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Kurzfassung. Die reaktive Absorption ist eines der wichtigsten Trennverfahren der che-
mischen Industrie. Bei diesem Verfahren werden unerwiinschte gasformige Bestandteile
durch chemische Reaktion in einem Losungsmittel gebunden und so aus dem Gas ent-
fernt. Das beladene Losungsmittel wird anschlieend in einer Desorptionseinheit regene-
riert. Beide Prozessschritte finden gleichzeitig statt und stehen in starker Wechselwirkung,
was zu einem sehr komplexen Prozessverhalten fithrt. Um einen stabilen und sicheren Pro-
zessbetrieb, auch in Gegenwart von Storungen, zu gewihrleisten, ist das Verstédndnis des
dynamischen Prozessverhaltens unerlésslich.

In dieser Arbeit wird die dynamische Modellierung eines reaktiven Absorptionsprozes-
ses vorgestellt. Das resultierende Modell fiir die Anlagensimulation wird anschlieend
validiert. Die Neuartigkeit des Modells liegt in der rigorosen Beriicksichtigung der nicht-
trennwirksamen Kolonneneinbauten sowie der gesamten Peripherie der Anlage. Das Mo-
dell ist auf verschiedene Anlagenkonfigurationen und Reaktionssysteme anwendbar. Als
Validierungsgrundlage werden sowohl aus der Literatur entnommene als auch selbst durch-
gefithrte Experimente fiir die einzelnen Anlagenkomponenten sowie der gesamten Anlage
verwendet. Dabei werden zwei Reaktionssysteme, die Rauchgaswésche und Koksofengas-
reinigung, betrachtet. Die Abweichungen zwischen experimentell gemessenen und simu-
lierten Gasaustrittskonzentrationen liegen bei allen Experimenten der Rauchgaswésche

unter 10%, bei der Koksofengasreinigung sind die Abweichungen etwas hoher.

Abstract. Reactive absorption is one of the most important separation processes in the
field of chemical industry. In this process, unwanted gaseous components are bound into
a solvent by chemical reaction and thus removed from the gas. The loaded solvent is
then regenerated in a desorption unit. Both process steps take place simultaneously and
interact strongly, resulting in a very complex process behavior. To ensure stable and safe
process operation, even in presence of disturbances, an understanding of the dynamic
process behavior is essential.

In this work, the dynamic modeling of a reactive absorption process in closed-loop plant
configuration is presented. The resulting model is then validated. The novelty of the model
is the rigorous consideration of the non-separating column internals as well as the entire
periphery of the plant. The model can be used for various plant configurations and reaction
systems. As a validation basis, various experiments, both from the literature and from
self-performed experiments, are used for the single plant apparatuses as well as the whole
plant. Two systems, the chemical absorption of flue gas and coke oven gas, are considered.
The deviations between experimentally measured and simulated gas outlet concentrations
are below 10% for all flue gas absorption experiments, while the deviations are slightly

higher for coke oven gas experiments.
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Im folgenden Symbolverzeichnis sind séamtliche in der Arbeit verwendeten Abkiirzungen,
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A [m?] Fléche

a [2—2] spezifische Phasengrenzfliche

ey [-] einstellbarer Parameter

a; [-] Aktivitdt der Komponente i

B [ Hlffh ] Berieselungsdichte

Bo [-] Bodenstein-Zahl

Cru [-] Korrelationsparameter
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1 Einleitung

Die Absorption ist ein thermisches Trennverfahren, bei dem selektiv eine oder mehrere
Komponenten aus einem Gas oder Dampf (Absorptiv) mithilfe eines Losungsmittels (Ab-
sorbens) gelost werden. Dabei wird zwischen physikalischer Absorption (Physisorption)
und chemischer Absorption (Chemiesorption) unterschieden. In der Industrie nimmt die
Absorption aufgrund des steigenden Umweltbewusstseins immer mehr an Bedeutung zu.
Der Prozess findet iiberlicherweise in einer Kolonne statt, der sogenannten Absorptionsko-
lonne oder kurz Absorber. Der gereinigte Gasstrom verlésst den Prozess am Absorberkopf,
wéahrend das beladene Losungsmittel nach der Absorptionseinheit in einer Desorptionsein-
heit von der gebundenen Komponente wieder befreit (regeneriert) wird. Das regenerierte
Losungsmittel wird im Kreislauf zuriick in den Absorber gefithrt und die unerwiinschten
Komponenten werden nach der Desorptionseinheit (am Kopf des Desorbers) gesammelt
(Goedecke, 2011)).

In der Absorptionskolonne stehen der aufsteigende Gasstrom und der herunterflieBende
flilssige Losungsmittelstrom an der gemeinsamen Phasengrenzfliche in Kontakt. Bei der
Physisorption wird die Komponente (oder mehrere Komponenten) aus dem Gasstrom in
ein Losungsmittel basierend auf molekularer Wechselwirkungen, wie den van-der-Waals
Kriften, aufgenommen. Die Komponenten werden in der fliissigen Phase gelost und diffun-
dieren von der Phasengrenzfliche weg in die Fiissigkernphase. Die Triebkraft der Absorp-
tion ist die Differenz zwischen der aktuellen Konzentration in der Fiissigkernphase und der
Konzentration an der Phasengrenzflache. Letztere wird idealisiert mit der Konzentration
im thermodynamischen Gleichgewicht angenommen. Die Gleichgewichtskonzentration ist
abhéngig vom Partialdruck sowie der Temperatur und wird fiir kleine Konzentrationen
nach dem Henry-Gesetz berechnet (Goedecke, [2011)):

bi
T = Hi(T) (1-1)

Fiir die meisten Komponenten wéchst die Beladung nahezu proportional mit dem Parti-
aldruck, so dass bei hohen Konzentrationen im Rohgas viel und bei niedrigen Konzentra-
tionen wenig in das Losungsmittel iibergeht (vgl. Abbildung [1.1]). Die Regeneration des
Losungsmittels kann auf verschiedene Arten erfolgen. Der vergleichsweise einfachste Weg
ist das unter Druck stehende Losungsmittel zu entspannen und so die gebundene Kompo-
nente zu verdampfen. Die gebundene Komponente kann auch durch Strippen mit einem
Inertgasstrom sowie durch thermische Regenerierung freigesetzt werden. Die Vorteile der
physikalischen Absorption sind nach Stolten (2011)):

e Der niedrige Losungsmitteleinsatz aufgrund der steigenden Beladungskapazitéit bei

hohen Partialdriicken.



2 1 Einleitung

- -- Physisorption
—— Chemisorption

Partialdruck der Gaskomponente

Beladung in der Fluissigphase

Abbildung 1.1: Typische Gleichgewichtslinien fiir die physikalische und chemische Ab-
sorption nach Hochgesand| (1968)).

e Der geringe Energieverbrauch bei der Regenerierung, da hierfiir eine einfache Ent-

spannung des beladenen Losungsmittels in den meisten Féllen ausreicht.

e Die hohe Stabilitit bzw. die geringe Neigung zur Degradation des Losungsmittels,

da keine chemischen Reaktionen ablaufen.

Die physikalische Absorption eignet sich daher vor allem zur Abscheidung von Kompo-
nenten, die in hohen Konzentrationen im Rohgas vorliegen. Ein Beispiel hierfiir ist das
sogenannte Pre-Combustion Verfahren zur Abscheidung von COs.

Bei der Chemisorption wird die unerwiinschte Komponente durch Reaktion an ein
Losungsmittelmolekiil gebunden. Durch die chemische Bindung entstehen Wechselwirkun-
gen, die das thermodynamische Gleichgewicht zwischen den Phasen und den Stofftrans-
port innerhalb der Phasen beeinflussen. Der Stofftransport wird durch zwei Phdnomene
verstirkt: Erstens wird durch das Abreagieren der Komponente die Triebkraft fiir die Ab-
sorption erhoht (Konzentration der Komponente in der Fliissigkernphase sinkt). Zweitens
wird der Stofftransport in der fliissigen Phase verbessert, da die Komponente an der Pha-
sengrenze schneller verarmt als durch reine Diffusion. Im Gegensatz zur physikalischen
Absorption verlauft die Gleichgewichtslinie bei der chemischen Absorption nicht linear
(vgl. Abbildung. Vielmehr zeigt sich, dass bei kleinen Partialdriicken wesentlich mehr
absorbiert werden kann, als dies durch Physisorption moglich wére. Bei hoheren Parti-
aldriicken jedoch ist die Beladungskapazitét durch das chemische Gleichgewicht begrenzt,
wodurch groflere, zirkulierende Losungsmittelmengen benotigt werden. Es gibt eine Reihe
weiterer Kriterien, die neben der Beladungskapazitéit eine Rolle bei der endgiiltigen Aus-
wahl des Losungsmittels fiir die chemische Absorption spielen (Goedecke, 2011). Einige

wichtige Punkte davon sind:

e cinfache Regenerierbarkeit

e hohe Selektivitat
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e chemische und thermische Stabilitat
e niedriger Dampfdruck und Siedepunkt

e Umweltvertraglichkeit

Wenn ein geeignetes Losungsmittel gefunden wird, eignet sich die chemische Absorption
besonders bei geringen Konzentrationen der Gaskomponente. Ein Beispiel hierfiir ist das

sogenannte Post-Combustion Verfahren zur Abscheidung von COs.

1.1 Absorptionsanlage: Das Grundgeriist

Eine typische Anlage fiir Absorptionsprozesse, hier als Grundgeriist bezeichnet, ist in
Abbildung [1.2] dargestellt.

Das Grundgeriist besteht aus mindestens einer Absorptions- und einer Desorptionsein-
heit, wobei fiir jede Einheit mindestens eine Kolonne (Absorber und Desorber) benétigt
wird. Die Kolonnen sind mit trennwirksamen Einbauten, wie hier beispielsweise Pa-

ckungen, und nicht-trennwirksamen Einbauten, wie Fliissigkeitssammler /-verteiler (FSV)

Gereinigtes Gas 4 Kondensator
| Make-up Strom
(Lésungsmittel) Da

Verunreinigungen
1 + Losungsmittelverluste

mpf

Verdampfer

Pumpen <— +

— Regeneriertes Losungsmittel (lean)
— Beladenes Losungsmittel (rich)

Abbildung 1.2: Vereinfachtes Fliefibild des Grundgeriistes einer typischen Anlage fiir
Absorptionsprozesse.



4 1 Einleitung

Systemen, ausgestattet. Im Absorber tritt das Rohgas ein, welches von unerwiinschten
Komponenten mittels Losungsmittel gereinigt wird. Das beladene Loésungsmittel wird
durch mindestens einen Warmeiibertrager (WT) zum Desorber gepumpt. Der sogenannte
lean-rich WT dient zur Warmeintegration, in dem die Wéarme des heiflen regenerierten
Losungsmittels aus der Desorptionseinheit auf das kéltere beladene Losungsmittel aus der
Absorptionseinheit iibertragen wird. In den meisten Anlagen erfolgt die Regenerierung des
Losungsmittels thermisch. Dazu wird ein Verdampfer am Sumpf des Desorbers (am Fuf
der Kolonne) angeschlossen und die Warme mithilfe von Dampf oder durch elektrische Be-
heizung zugefiihrt. Das beladene Losungsmittel wird im Verdampfer partiell verdampft.
Das Gas steigt als Dampf im Desorber auf und wird am Kopf der Kolonne in einen
Kondensator geleitet. Hier wird der Dampf und mitgerissenes Losungsmittel kondensiert.
Das Kondensat wird am Kolonnenkopf in den Desorber zuriickgefiihrt, wihrend das Gas,
das fast vollstandig aus den unerwiinschten Komponenten (Verunreinigungen) besteht,
den Prozess hier verlidsst. Das regenerierte heifle Losungsmittel verliasst den Desorber am
Sumpf und wird durch den lean-rich WT zuriick zum Absorber gepumpt. Diese Prozess-
einheiten bilden das Grundgeriist des Absorptionsprozesses.

Innerhalb dieses Grundgeriistes sind einige Anlagenkonfigurationen moglich. So kénnen
die Kolonnen mit Boden oder mit Packungselementen ausgestattet sein. Als Packungs-
elemente werden entweder strukturierte Packungen oder Fiillkorper verwendet, die in
unterschiedlichen Hohen zu Packungsbetten zusammengeschlossen werden kénnen. Die
Anwendungsbereiche sowie Vor- und Nachteile dieser trennwirksamen Einbauten sind in
Abbildung [1.3] gegeben.

Kolonnenboden strukturierte Packung Fiillkrper
™ & '\“
U N
'S ARE
N 50N
. O\
! ‘;.\\‘
N\ L B
)
z.B. Glockenboden z.B. Mellapak 250Y 2.B. Super-Ring® PLUS
(Ludwig Michl GmbH) (Sulzer AG) (Raschig GmbH)
+ groBer Belastungsbereich ~ +  geringer Druckverlust + einfache Reinigung
+  hohe Trennleistung +  giinstiges Oberfliche zu + nahezu alle Werkstoffe
+ einfache Konstruktion Volumen Verhiltnis konnen verwendet werden
—  hoher Druckverlust + wer'l.ig empfindlich bei - te1:lweise hohere Trenn-"
... schdumenden Gemischen leistung als Kolonnenbdden
— hohe Investitionskosten
— nur fiir saubere Produkte ~ — geringer Belastungsbereich —  Fiillkdrper haben aktive und
geeignet (verkleben, — hoher Materialbedarf passive Oberflichen
verstopfen) — Maldistribution — Randgiingigkeit der Fliissigkeit

— geringe Trennleistung bei
geringer Berieselungsdichte

Abbildung 1.3: Trennwirksame Kolonneneinbauten mit Vor- und Nachteilen.
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Bei Packungskolonnen werden FSV Systeme auf jedem Packungsbett installiert, um eine
gleichméBige Verteilung des Losungsmittels {iber den gesamten Querschnitt der Kolonne
gewéhrleisten zu kénnen. Das Design der Sammler und Verteiler variiert stark voneinan-
der. In Abbildung ist ein Uberblick von verschiedenen Designs, in Abhéngigkeit des
Kolonnendurchmessers und der Fliissigkeitsbelastung, von der Firma [Sulzer Chemtech
gegeben. Der aufsteigende Gasstrom wird mithilfe von Kaminen nahezu un-
gehindert an der gesammelten Fliissigkeit durch den FSV gefiihrt, sodass der Druckverlust

hier minimal ist. Die Verteilung der gesammelten Fiissigkeit im FSV unterscheidet sich
in drei grundlegende Prinzipien: Erstens kann die Fliissigkeit durch einen festen Boden
gesammelt und mit Uberlaufen, die auf dem gesamten Querschnitt integriert sind, auf
das darunter liegende Packungsbett verteilt werden. Zweitens kénnen Bohrungen an den
Uberlaufen vorhanden sein, um den Austritt der gesammelten Fliissigkeit auf unterschied-
lichen Fiillstdnden/Hohen zu ermoglichen, und drittens kann die gesammelte Fliissigkeit
durch Bohrungen im Boden (Sieb) des FSV Systems verteilt werden.

In der Peripherie (aufierhalb der Kolonnen) sind WT unterschiedlicher Bauart installiert.
Industriell weit verbreitet sind dabei der Platten-WT (P-WT), der Rohrbiindel-WT (RB-
WT) oder der Doppelrohr-WT (DR-WT). Eine vereinfachte Darstellung der drei WT mit
den jeweiligen Vor- und Nachteilen ist in Abbildung gegeben.

Es kénnen auch weitere WT wie beispielsweise der Kissenplatten-W'T oder Spiral-W'T in
der Anlage verbaut sein, die aber aktuell noch wenig in der Industrie verbreitet sind. Wei-
terhin unterscheiden sich die WT nicht nur in ihrer Konstruktion, sondern auch innerhalb
der WT gibt es Unterschiede. Die geometrischen Mafle, die Anzahl an Platten/Rohre, die

Stromungsfithrung (Gleich-, Gegen- oder Kreuzstrom) oder die Anzahl an Durchgénge
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Abbildung 1.4: FSV Systeme in Abhéngigkeit des Kolonnendurchmessers und der
Fliissigkeitsbelastung (a) sowie der zugehorigen, schematischen Darstellung (b), ent-
nommen aus einem Produktkatalog der Firma Sulzer Chemtech Ltd.| (2023).
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DR-WT

<+ groBe Austausch- <+ einfacher Aufbau 4 einfache Bauart
flache <+ 1ideal bet Dampf- + einfache Reinigung

4+ kompakte Bau- Kondensation 4 auch fiir hohe
weise Driicke geeignet

— hoher Druckverlust = grof3e Bauart — grofe Bauart

— wartungsintensiv — hohe Kosten

Abbildung 1.5: Vereinfachte Darstellung des P-WTs, RB-WTs und DR-WTs mit eini-
gen Vor- und Nachteilen, entnommen aus einer Produktiibersicht der Firma
(Gerédtebau GmbH)| (2023); rote Pfeile: heifles Fluid, blaue Pfeile: kaltes Fluid.

(wie oft das Fluid den WT passiert) konnen variieren. Wahrend im Grundgeriist in Ab-
bildung nur der lean-rich WT neben dem Kondensator und Verdampfer abgebildet
ist, konnen zusétzliche WT zur weiteren Kiihlung des Losungsmittels vor Eintritt in den
Absorber sowie zur weiteren Erwarmung des Losungsmittels vor Eintritt in den Desorber
eingesetzt werden. Die hohe Anzahl an Mdoglichkeiten der Anlagenkonfiguration fiithren da-
zu, dass sich die industriellen Anlagen fiir den Absorptionsprozess deutlich voneinander

unterscheiden. Dies erschwert eine allgemeingiiltige Prozess-Modellierung.

1.2 Betrachtete Reaktionssysteme

In dieser Arbeit werden zwei Reaktionssysteme betrachtet: Die Rauchgaswésche und die
Koksofengasreinigung. Dabei wird die Rauchgaswésche durch die Abscheidung von COq
mit wéssrigen Monoethanolamin (MEA) Losungen dargestellt. Die Rauchgase, die in den
Absorptionsprozess eintreten, entstehen bei einem Verbrennungsprozess im Kraftwerk.
Die Zusammensetzung der Gase ist vom Verbrennungsprozess abhéngig. Fiir Kohle- und

Gaskraftwerke sind die typischen Zusammensetzungen in Tabelle gegeben.
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Tabelle 1.1: Zusammensetzung des Rauchgases fiir ein Kohle- und Gaskraftwerk (Rolker
und Arlt, [2006).

Rauchgas N, COq Os H,0O NOx SO, Asche
[Vol.-%]  [Vol-%] [Vol.-%] [Vol.-%] [Vol.-%] [Vol.-%] [Vol.-%)]

Kohle-KW  70-75 12-16 3-4 6-7 0,4 0,15 0,03

Gas-KW 70-75 3-5 10-12 7-10 <0,05 <0,01 0

Die gewthnliche Anlage zur Rauchgasreinigung entspricht dem Grundgeriist aus Abbil-
dung mit einer zusétzlichen Kiihlung des regenerierten Losemittels vor Eintritt in den
Absorber. Die chemische Absorption von COs mit wéssrigen MEA Losungen ist sehr gut
untersucht, sodass ein Vergleich der in dieser Arbeit erzielten Ergebnisse mit Literatur-
daten moglich ist.

Die Koksofengasreinigung ist die chemische Absorption von anorganischen Schadstoffen
aus dem Gas, welches neben dem Hauptprodukt Koks bei der Verkokung von Kohle ent-
steht. Dieses Gas wird zur Gewinnung thermischer Energie in Kraftwerken und Hochéfen
eingesetzt. Durch Verunreinigungen in der Kohle beinhaltet das Gas anorganische und
organische Komponenten, sodass eine Reinigung des Gases notwendig ist. Die typische

Zusammensetzung des Koksofengases ist in Tabelle zu finden.

Tabelle 1.2: Zusammensetzung des Koksofengases (Mayer| 2002).

Koksofengas H, CH, CO N, CO, NH; HsS HCN

Volumenanteil [Vol-%] 624 250 53 29 12 08 02 003

Die Hauptkomponenten sind Wasserstoff, Methan und Kohlenstoffmonoxid. Neben dem
Treibhausgas CO, sollen die anorganischen Verunreinigungen Ammoniak, Schwefelwas-
serstoff und Blausdure aufgrund ihrer hohen Toxizitdt sowie stark korrosiven KEigen-
schaften aus dem Koksofengas entfernt werden. Dies geschieht in der Regel durch che-
mische Absorption, in der sogenannten Ammoniak-Schwefelwasserstoff-Kreislaufwésche
(AS-Wische, Abbildung [1.6). Dabei wird in einer ersten Kolonne (H,S-Wéscher) der
Schwefel- und Cyanwasserstoff mit wéssriger Ammoniaklosung aus dem Koksofengas ent-
fernt. Zusétzlich wird hier auch das CO, groitenteils absorbiert. Das Gas wird dann in eine
zweite Kolonne (NH3-Wiéscher) geleitet, in der das gasformige Ammoniak absorbiert wird.
Die mit Ammoniak angereicherte Fliissigkeit wird als Losungsmittel im HyoS-Wéascher ge-
nutzt. Die Desorption besteht ebenfalls aus zwei Kolonnen, in denen das Losungsmittel
unter Einbringung von thermischer Energie in Form von Wasserdampf von den Schadgasen
befreit wird. Der im Entséurer (vgl. Abbildung anfallende Fliissigkeitsstrom enthélt
einen sehr hohen Ammoniakanteil, weswegen dieser als zusétzlicher Losungsmittelstrom

im HyS-Wiischer eingesetzt wird.
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/ Absorption \ / Desorption \
H,S-Wiischer NH;-Wiischer Abtreiber Entsaurer
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Abbildung 1.6: AS-Kreislaufwische (Still-Otto, Patent 20 58 709.1), basierend auf der
Arbeit von [Schneider| (2001)).

1.3 Prozesssteuerung und -regelung

Zur Steuerung und Regelung von industriellen Absorptionsanlagen werden in der Regel
standardisierte PI- oder PID-Regler eingesetzt (Reuter und Zacher, 2004). Diese Regler

sind in der Lage, einen zu regelnden Parameter (Regelgréfie) mithilfe einer Steuergrofe,

z.B. ein Ventil, auf einem gewiinschten eingestellten Sollwert zu halten. Bei Abweichungen
der Regelgrofie vom Sollwert korrigiert der PI- oder PID-Regler mithilfe der Steuergrofie
diese Abweichung (hier: Offnen oder SchlieBen des Ventils). Die benétigte Anderung zum
erneuten Erreichen des Sollwerts (Korrektur) berechnet der Regler mithilfe von mathe-
matischen Modellen. Diese Steuerung und Regelung ist also in der Lage, auftretende
Schwankungen oder auch kleinere Abweichungen im laufenden Prozessbetrieb zu korri-
gieren. Im Fall von gréfleren Abweichungen kann es aber passieren, dass die Grenzen

der SteuergroBe erreicht sind (im Beispiel des Ventils: vollstéandig gedffnet oder geschlos-
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sen) und der Regler somit nicht mehr in den Prozess eingreifen kann. In diesem Fall
miissten andere Steuergrofen angesteuert werden, um weitere Korrekturen im Prozessab-
lauf vornehmen zu konnen. Ein weiterer Nachteil der PI- oder PID-Regler ist, dass diese
mit einer gewissen zeitlichen Verzogerung reagieren. Bei starken Stérungen bzw. groflen
Abweichungen in kurzer Zeit konnten diese Regler zu spét in den Prozess eingreifen. Es
konnte auch durch die groBe Anderung zu einer zu starken Regelung der SteuergroBe kom-
men, die zu einer Gefahren- oder auch Notfallsituation fithren konnte. Ein Beispiel hierfiir
ist die Steuerung und Regelung des Fiillstands (Regelgrofie) im Kolonnensumpf. Als Steu-
ergrofle wird das Auslassventil verwendet. Im Fall einer starken Erhchung des Fiillstands,
als Folge eines groBeren Fliissigmassenstroms, konnte eine zu starke Reaktion des Reglers
(vollstindiges Offnen des Ventils) dazu fithren, dass die gesamte Fliissigkeit im Sumpf in
kiirzester Zeit austritt. Als Folge konnte auch der eintretende Gasstrom in der Kolonne
durch die Rohrleitung der austretenden Fliissigkeit gelangen und so in den Kreislauf des
Losungsmittelstroms eintreten. In den nachfolgenden Pumpen wiirde es durch das un-
erwiinschte Gas zur Kavitation kommen, was zur Zerstorung der Pumpe und folglich zum
Produktaustritt fithren konnte. In den meisten Féllen ist eine Notabschaltung der Anlage
erforderlich, die mit hohen wirtschaftlichen Verlusten verbunden ist. Ist eine Notabschal-
tung der Anlage nicht mehr moglich, kommt es in der Regel zu Notfallsituationen, die
zusétzlich zu den wirtschaftlichen Verlusten auch Personenschaden oder Schaden an der
Umwelt verursachen kénnen. Solche Situationen treten auch heute in modernen Chemie-
betrieben noch ein. Ein Beispiel hierfiir ist die Explosion bei der BASF in Ludwigshafen
am 17. Oktober 2016, bei der fiinf Menschen ums Leben gekommen sind (Frankfurter
Allgemeine Zeitung), |2017). Dies ist ein Beispiel vieler meldepflichtiger Storfille, die bei
der zentralen Melde- und Auswertestelle fiir Storfélle und Storungen (ZEMA) registriert
werden. Der Bedarf an weiterentwickelten verbesserten Sicherheitseinrichtungen sowie ef-
fizienteren Systemen zur Steuerung und Regelung ist daher grof, wofiir das Versténdnis

des dynamischen Prozessverhaltens notwendig ist.
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Die Untersuchung des dynamischen Prozessverhaltens erfolgt mithilfe von sogenannten
Sprungantworten. Hierfiir wird aus einem stationédren Zustand heraus eine Sprungfunk-
tion vorgegeben und die Antwort des Prozesses beobachtet, bis ein neuer stationérer
Zustand erreicht wird. Die Sprungfunktion ist eine in das System eintretende zeitliche
Anderung (Stérung) einer oder mehrerer Parameter, die den Ubergangsprozess starten.
Das dynamische Ubergangsverhalten ist zum einen von der Sprungfunktion und zum an-
deren vom anfinglichen stationédren Zustand abhéngig. Das stationédre Prozessverhalten
der chemischen Absorption ist sehr gut untersucht, sowohl fiir das Reaktionssystem der
Rauchgasreinigung (experimentell z.B. Notz (2013), numerisch z.B. Hiiser| (2017))) als auch
fiir die Koksofengasreinigung (experimentell z.B. |Mayer (2002), numerisch z.B. [Schneider
(2001))). Die experimentellen Mess- und die numerischen Simulationsergebnisse zeigten in
den genannten Beispielen eine sehr gute Ubereinstimmung, sodass fiir die beiden Reakti-
onssysteme das stationdre Prozessverhalten nicht weiter untersucht wird.

Die Dynamik von Anlagen der chemischen Absorption (Kreislaufprozess) wurde ebenfalls
von verschiedene Gruppen untersucht. Wu et al. (2020) haben einen Uberblick iiber die
jingsten in der Literatur verdffentlichten Beitriage zur experimentellen Untersuchung und
der dynamischen Modellierung gegeben. Diese Veroffentlichungen werden im Folgenden

genauer beschrieben.

2.1 Experimentelle Untersuchungen

Faber et al.| (2011)) veroffentlichten drei verschiedene Experimente zum dynamischen Pro-
zessverhalten der Rauchgaswésche mit wassrigen MEA Losungen, die an einer Anlage der
Firma DONG Energy Power in Esbjerg, Danemark durchgefithrt wurden. In der Anlage
wurden zusétzlich zum Grundgeriist aus Abbildung am Kopf beider Kolonnen ein wei-
teres Packungsbett oberhalb des Losungsmittelzulaufs als Waschsektion installiert. Das
zusitzliche Packungsbett sollte als Tropfenfanger fungieren und vom Dampf mitgerissenes
Losungsmittel wieder in die Kolonne abfliefen lassen. Zudem wurde um das zusétzliche
Packungsbett am Absorber ein externer Wasserkreislauf installiert, in welchen eine Frisch-
wasserzuleitung und ein weiterer P-WT zur Kiihlung integriert wurden. Dies hatte den
Zweck, die Temperatur des gereinigten Gases gering zu halten und Wasserverluste aus dem
Prozess zu kompensieren. Als letzte Erweiterung wurde ein P-WT zur weiteren Kiihlung
des regenerierten Losemittels vor Eintritt in den Absorber eingebaut. Die verwendete
Absorptionskolonne wies eine Gesamthohe von 20 Metern bei einem Durchmesser von
1,1 Metern auf. Die Gesamthohe des Desorbers betrug 13 Meter bei ebenfalls 1,1 Me-

tern Durchmesser. Die geometrischen Daten der iibrigen Anlagenkomponenten wurden
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in der Arbeit von Faber et al.| (2011)) nicht angegeben. Ebenso sind keine Informationen
zu den FSV Systemen und den Kolonnensiimpfen gegeben. In den Experimenten wurden
der Rohgas-Massenstrom 1 in, der Losungsmittel-Massenstrom 7,y und die Verdamp-
ferleistung Qvera. sprunghaft geiindert und die Sprungantwort der Anlage anhand der
Temperaturen und Zusammensetzungen der austretenden Gasstréme aus Absorber und
Desorber gemessen. Die Experimente wurden jeweils nur einmal durchgefiihrt, sodass kei-
ne Reproduzierbarkeit der Ergebnisse gewéhrleistet werden konnte.

Die Reproduzierbarkeit von instationdren Experimenten zu gewahrleisten ist im Allge-
meinen schwierig (Wu et al., [2020)). Dieser Herausforderung stellten sich Bui et al. (2016)),
die reproduzierte Messergebnisse an einer Pilotanlage im Kraftwerk Loy Yang in Victoria,
Australien zum dynamischen Prozessverhalten verdffentlichten. Die Pilotanlage umfass-
te zwei in Reihe geschaltete Gegenstrom-Absorber und einen Desorber. Beide Absorber
wurden jeweils mit 2 Packungsbetten mit einer Hohe von 1,35 Metern ausgestattet (= 2,7
Meter), wobei die Gesamthohe der Kolonnen 9,4 Meter betrug, bei einem Durchmesser
von jeweils 0,211 Meter. Der Desorber wies eine Packungshéhe von 3,9 Metern bei einer
Gesamthohe der Kolonne von 6,9 Metern auf. Der Durchmesser hier betrug 0,161 Meter.
Zusétzlich zum lean-rich WT sind zwei weitere WT als Kiihler in der Anlage verbaut
worden; einer als zusétzliche Kiihlung des regenerierten Losungsmittels vor Eintritt in
den zweiten Absorber und einer als Kiihlung des Losungsmittels zwischen beiden Absorp-
tionskolonnen. Es sind erneut lediglich geometrische Daten zu den Absorbern und dem
Desorber gegeben, jedoch nicht zu den nicht-trennwirksamen Kolonneneinbauten sowie
der Peripherie. In den zugehdrigen Experimenten wurde der Rohgas-Massenstrom g i,
der Losungsmittel-Massenstrom 1y und die Verdampferleistung Q\/erd‘ im weiten Bereich
variiert. Die Messergebnisse wurden in Form von zeitlichen Verldufen (Sprungantworten)
wichtiger Austrittsparameter des Prozesses gegeben. Auch die Reproduzierbarkeit der Er-
gebnisse konnte sichergestellt werden.

Da die nicht-trennwirksamen Kolonneneinbauten und die Peripherie einen grofien
Fliissigkeitsholdup im Prozess aufweisen, ist davon auszugehen, dass sie einen signifikan-
ten Einfluss auf die Dynamik des Prozesses haben und nicht von vornherein vernachléassigt
werden konnen. Eine Studie zur Prozessdynamik, in der alle geometrischen Groflen fiir
eine genau Berechnung des Fliissigkeitsholdups aller Anlagenkomponenten zur Verfiigung

stehen, ist nicht vorhanden.

2.2 Numerische Studien

Die Modellierung der trennwirksamen Kolonneneinbauten, in denen die Absorption und
Desorption stattfindet, erfolgt iiblicherweise als eine Reihenschaltung von diskreten Seg-
menten, sogenannten Stufen, die iiber Massen- und Energiestrome miteinander verbunden

sind (Taylor und Krishna; [1993)). Das entscheidende Kriterium zur Auswahl eines geeigne-
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ten Modellansatzes ist das Verhéltnis der Geschwindigkeiten von Reaktion und Stofftrans-
port. Beide Phénomene laufen als kinetische Vorgénge parallel ab. Aufgrund der Vielzahl
von Prozessen variieren jedoch beide Geschwindigkeiten in Abhéngigkeit des Reaktions-
systems und der Prozessparameter im weiten Bereich. Daher wurden unterschiedliche
Modellansétze entwickelt, die hinsichtlich ihrer Komplexitidt der Beschreibung von Stof-
faustausch und chemischer Reaktion klassifiziert werden kénnen, wie in Abbildung
gezeigt.

Hier wird zunéchst zwischen einfachen Gleichgewichtsmodell-Ansétzen (Klasse 1 und 2)
und rate-based Modellansétzen (Klasse 3 bis 5) unterschieden. Im Gleichgewichtsmodell-
Ansatz der Klasse 1 wird angenommen, dass die Fluidstrome, die aus einer Stufe austre-
ten, immer das thermodynamische Gleichgewicht erreichen. Der Stofftransport und die
Reaktionskinetik werden vernachldssigt. Im Gleichgewichtsmodell-Ansatz der Klasse 2
wird die Reaktionskinetik mithilfe von Korrekturfaktoren (meist Enhancement-Faktoren)
beriicksichtigt, wihrend der Stofftransport weiterhin vernachlassigt wird. [Kucka et al.
(2003)) haben darauf hingewiesen, dass die Verwendung von Enhancement-Faktoren aus-
schliellich fiir Reaktionssysteme pseudoerster Ordnung gilt. In den rate-based Modell-
ansédtzen der Klasse 3 bis 5 liegt eine Beschreibung des Stofftransports vor. Hierzu existie-
ren verschiedene Konzepte in der Literatur, wobei in Abbildung[2.1]die Zwei-Film-Theorie
nach [Lewis und Whitman| (1924 dargestellt ist. In der Zwei-Film-Theorie wird der gesam-

te Stofftransportwiderstand in diinnen Filmen an der Phasengrenzflache beriicksichtigt.

A
Komplexitiit der | Reaktionsgleichgewicht Reaktionskinetik Reaktionskinetik
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Stoffaustausches + weit. Triebkrifte

t R t ¥ . v
Rate-based | R AN \:l X, " \\EI_‘EL/ N \"J:._TQL
Ansatz 4 : | ;;\ \/ : Y : %/

f ts
4

=
=

t 3,
|

Gleichgew.- | |
1

Ansatz
T

= 2

Komplexitiit der Beschreibung der Reaktion

>

Abbildung 2.1: Modellansétze reaktiver Trennprozesse mit unterschiedlicher Komple-
xitét der Beschreibung von Stoffaustausch und chemischer Reaktion (R), basierend auf
der Arbeit von Schneider et al.| (1999).
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Der rate-based Modellansatz der Klasse 5 weist unter den in Abbildung dargestellten
Ansétzen die hochste Komplexitat auf. Die Reaktionskinetik wird zusétzlich zur Kernpha-
se in der Filmregion beriicksichtigt und weitere Treibkréafte, wie z.B. der Einfluss der elek-
trischen Ladung von Elektrolyten auf den Stofftransport, einbezogen. Fiir viele Reaktions-
systeme, wie z.B. der chemischen Absorption von COy mit aminhaltigen Lésungsmitteln,
ist diese Modellkomplexitit notwendig, um die Kinetik des Absorptionsprozesses gut er-
fassen zu konnen (Kenig et al.l 2003).

Trotz dieser Erkenntnis sind in der Literatur zur Untersuchung der Prozessdynamik von
Absorptionsprozessen fiir das Reaktionssystem der chemischen Absorption von COs mit
aminhaltigen Losungsmitteln in Packungskolonnen Modellansétze aller Klassen zu finden.
Vom Gleichgewichtsstufenansatz (Modellklasse 1), wie z.B. in der Arbeit von Haar et al.
(2017), iiber rate-based Modellansétze mit instantan ablaufenden Reaktionen (Modell-
klasse 3), z.B. in der Arbeit von Biliyok et al.| (2012), bis zu rate-based Modellen mit
Berticksichtigung der Reaktionskinetik und des Einflusses der Elektrolyte auf den Stoff-
transport (Modellklasse 5), wie z.B. in der Arbeit von |Gaspar und Cormog (2011). Die
drei Gruppen (Haar et al.| (2017)), Biliyok et al.| (2012), Gaspar und Cormog| (2011))) vali-
dierten ihre Modellansdtze anhand von experimentellen Daten aus der Literatur. In den
Ergebnissen bestétigte sich die Erkenntnis von Kenig et al.| (2003), denn die Simulations-
ergebnisse von |Haar et al. (2017) und Biliyok et al. (2012) zeigten hohe Abweichungen
zu den experimentellen Messergebnissen im stationdren Zustand. Zur Untersuchung der
Prozessdynamik verwendeten die drei oben genannten Gruppen nur Experimente, in de-
nen Eintrittsparameter des Rohgases am Absorber abrupt aus einem stationéren Zustand
heraus variiert und das Ubergangsverhalten anhand von Austrittsparametern bis zum
Erreichen des neuen stationédren Zustands gemessen wurde. Zur Validierung ihrer Mo-
dellansitze wurde der aus den experimentellen Messwerten berechnete Absorptionsgrad
mit den simulierten Werten verglichen. Das Ubergangsverhalten wurde von den Modell-
ansitzen in den jeweiligen Arbeiten (Haar et al.| (2017)), Biliyok et al.| (2012), Géaspar und
Cormos (2011))) in qualitativ guter Ubereinstimmung erfasst, wobei keine Zahlenwerte fiir
die Abweichungen zwischen Mess- und Simulationsergebnisse gegeben wurden. Die qua-
litativ gute Ubereinstimmung ist jedoch darauf zuriickzufithren, dass das Variieren der
Rohgas-Eintrittsparameter in den Experimenten nur geringe Anderungen des aus dem
Absorber austretenden Losungsmittelstroms hervorgerufen haben. Die Einfliisse der Peri-
pherie und der Desorptionseinheit auf das dynamische Ubergangsverhalten waren dadurch
vernachlassigbar gering. In den verdffentlichten Arbeiten wurden keine Modellgleichungen
oder Beschreibungen der nicht-trennwirksamen Kolonneneinbauten (FSV System, Kolon-
nensumpf) und der Peripherie angegeben. Daher ist es fraglich, ob die Modellansétze
auch das Ubergangsverhalten bei starkem Einfluss der nicht-trennwirksamen Kolonnen-
einbauten und/oder der Peripherie erfassen kénnen, z.B. wenn signifikante Anderungen

des Losungsmittels im Kreislaufprozess auftreten.
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Die Untersuchung des Einflusses des Losungsmittel-Massenstroms auf die Dynamik des
Absorptionsprozesses wurde in der Arbeit von Enaasen Flg et al.| (2015) durchgefiihrt.
Zum rate-based Ansatz (Modellklasse 4) werden zusétzlich Modellansitze fiir die Kolon-
nensiimpfe als nicht-trennwirksame Kolonneneinbauten und die gesamte Peripherie der
Anlage gegeben. Die Autoren verwendeten die Glgshaugen NTNU/SINTEF-Pilotanlage,
die in der Arbeit von Pinto et al. (2014) ausfiithrlich beschrieben ist. An dieser Anla-
ge wurde das instationire Verhalten erstens bei einer Anderung der Wirmezufuhr im
Verdampfer und zweitens bei einer Anderung des Losungsmittel-Massenstroms durch-
gefithrt. In beiden Experimenten konnte die eintretende Konzentration der Verunreini-
gung im Rohgas (hier CO3) nicht konstant gehalten werden und variierte zwischen 3 und
9 Vol.-%. Die schwankende COs-Konzentration wurde im Modell von Enaasen Flg et al.
(2015) zwar berticksichtigt, jedoch kénnen durch den zusétzlichen Einfluss spezifische dy-
namische Effekte im Prozessverhalten verloren gegangen sein. Zur Validierung wurden
der Absorptions- und Desorptionsgrad sowie die Losungsmitteldichten am Eintritt beider
Kolonnen aus den gemessenen und simulierten Werten verglichen. Mit Anpassungen ei-
niger Modellparameter an die Experimente konnten qualitativ gute Ubereinstimmungen
zwischen Simulations- und Messergebnissen erreicht werden; auch hier wurden keine Zah-
lenwerte (quantitativer Vergleich) zu den Abweichungen gegeben. Bei den angepassten
Parametern handelt es sich um die im rate-based Modell notwendige effektive Phasen-
grenzfliche und die Wirmeiibergangskoeffizienten der in der Anlage installierten W'T.
Die Anpassung erfolgte im Modell mit einem Korrekturfaktor. Die Mess- und Simula-
tionsergebnisse stimmen gut iiberein, wenn die Warmezufuhr im Verdampfer geéndert
wird, withrend die Abweichungen bei einer Anderung des Losungsmittel-Massenstroms
etwas grofler sind. Enaasen Flg et al.| (2015) wiesen darauf hin, dass durch die Verbindung
einzelner Modelle (Ubergabe von Massen- und Energiestrome) im Kreislaufprozess auch
die Abweichungen iibergeben werden, sodass diese sich aufsummieren kénnen. Aus diesem
Grund miissen alle Modellansiitze im Kreislaufprozess eine gute Ubereinstimmungen mit
den experimentellen Messergebnissen erzielen. Durch die Anpassung der Modellparameter
kann das Modell aber nicht direkt fiir andere Anlagen verwendet werden, da die Para-
meter speziell auf die Glgshaugen Pilotanlage abgestimmt sind und andere Anlagen sich
deutlich von dieser unterscheiden koénnen.

Es sind noch weitere numerische Studien zur Dynamik des Absorptionsprozesses in der
Literatur zu finden, die in Tabelle zusammengefasst sind. Anhand dieser Ubersicht
lésst sich erkennen, dass in keiner der aufgelisteten Studien die FSV Systeme als nicht-
trennwirksame Kolonneneinbauten beriicksichtigt werden. Die Peripherie wird nur in der
Studie von Harun et al.| (2012) im dynamischen Modell berticksichtigt, in der aber keine
Validierung durchgefiihrt wurde. In den anderen Studien wird die Peripherie im Modell
entweder durch Anpassung von Modellparametern an Messergebnissen, die an der jewei-

ligen Anlage erzielt wurden, beriicksichtigt oder komplett vernachléssigt.
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Tabelle 2.1: Ubersicht der numerischen Studien zur Dynamik von Absorptionsprozessen.

G
ein
G

ein

Walters et al.| (2016)
Haar et al.| (2017)

Nein Nein m

Arbeitsgruppe (Jahr) Packung FSV, Peripherie Validierung

(Klasse)  Sumpf mit:
Géspar und Cormog| (2011) Ja (5) Nein Nein Keine
Harun et al.| (2012) Ja (4) Nein Ja Keine
Biliyok et al.| (2012) Ja (3) Nein Nein m&
Akesson et al| (2012) Ja (4) Nein angepasst m&
Enaasen Flg et al. (2015)) Ja (4) Sumpf angepasst )V | kM

Ja (5)

Ja (1)

Sumpf Nein m

2.3 Zusammenfassung

Der Stand der Technik zeigt auf, dass das stationére Verhalten des Absorptionsprozesses
sehr gut untersucht ist, wahrend bei der Prozessdynamik Liicken existieren. Die Liicken
bestehen in der Beriicksichtigung der nicht-trennwirksamen Kolonneneinbauten und der
Peripherie, die einen groflen Fliissigkeitsholdup aufweisen. Innerhalb dieser Anlagenkom-
ponenten findet aber keine Absorption statt, sodass diese bei der stationdren Modellierung
des Kreislaufprozesses vernachléssigt werden konnen. Dies lasst vermuten, dass die vali-
dierten stationdren Modelle lediglich um die instationdren Terme erweitert wurden, um
das dynamische Prozessverhalten zu untersuchen.

Da die nicht-trennwirksamen Kolonneneinbauten und die Peripherie einen grofien
Fliissigkeitsholdup aufweisen, ist deren Beriicksichtigung bei der dynamischen Model-
lierung notwendig. Im folgenden Kapitel wird die dynamische Modellierung aller Anla-
genkomponenten des Kreislaufprozesses gegeben. In Kapitel 4 wird das Vorgehen zur
Implementierung des dynamischen Modells in Softwaretools zur Simulation des Prozess-
verhaltens beschrieben und zwei Softwaretools verglichen. Anschliefend erfolgt in Kapitel
5 eine Vorstudie, in der Messergebnisse aus Literaturdaten mit Simulationsergebnissen des
dynamischen Modells fiir die einzelnen Anlagenkomponenten und fiir den Kreislaufprozess
verglichen werden. Zusétzlich wurden eigene Experimente durchgefiihrt. Die daraus resul-
tierenden Messergebnisse werden in Kapitel 6 vorgestellt und als Validierungsgrundlage
fiir das dynamische Modell genutzt. Nach der Validierung wird in Kapitel 7 ein Beispiel

fiir eine mogliche Anwendungen des dynamischen Modells gegeben.
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Das Grundgeriist einer Absorptionsanlage, wie in Abbildung dargestellt, besteht aus
mehreren Komponenten, die alle fiir die dynamische Modellierung wichtig sind. Fiir diese
Komponenten werden verschiedene Modellansitze verwendet, die in Tabelle [3.1] aufgefiihrt
sind. Als WT werden hier der P-WT, DR-WT und RB-WT betrachtet. Die detaillierte

Beschreibung aller Modellansétze wird in den néchsten Abschnitten gegeben.

Tabelle 3.1: Modellansétze fiir die Anlagenkomponenten mit zugehoriger Referenz.

Anlagenkomponente Modellansatz Referenz

Kolonne

FSV-System CSTR Modell Schneider et al.| (1999)
Packung/Fiillkorper ~ Rate-based Modell Schneider et al.| (1999)
Kolonnensumpf CSTR Modell Schneider et al.| (1999)
Peripherie

P-WT / DR-WT 1D Warmetransport Michel und Kugi (2014)
RB-WT Zellenkettenmodell Correa und Marchetti| (1987)
Kondensator Filmkondensation Numrich und Miiller| (2019)
Verdampfer CSTR Modell Huepen und Kenig| (2010)
Rohrleitung CSTR Kaskade Modell ~ [Westerterp et al.| (1984))

3.1 Rate-based Modell

Schneider et al.| (1999) entwickelten ein dynamisches rate-based Modell fiir die chemische
Absorption von Koksofengas. Dieser Ansatz wird hier fiir die Beschreibung der trenn-
wirksamen Kolonneneinbauten (Packung/Fiillkérper) verwendet. Zur Modellierung wer-
den die Kolonneneinbauten in axiale Segmente, den sogenannten Stufen, unterteilt. Jede
Stufe wird mit der Zwei-Film-Theorie nach Lewis und Whitman| (1924) beschrieben. Der
Stofftransportwiderstand ist in diinnen stagnierenden Filmen an der Phasengrenzflache
konzentriert und der Stofftransport erfolgt innerhalb dieses Films durch stationédre mo-
lekulare Diffusion. Die Diffusions- und Reaktionskinetik wird direkt in den Gleichungen
fiir die Massen- und Wéarmebilanz beriicksichtigt. Dariiber hinaus werden die spezifischen
Eigenschaften von Elektrolytlosungen beriicksichtigt. Im Folgenden werden die Modell-
gleichungen in einer allgemeinen Form dargestellt, um das Modell fiir beliebige Absorpti-

onssysteme anwendbar zu machen.
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3.1.1 Annahmen fiir das rate-based Modell

Jede Stufe, wie in Abbildung [3.1] rechts gezeigt, besteht aus einer ideal durchmisch-
ten Kernphase fiir die Gas- und Fliissigkeitsphase sowie zwei Filmen an der Phasen-
grenzfliche. Alle Regionen werden getrennt bilanziert und durch iibergehende Stoff- und
Wirmestrome, die fiir den Ubergang von der gasformigen in die fliissige Phase positiv de-
finiert sind, miteinander verkniipft. Die grundlegenden Differentialgleichungen resultieren
aus den dynamischen Massen- und Energiebilanzen.

Bei der Formulierung der Modellgleichungen werden folgende Annahmen zugrunde gelegt:

e zweiphasiges System

e cindimensionaler Stoff- und Energietransport normal zur Grenzflache

e ideal durchmischte Kernphasen

e keine axiale Dispersion

e thermodynamisches Gleichgewicht an der Phasengrenzflache

e Kontinuitdt des Stoff- und Warmetransports an allen Bilanzraumgrenzen
e konstante Temperaturgradienten in den Filmregionen

e ideales Verhalten der Gasphase

e quasi-stationdres Verhalten in den Filmphasen

e mechanisches Gleichgewicht, d.h. gleicher konstanter Druck in allen Phasen

Fliissigstrom

Yi __1&

Ut = oCcfPA Yi lxi U = o'ciPA
K Xi

Gas- |Fliissig-

i
Ny
,nll{ﬁ)‘}

ety
IRt HHH TS
isypy, I
St

1

Gaskernphase film | film Fliissigkernphase
GGb .
z+dz Phasengrenzfliche z+dz
Gb xLb |
Gasstrom z+dz Volzidz

Abbildung 3.1: Schematische Darstellung einer strukturierten Packung (links) und ei-
ner Stufe mit Zwei-Film-Theorie (rechts), basierend auf der Arbeit von Schneider et al.
(1999).
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3.1.2 Kernphasen

Fiir die Fliissigkernphase werden die Stoff- und Energiebilanzen wie folgt formuliert:

O vy = L (oY 4 (b e+ R GY) A, i=1,. NCY (3.1)

ot 0z
0 —Lb 0 —1Lb .
o (o) - 5 (L2 H ")+ g aiA (3.2)
NCL

Z =1 (3.3)

Der volumetrische Holdup der Fliissigkeit ¢ hingt von der Gas- und Fliissigkeitsbelastung
ab und wird abhéngig von der Packung mit empirischen Korrelationen bestimmt (Anhang
. Fiir die Gasphase sehen die Bilanzgleichungen dhnlich aus, aber der ldngenspezifische

molare Holdup US? wird aufgrund der viel geringeren Dichte gegeniiber der Fliissigphase

vernachléssigt:
0=~ (G yE) ~ (nf o~ REVGE) A, i=1,. NCE (3.4
z
0= 9 (GGbﬁGb) —¢%ad' A (3.5)
0z '

NCE

i=1
A+ S =1 (3.7)

Neben dem volumetrischen Holdup der Fliissigkeit ¢~ wird der Druckabfall Ap und die
effektive Phasengrenzfliche a' mit empirischen Korrelationen bestimmt (Anhang[A]). Der
Einfluss der chemischen Reaktion wird {iber die komponentenbezogene Reaktionsrate R;

beriicksichtigt, die abhéngig von der Reaktion auch negative Werte annehmen kann.

3.1.3 Filmphasen

Die Transportphdnomene innerhalb des diinnen Films werden aufgrund des sehr gerin-
gen Holdups iiblicherweise als ein stationéres Problem betrachtet (Kooijman und Tay-
lor, [1995)). Mit der Annahme aus Kapitel verlauft der Stofftransport eindimensional
senkrecht zur Phasengrenzflache (n-Koordinate). Die Differentialgleichungen fiir die Kom-

ponentenbilanz, die den gleichzeitigen Stofftransport und Reaktionen umfassen, lauten:

1 onHt

0= oL it

+ RM, i=1,...,NC (3.8)
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1 8nin
G onGf
In verdiinnten Elektrolytsystemen lassen sich die Komponentenfliisse n; mit der Nernst-
Planck-Gleichung beschreiben (Taylor und Krishnaj 1993):

0= + RSt i=1,...,NC“ (3.9)

i

nt = — + ity — + 7 ngt,
ontt ' T RT ontf ¢

Lf ML
lLf_ Cy ;Zi,eff (8xiLf e, P 690) Lf  Lf i=1,..,NC" (3.10)

Die Einbeziehung des elektrischen Potentials erfordert eine zusétzliche Bedingung der

Elektroneutralitit, die in der fliissigen Phase erfiillt sein muss:

NCE
Y @z =0 (3.11)
i=1

Im Bereich des Gasfilms werden die Komponentenfliie n; durch das erste Ficksche Gesetz

mit effektiven Diffusionskoeffizienten beschrieben:

Gf NG Gf
Cy Di eff ay]

nS =—5—G’anef+y§fn§f, i=1,..,NC® (3.12)

Durch Einsetzen von Gleichung in Gleichung|3.8und von Gleichung in Gleichung
3.9| ergeben sich partielle Differentialgleichungen 2. Ordnung. Die Randbedingungen fiir

den Fliissigkeits- und Gasfilm zur Losung der Differentialgleichungen sind:

at (n™ = 0) = 2! e (n"=1) = 2P i=1,.,NC" (3.13)

1 17 1 1

yt (% =0) =y Y (n*=1)=y, i=1,.,NCC (3.14)

Die Wiarmestrome in den Filmregionen sind gegeben durch:

AL gTL  NCE g

o AT NS gy (3.15)
T, 1;
MG TG NCE ¢

a_ 2L N oy (3.16)
3G oG 1;

Die Filmdicken 6% und 6% werden iiber Stoffiibergangskoeffizienten abgeschétzt (Taylor
und Krishnal |1993), die mittels empirischer Korrelationen (Anhang [Al) bestimmt werden.

3.1.4 Phasengrenzfliache

An der Phasengrenzfliache wird thermodynamisches Gleichgewicht angenommen. Die Glei-
chungen werden verwendet, um die Zusammensetzung der Gas- und Fliissigphase zu kop-

peln:
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yi= Kz, i=1,.,NC¢ (3.17)

Dabei stellt K; den Verteilungskoeffizienten der Komponente i dar. Auflerdem muss die
Kontinuitat des Komponentenflusses an der Phasengrenzfliche erfiillt sein. Die ionischen
Komponenten (Elektrolyte) kénnen nur in der fliissigen Phase vorliegen, weswegen der
iibergehende Stofffluss fiir diese Komponenten zu Null zu setzen sind:

nS (n =1)=nM (g4 =0), i=1,..,NC® (3.18)

1 1

ni=0, i=1,.., NCFek (3.19)

3.2 1D Wairmetransport

Der Warmetransport verlauft gemafi dem zweiten Hauptsatz der Thermodynamik stets
vom Fluid mit der héheren Temperatur zum Fluid der niedrigeren Temperatur. Bei der
Art der Warmeiibertragung wird zwischen der direkten und indirekten Kontaktart un-
terschieden. Unter der direkten Wéarmeiibertragung wird der Transport der Warme des
heiflen Fluids direkt an das kéltere Fluid ohne Trennwand verstanden, z.B. in einem
Kiihlturm. Bei der indirekten Wrmeiibertragung sind das heifle und kalte Fluid durch ei-
ne warmeleitfahige Wand voneinander getrennt. Die Fluide strémen in separaten Raumen.
Der Vorteil der indirekten Warmeiibertragung ist, dass sich jedes Fluid in einem ab-
geschlossenen Raum befindet und so kein Stofftransport zwischen den Fluiden erfolgen
kann. In der Prozessindustrie wird daher hiufig die indirekte Warmeiibertragung einge-
setzt. Aufgrund der Vielzahl moglicher Anwendungen wurden unterschiedliche Bauarten
fiir WT entwickelt. Fiir die meisten Anwendungen kommt der P-WT, der RB-WT oder
der einfache DR-WT zum Einsatz. Eine Ubersicht ist in Abbildung gegeben.

3.2.1 Platten-Wirmeiibertrager

Kompakte P-WT, z.B. geschraubte P-WT wie in Abbildung dargestellt, werden
iiberwiegend in den Bereichen Wérmeriickgewinnung oder industrielle Prozesskiihlung
und -erwarmung eingesetzt. Ihre Vorteile sind hohe Warmeiibertragungsraten, eine gerin-
ge GesamtgroBe, eine hohe Bestédndigkeit gegen Verschmutzung, hohe Arbeitsdriicke so-
wie eine einfache Konstruktion und damit niedrige Kosten in der Produktion (G.U.N.T.
Gerédtebau GmbH| [2023). In allen P-WTn erfolgt der Warmetransport zwischen zwei
durch Platten getrennten Fliissigkeitskreisldufen (heifl und kalt). [Michel und Kugi (2014)
entwickelten ein dynamisches Modell eines P-WTs mit der Annahme eines eindimensio-

nalen Warmetransports senkrecht zu den Platten.
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(b) geriffelte Platten (©) Ty Ubin Xein

Abbildung 3.2: Geschraubter P-WT (a) mit schematischer Darstellung der Strémungs-
wege (b) und eines einzelnen Stromungskanals (c) (G.U.N.T. Geratebau GmbH)| 2023).

3.2.1.1 Modellannahmen fiir Platten-Wiarmeiibertrager

Jeder P-W'T besteht aus einem Paket verbundener Platten beliebiger Anzahl. Auf beiden

Plattenseiten ist ein Profil mit einem Chevron- oder Fischgraten-Wellenmuster eingepragt

(Stephan et al., 2019)). Die Platten sind miteinander zu einem Paket verschraubt, zusam-

men gelotet oder auf andere Weise verbunden und nach auflen abgedichtet. So bilden sich
Zwischenridume zweier benachbarter Platten, in denen das heifle und kalte Fluid alter-
nierend den P-WT durchstréomen konnen. Im Modell werden die Strémungskanéle und
Platten getrennt bilanziert und durch iibergehende Wérmestréme miteinander verkniipft.
Die grundlegenden Differentialgleichungen resultieren aus den dynamischen Massen- und
Energiebilanzen.

Bei der Formulierung der Modellgleichungen werden folgende Annahmen zugrunde gelegt:

e vernachléssigbare Reibungseffekte

e inkompressible Fluide; kein Phasenwechsel des Fluids

e ideale Durchmischung der Fluide im Stromungsquerschnitt

o der P-WT ist ideal isoliert; kein Warmeaustausch mit der Umgebung

e aufgrund hoher Strémungsgeschwindigkeiten ist die Wéarmeleitung in Stréomungs-

richtung gegeniiber des konvektivem Warmeiibergangs vernachléssigbar
e Wirmeleitung in den Platten nur senkrecht zur Stromungsrichtung
e vernachléssigbarer Einfluss der Temperaturabhéngigkeit der Stoffgrofien
e vernachlésigbarer Einfluss der Verteiler und Sammler im P-WT

e es tritt keine Fehlverteilung auf; vollsténdig benetzte Plattenoberfliche
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3.2.1.2 Stromungskanile

Fiir die heie (h) und die kalte (k) Fliissigkeit mit einem Volumenelement dV, wie in
Abbildung dargestellt, werden die Stoff- und Energiebilanzgleichungen formuliert.
Mit der Annahme aus Kapitel [3.2.1.1] eines eindimensionalen Wérmetransport senkrecht

zur angrenzenden Platte (z-Koordinate) haben die Differentialgleichungen folgende Form:

orl 9, . - _ .
Ak c o ~*7s (L)) + R] Ay, i=1,.,NC*  j=hk (3.20)
. (OTi QT ¢  AH}, . .
C] _ R LJ :hk 21
pjp(at“‘ az) or T Ay R T (3:21)
NCE
Yoal=1, j=hk (3.22)

Hierbei sind AHg die Reaktionsenthalpie und Ly der Molenstrom der Reaktanten. Die
Enthalpie kann abhéngig von der Reaktion auch negative Werte annehmen, weswegen
in Gleichung nur der positive Summand aufgefiihrt ist. Die Randbedingungen zur
Losung der Differentialgleichungen fiir die Stoffmengenanteile und Temperaturen der hei-
Ben und kalten Fliissigkeit sind:

i (z=1,t) = 2] Ti(z=1,t)=T

i,in? in?

wenn : u) <0 (3.23)

vl (2=0,t) =) Ti(z=0,t) =T

i,in? in?

wenn : w > () (3.24)

Die Fliissigkeit im Stromungskanal weist eine gewisse Geschwindigkeit « auf.
Der Wirmetransport im P-W'T erfolgt durch konvektiven Waéarmeiibergang zwi-
schen Fliissigkeit und Platte sowie durch Wéirmeleitung innerhalb der Plat-
te. Eine gingige Art den konvektiven Wéirmeiibergang zu beschreiben, ist die
Einfithrung eines Wirmeiibergangskoeffizienten od und die Verwendung des Newtonschen

Abkiihlungsgesetzes in der Form:

=l (Th =T bzw. =k (TV-TF) (3.25)

Die Temperatur T/ stellt dabei die Temperatur genau auf der Phasengrenzfliche zwi-

schen Fliissigkeit und Platte dar.

3.2.1.3 Geriffelte Platte

Fiir die Platte mit einem Volumenelement dV¥, wie in Abbildung dargestellt, wird
analog zur Fliissigkeit die Energiebilanz formuliert. Da durch die Platte kein Stofftransport

moglich ist, werden hier keine Stoffbilanzgleichungen aufgestellt. Aus der Energiebilanz
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ergibt sich die Differentialgleichung fiir die Platte zu:

oTr aq”
ppcgw = —a—x (326)
Die Wéarme durch die Platte wird durch Wéarmeleitung transportiert. Die
Wirmestromdichte ¢ ergibt sich mit dem Fourier’schen Gesetz zu:
oTr
S =N 3.27
g o (3.27)
Eingesetzt in Gleichung ergibt sich eine Differentialgleichung 2. Ordnung. Die Rand-

bedingungen fiir eine Platte der Dicke AP sind:
TP (x=0,t) =T"/", T (z =P t) =T/* (3.28)

3.2.1.4 Thermische Kopplung benachbarter Strémungskanile

In allen P-WT sind Strémungskanéle der heiflen und der kalten Fliissigkeit, getrennt durch
eine Platte, direkte Nachbarn. Haufig stromen sie im Gegenstrom, wie es in Abbildung[3.2]
dargestellt ist, es sind aber auch Gleich- oder Kreuzstrom moglich. In Abbildung [3.3| sind
drei Beispiele fiir einen P-WT mit einer Plattenanzahl von N¥ =9 in unterschiedlicher

Stromungsfithrung gegeben.

geschlossene Platte

Blende

Abbildung 3.3: Drei Beispiele eines P-WTs mit unterschiedlicher Stromungsfithrung.
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Um die Unterschiede in der Stromungsfiihrung aufzuzeigen, schlagt Martin| (2013)) folgende

Nomenklatur vor:

e Jeder P-WT besteht aus Platten mit zwei Seiten: (Seite A / Seite B), wobei die
heile Fliissigkeit auf Seite A und die kalte Fliissigkeit auf Seite B stromt.

e Die Stromungsfithrung wird iiber die Anzahl an Passagen NP8, d.h. {iber die Anzahl
an Durchgéngen der Fliissigkeiten durch die Stromungskanéle, und der dabei parallel
zur Stromungsrichtung verlaufende Kanilen N auf beiden Seiten gebildet. Neue

Passagen werden durch den Einbau von Blenden im Verteiler des P-W'T ermoglicht.

e Die Nomenklatur eines P-WTs ergibt sich damit zu: (NP&A x NebA/NpeBx NchB)

Mit dieser Nomenklatur ist in Abbildung ein (1x4/1x4)-P-WT, der einem idealen
Gegenstrom P-W'T entspricht, in Abbildung ein (2x2/2x2) P-WT und in Abbil-
dung ein (4x1/4x1) P-WT dargestellt. Es ist zu erkennen, dass in Abbildung (3.3b
und c nicht alle Stromungskanéle im Gegenstrom verlaufen. Einige benachbarte Kanile
verlaufen aufgrund der eingebauten Blenden im Gleichstrom, wodurch die Effizienz dieser
P-WT verringert wird. Vorteile dieser P-W'T gegeniiber dem idealen Gegenstrom P-W'T
sind aber der einfachere Anlagen-Einbau (Fliissigkeiten treten auf identischer Hohe ein
und aus) und der geringere Temperaturgradient fiir den Einsatz von temperaturemp-
findlichen Fliissigkeiten. Fiir die Modellierung wird zunéchst der ideale Gegenstrom P-
WT aus Abbildung betrachtet. Anschliefend wird die Modellierung auf beliebige
Stromungsfithrungen erweitert.

Der ideale Gegenstrom P-WT weist sowohl fiir den heiflen als auch fiir den kal-
ten Fliissigkeitskreislauf nur eine Passage auf. Innerhalb einer Passage wechselt die
Stromungsfithrung nicht. Mit der Annahme, dass keine Fehlverteilung der Fliissigkeiten
auftritt, herrschen identische Bedingungen in allen Kanélen des jeweiligen Kreislaufs. Das
Temperaturfeld jedes Stromungskanals kann daher mit Gleichung [3.21] und das Tempe-
raturfeld jeder Platte mit Gleichung |3.26| modelliert werden. Die thermische Kopplung
erfolgt mit Gleichung [3.25] die eingesetzt in Gleichung folgende Form hat:

Pi (0TS QT3 . . . < AH .
—A dl— l— | =(P’'-1)bo’ TW/J_TJ RLJ i =h. k 3.99
kg (S w S ) = (P )bl (T T) e SR bk (329
. NP-1
Pl=—— Jj=hk (3.30)

Dabei sind N¥ die Plattenanzahl des P-WTs und NP&i die Anzahl an Passagen. Fiir den
idealen Gegenstrom P-WT ist NP&i = 1, wodurch sich Gleichung [3.30] zu Pi = NP -1
vereinfacht. Im Beispiel eines P-WT mit 9 Platten ergibt sich also ein Faktor von Pi/2 =4

fiir die linke Seite von Gleichung [3.29, also der Anzahl an Kanéilen fiir die heifle und
kalte Fliissigkeit (vgl. Abbildung [3.3), und ein Faktor von P -1 =7 fiir die rechte Seite
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von Gleichung [3.29] also der Anzahl an iibergehenden Wéarmestrémen von der heiflen
zur kalten Fliissigkeit (vgl. Abbildung . Die Temperaturen an der Phasengrenzfiiche

zwischen Fliissigkeit und Platte werden bestimmt mit:

. . .
w/i i _ 2 (i _ P P
T T p~ (7' -17), j=hk (3.31)
wobei die entsprechenden Wiarmedurchgangskoeffizienten ki der heiflien und kalten Seite

durch die folgende Beziehung gegeben sind:

— ==+ j=hk (3.32)

Der Wirmeiibergangskoeffizient o/ hiangt von der Warmeleitfahigkeit der Fliissigkeit M,
der Nusselt-Zahl Nw, die wiederum von der Profilierung der Strémungskanile auf den

Platten abhéngig ist, und dem hydraulischen Durchmesser d;, wie folgt ab:

N .
ol = — y Nu, j=hk (3.33)
S dn

Im Falle von geriffelten Platten mit einer Winkel-Wellen-Pragung wird die Korrelation
von [Martin| (2013) empfohlen (Anhang [A]). Weitere empirische Korrelationen zu anders
profilierten Platten sind in der Literatur nicht vorhanden. Fiir diese wird die Nusselt-Zahl

in Gleichung [3.33] mit folgenden, empirischen Ansatz ermittelt:

Nu = Cy - Pr"Pr - Re™Re (3.34)

Dabei werden die Korrelationsparameter Cyxy,, np, und mg. experimentell fiir den zu un-
tersuchenden P-W'T bestimmt.

Fiir P-WT mit mehr als einer Passage (P&l > 1) ldsst sich der WT in NP&J Segmen-
te unterteilen; immer an den Platten, in denen Blenden eingebaut sind. Jedes Segment
entspricht fiir sich einem idealen Gegenstrom P-WT (vgl. Abbildung . Die Tempe-
raturfelder beider Fliissigkeitskreisldufe werden mit Gleichung [3.29] gelost. Die ermittel-
ten Austrittsparameter jedes Segments werden als Eintrittswerte des benachbarten Seg-
ments in Stormungsrichtung der jeweiligen Fliissigkeit iibergeben. Die Temperaturfelder
der Platten werden mit Gleichung fiir jedes Segment gelost. Ebenso fiir die Plat-
ten mit Blenden, die die Segmente voneinander trennen. Mit Gleichung [3.26] wird der
iibergehende Warmestrom ermittelt und die Segmente so thermisch gekoppelt. Dabei
sind auch negative Warmestrome moglich, wenn die Fliissigkeit des kalten Kreislaufs in
einem Segment bereits eine hohere Temperatur aufweist, als die Fliissigkeit des heiflen

Kreislaufs des benachbarten Segments.
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3.2.2 Doppelrohr-Wiarmeiibertrager

Der DR-W'T' zeichnet sich durch eine einfache und damit verbundene kostengiinstige
Bauweise aus. Der Aufbau besteht aus einem Auflen- und einem Innenrohr, in denen
die Fluide im Gleich- oder Gegenstrom flielen, wie in Abbildung dargestellt. Die
Rohrwand des Innenrohrs dient als Warmeiibertragungsfliche. Zur Vergréflerung der
Ubertragungsfliche ist eine Riffelung der Innenrohr-Oberfliche méglich. Das AuBenrohr

ist isoliert, um Wérmeverluste zu minimieren.

3.2.2.1 Modellannahmen fiir Doppelrohr-Wiarmeiibertrager

Die schematische Darstellung in Abbildung [3.4c dhnelt einem P-WT mit zwei Platten;
hier nimmt aber die Warmeiibertragungsfliche mit zunehmenden Radius zu.

Fiir die Modellierung werden folgende Annahmen getroffen:

e ideal glatte Rohre; vernachléssighbare Reibungseffekte
e ideale Durchmischung der Fluide im Strémungsquerschnitt
e der DR-WT ist ideal isoliert, kein Warmeaustausch mit der Umgebung

e vernachléssighare Warmeleitung in Stromungsrichtung gegeniiber des konvektivem

Warmeiibergangs aufgrund hoher Stromungsgeschwindigkeiten in den Fluidphasen
e Wirmeleitung im inneren Rohr nur senkrecht zur Stromungsrichtung
e der Einfluss der Rohre als Wérmespeicher wird vernachléssigt

e vernachléssigbarer Einfluss der Temperaturabhéngigkeit der Stoffgrofien

3.2.2.2 Fluide im Stromungsquerschnitt

Fiir das heifle (h) und das kalte (k) Fluid mit einem Volumenelement dV, wie in Abbildung
dargestellt, werden die Stoff- und Energiebilanzen formuliert. Die Aufstellung der Bi-

(a) (b) (c)

k l
Tein' <+ »

ule(in' * -

. = xikein //Wéslu%f r Tg]inl
mindvem d] <« @yl
== LIRS b

2 = 9

Abbildung 3.4: DR-WT (a) mit schematischer Darstellung der Stromungsrichtungen (b)
und der Stromungskanile (c).
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lanzgleichungen erfolgt zunéchst fiir Fliissigkeiten als Fluide. Eine Beschreibung von Ga-
sen bzw. Fluide mit Phasenwechsel wird in Abschnitt gegeben. Der Warmetransport
wird eindimensional senkrecht zum inneren Rohr (r-Koordinate) angenommen und die

Differentialgleichungen zur Beschreibung der Fliissigkeiten haben die folgende Form:

81:31 0

P Rl Gy S P i Al =1,....NC" i=hk .
a 5 aZ( [El) R A 1=1,...,NC", j=h, (3.35)
L (oTV 9T OQmrans  AHJ, . ,
Al I et [ L =h.k .
chlp( ot az) 5.t A, Lk J=h (3.36)
NCY
Sal=1,  j=hk (3.37)

Dabei stellen A die Stromungsquerschnitte des Innen- und Auflenrohrs (Kreisring) dar.
Fiir den in Abbildung betrachteten Fall, dass die heifie Fliissigkeit durch das innere

Rohr stromt, folgt fiir die Stromungsquerschnitte A7 und die Wirmeiibertragungsfliache:

Ah = %d%, Ak = % [d2A - (d[ + 251)2] s A’I‘rans = 7TdI L (338)

Die Randbedingungen der Differentialgleichungen fiir die Stoffmengenanteile und Tempe-
raturen der heiflen und der kalten Fliissigkeit sind:

i (z=1t) =2 T (z=1,t)=T)

i,in? in?

j=hk wenn:u <0 (3.39)

2l (2=0,t) =) Ti(z=0,t)=T), j=hk wenn:u >0 (3.40)

i,in?

3.2.2.3 Glattes Rohr

In den Modellannahmen (Abschnitt wird das Rohr als Wéarmespeicher ver-
nachléssigt. Daher wird hier auf eine Bilanzierung zur Bestimmung der Rohrtempe-
ratur verzichtet. Es ist allerdings notwendig, die Temperaturen T/ zwischen Rohr
und Fliissigkeit {iber den iibergehenden Wiarmestrom zu koppeln. Der {ibergehende
Warmestrom léasst sich mit dem Wiarmedurchgangskoeffizienten k, wobei dieser auf die

Rohrinnenseite k; bezogen wird, wie folgt bestimmen:

QTrans = kl ATrans (Th - Tk) (341)

Der Warmedurchgangskoeffizient k; beschreibt den gesamten thermischen Widerstand
des Wirmetransports vom Kernstromungsbereich der heiflen Fliissigkeit in den Kern-

stromungsbereich der kalten Fliissigkeit und ist gegeben durch:
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1 B 1 N St N 1
kIAh _ahAh )\IAk_ﬁh ak Ak

In

(3.42)

Hier ist A\; die Warmeleitfahigkeit des inneren Rohres. Die Warmeiibergangskoeffizienten

ol werden fiir die Fliissigkeit im Innenrohr mit den Korrelationen von (Gnielinskil (2019a)
und fiir die Fliissigkeit im AuBSenrohr von |Gnielinski| (2019b) bestimmt (vgl. Anhang [A]).

3.2.3 Rohrbiindelwirmeiibertrager

Die Rohre des RB-W'T's sind in einem Biindel angeordnet. Das Rohrbiindel ist von ei-
nem zylindrischen Mantel umgeben, durch den das zweite Fluid flieBt. Das Mantelrohr
wird als ein Stiick Rohr mit Flanschenden und den erforderlichen Abzweigungen fiir un-
terschiedliche Stromungsfithrungen gebaut. Umlenkbleche kénnen eingesetzt werden, um
die Stromung des mantelseitigen Fluids maanderférmig zu gestalten und Turbulenzen zu
erzeugen. Bei Fluiden mit Phasenwechsel wird in der Regel das mantelseitige Fluid kon-
densiert/verdampft (Theodore, 2011)).

Fiir die RB-WT gibt es eine Reihe von Konstruktionsmoglichkeiten, um verschiedene

Stromungsfithrungen zu ermoglichen. In Abbildung sind drei Beispiele dargestellt.
Um die Unterschiede in der Strémungsfithrung kennzeichnen zu kénnen, wird &hnlich wie
beim P-WT eine Nomenklatur verwendet, bei der die Anzahl der Passagen der beiden
Fluide durch den RB-WT beschrieben werden (Theodore, 2011). Abbildung zeigt
einen einfachen 1-1 Gegenstrom RB-W'T. Sowohl das heifle als auch das kalte Fluid pas-

sieren den RB-W'T ein Mal. Es konnen auch mehrere Passagen realisiert werden, um die
Verweilzeit der Fluide und damit die Effizienz der Warmeiibertragung zu erhohen. In Ab-
bildung [3.5b ist ein Beispiel mit einem Mantel- und zwei Rohrdurchgéngen dargestellt, ein
sogenannter 1-2 Gegenstrom RB-W'T. Das Rohrbiindel tritt auf halben Querschnitt ein,
wird am Ende des RB-WTs umgelenkt, und strémt auf der zweiten Hélfte zuriick. Auch
das mantelseitige Fluid kann mehrere Passagen einnehmen, wie es in Abbildung fiir
einen 2-2 Gegenstrom RB-WT abgebildet ist.

Abbildung 3.5: Beispiele fiir RB-WT mit unterschiedlichen Strémungsfithrungen des
Fluids im Rohr (rote Pfeile) und im Mantel (blaue Pfeile).
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3.2.3.1 Modellannahmen fiir Rohrbiindel-Wiarmeiibertrager

Gaddis und Schliinder| (1979) haben gezeigt, dass eine wirksame Methode zur Modellie-
rung eines RB-W'T mit mehreren Passagen darin besteht, ihn in Segmente bzw. Zellen auf-
zuteilen. Die Anzahl dieser Zellen wird durch die Anzahl der Umlenkungen im Mantel und
die Anzahl der Rohrpassagen bestimmt. Die Zellen werden entsprechend der tatsdchlichen
Struktur des RB-WTs und der Anordnung der Ein- und Auslésse der beiden Fluide ver-
bunden. Jede Zelle des Modells ist ein kleiner, eigener WT, der auf der Grundlage der

angegebenen Zellenaufteilung und den folgenden Annahmen definiert ist:

e Jede Zelle besteht aus zwei Teilen. Beide Teile werden als Riihrbehélter betrachtet,

die durch eine gemeinsame wirmeleitfahigen Oberfliche A getrennt sind.

e Die Fluide sind in den Behéltern perfekt durchmischt, so dass ihnen eine homogene

Temperaturverteilung zugeordnet werden kann.

e Der gesamte Energieaustausch zwischen den Fluiden findet {iber die gemeinsame
Flache A statt. Jede andere Fliche, die die Zelle begrenzt, hat adiabatische Eigen-

schaften oder ist eine Einlass-/Auslassflache fiir die Fluide.

e Das Zellenkettenmodell setzt voraus, dass der Warmetransport nur senkrecht
zur Wand erfolgt (falls es sich um keine adiabate Wand handelt) und die

Riickvermischung zwischen zwei aufeinanderfolgenden Zellen vernachléssigbar ist.

e Das Rohrbiindel und die Umlenkbleche werden als Warmespeicher vernachléssigt.

Abbildung zeigt ein typisches Zellenkettenmodell, bei dem die Fluidstréme im Gegen-
strom angeordnet sind. Solange der Temperaturgradient, der Warmeiibergangskoeffizient
und die Austauschfliche konstant bleiben, ist die Leistung der Zelle und damit der
Wiérmeaiibertrag gleich, auch wenn die Strome im Gleich- oder Kreuzstrom angeord-
net sind. Die unterschiedlichen Stromungsmuster werden beriicksichtigt, wenn die Zellen
miteinander verbunden werden, um den gesamten RB-W'T darzustellen. Dieser Rahmen

fithrt zu einem Modell, das wie ein Zellennetzwerk aussieht.

3.2.3.2 Zellenkettenmodell

Fiir jede Zelle des RB-WTs, wie in Abbildung gezeigt, werden die Stoff- und Energie-
bilanzgleichungen aufgestellt. Die Austrittsparameter einer Zelle, die mit den Bilanzen be-
stimmt werden, werden als Eintrittswerte fiir die benachbarte Zelle in Stromungsrichtung
des jeweiligen Fluids iibergeben. Fiir das rohr- und mantelseitige Fluid mit definiertem
Volumen VZJ'eHe und definierte Austauschfliche Aty haben die Stoff- und Energiebilanzen

einer Zelle folgende Form:
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N N | Viene
¢ \ ¢ \ + . 7
| ) i i ] s i VR 65 se| R
1 Alt 1 1IA 1 ein ,/’:F'A'H _____ T aus
Zelle | om0 - .
T TP -T- T Vaus* T~ ”L___W’.____t_ Vgi/[n
I e = .
' VZelle \

Abbildung 3.6: Zellenkettenmodell fiir einen 1-2 Gegenstrom RB-W'T mit schematischer
Darstellung einer Zelle, basierend auf der Arbeit von |Gaddis und Schliinder| (1979)).

e P o o
VZJelle dﬁ % = Lﬂain xJi,ein - LJaus xJi,aus + Ri VZJelle7 = 17 Tt NCL? j = R7 M (343)
j dTguS

VZjelleij]P dt = miinCJi:’ (Tgin - TaJ:us

) + Agans@ (TA T3 )+ AHV LY, j=R,M (3.44)

Nal=1, j=RM (3.45)

Die Gleichungen - werden fiir jede Zelle geltst. Die geometrischen Gréflen einer
Zelle ergeben sich aus der Berechnung dieser fiir den gesamten RB-W'T geteilt durch die
Anzahl an Umlenkblechen NV sowie der Anzahl an Passagen fiir das rohrseitige Fluid

NPeR und das mantelseitige Fluid Np&M:

R 72 T2
VR NRLdilrB-wr gos _ 1%p-wrlrRB-WT
Zelle (NU T 1) Npg,M’ Zelle (NU + 1) Nprg.RNpg,M’

Vzl\edue = Vzgje - VZPEue (3-46)

NR’/T dIlRB—WT
A ans — 3.47
Trans T (NU 1) NeeM (3.47)

Dabei stellt d; den Innendurchmesser eines einzelnen Rohres, dgg_wt den Durchmesser
und lgp_wr die Linge des WTs dar. Es ist zu beachten, dass die Rohranzahl N® im
Biindel die Menge an Rohren ist, durch die das rohrseitige Fluid in den RB-W'T' ein-
tritt. Fiir einen 1-2 Gegenstrom RB-WT ist demnach die Rohranzahl nur halb so grofl
wie es fiir einen 1-1 Gegenstrom RB-W'T bei gleichen Querschnitt der Fall wére. Der
Wiérmetibergangskoeffizient o wird mit den Korrelationen von (Gnielinski| (2019a) und
der Wirmeiibergangskoeffizient o™ mit den Korrelationen von |Gaddis und Gnielinski
(2019) bestimmt (Anhang [A)).
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3.2.4 Filmkondensation

Der DR-WT und der RB-WT lassen sich auch als Kondensator einsetzen. Fiir einen P-
WT sind keine Korrelationen zum Warmetransport mit Phasenwechsel in der Literatur
vorhanden. Daher wird im Folgenden nur die Filmkondensation bei senkrechten Rohren
betrachtet. Als Kithlmedium wird in den meisten Fillen Kiithlwasser verwendet, das kei-
nen Phasenwechsel durchlauft. Je nach dem, ob der Gasstrom im oder auflen am Rohr
kondensiert, miissen die Stoff- und Energiebilanzgleichungen des Fluids in Abschnitt
bzw. neu formuliert werden. Die Bilanzgleichungen fiir das Kiihlwasser und die Be-
stimmung der Wéarmeleitung innerhalb des Rohres konnen direkt verwendet werden. Der
Gasstrom wird partiell am kiihleren Rohr kondensiert, sodass eine Fliissig-Gas Phasen-
grenzflache entsteht. Das Kondensat bildet einen diinnen Film am senkrechten Rohr und
so im weiteren Verlauf des Kondensators eine weitere thermische Schicht aus, durch die

die Wérme transportiert wird.

3.2.4.1 Modellannahmen fiir die Filmkondensation

Ein Modellansatz zur Beschreibung der Dynamik von Kondensatoren ist in der Arbeit
von Botsch| (1997)) zu finden. Der Ansatz wird in dieser Arbeit adaptiert, wobei weitere
Annahmen zur Vereinfachung der Modellierung getroffen werden. Der Grund dafiir ist,
dass der Einfluss des Kondensators auf die Prozessdynamik gering ist. Der Gasholdup
wird aufgrund seiner geringen Dichte gegeniiber der Fliissigphase vernachléssigt und der
Holdup des Kondensats ist klein, da die typischen Filmdicken bei industriellen Anwen-
dungen im Millimeterbereich liegen (Botsch, [1997)).

Fiir die Modellierung der Filmkondensation im/am Rohr werden folgende Annahmen ge-

troffen:

e Die Gasphase und das Kondensat befinden sich immer im thermodynamischen
Gleichgewicht.

e Beide Phasen weisen an der Fliissig-Gas Phasengrenzfliche dieselbe Geschwindig-
keit auf. Der thermische Widerstand an der Fliissig-Gas Phasengrenzfliche wird

vernachléssigt.

e Es liegen laminare Stromungsverhiltnisse vor und es treten keine Turbulenzen in

den Phasen auf.

e Thermische und hydrodynamische Anlaufvorgédnge haben iiber die Léange des

Stromungswegs keinen Einfluss.

e Anderungen der potentiellen und kinetischen Energie, Mischungseffekte und

Wiérmeverluste an die Umgebung sind vernachléssigbar.
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e Bei Absorptionsprozessen wird in den meisten Féllen reines Wasser aus dem im
Desorber verdampften Gasstrom kondensiert, weswegen der Einfluss der chemischen
Reaktionen hier vernachlassigt wird; es gibt keine inneren Quellen und Senken bei
der Modellierung fiir Warme und Stoff.

e Das Kondensat benetzt die Rohrwand vollstdndig und bildet einen zusam-

menhéngenden Film aus (senkrechtes Rohr/-biindel).

e Der Holdup der Gasphase wird aufgrund der viel geringeren Dichte gegeniiber des

Kondensats vernachléssigt.

e Der Wirme- und Stofftransport wahrend instationdrer Zustandsdnderungen l&sst
sich mit Wirme- und Stoffiibergangskoeffizienten bestimmen, die mit fiir den stati-

ondren Zustand giiltigen Korrelationsgleichungen ermittelt werden.

e Die Warme- und Stofftransportwiderstinde zwischen Gasphase und Kondensat wer-

den vernachléssigt; die zwei Phasen werden zusammen bilanziert.

3.2.4.2 Zweiphasen-Stromung

Durch das Kondensieren des eintretenden Gasstromes miissen die Stoff- und Energiebi-
lanzgleichungen auf zwei Phasen erweitert werden. Im Folgenden wird der Fall betrachtet,
dass das Gas am Kopf des Kondensators innerhalb des senkrechten Rohres eintritt. Mit
der Annahme des eindimensionalen Wéarmetransports senkrecht zum Rohr haben die Dif-

ferentialgleichungen folgende Form:

Ky sk k0T 0 ok ok 9 - G
7T(d1—(5 )5 (on W:&(L x; )+&(Gyl), ZZL...,NC (348)
OT 9T\ 00 trams OLK
_ sK) sK K K - _ K e
7 (dy = 6%) 0% p= & (875 +uaz) oL T AHS(T) —- (3.49)
NCE NC©

> @it =1, Zl yi=1 (3.50)

i=1

Hierin ist LX der Gesamt-Molenstrom an Kondensat. Der Gasstrom G verringert sich
K

iiber die thermodynamische Gleichgewichtsbeziehung mit Gleichung bestimmt. Der
Stromungsquerschnitt des Kondensats (= 7 (d; — 0¥) 6%) ist abhéingig von der Filmdicke

um die entsprechende Menge LK. Die Zusammensetzung des Kondensats z® wird

0¥. Die Filmdicke wiederum ist abhéngig von der Ausrichtung des Rohres (senkrecht oder
waagerecht) und der Gasgeschwindigkeit. Das Verhéltnis von Schwerkraft und Schubspan-
nung wird iiber einen Stromungsparameter S ermittelt, der iiber empirische Korrelationen
nach Numrich und Miiller| (2019) bestimmt wird (Anhang[A]). Nach [Numrich und Miiller,
(2019) ergibt sich die Filmdicke ¥ damit zu:
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6% 6,598

di - /T+14005
Der iibergehende Wérmestrom QTranS in Gleichung m wird mit den Gleichungen m
und bestimmt, wobei beachtet werden muss, dass die Warmeiibergangsfiiche Ayang
in diesem Fall von der Filmdicke 0¥ und im Falle eines RB-WT von der Rohranzahl
N® abhingig ist. Der in Gleichung notwendige Warmeiibergangskoeffizient wird mit

den Korrelationen von Numrich und Miiller| (2019) fiir einen Gleichstrom von Gas und

(3.51)

Kondensatfilm ermittelt.

3.3 CSTR Modell

Der CSTR (continuous stirred tank reactor) ist ein Chargenreaktor mit idealen Mischbe-
dingungen, wie in Abbildung dargestellt. Der Modellansatz zur Beschreibung eines
CSTRs mit vorhandenem Fliissigkeitholdup V' wird in dieser Arbeit fiir verschiedene An-
lagenkomponenten verwendet (vgl. Tabelle .

Der Holdup der Anlagenkomponenten, die in dieser Arbeit mit dem CSTR Modell be-
schrieben werden, ist signifikant. Wéhrend instationirer Ubergansprozesse fiihrt dieser
Holdup bei chemischen Reaktionen zu einem zuétzlichen Umsatz und beeinflusst so die

Prozessdynamik. Die Stoff- und Energiebilanzgleichungen fiir einen CSTR lauten:

Ct dt = Lein Tiein — Laus Ti aus — GV ylv + Ri V, 1= ]_, ceny NCL (352)
d(vT )
pcp (dt ) =mcy (Ton—T)+AHg Lg + AHY GV +Q (3.53)
NCU NCU
>ow=1, Y y=1 (3.54)
=1 i=1
(a) GQIUSI yi‘,/ausr Taus (b)

Lein' xi,ein' Tein Leinv xi,ein' Tein LaLlSr Xiaus, Taus

— — —_

.

LauSl Xi,aus, Taus VCSTR

Abbildung 3.7: Schematische Darstellung eines CSTRs (a) und einer Kaskade von drei
CSTR (b) mit Ein- und Austrittsgrofien.
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Zeitliche Anderungen der CSTR-Fiillmenge V werden dabei beriicksichtigt. Die
Behilterwinde kénnen als adiabat angenommen werden (@ = 0). Es kénnen aber auch
Wiirmeverluste (—-Q) als Senke oder Wirmezufuhren (+@)) infolge einer fuferen Behei-
zung als Quellterm beriicksichtigt werden. Letzteres ist der Fall, wenn ein Verdampfer
modelliert werden soll. Die Wirmezufuhr +@Q fithrt zu einer teilweisen Verdampfung der
Fliissigkeit und somit zu einen Dampfstrom GV > 0 in Gleichung und [3.53] Unter der
Annahme eines thermodynamischen Gleichgewichts wird die Dampfzusammensetzung ¥
iiber Gleichung bestimmt. Der Dampfstrom selbst wird dann mithilfe der Summa-
tionsbedingung fiir die Dampfzusammensetzung in Gleichung bestimmt. Alle in der
Fliissigphase ablaufenden Reaktionen kénnen aufgrund der hohen Temperaturen im Ver-
dampfer als instantan betrachtet werden (Huepen und Kenig, 2010)). Fiir die dynamische
Modellierung der FSV Systeme und Kolonnensiimpfe werden die Gleichungen -
ohne Dampfstrom (GV = 0) und ohne Wirmequelle/-senke (Q = 0) formuliert.

Ein einzelner CSTR mit signifikantem Holdup V' weist eine starke Riickvermischung auf,
die zu einer breiten Verweilzeitverteilung der Molekiile im CSTR fithrt. Mit der Modellie-
rung einer CSTR, Kaskade verringert sich die Riickvermischung mit zunehmender Anzahl
an CSTR Ncgtr. Dieses charakteristische Verhalten ldsst sich mit der Bodenstein-Zahl
Bo bestimmen, die das Verhéltnis von Konvektion zu Diffusion beschreibt (Bohnet, 2004)).

Die Bodenstein-Zahl liegt zwischen zwei Grenzfillen:

e Bo — 0: Zustand einer totalen Riickvermischung, der idealerweise in einem CSTR

erwiinscht ist

e Bo — oo: Keine Riickvermischung, sondern eine kontinuierliche Durchstromung, die

in einem idealen Stromungsrohr herrscht

Bei Anlagenkomponenten mit geringer Fluidgeschwindigkeit, z.B. im Kolonnensumpf,
liegt eine kleine Bodenstein-Zahl vor. Diese Komponenten werden mit dem Modell eines
einzelnen CSTR beschrieben. Die Anlagenkomponenten mit hoher Fluidgeschwindigkeit,
z.B. in Rohrleitungen, ist die Bodenstein-Zahl grof. Diese Komponenten werden mit ei-
ner CSTR Kaskade modelliert (Abbildung [3.7p), wobei eine Anzahl von drei CSTR zur
Beschreibung der Dynamik einer realen Rohrleitung ausreichend ist (Westerterp et al.),
1984)).

In den Kolonnen erfolgt die Bestimmung der CSTR-Fiillmengen durch Multiplikation des
Kolonnenquerschnitts mit der jeweiligen Fiillhohe. Im Kolonnensumpf wird die Fiillhche
in der Regel eingestellt und {iber Differenzdruck-Reglern konstant gehalten. In den FSV
Systemen héingt die Fiillhohe von der Konstruktion ab (vgl. Abbildung|1.4]). Bei Systemen
mit Uberlauf, z.B. der VEPK in Abbildung , wird eine konstante Fiillhohe im Samm-
ler erreicht, die zur Bestimmung der CSTR-Fiillmenge direkt verwendet werden kann. Die
Verteiler werden eingesetzt, um auch bei sehr geringen Berieselungsdichten einen ausrei-

chenden Fiillstand und damit einen guten Puffer bei schwankende Berieselungsdichten
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zu gewahrleisten. Bei hoheren Berieselungsdichten reichen meist einfache Siebboden, wie
z.B. der VS in Abbildung[I.4p, fiir einen ausreichenden Fiillstand und, damit verbunden,
einer gleichméflen Verteilung der herabtropfenden Fliissigkeit. In diesem Fall kann der

Fiillstand hrgy im FSV System anhand der Torricelli-Gleichung bestimmt werden:

VY = Apus /2 g hesy (3.55)

Dabei stellt A, die Austrittsfliche dar, in diesem Fall die Gesamtfliche aller Bohrlocher
(BL) des Siebbodens. Bei Kolonnen mit verhdltnisméfig kleinem Durchmesser, z.B. bei
Technikumsanlagen oder kleineren Pilot-Anlagen, und sehr geringen Berieselungsdichten
haben Schwankungen der Fliissigkeitsmenge einen stirkeren Einfluss auf den Fiillstand,
sodass fiir solche Betriebszustédnde neue Konstruktionsweisen entwickelt wurden. So weist
beispielsweise der VKRPW in Abbildung [3.8h einzelne Sammelbehélter mit BL in unter-

schiedlichen Hohen auf, um die Austrittsflache A,,s abhéingig vom Fiillstand zu machen.

Bei hohen Fliissigkeitsbelastungen steigt der Fiillstand stark an, wird aber durch
die VergroBerung der Austrittsfliche gebremst, wéhrend bei einer Verringerung der
Fliissigkeitsbelastung die kleiner werdende Austrittsfliche zu einer langsameren Ver-
kleinerung des Fiillstands fiithrt. In diesem Fall ist eine einfache Anwendung der Glei-
chung nicht maoglich, sondern die Anderung der Austrittsfliche mit dem Fiillstand
muss beriicksichtigt werden. Um die sprunghafte Anderung der Austrittsfliche zu
beriicksichtigen, werden Hilfsgrofen hy_4 eingefiihrt. Das Vorgehen wird anhand von Ab-
bildung [3.8b erldutert: Der FSV wird in verschiedene Bereiche aufgeteilt. Diese Bereiche
werden durch die Hilfsgroflen hy_4 gekennzeichnet, in denen die Torricelli-Gleichung fiir
die in diesem Bereich relevante Austrittsfliche angewendet wird. Die Austrittsflichen A;_4

entsprechen der Summe aller BL-Fliachen auf der entsprechenden Hohe hy_4. Je nach dem

(b)

Abbildung 3.8: Sogenannter VKRPW (a), entnommen aus einem Produktkatalog der
Firma Sulzer Chemtech Ltd.| (2023), und Veranschaulichung der Vorgehensweise bei der
Modellierung (b).
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in welchem Bereich sich der aktuelle Fiillstand hges befindet, ergibt sich die Torricelli-
Gleichung zu:

(hl < hges < h?) :Vaus = Al V 29 (hges - hl)7
(ha < hges < h3) *Vius = A1 /29 (Dges = h1) + A \/2g (Rges — ha), (3.56)
(h3 < hges < ha) Vs = A1 \/29 (Bgos = h1) + A2\/2 9 (hges — ha) + As\/2 g (Dges — hs3)

Sind im Verteiler auf mehr Ebenen BL vertreten, so wird das Vorgehen mit weiteren

HilfsgroBen zur Erweiterung der Torricelli-Gleichung fortgefiihrt.

3.4 Reaktionssysteme

Das gesamte Reaktionssystem fiir die Rauchgaswische (Abscheidung von CO; mit
wiassrigen MEA Losungen) umfasst eine komplexe Reihe paralleler und aufeinander fol-
gender Reaktionen in der fliissigen Phase (Kucka et al., 2003)). Zwei davon sind kinetisch
kontrollierte reversible Reaktionen:
COy + MEAH + H,O = MEACOO™ + H30", (RI)
CO, + OH™ = HCOg3, (RIT)

wahrend drei andere Reaktionen instantan reversibel sind:

MEAH + H;0" = MEAH" + H,0, (RIII)
HCO3; + H,O = CO3% + H307, (RIV)
2H,0 = H30+ +OH". (R,V)

Die Beriicksichtigung der Reaktionen bei den Modellanséitzen erfolgt unter Verwendung
der komponentenbezogenen Reaktionsrate R; in den Gleichungen [3.1] [3.8] [3.20] [3.35], [3.43
und [3.52, Alle Reaktionen finden in der fliisssigen Phase statt und daher ist die Reakti-

onsgeschwindigkeit in der Gasphase: R® = 0. Die Ri-Werte werden aus der dquivalenten

Reaktionsgeschwindigkeit 7; und den stéchiometrischen Koeffizienten v, der entsprechen-

den Reaktion r bestimmt:

NReak

Ri: Z (Vi,rri)a 1= ].,...,NCL (357)

r=RI
Fiir kinetisch kontrollierte reversible Reaktionen erhilt man die &quivalente Reaktionsge-

schwindigkeit r, durch:

T = kr,hin H (QZ‘E’)/E)Z/E’r - kr,back H (ZEP’}/P)VP’r s r= RI, PN NReak (358)

Edukte Produkte
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Instantan reversible Reaktionen werden durch das Massenwirkungsgesetz beschrieben:

[Tprodukte (33P7P);,r _ ki hin
[Edukte (xE’VE)]l:;r ) K back
Die Reaktionsgeschwindigkeitskonstanten k, in Gleichung und die Gleichgewichts-
konstanten K, in Gleichung werden iiber empirische Korrelationen aus der Literatur
bestimmt (Anhang [B)).

Fiir die Koksofengasrenigung wird in dieser Arbeit die chemische Absorption von COs
und HyS mit wassrigen NHj-Losungen betrachtet (HoS-Wischer aus Abbildung . Das

Reaktionssystem besteht aus drei kinetisch kontrollierten reversiblen Reaktionen:

K, = , r=RI, ..., NReak (3.59)

COs + OH™ = HCOg3, (RII)
C02 + QHQO S5 HCO; + HgO*, (RVI)
COQ + NH3 + HQO = HQNCOO_ + H30+, (RVII)

und aus finf instantan reversibel ablaufende Reaktionen:

NH; + H,O = NH} + OH", (RVIII)
H,S + H,O = HS™ + H;0", (RIX)
HCN + H,O = CN™ + H;0", (RX)
HCOj3; + H,0 = CO3% + H;OY, (RIV)
2H,0 = H;0" + OH". (RV)

Einige Reaktionsgleichungen in den zwei Absorptionssystemen sind identisch. Zur Be-
stimmung der Modellparameter werden daher dieselben Korrelationen verwendet. Auch
in diesem System finden die Reaktionen ausschlieflich in der Fliissigphase statt und wer-
den mit den Gleichungen - im Modell beriicksichtigt. Die nicht-iibergehenden
Komponenten des Koksofengases, z.B. Wasserstoff oder Methan (vgl. Tabelle , werden
bei der Modellierung als inerte Gaskomponente zusammengefasst.

Die Korrelationen fiir die Geschwindigkeitskonstanten k, pin und k; pacx haben einen be-
stimmten Temperaturbereich (ca. 10 — 60°C, vgl. Anhang [B)), in dem sie giiltig sind. Bei
hoheren Temperaturen, wie sie vor allem in der Desorptionseinheit vorliegen, sind die Kor-
relationen ungiiltig. Die nachfolgenden Simulationen haben gezeigt, dass die Anwendung
der kinetisch kontrollierten Reaktionen mit Gleichung in der Desorptionseinheit, bei
der Temperaturen von rund 100°C vorliegen, zu zu hohen Desorptionsraten fithrt. Durch
den exponentiellen Anstieg der Reaktionsgeschwindigkeit mit der Temperatur fithren die
hohen Temperaturen aulerhalb des Giiltigkeitsbereichs bei der Simulation zu Reaktionsge-
schwindigkeiten, die iiber das chemische Gleichgewicht hinaus gehen. Da dies physikalisch
unmoglich ist, miissen alle Reaktionen bei Temperaturen oberhalb des Giiltigkeitsbereichs
als instantan betrachtet werden (Gleichung [3.59).
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Das dynamische Modell besteht aus einem System von partiellen Differentialgleichun-
gen und algebraischen Gleichungen (PDAE), welches analytisch nicht losbar ist. Das
System partieller Differentialgleichungen muss daher diskretisiert und in ein differential-
algebraisches System (DAE) iiberfithrt werden. Dazu wird die Finite-Elemente-Methode
(FEM) verwendet. Bei der Bestimmung der Anzahl an finite Elemente wird ein Opti-
mum zwischen Modellgenauigkeit und Rechenzeit ermittelt. Dies wird mit der Gitter-
unabhéngigkeitsstudie realisiert, dessen Ergebnisse fiir die in dieser Arbeit untersuchten
Systeme in Anhang [C] zu finden sind. Fiir das rate-based Modell werden Diskretisierun-
gen in Bezug auf die axiale z-Koordinate und die normale n-Koordinate vorgenommen.
Die Diskretisierung in axiale Richtung fiihrt beispielsweise fiir Gleichung (Stoffbilanz-

Gleichung der Fliissigkernphase) zu folgender diskretisierten Form:

% (UPal) Azy = LF 2l — I ot 4 (nfPa + RPGY) ANz, i=1,..,NCY (4.1)
Der Index j stellt dabei die Lokalisierung der betrachteten Stufe dar. Analog wurde eine
Diskretisierung in Bezug auf die axiale z-Koordinate im 1D Warmetransport Modell fiir
die verschiedenen Warmeiibertrager vorgenommen.

Fiir die Gitterunabhéngigkeitsstudien wird ein aus den Simulationsergebnissen gewonne-
ner Parameter in Abhéngigkeit der Stufenzahl beobachtet. Fiir das rate-based Modell wird
dazu der Absorptions- bzw. Desorptionsgrad verwendet, weil dieser Parameter fiir die Be-
wertung der Trenneffizienz entscheidend ist. Der Absorptions- bzw. Desorptionsgrad fiir

eine Komponente i aus dem Gasstrom wird wie folgt berechnet:

Vi = ( G yG yG o ) +100% (4.2)
Bei den Wéarmeiibertragern wird die Austrittstemperatur des heilen Fluds gew#hlt, um
die Gitterunabhéngigkeit zu priifen.

Im rate-based Modell wird aufgrund des nicht-linearen Konzentrationsverlaufs im Film
als Folge der Kopplung von Stofftransport und chemischer Reaktion die Diskreti-
sierung der Filmsegmente durchgefiihrt. Der typische Konzentrationsverlauf im Film
ist dabei abhéingig vom Verhéltnis der Stofftransport- und Reaktionsgeschwindigkeit.
Das Verhiltnis von Reaktionsgeschwindigkeit ohne Stofftransporthemmung zur reinen
Stoffiibergangsgeschwindigkeit wird iiber die Hatta-Zahl Ha beschrieben. Die Einteilung
von Reaktionen in Gas-Fiissig-Stoffsystemen nach ihrer Ha-Zahl mit Einfluss auf das ty-
pische Konzentrationsprofil im Film ist in Abbildung gegeben.
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Abbildung 4.1: Einteilung von Reaktionen in Gas-Fliissig-Stoffsystemen nach ihrer Ha-
Zahl und Einfluss auf das Konzentrationsprofil im Film (a) (Westerterp et al., [1984))
sowie Einfluss des Verteilungskoeffizienten m auf die Filmdiskretdicke 6; (b).

Es ist zu erkennen, dass die stédrkste Kriimmung des Konzentrationsprofils fiir hohe Ha-
Zahlen (schnelle Reaktionen) in der Néhe der Phasengrenzfliche zu finden ist, wéhrend
fiir kleine Ha-Zahlen (langsame Reaktionen) die Kriimmung iiber die gesamte Filmdicke
nahezu konstant bleibt. Dort, wo eine starke Kriimmung vorliegt, sollten die Filmdiskrete
moglichst schmal sein. Andernfalls wiirde die Linearisierung in den Diskreten bei zu star-
ker Kriimmung zu ungenauen Abbildungen der Konzentrationsprofilen fithren. Da nur
in einem bestimmten Bereich schmale Filmdiskrete notwendig sind, wird die Dicke der

Filmdiskrete nach von Harbou et al. (2014)) mit folgender Formel verteilt:

5 :5.((Ngﬂm)*ﬂ (}V—l)) (13)

Hierin beschreibt ¢; die Dicke des jeweiligen Filmdiskrets, N¥i™ ist die Anzahl an Film-

diskreten und m der Verteilungskoeffizient. Fiir m = 1 weisen alle Filmdiskrete dieselbe

Dicke auf und fiir m > 1 nimmt die Dicke der Filmdiskrete von der Phasengrenzfliche
aus bis zur Kernphase zu (vgl. Abbildung ) Die Bestimmung des Verteilungskoef-
fizienten m erfolgt parallel zur Ermittlung der Anzahl an Filmdiskreten NFi™ in der
Gitterunabhéngigkeitsstudie. Die Bestimmung ist allerdings nur fiir die Anwendung des
rate-based Modells mit kinetisch kontrollierten Reaktionen (im Absorber) notwendig. In
der Desorptionseinheit werden alle Reaktionen aufgrund der hohen Temperaturen als in-
stantan ablaufende Reaktionen betrachtet, sodass das Reaktionsgleichgewicht unmittelbar
an der Phasengrenzfliche erreicht ist. Die Anzahl an Filmdiskreten reduziert sich dadurch
zu eins. Im 1D Warmetransport Modell zur Beschreibung des dynamischen P-WT Ver-
haltens werden die Platten als Warmespeicher beriicksichtigt. Da die Platten relativ diinn
sind (AP « 1) und Zentraldifferenzen aufgrund der Differentialgleichung 2. Ordnung ver-
wendet werden muss (vgl. Gleichung mit Gleichung [3.27), wird in diesem Fall die

minimale Anzahl von zwei Diskreten zur Losung angewendet, woraus folgt:
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dT®? 2\P
P — AP
Pode hP

In dieser Arbeit wird das dynamische Modell in zwei kommerzielle Softwaretools imple-

VP ple

[(T¥/—T%) - (T" - T"/%)] (4.4)

mentiert. Die Tools sind zum einen das Simulationsprogramm Aspen Custom Modeler®
(ACM) und zum anderen general PROcess Modelling System (gPROMS). ACM und
gPROMS sind beide gleichungsorientierte numerische Solver und eignen sich fiir Anlagen-
simulationen. Sie konnen fiir stationdre und instationdre Berechnungen verwendet werden.
Zudem bieten beide die Moglichkeit der Einbindung externer Stoffdatenbanken wie Aspen
Properties (eNRTL), um die Eigenschaften der Gas- und Fliissigphase in Abhéngigkeit
von Temperatur, Druck und (bei Gemischen) von der Zusammensetzung zu bestimmen.
Fiir gPROMS ist zur Einbindung der Stoffdatenbank eine Schnittstelle, das sogenann-
te CAPE-OPEN Property Package, notwendig. Beispiele eines Flowsheets im jeweiligen
Softwaretool sind fiir ACM in Abbildung 4.2 und fiir gPROMS in Abbildung [4.3] gegeben.
Die Flowsheets stellen eine Ubersicht der Simulationsaufgabe in einer White-Box Ansicht
dar, d.h. hinter jeder Box verbergen sich die Modellgleichungen, die in dieser Box gelost
werden. So werden beispielsweise in der Box Absorptionskolonne die Modellgleichungen
des rate-based Modells gelost. Innerhalb der Absorptionskolonne sind zudem die Modell-
gleichungen des FSV Systems sowie des Kolonnensumpfes (CSTR Modell) implementiert
und mit dem rate-based Modell verkniipft. Die Boxen werden durch Pfeile miteinander
verbunden und so Ein- bzw. Austrittgrofien zwischen den Modellen iibergeben; blaue
Pfeile sind Fliissgkeitsstrome und rote Pfeile Gasstrome. Sie beinhalten die Informatio-
nen iiber Massenstrom, Druck, Temperatur und Zusammensetzung. Schwarz gepunktete
Pfeile reprisentieren keine real existierenden Prozesstrome, sondern iibergeben Prozess-
groflen, die zur Losung der Modellgleichungen innerhalb der Box relevant sind. Neben
den in Kapitel [3| beschriebenen Modellen sind noch weitere Boxen mit trivialen Modell-
gleichungen in der Simulation notwendig. Diese sind der Mischer, in dem zwei oder mehr
Strome iiber Summationsgleichungen zu einem resultierenden Strom gemischt werden, der
Split, der iiber Summationsgleichungen einen Strom auf mehrere Stréme im gewiinschten
Verhéltnis aufteilt, das Ventil, welches Anderungen am Massenstrom des im Kreis lau-
fenden Fliissigkeitsstroms ermoglicht, und Make Up-Boxen, die iiber globale Massenbilan-
zen Verluste an Wasser sowie Losungsmittel korrigieren. Die Boxen Feed und Konnek-
tor werden lediglich zum Starten einer Simulation benotigt. Der Konnektor beinhaltet
Modellgleichungen, die einem Drei-Wege-Ventil entsprechen. Zu Beginn einer Simulation
wird der eintretende Fliissigkeitsstrom im Absorber eingestellt (konstante Wert im Mo-
dell Feed), wihrend der ankommende Fliissigkeitsstrom aus der Desorptionseinheit (521
in Abbildung zu Null gesetzt wird. Der Feed gibt Massenstrom, Temperatur, Druck,
Konzentration und Beladung des Losungsmittels vor. Mit diesen Anfangsbedingungen

werden alle Modellgleichungen des Kreislaufprozesses stationér gelost.
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Da es sich um ein sehr komplexes Gleichungssystem handelt, werden die Gleichungen
stufenweise gelost, d.h. das zu Beginn weder Stoff-, Warmetransport noch chemische
Reaktionen beriicksichtigt werden. Erst nach erfolgreicher Berechnung aller Modellglei-
chungen ohne Transportgleichungen werden diese der Reihe nach hinzugeschaltet. Das
Hinzuschalten wird {iber einen Parameter erreicht, der mit dem jeweiligen Anteil in der
Bilanzgleichung multipliziert wird. Gleichung beispielsweise wird in folgender Form

im Softwaretool implementiert:

% (U zP) Az = LISl - LPal + (kgniPd + KRRIPY) ANz, i=1,..,NC¥ (4.5)
Die Parameter kg und kg haben zu Beginn der Simulation den Wert Null. Nach erfolg-
reicher Simulation wird der Parameter kg schrittweise zu Eins gesetzt und nach erneut
erfolgreicher Simulation auch der Parameter kg. Dieses Vorgehen (" homotopie per hand”)
wird fiir alle Bilanzgleichungen des dynamischen Modells angewendet und fiihrt zu gerin-
geren Konvergenzproblemen des Solvers. Sind alle Parameter zu Eins gesetzt worden und
ist die stationére Simulation erfolgreich, wird nun in der Box Konnektor der Kreislauf
geschlossen. Das wird ermoglicht, indem der Strom aus dem Feed (konstante Eintritts-
werte) zu Null und der aus der Desorptionseinheit ankommende Fliissigkeitsstrom (521
in Abbildung zu Eins gesetzt wird. Nach erfolgreicher Simulation des geschlossenen
Kreislaufs, dient dieser stionére Zustand als Anfangsbedingung fiir die dynamische Simu-
lation.

Bei den Untersuchungen zur Prozessdynamik wird ein oder werden mehrere Prozesspara-
meter aus dem stationiren Zustand heraus variiert und das Ubergangsverhalten des Pro-
zesses anhand der messbaren Austrittsgrofien bis zum Erreichen des neuen stationéren Zu-
stands gemessen (experimentell) bzw. simuliert (numerisch). Das Variieren eines Prozess-
parameters erfolgt bei den experimentellen Untersuchungen beispielsweise durch Schlieflen
oder Offnen eines Ventils zur Anderung des Gas- oder Fliissigmassenstroms. Ebenso ist
eine Erhohung oder Verringerung der Heizleistung des Verdampfers durch weiteres oder
geringeres Zufiithren des Heizdampfes moglich, wodurch eine Temperaturdnderung in der
Desorptionseinheit und folglich eine Anderung der Beladung des Losungsmittels erreicht
wird. Eine ideal sprunghafte (diskrete) Anderung ist weder experimentell noch in der
Simulation moglich. In der Simulation wiirde bei diesem Vorgehen direkt der neue stati-
onire Zustand (ohne Ubergangsverhalten) resultieren. Daher werden die Anderungen von
Prozessparametern durch zwei verschiedene rein mathematische Ansétze im Modell vor-

gegeben (Sprungfunktionen). Der erste Ansatz ist eine Exponentialfunktion in der Form:

Y:YAZi(YEZ—YAZ)-[1—e(_T;’<P)] (4.6)

Dabei stellt Y den zu variierenden Parameter mit dem Anfangswert Y,z und dem neuen
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Wert Ygz dar. Dabei ist eine Erhohung (positive Anderung) oder Verringerung (negative
Anderung) des Anfangswertes moglich. Der Parameter Texp ist ein konstanter einstellba-
rer Parameter, mit dem eine nahezu sprunghafte Anderung maglich ist. Die Abhéngigkeit
der Funktion vom Parameter Ty, ist in Abbildung dargestellt. Bei einem Wert von
Texp = 0,1 erfolgt die Anderung des Parameters Y in ca. einer Sekunde. Kleinere Werte
fithren zum oben genannte Problem, sodass der neue stationére Zustand sofort resultiert.
Je groBer der Wert fiir Tiy, ist, desto langsamer dndert sich der Parameter, d.h. das Er-
reichen von Ygyz dauert langer. Uber Texp ist es moglich, die im Experiment durchgefiihrte
Anderung des Parameters in der Simulation vorzugeben.

In den meisten experimentell durchgefithrten Anderungen ist eine Verzégerung zu Be-
ginn und zum Ende des Ubergangs als Folge der Trigheit zu beobachten. Um eine solche
Anderung des Parameters in der Simulation vorzugeben, wird ein mathematischer Ansatz,
inspiriert durch den sogenannten Carreau-Yasuda Ansatz, verwendet. Der Carreau-Yasuda
Ansatz ist eine mathematische Funktion, die im Bereich der Rheologie zur Beschreibung
der Abhéngigkeit der Viskositét von der Scherrate fiir nicht-newtonische Fluide Anwen-

dung findet (Mezger, [2016). In dieser Arbeit wird der Ansatz in folgender Form genutzt:
Y = YEZ + (YAZ - YEZ) . [1 + (Tcy . t)acy]ncy (47)

Hier sind insgesamt drei Parameter einstellbar: T¢y, a., und n.,. Beispiele der Sprung-
funktionen fiir verschiedene Werte sind in Abbildung gegeben. Dabei beeinflusst der
Parameter T, hauptsichlich die Dauer des Ubergangs und der Parameter n die Steigung
der Funktion im Ubergang. Wenn: acy = 2, ist die Verzogerung zu Beginn und am Ende
des Ubergangs gleich, withrend Werte acy > 2 zu einer groferen Verzogerung zu Beginn
und Werte aqy < 2 zu einer grofleren Verzogerung am Ende des Ubergangs fithren. Durch

die drei Parameter lassen sich nahezu beliebige Ubergéinge erzeugen.
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Abbildung 4.4: Beispiele der Sprungfunktionen fiir einen Anfangswert von 2 und einer
Erh6hung bzw. Verringerung des Wertes um 1 in Abhéngigkeit der einstellbaren Para-
meter fiir die Exponentialfunktion (a) und fiir den Ansatz nach Carreau-Yasuda (b).
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Fiir einen Vergleich der beiden Softwaretools ACM und gPROMS wird ein Absorptions-
prozess simuliert, der dem Grundgeriist aus Abbildung mit zusétzlicher Kiihlung des
in die Absorptionskolonne eintretenden Losungsmittels entspricht. Als Absorptionssystem
wird die Rauchgaswésche verwendet. Die ACM- bzw. gPROMS-Simulationen werden auf
Computern mit dhnlicher Leistung durchgefiihrt, die in Tabelle gegeben sind.

Tabelle 4.1: Rechenleistung der fiir die Simulationen verwendeten Computer.

Softwaretool Version Prozessor RAM
ACM 10 AMD Ryzen 3 2200G (3,5 GHz) 16 GB
gPROMS Model-Builder 5.1.1 ~ AMD Phenom IT X4 955 (3,2 GHz) 16 GB

In beiden Softwaretools werden die gleichen Toleranzen als Konvergenzkriterium fest-
gelegt. Bei der Simulation des stationdren Ausgangszustands hat sich gezeigt, dass
ACM im Vergleich zu gPROMS schneller und stabiler, d.h. mit weniger Konvergenz-
problemen, rechnet. Da beide Softwaretools das Newton-Verfahren zur iterativen Losung
des Gleichungssystems nutzen, konnte ein Grund fiir den Unterschied in den Aus-
wahlmoglichkeiten der Solver Optionen liegen. Hier bietet ACM dem Nutzer im Vergleich
zu gPROMS mehr einstellbare Parameter an, z.B. die maximale Anzahl an Iterationen
oder die maximal zuldssige Anderung einer Variablen. Vergleicht man die bendtigte Zeit
zur Simulation der Prozessdynamik, zeigt gPROMS einen klaren Vorteil gegeniiber ACM
auf. In Abbildung ist das Ergebnis fiir die reale Zeit gegeben, die ACM und gPROMS
jeweils zur Simulation des Ubergangsverhaltens, das in diesem Beispiel ca. 170 Minuten

betrégt, benotigt.

160 - —ACM —gPROMS
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— — —
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Abbildung 4.5: Vergleich der real benotigten Zeit zur Simulation der Prozessdynamik
eines Absorptionsprozesses mit den Softwaretools ACM und gPROMS.
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Wéhrend gPROMS den neuen stationédren Zustand nach ca. 50 Minuten simuliert hat,
benotigte ACM knapp 500 Minuten, um auf dasselbe Resultat zu kommen. Als Integrati-
onsmethode zur Berechnung des zeitlichen Ubergangsverhaltens wurde in beiden Solvern
das implizite Euler-Verfahren angewendet. Der Hauptgrund fiir die grofle Differenz ist,
dass ACM im Gegensatz zu gPROMS eine Obergrenze fiir den zeitlichen Integrations-
schritt von At = 1s besitzt. Bei den starken Anderungen der Prozessparameter infolge des
vorgegebenen Sprungs zu Beginn der Simulation zeigen beide Softwaretools eine &hnliche
reale Zeit auf. Sobald die Anderungen kleiner werden und damit die GréBe des Integrati-
onsschrittes zu At >> 1s zunehmen kann, ohne dabei die maximal zulédssigen Konvergenz-
kriterien zu iiberschreiten, kann gPROMS das Ubergangsverhalten in deutlich kiirzerer
Zeit simulieren. In ACM wird ab diesem Zeitpunkt der Integrationsschritt auf eine Sekun-
de festgesetzt (Obergrenze). Dies ist auch der Grund, warum die reale Zeit in ACM nahezu
linear mit der simulierten Zeit ansteigt. Eine Moglichkeit zur Reduzierung der realen Zeit
in ACM besteht, wenn alle Modellgleichungen nicht in der SI-Einheit Sekunde, sondern
in der Einheit Stunde durch Multiplikation mit dem Faktor 3600sh~! implementiert wer-
den wiirden. So wére der maximale Integrationsschritt At = 1h. Da die Umstellung aller
Modellgleichungen auf eine neue Zeiteinheit einen sehr grofien Implementierungsaufwand
zur Folge gehabt hétte, wurde dies im Rahmen dieser Arbeit nicht durchgefiihrt.

Fiir die nachfolgenden Simulationen wird das Softwaretool ACM verwendet, obwohl die
benotigte Zeit in gPROMS fiir die Simulation der Prozessdynamik deutlich geringer ist.
Der Grund hierfiir ist, dass bei der Entwicklung des dynamischen Modells und der Viel-
zahl an unterschiedlichen Simulationen viele stationére Prozesszustéinde simuliert werden
miissen. Da ACM hier ein deutlich stabileres Konvergenzverhalten gezeigt hat, ist dies
der ausschlaggebende Grund fiir die Entscheidung. Fiir die Untersuchung der Prozessdy-
namik einer beliebigen Absorptionsanlage nach erfolgreicher Validierung des Modells ist

eine Umstellung auf das Softwaretool gPROMS aber empfehlenswert.
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Um die Genauigkeit des dynamischen Modells bestimmen zu kénnen, werden verschiedene
experimentelle Untersuchungen zu Absorptionsprozessen verwendet und mit den Simula-
tionsergebnissen des Modells verglichen. Diese Validierung wird wie folgt durchgefiihrt:
Zunichst werden die unterschiedlichen Modellansitze der einzelnen Anlagenkomponen-
ten separat validiert. Dies soll aufzeigen, wie gut die Modellansétze im Einzelnen das dy-
namische Prozessverhalten wiedergeben konnen. Transiente Modelle einzelner Einheiten
garantieren jedoch nicht die Erfassung der Dynamik des Gesamtprozesses. Daher werden
die Modellansétze der einzelnen Anlagenkomponenten anschliefend zu einer geschlossenen
Anlage verkniipft und mit experimentellen Ergebnissen des Kreislaufprozesses validiert.

Beim Vergleich der experimentellen Ergebnissen mit denen aus der Simulation muss
zwischen systematischen Fehlern, die durch vereinfachende Annahmen oder der Ver-
wendung von empirischen Korrelationen in der Modellierung entstehen, und Abwei-
chungen in der Prozessdynamik unterschieden werden. Letztere zeigt sich beispielswei-
se durch Totzeiten (Zeit bis zum Reagieren einer Prozessvariablen auf eine Anderung)
und Ubergangszeiten (Zeit bis zum Erreichen eines neuen stationdren Zustands). Die
systematischen Abweichungen zeigen sich durch stationédre Simulationen. Bei der dyna-
mischen Simulation sind beide Abweichungen (systematisch und dynamisch) iiberlagert.
Die dynamischen Simulationsergebnisse konnen mit einer gewissen Abweichung zu den
experimentellen Messergebnisse bereits zu Beginn des Ubergangsprozesses starten. Diese
Uberlagerung beider Abweichungen erschweren eine Beurteilung dariiber, ob das dynami-
sche Ubergangsverhalten gut oder schlecht vom Modell wiedergegeben wird. In Abbildung
ist das Ubergangsverhalten einer beliebigen experimentell gemessenen ProzessgroBe
mit sechs unterschiedlichen Simulationsergebnissen und ihren Abweichungen voneinander
zur Hlustration aufgefithrt, um den Unterschied zwischen systematischen Abweichungen
und Abweichungen in der Prozessdynamik zu verdeutlichen. Ziel dieser illustrativen Bei-
spielen ist es, das Vorgehen zur Bewertung einer guten und einer schlechten Erfassung der

Prozessdynamik vom Modell zu erkléren.

Abbildung zeigt den Fall, dass die simulierte Prozessgréfie vom experimentellen
Messwert im stationdrem Ausgangszustand abweicht, diese Abweichung aber wihrend
der Simulation des Ubergangsverhaltens konstant bleibt. In Abbildung ist die
Ubereinstimmung zwischen simulierter und gemessener ProzessgroBe zu Beginn des
Ubergangsverhaltens perfekt, allerdings weicht das Simulationsergebnis im stationiren
Endzustand vom Messergebnis ab. Fiir unterschiedliche, stationére Zustdnde variieren die
Abweichungen zwischen Simulations- und Messergebnis in einem gewissen Bereich. Bei gu-
ter Ubereinstimmung zwischen simulierter und gemessener Prozessgrofe ist dieser Bereich

moglichst klein (ca. £ 10%). Abbildung zeigt ein Beispiel dafiir, wenn die Abweichung
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Abbildung 5.1: Verschiedene Beispiele (a) bis (f) zur Unterscheidung von systemati-
schen Abweichungen und Abweichungen in der Prozessdynamik.

zu Beginn und am Ende des Ubergangsverhaltens ungleich Null und unterschiedlich ist.
Die Abbildungen —f zeigen drei Beispiele dafiir, wenn die Ubereinstimmung zwischen
simulierter und gemessener Prozessgrofie zu Beginn und am Ende des Ubergangsverhaltens
zwar perfekt ist, wihrend des Ubergangsverhaltens aber deutliche Abweichungen zu er-
kennen sind. Diese Abweichungen werden hervorgerufen durch eine falsch simulierte Tot-
zeit (Abbildung [5.1), eine falsch simulierte Ubergangszeit (Abbildung [5.1¢) oder durch
ein komplett falsch simuliertes Ubergangsverhalten (Abbildung ) der Prozessgrofle.
Fiir diese drei Abbildungen (5.1d-f) wird in dieser Arbeit angenommen, dass die Ab-
weichungen in der Prozessdynamik grofl und die systematischen Abweichungen gerin-
ger sind. Dem gegeniiber sind in den Abbildungen [5.1p-¢ die Abweichungen in der Pro-
zessdynamik gering und die systematischen Abweichungen grofler. Nach diesem Vorge-
hen liegen geringe Abweichungen in der Prozessdynamik vor, wenn das simulierte und
gemessene Ubergangsverhalten einer ProzessgriBe einem der drei Beispiele aus Abbil-
dung [5.Th-c entspricht. In diesen Abbildungen ist zu erkennen, dass die Abweichungen
im Ubergangsverhalten konstant bleiben oder sich vom Startwert linear oder asympto-
tisch dem Endwert annéhern. Dies ist in den Abbildungen [5.1d-f nicht zu erkennen.
Zu Beginn und am Ende des Ubergangsverhaltens liegt eine perfekte Ubereinstimmung
zwischen Simulations- und Messergebnis der Prozessgrofie vor. Dazwischen nehmen die
Abweichungen im zeitlichen Verlauf zu und ab, wodurch sich Maxima und Minima im
Ubergangsverhalten (zwischen Start- und Endwert) bilden. In diesen Fillen wird von

einer schlechten Erfassung der Prozessdynamik vom Modell ausgegangen.
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5.1 Separate Anlagenkomponenten

Zunichst werden Studien aus der Literatur mit experimentellen Messergebnissen fiir
die einzelnen Anlagenkomponenten zur Validierung herangezogen. Dazu gehoren die
Absorptions- und Desorptionskolonne sowie die verschiedenen Wéarmeiibertrager in der
Peripherie. Die weiteren Komponenten in der Peripherie, wie beispielsweise die Rohrlei-
tungen oder Vorratsbehiélter, werden nicht separat validiert, sondern werden erst bei der

Betrachtung der gesamten Anlage beriicksichtigt.

5.1.1 Kolonnen

Es folgt die Validierung des stationédren und dynamischen Prozessverhaltens der einzelnen

Kolonnen, wobei die Rauchgaswische und Koksofengasreinigung betrachtet werden.

5.1.1.1 Rauchgaswische

Zum Prozessverhalten der chemische Absorption von gasférmigen COy mit wéssrigen
MEA Losungen sind viele experimentelle Untersuchung in der Literatur zu finden. In
dieser Arbeit werden die experimentellen Ergebnisse von verwendet. Hierzu
hat er an einer Pilotanlage der Universitiat Stuttgart eine Reihe von Experimenten durch-
gefiihrt, bei der wichtige Prozessparameter im weiten Bereich variiert und der stationére
Zustand anhand von Massenstrom, Druck, Temperatur und Zusammensetzung aller Pro-

zesstrome gemessen wurde. Die Spezifikationen des Absorbers und Desorbers von der von

(2013)) verwendeten Pilotanlage sind in Abbildung zu finden.
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Gas Kiihlwasser Kﬁl{lly'asser Anlagenspezifikationen
:‘ ..... > - Kolonnen Absorber Desorber
N Durchmesser [m] 0,125 0,125
Frische
« Packungshohe [m]
- MEA-L X
— ; «— osung *  Waschsektion 0,42 0,42
- * Trennsektion 5-084 3-0,84
Wasser Beladene —» .
Make-Up N Einbauten/Packung Mellapak Mellapak
MEA-L6sung
1 250Y 250Y
Kondensat
Rohgas
_’ .
e Beladene H21z_d ampf
MEA-Losung
=—
Frische <—
MEA-Losung

Abbildung 5.2: Die von (2013)) verwendete Absorptions- und Desorptionskolonne
zur experimentellen Untersuchung des stationédren Prozessverhaltens.
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Fiir die einzelnen Kolonnen werden die von Notz (2013 gemessenen Eintrittsstrome
im Modell vorgegeben. Die fiir das rate-based Modell erforderlichen Stoffiibergangs-
koeffizienten, Druckverluste und Fliissigkeitholdups werden mit den Korrelationen von
Billet und Schultes (1999)) firr die strukturierte Packung Mellapak 250Y bestimmt. Die
effektive Phasengrenzfliche wird mit der Korrelation von Tsai et al. (2011) berechnet
(Anhang . Die erforderlichen Reaktionsparameter fiir die Rauchgaswésche werden mit
den Korrelationen von [von Harbou et al| (2014) bestimmt (Anhang [B). Es werden 29
Experimente verwendet, bei denen Notz (2013) verschiedene Prozessparameter variiert
hat, um das stationire Prozessverhalten experimentell zu untersuchen. Eine Ubersicht
zu den eingestellten Prozessparametern wird in Abschnitt gegeben. Zur Validierung
werden fiir den Absorber der Absorptionsgrad sowie die Austrittstemperaturen des Gas-
und Fliissigkeitsstroms aus Messung und Simulation verglichen. Die Ergebnisse sind in
Abbildung [5.3| aufgefiihrt.

Die Paritéitsdiagramme in Abbildung[5.3|zeigen, dass die Abweichungen zwischen den aus
den Messungen und Simulationsergebnissen berechneten Absorptionsgraden fiir alle Ex-
perimente im Bereich +5% liegen. Der Mittelwert (berechnet aus den Betrdgen der Abwei-
chungen) betrigt 2,1% fiir den Absorptionsgrad, was einer sehr guten Ubereinstimmung
entspricht. Dies gilt auch fiir die Austrittstemperaturen des Gas- und Fliissigkeitsstroms,
wobei hier leicht hohere Abweichungen zu finden sind. Es fillt auf, dass die Temperaturen
des austretenden Gasstroms im Experiment von Notz (2013)) etwas geringer und die Tem-
peraturen des austretenden Fliissigkeitsstroms etwas hoher sind als in den Simulationen.
Dies liegt vor allem an den Warmeverlusten, die trotz Isolierung im Experiment aufgetre-
ten sind, in der Simulation aber nicht beriicksichtigt werden. Infolge der Warmeverluste
kondensiert aufsteigender Dampf im Absorber teilweise aus und die Gas-Temperatur sinkt.
Insgesamt ist die Ubereinstimmung zwischen Mess- und Simulationsergebnis mit dem rate-
based Modell aber sehr gut.

Fiir den einzelnen Desorber wird die Validierung analog zum Absorber durchgefiihrt. Das
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Abbildung 5.3: Paritdtsdiagramme fiir den Absorptionsgrad (a) und die Absorber-
Austrittstemperaturen des Gases und der Fliissigkeit (b); Experimente von Notz (2013)).
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rate-based Modell unterscheidet sich vor allem in der Beriicksichtigung der Reaktionen,
die hier aufgrund der hohen Temperaturen als instantan angenommen werden. Zusétzlich
zum Eintrittsstrom werden die Heizleistung im Verdampfer und die Austrittstemperatur
aus dem Kondensator aus den Messergebnissen von |Notz (2013) in der Simulation vorgege-
ben. Das besondere an der Pilotanlage ist, dass der Verdampfer direkt im Kolonnensumpf
des Desorbers eingebaut ist. Die Ergebnisse aus Messung und Simulation sind ebenfalls als
Paritédtsdiagramme in Abbildung dargestellt. Die Abweichungen des Desorptionsgra-
des sind hier hoher im Vergleich zum Absorptionsgrad und liegen im Bereich von +15%.
Der Mittelwert betriigt 4,6 %, was weiterhin einer guten Ubereinstimmung entspricht.
Auch die Abweichungen des austretenden Gasstromes sind hier etwas hoher. Aufgrund
der hoheren Temperaturen im Desorber sind groflere Wéarmeverluste zu erwarten. Als Fol-
ge kondensiert mehr Wasser aus dem aufsteigenden Dampf aus und die Gas-Temperatur
sinkt stérker als im Absorber.

Da Notz (2013) nur das stationére Prozessverhalten untersucht hat, werden die Simulati-
onsergebnisse zur Dynamik einer einzelnen Absorptionskolonne mit den experimentellen
Ergebnissen von Kvamsdal et al.| (2011]) verglichen. Die Spezifikation der Absorptionsko-
lonne ist in Abbildung zu finden, wobei anzumerken ist, dass keine Informationen
iiber die Anzahl an Packungsbetten bzw. FSV Systeme gegeben ist. Daher sind bei der
Skizze des Absorbers in Abbildung diese nicht aufgefiihrt, obwohl davon auszugehen
ist, dass an der realen Absorptionskolonne FSV Systeme installiert wurden.

Kvamsdal et al. (2011)) untersuchten die Prozessdynamik des Absorbers unter Verwen-
dung der Rauchgaswische experimentell, indem sie die Rohgas-Zusammensetzung mehr-
fach iiber die Zeit variierten und den Einfluss auf die austretende COy-Konzentration
im gereinigten Gas kontinuierlich gemessen haben. Da der Einfluss der FSV Systeme
auf Anderungen des Gasstroms minimal ist (vgl. Abschnitt , kann das Messergebnis
hier fiir die Validierung trotz fehlender Angaben verwendet werden. Zur Bestimmung der
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Abbildung 5.4: Paritdtsdiagramme fiir den Desorptionsgrad (a) und die Desorber-
Austrittstemperaturen des Gases und der Fliissigkeit (b); Experimente von Notz (2013).
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Abbildung 5.5: Die von Kvamsdal et al.| (2011) verwendete Absorptionskolonne zur ex-
perimentellen Untersuchung des dynamischen Prozessverhaltens (a) sowie zugehérige
Mess- und Simulaionsergebnisse zur Dynamik des Prozesses (b).

werden wie zuvor die Korrelationen von Billet und Schultes (1999)) fiir den Holdup, Druck-
verlust und die Stoffiibergangskoeffizienten sowie die Korrelation von Tsai et al. (2011)
fiir die effektive Phasengrenzfliche genutzt (Anhang . Ein Vergleich der von Kvamsdal
et al. (2011) gemessenen und den simulierten COo-Konzentrationen ist in Abbildung[5.5pb
zu finden.

Die COs-Konzentration im eintretenden Rohgas wurde insgesamt drei Mal im Bereich
zwischen 2 und 6 Vol.-% variiert. Dabei wurde zunéchst eine kleine Erhohung, dann eine
starke Erhohung und zuletzt eine starke Verringerung durchgefiihrt. Vor jeder Anderung
wurde ein stationérer Zustand abgewartet, d.h. bis keine signifikante Anderung der CO,-
Austrittskonzentration erkennbar war. So liegen insgesamt vier stationire Zusténde im
Experiment vor. Qualitativ ist eine gute Ubereinstimmung zwischen gemessener und
simulierter COs-Austrittskonzentration zu erkennen. Fiir einen quantitativen Vergleich
wurde die relative Abweichung fiir jeden Messpunkt berechnet und unterhalb des Dia-
gramms aufgetragen (Abbildung |5.5p). Hier ist zu erkennen, dass die Abweichungen im
ersten, zweiten und vierten stationidrem Zustand ca. +10% betragen. Im dritten stati-
ondrem Zustand, nach der starken Konzentrationserhohung, ist die Abweichung nahezu
Null. Auffallig am zeitlichen Verlauf der relativen Abweichung ist, dass zu Beginn jeder
Anderung der Eintrittskonzentration ein Peak (kurzer Ausschlag in der Kurve) in Ab-
bildung [5.5p zu erkennen ist. Diese Peaks werden durch eine ungenau simulierte Totzeit
hervorgerufen. Grund dafiir kénnte die Verzogerung der Messsysteme sein. Das Gas weist
durch seine relativ geringe Dichte eine geringe Trigheit auf, wodurch die Totzeit der Aus-

trittskonzentration im Sekundenbereich liegt. Messungenauigkeiten haben so einen grofien
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Einfluss auf das Ergebnis, was eine Bewertung der Mess- und Simulationsergebnisse er-
schwert. Im weiteren zeitlichen Verlauf bewegen sich die Abweichungen nahezu linear vom
jeweiligen Start- zum neuen Endwert, was nach dem Vorgehen von Abbildung einer
guten Ubereinstimmung der Mess- und Simulationsergebnisse entspricht. Lediglich beim
letzten durchgefiihrten Sprung (starke Verringerung der CO,-Eintrittskonzentration) ist
in Abbildung ein Minimum bei etwa Minute 25 zu erkennen. Hier liegen Abweichun-
gen in der Prozessdynamik vor. Ein Grund dafiir konnte sein, dass Kvamsdal et al. (2011)
die Anderung durchgefiihrt haben, bevor der stationire Zustand zuvor wirklich erreicht
wurde. Die Amplitude dieses Minimums betragt etwa 3% (Differenz zwischen 0 und -3%).
Dies entspricht einer geringen Differenz zwischen Mess- und Simulationsergebnis, sodass
auch nach der Bewertung des zeitlichen Verlaufs der Abweichungen weiterhin von einer

guten Ubereinstimmung ausgegangen werden kann.

5.1.1.2 Koksofengasreinigung

Zur Validierung des zweiten in dieser Arbeit betrachteten Reaktionssystems, der Koks-
ofengasreinigung, werden die experimentellen Ergebnisse von Mayer| (2002) verwendet.
Fiir die von ihm durchgefiithrten Experimente wurde eine Pilotanlage der TU Berlin be-
nutzt, um sowohl das stationére als auch das dynamische Prozessverhalten zu untersuchen.
Bei der Anlage handelte es sich aber nicht um eine herkémmliche AS-Kreislaufwésche
(Ammoniak-Schwefelwasserstoff), wie sie in Abbildung gezeigt ist, sondern lediglich
um einen HyS-Wiischer (Absorptionskolonne). Der zusitzliche NH3-Wiéscher wurde nicht
betrachtet, da in dieser Kolonne lediglich das gasférmige Ammoniak in stark verdiinnten
Ammoniak-Losungen gelost wird und der Fokus der Arbeit von Mayer (2002) auf der
chemischen Absorption der Schadgase aus dem Koksofengas lag. Ebenso wurde die Auf-
reinigung des beladenen Losungsmittels nicht im Kreislauf durchgefiihrt. In der Literatur
sind keine Untersuchungen zur vollstindigen AS-Kreislaufwésche zu finden, daher wird
die Validierung mit den Ergebnissen von |Mayer| (2002) hier ausfiihrlich analysiert.

Das fiir die Absorption verwendete Losungsmittel wurde in einem ausreichend grofien
Vorlagebehilter zur Verfiigung gestellt. So konnte sichergestellt werden, dass wihrend
der Experimente das Losungsmittel am Eintritt des HyS-Wéschers immer dieselbe Zu-
sammensetzung aufweist. Die Spezifikationen der von Mayer| (2002)) verwendeten Absorp-
tionskolonne sind in Abbildung zu finden. Da nicht nur Experimente zum stationéren
sondern auch zum dynamischen Prozessverhalten durchgefithrt wurden, ist die Bestim-
mung des Fliissigkeitholdups in den nicht-trennwirksamen Kolonneneinbauten (FSV Sys-
tem, Kolonnensumpf) notwendig. Als FSV System wurden Kaminbéden in die Kolonne
eingebaut, deren technische Zeichnung in Abbildung aufgefiihrt ist. Das unterhalb
des Kamins aufsteigende Gas stromt durch den Kamin auf, wihrend das herabtropfende
Losungsmittel vom Kamindach radial nach aulen gelenkt und kreisringférmig um den

Kamin herum gesammelt wird. Wenn der Fiillstand des gesammelten Lésungsmittels ei-
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Abbildung 5.6: Die von (2002)) verwendete Absorptionskolonne zur experimentel-
len Untersuchung des stationdren und dynamischen Prozessverhaltens mit technischer

Zeichnung der eingebauten Kaminboden (Mayer, 2024).

ne Hohe von 25 Millimeter erreicht, flieft dieses in ein Rohr, das durch den Kamin zu
dem darunter liegenden Packungsbett fithrt. So konnen Gas und Fliissigkeitsstrom nahezu
ungehindert, d.h. mit geringem Druckverlust, aneinander vorbei durch den Kaminboden
stromen.

Zur Bereitstellung des Rohgases wurden Gasflaschen verwendet, die jeweils mit Stickstoff,
CO4 und Schwefelwasserstoff gefiillt und miteinander verbunden wurden. Die Zusam-
mensetzung des Rohgases wurde dann durch Ventile mit Gasmengenreglern eingestellt.
Bei den Experimenten wurde auf Ammoniak im Rohgas verzichtet, da dieses mafigeblich
im NH3-Wiéscher der AS-Wische gelost werden wiirde. Ebenso wurde auf den Einsatz
von Blausdure aufgrund der sehr geringen Mengen im Koksofengas (vgl. Tabelle
und dem sehr viel grofleren Sicherheitsaufwand verzichtet. Der Fokus der Experimente
lag auf der Untersuchung des Effekts der parallel stattfindenden chemischen Absorpti-
on der relativ schwach sauer reagierenden Komponente Schwefelwasserstoff und dem im
Uberschuss vorhandenen CO,. Beide Komponenten reagieren mit dem im Lésungsmittel
vorhandenen Ammoniak und behindern so die Absorption der jeweils anderen Gaskom-
ponente. Eine hohere Ammoniakkonzentration im Losungsmittel fithrt dadurch nicht
zwangslaufig zu hoheren Absorptionsraten des Schwefelwasserstoffs im HoS-Waéscher, da

auch die COs-Absorption durch hohere Ammoniakkonzentrationen unterstiitzt wird. Um
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diesen Effekt bei den Experimenten hervorzuheben, wurde das Verhéltnis der Schadgas-
Konzentrationen (Schwefelwasserstoff und Kohlenstoffdioxid) im Rohgas im Vergleich zur
typischen Zusammensetzung des Koksofengases (Verhéltnis 1:10, vgl. Tabelle erhoht
und die Ammoniakkonzentration im Losungsmittel relativ gering gehalten. Anschlieend
wurden die Konzentrationen und wichtige Prozessparameter variiert. Eine Ubersicht der

eingestellten Parameter in den Experimenten ist in Tabelle [5.1] zu finden.

Tabelle 5.1: Ubersicht der wichtigsten Prozessparameter wihrend der Experimente an
der TU-Berlin Pilotanlage (Mayer, 2002)).

Exp. F[\/ﬁ] B mm_;i ygzs,ein (%] ngg,ein [%%] CIL\}Hg,ein[%] Yuzs [%0] Yooz [%]
1 1,0 10,2 0,587 0,887 10,8 98 31
2 1,0 10,2 0,619 0,891 5,4 98 21
3 1,0 10,2 0,618 0,888 5,4 98 21
415 10,2 0,634 0,900 5.4 08 15
5 1,8 10,2 0,619 0,890 9,4 98 19
6 1,8 10,2 0,634 0,900 5,4 92 12
7 1.8 10,2 0,631 1,383 5,4 91 11
8 18 10,2 1,031 1,401 5.4 77 10
9 1,8 10,2 0,452 1,119 11,7 98 17
10 18 10,2 0,361 1,262 11,7 97 23
11 1.8 10,2 0,479 1,114 9,6 100 16
12 18 10,2 0,496 1,127 8,1 100 13
13 1,8 10,2 0,492 1,113 8,0 100 13
14 1,8 7,6 0,450 1,117 8,0 94 16
15 1.8 10,2 0,549 1,494 13,0 98 15
16 1.8 10,2 0,706 1,493 13,0 99 15

Die Volumenstréme des Rohgases V;f; und Losungsmittels Vg;n wurden von Mayer| (2002))

nicht direkt sondern implizit {iber den F'-Faktor und die Berieselungsdichte B angegeben:

AS)

F=oan N (5.1)
4 “col
VL s

B = =4 3600 2
mE 3600 (5.2)

Der Druck in der Absorptionskolonne der Pilotanlage betrug 1bar, wobei das Rohgas
bei leicht erhohtem Druck von 1,12bar der Kolonne zugefiithrt wurde, um Druckverlus-
te innerhalb der Kolonne iiberwinden und ohne Unterdruck (Druck unterhalb des At-
mosphérendrucks) die Kolonne verlassen zu kénnen. Der Rohgas- und Fliissigkeitsstrom

wurden der Kolonne bei Umgebungstemperatur zugefiihrt. Die fiir das rate-based Modell
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erforderlichen Parameter zur Bestimmung der Stoffiibergangskoeffizienten, des Druckver-
lusts, der Holdups und der effektiven Phasengrenzfliche werden mit den Korrelationen
von [Billet und Schultes| (1999) fiir die Mellapak 350Y bestimmt (Anhang [A]). Die erfor-
derlichen Reaktionsparameter fiir die Absorption von COy und HsS mit wéssrigen NHj
Losungen werden mit den Korrelationen von |[Maurer| (1980), [Pinsent et al.| (1956a)) sowie
Danckwerts und Sharma) (1966) bestimmt (Anhang [B]). Die 16 Experimente aus Tabelle
werden verwendet, um das stationére Prozessverhalten des rate-based Modells fiir die
Koksofengasreinigung zu validieren. Dazu werden die Absorptionsgrade fiir das absorbier-
te HoS und das CO4 aus Messung und Simulationsergebnis verglichen. Die Ergebnisse sind
in Form von Paritdtsdiagrammen in Abbildung aufgefiihrt.

Die Paritatsdiagramme zeigen, dass die Abweichungen im Vergleich zur Rauchgaswésche
hoher sind. Diese Beobachtung stimmt mit den Ergebnissen von [Schneider| (2001)) iiberein,
der ebenfalls Simulationen durchgefiithrt und mit den Messergebnissen von Mayer| (2002)
verglichen hat. Dabei wurden von |Schneider| (2001) hohe Abweichungen festgestellt. Die
Abweichungen wurden in der Arbeit durch einen Korrekturfaktor fiir die Bestimmung
der effektiven Phasengrenzfliache in den Modellgleichungen minimiert. Schneider| (2001)
vermutete, dass das Problem einerseits an der veralteten Korrelation fiir die Reaktionsge-
schwindigkeit zwischen CO5 und NHj ermittelt von [Pinsent et al.| (1956a) und andererseits
an seiner vergleichsweise geringen Diskretisierung des rate-based Modells von nur einem
Filmsegment pro rate-based Stufe liegen konnte. Diese Vermutungen werden in dieser
Arbeit iiberpriift. Anstelle der Korrelation von Pinsent et al.| (1956a)) wird ein neuer An-
satz von [Liu et al.| (2011)) zur Bestimmung der Reaktionsgeschwindigkeit zwischen CO,
und NHj (Reaktion RVII in Abschnitt Anhang verwendet, allerdings ohne signi-
fikante Verbesserung. Der Grund dafiir ist, dass auch neuere Studien nahezu identische
Reaktionsgeschwindigkeiten wie die von [Pinsent et al.| (1956a) gemessen haben. Qin et al.

(2010) arbeiteten hierzu einen Vergleich der Reaktionsgeschwindigkeiten fiir diese Reak-
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Abbildung 5.7: Paritatsdiagramme fiir den COy-Absorptionsgrad (a) und den HsS-
Absorptionsgrad (b); Experimente von Mayer| (2002).
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tion, erzielt mit unterschiedlichen Korrelationen, heraus, wobei die meisten Ergebnisse
vergleichbar mit denen von [Pinsent et al.| (1956a)) gewesen sind. Auch die Genauigkeit der
Korrelationen fiir die iibrigen Reaktionen kann als Grund fiir die hohen Abweichungen
ausgeschlossen werden, da die meisten ebenfalls im Reaktionssystem der Rauchgaswiésche
verwendet wurden und in diesem Reaktionssystem die Abweichungen deutlich geringer
sind. Die Vermutung der geringen Diskretisierung kann hier ebenfalls widerlegt werden,
weil die Simulationsergebnisse in dieser Arbeit mit einer deutlich héheren Diskretisierung
(15 Stufen pro Packungsbett mit 9 Filmsegmenten pro Stufe, vgl. Anhang[C]) durchgefiihrt
wurden. Auffillig bei dem Vergleich der Simulations- und Messergebnisse in Abbildung/[5.7]
ist, dass die relativen Abweichungen vor allem bei geringen COs-Absorptionsgraden zu-
nimmt. Dies liegt einerseits an der hoheren Sensitivitdt der relativen Abweichung bei klei-
nen Werten. Andererseits weist das Experiment 8 mit knapp +46 % die grofite Abweichung
auf. Bei diesem Experiment wurde die gréfite HoS-Konzentration im Rohgas eingestellt
(vgl. Tabelle [5.1). Die von Mayer| (2002) ermittelten Absorptionsgrade fiir die gemesse-
nen CO,- und HyS-Konzentrationen sind von allen Experimenten hier am geringsten. Der
Einfluss der gleichzeitig stattfinden Absorption beider Komponenten und der damit ver-
bundenen Konkurrenz um das Ammoniak im Losungsmittel scheint hier am stérksten zu
sein. Die Abweichungen konnten daher auf die Kreuzeffekte bei der Mehrkomponenten-
Diffusion zuriickzufiihren sein (Taylor und Krishna, 1993), die im rate-based Modell iiber
effektive Diffusionskoeffizienten, die aus der Stoffdatenbank von Aspen Properties bezo-
gen werden, beriicksichtigt werden. Die Verwendung von effektiven Diffusionskoeffizien-
ten konnten daher zur Beschreibung des Stofftransports in diesem Fall unzureichend und
die Verwendung von komplexeren Anséitzen, wie z.B. den Stefan-Maxwell Gleichungen,
notwendig sein. Insgesamt liegen die Abweichungen des COs-Absorptionsgrads fiir die
meisten Experimente bei +20%. Der Mittelwert der absoluten Abweichungen liegt bei
17,4 %. Vernachlédssigt man hier die Experimente 7 und 8, bei denen die Abweichungen
am grofiten sind, verringert sich der Mittelwert auf 14,6 %. Die absoluten Abweichungen
des HyS-Absorptionsgrads liegen bei 4,7 %. Der Grund fiir die hier deutlich geringeren Ab-
weichungen liegt an den hohen Absorptionsgraden von nahezu 100%, was eine Bewertung

der Modellgenauigkeit hier deutlich erschwert.

Zusétzlich zum COs,- und HyS-Absorptionsgrad werden auch die gemessenen und simulier-
ten Konzentrationsprofile in der fliissigen Phase verglichen. Exemplarisch sind in Abbil-
dung der Vergleich fiir das Experiment 1 und Experiment 8 aus Tabelle dargestellt.
Die gemessenen und simulierten Konzentrationsprofile aller weiteren Experimente sind im
Anhang[D|zu finden. In Abbildung [5.§ist gut zu erkennen, dass die HyS-Konzentration in
der fliissigen Phasen vor allem in der unteren Hélfte der Kolonne zunimmt. In Experiment
1 in Abbildung nimmt die HyS-Konzentration nur im Bereich von 0 bis 1m zu, d.h.
das im Rohgas eintretende H,S ist bereits nach einem Meter in der Kolonne vollstindig
absorbiert. In Experiment 8 in Abbildung nimmt die simulierte HyS-Konzentration
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in der fliissigen Phase besonders im Bereich zwischen 0,5 und 2m zu, wiahrend im Mess-
ergebnis die stiarkste Zunahme am Kolonnenkopf zwischen 1,7 und 2,5m zu erkennen ist.
Die in Experiment 8 gemessenen Konzentrationsprofile zeigen, dass in der oberen Hélfte
der Kolonne vorwiegend HyS und in der unteren Hélfte vor allem COy absorbiert wird. Das
Losungsmittel NH3 in der Fliissigkeit scheint bevorzugt mit HsS in Reaktion zu treten.
Sobald das gasformige HoS vollstandig absorbiert ist, nimmt die Absorption von COs zu.
In den simulierten Konzentrationsprofile ist ein solcher Wechsel der absorbierenden Kom-
ponente nicht zu erkennen. Die Zunahme der COs-Konzentration verlauft nahezu linear,
wéahrend auch die HyS-Konzentration zunimmt. In der Simulation findet die Absorption
beider Komponenten parallel statt. Dies ist auch im Messergebnis des Experiments 1 in
Abbildung zu erkennen. Bei geringen HyS-Konzentrationen im Rohgas, in denen das
H5S bereits im unteren Bereich der Kolonne vollstéandig absorbiert ist, ist der Einfluss der
parallel stattfindenden Absorption gering und die Ubereinstimmung zwischen Mess- und
Simulationsergebnis gut.

Mayer (2002) hat neben den Messergebnissen zum stationdren Prozessverhalten auch zwei
Experimente zur Prozessdynamik durchgefiihrt. Ausgangspunkt des ersten Experiments
ist der stationédre Zustand von Experiment 1 und der des zweiten Experiments von Expe-
riment 5 aus Tabelle[5.1] In beiden Experimenten wurde die Ammoniak-Konzentration im

eintretenden Losungsmittel sprunghaft auf 5,4 gl-! reduziert und die Austrittskonzentra-
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Abbildung 5.8: Messergebnisse von Mayer| (2002) und Simulationsergebnisse der Kon-
zentrationsprofile in der fliissigen Phase fiir Experiment 1 (a) und Experiment 8 (b).
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tionen von NHjs, CO5 und H,S in der fliissigen Phase iiber die Zeit gemessen. Die Messung
fand allerdings nicht kontinuierlich statt, sondern es wurden zu bestimmten Zeitpunkten
wihrend des Experiments Fliissigproben aus der Pilotanlage entnommen und offline die
Zusammensetzung ermittelt. Die Mess- und Simulationsergebnisse beider Experimente

zur Prozessdynamik sind in Abbildung [5.9] gegeben.

Da die simulierten Austrittskonzentrationen von HyS und CO, kaum bis keine Anderung
zeigen, werden die Mess- und Simulationsergebnisse zur Prozessdynamik anhand der aus-
tretenden NHjs-Konzentration im Losungsmittel verglichen. Fiir die Messergebnisse wer-
den die relativen Abweichungen zu den simulierten NH3-Konzentrationen berechnet und
in Abbildung dargestellt. Diese Abbildung zeigt, dass die Abweichungen in beiden
Experimenten in den positiven Bereich ansteigen, wenn die NHjs-Eintrittskonzentration
verringert wird. Im ersten Experiment dauert der kontinuierliche Anstieg ca. 5 und im
zweiten Experiment etwa 10 Minuten. Dieser Anstieg ist die Folge davon, dass die simu-
lierte Totzeit von etwa 2 Minuten deutlich geringer ist als die gemessene Totzeit in den
Experimenten. Daher steigt die Abweichung im zweiten Experiment auch auf iiber 30 %
an. Sobald die Verringerung der NHz-Konzentration auch am Austritt gemessen wurde,
sinkt die Abweichung. Die Totzeit in beiden Experimenten sollte theoretisch gleich sein,
da die Berieselungsdichte und, damit verbunden, der eingestellte Volumenstrom in beiden
Experimenten identisch ist (vgl. Tabelle . Mit demselben Volumen der Anlage ergibt

(a) | - NH3 KopfExp. ---NH3 KopfSim. | ()| -©-NH3 KopfExp. ---NH3 Kopf Sim.
-#- NH3 Sumpf Exp. ——NH3 Sumpf Sim. | -#-NH3 Sumpf Exp. —— NH3 Sumpf Sim.
-#-CO2 Sumpf Exp. —— CO2 Sumpf{ Sim. -#+-CO2 Sumpf Exp. ——CO2 Sumpf Sim.
--«- H2S Sumpf Exp. ——H2S Sumpf Sim. -4 - H2S Sumpf Exp. ——H2S Sumpf Sim.
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Abbildung 5.9: Messergebnisse von [Mayer| (2002) und Simulationsergebnisse des ersten
(a) und zweiten Experiments (b) zur Prozessdynamik.
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sich die gleiche Verweilzeit in beiden Experimenten. Daher sind die Messergebnisse, vor
allem im zweiten Experiment durch den sehr plotzlichen Abfall der gemessenen NHj-
Austrittskonzentration nach 10 Minuten, in Frage zu stellen. Es wurden lediglich diese
zwei Experimente zur Prozessdynamik und keine Wiederholungen zur Sicherstellung der
Reproduzierbarkeit durchgefiihrt. Der weitere Verlauf nach Erreichen der Totzeit zeigt
eine gute Ubereinstimmung zwischen Mess- und Simulationsergebnis, vor allem im ersten
Experiment. Die Abweichungen liegen hier im Bereich von +£10% und die Ubergangszeit
von 20 Minuten wird gut vom Modell eingefangen. Im zweiten Experiment liegen die Ab-
weichungen im Bereich von —10% und +30%. Nach Erreichen der Ubergangszeit von etwa
20 Minuten nehmen die Abweichungen nochmal zu, was allerdings auf Schwankungen in
der NHjs-Eintrittskonzentration im Experiment zuriickzufiihren ist. Fiir einen besseren
Vergleich und eine genauere Bestimmung der realen Tot- und Ubergangszeit wire eine
kontinuierliche Konzentrationsmessung (online) in den Experimenten notwendig gewesen.
Ebenso wiren Wiederholungen der Experimente im Bezug zur Reproduzierbarkeit fiir ei-
ne Validierung der Simulationsergebnisse erforderlich.

Zur Untersuchung des Einflusses des FSV Systems und des Kolonnensumpfes auf die
Prozessdynamik werden die Simulationen erneut durchgefiihrt, wobei das FSV System
und der Kolonnensumpf vernachléssigt werden (reduziertes Modell). Abbildung zeigt
den Verlauf der gemessenen und simulierten NHj-Austrittskonzentration mit und ohne
Beriicksichtigung der nicht-trennwirksamen Kolonneneinbauten fiir die zuvor vorgestell-
ten Experimente. Die zeitlichen Verldufe der eintretenden NHjz-Konzentration sowie der
austretenden HyS- und CO,-Konzentration werden zur besseren Ubersicht nicht darge-
stellt. Es ist deutlich zu erkennen, dass in beiden Experimenten die Simulationsergebnisse
ohne den Einfluss der nicht-trennwirksamen Kolonneneinbauten kiirzere Totzeiten und
Ubergangszeiten aufweisen. Die Abweichungen im Ubergangsbereich (zwischen 0 und 20
Minuten) sind daher hoher als die Abweichungen, die mit dem gesamten dynamischen
Modell erzielt wurden. Es ist daher schon am einzelnen Absorber erkennbar, dass die
Beriicksichtigung der nicht-trennwirksamen Kolonneneinbauten fiir die Modellierung des

dynamischen Prozessverhaltens notwendig ist.
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Abbildung 5.10: Messergebnisse von Mayer| (2002) und Simulationsergebnisse erzielt mit
dem gesamten und reduzierten Modell des ersten (a) und zweiten Experiments (b) zur
Prozessdynamik.

5.1.2 Wairmeiibertrager

Um die Modellierungsansétze der verschiedenen WT aus Abschnitt validieren zu
konnen, wurden experimentelle Ergebnisse zur Dynamik, entnommen aus der Literatur,

verwendet.

5.1.2.1 Platten-Wiarmeiibertrager

Zur experimentellen Untersuchung der Prozessdynamik von P-WTn haben Michel und
Kugi (2014) Experimente an zwei unterschiedlichen P-WT (A und B) durchgefiihrt. Die
Sperzifikationen sind in Abbildung [5.11] gegeben.

Die P-WT unterscheiden sich hauptséachlich in Plattenlinge und Plattenanzahl. Fiir die
Nusselt-Korrelationen zur Berechnung des Warmeiibergangskoeffizienten wird keine allge-
meingiiltige Korrelation verwendet. Michel und Kugi (2014) ermittelten fiir beide P-WT
die fiir Gleichung [3.34] notwendigen Korrelationsparameter, die in Abbildung [5.11] ange-
geben sind. Die Parameter werden fiir die Bestimmung der Nusselt-Zahlen im dynami-
schen Modell verwendet. In den Experimenten wurden sowohl der Massenstrom als auch
die Eintrittstemperatur der heiflen und kalten Fliissigkeit mehrfach iiber die Zeit var-

riert und die Anderungen der Austrittstemperaturen beider Fliissigkeiten gemessen. Als
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Anlagenspezifikationen

P-WT A B
Kanallidnge [m] 0,460 0,250
Kanalbreite [m] 0,106 0,106
Kanaltiefe [mm] 2,0 1,8
Plattendicke [mm] 0,5 0,5
Plattenanzahl [—| 20 40
Parameter fuir

Korrelationen:

¢ C‘Nu [_] 0,50 0,38
* npr [—] 026 0,26
* Mmpge [—] 0,67 0,68

Abbildung 5.11: Die von Michel und Kugi (2014) verwendeten P-WT zur experimentel-
len Untersuchung des dynamischen Prozessverhaltens.

heifle Fliissigkeit wurde in beiden Experimenten ein Wasser-Glykol-Gemisch mit einem
Volumenanteil von 44% Glykol verwendet. Als kalte Fliissigkeit wurde im Experiment
mit dem P-WT A reines Kiihlwasser und im Experiment mit dem P-WT B ein Wasser-
Glykol-Gemisch mit einem Volumenanteil von 40% Glykol verwendet. Die Anderungen
der Prozessgrofien in beiden Experimenten sind in Abbildung dargestellt.

Die Ergebnisse der heiflen Fliissigkeit sind in Rot und der kalten Fliissigkeit in Blau
dargestellt. Der Vergleich der gemessenen und simulierten Austrittstemperaturen beider
Fliissigkeiten sind zusammen mit den zugehorigen relativen Abweichungen ebenfalls in
Abbildung dargestellt. Die Abweichungen bewegen sich fiir den P-WT A zwischen
-5% und +10% und fiir den P-WT B zwischen —5% und +5%. Die héchsten Abwei-
chungen liegen vor, wenn die Massenstrome beider Fliissigkeiten am geringsten sind. Ein
Grund hierfiir konnte sein, dass der Volumenstrom nicht ausreichend war, um die Plat-
ten vollsténdig zu benetzen oder eine gleichméfige Verteilung der Fliissigkeiten auf alle
Kaniéle des jeweiligen P-W'T gewéhrleisten zu kénnen. Eine solche Fehlverteilung wird im
Modell nicht beriicksichtigt, wodurch es zu hoheren Abweichungen kommen koénnte. Die
Vielzahl an stattfindenden teilweise parallel durchgefiihrten Anderungen erschweren in
diesem Fall die Analyse des zeitlichen Verlaufs der Abweichungen. Zusétzlich schwankten
die Eintrittstemperaturen der heiflen Fliissigkeit im Experiment, die fiir die Bewertung
des Verlaufs hinderlich sind. Dennoch sind zwischen den jeweiligen stationédren Zustdnden
im Ubergangsprozess kaum bis keine Peaks im Verlauf der Abweichungen erkennbar. Mit
der Bewertung nach Abbildung ist daher die Ubereinstimmung der Mess- und Simu-

lationsergebnisse fiir die Austrittstemperaturen in beiden Experimenten gut.
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P-WT A

P-WT B
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Abbildung 5.12: Vergleich der experimentellen Ergebnisse von [Michel und Kugi| (2014)
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mit Simulationsergebnissen des 1D Warmetransport Modells.

5.1.2.2 Rohrbiindel-Wiarmeiibertrager

(Correa und Marchetti (1987) haben Untersuchungen zum dynamischen Prozessverhalten

von RB-WT durchgefiihrt. Aus diesen wird ein Experiment in dieser Arbeit zur Validie-
rung des vorgestellten Zellenkettenmodells verwendet. Der dabei betrachtete 1-2 RB-W'T
ist in Abbildung [5.13| mit den zugehorigen Anlagenspezifikationen gegeben.

Anlagenspezifikationen

RB-WT

Volumen [m?3]
* Rohrbiindel
* Mantel

Austauschfliche [m?]
Rohrdurchgiinge [—]
Umlenkbleche [—]

0,14
0,14

46,6
2
15

Abbildung 5.13: Der von [Correa und Marchetti (1987) verwendeter RB-WT zur experi-
mentellen Untersuchung des dynamischen Prozessverhaltens.
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Fiir die Untersuchungen der Prozessdynamik haben |Correa und Marchetti (1987 reines
Wasser als heifle und kalte Fliissigkeit verwendet. Zu Beginn wiesen beide Fliissigkeiten
dieselbe Eintrittstemperatur von 24°C auf, wodurch keine Warme {ibertragen wurde und
so die Austrittstemperaturen identisch waren. Das Wasser wurde aus demselben, tem-
perierten Vorratsbehélter entnommen. Neben diesem war noch ein zweiter, temperierten
Vorratsbehélter mit Wasser vorhanden. Sobald Einlaufeffekte im RB-W'T sich ausgebil-
det haben und der Prozess sich im stationédren Zustand befand, wurde durch Umschalten
eines 3-Wege Ventils Wasser aus dem zweiten Vorratsbehélter mit einer Temperatur von
34°C in den Mantelraum zugefiihrt. Der Massenstrom des heiflen Wassers betrug 22 kgs=!
und der des kalten Wassers 35,3 kgs™'. Zu dem Zeitpunkt, an dem das 34°C heifle Wasser
im Mantelraum gemessen wurde, wurde das Experiment gestartet und die Austrittstem-

peraturen des Wassers im Mantel sowie im Rohrbiindel iiber die Zeit gemessen.

Das Experiment wird fiir die Simulation in ACM implementiert. Zur Bestimmung der
Wairmeitibergangskoeffizienten im Zellenkettenmodell werden die Korrelationen von Gniel-
inski (2019a) fiir das rohrseitige Wasser und die Korrelationen von |Gnielinski (2019¢])
fiir das mantelseitige Wasser verwendet (Anhang . Die experimentell gemessenen und
simulierten Temperaturen sind in Abbildung zu finden. Es ist gut zu erkennen,
dass sich der Verlauf der mantel- und rohrseitigen Austrittstemperatur unterscheiden.

Die Austrittstemperatur des rohrseitigen Wassers beginnt frither anzusteigen und néhert

- - =Eintritt Mantel — - =Eintritt Rohr
----- Austritt Mantel Experiment ----- Austritt Rohr Experiment
—— Austritt_ Mantel Simulation —— Austritt Rohr Simulation
U I -
$ 3
5
E 30
8-1 28 -
g
()
F 26
24
22 r r )
0 5 10 Zeit [s] 15
3 o}
0.5 o © 9 oS
o o O o o o O
= OO O
2 085 = 5
5 5 000 ©o0og
O
E-O.S o ©O
< o
1 ©

Abbildung 5.14: Vergleich der experimentellen (Correa und Marchetti, 1987)) mit den
simulierten Ergebnissen des in dieser Arbeit beschriebenen Zellenkettenmodells.
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sich asymptotisch dem neuen stationdren Zustand. Das mantelseitige Wasser weist eine
groflere Totzeit auf und verlduft S-formig in den neuen stationédren Zustand. Der un-
terschiedliche Verlauf wird dadurch verursacht, dass am Eintritt des Mantelraums das
Wasser im Rohrbiindel den RB-W'T bereits einmal durchlaufen hat. Das mantelseitige
Wasser gibt aufgrund der héheren Temperatur Warme an das rohrseitige Wasser ab und
da das Wasser im Rohrbiindel den RB-WT nur noch einmal durchlaufen muss, ist die
Totzeit nur halb so grofl wie fiir das mantelseitige Wasser. Im weiteren Verlauf des man-
telseitigen Wassers durch den RB-WT nimmt die Warmezufuhr an das Rohrbiindel zu.
Die Ubergangszeiten der Austrittstemperaturen sind aufgrund der gleichen Volumina im
Mantel und im Rohrbiindel identisch. Insgesamt liegen die Abweichungen zwischen —1%
und +1%, was einer sehr guten Ubereinstimmung entspricht. Der Grund dafiir kénnte
sein, dass reines Wasser verwendet wurde und (scheinbar) keine Schwankungen in den

Eintrittstemperaturen bei der Untersuchung der Prozessdynamik aufgetreten sind.

5.1.2.3 Kondensator

In der Arbeit von Botsch (1997) sind einige Untersuchungen zum dynamischen Prozess-
verhalten von Kondensatoren zu finden. Ein Experiment davon wird verwendet, um den
in dieser Arbeit vorgestellten Modellansatz zu validieren. Bei dem im Experiment ver-
wendeten Kondensator handelt es sich um einen DR-W'T im Gegenstrom-Betrieb. Die
Spezifikationen des DR-WTs sind in Abbildung gegeben.

Fiir die Untersuchung der Prozessdynamik des Kondensators wurde ein dquimolares Gas
bestehend aus vier Komponenten: Aceton, Methanol, Wasser und Stickstoff, verwendet.
Der Molenstrom des Gases betrug 0, 1mols™ und wies eine Temperatur von 89,4°C auf.
Als Kiithlmedium wird Wasser mit einem Molenstrom von 3,0mols™! und einer Eintritt-
stemperatur von 20,6°C verwendet. Der Druck beider Strome betrug 1bar. Unter diesen

Bedingungen kondensierten die Komponenten Aceton, Methanol und Wasser, wihrend

M Anlagenspezifikationen
« Kondensator (DR-WT)
Rohrldnge [m] 1,86
Durchmesser [mm)]
« Innenrohr 21,9
* AuBenrohr 51,5
Rohrstirke [mm] 3,35
- Austauschfliche [m?] 0,128
2 2

Abbildung 5.15: Der von Botsch| (1997)) verwendeter DR-W'T, eingesetzt als Kondensa-
tor, zur Untersuchung des dynamischen Prozessverhaltens.
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Stickstoff als Inertgas durch den Kondensator strémte. Zur Untersuchung der Prozess-
dynamik wurde aus dem stationédren Zustand heraus die Gaszufuhr von Wasser durch
Schliefen eines Ventils schlagartig gestoppt. Durch die Anderung bestand das eintre-
tende Gas nur noch aus den drei iibrigen Komponenten mit Molenstréomen von jeweils
0,025mols™!. Gemessen wurde die Zusammensetzung des austretenden Gases und des
Kondensats iiber die Zeit. Die Ergebnisse von (gestrichelte Linien) und
die Simulationsergebnisse mit dem in dieser Arbeit vorgestellten Modell (durchgezogene

Linie) sind in Abbildung dargestellt.

Es ist zu erkennen, dass die stationdren Zustdnde zu Beginn und am Ende des Experiments
sehr gut vom Modell erfasst werden. Allerdings unterscheidet sich das Ubergangsverhalten
deutlich von den Ergebnissen von . Der Hauptgrund fiir den Unterschied
liegt in den Annahmen des Gleichgewichtsstufenansatzes und der gemeinsamen Bilan-
zierung beider Phasen im Modell. Wihrend in den Messergebnissen von (1997)
eine deutliche Verzogerung (Totzeit) in der Anderung der Zusammensetzung zu erkennen
ist (vor allem in der Zusammensetzung des Kondensats), ist in den Simulationsergebnis-
sen bereits zu Beginn des Experiments eine deutliche Anderung der Zusammensetzung
sowohl im austretenden Gas als auch im Kondensat zu erkennen. Im zeitlichen Verlauf
der Abweichungen sind durch die falsch simulierte Totzeit deutliche Peaks (hier: Maxi-
ma) zu erkennen. Die Ubergangszeiten werden vom Modell in guter Niherung erfasst.
Es ist zu erkennen, dass die Ubergangszeit im Sekundenbereich liegt. Vergleicht man die-

se mit den Ubergangszeiten der anderen Anlagenkomponenten (z.B. eine Kolonne mit

«++ Aceton_Experiment —— Aceton_Simulation
+se» Methanol Experiment ——Methanol Simulation
03 «+«» Wasser Experiment —— Wasser Simulation
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Abbildung 5.16: Vergleich der experimentellen Ergebnisse von (1997)) mit Simu-
lationsergebnissen des in dieser Arbeit beschriebenen Modells zur Filmkondensation.
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simtlichen Einbauten aus Abbildung[5.9), ist der Einfluss des Kondensators gering, wenn
alle Anlagenkomponenten zum Kreislaufprozess verkniipft werden. Daher wird angenom-
men, dass die schlechte Ubereinstimmung der simulierten und der experimentell gemes-
senen Totzeit nur einen geringen Finfluss auf die Prozessdynamik der Gesamtanlage hat.
Die Ubereinstimmung der Simulationsergebnisse mit den Ergebnissen von Botsch| (1997)

fiir die stationiren Zustinde und die Ubergangszeit ist insgesamt zufriedenstellend.

5.2 Stationires Verhalten der Gesamtanlage

Die zuvor separat validierten Modellansétze werden nun so miteinander verkniipft, dass
sie den zu untersuchenden Kreislaufprozess der chemischen Absorption abbilden. Die Ein-
und Austrittsgrofen der einzelnen Modellansitze werden als Randbedingungen an die
benachbarten Modelle iibergeben. Um die Genauigkeit des gesamten Modells zur Simu-
lation des stationdren Prozessverhaltens und damit verbundene systematische Fehler des
Modells zu bestimmen, werden erneut die experimentellen Ergebnisse von |[Notz (2013))
verwendet. In diesem Fall werden die Kolonnen nicht separat voneinander, sondern die
gesamte Anlage simuliert. Die Spezifikationen der Absorptions- und Desorptionskolonne
sind weiterhin in Abbildung zu finden. Zur Peripherie der Anlage sind nur wenige
Informationen gegeben. So sind beispielsweise die Wiarmeaustauschflichen der verwen-
deten WT zwar bekannt, aber Informationen wie Plattenanzahl oder Stromungsfithrung
fehlen, wodurch die Anwendung des 1D Wiarmetransport Modells nicht moglich ist. Die
WT der Anlage werden daher bei den Simulationen nicht beriicksichtigt. Zur Simulation
der 29 von |[Notz (2013)) durchgefiihrten Experimente werden die Eintrittstemperaturen
vom Losungsmittel (LM) und Gas in beiden Kolonnen im dynamischen Modell weiterhin
vorgegeben. Bei der Validierung des stationdren Verhaltens der Gesamtanlage wird aber
der Einfluss der Massenstrome und LM- sowie Gas-Zusammensetzungen auf die Modell-
genauigkeit beriicksichtigt. Eine Ubersicht der in den Experimenten variierten Prozesspa-
rameter ist in Tabelle gegeben. Das Experiment Al stellt dabei ein Referenzzustand
bei niedrigem COs-Partialdruck und der Versuch A2 bei hohem CO,-Partialdruck dar.
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Tabelle 5.2: Die von Notz| (2013) durchgefiihrte Variationsstudien.

Variierte Parameter Experimente
CO,-Partialdruck A1-A9, A29
Rauchgasstrom bei konstantem L/G-Verhéltnis Al, A4, A13-A15
LM-Strom bei hohem CO,-Partialdruck A2, A28, A29
LM-Strom bei hohem Rauchgasstrom A15-A19
Desorberdruck Al, A4, A10-A12
LM-Zusammensetzung (niedriger COq-Partialdruck) Al, A4, A24, A25
LM-Zusammensetzung (hoher COq-Partialdruck) A2 A26, A27
Fliissigkeitstemperatur Al, A4, A20, A21
Rauchgastemperatur Al, A4, A22, A23

Fiir das LM, das den Prozess im Kreis durchlauft, wird der MEA-Gehalt und der Mas-
senstrom am Absorber-Eintirtt aus den Experimenten fiir die Simulationen als Startwert
vorgegeben. In Abbildung ist eine Ubersicht der verglichenen Mess- und Simulations-
ergebnisse fiir das Experiment A1 von Notz (2013) mit den zugehorigen relativen Abwei-
chungen gegeben. Zur besseren Ubersicht sind die Abweichungen, die durch vorgegebene
Werte in der Simulation zu Null resultieren, in Grau markiert. In Griin sind Parameter
mit einer geringen Abweichung von +10% und in Rot die Parameter mit hoheren Abwei-
chungen markiert. Die weiteren Experimente A2-A29 sind im Anhang [D] zu finden. Zur
Validierung werden der Absorptions- und Desorptionsgrad sowie die Austrittstemperatu-
ren von Gas und Fliissigkeit aus beiden Kolonnen verwendet. Die Paritédtsdiagramme sind
in Abbildung [5.18| gegeben.

Die maximale Abweichung zwischen Simulation und Experiment liegt unter +10%
fir den Absorptionsgrad und unter +15% fiir den Desorptionsgrad. Fiir die Gas-
Austrittstemperaturen in beiden Kolonnen liegen die Abweichungen unter +10% und fiir
die Fliissigkeit unter +5%. Vergleicht man die mittleren Abweichungen mit denen der
einzelnen Absorptionskolonne aus Abbildung [5.3] und der einzelnen Desorptionskolonne
aus Abbildung [5.4] so ist zu erkennen, dass die mittlere Abweichung des Absorptionsgra-
des durch das Verkniipfen der Modellansidtze nur um 1,3% steigt, wihrend die mittlere
Abweichung des Desorptiongrades nahezu gleich bleibt. Dies gilt ebenso fiir die Austritt-
stemperaturen. Das konnte jedoch an der direkten Vorgabe der Eintrittstemperaturen
aus den Messergebnissen in den Simulationen liegen. Lediglich die mittlere Abweichung
der Gas-Austrittstemperatur im Desorber steigt um 0,6%. Dies ist auf den Einfluss des
Kondensats in der Waschsektion des Desorbers zuriickzufiihren. Insgesamt bleibt die sehr
gute Ubereinstimmung zwischen Mess- und Simulationsergebnis auch fiir den geschlosse-
nen Kreislauf bestehen, wobei der Einfluss der WT nicht beriicksichtigt werden konnte.
Auch fiir die weiteren Parameter aus Abbildung sind die Abweichungen in den meis-

ten Fillen gering (griin).
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Abbildung 5.18: Paritdtsdiagramme fiir den Absorptionsgrad (a), den Absorber-

Austrittstemperaturen (b), den Desorptionsgrad (c) und den Desorber-Austritts-
temperaturen (d).

Hohe Abweichungen (rot) in Abbildung sind in der Menge des verdampften Wassers
im Desorber zu finden. Dies gilt auch fiir die weiteren Experimente im Anhang[D] Die ho-
hen Abweichungen sind eine direkte Folge der grofleren simulierten Gas-Temperaturen im
Desorber. Die grolere Menge an Wasserdampf fithrt wiederum zu weiteren Abweichungen
in der Kondensatorleistung und Kondensatmenge. Da mehr Wasser den Prozess mit dem
Kondensat verlisst, steigt die Menge an Wasser, die im Make-up benétigt wird. Als Folge
wird eine hohere Kiilleistung im WT-W5 (Waschsektion im Absorber) benétigt. So nimmt
die hohere Gas-Temperatur im Desorber auch Einfluss auf die Waschsektion der Absorp-
tionseinheit. Hier ist das Ergebnis von Enaasen Flg et al|(2015) aus Abschnitt gut zu
erkennen. Obwohl nur die Temperatur in der Desorptionseinheit in der Simulation auf-
grund fehlender Beriicksichtigung der im Experiment vorliegenden hohen Warmeverlusten
abweicht, hat dies einen Einfluss auf das Ergebnis des anschliefenden Kondensators, des
Wasser Make-ups und, damit verbunden, die Waschsektion des Absorbers. Es ist daher
wichtig, dass alle Modellansétze zu jeder Anlagenkomponente gute Ubereinstimmungen
zwischen Mess- und Simulationsergebnissen erzielen. Andernfalls kommt es zu hohen Ab-

weichungen bei der Anlagensimulation
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5.3 Dynamisches Verhalten der Gesamtanlage

Wie in Abschnitt [2.1] dargestellt, sind in den Studien zur experimentellen Untersuchung
der Dynamik des geschlossenen Kreislaufprozesses in der Literatur nicht ausreichend In-

formationen zu den jeweils verwendeten Absorptionsanlagen gegeben. Dennoch werden in

dieser Arbeit als Vorstudie die von [Faber et al| (2011) durchgefiihrten Experimente an

der Pilotanlage in Esbjerg, Dinemark verwendet. Der Fokus dieser Vorstudie liegt auf der
Analyse des Einflusses der nicht-trennwirksamen Kolonneneinbauten und der Peripherie

auf die Prozessdynamik.

Faber et al.|(2011)) fithrten einige Experimente fiir unterschiedliche Sprungantworten einer

Post-Combustion Prozessanlage durch, die in der Lage ist, 1 Tonne CO5 pro Stunde mit
aminbasierten LM zu absorbieren. Ein FlieBbild der Anlage ist im Anhang [E] zu finden
und eine Skizze des FlieBbildes mit den in der Arbeit von [Faber et al.| (2011)) gegebenen
Anlagenspezifikationen ist in Abbildung dargestellt.

Beide Kolonnen haben am Kopf ein zusétzliches Packungsbett als Waschesektion instal-

liert. In der Absorptionskolonne werden strukturierte Packungen und in der Desorpti-
onskolonne Fiillkorper eingesetzt. In der Peripherie sind zwei P-W'T installiert. Der eine
dient als lean-rich WT und der andere zur weiteren Kiihlung des in die Absorptionskolon-

ne eintretenden LMs. Die fiir die Regeneration des LMs erforderliche Warme wird durch

Gereinigtes T

Gas Anlagenspezifikationen

Kolonnen Absorber Desorber
Durchmesser [m] 1,1 1,1
Packungshohe [m]
*  Waschsektion 3,0 3,0

— e Trennsektion 4-4,25 2-5,0

Wasser F ~ == )

Make-Up g Einbauten/Packung Mellapak 2X IMTP50

Flissigkeitssammler/-verteiler (Siebboden):

Rohgas

» <
> <

— Beladenes MEA ---» Kithlwasser
—> Regeneriertes MEA ---» Dampf/Kondensat Knudsen et al,, 2908 )
—» Wasser (Ausschnitt aus einer Prasentation)

Abbildung 5.19: Skizze der von [Faber et al| (2011) verwendeten Pilotanlage mit Anla-
genspezifikationen und Foto des FSV Systems von Knudsen et al.| (2008) derselben Ar-
beitsgruppe.
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Wasserdampf aus dem Kraftwerk bei 2,5 bar in einem Thermosiphon-Verdampfer bereit-
gestellt. Der Dampf, der die Desorptionskolonne am Kopf verlésst, wird in einem Konden-
sator durch Kiihlung partiell kondensiert, und das Kondensat wird in das Waschbett der
Desorptionskolonne zuriickgefiihrt. Uber die Geometrie der WT sowie der Rohrleitungen
und Pumpen liegen keine Informationen vor. Die verwendeten FSV Systeme werden in
der Arbeit von Faber et al| (2011) gar nicht erwéhnt. In einer Présentation von Knud-
sen et al.| (2008)) ist eine Realaufnahme (Foto) des in der Pilotanlage installierten FSV
Systems zu erkennen. Das Foto zeigt, dass es sich um einen Siebboden mit eingesetzten
Kaminen handelt. Geometrische Daten sind aber auch hier nicht gegeben.

Fiir die Experimente wurde die Anlage zunéchst in einen stationdren Ausgangszu-
stand versetzt. Dazu wurde der in den Absorber eintretende Rohgas-Volumenstrom auf
5000m3h~! bei einer konstanten CO,-Eintrittskonzentration von 12 Vol.-% eingestellt.
Der LM-Volumenstrom wurde auf 18 m3h~! eingestellt bei einem MEA-Gehalt von 30
Gew.-% und die Dampfzufuhr fiir den Verdampfer wurde konstant auf 1820 m? h~! gehal-
ten. Zur Untersuchung der Prozessdynamik wurden die Volumenstréme nahezu sprung-
haft geédndert und die CO9-Gaskonzentration am Absorberaustritt (Reingas) sowie der
Volumenstrom des Gases aus dem Desorber gemessen. Im ersten Experiment zur Pro-
zessdynamik wurde der Rohgas-Volumenstrom nahezu sprunghaft von 5000m3h-~! auf
3500m3h~! verringert, wihrend der Volumenstrom der Fliissigkeit und des Heizdamp-
fes konstant gehalten wurden. Im zweiten Experiment wurde der Volumenstrom der
Fliissigkeit von 18 m3h~! auf 14,4m3h~! nahezu sprunghaft verringert, wihrend die
anderen Volumenstrome konstant gehalten wurden. Im dritten Experiment wurden al-
le Volumenstrome gleichzeitig verringert: Der Rohgas-Volumenstrom von 5000 m?h-!
auf 4000m3h-!, der Fliissigkeitsstrom von 18 m3h~! auf 14,4m3h-! und der Dampf-
Volumenstrom von 1840 m3h=! auf 1500 m3 h-1.

Fiir die Simulationen werden die in Abbildung gegeben Anlagenspezifikationen in
das dynamische Modell implementiert. Die packungsspezifischen Parameter fiir das rate-
based Modell werden mit den Korrelationen von Billet und Schultes| (1999) und [T'sai et al.
(2011) fir die Mellapak 2X im Absorber und IMTP50 im Desorber bestimmt (Anhang
[A). Fiir die Bestimmung der Wérmeiibergangskoeffizienten in den jeweiligen WT werden

die Korrelationen nach:
e Martin| (2013)) fur die P-WT,
e Gaddis und Gnielinski| (2019)) fiir den Verdampfer sowie

e Numrich und Miiller| (2019) fiir den Kondensator

verwendet (Anhang [A)). Die Parameter fiir die ablaufenden chemischen Reaktionen wer-
den mit den Korrelationen nach [von Harbou et al| (2014) ermittelt (Anhang [B). Um

priifen zu konnen, ob die nicht-trennwirksamen Kolonneneinbauten und die Peripherie
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einen signifikanten Einfluss auf das dynamische Prozessverhalten haben, werden fiir die

fehlenden Anlagenspezifikationen Annahmen getroffen, die in Tabelle [5.3] aufgelistet sind.

Tabelle 5.3: Angenommene Werte fiir die fehlenden Daten der Anlage aus der Arbeit
von [Faber et al.| (2011)).

Anlagenkomponente Parameter Wert

FSV-System Durchmesser der BL 4,5 mm
Verteilung der BL 200 BL m~2

Kolonnensumpf Fiillstand im Absorber 1,0 m
Fiillstand im Desorber 1,5 m

WT Volumen des lean-rich WT 0,2 m?
Volumen des Kiihlers 0,15 m3
Volumen des Verdampfers 0,1 m?
Volumen des Kondensators 0,1 m?

Rohrleitung Linge zwischen den Kolonnen 60 m

Der Durchmesser und die Anzahl der Siebboden-BL (FSV System) sind in Abhéngigkeit
der Betriebsbedingungen, die in den Experimenten von Faber et al.| (2011]) eingestellt wur-
den, aus einem Produktkatalog der Firma Sulzer Chemtech Ltd. (2023) entnommen wor-
den. Die geometrischen Daten der WT sind so angepasst, dass die Warmeaustauschflichen
und Fluidgeschwindigkeiten ausreichen, um die in den Experimenten gemessenen Tem-
peraturen am Ausgang jedes WTs in den Simulationen erreichen zu kénnen. Der Rohr-
leitungsdurchmesser ist so gewahlt, dass die Geschwindigkeit der fliissigen Phase in den
Rohrleitungen im stationédren Zustand ein Meter pro Sekunde betrégt. Diese Geschwin-
digkeit entspricht dem Standard in industriellen Rohrleitungen (Nirschl, 2019). Die mit
den angenommenen Werten aus Tabelle 5.3 erzielten Simulationsergebnisse fiir alle drei
Experimente sind als durchgezogene Linien in Abbildung dargestellt, die von |[Faber
et al. (2011) gemessenen Ergebnisse sind als gestrichelte Linien gegeben.

Aus Abbildung m ist zu erkennen, dass die qualitative Ubereinstimmung des Volu-
menstroms des aus dem Desorber austretenden Gases (pink) zwischen Mess- und Si-
mulationsergebnis gut ist. Die relative Abweichung liegt in allen Experimenten im Be-
reich £10%. Vergleicht man allerdings die Mess- und Simulationsergebnisse fiir die COq-
Austrittskonzentration im Absorber (griin), sind deutlich grofiere Abweichungen zu erken-
nen. Ebenso weicht der qualitative Verlauf der simulierten CO,-Austrittskonzentration,
vor allem in Experiment 3 in Abbildung [5.20k, deutlich vom Messergebnis von [Faber
et al| (2011) ab. Im Folgenden werden die zeitlichen Verldufe der AustrittsgroBen und

deren Abweichungen detailliert analysiert.
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In Abbildung nimmt im ersten Experiment die CO,-Austrittskonzentration infol-
ge der Verringerung des Rohgas-Volumenstroms sprunghaft ab. Grund dafiir ist, dass
durch den geringeren Volumenstrom die Menge an eintretenden CO, abnimmt und bei
gleichbleibender LM-Menge die Effizienz der Absorption steigt. Die Effizienz steigt im
Experiment so weit, dass die COs-Austrittskonzentration auf nahezu Null sinkt. Das
Rohgas wird somit fast vollsténdig gereinigt. Bei den Simulationsergebnissen sind so-
wohl im stationdren Ausgangszustand als auch im neuen stationédren Endzustand hohere
COs-Austrittskonzentrationen zu erkennen. Dadurch, dass bei den experimentellen Mes-
sergebnissen die COs-Konzentration auf fast Null sinkt, nehmen die relativen Abwei-
chungen hier extrem zu und sind allein nicht repriasentativ. Daher werden die absoluten
Abweichungen zwischen Mess- und Simulationsergebnis herangezogen, die hier maximal
0,5Vol.-% betragen. Auch der qualitative zeitliche Verlauf der Konzentration und die
Ubergangszeit werden vom Modell gut erfasst. Im zeitlichen Verlauf der Abweichung sind
im Ubergangsverhalten nur minimale Schwingungen zu erkennen, die durch Schwankungen
der gemessenen COs-Austrittskonzentrationen entstehen. Ansonsten verlduft die Abwei-
chung direkt vom Start- zum Endwert, was nach Abbildung einer guten Erfassung der
Prozessdynamik entspricht. Fiir den aus dem Desorber austretenden Gas-Volumenstrom
ist im zeitlichen Verlauf der Abweichung ein Maximum nach ca. 35 Minuten zu erkennen.
Der simulierte Volumenstrom nimmt schneller ab als im Messergebnis. Hier sind Abwei-
chungen in der Prozessdynamik zu erkennen. Die Ubereinstimmungen der stationiren
Ausgangs- und Endzustédnde zwischen Mess- und Simulationsergebnis sind aber gut.

Im zweiten Experiment in Abbildung (Reduzierung des LM-Volumenstroms) ist die
Ubereinstimmung zwischen gemessenen und simulierten Gas-Volumenstrom am Desor-
beraustritt sehr gut. Dies ist fiir die COq-Austrittskonzentration am Absorber nicht der
Fall. Wie bereits in Abschnitt beschrieben, zeigt die Anderung des LM-Volumenstroms
einen deutlich signifikanteren Einfluss auf das dynamische Prozessverhalten im Vergleich
zur Anderung des eintretenden Gasstroms. Die gemessene COq-Austrittskonzentration im
Reingas startet etwa bei 1,6 Vol.-%. Nach der abrupten Verringerung des LM-Durchsatzes
steigt die gemessene Austrittskonzentration im Experiment in den néchsten 20 Minuten an
(gepunktete Linie). Die Reduzierung erfolgte kurz vor Eintritt des LMs in den Absorber.
Im Absorber fiihrt die geringere LM-Menge zu einer hoheren COq-Austrittskonzentration,
da der geringere Gehalt an MEA weniger CO, absorbieren kann. In der Desorptionseinheit
fithrt der verringerte LM-Durchsatz bei konstanter Warmezufuhr zu etwas héheren Tem-
peraturen, insbesondere im Verdampfer. Die Regenerierung der MEA-Lo6sung wird durch
die erhohte Temperatur begiinstigt, wodurch die COs-Beladung im LM nach der Desorp-
tion sinkt. Sobald das LM mit der geringeren COs-Beladung in den Absorber eintritt,
nimmt die CO,-Austrittskonzentration im Reingas ab, was zu einem Maximum im Kon-
zentrationsverlauf fithrt. Zu diesem Zeitpunkt hat das LM den gesamten Prozess (Kreis-

lauf) vollstéandig durchlaufen. Im Experiment dauerte dies etwa 20 Minuten. Wéhrend
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die COq-Austrittskonzentration abnimmt, steigt die COy-Beladung im LM am Absorbe-
raustritt aufgrund der gréfleren Menge an aufgenommenem CO, an. Nach weiteren 20 Mi-
nuten durchléuft das LM mit der erhohten CO,-Beladung den Prozess ein zweites Mal und
die CO5-Austrittskonzentration im Reingas nimmt wieder zu. Nach mehreren Durchldufen
des LMs durch den Kreislaufprozess oszilliert die COo-Austrittskonzentrations in einen
neuen stationdren Zustand. Im zweiten Experiment dauert der Ubergangsprozess etwa
60 Minuten. Im Simulationsergebnis sind die Zeiten, die das LM fiir den Durchlauf des
Kreislaufprozesses (ca. 13 Minuten) und des gesamten Ubergangsprozesses (etwa 39 Mi-
nuten) benotigt, deutlich kiirzer. Die kiirzeren Zeiten im Simulationsergebnis werden auch
im Verlauf der Abweichung sichtbar. Hier sind zwei Maxima nach ca. 5 und 22 Minuten
sowie zwei Minima nach ca. 13 und 39 Minuten erkennbar. Die Maxima und Minima
in den Abweichungen resultieren aus der schlechten Erfassung der Proessdynamik vom
dynamischen Modell (vgl. Abbildung [5.1)). Sowohl im Mess- als auch im Simulationser-
gebnis ist der neue stationére Zustand nach drei Durchldufen des LMs erreicht. In dem
Ubergangsverhalten ist in der gemessenen CO,-Austrittskonzentration ein Minimum nach
ca. 40 Minuten (LM hat den Prozess zwei Mal Durchlaufen) zu erkennen. Das LM hat im
Simulationsergebnis den Prozess nach 26 Minuten zwei Mal durchlaufen; hier ist allerdings
kein Minimum im Konzentrationsverlauf erkennbar.

Im dritten Experiment, dargestellt in Abbildung [5.20f, lassen sich dhnliche Schlussfolge-
rungen wie im zweiten Experiment ziehen. Die Oszillationen in der gemessenen COs-
Austrittskonzentration sind durch die parallele Anderung der drei Eintrittsparameter
stiarker ausgeprégt. Die simulierten Zeiten, die das LM fiir einen Durchlauf des Prozesses
und fiir den gesamten Ubergangsprozess benétigt, sind deutlich kiirzer als im Experiment.
Daher sind im zeitlichen Verlauf der Abweichung deutliche Schwingungen zu erkennen.
Waihrend die relativen Abweichungen im stationdren Ausgangszustand und im neuen sta-
tiondren Endzustand gering sind, weicht das Modell im Ubergangsverhalten um bis zu
—-60% vom Messergebnis ab. Auch in diesem Experiment ist zu erkennen, dass ein Mini-
mum vor Erreichen des neuen stationdren Zustands im Messergebnis auftritt, im Simula-
tionsergebnis aber nicht.

Der Grund fiir die hohen Abweichungen zwischen den Simulations- und Messergebnissen
in den Experimenten von [Faber et al.| (2011) ist vermutlich die Vielzahl an Annahmen,
die fiir die Bestimmung der Holdups in den nicht-trennwirksamen Kolonneneinbauten und
der Peripherie gemacht werden mussten. Um zu untersuchen, wie grofl der Einfluss der
nicht-trennwirksamen Kolonneneinbauten und der Peripherie auf die Prozessdynamik ist,
wird die Simulation mit einem reduzierten Modell erneut durchgefiihrt. Dazu wird das
zweite Experiment aus Abbildung verwendet. Im reduzierten Modell werden die
FSV Systeme, Kolonnensiimpfe, WT und Rohrleitungen vernachléssigt. Das Simulations-
ergebnis des reduzierten Modells ist zusammen mit den zuvor vorgestellten Ergebnissen
des zweiten Experiments in Abbildung gegeben.
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Abbildung 5.21: Simulationsergebnisse des reduzierten Modells im Vergleich zu den Si-
mulationsergebnissen des vollstdndigen dynamischen Modells und den Messergebnissen
des zweiten Experiments.

Die Abbildung [5.21] zeigt deutlich, dass die Abweichungen des reduzierten Mo-
dells wihrend des Ubergangsprozesses groBer sind als die Simulationsergebnisse des
vollstéandigen dynamischen Modells. Die Zeit, die das LM fiir das Durchlaufen des Kreis-
laufs bendttigt, betrdgt ca. 5 Minuten mit dem reduzierten Modell. Auch die maximale
COq-Konzentration infolge der Losemittelreduzierung ist deutlich geringer. Der Einfluss
der nicht-trennwirksamen Kolonneneinbauten und der Peripherie auf das dynamische Pro-
zessverhalten ist signifikant. Da im reduzierten Modell der Einfluss dieser beiden Faktoren
gleichzeitig vernachléssigt wurden, soll mit einer Sensitivitdtsanalyse der Einfluss der ein-
zelnen Komponenten auf die Prozessdynamik ermittelt werden.

Fiir die Sensitivitdtsanalyse wird jeweils ein Parameter von den angenommenen geome-
trischen Daten (vgl. Tabelle variiert und die Simulationsergebnisse mit dem ur-
spriinglichen Simulationsergebnis aus Abbildung sowie den experimentellen Mes-
sergebnissen von [Faber et al.| (2011) verglichen. Dazu wird ein dimensionsloser Parameter

eingefiihrt, der das Verhéltnis des variierten Parameters zum urspriinglich angenommenen
Wert beschreibt:

d h Vv l
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In Abbildung ist der Einfluss der nicht-trennwirksamen Kolonneneinbauten (FSV
System und Kolonnensumpf) dargestellt, wobei die Kolonnen separat betrachtet werden.

Der Einfluss des Lochdurchmessers der Siebboden (FSV System) in Abbildung ist

) 5.3
hSumpf ( )
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Abbildung 5.22: Sensitivitdtsanalyse des Einflusses der nicht-trennwirksamen Kolonnen-
einbauten auf die Prozessdynamik (alle Kurven liegen iibereinander in der Abbildung
unten links).

offensichtlich, sowohl im Absorber als auch im Desorber. Mit gréflerem Lochdurchmesser
nimmt der Holdup auf den Siebboden ab. Das LM erreicht so in kiirzerer Zeit den Aus-
tritt der Kolonne und die Zeit, die das LM fiir einen Durchlauf des Prozesses benotigt,
sinkt. Daher wird das erste Maximum frither erreicht. Bei kleineren Lochdurchmessern
erhoht sich diese Zeit deutlich, wodurch auch die Ubergangszeit steigt. Dies gilt ebenfalls
fiir den Lochdurchmesser der Siebboden im Desorber, allerdings ist hier eine konstan-
te Steigung der CO,-Austrittskonzentration bis zum Erreichen des ersten Maximums zu
beobachten. Zusétzlich steigt die maximale COs-Austrittskonzentration mit kleinerem
Lochdurchmesser deutlich an. Dies liegt daran, dass die Verringerung der LM-Menge am
Absorbereintritt durchgefithrt wurde und der Einfluss der Desorptionseinheit auf die CO,-
Austrittskonzentration erst dann einsetzt, wenn das LM den Prozess ein Mal durchlaufen
hat.

Bei den Kolonnensiimpfen ist ein geringerer Einfluss auf das Ubergangsverhalten der
austretenden COy-Konzentration als fiir die FSV Systeme zu erkennen. Ein hoéherer
Fiillstand des Desorber-Kolonnensumpfs fiithrt dazu, dass das LM langer im Desorber ver-
weilt und das regenerierte LM mehr Zeit benotigt, um den Absorber zu erreichen. Auch
die Ubergangszeit nimmt dadurch zu. Fiir den Absorbersumpf ist jedoch kein Einfluss

erkennbar.
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In Abbildung [5.23] ist der Einfluss der Anlagenkomponenten in der Peripherie auf das
dynamische Prozessverhalten der CO,-Austrittskonzentration gegeben. Das Volumen des
Kiihlers, lean-rich WTs, Verdampfers und die Linge der Rohrleitung vom Desorber zum
Absorber fithren zu leicht erhohten COs-Austrittskonzentrationen im ersten Maximum,
wihrend die Ubergangszeiten nahezu konstant bleiben. Insgesamt ist der Einfluss deutlich
geringer als fiir die nicht-trennwirksamen Kolonneneinbauten.

Die Sensitivitidtsanalyse zeigt, dass der Einfluss der nicht-trennwirksamen Kolonnenein-
bauten, vor allem die FSV Systeme, auf die Prozessdynamik der betrachteten Pilotan-
lage grof ist und daher im dynamischen Modell beriicksichtigt werden muss. Keine der
veroffentlichten experimentellen Studien zur Prozessdynamik spezifiziert jedoch die Geo-
metrie der verwendeten FSV Systeme. Um vollstindige experimentelle Daten fiir eine
verniinftige Modellvalidierung zu erhalten, wurden Experimente in der eigenen Techni-

kumsanlage der Universitdt Paderborn durchgefiihrt.
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Abbildung 5.23: Sensitivitdtsanalyse des Peripherie-Einflusses auf die Prozessdynamik.
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und Validierung

Die Technikumsanlage der Universitét Paderborn, dargestellt in Abbildung [6.1] besteht
aus zwel Glaskolonnen, eine mit einem Innendurchmesser von 0, 1m (Absorber) und eine
mit 0,3m (Desorber). Beide Kolonnen sind mit strukturierten Packungen vom Typ Montz
B1-250.45 (Julius Montz GmbH) ausgestattet, die in je zwei Packungsbetten unterteilt
sind. Auf jedem Packungsbett sind FSV Systeme installiert. Die technischen Zeichnungen
der Anlage sind im Anhang [E] zu finden. Das FSV System arbeitet nach dem Prinzip des
VKRPW's aus Abbildung [1.4 Die Untersuchung des dynamischen Fiillstand-Verhaltens
im FSV System wird im néchsten Abschnitt dargestellt.

Der Fiillstand im Kolonnensumpf des Absorbers und Desorbers wird jeweils durch ein
Ventil geregelt, das den Differenzdruck konstant hélt (hydrostatischer Druck). Das Roh-
gas ist ein Gemisch aus Frischluft und COs,. Der Einlassdurchsatz beider Gasstrome kann
iiber Ventile eingestellt werden, um eine konstante COs-Konzentration einzustellen. Vor
dem Eintritt in den Absorber wird das Gasgemisch mit einem Geblése in einen Vorwéscher
geleitet, um sicherzustellen, dass die Luft mit Wasser gesattigt ist. Das LM wird in zwei
Vorlagebehiltern (IBC) gelagert. In einem befindet sich das beladene LM, das den Absor-
ber verlésst, und in dem anderen das regenerierte LM aus dem Desorber. Das beladene LM
wird durch den lean-rich WT und einen zusitzlichen DR-W'T zur weiteren Erwarmung
in den Desorber gepumpt. Am Fliissigaustritt des Desorbers ist ein Verdampfer (extern)
installiert. Der Dampf, der den Desorber am oberen Ende verlasst, wird kondensiert. Das
Gas wird dann in den Rohgasstrom zuriickgefiihrt und das kondensierte Wasser (mit LM-
Reste) wird in den IBC fiir das regenerierte LM zuriickgefiihrt. Das regenerierte LM, das
den Desorber am Sumpf verldsst, fliefit durch den lean-rich WT und einen P-W'T zur
weiteren Kiihlung (vgl. Abbildung. Dies ist aus Sicherheitsgriinden notwendig, da bei
zu hohen Temepraturen das IBC-Material schmelzen kénnte. Daher ist auch ein Kiihler
(P-WT) am Austritt des Absorbers installiert. Das frische LM wird durch einen DR-WT
zur Erwérmung und einen P-WT zur Kiihlung in den Absorber gepumpt. Diese Kom-
bination aus Heizen und Kiihlen soll eine einfache Einstellung der Eintrittstemperatur
ermoglichen. Das Kiihlwasser wird von der Universitidt Paderborn bereitgestellt und hat
eine Temperatur von ca. 12°C. Die Wasserdampfversorgung fiir den Verdampfer und die
DR-WT wird in einem Dampfkessel bei 5 bar erzeugt. In den Apparaten wird der Dampf
durch Ventile geregelt.



81

“(L102) E uoa jssedoue ‘uouoreNyIZodsusge[uy Il SFR[URSWNYIUYID], USUOSIO JOp SUN[[9ISIR(] dIYDRIUIDIDA (19 SUNpqqy

P10~ 0 | gus [93OIN [eLIe)EWU B
o~ 1D «|-1°pPd [eLiaje|y 0 [wrw] ospreisuane[d
[w]pueisyng | oz [ww]sossowyom  (0bX1/6£X1) uonem3yuoy|
01 [w]omoig | 04 ouuo[oy & D€l - V0ET [t apeneuesy
01 [W]ogeH | 0°¢ DMl & 2Uuo[oy . SIT0 [w] 2yr21quaneld
01 [w] o3ue [t] S3uepryoy SLY0 [w] s3uguanelq
odl Sunypryoy d LMA-d
[YBIS[epd [qeIs[=py [BLIIBIN M IA IS[I3}I2A /-Ia[uteS
4 T [qezuerqoy SPosc
Y651 b/ wnenppuely o [g Zuopy Funyoeg/unequrg
0T XL'EE 0T X 8% AoIuagny .
0TX0T 0TX0T gomwduul . OLV'T-T UONOSUUDL],  »
[wrw] 1essawryon(g [w] syoys3unyoeq
890 0T [wr] s3uerIyoy £0 [w] sessewyd.ng
Iojdwepiop  JOZIOYIOA IA-I/IM-Ad 191080 JUUO[0Y]
uouoneyyIzedsuage[uy

JosseM[UIY] s
\ 3
\7 - y 1

jesusapuol]

O'H + ‘0D

jesuspuoyJdwreq <---

Issemyny «---
D VAW SOYISH] «—
VAW SPudpe[og <—

r sedyoy

ﬁ ﬁ ser) s9)FIUIAIAN)



82 6 Technikumsanlage: Experimente und Validierung

Die gesamte Technikumsanlage ist isoliert. Beide Kolonnen sind mit Messstellen fiir axia-
le Temperatur- und Konzentrationsprofile ausgestattet. Dariiber hinaus sind an allen
Kolonnenein- und -ausgéngen sowie an den IBC-Einlédssen Temperaturmessstellen fiir die
Gas- und Fliissigphase installiert. Die Temperaturen werden online gemessen und iiber
ein Prozessleitsystem iiberwacht. Dabei werden die Werte automatisch und kontinuier-
lich gespeichert. Fliissigproben miissen manuell an eingebauten Probenahmestellen der
Technikumsanlage entnommen und offline analysiert werden. Fiir die Gasphasenprobe-
nahme wurden Rohre in die Flansche der Anlage eingefiihrt. Die Rohre sind iiber ein
System aus beheizten Rohren und einer Vakuumpumpe mit einem Gaschromatographen
verbunden, so dass die Gasproben quasi-online analysiert werden kénnen. Die Analyse ei-
ner Gasprobe dauert jedoch 3,5 Minuten. Eine kontinuierliche Messung der Fliissig- und
Gasphasenzusammensetzung ist also nicht moglich. Eine detailliertere Beschreibung der

Technikumsanlage ist in der Arbeit von Hiiser| (2017) zu finden.

6.1 Untersuchung des Fiillstand-Verhaltens im FSV

Die Untersuchung der FSV-Fiillstiande wird durchgefiihrt, um das stationdre und dyna-
mische Verhalten in Abhéngigkeit der Fliissigkeitsbelastung experimentell zu ermitteln.
Letzteres ist aufgrund der Bauweise, die in etwa der eines VKRPWs aus Abbildung|[I.4]ent-
spricht, notwendig gewesen, um die Anwendung von Gleichung [3.56| validieren zu kénnen.
Eine schematische Darstellung der FSV Systeme ist in Abbildung gegeben.

(a) Schematische Darstellung: Querschnitt:
P30x2 mm
170 2
mm = 9 ?4,5 mm
140 mm ; J F @4.0 mm ?15x2 mm
100 mm s ° ° 94,0 mm
60 mm — ° ° ?3,5 mm
z4 20 mm N ° 3,0 mm
0mm — 8
il
(b)

170 mm ©8,0 mm
140 mm @7,5 mm
100 mm @7,0 mm

60 mm 06,3 mm

zy 20 mm 05,8 mm

0 mm

Abbildung 6.2: Schematische Darstellung des in der Technikumsanlage installierten FSV
Systems fiir den Absorber (a) und den Desorber (b).
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Der Fliissigkeitssammler besteht aus einem festen Boden, in dem Rohre mit zwei un-
terschiedlichen Durchmessern eingebaut sind. Die Rohre mit dem grofleren Durchmesser
(insgesamt 4 Stiick pro Verteiler) sind durchgehend und lassen das Gas ohne Kontakt
mit der Fliissigkeit in das dariiber liegende Packungsbett aufsteigen. Die Rohre mit dem
kleineren Durchmesser weisen auf verschiedenen Hohen BL auf, sodass die Fliissigkeit, die
sich auf dem festen Boden ansammelt, in die kleineren Rohre abflieen kann. Die kleinen
Rohre sind auf dem festen Boden verteilt, um ein gleichméBiges AbflieBen der Fliissigkeit
iitber den gesamten Querschnitt zu gewéahrleisten. Der Durchmesser der B, nimmt mit an-
steigender Hohe zu, um bei groflerem Fliissigkeitsstau mehr Austrittsfliche zum Abflielen

zu bieten und so méogliches Fluten der Kolonne zu verhindern.

Fiir die Vorversuche ist reines Wasser verwendet und der Massenstrom schrittweise um
50kg h~! erhoht worden, beginnend mit einem Massenstrom von 100 kg h~!. Dieser Massen-
strom entspricht der unteren Grenze der an der Anlage méoglichen Betriebsbedingungen.
Um den Fiillstand in den einzelnen Verteilern messen zu kénnen, sind an den Glaskolonnen
Messskalen angebracht worden. Die Uberwachung der Fiillstandsinderung erfolgte mit-
hilfe von Videokameras, die aulen vor den Kolonnen aufgestellt wurden. Mit Beginn der
Vorversuche, d.h. mit der ersten Anderung des Massenstroms von 100kgh-! auf 150kgh-!,
sind die Aufnahmen der Videokameras gestartet worden. Eine Momentaufnahme der Vi-
deos ist in Abbildung [6.3] dargestellt.

Abbildung 6.3: Momentaufnahme aus einem der aufgenommenen Videos zur
Fiillstandséanderung im FSV System des (hier) Absorbers.
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Die Videos werden folgendermafien ausgewertet: Zu Beginn der Videos wird der zu die-
sem Zeitpunkt vorliegende Fiillstand notiert (Startwert). Sobald eine Fiillstandséanderung
von einem Millimeter (deutlich) erkennbar ist, wird das Video angehalten und der ak-
tuelle Zeitpunkt notiert. AnschlieBend wird das Video fortgesetzt. Das Ablesen der
Fiillstandsénderung im Video wurde durch die herabtropfende Fliissigkeit im FSV deut-
lich erschwert, da sich kein glatter, sondern eher wellenformiger Wasserspiegel an der
Messskala ausbildete (vgl. Abbildung . Das Vorgehen wird fiir die gesamte Dauer des
Videos fortgefiihrt. Der so gewonnene zeitliche Verlauf der Fiillstandsdnderung wird dann
zusammen in ein Diagramm mit der parallel durchgefithrten Anderung des Massenstroms
aufgetragen. Das Ergebnis fiir den FSV des Absorbers ist in Abbildung gegeben. Fiir
den Desorber haben die Vorversuche gezeigt, dass iiber den gesamten Belastungsbereich
ein konstanter Fiillstand von 20mm (= Hoéhe der untersten BL) vorlag. Dies liegt dar-
an, dass der Desorber fiir den hier betrachteten Belastungsbereich iiberdimensioniert ist.
Zusatzlich zum zeitlichen Verlauf des Fiillstands konnen aus dem Diagramm auch die sta-
tiondren Fiillstdnde zu den eingestellten Massenstrome abgelesen werden. Die Ergebnisse
dazu sind in Tabelle aufgefiihrt.

In Abschnitt wurde das Vorgehen zur Modellierung von verschiedenen FSV Systemen
beschrieben. Die Simulationsergebnisse, die hier mit Gleichung erzielt werden, sind
zusammen mit den zuvor erzielten Messergebnissen des Vorversuchs in Abbildung
abgebildet. Die relativen Abweichungen in Abbildung sind fiir alle Spriinge des Mas-
senstroms im Bereich von + 10 %. Unter Beachtung, dass durch die Anbringung einer ein-
fachen Messskala und das Ablesen des Fiillstands durch den wellenférmigen Wasserspiegel
die Ermittlung des Fiillstands zu hohen Ungenauigkeiten fiihrt, ist die Ubereinstimmung
zwischen Mess- und Simulationsergebnis zufriedenstellend. Die héchsten Abweichungen
sind bei einem Massenstrom von 250kgh=! zu finden und betragen etwa —10 %.

In der Modellierung kann fiir die Bestimmung des Holdups im FSV System des Desorbers

ein konstanter Fillstand von 20 mm verwendet werden.

@) 149 - (b) Stationdre Zustinde:
o | —%Fiillstand —Massenstrom | o 500 Massenstrom [kg hl]  Fiillstand [mm]
100 55
120 g _
—_ L 400 = 150 60
g 110 =
5 = 200 70
100 L
= 300 |:> 250 90
Z 9 =
E “ 200 g 300 95
§ 350 100
b 100 400 106
60
Zeit [min] 450 118
5 ' 0 500 130

II) 1‘0 2.0 3‘0 40
Abbildung 6.4: Ergebnisse des Vorversuchs fiir den FSV des Absorbers (a) und Mess-
werte der stationdren Zusténde (b).
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Abbildung 6.5: Vergleich zwischen Mess- und Simulationsergebnis mit Vorgabe des Mas-
senstroms (a) und Ergebnisse des Fiillstands mit relativen Abweichungen (b).

6.2 Experimentelle Untersuchung

Zur Schaffung einer Validieurngsbasis, bei der alle Anlagendaten bekannt sind, werden
verschiedene Experimente an der in der Abbildung dargestellten Technikumsanla-
ge durchgefithrt. Fiir die chemische Absorption wird die Rauchgaswésche als Reakti-
onssystem verwendet. In den Experimenten wird der LM-Durchsatz nahezu sprunghaft
verdndert. Wie zu Beginn des Abschnitts beschrieben, stammt das LM fiir den Absor-
ber und den Desorber aus separaten Vorlagenbehiltern. Der Massenstrom, der in die
jeweilige Kolonne eintritt, wird separat iiber Ventile geregelt, sodass die Massenstrom-
Anderung an beiden Kolonnen gleichzeitig erfolgen musste. Die Experimente starten bei
einem stationdren Ausgangszustand und wichtige Prozessparameter werden so lange ge-
messen, bis ein neuer stationdrer Zustand erreicht ist. Die Prozessparameter sind in diesen
Experimenten die austretende COs-Gaskonzentration des Absorbers sowie die Ein- und
Austrittstemperaturen der fliissigen Phasen in beiden Kolonnen. Um die Reproduzierbar-
keit zu gewihrleisten, wird jedes Experiment so lange wiederholt, bis drei sehr &hnliche
Sprungantworten der Technikumsanlage gemessen werden konnten. Zu diesem Zweck ist
es wichtig, bei jedem (gleichen) Experiment identische Ausgangszusténde einzustellen und
identische Prozessbedingungen wihrend des Experiments zu gewéhrleisten.

Es werden drei verschiedene sprunghafte Anderungen des Fliissigmassenstroms durch-
gefiihrt. Im ersten Experiment wird der Massenstrom an LM von 150 auf 100 kg h~' nahe-
zu sprunghaft gedndert. Das zweite Experiment entspricht der Umkehrung, von 100 auf
150kgh=t, und das dritte Experiment wird mit groflerem Sprung durchgefiihrt, von 250
auf 100 kgh='. Die stationdren Ausgangszustéinde fiir die drei Experimente sind in Tabelle

aufgefiithrt. Die eingestellten Parameter liegen innerhalb der méglichen Betriebsbedin-
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gungen der Technikumsanlage (Hiiser und Kenig), [2014) und basieren auf typischen, indus-
triellen Werte (Faber et al.,2011)). Der in den Absorber eintretende Gasstrom (resultierend
in einem F-Faktor von 1,75Pa™") und die Utility-Strome (Kiihlwasser und Wasserdampf)
werden fiir alle Experimente konstant gehalten, um den Fokus auf die Anderung des LM-
Durchsatzes zu legen. Der Druck im Absorber betrug 1 bar; im Desorber wird ein leicht

erhohter Druck von 1,1 bar eingestellt.

Tabelle 6.1: Stationéire Ausgangszustiande fiir jedes Experiment.

mk Vgl ygn,co2 wMEA TeLin,Abs. TeLin,Des.

[kgh™']  [m3h-'] [Vol.-%] [Gew.-%] [°C] [°C]
Exp. 1 150 42,5 6,7 25,0 32,5 101,7
Exp.2 100 425 6.7 25.0 52,0 102,4
Exp. 3 250 425 6.7 95.0 24.5 100,5

Auf trockenen Packungen konnten sich Rinnsale ausbilden, die die Benutzungseigenschaf-
ten der Packungen bei Anderungen des Fliissigmassenstroms beeinflussen kénnten. Daher
werden vor jedem Experiment beide Kolonnen kurzzeitig geflutet, damit die Packungen
vollsténdig befeuchtet und Rinnsale vermieden werden. Anschlieend wird die Techni-
kumsanlage auf den gewiinschten stationdren Ausgangszustand fiir das jeweilige Experi-
ment aus Tabelle [6.1] eingestellt. Bei Erreichen des stationdren Ausgangszustands wird
die COy-Gaskonzentration am Ein- und Austritt des Absorbers nacheinander mit dem
Gaschromatographen gemessen. Die Messungen werden fiir eine Mittlung mehrfach durch-
gefiihrt. Die Analyse des LMs erfolgte durch manuelle Probenahme am Absorbereinlass.
Fiir jedes Experiment werden insgesamt drei stationédre Proben fiir die Mittelwertbildung
entnommen. Die Probenahmen erfolgten parallel zur Gasanalyse mit dem Gaschromato-
graphen. Bei den LM-Proben wird der MEA-Gehalt durch Titration bestimmt und die
CO3-Beladung mit einem Chittik Apparat (Ji et al. 2009). Die Bestimmung der CO,-
Beladung zeigte eine relativ groffe Streuung in den Analyseergebnissen. Auflerdem nimmt
die Analyse der COy-Beladung relativ viel Zeit in Anspruch (etwa 15 Minuten), wes-
halb auf deren Messung wéahrend der Experimente verzichtet wird. Eine Messung mit
dem Gaschromatographen dauerte 3,5 Minuten und es konnte nur eine Konzentration an
einer (fest installierten) Messstelle gemessen werden. Wahrend der Experimente zur Pro-
zessdynamik wird daher nur die COo-Gaskonzentration am Absorberaustritt (Reingas)
gemessen. Bei jedem Experiment wird die erste Messung nach einer Minute, nachdem die
Anderung des Massenstroms durchgefithrt wurde, und jede weitere Messung nach weite-
ren 3,5 Minuten gestartet. Es werden immer die gleichen Zeitintervalle verwendet, um
zu jedem Zeitpunkt einen Mittelwert aus den wiederholten Experimenten ermitteln zu

konnen.



6.2 FExperimentelle Untersuchung 87

6.2.1 Experiment 1: Sprung von 150 auf 100 kg pro Stunde

Die gemessenen COs-Reingaskonzentrationen am Absorberaustritt im ersten Experiment
sind in Abbildung gegeben; die zugehdrigen Messungen der Temperaturen in der
Fliissigphase sind in Abbildung dargestellt. Im Experiment (und in den folgenden
Experimenten) wird die sprunghafte Massenstrom-Anderung zum Zeitpunkt Null (= sta-
tiondre Ausgangszustand) durchgefiihrt. Die Abbildungen zeigen sowohl die halbstiindige
Periode vor Erreichen des stationdren Ausgangszustands als auch das Ubergangsverhalten
infolge der Anderung. Es wurden insgesamt fiinf Wiederholungen des Experiments durch-
gefiihrt, um drei #hnliche Sprungantworten zu erzielen. In diesem Experiment wer-
den die Wiederholungen 1, 2 und 5 fiir die Mittelung verwendet, weil sie die grofiten
Ubereinstimmungen zeigen. Die Temperaturen am Eintritt des Absorbers in Abbildung
6.7 weisen in Experiment 3 und 4 groBere Fluktuationen und einen kontinuierlichen An-
stieg nach der sprunghaften Anderung auf, was in den anderen Experimenten nicht der
Fall ist. Die iibrigen Temperaturen in Abbildung [6.7] sowie die Messergebnisse der CO,-
Reingaskonzentration in Abbildung zeigen fiir alle fiinf Wiederholungen ein dhnliches
Verhalten mit geringen Abweichungen voneinander. Die Ubergangszeit wird mit Abbil-
dung abgeschétzt und betrigt etwa 80 Minuten.
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Abbildung 6.6: Sprungantworten der gemessenen COs-Konzentrationen am Absorbe-
raustritt in den fiinf Wiederholungen des ersten Experiments.
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6.2.2 Experiment 2: Sprung von 100 auf 150 kg pro Stunde

Die Ergebnisse der gemessenen COs-Reingaskonzentrationen am Absorberaustritt im
zweiten Experiment sind in Abbildung gegeben; die zugehorigen Messungen der Tem-
peraturen in der Fliissigphase sind in Abbildung dargestellt. Auch im zweiten Ex-
periment wurden insgesamt fiinf Wiederholungen durchgefiihrt, um drei &hnliche Sprun-
gantworten zu erzielen, und es werden ebenfalls die Wiederholungen 1, 2 und 5 fiir die
Mittelung verwendet. Die Eintrittstemperaturen am Absorber in Abbildung in der
dritten und vierten Wiederholung des Experiments wichen erneut deutlich von den ande-
ren ab. Zudem sind im Ausgangszustand, also bei einem Massenstrom von 100 kg h~!, sehr
starke Fluktuationen und ein Anstieg der Fliissigphasen-Temperatur am Absorbereintritt
zu erkennen. Ein Massenstrom von 100 kgh=! hat in den Experimenten deutliche Schwie-
rigkeiten bereitet, die Eintrittstemperatur am Absorber konstant zu halten. Im ersten
Experiment in Abbildung [6.7] sind die zwei Phénomene des Temperaturanstiegs und der
starken Fluktuationen ebenfalls bei einem Massenstroms von 100 kgh=! erkennbar (hier:
nach der sprunghaften Anderung des Massenstroms). Die starken Fluktuationen deuten
auf Gas in der Rohrleitung hin. Bei dem geringen Massenstrom koénnte die Temperatur
des LMs im DR-WT so weit angestiegen sein, dass das unerwiinschte Gas durch partielle

Verdampfung entstanden ist und in den nachfolgenden P-WT (Kiihler) eintritt.

¢ Wiederholung 1 Wiederholung 2
= Wiederholung 3 * Wiederholung 5
_ -e-Mittelung (1, 2, 5)
8‘3 |
% 4,0 - !
2 |
.5 MR | . o
E * o, o002t 2200t 80" Reenletis2l
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S g ® @ ek ******aﬁe*** **: P Sk SR St S
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Abbildung 6.8: Sprungantworten der gemessenen COs-Konzentrationen am Absorbe-
raustritt in den fiinf Wiederholungen des zweiten Experiments.
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Das zweiphasige Gemisch fiihrt zu Fehlverteilungen der Fliissigkeit auf den Platten des
P-WTs, die zu starken Fluktuationen der Temperatur fiihren. Ebenso wird durch die
Fehlverteilung die Effizienz des Kiihlers verringert und die Temperatur der Fliissigkeit
steigt. Da keine Messeinrichtung zwischen dem DR-WT und dem P-WT vor dem Ab-
sorbereintritt installiert war, konnte diese Vermutung nicht iiberpriift werden. Die COs-
Konzentrationen am Absorberaustritt in Abbildung weichen in den Wiederholungen
3 und 4 ebenfalls von den anderen wiederholten Experimenten ab (in Wiederholung 4
liegen diese auBerhalb des Diagrammbereichs). Die Ubergangszeit anhand von Abbildung
betrigt ebenfalls etwa 80 Minuten.

6.2.3 Experiment 3: Sprung von 250 auf 100 kg pro Stunde

Die gemessenen COs-Reingaskonzentrationen am Absorberaustritt im dritten Experiment
sind in Abbildung gegeben; die zugehorigen Temperaturmessungen der Fliissigphase
sind in Abbildung dargestellt. In diesem Experiment wurden bereits nach drei Wie-
derholungen drei dhnliche Sprungantworten erzielt. In Abbildung ist zu erkennen,
dass die COy-Reingaskonzentration nach ungefédhr einer Stunde nach der sprunghaften
Anderung deutlich abfillt. In Abbildung ist zu erkennen, dass zu dieser Zeit die
Temperaturen am Absorbereintritt stark fluktuiert. Der COs-Konzentrationsabfall sowie
die Temperatur-Fluktuationen sind in den ersten zwei Wiederholungen in den Abbildun-
gen und stiarker erkennbar als in Wiederholung 3.

¢ Wiederholung 1 Wiederholung 2
= Wiederholung 3 -o-Mittelung (1, 2, 3)
5,0 1 i

[Vol.-%]

48 -

4,6 -

4,4 -

Ubergangszeit

CO,-Austrittskonzentration

0 0:5 1 1',5 Zeit [h] 2

=
h

Abbildung 6.10: Sprungantworten der gemessenen COs-Konzentrationen am Absorbe-
raustritt in den drei Wiederholungen des dritten Experiments.
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Die Ursache fiir den Temperaturanstieg und die starken Fluktuationen sind sehr wahr-
scheinlich dieselben, wie in den ersten zwei Experimenten, weil der Massenstrom auch
im dritten Experiment auf 100 kgh-! variiert wurde. Ein weiterer Hinweis dafiir, dass
die Ursache mit dem geringen Massenstrom zusammenhéngt, ist, dass die Eintrittstem-
peratur am Absorber im Ausgangszustand bei einem Massenstrom von 250 kg h=! keine
Fluktuationen aufweist und konstant bleibt. Die Ubergangszeit betriigt auch im dritten

Experiment etwa 80 Minuten.

6.2.4 Gesamtauswertung der Experimente

Das dynamische Verhalten bei einer sprungahften Anderung des LM-Massenstroms dhnelt
dem Ergebnis von |[Faber et al.| (2011)), das in Abbildung dargestellt ist. Im Fall einer
Reduzierung der LM-Menge (Abbildung und durchlauft die CO,-Konzentration
ein Maximum, withrend eine Erhéhung zu einem Minimum fithrt (Abbildung [6.8). Im
Gegensatz zu Faber et al.| (2011) stellen die Maxima bzw. Minima hier nicht die Zeit
dar, die das LM bendtigt, um die Anlage (den Kreislauf) zu durchlaufen, da die Ein-
trittsstrome an beiden Kolonnen gleichzeitig gedndert wurden. Hier wird das erste Maxi-
mum /Minimum schneller erreicht. Die Anderung der CO,-Konzentration nach Erreichen
des Maximums/Minimums ist geringer als im Ergebnis von Faber et al.| (2011). Dies ist
auf den groBeren Durchmesser des Desorbers im Vergleich zum Absorber zuriickzufiihren
(Abbildung . Der grofiere Holdup im Desorber fiihrt zu einer hoheren Verweilzeit des
LMs und damit zu einer groferen zeitlichen Verzogerung. Die Ubergangszeit betrigt in
allen Experimenten etwa 80 Minuten.

Die experimentelle Untersuchung der Prozessdynamik an der eigenen Technikumsanlage
war mit einigen Schwierigkeiten verbunden, weil die Anlage urspriinglich fiir stationére
Experimente ausgelegt worden ist. So ist die Uberdimensionierung des Desorbers, die
diskontinuierlichen Messungméglichkeiten der Fliissig- und Gaszusammensetzung sowie
der Einsatz der zwei separaten IBCs fiir das LM ungiinstig fiir dynamische Experimente.
Auch die Kombination aus Heizen und Kiihlen des LMs vor Eintritt in den Absorber
hat in den Experimenten zu Problemen gefiihrt. Dennoch konnten reproduzierbare Er-
gebnisse fiir drei unterschiedliche Anderungen des LM-Massenstroms erzielt werden, die
als Validierungsbasis fiir die anschlieBenden Simulationen genutzt werden kénnen. Dazu
werden die gemittelten Messergebnisse (schwarze Kurven) der CO5-Konzentrationen am
Absorberaustritt sowie die Temperaturen der fliisssigen Phase am Ein- und Ausgang beider
Kolonnen verwendet. Die stationiren Ausgangszustinde in den Abbildungen [6.6] bis
zeigen teilweise in der halben Stunde vor der sprunghaften Anderung des Massenstroms
noch Anderungen auf. Die sprunghaften Anderungen in den Experimenten wurden daher
schon kurz vor Erreichen des stationdren Zustands durchgefiihrt, also aus einem noch

instationdrem Zustand heraus. Dies fiihrt bereits zu Beginn des Experiments zu Abwei-
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chungen zwischen Mess- und Simulationsergebnissen. Fiir die anschlieBende Validierung
des dynamischen Modells ist dies aber unproblematisch, weil das Modell bereits fiir das
stationdre Prozessverhalten erfolgreich validiert worden ist und auch mit anfanglicher
Abweichung eine Validierung des dynamischen Prozessverhaltens moglich ist (vgl. Abbil-
dung . In Tabelle sind die Messergebnisse der stiondren Ausgangszusténde aller

Experimente und den zugehérigen Wiederholungen gegeben.

Tabelle 6.2: Messergebnisse der stationdren Ausgangszustinde (die zur Mittelung ver-
wendeten, wiederholten Experimente sind fett gedruckt).

Wiederholung des Experiments
1 2 3 4 5 Mittel

Experiment 1

VSuco, [VOL-%] 35 32 35 37 38 35
wMEA [Gew.—%)] 23,9 250 264 244 24,2 24,4
X&b%o, [molmol™'] 0,16 0,19 0,20 0,24 0,23 0,20
Experiment 2

ygn,COQ [VOI_%] 3,8 3,8 3,4 3,5 3,5 3,7
wMEA [Gew.—%)] 25,3 24,5 254 254 26,2 25,3
XAb. ) [molmol™'] 0,23 0,25 0,22 024 0,23 0,24

ein,CO,
Experiment 3

Yein.co, [VOL.=%] 4,1 4,0 3,8 - - 3,9
wMEA [Gew.—%)] 27,0 28,9 27,3 - - 27,7
Xib%o, [molmol™'] 0,24 0,21 0,26 - - 0,24

6.3 Validierung des dynamischen Modells

Zur Modellierung der Technikumsanlage werden die Anlagenspezifikationen aus Abbil-
dung sowie die gemittelten COo-Gaskonzentrationen am Absorbereintritt und die
MEA-Konzentrationen im LM aus Tabelle im dynamischen Modell fiir das je-
weilige Experiment implementiert. Die erforderlichen Reaktionsparameter fiir die Ab-
sorption von CO, mit wissrigen MEA-Losungen werden erneut mit den Korrelationen
von [von Harbou et al| (2014) bestimmt (Anhang [B). Zur Bestimmung der Modell-
Parameter fiir die strukturierte Packung Montz B1-250.45 im rate-based Modell wer-
den die Korrelationen von [Oluji¢ et al| (2004) verwendet (Anhang [A). Die Ermittlung
der Wérmeiibergangskoeffizienten wird mit den Korrelationen von Martin| (2013) fiir die
P-WT durchgefithrt. Fiir die DR-WT und den Verdampfer (RB-WT) werden die Kor-
relationen von |Gnielinski| (2019a)) fiir die durchstromten Rohre, fiir den Mantelraum des
DR-WT die Korrelationen von |Gnielinski| (2019b) und fiir den Mantelraum des RB-WT
die Korrelationen von |Gnielinski (2019¢) verwendet (Anhang [A). Die Wérmezufuhr in
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den DR-WTn und im Verdampfer erfolgte hauptsichlich durch das Kondensieren des
Heizdampfes. Der Dampf in den DR-W'Tn stromt aus einem diinnen Rohr in ein etwas
groBeres Rohr mit geschlossenem Ende (das groBere Rohr umgibt das diinne Rohr). Der
Dampf wird umgelenkt und kondensiert an der Wand des grofleren Rohrs. Dieses System
wird in die Rohrleitung des LM-Stroms eingesetzt (vgl. Abbildung [6.12)). Dasselbe Sys-
tem der Heizrohre wurde als Biindel aus 4 Rohren im Verdampfer installiert. Die einzige
in der Literatur verfiighare Korrelation zur Warmeiibertragung bei Filmkondensation ist
von Numrich und Miiller| (2019). Die Korrelation betrachtet aber nur einfache Rohre. Die
Simulationsergebnisse mit dieser Korrelation haben gezeigt, dass die gemessenen Tem-
peraturen in den Experimenten nicht erreicht werden. Daher wird die Korrelation von
Numrich und Miiller| (2019) zur Bestimmung des Wérmetibergangskoeffizienten durch
Multiplikation eines Korrekturfaktors an den im ersten Experiment gemessenen Tempe-
raturen der DR-WT und des RB-WTs angepasst und in den weiteren Simulationen aller
Experimente verwendet.

Die Bewertung der Modellgenauigkeit erfolgt mit den relativen Abweichungen zwischen

den Mess- und Simulationsergebnissen nach folgenden Gleichungen:

ey = (|yC02,Exp. - yCoz,Sil’IL') . 100(%)7 (61)
YCcOo,,Exp.

Tx _Tim
6T:(|Ep- S |

i ) - 100%. (6.2)

Fiir die Validierung des dynamischen Modells wird die Aussage, ob die relativen Ab-
weichungen positiv oder negativ sind, vernachlssigt. Daher werden die Abweichungen als
Betrag berechnet. In den Abbildungen [6.13h-c sind die gemittelten Mess- und die zu-
gehorigen Simulationsergebnisse fiir die austretende COy-Konzentrationen am Absorber
fiir die drei Experimente gegeben.

In Abbildung [6.13|ist zu erkennen, dass die Abweichungen in den stationdren Ausgangs-
zustdnden der drei Experimente relativ hoch sind (5 — 18%). Der Grund dafiir ist, dass
die Experimente schon kurz vor Erreichen des stationdren Ausgangszustands gestar-
tet wurden. Die Abweichungen in den jeweiligen stationdren Endzustdnde sind gerin-
ger (1 -7%). Im Folgenden wird die Ubereinstimmung des gemessenen und simulierten

Ubergangsverhaltens fiir jedes Experiment einzeln betrachtet.

(a) Rohrleitung/Mantelraum | _ (b) Losemittelstrom l
° T Kondensat
AuBenrohr ; 0 ° s e 4L o
) «— <« «— <« <« -« 9 /I D a mpf
Innenrohr v

Abbildung 6.12: Schematische Darstellung des DR-WTs: getrennte Rohre im zerlegten
Zustand (a) und zusammengebautes System mit Stromungsrichtungen (b).



6 Technikumsanlage: Experimente und Validierung

96

"(9) ¢ yuowLedxyy pun (q) g Juewtedxy ‘() T juowliodxy InJ ueSunypOMqY UopualpaIdsius uop
JTUL WOWIUIRSNZ JIL1ISNRIDIOS(Y TR UOIJRINUSZUONSRY)-E()) IOP 9SSIU(RSIOSUOI)R[NUIS PUILL -SSOJ\[ IoP 9[JOIJ SUISIWRUA(] :¢1'9 Sunpiqqy

t[y] oz s1 I s‘0 0 s T [qoz s ! s‘0 0 s T [y] ez s I 1] 0 s‘o-
. . . 0 . . 0 . : . 0

>
o

=
e.

F g (2]
> C m.

=

(=
i~
N z

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII - MIIIIII

e[yl ez ¢t 1 g0 0 s z[y] woz ST 1 s 0 s'o- T[ylaegz ST I §0 0 s
1 1 1 WTN i L L Qm\ﬂ- 1 1 1 .unn.N D
®)

8'e 3
. - f9°e >

- Te Z
v =.
- 8€ 73
- $'¢ \04.

S

- 0 o
5

=
ve 2

- T o

=]
<
L w“m L +p m

1
S

Sunyoromqy-o- uoneWIS— JUAWILIRAX] -9~ Sunyoremqy-o- uonenuIS— juswedxg-e- Sungoremqy-o- uonenuWIg— juowiadxy-e-

(@ (@ (¥)



6.3 Validierung des dynamischen Modells 97

In Abbildung ist die relative Abweichung im Ubergangsprozess unter 10% (ausge-
nommen der Ausgangszustand) und bleibt nahezu konstant bei 7%. Die geringen Schwan-
kungen im zeitlichen Verlauf der Abweichung sind auf die Messungenauigkeit der Aus-
trittskonzentration zuriickzufiihren. Die konstante Abweichung iiber den gesamten Zeit-
raum entspricht einer guten Ubereinstimmung zwischen Mess- und Simulationsergebnis
des dynamischen Prozessverhaltens (vgl. Abbildung [5.1h). Die simulierte Totzeit, die hier
durch das Erreichen des Maximums nach ca. 5 Minuten erkennbar ist, stimmt sehr gut
mit dem Messergebnis {iberein. Allerdings sinkt auch nach Erreichen der aus dem Mess-
ergebnis ermittelte Ubergangszeit von 80 Minuten der simulierte Konzentrationsverlauf
des austretenden CO, noch geringfiigig.

In Abbildung[6.13p ist fiir das zweite Experiment eine nahezu perfekte Ubereinstimmung
zwischen gemessener und simulierter COs-Austrittskonzentration zu erkennen. Der zeit-
liche Verlauf der Abweichung n#hert sich (mit geringen Schwankungen in der Messge-
nauigkeit) asymptotisch der Abweichung im neuen stationidrem Endzustand an. Dies
entspricht dem Beispiel aus Abbildung [5.I¢. Da zusétzlich zur Prozessdynamik auch
die Abweichungen im stationdren Ausgangs- und Endzustand gering sind, ist in diesem
Experiment die Ubereinstimmung zwischen Messung und Simulationsergebnis sehr gut.
Wie bereits im ersten Experiment, stimmt die simulierte Totzeit sehr gut mit der ge-
messenen Totzeit iiberein, wihrend nach Erreichen der Ubergangszeit noch geringfiigige
Anderungen im simulierten Konzentrationsverlauf erkennbar sind. Grund fiir die Abwei-
chung in der Ubergangszeit kénnte einerseits die diskontinuierliche Messung der COs-
Austrittskonzentration sein. Die Messpunkte konnten nur alle 3,5 Minuten durchgefiihrt
werden, wodurch ein relativ grofler Zeitraum in der Messung nicht erfasst wird. Fiir eine
genaue Bestimmung der Ubergangszeit wire eine kontinuierliche Konzentrations-Messung
notwendig gewesen. Andererseits konnte der Unterschied durch die IBCs entstanden sein.
Im dynamischen Modell werden diese mit dem CSTR-Modellansatz beriicksichtigt. Im
Experiment sind jedoch die IBCs nicht geriihrt worden, sondern der Fiillstand wurde
moglichst gering gehalten, um eine homogene Fliissigkeitsverteilung einzustellen. Dies
konnte aber nicht sichergestellt werden. Das durch das nicht-Riihren entstandene Tot-
volumen in den IBCs konnte im Experiment zu einer geringeren Ubergangszeit gefiihrt
haben. In diesem Fall miisste ein anderer Modellansatz gewéhlt werden, der eine inhomo-
gene Fliissigkeitsverteilung beriicksichtigt, oder die Experimente miissten mit Rithrwerken
in den IBCs erneut durchgefiihrt werden.

Im dritten Experiment, dargestellt in Abbildung [6.13c, fillt auf, dass der gemes-
sene Konzentrationsverlauf nach ca. einer Stunde abrupt sinkt, die simulierte COs-
Austrittskonzentration allerdings nicht. Bis zu diesem Zeitpunkt sind beim Vergleich der
Mess- und Simulationsergebnisse qualitativ gute Ubereinstimmungen, wie in den beiden
Experiment zuvor, zu erkennen. Auch im zeitlichen Verlauf der Abweichung sind keine

signifikanten Peaks zu erkennen. Der Konzentrationsabfall in der Messung wird durch
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einen plotzlichen Anstieg der Eintrittstemperatur im Absorber verursacht, der in der Si-
mulation nicht auftritt.

Die Mess- und Simulationsergebnisse der Fliissigkeitstemperaturen am Ein- und Austritt
beider Kolonnen sind fiir Experiment 1 in Abbildung[6.14] fiir Experiment 2 in Abbildung
und fiir Experiment 3 in Abbildung gegeben. In allen Experimenten zeigt die
Eintrittstemperatur am Absorber starke Schwankungen und plétzliche Anstiege, wenn
der Massenstrom bei 100 kgh=! liegt. Die Fliissigkeitstemperatur zwischen DR-WT und
P-WT vor Eintritt in den Absorber konnte wihrend der Experimente nicht gemessen wer-
den. Die Simulationsergebnisse haben aber gezeigt, dass die Temperatur bei einem Mas-
senstrom von 100 kg h~! etwa 70°C betrégt. Bei dieser Temperatur konnte es zur partiellen
Verdampfung des wassrigen LMs gekommen sein und die im Abschnitt aufgestellte
Hypothese bestétigen. In den Modellgleichungen, die das LM im DR-WT beschreiben,
ist keine Verdampfung beriicksichtigt und daher kann auch kein zusétzlicher Gasstrom in
der Simulation auftreten. Deshalb sind in den Simulationsergebnissen keine Schwankun-
gen oder plotzliche Anstiege zu erkennen. Bis auf den plotzlichen Konzentrationsabfall in
Abbildung zeigt auch das dritte Experiment eine gute Ubereinstimmung zwischen
Mess- und Simulationsergebnis, was moglicherweise fiir das gesamte Ubergangsverhalten
der Fall gewesen wire, wenn die partielle Verdampfung nach dem DR-W'T nicht aufgetre-
ten wére.

Am Absorbereintritt sind die Abweichungen der gemessenen und simulierten
Fliissigkeitstemperatur in allen Experimenten hoch. Dies liegt hauptséchlich an dem oben
genannten Problem der partiellen Verdampfung des wassrigen LMs bei geringen Massen-
stromen im Experiment.

Am Absorberaustritt sind die relativen Abweichungen in den stationdren Ausgangs- und
Endzustéinden teilweise iiber 10%. Auch hier sind die hochsten Abweichungen bei einem
Massenstrom von 100 kgh~! zu beobachten. Die hohen Abweichungen sind erneut eine Fol-
ge der partiellen Verdampfung, die in der Simulation nicht eintritt. Die Ubereinstimmung
des gemessenen und simulierten Temperaturverlaufs ist qualitativ gut. Am zeitlichen Ver-
lauf der Abweichungen ist zu erkennen, dass diese im Experiment 1 (Abbildung und
Experiment 2 (Abbildung asymptotisch in den neuen stationdren Zustand verlau-
fen. Dies zeigt, dass die Prozessdynamik der austretenden Fliissigkeitstemperatur gut vom
Modell erfasst wird. Im dritten Experiment (Abbildung ist nach ca. 10 Minuten ein
Maximum im zeitlichen Verlauf der Abweichung zu erkennen. Dieses Maximum resultiert
aus einer Abweichung der gemessenen und simulierten Totzeit. Im Messergebnis faillt die
Austrittstemperatur infolge der Anderung des LM-Massenstroms ab, bevor sie nach ca. 10
Minuten wieder ansteigt. Dieses Minimum wird im Simulationsergebnis ein paar Minuten
frither erreicht. Diese Abweichung in der Prozessdynamik resultiert vermutlich aus den
groBeren durchgefithrten Sprung des LM-Massenstroms. Die Amplitude des Maximums

im zeitlichen Verlauf der Abweichung betrigt ca. 2%. Daher ist die Ubereinstimmung der
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gemessenen und simulierten Fliissigkeitstemperatur am Absorberaustritt insgesamt gut.

Am Eintritt des Desorbers steigt die Fliissigkeitstemperatur infolge einer LM-Reduzierung
(Experiment 1 und 3) und sinkt bei einer LM-Erhchung (Eperiment 2). In allen Expe-
rimenten ist nach ca. 5 Minuten ein Uber- bzw. Unterschwingen im gemessenen und si-
mulierten Temperaturverlauf zu erkennen. Dieses Einschwingverhalten resultiert, im Falle
einer LM-Reduzierung, aus einer Temperaturerhohung im lean-rich WT und DR-W'T bei
konstanter Warmezufuhr und der bendtigten Warmemenge zur Regenerierung des LMs,
die aufgrund der steigenden Beladung des LMs aus dem Absorber mit der Zeit zunimmt.
Letzteres tritt mit einer gewissen zeitlichen Verzogerung ein, die das LM fiir den Weg vom
Absorber zum Desorber benétigt. Dies fithrt letztlich zum Schwingverhalten. Die Mess-
und Simulationsergebnisse stimmen fiir alle Experimente qualitativ gut iiberein. Die zeit-
lichen Verlaufe der Abweichung im ersten und dritten Experiment (Abbildung und
weisen nur geringe Schwankungen im Bereich von +1% auf. Im zweiten Experiment
(Abbildung[6.15) ist das Temperatur-Minimum im Simulationsergebnis stirker ausgeprigt
als im Messergebnis. Insgesamt liegen die relativen Abweichungen fiir alle Experimente
aber unter 2%, was einer sehr guten Ubereinstimmung entspricht.

Am Desorber-Austritt sind im stationdren Ausgangs- und Endzustand etwas hohere Ab-
weichungen zu erkennen, als am Eintritt des Desorbers. Grund dafiir kénnte der Einfluss
des Verdampfers auf die Fliissigkeitstemperatur sein. Insgesamt liegen die Abweichungen
fiir alle Experimente aber unter 4%, was weiterhin einer sehr guten Ubereinstimmung ent-
spricht. Im zeitlichen Verlauf der Abweichungen sind zu Beginn jedes Ubergangsprozesses
Maxima und Minima zu erkennen, die durch ein Schwingverhalten im gemessenen Tempe-
raturprofil entstehen, das im Simulationsergebnis nicht eintritt. Dieses Schwingverhalten
wird durch Fiillstandséinderungen im Kolonnensumpf wéhrend der Experimente verur-
sacht. Der Fiillstand wird durch ein Ventil geregelt, das den Differenzdruck zwischen dem
Kolonneninneren und -austritt konstant halten soll. Wahrend der Experimente konnte be-
obachtet werden, dass nach Anderung des Massenstroms der Fiillstand sinkt bzw. steigt
und die Differenzdruck-Regelung erst zeitverzogert einsetzt. Dieser Effekt ist besonders
bei starken Anderungen des LM-Durchsatzes sichtbar (Abbildung . Im Modell wird
ein konstanter Fiillstand angenommen, so dass hier keine Schwingungen auftreten.

Trotz der Schwierigkeiten bei der Durchfiihrung der Experimente an der eigenen Techni-
kumsanlage ist das dynamische Prozessverhalten vom Modell fiir die Experimente 1 und
2 qualitativ gut abgebildet. Dies wire vermutlich fiir Experiment 3 auch der Fall, ware

die Fliissigkeitstemperatur am Eintritt des Absorbers nicht sprunghaft angestiegen.
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6.4 Einfluss der Kolonneneinbauten und Peripherie

Um den Einfluss der nicht-trennwirksamen Kolonneneinbauten und der Peripherie auf die
Prozessdynamik zu untersuchen, werden die Ergebnisse des ersten Experiments (Sprung
des Massenstroms von 150 auf 100 kgh=!) verwendet. Zur Untersuchung des Einflusses
werden die Simulationen mit reduzierten Modellen erneut durchgefiihrt. Die Reduzierung
erfolgte durch Vernachléssigung der entsprechenden Anlagenkomponente im Modell. Auf
diese Weise werden drei weitere Simulationen mit reduzierten Modellen durchgefiihrt: Zwei
reduzierte Modelle, in denen jeweils entweder die nicht-trennwirksamen Kolonneneinbau-
ten (reduziertes Modell 1) oder die Peripherie (reduziertes Modell 2) vernachlissigt wer-
den, und ein drittes reduziertes Modell, in dem beide vernachléssigt werden (reduziertes
Modell 3). In Abbildung ist der Vergleich der Simulationsergebnisse des vollstandigen
dynamischen Modells mit den Ergebnissen der reduzierten Modelle fiir das erste Experi-

ment dargestellt.

Im Gegensatz zur Sensitivitdtsanalyse in Abbildung [5.22] ist hier der Einfluss
der nicht-trennwirksamen Einbauten auf das dynamische Prozessverhalten der COs-
Austrittskonzentration nahezu vernachléssigbar (Vergleich der roten Linie mit der blau
gepunkteten Linie). Dies kénnte darauf zuriickzufiihren sein, dass die Kolonnen der Tech-
nikumsanlage im Vergleich zu der von [Faber et al. (2011)) verwendeten Anlage viel klei-
ner sind, was zu einem geringeren Holdup der Fliissigkeit in den Einbauten und Ko-

lonnenstimpfen fithrt. Hinzu kommt die groflere Anzahl an Packungsbetten und, damit

—— vollstandiges Modell ~ ---- reduziertes Modell 1

reduziertes Modell 2 --=-- reduziertes Modell 3
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Abbildung 6.17: Die Simulationsergebnisse des vollstdndigen dynamischen Modells und
der reduzierten Modellen unter Verwendung des ersten Experiments.
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verbunden, gréBeren Anzahl an FSV Systemen in der von [Faber et al. (2011) verwen-
deten Anlage. Der Einfluss der Peripherie auf das dynamische Prozessverhalten an der
Technikumsanlage ist offensichtlich (Vergleich der roten Linie mit der griinen und orange-
nen gestrichelten Linie). Die Vernachlissigung der Peripherie fiihrt zu deutlich kiirzeren
Ubergangszeiten und auch zu deutlich geringeren CO,-Austrittskonzentrationen am Ma-
ximum. Der Unterschied in der maximalen Austrittskonzentration lédsst vermuten, dass die
Messergebnisse von |[Faber et al| (2011) in Abbildung mit dem dynamischen Modell
aufgrund der fehlenden Informationen iiber die Peripherie nicht erreicht werden konnten.
Eventuell gibt es weitere Komponenten oder anderen Einbauten in der Peripherie der
Pilotanlage, die von [Faber et al.| (2011)) nicht beschrieben sind.

Insgesamt hat der Vergleich der Simulationsergebnisse, erzielt mit dem in dieser Arbeit
vorgestellten Modell, mit den Experimenten von [Faber et al.| (2011]) sowie mit den eigenen
Experimenten an der Technikumsanlage gezeigt, dass die Peripherie und (bei industriellen
Kolonnen) die nicht-trennwirksamen Kolonneneinbauten einen signifikanten Einfluss auf
das instationdre Verhalten von Absorptionsanlagen bei Anderungen der LM-Menge ha-
ben. Es kann daher notwendig sein, alle Anlagenkomponenten des Absorptionsprozesses
bei der dynamischen Modellierung rigoros zu beriicksichtigen, um gute Voraussagen zu

treffen.



7 Beispiel einer Gefahrensituation

Mit dem validierten dynamischen Modell ist es moglich, beliebige Situationen zu simu-
lieren und zu analysieren. Interessant sind vor allem die, die zu Gefahren- oder Not-
fallsituationen fiihren, weil diese aus Sicherheitsgriinden experimentell nur sehr schwer
zu untersuchen sind. In diesem Kapitel wird ein Beispiel einer solchen Simulationsstudie
gegeben. Das Beispiel ist frei erfunden und entspricht keinem Realitétsfall. Bei echten Ka-
tastrophen oder grofleren industriellen Storfillen handelt es sich um sehr sensible Daten.
Dabher ist eine Verotffentlichung von Simulationsstudien zu echten bzw. realen Gefahrensi-
tuationen nur schwer moglich. Das gegebene Beispiel soll aber demonstrieren, wie das
vollstdndige dynamische Modell in Zukunft bei der Vermeidung und Beseitigung solcher
Gefahrensituationen helfen kann.

Wie in Abschnitt beschrieben, ist der Bedarf an neuartigen verbesserten Steuer- und
Regelungssystemen grofl. In der Arbeit von [Fedorov et al.| (2020) wird gezeigt, wie so-
genannte Echtzeitmodelle, die fiir die modellbasierten Werkzeuge zur automatisierten
Vermeidung von Storfiallen notwendig sind, anhand der Simulationsergebnisse eines ri-
gorosen (dynamischen) Modells entwickelt werden kénnen. Die Echtzeitmodelle bilden
dabei das Simulationsergebnis des dynamischen Modells, wofiir dieses mehrere Stunden
bis Tage benétigt, in Sekundenschnelle ab. Anhand der Prozessdynamik bzw. der aktuellen
Entwicklung des Prozesses konnen die Echtzeitmodelle im laufenden Betrieb automati-
siert (oder iiber Kommunikation mit dem Anlagenfahrer) in den Prozess eingreifen und
frithzeitig Stérungen erkennen und beheben. Fiir einen zuverlassigen Eingriff der modell-
basierten Werkzeuge ist eine grofie Datenbank mit verschiedenen (simulierten) Sprungant-
worten notwendig, auf die die Echtzeitmodelle zugreifen kénnen. Eine solche Datenbank
kann mit dem in dieser Arbeit entwickelten dynamischen Modell erzeugt werden. Neben
dem folgenden Beispiel sind viele weitere mogliche Gefahrensituationen simulierbar. Fiir
das Simulationsbeispiel wird die industrielle Pilotanlage aus der Arbeit von [Faber et al.
(2011) verwendet; es ist aber auf weitere Absorptionsanlagen anwendbar.

Das Simulationsbeispiel soll eine unzureichende Absorption toxischer Gase illustrieren.
Als Storung wird eine plotzliche Verringerung der Dampfzufuhr im Verdampfer bzw. ein
Abfall der Verdampferleistung in der Simulation vorgegeben. Diese konnte beispielsweise
auftreten, wenn zu wenig Dampf im Kessel (oder im entsprechenden Vorlagebehélter der
Anlage), ein Leck in der Rohrleitung oder ein Defekt bei der Warmezufuhr vorliegt. Fiir
den stationdren Ausgangszustand werden die Eintrittsparameter aus der Arbeit von [Faber
et al| (2011)) verwendet (vgl. Abschnitt [5.3). Nach 15 Minuten Normalbetrieb (stationérer
Ausgangszustand) wird als Stérung die Dampfzufuhr sprunghaft von 1820 auf 1000 m3 h-!
verringert. Die {ibrigen Eintrittsparameter werden konstant gehalten. Die Simulationser-
gebnisse sind in Abbildung gegeben.
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Abbildung 7.1: Simulationsbeispiel fiir eine unzureichende Absorption infolge einer Ver-
ringerung der Verdampferleistung.

Die austretende COs-Konzentration setzt mit einer Verzdgerung von 2,5 Minuten als
Reaktion auf die Verringerung der Dampfzufuhr ein. Infolge der geringeren Verdampfer-
leistung nimmt die Beladung des aus der Desorptionseinheit austretenden LMs zu und,
damit verbunden, steigt die COs-Konzentration im Reingas an, da das stérker belade-
ne LM weniger CO4 absorbieren kann. In Abbildung sind fiktive Grenzwerte fiir die
COq-Konzentration zur Hlustration aufgetragen. Diese sollen bespielhaft Sicherheitsgren-
zen darstellen, die im laufenden Prozess nicht iiberschritten werden diirfen, weil andern-
falls eine Gefahrensituation vorliegen wiirde. Bei Erreichen des unteren Grenzwertes in
Minute 25 wird die Dampfzufuhr wieder auf den urspriinglichen Wert von 1820m3 h~!
zuriickgesetzt. Dies soll beispielhaft zeigen, dass das Problem bei Erreichen des unteren
Grenzwertes (nach 10 Minuten) gefunden und korrigiert werden konnte, um den Eintritt
einer moglichen Gefahrensituation zu vermeiden. In Abbildung ist aber zu erkennen,
dass die COq-Austrittskonzentration nach Korrektur der Dampfzufuhr noch fiir weitere
2,5 Minuten steigt und exakt bei Erreichen des oberen Grenzwertes sinkt. Der weitere
Anstieg wird durch die Zeit verursacht, die das besser regenerierte LM fiir den Weg vom
Verdampfer bis zum Absorber benétigt. Das Beispiel zeigt, dass die Zeit, die die Anlage
fiir eine Antwort auf eine Storung und auch auf die Korrektur einer Stérung benotigt,
beachten werden muss.

In diesem Beispiel wurde das Absorptionssystem der Rauchgaswische verwendet. Das
Treibhausgas CO, stellt fiir Menschen keine direkte Gefahr dar. In Abschnitt
wurde aber demonstriert, dass das dynamische Modell auch fiir Reaktionssysteme mit to-
xischen Gaskomponenten verwendet werden kann. Fiir toxische Gaskomponenten ist die
Einhaltung solcher Grenzwerte besonders wichtig, weil ein unkontrolliertes Austreten zu
Notféllen und erheblichen Schéden fiihrt.



8 Zusammenfassung

In dieser Arbeit wurde ein neuartiges dynamisches Modell zur Anlagensimulation verschie-
dener Absorptionsprozesse entwickelt, das neben den trennwirksamen Kolonneneinbauten
auch den Einfluss der Peripherie und der nicht-trennwirksamen Kolonneneinbauten auf die
Prozessdynamik beriicksichtigt. Dabei wurden zwei verschiedene Systeme der chemischen
Absorption betrachtet, der Rauchgaswésche und der Kokosfengasreinigung, um die An-
wendbarkeit des Modells auf verschiedene Absorptionsprozesse mit Packungskolonnen zu
demonstrieren. Mit dem dynamischen Modell sind Simulationsstudien von verschiedenen
Storungen an industriellen Anlagen moglich, die dabei helfen sollen, mogliche Gefahrensi-
tuationen in Zukunft effektiver vermeiden zu konnen.

Fiir die Modellierung der einzelnen Anlagenkomponenten wurden Stufenansétze verwen-
det, die den Einfluss der Temperaturinderungen und Storungen auf das dynamische Pro-
zessverhalten beriicksichtigen. Die individuellen Modellansédtze wurden mit experimen-
tellen Ergebnissen aus der Literatur verglichen, wobei beide Absorptionsysteme getrennt
betrachtet wurden. Als Parameter fiir die Validierung wurde der aus den Mess- und Si-
mulationsergebnissen resultierende Absorptionsgrad verwendet. Hier zeigten sich geringe
relative Abweichungen von + 10% bei der Rauchgaswiische, wihrend bei der Kokosfengas-
reinigung hohere Abweichungen von bis zu 50% aufgetreten sind. Die Griinde waren zum
einen die relativ geringen Absorptionsgrade, die bei den experimentellen Untersuchungen
erzielt wurden, und zum anderen die aufgetretenen Kreuzeffekte bei der parallelen Ab-
sorption zweier Gaskomponenten.

Nach der Validierung der einzelnen Anlagenkomponenten erfolgte ein Vergleich der Si-
mulationsergebnisse des dynamischen Modells mit Messergebnissen geschlossener Kreis-
laufprozesse. Der Vergleich wurde mit experimentellen Literaturdaten durchgefiihrt. Hier
zeigte sich, dass geometrische Gréflen von Anlagenkomponenten aus der Peripherie und
der nicht-trennwirksamen Kolonneneinbauten, die zur Bestimmung der Holdup Terme in
den entsprechenden Modellgleichungen benétigt werden, fehlen. Die Holdup Terme be-
einflussen mafigeblich die Prozessdynamik. Daher wurden fiir die fehlenden Daten Werte
angenommen und eine Sensitivitéitsstudie zum Einfluss auf die Prozessdynamik durch-
gefithrt. Dabei zeigte sich ein signifikanter Einfluss der nicht-trennwirksamen Kolonnen-
einbauten und der Peripherie, aber eine hohe Abweichung zwischen Mess- und Simulati-
onsergebnis bei der austretenden COs-Gaskonzentration. Der Grund wurde in der Vielzahl
an angenommenen Werte fiir die fehlenden Anlagendaten vermutet, weswegen eigene Ex-
perimente an der Technikumsanlage der Universitdt Paderborn fiir eine Validierung des
dynamischen Modells durchgefiihrt wurden. Dabei wurde das System der chemischen Ab-
sorption von COy mit wissrigen MEA-Losungen (Rauchgaswéische) verwendet.

Als Experimente wurden stationdre Zustdnde eingestellt und anschlieend der LM-
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Massenstrom sprunghaft gedndert. Die Technikumsanlage wurde fiir Untersuchungen
des stationidren Prozessverhaltens der chemischen Absorption konzipiert. Ebenso wur-
de die Desorptionskolonne der Anlage fiir Fluiddynamik-Experimente iiberdimensioniert
ausgelegt, um einen groflen Bereich an Volumenstromen zu ermoglichen. Diese Aus-
legung fiihrte dazu, dass das Erreichen des stationdren Ausgangszustands sehr lange
dauerte und eine kontinuierliche Messung der austretenden CO,-Gaskonzentration nicht
moglich war. Die Messung erfolgte in den Experimenten diskontinuierlich in regelméfBigen
Zeitabstdnden. Insgesamt wurden drei Experimente mit unterschiedlichen sprunghaften
Anderungen des LM-Massenstroms durchgefiihrt (geringe Erhchung, geringe Verringerung
und groBe Verringerung). Als Austrittsgrofen wurde die CO,-Gaskonzentration des Ab-
sorbers diskontinuierlich sowie die Ein- und Austrittstemperaturen der Absorptions- und
Desorptionskolonne kontinuierlich gemessen. Um die Reproduzierbarkeit der Ergebnisse
zu gewéhrleisten, wurden die drei Experimente wiederholt, bis drei vergleichbare Mes-
sungen der Austrittsgroflen erzielt und anschlieend gemittelt wurden. Die gemittelten
Werte wurden dann mit den Simulationsergebnissen verglichen. Die Ergebnisse zeigten,
dass der Sprung des LM-Massenstroms in den Experimenten schon kurz vor Erreichen des
stationdren Ausgangszustands durchgefiithrt wurde. Hieraus resultierten hohe Abweichun-
gen zwischen Mess- und Simulationsergebnis im stationdren Ausgangszustand. Dennoch
wurde die Gasphasenkonzentration am Absorberaustritt als auch die Ein- und Austritt-
stemperaturen der fliissigen Phase in beiden Kolonnen im dynamischen Ubergangsprozess
gut vom Modell erfasst. Die Abweichungen zwischen experimentellen und simulierten
Gaskonzentrationen am Absorberaustritt liegen (mit einer Ausnahme) bei allen Expe-
rimenten unter +£10%. Bei der Ausnahme kam es durch eine partielle Verdampfung des
wéssrigen Losungsmittels im Kreislauf zu unerwiischten Nebeneffekten, die im Modell
nicht beriicksichtigt wurden. Die in dieser Arbeit durchgefiihrte Validierung ist eine erste
umfassende transparente Uberpriifung eines dynamischen Modells zur Anlagensimulation
fiir die chemische Absorption unter Verwendung eines vollstindigen Satzes von experimen-
tellen Daten. Es wird ein starker Einfluss der Peripherie und der nicht-trennwirksamen
Kolonneneinbauten auf das dynamische Prozessverhalten nachgewiesen.

Das dynamische Modell wurde in einer allgemeinen Form entwickelt, das auf verschiede-
ne reaktive Absorptionssysteme und die meisten Anlagenkonstruktionen anwendbar ist.
Auf diese Weise konnen auch Systeme mit toxischen oder krebserregenden Gasbestand-
teilen untersucht werden, die eine hohe Gefahr ausstrahlen und experimentell nur sehr
schwierig zu untersuchen sind. In dieser Arbeit wurde ein Beispiel fiir eine solche Simu-
lationsstudie demonstriert. Dabei wurde eine unzureichende Absorption von gefahrlichen
Gaskomponenten infolge einer verringerten Verdampferleistung betrachtet. Das Beispiel
zeigt, dass die Reaktionszeit der Anlage bei der Behebung einer auftretenden Stérung
beachten werden muss. Andernfalls kénnte trotz Behebung der Stérung weiterhin eine

Gefahrensituation eintreten.



109

Tritt eine Storung an einer industriellen Absorptionsanlage auf, so ist eine schnelle Be-
hebung notwendig, um mogliche Gefahrensituationen abzuwehren. Die Simulationen mit
dem dynamischen Modell dauern mehrere Stunden bis Tage und eignen sich daher nicht
zur direkten Gefahrenabwehr. Die Ergebnisse des dynamischen Modells kénnen aber dazu
genutzt werden, um sogenannte Echtzeitmodelle zu entwickeln. Diese bestehen aus rein
mathematischen Gleichungen und anpassbaren Parametern, mit denen es moglich ist, das
Simulationsergebnis des dynamischen Modells innerhalb von Sekunden nachzubilden. Zur
Bestimmung der anpassbaren Parametern wird eine grofle Datenbank an Simulationser-
gebnissen des dynamischen Modells benotigt. Die Echtzeitmodelle kénnen anschlieend
als Werkzeug zum bestehenden Steuer- und Regelungssystem einer industriellen Absorp-
tionsanlage genutzt werden, um mogliche Gefahrensituationen friihzeitig zu erkennen und

effizient beheben zu konnen.



9 Anhang

A Zustandsgleichungen und Korrelationen

Die thermodynamischen Zustandsgleichungen zur Bestimmung stofflicher Eigenschaften
werden in Abhéngigkeit von Temperatur, Druck und Zusammensetzung von der Stoff-
datenbank Aspen Properties bezogen. Dabei werden folgende Zustandsgleichung zur Be-

stimmung der StoffgréBe in Gas- und Fliissigphase genutzt (Aspen Technology|, 2001)):

Stoffeigenschaft Gasphase Fliissigphase
Enthalpie Ideales Gasgesetz Watson
Molare Dichte Soave-Redlich-Kwong Rackett
Dynamische Viskositét Dean-Stiel Andrade
Wiérmeleitfahigkeit Stiel-Thodos Sato-Riedel
Diffusionskoeffizient Chapmann-Enskog- Wilke-Chang
Wilke-Lee (Nernst-Hartey fiir Elektrolyte)
Oberflachenspannung - Hakim-Steinberg-Stiel
Aktivitéatskoeffizienten - Elektrolyte-NRTL

Die bindren Henry-Koeffizienten zur Bestimmung der Loslichkeit der Gaskomponente i in

Wasser (H2O) werden nach folgender Gleichung bestimmt:

ln (HHQO—i) = A +

B
K] +Cln(T [K])+D-T [K]

Die Koeffizienten A bis D fiir die in dieser Arbeit betrachteten Komponenten sind in

folgender Tabelle gegeben:

Komponente i A B C D T [K]
CO, 91,3445 -5875,96 -8,59816 -0,012493 293-1000
H,S 358,138 -13236,8 -55,0551 0,0595651  273-425
NH; -133,463 -157,552 28,1001  -0,049227  273-498
Ny 176,507 -8432,77 -21,558  -0,008436  273-346
HCN 53,7934 -8136,78 0 -0,0448169 283-383

Fiir die in dieser Arbeit verwendeten Korrelationen werden folgende dimensionslose Kenn-

zahlen mit der charakteristischen Lénge [u,., definiert:

2 2
Uu _ Uu plchar 4 Vpcp Q lchar

U'lchar
= = S = — = =
Re Fr We , Sc , Pr o \Nu 3

" glar l
v g lchar o char
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Korrelationen nach Billet und Schultes (1999):
Die effektive Phasengrenzfliache a,, der Fliissigkeitsholdup Ay, der Druckverlust Ap, die
Stoffiibergangskoeffizienten ¢ und J;, sowie die Gasgeschwindigkeit ug rp am Flutpunkt

werden ermittelt mit:

a -0,5 15 -0, , -0,
aP:ck =1,5 (apack dn) Redg 2W68h75 Frdg 5
1 1/3 2/3
hr, :(12—n—LuLa2) ( h ) ,
g p1, QAPack
h (RGL < 5) =Cy 1%6%15 Fl“%l,
Apack
ath (Re, > 5) = 0,85 Ct, Re%? !,
Ap 64 1,8 Ya F?1
77 TCPolRm Tt L 0] 2
H Reg Reg e 2 K
1,20 de o uede o, o 1oc
K =~ 3l-eds’ G_(l—E)I/G © T paa

12 1 \1/2
Br apy, =C, 121/ (@) ( L) APack ( arh )7

hL dh APack

3/2 3/4 1/3
1 Apyck (e} Vg apn
Ba apn =Cq B 172 f}; Dg (au ) (_D ) (a );
(6 hL) dh G G Pack
_ _ _ 4 1
aeh = L 5 (aPack dh) oo I%edl?’2 Weg’h75 Frd}(])ABa dh = ‘ ’ lchar = )

Apack APack Apack

oy, \ 01028 2

s (0,6244 Crp (ng) ) (e - hL7Fp)3/2 hrrp  [pL

UG, Fp =V 2 0.270,652 €l/2 a P

L oo (o \ Pack Ye;
GV ro (UL)

Die Korrelationen sind abhéngig von Parametern, die Billet und Schultes (1999)) spezifisch
fiir verschiedene Packungen und Fiillkorper experimentell bestimmt haben. Die Parameter

fiir die in dieser Arbeit verwendeten Packungen sind in folgender Tabelle gegeben:

Packung APack I:Hl2 Hl_g] € [—] Ch [—] Cp70 [—] CL [—] OG [—] CFP [—]

Mellpak 250Y 250 097 0554 0,292 1,332 0417 2,464
Mellpak 350Y 350 0,95 - - 1,165 0,422 -
Mellpak 2X 205 008 0554 0,292 1,332 0417 2,464

IMTP50 135 0,965 0,644 1,003 1,277 0,341 1,679




112 9 Anhang

Korrelationen nach |Oluji¢ et al. (2004):
Die effektive Phasengrenzfliche a,, der Fliissigkeitsholdup hy,, der Druckverlust Ap sowie
die Stoffiibergangskoeffizienten fiir Gas [g und Fliissigkeit (;, werden nach folgenden

Korrelationen ermittelt:

0,75
Qe _p_ exp l—l, 45 (0’ 075) Re%l Flrio’o5 We%zl ,

QPpack 2
h'L =0pack 5,

0= (—SML UL ) , ag, = arctan[ o8 (90 — Oé) )]] s

pLgasin (ar,) sin (90 - a) cos [arctan (f,;%kk

Ap _ wlarhpp  hp, (1-¢) 0,722 (cosoz)314 (§ 0 Eam) pGu Ge
H th sin (O{) th sin (Oé) p bulk wall load
¥ = rack ; Floaa =3,8 ( ) ( 2 = ) !
BPack +2 SPack Ep €g th

PG

(BPack hpack—26 SPack)2
Bpack hPaCk

0,25 0,5
Ry (0 053 €% gdnc (pL - pa) ( PL ) (Sina)1’15) :
uLa

dha = Bpack hpack—28 S 2/ Bpak hpac—26 S 2195 Boo hpack—28 Spack |

[( Pack 2P?LC1:1;1( Pack) + ( Pack PE;];;( Pack) ] + Brad 2P7chk;k Pack

s B -2
5,02 7o 14,5
€GL = ( 210g [;hc,; - ReG lOg (% - ReG ):I) ) fbulk = 17 76 (Cosa)lﬁ?’a
0,5
2 e hZ, '\ 2 h
_ Zlpe o Tee )2 iesin [ — e

V= mdz.  tan (o) ( Kol tan? (a) e dior tan (a) )’

409243t + 4715 (cos o) od
Evvall = L ( ) 134, 19u%44 (COSQ)O,Wg . Rege = PG UG hG)

Rege HG
Rew.. = PC (Uge + ULe) dnc e = ug S ur,
G Jite T T (e—hy)sin(a)’ " ehpsin(ar)’

Shar Da\® (Sher Dg)?
W[
th th
2/3
i Reg Sca gGgw [1“'(%) ]
Shay, = 0,664 Scil?y [Re eare 7 Shar = )
Gpe. 1+ 1,27 /52 (8¢’ -1)
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b V 70,9duc’
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Korrelationen nach Tsai et al.| (2011)):

Die effektive Phasengrenzfliche a, wird bestimmt nach:

o) ()]
APack oL Lp

Q = aKol UL, LP BPack h’Pack =4 SPack aKol

Die Korrelationen von |Oluji¢ et al.| (2004) und Tsai et al. (2011) hidngen nur von geome-
trischen Groflen der Packung ab, die direkt (ohne experimentelle Untersuchung) messbar
sind. Nach Definition der Gréfien nach Abbildung[AT]sind die Grofien der in dieser Arbeit

verwendeten Packungen in folgender Tabelle gegeben:

Packung apack [M?m™3] € [m3m=3] Spax [mm] Bpaeg [mm]  hpae [mm]
Mellpak 250Y 250 0,97 17 24,1 11,9
Mellpak 350Y 350 0,93 11,7 16,3 8,4

Mellpak 2X 205 0,98 21,5 33 13,8
Montz B1-250.45 250 0,9875 21,5 35 12,5

"

/s

Abbildung Al: MaBe eines Packungselements nach Tsai et al|(2011).

S h

Korrelationen nach Gnielinski| (2019a):
Die Nusselt-Korrelation zur Bestimmung des Wérmeiibergangskoeffizienten « fiir ein
durchstromtes Rohr mit konstanter Wandtemperatur und hydrodynamisch, ausgebildeter

Laminarstromung ist:

Nu =[(3,66)° + (0,7)* + (Nuy - 0,7)°]"*

dp\ /2
Nu, = 1,615 (RePr Z) ,

lchar = dI
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Korrelationen nach |Gnielinski| (2019b)):
Die Nusselt-Korrelation zur Bestimmung des Wirmeiibergangskoeffizienten « fiir ein

durchstromten Ringspalt mit hydrodynamisch, ausgebildeter Laminarstromung ist:

Nu = [Nui’ + Nu%]”g ,

dI -0,8 dI -1/2
RB1: Nu, = 3,66+ 1,2 (—) . Nuy=1,615 (1+o,14—) ,
dA dA

dI 0,5 dI 1/3
RB2: Nuy = 3,66 + 1,2 (—) . Nuy=1,615 (1+0,14—) ,
dA dA

lchar = dh = dA - dI

Dabei ist die Randbedingung (RB) 1 zu nutzen, wenn die Wiarmeiibertragung am Innen-
rohr erfolgt und das Auflenrohr wiarmegeddmmt ist, und die RB 2 zu nutzen, wenn die

Warmeiibertragung am Auflenrohr erfolgt und das Innenrohr wiarmegedammt ist.

Korrelationen nach Numrich und Miiller| (2019):
Die Nusselt-Korrelation zur Bestimmung des Wéarmeiibergangskoeffizienten « fiir die
Filmkondensation reiner Dampfe in senkrechten Rohren bei Gleichstrom von Gas- und

Fliissigphase lautet:

Nu =\/ (Kpn g, Nut)? + (Kpnr Nuj)?,
KppL=1+ (Pr?fﬁ - 1) tanh (75)), Nuj =Nup (1+ 7'5)1/3,
Kppr=1+ (Pr%o8 - 1) tanh (75)), Nup=Nur (1+ 75)1/3,

rp = SPOTD (184 Re02 (14550 - )
8 pK g oK’ ,
o maux((QReK)O’5 ; 0, 132Re?<’9) K [ PD

Re™’ o\ px’
(ry<1):a=0,85,
(5>1):a=0,3,
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Korrelationen nach |Gaddis und Gnielinski (2019):
Die Hauptstromung Sy des mantelseitigen Fluids von RB-WT mit Umlenkble-

chen wird von Leckstromungen Sy, Bypass-Stromungen Sg und der Anordnung des
RBs nach Abbildung beeinflusst. Die Nusselt-Korrelation zur Bestimmung des

Wirmeiibergangskoeffizienten a des mantelseitigen Fluids mit Umlenkblechen lautet:

Nu :fG fL fB fA NuBuendela

2
2 0,037Re2® Pr
NUpuendel = 0,3+ | [0,664v/Rep VPr| + ’ 0 :
pende | o Vo] |:1+2,443Re50’1 (Pr2/3—1)]
U lehar s m S1 52
Regy=——, 0(b>21)=1-—, H(b<l)=1-—, =—, b=—7,
=5, 0z1) 0 00<D) dab’ T dy N
2 0,7((2)-0,3) Nr N \0:32
versetzt — 1 e uchtend = - 5 =1-— 07524 T 5
JA versetat +3b JA fluchtend +91’5 ((§)+0’7)2 Ja NR+ (NR)
Asru ( Asru ) ( Asru + Asmu )
=0,4 +(1-0,4—58Y ) exp(-1,5 BT SMUY
h Agru + Asmu Agru + Asmu P Lyg Ly,
A (N B NF,oBR) T (dhg-d) T (& - ) 360 - 2arccos (21
SRU — oBR 9 4 ) SMU — 4 1 UB 360 )

fB(N“@):eXpl_ﬁL[iBLE (1@)] (o> )

™

B (Reg <100) = 1,5, B (Rey2100) = 1,35, laar = 5 da

Dabei sind die geometrischen Gréfien s;, s und e der Abbildung zu entnehmen. Die
Lange Lyp beschreibt den Abstand zwischen den Umlenkblechen und Ly die Summe der
kiirzesten Rohrabsténden e. Die Grole Np beschreibt die Anzahl der Rohre auflerhalb des
Umlenkbleches (Fenster), N,gr die Anzahl der Rohre ohne Blindrohre, Ng die Anzahl an
Abdichtungsstreifen und Ny die Anzahl der Hauptwiderstéande.

eJoJeJelelelele]e)
DO0C0O0000O
07070,6.050,0,0

1€

O O
Q00000000

versetzte Rohranordnungen fluchtende
(quer und in Stromungsrichtung) Rohranordnungen

Abbildung A2: Stromungsformen des mantelseitigen Fluids (a) und Definition der
Rohranordnungs-Méglichkeiten des RBs (b) nach (Gaddis und Gnielinski (2019).
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Korrelationen nach Martin/ (2013):

Die Nusselt-Korrelation zur Bestimmung des Wiarmeiibergangskoeffizienten « fiir Platten
mit einer Winkel-Wellen-Pragung, wie in Abbildung dargestellt (Winkel ¢, Wellenam-
plitude a), ist:

4a 1 cos () s 1-cos(p)

dh = ) = = ’
122" VE |\ f018tan (o) + 0,365 (9) + ity V&
597

(Req, <2000): & = R

+3,85,
edh

39
(Req, >2000): & = R, 0259

dp

Dabei stellt £ den Druckverlustbeiwert dar.

—'Iﬁ/?ﬁ\ [
+ N,
A Y
ALY
b Y
> A
b Y
/4
D . wellige
Winkel-Wellen- kreuzende Langs-
Pragung «—bBp Strémung strémung

Abbildung A3: Platte mit Winkel-WellenPrigung nach (2013).
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B Reaktionskinetiken und -gleichgewichte

Zur Beschreibung der zwei in dieser Arbeit betrachteten Reaktionssysteme der Rauch-

gaswische und Koksofengasreinigung sind folgende, kinetisch kontrollierten Reaktionen:

MEAH + HCO; = MEACOO™ + H,0 (1)
NH; + HCO; = H,NCOO™ + H,0 (11)

CO, +2H,0 = HCO; + H;0* (I11)

CO, + MEAH + H,0 = MEACOO™ + H;0* (IV)
CO5 + NH;3 + H,O = HoNCOO™ + H;07 (V)
CO, + OH™ = HCO; (VI)

und instantan ablaufenden Reaktionen notwendig:

2H,0 = H;0" + OH" (VII)

MEAH" + H,O = MEAH + H;O* (VIII)
HCO3 + Hy,O = CO3% + H30* (IX)
NH; + H,O = NH; + OH" (X)
H,S + H,O = HS™ + H;0* (XI)
HCN + H,O = CN™ + H;O* (XII)

Die zugehorigen Reaktionsgleichgewichtskonstanten lassen sich fiir verschiedene Stoff-
groflen definieren. Fiir verdiinnte LM wird am héaufigsten die Angabe iiber die in Mo-

lalitdten ausgedriickten Aktivitdten verwendet:

NCE NCE
K, = H @ = H (mim)”
Die Parameter zur Berechnung der auf Aktivitéiten basierten Reaktionsgleichgewichtskon-
stanten nach: In (K,) = A+Z2+C-In(T)+D-T, sind in folgender Tabelle gegeben. Fiir die
Reaktionen IV bis VI sind direkt keine Korrelationswerte in der Literatur verfiigbar. Al-
lerdings lassen sich diese Reaktionen aus Kombinationen anderer Reaktionen bilden, z.B.
resultiert Reaktion IV aus der Summe der Edukte und Produkte von Reaktion I und III.
Die Reaktionskinetik der Gesamtreaktion ist linear von den Einzelreaktionen abhingig

und so lassen sich die Parameter A bis D dementsprechend aus der Summe ermitteln (von
Harbou et al., 2014).
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Reaktion A B C D T [K] Quelle
I -5,9680 2888, 6 0 0 293 - 333 *(1)
IT -8,5994 2895, 65 0 0 293 - 333 *(2)

I1I 447,143 -17966,4 -73,4372 0,0567249 280 - 400 *(1)

IAY 441,175 -15077,8 -73,4372 0,0567249 293-333 I+ III
\Y 438,5436 -15070,75 -73,4372 0,0567249 293 -333 II + III
VI 306,211 -4520,5  -50,9599 0,0567249 298 -573 III - VII

VII 140,932  -13445,9 -22,4773 0 298 - 573 *(1)
VIII -1,73782  -6092,85 0 0,001157 273 - 398 *(1)
IX 303,745  -13997,7 -50,9971 0,0334136 280 - 400 *(1)
X 2,76 -3335,7 1,4971  -0,0370566 273 -498 *(2)
XI 218,5989 -12995,4 -33,5471 0 275 -423 *(2)
XII 26,9191  -9945,53 0 -0,0495786 - *(2)

*(1): von Harbou et al. (2014); *(2): |[Maurer| (1980)

Um die in Molalitdten ausgedriickten Reaktionsgleichgewichtskonstanten auf Basis der
Zusammensetzung x; direkt nutzen zu konnen, werden diese abhingig von den Reakti-
onsgleichungen umgerechnet. Fiir ideal verdiinnte Elektrolytlosungen lassen sich die Ak-

tivitaten iiber die Verwendung eines normalisierten Aktivitétskoeffizieten

lim ~ =1
TElek—0 T
wie folgt ausdriicken (Maurer, [1980):
. * n;i T . L
ai (i#LM) =m; - = "TLM Vi = Vs arM = TLM * VLM, 1=1,...,.NC
mLm My

In beiden betrachteten Reaktionssystemen ist das verwendete LM Wasser. Die Umrech-

nung, beispielhaft fiir Reaktion VII gezeigt, erfolgt nach:

TH30+tTOH™ i ~,
L L . _
MI2{20 307" JOH 1

GH30+A0H"
Kz = 2 = 2

: T
aH,0 TH,0 " VH,0 H>0
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Wendet man den Logarithmus an, um die oben gegeben Form der Korrelation zu erhalten,

folgt fiir Reaktion VII und analog fiir die iibrigen Reaktionen:

In(Ky1)=In(K,1)-In(Mn,o0)
In(Ky2) =In(K,2)—1In(Mu,o)
In(Ky3)=In(K,3)+In(Mn,o)
In(Kxq)=In(K4)
In(Kys5)=In(K,5)

In(Kyp) =In(Kap)—In(Mp,o0)
In(Ky7)=In(K,7)+2In(Mpy,o0)
In(Kyg) =In(K,s8)+In(Mn,o0)
In(Kyg) =In(K,.9)+In(Mpn,o)
In (Ky10) = In(Kai0) +1n (Mu,o)
In (Kyx11) =In(Ku11) +1In (Mp,o)
In (K 12) =1In(Ka2) +1In (Mu,o)

Mit der Molmasse von Wasser: My,o ~ 0,018_5 kg 7, ergeben sich so andere Werte fiir den
Parameter A in der oben angegebenen Tabelle.

Fiir die kinetisch kontrollierten Reaktionen werden zuétzlich zur Reaktionsgleichgewichts-
konstante Korrelationen zur Bestimmung der Geschwindigkeitskonstante der Hinreaktion

benotigt. In dieser Arbeit wurden folgende Korrelationen verwendet:

Reaktion log (Ky hin) Quelle
111 329,85 - 110,541 log (T) - 22224 Danckwerts und Sharma/ (1966)
IV 10,99 — 252 Pinsent et al.| (1956a))
\Y 11,13 - @ Pinsent et al. (1956b)
VI 13,635 — 25 Pinsent et al.| (1956al)

Eine weitere Korrelation zur Bestimmung der Geschwindigkeitskonstante k; nin 5 der Re-

aktion V unter Verwendung des termolekularen Ansatzes nach Liu et al.| (2011)) ist:

k‘r ohin,5 = klr{I‘H [NHg] + k’g 0 [HQO]

( =3793 )

mit kg, =4,69-107 , ki, =4,36-10°-

( —3847 )

Die Bestimmung der Geschwindigkeitskonstanten k, pack der Riickreaktionen erfolgt iiber

die Reaktionsgeschwindigkeitskonstanten nach Gleichung
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C Gitterunabhingigkeitsstudien

Fiir das rate-based Modell mit kinetisch kontrollierten Reaktionen, d.h. bei tiefen Tem-
peraturen (<~ 60°C), wird sowohl die Stufenanzahl als auch die Anzahl an Filmsegmen-
ten mit zugehorigem Verteilungskoeffizient parallel ermittelt. Fiir das Vorgehen bei der
Gitterunabhéngigkeitsstudie wird zunéchst eine relativ hohe Anzahl an Filmsegmenten
bei einem geschétztem Verteilungskoeffizienten verwendet, um die Stufenanzahl in axiale
Richtung zu ermitteln. Diese werden in den nachfolgenden Abbildungen zur Ermittlung
der Stufenanzahl mit aufgefiithrt. Nach Wahl der gitterunabhéingigen Stufenanzahl wird
die Anzahl an Filmsegmenten ermittelt bei gleichzeitiger Bestimmung des Verteilungs-
koeffizients. Die letztendliche Wahl des Gitters ist dann der Abbildung zur Ermittlung
der Filmsegment-Anzahl und des Verteilungskoeffizienten zu entnehmen. Fiir die weiteren
Modellansétze ist die Wahl der Stufenanzahl durch rote Linien gegeben.

Die Betriebsbedingungen, die bei den Gitterunabhéngigkeitsstudien eingestellt wurden,
entsprechen bei den Kolonnen (rate-based Modell) denen der zugehorigen Experimente,
wahrend fiir die Warmeiibertrager (1D Wéarmetransport Modell) die Eintrittstemperatu-
ren des heiflen Fluids zu 100°C und des kalten Fluids zu 20°C eingestellt wurden.

NFilm = 9 Mstage = 30

m=>5 NEilm = 11

84 - L= m=11
6 | oy 97 MFilm 1

9 09 939
S N =&
1 L

a
N -]
P T

Absorptionsgrad Pays [%]
Absorptionsgrad Py, [%]
-]
~

e

Npjm = 15 Verteilungskoeffizient m [-]

0246 8101214161820222426283032343638404244464850 1 3 5 7 9 11 13 15 17 19 21

31 A

30 A

Desorptionsgrad ¥, [%0]

Stufenanzahl ngg,ge [-]
29 : I
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Abbildung A4: Ermittlung der Stufenanzahl, Anzahl an Filmsegmenten und Vertei-
lungskoeffizient fiir die Anwendung des rate-based Modells bei Betrachtung der verwen-
deten Absorptions- und Desorptionskolonne in der Arbeit von Notz| (2013)).
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Abbildung A5: Ermittlung der Stufenanzahl, Anzahl an Filmsegmenten und Vertei-
lungskoeffizient fiir die Anwendung des rate-based Modells bei Betrachtung der verwen-
deten Absorptionskolonne in der Arbeit von Kvamsdal et al.| (2009)).
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Abbildung A6: Ermittlung der Stufenanzahl, Anzahl an Filmsegmenten und Vertei-

lungskoeffizient fiir die Anwendung des rate-based Modells bei Betrachtung der verwen-
deten Absorptions- und Desorptionskolonne in der Arbeit von Faber et al.| (2011)).
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9 Anhang
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Abbildung A7: Ermittlung der Stufenanzahl, Anzahl an Filmsegmenten und Vertei-
lungskoeffizient fiir die Anwendung des rate-based Modells bei Betrachtung der verwen-
deten Absorptionskolonne in der Arbeit von Mayer| (2002).
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Abbildung A8: Ermittlung der Stufenanzahl, Anzahl an Filmsegmenten und Vertei-
lungskoeffizient fiir die Anwendung des rate-based Modells bei Betrachtung der verwen-
deten Absorptions- und Desorptionskolonne der eigenen Technikumsanlage.
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D Mess- und Simulationsergebnisse

= NH3 Experiment
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Abbildung A10: Vergleich der Messergebnisse von (2002) und Simulationsergeb-
nisse der Konzentrationsprofile der Fliissigkeitskomponenten fiir die Experimente 1-8.
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Abbildung A11: Vergleich der Messergebnisse von (2002)) und Simulationsergeb-
nisse der Konzentrationsprofile der Fliissigkeitskomponenten fiir die Experimente 9-16.
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Abbildung A41: Vereinfachtes FlieBbild der Pilotanlage aus der Arbeit von [Faber et al|
(2011)); Intercooling, LVC und Reclaimer waren wiahrend Experimente aufler Betrieb.
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