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Part 1

Introduction






1 Motivation

By the year 2050, it is projected that close to 7 billion people will live in urban areas (Ritchie
& Roser, 2018). In relative numbers, this means that 68% of the total population is expected
to live in urban areas by 2050, compared to 50% in 2018 (UN, 2019). This percentage is even
higher in industrialized countries. In the United States, 86% of the population lives in urban
areas in 2023. By 2050, this is expected to further increase to 89% (Ritchie & Roser, 2018).
Naturally, this development also comes with an increased demand for urban mobility and
logistics solutions, where urban logistics describes the movement of goods and urban mobility
the movement of people. In addition to the growing urban population, both areas come with
their own unique developments and challenges.

Concerning urban logistics, a major factor is the increased popularity of e-commerce systems.
By 2025, the number of packages delivered worldwide is expected to climb to an amount of
200 billion, compared to less than 90 billion in 2018 (Szczepanski et al., 2021), leading to
an increased demand for last-mile logistics and consequently, urban traffic. Regarding urban
mobility, while many cities around the world have started initiatives aiming to reduce the use
of cars (Nieuwenhuijsen & Khreis, 2016; Ortegon-Sanchez et al., 2017), a main concern is the
fact that the most common transportation mode is still private cars, which according to a
large-scale international survey of McKinsey in 2022, are used in 45 percent of all trips (Heineke
et al., 2023). It is surpassing other modes such as public transport (23%), micro-mobility
(16%), consisting of scooters, bikes, and other small vehicles, and walking (14%) (Heineke
et al., 2023). Shared mobility services, including ride-hailing services like Uber, only account
for around 2% (Heineke et al., 2023).

While providing essential services, today’s urban mobility and logistic systems also cause
increased traffic volumes which in turn have several adverse side effects. It leads to an increase
in air pollution and greenhouse gas emissions and has a negative impact on public health, as it
leads to an increase in respiratory problems, such as asthma (Anenberg et al., 2019). Further,
it leads to traffic congestion which has economic costs for cities and individuals, including
lost productivity. Alone in the EU, it is estimated that traffic congestion leads to a yearly
loss of nearly 100 billion Euros, which corresponds to 1% of the EU’s GDP (Savelsbergh
& van Woensel, 2016). Moreover, it can also limit the development of cities by leading to
inefficient use of urban space and increasing the risk of accidents and fatalities on the roads.
In the US in 2021, 60% of deaths involving motor vehicle crashes occurred in urban areas (U.S.
Department of Transportation, 2023). In 2000, this number was at just 40% and the same
trend is visible in absolute numbers.

The two major trends, i.e., an increase in urban population and the growing number of
packages delivered, coupled with their adverse side effects, stress the need for optimized
urban mobility and logistics solutions. This is also underlined in the United Nations (UN)
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sustainability goals, where goal 11 is the development of Sustainable Cities and Communities
(Colglazier, 2015). Operations Research (OR) has played an important role in improving the
efficiency of logistics and mobility systems (Dekker et al., 2012; Laporte et al., 2018). An
exemplary use case is the optimization of truck tours or companies’ transportation networks.
Another use case where OR methods have been extensively applied is mobility solutions such
as optimizing bus schedules, intending to reduce the bus fleet size (L. Li et al., 2019).

In this thesis, to limit the scope of the dissertation, the focus is on two sub-domains of
urban mobility and logistics that have gained importance in recent years due to the customers’
desire for quicker delivery of goods and faster mobility, at reasonable costs. In the context
of urban logistics, the focus is on Last-Mile Delivery (LMD) concepts where vehicle tours
are optimized, that serve the final customers, such that e.g., driving distance or labor time
is minimized (Boysen et al., 2021; Merchan et al., 2024). The reason for focusing on LMD
is that its cost has risen significantly. In 2023, LMD was estimated to account for 53% of
total delivery costs, compared to 41% in 2018 (Pohowalla et al., 2024), showing the economic
potential in optimizing this segment of the logistics chain. This increase is mainly driven by
labor costs, which have risen due to labor shortages (Pohowalla et al., 2024). This thesis aims
to showcase how OR can help reduce these costs in various LMD use cases. Regarding urban
mobility, the focus is on Taxi Ridesharing (TRS), where customers with similar itineraries
share taxi rides. TRS has attracted more attention in both research (Santos & Xavier, 2015)
and practical use (Heineke et al., 2023), as it aims to provide the speed and flexibility of taxis
at lower costs. However, as stated above, in relative numbers, the market share of sharing
services (less than 2%) compared to private cars (around 45%) is still very low. Therefore,
another aim of this thesis is to improve the efficiency of TRS systems by reducing operational
costs (e.g., by decreasing the needed taxi fleet size), or improve customer satisfaction through

the reduction of waiting times, making it a more viable mobility option.

Coupled with these problem-specific challenges, come new (methodological) challenges, as
many problems in the field of LMD and TRS are dynamic, i.e., problem environments change
over time and decisions must be taken before all information is known, i.e., we deal with
uncertainties. For example, in the case of LMD, a new trend is Same-Day Delivery (SDD),
where the delivery of a good is performed the same day it has been ordered (Voccia et al.,
2019). However, this also means that some customers arrive in the afternoon after some vehicles
already left in the morning. To attain efficient planning, the planner must account for these
initially unknown future customer requests. Similarly, in TRS, client requests arrive over the
day and taxis need to be assigned to serve these requests in a short period. To account for

these uncertainties, one can establish multiple time points, in which decisions must be taken.

Even within the OR community, multiple solution paradigms have been suggested to solve
problems with multiple decision points. Among these paradigms are Markov Decision Processes
(MDPs), where memorylessness of the stochastic process is assumed, i.e., the future state of
the system depends only on the current state and the action taken, not on the sequence of
events that preceded it. Further, in MDPs, transition probabilities (the probability the system
moves from one state to another) are assumed to be known. This is in contrast to the modeling
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framework of Stochastic Programming, where probabilistic distributions characterize uncertain
problem parameters (Jaillet & Wagner, 2010) that are gradually revealed in stages (Birge &
Louveaux, 2011). Another framework is online optimization, which is not dependent on a priori
assumptions about the structure of the problem data uncertainty (Jaillet & Wagner, 2010). As
the aforementioned paradigms make certain problem assumptions, this thesis draws on the
unifying framework of Powell (2019) for sequential decision problems, which provides a general
modeling framework for problems with multiple decision points regardless of assumptions about
the nature of uncertainty or memorylessness.

An important concept in sequential decision-making is decision points, i.e., the time decisions
are taken. In static decision-making, there is only one decision point and it is not possible
to react to system changes. Another option is to predetermine the times at which decisions
are taken. A last option is to make decisions when events occur. This allows us to react to
changes immediately. We can rank static problems, sequential problems with predetermined
decision points, and event-driven decision points by what is further referred to as the Level of
Dynamism, i.e., the degree to which we can react to changes within a system.

In both, LMD and TRS, sequential decision-making has attracted more research in recent
years but still falls short compared to static decision-making. However, these two domains are
suitable for sequential decision-making frameworks, due to their often uncertain environments
(e.g., due to incoming orders), and the ability to allow planners to adapt to these using real-
time data. Furthermore, previous research has paid little attention to the interplay between
problem requirements (such as customer expectations of service speed) and the design choice
on when decisions should be taken, i.e., the Level of Dynamism. In this thesis, novel problems
in LMD and TRS are tackled, that deal with uncertainties and that have so far not been
studied. Particularly, problems with different Levels of Dynamism are considered and it is
shown how optimization can improve decision-making, irrespective of the decision points. Novel
optimization heuristics are implemented, and computational evaluations for these selected
problems are performed. These novel methods include a hybrid approach that combines
traditional OR techniques with Machine Learning (ML) algorithms, and problem-specific
heuristics. The overarching objective can therefore be framed as follows:

Develop optimization techniques to enhance the efficiency of urban mobility and
logistics systems under uncertainty and varying Levels of Dynamism, with a

particular emphasis on Last-Mile Delivery and Taxi Ridesharing.

The thesis is divided into three parts. The first part (I) consists of the Introduction. The
remainder of this Introduction is structured in the following way. First, in Section 2, background
information on the methodology, i.e., static and sequential decision-making, and the problem
domain, i.e., urban mobility and logistics, is given. Also, in this section, research gaps are
presented, resulting in two research questions. Further, a synthesis of challenges in both LMD
and TRS is performed. This leads to the derivation of a research framework that allows for a
classification of the papers, which is described in Subsection 3. Further, Section 3 includes a

short summary of the research papers, and the papers are categorized within the framework.
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The full research papers are given in Part II of the thesis. In total, it consists of five research
papers, where three of them consider LMD, while two consider TRS systems.

Part III of this dissertation is a discussion. It consists of overall research and managerial
implications (Sections 4.2 and 4.3), limitations (Section 5) as well as an outlook and suggestions

for future work (Section 6).



2 Background

As stated in the motivation of this thesis, sequential decision-making is an emerging research
area in the field of urban logistics and mobility. Therefore, literature along the problem
domain, i.e., urban mobility and urban logistics, and the methodology used, i.e., sequential
decision-making is scanned. This will lead to the building of a framework that is used to classify
the research papers in Section 3, consisting of the two above-mentioned dimensions. Another
goal of this section is to identify research areas that have received less attention and to derive
research questions. Further, a goal is to provide the reader with the necessary knowledge about
the problem domain and methodology used, to enhance the comprehension of the research

papers presented in Part II of this thesis.

2.1 Methodological Background

In this subsection, first, a short tour d’horizon on sequential decision-making in the field of OR
is given. This is done to substantiate the use of the unified modeling framework for sequential
decision problems (Powell, 2019), which is presented further on. This is needed to achieve the
second goal of this subsection, which is to explain the concept of decision points, and in doing

so, the Level of Dynamism.

Sequential Decision-Making in Operations Research While the research community
has long considered static decision-making and there exist accepted canonical forms (e.g., as a
Mized Integer Programming (MIP)), sequential decision-making is a far less beaten track and
there exists a wide range of modeling approaches from different research communities, including
OR, Reinforcement Learning, and Optimal Control. In the following, a short presentation about
the most common paradigms in the field of OR that consider multiple decision epochs is given.
It is noted that these paradigms overlap conceptually, i.e., some problems can be modeled by
either paradigm. For an in-depth discussion on this topic, interested readers are referred to
Powell (2014). Among these paradigms is the modeling framework of Stochastic Programming.
Here, probabilistic distributions characterize uncertain problem parameters (Jaillet & Wagner,
2010). The most known example is two-stage stochastic programming with recourse. The first
stage focuses on determining the optimal decisions based on known, certain information. In
the second stage, decisions are made in response to uncertainty (known as recourse decisions),
taking into account the first-stage decisions. The goal of the optimization is to minimize the
total cost (in case of minimization), which includes the initial decisions and the expected costs
arising from the recourse actions in the second stage (Birge & Louveaux, 2011). The classical
two-stage problem can be extended to so-called multi-stage problems. Here, unlike two-stage
stochastic programming, where decisions are divided into two phases (before and after the
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uncertainty is known), multi-stage models involve multiple decision points, with uncertainty
being gradually revealed over time (Birge & Louveaux, 2011). Another modeling framework
for sequential decision-making are Markov Decision Processes (MDPs). In MDPs, probabilities
for the transition from one state to another (called transition probabilities), are assumed to be
known. Further, the Markov property needs to hold, i.e., the probabilities of different outcomes
are not dependent on past states, but only on the current state. This property is also called
memorylessness (Puterman, 2014). A more recent paradigm for sequential decision-making
is Online Optimization (Jaillet & Wagner, 2010). This approach does not rely on any prior
assumptions about the nature or structure of the uncertainty in the problem data, i.e., defining
distributions or sets to describe the uncertainty is omitted (Jaillet & Wagner, 2010). This
leads to the development of policies, that do not incorporate possible future events but rather
develop bounds on the performance compared to a solution with all information known (Powell,
2019).

To stress out the variety of different modeling and solution approaches, which makes it
difficult to identify a standardized, cross-literature representation of problem characteristics
and notations, Powell (2014) refers to it as a ‘jungle’. Therefore, in this dissertation, the

unifying framework for sequential decision-making of Powell (2019) is applied.

Modelling Sequential Decision Problems A Sequential Decision Problem is described
by States, Decision variables, a Fxogenous information, Transition function and an Objective
Function (Powell, 2011). These components will now be explained in detail.

e State - The state s; describes the system at a certain time ¢ and includes all information
that is available to the decision-maker to make a decision. In a Dynamic Vehicle Routing
Problem (DVRP) context, this might be the customers that are already in the system

and the position of vehicles.

e Decision variables - Decision variables are denoted by x; and describe how we can interact
with the system by making decisions. A decision could e.g., be a planned vehicle tour.
Decisions are determined by a policy 7 that maps a state to a decision xy = X™(s;). Also
here, the set of actions might be constrained and we thus should only consider feasible

actions.

e Fxogenous information - The exogenous information is denoted by w;11 and describes
information that arrive after we take decision z;, leading to state x4;1. This could be,

for example, a new incoming customer request.

e Transition function - The transition function T'(s;, x4, wy+1) determines how the system
(and hence the states describing the system) evolves over time. It does so by taking into
account the state at time ¢, the action taken at time ¢ and the new exogenous information
wi+1. The transition function therefore leads to the new state siy1 = T'(s¢, T¢, Wit1).

e Objective function - The objective function R(s;, x;) captures metrics that are used to

evaluate the performance. This can be a reward function that we try to maximize, e.g.,
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the number of customers we are able to serve (Meisel et al., 2011) or a cost function that
we try to minimize, e.g., the distance traveled by all vehicles (Arslan et al., 2019).

The goal is to find an optimal policy 7* that satisfies the Bellman equation in each state.
The Bellman equation consists of an immediate reward/cost and the expected sum over the
future rewards/costs given state s; and decision x; and following optimal policy 7*. In the case
of a cost minimization problem, the Bellman equation looks as follows:

X™ (s4) = ifg;?sg{]%(st,wt) + E[j:zi:rl R(sj,X”*(sj))\(st,xt)} } (2.1)

We minimize the immediate costs plus the expected sum of future costs, as exogenous

information arrives over time. Thus, we deal with a stochastic problem.

Decision Points & the Level of Dynamism We have now seen the mechanism of a
Sequential Decision Problem and how it can be modeled. An important characteristic of
Sequential Decision Problems is the decision points, i.e., the time when we make decisions.
In static decision-making, there is only one decision point upfront. In Sequential Decision
Problems, as seen previously, we have multiple decision points. These decision points can be
predetermined or event-driven. An example of predetermined decision points is the Dynamic
Dispatch Waves Problem for Same-Day Delivery (SDD) (Klapp et al., 2018; Van Heeswijk et al.,
2019), where vehicles need to be dispatched in predetermined time steps, e.g., once per hour. An
example of an event-driven decision problem is the work of X. Yang et al. (2016), where prices
for time windows are offered to the customer when he/she arrives in the system. Sometimes
the problem type determines whether decision points are event-driven or predetermined, e.g.,
in the treatment of chronic diseases where the doctor takes decisions at predefined decision
points, to see if the treatment has been effective up to the given time (Denton, 2018). In other
cases, the system/problem can be designed either way. For example, in the DVRP, we might
dispatch vehicles once an hour, or we can decide upon dispatching when a customer arrives
in the system/ a vehicle returns to the depot. Determining decision points should be done
carefully: Frequent replanning, as is the case with event-driven decision points, allows for a
quick and efficient response to evolving states while less frequent replanning may enable better
decisions due to gained information (M. Ulmer et al., 2017).

We can rank static problems, sequential problems with predetermined decision points, and
event-driven decision points by the Level of Dynamism, i.e., the degree to which we react to
changes within a system. The term Dynamism (rather than Sequentialism) is chosen due to
its usage in other works (see e.g., M. Ulmer et al., 2017). Naturally, the Level of Dynamism
is lowest in static decision problems, as we do not react to any changes in the system by
only having one decision point. When we have predetermined decision points, the Level of
Dynamism can be classified as medium, as we have multiple decision points and can react to
changes, however, we do not respond immediately when the system change occurs. In contrast,
in event-driven systems, the Level of Dynamism is high as we can immediately react to those
changes. The way to model a problem, including determining decision points, depends on
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various factors, such as problem-specific characteristics, information availability, and so on.
There often exists no single right modeling choice. Also, the need for flexibility differs among
different problems. In an ODD system, customers expect delivery within a few minutes, which
requires quick decisions, while customers of traditional SDD systems, only expect delivery
within the same day, making it possible to accumulate more information before taking a
decision.

To summarize, the concept of Level of Dynamism helps identify the degree to which a
system can respond to changes over time. The concept is independent of the specific modeling
approaches (Stochastic Programming, Online Optimization, etc.) or solution techniques
employed. It characterizes how much flexibility and responsiveness are available to adjust
decisions as new information or uncertainties are revealed. A high Level of Dynamism indicates
that decisions can be frequently updated in response to changes, while a low level suggests
that adjustments are more limited or infrequent. This concept is important for understanding
the adaptability of a system, independent of the methods used to optimize it.

In this thesis, it will be shown how selected problems can be modeled and solved as sequential
decision problems with different Levels of Dynamism, aiming to demonstrate how varying
degrees of real-time information affect decision-making processes and solution strategies.

Illustrative Example of Different Decision Points To further illustrate the role of
different decision points, Figure 2.1 represents a timeline with incoming customer requests for
a delivery system, e.g., an online grocery delivery system. In a static setting, all customers
that arrived before time point 0 would be considered in the optimization, disallowing us to
serve the five incoming customer requests on the same day. This would be the case in a classic
LMD context, where a vehicle leaves a depot in the morning and returns in the evening. With
predetermined decision points, it first needs to be decided at what time points vehicles should
leave the depot, before determining the vehicle tours. For example, we might want to dispatch
vehicles twice a day at 6:00 (serving customers 1 and 2) and at 12:00 (serving customers 3 to
5). With event-driven decision points, every time a customer arrives in the system, we can
decide to either wait until more customers arrive in the system, or to dispatch a vehicle.

® 0 o0 O

\ i i i i i i i Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.1: Timeline With Incoming Customer Requests

2.2 Problem Domain Background

In this subsection, an overview of current developments in the fields of urban logistics and
mobility is provided. Solution methods that are used to solve challenges arising in this problem
domain are not presented. Further, research gaps are described and two research questions are
formulated. For more exhaustive overviews of current practices and trends in the field of urban
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mobility and logistics, interested readers are referred to Kaspi et al. (2022) and Cleophas and
Meisel (2023). It is noted that in this thesis, the term urban logistics is used to specifically refer
to the movement of goods and services, consistent with works such as Dahmardeh et al. (2018),
Lagorio et al. (2016), and Savelsbergh and van Woensel (2016). The term urban mobility, on
the other hand, will be used to denote the movement of people within urban areas. Additionally,
using this terminology, hybrid forms of urban mobility and logistics exist, e.g., when public
transport (such as buses and trams) is used to deliver goods (De Maio et al., 2024; Mandal &
Archetti, 2023). Some research even proposes to view the transportation of goods and people
as one single system and design it accordingly (De Sousa & Mendes-Moreira, 2015).

2.2.1 Urban Logistics

Urban logistics focuses on the efficient and effective transportation of goods in urban areas
(Savelsbergh & van Woensel, 2016) and is also referred to as city logistics, urban (freight)
distribution, last-mile logistics, or city distribution (Savelsbergh & van Woensel, 2016). It
should not be confused with LMD, which describes the delivery of goods to the final customer
(Boysen et al., 2021). A current pressing problem for companies in LMD is the uncertainty in
driver behavior, i.e., drivers often deviate from the tour suggested by the planner (Merchan
et al., 2024). A research gap is to develop methods that account for this uncertainty. Further,
two emerging trends of LMD considered in this thesis are described: Same-Day Delivery (SDD)
and On-Demand Delivery (ODD).

Same-Day Delivery Same-Day Delivery (SDD) describes the delivery of goods on the
same day they have been purchased (Voccia et al., 2019). Besides the routing of vehicles, a
key problem aspect is the decision of when to dispatch a vehicle to which customers. This is
described by the Dynamic Wave Dispatching Problem (Baty et al., 2024; Klapp et al., 2018;
Van Heeswijk et al., 2019), where a planner needs to dispatch and route a set of vehicles to
serve customer requests that are incoming throughout the day. The goal is usually to minimize
travel distance while maximizing the number of customers served on the same day. Through
late dispatching, customers can be aggregated, potentially leading to more efficient vehicle
tours. However, as customers often have time windows and couriers need to return to the
depot at a certain time of the day, dispatching too late might lead to infeasibility or fewer
customers that we can serve. Therefore, the planner must find the right balance between
these two conflicting rationales. To foster research in this area, the FURO Meets NeurlPS
2022 Vehicle Routing Competition has been organized (Kool et al., 2022) together with the
Dutch company ORTEC in which participants were asked to develop algorithms to solve the
Dynamic Wave Dispatching Problem. This underlines the relevance of the problem in research
and practice.

On-Demand Delivery A new trend in urban logistics where customers are served in a few
minutes is referred to as On-Demand Delivery (ODD) by Wafmuth et al. (2023). It can be
seen as a subtype of SDD. For example, the German ODD provider Flink used to promise their
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customer a delivery in only 10 minutes. To ensure such a fast delivery, the service provider
operates multiple depots in a city where couriers with e-bikes depart. Research is sparse
as ODD is a relatively new topic. Much of the existing research has focused on narrower
subproblems, such as order acceptance (Kavuk et al., 2022), order bundling (Chen & Hu,
2024), or the assignment of orders to couriers (Dehghan et al., 2023; Guo et al., 2021), without
accounting for the presence of multiple warehouses. Kronmueller et al. (2023b) address this gap
by introducing the Flash Delivery Problem where customers are served from multiple depots in
a short time and Kronmueller et al. (2023a) determine the optimal fleet size for such a system.
The authors solve the problem using a rolling-horizon approach and solving an ILP in each
horizon (every 100 seconds), disregarding depot workloads. A research gap here is to develop
an event-driven system where customer arrivals trigger decision epochs, as this allows us to
serve customers more quickly. Further, and similar to TRS, another gap is to develop methods
that anticipate future customer requests considering the depots’ current workload.

Considering the above-mentioned research gaps, the first research question that is tried to
be answered in this thesis is:

RQ1: How can optimization methods be applied to improve the efficiency of Last-
Mile Delivery services, considering uncertainties such as driver behavior or dynami-

cally occurring customer orders?

2.2.2 Urban Mobility

Urban mobility encompasses various modes of transportation such as walking, cycling, public
transit, private vehicles, and shared mobility services. It is usually centered around two
paradigms: public and private transport. In recent years, a mix between these two paradigms
has gained more attraction, namely ridesharing services, where multiple users share a ride or

vehicle. In the following, each of these three classes of urban mobility is presented.

Public Transport Public transport is characterized by high-capacity vehicles with fixed
tours and schedules (Horcher & Tirachini, 2021). In an urban setting, the most common public
transport types are buses, trams, and metros. Due to high volume, these are characterized by
relatively low costs for customers and are also seen as a sustainable means of transportation.
However, compared to private transport, they lack flexibility and usually offer less comfort.
Due to the high volumes of passengers transported and the Corona pandemic, research
started investigating how the safety of public transport in terms of virus spread can be
increased (Gutiérrez et al., 2021). Another new development of public transport systems is the
electrification of buses, which is not only a challenging task from an engineering perspective
but also from a planning perspective. From a planning perspective, it encompasses the joint
optimization of strategic infrastructure tasks such as the building of charging stations and
tactical planning of vehicle tours, including charging operations (Stumpe et al., 2021).

Private Transport Traditionally, private transportation means include private cars, taxis,
and bikes. Motorized means, namely cars and taxis, are a major hurdle for sustainable cities.
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They lead to traffic jams, air pollution, and road accidents (Borck, 2019). Companies such
as Uber and Lyft have disrupted the taxi market by establishing a platform that matches
drivers with customers (Grabher & van Tuijl, 2020). Services like Taxis and Uber are also
known as ridehailing in the scientific literature (Feng et al., 2021). Here, strategic challenges
are determining an optimal fleet size (Wallar et al., 2019; Zhang & Ukkusuri, 2016) while
operational challenges are the optimal dispatching of cars to customer requests, and the
rebalancing of vehicles to account for future demand (Jungel et al., 2023). More recently,
e-bikes and e-scooters have become more prominent in many cities. Often, these bikes and
scooters are offered by service providers and shared by users (Gossling, 2020; Teixeira et al.,
2021). Also here, a main operational challenge is the rebalancing of these vehicles, while
considering the battery level and charging processes (Osorio et al., 2021; Zhou et al., 2023).

Ridesharing Ridesharing is often seen as a hybrid between public and private transport.
More specifically, it is a mode of transport in which individual travelers share a vehicle for a trip
and share travel costs such as gas, tolls, and parking with others who have similar itineraries
and schedules (Furuhata et al., 2013). It has been developed to combine the advantages of
both public and private transport, i.e., offering a flexible and comfortable mobility system
at relatively low costs. There exist a variety of different ridesharing systems. Free-Floating
Car Sharing (FFCS) is a service model in which multiple users pay a fee to access a shared
vehicle for transportation from one location to another. After using the car, they leave it
at their destination for the next user to pick up, creating a flexible and dynamic system of
shared mobility (Schiffer et al., 2021). Peer-to-Peer Ridesharing (P2P) describes systems where
drivers share their personal trips with riders who have similar itineraries (Tafreshian et al.,
2020). Therefore, drivers in P2P are not driving only for serving requests but have their own
destination (Tafreshian et al., 2020). Tazi Ridesharing (TRS) (also referred to as ridepooling)
systems are commercial ride services whose vehicles are used by several passengers at the same
time for different ride requests (Ke et al., 2020; Ma et al., 2013). A key challenge in TRS is to
optimally group customer requests to a single ride. Previous research in New York City has
shown that TRS has the potential to reduce the fleet size by more than 50% (Lokhandwala
& Cai, 2018). While TRS systems are seen as a promising means of urban mobility, they
also have some disadvantages, such as relatively long travel times that arise due to detours
that are driven to pick up each client at their origin and bring them to their destination
(Barann et al., 2017). These long travel times might also result in a lower acceptance of such
systems. Previous research has shown that shared pick-up and drop-off locations (also called
meeting points), to which clients need to walk, can substantially improve the efficiency of such
systems, by avoiding detours and increasing the possibilities of grouping multiple requests to
one ride (Stiglic et al., 2015). However, two areas where the existing literature falls short are
identified. First, when these systems are employed in real life, a common method is to apply a
rolling-horizon approach, in which customer requests are collected during a horizon and then
grouped. The service provider needs to determine several parameters, such as, among others,
the maximally allowed walking distance or the horizon length. However, recent literature did
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not investigate the impact of these parameters on the efficiency of the system and the effects
on customers. A second area in the literature that has not received attention yet is methods
for TRS that anticipate future customer requests. This is a promising direction as anticipatory
methods have proven useful in other problem areas such as meal-delivery (M. W. Ulmer et al.,
2021) or energy storage (Cheng & Powell, 2016). This leads to the following research question:

RQ2: How can Taxi Ridesharing with meeting points services be designed to ensure
high sharing rates, considering dynamically occurring customer requests?

2.3 Synthesizing Needs in TRS and LMD

In both, TRS and LMD, the need for quicker service has led to the emergence of novel services
and consequently, new decision problems. While there are problems that are solely relevant in
one of the two areas, such as the lack of integrated driver behavior modeling in LMD, gaps
have been identified, that concern both areas. These problems are coupled with the concept
of sequential decision-making. For example, previous research has paid little attention to
developing anticipatory methods for TRS and ODD, that account for future customer requests.
Further, the interplay between problem requirements (such as the speed of service or data
availability) and the design choice on decision points (Level of Dynamism) is often not reflected.

This leads to the contributions of this thesis, which will be presented in the next chapter.



3 Framework and Contributions

In this section, first, a framework is presented, that aims to provide a structure for classifying
the presented papers along their key dimensions, i.e., the research area (TRS and LMD) and
the Level of Dynamism. Second, the research papers that are part of the thesis are shortly
introduced and classified in the framework. Third, it is explained how each paper contributes
to the overarching goal of the thesis, i.e., improving decision-making under uncertainty in urban
mobility and logistics.

3.1 Framework

A two-dimensional framework is shown in Figure 3.1. This framework classifies the research
papers that form this dissertation. For visual reasons, the research papers are already mentioned
in this Figure, but a summary of the papers and their classification within the framework is
presented in the following subsection. The framework consists of two dimensions which are
explained in the following.

In the previous subsection, by presenting work on urban mobility and logistics, background on
the problem domain was provided and some research trends have been shown. This discussion
highlights the key themes and challenges that have shaped the research direction of this
dissertation. This is reflected on the x-axis of the framework, where the two categories (urban
logistics and urban mobility), are given. As already mentioned, to narrow the scope of this
thesis to a manageable size, within the two categories, only LMD and TRS are considered.
For a more detailed justification of why these two areas are chosen, we refer to Chapter 1.
The nature of the problem domain is categorical. Therefore, the x-axis should not be seen
as a quantitative scale, but rather as delineating variations across different categories within
the problem domain. Consequently, many other problem domains in both urban logistics
and mobility not covered in this thesis exist, such as inventory management, bus scheduling,
vehicle charging location planning, etc.. These domains, though outside the scope of this thesis,
represent interesting areas for future research.

The y-axis represents the Level of Dynamism (as explained in Section 2.1) of the considered
research papers. This variable can be seen as ordinal, as different levels of dynamism exist.
Event-driven systems have the highest Level of Dynamism since we are able to react to changes
in the state (caused by events) immediately. When applying rolling-horizon approaches, we can
react to state changes, however not immediately, but in set time intervals. Therefore its Level
of Dynamism is lower than for event-driven systems. In static decision-making, we do not react
to any state change. Also here, it needs to be stressed, that further levels of dynamism exist.
For example, two-stage stochastic programming examines exactly two decision epochs (stages).
It can therefore be seen as being situated between static and rolling-horizon. Further, the space
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Figure 3.1: Research Framework to Classify Research Papers

beneath static in Figure 3.1 has been intentionally included to improve readability and there
does not exist any class with less dynamism than static decision-making, i.e., there must be at
least one decision epoch. Moreover, it should be highlighted that no Level of Dynamism should
be regarded as superior to one another. As mentioned in Chapter 2, each level represents a
different approach with its own strengths and weaknesses depending on the context of the
decision-making process and is independent of the specific modeling approaches or solution

techniques employed.

3.2 Summary of Research Papers

The thesis consists of five research papers. Four of them have been published and one is a
working paper. An overview is given in Table 3.1. The first three papers are in the field of
LMD. The fourth and fifth papers are in the field of Tazi Ridesharing (TRS). A summary of
these five research papers is now presented.

Paper 1: Integrating Driver Behavior into Last-Mile Delivery Routing: Combining Machine
Learning and Optimization in a Hybrid Decision Support Framework
A main challenge of LMD service providers is integrating driver knowledge and behavior.
The relevance of the problem is illustrated by a research challenge organized by Amazon and
the MIT Center for Transportation and Logistics in 2021 (Merchéan et al., 2024), with the
goal of developing novel methods for incorporating driver behavior into routing algorithms,
as so far, this integration has hardly been exploited. This phenomenon is reflected in two
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Table 3.1: Research Papers of the Dissertation

No. Title Authors Status Outlet

RQ1: How can optimization methods be applied to improve the efficiency of Last-Mile
Delivery services, considering uncertainties such as driver behavior or dynamically occurring

customer orders?

1 Integrating Driver Behavior into Peter Dieter, Published European
Last-Mile Delivery Routing: Matthew Caron, Journal of
Combining Machine Learning and Guido Schryen Operational
Research

Optimization in a Hybrid Decision
Support Framework

2 A Regret Policy for The Dynamic Peter Dieter Published  International
Conference on

Vehicle Routing Problem with Time

Windows Computa-
tional Logistics

3 The On-Demand Delivery Problem: Peter Dieter, Under Computers &
Philipp Review Industrial

Assignment of Orders to
Engineering

Warehouses and Couriers Speckenmeyer,
Guido Schryen

RQ2: How can Taxi Ridesharing with meeting points services be designed to ensure high
sharing rates, considering dynamically occurring customer requests?

4 Designing Taxi Ridesharing Miriam Stumpe,  Published Transportation
Systems with Shared Pick-up and Peter Dieter, Research Part
Drop-off Locations: Insights from a Guido Schryen, A: Policy and

Computational Study Oliver Miiller, Practice
Daniel Beverungen

5 Anticipatory Assignment of Peter Dieter, Published Transportation

Passengers to Meeting Points for Miriam Stumpe, Research Part
Tazri Ridesharing Marlin Ulmer, D: Transport
Guido Schryen and

Environment




18 3 Framework and Contributions

distinct and largely independent research areas: logistics planning and driver behavior. In
this paper, we attempt to bridge this gap by using and integrating historical data from
actually driven tours into LMD planning. However, this also results in complex and large-scale
routing challenges that necessitate an overarching methodology extending beyond traditional
optimization techniques. This approach must encompass a multi-stakeholder perspective,
integrate a hybrid-analytical strategy by including tour prediction and prescription, and utilize
both data science and optimization methods. We propose a hybrid decision support framework
for the Traveling Salesman Problem With Time Windows (TSPTW) that integrates ML
techniques with conventional optimization methods. This framework takes into account the
discrepancies between the suggested tours (derived using OR techniques) and the predicted tours
(generated using ML). We demonstrate the applicability of the framework through a case study
utilizing real-world logistics data. By conducting a sensitivity analysis, we explore and illustrate
the trade-off between the level of deviation between predicted and suggested tours and the
associated tour costs. We argue that the suggested hybrid ML and OR approach can mitigate
the uncertainty of driver behavior, leading to improved decision-making by proposing tours to

drivers, that they eventually will follow and thereby improving the efficiency, contributing to
RQ1.

Paper 2: A Regret Policy For The Dynamic Vehicle Routing Problem With Time Windows
In this paper, I present a regret policy for the Dynamic Vehicle Routing Problem With Time
Windows (DVRPTW) where customer order arrivals are revealed over the course of a day.
The problem requires two types of decisions: Dispatching orders and planning vehicle tours.
The aim is to minimize travel distance while fulfilling all orders within their specified time
windows throughout the day. The core concept of this policy involves assessing a regret value for
each order, indicating potential improvements foregone by dispatching the order immediately,
i.e., the regret if we should dispatch the customer immediately. To determine this regret
value, we leverage customer distribution data from which orders are drawn. If the calculated
value falls below a predefined threshold, the order is dispatched, and tours are planned using
a state-of-the-art VRPTW solver. The proposed regret policy outperforms two benchmark
policies from the literature, thereby contributing to RQ1.

Paper 3: The On-Demand Delivery Problem: Online Assignment of Orders to Warehouses
and Couriers
As presented in Section 2, On-Demand Delivery (ODD) describes systems where delivery is
performed in only a few minutes (Wafsmuth et al., 2023) by operating multiple micro-warehouses
in a service region and employing a fleet of couriers with e-bikes. In this third paper, we
mathematically describe the ODD as a Sequential Decision Problem with the aim of minimizing
total tardiness. When an order arrives in the system, we need to assign it to a warehouse and
a courier. To solve the modeled problem, we suggest anticipatory and data-driven assignments
based on the current workload and capacity of warehouses, as well as previously assigned
orders to couriers. We apply the policies to problem instances on a stylized grid as well as to
instances derived from real-world data of Chicago. The methods are benchmarked to current
practices from the industry, where statically defined spatial areas (polygons) are defined for each
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micro-warehouse and all customers within this polygon are assigned to the respective warehouse.
The paper contributes to RQ1 as we show that an anticipatory assignment can substantially
reduce tardiness and improve the efficiency of the system, compared to the described industry
benchmark.

Paper 4: Designing Tazi Ridesharing Systems with Shared Pick-up and Drop-off Locations:
Insights from a Computational Study
In the fourth paper, a TRS system featuring shared pick-up and drop-off locations is considered,
where passengers may need to cover a brief distance on foot from their origin or to their
destination. More precisely, we propose a system where for each set of shared requests, one
of those requests is selected as the main ride, and other customers need to walk to the origin
location of the main ride and later need to walk from the destination of the main ride to their
own final destination. We introduce a novel mathematical framework that conceptualizes this
TRS problem with shared pick-up and drop-off points. To account for dynamically incoming
customer requests, we employ a rolling-horizon strategy and conduct extensive computational
trials using real-world data from New York City and Porto. Through these experiments,
we manipulate various environmental and design factors, revealing their significant impact
on rejection rates, sharing rates, and overall service quality. Lastly, the guidelines provide
actionable insights for TRS operators, emphasizing the critical role of system design in leveraging
extended waiting periods to achieve low rejection rates and foster high levels of ridesharing,
thereby, contributing to RQ2.

Paper 5: Anticipatory Assignment of Passengers to Meeting Points for Taxi Ridesharing
As previously mentioned, literature shows that introducing meeting points in ridesharing
systems, where customers are picked up and dropped off, significantly increases its performance
by facilitating the aggregation of requests (Stiglic et al., 2015). In this fifth paper, we focus on
the anticipatory assignment of customers to such meeting points. We approach the problem
by framing it as a Sequential Decision Problem aimed at maximizing the distance conserved
through allocating requests to previously scheduled trips. The proposed solution involves
an anticipatory approach to trip planning, which integrates two key elements: forecasting
future customer demands using historical data and employing a policy function approximation
that minimizes unnecessary redundancy, thereby enhancing service area coverage. The paper
contributes to RQ2, as we perform an extensive evaluation using real-world data from New York,
demonstrating the efficacy of the proposed policy by showcasing substantial improvements in
distance saved compared to a myopic benchmark policy.

3.3 Framework-Based Classification of Papers

Recall that the overarching research objective is the development of optimization techniques to
enhance the efficiency of urban mobility and logistics systems under uncertainty with varying
Lewvels of Dynamism, with a particular emphasis on LMD and TRS. In all the papers mentioned
above, we are dealing with uncertainties. In Paper 1, the uncertainty lies in the unknown
driver’s behavior. In Papers 2 and 3, the main uncertainty lies in the unknown customer orders.
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Similarly, in Papers 4 and 5, it lies in unknown taxi requests. However, the papers regard
distinct use cases that require various modeling approaches regarding the Level of Dynamism.
Paper 1 regards a traditional LMD problem where customer orders have arrived on previous
days. Therefore, even though uncertainty exists in driver behavior, and in contrast to the
other papers, we deal with a static problem, since we do not re-optimize the tour online. In
Paper 2, a SDD case is considered, where customers expect delivery the same day it has been
ordered. Therefore, a rolling-horizon approach is applied, in which an optimization model is
run every hour. This is also the case in Paper 4, for a TRS use case. However, instead of
optimizing every hour, an optimization is performed every few minutes (the horizon length is
varied in experiments), which allows for faster decision-making, which is needed in the TRS
context, as customers cannot wait for hours for a taxi to arrive. A rolling-horizon approach
is useful, since in both these papers, decisions do not need to be taken immediately and the
approach allows us to gather information before deciding. A quicker decision is needed in
Papers 3 and 5, as customers expect delivery within minutes (Paper 3) or immediate feedback
on their request (Paper 5). Therefore, both these papers include event-driven decision points,

allowing immediate decision-making.
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4 Conclusion

The goal of this chapter is to derive conclusions from Part I of this thesis as well as from papers
that were presented in Part II. To achieve this, first, the research questions are addressed.
Further, research and managerial implications are discussed.

4.1 Addressing Research Questions

The first research question is how optimization methods can be applied to improve the efficiency
of LMD services, considering uncertainties such as driver behavior or dynamically occurring
customer orders. Considering uncertain driver behavior, in Paper 1 we argue that a hybrid ML
and OR method can increase driver obedience, where driver behavior is predicted by a ML
method (learned from historical data), which then serves as input to an optimization (OR)
model and thereby, increasing the system efficiency. Concerning dynamically occurring customer
orders, in Papers 2 and 3 optimization approaches have been developed that outperformed
existing methods from literature (Paper 2) or industry (Paper 3). While the Level of Dynamism
is different in both Papers (Paper 2 adopted a rolling-horizon approach and Paper 3 an
event-triggered approach), in both cases, the anticipation of future orders proved useful.

The second research question is how services for taxi-ridesharing with meeting points can be
designed to ensure high sharing rates, considering dynamically occurring customer requests.
Two potential designs have been suggested in Papers 4 and 5. Both these designs, i.e., a
rolling-horizon approach (Paper 4) and an event-driven system (Paper 5), show large sharing
potential. Moreover, it could be seen in Paper 4, that a horizon length of 5 minutes led to high
sharing rates, as this allowed for sufficient information accumulation. In contrast, the system
in Paper 5 did not allow for information accumulation, since customer requests had to be
responded to instantly. However, the anticipation of future customer orders, based on historical

data and the incorporation of previously implemented decisions, proved highly beneficial.

4.2 Research Implications

From the papers in Part II, several implications for research can be derived. It is visible that
sequential decision-making plays a significant role in the field of LMD as well as TRS, as
many problems in this domain can be modeled as Sequential Decision Problems. However,
from reviewing related literature in the individual papers, it is also visible that it received
considerably less attention in research. It can be hypothesized that this is also the case for
other problem areas outside of LMD and TRS. Therefore, sequential decision-making could
also be applied in other problem areas of urban mobility and logistics where it has not been
studied yet. For example, in Free-Floating Car Sharing (FFCS), users of this service usually
arrive over the day, and decisions, such as the rebalancing of cars, need to be taken sequentially.
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However, to the best of my knowledge, all research papers considering FFCS so far assume
perfect information.

Sequential decision-making can also play a role in areas beyond mobility and logistics. Areas
that traditionally received a lot of attention from the OR community, such as scheduling
and production planning, could also benefit from the lense of sequential decision-making as
also here, it is reasonable to assume that at least some orders/jobs arrive during an ongoing
production process and need to be inserted into an existing schedule.

From a methodological point of view, other characteristics of the problems considered can
be relevant to research. For example, the value of anticipating future events, i.e., in the papers
considered in this thesis, customer requests. As Papers 2,3 and 5 in this dissertation show,
such anticipation often results in significant improvement compared to methods where no
anticipation is present. This observation is also in line with previous research (see e.g., M.
Ulmer, 2019). Such an anticipation does not need to be overly complicated. Papers 3 and 5
of this dissertation show that adjusting a cost/reward function to account for future events
can improve a system’s performance significantly. Another finding made across papers, is the
importance of parametrization of the suggested methods, as usually, the suggested methods
have parameters that need to be determined upfront and there is a significant influence of
these parameters on the system performance. While parameter tuning is an existing research
area, the results support the importance and relevance of this area. Furthermore, an important
implication is the need for robust validation methodologies for the proposed methods. Validating
these anticipatory methods rigorously against real-world data remains a critical challenge. The
findings underscore the importance of developing and applying robust validation frameworks, i.e.,
simulation environments, that can reliably assess the performance and reliability of predictive
methods in practical settings. Preferably, the validation of the methods is done with real-world
data (see e.g., Papers 1,2,4 and 5) but in case this is not possible, data can also be generated,
e.g., by estimating the demand for a service based on the population density (see Paper 3).

4.3 Managerial Implications

Several managerial implications partly overlap with research implications. In the following,
implications from a service operator perspective (TRS or LMD company) are given, before

giving implications from a customer perspective.

For Service Operators
First, instead of relying on myopic decision rules, companies should incorporate more advanced
methods in their operational decision-making, if they deal with, e.g., on-demand services.
Preferably, the applied methods should be able to ex- or implicitly anticipate future events
and not only consider the best short-term decision. The studies showed that, compared to
non-anticipating methods, this can greatly increase service quality with the same amount of
resources needed. Vice versa, this also means that service quality can be kept constant with
fewer resources, consequently leading to a cost reduction for the operating company. This
is especially relevant when these companies operate at relatively low margins, such as is the
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case in On-Demand Delivery services (Simmons et al., 2022). To be able to develop new
methods, companies need to create simulation environments in which such methods can be
safely evaluated. A challenge is to create simulation environments that are detailed enough such
that all major problem characteristics are sufficiently addressed. However, a too high degree of
detail can lead to overly complex simulation models which make it difficult to understand and
maintain the software. Therefore, the right balance between simplicity and level of detail needs
to be found, such that a valid evaluation of solution methods can be performed.

Another managerial implication derives from a problem faced in some of the presented
research papers, namely data availability. For example, in the case of TRS (Papers 4 and
5), lead times (the time when customers make a request) were unavailable, which forced us
to make assumptions about this time. Similarly, in the case of ODD (Paper 3), customer
locations were drawn from a theoretical distribution based on the population density, rather
than empirical data. Therefore, companies should collect such data to be able to incorporate
empirical distributions, or distributions derived from empirical data, in the simulation models
for all kinds of parameters. When customer behavior is to be incorporated into the simulation
environments, this also includes data on customer preferences, which can be used to adjust
customer-choice models. However, it also needs to be mentioned that acquiring data might be
costly and it should be considered carefully if it is necessary in case data is costly to obtain.
Interested readers on simulation guidelines are referred to Carson (2005) and Law (2015).

Furthermore, throughout the papers, it could be seen that the results are strongly dependent
on resource availability, which were treated as given parameters. Examples are the taxi fleet size
or the number of couriers available, in case of ODD. Ideally, this should be treated as a tactical
decision that should be optimized together with the operational planning. Tactical planning is
essential for the efficient and effective operation of businesses. For a taxi company, determining
the optimal fleet size is crucial to meet customer demand while minimizing operational costs.
Similarly, for a delivery company, deciding on the right number of couriers is vital to ensure

timely deliveries and maintain customer satisfaction.

For Customers

From a customer perspective, the research can lead to an increase in service quality, as we
have shown that e.g., waiting times (Paper 3 and 4) and rejection rates (Paper 4) can be
decreased. Further, as mentioned previously, a cost decrease for the service provider might also
lead to lower prices for customers. These effects could increase the demand for the mentioned
service (e.g., ODD or TRS). In the case of TRS, an increase in demand might lead to a positive
network effect cycle (B. Yang et al., 2020), as more participating users will lead to an increase
in ride-sharing opportunities, reducing wait times and costs per trip, which can further attract
new users, creating a cycle of enhanced efficiency and user growth. In the case of SDD (and its
special case ODD), indirect network effects could emerge, i.e., companies could start investing
more money in these services if they prove to be more profitable (e.g., by applying the methods
presented in Papers 2 and 3), resulting in an offer increase.

For Society
The research conducted in this thesis can also have an impact on a broader, societal level. For
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example, as shown in Papers 4 and 5, TRS can reduce traffic and its accompanying side effects
(e.g., congestion, pollution, accidents), by reducing the taxi fleet needed to serve all customer
requests. Also regarding SDD, more efficient planning can reduce traffic and have positive
impacts. However, increased demand due to more efficient operations can have a negative side
effect, as it can lead to people who would not have considered SDD now using this service,

moving away from traditional, less resource-intensive, multi-day delivery.



5 Limitations

The studies presented in this thesis come with certain general limitations. One limitation arises
from the methods used in the research papers. While it is generally agreed upon that stochastic
and dynamic real-world sized problem instances are intractable to solve with exact methods
(H. Li & Womer, 2015; Topaloglu & Powell, 2006; Woerner et al., 2015), in the presented
research papers, it is not attempted to develop such exact methods, but it has been relied on
heuristics and approximations. Therefore, rather than providing a measure of how closely the
solutions approach theoretical optimality, the solutions are rather practical approaches that
trade off computational efficiency for feasible implementation within realistic constraints and
time limits. This is even the case for Paper 4, where a rolling-horizon approach is applied and
each planning horizon is solved with an exact matching/grouping method. This is because
the size of planning horizons is predetermined and horizons that allow for different and better
matchings/groupings most likely exist.

Another limitation is that all problems studied are just a representation of real-world problems
but cannot fully reflect all real-world characteristics and requirements. Therefore, more details
can be added, which could potentially alter the results to some extent. Examples of this model
detail are driving times, which are assumed to be deterministic in all the studies, while in the
real world, they are stochastic. Another example is employee availability, which is assumed to
be a deterministic parameter, neglecting possible absences due to e.g., due to illness. In the
papers presented in this thesis, the advice of Law (2015) was followed, who states: ‘Do not
have more detail in the model than is necessary to address the issues of interest, subject to the
proviso that the model must have enough detail to be credible.” Therefore, the models presented
in the papers are expected to be realistic (detailed) enough, such that the key statements
remain valid.

Closely related to the detail of the model is another limitation of the studies, namely the
neglect of customer choice models. More precisely, in the presented studies, it is assumed that
all customers are homogeneous and accept the offers at any time. For example, the choice of
accepting an offered shared taxi ride. In the real world, however, customers are heterogeneous
and might reject the service in the short or also long term (i.e., the customer now accepts the
service but forgoes in the future). Neglecting these customer choices therefore might distort
the findings and their real-life generalisability.

The limitations of this work lead to the next section, in which possible avenues for future

work related to the papers in this thesis are presented.






6 Future Work

There exist several possible future directions. Regarding the previously mentioned model
complexity, the presented models could be extended by a higher level of detail in general. More
specifically, stochasticity of many parameters (driving times, service times) could be included,
where it is not done already. This could strengthen the validity of the studies. However, it
might also lead to the requirement for specialized solution approaches that account for these
stochasticities and make use of probability distributions regarding the parameters. For example,
regarding uncertain driving time, a common approach in the literature is to artificially add
safety slack to the times, to make sure that customers are reached within their time window
(Gorissen et al., 2015; Kok et al., 2012). Further, the previously mentioned customer choice
models could be incorporated into the problem environments and models. Also here, one
could draw on the choice model to steer customer demand and consequently, to make better
decisions. Common ways to do this are either by adjusting offer availabilities (i.e., determining
which service options to offer to a customer), dynamic pricing, or both (Akkerman et al., 2024;
Fleckenstein et al., 2023). The most frequently used choice model is the Multinomial Logit
(MNL) choice model (Feldman et al., 2022; Lin et al., 2020), where choice probabilities are
expressed as a linear combination of exponential terms (Strauss et al., 2018) (attributes of
an option) and parameters need to be tuned based on available, preferably real-world, choice
data. In the case of TRS, one might directly reject customer requests when a service would
result in an unacceptable waiting time, offer the customer options with different waiting times
and prices, or offer customers a single option with an individual price (see, e.g. Luo & Saigal,
2017; Yan et al., 2020). Also in LMD, dynamic pricing has attracted attention in both practice
and research (Akkerman et al., 2024; X. Yang et al., 2016) and could be incorporated into the
problems studied in this dissertation.

Another possible future direction is to include the concept of fairness in the considered
problems. For example, in the case of TRS, customers in busy areas can be shared more often
with other rides, compared to customers who live in less busy areas, potentially leading to
benefits for those customers, such as lower rejection rates and/or lower prices. A reallocation
of resources (in that case, taxis), can potentially reduce this unfairness by assigning more
taxis to less populated regions. In the context of LMD, customers living in central areas will
likely have lower delivery times, which could be balanced by adjusting the objective function
to accommodate for unbalanced waiting times, e.g., by minimizing the maximal waiting time
instead of the average waiting time. However, including fairness will likely result in an efficiency
loss of the systems (Bertsimas et al., 2011, 2012).

A further direction for future research is based on the limitation of having only developed
heuristic methods for the considered problems. While exact methods are intractable for
dynamic real-world sized problem instances (Powell, 2019), they still might be used for small
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artificial instances. A possible approach is to apply classical dynamic programming to solve
the problems at hand (using value and/or policy iteration). Besides deriving optimal policies,
another approach to strengthen the theoretical value of the work is to derive performance
guarantees for certain developed policies. An interesting approach from the literature is to
draw on queuing theory to derive theoretical performance guarantees. Interested readers are
referred to Fatehi and Wagner (2022) who derive performance guarantees for policies in the
context of Crowd-Sourced Delivery. Another example is the work of Chen and Hu (2024),
who analyze when customer bundling is beneficial in the case of ODD, assuming there is one
warehouse located at the center of a disk-shaped region.

Another possible avenue is related to an implication given in Section 4.3, stating that
companies should carefully plan the number of used resources, as it could be seen that resource
availability strongly affects operational planning. This is by no means a trivial task, since
usually, multiple conflicting objectives are involved on a strategic, tactical, and operational
level. For example, when deciding on the taxi fleet size, a small taxi fleet leads to lower costs,
but might also lead to longer waiting times and more customer rejects, negatively influencing
both revenue and customer satisfaction. A related problem arising is the time horizon of
different planning levels. Strategic planning focuses on a time frame of months to years, tactical
planning covers weeks to a few months, and operational planning deals with periods from a
few hours to a day (Zeltyn et al., 2011). For instance, when buying a taxi, it can be used
for multiple years. A question arising is therefore how to align the long-term investment of
purchasing a taxi with the shorter-term decisions involved in tactical and operational planning,
ensuring that all planning levels are integrated effectively to maximize overall efficiency and
profitability. An example of an approach integrating tactical and operational planning is the
work of Hasturk et al. (2024) who consider an inventory routing problem for hydrogen. The
authors develop an algorithm that jointly optimizes tactical repetitive schedules for vehicle
transportation and the operational buying and selling decisions in case of underproduction or
overproduction, by iteratively solving the tactical and operational problem. Drawing on this
approach, in the case of ODD, the planning of warehouse locations (strategic level), the courier
fleet size (tactical level), and the customer-warehouse/courier assignment (operational level)
could be jointly optimized. Similarly in TRS systems, methods could be developed that jointly
optimize the number of taxis owned by the service provider (strategic level), the schedule for
taxi drivers (tactical planning), and the taxi-customer assignment (operational level).
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