achieve = rotations
through the Bloch sphere of the system can be derived. In the context of the toy model used
in this chapter, a rotation within the Bloch sphere induced by the pulse area translates into
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the evolution of the state vector Ψ = cos(\ ) |G〉 + sin(\ ) |X〉 with \ ∈ [0, 2=c], effectively
changing the population and optionally the phase of the quantum state. In this work, either
the pulse amplitude �0 or both the pulse area A and the pulse length g are provided,
indicating that �0 will be calculated according to the desired pulse area.

All driving methods result in a Stark shift of the energies [168, 207], a general displacement
of the energy levels linearly proportional to the amplitude of the laser driving. Additionally,
the energy levels split symmetrically, forming a dressed state picture. Here, new optical
transitions arise, as visualized in Fig. 2.4, panel (a). From the emission from these dressed
states, the Mollow triplet emerges [208], characterized by two side peaks in the resonance
spectrum. For a resonant continuous wave driving with amplitude �0, these side peaks are
symmetrical around the center frequency at |� − �0 | = 2�0, as shown in Fig. 2.4, panel (b).
For pulsed driving, the Mollow triplet is usually not visible due to the short timescales of
the excitation.
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Electron Phonon Coupling 3
In the semiconductor environment of a quantum dot, lattice vibrations manifest as bosonic
quasi-particles known as phonons. These quantized lattice vibrations are visualized schemat-
ically in Fig. 3.1 and can lead to complex system dynamics, often resulting in dissipative
effects such as the dephasing of the electronic coherences. However, phonons can also
facilitate constructive processes, including phonon-assisted excitation of the quantum dot
population through emission or phonon-assisted Purcell enhancement via absorption of
phonons.
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Figure 3.1: Schematic representation of both acoustic and optical phonons in a
mono- (green) and bi-atomic (blue, orange) lattice. (a) Phonon dispersion relation for a
one-dimensional bi-atomic chain of atoms with"2 = 2"1 and"8 as the atomic mass. (b)
Displacement of the atoms for acoustic (blue) and optical (orange) phonons. The circles and
squares mark different types of atoms. While acoustic phonons also exist in mono-atomic
lattices, optical phonons only exist in structures with more than a single type of atom.
(c) Schematic displacement in an atomic lattice. While the acoustic phonons result in a
displacement of all atoms in the same direction, the optical phonons result in opposing
displacements, forming a dipole able to engage in direct optical manipulation.

Phonon interactions are inherently non-instantaneous, introducing memory effects due to
their dependence on the past states of the system. As quanta of lattice vibrations, phonons
propagate at finite speeds, leading to delays in system responses. This non-instantaneous
interaction results in non-Markovian dynamics, where the temporal evolution of any of the
system states is influenced by their history rather than solely their current state. Accurately
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modeling these interactions requires the inclusion of memory effects, as they directly affect
the behavior of the quantum dot.

In contrast, the von Neumann equation Eq. (2.8) assumes Markovian dynamics, where the
system evolves based only on its present state. Non-Markovian dynamics, however, require
consideration of past states. To simplify the modeling process, Markov approximations
can be employed to selectively remove memory effects, resulting in more simplified rate
equations. Though less precise, this approach provides a practical means to capture certain
phonon effects in a fully Markovian framework.

In this work, the Polaron Master Equation (PME) is established to describe electron-phonon
coupling [149, 209] using only a single retardation of time. While this method captures
many of the experimentally visible phonon dynamics, it becomes insufÏcient for fast,
sub-picosecond dynamics due to the nature of the Markov approximation. This method is
compared with a more computationally expensive approach that operates without these
approximations, known as the Path Integral (PI) method [210] to demonstrate the viability
of the polaron master equation in the context of this work. Both methods share a common
aspect that completely characterizes the phonons regardless of the method for numerical
evaluation: their spectral density.

3.1 Phonon Spectral Density

The general spectral distribution of a given set of phonons is defined by

� (l) =
∑
®@
_®@X

(
l − l ®@

)
, (3.1)

with wave vector ®@ and X (◦) as the delta function. For the longitudinal-acoustic (LA)
phonons typically dominating the phonon contributions in semiconductor materials at
low frequencies, the deformation interaction potential _®@ = _

(4 )
®@ − _

(ℎ)
®@ describes the

coupling of the quantum dot and the phonons [192]. Here, 4 (ℎ) denoted the electron
(hole) contributions, respectively. As the number of phonons increases, the summation
over discrete phonon modes is replaced by an integral of the density of states over a
continuous frequency spectrum. This involves using the phonon density of states (DOS)
and the phonon frequency distribution, the latter typically guided by empirical data. Under
these assumptions, the spectral distribution can be written as � (l) = DOS(l) 5 (l). This
work assumes only longitudinal acoustic phonons to be present, as optical phonons require
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significantly more energy to be excited, as displayed in the phonon dispersion relation in
Fig. 3.1, panel (a). At low frequencies, the density of states follows DOS(l) ∝ l , with 5 (l)
incorporating an exponential cutoff. This results in the spectral distribution

� (l) = l#

4c2dMℏ2
5
B

(
�44

−l2024/(422B ) − �ℎ4
−l202

ℎ
/(422B )

)2
(3.2)

where dM is the mass density of the semiconductor material, 2B is the speed of sound within
that material, 04 (ℎ) is the electron (hole) radius, and �4 (ℎ) represents the electron (hole)
energy [211–213]. Assuming 04 ≈ 0ℎ , the sum of the two exponential functions can be
approximated using a single exponential function, simplifying Eq. (3.2) to:

� (l) ≈ l# (�4 − �ℎ)2
4c2dMℏ2

5
B

4
−

l202
ℎ

222B . (3.3)

By grouping all the factors into unified parameters, the final spectral density is obtained
with

� (l) = U?l#4
− l2

2l2
1 . (3.4)

This work uses Eq. (3.4) exclusively, as it provides a compact and practical representation
of the phonon spectral density. It is characterized completely by the phonon coupling
strength U? , ohmicity # and phonon cutoff energy l1 . If not stated otherwise, for the
results presented in this work, U? = 0.03 ps2, # = 1 and l1 = 1meV. The electron-phonon
coupling constant U? is strongly dependent on the respective quantum dot and can vary
significantly [214].

The ohmicity # classifies the spectral density based on its behaviour at low frequencies.
Different ohmicities are visualized in Fig. 3.2,panel (b). An ohmic spectral density, obtained
for # = 1, is characterized by � (l) ∝ l . This type of spectral density grows linearly at low
frequencies, is typically associated with resistive environments, akin to classical friction,
and is commonly used for systems interacting with phonon baths. For # < 1, the spectral
density is sub-ohmic, meaning it grows more slowly with frequency. This behavior is often
linked to long-time correlations and noise, forming a frequency enhancement similar to
a low-pass filter. Conversely, a super-ohmic spectral density, achieved for # > 1, grows
rapidly at low frequencies. This form is typically used in models involving high-frequency
phonon components, such as the quantum dot cavity systems investigated in this work.
The super-ohmic spectral density � (l) with # = 3 is displayed in Fig. 3.2, panel (a) and
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Figure 3.2: Phonon spectral density function � (l) depicted as a function of phonon
frequencyl . (a) Comparison between a simple model from Eq. (3.4) for U = 0.03 ps2 and the
full model Eq. (3.2) with�4 = 7 eV, � 9 = −3.5 eV, d = 5.37 g/cm3, 2B = 5110m/s, 4ℎ/4A = 1.15

and 04 = 3.4 nm. Both feature # = 3. The simple model closely approximates the general
formula when 0ℎ ≈ 04 , and is generally adequate for the results discussed in this work. (b)
Examination of the phonon density as it varies with both the frequency l and the ohmicity
# , demonstrating resemblance to low-pass filter envelopes for # < 1 and the high-pass
filter envelopes for # > 1.

compares both Eqs. (3.2) and (3.4). While both methods do not perfectly coincide, the
simple model is usually sufÏcient to accurately characterize the phonon bath. Increasing
the phonon coupling U leads to linear increases in the spectral density. The spectral density
can also be tailored beyond Eq. (3.2) to match different physical systems, featuring different
spectral densities [210].

3.2 Polaron Master Equation

With the phonon spectral density now established, the subsequent step involves determining
the numerical incorporation of phonons. A large ensemble of phonons constitutes a phonon
bath, represented by a collection of bosonic oscillators. These oscillators then couple to the
electronic states |8〉〈8 |. The resulting Hamiltonian is expressed as

H2 =

∑
®@
ℏl ®@ b̂

†
®@ b̂®@

︸         ︷︷         ︸
�Bath - Bath Oscillator

+
∑
8∈(

|8〉〈8 |
∑
®@
ℏl ®@

(
_®@,81

†
®@ + _

∗
®@,81 ®@

)
︸                                     ︷︷                                     ︸

�QD-Bath - QD-Bath Interaction

(3.5)

= �Bath + �QD-Bath . (3.6)
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In numerical treatments, resolving the exact dynamics of the phonon bath can be compu-
tationally prohibitive. Therefore, the phonon bath is often assumed to remain constant,
implying no changes in the phonon density over time. This assumption is justified because,
on the time scales relevant to many quantum simulations, the slow evolution of the bath
properties relative to the fast dynamics of the electronic and photonic states allows for
an effective approximation in which the impact of the phonons is captured through an
averaged or static model. Essentially, the bath is modeled as a constant cloud of phonons
that follows the electrons of the quantum dot. This interaction is effectively described
using a quasi-particle known as the polaron [149, 208], which significantly simplifies the
treatment of the phonon Hamiltonian.

To model the interaction of the constant phonon cloud and the quantum dot states, a
transformation into the polaron frame is employed using a polaron transformation. This
transformation is defined by the unitary operator Û = 4( , which modifies the original
Hamiltonian to encapsulate phonon effects within altered system parameters. In this frame,
the oscillator components of the Hamiltonian are traced out of the total density matrix,
effectively neglecting the time evolution of the bath and reducing the complexity of the
dynamics to a more manageable form. The derivation and implications of the polaron
transformation, as outlined in detail in [149, 208], are reproduced and discussed in the
following section.

By employing the polaron transformation, the essential effects of phonon interactions on
the quantum dot states are retained, while the computational complexity is significantly
reduced. This approach facilitates an efÏcient and accurate numerical treatment of the
phonon bath, enabling the exploration of various quantum phenomena influenced by
phonon interactions. It is particularly valuable in understanding the impact of phonons on
quantum coherence and dephasing processes in quantum dot systems, thereby aiding in
the design of more robust quantum information processing devices.

3.2.1 Polaron Transformation

The polaron transformation is applied using a unitary transformation Û = 4(̂ such that the
transformed Hamiltonian in the polaron frame reads

H̃ = 4(̂H4−(̂ . (3.7)
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The transformation operator (̂ is defined by [215]

(̂ =

∑
8

|8〉〈8 |
∑
®@

_®@,8
l ®@

(
1†®@ − 1 ®@

)
. (3.8)

This operator is similar to the interaction component of the polaron Hamiltonian, except
for a reversed sign for the phonon annihilator in Eq. (3.8). The transformation operator is
designed to remove the quantum-dot-bath interaction component, allowing the usual von
Neumann equation to resolve the temporal dynamics of the quantum dot system.

The transformation is evaluated using the Baker-Campbell-Hausdorff formula [216]

4(̂�4−(̂ = � + [(̂, � ] + 1

2!

[
(̂, [(̂, � ]

]
+ . . . , (3.9)

with [�, �] = �� − �� as the commutator.

Each part of the complete Hamiltonian in Eq. (2.3) is transformed into the polaron frame indi-
vidually. The time independent part of the Hamiltonian describing the energy configuration
of the system

H̃0 = H0 , (3.10)

is unaffected by the polaron transformation. As such, the interaction picture transformation
also remains unaffected. Furthermore, the transformation of the interaction component

H̃1 = 〈B〉 H1 , (3.11)

results in linear scaling with the expectation value of thermal displacement operator
〈�〉 = 〈�〉8, 9 ∝ _8,8 , effectively re-normalizing the quantum-dot-cavity as well as the
quantum-dot-pulse coupling. Due to different couplings of the states to the phonon bath,
the average thermal displacement depends on the respective electronic state indices 8, 9 . For
example, the biexciton coupling scales with twice the exciton coupling, where _B = 2_X.
The expectation value of the thermal displacement operator is given by

〈B〉 = 〈B±〉 = exp
[
− 1

2

∫ ∞

0

� (l)
l2

coth
(
ℏl

2:B)

)]
. (3.12)

Finally, the transformed polaron Hamiltonian reads

H̃2 = �Bath + X̂6Ẑ6 + X̂D ẐD − �% , (3.13)
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The interaction with the phonon bath results in a static shift of the electronic state ener-
gies

�% =

∑
®@

∑
8

_2®@
l ®@

|8〉〈8 | , (3.14)

which is absorbed into the definition of the respective state energies �8 . As such, it is not
explicitly included in the numerical evaluation of the system. The interaction component
in Eq. (3.13) is constructed by [208]

Ẑ6 =
1

2
(B+ + B− − 2 〈B〉) (3.15)

and

ẐD =
1

2i (B+ − B−) . (3.16)

The polaron operators guiding the dynamics of the system read

X̂6 =
j + H.c. (3.17)

and

X̂D = i (j − H.c.) . (3.18)

Here, j is defined using the non-conjugated elements of H1 from Eq. (2.2), such that
H1 =

j + H.c.. At this point, the density matrix required to resolve this system is still
governed by the bath oscillators �Bath in Eq. (3.13). To reduce the Hilbert space to the
density matrix of the quantum-dot-cavity system of interest, the phonon modes, described
by their respective wave vector ®@, are partially traced over, effectively numerically ignoring
the bath oscillator. As mentioned prior, the phonon bath is assumed to be constant and as
such, does not change in time, justifying this approach.

A Born-Markov approximation is applied, assuming d (C) to be constant within the context
of the interaction period. The resulting polaron rate contribution reads [208]

Equation 3.19

LPolaron [d (C)] = −
∫ gmax

0

dg
∑

8∈{6,D}

(
�8 (g)

[
X̂8 (C), X̂8 (C, C − g)d (C)

] )
+ H.c. .
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In this context, Eq. (3.19) represents a Lindblad-type rate that can be seamlessly integrated
into the pre-existing von Neumann equation Eq. (2.8). The phonon cutoff time depends on
the specific system under investigation and is determined such that beyond this point, the
phonon correlations Φ(g) become zero, as illustrated in Fig. 3.3. In this work, it is set to
gmax = 4 ps.

The polaron Green functions required for the evaluation of Eq. (3.19) are defined as

�6 = 〈B〉2 (cosh(q (g)) − 1) , (3.20)

and

�D = 〈B〉2 sinh(q (g)) . (3.21)

The phonon correlation function required by the polaron Green functions reads

q (g) =
∫ ∞

0

� (l)
l2

[
coth

(
ℏl

2:B)

)
cos (lg) − i sin(lg)

]
dl , (3.22)

which is characterized primarily by the spectral density of the phonons � (l) as well as the
temperature of the environment ) . Notably, the imaginary part of the correlation function,
visualized in Fig. 3.3, is not influenced by the temperature of the system.
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Figure 3.3: Polaron frame correlation function Φ(g), as described by Eq. (3.22), dis-
played for various temperatures. The solid lines represent the real components of the
correlation function. The dotted black line illustrates the imaginary component, which
remains constant across all temperatures.
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The polaron transformed operator X̂8 (C, C − g) is given by

X̂8 (C, C − g) = ˜̂U(C, g)X̂8 (C) ˜̂U†(C, g) , (3.23)

with the commonly used approximation

˜̂U(C, g) ≈ 4−i/ℏH̃1g . (3.24)

This procedure mirrors the regular interaction picture transformation using H0. However,
unlike the exact interaction picture transformation, whereH0 commutes with itself,H1 does
not commute at different times, making the transformation in Eq. (3.24) an approximation.
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Figure 3.4: Bounds of validity for the
polaron master equation derived from
Eq. (3.25), analyzed for varying values of the
expected 〈�〉 factor and the amplitude of the
driving pulse. The analysis highlights that
the applicability of the polaron master equa-
tion is limited, particularly as the amplitude
of the driving pulse increases, leading to rapid
breaches of these bounds.

For these approximations to be exact, it
would require that [H (C1),H(C2)] = 0.
While the polaron frame approximation
is not entirely precise due to the time-
dependence of H1(C) in the exponential
function, it adequately captures the phonon
contribution for the scope of this work. The
polaron frame introduces an inherent error
that surpasses that of the time evolution op-
erator approximation. However, since the
time scales are restricted to the phonon cut-
off time gmax, the resulting error is minimal,
making this approach widely accepted in
the literature [149, 157, 159, 208].

An advanced approach to applying the po-
laron transformation involves accurately in-
tegrating the Hamiltonian or using the von
Neumann equation to calculate the trans-
formation [80]. While this increases the nu-
merical complexity, the overall results re-
main largely unaffected for the parameters
considered in this work. This is corroborated by comparisons with the path integral method
outlined in Section 3.3, which does not rely on the approximations inherent in the po-
laron frame. Despite these approximations, the polaron master equation yields results that
align well with experimental data, particularly for low temperatures and weak interaction
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strengths in the quantum dot-cavity system and its environment.

Moreover, the polaron master equation has been shown to accurately describe phonon
interactions under the condition [208, 215]

(
Ω8

lp

) (
1 − 〈�〉4

)
� 1 , (3.25)

These bounds are further visualized in Fig. 3.4. For low temperatures, resulting in near
unity 〈�〉 values, and small pulse amplitudes Ω8 , such as those used in simple excitation
processes or transition pulses, the polaron master equation provides an accurate description
of electron-phonon interactions. Similar thresholds exist for cavity interactions. However,
the coupling rates in these cases are typically much smaller where 6 � Ω8 , making the
polaron master equation even more applicable. This ensures that the model remains robust
and accurate across a range of scenarios, providing valuable insights into the behavior
of quantum dot systems coupled with phonons and cavities. The polaron master equa-
tion simplifies the complex dynamics between the quantum dot and phonon bath, making
it a powerful tool for studying these interactions.

Analytical Phonon Rates

An additional Markov approximation is employed, such that j (C, g) = j (C), effectively
neglecting all memory and time retardation effects. This approximation reduces the polaron
contribution to a simple Lindblad rate, allowing for a clearer distinction between pulse or
laser-induced phonon transition rates and cavity transition rates. Additionally, the resulting
analytical rates can be investigated directly to determine the fundamental behaviour of the
electron-phonon interactions.

The resulting Lindbladian rate contribution reads [147]

LPhonons [d (C)] =
∑
8, 9∈(

Γ
!,±
8, 9 L |8 〉〈 9 | [d (C)] +

∑
c∈"

Γ
C,±
8, 9 L |8 〉〈 9 |b̂†c

[d (C)] . (3.26)

Expression Eq. (3.26) can be directly incorporated into the von Neumann equation. The
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phonon-assisted laser-induced transition rates are given by [149]

Γ
!,±
8, 9 =

2
��〈�〉 Ω8, 9 (C)

��2
ℏ

∫ ∞

0

Re{(cosh(q (g)) − 1) 5 (C, g) + sinh(q (g)) cos ([ (C)g)}

∓ Im

{(
4q (g ) − 1

) Δ
!
8,9 sin ([ (C)g)

[ (C)

}
dg, (3.27)

where

[ (C) =
√
|〈B〉 Ω8 (C) |2 +

(
Δ
!
8,9

)2
(3.28)

and

5 (C, g) =

(
Δ
!
8,9

)2
cos ([ (C)g) +

��〈�〉 Ω8, 9 (C)
��2

[2(C) . (3.29)

The quantum-dot-pulse detuning is defined as Δ!
8,9 = (� 9 − �8)/ℏ − l8, 9 , where l8, 9 is the

pulse frequency driving the electronic transition between the electronic states |8〉 and | 9〉.
The cavity-assisted induced transitions, as defined in [147], are expressed as

Γ
�,±
8, 9 =

〈B〉2 62
ℏ2

Re

{∫ ∞

0

4±iΔ
�
8,9g

(
4q (g ) − 1

)
dg

}
. (3.30)

The quantum-dot-cavity detuning is given by Δ
�
8,9 = (� 9 − �8)/ℏ − lc, with lc = �c/ℏ as

the central cavity frequency.

Both rates are visualized in Fig. 3.5. Although this simplified phonon rate is not extensively
employed in this work, it proves useful for quick numerical investigations due to its low
computational complexity as well as providing insights into the phonon resonances. Here,
the most obvious limitation of the polaron master equation derived is evident: without
a pulse or laser and without a cavity, there are no phonon interactions. This is despite
the fact that phonons could also influence the free radiative decay described by Eq. (2.11).
At low temperatures, the emission and absorption of phonons are clearly separated, with
a maximum at ℏl1 . Although not evident from comparing Eqs. (3.27) and (3.30), both
the pulse and cavity rates are shaped very similarly when both are analyzed using their
respective detunings and only significantly differ in their amplitude.

The rates for commonly used pulse amplitudes are significantly larger than those for
commonly used cavity couplings, as indicated by the much larger values for the rates in
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Figure 3.5: Phonon rates of the polaron rate equations for varying temperatures. Real
parts of the phonon emission (solid lines) and absorption (dotted lines) are depicted. (a)
Cavity-induced phonon transition rates based on Eq. (3.30) for varying dot-cavity detunings
Δ�c = �X − �c. The coupling is set to ℏ6 = 50µeV with a phonon coupling of U = 0.03 ps2.
(b) Pulse-induced phonon transition rates based on Eq. (3.27) for resonant pulses and for
varying pulse amplitudes.

panel (b) compared to panel (a) in Fig. 3.5. This suggests that pulse-induced electron-phonon
interactions are significantly more relevant than cavity-mediated phonon interactions in
typical experimental setups, even when strong light-matter coupling with 6 on the order of
several hundred µeV is present.

3.3 Path Integral Method: Augmented Density Matrix
Formalism

To provide a comprehensive comparison and validation of the polaron master equation, the
path integral approach is briefly explored. The elements of the density matrix are expressed
using the sum of all possible paths that the system can take, provided the system dynamics
are Hamiltonian, meaning the propagation Hamiltonian is self-adjoint. This principle also
holds for the reduced density matrix obtained by tracing over the phonon bath oscillators,
as done previously using the polaron frame.

The sum-over-paths representation of the density matrix elements is given by [210, 217]

d<8 ,=8 =

∑
<0,...,<:−1
=0,...,=:−1

'
<: ,...,<0
=: ,...,=0

with '<: ,...,<0
=: ,...,=0

= d<0,=0

:∏
;=1

M<;−1,=;−1
<; ,=; exp

[
:∑
;=1

;∑
; ′=1

(
<; ′ ,=; ′
<; ,=;

]
.

(3.31)
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Here, '<: ,...,<0
=: ,...,=0

is a tensor of rank 2: , where each index =8 and<8 represents a matrix index
in the Hilbert space of the reduced density matrix. Consequently, these indices can range
from 0 to the number of rows or columns of the reduced density matrix. The number of
rows and columns are equal, with rows = cols = dim(d).

In this context, a path is defined as any possible sequence of states<0, ...,<:−1 that the
system traverses in the total Hilbert space over the time interval from C0 to C:−1. This
sum will include dim(d)2: terms. The elements d<0,=0 represent the initial density matrix
d (C = 0). From Eq. (3.31), the recurrence

'
=: ,...,=0
<: ,...,<0

= M<:−1,=:−1
<: ,=: exp

[
:∑
;=1

(
<; ,=;
<: ,=:

]
'
=:−1,...,=0
<:−1,...,<0

(3.32)

arises, which defines the next path integral tensor using the previously calculated result,
with initial condition R=0

<0
= d<0,=0 .

The memory function or influence functional is defined as

(
<; ′ ,=; ′
<; ,=; = −K<; ′ ,<;

− K∗
=; ,=; ′ +  

∗
<; ,=; ′ + K<; ′ ,=; , (3.33)

with the phonon memory kernel

K=;<;
(0) =

∫ ∞

0

dl
� (l)
l2

[
coth

(
ℏl

2:�)

)
(1 − cos (lΔC)) + i sin (lΔC) −ilΔC

]
,

K=;<;
(g > 0) =

∫ ∞

0

dl
� (l)
l2

(1 − cos (lΔC))
[
coth

(
ℏl

2:�)

)
cos (lg) − i sin (lg)

]
.

(3.34)

In this case, the polaron shift induced by the phonons is described by Δ� = −
∫ ∞
0

i � (l )
l

ΔCdl .
As with the polaronmaster equation approach, this shift will be absorbed into the definitions
of the state energies and as such numerically neglected.

The propagator, which defines the evolution of the system from time C1 to time C2 is given
by

MC1,C2 [Ô] = T exp
[∫ C2

C1

L[C]dC
]
. (3.35)
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Figure 3.6: Path integral kernel functions
derived from Eq. (3.34), across various temper-
atures. Consistent with the behavior observed
in the Polaron Equation Kernel function, the
imaginary part of the path integral kernel
(dotted line) remains constant for all tempera-
tures.

Here, L[C] is the total Liouvillian of the
system as defined in Eq. (2.8). Recalling the
derivation of the von Neumann equation
in Eq. (2.8), this operator is also used to
calculate the time evolution using the reg-
ular von Neumann equation for a phonon
free simulation, or the polaron master equa-
tion for the polaron solution with electron-
phonon interactions. The time ordering op-
erator T ensures that the treatment of the
exponential function results in matrix prod-
ucts that obey ascending orders of C , inde-
pendent of the method used for the evalu-
ation.

For a time independent Hamiltonian in
L[C], a simple matrix exponential can be
used to calculate Eq. (3.35). However, in this
work, with a time dependent Hamiltonian,

the von Neumann equation is used to calculate the evolution of Ô(C1) = |<−1〉〈=;−1 | towards
Ô(C2) = |<; 〉〈=; |. The individual factors M<;−1,=;−1

<; ,=; are obtained by calculating

M<;−1,=;−1
<; ,=; = 〈<; | MC1,C2 [|<;−1〉〈=;−1 |] |=; 〉 . (3.36)

This comprehensive framework captures the influence of the phonon bath oscillators on
the temporal evolution of the system across different paths within the total Hilbert space,
without the use of any additional approximation. While this statement is generally true,
the total number of elements inside the path integral tensor array in Eq. (3.31) with rank
2: is # 2: . Here, : = Cmax/ΔC represents the maximum number of time steps used for the
path integral. Evidently, this number will grow to huge proportions, even for small systems
and a small number of time steps. As an example, assuming a simple two level system
with # = 2 and 100 time steps, the path integral requires 22·100 elements to be saved and
propagated for the next time step, which is uniterable even on the strongest computing
hardware. By exploiting the finite length of the memory kernel functions K(g), which is
visualized in Fig. 3.6, the maximum depth of the memory, and with it, the rank of the path
integral tensor is truncated. Assuming the kernel functions are zero at gmax, by choosing a
fixed time step ΔC , the required rank of the tensor is calculated using #2 = gmax/ΔC . From
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here, the augmented density matrix (ADM) is introduced as the recursion

d
=: ,...,=:−#2+1
<: ,...,<:−#2+1 = M<:−1,=:−1

<: ,=: exp
[

:∑
;=1

(
<; ,=;
<: ,=:

]
d
=:−1,...,=:−#2+1
<:−1,...,<:−#2+1 . (3.37)

From the ADM, the reduced density matrix in the original Hilbert space can be reconstructed
by tracing over all possible paths, resulting in

d=: ,<:
(C: ) =

∑
<:−1,...,<:−#2+1
=:−1,...,=:−#2+1

d
=:−1,...,=:−#2+1
<:−1,...,<:−#2+1 . (3.38)

The first #2 iterations of the path integral tensor are performed using Eq. (3.32). Then,
Eq. (3.37) is utilized for the remaining iterations. Because of this truncation, the rank of
the ADM does not increase beyond 2#2 , and thus, the total number of elements inside
the tensor remain at # 2#2 . With a carefully configured #2 , the ADM is iterable even for
larger systems on regular consumer hardware, albeit with numerical effort significantly
larger than for the polaron master equation when the system size scales beyond a two level
system.

3.3.1 Partially Summed Augmented Density Matrix

While the augmented density matrix significantly reduces numerical effort compared to
full tensor propagation, it still scales exponentially for larger systems when compared
to the polaron master equation. For systems with more than two electronic states where
phonon coupling is identical for different states, states can be grouped based on their
phonon coupling. This approach tracks the phonon bath influence depending on the
phonon coupling value _. The path integral memory function (<; ′ ,=; ′

<; ,=; depends solely on
the states according to their phonon coupling value _ within the phonon spectral density
Eq. (3.1). If two or more states share the same phonon coupling, they can be grouped using
the same memory function. Using the notation _6 := _ (B,6) , where _ is the phonon coupling
in Eq. (3.2), states are renamed such that |<〉 → |6, B〉 and |=〉 → |6̄, B̄〉 where 6 is the group
with unique coupling and B is the state index within that group. The influence function
then results in

:∑
;=:−#2

(
<; ,=;
<: ,=: =

:∑
;=:−#2

(
(6; ,B; ),(6̄; ,B̄; )
(6: ,B: ),(6̄: ,B̄: ) =

:∑
;=:−#2

(
6; ,6̄;
6: ,6̄:

, (3.39)
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indicating that the influence function no longer depends on the state index withing the
groups. Inserting this into Eq. (3.37) results in the new definition of the augmented density
matrix with

d
(6̄: ,B̄: ),6̄:−1,...,6̄:−#2+1
(6: ,B: ),6:−1,...,6:−#2+1

=

∑
B:−1
B̄:−1

M (6:−1,B:−1 ),(6̄:−1,B̄:−1 )
(6: ,B: ),(6̄: ,B̄: )

∑
6:−#2
6̄:−#2

exp
[

:∑
;=1

(
6; ,6̄;
6: ,6̄:

]
d
(6̄:−1,B̄:−1 ),6̄:−2,...,6̄:−#2

(6:−1,B:−1 ),6:−2,...,6:−#2
.

(3.40)

The reduced density matrix is then constructed via

d=: ,<:
(C: ) =

∑
B:−1,...,B:−#2+1
B̄:−1,...,B̄:−#2+1

d
(6̄: ,B̄: ),(6̄:−1,B̄:−1 ),...,(6̄:−#2+1,B̄:−#2+1 )
(6: ,B: ),(6:−1,B:−1 ),...,(6:−#2+1,B:−#2+1 )

. (3.41)

The number of terms to iterate over is reduced from # 2#2 to # 2#
2(#2−1)
6 , with #6 being

the number of unique group indices. This reduction is achieved without any approximation,
maintaining numerical exactness by cleverly grouping the non-unique parts of the path
integral density tensor. Naturally, this method addresses all of the limitations of the polaron
master equation, such as neglected time retardation effects and the absence of phonon
interactions without a light field or pulse.

The path integral implementation used in this work1 provides substantial improvements in
modeling quantum phenomena when compared to the polaron master equation [162, 213,
218]. Due to the high computational complexity of the biexciton and trion systems studied
in Chapters 5 to 7, this approach becomes impractical for routine use, as the numerical
effort escalates quickly with system dimensionality. Nevertheless, for simplified systems,
the path integral remains a valuable validation tool for the polaron master equation within
the specific parameter ranges explored. The comparison between these two methods and
their consistency is further discussed in Section 3.4.

While more advanced approaches, such as the process tensor method for iterating the
path integral [217], exist, the current implementation is effectively limited the validation
of the polaron master equation for the purposes of this study. This validation is critical
to ensuring the accuracy and reliability of the quantum models employed, with the path
integral method providing a benchmark for confirming the robustness of the polaron master
equation within the context of these investigations.

1Although the implementation of the path integral method was specifically carried out for this work, the
underlying theory was not developed by the author of this study.
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3.4 Phonon Assisted Processes

To understand the phonon-induced effects, it is instructive to consider their qualitative
visibility across different methods, which in this work are limited to the polaron master
equation Eq. (3.19), and the path integral approach Eq. (3.40). While these methods may
yield different quantitative results, they can all reveal key phonon-induced phenomena.
Consider a simple two-level system inside a single mode cavity, where the system is
excited using a laser pulse with a Gaussian envelope. This system is equivalent to using
the JCM Hamiltonian from Eq. (2.16) with the laser driving from Eq. (2.25). The interaction
Hamiltonian for this setup is then given by

H1 = |X〉〈G|
[
Ω! (C) + ℏ6b̂

]
+ H.c. . (3.42)

Here, �X = 1 eV describes the energy of a single exciton-to-ground state transition, ref-
erencing a single exciton. The cavity interaction is characterized by the cavity coupling
ℏ6 = 50µeV. The reference case involves scanning the pulse detuning Δ! = �X − �! or
cavity detuning Δ� = �X − �c, as shown in Fig. 3.7 in panel (a). Here, no electron-phonon
coupling is included by using the regular von Neuman equation.
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Figure 3.7: Phonon free excitation and decay for �X = 1 eV. (a) Excitation dynamics
of the exciton using a A0 = 4c pulse of length g = 5 ps, centered at C0 = 30 ps. The pulse
envelope Ω! (C) is indicated by the white dashed line and is not to scale. (b) Decay dynamics
of the exciton into a cavity characterized by ℏ6 = ℏ^ = 50µeV.

Moderately strong pulses and cavity parameters, comparable to those used for later results,
are employed. In this scenario, the excitation is symmetric around a detuning of zero in
both the cavity and the pulse investigations. The excitation using a pulse is most efÏcient at
direct resonance where ℏl! = �X, and the cavity enhancement is most efÏcient at �c = �X.
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Figure 3.8: Phonon assisted excitation and decay for �X = 1 eV. The temperature is set
to ) = 0K, highlighting the isolated effects on red- or blue-detuned systems for a system
with minimal phonon interaction. The phonon coupling constant is fixed at U = 0.03 ps2.
For the path integral approach, a configuration with #� = 7 with a step size of ΔC = 0.57 ps

is used. The plots include errors on the right side, indicating mismatches between the
polaron master equation and path integral solutions at the end of the simulations (blue
lines). Here, the error is estimated using the absolute differences of the final states with
error = abs(〈X〉PME (Cmax) − 〈X〉PI (Cmax)). (a) Excitation dynamics of the exciton using
a A0 = 4c pulse of length g = 5 ps, centered at C0 = 30 ps. (b) Decay dynamics of the
exciton into a cavity characterized by ℏ6 = ℏ^ = 50µeV. The orange dotted line and green
dotted line represent errors for lower-resolution path integral (#� = 4,ΔC = 1 ps) and
polaron master equation solutions, respectively, compared to the higher-resolution path
integral solution.

Next, the electron-phonon interactions are included using the polaron master equation, as
displayed in Fig. 3.8. Investigating the pulse detuning in panel (a), a side band of nonzero
excitation emerges at �X + 1meV, coinciding with the phonon cutoff energy in Eq. (3.4)
[82]. Here, the pulse generates non-zero populations of the excited state. The blue-detuned
laser can still excite the two-level system because a phonon is emitted to bridge the excess
energy of the pulse. This effect is also visible in analytical rates from Eq. (3.26), but with
much greater amplitude, suggesting a strong overestimation of phonon interactions. A
comparison with path integral results, shown at the side of the panel, indicates low errors
in this parameter regime, suggesting that the polaron master equation is applicable here.
Investigating the cavity enhanced decay of an initially fully excited two level system in
Fig. 3.7 in panel (b), a different side band emerges at �X − 1meV, again coinciding with the
phonon cutoff energy. Similar to the pulsed case, the analytical rates also show this side band,
albeit with exaggerated phonon influences. The comparison with the path integral method
shows that the overall precision of the polaron master equation solution is sufÏcient for
the investigated parameters. The red-detuned cavity Purcell enhances the decay of the
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electronic state beyond the regular enhancement because a phonon can be absorbed to
bridge the energy gap between the two-level system and the cavity resonance.

Descending into the range of viability for the polaron master equation, less accurate regimes
are explored, particularly with stronger pulses. Pulses can be strong in two senses: they
can be long, allowing for prolonged electron-phonon interactions, or they can be large
in amplitude, permitting short but intense interactions. The worst case involves both
conditions.
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Figure 3.9: Comparison of Rabi rotations obtained using the polaron master equa-
tion and the Path Integral Method at temperatures ) = 0K, ) = 10 K, and ) = 50K

((a-c)). Each plot displays the relative differences between the polaron master equation and
path integral results at the top. The error is estimated using the absolute differences of
the final states with error = | (〈X〉PME (Cmax) − 〈X〉PI (Cmax)) |. A smaller error indicates
more precise alignment between the polaron master equation and path integral results
throughout all pulse areas. Reference solutions with no phonon interaction (dotted) show
the dephasing induced by both methods.

Here, the scanning the amplitude of a g? = 5 ps excitation pulse at different temperatures
is investigated for the two-level system without a cavity. The resulting dynamics show
Rabi rotations of the two-level population [37, 194, 219]. Here, the final occupation of the
target electronic state oscillates with rising pulse amplitudes, indicating that maximum
excitation efÏciency is achieved for A = (2= + 1)c , with = being a positive integer. The
results are visualized in Fig. 3.9. Relative deviations of the polaron master equation solutions
from the path integral results are shown in the upper plots. It is evident that for small
temperatures, the polaron master equation yields excellent results even for larger pulse
amplitudes. However, for temperatures ) > 10 K, the results quickly deviate from the
path integral method [213]. Here, the polaron master equation can still be used to obtain
qualitative insights into the electron phonon interactions, but similarly to the analytical
rates, a quantitative description of the interaction is not guaranteed. For example, the revival
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of Rabi rotations, investigated in Section 3.4.1, is not observed using the polaron master
equation. Nevertheless, this analysis highlights the importance of considering phonon-
induced effects in quantum systems and demonstrates the strengths and limitations of
various modeling approaches. Providentially, the pulse and cavity parameters shown in the
following work all remain in the regime of viability of the polaron master equation.

3.4.1 Strong Driving - Revival of Rabi Rotations

To further explore the limits of the polaron master equation used in this work, the same
two-level system without a cavity is considered, now scanning for larger pulse areas as
displayed in Fig. 3.11. The results are depicted for three different temperatures. At ) = 0K,
the electron phonon interaction becomes minimal. The polaron master equation and path
integral methods agree well for pulse areas of a few multiples of c .
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Figure 3.10: Illustration of the revival
mechanism depicting an arbitrary spectral
density for the phonons and an arbitrary
Gaussian pulse. When the pulse amplitude
exceeds the operational range of the phonon
spectral density (dashed to solid line), the sys-
tem undergoes effectively phonon-free dy-
namics. Reproduced and enhanced from Han-
schke et al. [206].

Beyond this range, the polaronmaster equa-
tion shows no further dephasing induced
by the phonons. The path integral solution
initially aligns with this result but starts to
show stronger dephasing for larger pulse
areas. This unexpected and physically un-
motivated behavior arises from the limited
resolution of the path integral implemen-
tation. To resolve higher pulse areas accu-
rately, smaller time steps ΔC are required
in the path integral method, which quickly
becomes computationally infeasible. With-
out increased precision, numerical errors
emerge, leading to the observed dephas-
ing.

At low temperatures, in this case ) = 10 K,
the polaron master equation and path inte-
gral methods agree well for smaller pulse
areas, as previously demonstrated in Fig. 3.9.
For larger pulse amplitudes, the polaron

master equation results in stronger dephasing until a maximally mixed state is reached, with
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a 50% occupation of both the ground and excited states. Conversely, the path integral solu-
tion exhibits a revival of the Rabi rotations, where the dephasing weakens for larger pulse
areas. In Fig. 3.11, the state occupation shows an initial dephasing followed by a revival
and then a later increase in dephasing. This behavior, again, is not physically motivated
and results from the limited precision of the path integral implementation, indicating that
both the polaron master equation and the path integral implementation used in this work
reach their respective limits to accurately describe the time evolution of the system.

At higher temperatures, here ) = 50K, the path integral and polaron master equation solu-
tions diverge quickly. The path integral method still shows a slight revival of oscillations,
while the polaron master equation solution consistently leads to a maximally mixed state.
This divergence highlights the limitations of the polaron master equation at higher temper-
atures and the need for more precise numerical methods to capture the intricate dynamics
accurately. The viable range of the path integral implementation is limited to pulse energies
of a few meV, beyond which significantly increased numerical precision is required. Fur-
thermore, although not shown here, the path integral and polaron master equation methods
agree for longer when pulses are longer. For pulse amplitudes greater than 25 − 30c the
process tensor approach is necessary due to time resolution constraints. However, this ap-
proach was not implemented or utilized in this work. Additionally, the computational effort
for the process tensor approach remains substantially higher than for the polaron master
equation, with simulations that take minutes using the polaron master equation potentially
requiring hours with the more sophisticated path integral implementations.

The amplitude of Rabi rotations undergoes a revival process due to the pulse amplitude
exceeding the amplitude of the phonon spectral density, as illustrated in Fig. 3.10. At smaller
amplitudes, the pulse does not significantly overlap with the phonon spectral density,
resulting in weak electron-phonon interactions. Consequently, dephasing is minimal.

As the pulse amplitude increases and begins to overlap more significantly with the spectral
density, stronger electron-phonon interactions occur. This leads to pronounced dephasing,
driving the system towards a maximally mixed state. In the context of a simple two-level
system, this corresponds to a 50:50 superposition of the ground and excited states.

However, at even larger pulse amplitudes, the energy of the pulse surpasses the phonon
spectral density. This results in weaker phonon interactions during most of the pulse
duration, leading to a revival of the amplitude of the Rabi rotations. It is important to note
that the second dephasing observed in the simulations is a numerical artifact due to the
limited precision of the path integral method. This conclusion is supported by the process
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Figure 3.11: Scan of the excitation amplitudes for resonant pulses illustrating the
Rabi rotations of the system with configurations from Fig. 3.8. Different temperatures
reveal the strong dephasing effects induced by the phonons and the revival of the Rabi
rotations achieved through the path integral method. This revival is not visible in the
polaron master equation solution, highlighting more pronounced limitations of the polaron
master equation under these conditions.

tensor approach, which provides exact numerical simulations and shows no evidence of a
second dephasing, as corroborated by experimental data [206].

Results for a scanned pulse area are shown in Fig. 3.12, where the pulse width is varied
using a slit-blocking approach. This method allows for tunable pulse lengths, albeit with
reduced control over pulse shapes, leading to slight deviations between experimental and
theoretical Gaussian pulses. Despite these discrepancies, the revival mechanism is strongly
supported by the experimental measurements.
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Figure 3.12: Experimental data for the revival of Rabi rotations at ) ≈ 5.4K with
varying pulse lengths. The pulse lengths are obtained by using a slit to block portions of
the incoming light, resulting in Gauss-like pulse shapes that resemble sinc envelopes. For
display purposes, different pulse lengths are shifted accordingly along the y-axis. Reproduced
and enhanced from Hanschke et al. [206].

Interim Summary

The polaron master equation provides an accurate description of the system within a
specific parameter range, particularly at low temperatures and low pulse amplitudes,
as investigated in this work. However, as the system parameters move beyond this
range, discrepancies arise between the results obtained from the polaron master equa-
tion and those from the numerically exact path integral method. These discrepancies
indicate that the polaron master equation is no longer sufÏcient to accurately capture
the temporal dynamics of the system. The path integral method, being capable of
fully resolving these dynamics, serves as a reliable benchmark for validating the
polaron master equation. Nonetheless, as the pulse amplitudes continue to increase,
even the path integral implementation used in this study encounters limitations in
accurately describing the system. Despite these challenges, the polaron master equa-
tion remains robust and reliable within the low-temperature, low-pulse amplitude
regimes explored in this work.
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PhotonQuantum Properties

and Statistics 4
With the system definition, time evolution methods, incorporation of losses, and electron-
phonon interactions now established, the next step includes the introduction of quantitative
figures of merit. These metrics are essential for characterizing the resulting dynamics
beyond simple state occupations.

The simplest quantity to consider is the emission probability. This property can be calculated
from both the electronic states and the photonic cavity occupation, such that

P(Ô, W) = W
∫ Cmax

0

〈
Ô
〉
dC . (4.1)

Here, Ô is an electronic or photonic state operator within the system, and W is the rate
at which that state decays. For electronic states, Ô = |8〉〈8 | with 8 ∈ ( . For the photonic
states, Ô = n̂c with c ∈ " . The photon emission probability can be used to determine the
brightness of a source. For instance, if a single photon is desired to be emitted from the
structure within the time frame [0, Cmax], the emission probability should ideally converge to
one, with P = 1. Conversely, if no emission is desired from a state, the emission probability
should ideally approach zero, such that P = 0.

4.1 First Order Correlations

Beyond the emission probability, the evaluation of correlation functions becomes necessary
to capture the self-correlating and cross-correlating behavior of the system operators [190].
These functions provide deeper insights into the temporal and spatial coherence properties
of the emitted photons and can reveal intricate details about the interaction dynamics within
the system [220]. The analysis of correlation functions allows for a more comprehensive
characterization of the quantum states and their evolution, facilitating the development of
advanced quantum technologies.
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The first order correlation function is defined as [145, 174, 178, 190]

G (1)
8 9 (C, g) =

〈
Ô†
8 (C + g)Ô9 (C)

〉
, (4.2)

which requires the evaluation of not only the regular temporal dynamics of the density
matrix, but also the additional g evolution of the operator Ô8 . The expectation value is
determined analogously to Eq. (2.9) by calculating the trace of the density matrix and the
corresponding operator products. The time evolution of the state operators is expressed
using the unitary time transformation, which propagates the state from time C1 to time
C2. For visualization purposes, the notation ÛC1→C2 ≡ Û(C1, C2) is adopted. The expectation
value results in

G (1)
8 9 (C, g) = Tr

{
Ô8 (C)d (0)Ô

†
9 (C + g)

}
= Tr

{
d (0)Û†

0→C Ô8Û0→CÛ†
0→C+g Ô

†
9 Û0→C+g

}
, (4.3)

with Û†
0→C+g = Û†

0→CÛ
†
C→C+g . Absorbing the initial time propagation Û†

0→C into the density
matrix with Û†

0→Cd (0)Û0→C = d (C), the expectation value can be further expressed as

G (1)
8 9 (C, g) = Tr

{
d (C)Ô8Û†

C→C+g Ô
†
9 ÛC→C+g

}
= Tr

{
ÛC→C+gd (C)Ô8Û†

C→C+g Ô
†
9

}
= Tr

{
d̃8 (C + g)Ô

†
9

}
. (4.4)

Here, the modified density matrix is given by

d̃8 (C + g) = Û†
C→C+gd (C)Ô8ÛC→C+g . (4.5)

In the literature, this procedure is referenced to as the quantum regression theorem [209, 221].
The evaluation of the two-time correlation function necessitates the initial propagation
in time of d (C = 0) up to C = Cmax, followed by an additional propagation of the matrix
product d (C)Ô8 . To minimize the required computational resources for this second time
evolution for any given d (C), the overall C and g range on which G (1)

8 9 (C, g) is evaluated
can be significantly reduced, provided numerical convergence is still assured. Furthermore,
propagating the correlation function for C + g beyond the maximum propagation time for
d (C), which is Cmax, is generally unnecessary. This is because simulations are performed
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for Cmax values that are sufÏciently large to ensure convergence for d (C). Consequently, no
further dynamics arise beyond Cmax. This is illustrated in Fig. 4.1, where panel (a) shows
an example of G (1)

88 (C, g). The hatched area indicates the C, g regime that is not evaluated.
Similarly, panel (b) in Fig. 4.1 demonstrates the cutoff of the dynamics if Cmax is chosen
inappropriately, indicating missing convergence of the results.

0.0

0.5

1.0

|G
(8)

(C,g
)
|

Figure 4.1: Correlation functions G (1) (C, g) and G (2) (C, g) for an initially fully excited
quantum dot, with initial states (a) Ψ0 = |X〉〈X| and (b) Ψ0 = |B〉〈B|, respectively. To
maintain efÏciency and reduce simulation times, only the lower triangular matrix defined
by C and g , indicated by the hatched area, is evaluated, which reduces the number of
evaluations of the time derivative in Eq. (2.8) by half. The results presented use the regular
von Neumann equation with no electron-phonon coupling.

4.1.1 Visibility

The interferometric visibilityV is a figure of merit used to measure contrast and coherence
in light sources. Using Ô8 = Ô9 , the visibility is given by

V =
2
∫ Cmax
0

∫ Cmax−C
0

|G (1)
88 (C, g) |2dgdC(∫ Cmax

0

〈
Ô†
8 Ô8

〉
dC

)2 . (4.6)

In experimental setups, the light field is split using beam splitters. After a time delay
is introduced, the fields are recombined. This can be measured using devices such as a
Mach–Zehnder interferometer [222–224], Michelson interferometer [225, 226], or Sagnac
interferometer [227]. A light source emits strongly coherent photons if the resulting visibility
is 1. For example, the emission from a two-level system or a single photon from a cavity,
given ideal excitation and lossless emission, results in a visibility close to unity values.

However, a general numerical problem arises when the Hilbert space is not limited to
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one photon and the emission of more than one photon becomes possible. Hence, using
the Hong-Ou-Mandel indistinguishability, described in Section 4.2.1, is generally superior.
Otherwise, the visibility may exceed unity, which is a result not physically motivated.
The indistinguishability is more strongly bounded, ensuring more reliable and realistic
calculations of coherence and contrast. Nevertheless, because the visibility requires only the
first order correlation function to be evaluated, it is numerically much cheaper to evaluate
and as such, finds application as a fast benchmarking tool.

4.1.2 Emission Spectrum

The strongest use case for the first order correlation function lies in its connection with the
emission frequency of the corresponding photons generated by the decay of n̂8 = Ô†

8 Ô8 ,
for any given electronic state or cavity mode operator Ô8 . Calculating the self-correlation
of Ô8 using the first order correlation function reveals oscillations corresponding to the
emission frequency.

By applying a discrete Fourier transform to the g-direction of G (1) (C, g) and integrating over
the different spectra, the total emission spectrum of the system over the time period [0, Cmax]
is obtained [112, 228]. This process results in what is known as the Eberly-Wodkiewicz
spectrum [229, 230], often referenced as the physical emission spectrum, and is given by

Equation 4.7

S(Cmax, l) = Re

∫ Cmax

0

∫ Cmax−C

0

� (C + g)G (1)
88 (C, g) � (C)4−ilgdgdC .

Here, � (C) are detector functions [228]. While detector functions were used in some
investigations, none of the results in this work include them, and as such, � (C) = 1.

Especially for the correlation functions, the polaron master equation is known to introduce
slight errors, as demonstrated in Fig. 4.2. However, with the path integral implementation,
the results align with the expected physical behavior. Since the exact phonon spectra are
not the focus of this work, these slight mismatches between polaron master equation and
path integral are not evident in any of the results shown. For strong coupling with ℏ6 > ℏ^ ,
Rabi-splitting occurs for the exciton-to-ground emission [228, 231]. Both methods correctly
resolve this behaviour.
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Figure 4.2: Cavity emission spectra for a quantum dot biexciton system initiated
from fully excited exciton and biexciton states,Ψ0 = |X〉〈X| and |B〉〈B|, respectively. The first-
order correlation function is evaluated, and the Eberly-Wodkievic (EW) spectrum Eq. (4.7)
is computed. The results encompass scenarios both without phonon interactions and with
phonon effects modeled using the polaron master equation and path integral (mirrored
on the y-axis) method. For an equitable comparison, the quantum regression theorem is
applied to the path integral method, although more precise methodologies are available
[221].

Overall, the Eberly-Wodkiewicz spectrum provides a comprehensive view of the emission
properties of the system and allows for the tailoring of the emitter structure towards desired
wavelengths.

4.2 Second Order Correlations

Higher-order correlation functions are employed to assess the non-classical characteristics
of the emission and to extract detailed information onmulti-photon correlations. Specifically,
the second-order correlation function is defined as

G (2)
8 9:;

(C, g) =
〈
Ô†
8 (C)Ô

†
9 (C + g)Ô: (C + g)Ô; (C)

〉
. (4.8)

Using an approach equivalent to the calculation of the first order correlation functions
Eq. (4.2),

G (2)
8 9:;

(C, g) = Tr
{
d̃8; (C + g)Ô

†
9 Ô:

}
(4.9)
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is obtained. The modified density matrix is defined by

d̃8; (C + g) = Û†
C→C+g Ô;d (C)Ô

†
8 ÛC→C+g . (4.10)

Similar to the first order correlation function, the second order correlation function also
requires one additional time propagation for each d (C) used in the C-g grid. The two time
correlation function Eq. (4.9) can be reduced in dimension by integrating over either C or g ,
resulting in

G (2)
8 9:;

(C) =
∫ C−Cmax

0

G (2)
8 9:;

(C, g) dg (4.11)

and

G (2)
8 9:;

(g) =
∫ g−Cmax

0

G (2)
8 9:;

(C, g) dC . (4.12)

Integrating Eq. (4.9) over both temporal dimensions C and g then yields the reduced correla-
tion function

G (2)
8 9:;

=

∫ Cmax

0

dC

∫ C−Cmax

0

G (2)
8 9:;

(C, g) dg . (4.13)

Note, that similar reductions can also be performed for correlation functions of different
orders.

The second-order correlation function provides insights into phenomena such as photon
bunching and anti-bunching. Photon bunching occurs when photons tend to arrive together
in clusters. This behavior is typically observed in thermal or chaotic light sources and is
characterized by G (2)

8888 (C) > 1. Photon anti-bunching, on the other hand, is a signature of
single-photon sources where photons are emitted one at a time, leading to G (2)

8888 (C) = 0.
Anti-bunching is a clear indicator of the quantum nature of light, as it reveals the presence
of non-classical light fields that cannot be explained by classical wave theory.

For an ideal single-photon source, the second-order correlation function, G (2)
8888 , is zero.

Therefore, the probability of detecting two photons simultaneously is zero, highlighting
the quantum property of the light source. Such behavior is critical for applications in
quantum information processing and quantum communication, where the generation of
single photons on demand is essential. From here, the single photon purity is defined using

P = 1 − G (2)
8888 . (4.14)
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The second-order correlation function thus serves as a crucial figure of merit for evaluating
the quantum characteristics of light fields. It allows for the distinction between classical and
quantum light sources and provides insights into the underlying physics governing photon
emission processes [130]. The analysis of G (2) provides deep insights into the coherence
properties, statistical distributions, and interaction dynamics of photons.

4.2.1 Indistinguishability

The indistinguishability of a photon is a measure of how deterministically a source emits
photons. This property is typically assessed using the Hong-Ou-Mandel (HOM) interference
setup [128, 190, 232]. In this setup, two photons are directed towards a beam splitter. If
the photons are indistinguishable, they will interfere quantum mechanically, coalescing
and exiting the beam splitter together into the same output path, resulting in only one
of the detectors triggering. Conversely, if the photons are distinguishable, they behave
independently, making it equally likely for them to exit through separate paths, thereby
triggering both detectors. This setup, illustrated in Fig. 4.3, demonstrates the fundamental
quantum principle where indistinguishability affects the path correlations of photons.

Photon 

Emi�er

D1

D2

50:50
Correla�on
Measurement

Beamspli�er

Figure 4.3: Hong-Ou-Mandel interference setup. The Hong-Ou-Mandel measurement
is an interferometric technique used for simple correlation measurements to test the in-
distinguishability of two photons. In this setup, two photons are sent into a 50:50 beam
splitter, and the coincidence detection at the output is recorded. When the photons are
perfectly indistinguishable, they exhibit quantum interference, resulting in a reduction or
complete suppression of coincidence counts, known as the HOM dip.
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The single-photon HOM-indistinguishability [153] is quantified as

Equation 4.15

I = 1 − ?2,8 = 1 −
∫ Cmax
0

dC
∫ Cmax−C
0

2�
(2)
HOM,8

(C, g)dg∫ Cmax
0

dC
∫ Cmax−C
0

(
2�

(2)
pop,8 (C, g) −

���〈Ô8 (C + g)
〉 〈

Ô†
8 (C)

〉���2
)
dg

.

Here, the cross-correlation term is given by

�
(2)
HOM,8

(C, g) = 1

2

(
�

(2)
pop,8 (C, g) + G (2)

8888 (C, g) −
���G (1)

88 (C, g)
���2
)

(4.16)

with

�
(2)
pop,8 (C) =

〈
Ô†
8 Ô8

〉
(C)

〈
Ô†
8 Ô8

〉
(C + g) . (4.17)

Here, ?2,8 is the probability of coincidence detection when photons are distinguishable. The
numerator in the indistinguishability expression represents the integral of the HOM cross-
correlation function � (2)

HOM,8
(C, g), capturing the joint probability of detecting both photons

in the same output path. The denominator includes the population correlation function
�

(2)
pop,8 (C, g) and the square of the first-order coherence function G (1)

88 (C, g), reflecting the
probability distributions of individual photon detections.

In this work, the notation I8→9 is frequently used to represent the indistinguishability
of a photon arising from the electronic transition operator Ô = | 9〉〈8 |. Additionally, Ic is
employed to denote the indistinguishability of photons emitted by a cavity mode with
$̂ = b̂c. A similar approach is used for the visibility.

The HOM setup is a powerful tool for measuring the indistinguishability of photons, which
is directly linked to their quantum mechanical properties. The degree of indistinguisha-
bility reflects the quantum nature of the light field; perfectly indistinguishable photons
result in zero coincidence counts, indicating complete indistinguishability in the HOM
experiment. This measure is crucial for applications in quantum information and quantum
communication, where the reliability and coherence of single-photon sources are essen-
tial. Many quantum information applications require photons with high, close to unity
indistinguishability to ensure reliable execution of various quantum protocols.

The indistinguishability is a robust figure of merit and provides a clear, bounded measure of
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the quantum characteristics of the light. This makes it an indispensable metric for evaluating
the performance of single-photon emitters and other quantum light sources.

4.2.2 Entanglement Measure - Concurrence

Entanglement is a fundamental resource in quantum information processing, playing
a crucial role in a variety of quantum protocols. While the both the visibility as well
as indistinguishability are figures of merit to assess the quality of single photons [233],
entanglement occurs when two or more quantum particles, such as photons, become
interconnected in such away that the state of one particle cannot be described independently
of the state of the other, regardless of the distance separating them. This non-classical
correlation is a cornerstone of quantum mechanics and provides the basis for many of the
advanced capabilities in quantum technologies.

Characterizing entanglement numerically is challenging [233, 234]. Entanglement can be
analyzed through the photon correlation of the two allegedly connected photons. The
corresponding two-photon matrix is then defined as

dTPM =



G (2)
1111 G (2)

1112 G (2)
1121 G (2)

1122

G (2)
1211 G (2)

1212 G (2)
1221 G (2)

1222

G (2)
2111 G (2)

2112 G (2)
2121 G (2)

2122

G (2)
2211 G (2)

2212 G (2)
2221 G (2)

2222



(4.18)

where second order correlation functions are used to trace the photon characteristics out
of the density matrix d . This two photon matrix already displays a simple figure of merit
for the entanglement. The off-diagonal element G (2)

1122 (blue in Eq. (4.18)) represents the
correlation of two photons of mode 1 or two photons of mode 2. If this element is non-zero,
both photon modes are entangled, where a photon in mode 1 heralds the emission of a
photon in mode 2. On the other hand, if the matrix element G (2)

1221 (orange in Eq. (4.18)) is
non-zero, the emission of a photon in mode 1 entails the emission of a photon in mode 2,
and vice versa.

While the two-photon matrix elements can be used to characterize entanglement, they are
usually not equal to the entanglement. Hence, in this work, a figure of merit which verifies
entanglement is employed: the concurrence [155]. The concurrence rises linearly with the
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degree of entanglement [235] and is defined using the spin-flipped two-photon matrix

d̃TPM = (f~ ⊗ f~) · dTPM · (f~ ⊗ f~) , (4.19)

which is calculated according to Eq. (A.5). Using Eq. (4.19), using d := dTPM, the fidelity
matrix of the the two-photon matrix is given by

R(d) =
√√

dd̃
√
d . (4.20)

Finally, the concurrence is constructed using

C = max

{
0, _4 −

∑
8<4

_8

}
, (4.21)

E
ig

e
n

v
e

cto
r

1

C
o

n
cu

rr
e

n
ce

 

Eigenvector 2,3,4

Figure 4.4: Visual represen-
tation of the reduction in
concurrence through non-
zero eigenvalues. The sum
of all Eigenvectors multiplied
with their respective eigenval-
ues yields the final concur-
rence vector.

where _8 are the eigenvalues of R(dTPM), sorted in ascend-
ing order. The concurrence serves as a figure of merit to
quantify how far the two-photon matrix is from being
highly symmetrical when a spin flip is applied. Further
elaboration is available in Appendix A.2.2. The eigenvalues
reflect this property when only 11 or 12 entanglement is
present. Ideally in this case, only a single eigenvalue will be
non-zero, while the remaining eigenvalues are zero. If the
remaining eigenvalues are larger, they quantify losses in
the concurrence and thus, in the entanglement. In Fig. 4.4,
the reconstruction of the concurrence using both the eigen-
values as well as eigenvectors is visualized. Since the direc-
tion of the normalized eigenvectors is not of interest, the
eigenvalues sufÏce for the calculation of the concurrence
C.

As an example, assume two polarization modes H and V.
A perfectly entangled state is then defined by either of the
four Bell states [155, 236]
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Φ± =
1√
2

(
|HH,VV〉 ± 4 iq |VV,HH〉

)
(4.22)

and

Ψ± =
1√
2

(
|HV,VH〉 ± 4 iq |VH,HV〉

)
(4.23)

with phase mismatch q . The former two states denote HH or VV entanglement, while the
latter two states denote HV or VH entanglement. The corresponding ideal (blue + orange)
and lossy (blue only) two-photon matrices regarding these states are displayed in Fig. 4.5.
In this work, HH/VV entanglement is addressed exclusively, as the linear emission channel
arises naturally from the decay of a biexciton, which is investigated in Chapters 5 and 6. The
HV/VH entanglement can be generated from the same system, for example by using contin-
uous wave (cw) driving of the system [155], but is not considered in this work. Furthermore,
the fine structure splitting of the biexciton is known to limit the achievable concurrence.
Specifically, a non-zero fine structure splitting will result in q = −�fsp/ℏC . Consequently,
both states suffer from a precession of the state correlations directly proportional to the
fine structure splitting energy, reducing the entanglement [138]. Additionally, literature
indicates that the method of exciting electronic states significantly influences the maximally
achievable entanglement, especially when using resonant excitation [154].
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VV HH

HV
VH
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VH
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Figure 4.5: Two photon matrices for (a) HH/VV and (b) HV/VH entanglement, respec-
tively, both in a lossy environment. The matrix elements are normalized by their trace. The
orange boxes highlight the ideal matrix values that would be expected in the absence of
losses.
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4.3 Time Bin Photon Statistics

Until now, operators have been unique within the total Hilbert space of the system. Conse-
quently, different operators cannot obey the same matrix representation and must differ
in at least one of its elements. In this section, operators that are equal in their matrix
representation but reside at different times are investigated.

4.3.1 Time Shifted Operators

Primarily, an operator can be shifted by a constant temporal offset, further referred to as
the time bin length ) . This creates two operators that, although relying within the same
Hilbert space and being equal in their matrix representations, are different through their
temporal restrictions. The operator then emits in distinct time bins [178, 237] and follows
the notion

Ô) (C) = Ô(C +)bin) = ÛC→C+)binÔ(C)Û†
C→C+)bin

. (4.24)

Previously, the first and second order correlation functions were defined using a C − g rep-
resentation. For simplicity, the time bin correlations adopt a different notation, specifically
defining the start and end times. First order correlations are not required in this context.
Instead, this work is confined to the investigation of second and third order correlations.
Generally, higher order correlations may be needed depending on the application. However,
these higher order correlations require significantly increased numerical effort to compute,
which can make them challenging to calculate or even infeasible to iterate over in practical
scenarios.

Instead, the correlation functions are defined as

G (2)
8 9:;

(C1, C2) = 〈Ô†(C1 +)8)Ô
†(C2 +)9 )Ô(C2 +): )Ô(C1 +); )〉 (4.25)

and

G (3)
8 9:;<=

(C1, C2, C3) = 〈Ô†(C1 +)8)Ô
†(C2 +)9 )Ô

†(C3 +): )Ô(C3 +); )Ô(C2 +)<)Ô(C1 +)=)〉 ,
(4.26)

with C8 being an integration window of size )bin. Each of the operators Ô(†) (C8) can be
shifted by the time bin length, which is annotated using the early (8 = �) or late (8 = !)
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notation, where for the late time bin, C8 is shifted by )bin such that )8 = 0 when 8 = � and
)8 = )bin when 8 = !. The two-time integrated correlation functions then result in

G (2)
8 9:;

=

∫
3C1

∫
3C2 G (2)

8 9:;
(C1, C2) (4.27)

and

G (3)
8 9:;<=

=

∫
3C1

∫
3C2

∫
3C3 G (3)

8 9:;<=
(C1, C2, C3) , (4.28)

which is equivalent to using Eq. (4.13), adjusted for the time integration windows C8 .

4.3.2 Stabilizer Generator Expectation Values of a Linear Cluster State

The target of investigation in Chapter 7 is to classify the entanglement in trains of photons
emitted at different times. Two consecutive photon emissions form a photonic qubit, where
the emission of the photons is separated by the bin length)bin. The first photon is denoted as
the early photon, while the second photon is denoted as the late photon. A naive approach
to characterizing the multi photon emission of this system is to use the # -dimensional
# photon matrix. Then, correlations between photons can be directly extracted from the
off-diagonal elements of these matrices. However, the numerical effort required to calculate
even third order correlation functions greatly increases compared to first or second order
correlations, due to the additional time integral required. Hence, a different approach is
used. The stabilizer formalism is introduced to characterize this special emission of photons,
by using local estimates of the entanglement [185, 186].

Initially, a stabilizer generator for the desired state is defined. In this case, a one dimensional
linear cluster state is investigated. This state can be characterized by repeated executions
of -̂ , .̂ and /̂ Pauli-rotations, where

-̂ =

(
0 1

1 0

)
, .̂ =

(
0 −i
i 0

)
, /̂ =

(
1 0

0 −1

)
(4.29)

are the Pauli matrices for a two photon state. From here, the Φ operator is defined as

Φ = cos (i) -̂ + i sin (i) .̂ . (4.30)

This operator projects a rotation through the -̂ and .̂ Pauli matrices, allowing for a degree
of freedom using the rotation angle i . Then, the expectation value of the required stabilizer
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expressions are using. Namely,

〈Φ̂ ⊗ /̂ 〉 = 2
G (2)

���!
− G (2)

�!!!

G (2)
tot

(4.31)

and

〈/̂ ⊗ Φ̂ ⊗ /̂ 〉 = 2
G (3)

����!�
+ G (3)

!�!!!!
− G (3)

��!!!�
− G (3)

!���!!

G (3)
tot

. (4.32)

Here, ⊗ marks the tensor product of two matrices. When adhering to the emission protocol
of the one dimensional linear cluster state, the final state is a superposition of these stabilizer
expressions. Hence, by calculating how well the emitted photons meet these criteria locally,
conclusions for the total entanglement of the emitted train of photons can be drawn.
Specifically, high values for both expectation values Eqs. (4.31) and (4.32) signify strong
local entanglement.

In the case of Eqs. (4.31) and (4.32), the initial integration window C0 is given by C0 ∈ [0,)bin].
However, later stabilizer expectation values can be calculated by advancing the initial
integration window. Generally, C= ∈ [=)bin, (= + 1))bin]. The integration window is denoted
by adding the superscript to the stabilizer expectation values. In the special case where
= = 0, these indices may also be omitted.

Both stabilizer expressions are normalized through their respective photon populations,
with

G (2)
tot =

∑
8, 9∈{�,!}

G (2)
8 9 98 and G (3)

tot =

∑
8, 9,:∈{�,!}

G (3)
8 9:: 98

. (4.33)

Finally, the N partite entanglement Witness is defined using

W = (# − 1) − 〈-̂ (1)/̂ (2)〉 −
∑
8>1

〈/̂ (8−1)-̂ (8 )/̂ (8+1)〉 . (4.34)

To derive the lower bound on the number of entangled photonic qubits, Eq. (4.34) is set to
zero and solved for # , where # represents the number of entangled particles. The resulting
bounding equation is expressed as

# <

〈-̂ /̂ 〉
1 − 〈/̂-̂ /̂ 〉

+ 1 . (4.35)
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In this context, the term
〈
-̂ /̂

〉
corresponds to the expectation value

〈
-̂ (1)/̂ (2) 〉, and /̂-̂ /̂

is defined as
〈
/̂ (8−1)-̂ (8 )/̂ (8+1) 〉 for all indices 8 . The bounding condition from Eq. (4.35)

assumes that the stabilizers are uniform across the system, except for the differentiation
between the first two stabilizers. This assumption simplifies the calculation by treating the
later stabilizers as equal and independent of 8 .

Interim Summary

The first and second-order correlation functions are crucial for analyzing the cor-
relations of emitted photons. In this study, these functions are evaluated using the
quantum regression theorem, which provides a robust framework for the calculation
of correlation functions of any order. This approach enables the determination of
key properties such as the single-photon purity, the emission spectrum, visibility
as well as the indistinguishability of single photons. Additionally, the twin-photon
concurrence, which is essential for characterizing entanglement, is also derived from
these correlation functions. Expanding this framework to include third-order corre-
lation functions allows for a systematic characterization of time-bin entanglement
in linear photonic cluster states.
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Enhancing Quantum Dot

Excitation Using theQuantum

Confined Stark Effect 5
Quantum dots have the potential to be ideal photon emitters for quantum information
processing. A quantum dot is a microscopic structure composed of semiconductor material
that can be triggered to emit photons using lasers. For many applications, low photon
numbers are desired, which can be achieved by deterministically exciting the quantum
dot exactly once. However, to excite the dot states, the laser energy must be similar to
the ground and excited state transition of the quantum dot exciton. This requirement
introduces several challenges, such as separating the laser and the emission, mixing of
excitation and emission processes, and phonon interactions for resonant pulses. These
effects are particularly problematic for the delicate excitation of a biexciton and other
higher order states [20, 205] and provide the key motivation for this chapter.

In this chapter, a quantum-dot-cavity system is utilized. The respective configuration
of the electronic state and photonic mode energies is visualized in Fig. 5.1. This system
includes the horizontally (H) and vertically (V) polarized exciton states as well as the
biexciton state, which are represented by the blue energy levels. This system is mediated
by a degenerate two-mode cavity, shown in green and orange, which separately Purcell
enhances the horizontally and vertically polarized selection rules of the exciton-to-ground
transitions or the two-photon transition of the electronic system, respectively.

The energy of the exciton is set to �X = 1.366 eV, a value commonly achieved in InGaAs
quantum dots. The exciton states are separated by the fine structure splitting energy �fsp,
previously introduced in Section 1.2. For the main results of this chapter, �fsp is fixed at
1µeV, which remains within realistic parameters for highly symmetrical quantum dots
[238]. The fine structure splitting negatively impacts the concurrence and, consequently,
the entanglement of twin photons emitted from the biexciton [138, 142, 239]. This effect
arises due to the phase mismatch between the excitons caused by the splitting. The resulting
phase q , included in Eq. (4.22), induces a precession of the exciton state coherences when
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Figure 5.1: Electronic structure of the biexciton and the QCSS for a quantum dot inside
a cavity. The shift induced by the quantum confined Stark shift is indicated in using the red
arrows. Because of the biexciton-exciton energy relation �B = 2�X−�bind, the energy of the
biexciton state is shifted twice as fast as the exciton energy. Two main cavity configurations
are visualized, one for a cavity resonant with the two photon transition at �c = �TP (green)
and one for the cavity resonant with the exciton-to-ground transition �c = �X (orange).
Reproduced and enhanced from Bauch et al. [145].

projected onto a Bloch sphere. The energy of the biexciton is reduced by the binding energy,
set to 1meV in this study unless otherwise noted [109]. Larger binding energies increase
the effort required to form a biexciton from two excitons, which in turn enhances the
biexciton’s stability and lifetime. Consequently, lower binding energies lead to shorter
biexciton lifetimes. The resulting Hamiltonian

Equation 5.1

H0 =

∑
B∈{H,V,B}

�B |B〉〈B | +
∑

2∈{H,V}
�2=̂2

H1 =

∑
8∈{H,V}

(
[|G〉〈8 | + |8〉〈B|]

[
Ω8 (C) + ℏ6b̂8

]
+ H.c.

)
+ HΔ

includes four electronic states, specifically the ground state |G〉, two exciton states |H〉 and
|V〉 as well as the biexciton state |B〉. The electronic states couple to two cavity modes,
defined by their respective occupation number operator =̂H/V.
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The time dependent sub-HamiltonianHΔ describes the quantum confined Stark shift (QCSS)
of the states, as detailed in Section 5.3 [138, 167]. This operator induces a time-dependent
shift in the individual energies of the states, which can be controlled by applying external
electric fields to the semiconductor structure [60, 107, 134]. Implementing a precise and
rapid electric shift in a realistic system presents significant challenges, making it a complex
area of research. The Stark shift, indicated by the red arrows in Fig. 5.1, is the central
mechanism utilized in this chapter to achieve high-fidelity excitation of various electronic
states.

This chapter begins by examining the fundamental dynamics of a biexciton coupled to
a cavity, as explored in Section 5.1, using an idealized, fully excited biexciton state. This
section establishes reference values for key quantum properties, including single-photon
and twin-photon emissions, which serve as a basis for comparison in subsequent analyses.

Two main approaches for the excitation of the biexciton are considered, either through
sequential excitation of an exciton state or via direct two-photon excitation [44, 154, 240],
where the pulse energy is tuned to exactly half of the biexciton energy. This results in
a nonlinear absorption of two photons [219, 241] and, consequently, the generation of
biexciton population. In the literature, the former is hardly used due to the exciton, which
temporarily becomes the ground state of the biexciton, undergoing distinct decay dynamics
during the excitation, thus creating an unstable ground state for the biexciton.

The chapter progresses to explore different methods for the excitation process in Section 5.2.
These methods include resonant excitation, phonon-assisted excitation, the recently devel-
oped SUPER (swing-up of quantum emitter population) excitation [163, 164, 166], and the
QCSS excitation [145]. The QCSS method, which is the primary focus of the underlying
work of this chapter [145], is thoroughly investigated. Data supporting the findings are
available at the corresponding Zenodo archive [242]. The chapter also evaluates and com-
pares quantum properties such as single-photon indistinguishability and concurrence with
their respective reference values.
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5.1 Biexciton Baseline

To provide a foundation for comparison with the later results, first the exciton and biexciton
properties are investigated. Simulations for an initially fully excited biexciton with d0 =
|B〉〈B| are investigated in Fig. 5.2. The ideal, lossless system is compared to a system that
includes electron-phonon coupling using the polaron master equation and other losses
incorporated through Lindblad contributions. In the ideal system, phonons, radiative decay,
and pure dephasing are absent, with only cavity losses being non-zero. The cavity losses
provide the mechanism for the emission of photons from the cavity, while electronic losses
contribute destructively to the cavity photons. This scenario establishes a reference for the
achievable properties of the cavity photons. Results including electron-phonon coupling
are obtained using the polaron master equation with coupling U = 0.03 ps2.
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Figure 5.2: Decay of a fully initialized biexciton into a two-mode cavity with no
phonon interaction (a-c) and with phonon interaction at 10 K (d-f). The phonon solution is
calculated using the polaron master equation. Here, �bind = 1meV.

The cavity detuning Δc = �c − �B/2 is varied along the y-axis by modulating the cavity
energy �c. The biexciton energy �B remains constant. The y-axis is centered around the
two-photon resonance at �TP = �B/2. The time evolution of the states is displayed on the
x-axis. The z-axis, mediated using colors, shows the populations of the ground state in
panels a,d, the horizontally polarized exciton in panels b,e as well as the biexciton in panels
c,f.
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When the cavity energy is set to the exciton-to-ground resonance, therefore �c = �X

(compare Fig. 5.1 orange cavity), resulting in a detuning of Δc = 0.5meV no significant
enhancement of the biexciton decay is observed. This outcome is anticipated, as the cavity
and the biexciton energies differ by twice the binding energy, with |�c − �B | = 2�bind,
significantly reducing the Purcell enhancement for this transition, as dictated by Eq. (2.15).
Regarding the Purcell enhancement, with electron-phonon coupling enabled, the transition
is slightly enhanced again due to the phonon side band, resulting in a faster decay of the
biexciton into the two exciton states. Evidently, if the simulation starts in the exciton state
instead with d0 = |X〉〈X|, a simple, resonant decay of the exciton is observed.

When the cavity energy is set to the two-photon resonance at �c = �B/2 and therefore
Δc = 0, the biexciton decays directly into the ground state without populating any of
the two exciton states. As demonstrated further in this section, this process yields two
photons with high concurrence and therefore high entanglement. With electron-phonon
interactions, this transition is not significantly enhanced because the cavity is energetically
exceeding the two photon transition energy.

When the cavity energy is set to the biexciton-to-exciton resonance such that �c = �B − �X

with Δc = −0.5meV, the biexciton quickly decays into both exciton states simultaneously.
Since the separation of the exciton and the biexciton energies is symmetrical, as in one of the
excitons is shifted energetically upwards while the other one is shifted downwards, they are
almost equally populated. Therefore, the resulting exciton population in Fig. 5.2, panel (b)
is maximized at 50%. When including electron-phonon coupling, the biexciton-to-exciton
transition is slightly enhanced, while the exciton-to-ground transition is strongly enhanced.
This is directly attributable to the cavity being energetically below the currently excited
state, with �c = �B − �X < �B/2 < �X. Hence, the exciton-to-ground transition is cavity
enhanced through the phonon side band. This leads to a significantly accelerated decay of
the exciton, as shown in Fig. 5.2, panels (d,e).

For the subsequent investigations of Section 5.3, these findings provide eminent guidelines
for the biexciton emission, as the energetic placement of the cavity is crucial to minimize
unwanted electron-phonon interactions.

5.1.1 Baseline Quantum Properties

The first and elementary quantum property of the emitted photons is the emission spectrum
of the cavity, evaluated using Eq. (4.7) and visualized in Fig. 5.3. Again, the cavity detuning
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is varied on the y-axis. The x-axis displays the emission energy relative to the two-photon
emission energy, varied between �B/2 ± 1.5meV. The emission spectrum exhibits Rabi
splitting for the cavity at the exciton-ground resonance with �c = �X and Δc = −0.5meV,
which is in well accordance with Fig. 4.2 in Section 4.1.2. Rabi splitting also occurs for the
cavity at the biexciton-exciton resonance where �c = �B−�X with Δc = 0.5meV. Here, both
the resonant biexciton-to-exciton as well as the off-resonant exciton-to-ground transition
experience Rabi splitting. However, for the cavity at the two-photon resonance, only single
peaks in the spectrum are observed, with no Rabi-splitting for any of the transitions. The
central peak coincides well with the literature [243] as well as previous results outlined in
Fig. 4.2. With electron-phonon coupling enabled, significant background emission arises,
indicated by the spectral emission not approaching zero in Fig. 5.3, panel (b), for cavity
energies not at any of the resonances.
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Figure 5.3: Cavity emission spectra for the decay of a fully excited biexciton, as shown
in Fig. 5.2. The plot features cavity detuning on the y-axis against emission frequency on
the x-axis, effectively mapping how the spectral characteristics vary with changes in cavity
detuning.

Progressing along the path of the photon quantum properties, the single-photon indistin-
guishability is calculated and analyzed through Section 4.2.1. The numerical results are
visualized in Fig. 5.4 in panel (a). Explicitly, two scenarios with different initial states are
compared. Starting in a fully initialized exciton state with d0 = |X〉〈X| (blue lines), the
indistinguishability is maximized to practically unity values for �c = �X, well adhering to
the literature [156] and various experiments [55, 75, 92]. Because the electronic system
does not experience any losses, the indistinguishability also remains high throughout the
range of investigated cavity detunings, albeit while experiencing greatly reduced Purcell
enhancement. For large cavity detunings, the exciton does not fully decay during the
simulation time, resulting in a partial emission of a photon with emission probabilities
P < 1. Comparable results are achieved when including electron-phonon coupling, which
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Figure 5.4:Quantum properties of photons emitted from a cavity during the decay
of a fully excited exciton or biexciton. (a) Achievable indistinguishability when initializing
the system in either a fully excited exciton (blue line) or a fully excited biexciton (orange
line) state. (b) Achievable concurrence for an initially fully excited biexciton state. Both
panels show results for scenarios without phonon interactions (solid lines) and with phonon
interactions modeled by the polaron master equation at a temperature of ) = 10 K.

reduces the indistinguishability due to the phonon-induced dephasing. At the exciton reso-
nance, the exciton decays rapidly, allowing minimal time for the occurrence of dephasing.
Starting in a fully excited biexciton state with d0 = |B〉〈B| (green lines), no significant
indistinguishability is achieved for any of the investigated cavity detunings. This directly
results from the strong interaction between the emission processes. For the biexciton at
the biexciton-to-exciton resonance where �c = �B/2, the indistinguishability rises slightly.
Here, the biexciton emits a photon through the rapid decay into the individual exciton states.
Assuming the simulation ends prematurely after the biexciton decayed into the excitons,
this indistinguishability would approach unity. However, as the simulation continues and
photon emission from the exciton follows the photon emission from the biexciton at a
different energy �X, the indistinguishability diminishes. Theoretically, the indistinguisha-
bility can be revived by applying a spectral filter to the simulation - or the experiment
- effectively dismissing the emission from the exciton. Since no spectral filter is applied
in this work, the indistinguishability originating from the biexciton-to-exciton transition
remains low
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Figure 5.5: Concurrence for varying ex-
citon fine structure splittings for simula-
tions with no phonons and with polaron mas-
ter equation phonons at different tempera-
tures. The dashed lines is with radiative decay
Wrad = 1µeV and pure dephasing with rate
Wdep = 1µeV. The width of peak changes with
the exciton energy, the cavity coupling and
decay as well as the overall phonon coupling
rates.

Expanding the investigation towards the
entanglement entails calculating the con-
currence of the emitted cavity photons. Fol-
lowing the concurrence introduced in Sec-
tion 4.2.2, identical parameter ranges are
investigated in Fig. 5.4 in panel (b). For
a cavity energy tuned to exactly the two-
photon resonance with �c = �B/2, an in-
crease in concurrence is observed. This be-
haviour is consistent with the literature
[142]. For the cavity energy approximating
the exciton-to-ground transition resonance,
the concurrence approaches unity values.
Here, the biexciton quickly decays, leaving
an almost perfect 50:50 superposition of
both excitons. Measuring one of these pho-
tons will perfectly herald the correspond-
ing exciton, which is still maximally excited
at 50%, hence greatly increasing the con-
currence. Due to the large detuning of the
exciton-to-ground resonance and the cavity,
the Purcell enhancement for this transition

is negligible. Consequently, the exciton lifetime remains high with decay times surpassing
the nanosecond scale. This is valid only in the absence of radiative decay of the states
into non-cavity modes and dephasing of state coherences. Such conditions yield very little
emission probability for the second cavity photon, rendering this scenario unsuitable for
practical applications.

Extending the analysis of the concurrence, the fine structure splitting energy is varied. Nu-
merical results for �fsp ∈ [−10µeV, 10µeV] are visualized in Fig. 5.5, showing the achievable
concurrence for various sets of parameters. Note, that the regular von Neumann equation
Eq. (2.8) is used for the phonon-free case, while the polaron master equation Eq. (3.19)
equation is used in all other cases. For all simulations, a strong peak in concurrence is
observed for vanishing fine structure splitting energies. The concurrence plateaus for finite,
non-zero fine structure splittings, which is in well agreement with the literature [84, 140,
234]. Specifically, increasing the temperature lowers the overall achievable concurrence.
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This is most prominently observed for larger fine structure splittings. Adding electronic
losses using a radiative decay rate as well as a pure dephasing rate of 1µeV (dashed lines)
reveals an overall increase of the concurrence, as well as a broadening of the central peak.
The radiative decay increases the rate of decay of the biexciton, while simultaneously low-
ering the number cavity photons emitted through the two photon transition. This results
in less time for the states to suffer from dephasing through any source, thus increasing the
concurrence.
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Figure 5.6: Baseline indistinguishabilities
and concurrence for photons emitted from
an isolated biexciton with no cavity. The in-
distinguishabilities for the photons emitted
through the exciton-ground and biexciton-
exciton transition overlap. The red line in-
dicates 2.5µeV, which is used in Chapter 6.
Here, the spearation of the excitons is �fsp =
2µeV with �H/V = �X ± �fsp/2.

Ultimately, an isolated biexciton is investi-
gated. Here, no cavity is present, i.e. ℏ6 =

0. In Fig. 5.6, the indistinguishability and
the concurrence of the photons emitted
through the radiative decay of the sates are
examined. For the numerical evaluation, the
electronic transition operator |8〉〈 9 |, with
8 ≠ 9 , is used instead of the cavity opera-
tor b̂c. The rate of radiative decay is varied
on the x-axis. These investigations reveal
the lower bounds of achievable quantum
properties without Purcell enhancement.
For simulations incorporating Purcell en-
hancement, these results indicate the efÏ-
ciency and practicality of the cavity. When
the quantum properties degrade below the
values achievable without Purcell enhance-
ment, the selected cavity parameters are
not advantageous. The indistinguishability
of a photon emitted by either the biexciton-
to-exciton or by the exciton-to-ground tran-
sition is not influenced by the rate of decay and remains at a constant Iref

X→G ≈ 0.83. In
Chapter 7, this value is shown to be dependent on the ratio of the decay rates of the exciton
and biexciton, where Wrad,B/Wrad,X sets a fundamental limit on the achievable indistinguisha-
bility from the free decay. In contrast, the concurrence shows a strong dependence on the
rate of decay. Moreover, the concurrence is strongly dependent on the rate of radiative
decay. For the values employed in this work, Cref ≈ 0.8 is assumed.
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Interim Summary

The biexciton offers multiple excitation and decay pathways, including dynamics in-
volving single excitons, two-photon processes, and cascaded transitions. The natural
decay of the biexciton results in an inherent limitation on the indistinguishability of
the emitted photons, with a maximum value of approximatelyIref

X→G ≈ 0.83. However,
this limitation can be significantly mitigated by employing Purcell enhancement,
where a cavity accelerates the decay rate of the states. Through this method, it is pos-
sible to achieve indistinguishability values approaching unity, even in the presence
of losses. The concurrence, and thus the entanglement, of the two-photon emission
from the biexciton can be optimized by minimizing the fine structure splitting. Con-
currence values exceeding Cref ≈ 0.8 are achievable by inducing a rapid decay of the
biexciton, which can be further enhanced by the use of a cavity. This rapid decay
ensures minimal dephasing, thereby preserving the coherence of the emitted photon
pairs and enhancing their entanglement.

5.2 Exciting theQuantum Dot States

The baseline simulations are performed for an initially fully excited state. In a realistic
system, this state has to be populated by a viable excitation method. The following sec-
tion introduces various pulsed laser excitation approaches, leading to the central method
investigated in this chapter. The following methods are also visualized in Fig. 5.7.

The investigation begins with using simple c pulses for the excitation. The c pulse is defined
by evaluating the pulse area Eq. (2.29) for a fixed integral magnitude of A = c , adapting
the variable pulse parameters, such as its amplitude and temporal length, accordingly. This
configuration excites an isolated exciton or biexciton with very high fidelity, reaching unity
values for optimized pulse parameters. Otherwise, when a cavity is enhancing the same
transition used for the excitation, more complex dynamics arise. Here, the differentiation
between a cavity off-resonant excitation and a cavity resonant excitation is convenient. For
a cavity resonant excitation pulse with a pulse bandwidth similar to the magnitude of
the loss rates of the system, the excitation process and the decay dynamics will occur
on similar time scales. Consequently, these processes coalesce, resulting in significant
reductions in excitation fidelity. This is a substantial problem, especially for longer pulse
durations. Reducing the pulse lengths solves the problem of temporally intermingling
processes, but leads to new problems when the complexity of the configuration surpasses
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Figure 5.7: Different excitation schemes to either fully or partially excite the quantum
dot states, illustrated using a simple two level system. The cavity on left and right indicate
the final resonance and Purcell enhanced emission. The lower solid line represents the
initial or ground state of the system, while the upper solid line shows the final state after
excitation. Shifts in the energy level of the excited state are indicated by dotted lines,
representing either the actual intermediate energy levels of the excited state or virtual
states, highlighting the dynamic changes in energy during the excitation process.

that of a simple two level system. When the pulse is shorter in the temporal domain, its
spectral bandwidth increases. Electronic or photonic transitions that fit inside the range of
the pulse bandwidth are driven simultaneously, which is undesired in most cases. Here,
systems like the biexciton or trion cannot be efÏciently excited because of the strong
spectral overlap of all of the available transitions. Reducing the Purcell enhancement, and
with it, the cavity mediated decay rate, achieves similar results, albeit with diminishing the
versatility of the cavity. This necessitates either accepting the reduced excitation fidelity
or switching to alternative excitation methods. In simple experimental setups, the former
is commonly endorsed, and is considered in Section 5.3. Regardless of the use of a cavity,
a resonant pulse must be separated from the quantum dot emission in the experiment.
An immediately apparent solution to the aforementioned set of problems is to introduce
detuning for the electronic states and the cavity. For a sufÏciently off-resonant cavity, the
Purcell enhancement becomes weak enough to separate the timescales of the excitation
and the cavity mediated decay processes, albeit dealing with the same problems as for a
resonant cavity when the pulse lengths become too short. Separation in the experiment
becomes trivial, as simple spectral filtering is sufÏcient to isolate the desired emission
[244]. Furthermore, Section 5.3 demonstrates the long lifetimes of this approach, which
consequently allows for losses to dominate the emission and significantly reduce the quality
and usability of the emitted photons.

Further exploring the detuned excitation, phonon-assisted side band excitation is considered.
Here, the pulse is detuned from the electronic transitions. The pulse energy is tuned to
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centralize around the phonon side band at �X + ℏl1 . The off-resonant nature of this
excitation method necessitates using strong pulses with large amplitudes. Emerging as the
main advantage of this method, the pulse is inherently off-resonant with the electronic
system, eliminating the need for further spectral separation. However, a significant problem
persists, as the cavity enhancement and thus the Purcell enhancement remains strong,
leading to similar timescales for the excitation and emission process and thus, mixing of
these dynamics during the excitation. Hence, this approach is not pursued in this work,
retaining any electron-phonon coupling as loss.

Expanding the analysis of detuned excitation, the optical Stark shift (OSS) is exploited to
induce a temporary detuning to the electronic states. When a pulse is interacting with the
electronic states, the energy levels are split and shifted symmetrically around their original
positions, which are commonly referred to as dressed states. This shift is used to move the
resonances away from the cavity, creating a temporary detuning. A second pulse then
off-resonantly excites the system. This method is briefly investigated in Section 5.4 using
continuous wave (CW) driving to induce the Stark shift. A second Gaussian pulse then
excites the respective ground state into the corresponding excited state. A specification of
this scheme is the SUPER scheme. Here, the continuous wave driving is replaced with a
second Gaussian pulse. In this case, both pulses are strongly detuned from the resonances,
as elaborated and briefly described in Section 5.4.1.

Finalizing the investigations of detuned excitation, the quantum confined Stark shift (QCSS)
is explored. Here, temporary detuning is achieved electronically [118, 145, 245, 246] instead
of optically [164, 168, 247] or via strain [60, 146], introducing the main topic of this chapter
based on [145]. By applying an electric field, the energy of the states is shifted similarly to
the optical Stark shift [245]. The desired electronic state is excited using a resonant Gaussian
pulse. The cavity is designed to be inherently off-resonant with the electronic transitions.
After exciting the desired electronic state, its energy is shifted into resonance with the cavity
using the QCSS. This method combines the advantages of cavity-off-resonant excitation
and the fast resonant decay of a cavity-resonant electronic system.

5.3 Quantum Confined Stark Shift of the Resonances

The application of an electric field to the quantum dot interferes with the wave function of
the electronic states. The induced potential difference distorts the potential well containing
the charged particles. This mechanism is depicted in Fig. 5.8. This distortion results in new
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energy states, effectively increasing or decreasing the energy at which the electronic state
resides. The change in energy is described by the time-dependent shift Δ� (C), which can
be included into the usual Hamilton formalism. For the biexciton system in this chapter,
the additional Hamiltonian component is given by

HΔ =

∑
8∈{H,V,B}

Δ�8 (C) |8〉〈8 | . (5.2)

Reconstructing the exciton energies �H/V as well as the biexciton energy �B leads to

Δ�H,V(C) = 5 (C) , Δ�B(C) = 25 (C) , (5.3)
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Figure 5.8: Quantum confined
Stark shift (QCSS) for a wavefunc-
tion inside a potential well with ex-
ternal electric field � . Reproduced
and enhanced from Bauch et al. [145].

which is done numerically every at every time step.
Here, 5 (C) is the temporal envelope of the shift. No-
tably, the biexciton energy intrinsically shifts with
twice the speed of the exciton energies. The strategy
for using the quantum confined Stark effect (QCSS)
for excitation involves a cavity off-resonant configu-
ration of the electronic states. The dot is then excited
utilizing any of the available methods, populating
the exciton (X) or biexciton (B) state. Because of the
off-resonant cavity, the excitation process is desired
to offer high excitation fidelity. The QCSS is then
exploited, shifting the electronic state energies into
resonance with the cavity to achieve rapid decay of
the states, resulting in successive emission of pho-
tons. Ideally, these photons exhibit high degrees of
indistinguishability or concurrence, which is the central study in [145]. In the following,
the QCSS approach is compared with the OSS method.

Intuitively, the QCSS can be used either to shift the system out of resonance during the
excitation process or to shift the system into resonance after the excitation to enable the
Purcell enhanced emission. The former approach requires only a short shift but necessitates
precise timing and amplitudes for the shift. The latter approach offers a perfect resonance
condition for the excitation pulse and subsequently creates resonance with the cavity.
Given the relatively broad cavity mode, even with small losses, using the QCSS to shift
the electronic states into resonance with the cavity appears favorable. Additionally, this
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also simplifies the experimental setup, as resonance with the cavity is not required to
be perfect, whereas perfect resonance with the excitation pulse is mandatory to achieve
high excitation fidelity. The temporal setup used in this work is illustrated in Fig. 5.9.
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Figure 5.9: Schematic of the quantum
confined Stark shifted (QCSS) Excitation
Scheme with excitation pulse Ω(C), elec-
tronic shift of the energy induced by the QCSS
Δ(C) through the application of an electric
field to the quantum dot, as well as the emis-
sion of a cavity photon, indicated by 〈=̂〉. Re-
produced and enhanced from Bauch et al. [145].

In this scheme, the excitation pulse Ω(C),
illustrated in blue, excites the electronic
system, which at this point in time is off-
resonant with the cavity, with maximized
excitation fidelity. As previously noted, this
process could involve more advanced exci-
tation methods, although this work is lim-
ited to a single, resonant Gaussian excita-
tion pulse. The QCSS Δ� (C) ∝ 5 (C), illus-
trated in orange, then shifts the desired elec-
tronic transition into resonance with the
cavity. The respective electronic state sub-
sequently decays, emitting a photon 〈=̂〉,
which is highlighted in green.

The initial cavity detuning is set to �c−�X =

1meV or �c − �B = 3meV when investigat-
ing the excitation of the exciton or biexci-
ton, respectively. The energy of the cavity is
configured above the electronic resonances
to minimize mediation through the phonon

side band. The cavity coupling is fixed to ℏ6 = 66µeV and cavity losses set to ℏ^ = 66µeV,
mirroring the settings used in [145]. The state populations are analyzed after a total sim-
ulation time of Cmax = 300 ps. The pulse area excitation parameters are A0 = 1c for the
exciton and A0 = 3.3c for the biexciton, with the respective excitation fidelity close to
unity. In both scenarios, the excitation occurs through the horizontally polarized channel� .
Notably, the required pulse amplitude for the biexciton depends on the binding energy used,
as higher binding energies require larger pulse energies to successfully bind two excitons
into the biexciton. The total amplitude of the shift max(5 (C)) is scanned in Fig. 5.10, with
the maximum rate of the electronic shift set to d5 (C )

dC

���
max

= 100µeVps−1. While achieving
such ultrafast electric control of the energies is challenging experimentally, it remains
within the realm of realistic possibilities.

Investigating the exciton, analyzed in panel (a), a single point of resonance is found when

90



5 Enhancing Quantum Dot Excitation Using the Quantum Confined Stark Effect

0 1 2 3

0.00

0.25

0.50

0.75

1.00
S
ta
te

P
o
p
u
la
ti
o
n

Ground State

V Exciton

Biexciton

H Exciton

0 1 2 3

�antum-Confined Stark-Shi� Amplitude [meV]

Figure 5.10: Amplitude scan of the electronic shift induced by the quantum confined
Stark shift. Both plots show the final occupation of the electronic states after a total
simulation time of Cmax = 300 ps with no phonon interaction. The exciton in panel (a) is
excited using a pulse area of A0 = c with ℏl0 = �X. The biexciton in panel (b) is excited
using a A0 = 3.3c with ℏl0 = �B/2.

the shift compensates the initial detuning exactly. Here, max(5 (C)) = 1meV. The exciton is
allowed to fully decay within the investigated time period. The width of this resonance
condition is shallow, with a buffer of approximately 0.1meV around the main peak. This
buffer arises from the spectral width of the cavity mode and is the reason for selecting
this setup for this study. No other electronic levels are excited, leaving both the biexciton
and the vertically polarized exciton unoccupied. Thus, setting the shift to match the initial
detuning achieves high-fidelity excitation and emission using the QCSS method. Proceeding
to the excitation of the biexciton, analyzed in panel (b), multiple regions of resonance occur.
At a shift amplitude of approximately max(5 (C)) ≈ 1meV, the rate at which the ground
state occupation rises is slightly enhanced because the cavity is in resonance with the
exciton-ground transition. At max(5 (C)) = 1.5meV, exactly half of the initial detuning, the
energy of the cavity equals the energy of the two photon transition of the biexciton. This
leaves the biexciton to resonantly decay while emitting two photons. This resonance is
very sharp, indicating the need for precise tuning of the Stark shift. The final ground state
occupation is around 90%, with some population lost to the individual exciton states. At
the biexciton-to-exciton transition, the final ground state occupation decreases as both
individual excitons are excited. The cavity strongly enhances the biexciton-to-exciton
transition, resulting in a rapid decay of the biexciton into these states. However, the now
populated exciton states remain highly occupied due to the off-resonant cavity. The required
maximum shift is set to max(5 (C)) = 1meV and max(5 (C)) = 1.5meV for the excitation
of the exciton and biexciton, respectively. The temporal dynamics of the excitation and
decay process is investigated in Fig. 5.11. Simulations for cavity-free excitation, simple
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Figure 5.11:Quantum dot dynamics and cavity emission using the QCSS excitation
method. The exciton in panel (a) is excited with max(Δ(C)) = 1meV, bridging exactly
the dot-cavity detuning. The biexciton in panel (b) is excited with max(Δ(C)) = 1.5meV,
bridging the dot-cavity detuning and the additional �bind = 1meV gap. Cases for resonant
c-pulse (3.3c-pulse) excitation with (resonant excitation, solid blue line) and without (free
excitation, dotted green line) cavity are compared with off-resonant excitation with (QCSS
excitation, solid orange line) and without (detuned excitation, dashed red line) the electronic
shift. Reproduced and enhanced from Bauch et al. [145].

cavity-resonant excitation, cavity-detuned excitation, and QCSS excitation are compared.
In the absence of a cavity (green dotted lines), neither the exciton nor the biexciton decays
due to the lack of additional loss mechanisms, resulting in high excitation fidelities but
missing the emission. In the detuned excitation case (red dashed lines), the excitation
fidelities are high, but any emission occurs slowly. In the resonant excitation case (blue
solid lines), excitation fidelities are significantly lowered due the aforementioned mixing of
the excitation and emission processes. The QCSS excitation (orange solid lines) mirrors the
detuned or free excitation during the excitation phase and then proceeds to also mirror
the resonant decay of the state following the shift. This demonstrates the effectiveness of
QCSS in achieving high-fidelity excitation and emission and achieves the desired excitation
and decay dynamics.

Interim Summary

The QCSS excitation achieves near-unity excitation fidelities similar to a simple, res-
onant excitation without a cavity while also leveraging the strong Purcell-enhanced
decay and photon emission enabled by a cavity. This is accomplished by shifting
the electronic stats through ultrafast electric control of their energies, creating reso-
nance with the cavity from an initially off-resonant system. This approach effectively
combines the advantages of both the off-resonant excitation and resonant emission.
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5.4 Optical Stark Shift and SUPER excitation

Before further investigating the quantum properties of the QCSS excitation, a similar setup
using the optical Stark shift, induced by another laser, is briefly discussed. As previously
introduced, the approach is equivalent to the QCSS, but instead of an electric field, a second
laser is used.
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Figure 5.12: Schematic of the optical Stark
shifted excitation scheme with excitation
pulse Ω1(C), Stark shifting pulse Ω2(C) which
results in the energy shift Δ(C), as well as the
emission of a cavity photon, indicated by 〈=̂〉.

The cavity is initially resonant. The motiva-
tion behind this comparison is the practical
difÏculty of implementing the QCSS, which
requires ultrafast electronics and complex
applications for electronic contacts. There-
fore, the use of a second optical pump Ω2 to
induce a static optical Stark shift is consid-
ered as an alternative, which is much easier
to implement in the experiment.

Sustaining the OSS for the entire emission
process is unfeasible, because it would re-
sult in off-resonant pumping of the system.
Ultimately, setups with continuous wave
driving of the system result in stationary
states, which statistically emit photons [155,
213]. Instead, the OSS is only utilized during
the excitation of the respective electronic
state. To ensure comparability with previ-
ous results, the biexciton system is considered even when only exciting the exciton. The
corresponding excitation scheme is illustrated in Fig. 5.12.

The OSS is induced by a temporary CW pulse, with a pulse energy off-resonant with all
of the electronic states. To achieve a significant shift in energies, large amplitudes for
the CW pulse are used. Large amplitudes result in strong dephasing due to phonons if
electron-phonon interactions are included. Hence, the lossless case with no phonons is
investigated exclusively. The area of the Gaussian excitation pulse is set to A1 = 1c or
A1 = 3.3c for exciting the exciton or biexciton, respectively.

The initial step involves finding a suitable pulse for the Stark shift by scanning the amplitude
of the second pulse. Numerical results for the excitation of the exciton is displayed in
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Figure 5.13: Scan the optical Stark shifting pulse amplitude. Both plots show the final
occupation of the electronic states after a total simulation time of Cmax = 100 ps with no
cavity and no phonon interaction. The exciton in panel (a) is resonantly excited using pulse
with A1 = c and ℏl1 = �X. The biexciton in panel (b) is excited using a A1 = 3.3c pulse
with ℏl1 = �B/2. Amplitudes are not to scale.

Fig. 5.13, panel (a). Similar to the QCSS excitation, only a single, clear resonance condition
is observed. However, a full excitation of the horizontally polarized exciton is not achieved
due to the significant population of the vertically polarized exciton. Following the same
logic as with the QCSS excitation, the optimal amplitude of the CW pulse emerges to be
approximately �2 = 4.5meV. The excitation of the biexciton is depicted in Fig. 5.13, panel
(b). Here, multiple resonances are visible. Notably, the exciton can also be significantly
excited using the stronger excitation pulse. The biexciton is successfully excited with high
fidelity at an amplitude of the CW pulse of approximately �2 = 5.5meV.

Utilizing the previously discovered amplitudes for the CW pulse, the temporal dynamics
of this excitation method is investigated in Fig. 5.14. Here, panel (a) shows the dynamics
of the excitation of the exciton, and panel (b) shows the dynamics of the excitation of the
biexciton. In this scenario, excitation of the vertically polarized exciton occurs in both
cases, most prominently with the excitation of the biexciton due to the stronger pulses.
Furthermore, the excitation efÏciency is slightly beneath unity due to interactions with the
cavity.
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Figure 5.14: Quantum dot dynamics and cavity emission using the OSS excitation
method. The exciton in panel (a) (blue line) is excited with a detuning of the ΩΔ pulse
of 4.5meV. The biexciton in panel (b) (orange line) is excited with a detuning of 5.5meV.
Both panels show the resonant decay of the state population into a cavity. The blue and
red dotted lines representing the individual excitons overlap for later times.

5.4.1 SUPER Excitation

Recent advances in excitation methods have surfaced the swing-up of quantum emitter
population (SUPER) technique [164–166]. The methodology is similar to the OSS excitation,
but instead of using a continuous wave laser to induce the shift, the SUPER method em-
ploys two Gaussian pulses. Both of these pulses are strongly detuned from the electronic
resonances and require large pulse amplitudes.

Recent experimental [165] and theoretical [163, 164, 166] efforts have demonstrated the
efÏcacy of this excitation method, showing that it performs well in practical applications.
Numerical analyses have also indicated that the SUPER method exhibits strong resistance to
phonon interactions [162]. This resistance can be attributed to the use of continuous wave
lasers, which typically result in continuous pulse application and thereby promote strong
phonon interactions due to electron-phonon coupling. In contrast, the SUPER method
employs two concurrent, detuned pulses that significantly reduce these interactions. The
large amplitudes of these pulses quickly exceed the phonon spectral density, leading to an
almost phonon-free interaction [162].

The performance of the continuous wave and the SUPER excitation methods is displayed in
Fig. 5.15. In these studies, a simple two-level system without a cavity is used for simplicity.
In panel (a), a constant CW pulse is employed, while in panel (b), a strongly detuned
Gaussian pulse with a large amplitude is used. In both panels, the amplitude of a second
Gaussian pulse is investigated. Its amplitude is varied along the y-axis, and its detuning is

95



5 Enhancing Quantum Dot Excitation Using the Quantum Confined Stark Effect

varied along the x-axis. The results show that, in both cases, regions of strong excitation
fidelity close to unity values emerge.
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Figure 5.15: SUPER excitation of a single exciton. (a) Excitation using a single Gaussian
pulse combined with a continuous wave (CW) pulse, with the x-axis detailing the detuning
of the Gaussian pulse and its amplitude on the y-axis. (b) Excitation using two Gaussian
pulses, where the x-axis details the detuning and the y-axis the amplitude of one of the
pulses. Each configuration demonstrates how variations in pulse detuning and amplitude
influence the excitation of the exciton.

Interim Summary

Using an optical pulse to induce an OSS instead of an electrical QCSS proves to be
suitable for the excitation of the electronic states. Electron-phonon interactions will
significantly diminish the excitation fidelities when using a CW pulse, rendering
this approach unfavorable. On the other hand, SUPER is able to efÏciently excite
the system even through strong electron-phonon interactions. Unlike the QCSS
excitation, both methods still suffer from the premature decay of the electronic state
population when combined with a cavity, making the former more advantageous
when managing strong Purcell enhancements.

5.5 Quantum Correlations

Having established the time dynamics of the Quantum Confined Stark Shift (QCSS) exci-
tation, it is essential to investigate the corresponding quantum properties. As detailed in
Part I, a deterministic photon source necessitates reliable, on-demand emission of photons
with high indistinguishability. Ideally, twin photons should exhibit high concurrence, and
consequently, high entanglement. This section explores the quantum properties of the
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photons emitted from the quantum-dot cavity system using the QCSS excitation method.
Comparisons with conventional excitation methods illustrates the performance of this
method.

5.5.1 Spectral Characteristics

The emission spectrum, being the most straightforward property, is investigated first.
As demonstrated in Section 5.1 and Fig. 5.3, the emission spectrum for an ideal exciton
decay consists of two individual peaks separated by the cavity coupling constant ±ℏ6, a
phenomenon known as Rabi splitting. For the biexciton decay, a single narrow emission
peak around the central cavity frequency is anticipated. The width of the spectral peaks is
mediated by the loss rate of the cavity ^.

In Fig. 5.16, the spectra for the simulations displayed in Fig. 5.14 are presented. The emission
energy is displayed on the x-axis, while the cavity loss rate increases on the y-axis. Due
to the initial detuning, the resonance condition is created from � = �0 − �Δ. Here, �0 is
either �X for the exciton, or �B/2 for the biexciton. In the context of Fig. 5.16, the resonance
condition is restored from the left when using the x-axis as the reference.

For the photon emission through the decay of the exciton, shown in panel (a), an initial
Rabi splitting of the energies is observed. The emission dominates at �X − ℏ6 because this
resonance condition is spectrally reached first, leaving only a fraction of the population to
emit at �X+ℏ6. Furthermore, the emission broadens significantly for larger loss rates, where
both of the Rabi-split peaks merge into one. Except for the asymmetry of the spectrum,
this behaviour mirrors the spectral properties of a resonant decay of an exciton.
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Figure 5.16: Emission spectra for different cavity Q-factors for the exciton emission
in panel (a) as well as the biexciton emission in panel (b). All spectra are calculated using
the Eberly-Wodkiewicz spectrum. Reproduced and enhanced from Bauch et al. [145].

97



5 Enhancing Quantum Dot Excitation Using the Quantum Confined Stark Effect

For the photon emission resulting from the decay of the biexciton, shown in panel (b),
a single central peak emerges. This peak displays minimal asymmetry. As cavity losses
increase, the emission broadens. This behavior reflects the resonant decay of the biexciton
via the two-photon transition.

These results correspond to a maximum electronic shift speed of 100µeVps−1. Importantly,
in both scenarios, the emission closely resembles that of a resonant decay. Faster shifts yield
results more closely aligned with resonant decay, whereas slower shifts lead to increased
asymmetry.

By examining the spectral characteristics, the QCSS excitation method demonstrates its
potential to achieve high-fidelity photon emission with properties comparable to resonant
excitation methods.

5.5.2 Photon Properties

The quantum properties of the photons are investigated similarly to the emission spectra
in Section 5.5.1. For the photon emission from the exciton, the focus is on assessing the
single photon indistinguishability. In contrast, for the photon emission from the biexciton,
the evaluation centers on the concurrence and, consequently, the entanglement. These
properties are depicted in Fig. 5.17 at temperatures of ) = 0K, representing an idealized
scenario with active electron-phonon coupling, and ) = 4.2K, corresponding to the tem-
perature achievable through cooling using liquid helium [248]. All results are derived using
the polaron master equation. Additionally, in this study, the pure dephasing of the states is
set to Wdep = 1 ·µeVK−1 using Ô =

√
Wdep ( |8〉〈8 | − | 9〉〈 9 |) for 8, 9 ∈ {G,XH,XV, B} and �8 > � 9 .

Changing the rate of cavity losses ^ is investigated, visualized on the x-axis of the respective
plots.

The indistinguishability for a system excited with a single resonant pulse and a resonant
cavity (dotted lines) is displayed in Fig. 5.17, panel (a). The indistinguishability plateaus
at Iresonant

c ≤ 0.85, which is close to the reference value Iref
X→G ≈ 0.83 for a cavity-free

emission, as displayed in Fig. 5.6. Using the QCSS for the excitation with an initially detuned
cavity, the indistinguishability rises to IQCSS

c ≈ 0.98 for ) = 0K and IQCSS
c ≈ 0.95 for

) = 4.2K. These values significantly surpass those of the resonant excitation method and
are close to the achievable maximum values, obtained by starting the simulations in a fully
excited exciton state (dashed lines).
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Figure 5.17: Quantum property benchmark for the QCSS excitation (solid lines)
compared to the resonant excitation (dotted lines) of the exciton in panel (a) and the
biexciton in panel (b). The upper limit of reachable indistinguishability or concurrence is
depicted by starting the simulation in the respective excited state (dashed lines). Results
are presented for both ) = 0K and ) = 4.2K, demonstrating performance across these
temperatures. In both cases, the respective reference values according to the lossless
biexciton baseline from Fig. 5.6 are indicated using the hatched areas. Reproduced and
enhanced from Bauch et al. [145].

The corresponding emission probabilities are displayed in Fig. 5.18, panel (a). When using a
resonant pulse, the emission probability exceeds unity, adversely affecting the deterministic
behavior of the emitter. In contrast, the emission probabilities for the QCSS excitation
remain slightly below their ideal reference values. When the simulation starts in a fully
excited state, the emission probability of the cavity photons is only reduced by the electronic
losses. However, for the QCSS excitation case, further reductions occur because the emission
process is prolonged by the time required to shift the energies.

Examining the twin photons from the biexciton in Fig. 5.18, panel (b), it is observed that
the concurrence using the QCSS excitation even exceeds its reference value when initially
starting the simulation in the biexciton state. This occurs because the emission probabilities,
depicted in Fig. 5.18, panel (b), are significantly lower for the QCSS case when compared to
the reference case. As a result, the reduced photon population is less susceptible to phonon-
induced dephasing, which slightly increases the concurrence of the emitted photons.
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Figure 5.18: Emission probabilities for the QCSS excitation (solid lines) compared
to the resonant excitation (dotted lines) of the exciton in panel (a) and the biexciton in
panel (b). Data shown correspond to Fig. 5.17. Results are presented for both ) = 0K and
) = 4.2K.

5.6 Concluding the Stark Shifted Excitation

The biexciton system is introduced alongside various excitation methods, including the
newly emerging SUPER scheme and the Quantum Confined Stark Shifted (QCSS) exci-
tation. The QCSS excitation method is theoretically proven to be effective. This method
produces highly indistinguishable photons emitted from the exciton and allows for strong
entanglement of twin photons emitted from the biexciton. One significant advantage of
QCSS is the feasibility of using long pulses due to the cavity-off-resonant excitation and
thus, initially low Purcell enhancement. However, a disadvantage of the QCSS method is its
complicated experimental setup.While SUPER requires synchronization of two lasers, QCSS
necessitates ultrafast electric control of the state energies. This control can be implemented
through piezoelectric components or by applying voltage changes directly via electronic
contacts, enabling rapid modulation of the potential difference within the material [24, 25,
107, 249].

The QCSS excitation outperforms SUPER excitation in terms of indistinguishability. This
is because the QCSS method not only avoids stimulated emission by separating the laser
and emitter but also prevents premature cavity decay of the population. Fortunately, QCSS
and SUPER are not mutually exclusive, as the excitation pulse in the QCSS method can be
exchanged for a SUPER excitation. Starting with an electronic system and an off-resonant
cavity, SUPER can be used to excite the system. Afterwards, the electronic shift used in the
QCSS method is applied to achieve resonance between the desired electronic transition and
the cavity. This approach combines the phonon-free, high-fidelity excitation of SUPER with
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the benefits of QCSS, including off-resonant excitation and resonant decay. Consequently,
this combination ensures perfect separation of the excitation and emission in both time
and frequency domains, maximizing the quality of the emitted photons. This method for
high fidelity excitation of the quantum dot states mark the central result from this chapter
and the underlying work [145].

Interim Summary

Using the QCSS method for excitation, high indistinguishability for single photons
and strong concurrence for twin photons are achievable, highlighting its potential
for quantum information applications. Despite the complexity of this setup, the
QCSS provides the ability to produce high-quality quantum states, which makes this
method a promising technique for future quantum dot experiments and applications.
The QCSS method is further capable of outperforming simple resonant excitation
methods and competes well with the recently emerged SUPER scheme.
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Generating Indistinguishable

and Simultaneously

Entangled Photons 6
In the previous chapter, various methods for exciting the electronic system are investigated.
Regardless of the excitation method used, the emitted photons exhibit either high indistin-
guishability or strong entanglement. However, achieving high values for both properties
simultaneously presents a significant challenge [92, 170]. This limitation arises from an
intrinsic constraint imposed by the decay rate of the biexciton [74].
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Figure 6.1: Comparison of the visibility and indistinguishability of a simple two-
level system with artificially modified radiative decay rates for the biexciton. (a) Analytical
results, evaluated through Eq. (6.1), and results obtained using the von Neumann equation
Eq. (2.8) for the visibility. (b) Indistinguishability for the same simulation depicted in panel
(a). The red crosses indicate the natural decay ratio of the biexciton system, Wrad,B/Wrad,X = 2,
resulting in a visibility of Vnat

X→G = 0.66, correlating with an indistinguishability of Inat
X→G =

0.83. Notably, values for the natural visibility and indistinguishability of both possible
photon emissions coincide, with Vnat

X→G ≈ Vnat
B→X and thus Inat

X→G ≈ Inat
B→X. Reproduced and

enhanced from Bauch et al. [174].

In Section 4.1.1, the visibility was introduced as a figure of merit for single-photon indis-
tinguishability, focusing on first-order correlations. By considering a simple three-level
system, approximating an isolated biexciton system with no cavity and only one available
intermediate exciton state, an analytical expression for the visibility of the emitted photon
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can be derived [74]. The resulting analytical expression reads

Ṽanalytical
X→G =

[
1 + Wrad,X/Wrad,B

]−1
. (6.1)

The evaluation of Eq. (6.1) while varying the decay rate ratio of the biexciton and exciton
is illustrated in Fig. 6.1, panel (a) (black crosses). The visibility reaches a minimum when
Wrad,B � Wrad,X, quickly approaching zero. When the radiative decay rate of the biexciton is
twice that of the exciton, the visibility reachesVnat

X→G = 2/3 ≈ 0.66, as marked by a red cross
in Fig. 6.1, panel (a). The corresponding value for the single-photon indistinguishability
in panel (b) is Inat

X→G = 0.5(1 + 2/3) ≈ 0.83. These values serve as a lower bound, where
setups yielding lower indistinguishability values are considered ineffective for the intended
purposes. However, when Wrad,B � Wrad,X, both the visibility and the indistinguishability
exceed the reference values, approaching unity.

Figure 6.2: Cover page of the Ad-
vanced Quantum Technologies
journal issue from January, 2024.

The analytical visibility in Fig. 6.1, panel (a), agrees
well with numerical results for a four-level biexciton
system. As discussed in Section 4.2.1, the visibility
neglects multi-photon influences, which is why the
indistinguishability is preferred in simulations that
include these processes. Since, in this case, the indis-
tinguishability behaves equivalently to the visibility,
it will be used exclusively in this chapter.

In summary, for an isolated biexciton system, in-
creasing the decay rate of the biexciton significantly
enhances indistinguishability [74]. Numerical re-
sults show that photon indistinguishabilities from
both the biexciton-to-exciton transition IB→X and
the exciton-to-ground transition IX→G scale equally
with the decay rate. Introducing a system that fa-
cilitates the rapid emission from the biexciton con-
sequently results in the emission of two photons
that are both highly indistinguishable and, ideally,
strongly entangled.

The central focus of this chapter is to achieve the rapid decay of the biexciton using
a cavity resonator, similar to the one described in Chapter 5. This cavity is tuned to
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primarily enhance the biexciton-to-exciton transition, allowing modulation of the biexciton-
exciton decay rate ratio. By leveraging the cavity resonator, the inherent limitations of the
biexciton system can be mitigated. The resulting system theoretically emits photons that
are both indistinguishable and entangled. Additionally, the quantum-dot-cavity system
is tuned for emission in the telecom-C band at _ = 1550 nm, enabling broad applications
of the structure [92, 94, 195]. This dual achievement marks a significant advancement
for quantum dot technologies, promising enhanced performance in quantum information
processing applications.

This work highlights the publication Bauch et al.,On-demand indistinguishable and entangled
photons using tailored cavity designs, [174], which is prominently featured on the cover
page of the Advanced Quantum Technologies Journal from January 2024. The data for this
work is available on the corresponding Zenodo archive [250]. The cover image is presented
in Fig. 6.2.

6.1 Quantum Dot - Reflector Structure

The system examined in this chapter closely parallels the one discussed in Chapter 5,
consisting of a biexciton with two individual excitons and a two-mode cavity that enhances
both horizontally and vertically polarized selection rules. The Hamiltonian that governs
the time evolution of this system remains consistent with the one in Eq. (5.1), excluding
the temporal shift of the energies. A visual representation of this system is provided in
Fig. 6.3.

This chapter aims to identify a suitable reflector structure—a cavity—that effectively en-
hances the Purcell effect of the electronic transitions. This enhancement is crucial to ensure
that the emitted photons exhibit high degrees of indistinguishability and entanglement. As
previously discussed, photons generated by the biexciton system naturally have limited
indistinguishability, and their entanglement is highly susceptible to loss. Employing a cavity
that strongly enhances only the biexciton-to-exciton transition does not result in high
indistinguishability for both photons. Therefore, a cavity that facilitates rapid emission
for both the biexciton-to-exciton and exciton-to-ground transitions is necessary. These
transitions are separated by the biexciton binding energy �bind, which requires a broad
cavity mode to enhance both.

A structure that meets these criteria is the circular Bragg reflector, also known as a bullseye
cavity due to its geometric shape [89, 172, 196, 251, 252]. This configuration consists of
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Figure 6.3: Quantum dot biexciton and circular Bragg reflector structure. The biex-
citon system in panel (a) features a finite binding energy �bind, indicated by the transparent
blue level, as well as the exciton fine structure splitting energy �fsp. The simulations feature
either an initially fully excited biexciton or two-photon excitation, indicated by the orange
arrow. The biexciton may then decay through the exciton cascade, indicated by the blue
and red arrows, which is accelerated by the circular Bragg reflector (cavity) in panel (b).
This cavity Purcell enhances the quantum dot transitions and mediates the emission of
photons. Reproduced and enhanced from Bauch et al. [174].

concentric circles with the quantum dot positioned at the center, where the field intensity
is maximized. The cavity is fabricated on a glass substrate using semiconductor material,
specifically InGaAs in this study. The circular Bragg grating is highly configurable with
respect to its target wavelength, as the thickness and height of the gratings can be adjusted
accordingly.

Circular Bragg reflectors are prominent for emission around the telecom-C band. In this
work, the electronic system is configured with the exciton energy set to �X = 0.8 eV,
with �fsp = 1µeV. Thus, the energies of the horizontally and vertically polarized excitons
are �H/V = �X ± �fsp. Using a binding energy of �bind = 5meV, the biexciton energy is
�B = 2�X − �bind = 1.595 eV.

The optical resonators in this study are subjected to numerical investigations with a high
degree of tunability, unconstrained by the practical limitations of the implementation. To
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ensure feasibility for experimental applications, Maxwell simulations are employed to model
the behavior of light within the cavity. These simulations confirm that the investigated
structures can be practically realized. The primary objective is to optimize the transition
enhancements to achieve maximum photon quality, guided by microscopic simulations of
the quantum states. This approach is a collaborative effort with the electrical engineering
group of Prof. Dr. Jens Förstner from Paderborn University [174]. This section covers only
a limited aspect of the numerical optimization of semiconductor microcavities, a topic that
remains an active area of research [253].

In this work, the Maxwell optimizer can modify the inner cavity radius, grating period,
grating height, and the spacing between individual gratings. Each of these parameters
represents a degree of freedom, increasing the computational complexity. A notable aspect
of the work presented in [174] is the independent adjustment of the first trench width in
relation to the other gratings. This approach enables finer optimization but comes with the
trade-off of higher computational costs, which is why it is seldom used in the literature.
The cavity design and its parameter blueprint are shown in Fig. 6.4.

InGaAs

Thickness SiO2

Gold

W1 W

Cavity Radius

CBG

Height

Grating Period

(a) (b)

SiO2 Gold mirror

InGaAs Cavity 

InAs QD

Figure 6.4: Circular Bragg reflector optimization via Maxwell equations solved on a
finite grid. Panel (a) shows a rendered image of the cavity structure. Panel (b) provides a
detailed two-dimensional slice of the structure, highlighting the parameters available for
numerical optimization. Each parameter represents a degree of freedom for the optimizer
[174].

A comparison between the spectrum of the Maxwell-optimized cavity and quantum sim-
ulation results is provided in Fig. 6.5. Panel (a) displays the cavity spectrum designed to
maximize the indistinguishability and concurrence simultaneously, with the vertical dashed
line indicating the exciton energy and the solid line marking the biexciton resonance. The
optimization specifically targets Purcell enhancement at the biexciton-to-exciton transition
energy �B − �X, with less emphasis on enhancing the exciton-to-ground transition energy
�X. The results from the quantum simulations (orange) are mirrored along the x-axis to
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allow for better comparison with the Maxwell-optimized cavity (blue). Panel (b) shows
the first normalized field mode of the cavity, demonstrating the alignment of the maxi-
mum field intensity precisely at the center of the cavity, which maximizes the light-matter
interaction.
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Figure 6.5: Comparison betweenMaxwell-optimized cavity spectrum and quantum
simulation (a) Cavity spectrum designed for maximum indistinguishability and concur-
rence. The vertical dashed line marks the exciton energy, and the solid line indicates the
biexciton resonance. The optimization targets Purcell enhancement at the biexciton-to-
exciton transition energy �B − �X. The quantum simulation results (orange) are mirrored
along the x-axis for better comparison with the Maxwell-optimized cavity (blue). The
parameters resulting from the Maxwell simulations are provided in 6.6. (b) Normalized
field mode of the cavity, showing maximum field intensity at the cavity’s center, enhancing
light-matter interaction [174].

The Maxwell optimizer employs a gradient descent method to identify the optimal set of
parameters by minimizing a loss function, which is qualitatively defined as

5 (G) ≡ 5Purcell Enhancement out of Target Range + 5Mismatching Target Wavelength

+ 5Quantum Slope Equation + 5Mismatch Target Q Range . (6.2)

Further details on the loss function are available in Appendix A.3. Essentially, the loss
function penalizes Purcell enhancements that fall outside the desired range, as well as
mismatches in the target wavelength and the target Q-factor range. Additionally, if the
resulting cavity parameters lead to low quantum properties of the photons, such as reduced
indistinguishability or low concurrence, the loss function value increases through the
quantum slope equation. The structural cavity parameters are illustrated in Fig. 6.4, panel
(b). The target wavelength is set to 1550 nm. The subsequent chapter aims to assess the
quantum slope equation of the loss function. Maxwell simulations of the cavity ensure
that the cavity parameters are achievable in a realistic system, emphasizing the practical
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implementability of the design. An example of the resulting cavity spectrum obtained
by the Maxwell optimizer and a comparison with the results obtained from microscopic
simulations conducted in this work are shown in Fig. 6.5, panel (a). The corresponding
Maxwell parameters are listed in Fig. 6.6. These parameters provide a direct link between
the theoretical results and their experimental implementation, serving as a blueprint for
practical application [174].

Dimension [nm] Optimal Cavity Fig. 6.5, panel (a)

Grating Period 563.3
1. Trench Width 154.3
Trench Width 161
Cavity Radius 584.1
CBG Height 450.6

Thickness SiO2 359.6

Figure 6.6:Optimized resonator properties for various optimization objectives are provided.
The resonator described in Fig. 6.5, panel (b) is designed to achieve high cavity coupling
values ℏ6, low Q-values, moderate double-digit Purcell enhancement, and includes op-
timization for a temperature of ) = 4.2K. The latter is strongly guided by microscopic
simulations using the polaron master equation. Further details are available in the respec-
tive publication [174].

6.2 Quantum Properties

Circular Bragg reflectors provide high coupling values with 6 > 200µeV. To begin, the cav-
ity losses must be evaluated to determine whether strong effective coupling, characterized
by low cavity loss rates ^, or weak effective coupling, where ^ is large, is preferable. The
optimal Purcell enhancement is achieved by adjusting the ratio ^/6 and identifying the
appropriate cavity resonance.

The emission from the exciton-to-ground transition originates from the radiative decay of
the exciton. In contrast, the photon from the biexciton-to-exciton transition arises from a
combination of cavity emission and radiative emission, which are integrated into a single
operator. This integration implies that while the cavity directly contributes to the photon
population from the biexciton, it also functions as a loss channel for the exciton decay.
This distinction is crucial because, in typical scenarios, radiative decay is treated as a loss,
whereas here, the cavity plays that role. For the distinct photons originating from the
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biexciton-to-exciton transition as well as the exciton-to-ground transition, the operators

ÔB,8 = |X8〉〈B| + b̂8︸       ︷︷       ︸
B→X

and ÔX,8 = |G〉〈X8 |︸ ︷︷ ︸
X→G

(6.3)

are used. The former operator accounts for the emission from both the radiative decay of the
biexciton-to-exciton transition and the cavity mode coupled to this transition, while the lat-
ter operator includes only the radiative decay of the exciton. In simulations that incorporate
the cavity, the corresponding indistinguishabilities are linked to these operators.

Numerical simulations starting in the biexciton state with d0 = |B〉〈B| are presented in
Fig. 6.7. Here, the indistinguishabilities of the photon from the radiative emission of the
biexciton-to-exciton transition, enhanced by the cavity, are displayed in panel (a). The
indistinguishability of the photon from the radiative emission of the exciton-to-ground
transition is shown in panel (b). The concurrence of both photons is depicted in panel (c).
The rate of cavity losses is varied on the y-axis, while the cavity energy is varied on the
x-axis.
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Figure 6.7: Quantum properties of the non-optimized emitter system. Panel (a)
illustrates the indistinguishability of the exciton photon, panel (b) displays the indistin-
guishability of the biexcitons super operator photon from Eq. (6.3) and panel (c) explores
their concurrence. The visualization spans over the complete energy range encapsulating
both the exciton as well as the biexciton resonances. The cavity emission rate ^ is specified
relative to the cavity coupling 6. In all panels, the initial state is d0 = |B〉〈B|. Reproduced
and enhanced from Bauch et al. [174].

For a cavity configuration to be desirable, all three properties should ideally be maximized.
It is directly visible that the indistinguishabilities of both photons are high when the cavity
is energetically placed around the biexciton-to-exciton transition, significantly reducing the
biexciton’s lifetime. This is consistent with the previously introduced conditions. However,
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the concurrence is maximized when the cavity is around the exciton-to-ground transition,
where it perfectly heralds the respective photons, thus increasing the concurrence. In
this configuration, the indistinguishabilities are minimized. Consequently, the former
configuration, where the cavity is placed around the biexciton-to-exciton transition, is
the only viable one for applications in quantum information technologies. Furthermore, a
cavity with low effective coupling, where ^/6 � 1, appears to be desirable.

0.6

0.8

1.0

0.6

0.8

1.0

IB→X

IX→G

C

�B �TP �X

0.6

0.8

1.0

�B �TP �X

C
a
vi
ty

E
m
is
si
o
n
R
a
te

^
/6

Cavity Energy �c [meV]

Figure 6.8: Slices of the quantum properties of the non-optimized emitter system
for a high-Q cavity with ^ = 6 in panels (a,d), for a low-Q cavity with ^ = 86 in panels
(b,e) as well as a very low-Q cavity with ^ = 156 in panels (c,f). Each set of panels contrasts
simulations conducted without electron-phonon interaction (left panels) against those with
phonons, utilizing the polaron master equation at ) = 4.2K (right panels). The hatched
area represents the indistinguishability (blue) or concurrence (green) achievable using a
biexciton system without Purcell enhancement.

Moreover, Fig. 6.8 displays three distinct slices of Fig. 6.7, specifically at ^ ∈ {6, 86, 156}
in panels (a-c), respectively. Simulations including electron-phonon coupling at ) = 4.2K

using the polaron master equation with otherwise the same parameters are shown in
panels panels (d-f). It is important to note that no pure dephasing through the Lindblad
rates is included in these results; all dephasing is the direct result from electron-phonon
interactions through the polaron master equation.
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In these simulations, it becomes even more evident that a cavity with high loss rates, and
thus a very broad cavity mode, is favored for maximizing the quantum properties of the
photons. The reference values, highlighted by the hatched areas in Fig. 6.8, reflect the values
for an isolated biexciton with Wrad = 2.5µeV, as previously introduced in Fig. 5.6.

The qualitative behavior of the indistinguishabilities, when including electron-phonon
coupling, is similar to the lossless case. Here, phonons can contribute constructively, further
increasing the achievable indistinguishability from the biexciton-to-exciton photon. The
sharp creases in the figure result from insufÏcient resolution on the x-axis. Despite this,
the indistinguishability when using the circular Bragg reflector still greatly surpasses the
reference value.

However, the concurrence is significantly reduced when electron-phonon coupling is en-
abled. This reduction occurs because dephasing, while not as detrimental to the single
photon indistinguishability, is very destructive for the two photon entanglement. Never-
theless, the concurrence still surpasses its reference value, especially for low-Q cavities
and thus low effective couplings.

Interim Summary

The circular Bragg reflector structure introduced in this chapter offers high raw
light-matter coupling with ℏ6 on the order of several hundred µeV, which is ideal for
decreasing the lifetime of the biexciton. Low-Q values are preferred, where cavity
losses are high. The emitted photons from this structure exhibit high indistinguisha-
bility, significantly surpassing the reference value of Inat

X→G ≈ 0.83 for free-space
emission with no Purcell enhancement. Additionally, the two-photon concurrence
C, and consequently the entanglement, is markedly increased for a Purcell enhanced
emission using the circular Bragg reflector.

6.2.1 Finding Optimal Purcell Enhancements through Temperature
Optimization

This preliminary analysis reveals a strong dependency on phonons. In this section, electron-
phonon coupling is actively used as an optimization parameter. For a low-Q cavity, setting
the target cavity energy to exactly the biexciton-to-exciton transition simplifies the investi-
gation, while keeping in mind that slight further increases in indistinguishability are still
possible.
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A first approach involves a gradual activation of the cavity by incrementally increasing
either the Purcell enhancement or the raw cavity coupling 6. In the scenario focusing on
the Purcell enhancement, the cavity coupling is set to a high value with ℏ6 = 200µeV.
Conversely, in the scenario emphasizing raw cavity coupling, the rate of cavity losses is
fixed at ℏ^ = 3meV. These results are illustrated in Fig. 6.9. Low Purcell enhancements, with
F% ≈ 20, appear to be optimal, effectively balancing the quantum properties of the system.
This is indicated by the gray line, which combines all three quantum properties using
multiplication and appears to maximize around low Purcell enhancements. These results
are congruent when including electron-phonon coupling at) = 4.2K. The sharp transitions
in the phonon results arise from the fact that at lower Purcell enhancements, electron-
phonon interactions contribute constructively, but as the Purcell enhancement increases,
the interaction becomes increasingly destructive through the increased dephasing.
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Figure 6.9:Quantum properties for a gradually enabled cavity contrasting tuning
the cavity via the Purcell enhancement in panel (a) and via the raw cavity coupling in
panel (b). For all simulations, Wrad = 2.5µeV. Simulations with electron-phonon coupling
(dashed lines) are conducted at a temperature of) = 4.2K. The hatched areas represent the
reference values for an isolated biexciton with no cavity, in a lossless scenario. Reproduced
and enhanced from Bauch et al. [174].

In Fig. 6.10, the cavity coupling is varied on the y-axis and the Purcell enhancement on
the x-axis. Because the rate of radiative decay is fixed to Wrad = 2.5µeV, this effectively
varies the cavity losses in conjunction with the coupling value on the x-axis. Initially, in the
phonon-free case, high values are observed throughout all investigated ranges, supporting
that a low-Q cavity around the biexciton-to-exciton transition is sufÏcient to significantly
enhance the photon properties.

Notably, the indistinguishability of the biexciton-to-exciton photon is maximized for smaller
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Figure 6.10: Quantum properties with active electron-phonon coupling contrasting
approaches using the regular von-Neumann equation with no electron-phonon interactions
in panels (a-c) and the polaron master equation in panels (d-f). The latter simulations
are conducted at a temperature of ) = 4.2K. Across these analyses, the achievable cavity
parameters identified by the Maxwell optimizer are indicated by colored dots, highlighting
that such high raw coupling values can be implemented in a real system. The orange and
blue dots correspond to simulations depicted in Fig. 6.16, while the gray dot corresponds to
Maxwell simulations guided to maximize the Purcell enhancement while remaining within
the boundaries indicated by the simulations of the quantum dot system, corresponding the
the spectrum in Fig. 6.5, panel (a). Reproduced and enhanced from Bauch et al. [174].

raw coupling values, while the concurrence is maximized for larger couplings. This is
because larger coupling values induce Rabi oscillations, diminishing the indistinguishability
due to the re-excitation of the system. For the concurrence, however, this has the opposite
effect. When including electron-phonon coupling at ) = 4.2K, a sharp resonance in the
biexciton-to-exciton indistinguishability is observed. The concurrence also shows a similar
resonance, unfortunately at different parameters. This further supports the limitation
that not all properties can be efÏciently maximized simultaneously. Since increasing the
indistinguishability is most important for applications in quantum information processing,
choosing a parameter set at which the indistinguishabilities are maximized is key.
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Figure 6.11: Quantum properties at different temperatures. (a-d) Indistinguishability
of the biexciton photon at four temperatures, with all calculations performed using the
polaron master equation. The maximum indistinguishability at each temperature is fitted
usingIÔB,8

(F% ) = UF%+V . (e,f)Dependencies of U () ) and V () ) derived from these fits (solid
lines). Additionally, panel (e) includes the fitting parameter U ′() ) for an alternative linear
function 5 ′, where V ′ = 0 for all temperatures. Additionally, fits using all three properties
are compared (dashed lines). The values for U and V can then be used by the Maxwell
optimizer to ensure the resulting cavity lies on the optimal line for a given temperature.
Reproduced and enhanced from Bauch et al. [174].
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It remains crucial to examine how changes in temperature affect the dynamics of this
behavior. Furthermore, Fig. 6.11 shows the same simulations as Fig. 6.10 for different
temperatures in panels (a-d). These panels show the indistinguishability of the biexciton-
to-exciton photon only, as the indistinguishability of the exciton-to-ground photon is
inherently high, and the concurrence is taken as is, accepting that it may be slightly lower
than optimal.
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Figure 6.12:Quantum properties for dif-
ferent fine structure splittings for the
phonon free case (solid lines) and for a so-
lution using the polaron master equation at
) = 4.2K (dotted lines). The indistinguishabil-
ities of the exciton photon using the operator
ÔX,8 (orange) as well as the biexciton photon
using ÔB,8 (green) remain constant, while the
concurrence (blue) tends to drop and plateau,
similar to Fig. 5.5. The red line indicates the
fine structure splitting used for the main re-
sults. Reproduced from Bauch et al. [174].

A shift of the resonance is observed with ris-
ing temperatures; the optimal cavity param-
eters drift to slightly lower raw couplings,
but higher Purcell enhancement, indicat-
ing higher Q cavities. The white dashed
lines indicate a linear fit through the max-
imum of the indistinguishability. The fit
uses IÔB,8

(F% ) = UF% + V , where U is the
slope and V is the offset. Notably, only the
single photon indistinguishability originat-
ing from the Purcell enhanced biexciton-to-
exciton transition is used for the optimiza-
tion, since the indistinguishability from the
exciton-to-ground transition remains high
throughout the entire parameter range in-
vestigated.

Panels (e,f) display the temperature depen-
dent parameters U () ) and V () ) (blue lines).
Notably, panel (e) also shows a fit when
using V () ) = 0. Furthermore, when us-
ing all three properties instead of the sin-
gle indistinguishability, similar behavior
arises (dashed lines), although slightly dif-
ferent predictive capabilities of these curves

emerge. This is because including the concurrence in the fit results in different optimal
parameters for temperatures between 5 K and 10 K.

The concurrence of the biexciton photons is highly susceptible to the fine structure splitting
energy, as previously introduced in Section 4.2.2. Moreover, Fig. 6.12 presents a scan of
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the fine structure splitting energy for a set of cavity parameters that yield high values
for all properties. Here, ℏ6 = 200µeV and ℏ^ = 3meV. The Purcell enhancement for this
configuration is F% ≈ 10.5. By comparison with Fig. 6.10, this results in high values for all
properties in scenarios with and without electron-phonon coupling at low temperatures.

In Fig. 6.12, photons exhibit high indistinguishability of both photons as well as high values
for their concurrence simultaneously, whereas for the previously introduced reference
values in Fig. 5.5, the photons are either indistinguishable or entangled, but never both.
The red line indicates the fine structure splitting used in the results of this chapter. Notably,
further increasing the concurrence is possible by reducing the fine structure splitting,
similar to the isolated biexciton case introduced earlier. However, in this scenario, active
electron-phonon coupling does not reduce the concurrence as significantly for |�fsp | � 0,
while substantial reductions are observed for �fsp ≈ 0.

These findings also support that the previous results are close to the absolute maximum
achievable with this configuration.

6.2.2 Optimal Case with Excitation of the States

This section synthesizes the insights from Chapter 5 and applies the excitation schemes
to the cavity configuration that yields the best possible photon properties. Specifically,
resonant excitation, QCSS excitation, and SUPER excitation are applied to the optimal
parameter set from Fig. 6.10 at ) = 4.2K.

For the resonant excitation, a A0 = 6.75c pulse is used to excite the biexciton state. This
configuration offers near unity excitation fidelity for the isolated biexciton without a cavity.
For the QCSS excitation, the electronic system and the cavity are detuned such that no
significant overlap between the cavity mode and the electronic states occurs initially. Due
to the broad cavity mode, the initial detuning is set to a large 10 · �bind. The duration of the
QCSS is set to 200 ps, resulting in shift speed of 50µeV/ps. The excitation pulse is then the
same as for the resonant excitation.

For the SUPER excitation, a pulse that optimally excites the biexciton is determined using
a simple gradient descent optimizer. As Fig. 5.15 demonstrates for the exciton case, there
are numerous areas of resonance, which are also strongly dependent on the energy config-
uration of the system as well as the pulse lengths. The configurations in Fig. 6.13 result
in a swing-up of the biexciton population, achieving an excitation fidelity close to unity
for a system without a cavity. Notably, these parameters are established for a phonon-free
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and isolated system with no cavity present. Hence, excitation fidelities including these
features are slightly lowered. When exciting an exciton using SUPER, a virtual phonon-
free excitation is possible due to the strong pulse amplitudes. In the case of the biexciton
however, this is not true anymore, since the overlap of the electronic resonances results
in population of the individual excitons. This significantly reduces the excitation fidelity.
Nevertheless, SUPER is still used for comparison purposes.

g [ps] �1 [meV] �2 [meV] �1 [meV] �2 [meV]
1 16.235 13.025 793.592 797.190

2 8.124 4.125 797.400 780.822

3 4.392 2.866 790.185 796.040

4 3.701 2.743 790.044 795.710

5 3.063 2.709 790.208 795.628

6 2.409 2.538 797.400 769.963

7 2.207 1.679 797.400 795.650

8 2.334 2.552 795.524 790.537

9 1.995 1.901 797.400 795.348

10 1.835 1.395 797.289 796.894
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Figure 6.13: SUPER parameters to excite an isolated biexciton in a lossless case
with no electron-phonon coupling. The configuration for each fixed pulse width has four
degrees of freedom. A global optimizer is employed to find suitable pulse amplitudes and
frequencies in a predefined range below the biexcitons two photon resonance. The pulse
amplitude is unbound, while the pulse energy is bound by [0.77, 0.7974]meV to ensure both
pulses are energetically far below the electronic transitions. The parameters are visualized
in the graphs on the right.

Different pulse lengths for the respective excitation schemes are displayed in Fig. 6.16.
Two scenarios from Fig. 6.10 are investigated, marked with colored dots. Specifically, a
scenario with lower raw coupling where ℏ6 = 200µeV and ℏ^ = 3meV, resulting in a
Purcell enhancement of the biexciton-to-exciton transition of F% ≈ 10.5, is compared to a
scenario with very strong raw coupling where ℏ6 = 363µeV and ℏ^ = 3189µeV, resulting in
a Purcell enhancement of F% ≈ 33. The latter configuration remains achievable in realistic
implementations, as supported by the Maxwell simulations of the cavity.

For a pulse directly exciting the biexciton from the ground state, as investigated in [174],
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Width g [ps] �1 [meV] Pulse Area A1 [c]
1 1.367 3.314

2 0.907 4.400

3 0.732 5.325

4 0.627 6.078

5 0.557 6.750

6 0.506 7.356

7 0.467 7.919

8 0.435 8.444

9 0.409 8.938

10 0.388 9.405
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Figure 6.14: QCSS and resonant excitation parameters to excite an isolated biexciton
in a lossless case with no electron-phonon coupling. The pulse areas are relative to the
exciton, which is why the biexciton requires multiple cs of excitation area. The pulse
amplitude is visualized in the graph on the right.

the pulse

|B〉〈G| Ω(C) + H.c. (6.4)

generates biexciton population without intermediate population of the excitons, resulting
in a direct |G〉 → |B〉 transition. This approach is also used in the respective literature [74]
and results in ideal excitation of the biexciton by analytically evaluating the excitation
through the exciton cascade. Here, calculating the pulse areas directly translates into the
respective excitation. With this excitation method, both cavity configurations investigated
yield high values for the calculated properties, most notably for short pulses.

When using the excitation through the exciton cascade, where the pulse

|X〉〈G| Ω(C) + |B〉〈X| Ω(C) + H.c. (6.5)

is employed, resulting in a |G〉 → |X〉 → |B〉 transition. Here, the pulse area does not
directly translate into the corresponding excitation, as the pulse respective pulse amplitude
has to be calculated for the cascade instead of a single transition. The resulting pulse ampli-
tudes and the translation into the pulse area are provided in 6.14. A more drastic reduction
of the quantum properties occurs because the broad cavity mode leads to intermediate
exciton population decay, reducing all properties. The latter configuration is optimized to
maximize the indistinguishabilities at) = 4.2K, and values with electron-phonon coupling
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significantly exceed their reference values without electron-phonon coupling, reflecting
the results of the previous sections. In contrast, lower values are observed for the second
scenario due to the stronger raw coupling, which significantly hinders the emission process,
resulting in lower quantum properties. Here, the values fall below the reference values for
emission from an isolated biexciton, visualized in Fig. 6.16 by the hatched areas.
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Figure 6.15:Quantum properties for different temperatures at a finite excitation pulse
length of f = 4 ps using the polaron master equation. Panel (a) demonstrates the QCSS
Excitation and constrasts the resonant two photon excitation in panel (b) as well as the
SUPER excitation in panel (c). The dotted lines represent the transition from a system with
no electron-phonon coupling to electron-phonon coupling at various temperatures. Both
cases use the respective excitation method. Note, that SUPER is visualized at a different
scale compared to the direct resonant and QCSS excitation. Reproduced and enhanced from
Bauch et al. [174].

The interesting part comes with using different excitation methods. As previously described
in Section 5.4.1, the SUPER scheme results in a near phonon-free excitation for a two-level
system, due to the strong pulses surpassing the spectral density of the phonons. However,
for the biexciton, this drastically changes. Even in the phonon-free case, the broad cavity
mode induces strong mixing of the excitation and decay processes, because the detuning
induced by the already strong pulses is insufÏcient. Furthermore, the strong pulses cause
off-resonant excitation, which translates directly into undesired cavity population. These
processes combined significantly degrade all properties in both scenarios, leading to highly
unpredictable behavior. For SUPER pulses longer than 2 ps, the quantum properties diminish
below their reference values due to the aforementioned processes. In this specific case,
SUPER is not suitable for excitation. Notably, the pulses use excitation paths through the
exciton cascade and not the direct ground-to-biexciton transition, meaning the benchmark
for comparison is the cascaded excitation.

Using the QCSS excitation performs significantly better than SUPER in this case. Here, a very
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fast shift is employed, which shifts all electronic states by 10meV over a duration of only
20 ps. However, the simple resonant and direct excitation still surpasses the QCSS excitation.
This occurs because the emission and decay of the electronic states happen on timescales
similar to the shift of the electronic states, even though the shift is already very fast and
possibly in an unrealistic regime. Nevertheless, the QCSS uses the cascaded excitation,
and the comparison values (panels (c,d)) are greatly surpassed, especially for longer pulses.
Moreover, the quantum properties plateau for longer pulse lengths instead of diminishing
further as in the resonant cascaded excitation. These investigations demonstrate that QCSS
excitation is suitable for the scenarios investigated, strongly outperforming SUPER.

Concluding, the SUPER excitation scheme cannot be utilized to a viable degree in the
investigated scenarios. However, the QCSS excitation method demonstrates potential for
application. Nevertheless, the gain is negligible in most cases due to the necessity for an
extremely fast electronic shift to effectively separate the timescales of the emission and
the shift. Without achieving this separation, no significant improvement is observed. If
the lifetime of the states were longer, QCSS excitation would be highly beneficial, as the
issues with SUPER would persist, though it would perform slightly better under these
conditions.

The excitation using a 4 ps pulse with variable temperatures is illustrated in Fig. 6.15.
Panels (a-c) compare direct resonant excitation, QCSS excitation, and SUPER excitation,
respectively. Notably, increasing the temperature is less detrimental to the concurrence
when using QCSS excitation compared to direct resonant excitation, although the values
are generally lowered. For SUPER excitation, the concurrence exhibits a similar trend, while
the indistinguishabilities are significantly reduced.
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Figure 6.16:Quantumproperties for different excitation pulse lengths for the phonon
free case (solid lines) and for a solution using the polaron master equation at ) = 4.2K

(dashed lines). Panels (a,b) demonstrate the resonant two photon excitation using a direct
|G〉 → |B〉 transition and contrast the cascaded excitation with |G〉 → |X〉 → |B〉 in panel
(c,d). SUPER excitation is displayed in panels (e,f) and QCSS excitation in panels (g,h). A
pulse width of g = 0 represents the reference case, starting the simulation in the biexciton
state. The leftmost panels show results for ℏ6 = 200µeV, ℏ^ = 3meV, marked with an
orange dot in Fig. 6.10. The rightmost panels show results for ℏ6 ≈ 363µeV, ℏ^ ≈ 3189µeV,
marked with a blue dot in Fig. 6.10. The hatched areas represent the respective reference
values for the indistinguishability (orange/green) and concurrence (blue). The dotted lines
mark the transition from staring in the biexciton state to the respective pulsed excitation.
Reproduced and enhanced from Bauch et al. [174].
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6.3 Concluding the Purcell enhanced two photon emission

The previously established biexciton system extended further. The quantum dot is con-
figured to emit at the telecom-C band at 1550 nm. A cavity is employed to enhance the
biexciton-to-exciton transition, aiming to decrease the lifetime of the biexciton. As a result,
the indistinguishabilities of the emitted photons is greatly increased. Investigations reveal,
that also enhancing the exciton decay further increases both the indistinguishability of the
exciton-to-ground photon and the repetition rate of the process. Therefore, a cavity with
broad spectral Purcell enhancement is required.

A physical implementation that fulfills these criteria is the circular Bragg reflector, composed
of circular arrangements of semiconductor mirrors. Maxwell simulations of these structures
ensure their physical implementability, confirming that the cavities used in microscopic
simulations are feasible in experimental implementations. The biexciton state is either fully
populated at the start of the simulations or initialized using various excitation methods,
including the aforementioned QCSS and SUPER methods. When starting in the ideal, fully
excited biexciton state, a low-Q cavity with strong raw coupling significantly increases
the indistinguishabilities of both the biexciton-to-exciton and exciton-to-ground photons,
while maintaining high two-photon concurrence. This setup generates photons that are
individually highly indistinguishable and entangled, overcoming an intrinsic limitation of
the biexciton system.

Electron-phonon coupling is employed to further optimize the system, leveraging construc-
tive phonon enhancement. These scenarios improve and support the results obtained from
a lossless system. When the excitation process is included, the quantum properties remain
high, especially for short pulse lengths. The maintenance of the indistinguishability from
the Purcell enhanced biexciton-to-exciton transition marks the central result of this chapter
and the underlying work [174]. Advanced excitation schemes such as the SUPER excitation
do not provide a substantial advantage over a simple, resonant excitation. Moreover, em-
ploying the QCSS excitation introduced in the previous chapter provides a slight benefit
for specific configurations, most notably when using long pulses and a cascaded excitation.
Because of the spectrally broad cavity mode, excitation using short, yet spectrally narrow
pulses is optimal.
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Resonator setups employing higher raw cavity couplings may produce photons with in-
creased concurrence, albeit with a slight reduction in indistinguishabilities. Future numerical
research aims to optimize the ideal structure that achieves unity values for the desired
properties, including the emission probabilities. Given the numerous degrees of freedom
involved, this is a substantial undertaking, likely to span multiple research papers and close
collaborations with Maxwell simulations.

Interim Summary

A circular Bragg reflector and a quantum dot are used to theoretically investigate
the emission of photons at telecom wavelengths, aiming to circumvent the intrin-
sic limitations on single photon indistinguishability of the biexciton system. The
optimal resonator configuration for generating highly indistinguishable photons
that are also strongly entangled is achieved using a cavity with low Q values, broad
emission resonance, and strong raw light-matter coupling. This setup allows the
optimization of both indistinguishabilities and the concurrence towards unity values.
In realistic implementations with electron-phonon coupling, finite excitation pulses
and non-zero fine structure splittings, the concurrence is slightly reduced and the
indistinguishabilities of both photons remain high, with values of I > 95%. With
rising temperatures, the indistinguishability remains high, whereas the concurrence,
due to its significant dependency on dephasing, diminishes rapidly.
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Time-BinQuantum

Correlations in Deterministic

Photonic Cluster States 7
Up to this point, the electronic system within the quantum dot was specifically focused on
excitons and biexcitons. The introduction of an optical resonator to Purcell enhance one or
more of the electronic transitions has facilitated the rapid emission of high quality photons.
These photons exhibit various characteristics, such as high indistinguishability and strong
entanglement, precisely benchmarking their quantum properties.

This chapter explores an alternative approach utilizing stacked quantum dots, which induces
the mixing of two distinct sets of electronic states [177, 254]. This results in the formation
of spin-hole trions [177, 255, 256] which are interconnected through intrinsically arising
transitions, forming a Λ-type energy configuration [257]. The Λ-system, named for its
resemblance to the Greek letter, can emit photons that are entangled in time rather than
polarization. This system is optically addressable, allowing for the manipulation of states
through optical means. While other methods, such as using magnetic fields, exist for state
manipulation [33, 258], this work focuses on optical manipulation. The underlying quantum
dot composition ensures the deterministic addressability of this structure [259, 260]. The
resulting emission patterns form complex structures of time-entangled photons [181, 182,
259, 261]. These photons are best described by a set of interconnected nodes, forming a
graph.

7.1 Graph States

A graph is a structure comprising nodes, each of which can have various connections
to other nodes. For instance, a parent node may connect to two child nodes, with each
child node potentially having none, one, or two child nodes. This configuration results
in a binary tree graph, a common data structure in computer science. Another example
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Figure 7.1: Different graphs constructed with nodes and connections featuring a
binary tree graph in panel (a), a circular graph in panel (b), and an interconnected hexagonal
graph in panel (c).

involves multiple nodes connected to form loops or having multiple connections. These
examples are illustrated in Fig. 7.1.

Graphs can be characterized by numerous figures of merit, one of which is colorability. A
graph that can be colored with # different colors, such that no adjacent nodes share the
same color, is termed an # -colorable graph.

This work focuses on the generation of photonic cluster states, describable using an # -
colorable graph. In these graphs, each node represents a photonic particle, and each con-
nection signifies its entanglement with neighboring elements. Different connections can
contribute to various aspects of entanglement, resulting in what is known as a graph state
[184, 233, 260]. The experimental implementation of entangled graph states is a significant
area of interest in the literature [235, 262–266]. The photonic particles in this study are
photonic qubits. Each qubit can represent a maximum of two photons, where the presence
of the first photon denotes a logical zero, and the presence of the second photon denotes a
logical one [17]. Although other conventions exist, even with higher number of photons
forming complex qudits [267], this work adopts this specific representation.

Among the various graph states explored in the literature, Greenberger-Horne-Zeilinger
(GHZ) states have received significant attention. In this state, all particles are entangled
with a central particle, as illustrated in Fig. 7.2, panel (a) [268, 269]. Another state of inter-
est is the one-dimensional linear cluster state, where all nodes are connected to at most
two neighboring nodes. This forms a two-colorable, linear graph of entangled photonic
qubits, as depicted in Fig. 7.2, panel (b). These one-dimensional linear cluster states serve
as the foundation for the investigations presented in the following chapter and are compre-
hensively analyzed in Bauch et al., Time-bin entanglement in the deterministic generation
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of linear photonic cluster states, [187], with related data accessible via the corresponding
Zenodo archive [270].

(a) (b)

Figure 7.2: Different primitive cluster states including a Greenberger–Horne–Zeilinger
(GHZ) state in panel (a) and a simple linear cluster state in panel (b). Both states belong to a
subset of two-colorable graph states and can be further processed to generate higher-order
graph or cluster states [271].

Graph states have numerous applications in quantum information processing [272]. De-
pending on the specific protocol, high-dimensional photonic graph states may be required
to achieve the desired functionality [273]. For example, in quantum computing, graph
states are used as a resource for one-way quantum computation, where the computation
proceeds through a series of measurements on an entangled resource state. In quantum
communication, graph states enable the creation of complex entangled networks that
facilitate secure information transfer and distributed quantum protocols. The versatility
and robustness of graph states make them indispensable for advancing various quantum
technologies, illustrating the necessity for generating high-dimensional photonic graph
states in practical quantum information systems [256, 273].

7.2 Time Bin Entanglement

A graph state, or cluster state, necessitates at least two entangled particles [184, 272,
274, 275], with polarization entanglement being most commonly utilized [76]. This has
been previously demonstrated in the earlier chapters, although the resulting emission
was not explicitly referred to as a graph state, despite fitting the technical definition.
However, as the number of particles increases, maintaining high polarization entanglement
becomes increasingly challenging, particularly when photons are transmitted through
optical fibers. Losses quickly degrade polarization entanglement, significantly limiting
the size of the graph state that can be achieved. This limitation is addressed by using
time entanglement [178, 275, 276]. With photons are entangled in time, the degradation of
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Figure 7.3: Schematic emission of perfectly distinguishable and time bin entangled
single photons from a repeatedly triggered single photon emitter. The excitation pulses,
depicted in blue, activate the source. These pulses initiate photon emissions, depicted in
orange, or induce changes in state coherences. The result is the emission of photons with
high degrees of temporal entanglement. Reproduced from Bauch et al. [187].

polarization coherence is avoided, resulting in longer entanglement lifetimes. Consequently,
temporal entanglement is more suitable for creating graph states with a larger number of
particles.

To generate photonic graph states, a deterministic photon emitter is essential. In this work,
a stacked quantum dot structure is used as the reference physical system for the numeri-
cal investigations. The configuration merges the electronic properties of two individual
quantum dots, forming a spin-hole trion. The ground states of this trion can be excited,
similar to an exciton, and emit a photon through radiative decay. Due to slight intentional
positioning mismatches between the quantum dots, the wave functions of the ground states
mix, resulting in a combined emitter with a Λ-shaped energy structure, allowing either
ground state to be excited for photon emission, while the ground state populations can
be rotated through an intrinsically emerging transition state. Other potential systems for
this emitter include biexcitons with dark exciton photon storage, color centers [257], and
vacancies. Few-photon graph states have been experimentally demonstrated [272].

The emitter, schematically illustrated in Fig. 7.3, is repeatedly triggered using sech-shaped
pulses, chosen for their analytical tractability based on prior research. While Gaussian
pulses could be used without significantly altering the results, sech pulses are employed
here to maintain consistency with earlier investigations.

The emitter generates photons, and by carefully controlling the phase at which the photons
are emitted, strong entanglement between the individual timed emissions is achieved.
The time slots at which the distinct temporal separation between the photons occurs are
referred to as time bins [179, 183, 237]. In this work, two photon emission cycles constitute
a photonic qubit. Correlations between these qubits are then evaluated numerically. The
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Figure 7.4: Simplified illustration of a possible measurement process for time bin
entangled photons. Photons produced by an emitter are directed to a beam splitter, which
divides the incoming photon stream into multiple side branches. Each branch introduces
a time delay matching integer multiples of the bin length )bin. Subsequently, photons are
recombined at a final beam splitter and channeled towards photodetectors. The correlation
measurements performed at this stage provide insights into the photon correlations.

time bins are exemplary given as

C0 < C1 < C1 +)bin < 2)bin < C2 < C2 +)bin < 4)bin < C3 < C3 +)bin < 6)bin < . . . , (7.1)

with C8 denoting the beginning of the 8th time bin and )bin defining the length of the
individual time bins.

Since the emission of individual photons originates from a simplified exciton-like two-level
system, as visualized in Fig. 7.5, the indistinguishabilities and purities of the emitted photons
are intrinsically high. This has also been confirmed by other studies [176, 277]. Similarly,
the emission probabilities are close to their maximum values. The emission of an individual
photon takes approximately 4 ns, as no cavity is used to enhance the emission, with the
radiative decay Wrad = 1.3µeV being the sole cause of the emission.

In an experimental setup, time bin correlations can be measured using a standard beam
splitter configuration, similar to that employed in a Hong-Ou-Mandel (HOM) interference
measurement. Instead of directly measuring photon correlations, multiple branches are
implemented to induce a time delay that exactly matches the length of a time bin. This
concept is illustrated in a simplified manner in Fig. 7.4. For the case of a linear graph state,
two detectors can then measure coincidence counts for the photons, providing information
on the time bin correlations [179]. For more complex graph states, additional detectors and
more sophisticated delay setups may be required to accurately measure the correlations.

Projecting this setup onto photonic qubits rather than single photons allows for the measure-
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ment of qubit correlations. This approach is explored numerically in Section 7.6, where the
stabilizers of the graph states are evaluated. By assessing the temporal entanglement of the
photonic qubits, the effectiveness of the entanglement generation process is determined.

In practical terms, the experimental setup involves splitting the photonic stream into
different paths, where each path introduces a controlled time delay. These delays are
engineered to match the intervals between the time bins. Therefore, the temporal separation
of the photons is maintained, and the entanglement properties can be measured accurately.
Coincidence counting between the detectors provides a direct measure of the temporal
correlations, thereby verifying the entanglement of the photonic qubits.

For more intricate graph states, where the complexity of the state increases with the number
of nodes and connections, a more elaborate arrangement of beam splitters and detectors is
necessary. Each detector in such a setup would correspond to different nodes of the graph,
and the timing of the detections would reflect the entanglement properties of the entire
state.

By using this method, one can effectively measure the entanglement properties of photonic
qubits, thus enabling the practical implementation of photonic graph states for quantum
information processing applications. This detailed approach ensures that the experimental
setup can accurately capture the temporal entanglement, providing a robust foundation for
further experimental and theoretical investigations into complex photonic states.

7.3 Extended Λ System

In the previous section, the emitter was introduced, showcasing aΛ-shaped energy structure
through the mixing of two individual spin-hole trions. The system is illustrated in Fig. 7.5.
The quantum dots, figuratively represented by

��QD1

〉
and

��QD2

〉
, have individual ground

states |G1〉 and |G2〉. These states can be excited through their respective cycling transitions
using Gaussian or sech-shaped pulses. In this study, only one of the excited states is utilized
for emission, hence only one cycling transition is highlighted. Nevertheless, both excited
states, |X1〉 and |-2〉, undergo radiative decay with a rate WCyc. This decay mechanism,
introduced via a Lindblad rate, is consistent with the methodology used in the previous
chapter.

The ground states are separated by a splitting energy ΔGS and are coupled to a common
set of transition states. Within this framework, there are two transition states: a target
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transition and a loss transition. Population caught in the loss transition state is lost in
subsequent cycles when no relaxation path of the transition into the ground states is
included through e.g. radiative loss. The occupation of the ground states can be represented
on a Bloch sphere. Applying a sech-shaped pulse to the ground-to-transition-state transition
results in rotations within this Bloch sphere, allowing for both the population of the ground
states and their phase to be manipulated. This mechanism ultimately enables the system to
emit time-entangled photons.

Ground State 1

Ground State 2

Excited State 1 Excited State 2

Transi�on State

Loss State

-R
o
ta
�o

n

x
-y

 R
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Figure 7.5: Λ system energy structurewith two distinct ground states |G1〉 and |G2〉. The
ground states are coupled through a target transition and loss transition state and separated
by the splitting energy Δ�( . The transitions are accessible through the optical pulses Ω8

with 8 ∈ {1, 2}. Each ground state can be individually excited into their corresponding
excited states |X8〉 through the pulse-driven cycling transition Ω

8 . The excited state may
then radiatively decay with rateWCyc. Inset is a Bloch representation of the systems rotations.
Reproduced from Bauch et al. [187].

The two individual ground states of the underlying electronic system of the quantum
dot form a coherent superposition state due to their intrinsic coupling, effectively creat-
ing a two-level system for each transition. The use of sech-shaped pulses is particularly
advantageous due to their analytical tractability and prior application in related studies.
Although Gaussian pulses can be employed, sech-shaped pulses are chosen here to maintain
consistency with previous research and to exploit their analytical benefits.

The radiative decay from the excited states to the ground states occurs at the rate WCyc using
Ô =

√
WCyc |G〉〈X8 | and the Lindblad contribution defined in Eq. (2.11). This decay process

is critical for the emission of photons and is incorporated into the model using Lindblad
operators. The separation between the ground states, ΔGS, provides the necessary energy
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difference to facilitate the transitions.

The Hamiltonian governing the dynamics of this system is given by

Equation 7.2

H0 =

∑
8∈{1,2}

�8 |X8〉〈X8 | +
∑

B∈{T,U}
�B |B〉〈B |

H1 =

∑
8∈{1,2}

[
|G8〉〈X8 | ΩX8 (C) + (|G8〉〈T| + |G8〉〈U|) Ω8 (C) + H.c.

]
,

where |G8〉 represents the ground states, and |X8〉 denotes the respective excited states, with
Ω

X8 (C) as the sech-shaped pulse driving the excitation of these transitions. The state |X1〉
is specifically utilized for photon emission, thus only Ω

X1 (C) is considered for this purpose.
Additionally, the Hamiltonian includes transitions from the ground states to a target state
|T〉 and an unwanted state |U〉, both driven by the pulseΩ8 (C). The transition pulse facilitates
population and coherence transitions between the respective ground states.

During the emission process, the system undergoes a series of coherent rotations of the
ground state populations, indicated using the Bloch sphere representation in Fig. 7.5.
By precisely controlling the phase and population of the ground states through tailored
pulse sequences, time-entangled photons are generated. The entanglement arises from the
coherent superposition of the ground states, with each transition state contributing to the
entanglement properties.

This Λ-shaped emitter, with its ability to emit time-entangled photons, serves as a robust
platform for generating complex photonic states. The flexibility in pulse shaping and the
intrinsic properties of the quantum dots ensure high-quality photon emission, making it
suitable for advanced quantum information processing applications. The detailed control
over the emission process, facilitated by the sech-shaped pulses, allows for precise manipu-
lation of the quantum states, thereby enabling the generation of highly entangled photonic
states with desirable properties.
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7.4 Linear Cluster State Emission Protocol

The graph state investigated in this chapter is a one-dimensional linear cluster state. This
state can be generated using the following protocol [254]:

• Start or prepare the system in |Ψ〉 = 1√
2
( |G1〉 + |�2〉)

• Step 1: Drive ΩX1 using a c-pulse, followed by emission of first photon

• Step 2: Perform 'o (c) through the Λ-System

• Step 3: Drive ΩX1 using a c-pulse, followed by emission of second photon

• Step 4: Perform 'o (c/2) through the Λ-System

• Repeat steps 1-4 # times

• Perform a final /̂ projection to decouple the emitter.

In this work, only steps 1-4 are investigated. Note, that even though a stacked quantum
dot is used as the emitter in this chapter, the protocol to generate the specific cluster state
is not limited to this system, so long as the spin rotations can be performed. An arbitrary
rotation within the Bloch sphere of the two ground states is denoted by Ro (Θ), where o
represents the angle in the x-y plane and Θ denotes the angle in the z direction. Compare
Fig. 7.5 for a visual representation within the Bloch sphere. In this work, the x-y angle
is part of the degrees of freedom and can be tuned by adjusting the phases of the pulses.
Specifically, by adjusting the individual pulse phases q1 and q2 of the individual pulses Ω1

and Ω
2, respectively, the angle of rotation in the x-y plane can be adjusted. This is explored

in detail in Section 7.6.1. Furthermore, by adjusting the detuning Δ8 of the individual
pulses Ω8 , the angle in the z-direction is tuned. Facilitating the z rotations is crucial for the
implementation of the protocol. This aspect is investigated in Section 7.5.

All simulations depicted in this chapter begin with the initial state |Ψ〉 = 1√
2
( |G1〉 + |G2〉),

which is commonly achievable using a c/2 rotation through the Λ-system [254]. Following
this initialization, steps 1 to 4 of the emission protocol are iteratively executed as many
times as necessary. An example with three repetitions of the protocol is illustrated in Fig. 7.6.
The transition pulses do not alter the state population, hence they are referred to as being
transitionless. Notably, the electronic coherences, represented by the green and orange lines,
approach zero after the application of the first cycling transition pulse. Although this may
appear unconventional initially, the coherences are transferred to the emitted photonswhere
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they reappear in the photon correlations. These correlations are subsequently analyzed
using the time shifted correlation functions described in Section 7.6. The transfer of the
coherences is essential for evaluating the temporal entanglement properties of the photonic
emissions.

�Bit 1 �Bit 2 �Bit 3 ……
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Figure 7.6: Time dynamics of the linear cluster state emission protocol calculated in
a phonon free environment for hyperbolic-sec shaped transition and excitation pulses. The
emission protocol is simulated until C = 6) . The individual photonic qubits are composed
of up to two individual time bin photons. Reproduced from Bauch et al. [187].

7.5 Finding Optimal Rotations

Before achieving the results shown in Fig. 7.6, it is necessary to determine suitable pulse
parameters such that the sech pulse accomplishes the desired rotations through the specified
axis within the Bloch sphere representation. The total pulse area applied to both transitions
is set to A0 =

√
A2

1 + A2
2 = 1c , implying that the amplitudes of the individual pulses are

A1,2 = 1/
√
2c due to the square-root scaling of the superposition state. The sign of all

pulses is set to +1, indicating that the sign of the pulse envelopes sign[Ω8
0(C = 0)] is equal

for all 8 . This approach differs from some of the literature, where one of the pulses may be
scaled by −1, resulting in an intrinsic phase shift of c for the respective pulse. For the latter
scenario, the acquired state phase of the ground state superpositions |1〉 = 1√

2
( |G1〉 + |G2〉)

and |2〉 = 1√
2
( |G1〉 − |G2〉) after the application of a sech-pulse are given by [177]

Θ1 = 2arctan
(f
X

)
and Θ2 = 2arctan

( f

X − n
)
. (7.3)
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Here, f = 1/g is the bandwidth of the pulse, where g is the pulse width. In the following
investigation, for the rotation pulses, g = 16 ps, resulting in a pulse bandwidth of f ≈ 41µeV.
The separation of the target and unwanted transition states is given by n = 0.5meV.

The total angle of rotation is then given by

Θ = Θ1 − Θ2 = 2arctan
( −fn
(X − n)X + f2

)
, (7.4)

from which the analytical expression for the detuning required to achieve a given rotation
Θ is derived as [177, 254]

X =
1

2

(
n ±

√
n2 + 4nfcot (Θ/2) − 4f2

)
. (7.5)

Here, the detuning X of the pulses, as indicated in Fig. 7.5, adjusts the resulting angle in
the z-direction of the Bloch sphere, leading to a rotation by an angle Θ. Both pulses are
adjusted equally by the detuning

According to Eq. (7.5), achieving a rotation of 'o (c) necessitates a detuning of X = 3.5µeV.
Similarly, for a rotation of 'o (c/2), a detuning of X = −35µeV is required. However, when
comparing these analytical predictions with the numerical results, which assume equal
couplings of the pulses to the transitions with consistent signs for all pulses [257], three
resonances are observed, as shown in Fig. 7.7. Numerically, the 'o (c) rotation is achieved at
X = 1µeV, and the 'o (c/2) rotation at X = −36.4µeV. These slight discrepancies between
the analytical and numerical results arise because the analytical formula is derived from
a more simplified system that does not account for factors such as the Stark shifts of the
pulses, the mixing of the excitation processes, and the equal couplings with the same signs
used in the numerical approach. Additionally, a third resonance at X = 45.7µeV results in a
'o (c/2) rotation.

When losses of the transition states are included as additional radiative decay, significant
reductions in rotation fidelities are observed, as indicated by comparing the solid orange
lines with the dotted lines. Notably, the fidelity of the 'o (c) rotation is reduced more
significantly than that of the 'o (c/2) rotation. Spin dephasing of the ground states is
included via an additional Lindblad rate with Ô =

√
Wdep ( |B〉〈B | − |G8〉〈G8 |) for 8 ∈ {1, 2}, B ∈

{* ,) }. The spin dephasing results in slight reductions in rotation fidelity and a general
decay of ground state coherences. Spin dephasing is predicted to be more detrimental to the
resulting quantum properties, as it primarily causes the decay of state coherences rather
than affecting state occupations.
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Figure 7.7: Optimal Bloch rotations required for the emission protocol of a 1D linear
cluster state. The protocol requires Θ = c and Θ = c/2 rotations, mediated by varying
the transition pulse detunings. For the former, only one viable configuration exists in the
investigated range of pulse detunings, while for the latter, two possible settings are available
(compare panels (a-c)). In panel (d), a completely lossless system (solid lines) is compared to
a system with greatly exaggerated radiative decay of the transition states (dotted lines), spin
dephasing of the ground states (dashed lines) and with active electron phonon coupling at a
temperature of ) = 4.2K using the polaron master equation (dash-dotted lines). In the case
with phonons, the settings required to achieve the desired rotations change significantly.
The inset in panel (e) depicts the slight shift in resonance for a c rotation due to the optical
Stark shift of the system. Reproduced and enhanced from Bauch et al. [187].

Finally, incorporating electron-phonon coupling using the polaron master equation at a
temperature of ) = 4.2K reveals that rotation fidelities for 'o (c) rotations are slightly
reduced, and the detunings for 'o (c/2) rotations exhibit a redshift of ≈ 5µeV. Illustrative
examples of these rotations for a lossless system are presented in Fig. 7.7 in panels (a-c).
From this analysis, it can be concluded that using X = 1µeV for a 'o (c) rotation is optimal.
Using X = 45.7µeV is favorable for the 'o (c/2) rotation, as the pulses are further away
from the unwanted transition, resulting in less population loss during the transition phases.
When incorporating electron-phonon coupling, this value must be adjusted depending on
the temperature.
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Simulations for lossless transition states and no electron-phonon coupling are depicted
in Fig. 7.6 using the pulse detunings derived in this section. With these parameters, the
rotation fidelities are close to unity, surpassing 99.99%. Following the emission protocol
in Section 7.4, the system is initialized in a superposition of both ground states at the
beginning of the simulation. Then, a c pulse is applied to the cycling transition (red area),
followed by the emission of a photon (blue area). An 'o (c) rotation is then applied to the
system (green area), resulting in a transitionless rotation that is transferred onto the photon
coherences. This emission process repeats until a final 'o (c/2) rotation is applied to the
system. From this point, the next emission process begins. This double cycling of the system
results in the emission of two time bins, forming the photonic qubit. The correlations of
these qubits will be evaluated in the following section.

Interim Summary

The one-dimensional linear cluster state, a specific type of linear graph state, can be
generated using a stacked quantum dot setup. This configuration inherently offers an
extendedΛ-system in its energy structure due to the intrinsic mixing of two spin-hole
trions. The ground states are excited with simple pulses, leading to the sequential
emission of photons. The Λ-system can be further manipulated using hyperbolic
sech-shaped pulses, which facilitate rotations within the electronic coherences. These
coherences are then transferred to the emitted photons, resulting in photon trains
separated by a distinct time bin length, )bin. Two of these photons form a photonic
qubit, and multiple photonic qubits enable the formation of the linear cluster state.

7.6 QuBit Correlations

Now that the emitter has been introduced and the protocol for generating a one-dimensional
linear cluster/graph state has been defined, viable parameters for achieving the required
rotations have been found and the scheme has been implemented and evaluated over time,
the quantum properties of the emitted photons can be assessed. As previously mentioned,
the rate of radiative decay is set to WCyc = 1.2µeV, resulting in a complete decay of the
respective excited state in about 3.5 ns. This duration is extended to 4 ns to include a buffer
for executing the required rotations.

In essence, the objective is to calculate N-photon correlations, resulting in the respective N-
photon matrices. However, this task becomes numerically intensive for # > 2, undesirable
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for # > 3, and numerically almost uniterable for # > 4 on standard computing hardware.
Therefore, this work employs the stabilizer formalism, introduced in Section 4.3.2. The
expectation values of the stabilizers provide insights into how well the current emission
cycles follow the initial emission protocol. This is because the cluster state can be repre-
sented by a superposition of multiple stabilizer expressions. Thus, the stabilizers form a
basis for the representation of the cluster state. Evaluating the proximity of the actual state
at any point during the numerical evaluation to the ideal state provides insights into the
fidelity of the process.

For a one-dimensional linear cluster state, the stabilizers are particularly useful. Each node
in the cluster state corresponds to a qubit, and each qubit is entangled with its neighboring
qubits. The stabilizers for such a state typically include operators that act on adjacent
qubits, ensuring that the entanglement structure is maintained throughout the emission
process. By measuring the stabilizer operators, a measure for how closely the generated
state adheres to the ideal entanglement pattern of a linear cluster state is determined.

In this work, second and third-order correlation functions Eqs. (4.25) and (4.26) are used
to calculate elements of the respective 2- or 3-photon matrices. These matrices are then
further utilized in the evaluation of the stabilizer expectation values from Eqs. (4.31)
and (4.32). The use of these stabilizers allows for an efÏcient and accurate assessment
of the quantum properties of the emitted photons, providing a clear indication of the
fidelity and entanglement quality of the generated one-dimensional linear cluster state.
With correlation functions up to the third order, the entanglement of much larger trains of
photonic qubits can be reliably evaluated. When the expectation values of the stabilizers are
high, the temporal entanglement will also be high. This approach ensures that the generated
photonic states are suitable for use in quantum information processing applications, where
high fidelity and entanglement are crucial.

7.6.1 Phase Dependencies

This section begins by evaluating the first two stabilizers. According to the protocol for
generating the cluster state, the first stabilizer expectation value is

〈
-̂ /̂

〉
. Calculating the

expectation value for this stabilizer using the two-photon matrix d2PM provides insights
into the numerical accuracy of the first -̂ rotation and the subsequent /̂ rotation. This
expectation value is calculated exclusively for C0 = 0 and requires four time bins — or two
photonic qubits — for evaluation.
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Next, the second stabilizer expectation value,
〈
/̂-̂ /̂

〉
, is investigated. Calculating this

expectation value necessitates the three-photon density matrix d3PM. Both of these density
matrices are evaluated using second- and third-order time-shifted correlation functions,
respectively, which were previously introduced in Section 4.3.2. The three-photon density
matrix is calculated for C0 = 0. Here, six time bins - or three photonic qubits - are required.
Later third order stabilizer expectation values with C0 > 0 are investigated in Section 7.6.3.
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Figure 7.8: Phase dependency of the first stabilizer generator expectation values〈
-̂ /̂

〉
in panel (a) and

〈
/̂-̂ /̂

〉
in panel (b) for hyperbolic-sec shaped pulses. The phases of

both the c as well as the c/2 rotation pulses are varied along the x- and y-axis, respectively,
exploring their impact on the expectation values. Despite the total magnitudes of the Φ̂ =

cos(i)-̂ + isin(i).̂ operator remaining close to unity, their real and imaginary components
demonstrate notable phase dependencies. Reproduced from Bauch et al. [187].

While the Θ rotation is specified by the generation protocol, the o rotation in 'o (Θ) can be
adjusted. However, a stable o is required for all pulses, meaning it must remain constant
between pulses. Adjusting the phase i of either Ω8 directly translates into the variation
of o , as visualized in Fig. 7.8. It becomes evident that as long as i is consistent across
all pulses, the total magnitude of the two stabilizers under investigation does not change
significantly. This implies that tuning i , and thereby o , to maximize the real (or imaginary)
parts of the stabilizer expectation values is feasible. Consequently, further research can
focus on optimizing the magnitudes of the stabilizer expectation values, as maximizing the
individual real or imaginary parts is achievable at all times.
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7.6.2 Lossy Systems

In this section, the focus shifts to lossy transition states. Specifically, additional radiative
decay mechanisms are introduced for both the target transition state |T〉 and the unwanted
transition state |U〉. This inclusion reduces the rotation fidelities, as illustrated in Fig. 7.7.
Additionally, the decay of spin coherences, referred to as spin-dephasing of the ground
states, is investigated by incorporating further Lindblad rates for dephasing across different
transitions. The dephasing time can range from a few hundred picoseconds to many
nanoseconds [265, 278]. For small loss rates, and thus long lifetimes, the rotation fidelities
remain high, achieving efÏciencies greater than 99%. However, the stabilizer expectation
values can drop significantly below these levels. These investigations provide valuable
insights into the fidelity of the stabilizer expectation values and, consequently, the temporal
entanglement.
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Figure 7.9: Stabilizer magnitudes at different rates of decay and dephasing for small
loss rates in panel (a) and high loss rates in panel (b). Cases with spin dephasing of the
ground states (solid lines) and radiative decay of the transition states (dashed lines) are
compared. In panel (b), the two solid curves overlap. Reproduced from Bauch et al. [187].

Simulations with either of the available loss mechanisms are shown in Fig. 7.9. Low radiative
decay rates do not substantially reduce the magnitudes of the stabilizer expectation values.
Even with strong radiative decay rates, reaching up to several µeV, the stabilizer magnitudes
only diminish slowly. In contrast, spin dephasing rapidly decreases the magnitudes of the
stabilizer expectation values. This effect is similar to the impact of dephasing on concurrence
observed in previous chapters. These minimal reductions are due to the rotations occurring
over very short time scales. Specifically, the pulse length is set to g = 16 ps, providing
insufÏcient time for radiative decay to significantly impact the system.
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7 Time-Bin Quantum Correlations in Deterministic Photonic Cluster States

Because the correlations must persist through three photonic qubits rather than just two
photons, spin dephasing has a more pronounced detrimental effect. Moreover, spin de-
phasing can be detrimental over extended periods because it occurs continuously, not
just during pulse events. Even small spin dephasing values, corresponding to lifetimes
on the order of many nanoseconds, significantly reduce the magnitudes of the stabilizer
expectation values. This indicates that while the system can tolerate some level of radiative
decay, maintaining high stabilizer expectation values requires minimizing spin dephasing
to preserve the temporal entanglement essential for the functionality of the linear cluster
state.

These findings highlight the importance of carefully managing both radiative decay and
spin-dephasing in the design and operation of quantum-dot-based systems for generating
photonic cluster states. The insights gained here will be crucial for optimizing the balance
between the necessary rotational fidelities and the preservation of stabilizer expectation
values, ensuring robust temporal entanglement in practical implementations.

7.6.3 Later Stabilizers

As previously introduced in the phase investigation of the first two stabilizers, it is prudent
to evaluate the third-order stabilizer for later triplets of qubits. Specifically, setting C0 = 2=)

allows for the calculation of the third-order stabilizer for subsequent qubits. Here, the
notation

〈
/̂ (8−1)-̂ (8 )/̂ (8+1) 〉 is used, where 8 > 0. Notably, the previously used expectation

value
〈
/̂-̂ /̂

〉
is defined as

〈
/̂ (1)-̂ (2)/̂ (3) 〉. In Fig. 7.10, the third-order stabilizer expecta-

tion values are investigated for 8 ∈ 1, 15. The results for a lossless transition are compared
with those for a small radiative decay rate of Wrad = 0.66µeV, which results in a lifetime
of the population trapped in the transition and unwanted states of grad ≈ 1 ns. Addition-
ally, a system suffering from dephasing of the ground state spins with Wdep = 0.066µeV,
corresponding to a spin lifetime of grad ≈ 13 ns, is investigated.

Extraordinarily, the later stabilizers do not differ significantly from their respective neigh-
bors for both loss mechanisms. This occurs because the stabilizer expectation values employ
an initial projection using the /̂ Pauli matrix, resulting in an intrinsic normalization of the
three-photon density matrix. Consequently, the entanglement from one qubit to the next
is calculated locally in time. This implies that the loss in both mechanisms is similar for
the first three qubits compared to the last three qubits investigated, leading to a constant
magnitude of the stabilizer expectation values. Therefore, it is sufÏcient to calculate the
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Figure 7.10: Higher order stabilizer
generator expectation values for the〈
/̂ (8−1)-̂ (8 )/̂ (8+1) 〉 stabilizer up to 8 = 15.

Results for a lossless system (blue) as well
as small radiative decay rates of the tran-
sition states (orange) and small rates for
the sping dephasing of the ground states
(green) are compared. Notable, through
all loss mechanisms, the stabilizer magni-
tudes remain constant. Reproduced from
Bauch et al. [187].
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Figure 7.11: Achievable cluster state
length for the analytic expression in
Eq. (4.35) (blue dotted line). The results
for small loss rates for both loss mecha-
nisms (green, orange lines) from Fig. 7.9,
panel (a) is overlayed, indicating the range
of achievable cluster state length for the
investigated scenario. Reproduced and en-
hanced from Bauch et al. [187].

first two stabilizer generator expectation values only, while still being able to assess the
entanglement of much larger states.

By using
〈
-̂ /̂

〉
≠

〈
/̂-̂ /̂

〉
=

〈
/̂ (8−1)-̂ (8 )/̂ (8+1) 〉 for all possible 8 , the lower bound for

the achievable length of the one-dimensional linear cluster state can be calculated using
Eq. (4.35). For the lossless transition states, the length is #no loss < 98, limited only by the
fidelity of the rotation pulses used. Notably, optimizing the pulse bandwidth and detuning
can lead to even higher rotation fidelities, which in turn optimizes the length of the cluster
state towards unity values. For the proposed rate of radiative decay for the transition and
unwanted state, the length results in #Radiative < 9. Here, even slight reductions in the
magnitudes of the stabilizer expectation values greatly impact the lower bound of the
length. Dephasing has the most detrimental effect, with #Dephasing < 3, highlighting that
maximizing the lifetime of the spins is crucial to achieving large cluster states.

In Fig. 7.11, the analytical expression for Eq. (4.35) is displayed on a logarithmic scale. The
results from Fig. 7.9 panel (a) are inserted, showcasing the range of achievable lengths using
the investigated ranges for loss. Most notably, a strong focus on optimizing the rotation
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7 Time-Bin Quantum Correlations in Deterministic Photonic Cluster States

fidelities is required, where values far above 99.99% are necessary to maximize the cluster
state length.

7.7 Concluding the Time Bin Entangled Photon Generation

A spin-hole trion is utilized to generate trains of entangled photons through pulsed transi-
tions and excitations in an extended Λ-system. A viable physical system offering such an
energy structure consists of stacked quantum dots. These quantum dots are intentionally
slightly misaligned, resulting in the mixing of individual trion wavefunctions. This mixing
ultimately leads to the coupling of both systems, forming a Λ-shaped energy structure
where each ground state can be individually excited using simple Gaussian or hyperbolic
sech-shaped pulses. The decay of the respective excited state leads to photon emission
within a defined time bin.

The hyperbolic sech-shaped pulses are also employed to induce phase transitions within
the ground state coherences, which are then transferred onto the emitted photons. In
this specific setup, two emission cycles of photons are used to form a photonic qubit.
These photonic qubits provide a robust foundation for various applications in quantum
information processing.

The primary focus of this section is assessing the degree of entanglement among multiple
photonic qubits. These qubits are generated by repeated cycling of the emission protocol
designed for a one-dimensional linear cluster state. The protocol involves a specific sequence
of rotations within the system, followed by excitation of the ground states and photon
emission. The entanglement is assessed by calculating the stabilizer generator expectation
values. These stabilizer generators form the basis for describing the cluster state, making
the evaluation of their expectation values crucial for understanding the fidelity of the
generation process.

For lossless rotations within the Λ-system, high degrees of temporal entanglement are
reported. This strong entanglement enables the generation of cluster states with nearly
triple-digit numbers of qubits. However, introducing losses such as radiative decay of
the transition states or spin dephasing of the ground states significantly diminishes the
entanglement, reducing the length of the cluster states to single-digit numbers.

The numerical evaluation of the stabilizer generator expectation values proves to be both
viable and insightful, allowing for the assessment of entanglement in large numbers of

143



7 Time-Bin Quantum Correlations in Deterministic Photonic Cluster States

photons/qubits by only evaluating third-order correlation functions. This advancement
brings the evaluation process within a feasible and iterative regime and marks the central
result of this chapter and the underlying work [187].

Using a cavity around the extraction level to enhance and accelerate the emission process
could be advantageous. This enhancement would likely mitigate the detrimental effects
of dephasing by reducing the emission timescales, thereby enabling the creation of larger
cluster states. This approach represents a promising direction for future research.

Interim Summary

A system with two stacked quantum dots is designed to create an extended Λ-system,
which optically addressed to generate trains of temporally entangled photons, form-
ing a one-dimensional linear cluster state. The cluster state is fundamentally com-
posed of stabilizer generators, whose expectation values are calculated numerically
to confirm the temporal entanglement within the cluster state. For lossless systems,
the length of these entangled states is primarily limited by the fidelity of the rotation
pulses. While minimizing losses is crucial to maintain the entanglement, in all sce-
narios investigated, even those including strong radiative decay and spin dephasing,
achieving multi-partite entanglement is possible.
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Conclusion and Outlook 8
Quantum information processing represents an emerging and transformative field with the
potential to revolutionize many aspects of the digital world. The challenges of this field
range from developing fundamental quantum information carriers and sources to creating
complex quantum protocols requiring numerous interconnected carriers.

This thesis focuses on few-photon physics, specifically utilizing photons as information
carriers generated from quantum dots and similar structures. Quantum dots, with their
deterministic emission characteristics, are particularly well-suited for quantum information
theory applications, offering precise control over photon emission.

Quantum dots can be triggered to emit photons using controlled laser pulses. Optical
cavities around the quantum dot can be employed to further enhance or modify the emission
characteristics, repetition rate and brightness of the photon source. This work introduces
several frameworks for investigating quantum dot and cavity dynamics, with a focus on
three central topics:

1. Enhancing the Quantum Dot Excitation Using Ultrafast Electric Control

Exciting electron-hole pairs within quantum dots, to form excitons or biexcitons, typically
requires resonant laser pulses, followed by spectral or temporal filtering to isolate the
desired photon emission from the quantum dot. This becomes particularly challenging
when a cavity is used at the same energy level, especially under strong coupling conditions.
To address this, the quantum confined Stark shift (QCSS) is employed, introducing a static
detuning between the cavity and the quantum dot, enabling high-fidelity excitation of
the desired state. The resonance between the dot and cavity is restored using ultrafast
electric control through the quantum confined Stark effect, resulting in the emission of
photons with high indistinguishability or entanglement. This method also maintains single-
photon purity and brightness, even when using high-Q cavities, which typically impede
the excitation. Future research involves experimental validation of these theoretical results,
along with comparisons between QCSS and other advanced excitation schemes such as
SUPER.
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2. Achieving Simultaneous Indistinguishability and Entanglement in Two Photon
Emission

Traditional quantum dots often emit photons that are either highly indistinguishable
or highly entangled, but achieving both properties simultaneously is challenging. This
limitation arises from the natural, free emission process, where the biexciton lifetime sets a
fundamental bound on the visibility, therefore reducing the indistinguishability. To address
this issue, a spectrally broad circular Bragg cavity with high raw light-matter coupling
is introduced. This cavity enhances the electronic transitions, enabling the emission of
photons that are both indistinguishable and entangled. Maxwell simulations confirm the
feasibility of the cavity for experimental implementation while microscopic simulations
ensure maximized photon quantum properties. The reference values established in this work
lay the groundwork for practical and experimental implementations aimed at achieving
simultaneous indistinguishability and entanglement in two-photon emission.

3. Generating One-Dimensional Linear Cluster States Through the Emission of
Photon Trains

Moving beyond simple quantum dot cavity structures, a stacked quantum dot system is
investigated using spin-hole trions, featuring a Λ-shaped energy configuration. By carefully
controlling state coherences with hyperbolic sech-shaped pulses, trains of photons with
specific phase relations and timings are generated. Each pair of photons forms a photonic
qubit, which holds various applications in quantum information science. Qubit correlations
are evaluated using stabilizer generator expectation values, providing insights into the
fidelity of the generation of a one dimensional, linear cluster state. Even with significant
losses, cluster states of significant length can be produced numerically. This method,
which leverages the stabilizer formalism for assessing photonic qubits, opens the door
for future exploration of more advanced graph states and their potential experimental
implementation.

Methods

The theoretical foundation of this work is built upon the von Neumann equation, with the
polaron master equation employed to incorporate electron-phonon coupling. The accuracy
of the polaron master equation is validated through numerical comparisons with the more
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advanced path integral method, ensuring the reliability of the findings across different
modeling techniques. The dual validation of the polaron master equation with the path
integral provides confidence in the results obtained for both idealized and realistic scenar-
ios. This detailed analysis of loss mechanisms and electron-phonon interactions will be
instrumental in optimizing quantum dot systems for quantum information processing ap-
plications.

Initial investigations of ideal systems, without losses or electron-phonon coupling, offer
a baseline for understanding the fundamental behavior of quantum dots under optimal
conditions. These idealized models provide a foundation for evaluating the more realistic
systems explored later in the study. The comparison between ideal and realistic systems
demonstrates that the key results remain robust even in the presence of losses and dephasing,
highlighting their practical relevance for quantum dot implementations. The inclusion of
electron-phonon interactions and realistic loss mechanisms ensures that the results are not
only theoretically sound but also experimentally viable.

Outlook

The results of this study offer a foundation for future research in quantum information pro-
cessing. Further applications of cavity resonators could enhance photon emission processes
and facilitate the generation of high-fidelity quantum states. Investigations into alternative
quantum dot designs or materials may lead to even greater control over photon proper-
ties. Additionally, exploring non-Markovian effects and refining numerical techniques for
handling complex quantum systems could yield new insights into quantum dot cavity
interactions, supporting and enhancing the findings presented in this work. Finally, experi-
mental validation of the proposed techniques will be crucial in translating the theoretical
findings into practical quantum information technologies. These accomplishments provide
a valuable contribution to ongoing efforts in both theoretical research and experimental
advancements in quantum optics and quantum information science.
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Appendix A
This section presents selected extensions of the topics discussed in the main part of this
work and serves as a supplementary addition.

A.1 Optical Activity of Excitons

An electron-hole pair bound through Coulomb interactions can be described by the electron-
hole exchange Hamiltonian [279], which is given by

Hexchange = −
∑

8∈G,~,I

(
08 �ℎ,8(4,8 + 18 � 3ℎ,8(4,8

)
, (A.1)

where �ℎ,8 is the hole angular momentum and (4,8 is the electron spin, with 08 and 18
representing material-specific constants. For simplification, only the z-components of the
angular momenta are considered. The valence band is split into light holes with |�ℎ,I | = 1

2

and heavy holes with |�ℎ,I | = 3
2
. The electron spin is given by |(I | = 1

2
.

The total angular momentum of the exciton is expressed as " = �ℎ,I + (4,I , where "
defines whether the exciton is optically active (bright) or inactive (dark). Dark excitons
(" = ±2) cannot directly couple to photons, while bright excitons (" = ±1) interact with
the electromagnetic field. However, dark excitons can be manipulated by mixing bright
and dark states using external fields, such as magnetic fields [280, 281].

The exchange interaction Hamiltonian can be expressed in terms of the exciton basis
states |"〉, specifically |±1〉 and |±2〉, under the assumption of no magnetic field and no
light-heavy-hole mixing, as

Hexchange =



+X0 +X− 0 0

+X− +X0 0 0

0 0 −X0 +X+
0 0 +X+ −X0


. (A.2)
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In this expression, X0 = 3
2

(
0I + 9

4
1I

)
, and X± =

3
4

(
1G ± 1~

)
[139]. In symmetric quantum dot

structures, where 1G = 1~ , the exciton energies are degenerate. However, for asymmetric
quantum dots with 1G ≠ 1~ , fine structure splitting occurs which results in new eigenstates,
which are given by

|X1〉 =
1√
2
(X+ + X−) and |X2〉 =

i√
2
(X+ − X−) . (A.3)

These eigenstates correspond to the fine structure split excitons in an asymmetric quantum
dot. The Coulomb interaction between electrons and holes in different excitons can result
in an attractive force, leading to the formation of a biexciton. This biexciton is a bound
state of two excitons, represented as |X1〉 ⊗ |X2〉, with the binding energy lowering the
total energy of the biexciton.

A.2 Details on the Concurrence

This chapter provides an overview of the numerical calculation and simplification of
concurrence, a key measure in evaluating quantum entanglement.

A.2.1 Spin-Flip Two-Photon Matrix

The spin-flip matrix used in the calculation of concurrence is first defined. Starting with
the Pauli spin matrix f8 , the matrix f~ is given by

f~ =

(
0 −8
8 0

)
(A.4)

Applying the tensor product of f~ with itself leads to

f~ ⊗ f~ =

©­­­­­
«

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

ª®®®®®
¬
. (A.5)

This matrix forms the basis for calculating the spin-flipped two-photon matrix, which is
essential for determining concurrence through the two-photon density matrix.
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A.2.2 Fidelity Matrix

The fidelity matrix is defined and investigated in the context of its application in the
concurrence calculation. Assuming a general two-photon density matrix (TPM) in a Hilbert
space limited to # = 2, the TPM is represented as

dTPM =



HHHH 0 0 HHVV
0 HVHV VHHV 0

0 HVVH VHVH 0

VVHH 0 0 VVVV


. (A.6)

Here, the off-diagonal elements are zero due to the constraint of # = 2, limiting the system
to only second-order correlations.

The spin-flipped TPM is calculated by applying Eq. (4.19), resulting in

d̃TPM =



VVVV 0 0 VVHH
0 VHVH HVVH 0

0 VHHV HVHV 0

HHVV 0 0 HHHH


. (A.7)

This transformation corresponds to transposing the matrix along both diagonals, effectively
swapping the populations and coherences of the states HH, VV, HV, and VH.

The fidelity matrix R, calculated using Eq. (4.20), measures the similarity between the initial
TPM and its spin-flipped counterpart. The concurrence is then defined as a figure of merit,
quantifying how much the two matrices differ after the spin-flip operation.

A.2.3 Analytical Concurrence

For a specific two-photon density matrix of the form

dTPM =



0 0 0 2 − i3
0 0 0 0

0 0 0 0

2 + i3 0 0 1


, (A.8)

the eigenvalues of the fidelity matrix R can be calculated analytically. The magnitude of
the coherence term is given by |Y | =

√
(2 − i3) (2 + i3). Solving for the eigenvalues then
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yields

_1 = 0

_2 = 0

_3 =
√
01 − |Y |

_4 =
√
01 + |Y | . (A.9)

From these eigenvalues, the concurrence is determined using Eq. (4.21), resulting in

Csimplified = 2|Y | . (A.10)

The concurrence is highly dependent on the coherence between the states in the two-
photon matrix and is independent of the overall photon intensity in either the horizontal
or vertical polarizations. Instead, it is primarily influenced by the maximum degree of
coherence between the states. Several methods for approximating concurrence exist [84,
234]. In this work, the analytical expression for concurrence is used mainly for comparison
with numerical results, but it is generally not shown in the graphical representations.

A.3 Loss Function for the Maxwell Optimizer

This work employs Bayesian optimization in conjunction with electromagnetic simulations
using Meep [282] to optimize optical cavities. The objective is to achieve specific spectral
properties and quality factors (Q-factors) within these cavities. The optimization function
5 (x) is defined as:

5 (x) = F1

(∫ alb

amin

F% (a) da +
∫ amax

aub

F% (a) da
)
+F2

��_goal − _result�� (A.11)

+F3 |6result − UF% − V | +F4 (1 − ( (Qresult;Qmin) + ( (Qresult;Qmax)) (A.12)

whereF8 are the weights and ( (G ;G0) is the sigmoid function defined as:

( (G ;G0) =
1

1 + 4−(G−G0 )
. (A.13)

152



A Appendix

The frequency range of the simulation, amin and amax, corresponds to the desired available
spectral range around the target mode. The bounds alb and aub are calculated for a chosen
Qgoal. The bandwidth � = agoal/Qgoal is simply defined as amin = agoal − �/2 and amax =

agoal + �/2.

The parameters 6result and F% are evaluated at the optimal point, while U and V are obtained
from quantum simulations. The quality factor Qresult is expected to lie within the desired
low-Q region [Qmin,Qmax]. For Qresult > Qmax, an additional penalty term F5(Qresult −
Qmax)2 is included to further penalize high Q-factors.

Meep is an open-source software package for simulating electromagnetic systems using the
finite-difference time-domain (FDTD) method [282, 283]. It is widely used for studying pho-
tonic crystals, waveguides, resonators, and other optical structures. Bayesian optimization
is a strategy for optimizing objective functions that are expensive to evaluate [284–286]. It
builds a probabilistic model of the objective function and uses this model to make decisions
about where to sample next, thereby efÏciently searching the parameter space.

The combination of Meep and Bayesian optimization allows for an efÏcient and system-
atic approach to optimizing optical cavities, ensuring that the resulting designs meet the
specified criteria for spectral properties and Q-factors [287, 288].

A.4 Numerical Implementation

The numerical implementation of the time evolution for the von Neumann equation in this
work is carried out using the RK45 Dormand-Prince method. This method, known for its
reliability and accuracy, is particularly well-suited for solving ordinary differential equations
(ODEs) numerically. The von Neumann equation, which governs the time evolution of the
density matrix d (C) in quantum mechanics, can be expressed as

dd (C)
dC

= − 8
ℏ
[H , d (C)] + L[d (C)] , (A.14)

which is equal to the definition from Eq. (2.8) used in the main text.
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Here, H is the Hamiltonian of the system, [H , d (C)] denotes the commutator of H and
d (C), and L[d (C)] represents the Lindblad superoperator that accounts for dissipative
processes.

To numerically solve the von Neumann equation, the continuous time evolution is dis-
cretized into small time steps. The RK45 Dormand-Prince method, an adaptive step-size
integrator, is used to compute the evolution of the density matrix over time. This method
provides both the solution and an estimate of the local error, allowing for automatic adjust-
ment of the step size to maintain accuracy while optimizing computational efÏciency.

The numerical implementation begins with the initialization phase, where the initial density
matrix d (0) is defined, and the Hamiltonian H along with the Lindblad superoperator L
are specified. The RK45 Dormand-Prince method is then employed to integrate the ordinary
differential equation (ODE) by combining two different order Runge-Kutta methods. This
integration process provides an error estimate and adaptive step size control, ensuring
precise calculations. At each time step, the RK45 method computes intermediate stages,
which are subsequently combined to update the density matrix.

The time evolution process starts from the initial state d (0), and the density matrix is
iteratively evolved over each time step C= to C=+1 using the RK45 method. The adaptive step
size mechanism ensures that the error remains within a specified tolerance, achieving a
balance between precision and computational efÏciency. This approach allows for accurate
and stable simulations of the time evolution of quantum systems.

A.4.1 Algorithm

The implementation of the RK45 Dormand-Prince method for the time evolution of the von
Neumann equation involves several steps. Initially, the intermediate stages are computed
as follows:
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:1 = 5 (C=, d=) (A.15)

:2 = 5

(
C= +

1

5
ℎ, d= +

1

5
ℎ:1

)
(A.16)

:3 = 5

(
C= +

3

10
ℎ, d= +

3

40
ℎ:1 +

9

40
ℎ:2

)
(A.17)

:4 = 5

(
C= +

4

5
ℎ, d= +

44

45
ℎ:1 −

56

15
ℎ:2 +

32

9
ℎ:3

)
(A.18)

:5 = 5

(
C= +

8

9
ℎ, d= +

19372

6561
ℎ:1 −

25360

2187
ℎ:2 +

64448

6561
ℎ:3 −

212

729
ℎ:4

)
(A.19)

:6 = 5

(
C= + ℎ, d= +

9017

3168
ℎ:1 −

355

33
ℎ:2 +

46732

5247
ℎ:3 +

49

176
ℎ:4 −

5103

18656
ℎ:5

)
(A.20)

:7 = 5

(
C= + ℎ, d= +

35

384
ℎ:1 +

500

1113
ℎ:3 +

125

192
ℎ:4 −

2187

6784
ℎ:5 +

11

84
ℎ:6

)
(A.21)

Next, the density matrix is updated using the calculated intermediate stages:

d=+1 = d= + ℎ
(
35

384
:1 +

500

1113
:3 +

125

192
:4 −

2187

6784
:5 +

11

84
:6

)
(A.22)

The local error is then estimated:

error = ℎ
(

71

57600
:1 −

71

16695
:3 +

71

1920
:4 −

17253

339200
:5 +

22

525
:6 −

1

40
:7

)
(A.23)

where :7 is an additional intermediate stage. Finally, the step size is adjusted based on the
estimated error:

ℎnew = ℎ ×min

(
max

(
3Cmin,

(
tolerance
error

) 1/5)
, 3Cmax

)
(A.24)

This adaptive step size control ensures the integration maintains the desired accuracy
while optimizing computational efÏciency. Througout this work, an adaptive tolerance is

155



A Appendix

used. Because the points in time where high precision is required is available a priori. For
sections where high numerical precision is required, for example in the presence of a pulse,
or where short timescales apply, such as in the rapid decay of the biexciton in Chapter 6,
tolerance < 1 · 10−10 is used. Otherwise, tolerance < 1 · 10−6 is sufÏcient for convergent
results and faster numerical evaluation. The resulting time step 3C is constrained within
the bounds of 3Cmin = 1 fs and 3Cmax = 5 ps. These constraints are not strictly necessary but
are implemented to prevent the simulation from encountering abrupt divergence due to
excessively large time steps or from stalling when time steps fall below the floating point
precision threshold.

By employing the RK45 Dormand-Prince method, this work ensures precise and efÏcient nu-
merical simulation of the time evolution of quantum systems, providing a robust framework
for exploring quantum dynamics in various scenarios.

The software used for the simulations in this work and the respective publications [145,
174, 187] can be found on Bauch, QDaCC-Software, [289].

As a final note, results for chapter Chapter 7 are achieved using dense matrices, which
results in significant decreases in the time required for each simulation, while all other
results favour sparse matrices for fast evaluation.
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