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Wave packet dynamics in parabolic optical lattices: From Bloch oscillations
to long-range dynamical tunneling
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We investigate the dynamics of wave packets in a parabolic optical lattice formed by combining an optical
lattice with a global parabolic trap. Our study examines the phase space representation of the system’s eigenstates
by comparing them to the classical phase space of a pendulum, to which the system effectively maps. The
analysis reveals that quantum states can exhibit mixed dynamics by straddling the separatrix. A key finding is that
the dynamics around the separatrix enables the controlled creation of highly nonclassical states, distinguishing
them from the classical oscillatory or rotational dynamics of the pendulum. By considering a finite momentum
of the initial wave packet, we demonstrate various dynamical regimes. Furthermore, a slight energy mismatch
between nearly degenerate states localized at opposite turning points of the trap potential results in controlled
long-range dynamical tunneling. These results can be interpreted as quantum beating between a clockwise

rotating and a counterclockwise rotating pendulum.
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I. INTRODUCTION

Optical lattices provide a nearly clean environment for the
production and manipulation of matter wave packets formed
by ultracold atomic ensembles [1-5]. The advantage is that in-
teratomic interactions, environmental decoherence, and lattice
defects can be tuned as the initial ensemble, the environ-
mental reservoir, and the lattice geometry can be designed
properly. The use of Bose-condensed atomic gases in these
adjustable lattices translates the complete matter wave pic-
ture of de Broglie to spatial scales a hundred thousand times
larger and energies at least ten billion times smaller than
the usual eV energy scale of solid-state electronic systems
[6,7]. Consequently, a multitude of wave packet phenomena
has been realized utilizing this platform, such as superfluidity
[8-10], Bloch oscillations [11,12], quantum transport [13,14],
Anderson localization [15,16], Josephson effect [17,18],
quantum Hall effect [19-21], and gauge field effects [22,23].
These phenomena hold great potential for diverse applications
in metrology, quantum sensing, imaging, quantum informa-
tion processing, and computing.

In optical lattice experiments, parabolic traps are fre-
quently used serving as an auxiliary element for confining
and manipulating cold atoms. The parabolic potential aids in
confining atoms within a stable region, allowing for a precise
control over their spatial distribution. This level of control
enables the manipulation of quantum states, the creation of
well-defined wave packets, and the simulation of physical
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systems. The inclusion of a parabolic trap over an opti-
cal lattice results in a symmetrically curved periodic lattice,
commonly referred to as a parabolic optical lattice [24].
The combined potential substantially modifies the system’s
properties compared to systems where only one of the two
potentials is present, as shown, e.g., in Refs. [25,26]. This
also leads to nonintegrability and comprehensive analytical
solutions are not possible. However, within the single-band
tight-binding approximation one can solve the single-particle
system, leading to an analytical description in terms of Math-
ieu functions [27,28]. The analytic solutions also predict
dipole oscillations of atomic wave packets induced by small
displacements of the atomic cloud. In [29], the superfluid-
dipolar motion is found to be strongly disrupted for large
shifts of the parabolic potential, which was first perceived as
an insulator-like response. Yet, this phenomenon is identified
as the manifestation of Bloch-like dynamics occurring under
the influence of a locally static force of the parabolic potential
[30,31]. A particularly useful description of the parabolic
lattice exists in terms of a quantum pendulum model, which
delineates the threshold between Bloch and dipole oscillations
as the dynamics occurring above and below the separatrix of
the pendulum [30].

In this paper, we explore the wave packet dynamics in
a parabolic optical lattice by analyzing the energy eigen-
states of the system. We consider the tight-binding solutions
in which the eigenstates are either parity-related pairs of
Wannier-Stark-like localized states lying away from the cen-
ter of the parabolic lattice or resemble harmonic oscillator
eigenfunctions that are localized around the center [27,28].
We use the phase space representations of the eigenstates
and compare them against the classical phase space of the
pendulum model. The analysis reveals that the phase space
dynamics of states localized away from the trap center and
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centrally localized states are analogous to the open and closed
curves in the pendulum phase space, respectively. Thus, the
effectiveness of the previously used quantum pendulum ap-
proach is highlighted [30]. The results also highlight that on
and around the separatrix curve there exist numerous states of
contrasting nature. Based upon this observation, the dynam-
ics generated by a localized wave packet prepared under the
conditions of separatrix are studied. Further, we illustrate dif-
ferent regimes in the system, which are tuned by considering a
finite momentum for the initial wave packet. Keeping in view
the twofold almost degeneracy maintained by the spatially
localized states, a tunneling-like response of localized wave
packets is investigated which, unlike the archetypal cases of a
step potential [32,33] or a double well [34], is shown to occur
even in the absence of a potential barrier. Instead, this type
of long-range tunneling appears to be closely related to dy-
namical tunneling between two separated regions of classical
phase space as pioneered by Davis and Heller [35], with the
distinct difference that in our case the tunneling period can
be systematically manipulated to fall within experimentally
observable time scales.

The paper is organized as follows: In Sec. II we introduce
the model. We present the important quantum-classical fea-
tures of the model in Sec. III, discussing the phase space
dynamics. Section IV illustrates the wave packet dynamics
corresponding to different regimes of the system. In Sec. V
the long-range tunneling phenomenon is demonstrated. The
conclusions along with future perspectives are discussed in
Sec. VL.

II. MODEL

Let us start with a single atom in a one-dimensional optical
lattice in the presence of a symmetric parabolic trap potential.
The Hamiltonian is

2
H= L + V, sin® (zx) + lma)2x2, €))]
2m a 2
where w is the frequency of the parabolic trap, Vj is the optical
lattice depth, which is controllable through the intensity of the
laser beams, a is the lattice constant, and m is the atomic mass.

In the limit where the lattice depth significantly exceeds the
recoil energy Eg = (hirr /a)?/2m, whereas simultaneously the
change of the parabolic potential over one lattice constant is
kept much smaller than the width of the lowest energy band,
guaranteeing that the trap-induced tilt of this band exceeds
its width only after a large number of sites away from the
trap center, the above Hamiltonian is well approximated by
the single-band tight-binding model and takes the form

Hrp=—J Y (In+ )|+ |n)(n+ 1))

+Q Z n2|n)(n|, (2)

where |n) are the ground band Wannier functions, Q =
mw?a®/2 represents the strength of the parabolic poten-
tial, J denotes the tunneling matrix element, which is
determined asymptotically by the optical lattice depth, J ~

4 (Vo \3/4,72 2
ﬁ(ER) e ® [36,37].

Let us express the wave function |®) in terms of the
Wannier functions as [®(r)) = >, ¢,(¢)|n). The Schrodinger
equation with the Hamiltonian (2) then transforms into the
following system of coupled linear equations that govern the
time evolution of the complex amplitudes ¢, (),

iligy = —J(ns1 + Pu1) + Q 1* Py 3)

The above system of equations admits stationary solutions
of the form ¢’ (t) = ¢l e 5"/ where ¢’ represents the ampli-
tude of the Wannier state associated with the nth lattice site for
the rth eigenstate, and E, denotes its eigenenergy. Substituting
this into Eq. (3) results in

E.p) = —J(pp + 1) +Qn’g). )

Representing the stationary amplitudes as the Fourier coeffi-
cients of -periodic functions ¥"(8), such that

r 1 " r —2inf
o= do ' (0)e ", Q)]
0

recasts Eq. (4) into a Mathieu equation [38]

a2 AE\ (=4 o lwrer =0 (6
[@*(6)‘ <?>cos( )}w()— ®)

with parameters «, = 4E, /2 and g = 4J /2. The solutions
to the above equation are the well-known Mathieu functions,
which have been extensively studied and detailed in [38]. As
is well known, the Mathieu equation provides the band edges
for a particle in a cosine lattice [39]. The x-periodic boundary
condition required in the present context simplifies the lattice
to a single cosine well, analogous to the potential of a pen-
dulum. The effective Hamiltonian describing the pendulum is

0

L=—i—,
36

A R

H= ZL — 2J cos(20), @)
with L denoting the angular momentum of the pendulum.
Hence, the tight-binding system (2) maps onto the pendulum
model, with the clear advantage of interpretation in terms
of pendulum dynamics. Also, Hamiltonian (7) directly cor-
responds to Eq. (2) when expressed in the Bloch basis. In
this context, the angular momentum L is related to the spa-
tial position as L = 2x/a, and the angular position 6 of the
pendulum is connected to the atomic quasimomentum k
through the relation 6 = ka/2.

While the Mathieu functions provide an analytical repre-
sentation of the eigenstates [27], instead of delving into their
specifics we numerically diagonalize Eq. (2) to obtain the
stationary eigenstates. The parameter values employed in this
paper correspond to an experiment involving 8’Rb atoms in an
optical lattice with a depth of Vjy = 10 Eg and a lattice constant
of a =397.5 nm, supplemented by a parabolic trap with a
trapping frequency w = 27w x 36 Hz. These data amount to
the parameters J = 2.4 x 1072 Eg, Q = 3.2 x 10™* Eg, and
q = 300. Here the Mathieu parameter ¢ = 4J/Q2 obtains fur-
ther intuitive significance: The energy shift Qn? induced by
the trap matches the band width 4. after about , /g lattice sites,
implying that the condition /g >> 1 secures the validity of the
single-band approximation (2).
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FIG. 1. Absolute squared values of the lowest 100 eigenstates in
Wannier representation, obtained via stationary solutions of Eq. (2).
Each eigenstate is offset along the y axis by eigennumber r, where r,.
marks the critical eigennumber above which the eigenstates change
character from harmonic oscillator-like states to Wannier-Stark-like
localized states. The parametric values used are J = 2.4 x 1072 Eg
and Q = 3.2 x 107* E;.

Figure 1 displays the numerically calculated lowest 100
eigenstates of the system, plotted in Wannier representation.
The lower-lying states are harmonic oscillator-like localized
around the trap center, which are followed by states that are
increasingly localized into two separate regions of space, akin
to Wannier-Stark localization in a locally linear potential.
The distinction lies in the energy of states being below or
above the band edge 2J of the periodic lattice. Physically, this
depends upon whether the tunneling or the trapping strength
is playing a more significant role. The solutions dominated by
tunneling then correspond to the tight binding regime, while
the solutions dominated by the trap potential itself belong
to the weak binding regime. The critical eigennumber sepa-
rating these regimes is approximately given by r. = ||+/2¢ll,
where ||y|| denotes the integer nearest to y. The states above
r. correspond to nearly degenerate pairs with opposite parity
centered around each point n = +r/2. These exhibit a minus-
cule energy splitting approximately on the order of ¢"/r" =",
where r > ,/q [38]. As a result, they are connected across
large spatial distances by quantum tunneling.

II1. EIGENSTATES IN PHASE SPACE

To develop insights into the wave packet dynamics, it is
valuable to compare the classical phase-space structure of the
pendulum with the phase space representation of eigenstates.
The Husimi representation [40] provides an effective way to
visualize a wave function and enables a direct comparison
with the classical phase space. The Husimi Q function is
constructed by taking the squared projection

O, (x, k) = ot il x)I* ®)

of the wave function |x) with the coherent state |, ;) peaked
at coordinates (x, k) in the phase space. The coherent state in

real-space representation is expressed as

/ / 1 R S
(X)) = (Xop) = ——=e€ ¥ e )

o/

In Fig. 2 we show the Husimi distributions ob-
tained for specific instances of the eigenstates at r =
0,1, 15, 20, 24, 25,35, and 80, that are superimposed on
the classical phase space corresponding to the pendulum
Hamiltonian (7). In terms of classical dynamics, the
Hamiltonian (7) refers to the closed and open curves in phase
space, which represent the vibrational and rotational regimes
of the pendulum [41]. These regimes are separated by a spe-
cific curve known as the separatrix, which is determined by

the relation
2J
Xe = a,/ 5[1 + cos(ka)] (10)

between position and quasimomentum.

Figures 2(a) and 2(b) showcase the ground and the first
excited state, » = 0 and 1, clinging to the closed curves below
the separatrix. This depicts the harmonic oscillator-like char-
acter of the low-energy states, where the period of oscillations
is Tp = wh/~/J Q. For r ~ /2q, the harmonic oscillator-like
states become closer to the separatrix and the intermediate
states start to appear that propagate spreading along the sep-
aratrix curve. This behavior is highlighted in Figs. 2(c) and
2(d) for r = 15 and 20. The states start to localize in two sep-
arate regions of space at r ~ r., which becomes completely
apparent for r > r,, and the localized densities evolve as per
the open curves, as shown in Figs. 2(e) and 2(f) for r = 24
and 25. It should be noted that the overall density for states
slightly above r, still remain on and around the separatrix and
it deviates from the separatrix curve near the boundaries of the
Brillouin zone. Thus, on and around the separatrix there exist
three type of states, which we will later show in our analysis to
give rise to highly nonclassical dynamics. The Wannier-Stark-
like localized states, which fully adhere to the open curves,
are also shown in Figs. 2(g) and 2(h). The localization of
these states is also discussed in Ref. [25] employing a semi-
classical viewpoint, which establishes a connection between
the emergence of new turning points because of the lattice-
induced Bragg scattering and the classical turning points of
the parabolic trap potential. In this regard, the phase space
dynamics found in our analysis accentuate the oscillations
between the turning points, which are in agreement with
the previously developed approximate theoretical description.
Because the system possesses reflection symmetry with re-
spect to the trap center, its eigenstates alternatingly have even
or odd parity, such that states above the separatrix show up
as almost degenerate pairs with opposite parity. The situation
encountered here is similar to the case of a symmetric double
well where pairs of eigenstates with opposite parity appear for
energies below the barrier, such that their even or odd linear
combinations are localized in only one of the wells. In our
case there is no tunneling through a barrier, but quantum tun-
neling through a classically forbidden region of phase space
instead [35], such that each member of a parity-related pair is
localized around both of its turning points, whereas their even
or odd linear combinations are localized at one of these points
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FIG. 2. Husimi distributions for the eigenstates corresponding to r = 0, 1, 15, 20, 24, 25, 35, and 80, shown in (a)—(h) respectively. These
distributions are superimposed on the classical phase space of the pendulum Hamiltonian (7). The parametric values remain the same as
in Fig. 1. Note the gradual shift from the harmonic oscillator-like states aligning with the closed curves to the states localized at positions

x = %xra/2 for r > r., which evolve according to the open curves.

only. It is this feature that enables the long-range dynamical
tunneling effect, which we will explore in detail in Sec. V.

IV. NEAR-SEPARATRIX DYNAMICS

Next, we choose an initial wave packet and demonstrate
the dynamics by placing it in different regions of space around
the separatrix. The initial wave packet is taken as a localized
Gaussian,

_ (n=np)?

217& e—ikoa(n—nv) |n) ,

) an

1

= —
) Xn: Voo
where, ng, ko, and oy represent the initial mean position,
quasimomemtum, and width of the wave packet. The time
evolution of the wave packet is obtained by solving the Eq. (3),
and the quasimomentum space dynamics are plotted by taking
the Fourier transform of the real-space evolution.

Figure 3 displays the dynamics generated by the wave
packet placed at the spatial location equivalent to the sep-
aratrix at zero quasimomentum, i.e., n. = 17. Clearly, the
wave packet performs mixed dynamics, which is caused by
the presence of three distinct types of states around the sep-
aratrix: harmonic oscillator-like states, intermediate states,
and Wannier-Stark-like localized states. This is confirmed by
the wave packet evolution in real and quasimomentum space
shown in Figs. 3(a) and 3(b), respectively. The wave packet
spreads at the time corresponding to half of the Bloch period
where a fraction of the total density oscillates around the
center of the Brillouin zone, while the remaining part under-
goes Bragg reflection. In terms of pendulum dynamics at the
separatrix, this is equivalent to the wave packet first moving
towards the hyperbolic fixed point and then splitting, with
one part corresponding to a clockwise rotating pendulum and
the other to a counterclockwise rotating pendulum, leading
to subsequent multiple interferences (see the movie within the
Supplemental Material [42]). Thus, the wave packet dynamics

is a mix of harmonic oscillator-like and Bloch oscillation-
like dynamics. Consequently, the wave packet spreads over
the entire range, which is energetically accessible, still

0.5

FIG. 3. Dynamics corresponding to the separatrix of the quantum
pendulum. Absolute value of the wave packet evolution in real-
and quasimomentum-space is shown in (a) and (b), respectively.
The initial wave packet is placed at nyp = 17 with kpa =0 and
0y = 2.23. The parametric values used are J = 2.4 x 1072 E; and
Q = 3.2 x 10~* Eg, which are same as in previous figures. See the
Supplemental Material [42] for a movie illustrating the dynamics in
the Husimi representation within the pendulum phase space.
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FIG. 4. Bloch-like oscillations above the separatrix. Absolute
value of the wave packet evolution in real- and quasimomentum-
space is shown in (a) and (b), respectively. All the parametric values
remain the same as in Fig. 3, changing only the initial quasimomen-
tum to kga = 7.

preferentially populating the wing of the parabolic trap it was
initially prepared in.

Notably, the time evolution of the mean position in the
above dynamics decays toward the origin within the first pe-
riod. Such a decay has been observed in experiment [29] and
is attributed to an inhibition of oscillations. A more compre-
hensive understanding can be gained by examining the overall
evolution of the wave packet, rather than focusing solely on
the expectation values. Our analysis reveals the presence of
mixed dynamics, offering insights into the behavior near the
separatrix.

Further, considering the above phase space analysis, we
note that for the initial wave packet placed in the vicinity of
the separatrix, the dynamical evolution depends strongly on
the initial momentum of the wave packet. Thus, for different
choices of ny, we vary koa, which allows us to tune the dy-
namics.

The wave packet dynamics with ny = 17 and kga = 7 are
shown in Fig. 4, which reveal a transition from mixed dy-
namics to Bloch-like oscillations induced by the momentum
shift. For kpa = —m or m, the separatrix curve reaches the
origin, such that for np = 17 the dynamics corresponds to the
open curves. The wave packet oscillations in a restricted re-
gion of space on one side of the parabolic lattice are visible in
Fig. 4(a). These oscillations alongside the Bragg reflections
in the quasimomentum-space dynamics shown in Fig. 4(b)
confirm the associated Bloch-like dynamics. The Bloch-like
oscillations dephase quite quickly, which is caused by the
unequal energy spacing between lattice wells. The dephasing
is followed by periodic revivals, as shown in Fig. 4.

FIG. 5. Wave packet dynamics along the separatrix curve. Abso-
lute value of the wave packet evolution in real- and quasimomentum-
space is shown in (a) and (b), respectively. All the parametric values
remain the same as in Fig. 3, with only the initial position changed
to np =0 and the initial quasimomentum to kypa = m. See the
Supplemental Material [42] for a movie showing the Husimi distri-
bution of the dynamics in the pendulum phase space.

Furthermore, we take the wave packet to the origin, i.e.,
nyg = 0. In this case, the wave packet would weakly breathe
and is expected to remain confined to the center of the
parabolic lattice when kpa = 0 (not shown). However, for
koa = m, the dynamics become much more intriguing. The
wave packet spreads along the separatrix, with partial recon-
finement occurring over time in the presence of small in-well
oscillations, as shown in Fig. 5. This is because the wave
packet is initially placed precisely on the unstable hyperbolic
fixed point. In the classical scenario, a pendulum at the hy-
perbolic fixed point would break symmetry and fall either to
the right or left when subjected to an infinitesimally small
perturbation. However, the quantum system retains the initial
symmetry, and both paths are followed simultaneously (see
the movie within the Supplemental Material [42]). This high-
lights the nonclassical modification of the dynamics in this
case.

On choosing kpa = w /2 with nyp = 0, the wave packet
performs dipole oscillations. Nearly harmonic oscillations
across the center of the parabolic lattice are clearly vis-
ible in Fig. 6(a). The oscillations of the quasimomentum
around the center of the Brillouin zone are also evident
from the quasimomentum-space dynamics shown in Fig. 6(b).
Similar to Bloch-like dynamics discussed above, the dipole
oscillations also carry an intrinsic dephasing, leading to a
collapse of the oscillatory dynamics, followed by subsequent
revivals.

In order to distinguish between the eigenstates of different
nature, which are populated by the Gaussian wave packet in
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FIG. 6. Dipole oscillations below the separatrix. Absolute value
of the wave packet evolution in real- and quasimomentum-space is
shown in (a) and (b), respectively. All the parametric values remain
the same as in Fig. 3, with only the initial position changed to nyp = 0
and the initial quasimomentum to kgpa = 7 /2. See the Supplemental
Material [42] for a movie showing the Husimi distribution of the
dynamics in the pendulum phase space.

each of the various scenarios considered in Figs. 3-6, we
present in Fig. 7 a comparison between occupation proba-
bilities of eigenstates obtained in each case. The occupation
probabilities are plotted through the absolute-squared projec-
tion of the initial Gaussian wave packet on the eigenstates.
The results highlight that for the wave packet prepared under
the conditions of the separatrix with ny = 17 and kpa = 0, as

057 # mme ny=17, ky=0
0---- ny =17, ky=m/2
0.4+ ng=0, ky=m
- ng=0, ky=m/2
03¢}
P(T') Oo

FIG. 7. Occupation probabilities of the eigenstates |®"), as pro-
vided by the squared overlap |(Wy|®")|?. The state |¥,) corresponds
to the initial Gaussian wave packet considered in the different sce-
narios in Figs. 3—6. The attribution of the symbols to these cases can
be inferred from the legend.

in Fig. 3, approximately 22 states are populated, exhibiting
a mixed population of harmonic oscillator-like, intermedi-
ate, and localized Wannier-Stark-like states. This reflects the
mixed dynamics in this case. In contrast, for the Gaussian
wave packet prepared well above the separatrix with ny = 17
and koa = m, such as considered in Fig. 4, the population
is entirely on localized Wannier-Stark-like states, indicating
Bloch-like oscillations. Further, the wave packet taken to ny =
0 and koa = 7 reveals a concentration of population in four
intermediate states and two localized states, where the state at
quantum number r = 23 carries more than half of the occupa-
tion. These states have all been identified in Sec II as evolving
along the separatrix, which reaffirm the breathing dynamics
in Fig. 5. Next, in the case with ny = 0 and koa = 7 /2 the
occupation of harmonic oscillator-like states underscores the
dipole oscillations reported in Fig. 6. This analysis sheds light
on the different types of dynamical behavior based upon the
nature of eigenstates.

V. QUANTUM TUNNELING ABOVE THE SEPARATRIX

For significantly larger shifts of the initial wave packet
with respect to the center of the parabolic trap, the multiband
structure of the full system (1) undermines the single-band
tight-binding approximation (2). Namely, when the quadratic
tilt Qn® bridges the energy gap A between the lowest and
the first excited energy band, that is, for initial shifts ny >
Nmax = +/$2/A, Landau-Zener tunneling between these two
bands sets in [30,43]; note that ny,x = 129 for the parame-
ters adopted in the present work. In this case the tunneled
fraction of the wave packet again would undergo harmonic
oscillator-like dynamics in the upper band, such that the over-
all dynamics turn into an intricate two-band superposition of
Bloch-like and harmonic oscillator-like oscillations. In the
present investigation, however, we do not consider such in-
terband tunneling, but tunneling between different regions of
space corresponding to the same local tilt of the lowest band
with opposite sign. This is achieved by restricting ourselves to
initial shifts, which obey the condition n, < 1y < nmax.

As already indicated at the end of Sec. III, the tunneling
process we are interested in emerges from the nearly degener-
ate eigenstates above the separatrix. A transition of quantum
particles across nearly degenerate states is a fascinating as-
pect of quantum tunneling [32-34,44,45]. This behavior arises
owing to the nonzero probability of finding the particle in a
classically forbidden region, governed by the wave function’s
exponential decay beyond a potential barrier. The tunneling
time is determined by the energy difference AE between
symmetry-related states according to [46]

T = 20 12

wn = o (12)
This is the time during which a wave packet completely trans-
fers from one state to the other. Thus, if AE is very small, the
tunneling occurs on large time scales. Keeping in view the mi-
nuscule energy splitting between the nearly degenerate states
in the model considered above, the corresponding tunneling
times would be much larger than the current experimentally
measurable time scales in cold atom experiments, which range
from a few hundred milliseconds (ms) to a few seconds.
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FIG. 8. Absolute-squared values of the wave function amplitudes
of a nearly degenerate pair of states as a function of n in the
presence of an additional energy shift. The state at r = 40 (red-
dashed curves) and r = 41 (blue-dashed curves) are depicted with
€ = 3.6 x 107*Ey. All other parameters are the same as in Fig. 1.

However, there exists an intriguing and experimentally fea-
sible way to strongly reduce the long-range tunneling times in
parabolic optical lattices. Namely, if one adds a second, much
weaker lattice with twice the period of the primary lattice, one
introduces an energy mismatch € between neighboring sites,
as described by the modified tight-binding Hamiltonian

H =~ 3" (In+1){n] + n)(n+ 1))

n=—0o0o

+ Y <Qn2+ % (—1)">|n)(n|. (13)

n=—0o0

If the energy mismatch is on the order of the hopping
matrix element J, the binary lattice dimerizes and therefore
possesses two Bloch bands, offering one of the simplest
setups for investigating interband tunneling effects [47]. Ac-
cordingly, the Landau-Zener interband tunneling dynamics,
effectuated by an external constant force, have been studied
in such systems [48]. In contrast, here we consider a binary
parabolic lattice with a very small mismatch € < J, such that
the lattice effectively can still be described by a single band.
In that case the previous Eq. (12) is replaced approximately
by the expression

Ton &~ —, (14)
€

implying that the strength of the binary lattice allows one
to tune the tunneling time. While the secondary lattice thus
increases the tunneling splitting, it does not affect the presence
of symmetry-related pairs of eigenstates, which is a precon-
dition for the tunneling effect to occur. This is confirmed
by Fig. 8, where we present the absolute-squared values of
the wave function amplitudes for such a pair. Thus, the even
or odd linear combinations of each symmetry-related pair
actually are located on the right or left wing of the parabola,
respectively, which is what enables long-range tunneling be-
tween these arms. The tunneling effect is demonstrated in
Fig. 9, where we suppose the Gaussian wave packet at np = 30
with kga = 0; therefore, it is kept well above the separatrix.

FIG. 9. Quantum tunneling atop Bloch oscillations. Absolute
value of the wave packet evolution in real- and quasimomentum-
space is shown in (a) and (b), respectively. All the parametric values
remain the same as in Fig. 5, changing only the initial position
no = 30 and the initial quasimomentum kya = 0, and choosing € =
3.6 x 107*Ey. The tunneling time is related to the dipole period by
Tiun = 7.18T)p.

Accordingly, the wave packet initially performs Bloch oscil-
lations on one wing of the parabolic lattice, on top of which
it also tunnels and eventually appears on the other arm. This
tunneling process is gradual and repeats itself continuously.
Thus, the wave packet moves back and forth across both
the arms, maintaining coherence across large distances, see
Fig. 9(a). In fair agreement with Eq. (14) the tunneling time
numerically observed for € = 3.6 x 107*Ey is close to 7.18
dipole periods, which is equivalent to nearly 357 ms. More-
over, the k-space dynamics shown in Fig. 9(b) highlights the
inverted momenta of the tunneled wave packet because of
which the oscillations on the other wing are in an opposite
direction to that on the first arm.

To further expound on the tunneling dynamics, we present
the Husimi distribution of the evolving wave packet at specific
instances of time in Fig. 10. The distribution first shows the
initial Gaussian wave packet superposing with the vibrational
curves above the separatrix in the pendulum’s phase space.
The wave packet evolves along the vibrational curves, remain-
ing localized initially, and then transitions into a mixed shape
with significant k-space spread, indicating dephasing (see the
movie within the Supplemental Material [42]). These features
can be exemplified, here, with the wave packet distribution at
t = 0.25T,,,, where the wave packet is shown extended along
the vibrational curves. Here, the tunneling to the opposite
wing also becomes apparent. At t = 0.507T},,, corresponding
to the half-time between a tunneling event, the distribution
shows nearly equal density on both spatial sides of the phase
space. The localized structure in k space at this time reflects
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0.00T,,,, 0.25T,,,

72 0 w2
ka

FIG. 10. Evolution of the Husimi distribution of Gaussian wave
packet tunneling in the pendulum phase space. Snapshots of the
simulated Husimi distribution for the wave packet evolution shown
in Fig. 9 are presented. The dynamics are illustrated for one tunneling
period, T, = 7.18Tp. A movie showing the evolution of the Husimi
distribution is provided in the Supplemental Material [42].

coherent dynamics. The Husimi distribution shown for ¢t =
1.007y,, exhibits a complete transfer of the wave packet to the
other side. The extension along momentum-space highlights
an imperfect revival of the coherent dynamics.

Seen from the pendulum perspective, one can realize that
the Bloch-like oscillations around a certain position corre-
spond to the oscillations of the pendulum momentum when
accelerating and decelerating during full rotations, and that
the Wannier-Stark-like localization in one of the arms of
the parabola corresponds to the momentum preserving its
sign during full rotations. Thus, dynamics in the presence
of tunneling appear as quantum beating between a clockwise
rotating and a counterclockwise rotating pendulum.

VI. CONCLUSIONS

In conclusion, our study examines the eigenstates in a
parabolic lattice system with a focus on near-separatrix

dynamics. The analogy of states to closed and open curves
of classical pendulum phase space highlights the nature of
these dynamics, drawing parallels between classical and quan-
tum behavior. While Bloch oscillations and dipole oscillations
have been understood in the context of pendulum dynamics,
our results reveal that their superposition within parabolic
lattices can give rise to highly nonclassical dynamics, which
could be harnessed for generating nonclassical states. Further-
more, our investigation demonstrates that the momentum of
the initial wave packet plays a crucial role in dictating the
system’s dynamics, which can be tuned to realize various dy-
namical regimes, thereby broadening the scope of controllable
quantum phenomena in such systems. We also emphasize the
potential of enhancing the tunneling splitting between almost
degenerate states well above the separatrix through the use of
bichromatic lattices, which could induce long-range tunneling
dynamics at an experimentally relevant time scale. This ap-
proach may offer a pathway to observe long-range dynamical
tunneling in binary parabolic optical lattices. Additionally,
time-periodic driving may be employed to tune the energy
splitting, and with judiciously chosen parameters one could
induce dynamical tunneling between distant regular islands
in a partly chaotic phase space. Exploring this, along with
the effects of atom-atom interactions on tunneling dynamics,
presents an exciting direction for future work. Thus, our find-
ings suggest that the parabolic lattice system is well suited
for studying quantum dynamics, separatrix-like conditions,
and long-range dynamical tunneling of macroscopic wave
packets, providing a solid foundation for future experimental
investigations.
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